UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

" EVALUACIÓN SÍSMICA DE UN PUENTE DURANTE EL PROCESO CONSTRUCTIVO DE EMPUJADO "

TESISPARA OBTENER EL TÍTULO DE :I N G E N I E R OC I V I LPRESENTA:TRINIDAD ALFONSO HERRERA CHÁVEZ

Asesor: Dr. ROBERTO GÓMEZ MARTÍNEZ

México, D. F.

2005

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A Dios

Por permitir que llegara a esta etapa de mi vida.

A mis padres

Por su apoyo y cariño que nos han dado. Por enseñarnos el camino de rectitud, honestidad, sencillez y todo lo que nos ha hecho crecer como personas.

A mis hermanos

Por todos los momentos que hemos compartido y que seguiremos compartiendo.

A todos mis sobrinos

Que dieron en algún momento a la casa esa alegría tan especial.

A la Universidad Nacional Autónoma de México

Con profundo agradecimiento a la universidad, por haberme permitido participar en su casa de estudios, y porque existe en ella mucha diversidad de pensamiento.

A los profesores de la Facultad de Ingeniería que participaron en mi formación profesional; y en especial a aquellos que supieron penetrar profundamente en mí sus conocimientos, generándome una motivación muy grande y las ansias de seguir estudiando.

Al Instituto de Ingeniería

En el cual realicé mi servicio social y lleve a cabo este trabajo.

Al Dr. Roberto Gómez Martínez

Por su dirección, tiempo, asesorías, revisión y corrección de este trabajo; y por su apoyo y estímulo.

Al M.I. David Muñoz Vizuet

Por sus asesorías, sugerencias y tiempo en este trabajo.

Al M.I. Adrián Pozos Estrada

Por su tiempo, asesorías y consejos para este trabajo. Y por ser una persona sencilla.

Y a todos mis sinodales...

EVALUACIÓN SÍSMICA DE UN PUENTE DURANTE EL PROCESO CONSTRUCTIVO DE EMPUJADO

ÍNDICE

INTRODUCCIÓN	1	
CAPÍTULO 1 ANÁLISIS SÍSMICO	2	
1.1 Análisis sísmico	2	
1.2 Análisis sísmico estático para puentes	3	
1.2.1 Método simplificado de análisis	3	
1.2.2 Método de la carga uniforme	4	
1.2.3 Método de la carga generalizada	5	
1.3 Análisis sísmico dinámico para puentes	7	
1.3.1 Sistema de un solo grado de libertad	7	
1.3.2 Método de análisis multimodal espectral	11	
CAPÍTULO 2 PUENTE EN ESTUDIO	18	
2.1 Descripción General	18	
2.1.1 Localización	18	
2.1.2 Características geométricas y estructuración del puente	19	
2.1.3 Aspectos importantes de cimentación	20	
2.1.4 Riesgo sísmico	20	
2.1.5 Topografía y batimetría	21	
2.1.6 Geología del sitio	21	
2.1.7 Incidencia del viento	23	
2.1.8 Aspectos de diseño	23	
2.1.9 Características de los materiales	23	
2.2 Proceso constructivo de la subestructura	24	
2.2.1 Construcción de los jackets	24	
2.2.2 Colocación del sistema de flotación	25	
2.2.3 Limpieza de fondo	26	
2.2.4 Botado de jackets	27	
2.2.5 Transporte a su posición	27	
2.2.6 Posicionamiento vertical	28	
2.2.7 Fijación temporal de los jackets	29	
2.2.8 Construcción de la cimentación profunda	29	
2.2.9 Colocación de módulos superiores	30	
2.2.10 Colado de los cabezales	31	
2.3 Proceso constructivo de la superestructura	32	
2.3.1 Inicio del proceso de empujado en México	32	
2.3.2 Construcción de la superestructura	32	
2.3.3 Proceso de empujado	33	

CAPÍTULO 3 MODELACIÓN MATEMÁTICA DEL PUENTE	36
3.1 Modelación matemática de la subestructura	36
3.1.1 Características de los materiales	36
3.1.1.1 Secciones	36
3.1.1.2 Tubos principales	36
3.1.1.3 Contraventeos verticales y horizontales	37
3.1.1.4 Anillos rigidizadores	38
3.1.1.5 Bulbos	39
3.1.1.6 Módulos superiores	39
3.1.1.7 Características geométricas de los cabezales	39
3.1.1.8 Características generales de cada pila	41
3.1.2 Hipótesis del modelado en pilas tridimensionales	41
3.1.2.1 Tipos de nudos	42
3.1.2.2 Compensación de pesos	42
3.1.2.3 Barras	42
3.1.2.4 Módulos superiores	42
3.1.2.5 Bulbos inferiores	42
3.1.2.6 Masa del cabezal	42
3.1.2.7 Masa de anillos	43
3.1.2.8 Masa adherida del agua	43
3.1.2.9 Peso y correspondiente masa	43
3.1.2.10 Periodos de las pilas	43
3.1.3 Modelos equivalentes	44
3.1.3.1 Masas concentradas en las pilas	44
3.1.3.2 Ubicación de las masas concentradas	45
3.1.3.3 Secciones de los modelos	45
3.2 Modelación matemática de la superestructura	46
3.2.1 Características geométricas	46
3.2.2 Consideraciones generales para el modelado	46
3.3 Conexión entre subestructura y superestructura	47
3.4 Fases de empujado para el análisis sísmico	47
CAPÌTULO 4 RESULTADOS DEL ANÁLISIS SÍSMICO	50
CAPÌTULO 5 CONCLUSIONES	75
5.1 Subestructura	75
5.2 Superestructura	76
5.3 Sistema estructural	77
5.4 Otros aspectos del análisis	77
BIBLIOGRAFÍA	79

INTRODUCCIÓN

A mediados de 1997, la Dirección General de Carreteras Federales de la SCT inició los estudios de factibilidad para proyectar un puente que cruzara la presa Nezahualcóyotl (o Malpaso). Se realizaron diversos estudios y análisis de aforos; y se evaluaron varias propuestas, la de un puente atirantado y la de un puente suspendido; sin embargo, se eligió la de una superestructura ortotrópica empujada con sección transversal cajón, la cual se apoyaría en pilas o jackets del tipo de las plataformas marinas.

El objetivo de este puente es comunicar dos puntos de la carretera Las Choapas-Ocozocoautla a través del tramo Raudales-Ocozocuautla, uniendo en forma directa a los estados de Chiapas y Veracruz. De esta forma, la carretera complementa la vía nacional más corta cruzando el país en dirección sur-norte, al unir ambas fronteras y llegar hasta Nuevo Laredo, Tamaulipas, que es el principal centro de intercambio terrestre de carga con Estados Unidos. Esta carretera tiene como objetivo promover el crecimiento económico y turístico del área, así como ser una obra de gran importancia social y política.

Los beneficios de este puente son tales como: la distancia entre la Ciudad de México y Tuxtla Gutiérrez será de aproximadamente 861 km – 100 km menor que el antiguo recorrido – y su tiempo promedio de recorrido será de ocho horas con 30 minutos, con un ahorro de cuatro horas. La Subsecretaría de Infraestructura de la SCT Chiapas y Veracruz señala que beneficiará a un tránsito promedio diario anual estimado de 2,800 vehículos, además de que contribuirá al desarrollo de Veracruz, Tabasco y Chiapas.

El **objetivo** de este trabajo es la evaluación sísmica del puente Chiapas I durante el proceso constructivo de empujado, es decir, analizar dinámicamente a la estructura obteniendo de dicho análisis los elementos mecánicos inducidos por un sismo de magnitud considerable.

El análisis se llevó a cabo con el método *dinámico modal espectral*, para lo que necesitamos básicamente dos cosas: el modelo matemático del puente en conjunto durante las diferentes fases de empujado, y el espectro sísmico de diseño.

Este trabajo empieza explicando las bases y la metodología del método para el análisis correspondiente; después, en el capítulo 2 se explica el proceso constructivo de la subestructura y de la superestructura. Respecto a la modelación matemática, esta se presenta en el capítulo 3, señalando las hipótesis y consideraciones que se hicieron para formar los modelos, enfocándose primordialmente a la subestructura. En los resultados de dicho análisis que se presentan en el capítulo 4, se hace énfasis en la subestructura.

Es importante mencionar que el análisis se realizó para las condiciones más desfavorables durante el proceso de empujado.

1

CAPÍTULO I ANÁLISIS SÍSMICO

1.1 ANÁLISIS SÍSMICO

En esta sección del presente capítulo se darán las bases para llevar a cabo el análisis sísmico de una estructura, siendo esto el tema central de este trabajo.

El objetivo principal del análisis estructural es evaluar el comportamiento de una estructura bajo cargas de diferentes tipos, obteniendo de dicho análisis: fuerzas, momentos y deformaciones. Este análisis puede servir para revisión o para una de las fases de diseño. El análisis estructural puede ser clasificado como estático o dinámico, mientras que el primero trata con cargas independientes del tiempo, el segundo trabaja con cualesquier carga donde la magnitud, dirección, y posición varía con el tiempo. Las cargas dinámicas típicas que actúan sobre una estructura de puente son: movimientos vehiculares, acciones de ondas de viento, sismo y flujo de corriente.

Hay que aclarar que en la clasificación de los métodos de análisis sísmico se encuentran los llamados *estáticos y dinámicos*, donde los estáticos trabajan con simplificaciones de las acciones del sismo. A pesar de que existen diferentes métodos de análisis sísmico para puentes lo ideal sería trabajar con métodos dinámicos debido a la naturaleza del propio sismo.

El análisis sísmico para puentes tiene métodos llamados estáticos, estos se explicarán brevemente en la siguiente sección con su metodología y requisitos que deben cumplir para aplicar cada uno de ellos.

Respecto al uso de los métodos de análisis dinámicos se recomiendan para todos aquellos puentes en los que no puedan aplicarse los métodos estáticos ó cuando este requiera de un análisis más refinado, aunque lo ideal sería hacerlo con métodos dinámicos.

La aplicación de los métodos dinámicos requiere la solución de las ecuaciones de movimiento, usando las características de rigidez de los materiales que se emplean en un análisis estático, además de las propiedades inerciales y de amortiguamiento. El análisis dinámico es más preciso, ya que incorpora explícitamente información ignorada, o a lo más indirectamente considerada, en el análisis estático.

La diferencia entre uno y otro método reside en como se considera el posible comportamiento inelástico, la forma en que se define la excitación sísmica de diseño, y en la manera de efectuar los cálculos necesarios.

En este trabajo se utilizará el método dinámico **modal espectral**. Los demás métodos son para fines de referencia.

1.2 ANÁLISIS SÍSMICO ESTÁTICO PARA PUENTES

1.2.1 Método simplificado de análisis

Requisitos:

- a) Que tengan dos o más claros.
- b) Deberán ser rectos y que la longitud de los tramos sea muy parecida.
- c) Que se pueda suponer que los marcos del puente trabajan de manera independiente, tanto en sentido longitudinal como transversal.
- d) Los claros deben ser menores de 40 m.

Metodología:

- 1. Se elige el marco a diseñar.
- 2. Obtener la masa tributaria correspondiente.
- 3. Calcular la rigidez lineal del marco en el sentido de análisis.
- 4. Obtener el periodo fundamental de vibración.
- 5. Calcular el valor de la ordenada espectral a correspondiente al periodo fundamental de vibración y se define el factor de ductilidad Q del marco.
- 6. La fuerza lateral equivalente F_{eq} se obtiene con la siguiente ecuación

$$F_{eq} = \frac{aW}{Q'}$$

donde W es el peso de la masa tributaria.

La siguiente figura nos ilustra como deben escogerse los marcos y la masa tributaria correspondiente para dicho análisis.

Figura 1.1 Método simplificado de análisis

1.2.2 Método de la carga uniforme

Requisitos:

- a) Que tenga dos o más claros.
- b) Que sean rectos o alojados horizontalmente en curvas de poco grado.
- c) Que la longitud de sus tramos sea muy parecida.
- d) Que la fuerza sísmica se distribuya en todos los marcos resistentes.
- e) Que la relación de la rigidez lineal de toda la superestructura y la rigidez transversal de la superestructura sea menor que 2^3 .
- f) Que sus claros sean menores de 120 m.

Metodología:

- 1. Se aplica una carga uniformemente distribuida ω en el sentido de análisis.
- 2. Se determinan los desplazamientos y elementos mecánicos originados por la carga.
- 3. Se determina un factor de ajuste de tal manera que el máximo desplazamiento provocado por ω sea unitario.
- 4. Se multiplica la carga ω (ya afectada por el factor de ajuste) por la longitud total de la estructura para determinar la rigidez (K).
- 5. Se determina el peso total de la superestructura (W).
- 6. Se obtiene el periodo natural de vibración mediante la siguiente ecuación

$$T = 2\pi \sqrt{\frac{W}{gK}}$$

En la siguiente figura se muestra como aplicar la carga uniforme para llevar a cabo este análisis.

Figura 1.2 Método de la carga uniforme

7. Se obtiene el periodo natural de vibración mediante la siguiente ecuación

$$T = 2\pi \sqrt{\frac{W}{gK}}$$

- 8. Se calcula el valor de la ordenada a del espectro de aceleración correspondiente al periodo fundamental de la estructura y se define el factor de ductilidad de la estructura.
- 9. La fuerza lateral equivalente F_{eq} se obtiene con la siguiente ecuación

$$F_{eq} = \frac{aW}{Q'}$$

10. La fuerza se transforma en una carga uniforme equivalente dividiendo la fuerza equivalente entre la longitud total del puente.

1.2.3 Método de la carga generalizada

Este método permite realizar un análisis del puente por secciones.

Requisitos:

- a) Que tenga dos o más claros.
- b) Que sean rectos o alojados horizontalmente en curvas de poco grado.
- c) Que la longitud de sus tramos sea muy parecida.
- d) Que la fuerza sísmica se distribuya en todos los marcos resistentes.
- e) Que sus claros sean menores de 120 m.

Metodología:

- 1. Se supone el modo fundamental de vibración (longitudinal y transversal).
- 2. Se expresa el modo fundamental en función de un desplazamiento generalizado.
- 3. Se define la parte de la superestructura que se considerará en el análisis.
- 4. Se calcula el peso de la parte de la superestructura elegida (W).
- 5. Se determina la rigidez de los elementos verticales que soportan la parte elegida de la superestructura (K).
- 6. Se obtiene el periodo natural de vibración mediante la siguiente ecuación

$$T = 2\pi \sqrt{\frac{W}{gK}}$$

- 7. Se calcula el valor de la ordenada a del espectro de aceleración correspondiente al periodo fundamental de la estructura y se define el factor de ductilidad de la estructura.
- 8. La fuerza lateral equivalente F_{eq} se obtiene con la siguiente ecuación

$$F_{eq} = \frac{aW}{Q'}$$

9. La fuerza se transforma en una carga uniforme equivalente dividiendo la fuerza equivalente entre la longitud total del puente.

Las siguientes figuras nos ayudan a visualizar los puntos del 1 al 5 expresados en la metodología anterior.

Figura 1.4 Método de la carga generalizada (Longitudinal)

1.3 ANÁLISIS SISMICO DINÁMICO PARA PUENTES

En ingeniería sísmica la carga dinámica es el resultado de la vibración de los apoyos de un sistema, en lugar de las cargas dinámicas externas aplicadas en cada masa. Para evaluar la respuesta de tales sistemas es necesario desarrollar la ecuación de movimiento asociada al sismo. A pesar de que tanto la carga dinámica, las propiedades de disipación de energía y las condiciones de frontera para muchas estructuras son difíciles de estimar, lo ideal sería trabajar con métodos dinámicos debido a la naturaleza del propio sismo.

En el mayor número de sistemas físicos, el movimiento significativo de las masas no puede ser descrito por una sola variable; estos sistemas deben ser tratados como sistemas con múltiples grados de libertad. Dado que todas las estructuras tienen en realidad un número infinito de desplazamientos, en consecuencia, una de las partes cruciales del análisis es crear un modelo adecuado con un número finito de nudos (grados de libertad), donde los modelos matemático y físico tengan buena congruencia.

Para los métodos dinámicos se realiza una idealización de la estructura a base de masas y resortes. La masa calculada de un sistema estructural deberá estar concentrada en cada uno de los nodos correspondientes, y las propiedades de rigidez elástico-lineal de los materiales pueden calcularse u obtenerse de manera experimental, ambos de forma precisa.

Haciendo uso del álgebra lineal, la respuesta, y en consecuencia los procedimientos para sistemas con múltiples grados de libertad es similar al sistema con un grado de libertad.

1.3.1 Sistema de un solo grado de libertad

Este método que es el más sencillo tiene como hipótesis concentrar la carga sísmica en un nudo, como una fuerza horizontal, aplicada en dirección longitudinal y transversal. Dicha fuerza está basada en el periodo fundamental de la estructura de un grado de libertad y en el espectro de respuesta.

Considerando el sistema libre amortiguado de un grado de libertad mostrado en la figura 1.5a, ante una solicitación dinámica como el sismo, el sistema adquirirá una configuración deformada (fig. 1.5b). El desplazamiento total de la masa es la suma del desplazamiento relativo de la misma masa y el desplazamiento del terreno. Los amortiguamientos viscosos y las fuerzas elásticas del resorte dependerán de la velocidad relativa y del desplazamiento, respectivamente. Usando la notación mostrada en la figura 1.5, la ecuación de movimiento puede escribirse como:

$$m \ddot{u} + c \dot{u} + k u = 0$$

sustituyendo

$$u_t(t) = u_b(t) + u(t)$$

y reordenando se tiene:

$$m \, \mathcal{U} + c \, \mathcal{U} + k \, u = -m \, \mathcal{U}_b$$

Donde m, c y k corresponden a la masa, amortiguamiento viscoso y rigidez, respectivamente. Los u_b u_b y u son los desplazamientos total, de la base y relativo, respectivamente.

En otras palabras, la repuesta en la base del sistema, es equivalente a la respuesta que el sistema tendría si su base es fija y la masa se sujeta a una carga externa. Ahora, si consideramos el caso de vibración libre la ecuación última queda:

$$m \ddot{u} + c \dot{u} + k u = 0$$

Figura 1.5 Configuración deformada en un instante "t"

Vibración libre no amortiguada

Para cuando no se presenta amortiguamiento C = 0, por lo que $m \, u + k \, u = 0$. Así,

$$(m \ \ddot{u} + k \ u) \frac{1}{m} = 0 \left(\frac{1}{m}\right) \implies \ddot{u} + \frac{k}{m} u = 0$$

La solución de esta ecuación diferencial simple es:

$$u = C_1 \, sen\left(\sqrt{\frac{k}{m}} \, t\right) + C_2 \cos\left(\sqrt{\frac{k}{m}} \, t\right)$$

donde los valores de las constantes $C_1 y C_2$ dependen de las condiciones iniciales del sistema; la cantidad $\sqrt{k/m}$ es muy importante y representa la frecuencia circular natural no amortiguada del sistema.

Lo cual indica que un sistema libre no amortiguado oscila armónicamente. $C_1 y C_2$ pueden ser encontrados tomando como condición inicial t = 0, con desplazamiento u_0 y velocidad \dot{u}_0 .

$$u = \frac{\dot{u}_0}{\omega_0} \, \operatorname{sen}(\omega_0 t) + u_0 \, \cos(\omega_0 t)$$

donde

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 Frecuencia circular natural o frecuencia angular

 $T_0 = \frac{2 \pi}{\omega_0}$ Periodo de vibración $f_0 = \frac{\omega_0}{2 \pi}$ Frecuencia natural

La respuesta a vibración libre no amortiguada se puede expresar como:

$$u = A \, sen(\omega_0 t + \phi)$$
 $A = \sqrt{u_0^2 + \left(\frac{\dot{u}_0}{\omega_0}\right)^2}$ $\phi = ang \, \tan \frac{u_0 \, \omega_0}{\dot{u}_0}$

donde ϕ es el ángulo de fase.

La siguiente figura muestra la respuesta del sistema libre no amortiguado.

Figura 1.6 Respuesta a la vibración libre no amortiguada

Vibración libre amortiguada

En un sistema real, la energía puede disminuir como resultado de la fricción, generación de calor, resistencia al aire u otros mecanismos físicos. De aquí que la respuesta del sistema con vibración libre amortiguada disminuye con el tiempo. Cuando el amortiguamiento se supone viscoso, la ecuación de movimiento es:

$$m \, \mathbf{i} + c \, \mathbf{i} + k \, \mathbf{u} = 0$$

dividiendo entre m y manipulando algebraicamente la expresión anterior, la ecuación de movimiento se puede expresar como:

$$\ddot{u}+2 \xi \omega_0 \dot{u}+\omega_0^2 u=0$$

donde

$$Cc = 2\sqrt{k m}$$
Coeficiente critico de amortiguamiento

$$\xi = \frac{C}{Cc} = \frac{C}{2\sqrt{k m}} = \frac{C}{2 m \omega_0} = \frac{C \omega_0}{2 k}$$
Relación de amortiguamiento

La solución de esta ecuación diferencial de movimiento depende de la relación de amortiguamiento:

$\xi < 100\%$	C < Cc	Sistema subamortiguado
$\xi > 100\%$	C > Cc	Sistema sobreamortiguado
$\xi = 100\%$	C = Cc	Sistema crítico amortiguado

Para cada uno de los tres casos se deberían obtener soluciones por separado, pero siempre las estructuras de interés en ingeniería sísmica son subamortiguadas.

Para el caso en el cual el amortiguamiento es menor que el crítico se tiene: $u = e^{-\xi \omega_0 t} \left[C_1 \ sen \left(\omega_0 \sqrt{1 - \xi^2} t \right) + C_2 \ \cos \left(\omega_0 \sqrt{1 - \xi^2} t \right) \right]$

Sí definimos la frecuencia angular del sistema como:

$$\omega_{d} = \omega_{0} \sqrt{1 - \xi^{2}}$$
$$u = e^{-\xi \omega_{0} t} \left[C_{1} \operatorname{sen} \left(\omega_{d} t \right) + C_{2} \cos \left(\omega_{d} t \right) \right]$$

Los coeficientes $C_1 y C_2$ pueden ser calculados para condiciones iniciales de tiempo t = 0, con desplazamiento u_0 y velocidad \dot{u}_0 .

$$u = e^{-\xi \omega_0 t} \left[\frac{\dot{u}_0 + \xi \omega_0 u_0}{\omega_d} \operatorname{sen} \left(\omega_d t \right) + u_0 \cos \left(\omega_d t \right) \right]$$

La siguiente figura muestra la respuesta del sistema libre amortiguado.

Figura 1.7 Respuesta a la vibración libre amortiguada

La relación de amplitud de onda de dos máximos sucesivos son:

$$\frac{u_n}{u_{n+1}} = e^{2\pi \xi \frac{\omega_0}{\omega_d}}$$

Definiendo el decremento logarítmico como:

$$\delta = 2\pi \,\xi \,\frac{\omega_0}{\omega_d} = \frac{2\pi \,\xi}{\sqrt{1 - \xi^2}} \qquad \xi = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$$

Para valores pequeños de δ , $\xi = \frac{\delta}{2\pi}$

1.3.2 Método de análisis multimodal espectral

El método del análisis modal, que con más propiedad se llama análisis modal espectral, implica el uso simultáneo de modos de vibrar y espectros de diseño.

Debido a los efectos dinámicos generados por un sismo, las fuerzas laterales en los distintos niveles (nudos), dependerá de un cierto número de modos naturales de vibración. En un análisis dinámico modal, las fuerzas laterales de la estructura se distribuyen de acuerdo con los modos de vibración (figuras 1.8e, 1.8f y 1.8g) de la misma. Estos modos se obtienen en función de la distribución de masas y rigideces del sistema.

Una de las hipótesis para aplicar este método es que la estructura se comporte elásticamente; la otra sería que puede despreciarse el efecto dinámico torsional (fig. 1.8d), es decir, que para calcular los modos de vibración puede recurrirse a un modelo puro de traslación (figuras 1.8b y 1.8c) de la estructura.

Figura 1.8 Estructura de puente de tres claros: (a) Diagrama esquemático; (b) grado de libertad longitudinal; (c) grado de libertad transversal; (d) grado de libertad rotacional; (e) forma modal 1; (f) forma modal 2; (g) forma modal 3

Evaluando la respuesta de sistemas con múltiples grados de libertad, el equilibrio dinámico de todas las masas deberán ser resueltas simultáneamente.

Analicemos el siguiente sistema, en el cual, el desarrollo teórico es aplicable a estructuras de más grados de libertad.

Considere el siguiente sistema idealizado como se muestra en la figura 1.9, este tiene dos grados de libertad donde se ubican las dos masas correspondientes. Para cada masa, la carga aplicada externa debe balancearse con la fuerza de inercia, el amortiguamiento y las fuerzas elásticas resistentes al movimiento.

Figura 1.9 Marco sujeto a fuerzas dinámicas en sus masas

$f_{I1} + f_{D1} + f_{S1} = q_1(t)$
$f_{I2} + f_{D2} + f_{S2} = q_1(t)$
en forma de matriz
$f_{I} + f_{D} + f_{S} = q(t)$

Si la estructura exhibe un comportamiento lineal, el principio de superposición es válido. La fuerza elástica resistente al movimiento en el nivel 1 puede ser expresada como:

$$f_{S1} = K_{11} U_1 + K_{12} U_2$$

donde los coeficientes de rigidez kij representan una fuerza que genera un desplazamiento unitario inducida en el nivel i, en forma de matriz:

$$\begin{cases} f_{S1} \\ f_{s2} \end{cases} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases}$$
$$f_s = K U$$

En la cual *K* es la matriz de rigideces de la estructura.

Similarmente la matriz de amortiguamiento y la matriz de masas pueden ser desarrolladas de tal forma que los elementos c_{ij} representan el amortiguamiento y m_{ij} la masa del nivel i, donde j representa el grado de libertad; estos elementos están asociados con las fuerzas de amortiguamiento e inerciales respectivamente.

La segunda ley de Newton para sistemas con múltiples grados de libertad pueden entonces describirse por un sistema simultáneo de ecuaciones de movimiento que puede ser expresada en forma de matriz como:

$$M \, \mathbf{i} \mathbf{i} + C \, \mathbf{i} + K \, \mathbf{u} = q(t)$$

Los sistemas con múltiples grados de libertad con: excitación en la masa y excitación en la base son modelados de forma muy similar, es decir, la forma de la ecuación diferencial es básicamente la misma. La ecuación de movimiento para el caso de sismo en la base es fácilmente desarrollada siguiendo algún procedimiento aplicado para los sistemas de un grado de libertad, resultando la ecuación de movimiento:

$$M \, \mathcal{U} + C \, \mathcal{U} + K \, \mathcal{U} = -M_1 \, \mathcal{U}_h(t)$$

Para una vibración libre no amortiguada, todos los términos de la matriz de amortiguamiento son cero al igual que el segundo término, y la ecuación de movimiento se reduce hasta:

$$M \, \mathcal{U} + K \, u = 0$$

asumiendo que la respuesta de cada masa (grado de libertad) es armónica:

$$u(t) = u \operatorname{sen} (wt + \theta)$$

donde u es un vector y θ el ángulo que representan la amplitud de desplazamiento y el ángulo de fase, respectivamente, de cada nivel de la estructura (o para cada grado de libertad). Derivando la ecuación dos veces se tiene:

$$u(t) = u \, sen(wt + \theta)$$

$$\dot{u}(t) = u \, w \cos(wt + \theta)$$

$$\dot{u}(t) = -w^2 \, u \, sen(wt + \theta)$$

$$\dot{u}(t) = -w^2 \, u(t)$$

Sustituyendo la expresión para desplazamiento y aceleración dentro de la ecuación de movimiento.

$$u(t) = u \operatorname{sen}(wt + \theta) \quad y \quad \ddot{u}(t) = -w^{2} u(t)$$

$$en \quad M \ddot{u} + K u = 0$$

$$-w^{2} u \operatorname{sen}(wt + \theta)M + u \operatorname{sen}(wt + \theta)K = 0$$

$$u \operatorname{sen}(wt + \theta) [K - w^{2} M] = 0$$

$$(K - w^{2} M)u = 0$$

La cual es conocida como una ecuación algebraica lineal desconocida. Una solución no trivial (valores de *u* diferentes de cero) puede ser obtenida solamente si:

$$\det\left(K-w^2 M\right)=\left|K-w^2 M\right|=0$$

La ecuación anterior, es la ecuación de frecuencia (o ecuación característica) del sistema; para sistemas de n grados de libertad, dará un polinomio de n grados en w^2 . Las "n" raíces de la ecuación

de frecuencias $\left\{w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, ..., w_{n}^{2}\right\}$ representan las frecuencias en las que el sistema no amortiguado puede oscilar, en ausencia de fuerzas externas. A estas frecuencias se les llama natural circular y frecuencias del sistema, donde:

$$w_1 < w_2 < w_3 < \dots < w_n$$
 y como $T = \frac{2 * \pi}{w}$
 $T_1 > T_2 > T_3 > \dots > T_n$

Entonces, con estas frecuencias w_i^2 obtenemos los valores de los vectores u (modos de vibrar de la estructura) diferentes de cero, a los cuales se le agregarán los subíndices "i j", convirtiéndose en el vector u_{ij} , donde i y j son los modos y nudos, respectivamente.

Como los vectores pueden tener una escala arbitraria, si se multiplica el vector modal por una constante, entonces, no se modificará ninguna propiedad modal. En consecuencia tenemos que normalizar estos vectores con respecto a la matriz de masas para poder hacer manejable el problema y que posean una cierta uniformidad que hagan posible la comparación de resultados para diferentes problemas. Las siguientes expresiones normalizan los vectores modales.

$$\{ u_{ijN} \}^T * [M] * \{ u_{ij} \} = 1$$

$$\{ u_{ijN} \} = \{ u_{ij} \} \frac{1}{\sqrt{\{ u_{ij} \}^T * [M] * \{ u_{ij} \}}}$$

Las dos expresiones anteriores son equivalentes y el vector $\{u_{iN}\}$ está normalizado; y el subíndice "N" nos indica que está normalizado.

Otro concepto muy importante es el coeficiente de participación modal, el cual mide la influencia de cada modo en el proceso de vibración, o en otras palabras, define la escala a la que interviene este modo en el movimiento. Su cálculo es el siguiente:

$$C_i = \sum_{j=1}^n u_{ijN} * m_j$$

Entonces, a cada modo le corresponderá su respectivo coeficiente de participación.

Como ya se había comentado, la ecuación diferencial es muy similar entre un sistema excitado en la masa y en la base, donde la aceleración es generada por dicha fuerza excitadora y por el sismo, respectivamente.

En las estructuras, más que la aceleración máxima que alcanza una masa, nos interesa saber la amplitud máxima generada por esa fuerza sísmica. Con dicha amplitud podremos calcular las fuerzas máximas inducidas en la estructura.

Considerando un sistema de un grado de libertad, tenemos que la solución de la ecuación diferencial de movimiento excitado ante una fuerza, es como sigue:

Nótese que de la primera fórmula se deriva la tercera, entonces será lo mismo calcular las fuerzas sísmicas con una u otra expresión.

Entonces, de manera similar calculamos dicha fuerza como se presenta a continuación:

$$\{F_i\} = w_i^2 * [M] * \{u_{ij_MAX}\}$$

De lo anterior se observa que tendremos un vector fuerza para cada modo. El efecto total se obtendrá superponiendo los vectores fuerza de todos los modos; pero los desplazamientos y las fuerzas máximas no se presentarán simultáneamente.

De acuerdo a un estudio probabilista, la respuesta total debida a la carga sísmica, puede evaluarse mediante la combinación de respuestas de modos individuales usando los métodos tales como el de la combinación cuadrática completa (CQC) y el método de la raíz cuadrada de la suma de los cuadrados (SRSS).

En todo este desarrollo el amortiguamiento no ha sido involucrado; parte del amortiguamiento es debido a la ductilidad y se deja al criterio del diseñador. Regularmente, debido al amortiguamiento

Su solución es

Por lo tanto

$$u = -u_0 * w^2 * f(t)$$

 $u = u_0 * f(t)$

 $\mathbf{u} + \mathbf{w}^2 * \mathbf{u} = -\mathbf{u}_{sismo}$

$$\left|u_{0_MAX}\right| = \frac{a}{w^2}$$

$$u_{ij-MAX} = \frac{A_i * C_i}{w_i^2} * u_{ijN}$$

Donde
$$A_i$$
 es la aceleración obtenida que proporciona el espectro de diseño correspondiente según el periodo T_i . En este caso se obtiene el coeficiente de aceleración de la figura 1.10, y este se multiplica por 9.81 para obtener A_i . Ahora, la fuerza sísmica que debe resistir el elemento elástico como consecuencia del sismo, está dada por las siguientes expresiones:

$$F = K * D$$
$$F = (k / m) * m * D$$
$$F = m * w^{2} * D$$

se permiten reducir las ordenadas del espectro en función de la ductilidad de dicha estructura, la cual es contemplada en el factor de coeficiente sísmico.

La forma más adecuada para caracterizar las estructuras en función de su ductilidad consiste en el empleo del factor de comportamiento sísmico Q, el cual en realidad no sólo está asociado a la ductilidad estructural, sino también a la estructuración misma. Este factor puede tomar valores enteros de 1 a 4, o inclusive un poco menores que 1. Dicho factor puede diferir en las direcciones ortogonales en que se analiza la estructura, según sean las propiedades de ésta en dichas direcciones.

Para fines de diseño será necesario tener en cuenta el comportamiento inelástico de la estructura. Para ello, las ordenadas espectrales son reducidas dividiéndolas entre el factor reductivo Q'; y este a su vez depende del periodo del modo en cuestión y del primer periodo característico del espectro de diseño. Esto es:

$$\begin{aligned} Q' &= 1 + (Q-1) * \frac{T}{T_a} \dots si \quad T < T_a \\ Q' &= Q \dots si \quad T > T_a \end{aligned}$$

Otro aspecto muy importante a considerar es que los efectos de los movimiento horizontales del terreno en direcciones ortogonales se combinan, esto es, que 100% de los efectos de un componente del sismo se combinen con 30% de los efectos del componente en la dirección perpendicular; haciéndose la combinación anterior la más desfavorable.

Los espectros de diseño son aplicables a estructuras del grupo B. Para el grupo A, los valores de las ordenadas espectrales deberán multiplicarse por 1.5, a fin de tener en cuenta la importancia de la estructura.

Figura 1.10 Espectro de diseño

17

CAPITULO II

PUENTE EN ESTUDIO

2.1 DESCRIPCIÓN GENERAL

2.1.1 Localización

El puente cruza el embalse de la presa Nezahualcóyotl y está ubicado en el Kilómetro 961 + 731 del tramo Raudales-Ocozocuautla de la carretera Las Choapas-Ocozocoautla, en el estado de Chiapas. Aproximadamente sus coordenadas geográficas son 17° 08' de Longitud Norte y 93° 36' de Latitud Oeste. El cruce del puente fue seleccionado de manera de reducir en lo posible la longitud del mismo.

Figura 2.1 Localización del puente

Respecto a la presa Nezahualcóyotl, la Secretaría de Comunicaciones y Transportes (SCT) reportó los principales niveles de control del nivel de la presa para efectos de operación, los cuales fueron tomados en cuenta para la cota inferior de la superestructura y en consecuencia para la altura de diseño de las pilas, así como para la fase de construcción. Los niveles son los que se muestran a continuación:

Elevación SCT
177.20
171.20
160.20
133.20

Tabla 2.1	Niveles	de control	de	la presa
-----------	---------	------------	----	----------

2.1.2 Características geométricas y estructuración del puente

El puente tiene 8 claros: 124, 168, 168, 168, 168, 168, 152 y 92 m (fig. 2.2); su rasante es horizontal y se encuentra a la elevación de 184.75 m. El nivel de la corona está en la elevación de 181.2 m.

Figura 2.2 Corte longitudinal del puente

La subestructura cuenta con nueve apoyos; el apoyo 1 (caballete piloteado) se ubica en el lado Las Choapas y el apoyo 9 (estribo, cajón de concreto reforzado) en el lado Ocozocoautla. Los 7 apoyos restantes son pilas cuyas alturas oscilan entre 23 y 89 m desde el fondo del embalse. La estructuración de las pilas 2 a 8 es de acero -A36-, tipo plataforma marina ("jacket"), formadas cada una por cuatro tubos principales verticales de 2.77 m (109") de diámetro exterior y 2.54 cm (1") de espesor de pared, separados entre sí a ejes 10 x 18 m (longitudinal - transversal), excepto las pilas 2 y 8 con separación de 10 x 10 m; estos tubos trabajan como "patas" de la pila, y se unen entre si por sistemas de contraventeo horizontal y vertical formados por tubos de acero.

Las pilas fueron fabricadas en un patio a 6.5 km del eje del puente en el lado Las Choapas (fig. 2.3), desde donde se botaron al embalse y se transportaron hasta el puente, para posicionarlas según su ubicación de proyecto.

Figura 2.3 Ubicación del patio de fabricación

2.1.3 Aspectos importantes de cimentación

Debido a que el desempeño mecánico de un puente origina la concentración intensa de cargas en sus apoyos, resulta evidente que para un conjunto específico de solicitaciones de diseño, entre más amplio sea el claro del puente, mayor será la demanda en el apoyo, por lo que las características de cimentación a utilizar deberán cumplir con los requisitos técnicos fundamentales de estabilidad, seguridad y funcionalidad mecánica, aplicando los reglamentos o las normas de construcción vigentes. Las características de los materiales de apoyo disponibles y de construcción, así como los demás recursos constructivos y condiciones generales del caso, suelen ser los elementos de partida para plantear los procedimientos y programas constructivos.

Para evaluar geotécnicamente los sitios de apoyo de la cimentación de un puente, es necesario realizar exploraciones previas (ya sea geológicas, geofísicas y geotécnicas –muestreo representativo y ensayes de laboratorio adecuados-), que permitan caracterizar suficientemente el terreno considerando los requerimientos de apoyo de la futura obra. Así, se han identificado sitios que requieren tratamiento previo (dada la presencia de cavernas, fallas, grietas, materiales susceptibles a la socavación, entre otros), lo cual, permite cuantificar el orden de magnitud para la inversión de recursos necesarios, así como diseñar los procedimientos constructivos y los programas de trabajo implicados.

Cabe aclarar que en la ingeniería de puentes suele usarse el término "infraestructura" para referirse a los elementos estructurales que están en contacto directo con el terreno de apoyo, reservándose el término subestructura para los que están por arriba del nivel del terreno natural, y hasta la superestructura del puente.

La cimentación de los jackets está formada por pilotes de concreto reforzado de 2.5 m de diámetro con profundidades de desplante hasta de 50 m con respecto al fondo del embalse; estos pilotes están prolongados dentro de los tubos una longitud del orden de 6 m y son continuación de las patas de la estructura principal jacket. Las cargas máximas que la superestructura y subestructura transmiten a la cimentación por cada pata de la pila son del orden de 3225 t para dos carriles de circulación, y de 3465 t para cuatro carriles. Antes y durante la construcción de la cimentación, cada pila estaba soportada provisionalmente por 4 pilotes (uno por cada pata). Estos pilotes provisionales tienen un diámetro de 91 cm (36") y con espesor de pared de 5/8" a 1".

Los estudios especializados que se tuvieron que realizar son: riesgo sísmico, topográfico y batimétrico, geológico, incidencia del viento, prospección geofísica (geofísica acuática, geofísica terrestre -con métodos de refracción sísmica y resistividad eléctrica-) y trabajos de exploración y laboratorio geotécnicos. Entre los cuales destacan los siguientes:

2.1.4 Riesgo sísmico

El estado de Chiapas es uno de los más sismicamente activos en México. Aunque en la zona raudales, que se localiza a los 17°10'N y 93°40'W, no han ocurrido con frecuencia grandes temblores, el estudio que se realizó fue para examinar el peligro sísmico al que estará sometido el puente.

En el caso de la fase de construcción del puente, el peligro sísmico implícito en el espectro de diseño corresponde a una probabilidad de excedencia de 10% en un mes.

2.1.5 Topografía y Batimetría

La configuración topográfica-batimétrica y perfiles obtenidos permitieron definir las características morfológicas del sitio donde quedó ubicado el Puente Chiapas y sus accesos, así como del fondo lacustre del embalse.

A partir del km 961+163 y hasta el km 962+260 se localiza la parte principal del embalse donde se ubicó el puente. Los rasgos morfológicos de mayor interés constituyen algunas pendientes fuertes localizadas cerca de los kms 961+200, 961+300, 961+475 y 962+000. También sobresale el antiguo río cargado hacia el lado Ocozocoautla con dirección casi W-E, localizado entre los kms 961+750 y 961+910.

En el lado Ocozocoautla, a partir del km 962+260, se tiene una topografía regular, con pendiente continua y abrupta ascendente sobre la ladera de un cerro, hasta llegar al km 962+475 en que la pendiente empieza a descender.

2.1.6 Geología del sitio

El sitio se localiza en la sierra de Chiapas, zona de cordilleras y serranías formadas por plegamientos de las rocas marinas que fueron depositadas en la cuenca sedimentaria Tabasco-Chiapas. La región delimita la parte sur de la Sierra Madre Oriental. Regionalmente se encuentran rocas de tipo sedimentario: conglomerado con matriz areno-arcillosa muy cementado y compacto, lutitas, limolitas, areniscas y areniscas conglomeráticas. El clima de la región y la litología de las formaciones clásticas que afloran en el sitio han derivado en que las rocas estén muy meteorizadas. En algunos sitios se pueden llegar a tener profundidades de hasta 20 m de roca alterada.

Los suelos residuales derivados de las rocas lutitas y limolitas son de color café claro a rojizo y son arcillas y limos de alta plasticidad. Las areniscas alteradas a suelo producen una arena limosa. También los clastos de los conglomerados, que llegan a alcanzar hasta 25 cm de diámetro, están transformados a arena limosa o arcilla, dependiendo de la composición litológica original de estos.

La estratigrafía del terreno donde se encuentra el puente (fig. 2.4) no es común en todos y cada uno de los apoyos, ya que los materiales aunque son rocas sedimentarias o el resultado de la alteración de las mismas y que se deben a una geología regional, no presentan una uniformidad en las características o en los espesores de los distintos materiales, pero generalmente la calidad y competencia mecánica de los materiales se incrementa con la profundidad, ya que la alteración disminuye gradualmente en función de ésta.

Figura 2.4 Estratigrafía del sitio

22

2.1.7 Incidencia del viento

La región donde se localiza el puente se ve afectada por diversos fenómenos meteorológicos generadores de vientos intensos como son: huracanes, ondas tropicales y sistemas frontales. Se consideró por separado los vientos debidos a huracanes y los no debidos a huracanes; además se contó con la información de ciclones tropicales recabada de 1886 a la fecha. Se tomó en cuenta la influencia del posible cambio climático en las velocidades máximas del viento a presentarse en los próximos 50 años.

Con los estudios correspondientes se estableció que la velocidad máxima regional correspondiente a Raudales será de 166.2 km/h asociada a un periodo de retorno de 200 años.

2.1.8 Aspectos de diseño

El apoyo 1 es un caballete de concreto reforzado y su cimentación consta de siete pilotes de concreto reforzado colados en sitio, de 48" de diámetro y con una profundidad de desplante de 24 m. La cimentación de las pilas 2 a 8 es del tipo profundo: se utilizaron cuatro pilotes de concreto reforzado colados en sitio, de 2.5 m de diámetro desplantados en roca.

Para analizar los estados límite de falla y de servicio de los pilotes de los apoyos 2 a 8, se efectuó una investigación y recopilación de bibliografía técnica publicada, sobre criterios propuestos y experiencias obtenidas con cimentaciones similares perforadas y coladas en roca, con especial interés en rocas sedimentarias del tipo lutitas y areniscas como las que se encuentran en el sitio. En el diseño se consideró que la capacidad de carga de los pilotes fue debida a su trabajo por resistencia lateral desarrollada a lo largo de su fuste y la participación por punta.

El estribo 9 es un cajón de concreto reforzado de 16.4 x 30 m -en planta-, alojado en una excavación a cielo abierto en el lado de Ocozocoautla, desplantado a la elevación 168 m con un dentellón de 4 m por debajo de ésta. La cimentación es superficial y se aprovechó la losa de fondo de este estribo.

2.1.9 Características de los materiales

CONCRETO

- Pilas coladas en el sitio: f'_c=250 kg/cm²
 Cuerpo de estribos: f'_c=250 kg/cm²
- Cabezales de jackets: $f'_c = 300 \text{ kg/cm}^2$
- Peso volumétrico de concreto reforzado: $2.5 t/m^3$
- Peso volumétrico de concreto sin refuerzo: $2.4 t/m^3$
- El módulo de elasticidad se obtiene de: $Ec=15000^{*}(f'c)^{1/2}$
- Módulo de Poisson: v = 0.20•

ACERO

- Acero de refuerzo: $fy = 42000 t/m^2$
- Peso volumétrico: 7.85 t/m^3
- Recubrimiento del refuerzo principal en cabezales: 7.5 cm
- Recubrimiento del refuerzo principal en pilas: 7.5 cm

2.2 PROCESO CONSTRUCTIVO DE LA SUBESTRUCTURA

2.2.1 Construcción de los jackets

Como ya se mencionó, el jacket es una estructura de tubos de acero formada por cuatro tubos principales (A-36) de 2.77 m de diámetro y tubos de menor diámetro (A-53, Grado "B") usados en los contraventeos y largueros.

Cada uno de los tubos principales tiene un "bulbo" (ampliación para la colocación de conectores) en la parte inferior; éste es un tramo de tubo de mayor diámetro que el resto, cuyo objetivo es transmitir las cargas de la estructura tipo jacket al concreto de la pila de cimentación. En el interior del bulbo se encuentran los conectores de cortante, precisamente para "conectar" el tubo metálico y el concreto.

Para el armado de estas pilas se tuvo que construir un patio de fabricación con una superficie de 90 x 640 m, con un tratamiento previo de despalme, nivel y compactación. El material de los tubos previamente cortado y biselado, se transportó hasta el patio de fabricación. Todas las pilas se ensamblaron en forma horizontal en la superficie preparada. Cada tubo -de cada una de las pilas- fue colocado sobre una cuna de acero soldada y descansando sobre una trabe riel, donde la última estaba soportada por un pilote de acero (de aproximadamente 20 m de longitud) como se muestra en la siguiente figura:

Figura 2.5 Tubo principal montado sobre cuna de acero

Una vez colocados los dos tubos principales en las cunas se procedió al ensamblado paso a paso de cada pila hasta armarla en su totalidad (fig. 2.6). Es decir, en general, se armaron las caras laterales de la pila con sus correspondientes contraventeos, después con ayuda de grúas (de 140 t de capacidad) se alinearon de forma vertical para finalmente ensamblarla con sus contraventeos tanto horizontales como verticales. Cabe destacar que en el ensamble: la topografía, la inspección de conexiones y soldadura, y junto con la protección anticorrosiva jugó un papel muy importante para el control de calidad de la estructura metálica.

Figura 2.6 Posición durante el ensamblado de la pila

2.2.2 Colocación del sistema de flotación

Concluidos los trabajos de ensamble de los jackets se procede a la colocación del sistema de flotación. Las patas del jacket necesitan "separarse" en dos compartimientos para permitir la flotación controlada de la estructura durante las maniobras de giro y posicionamiento en el agua. Para tener una flotación estable y suficiente, se colocan extensiones a los tubos principales, las cuales tienen una longitud de 10 m y se denominan tanque de flotación superior o inferior, dependiendo de la ubicación en el jacket.

La manera en que estos tanques se fijan a la estructura es la siguiente: los tanques superiores se fijan por medio de bridas y tornillos; entre las bridas existen sellos para garantizar la estanqueidad de los tubos principales, los tanques inferiores se fijan al tubo mediante elementos denominados "grippers". El tanque de flotación se fija al gripper por medio de bridas y tornillos. La fijación del gripper y el tubo principal de la estructura es por medio de gatos hidráulicos denominados "actuadores" los cuales una vez que el gripper se ha introducido en el tubo, se abren, y por fricción se fijan. Una vez fijo se infla el sello de neopreno para garantizar la estanqueidad. Luego de esto se colocan los diafragmas internos y externos

La siguiente figura muestra las diferentes vistas del sistema de flotación así como su forma final en las patas principales, las cuales sirvieron para el transporte de dichas pilas.

Figura 2.7 Sistema de flotación en la pila

2.2.3 Limpieza de fondo

Previo al posicionamiento de los jackets, se realizó la limpieza del fondo del embalse en la ubicación de cada apoyo con una draga montada en una barcaza (fig. 2.8). El objetivo de la limpieza fue retirar todo obstáculo que pueda estorbar mediante las maniobras de posicionamiento. Para garantizar la limpieza se realizó una batimetría y se tomó una película del fondo del embalse antes y después de los trabajos.

Figura 2.8 Draga para la limpieza de fondo

2.2.4 Botado de jackets

Para desplazar y botar los jackets se utilizaron dos tipos de gatos hidráulicos, unos de empuje y otros tragatorón con acción doble –jalar o retener- con la siguiente secuencia (fig. 2.9):

- 1. Terminada la construcción del jacket, se empuja con los gatos de empuje y con los gatos tragatorón colocados para retener con los cables fijos a las cunas traseras, el jacket se desplaza hasta la ubicación más cercana al inicio de la rampa (30% de pendiente). Se utilizan cuatro gatos, uno en cada trabe riel, los cuales se apoyan en ménsulas unidas a las almas de la trabe riel.
- 2. Se colocan los gatos de empuje en las cunas traseras apoyadas en la trabe riel, la fijación de estos gatos es por medio de un perno que se coloca en perforaciones del patín superior de la trabe riel; estas perforaciones están espaciadas a cada 25 cm a ejes.
- 3. Los gatos de empuje trabajan hasta que el jacket supera la fricción, en ese momento solo trabaja el gato tragatorón, permitiendo que el jacket descienda de manera controlada.

Figura 2.9 Etapas en el botado del jacket

2.2.5 Transporte a su posición

Se realizó una batimetría en el embalse para poder definir el canal de navegación, el cual está definido por la ubicación del antiguo cauce del río Grijalva, colocándose boyas para marcarlo ó faros para la navegación nocturna a cada 200 m. Para llevar el jacket al sitio después de botado, se utiliza un remolcador y una lancha piloto para guiarlo aprovechando la flotabilidad de dicho jacket. El tiempo de recorrido es aproximadamente de cuatro horas.

La siguiente imagen muestra como el jacket es llevado a su posición por medio del remolcador mencionado.

Figura 2.10 Transporte de los jackets a su posición

2.2.6 Posicionamiento vertical

Una vez que el jacket fue remolcado hasta la zona cercana al eje del puente donde se efectuó el posicionamiento vertical, se puso en funcionamiento el sistema de flotación para que de forma controlada la estructura gire (fig. 2.11). El tiempo de esta maniobra dura sólo unos minutos.

Figura 2.11 Etapas para la posición vertical

2.2.7 Fijación temporal de los jackets

Una vez que el jacket fue colocado en posición vertical, se colocaron los tubos -que formarían los pilotes provisionales (fig. 2.12)- en los "candeleros", por pares en esquinas encontradas. Es importante aclarar que la estructura flotaba durante estos trabajos y nunca toca el fondo del embalse. Una vez que los tubos tenían la longitud suficiente (para formar el pilote total provisional) y tocan el fondo del embalse, entonces, inicia su hincado. Para los apoyos de 3 a 6, debido al poco espesor de suelo que se presenta, se realizó una perforación previa por su interior, con un equipo de circulación inversa, y así garantizar el empotramiento suficiente ante cargas laterales.

Concluido el hincado de los cuatro pilotes provisionales, se cortaron al nivel requerido para posteriormente colocar sobre ellos una plataforma de trabajo para la perforación de pilotes de cimentación. Mediante gatos hidráulicos apoyados en los pilotes se controló la transferencia de carga de la plataforma hacia estos últimos. Los gatos hidráulicos permiten corregir pequeños desplomes de la estructura y los gatos mecánicos tienen la capacidad necesaria para tomar las cargas verticales y las fuerzas horizontales que se presenten durante los trabajos de perforación.

Figura 2.12 Pilotes provisionales en cada pata

2.2.8 Construcción de la cimentación profunda

Ya que es necesario garantizar que las paredes de la perforación sean estables y la sección transversal de los pilotes sea conforme a proyecto, se tuvo que ademar dicha perforación en la zona entre el fondo del embalse hasta los estratos de suelo blando; para lograr esto se utilizó una osciladora que hinca un tubo ademe de 250 cm de diámetro interior y 2.54 cm de espesor de pared hasta el contacto con el manto rocoso.

Concluido el hincado del ademe se iniciaron los trabajos de perforación. El equipo de perforación se apoyó directamente en el tubo ademe que sobresale de la plataforma de trabajo, por medio de unas mordazas. La cabeza de corte o broca, está adaptada para que de manera simultánea a la trituración de la roca, circule agua y aire a alta velocidad y se retiren los detritos hasta el exterior de la perforación. Una vez que se alcanzó el nivel de desplante especificado en proyecto, se dio por terminada la perforación y se realizó una inspección visual de las paredes de la misma por medio de una cámara de video sumergible. Autorizada la continuación de los trabajos, desde el interior de tubo ademe, buzos especializados cortaron el tubo cerca del nivel del bulbo, y utilizando la osciladora se retiró la parte de ademe que se recupera.

Después de retirar todo el equipo de perforación, se colocó el armado del pilote que tiene longitudes entre 39 y 66 m (fig. 2.13), en la cara exterior del acero de refuerzo, se colocaron separadores de concreto para garantizar el recubrimiento mínimo especificado. El colado se realizó usando tubo "Tremie" de 24.5 cm (10") de diámetro y un "diablo" de látex, para evitar la segregación del concreto durante el colado. El armado tiene 6 tubos de inspección que quedaron embebidos en el concreto. Para la colocación del concreto había dos plantas de producción, una de las cuales operaría sólo en caso de emergencia; y entonces se contaba con dos líneas de bombeo -15.6 cm (6") de diámetro- soportada por una plataforma flotante. Dicho concreto fue bombeado desde el estribo 9.

Para evitar la fuga de concreto por el espacio entre el paño exterior del tubo ademe y el paño interior de los tubos principales (8.4 cm), se colocaron durante la construcción del jacket en el patio de fabricación dos anillos de neopreno (trabajando como sellos) en cada tubo principal debajo del bulbo.

Figura 2.13 Colocado del armado y colado para los pilotes

2.2.9 Colocación de módulos superiores

El módulo superior o de extensión definitivo de los jackets, es una estructura metálica reticular formada a base de tubos y placas de conexión atornilladas y soldadas entre si para formar un elemento rígido; se coloca uno por cada pata del jacket y sirven como apoyo de los cabezales de concreto reforzado.

Después de la construcción de los cuatro pilotes de cimentación se retiró la plataforma de trabajo y el módulo de extensión, para colocar y unir de manera definitiva el módulo superior (fig. 2.14); esto solo fue para las pilas de 3 a 7. Para su montaje se utilizó una grúa con las características necesarias. Antes del inicio de la maniobra, las patas del jacket tenían todas las preparaciones necesarias.

Figura 2.14 Montaje de módulos superiores

2.2.10 Colado de los cabezales

Terminada la unión del módulo superior se colocó la obra falsa para el colado de los cabezales de concreto reforzado (fig. 2.15). Para las pilas 2 y 8 la colocación de la obra falsa fue posterior a los trabajos de cimentación, ya que estas no contaron con módulo superior.

Figura 2.15 Cimbra y colado de los cabezales
2.3 PROCESO CONSTRUCTIVO DE LA SUPERESTRUCTURA

A continuación se da una descripción muy breve del procedimiento constructivo de la superestructura, así como del proceso de empujado que se utilizó para este puente. La superestructura se compone esencialmente de dovelas como se explicará a continuación.

2.3.1 Inicio del proceso de empujado en México

Este procedimiento fue desarrollado y perfeccionado en Alemania en los años 70's. Dicha tecnología fue introducida a México por el ingeniero Juan del Avellano Macedo (empresa Mexicana de Presfuerzo). En los inicios de los 80's y luchando contra el mayor obstáculo posible, se empujaba con todo éxito en Tula, para la Dirección de Construcción de Vías Férreas de la S.C.T., el primer puente de este tipo, logrando con ello en México, no sólo introducir esta tecnología, sino iniciar una nueva época de apertura a los sistemas modernos de construcción de puentes.

2.3.2 Construcción de la superestructura

La superestructura está formada por dovelas con sección transversal cajón, acero -A50-, ortotrópico, peralte constante de 5.5 m; en su patín superior tiene una capa de rodamiento de 5 cm de espesor. Esta sección está atiesada por bulbos longitudinales (paralelos al eje del puente) que se encuentran tanto en la cubierta como en la placa inferior (fig. 2.16). Cada alma cuenta con dos refuerzos longitudinales y diafragmas transversales a cada 4 m. La cubierta tiene un ancho de 10 m para alojar dos carriles de circulación, y con base en la demanda de tránsito se podrá ampliar a 16 m para alojar cuatro carriles.

Figura 2.16 Sección transversal de la superestructura

Las dovelas se transportaron en dos partes o dos U's: superior e inferior; y estas dos partes y los bulbos de continuidad se soldaron en el sitio de obra. Las dovelas eran segmentos de 12 m de longitud, cada elemento comprendía diez partes: cuatro para las paredes del cajón, cuatro para la parte interna de la cubierta y 2 para la base. Estas partes ya incluían los refuerzos, diafragmas y bulbos. Dichas partes fueron colocadas por secciones para unirlas con soldadura.

Después de que las secciones estaban unidas se procedía al lanzado o empujado del puente. La superestructura estuvo formada por 102 segmentos.

El patio de ensamble era un cajón de 320m de longitud y se construyó en la parte trasera de uno de los extremos del puente. Este patio incluía dos vigas de concreto presforzado para ser utilizadas como soportes continuos de los segmentos durante el empujado.

Figura 2.17 Patio de ensamble

Para el lanzado de la superestructura se usó una nariz de 44 m de longitud con peso de 120 t. Para reducir el nivel de esfuerzos a lo largo de la superestructura y la reducción de la deflexión en la extremidad de la nariz lanzada, se usaron 8 cables unidos a un mástil durante el empujado.

2.3.3 Proceso de empujado

El lanzamiento de la superestructura se dividió en 8 etapas y fue realizado por medio de dos gatos hidráulicos horizontales que estuvieron ubicados entre dos dispositivos que se afianzaban con abrazadera en la parte posterior del segmento que se lanzaba. La superestructura resbalaba sobre los rollers unidos a la placa inferior de la primera, en algunas localizaciones específicas.

La superestructura fue empujada desde el estribo nueve, con una separación de 20 cm entre el lecho inferior de esta y el nivel de la corona de dicho estribo. Los primeros 15 segmentos del cajón fueron unidos a la nariz para formar un tren de lanzamiento de 222 m sobre el estribo 9; entonces, se realizó el lanzamiento hasta alcanzar la pila 8. Se hizo el empuje desde el estribo 9 utilizando un equipo con capacidad suficiente para empujar 10000 t de peso. Una vez que la nariz de lanzamiento pasó totalmente el eje de la pila número 8, los segmentos 16 a 28 fueron unidos al segmento 15 para formar el nuevo tren. Durante esta fase que corresponde a la primera posición y condiciones meteorológicas favorables se inició el lanzado sobre el claro 7-8. Una vez que se tenía la longitud de

volado de 96 m sobre la pila 8, se procedió a colocar el mástil y sus tirantes provisionales al nivel del primer diafragma de la dovela 11.

Posteriormente, se procedió a tensar simultáneamente los tirantes #1 con una fuerza de 231 t en cada uno de los cables, y los tirantes #1' con una fuerza de 223 t cada uno en los anclajes ubicados en las dovelas 3 y 22. A continuación se tensaron los cables #2 con una fuerza de 245 t y los tirantes #2' con una fuerza de 253 t en los anclajes ubicados en las dovelas 4 y 18.

A partir de ese punto se realizó el ensamble de las dovelas 29 a 40 sin conectarse a la dovela 28 (dovela que se estaba empujando); la punta de la nariz habiendo sido desplazada 44 m del eje de la pila 7 se procedió al ensamble de las dovelas 28 con la 29, siendo esa fase la segunda posición de espera para que el tablero este listo para la siguiente etapa del empujado.

Una vez listas las dovelas hasta la 53 se continuó con el lanzado cubriendo así dos claros, hasta que la nariz de lanzamiento se había desplazado, desde la pila siete, 44 m del eje de la pila 5, siendo esta la tercera posición típica de empujado. Originalmente el proyecto indicaba que la tercera fase únicamente cubriría el claro de la pila 7 a la pila 6, pero las condiciones de proceso constructivo y las condiciones meteorológicas permitieron cubrir dos claros y así tener un avance mayor.

Estando lista esta fase, se continúo con el ensamble de las dovelas 53 a la 79 para cubrir nuevamente dos claros más, es decir desde la pila 5 hasta la 3; esta fue la cuarta fase de empujado.

Terminada la fase anterior se continúo con la construcción en el patio de ensamble con las dovelas de la 80 hasta la 102. Esta última fase de empujado comprendería el desmontaje de nariz, mástil y cables. Habiendo pasado la dovela 1 los 80m del eje de la pila 2, es decir, en el momento en que la punta de la nariz llegó al estribo 1, se comenzó a desmontar secciones de 4 en 4 m hasta terminar de desmontar dicha nariz y completar el empujado.

Las siguientes figuras muestran en su totalidad al puente "Chiapas I".

Figura 2.19 Vista en perspectiva

Figura 2.20 Vista en elevación

CAPITULO III

MODELACIÓN MATEMÁTICA DEL PUENTE

3.1 MODELACIÓN MATEMÁTICA DE LA SUBESTRUCTURA

Para la modelación de la subestructura se construyeron primero modelos tridimensionales para obtener las masas y los periodos de cada modelo. Después, con base en las masas y los periodos se obtuvieron los modelos equivalentes. Ya que se calibró el modelo matemático de barras de la superestructura, se hizo lo mismo con la subestructura.

3.1.1 Características de los materiales

En esta sección se muestran las características geométricas, masa y peso de los elementos que constituyen la subestructura.

3.1.1.1 Secciones

Las secciones que se utilizaron en los elementos barra de acero –de todo el puente- son cinco, y vamos a estar haciendo referencia a ellas durante este trabajo. Se muestran a continuación:

Sección	D. E. ¹	Espesor
	(mm)	(mm)
principal	2776	25.4
1	762	9.53
2	762	12.7
3	1219	25.4
4	406	7.94
5	762	15.88

Tabla 3.1 Secciones de la subestructura

La sección principal se refiere a los tubos principales o patas de cada pila. La demás secciones son las que se localizan en el resto de la pila, tal es el caso de los contraventeos.

3.1.1.2 Tubos principales

Los cuatro tubos principales de las pilas 2 a 8 tienen la misma sección, además de que se fabricaron con el mismo tipo de acero –A36-; su longitud varía de acuerdo a la altura de cada pila. En la siguiente tabla se muestran las alturas de los tubos principales

Pila	Altura
	(m)
2	42.5
3	64.2
4	73.5
5	78.7
6	72.2
7	39.7
8	22.7

¹ D. E. es el diámetro exterior

3.1.1.3 Contraventeos verticales y horizontales

Estos tubos son pequeños en longitud y espesor comparados con los tubos principales. Por convención diremos que el plano vertical contiene a los contraventeos que tienen cierto ángulo respecto a la horizontal; y el plano horizontal contiene a los contraventeos con ángulo nulo también respecto a la horizontal. Una función de estos tubos es hacer que los tubos principales trabajen en conjunto; al mismo tiempo también actúan como contraventeos de pilas, es decir, forman un sistema estructural. A continuación se muestra la distribución de secciones que se tienen en todas las pilas.

	PILA 2			PILA 3			PILA 4	
		sección			sección			sección
	t princ	principal		t princ	principal		t princ	principal
B-B	diag	1	B-B	diag	1	B-B	diag	1
	horiz	1			2			2
C-C	diag	1		horiz	1			5
	horiz	1			2		horiz	1
		2			3			2
interior	diag horiz	4			4			3
			C-C	diag	1			4
					1	C-C	diag	1
					2			1
				h a sin	5			2
				noriz	1		horiz	5
					2		nonz	1
			intorior	diag boriz	4			2
			Interior	ulag honz	4	interior	diag boriz	4
						Interior		
		sección		TIEAU	sección			sección
	t princ	principal		t princ	principal		t princ	principal
B-B	diad	1	B-B	diad	1	B-B	diad	1
	and g	2		ana g	2		ana.g	2
		5		horiz	1		horiz	1
	horiz	1			2			3
		2			3			4
		3			4	C-C	diag	1
		4	C-C	diag	1			2
C-C	diag	1			1		horiz	1
		1			2			4
		2			5	interior	diag horiz	4
		5		horiz	1			
	horiz	1			2			
		2		dia a l	4			
:	التحالية منا	4	Interior	diag horiz	4			
interior	diag horiz	4						
	PILA 8	cocción						
	toring	principal						
BB	diag							
6-6	horiz	1						
C-C	dian	1						
0-0	ulay	2						
	horiz	1						
interior	diag horiz	4						

Tabla 3.3 Distribución de secciones en la subestructura

Para entender esta tabla tenemos que aclarar que existen dos vistas en elevación para cada pila: una es la B-B y C-C (fig. 3.1); estas son las vistas ó secciones transversales. La sección interior se refiere a los cortes o vistas en planta que contienen los elementos horizontales; existe más de un corte en

cada pila. Respecto a los elementos, *tprinc* se refiere a la sección de los tubos principales; *diag* son los elementos diagonales que están en un plano vertical y se pueden ver desde las vistas en elevación. El nombre *horiz* se refiere a los elementos horizontales que están también en las vistas en elevación. Los *diag horiz* son elementos diagonales horizontales que unen las patas opuestas y están interiormente en las pilas. Como ejemplo se presentan a continuación los cortes B-B y C-C de la pila 5. Los cortes de las demás pilas son similares y más adelante se mostrarán figuras de los modelos tridimensionales de todas las pilas.

Figura 3.1 Secciones transversales de la pila 5

3.1.1.4 Anillos rigidizadores

Estos anillos son de diferentes secciones, aproximadamente 4; su peso varía desde 0.35 a 1.4 t. Tomando en cuenta el peso de cada pila (sin cabezal), la suma de los pesos de estos anillos son alrededor de un 9 %; es decir, la influencia de estos en las pilas es considerable. Estos anillos se encuentran unidos concéntricamente al eje vertical de cada tubo principal y están espaciados a lo largo de este; o sea que a mayor longitud de tubo habrá mayor número de anillos. Las secciones de dichos anillos y el número de ellos aproximadamente por cada pila, se muestra en la siguiente tabla:

				0	
D. E.	D. I. ²	Espesor	Volumen	Peso	Masa
(mm)	(mm)	(mm)	(m ³)	(t _f)	(t)
3276	2776	19	0.05	0.35	0.04
3480	2980	19	0.05	0.38	0.04
3676	2776	38	0.17	1.36	0.14
3778	2878	38	0.18	1.40	0.14

Pila	# anillos
2	72
3	96
4	108
5	120
6	108
7	68
8	48

3.1.1.5 Bulbos

Como ya se definió en el capítulo 2, un bulbo es la zona donde se ensancha la sección en cada tubo principal y en su interior tiene pernos de cortante para el pilote de concreto reforzado; la longitud en elevación de estos bulbos es alrededor de 4.6 m. Todas las pilas cuentan con estos bulbos en la parte inferior de dichos tubos. Su función es transmitir las cargas que soportan los tubos principales a los pilotes de cimentación, ya que la cota inferior de estos tubos está al nivel del fondo del embalse de la presa, y no por debajo. Los bulbos son considerados como barras con las secciones indicadas en la siguiente tabla.

Pila	Bulbo				
	D. E. Espeso				
	(mm)	(mm)			
2	2980	25.4			
3	2980	25.4			
4	2980	31.8			
5	2980	31.8			
6	2980	25.4			
7	2980	25.4			
8	2980	25.4			

Tabla 3.5 Secciones de los bulbos

3.1.1.6 Módulos superiores

Son elementos metálicos rectos con sección tubular conectados a los tubos principales por medio de placas y tornillos. En los módulos se colocan pernos de cortante para fijar el concreto. La longitud de este módulo es de 6.70 m aproximadamente y es la misma para las todas las patas del jacket de las pilas 3 a 7; las pilas 2 y 8 no tienen módulos superiores.

El ángulo de estos módulos respecto a la horizontal es de 48°, con una proyección vertical de 5 m y proyección horizontal de 4.46 m. Estos módulos se observan en las vistas o cortes B-B y C-C; es decir, están contenidos en planos verticales.

3.1.1.7 Características geométricas de los cabezales

Como ya se ha visto, cada pila cuenta con un cabezal, el cual, para las pilas 3 a 7 tiene las mismas características geométricas y para las pilas 2 y 8 el cabezal es diferente, es decir, tenemos siete cabezales con dos diferentes geometrías. En estos se encuentran se encuentran ahogados los módulos superiores para el caso de las pilas 3 a 7.

Las características geométricas, así como su peso y masa se muestran en las siguientes figuras:

Figura 3.2 Cabezal 1, para las pilas 2 y 8

Figura 3.3 Cabezal 2, para las pilas 3 a 7

Los volúmenes de módulos superiores no se incluyen en estas figuras. Todo lo referente a dichos módulos se maneja en la estructura metálica.

3.1.1.8 Características generales de cada pila

Las dimensiones en elevación y planta de cada pila son distintas; respecto al peso, este varía debido precisamente por la altura de cada pila, es decir, a mayor altura se tiene un mayor peso. La siguiente tabla muestra de forma general las características geométricas, secciones de los elementos de contraventeo de cada pila en cuestión, así como su peso correspondiente y peso de cabezal. Las dimensiones en planta es la distancia que existe entre ejes de tubos principales.

Pila	Altura	Sección en planta	Sección en contraventeos	Peso pila	Peso cabezal
	(m)	(m)		(t _f)	(t _f)
2	42.5	10 x 10	1,2,4	785	1282
3	69.2	10 x 18	1,2,3,4,5	1117	1574
4	78.5	10 x 18	1,2,3,4,5	1236	1574
5	83.7	10 x 18	1,2,3,4,5	1304	1574
6	77.2	10 x 18	1,2,3,4,5	1203	1574
7	44.7	10 x 18	1,2,3,4	930	1574
8	22.7	10 x 10	1,2,4	596	1282

Tabla 3.6 Características por pila

3.1.2 Hipótesis del modelado en pilas tridimensionales

Los modelos matemáticos de las pilas tridimensionales son los siguientes:

Figura 3.4 Modelos tridimensionales de las pilas del puente

Para el modelado de las pilas tridimensionales se tuvieron que hacer algunas hipótesis y simplificaciones, ya que sin ellas el trabajo se hubiera transformado muy laborioso y el refinamiento en los cálculos despreciable. Todas estas hipótesis y simplificaciones se describirán a continuación.

Se hará referencia a las dimensiones reales que corresponden a las dimensiones de las pilas en planos de proyecto; y a las dimensiones de modelado que son las dimensiones con las cuales trabajaremos los modelos matemáticos de dichas pilas.

3.1.2.1 Tipos de nudos

Un nudo es un punto donde están conectados los tubos principales con los contraventeos, o un punto donde se unen contraventeos, ó un punto que contenga una carga (ó masa) puntual. Unas de las hipótesis en todo análisis estructural es que el ángulo relativo de los elementos entre sí nunca cambia; es decir, el ángulo antes y después de la configuración deformada se mantiene constante. Los nudos o nodos, fueron considerados con 6 grados de libertad; la base de las pilas se consideró empotrada, es decir, sin grados de libertad.

3.1.2.2 Compensación de pesos

La longitud de modelado de los tubos principales no cambia respecto a la real porque no afecta en nada considerarla igual. La longitud de modelado en los contraventeos es la considerada entre ejes de tubos principales; la longitud real de los tubos principales es de paño a paño, por lo tanto existe una pequeña diferencia en cuanto a longitud y peso. Esta diferencia de peso es la que interesa se compense por el peso de placas, la cuales se encuentran uniendo dichos contraventeos y tubos principales.

3.1.2.3 Barras

Una barra es modelada como una línea recta que conecta dos nudos, a la cual es posible asignar propiedades geométricas, mecánicas y cargas en general. Por lo tanto, todos los elementos en las pilas son considerados como barras con sus respectivas secciones, como se indicó anteriormente.

3.1.2.4 Módulos superiores

Los módulos superiores también son considerados como elementos barra en el análisis correspondiente.

3.1.2.5 Bulbos inferiores

Respectos a los bulbos ya mencionados, estos son considerados como los demás elementos, como barras.

3.1.2.6 Masa del cabezal

La peso y en consecuencia la masa del cabezal de cada pila fue idealizada como una carga puntual, la cual está localizada en el centro de masa del cabezal, que en este caso coincide con el centroide geométrico del mismo. Ya que este cabezal es considerado como una carga puntual y no como carga distribuida -en una superficie de más de 150 m2-, para modelar esta carga en un modelo tridimensional se utilizó el artificio de colocar una cruceta horizontal con rigidez muy grande y sin peso, colocando la carga donde se cruzan las barras de dicha cruceta. Lo anterior aplica a ambos cabezales.

3.1.2.7 Masas de anillos

Los anillos, respecto a su peso y masa, se tomaron en cuenta como cargas puntuales en las cotas que indicaban los planos. Simplemente se colocaron en el modelo como un nudo con carga y masa. La influencia de estos en la estructura es pequeña para ciertos análisis, ya que para otros análisis no es despreciable, como es el caso de torsión. A pesar de que el peso de estos anillos en la estructura es despreciable, fueron considerados como tal para llevar a cabo un modelo matemático más preciso.

3.1.2.8 Masa adherida del agua

Las vibraciones de los sismos inducidas en estructuras sumergidas pueden analizarse fácilmente sumando a la masa de la estructura, la de un cierto volumen de líquido, lo que da una masa total "virtual", y considerar la estructura como si estuviera en el aire (despreciamos el amortiguamiento del agua). Esta masa del agua adherida a la estructura se obtiene con ese volumen mencionado, es decir, se calcula a partir del volumen de el(los) elemento(s) sumergido(s).

En este caso, como son elementos barra de sección circular y cierto espesor, se calculó el volumen - de los elementos barra que forman las pilas- con el diámetro exterior. A este valor se le multiplicó por la densidad del agua para obtener la masa. Para un mejor análisis, esta masa del agua se distribuyó a lo largo de toda la pila.

La masa de agua adherida es un aspecto muy importante en los análisis de estructuras sumergidas en agua, como en este caso que tenemos la pila en una presa, ya que la masa de agua adherida es muy considerable comparada con la masa de la propia estructura. Esta masa es considerada cuando el nivel es máximo en la presa, por ser la condición más desfavorable.

3.1.2.9 Peso y correspondiente masa

En todos los modelos el peso es considerado como tal, es decir, con la dirección y sentido de la aceleración de la gravedad. La masa es un escalar y como tal podemos decir por convención que actúa en todas direcciones; en este caso la consideramos en tres direcciones para este análisis.

3.1.2.10 Periodos de las pilas

Los cinco primeros periodos de vibrar de cada pila tridimensional se usaron con el fin de obtener los modelos equivalentes correspondientes.

El primer y segundo periodo son el primer modo de vibrar calculado en la dirección X y Y, respectivamente; el tercero es alrededor del eje vertical Z. El cuarto y quinto corresponden al segundo modo de vibrar también en la dirección X y Y, respectivamente. Estos cálculos fueron realizados con SAP2000.

		PERIODO					
			(s)				
PILA	1	2	3	4	5		
2	0.8001	0.6965	0.2520	0.1622	0.1455		
3	1.6754	1.1542	0.5940	0.3490	0.2812		
4	1.8998	1.2109	0.6251	0.4237	0.3177		
5	2.1075	1.3049	0.6861	0.4492	0.3197		
6	1.8630	1.2614	0.6427	0.4077	0.3246		
7	0.8148	0.6743	0.2869	0.1895	0.1894		
8	0.3297	0.3320	0.0899	0.0842	0.0820		

3.1.3 Modelos equivalentes

Los modelos equivalentes o simplificados se obtuvieron a partir de los primeros periodos de vibrar de la estructura tridimensional en ambas direcciones ortogonales -horizontales-. Por supuesto que se tuvo que hacer uso de la masa total de la pila tridimensional, así como de las longitudes en elevación. En este caso la rigidez de cada estructura está implícita en los periodos de vibrar, lo cual equivale a decir que también la rigidez de los modelos tridimensionales se tomó en cuenta de alguna forma para obtener los modelos simplificados.

3.1.3.1 Masas concentradas en las pilas

Las masas consideradas tanto para los modelos tridimensionales como para los equivalentes tienen que ser las mismas, a diferencia de que las masas en los modelos equivalentes estarán discretizadas; de igual forma las dimensiones en elevación tendrán que ser las mismas o de otra forma muy parecidas. Todas las masas aquí consideradas son importantes y se presentan a continuación:

Pila	Masa	Masa anillos	Masa total	Masa adherida	Masa	Altura	# nudos
	pila	Rigidizadores	de la pila	del agua	Cabezal	De la pila	
	(ton)	(ton)	(ton)	(ton)	(ton)	(m)	
2	72	7.7	80	97	131	42.5	5
3	102	11.8	114	184	160	69.2	8
4	114	12.2	126	213	160	78.5	9
5	120	13.4	133	229	160	83.7	9
6	110	12.2	123	209	160	77.2	9
7	87	7.6	95	123	160	44.7	5
8	57	4.0	61	41	131	22.7	3

Tabla 3.8 Masas concentradas por pila

En la tabla se indican las masas de cada parte de la pila; como se puede observar en ella la masa total de la pila corresponde a la suma de las columnas dos y tres. Respecto a la columna mostrando la altura de la pila, sirve para señalar dos aspectos, su propia altura y la cota -relativa- donde estará localizada la masa concentrada del cabezal. La última columna nos indica cuantos nudos tendrá cada pila para discretizar las masas totales incluyendo la del cabezal.

3.1.3.2 Ubicación de las masas concentradas

Para los modelos equivalentes, la masa discretizada que se muestra en la siguiente tabla -de cada pila- contempla la suma de las columnas de la masa total de la pila y masa adherida del agua, dividida entre el número de nudos menos uno; la masa distribuida se consideró de esa forma por razones prácticas, ya que si se hubiera usado una distribución más precisa el refinamiento en los cálculos sería muy poco.

pila	a 2	pila	a 3	pila	a 4	pil	a 5	pil	a 6	pila	a 7	pila	a 8
Altura	masa												
(m)	(ton)												
10	44.3	10	42.6	10	42.4	10	45.2	10	41.4	10	54.6	10	51
20	44.3	20	42.6	20	42.4	20	45.2	20	41.4	20	54.6	20.7	51
30	44.3	30	42.6	30	42.4	30	45.2	30	41.4	30	54.6	22.7	131
40	44.3	40	42.6	40	42.4	40	45.2	40	41.4	39.7	54.6		
42.5	131	50	42.6	50	42.4	50	45.2	50	41.4	44.7	160		
		60	42.6	60	42.4	60	45.2	60	41.4				
		64.2	42.6	70	42.4	70	45.2	70	41.4				
		69.2	160	73.5	42.4	78.7	45.2	72.5	41.4				
				78.5	160	83.7	160	77.2	160				

 Tabla 3.9 Ubicación de masas concentradas

Para los modelos tridimensionales podemos hacer la hipótesis de que las masas están concentradas en las cotas relativas de 10, 20, etc., ya que estas pilas -tridimensionales- son marcos contraventeados en los cuales en esas cotas existen unas especies de "diafragmas", contraventeos y crucetas horizontales, además que los contraventeos que se encuentran en los planos verticales tienen sus extremos en esas cotas.

3.1.3.3 Secciones de los modelos

Las secciones de los modelos equivalentes que se muestran a continuación se obtuvieron con el software SAP2000, donde Lx y Ly son los anchos longitudinal (dirección al eje del puente) y transversal (perpendicular el eje del puente), respectivamente.

	······································							
Pila	Lx	Ly	Altura					
	(m)	(m)	(m)					
pila 2	3.55	4.08	42.5					
pila 3	3.55	5.15	69.2					
pila 4	3.63	5.71	78.5					
pila 5	3.57	5.77	83.7					
pila 6	3.68	5.45	77.2					
pila 7	3.75	4.52	44.7					
pila 8	3.55	3.55	22.7					

Tabla 3.10 Secciones por pila

Como ya se dijo anteriormente estas secciones fueron obtenidas usando las masas, propiedades mecánicas de los materiales, y periodos de los modelos tridimensionales. La rigidez está contemplada implícitamente en los periodos obtenidos.

Los modelos equivalentes se obtuvieron como sigue. Teniendo las barras modeladas en el SAP2000 con las longitudes, propiedades mecánicas de materiales, apoyos y masas concentradas, se propuso una sección rectangular (que pudo haber sido otra sección pero para fines prácticos se eligió esta) y se calcularon los periodos del primer modo de vibrar en ambos ejes ortogonales; después se compararon estos periodos con los calculados de los modelos tridimensionales. En caso de coincidir, la sección propuesta es la correcta. Si no se debe modificar la sección hasta hacer coincidir los periodos mencionados.

3.2 MODELACIÓN MATEMÁTICA DE LA SUPERESTRUCTURA

En esta sección describiremos muy brevemente el modelado matemático de la superestructura, ya que como se ha mencionado el tema central de este trabajo es la subestructura del puente. Dicho modelado también se realizó en SAP2000.

3.2.1 Características geométricas

La superestructura consta de 102 dovelas, cada una con 12 m de longitud. Su sección cajón es de acero, grado –A50-, ortotrópico. Dicha sección tiene placas que actúan como refuerzos longitudinales, 2 en cada alma; y con bulbos longitudinales en las cubiertas superior e inferior. Tiene un diafragma transversal que consta de cuatro placas, y están espaciados a cada 4 m a lo largo de toda la superestructura. Las secciones así como dimensiones transversales se muestran en la siguiente figura.

Figura 3.5 Sección transversal de la superestructura

3.2.2 Consideraciones generales para el modelado

La superestructura está modelada en su totalidad como elementos barra. Una dovela cuya longitud es de 12 m está compuesta a su vez por segmentos de 2, 4, 4 y 2 m; por lo tanto, decimos que es una unión de elementos continuos de 2, 4, 4, 2, 2, 4, 4, 2 m, etc. y así sucesivamente. Como todas las dovelas son de esa composición, entonces, existen uniones a cada 4 m donde se encuentran los diafragmas.

A partir de que el empujado rebasaba la pila 8 se utilizó el mástil (su función se describió en el capítulo dos) con ocho cables.

En los nudos donde se localizan los diafragmas se encuentran concentrados los pesos y masas de los mismos. La sección transversal considera su geometría, según se muestra en la figura 3.1, es decir, se consideran: las cuatro placas, bulbos inferiores y superiores y los refuerzos longitudinales. Las propiedades geométricas se calcularon a partir de lo anterior.

Para la superestructura, el peso y su correspondiente masa se consideró un 5% adicional por razones de incertidumbre y el peso de la soldadura.

Respecto al mástil, este también fue modelado como elemento barra, con el peso y masa de los contraventeos colocados en nudos según la posición media de dichos contraventeos. Como los cuatro cables estaban simétricamente respecto al eje del puente con los otros cuatro, entonces, en el modelado se tomaron solo 4 donde cada uno de ellos tiene las propiedades duplicadas.

La nariz, que es parte de la superestructura durante el empujado, tuvo que ser modelada según su geometría, ya que no era igual la sección de esta con la superestructura.

3.3 CONEXIÓN ENTRE SUBESTRUCTURA Y SUPERESTRUCTURA

Una vez teniendo los modelos matemáticos de la subestructura y superestructura, el siguiente paso fue "montar" la segunda en la primera con las conexiones correspondientes y de acuerdo a las fases de empujado. Está conexión fue modelada como un nudo con los momentos liberados en la punta de las pilas.

A partir de esto se ensamblaron los modelos para el análisis.

3.4 FASES DE EMPUJADO PARA EL ANÁLISIS SÍSMICO

Las fases de empujado para el análisis no coinciden con las fases de empujado de proyecto, ya que el análisis se llevó a cabo con las fases más críticas.

Para el análisis se construyeron 17 modelos matemáticos que representan dichas fases. La siguiente figura muestra el punto de partida para construir los modelos y después se muestran las fases respectivas.

Figura 3.6 Superestructura y subestructura del puente

Fase de empujado

Fase de empujado

49

CAPITULO IV

RESULTADOS DEL ANÁLISIS SÍSMICO

En total se elaboraron 17 modelos para este análisis, cada modelo representa una de las etapas del empujado.

Los resultados aquí presentados del análisis modal espectral son básicamente: fuerzas cortantes, momentos flexionantes y desplazamientos, tanto en pilas como en la superestructura y en la punta del mástil; así como las reacciones en los rollers (apoyos) ubicados atrás del estribo por donde se hizo el proceso de empujado. La superestructura estaba soportada por estos apoyos durante dicho proceso.

La cantidad de resultados de este análisis es considerable pero se puede resumir describiendo sólo los elementos mecánicos y desplazamientos en las partes más representativas de la estructura, es decir, en la base y punta de las pilas, así como en la punta de la nariz y en la superestructura. Respecto a la superestructura, estos elementos mecánicos se obtuvieron en la unión de ésta con las pilas, a la izquierda y derecha de dicha unión.

En cada etapa de análisis se menciona el volado que tiene la superestructura respecto a la pila correspondiente. Este volado incluye los 44 m de la nariz de lanzamiento, la cual estaba unida en todo momento a la superestructura durante el empujado. El empujado inicia de derecha a izquierda, empezando por el estribo 9, pasando la pila 8, pila 7, etc.

Para cada fase de empujado se tienen las siguientes tablas:

- Elementos mecánicos en pilas. En la base de dichas pilas se obtuvieron los cortantes V_x y V_y con los correspondientes momentos flexionantes M_y y M_x . En la punta de la pila sólo se obtuvieron los cortantes, ya que los momentos son nulos.
- Elementos mecánicos en la superestructura. En la superestructura se obtuvieron los cortantes V_y y V_z con los correspondientes momentos flexionantes M_z y M_y , a la izquierda y derecha de cada pila.
- Reacciones en los rollers del parque de fabricación. Son las reacciones obtenidas en los apoyos; al ser apoyos simples que no restringen giros, las reacciones son únicamente fuerzas.
- Desplazamientos en las puntas de los elementos. Estos son desplazamientos lineales obtenidos en la punta de las pilas, punta de la nariz y punta del mástil. Las iniciales *p.n.* y *p.m.* se utilizan para definir a la punta de la nariz y punta del mástil, respectivamente.

Los ejes X, Y y Z representan el eje longitudinal del puente, el transversal y la cota en elevación, respectivamente. Los ejes y las unidades se muestran en las tablas.

A continuación se muestran los resultados para las 17 fases de empujado, las que no coinciden con las de proyecto, ya que en este trabajo se analizan las condiciones críticas de este empujado. Las figuras correspondientes a dichas fases de empujado se encuentran en la sección 3.4 del capítulo tercero.

Fase 1 de empujado con 44 m de volado sin nariz

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	61	2
2	0	66	2
3	0	56	3
4	0	65	1
5	0	89	3
6	0	121	5
7	0	86	1
8	801	14	6

Tabla 4.1.1 Reacciones en los rollers del parque de fabricación

Tabla 4.1.2 Desplazamientos en la punta de la nariz

Elemento	Х	Y	Z	
	(cm)	(cm)	(cm)	
p.n.	0.6	6.1	0.1	

Fase 2 de empujado con 92 m de volado sin nariz

Tabla 4.2.1 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	204	15
2	0	357	10
3	0	201	3
4	789	37	6

Tabla 4.2.2 Desplazamientos en la punta de la nariz

Elemento	Х	Y	Z	
	(cm)	(cm)	(cm)	
p.n.	0.6	16.7	0.0	

Fase 3 de empujado con 96 m de volado en pila 8 con nariz

	Base de las pilas					Punta de las pilas	
Pila	Vx	Му	Vy	Mx	Vx	Vy	
	(t)	(t*m)	(t)	(t*m)	(t)	(t)	
8	1,172	25,854	998	22,691	774	779	

Tabla 4.3.1 Elementos mecánicos en las pilas

Tabla 4.3.	2 Elementos	mecánicos en	la	superestructura
I ublu libi		meeumeos en		super esti actui a

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	4	25	0	0
p8 _i	17	164	297	4,802
p8 _d	15	206	297	3,529

Tabla 4.3.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	315	15
2	0	201	14
3	0	104	5
4	0	66	7
5	0	87	10
6	0	39	5
7	1,431	10	8

Tabla 4.3.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p8	1.7	1.5	0.0
p.n.	1.9	18.4	0.5
p.m.	1.7	12.3	0.1

Fase 4 de empujado con 152 m de volado en pila 8 con nariz

	Base de las pilas					Punta de las pilas	
Pila	Vx	Му	Vy	Mx	Vx	Vy	
	(t)	(t*m)	(t)	(t*m)	(t)	(t)	
8	1,102	24,286	921	21,022	724	753	

Tabla 4.4.1 Elementos mecánicos en las pilas

Tabla 4.4.2 Elementos	mecánicos en l	a su	perestructura
-----------------------	----------------	------	---------------

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	3	20	0	0
p8 _i	16	921	318	9,347
p8 _d	8	753	318	5,477

Tabla 4.4.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	279	20
2	0	190	9
3	0	104	12
4	0	31	5
5	1,509	9	8

Tabla 4.4.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p8	1.6	1.4	0.0
p.n.	1.9	66.9	1.3
p.m.	1.8	13.6	0.1

Fase 5 de empujado con 84 m de volado en pila 7 con nariz

	Base de las pilas				Punta de	las pilas
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
7	751	25,538	993	41,563	251	757
8	1,664	38,936	1,077	24,553	1,439	845

Tabla 4.5.1 Elementos mecánicos en las pilas

Tabla 4.5.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy My		Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	2	20	0	0
p7 _i	7	118	132	5,229
p7 _d	17	301	132	7,530
p8 _i	18	286	158	7,415
p8 _d	12	164	158	3,303

Tabla 4.5.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	296	17
2	0	163	11
3	0	94	10
4	0	130	6
5	0	153	16
6	0	86	3
7	0	77	14
8	0	96	3
9	1,278	37	10

Tabla 4.5.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
р7	3.8	4.7	0.0
p8	2.7	1.7	0.0
p.n.	3.9	13.8	0.3
p.m.	3.8	18.3	0.0

Fase 6 de empujado con 164 m de volado en pila 7 con nariz

	Base de las pilas				Punta de	las pilas
Pila	Vx	Му	Vy	Мx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
7	723	24,697	1,259	53,096	264	970
8	1,467	34,082	1,303	29,591	1,276	1,015

Tabla 4.6.1 Elementos mecánicos en las pilas

Tabla 4.6.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	3	20	0	0
p7 _i	21	246	685	12,548
p7 _d	24	289	685	6,377
p8 _i	18	174	346	5,137
p8 _d	12	279	346	3,416

Tabla 4.6.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	304	21
2	0	153	20
3	0	117	18
4	0	87	10
5	0	76	24
6	0	94	14
7	1,246	36	11

Tabla 4.6.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
р7	3.7	6.0	0.0
p8	2.3	2.0	0.0
p.n.	4.0	101.5	1.6
p.m.	4.0	9.1	0.0

Fase 7 de empujado con 84 m de volado en pila 6 con nariz

	Base de las pilas				Punta de las pilas	
Pila	Vx	Му	Vy	Мx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
6	712	21,279	1,137	78,184	450	729
7	688	25,675	960	39,706	388	721
8	1,288	30,486	1,201	27,366	1,176	927

Tabla 4.7.1 Elementos mecánicos en las pilas

Tabla 4.7.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	5	22	0	0
p6 _i	23	160	1,193	7,461
p6 _d	45	196	1,193	5,143
p7 _i	47	182	1,750	5,684
p7 _d	63	247	1,750	5,505
p8 _i	58	217	1,033	5,709
p8 _d	15	202	1,033	3,117

Tabla 4.7.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	299	52
2	0	163	24
3	0	64	14
4	0	69	8
5	1,390	27	12

Tabla 4.7.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p6	4.5	14.8	0.0
р7	4.0	4.5	0.0
p8	2.1	1.8	0.0
p.n.	4.6	34.6	3.8
p.m.	4.4	16.2	1.7

Fase 8 de empujado con 164 m de volado en pila 6 con nariz

	Base de las pilas					de las pilas
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
6	746	21,707	1,146	77,926	489	749
7	692	24,747	915	37,778	409	673
8	1,009	23,637	1,294	29,484	920	1,015

Tabla 4.8.1 Elementos mecánicos en las pilas

Tabla 4.8.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	12	19	0	0
p6 _i	88	201	3,045	13,686
p6 _d	99	228	3,045	5,773
p7 _i	56	185	2,191	6,841
p7 _d	53	222	2,191	4,586
p8 _i	50	187	1,113	5,627
p8 _d	16	305	1,113	3,904

Tabla 4.8.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	320	44
2	0	297	45
3	1,588	157	33

Tabla 4.8.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p6	4.6	14.7	0.0
р7	3.8	4.2	0.0
p8	1.6	2.0	0.0
p.n.	4.8	126.5	8.2
p.m.	4.3	16.3	0.0

Fase 9 de empujado con 84 m de volado en pila 5 con nariz

	Base de las pilas				Punta de las pilas	
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
5	665	21,517	1,184	84,452	391	774
6	607	20,031	969	66,229	422	655
7	648	24,422	805	32,552	444	687
8	1,150	27,367	1,345	30,637	1,071	1,033

Tabla 4.9.1 Elementos mecánicos en las pilas

Tabla 4.9.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	33	20	0	0
р5 _і	188	138	8,260	6,698
р5 _d	239	267	8,260	6,912
p6 _i	223	260	4,218	6,891
p6 _d	76	168	4,218	4,343
p7 _i	71	146	5,503	4,254
p7 _d	237	230	5,503	5,106
p8 _i	247	239	4,989	6,045
p8 _d	61	202	4,989	3,019

Tabla 4.9.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	467	309
2	0	295	207
3	0	118	18
4	0	93	14
5	0	40	7
6	1,235	2	9

Tabla 4.9.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p5	7.0	16.2	0.0
p6	6.0	12.5	0.0
р7	3.9	3.6	0.0
p8	1.9	2.1	0.0
p.n.	7.2	28.9	27.0
p.m.	6.5	27.7	12.1

Fase 10 de empujado con 164 m de volado en pila 5 con nariz

	Base de las pilas				Punta de las pilas	
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
5	800	27,513	1,297	92,810	473	850
6	630	23,871	924	60,679	393	606
7	797	29,947	986	40,619	553	727
8	1,199	28,223	1,323	30,113	1,118	1,033

Tabla 4.10.1 Elementos mecánicos en las pilas

Tabla 4.10.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	8	18	0	0
p5 _i	42	203	926	13,334
р5 _d	41	274	926	6,819
p6 _i	38	233	1,282	7,523
p6 _d	32	138	1,282	3,770
p7 _i	40	154	2,005	4,397
p7 _d	44	206	2,005	4,358
p8 _i	47	164	1,167	4,723
p8 _d	23	299	1,167	3,510

Tabla 4.10.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	341	51
2	0	256	53
3	0	113	24
4	1,891	5	12

Tabla 4.10.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p5	9.4	17.8	0.0
p6	7.8	11.4	0.0
р7	4.8	4.6	0.0
p8	1.9	2.0	0.0
p.n.	9.7	124.3	3.3
p.m.	8.8	19.5	0.0

Fase 11 de empujado con 84 m de volado en pila 4 con nariz

	Base de las pilas				Punta de las pilas	
Pila	Vx	My	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
4	848	34,467	930	64,191	473	608
5	606	26,971	1,454	105,008	222	954
6	664	25,627	745	48,292	446	473
7	802	32,642	915	37,478	604	672
8	1,540	36,859	1,307	29,818	1,467	1,014

Tabla 4.11.1 Elementos mecánicos en las pilas

Tabla 4.11.1 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	12	18	0	0
p4 _i	67	145	2,697	6,783
p4 _d	71	226	2,697	6,528
р5 _і	54	257	1,625	5,771
p5 _d	92	205	1,625	4,913
p6 _i	105	159	3,730	5,042
p6 _d	86	130	3,730	3,005
p7 _i	72	128	1,561	4,001
p7 _d	56	250	1,561	5,621
p8 _i	64	249	1,348	6,437
p8 _d	30	223	1,348	3,448

Tabla 4.11.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	313	64
2	0	156	32
3	0	40	21
4	0	22	6
5	1,634	10	13

Tabla 4.11.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p4	12.1	11.0	0.0
p5	10.9	20.1	0.0
p6	8.6	9.1	0.0
р7	4.3	4.2	0.0
p8	2.5	2.0	0.0
p.n.	12.3	34.8	11.3
p.m.	11.8	26.0	3.1

Fase 12 de empujado con 164 m de volado en pila 4 con nariz

	Base de las pilas				Punta de las pilas	
Pila	Vx	My	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
4	867	35,356	989	69,409	488	673
5	588	26,693	1,473	108,855	201	949
6	652	25,072	777	49,712	454	493
7	821	31,702	853	34,878	610	630
8	1,247	29,462	1,331	30,191	1,183	1,019

Tabla 4.12.1 Elementos mecánicos en las pilas

Tabla 4.12.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	6	20	0	0
p4 _i	32	196	1,138	12,881
p4 _d	77	272	1,138	8,410
р5 _і	62	260	2,043	7,017
p5 _d	23	192	2,043	4,785
p6 _i	27	160	1,391	5,621
p6 _d	49	156	1,391	4,719
р 7 і	39	178	1,209	4,831
p7 _d	41	182	1,209	4,021
p8 _i	61	151	1,808	4,204
p8 _d	18	239	1,808	2,704

Tabla 4.12.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	229	41
2	0	204	58
3	1,961	112	46

Tabla 4.12.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p4	12.5	12.0	0.0
p5	11.0	20.8	0.0
p6	8.5	9.3	0.0
р7	4.1	3.9	0.0
p8	2.0	2.0	0.0
p.n.	12.7	116.5	9.4
p.m.	11.3	13.3	0.1

Fase 13 de empuiado con 84 m de volado en pila 3 con nariz

		Base de la	Punta de	las pilas		
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
3	775	40,506	639	36,347	347	422
4	777	37,457	982	68,514	367	670
5	722	29,803	1,512	110,364	323	972
6	694	21,007	1,025	70,377	464	665
7	888	36,480	737	31,262	702	539
8	1,862	44,774	1,329	30,119	1,795	995

Tabla 4.13.1 Elementus mecanicus en las plia	Tabla 4.13.1	Elementos	mecánicos	en las	pilas
--	--------------	-----------	-----------	--------	-------

Tabla 4.13.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	8	17	0	0
p3 _i	38	99	994	5,430
p3 _d	33	167	994	4,760
p4 _i	33	186	702	5,039
p4 _d	32	245	702	7,061
р5 _і	29	236	1,231	5,875
p5 _d	34	226	1,231	5,852
p6 _i	33	216	1,100	6,039
p6 _d	27	161	1,100	3,757
p7 _i	26	142	1,054	4,396
p7 _d	31	214	1,054	4,494
p8 _i	35	198	765	5,211
p8 _d	9	142	765	2,296

Tabla 4.13.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	313	39
2	0	185	31
3	0	16	15
4	0	4	2
5	0	3	9
6	0	6	5
7	0	3	1
8	1,351	1	2

Tabla 4.13.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p3	14.9	6.8	0.0
p4	14.1	11.8	0.0
p5	12.2	21.2	0.0
p6	9.4	13.3	0.0
р7	6.0	3.5	0.0
p8	3.1	2.0	0.0
p.n.	14.1	22.7	4.5
p.m.	14.7	14.7	0.8

Fase 14 de empuiado con 164 m de volado en pila 3 con nariz

		Base de la	Punta de	las pilas		
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
3	801	41,360	737	45,121	374	
4	783	37,645	891	59,661	404	
5	640	28,736	1,506	111,192	245	
6	678	26,693	1,155	78,260	468	
7	883	35,251	768	32,467	697	
8	1,664	39,499	1,305	29,534	1,604	

Tabla 4.14.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	7	21	0	0
p3 _i	35	189	678	12,779
p3 _d	29	208	678	6,238
p4 _i	28	189	667	5,794
p4 _d	34	192	667	6,927
р5 _і	34	211	1,393	4,521
p5₀	26	242	1,393	5,923
p6 _i	32	226	1,175	6,993
p6 _d	30	160	1,175	3,700
p7 _i	23	142	944	4,850
p7 _d	25	146	944	3,066
p8 _i	31	111	890	3,366
p8 _d	32	221	890	2,062

Tabla 4.14.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	212	45
2	0	99	23
3	0	26	14
4	0	10	8
5	0	5	3
6	1,494	1	2

Tabla 4.14.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p3	14.3	8.5	0.0
p4	14.2	10.2	0.0
p5	12.2	21.3	0.0
p6	9.3	14.7	0.0
р7	4.8	3.6	0.0
p8	2.7	2.0	0.0
p.n.	14.5	116.2	3.4
p.m.	14.4	9.5	0.0

Fase 15 de empuiado con 64 m de volado en pila 2 con nariz

		Base de las	Punta de	las pilas		
Pila	Vx	My	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
2	1,536	63,189	560	22,712	1,240	401
3	738	35,501	891	55,933	374	612
4	657	32,796	866	60,789	277	577
5	626	26,440	1,464	106,967	251	942
6	667	24,721	1,139	74,800	455	730
7	787	30,676	825	34,830	599	595
8	1,391	33,171	1,310	29,606	1,254	977

Tabla 4.15.1 Elementos mecánicos en las pilas

Tabla 4.15.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	5	29	0	0
p2 _i	15	128	602	5,048
p2 _d	37	158	602	4,673
p3 _i	43	194	940	5,338
p3 _d	37	183	940	5,614
p4 _i	23	177	668	4,551
p4 _d	40	212	668	6,360
p5 _i	52	236	1,339	5,744
р5 _d	28	226	1,339	5,926
p6 _i	42	230	948	6,355
p6 _d	40	161	948	4,201
р7 _і	41	148	626	4,384
p7 _d	23	182	626	4,134
p8 _i	44	190	488	4,938
p8 _d	23	142	488	2,071

Tabla 4.15.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	349	77
2	0	225	53
3	0	12	5
4	0	6	1
5	1,575	1	2

Tabla 4.15.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p2	12.3	3.3	0.0
р3	12.8	10.5	0.0
p4	12.3	10.5	0.0
p5	10.7	20.5	0.0
p6	8.2	14.1	0.0
р7	4.9	3.9	0.0
p8	2.3	2.0	0.0
p.n.	12.5	17.2	2.6
p.m.	12.7	14.5	0.6

Fase 16 de empuiado con 124 m de volado en pila 2 con nariz

	Base de las pilas				Punta de	las pilas
Pila	Vx	My	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
2	1,543	64,405	572	23,460	1,256	430
3	688	35,274	923	57,961	283	624
4	691	32,810	819	53,467	321	535
5	622	26,012	1,512	109,352	238	965
6	693	24,345	1,156	77,635	473	728
7	671	28,556	740	31,413	527	544
8	1,116	26,622	1,316	29,754	1,065	981

Tabla 4.16.1 Elementos mecánicos en las pilas

Tabla 4.16.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	5	13	0	0
p2 _i	30	98	839	4,828
p2 _d	54	194	839	5,672
p3 _i	43	166	477	4,401
p3 _d	30	216	477	5,399
p4 _i	32	179	596	5,307
p4 _d	30	233	596	6,765
р5 _і	30	226	651	6,010
p5 _d	42	246	651	6,229
p6 _i	48	210	465	6,408
p6 _d	38	176	465	4,593
p7 _i	29	159	532	5,014
p7 _d	38	163	532	3,622
p8 _i	24	132	446	3,603
p8 _d	29	166	446	1,940

Tabla 4.16.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz
	(t)	(t)	(t)
1	0	274	58
2	0	202	42
3	1,833	66	15

Tabla 4.16.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p2	12.6	3.4	0.0
р3	12.9	10.9	0.0
p4	12.2	9.2	0.0
p5	10.5	20.9	0.0
p6	7.9	14.6	0.0
р7	4.7	3.5	0.0
p8	1.8	2.0	0.0
p.n.	12.8	26.2	2.0
p.m.	12.8	9.7	0.7

Fase 17 de empuiado con 124 m de volado en pila 2 sin nariz

	Base de las pilas				Punta de	las pilas
Pila	Vx	Му	Vy	Mx	Vx	Vy
	(t)	(t*m)	(t)	(t*m)	(t)	(t)
2	1,556	64,630	658	26,980	1,267	496
3	676	35,023	916	56,552	255	615
4	695	32,596	872	53,791	334	566
5	610	25,532	1,513	111,533	228	962
6	690	23,804	1,117	77,004	472	695
7	649	27,363	875	37,134	511	644
8	883	20,816	1,238	28,033	838	942

Tabla 4.17.2 Elementos mecánicos en la superestructura

Posición	Vz	Vy	Му	Mz
	(t)	(t)	(t*m)	(t*m)
p.n.	6	15	0	0
p2 _i	39	153	725	8,157
p2 _d	35	191	725	6,117
p3 _i	32	177	708	4,533
p3 _d	33	198	708	5,216
p4 _i	29	187	832	5,185
p4 _d	40	217	832	6,829
p5 _i	39	230	1,556	5,998
p5 _d	42	214	1,556	5,840
p6 _i	42	189	1,325	6,060
p6 _d	32	150	1,325	4,402
p7 _i	34	178	1,347	5,372
p7 _d	31	126	1,347	2,952
p8 _i	32	94	806	2,679
p8 _d	21	232	806	3,229

Tabla 4.17.3 Reacciones en los rollers del parque de fabricación

Ароуо	Rx	Ry	Rz	
	(t)	(t)	(t)	
1	2,045	129	20	

Tabla 4.17.4 Desplazamientos en las puntas de los elementos

Elemento	Х	Y	Z
	(cm)	(cm)	(cm)
p2	12.6	4.0	0.0
р3	12.8	10.6	0.0
p4	12.1	9.1	0.0
p5	10.4	21.3	0.0
p6	7.7	14.5	0.0
р7	4.5	4.2	0.0
p8	1.4	1.9	0.0
p.n.	12.8	42.5	3.1
p.m.	12.7	4.9	0.0

Las siguientes figuras muestran en una forma más ilustrativa a los resultados obtenidos mostrados en las tablas anteriores; estas figuras son producto de algunos resultados más representativos. Dichas figuras se describen muy brevemente a continuación:

- *Figura 4.1.* Muestra la variación del cortante –generado en la dirección longitudinal– en la base de cada pila durante las distintas fases de empujado.
- Figura 4.2.- Muestra la variación del momento –generado por el cortante de la fig. 4.1– en la base de cada pila durante las distintas fases de empujado.
- *Figura 4.3.* Muestra la variación del cortante –generado en la dirección transversal– en la base de cada pila durante las distintas fases de empujado.
- *Figura 4.4.* Muestra la variación del momento –generado por el cortante de la *fig. 4.3–* en la base de cada pila durante las distintas fases de empujado.
- *Figura 4.5.* Describe cómo varían los desplazamientos en la punta de la nariz en las tres direcciones ortogonales a lo largo del empujado.
- *Figura 4.6.* Describe cómo varía el desplazamiento longitudinal de la punta de cada pila en cada fase de empujado.
- *Figura 4.7.* Describe cómo varía el desplazamiento transversal de la punta de cada pila en cada fase de empujado.

Figura 4.1 Cortante en la base de las pilas

68

Figura 4.2 Momento en la base de las pilas

Figura 4.3 Cortante en la base de las pilas

Figura 4.4 Momento en la base de las pilas

7

Figura 4.5 Desplazamientos en la puntas de las pilas

72

Figura 4.6 Desplazamientos en la puntas de las pilas

Figura 4.7 Desplazamientos en la punta de la nariz

CAPITULO V

CONCLUSIONES

5.1 SUBESTRUCTURA

\succ Cortante basal V_X

Un elemento con mayor rigidez en una estructura tratará o habrá de absorber los cortantes mayores inducidos (fig. 4.1), como es el caso de la pila 8; el caso contrario es la pila 5, que es la menos rígida y absorbe menos cortante.

Otro elemento como la pila 2 también posee una rigidez alta respecto a las demás, lo cual se refleja en las fases 15 a 17, ya que de acuerdo a la figuras de la sección 3.4, se tiene una masa –del mástil-importante cerca de la pila 2, lo que influye en tales resultados.

En las fases ya mencionadas, la pila 2 permanece con este cortante muy similar, mientras que las demás pilas tienden a un cortante en común como se muestra en la figura 4.1; esto es debido al parecido de las fases. En cambio, en la pila 8 el cortante decrece a partir de la fase 14, ya que la cola de empujado es cada vez menor.

Otro punto interesante es observar que cuando el mástil está muy cercano a la pila en cuestión, el cortante aumenta en esa misma pila y después disminuye. Esto es obvio, ya que la masa del mástil se concentra en esa pila.

$\succ \quad \text{Cortante basal } V_Y$

En este cortante (fig. 4.3) existe un contraste entre la pila 5 y 8, porque a pesar de que la primera es la menos rígida y la segunda la más rígida, absorbe más cortante; pero la pila 8 absorbe más cortante que las demás pilas. Esto se debe en parte a que la pila 5 tiene más del doble de masa que la pila 8.

Para este cortante también sucede algo similar con V_X , es decir, si el mástil está muy cerca de la pila en cuestión, esa pila tendrá un cortante mayor que en otras fases.

> Momento basal M_X

Al analizar las figuras 4.3 y 4.4, se puede observar que las formas de las curvas de V_Y y M_X se mantienen iguales, excepto por sus valores, ya que lo único que influye al obtener los momentos son los brazos de palanca y los cortantes a lo largo de cada pila.

Respecto a sus valores (fig. 4.4), a pesar de que los cortantes en la pila 8 eran de los más altos, los momentos en esa misma pila son de los más bajos, debido a que la pila 8 es la que tiene menor altura y en consecuencia tendrá más pequeño su brazo de palanca.

Como los cortantes de la pila 5 (fig. 4.3) eran de los más altos, y su altura es la mayor, por lo tanto se disparará su momento (fig. 4.4) todavía más.

> Momento basal M_Y

Respecto a la pila 2, de acuerdo a los argumentos de los dos primeros párrafos del presente capítulo, esta pila (además de la pila 8) también tiene un cortante mayor que las demás (fig. 4.1), aunado a la altura de la pila (casi el doble que la pila 8), el momento M_Y de la pila 2 (fig. 4.2) se disparará todavía más, siendo está pila la de mayor momento.

Al igual que lo que se hizo al analizar V_Y y M_X , se puede hacer lo mismo con V_X y M_Y .

Comparando una vez más las pilas 5 y 8, mientras que el cortante V_X es mucho mayor en la segunda pila que en la primera (fig. 4.1), los momentos M_Y (fig. 4.2) ya no son tan distantes.

> Desplazamientos en las puntas de las pilas

Después de comparar las figuras 4.5 y 4.6, se observa que el desplazamiento máximo para la dirección transversal es mayor que para la dirección longitudinal, ya que esta última dirección es la menos desfavorable. Por otra parte, la primera figura muestra la similitud que existe entre las curvas de deformaciones a lo largo del empujado, mientras que la segunda figura no muestra tal comportamiento.

Como ya se mencionó, la pila 8 es la que posee mayor rigidez y es la misma en ambas direcciones, y de acuerdo a las figuras ya mencionadas los desplazamientos son similares. Sin embargo, los cortantes en la pila 8 son distintos en ambas direcciones.

5.2 SUPERESTRUCTURA

> Cortantes

Respecto a los cortantes inducidos en la superestructura, se observa que los V_Z son cortantes pequeños comparados con V_Y , ya que el sismo en las direcciones X y Y influye poco en la dirección Z.

Se ve una tendencia de que ambos cortantes en la superestructura son mayores cerca de la pila 5.

> Momentos

Ya que los cortantes V_Y son mayores a los V_Z , por lo tanto, los momentos M_Z son mayores a los M_Y .

Cuando la fase de empujado es tal que el mástil se ubica muy cerca de las pilas, se observan momentos (M_Z) mayores –aproximadamente el doble de los demás- cerca de la pila en cuestión; esto se debe a que los cortantes V_Y son considerables ahí, como ya se había comentado.

> Desplazamientos en la punta de la nariz

Como era de esperarse, los desplazamientos d_Z son los más pequeños, en cambio, los desplazamientos d_Y son los mayores (fig. 4.7). Esto es obvio, ya que la dirección más desfavorable es la transversal (eje "Y"), ya sea al aplicarle una carga estática, o más aún, cuando está sujeta la estructura a un sismo en la dirección paralela a dicho eje -como es este caso-.

Se puede apreciar que en la dirección transversal, el desplazamiento es mayor en las fases más críticas, es decir, cuando el volado es mayor; y los dos puntos más altos en la gráfica corresponden cuando el volado mayor está apoyado en las pilas 5 y 6 que son las menos rígidas.

El comparar los cortantes en la punta y base del elemento, nos da una muy buena idea de cómo son los momentos en la base de tal elemento, como fueron analizados los momentos en las pilas.

5.3 SISTEMA ESTRUCTURAL

El análisis anterior de cortantes y desplazamientos nos conduce a decir que, dado que el sistema estructural del puente se encuentra en sólo un plano vertical, el comportamiento en la dirección longitudinal es más dependiente que en la dirección transversal, ya que a las pilas les va acostar más trabajo trabajar en conjunto en la dirección transversal, debido a que el sistema estructural en esta dirección es más desfavorable o menos rígida.

Ya que los dos ejes ortogonales horizontales de las pilas coinciden con los dos ejes también ortogonales horizontales de la superestructura, además de que el puente se encuentra en línea recta, por lo tanto, podemos argumentar lo siguiente: "un sismo inducido en la dirección longitudinal generará cortantes –elementos mecánicos– en esa misma dirección, pero ese mismo sismo no generará cortantes en la dirección transversal; y viceversa".

5.4 OTROS ASPECTOS DEL ANÁLISIS

➢ Espectro de diseño

Para la zona donde se ubica el puente tenemos dos espectros, el primero es el que podemos construir según el manual de C.F.E. (zona C, suelo tipo II), y el segundo es que el se hizo de un estudio estadístico-probabilístico de la localidad. Si no se contara con el segundo espectro habría que utilizar el primero.

Existen dos razones muy importantes para usar el espectro local, la primera razón sería que este espectro es un estudio local de la zona, y la segunda, es observar lo no conservador que es este espectro.

El espectro que nos ofrece C.F.E. es muy conservador (98% mayor, en general) respecto al de la zona; sin embargo, no hay que olvidar que este espectro cubre toda la zona C de la república mexicana, y que mientras para algunas partes de esa zona puede ser muy conservador para otras no lo será.

Factor de comportamiento sísmico (Q) y factor de importancia de estructuras (tipo A)

Los factores de comportamiento sísmico para esta estructura son: 3 y 2 para las direcciones longitudinal y transversal, respectivamente; y el factor de importancia es 1.5. Como se puede apreciar los factores Q parecen ser los apropiados, ya que se compensa un tanto al utilizar el factor de importancia. Pero por la importancia de la estructura sería razonable manejar factores de comportamiento sísmico un poco más bajos.

El análisis presentado en este trabajo no contempla dichos factores, por lo tanto, los elementos mecánicos obtenidos del análisis modal espectral son los mostrados en este trabajo. Si se quisiera rediseñar o revisar esta estructura forzosamente habría que utilizar los factores mencionados.

La combinación modal utilizada en este análisis es la propuesta por *Rosenblueth*, por lo tanto, se puede demostrar algebraicamente que el utilizar los factores Q's y 1.5, antes y después de la combinación modal es lo mismo, debido a que prácticamente todas las formas modales importantes tienen periodos mayores al primer periodo característico, es decir, son periodos mayores a 0.10.

Pilotes temporales

Cada una de las pilas tenía un pilote provisional en cada pata, el cual no fue retirado totalmente al final de la obra por cuestiones de tiempo, es decir, como costaba mucho trabajo arrancar dicho pilote se optó por dejar la parte del empotramiento. La consecuencia de dejar dicha parte del pilote es alterar un poco las propiedades dinámicas de cada pila. Para realizar un análisis más refinado simplemente se tendría que modelar la(s) pila(s) tomando en cuenta ese pilote provisional en la parte de la base.

Socavación

Es importante el efecto de la socavación sobre todo en puentes, donde sus pilas se encuentran en ríos o cerca de fuentes donde la corriente del agua es fuerte. En este caso particular el efecto es contrario; ya que no existe socavación, los azolves de la presa se van acumulando alrededor del apoyo de la pila y también alteran las propiedades dinámicas de esta.

Los pilotes temporales y los azolves son dos casos distintos que se superponen para modificar las propiedades dinámicas de las pilas en cuestión; tal vez dicho efecto superpuesto no sea considerable por estar actuando en pilas con gran altura. Sin embargo, en pilas de baja altura habrá que tomar en cuenta dichos efectos si es que se dan estas causas.

BIBLIOGRAFÍA

- Rosenblueth, E. y Newmark, N. M., "Fundamentos de Ingeniería Sísmica", 1ra ed., Diana, México, 1976.
- Meli Piralla, Roberto, "Diseño Estructural", 2da ed., Limusa, México, 2000.
- Bazán, Enrique y Meli, Roberto, "Diseño Sísmico de Edificios", Limusa, México, 2003
- Martínez, I., Navarro, A. y Ceniceros, J., "Dinámica Estructural", 1ra ed., Universitaria, México, 1983.
- > Paz, Mario, "Dinámica Estructural", Reverté, Barcelona-México, 1992.
- Comisión Federal de Electricidad, "Manual de Diseño de Obras Civiles: Capítulo de Diseño por Sismo", CFE, México, 1997.
- Santos Briones, Sergio, "Proceso Constructivo de los Apoyos del Puente Chiapas", Tesis de Licenciatura, México, 2001.
- Hernández Huerta, Luis, "Modelación Matemática del Proceso de Construcción de la Superestructura de un Puente Empujado", Tesis de licenciatura, México, 2005.
- Pozos Estrada, Adrián, "Análsis Sísmico Paramétrico de Puentes Curvos", Tesis de Maestría, México, 2004.