

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

PREDICCIÓN DE HUECOS DE TENSIÓN EN LA

DETECCIÓN DE FALLAS EN LOS SISTEMAS

ELÉCTRICOS DE POTENCIA.

TESIS

QUE PARA OBTENER EL TÍTULO DE: INGENIERO ELÉCTRICO ELECTRÓNICO

PRESENTAN:

ARELLANO GONZALEZ MARCO ANTONIO

BÁRCENAS SALGADO ERIK

DIRECTOR: ING. JUAN JOSÉ LÓPEZ MÁRQUEZ

CIUDAD UNIVERSITARIA, MÉXICO D. F. 2007

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A MIS PADRES

En memoria de mi padre Elinor que aunque ya no esta físicamente sus enseñanzas y valores me han guiado en mi camino por la vida.

Mi madre Alejandrina quién con su amor y su apoyo me han ayudado a logrado muchas metas en mi vida y esta es una de ellas.

A MIS HERMANOS.

A mis hermanos Adriana y Eduardo, porque hemos crecido juntos, por su apoyo y porque se que siempre estaremos los unos para los otros.

Agradecimientos.

Al Ing. Juan José López Márquez, no sólo por la dirección de este trabajo de Tesis, sino también por ser un a amigo cuyos consejos siempre estarán presentes en nuestras vidas.

A la Lic. Nancy Castañeda Villa por su amistad y apoyo moral.

A nuestros sinodales:

M. I. María del Carmen Maldonado Susano Ing. Hugo Grajales Román Ing. David Vázquez Ortiz Ing. Cesar Maximiliano López Portillo Alcérreca Esta tesis es el medio por el cual agradezco a las personas que de una u otra manera han aportado algo para que yo lograra conseguir lo que hasta ahora me he propuesto.

La vida es como un edificio y los materiales te los proporciona cada persona que se cruza en nuestro camino. No hay experiencias malas, solo hay que saber donde se colocan cada una de ellas.

Este trabajo es un logro que se lo debo a los cimientos que desde que nací me han apoyado, y a los pilares que siempre han mantenido firme mi construcción. Cada persona en su tiempo me brindo uno o varios ladrillos, unos sólidos otros huecos, estos últimos afectaban mi vida, pero siempre se mantenía estable por mi familia, aunque está era una edificación sin sentido, ni fundamento.

Mi vida tomo rumbo por una persona que me motivo y alentó, gracias a ella logre retomar sueños y metas. No hay situaciones "malas" pues esas cosas las he utilizado para forjar en mí, una persona más estable, con ideas firmes y con metas claras.

Gracias a mi Padre y mi Madre (los cimientos), a Susana y Alejandra (los pilares) y al apoyo y motivación de Denise¹ han logrado en mí una estructura firme, convirtiéndose en parte importante de mi vida.

Esto no es el final de nada, sino el comienzo de nuevas metas y sueños que realizo por mí, porque gracias a las personas mencionadas y a Dios sólo yo me pongo límites.

¹ Denise García Castañeda

Índice

		Pagina
	Capitulo I	Ū
Características de los Sistemas Eléctricos de Potencia		1
Sistema Eléctrico de Potencia		2
Variaciones de Tensión		3
Valores Eficaces		11
Sistema por Unidad (P. U.)		13
Componentes Simétricas		15
Causas de Fallas en los Sistemas Eléctricos de Potencia		20
Análisis de Fallas		21
	Capitulo II	
Los Huecos se Tensión		25
Definición		26
Clasificación		27
Características		28
Causas y Efectos		32
	Capitulo III	
Predicción de los Huecos de Tensión		34
Método de Posiciones de Falla		35
Método de Distancia Crítica		39
Clasificación de las Barras (Área de Vulnerabilidad)		42
Determinación del Número Estimado de Huecos de Tensión		46
Técnica Monte Carlo		50
	Capitulo IV	
Cálculo de Huecos de Tensión		52
A Través del Valor RMS		55
Las Limitaciones Del Valor RMS		57
Sobrestimación Del Sag No-Rectangular		57
A Través De La Caracterización		58

Cap	pitulo V
Localización de Fallas a través de Huecos de Tensión	63
Caracterización de los Huecos se Tensión a través de Componentes Simétricas	64
Falla de Línea a Tierra (SLGF)	65
Falla De Línea A Línea (2LF)	66
Falla Doble Línea A Tierra. (2LGF)	67
Falla Trifásica. (3φF)	68
Fase Simétrica para Sag Desbalanceados	69
Secuencia Cero	72
Implementación	74
Conclusiones	82
Apéndices	85
Apéndice A	86
Apéndice B	91
Apéndice C	96
Apéndice D	99
Apéndice E	102
Índice De Figuras	119

Capitulo I

Características de los Sistemas Eléctricos de Potencia

CARACTERÍSTICAS DE LOS SISTEMAS ELÉCTRICOS DE POTENCIA

SISTEMA ELÉCTRICO DE POTENCIA

• Sistema Eléctrico de Potencia (SEP): Es un conjunto de elementos que interconectados llevan la energía eléctrica desde los centros de generación hasta los centros de consumo, es por ello que el SEP comprende a los subsistemas de generación, transmisión, distribución, y utilización de energía eléctrica.

Elementos que conforman un SEP:

- 1. Generadores.
- 2. Transformadores de Transmisión (elevan y bajan el voltaje).
- 3. Líneas de Transmisión.
- 4. Transformadores de Distribución (bajan los niveles de tensión).
- 5. Redes o Líneas de Distribución.
- 6. Cargas (consumo industrial, comercial y residencial).

La generación de energía se realiza en plantas hidroeléctricas, termoeléctricas, nucleares y de gas, normalmente en tensiones de 13.8 KV. La energía proveniente de una planta se lleva a un transformador elevador conectado al sistema de transmisión, a través del cual se transporta energía eléctrica generalmente a tensiones de 230 KV y 400 KV.

El sistema de transmisión termina en una subestación reductora o subestación de potencia, donde la tensión de servicio normalmente es de 115 KV y de la cual se distribuyen circuitos de subtransmisión que van a alimentar subestaciones de distribución, cuyos circuitos alimentadores normalmente trabajan a 34.5 KV, 23 KV y 13.2 KV.

Dado que la palabra distribución esta asociada con la utilización de la energía, se considera que las grandes plantas industriales son casos especiales del subsistema de potencia ya que pueden estar directamente conectadas a tensiones de 230 KV y 115 KV. De los transformadores de distribución se alimentan usuarios comerciales, residenciales e industria pequeña¹.

¹ "Modelado y Análisis de Sistemas Eléctricos de Potencia en Estado Estacionario". Dr. José Horacio Tovar Hernández, Dr. Héctor Francisco Ruiz Paredes, Dr. Máximo Hernández Ángeles. Apuntes de Programa de Graduados e Investigación en Ingeniería Eléctrica (PGIIE) del Instituto Tecnológico de Morelia. Noviembre 2003

Clasa da Valtaja	Voltajes de Sistema	Voltaje de Sistema	
	Nominales (Volts)	Asociados (Volts)	
SISTEMAS MONOFÁSICOS			
Bajo voltaje	(120V) 120/240 V	110,115,125,127	
	SISTEMAS TRIFÁSICOS		
	240	220, 230, 250	
Bajo voltaje	480	440, 460	
	600	550, 575	
	2400 (distribución primaria)	2200, 2300	
	4160	4000	
	4800	4600	
	6900	6600, 7200	
	12000Y/6930	11000, 11500	
	12470Y/7200,		
Medio voltaje	13200Y/7620		
	13800	14400	
	22860Y/13200		
	23000		
	24940Y/14400		
	34500	33000	
	46000 (subtransmisión)	48300	
	69000	66000	
	115000	110000, 120000	
Alto voltaje	138000	132000	
	161000	154000	
	230000 (transmisión)	220000	
	354000	400000	
Extra alto voltaje	500000	550000	
	735000-765000	800000	
Ultra alto voltaje	1000000		

VARIACIONES DE TENSIÓN

Perturbaciones²: Son variaciones de algunos parámetros de la onda sinusoidal. Las características ideales de la onda sinusoidal son amplitud, forma, frecuencia y simetría de la onda de tensión producida por las centrales generadoras. Las perturbaciones pueden ser generadas por varias causas, una de las cuales es la conexión a la red eléctrica de ciertos tipos de cargas (cargas perturbadoras) de posible utilización.

² UTE Reglamento de Baja Tensión. PERTURBACIONES. CAPÍTULO XXVII.

- Transitorios³: Son cambios bruscos en las condiciones de estado estable en voltaje y frecuencia, pueden ser causados, por ejemplo por la desconexión de bancos de capacitares.
- 2) Huecos de tensión [Sags (América) ó Dips (Europa)]: Se mencionara más a detalle en los siguientes capítulos.
- **3)** Notching⁴: Es una variación periódica del voltaje causado por la operación normal de aparatos electrónicos de potencia cuando se realiza la conmutación de una fase a otra. La causa más común de este fenómeno son los convertidores trifásicos, ya que al realizar la conmutación entre cada fase, se esta provocando un cortocircuito.
- 4) Interrupciones Breves⁵: Es cuando la tensión en los puntos de suministro es inferior al 1% del valor de tensión suministrado y dura menos de 3 minutos. Estas interrupciones son provocadas por los efectos de reactivación, de los sistemas de protección del suministro eléctrico, todo ello de manera automática.

✤ Estado estable

- Regulación de tensión⁶: Consiste en la conmutación de diversas tomas de un transformador, a fin de seleccionar la tensión de salida requerida. Pueden incorporarse un transformador de aislación, de modo que solucionan a la vez el problema de ruidos, pero son incapaces de solucionar los cortes, microcortes y las variaciones de frecuencia de la red, puesto que no aportan autonomía. Existen dos familias de estabilizadores, los ferroresonantes y los electromagnéticos. Los primeros actúan por saturación del núcleo del transformador. Los segundos mediante conmutación de tomas.
- 2. Parpadeo [Flicker]⁷: Es una impresión de inestabilidad de la sensación visual debido a un estimulo luminoso en el cual la luminosidad o la distribución espectral fluctúan en el tiempo. Las fluctuaciones de tensión provocan variaciones de luminancia en el alumbrado lo que produce el fenómeno ocular llamado parpadeó o flicker. Suele ser provocado por cargas fluctuantes muy importantes hornos de arco, soldadura por puntos (resistiva), motores con arranques frecuentes, molinos industriales, etc.

⁷ Ídem

³ "Fundamentos de Protección de Sistemas Eléctricos por Relevadores." Gilberto Enríquez Harper. Segunda Edición, México 1996. Ediciones Limusa Noriega

⁴ Ídem.

⁵ "Calidad del Servicio. Regulación y Optimización de Inversiones." Universidad Pontificia Comillas de Madrid, Escuela Técnica Superior de Ingeniería (ICAI) Departamento de Electrotecnia Y Sistemas. Tesis Doctoral, Madrid 1999. Juan Rivier Abbad.

⁶ http://www.geocities.com/maravena2000/eng.htm

3. **Desequilibrios de Tensión⁸:** En un sistema trifásico, es una condición en la cual los valores eficaces de las tensiones de fase o los ángulos entre fases consecutivas no son iguales.

Fig. 1.2 Variaciones lentas de tensión¹⁰: Son las que tienen lugar a lo largo de 10 segundos o más. Se puede producir por la variación de la carga en redes pobres (de elevada impedancia de cortocircuito). Si se sobrepasan los límites estáticos de funcionamiento de los equipos, ocasionan anomalías.

¹⁰ http://www.geocities.com/maravena2000/eng.htm

⁸ UTE Reglamento de Baja Tensión. PERTURBACIONES. CAPÍTULO XXVII.

⁹ http://www.unionfenosa.es/ShowContent.do?contenido=COM_01_01_11

Fig. 1.4 Fluctuaciones de tensión²: Producidas por variaciones periòdicas o series de cambios aleatorios en la tensión de la red eléctrica. Su duración va desde varios milisegundos hasta los diez segundos y con una amplitud no superior al 10% del valor nominal.

¹² http://www.unionfenosa.es/ShowContent.do?contenido=COM_01_01_11

¹¹ Ídem

Universidad Nacional Autónoma de México

Fig. 1.5 Ruidos e Impulsos en Modo Diferencial¹³: Son perturbaciones de tensión que tienen lugar entre los conductores activos de alimentación (fase y neutro en sistema monofásico; fases o fase y neutro en un sistema trifásico). Si son frecuentes y de escaso valor (algunos volts o decenas de volts), se llaman ruidos. Si son esporádicos y de valor elevado (cientos de volts), se llaman impulsos, cuando su duración es inferior a 2 ms. Suelen producirse por la conexión y desconexión de baterías de condensadores, por el funcionamiento de hornos de arco, por los equipos convertidores y rectificadores y sobre todo, por las descargas atmosféricas cercanas a las instalaciones eléctricas. **Ruidos e Impulsos en Modo Común** Son similares a los ruidos e impulsos en modo diferencial, pero tienen lugar entre los conductores activos considerados como un todo único y tierra. Sus causas y efectos son parecidos a los de modo diferencial, pero en el caso de impulsos elevados se añade el riesgo de producir descargas a los usuarios si se destruye la aislación del equipo.

¹⁴ Ídem

¹³ http://www.geocities.com/maravena2000/eng.htm

Fig. 1.7 Distorsión armónica¹⁵: Tensión sinusoidal cuya frecuencia es múltiplo entero de la fundamental. Es una deformación relativamente baja y estable de la onda de tensión. La distorsión suele estar ocasionada por la conexión a la red de máquinas con núcleo magnético demasiado saturado, de convertidores estáticos (tales como rectificadores, sistemas de alimentación ininterrumpida y fuentes conmutadas, hoy día muy extendidas en equipos informativos y TV), y otras cargas no lineales.

Perturbaciones de tensión según la IEEE 1159¹⁶

TIPO DE VARIACIÓN	DURACIÓN	MAGNITUD	
Huecos de tensión [Sag o Dip]			
Instantáneos	0.5 - 30 ciclos	0.1 − 0.9 p. u.	
Momentáneos	30 ciclos - 3 s	0.1 – 0.9 p. u.	
Temporales	3 s – 1 min.	0.1 − 0.9 p. u.	
Elevaciones de tensión [swell]			
Instantáneos	0.5 - 30 ciclos	1.1 – 1.8 p. u.	
Momentáneos	$30 \operatorname{ciclos} - 3 \operatorname{s}$	1.1 – 1.8 p. u.	
Temporales	3 s - 1 min.	1.1 – 1.8 p. u.	

Variaciones de corta duración

¹⁶ Perturbaciones en la onda de tensión: Huecos [sag] y Sobretensiones [swell]. Calidad del servicio eléctrico [Power Quality]. Girona, marzo 11 de 2003. Juan José Mora Flórez

¹⁵ Seminario. "Innovación Tecnológica: Energía y Telecomunicaciones". Universidad Internacional Menéndez Pelayo. Santander, 9 de julio de 2001. Incidencia Del Suministro Energético En El Proceso De Fabricación Luís Ignacio Eguíluz Morán Director del Dpto. De Ingeniería Eléctrica y Energética. Universidad de Cantabria.

> Variaciones de larga duración

TIPO DE VARIACIÓN	DURACIÓN	MAGNITUD
Subtensión	> 1 min.	0.8 – 1.0 p. u.
Sobretensión	> 1 min.	1.0 − 1.2 p. u.

> Interrupciones

TIPO DE VARIACIÓN	DURACIÓN	MAGNITUD
Momentáneos	< 3 s	0 p. u.
Temporales	3 s – 1 min.	0 p. u.
Colapso	> 1 min.	0 p. u.

Estándares Internacionales¹⁷

PERTURBACIÓN	CATEGORÍA DE NORMALIZACIÓN	ESTÁNDARES IEEE	ESTÁNDARES IEC
	Ambiente/compatibilidad	IEEE 1250	IEC 61000-2-4
	Emisión/Límites de inmunidad	IEEE P 1346	IEC 61000-3- 3/5 (555)
Huecos de tensión	Pruebas y Medidas	Ninguna	IEC 61000-4- 1/11
	Instalación/Mitigación	IEEE 446,1100, 1159	IEC 61000-5-X
	Apertura del fusible	IEEE 242(Protección)	IEC 364
	Ambiente/Compatibilidad	IEEE/ANSI C62.41	IEC 61000-2-5
	Emisión/Límites de inmunidad	Ninguna	IEC 61000-3-X
Transitorios y sobretensiones	Pruebas y Medidas	IEEE/ANSI C62.45	IEC 61000-4- 1/2/4/5/12
	Instalación/Mitigación	C62 series, 1100	IEC 61000-5-X
	Ruptura de aislamiento	Ninguna	IEC 664

¹⁷ Ídem.

Fig. 1.8 Transitorio impulsivo: Es un cambio de frecuencia instantáneo a partir del estado estable de la corriente, el voltaje o ambos. Tiene una polaridad unidireccional y se caracteriza principalmente por sus tiempos de subida y bajada y su valor máximo. Ej.: 1.2/50 microseg 12000 A

- Alta frecuencia: f > 500 Khz. y duración [microseg].
- Media frecuencia: 5 < f < 500 Khz. y duración [décadas de microseg]
- Baja frecuencia: f < 5 Khz. y duración [0.3 a 50 ms]

VALORES EFICACES

El valor eficaz de una corriente o de una tensión es una medida de su efecto térmico. Se dice que una corriente alterna tiene un valor eficaz de *I* si, cuando pasa a través de una resistencia *R*, produce el mismo efecto térmico promedio (potencia) que una corriente directa de valor igual a la amplitud de la corriente alterna dividida entre $\sqrt{2}$. Es decir, el valor eficaz de una corriente alterna es el número de amperios de corriente continua que producirían en una resistencia dada la misma cantidad media de calor por unidad de tiempo que la corriente alterna. Esto igual es cierto en el caso de una tensión alterna a través de una *R* o incluso para el producto de tensión y corriente.

Para probar esta afirmación tomaremos una onda usual de corriente en función del tiempo, de cualquier tipo i(t) que se repite continuamente y calcularemos la potencia media que desarrolla en un resistor mediante el concepto de que: $P = i^2 R$, usando el calculo para evaluar la potencia media P:

$$p(t) = i^{2}(t)R$$
$$P = \frac{1}{T} \int_{0}^{T} i^{2}(t)R dt \dots (I)$$

Definiendo un valor eficaz I, que a continuación se eleva al cuadrado y se multiplica por R se obtiene P:

$$I^2 R = P$$

Entonces:

Sustituyendo en (I) la ecuación (II) se tiene:

$$I = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$

Por lo que el valor eficaz (o efectivo) de una onda de es su valor medio cuadrático. Se eleva en primer lugar al cuadrado la función i(t) y se determina su promedio o media, extrayendo a continuación la raíz cuadrada de este valor medio¹⁸.

Para aplicar esta idea en una sinusoide se sustituye $I_p \cos(2\pi f t)$ en lugar de i(t). Se encontrara que:

Fig. 1.13 Podemos visualizar una Señal Senoidal, y su Valor Eficaz

De forma análoga puede demostrarse que la tensión eficaz es:

$$V = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$

¹⁸ "Teoría de Sistemas y Circuitos". Víctor Gerez Greiser, Representación y Servicios de Ingeniería, S. A. México. 1er Edición.

SISTEMA POR UNIDAD (p. u.)

Los sistemas eléctricos transmiten grandes cantidades de potencia expresada en kilovolt-amperes (kVA) y/o megavolt-amperes (MVA) operando a diferentes valores de tensión, cuantificados normalmente en kilovolts (kV). Estas cantidades, junto con kilowatts, kilovars, amperes, ohms, entre otras, son usualmente expresadas en por unidad o por ciento de un valor de referencia o base. La razón de utilizar nomenclatura en por unidad y/o por ciento es que simplifica especificaciones de equipo y tiempo de cómputo gastado en efectuar análisis de sistemas eléctricos de potencia o de distribución en estado estacionario, especialmente en sistemas que operan a diferentes niveles de voltaje.

El valor por unidad de cualquier cantidad, se define como la razón de la cantidad a su valor base. El valor por ciento es 100 veces el valor por unidad.

Entonces, las cantidades tales como voltaje (V), corriente (I), potencia activa (P), potencia reactiva (Q), volt-amperes (VA), resistencia (R), impedancia (Z), pueden ser expresadas en por unidad de la siguiente manera:

donde:

$$C_{pu} = \frac{C_a}{C_B}$$
 $C_{pu} = Cantidad en por unidad (pu).$
 $C_a = Cantidad actual.$
 $C_B = Cantidad base.$

 $C_{\%} = 100C_{pu}$ $C_{\%} =$ Cantidad en por ciento.

La cantidad actual " C_a " es un valor escalar o complejo de la cantidad expresada en sus propias unidades. La cantidad base " C_B " es un valor arbitrariamente seleccionado de la misma cantidad escogida, siendo designada como base. Entonces, los valores en por unidad y/o por ciento son cantidades adimensionales, que pueden ser escalares y/o complejos.

Algunas ventajas de usar valores en por unidad o en por ciento son:

- El manejo de datos es relativamente sencillo, permitiéndose una comparación directa entre cantidades similares de un sistema.
- La impedancia equivalente en por unidad de un transformador es la misma cuando se refiere al lado primario o al lado secundario.
- La impedancia equivalente en por unidad de un transformador trifásico es la misma, independientemente del tipo de conexión de sus devanados (estrella-estrella, estrella-delta, delta-estrella).

Universidad Nacional Autónoma de México

- El método por unidad es independiente de los cambios de voltaje y el defasamiento en el transformador, donde los voltajes base en los devanados son proporcionales al número de vueltas en los devanados.
- Los fabricantes usualmente especifican la impedancia del equipo en por unidad o por ciento en base a los valores de potencia y voltaje de placa (nominales). Entonces, el valor de impedancia puede usarse directamente si las bases escogidas son las mismas que los valores de placa del equipo¹⁹.

Las relaciones generales entre potencia, voltaje y corriente son:

$$S_{3\phi} = \sqrt{3} V_{LL} I_L$$
 $I_L = \frac{S_{3\phi}}{\sqrt{3} V_{LL}}$ $z = \frac{V_{LL}^2}{S_{3\phi}}$

Cantidades Base: El voltaje, corriente, potencia e impedancia están relacionados entre sí, tal que la selección de los valores base para cualquiera de dos de ellos, determina los valores base de los dos restantes. Con base a cantidades por fase, matemáticamente se tiene:

Normalmente, la impedancia por unidad de un equipo eléctrico está especificada en base a sus valores de placa, los cuales usualmente son diferentes a los valores base del sistema eléctrico. Puesto que todas las impedancias del sistema deben expresarse sobre una misma base para efectuar los cálculos en por unidad o por ciento, es necesario convertir todos los valores a una base común seleccionada. Esta conversión puede derivarse al expresar en por unidad una misma impedancia, pero con dos bases diferentes. Considerando como bases MVA_1 , kV_1 , MVA_2 y kV_2 , por lo que la ecuación general para el cambio de una base a otra base:

$$z_{2pu} = z_{1pu} \frac{MVA_2}{MVA_1} \frac{kV_1^2}{kV_2^2}$$

¹⁹ Modelado y Análisis de Sistemas Eléctricos de Potencia en Estado Estacionario". Dr. José Horacio Tovar Hernández, Dr. Héctor Francisco Ruiz Paredes, Dr. Máximo Hernández Ángeles. Apuntes de Programa de Graduados e Investigación en Ingeniería Eléctrica (PGIIE) del Instituto Tecnológico de Morelia. Noviembre 2003

COMPONENTES SIMÉTRICAS

Este método fue desarrollado en 1918 por D. L. Fortescue en "Método de las coordenadas simétricas", y se aplica a la resolución de redes polifásicas, para soluciones analíticas o analizadores de redes. Sirve para cualquier sistema polifásico desequilibrado: en el cual n fasores relacionados entre sí pueden descomponerse en n sistemas de vectores equilibrados (componentes simétricos).

En un sistema trifásico que esta normalmente balanceado, las condiciones desbalanceadas de una falla ocasionan, por lo general, que haya corrientes y tensiones desbalanceados en cada una de las tres fases. Si las corrientes y las tensiones están relacionadas por impedancias constantes, se dice que el sistema es lineal y se puede aplicar el principio de superposición. La respuesta en tensión del sistema lineal a las corrientes desbalanceadas se puede determinar al considerar la respuesta separada de los elementos individuales a las componentes simétricas de las corrientes. Los elementos de interés del sistema son las máquinas, transformadores, líneas de transmisión y cargas conectadas tanto en estrella como en delta²⁰.

Básicamente el método consiste en determinar las componentes simétricas de las corrientes en la falla, y luego encontrar las corrientes y tensiones en diversos puntos del sistema. Es sencillo y permite predecir con gran exactitud el comportamiento del sistema. Su aplicación más importante es el cálculo de fallas desbalanceadas en sistemas trifásicos simétricos, en condiciones de régimen permanente, aunque con una sola falla simultánea por vez. En caso de haber varias fallas la solución puede ser muy difícil o imposible. En tales casos son preferibles los métodos generales, con variables de fase, aplicando los métodos de mallas o nodos.

Esta transformación puede interpretarse como una aplicación particular de las ecuaciones de redes en formulación impedancia (o admitancia). Se trata de una transformación de variables, de la misma forma que en el método de mallas se trabaja con un juego de variable nuevas i' (corrientes de malla) para facilitar la resolución de las variables primitivas i (corrientes de las ramas). Si llamamos A, a la matriz de transformación, queda:

$$i' = A * i$$

Normalmente los "circuitos de secuencia" son simples, se podrán expresar en formulación impedancia (a veces admitancia) y a lo sumo habrá que aplicar el teorema de Thevenin o el de Norton.

De acuerdo con el teorema de Fortescue, tres fasores desbalanceados de un sistema trifásico se pueden descomponer en tres sistemas balanceados de fasores. Los conjuntos balanceados de componente son:

²⁰ Cátedra de Teoría de Circuitos. Apunte de Componentes simétricas. Versión del 29/03/04. Facultad de Ingeniería Buenos Aires Argentina (FIUBA)

- Componentes de secuencia positiva: que consisten en tres fasores de igual magnitud, desplazados uno de otro por una fase de 120° y que tiene la misma secuencia de fase que los fasores originales.
- Componentes de secuencia negativa: que consisten en tres fasores de igual magnitud desplazados en fase uno de otro en 120°, y que tienen una secuencia de fases opuesta a la de los fasores originales.
- Componentes de secuencia cero (homopolares): que consisten en tres fasores iguales en magnitud y con un desplazamiento de fase cero uno de otro.

Trabajando con fasores, la transformación de Fortescue clásica es:

Cuando se resuelve un problema por componentes simétricas, es costumbre designar las tres fases del sistema como *a*, *b* y *c*, de forma que la secuencia de fase de voltajes y corrientes en el sistema *abc*. Así, la secuencia de fase de las componentes de secuencia positiva de los fasores desbalanceados es *abc*. Si los fasores originales son voltajes, se pueden designar como V_a , V_b y V_c . Los tres conjuntos de componentes simétricas se designan por el superíndice o por el subíndices "1" o "+" para las componentes de secuencia positiva, "2" o "-" para las de secuencia negativa y "0" para las componentes de secuencia cero.

Fig. 1.15 Diagrama Fasorial de las Componentes Secuencia Positiva, Negativa y Cero.

Los fasores que representen las corrientes se designaran con una I con superíndice o subíndice como lo de los voltajes.

Como cada uno de los fasores desbalanceados originales es la suma de sus componentes, los fasores originales expresados en términos de sus componentes son:

$$V_{a} = V_{a}^{(0)} + V_{a}^{(1)} + V_{a}^{(2)}$$

$$V_{b} = V_{b}^{(0)} + V_{b}^{(1)} + V_{b}^{(2)}$$

$$V_{c} = V_{c}^{(0)} + V_{c}^{(1)} + V_{c}^{(2)}$$
(1)

Las ecuaciones anteriores nos sirven para descomponer tres fasores asimétricos en sus componentes simétricas.

$$\begin{cases}
 V_b^{(1)} = a^2 V_a^{(1)} \\
 V_b^{(2)} = a V_a^{(2)} \\
 V_c^{(1)} = a V_a^{(1)} \\
 V_c^{(2)} = a^2 V_a^{(2)}
 \end{cases}
 (2)$$

Sustituyendo las ecuaciones del grupo (2); $V_b^{(1)}$, $V_b^{(2)}$, $V_c^{(1)}$ y $V_c^{(2)}$ en las ecuaciones del grupo (1); V_a , V_b y V_c obteniendo:

$$V_{a} = V_{a}^{(0)} + V_{a}^{(1)} + V_{a}^{(2)}$$

$$V_{b} = V_{a}^{(0)} + a^{2} V_{a}^{(1)} + a V_{a}^{(2)}$$

$$V_{c} = V_{a}^{(0)} + a V_{a}^{(1)} + a^{2} V_{a}^{(2)}$$
(3)

En forma matricial se tiene:

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} V_a^{(0)} \\ V_a^{(1)} \\ V_a^{(2)} \\ V_a^{(2)} \end{bmatrix} = A \begin{bmatrix} V_a^{(0)} \\ V_a^{(1)} \\ V_a^{(2)} \\ V_a^{(2)} \end{bmatrix}$$
(4)

Donde se tiene que:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix}$$

Al premultiplicar ambos lados de las ecuación (4), por A^{-1} se tiene:

$$\begin{bmatrix} V_a^{(0)} \\ V_b^{(1)} \\ V_c^{(2)} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = A^{-1} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}$$

Al premultiplicar se descomponen tres fasores asimétricos en sus componentes simétricas.

$$V_{a}^{(0)} = \frac{1}{3} \left(V_{a} + V_{b} + V_{c} \right)$$

$$V_{a}^{(1)} = \frac{1}{3} \left(V_{a} + a V_{b} + a^{2} V_{c} \right)$$

$$V_{a}^{(2)} = \frac{1}{3} \left(V_{a} + a^{2} V_{b} + a V_{c} \right)$$
(5)

Se pueden encontrar las componentes $V_b^{(0)}$, $V_b^{(1)}$, $V_b^{(2)}$, $V_c^{(0)}$, $V_c^{(1)}$ y $V_c^{(2)}$ por medio de las ecuaciones (2). Resultados similares se encuentran para los voltajes línea a línea al remplazar en las ecuaciones anteriores, V_a , V_b y V_c por V_{ab} , V_{bc} y V_{ca} , respectivamente. Como la suma de los fasores de voltaje línea a línea en un sistema trifásico es siempre cero, las componentes de secuencia cero nunca estarán presentes en los voltajes de línea independientemente del grado de desbalanceo. La suma de los tres fasores de voltaje línea a neutro no es necesariamente cero, y los voltajes al neutro pueden contener componentes de secuencia cero²¹.

²¹ "Análisis de Sistemas de Potencia". John J, Grainger, William D. Stevenson JR. McGraw Hill. Primera Edición en Español.

Las ecuaciones anteriores podrían haberse escrito para cualquier conjunto de fasores relacionados y para las corrientes en lugar de los voltajes y se puede resolver analíticamente o gráficamente. Para las corrientes se tiene:

$$I_{a} = I_{a}^{(0)} + I_{a}^{(1)} + I_{a}^{(2)}$$

$$I_{b} = I_{a}^{(0)} + a^{2} I_{a}^{(1)} + a I_{a}^{(2)}$$

$$I_{c} = I_{a}^{(0)} + a I_{a}^{(1)} + a^{2} I_{a}^{(2)}$$

$$I_{a}^{(0)} = \frac{1}{3} (I_{a} + I_{b} + I_{c})$$

$$I_{a}^{(1)} = \frac{1}{3} (I_{a} + a I_{b} + a^{2} I_{c})$$

$$I_{a}^{(2)} = \frac{1}{3} (I_{a} + a^{2} I_{b} + a I_{c})$$

CAUSAS DE FALLAS EN LOS SISTEMAS ELECTRICOS DE POTENCIA

Algunas de las causas más comunes que producen fallas en los sistemas eléctricos son: $^{\rm 22}$

- 1. Fallas en los aislamientos de las maquinas, y cables producidas por envejecimiento, calentamiento o corrosión.
- 2. Fallas de aislamientos en aire o en los materiales de maquinas debido principalmente a sobre tensiones de origen atmosférico, por maniobras de interruptores o contaminación.
- 3. Efectos de humedad en el terreno y en el mismo ambiente.
- 4. Fallas mecánicas en las maquinas, fallas en las líneas de transmisión por efecto del viento, caída de árboles o ramas de árbol en los conductores.
- 5. Errores humanos en la maniobras como aperturas de cuchillas bajo condiciones de carga, falsas maniobras.
- 6. Sobre carga transformadores, generadores y líneas de transmisión.
- 7. Accidentes provocados por animales como son los pájaros en las líneas de transmisión, roedores en cables y tableros.

²² "Fundamentos de Protección de Sistemas Eléctricos por Relevadores." Gilberto Enríquez Harper. Segunda Edición, México 1996. Ediciones Limusa Noriega.

ANALISIS DE FALLAS

La mayoría de las fallas que ocurren en los sistemas de potencia, son fallas asimétricas que consisten en cortocircuitos asimétricos, fallas asimétricas a través de impedancias o conductores abiertos.

El análisis sistemático de fallas balanceadas o desbalanceadas en un sistema eléctrico de potencia o distribución. Estas fallas, normalmente se clasifican en:

Fallas asimétricas²³

- Línea a tierra (LT –Falla Monofásica-).
- Doble línea a tierra (LLT).
- ➢ Entre líneas (LL).
- ➢ Trifásica a tierra (LLL).
- Trifásica sin aterrizar (LLLT).

Generalmente, se considera que las redes de secuencias positiva y negativa son idénticas, sin considerar las fuentes de voltaje, las cuales solo existen en la red de secuencia positiva, debido a que se considera condiciones de prefalla balanceadas.

La red de secuencia cero dependerá de la red de alimentación (acoplamientos mutuos) y del tipo de generadores y transformadores incluidos en el sistema eléctrico.

El procedimiento para el estudio de fallas a través del corto circuito:

- 1. Dibujar el diagrama correspondiente al punto de falla mostrando todas las conexiones de las fases en dicho punto, se indicaran las corrientes, voltajes e impedancias considerando su polaridad y dirección.
- 2. Escribir las ecuaciones del punto de falla que relacionan corrientes y voltajes para el tipo de falla en estudio.
- 3. Transformar las corrientes y/o voltajes del punto anterior de fases ABC a secuencia 012 usando las transformaciones correspondientes de las componentes simétricas.
- 4. Examinar las corrientes de secuencia, para determinar la conexión apropiada de las terminales "F" (punto de falla) y "N" (neutro) de las redes de secuencia para satisfacer las condiciones que se indiquen en el punto tres.

²³ "Análisis de Sistemas de Potencia". John J, Grainger, William D. Stevenson JR. McGraw Hill. Primera Edición en Español.

5.

- 6. Examinar los voltajes de secuencia para determinar la conexión apropiada de las terminales "F" y "N" de las redes de secuencia agregando impedancias (si se requieren) para satisfacer las condiciones de los puntos tres y cuatro. Al quedar interconectados las redes de secuencia deberá cumplirse simultáneamente las condiciones de los puntos cuatro y cinco.
- ➤ Línea a tierra (LT –Falla Monofásica-).

Universidad Nacional Autónoma de México

Doble línea a tierra (LLT).

➢ Entre líneas (LL).

> Trifásica a tierra (LLL).

Diagrama de la Falla	Condiciones de Frontera	Conexión de la Red de Secuencia para la Falla
I_{a} I_{b} I_{c} I_{c} I_{c}	$I_a = I_{a1}$ $I_a = I_{a1}$ $I_a = I_{a1}$ Corriente de Secuencia: $I_{a1} = \frac{E_{a1}}{Z_1}$ Corriente de Falla: $I_a = I_{a1}$ $Z_f = \text{es la impedancia}$ de arqueo si la falla es sólida, su valor es cero.	E_{a1}
Fig. 1.21 Diagrama, Condicion Tierra	es y Conexión de la S	ecuencia para una Falla Trifásica a

Capitulo II

Huecos de Tensión

LOS HUECOS DE TENSIÓN

DEFINICIÓN

Una interrupción del suministro de energía eléctrica puede representar una gran pérdida económica, para todos aquellos consumidores afectados por dicha interrupción. El número de las interrupciones se han tratado de reducir en la actualidad; es por ello que los huecos de tensión han ido cobrando relevancia, ya que es un hecho comprobado que sólo las interrupciones, sino también las caídas o subidas de tensión son capaces de provocar el mal funcionamiento, e incluso la parada, de algunos equipos.

Hueco de la tensión [Sag (en América) ó Dip (en Europa)]: Un hueco de tensión se puede definir como una reducción del valor eficaz de la tensión, a frecuencia de operación, durante un periodo de tiempo que puede variar entre 10 ms y 1 minuto. Un hueco de tensión se caracteriza, básicamente, por la magnitud de la tensión remanente (porcentaje de tensión respecto al valor nominal), por el tiempo de duración, y por la diferencia entre la fase de la tensión antes y durante el hueco de tensión.

Existen huecos de voltaje complejos, compuestos por huecos simples que afectan a 2 ó 3 fases de un sistema trifásico. La norma tampoco propone un límite de números de huecos. Únicamente indica que puede haber desde algunas decenas hasta mil huecos al año, y que la mayoría son de menos de un segundo y menos del 60% de profundidad.

CLASIFICACIÓN

Se puede clasificar en:

- Hueco no rectangular
- Trifásico:

El la tabla siguiente muestra una posible clasificación de los huecos de tensión según su duración.

CLASIFICACIÓN DE HUECOS DEL TENSIÓN		
Tipo del hueco	Duración	
Instantáneo	de 0.5 un 30 ciclos	
Momentáneo	de 30 ciclos un 3 segundos	
Temporal	de 3 segundos a 1 minuto	

CARACTERISTICAS¹

- Magnitud del Sag: Es la tensión eficaz existente durante el hueco de tensión (voltaje RMS restante) en por ciento o por unidad (p.u) con respecto a la tensión pre-hueco (UH). (En caso de huecos no rectangulares, esta magnitud es función del tiempo).
- Voltaje Complejo Restante: Número complejo que representa el Sag en una fase. Su valor absoluto es la magnitud del Sag y el argumento representa el desplazamiento o salto del ángulo de fase.
- Desplazamiento o Salto del Ángulo de Fase (Fenómeno): Un Sag causado por un corto circuito en un sistema no solamente tiene un descenso en la magnitud del voltaje sino también un cambio en el ángulo de la fase del voltaje. Dos fenómenos contribuyen para el cambio del ángulo de fase. Una diferencia en X/R relación entre la fuente y el alimentador de la falla, resultado un desplazamiento del ángulo de fase en el Punto de Acoplamiento Común (PCC –un ejemplo de este punto es un BUS-) entre la falta y la carga. Y el desequilibrio de la fase debido al desequilibrio de las fallas.
- Desplazamiento o Salto del Ángulo de Fase (Cuantifico): El desplazamiento en tiempo de la duración del evento de la forma de onda del voltaje relativo al pre-evento de la forma de onda. Un desplazamiento positivo en el ángulo de fase indica que el ángulo de fase del voltaje durante el evento esta adelantado respecto al pre-evento de voltaje. Un desplazamiento negativo indica que el ángulo de fase durante el evento esta atrasado respecto al preevento de voltaje.

¹ Perturbaciones en la onda de tensión: Huecos [sag] y Sobretensiones [swell]. Calidad del servicio eléctrico [Power Quality]. Girona, marzo 11 de 2003. Juan José Mora Flórez

Universidad Nacional Autónoma de México

- Desplazamiento o Salto del Ángulo de Fase en un sistema desequilibrado: La relación X/R de el alimentador es generalmente más pequeña que la relación X/R de la fuente en sistemas de distribución, nosotros esperamos un desplazamiento negativo en el ángulo de fase durante un Sag equilibrado. El argumento del voltaje característico, nunca es cero debido a una diferencia entre la fuente y el alimentador.
- Máximo Desplazamiento o Salto del Ángulo de Fase: Máximo desplazamiento en el ángulo de fase, en caso de que el desplazamiento de fase no fuese constante durante la falla.
- Magnitud Mínima: Es el valor de magnitud del Sag más bajo, entre el inicio y la recuperación del Sag.
- *Voltaje de Descenso:* Es la diferencia entre el voltaje RMS del pre-evento y el voltaje de duración del evento, expresado en por ciento o en por unidad.
- *Voltaje Máximo de Descenso:* Es el valor mas grande de voltaje de descenso entre el inicio y la recuperación del Sag.
- *Voltaje Perdido (tensión perdida):* Es la diferencia entre el voltaje real durante el evento como él que habría sido si el evento no había tenido lugar.
- *Voltaje Perdido Complejo:* Un número complejo que representa el voltaje perdido de un Sag en una fase. Se define como la diferencia en el plano complejo entre el voltaje del pre-evento y el voltaje durante el Sag.
- Magnitud el Voltaje Perdido: Valor RMS del voltaje perdido. En caso de un Sag no rectangular, la magnitud del voltaje perdido esta en función del tiempo.
- *Magnitud Máxima del Voltaje Perdido:* La magnitud máxima del voltaje perdido entre el inicio y la recuperación del Sag.
- Post-Falla del Sag: Fenómeno debido a una falla de corto circuito, el voltaje permanecerá fuera del rango de operación normal, incluso después de que la falla se ha eliminado. La reaceleración del motor puede causar un Sag extendida si la carga de motor es grande con respecto a la impedancia del sistema después de que la falla se eliminado. El Sag de post-falla puede durar varios segundos y el voltaje estará entre 60% y 90%.
- Sag No-rectangular: Un Sag donde la magnitud contra el tiempo no es constante. Las cargas dinámicas, por ejemplo los motores de inducción, es a menudo la causa de tales fenómenos.
- *Caída de tensión:* Es la diferencia entre la tensión eficaz pre-hueco y la tensión eficaz durante el hueco (ΔU). (En caso de huecos no rectangulares, también es función del tiempo).

• Duración del hueco de tensión: Tiempo durante el cual la tensión eficaz es inferior al 0,9 p.u. y superior 0,1 p.u. de la tensión nominal (Δt).

que ocurre una falla.

Purpose of the second s

Universidad Nacional Autónoma de México

Salto del ángulo de fase de $-\pi/4$

Fig. 2.8 Salto o desplazamiento del ángulo de fase: Es la diferencia entre los ángulos de fase de las tensiones fundamentales existentes antes y durante el hueco de tensión.

CAUSAS Y EFECTOS

Las causas más comunes de los huecos de tensión en las redes de distribución son los cortocircuitos asociados a fenómenos de tipo atmosférico (rayos, hielo, viento), a la degradación de los aislantes, a contactos provocados por animales, o a accidentes laborales (transporte, construcción). A estas causas se deben añadir el arranque de grandes motores y las variaciones bruscas de consumo. No obstante, cabe destacar que los huecos de tensión producidos por estas dos últimas causas son de larga duración (en comparación a los huecos producidos por contactos a tierra o entre conductores), presentan una pequeña reducción del valor eficaz y afectan sólo a los puntos más cercanos a las fuentes que provocan estas perturbaciones.

Dada la diversidad de causas y la dificultad que representa su completa erradicación, los huecos de tensión constituyen una de las perturbaciones más frecuentes. Sus efectos son muy variados y dependen principalmente de la sensibilidad del equipo conectado y de las características de los propios huecos de tensión. La proliferación de equipos electrónicos sensibles a los huecos de tensión, como autómatas programables y accionamientos de velocidad regulable, ha provocado un creciente interés por el estudio de estos fenómenos y su mitigación.²

En el caso de arranque de motores asíncronos, cuando se produce un hueco de tensión, disminuye el par del motor, lo cual es aproximadamente proporcional al cuadrado de la tensión, dando lugar a una ralentización (que se prolonga hasta que se recupera la tensión).

² J.C. Das, "Effects of momentary voltage dips on the operation of induction and synchronous motors," *IEEE Trans. on Industry Applications*," vol. 26, no. 4, pp. 711-718, July/August 1990.

Cuanto mayor sea la duración y el valor del hueco de tensión, mayor será la ralentización del motor.

Este proceso tiene lugar de formas simultanea en todos los motores de la instalación industrial afectada por el hueco. Si la duración del hueco es mayor de un segundo, la corriente de reaceleración de los motores será del orden semejante a la del arranque, es decir, de cinco a seis veces la intensidad nominal. Ello puede dar lugar a un nuevo hueco de tensión que en el peor de los casos, impedirá la reaceleración.

Para el arranque de motores síncronos, cuando se produce un hueco de tensión, disminuye el par del motor que es proporcional a la tensión, y pude llegar a caer fuera de sincronismo si su aceleración es elevada y la inercia del motor pequeña.

Cuando se habla de motores de continuidad alimentado por tiristores, cuando el motor esta alimentado por un puente de rectificación controlada, con inversión de marcha mediante frenado por recuperación se puede producir problemas importantes.

En tal caso, si se requiere cambiar el sentido de giro del motor, hay que actuar sobre la intensidad alimentación y la corriente de excitación, de forma que el motor, conservando aun su primitivo sentido de giro, actúa así como generador.

Si en el tiempo de frenado se origina un hueco de tensión, se produce la fusión de los fusibles de protección de ciertos tiristores.

• CAUSAS.

- 1. Descargas atmosféricas,
- 2. Cortocircuitos,
- 3. Contaminación de aisladores
- 4. Las fallas más comunes son las monofásicas (LT),
- 5. Las fallas más severas las trifásicas (LLL),
- 6. Arranque de grandes motores de inducción
- 7. Cambios de Carga

Severidad de los Huecos de Tensión, depende de:

- 1) La puesta a tierra del sistema
- 2) La impedancia y localización de la falla
- 3) Las conexiones de los transformadores
- 4) La forma de actuación de las protecciones
- 5) La conexión de la carga.

Capitulo III

Predicción de los Huecos de Tensión

PREDICCIÓN DE HUECOS DE TENSIÓN

MÉTODO DE POSICIONES DE FALLA.

Las compañías eléctricas y los usuarios se están preocupando cada vez más por cuestiones como la calidad de la energía, por ello que en países como el Reino Unido se están implementando métodos para la predicción de los Sags, que como ya se ha mencionado pueden producir graves daños a los equipos de los usuarios.

El método de posiciones de falla se utiliza generalmente para modelar y simular en la red eléctrica, fallas que pueden ocurrir en distintos puntos. Aunque no hay reglas claras y generales para saber que partes de la red deben ser analizadas, estas partes serian las partes en donde los Sags presentan caídas significativas.

Este método es una manera directa de determinar el número probable de Sags así como sus características, se basa básicamente en la aplicación de fallas de corto circuito balanceados y desbalanceados en un número de posiciones a lo largo de las líneas y barras del sistema eléctrico.

Entre más posiciones analizadas haya a lo largo del sistema, las aproximaciones que se obtengan serán más cercanas a la realidad, recordando que estos métodos se basan en la probabilidad y estadística entre mayor sea el muestreo mayor será la exactitud de los resultados obtenidos.

Para determinar la tasa de falla asociada a cada bus del sistema, se tienen que tomar todas las líneas que llegan a un bus, y como cada línea esta conectada a dos barras la tasa de falla de cada línea se debe dividir entre dos y se asigna esta tasa de falla a cada uno de los buses de sus extremos, por lo que se va sumando la mitad de la tasa de falla de una línea a cada bus que llegué.

La tasa de falla de cada línea se obtiene por medio de datos que se encuentran en los archivos de las compañías eléctricas, que a través de tantos años de operación del sistema han ido registrando información importante sobre las fallas que ocurren en cada línea del sistema, con características como tipo de falla (trifásica, fase-tierra, entre fases, entre otras), el número de ocurrencia anual de cada tipo de falla, así como la magnitud del Sag que ocurre durante cierta falla.

Con lo descrito anteriormente podemos decir que la fórmula para determinar el punto de falla en una barra *X* es la siguiente.

$$TF = \sum_{i=1}^{n} \frac{TF_{i}}{2} \left[\frac{Eventos}{A\tilde{n}o} \right]$$
(1)

Donde:

TF = La tasa de falla anual del bus. n = Número de líneas que hay en el bus. TF_i = Tasa de falla anual de cada línea.

Con la fórmula anterior se calculan todas las tasas de falla anual para cada uno de los buses del sistema. Para determinar voltajes durante la falla, se debe considerar la superposición de los estados de pre-falla y durante la falla, así se tiene:

$$\mathbf{V}_{B} = \mathbf{E}_{B} - \left[\mathbf{Z}_{B}\right] * \mathbf{I}_{B}$$
(1.2)

Donde:

 V_B = Vector de voltajes de barra durante la falla.

 E_B = Vector de voltajes de barra pre-falla

 I_B = Vector corriente de falla.

Si se considera que el único bus fallado es el bus *p*, se puede escribir a partir de:

$$\begin{bmatrix} V_1 \\ \vdots \\ V_p \\ \vdots \\ V_p \end{bmatrix} = \begin{bmatrix} E_1 \\ \vdots \\ E_p \\ \vdots \\ E_p \end{bmatrix} - \begin{bmatrix} Z_{11} & \cdots & Z_{1p} & \cdots & Z_{1n} \\ \vdots & & \vdots & & \vdots \\ Z_{p1} & \cdots & Z_{pp} & \cdots & Z_{pn} \\ \vdots & & \vdots & & \vdots \\ Z_{n1} & \cdots & Z_{np} & \cdots & Z_{nn} \end{bmatrix} \bullet \begin{bmatrix} 0 \\ \vdots \\ I_p \\ \vdots \\ 0 \end{bmatrix}$$

Donde:

Voltaje del bus fallado.

$$V_{p} = E_{p} - Z_{pp} * I_{p}$$
(1.3)

Voltaje en un bus *m* no fallado

$$V_m = E_m - Z_{mp} * I_p \tag{1.4}$$

En el punto de falla se tiene:

$$V_p = Z_f * I_p \tag{1.5}$$

Donde Z_f es la impedancia de falla.

Sustituyendo 1.5 en 1.3 se obtiene la expresión para la corriente en el bus fallado

$$I_{p} = \frac{E_{p}}{Z_{pp} + Z_{f}}$$
(1.6)

Sustituyendo 1.6 en 1.3 y 1.4 se obtiene la expresión para el voltaje en el bus m no fallado durante la falla en el bus p

$$V_{m} = E_{m} - \frac{Z_{mp}}{Z_{pp} + Z_{f}} * E_{p}$$
(1.7)

El método propone ciertas simplificaciones ya que los resultados arrojados son predictivos:

- Los voltajes de pre-falla se asumirán como $1 \angle 0^{\circ}$ ya que al ser un estudio basado en valores probables se puede tomar $1 \angle 0^{\circ}$ como un valor probable.
- La $Z_f = 0$ ya que al impedancia de falla no es considerada para efectos de calculo de valores residuales
- Para el calculo del voltaje sólo se tomaré en cuenta el modulo del voltaje.

Con las simplificaciones anteriores se tiene que el voltaje en el bus fallado es cero, e introduciendo una nueva notación para los cálculos de voltajes en barras del sistema (m) durante una falla en un bus p se tiene:

$$V_{mp} = 1 - \frac{Z_{mp}}{Z_{pp}}$$
 (1.8)

Donde:

 V_{mp} = Voltaje en el bus *m* durante falla trifásica en el bus *p*.

 Z_{mp} = Impedancia de transferencia entre el bus *m* y el bus *p*, elemento *m* x *p* de la matriz *Z* de barras

 Z_{pp} = Impedancia de Thevenin vista desde el punto de falla, elemento p x p de la matriz Z del bus (se puede ver el Apéndice A, para saber más de la *matriz Z bus*).

De esta forma se va formando una matriz que se llamará matriz de *Voltaje Sag o Vsag*, donde cada columna *n* representa el bus donde se produce la falla y cada fila *m* es

un vector que contiene el voltaje en el bus m durante una falla en cada uno de los buses del sistema.

Se debe destacar que de la construcción de la matriz Z bus, se obtiene una matriz llena, es decir, sin elementos nulos, esto implica que en cualquier bus que ocurra una falla, esta será vista en mayor o menor medida por todos los buses del sistema.

Para determinar el número esperado de Sags por año, primero se realiza una clasificación según la magnitud del voltaje residual, esto se puede hacer agrupando en diez tramos el rango del voltaje en p.u. como en la siguiente tabla:

Tramo	Rango en P.U.
1	0-0.1
2	0.1-0.2
3	0.2-0.3
4	0.3-0.4
5	0.4-0.5
6	0.5-0.6
7	0.6-0.7
8	0.7-0.8
9	0.8-0.9
10	0.9-0.95

Con este criterio y a partir de la matriz Vsag de $n \times n$ se debe calcular la frecuencia con que se presentan los voltajes para cada bus de la matriz anterior. Para esto se construye una nueva matriz, esta vez de $(n) \times (n+1)$, que está compuesta de la matriz Vsag transpuesta más una columna que corresponde a la tasa de falla de cada bus.

Si se esta analizando un bus m y se observa que los voltajes se encuentran en el tramo n se espera un número de Sags que será la suma de las tasas de falla de todos los voltajes en p.u que estén dicho tramo.

Bajo este algoritmo se recorre cada columna de la nueva matriz, si el voltaje esta en el tramo 1, se suma la tasa λ correspondiente al bus fallado que provocó este voltaje, esto se repite para cada tramo. Con ello se obtiene el número de eventos por año para cada tramo de niveles de Sag en p.u, para cada uno de los buses del sistema.

El desarrollo para casos prácticos solo se realiza para fallas trifásicas, sin tomar en cuenta las demás fallas que ocurren en el sistema, dado que los valores arrojados son muy similares a los que se obtienen haciendo el análisis para todo tipo de falla.

Para esta nueva etapa se necesita trabajar con la matriz Z bus de secuencia positiva, negativa y cero. La matriz Z bus de secuencia negativa se considera igual a la de secuencia positiva, por lo que se debe obtener el matriz Z de barra de secuencia cero.

Para determinar las tasas de falla asociada a cada barra, se debe tener en cuenta la ocurrencia de cada tipo de falla en el sistema. En un sistema la mayor cantidad de fallas es de tipo monofásica, seguida de las bifásicas a tierra y luego las bifásicas y trifásicas, el criterio que se utiliza en términos generales se presenta en la siguiente tabla:

Tipo de Falla	Porcentaje
Monofásica	80
Bifásica	5
Bifásica-g	10
Trifásicas	5

Por lo que para determinar la tasa de falla para cada tipo de falla especificado solo se debe sacar el porcentaje correspondiente a partir de la tasa de falla anual que se ha obtenido de los registros de la compañía eléctrica.

Por tratarse de fallas asimétricas o desbalanceadas, se utilizaran las redes de secuencia positiva, negativa y cero para los cálculos.

METODO DE DISTANCIA CRÍTICA

El método de distancia crítica se basa en el concepto del divisor de voltaje que esta correctamente y fácilmente aplicable a una red radial. El método no se puede aplicar a una red muy compleja. Por lo que la aplicación de este método es algo limitada. Su aplicación es más conveniente para los cálculos manuales ya que la cantidad de datos son pocos y la complejidad de los cálculos no es mayor. Se han hecho comparaciones de resultados con el método de posiciones de falla y se ha demostrado que el método de distancia crítica es una alternativa aceptable para casos donde no se cuenta con datos del software o del sistema para cálculos más exactos

El método de distancia crítica no calcula el voltaje de falla en una posición dada, sino la posible posición de la falla para un voltaje dado. Usando algunas expresiones simples, es posible descubrir en que parte de la red una falla produciría un valor dado de Sag. Una falla más cercana a la carga causara un Sag más severo.

Considerando el esquema anterior como un modelo del divisor de voltaje, a partir de el se puede comenzar a desarrollar el análisis del método de distancia crítica. Si asumimos que el voltaje E es 1 p.u. entonces el voltaje en el punto común entre la falla y la carga (*PCC*) durante la falla será.

$$V_{sag} = \frac{Z_F}{Z_F + Z_S}$$

Donde Z_F es la impedancia entre *PCC* y la falla y Z_S es la impedancia de la fuente a *PCC*. $Z_F = zL$ que es la impedancia del alimentado por unidad de longitud, donde z es la impedancia del alimentador en p.u y L la distancia entre *PCC* y la falla. Si se define la distancia critica como a continuación, entonces la magnitud del voltaje en *PCC* cae debajo del *Voltaje Crítico V* siempre que la falla ocurra a una distancia *Lcrit* de *PCC*, entonces la distancia crítica en función del voltaje crítico es:

$$L_{crit} = \frac{Z_s}{z} x \frac{V}{1 - V}$$

Una expresión más exacta para el cálculo de la distancia crítica tiene que considerar que el alimentador y la impedancia de la fuente son complejas. Considerando lo anterior $Z_S = Rs + j Xs$; $Z_F = j zL y z = r + j x$. Obtenemos el voltaje crítico en función de la distancia entre *PCC* y la falla.

$$V = \frac{\lambda}{1+\lambda} x \frac{1}{\sqrt{1 - \frac{2\lambda(1 - \cos\alpha)}{(1-\lambda)^2}}}$$

Con λ como medida de distancia a la falla.

$$\lambda = \frac{Z_F}{Z_S} = \frac{zL}{Z_S}$$

Y α el ángulo en el plano complejo entre la fuente y la impedancia del alimentador, el "ángulo supuesto de la impedancia"

$$\alpha = \arctan\left(\frac{X_s}{R_s}\right) - \arctan\left(\frac{x}{r}\right)$$
$$Z_s = Rs + j X_s; \ z = r + j x.$$

Entonces la expresión para el cálculo de la distancia crítica esta dado por:

$$L_{crit} = \frac{Z_s}{z} x \frac{V}{1 - V} \left[\frac{V \cos \alpha - \sqrt{1 - V^2 \sin^2 \alpha}}{V + 1} \right]$$

La primera parte de esta ecuación es la expresión para la distancia crítica. La diferencia entre la expresión exacta y aproximada es el factor entre corchetes en el lado derecho.

$$k = \frac{V\cos\alpha + \sqrt{1 - V^2 \sin^2\alpha}}{1 + V}$$

Entre más se desvié este factor de uno, mayor es el error al utilizar la expresión simplificada y este error se calcula como (1-k)*100% y este error lo podemos ver en la gráfica Fig. 3.2 el error es pequeño en la mayoría de los casos a excepción de sistemas con valores de α grandes como en cables subterráneos o sistemas de distribución.

Fig. 3.2 Índice de error que se obtiene al usar la ecuación simplificada para el calculo de la distancia critica

Una corrección de primer orden al factor K es:

$$V = 0$$

$$k \approx \left\{ V \cos \alpha + \left(1 - \frac{1}{2} V^2 \sin^2 \alpha\right) \right\} (1 - V)$$

$$k \approx 1 - V (1 - \cos \alpha)$$

Facultad de Ingeniería

La expresión siguiente se puede utilizar para calcular la distancia crítica en sistemas con diferencias grandes en cociente de X/R:

$$L_{crit} = \frac{Z_s}{z} x \frac{V}{1 - V} \{ 1 - V (1 - \cos \alpha) \}$$

La constante de análisis α demuestra que para el equipo trifásico los Sags pueden ser de cuatro tipos. Estos cuatro tipos en forma de fasores. Así el primer tipo de Sag el tipo A se debe a una falla trifásica, el tipo B es debido a una falla monofásica, los tipos C y D son debidos a las fallas monofásicas y entre fases. El paso de una falla a través de un transformador no introduce nuevos tipos de Sag, sino que sólo cambia el tipo de hueco entre los ya descritos y en algunos casos puede cambiar la magnitud del Sag.

CLASIFICACION DE LAS BARRAS (AREA DE VULNERABILIDAD).

Los huecos de tensión normalmente afectan cada fase de un sistema trifásico en forma diferente. Una, dos o las tres fases pueden tener tensiones lo suficientemente bajas como para que sean clasificadas como huecos de tensión, perjudiciales para cualquier condición de cortocircuito. Aun si las tres fases experimentan un hueco de tensión, las magnitudes de estos huecos a menudo serán diferentes. Por esta razón no es evidente saber cual es la magnitud que debe ser tomada en cuenta, para el hueco de tensión.

Un enfoque adoptado, es el de presentar como magnitud del hueco, la tensión más baja de las tres ya sea por fase o compuesta, es decir, una carga trifásica será sensible a la tensión mas baja de las tres, reportando un sólo hueco de tensión para esa falla.

El conjunto de barras con problemas de fallas en la red, producen en la barra de estudio una tensión menor o igual que el *Vbarra* predeterminado, estas formarán el *Área de Vulnerabilidad* para esa condición de falla y ese ΔV admisible.

En el caso de líneas y cables, su influencia dependerá de la longitud del análisis, por lo cual esto se tendrá en cuenta. Esto ocurre si, por ejemplo, en un sistema radial tenemos que, para un tipo de cortocircuito estudiado un extremo de la línea o cable pertenece al conjunto de barras del Área de Vulnerabilidad (Barra 1) y el otro extremo no (Barra 2).

Se cumple que:

 ΔV_{HT} admisible $< \Delta V_1$ ΔV_{HT} admisible $> \Delta V_2$

Donde ΔV_1 y ΔV_2 son las tensiones en la barra estudio cuando se produce la falla en las barras *Barra 1* y *Barra 2* respectivamente, y el ΔVHT es el Voltaje del Sag, (Voltaje del Hueco de tensión).

Por lo tanto *Barra 1* pertenece al área de Vulnerabilidad y *Barra 2* queda fuera de esta área. Queremos determinar entonces que cantidad de kilómetros de esta canalización están comprendidos dentro del Área de Vulnerabilidad. Si asumimos un comportamiento lineal de la tensión, tendremos:

$$X = \left(\frac{\Delta V_{HT \ admissible}}{\Delta V_{1} - \Delta V_{2}} \right) Km$$

Donde X serán los *Kilómetros (Km.)*, de canalización que pertenecen al Área de Vulnerabilidad.

Para sistemas mallados es necesaria alguna adaptación. Consideraremos dos tipos de mallas o loop desde el punto de vista de los huecos de tensión:

- Loop 1: Donde una barra se alimentan desde una misma barra a través de dos líneas o cables paralelos.
- Loop 2: Donde una barra se alimenta desde dos barras diferentes.

El loop 1, es una configuración del sistema que reduce enormemente el número de interrupciones pero a menudo aumenta el número de huecos profundos.

Partimos del caso general en que tenemos una canalización paralela entre Barra 1 y Barra 2, de distancias totales respectivas D1 y D2, las cuales suponemos de impedancias por unidad de longitud diferentes.

Luego de calcular las tensiones en la barra de estudio para un determinado cortocircuito, obtenemos que la *Barra 1* pertenece al área de vulnerabilidad en tanto que *Barra 2*, no pertenece a la misma y se plantea la situación de localizar las distancias criticas perturbadoras en ambas líneas.

Trabajando con la línea equivalente:

$$Z_{eq} = \frac{(Z_1)(Z_2)}{Z_1 + Z_2}$$

Z1 = Impedancia de línea 1.

La variación de la tensión para la línea equivalente responde al gráfico anterior:

$$V = V_1 + \frac{(V_2 - V_1)}{D_{eq}}d$$

Interpolando linealmente es posible encontrar el valor de distancia crítica para la línea equivalente (d_{creq}), donde se produce la caída de tensión limite.

$$V = V_{cr}$$
$$d_{creq} = \left(\frac{V_{cr} - V_1}{V_2 - V_1}\right) Deq$$
$$Z_{cr} = \left(\frac{d_{creq}}{Deq}\right) Zeq$$

Para este valor de distancia crítica tendremos un valor de impedancia crítica equivalente asociado a la misma. Resta ahora encontrar los puntos donde las líneas 1 y 2 se hacen iguales a Zcr y entonces tendremos la distancia crítica asociadas en cada caso:

$$\begin{split} & \left(\frac{d_{1cr}}{D_1}\right) Z_1 = Z_{cr} = \left(\frac{d_{creq}}{D_{eq}}\right) Z_{eq} \\ & \left(\frac{d_{2cr}}{D_2}\right) Z_2 = Z_{cr} = \left(\frac{d_{creq}}{D_{eq}}\right) Z_{eq} \end{split}$$

Sustituyendo Z_{eq} y despejando se obtiene:

$$\begin{split} d_{1cr} &= D_1 \Biggl(\frac{V_{cr} - V_1}{V_2 - V_1} \Biggr) \Biggl(\frac{Z_2}{Z_1 + Z_2} \Biggr) \\ d_{2cr} &= D_2 \Biggl(\frac{V_{cr} - V_1}{V_2 - V_1} \Biggr) \Biggl(\frac{Z_1}{Z_1 + Z_2} \Biggr) \end{split}$$

En particular si la longitud e impedancias son iguales, entonces:

$$d1cr = D\left(\frac{V_{cr} - V_1}{V_2 - V_1}\right)\left(\frac{Z_2}{Z + Z}\right) = \frac{D}{2}\left(\frac{V_{cr} - V_1}{V_2 - V_1}\right)$$
$$d_{2cr} = d_{1cr}$$

El loop 2, es una configuración del sistema para la cual su estudio se reduce al caso inicial, donde la *Barra 1* pertenece a la Red Perturbadora y *Barra 2* y *Barra 3* esta fuera de la misma.

En resumen, en esta primera etapa tendremos registradas, para cada condición de cortocircuito, un Área de Vulnerabilidad o Red Perturbadora donde al menos una de las tensiones post-falla en la barra estudio es menor o igual al ΔV admisible. Cada Área de Vulnerabilidad contiene todas las barras con sus datos, tal que para el evento de falla correspondiente, se produce un hueco de tensión en la barra estudio por debajo del valor admisible.

DETERMINACIÓN DEL NÚMERO ESTIMADO DE HUECOS DE TENSIÓN

Como ya se dijo, se estiman los huecos de tensión de la barra estudio teniendo en cuenta la magnitud o profundidad del hueco. Una vez determinadas las zonas o áreas

de Vulnerabilidad para la barra estudio, pasamos a trabajar con los datos de las instalaciones en estas zonas de la red.

Determinar los grupos de instalaciones: las diferentes instalaciones, tales como líneas, cables, estaciones, generadores y motores de un área de vulnerabilidad se agrupan teniendo en cuenta características comunes. Estas características comunes se seleccionan haciendo la *hipótesis* de que un mismo tipo de instalaciones (una línea por ejemplo) con igual tensión y antigüedad tienen el mismo desempeño de fallas y por ende igual índice. Esta forma de agrupar servirá posteriormente para cuantificar y obtener el aporte en cantidad de huecos de tensión de dicho grupo de instalaciones.

Análisis de Índices de Fallas: Convertir los datos del área de vulnerabilidad en número de huecos esperados en un período de tiempo. Basado en datos históricos de las ocurrencia de fallas por cada componente del sistema en términos del número de fallas esperado por año para las fallas fase-tierra, bifásicas y trifásicas. El número esperado de huecos de tensión se encuentra simplemente sumando los productos de los índices de fallas por los kilómetros o cantidad de todos los grupos de instalaciones dentro del Área de Vulnerabilidad.

Índices de Falla de instalaciones: Con base en los registros de desempeño del sistema que rutinariamente se llevan por parte de las Empresas Eléctricas, es posible contar con el 'universo' de eventos y fallas ocurridas en la red eléctrica. En algunos casos el dato que se obtiene es la función protectiva que actúo del sistema de protección (sobrecorriente a tierra, sobrecorriente bifásica o trifásica, tensión homopolar, sobrecorriente de neutro). También puede tratarse de fusibles quemados, reconexiones exitosas, actuación de seccionalizadores y recientemente se dispone de algunas partes de los sistemas de AT de registros de eventos con gráficos detallados de tensión y corriente. Por mas que muchas veces no se puede determinar la causa de los defectos 'disparos desconocidos', si es posible en la mayoría de los casos determinar que tipo de defecto y donde ocurrió, lo que resulta suficiente para procesar el dato dirigido a estudios de huecos de tensión.

Esto se ha sistematizado en distintas partes del mundo generalmente bajo la forma de bases de datos computarizadas, permitiendo la auto-evaluación mediante el calculo de los distintos índices de calidad normalizados internacionalmente en lo que refiere tanto a interrupciones, cortes y en casos particulares registros de eventos.

Todo este volumen de información almacenada en computadoras es posible organizarla de forma sistemática para que se adecue a la obtención de índices y tasas que serán las que usaremos para la determinación del valor estimado de huecos. Es necesario ajustar estos datos a las características del problema a resolver, para lo cual se adoptarán las siguientes hipótesis simplificativas:

a) Una primera hipótesis se apoya en el hecho de que aproximadamente el 85 % de las fallas cuentan con reconexión exitosa. Este tipo de fallas con reconexión exitosa, posiblemente no estén registradas en el sistema de información, pero para nuestro estudio será imperioso considerarlas ya que el simple hecho de que haya existido una falla ya implica la potencialidad de hueco de tensión independientemente de que la falla haya sido fugaz o no. Esto se podría considerar aproximadamente incrementando las fallas efectivamente registradas

(fallas donde el interruptor quedo con polos abiertos) en un factor 100/15 para incorporar las fallas con reconexión exitosa. De esta forma este índice será valido solo para estudios de huecos y en general a niveles de Media tensión en distribución. A nivel de sistemas de transmisión y Alta Tensión de Distribución este porcentaje de 85 % de reconexiones exitosas sigue siendo valido.

- b) Una segunda hipótesis que realizaremos es que instalaciones de igual tensión tendrán el mismo comportamiento (independientemente del diseño, geometría y de los materiales con que fue construida) y solo podrá verse afectada por su estado de conservación (antigüedad), esto es que las instalaciones más viejas tendrán un índice de fallas mayor que las instalaciones nuevas. Esta hipótesis es valida en áreas geográficas relativamente reducidas homogéneas), con escasa incidencia de los accidentes geográficos aproximadamente constantes para toda el área. Para el caso de una región más grande será necesario la división de la red en regiones aproximadamente 'homogéneas' en su comportamiento, o geografía. De todas maneras si se cuenta con datos más detallados de índices que inclusive podrían llegar a asociar a cada instalación su índice propio, esto mejoraría mucho la calidad de los resultados.
- c) Es posible entonces contar con datos como: instalación donde ocurre la falla (ubicación), tensión, tipo de falla. A estos datos se le podrían anexar datos sobre la edad de la instalación, clasificando p.ej. como nuevas las que estén dentro de la primer mitad de su vida útil y viejas a las que estén en la segunda mitad. A su vez este dato podría establecer una diferencia entre los índices fallas de una instalación nueva y una vieja. Para realizar un estudio estimativo de huecos en principio seria suficiente con este desglose, por que cuanto mayor cantidad y calidad de datos redundarían en una mejor precisión.

Grupos de instalaciones considerados:

Líneas aéreas: _≺	Nuevas / viejas Transmisión / Distribución Tensión (kV) Tipo de falta (L-G,L-L,LLL)
Cables subterráneos: [≺]	Nuevas / viejas Transmisión / Distribución Tensión (kV) Tipo de falta (L-G,L-L,LLL)

Cálculo de la Tasa de falla

Sean:

fi = Tipo de falla (L-G, L-L, LLL)

ti = Periodo móvil de tiempo considerado (año)

- *ei* = Elemento de la red (línea, cable, transformador, generador, motor) asociado a su tensión de servicio
- *nefi* = Número de fallas tipo *"fi"* en el elemento *"ei"* en el periodo de tiempo *"ti"*

N = cantidad total de elementos "*ei*" en la red considerada.

$$N = \sum_{i} e_{i}$$

Tasa de falla:

$$I_{efi} = \frac{n_{efi}}{(N)t_i}$$

De aquí se obtiene un índice único global para el grupo de instalaciones, independientemente de sus demás características.

Los datos obtenidos de un análisis pueden ser tabulados y desplegados de muchas maneras. Por ejemplo, pueden ser ordenados por tipos de faltas o Áreas de Vulnerabilidad, esto ayuda para determinar con precisión áreas problemas y así poder tener más precisión a la hora de calcular los posibles huecos de tensión

TECNICA MONTE CARLO.

Esta técnica es una herramienta de simulación de eventos, en forma aleatoria, la ventaja de este método es que no solo nos da la frecuencias de eventos que ocurrirán en un bus o línea, si no que nos puede dar toda la distribución de probabilidad de la frecuencia de incidencia de eventos. Como se ha mencionado los Sags son producidos por altas corrientes que circulan por la red de transmisión específicamente por fallas de corto circuito los cuales ocurren de manera aleatoria por lo que es viable utilizar la simulación Monte Carlo.

Los factores básicos a considerar para el estudio probabilístico de los huecos de tensión son los siguientes:

- 1) El tipo de falla
- 2) Localización de la falla
- 3) El tiempo de duración de la falla

Para la simulación Monte Carlo el tiempo pasa a ser una variable aleatoria la cual también será obtenida de las tasas de falla pero del inverso de este valor. Si consideramos los periodos de tiempo durante los cuales el sistema esta trabajando en condiciones normales y los llamamos $D_{I_1} D_2 ... D_H$ donde H es el número de periodos de la muestra en los que el sistema esta trabajando en condiciones normales sin incidencia de falla y si aclaramos que el tiempo ocurrido entre cada período D es el tiempo en que transcurre la falla y el retorno a condiciones normales, entonces el tiempo medio esperado para una falla se define como:

$$TMF = \frac{D_1 + D_2 \dots + D_H}{H}$$

El inverso de este valor será la tasa de falla, que es el mismo factor utilizado por el método de posiciones de falla.

$$TF = \frac{1}{TMF}$$

Para determinar el lugar donde se ubicará la falla se sorteará un número aleatorio, este será obtenido a partir de una distribución uniforme, por considerar que cualquier punto de la línea tiene la misma probabilidad para ocurrir una falla.

Para el cálculo de voltajes residuales durante fallas remotas se utilizará las expresiones analíticas del método de posiciones de falla del avance anterior, por lo que aleatoriamente decimos que λ es un número entre 0 y 1, que representa la relación.

$$\lambda = rac{d_{kp}}{d_{kj}}$$

El tipo de falla también se obtiene a partir de un número aleatorio, pero en este caso la distribución que debe presentar la función de donde se sortea este número debe ser basado en la tabla de porcentajes de incidencia según el tipo de falla.

Como se dijo anteriormente para simulación Monte Carlo el tiempo para falla es importante y por lo tanto también debe se sorteado, con esto queda claro que la simulación se debe realizar en un escenario de tiempo definido, por ejemplo 5, 10, 20, o 50 años.

El tiempo será sorteado de una distribución normal, con media igual al inverso de la tasa de falla de cada línea y una desviación estándar del 30% del valor del inverso de la tasa de falla.

Capitulo IV

Cálculo de Huecos de Tensión

Cálculo de Huecos de Tensión.

Facultad de Ingeniería

El Sag puede causar horas fuera de servicio, sustanciales pérdidas de producción y también atribuírsele a mal funcionamiento, inestabilidades y corta vida de la carga. La localización exacta del origen del Sag puede ayudar a minimizar la pérdida y los problemas causados por el Sag en un sistema de potencia. El producto de la corriente RMS real y el ángulo del factor de potencia en el punto supervisando es empleado para la localización del origen del Sag. Se traza la grafica de este producto contra el tiempo. La localización del origen del Sag es determinada, examinando la polaridad de la corriente RMS al comienzo del Sag.

En los sistemas de potencia comercial e industrial, una falla tiende a causar un descenso de voltaje en todos los alimentadores de la planta. Durante una falla de corto circuito ocurren siempre Sags, provocando un flujo de corriente a través de una impedancia. El voltaje regresa a su normalidad mientras un dispositivo elimina la falla interrumpiendo el flujo de corriente. Estas fallas pueden estar lejos del proceso interrumpido, pero el cierre (accionamiento del dispositivo que elimina la falla), puede causar bastantes problemas a lo largo del sistema. Incluso cuando el voltaje retorna a la normalidad, muchos cargas experimentan un sensible paro, si la magnitud del Sag y duración están fuera de la tolerancia. Localizar el origen del Sag es importante antes de cualquier técnica de mitigación para eliminar dicho Sag; porque sólo después de tener la información sobre la localización del origen del Sag se puede analizar, diagnosticar y mitigar este efecto.

Se menciona en el *Apéndice B*, de forma general algunos métodos para la localización del origen del Sag, pues en este capitulo sólo es para obtener el cálculo del Sag y no para su prevención o mitigación.

El Sag es típicamente causado por condiciones de falla, tales como fallas de corto circuito y fallas a tierra causando severos huecos de tensión. A continuación se hablara de un ejemplo del divisor de voltaje, este será usado para ilustrar un circuito corto y el Sag, y como lleva a un descenso en el voltaje RMS y un desplazamiento del ángulo de fase. El Sag causado por fallas desequilibradas es analizado por componentes simétricas; pero este método de componentes simétricas para los Sag se vera más adelante cuando se mencione la localización de fallas.

Los eventos (forma de la onda) y la incidencia usualmente pueden ser registrados en una base de datos, debido a que típicamente se monitorean las instalaciones en una subestación.

El problema principal es asociar ambos registros (los eventos e incidencias), que ocurren al mismo tiempo (tiempo de la falla), debido a la sincronización diferente de relojes locales y el hecho que la dirección central (la que se encarga de llevar un registro de los datos) esta puede almacenar un número enorme de incidencias. Una segunda desventaja del sistema actual son los diferentes registros (las incidencias, los eventos, las formas de onda) sólo es accesible para aplicaciones particulares que hacen difícil el uso de información existente de un solo punto de acceso. Adicionalmente, la posibilidad

de procesar la forma de onda, para extraer los atributos adicionales debe ser calculada externamente.¹

Para explicar el origen del Sag y los desplazamientos del ángulo de fase asociados debido a una falla del sistema, un divisor de voltaje se usa a menudo. La forma en que se utiliza el divisor de voltaje se muestra en Figura 4.1.

Fig. 4.1 Divisor de Voltaje

Asumiendo que una falla trifásica (3φ) ocurre en el punto *F*, el voltaje (complejo) que permanece al punto de acoplamiento común (PCC) durante la falta es:

$$V_{Sag} = \frac{Z_{f}}{Z_{s} + Z_{f}} E = [p.u.]$$
(1)

Donde Zf (impedancia del alimentador), es la impedancia entre la falla y el PCC, y Zs es impedancia de la fuente en el PCC. El voltaje de prefalla aquí asume que es $1 \angle 0^{\circ}$. Además el descenso de voltaje (en valor absoluto del V_{Sag}), se presentan frecuentemente en un desplazamiento de ángulo. El origen del desplazamiento del ángulo de fase puede ser calculado.

Para la impedancia de la fuente en el PCC se tiene:

$$Z_s = R_s + jX_s \qquad (2)$$

Y para la impedancia entre la falla y el PCC se tiene:

$$Z_f = R_f + jX_f \quad (3)$$

¹ Automatic Management of Voltage Sags Recorded in a 25kV Substation J. Meléndez1, D. Macaya1, D. Llanos1, J. Cobos1, J. Sánchez2 and M.

El argumento del voltaje complejo restante es:

$$\Delta \varphi = \arctan\left(\frac{X_f}{R_f}\right) - \arctan\left(\frac{X_s + X_f}{R_s + R_f}\right) \quad (4)$$

El argumento de la expresión (4) es la diferencia entre el voltaje de prefalla y el voltaje de falla durante ángulo de fase. Debido a la simetría de las tres fases durante una falla 3φ , nosotros podemos fácilmente introducir un fasor. Nosotros usaremos el término el *voltaje característico*, para el voltaje complejo restante, V_{sag} . Nota el voltaje complejo restante es el mismo en las tres fases durante una falla.

La magnitud del Sag depende de la distancia entre la falla y el PCC. Un sistema de potencia, donde Z_s es más pequeño, resulta en un aumento de la magnitud del Sag (un evento menos severo). El desplazamiento del ángulo de fase asociado con un Sag es determinado por X/R relación entre el origen de la falla y el alimentador. En un sistema de distribución, el alimentador tiene una pequeña relación X/R comparada con la fuente. De esta manera el desplazamiento del ángulo de fase negativo está acompañando a menudo un Sag debido a una falla en los sistemas de la distribución.

En una red mallada conectada, como en los sistemas de la transmisión, el concepto de divisor de voltaje es todavía útil. Sin embargo, los alimentadores y la impedancia de la fuente no son fáciles identificar. Esto normalmente requiere un programa de la computadora para el analizar la falla de la red. En los sistemas de la transmisión, no hay ninguna diferencia grande en la relación X/R.

A TRAVÉS DEL VALOR RMS.

La definición normal de Sag esta basada en el valor RMS, cuya definición se menciona en el capitulo *II*.

Una manera eficiente de caracterizar un Sag monofásico es calcular el valor mínimo del voltaje RMS restante (remaining), durante el Sag (vea Fig. 2). Para cada instante de tiempo, el voltaje RMS es calculado encima de una ventana de tiempo (umbral) que corresponde a un período de frecuencia fundamental. El número de muestras por período se denota por N, mientras que el voltaje RMS en el punto de la muestra es expresado por n, y se calcula usando la ecuación siguiente (dicha ecuación es válida para el caso n = N).

$$V_{RMS}(n) = \sqrt{\frac{1}{N} \sum_{i=n-N+1}^{i=n} v_i^2}$$
(5)

La duración del Sag es también importante. La duración esta definida como el tiempo que el voltaje RMS esta por debajo del 90% del voltaje RMS de prefalla (ver Fig. 4.2).

En el caso de un sistema trifásico, un Sag puede caracterizarse también por el voltaje RMS mínimo durante el Sag.

Si el Sag es simétrico, es decir, igualmente profundo en las tres fases, puede usarse el voltaje restante más bajo en cualquiera de las fases para caracterizar el Sag. Si Sag es no simétrico, es decir, el Sag no tiene la misma profundidad en sus tres fases, la fase con el voltaje restante más bajo se utilizara para caracterizar el Sag. Un ejemplo de esto es la Fig. 4.3.

Fig. 4.3 Voltajes RMS Trifásicos.

Lo explicado anteriormente es el método convencional para caracterizar al Sag con su magnitud y duración (Fig. 4.4).

Fig. 4.4 Definición de la magnitud y la duración del Sag por el método tradicional

Los supervisadores de la calidad de la energía calculan el voltaje de RMS una vez por ciclo y así pueden saber que existe un SAG, si el voltaje de RMS cae debajo del voltaje del umbral. En la práctica los supervisadores toman el valor más bajo del voltaje de RMS como la magnitud del Sag. Esta magnitud se expresa como un porcentaje del voltaje nominal. Por ejemplo, un 70% del Sag en un sistema de 120V significa que el voltaje mínimo es de 84V (120 [V] * 0.7 = 84 [V]). La duración del sag es determinada como el tiempo durante el cual el voltaje de RMS está debajo de un voltaje del umbral dado (V_{thr}). Este umbral puede ser un poco diferente para cada monitoreo pero su valor típico es 90% (según la definición de Sag).

LAS LIMITACIONES DEL VALOR RMS

El método convencional asume que el perfil del Sag es rectangular. Es decir, el perfil del Sag tiene un descenso pronunciado al principio y una subida pronunciada al final. Por consiguiente, en caso de un Sag no-rectangular, el efecto en los equipos puede sobrestimarse. Además, el voltaje de tolerancia de los equipos de los clientes puede no ser considerado en el método tradicional. Por consiguiente los diferentes efectos sobre los equipos de los clientes según el voltaje de tolerancia tienden a no reflejarse correctamente. Estas limitaciones se repasarán en detalle.

SOBRESTIMACIÓN DEL SAG NO-RECTANGULAR

En el método convencional, asume que el perfil o contorno de voltaje durante el sag es rectangular. Sin embargo, la tal suposición es incorrecta en muchos sistemas industriales con grandes cargas de motor de inducción. El descenso de voltaje en las Terminal debido al Sag causará una caída en el torque (par del motor) e incrementara la velocidad del motor de inducción. El perfil del voltaje tiene un instante de descenso y una prolongada recuperación de la post-falta. Sin embargo, en el método convencional, puede estimarse un Sag duración profunda y larga. Por consiguiente, el Sag no-rectangular se sobrestima (Fig. 2).

Fig. 4.5 Sobreestimación de un Sag No-rectangular por el método convencional

La Fig. 4.5 muestras la sobrestimación del método convencional. El sag rectangular y el Sag no-rectangular tienen una caída instantánea similar y recuperación al principio. Por consiguiente se piensa que los efectos reales de los dos Sag son casi iguales. Sin embargo, debido a la recuperación prolongada de la post-falla de un sag no-rectangular, su duración (de dicho Sag no-rectangular) se vuelve a prolongar. Por ello en el método convencional esto significa que el Sag no-rectangular se sobrestima debido a la prolongada recuperación de la post-falla.

Es por lo anterior que se requiere una nueva definición del Sag para evitar la sobreestimación. Para tener una explicación de esta nueva definición de Sag se puede ver el *Apéndice C*.

Pasar por alto la nueva definición provocaría grandes daños a los equipos computacionales esto se puede observar en el *Apéndice D*.

A TRAVÉS DE LA CARACTERIZACIÓN.

A continuación se proponen diferentes métodos de caracterización para el caso trifásico².

² Aplicación del paquete ATP en el análisis de huecos de tensión. Juan A. Martínez Velasco, Jacinto Martín Arnedo, Universitat Politècnica de Catalunya

Método I

Un Sag Trifásico puede caracterizarse por tres parámetros:

- I. Primero se determina el tipo de Sag. El tipo de Sag puede ser A, C o D.
 - Un Sag de tipo A, es igualmente profundo en sus tres fases.
 - Un Sag del tipo *C*, es más profundo en dos de sus fases. Las notaciones son: *Ca, Cb,* y *Cc*; son usadas para denotar el voltaje bifásico del Sag; dónde la fase de menor profundidad esta dada por el subíndice (es raro que un Sag sea puramente bifásico, la tercera fase casi siempre es afectada).
 - Finalmente, el Sag de tipo D es mas profundo en una fase que en las otras dos. Las anotaciones son: *Da*, *Db*, y *Dc*; el subíndice indica la fase donde se presenta el Sag con mayor profundidad.

Otra forma de clasificar el tipo de Sag, es basado en las componentes de voltaje $V_{a\Sigma}$ y $V_{a\Delta}$ (siendo la suma y resta, respectivamente del voltaje de secuencia positivo y negativo). Es decir:

$$V_{a\Sigma} = V_{a1} + V_{a2} \qquad (11)$$

$$V_{a\Delta} = V_{a1} - V_{a2} \qquad (12)$$

Para un Sag de tipo A, $V_{a\Sigma}$ y $V_{a\Delta}$ son iguales; para una Sag de tipo C, $V_{a\Sigma}$ es igual al voltaje de prefalla y $V_{a\Delta}$ es dependiente de la distancia de la falla. Para un Sag de tipo D la situación es al revés, (es decir, $V_{a\Delta}$ es igual al voltaje de prefalla y $V_{a\Sigma}$ es dependiente de la distancia de la falla). En el caso ideal, los tres tipos del Sag caen en las líneas rectas de la Figura 4.6(a). El estado de la operación normal corresponde a los Sag (del Tipo A, C, D) donde la magnitud característica |V| es más grande que 90%. La interrupción corresponde a un Sag (del Tipo A, C, D) donde la magnitud característica |V| es más pequeña que el 10%.

Fig. 4.6 Definición del tipo de Sag. (a) Sag Ideal. (b) Sag General

II. El <u>voltaje característico</u> es un fasor que cuantifica la severidad de un Sag trifásico. Esto se define como la substracción vectorial del voltaje de secuencia positivo (V_{pos}) y el voltaje de secuencia negativo (V_{neg}) . Es decir el voltaje característico es:

$$V_{char} = V_{pos} - V_{neg}$$

Sin embargo, antes de la substracción vectorial, el voltaje de secuencia negativa se multiplica por un exponencial $e^{(-i^*k^*\pi/3)}$, dónde la variable *k* depende del tipo de Sag.

III. El <u>factor Positivo y Negativo (el *PN-factor*)</u> es una cantidad fasorial para cuantificar un Sag trifásico desequilibrado dónde la secuencia positiva y negativa del sistema tienen impedancias diferentes. El *PN-factor* se define como la suma vectorial del voltaje de la secuencia positiva y el voltaje de secuencia negativa (*PN-factor* = $V_{pos} + V_{neg}$). Antes de la suma vectorial, el voltaje de secuencia negativa se multiplica por un exponencial $e^{(-i^*k^*\pi/3)}$, dónde la variable k depende del tipo de Sag. Si el *PN-factor* se aproxima a la unidad, el Sag puede cuantificarse por el voltaje característico solo.

La precisión del método propuesto para clasificación del Sag depende de la exactitud de lo siguiente tres suposiciones:

- 1) El voltaje de secuencia cero no afecta al equipo en operación.
- 2) Las impedancias de secuencia positiva y negativa del origen de la falla no deben diferir por mucho.
- 3) Las fallas bifásicas a tierra (LLT) son raras.

A partir de la magnitud y el ángulo de cada fase, se pueden calcular tres parámetros característicos adicionales: la tensión característica, el factor PN y la tensión homopolar. El tipo de hueco de tensión es obtenido a partir de la diferencia de fase entre la secuencia directa (V_1) y la inversa (V_2) .:

La siguiente relación entre el voltaje de secuencia positivo y negativo se obtiene para el prototipo del Sag:

$$V_{2,ref} = 1 - V_1 \qquad (13)$$

El tipo de Sag puede obtenerse, del ángulo entre el voltaje del Sag de secuencia negativo medido y el voltaje de secuencia negativo del prototipo. Debido a varias aproximaciones hechas y errores medidos, este ángulo no es exactamente un entero, es múltiple de 60° así que la expresión siguiente pueda usarse para obtener el tipo de Sag:

$$k = round \left[\frac{angle (V_2, 1 - V_1)}{60^{\circ}}\right]$$
(14)

\mathbf{v} and \mathbf{u}
--

0	Ca
1	Dc
2	Cb
3	Da
4	Cc
5	Db

Conociendo el tipo de hueco de tensión que se origina, es posible calcular la componente inversa correspondiente a un hueco de tensión prototipo:

Siendo:

V2' = La componente inversa correspondiente al hueco de tensión prototipo

V2 = La componente inversa real (medida realmente)

 $\mathbf{k} = \text{El parámetro indicativo del tipo de hueco de tensión.}$

Donde k se obtiene según el tipo de Sag y V_2 es el voltaje de secuencia negativo del Sag medido. El voltaje característico (V) y PN- factor (F) se obtienen de las expresiones para el Sag prototipo:

$$\overline{V} = \overline{V}_1 - \overline{V'}_2 \text{ Tensión Característica.}$$
$$\overline{F} = \overline{V}_1 + \overline{V'}_2 \text{ Factor PN.}$$

Método II

Según este método, la tensión característica del hueco de tensión se corresponde con el menor valor eficaz de las seis tensiones siguientes:

$$\begin{cases} V_{a}'(t) = V_{a}(t) - V_{o}(t) \\ V_{b}'(t) = V_{b}(t) - V_{o}(t) \\ V_{c}'(t) = V_{c}(t) - V_{o}(t) \end{cases} \begin{cases} V_{ab}(t) = \frac{V_{a}(t) - V_{b}(t)}{\sqrt{3}} \\ V_{bc}(t) = \frac{V_{b}(t) - V_{c}(t)}{\sqrt{3}} \\ V_{bc}(t) = \frac{V_{b}(t) - V_{c}(t)}{\sqrt{3}} \\ V_{ca}(t) = \frac{V_{c}(t) - V_{a}(t)}{\sqrt{3}} \end{cases} \end{cases}$$

El cálculo de la componente homopolar, $V_0(t)$, se realizará según la expresión siguiente:

$$V_{o}(t) = \frac{1}{3} \{ V_{a}(t) + V_{b}(t) + V_{c}(t) \}$$

El factor *PN* se escogerá como el mayor valor de tensión eficaz de entre las seis tensiones mencionadas. El tipo de hueco de tensión se determinará a partir de la tensión característica (tensión de menor valor eficaz), y aplicando la siguiente clasificación.

V característica	Va	Vb	Vc	Vbc	Vac	Vab
Tipo de hueco	Da	Db	Dc	Ca	Cb	Cc

Método III

Con este método se propone caracterizar un hueco de tensión mediante el valor medio de la caída de tensión en las tres fases, es decir por un único parámetro en el que se ven involucradas las tensiones de las tres fases³:

$$S = 1 - \left(\frac{V_{a}(t) + V_{b}(t) + V_{c}(t)}{3}\right)$$

Donde los valores de tensión deben estar expresados por unidad.

³ IEEE Voltage Quality Working Group, "Recommended practice for the establishment of voltage sag indices," Marzo 2001.

Capitulo V

Localización de Fallas a través de Huecos de Tensión

LOCALIZACIÓN DE FALLAS A TRAVÉS DE HUECOS DE TENSIÓN

Facultad de Ingeniería

CARACTERIZACIÓN DE LOS HUECOS DE TENSIÓN A TRAVÉS DE COMPONENTES SIMÉTRICAS

Existen diferentes tipos de cortocircuitos (fallas), en función de las fases afectadas. Los cortocircuitos pueden clasificarse en^1 :

- **Trifásicos:** Consisten en el contacto de las tres fases, directamente o a través de una impedancia de valor bajo. Un ejemplo de cortocircuito trifásico es la caída de una torre de transmisión. Este tipo de cortocircuitos es el más grave en el sistema, produciendo las mayores corrientes. Por consiguiente, debe ser detectado rápidamente y eliminada la fuente de fallo del sistema (por medio de la actuación del sistema de protección) en el plazo menor posible. Desde el punto de vista de análisis, es el más simple de ser calculado, porque al estar involucradas las tres fases en la misma forma las corrientes de cortocircuito son iguales en las tres fases, siendo representado por un sistema de corrientes simétrico.
- **Bifásicos:** Los cortocircuitos bifásicos consisten en el contacto de dos fases entre si. Como ejemplos de cortocircuito bifásico puede citarse: el roce de dos fases en líneas aéreas y la falla de aislamiento puntual en cables aislados. Este tipo de cortocircuito produce un sistema desequilibrado de corrientes, con intensidades diferentes en las tres fases.
- **Bifásicos con contacto a tierra:** En este tipo de cortocircuitos, dos de las fases toman contacto entre sí y con la tierra en el punto de fallo. Es este el tipo de cortocircuito estadísticamente menos frecuente.
- **Monofásico:** El cortocircuito monofásico (contacto de una fase y tierra) es responsable de la mayor cantidad de cortocircuitos en el sistema (en líneas aéreas, 80% de los cortocircuitos son monofásicos). Las corrientes de cortocircuito que provoca dependen de la impedancia de la falla y de las conexiones a tierra de los transformadores en la línea.

El voltaje de secuencia cero no necesita ser considerado en el voltaje de fase del Sag. Pueden darse dos razones para que esto:

1. El voltaje de secuencia cero, usualmente es igual a cero en las terminales de los equipos, puesto que no existe en las conexiones de los transformadores *Delta-Estrella No Aterrizada, Delta-Delta*, o *Estrella Aterrizada-Estrella No Aterrizada.*

¹ Perturbaciones y Cálculo de Cortocircuitos Simétricos; Hortensia Amarís Duarte Edgardo D. Castronuovo

2. En los equipos normalmente la tercera fase esta conectada a una *Delta* o a una *Estrella No Aterrizada* esto para que el voltaje de secuencia cero no exista en las terminales de los equipos.

FALLA DE LÍNEA A TIERRA (SLGF)

La secuencia de la red para la SLGF (*Falla Línea a Tierra*) tiene un interesante resultado: donde $V_{A\Delta}$ es siempre igual al voltaje de pre-falla V_F , independientemente de la posición de la falla. De esta manera $V_{A\Sigma}$ es el único valor expuesto que puede cambiar. Además de la suposición de $Z_{SI} = Z_{S2}$, cabe mencionar que estos valores nunca son exactamente iguales en la realidad. Por lo tanto introducimos lo que llamamos el *Factor Positivo-Negativo (PN-Factor)* el cual es igual a $V_{A\Delta}$ para una SLGF. El *PN-Factor* es igual al voltaje de prefalla si las secuencias positivas y negativas tienen la misma fuente de impedancia.

Los huecos de tensión debidos a una SLGF están definidos como del Sag del T*ipo D*. Los tres fasores de voltaje para el Sag de *Tipo D*, con *Voltaje Característico V* y *PN-Factor F*, son expresados a continuación:

$$V_{a} = V$$

$$V_{b} = -\frac{1}{2}V - \frac{1}{2}j F \sqrt{3}$$

$$V_{c} = -\frac{1}{2}V + \frac{1}{2}j F \sqrt{3}$$
(1)

Estas expresiones son obtenidas usando la ecuación siguiente y tomando en cuenta que: $V_{A0} = 0$; $V_{A\Delta} = F$; $V_{A\Sigma} = V$.

$$\begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -\frac{1}{2} & -j\frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} & j\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} V_{a0} \\ V_{a\Sigma} \\ V_{a\Lambda} \end{bmatrix}$$

Para $Z_{SI} = Z_{S2}$, el primer análisis va dirigido a F = 1, después sustituyendo en la ecuación (1), la expresión llega a ser idéntica para un Sag de *Tipo D*. Así la primer clasificación implícitamente asume que la impedancia de secuencia positiva es igual a la impedancia de secuencia negativa. V es la única variable, si *PN*-*Factor F* es igual a 1. V es llamado *Voltaje Característico* de *Tipo D*.

Una Falla de Línea a Tierra genera un Sag del Tipo D a causa de PCC (Punto de Acoplamiento Común), dónde el Voltaje Característico tiene la expresión siguiente:

$$V = \frac{Z_{f1} + \frac{Z_{S0} + Z_{f0}}{2}}{Z_{S1} \left(Z_{f1} + \frac{Z_{S0} + Z_{f0}}{2} \right)^* V_F}$$

NOTA: El Voltaje Característico para un Sag debido a una Falla Trifásica es:

$$V_{3\varphi} = \frac{Z_{f1}}{Z_{S1} + Z_{f1}} * V_F \qquad \begin{cases} (3) \\ \end{cases}$$

Una Falla De Línea A Tierra da un valor más alto con respeto a la magnitud característica que una Falla Trifásica. La diferencia puede ser debido a una impedancia adicional $(Z_{S0} + Z_{f0})/2$ entre el PCC y la falla.

FALLA DE LÍNEA A LÍNEA

Para la *Falla de Línea a Línea* entre las fases *B* y *C*, se tiene que $V_{A\Sigma}$ es igual al *Voltaje de Prefalla*. Este tipo de Sag, pueden ser totalmente caracterizado sólo por $V_{A\Delta}$. Para este tipo de Sag definimos el *Voltaje Característico V* como $V_{A\Delta}$ y el *PN-Factor F* como $V_{A\Sigma}$, el Sag debido a una *Falla Línea a Línea*, esta definido como de *Tipo C*. Los tres voltajes fasoriales del Sag de *Tipo C* esta definidos como:

$$V_{a} = F$$

$$V_{b} = -\frac{1}{2}F - \frac{1}{2}jV\sqrt{3}$$

$$V_{c} = -\frac{1}{2}F + \frac{1}{2}jV\sqrt{3}$$
(4)

Esta expresión se obtiene de sustituir, $V_{A0} = 0$, $V_{A\Delta} = V$, $V_{A\Sigma} = F$ en la ecuación (3.12). Para $Z_{S1} = Z_{S2}$, el primer análisis va dirigido a F = 1, después sustituyendo en la ecuación (4), la expresión llega a ser idéntica para un Sag de *Tipo C*. Así la primer clasificación implícitamente asume que la impedancia de secuencia

positiva es igual a la impedancia de secuencia negativa. V es la única variable, si PN-Factor F es igual a 1. V es llamado Voltaje Característico de Tipo C.

Una *Falla de Línea a Línea* genera un Sag de *Tipo C* en el *PCC*, donde el *Voltaje Característico* esta dado por la siguiente expresión:

$$V = \frac{Z_{f1}}{Z_{S1} + Z_{f1}} * V_F$$
 (5)

El *Voltaje Característico* para un Sag debido a una *Falla de Línea a Línea* es igual al *Voltaje Característico* para un Sag debido a una *Falla Trifásica*. Esto no implica que la gravedad de los eventos sean los mismos; diferentes tipos de fallas conllevan a diferentes tipos de Sags.

FALLA DOBLE LINEA A TIERRA. (2LGF)

Para la *Falla Doble Línea a Tierra* entre las fases $B ext{ y } C$, se tiene que $V_{A\Sigma} ext{ y } V_{A\Delta}$ son variables y están sujetas a cambiar cuando el Sag se propague a través de la red. Sin embargo $V_{A\Sigma}$ es mucho mayor que $V_{A\Delta}$ es casi uno, cuando la secuencia cero del sistema es muy grande. El Voltaje del Sag resultante es considerado como un Sag del Tipo C, considerando las siguientes expresiones:

$$V_{a} = F$$

$$V_{b} = -\frac{1}{2}F - \frac{1}{2}j V \sqrt{3}$$

$$V_{c} = -\frac{1}{2}F + \frac{1}{2}j V \sqrt{3}$$
(6)

Estas expresiones se obtienen de sustituir $V_{A0} = 0$, $V_{A\Delta} = V$, $V_{A\Sigma} = F$, en la ecuación (3.12).

Una Falla de Línea a Línea genera un Sag de Tipo C en el PCC, donde el Voltaje Característico V, y el PN-Factor F son encontrados por las siguientes expresiones:

$$V = \frac{Z_{f1}}{Z_{S1} + Z_{f1}} * V_F \left\{ \begin{array}{c} \\ \\ \end{array} \right\}_{(7)}$$

Y

Universidad Nacional Autónoma de México

$$F = \frac{Z_{f1} + 2(Z_{s0} + Z_{f0})}{Z_{s1} + (Z_{f1} + 2Z_{s0} + 2Z_{f0})} * V_F \begin{cases} (8) \end{cases}$$

El *Voltaje Característico* es además el mismo como para la *Falla Trifásica*. Pero contrario al Sag debido a la *Falla Línea a Línea*, el *PN-Factor* es menor a la unidad.

FALLA TRIFASICA. $(3\varphi F)$

Los Sags debido a fallas balanceadas están definidos de una manera similar. El voltaje de secuencia negativa V_2 es igual a cero para los Sags Balanceados, $V_{A\Delta} = V_{A\Sigma}$ = V_1 . Este tipo de Sag esta definido como del *Tipo A*. El volate fasorial para los Sag de Tipo A están dado por las siguientes expresiones:

La ecuación siguiente es obtenida sustituyendo $V_{A0} = 0$, $V_{A\Delta} = V_{A\Sigma} = V$. Donde V es la única variable de la ecuación (9) V es llamado Voltaje Característico de Tipo A.

$$V_{a} = V$$

$$V_{b} = -\frac{1}{2}V - \frac{1}{2}j\sqrt{3}V$$

$$V_{c} = -\frac{1}{2}V + \frac{1}{2}j\sqrt{3}V$$
(9)

Una *Falla Trifásica* genera un Sag de *Tipo C* en el *PCC*, genera un Sag de *Tipo A* donde el voltaje característico es encontrado por la siguiente expresión:

$$V = \frac{Z_{f1}}{Z_{S1} + Z_{f1}} * V_F$$

La Figura 5.1. Muestra el diagrama fasorial de tres diferentes tipos de Sag, con base a un *PN-Factor* F igual a uno para Sags desbalanceados, y un *Voltaje* Característico igual a $0.5 \angle 0^{\circ}$ para cada tipo.

Los tipos de Sags definidos anteriormente son una generalización basada en componentes simétricas. Además se toma en cuenta el *PN-Factor F*, el cual es introducido en el *Tipo C* y *Tipo D* para incluir cuando la fuente impedancia de secuencia de positiva y negativa no son iguales. El *Tipo B* es un caso especial del *Tipo D* el cual supone que la impedancia de secuencia cero es igual a la impedancia de secuencia. En la clasificación propuesta, este tipo (el *Tipo B*), es considerado como un *Tipo D* si ser considerado caso especial.

FASE SIMETRICA PARA SAG DESBALANCEADOS²

En la sección anterior, sólo definimos Sags desbalanceados con una fase simétrica, para una Falla Línea a Tierra y una falla entre las Fases B y C para la Falla de Línea a Línea y Falla Doble Línea a Tierra. Considerando las Fase B y Fase C, como fases simétricas, para Sags de Tipo C y D, la clasificación produce seis diferentes tipos de Sags, es decir C_A , C_B , C_C , D_A , D_B y D_C con el subíndice que indica la fase simétrica. La Tabla 1 se visualiza las expresiones matemáticas de los Sags producidos y en la Figura 2, se ven sus diagramas fasoriales. Tanto en la Figura 5.2 y en la Tabla 1, asumimos que el PN-Factor F de Tipo C y D es igual a uno, para simplificar las expresiones. Las expresiones matemáticas para los Sags desbalanceados con fases simétricas B y C son derivadas rotando las tres fases del Sag desbalanceado por 240° y 120° respectivamente.

² A Method for Characterization of Three-Phase Unbalanced Dips from Recorded Voltage Waveshapes; M.H.J. Bollen, L.D. Zhang; Dept. Electric Power Engineering Chalmers University Of Technology, Gothenburg, Sweden

Factor F = 1, voltaje de secuencia cero $v_{A0} = 0$, *voltaje Característico* = 0.5 $\ge 0^{\circ}$. La línea puenteada es el Voltaje de Fase de la pre-falla. La línea azul es el Voltaje de Fase durante el Sag.

Facultad de Ingeniería

Universidad Nacional Autónoma de México

$$V_{a} = \frac{1}{4}V + \frac{3}{4} - \frac{1}{4}j\sqrt{3} + \frac{1}{4}jV\sqrt{3}$$

$$V_{a} = \frac{1}{4} + \frac{3}{4}V + \frac{1}{4}j\sqrt{3} - \frac{1}{4}jV\sqrt{3}$$

$$V_{b} = \frac{1}{4} - \frac{3}{4}V - \frac{1}{4}j\sqrt{3} - \frac{1}{4}jV\sqrt{3}$$

$$V_{b} = \frac{1}{4} - \frac{3}{4}V - \frac{1}{4}j\sqrt{3} - \frac{1}{4}jV\sqrt{3}$$

$$V_{c} = -\frac{1}{2} + \frac{1}{2}j\sqrt{3}$$
Tipo C_{C}

$$V_{c} = -\frac{1}{2}V + \frac{1}{2}jV\sqrt{3}$$
Tipo D_{C}

En la Tabla 2 vemos las expresiones de las componentes simétricas para Sags, las cuales se obtienen de utilizar las expresiones de la Tabla 1 y la ecuación siguiente:

$$\begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}$$

Tabla 2. Componentes Simétricas para los seis tipos de Sags.					
$V_1 = \frac{1+V}{2}$	$V_1 = \frac{1+V}{2}$				
$V_2 = \frac{1 - V}{2}$	$V_2 = -\frac{1-V}{2}$				
Tipo C_A	Tipo D_A				
$V_1 = \frac{1+V}{2}$	$V_1 = \frac{1+V}{2}$				
$V_2 = a\left(\frac{1-V}{2}\right)$	$V_2 = -a\left(\frac{1-V}{2}\right)$				
Tipo C_B	Tipo D_B				
$V_1 = \frac{1+V}{2}$	$V_1 = \frac{1+V}{2}$				
$V_2 = a^2 \left(\frac{1-V}{2}\right)$	$V_2 = -a^2 \left(\frac{1-V}{2}\right)$				
Tipo C_C	Tipo D_C				

La Tabla 2, muestra el voltaje de secuencia positiva es siempre esta a lo largo del eje de fase de referencia. La dirección del voltaje de secuencia negativa depende del tipo de Sag. También notamos que el voltaje de secuencia negativa tiene una dirección opuesta para los Sags de Tipo C y Tipo D, con la misma fase simétrica. Esto es congruente con la definición del *Voltaje Característico*, el cual esta definido como la substracción del Voltaje de secuencia positivo menos el Voltaje de secuencia negativo

para el Tipo C_A , pero la suma del voltaje de secuencia positivo más el voltaje de secuencia negativo para Tipo D_A .

Bajo la definición generalizada, estos seis tipos de Sags tiene el mismo *Voltaje Característico*. Rotando el voltaje de secuencia negativa sobre un valor entero de 60° todos los Sags pueden ser obtenidos de un prototipo de Sag; el Sag de Tipo C_A ha sido escogido como prototipo. De esta manera el *Voltaje Característico*, es obtenido por la substracción del Voltaje de secuencia positivo menos el Voltaje de secuencia negativo de C_A . Debido a la misma razón, los seis tipos de Sags tienen el mismo *PN-Factor F*. El *PN-Factor F*, se obtiene de la suma del Voltaje de Secuencia Positivo el negativo de C_A .

La Figura 3, se muestra el diagrama del voltaje fasorial para la secuencia positiva y negativa de los seis tipos de Sags desbalanceados. Cuando el Voltaje de secuencia positivo es el mismo para los seis tipos de Sags, el argumento de la secuencia negativa determina cual es el tipo de Sag.

SECUENCIA CERO.

Como se mencionó anteriormente, la componente de secuencia cero raramente aparece en las terminales de los equipos, solamente para *Falla Doble Línea a Tierra* y *Falla de Línea a Tierra* el voltaje de secuencia cero aparece. Esta componente es bloqueada por la mayoría de los transformadores; la excepción es la conexión *Estrella* - *Estrella* conectado el trasformador a tierra en ambos lados.

La componente de secuencia cero normalmente se presenta en Sag de *Tipo D* debido a *Fallas Línea a Tierra*, Teóricamente, la componente de secuencia cero debería también estar presente en los Sags de *Tipo C* debido a *Falla Doble Línea a Tierra*, pero es bastante raro y por ello no será considerado.

La red de secuencia para una *Falla Línea a Tierra* tiene una relación entre el Voltaje de Secuencia Cero V_0 y el Voltaje Característico V como lo muestra la siguiente ecuación:

$$V_{0} = \frac{Z_{S0}}{2} \left(\frac{1 - V}{Z_{S1}} \right)$$
(6.7)

En un sistema conectado solidamente a tierra, la impedancia de secuencia de positiva y negativa puede asumirse que amabas son iguales. Por lo cual el Voltaje de Secuencia Cero cambia a:

$$V_0 = \frac{1}{2} (1 - V) (6.8)$$

En caso de que la impedancia de fuente este conectada a un punto en común, esto implica que la impedancia será dos veces el valor, lo cual nos lleva a la siguiente relación

$$V_0 = 1 - V_{(6.9)}$$

En un sistema conectado a tierra con impedancia grande, una falla monofásica con lleva a que el *Voltaje Característico* y el *Voltaje de Secuencia Cero* ambos son próximos a 1 p. u.

El *Voltaje de Secuencia Cero* es opuesto en dirección al *Voltaje Característico*. La presencia de la Secuencia Cero, deberá incluso disminuir el Voltaje de la Fase Simétrica de *Tipo D*, y el aumento deberá ocurrir en las otras dos fases.

El Voltaje de Fase para el Sag de *Tipo D*, puede ser calculado con las siguientes ecuaciones después de introducir el *PN-factor* y el *Voltaje de Secuencia Cero*.

$$V_{A} = V + V_{0}$$

$$V_{B} = -\frac{1}{2}V - \frac{1}{2}jF\sqrt{3} + V_{0}$$

$$V_{C} = -\frac{1}{2}V + \frac{1}{2}jF\sqrt{3} + V_{0}$$
Tipo D

En este capitulo mencionaremos los pasos que seguimos para elaborar el programa con el cual realizamos el calculo de huecos de tensión y la preedición de la falla en el sistema de potencia.

IMPLEMENTACIÓN

Los datos proporcionados por CFE (línea de 230 kV que va de Poza Rica a Tuxpan en Veracruz), (se muestran en el Apéndice E) son utilizados para generar un archivo *.*txt* para cada Fase (Fase A, Fase B y Fase C). A través del *VBAProject* en Excel se utilizan los valores de Voltaje y Corriente para obtener el Ángulo de Fase. Esto se puede visualizar en la Fig. 5.4

Bit optime (adding) yer (new table burger) to be (log and 2) Addge PDF Early and 2) (log and	🛛 Microsoft Excel - FALLATMOA379005ENEO6 para SAG												
Image: Control of the sector of the secto		<u>Archivo Edic</u>	tión ⊻er <u>I</u> nse	ertar <u>F</u> ormato <u>H</u> erran	nientas Da <u>t</u> os	Ve <u>n</u> tana <u>?</u> Ad	b <u>b</u> e PDF			Escri	oa una pregunta	· _ 6	×
Image: Construct of the second sec	10	💕 🔒 💪	a a 🛍	🖺 • 🕑 • 🔀 😣	Σ - <u>2</u> ↓ ∭	. 🕜 📲 🕴 Arial		• 10 • N	K S 🔳 🔳	= 💀 💲 🕯	- 🛛 🛊 🖂	🕭 • <u>A</u> •	
D A B C D E F G H I J K 2 213.15 423 423 423 423 423 425 </td <td>÷ 📆</td> <td>) 🐀 🚓 📘</td> <td></td> <td>: 🖌</td> <td></td> <td>∃ =CE </td> <td>日期時日</td> <td></td> <td>Seguridad</td> <td>) 🄊 🛠 🔽</td> <td>*</td> <td></td> <td></td>	÷ 📆) 🐀 🚓 📘		: 🖌		∃ =CE	日期時日		Seguridad) 🄊 🛠 🔽	*		
A B C D E F G H I J K 1 VANV IA(A) 6A F G H I J K 2 21316 425 F G H I J K 3 9225 -231 F G H I J K 5 9228 232 GA GA GA F G H I J K 8 -21313 423 F XL GA GA F G H I J K F G H I I H I J K F G H I I H I I H I I H I I H I I H I I H I I H I I I I I I I I I I I I I I		D2 •	fx	_		a -alle, el • • •			· · ·		V		
1 VA(A) KA 2 21316 425 3 92.25 -231 4 21315 445 5 92.28 232 6 213.16 424 7 92.29 231 8 213.16 423 9 9.2.3 231 9 9.2.3 231 9 9.2.3 231 10 213.12 423 10 213.13 424 11 9.2.26 231 11 9.2.26 231 11 9.2.26 231 12 213.13 423 13 92.26 231 14 213.12 424 15 92.27 -231 16 213.13 423 17 92.26 231 18 213.14 423 21 13 423 22 213.13 423 23 92.27 -231 24		A	В	С	D	E	F	G	Н		J	K	-
2 213.15 425 425 3 92.25 231 6 5 92.26 232 6 6 213.16 424 6A 7 92.29 231 6 9 9.23 231 6 10 213.16 424 6A 9 9.23 231 9 10 213.12 423 9 9.23 231 11 9.27 -231 12 213.13 444 13 92.26 231 14 213.12 424 13 92.26 231 14 213.12 424 14 213.13 423 15 92.27 -231 16 213.13 423 17 92.26 231 18 213.14 423 23 92.27 -231 24 213.12 423 25 92.26 230 26 22.5 </td <td>1</td> <td>VA(kV)</td> <td>IA(A)</td> <td>ßА</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	VA(kV)	IA(A)	ßА									
3 -92.25 - 231 6 213.15 - 425 5 92.28 232 6 213.16 424 8 -213.13 - 423 9 92.3 231 10 213.12 423 10 213.12 423 11 -92.27 - 231 11 -92.27 - 231 12 -213.13 - 423 13 -92.26 - 231 18 -92.27 - 231 18 -92.26 - 231 19 -92.26 - 231 19 -92.26 - 231 19 -92.26 - 231 10 -13.12 423 20 -213.12 - 423 21 -92.26 - 231 22 -213.12 - 423 21 -92.26 - 231 22 -213.12 - 423 23 -92.27 - 231 24 -213.13 - 423 25 - 92.26 - 230 20 -213.12 - 423 21 -92.26 - 231 22 -213.13 - 422 23 -92.27 - 231 24 -213.13 - 422 25 - 230 20 -213.12 - 423 21 - 92.26 - 230 22 -213.12 - 423 23 -92.27 - 231 24 -213.13 - 422 25 - 230 26 -213.12 - 423 27 -92.26 - 231 28 -92.26 - 230 29 -213.12 - 422 29 -225 - 230 20 -213.12 - 422 21 -92.26 - 230 21 - 1 - 422 22 -23.13 - 422 23 -92.27 - 231 24 -213.12 - 422 25 - 220 27 - 231 28 -22.5 - 230 29 -22.5 - 230 29 -22.5 - 230 20 -213.12 - 422 29 -22.5 - 230 20 -213.12 - 422 21 - 21 - 21 - 21 - 21 - 21 - 21 - 21 -	2	213.15	425										
4 -213.15 -425 5 92.28 -231 6 213.16 424 7 -92.29 -231 8 213.13 -423 9 92.3 231 10 213.12 423 9 92.3 231 11 92.27 -231 12 213.13 -424 13 92.26 231 14 213.12 424 15 -92.27 -231 14 213.12 424 15 -92.27 -231 16 213.13 423 17 92.26 231 18 213.14 423 19 -92.25 -230 20 -231.12 -423 21 92.26 -230 22 213.13 422 23 -225 -230 21 92.26 230 22 231.1 -231 23 92.25 230	3	-92.25	-231										
5 92.28 232 7 92.29 -231 8 -213.13 -423 9 92.3 231 10 213.12 423 9 92.3 231 11 92.27 -231 12 -213.13 -424 13 92.26 231 14 213.12 424 15 92.27 -231 16 -213.13 -424 15 92.27 -231 16 -213.13 -423 17 92.26 231 18 213.14 423 21 92.26 230 22 213.12 -423 21 92.26 230 22 213.14 423 23 92.25 230 24 -213.13 -422 25 230	4	-213.15	-425										
6 213.16 424 8 -213.13 -423 9 9.23 231 9 9.23 231 9 9.23 231 10 213.12 423 9 9.26 231 11 -90000000 0.04279 11 -92.27 -231 12 -213.13 -424 13 92.26 231 14 213.12 424 15 92.27 -231 16 -213.13 -423 17 92.26 231 18 213.14 423 19 -92.25 -230 20 -213.12 -423 21 92.28 230 22 213.13 423 23 92.27 -231 24 -213.13 422 25 92.26 230 23 92.25 230 24 -213.13 422 29 92.26 230 <tr< td=""><td>5</td><td>92.28</td><td>232</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	5	92.28	232										
1 -39.28 -231 P XL 9 92.3 231 P XL 10 213.12 423 9000000 0.04279 11 92.27 -231	6	213.16	424			RA							
8 -213,13 42/3 P XL 10 213,12 423 90000000 0.04279 11 -92,27 -231	/	-92.29	-231										
9 92.3 231 P XL 10 213.12 423 90000000 0.04279 11 92.27 231 1 1 12 -213.13 424 1 1 13 92.26 231 1 1 14 213.12 424 1 1 16 -913.13 4423 1 1 16 -213.13 423 1 1 17 92.26 231 1 1 18 213.14 423 1 1 1 19 92.25 230 1 1 1 1 20 -213.12 423 1 1 1 1 1 21 92.26 230 1	8	-213.13	-423										
10 213.12 423 1000000 0.04279 11 92.27 231 11	9	92.3	231			P 00000000	XL 0.04270						
11 -221 -211 12 -21313 -424 13 92.26 231 14 213.12 424 15 92.27 -231 16 -213.13 -423 19 92.26 231 19 92.25 -230 20 -213.12 -423 21 92.26 230 22 213.13 423 23 -92.27 -231 24 -213.12 -423 25 92.26 230 26 231	10	213.12	423			90000000	0.04279						
13 92/2 4/2 10	12	-32.27	-231				(
14 21.12 424 15 92.27 -231 16 213.13 423 17 92.26 231 18 213.14 423 19 -92.26 230 20 -213.12 -423 21 92.26 230 22 213.13 423 23 92.27 -231 24 -213.13 422 25 92.25 230 24 -213.13 422 25 92.25 230 26 221	13	92.06	-424			txt							
16 -2027 -231 16 -213.13 -423 17 92.26 231 18 213.14 423 19 -92.25 -230 20 -213.12 -423 21 92.26 230 22 213.13 423 23 -92.27 -231 24 -213.13 -422 25 92.25 230 26 231	14	213.12	424										
16 -213.13 -423	15	-92.27	-231										
17 92.26 231 1 18 213.14 423 1 1 19 92.25 -230 1 1 1 20 -213.12 423 1 1 1 1 21 92.26 230 1 1 1 1 1 21 92.28 230 1 1 1 1 1 1 23 92.27 -231 1	16	-213.13	-423										
18 213.14 423 19 -92.25 -230 20 -213.12 -423 21 92.26 230 22 213.13 423 23 -92.27 -231 24 -213.13 -422 25 92.25 230 26 213.11 422 27 -92.25 231 28 -213.12 -422 29 92.25 -230 30 213.16 422 31 -92.25 -230 32 -233	17	92.26	231										
19 92.25 -230 20 -213.12 423 21 92.26 230 22 213.13 423 23 -92.27 -231 24 -213.12 422 25 92.25 230 26 213.11 422 27 92.25 230 28 -213.12 422 29 92.25 230 30 213.12 422 29 92.25 230 30 213.16 422 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 <	18	213.14	423										
20 -213.12 -423 21 92.28 230 22 213.13 423 23 92.27 -231 24 -213.13 -422 25 92.25 230 26 213.11 422 27 -92.25 -231 28 -213.12 -422 29 92.25 230 30 213.16 422 29 92.25 230 30 213.16 422 29 92.25 230 30 213.16 422 29 92.25 230 30 213.16 422 21 92.25 230 31 492.25 -230 14 + 1/ Fase A / Fase B / Fase C / I	19	-92.25	-230										
21 92.28 230 22 213.13 423 23 92.27 231 24 -213.13 -422 25 92.25 230 26 213.11 422 27 -92.25 -231 28 -213.12 -422 29 92.25 230 29 92.25 230 29 92.25 230 29 92.25 230 29 92.25 230 30 213.16 422 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230	20	-213.12	-423										
2 213.13 423 23 -92.27 -231 24 -213.13 -422 25 92.25 230 26 213.11 422 27 -92.25 -231 28 -213.12 -422 29 92.25 -230 30 213.16 422 31 -92.25 -230 # + M Fase A / Fase B / Fase C /	21	92.28	230										
23 -92.27 -231 24 -213.13 -422 25 92.25 230 26 213.11 422 27 -92.25 -231 28 -213.12 -422 29 92.25 230 30 213.16 422 29 92.25 230 30 213.16 422 31 -92.25 230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 -93 -93 -93 -94 -94 -94	22	213.13	423										
24 -213.13 -422 25 92.25 230 26 213.11 422 27 -92.25 -231 28 -213.12 -422 29 92.25 230 30 213.16 422 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230 31 -92.25 -230	23	-92.27	-231										
25 92.25 230 26 213.11 422 27 -92.25 -231 28 -213.12 -422 29 92.25 230 30 213.16 422 31 -92.25 -230 Fig. 5.4 Archivo de VBAProject en Excel para obtener los valores que se utilizaran para	24	-213.13	-422										
26 213.11 422 27 99.25 -231 28 -213.12 -422 29 92.25 230 30 213.16 422 31 -92.25 -230 # + + M Fase A / Fase B / Fase C / Image: A rest of the set of the	25	92.25	230										
27 -92.25 -231 28 -213.12 -422 29 92.25 -230 30 213.16 422 31 -92.25 -230 14 + 10 Fase A (Fase B (Fase C / Fase C / Fase C / Fase C / Fase A (Fase B (Fase A (Fase B (Fase C / Fase A (Fase B (Fase A (Fase B (Fase C / Fase A (Fase B (Fase A (Fase B (Fase C / Fase A (Fase B (Fase A (Fase B (Fase C / Fase A (Fase B (Fase A (Fase B (Fase C / Fase A (Fase B (Fase A (Fase A (Fase B (Fase A (Fase B (Fase A (Fase B (Fase A (Fase B (Fase A (Fase A (Fase A (Fase B (Fase A (Fase A (Fase B (Fase A	26	213.11	422										
1 -2/3 · 12 · 422 29 92.25 · 230 30 213.16 · 422 31 -92.25 · -230 1 -92.25 · -230 Fig. 5.4 Archivo de VBAProject en Excel para obtener los valores que se utilizaran para	27	-92.25	-231										
79 92.25 230 30 213 6422 31 -92.25 -230 Fig. 5.4 Archivo de VBAProject en Excel para obtener los valores que se utilizaran para	28	-213.12	-422										
31 -925 -230 if →→ ii\Fase A (Fase B (Fase C / if → ii\Fase A (Fase B (Fase C / Fig. 5.4 Archivo de VBAProject en Excel para obtener los valores que se utilizaran para	29	92.25	230										
Fig. 5.4 Archivo de <i>VBAProject</i> en Excel para obtener los valores que se utilizaran para	30	213.16	422										
Fig. 5.4 Archivo de <i>VBAProject</i> en Excel para obtener los valores que se utilizaran para	31	-92.20	-230	,									~
Fig. 5.4 Archivo de <i>VBAProject</i> en Excel para obtener los valores que se utilizaran para		► ► ► Fase	A / Fase B / Fa	ase C /				<		Ш		>	1
	Fi	Fig. 5.4 Archivo de <i>VBAProject</i> en Excel para obtener los valores que se utilizaran para							a				

El botón "*txt*" genera un archivo de formato "*.txt" en total se generan 3 archivos con los nombres: *Final_Fase_A.txt*, *Final_Fase_B.txt* y *Final_Fase_C.txt*. Y El botón de la ecuación genera los valores del Ángulo de Fase.

Usando la definición de Sag, realizamos un programa en LabView,³ para calcular los huecos de tensión para cada Fase. Como se muestra en la Figura 5.5.

Con base en lo anterior se visualiza la caída de tensión para cada fase. El programa se explica con base al siguiente diagrama de flujo:

³ Para mayor informes sobre LabView ver el Apéndice F

Utilizamos la ecuación para el cálculo de la componente homopolar, $V_0(t)$ y las ecuaciones para el cálculo de $V_a'(t)$, $V_b'(t)$, $V_c'(t)$, $V_{ab}'(t)$, $V_{bc}'(t)$ y $V_{ca}'(t)$ (ver pagina 62), se realiza el programa en Labview para saber cual es el menor valor eficaz de las seis tensiones, antes mencionadas, esto lo podemos ver en la Fig. 5.7.

\$ ₽ ∎	13pt Application Font		≝ - ©-			2
	all rows	Valores tomados por Va -26.47	all rows 2 10 10 10 10 10 10 10 10 10 10	Valores tomados por Vb -25.47	all rows 3 20.040 Valores tomados 20.040 por Vc 26.430 -26.47	
				Ca' Dc'	: : Cb' Da' Cc' Db'	
	V característic Tipo de hueco	ta Va'Vb'Vc' D Da'Db'Dc'	Vab Vac Vab Ca' Cb' Cc'	Va' 6.866468	Vab	
	Para loc tomara ecuacio	Para localizarlos voltajes característicos, se tomara el menor valor, del resultado de las 6 ecuaciones anteriores.		Vb' 6.866461 Vc' 6.866461	Vbc Vo 0 26.47 Vca	

En la Fig. 5.7 se muestra el programa en el panel frontal de labview.

Para explicar el programa nos apoyamos en la Fig. 5.9 la cual es el Diagrama de Flujo en el se explica los pasos a seguir para el desarrollo del programa.

Fig. 5.9 Diagrama de Flujo para la clasificación del tipo de Sag por componentes simétricas.

Como por lo general los huecos de tensión afectan cada fase de un sistema trifásico en forma diferente. Una, dos o las tres fases pueden tener tensiones lo suficientemente bajas como para que sean clasificadas como huecos de tensión, es decir, las tres fases experimentan un hueco de tensión, las magnitudes de estos huecos a menudo serán diferentes. Por lo cual, no es evidente saber cual es la magnitud que debe ser tomada en cuenta para el hueco de tensión. Esto es por lo que el programa anterior nos manda como clasificación tres tipos de huecos, por lo cual nos apoyamos en un segundo programa para la clasificación del Sag.

Este programa se basa en la utilización de la siguiente ecuación mencionada en la página 61:

$$k = round \quad \left[\frac{angle}{60} \left(\frac{V_2}{2}, \frac{1}{1} - \frac{V_1}{1} \right) \right]$$

Para la explicación del programa nos basamos en el siguiente diagrama de flujo:

Conclusiones

Se considera que existe un hueco cuando la tensión suministrada disminuye bruscamente por debajo del 90% de la tensión nominal recuperándose al cabo de un corto lapso de tiempo. Por convenio, un hueco de tensión dura de 10 milisegundos a 1 minuto. Existen huecos complejos, compuestos por huecos simples que afectan 2 o 3 fases de un sistema trifásico. No existe en la actualidad algo que normalice el número de huecos, solo se sabe que pueden existir entre decenas hasta mil huecos al año. La mayoría dura menos de un segundo tiene menos del 60% de profundidad.

En la actualidad existen muchos equipos muy sensibles que ante los problemas de la calidad del suministro de energía, se ven afectados en su funcionamiento, esto en el ámbito domestico quizás solo sea una molestia para los clientes, pero en el ámbito industrial puede provocar paradas en el proceso productivo y perdidas millonarias.

El origen por lo general son fallas en otras líneas, operación de los sistemas de protección, conexión de cargas. Sus efectos negativos: el mal funcionamiento de los equipos electrónicos de control y protección, variación de la velocidad de los motores o parada de estos, inconvenientes derivados de arranques de motores y maquinas, fallos y errores en procesos informáticos, apagado de lámparas de arco, entre otros.

La caracterización de un Sag individual, principalmente se logra con su magnitud y duración. Otra caracterización puede ser el considerar el Desplazamiento o Salto del Ángulo de Fase. La recolección de los eventos que ocurren en un BUS en un sistema durante un periodo de tiempo, usualmente en un año permiten la caracterización del sitio¹. La caracterización del sitio es necesario para decidir sobre la mitigación o la predicción de los tipos de falla y por ende de los tipos de Sag. Al tener una caracterización de los sitios, se tiene los tipos de Sag, su magnitud y duración para cada sitio. Con ello se realiza la caracterización del sistema.

El método de distancia crítica puede ser usado para estimar el número esperado de Sags, como una función de magnitud. Además este estudio puede manifestar la relación entre el diseño u operación del sistema y el Voltaje del Sag. El método es muy simple pero tiene sus limitaciones, después de que es calculado el PCC para todos los elementos del sistema se puede crear un bosquejo (lo cual es mas complejo que el obtener una impedancia, pues cada PCC va relacionado con el anterior elemento).

Donde sólo se requiera tener una impresión del sistema general el método de distancias críticas puede usarse. El principal problema en el estudio del Voltaje del Sag es el de obtener la tasa de falla. Esto puede ser difícil especialmente en los sistemas de autorecierre donde las fallas no son registradas.

Como se menciono anteriormente los huecos de tensión normalmente afectan cada fase de un sistema trifásico en forma diferente. Si las tres fases experimentan un hueco de tensión, las magnitudes de estos huecos a menudo serán diferentes, es por ello

¹ Al referirnos a *Sitio*, nos estamos refiriendo a cualquier elemento que compone el sistemas eléctrico en estudio.

que es difícil poder saber, cual es la magnitud que debe ser tomada en cuenta para el hueco de tensión. Es por ello que la caracterización del sistema nos permite contar con datos como: instalación donde ocurre el mayor numero de Sag (ubicación), la magnitud de la tensión, tipo de falla (esto al saber que tipo de Sag). A estos datos se le podrían anexar datos sobre la edad de la instalación, esto es para darle a los elementos una tasa de falla, *Para realizar un estudio estimativo de huecos en principio seria suficiente con este desglose, por que cuanto mayor cantidad y calidad de datos redundarían en una mejor precisión*.

Así mismos se requiere hacer hipótesis donde se le de un índice de falla a cada parte del sistema eléctrico además de que en instalaciones de igual tensión tendrán el mismo comportamiento (independientemente del diseño, geometría y de los materiales con que fue construida) lo cual solo seria valido si las áreas geográficas son homogéneas. Tener un porcentaje donde se tenga en cuentan la reconexión exitosa. Es por lo anterior que utilizamos dos formas de detección de la falla una basándonos en el método de componentes simétricas aplicadas a los Sags y la otra apoyándonos en la ecuación k esto nos ayuda a ver lo que para las ecuaciones simétricas debido al valor homopolar es igual nos esta provocando un error el cual se percibe al tener tres fallas distintas. Con base a la ecuación k, podemos corroborar cual es la falla concreta.

Llegamos a obtener el tipo de falla basándonos en los Sag pero es notorio que puede existir variaciones en diferentes aplicaciones esto debido a las hipótesis que se toman a la falta de datos, pues entre mayor sea la cantidad de los datos mayor será la confiabilidad de la detección.

Apéndices

1 AL

Facultad de Ingeniería

85

APENDICE A.

Formación de la Matriz Z_{bus.}

Existen algunos métodos para la obtención de la Matriz de impedancias Z_{bus} una de las alternativas es la inversión matricial de la matriz Y_{bus} , la cual no es muy práctica para sistemas de tamaño medio o grandes.

La matriz Z_{bus} se puede obtener por la inversión de la matriz Y_{bus}.

$$\left[\overline{Z}_{bus}\right] = \left[\overline{Y}^{-1}_{bus}\right]$$

A su vez la matriz Y_{bus} se obtienen a partir de la matriz primitiva de admitancias y la matriz de conexión rama punto de unión.

$$\left[\overline{Y_{bus}}\right] = \left[A_t\right] \overline{Y} A$$

Cálculo de la matriz Y_{bus}.

La red que representa un sistema de potencia puede considerarse por una red de elementos pasivos, con una serie de pares de terminales a las que están conectadas las fuentes de fuerza electromotriz que representan los generadores y las cargas, (si las cargas se representan mediante impedancias constantes, pueden considerarse como parte de la rey pasiva).

Este tipo de red se llama red multidipolo. Si las ecuaciones que dan las corrientes de malla en el análisis de un sistema de potencia son las siguientes:

$$\overline{I_1} = \overline{y_{11}}\overline{E_1} + \overline{y_{12}}\overline{E_2} + \dots + \overline{y}_{1m}\overline{E}_m$$

$$\overline{I_2} = \overline{y_{21}}\overline{E_1} + \overline{y_{22}}\overline{E_2} + \dots + \overline{y}_{2m}\overline{E}_m$$

$$\vdots$$

$$\overline{I_m} = \overline{y_{m1}}\overline{E_1} + \overline{y_{m2}}\overline{E_2} + \dots + \overline{y}_{mm}\overline{E}_m$$

Y son las ecuaciones de un multidipolo y se ponen en corto circuito, todas la fuentes de fuerza electromotriz, menos \overline{E}_1 , la primera ecuación se reduce a:

$$\overline{I_1} = \overline{y_{11}}\overline{E_1}$$

La admitancia puntual \overline{y}_{11} esta dada por:

$$\overline{y}_{11} = \frac{I_1}{\overline{E}_1}$$

Es el cociente de dividir la corriente que entra a la red en las terminales consideradas, por el voltaje aplicado a esas terminales.

La ecuación de para \overline{I}_2 se reduce a:

$$\overline{I_2} = \overline{y_{21}}\overline{E_1}$$

Entonces la admitancia de referencia esta dada por:

$$\overline{y}_{21} = \frac{\overline{I}_2}{\overline{E}_1}$$

Es el cociente resultante de dividir la corriente que circula por las terminales 2, que están en corto circuito, dividida por el voltaje aplicado a las terminales 1. En general, pueden definirse las admitancias puntuales como el cociente resultante de dividir la corriente en una malla por la fuerza electromotriz aplicada a otra malla, estando todas las demás fuerzas electromotrices en corto circuito. En una red pasiva se verifica siempre que $\overline{y}_{pq} = \overline{y}_{qp}$.

En sistemas eléctricos grandes, se pueden tener cientos de nodos, las matrices de admitancias de bus correspondientes son muy grandes, (ya que la dimensión de la matriz es igual al número de nodos del sistema). La inversión de una matriz de esas dimensiones se tiene que hacer mediante una aplicación programada en una computadora y aún así toma mucho tiempo y necesita muchos recursos. Por lo que es necesario usar algunos algoritmos de cálculo de matrices para esos casos.

ALGORITMO DE LA Z_{BUS} DISPERSA.

Si se toma en cuenta que únicamente se requieren los elementos de la Z_{bus} asociados con elementos existentes en la red, es enormemente ventajoso poder obtener de manera selectiva dichos elementos, ahorrando memoria y tiempo con esto. El algoritmo denominado Z_{bus} dispersa, obtiene únicamente dichos elementos, partiendo de explotar la dispersidad de la matriz Y_{bus} y de utilizar la formulación que a continuación se menciona.

Partimos de la expresión matricial:

$$[Y][Z] = [I] \qquad \dots \dots (1)$$

Donde [Z] es la matriz Z_{bus} de la red

Donde [I] es la matriz identidad.

Si factorizamos $[Y] = [L] [D] [L]^T$ entonces sustituyendo en (1), obtenemos

$$\llbracket L \rrbracket D \rrbracket L \rrbracket^T \llbracket Z \rrbracket = \llbracket I \rrbracket$$

Si premultiplicamos por $\{ [L] [D] \}^{-1} = [D]^{-1} [L]^{-1}$ obtenemos

$$[L]^{T}[Z] = [D]^{-1}[L]^{-1}[I]$$
(2)

Definimos además

$$\begin{bmatrix} W \end{bmatrix} = \begin{bmatrix} D \end{bmatrix}^{-1} \begin{bmatrix} L \end{bmatrix}^{-1}$$

Sustituyendo en (2):

$$\begin{bmatrix} L \end{bmatrix}^T \begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} W \end{bmatrix}_{\dots \dots \dots (3)}$$

La matriz [W] es muy importante y solamente se requieren los términos diagonales, que además, dado que [L] es matriz inferior con diagonal unitaria, $[L]^{-1}$ lo es también; además $[D]^{-1}$ es una matriz diagonal y por tanto, [W] es una matriz triangular inferior cuyos elementos diagonales W_{ii} son igual a $(1/d_{ii})$, i=1, ...,n. Por lo tanto para resolver [W] únicamente es necesario resolver la inversa de [D] lo cual es simple pues recordemos que [D] es diagonal.

$$D = \begin{bmatrix} s & m & m \\ m & s & m \\ m & m & s \end{bmatrix}$$

Los valores característicos de la matriz D se pueden encontrar por medio de:

$$\det(D-\lambda I)=0$$

Lo anterior conduce al polinomio:

$$-\lambda^{3} + s\lambda^{2} + \lambda\left(-3s^{2} + 2m^{2}\right) + s^{3} - 2m^{2}s + 2m^{3} = 0$$

Las raíces son los valores característicos de D y se denominan los valores característicos de secuencia positiva negativa y cero.

$$\lambda = s - m$$
$$\lambda = s - m$$
$$\lambda = s + 2m$$

Por otro lado, se define otra importante matriz de esta formulación

$$[T] = -[L]^T + [1]$$

De donde obtenemos

$$\begin{bmatrix} L \end{bmatrix}^T = \begin{bmatrix} I \end{bmatrix} - \begin{bmatrix} T \end{bmatrix}$$

Y finalmente sustituyendo en (3):

$$([I] - [T])[Z] = W$$

ó bien

$$[Z] - [T][Z] = [W]$$

De donde

$$[Z] = [T][Z] + [W]$$

Es fundamental observar que la matriz [T], denominada matriz de conexión ponderada por los autores de este método, contiene la información de los elementos requeridos en la formulación, es decir que como puede verse del ejemplo siguiente, los elementos *tij* de esta matriz son cero precisamente correspondiendo a los elementos no existentes en la red. Entonces guiados por la estructura de [T], se calcularán los elementos de Z_{bus} correspondientes a los elementos existentes en la red, más los términos producidos por llenado en el proceso de factorización.

La ecuación (3.38) se debe resolver en forma regresiva (hacia atrás), como puede verse en el caso de orden 5: [Z] = [T][Z] + [W]

$\begin{bmatrix} Z_{11} & Z_{12} & Z_{13} & Z_{14} & Z_{15} \end{bmatrix}$	$0 t_{12} t_{13} t_{14} t_{15}$	$\begin{bmatrix} Z_{11} & Z_{12} & Z_{13} & Z_{14} & Z_{15} \end{bmatrix}$	$\left[W_{1} \right]$
$Z_{22} Z_{23} Z_{24} Z_{25}$	$0 t_{23} t_{24} t_{25}$	$Z_{22} Z_{23} Z_{24} Z_{25}$	$W_{1} W_{2}$
$Z_{33} Z_{34} Z_{35} =$	$0 t_{34} t_{35}$	$Z_{33} Z_{34} Z_{35}$	$W_{31} W_{23} W_{33}$
$Z_{44} Z_{45}$	$0 t_{45}$	$Z_{44} Z_{45}$	$W_{41} W_{42} W_{43} W_{44}$
Z_{55}		Z_{55}	$\left[\underbrace{W_1}_{} \underbrace{W_2}_{} \underbrace{W_3}_{} \underbrace{W_4}_{} \underbrace{W_5}_{} \right]$

 $Z_{55} = W_{55}$ $Z_{45} = t_{45}Z_{55}$ $Z_{44} = W_{44} + t_{45}Z_{54}$ $Z_{35} = t_{35}Z_{55} + t_{34}Z_{45}$ $Z_{34} = t_{35}Z_{54} + t_{34}Z_{44}$ $Z_{33} = W_{33} + t_{35}Z_{53} + t_{34}Z_{43}$ $Z_{25} = t_{25}Z_{55} + t_{24}Z_{44} + t_{23}Z_{35}$ $Z_{24} = t_{25}Z_{54} + t_{24}Z_{44} + t_{23}Z_{33}$ $Z_{22} = W_{22} + t_{25}Z_{52} + t_{24}Z_{42} + t_{23}Z_{32}$ $Z_{15} = t_{15}Z_{55} + t_{14}Z_{45} + t_{13}Z_{35} + t_{12}Z_{25}$ $Z_{14} = t_{15}Z_{54} + t_{14}Z_{44} + t_{13}Z_{34} + t_{12}Z_{24}$ $Z_{13} = t_{15}Z_{55} + t_{14}Z_{42} + t_{13}Z_{35} + t_{12}Z_{23}$ $Z_{12} = t_{15}Z_{52} + t_{14}Z_{42} + t_{13}Z_{32} + t_{12}Z_{23}$ $Z_{12} = t_{15}Z_{52} + t_{14}Z_{42} + t_{13}Z_{31} + t_{12}Z_{21}$

APENDICE B.

LOCALIZAR EL ORIGEN DEL SAG.

Un método para determinar el origen del Sag es emplear la perturbación de potencia y perturbación de la energía basado en el concepto, que el poder activo tiende a fluir fuera de una carga no lineal. Este concepto se traduce en términos de perturbaciones de potencia y perturbaciones de energía para determinar, en que lado del mecanismo se ha originado el Sag. Las direcciones de la perturbación de energía así como la perturbación del flujo de potencia real son usadas para localizar el origen del Sag.

Otra técnica más reciente para localizar el origen del Sag, es empleando la pendiente de los parámetros lineales propios de corriente y voltaje durante el Sag¹. El método se basa, trazando el producto de la magnitud de voltaje por factor de potencia contra la magnitud de la corriente a un punto particular (Pp). Una línea-propia del punto medido Pp y la pendiente indica la dirección del origen del Sag (el método de mínimos-cuadrados se usa para realizar el ajuste de la línea). La dirección del origen del Sag se determina examinando la pendiente de la señal. Una pendiente positiva indica que el Sag esta localizado más arriba (del Pp) y si la pendiente es negativa esta más abajo (del Pp). El método sólo se ha usado en las fallas trifásicas a tierra, y se ha comprobado.

A continuación se mencionara un nuevo método propuesto para localizar el origen del Sag, en un sistema de potencia. El método propuesto usa la polaridad de la componente de corriente real para determinar la localización relativa para el punto supervisando. Este método es basado en el concepto de elevación direccional, es decir, la diferencia del ángulo de fase entre la corriente y voltaje, o el ángulo del factor de potencia. En el método, la magnitud de la corriente y ángulos de la fase de voltajes y corrientes están relacionados, con base a un punto de medición. La magnitud de corriente se multiplica por el coseno del factor de potencia y el producto se grafica contra el tiempo. La polaridad del producto se usa para indicar la dirección del origen del Sag. Ya sea más arriba o más abajo con relación al punto medido. Una polaridad positiva del producto indicará al principio de la duración del Sag es mas abajo del punto que se utilizo para medir. Por otro lado, una polaridad negativa del producto indicará que el origen del Sag es mas arriba del punto medido.

¹ C. Li, T. Tayjasanant, W. Xu, X. Li, Method for voltage sag source detection by investigating slope of the system trajectory, IEE Proc. Gen. Transm. Distrib. 150 (3) (2003) 367–372.

DEDUCCIÓN DEL MÉTODO PARA LOCALIZAR EL ORIGEN DEL SAG.²

La base de este método propuesto para la localización del origen del Sag, es considerando un análisis de falla a causa de una prefalla y las condiciones durante la falla. Primero se considera un sistema de dos fuentes como se muestra en la Fig. B.1.

Fig. B.1 Sistema de Dos fuentes en condiciones de prefalla

Para la Fig. 1 el flujo de corriente para E_1 a E_2 a causa de las condiciones de prefalla se da por $Z \measuredangle \delta$ que es una impedancia, $E_1 \measuredangle \varphi_1$ y $E_2 \measuredangle \varphi_2$ son el voltaje de la fuente 1 y 2 respectivamente. Es conocido que antes de una falla, solamente fluye una corriente $I \measuredangle \alpha$ si $E_1 > E_2$. De la Fig. 1 aplicando la ley de voltajes de Kirchoff y despejando la corriente se tiene:

$$I \angle \alpha = \frac{E_1 \angle \varphi_1 - E_2 \angle \varphi_2}{Z \angle \delta} \tag{1}$$

Si ocurre una falla en el punto X, con una impedancia de falla de $Z_f \angle \delta$ tal como se muestra en Fig. B.2 se generan dos corrientes. Una falla en el punto X causara un voltaje muy pequeño qué es casi cero y genera también las corrientes I_1 , I_2 y I_f . La I_1 es la corriente de la *Fuente 1* $E_1 \angle \varphi_1$, I_2 es la corriente de la *Fuente 2* $E_1 \angle \varphi_2$, e I_f es la corriente que fluye a través de la impedancia de corto circuito.

Por lo que se refiere a la dirección de la corriente I_I , esta tiene la misma dirección que la corriente de prefalla $I \angle \alpha$, desde la misma fuente E_1 hacia el punto X.

² A new approach to locate the voltage sag source using real current component Noraliza Hamzah, Azah Mohamed, Aini Hussain *Faculty of Engineering, Department of Electrical Electronic and System Engineering,*

Si la impedancia Z_2 es mucho mayor que la impedancia de falla Z_f entonces $I_2 \approx 0$ y la corriente de la fuente E_1 fluirá por Z_f . Por otra parte I_2 se ve venir de E_2 .

El concepto de las direcciones de esta corriente es para poder ver de donde proviene las corrientes ya sea de E_1 o E_2 durante una falla se aplicara un desarrollo para poder indicar la localización el origen del Sag.

Fig. B.2 Un sistema de dos Fuentes en condiciones de falla.

EL CONCEPTO DE LA COMPONENTE REAL DE CORRIENTE.

Para la Fig. B.3 además de proponer el método de localización del origen del Sag es un circuito equivalente que representa el sistema de dos fuentes.

Fig. B.3 Un sistema de dos Fuentes para el análisis de la localización del origen del Sag.

Considerando una falla en el punto X y monitoreando los puntos M_A y M_B . Para una falla en X, usando la ley de voltajes de Kirchoff, el voltaje en M_A será:

$$\overline{V} = \overline{E}_{1} - \overline{I}_{2} \overline{Z}_{1} \quad (2)$$

Donde \overline{V} e \overline{I} son el voltaje y la corriente respectivamente medidos directamente en M_A . Multiplicando ambos lados de la ecuación (2) por \overline{I} se obtiene:

$$\overline{V}\overline{I} = \overline{E}_{1}\overline{I} - \overline{I}^{2}\overline{Z}_{1} \quad (3)$$

Extrayendo la parte real de la ecuación (3) se tiene:

$$VI \cos (\theta - \alpha) = E_1 I \cos (\theta - \alpha) - I^2 R \qquad (4)$$

Donde θ y α son los ángulos de fase para el voltaje y corriente medidos en el punto M_A respectivamente. La diferencia $(\theta - \alpha)$ es ángulo del factor de potencia medido en el punto M_A . Con base a la ecuación (4), para el caso de monitorear en un punto antes de la falla X, es decir antes de M_A , la corriente fluye de E_I a X, es I cos $(\theta - \alpha) > 0$. Se dice que la falla esta situada antes (más abajo) del punto M_A y el origen del Sag se localiza más abajo, es decir se localiza antes del M_A . Esta corriente esta en la misma dirección que la corriente de prefalla de E_I a E_2 .

En el caso de monitorear un punto después de la falla X es decir M_B , la corriente $I \cos (\theta - \alpha) < 0$ debido a que la corriente fluye hacia tierra del punto de falla y esta corriente fluirá de E_2 a X. La falla se dice que ocurre más arriba del punto monitoreado M_B y el origen del sag se localiza después del M_B . El propósito de este método es evaluar la impedancia de falla, si se considera que $Z_f << Z_2$, entonces no existe ninguna corriente que fluya de E_2 solo fluirá la corriente de la fuente E_I a través de Z_f . Sin embargo, en el principio de un Sag, la corriente puede ser significativamente más alta que la corriente constante del estado actual debido a un cambio súbito en la condición eléctrica. Incluso si la impedancia de falla es muy pequeña.

Por consiguiente un indicador más conveniente elegido para localizar un Sag, es basarnos en la dirección de la corriente de falla. La condición para el método propuesto es que si al principio de la falla, $I \cos (\theta - \alpha) > 0$, el origen del Sag esta mas abajo. Y si $I \cos (\theta - \alpha) < 0$, el origen del Sag esta más arriba. El concepto de la componente real de corriente es usado para localizar el origen; pude también aplicarse a un sistema de una fuente como para el caso de un sistema de distribución radial.

REQUISITOS NECESARIOS PARA APLICAR EL MÉTODO PROPUESTO

El procedimiento para aplicar este método es:

- Cree una condición del Sag simulando una falla del corto circuito en una localización específica.
- Obtener la magnitud y fase del voltaje y corriente para la medición de la prefalla y durante el tiempo de la falla.
- Calcular los valores de $I \cos (\theta \alpha)$ para algunos ciclos de prefalla y durante el tiempo de la falla.
- Grafique los valores de $I \cos (\theta \alpha)$ contra el tiempo de algunos ciclos de prefalla y durante el tiempo de la falla.
- Cheque la polaridad de $I \cos(\theta \alpha)$ al principio de la falla. Si esta es positiva el origen del Sag esta debajo del punto medido. Por otro lado si el valor es negativo el origen del Sag esta más arriba de dicho punto.

APENDICE C.

NUEVO MÉTODO PARA LA CARACTERIZACIÓN DEL SAG.

A. Conceptos

En el método propuesto, efectivamente la duración del Sag (d') esta definida en términos del voltaje mínimo del Sag (V_{sag}), el voltaje promedio de la duración del Sag (V_{avg}) y V_{min} son los que determinan la curva de tolerancia de voltaje de cada equipo.

Si un equipo tiene una curva de tolerancia con un punto de T_{max} (en milisegundos) y V_{min} (en *p.u.*), es razonable que se utilice la duración del Sag para estos equipos, y se define como el tiempo durante el cual el voltaje permanece debajo del V_{min} .

Si la nueva duración d' es más pequeño que T_{max} el equipo no es afectado por el Sag. Por consiguiente, es posible determinar si el equipo es influenciado por el Sag o no influenciado.

B. Formulaciones

Dado que no pueden adquirirse todos los datos directamente del perfil de voltaje en la práctica, deben aproximarse para ser caracterizados, tal como $V_{sag} V_{avg}$, y duración *d* calculada en el método convencional. En el método propuesto, el perfil del Sag se aproxima por K^{th} raíz de orden radical que asume que el tiempo *t* es θ en el comienzo del Sag:

$$V(t) = \begin{cases} V_{sag} & (0 \le t \le m^* d) \\ V_{sag} + (V_{thr} - V_{sag}) *_k \sqrt{\frac{t - m^* d}{(1 - m) d}} & (m^* d \le t \le d) \end{cases}$$
(1)

Donde, V_{thr} es un voltaje del umbral, usado en la decisión de la duración del Sag en el método convencional, y el producto (m*d) significa el tiempo durante el cual, el voltaje permanece en V_{sag} . El perfil del voltaje aproximado según la ecuación (1) se muestra en *Fig. C.1*.

Fig. C.1. Aproximación del perfil de un Sag no-rectangular.

Debido a que los datos directos del Sag y el resultado del perfil del voltaje es desconocido, $(0 \le m \le 1)$, m también es desconocido. Sin embargo, m puede calcularse de los valores medidos.

Para esto, el voltaje promedio V_{avg} calculado al principio es.

$$V_{avg} = \frac{1}{d} \int_{0}^{d} V(t) dt$$

= $\frac{1}{d} \left[\int_{0}^{md} V_{sag} dt + \int_{md}^{d} V_{sag} + (V_{thr} - V_{sag}) *_{k} \frac{t - m^{*}d}{(1 - m)d} dt \right]$
= $V_{sag} + \frac{k}{k + 1} (1 - m) (V_{thr} - V_{sag})$ (2)

Por lo tanto *m* es:

$$m = 1 - \frac{k+1}{k} * \frac{V_{avg} - V_{sag}}{V_{thr} - V_{sag}}$$
(3)

Si $V_{sag} < V_{min}$; la duración del Sag d' es calculado por la ecuación (1) y la ecuación (3).

$$V_{\min} = V_{sag} + \left(V_{thr} - V_{sag}\right) *_{k} \frac{d - m^{*}d}{(1 - m)d} \qquad (4)$$

Por lo tanto, *d*' es:

$$d' = d* \left[m + (1 - m) * \left(\frac{V_{\min} - V_{sag}}{V_{thr} - V_{sag}} \right)^{K} \right]$$

= $d* \left[1 - \left(\frac{k + 1}{k} * \frac{V_{\min} - V_{sag}}{V_{thr} - V_{sag}} \right) * \left\{ 1 - \left(\frac{V_{\min} - V_{sag}}{V_{thr} - V_{sag}} \right)^{K} \right\} \right]$ (5)

Si $V_{sag} > V_{min}$ la duración del Sag d' es fijado a cero. Esto es porque este Sag no puede hacer ningún daño al equipo. La ecuación (5) da un poco de información útil.

Si el perfil del Sag es precisamente rectangular, V_{sag} es igual a V_{avg} y d' en la ecuación (5) es igual a d. Esto significa que el método propuesto es precisamente aplicable al Sag rectangular. La diferencia entre V_{sag} y V_{avg} se refleja en el cálculo de d' para que el Sag no-rectangular pueda estimarse correctamente.

Además, d' es determinado diferentemente de acuerdo al valor de V_{min} que varia según el equipo. De esta manera, se tiene un efecto diferente en cada equipo según el voltaje de tolerancia característico puede reflejarse.

VENTAJAS

La nueva definición de duración del Sag refleja los efectos de evento del Sag exactamente en el equipo del cliente. En adición, este método proporciona los resultados más exactos si el Sag es rectangular o no-rectangular. La gran ventaja de este método es que usa sólo los mismos datos que se utilizan en el método convencional. Además, es posible estimar el número de Sag que afectan los equipos del cliente aunque ellos tienen Voltajes de tolerancia Característicos diferentes. Estas ventajas serán muy beneficiosas a los clientes.³

³ Paper accepted for presentation at 2003 IEEE Bologna PowerTech Conference, June 23-26, Bologpa, Italy **A** New Definition of Voltage Sag Duration Considering The Voltage Tolerance Curve Dong-Jun Won, Seon-Ju Ahn, 11-Yop Chung, Joong-Moon Kim, *Student Member, IEE.E,* and Seung-11 Moon, *Member,* IEEE

APENDICE D.

DESPREOCUPACIÓN EN LAS CARACTERÍSTICAS DEL EQUIPO.

En el suministro de energía que convierte AC en DC se usan rectificadores, el voltaje regulado mantiene su salida constante, con ello el voltaje de entrada esta dentro de un cierto rango. Los rangos de entrada de voltaje son diversos para cada equipo. También es diferente cuándo se prolonga el tiempo de operación de los equipos tras ello el voltaje de entrada desciende debajo del voltaje del umbral.

Fig. D.1. La curva de Tolerancia de voltaje típico.

Estas características pueden resumirse en la curva de tolerancia de voltaje. Una típica curva de tolerancia de voltaje *Fig. D.1.* Donde, V_{min} es un voltaje umbral, en el que el regulador puede operar correctamente. T_{max} significa el tiempo durante el cual el equipo puede operar cuando las entradas de voltaje permanecen de bajo del V_{min}.

TABLA I. Voltajes de tolerancia Característicos de Equipos Más Usados					
Equipos	V _{min}	T _{max}			
PLC	60%	260 ms			
PLC Input Card	55%	40ms			
5 h.p. AC Drive	75%	50ms			
Control de un relevador de AC	65%	20ms			
Arranque de un motor	50%	50ms			
Computadora Personal	60%	50ms			

La tabla I muestra los voltajes de tolerancia característicos de varios equipos. En esta tabla, el PLC tiene 60% V_{min} y 260ms T_{max} . Esto significa que cualquier Sag prolongado a 260ms y más profundo que 60% llevarán a caer en una falla o funcionamiento defectuoso del equipo. Como se muestra en la tabla I, los voltajes de tolerancia característicos para cada equipo son diferentes, no importa los efectos en cada equipo causado por el mismo Sag también son diferentes.

En el método convencional, esta característica no puede ser considerada porque el voltaje umbral es fijo sin tener en cuenta el tipo del equipo.

Para superar esta limitación, es necesario modificar la definición en donde se pueda tomar en cuenta los voltajes de tolerancia característicos de cada equipo. Mientras tanto, CBEMA (Computer Business Equipment Manufacturers Association) es una de las curvas más famosa de Curvas de Tolerancia de Voltaje. La curva CBEMA define los límites superiores e inferiores que los equipos computacionales pueden tolerar. *Fig. D.2* muestra la curva de CBEMA

Fig. D.2. Curva CBEMA

La curva de CBEMA describe el rango del voltaje de entrada tolerable de los equipos computacionales. El área entre el límite superior y el inferior seguros para el funcionamiento del equipo y el área externa es la región peligrosa. La magnitud y la duración se determina en el método convencional, el cual se aplica a esta curva CBEMA para evaluar los efectos individuales del Sag. Pero la sobrestimación de Sag no-rectangular también existe en la curva de CEBMA. Es por esto que se necesita la una nueva definición.

EJEMPLO⁴

APLICACIÓN DE UN SAG NO-RECTANGULAR

La *Fig. D.3* muestras el resultado de aproximación cuando el método de caracterización propuesto es realizado. En la figura, la línea sólida y la línea punteada representan el perfil del Sag no-rectangular debido a la reaceleración del motor de inducción y su respectiva aproximación. Este perfil muestra una típica forma de onda del Sag no-rectangular que tiene inmediatamente un corte, una profunda caída y una prolongada recuperación de post-falla. Donde, el Sag tiene de magnitud 0.02 p.u. y 2.2 segundos de duración. El voltaje promedio de este Sag es 0.73 p.u. y el orden de raíz *k* es aproximadamente de 10. Esto es asumiendo que el Sag pasa en el sistema de la distribución dónde un equipo con $V_{min} = 0.7$ p.u. y $T_{max} = 500$ ms esta instalado. En el método convencional, este Sag se estima como un Sag de duración profunda y larga con una magnitud de 0.02 p.u. y duración de 2.2 segundos.

Por consiguiente, el cliente pensará que los equipos podrían dañarse en serio. Sin embargo, en el método propuesto, el cliente puede verificar que este equipos no se dañarán porque la duración eficaz d' es más corto que el T_{max} de este equipo. Es obvio que el último es más razonable porque el equipo realmente no se daña.

⁴ A New Definition of Voltage Sag Duration Considering The Voltage Tolerance Curve Dong-Jun Won, Seon-Ju Ahn, 11-Yop Chung, Joong-Moon Kim, *Student Member, IEEE*, and Seung-I1 Moon, *Member*, IEEE.

APENDICE E.

Fas	se A	Fas	se B	Fas	e C
VA(kV)	IA(A)	VB(kV)	IB(A)	VC(kV)	IC(A)
213.15	425	-26.47	-12	-185.33	-410
-92.25	-231	230.04	477	-142.05	-255
-213.15	-425	26.43	12	185.36	410
92.28	232	-230.01	-477	142	255
213.16	424	-26.41	-12	-185.39	-410
-92.29	-231	230.01	477	-142	-254
-213.13	-423	26.43	12	185.37	410
92.3	231	-230.03	-477	142.02	254
213.12	423	-26.44	-11	-185.34	-409
-92.27	-231	230.02	477	-142.02	-255
-213.13	-424	26.41	12	185.38	409
92.26	231	-230.03	-476	142.03	254
213.12	424	-26.39	-12	-185.38	-408
-92.27	-231	230.03	476	-142.01	-253
-213.13	-423	26.44	12	185.35	408
92.26	231	-230.02	-476	142.01	254
213.14	423	-26.46	-12	-185.34	-409
-92.25	-230	230.03	476	-142.01	-254
-213.12	-423	26.42	11	185.34	408
92.28	230	-230.06	-475	142.02	254
213.13	423	-26.45	-11	-185.32	-408
-92.27	-231	230.04	475	-142.01	-254
-213.13	-422	26.45	11	185.33	408
92.25	230	-230.02	-475	142.02	254
213.11	422	-26.4	-11	-185.36	-408
-92.25	-231	230.01	475	-142.03	-253
-213.12	-422	26.46	11	185.32	408
92.25	230	-230.03	-475	142.02	253
213.16	422	-26.52	-11	-185.33	-407
-92.25	-230	230.05	475	-142.03	-252
-213.17	-422	26.48	11	185.38	407
92.25	230	-230.05	-475	142.04	252
213.16	422	-26.45	-12	-185.38	-407
-92.28	-230	230.06	474	-142.03	-253
-213.15	-421	26.46	11	185.38	407
92.28	230	-230.06	-474	142	252
213.15	421	-26.44	-11	-185.38	-407
-92.27	-230	230.07	473	-142.01	-252
-213.15	-421	26.43	12	185.38	407
92.3	230	-230.09	-474	142.01	252
213.14	421	-26.41	-12	-185.4	-407
-92.31	-229	230.06	473	-142	-252
-213.14	-422	26.42	12	185.4	406
92.29	229	-230.03	-473	141.98	252
213.16	422	-26.42	-12	-185.43	-406
-92.31	-230	230.04	473	-141.97	-252
-213.13	-421	26.39	12	185.41	406
92.32	230	-230.07	-473	142	253
213.15	420	-26.43	-11	-185.4	-406

Los Datos que se utilizaron para verificar los Sags, se muestran a continuación:

					and the
-92.33	-230	230.12	473	-142.03	-252
-213.19	-420	26.42	11	185.46	406
92.35	229	-230.11	-473	142	250
213.19	419	-26.38	-11	-185.48	-405
-92.36	-228	230.13	472	-141.99	-250
-213.19	-420	26.41	11	185.44	405
92.35	229	-230.12	-472	141.99	251
213.17	420	-26.41	-11	-185.44	-405
-92.35	-229	230.11	472	-142	-251
-213.15	-420	26.35	11	185.48	405
92.36	230	-230.16	-472	142.03	251
204.04	589	-27.06	-13	-185.48	-405
-93.57	1063	230.77	504	-141.26	-226
-170.7	-1677	24.87	-16	181.84	385
78.77	-2983	-229.99	-551	141.57	184
147.24	2626	-22.65	51	-178.05	-367
-62.53	3610	228.93	567	-142.49	-166
-148.32	-2654	23.8	-52	177.89	366
61.73	-3614	-228.75	-568	142.84	166
149.01	2646	-24.38	46	-178.4	-364
-61.98	3618	228.96	569	-143.09	-170
-123.98	-2400	24.06	-63	179.37	345
59	-2363	-228.56	-672	143.74	70
57.5	1081	-28.88	141	-186.23	-259
-25.07	554	230.03	836	-142.44	89
-14.73	0	33.2	-191	192.96	195
-5.02	4	-232.84	-898	139.97	-143
13.11	0	-31.67	186	-193.09	-201
4.99	-4	232.83	899	-139.17	140
-13.06	0	31	-193	192.87	198
-2.79	3	-233.46	-775	137.55	-14
6.9	0	-27.39	143	-189.59	-257
1.42	-3	233.23	558	-137.71	-200
-1.09	1	23.95	-95	186.49	313
-2.44	2	-232.16	-467	138.68	289
1.29	-1	-24.14	104	-186.76	-309
2.54	-2	232.21	467	-138.53	-288
-1.26	1	24.19	-105	186.95	309
-2.51	1	-232.19	-466	138.5	287
1.28	-1	-24.14	105	-187.03	-309
2.73	-2	232.17	466	-138.42	-286
-0.68	0	24.08	-106	186.94	310
-3.51	2	-232.11	-465	138.43	286
-0.33	0	-24.08	106	-186.89	-310
4.76	-2	232.06	465	-138.37	-285
-0.25	1	24.15	-106	186.87	310
-4.19	2	-232.02	-466	138.36	285
-0.21	-1	-24.13	106	-186.84	-309
2.86	-1	231.96	467	-138.41	-287
3.47	0	24.15	-106	186.77	309
-1.07	1	-231.94	-467	138.46	288
-4.95	0	-24.23	105	-186.75	-310
-1.97	-2	231.94	468	-138.48	-288
2.72	0	24.25	-105	186.75	310
2.26	2	-231.93	-469	138.49	289
-0.12	0	-24.26	105	-186.7	-311
0.56	-2	231.96	469	-138.53	-289
0.96	1	24.31	-106	186.69	311

-2.31	1	-231.94	-470	138.53	289
-3.96	0	-24.32	106	-186.7	-312
0.43	-1	231.93	471	-138.52	-290
4.64	0	24.28	-105	186.7	312
2.25	2	-231 92	-471	138.52	290
-2.04	-1	-24.27	105	-186.68	-312
-1.76	2	21.27	103	-138.52	_201
0.02	-2	231.07	106	186.64	212
0.03	1	24.51	-100	129.54	201
-1.15	1	-231.91	-4/5	136.34	291
-1.30	-1	-24.20	100	-180.07	-314
2.13	-2	231.95	4/3	-138.54	-291
4.32	1	24.28	-106	186.68	314
0.19	2	-231.93	-4/4	138.52	292
-4.21	0	-24.29	107	-186.67	-315
-2.36	-2	231.87	474	-138.51	-292
1.43	0	24.21	-107	186.69	315
1.2	2	-231.86	-474	138.52	292
-0.12	0	-24.21	107	-186.68	-315
1.54	-2	231.9	476	-138.51	-293
2.18	0	24.24	-107	186.66	316
-1.79	2	-231.84	-477	138.47	292
-4.51	-1	-24.23	107	-186.64	-317
-0.77	-2	231.8	477	-138.47	-292
3.69	1	24.23	-107	186.6	317
2.33	2	-231.8	-477	138.47	294
-0.96	-1	-24.23	107	-186.6	-317
-0.57	-2	231.79	477	-138.44	-295
0.39	1	24 24	-108	186.6	318
-1.88	2	-231.85	-478	138.44	295
-2.76	-1	-24.23	108	-186 59	-318
1 42	-2	231.8	479	-138.41	-294
4 55	1	231.0	-108	186.56	318
1.33	1	_231.23	-480	138.4	295
-3.13	0	-231.75	108	-186.52	_319
2.00	1	231.73	100	138.41	206
-2.09	-1	231.75	400	-136.41	-290
0.04	1	24.27	-108	128.4	207
-0.04	2	-231./	-401	138.4	297
-0.76	-1	-24.27	108	-186.45	-319
2.01	-2	231.08	482	-138.41	-297
3.28	1	24.29	-109	186.43	319
-0.92	2	-231.00	-482	138.39	297
-4.45	-1	-24.28	109	-186.42	-319
-1.56	-2	231.62	483	-138.36	-298
2.59	1	24.3	-109	186.4	321
1.77	2	-231.63	-483	138.37	298
-0.47	-1	-24.31	108	-186.37	-322
0.57	-1	231.64	484	-138.36	-298
1.23	0	24.31	-108	186.34	321
-1.99	2	-231.65	-484	138.37	299
-3.69	0	-24.29	109	-186.35	-321
0.41	-2	231.66	485	-138.4	-300
4.19	0	24.27	-110	186.36	322
1.77	2	-231.59	-484	138.33	299
-2.04	0	-24.24	109	-186.36	-323
-1.32	-2	231.55	484	-138.28	-299
0.43	1	24.24	-109	186.32	323
-1.05	2	-231.6	-485	138.29	300
-1.74	-1	-24.27	109	-186.31	-322

1.83	-1	231.61	486	-138.31	-300
3.99	1	24.24	-110	186.33	323
0.1	2	-231.55	-486	138.28	300
-3.86	0	-24.23	110	-186.29	-323
-1.85	-2	231.5	486	-138.24	-301
1.58	0	24.21	-110	186.27	323
0.84	3	27.21	110	138.25	301
0.04	0	-231.32	-407	196.25	224
-0.34	0	-24.19	110	-100.5	-324
1.41	-2	251.51	40/	-138.22	-301
2.20	1	24.19	-109	186.29	324
-1.56	2	-231.5	-488	138.21	301
-4.15	-1	-24.19	110	-186.27	-324
-0.57	-2	231.52	488	-138.2	-300
3.44	1	24.15	-110	186.29	323
1.8	2	-231.45	-488	138.16	301
-1.2	-1	-24.1	110	-186.27	-324
-0.35	-2	231.45	488	-138.19	-302
0.76	0	24.08	-110	186.27	324
-1.6	2	-231.43	-487	138.17	302
-2.76	0	-24.09	110	-186.27	-324
1.16	-2	231.38	488	-138.12	-302
4.2	0	24.1	-111	186.24	325
0.99	2	-231.42	-489	138.13	302
-2.98	0	-24.05	111	-186.29	-325
-1.66	-2	231.44	488	-138.11	-301
0.95	1	23.98	-110	186.3	325
-0.12	2	-231 44	-489	138.08	301
_1 11	_1	_23 96	110	-186.3	-324
17	-1	231.30	110	-138.05	-302
3.2	1	231.57	-110	186.32	324
0.75	2	23.70	-110	138.02	202
-0.75	0	-251.50	-409	196.02	302
-4.11	0	-23.93	111	-100.32	-323
-1.29	-2	231.39	409	-136.04	-302
2.33	0	23.91	-109	180.3	323
1.4	2	-231.30	-409	138.01	302
-0.83	0	-23.9	110	-186.29	-325
0.58	-2	231.38	489	-137.97	-302
1.53	0	23.85	-110	186.34	324
-1.68	2	-231.35	-488	137.94	302
-3.55	-1	-23.82	109	-186.35	-325
0.31	-2	231.32	487	-137.92	-302
3.9	1	23.84	-108	186.32	325
1.48	2	-231.29	-489	137.91	302
-2.09	0	-23.82	110	-186.32	-325
-1.03	-2	231.29	489	-137.88	-302
0.82	0	23.79	-110	186.33	325
-0.94	2	-231.3	-488	137.86	301
-1.96	0	-23.8	109	-186.33	-324
1.53	-2	231.28	489	-137.83	-301
3.8	1	23.79	-109	186.32	324
0.12	3	-231.26	-489	137.83	302
-3.63	-1	-23.78	109	-186.32	-324
-1.52	-2	231.29	489	-137.83	-302
1.73	0	23.74	-109	186.33	324
0.63	2	-231.27	-488	137.81	302
-0.93	0	-23 72	109	-186 34	-324
1 22	-2	231.26	488	-137 76	-302
2 41	0	237.20	_110	186 35	324
2.71	0	43./1	-110	100.55	547

-1.27	2	-231.28	-488	137.75	302
7.58	33	-23.59	104	-186.07	-330
21.65	-42	231.16	492	-137.97	-298
-110.31	-46	23.48	-99	186.5	334
3.24	106	-231.01	-495	137.98	291
216.02	-11	-23.43	104	-187.05	-327
-71.76	-136	230.97	498	-137.8	-286
-220.23	47	23.27	-109	186.69	321
97.75	133	-231.05	-499	137.71	285
210.24	-51	-23.19	109	-186.46	-321
-101.52	-123	231.25	497	-137.53	-287
-210.49	55	23.33	-110	186.5	321
101.76	122	-231.3	-497	137.54	287
210.6	-55	-23.4	111	-186.6	-321
-101.67	-121	231.25	497	-137.61	-287
-210.48	56	23.39	-110	186.58	320
101.79	121	-231.26	-498	137.56	287
210.49	-56	-23.46	110	-186.55	-320
-101.8	-121	231.28	498	-137.58	-287
-210.47	55	23.48	-111	186.52	320
101.79	121	-231.3	-497	137.58	286
210.44	-56	-23.41	111	-186.59	-320
-101.84	-120	231.3	496	-137.55	-287
-210.44	55	23.39	-110	186.61	320
101.84	120	-231.28	-496	137.51	287
210.43	-55	-23.42	110	-186.58	-320
-101.89	-121	231.32	496	-137.46	-286
-210.24	52	23.33	-109	186.59	320
101.88	122	-231.31	-496	137.43	287
210.6	-29	-23.36	103	-186.61	-325
-99.62	-232	230.86	519	-138	-263
-211.23	-203	23.56	-48	186.68	379
95.88	309	-230.35	-530	138.96	249
211.39	450	-23.56	-11	-186.76	-437
-94.4	-247	230.11	509	-139.26	-269
-211.55	-458	23.62	12	186.71	437
94.37	242	-230.1	-506	139.29	270
211.6	451	-23.67	-10	-186.69	-434
-94.33	-245	230.11	506	-139.32	-269
-211.58	-453	23.64	12	186./1	435
94.3	242	-230.06	-504	139.3	269
211.6	449	-23.03	-12	-186.72	-432
-94.33	-245	230.08	504	-139.28	-20/
-211.0	-450	23.02	13	180.74	432
94.37	242	-230.09	-502	139.24	267
211.58	44/	-23.30	-11	-180.8	-430
-94.4/	-244	230.12	501	-139.18	-203
-211.32	-447	25.45	500	180.89	431
211 46	<u> </u>	-230.14	-500	139.07	4203
_0/ 72		-23.29	-10	-10/	-430
	-244 _AAA	230.17	10	-130.95	-203
94.80	2/2	_23.15	_400	138.87	262
211.07	<u> </u>	-250.19	- 7 77	-187.16	
		-25	-9	_138 72	<u>-+27</u> _761
	-245	230.10	490 0	-130.72	/201
95.07	243	_22.7	-496	138.63	261
211.25	440	-230.19	-770	-187 27	
£11.2J		-22.00	-0	-10/.2/	-74/

					and the
-95.15	-243	230.22	495	-138.54	-260
-211.2	-439	22.75	8	187.31	427
95.21	242	-230.23	-494	138.49	260
211.2	437	-22.69	-8	-187.38	-426
-95.27	-242	230.25	494	-138.45	-259
-211.16	-437	22.61	7	187.46	426
95.33	241	-230.25	-492	138.38	257
211.12	436	-22.56	-6	-187.47	-425
_05.38	-241	230.25		-138.32	-725
-211.14	-241	22 55	6	187.47	424
95.4	240	22.55	180	138.31	255
211.13	/33	22 53	-40)	187.5	423
05 20	240	-22.55	-0	128.22	-423
-95.59	-240	230.29	400	-136.52	-233
-211.14	-432	22.32	/	107.34	422
95.44	240	-230.32	-400	138.5	234
211.14	432	-22.49	-/	-187.0	-421
-95.5	-239	230.35	48/	-138.25	-253
-211.12	-430	22.43	/	187.63	420
95.54	239	-230.37	-485	138.22	253
211.14	429	-22.43	-0	-18/.65	-419
-95.56	-238	230.41	484	-138.23	-252
-211.13	-428	22.39	6	18/.6/	418
95.57	238	-230.42	-483	138.22	252
211.15	427	-22.41	-0	-18/.69	-418
-95.59	-238	230.45	482	-138.2	-251
-211.16	-427	22.42	6	187.74	417
95.61	238	-230.48	-482	138.18	250
211.15	425	-22.39	-0	-187.79	-416
-95.6	-237	230.5	481	-138.16	-250
-211.16	-424	22.37	6	187.8	415
95.62	236	-230.53	-479	138.17	249
211.15	423	-22.35	-6	-187.8	-414
-95.63	-236	230.55	478	-138.16	-249
-211.17	-423	22.37	6	187.82	413
95.64	236	-230.55	-477	138.16	248
211.18	422	-22.37	-5	-187.85	-413
-95.66	-235	230.58	476	-138.16	-247
-211.19	-421	22.35	6	187.87	413
95.69	235	-230.61	-475	138.16	247
211.2	420	-22.35	-6	-187.88	-412
-95.69	-234	230.65	475	-138.17	-247
-211.2	-420	22.35	5	187.89	411
95.69	234	-230.65	-4/4	138.17	246
211.23	419	-22.35	-5	-187.92	-410
-95.71	-233	230.66	474	-138.17	-246
-211.22	-418	22.33	5	187.95	408
95.74	233	-230.7	-472	138.16	245
211.21	417	-22.3	-5	-187.97	-408
-95.74	-232	230.7	471	-138.16	-245
-211.25	-417	22.31	6	187.99	408
95.75	232	-230.71	-471	138.18	244
211.27	416	-22.33	-6	-188	-408
-95.76	-232	230.74	471	-138.19	-244
-211.28	-415	22.32	5	188.02	407
95.78	232	-230.77	-470	138.19	244
211.29	414	-22.31	-5	-188.04	-406
-95.81	-232	230.8	469	-138.18	-244
-211.29	-414	22.28	6	188.08	406

95.81	232	-230.82	-468	138.18	244
211.27	415	-22 25	-6	-188 11	-406
-95.82	-232	230.82	468	-138.16	-243
-211.29	-414	230.02	5	188.12	406
05.85	221	22.24	168	138.12	2/3
95.05	414	-230.82	-400	130.13	243
211.32	414	-22.24	-5	-188.14	-406
-95.86	-231	230.84	468	-138.14	-243
-211.33	-414	22.23	5	188.16	405
95.88	231	-230.86	-467	138.15	243
211.3	413	-22.23	-5	-188.17	-405
-95.9	-231	230.88	467	-138.15	-242
-211.31	-412	22.2	5	188.19	404
95.94	230	-230.9	-466	138.13	242
211.33	412	-22.18	-5	-188.24	-403
-95 97	-230	230.89	466	-138.1	-242
-211.34	-412	22 16	5	188.26	403
05.07	230	22.10	166	138.1	242
211.24	412	-230.9	-400	190.1	402
211.34	412	-22.17	-4	-100.23	-403
-95.99	-230	230.94	403	-138.11	-242
-211.32	-412	22.10	4	188.26	403
95.99	230	-230.95	-465	138.1	242
211.32	412	-22.15	-4	-188.26	-403
-96.01	-230	230.98	465	-138.1	-242
-211.34	-411	22.13	5	188.29	404
96.03	230	-230.98	-465	138.09	242
211.31	411	-22.12	-5	-188.29	-403
-96.04	-229	230.98	465	-138.08	-242
-211.31	-411	22.13	5	188.29	403
96.03	229	-230.98	-465	138.09	242
211.32	412	-22.12	-5	-188 32	-403
-96.04	-230	231.02	465	-138.12	-242
-211.33	-411	2211.02	4	188.33	403
-211.55	-411	22.12	4	128 11	242
211.27	411	-251.05	-404	190.11	402
211.57	411	-22.11	-5	-100.55	-403
-96.09	-231	231.04	405	-138.09	-241
-211.38	-411	22.1	4	188.39	403
96.09	230	-231.05	-466	138.1	242
211.36	411	-22.09	-4	-188.39	-404
-96.09	-231	231.04	466	-138.1	-242
-211.39	-411	22.11	4	188.39	403
96.12	231	-231.07	-465	138.09	242
211.41	411	-22.12	-5	-188.4	-403
-96.13	-231	231.08	464	-138.09	-242
-211.39	-410	22.1	5	188.39	403
96.15	230	-231.09	-465	138.09	242
211.4	411	-22.07	-4	-188.43	-403
_96.18	_230	22.07	/	-138.08	-242
211.4	411	231.12		188.46	403
-211.4	-411	22.05	J 165	128.40	403
90.2	411	-231.11	-403	130.03	<u></u> 402
211.39	411	-22.03	-3	-188.45	-403
-96.2	-230	251.09	400	-138.05	-242
-211.4	-411	22.03	4	188.46	404
96.23	230	-231.15	-466	138.1	242
211.4	411	-22.02	-3	-188.49	-404
-96.21	-231	231.16	466	-138.1	-242
-211.41	-412	22.02	3	188.49	404
96.24	231	-231.17	-466	138.09	242
211.4	411	-22	-4	-188.49	-404

-96.27	-232	231.17	466	-138.08	-242
-211.4	-411	21.96	4	188.55	405
96.27	232	-231 13	-467	138.03	242
211.38	412	-21.96	-4	-188 53	-404
-96.29	-231	231.17	467	-138.03	_241
-211.38	-412	231.17	107	188 51	404
-211.30	-+12	21.70	7	128.04	242
90.27	412	-231.14	-400	130.04	242
211.41	412	-21.90	-4	-188.51	-404
-96.25	-232	231.09	460	-138.03	-242
-211.4	-412	21.96	5	188.5	405
96.29	232	-231.14	-466	138.05	242
211.39	411	-21.96	-4	-188.53	-405
-96.27	-232	231.14	467	-138.04	-242
-211.4	-412	21.98	4	188.53	405
96.28	232	-231.14	-467	138.03	242
211.39	412	-21.94	-3	-188.55	-405
-96.32	-232	231.18	467	-138.03	-242
-211.4	-412	21.94	3	188.57	405
96.3	233	-231.2	-467	138.06	241
211.41	411	-21.97	-3	-188.55	-405
-96 32	-233	231.2	467	-138.05	-241
-211.42	-411	21.93	3	188 58	406
96.35	232	_231.18	-467	138	241
211.42	411	-231.10		-188.6	-406
06.36	232	231.2	-5	138.03	241
-90.30	-232	251.2	2	-138.05	-241
-211.41	-411	21.9	467	100.0	403
96.55	232	-231.2	-40/	138.04	241
211.41	412	-21.8/	-3	-188.01	-405
-96.36	-232	231.15	46/	-13/.9/	-241
-211.4	-412	21.87	3	188.6	406
96.36	233	-231.14	-466	137.96	241
211.38	412	-21.85	-3	-188.62	-405
-96.35	-233	231.13	466	-137.95	-242
-211.35	-412	21.87	3	188.58	405
96.34	234	-231.16	-467	137.99	242
211.36	411	-21.91	-3	-188.57	-406
-96.35	-234	231.19	467	-138.02	-241
-211.39	-411	21.87	3	188.63	406
96.35	232	-231.12	-467	137.96	240
211.37	412	-21.87	-3	-188.63	-405
-96.37	-233	231.15	467	-137.96	-241
-211.35	-411	21.87	3	188.6	405
96.39	234	-231.2	-467	137.97	241
211.36	411	-21.86	-2	-188.61	-406
-96 37	-234	231.15	<u>-</u> 467	-137.95	-241
-211.37	-234	21.85	2	188.62	407
06.30	233	21.05	467	137.96	240
211.26	411	-251.10	-407	198.62	406
211.50	411	-21.02	-2	-100.05	-400
-90.42	-233	231.21	40/	-13/.90	-240
-211.5/	-411	21.85	2	188.65	405
96.44	233	-231.21	-400	13/.96	240
211.37	411	-21.8	-1	-188.68	-405
-96.44	-234	231.19	466	-137.94	-240
-211.32	-410	21.77	1	188.65	405
96.46	234	-231.18	-466	137.91	240
211.32	410	-21.78	-1	-188.63	-405
-96.49	-233	231.2	466	-137.91	-240
-211.34	-410	21.76	1	188.68	406

96.48	233	-231.18	-465	137.89	239
211.29	410	-21 76	-1	-188.64	-405
-96.47	-234	231.19	466	-137.9	-239
-211 29	-410	21.17	1	188.66	405
96.47	234	_231.17	-465	137.88	230
211.20	400	251.17	-405	199.69	405
211.29	409	-21.75	-1	-100.00	-403
-96.48	-233	231.10	464	-137.86	-239
-211.3	-409	21.79	I	188.64	405
96.48	233	-231.2	-464	137.89	238
211.29	409	-21.76	-1	-188.67	-404
-96.5	-233	231.18	465	-137.86	-239
-211.25	-409	21.73	1	188.64	404
96.5	233	-231.17	-465	137.84	239
211.26	409	-21.74	0	-188.64	-405
-96.47	-234	231.16	464	-137.85	-238
-211.24	-409	21.71	1	188.66	404
96.46	234	-231.13	-464	137.83	238
211.22	408	-21.71	-1	-188.62	-404
-96.49	-234	231.15	464	-137.83	-239
-211.25	-408	21.73	1	188.65	405
96.49	234	-231.17	-464	137.83	238
211.26	408	-21 72	-1	-188.68	-404
-96 53	-233	231.18	464	-137.8	-237
-211.23	-407	21.68	0	188.67	404
96.55	233	_231.00	-463	137.79	237
211.23	408	231.17	-405	188 71	404
06.52	408	-21.04	162	-100./1	-404
-90.33	-235	231.10	405	-13/.//	-257
-211.2	-408	21.04	1	100.09	405
90.30	234	-251.19	-404	13/.//	237
211.10	407	-21.02	0	-188.09	-404
-96.61	-233	231.19	463	-13/./3	-237
-211.16	-407	21.57	0	188./3	404
96.61	233	-231.12	-463	137.68	237
211.16	407	-21.58	-1	-188.7	-403
-96.59	-233	231.13	463	-137.7	-238
-211.17	-408	21.57	1	188.71	403
96.62	234	-231.16	-462	137.69	237
211.18	407	-21.54	0	-188.74	-403
-96.66	-234	231.16	462	-137.67	-237
-211.15	-407	21.51	0	188.77	403
96.66	233	-231.13	-463	137.62	237
211.11	407	-21.47	0	-188.76	-403
-96.69	-233	231.12	462	-137.58	-237
-211.1	-407	21.5	1	188.73	403
96.69	233	-231.15	-463	137.61	238
211.13	406	-21.52	0	-188.74	-403
-96.67	-232	231.12	463	-137.61	-237
-211.1	-407	21.46	0	188.78	403
96.7	233	-231.12	-462	137.58	237
211.07	407	-21 43	-1	-188 76	-403
-96 71	-233	231.13	462	-137 57	-237
-211.07	-407	231.13	0	188 73	403
96.68	222	_21.77	_163	137 5/	738
211.05	404	-231.1	-705	107.04	402
211.03	400	-21.43	U 460	-100./3	-403
-90./	-233	251.1	403	-13/.33	-238
-211.04	-40/	21.42	<i>U</i>	188./4	404
96.71	233	-231.11	-462	137.57	236
211.06	407	-21.44	-1	-188.75	-403

					and the
-96.69	-233	231.1	462	-137.55	-237
-211.06	-407	21.46	0	188.74	403
96.7	233	-231.1	-462	137.52	237
211.04	407	-21.41	0	-188.76	-402
-96.68	-233	231.07	461	-137.52	-237
-211.04	-407	21.4	0	188.75	403
96.72	233	-231.07	-462	137.5	238
211.01	406	-21.41	0	-188.72	-403
-96.73	-233	231.07	462	-137.49	-237
-211	-407	21.37	1	188.76	403
96.71	234	-231.04	-462	137.48	237
211.03	407	-21.39	0	-188.76	-403
-96.76	-233	231.08	462	-137.46	-237
-211.03	-406	21.38	0	188.77	403
96.78	233	-231.1	-462	137.47	237
211.02	406	-21.35	-1	-188.8	-403
-96.75	-233	231.05	463	-137.46	-238
-210.96	-407	21.33	1	188.77	403
96.75	233	-231.03	-463	137.42	238
210.94	407	-21.33	0	-188.76	-403
-96.77	-234	231.02	463	-137.39	-238
-210.96	-407	21.34	0	188.78	404
96.77	234	-231.05	-463	137.41	237
210.95	407	-21.34	0	-188.75	-403
-96.74	-234	231.05	463	-137.43	-237
-210.94	-407	21.33	1	188.74	403
96.74	234	-231.01	-463	137.4	237
210.91	407	-21.31	-1	-188.74	-404
-96.76	-235	231.02	463	-137.41	-237
-210.9	-407	21.31	1	188.72	404
96.73	234	-230.97	-463	137.39	238
210.91	407	-21.33	0	-188.71	-404
-96.73	-233	230.97	464	-137.39	-238
-210.9	-407	21.31	0	188.72	404
96.76	233	-231.03	-464	137.42	238
210.9	407	-21.3	0	-188.73	-404
-96.74	-234	231.01	464	-137.39	-238
-210.91	-408	21.31	0	188.73	404
96.74	234	-230.98	-464	137.37	238
210.89	408	-21.28	0	-188.71	-404
-96.75	-234	230.99	463	-137.39	-239
-210.88	-408	21.28	2	188.69	404
96.72	234	-230.96	-464	137.39	239
210.87	409	-21.3	-2	-188.68	-405
-96.74	-234	230.94	465	-13/.3/	-239
-210.86	-409	21.28	1	188.69	405
96.75	234	-230.94	-405	137.37	239
210.85	409	-21.28	-1	-188./	-404
-96./3	-235	230.90	405	-13/.38	-238
-210.84	-409	21.31	1	188.00	405
90.74	233	-230.93	-403	13/.3/	238
210.80	409	-21.3	-1	-188.09	-400
-90./1	-233	230.9	400	-13/.34	-239
-210.84	-410	21.29	1	188.08	400
90.72	235	-230.93	-403	13/.30	239
210.85	410	-21.32	-1	-188.64	-406
-90./4	-233	230.90	400	-13/.38	-239
-210.8/	-410	21.31	U	188.08	406

96.73	235	-230.92	-466	137.35	239
210.85	411	-21.26	-1	-188.69	-406
-96 72	-235	230.91	467	-137.36	-239
-210.84	-411	22 3	1	188.65	406
06.73	236	21.5	1	137.37	240
210.97	411	-230.95	-407	100 65	240
210.87	411	-21.55	0	-188.03	-407
-96./1	-236	230.91	460	-137.36	-239
-210.87	-411	21.29	Ι	188.69	407
96.71	235	-230.88	-466	137.35	240
210.82	411	-21.29	-1	-188.62	-407
-96.73	-234	230.9	467	-137.35	-240
-210.82	-412	21.33	1	188.58	407
96.66	235	-230.84	-468	137.36	241
210.85	413	-21.34	-2	-188.59	-407
-96.62	-235	230.78	468	-137.35	-241
-210.84	-412	21 34	3	188 59	407
96.65	235	-230.86	-469	137.38	241
210.84	413	_21.37	-3	_188 59	-407
06.66	225	220.86	-5	127.27	242
-90.00	-233	230.00	409	-137.37	-242
-210.82	-415	21.30	3	188.30	407
96.65	235	-230.8	-4/0	137.33	242
210.81	414	-21.34	-2	-188.55	-407
-96.62	-235	230.8	469	-137.36	-242
-210.83	-414	21.36	2	188.56	408
96.58	235	-230.8	-469	137.4	243
210.84	414	-21.41	-3	-188.53	-409
-96.61	-236	230.83	470	-137.41	-242
-210.85	-414	21.41	2	188.54	409
96.64	236	-230.85	-470	137.41	242
210.88	413	-21.39	-2	-188.58	-409
-96.63	-236	230.85	470	-137.41	-242
-210.85	-414	21.39	2	188.55	409
96.63	236	-230.85	-470	137.41	243
210.84	415	-21 38	-1	-188 53	-409
-96.61	-236	230.79	470	-137.39	-243
210.85	415	230.79	2	197.57	400
-210.85	-415	21.50	2 471	100.33	243
90.39	230	-230.73	-4/1	137.30	243
210.84	415	-21.39	-2	-188.54	-410
-96.56	-236	230.76	4/1	-137.39	-243
-210.82	-416	21.42	3	188.5	410
96.54	236	-230.76	-472	137.41	244
210.84	416	-21.45	-3	-188.46	-410
-96.55	-237	230.77	472	-137.43	-244
-210.86	-416	21.45	3	188.47	410
96.54	237	-230.76	-472	137.43	243
210.84	416	-21.43	-3	-188.47	-410
-96.52	-237	230.75	472	-137.43	-244
-210.82	-416	21.44	3	188.45	410
96.5	236	-230.75	-472	137.45	244
210.84	417	-21.46	-3	-188.45	-411
-96.48	-237	230.71	473	-137.44	-244
-210.87	-417	21.48	3	188 44	411
96.5	237	-230 73	-474	137.46	244
210.95	A17	-230.75	-7/7	100 /1	בד- <u>2</u> 111
210.83	41/	-21.40	-3	-100.41	-411
-90.5	-23/	230.74	4/4	-13/.48	-244
-210.84	-417/	21.5	2	188.4	411
96.47	237	-230.72	-473	137.48	244
210.84	417	-21.51	-2	-188.4	-411

-96.46	-237	230.73	474	-137.47	-245
-210.82	-418	21.47	3	188.4	412
96.44	238	-230.71	-474	137.46	244
210.84	418	-21.48	-3	-188.4	-411
-96.45	-238	230.69	475	-137.45	-245
-210.83	-418	220.09	4	188.4	411
96.44	238	230.60	475	137.46	245
210.84	410	-230.09	-4/5	198.28	411
06.41	419	-21.51	-3	-100.30	-411
-90.41	-238	230.7	4/5	-137.49	-243
-210.87	-419	21.55	3	188.30	412
96.43	238	-230.72	-4/4	137.5	245
210.85	419	-21.53	-4	-188.37	-412
-96.44	-238	230.72	4/4	-137.5	-245
-210.86	-419	21.53	4	188.38	412
96.43	238	-230.7	-475	137.5	245
210.87	419	-21.53	-3	-188.38	-412
-96.42	-238	230.69	475	-137.5	-245
-210.86	-419	21.54	3	188.36	412
96.41	238	-230.71	-476	137.53	246
210.88	419	-21.57	-3	-188.33	-413
-96.38	-238	230.72	476	-137.57	-245
-210.9	-419	21.59	3	188.32	413
96.35	238	-230.7	-475	137.58	245
210.89	419	-21.6	-3	-188.32	-413
-96.35	-238	230.68	475	-137.56	-246
-210.9	-419	21.59	3	188.34	413
96.36	238	-230.68	-475	137.57	245
210.9	419	-21.62	-4	-188.32	-413
-96.33	-238	230.69	476	-137.58	-245
-210.91	-420	21.66	4	188.29	413
96.31	238	-230.69	-476	137.61	245
210.93	419	-21.66	-3	-188.29	-413
-96.29	-238	230.68	475	-137.63	-246
-210.96	-419	21.68	3	188.3	413
96.28	238	-230.68	-475	137.64	246
210.95	419	-21 72	-3	-188.28	-413
-96.27	-238	230.71	475	-137.66	-246
-210.94	-419	21.74	3	188.26	413
96.24	238	-230.69	-476	137.67	246
210.97	419	-21 74	-4	-188.27	-413
-96.24	-238	230.69	476	-137.69	-746
-210.95	-230	230.07	470	188.26	414
96.23	238	21.74	476	137.60	245
210.95	410	-230.7	-470	188.24	413
06.21	419	-21.75	-5	-100.24	245
210.08	410	2178	470	188.24	412
96.18	237	21.70	176	137.74	246
211.01	410	21.70	-4/0	197.74	413
06.15	238	230.7	475	137.78	245
211.02	-238	230.7	475	-137.76	-243
-211.03	-417	21.04	J 175	100.24	413 246
211.01	410	21.84	-4/5	188.22	413
96.17	237	230.7	-7	-188.22	246
_211.01	-237 A10	250.7	7/0	188 21	/12
96.14	-+17	_21.05		137.78	2/6
20.14	<u> </u>	-250.00	-470	_188 2	/12
06.1	+17 227	-21.07	-5	-100.2	-+13
_211.02	420	230.71	7/5	-137.02	-240 /12
-211.02	-420	21.09	ر	100.10	415

96.1	238	-230.71	-475	137.84	247
211.06	419	-21 92	-4	-188.17	-413
-96.1	-238	230.69	476	-137.83	-246
211.06	410	230.07	2	197.05	412
-211.00	-419	21.92	J 475	100.17	415
90.08	238	-230.09	-4/5	137.84	240
211.04	420	-21.94	-3	-188.16	-413
-96.06	-237	230.69	475	-137.86	-246
-211.05	-419	21.97	3	188.14	412
96.04	238	-230.69	-475	137.87	246
211.06	419	-21.96	-4	-188.14	-412
-96	-238	230.67	475	-137.88	-246
-211.09	-419	21.97	4	188.16	412
95.99	237	-230.66	-475	137.9	246
211.07	418	-22	-4	-188.13	-412
-96.02	-237	230.68	475	-137.88	-246
-211.07	-418	22 02	4	188.1	412
96	237	_22.02	-475	137.91	246
211.1	410	22.00.7	-475	188.1	412
05.06	419	-22.05	-4	-100.1	-412
-93.90	-237	230.71	4/5	-137.97	-243
-211.09	-418	22.03	3	188.11	412
95.95	237	-230.7	-4/4	137.96	246
211.07	418	-22.03	-3	-188.1	-411
-95.95	-236	230.7	473	-137.95	-246
-211.11	-418	22.07	3	188.08	411
95.95	236	-230.71	-473	137.96	246
211.12	418	-22.06	-3	-188.09	-411
-95.94	-236	230.72	474	-137.99	-245
-211.11	-418	22.06	4	188.1	411
95.93	236	-230.74	-474	138.01	246
211.13	418	-22.1	-4	-188.09	-411
-95.9	-237	230.72	473	-138.01	-246
-211 17	-418	22.13	4	188.1	411
95.88	237	-230 72	-474	138.02	246
211.18	419	-22.15	-4	-188.09	-412
05.87	237	22.13		138.04	245
-95.87	-237	230.75	4/5	100.07	-243
-211.19	-410	22.10	4	100.07	411
95.87	237	-230.74	-4/5	138.00	243
211.21	41/	-22.17	-3	-188.07	-411
-95.88	-236	230.73	4/3	-138.0/	-245
-211.21	-417	22.19	3	188.07	411
95.87	236	-230.71	-473	138.07	244
211.19	418	-22.19	-4	-188.06	-411
-95.85	-236	230.72	473	-138.09	-245
-211.21	-417	22.2	3	188.06	411
95.86	236	-230.73	-472	138.1	245
211.23	417	-22.21	-4	-188.06	-410
-95.87	-236	230.74	473	-138.1	-245
-211.23	-416	22.21	4	188.06	410
95.86	236	-230.73	-473	138.1	245
211.21	416	-22.18	-3	-188.07	-410
-95.84	-236	230 72	473	-138 11	-245
-211 19	-417	22 20 21	3	188.04	410
05.8/	236	_22.21	_172	128 1	2/15
211.04	417	-230.75	-7/2	100.1	410
211.2	41/	-22.23	-3	-188.02	-410
-95.84	-230	230.74	4/2	-138.1	-245
-211.19	-416	22.22	4	188.03	410
95.84	235	-230.75	-472	138.11	245
211.17	417	-22.2	-4	-188.04	-410

-95.85	-235	230.76	472	-138.11	-245
-211.2	-417	22.21	3	188.04	410
95.83	235	-230.74	-472	138.1	245
211.21	417	-22.24	-4	-188.03	-411
-95.83	-235	230.76	472	-138.12	-245
-211.23	-416	22.25	3	188.02	410
95.85	235	-230.8	-472	138.14	245
211.23	416	-22.22	-3	-188.03	-410
-95.84	-235	230.78	472	-138.16	-245
-211.23	-417	22.22	4	188.04	410
95.83	235	-230.78	-472	138.17	245
211.25	417	-22.25	-3	-188.04	-410
-95.83	-236	230.78	472	-138.15	-244
-211.24	-416	22.24	3	188.04	410
95.81	235	-230.77	-472	138.14	245
211.26	416	-22.27	-3	-188.02	-410
-95.82	-235	230.78	472	-138.17	-245
-211.28	-416	22.3	3	188.01	410
95.82	235	-230.79	-472	138.18	245
211.27	417	-22.3	-3	-188.02	-409
-95.8	-236	230.8	472	-138.19	-244
-211.27	-417	22.28	4	188.02	409
95.76	236	-230.79	-472	138.19	244
211.26	416	-22.29	-5	-188.01	-409
-95.77	-235	230.76	472	-138.2	-244
-211.29	-417	22.33	4	188.01	409
95.79	235	-230.77	-471	138.2	244
211.29	417	-22.35	-4	-188	-409
-95.77	-236	230.77	472	-138.2	-245
-211.28	-416	22.34	4	187.99	409
95.76	236	-230.8	-472	138.22	245
211.31	417	-22.35	-3	-188	-410
-95.76	-236	230.81	472	-138.25	-244
-211.3	-417	22.33	4	188.01	410
95.75	236	-230.77	-472	138.24	244
211.3	417	-22.31	-4	-188.02	-410
-95.75	-235	230.76	472	-138.23	-245
-211.31	-417	22.32	4	188.02	410
95.77	236	-230.8	-473	138.23	245
211.32	41/	-22.34	-4	-188.01	-410
-95.77	-236	230.81	4/3	-138.25	-245
-211.32	-41/	22.33	4	188	411
95./8	416	-230.82	-4/2	138.27	245 410
211.31	410	-22.33	-4	-188.03	-410
-95.8	-235	230.83	4/2	-138.25	-245
-211.31	-41/	22.31	4	188.04	410
95.81	230	-230.04	-4/2	138.23	240
211.3	418	-22.33	-3	-100	-410
-95.79	-230	230.04	4/5	-138.23	-243
-211.32	-41/	_22.33	у 172	100.02	910 245
25.//	233 A17	-230.03	-4/3	_100.27	243 /10
_05 70	<u>-726</u>	-22.34	-5	-100.03	-410
_211.22	-230	230.03	+/2 1	188.02	-243 //10
05 70	-+1/	_22.55	+ _172	138.05	246
211 32	<u> </u>	-250.00	-+/2 _/	_188.027	_/11
	-236	220.34		_138.02	_245
-211 32	-230	220.05		188	<u>411</u>
-211.32		44.33	7	100	711

95.77	236	-230.82	-473	138.25	245
211.34	418	_22.37	-4	-188	_411
05 75	226	22.57	472	120.20	246
-95.75	-230	230.03	4/5	-136.20	-240
-211.38	-418	22.38	3	188	411
95.76	236	-230.85	-473	138.3	245
211.37	418	-22.38	-3	-187.99	-411
-95.77	-236	230.85	473	-138.29	-245
-211.31	-418	22.35	4	188	411
95.77	236	-230.84	-473	138.27	245
211.31	418	-22.35	-4	-188	-411
_95 75	_235	22.00	, 171	-138.27	_245
211.22	410	230.0	4/4	187.00	410
-211.33	-419	22.30	4	10/.99	24(
95.72	235	-230.77	-4/4	138.27	246
211.33	419	-22.36	-5	-188.01	-410
-95.71	-236	230.77	473	-138.27	-246
-211.36	-419	22.41	5	187.98	410
95.73	236	-230.8	-474	138.26	247
211.34	418	-22.42	-5	-187.93	-411
-95.73	-236	230.79	474	-138.27	-247
-211 31	-418	22.39	5	187.95	411
95 71	236	_230.78	-475	138.3	246
211.22	410	230.70	-475	197.00	411
211.55	419	-22.37	-5	-107.99	-411
-95.7	-236	230.78	4/5	-138.3	-246
-211.36	-419	22.39	4	188	411
95.72	236	-230.8	-475	138.3	247
211.39	419	-22.43	-4	-187.98	-411
-95.75	-236	230.82	475	-138.3	-247
-211.37	-419	22.42	4	187.96	411
95.73	237	-230.85	-475	138.33	247
211.36	419	-22.42	-4	-187.96	-412
-95 72	-237	230.86	474	-138.35	-247
-211.37	_419	22 41	4	187.96	412
05.72	-41)	22.71	4	128.22	246
95.72	230	-230.82	-4/4	136.32	412
211.55	419	-22.41	-3	-187.97	-412
-95.72	-236	230.79	4/5	-138.29	-247
-211.37	-419	22.43	4	187.98	412
95.73	236	-230.83	-475	138.31	247
211.35	419	-22.42	-4	-187.96	-412
-95.71	-236	230.85	475	-138.35	-247
-211.32	-420	22.44	4	187.91	412
95.66	237	-230.79	-475	138.33	248
211.34	419	-22.46	-5	-187.91	-412
-95.66	-237	230 76	475	-138 33	-2.47
-211 37	_419	2200.70	4	187.94	412
-211.57	-41)	22.40	475	129.25	247
95.07	230	-230.78	-4/5	138.33	
211.37	420	-22.49	-4	-18/.9	-412
-95.67	-237	230.8	475	-138.37	-247
-211.37	-420	22.5	4	187.88	412
95.63	237	-230.77	-475	138.38	247
211.39	420	-22.49	-4	-187.9	-413
-95.62	-237	230.76	475	-138.38	-247
-211.39	-420	22.52	4	187.89	413
95.62	237	-230.79	-474	138.4	247
211.38	420	-22.53	-4	-187 88	-413
_95.58	_236	22.00	475	-138/11	_2/17
211 27	421	230.70	5	187.99	/12
-211.3/	-421	22.32	J 175	10/.00	413
95.57	23/	-230.74	-4/3	138.38	24/
211.39	420	-22.52	-3	-187.9	-412

-95.59	-237	230.78	475	-138.38	-247
-211.42	-420	22.56	4	187.88	412
95 59	237	-230.81	-475	138 44	247
211.42	420	-22.58	-4	-187.87	-413
-95 59	-237	230.8	476	-138.43	-247
-211.4	_/10	22 53	1	187.91	413
-211.4	-+1)	22.55	476	129.4	247
95.02	420	-230.0	-4/0	136.4	<u></u>
211.41	420	-22.33	-4	-187.9	-413
-95.61	-236	230.8	4/6	-138.43	-247
-211.42	-420	22.57	4	187.87	413
95.59	237	-230.75	-476	138.42	247
211.4	420	-22.54	-4	-187.87	-413
-95.62	-237	230.79	475	-138.41	-246
-211.43	-420	22.55	4	187.91	412
95.61	238	-230.81	-475	138.44	246
211.42	420	-22.55	-4	-187.91	-412
-95.58	-238	230.76	476	-138.43	-247
-211.37	-421	22.54	4	187.86	413
95.58	237	-230.76	-476	138.41	248
211.39	421	-22.57	-4	-187.85	-413
-95 58	-237	230 79	476	-138.43	-247
-211.42	-421	22.57	4	187.86	412
95.55	237	-230.76	-476	138.46	247
211.41	421	-230.70	-4/0	-187.85	_412
05.54	237	230.75	-7	138.46	248
-95.54	420	230.75	470	197.92	-240
-211.4	-420	22.39	4	187.83	412
95.55	237	-230.75	-4/0	138.45	248
211.42	420	-22.02	-3	-187.85	-413
-95.53	-237	230.76	4/5	-138.45	-247
-211.42	-420	22.59	4	187.86	413
95.52	237	-230.75	-475	138.45	247
211.4	420	-22.59	-4	-187.82	-412
-95.53	-236	230.73	475	-138.45	-247
-211.43	-420	22.62	4	187.84	412
95.51	237	-230.73	-475	138.47	246
211.45	420	-22.62	-5	-187.88	-412
-95.51	-237	230.78	475	-138.49	-246
-211.44	-419	22.61	4	187.86	412
95.53	237	-230.78	-474	138.48	246
211.43	419	-22.61	-5	-187.84	-412
-95.56	-236	230.78	475	-138.44	-247
-211.43	-419	22.6	4	187.86	413
95.55	236	-230 77	-475	138 45	247
211.44	420	-22.59	-4	-187.87	-412
_95.53	-237	230.75	475	-138.47	_247
-211.43	-420	22 56	475	187.9	412
05.57	237	22.50	475	138.45	247
211.45	420	-230.78	-4/5	197.80	412
211.43	420	-22.39	-3	-107.09	-412
-95.58	-237	230.8	4/4	-138.44	-24/
-211.40	-419	22.0	4	18/.9	412
95.55	237	-230.79	-4/4	138.44	247
211.43	419	-22.54	-4	-187.91	-412
-95.58	-237	230.79	474	-138.44	-246
-211.41	-420	22.54	4	187.89	412
95.6	237	-230.78	-475	138.43	246
211.41	419	-22.56	-4	-187.87	-412
-95.57	-237	230.75	475	-138.42	-247
-211.42	-419	22.55	3	187.87	412

					1000
95.56	237	-230.77	-475	138.45	247
211.39	419	-22.55	-3	-187.86	-413
-95.56	-237	230.81	474	-138.45	-246
-211.4	-419	22.57	4	187.87	413
95.58	237	-230.79	-475	138.41	246
211.42	419	-22.55	-5	-187.91	-412
-95.61	-237	230.77	475	-138.39	-246
-211.39	-419	22.53	4	187.9	412
95.6	237	-230.78	-476	138.41	246
211.41	419	-22.55	-3	-187.89	-413
-95.56	-237	230.77	475	-138.42	-246
-211.42	-419	22.53	3	187.92	412
95.57	237	-230.75	-475	138.39	246
211.41	419	-22.54	-3	-187.89	-412
-95.62	-237	230.76	475	-138.38	-246
-211.4	-419	22.57	3	187.89	412
95.64	237	-230.8	-474	138.4	245
211.36	419	-22.47	-4	-187.93	-412
-95.63	-236	230.79	475	-138.4	-246
-211.32	-419	22.47	4	187.88	412
95.62	236	-230.78	-475	138.39	247
211.38	419	-22.51	-3	-187.91	-412
-95.62	-237	230.78	475	-138.38	-247
-211.42	-418	22.49	4	187.97	413
95.62	236	-230.79	-474	138.38	246
211.41	418	-22.5	-4	-187.95	-412
-95.66	-236	230.84	474	-138.39	-246
-211.4	-419	22.49	4	187.95	412
95.69	237	-230.83	-475	138.37	246
211.37	419	-22.47	-4	-187.95	-412
-95.68	-237	230.82	476	-138.38	-246
-211.37	-418	22.48	3	187.97	412
95.65	237	-230.81	-475	138.4	246
211.39	419	-22.48	-4	-187.98	-411
-95.63	-236	230.77	474	-138.36	-247
-211.39	-419	22.52	5	187.9	412
95.68	236	-230.83	-475	138.37	247
211.4	419	-22.51	-4	-187.92	-412
-95.69	-237	230.85	475	-138.38	-246
-211.39	-419	22.47	3	187.97	412
95.65	237	-230.83	-475	138.4	246

Figura

Pagina

1.1	Variaciones de Frecuencia	5
1.2	Variaciones Lentas de Tensión	5
1.3	Variaciones de Tensión Rápidas	б
1.4	Fluctuaciones de Tensión	б
1.5	Ruidos e Impulsos en Modo Diferencial	7
1.6	Desequilibrios de Tensión	7
1.7	Distorsión Armónica	8
1.8	Transitorio Impulsivo	10
1.9	Transitorio Oscilante	10
1.10	Elevación de Tensión	10
1.11	Sobretensión Subciclo	11
1.12	Subtensión Subciclo	11
1.13	Señal Senoidal, Y Su Valor Eficaz	12
1.14	Trasformación De Fortescue De Un Sistema 30	16
1.15	Diagrama Fasorial de las Componentes Secuencia Positiva, Negativa y Cero	17
1.16	Diagrama Fasorial de las Componentes Secuencia Positiva Negativa y Cero	18
1.17	Equivalente de Thevenin para cada Secuencia	22
1.18	Diagrama, Condiciones y Conexión de la Secuencia para una Falla Monofásica	22
1.19	Diagrama, Condiciones y Conexión de la Secuencia para una Falla Doble Línea a Tierra	23
1.20	Diagrama, Condiciones y Conexión de la Secuencia para una Falla Línea a Línea	23
1.21	Diagrama, Condiciones y Conexión de la Secuencia para una Falla Trifásica a Tierra	24
2.1	Hueco De Tensión	26
2.2	Hueco No Rectangular	27
2.3	Hueco Trifásico	27
2.4	Características Principales de un Sag	30
2.5	Punto de Inicio del Sag	30
2.6	Punto de Recuperación del Hueco	31
2.7	Tensión Pérdida	31
2.8	Salto o Desplazamiento del Ángulo de Fase	32
3.1	Divisor de Voltaje para el Método de Distancia Crítica	39
3.2	Índice de Error para el Cálculo de la Distancia Critica	41
3.3	Límite del Área de Vulnerabilidad	43

	and the second se
3.4	Tipos de Mallas o Loop desde el Punto de Vista de los Sags
3.5	Área de Vulnerabilidad de 2 Tipos de Malla o Loop
3.6	La variación de la tensión para la línea equivalente
4.1	Divisor de Voltaje
4.2	Caracterización por RMS. Caso Monofásico
4.3	Voltajes RMS Trifásicos
11	Definición de la Magnitud y la
4.4	Duración del Sag por el Método Tradicional
4.5	Sobreestimación de un Sag No-Rectangular por el Método Convencional
4.6	Definición del tipo de Sag. (a) Sag Ideal. (b) Sag General
5.1	Diagrama Fasorial de los Tres Tipos Voltaje de Sag (Tipo A, Tipo B y Tipo C)
5.2	Diagrama Fasorial de un Sag Desbalanceado Considerando Fases Simétricas
5.3	Diagrama fasorial de Sags Desbalanceados con Componentes Simetricas.
5.4	Archivo de <i>VBAProject</i> en Excel para obtener los valores que se utilizaran para visualizar los Sags.
5.5	Primer programa en Labview
5.6	Diagrama de Flujo para el primer programa de Labview
5.7	Representación del programa en el Diagrama de bloques de Labview
5.8	Representación del programa en el Panel frontal
5.9	Diagrama de Flujo para la clasificación del tipo de Sag por componentes simétricas.
5.10	Programa para la clasificación del Sag, con base a la ecuación K
5.11	Diagrama del Flujo para la clasificación del Sag, con base a la ecuación K.
B.1	Sistema de Dos fuentes en condiciones de prefalla
B.2	Un sistema de dos Fuentes en condiciones de falla
B.3	Un sistema de dos Fuentes para el análisis de la localización del origen del Sag.
C.1	Aproximación del perfil de un Sag no-rectangular.
D.1	La curva de Tolerancia de voltaje típico
D.2	Curva CBEMA
D.3	La aplicación del método propuesto (la línea Sólida es el perfil del Sag real y la línea punteada es su aproximación.)

