

FACULTAD DE QUÍMICA

ANÁLISIS DEL COMPORTAMIENTO DE LA PLANTA COMBINADA No. 1 DE LA REFINERÍA DE TULA, PARA EL MANEJO DEL CRUDO (MAYA)


TESIS

QUE PARA OBTENER EL TÍTULO DE

INGENIERA QUÍMICA

PRESENTA

GUADALUPE MACUIL ROBLES

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

A **Díos** por haberme permítido llegar hasta aquí y por iluminarme para seguir recorriendo este camino.

A mís **Abuelitos** t, que dejaron de estar físicamente con mí família pero quiero decirles en donde quiera que estén que los llevo en mí corazón y gracías por enseñarme tantas cosas que uno aprende a lo largo de la vida.

A mís **Padres** por sus enseñanzas, por la educación que me inculcaron, sobre todo por que siempre me han brindado su apoyo, confianza y cariño en todo momento.

A mís hermanos: Nacho, Sergío, Marco, Chelí, Fabí, Edgar y Luz por estar ahí síempre unidos y por que me impulsaron a seguir adelante y a no dejarme vencer tan fácilmente, los quiero mucho.

A mí asesor el Ing. Celestíno Montíel Maldonado por haberme invitado a formar parte del LsyOP, donde he aprendido muchas cosas aparte le agradezco por sus enseñanzas, confianza, consejos, apoyo y por la experiencia que uno siempre aprende de la gente grande.

A mís profesores y muy en especíal a la Q. Ana Isabel Carranco Pérez, IQ Genovevo Sílva Píchardo, IQ Manuel Vázquez Islas, Dr. Tatíana Klímova Berestneva y Q. Josefina Elízalde Torres, por haberme ayudado en el momento en que más lo necesítaba gracías por guíarme y darme esos consejos.

A **José María** (Bokhímíto) por apoyarme en la realización de este trabajo así como por darme todo su cariño y amor. "Te quiero mucho bebe".

A mís dos grandes amigas: Angíe y María Elena, les agradezco por que cada día que pase en la facultad me sentía como en familia compartiendo las aulas, además de que he tenido las mejores experiencias de la vida y ahora solo les puedo decir gracías por ayudarme en la realización de esta tesis y por el apoyo moral que uno a veces necesita tanto para seguir adelante, gracías a ustedes no pude sentir tanto la distancia con mí familia y solo les puedo decir que las quiero mucho.

A mís amígos: Kítzía, Juan Carlos, Annel, Irís, Karína, Elías, Gustavo, Markítos, Noemí Uchída Tenorío, Arturo, Elena, Sergío, Gílberto, Alejandro, Markítos, Juan Antonío, Takao, Chendo, Omar, Chavolla, Noemí, Sandra, Alondra, Alma, les agradezco por que me permítieron conocerlos, compartir muchas cosas con ustedes y gracías a eso ahora puedo decir que soy una mejor persona los quiero mucho.

A la UNAM que es la máxima casa de estudios por mejorar el nível académico así como sus instalaciones día a día.

A la **Facultad de Química** por su alto rendimiento académico con la que forma y seguirá formando futuros profesionales de la Ingeniería Química.

Y por ultimo le agradezco a todas las personas que de alguna manera me conocieron y convivieron conmigo.

"Pios no te hubiera dado la capacidad de soñar sin darte también la posibilidad de convertir tus sueños en realidad."
"Todos los triunfos nacen cuando nos atrevemos a comenzar."
"La única posibilidad de descubrir los límites de lo posible es aventurarse un poco más allá de ellos, hacia lo imposible."
"El éxito no es para los que piensan que pueden hacer algo sino para quienes lo hacen."
"El hombre nunca sabe de lo que es capaz hasta que lo intenta."
"Cuando estás próximo a realizar tus sueños todo cambia su color, lo mejor de todo es que el color lo pones tú."
"Cl secreto de una vida plena es tener más comienzos que finales" Pave Weinbaum
"Hay quienes no pierden nada al intentarlo, hay quienes pierden todo si no lo intentan."

1. INTRODUCCIÓN	1
2. GENERALIDADES	4
2.1 Ingeniería de Procesos	5
2.1.1 Diseño de Procesos	6
2.1.2 Síntesis de Procesos	7
2.1.3 Análisis de Procesos	8
2.1.4 Optimización de Procesos	10
2.2 Refinación del Crudo	10
2.2.1 Tipos de Crudo	13
2.2.2 Importancia de la Refinería del crudo	19
2.2.3 Origen del Petróleo (crudo)	20
2.2.4 El Crudo y sus Fracciones	21
2.2.5 Propiedades Fisicoquímicas	23
2.2.6 Productos del Crudo	30
2.2.7 Especificaciones de los Productos	30
2.3 Descripción de la Refinería "Miguel Hidalgo"	31
2.3.1 Plantas de Proceso	36

CAPÍTULO 1

INTRODUCCIÓN

Actualmente se procesan crudos que cada vez son de menor calidad, lo cual aunado a la tendencia general de poner más atención a los aspectos de salud y ambientales, ha provocado que existan cambios en el equipo y operación de una refinería, volviéndose un reto el cumplimiento de los nuevos requerimientos y regulaciones sin perder competitividad ni rentabilidad.

La elaboración de los diferentes procesos se ajusta, por un lado a las leyes fundamentales y por otro a las limitaciones y requerimientos que el hombre ha impuesto. Debido a esto, ya no es suficiente hacer o tener un proceso, sino que cada día es más necesario analizarlo para su optimización ya sea energética, económica, etc. Este concepto es el que tienden a adoptar las tecnologías modernas de procesos para poder ser competitivas.

El presente trabajo se centra en la simulación de la primera sección de procesamiento en la refinación del crudo de la Refinería "Miguel Hidalgo", que es la Planta Combinada No.1, la cual la integra la sección de destilación atmosférica y la de vacío. Para la simulación del proceso se utilizó el simulador de procesos químicos HYSYS de la compañía ASPENTECH.

Se estudió el tema de refinación del crudo en general para posteriormente profundizar en el tema de la Destilación Combinada (atmosférica y al vacío). Se describen los procesos en general en la primera parte, para después detallar el actual proceso de la Planta Combinada No.1 de la Refinería Miguel Hidalgo. Posteriormente se dan algunos conceptos básicos de la Simulación de Procesos y del uso del simulador HYSYS de la compañía ASPENTECH. Finalmente se explica el programa de simulación mediante el cual fue posible representar lo más cercanamente posible la operación de dicha planta. Para así presentar y analizar este trabajo.

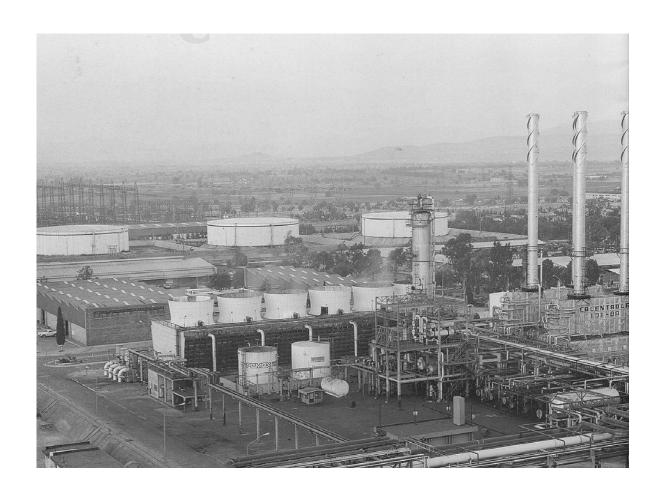
CAPÍTULO 1 2

OBJETIVOS GLOBALES

Analizar el comportamiento de las columnas atmosférica y de vacío de la Planta Combinada No. 1 de la Refinería "Miguel Hidalgo" ubicada en Tula, Hidalgo, al cambio en la alimentación del tipo de crudo.

El objetivo de este trabajo se centra principalmente en el análisis de las columnas de destilación atmosférica(DA-102) y al vacío (DA201) de la Planta Combinada No. 1 de la Refinería "Miguel Hidalgo" debido a que las corrientes de proceso ya sean productos, alimentaciones, recirculaciones, etc. dependen principalmente del buen funcionamiento de estas y en consecuencia se modifica la operación en el resto de los equipos que conforman la planta (intercambiadores, desaladoras, torres de despunte, etc.).

Desarrollar un esquema de simulación confiable para que en el futuro pueda aplicarse a una simulación dinámica y sirva de base en la toma de decisiones de esta sección de la planta.


ALCANCE

Llevar a cabo el análisis de comportamiento de columnas atmosféricas y de vacío al cambio en las alimentaciones como es el tipo de crudo, mediante la simulación de procesos utilizando el simulador HYSYS de la compañía ASPENTECH.

CAPÍTULO 1 3

CAPÍTULO 2

GENERALIDADES

2.1 Ingeniería de Procesos

La Ingeniería de Procesos como una disciplina formal dentro de la Ingeniería Química va de la mano con el desarrollo de nuevas metodologías. Esta la Ingeniería de Procesos se define como la creación y cuantificación o análisis de diagramas de flujo de proceso que formarán parte de una operación fácil, económica y segura de la planta. Dicha disciplina, exige la contribución de la ingeniería para el desarrollo, diseño y mejoramiento de procesos.

El desarrollo de procesos está orientado a la conceptualización del diseño de procesos enfocándose hacia un estudio de factibilidad del mismo. Por tanto, el desarrollo de un proyecto no solo implica reproducir resultados mediante programas de computadora, sino que debe ser tratado como un sistema dinámico susceptible de ser mejorado y con capacidad para ampliar sus habilidades mediante la incorporación de técnicas innovadoras.

La computación comenzó siendo una herramienta útil en la solución de operaciones simples dentro de un proceso; posteriormente se aplicó a las diferentes operaciones unitarias por separado y procesos químicos específicos y pequeños. Actualmente se utilizan grandes sistemas para manejar los procesos más complejos; de hecho, es posible afirmar que hoy en día ninguna planta química o petroquímica importante es construida sin la simulación y diseño del proceso con la ayuda de una computadora.

La creación o modificación de un equipo o un proceso, con toda la información que se debe generar para su fabricación o cambio, requiere de un diseño. Para dar una idea de la importancia del diseño dentro del desarrollo de un procesos o un equipo, se ha calculado que éste representa entre un 10% a 15% de la inversión. Además en la etapa de diseño se fija el 80% del costo final. El diseño de procesos forma parte de las primeras etapas en el proyecto global de la concepción de una planta química.

Hoy en día el significado de ingeniería de procesos ha crecido hasta el punto de considerarse la rama encargada de planear, diseñar, operar y controlar cualquier clase de operación unitaria o proceso químico.

2.1.1 Diseño de Procesos

El propósito de la Ingeniería Química es crear nuevos materiales. El Ingeniero Químico intenta llevar a cabo esta meta en la Ingeniería Química vía transformaciones químicas (o biológicas) y/o separación de materiales. El diseño de procesos y plantas es una actividad creativa por medio de la cual se generan ideas para entonces trasladarlas a los equipos y procesos para producir nuevos materiales o mejorar la calidad de los ya existentes.

Debemos de tratar de generar nuevas ideas para:

- Convertir productos de desecho en materiales reciclables.
- Crear nuevos materiales como son fibras sintéticas, alimentos, etc.
- Encontrar nuevos procesos químicos y producir materiales ya existentes para poder emplearlos.
- Emplear nuevas tecnologías (ingeniería genética, sistemas expertos, etc.).
- Obtener nuevos materiales de construcción (para altas temperaturas o altas presiones, polímeros especiales, etc.).

El trabajo fundamental para desarrollar el diseño de un proceso comprende muchos criterios de decisión, algunos de los cuales son reglas heurísticas, cuyo proceso de estructuración comprende esencialmente tres etapas, las cuáles se explicarán a continuación y se presentará un esquema donde se resumirán las etapas del Diseño de Procesos (Fig.2.1).

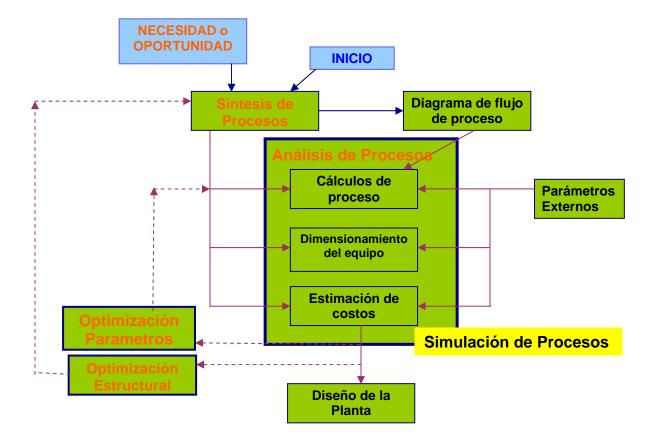


Figura 2.1 Etapas en el Desarrollo del Diseño de Procesos: Síntesis, Análisis y Optimización de Procesos.

2.1.2 Síntesis de Procesos

A partir de una necesidad se conciben una serie de ideas que involucran la transformación de materias primas a través de una secuencia de operaciones que tienen como finalidad obtener los productos deseados.

Se distinguen dos etapas, la primera consiste en elegir la ruta química de proceso, referida a las transformaciones químicas necesarias para obtener los productos deseados y la segunda considera el desarrollo de diagramas de flujo de proceso que incluyen la secuencia de las operaciones unitarias, recirculación de materias e integración de energía; es por ello; que se considera que ésta es una etapa inventiva.

La síntesis de procesos nace cuando a partir de una situación existente; como puede ser una necesidad social o una oportunidad económica, se conciben una serie de ideas que involucran materias primas y una secuencia de operaciones que logren la transformación de los productos deseados.

En esta etapa se deciden las unidades de procesos requeridas y su interconexión, es decir, se proponen tanto la estructura, como los balances de materia y energía, necesarios para obtener los productos deseados. La síntesis es una actividad que aparece repetidamente debido al carácter recursivo del diseño. En el caso de la síntesis de un diagrama de procesos, se generan otros subproblemas de síntesis como la red de intercambio de calor, o la secuencia de separación.

Los tres puntos más significativos en la síntesis son la representación, la búsqueda y la evaluación. Una representación adecuada permite algunas veces localizar rápidamente una solución o generar aquellas alternativas más competitivas, que de otra manera serían más difíciles de resolver. La búsqueda debe darnos todas las posibilidades existentes, para después realizar una evaluación económica de cada situación.

2.1.3 Análisis de Procesos

Una vez que el diagrama de flujo es sintetizado tanto técnico como económico, se requiere hacer un análisis de viabilidad del proceso. En esta etapa se determinan los valores de las variables de diseño así como los modelos matemáticos y propiedades termofísicas a ser usados en cada operación del proceso. Se establece además una estrategia de diseño la cual incluye la estimación de los valores de las variables independientes así como los métodos de cálculo y criterios de convergencia.

El análisis del proceso consiste en descomponer el sistema propuesto en la etapa de síntesis en varios subsistemas, definiendo las relaciones entre cada uno de ellos.

Es importante saber descomponer el sistema ya que, al estar formado de muchos elementos, se puede llegar a generar un número grande de subsistemas, lo cual hace casi imposible su manejo.

Las herramientas para llevar a cabo el análisis son las más desarrolladas como ayuda para el diseño. En el análisis también se propone un modelo que describe los fenómenos en estudio. El modelo nos permite obtener valores para el dimensionamiento y la evaluación económica preliminar de un proceso así como las consecuencias de posibles modificaciones. En caso de modelar un equipo en funcionamiento, nos permite evaluar la eficiencia del funcionamiento de éste. El nivel de detalle de este modelo depende de las necesidades y posibilidades que se tengan.

Actualmente los balances de materia y energía pueden realizarse por medio de simuladores de procesos comerciales. Con estos datos se logra generar un dimensionamiento preliminar y la estimación de costos.

Una vez que se cubrieron estos puntos, el siguiente paso consiste en resolver los balances de materia y energía a través de la simulación para obtener información detallada de las corrientes de proceso así como las especificaciones de diseño de los equipos y requerimientos de los servicios auxiliares.

Reunida la información anterior se prosigue a hacer un estudio económico preliminar, para así poder confrontar tanto el aspecto técnico como el económico, considerando el factor de eficiencia termodinámica, la eficiencia de operación, los riesgos para la salud, seguridad y ambiente.

2.1.4 Optimización de Procesos

A partir de la información obtenida en la etapa de síntesis y análisis, esta etapa consiste en proponer alternativas de mejoramiento tanto en la estructura como en los parámetros del proceso para establecer una operación óptima y segura, a través del establecimiento de una función objetivo.

Una optimización estructural implica la alteración en número y tipo de equipos, así como sus interconexiones teniendo como objetivo fundamental mejorar el proceso u obtener un arreglo menos costoso, teniendo una influencia directa en la etapa de síntesis y por consiguiente en la etapa de análisis.

La optimización fue aplicable comercialmente en problemas a gran escala a finales de 1950 con el desarrollo de la programación lineal. Para utilizar los métodos de optimización, todavía se requiere un análisis de las variables de decisión del proceso, la elección de funciones objetivo y el uso de experiencias pasadas. Este trabajo se enfoca principalmente a la parte de síntesis y análisis, no incluyendo la parte de optimización, ya que el objetivo del presente trabajo se encuentra sólo dentro de las dos primeras divisiones del diseño de procesos.

2.2 Refinación del Crudo

Los principales componentes del crudo son los hidrocarburos, aumentando su tamaño desde el más pequeño: metano con un solo átomo de carbono hasta compuestos constituidos por 200 carbonos más, con pequeñas cantidades de impurezas. El crudo es una mezcla compleja de hidrocarburos: parafinas, cicloalcanos y aromáticos, además de pequeñas cantidades de agua y compuestos orgánicos de azufre, oxígeno y nitrógeno, así como de constituyentes metálicos, particularmente de vanadio, níquel y sodio. Existen diferentes tipos de crudos de los cuales se obtienen combustibles, lubricantes y diferentes petroquímicos mediante un proceso adecuado.

- Hidrocarburos: Los hidrocarburos son los constituyentes principales de petróleo, dividiéndose en grupos de compuestos como: parafínicos, nafténicos (cicloalcanos) y aromáticos. Las olefinas no son encontradas como compuestos en el crudo, pero se producen durante el proceso de refinación del petróleo.
- Parafinas: Las parafinas tienen la siguiente fórmula general C_nH_{2n+2}, con enlaces sencillos y sin ninguna estructura cíclica. Las parafinas son muy estables pero su estabilidad decrece cuando el peso molecular y el número de ramificaciones aumentan. A presión atmosférica, las parafinas que contienen de 1 a 4 átomos de carbono en su molécula son gases, aquellos que tienen 5 a 15 átomos de carbono son líquidos y los que contienen 16 átomos o más se encuentran en estado sólido.
- Naftenos: Son también llamados cicloalcanos y están representados por la fórmula general C_nH_{2n}. Son hidrocarburos saturados con estructuras cíclicas que pueden contener una o más cadenas de parafinas laterales. Los compuestos nafténicos constituyen un alto porcentaje de la cantidad total de crudo y la proporción varía dependiendo del tipo de crudo que se trate. Los naftenos que forman parte del petróleo contienen anillos de cinco a seis carbonos.
- Aromáticos: Los compuestos aromáticos son hidrocarburos no saturados que contienen uno o más anillos y pueden estar unidos a un anillo nafténico o a una cadena parafínica lateral. La fórmula general para estos compuestos es C_nH_{2n-6}. El porcentaje de los compuestos aromáticos en el petróleo es menor que el de las parafinas o los naftenos. Para el mismo crudo la fracción más pesada es la más rica en aromáticos que las ligeras. Los compuestos aromáticos más comunes son: benceno, toluenos, xilenos, trimetilbencenos y naftalenos.

- Compuestos oxigenados: El contenido de oxígeno en el petróleo aumenta con el incremento en las temperaturas de ebullición de las fracciones. El residuo no volátil puede contener hasta 8 % en peso de este elemento. Los principales compuestos encontrados son los ácidos nafténicos, ácidos carboxílicos y asfáltenos.
- Compuestos de Azufre: En general entre más alta sea la densidad del crudo más alto será el contenido de azufre. Los compuestos orgánicos de azufre se encuentran en todos los crudos en cantidad que pueden variar desde el 0.05% en peso hasta 5%. Los compuestos de azufre normalmente encontrados son: ácido sulfhídrico, tiofenos, alquil mercaptanos y azufre libre. Los compuestos de azufre se tienen que eliminar porque causan problemas de envenenamiento de catalizadores metálicos y su presencia en los combustibles crea problemas de corrosión y ambientales. Debido a la relación tan estrecha que existe entre los compuestos de azufre y los hidrocarburos vecinos como son las presiones de vapor, los compuestos no pueden ser eliminados con procesos de destilación en la escala comercial.
- Compuestos de Nitrógeno: Los compuestos de nitrógeno en el petróleo pueden ser clasificados arbitrariamente en básicos y no básicos. Los compuestos básicos son compuestos derivados de la piridina. A pesar de que se encuentran en todas fracciones obtenidas se encuentran concentrados principalmente en las fracciones con puntos de ebullición altos y en el residuo. Los compuestos no básicos de nitrógeno en el petróleo se encuentran concentrados en las fracciones más pesadas y en el residuo. La mayoría de los crudos contiene 0.1% en peso del nitrógeno o menos dependiendo del tipo de crudo que se trate. La presencia de nitrógeno en el petróleo es de gran relevancia para las operaciones de una refinería ya que pequeñas cantidades de éste hacen que el catalizador se envenene en los procesos de cracking, reformación catalítica y causa el aumento de la viscosidad en los productos tales como los combustibles.

- Compuestos orgánicos clorados: Estos compuestos usualmente no son removidos del crudo como productos pero el efecto que tienen en las refinerías es muy grande debido a su poder corrosivo. Una considerable investigación se ha realizado en este campo para prevenir la corrosión del ácido clorhídrico que se regenera durante el proceso debido a la presencia de estos compuestos clorados en el crudo.
- Agua: Normalmente el petróleo contiene agua en diferentes cantidades. Se debe tener cuidado de eliminar toda el agua que contiene el crudo debido a que causa problemas con el aceite de destilación: el agua produce espuma la cual posee un calor de vaporización mayor que el del crudo.
- Compuestos metálicos: Estos constituyentes se encuentran representados por sales inorgánicas solubles en agua, y algunos metales se encuentran en forma de sales solubles en aceite o en compuestos organometálicos solubles en aceite. La remoción de estos compuestos se realiza mediante un proceso de extracción donde son removidos como parte de un extracto bituminoso llamado asfalteno.

En la industria los productos se encuentran restringidos a grupos de cualquiera de estos hidrocarburos separados únicamente por el intervalo de temperaturas de ebullición de los mismos. Usualmente los productos se denotan por los puntos de ebullición más que por los compuestos que contienen.

2.2.1 Tipos de Crudo

En general existen dos tipos de crudo: ligero y pesado, considerando que a mayor gravedad y menor densidad el crudo es más ligero y viceversa. De esta manera la gama de tipos de crudo se amplía de forma significativa, utilizándose categorías que giran en torno a los dos tipos genéricos: extraligero, ligero dulce, ligero amargo y extrapesado, entre otros.

En México el petróleo producido se considera pesado o ligero según los siguientes criterios:

- Pesado: Petróleo crudo con densidad API igual o inferior a 27°. La mayor parte de la producción de este tipo de petróleo proviene de yacimientos de la Sonda de Campeche.
- Ligero y otros: Petróleo crudo con densidad API superior a 27°. Este tipo de crudo se produce tanto en la Sonda de Campeche como en otros yacimientos de explotación en el país.

Para el mercado de exportación se preparan tres variedades de petróleo crudo con las siguientes calidades típicas:

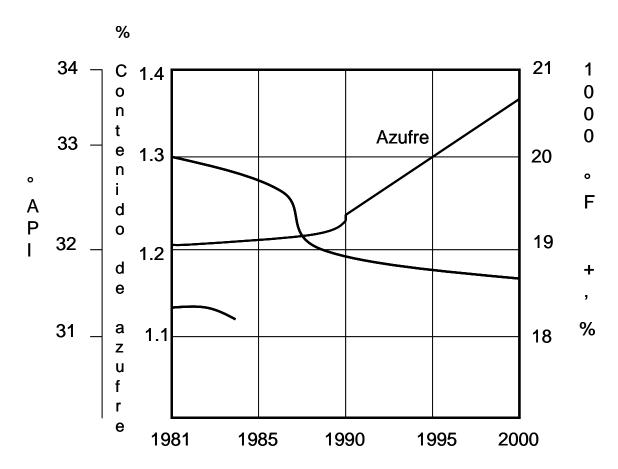
- Istmo. Petróleo crudo ligero con densidad de 33.6°API y 1.3% de azufre en peso.
- Maya. Petróleo crudo pesado con densidad de 22° API y 3.3% de azufre en peso.
- Olmeca. Petróleo crudo muy ligero con densidad de 39.3° API y 0.8% de azufre en peso.

Los crudos varían de acuerdo a las diferentes proporciones de los distintos compuestos descritos anteriormente. Un crudo puede contener en su mayoría parafinas, u otros naftenos, etc. Los crudos normalmente se caracterizan en tres tipos dependiendo de la cantidad de ceras, altos pesos moleculares de compuestos parafínicos que se encuentran en estado sólido a temperatura ambiente y de asfaltenos presentes. El contenido de ceras indica el grado en el cual un crudo es parafínico, por el contrario la presencia de asfaltenos indica un crudo aromático.

- Crudo asfalténico y nafténico: Este tipo de crudos tienen un bajo contenido de parafinas y el residuo está formado básicamente por asfáltenos (esencialmente aromáticos). Las concentraciones de azufre, nitrógeno y oxígeno son usualmente altas, y los destilados intermedios y ligeros contiene altos porcentajes de naftenos. Estos crudos son mejores para la producción de gasolinas y asfalto. No son adecuados para la producción de kerosina porque poseen un alto contenido de compuestos cíclicos los cuales producen niebla durante su combustión. Los naftenos y los compuestos aromáticos tienen una variación muy grande de su viscosidad con respecto a la temperatura, por esta razón estos crudos no se utilizan en la producción de aceites lubricantes.
- Crudos parafínicos: Los crudos parafínicos consisten principalmente de parafinas; usualmente son utilizados en la producción de ceras parafínicas, aceites lubricantes multigrado para motores y kerosina de alta pureza.
- Crudos de mezcla: Los crudos de mezcla contienen proporciones considerables de ceras parafínicas y asfaltenos. Las parafinas y los naftenos se encuentran presentes, además de una proporción de aromáticos. Casi todos los productos pueden ser obtenidos de este tipo de crudos. En la tabla 2.1 se muestra lo anteriormente descrito, que es la comparación entre el crudo parafínico y el nafténico.

FRACCIÓN	CRU	JDO PARAFÍN	IICO	CRI	UDO NAFTÉN	ICO
°C	Α	N	Р	Α	N	Р
60-95	2	24	74	2	35	63
95-122	5	29	66	6	50	44
122-150	9	34	57	11	66	23
150-200	14	28	58	15	63	22
200-250	18	23	59	24	48	28
250-300	17	22	61	28	42	30

TABLA 2.1 Composición de las Fracciones de los Crudos (%Vol. Liq.)
A= aromáticos, N= Naftenos, P= Parafinas


Los datos de propiedades físicas o químicas pueden indicar la calidad del crudo. Por ejemplo, la densidad es útil porque muestra la influencia de la composición química, altas concentraciones de hidrocarburos aromáticos presentan altas densidades mientras que un aumento en compuestos saturados da como resultado una disminución en el valor de la densidad.

Aunque teóricamente es posible producir cualquier tipo de producto refinado de cualquier crudo, económicamente no es factible de realizar. Como ya se mencionó anteriormente algunos crudos son mejores para obtener ciertos productos.

Para satisfacer las demandas de todos los productos las refinarías mezclan dos crudos, cambiando la proporción de la mezcla para satisfacer una necesidad en particular.

Como se observa en la figura 2.2 la calidad de los crudos seguiría disminuyendo por lo que el contenido de pesados en éstos tendrá que ser procesado, para lo cual las Refinerías deberán realizar cambios en sus procesos, además de hacerlos más eficientes, esto último debido a la exigencia de un mercado cada vez más competitivo. Y en la tabla 2.2 se proporciona la composición elemental de diferentes tipos de crudo en el mundo.

GENERALIDADES

Figura 2.2 Calidad de crudos en el mundo

Origen	Carbono	Hidrogeno	Nitrógeno	Oxigeno	Azufre
Rumania	86.6	12.1	0.7	0.7	0.6
Canadá	83.2	10.4	0.4	0.9	5.1
México	83	11.0	1.7	1.7	4.3
Estados Unidos	85.7	11.0	2.6	2.6	0.7
Argentina	86.7	12.1	1.0	1.0	0.2
Colombia	85.6	11.9	-	ı	-
Venezuela	82.5	10.4	0.8	0.8	5.7

Tabla 2.2. Composición Elemental de Diferentes Tipos de Crudo (%W)

En México se principalmente procesa con dos tipos de crudo: Crudo Tipo Maya y Crudo Tipo Istmo. La diferencia entre estos dos tipos radica en los siguientes puntos que se mencionan en la tabla 2.3 donde se muestran algunas propiedades arrojadas de un análisis y en la tabla 2.4 se muestra los rendimientos obtenidos de los productos que se someten a una destilación técnica para los 2 tipos de crudo:

TIPO DE ANÁLISIS	CRUDO "MAYA"	CRUDO "ISTMO"
Peso específico@20/4° c	0.933	0.856
°API	19.71	33.24
Viscosidad@37.8°C, seg	4.8	52
Sal, Lb/Mbls	45.66	14.18
Azufre Total,% w	3.49	1.68
Carbón, %w	11.15	3.85
Cenizas, %w	0.52	0.0049
Asfaltenos en nC5	17.21	3.27
Acidez, mg KOH/g	0.34	0.41
Fierro, ppm	0.28	1.06
Vanadio, ppm	305	90.97
Níquel, ppm	76.08	8.43
Cobre, ppm	0.55	0.44
Calcio, ppm	6.89	4.73
Magnesio, ppm	0.48	0.18
Plomo, ppm	0.00	0.00
Cloruros, ppm	0.90	0.91
Pentano, % vol	1.1	1.90
Destilación Hempel		
TIE, °C	44	40
10%, °C	138	122
20%, °C	195	169
30%, °C	258	225
40%, °C	285	279
50%, °C	364	338

Tabla. 2.3 Resultados de Análisis a los dos Tipos de Crudo

Destilación Técnica, Rendimientos Obtenidos

Producto	Rendimiento real crudo	Rendimiento real crudo
	"Maya" (%vol)	"Istmo" (%vol)
Gas Licuado	0.4	0.4
Nafta ligera Primaria	17	25
Kerosina Ligera Primaria	8	12
Kerosina Pesada Primaria	11	12
Gasóleo Ligero Primario	7	10
Gasóleo Pesado Primario	5	7

Tabla 2.4. Rendimientos de los productos obtenidos en los dos tipos de crudo a realizarse una destilación técnica.

Como se observa de las tablas 2.8 y 2.9 respectivamente, el crudo Istmo presenta una mejor calidad que el Maya debido a que contiene una menor cantidad de hidrocarburos pesados y metales. Es por eso que en nuestro país existe la tendencia a exportar el crudo Istmo y el deseo en aumentar consumo del crudo Maya.

2.2.2 Importancia de la Refinación del Crudo

La gran mayoría de los compuestos utilizados en la industria provienen del crudo que es extraído de los depósitos del subsuelo. Los aceites del petróleo, de la manera que se encuentran en la naturaleza, requieren de procesamiento para cumplir con las cantidades y especificaciones de los combustibles de transportación y los aceites para calentamiento necesarios, así como para mejorar su calidad mediante el cambio en los rangos de ebullición de los componentes.

Debido a que cada crudo tiene sus características específicas, se requieren diversos procesos de refinación y cada planta procesadora, conocida como una refinería, es diferente de otras refinerías que procesan varios crudos.

Los procesos de refinación son muy complejos y requieren equipos de instrumentación sofisticada. Como resultado, la industria de refinación del petróleo tiene un costo de inversión muy alto por trabajador. Aún con su complejidad esta industria es muy eficiente y los costos de refinación por galón de producto son bajos debido a las altas cantidades de crudo que se procesan.

En el crudo extraído directamente de los pozos, menos de la mitad de un barril promedio del mismo, puede ser utilizado como combustible para transportación (Gasolina, turbosina y diesel). El resto del barril contiene compuestos que poseen un punto de ebullición demasiado bajo para ser incluidos.

Debido a que los productos que ofrecen ganancia en grandes volúmenes son los combustibles para transportación, es necesario convertir la mayor parte del barril en estos, en la medida que sea económicamente posible. Existen refinerías que cuentan con el equipo necesario de conversión para producir una gran variedad de productos del crudo. Cualquier procesamiento adicional se añade a los costos de capital y de operación de la refinería y por lo tanto cualquier unidad de proceso debe ser justificada económicamente.

2.2.3 Origen del Petróleo (crudo)

Proveniente del latín *petroleum* (Petra-piedra y oleum-aceite), que significa aceite de piedra. El crudo era conocido hace miles de años, pero fue a mediados del siglo XIX, cuando empezaron a descubrirse sus múltiples aplicaciones, iniciándose la gran industria del "oro negro".

El petróleo corresponde a un grupo de sustancias bituminosas muy abundantes en la naturaleza, que se encuentran en variadas formas y reciben diversas denominaciones como petróleo en bruto, aceite de piedra, nafta, asfalto, o bien se halla mezclado con materias minerales, como ocurre en las pizarras bituminosas.

Se presume que el origen del petróleo es que proviene de la descomposición de restos de animales y plantas. Esta materia orgánica se cubrió lentamente con capas cada vez más gruesas de sedimentos, los cuales en condiciones determinadas de presión, temperatura y con el paso de millones de años, se transformaron en hidrocarburos.

Existen otras teorías basadas en que el petróleo es de origen inorgánico o mineral y otras aseguran que tiene su origen en los meteoritos que han caído en nuestro planeta, no obstante y a pesar de las incontables investigaciones que se han realizado, no existe una teoría infalible que explique el origen del petróleo.

2.2.4 Crudo y sus Fracciones

El aspecto del crudo es de un líquido viscoso variando el color entre amarillo y pardo oscuro hasta negro, con reflejos verdes, con olor característico y densidad menor al agua, por lo que flota en ella.

La estructura y el número de átomos de carbono dentro de las moléculas de los distintos compuestos, determinan en el petróleo diferentes propiedades físicas y químicas. Así tenemos que los hidrocarburos compuestos por uno a cuatro átomos de carbono son gaseosos, los que contienen de 5 a 20 son líquidos y son sólidos a temperatura y presión ambiente los que tienen más de 20.

Los crudos tienen distintas consistencias ya sea fluidos como agua ó sólidos de tipo alquitrán. Los crudos usualmente se clasifican como parafínicos, nafténicos o aromáticos determinándose por la proporción predominante de hidrocarburos similares. La alimentación de las refinerías generalmente es una mezcla de dos o más crudos distintos. De igual manera los petróleos crudos se definen por su gravedad API (Instituto Americano del Petróleo). Un crudo ligero tiene gravedades API altas y gravedades específicas bajas.

CAPITULO 2 21

Los crudos con bajo contenido de carbono, alto contenido de hidrógeno y altas gravedades API son ricos en parafinas y obtenemos rendimientos mayores de gasolina y productos de petróleo ligeros, en tanto que los crudos con altos contenidos de carbonos, bajos contenidos de hidrógeno y gravedades API bajas, son ricos en aromáticos. Se llaman crudos ácidos aquellos que contienen importantes cantidades de sulfuros de hidrógeno u otros compuestos azufrados reactivos, mientras que los que tienen menos azufre son conocidos como dulces; excepto los crudos West Texas que siempre se consideran ácidos sin importar su contenido de H₂S y los crudos árabes que no se consideran ácidos aunque tienen alto contenido de azufre ya que estos no son altamente reactivos.

En términos de nuestra industria química nacional de refinados, el subsuelo mexicano asegura la disponibilidad de crudo y de gas natural para consumo energético. Es cierto que tenemos la fortuna de contar con vastos recursos petrolíferos, sin embargo se puede observar que desde 1990 una tendencia de disminución de las reservas. Esto es el resultado de dos factores, uno de ellos es el rezago en la inversión en exploración y el incremento en la explotación.

Si se logra recuperar el crecimiento económico del país, con una economía norteamericana creciendo a diferencia del pasado lentamente, para el año 2010 se estima que la producción de petróleo crudo debe prosperar. Las exportaciones de petróleo para los próximos 10 años continuaran representando cerca del 50% del total de la producción.

Para alcanzar estos resultados así como la reactivación de la industria petrolera será necesario que el gobierno realice substanciales esfuerzos financieros, de tal manera que la inversión en PEMEX deberá acrecentarse significativamente, para recuperar el nivel de las reservas, principalmente de crudos ligeros, y engrandecer las capacidades de procesamiento interno de crudo. Esto permitirá aumentar el valor de nuestros hidrocarburos. A continuación en la tabla 2.5 se presentan las fracciones del crudo en donde se menciona el intervalo de ebullición, el número de carbonos aproximados, así como su uso.

FRACCIÓN INICIAL	No. Aproximado de	Intervalo de ebullición	Usos
Subfracciones	átomos de C	(°C) 0-20	Combustible
Gas ligero	C ₁ - C ₅		
Metano y etano	C ₁ - C ₂	gas	Combustible
Olefinas	C ₂ - C ₄		Alcohol, hule y plástico
Propano y Butano	C ₃ - C ₄		Combustible
Gasolina	C ₅ - C ₁₀	20-200	Combustible para
			autos, etc
Éter de petróleo	C ₅ - C ₆	30-60	Disolvente
Ligroína	C ₆ - C ₈	60-100	Disolvente
Naftas	C ₈ - C ₁₁	100-200	Disolventes
Queroseno	C ₁₂ - C ₁₆	200-300	Combustible, disolvente
Aceite	C ₁₅ - C ₁₈	280-380	Diesel, combustible
combustible			para calderas
Aceites	C ₁₆ - C ₂₀		Lubricante
Lubricantes			
Petrolato o	C ₁₈ - C ₂₂		Lubricante,
vaselina			medicamentos
Parafina sólida	C ₂₀ - C ₃₀	p.f: 50-60	Velas, lacres,
	_, _,	•	impermeabilizantes
Cera	C ₃₀ - C ₅₀	p.f: 50-60	Plásticos,etc
microcristalina		'	·
Asfalto	Muchos		Pinturas,pavimentos.etc
Carbón de	Muchos		Metalurgia, electrodos
Petróleo			de carbono, etc.

Tabla. 2.5 Fracciones del Crudo

2.2.5 Propiedades Fisicoquímicas

Densidad

La densidad o gravedad específica del petróleo es la propiedad física más comúnmente medida. Es usada para clasificar el crudo en una gran variedad y muchas veces para determinar su precio de venta.

Densidad y gravedad específica son frecuentemente usadas como sinónimas, pero la densidad debe ser definida como masa por unidad de volumen, mientras que gravedad específica es la razón de pesos o masa de volúmenes iguales de la sustancia con respecto a una de referencia, generalmente agua. La densidad y gravedad específica son numéricamente iguales cuando la densidad es medida en gramos por centímetro cúbico y cuando la gravedad específica es expresada en términos del peso de un volumen de agua a 4°C.

La densidad se determina por lo común a la temperatura ambiente con densímetros especiales, corregidos a 60°F y expresados en grados API. Es una escala que se relaciona en proporción inversa a la densidad relativa o peso específico a 60°/60°F como sigue:

$$^{\circ}API = \frac{141.5}{S} - 131.5$$

Donde S: Es la Gravedad específica

Los valores *S* van desde poco menos de cero (aceite residual del petróleo) hasta cerca de 340 (metano). Se puede ver como entre mayor sea la densidad relativa del crudo, menor será su densidad y viceversa, por lo cual los crudos con mayor grados °API serán los más valiosos y por ende con los precios más altos.

Viscosidad

La resistencia que un fluido ofrece a una deformación continua cuando está sujeto a un esfuerzo cortante, se conoce con el nombre de viscosidad de un fluido. La unidad de viscosidad (viscosidad absoluta) en el sistema internacional es el pascal-segundo. La viscosidad cinemática de un fluido de densidad ρ y viscosidad ρ y viscosidad ρ o ρ es:

$$V = \frac{\mu}{\rho} o V = \frac{\eta}{\rho}$$

Una unidad de viscosidad cinemática, denominada store (St), es igual a 1 cm²/s. la viscosidad en stokes equivale a la viscosidad en poises entre la densidad del flujo en gramos por centímetro cúbico. La viscosidad se incrementa por la presión y disminuye con el incremento de la temperatura. Grandes cantidades de gas disuelto presentes en los líquidos puede producir un gran decremento en la viscosidad.

Color y Fluorescencia

El color de un crudo es de importancia ya que es un indicador de los productos que pueden ser obtenidos y de la refinación requerida. Existen lentes de colores arbitrarios que se utilizan como estándares en diferentes escalas. Algunos crudos muy ligeros son de color ámbar, crudos de mediana densidad son más verdosos o café y los más pesados tienden a ser obscuros o negros. El color natural de los asfaltos y de las resinas es rojo a rojo-café, pero estas sustancias son, por supuesto, opacas excepto en estratos muy delgados. Como resultado, los crudos altamente asfálticos van de café oscuro a negro.

La apariencia de los crudos por el reflejo de la luz se debe no solo al color sino a su fluorescencia. La distinción es que el color ordinario incluye de sólo la misma longitud de onda, mientras que la fluorescencia puede incluir longitudes de onda no contenidas en la luz incidente. La longitud de onda emitida durante la fluorescencia es siempre más larga que aquellas emitidas por la luz excitada. El color verdoso que muchos crudos presentan es debido a la fluorescencia. La fluorescencia es usada en las pruebas de cortes para indicar la saturación del crudo. Muchos crudos tienen fluorescencia en luz ultravioleta, los colores varían desde varios tonos de azul, blanco y amarillo, son diferentes para crudos de diferentes tipos. Esta propiedad ha hecho la fluorescencia muy útil para detectar pequeñas cantidades de crudo y para distinguir entre líquidos con hidrocarburos y agua.

Índice de Refracción

El índice de refracción de las fracciones de petróleo varía con el tipo de hidrocarburos presentes. En general, las parafinas tienen un índice de refracción menor (para el mismo peso molecular) que los naftenos y tienen uno menor al de los aromáticos. El índice de refracción se incrementa con el punto de ebullición de las fracciones del crudo y con el punto de fusión de los constituyentes sólidos. En fracciones con temperaturas elevadas el valor puede ser ligeramente menor debido a una desintegración durante la destilación. Bajo condiciones especiales el índice de refracción puede ser utilizado para estimar la proporción de diferentes hidrocarburos en una fracción de destilado.

Solubilidad

Dada la importancia de los gases disueltos en la recuperación de crudo, un número importante de mediciones de la solubilidad del crudo se han hecho en la investigación. El gas disuelto en el crudo tiene también un efecto pronunciado en la viscosidad, tensión superficial, capilaridad y otras propiedades físicas del crudo, ya que estas propiedades físicas gobiernan la migración y la acumulación del petróleo.

El volumen de gas disuelto en un petróleo dado se incrementa a una velocidad menos que proporcional a la presión pero decrece con un incremento en la temperatura. Todos los constituyentes del crudo son mutuamente solubles unos en otros, excepto en los asfaltos, que están presentes en el crudo en solución coloidal. Los óxidos de los metales pesados son fácilmente solubles en algunos petróleos y destilados cuando éstos contienen azufre.

La afirmación de que aceite y agua no se mezclan no es estrictamente verdadera. Una indicación de esto es el hecho de que el agua que ha estado en contacto con el crudo tiene un "sabor" a este. La solubilidad del agua en el crudo se incrementa con la gravedad API del crudo y con la temperatura.

Punto de Ebullición y Congelación

Dado que el petróleo esta constituido de un gran número de componentes no se espera que tenga un punto definitivo de ebullición y congelación. Los crudos asfálticos van siendo gradualmente más viscosos conforme la temperatura disminuye, sin una marcada discontinuidad en las propiedades que sugieren puntos de congelación.

En el caso de algunas ceras de base parafínica, la cristalización de las ceras parafínicas de la solución pueden hacer que los crudos se comporten como si tuvieran un punto de congelación. La cristalización de la cera en una cantidad del 1% del crudo puede causar congelación del líquido, ya que las ceras atrapan el líquido como una esponja.

Por el amplio intervalo en los puntos de ebullición de los muchos hidrocarburos de los cuales está compuesto el crudo, los componentes del crudo ebullen y se destilan en un intervalo de temperaturas menor a 200°F hasta las temperaturas de disociación de los componentes remanentes. Un conocimiento de los porcentajes de los crudos que destilan a diversas temperaturas es importante para clasificar al crudo y evaluar sus propiedades.

Temperaturas Críticas y Condensación Retrógrada

Es claro que las temperaturas y las presiones críticas de las mezclas de hidrocarburo son totalmente diferentes a aquellas de los diferentes hidrocarburos de los que está compuesto. Aún así, si una cantidad considerable de un hidrocarburo constituye el petróleo, nada sugiere que el fenómeno crítico se observe a la presión y temperatura crítica del hidrocarburo si la mezcla es diferente. La presión crítica del petróleo debe ser mucho mayor que las presiones críticas de las sustancias de las que está compuesto. De hecho, en vez de tener un punto crítico definitivo, la mezcla parece tener una zona crítica en donde aproximadamente el fenómeno crítico se observa.

La condensación retrógrada es característica en mezclas de gas natural y de los hidrocarburos del petróleo ligeros a altas presiones y temperaturas menores a la temperatura crítica. Si una mezcla de gas natural y condensado del mismo tipo y volumen relativo es comprimido a cierta temperatura, el volumen del destilado al principio se incrementa, ya que el gas natural se disuelve en este mientras la presión se incrementa. Sin embargo, después de que se ha alcanzado cierta presión el volumen del líquido empieza a decrecer ya que se está disolviendo en el gas, y a cierta presión todo el líquido se disuelve en el gas.

Existe por supuesto una temperatura a la cual el crudo no puede existir en estado líquido. Posiblemente el crudo se disocie a temperaturas menores a su temperatura crítica, y si este es el caso, hidrocarburos ligeros más estables serán encontrados mientras se alcanza la temperatura de disociación.

Peso Molecular

El intervalo de pesos moleculares de los hidrocarburos va de 16 hasta más de 800. En general, mientras más pesadas y complejas sean las moléculas, mayor será la temperatura a la cual se disociarán y descompondrán en dos o más moléculas. Las moléculas más pesadas ebullen a mayor temperatura. Debido a esto es imposible destilar las fracciones más pesadas del petróleo, ya que se desintegran o disocian antes de que alcancen la temperatura suficiente para vaporizarlas.

Si se alcanza una temperatura suficientemente alta, todos los hidrocarburos y también todas las sustancias orgánicas de las cuales se origina el crudo se disociarán, esto es, las moléculas más largas y complejas se convertirán en unas más pequeñas. En general, entre más larga y compleja sea una molécula, mayor será la temperatura a la cual se disocie. Las moléculas complejas se disocian primero en moléculas de hidrocarburos simples, pero si la temperatura es suficientemente alta, éstas también se disociarán, y eventualmente todas serán convertidas en hidrógeno y carbono.

Intervalo de Destilación

El intervalo de ebullición de un crudo nos indica los productos presentes. Esta propiedad se determina a través de métodos de prueba de laboratorio midiendo la temperatura a la cual los componentes del crudo se evaporan a una presión dada (generalmente presión atmosférica a menos que esté indicada otra base de presión).

Como parte del ensayo del crudo se elabora la curva del "verdadero punto de ebullición" (TBP) graficando o tabulando el porcentaje en volumen del líquido del crudo que se evapora con la temperatura a presión atmosférica. Los numerosos componentes hidrocarbonados que constituyen el crudo generalmente tienen productos de ebullición individuales que van de menos de 60°F hasta más de 1200°F.

Los ensayos de crudo son una complicación de resultados de numerosos análisis de laboratorio del crudo total o fracciones del crudo. Estas pruebas caracterizan un crudo y permiten que las refinerías evalúen la factibilidad de procesar un crudo dado en su refinería. Los ensayos de crudo varían extensamente en grado de detalle, pero presentan tanto las características de interés del crudo total, como de las fracciones del crudo.

2.2.6 Productos del crudo

En general los productos que se obtienen del crudo pueden ser clasificados de la siguiente forma:

Tipo de Producto	Ejemplos
Productos Volátiles(estos son los productos mas ligeros)	Propano LP (gas licuado)Butano LPNaftas ligeras
Destilados Ligeros	GasolinasNaftas PesadasKerosina
Destilados Intermedios	DieselCombustóleoGas Oil
Aceites Lubricantes	MotoresMáquinas
Ceras	Grado FarmacéuticoGrado Alimenticio
Residuos	AsfaltoCoque

Estos grupos de productos provenientes del proceso de destilación son tratados para cumplir con ciertas especificaciones. Estas especificaciones son el resultado de un compromiso entre las características deseables en el producto y la facilidad de obtenerlas mediante los procesos diseñados.

2.2.7 Especificaciones de los Productos

En la separación de materiales químicamente similares, es generalmente cierto que mientras mayor sea la diferencia en puntos de ebullición de las fracciones individuales, más fácil será la separación de estas. La agudeza de la separación depende del espaciamiento o sobreposición de los rangos de ebullición de las fracciones adyacentes. Para una separación dada, un gran número de platos resultará en un requerimiento de reflujo bajo. De la misma manera, una mayor especificación de reflujo requerirá un menor número de platos.

Las propiedades de cada fracción pueden ser variadas según sea requerido por las demandas de venta, pero solo a expensas de las fracciones adyacentes. Generalmente el diseñador de procesos debe estimar el balance de materia con base en las especificaciones de los productos deseados, la base para la mayoría de las especificaciones de los productos para una columna de crudo se derivan del método propuesto por el American Society for Testing Materials (ASTM). Este método reporta las temperaturas a las cuales ciertas proporciones del crudo son vaporizadas.

Un método para definir las especificaciones de los productos es fijando el punto máximo permisible para las fracciones (porcentaje de destilado vs temperatura de ebullición). El producto de destilado más pesado, llamado gasóleo atmosférico, se excluye de esta especificación, ya que se retira de la columna para proveer un fraccionamiento adecuado entre los otros destilados líquidos y el crudo reducido. Si las facilidades de procesamiento de crudo incluyen una columna de vacío, económicamente se favorece la máxima cantidad posible de todos los destilados en la columna atmosférica. De esta manera el tamaño de la columna de vacío puede ser minimizado.

2.3 Descripción de la Refinería "Miguel Hidalgo"

La Refinería "Miguel Hidalgo" fue inaugurada el 18 de marzo de 1976, se encuentra localizada en el municipio de Tula Allende en el Estado de Hidalgo a solo 82 Km, al norte de la Ciudad de México, ocupando un área total de 707.7 hectáreas. Su influencia económica incluye 12 municipios del Estado de Hidalgo y 8 del Estado de México.

Tiene una capacidad nominal de proceso de 315 000 BPD de petróleo crudo tipo Istmo y tipo Maya. Su función es obtener productos comerciales de gran demanda como son: gas licuado, propileno, butano- butileno, isobutano, isopentano, gasolvente, gas nafta, hexano, gasolinas Premium, Magna sin, diáfano, diesel sin, combustóleo y azufre.

Su excelente ubicación geográfica la sitúa en una zona estratégica, debido a que se encuentra en un punto intermedio entre los principales productores de aceite crudo y la Ciudad de México, principal consumidor de combustibles del país, lo que permite la distribución eficiente de sus productos.

El proceso de la refinación, para apoyar el desarrollo económico del país, con base en el fortalecimiento del mercado interno, del reforzamiento de la capacidad de competencia es importante para el desarrollo de la infraestructura productiva. Las iniciativas estratégicas plasmadas por PEMEX Refinación para alcanzar sus objetivos son: desempeño y optimización operativos; adecuación de la oferta y calidad de combustibles; integración de la cadena de suministro y distribución; modernización de la función comercial; incremento de la productividad laboral; seguridad industrial, protección ambiental y salud ocupacional; planeación de inversiones; adecuación de la infraestructura administrativa y sistemas de gestión. Para realizar la refinación del petróleo cuenta con seis refinerías con capacidad de procesamiento primario de 1.54 millones de barriles diarios; opera una red de oleoductos y de ductos de 14.2 mil kilómetros (5.3 de oleoductos y 8.9 de la red de productos) que conecta a las refinerías con 77 centros de ventas.

En las seis refinerías se cuenta con una capacidad conjunta de almacenamiento de petróleo crudo y productos terminados de 13.9 millones de barriles. Este organismo subsidiario opera 19 buques de flota mayor, 92 embarcaciones menores y un dique seco; para transporte terrestre de petrolíferos cuenta con 1,255 autotanques y 525 carrotanques propios, además de 2,685 autotanques arrendados, y de las 5,555 estaciones de servicio con Franquicia PEMEX, 55 son propiedad de Petróleos Mexicanos.

Entre sus instalaciones la Refinería de Tula cuenta actualmente con una capacidad de proceso instalada que le permite la refinación de 35,000bpd y el área productiva está integrada por 11 sectores que incluyen: Plantas de Proceso, Plantas Ecológicas, Sistemas de Bombeo y Almacenamiento de productos y un sector de Servicios Auxiliares.

El crudo que se procesa en la Refinería es una mezcla de crudo Istmo (72%) y crudo Maya (28%) proveniente del sur y sureste mexicano incluyendo la Sonda de Campeche. El crudo de suministro es bombeado desde Nuevo Teapa (Veracruz) hasta la Venta de Carpio (Estado de México) de donde es rebombeado a la Refinería. Existiendo una ruta alterna de suministro de crudo que va desde Nuevo Teapa pasando por Poza Rica hasta la Refinería.

Por otra parte, es a través del poliducto Minatitlán-Tula-Guadalajara que la Refinería recibe 50,000 bpd de gas LP para su distribución en la zona de influencia y para su consumo interno.

El petróleo crudo se alimenta a dos Plantas Primarias en donde es fraccionado mediante destilación a presión atmosférica y al alto vacío, en estos procesos se obtienen productos destilados amargos tales como: gasolina, turbosina, kerosina, gasóleo ligero primario, gasóleo pesado primario, gasóleos ligero y pesado de vacío, los residuos primario y de vacío respectivamente.

El residuo de vacío es enviado al complejo HDR donde es sometido a una serie de procesos mediante los cuales se transforma en hidrocarburos más ligeros (diesel, gasolina, gasóleos, gas LP, kerosina entre otros) y en combustóleo con bajo contenido en azufre, disminuyendo así los residuales de la Refinería.

Por otra parte, la gasolina obtenida en el proceso de destilación primaria contiene una cantidad considerable de hidrocarburos ligeros, éstos son separados y recuperados en dos Plantas Estabilizadoras de Gasolina, evitando pérdidas por evaporación de hidrocarburos y contribuyendo a mantener el entorno ecológico. Los productos obtenidos en estas plantas son: gasolina estabilizada, gas licuado y gas combustible.

El siguiente proceso a las gasolinas se hace en las Plantas Hidrodesulfuradoras de Gasolina, éste consiste en la eliminación de contaminantes tales como el azufre, oxígeno, nitrógeno y metales mediante una hidrogenación catalítica.

Adicionalmente se cuenta con las Plantas Hidrodesulfuradoras de Destilados Intermedios en donde se procesa turbosina, kerosina, gasóleo ligero primario, aceite cíclico ligero; se obtienen los productos desulfurados, turbosina, diesel y gas amargo.

La gasolina Hidrodesulfuradora se procesa en dos Plantas Reformadoras de Naftas, que tienen una capacidad de 35,000 bpd y 30,000 bpd respectivamente. El objetivo de este proceso es incrementar el número de octano de 54 a 96 en la gasolina la cual por ser el componente de mayor aporte volumétrico es base para la formulación de gasolina PEMEX Magna y PEMEX Premium. En estas Plantas se obtiene también el hidrógeno necesario para los procesos de hidrodesulfuración de gasolina y de destilados intermedios obteniendo, además, gas combustible y gas licuado. Adicionalmente en ambas plantas se han instalado las Unidades de Regeneración Continua de Catalizador (CCR), que permiten corridas de 2 años de operación continua, de reformación de gasolinas.

En lo que se refiere a la mezcla de los gasóleos pesado primario, ligero de vacío y pesado de vacío, (obtenidos en los procesos de destilación atmosférica y al alto vacío) es enviada como carga a las Plantas de Desintegración Catalítica de lecho fluidizado. Los productos que aquí se obtienen son: gasolina catalítica con un octano de 92 RON de un MON 78 (base para PEMEX Magna), propano, propileno (enviado a la planta petroquímica de acrilonitrilo), butano-butileno, gas ácido, aceite cíclico ligero y aceite decantado.

Después, el butano butileno obtenido en las Plantas Catalíticas es enviado como carga a la Planta de Metil Terbutil Éter (MTBE) y los pentanos obtenidos de la gasolina catalítica se envía a la Planta de Terametil Metil Éter (TAME) obteniéndose de estas, productos que al integrarse a las gasolinas funcionan como promotores de combustión contribuyendo a la reducción de las emisiones contaminantes a la atmósfera, generados por combustión incompleta del combustible en los motores.

En promedio, los porcentajes de productos obtenidos de 1 metro cúbico de petróleo son:

Productos	Porcentajes (%)
Gasolina	39
Diesel	31
GLP	8
Aceite combustible	5
Lubricantes, gases y otros	17

2.3.1 Plantas de Proceso

Para la elaboración de los productos, la Refinería cuenta actualmente con las siguientes plantas de proceso, las cuales se muestran en la figura 2.3 a manera de un esquema.

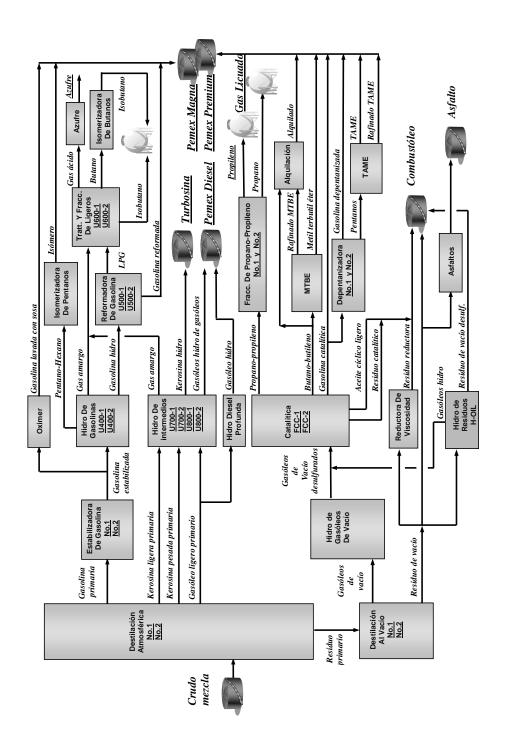
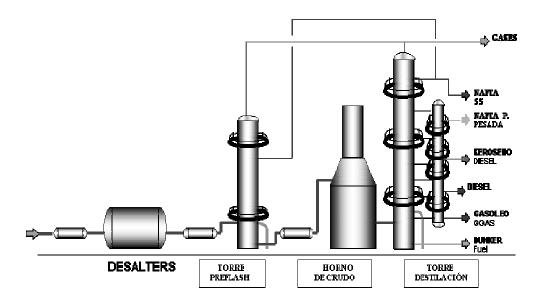



Figura 2.3. Esquema de la Distribución de las Plantas de proceso de la Refinería "Miguel Hidalgo".

CAPÍTULO 3

PROCESOS DE DESTILACIÓN DEL CRUDO DE LA PLANTA COMBINADA No.1

Unidad de Destilación Atmosférica Esquema del proceso

3.1 Procesos de Destilación del Crudo

El primer paso y el de mayor importancia en la refinación del crudo es la destilación de este. Se utiliza para separar el crudo en fracciones de acuerdo a su punto de ebullición, de manera que cada una de las siguientes unidades de proceso tendrá alimentaciones que cumplan con sus especificaciones en particular. Se obtienen mayores eficiencias y costos más bajos si la separación del crudo se hace en dos pasos: primero, fraccionando el crudo a una presión esencialmente atmosférica, y después alimentando el crudo residual de la destilación atmosférica a un segundo fraccionador denominada torre de vacío. Esta se emplea para separar la porción más pesada del crudo en fracciones, debido a que las altas temperaturas necesarias para vaporizar el crudo residual a presión atmosférica (temperaturas por encima de 660°F ocasionarían cracking térmico, con la resultante perdida a gas seco, decoloración del producto e incrustaciones en el equipo debido a la formación de coque. Al reducir la presión a la cual se destila, la separación de los hidrocarburos con puntos de ebullición de hasta 1050 °F a presión atmosférica, puede realizarse a temperaturas de destilación lo suficientemente bajas de manera que ocurra un mínimo de cracking.

3.2 Descripción General de Procesos de Destilación Atmosférica

Lo primero que requiere el crudo es un tratamiento de desalado para minimizar el incrustamiento y corrosión causados por deposición de sal en las superficies de transferencia de calor y la formación de ácidos por descomposición de sales de cloruro. Además, algunos metales pueden causar la desactivación del catalizador en las unidades de procesamiento catalítico.

Después del desalado, el crudo se bombea a través de una serie de intercambiadores y su temperatura se eleva hasta aproximadamente 550°F intercambiando calor con corrientes de producto y reflujo de la destilación atmosférica. En la mayoría de los casos, esta corriente de crudo se comprime y se vaporiza para ser despuntada antes de fraccionarse.

En la etapa de despunte las fracciones de menor punto de ebullición (pentanos y menores) que se vaporizaron con el calor suministrado en los intercambiadores de precalentamiento se separan en un tanque flash. Posteriormente, se bombea el crudo despuntado a través de un horno a fuego directo donde se calienta hasta aproximadamente 750°F y de ahí se carga a la zona flash de la fraccionadora atmosférica. Generalmente de esta torre se obtiene: nafta ligera por el domo, nafta pesada, kerosina, gasóleo ligero, gasóleo pesado y el residuo atmosférico por el fondo.

3.2.1 Precalentamiento

La corriente de crudo se divide en dos trenes de precalentamiento idénticos con dos bombas de carga. El precalentamiento del crudo se lleva a cabo aprovechando el calor de los diversos efluentes en la torre atmosférica, así como los reflujos externos de la misma. El funcionamiento de éstos intercambiadores es también importante ya que ayudan a la conservación de la energía y combustible, aseguran perfiles de temperatura apropiados en las unidades de destilación y alcanzan especificaciones de almacenamiento para las corrientes de los productos, etc.

3.2.2 Desalado

Su principal objetivo consiste en remover las sales como cloruros de sodio, calcio y magnesio, sulfatos y carbonatos, minimizando su contenido.

Todo tipo de crudo dispone de propiedades específicas que dependen de los yacimientos donde sean obtenidos. La mezcla de varios crudos en proporciones diferentes trae consigo fluctuaciones en el contenido de impurezas que afectan el funcionamiento operacional.

Sólidos: Corresponden a partículas que no son solubles en el agua o en aceite, pero que son factibles a humedectar en la fase acuosa pudiendo removerlos en proceso de lavado de petróleo.

Sedimento y sólidos suspendidos: Causan inestabilidad de operación en las interfaces de las desaladoras, espúmeo en la torre atmosférica y corrosión en los equipos y tuberías. Los sedimentos se eliminan en un 90% y los sólidos entre el 10 y 40% en las desaladoras.

Cloruros y sulfatos de magnesio, calcio y sodio: Son los contaminantes más importantes del crudo, ya que se hidrolizan con la temperatura formando ácido clorhídrico y ácido sulfhídrico originando altos índices de corrosión. Lo anterior obliga a un consumo excesivo de reactivos si no se garantiza una remoción eficiente de estas impurezas.

El desalado es un proceso de tipo electrostático en dos etapas, mismo que consiste en establecer un campo eléctrico a través de la emulsión con el fin de desestabilizar la película de interfase, consiguiéndose también provocar coalescencia de las gotas de agua al generar un dipolo inducido en las mismas, aprovechando el dipolo natural de la molécula de agua; dependiendo del contenido de sales en el crudo, se puede realizar en dos formas: desalado utilizando el flujo de agua en serie con 8% en volumen de agua de dilución con respecto al crudo o desalado con alimentación de agua en paralelo a cada etapa del desalado con 10% de agua (5% en cada etapa).

En la operación en serie, que corresponde a la operación normal, el crudo caliente con aqua proveniente de la segunda etapa de desalado y se alimenta a las desaladoras de cada tren, donde se realiza aproximadamente el 95% de la remoción de sus sales; el crudo efluente se mezcla con agua fresca y pasa a las desaladoras para complementar el desalado. En la operación en paralelo el crudo se pone en contacto con agua fresca, alimentada en ambas etapas de desalado.

La presión de operación para la primera etapa es mayor a la presión de operación de la segunda etapa, por lo que se hace necesario disponer de las bombas de agua de desalado tanto para la operación en serie como para la operación en paralelo. Estos últimos equipos usan las corrientes de agua salada, extraídas a control de nivel de las desaladoras, como medio de calentamiento. Finalmente estas últimas corrientes se enfrían en los enfriadores de agua salada para enviarse a límites de batería.

El desalado se lleva a cabo con la emulsificación del crudo con agua a temperaturas cercanas a 250°F y una presión suficiente para prevenir la vaporización tanto del agua como de los hidrocarburos. Las sales se disuelven en el agua y posteriormente se rompe la emulsión entre el agua y el crudo mediante la adición de químicos o por un campo eléctrico que se aplica al tanque para realizar la coalescencia, el potencial eléctrico que se aplica se encuentra entre los 16000 y 35000 volts.

Las sales que contienen el crudo se reducen normalmente al 10% o menos en un solo paso. Se pueden adicionar un mayor número de etapas para reducir el contenido de sales por si el desalado realizado en una sola etapa resulta inadecuado. La temperatura recomendada para el desalado varía entre 230°F y 275°F, esta temperatura determina su localización a lo largo del tren de precalentamiento.

3.2.3 Despunte

La operación de las torres de despunte es similar a la que se tiene en un tanque separador gas-liquido, contando con una sección de platos para poder realizar el corte deseado. El efluente de las desaladoras (crudo desalado), recibe una inyección de sosa como agente neutralizante y se alimenta a los intercambiadores con el objeto de alcanzar las condiciones de despunte, aprovechando para ello el calor cedido por las corrientes de residuo atmosférico antes de enviarse a límites de batería.

La alimentación del crudo, a las torres despuntadotas se hace a control de nivel de las mismas por debajo del último plato. La reducción de presión de las corrientes de crudo en las válvulas de los controladores de nivel, ocasiona una vaporización parcial. En estas torres, constituidas por 6 platos tipo válvula, se separa la fracción vaporizada y se rectifica usando como reflujo una corriente de nafta atmosférica que se admite a control de flujo en cascada con el control de temperatura de los gases efluentes del domo.

Debido a la presencia de agentes corrosivos (H₂S y HCl en presencia de agua), se inyectan inhibidores de corrosión, fílmico neutralizante, así como amoniaco en estado gaseoso a la línea de domos de las torres despuntadoras. Además, con el propósito de disolver los depósitos de sales en los condensadores de las despuntadoras se inyecta agua de proceso intermitentemente a la entrada de estos.

Los vapores provenientes de las despuntadoras son parcialmente condensados. La mezcla efluente de cada uno de estos se envía al respectivo tanque acumulador de la torre acumuladora para la separación de las fases liquida y vapor. El destilado de vapor de las torres despuntadoras contiene una pequeña fracción de componentes recuperables, por lo que pasa al tanque de succión del compresor, donde las partículas liquidas arrastradas se separan y se envían al desfogue, dejando de esta forma exclusivamente el vapor que se comprime con el compresor de incondensables y condensa en el compresor, para posteriormente separar las fases resultantes.

La fase líquida se bombea para unirse a la corriente de nafta despuntada, enviándose la mezcla a fraccionamiento. El gas efluente de este último tanque se envía a control a presión al cabezal de gas combustible. El agua separada en los acumuladores de las torres despuntadoras fluye hacia el tanque colector de agua amarga.

El crudo despuntado que se obtiene por el fondo se envía por medio de las bombas de crudo despuntado a los calentadores de crudo, donde se calienta hasta obtener la vaporización requerida para ser alimentado a la torre atmosférica. Los calentadores a fuego directo son usados en la refinería para agregar la energía requerida por una corriente de crudo que se necesita vaporizar o para elevar su temperatura para así alcanzar los requerimientos de una reacción química.

El calentador de fuego directo implica un costo significativo ya que usa aceite combustible o gas combustible en su operación. La operación propia y más efectiva de este equipo es importante, de manera que se minimicen los costos de operación. La línea de crudo conecta la salida del calentador a fuego directo a la torre de destilación. Esta línea entra a la columna en la zona flash y fluye libremente del calentador a la columna.

La sección de convención de los calentadores se aprovecha para sobrecalentar vapor de baja presión, que se envía a control de flujo como vapor de agotamiento a la torre atmosférica y eventualmente a las torres agotadoras.

3.2.4 Alimentación a la Torre Atmosférica

La temperatura de alimentación a la torre debe ser lo suficientemente alta para causar vaporización de todos los productos que se extraen por encima de la zona de flash, más aproximadamente un 20% del producto del fondo. Este 20% de "sobreflash" permite que ocurra algo de fraccionamiento en los platos que están justo por encima de la zona flash dando un reflujo interno en exceso de las extracciones de corrientes laterales. Para llegar a la temperatura mencionada se requiere de una gran carga térmica, por lo que el crudo desalado se precalienta en una red de intercambio de calor, aprovechando las altas temperaturas de las corrientes de los productos de la torre, para después incrementar su temperatura hasta el punto de alimentación a la torre atmosférica en un horno de calentamiento a fuego directo.

Usualmente no es posible utilizar un reboiler en una Torre Atmosférica. El total del calor requerido por el proceso debe entonces estar contenido en la corriente de alimentación al dejar el horno de precalentamiento aunque también se obtiene calor del vapor de los agotadores.

3.2.5 Destilación Atmosférica

La torre de fraccionamiento está constituida por innumerables platos perfectamente colocados horizontalmente en toda su extensión. La torre atmosférica normalmente contiene de 30 a 50 platos, de 5 a 8 etapas son necesarios para cada salida lateral más el mismo número de platos arriba y abajo del plato de alimentación. Para una torre que contenga 4 salidas laterales se requerirá de 30 a 42 platos, los cuales a medida que se distancian de la parte inferior de la torre, van disminuyendo su temperatura de ebullición. Además la torre cuenta con zonas de rectificación y de agotamiento.

Las presiones de operación se estiman asumiendo una presión de 0.5 a 1.0 psig en el acumulador final, es decir, el tanque separador que sigue al condensador que acompaña a la Torre Atmosférica. Para cada caída de presión a través de condensadores, se utiliza 2.5 psig por coraza lo cual también incluirá la tubería. Se utilizan 5 psig a lo largo de la Torre y 0.5 psig de caída de presión entre la salida del horno y la entrada a la zona flash de la Torre. La zona de rectificación está formada por varias secciones, de las que se extraen los siguientes productos: gas y nafta que se obtienen como productos de domos, turbosina, kerosina, diesel y gasóleo pesado que se obtienen como productos laterales, contando los tres primeros, con columnas de agotamiento de vapor de agua o con rehervidor, para obtener las especificaciones requeridas.

Por otro lado, la torre cuenta con dos recirculaciones líquidas para la extracción de calor, que permiten reducir el perfil del flujo de vapor en la torre y aprovechar el calor para el precalentamiento de la carga; existe una recirculación parcial al

fondo de la torre con el propósito de mantener una temperatura límite en el residuo, la condensación de vapores de domos puede efectuarse en una sola etapa con agua de enfriamiento o en dos etapas, aprovechándose en este caso un intercambio de calor con la carga en el primer condensador.

El condensador superior de la torre condensará pentanos y fracciones más pesadas del vapor que salen por los domos de la torre, una porción de esta gasolina ligera del vapor que salen por los domos de la torre, una porción de esta contiene propanos, butanos y compuestos de más alto punto de ebullición es regresada a la torre principal, el resto retorna a la sección de estabilización donde los propanos y butanos son separados de los pentanos.

En la zona de agotamiento, el residuo se agota con vapor de agua y se envía a enfriamiento en los rehervidores de los agotadores laterales y en el tren de precalentamiento. La turbosina, kerosina y el gasóleo pesado, después del intercambio en el tren, se enfrían con agua o aire. Dado que cada hidrocarburo tiene su punto de ebullición, es prácticamente imposible separar uno por uno, sin embargo, podemos agruparlos en fracciones con intervalos y las características similares. Del proceso antes mencionado se obtiene en forma gaseosa: metano, etano, propano, butano, pentanos y parte de los hexanos u otros compuestos de tipo aromático o nafténico, pero de peso molecular similar.

Por extracciones laterales de la columna de fraccionamiento, se extraen hidrocarburos de mayor peso molecular tales como naftas pesadas (con temperatura de ebullición a presión atmosférica debajo de 392°F y densidad API de 40° o más ligeras), kerosenos (con temperatura de ebullición entre los 392-527°F y densidades API de 40 o más ligeras) que por su peso molecular y presión de vapor servirán para la obtención de combustibles para la aviación, y gasóleos (densidades API mayores de 40°). Por el fondo de la torre se obtiene aquella parte que no ha sido posible vaporizar hasta la temperatura de 680°F.

Aunque las torres atmosféricas normalmente no incluyen reboilers, se incorporan generalmente varios platos por debajo de la zona flash y se introduce vapor por debajo del último plato para agotar cualquier gasóleo remanente del líquido en la zona flash y para producir un fondo con un alto punto de flash. El vapor reduce la presión parcial de los hidrocarburos y por consiguiente disminuye la temperatura de vaporización requerida.

Esta parte más viscosa y de mayor peso molecular que no se ha destilado, es lo que se llama en el argot refinero, residuo atmosférico y es la materia prima para la obtención de los fuel-oil, aceites lubricantes, parafinas y asfaltos, que una vez que se obtengan será necesario purificarlos quitándoles principalmente los compuestos contaminantes que alteran sus propiedades. Esto último se consigue mediante tratamiento con productos químicos (sosa, etc.), o tratamiento con hidrógeno formado H₂S, que en forma gaseosa se separa del hidrocarburo. Estos procesos se designan con el nombre de desulfuración.

Las naftas por ejemplo, para convertirlas en gasolinas es necesario tratarlas mediante procedimientos de reformación catalíticas que mejoran su índice de octano. Los distintos procesos y tratamientos permiten adecuar los productos que se obtienen en una refinería a la exigencia y demanda del mercado de combustibles. Existen varios tipos de columnas de destilación atmosférica como se mencionan a continuación las siguientes:

Tipo U (Figura 3.1): Es un tipo de columna que sólo remueve el calor en el domo y el nivel de temperatura es tan bajo que la recuperación del calor no se lleva a cabo. El tráfico de vapor y el líquido aumenta demasiado desde el fondo hasta el domo, lo cual aumenta el diámetro de la torre notablemente.

- Tipo A (Figura 3.2): Se añaden bombas de calor y cuenta con una salida de líquido un plato arriba de la última salida de producto y se regresa a una sección de la torre más arriba, pero debajo de la primera salida. Estabiliza tanto el flujo de vapor como el del líquido además de reducir el tráfico de vapor y líquido a lo largo de la columna. La desventaja de este tipo de torre es que de los tres platos que se utilizan para la transferencia de calor sólo uno se utiliza para la transferencia de masa. Esto se debe a que desde el punto de vista de equilibrio la bomba de calor no se empieza la zona de equilibrio.
- Tipo R (Figura 3.3): Este sistema tiene una sección de rectificación. Este tipo de torres tiene la ventaja que todos los líquidos en la torre se encuentran en equilibrio con los reflujos líquidos, todos los platos son igualmente eficientes para la transferencia de masa. Un tráfico uniforme de líquido y vapor ocurre a lo largo de la torre.
- 1. Un incremento en la temperatura de la zona flash incrementará la temperatura de los platos debajo de ésta.
- 2. Un incremento en el overflash disminuirá la temperatura de la segunda salida y todas las que se encuentren arriba de ésta.
- Un incremento en el flujo de vapor de agotamiento disminuirá la temperatura de las salidas debido a que se reducirá la presión parcial de los hidrocarburos.
- 4. El uso de vapor de agotamiento en todos los agotadores disminuirá todas las temperaturas de salida del segundo agotador y todas las que se encuentren arriba de ésta.

Al aumentar la pureza en un producto el número de platos aumenta mientras que el reflujo varía muy poco. El número de platos y el reflujo aumentan conforme la volatilidad decrece. Se debe operar el tanque de separación de reflujo a la presión más alta posible, para condensar todos los vapores, la presión máxima está determinada por la temperatura de entrada a la zona flash o la temperatura de salida del horno.

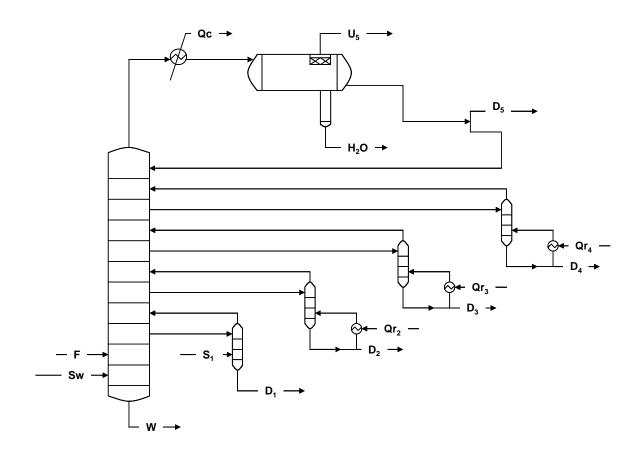


Figura 3.1 Columna Tipo U

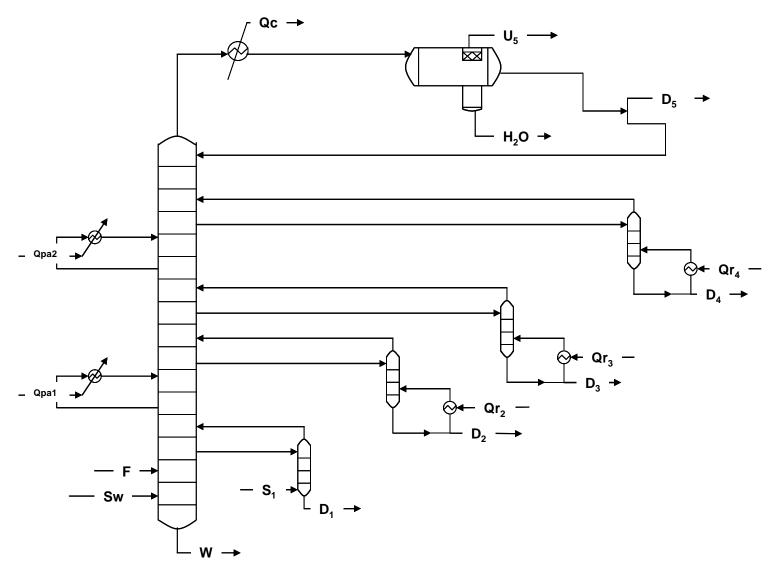


Figura 3.2 Columna Tipo A

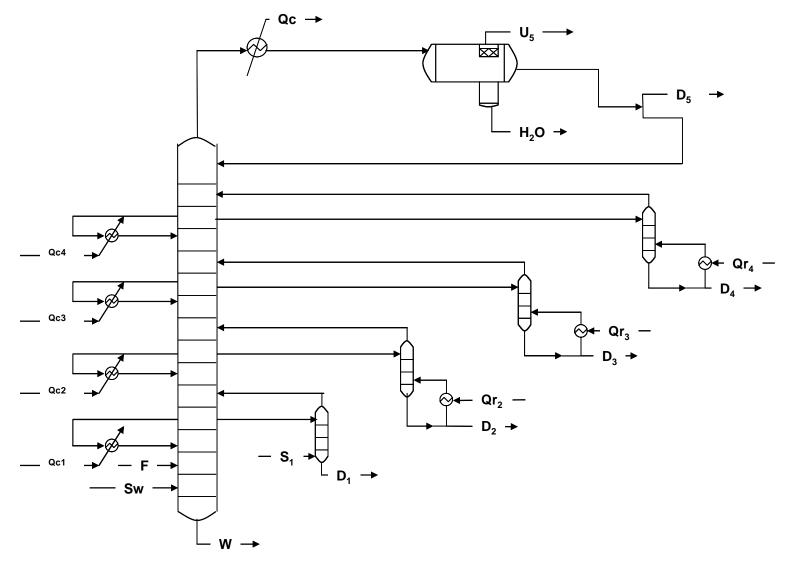


Figura 3.3 Columna Tipo R

A continuación se presenta una versión simplificada de una columna de crudo en la Figura 3.4 donde se muestran el número de platos que han sido observados en instalaciones existentes, adjuntan algunas recomendaciones del número de platos a utilizar cuando se hacen cálculos preliminares.

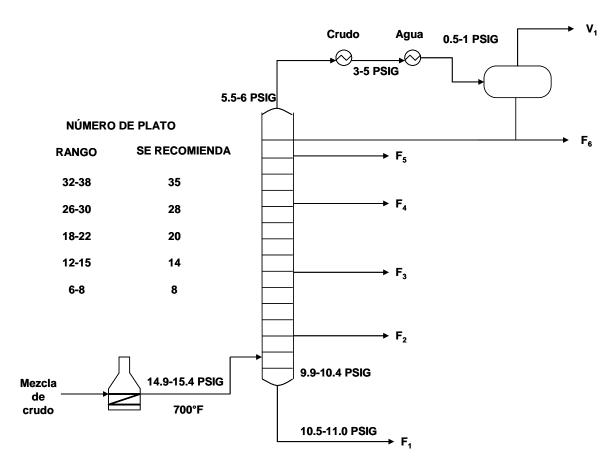


Figura 3.4 Destilación Atmosférica

3.2.6 Alimentación a la Torre de Vacío

También se mejora la vaporización adicionando vapor de agua a la entrada del horno precalentador. De esta manera se incrementa la velocidad del tubo en el horno y se minimiza la formación de coque en el horno, y también se disminuye la presión parcial total de los hidrocarburos en la torre de vacío. La cantidad de vapor de agua utilizada es una función del rango de ebullición de la alimentación y de la fracción vaporizada, pero generalmente va de 10 a 50 lb/bbl de alimentación.

Las temperaturas de salida del horno también son función del rango de ebullición de la alimentación y de la fracción vaporizada así como de las características del coque de alimentación. Estas temperaturas van de 730 a 850 °F.

3.2.7 Destilación al Vacío

La temperatura de salida del horno sería tan alta que ocurriría la descomposición térmica para que las fracciones pesadas del crudo se separen en la torre de destilación atmosférica, esto trae como consecuencia la pérdida de productos. Estos productos se tienen que destilar al vacío por que la temperatura de ebullición decrece con presiones bajas. La temperatura de ebullición se reduce por algunas de las siguientes razones:

- a) La volatilidad relativa entre los componentes generalmente aumenta conforme la temperatura de ebullición disminuye. Esta alta volatilidad promueve que la separación sea más fácil, lo cual disminuye el número de etapas teóricas necesarias para la separación. Si el número de platos permanece constante se puede reducir el reflujo, si el número de etapas y el reflujo permanecen constantes la pureza aumenta.
- b) Son deseables bajas temperaturas de destilación cuando se manejan productos con alta sensibilidad térmica. Mientras menores temperaturas se tengan en el fondo se retardarán reacciones indeseables como: descomposición de productos, polimerización, decoloración.

- c) Las separaciones difíciles de componentes con bajas presiones de vapor o componentes que se degradan a temperaturas cercanas a su temperatura de ebullición.
- d) Temperaturas menores en la torre también permiten el uso de fuentes de energía menores: vapor de baja.

La destilación a vacío se lleva a cabo con presiones en la zona flash entre 25-40 mmHg absolutos. Para mejorar la vaporización, la presión efectiva debe ser más baja (menor a 10 mmHg) por la adición de vapor en el horno como en el fondo de la torre de vacío.

La temperatura de salida del horno es función del intervalo de temperatura de ebullición de la alimentación y de la fracción vaporizada, así como de las características del crudo en la alimentación. El intervalo de temperatura se encuentra entre 730-850°F.

La presión efectiva (la presión total – presión parcial del vapor) en la zona flash determina la fracción de vaporización de la alimentación para una temperatura de salida del horno dada, entonces el diseño de la torre debe ser tal que minimice la caída de presión entre el vacío inducido y la zona flash. Unos cuantos milímetros de caída de presión ahorra mucho dinero.

Las bajas presiones aumentan significativamente el volumen de vapor por barril vaporizado, como resultado la torre de vacío tiene un diámetro mayor que la atmosférica, torres con diámetros mayores de 40 ft. La presión de vacío deseada se mantiene con el uso de eyectores.

El vacío es producido por los eyectores de vapor que succionan el vapor del domo de la torre, esto hace que se remuevan los inertes y otros vapores que puedan existir, logrando vacío cerca de 5 mmHg absolutos.

Torres modernas de destilación al vacío pueden operar entre 3 y 5 mmHg en el domo de la torre y 25 a 30 mmHg en la zona flash. Este tipo de torres no usa vapor para agotamiento.

Como ya se estableció anteriormente se desea tener mayor vacío posible con la menor caída de presión a lo largo de la torre, para evitar la descomposición del crudo.

Antes de 1960 la mayor parte de las columnas de vacío se diseñaban con platos con la idea de proporcionar la menor caída de presión posible. A principios de 1960 Glitch desarrolla un empaque el cual proporcionaba una caída de presión muy pequeña y una alta eficiencia, con el diseño de empaques la temperatura de la zona flash disminuyó debido a que ahora es posible utilizar vapor de agotamiento en el fondo de la torre, el problema es que el uso de éste aumenta considerablemente la carga de vapor en la torre bajo condiciones de vacío, esto tiene como consecuencia un aumento de caída de presión.

Con los nuevos empagues y alta eficiencia en los eyectores se puede eliminar el uso de vapor. Actualmente las torres son "secas" con condiciones de presión bajísimas: 3 mmHg en el domo y 28 mmHg en la zona flash. La temperatura del fondo de la columna de vacío es prácticamente la misma de la sección flash.

Podrá existir una diferencia de 2 a 3° debido a la corriente overflash que regresa de las secciones de lavado, es muy común que esta última corriente (overflash) se extraiga debajo de la sección de lavado y se mande a un mezclado con el residuo de la torre, en este caso el residuo sin apagar tendrá la temperatura de flash.

En el pasado se utilizaba vapor de agotamiento para disminuir la presión parcial de los componentes de alimentación. Este tipo de destilación presenta los siguientes inconvenientes:

- a) Es muy costoso debido a que se requieren muchas moles de vapor por mol de alimentación vaporizada.
- b) Su presencia promueve corrosión en la torre.
- c) El vapor condensado tiene que pasar por un tratamiento con agua antes de desecharse al medio o reutilizarse.

El flujo de vapor y de líquido es menor para una torre de vacío que para una atmosférica. La caída de presión es mayor en torres con platos debido a que el vapor tiene que pasar por un orificio además de burbujear en el líquido que se encuentra en el plato, en una torre empacada sólo se debe vencer la resistencia generada por los empaques. En una columna empacada la caída de presión disminuye en un 80%, la reducción de presión trae consigo una menor temperatura en el fondo. Con menor caída de presión se aumenta la presión en el domo esto permite el uso de un condensador enfriado por aire en lugar de uno enfriado por aqua, además de que se reducen los costos del sistema de vacío.

El número y tamaño de los eyectores está determinado por el vacío necesario y la cantidad de vapor a manejar. Para una presión de 25 mmHg en la zona flash, 3 etapas de eyectores son utilizadas. En la primera etapa se condensa el vapor y se comprimen los gases incondensables, mientras que en la segunda y tercera se remueven los gases incondensables de los condensadores. El vacío producido se encuentra limitado a la presión de vapor del agua utilizada en los condensadores. Si se alimenta agua fría a los condensadores se puede tener una presión absoluta más baja en la torre de vacío. El residuo atmosférico puede ser destilado para producir aceites lubricantes o utilizarse como alimentación a otras unidades. El proceso de destilación al vacío es muy similar al atmosférico.

La alimentación intercambia calor con los productos calientes y las corrientes de las bombas de calor antes de vaporizarse en el horno. Después de que los vapores destilados son condensados en la torre de destilación al vacío por transferencia tanto de calor como de masa, con las corrientes de reflujo que van bajando de la torre, los productos son obtenidos de la sección adecuada y bombeados a almacenamiento. Cuando ni el residuo de la torre ni las corrientes de productos de la columna son corrientes agotadas se llama destilación seca de vacío. El crudo por supuesto puede descomponerse si el punto de corte es muy alto o la temperatura de flash es demasiado alta.

Como ya se mencionó con anterioridad algunos de los productos van a otras unidades por ejemplo: los gasóleos van a la unidad de FCC: éstos deben estar limpios y con una buena separación entre los destilados y el residuo. Además deben tener la mínima cantidad de Carbón Conradson para evitar la depositación de coque, vanadio y níquel, porque son venenos para el catalizador utilizado en esta unidad.

Para aquellos productos que se encuentran como materia prima en las unidades hidrotratadoras es importante que se encuentren lo más limpias posibles de carbón y asfáltenos, si no lo están el catalizador se envenenarán y la regeneración tendrá que ser más frecuente. Las torres de vacío se diseñan bajo varios criterios: maximizar la producción de gasóleo, la asfalteno (pinch). Las torres de vacío que se diseñan bajo criterio pinch deben cumplir con las siguientes características: menor presión de operación y la más alta temperatura posible en la zona flash.

Las torres de vacío de este tipo tienen bombas de regreso (pumpback) donde el líquido se enfría y es regresado a la torre principal para promover la separación entre los dos destilados ligeros de vacío, la ventaja de usar este sistema radica en que todas la etapas son etapas de separación, todos los líquidos promueven el equilibrio mientras que una bomba de calor no ocurre esto.

Por eso es que una torre que tiene una bomba de calor tiene más platos que una torre que presenta pumpback. En las torres diseñadas para la producción de combustibles no se requiere que los productos cumplan con cierto grado de fraccionamiento entre los cortes. En este sistema si sólo se utiliza el reflujo de la bomba de calor, el líquido en la torre se puede agotar, por lo que se debe utilizar una corriente de lavado, los valores mínimos de esta corriente son 0.2 GAL/min*ft².

Consideraciones económicas en el diseño de Torres de Vacío:

- a) Una baja presión parcial de los hidrocarburos en la zona flash, aumentan la vaporización y así la producción de destilado.
- b) Al disminuir la presión total del sistema disminuye la cantidad de vapor requerido para llevar a cabo la vaporización. Si la presión del sistema es lo más baja posible, se puede diseñar y operar torres de vacío en las cuales no se requiera ninguna alimentación de vapor de agua para disminuir la presión de los hidrocarburos, a este tipo de columnas se les conoce como "tipo secas". Si se llega a utilizar vapor se inyecta en dos puntos: parte se inyecta a la alimentación cuando todavía se encuentra en el horno, antes del punto donde comienza a vaporizar, la otra parte se inyecta a la sección flash.
- c) El aumento de presión en el sistema aumenta la cantidad de vapor y también el área trasversal de la torre.
- d) La disminución de la presión en el sistema aumenta los requerimientos de vapor para los eyectores.

Por lo tanto la presión óptima será aquella que minimice el consumo de vapor total. A continuación se muestra 2 tipos de torres en las figuras 3.5 y 3.6.

Figura 3.5 Torre de Destilación al Vacío Seca

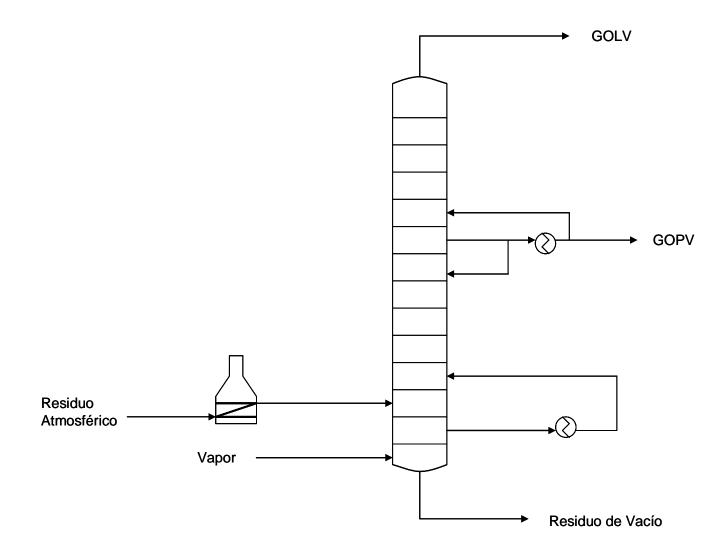


Figura 3.6 Torre de Destilación al Vacío Húmeda

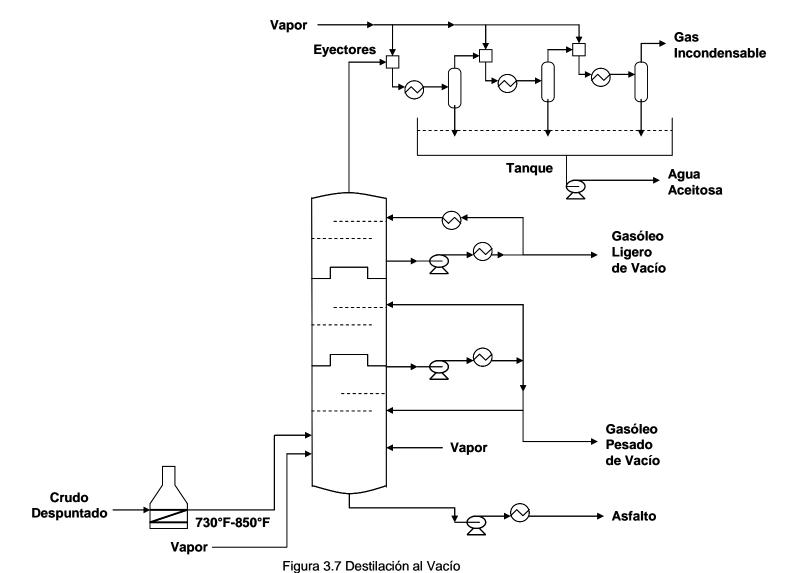


Figura 3.7: A continuación se presenta un esquema de una Torre de Destilación al Vacío en la

3.3 Descripción de la Planta Combinada No.1 de Destilación

La planta de Destilación Combinada I tiene la capacidad de procesamiento de 150,000 BPD de aceite crudo tipo Istmo y Maya. Consta básicamente de dos secciones: Sección de Destilación Atmosférica y Sección de Destilación al Vacío.

La función de la Sección Atmosférica es separar por medio de destilación, los productos primarios del crudo tales como: mezclas de nafta (nafta de despunte y nafta ligera), gasolina, turbosina, kerosina, gasóleo ligero primario, gasóleo pesado primario, y residuo primario. Estos productos pueden enviarse a tanques de almacenamiento y/o a otras plantas para continuar su procesamiento como por ejemplo: la mezcla de naftas es enviada a una Planta Hidrodesulfuradora. Las corrientes de nafta pesada, kerosina y gasóleo ligero se envían a una Planta Hidrodesulfuradora de Destilados Intermedios. La corriente de gasóleo pesado se envía a una Planta de Desintegración Catalítica. El residuo primario es el que se manda a la Sección de Destilación al Vacío

La Sección de Destilación al Vacío procesa el residuo primario proveniente de la Sección Atmosférica para obtener gasóleo ligero de vacío, gasóleo pesado de vacío, gases incondensables, condensado aceitoso y residuo de vacío. Los dos primeros junto con el gasóleo pesado primario se envían como carga a la Planta de Desintegración Catalítica y el residuo de vacío se envía como carga a la Planta Reductora de Viscosidad. El condensado aceitoso se enviará a tratamiento de aguas amargas a la Unidad de Destilación Atmosférica y los gases incondensables del mismo sistema de vacío se quemarán en la chimenea de cualquiera de los calentadores a fuego directo de la planta.

El aceite crudo de alimentación es bombeada por la bomba GA-101 a través de dos trenes de intercambio de calor en paralelo formados por ocho intercambiadores de calor cada uno, el primero del EA-101A al EA-108A y el segundo del EA-102B al EA-108B e incluyendo el EA107C para elevar su temperatura desde 68°F hasta 460°F.

El objetivo de dichos trenes es el de elevar la temperatura de la corriente de crudo anteriormente mencionada y ser despuntada a esta temperatura. precalentamiento del aceite crudo se lleva a cabo aprovechando la energía de los diversos efluentes de las columnas de destilación atmosférica (DA-102), de destilación al vacío (DA-201) así como de los reflujos externos de las mismas.

Con el objeto de que el aceite crudo entre parcialmente vaporizado a las torres de despunte DA-101A/B, previamente se le reduce la presión hasta las condiciones de operación de dichas columnas, esta torres constan de 6 platos y en la parte superior se alimenta un reflujo con una temperatura alrededor de 100°F proveniente del acumulador de nafta ligera FA-102, con el objeto de recuperar la nafta y fracciones más pesadas que van en el vapor de la alimentación de la Torre de Despunte. Por el domo de la Torre DA-101A/B, se desprende la nafta de despunte y por el fondo sale el crudo despuntado por la corriente 13AL y 13BL respectivamente.

La corriente 13AL y 13BL pasa por la bomba GA-103A y GA103B para después ser alimentada al horno BA-101A/B que entra a la torre de destilación atmosférica en el horno se lleva a cabo la vaporización de las diversas fracciones (nafta ligera, kerosina, gasóleo ligero primario, gasóleo pesado primario) más pequeño exceso de vaporización de residuo, que tiene la función de mantener un cierto reflujo en la parte inferior de la Torre DA-102.

El crudo precalentado sale del horno y es alimentado a la Torre Fraccionadora DA-102 en el plato 31 (en el fondo). A esta torre, se alimenta también vapor de agua de 40 psig v 600°F (2.8 kg/cm² v 316°C) en el plato 33 para disminuir la presión parcial de los hidrocarburos, para mantener la temperatura y presión adecuadas en la zona de vaporización de la torre y para contribuir como agente de arrastre de los productos ligeros.

Los vapores de la torre atmosférica se envían a los condensadores de nafta ligera y de ahí pasan al tanque acumulador. En las líneas de vapores del domo se inyecta inhibidor de película y amina neutralizante para evitar la corrosión debido a la presencia de acido clorhídrico en los vapores, producido por la hidrólisis de las sales que contiene el crudo.

La gasolina de despunte se envía como carga a la Planta Estabilizadora de Nafta y la gasolina ligera se envía a almacenamiento para posteriormente alimentarse a la planta Hidrodesulfuradora de Nafta.

Del plato No. 9 se obtiene Turbosina la cual, después de pasar por su agotador y por el tren de intercambio de calor, se enfría y se envía a almacenamiento para posteriormente alimentarse a la Planta Hidrodesulfuradora de Destilados Intermedios.

Del plato No. 15 se obtiene kerosina, la cual después de pasar por su agotador y por el tren de intercambio de calor, se enfría y se envía a almacenamiento.

Del plato No. 21 se hacen dos extracciones de gasóleo ligero primario: la primera después de pasar por el tren de intercambio, se enfría y regresa como reflujo al plato No.16 y la segunda, después de pasar por su agotador y por el tren de intercambio de calor, se enfría y se envía a almacenamiento para posteriormente alimentarse a la Planta Hidrodesulfuradora de Destilados Intermedios.

Del plato No. 26 se obtiene el gasóleo pesado primario el cual, después de pasar su tanque de balance y por el tren de intercambio de calor, una parte se envía como reflujo al plato No. 22 y la otra parte se envía a almacenamiento para posteriormente alimentarse a la Planta de Desintegración Catalítica. Cabe mencionar que normalmente la eficiencia de los platos de esta torre oscila entre 50-55%.

El residuo primario es enviado a un calentador a fuego directo donde se lleva a cabo una vaporización parcial de la corriente.

La mezcla liquido-vapor es llevada a la zona de vaporización de la torre de destilación al vacío cuya operación es del tipo seca. La presión del sistema calentador-torre de vacío se mantiene por medio de dos bancos eyectores. Los gases incondensables se envían a un tanque separador y posteriormente, se queman en el calentador de fuego directo de la sección de vacío.

Los vapores de ligeros que salen por el domo de la torre de vacío son extraídos por el sistema de eyectores, condensados y enviados al tanque de sello, el condensado aceitoso es bombeado hacia las desaladoras con el fin de recuperar los hidrocarburos presentes y al mismo tiempo, complementar el agua requerida para el desalado del crudo.

Del plato No.1 se obtiene el gasóleo ligero de vacío el cual, después de pasar por el tren de intercambio de calor se divide en dos partes: la primera se enfría a almacenamiento para posteriormente aumentarse a la Planta de Desintegración Catalítica.

Del plato No.2 se obtiene el gasóleo pesado de vacío, el cual, después de pasar por el tren de intercambio de calor, se divide en dos partes: la primera, se envía como reflujo a la torre de vacío y la segunda, se envía como carga a la Planta Reductora de Viscosidad.

CAPÍTULO 4

ESQUEMA DE SIMULACIÓN DE LA PLANTA COMBINADA No.1 DE LA REFINERÍA "MIGUEL HIDALGO"

4.1 Pasos para generar el esquema de Simulación de la Planta Combinada No.1

La simulación del comportamiento de la estructura actual de las columnas atmosférica y de vacío de la planta combinada I de la Refinería de Tula, al cambio en la alimentación del tipo de crudo se llevará a cabo con el simulador de procesos, Hysys de la compañía ASPEN TECH.

Esta simulación se efectuará de manera integral, todos y cada uno de los equipos se encontraran conectados entre sí de tal manera que la simulación representa el comportamiento real de las unidades de proceso.

Los pasos para generar el esquema de simulación con Hysys son los siguientes:

- Seleccionar el sistema de unidades, para esta simulación se utilizó un sistema de unidades hecho por el usuario llamado Field1.
- Definir los MODELOS para calcular las propiedades termodinámicas. Para la simulación se utilizará la ecuación de estado Peng-Robinson, para calcular el equilibrio líquido vapor.
- Especificar los componentes químicos presentes, para la simulación se agregaron los siguientes: Metano, Etano, Propano, i-Butano, n-Butano, i-Pentano, n-Pentano, H₂O, H₂S.
- Caracterización de crudos. Debido a que en la simulación se realizará con una mezcla de crudos (Apéndice 1).
- Especificar los módulos de cálculo que representarán las operaciones de proceso. En donde se presentará una tabla donde se especifique cada uno de los equipos reales.

CAPÍTULO 4 66

Módulos que se eligieron en el simulador.	Equipo que representa				
Heat Exchanger	Cambiador de calor proceso a				
	proceso				
Heater	Calentador a fuego directo				
Cooler Enfriador					
Column Absorber	Pre-Flash				
Column Refluxed Absorber	Columna Atmosférica y de Vacío				
Side Strippers	Agotador				
Tee	Divisor				
Mixer	Mezclador				
Pump	Bomba				
Separador	Tanque separador				
3 Phase Separador	Tanque Desalador				
Valve	Válvula				

Tabla 4.1 Módulos utilizados en el simulador.

- Especificar el funcionamiento de cada módulo de cálculo para representar la Operación de Proceso.
- Especificar condiciones de diseño u operación (Apéndice 2).
- Proporcionar los estimados iniciales, para las corrientes seleccionadas.
- Seleccionar para cada unidad, el mejor conjunto de corrientes de corte.
- Definir los ciclos de convergencia operarán en forma simultánea o anidada.
- Una vez que se tenga la planta simulada y sea comprobada la validez de la simulación con los datos de operación que se tenían (errores presentes no mayores al 10%) se procede a simular la planta tomando en cuenta otros datos.
- Para la convergencia de la simulación se tiene que utilizar algún método como por ejemplo el Método de Aceleración de Wegstein o algún otro.

CAPÍTULO 4 67

Cabe mencionar algunos aspectos importantes que se obtienen al generar el esquema de simulación. Se genera dos esquemas de simulación de la planta: uno en el cual la corriente de corte se encuentra en la alimentación a la columna DA-102(Figura 4.1) y otro en el cual las corrientes de corte se encuentran en la gasolina que se alimentan a las columnas despuntadotas. La opción que se elige es esta última ya que reduce el tiempo de convergencia de la máquina (Figura 4.2).

Para lograr las condiciones de operación, se imponen las especificaciones a los módulos de cálculo: para los módulos que representan a los intercambiadores de calor el producto del coeficiente de transferencia de calor y el área del cambiador (UA) y para los que representan columnas atmosférica y de vacío las temperaturas de corte de los productos.

En un inicio se elige que el ciclo de convergencia para la bomba de calor de la columna de destilación al vacío (DA-201) sea anidado y que la variable especificada sea la carga del intercambiador EA-101A para evitar problemas de cruce de temperaturas a lo largo del tren de precalentamiento, posteriormente se decide que este ciclo sea simultáneo cambiando la dicha especificación por la temperatura de retorno de a corriente a la columna DA-201 (Columna de Vacío).

Otro aspecto que cabe mencionar es que no se tienen corrientes de corte en las entradas o retorno de los agotadores laterales de la columna DA-102 debido a que el simulador cuenta con módulos que integran dichos equipos a la columna principal por lo cual es innecesario especificar corrientes de corte para estas unidades (Figura 4.3).

Por último debido a que la secuencia de cálculo de ambos simuladores de proceso es no secuencial no se requiere dar estimados iniciales para las corrientes que intercambian calor con el crudo en el tren de precalentamiento. En el presente trabajo contiene las dos secciones de la Planta Combinada No. 1 integradas en una sola simulación.

CAPÍTULO 4 68

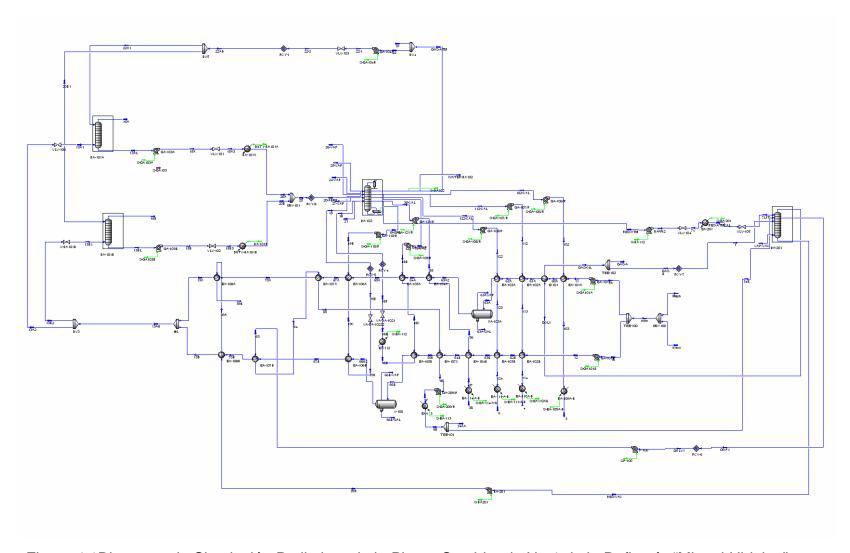


Figura 4.1Diagrama de Simulación Preliminar de la Planta Combinada No.1 de la Refinería "Miguel Hidalgo"

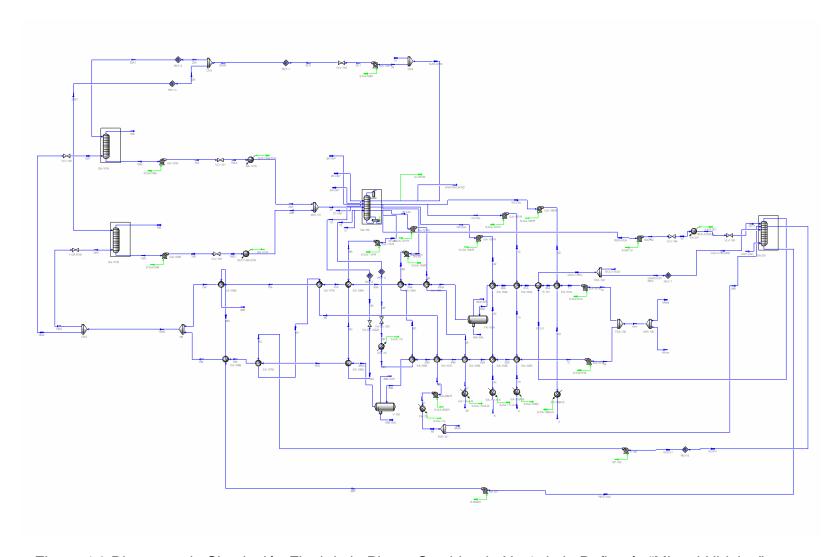


Figura 4.2 Diagrama de Simulación Final de la Planta Combinada No.1 de la Refinería "Miguel Hidalgo".

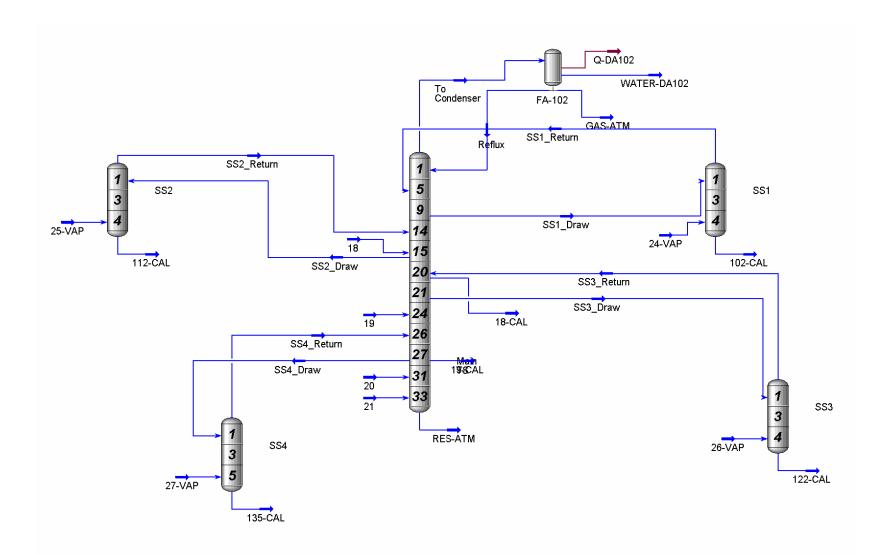
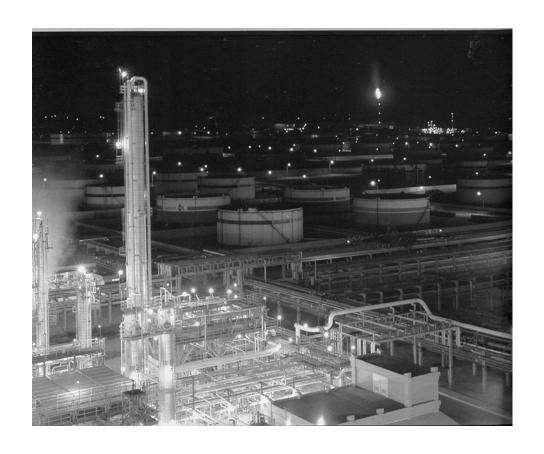



Figura 4.3 Diagrama de la Columna Atmosférica (DA-102)

CAPÍTULO 5

SIMULACIÓN DE LA PLANTA COMBINADA No.1 DE LA REFINERÍA "MIGUEL HIDALGO"

SIMULACIÓN DE LA PLANTA COMBINADA No.1 DE LA REFINERIA "MIGUEL HIDALGO"

actual de la Refinería "Miguel Hidalgo"

anexando los de la torre de vacío (DA-201) a la alimentación

como el flujo de liquido y de vapor a lo largo

obtuvieron variando

la proporción en volumen.,

de crudo Istmo en la incluyendo las curvas

alimentación

ΤBP

de los

la columna atmosférica (DA-102)

muestran:

el perfil de

temperaturas, simulación

curva

de

la corriente de cinco

Turbosina asi

gráficas

las

cuales

presentan

resultados

PERFILES DE TEMPERATURA DE LA COLUMNA DE DESTILACIÓN ATMOSFÉRICA (DA102)

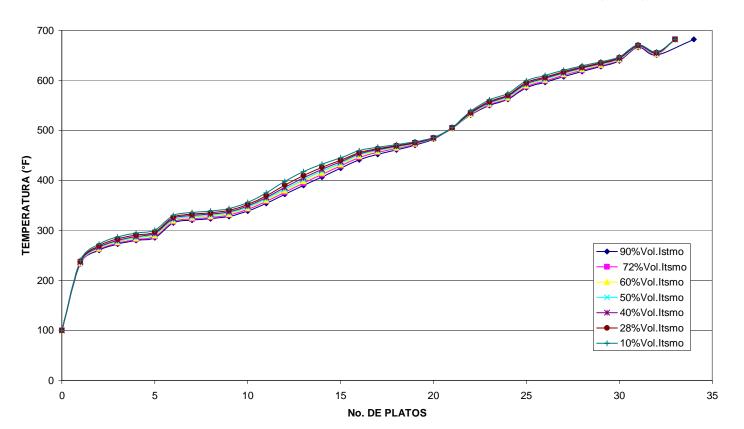


Figura 5.1 Gráfica del Perfil de Temperatura a lo largo de la Columna de Destilación Atmosférica

PERFIL DE FLUJO DE LIQUIDO DE LA COLUMNA DE DESTILACIÓN ATMOSFÉRICA (DA102)

Figura 5.2 Gráfica del Perfil de Flujo de Liquido a lo largo de la Columna de Destilación Atmosférica

PERFIL DE FLUJO DE VAPOR EN LA COLUMNA DE DESTILACIÓN ATMOSFÉRICA (DA102)

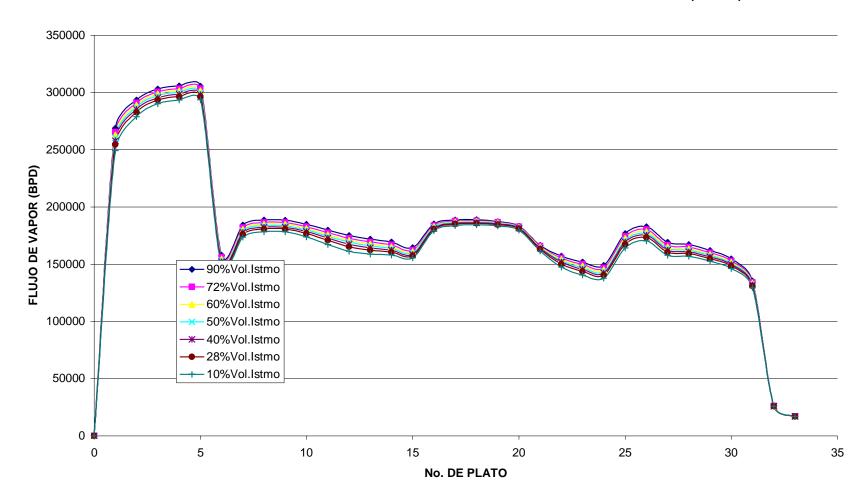


Figura 5.3 Gráfica del Perfil de Flujo de Vapor a lo largo de la Columna de Destilación Atmosférica

DESTILACIÓN TÉCNICA

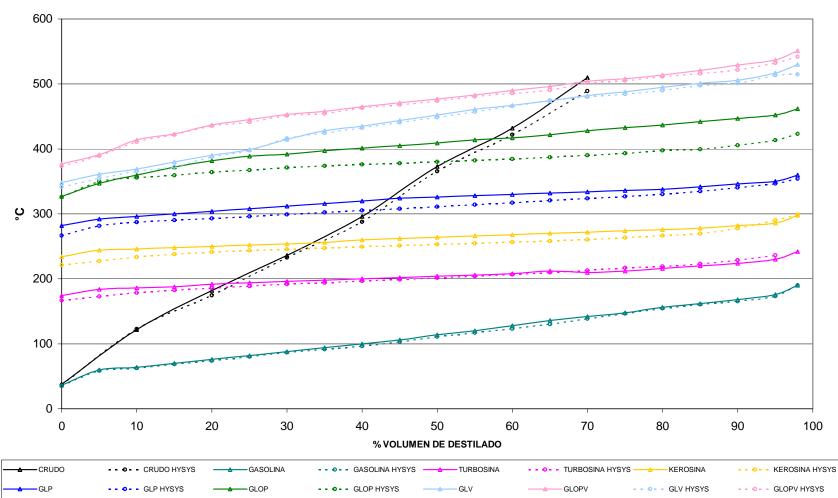


Figura 5.4 Gráfica de comparación entre la Destilación Técnica Teórica y la que se obtiene del Simulador Hysys

Datos de las curvas TBP obtenidos para los diferentes productos de las columnas (Atmosférica y de Vacío)

	GASOLINA			TURBOSINA			
	OPERACIÓN	HYSYS			OPERACIÓN	HYSYS	
% VOL.DEST.	°C	°C	%ERROR	% VOL.DEST.	°C	°C	%ERROR
0	36	34.99	2.81	0	174	166.72	4.18
5	60	58.54	2.43	5	184	172.73	6.12
10	64	62.40	2.50	10	186	178.57	3.99
15	70	68.53	2.10	15	188	182.51	2.92
20	76	73.91	2.75	20	192	185.70	3.28
25	82	80.04	2.39	25	194	188.83	2.66
30	88	86.59	1.60	30	196	191.60	2.24
35	94	91.30	2.87	35	198	194.11	1.96
40	100	96.40	3.60	40	200	196.46	1.77
45	106	103.10	2.74	45	202	198.76	1.60
50	114	110.90	2.72	50	204	201.38	1.29
55	120	117.02	2.48	55	206	204.07	0.94
60	128	123.15	3.79	60	208	206.88	0.54
65	136	130.40	4.12	65	212	209.85	1.02
70	142	138.50	2.46	70	210	213.05	1.45
75	148	146.30	1.15	75	212	216.79	2.26
80	156	154.20	1.15	80	216	218.89	1.34
85	162	160.70	0.80	85	220	223.23	1.47
90	168	165.40	1.55	90	224	228.93	2.20
95	176	173.20	1.59	95	230	236.28	2.73
98	190	189.91	0.05	98	242	241.58	0.17

Tabla 5.1 Resultados obtenidos para las corrientes de Gasolina y Turbosina.

	KEROSII	NA AV		GOLP			
•	OPERACIÓN	HYSYS			OPERACIÓN	HYSYS	
% VOL.DEST.	°C	°C	%ERROR	% VOL.DEST.	°C	°C	%ERROR
0	234	221.23	5.46	0	282	266.36	5.55
5	244	227.43	6.79	5	292	281.53	3.59
10	246	233.67	5.01	10	296	287.22	2.96
15	248	238.05	4.01	15	300	290.14	3.29
20	250	241.33	3.47	20	304	293.03	3.61
25	252	243.49	3.38	25	308	296.01	3.89
30	254	245.30	3.42	30	312	298.96	4.18
35	256	247.34	3.38	35	316	302.01	4.43
40	260	249.27	4.13	40	320	305.07	4.66
45	262	251.12	4.15	45	324	308.13	4.90
50	264	252.90	4.20	50	326	311.19	4.54
55	266	254.59	4.29	55	328	314.27	4.19
60	268	256.38	4.34	60	330	317.35	3.83
65	270	258.35	4.31	65	332	320.50	3.46
70	272	260.59	4.20	70	334	323.75	3.07
75	274	263.66	3.77	75	336	326.90	2.71
80	276	266.76	3.35	80	338	330.41	2.25
85	278	269.57	3.03	85	342	334.70	2.14
90	282	277.62	1.55	90	346	340.39	1.62
95	286	290.48	1.56	95	350	346.47	1.01
98	298	298.87	0.29	98	360	353.97	1.67

Tabla 5.2 Resultados obtenidos para las corrientes de Kerosina y GOLP.

	GOPP				GOLV		
	OPERACIÓN	HYSYS			OPERACIÓN	HYSYS	
% VOL.DEST.	°C	°C	%ERROR	% VOL.DEST.	°C	°C	%ERROR
0	327	326.01	0.30	0	348	341.21	1.95
5	347	349.89	0.83	5	361	354.40	1.83
10	360	356.06	1.09	10	369	365.72	0.89
15	372	359.48	3.36	15	380	372.45	1.99
20	382	364.19	4.66	20	390	387.40	0.67
25	389	367.13	5.62	25	399	397.80	0.30
30	392	371.17	5.31	30	415	416.21	0.29
35	397	373.73	5.86	35	428	424.49	0.82
40	401	375.91	6.26	40	435	432.59	0.55
45	405	377.86	6.70	45	444	440.58	0.77
50	409	379.94	7.10	50	452	448.78	0.71
55	414	382.20	7.68	55	461	457.14	0.84
60	417	384.59	7.77	60	467	465.74	0.27
65	422	387.17	8.25	65	474	474.61	0.13
70	428	390.02	8.87	70	482	480.01	0.41
75	433	393.46	9.13	75	488	484.20	0.78
80	437	397.60	9.02	80	495	490.00	1.01
85	442	399.44	9.63	85	501	497.32	0.73
90	447	405.77	9.22	90	506	501.23	0.94
95	452	413.59	8.50	95	517	513.4	0.70
98	462	423.08	8.42	98	530	514.65	2.90

Tabla 5.3 Resultados obtenidos para las corrientes de GOPP y GOLV.

	GOPV					
	OPERACIÓN	HYSYS				
% VOL.DEST.	°C	°C	%ERROR			
0	377	373.33	0.97			
5	391	389.49	0.39			
10	414	411.04	0.71			
15	423	421.80	0.28			
20	437	435.44	0.36			
25	445	441.36	0.82			
30	453	451.53	0.33			
35	458	454.54	0.75			
40	465	463.31	0.36			
45	471	468.15	0.60			
50	477	473.60	0.71			
55	483	480.69	0.48			
60	490	485.51	0.92			
65	496	490.63	1.08			
70	504	501.31	0.53			
75	508	504.90	0.61			
80	514	511.20	0.54			
85	521	516.14	0.93			
90	529	521.91	1.34			
95	537	532.40	0.86			
98	551	542.13	1.61			

Tabla 5.4 Resultados obtenidos para la corriente de GOPV.

Resultados obtenidos de la simulación en comparación con los datos de diseño.

	Gasolina				
PROPIEDADES	HYSYS	DISEÑO	%ERROR		
TEMPERATURA(°F)	162.85	162.00	0.52		
PRESIÓN (PSIG)	4.60	4.60	0.09		
FLUJO MOLAR(Ibmol/h)	3311.66	3311.00	0.02		
FLUJO MÁSICO(lb/h)	365666.39	365666.00	0.00		
FLUJO DE LÍQUIDO(BPD)	32999.92	33000.00	0.00		

Tabla 5.5 Resultados obtenidos para la corriente de Gasolina.

	Turbosina				
	HYSYS DISEÑO %ERROF				
TEMPERATURA(°F)	297.70	320.00	6.97		
PRESIÓN (PSIG)	5.55	5.55	0.07		
FLUJO MOLAR(Ibmol/h)	935.98	936.00	0.00		
FLUJO MÁSICO(lb/h)	144900.66	144900.00	0.00		
FLUJO DE LÍQUIDO(BPD)	12310.09	12310.00	0.00		

Tabla 5.6 Resultados obtenidos para la corriente de Turbosina.

	Kerosina			
	HYSYS DISEÑO %ERROI			
TEMPERATURA(°F)	430.30	426.00	1.01	
PRESIÓN (PSIG)	6.19	6.20	0.13	
FLUJO MOLAR(Ibmol/h)	1062.28	1062.00	0.03	
FLUJO MÁSICO(lb/h)	205732.17	205732.00	0.00	
FLUJO DE LÍQUIDO(BPD)	16820.01	16820.00	0.00	

Tabla 5.7 Resultados obtenidos para la corriente de Kerosina.

	GOLP				
	HYSYS	DISEÑO	%ERROR		
TEMPERATURA(°F)	473.80	468.00	1.24		
PRESIÓN (PSIG)	6.83	6.80	0.43		
FLUJO MOLAR(Ibmol/h)	1024.12	1024.00	0.01		
FLUJO MÁSICO(lb/h)	255217.54	255217.00	0.00		
FLUJO DE LÍQUIDO(BPD)	20160.04	20160.00	0.00		

Tabla 5.8 Resultados obtenidos para la corriente de Kerosina.

	GOPP				
	HYSYS	DISEÑO	%ERROR		
TEMPERATURA(°F)	538.70	530.00	1.64		
PRESIÓN (PSIG)	7.47	7.46	0.09		
FLUJO MOLAR(Ibmol/h)	381.23	381.00	0.06		
FLUJO MÁSICO(lb/h)	120868.30	120868.00	0.00		
FLUJO DE LÍQUIDO(BPD)	9189.90	9190.00	0.00		

Tabla 5.9 Resultados obtenidos para la corriente de GOPP.

	RES-ATM				
	HYSYS DISEÑO %ERROF				
TEMPERATURA(°F)	682.25	682.00	0.04		
PRESIÓN (PSIG)	8.10	8.11	0.07		
FLUJO MOLAR(Ibmol/h)	1807.15	1807.00	0.01		
FLUJO MÁSICO(lb/h)	864180.06	864180.00	0.00		
FLUJO DE LÍQUIDO(BPD)	61348.86	61348.00	0.00		

Tabla 5.10 Resultados obtenidos para la corriente de Residuo Atmosférico.

	GOLV			
	HYSYS	DISEÑO	%ERROR	
TEMPERATURA(°F)	665.30	693.00	4.00	
PRESIÓN (PSIG)	-14.36			
FLUJO MOLAR(Ibmol/h)	1381.02			
FLUJO MÁSICO(lb/h)	549203.75			
FLUJO DE LÍQUIDO(BPD)	5683903.67	5680000.00	0.07	

Tabla 5.11 Resultados obtenidos para la corriente de GOLV.

		GOPV	
	HYSYS	DISEÑO	%ERROR
TEMPERATURA(°F)	665.30	688.00	3.30
PRESIÓN (PSIG)	-14.34		
FLUJO MOLAR(Ibmol/h)	321.46		
FLUJO MÁSICO(lb/h)	209294.02		
FLUJO DE LÍQUIDO(BPD)	14213.99	14214.00	0.00

Tabla 5.7 Resultados obtenidos para la corriente de GOPV.

		RES-VAC	
	HYSYS	DISEÑO	%ERROR
TEMPERATURA(°F)	530.00	526.00	0.76
PRESIÓN (PSIG)	-14.07		
FLUJO MOLAR(Ibmol/h)	417.35		
FLUJO MÁSICO(lb/h)	274116.54		
FLUJO DE LÍQUIDO(BPD)	25359.60	25000.00	1.44

Tabla 5.7 Resultados obtenidos para la corriente de Residuo de Vacío.

Temperatura vs % Destilado (Turbosina)

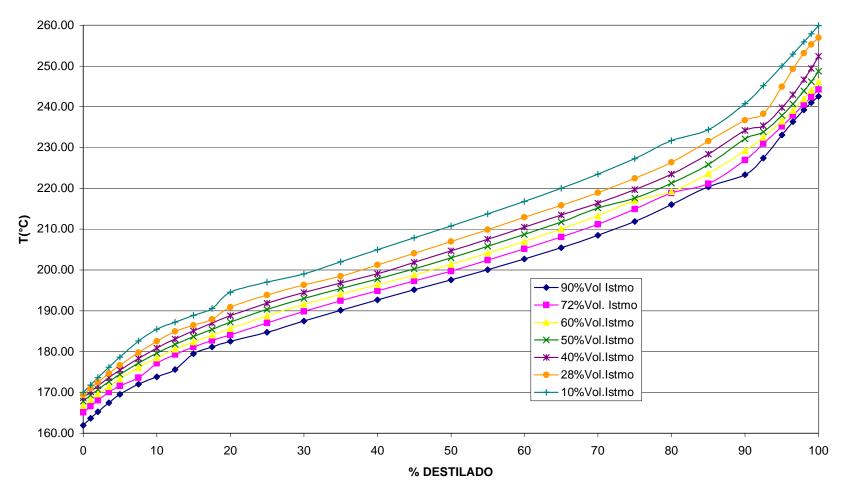


Figura 5.4 Gráfica de la Curva TBP de la corriente de Turbosina al cambio en la alimentación del Tipo de Crudo (Maya)

Como se ha mencionado el crudo es una mezcla compleja de hidrocarburos y su separación así como cualquier proceso industrial que involucra diversas etapas unitarias. Lo anterior genera un gran número de variables a converger con lo cual es imposible obtener un 0% de error en las variables resultantes. Esto hace necesario definir un criterio para la presentación de resultados.

El criterio consistió en llegar a la convergencia de todos los equipos con un mínimo de error (menor al 10%) en las variables de las corrientes de los productos de destilación.

Los resultados obtenidos mediante la simulación realizada tomando en cuenta 33 platos para la columna DA-102 son un buen estimado de las condiciones de operación que actualmente se tienen en la planta ya que los errores que se tienen con respecto a las condiciones de operación no son mayores al 10%, por lo cual se considera que el esquema de simulación es valido. Además los productos cumplen con las especificaciones de diseño como se puede observar en la prueba TBP.

En las graficas de perfiles de Temperatura, Flujo de liquido y de Vapor; se observa que conforme el crudo maya aumenta su proporción disminuye el flujo de líquido y de vapor a lo largo de la columna de destilación atmosférica, sobre todo de la sección que comprende los platos 2 a 9, obteniéndose con ello una menor cantidad del producto del primer agotador(turbosina), esto se debe a que el crudo Maya es mas pesado que el Istmo, debido a que posee una menor cantidad de hidrocarburos ligeros lo cual hace que esa sección de la columna presente problemas de operación si se maneja una mayor proporción de este crudo. Sin embargo se puede observar que para todas las corrientes de producto obtenidas, a medida que aumenta la proporción de crudo Maya en la corriente de alimentación a la torre atmosférica, los puntos de la curva TBP de dichas corrientes también aumentan ocasionando que el producto no se obtenga con las características especificadas.

CAPÍTULO 5 82

Esto se puede observar en la gráfica 5.4 con el ejemplo de la corriente de Turbosina.

La razón por la cual las temperaturas no varían a lo largo de la columna de destilación atmosférica (DA-102) es porque las especificaciones impuestas sobre las columnas fueron las temperaturas de corte de los productos, esto con la finalidad de que cumplan con la calidad determinada para ellos.

Es por esta misma razón que las condiciones de los productos y los resultados de la simulación de la planta no varían tomando en cuenta la eficiencia de los platos en la sección atmosférica.

La razón por la cual se realizo la simulación en Hysys es por el enorme potencial que tiene debido a que se puede llevar a cabo la simulación a régimen dinámico, realizar optimizaciones. Lo cual en un futuro será aprovechado ya sea para plantear una función objetivo que optimice el sistema o para realizar la simulación en régimen dinámico. Esto traerá beneficios para la planta como: conocer el comportamiento de la misma durante las operaciones de paro o arranque o para minimizar el consumo de energía de la planta.

CAPÍTULO 6

CONCLUSIONES

Se cumplió con el objetivo del trabajo, se logro llevar a cabo la simulación de la Planta Combinada No.1 de la Refinería de Tula, Hidalgo con las respectivas restricciones, para las actuales condiciones de proceso donde el simulador Hysys resulto ser una herramienta confiable para la generación del esquema de simulación propuesto.

El esquema de simulación generado en el simulador resulto satisfactorio debido a que los errores obtenidos son menores al 10% tanto para las condiciones de operación como para las especificaciones de diseño.

Como ya se menciono, en la actualidad existe la tendencia en nuestro país a utilizar crudos cada vez más pesados en las refinerías en México debido a que resulta mas rentable exportar el crudo tipo istmo que utilizarlo en nuestras plantas de proceso, aunque como se puede observar en los resultados obtenidos por las simulaciones realizadas con distintas proporciones de crudo istmo – crudo maya, resulta inadecuado manejar una proporción mayor de crudo Maya ya que al contener una mayor cantidad de hidrocarburos pesados causa problemas en su manejo, sobre todo en la producción de turbosina.

Como se menciona con anterioridad es visto que la simulación de procesos es de gran utilidad para varios propósitos de estudio como son el diseño de procesos, operación de proceso, flexibilidad, sensibilidad, además de ayuda para mejorar el rendimiento de los productos. También se puede hacer algún tipo de optimización que ayude a la reducción del consumo de energía, arreglos en equipo, condiciones de proceso, entre otras cosas.

Reitero que la simulación de proceso es una herramienta muy poderosa hoy en día y sobre todo cuando el objetivo del país es ser mas productivo y competitivo a nivel mundial, la mayoría de los estudios que se hacen con estas herramienta son sumamente confiables, además con los datos que arroja una simulación de proceso, es posible: hacer, proponer y predecir cambios sin necesidad de parar la planta para lo que se requiere un gran numero de personas para este trabajo.

CAPÍTULO 6 85

Además se debe tener presente la manera en que se genera el esquema de simulación, este debe ser lo mas similar posible con el que cuenta el operador de la planta, ya que entre mas similitud tenga con este, con mayor facilidad se observaran las condiciones del proceso generadas a través de la simulación.

A pesar de los beneficios del simulador, la persona encargada del esquema de simulación generado tiene la gran responsabilidad de usarlo adecuadamente y contar con la experiencia de campo necesaria para tomar las decisiones adecuadas que ayuden a mejorar el proceso sin generar errores graves. Aún con la profundidad a la que se ha llevado este estudio, estoy consiente de que es susceptible de llevar a un detalle mucho más profundo siempre y cuando el beneficio proyectado lo justificara. Sin embargo, el alcance del presente estudio es servir como un punto de partida en la simulación de procesos de una sección de una referencia. Dependiendo de los objetivos que pueda tener la empresa petrolera, se puede utilizar esta simulación para diversos proyectos.

CAPÍTULO 6 86

APÉNDICE 1

Caracterización de los Crudos (Istmo y Maya)

CARACTERÍSTICAS DEL CRUDO "ISTMO"

TIPO DE ANÁLISIS	RESULTADO
Peso específico @ 20/4 °C	0.86
°API	33.24
Factor de caracterización	12.0
Agua por destilación, % vol	0.1
Sedimento, % vol	0.1
Viscosidad @ 37.8°C, seg	52
Sal, Lb/Mbls	14.18
Azufre Total, %w	1.68
Carbón, %w	3.85
Cenizas, %w	0.0049
Asfaltenos en nC ₅	3.27
Acidez, mg KOH/g	0.41
Fierro, ppm	1.06
Vanadio, ppm	90.97
Niquel, ppm	8.43
Cobre, ppm	0.44
Calcio, ppm	4.73
Magnesio, ppm	0.18
Plomo, ppm	0.00
Cloruros, ppm	0.91 1.90
Pentano, %vol Destilación Hempel	1.90
TIE, °C	40
10%, °C	122
20%, °C	169
30%, °C	225
40%, °C	279
50%, °C	-
TFE	320
RECUPERADO, %vol	51
·	
Componentes	%Mol
Metano	94.48 1.75
Etano	
Propano	2.46
i-Butano	0.60
n-Butano	0.36
i-Pentano	0.15
n-Pentano	0.06
H₂S	0.14
H_2O	0.00

CARACTERÍSTICAS DEL CRUDO "MAYA"

TIPO DE ANÁLISIS	RESULTADO
Peso específico @ 20/4 °C	0.933
°API	19.71
Factor de caracterización	11.5
Agua por destilación, % vol	0.1 0.2
Sedimento, % vol Viscosidad @ 37.8°C, seg	4.8
Sal, Lb/Mbls	45.66
Azufre Total, %w	3.49
Carbón, %w	11.15
Cenizas, %w	0.52
Asfaltenos en nC ₅	17.21
Acidez, mg KOH/g	0.34
Fierro, ppm	2.87
Vanadio, ppm	305
Niquel, ppm	76.08
Cobre, ppm	0.55
Calcio, ppm	6.89
Magnesio, ppm	0.48
Plomo, ppm	0.00
Cloruros, ppm	0.90
Pentano, %vol Destilación Hempel	1.1
TIE, °C	44
10%, °C	138
20%, °C	195
30%, °C	258
40%, °C	285
50%, °C	-
TFE	320
RECUPERADO, %vol	45.3
Componentes	%Mol
Metano	94.94
Etano	1.69
Propano	2.21
i-Butano	0.53
n-Butano	0.20
i-Pentano	0.20
n-Pentano	0.18
H ₂ S	0.12
H ₂ O	0.00

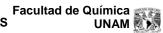
CAPÍTULO 6 89

APÉNDICE 2

Hojas de especificación de algunos equipos obtenidas mediante la simulación de la Planta Combinada No.1

1						Case Na	ame: C:V	Archivos de pro	ngrama\Hyprot	ech\HY	/SYS 3 2\Ca	ses\SIM	-REVN1 HSC
3	HVBD	OTECH	TEAM L Calgary			Unit Set	Fiel		3 ,,				
4	LIFECY	OTECH	CANAD						00 2007				
5 6						Date/Tin	ne. Tue	e Feb 27 14:05:	.09 2007				
7 8		Heat E	Excha	nger:	EA-10	1A							
9 10						CONNE	CTIONS						
11 12			Tube	Side					Shell	Side	;		
13		Inlet			Outlet			Inlet				Outlet	
14	Name		11	Name		60A	Name		102	Nam			103
15	From Op.	GA-101A	Pump	To Op.	Heat Ex		From Op.	Pump	GA-106/R	To C		Cooler	EA-109A-B
16 17	Temp		92.70 F	Temp		121.00 F *	Temp		298.19 F	Tem	np qr		141.39 F
18						PARAM	IETERS						
19 20						changer Des	ign (End P						
21	Tube Side De	eltaP:	1.050	14.50 psi				1.000 psi *	Passes:				
22 23	UA:			005 Btu/F-hr de Data	Tolerance	2:		1.0000e-04 *	Shell Si	de Dat			
24	Heat Transfe	r Coefficient	Tube 5	ue Data			Heat Transfe	er Coefficient	JIIEII JI	ue Dat	.a		
25	Tube Pressu					14.50 psi *	Shell Pressu						1.00 psi *
26	Fouling				0.000	000 F-hr-ft2/Btu *	Fouling					0.000)00 F-hr-ft2/Btu *
27	Tube Length					19.69 ft *	Shell Passes	S					1
28	Tube O.D.					0.79 in *	Shell Series						1 *
29 30	Tube Thickne Tube Pitch	ess				0.0787 in 1.9685 in *	Shell Paralle Baffle Type	l .					1 * Single
31	Orientation					Horizontal	Baffle Cut(%	Area)					20.00 *
32	Passes Per :	Shell				2 *	· ·						Horizontal
33	Tubes Per SI	hell				160 *	Spacing						
34	Layout Angle				Triangul	ar (30 degrees)	Diameter 29.0964 in *						
35 36	ТЕМА Туре					AEL	E L Area 649.26 ft2						
37						SPE	CS						
38				Specified Va	lue	Curren	t Value	F	elative Error		Activ	/e	Estimate
39		leat Balance		0.0000) MMBtu/hr		e-014 MMBtu/hr		1.228	Be-011	On		Off
40 41	<u> </u>	100 UA				Detailed Sp	e+005 Btu/F-hr				On		Off
42 43								-					
43		Type: D	uty			Pass:	<u>it Balance</u> Error			Spec \	Value: 0.00	100 MME	Stu/hr
45		,,					0 UA						
46		Type: U.	A			Pass:	Overall			Spec \	Value:		
47 48						User Va	ariables						
49 50						PROPE	ERTIES						
51 52						1	1						
53					Overall	Liquid Ph	nase						
54	Vapour/Phas	e Fraction			0.0000		1.0000						
55	Temperature		(F		92.70		92.70						
56 57	Pressure:		(psia		441.0		441.0						
57 58	Molar Flow Mass Flow		(lbmole/hr (lb/hr		4198 9.619e+005		4198 19e+005						
59	Std Ideal Liq	Vol Flow	(barrel/day		7.500e+004		00e+004						
60	Molar Enthalp		(Btu/lbmole		-2.104e+005		04e+005						
61	Mass Enthalp	•	(Btu/lb		-918.3		-918.3						
62	Molar Entropy	·	Btu/lbmole-F		69.17		69.17						D (11
63	Hyprotech Licensed to: Ti					HYSYS v3.2	(Build 5029))					Page 1 of 3

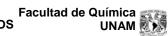
63 Hyprotech Ltd.
Licensed to: TEAM LND * Specified by user.


[1]			Case Name:	C:\Archive de programa\Humretech\LVSVS 3.00000000M DEV04 HCC
2	TEAM LND		Case Name.	C:\Archivos de programa\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
3	CANADA Calgary, Albe	rta	Unit Set:	Field1
5	O. 1. 1. No.7. 1		Date/Time:	Tue Feb 27 14:05:09 2007
6		=	, .:	1)
7 8	Heat Exchang	er: EA-101A	(continue	a)
9			44	
10			11	
11		Overall	Liquid Phase	
12 13	Mass Entropy (Btu/lb-F)	0.3018 -883.4	0.3018 -883.4	
14	Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3)	-883.4 0.2368	-883.4 0.2368	
15	Mass Density (API)	30.98	30.98	
16	Std Ideal Liq Mass Density (API)	29.30	29.30	
17	Liq Mass Density @Std Cond (API_60)	29.36	29.36	
18	Molar Heat Capacity (Btu/lbmole-F)	102.3	102.3	
19	Mass Heat Capacity (Btu/lb-F)	0.4465	0.4465	
20	Thermal Conductivity (Btu/hr-ft-F)	8.268e-002	8.268e-002	
21	Viscosity (cP)	35.18	35.18	
22	Surface Tension (dyne/cm)	26.29	26.29	
23	Molecular Weight	229.2	229.2	
24 25	Z Factor	0.3142	0.3142	
25 26			60A	
27		Overall	Liquid Phase	
28	Vapour/Phase Fraction	0.0000	1.0000	
29	Temperature: (F)	121.0 *	121.0	
30	Pressure: (psia)	426.5	426.5	
31	Molar Flow (Ibmole/hr)	4198	4198	
32	Mass Flow (lb/hr)	9.619e+005	9.619e+005	
33	Std Ideal Liq Vol Flow (barrel/day)	7.500e+004	7.500e+004	
34	Molar Enthalpy (Btu/Ibmole)	-2.075e+005	-2.075e+005	
35	Mass Enthalpy (Btu/lb)	-905.5	-905.5	
36 37	Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	74.38	74.38 0.3246	
38	Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr)	0.3246 -871.1	0.3246 -871.1	
39	Molar Density (Ibmole/ft3)	0.2336	0.2336	
40	Mass Density (API)	33.15	33.15	
41	Std Ideal Liq Mass Density (API)	29.30	29.30	
42	Liq Mass Density @Std Cond (API_60)	29.36	29.36	
43	Molar Heat Capacity (Btu/lbmole-F)	106.0	106.0	
44	Mass Heat Capacity (Btu/lb-F)	0.4627	0.4627	
45	Thermal Conductivity (Btu/hr-ft-F)	8.076e-002	8.076e-002	
46	Viscosity (cP)	15.98	15.98	
47	Surface Tension (dyne/cm)	24.96	24.96	
48	Molecular Weight	229.2	229.2	
49 50	Z Factor	0.2929	0.2929	
51			102	
52		Overall	Liquid Phase	
53	Vapour/Phase Fraction	0.0000	1.0000	
54	Temperature: (F)	298.2	298.2	
55	Pressure: (psia)	120.7 *	120.7	
56	Molar Flow (lbmole/hr)	907.5	907.5	
57	Mass Flow (lb/hr)	1.460e+005	1.460e+005	
58	Std Ideal Liq Vol Flow (barrel/day)	1.231e+004	1.231e+004	
59	Molar Enthalpy (Btu/lbmole)	-1.328e+005	-1.328e+005	
60	Mass Enthalpy (Btu/lb)	-825.0	-825.0	
61	Molar Entropy (Btu/lbmole-F)	58.66	58.66	
62	Mass Entropy (Btu/lb-F)	0.3645	0.3645 (SVS v3 2 (Build 5)	020)
63	Hyprotech Ltd.	HY	/SYS v3.2 (Build 50	029) Page 2 of 3 * Specified by user

 63
 Hyprotech Ltd.
 HYSYS v3.2 (Build 5029)
 Page 2 of

 Licensed to: TEAM LND
 * Specified by user

CAPÍTULO 6 92



1			Case Nai	me:	C:\Archivos de proj	grama\Hyprotech\HYSYS 3.2	\Cases\SIM-REV01.HSC
3	MYPROTECH TEAM LND Calgary, Albert	а	Unit Set:		Field1		
4 5	LIFECUCLE INNOVATION CANADA		Date/Tim	e:	Tue Feb 27 14:05:0	09 2007	
6							
7 8	Heat Exchange	er: EA-101.	A (cont	inue	d)		
9 10			10	2			
11		Overall	Liquid Ph	ase			
12	Heat Flow (MMBtu/hr)	-120.5	·	-120.5			
13	Molar Density (lbmole/ft3)	0.2759		0.2759			
14	Mass Density (API)	67.06		67.06			
15	Std Ideal Liq Mass Density (API)	42.33		42.33			
16	Liq Mass Density @Std Cond (API_60)	43.30		43.30			
17	Molar Heat Capacity (Btu/lbmole-F)	93.71		93.71			
18	Mass Heat Capacity (Btu/lb-F)	0.5823		0.5823			
19	Thermal Conductivity (Btu/hr-ft-F)	6.933e-002	6.93	3e-002			
20	Viscosity (cP)	0.1710		0.1710			
21	Surface Tension (dyne/cm)	16.81		16.81			
22	Molecular Weight	160.9	£ 00	160.9			
23 24	Z Factor	5.380e-002	5.38	80e-002			
25			10	3			
26		Overall	Liquid Ph	ase	Aqueous Phase	2	
27	Vapour/Phase Fraction	0.0000		0.9950	0.00	050	
28	Temperature: (F)	141.4		141.4	14	1.4	
29	Pressure: (psia)	119.7		119.7		9.7	
30	Molar Flow (lbmole/hr)	907.5		902.9		522	
31	Mass Flow (lb/hr)	1.460e+005		0e+005		.47	
32	Std Ideal Liq Vol Flow (barrel/day)	1.231e+004		0e+004		589	
33 34	Molar Enthalpy (Btu/lbmole)	-1.464e+005	-1.46	5e+005	-1.215e+l		
35	Mass Enthalpy (Btu/lb) Molar Entropy (Btu/lbmole-F)	-909.4 38.64		-906.2 38.76		.93	
36	Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	0.2401		0.2398	0.8		
37	Heat Flow (MMBtu/hr)	-132.8		-132.3	-0.54		
38	Molar Density (Ibmole/ft3)	0.3012		0.2999		396	
39	Mass Density (API)	50.34		50.36		.59	
40	Std Ideal Liq Mass Density (API)	42.33		42.35		1.00	
41	Lig Mass Density @Std Cond (API_60)	43.30		43.41		711	
42	Molar Heat Capacity (Btu/lbmole-F)	78.55		78.85		1.63	
43	Mass Heat Capacity (Btu/lb-F)	0.4881		0.4877	1.0	034	
44	Thermal Conductivity (Btu/hr-ft-F)	8.044e-002	8.04	l0e-002	0.3	780	
45	Viscosity (cP)	2.755		2.750	0.4		
46	Surface Tension (dyne/cm)			24.15		.82	
47	Molecular Weight	160.9		161.7		1.02	
48	Z Factor		6.18	88e-002	5.464e-I	003	
49 50			Stream Pi	opertie	es		
51		1	1		60A	102	103
52	Vapour Fraction		0.0000		0.0000	0.0000	0.0000
53	Temperature		92.70		121.0 *	298.2	141.4
54	Pressure		441.0 *		426.5	120.7 *	119.7
55	Enthalpy		2.104e+005		-2.075e+005	-1.328e+005	-1.464e+005
56	Molar Flow		4198		4198	907.5	907.5
57	MassFlow		9.619e+005		9.619e+005	1.460e+005	1.460e+005
58	Std Ideal Liq Vol Flow		7.500e+004		7.500e+004	1.231e+004	1.231e+004
59	HeatFlow		-883.4		-871.1	-120.5	-132.8
60							
61							
62	Lhunrata ah 1 td		JVeVe va a	(Duild F	220)		Dona 2 of 2
63	Hyprotech Ltd.		HYSYS v3.2	(Dulla 50	123)		Page 3 of 3

Licensed to: TEAM LND * Specified by user.

CAPÍTULO 6 93

1			Case Name:	C:\Arabi no do pros	vromo) I k protochi IVEVE 2.21C	nonciella DEVALUEC
2	TEAM LND				grama\Hyprotech\HYSYS 3.2\Ca	asestoliw-Revuil.Hoc
3	Calgary, Albe	rta	Unit Set:	Field1		
5			Date/Time:	Tue Feb 27 15:48:3	0 2007	
6 7 8	3 Phase Separat	or: FA-10	3A			
9			CONNECTIONS	3		
11			Inlet Stream			
13	Stream Name			From U	nit Operation	
14	63A	Н	leat Exchanger			EA-103A
15 16			Outlet Stream			
17	Stream Name			To Un	it Operation	
18	63AVAP					
19 20	63A2 63A-SAL	Н	leat Exchanger:			EA-104A
21	UUM-UML					
22			Energy Stream	<u> </u>		
23	Stream Name			From U	nit Operation	
24						
25 26			PARAMETERS			
27	Vessel Volume: 7	0.63 ft3 * Level SP:		50.00 %	Liquid Volume:	35.31 ft3
28		essure Drop:	71.00 psi * Duty:) MMBtu/hr Heat Transfer N	
29 30	<u>-</u>		User Variables	;	·	-
31			PROPERTIES			
32 33			63A			
34 35		Ouerell				
36	Vapour/Phase Fraction	Overall 0.0000	Liquid Phase 1.0000			
37	Temperature: (F)	271.6	271.6			
38	Pressure: (kg/cm2)	27.02	27.02			
39	Molar Flow (lbmole/hr)	4198	4198			
40	Mass Flow (lb/hr)	9.619e+005	9.619e+005			
41 42	Std Ideal Liq Vol Flow (barrel/day) Molar Enthalmy (Ptu/Ibmala)	7.500e+004 -1.901e+005	7.500e+004 -1.901e+005			
43	Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lb)	-1.9010+005	-1.9010+005			
44	Molar Entropy (Btu/lbmole-F)	101.0	101.0			
45	Mass Entropy (Btu/lb-F)	0.4407	0.4407			
46	Heat Flow (MMBtu/hr)	-798.0	-798.0			
47	Molar Density (Ibmole/ft3)	0.2167	0.2167			
48 49	Mass Density (API) Std Ideal Lin Mass Density (API)	46.06 29.30	46.06 29.30			
50	Std Ideal Liq Mass Density (API) Liq Mass Density @Std Cond (API_60)	29.36	29.36			
51	Molar Heat Capacity (Btu/lbmole-F)	125.3	125.3			
52	Mass Heat Capacity (Btu/lb-F)	0.5468	0.5468			
53	Thermal Conductivity (Btu/hr-ft-F)	6.998e-002	6.998e-002			
54 55	Viscosity (cP)	1.022	1.022			
56	Surface Tension (dyne/cm) Molecular Weight	18.13 229.2	18.13 229.2			
57	Z Factor	0.2260	0.2260			
58 59	,		63AVAP		·	
60		Overall	Liquid Phase	Vapour Phase	Liquid Phase	
61	Vapour/Phase Fraction	1.0000	0.0000	1.00		
62	Temperature: (F)	272.0	272.0		2.0 272.0	
63	Hyprotech Ltd. Licensed to: TEAM LND		HYSYS v3.2 (Build 5	029)		Page 1 of 3 * Specified by user.

63 Hyprotech Ltd.
Licensed to: TEAM LND * Specified by user.

1			Case Name:	C:\Archivos de programa\\	Hyprotech\HYSYS 3.2\Cas	es\SIM-REV01.HSC
3	TEAM LND Calgary, Albert	i	Unit Set:	Field1		
4	LIFECUCLE INNOVATION CANADA		Date/Time:	Tue Feb 27 15:48:30 2007		
5 6						
7	3 Phase Separato	r: FA-103A	(continued	d)		
9 10			63AVAP			
11		Overall	Liquid Phase	Vapour Phase	Liquid Phase	
12	Pressure: (kg/cm2)	22.03	22.03	22.03	22.03	
13	Molar Flow (Ibmole/hr)	0.0000	0.0000	0.0000	0.0000	
14	Mass Flow (lb/hr)	0.0000	0.0000	0.0000	0.0000	
15	Std Ideal Liq Vol Flow (barrel/day)	0.0000	0.0000	0.0000	0.0000	
16	Molar Enthalpy (Btu/lbmole)	-4.107e+004	-1.901e+005	-4.107e+004	-1.901e+005	
17	Mass Enthalpy (Btu/lb)	-1068	-829.6	-1068	-829.6	
18	Molar Entropy (Btu/lbmole-F)	40.12	101.1	40.12	101.1	
19	Mass Entropy (Btu/lb-F)	1.043	0.4411	1.043	0.4411	
20 21	Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3)	0.0000 4.423e-002	0.0000 0.2163	0.0000 4.423e-002	0.0000 0.1839	
22	Mass Density (API)	4.423e-002 5051	46.35	4.423e-002 5051	77.75	
23	Std Ideal Liq Mass Density (API)	143.4	29.30	143.4	29.30	
24	Lig Mass Density @Std Cond (API 60)	203.4	29.36	203.4	29.36	
25	Molar Heat Capacity (Btu/lbmole-F)	21.10	125.4	21.10	125.4	
26	Mass Heat Capacity (Btu/lb-F)	0.5487	0.5473	0.5487	0.5473	
27	Thermal Conductivity (Btu/hr-ft-F)	2.286e-002	6.995e-002	2.286e-002	6.995e-002	
28	Viscosity (cP)	1.510e-002	1.017	1.510e-002	0.9126	
29	Surface Tension (dyne/cm)		18.11		18.11	
30	Molecular Weight	38.46	229.2	38.46	229.2	
31	Z Factor	0.9022	0.1845	0.9022	0.2170	
32 33			63A2			
34		Overall	Liquid Phase	Vapour Phase	Liquid Phase	
35	Vapour/Phase Fraction	0.0000	1.0000	0.0000	0.0000	
36	Temperature: (F)	272.0 *	272.0	272.0	272.0	
37	Pressure: (kg/cm2)	22.03	22.03	22.03	22.03	
38	Molar Flow (lbmole/hr)	4198	4198	0.0000	0.0000	
39	Mass Flow (lb/hr)	9.619e+005	9.619e+005	0.0000	0.0000	
40	Std Ideal Liq Vol Flow (barrel/day)	7.500e+004	7.500e+004	0.0000	0.0000	
41	Molar Enthalpy (Btu/lbmole)	-1.901e+005	-1.901e+005	-4.107e+004	-1.901e+005	
42	Mass Enthalpy (Btu/lb)	-829.6	-829.6	-1068	-829.6	
43 44	Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	101.1 0.4411	101.1 0.4411	40.12 1.043	101.1 0.4411	
45	Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr)	-798.0	-798.0	0.0000	0.4411	
46	Molar Density (Ibmole/ft3)	0.2163	0.2163	4.423e-002	0.1839	
47	Mass Density (API)	46.35	46.35	5051	77.75	
48	Std Ideal Liq Mass Density (API)	29.30	29.30	143.4	29.30	
49	Liq Mass Density @Std Cond (API_60)	29.36	29.36	203.4	29.36	
50	Molar Heat Capacity (Btu/lbmole-F)	125.4	125.4	21.10	125.4	
51	Mass Heat Capacity (Btu/lb-F)	0.5473	0.5473	0.5487	0.5473	
52	Thermal Conductivity (Btu/hr-ft-F)	6.995e-002	6.995e-002	2.286e-002	6.995e-002	
53	Viscosity (cP)	1.017	1.017	1.510e-002	0.9126	
54	Surface Tension (dyne/cm)	18.11	18.11		18.11	
55	Molecular Weight	229.2	229.2	38.46	229.2	
56 57	Z Factor	0.1845	0.1845	0.9022	0.2170	
57 58			63A-SAL			
59		Overall	Liquid Phase	Vapour Phase	Liquid Phase	
60	Vapour/Phase Fraction	0.0000	1.0000	0.0000	0.0000	
61	Temperature: (F)	272.0	272.0	272.0	272.0	
62	Pressure: (kg/cm2)	22.03	22.03	22.03	22.03	
	Hyprotech Ltd.	LIN	/SYS v3.2 (Build 50	20)		Page 2 of 3

63 Hyprotech Ltd.
Licensed to: TEAM LND Page 2 of 3
* Specified by user.

1 1							
2	TEAM LND		Case Na	ime: C:\Arc	chivos de progran	na\Hyprotech\HYSYS 3.2\C	Cases\SIM-REV01.HSC
3	MYPROTECH Calgary, All	perta	Unit Set	Field1			
<u>4</u>	CANADA CANADA		Date/Tin	ne: Tue F	eb 27 15:48:30 20	007	
6							
7 8	3 Phase Separa	tor: FA-10	3A (con	tinued)			
9 10			63A-	SAL			
11		Overall	Liquid Ph	iase V	apour Phase	Liquid Phase	
12	Molar Flow (Ibmole/hr)	0.0000		0.0000	0.0000	0.0000	
13	Mass Flow (lb/hr)	0.0000		0.0000	0.0000	0.0000	
14	Std Ideal Liq Vol Flow (barrel/day)	0.0000		0.0000	0.0000	0.0000	
15	Molar Enthalpy (Btu/lbmole)	-1.901e+005	-1.90	11e+005	-4.107e+004	-1.901e+005	
16	Mass Enthalpy (Btu/lb)	-829.6		-829.6	-1068	-829.6	
17 18	Molar Entropy (Btu/lbmole-F)	101.1		101.1	40.12	0.4411	
19	Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr)	0.4411		0.4411	1.043 0.0000	0.0000	
20	Molar Density (Ibmole/ft3)	0.0000		0.0000	4.423e-002	0.0000	
21	Mass Density (API)	46.35		46.35	5051	77.75	
22	Std Ideal Lig Mass Density (API)	29.30		29.30	143.4	29.30	
23	Liq Mass Density @Std Cond (API_60)	29.36		29.36	203.4	29.36	
24	Molar Heat Capacity (Btu/lbmole-F)	125.4		125.4	21.10	125.4	
25	Mass Heat Capacity (Btu/lb-F)	0.5473		0.5473	0.5487	0.5473	
26	Thermal Conductivity (Btu/hr-ft-F)	6.995e-002	6.9	95e-002	2.286e-002	6.995e-002	
27	Viscosity (cP)	1.017		1.017	1.510e-002	0.9126	
28	Surface Tension (dyne/cm)	18.11		18.11		18.11	
29	Molecular Weight	229.2		229.2	38.46	229.2	
30	Z Factor	0.1845		0.1845	0.9022	0.2170	
31 32			Inlet S	tream			
33			63	IΔ			
34	Vapour Fraction			0.0000			
35	Temperature	(F)		271.6			
36	Pressure	(kg/cm2)		27.02			
37	Molar Flow	(lbmole/hr)		4198			
38	MassFlow	(lb/hr)		9.619e+005			
39	Std Ideal Liq Vol Flow	(barrel/day)		7.500e+004			
40 41	HeatFlow	(MMBtu/hr)		-798.0			
42			Outlet	Stream			
43			63A2	63AVA		63A-SAL	
44	Vapour Fraction		0.0000		1.0000	0.0000	
45	Temperature	(F)	272.0 *		272.0	272.0	
46		(kg/cm2)	22.03		22.03	22.03	
47 48	Molar Flow (II MassFlow	omole/hr) (lb/hr)	4198 9.619e+005		0.0000	0.0000	
49		arrel/day)	7.500e+004		0.0000	0.0000	
50		MBtu/hr)	-798.0		0.0000	0.0000	
51		, ,			'	'	
52							
53							
54							
55							
56							
57							
58							
59							
61							
52 53 54 55 56 57 58 60 61 62							
63	Hyprotech Ltd.		HYSYS v3.2	(Build 5029)			Page 3 of 3
_	Licensed to: TEAM LND						* Specified by user.

CAPÍTULO 6 96

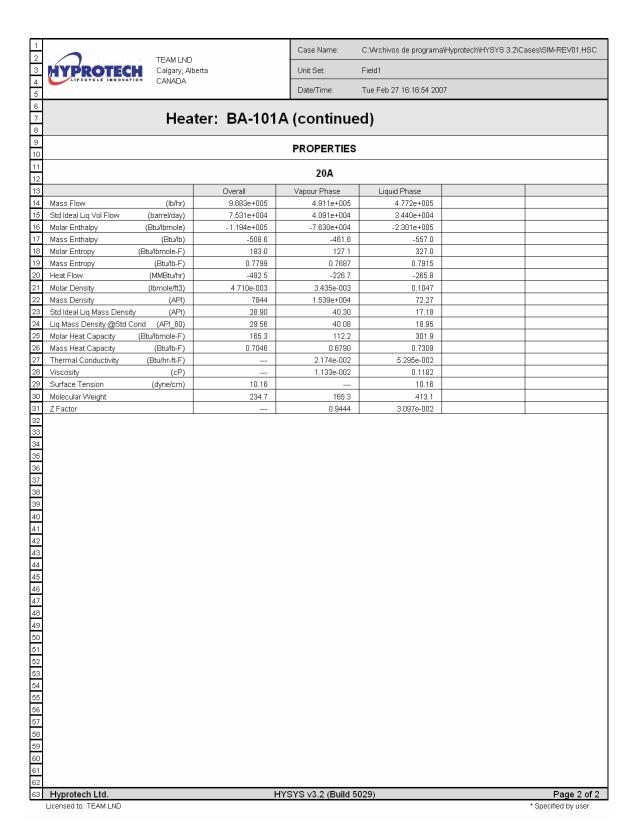
1					Case Name:	C:\Archivos de pr	ograma\Hyprotech\HYS	YS 3.2\Case	s\SIM-REV0	1.HSC
1 2 3 4	HYPROTEC	TEAM LND Calgary, Albe	erta		Unit Set:	Field1				
4 5	LIFECYCLE INNOVA-	CANADA			Date/Time:	Tue Feb 27 16:08	:35 2007			
6							_			
7 8 9 10			Α	bsoi	rber: DA-10	01A @Ma	ain			
9					CONNECTIONS					
10 11					Inlet Stream					
12	STREAM	NAME		Sta			FROM UNIT OF	PERATION		
13	13A1		6 TS-1		ido	Valve			V	'LV-100
14	20AA		1TS-1			Recycle				RCY-2
15					Outlet Stream					
16	STREAM	NAME		Sta	ae	ļ	TO UNIT OPE	RATION		
17	16A		1_TS-1							
18	13AL		6TS-1			Pump			G	A-103A
19 20					MONITOR					
21					Specifications Summar					
22		Specified Value	: Cu	rent Value	e Wt. Error	Wt. Tol.	Abs. Tol.	Active	Estimate	Used
23 24 25 26										
24					SPECS					
26				Coli	umn Specification Param	neters				
27										
28										
29	Fixed / Ranged:	Pi	imary / Alternate		Lower Bo	ound:	Upper	Bound:		
30					SUBCOOLING					
31					OODCOOLING		I			
32 33	D (0.1)									
34	Degrees of Subcooling Subcool to									
35	Subcoorto									
36					User Variables					
37 38					PROPERTIES					
39				Prope	erties : 20AA					
40			Overall		Liquid Phase					
41	Vapour/Phase Fraction		0.	0000	1.0000					
42	Temperature:	(F)		164.8	164.8					
43	Pressure:	(kg/cm2)		3.867	3.867					
44	Molar Flow	(lbmole/hr)		172.7	472.7					
45 46	Mass Flow	(lb/hr)	5.362e		5.362e+004					
46 47	Std Ideal Liq Vol Flow Molar Enthalpy	(barrel/day) (Btu/lbmole)	-1.021e	4804 +005	4804 -1.021e+005					
48	Mass Enthalpy	(Btu/lb)		399.7	-899.7					
49	Molar Entropy	(Btu/lbmole-F)		23.06	23.06					
50	Mass Entropy	(Btu/lb-F)		2033	0.2033					
51	Heat Flow	(MMBtu/hr)		18.24	-48.24					
52	Molar Density	(lbmole/ft3)	0.	3937	0.3937					
53	Mass Density	(API)		35.91	65.91					
54	Std Ideal Liq Mass Densi			53.26	53.26					
55	Liq Mass Density @Std 0			3.37	53.37					
56 67	Molar Heat Capacity	(Btu/lbmole-F)		58.76	58.76					
57 58	Mass Heat Capacity Thermal Conductivity	(Btu/lb-F) (Btu/hr-ft-F)	0.775e	5180	0.5180 6.775e-002					
59	Thermal Conductivity Viscosity	(cP)		8249	0.8249					
60	Surface Tension	(dyne/cm)		18.71	18.71					
61	Molecular Weight	(2).10/0/19		113.4	113.4					
62	Z Factor		2.0856		2.085e-002					
63	Hyprotech Ltd.				YSYS v3.2 (Build 50	129)			Page	1 of 3

63 Hyprotech Ltd.
Licensed to: TEAM LND * Specified by user.

1			Case Name:	C:\Archivos de programa	\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
3	MYPROTECH TEAM LND Calgary, Alb	erta	Unit Set:	Field1	
4 5	CANADA CANADA		Date/Time:	Tue Feb 27 16:08:35 200	7
6					
7		Abso	rber: DA-1	01A @Main	(continued)
8					· · · · · · · · · · · · · · · · · · ·
10		Overall Overall	vapour Phase	Liquid Phase	
11	Vapour/Phase Fraction	0.1150	0.1150	0.8850	
12	Temperature: (F)	417.9	417.9	417.9	
13	Pressure: (kg/cm2)	3.833	3.833	3.833	
14	Molar Flow (lbmole/hr)	4198	482.7	3715	
15	Mass Flow (lb/hr)	9.619e+005	4.548e+004	9.164e+005	
16 17	Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole)	7.500e+004 -1.695e+005	4250 -6.151e+004	7.075e+004 -1.836e+005	
18	Mass Enthalpy (Btu/lb)	-1.095e+005 -739.8	-6.1516+004	-744.1	
19	Molar Entropy (Btu/lbmole-F)	127.0	54.85	136.3	
20	Mass Entropy (Btu/lb-F)	0.5541	0.5822	0.5527	
21	Heat Flow (MMBtu/hr)	-711.6	-29.69	-681.9	
22	Molar Density (lbmole/ft3)	4.278e-002	6.180e-003	0.1856	
23	Mass Density (API)	767.7	1.501e+004	61.03	
24	Std Ideal Liq Mass Density (API)	29.30	61.25	27.71	
25 26	Liq Mass Density @Std Cond (API_60)	29.36	59.58	28.44	
27	Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lb-F)	142.2 0.6207	53.19 0.5646	153.8 0.6235	
28	Thermal Conductivity (Btu/hr-ft-F)	0.0201	1.760e-002	5.975e-002	
29	Viscosity (cP)		1.084e-002	0.2712	
30	Surface Tension (dyne/cm)	13.09		13.09	
31	Molecular Weight	229.2	94.21	246.7	
32	Z Factor		0.9368	3.119e-002	
33					
-			perties : 13AL	11. 11.01	
34	Vangur/Phase Fraction	Overall	Vapour Phase	Liquid Phase	
34 35	Vapour/Phase Fraction Temperature: (F)	Overall 0.0000	Vapour Phase 0.0000	1.0000	
34	Temperature: (F)	Overall 0.0000 408.7	Vapour Phase 0.0000 408.7	1.0000 408.7	
34 35 36		Overall 0.0000	Vapour Phase 0.0000	1.0000	
34 35 36 37	Temperature: (F) Pressure: (kg/cm2)	Overall 0.0000 408.7 3.635	Vapour Phase 0.0000 408.7 3.635	1.0000 408.7 3.635	
34 35 36 37 38	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr)	Overall 0.0000 408.7 3.635 4128	Vapour Phase 0.0000 408.7 3.635 0.0000	1,0000 408.7 3,635 4126	
34 35 36 37 38 39 40	Temperature: (F) Pressure: (kg/cm2) Molar Flow (libmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole)	Overall 0.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 -6.377e+004	1.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005	
34 35 36 37 38 39 40 41	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lb)	Overall 0.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005 -749.7	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1	1.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7	
34 35 36 37 38 39 40 41 42 43	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26	1.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7	
34 35 36 37 38 39 40 41 42 43	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651	1.0000 408.7 3.635 4126 9.683+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399	
34 35 36 37 38 39 40 41 42 43	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Heat Flow (MMBtu/hr)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000	1.0000 408.7 3.635 4126 9.683-6005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0	
34 35 36 37 38 39 40 41 42 43 44 45	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	Overall 0.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651	1.0000 408.7 3.635 4126 9.683+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399	
34 35 36 37 38 39 40 41 42 43 44 45 46	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbnole) Mass Enthalpy (Btu/lb) Molar Entropy (Btu/lbnole-F) Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr) Molar Density (lbmole/ft3)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003	1.0000 408.7 3.635 4126 9.683e-005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940	
34 34 35 36 37 38 39 41 42 43 45 46 47 48 49 49	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Heat Flow (MMBtu/hr) Molar Density (lbmole/ft3) Mass Density (API)	Overall 0.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004	1,0000 408.7 3,635 4126 9,683e+005 7,531e+004 -1,759e+005 -749.7 126.7 0,5399 -726.0 0,1940 62.12	
34 34 35 36 39 40 41 42 43 44 45 46 47 48 49 50 50	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (bd/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Entropy (MMBtu/hr) Molar Density (Ibmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density (API-80) Molar Heat Capacity (Btu/lbmole-F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 54.68	1.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Density (lbmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 28.56 145.8 0.6211	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 54.69 0.5592	1.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5398 -726.0 0.1940 62.12 28.90 29.56 145.8	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Entropy (MMBtu/hr) Molar Density (MMBtu/hr) Std Ideal Liq Mass Density (API) Liq Mass Density (QAPI) Liq Mass Density (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbr-F) Thermal Conductivity (Btu/lbr-F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 -0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 56.15 54.69 0.5592 1.686e-002	1.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002	
341 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (Btu/lbmole) Molar Enthalpy (Btu/lbmole) Mass Entropy (Btu/lbmole) Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/hr-ft-F) Viscosity (CP)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 54.69 0.5592	1,0000 408,7 3,635 4128 9,683e+005 7,531e+004 -1,759e+005 -749,7 126,7 0,5399 -726,0 0,1940 62,12 28,90 29,56 145,8 0,6211 5,961e-002 0,2663	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (Btu/lbmole) Molar Enthalpy (Btu/lbmole) Mass Entropy (Btu/lbmole) Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density (Btu/lbmole-F) Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/hr-ft-F) Viscosity (CP) Surface Tension (dyne/cm)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 -0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 56.15 54.69 0.5592 1.686e-002	1,0000 408,7 3,635 4126 9,688+005 7,531e+004 -1,759e+005 -749,7 126,7 0,5399 -726,0 0,1940 62,12 28,90 29,56 145,8 0,6211 5,961e-002 0,2663 12,92	
344 356 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 52 53	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (Btu/lbmole) Molar Enthalpy (Btu/lbmole) Mass Entropy (Btu/lbmole) Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/hr-ft-F) Viscosity (CP)	Overall 0.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -728.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.00000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 64.68 0.5592 1.686e-002 1.040e-002	1,0000 408,7 3,635 4128 9,683e+005 7,531e+004 -1,759e+005 -749,7 126,7 0,5399 -726,0 0,1940 62,12 28,90 29,56 145,8 0,6211 5,961e-002 0,2663	
341 363 373 383 404 414 45 464 474 484 49 50 51 52 53 54 55	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Entropy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Heat Flow (MMBtu/hr) Molar Density (lbmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density (Btu/lbmole-F) Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/hr-ft-F) Viscosity (CP) Surface Tension (dyne/cm)	Overall 0.0000 408.7 3.635 4126 9.6836+005 7.531e+004 -1.759e+005 7.49.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.860e-002	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 54.69 0.5592 1.686e-002 1.040e-002 97.79 0.9330 Derties: 16A	1,0000 408.7 3,635 4126 9,688-905 7,531e+004 -1,759e+005 -749.7 126.7 0,5399 -726.0 0,1940 62.12 28.90 29.56 145.8 0,6211 5,961e-002 0,2663 12,92 234.7	
341 363 373 384 404 414 45 464 47 48 49 50 51 52 53 54 55 56 57	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Heat Flow (MMBtu/hr) Molar Density (lbmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/hr-ft-F) Viscosity (CP) Surface Tension (dyne/cm) Molecular Weight Z Factor	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.860e-002 Pro	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 54.68 0.5592 1.688e-002 1.040e-002 97.79 0.9330 perties: 16A Vapour Phase	1,0000 408.7 3,635 4126 9,688-905 7,531e+004 -1,759e+005 -749.7 126.7 0,5399 -726.0 0,1940 62.12 28.90 29.56 145.8 0,6211 5,961e-002 0,2663 12,92 234.7	
340 363 373 383 394 404 415 464 474 485 501 515 525 536 546 556 567 588 59	Temperature: (F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.860e-002 Pro Overall	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 58.15 54.89 0.5592 1.686e-002 1.040e-002 97.79 0.9330 Derties: 16A Vapour Phase 1.0000	1,0000 408.7 3,635 4126 9,688-905 7,531e+004 -1,759e+005 -749.7 126.7 0,5399 -726.0 0,1940 62.12 28.90 29.56 145.8 0,6211 5,961e-002 0,2663 12,92 234.7	
340 363 373 383 394 404 415 464 474 485 501 501 502 503 504 505 506 507 508	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Heat Flow (MMBtu/hr) Molar Density (lbmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density (API) Liq Mass Density (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/lbr-F) Thermal Conductivity (Btu/lbr-F) Surface Tension (dyne/cm) Molecular Weight Z Factor Vapour/Phase Fraction Temperature: (F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.860e-002 Overall 1.0000 302.2	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 56.15 54.69 0.5592 1.686e-002 1.040e-002 97.79 0.9300 Derties: 16A Vapour Phase 1.0000 302.2	1,0000 408.7 3,635 4126 9,688-905 7,531e+004 -1,759e+005 -749.7 126.7 0,5399 -726.0 0,1940 62.12 28.90 29.56 145.8 0,6211 5,961e-002 0,2663 12,92 234.7	
340 363 373 383 394 404 414 454 464 474 484 495 505 515 556 565 566 577 588 599 600	Temperature: (F)	Overall 0.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.860e-002 Pro Overall 1.0000 302.2 3.533	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 56.15 54.69 0.5592 1.686e-002 1.040e-002 97.79 0.9330 Derties: 16A Vapour Phase 1.0000 3.02.2 3.533	1,0000 408.7 3,635 4126 9,688-905 7,531e+004 -1,759e+005 -749.7 126.7 0,5399 -726.0 0,1940 62.12 28.90 29.56 145.8 0,6211 5,961e-002 0,2663 12,92 29.47	
340 363 373 383 394 404 415 464 474 485 501 515 525 536 546 557 568 576	Temperature: (F) Pressure: (kg/cm2) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lbmole-F) Mass Entropy (Btu/lbmole-F) Heat Flow (MMBtu/hr) Molar Density (lbmole/ft3) Mass Density (API) Std Ideal Liq Mass Density (API) Liq Mass Density (API) Liq Mass Density (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lbmole-F) Thermal Conductivity (Btu/lbr-F) Thermal Conductivity (Btu/lbr-F) Surface Tension (dyne/cm) Molecular Weight Z Factor Vapour/Phase Fraction Temperature: (F)	Overall 0.0000 408.7 3.635 4128 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -728.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.880e-002 Pro Overall 1.0000 302.2 3.633 544.1	Vapour Phase 0.0000 408.7 3.635 0.0000 0.0000 0.0000 -6.377e+004 -652.1 55.26 0.5651 0.0000 5.947e-003 1.503e+004 59.42 56.15 54.69 0.5592 1.686e-002 1.040e-002 97.79 0.9300 Derties: 16A Vapour Phase 1.0000 302.2	1.0000 408.7 3.635 4126 9.683e+005 7.531e+004 -1.759e+005 -749.7 126.7 0.5399 -726.0 0.1940 62.12 28.90 29.56 145.8 0.6211 5.961e-002 0.2663 12.92 234.7 2.880e-002	Page 2 of 3

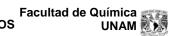
Licensed to: TEAM LND *Specified by user.

1			Case Name: C:\Archivos de programa\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC						
2	TEAM LND Calgary, Albe	rta	Unit Set:	Field1					
4	LIFECUCLE INNOVATION CANADA		Date/Time:	Tue Feb 27 16:08:35 2007					
5 6			Date Time. Tue Peo 27 To.us.35 2007						
7	Absorber: DA-101A @Main (continued)								
8	Properties : 16A								
10		Overall	Vapour Phase						
11	Mass Flow (lb/hr)	4.721e+004	4.721e+004						
12	Std Ideal Liq Vol Flow (barrel/day)	4490	4490						
13 14	Molar Enthalpy (Btu/lbmole) Mass Enthalpy (Btu/lb)	-6.220e+004 -716.9	-6.220e+004 -716.9						
15	Molar Entropy (Btu/lbmole-F)	42.76	42.76						
16	Mass Entropy (Btu/lb-F)	0.4928	0.4928						
17	Heat Flow (MMBtu/hr)	-33.85	-33.85						
18	Molar Density (Ibmole/ft3)	6.662e-003	6.662e-003						
19 20	Mass Density (API) Std Ideal Liq Mass Density (API)	1.512e+004 64.65	1.512e+004 64.65						
21	Liq Mass Density @Std Cond (API_60)	64.04	64.04						
22	Molar Heat Capacity (Btu/lbmole-F)	43.82	43.82						
23	Mass Heat Capacity (Btu/lb-F)	0.5051	0.5051						
24 25	Thermal Conductivity (Btu/hr-ft-F)	1.413e-002	1.413e-002						
26	Viscosity (cP) Surface Tension (dyne/cm)	9.518e-003	9.518e-003						
27	Molecular Weight	86.76	86.76						
28	Z Factor	0.9226	0.9226						
29 30									
31									
32									
33									
34									
36									
37									
38									
39									
41									
42									
43									
44									
45									
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47									
49									
50 64									
51 52									
53									
54									
55									
57									
58									
59									
60									
50 51 52 53 54 55 56 57 58 59 60 61									
62 63	Hyprotech Ltd.	НУ	'SYS v3.2 (Build 5	5029) Page 3 of 3					
-00	nyprotecticut. https://doi.org/10.1000/10.1000/10.1000/10.1000/10.1000/10.1000/10.1000/10.100								


63 Hyprotech Ltd.
Licensed to: TEAM LND

1			Coope Nierone	Od the letter of the same	THE STATE OF THE S					
2	TEAM LND		Case Name:	C:VArchivos de pro	grama\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC					
3	CANADA CANADA	oerta	Unit Set:	Unit Set Field1						
5			Date/Time:	Date/Time: Tue Feb 27 18:16:54 2007						
6 7	Heater: BA-101A									
8	neater. DA-IVIA									
9 10	CONNECTIONS									
11	Inlet Stream									
12 13	STREAM NAME			FROM UNIT OPERATION						
14	15A3		Valve		VLV-101					
15 16			Outlet Stream	1						
17	STREAM NAME			TO UNIT OPERATION						
18	20A		Mixer		MIX-101					
19 20			Energy Stream	n						
21	STREAM NAME			FROM UI	NIT OPERATION					
22 23	3									
24			PARAMETERS	3						
25	·	4.600 psi Duty: Selected Zones		232.5 MMBtu/hr	Volume: 3.531 ft3					
26 27	Function: Not	Selected Zones								
28			User Variables	.						
29 30			PROPERTIES							
31			15A3							
32 33		Overall	Vapour Phase	Liquid Phase						
34	Vapour/Phase Fraction	0.09			089					
35	Temperature: (F)	40:			02.9					
36	Pressure: (kg/cm2)	2.5			510					
37 38	Molar Flow (lbmole/hr) Mass Flow (lb/hr)	9.683e+0		9.278e+	750					
39	Mass Flow (lb/hr) Std Ideal Lig Vol Flow (barrel/day)	7.531e+0		7.165e+						
40	Molar Enthalpy (Btu/lbmole)	-1.757e+0		-1.864e+						
41	Mass Enthalpy (Btu/lb)	-74			53.3					
42	Molar Entropy (Btu/lbmole-F)	12			33.9					
43	Mass Entropy (Btu/lb-F)	0.54			412					
44	Heat Flow (MMBtu/hr)				38.9					
45	Molar Density (lbmole/ft3)	` '			866					
46	Mass Density (API)				3.50					
47	Std Ideal Liq Mass Density (API)	28.	90 54.85	2	7.77					
48	Liq Mass Density @Std Cond (API_60) 29.		56 54.54	28	3.80					
49	Molar Heat Capacity (Btu/lbmole-F) 14		3.9 59.60	16	52.3					
50	Mass Heat Capacity (Btu/lb-F)	Heat Capacity (Btu/lb-F) 0.6		0.6	157					
51	Thermal Conductivity (Btu/hr-ft-F)		1.558e-002	6.235e-						
52	Viscosity (cP)		9.521e-003		124					
53	Surface Tension (dyne/cm)	13.			3.88					
54	Molecular Weight	234			17.4					
55 56										
57	300									
58										
59	Vapour/Phase Fraction	0.72	00 0.7200	0.2	800					
60	Temperature: (F)		3.0 * 698.0		38.0					
61	Pressure: (kg/cm2)		33 * 2.833		833					
1 1	Molar Flow (lbmole/hr)	41	26 2971 HYSYS v3.2 (Build 5		155					
62 63	Hyprotech Ltd.				Page 1 of 2					

Licensed to: TEAM LND * Specified by user.


1	1			Case Name: C:\Archivos de programa\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC									
3	Calgary, Alberta CANADA				Unit Set: Field1								
4					Date/Tip								
5 6		Date/Time: Wed Feb 28 13:09:09 2007											
7 8	Column Sub-Flowsheet: DA-102 @Main												
9 10	CONNECTIONS												
11					Inlet S	tream							
12													
13	20		31	_		Mixer						MIX-101	
	14 21 33_Main TS												
15	18			Main TS			Recycle RCY-4						
16 17	19 24-VAP			L_Main TS _SS1			Recycle RCY-						
18	25-VAP			_SS2									
19	26-VAP		4										
20	27-VAP		5	_									
21					Outlet :	Stream							
22							TO UNIT OPERATION						
23				Main TS			Pump					BA-112	
24	4 GAS-ATM FA-102						Tee					DV4	
25	Q-DA102			N-102									
26													
27							Pump G.						
28 29	19-CAL			7Main TS SS1			Pump GA-1						
30	102-CAL 112-CAL		4-	_			Pump GA-106/R						
31	122-CAL		4	SS2 SS3			Pump GA-107. Pump GA-108.						
32	135-CAL		5				Pump GA-121/R						
33					MON	ITOD							
34					MON								
35						s Summary	T = .	1			T=		
36	D-0	Specified V	alue	Current Value		Vt. Error	Wt. Tol.	Abs.	1 ol. 000e-002 *	Active	Estimate	Used	
37 38	Reflux Ratio Distillate Rate	3.300e+004 barrel/day *		5.3 3.300e+004 barrel/d		1.463e-006				Off On	On On	Off On	
39	Reflux Rate	J.J006 - 004 Da		1.733e+004 lbmole		1.4036-000	1.000e-002		151.0 barrel/day * 2.205 lbmole/hr *		On	Off	
40	Btms Prod Rate			1724 Ibmole			1.000e-002		lbmole/hr *	Off Off	On	Off	
41	18-CAL Rate	2.805e+004 barrel/day *		2.805e+004 barrel/o		5.225e-008	1.000e-002		151.0 barrel/day *		On	On	
42	19-CAL Rate	2.566e+004 barrel/day *		2.566e+004 barrel/o	day -	2.441e-006	1.000e-002	* 151.01	151.0 barrel/day *		On	On	
43	SS1 Prod Flow	1.231e+004 barrel/day *		1.231e+004 barrel/o	day	5.467e-007	1.000e-002	* 151.01	151.0 barrel/day *		On	On	
44	SS2 Prod Flow	1.682e+004 barrel/day *		1.682e+004 barrel/o		2.884e-007	1.000e-002		151.0 barrel/day *		On	On	
45	SS3 Prod Flow	2.016e+004 barrel/day *		2.016e+004 barrel/o		2.167e-006	1.000e-002		151.0 barrel/day *		On	On	
46	SS4 Prod Flow	9190 barrel/day *		9190 barrel/o		2.981e-006	1.000e-002	_	151.0 barrel/day *		On	On	
47	Cut Point	348.8 F *		359.0		1.162e-003	1.000e-002		0.1800 F *		On	Off	
48 49	Cut Point - 2	446.0 F *		472.8		2.978e-003	1.000e-002		0.1800 F *		On	Off	
50	Cut Point - 3 Cut Point - 4	546.8 F * 662.0 F *		601.6 704.8		6.094e-003 4.758e-003	1.000e-002 1.000e-002		0.1800 F * 0.1800 F *		On On	Off Off	
51	Cut Point - 5	845.6 F *		789.		6.277e-003	1.000e-002		0.1800 F *	Off Off	On	Off	
52						6.983e-002	1.000e-002		1.800 F *	Off	On	Off	
53	order and an area of												
54					SPE	:08							
55				Colum	nn Specifica	ation Parame	eters						
56													
57	7								I				
58 59	Fixed / Ranged:	Fixed Primary / Alternate:			Primary								
59 60	Stage: FA-102 Flow Basis: Molar Liquid Specification: Light												
61	Distillate Rate												
62	Fixed / Ranged: Fixed Primary / Alternate: Primary Lower Bound: Upper Bound:												
63	Hyprotech Ltd. HYSYS v3.2 (Build 5029) Page 1 of 11									1 of 11			
_	ryprotectifictu. Prage 1 of 11 Irensed for TEAM IND September 1 of 12 September 1 of												

63 Hyprotech Ltd.
Licensed to: TEAM LND

1			Case N	eme: C:Wrchivos	de programa\Hvprot	tech\HYSYS 3.2\Case	SIM PEVALUEC		
2		EAM LND			ue programa riypro	.cc.11(11) 313 3.210a56	SOM-REVOLUE		
3 4		algary, Alberta ANADA	Unit Set	: Field1					
5			Date/Tir	Date/Time: VVed Feb 28 13:09:09 2007					
6	_			DA 400 OL	,				
7 8	Co	lumn Sub-Fl	owsneet:	DA-102 @IV	lain (con	iinuea)			
9			Column Specific	ation Parameters					
10 11			Distilla	te Rate					
12	Stream: GAS-A	ATM Flow Basis:	Std Ideal Vol						
13 14			Reflux	x Rate					
15	Fixed / Ranged: Fi	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
16	Stage: FA-	102 Flow Basis:	Molar	Liquid Specification:	Light				
17 18			Btms Pı	od Rate					
19	Fixed / Ranged: Fi	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
20	Stream: RES-A	·	Molar						
21 22	18-CAL Rate								
23	Fixed / Ranged: Fi	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
24		CAL Flow Basis:	Std Ideal Vol	3-911-91		.pp			
25 26	19-CAL Rate								
26 27	Fixed / Ranged: Fi	ixed Primary / Alternate	: Primary	Lower Bound:	***	Upper Bound:			
28	Stream: 19-0		Std Ideal Vol	Zonor Zouna.		oppor Boaria.			
29	SS1 Prod Flow								
30 31	Fixed / Ranged: Fi	ixed Primary / Alternate		Lower Bound:		Upper Bound:			
32	Stream: 102-0	·	Std Ideal Vol	Lovver Bound:	 _	Оррег Воини.			
33			SS2 Pr	od Flow					
34 35	Fixed / Ranged: Fi	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
36	Stream: 112-0		Std Ideal Vol						
37 38			SS3 Pr	od Flow					
39	Fixed / Ranged: Fi	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
40	Stream: 122-0		Std Ideal Vol						
41 42			SS4 Pr	od Flow					
43	Fixed / Ranged: F	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
44	Stream: 135-0	CAL Flow Basis:	Std Ideal Vol						
45 46			Cut	Point					
47	Fixed / Ranged: Fixed / Ranged:	ixed Primary / Alternate	: Primary	Lower Bound:		Upper Bound:			
48	Stage: 1_Main		ASTM D86	Flow Basis:	Volume Fraction	Phase:	Liquid		
49 50	Cut Point 95	5.00 * Subtract API Cracl	king Correction: No	D86 Method:	API 1974				
51			Cut Po	oint - 2					
52	•	ixed Primary / Alternate		Lower Bound:		Upper Bound:			
53 54		SS1 Type:	TBP	Flow Basis:	Volume Fraction	Phase:	Liquid		
55	Cut Point 98	5.00 *		-:4 2					
56				oint - 3					
57 50		ixed Primary / Alternate		Lower Bound:	Volume Frantisco	Upper Bound:			
58 59	Stage: 4_5 Cut Point 95	SS2 Type: 5.00 *	TBP	Flow Basis:	Volume Fraction	Phase:	Liquid		
60			Cut Pr	oint - 4					
61	Fixed (Flance)	District College				Hanna Broomit			
62 63	Fixed / Ranged: Fi Hyprotech Ltd.	ixed Primary / Alternate		Lower Bound: (Build 5029)		Upper Bound:	Page 2 of 11		
_	Licensed to: TEAM LND			,			Specified by user.		

Licensed to: TEAM LND *Specified by user.

					Case Na	ime:	C:\Archivos de	e programa\Hypro	tech\HYSYS	3.2\Cases\SIM-REV01.HSC	
3	HYPROTECH	TEAM LN Calgary,			Unit Set:		Field1				
4	LIFECYCLE INNOVATION	CANADA			Date/Tin	Date/Time: Wed Feb 28 13:09:09 2007					
5 6					2 413, 111		1104105201	0.00.00 2001			
$\overline{\mathbf{Z}}$		Colun	nn Sub	-Flowsh	neet:	DA-10	02 @M	ain (con	tinued	l)	
9				0-1-	0	tion Decem					
10				Cuit	ımn Specific:		ieters				
11					Cut Po	oint - 4					
12		4_SS3	Туре:		TBP	Flow Bas	sis: '	/olume Fraction	Phase:	Liquid	
13 14	Cut Point	95.00 *									
15					Cut Po	oint - 5					
16	Fixed / Ranged:	Fixed	Primary / Alt	ernate:	Primary	Lower B			Upper Bo		
17 18	Stage: Cut Point	5_SS4 95.00 *	Туре:		TBP	Flow Bas	SIS:	/olume Fraction	Phase:	Liquid	
19					Tempe	raturo					
20 21	Fixed (Depart)	Fig. at 1	Dringer	oranto:	-		ound:		Here P	u med:	
22	Fixed / Ranged: Stage:	Fixed FA-102	Primary / Alt	emate.	Primary	Lower B	ouliu.		Upper Bo	unu	
23	<u>.</u>				SUBCC	OLING					
24					30600	OLING					
25 26	Degrees of Subcooling			FA-102							
27	Subcool to						-	-			
28	User Variables										
29 30	USCI VIII III III										
31	SIDE STRIPPERS										
32	Side Stripper Summary										
33 34		# Stages	Liqu	iid Draw Stage	Va	pour Returr	n Stage	Product F (lbmole/		Reboiler Duty	
35	DA-103A		1 *	9Main ⁻	гs	5	Main TS	(907.4		
36	DA-103B		1 *	15Main ⁻	rs	14	Main TS		1040		
37 38	DA-103C		1 * 5 *	21Main ⁻		20			998.0		
39	DA-103D	:	2	27Main ⁻			Main TS		375.9		
40					SIDE RE	CTIFIER	S				
41 42					PUMP AI	ROUNDS	3				
43											
44					VAP BY	PASSES	·				
45 46					PROPE	RTIES					
47				Prope	erties :	18					
48			0/	/erall	Liquid Ph	_					
49 50	Vapour/Phase Fraction	/F)		0.0000		1.0000					
50 51	Temperature: Pressure:	(F) (kg/cm2)	+	250.1 5.477		250.1 5.477					
52	Molar Flow	(lbmole/hr)		1565		1565					
53	Mass Flow	(lb/hr)		3.517e+005		17e+005			•		
54		(barrel/day)		2.805e+004		05e+004					
55 56	Molar Enthalpy (Mass Enthalpy	(Btu/lbmole) (Btu/lb)	-	1.901e+005 -845.8	-1.90	01e+005 -845.8					
57		tu/lbmole-F)		84.99		84.99					
58	Mass Entropy	(Btu/lb-F)		0.3781		0.3781					
59	Heat Flow	(MMBtu/hr)		-297.5		-297.5					
60 61	Molar Density Mass Density	(lbmole/ft3) (API)		0.2168 49.40		0.2168 49.40					
62	Std Ideal Liq Mass Density	(API)		32.96		32.96					
63	Hyprotech Ltd.		•		/SYS v3.2		129)			Page 3 of 11	

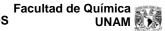
Licensed to: TEAM LND *Specified by user.

1			Case Name:	C:Varchivos de programa	a\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
3	TEAM LND Calgary, Alb	orta	Unit Set:	Field1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4	LIFECVOLE INNOVATION CANADA	cita			07
5			Date/Time:	Wed Feb 28 13:09:09 20	ur
6 7	Column	Sub-Flowsh	neet: DA-1	02 @Main (d	continued)
8				()	
9 10		Overall Prope	erties: 18 Liquid Phase		
11	Liq Mass Density @Std Cond (API_60)	34.07	34.07		
12	Molar Heat Capacity (Btu/lbmole-F)	121.0	121.0		
13	Mass Heat Capacity (Btu/lb-F)	0.5382	0.5382		
14	Thermal Conductivity (Btu/hr-ft-F)	7.862e-002	7.862e-002		
15	Viscosity (cP)	0.6244	0.6244		
16 17	Surface Tension (dyne/cm) Molecular Weight	22.13 224.8	22.13 224.8		
18	Z Factor	4.718e-002	4.718e-002		
19			erties : 19		,
20		Overall	Liquid Phase		
21	Vapour/Phase Fraction	0.0000	1.0000		
22 23	Temperature: (F) Pressure: (kg/cm2)	279.7 5.421	279.7 5.421		
24	Pressure: (kg/cm2) Molar Flow (lbmole/hr)	1101	1101		
25	Mass Flow (lb/hr)	3.366e+005	3.366e+005		
26	Std Ideal Liq Vol Flow (barrel/day)	2.566e+004	2.566e+004		
27	Molar Enthalpy (Btu/lbmole)	-2.526e+005	-2.526e+005		
28	Mass Enthalpy (Btu/lb)	-826.6	-826.6		
29 30	Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	136.3 0.4462	136.3 0.4462		
31	Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr)	-278.2	-278.2		
32	Molar Density (Ibmole/ft3)	0.1658	0.1658		
33	Mass Density (API)	42.49	42.49		
34	Std Ideal Liq Mass Density (API)	25.74	25.74		
35	Liq Mass Density @Std Cond (API_60)	26.69	26.69		
36 37	Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lb-F)	166.8 0.5458	166.8 0.5458		
38	Thermal Conductivity (Btu/hr-ft-F)	8.205e-002	8.205e-002		
39	Viscosity (cP)	0.8355	0.8355		
40	Surface Tension (dyne/cm)	23.30	23.30		
41	Molecular Weight	305.6	305.6		
42	Z Factor	5.861e-002	5.861e-002		
43 44		Overall Prope	vapour Phase	Liquid Phase	
45	Vapour/Phase Fraction	0.7200	0.7200	0.2800	
46	Temperature: (F)	698.0	698.0	698.0	
47	Pressure: (kg/cm2)	2.833	2.833	2.833	
48	Molar Flow (Ibmole/hr)	8252	5941	2311	
49 50	Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barrel/day)	1.937e+006 1.506e+005	9.822e+005 8.181e+004	9.544e+005 6.881e+004	
51	Molar Enthalpy (Btu/lbmole)	-1.194e+005	-7.630e+004	-2.301e+005	
52	Mass Enthalpy (Btu/lb)	-508.6	-461.6	-557.0	
53	Molar Entropy (Btu/lbmole-F)	183.0	127.1	327.0	
54	Mass Entropy (Btu/lb-F)	0.7799	0.7687	0.7915	
55 56	Heat Flow (MMBtu/hr)	-985.0	-453.4	-531.6	
56 57	Molar Density (lbmole/ft3) Mass Density (API)	4.711e-003 7843	3.435e-003 1.539e+004	0.1047 72.27	
58	Std Ideal Liq Mass Density (API)	28.90	40.30	17.18	
59	Liq Mass Density @Std Cond (API_60)	29.56	40.08	18.95	
60	Molar Heat Capacity (Btu/lbmole-F)	165.4	112.2	301.9	
61	Mass Heat Capacity (Btu/lb-F)	0.7046	0.6790	0.7309	
62	Thermal Conductivity (Btu/hr-ft-F)		2.174e-002	5.295e-002	Dog 4 of 44
63	Hyprotech Ltd.	H	/SYS ∨3.2 (Build 50	129)	Page 4 of 11

Licensed to: TEAM LND *Specified by user.

1			Cara Name	CARACTE ACCUMENTATION OF THE PROPERTY OF THE P	DEV04 HOO
2	TEAM LND		Case Name:	C:\Archivos de programa\Hyprotech\HYSYS 3.2\Cases\SIM-F	EVUI.HSC
3	HYPROTECH Calgary, Alt	perta	Unit Set:	Field1	
4	LIFECUCLE INNOVATION CANADA				
5			Date/Time:	Wed Feb 28 13:09:09 2007	
6					
7	Columi	า Sub-Flowsh	eet: DA-1	02 @Main (continued)	
8					
9			rties : 20		
10		Overall	Vapour Phase	Liquid Phase	
11	Viscosity (cP)		1.133e-002	0.1182	
12 13	Surface Tension (dyne/cm)	10.16	105.0	10.16	
14	Molecular Weight Z Factor	234.7	165.3 0.9444	413.1 3.097e-002	
15	Z Factul	Drone	rties : 21	3.0976-002	
16		Overall	Vapour Phase		
17	Vapour/Phase Fraction	1.0000	1.0000		
18	Temperature: (F)	752.0	752.0		
19	Pressure: (kg/cm2)	3.445	3.445		
20	Molar Flow (Ibmole/hr)	5551	5551		
21	Mass Flow (lb/hr)	1.000e+005	1.000e+005		
22	Std Ideal Liq Vol Flow (barrel/day)	6861	6861		
23	Molar Enthalpy (Btu/lbmole)	-9.797e+004	-9.797e+004		
24	Mass Enthalpy (Btu/lb)	-5438	-5438		
25	Molar Entropy (Btu/lbmole-F)	45.88	45.88		
26	Mass Entropy (Btu/lb-F)	2.547	2.547		-
27	Heat Flow (MMBtu/hr)	-543.8	-543.8		
28	Molar Density (lbmole/ft3)	3.788e-003	3.788e-003		
29	Mass Density (API)	1.291e+005	1.291e+005		
30	Std Ideal Liq Mass Density (API)	10.00	10.00		
31	Liq Mass Density @Std Cond (API_60)	7.711	7.711		
32	Molar Heat Capacity (Btu/lbmole-F)	8.989	8.989		
33	Mass Heat Capacity (Btu/lb-F)	0.4990	0.4990		
34	Thermal Conductivity (Btu/hr-ft-F)	3.185e-002	3.185e-002		
35	Viscosity (cP)	2.436e-002	2.436e-002		
36	Surface Tension (dyne/cm)		40.00		
37 38	Molecular Weight	18.02 0.9949	18.02		
39	Z Factor		0.9949		
40		Overall Prope	rties : 24-VAP Vapour Phase		
41	Vapour/Phase Fraction	1.0000	1.0000		
42	Temperature: (F)	734.0	734.0		
43	Pressure: (kg/cm2)	4.533	4.533		
44	Molar Flow (Ibmole/hr)	3.000e+004	3.000e+004		
45	Mass Flow (lb/hr)	5.405e+005	5.405e+005		
46	Std Ideal Liq Vol Flow (barrel/day)	3.708e+004	3.708e+004		
47	Molar Enthalpy (Btu/lbmole)	-9.814e+004	-9.814e+004		
48	Mass Enthalpy (Btu/lb)	-5448	-5448		·
49	Molar Entropy (Btu/lbmole-F)	45.19	45.19		
50	Mass Entropy (Btu/lb-F)	2.509	2.509		
51	Heat Flow (MMBtu/hr)	-2944	-2944		
52	Molar Density (lbmole/ft3)	5.069e-003	5.069e-003		
53	Mass Density (API)	9.640e+004	9.640e+004		
54	Std Ideal Liq Mass Density (API)	10.00	10.00		
55	Liq Mass Density @Std Cond (API_60)	7.711	7.711		
56	Molar Heat Capacity (Btu/lbmole-F)	8.981	8.981		
57	Mass Heat Capacity (Btu/lb-F)	0.4985	0.4985		
58	Thermal Conductivity (Btu/hr-ft-F)	3.122e-002	3.122e-002		
59	Viscosity (cP)	2.396e-002	2.396e-002		
60	Surface Tension (dyne/cm) Molecular Weight	10.00	10.00		
61 62	*	18.02 0.9929	18.02 0.9929		
62 63	Z Factor Hyprotech Ltd.			029)	ae 5 of 11
ರಿತ	Hyprotecn Lta.	HY	'SYS v3.2 (Build 5	U29) Pa	ge 5 of 11

Licensed to: TEAM LND *Specified by user.

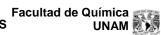


Molar Flow

Hyprotech Ltd.

(lbmole/hr)

APÉNDICE II. HOJAS DE ESPECIFICACIÓN DE ALGUNOS EQUIPOS

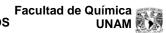

Page 6 of 11

Case Name: C:\Archivos de programa\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC TEAM LND Calgary, Alberta Unit Set CANADA Date/Time: Wed Feb 28 13:09:09 2007 7 Column Sub-Flowsheet: DA-102 @Main (continued) Properties: 25-VAP 9 Overall Vapour Phase Vapour/Phase Fraction 1 0000 1 0000 Temperature: (F) Pressure: (kg/cm2) 4 533 4 533 55.51 Molar Flow (lbmole/hr) Mass Flow (lb/hr) 1000 1000 Std Ideal Liq Vol Flow (barrel/day) 68.61 -9.814e+004 -9.814e+004 Molar Enthalpy (Btu/lbmole) 18 Mass Enthalpy (Btu/lb) -5448 -5448 Molar Entropy 45.19 45.19 (Btu/lbmole-F) Mass Entropy (Btu/lb-F) 2.509 2.509 Heat Flow -5.448 -5.448 (MMBtu/hr) Molar Density (lbmole/ft3) 5.069e-003 5.069e-003 (API) 9.640e+004 9.640e+004 Mass Density Std Ideal Liq Mass Density (API) 10.00 10.00 Liq Mass Density @Std Cond (API_60) 7.711 8.981 8.981 Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lb-F) Thermal Conductivity 3.122e-002 3.122e-002 (Btu/hr-ft-F) Viscosity (cP) 2.396e-002 2.396e-002 Surface Tension (dyne/cm) Molecular Weight 18.02 18.02 32 Z Factor 0.9929 Properties: 26-VAP Vapour/Phase Fraction 1.0000 1 0000 Temperature: 734.0 734.0 Pressure: 4.533 4.533 (kg/cm2) 38 Molar Flow (lbmole/hr) 832.6 832.6 Mass Flow 1.500e+004 1.500e+004 (lb/hr) Std Ideal Liq Vol Flow (barrel/day) 1029 1029 Molar Enthalpy (Btu/lbmole) 9.814e+004 9.814e+004 Mass Enthalpy -5448 -5448 45.19 45.19 Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F) 2.509 2.509 -81.72 -81.72 Heat Flow (MMBtu/hr) 5.069e-003 5.069e-003 Molar Density (lbmole/ft3) 9.640e+004 9.640e+004 Mass Density (API) Std Ideal Liq Mass Density 10.00 10.00 (API) 49 Liq Mass Density @Std Cond 7 711 7 711 Molar Heat Capacity 8.981 8.981 (Btu/lbmole-F) Mass Heat Capacity (Btu/lb-F) 0.4985 0.4985 Thermal Conductivity (Btu/hr-ft-F) 3.122e-002 3.122e-002 Viscosity 2.396e-002 2.396e-002 Surface Tension (dyne/cm) Molecular Weight 18 02 18 02 0.9929 27-VAP Properties Overall Vapour/Phase Fraction 1.0000 1.0000 Temperature: 734.0 734.0 Pressure: 4.533 4.533 (kg/cm2)

HYSYS v3.2 (Build 5029) Licensed to: TEAM LND Specified by user

1943

1943

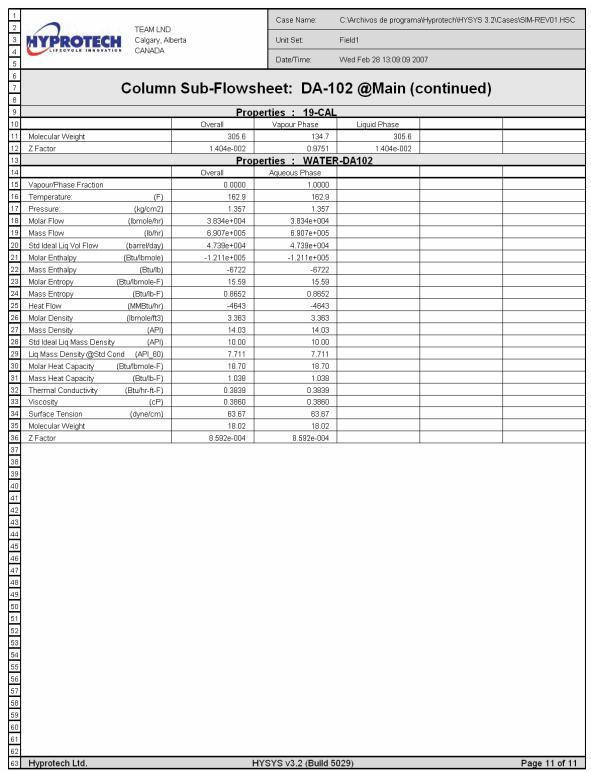


1			Case Name:	C:\Archivos de programa	NHyprotechNHYSYS 3.2\Cases\SIM-REV01.HSC
2	TEAM LND Calgary, Alb	orto	Unit Set:	Field1	
4	CANADA	ена			
5			Date/Time:	Wed Feb 28 13:09:09 20	U/
6 7	Column	Sub-Flows	heet DA-1	02 @Main (c	continued)
8	- Column	1 0 4 5 1 10 10 3 1	neet. DA 1	oz wimani (c	.orianaea)
9			erties : 27-VAP		
10 11	Mass Flow (lb/hr)	Overall 3.500e+004	Vapour Phase 3.500e+004		
12	Std Ideal Lig Vol Flow (barrel/day)	2401	2401		
13	Molar Enthalpy (Btu/lbmole)	-9.814e+004	-9.814e+004		
14	Mass Enthalpy (Btu/lb)	-5448	-5448		
15	Molar Entropy (Btu/lbmole-F)	45.19	45.19		
16	Mass Entropy (Btu/lb-F)	2.509	2.509		
17 18	Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3)	-190.7 5.069e-003	-190.7 5.069e-003		
19	Mass Density (API)	9.640e+004	9.640e+004		
20	Std Ideal Liq Mass Density (API)	10.00	10.00		
21	Liq Mass Density @Std Cond (API_60)	7.711	7.711		
22	Molar Heat Capacity (Btu/lbmole-F)	8.981	8.981		
23	Mass Heat Capacity (Btu/lb-F)	0.4985	0.4985		
24	Thermal Conductivity (Btu/hr-ft-F)	3.122e-002	3.122e-002		
25 26	Viscosity (cP) Surface Tension (dyne/cm)	2.396e-002	2.396e-002		
27	Surface Tension (dyne/cm) Molecular Weight	18.02	18.02		
28	Z Factor	0.9929	0.9929		
29			erties : GAS-A	ГМ	,
30		Overall	Vapour Phase	Liquid Phase	
31	Vapour/Phase Fraction	0.0000	0.0000	1.0000	
32	Temperature: (F)	162.9	162.9	162.9	
33 34	Pressure: (kg/cm2)	1.357 3248	1.357	1.357 3248	
35	Molar Flow (lbmole/hr) Mass Flow (lb/hr)	3.683e+005	0.0000 0.0000	3.683e+005	
36	Std Ideal Lig Vol Flow (barrel/day)	3.300e+004	0.0000	3.300e+004	
37	Molar Enthalpy (Btu/lbmole)	-1.022e+005	-6.046e+004	-1.022e+005	
38	Mass Enthalpy (Btu/lb)	-900.8	-1619	-900.8	
39	Molar Entropy (Btu/lbmole-F)	22.87	42.92	22.87	
40	Mass Entropy (Btu/lb-F)	0.2017	1.150	0.2017	
41	Heat Flow (MMBtu/hr)	-331.8	0.0000	-331.8	
42 43	Molar Density (Ibmole/ft3) Mass Density (API)	0.3940 65.80	2.920e-003 8.074e+004	0.3940 65.80	
44	Std Ideal Lig Mass Density (API)	53.27	8.074e+004 109.9	53.27	
45	Lig Mass Density @Std Cond (API 60)	53.38	111.9	53.38	
46	Molar Heat Capacity (Btu/lbmole-F)	58.62	16.76	58.62	
47	Mass Heat Capacity (Btu/lb-F)	0.5169	0.4488	0.5169	
48	Thermal Conductivity (Btu/hr-ft-F)	6.790e-002	1.527e-002	6.790e-002	
49	Viscosity (cP)	0.8545	1.094e-002	0.8545	
50	Surface Tension (dyne/cm)	18.81		18.81	
51 52	Molecular Weight Z Factor	113.4 7.333e-003	37.34 0.9895	113.4 7.333e-003	
53	Z i actul		erties : RES-A1		
54		Overall	Vapour Phase	Liquid Phase	
55	Vapour/Phase Fraction	0.0000	0.0000	1.0000	
56	Temperature: (F)	646.1	646.1	646.1	
57	Pressure: (kg/cm2)	1.603	1.603	1.603	
58	Molar Flow (Ibmole/hr)	1724	0.0000	1724	
59	Mass Flow (lb/hr)	8.372e+005	0.0000	8.372e+005	
60 61	Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole)	5.919e+004 -2.899e+005	0.0000 -1.035e+005	5.919e+004 -2.899e+005	
62	Mass Enthalpy (Btw/lb)	-2.8898+000	-1.030e+000 -2695	-2.699e+000 -597.2	
	Hyprotech Ltd.		YSYS v3.2 (Build 5		Page 7 of 11
63					

Licensed to: TEAM LND *Specified by user.

1			Case Name:	C:\Archivos de programa	\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
2	TEAM LND			<u> </u>	The state of the s
3	CANADA	erta	Unit Set:	Field1	
5			Date/Time:	Wed Feb 28 13:09:09 20	07
6					
7	Columr	Sub-Flowsh	neet: DA-1	02 @Main (c	continued)
8		Prone	erties : RES-A1	rM	
10		Overall	Vapour Phase	Liquid Phase	
11	Molar Entropy (Btu/lbmole-F)	373.8	61.19	373.8	
12	Mass Entropy (Btu/lb-F)	0.7700	1.593	0.7700	
13	Heat Flow (MMBtu/hr)	-500.0	0.0000	-500.0	
14	Molar Density (Ibmole/ft3)	9.569e-002	1.929e-003	9.569e-002	
15 16	Mass Density (API) Std Ideal Liq Mass Density (API)	58.25 14.31	1.188e+005 16.96	58.25 14.31	
17	Liq Mass Density @Std Cond (API_60)	15.66	5.625	15.66	
18	Molar Heat Capacity (Btu/lbmole-F)	341.2	22.03	341.2	
19	Mass Heat Capacity (Btu/lb-F)	0.7028	0.5733	0.7028	
20	Thermal Conductivity (Btu/hr-ft-F)	6.999e-002	2.571e-002	6.999e-002	
21	Viscosity (cP)	0.2932	2.124e-002	0.2932	
22	Surface Tension (dyne/cm)	13.96		13.96	
23	Molecular Weight	485.5 2.008e-002	38.42	485.5	
24 25	Z Factor		0.9959 erties : 102-CA	2.008e-002	
26		Overall	Vapour Phase	Liquid Phase	
27	Vapour/Phase Fraction	0.0000	0.0000	1.0000	
28	Temperature: (F)	297.7	297.7	297.7	
29	Pressure: (kg/cm2)	1.424	1.424	1.424	
30	Molar Flow (Ibmole/hr)	907.4	0.0000	907.4	
31	Mass Flow (lb/hr)	1.460e+005	0.0000	1.460e+005	
32 33	Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole)	1.231e+004 -1.329e+005	0.0000 -1.027e+005	1.231e+004 -1.329e+005	
34	Mass Enthalpy (Btu/lb)	-825.6	-1.02761003	-1.32861003	
35	Molar Entropy (Btu/lbmole-F)	58.64	49.53	58.64	
36	Mass Entropy (Btu/lb-F)	0.3643	1.283	0.3643	
37	Heat Flow (MMBtu/hr)	-120.6	0.0000	-120.6	
38	Molar Density (lbmole/ft3)	0.2752	2.520e-003	0.2752	
39	Mass Density (API)	67.56	9.050e+004	67.56	
40	Std Ideal Liq Mass Density (API)	42.33	30.15	42.33	
41 42	Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F)	43.30 93.77	15.21 18.40	43.30 93.77	
43	Mass Heat Capacity (Btu/lb-F)	0.5826	0.4768	0.5826	
44	Thermal Conductivity (Btu/hr-ft-F)	6.938e-002	1.475e-002	6.938e-002	
45	Viscosity (cP)	0.1721	1.179e-002	0.1721	
46	Surface Tension (dyne/cm)	16.84		16.84	
47	Molecular VVeight	161.0	38.60	161.0	
48	Z Factor	9.055e-003	0.9887	9.055e-003	
49 50		Overall Prope	erties : 112-CA		
51	Vapour/Phase Fraction	0.0000	Vapour Phase 0.0000	Liquid Phase 1.0000	
52	Temperature: (F)	430.3	430.3	430.3	
53	Pressure: (kg/cm2)	1.469	1.469	1.469	
54	Molar Flow (lbmole/hr)	1040	0.0000	1040	
55	Mass Flow (lb/hr)	2.073e+005	0.0000	2.073e+005	
56	Std Ideal Liq Vol Flow (barrel/day)	1.682e+004	0.0000	1.682e+004	
57	Molar Enthalpy (Btu/lbmole)	-1.479e+005	-1.041e+005	-1.479e+005	
58	Mass Enthalpy (Btu/lb)	-741.5	-1242	-741.5	
59 60	Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	97.74 0.4902	71.50 0.8531	97.74 0.4902	
61	Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr)	-153.7	0.8531 0.0000	-153.7	
62	Molar Density (lbmole/ft3)	0.2147	2.229e-003	0.2147	
63	Hyprotech Ltd.		YSYS v3.2 (Build 5		Page 8 of 11
_	Licensed to: TEAM LND		(2	1	* Specified by user

Licensed to: TEAM LND *Specified by user.



1					
2	TEAM LND		Case Name:	C:\Archivos de programa	\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
3	CANADA CANADA	erta	Unit Set:	Field1	
4 5	CANADA		Date/Time:	Wed Feb 28 13:09:09 20	07
6					
7	Column	Sub-Flows	heet: DA-10	02 @Main (c	continued)
9		Pron	erties : 112-CAL		
10		Overall	Vapour Phase	Liquid Phase	
11	Mass Density (API)	74.41	4.707e+004	74.41	
12	Std Ideal Liq Mass Density (API)	35.84	36.10	35.84	
13	Liq Mass Density @Std Cond (API_60)	36.79	25.15	36.79	
14 15	Molar Heat Capacity (Btu/lbmole-F)	128.4 0.6440	45.65 0.5447	128.4 0.6440	
16	Mass Heat Capacity (Btu/lb-F) Thermal Conductivity (Btu/hr-ft-F)	6.317e-002	1.606e-002	6.317e-002	
17	Viscosity (cP)	6.869e-002	1.189e-002	6.869e-002	
18	Surface Tension (dyne/cm)	13.34		13.34	
19	Molecular Weight	199.4	83.81	199.4	
20	Z Factor	1.019e-002	0.9812	1.019e-002	
21			erties : 122-CAL		
22 23	Vapour/Phase Fraction	Overall 0.0000	Vapour Phase 0.0000	Liquid Phase 1.0000	
24	Temperature: (F)	473.8	473.8	473.8	
25	Pressure: (kg/cm2)	1.513	1.513	1.513	
26	Molar Flow (lbmole/hr)	998.0	0.0000	998.0	
27	Mass Flow (lb/hr)	2.567e+005	0.0000	2.567e+005	
28	Std Ideal Liq Vol Flow (barrel/day)	2.016e+004	0.0000	2.016e+004	
29	Molar Enthalpy (Btu/lbmole)	-1.829e+005	-1.064e+005	-1.829e+005	
30	Mass Enthalpy (Btu/lb)	-711.0	-2066	-711.0	
31 32	Molar Entropy (Btu/lbmole-F) Mass Entropy (Btu/lb-F)	147.1 0.5718	62.56 1.214	147.1 0.5718	
33	Heat Flow (MMBtu/hr)	-182.5	0.0000	-182.5	
34	Molar Density (lbmole/ft3)	0.1701	2.168e-003	0.1701	
35	Mass Density (API)	69.97	7.882e+004	69.97	
36	Std Ideal Liq Mass Density (API)	30.44	25.86	30.44	
37	Liq Mass Density @Std Cond (API_60)	31.57	11.88	31.57	
38	Molar Heat Capacity (Btu/lbmole-F)	168.6	27.96	168.6	
39 40	Mass Heat Capacity (Btu/lb-F) Thermal Conductivity (Btu/hr-ft-F)	0.6556 6.592e-002	0.5427 1.912e-002	0.6556 6.592e-002	
41	Viscosity (cP)	6.687e-002	1.553e-002	6.687e-002	
42	Surface Tension (dyne/cm)	14.15		14.15	
43	Molecular Weight	257.2	51.52	257.2	
44	Z Factor	1.263e-002	0.9914	1.263e-002	
45			erties : 135-CAL		
46	Vanaur/Dhaga Fraction	Overall	Vapour Phase	Liquid Phase	
47 48	Vapour/Phase Fraction Temperature: (F)	0.0000 538.7	0.0000 538.7	1.0000 538.7	
49	Pressure: (kg/cm2)	1.558	1.558	1.558	
50	Molar Flow (Ibmole/hr)	375.9	0.0000	375.9	
51	Mass Flow (lb/hr)	1.217e+005	0.0000	1.217e+005	
52	Std Ideal Liq Vol Flow (barrel/day)	9190	0.0000	9190	
53	Molar Enthalpy (Btu/lbmole)	-2.170e+005	-1.045e+005	-2.170e+005	
54	Mass Enthalpy (Btu/lb)	-670.0	-2923	-670.0	
55 56	Molar Entropy (Btu/lbmole-F) Macs Entropy (Ptu/lb E)	203.7 0.6289	56.95	203.7	
57	Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr)	-81.57	1.593 0.0000	0.6289 -81.57	
58	Molar Density (Ibmole/ft3)	0.1382	2.080e-003	0.1382	
59	Mass Density (API)	65.46	1.184e+005	65.46	
60	Std Ideal Liq Mass Density (API)	24.20	18.05	24.20	
61	Liq Mass Density @Std Cond (API_60)	25.07	6.544	25.07	
62	Molar Heat Capacity (Btu/lbmole-F)	217.8	19.34	217.8	
63	Hyprotech Ltd.	H	IYSYS v3.2 (Build 50	129)	Page 9 of 11

Licensed to: TEAM LND *Specified by user.

1			Case Name:	C:\Archivos de programa	a\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC				
2		AM LND gary, Alberta	Unit Set:	Field1					
4		Jary, Alberta JADA							
5			Date/Time:	Wed Feb 28 13:09:09 20	007				
6 7	Cal	umn Sub Elawa	booti DA 1	02 @Main (a	ontinued)				
8	Soldini Sub-i lowsheet. DA-102 (@main (continued)								
9		Pro	perties : 135-CA	L					
10		Overall	Vapour Phase	Liquid Phase					
11		(lb-F) 0.6726	0.5411	0.6726					
12 13	Thermal Conductivity (Btu/hr Viscosity	-ft-F) 6.771e-002 (cP) 6.562e-002	2.245e-002 1.838e-002	6.771e-002 6.562e-002					
14	Surface Tension (dyne	` '	1.0000-002	14.37					
15	Molecular Weight	323.8	35.75	323.8					
16	Z Factor	1.497e-002	0.9946	1.497e-002					
17 18			perties : 18-CAL	Linuia Dinas	T T				
19	Vapour/Phase Fraction	Overall 0.0000	Vapour Phase 0.0000	Liquid Phase 1.0000					
20	Temperature:	(F) 490.8	490.8	490.8					
21		cm2) 1.506	1.506	1.506					
22	Molar Flow (Ibmo		0.0000	1564					
23 24		lb/hr) 3.518e+005	0.0000	3.518e+005					
25	Std Ideal Liq Vol Flow (barrel Molar Enthalpy (Btu/lbr		0.0000 -1.034e+005	2.805e+004 -1.575e+005					
26		tu/lb) -700.4	-939.8	-700.4					
27	Molar Entropy (Btu/lbmo	nle-F) 124.5	86.36	124.5					
28		(lb-F) 0.5538	0.7853	0.5538					
29	Heat Flow (MMB)	· ·	0.0000	-246.4					
30 31	Molar Density (Ibmol Mass Density	e/ft3) 0.1875 (API) 77.60	2.154e-003 3.708e+004	0.1875 77.60					
32	•	(API) 32.96	36.38	32.96					
33		I_60) 34.07	28.90	34.07					
34	Molar Heat Capacity (Btu/lbmo	ole-F) 150.7	63.32	150.7					
35		(lb-F) 0.6701	0.5757	0.6701					
36 37	Thermal Conductivity (Btu/hr Viscosity	-ft-F) 6.074e-002 (cP) 6.657e-002	1.679e-002 1.143e-002	6.074e-002 6.657e-002					
38	Surface Tension (dyne	' '		12.11					
39	Molecular Weight	224.8	110.0	224.8					
40	Z Factor	1.120e-002	0.9749	1.120e-002					
41			perties : 19-CAL	Linuis Bhana	T				
43	Vapour/Phase Fraction	Overall 0.0000	Vapour Phase 0.0000	Liquid Phase 1.0000					
44	Temperature:	(F) 617.2	617.2	617.2					
45	Pressure: (kg/	cm2) 1.558	1.558	1.558					
46	Molar Flow (Ibmo		0.0000	1101					
47		lb/hr) 3.366e+005	0.0000	3.366e+005					
48 49	Std Ideal Liq Vol Flow (barrel Molar Enthalpy (Btu/lbr		0.0000 -1.033e+005	2.566e+004 -1.875e+005					
50		tu/lb) -613.6	-766.7	-613.6					
51	Molar Entropy (Btu/lbmo		114.3	208.3					
52		/lb-F) 0.6817	0.8488	0.6817					
53 54	Heat Flow (MMB)		0.0000	-206.5					
54 55	Molar Density (Ibmol Mass Density	e/ft3) 0.1366 (API) 79.64	1.967e-003 3.314e+004	0.1366 79.64					
56		(API) 25.74	33.23	25.74					
57		1_60) 26.68	27.84	26.68					
58	Molar Heat Capacity (Btu/lbmo		85.08	218.3					
59		(lb-F) 0.7145	0.6317	0.7145					
60 61	Thermal Conductivity (Btu/hr Viscosity	-ft-F) 5.824e-002 (cP) 6.317e-002	1.954e-002 1.251e-002	5.824e-002 6.317e-002					
62	Surface Tension (dyne		1.2016-002	10.74					
63	Hyprotech Ltd.		HYSYS v3.2 (Build 5		Page 10 of 11				
_	Licensed to: TEAM LND				* Specified by user.				

Licensed to: TEAM LND *Specified by user.

1					Case	Name: (C:\Archivos de	programa'	\Hyprot	ech\HYSYS	3.2\Case	s\SIM-REV	01.HSC
3	HYPROTEC	TEAM LNI Lalgary, A			Unit S	et: F	Field1						
4 5	LIFECYCLE INNOVA	CANADA			Date/1	ime: \	Ned Feb 28 13	:13:54 200	07				
6					_			_					
7 8				Abso	rber:	DA-20	1 @Ma	iin					
9					соии	ECTIONS							
11	Inlet Stream												
12					age				FROM	UNIT OPER	RATION		
13 14	7LFT VAP-VAC		1 <u></u>	_TS-1 _TS-1			Valve					•	VLV-105
15	34B			TS-1			Tee					7	ΓΕΕ-101
16	1		2_	_TS-1		_	Recycle						RCY-7
17 18	STREAM	NAME		St.	Outle age	t Stream			TOU	NIT OPERA	MOITA		
19	GLV		1_	_TS-1	aue		Heat Exchar	ger	100	1411 OI EI 0	111011		E-101
20	RES-VAC			TS-1			Pump						BA-201
21 22	GOLV		2_	_TS-1			Recycle						RCY-6
23	MONITOR												
24						ons Summary							
25 26	Draw Rate	Specified Va	alue	Current Valu 2.536e+004 barr		Wt. Error	1.000e-00	7 * .	Abs. 7	Tol. arrel/day *	Active Off	Estimate On	Used Off
27	GOLV Rate	1.421e+004 ba		1.421e+004 barr		-1.519e-006	1.000e-00	_		arrel/day *	On	On	On
28	Cut Point		962.6 F *	1	1239 F	3.067e-002	1.000e-00			0.1800 F *	Off	On	Off
29 30	Cut Point - 2	!	998.6 F *	1	1214 F	2.397e-002	1.000e-00	2 *	I	D.1800 F *	Off	On	Off
31					SF	PECS							
32				Co	lumn Specif	ication Parami	eters						
33 34					Dra	w Rate							
35	Fixed / Ranged:	Fixed	Primary /	Alternate:	Primary	Lower Bo	und:			Upper Bo	ound:		
36	Stream:	RES-VAC	Flow Bas	is: 5	Std Ideal Vol								
37 38					GOL	.V Rate							
39	Fixed / Ranged:	Fixed	Primary /		Primary	Lower Bo	und:			Upper Bound:			
40	Stream:	GOLV	Flow Bas	is: 5	Std Ideal Vol								
42					Cut	Point							
43	Fixed / Ranged:	Fixed	Primary /	Alternate:	Primary	Lower Bo		-l		Upper Bo	ound:		1.5
44 45	Stage: Cut Point	1_TS-1 95.00 *	Type: Atmosphi	eric Pressure: N	D1160 Vac lot Checked	Flow Bas	is. Vi	olume Fra	ction	Phase:			Liquid
46						Point - 2							
47 48	Fixed / Ranged:	Fixed	Primary /	Alternate	Primary		und:			Upper Bo	ound:		
49	Stage:	2_TS-1	Type:		D1160 Vac			olume Fra		Phase:	Juliu.		Liquid
50	Cut Point	95.00 *		eric Pressure: N									
51 52					SUBC	OOLING							
53													
54	Degrees of Subcooling												
55 56	Subcool to												
57					User \	/ariables							
58					PROF	PERTIES							
59 60				Pron	perties :								
61				Overall	Vapour		Liquid Pha	ise					
62	Vapour/Phase Fraction			0.6027		0.6027		0.3973					
63	Hyprotech Ltd. Licensed to: TEAM LND			H	YSYS v3	.2 (Build 50:	29)					Page Specified by	1 of 5

Licensed to: TEAM LND *Specified by user.

Case Name: C:\Archivos de programa\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC TEAM LND Field1 Calgary, Alberta Unit Set: CANADA Wed Feb 28 13:13:54 2007 Date/Time Absorber: DA-201 @Main (continued) 8 Properties: 7LFT 10 Overall Vapour Phase Liquid Phase 707.5 Temperature (F) 707.5 707.5 4 429e-002 4.429e-002 Pressure: (kg/cm2) 4.429e-002 13 Molar Flow 1724 685.1 (lbmole/hr) Mass Flow 4.231e+005 4.141e+005 8.372e+005 (lb/hr) 15 Std Ideal Liq Vol Flow (barrel/day) 5.919e+004 3.082e+004 2.837e+004 -2.465e+005 -1.880e+005 -3.352e+005 Molar Enthalpy (Btu/lbmole) 17 Mass Enthalpy (Btu/lb) -507.7 -461.9 -554.6 18 (Btu/lbmole-F) 412.7 351.3 Molar Entropy 505.9 19 0.8501 0.8629 0.8370 Mass Entropy (Btu/lb-F) Heat Flow (MMBtu/hr) -425.1 (lbmole/ft3) 8.385e-005 5.055e-005 7.855e-002 Molar Density Mass Density 2.164e+005 4.283e+005 54.18 9.807 Std Ideal Lig Mass Density (API) 14.31 18.73 Liq Mass Density @Std Cond (API_60) 15.66 19.88 10.88 Molar Heat Capacity 335.5 269.5 435.6 (Btu/lbmole-F) 0.6910 Mass Heat Capacity (Btu/lb-F) 0.6619 0.7206 1.364e-002 Thermal Conductivity (Btu/hr-ft-F) 7.193e-002 0.6100 6.053e-003 Viscosity (cP) Surface Tension 14.10 14.10 (dyne/cm) 485.5 604.5 407.1 Molecular Weight Z Factor 0.9949 6.404e-004 Properties: 1 Liquid Phase Vapour Phase Overall 1.0000 Temperature (F) 665.1 665.1 665.1 Pressure: 2.379e-002 2.379e-002 2.379e-002 (kg/cm2) 2.024e+005 0.5309 Molar Flow 2.024e+005 (lbmole/hr) Mass Flow (lb/hr) 7.746e+007 7.746e+007 324.6 Std Ideal Liq Vol Flow 5.653e+006 5.653e+006 22.20 (barrel/day) -3.577e+005 40 Molar Enthalpy (Btu/lbmole) -1.918e±005 -1.918e+005 Mass Enthalpy (Btu/lb) -584.9 (Btu/lbmole-F) 324.0 324.0 Molar Entropy 496.9 43 Mass Entropy 0.8464 0.8464 0.8126 (Btu/lb-F) Heat Flow (MMBtu/hr) -3.881e+004 -3.881e+004 -0.1899 45 Molar Density (lbmole/ft3) 2.811e-005 2.811e-005 7.953e-002 Mass Density (API) 8.191e+005 8.191e+005 49.78 Std Ideal Liq Mass Density (API) 19.01 19.01 9.553 Liq Mass Density @Std Cond (API_60) 20.32 20.32 10.62 49 Molar Heat Capacity (Btu/lbmole-F) 246.9 246.9 430.4 0.6450 0.6450 0.7039 Mass Heat Capacity (Btu/lb-F) Thermal Conductivity (Btu/hr-ft-F) 1.319e-002 1.319e-002 7.469e-002 6.130e-003 6.130e-003 0.8283 Viscosity (cP) 15.31 Surface Tension (dyne/cm) Molecular Weight 382.8 611.5 Z Factor 0.9973 3.525e-004 **Properties** Liquid Phase Vapour/Phase Fraction 0.0000 1.0000 360.0 360.0 Temperature: (F) 9.822 9.822 Pressure: (kg/cm2) Molar Flow (lbmole/hr) 276.0 276.0 1.658e+005 Mass Flow 1.658e+005 (lb/hr) Hyprotech Ltd. HYSYS v3.2 (Build 5029) Page 2 of 5

Licensed to: TEAM LND * Specified by user.

1			Case Name:	C:\Archivos de programa	a\Hyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
3	TEAM LND Calgary, Albi	erta	Unit Set:	Field1	,,,
4	LIFECUOLE INNOVATION CANADA	cita			107
5 6			Date/Time:	Wed Feb 28 13:13:54 20	ur
7		Abso	rber: DA-2	01 @Main (d	continued)
8				(,	,
9 10		Overall	erties : 34B Liquid Phase	I	
11	Std Ideal Liq Vol Flow (barrel/day)	1.137e+004	1.137e+004		
12	Molar Enthalpy (Btu/lbmole)	-4.682e+005	-4.682e+005		
13	Mass Enthalpy (Btu/lb)	-779.2	-779.2		
14	Molar Entropy (Btu/lbmole-F)	365.4	365.4		
15	Mass Entropy (Btu/lb-F)	0.6081	0.6081		
16 17	Heat Flow (MMBtu/hr)	-129.2	-129.2		
18	Molar Density (Ibmole/ft3) Mass Density (API)	9.220e-002 27.64	9.220e-002 27.64		
19	Std Ideal Liq Mass Density (API)	9.949	9.949		
20	Liq Mass Density @Std Cond (API_60)	11.02	11.02		
21	Molar Heat Capacity (Btu/lbmole-F)	343.1	343.1		
22	Mass Heat Capacity (Btu/lb-F)	0.5710	0.5710		
23	Thermal Conductivity (Btu/hr-ft-F)	9.041e-002	9.041e-002		
24	Viscosity (cP)	8.882	8.882		
25	Surface Tension (dyne/cm)	23.90	23.90		
26 27	Molecular Weight Z Factor	600.8 0.1722	600.8 0.1722		
28	Z Factor		erties : VAP-VA	/C	
29		Overall	Vapour Phase		
30	Vapour/Phase Fraction	1.0000	1.0000		
31	Temperature: (F)	734.0	734.0		
32	Pressure: (kg/cm2)	4.921e-002	4.921e-002		
33	Molar Flow (lbmole/hr)	55.51	55.51		
34	Mass Flow (lb/hr)	1000	1000		
35 36	Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole)	-9.809e+004	-9.809e+004		
37	Mass Enthalpy (Btu/lb)	-5445	-5445		
38	Molar Entropy (Btu/lbmole-F)	54.21	54.21		
39	Mass Entropy (Btu/lb-F)	3.009	3.009		
40	Heat Flow (MMBtu/hr)	-5.445	-5.445		
41	Molar Density (lbmole/ft3)	5.465e-005	5.465e-005		
42	Mass Density (API)	8.954e+006	8.954e+006		
43	Std Ideal Liq Mass Density (API)	10.00	10.00		
44 45	Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F)	7.711 8.901	7.711 8.901		
46	Mass Heat Capacity (Btu/lb-F)	0.4941	0.4941		
47	Thermal Conductivity (Btu/hr-ft-F)	3.099e-002	3.099e-002		
48	Viscosity (cP)	2.391e-002	2.391e-002		
49	Surface Tension (dyne/cm)				
50	Molecular Weight	18.02	18.02		
51	Z Factor	0.9999	0.9999		
52 53	T		erties : RES-VA Vapour Phase		
54	Vapour/Phase Fraction	Overall 0.0000	vapour Phase 0.0000	Liquid Phase 1.0000	
55	Temperature: (F)	530.7	530.7	530.7	
56	Pressure: (kg/cm2)	4.418e-002	4.418e-002	4.418e-002	
57	Molar Flow (lbmole/hr)	606.0	0.0000	606.0	
58	Mass Flow (lb/hr)	3.707e+005	0.0000	3.707e+005	
59	Std Ideal Liq Vol Flow (barrel/day)	2.536e+004	0.0000	2.536e+004	
60	Molar Enthalpy (Btu/lbmole)	-4.135e+005	-1.041e+005	-4.135e+005	
61	Mass Enthalpy (Btu/lb)	-675.8	-3386	-675.8	
62 63	Molar Entropy (Btu/lbmole-F) Hyprotech Ltd.	444.0	61.39 YSYS v3.2 (Build 5	444.0	Page 3 of 5
03	riyprotecti Ltd.	П	1313 V3.2 (Dulid 5	023)	Page 3 01 5

 Hyprotech Ltd.
 HYSYS v3.2 (Build 5029)
 Page 3 of

 Licensed to: TEAM LND
 * Specified by user.

1			Case Name:	C:\Archivos de programa\-	lyprotech\HYSYS 3.2\Cases\SIM-REV01.HSC
3	TEAM LND Calgary, Albe	erta	Unit Set:	Field1	<i>"</i>
4	LIFECVOLE INNOVATION CANADA		Date/Time:	Wed Feb 28 13:13:54 2007	7
5 6			Data Timo.	11001 00 20 10:10:01 200	
7		Absor	ber: DA-20	01 @Main (co	ontinued)
8					•
9 10		Overall	erties : RES-VA Vapour Phase	Liquid Phase	
11	Mass Entropy (Btu/lb-F)	0.7258	1.996	0.7258	
12	Heat Flow (MMBtu/hr)	-250.5	0.0000	-250.5	
13	Molar Density (lbmole/ft3)	8.456e-002	5.913e-005	8.456e-002	
14	Mass Density (API)	38.93	4.848e+006	38.93	
15	Std Ideal Liq Mass Density (API)	9.588	14.07	9.588	
16	Liq Mass Density @Std Cond (API_60)	10.63	4.934	10.63	
17 18	Molar Heat Capacity (Btu/lbmole-F) Mass Heat Capacity (Btu/lb-F)	396.6 0.6482	16.14 0.5247	396.6 0.6482	
19	Thermal Conductivity (Btu/hr-ft-F)	8.216e-002	2.259e-002	8.216e-002	
20	Viscosity (cP)	1.908	1.902e-002	1.908	
21	Surface Tension (dyne/cm)	19.07		19.07	
22	Molecular Weight	611.8	30.75	611.8	
23	Z Factor	6.992e-004	0.9999	6.992e-004	
24		Prope			
25 26	Vanaur/Dhaga Freetien	Overall 0.0000	Vapour Phase 0.0000	Liquid Phase 1.0000	
27	Vapour/Phase Fraction Temperature: (F)	665.3	665.3	665.3	
28	Pressure: (kg/cm2)	2.536e-002	2.536e-002	2.536e-002	
29	Molar Flow (Ibmole/hr)	344.9	0.0000	344.9	
30	Mass Flow (lb/hr)	2.072e+005	0.0000	2.072e+005	
31	Std Ideal Liq Vol Flow (barrel/day)	1.421e+004	0.0000	1.421e+004	
32	Molar Enthalpy (Btu/lbmole)	-3.512e+005	-1.917e+005	-3.512e+005	
33	Mass Enthalpy (Btu/lb)	-584.6	-501.0	-584.6	
34	Molar Entropy (Btu/lbmole-F)	486.5	323.7	486.5	
35	Mass Entropy (Btu/lb-F)	0.8097	0.8462	0.8097	
36 37	Heat Flow (MMBtu/hr) Molar Density (Ibmole/ft3)	-121.1 8.057e-002	0.0000 2.997e-005	-121.1 8.057e-002	
38	Mass Density (API)	50.62	7.689e+005	50.62	
39	Std Ideal Liq Mass Density (API)	9.949	19.02	9.949	
40	Liq Mass Density @Std Cond (API_60)	11.02	20.33	11.02	
41	Molar Heat Capacity (Btu/lbmole-F)	423.1	246.8	423.1	
42	Mass Heat Capacity (Btu/lb-F)	0.7043	0.6451	0.7043	
43	Thermal Conductivity (Btu/hr-ft-F)	7.420e-002	1.320e-002	7.420e-002	
44	Viscosity (cP)	0.7342	6.137e-003	0.7342	
45 46	Surface Tension (dyne/cm) Molecular Weight	15.20	 202.8	15.20	
46	Z Factor	800.8 3.708e-004	382.6 0.9971	600.8 3.708e-004	
48	21 46101		erties : GLV	0.7006-004	
49		Overall	Vapour Phase		
50	Vapour/Phase Fraction	1.0000	1.0000		
51	Temperature: (F)	665.6	665.6		
52	Pressure: (kg/cm2)	2.379e-002	2.379e-002		
53	Molar Flow (Ibmole/hr)	2.035e+005	2.035e+005		
54 55	Mass Flow (lb/hr)	7.788e+007	7.788e+007		
55 56	Std Ideal Liq Vol Flow (barrel/day) Molar Enthalpy (Btu/lbmole)	5.684e+006 -1.917e+005	5.684e+006 -1.917e+005		
57	Mass Enthalpy (Btu/lb)	-500.8	-500.8		
58	Molar Entropy (Btu/lbmole-F)	324.1	324.1		
59	Mass Entropy (Btu/lb-F)	0.8467	0.8467		
60	Heat Flow (MMBtu/hr)	-3.900e+004	-3.900e+004		
61	Molar Density (lbmole/ft3)	2.810e-005	2.810e-005		
62	Mass Density (API)	8.194e+005	8.194e+005		
63	Hyprotech Ltd. Licensed to: TEAM LND	H)	/SYS v3.2 (Build 50	029)	Page 4 of 5 * Specified by user.

63 Hyprotech Ltd.
Licensed to: TEAM LND * Specified by user.

1			Case Name:	CA therefore the management by	
2	TEAM LND	Unit Set:	Field1	rotech\HYSYS 3.2\Cases\SIM-REV01.HSC	
4	CANADA CANADA	1			
5 6			Date/Time:	Wed Feb 28 13:13:54 2007	
7		Abso	rber: DA-2	01 @Main (cor	ntinued)
8			erties : GLV		,
10		Overall	Vapour Phase		
11	Std Ideal Liq Mass Density (API)	19.01	19.01		
12 13	Liq Mass Density @Std Cond (API_60) Molar Heat Capacity (Btu/lbmole-F)	20.32 247.0	20.32 247.0		
14	Mass Heat Capacity (Btu/lb-F)	0.6452	0.6452		
15	Thermal Conductivity (Btu/hr-ft-F)	1.320e-002	1.320e-002		
16 17	Viscosity (cP) Surface Tension (dyne/cm)	6.134e-003	6.134e-003		
18	Molecular Weight	382.8	382.8		
19	Z Factor	0.9973	0.9973		
20 21					
22					
23					
24 25					
26					
27					
28 29					
29 30					
31 32					
33					
34					
35 36					
37					
38					
39 40					
41					
42					
43					
44 45 46					
46					
47 48					
50 51 52 53 54 55 56 57 58 59 60 61					
51					
53					
54					
55					
56 57					
58					
59					
60					
62					
63	Hyprotech Ltd. Licensed to: TEAM LND	Н	YSYS v3.2 (Build 50	029)	Page 5 of 5 * Specified by user.

Licensed to: TEAM LND * Specified by user.

BIBLIOGRAFÍA

- Aspentech Driving process profitability. Aplication List, Product Detail: Aspen HYSYS http://www.aspentech.com/product.cfm?ProductID=274
- Baasel, William D. <u>"Preliminary Chemical Engineering Plant Design"</u>. Ed. Van Nostrand Reinhold. Segunda Edición. Estados Unidos.1990. pp. 559.
- Barbicki, S. D. et Siirola, J. J, <u>"Process Synthesis Prospective"</u>, Comp. Chem. Eng., 28, 441(2004).
- Barrera, Adrían y Roldán, et al. <u>"Índice de sustentabilidad Industrial: refinería "Miguel Hidalgo"</u>. Problemas del Desarrollo. Revista Latinoamericana de Economía. Vol. 35, núm. 137, abril-junio, 2004.
- Biegler, L. T. et Westerberg A. W. "Systematic Methods of Chemical Process Desing". Ed. Prentice Hall. Estados Unidos. 1997. pp- 796.
- Cussler E. L. et Moggridge G. D. <u>"Chemical Product Desing"</u>. Cambridge University Press. Reino Unido. 2001.
- Douglas, J. M., <u>"A Hierarchical Decision Procedure for Process Synthesis"</u>, AlChe J., 31, 353(1985).
- Fólder, R. M.; R.W.Rosseau, 1986, <u>"Elementary Principles of Chemical Engineering"</u>, Second Ed., John Wiley and Sons, New Year, p.423.
- Gary, J. H. et Handwerk, G. E. (1994). "Petroleum refining, technology and economics". Ed. Reverté. España. 2003. Pp.253.
- Giral, José; Barnés, Francisco y Ramírez, Alejandro. "Ingeniería de Procesos. "Manual para el diseño de procesos químicos apropiados para países en desarrollo". UNAM, México, 1977.
- Himmelblau, D.M. y Bischoff, K.B., 1986, <u>"Process Analysis Simulation".</u> John Wiley. New York.
- Jiménez Gutiérrez, Arturo. <u>"Diseño de procesos en ingeniería química"</u>. Ed. Reverté. España. 2003. pp.253.
- Meyers, Robert A. (2003). <u>"Handbook of Petroleum Refining Processes"</u>.
 Ed. Mc. Graw Hill. Tercera Edición. Estados Unidos . pp. 3.3-3.94.
- Navarrete, Pablo et Cole. Wiliam C. "Planning, estimating, and control of chemical construction projects". Ed. M. Deckker. 2001. Estados Unidos. pp.480.

- Papoulias, S. A. et Grossmann, I. E., <u>"A Structural Optimization Approach in Process Synthesis"</u>, Comp. Chem. Eng., 7,723(1983).
- Peters, Max S. et al. <u>"Plant design and economics for chemical engineers"</u>. Ed. Mc Graw Hill. Cuarta Edición. Estados Unidos. 1991. pp.910.
- Reklaitis, G. V. et Spriggs, H. D. <u>"Computer Aided Process Operations"</u>. Ed. Elservier. Estados Unidos. 1987. pp.720.
- Speight, James G. <u>"The Chemistry and technology of petroleum"</u>. 3a. Edición, Marcel Dekker, EUA, 1999. pp. 661-664.
- Smith, Robin. "Chemical Process Design". Ed. Mc Graw Hill. Estados Unidos. 1995. pp. 459.
- Westerberg, A.W.; Hutchinson, H.P., 1979, "Process Flowsheeting".
 Cambridge University Press. Londres.