

## UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

# FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA EN CIENCIAS DE LA TIERRA

"ANÁLISIS DE SERIES DE TIEMPO ELECTROSÍSMICAS (ALTERNATIVAS DE PRECURSORES SÍSMICOS) "

# T E S I S

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO GEOFÍSICO

P R E S E N T A :

JUAN MÁRQUEZ CRUZ

DIRECTORA DE TESIS: DRA. ELSA LETICIA FLORES MÁRQUEZ



MÉXICO, D. F.

Noviembre 2007



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

## DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

### **AGRADECIMIENTOS**

De manera muy especial agradezco a la Dra. Elsa Leticia Flores Márquez por la confianza, apoyo, asesorías, paciencia y buenos momentos.

Al Dr. Alejandro Ramírez Rojas, investigador de la Universidad Autónoma Metropolitana en el área de física de procesos irreversibles en el departamento de ciencias básicas de UAM-Azcapotzalco, por facilitar los datos de potencial eléctrico y una basta asesoría sobre leyes de potencias y sistemas físicos.

Al Instituto de Geofísica de la UNAM por abrir sus puertas para el desarrollo del presente trabajo y a la beca proporcionada por el mismo instituto.

A la beca del proyecto PAPIIT IN-112906 de la Dirección General de Asuntos del Personal Académico (DGAPA), del cual la Dra. Leticia Flores es responsable.

Al proyecto de Investigación Multidisciplinaria de Proyectos Universitarios de Liderazgo y Superación Académica (IMPULSA-IV) en su parte correspondiente del Instituto de Geofísica, por el apoyo económico recibido, proyecto del cual la Dra. Rosa María Prol Ledesma es responsable.

Al Servicio Sismológico Nacional por facilitarme el catálogo de sismos empleados en mi tesis y en particular al Ing. Casiano Jiménez Cruz (Coordinador de Análisis y Proceso de Datos del SSN) por su amabilidad y eficiencia.

A mi madre y mi hermana por la paciencia, apoyo, amor y comprensión.

A mi tía Sara y a toda su familia por haberme abierto los brazos y ser mi segundo hogar.

A la familia Cruz Herrera por creer en mi.

A mis amigos y profesores por su apoyo incondicional, y en algunos casos, por asesorías para mi tesis.

A los doctores Martín Cárdenas, Jorge Aguirre, Xyoli Pérez, Claudia Arango y Carlos Mortera y al Ing. Gerardo Cifuentes, por prestarme su tiempo para asesorías.

A los Investigadores Dra. Leticia Flores (IGeof.-UNAM), Dr. Alejandro Ramírez (AFPI-UAM-Azcapotzalco), Dr. Gonzalo Gálvez Coyt (UPIB-IPN) y Dr. Fernando Angulo Brown (ESFyM-IPN), por su excelente trabajo al lograr la publicación en NHESS.

A todos.

Yo se que la historia jamás ha enseñado nada a nadie, pero... las analogías son un privilegio del espíritu, y la esperanza su patética debilidad.

Ikram Antaki

El manual del ciudadano contemporáneo

Tanto si crees que puedes como si crees que no puedes, estás en lo cierto Henry Ford

La vida es aquello que nos va sucediendo mientras nos empeñamos en hacer otros planes John Lennon

> Nuestra recompensa se encuentra en el esfuerzo y no en el resultado Mahatma Gandhi

Dos cosas son infinitas: el Universo y la estupidez de la humanidad, y no estoy seguro del Universo

Albert Einstein

A la memoria de mi padre, Héctor Márquez Monter

A mi madre, Ana María Cruz Herrera

A mi hermana, Violeta Alejandra Márquez Cruz

A mi y a mi corazón, tú

# ÍNDICE

| RESUMEN                                                                                                                                                                                                                                               | i                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| CAPÍTULO I:<br>INTRODUCCIÓN                                                                                                                                                                                                                           | 1                              |
| <ul> <li>Perspectiva histórica del análisis de series de tiempo</li> <li>Sistemas físicos</li> <li>Señales electrotelúricas</li> </ul>                                                                                                                | 1<br>4<br>5                    |
| CAPÍTULO II:<br>CONCEPTOS BÁSICOS PARA EL ANÁLISIS DE SERIES DE TIEMPO                                                                                                                                                                                | 6                              |
| <ul> <li>Series de tiempo</li> <li>Conceptos de probabilidad</li> <li>Variables aleatorias</li> <li>Análisis de espectral</li> <li>Leyes de potencia e invariancia de escalas</li> <li>Análisis de <i>wavelets</i> (ondículas u ondeletas)</li> </ul> | 6<br>7<br>14<br>23<br>26<br>27 |
| CAPÍTULO III:<br>MEDICIONES DE CAMPO ELÉCTRICO                                                                                                                                                                                                        | 28                             |
| <ul> <li>Análisis preliminar de series de tiempo y filtrado</li> <li>Ruido de origen electroquímico</li> <li>Disturbios magnetotelúricos</li> </ul>                                                                                                   | 29<br>34<br>34                 |
| CAPÍTULO IV:<br>TRATAMIENTO DE LAS SERIES ELÉCTRICAS                                                                                                                                                                                                  | 36                             |
| - Determinación de leyes de potencia de las series                                                                                                                                                                                                    | 36                             |
| CAPÍTULO V:<br>DISCUSIÓN DE LOS RESULTADOS                                                                                                                                                                                                            | 42                             |
| CONCLUSIONES                                                                                                                                                                                                                                          | 41                             |
| REFERENCIAS                                                                                                                                                                                                                                           | 44                             |
| APÉNDICES                                                                                                                                                                                                                                             | 46                             |

#### RESUMEN

Durante los últimos treinta años se han realizado diversos estudios en torno a la búsqueda de precursores de sismos mayores a M = 6. Dentro de estos estudios destacan los realizados por el grupo griego encabezado por P. Varotsos, quienes introdujeron la tecnología que permite la medida de las variaciones del potencial eléctrico natural en la corteza, y su interpretación como señales electrosísmicas (SES). Existen varias hipótesis sobre la generación de estas variaciones del potencial eléctrico del subsuelo, ocasionados por los movimientos tectónicos regionales. En este caso, se asocia al mecanismo propio del sismo, es decir, a las etapas de preparación, ruptura y relajación de la corteza. Posteriormente, estas señales han sido estudiadas mediante diversos métodos estadísticos, permitiendo identificar las características de las fluctuaciones del potencial eléctrico (SES), como precursores de sismos de magnitud mayor o igual a 6. En este trabajo se analizan los registros del potencial eléctrico medido durante el año 1993 y la sismicidad reportada para ese año por el Servicio Sismológico Nacional (SSN). Dos fechas presentan temblores importantes, 15 de mayo y 24 de octubre. En la primera ocurrieron dos temblores de magnitudes M =5.8 y M = 6.0 y en la segunda uno de M = 6.6.

El análisis de los registros del potencial eléctrico se llevó a cabo mediante el estudio del comportamiento del exponente espectral  $\beta$ . Se observó de manera general un comportamiento persistente de la señal durante varios meses del año, en congruencia con un trabajo previo de Ramírez-Rojas (2003). Se detectaron variaciones considerables en la evolución de la potencia espectral 15 días antes del evento del 24 de octubre, los valores calculados para el exponente espectral despliegan una dinámica tipo movimiento Browniano.

Al observar las distancias de los hipocentros y epicentros a la estación ACA, se puede apreciar una diferencia de poco menos de 30 km para los sismos del 15 de mayo y del 24 de octubre, siendo esta diferencia una posible explicación del por qué no se puede apreciar una variación en la evolución de la potencia espectral, además que la magnitud del sismo es ~0.6 mayor en escala Richter para el caso del sismo del 24 de octubre; hay que recordar que la escala Richter es logarítmica, por lo que una magnitud Richter representa una energía liberada aproximadamente 31.6 veces mayor a la magnitud inmediata anterior (magnitud menos uno).

Las técnicas empleadas de preprocesamiento fueron de gran utilidad para reducir el ruido en la serie de tiempo original. Al visualizar la evolución del exponente espectral para todo el año, no es posible distinguir una variación clara para los sismos cuya magnitud sean M  $\leq$  6 y con epicentros mayores a ~92 km de la estación ACA. Los valores de  $\beta \geq$  1 pudieran estar asociados a sismos cuyas magnitudes sean 4.5  $\leq$  M  $\leq$  5.5.

### **CAPÍTULO I**

## INTRODUCCIÓN

El tratamiento o análisis de las series de tiempo tiene como finalidad caracterizar un fenómeno o un sistema físico a partir de su evolución en el tiempo. Las herramientas empleadas para conseguir este objetivo son ampliamente conocidas y aceptadas científicamente al tener bases en la probabilidad y estadística.

#### Perspectiva histórica del análisis de series de tiempo

Los procesos recurrentes observados en fenómenos naturales han inquietado al hombre desde que éste hace uso de la razón. En un principio eran sin explicación matemática, como lo hicieron las antiguas civilizaciones que fueron capaces de elaborar "dispositivos" empleados como calendarios y realizar mediciones del tiempo, observando la duración de los días, la duración de los años, los cambios estacionales, las fases de la luna y el movimiento de otros cuerpos celestes como los planetas. En el siglo VI a. C., Pitágoras estableció una relación entre la periodicidad de la vibración que produce una cuerda tensa de un instrumento musical y un número, representando así a la longitud de la cuerda; él creía que la esencia de la armonía estaba en los números. Pitágoras además extendió su relación empírica para describir el movimiento armónico de cuerpos celestes, describiendo ésta como la "música de las esferas".

Las bases matemáticas de la estimación espectral moderna tiene sus orígenes en el siglo XVII con el trabajo del científico Sir Isaac Newton. Él observó que los rayos del Sol pasando a través de un prisma de vidrio era expandido en una franja de varios colores, de esta manera descubrió que cada color representaba una longitud de onda particular de luz y que la luz blanca del Sol contenía todas las longitudes de onda. Además, Newton fue el que introdujo el término "espectro" como un término científico que describe a esta banda de luz de colores. La palabra espectro proviene del latín *spectrum* que quiere decir imagen o aparición fantasmagórica. El adjetivo asociado a espectro es espectral. De esta manera, la estimación espectral, más que estimación de espectro, es la terminología preferida. Newton presentó el primer tratado matemático, Principia (1687), sobre la periodicidad del movimiento ondulatorio que Pitágoras había observado empíricamente (Marple, 1987).

La solución a la ecuación de onda para las cuerdas musicales vibrantes fue desarrollada por Daniel Bernoulli (1738), un matemático quien descubrió la solución general para el desplazamiento u(x,t)de la cuerda al tiempo t en la posición *x* (donde los extremos eran 0 y  $\pi$ ) en la ecuación de onda:

$$u(x,t) = \sum_{k=1}^{\infty} \operatorname{sen} kx \left( A_k \cos kct + B_k \operatorname{sen} kct \right), \tag{1}$$

donde *c* es una cantidad física característica del material de manufactura de la cuerda, representando la velocidad de viaje de las ondas en la cuerda. El matemático Euler (1755) demostró que los coeficientes  $A_k$  y  $B_k$  fueron encontradas como soluciones:

$$A_{k} = -\frac{2}{\pi} \int_{0}^{\pi} u(x,0) \operatorname{sen} kx \, dx \quad , \qquad B_{k} = -\frac{2}{\pi} \int_{0}^{\pi} u(x,0) \cos kx \, dx \, . \tag{2}$$

El ingeniero francés Jean Baptiste Joseph Fourier en su tesis "Teoría Analítica del Calor" (1822) expandió los resultados de la ecuación de onda declarando que cualquier función arbitraria u(x), incluso una con una infinidad de discontinuidades, podría ser representada como una suma infinita de términos seno y coseno.

$$u(x) = \sum_{k=1}^{\infty} (A_k \cos k\alpha x + B_k \sin k\alpha x).$$
(3)

Los matemáticos al tomar una función u(x), o sus muestras y determinar sus coeficientes  $A_k$  y  $B_k$ , lo han transformado a lo conocido como análisis armónico, debido a la relación armónica entre los términos seno y coseno.

A mediados del siglo XIX, las aplicaciones científico-prácticas del análisis armónico fueron realizadas para estudiar datos fenomenológicos como el sonido, el clima, actividad de manchas solares, desviaciones magnéticas, flujos de ríos y variaciones de marea. En muchas de estas aplicaciones, el período fundamental fue también oscurecido por errores de medición, ruido o simplemente no eran visualmente evidentes. Además, las componentes periódicas secundarias tienen una relación armónica con la periodicidad fundamental que solían presentar. Esto produjo algunos problemas con la estimación de varias periodicidades. El cálculo manual de los coeficientes de las series de Fourier por técnicas computacionales directas o por métodos gráficos asistidos probaron que era extremadamente tedioso y era limitado para pequeños conjuntos de datos. Analizadores mecánicos armónicos fueron desarrollados para asistir el análisis, estas máquinas calculadoras eran básicamente integradores mecánicos, o planímetros, porque ellos obtenían el área bajo las curvas u(x)sen(kx) y u(x)cos(kx) para el intervalo  $0 \le x \le \pi$ , de este modo se proveyó un cálculo de los coeficientes de la serie de Fourier  $A_k$  y  $B_k$ . El físico británico Sir William Thomson (Lord Kelvin) desarrolló el primer analizador armónico mecánico basado en un planímetro de producto dual de funciones,  $\int u(\theta) \Phi(\theta) d\theta$ , inventado por su hermano James Thomson y modificado para evaluar funciones coseno y seno (1876, 1878). Mejoras a los analizadores armónicos fueron subsecuentemente hechas por O. Henrici (1894), A. Harp (1894), G. U. Yule (1895), y el físico norteamericano Albert A. Michelson y S. W. Stratton (1898) (Marple, 1987).

Los resultados de un análisis armónico en ésta era fueron algunas veces empleados para sintetizar una forma de onda periódica para las componentes armónicas en procesos de predicción (el modelo en series de Fourier de una secuencia de datos). Uno de los usos más recientes ha sido la predicción de mareas, dando resultados exitosos.

Sin embargo, los analizadores armónicos mecánicos fueron útiles para evaluar series de tiempo con periodicidades obvias; los métodos numéricos de análisis armónico seguían siendo requeridos para evaluar datos muy ruidosos, para encontrar posibles periodicidades ocultas o para evaluar señales sin relaciones armónicas. De los muchos científicos que usaron el análisis armónico, Schuster (1897, 1898, 1900, 1905, 1906) realizó el impacto más profundo que ha convertido la técnica de estimación espectral clásica; él sugirió que en un gráfico de los cuadrados de los coeficientes de la transformada de Fourier (propuesto primero por Stokes, 1879)  $S_k = A_k^2 + B_k^2$  puede ser calculado un rango de *n* integrales de período  $T_0$ ,

$$A_{k} = \frac{2}{nT_{0}} \int_{\tau}^{\tau+nT_{0}} u(t) \cos kt \, dt \qquad y \qquad B_{k} = \frac{2}{nT_{0}} \int_{\tau}^{\tau+nT_{0}} u(t) \sin kt \, dt \,, \tag{4}$$

donde  $k=2\pi/T_0$ . Schuster nombró a su método Periodograma (1898), en concepto, podría ser evaluado sobre un conjunto de períodos. En su escrito, Schuster reconoce varios problemas y peculiaridades del periodograma, espontáneamente surgen picos a los cuales llamó "periodicidades accidentales", donde realmente no existían periodicidades. Para solucionar este pequeño tropiezo implementó un promedio para conseguir un suavizamiento y atenuar así los picos, al que nombró "periodograma promedio", la implementación necesitaba recursos computacionales más allá de los disponibles en su era.

Schuster aplicó el pediodograma para encontrar periodicidades ocultas en datos de índole meteorológica, declinación magnética y números de manchas solares. En estos últimos consiguió determinar un ciclo de 11.125 años.

El estadístico británico G. Yule en 1927 propone un método alternativo, que en su momento le resta encanto al periodograma, que consistía en modelar una serie de tiempo con el análisis de regresión lineal para encontrar una o dos periodicidades en los datos. En 1930 Norbert Wiener publicó su artículo "Análisis armónico generalizado", artículo con el que se justifica al análisis espectral, con fundamentos estadísticos firmes, a emplearse en el tratamiento de procesos estocásticos y gracias a Wiener fueron definidos los términos de autocorrelación y densidad espectral de potencia (PSD, por sus siglas en inglés) para procesos aleatorios. El uso de la transformada de Fourier, más que el tradicional análisis armónico de series de Fourier, permitió que Wiener definiera al espectro en términos de un "continuo de frecuencias", mas que armónico discreto de frecuencias. El ruido blanco fue mostrado por Wiener al tener un PSD uniforme, que es un conjunto equitativo de todas las frecuencias; este es un resultado que él dedujo de sus estudios del movimiento Browniano (se explicará más adelante) y de las analogías ópticas de Schuster.

Otras contribuciones tempranas para la caracterización estadística del análisis espectral fueron incluidas por Bartlettt (1946, 1948, 1950) y Kendall (1945) (Marple, 1987).

La siguiente contribución clave al análisis espectral vino en la forma de un algoritmo computacional bastante eficiente para resolver la transformada discreta de Fourier (DFT, por sus siglas en inglés), aplicable al procesamiento de datos digitales. En 1965 Jim Cooley y John Tukey fueron el centro de atención para la comunidad de procesamiento digital, al publicar un artículo conciso en el que describían una forma práctica y eficiente para calcular la transformada de Fourier, método al que llamaron Transformada Rápida de Fourier (FFT, por sus siglas en inglés. Ésta transformada será descrita más adelante) (Marple, 1987).

La comunidad científica empezaba a tener dificultades en el procesamiento de series de tiempo periódicas y/o no estacionarias, porque las sumas de funciones seno y coseno, propuestas por Fourier, no podían caracterizar a estos fenómenos claramente. Por lo que se vieron obligados a sustituir dichas funciones por otras "ondículas u ondeletas" (*wavelets*, en inglés) que asemejaran más las características fenomenológicas de sus objetivos de estudio.

En términos históricos, el desarrollo de las *wavelets* entronca con varias líneas de pensamiento, a partir del trabajo de Alfred Haar a principios del siglo XX. Jan Olov-Strömberg, con su temprano trabajo sobre *wavelets* discretas (1983), Ingrid Daubechies, con su propuesta de *wavelets* ortogonales con soporte compacto (1988), Stephane Mallat y Yves Meyer, con su marco multiresolución (1989), Delrat con su interpretación de la transformada *wavelet* en tiempo-frecuencia (1991), Newland, con su transformada *wavelet* armónica, Goupillaud, Grosman y Morlet con su formulación de lo que hoy conocemos como transformada *wavelet* continua y muchos otros desde entonces.

Actualmente, las herramientas matemáticas antes mencionadas forman parte de un proceso habitual en la búsqueda de señales inmersas en series de tiempo, tanto periódicas como no periódicas. Estas últimas suelen ser más difíciles de encontrar, porque el análisis requiere de procesos secundarios a partir del análisis de Fourier y otros.

#### Sistemas físicos

La forma habitual de estudiar un sistema físico se lleva a cabo mediante la generación de un modelo que describa al fenómeno, esto es, obtener un conjunto de ecuaciones diferenciales que incluyan las interacciones entre las partes del sistema junto con sus condiciones iniciales y de frontera apropiadas, aún cuando se sigue este procedimiento, es de esperarse problemas analíticos extremadamente difíciles. Sin embargo, no siempre es posible contar con las ecuaciones que describan al fenómeno cuando este es complejo, por lo que la nueva estrategia sería caracterizar al sistema a partir de mediciones de variables asociadas al mismo y contestar a las

preguntas ¿existe alguna relación causal entre las mediciones? ¿existe una combinación de funciones periódicas?

Hay que recordar que la corteza terrestre es un sistema complejo que se encuentra sujeto a distintas interacciones que actúan a diferentes escalas espaciales y temporales. Se considera que en la naturaleza los sistemas son causales, en el sentido de que la información almacenada en las variables dinámicas garantizan la continuidad en la evolución del sistema a través del tiempo. No obstante, debido al ruido intrínseco y la cantidad de información referente a las realizaciones del fenómeno, es difícil caracterizar la dinámica de un sistema solamente con las mediciones realizadas. Para obtener una caracterización más completa es necesario estudiar el comportamiento de otras variables o parámetros y relacionarlas entre sí (Ramírez-Rojas, 2003).

En Geofísica, la mayoría de los problemas se han atacado por dos soluciones, la primera corresponde a la mencionada modelación y la segunda se enfoca al análisis de una señal a partir de la variabilidad estocástica o el ruido que pueda medirse y no sólo esto es propio del área sino que se extiende a una gran variedad de disciplinas (medicina, geografía, economía, etc.) al estudiar la llamada teoría de los procesos estocásticos y el estudio de sistemas dinámicos. Entiéndase por sistema dinámico como un sistema complejo que presenta un cambio o evolución de su estado en un tiempo.

#### Señales electrotelúricas

En el presente trabajo se analizaron dos series de tiempo que corresponden a la medición de la diferencia de potencial en una estación localizada en Acapulco (ACA), estado de Guerrero. Las características de la adquisición serán descritas más adelante. Estas series de tiempo reciben el nombre de señales electrotelúricas o campo de auto-potencial, las cuales se atribuyen a las variaciones de potencial debidas a las corrientes de potencial, piezoelectricidad, triboelectricidad, triboluminiscencia y electrificación de contacto existente en la estructura de la corteza (Freund, 2002).

También se han desarrollado exitosamente experimentos en laboratorio para confirmar la aparición de emisiones radioeléctricas asociadas a las fracturas de algunas rocas que fueron sometidas a compresiones intensas, por lo que no es sorprendente que esta clase de emisiones se presenten ante la inminencia de un sismo.

La finalidad de esta tesis es encontrar una relación entre dichas señales con la actividad sísmica de la región cercana a Acapulco para el año 1993 y así encontrar, si existiese, algún tipo de precursor sísmico.

## **CAPÍTULO II**

## CONCEPTOS BÁSICOS PARA EL ANÁLISIS DE SERIES DE TIEMPO

En este capítulo se mostrará la definición de series de tiempo, además, se recordarán los conceptos básicos de probabilidad y estadística que son fundamentales para el análisis de series de tiempo, así como herramientas de análisis espectral esenciales para el tratamiento de señales.

#### Series de Tiempo

Las series de tiempo son secuencias de datos medidas habitualmente a lo largo del tiempo a intervalos uniformes (Brockwell y Davis, 2002).

Una secuencia para comenzar a analizar series de tiempo es la siguiente:

- Generar una gráfica de las series y examinar las características principales de ésta, revisando si en ella existe una tendencia, una componente estacional (o cualquier otra oscilación), cualquier cambio súbito en su comportamiento o cualquier observación que pareciera fuera de lugar.
- Remover las componentes de tendencia y estacionales para obtener residuales estacionarios. Para conseguir este objetivo pudiera ser necesario aplicar algunas veces transformaciones preliminares a los datos (cambio de ejes, escalas, etc.).
- Una alternativa extremadamente útil es expresar las series en términos de sus componentes de Fourier. Esta aproximación es especialmente importante en ingeniería aplicada, procesamiento de señales y diseño estructural.

El análisis de las series de tiempo comprende métodos orientados a evaluar el comportamiento de este tipo de datos. La predicción de un fenómeno a partir de series de tiempo utiliza métodos cuantitativos (numéricos) basados en los datos iniciales de la serie.

Existe una variedad infinita de modelos destinados al análisis y proyección de series temporales. Entre los más conocidos y populares se encuentran los llamados Auto Regresivos de Medias Móviles (ARMA, AutoRegressive Moving Average), aunque existen otras herramientas de análisis de tiempo semiparamétricas (por ejemplo, Redes Neuronales Artificiales) o no paramétricas.

Una forma de clasificar a este tipo de señales –queriendo decir que alguna información posee la serie de tiempo y que será analizada como tal– es atendiendo a la naturaleza de la variable independiente. Si la variable independiente es continua, la correspondiente señal se denomina señal en tiempo continuo y está definida para valores continuos de la variable independiente. Por

ejemplo una señal telefónica o la presión atmosférica en función de la altitud. Si la variable independiente toma sólo valores discretos  $t = kT_s$ , siendo  $T_s$  un número real positivo fijo y k un número entero (es decir,  $k = 0,\pm 1,\pm 2,\pm ...$ , etcétera), la correspondiente señal  $x(kT_s)$  se denomina señal en tiempo discreto. Las señales en tiempo discreto surgen de forma natural en muchas áreas de negocios, economía, ciencia e ingeniería (Soliman, *et al*, 1999).

#### Conceptos de probabilidad

Desde tiempos inmemorables, los hombres se han preguntado: ¿La Naturaleza es predecible o es completamente irregular e impredecible? Es decir, por las leyes de la causalidad y hasta la fecha seguimos preguntándolo. En la Edad Media, cuestionamientos de este tipo y estudios del azar eran catalogados como brujería; fue hasta finales de esa época cuando se comenzó a dar un sentido científico al estudio de estos problemas, que para esos tiempos no era tan fácil. Hace 300 años, el matemático Blaise Pascal, mediante un método sistemático, introdujo una forma de evaluación de las posibilidades de éxito de un cierto evento y al intercambiar escritos con otro científico, Pierre Fermat, se consiguió el comienzo de una nueva rama de las matemáticas, la probabilidad (Solnes, 1992).

De acuerdo con el concepto de probabilidad de Laplace, la probabilidad de un experimento exitoso puede definirse como sigue:

$$P[\text{"éxito"}] = \frac{n \text{ úmero } de "n" resultados exitosos}{n \text{ úmero } de "m" } de todos los posibles resultados} = \frac{n}{m}, \quad (5)$$

donde P["éxito"] = Probabilidad de éxito = Pr("éxito"),

Que es referida a una fracción favorable. La probabilidad de un experimento no exitoso será entonces, un fracaso y puede ser evaluado de la siguiente manera:

Probabilidad de fracaso = P["fracaso"] = 
$$\frac{m-n}{m} = 1 - \frac{n}{m} = 1 - P["éxito"]$$
, (6)

donde *m-n* son los resultados "favorables" para que el experimento resulte un fracaso (Solnes, 1992).

El teorema de la probabilidad total se refiere a la probabilidad de un evento compuesto en un experimento aleatorio. El evento compuesto tiene características que son compartidas por un grupo de eventos mutuamente excluyentes (simples o compuestos). A estos eventos mutuamente

excluyentes se les denomina como formas del evento compuesto. El teorema relaciona la probabilidad de un evento compuesto y las probabilidades de sus formas (Lee, 1960).

El teorema de la probabilidad total establece, en un experimento conceptual aleatorio, que, si un evento *A* puede ocurrir en las formas mutuamente excluyentes  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_k$  y no en otras formas, entonces la probabilidad del evento *A* es la suma de las probabilidades de los eventos  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_k$ . Simbólicamente,

$$P(A) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_k).$$
(7)

Para probar este teorema, sea *n* el número de eventos exhaustivos (o completos), mutuamente excluyentes e igualmente probables del experimento. Estos son eventos simples del experimento dado. Sean  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_k$  el conjunto completo de formas mutuamente excluyentes de A; sean  $m_1$ ,  $m_2$ ,  $m_3$ , ...,  $m_k$  los números respectivos de eventos favorables simples de  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_k$ . El número de eventos favorables simples de A es, entonces, la suma de  $m_1 + m_2 + m_3 + ... + m_k$ . De acuerdo con la definición de probabilidad (5), la probabilidad del evento A es

$$P(A) = \frac{m_1 + m_2 + m_3 + \dots + m_k}{n} = \frac{m_1}{n} + \frac{m_2}{n} + \frac{m_3}{n} + \dots + \frac{m_k}{n}.$$
 (8)

Claramente, por definición, los cocientes en esta expresión son las probabilidades de los eventos  $A_1, A_2, A_3, ..., A_k$ ; esto es,

$$P(A_1) = \frac{m_1}{n}, \ P(A_2) = \frac{m_2}{n}, \ P(A_3) = \frac{m_3}{n}, \ \dots, \ P(A_k) = \frac{m_k}{n}.$$
(9)

Por lo tanto, tenemos a la siguiente relación, que se conoce como teorema de la probabilidad total:

$$P(A) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_k),$$
(10)

#### Teorema de la Probabilidad Conjunta

Este teorema se refiere a la probabilidad de juntar ocurrencias de dos eventos de un experimento aleatorio. La esencia del teorema yace en el concepto de *Probabilidad Condicional* (Lee, 1960), la cual se explicará más adelante. Sean dos conjuntos *A* y *B*, como se muestran en la figura 1.



Figura 1. Dos conjuntos, A y B

La unión de estos dos conjuntos está denotada por  $A \cup B$  y se define con todos los elementos de ambos conjuntos. La intersección de estos conjuntos está denotada por  $A \cap B$  y es definida como el conjunto de los elementos que pertenecen tanto a *A* como *B* (Solnes, 1992). Para cualquier *A* y *B*, las siguientes relaciones son fácilmente derivadas:

$$A = (A - B) \cup (A \cap B) \quad \text{y} \quad A \cup B = A \cup (B - (A \cap B)), \tag{11}$$

donde (A - B) y  $(A \cap B)$  son mutuamente excluyentes como lo son también A y  $(B - (A \cap B))$ . Obviamente el conjunto  $(B \cap (A \cap B))$  es el mismo que  $(A \cap B)$ . Entonces

$$P(A) = P(A - B) + P(A \cap B),$$
  
o bien,  
$$P(A - B) = P(A) - P(A \cap B),$$
  
(12a)

el cual es el teorema de la resta, y

$$P(A \cup B) = P(A) + P(B - (A \cap B)) = P(A) + P(B) - P(B \cap (A \cap B)) = P(A) + P(B) - P(A \cap B)$$
(12b)

que es el teorema de la suma para cualquier A y B.

Claro que el teorema de la suma es fácilmente expandible a cualquier número de eventos, por ejemplo,

$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D) - P(A \cap B) - P(A \cap C) - P(A \cap D)$$
  
- P(B \cap C) - P(B \cap D) - P(C \cap D) + P(A \cap C \cap D) + P(B \cap C \cap D))  
- P(A \cap B \cap C \cap D). (13)

Si los conjuntos A, B, C y D fueran mutuamente excluyentes:

$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D) = P(A + B + C + D).$$
(14)

Para expresar la probabilidad condicional en términos generales, sea *n* el número de eventos exhaustivos, mutuamente excluyentes e igualmente probables en un experimento aleatorio, donde  $m_A$  eventos son favorables al evento *A* y  $m_{AB}$  eventos son favorables para ambos eventos *A* y *B*. Sea  $P(A,B) = P(A \cap B)$  la probabilidad de la ocurrencia conjunta de *A* y *B*, P(A) la probabilidad de *A*, P(B) la probabilidad de *B*, P(B | A) la probabilidad de *B* dado que *A* ha ocurrido y P(A | B) la probabilidad condicional de *A* cuando *B* ha ocurrido (Lee, 1960).

Por definición de probabilidad condicional,

$$P(B \mid A) = \frac{m_{AB}}{m_A}.$$
 (15)

De estos eventos hay  $m_{AB}$  eventos los cuales son favorables a *B*. Si se dividen tanto el numerador como el denominador entre *n*, entonces:

$$P(B \mid A) = \frac{\frac{m_{AB}}{n}}{\frac{m_{A}}{n}},$$
(16)

tenemos, nuevamente, por definición,

por lo que,

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}.$$
(18)

De igual forma para

$$P(A \mid B) = \frac{m_{BA}}{m_B} = \frac{\frac{m_{BA}}{n}}{\frac{m_B}{n}},$$
(19)

entonces,

$$P(A \mid B) = \frac{P(B \cap A)}{P(B)}.$$
(20)

Los resultados (18) y (20) son usualmente escritos como expresiones para la probabilidad de la ocurrencia conjunta de A y B, y constituyen el *Teorema de la Probabilidad Conjunta*, el cual establece que, en un experimento conceptual aleatorio, la probabilidad de la ocurrencia conjunta de los eventos A y B es igual al producto de la probabilidad incondicional del evento A y la probabilidad condicional del evento B dado que el evento A ha ocurrido, o el producto de la probabilidad incondicional del evento B y la probabilidad condicional del evento A dado que el evento B ha ocurrido (Lee, 1960). Simbólicamente:

$$P(A \cap B) = P(A)P(B \mid A), \qquad (21)$$

$$P(A \cap B) = P(B)P(A \mid B). \tag{22}$$

Es fácil ver que, para la probabilidad de una ocurrencia conjunta de tres eventos A, B y C, empleando la expresión (21) repetidas ocasiones, queda:

$$P(A \cap B \cap C) = P(A \cap B)P(C \mid A \cap B) = P(A)P(B \mid A)P(C \mid A \cap B).$$
(23)

Al aplicar por primera vez la ocurrencia conjunta de *A* y *B* es considerado como un sólo evento y al hacerlo por segunda vez, el término  $P(A \cap B)$  es expresado como un producto.

Asociado con el concepto de probabilidad condicional está el concepto importante de *independencia estadística*. Si la probabilidad de ocurrencia del evento *B* no depende del evento *A*, si ha ocurrido o no, por definición, *B* es estadísticamente independiente de *A* (o simplemente independiente, para abreviar). En otras palabras, si

$$P(B \mid A) = P(B), \qquad (24)$$

entonces, se dice que B es estadísticamente independiente de A.

Ahora bien, en un experimento aleatorio conceptual, si el evento B es estadísticamente independiente del evento A, el teorema de la probabilidad conjunta queda

$$P(A \cap B) = P(A)P(B). \tag{25}$$

De la segunda forma del teorema de la probabilidad conjunta, expresado en la ecuación (22), se tiene que, bajo la condición establecida

$$P(A)P(B) = P(B)P(A \mid B),$$
(26)

y de este resultado se obtiene

$$P(A) = P(A \mid B), \tag{27}$$

la cual es una expresión de que el evento *A* es estadísticamente independiente del evento *B*. La conclusión es que si *B* es independiente de *A*, entonces *A* es independiente de *B*.

Extendiendo el teorema de la probabilidad conjunta a tres eventos A, B y C, se tiene que si

$$P(A | B) = P(A)$$

$$P(A | C) = P(A),$$

$$P(B | C) = P(B)$$
(28)

у

$$P(C \mid A \cap B) = P(C), \tag{29}$$

entonces, A, B y C son estadísticamente independientes. Además, de las condiciones se tiene que

$$P(B | A) = P(B)$$
  

$$P(C | A) = P(C),$$
  

$$P(C | B) = P(C)$$
(30)

como se había mostrado, si *A* es independiente de *B*, entonces *B* es independiente de *A*. Esto puede ser mostrado partiendo de las condiciones (28) y (29) que permiten obtener las siguientes condiciones adicionales:

$$P(B \mid A \cap C) = P(B)$$
  

$$P(A \mid B \cap C) = P(A)$$
(31)

Por lo tanto, cuando las ecuaciones (28) y (29) se satisfacen, implica que los eventos A, B y C son mutuamente independientes. Cuando A, B y C son mutuamente independientes, entonces, de acuerdo a la expresión (23), su probabilidad conjunta es

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$
(32)

#### Probabilidad Bayesiana

Con la ecuación (18) fue definida la probabilidad condicional de B dado el evento A. En este caso, ambos eventos A y B fueron claramente definidos y entendidos. Con frecuencia uno se enfrenta a situaciones en las que se tiene que calcular la probabilidad de cierto evento con una información "a priori" acerca de las condiciones para que el evento tenga lugar. Tal información puede basarse en algunos conocimientos acerca de los procesos que están siendo estudiados, de experiencia pasada e incluso corazonadas. En otras palabras, aun si el estado exacto de la naturaleza gobernante del evento es desconocido, es inusual no tener alguna noción del evento el cual podía o debería ser usado para ayudar a tomar una decisión. Tomando en cuenta que esta información puede ser formalizada aplicando principios Bayesianos. El principio de Bayes asigna a cada posible acción una medida de las consecuencias de esta acción en una forma de hipótesis o de una suposición propiamente escrita a la forma de la probabilidad ya establecida. En estadística Bayesiana la hipótesis no es probada sino modificada por los datos representados por el evento A, hasta proporcionar una distribución de probabilidad mejorada. Con las arbitrariedades y conjeturas involucradas en seleccionar las distribuciones e hipótesis previas, el uso del teorema de Bayes ha sido criticado, especialmente por los matemáticos puristas. Sin embargo, se ha encontrado una gran gama de aplicaciones en ingeniería, debido a que la habilidad y la necesidad de los ingenieros, los llevara a estipular suposiciones y acercarse a soluciones cuando la información disponible es insuficiente. Métodos alternativos han sido propuestos para vencer la escasez del rigor matemático o estadístico, pero realmente no hacen más que discernir el hecho, la distribución original y las hipótesis son objetivo de elección automática (Solnes, 1992).

Para establecer el teorema de Bayes, considérese el siguiente problema elemental. Sean  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_n$ , n eventos independientes, la unión de estos es el espacio de toda la probabilidad W.

$$A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n = W.$$
(33)

La probabilidad de cualquier evento *B*, *P*(*B*), puede ser escrita como  $P(B \cap W)$  ya que la intersección de *B* y el espacio de toda la probabilidad, debe ser igual a *B*.

Entonces,

$$P(B) = P((A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) \cap B) = P((A_1 \cap B) \cup (A_2 \cap B) \cup (A_3 \cap B) \dots \cup (A_n \cap B))$$
$$= \sum_{i=1}^n P(A_i \cap B) = \sum_{i=1}^n P(A_i) P(B \mid A_i),$$
(34)

donde se aplican el teorema de la suma para variables independientes (14) y de probabilidad condicional (21,22).

Ahora, la probabilidad condicional del evento  $A_i$  relativo el evento B puede ser escrita, usando la expresión (21), como

$$P(A_{i} | B) = \frac{P(A_{i})P(B | A_{i})}{\sum_{i=1}^{n} P(A_{i})P(B | A_{i})},$$
(35)

ya que el denominador es lo mismo que P(B). El teorema de Bayes es entonces establecido como sigue. Sea  $\{H_i\}$ , *i=1,2,3,...,n*, que denota a *n* hipótesis exhaustivas y mutuamente excluyentes que pueden ser descriptivas de cierto comportamiento o cualidad inherente en conexión con una cierta acción o un evento *A*. Entonces,  $P(H_i)$  es la probabilidad de que la hipótesis  $H_i$  previa es verdadera, independientemente de la ocurrencia del evento *A*. Por otra parte,  $P(A | H_i)$  es la probabilidad condicional de aquel evento *A* toma lugar cuando se sabe que la hipótesis  $H_i$  es verdadera, y  $P(H_j | A)$  es la probabilidad condicional de que la hipótesis  $H_j$  es verdadera cuando se sabe que el evento *A* ha ocurrido (Solnes, 1992). Entonces,

$$P(H_{j} | B) = \frac{P(H_{j})P(A | H_{j})}{\sum_{i=1}^{n} P(H_{i})P(A | H_{i})}.$$
(36)

La ventaja obvia de la aproximación Bayesiana yace en la posibilidad de modificar las predicciones originales a través de la incorporación de nuevos datos. Una hipótesis particular que maximice

P(H | A) será preferida a cada paso. El inconveniente, sin embargo, es que una predicción inicial depende de una considerable extensión en las suposiciones iniciales concernientes a las probabilidades previas  $P(H_j)$ . Donde el conocimiento del mecanismo del proceso de estudio es débil, estas probabilidades previas pueden ser un poco mejor que suposiciones salvajes (Solnes, 1992).

#### **Variables Aleatorias**

Como fue mostrado, un evento aleatorio puede ser descrito por un número real, entonces, cualquier resultado aleatorio puede ser asignado a uno o más números reales. De acuerdo a las circunstancias, para cualquier evento aleatorio, que pueda ser descrito como uno o más conjuntos de variables aleatorias, para las cuales existe una correspondencia uno a uno con un conjunto de números reales, puede establecerse una transformación a coordenadas de un eje de números reales y ésta definirá la probabilidad de un evento aleatorio. Estas variables que son aleatorias por naturaleza serán denotadas por letras mayúsculas, *X*, *Y*, *Z*, etcétera. Cuando son asignadas a un número (esto es que son interpretadas como el resultado de un experimento o una acción), serán denotadas por letras minúsculas, *a*, *b*, *c*, etcétera (un valor determinístico).

Las variables aleatorias, *X*, *Y*, *Z*, etcétera pueden ser interpretadas como conjunto de funciones reales y únicas, refiriéndose al conjunto que contiene todos los resultados elementales. Cuando tales variables aleatorias pueden solamente tener un limitado o un finito número de valores reales contables asignado a ellas, son llamadas variables aleatorias discretas. Contrario a las variables discretas, hay variables aleatorias uniformes o continuas que pueden asumir cualquier conjunto de valores. Esto puede ser útil si se pudiera considerar a todas las variables aleatorias como continuas. Esto se logra mediante la introducción de la función delta de Dirac (Solnes, 1992),

$$\delta(x-a) = \begin{cases} \infty, & x = a \\ 0, & x \neq a \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(x-a) dx = 1$$
$$(37)$$
$$\int_{-\infty}^{\infty} f(x) \delta(x-a) dx = f(a)$$

Por lo tanto, cualquier variable aleatoria discreta, al aplicarte la función delta, puede considerarse como una variable continua.

Una variable aleatoria X se caracteriza porque no es posible conocer un valor exacto de ella, solamente se sabe la forma en que ésta toma ciertos valores de un conjunto accesible a la variable. Los conjuntos accesibles son determinados por las condiciones propias del fenómeno observado. Se denomina realización de la variable X a un valor particular,  $x_1$ , que toma la variable aleatoria X. Una variable aleatoria puede ser representada por un ensamble o conjunto de realizaciones. La característica más simple de una variable aleatoria es su valor medio (o promedio), si  $x_1$ ,  $x_2$ ,  $x_3$ , ..., son realizaciones de la variable aleatoria X, entonces su valor medio, en sentido aritmético estará definido por (Ramírez-Rojas, 2003).

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i .$$
(38)

Cuando los datos se obtienen de un experimento o a través del monitoreo de una variable de un sistema en estudio, además del promedio, existen otros parámetros estadísticos importantes como la medida de las fluctuaciones alrededor de la media. Estas fluctuaciones se cuantifican calculado la variancia o dispersión (también llamada segundo momento estadístico) definida por la relación:

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 , \qquad (39)$$

o la desviación estándar:

$$\sigma_{X} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} .$$
 (40)

Una de las ventajas de la desviación estándar es que mantiene las mismas dimensiones de la variable X e indica el orden de magnitud de las desviaciones aleatorias con respecto a su valor medio (Ramírez-Rojas, 2003).

La distribución de probabilidad asociada a una variable aleatoria X está definida como

 $P(a \le X < b) \equiv La \text{ probabilidad de que } X \text{ tome valores en el intervalo } [a,b].$ 

La función de distribución de probabilidad (FDP) para una variable aleatoria se obtiene si el límite inferior  $a \rightarrow -\infty$ :

$$F(u) = P(-\infty < X \le u). \tag{41}$$

Esta FDP se interpreta como la probabilidad de que la variable aleatoria X tome valores menores o igual al valor u. Una de las propiedades importantes de la FDP es:

$$F(b) - F(a) = P(a \le X < b) \ge 0 , \text{ para todo } a \le b.$$
(42)

Ahora bien, si se considera la probabilidad de que la variable aleatoria X tome valores en el intervalo  $[x, x + \Delta x)$  y tomando en cuenta la ecuación (42), la distribución está determinada por la relación

$$F(x + \Delta x) - F(x) = P(x \le X < x + \Delta x).$$
(43)

Esta cantidad puede ser interpretada en términos de una nueva función,  $p_x(x)$ , conocida como la densidad de la probabilidad, descrita como sigue:

$$P(x \le X < x + \Delta x) = p_X(x)\Delta x.$$
(44)

Si se despeja  $p_x(x)$  de (44) y se considera el límite cuando  $\Delta x \rightarrow 0$  se obtiene la relación entre la FDP y la densidad de probabilidad:

$$p_X(x) = \frac{dP(x)}{dx},\tag{45}$$

si esta expresión es escrita en su forma integral, se obtiene a la función  $F_x(x)$ , conocida como función de distribución de probabilidad.

$$F_{X}(x) = \int_{-\infty}^{x} p_{X}(x) dx, \qquad (46)$$

que satisface la condición de normalización

$$\int_{-\infty}^{\infty} p_X(x) dx = 1.$$
(47)

Cuando la densidad de probabilidad,  $p_X(x)$ , es conocida, es posible caracterizar a la variable aleatoria *X* calculando sus momentos estadísticos (Ramírez-Rojas, 2003).

$$E[X^{n}] = \int_{-\infty}^{\infty} x^{n} p_{X}(x) dx.$$
(48)

Si n = 1, entonces se tiene el momento de orden uno, o sea, el valor medio (o promedio) de la variable. En el caso general, si f(X) es una función de la variable aleatoria X, los momentos estadísticos de una nueva función son determinados por la siguiente integral

$$E\left[f^{n}(X)\right] = \int_{-\infty}^{\infty} f^{n}(x)p_{X}(x)dx.$$
(49)

#### Correlación entre variables aleatorias

Si se considera el caso de dos variables aleatorias X y Y independientes una de otra, entonces pueden ser caracterizadas por la función de distribución conjunta, de acuerdo a la ecuación (32), queda

$$F_{XY}(x, y) = P((X \le x) \cap (Y \le y)) = P(X \le x)P(Y \le y).$$
(50)

Esta función de distribución tiene asociada una densidad de probabilidad conjunta denotada por  $p_{XY}(X,Y)$ . Si es de interés conocer la densidad de probabilidad de la variable X independientemente de Y, se calcula por la integración de

$$p_{X}(x) = \int_{-\infty}^{\infty} p_{XY}(x, y) dy.$$
(51)

Cuando se conoce el valor de la variable Y entonces es posible obtener alguna información de la variable X, a través de la función de distribución condicional

$$p_{XY}(x, y) = p_{XY}(x \mid y)p_X(x).$$
 (52)

Sin embargo, cuando las variables son estadísticamente independientes, la densidad de la probabilidad y consecuentemente la función de distribución conjunta quedan determinadas por el producto

$$p_{XY}(x, y) = p_X(x)p_Y(y).$$
 (53)

Si X = f(Y) se dice que las variables X y Y se encuentran correlacionadas y su distribución conjunta está dada por la relación:

$$p_{XY}(x, y) = \delta(X - Y)p_Y(y), \tag{54}$$

donde  $\delta(x)$  es la función delta de Dirac.

El grado de dependencia estadística entre estas dos variables puede ser estimado numéricamente por la covariancia de las variables aleatorias (Ramírez-Rojas, 2003), este parámetro estadístico se define mediante lo siguiente

$$Cov(X,Y) = E[(X - \overline{x})(Y - \overline{y})], \qquad (55)$$

o bien, con la diferencia

$$Cov(X,Y) = E[XY] - E[X]E[Y].$$
(56)

Es más frecuente considerar la siguiente cantidad adimensional

$$R(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y},$$
(57)

que es conocida como coeficiente de correlación o coeficiente lineal de correlación de Pearson.

El coeficiente de correlación sólo puede tomar valores entre -1 y 1, donde estos extremos representan a la anticorrelación y la correlación, respectivamente.

En el caso de que las variables sean independientes, la covariancia es cero y como consecuencia se tiene

$$E[XY] = E[X]E[Y].$$
(58)

En el caso particular de una variable, la covariancia de esa variable es la variancia misma.

#### Procesos estocásticos

El concepto de Proceso Estocástico o Aleatorio ha sido de gran utilidad como una herramienta matemática en la caracterización de fenómenos naturales y físicos, como son las ondas cerebrales registradas en un electroscopio, en telecomunicaciones para el análisis de ruido en las transmisiones de radio, etcétera. En la Geofísica y la Ingeniería aplicada podemos enunciar diversos ejemplos de estos procesos como los registros de un sismógrafo, las velocidades de viento medidas en una garita meteorológica y muchos más. La formulación matemática de los procesos estocásticos fue establecida en tiempos de guerra, para el campo de la ingeniería. Los ingenieros eléctricos encontraron una gran gama de aplicaciones para sus nuevos objetivos estadísticos y matemáticos en el área de teoría de la electrónica. El trabajo de S. O. Rice a principio de los cuarentas fue sobresaliente, estudios sobre vibraciones en los cascos de los cohetes y otros mecanismos de fenómenos aleatorios siguieron en los cincuentas a través del trabajos pioneros de S. H. Crandall, W. Mark, D. C. Karnopp, T. Caughey, entre otros (Solnes, 1992). A principio de los sesentas, el estudio de las vibraciones aleatorias en sistemas mecánicos fue un campo bien cubierto. En ingeniería civil, que por tradición es una de las ramas de la ingeniería más conservadoras, personas como A. V. Davenport, G. W. Housner y otros mostraron a principios de los sesenta que estas cargas como el viento y los sismos podían ser solamente tratados con éxito como procesos aleatorios o estocásticos (Solnes J., 1992).

A todo esto, ¿qué es entonces un proceso estocástico? Un enunciado matemático puede ser dado como sigue: considere una familia de variables aleatorias X(z) con parámetro índice variable en

el conjunto  $\{z \in Z\}$ . Para cualquier valor del parámetro determinístico *z*, el valor de *X*(*z*) es solamente descrito por las leyes de la probabilidad que gobiernan el proceso.

Los procesos estocásticos pueden ser tanto discretos como continuos. Si el parámetro *z* puede ser representado por una variable continua, el proceso estocástico se dice que es continuo. El ruido registrado a través de una antena de radio es un ejemplo de proceso estocástico, porque varia continuamente en el tiempo. En un proceso estocástico discreto, la variable índice puede sólo ser representada por cambios discontinuos de una variable discreta. Cada cambio de la variable es llamado un evento y describe qué es lo que sucede en el proceso a ese tiempo. También los procesos discretos pueden consistir de series llamadas de eventos puntuales, que pueden ser descritos por cualquier observación a las realizaciones de tales eventos, que han ocurrido hasta un instante arbitrario *t* o al estudiar los tiempos de arribo aleatorios *t*<sub>i</sub> para cada uno de los eventos. Los procesos de arribo en tiempo. En general, los procesos discretos de ambos tipos, describen las posiciones en tiempo de series de eventos aleatorios y son usualmente llamados procesos puntuales. Otra clara clasificación de procesos estocásticos relaciona al parámetro índice representando cada una de las variaciones en el espacio, que está descrita por el vector posición en un espacio definido, o una variación en tiempo como se mencionó (Solnes, 1992).

En este trabajo se considera que la teoría de los procesos estocásticos es una de las herramientas más importantes para hacer una descripción general de las series de tiempo porque la teoría de los procesos estocásticos trata a los sistemas que evolucionan en tiempo o espacio de acuerdo a las leyes probabilísticas.

Generalmente, los procesos estocásticos son funciones de dos variables, (*t*, *z*). Para un valor constante  $t = t_{cte}$ , la variable  $X_{t=cte}(z)$  es caracterizada por sus propiedades estadísticas, mientras que para z = cte, fijo, es una función del tiempo; esta función  $X_{z=cte} = (t)$  es conocida como una realización del proceso. Es claro que para cada valor  $z = z_i$ , se obtiene una realización como función del tiempo, este conjunto de realizaciones conforman un ensamble del proceso estocástico (Ramírez-Rojas, 2003). En este sentido, las series de tiempo son interpretadas como realizaciones de un proceso estocástico, que están asociadas con una condición inicial determinada para cada valor  $z = z_i$ , por lo que la caracterización estadística de una serie de tiempo es similar a la de una variable aleatoria, fundamentalmente en términos de su función de distribución  $p_x(x,t)$ .

Cabe mencionar las diferencias en cuanto a la evaluación de parámetros estadísticos. La variable  $X_{t=cte}(z)$  representa a los valores del proceso tomados a través del ensamble y está caracterizada

por la función de distribución  $p_X(x, t_{cte})$ , así que el promedio del ensamble está dado, de acuerdo a la ecuación (49), por:

$$E[X(t)] = \int_{-\infty}^{\infty} x(t) p_X(x, t_{cte}) dx.$$
(59)

#### **Estacionariedad**

Un proceso es estacionario, en el sentido estricto de la palabra, si sus características son invariantes bajo traslaciones en el tiempo. Los llamados procesos ergódicos son una subclase de los procesos estacionarios. Se dice que un proceso estocástico es ergódico si los promedios calculados, sobre alguna realización suficientemente larga, puede ser usada como una aproximación del promedio sobre el ensamble (Ramírez-Rojas, 2003).

Si se considera una realización de proceso aleatorio (estocástico), X(t), de un solo argumento con  $t \in [0,T]$ , de la ecuación (42) y calculando la función de autocovariancia, ahora para  $X(t_1)$  y  $X(t_2)$ , donde  $t_2 = t_1 + \tau$  y  $\tau$  es un tiempo de retraso (o *lag*, en inglés ), entonces

$$Cov(X(t), X(t+\tau)) = E[X(t)X(t+\tau)] - E[X(t)]E[X(t+\tau)],$$
(60)

y la función de autocorrelación es:

$$R(X(t), X(t+\tau)) = \frac{Cov(X(t), X(t+\tau))}{\sigma_{X(t)}^{2}}.$$
(61)

Como se puede observar, el denominador de la expresión (61) es la variancia de la realización, además se puede expresar como  $R(X(t), X(t + \tau)) = R(\tau)$ . La gráfica generada por  $R(\tau)$  como función de  $\tau$  se llama correlograma, el cual mide el promedio del producto de los valores de la señal medidos al tiempo t y al tiempo  $t + \tau$ . Se puede entender a esta función como una medida del grado de semejanza de la señal con ella misma en dos tiempos diferentes. Para el caso de funciones periódicas, la función de autocorrelación también es una función periódica, esto es, R(T) = R(n+T), donde T es el período. El comportamiento de esta función es fundamental para caracterizar procesos estocásticos, por ejemplo el ruido blanco es un proceso con una función de distribución dada por  $R(\tau) = R(t - \tau)$ .

$$R(n) = \frac{1}{N-n} \sum_{i=1}^{N-n} x_i x_{i+n} - \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^2.$$
(62)

Cuando  $\overline{x}_i = E[x_i] = 0$ , la ecuación anterior se reduce a  $R(\tau) = \frac{1}{N} \sum_{i=1}^N x_i x_{i+\tau}$ , o en el caso de

una serie estacionaria con valor medio constante, la función de autocorrelación está dada en la forma:

$$R(\tau) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) (x_{i+\tau} - \bar{x}).$$
(63)

El análisis de la función de autocorrelación muchas veces se enfoca a determinar las escalas características (o memoria temporal) de un proceso estocástico. Como se puede ver en la expresión (63), la función de autocorrelación es dependiente del valor medio del proceso. Sin embargo, el valor medio permanece invariante y esta función depende sólo de la diferencia de tiempos, la integral de la función  $R(\tau)$  es una medida del alcance de las correlaciones, la convergencia de la integral permite determinar si las correlaciones son de corto o largo alcance (Mantenga y Stanley, 2000 en Ramírez-Rojas *et al*, 2004):

$$\int_{0}^{\infty} R(\tau) d\tau = \begin{cases} \text{finito} \\ \text{infinito} \\ \text{indeterminado} \end{cases}$$
(64)

En el caso particular de que la integral sea cero, entonces el proceso es no correlacionado. Si la integral es convergente, el valor de la integral tiene asociado un tiempo de correlación  $\tau_c$ . Generalmente los procesos que satisfacen esta condición son procesos con correlaciones de corto alcance (CCA). Cuando la integral no es convergente las correlaciones del proceso son de largo alcance (CLA). Algunos ejemplos de modelos de correlaciones reportados en la literatura son las funciones exponenciales, decrecientes y leyes de potencia.

En el caso de las funciones exponenciales, es posible considerar dos tipos:

Caso (a) 
$$R(\tau) = \exp\left(\frac{-\tau}{\tau_c}\right).$$
 (65)

Donde el tiempo de correlación se obtiene de manera directa como:

$$\int_{0}^{\infty} \exp\left(\frac{-\tau}{\tau_{c}}\right) d\tau = \tau_{c}.$$
(66)

Caso (b) 
$$R(\tau) = \exp\left(\frac{-\tau^{\nu}}{\tau_c}\right).$$
(67)

En este caso, el tiempo de correlación depende del valor de la integral:

$$\int_{0}^{\infty} \exp\left(\frac{-\tau}{\tau_{c}}\right) d\tau = \frac{\tau_{c}^{\frac{1}{\nu_{v}}}}{\nu} \Gamma\left(\frac{1}{\nu}\right), \tag{68}$$

donde  $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$  es la función gamma, que extiende el concepto de factorial a los números complejos. Si la parte real del número complejo *z* es positivo, entonces la integral converge absolutamente. En los casos (a) y (b), el valor de la integral es un indicador de la escala de tiempo característica o la memoria del proceso. Cuando los procesos tienen correlaciones de corto alcance, el nivel de correlación presente puede describirse casi completamente dentro de un

intervalo  $0 < \tau < \tau^*$ , y para  $\tau > \tau^*$  no existe correlación, aquí  $\tau^*$  es una aproximación suficientemente buena del área bajo la curva de la función de autocorrelación. Otra característica importante de los procesos estocásticos con CCA es el comportamiento de la potencia espectral,

$$S(f) \sim \frac{1}{f^{\beta}}$$
, donde  $\beta = 2$ . El ejemplo clásico de este comportamiento es el proceso de Wiener o

movimiento Browniano, donde la potencia espectral es  $S(f) \sim f^{-2}$ .

Funciones de correlación del tipo de una ley de potencias:

Caso (b): 
$$R(\tau) \sim \tau^{\eta-1}$$
, donde si  $0 < \eta < 1$  (69)

$$\int_{0}^{\infty} \tau^{\eta - 1} d\tau = \infty .$$
(70)

Las variables aleatorias caracterizadas por esta clase de funciones de autocorrelación corresponden a CLA. En este caso no es posible seleccionar una escala de tiempo característica. En el espacio de las frecuencias, la potencia espectral de esta clase de procesos con CLA se comporta como  $S(f) \sim \frac{1}{f}$ .

#### **Análisis Espectral**

El estudio de las señales de tipo discreto es muy importante, porque en la práctica la mayoría de las señales que se obtienen son de tipo digital o se digitalizan para su estudio apoyándose en el gran avance que han tenido las computadoras y sistemas digitales. Matemáticamente se obtiene una función discreta a partir de una continua cuando multiplicamos a la función continua por un *tren* de impulsos unitarios. Debe notarse que la función se vuelve discreta con el mismo intervalo (período) que tenga el tren de impulsos; a este intervalo se le conoce como intervalo de muestreo

(Anguiano, 1996). Como resultado del muestreo se obtienen, entonces, *n* valores de la variable medida con un tiempo de muestreo  $t_{\text{max}} = n \ \Delta t$ , donde  $\Delta t$  es el intervalo de muestreo. Las cantidades *n* y  $\Delta t$  son, generalmente, determinadas por consideraciones propias del sistema que se pretende estudiar, tales como la duración del experimento, la capacidad de almacenar información, etcétera.

Para el caso de una señal continua x(t), como se puede observar en las siguientes ecuaciónes, la transformada de Fourier y la antitransformada, definidas como (Lee, 1960; Smith, 2003):

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt \qquad y \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} d\omega.$$
(71)

La metodología de análisis armónico juega un papel importante en la conexión con análisis de respuesta de varios sistemas fijos a eventos estocásticos. Entonces, se necesita saber si es posible definir para un proceso estocástico X(t) la transformada de Fourier:

$$F_X(\omega) \stackrel{?}{=} \int_{-\infty}^{\infty} X(t) e^{-i\omega t} dt .$$
(72)

Desafortunadamente no se le puede adjudicar un significado válido a la integral de la ecuación anterior. Ni la función aleatoria X(t), ni una muestra de sus funciones x(t), pertenecen a la clase de funciones usualmente empleadas en el análisis de Fourier. Sin embargo, como fue mostrado por Norbert Wiener y A. J. Khintchine (Marple, 1987), es posible extender la noción del análisis armónico a procesos estocásticos, asignando a cada frecuencia  $\omega$  una contribución al contenido de energía (o potencia) del proceso. Las funciones de correlación son más apropiadas para el análisis. En general, pertenecen a la clase de funciones que son convenientes para el análisis de Fourier.

Ahora bien, para el caso discreto, la integral infinita es sustituida por una suma finita, quedando

$$X(\omega_k) = \sum_{n=0}^{N-1} x(t_n) e^{-i\omega_k t_n} , \qquad k = 0, 1, 2, \dots, N-1,$$
(73)

donde

 $x(t_n) = \text{Es la señal original (real o compleja) al tiempo } t_n \text{ segundos.}$   $t_n = nT = \text{Es el enésimo instante muestreado (en segundos), } n \text{ es un entero } \geq 0.$   $\Delta t = T = \text{Es el intervalo de muestreo en segundos.}$   $X(\omega_k) = \text{Es la transformada de Fourier de } x$ , a la frecuencia  $\omega_k$ .  $\omega_k = k\Omega = \text{Es la } k$ -ésima frecuencia de muestreo en radianes por segundo.  $\Omega = \frac{2\pi}{NT} = \text{Es el intervalo de frecuencia de muestreo en radianes por segundo.}$   $f_s = \frac{1}{T} = \text{Es la frecuencia de muestreo (muestras/segundo o Hertz [Hz]).}$  N = Número de muestras en tiempo = Número de muestras en frecuencia.

El Teorema de Parseval para funciones continuas no periódicas establece que el contenido de energía de una función f(t) puede evaluarse a partir de la función de autocorrelación de f(t) o a través de la transformada de Fourier de dicha función (Anguiano, 1996).

$$R_{f}(0) = \int_{-\infty}^{\infty} |F(f)|^{2} df = \int_{-\infty}^{\infty} [f(t)]^{2} dt.$$
(74)

Si se consideran a los procesos estocásticos estacionarios X(t),  $t \in T$  con función de autocorrelación  $R(\tau)$ , su transformada de Fourier puede ser escrita como

$$S_{X}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{X}(\tau) e^{-i\omega\tau} d\tau$$
(75)

у

$$R_{X}(\tau) = \int_{-\infty}^{\infty} S_{X}(\omega) e^{i\omega\tau} d\omega.$$
(76)

 $S_{X}(\omega)$  es conocido como la media cuadrática de la densidad espectral de los procesos y también es referida como densidad espectral de potencia (o simplemente espectro de potencia), que es una medida del contenido de potencia del proceso,  $S_{X}(\omega)\Delta\omega$ , perteneciente a una banda infinitesimal de frecuencias  $\Delta\omega$ . Poniendo  $\tau = 0$  en la ecuación (76) se obtiene el valor cuadrático medio (variancia) del proceso, que es

$$R_{X}(0) = E[X^{2}(t)] = \int_{-\infty}^{\infty} S_{X}(\omega) d\omega.$$
(77)

 $R_{X}(0)$  puede ser interpretado como el contenido de potencia del proceso a cualquier instante de tiempo *t* y es igual al toda el área bajo la curva del espectro de potencia (figura 2). Por otra parte, el valor del espectro de potencia a la frecuencia cero es igual a toda el área bajo la función de autocorrelación, por ejemplo

$$S_{X}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{X}(\tau) d\tau .$$
(78)

Esto implica que para valores finitos del espectro de potencia a la frecuencia cero, la función de autocorrelación es integrable sí y sólo si la media de los procesos es igual a cero.



Figura 2. Contenido de Potencia de una Señal Aleatoria para un tiempo dado

Si el proceso X(t) contiene componentes periódicas, la función de autocorrelación también contiene las mismas componentes periódicas. Con la introducción de la función delta de Dirac se permite que las componentes periódicas puedan ser tratadas por separado y  $S_x(\omega)$  consistirá de una parte continua y de una serie de impulsos ("spikes") en las frecuencias a discusión (Solnes, 1992).

Para la obtención de los espectros de potencia en el presente trabajo se empleó la llamada Transformada Rápida de Fourier (FFT, por sus siglas en inglés). La FFT es un algoritmo numérico eficiente que calcula la Transformada Discreta de Fourier (DFT, en inglés) para tamaños de *N* sumamente compuestos, esto es, un producto de muchos factores primos, por ejemplo, el número  $1024 = 2^{10}$  es sumamente compuesto porque es una potencia de 2; el número también lo es porque sus factores son  $360 = 2 \cdot 2^2 \cdot 3^2 \cdot 5$ , pero requiere de otros factores primos aparte del 2, obviamente, los números primos no son compuestos. Cuando es calculada la DFT como un conjunto de *N* productos internos (o productos punto) de cada longitud *N*, la complejidad computacional es del orden O ( $N^2$ ). Cuando *N* es un entero potencia de 2, es empleado el algoritmo FFT de Cooley – Tukey cuya complejidad es del orden O ( $N \log_2 N$ ). Los algoritmos de la FFT fueron inicialmente usados por Gauss en 1805 y redescubiertos en 1965 por Cooley y Tukey (Smith, 2003).

Por lo tanto, el tiempo de ejecución para la FFT depende del tamaño de la transformada, es más rápida para potencias de dos y para tamaños que posean pocos factores primos. Muchas ocasiones es más lento para tamaños que son primos o que poseen muchos factores primos.

El análisis espectral permite identificar claramente frecuencias características de una serie de tiempo, sin embargo, en la mayoría de los fenómenos naturales, las series son más complejas y como consecuencia la distinción de las frecuencias dominantes se convierte en un problema difícil, además, cuando la potencia espectral puede ser modelada como una ley de potencias en el dominio de las frecuencias, el valor del exponente espectral puede utilizarse para identificar algunos aspectos de la dinámica del sistema (Ramírez-Rojas, 2003).

#### Leyes de potencia e invariancia de escalas

Un fenómeno que obedece una ley de potencia es aquel que, fundamentalmente, no posee una escala característica propia. Por ejemplo, una función potencial  $f(x) = cx^{\alpha}$ , donde  $c y \alpha$  son constantes, para el caso en el que  $\alpha = 1$  se tiene el caso especial f(x) = cx, el cual para c < 0 describe la fuerza de restauración de un resorte lineal; y si  $\alpha = -2$  y c < 0 se tiene la ley de la gravitación de Newton  $f(x) = cx^{-2}$ . Estas leyes de potencia simples, que además son abundantes en la naturaleza, tienen la característica de tener un comportamiento denominado auto-similar, que se refiere a que si x es reescalada, entonces f(x) sigue siendo proporcional a  $x^{\alpha}$  aunque con diferente constante de proporcionalidad (Ramírez-Rojas, 2003). En otras palabras, en una representación bilogarítmica ( $\log S(f) - \log f$ ) el espectro de potencia es una recta con espectro lineal de pendiente  $\beta$  (Nikolopoulos *et al*, 2004). Esta afirmación se puede demostrar mediante las siguientes ecuaciones.

Si el espectro de potencia es de la forma  $S(f) = c \cdot f^{-\beta}$  y se le aplica el logaritmo, queda:

$$\log(S(f)) = -\beta \log(f) + \log(c)$$

$$\mathbf{v} = \mathbf{m} \mathbf{x} + \mathbf{b}$$
(79)

Las funciones homogéneas tienen la propiedad interesante de reducirse a si mismas por reescalamiento, por lo que la invariancia de escala resulta del hecho de que las leyes de potencia carecen de escala, ellas no tienen una unidad característica. Se dice entonces que tales leyes son libres de escala o paradójicamente verdaderas en todas las escalas. Literalmente, esta propiedad es totalmente válida para modelos matemáticos; sin embargo, los sistemas reales que son descritos por esta clase de funciones, necesitan limitantes de acuerdo a la naturaleza del fenómeno (Ramírez-Rojas, 2003). También se pueden estudiar las escalas mediante la descomposición de una serie con el análisis de *wavelets*.

El exponente  $\beta$  puede tener diferentes valores, los cuales caracterizan a los sistemas físicos:

 $\beta < 0$  Serie anticorrelacionada.

- $\beta \approx 0$  Serie no correlacionada, ruido blanco.
- $\beta > 0$  Serie correlacionada.
- $\beta \approx 1$  Serie con ruido 1/*f*, ruido rosa, tipo caminante al azar.
- $\beta$  > 1 Serie no estacionaria.
- $\beta \approx 2$  Serie con comportamiento de tipo Browniano, ruido Browniano.

#### Análisis de Wavelets (ondículas u ondeletas)

Este análisis se lleva a cabo con la transformada *wavelet* que puede ser utilizada para analizar series de tiempo que contengan potencia no estacionaria en diferentes frecuencias. Si se tiene una serie de tiempo,  $x_n$ , con espaciamiento temporal uniforme  $\delta t$  y con n = 0...N-1, entonces esta serie tiene una función *wavelet*,  $\psi_0(\eta)$ , que depende de un parámetro temporal sin dimensión  $\eta$ , además, esta *wavelet* debe ser "admisible" (media = 0 y que exista en los dominios de tiempo y espacio).

La transformada wavelet está definida para el caso se series discretas como

$$W_n(s) = \sum_{n'}^{N-1} x_n \psi^* \left[ \frac{(n'-n)\delta t}{s} \right], \tag{80}$$

donde (\*) indica que es el conjugado complejo. Al variar la escala de la *wavelet* (*s*) y al trasladarla a lo largo del índice temporal (*n*), uno puede construir una imagen que muestre la amplitud de cualquier característica contra la escala y cómo varía esta amplitud con respecto del tiempo (Torrence y Compo, 1998).

## **CAPÍTULO III**

## MEDICIONES DEL CAMPO ELÉCTRICO

Las mediciones del campo eléctrico, que corresponden al rango de frecuencias de las ULF (Ultra Low Frequencies, frecuencias ultra-bajas), fueron tomadas en Acapulco, Guerrero, desde octubre de 1992 hasta el año 1996. Las componentes horizontales del campo eléctrico fueron medidas en direcciones N-S y E-W por medio de un par de electrodos de acero inoxidable no polarizados con una longitud de 1 metro, enterrados a 2 metros dentro del suelo y separados 50 metros (para mayores detalles, consultar Yépez et al., 1995), de acuerdo a la propuesta de P. Varotsos, K. Alexopoulos y K. Nomicos en la década de los 80's (Varotsos y Alexopoulos, 1984a), la metodología de adquisición y procesamiento que ellos describen, recibe el nombre de método VAN por el acrónimo de los investigadores antes citados. Se registró el voltaje entre los electrodos por un filtro y un amplificador unidos a un convertidor análogo a digital, manejado por una computadora personal (PC). Los valores de voltaje para cada línea fueron almacenados en un disco magnético cada 4 segundos. La frecuencia de corte del filtro fue establecida a 0.1 Hz (Yépez et al., 1995). La sensibilidad del arreglo experimental fue 1 mV y los niveles de ruido aparecieron con un valor típico variando de 7 a 10 mV. La fuente de poder para filtros y amplificadores fue estable mediante una batería proveyendo 12 V a lo largo de los períodos de operación. Para evitar fallas y fluctuaciones en la fuente de poder, la computadora fue asistida por un sistema regulado de respaldo el cual podía trabajar hasta 12 horas durante un apagón y todo el sistema de monitoreo podía trabajar por algunos días sin asistencia humana. Para evitar el ruido antropogénico, el lugar donde se localizó la estación fue ubicado lejos de centros industriales y de áreas densamente pobladas (Yépez et al, 1995).



Figura 3. Distribución de las estaciones (rombos) y los epicentros de los sismos (círculos abiertos) (Yépez et al, 1995).

La estación de Acapulco perteneció a una red de otras seis que registraron las señales con la misma metodología, con dos canales, a veces con diferentes tasas de muestreo (0.5, 1, 4 segundos) y diferentes frecuencias de corte para los filtros (0.1, 1 y 10 Hz).

Para el caso particular de esta tesis se emplearon los datos de la estación Acapulco (ACA) para el año 1993, donde se presentaron dos eventos sísmicos de magnitud considerable, uno el 15 de mayo con M =6.0 y otro el 24 de octubre con M =6.6.

Los datos de ACA venían distribuidos en 75 archivos en formato de texto (figura 4), con dos columnas correspondientes a las componentes antes mencionadas y el encabezado del documento en el que se muestra la información de la estación con las características de la toma de datos. El tiempo referido en estos archivos es en hora local, la cual posteriormente fue cambiada a tiempo universal (GMT). En la siguiente figura se muestra esta distribución de los datos y encabezados.

| 🗉 AABO1 - WordPad 📃 🗖 💽                                                                                                                                                                                                                                                                                                                                 | < |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Archivo Edición Ver Insertar Eormato Ayuda                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                                                                                                                                                                                                                                                                         |   |
| Muestreo de la tarjeta PcLab-711<br>Fecha: 01/Abr/1993 Hora: 10:04:33<br>Periodo de muestreo (ms): 4000<br>N£mero de muestras: 86400<br>Periodo de respaldo (seg):3600<br>Comentario: c1 n-s, c2 e-w, T=4seg, t=96hrs, g=5, w=0.1hz, acapulco                                                                                                           |   |
| 453       736         465       772         402       794         434       741         434       748         390       744         442       737         434       775         434       741         445       733         425       717         469       780         410       790         449       728         453       790         407       790 | ~ |
| Para obtener Ayuda, presione F1 NÚM                                                                                                                                                                                                                                                                                                                     | 1 |

Figura 4. Estructura de almacenamiento de los datos

#### Análisis preliminar de series de tiempo y filtrado

Los datos carecen de una distribución temporal (figura 4) y el total de los datos superaba los siete millones por lo que no fue fácil generar dicha ubicación en tiempo. Por esta razón, fue realizado en Matlab un programa que ejecutara una media móvil de ventana equivalente a dos minutos (cada 30 muestras) haciendo que el número de datos se redujera sin afectar sustancialmente la información, al mismo tiempo que se reduce el ruido al atenuar variaciones de poca duración (ruido de alta frecuencia), y para adjuntar un eje coordenado de tiempo acorde a la tasa de muestreo empleada.

Adicionalmente había discontinuidades considerables en la secuencia de adquisición (figura 5), por lo que a la par de la media móvil se incluyó un algoritmo que se encargaba de encontrar las ausencias de datos y las sustituía con el promedio de los datos adyacentes, con la finalidad de que no se altere la tendencia de los datos.

Se realizó un control de calidad para establecer si al ejecutar el programa se pudieran empalmar temporalmente los datos, pero sólo fue en dos datos de los más de 200000 restantes, por lo que se consideró que el algoritmo fue válido.

Posteriormente se llevó a cabo la reconstrucción de la señal al encontrarse con diferentes desplazamientos anómalos en la señal u offsets (figura 5), técnica no indispensable siendo que más adelanté le serán removidas las tendencias, pero así se le dio un sentido coherente a la evolución del fenómeno (figura 6).



Figura 5. Datos originales con arreglo temporal

Las señales, reconstruidas y originales, fueron analizadas por inspección y en ellas se pueden apreciar constantes fluctuaciones antes y después de los sismos (EQ) de mayo 15 y octubre 24, dichas fluctuaciones son llamadas Señales Electro-Sísmicas (SES) y que han sido ampliamente estudiadas y nombradas así por el grupo de investigadores VAN.


Figura 5a. Registro de potencial eléctrico normalizado para tres diferentes dipolos en la estación KER, en Grecia, del 10 de mayo al 18 de julio del 2006 (tomado de Varotsos et al., 2006).

Las características de las SES descritas por el grupo VAN (por ejemplo, figura 5a) son las siguientes:

- Se presentan antes de los sismos (precursor) de 6 a 115 horas y tienen una duración de 1 minuto hasta 1.5 horas.
- Casos aislados presentaron a las SES de 7 horas hasta 11 días previas a la actividad sísmica pero nunca más de 22 días.
- La aparición de las SES puede ser gradual o repentina, al igual que su desenlace.
- La duración de esta señal y tiempo de ocurrencia, a diferencia de otros precursores, no depende de la magnitud del sismo, sino de la distancia al epicentro (*r*) y de las heterogeneidades en la corteza.

Al aplicar la media móvil se redujo considerablemente la amplitud de las señales, dando una mejor resolución de las mismas y sin afectar, prácticamente, su forma (figura 6).



Figura 6. Señal reconstruida, con arreglo temporal y diferencia de potencial normalizada.

Es importante mencionar que la cercanía de las fuentes sísmicas a la estación están regidas por una ley de 1/r, donde *r* es la distancia al epicentro del sismo y cobra efecto a partir de  $r \ge 50$  km (Varotsos y Alexopoulos, 1984a), por lo que los datos solicitados fueron acotados considerando una preferencia a la distribución de la zona de subducción frente a las costas de Guerrero.

Fue posible conseguir los datos de la sismicidad cercana a la estación ACA, consultando al Servicio Sismológico Nacional (SSN), acotando ésta con las coordenadas 15.5° y 17.5° para la latitud norte y 98° y 102° de longitud oeste (figura 7, 8 y 9), considerando los aspectos indispensables en la adquisición de datos electrotelúricos referidos en Varotsos y Lizaridou (1991), de acuerdo a los estudios previos realizados en algunas regiones de Grecia.

Los datos proporcionados por el SSN tienen la distribución mostrada en la figura 8, donde las coordenadas del epicentro están en coordenadas geográficas y la magnitud es calculada a partir de la coda (M<sub>c</sub>) mediante la fórmula  $M_c = 0.09 + 1.85 \log_{10}(T) + 0.0004(D)$ , donde *T* es la longitud de la coda en segundos y *D* es la distancia epicentral en kilómetros (Cárdenas et al., 1997).



Figura 7. Área de interés.

|       | licrosoft | Excel -  | sismos 93 | datos com  | pletos      |             |           |            |             | (        | Je                         | ×     |
|-------|-----------|----------|-----------|------------|-------------|-------------|-----------|------------|-------------|----------|----------------------------|-------|
| 8     | Archivo   | Edición  | Yer Inst  | ertar Eorm | ato Herrami | entas Dațos | Vegtana 2 | Acrobat    |             |          | Escriba ana pregunta 🛛 📼 🖬 | 9 ×   |
| n     | i≩ 🖬      | 45 B     | X Roll    | B. 0       | • re - 52   | 41 Mil 100% | . (7)     | » 10 - F   |             | 1. 8. 3  | ·                          | E.    |
| -     | A1        | -        | & D       | ÍA         | 76.84       |             |           | • 11       |             |          |                            | Los . |
| 100   | A         | В        | C         | D          | E           | F           | G         | н          | 1           | J        | К                          |       |
| 4     | DIA       | 1 MES    | AÑO       | HORAS      | MINUTOS     | SEGUNDOS    | LATITUD   | LONGITUD   | PROFINDIDAD | MANGITUD | ZONA DEL EPICENTRO         | 14    |
| 2     | 1         | ENE      | 1993      | 19         | 13          | 36.7        | 16.17N    | 98.23W     | 20          | 4.3      | COSTA GUERRERO-OAXACA      |       |
| 3     | 3         | ENE      | 1993      | 0          | 56          | 65.7        | 17.16N    | 100.01W    | 33          | 3.7      | GUERRERO                   | 1     |
| 4     | 4         | ENE      | 1993      | 11         | 0           | 14.5        | 17.16N    | 101.14W    | 3           | 3.8      | COSTA DE GUERRERO          |       |
| 5     | 5         | ENE      | 1993      | 0          | 36          | 3.7         | 17.25N    | 99.94W     | 39          | 3.2      | GUERRERO                   |       |
| 6     | 5         | ENE      | 1993      | 12         | 43          | 11.3        | 17.48N    | 101.37W    | 36          | 3.2      | COSTA DE GUERRERO          |       |
| 7     | 11        | ENE      | 1993      | .9         | 50          | 17.2        | 17.18N    | 100.48W    | 47          | 4        | GUERRERO                   |       |
| 8     | 17        | ENE      | 1993      | 17         | 36          | 48          | 17.15N    | 101.74W    | 29          | 3.8      | COSTA DE GUERRERO          |       |
| 9     | 18        | ENE      | 1993      | 5          | 24          | 24.7        | 17.15N    | 100.65W    | 60          | 3.9      | GUERRERO                   |       |
| 10    | 19        | ENE      | 1993      | 11         | 24          | 33          | 16.28N    | 99.56W     | 9           | 3.9      | COSTA DE GUERRERO          |       |
| 11    | 22        | ENE      | 1993      | 6          | 37          | 54.7        | 16.57N    | 98.46W     | 73          | 4.4      | COSTA GUERRERO-OAXACA      |       |
| 12    | 23        | ENE      | 1993      | 0          | 51          | 41.2        | 15.86N    | 98.03W     | 14          | 3.9      | COSTA DE OAXACA            |       |
| 13    | 23        | ENE      | 1993      | 9          | 31          | 36.9        | 17.14N    | 100.66W    | 25          | .4       | GUERRERO                   |       |
| 14    | 26        | ENE      | 1993      | 11         | 40          | 25.7        | 17.42N    | 101.26W    | 53          | 4.1      | COSTA DE GUERRERO          |       |
| 15    | 4         | FEB      | 1993      | 19         | 53          | 1.2         | 16.15N    | 99.50W     | 14          | 4.3      | COSTA DE GUERRERO          |       |
| 16    | 5         | FEB      | 1993      | 6          | 53          | 43.4        | 16.75N    | 98.36W     | 14          | 3.8      | COSTA GUERRERO-DAXACA      |       |
| 17    | 7         | FEB      | 1993      | 2          | 46          | 46.9        | 16.98N    | 99.92W     | 2           | 4        | COSTA DE GUERRERO          |       |
| 18    | 8         | FEB      | 1993      | 3          | 13          | 34.4        | 16.88N    | 99.77W     | 54          | 4.3      | COSTA DE GUERRERO          |       |
| 19    | 13        | FEB      | 1993      | 20         | 41          | 45          | 16.94N    | 101.22W    | 52          | 4.1      | COSTA DE GUERRERO          |       |
| 20    | 14        | FEB      | 1993      | 6          | 6           | 29.7        | 16.17N    | 99.63W     | 11          | 4.3      | COSTA DE GUERRERO          |       |
| 21    | 14        | FEB      | 1993      | 9          | 41          | 59.2        | 16.89N    | 100.54W    | 17          | 4.3      | COSTA DE GUERRERO          |       |
| 14 4  | F # 1     | sismos93 | datos co  | mpletos /  | ~           |             | 10000     | 1010000000 | - I+I       | 1.0      | dice and being second and  | IF    |
| Dibu  | 10 · Q    | Autoform | ai+ / `   | .00        | M40         | 023.        | 2.4.      | 三三日!       | a @ .       |          |                            | 1     |
| Listo |           |          |           |            |             |             |           |            |             |          | NUM                        |       |

Figura 8. Datos de la sismicidad en Acapulco para el año 1993 (Fuente: Servicio Sismológico Nacional).



Figura 9. Imagen 3-D de la sismicidad en Acapulco, 1993. Exageración vertical de 15x.

#### Ruido de origen electroquímico

Este ruido es generalmente sugerido como un cambio en el contacto potencial entre los electrodos y el suelo, por ejemplo, el ocasionado por la lluvia. En estos casos se considera que la influencia de origen electroquímico no es de consideración, a menos que los electrodos se encuentren enterrados a profundidades menores a medio metro (Varotsos y Lizaridou, 1991). Como se mencionado con anterioridad, los electrodos fueron enterrados a 2 metros.

#### Disturbios magnetotelúricos

Hasta ahora las fuentes de los campos electromagnéticos tienen su origen fuera del subsuelo terrestre, ya sea de la zona de la atmósfera conocida como ionosfera, de la actividad meteorológica o de fuentes artificiales (Vera, 2004). Los campos electromagnéticos naturales pueden dividirse de acuerdo a su contenido de frecuencias, el primero a partir de 1 Hz, que es generado por la ocurrencia de tormentas eléctricas y es constante en la medida en que siempre existan tormentas eléctricas en proceso en alguna parte del mundo, parte de la energía producida por estos rayos es convertida en campos electromagnéticos los cuales viajan rebotando entre la superficie de la Tierra y la ionosfera, induciendo débiles corrientes telúricas. El segundo conjunto de frecuencias debajo de 1 Hz, que es producido por corrientes eléctricas en la ionosfera, las cuales tienen su origen en las fluctuaciones del campo magnético terrestre y a su vez generadas por el viento solar (Clarke y Goldstein, 1982, Kaufman y Keller, 1981, en Vera, 2004).

Como parte indispensable del tratamiento de señales se pretende atender los efectos que pueden distorsionar a las señales electrotelúricas, por ejemplo, los cambios en el campo magnético terrestre. Cabe aclarar que estos efectos no se deben confundir con las SES, sino que se refiere a un efecto general de la señal y que puede ser eliminado determinando el tensor de impedancia *Z* que interrelaciona las variaciones del campo magnético (H) y eléctrico (E). Una vez que este tensor ha sido determinado, la eliminación del ruido en el campo electrotelúrico se obtiene calculado la diferencia E – Z × H. El cálculo de *Z* requiere de la obtención de las resistividades aparentes  $\rho_a^{NS}$ 

y  $\rho_a^{EW}$  en función de la frecuencia y por consiguiente, en función de la profundidad (Varotsos y Lizaridou, 1991).

Lamentablemente esta corrección no fue realizada debido a que los registros existentes del Observatorio Magnético de Teoloyucan (siendo este el observatorio magnético más cercano) se encuentran en magnetogramas (análogos) y no existen en formato digital para ese año. Además, la distancia al observatorio es ~320 km, por lo que solamente se consultó al personal de Geomagnetismo en el Instituto de Geofísica para solicitar información referente a la posibilidad de que en el año 1993 se hayan presentado tormentas magnéticas, siendo que este fenómeno es global. Empleando un par de boletines científicos que recopilan información de diversos observatorios magnéticos, el primero, corresponde a una terna del Reino Unido, *Lerwick, Eskdalemuir y Hartland*, donde se observan en los registros diferentes fluctuaciones, denotando la existencia de unas tormentas magnéticas significativas; el segundo, muestra los resultados obtenidos de cuatro observatorios ubicados en Japón: *Kakioka, Memambetsu, Kanoya y Chichijima*, en este boletín se reportó para todos ellos unas tres tormentas magnéticas: una el 7 de mayo y dos en el mes de octubre para los días 9 y 25 del año 1993. La búsqueda fue enfocada al mes de octubre porque fue cuando se registró el sismo de mayor magnitud en los datos proporcionados por el SSN (Apéndice 1 a Apéndice 4).

Se consultó a través de *Internet* la base de datos básica de tormentas magnéticas de China, que consta de 15 observatorios magnéticos, para obtener la actividad del mes de octubre de 1993. En esta base de datos se reportaron dos tormentas magnéticas, una del 8 al 9 y otra el 25 de octubre (Apéndice 5 a Apéndice 6).

Las magnitudes de las tormentas magnéticas pueden ser expresadas como un índice K, o bien, como una categoría G. En el caso de las tormentas registradas en los meses donde se presentan los sismos de interés (mayo y octubre) las magnitudes varían un poco de acuerdo al observatorio, pero en general, todas estas tormentas no excedieron de K=6, donde sólo a latitudes mayores se ven perjudicados los sistemas de suministro de energía (Apéndice A7).

### **CAPÍTULO IV**

### TRATAMIENTO DE LAS SERIES ELÉCTRICAS

En este capítulo se describe el tratamiento que se le aplicó a la series de tiempo, que consistió primero en una secuencia básica de tratamiento de señales, esto es, eliminar tendencia de la señal así como la media y los *offsets*, con la finalidad de obtener una serie de tiempo estacionaria. Posteriormente se calcularon los espectros de potencia a diferentes intervalos de tiempo con sus respectivas leyes de potencia.

#### Determinación de leyes de potencia de las series

El espectro de potencias es particularmente útil para estudiar oscilaciones de un sistema físico. Habrá picos, angostos o anchos, a las frecuencias dominantes y en sus múltiplos enteros, los armónicos. Prácticamente señales periódicas o señales cuasiperiódicas presentan líneas espectrales angostas; el ruido medido suma un "piso" continuo al espectro. Las señales caóticas determinísticas pueden presentar estas líneas delgadas, incluso en la ausencia de ruido habrá una parte continua del espectro. Esta es una consecuencia inmediata del decaimiento exponencial de la función de autocorrelación. Una forma de conocer el alcance de la respuesta del sistema físico es a través de esta función (Apéndice 8). Sin información adicional es imposible inferir del espectro si la parte continua es debida a ruido por encima de una señal cuasi-periódica o periódica, o a que es caótico (el término caótico se refiere a que es impredecible y no a que sea desordenado).

A partir de las series reconstruidas se obtuvieron sus espectros de potencia y se removió la tendencia lineal, considerando 200 muestras (figura 10), aproximadamente 6 horas 40 minutos, siendo que ésta es la duración de las SES, apreciadas por inspección visual.



Figura 10. Número aproximado de muestras por SES

Realizando gráficos de forma bilogarítmica  $(\ln S(f) - \ln f)$ , se calculó, mediante una regresión lineal, las pendientes ( $\beta$ ) que son la representación de las leyes de potencia. A esta pendiente se le conoce también como "exponente espectral  $\beta$ " ( $S(f) \sim f^{-\beta}$ ), ver figura 11.



Figura 11. Representación de las leyes de potencia como un ajuste lineal.

Dichas pendientes fueron analizadas acotando los datos a 20 días antes y 20 después de los sismos de interés, para las componentes N –S y E – W (figura 12).



Figura 12. Series de  $\beta$ 's veinte días antes y veinte días después del EQ.

Asimismo, fue empleado el mismo algoritmo para generar las pendientes de toda la señal, obteniendo la imagen de la figura 13.

Para el caso del sismo del 24 de octubre en las figuras (12) y (13) se puede apreciar una variación aproximadamente 15 días antes del evento sísmico, dando lugar así a la posibilidad de la existencia de un precursor. Desafortunadamente para las series consideradas en el sismo del 15 de mayo no hay evidencia de este supuesto precursor, esto pudiera deberse a la distancia entre el epicentro del sismo a la estación ACA y a su magnitud.

Ahora bien, para confirmar que la evolución del exponente beta no es un efecto de ventana, se realizó el mismo análisis para diferentes tamaños de ventana, para 3.33, 6.67 y 10 horas (100, 200 y 300 muestras respectivamente).



Figura 13. Series sin tendencia y con μ=0, N-S (a), E-W (b). Evolución del exponente espectral para las diferentes ventanas 3.3 (c), 6.6 (d) y 10 hrs (e).

En los casos mostrados en la figura 13 (c, d, e), 15 días antes del sismo de octubre 24, los valores del exponente beta rebasan el valor de ~2.

En términos generales se observa que las fluctuaciones del potencial eléctrico (figura 13, a y b) y los valores de los exponentes  $\beta$ , monitoreados en las componentes N-S y E-W de la estación ACA, no muestran el mismo comportamiento, por lo que se infiere que el campo eléctrico local asociado no es isótropo. Sin embargo, cuando los valores del exponente beta rebasan el valor de ~2, 15 días antes del sismo, las componentes N-S y E-W de las series presentan el mismo comportamiento en la evolución del exponente  $\beta$ , denotando una respuesta isótropa (figura 14); lo que posiblemente se encuentre asociado al proceso de preparación del sismo de octubre 24.



Figura 14. Diferencias entre las componentes N-S y E-W del exponente espectral ( $|\beta_{N-S} - \beta_{E-W}|$ ). La flecha denota la similitud de las evoluciones de  $\beta$  en ambas componentes, al presentar valores pequeños en las diferencias.

En ambas componentes (N-S y E-W) el exponente espectral muestra un comportamiento de ruido blanco al tener ~85% de datos asociados a este, es decir,  $\beta$  alrededor de 0.5 (figura 13). Particularmente en el mes de octubre, quince días antes del sismo los valores de *beta* presentan un incremento, denotando que el sistema posee un orden, deja de ser ruido blanco a lo largo de todas las frecuencias. Este orden es visible en un intervalo de 1.5 a 2.2 en  $\beta$  (figura 13), siendo una aportación considerable a la distribución de los datos con un ~8%. Estos valores corresponde a un modelo estudiado desde principio del siglo XX y llamado modelo descriptivo del movimiento

Browniano que, en un principio, se encontraba en fluidos con partículas en suspensión (Einstein, 1956). El movimiento Browniano, se refería a aquel movimiento aleatorio que se observa en algunas partículas nanoscópicas que se hallan en un fluido (por ejemplo, polen en una gota de agua, carbón en alcohol); ahora, el término es utilizado ampliamente para caracterizar sistemas similares.

Con  $\beta$ >1, las series de tiempo no son estacionarias y los momentos estadísticos dependen sólo de la longitud de las series mismas, en el caso contrario,  $\beta$ <1, las series de tiempo son estacionarias y denota una persistencia débil (Malamud y Turcotte, 1999b). La función de autocorrelación nos puede ayudar a cuantificar la "fuerza" de la persistencia (Apéndice 8).

Se consultó a través de *internet* el Catálogo Global de Centroides del Tensor de Momento para averiguar qué tipo de fuente generó los sismos de interés, si un mecanismo de falla normal o uno inverso, donde éste último es aquel en el que existe mayor liberación de energía, con lo que se pudiera justificar la presencia del precursor para el sismo de octubre 24. Al analizar dicho catálogo, se observó que para los sismos de magnitud mayor a 5 para el año 1993 y acotados de la misma forma como en el presente trabajo, todos presentan un mecanismo de tipo falla inversa, por lo que el mecanismo no pudo justificar la existencia del precursor.

En trabajos previos se reportó la evolución del exponente espectral  $\beta_2$ , el cual se refiere a una segunda ley de potencia que se hace presente en frecuencias mayores a los 0.01 Hz y que se puede observar al procesar los datos originales, dado que estos poseen un período de muestreo de 4 segundos (Ramírez-Rojas, 2003). En el caso de esta tesis se consideraron las frecuencias bajas que, generalmente, son de mayor interés por su contenido de potencia en este fenómeno.

Al tener la posición de la estación ACA y los datos proporcionados por el SSN, se obtuvieron las distancias a los hipocentros y epicentros con las consideraciones pertinentes a la latitud de la región en cuestión, esto es, para una latitud de 16° N, las equivalencias fueron, para 1° de latitud=110.78 km y 1° de longitud = 107 km. Las últimas dos columnas corresponden a las distancias a los epicentros e hipocentros respectivamente (figura 15).

| Listo | Diğu       | ×      |        | 170              | 169      | 168     | 167      | 166     | 165     | 164    | 163     | 162       | 161          | 88      | 67     | g      | 8            | <u>6</u> 2 | ខា      | ខ      | ವ         | 8       | 8       | 83      |          |     |                   | ß              | N         |
|-------|------------|--------|--------|------------------|----------|---------|----------|---------|---------|--------|---------|-----------|--------------|---------|--------|--------|--------------|------------|---------|--------|-----------|---------|---------|---------|----------|-----|-------------------|----------------|-----------|
|       | ijo ▼ 😽 🕴  | + H\si | 21     | 24 DD            | 24 00    | 24 00   | 24 00    | 24 00   | 24 00   | 23 00  | 15 00   | 15 00     | 15 00        | 15 M.A  | 15 M.A | 15 M.A | 15 M.A       | 15 M.A     | 13 MA   | 5 M.A  | 5 M.A     | 5 M.A   | 30 AB   | 30 AB   | ⊳        | R67 |                   | Archivo        | licrosoft |
|       | Autoform   | smos93 | 4 -    | Ť                | н<br>-   | н<br>1  | H<br>1   | Ť       | Ξ<br>1  | H<br>1 | H<br>1  | Ξ<br>1    | H            | 1       | 1 V    | 1 V    | 1            | 1          | 1       | 1      | ۲¥ 1      | ۲¥ 1    | 70<br>1 | 10<br>1 | ω        | •   |                   | Edición        | Excel -   |
|       | nas 🔹 🗸    | 3datos | 38     | 2023             | 566      | 1993    | 1993     | 566     | 993     | 1993   | 1993    | 1993<br>1 | 5 <b>6</b> 6 | 1993    | 1993   | 566    | 1993<br>1    | <b>566</b> | 1993    | 566    | 1993<br>1 | 566     | 1993    | 566     | 0        | ħ   | M<br>•            | Yer            | sourses   |
|       | 1          | comple | 3 =    | 3                | 6        | 9       | 9        | ω       | 7       | σı     | 18      | 12        | ω            | ω       | 7      | 4      | ω            | ω          | 0       | 23     | 21        | 12      | 12      | 23      | D        |     | ₩<br>Z            | Insertar       | 93dato    |
|       | 0          | etos / | 3 (    | ۵                | 26       | Ж       | 16       | 21      | 52      | N      | 41      | 54        | 21           | ಹ       | ω      | 13     | #            | 9          | 46      | ω      | 42        | 8       | 50      | 12      | ш        |     |                   | Eorma          | s comp    |
|       |            |        |        | 202              | ങ്ങ<br>ഗ | 28.3    | 3.9      | 42.2    | 18.2    | 44.5   | 48.2    | 28.6      | 2.7          | 55.2    | 2      | 55.9   | 8            | 39.4       | 48.2    | 11.1   | 9.8       | 35.5    | 11.8    | 16.8    | Т        |     | 100%              | ito <u>H</u> e | oletos    |
|       | 2          |        |        |                  | 18       | 16      | 18       | 16      | 16      | 16     | 18      | T.        | 17           | Ē       | 31     |        | 16           | 16         | 17      | 17     | 16        |         | 17      | 17      | G        |     | •                 | rramienta      |           |
|       |            |        |        | Z<br>N<br>C<br>G | 6.73 N   | 6.42 N  | 5.48 N   | 5.59 N  | 6.54 N  | 0.05 N | 6.72 N  | 5.95 N    | N 80'        | 5.24 N  | 6.19 N | 16.4 N | 6.47 N       | 6.43 N     | 7.05 N  | N 85.7 | 6.26 N    | 17.3 N  | 7.26 N  | 7.17 N  | т        |     |                   | is Dat         |           |
|       |            |        |        |                  |          |         |          |         |         | 1      |         |           |              | -       |        |        |              |            |         |        |           |         |         |         |          |     |                   | os Ver         |           |
|       | •          |        | 00.00  | 20<br>27<br>00   | 99.2     | 100.13  | 100.01   | 99.29   | 98.98   | 98.37  | 99.65   | 98.51     | 101.2        | 98.69   | 98.69  | 98.77  | 98.72        | 98.74      | 99.18   | 100.77 | 99.78     | 100.03  | 100.32  | 100.62  | _        |     | Arial             | Itana          |           |
|       | •          |        | 44     | Ş                | V        | 8       | V        | W       | W       | W      | ×       | ×         | ×            | W       | V      | W      | X            | VV         | X       | W      | ×         | V       | ×       | ×       | <u>د</u> |     |                   | 2 PDF          |           |
|       | 111<br>111 |        | 3 8    | ß                | ප        | ភ       | 100      | 71      | 19      | =      | 42      | σî        | ຫ            | 28      | τ3     | ດ      | <del>б</del> | 20         | 8       | 81     | ₿         | ജ       | ₩       | 4       | X        |     |                   | de Adot        |           |
|       |            | •      |        | 34 009           | 4 009    | 3.9 COS | 3.9 0.09 | 3.8 COS | 6.6 COS | 4 009  | 3.7 008 | 4 009     | 3.7 COS      | 3.9 COS | 4 008  | 4 009  | <b>6</b> COS | 5.8 000    | 4.2 GUE | 4 GUE  | 3.9 COS   | 3.2 GUE | 4.1 GUE | 3.8 GUE | <b>F</b> |     | - 10 -            | ă              |           |
|       |            |        |        |                  | STA DE   | STA DE  | STA DE   | STA DE  | STA GU  | STA GU | STA DE  | STA DE    | STA DE       | STA GU  | STA GU | STA GU | STA GU       | STA GU     | IRREF   | ERRER  | STA DE    | RRRER   | ERRER   | ERRER   |          |     | N                 |                |           |
|       |            |        |        |                  | GUEF     | GUEF    | GUEF     | GUEF    | JERRE   | JERRE  | GUEF    | OAXA      | GUEF         | JERRE   | JERRE  | JERRE  | JERRE        | JERRE      | õ       | õ      | GUEF      | õ       | õ       | õ       | м        |     | 三世                |                |           |
|       |            |        |        |                  | RERC     | RERC    | RERC     | RERC    | RO-0/   | RO-0,4 | RERO    | (CA       | RERO         | R0-0/   | RO-0,2 | R0-0/  | RO-0/        | RO-0,2     |         |        | RERC      |         |         |         |          |     |                   |                |           |
|       |            |        |        |                  |          | 876     |          | 2       | XACA    | XACA   | 20      |           | 8            | XACA    | XACA   | XACA   | XACA         | XACA       |         |        | 3         |         |         |         |          |     | (h)               | ES.            |           |
|       |            |        | 30.10  | 75 10            | 63.45    | 58.92   | 46.04    | 59      | 91.8    | 174    | 19.00   | 167.7     | 154.0        | 134.    | 136.9  | 118.5  | 120          | 120        | 68.87   | 119.0  | 63.8      | 58.04   | 74.37   | 96.98   |          |     | +00<br>+00<br>+00 | triba una      |           |
| NUM   |            |        | 010110 | 140718           | 576622   | 283741  | 47 1504  | .27122  | 9394    | .35553 | 043556  | 746442    | 326671       | 187294  | 985623 | 578155 | 6863         | 2462       | 743231  | 350499 | 514831    | 450516  | 742843  | 315601  | 2        |     |                   | pregunt        |           |
| 1000  |            |        | 3 4.92 | 84 5             | 80.78    | 8       | 110.0    | 92.46   | 93      | 174.7  | 46.09   | 168.4     | 154          | 135.6   | 137.6  | 118.7  | 121.         | 121        | 110.9   | 143    | 77.84     | 68.30   | 85.91   | 104.9   |          |     | 3.                | ζμ.            | -         |
|       |            | V      | 100041 | 773630           | 390766   | .80751  | 392416   | 382561  | 8376    | 702178 | 395177  | 115762    | .14349       | 369561  | 301093 | 729856 | 6149         | 8981       | 362482  | .99313 | 104378    | 024745  | 100353  | 306735  | 0        |     | A -               | +<br> <br>  03 |           |
|       |            |        | 4      |                  |          |         |          |         |         |        |         |           | •            |         |        |        |              |            |         |        |           | L       |         |         |          |     | • *               | ×              | X         |

Figura 15. Registro de los sismos M ≥2.5 proporcionado por el SSN para el área de interés

(Tarbuk y Lutgens, 2000). una liberación de energía aproximadamente 31.6 veces mayor a la magnitud inmediata anterior Hay que recordar que la escala Richter es logarítmica, por lo que cada magnitud Richter representa del 15 de mayo es ~0.6 menor en escala Richter, que para el caso del sismo del 24 de octubre. variación en la evolución de la potencia espectral (figuras 12 y 13). Además, la magnitud del sismo octubre, siendo esta diferencia una posible explicación del por qué no se puede apreciar una apreciar Al observar las distancias de los hipocentros y epicentros a la estación ACA (figura 15) se puede una diferencia de poco menos de 30 km para los sismos del 15 de mayo y del 24 de

de tiempo que  $\beta$ , es decir, 15 días antes del sismo del 24 de octubre método Higuchi, presentan valores correspondientes a movimiento Browniano en el mismo lapso muestra invariantes que puedan comprobar la anomalía eta. Para el caso del exponente D, del Tavernier et al, 1998). Desafortunadamente ninguno de los escalamientos usados para wavelets wavelets (Apéndice 9) y el método de dimensión fractal Higuchi (Higuchi, 1988 y 1990; Le resultados obtenidos aplicando métodos alternos de análisis de series de tiempo, en particular, et al., 2007), al presentar la evolución e interpretación del exponente  $\beta$ , y su comparación con los of electric self-potential time series associated to two 1993 earthquakes in Mexico (Flores-Márquez El material de esta tesis constituye la parte medular de la publicación científica A statistical analysis

# **CAPÍTULO V**

### **DISCUSIÓN DE LOS RESULTADOS**

De manera general, se puede decir que el procesamiento de series de tiempo por métodos espectrales es una herramienta poderosa que la búsqueda de SES en el sentido del grupo VAN. Sin embargo, la adquisición de los datos y el procesamiento para la obtención de las series, así como la identificación visual de SES, no hubiera sido posible sin el seguimiento de la metodología VAN para la búsqueda de precursores sísmicos.

En el caso particular, los métodos espectrales, para ambas componentes (N-S y E-W) el exponente espectral muestra un comportamiento asociado a ruido blanco ya que los valores de  $\beta$  son aproximadamente 0.5 a lo largo del año. Particularmente en el mes de octubre, quince días antes del sismo estos  $\beta$ s presentan un notable incremento, denotando que el sistema posee un orden, en todas las frecuencias. Este orden es visible en un intervalo de valores de 1.5 a 2.2 en  $\beta$  y corresponde a un modelo estudiado desde principio del siglo XX llamado modelo descriptivo del movimiento Browniano que, en un principio, fue empleado para describir el movimiento que siguen las partículas en suspensión en un fluido.

Los valores de  $\beta$  entre 1.5 y 2.2 se mantienen por un lapso de dos días y están fuertemente correlacionados en las dos componentes, lo que indica que el sistema se comporta de manera isótropa.

En trabajos previos se reportó la evolución del exponente espectral  $\beta_2$ , el cual se refiere a una segunda ley de potencia que se hace presente en frecuencias mayores a los 0.01 Hz y menores a 0.125 Hz y que se puede observar al procesar los datos originales, dado que estos poseen un período de muestreo de 4 segundos (Ramírez-Rojas *et al.*, 2004). En el caso de este trabajo se consideraron las frecuencias bajas (de 0.00021 a 0.004166 Hz) que, generalmente, son de mayor interés por su contenido en potencia espectral y como pudo observarse, en donde se obtiene mayor información del comportamiento del sistema.

Al observar las distancias de los hipocentros y epicentros a la estación ACA se puede apreciar una diferencia aproximadamente de 30 km entre los sismos del 15 de mayo y del 24 de octubre, siendo esta diferencia una posible explicación del por qué no se puede apreciar una variación en la evolución de la potencia espectral en el primer caso mientras que en el otro sí se observa. Además, la magnitud del sismo de octubre 24 es ~0.6 veces, en escala Richter, mayor que la del 15 de mayo, lo que significaría que la cantidad de energía liberada por el sismo de 6.6 fue, aproximadamente, 16 veces la magnitud del sismo del 15 de mayo.

### CONCLUSIONES

Las técnicas de preprocesamiento (media móvil, sustitución de datos perdidos por promedios adyacentes y la remoción de la media y tendencia lineal) en las series de tiempo y el análisis espectral de series electrosísmicas, se muestran como una metodología poderosa para la búsqueda de posibles precursores sísmicos. La metodología y los algoritmos desarrollados en la presente tesis constituyen una herramienta eficaz para el análisis de series de tiempo electrosísmicas.

Para los sismos ocurridos durante 1993, podemos concluir lo siguiente:

- Las técnicas de preprocesamiento son necesarias cuando las series de tiempo son ruidosas y cuando presentan varias influencias indeseables.
- No fue posible distinguir un claro cambio en el comportamiento del exponente β para sismos cuya magnitud es inferior a 6 y con epicentros situados a más de ~92 km de distancia de la estación ACA, como lo fue para los sismos del 15 de mayo. Lo que corrobora lo propuesto por el grupo VAN (Varotsos y Alexopoulos, 1984b) que sismos de más de 100 km no presenta SES.
- Algunos picos con β ≥ 1 son observados a lo largo del año y podrían estar asociados a sismos cuyas magnitudes están entre 4.5 y 5.5.
- A lo largo de toda la serie se observa una correlación del sistema con persistencia débil, ya que en promedio el valor del exponente β es alrededor de 0.5 en un ~85% de la evolución de la potencia espectral.
- Un incremento en los valores de β ≈ 2 es observado quince días antes del sismo ocurrido el 24 de octubre (con duración aproximada de 2 días), cuya magnitud fue de 6.6 y con una distancia de ~92 km entre el epicentro y la estación ACA, al mismo tiempo se observa un tren de posibles SES. Esto puede ser interpretado como un posible precursor del sismo del 24 de octubre, ya que el sistema muestra un comportamiento de tipo Browniano.

El presente trabajo, además de proporcionar una metodología de análisis, muestra algunas características del comportamiento de las series medidas del potencial eléctrico natural, sin embargo, los resultados referentes al sismo del 24 de octubre no pueden considerarse como contundentes, debido a los diferentes mecanismos que intervienen en la preparación de un sismo. Para ello, es necesario el estudio de varios sismos históricos, con características similares y para los cuales se dispusiera de registros electrosísmicos contemporáneos a los eventos. A pesar de esto, los diferentes estudios que se han realizado por diferentes grupos de investigación es prometedora como una fuente alterna para determinar precursores de sismos cuya magnitud sea mayor a 6.

## REFERENCIAS

Anguiano Rojas, Rosa Adriana. Introducción al análisis de Fourier, Ed. Facultad de Ingeniería. UNAM, México, D. F., 1996.

Brockwell, J. P., Davis, R. A. An Introduction to time series and forecasting. Segunda Edición. Springer. Nueva York, 2002.

Cárdenas Soto, Martín, Chávez-García, Francisco J., Gusev, Alexander. *Regional amplification of ground motion in central Mexico. Results from coda-length magnitude data and preliminary modeling.* Journal of Seismology. Vol. 1, 341-355, 1997.

Clark, T. D. G., Kerridge, D. J., Harris, T. J. (recopiladores). *Magnetic Results 1993 Lerwick, Eskdalemuir and Hartland observatories*. British Geological Survey Geomagnetic Bulletin 23, 1994.

Clarke, John y Goldstein, N. E. *Magnetotelluric Measurements:* SQUID Applications to Geophysics, 49-60. En: Vera Rodríguez, Ismael Adán (tesis). *Modelación directa del fenómeno magnetotelúrico para aplicaciones someras*. UNAM 2004.

Einstein, Albert. *Investigations on the theory of the Brownian movement*. Dover Publications, Inc. New York, 1956.

Flores-Márquez, E. L., Márquez-Cruz, J., Ramírez-Rojas, A., Gálvez-Coyt, G., Angulo-Brown, F. *A statistical analysis of electric self-potential time series associated to two 1993 earthquakes in Mexico*. Natural Hazards and Earth System Sciences. Vol. 7, No. 5, 2007.

Freund, Friedemann. *Seismic electric signals (SES) and the conductivity structure of the crust.* Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere coupling. TERRAPUB, Tokyo, Japón, 2002.

Higuchi, T. *Approach to an irregular time series on the basis of the fractal theory*. Physica D, Vol. 31. Elsevier Science Publishers - North-Holland Physics Publishing Division, 1988.

Higuchi, T. *Relationship between the fractal dimension and the power law index for a time series: A numerical investigation.* Physica D, Vol. 46. Elsevier Science Publishers - North-Holland Physics Publishing Division, 1990.

Kaufman, Alexander y Keller, George. *The magnetotelluric sounding method (Methods in Geochemistry and Geophysics vol. 15)*. Elsevier Scientific Publishing Company. Netherlands, 1981. En: Vera Rodríguez, Ismael Adán (tesis). *Modelación directa del fenómeno magnetotelúrico para aplicaciones someras*. UNAM 2004.

Lee, Y. W. Statistical Theory of Communications. John Wiley and Sons, Nueva York, 1960.

Le Tavernier, E., Simard, P., Bulo, M., Boichu, D. La méthode de Hiiguchi pour la dimension fractale. Signal Processing, Vol. 65. Elsevier Science, 1998.

Malamud, Bruce D., Turcotte, Donald L. *Self-affine time series: measures of weak and strong persistence*. Journal of Statistical Planning and Interference (80). Elsevier Science B. V. 1999a.

Malamud, Bruce D., Turcotte, Donald L. *Self-affine time series I: Generation and analyses*. Advances in Geophysics, v. 40, p. 1–90., 1999b.

Mantenga, R. N., Stanley, H. E. An introduction to Econophysics, Correlations and Complexity in finance. Cambridge University Press, New York, 2000. En: Ramírez-Rojas, A., Pavía-Miller, C.G.,

Angulo-Brown, F. Statistical behavior of the spectral exponent and the correlation time of electric self-potential time series associated to the Ms=7.4 September 14, 1995 earthquake in Mexico. Physics and Chemistry of the Earth. Vol. 29, 2003.

Marple, S. Lawrence Jr. *Digital Spectral Analysis with applications*. Prentice-Hall Signal Processing Series. Alan V. Oppenheim Series Editor, 1987.

Nikolopoulos, S., Kapiris, P., Karamanos, K., Eftaxias, K. *A unified approach of catastrophic events*. Natural Hazards and Earth System Sciences (2004) 4: 615-631. European Geosciences Union, 2004.

Ramírez Rojas, Alejandro. Tesis Doctoral: *Análisis Estadístico y Dinámico de series de tiempo electrotelúricas*. Universidad Autónoma del Estado de México. Febrero, 2003.

Ramírez-Rojas, Alejandro, Muñoz-Diosdado, A., Pavía-Miller, C. G., Angulo-Brown, F. Spectral and multifractal study of electroseismic time series associated to the Mw=6.5 earthquake of 24 October 1993 in Mexico. Natural Hazards and Earth System Sciences (2004) 4: 703-709. European Geosciences Union, 2004.

*Report of the Kakioka Magnetic Observatory*. Geomagnetismo de Kakioka, Memambetsu, Kanoya, Chichijima 1993. Publicado por The Kakioka Magnetic Observatory, Kakioka, Japón, 1994.

Smith, J.O. Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing. 2003.

Soliman, Samir S., Srinath, Mandyam D. *Señales y Sistemas, continuos y discretos*. Segunda Edición. Prentice Hall. Madrid, 1999.

Solnes J. Theory of Stochastic Processes and Random Vibration with aplicatios in Geophysics and Engineering. Instituto de Geofísica, Universidad Nacional Autónoma de México, 1992.

Tarbuk, E. J. y Lutgens, F. K. *Ciencias de la Tierra : Una introducción a la geología física*. Edición Latinoamericana. Prentice Hall. México, 2000.

Torrence, C. y Compo, G. P. A practical guide to wavelet analysis. Bulletin of American Meteorological Society. Vol. 79, No. 1, 1998.

Varotsos, P. y Alexopoulos, K. *Physical properties of the variations of the electric field of the Earth preceding earthquakes, I.* Tectonophysics (110) 73-98, Elsevier Science Publishers, 1984a.

Varotsos, P. y Alexopoulos, K. *Physical properties of the variations of the electric field of the Earth preceding earthquakes, II.* Tectonophysics (110) 99-125, Elsevier Science Publishers, 1984b.

Varotsos, P. y Lizaridou, M. Latest aspects of earthquake prediction in Greece based on seismic electric signals. Tectonophysics (188), Elsevier Science Publishers, 1991.

Varotsos, P. A., Sarlis, N. V., Skordas, E. S., Tanaka, H. K., Lazaridou, M. S. Información adicional al artículo '*Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis*. American Physical Society. Physical Review E 74, 021123 (2006)' después de su inscripción inicial en febrero 25, 2006. Parte II, actualizado.

Vera Rodríguez, Ismael Adán (tesis). *Modelación directa del fenómeno magnetotelúrico para aplicaciones someras*. Universidad Nacional Autónoma de México, 2004.

Yépez, E., Angulo-Brown, F., Peralta, J. A., Pavia, C. G., González-Santos, G.: *Electric field patterns as seismic precursors*. Geophysical Research Letters, vol. 22, no. 22, 1995.

APÉNDICES

### BRITISH GEOLOGICAL SURVEY

**GEOMAGNETIC BULLETIN 23** 

# **Magnetic Results 1993**

LERWICK, ESKDALEMUIR AND HARTLAND OBSERVATORIES



Apéndice 1. Boletín geomagnético. Resultados magnéticos de los observatorios de Lerwick, Eskdalemuir y Hartland



Apéndice 2. Resultados magnéticos del observatorio de Lerwick

第百六十三冊

No. 1 6 3

#### 気 象 庁

地磁気観測所報告

地球磁気

柿 岡 女満別 鹿 屋 父 島

平成五年

# REPORT

OF THE

# **KAKIOKA MAGNETIC OBSERVATORY**

### GEOMAGNETISM

# KAKIOKA MEMAMBETSU KANOYA CHICHIJIMA

1993



PUBLISHED BY THE KAKIOKA MAGNETIC OBSERVATORY KAKIOKA, JAPAN 1 9 9 4

**Apéndice 3**. Reporte del Observatorio magnético de Kakioka (Kakioka, Memambetsu, Kanoya y Chichijima, Japón)

#### Magnetic Storms

| Wieman  | nbetsu      |           |          |        | -    | _ |                    |       |         |      | _     |      | _  |      |             | _  |     | 1    | 993 |
|---------|-------------|-----------|----------|--------|------|---|--------------------|-------|---------|------|-------|------|----|------|-------------|----|-----|------|-----|
|         |             | Storm-tin | me UT of |        |      |   | Sude               | den c | ommence | emen | t     |      |    | Ma   | on K-scale  |    | R   | ange | s   |
| Date    | begin-      | main      | last     | anding |      | 0 | Н                  |       | D       |      | z     |      | DA |      | 3-hour      | 1. |     | -    |     |
| -       | ning        | phase     | phase    | enamy  | type | 4 | amp.               | dur.  | amp.    | dur. | amp.  | dur. |    | Day  | period      | ĸ  | н   | D    | z   |
| Ten 25  | h m<br>07 A | d h       | dh       | d h    |      |   | Ta                 | min.  | nT      | min. | nT    | mia. |    |      |             |    | вT  | nT   | nT  |
| 31      | 01.0        |           |          | 2 08   |      | [ | 1.5                | -     | -       | -    | -     | -    | ms | 25   | 5           | 6  | 128 | 85   | 29  |
|         |             | 9         |          | 1.00   |      |   | -                  | -     |         | -    | -     | -    | ms | 31   | 4           | 0  | 144 | 109  | 30  |
| Feb. 17 | 03 01       | -         | 1.12     | 17 24  | ssc* | A | +38                | 7     | -5.     | 0    | ( +1* | 0    | ms | 17   | 5,6         | 6  | 167 | 102  | 36  |
|         |             |           |          |        |      |   |                    |       | +24     | 3    | >-8   | 3    |    |      |             |    |     |      |     |
| 27      | 22 19       | -         | -        | 28 24  | ssc* | C | +12                | 3     | ( +9    | 4    | -2    | 4    | ms | 28   | 5           | 6  | 141 | 64   | 33  |
| M       |             |           |          |        |      |   |                    |       | ( -13.  | 2    | ( +5+ | 2    |    | 18   | 8           |    |     |      |     |
| Mar. 8  | 21 37       | 8 23.5    | 9 06.1   | 10 06  | SSC. | в | +31                | 2     | +21     | 2    | -6    | 2    | ms | 6    | 1,2         | 6  | 187 | 169  | 59  |
| 11      | 06 40       | -         | . =      | 13 24  | ssc* | с | -0•<br>+15         | 0     | +2      | 0    | -0    | 0    | ms | 11   | 6           | 6  | 126 | 125  | 37  |
| 15      | 05 26       | -         | -        | 16 24  | 58C* | c | -3.                | 0     | +5      | 1    | -1    | 1    | ms | 15   | 5           | 6  | 130 | 103  | 35  |
|         |             |           |          |        |      |   | \ +22              | 4     | 1 .     | 1.   | 1     |      |    |      |             |    |     |      |     |
| 23      | 21 55       | 23 22.6   | 24 08.5  | 24 24  | ssc* | C | +19                | 2     | (+19    | 2    | -6    | 2    | ms | 24   | 3           | 6  | 140 | 113  | 35  |
| Apr. 4  | 14 31       | 4.18.4    | 5.07.0   | 5.24   |      |   | 1.50               |       |         | 1.0  |       |      |    | 14   | 6,7,8       |    |     |      |     |
| apr. 4  | 14 51       | 4 15.6    | 5 07.9   | 0 24   | SSC  | ^ | +50                | 8     | +15     | 1    | -2    | 6    | ms | 5    | 5,6         | 6  | 269 | 174  | 53  |
| 13      | 02.2        | -         | -        | 13 22  |      | - | -                  | -     | 7       | 77   | -     | -    | m  | 13   | 2,5         | 5  | 90  | 90   | 29  |
| May 7   | 19.3        |           | -        | 10 24  |      | - | -                  | -     | -       | 4    | -     | -    | ms | ( 9  | 2           | 6  | 125 | 144  | 48  |
|         | _           |           |          |        |      |   |                    |       |         |      |       |      |    | 10   | 6           |    |     |      |     |
| Jun. 10 | 17 27       | -         |          | 11 14  | ssc  | c | +16                | 3     | +4      | 3    | +1    | 2    | ms | 10   | 8           | 6  | 139 | 137  | 34  |
| Aug. 15 | 15.3        | -         | -        | 17 09  |      | - | -                  | -     | -       | -    | -     | -    | m  | ( 15 | 8           | 5  | 144 | 142  | 53  |
|         |             |           |          |        |      |   |                    |       |         |      |       |      |    | 18   | 2,3,4,5,6,7 |    |     |      |     |
| Sep. 3  | 06.5        | -         | -        | 4 19   |      | - | 1.7                | ~     | -       | -    |       | -    | m  | 3    | 5,7,8       | 5  | 83  | 123  | 23  |
| 12      | 11.5        |           | -        | 15 14  | 252  | - | -                  | -     | ~       | -    | -     | -    | ms | 13   | 4           | 7  | 230 | 167  | 50  |
| Oct. 9  | 03.1        | -         | -        | 10 24  |      | - | -                  | -     | -       | -    | -     | -    | m  | 9    | 2.3.4.5.8   | 5  | 162 | 115  | 24  |
| 25      | 01.2        | -         | -        | 25 24  | •••  | - | (7 <del>84</del> ) | -     |         | -    |       | -    | ms | 25   | 5,6         | 6  | 131 | 91   | 24  |
| Nov 3   | 17 54       | 1 22 4    | 4 12 2   | 7.22   |      | D | ( -2.              | 2     |         |      | ( -2. | 2    |    |      |             |    |     |      |     |
|         |             | 5 22.0    | 414.6    |        | sse  |   | ( +20              | 2     | +5      | 2    | +2    | 2    | ms | 4    | 5           | 6  | 175 | 117  | 25  |
| 18      | 12 12       |           | -        | 20 08  | SSC  | в | +28                | 5     | +4      | 2    | -1    | 2    | ms | 18   | 5,6         | 6  | 152 | 136  | 43  |
| Dec. 1  | 06.7        | _         | -        | 3 24   |      |   |                    |       |         |      |       |      |    | (1   | 4.5         |    |     |      |     |
|         |             |           |          |        |      |   |                    | -     |         | -    | -     | -    | m  | 3    | 3           | 8  | 145 | 119  | 37  |
| 7       | 12 01       | 7         |          | 8 20   | SSC  | C | +11                | 4     | +5      | 4    | -1    | 4    | ms | 8    | 4           | 6  | 122 | 151  | 30  |
|         |             |           |          |        |      |   |                    |       |         |      |       |      |    |      |             |    |     |      |     |

Q: quality amp. : amplitude dur. : duration DA : degree of activity K : K-index

### Apéndice 4. Tormentas magnéticas reportadas en el Reporte del Observatorio de Kakioka



Apéndice 5. Base de datos básica de tormentas magnéticas para 15 observatorios en China

| Start          | Site | Start | End         | Start | Complex<br>or Single | Range of sudden<br>commencement Ac |        | Activity |       | Max activity exte | nt                     | Max<br>ma<br>s | range<br>gnetio<br>torm | c of | Dst |     |
|----------------|------|-------|-------------|-------|----------------------|------------------------------------|--------|----------|-------|-------------------|------------------------|----------------|-------------------------|------|-----|-----|
|                |      |       |             | Type  | or single            | D                                  | Н      | Z        | exten | Date              | 3-hour time<br>segment | K<br>Index     | D                       | н    | Z   |     |
| 1993-10-<br>8  | GLM  | 23:99 | 10-11<br>19 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 9                       | 211  | 42  | -91 |
| 1993-10-<br>8  | LZH  | 23:99 | 10-10<br>23 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 8.5                     | 204  | 43  | -91 |
| 1993-10-<br>8  | GZH  | 23:99 | 10-11<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 3                      | 06             | 4.4                     | 209  | 32  | -91 |
| 1993-10-<br>8  | THJ  | 23:99 | 10-10<br>23 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 5.8                     | 222  | 47  | -91 |
| 1993-10-<br>8  | QZH  | 23:99 | 10-11<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 5.5                     | 215  | 36  | -91 |
| 1993-10-<br>8  | WMQ  | 23:99 | 10-11<br>18 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 15.8                    | 180  | 29  | -91 |
| 1993-10-<br>9  | QGZ  | 03:99 | 10-11<br>00 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 3.7                     | 229  | 46  | -91 |
| 1993-10-<br>9  | MZL  | 03:99 | 10-11<br>18 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 23.9                    | 171  | 52  | -91 |
| 1993-10-<br>9  | WHN  | 03:99 | 10-11<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 6                       | 205  | 30  | -91 |
| 1993-10-<br>9  | CDP  | 03:99 | 10-11<br>18 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 6                       | 202  | 37  | -91 |
| 1993-10-<br>9  | SSH  | 03:99 | 10-11<br>19 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 7                       | 190  | 36  | -91 |
| 1993-10-<br>9  | KSH  | 02:99 | 10-11<br>00 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 9.5                     | 203  | 27  | -91 |
| 1993-10-<br>9  | вл   | 02:99 | 10-11<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>09         | 2                      | 06             | 10.5                    | 184  | 41  | -91 |
| 1993-10-<br>25 | QGZ  | 01:99 | 10-26<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 2.7                     | 204  | 33  | -81 |
| 1993-10-<br>25 | GZH  | 01:99 | 10-26<br>07 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 4.3                     | 183  | 24  | -81 |
| 1993-10-<br>25 | THJ  | 01:99 | 10-26<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 6.1                     | 200  | 41  | -81 |
| 1993-10-<br>25 | QZH  | 01:99 | 10-26<br>00 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 3.6                     | 182  | 26  | -81 |
| 1993-10-<br>25 | WHN  | 01:99 | 10-26<br>03 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 5.8                     | 174  | 32  | -81 |
| 1993-10-<br>25 | CDP  | 01:99 | 10-26<br>07 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 6.9                     | 182  | 38  | -81 |
| 1993-10-<br>25 | SSH  | 01:99 | 10-26<br>07 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 6.8                     | 155  | 39  | -81 |
| 1993-10-<br>25 | GLM  | 01:99 | 10-26<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 4                      | 06             | 11.4                    | 185  | 30  | -81 |
| 1993-10-<br>25 | LZH  | 01:99 | 10-26<br>00 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 4                      | 06             | 9.6                     | 174  | 32  | -81 |
| 1993-10-<br>25 | KSH  | 06:99 | 10-26<br>00 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 4                      | 06             | 16                      | 180  | 41  | -81 |
| 1993-10-<br>25 | вл   | 01:99 | 10-26<br>07 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 11.9                    | 155  | 27  | -81 |
| 1993-10-<br>25 | WMQ  | 01:99 | 10-26<br>00 | GC    | N                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 4                      | 06             | 20.7                    | 144  | 19  | -81 |
| 1993-10-<br>25 | MZL  | 06:99 | 10-26<br>00 | GC    | Ν                    | 999.99                             | 999.99 | 999.99   | MS    | 10-<br>25         | 6                      | 06             | 24.5                    | 153  | 21  | -81 |

Apéndice 6. Tormentas magnéticas para el mes de octubre de 1993 de la base de datos Apéndice 5

|     | Category | Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Physical<br>measure                          | Average Frequency<br>(1 cycle = 11 years)                                  |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|
|     |          | Geomagnetic Storms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kp values*<br>determined<br>every 3<br>hours | Number of storm events<br>when Kp level was met;<br>(number of storm days) |
| G 5 | Extreme  | <ul> <li>Power systems: : widespread voltage control problems and protective system problems can occur, some grid systems may experience complete collapse or blackouts.</li> <li>Transformers may experience damage.</li> <li>Spacecraft operations: may experience extensive surface charging, problems with orientation, uplink/downlink and tracking satellites.</li> <li>Other systems: pipeline currents can reach hundreds of amps, HF (high frequency) radio propagation may be impossible in many areas for one to two days, satellite navigation may be degraded for days, low-frequency radio navigation can be out for hours, and aurora has been seen as low as Florida and southern Texas (typically 40° geomagnetic lat.)**.</li> </ul> | Kp = 9                                       | 4 per cycle<br>(4 days per cycle)                                          |
| G 4 | Severe   | <ul> <li>Power systems: possible widespread voltage control problems and some protective systems will mistakenly trip out key assets from the grid.</li> <li>Spacecraft operations: may experience surface charging and tracking problems, corrections may be needed for orientation problems.</li> <li>Other systems: induced pipeline currents affect preventive measures, HF radio propagation sporadic, satellite navigation degraded for hours, low-frequency radio navigation disrupted, and aurora has been seen as low as Alabama and northern California (typically 45° geomagnetic lat.)**.</li> </ul>                                                                                                                                       | Kp = 8,<br>including<br>a 9-                 | 100 per cycle<br>(60 days per cycle)                                       |
| G 3 | Strong   | Power systems: voltage corrections may be required, false<br>alarms triggered on some protection devices.<br>Spacecraft operations: surface charging may occur on<br>satellite components, drag may increase on low-Earth-orbit<br>satellites, and corrections may be needed for orientation<br>problems.<br>Other systems: intermittent satellite navigation and low-<br>frequency radio navigation problems may occur, HF radio<br>may be intermittent, and aurora has been seen as low as<br>Illinois and Oregon (typically 50° geomagnetic lat.)**.                                                                                                                                                                                                | Kp = 7                                       | 200 per cycle<br>(130 days per<br>cycle)                                   |
| G 2 | Moderate | <b>Power systems:</b> high-latitude power systems may<br>experience voltage alarms, long-duration storms may cause<br>transformer damage.<br><b>Spacecraft operations:</b> corrective actions to orientation<br>may be required by ground control; possible changes in drag<br>affect orbit predictions.<br><b>Other systems:</b> HF radio propagation can fade at higher<br>latitudes, and aurora has been seen as low as New York and<br>Idaho (typically 55° geomagnetic lat.)**.                                                                                                                                                                                                                                                                   | Kp = 6                                       | 600 per cycle<br>(360 days per<br>cycle)                                   |
| G 1 | Minor    | <b>Power systems:</b> weak power grid fluctuations can occur.<br><b>Spacecraft operations:</b> minor impact on satellite operations<br>possible.<br><b>Other systems:</b> migratory animals are affected at this and<br>higher levels; aurora is commonly visible at high latitudes<br>(northern Michigan and Maine)**.                                                                                                                                                                                                                                                                                                                                                                                                                                | Kp = 5                                       | 1700 per cycle<br>(900 days per<br>cycle)                                  |

### NOAA Space Weather Scale for Geomagnetic Storms

\* The K-index used to generate these messages are derived in real-time from the <u>Boulder NOAA Magnetometer</u>. The Boulder K-index, in most cases, approximates the Planetary Kp-index referenced in the NOAA Space Weather Scales. The Planetary Kp-index is not available in real-time. Infinite

\*\* For specific locations around the globe, use geomagnetic latitude to determine likely sightings

Apéndice 7. Escala de intensidad para las tormentas magnéticas

#### Apéndice 8. Función de autocorrelación

Mandelbrot en 1967 introdujo el término de fractales en función de la autosimilaridad estadística y para el año de 1968 Mandelbrot y Van Ness extienden este concepto a las series de tiempo.

Después de haber removido las componentes estacionales y las tendencias a la señal original, lo que queda son componentes estocásticas. Éstas tienen dos aspectos principales, sus valores de distribución estadística y su persistencia. La persistencia mide las correlaciones entre valores adyacentes en la serie de tiempo y puede ser fuerte, débil o no existente (ruido blanco). Los valores de una serie de tiempo puede afectar otros valores en la serie de tiempo que no solo están cerca en tiempo (corto alcance, short-range) pero también si están lejos en tiempo (long-range). Esencialmente, la función de autocorrelación estima la "fuerza" de la persistencia.



Señales a tratar con la función de autocorrelación

En muchos casos la persistencia (o antipersistencia) de una serie de tiempo puede ser cuantificada usando la función de autocorrelación (*R*). El gráfico de  $R(\tau)$  vs  $\tau$  se llama correlograma. Aunque la autocorrelación a un retraso (en inglés, *lag*), particular,  $\tau$ , se puede dar un vistazo dentro de los datos, uno generalmente está más interesado en la estructura general de  $R(\tau)$  tomada sobre un rango de *lags*. Grandes valores de  $R(\tau)$  indican una fuerte correlación entre esos puntos en la serie de tiempo que son separados por un *lag*  $\tau$ , pequeños valores de  $R(\tau)$  indican un correlación (un ruido blanco). Aquí, la persistencia puede ser definida como una secuencia de  $R(\tau)$  que tienen valores positivos. Si los

valores de  $R(\tau)$  son grandes, pero éstos caen rápidamente a  $R(\tau) = 0$ , tenemos un ejemplo de persistencia fuerte sobre un corto rango de valores, como es el caso se las series en estudio. Si los valores son pequeños (pero diferentes de cero) y continúan siendo pequeños para *lags* muy largos, entonces la persistencia es débil y de gran rango (Malamud y Turcotte, 1999a).



El análisis con la función de autocorrelación tiene como finalidad encontrar periodicidades en la señal (como el análisis de Fourier) y caracterizar el comportamiento de procesos estocásticos (eventos aleatorios con un campo restringido de acción), así como la caracterización de la correlación y la persistencia de la señal. El proceso fue realizado mediante un algoritmo en Matlab.

El correlograma muestra la estabilidad, o bien, la estacionariedad de la señal, además no se aprecian periodicidades a lo largo de la autocorrelación. El tiempo de retraso  $\tau$  empleado para el análisis fue de una muestra (2 minutos). Fueron consideradas 4 señales distintas por la ausencia de datos.

Los distintos exponentes espectrales asociados a cada serie de tiempo indican la existencia de distintos procesos, que se encuentran mezclados, caracterizados por correlaciones de distinto alcance. En general, se aprecia una correlación de corto alcance con una persistencia débil para un rango considerablemente largo de datos en ambas componentes.

### Apéndice 9. Análisis de Wavelets

Es común encontrar un gráfico de período o frecuencia *versus* tiempo como la representación del espectro de la transformada *wavelet*.



Transformada Wavelet para la señal sin tendencia y con µ=0 Componente NS



Además, en estos gráficos es recomendable delimitar el llamado *cono de influencia*, con el que se muestra, generalmente, el 95% de confianza en los datos debido al efecto de orilla en el espectro.

No se utilizó dicho cono de influencia, al realizar el producto con una ventana *Hanning* para reducir el efecto de orilla. Aún así, el efecto es perceptible y se le puede ignorar con facilidad. Se analizaron las componentes N-S y E-W de las señales tanto de la serie reconstruida como de la señal sin tendencia, esto para observar efectos de periodo largo en la señal reconstruida y ver efectos mejor definidos en la señal sin tendencia.

El algoritmo fue desarrollado en *Matlab* de acuerdo a Torrence y Compo (1998) y modificado para poder emplear una ondícula de *Morlet* (por simplificación en la relación escala – frecuencia de la ondícula), para que se obtuviera el resultado antes mostrado.



Ondícula de Morlet

Como trabajo futuro se propone realizar un análisis detallado con *wavelets*, cambiando las ondículas para tratar de visualizar otras posibles variaciones, siendo que desconoce la duración del fenómeno.

### Apéndice 10 Catálogo de sismos solicitados al SSN (Año 1993, acotado a 15.5°- 17.5° N y 98°- 102° W)

| DÍA | MES | AÑO  | HORAS | MINUTOS | SEGUNDOS | LATITUD | LONGITUD | PROFINDIDAD | MAGNITUD | ZONA DEL EPICENTRO    |
|-----|-----|------|-------|---------|----------|---------|----------|-------------|----------|-----------------------|
| 1   | ENE | 1993 | 19    | 13      | 36.7     | 16.17N  | 98.23W   | 20          | 4.3      | COSTA GUERRERO-OAXACA |
| 3   | ENE | 1993 | 0     | 56      | 55.7     | 17.16N  | 100.01W  | 33          | 3.7      | GUERRERO              |
| 4   | ENE | 1993 | 11    | 0       | 14.5     | 17.16N  | 101.14W  | 3           | 3.8      | COSTA DE GUERRERO     |
| 5   | ENE | 1993 | 0     | 36      | 3.7      | 17.25N  | 99.94W   | 39          | 3.2      | GUERRERO              |
| 5   | ENE | 1993 | 12    | 43      | 11.3     | 17.48N  | 101.37W  | 36          | 3.2      | COSTA DE GUERRERO     |
| 11  | ENE | 1993 | 9     | 50      | 17.2     | 17.18N  | 100.48W  | 47          | 4        | GUERRERO              |
| 17  | ENE | 1993 | 17    | 36      | 48       | 17.15N  | 101.74W  | 29          | 3.8      | COSTA DE GUERRERO     |
| 18  | ENE | 1993 | 5     | 24      | 24.7     | 17.15N  | 100.65W  | 60          | 3.9      | GUERRERO              |
| 19  | ENE | 1993 | 11    | 24      | 33       | 16.28N  | 99.56W   | 9           | 3.9      | COSTA DE GUERRERO     |
| 22  | ENE | 1993 | 6     | 37      | 54.7     | 16.57N  | 98.46W   | 73          | 4.4      | COSTA GUERRERO-OAXACA |
| 23  | ENE | 1993 | 0     | 51      | 41.2     | 15.86N  | 98.03W   | 14          | 3.9      | COSTA DE OAXACA       |
| 23  | ENE | 1993 | 9     | 31      | 36.9     | 17.14N  | 100.66W  | 25          | 4        | GUERRERO              |
| 26  | ENE | 1993 | 11    | 40      | 25.7     | 17.42N  | 101.26W  | 53          | 4.1      | COSTA DE GUERRERO     |
| 4   | FEB | 1993 | 19    | 53      | 1.2      | 16.15N  | 99.50W   | 14          | 4.3      | COSTA DE GUERRERO     |
| 5   | FEB | 1993 | 6     | 53      | 43.4     | 16.75N  | 98.36W   | 14          | 3.8      | COSTA GUERRERO-OAXACA |
| 7   | FEB | 1993 | 2     | 46      | 46.9     | 16.98N  | 99.92W   | 2           | 4        | COSTA DE GUERRERO     |
| 8   | FEB | 1993 | 3     | 13      | 34.4     | 16.88N  | 99.77W   | 54          | 4.3      | COSTA DE GUERRERO     |
| 13  | FEB | 1993 | 20    | 41      | 45       | 16.94N  | 101.22W  | 52          | 4.1      | COSTA DE GUERRERO     |
| 14  | FEB | 1993 | 6     | 6       | 29.7     | 16.17N  | 99.63W   | 11          | 4.3      | COSTA DE GUERRERO     |
| 14  | FEB | 1993 | 9     | 41      | 59.2     | 16.89N  | 100.54W  | 17          | 4.3      | COSTA DE GUERRERO     |
| 16  | FEB | 1993 | 15    | 23      | 45.5     | 17.37N  | 101.26W  | 20          | 4.2      | COSTA DE GUERRERO     |
| 22  | FEB | 1993 | 20    | 13      | 44.2     | 17.01N  | 99.22W   | 55          | 3.9      | GUERRERO              |
| 23  | FEB | 1993 | 3     | 38      | 6.5      | 16.51N  | 98.36W   | 59          | 3.8      | COSTA GUERRERO-OAXACA |
| 25  | FEB | 1993 | 17    | 6       | 1.2      | 17.37N  | 101.16W  | 90          | 4        | COSTA DE GUERRERO     |
| 10  | MAR | 1993 | 17    | 20      | 14.5     | 16.40N  | 99.81W   | 59          | 3.9      | COSTA DE GUERRERO     |
| 14  | MAR | 1993 | 10    | 12      | 41       | 16.08N  | 100.76W  | 61          | 4.2      | COSTA DE GUERRERO     |
| 15  | MAR | 1993 | 18    | 17      | 22.7     | 16.80N  | 99.59W   | 15          | 3.3      | COSTA DE GUERRERO     |
| 15  | MAR | 1993 | 18    | 30      | 48.7     | 16.61N  | 99.70W   | 35          | 3.1      | COSTA DE GUERRERO     |
| 16  | MAR | 1993 | 10    | 22      | 11.6     | 17.11N  | 101.01W  | 14          | 3.5      | COSTA DE GUERRERO     |
| 17  | MAR | 1993 | 19    | 26      | 31.5     | 16.22N  | 99.34W   | 5           | 3.4      | COSTA DE GUERRERO     |
| 18  | MAR | 1993 | 4     | 32      | 47       | 16.73N  | 100.54W  | 94          | 3.9      | COSTA DE GUERRERO     |
| 18  | MAR | 1993 | 18    | 51      | 8        | 17.36N  | 101.44W  | 34          | 4.7      | COSTA DE GUERRERO     |
| 20  | MAR | 1993 | 1     | 6       | 33.7     | 17.16N  | 99.54W   | 15          | 2.9      | GUERRERO              |
| 20  | MAR | 1993 | 9     | 4       | 34.5     | 16.73N  | 99.61W   | 14          | 3.4      | COSTA DE GUERRERO     |
| 24  | MAR | 1993 | 11    | 18      | 15.1     | 16.08N  | 98.84W   | 10          | 4.9      | COSTA GUERRERO-OAXACA |
| 25  | MAR | 1993 | 0     | 19      | 53.5     | 15.81N  | 98.97W   | 18          | 4.6      | COSTA DE OAXACA       |
| 26  | MAR | 1993 | 2     | 48      | 37.2     | 15.58N  | 98.95W   | 15          | 4.3      | COSTA DE OAXACA       |
| 31  | MAR | 1993 | 10    | 18      | 15.5     | 17.18N  | 101.02W  | 8           | 5.3      | COSTA DE GUERRERO     |
| 3   | ABR | 1993 | 3     | 50      | 19.3     | 16.51N  | 98.93W   | 43          | 3.8      | COSTA GUERRERO-OAXACA |
| 4   | ABR | 1993 | 9     | 19      | 29.3     | 16.90N  | 100.38W  | 5           | 3.7      | COSTA DE GUERRERO     |
| 5   | ABR | 1993 | 15    | 22      | 38.4     | 16.77N  | 99.69W   | 5           | 3.4      | COSTA DE GUERRERO     |
| 5   | ABR | 1993 | 22    | 17      | 12.8     | 16.70N  | 100.61W  | 16          | 3.7      | COSTA DE GUERRERO     |
| 6   | ABR | 1993 | 14    | 11      | 47.9     | 16.94N  | 100.53W  | 30          | 3.2      | COSTA DE GUERRERO     |
| 8   | ABR | 1993 | 8     | 33      | 24.2     | 16.87N  | 100.24W  | 27          | 3.8      | COSTA DE GUERRERO     |

| 9  | ABR | 1993 | 11 | 6  | 10.3 | 17.02N | 101.26W | 35 | 3.6 | COSTA DE GUERRERO     |
|----|-----|------|----|----|------|--------|---------|----|-----|-----------------------|
| 10 | ABR | 1993 | 6  | 56 | 39   | 16.85N | 99.02W  | 8  | 4.2 | COSTA DE GUERRERO     |
| 10 | ABR | 1993 | 21 | 49 | 3.7  | 16.49N | 100.06W | 5  | 4.1 | COSTA DE GUERRERO     |
| 13 | ABR | 1993 | 12 | 21 | 52   | 16.15N | 98.09W  | 45 | 4   | COSTA GUERRERO-OAXACA |
| 14 | ABR | 1993 | 4  | 31 | 36.2 | 17.04N | 99.46W  | 20 | 4.6 | GUERRERO              |
| 16 | ABR | 1993 | 11 | 13 | 39   | 16.63N | 100.04W | 13 | 3.9 | COSTA DE GUERRERO     |
| 17 | ABR | 1993 | 9  | 15 | 15.1 | 15.50N | 98.94W  | 59 | 4.2 | COSTA DE OAXACA       |
| 19 | ABR | 1993 | 17 | 2  | 14.8 | 17.11N | 101.38W | 49 | 4.1 | COSTA DE GUERRERO     |
| 19 | ABR | 1993 | 23 | 16 | 44.5 | 17.31N | 100.71W | 89 | 4.4 | GUERRERO              |
| 21 | ABR | 1993 | 1  | 7  | 24.2 | 15.98N | 99.98W  | 32 | 3.7 | COSTA DE GUERRERO     |
| 23 | ABR | 1993 | 15 | 51 | 10.1 | 17.34N | 100.68W | 79 | 3.7 | GUERRERO              |
| 26 | ABR | 1993 | 12 | 49 | 31   | 16.99N | 100.14W | 49 | 3.7 | COSTA DE GUERRERO     |
| 30 | ABR | 1993 | 22 | 5  | 58.2 | 17.31N | 100.32W | 19 | 4.7 | GUERRERO              |
| 30 | ABR | 1993 | 22 | 12 | 16.8 | 17.17N | 100.62W | 40 | 3.8 | GUERRERO              |
| 30 | ABR | 1993 | 22 | 50 | 11.8 | 17.26N | 100.32W | 43 | 4.1 | GUERRERO              |
| 5  | MAY | 1993 | 12 | 39 | 35.5 | 17.30N | 100.03W | 36 | 3.2 | GUERRERO              |
| 5  | MAY | 1993 | 21 | 42 | 9.8  | 16.26N | 99.78W  | 45 | 3.9 | COSTA DE GUERRERO     |
| 5  | MAY | 1993 | 23 | 8  | 11.1 | 17.33N | 100.77W | 81 | 4   | GUERRERO              |
| 13 | MAY | 1993 | 0  | 46 | 48.2 | 17.05N | 99.18W  | 87 | 4.2 | GUERRERO              |
| 15 | MAY | 1993 | 3  | 9  | 39.4 | 16.43N | 98.74W  | 20 | 5.8 | COSTA GUERRERO-OAXACA |
| 15 | MAY | 1993 | 3  | 11 | 56   | 16.47N | 98.72W  | 15 | 6   | COSTA GUERRERO-OAXACA |
| 15 | MAY | 1993 | 4  | 13 | 55.9 | 16.40N | 98.77W  | 6  | 4   | COSTA GUERRERO-OAXACA |
| 15 | MAY | 1993 | 7  | 3  | 52   | 16.19N | 98.69W  | 13 | 4   | COSTA GUERRERO-OAXACA |
| 15 | MAY | 1993 | 8  | 15 | 55.2 | 16.24N | 98.69W  | 20 | 3.9 | COSTA GUERRERO-OAXACA |
| 15 | MAY | 1993 | 8  | 26 | 32   | 16.54N | 98.65W  | 20 | 4.8 | COSTA GUERRERO-OAXACA |
| 15 | MAY | 1993 | 13 | 0  | 30.6 | 16.85N | 99.65W  | 31 | 3.7 | COSTA DE GUERRERO     |
| 17 | MAY | 1993 | 2  | 49 | 38.9 | 17.18N | 101.36W | 15 | 3.2 | COSTA DE GUERRERO     |
| 20 | MAY | 1993 | 1  | 50 | 9.3  | 17.10N | 100.26W | 55 | 4   | GUERRERO              |
| 20 | MAY | 1993 | 15 | 4  | 20.7 | 16.59N | 100.03W | 7  | 3.3 | COSTA DE GUERRERO     |
| 24 | MAY | 1993 | 9  | 10 | 12.8 | 16.93N | 99.92W  | 45 | 2.9 | COSTA DE GUERRERO     |
| 25 | MAY | 1993 | 6  | 23 | 48   | 16.80N | 98.75W  | 23 | 4.8 | COSTA GUERRERO-OAXACA |
| 26 | MAY | 1993 | 15 | 13 | 26.6 | 17.22N | 100.34W | 7  | 3.5 | GUERRERO              |
| 28 | MAY | 1993 | 15 | 41 | 2    | 17.43N | 99.96W  | 13 | 3.3 | GUERRERO              |
| 29 | MAY | 1993 | 1  | 37 | 49.2 | 17.45N | 101.35W | 42 | 3.6 | COSTA DE GUERRERO     |
| 1  | JUN | 1993 | 12 | 28 | 41.2 | 16.07N | 98.90W  | 27 | 4   | COSTA GUERRERO-OAXACA |
| 1  | JUN | 1993 | 15 | 20 | 17.7 | 16.06N | 98.96W  | 17 | 3.9 | COSTA GUERRERO-OAXACA |
| 2  | JUN | 1993 | 14 | 27 | 39.9 | 16.60N | 100.40W | 47 | 4.4 | COSTA DE GUERRERO     |
| 2  | JUN | 1993 | 20 | 28 | 58.7 | 16.13N | 98.87W  | 20 | 4.4 | COSTA GUERRERO-OAXACA |
| 3  | JUN | 1993 | 2  | 31 | 59.5 | 16.44N | 98.83W  | 10 | 4.2 | COSTA GUERRERO-OAXACA |
| 3  | JUN | 1993 | 10 | 7  | 35.2 | 17.17N | 101.23W | 34 | 4.2 | COSTA DE GUERRERO     |
| 3  | JUN | 1993 | 11 | 34 | 16.5 | 16.79N | 100.47W | 16 | 3.4 | COSTA DE GUERRERO     |
| 8  | JUN | 1993 | 3  | 35 | 30.1 | 16.85N | 98.54W  | 85 | 3.8 | COSTA GUERRERO-OAXACA |
| 8  | JUN | 1993 | 8  | 49 | 29   | 16.07N | 99.03W  | 15 | 4   | COSTA DE GUERRERO     |
| 9  | JUN | 1993 | 15 | 1  | 21.5 | 16.59N | 100.22W | 27 | 3.7 | COSTA DE GUERRERO     |
| 11 | JUN | 1993 | 18 | 30 | 11.5 | 15.89N | 98.76W  | 5  | 4.2 | COSTA DE OAXACA       |
| 12 | JUN | 1993 | 16 | 37 | 29.5 | 16.90N | 99.49W  | 31 | 3.9 | COSTA DE GUERRERO     |
| 12 | JUN | 1993 | 17 | 11 | 26.5 | 16.00N | 98.15W  | 33 | 3.9 | COSTA GUERRERO-OAXACA |
| 13 | JUN | 1993 | 19 | 50 | 4.9  | 17.12N | 100.97W | 38 | 3.6 | GUERRERO              |
| 14 | JUN | 1993 | 5  | 49 | 7.5  | 16.82N | 98.32W  | 54 | 3.7 | COSTA GUERRERO-OAXACA |

| 16 | JUN | 1993 | 14 | 43 | 11.8 | 17.08N | 101.08W | 38 | 3.8 | COSTA DE GUERRERO     |
|----|-----|------|----|----|------|--------|---------|----|-----|-----------------------|
| 18 | JUN | 1993 | 0  | 4  | 20.3 | 17.21N | 101.15W | 58 | 4   | COSTA DE GUERRERO     |
| 19 | JUN | 1993 | 4  | 21 | 52   | 16.83N | 100.43W | 22 | 3.2 | COSTA DE GUERRERO     |
| 21 | JUN | 1993 | 17 | 23 | 25.1 | 16.94N | 100.01W | 40 | 3.5 | COSTA DE GUERRERO     |
| 21 | JUN | 1993 | 23 | 11 | 9.1  | 16.22N | 98.14W  | 35 | 4.2 | COSTA GUERRERO-OAXACA |
| 24 | JUN | 1993 | 10 | 35 | 22.3 | 16.07N | 98.15W  | 5  | 4.1 | COSTA GUERRERO-OAXACA |
| 25 | JUN | 1993 | 19 | 23 | 43.4 | 16.89N | 101.18W | 16 | 3.9 | COSTA DE GUERRERO     |
| 26 | JUN | 1993 | 9  | 20 | 1.5  | 17.03N | 100.35W | 18 | 3.6 | GUERRERO              |
| 30 | JUN | 1993 | 19 | 11 | 46.9 | 17.09N | 100.38W | 50 | 3.8 | GUERRERO              |
| 1  | JUL | 1993 | 3  | 44 | 8.1  | 16.07N | 99.89W  | 20 | 3.8 | COSTA DE GUERRERO     |
| 3  | JUL | 1993 | 16 | 8  | 57.5 | 17.22N | 100.65W | 44 | 2.7 | GUERRERO              |
| 4  | JUL | 1993 | 1  | 10 | 19.2 | 17.41N | 99.63W  | 76 | 2.8 | GUERRERO              |
| 4  | JUL | 1993 | 15 | 42 | 51.2 | 16.78N | 100.23W | 12 | 2.8 | COSTA DE GUERRERO     |
| 6  | JUL | 1993 | 21 | 10 | 33.7 | 17.28N | 100.79W | 29 | 2.7 | GUERRERO              |
| 12 | JUL | 1993 | 5  | 8  | 54.7 | 16.97N | 100.39W | 15 | 3.9 | COSTA DE GUERRERO     |
| 12 | JUL | 1993 | 21 | 52 | 21.1 | 17.19N | 100.93W | 18 | 2.5 | GUERRERO              |
| 14 | JUL | 1993 | 5  | 8  | 56   | 16.83N | 101.69W | 79 | 3.3 | COSTA DE GUERRERO     |
| 14 | JUL | 1993 | 23 | 17 | 9.8  | 17.21N | 101.19W | 43 | 4.2 | COSTA DE GUERRERO     |
| 14 | JUL | 1993 | 23 | 19 | 2.2  | 17.18N | 101.26W | 8  | 4.6 | COSTA DE GUERRERO     |
| 15 | JUL | 1993 | 1  | 8  | 46.7 | 17.13N | 101.15W | 10 | 3.7 | COSTA DE GUERRERO     |
| 18 | JUL | 1993 | 6  | 4  | 42.2 | 17.11N | 101.05W | 35 | 4.1 | COSTA DE GUERRERO     |
| 22 | JUL | 1993 | 11 | 55 | 25.7 | 17.14N | 101.02W | 20 | 3.5 | COSTA DE GUERRERO     |
| 24 | JUL | 1993 | 6  | 6  | 23.2 | 16.65N | 100.19W | 6  | 3.7 | COSTA DE GUERRERO     |
| 25 | JUL | 1993 | 4  | 25 | 13.1 | 16.01N | 98.23W  | 14 | 4.5 | COSTA GUERRERO-OAXACA |
| 29 | JUL | 1993 | 20 | 17 | 1.5  | 17.38N | 100.65W | 43 | 5   | GUERRERO              |
| 30 | JUL | 1993 | 0  | 54 | 57.5 | 17.20N | 100.84W | 28 | 4.2 | GUERRERO              |
| 1  | AGO | 1993 | 3  | 49 | 38.7 | 17.21N | 100.84W | 56 | 3.9 | GUERRERO              |
| 1  | AGO | 1993 | 11 | 0  | 5.9  | 17.24N | 100.90W | 26 | 4.7 | GUERRERO              |
| 3  | AGO | 1993 | 12 | 51 | 25.6 | 16.70N | 99.76W  | 42 | 3.7 | COSTA DE GUERRERO     |
| 3  | AGO | 1993 | 13 | 50 | 2.2  | 16.19N | 100.18W | 30 | 3.9 | COSTA DE GUERRERO     |
| 4  | AGO | 1993 | 17 | 23 | 12.1 | 17.16N | 100.28W | 37 | 3.5 | GUERRERO              |
| 5  | AGO | 1993 | 1  | 20 | 48.2 | 17.08N | 98.53W  | 32 | 5.1 | GUERRERO-OAXACA       |
| 6  | AGO | 1993 | 13 | 59 | 8.3  | 16.27N | 98.86W  | 14 | 4.1 | COSTA GUERRERO-OAXACA |
| 6  | AGO | 1993 | 17 | 11 | 40.2 | 16.73N | 99.66W  | 16 | 3.7 | COSTA DE GUERRERO     |
| 6  | AGO | 1993 | 19 | 24 | 24.3 | 16.81N | 100.70W | 16 | 4.1 | COSTA DE GUERRERO     |
| 9  | AGO | 1993 | 23 | 53 | 44.2 | 16.29N | 98.81W  | 8  | 3.8 | COSTA GUERRERO-OAXACA |
| 10 | AGO | 1993 | 12 | 25 | 7.9  | 17.40N | 100.53W | 43 | 3.9 | GUERRERO              |
| 11 | AGO | 1993 | 23 | 48 | 30.6 | 16.57N | 99.88W  | 9  | 3.8 | COSTA DE GUERRERO     |
| 13 | AGO | 1993 | 6  | 56 | 3.7  | 17.33N | 100.56W | 31 | 3.9 | GUERRERO              |
| 13 | AGO | 1993 | 11 | 50 | 29.1 | 16.58N | 100.17W | 41 | 3.8 | COSTA DE GUERRERO     |
| 13 | AGO | 1993 | 13 | 2  | 25.8 | 16.81N | 99.67W  | 9  | 3.2 | COSTA DE GUERRERO     |
| 13 | AGO | 1993 | 18 | 12 | 32.9 | 16.46N | 99.62W  | 32 | 4.5 | COSTA DE GUERRERO     |
| 18 | AGO | 1993 | 0  | 4  | 23.2 | 15.98N | 99.82W  | 49 | 4.2 | COSTA DE GUERRERO     |
| 19 | AGO | 1993 | 22 | 28 | 31.3 | 16.30N | 100.29W | 19 | 4   | COSTA DE GUERRERO     |
| 25 | AGO | 1993 | 0  | 47 | 23.3 | 16.55N | 100.13W | 58 | 3.8 | COSTA DE GUERRERO     |
| 26 | AGO | 1993 | 11 | 59 | 48.2 | 17.50N | 100.99W | 27 | 4.9 | GUERRERO              |
| 27 | AGO | 1993 | 1  | 45 | 26.2 | 17.44N | 101.05W | 35 | 4.8 | COSTA DE GUERRERO     |
| 28 | AGO | 1993 | 4  | 15 | 37.7 | 17.32N | 100.83W | 26 | 3.5 | GUERRERO              |
| 1  | SEP | 1993 | 7  | 25 | 7.3  | 17.50N | 101.18W | 10 | 3.1 | COSTA DE GUERRERO     |

| 5  | SEP   | 1993 | 0  | 10 | 7.1  | 17.02N | 100.09W | 10  | 3.2 | GUERRERO              |
|----|-------|------|----|----|------|--------|---------|-----|-----|-----------------------|
| 5  | SEP   | 1993 | 16 | 54 | 48.7 | 16.92N | 100.14W | 10  | 3.2 | COSTA DE GUERRERO     |
| 10 | SEP   | 1993 | 10 | 50 | 23.7 | 16.57N | 98.94W  | 20  | 4.8 | COSTA GUERRERO-OAXACA |
| 11 | SEP   | 1993 | 13 | 54 | 28.8 | 17.03N | 99.82W  | 20  | 2.9 | GUERRERO              |
| 11 | SEP   | 1993 | 19 | 40 | 10.8 | 16.92N | 100.27W | 12  | 3   | COSTA DE GUERRERO     |
| 21 | SEP   | 1993 | 6  | 14 | 47.5 | 16.02N | 99.92W  | 21  | 4.1 | COSTA DE GUERRERO     |
| 23 | SEP   | 1993 | 1  | 21 | 47.2 | 16.92N | 100.60W | 20  | 3.6 | COSTA DE GUERRERO     |
| 27 | SEP   | 1993 | 6  | 6  | 2.5  | 15.90N | 100.33W | 74  | 4.9 | COSTA DE GUERRERO     |
| 27 | SEP   | 1993 | 6  | 37 | 57.2 | 16.42N | 100.47W | 48  | 4.6 | COSTA DE GUERRERO     |
| 27 | SEP   | 1993 | 7  | 31 | 22.5 | 16.32N | 99.92W  | 51  | 4.3 | COSTA DE GUERRERO     |
| 27 | SEP   | 1993 | 11 | 48 | 24.7 | 16.22N | 100.03W | 37  | 4.1 | COSTA DE GUERRERO     |
| 30 | SEP   | 1993 | 3  | 49 | 0.1  | 16.21N | 98.43W  | 22  | 4.1 | COSTA GUERRERO-OAXACA |
| 1  | ост   | 1993 | 6  | 7  | 29.7 | 16.19N | 99.19W  | 27  | 4.1 | COSTA DE GUERRERO     |
| 3  | ост   | 1993 | 5  | 54 | 56.2 | 16.94N | 99.98W  | 68  | 4.3 | COSTA DE GUERRERO     |
| 5  | ост   | 1993 | 10 | 35 | 46.9 | 16.77N | 100.00W | 12  | 4.1 | COSTA DE GUERRERO     |
| 9  | ОСТ   | 1993 | 4  | 39 | 6    | 16.16N | 99.48W  | 19  | 3.7 | COSTA DE GUERRERO     |
| 9  | ост   | 1993 | 22 | 5  | 49.5 | 16.81N | 98.54W  | 7   | 3.8 | COSTA GUERRERO-OAXACA |
| 14 | ОСТ   | 1993 | 13 | 46 | 8    | 16.87N | 99.76W  | 42  | 3.6 | COSTA DE GUERRERO     |
| 15 | ОСТ   | 1993 | 8  | 21 | 2.7  | 17.08N | 101.20W | 6   | 3.7 | COSTA DE GUERRERO     |
| 15 | ОСТ   | 1993 | 12 | 54 | 28.6 | 15.95N | 98.51W  | 15  | 4   | COSTA DE OAXACA       |
| 15 | ост   | 1993 | 18 | 41 | 48.2 | 16.72N | 99.65W  | 42  | 3.7 | COSTA DE GUERRERO     |
| 23 | ОСТ   | 1993 | 5  | 2  | 44.5 | 16.05N | 98.37W  | 11  | 4   | COSTA GUERRERO-OAXACA |
| 24 | ост   | 1993 | 7  | 52 | 18.2 | 16.54N | 98.98W  | 19  | 6.5 | COSTA GUERRERO-OAXACA |
| 24 | ОСТ   | 1993 | 8  | 21 | 42.2 | 16.59N | 99.29W  | 71  | 3.8 | COSTA DE GUERRERO     |
| 24 | ОСТ   | 1993 | 9  | 16 | 3.9  | 16.48N | 100.01W | 100 | 3.9 | COSTA DE GUERRERO     |
| 24 | ОСТ   | 1993 | 9  | 33 | 28.3 | 16.42N | 100.13W | 15  | 3.9 | COSTA DE GUERRERO     |
| 24 | ОСТ   | 1993 | 10 | 26 | 36.5 | 16.73N | 99.20W  | 50  | 4   | COSTA DE GUERRERO     |
| 24 | ОСТ   | 1993 | 11 | 9  | 23.3 | 16.30N | 99.35W  | 39  | 3.4 | COSTA DE GUERRERO     |
| 24 | OCT   | 1993 | 12 | 32 | 23.7 | 16.27N | 99.18W  | 13  | 3.9 | COSTA DE GUERRERO     |
| 24 | ОСТ   | 1993 | 13 | 27 | 57.5 | 16.36N | 99.26W  | 28  | 3.7 | COSTA DE GUERRERO     |
| 24 | OCT   | 1993 | 13 | 42 | 15.1 | 16.31N | 99.20W  | 10  | 4.2 | COSTA DE GUERRERO     |
| 24 | ОСТ   | 1993 | 14 | 36 | 36.5 | 16.87N | 100.03W | 80  | 3.8 | COSTA DE GUERRERO     |
| 25 | ОСТ   | 1993 | 15 | 46 | 57.4 | 16.46N | 99.28W  | 43  | 3.9 | COSTA DE GUERRERO     |
| 26 | ОСТ   | 1993 | 3  | 7  | 55   | 16.51N | 99.20W  | 23  | 4   | COSTA DE GUERRERO     |
| 26 | OCT   | 1993 | 7  | 1  | 58   | 16.18N | 99.32W  | 25  | 4.2 | COSTA DE GUERRERO     |
| 27 | OCT   | 1993 | 8  | 53 | 22.1 | 16.54N | 99.45W  | 25  | 4.1 | COSTA DE GUERRERO     |
| 27 | OCT   | 1993 | 9  | 4  | 33.7 | 16.50N | 99.54W  | 53  | 3.9 | COSTA DE GUERRERO     |
| 27 | OCT   | 1993 | 9  | 5  | 58.4 | 16.47N | 99.43W  | 24  | 4.2 | COSTA DE GUERRERO     |
| 27 | OCT   | 1993 | 9  | 11 | 20.2 | 16.46N | 99.66W  | 52  | 4.1 | COSTA DE GUERRERO     |
| 27 | OCT   | 1993 | 9  | 41 | 1    | 16.45N | 99.53W  | 46  | 3.9 | COSTA DE GUERRERO     |
| 28 | OCT   | 1993 | 6  | 46 | 27   | 17.17N | 100.47W | 13  | 3.2 | GUERRERO              |
| 29 |       | 1993 | 7  | 6  | 8.3  | 17.39N | 101.14W | 15  | 4.2 |                       |
| 30 |       | 1993 | 1  | 11 | 41.5 | 16.33N | 98.57W  | 39  | 4   | COSTA GUERRERO-OAXACA |
| 30 |       | 1993 | 16 | 43 | 47.2 | 16.60N | 99.09W  | 21  | 4   |                       |
| 31 |       | 1993 | 14 |    | 18.7 | 16.39N | 99.14W  | 10  | 3.5 |                       |
| 4  |       | 1993 | 15 | 11 | 29.8 | 16.67N | 99.15W  | 46  | 3.8 |                       |
| 5  | NOV   | 1993 | 1  | 51 | 26.5 | 16.29N | 99.06W  | 15  | 4.2 |                       |
| 6  | NOV   | 1993 | 1  | 45 | 18.7 | 16.40N | 98.93W  | 5   | 4.9 | UUSTA GUERRERO-OAXACA |
| 10 | I NOV | 1993 | 10 | 55 | 29.6 | 17.03N | 100.02W | 51  | 3.8 | GUERRERO              |

| 13         NOV         1983         0         16         44.5         15.59N         99.02W         15         5.8         COSTA DE GARCA           13         NOV         1993         2         21         20.2         15.59N         98.74W         17         4.2         COSTA DE GARCA           13         NOV         1993         6         55         30         15.68N         98.99W         14         4.3         COSTA DE GARCA           14         NOV         1993         2         15         39         15.78N         88.91W         15         4.4         COSTA DE GARCA           14         NOV         1993         2         15         13.3         15.78N         88.91W         15         4.2         COSTA DE GARCA           15         NOV         1993         2         15         13.3         15.78N         89.30W         34         4.4         COSTA DE GARCA           16         NOV         1993         10         54         10.8         17.28N         10.13W         32         33         COSTA DE GARCA           17         NOV         1993         13         48         54         10.29N         19         33                                                                                                                                                                              | 12 | NOV | 1993 | 14 | 2  | 22.2 | 16.89N | 100.09W | 13 | 3.5 | COSTA DE GUERRERO     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|----|----|------|--------|---------|----|-----|-----------------------|
| 13         NOV         193         2         21         202         15.59N         98.74W         17         4.2         COSTA DE OAXACA           13         NOV         193         5         51         11         3.7         15.68N         98.94W         14         4.3         COSTA DE OAXACA           14         NOV         193         3         19         36.9         15.52N         99.00W         20         4.4         COSTA DE OAXACA           14         NOV         193         23         22         54.9         16.44N         99.92W         34         4.4         COSTA DE GUERRERO           15         NOV         193         16         54         8.15.2N         99.32W         34         4.4         COSTA DE GUERRERO           15         NOV         193         16         54         8.17.27N         10.01.4W         30         COSTA DE GUERRERO           18         NOV         193         13         48         42.9         16.83N         94.9W         15         3.2         COSTA DE GUERRERO           22         NOV         193         13         48         42.9         16.83N         94.0W         13         COSTA DE GUERRE                                                                                                                                                           | 13 | NOV | 1993 | 0  | 16 | 44.5 | 15.63N | 99.02W  | 15 | 5.8 | COSTA DE GUERRERO     |
| 13         NOV         193         5         11         3.7         15.88N         98.91W         23         4.6         COSTA DE CAXACA           13         NOV         1993         8         55         30         15.66N         98.90W         14         4.3         COSTA DE CAXACA           14         NOV         1993         20         15         39         15.62N         99.00W         20         4.4         COSTA DE GUERRERO           15         NOV         1993         2         15         13.3         15.73N         99.32W         34         4.4         COSTA DE GUERRERO           15         NOV         1993         2         22         53.4         15.57N         99.2W         35         4.6         COSTA DE GUERRERO           18         NOV         1993         1         54         8         17.2N         100.4W         30         4.1         GUERRERO           18         NOV         1993         13         48         59         16.83N         19.4W         15         3.2         COSTA DE GUERRERO           21         NOV         1993         13         48         42.9         16.85N         100.1W         15 <td>13</td> <td>NOV</td> <td>1993</td> <td>2</td> <td>21</td> <td>20.2</td> <td>15.59N</td> <td>98.74W</td> <td>17</td> <td>4.2</td> <td>COSTA DE OAXACA</td>          | 13 | NOV | 1993 | 2  | 21 | 20.2 | 15.59N | 98.74W  | 17 | 4.2 | COSTA DE OAXACA       |
| 13         NOV         1933         8         55         30         15.62N         98.09W         14         4.3         COSTA DE OLXACA           14         NOV         1993         20         15         39         15.7N         98.8HW         15         4.4         COSTA DE OLXACA           14         NOV         1993         23         32         54.9         16.44N         99.88W         10         3.9         COSTA DE OLKACA           15         NOV         1993         2         22         15.4         15.8N         99.89W         30         4.4         COSTA DE OLKACA           15         NOV         1993         1.6         54         8         17.27N         100.41W         30         4.1         GUERRERO           18         NOV         1993         13         45         4         10.8         17.27N         100.41W         30         4.1         GUERRERO           22         NOV         1993         13         45         4         19         3.3         COSTA DE OLXACA           19         NOV         1993         14         4.2         16.83N         10.18W         13.3         COSTA DE OLERRERO                                                                                                                                                                                   | 13 | NOV | 1993 | 5  | 11 | 3.7  | 15.88N | 98.91W  | 23 | 4.6 | COSTA DE OAXACA       |
| 14         NOV         1933         3         19         36.9         15.62N         99.00W         20         4.4         COSTA DE GUERRERO           14         NOV         1993         23         32         54.9         16.44M         99.98W         10         3.0         COSTA DE GUERRERO           15         NOV         1993         2         15         13.3         15.73N         99.32W         34         4.4         COSTA DE GUERRERO           15         NOV         1993         16         54         8         17.27N         100.41W         30         4.1         GUERRERO           18         NOV         1993         13         15         3         16.62N         99.99W         16         4.4         COSTA DE GUERRERO           22         NOV         1993         13         45         59         16.83N         99.46W         15         3.2         COSTA DE GUERRERO           22         NOV         1993         13         44         4.29         16.85N         100.18W         15         3.2         COSTA DE GUERRERO           21         NOV         1993         16         4.2         13.8         16.5M         100.12W                                                                                                                                                                   | 13 | NOV | 1993 | 8  | 55 | 30   | 15.69N | 98.99W  | 14 | 4.3 | COSTA DE OAXACA       |
| 14         NOV         193         20         15         39         15.75N         98.81W         15         4.2         COSTA DE GURRERO           14         NOV         1983         2         15         13.3         15.73N         99.32W         34         4.4         COSTA DE GURRERO           15         NOV         1983         2         22         53.4         15.86N         98.99W         35         4.6         COSTA DE GURRERO           18         NOV         1983         4         54         10.8         17.27N         100.41W         30         4.1         GURRERO           18         NOV         1983         13         15         3         16.22N         88.99W         16         4.4         COSTA GURRERO         ASCA           19         NOV         1983         13         48         42.9         16.83N         99.45W         19         3.3         COSTA DE GURRERO           22         NOV         1983         13         4.8         42.9         16.84N         10.18W         15         3.3         COSTA DE GURRERO           22         NOV         1983         16         4.1         19.712N         10.02W <t< td=""><td>14</td><td>NOV</td><td>1993</td><td>3</td><td>19</td><td>36.9</td><td>15.62N</td><td>99.00W</td><td>20</td><td>4.4</td><td>COSTA DE GUERRERO</td></t<>      | 14 | NOV | 1993 | 3  | 19 | 36.9 | 15.62N | 99.00W  | 20 | 4.4 | COSTA DE GUERRERO     |
| 14         NOV         1933         23         32         54.9         16.44N         99.88W         10         3.9         COSTA DE GUERRERO           15         NOV         1933         2         15         13.3         15.7N         99.32W         34         4.4         4.4         COSTA DE GUARACO           15         NOV         1933         16         54         8         17.27N         100.41W         30         4.1         GUERRERO           18         NOV         1933         15         3         16.02N         98.99W         16         4.4         COSTA DE GUERRERO           18         NOV         1933         13         48         42.9         16.85N         99.49W         19         3.3         COSTA DE GUERRERO           22         NOV         1933         17         40         50         17.12N         100.86W         8         3.8         GUERRERO           21         NOV         1933         16         42         15.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           23         NOV         1933         17         17         25.5         15.94N         99.39W         3                                                                                                                                                                    | 14 | NOV | 1993 | 20 | 15 | 39   | 15.75N | 98.81W  | 15 | 4.2 | COSTA DE OAXACA       |
| 15         NOV         1932         2         15         13.3         15.73N         99.32W         34         4.4         COSTA DE GUERRERO           15         NOV         1933         2         22         53.4         15.8NN         98.99W         35         4.6         COSTA DE GUERRERO           18         NOV         1993         4         54         10.8         17.50N         100.4W         30         4.1         SUERRERO           18         NOV         1993         4         54         10.8         17.50N         100.4W         32         3.3         COSTA DE GUERRERO           28         NOV         1993         13         48         42.9         16.83N         100.18W         15         3.2         COSTA DE GUERRERO           22         NOV         1993         0         2.4         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           23         NOV         1993         6         42         13.8         16.56N         100.12W         7         3.3         COSTA DE GUERRERO           29         NOV         1993         6         20         6.5         16.84N         99.39W                                                                                                                                                                  | 14 | NOV | 1993 | 23 | 32 | 54.9 | 16.44N | 99.88W  | 10 | 3.9 | COSTA DE GUERRERO     |
| 15         NOV         1933         2         22         53.4         15.8NN         98.99W         35         4.6         COSTA DE QUARGA           15         NOV         1983         16         54         8         17.27N         100.41W         30         4.1         GUERRERO           18         NOV         1983         13         15         3         16.02N         98.99W         16         4.4         COSTA DE GUERRERO           18         NOV         1983         13         48         42.9         16.85N         100.18W         15         3.2         COSTA DE GUERRERO           22         NOV         1983         17         40         50         17.12N         100.88W         8         3.8         GUERRERO           22         NOV         1983         0         2.4         51.5         16.58N         19.16W         43         4.2         COSTA DE GUERRERO           28         NOV         1983         6         20         6.5         16.84N         99.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1983         17         17         2.55.7         15.15N         99.16W         4                                                                                                                                                                    | 15 | NOV | 1993 | 2  | 15 | 13.3 | 15.73N | 99.32W  | 34 | 4.4 | COSTA DE GUERRERO     |
| 15         NOV         1993         16         54         8         17.27N         100.41W         30         4.1         GUERRERO           18         NOV         1993         13         15         3         100.7X         3.3         COSTA DE GUERRERO           19         NOV         1993         13         48         59         16.83N         99.45W         19         3.3         COSTA DE GUERRERO           22         NOV         1993         17         40         50         17.12N         100.86W         8         3.8         GUERRERO           22         NOV         1993         0         24         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         16         42         13.8         16.56N         99.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         16         42         13.8         16.56N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         20         53.7         16.15N         99.39W         5         4.1         COSTA                                                                                                                                                                     | 15 | NOV | 1993 | 2  | 22 | 53.4 | 15.86N | 98.99W  | 35 | 4.6 | COSTA DE OAXACA       |
| 18         NOV         1993         4         54         10.8         17.50N         101.13W         32         3.3         COSTA DE GUERRERO           18         NOV         1993         19         48         59         168.3N         99.45W         19         3.3         COSTA DE GUERRERO           22         NOV         1993         17         40         50         17.12N         100.86W         8         3.8         GUERRERO           22         NOV         1993         0         24         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         0         24         51.5         16.68N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         17         17         25.5         15.98N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.98N         99.16W         10         4.7         COSTA DE GUERRERO           29         NOV         1993         17         28         25.2         15.85N         98.96W                                                                                                                                                                  | 15 | NOV | 1993 | 16 | 54 | 8    | 17.27N | 100.41W | 30 | 4.1 | GUERRERO              |
| 18         NOV         193         13         15         3         16.02N         98.39W         16         4.4         COSTA GUERRERO-OAXACA           19         NOV         1993         13         48         42.9         16.88N         190.18W         15         3.2         COSTA DE GUERRERO           22         NOV         1993         13         48         42.9         16.88N         100.18W         15         3.2         COSTA DE GUERRERO           22         NOV         1993         16         42         17.1N         100.66W         8         3.8         GUERRERO           23         NOV         1993         6         42         15.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         6         42         6.5         18.81N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.98N         99.39W         5         4.1         COSTA DE GUERRERO           29         NOV         1993         12         46         14.8         15.82N         98.39W         5                                                                                                                                                                  | 18 | NOV | 1993 | 4  | 54 | 10.8 | 17.50N | 101.13W | 32 | 3.3 | COSTA DE GUERRERO     |
| 19         NOV         193         13         48         59         16.83N         19.45W         19         3.3         COSTA DE GUERRERO           22         NOV         1993         13         48         42.9         16.88N         100.18W         15         3.2         COSTA DE GUERRERO           22         NOV         1993         17         40         50         17.12N         100.86W         8         3.8         GUERRERO           23         NOV         1993         0         24         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         16         42         13.8         16.66N         99.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         16         42         13.8         16.66N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         20         53.7         16.15N         99.39W         5         4.1         COSTA DE GUERRERO           1         DIC         1993         17         28         25.5         15.66N         99.39W                                                                                                                                                                   | 18 | NOV | 1993 | 13 | 15 | 3    | 16.02N | 98.99W  | 16 | 4.4 | COSTA GUERRERO-OAXACA |
| 122         NOV         1993         13         48         42.9         16.85N         100.18W         15         3.2         COSTA DE GUERRERO           22         NOV         1993         17         40         50         17.12N         100.86W         8         3.8         GUERRERO           22         NOV         1993         23         39         58         16.71N         99.73W         8         3.3         COSTA DE GUERRERO           23         NOV         1993         16         42         13.8         16.56N         99.16W         43         4.2         COSTA DE GUERRERO           28         NOV         1993         16         42         13.8         16.56N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.86N         99.39W         5         4.1         COSTA DE GUERRERO           1901         1993         17         28         25.2         15.86N         99.89W         5         4.4         COSTA DE GUERRERO           4         DIC         1993         1         2.4         5.5         16.66N         99.39W         5                                                                                                                                                                   | 19 | NOV | 1993 | 19 | 48 | 59   | 16.83N | 99.45W  | 19 | 3.3 | COSTA DE GUERRERO     |
| 122         NOV         1993         17         40         50         17.12N         100.80W         8         3.8         GUERRERO           22         NOV         1993         0         24         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           23         NOV         1993         16         42         13.8         16.56N         9.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         16         42         13.8         16.56N         9.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.98N         99.09W         5         4.1         COSTA DE GUERRERO           29         NOV         1993         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           1         DIC         1993         17         28         25.2         15.86N         99.89W         5         4.4         COSTA DE GUERRERO           4         DIC         1993         0         3         55.5         16.65N         99.99W                                                                                                                                                                      | 22 | NOV | 1993 | 13 | 48 | 42.9 | 16.85N | 100.18W | 15 | 3.2 | COSTA DE GUERRERO     |
| 22         NOV         1993         23         39         58         16.71N         99.73W         8         3.3         COSTA DE GUERRERO           23         NOV         1993         0         24         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         16         42         13.8         16.66N         99.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.98N         99.09W         5         4.1         COSTA DE GUERRERO           29         NOV         1993         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           1         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE GUERRERO           4         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.88N         100.09W </td <td>22</td> <td>NOV</td> <td>1993</td> <td>17</td> <td>40</td> <td>50</td> <td>17.12N</td> <td>100.86W</td> <td>8</td> <td>3.8</td> <td>GUERRERO</td>  | 22 | NOV | 1993 | 17 | 40 | 50   | 17.12N | 100.86W | 8  | 3.8 | GUERRERO              |
| 23         NOV         1993         0         24         51.5         16.63N         100.12W         7         3.3         COSTA DE GUERRERO           28         NOV         1993         16         42         13.8         16.56N         99.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.98N         99.99W         5         4.1         COSTA DE GUERRERO           19         NOV         1993         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           1         DIC         1993         17         20         53.7         16.15N         99.96W         7         3.7         COSTA DE GUERRERO           4         DIC         1993         17         28         25.2         15.85N         99.96W         7         3.7         COSTA DE GUERRERO           6         DIC         1993         0         3         55.5         16.65N         99.993W         5         4         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.98N         100.33W <td>22</td> <td>NOV</td> <td>1993</td> <td>23</td> <td>39</td> <td>58</td> <td>16.71N</td> <td>99.73W</td> <td>8</td> <td>3.3</td> <td>COSTA DE GUERRERO</td> | 22 | NOV | 1993 | 23 | 39 | 58   | 16.71N | 99.73W  | 8  | 3.3 | COSTA DE GUERRERO     |
| 28         NOV         1993         16         42         13.8         16.56N         99.16W         43         4.2         COSTA DE GUERRERO           29         NOV         1993         6         20         6.5         16.84N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         17         26.5         15.98N         99.09W         5         4.1         COSTA DE GUERRERO           29         NOV         1993         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           4         DIC         1993         12         46         14.8         15.5cN         98.96W         7         3.7         COSTA DE OAXACA           4         DIC         1993         17         28         25.5         16.65N         99.39W         5         4         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.88N         100.03W         14         3.2         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W                                                                                                                                                                 | 23 | NOV | 1993 | 0  | 24 | 51.5 | 16.63N | 100.12W | 7  | 3.3 | COSTA DE GUERRERO     |
| 29         NOV         1993         6         20         6.5         16.84N         99.39W         32         3.8         COSTA DE GUERRERO           29         NOV         1993         17         17         25.5         15.38N         99.09W         5         4.1         COSTA DE GUERRERO           1         DIC         1993         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           4         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE GUERRERO           6         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE GUERRERO           6         DIC         1993         0         3         55.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.68N         100.09W         14         2.9         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W                                                                                                                                                                    | 28 | NOV | 1993 | 16 | 42 | 13.8 | 16.56N | 99.16W  | 43 | 4.2 | COSTA DE GUERRERO     |
| 29         NOV         193         17         17         25.5         15.98N         99.09W         5         4.1         COSTA DE GUERRERO           29         NOV         1993         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           1         DIC         1993         12         46         14.8         15.62N         98.89W         5         4.4         COSTA DE GUERRERO           4         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE GUERRERO           6         DIC         1993         21         32         45         17.30N         101.28W         15         3         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.68N         99.39W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         4         48         1.3         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W                                                                                                                                                                   | 29 | NOV | 1993 | 6  | 20 | 6.5  | 16.84N | 99.39W  | 32 | 3.8 | COSTA DE GUERRERO     |
| 29         NOV         193         17         20         53.7         16.15N         99.16W         10         4.7         COSTA DE GUERRERO           1         DIC         1993         12         46         14.8         15.62N         98.89W         5         4.4         COSTA DE OAXACA           4         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE OAXACA           4         DIC         1993         17         28         25.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         0         3         55.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.88N         100.03W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         4         48         1.3         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W                                                                                                                                                                             | 29 | NOV | 1993 | 17 | 17 | 25.5 | 15.98N | 99.09W  | 5  | 4.1 | COSTA DE GUERRERO     |
| 1         DIC         193         12         46         14.8         15.62N         98.89W         5         4.4         COSTA DE OAXACA           4         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE OAXACA           4         DIC         1993         21         32         45         17.30N         101.28W         15         3         COSTA DE GUERRERO           6         DIC         1993         0         3         55.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.88N         100.09W         14         2.9         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.60W         14                                                                                                                                                                    | 29 | NOV | 1993 | 17 | 20 | 53.7 | 16.15N | 99.16W  | 10 | 4.7 | COSTA DE GUERRERO     |
| 4         DIC         1993         17         28         25.2         15.85N         98.96W         7         3.7         COSTA DE OAXACA           4         DIC         1993         21         32         45         17.30N         101.28W         15         3         COSTA DE GUERRERO           6         DIC         1993         0         3         55.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.88N         100.09W         14         2.9         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.98N         99.99W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         12         45         14.5         16.67N         100.16W                                                                                                                                                                         | 1  | DIC | 1993 | 12 | 46 | 14.8 | 15.62N | 98.89W  | 5  | 4.4 | COSTA DE OAXACA       |
| 4         DIC         1993         21         32         45         17.30N         101.28W         15         3         COSTA DE GUERRERO           6         DIC         1993         0         3         55.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.65N         99.93W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.98N         99.99W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         4         48         1.3         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         34         4.2         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.66N         100.16W                                                                                                                                                                         | 4  | DIC | 1993 | 17 | 28 | 25.2 | 15.85N | 98.96W  | 7  | 3.7 | COSTA DE OAXACA       |
| 6         DIC         1993         0         3         55.5         16.65N         99.93W         5         4         COSTA DE GUERRERO           6         DIC         1993         0         20         26.1         16.88N         100.09W         14         2.9         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.98N         99.99W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         4         48         1.3         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W                                                                                                                                                                      | 4  | DIC | 1993 | 21 | 32 | 45   | 17.30N | 101.28W | 15 | 3   | COSTA DE GUERRERO     |
| 6         DIC         1993         0         20         26.1         16.88N         100.09W         14         2.9         COSTA DE GUERRERO           6         DIC         1993         4         6         47.7         16.98N         99.99W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         4         48         1.3         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           13         DIC         1993         12         45         14.55         15.64N         99.07W <td>6</td> <td>DIC</td> <td>1993</td> <td>0</td> <td>3</td> <td>55.5</td> <td>16.65N</td> <td>99.93W</td> <td>5</td> <td>4</td> <td>COSTA DE GUERRERO</td>   | 6  | DIC | 1993 | 0  | 3  | 55.5 | 16.65N | 99.93W  | 5  | 4   | COSTA DE GUERRERO     |
| 6         DIC         1993         4         6         47.7         16.98N         99.99W         26         2.6         COSTA DE GUERRERO           6         DIC         1993         4         48         1.3         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           13         DIC         1993         12         47         3.5         15.64N         99.7W                                                                                                                                                                  | 6  | DIC | 1993 | 0  | 20 | 26.1 | 16.88N | 100.09W | 14 | 2.9 | COSTA DE GUERRERO     |
| 6         DIC         1993         4         48         1.3         16.93N         100.33W         4         3.2         COSTA DE GUERRERO           6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           13         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W                                                                                                                                                                       | 6  | DIC | 1993 | 4  | 6  | 47.7 | 16.98N | 99.99W  | 26 | 2.6 | COSTA DE GUERRERO     |
| 6         DIC         1993         17         6         40.2         16.92N         99.91W         7         2.8         COSTA DE GUERRERO           6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           8         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE QUERRERO           13         DIC         1993         3         28         21.5         15.70N         98.90W                                                                                                                                                                         | 6  | DIC | 1993 | 4  | 48 | 1.3  | 16.93N | 100.33W | 4  | 3.2 | COSTA DE GUERRERO     |
| 6         DIC         1993         17         24         27.5         16.25N         99.60W         14         4.5         COSTA DE GUERRERO           6         DIC         1993         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           8         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE GUERRERO           14         DIC         1993         3         28         21.5         15.70N         98.90W                                                                                                                                                                        | 6  | DIC | 1993 | 17 | 6  | 40.2 | 16.92N | 99.91W  | 7  | 2.8 | COSTA DE GUERRERO     |
| 6         DIC         193         17         47         46.7         16.30N         99.64W         33         4.1         COSTA DE GUERRERO           8         DIC         1993         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           8         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE OAXACA           14         DIC         1993         3         28         21.5         15.70N         98.90W         11         4.3         COSTA DE OAXACA           18         DIC         1993         19         57         58.2         17.32N         101.34W <t< td=""><td>6</td><td>DIC</td><td>1993</td><td>17</td><td>24</td><td>27.5</td><td>16.25N</td><td>99.60W</td><td>14</td><td>4.5</td><td>COSTA DE GUERRERO</td></t<>      | 6  | DIC | 1993 | 17 | 24 | 27.5 | 16.25N | 99.60W  | 14 | 4.5 | COSTA DE GUERRERO     |
| 8         DIC         193         11         24         9.3         16.46N         100.10W         4         4.2         COSTA DE GUERRERO           8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           8         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE OAXACA           14         DIC         1993         3         28         21.5         15.70N         98.90W         11         4.3         COSTA DE OAXACA           18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           21         DIC         1993         10         1         14.6         16.61N         99.870W         <                                                                                                                                                                | 6  | DIC | 1993 | 17 | 47 | 46.7 | 16.30N | 99.64W  | 33 | 4.1 | COSTA DE GUERRERO     |
| 8         DIC         1993         12         45         14.5         16.67N         100.16W         36         3.5         COSTA DE GUERRERO           8         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE OAXACA           14         DIC         1993         3         28         21.5         15.70N         98.90W         11         4.3         COSTA DE GUERRERO           18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           21         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           23         DIC         1993         13         48         28.8         16.00N         98.70W                                                                                                                                                                      | 8  | DIC | 1993 | 11 | 24 | 9.3  | 16.46N | 100.10W | 4  | 4.2 | COSTA DE GUERRERO     |
| 8         DIC         1993         15         34         57.5         17.02N         99.95W         34         4.5         GUERRERO           13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE OAXACA           14         DIC         1993         3         28         21.5         15.70N         98.90W         11         4.3         COSTA DE OAXACA           18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           19         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           21         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         10         1         14.6         16.61N         99.82W <t< td=""><td>8</td><td>DIC</td><td>1993</td><td>12</td><td>45</td><td>14.5</td><td>16.67N</td><td>100.16W</td><td>36</td><td>3.5</td><td>COSTA DE GUERRERO</td></t<>     | 8  | DIC | 1993 | 12 | 45 | 14.5 | 16.67N | 100.16W | 36 | 3.5 | COSTA DE GUERRERO     |
| 13         DIC         1993         22         47         3.5         15.64N         99.07W         5         4         COSTA DE GUERRERO           13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE OAXACA           14         DIC         1993         3         28         21.5         15.70N         98.90W         11         4.3         COSTA DE OAXACA           18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           19         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           21         DIC         1993         13         48         28.8         16.00N         98.70W         16         4.9         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W </td <td>8</td> <td>DIC</td> <td>1993</td> <td>15</td> <td>34</td> <td>57.5</td> <td>17.02N</td> <td>99.95W</td> <td>34</td> <td>4.5</td> <td>GUERRERO</td> | 8  | DIC | 1993 | 15 | 34 | 57.5 | 17.02N | 99.95W  | 34 | 4.5 | GUERRERO              |
| 13         DIC         1993         23         4         12.3         15.76N         98.86W         5         4.1         COSTA DE OAXACA           14         DIC         1993         3         28         21.5         15.76N         98.90W         11         4.3         COSTA DE OAXACA           18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           19         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           21         DIC         1993         13         48         28.8         16.00N         98.70W         16         4.9         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           26         DIC         1993         3         12         45.5         16.51N         99.55                                                                                                                                                           | 13 | DIC | 1993 | 22 | 47 | 3.5  | 15.64N | 99.07W  | 5  | 4   | COSTA DE GUERRERO     |
| 14         DIC         1993         3         28         21.5         15.70N         98.90W         11         4.3         COSTA DE OAXACA           18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           19         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           21         DIC         1993         13         48         28.8         16.00N         98.70W         16         4.9         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           24         DIC         1993         3         12         45.5         16.51N         99.55W         15         3.5         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N         10                                                                                                                                                           | 13 | DIC | 1993 | 23 | 4  | 12.3 | 15.76N | 98.86W  | 5  | 4.1 | COSTA DE OAXACA       |
| 18         DIC         1993         19         57         58.2         17.32N         101.34W         20         4.4         COSTA DE GUERRERO           19         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           21         DIC         1993         13         48         28.8         16.00N         98.70W         16         4.9         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           26         DIC         1993         3         12         45.5         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N                                                                                                                                                                    | 14 | DIC | 1993 | 3  | 28 | 21.5 | 15.70N | 98.90W  | 11 | 4.3 | COSTA DE OAXACA       |
| 19         DIC         1993         0         6         41.9         16.86N         100.74W         57         4.2         COSTA DE GUERRERO           21         DIC         1993         13         48         28.8         16.00N         98.70W         16         4.9         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           26         DIC         1993         3         12         45.5         16.51N         99.55W         15         3.5         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           30         DIC         1993         1         21         36         16.84N         99.1                                                                                                                                                           | 18 | DIC | 1993 | 19 | 57 | 58.2 | 17.32N | 101.34W | 20 | 4.4 | COSTA DE GUERRERO     |
| 21         DIC         1993         13         48         28.8         16.00N         98.70W         16         4.9         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.870W         5         3.6         COSTA GUERRERO-OAXACA           23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           26         DIC         1993         3         12         45.5         16.51N         99.55W         15         3.5         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           30         DIC         1993         1         21         36         16.84N         99.15W         20         4.5         COSTA DE GUERRERO           30         DIC         1993         2         23         6.4         16.57N                                                                                                                                                                    | 19 | DIC | 1993 | 0  | 6  | 41.9 | 16.86N | 100.74W | 57 | 4.2 | COSTA DE GUERRERO     |
| 23         DIC         1993         10         1         14.6         16.61N         99.82W         5         3.6         COSTA DE GUERRERO           23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           26         DIC         1993         3         12         45.5         16.51N         99.55W         15         3.5         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           30         DIC         1993         1         21         36         16.84N         99.15W         20         4.5         COSTA DE GUERRERO           30         DIC         1993         2         23         6.4         16.57N         99.41W         11         4.3         COSTA DE GUERRERO                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 | DIC | 1993 | 13 | 48 | 28.8 | 16.00N | 98.70W  | 16 | 4.9 | COSTA GUERRERO-OAXACA |
| 23         DIC         1993         18         8         45.2         16.49N         99.34W         16         3.3         COSTA DE GUERRERO           26         DIC         1993         3         12         45.5         16.51N         99.55W         15         3.5         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           30         DIC         1993         1         21         36         16.84N         99.15W         20         4.5         COSTA DE GUERRERO           30         DIC         1993         2         23         6.4         16.57N         99.41W         11         4.3         COSTA DE GUERRERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23 | DIC | 1993 | 10 | 1  | 14.6 | 16.61N | 99.82W  | 5  | 3.6 | COSTA DE GUERRERO     |
| 26         DIC         1993         3         12         45.5         16.51N         99.55W         15         3.5         COSTA DE GUERRERO           28         DIC         1993         7         45         38.7         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           30         DIC         1993         1         21         36         16.84N         99.15W         20         4.5         COSTA DE GUERRERO           30         DIC         1993         2         23         6.4         16.57N         99.41W         11         4.3         COSTA DE GUERRERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 | DIC | 1993 | 18 | 8  | 45.2 | 16.49N | 99.34W  | 16 | 3.3 | COSTA DE GUERRERO     |
| 28         DIC         1993         7         45         38.7         16.67N         100.58W         18         4.3         COSTA DE GUERRERO           30         DIC         1993         1         21         36         16.84N         99.15W         20         4.5         COSTA DE GUERRERO           30         DIC         1993         2         23         6.4         16.57N         99.41W         11         4.3         COSTA DE GUERRERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 | DIC | 1993 | 3  | 12 | 45.5 | 16.51N | 99.55W  | 15 | 3.5 | COSTA DE GUERRERO     |
| 30         DIC         1993         1         21         36         16.84N         99.15W         20         4.5         COSTA DE GUERRERO           30         DIC         1993         2         23         6.4         16.57N         99.41W         11         4.3         COSTA DE GUERRERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28 | DIC | 1993 | 7  | 45 | 38.7 | 16.67N | 100.58W | 18 | 4.3 | COSTA DE GUERRERO     |
| 30 DIC 1993 2 23 6.4 16.57N 99.41W 11 4.3 COSTA DE GUERRERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | DIC | 1993 | 1  | 21 | 36   | 16.84N | 99.15W  | 20 | 4.5 | COSTA DE GUERRERO     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 | DIC | 1993 | 2  | 23 | 6.4  | 16.57N | 99.41W  | 11 | 4.3 | COSTA DE GUERRERO     |

#### Apéndice 11 A statistical analysis of electric self-potential time series associated to two 1993 earthquakes in Mexico.

Nat. Hazards Earth Syst. Sci., 7, 549–556, 2007 www.nat-hazards-earth-syst-sci.net/7/549/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.



# A statistical analysis of electric self-potential time series associated to two 1993 earthquakes in Mexico

L. Flores-Márquez<sup>1,2</sup>, J. Márquez-Cruz<sup>1</sup>, A. Ramírez-Rojas<sup>2</sup>, G. Gálvez-Coyt<sup>3</sup>, and F. Angulo-Brown<sup>4</sup>

<sup>1</sup>Instituto de Geofísica, UNAM, Circuito Exterior S/N, Cd. Universitaria, 04510 México D.F., México

<sup>2</sup>Área de Física de Procesos Irreversibles, Universidad Autónoma Metropolitana Azcapotzalco, Avenida San Pablo 180 Colonia Reynosa, Azcapotzalco, 02200, México D.F., México

<sup>3</sup>Departamento de Matemáticas, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto S/N, Col. Barrio La Laguna Ticomán, C.P. 07340, México D.F., México <sup>4</sup>Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif, 9, U.P. Zacatence

<sup>4</sup>Departamento de Fisica, Escuela Superior de Fisica y Matemáticas, Instituto Politécnico Nacional, Edif. 9, U.P. Zacatenco, 07738, México D.F., México

Received: 16 July 2007 - Revised: 20 September 2007 - Accepted: 20 September 2007 - Published: 28 September 2007

Abstract. Recent studies related with earthquake prediction involve statistical studies of the ground electric self-potential behavior. Published results about the complexity of this kind of processes encourage us to study the statistical behavior of the ground electric self-potential recorded in Guerrero state, Mexico. This region is characterized by high seismicity. The electric self-potential variations were recorded in the Acapulco station directly from the ground. The sampling period was four seconds and the data were stored from March to December of 1993. Two significant earthquakes (EQs) occurred near this station, 15 May and 24 October whose magnitudes were Mw=6.0 and Mw=6.6 respectively. A preliminary processing was carried out consisting of a moving average of the original time series in order to filter the very high frequencies and to complete short lacks of data and outliers. Then, a visual inspection of the complete filtered signal was performed to search some seismic electric signals (SES), which were ambiguously depicted. Subsequently, a detrending of  $\mu=0$ was applied with the windows of 3.3, 6.6 and 10 h. Later, the analysis of the spectral exponent  $\beta$  was made, showing changes during the total period examined, and the most evident changes occurred during the preparation mechanism of the Mw=6.6 EQ. Fifteen days before the 24 October EQ, a Brownian-noise like behavior was displayed ( $\beta \approx 2$ ), having a duration of about two days. In addition a Higuchi fractal method and wavelet analysis were made confirming the presence of the  $\beta$ -anomaly.

*Correspondence to:* L. Flores-Márquez (leticia@geofisica.unam.mx)

#### 1 Introduction

Observations of changes in the electromagnetic field before earthquake (EQ) occurrences have been proposed as one of the possible methods in earthquake prediction (e.g. Honkura, et al., 1981, 2002; Varotsos and Alexopolous, 1984a, b; Varotsos and Sarlis, 2002, and references therein). However, observational evidence with a clear physical mechanism has not been defined, although some possible mechanisms have been proposed to account for ambiguous observational results (Honkura et al., 2002). The electrokinetic effect (Mizutani et al., 1976; Ishido and Mizutani, 1981; Gershenzon et al., 1993; Haartsen and Pride, 1997), the piezoelectric effect (Gershenzon et al., 1993), the piezomagnetic effect (Stacey and Johnston, 1972; Sasai, 1980), and the electromagnetic induction effect (Gershenzon et al., 1993; Iyemori et al., 1996; Honkura et al., 2000; Matsushima et al., 2002), have been considered as possible processes to explain those observations.

Recent examples of clear electric field changes indicate that the arrival of electric signals to registering stations are sometimes synchronized with the arrival of seismic waves (Yamada and Murakami, 1982; Mogi et al., 2000; Nagao et al., 2000); others arrived before the EQ events (Varotsos and Alexopolous, 1984a, b; Varotsos et al., 1988, Ramirez-Rojas et al., 2004a, b), but a possibility also exists that the magnetic field shows changes and, moreover, it started before the arrival of seismic waves (Iyemori et al., 1996; Nikolopoulos et al., 2004). Then, the study of electromagnetic field changes is extremely valuable in searching for precursor signs associated with EQs. The seismic electric signals (SES) were introduced by Varotsos and Alexopoulos (1984a, b). The named

Published by Copernicus Publications on behalf of the European Geosciences Union.



Fig. 1. Plot of EQs occurred in the studied region, whose distance between epicenter and the monitoring station (ACA) is between 100 and 200 km and their magnitude Mw>2.5. The two studied EQs were marked with arrows.

VAN group (acronym of Varotsos, Alexopoulos and Nomicos) proposed the methodology to register the SES, and suggested it as a method for searching for seismic precursors. In 2002, Varotsos and Sarlis published a review of the efforts on understanding the SES generation, their properties and how to interpret them. The VAN group proposed that the natural electric self-potential (NESP) must be normalized by the distance between electrodes.

Some overall characteristics of electric and magnetic field changes were already shown (Honkura et al., 2000; Matsushima et al., 2002), and the attention has been focused on statistical processes of these changes to look for new findings.

Novel papers involving fractal methods have been applied to electromagnetic field changes in order to provide some possible EQ precursory signature from scaling properties. Some reports including the magnetic field data, are Hayakawa et al. (1999, 2000); Smirnova et al. (2001); Telesca et al. (2001); Gotoh et al. (2003), Ida et al. (2005); Ida and Hayakawa (2006) and for the electric signals, Ramirez-Rojas et al. (2004a, b); Varotsos et al. (2002, 2003a); Kapiris et al. (2004).

It has been found that the power spectrum of electric Ultra Low Frequencies (ULF) emissions, on average, exhibits a power-law behavior of the type  $S(f)\alpha f^{-\beta}$ , which is a fingerprint of typical fractal (self-affine) time series. In most of the cases, the spectral exponent  $\beta$  displays a tendency to decrease gradually when approaching the EQ date (Ramirez-Rojas et al., 2004b). Such a tendency shows a gradual evolution of the structure of the ULF noise towards a typical flicker noise structure (1/*f* noise-like) in the proximity of a large EQ. This behavior has been suggested as an EQ precursor signature (Hayakawa et al., 1999; Smirnova et al., 2001; Ramirez-Rojas et al., 2004a, b). Ramirez-Rojas et al. (2004) made a spectral and multifractal analysis of NESP registered at the Acapulco station associated to the Mw=6.6 EQ, on 24 October 1993. They reported that the spectral and multifractal studies were made over the original NESP, just on the N-S time series, without any preliminary processing. However, they found an anticorrelation between the spectral exponent  $\beta$  and the multifractal spectrum width. They also reported studies made by means of detrended fluctuation analysis (DFA) and multifractal analysis, obtaining some additional properties of the NESP.

In this work we present a statistical study of self-potential electric time series monitored in 1993 at the Acapulco station (16.54° N, 98.98° W), introducing now a pre-processing of the data. Firstly, the higher frequencies were removed from the original time series by a moving average algorithm, and then a detrending procedure was applied. We show that the time series display a trend of SES probably associated to an EQ. Also, by using the spectral method, we carried out a statistical study of the spectral exponent  $\beta$ , from the preprocessed series, probably associated to the mechanism of EQ preparation. Finally, the statistical study of the NESP was complemented by means of a fractal analysis (Higuchi's method) applied to the original preprocessed data and to the series transformed by means of wavelets.

#### 2 Seismological and NESP data

Particularly, the western and southwestern coast of Mexico has had an important number of EQs per year due to the tectonic processes associated to the tectonic plates confluence; the subduction zone along the Southwest coast and the Middle American Trench are the main triggerers of these EQs. The National Seismological Service (SSN, Servicio Sismológico Nacional dependent of the National Autonomous University of Mexico, UNAM), is in charge of monitoring the seismic and volcanic risk, and of producing the records of these events and also the reports of the specific parameters (magnitude, epicenter and depth). According to the SSN 1993 seismic catalogues, there were registered 238 events with Mw>2, within the Guerrero coast, between 15.5° and 17.5° latitude N and between 98° and 102° longitude W.

A selection of EQ events was done taken into account their magnitudes and the distance between the epicenter and the monitoring station (see Table1). Particularly, we are interested in the events occurred on 15 May and 24 October because the distance between the epicenter and the monitoring station is around 100 km and their magnitude Mw>5.5 (Fig. 1).

Electric self-potential data consist of the observation of the electric potential differences,  $\Delta V$ , between two electrodes buried 2 m of deep into the ground and separated by 50 m in distance. A couple of electrodes was oriented in the North-South direction (NS series) and other couple in the East-

Nat. Hazards Earth Syst. Sci., 7, 549-556, 2007

www.nat-hazards-earth-syst-sci.net/7/549/2007/

#### L. Flores-Márquez et al.: Statistical analysis of electric self-potential time series

Table 1. Guerrero coast EQs whose distance to the monitoring station is around 100 km and Mw>5.

| day | month | year | h  | min | s    | Latitude N | Longitude W | Magnitude | Distance to the epicenter (km) |
|-----|-------|------|----|-----|------|------------|-------------|-----------|--------------------------------|
| 31  | March | 1993 | 10 | 18  | 15.5 | 17.18      | 101.02      | 5.3       | 137.78                         |
| 15  | May   | 1993 | 3  | 9   | 39.4 | 16.43      | 98.74       | 5.8       | 120.24                         |
| 15  | May   | 1993 | 3  | 11  | 56   | 16.47      | 98.72       | 6         | 120.68                         |
| 24  | Oct   | 1993 | 7  | 52  | 18.2 | 16.54      | 98.98       | 6.6       | 091.89                         |
| 13  | Nov   | 1993 | 0  | 16  | 44.5 | 15.63      | 99.02       | 5.8       | 156.34                         |



Fig. 2. The total data recorded in 1993, some lacks of data and outliers can be observed.

West direction (EW series), following the VAN methodology (Varotsos and Alexopodus, 1984a, b; Varotsos et al., 1988). The survey project consisted of six monitoring stations in charge of the Instituto Politecnico Nacional (IPN), from 1992 to 1996 (for details, see Yepez et al., 1995).

#### 3 Data processing

The data considered in this study were obtained at the Acapulco station during the year 1993. The time series were recorded in both directions, with two different sampling rates,  $\Delta t$ =4 s and  $\Delta t$ =2 s, in different time intervals. The total data recorded along the year are depicted in Fig. 2. Some problems in collecting the data inherent to the storage process can be observed, as some lacks of data and outliers, among others. The data were filtered by using a moving average each two minutes, so that more homogeneous data were obtained to minimize these problems (see Fig. 3). The higher frequencies were removed and small lacks were filled. Also, the elimination of outliers was done to have the same reference level.

An attempt was done to search SES, by a simple visual inspection of Fig. 3, following the method proposed by VAN group. Varotsos and Lazaridou (1991) defined SES as a fluc-

www.nat-hazards-earth-syst-sci.net/7/549/2007/



Fig. 3. Pre-processed NS and EW series; filtered data by using moving average each two minutes are showed; the outliers were also removed.

tuation of the NESP in the ground having the following properties: 1) Duration between 1/2 min and several hours; 2) the time lag for isolated events lies between 7 h and 11 days, and no longer than 22 days from the EQ date; 3) it may have a gradual and abrupt onset and/or cessation and 4) Large and small-scale properties of the earth's crust play an important role in SES. Finally, the relation between SES amplitude  $(\Delta V/L)$  and the EQ magnitude could be solely obtained in cases with several monitoring stations within 100 km of distance of the EQ epicenter (Varotsos and Alexopoulos, 2006).

The visual inspection of Fig. 3 shows some fluctuations of the electric self-potential along the year as well as some differences in these fluctuations that could be associated to EQ occurrences. Nevertheless the well-defined properties of SES, their detection depends of visual inspection, this is not adequate to decide which fluctuation really corresponds to a SES related to a future EQ, except perhaps for the biggest ones. Depending on the criterion adopted to select the SES, we can find a significant number of SES or none. Figure 4 shows a two days segment of the self-potential signal, that shows some fluctuations that could be identified as a SES, but we can not identify which of them are related with an EQ. Then we search for a systematic statistical alternative to characterize the electric self-potential signal.

Nat. Hazards Earth Syst. Sci., 7, 549-556, 2007



Fig. 4. An example of a trend of possible SES is depicted in a window of six hours.

The standard spectral analysis has been applied for a statistical study of signals to characterize them in the ULF range. This considers that the power spectrum behaves as a power law:  $S(f) \propto \frac{1}{f^{\beta}}$ . The spectral exponent  $\beta$  is estimated by the slope of the best-fit straight line to  $\ln S(f)$  vs.  $\ln(f)$  and, according to Malamud and Turcotte (2001),  $\beta$  characterizes the temporal fluctuations of the time series. For example, a white noise-type has  $\beta$ =0, for a flicker noise or  $\frac{1}{f}$  noise,  $\beta$ =1, and for a Brownian motion  $\beta$ =2. Some applications of this methodology have been previously used in time series analysis with encouraging results (Ramirez-Rojas et al., 2004a, b; Telesca et al., 2001).

Two approaches were followed to estimate the spectral exponent  $\beta$  of our time series. Because of the size of the probable SES (Fig. 4) in the electric self-potential, three different windows were selected, corresponding to 3.3, 6.6 and 10 h. respectively. As a first approach, the  $\beta$  exponent was estimated from a simple plot of  $\ln(S)$  vs.  $\ln(f)$  of  $\Delta V$ -time series. In a second approach, the NESP has been normalized by the distance between electrodes obtaining  $(\Delta V/L)$ , following the normalization proposed by VAN group. Then, a detrending of  $\mu=0$  was applied in the selected windows. Finally, the spectral exponent  $\beta$  was computed over the detrended signal. In the search of more consistent methodologies for the analysis of possible SES, we also employed the calculation of the so called Higuchi's fractal dimension (Higuchi, 1988, 1990) of the NESP-time series an their wavelet transforms (Goswani and Chan, 1999; Resnikoff and Wells, 1998).

#### 4 Results and discussion

The power spectrum S(f) was calculated for the selected windows, and then the corresponding  $\beta$  exponent was estimated. We found that S(f) shows two patterns, one cor-

Nat. Hazards Earth Syst. Sci., 7, 549-556, 2007



**Fig. 5.**  $\beta$  exponent evolution computed from 20 days before until 20 days after of EQs occurred: (a) 15 May and (b) 24 October EQ. The EQs are marked with vertical lines.

responding to low frequencies (0.0001 < f < 0.004 Hz), and other for high frequencies f > 0.004 Hz). Generally, very high frequencies are related to white noise behavior and  $\beta \approx 0$  for frequencies higher than 0.004 Hz.

We can observe an evolution along the year in the value of the  $\beta$  exponent ( $0.5 \le \beta \le 1$ ) that indicates a change in the behavior of the system showing correlations.

Now, we focused our attention on the periods before and after the occurrence of the selected EQs. Figure 5a shows the evolution of the  $\beta$  exponent 20 days after and 20 days before the EQ occurred on 15 May. Figure 5b depicts the evolution of the  $\beta$  exponent for the same interval for the 24 October EQ. We can observe the values of the  $\beta$  exponent between 0 and 1 in most of the cases, however fifteen days before the 24 October EQ we clearly observe an increase in the  $\beta$  exponent value, that rise up to  $\beta$ =2, this means a  $\beta$  exponent usually identified with a Brownian motion. Thus, the system has changed its behavior and has a different kind of organization.

www.nat-hazards-earth-syst-sci.net/7/549/2007/


**Fig. 6.** The electric field  $(\Delta V/L)$  vs. time. Detrended signal with six hours windows with  $\mu$ =0; no remarkable features are evident. Vertical lines mark the dates of the two EQs. The lack of data in the series were filled by means of white noise (gray line).

Figure 6 shows the results of the second approach to process the NESP signals after being normalized ( $\Delta V/L$ ), and detrended ( $\mu$ =0). The lacks of data were filled with white noise. It is possible to observe that no characteristic features are evident. However, it is possible to observe the variation of the computed  $\beta$  values along the year 1993 from March to December as depicted in Fig. 7a (for a 3.3 h window), especially for the 24 October EQ, that rise up to 2, just fifteen days before the EQ occurrence. This event could mean an organization of the system prior to the EQ or during the EQ preparation, coincident with the trend of SES depicted in Fig. 4.

We performed the same process for windows of 6.6 and 10 h, in order to determine if the size of the window influences the computed values of  $\beta$ . The results are shown in Figs. 7b and c, where we see that the increase up to  $\beta$ =2 is also present fifteen days before the EQ occurrence for the two cases.

However, a complementary analysis is necessary to confirm the possible presence of the SES anomaly observed in the  $\beta$  exponent behavior. We also calculated the fractal dimension of the pre-processed NESP-time series by means of the Higuchi's algorithm (1988, 1990). This method consisted in the calculation of the fractal dimension of the time series. This is done in terms of the straight-line slope that fits the length of the curve and the time interval (the k lag) in a double log plot. The length of the curve is calculated for several k time lags. If the average length  $\langle L(k) \rangle$  depends on k as a power law,  $< L(k) > \propto k^{-D}$ , then D is its fractal dimension. Figures 8a (NS series) and 8b (EW series) depict the time evolution of D for the time series displayed in Fig. 6. At a first glance, there is not an evident SES where the  $\beta$  anomaly is located. However, if we calculate the cross-correlation between both series, we find that all the D-points are weakly

www.nat-hazards-earth-syst-sci.net/7/549/2007/



553

**Fig. 7.**  $\beta$  exponent computed from March to December of 1993, after the treatment of the second approach. (a) window of 3.3 h, (b) window of 6.6 h and (c) window of 10 h.  $\beta$  values rise up to 2, fifteen days before the occurrence of the 24 October EQ in all cases.



Fig. 8. Computation of fractal dimension by Higuchi's method. Evolution of D exponent computed from March to December of 1993, after the second approach of series (data lacks filled by white noise, Fig. 6). (a) Higuchi exponent D for the NS series, (b) Higuchi exponent D for the EW series. The occurrences of 15 May and 24 October EQs are also showed (vertical lines).

(b)

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Nat. Hazards Earth Syst. Sci., 7, 549-556, 2007



Fig. 9. (a) The scatter plot between NS vs. EW Higuchi exponent along the year. (b) The scatter plot between the same signals but just for data corresponding to the  $\beta$  anomaly.

correlated (see Fig. 9a). Nevertheless, if we calculate the cross-correlation only for the points pertaining to the subset of the  $\beta$  anomaly, we find a cross-correlation with  $R^2=0.80$ (see Fig. 9b), which is, a reasonable high correlation between both signals. This suggests that during the SES time interval. an electromagnetic perturbation coming from a far source simultaneously affects both signals. We have employed an additional approach for the SES analysis as follows: first, we obtain the wavelet transform of the pre-processed NESP-time series by using a Haar window at second level (Goswani and Chan, 1999; Resnikoff and Wells, 1998). Second, we applied again the Higuchi's algorithm over the wavelet transformed series to calculate the fractal dimension D. The result of this procedure was completely similar to the previous one. It means that only the points corresponding to the SES have a significant cross-correlation for both NS and EW signals (see

Nat. Hazards Earth Syst. Sci., 7, 549-556, 2007

Fig. 9). When we applied Higuchi's method and wavelets transform over the surrogated NESP-data, we only find uncorrelated data.

## 5 Concluding remarks

In general geophysical phenomena are very complex, especially those underlying EQs. During the last years, the analysis of geophysical time series has been made mainly by methods involving statistical physics and non-linear dynamics. Pre-processing techniques are convenient when the time series are very noisy with many undesirable influences present. In the present investigation we reported some statistical studies of self-potential time series possibly associated to EQ's in the south-western Mexican coast (Yepez et al., 1995, Ramirez-Rojas et al., 2004a, b) with preliminary data processing. We have analyzed some electric time series previously cleaned by means of a moving average algorithm and a detrending procedure, and no unambiguously SES signals were observed. However, the analysis of the spectral exponent  $\beta$  shows changes along the total period examined, and the most evident occurred during the preparation mechanism some days before of the occurrence of the 24 October EQ.

For the studied EQs during the year 1993 the results can be summarized as follows: It was not possible to distinguish a clear change in the behavior of the  $\beta$  exponent for the EQs corresponding to magnitudes Mw<6 (see Table 1) and epicenters situated more than 100 km away from the monitoring station. In Fig. 7 some peaks with  $\beta \ge 1$  are depicted that could be associated with EQs with magnitudes between 4.5 and 5.5. The 24 October EO had a magnitude of Mw=6.6 and its epicenter was located 92 km away from the monitoring station. Before this EQ, we observed a trend of possible SES (Fig. 4), as well as an organization of the self-potential electric field, showing a correlation. The  $\beta$  exponent is on average 0.5, which is correlated with stationary data with weak persistence during the total monitoring time (Malamud and Turcotte, 2001). Fifteen days before the EQ, a behavior like a Brownian motion is displayed ( $\beta \approx 2$ ), having a duration around two days. In search of a more complete study of the possible  $\beta$ -anomaly fifteen days before the Mw=6.6 EQ, we also analyzed the whole 1993 data by means of both the Higuchi's fractal dimension and the wavelet transform. In both cases we found that for the points corresponding to the possible  $\beta$ -anomaly in both series the cross-correlation (Koening, 1991) reached significant values ( $R^2 \approx 0.8$ ), while for the rest of the time series the data remained weakly correlated. This can suggest that during the SES time interval a distant electromagnetic perturbation arrived to both NS and EW lines. In summary, the present work shows some time series features possibly linked to EQ preparation processes, but with not enough clearness to assure that these features are seismic precursors.

www.nat-hazards-earth-syst-sci.net/7/549/2007/

L. Flores-Márquez et al.: Statistical analysis of electric self-potential time series

Acknowledgements. Authors are indebted to the National Seismological Service (SSN, Servicio Sismológico Nacional) dependent of National Autonomous University of Mexico (UNAM) for provided the 1993 EQ data. L. Flores-M. thanks the Universidad Autonoma Metropolitana for the sabbatical financial support. FAB and GGC thanks to COFAA and EDI-IPN for partial financial support.

Edited by: P. F. Biagi Reviewed by: two anonymous referees

## References

- Gershenzon, N. I., Gokhberg, M. B., and Yunga, S. L.: On the electromagnetic field of an earthquake focus, Phys. Earth Planet. Inter., 77, 13–19, 1993.
- Gotoh, K., Hayakawa, M., and Smirnova, N.: Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June–August 2000, Nat. Hazards Earth. Syst. Sci., 3, 229–236, 2003.
- Goswani, J. C. and Chan, A. K., Fundamentals of wavelets: theory, algorithms, and applications, John Wiley, USA, 306 pp., 1999.
- Haartsen, M. W. and Pride, S. R.: Electroseismic waves from point sources in layered media, J. Geophys. Res., 102, 24745–24769, 1997.
- Hayakawa, M., Ito, T., and Smirnova, N.: Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on 8 August 1993, Geophys Res. Lett., 26, 2797–2800, 1999.
- Hayakawa, M. and Ito, T.: ULF electromagnetic precursors for an earthquake at Biak, Indonesia on 17 February 1996, Geophys Res. Lett., 27, 1531–1534, 2000.
- Higuchi, T.: Approach to an irregular time series on basis of the fractal theory, Physica D., 31, 277–283, 1988.
- Higuchi, T.: Relationship between the fractal dimension and the power law index for a time series: a numerical investigation, Physica D., 46, 254–264, 1990.
- Honkura, Y.: Electric and magnetic approach to earthquake prediction, in: Current Research in Earthquake Prediction I, edited by: Rikitake, T., Center Academic Publications Japan, D. Reidel Publishing Company, 301–383, 1981.
- Honkura, Y., Isikara, A. M., Oshiman, N., Ito, A., Üçer, B., Baris, S., Tunçer, M. K., Matsushima, M., Pektas, R., Çelik, C., Tank, S. B., Takahashi, F., Nakanishi, M., Yoshimura, R., Ikeda, Y., and Komut, T.: Preliminary results of multidisciplinary observations before, during and after the Kocaeli (Izmit) earthquake in the western part of the North Anatolian Fault Zone, Earth Planets Space, 52, 293–298, 2000.
- Honkura Y., Matsushima, M., Oshiman, N., Tunçer, M. K., Baris, S., Ito, A., Lio, Y., and Isikara, A. M.: Small electric and magnetic signals observed before the arrival of seismic wave, Earth Planets Space, E-Letter, 54, e9–e12, 2002.
- Ishido, T. and Mizutani, H.: Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its application to geophysics, J. Geophys. Res., 86, 1763–1775, 1981.
- Iyemori, T., Kamei, T., Tanaka, Y., Takeda, M., Hashimoto, T., Araki, T., Okamoto, T., Watanabe, K., Sumitomo, N., and Oshiman, N.: Co-seismic geomagnetic variations observed at the 1995 Hyogoken-nanbu earthquake, J. Geomag. Geoelectr., 48, 1059–1070, 1996.

www.nat-hazards-earth-syst-sci.net/7/549/2007/

- Kapiris, P. G., Eftaxias, K. A., and Nomikos, K.: Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlin. Processes Geophys., 10, 511–524, 2003,
- http://www.nonlin-processes-geophys.net/10/511/2003/.
  Kapiris, P. G., Eftaxias, K. A., and Chelidze, T. L.: Electromagnetic signature of prefracture critically in heterogeneous media, Phys. Rev. Lett., 92, 065702, doi:10.1103/PhysRevLett.92.065702, 2004.
- Koening, D. M.: Control and Analysis of noisy processes, Englewood Cliffs, New Jersey, p. 12, 1991.
- Malamud, B. D. and Turcotte D. L.: Self-Affine Time Series: I Generation and Analyses, Sixth Workshop on Non-Linear Dynamics and Earthquake Prediction, H4.SMR/1330-22, 2001.
- Matsushima, M., Honkura, Y., Oshiman, N., Baris, S., Tunçer, M. K., Tank, S. B., Çelik, C., Takahashi, F., Nakanishi, M., Yoshimura, R., Pektas, R., Komut, T., Tolak, E., Ito, A., Iio, Y., and Isikara, A. M.: Seimo-elecromagnetic effect associated with the Izmit earthquake and its aftershocks, Bull. Seismol. Soc. Am., 92, 350–360, 2002.
- Mizutani, H., Ishido, T., Yokokura, T., and Ohnishi, S.: Electrokinetic phenomena associated with earthquakes, Geophys. Res. Lett., 3, 365–368, 1976.
- Mogi, T., Tanaka, Y., Widarto, D. S., Arsadi, E. M., Puspito, N. T., Nagao, T., Kanda, W., and Uyeda, S.: Geoelectric potential difference monitoring in southern Sumatra, Indonesia – Co-seismic change, Earth Planets Space, 52, 245–252, 2000.
- Nagao, T., Orihara, Y., Yamaguchi, T., Takahashi, I., Hattori, K., Noda, Y., Sayanagi, K., and Uyeda, S.: Co-seismic geoelectric potential changes observed in Japan, Geophys. Res. Lett., 27, 1535–1538, 2000.
- Nikolopoulos, S., Kapiris, P., Karamanos, K., and Eftaxias, K.: A unified approach of catastrophic events, Nat. Hazards Earth Syst. Sci., 4, 615–631, 2004,

http://www.nat-hazards-earth-syst-sci.net/4/615/2004/.

- Ramírez-Rojas, A., Pavía-Miller, C. G., and Angulo-Brown, F.: Statistical behavior of the spectral exponent and the correlation time of electric self-potential time series associated to the Ms=7.4 September 14, 1995 earthquake in Mexico, Phys. Chem. Earth, 29, 4-9, 305–312, 2004a.
- Ramírez-Rojas, A., Muñoz-Diosdado A. Pavía-Miller, C. G., and Angulo-Brown, F.: Spectral and multifractal study of electroseismic time series associated to the Mw=6.5 earthquake of 24 October 1993 in Mexico, Nat. Hazards Earth Syst. Sci., 4, 703– 709, 2004b.
- Resnikoff, H. L. and Wells, R. O.: Wavelet Analysis the escalable structure of information, Springer-Verlag, New York, USA, 435 pp., 1998.
- Sasai, Y.: Application of the elasticity theory of dislocation to tectonomagnetic modeling, Bull. Earthq. Res. Inst., 55, 387–447, 1980.
- Smirnova, N., Hayakawa, M., Gotoh, K., and Volobuev, D.: Scaling characteristics of ULF geomagnetic field at the GUAM seismoactive area and their dymanics in relation to the eathquake, Nat. Hazards Earth Syst. Sci., 1, 119–126, 2001, http://www.nat-hazards-earth-syst-sci.net/1/119/2001/.
- Stacey, F. D. and Johnston, M. J. S.: Theory of the piezo-magnetic effect in titanomagentite-bearing rocks, Pure Appl. Geophys., 97, 146–155, 1972.

Nat. Hazards Earth Syst. Sci., 7, 549-556, 2007

- Telesca, L., Cuomo, V., Lapenna, V., and Macchiato, M.: A new approach to investigate the correlation between geoelectrical time fluctuations and earthquakes in a seismic area of southern Italy, Geophys. Res. Lett., 28, 4375–4378, 2001.
- Varotsos, P. and Alexopoulos, K.: Physical properties of the variations of the electric field of the Earth preceding earthquakes, I. Tectonophysics (110), Elsevier Science Publishers, 1984a.
- Varotsos, P. and Alexopoulos, K.: Physical properties of the variations of the electric field of the Earth preceding earthquakes, II. Tectonophysics (110), Elsevier Science Publishers, 1984b.
- Varotsos, P. and Lazaridou, M. Latest aspects of the earthquake prediction in Greece base don seismicelectric signals, Tectonophysics, 188, 321–347, 1991.
- Varotsos, P. and Sarlis, M.: A review of the recent VAN efforts: the explanation of the SES physical properties, in: Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, edited by: Hayakawa, M. and Mochanov, O. A., Terrapub Pub. Tokio, 131–140, 2002.
- Varotsos, P., Sarlis, N., Skordas, E., and Lazaridou, M.: Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism, Tectonophysics, Elsevier Science Publishers, 412, 279–288, 2006.
- Yamada, I. and H. Murakami, Self-potential variations associated with quarry blasts, Zisin, 35, 393–400, 1982 (in Japanese with English abstract).
- Yépez, E., Angulo-Brown, F., Peralta, J. A., Pavía-Miller, C. G., and González-Santos, G.: Electric fields patterns as seismic precursors, Geophys. Res. Lett. 22, 3087–3090. 1995.

Nat. Hazards Earth Syst. Sci., 7, 549–556, 2007

www.nat-hazards-earth-syst-sci.net/7/549/2007/