01162

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

"LLENADO DE ACUEDUCTOS CON FLUJO PISTÓN "

T E S I S

PARA OBTENER EL GRADO ACADÉMICO DE MAESTRO EN INGENIERÍA HIDRÁULICA

PRESENTA:

JOSE ANTONIO CABRERA BEJAR

DIRECTOR DE TESIS: Dr. LEONEL H. OCHOA ALEJO

CAMPUS MORELOS, MÉXICO

2005

m. 345644

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIAS

A Lupita mi esposa, cuyo gran amor y sabiduría son la base de este triunfo.

A mi hija Fernanda, que me inspiró e iluminó en los momentos de incertidumbre.

A mis padres Antonio y Josefina, por darme la vida y por el apoyo que he recibido en todos los momentos de mi vida.

A mi hermano Oscar, mi hermana Flor, su esposo y su chiquito, por su apoyo incondicional y palabras de aliento en cada instante.

Este logro es también de Ustedes.

Autorizo a la Dirección General de Bibliotecas de la UNAM a difundir en formato electrónico e impreso el contenido de mi trabajo recepcional.

NOMBRE: TOSE ANTONIO CAGREDA

BEJOR FECHA: 09/JUN 10/2005

FIRMA:

AGRADECIMIENTOS

A **Dios**, que siempre ha estado conmigo y me ha iluminado en todos los instantes de mi vida.

A mis Padres, por su apoyo, sus consejos acertados en todas las etapas de mi formación.

A Lupita, por su inmenso amor, su confianza, su espera ahora es recompensada.

A la Universidad Nacional Autónoma de México (UNAM), por haberme formado académicamente en lo que más me gusta: la hidráulica.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por la beca económica que me otorgó durante mis estudios de maestría.

Al Dr. Leonel H. Ochoa Alejo, por haber dirigido acertadamente mi tesis, por sus valiosos comentarios, por ser de las personas fundamentales en mi formación y sobretodo por ser un buen amigo.

A mi Hermano Oscar J. Cabrera Bejar, por su amplio apoyo y colaboración acertada en la programación de los modelos, por ser el mejor amigo.

Al Dr. Velitchko G. Tzatchkov, M.I. Víctor Javier Bourguett Ortiz, M.I Jorge A. Hidalgo Toledo, y M.I. Víctor M. Arroyo Correa, por haber aceptado ser parte del consejo de sinodales, por sus comentarios, correcciones y sugerencias para mejorar la tesis.

A Toda mi familia, por los consejos valiosos que me dieron, que fueron de gran ayuda para la terminación de esta tesis.

A mis am	igos, por su apoyo incondic	ional, que siempre han esta	ado atentos en lo
momentos	importantes.		
A mis pro	fesores, por transmitirme s	us conocimientos.	

ÍNDICE

NOME	NCLATURA	
INTRO	DUCCIÓN	7
1 FIII	JO TIPO PISTÓN	
1.1		16
2. MOL	DELO DE SAFWAT. AR	ASTU Y HUSANI23
2.1	Introducción	23
2.2	Ecuaciones básicas ger	neralizadas24
2.3		27
3. MOL	DELO DE LIOU Y HUN	T41
3.1		41
3.2		neralizadas42
3.3		47
4. MOL	DELO DE FUERTES, IZ	ZQUIERDO, ABREU E IGLESIAS61
4.1		61
4.2		una bolsa de aire atrapado74
4.3		182
4.4		84
5. MOI	DELOS PARA CALCUL	O DE PRESIONES MÁXIMAS95
5.1	Introducción	95
5.2		el llenado de acueductos utilizando
	las gráficas de Fuertes	96
5.2		nsionales96
		s picos de presión y parámetros que los caracterizan108
		co de los picos de presión111
5.2		s rápidos y lentos115
5.3		el llenado de acueductos utilizando
		117
5.3		onales118
5.4		n122
LLENA	ADO DE ACUEDUCTO	S131
6.1	Introducción	131
6.2		aplicar los modelos de llenado132
6.3		del sistema
6.3		sistema
6.3		de la conducción
6.4	Medidas de supervisió	on en el llenado de acueductos
CONC	LUSIONES	141

REFERENCIAS	
ANEXO I LISTADO Y RES	ULTADOS DE PROGRAMA DE
SAFWAT ET AL (1986) 153
ANEXO II LISTADO Y RES	ULTADOS DE PROGRAMA DE
LIOU Y HUNT (19	996)167
ANEXO III LISTADO Y RE	SULTADOS DE PROGRAMA DE
FUERTES ET AL	(1997)

NOMENCLATURA

A área de la sección transversal de la tubería;

A_B, C_B constantes de la curva característica de la bomba;

a velocidad de la onda de presión;

C celeridad del aire:

C_N numero de Courant;

D diámetro de la tubería;

f coeficiente de cortante de Darcy-Weisbach;

g aceleración de la gravedad;

H* altura de presión atmosférica;

H_B altura de presión en la bomba;

 $H_B(Q=0)$ altura de presión en la bomba a caudal nulo, $H_B(Q=0)=A_B$

H_D altura del agua en el depósito;

Hinterf carga piezométrica en la interfase del agua

H₀ altura del agua en el tanque de carga constante;

 H_p , H_r , H_s carga piezométrica referida a los nodos p,r,s en una malla;

H_R carga disponible en el depósito;

H*, escala de alturas:

 H_i^* altura de presión de la bolsa de aire i(i=1,2,...,n);

 $H_{i,0}^*$ altura de presión inicial de la bolsa de aire i(i=1,2,...,n);

H*_{max} altura de presión máxima de la bolsa de aire;

 H^*_{max} , i altura de presión máxima de la bolsa de aire i(i=1,2,...,n);

H_{perm} altura de presión de régimen permanente;

 H_{rp}^{*} altura de presión de régimen permanente en el punto donde se

alcanza el pico máximo;

H*₀ altura de presión aguas arriba de la conducción;

h pérdidas de energía;

h_f pérdidas de energía por cortante en la tubería;

h_{loc} pérdidas de energía locales debido a accesorios en la tubería;

h* altura motriz adimensional;

h*atm	carga de presión atmosférica adimensional;
h_i^*	carga de presión adimensional de la bolsa de aire $i(i=1,2,,n)$;
h_{total}	pérdidas totales de energía;
K	coeficiente de pérdidas, $h = K \cdot Q^2$;
k_v	coeficiente de pérdidas para la válvula
k	coeficiente de pérdidas $h = k \cdot v^2/2g$;
k_{valv}	coeficiente de pérdidas para la válvula, $h_{valv} = k_{valv} \cdot v^2/2g$;
L	longitud de la columna de llenado;
L	longitud de la columna de agua en el segmento de tubería que
	empieza a llenarse.
L_j	longitud en el segmento de tubería j;
Laire i	longitud de la bolsa de aire $i(i=1,2,,n)$;
Laire 1,0	longitud inicial de la bolsa de aire $i(i=1,2,,n)$;
Laire n	longitud de la última bolsa de aire;
Laire n,0	longitud inicial de la última bolsa de aire;
$L_{b,i}$	longitud de la columna de bloqueo i(i=1,2,,n);
$L_{b,n}$	longitud de la última columna de bloqueo;
L_e	escala de longitudes;
L_m	longitud del último tramo;
L_{min}	Longitud inicial de la columna de llenado;
L_p	longitud del tramo $p(p=1,2,,m)$;
L_q	longitud del tramo q;
L_{total}	longitud total;
L_0	longitud inicial de la columna de llenado;
L_0	longitud de aproximación del flujo a la entrada de la tubería que
	representa el efecto de aceleración local;
1	longitud adimensional de la columna de llenado;
l_i	longitud adimensional de la columna de bloqueo i(i=1,2,,n);
l_0	longitud inicial adimensional de la columna de llenado;
m	masa;

m	número de tramos en la instalación;			
m_s	flujo másico;			
m_i	masa de la bolsa de aire $i(i=1,2,,n)$;			
N	número de nodo;			
N_{st}	número de nodo anterior a la interfase del agua.			
n	coeficiente politrópico;			
n	número de bolsas de aire / columnas de bloqueo;			
P	presión;			
P_0	presión en la tubería inmediatamente aguas abajo de la válvula;			
P_i, P_j	presión en el segmento de tubería i, j.			
p	presión relativa o manométrica;			
p*	presión absoluta;			
p atm	presión atmosférica;			
p*e	escala de presiones;			
p*,	presión de la bolsa de aire $i(i=1,2,,n)$;			
p*i,max	presión máxima de la bolsa de aire i(i=1,2,,n);			
p*,0	presión inicial de la bolsa de aire i(i=1,2,,n);			
p_n^*	presión de la última bolsa de aire;			
p*,0	presión inicial de la última bolsa de aire;			
p^*_0	presión aguas arriba de la conducción;			
Q	caudal;			
Q_{aire}	caudal de aire expulsado por el extremo final de la tuberia;			
Qagua	caudal de agua expulsado por el extremo final de la tubería.			
Q_{perm}	caudal de régimen permanente;			
R	constante del gas en la ecuación de los gases perfectos;			
T	temperatura			
T_e	escala de tiempos;			
$T_{max,i}$	tiempo que se alcanza la presión máxima en la bolsa de aire			
	i(i=1,2,,n);			
1	tiempo;			
V	velocidad;			

V_{i}	velocidad de la columna cuando el agua empieza a llenar el		
	segmento $i+1$;		
V_r	velocidad del agua en un nodo N -1 en un tiempo t ;		
V_s	velocidad del agua en un nodo $N+1$ en un tiempo t ;		
V_p	velocidad del agua en el nodo N en un tiempo $t+\Delta t$;		
v	velocidad de la columna de llenado;		
v_e	escala de velocidades;		
v_i	velocidad de la columna de bloqueo i(i=1,2,,n);		
$v_{i,,max}$	velocidad máxima de la columna de bloqueo i(i=1,2,,n);		
$v_{m\acute{a}z}$	velocidad máxima de la columna de llenado;		
Vmin	velocidad mínima de la columna de llenado;		
v_{perm}	velocidad de régimen permanente;		
\forall	volumen;		
\forall_e	escala de volúmenes;		
\forall_i	volumen de la bolsa de aire $i(i=1,2,,n)$;		
$\forall_{i,0}$	volumen inicial de la bolsa de aire i(i=1,2,,n);		
x	posición;		
x_i	posición del principio de la columna de bloqueo i(i=1,2,,n);		
x_0	posición inicial;		
Z	elevación;		
α_i	relación entre las longitudes de la columna de bloqueo i(i=1,2,,n) y		
	de la bolsa de aire $i(i=1,2,,n)$;		
β	longitud adimensional de la columna de llenado;		
β	relación de área entre dos tuberías adyacentes;		
eta_i	longitud adimensional de la columna de bloqueo i(i=1,2,,n);		
eta_0	longitud adimensional de la columna de llenado;		
Xi	posición adimensional del principio de la columna de bloqueo		
	i(i=1,2,,n);		
X1.0	posición inicial adimensional del principio de la columna de bloqueo		
	i(i=1,2,,n);		

Δt	intervalo de tiempo;
Δz	desnivel entre el principio y el final de la columna de llenado;
$\Delta z_{b,i}$	desnivel entre el principio y el final de la columna de bloqueo
	i(i=1,2,,n);
45	desnivel adimensional de la columna de llenado;
151	desnivel adimensional de la columna de bloqueo $i(i=1,2,,n)$;
δ_p	parámetro de perfil correspondiente al tramo p ($p=1,2,,m$);
y	peso específico del agua;
$arphi_i$	volumen adimensional de la bolsa de aire $i(i=1,2,,n)$;
μ	parámetro de forma del contorno;
V	velocidad adimensional de la columna de llenado;
ν_i	velocidad adimensional de la columna de bloqueo i(i=1,2,,n);
$\Pi_{\!f}$	parámetro de fricción;
$\Pi_{f,i}$	parámetro de fricción total de la columna de bloqueo i(i=1,2,,n);
Π_{t}	parámetro de inercia;
$\Pi_{i,i}$	parámetro de inercia total de la columna de bloqueo i(i=1,2,,n);
Π_m	parámetro motriz de contorno;
θ	pendiente de la conducción;
θ	ángulo de inclinación del segmento de tubería con respecto a la
	horizontal;
θ_m	pendiente del último tramo;
θ_p	pendiente del tramo p ($p=1,2,,n$);
$ heta_q$	pendiente del tramo q;
ρ	densidad del agua;
Paire	densidad del aire;
Paim	densidad del aire en condiciones atmosféricas;
ρ_i	densidad de la bolsa de aire $i(i=1,2,,n)$;
τ	tiempo adimensional;
g	subíndice para denotar la fase gaseosa;
i	subindice para denotar la bolsa de aire y la columna de bloqueo;

i	subíndice para denotar el segmento de tubería;			
j	subíndice para denotar el segmento de tubería;			
1	subíndice para denotar la fase líquida;			
m	subíndice para denotar el último tramo del perfil;			
n	subíndice para denotar la última bolsa de aire / última columna de			
	bloqueo;			
p	subíndice para denotar el tramo del perfil;			
q	subindice para denotar el tramo del perfil;			
*	subíndice que denota la presión absoluta			

RESUMEN

El llenado de acueductos se realiza regularmente sin utilizar algún modelo, más aún todavía la forma de realizar un llenado se hace sin tomar en cuenta alguna especificación. La presente tesis le dedica atención a los llenados de conducciones con flujo tipo pistón, los cuales funcionan en conductos de diámetros relativamente pequeños. Para ello, se estudiaron tres modelos de llenados con flujo tipo pistón, dos ellos son para analizar los llenados iniciales (Safwat et al, Liou y Hunt), es decir, cuando se hace por primera vez o después de vaciados programados; se reprodujeron un caso por cada modelo para determinar los efectos de velocidad y presión que se generan en una conducción. El otro modelo, analiza los llenados de rutina (Fuertes et al), que suceden después de vaciados accidentales, presencia de aire en el interior de la conducción, etc. Igualmente, se reprodujo un caso práctico, determinando los efectos de velocidad y presión, éste último es el más importante por los picos de presión que se generan en el llenado.

Debido a las sobrepresiones que se pueden generar en un llenado de rutina habiendo aire entre dos columnas de agua, se presentaron dos modelos para determinar esos efectos de una manera sencilla. Primero las gráficas adimensionales de Fuertes y seguido las curvas de Martin. Para aplicar los modelos se necesitan datos de campo que deben recabarse, pero la operación de llenado se deberá supervisar y se requiere comprobar ciertos parámetros mientras está ocurriendo. Realizar un llenado rápido con flujo tipo pistón ayudará a hacerlo en menos tiempo así como la reducción del costo.

"Llenado de acueductos con flujo pistón"

Alumno: José Antonio Cabrera Bejar

Director: Dr. Leonel H. Ochoa Alejo

JURADO

PRESIDENTE: M.C. Jorge A. Hidalgo Toledo

VOCAL: Dr. Leonel H. Ochoa Alejo

SECRETARIO: Dr. Velitchko G. Tzatchkov

SUPLENTE: M.I. Víctor M. arroyo Correa

SUPLENTE: M.I. Víctor J. Bourguett Ortiz

¿Recuerdas cuando te escribí un pensamiento y de fondo tenía un águila? Todavía recuerdo aquel cartel que tenías pegado en la pared de tu cuarto, cuando me decías que tú ibas a estudiar en ese edificio y yo al principio no te creía, pero conforme fue pasando el tiempo me di cuenta que lo harías. Y hoy que estás culminando esta etapa de tu vida me siento muy orgullosa de estar a tu lado y compartir junto a nuestra hija la alegría de que obtengas el premio a nuestro sacrificio; en mi siempre tendrás a la amiga y a la esposa que te apoya en cualquier proyecto que emprendas en la vida. Te deseo que tengas mucho éxito, y recuerda que eres una persona capaz de romper cualquier reto que se te proponga, confía siempre en ti y en tu fortaleza, también espero obtener como ahora el más grande de tus sueños. Sólo échale ganas y confía en que una mano divina siempre te guiará por el mejor camino.

Te amamos Tu hija y tu esposa

INTRODUCCIÓN

El llenado de un acueducto consiste en remover todo el aire que se encuentra dentro de sus elementos y reemplazarlo por agua. Esta operación se realiza por primera vez cuando se inicia la operación de una obra nueva, y después de cada vaciado cuando se efectúan limpiezas y reparaciones. La salida de aire se realiza naturalmente a través de conexiones que el acueducto tiene con la atmósfera (extremo aguas abajo, torres de oscilación, etc.)

El llenado de un acueducto puede resultar poco eficiente y peligroso si no se realiza adecuadamente, debido a que al tratar de remover aire hacia fuera se pueden originar cambios continuos en el régimen de los flujos de agua y aire.

De acuerdo a las características del gasto de llenado y de las condiciones geométricas de los tramos de la tubería, el flujo en el llenado de conductos a presión se comporta fundamentalmente de dos maneras, como flujo tipo pistón o flujo combinado.

Llenar el sistema con un flujo tipo pistón implica realizar una operación de llenado rápida, es decir, que el agua se conducirá como una interfase perpendicular al eje del tubo, la cual actuará contra el aire como un émbolo, provocando la evacuación de éste por las conexiones que se tienen con la atmósfera.

Son varios los fenómenos que nos podemos encontrar cuando se llena una conducción con flujo tipo pistón. La presencia de subpresiones y sobrepresiones originadas por las aceleraciones y desaceleraciones del agua en los cambios de pendiente de la tubería, y en casos extremos efectos de cavitación; el golpe de ariete ocasionado por la salida del agua a través de un orificio; otro fenómeno que se presenta en el llenado es cuando hay aire atrapado entre dos columnas de agua, nada más arrancar la instalación provoca sobrepresiones que pueden originar la ruptura de cualquier tubería.

Como se menciona, el llenado de conducciones presenta una serie de dificultades que no deben ser ignorados por los ingenieros hidráulicos encargados de proyectar y mantener las instalaciones. Es muy importante estudiarlo, puesto que, al llenar una conducción de esta manera, representa menos tiempo y menos costo que hacerlo con otro tipo de flujo.

Existen algunos autores que han estudiado modelos en el llenado con flujo tipo pistón (Safwat et al, Liou y Hunt, Fuertes et al) analizando diferentes situaciones; es necesario probar esos modelos para asegurar la concordancia entre los datos numéricos obtenidos por ellos, ver sus alcances y darles cierta aplicación a problemas prácticos.

Por tanto, los principales objetivos de la tesis son:

- Reproducir los modelos tipo pistón existentes en el llenado de conducciones, y comparar los resultados numéricos obtenidos por ellos.
- Investigar la caracterización de dicho fenómeno, y dar algunas recomendaciones de cómo aplicar los modelos en la práctica.

La tesis comprende de seis capítulos; comienza con la introducción, donde se expone el porque se realiza la tesis y los objetivos de la misma. Enseguida en el capítulo 1, se describe el flujo tipo pistón, cuáles son los rangos de aplicación del modelo, el modelo de la columna rígida, cómo se desarrollan los llenados rápidos, los efectos que se producen; igualmente se menciona el estado del arte de los modelos tipo pistón en el llenado de conducciones que hay en la actualidad.

En el capítulo 2 se analiza el modelo de Safwat et al (1986), aquí se describe como funciona el modelo; se presentan las ecuaciones generalizadas del modelo para el cálculo de los transitorios en el primer llenado de la conducción. Con dicho modelo se presenta un ejemplo de aplicación para tener mejor compresión del fenómeno.

En el capitulo 3 se presenta el modelo formulado por Liou y Hunt (1996), se describen las bases del modelo, así como las ecuaciones que describen su comportamiento. Igualmente que el capítulo anterior se presenta un ejemplo de aplicación para determinar los transitorios que se generan durante el llenado de la conducción.

En el capítulo 4 se presenta el modelo matemático para el cálculo de los transitorios con aire atrapado desarrollado por Fuertes et al (1997); se aplicará este modelo a un caso de llenado, con el cual se podrán notar los efectos causados, sobretodo las sobrepresiones generadas.

Debido a que se presentan sobrepresiones indeseables en el llenado considerando aire atrapado entre dos columnas, en el capítulo 5 se hacen unas recomendaciones prácticas para determinar esas sobrepresiones; primero se presentan las ecuaciones adimensionales desarrolladas por Fuertes, los parámetros más significativos que caracterizan el fenómeno estudiado; y con ello las gráficas adimensionales para poder estimar de forma sencilla las presiones máximas que se producirían. Seguidamente se presentan las curvas de Martín

para determinar los máximos picos de presión generados cuando la tubería tiene un tapón en la salida del conducto.

En el capítulo 6 se describen los datos necesarios que se requieren para analizar el llenado de un acueducto aplicando los modelos tipo pistón. De la misma manera, se describe en forma general, las condiciones necesarias que deben tener en una instalación para realizar un llenado rápido cuando se hace por primera vez o después de un paro accidental. Por último se describirán una serie de medidas prácticas para llevar a cabo un llenado con flujo pistón.

En el último capítulo se resumen las principales conclusiones a las que se ha llegado en la presente tesis.

La tesis se completa con anexos donde se presentan los códigos de los programas utilizados en la solución de los ejemplos presentados de los modelos, así como también los resultados más significativos de dichos problemas.

CAPITULO 1 FLUJO TIPO PISTÓN

Como se mencionó en la introducción el llenado de un acueducto implica la salida de aire de la tubería y su sustitución por agua. Dependiendo de las características del flujo y de las condiciones geométricas de los tramos de la tubería, la modelación del llenado de conductos a presión puede realizarse mediante flujo pistón o flujo combinado (ver Figura 1.1).

- a) Flujo pistón.- Ocurre durante un llenado rápido, el flujo se conduce como una interfaz perpendicular al eje del tubo, que avanza en el sentido del llenado de manera concentrada.
- b) Flujo combinado.- Se genera durante llenados lentos, con gastos pequeños, de conductos de diámetros relativamente grandes, con perfiles longitudinales que cambian de pendiente y presentan picos y valles definidos en su recorrido (situación que es normal en el trazo de acueductos o túneles). En este caso, el flujo de agua cambia continuamente de régimen de presión, a superficie libre, o viceversa, arrastrando o atrapando aire mientras sucede.

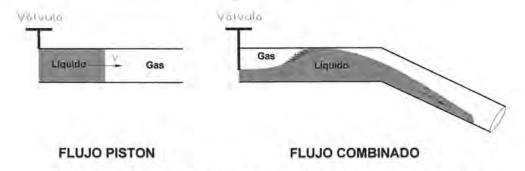


Figura 1.1. Modelos para el llenado de conductos a presión.

Cuanto mayor sea la velocidad, menor sea el diámetro, y mayor sea la pendiente ascendente; más realista será la aplicación del flujo pistón.

Para que ocurra el flujo tipo pistón en el llenado de un acueducto, la velocidad del agua debe ser suficientemente grande para que pueda empujar al aire, y por tanto la columna de agua tenga una interfaz bien definida. Cuando sucede lo contrario, el aire se introduce en el agua, provocando la desaparición de las interfases de los fluidos (agua y aire). Este fenómeno que produce el aire cuando se opone al ser arrastrado por el agua es conocido como la celeridad del aire, y se denota con la letra C. Entonces cuando la velocidad del agua es mayor que la celeridad C del aire, se produce un flujo tipo pistón.

Zukoski (1966), realizó un estudio experimental sobre el movimiento de grandes burbujas de aire en el interior de conductos cerrados. Investigó la celeridad C del aire y su dependencia con la viscosidad y tensión superficial del agua, así como de la pendiente de tubos entre 0.508 cm y 17.8 cm de diámetro. Encontró que el efecto de la viscosidad no es significante y que la tensión superficial se vuelve importante en los tubos más pequeños. Para tuberías horizontales más grandes de 17.8 cm, observó que el cociente de la celeridad del aire entre la raíz cuadrada del producto de la aceleración de la gravedad y el diámetro del tubo $C/(gD)^{0.5}$, tiene un valor alrededor de 0.53. Para una tubería horizontal de 1.36 cm, observó que la tensión superficial $C/(gD)^{0.5}$ proporciona valores abajo de 0.28.

Consecuentemente, la celeridad incrementa en un 20% cuando el ángulo de inclinación disminuye de cero a 45°.

Resumiendo los trabajos de Zukoski, estableció el siguiente criterio: si la velocidad del fluido supera un cierto valor ($v_{flujo} > C_{crítica}$), no hay intrusión de aire, por tanto se puede aplicar el modelo pistón

para tubos horizontales o casi horizontales de 4 a 18 cm de diámetro (1 ½" a 6")

$$C_{critica} = 0.5 \sqrt{gD} \tag{1.1}$$

➤ Para tubos largos con pendiente descendente ≅ 45°

$$C_{critica} = 0.68 \sqrt{gD} \tag{1.2}$$

Por ejemplo, en la tabla 1.1 se muestran algunos valores para su utilización. Se ha visto en la práctica, que la aplicación del flujo pistón se puede presentar en sistemas a presión que tengan diámetros menores o iguales que 14 pulgadas, con flujos de hasta de 126 l/s; se tendrían que revisar estos rangos, para comprobar si es factible la aplicación del modelo. Por tanto, puede haber una gran cantidad de conductos que normalmente funcionen en esos rangos máximos, por lo que resulta importante el análisis de su comportamiento y la predicción de sus efectos.

Tabla 1.1. Valores de celeridad y gasto para diferentes diámetros de acuerdo a la fórmula de Zukoski.

Diámetro		G _{critica} (0°)	Q(0°)	C _{critica} (45°)	Q(45°)
Pulgadas	mm	m/s	L/s	m/s	L/s
1	25.4	0.25	0.013	0.34	0.17
1 1/2	38.1	0.31	0.35	0.42	0.47
2	50.8	0.35	0.72	0.48	0.97
3	76.2	0.43	1.97	0.59	2.68
4	101.6	0.50	4.05	0.68	5.50
6	152.4	0.61	11.15	0.83	15.17
8	203.2	0.71	22.89	0.96	31.13
10	254	0.79	39.99	1.07	54.39
12	304.8	0.86	63.09	1.18	85.80
14	355.6	0.93	92.75	1.27	126,14
16	406.4	1.00	129.50	1.36	176.12
18	457.2	1.06	173.84	1.44	236.43
20	508	1.12	226.23	1.52	307.68
24	609.6	1.22	356.87	1.66	485.34
36	914.4	1.50	983.41	2.04	1337.44
48	1219.2	1.73	2018.75	2.35	2745.50

Comúnmente, el estudio del flujo tipo pistón ha sido abordado mediante la teoría de la columna rígida para el flujo transitorio en conductos a presión, de tal manera que se desprecian los efectos elásticos provocados durante los cambios repentinos del flujo y considerando importante la inercia del sistema. Esta simplificación es muy útil y acertada cuando los movimientos del agua son relativamente lentos, lo cual se ha comprobado en los resultados de varios trabajos técnicos reportados.

Las ecuaciones del modelo de la teoría de columna rígida se deducen a partir de las del modelo elástico (Cabrera e Abreu, 1994), cuando la celeridad tiende a infinito $(a \to \infty)$, o la variación local de H tiende a cero $(\partial H/\partial t \to 0)$ por cambiar las condiciones del flujo muy lentamente en el tiempo. La ecuación de continuidad es:

$$\frac{\partial Q}{\partial x} = 0 \tag{1.3}$$

Pasando a depender el flujo únicamente del tiempo y resultando irrelevante la variable espacial. En definitiva, Q = Q(t).

Así pues, la ecuación de cantidad de movimiento se convierte en:

$$\frac{dQ}{dt} + gA\frac{\partial H}{\partial x} + f\frac{Q|Q|}{2DA} = 0$$
 (1.4)

Puede expresarse, en función del campo de velocidades:

$$\frac{1}{g}\frac{dv}{dt} + \frac{\partial H}{\partial x} + f\frac{v|v|}{2gD} = 0 \tag{1.5}$$

Integrando la ecuación (1.5) para un instante genérico t a lo largo de un conducto de sección recta constante entre dos puntos (1 inicial y 2 final), separados una distancia L (ver Figura 1.2), se obtiene:

$$H_1 = H_2 + f \frac{L}{D} \frac{v^2}{2g} + \frac{L}{g} \frac{dv}{dt}$$
 (1.6)

La ecuación (1.6) se denomina ecuación de Euler y es la que caracteriza el modelo de columna rígida con la única restricción de moverse entre dos puntos unidos por una conducción de sección recta constante.

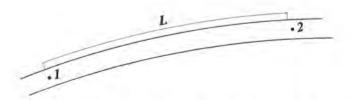


Figura 1.2. Integración de la ecuación del movimiento en una tubería.

El sentido físico de la ecuación (1.6) es el siguiente: la altura piezométrica en el punto inicial es igual a la altura piezométrica en el punto final más la energía perdida por fricción más la energía necesaria para variar la velocidad del fluido (término de inercia).

La ecuación (1.6) es valida para las siguientes hipótesis:

- Flujo unidimensional y homogéneo, lo cual implica una distribución uniforme de presión, velocidad y densidad.
- · Las paredes del tubo no se deforman.
- No hay vaporización del líquido.
- · El tubo puede estar horizontal o inclinado y es prismático.
- Las pérdidas por efecto viscoso son tratadas como si el flujo fuera permanente.

Se ha comprobado que el análisis del flujo tipo pistón con el modelo de la columna rígida proporciona resultados aceptables, comparables con la teoría elástica. La diferencia, es que el primero puede resolverse de una manera relativamente sencilla, puesto que, sólo se tienen ecuaciones diferenciales ordinarias; y en el segundo se considera la elasticidad de la tubería y el fluido, lo cual resultan ecuaciones más complicadas.

Como se mencionó anteriormente, para tener un flujo de este tipo, se tiene que presentar un llenado rápido, a continuación se describe como funciona.

1.1 Llenado rápido

Para entender mejor el llenado rápido, analizaremos cualitativamente el siguiente problema de llenado de una línea que funciona hidráulicamente por gravedad (ver Figura 1.3). En el esquema la válvula del tanque está cerrada y la tubería se encuentra completamente vacía, antes de la operación.

Para realizar el llenado rápido, la válvula se debe abrir en forma repentina (ref. 3), y con un gasto tal que proporcione una velocidad mayor que la celeridad del aire. Inmediatamente, el flujo saldrá del tanque con una velocidad similar a la de caída de los cuerpos, multiplicada por un coeficiente de pérdidas locales por entrada y por la válvula.

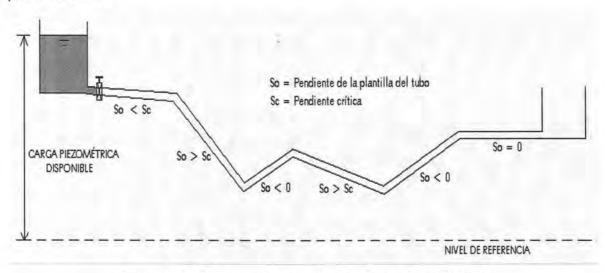


Figura 1.3. Sistema de conductos de perfil ondulado.

A medida que el agua recorre el primer tramo del conducto; la superficie de contacto con las paredes aumenta y por consiguiente crece la resistencia por el esfuerzo cortante, esto se traduce en una desaceleración continua del flujo del agua.

Cuando el agua llega al segundo tramo que desciende, se produce ahora una aceleración por la acción de la fuerza de gravedad y en lugar donde cambia de dirección el conducto, se pueden presentar presiones negativas (Figura 1.4), similarmente a lo que ocurre con el funcionamiento de un sifón invertido. En la medida en que el agua avance por este tramo, el esfuerzo cortante sobre la columna de agua aumentará y se generará una nueva desaceleración del flujo.

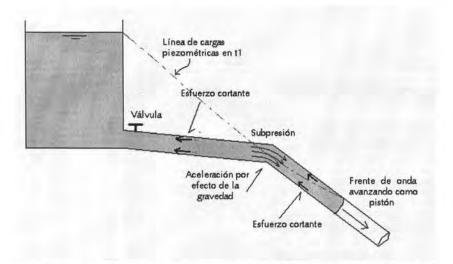


Figura 1.4. Descenso del agua en un tiempo t₁ del llenado rápido con flujo pistón.

Sin embargo, al llegar al punto más bajo del segundo tramo debe iniciar el ascenso por el tercer tramo, la acción de la gravedad actuará en sentido opuesto al avance del flujo y le producirá otra desaceleración (Figura 1.5), con aumento de presión.

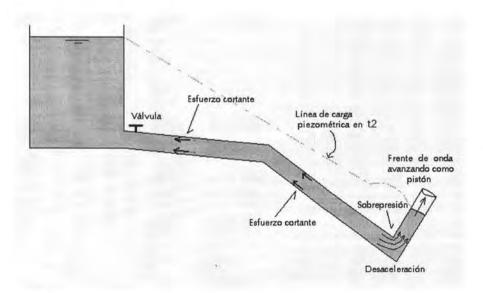


Figura 1.5. Ascenso del agua en un tiempo t2 del llenado rápido con flujo pistón.

En los puntos más altos y más bajos del conducto sucesivamente se presentarán estos efectos de aceleración y desaceleración, hasta que el agua llegue al depósito de entrega.

Para expulsar el aire hacia el tanque de entrega se requiere una diferencia de presiones equivalente a la necesaria para descargar a través de un orifico:

$$Q_{aire} = C_d A \sqrt{2g \frac{P_{1aire} - P_2}{\gamma_{aire}}}$$
 (1.7)

Donde A es el área del conducto, $P_{1 \ aire}$ es la presión antes de la conexión con el tanque, P_2 representa la presión atmosférica en el tanque (tanque vacío), g es la aceleración de la gravedad, C_d es el coeficiente de caudal del orificio y γ_{aire} es el peso específico del aire (ver Figura 1.6).

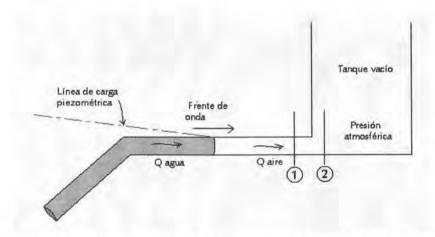


Figura 1.6. Llegada del agua al tanque con un llenado con flujo pistón.

Escribiendo la misma ecuación para el agua resultará:

$$Q_{agua} = C_d A \sqrt{2g \frac{P_{1 \text{ agua}} - P_2}{\gamma_{agua}}}$$
 (1.8)

Donde $P_{l \ agua}$ es la presión en la conexión cuando fluye agua con peso específico γ_{agua} y C_d tiene el mismo valor que en el aire.

Recordando que para 20 °C y una atmósfera de presión, el γ_{aire} = 1.2 kg/m³, se puede deducir de las ecuaciones (1.7) y (1.8) los gastos de aire y agua que salen del tanque. Sustituyendo la ecuación (1.7) en (1.8), resulta:

$$Q_{aire} = Q_{agua} \sqrt{\frac{2g\left(\frac{P_{1aire} - P_2}{\gamma_{aire}}\right)}{2g\left(\frac{P_{1agua} - P_2}{\gamma_{agua}}\right)}}$$
(1.9)

Si se tiene igual diferencia de presión para el aire y el agua $(P_{laire} - P_2 = P_{lagua} - P_2)$, resulta:

$$\frac{Q_{aire}}{Q_{agua}} = \left[\frac{\gamma_{agua}}{\gamma_{aire}}\right]^{1/2} = 28.87 \tag{1.10}$$

Esta caída brusca del gasto de aire al gasto de agua origina una sobrepresión que se propaga al interior de la tubería, en forma análoga a lo que ocurre en el instante de cierre de las válvulas de expulsión y admisión de aire, es decir, cuando el agua empuja al aire para ser expulsado, cuando ello sucede el flujo de agua es sometido a una alteración súbita igual ΔQ igual a Q_{aire} ; esta alteración súbita, da lugar a un fenómeno de golpe de ariete, siendo su primera manifestación una onda de presión que se propaga por la tubería. En consecuencia, este efecto es mucho más importante cuando la sección de salida es pequeña en comparación con la sección de la tubería, es decir, cuando la salida de agua se hace por un orificio.

Se han encontrado algunas investigaciones con relación al llenado de acueductos con flujo pistón. Safwat et al (1986), generalizan el método de las características en la teoría elástica para analizar los transitorios hidráulicos en el llenado de acueductos con flujo pistón; con la solución de la ecuación dinámica de columna

rígida para determinar el movimiento de avance del frente de agua dentro de un conducto vacío.

Liou y Hunt (1996), formularon un modelo basado en la teoría de columna rígida, para describir el movimiento de una columna de agua rígida que llena un conducto con perfiles irregulares (cambios de pendientes fuertes). El modelo predice la evolución de la columna de agua, la velocidad y presión del sistema en cualquier lugar y en cualquier instante. Comprobaron su modelo con pruebas experimentales y determinaron que hay buena concordancia entre ambos resultados. Observaron que la columna de agua se acelera y desacelera en los cambios de pendiente, debido a su inercia y velocidad, pudiendo ocasionar separación de columna con presiones cercanas a la de vaporización del líquido.

Fuertes et al. (1997), modificaron el modelo de Liou y Hunt, para el caso en que el conducto presente zonas llenas y vacías antes de iniciar el llenado del conducto. El modelo fue generalizado para simular n columnas de aire y agua, tal como se analizó en los resultados numéricos, la ubicación y longitud de la primera columna de aire y la primera columna de agua (bloqueadora) son las que definen la máxima sobrepresión del sistema cuando se inicia el funcionamiento del conducto.

CAPITULO 2 MODELO DE SAFWAT, ARASTU Y HUSANI

2.1 Introducción

El modelo de Safwat et al (1986), acopla la solución numérica de las ecuaciones de movimiento del flujo transitorio rápido (método de las características en la teoría elástica) en conductos llenos, con la solución de la ecuación dinámica de columna rígida de la interfase del agua en movimiento, que avanza hacia las secciones vacías del conducto cuando se está llenando.

De acuerdo a las necesidades de contar con un modelo que resuelva transitorios en el caso de llenados iniciales de un acueducto con flujo pistón, en el presente capítulo se generaliza el método de las características, comúnmente aplicado para analizar el golpe de ariete en sistemas hidráulicos, para tratar con transitorios que involucran porciones vacías o secciones del sistema en el llenado de acueductos. El análisis se hace en dos pasos, primero la aplicación de la teoría de la columna rígida para obtener la magnitud de las velocidades de la columna de agua, y después estas velocidades se usan en un análisis del método de las características para determinar las presiones.

2.2 Ecuaciones básicas generalizadas

a) Simulación en el tubo lleno de agua

Para las porciones llenas de la tubería se utilizan las ecuaciones de flujo a presión, (2.1) a (2.4), resueltas bajo un esquema de diferencias finitas de primer orden y en incrementos Δx y Δt constantes (ver Figura 2.1). Se elige entonces una malla en el plano x-t de tal manera que se cumpla la condición de Courant, C_N =I (ref. 11), es decir, aplicando las ecuaciones 2.1 ó 2.2, para asegurar convergencia y estabilidad en la solución numérica.

Para la característica positiva C⁺

$$x_p - x_r = a(t_p - t_r) (2.1)$$

$$(V_p - V_r) + \frac{g}{a} (H_p - H_r) + f \frac{V_r}{2D} |V_r| (t_p - t_r)$$
 (2.2)

Para la característica negativa C

$$x_p - x_s = a(t_p - t_s) \tag{2.3}$$

$$(V_p - V_s) - \frac{g}{a} (H_p - H_s) + f \frac{V_s}{2D} |V_s| (t_p - t_s)$$
 (2.4)

En donde, x es la distancia, t es el tiempo, V es la velocidad del agua, H es la carga piezométrica, todos estos valores están referidos a los puntos r, p y s; g es la aceleración de la gravedad, a es la velocidad de la onda de presión, f es el coeficiente de cortante de Darcy-Weiswach y D es el diámetro del conducto.

Si H y V son conocidas en los puntos r y s en el tiempo t se pueden calcular los valores de H y V en el punto p, en el tiempo $t + \Delta t$ resolviendo simultáneamente las ecuaciones antes descritas. Para puntos extremos de la malla, las ecuaciones (2.1) a (2.4) se combinan con condiciones de frontera.

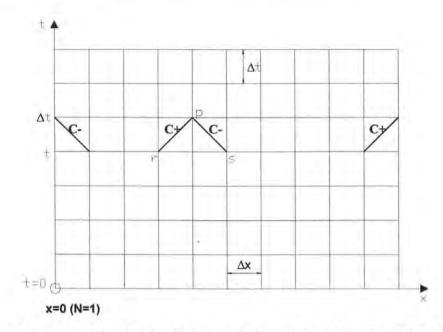


Figura 2.1. Esquema del método de las características para el análisis de flujo con tubo lleno.

c) Simulación y acoplamiento del avance del frente de agua

El acoplamiento de los tramos vacíos con el avance del flujo a presión se hace considerando que el agua y el aire forman una interfaz perpendicular al eje del tubo (flujo pistón). Entonces en cualquier tiempo t, la interfaz del agua está a una distancia x_s del nodo N_{st} justo aguas arriba de ella (Figura 2.2). El esquema de cálculo para el tramo que contiene la interfaz del agua, puede hacerse como sigue:

- Para nodos N < N_{st}, estos nodos están en los tramos llenos; se utilizan las ecuaciones (2.1) a (2.4) para su solución.
- Para N = N_{st}, se utiliza la ecuación dinámica entre el nodo N_{st} y la interfaz, con una solución en diferencias finitas de primer orden:

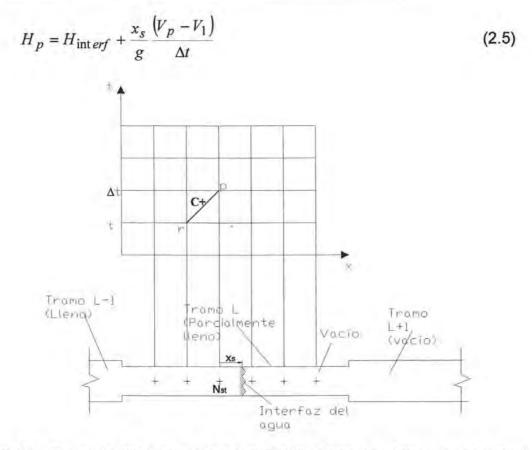


Figura 2.2. Esquema de cálculo con características en secciones llenas y vacías.

Donde H_p es la carga piezométrica en el nodo N_{st} ; H_{interf} es la carga piezométrica en la interfaz del agua, que está en función principalmente de la presión en la zona vacía; x_s es la longitud del movimiento del agua entre el nodo N_{st} y la interfaz; V_p Representa la velocidad del agua y es aproximadamente igual a la velocidad en el nodo N_{st} , en el tiempo $t + \Delta t$; V_l Es la velocidad del agua en el nodo N_{st} en el tiempo t.

Asumiendo que H_{interf} permanece aproximadamente constante en el mismo instante entre t y Δt , se simplifica la solución de las ecuaciones (2.5) y (2.2), obteniendo la nueva velocidad y posición de la interfaz, y así calcular la presión del aire dentro de la tubería en la zona vacía utilizando la ecuación de gases perfectos:

$$P^* \forall = m R T \tag{2.6}$$

Donde P^* es la presión absoluta en el aire, \forall es el volumen de aire en la tubería, m es la masa, T es la temperatura absoluta y R es la constante de los gases.

Una vez logrado lo anterior, se determina la nueva carga piezométrica en la interfase en $t + \Delta t$; y así sucesivamente hasta que se alcance el tiempo de llenado del tramo analizado.

Para entender mejor el modelo de Safwat et al, se presenta una aplicación del llenado de una tubería conectada a un tanque de carga constante y controlada por dos válvulas de compuerta.

2.3 Ejemplo de aplicación

Considérese el sistema mostrado en la Figura 2.3.

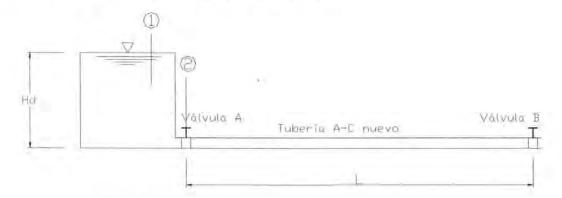


Figura 2.3. Sistema para el ejemplo de aplicación.

Datos del sistema:

Carga en el tanque de carga constante (H_d)	=25,00 m
Longitud de la tubería (L_{total})	=350,00 m
Diámetro de la tubería (D)	=0,1524 m (6")
Coeficiente de cortante (f)	=0,021
Pérdida local de la válvula (K_{loc})	=0.14

Datos para el análisis del flujo transitorio:

Incremento de tiempo (∆t)	=0,035 s
Intervalo de distancia (△x)	=35,00 m
Velocidad de la onda de presión (a)	=1000 m/s

Número de intervalos Δx =10 Número de nodos (N) =11

Para cumplir con la estabilidad y convergencia, se aplica la ecuación (2.1) ó (2.3)

$$1 \ge a \Delta t / \Delta x$$

Sustituyendo el lado derecho de la expresión: 0.035 * 1000 / 350 = 1, por lo tanto se cumple la condición.

SOLUCIÓN

En el tiempo inicial (t = 0), la válvula A, en la salida del tanque se encuentra cerrada. En ese instante, esta válvula se abre repentinamente.

De acuerdo con la Figura 2.3, aplicando la ecuación de la energía entre la superficie libre del tanque (1) y la válvula A (2), se obtiene:

$$H_1 = H_2 + \frac{V^2}{2g} + \sum h f + \sum h_{loc} + \frac{L}{g} \frac{dV}{dt}$$
 (2.7)

Donde, $H_I = H_{di}$ que es la energía disponible en el punto 1; $H_2 = 0$, ya que la carga de posición coincide con la línea de referencia, $\sum hf$ es la sumatoria de las pérdidas por cortante del agua en la tubería, $\sum h_{loc}$ es la sumatoria de pérdidas locales del agua debido a accesorios en la tubería, L es la longitud entre el tanque de carga constante y la válvula A, la cual equivale a un metro, V es la velocidad del agua, t

el tiempo, g la aceleración de la gravedad y $\frac{L}{g} \frac{dV}{dt}$ es el término de aceleración en el fluido. Entonces desarrollando términos:

$$H_{d} = \frac{V^{2}}{2g} \left(1 + f \frac{L}{D} + K_{loc} \right) + \frac{L}{g} \frac{dV}{dt}$$
 (2.8)

Donde f y K_{loc} son los coeficientes de pérdidas por cortante y local debido a la válvula A, respectivamente. En el límite (Válvula abierta totalmente y flujo permanente), dV/dt = 0 y $V = V_0$, que es la velocidad en flujo permanente. Entonces queda:

$$H_d = \frac{V_0^2}{2g} \left(1 + f \frac{L}{D} + K_{loc} \right)$$
 (2.9)

Debido a que la longitud es muy corta (*L*=1.0 m), se consideran despreciables las pérdidas por cortante, entonces despejando la velocidad, resulta:

$$V_0 = \sqrt{\frac{2gH_d}{1 + K_{loc}}}$$
 (2.10)

Sustituyendo valores, con K_{loc} = 0.14, y resolviendo; obtenemos V_{θ} = 20.74 m/s, que será la velocidad en el nodo 1 para t = 0

Ahora se analizará la interfaz del flujo agua-aire durante el llenado, se calculará la velocidad de la columna de agua, la carga y la posición en que se encuentra. La ecuación que modela el flujo es:

$$H_{p} = H_{interf} + \frac{x_{s} (V_{p} - V_{0})}{g \Delta t} + \frac{V_{p}^{2}}{2g} \left(f \frac{x_{s}}{D} + K_{loc} \right)$$
 (2.11)

A diferencia de la ecuación (2.5), la ecuación (2.11) se le adiciona el término de pérdida por cortante y local, debido a que se está analizando la evolución del llenado en el primer tramo; puesto que, para analizar los tramos subsecuentes, se resuelve combinando la ecuación (2.5) con la ecuación (2.2).

En la ecuación (2.11), la carga de energía en la interfase es, $H_{interf} = H_v + V^2/2g$, donde H_v , está en función principalmente de la presión en la zona vacía en la tubería.

En el tiempo t = 0, $H_v = 0$, debido a que la presión del aire en el tubo es igual a la presión atmosférica; la presión es igual a la carga de velocidad:

$$H_{\text{int erf}} = (20.74)^2 / 19.62 = 21.92 \text{ m}$$

A continuación se analiza para el siguiente paso de tiempo (t = 0.035)

$$t = 0.035 \text{ s}.$$

Considerando la misma H_{interf} del tiempo anterior, para conocer los datos de la interfaz actual, sustituimos en la ecuación (2.11).

$$25 = 21.92 + \frac{x_s}{g} \frac{\left(V_p - 20.74\right)}{\Delta t} + \frac{{V_p}^2}{2g} \left(0.021 \frac{x_s}{D} + 0.14\right)$$

Donde $H_p=25$, que es igual a la carga disponible del tanque (ver Figura 2.3) Sabemos que $x_s=V_0$ Δt . Además se está tomando la misma H_{interf} del tiempo anterior, por lo que V^2 / 2g=21.92. Sustituyendo estos datos en la ecuación anterior y haciendo operaciones, resulta una ecuación de segundo grado, cuya solución es:

$$V_p = 19.90 \text{ m/s}$$

y la nueva posición de la interfaz será:

$$x_x = 19.90 (0.035) = 0.696 \text{ m}$$

Para actualizar la carga de energía en la interfase (H_{interf}) , $H_{interf} = H_{\nu} + V_p^2/2g$. En este caso H_{ν} tendrá un valor, ya que el aire se comprime y la presión absoluta dentro del tubo será mayor que la atmosférica.

Para obtener el valor de H_{ν} , se utiliza la ecuación de los gases perfectos (2.6), Donde: P es la presión absoluta (kg / m²); \forall es el volumen de aire dentro del tubo (m³); m es la masa de aire dentro del tubo (kg); R es una constante de los gases perfectos, que es igual a 29.3 x 9.81 (Kg – m / kg - °K); y T es la temperatura, igual a 293 °K (grados kelvin).

La masa en el tubo para este tiempo es:

$$m = m_1 - m_s (2.12)$$

Donde: m_l es la masa de aire en el tubo en el tiempo t, y m_s es la masa que salió del tubo en el tiempo Δt .

$$m_1 = \rho_{atm} \,\forall \tag{2.13}$$

Donde ρ_{atm} es la densidad del aire a la presión atmosférica, igual a 0.124 kg s² / m⁴; calculando m_I , resulta:

$$m_1 = 0.124 (\pi/4) (0.1524)^2 (350) = 0.791 \text{ kg s}^2 / m$$

El flujo de masa de aire está dado por la siguiente ecuación (ref. 9).

$$m_s = -C_{sal} F \mathbf{P}^* \left[\frac{7}{RT} \left(\frac{P_0^*}{P^*} \right)^{1.4286} - \left(\frac{P_0^*}{P^*} \right)^{1.714} \right]^{1/2}$$
 (2.14)

Donde: m_s es el caudal de masa; C_{sal} es un coeficiente de caudal, que para este caso (válvula abierta) es igual a la unidad; F es el área de salida F = 0.01824); P_0^* es la presión atmosférica absoluta (10,000 kg / m^2); y P^* es la presión absoluta dentro de la tubería. De la ecuación (2.6), tenemos:

$$P^* = 0.124 (29.3 \times 9.81)(293) = 10,443 \text{ kg/m}^2$$

Sustituyendo datos en la ecuación (2.14) y resolviendo, obtenemos:

$$m_s = 0.186 \, \text{UTM/s}$$

Para $\Delta t = 0.035$ s, tenemos:

$$m_s = 0.186(0.035) = 0.0065$$
 UTM

Sustituyendo m₁ y m_s en (2.12) para obtener m:

$$m = 0.791 - 0.0065 = 0.7845$$
UTM

Y de la ecuación (2.6):

$$P^* = H_v = \frac{mRT}{\forall} = \frac{0.7845 * (29.3x9.81)(293)}{\frac{\pi}{4}(0.1524)^2(350 - 0.696)}$$

$$P^* = 10,368.90 \text{ kg}/\text{m}^2$$

La presión manométrica, H_v, será:

$$H_v = P^* - P_{atm} = 368.90 \text{ kg/m}^2$$

Entonces la energía en la interfase, Hinterf será:

$$H_{\text{int erf}} = 0.368 + ((19.90)^2 / 19.62) = 20.570 \, m$$

Para
$$t = t + n \Delta t (n = 1, 2, 3...)$$

Se sigue el mismo procedimiento del inciso anterior, el cual se resume de la siguiente manera:

- Con H_{interf} actual = H_{interf} del tiempo anterior y con la ecuación (2.11), se calcula V_p.
- 2. Se localiza la posición de la interfaz con $V_p \Delta t = x_s$.
- Se actualiza H_{interf} tomando en cuenta la variación de la presión en la zona vacía de acuerdo a la compresión del aire.

Este procedimiento se utiliza para seguir el avance de la interfaz agua — aire entre el nodo N = I y N = 2.

Una vez que la interfaz ha alcanzado y superado el nodo 2 en un tiempo ti ($N_2 = N_{st}$), tal y como se observa en la Figura 2.4; para determinar V_p y H_p en el punto p se resuelve simultáneamente las ecuaciones de las característica positiva (2.2) junto a la ecuación dinámica (2.5).

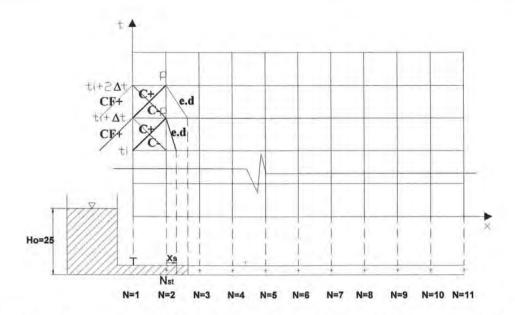


Figura 2.4. Esquema de cálculo para el segundo tramo y condición de frontera.

Se sustituye la variable Hp de la ecuación (2.5) en la ecuación (2.2), quedando de la siguiente manera:

$$(Vp - Vr) + \frac{g}{a} \left[\left(H_{int \, erf} + \frac{xs}{g} \frac{(Vp - Vr)}{\Delta t} \right) - Hr \right] + f \frac{Vr^2}{2D} \Delta t = 0$$
 (2.15)

Además, como $x_s = Vr \Delta t$, se tiene:

$$(Vp - Vr) + \frac{g}{a}H_{\text{int erf}} + \frac{VrVp}{a} - \frac{Vr^2}{a} - \frac{g}{a}H_R + f\frac{Vr^2}{2D}\Delta t = 0$$
 (2.16)

Despejando Vp de la ecuación (2.16), queda:

$$Vp = \frac{Vr + \frac{Vr^{2}}{a} + \frac{g}{a}H_{r} - \frac{g}{a}H_{\text{int erf}} - f\frac{Vr^{2}}{2D}\Delta t}{\left(1 + \frac{Vr}{a}\right)}$$
(2.17)

Con la ecuación (2.17) se determina la nueva velocidad de la interfase en el nodo 2, en el tiempo $ti + \Delta t$, con ello se calcula la nueva posición de la interfaz para el siguiente paso de tiempo. La nueva posición de la interfaz es utilizada también para conocer la presión en la zona vacía, tal y como se muestra en el primer tramo.

Para determinar la nueva velocidad de la interfaz en el nodo 2, en el tiempo $ti + 2\Delta t$, se requiere determinar la velocidad y presión en el nodo 1, en el tiempo ti + Δt ; por lo cual se utiliza la ecuación de la condición de frontera con la ecuación de la característica negativa 2.4, (ver figura 2.4).

En el caso de alimentar la instalación mediante un depósito de carga constante, se cumplirá

CF⁺

$$H_0 = Hp_{H+\Delta t} + k \frac{V^2}{2g} \tag{2.18}$$

$$Hp_{ii+\Delta i} = H_0 - k \frac{V^2}{2g}$$
 (2.19)

Entonces combinando la ecuación de frontera (2.19) con la ecuación característica negativa (2.4), tenemos

$$Vp = Vs + \frac{g}{a} \left[H_0 - k \frac{V^2}{2g} - Hs \right] - f \frac{Vs^2}{2D} \Delta t$$
 (2.20)

Una vez calculada la velocidad y presión en el nodo 1 con la ecuación (2.20), se calcula la velocidad de la interfaz en el nodo 2, en el tiempo $ti + 2\Delta t$, con la ecuación (2.17), igualmente se vuelve a calcular la nueva posición de la interfase, y con ello se determina la presión de la zona vacía.

Después de que la interfaz ha alcanzado y superado el nodo 3 ó más, en un tiempo ti ($N_3 = N_{st}$) ya se tendrán tramos llenos de agua, tal como se muestra en la figura 2.5. Primero se calculará la velocidad de la interfase para el nodo 3, en el tiempo $ti + \Delta t$ con la ecuación (2.17), utilizando para ello los valores de velocidad y presión de los tiempos anteriores, determinados en el segundo tramo.

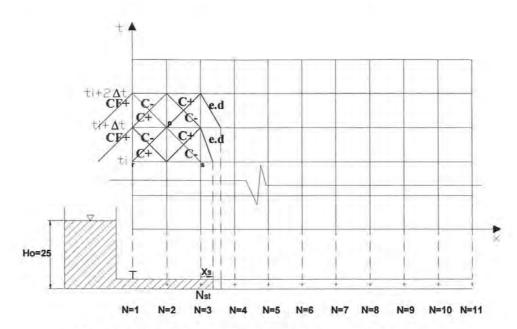


Figura 2.5 Esquema de calculo para el tercer tramo

Para determinar la presión y la velocidad en los tramos llenos (tramos intermedios), se resuelven simultáneamente las ecuaciones (2.2) y (2.4). Primero se despeja Hp de la ecuación (2.2), quedando

$$Hp = \left[-\left(Vp - Vr\right) - f\frac{Vr^2}{2D}\Delta t + \frac{g}{a}Hr\right] \frac{a}{g}$$
 (2.21)

Sustituyendo la ecuación (2.21) en la ecuación (2.4)

$$(Vp - Vs) + (Vp - Vr) + f\frac{Vr^2}{2D}\Delta t - \frac{g}{a}Hr + \frac{g}{a}Hs + f\frac{Vs^2}{2D}\Delta t = 0$$
 (2.22)

Despejando Vp de la ecuación (2.22), resulta

$$Vp = \frac{Vs + Vr - f\frac{(Vr^2 + Vs^2)}{2D}\Delta t - \frac{g}{a}(Hs - Hr)}{2}$$
(2.23)

Con las ecuaciones (2.21) y (2.23), se determina la presión y la velocidad para el nodo 2 en el tiempo $ti + \Delta t$, enseguida se determina la presión y la velocidad para el mismo tiempo en el nodo 1, utilizando la ecuación (2.20); después se vuelve a calcular la velocidad de la interfase con la ecuación (2.17) en el tiempo $ti + 2\Delta t$, con este valor se actualiza la posición de la interfase así como la presión del aire en la zona vacía. Estos cálculos se repiten hasta llenar el tramo tres.

Para los subsecuentes tramos de la conducción se sigue un procedimiento análogo al llenado del tramo tres, la diferencia es que se van a ir aumentando el número de tramos llenos. Por ejemplo, cuando se esté llenando el tramo cuatro habrá dos tramos llenos, más el tramo lleno de la frontera; por tanto por cada tramo que se vaya llenando, habrá un tramo lleno más de agua. Esto sucederá hasta que acabe de llenarse la conducción.

A continuación se muestran los resultados del problema; en el Anexo I se incluye el código del programa utilizado para la solución del problema; así como también algunos de los resultados obtenidos.

En la Figura 2.6 se muestra la velocidad del llenado (velocidad de la interfase) en toda la longitud de la tubería. Se puede observar que la alta velocidad se desarrolla con una rápida aceleración inicial del flujo; esta alta velocidad no se puede sostener debido al incremento de la masa de la columna y la resistencia del flujo, por tanto la velocidad empieza a decrecer cuando más larga es la longitud del avance de agua.

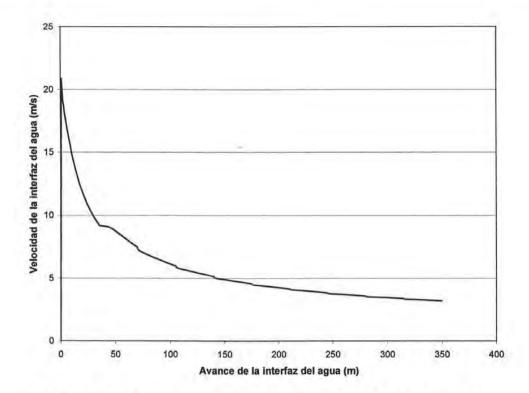


Figura 2.6. Velocidad de la columna de llenado en la tubería.

Para que el flujo pistón ocurra, la celeridad del aire debe ser menor a la velocidad de llenado. La velocidad mínima en el llenado es de 3.202 m/s (ver Figura 2.6). Calculando la celeridad del aire con la ecuación (1.1), resulta 0.61 m/s. Entonces la intrusión de aire no ocurrirá, por tanto el modelo es aplicable.

El modelo proporciona datos de la presión y velocidad en varios puntos de la conducción. En las tablas 2.1, 2.2 y 2.3 podemos observar la evolución de la carga de presión, en algunos puntos de la tubería de acuerdo como crece la columna de llenado en la tubería.

Tabla 2.1. Evolución de la carga de presión cuando se llena el tramo dos.

t(s)	V (m/s)	Xs(m)	H1(m)	H2(m)
2.835	9.0127334	0.41893534	24.4201903	0.27821422
2.870	8.98696957	0.73420591	24.4234993	0.49947056
2.905	8.98631602	1.04894094	24.4235831	0.71058586
2.940	8.99460113	1.3637639	24.4225201	0.9173003
2.975	9.00685434	1.67891694	24.4209462	1.12031036
3.010	9.02074689	1.99450715	24.4191591	1.31984392
3.045	9.03500999	2.3105751	24.4173215	1.51603997
3.080	9.04889811	2.62712421	24.4155294	1.7090016
3.115	9.06195518	2.94413576	24.413842	1.89881256
3.150	9.07389797	3.26157742	24.4122965	2.08554506
3.185	9.08455239	3.57940839	24.410916	2.26926397
3.220	9.09381615	3,89758276	24.4097144	2.45002937
3.255	9.10163558	4.21605165	24.4086992	2.62789806
3.290	9.10799074	4.53476477	24.4078734	2.80292454
3.325	9.11288539	4.8536714	24.407237	2.97516161
3.360	9.11634006	5.17272119	24.4067877	3.14466081
3.395	9.11838717	5.49186463	24.4065213	3.31147267
3.430	9.11906753	5.81105344	24.4064328	3.47564684
3.465	9.11842772	6.13024085	24.406516	3,63723225
3.500	9.11651821	6.44938172	24.4067645	3,79627713
3.535	9.11339187	6.76843273	24.4071712	3.95282905
3.570	9.10910295	7.08735237	24.4077288	4.10693494
3.605	9.10370621	7.40610106	24.4084302	4.25864109
3.640	9.09725629	7.7246411	24.4092679	4.40799314
3.675	9.08980725	8.04293667	24.4102345	4.55503608
3.710	9.08141223	8.36095383	24.4113231	4.69981422
3.745	9.07212311	8.67866046	24.4125263	4.8423712

Tabla 2.2. Evolución de la carga de presión cuando se llena el quinto tramo.

t(s)	V (m/s)	xs (m)	H1 (mca)	H2 (mca)	H3 (mca)	H4 (mca)	H5 (mca)
18.8300	5.0372	0.9868	24.8188	18.6036	12.4448	6.3043	0.1724
18.8650	5.0312	1.1630	24.8192	18.6116	12.4603	6.3274	0.2030
18.9000	5.0260	1.3390	24.8196	18.6195	12.4758	6.3504	0.2335
18.9350	5.0214	1.5149	24.8199	18.6274	12.4912	6.3733	0.2639
18.9700	5.0172	1.6906	24.8202	18,6352	12.5065	6.3961	0.2942
19.0050	5.0134	1.8661	24.8205	18.6429	12.5217	6.4188	0.3244
19.0400	5.0099	2.0415	24.8207	18.6506	12.5369	6.4414	0.3545
19.0750	5.0066	2.2168	24.8209	18.6583	12.5520	6.4640	0.3845
19.1100	5.0035	2.3920	24.8212	18.6660	12.5671	6.4865	0.4145
19.1450	5.0006	2.5671	24.8214	18.6736	12.5821	6.5089	0,4443
19.1800	4.9978	2.7421	24.8216	18.6812	12.5970	6.5313	0.4740
19.2150	4.9951	2.9170	24.8218	18.6887	12.6120	6.5535	0.5037
19.2500	4.9925	3.0918	24.8219	18.6962	12.6268	6.5758	0.5332
19.2850	4.9901	3.2665	24.8221	18.7037	12.6416	6.5979	0.5627
19.3200	4.9877	3.4411	24.8223	18.7112	12.6564	6.6200	0.5921
19.3550	4.9853	3.6156	24.8225	18.7187	12.6712	6.6420	0.6214
19.3900	4.9830	3.7901	24.8226	18.7261	12.6858	6.6639	0.6506
19.4250	4.9808	3.9645	24.8228	18.7335	12.7005	6.6858	0.6797
19.4600	4.9786	4.1388	24.8229	18.7409	12.7151	6.7076	0.7087
19.4950	4.9764	4.3130	24.8231	18.7482	12,7296	6.7294	0.7377
19.5300	4.9743	4.4871	24.8232	18.7555	12.7442	6.7511	0.7666
19.5650	4.9722	4.6612	24.8234	18.7629	12.7586	6.7727	0.7954

Tabla 2.3. Evolución de la carga de presión cuando se llena el séptimo tramo.

t(s)	V (m/s)	xs (m)	H1 (mca)	H2 (mca)	H3 (mca)	H4 (mca)	H5 (mca)	H6 (mca)	H7 (mca)
34.2300	4.0917	0.9631	24.8803	20.6869	16.5498	12.4310	8.3208	4.2153	0.1127
34.2650	4.0888	1.1063	24.8805	20.6898	16.5555	12.4395	8.3320	4.2292	0.1294
34.3000	4.0863	1.2494	24.8807	20.6927	16.5611	12.4479	8.3431	4.2431	0.1461
34.3350	4.0841	1.3924	24,8808	20,6956	16.5668	12.4563	8,3543	4.2570	0.1627
34.3700	4.0821	1,5353	24.8809	20.6985	16.5724	12.4646	8.3654	4.2709	0.1793
34.4050	4.0802	1.6781	24.8810	20.7013	16.5780	12.4730	8.3765	4.2847	0.1959
34.4400	4.0785	1.8209	24.8811	20,7042	16.5836	12.4813	8.3875	4.2985	0.2124
34.4750	4.0770	1.9636	24.8812	20.7070	16,5891	12.4896	8.3986	4.3123	0.2289
34,5100	4.0756	2.1063	24.8813	20.7098	16.5947	12.4979	8.4096	4.3260	0.2454
34.5450	4.0742	2.2489	24.8814	20.7126	16.6002	12,5061	8,4206	4.3397	0.2619
34.5800	4.0730	2.3915	24.8814	20.7154	16.6057	12.5144	8.4315	4.3534	0.2783
34.6150	4.0718	2.5341	24.8815	20.7182	16.6112	12.5226	8,4425	4.3671	0.2947
34.6500	4.0707	2.6766	24.8816	20.7210	16.6167	12.5308	8.4534	4.3808	0.3111
34.6850	4.0696	2.8190	24.8816	20.7238	16.6222	12.5390	8.4643	4.3944	0.3274
34.7200	4.0685	2.9615	24.8817	20.7265	16.6277	12.5472	8.4752	4.4080	0.3437
34.7550	4.0676	3.1038	24.8817	20.7293	16.6332	12.5554	8.4861	4,4216	0.3600
34.7900	4.0666	3.2462	24.8818	20.7321	16.6386	12.5636	8.4970	4.4352	0.3763
34.8250	4.0657	3.3885	24.8819	20.7348	16.6441	12.5717	8.5078	4.4487	0.3925
34.8600	4.0648	3.5308	24.8819	20.7376	16.6495	12.5798	8.5187	4.4622	0.4087
34.8950	4.0639	3.6731	24.8820	20.7403	16.6550	12.5880	8.5295	4.4757	0.4249
34.9300	4.0631	3,8153	24.8820	20.7430	16.6604	12.5961	8.5403	4.4892	0.4411

En las tablas anteriores se muestran las cargas de presión cuando se llenan los tramos 2,5 y 7 de la conducción. Se puede observar como evoluciona la carga de presión cuando crece la columna de llenado en la conducción. Los resultados de los demás tramos se muestran en el anexo correspondiente.

CAPITULO 3 MODELO DE LIOU Y HUNT

3.1 Introducción

El trabajo de Liou y Hunt (1996) propone un modelo rígido para estudiar con detalle el llenado de tuberías con un perfil irregular y sin bolsas de aire atrapado. Consideran la frontera aire-agua coincidente con la sección transversal de la tubería (modelo pistón).

El modelo proporciona el historial de la velocidad, longitud y presión de la columna de agua en el conducto, conforme avanza el llenado. Debido a los cambios de pendiente, el agua se acelera en tramos descendentes, provocando en las cimas de la conducción depresiones que pueden ocasionar separación de columna, y se desacelera en los tramos ascendentes, pudiendo generar sobrepresiones importantes.

El modelo está construido en base a cuatro suposiciones (ref.3): a) La tubería permanece llena, por tanto hay una columna de agua con una frontera bien definida (flujo pistón) b) La presión del frente de aire es la atmosférica c) El

sistema agua-tubería es incompresible, d) Son válidas las relaciones de la resistencia del flujo al cortante para flujo permanente. A continuación se muestran las ecuaciones utilizadas en el modelo.

3.2 Ecuaciones básicas generalizadas

En la Figura 3.1 se muestra una tubería recta conectada a un tanque de carga constante que está siendo llenada en su primer tramo, una vez que se ha abierto la válvula repentinamente.

Utilizando el modelo de la columna rígida, la ecuación de movimiento se puede escribir de la siguiente manera:

$$\frac{dQ}{dt} = \left(\frac{P_0}{\rho L} + g\sin\theta - \frac{fV^2}{2D}\right)A\tag{3.1}$$

У

$$L = L_{\min} + \int_0^t V dt \tag{3.2}$$

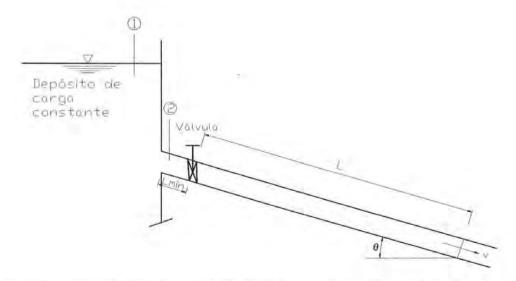


Figura 3.1. Esquema de Liou y Hunt de un tanque con una tubería llenándose en su primer tramo.

Donde Q es el caudal ; V es la velocidad de la columna de agua; P_0 es la presión en la tubería inmediatamente aguas abajo de la válvula; θ es el ángulo de inclinación de la tubería con respecto a la horizontal; f es el factor de cortante de Darcy – Weisbach; ρ es la densidad del fluido; g es la aceleración de la gravedad; D es el diámetro de la tubería; L es la longitud de la columna de agua en el segmento de la tubería al empezar el llenado; t representa el tiempo de llenado, t es el área de la sección transversal de la tubería, t es la longitud inicial de la columna de llenado antes de abrir la válvula.

Para t=0, las condiciones iniciales cuando la válvula se abre repentinamente, son $L=L_{min}$ y V=0. Para flujo permanente, la magnitud de P_0 se calcula utilizando la carga disponible.

$$P_0 = \rho g \left(H_R - K \frac{V^2}{2g} \right) \tag{3.3}$$

Donde K es un coeficiente de pérdida de carga de la entrada y de válvula, H_R es la carga disponible en el depósito.

Al empezar el llenado, la carga disponible dentro de la tubería es temporalmente reducida de H_R hasta una porción de la carga que es usada para generar la aceleración local en el agua cercana a la entrada de la tubería. Esto puede ser visto integrando la ecuación de Euler a lo largo de la línea de corriente de la superficie del depósito (punto 1) y la entrada de la tubería (punto 2).

$$H_R = \frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{1}{g} \int_0^2 \frac{\partial V}{\partial t} ds + \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2$$
 (3.4)

Donde s, es la distancia a lo largo de la línea de corriente; y z representa la elevación. Si el campo de velocidades en el depósito es conocido, la integral en la ecuación (3.4) se puede resolver por el producto de la aceleración de la columna

de agua y una longitud L_0 que refleja la aceleración local del flujo. Así la ecuación (3.4) muestra que la carga disponible en el depósito H_R va disminuyendo en los primeros instantes del llenado, esta reducción de la carga está dada por la aceleración local $((L_0/g)(dV/dt))$. Como la aceleración local disminuye con el tiempo, la carga disponible regresa a H_R . Con el efecto incluido de la aceleración local, utilizando la ecuación (3.1) en términos de la velocidad en lugar del gasto y con la ecuación (3.3), la ecuación diferencial se puede escribir como:

$$\frac{dV}{dt} = \frac{\frac{g}{L} \left(H_R - K \frac{V^2}{2g} \right) + g \sin \theta - \frac{fV^2}{2D}}{1 + \frac{L_0}{L}}$$
(3.5)

V

$$P_{0} = \rho g \left(H_{R} - \frac{L_{0}}{g} \frac{dV}{dt} - K \frac{V^{2}}{2g} \right)$$
 (3.6)

Liou y Hunt determinaron la longitud de flujo de aproximación a la entrada del tubo (L_0) en función del tamaño del tanque que utilizaron en sus pruebas, puesto que no pudieron medir el campo de velocidades, resultando aproximadamente igual a 10 veces el diámetro del tubo.

El llenado de los tramos subsecuentes (Figura 3.2) es tratado con un problema de valor inicial separado. El perfil de una conducción con tramos con diferentes pendientes (tramos ondulatorios) puede ser aproximado por una serie de segmentos de tubería recta. En la Figura 3.2 se representa la columna de agua avanzando en cada una de las series de tubería recta con diferentes pendientes. Cuando las tuberías $1,2,....i,(i \ge 1)$ están llenas y el frente de la columna de agua se encuentra en la tubería i+1, la ecuación de movimiento se escribe de la siguiente manera:

Para j = 1,2,...i (Tramos de tubería llenos)

$$\frac{dQ_{j}}{dt} = \left(\frac{P_{j-1} - P_{j}}{\rho L_{j}} + g \sin \theta_{j} - \frac{f_{j} V_{j}^{2}}{2D_{j}}\right) A_{j}$$
(3.7)

Donde Q_j, f_j, V_j, D_j y A_j son el gasto, el factor de cortante de Darcy-Weisbach, velocidad, diámetro, y área de la sección transversal para el segmento j de tubería respectivamente. P_{j-l} y P_j se refieren a la presión a la entrada y la salida del segmento de la tubería j.

Para j=i+1 (el segundo y los subsecuentes segmentos de la tubería que empiezan a llenarse) de acuerdo a las ecuaciones (3.1) y (3.2); en la ecuación (3.1), la presión P_0 es remplazada con P_i y L ahora representa la longitud de la columna de agua en el segmento de tubería que empieza a llenarse. En la ecuación (3.2), L_{min} es igual a cero y el límite inferior de la integral es cambiado de 0 a t_i , es el tiempo cuando la columna de agua llena la tubería i.

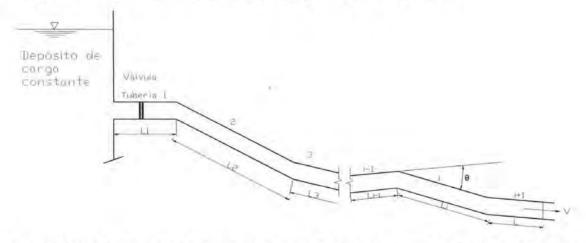


Figura 3.2. Esquema de Liou y Hunt para el llenado de una tubería con tramos ondulatorios.

La hipótesis del modelo de la columna rígida y el principio de conservación de masa implica que las magnitudes de dQ_j/dt son iguales en todos los segmentos llenos de agua en la tubería. Esta igualdad se usa para relacionar las presiones en

la unión de los segmentos de la tubería. Cuando la primera tubería se llena y la segunda se empieza a llenar, la presión a la salida del tramo uno (P_1) , se calcula como sigue:

$$P_{1} = \frac{\frac{P_{0}}{L} + \gamma (\sin \theta_{1} - \beta_{1} \sin \theta_{2}) - \rho \left(\frac{f_{1}V_{1}^{2}}{2D_{1}} - \frac{\beta_{1}f_{2}V_{2}^{2}}{2D_{2}}\right)}{\frac{1}{L_{1}} + \frac{\beta_{1}}{L}}$$
(3.8)

Donde $\beta_1 = A_2/A_1$. Cuando están llenas las primeras dos o más tuberías $(i.e., i \ge 2)$, de acuerdo a la ecuación (3.7) entre dos tuberías adyacentes llenas, resulta, con j = 1, 2, ..., i-1

$$\frac{P_{j-1}}{L_{j}} - \left(\frac{1}{L_{j}} + \frac{\beta_{j}}{L_{j+1}}\right) P_{j} + \frac{\beta_{j} P_{j+1}}{L_{j+1}} = \gamma \left(\beta_{j} \sin \theta_{j+1} - \sin \theta_{j}\right) + \rho \left(\frac{f_{j} V_{j}^{2}}{2D_{j}} - \frac{\beta_{j} f_{j+1} V_{j+1}^{2}}{2D_{j+1}}\right)$$
(3.9)

Donde $B_j = A_{j+1}/A_j$. Finalmente, utilizando la ecuación (3.7) para la tubería i, (que acaba de llenarse), con la ecuación (3.1) para tubería i+1, la cual está empezándose a llenar, resulta, con j=i

$$\frac{L}{L_{j}} P_{j-1} - \left(\beta_{j} + \frac{L}{L_{j}}\right) P_{j} = \gamma L \left(\beta_{j} \sin \theta_{j+1} - \sin \theta_{j}\right) + \rho L \left(\frac{f_{j} V_{j}^{2}}{2D_{j}} - \frac{\beta_{j} f_{j+1} V_{j+1}^{2}}{2D_{j+1}}\right)$$
(3.10)

Para entender mejor el modelo de Liou y Hunt, se presenta una aplicación del llenado de una tubería conectada a un depósito de carga constante, que consta de doce segmentos de tubería.

3.3 Ejemplo de aplicación

Considere una tubería de 6424 metros de longitud con un diámetro interior de 4.46 centímetros que atraviesa un terreno con perfil irregular (perfil ondulatorio). El perfil de la tubería se muestra en la Figura 3.3. El nivel del agua en el suministro del depósito es 2.29 metros arriba del tubo de entrada. Inicialmente, la tubería esta vacía excepto una longitud de columna de agua de 0.30 metros entre el depósito y la válvula cerrada. El llenado se inicia por una abertura rápida de la válvula.

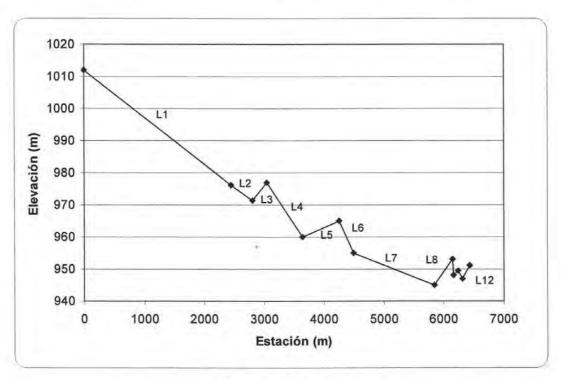


Figura 3.3. Perfil de la tubería.

Datos del sistema:

Longitud de tramo (m)	Angulo c/r Hor. (rad)	Longitud de tramo (m)	Angulo c/r Hor. (rad)
L ₁ = 2450	$\theta_1 = 0.01469$	L ₇ = 1350	$\theta_7 = 0.01469$
L ₂ = 350	$\theta_2 = 0.01285$	L ₈ = 300	θ ₈ = -0.0266

L ₃ = 250	$\theta_3 = -0.0220$	L ₉ = 15	$\theta_9 = 0.33333$
L ₄ = 590	$\theta_4 = 0.0288$	L ₁₀ = 78	$\theta_{10} = -0.0192$
L ₅ = 610	$\theta_5 = -0.00819$	L ₁₁ = 72	$\theta_{11} = 0.03472$
L ₆ = 250	$\theta_6 = 0.040$	L ₁₂ = 109	$\theta_{12} = -0.0367$

Longitud total (L_t) = 6424 m

Carga del depósito (Hr) = 2.29 m

Diámetro (D) = 0.0446 m

Área del conducto = 0.00156228 m^2

 $L_{min} = 0.30 \text{ m}$

Coef. De cortante (f) = 0.015

Coef. De válvula (K) = 0.5

Datos del fluido:

Densidad del agua (ρ) = 101.936 kg s²/m⁴

Peso especifico (γ) = 1000 kg / m³

TRAMO 1

Al empezar el cálculo, se considera el llenado de la tubería mostrada en la Figura 3.1; considerando las ecuaciones (3.1) y (3.2); poniendo la ecuación (3.1) en términos de la velocidad y la ecuación (3.2) como diferencial, se tiene:

$$\frac{dV}{dt} = \left(\frac{P_0}{\rho L} + g\sin\theta_1 - \frac{fV^2}{2D}\right) \tag{3.11}$$

$$\frac{dL}{dt} = V \tag{3.12}$$

Utilizando las condiciones iniciales, correspondientes al tiempo inicial (t = 0):

$$V(0) = 0$$

 $L(0) = L_{min}$
 $P_0 = \rho g * H_r = 2290 kg / m^2$

Se resuelve simultáneamente las ecuaciones (3.11) y (3.12), aplicando el método de Runge-Kutta de 5° orden (ref.10), para un paso (Δt_1) con las condiciones iniciales:

$$V(t) = w_{1,1} = w_{1,0} + \frac{25}{216}k11 + \frac{1408}{2565}k31 + \frac{2197}{4104}k41 - \frac{1}{5}k51$$

$$L(t) = w_{2,1} = w_{2,0} + \frac{25}{216}k12 + \frac{1408}{2565}k32 + \frac{2197}{4104}k41 - \frac{1}{5}k52$$
(3.13)

Donde:

$$k1, j = hf\left(t, w_1, w_2\right),$$

$$k2, j = hf\left(t + \frac{h}{4}, w_1 + \frac{1}{4}k_{1,1}, w_2 + \frac{1}{4}k_{1,2}\right),$$

$$k3, j = hf\left(t + \frac{3h}{8}, w_1 + \frac{3}{32}k_{1,1} + \frac{9}{32}k_{2,1}, w_2 + \frac{3}{32}k_{1,2} + \frac{9}{32}k_{2,2}\right),$$

$$k4, j = hf\left(t + \frac{12h}{13}, w_1 + \frac{1932}{2197}k_{1,1} - \frac{7200}{2197}k_{2,1} + \frac{7296}{2197}k_{3,1}, w_2 + \frac{1932}{2197}k_{1,2} - \frac{7200}{2197}k_{2,2} + \frac{7296}{2197}k_{3,2}\right),$$

$$k5, j = hf\left(t + h, w_1 + \frac{439}{216}k_{1,1} - 8k_{2,1} + \frac{3680}{513}k_{3,1} - \frac{845}{4104}k_{4,1}, w_2 + \frac{439}{216}k_{1,2} - 8k_{2,2} + \frac{3680}{513}k_{3,2} - \frac{845}{4104}k_{4,2}\right),$$

$$k6, j = hf\left(t + \frac{h}{2}, w_1 - \frac{8}{27}k_{1,1} + 2k_{2,1} - \frac{3544}{2565}k_{3,1} + \frac{1859}{4104}k_{4,1} - \frac{11}{40}k_{5,1}, w_2 - \frac{8}{27}k_{1,2} + 2k_{2,2} - \frac{3544}{2565}k_{3,2} + \frac{1859}{4104}k_{4,2}\right).$$

Para este caso:

j = 1,2 representa el número de ecuaciones diferenciales $w_{1,0} y w_{2,0}$ son la velocidad (V) y la longitud (L) para el tiempo inicial (t=0)

Con la solución para el primer paso, se obtiene la velocidad (V), el tiempo (t) y la longitud de la columna de llenado (L); para cada paso del tiempo, el valor de la presión (P_0) es recalculada usando la ecuación (3.6).

$$P_{0} = \rho g \left(H_{R} - \frac{L_{0}}{g} \frac{dV}{dt} - K \frac{V^{2}}{2g} \right)$$
 (3.15)

Donde:

$$\frac{dV}{dt} = \frac{\frac{g}{L} \left(H_R - K \frac{V^2}{2g} \right) + g \sin \theta_1 - \frac{fV^2}{2D}}{1 + \frac{L_0}{L}}$$
(3.16)

Con los valores actualizados de la velocidad, la longitud y la presión (P_0) , se vuelve a aplicar el método de Runge-Kutta para el siguiente paso del tiempo (Δt_2) . Con V y L actualizados, se obtiene la presión (P_0) con la ecuación (3.15).

La solución continúa hasta que la longitud de la columna de agua L excede el segmento de la longitud L_I . Entonces se interpola linealmente para obtener la velocidad y el tiempo, exactamente cuando el segmento de la tubería se llena. A esta velocidad se le llama V_I y al tiempo t_I .

TRAMO 2

Cuando se está llenando el tramo dos (i + I = 2), surge una situación diferente; la presión P_I a la entrada del segmento número dos, no se puede calcular directamente. El llenado de cada segmento de la tubería es tratado por separado como un problema de valor inicial.

Al momento cuando el frente de la columna de agua se encuentra en la entrada del segundo tramo (i+1), se tienen la velocidad (V_I) y el tiempo (t_I) . Entonces se resuelven las ecuaciones (3.17) y (3.18).

$$\frac{dV}{dt} = \left(\frac{P_1}{\rho L} + g\sin\theta_2 - \frac{fV^2}{2D}\right) \tag{3.17}$$

$$\frac{dL}{dt} = V \tag{3.18}$$

Con las condiciones iniciales:

$$V(t_1) = V_1 L(t_1) = 0 P_1(t_1) = 0$$

Aplicando el método de Runge-Kutta de 5° orden (ref.10), para las ecuaciones (3.17) y (3.18) y las condiciones iniciales:

$$V(t) = w_{1,1} = w_{1,0} + \frac{25}{216}k11 + \frac{1408}{2565}k31 + \frac{2197}{4104}k41 - \frac{1}{5}k51$$

$$L(t) = w_{2,1} = w_{2,0} + \frac{25}{216}k12 + \frac{1408}{2565}k32 + \frac{2197}{4104}k41 - \frac{1}{5}k52$$
(3.19)

Aplicando la ecuación (3.19) para un paso de tiempo, se obtiene la nueva velocidad y una nueva longitud de la columna de agua en la tubería dos.

Con los valores nuevos de la velocidad, el tiempo y la longitud de la columna de agua, se calcula la presión P_0 con la ecuación (3.15). Después se calcula la presión P_1 con la ecuación (3.20).

$$P_{1} = \frac{\frac{P_{0}}{L} + \gamma \left(\sin \theta_{1} - \sin \theta_{2}\right) - \rho \left(\frac{f_{1}V_{1}^{2}}{2D} - \frac{f_{2}V_{2}^{2}}{2D}\right)}{\frac{1}{L_{1}} + \frac{1}{L}}$$
(3.20)

Con los valores actualizados de la velocidad, la longitud y la presión (P_I) , se vuelve a aplicar el método de Runge-Kutta para el siguiente paso del tiempo, se obtiene una nueva longitud (L) y una velocidad (V) de la columna de agua en el

tramo dos; Con los valores de L y V, se calcula las presiones (P_{θ} y P_{I}) con las ecuaciones (3.15) y (3.20) respectivamente.

La solución continúa hasta que la longitud de la columna de agua L excede el segmento de la longitud L_2 . Entonces se interpola linealmente para obtener la velocidad y el tiempo, exactamente cuando el segmento de la tubería se llena. A esta velocidad se le llama V_2 y al tiempo t_2 .

TRAMO 3

Al empezar el llenado del tramo tres (i + 1 = 3), se tiene la velocidad y el tiempo al final del tramo dos (V_2, t_2) ; utilizando las ecuaciones (3.21) y (3.22), igualmente que el tramo anterior cambiamos el subíndice en la presión .

$$\frac{dV}{dt} = \left(\frac{P_2}{\rho L} + g\sin\theta_3 - \frac{fV^2}{2D}\right) \tag{3.21}$$

$$\frac{dL}{dt} = V ag{3.22}$$

Con las condiciones iniciales:

$$V(t_2) = V_2$$

$$L(t_2) = 0$$

$$P_2(t_2) = 0$$

Aplicamos el método de Runge-Kutta de 5° orden (ecuación 3.19), resolviendo simultáneamente las ecuaciones (3.17) y (3.18) para un paso de tiempo.

Con los valores nuevos de la velocidad, el tiempo y la longitud de la columna de agua, se calcula la presión P_0 con la ecuación (3.15). Enseguida se calcula la presión P_1 y P_2 resolviendo simultáneamente las ecuaciones (3.23) y (3.24).

Cuando i=2

Para j = 1, 2, ..., i-1 $\Rightarrow j = 1$

$$\frac{P_0}{L_1} - \left(\frac{1}{L_1} + \frac{1}{L_2}\right) P_1 + \frac{P_2}{L_2} = \gamma \left(\sin \theta_2 - \sin \theta_1\right) + \rho \left(\frac{fV_1^2}{2D} - \frac{fV_2^2}{2D}\right)$$
(3.23)

Para j=1, \Rightarrow j=2

$$\frac{L}{L_2}P_1 - \left(1 + \frac{L}{L_2}\right)P_2 = \gamma L(\sin\theta_3 - \sin\theta_2) + \rho L\left(\frac{fV_2^2}{2D} - \frac{fV_3^2}{2D}\right)$$
(3.24)

Donde V_1 y V_2 , son las velocidades a la salida del primer y segundo tramo respectivamente, calculadas en los tramos uno y dos; V_3 , es la velocidad de avance de la columna de agua en el tramo tres; P_0 , es la presión aguas abajo de la válvula, recalculada con la ecuación (3.15); y L, es la longitud de avance de la columna de agua en el tramo 3.

Con los valores actualizados de la velocidad, la longitud y la presión (P_2) , se vuelve aplicar el método de Runge-Kutta (ecuación 3.19), para las ecuaciones (3.21) y (3.22) para el siguiente paso del tiempo, obteniendo una nueva longitud (L) y una velocidad (V).

Con los valores de L y V, se aplica las ecuaciones (3.15), (3.23) y (3.24) y se obtiene P_0 , P_1 , P_2 respectivamente

Esto continúa hasta cuando la longitud de la columna de llenado excede al tramo tres $(L \ge L_3)$; Enseguida se interpola linealmente para calcular el tiempo y la velocidad precisamente cuando el flujo del agua se posesiona en la entrada del cuarto tramo (i+1)=4

Se obtiene V_3 y t_3 , que son la velocidad y el tiempo a la entrada del tramo número cuatro.

TRAMOS 4,5,...,12

Similarmente que en el tramo tres, se calculan la velocidad y la longitud de la columna de agua para los siguientes tramos, utilizando las ecuaciones (3.21) y (3.22), con las condiciones iniciales, sólo se cambian los subíndices en los coeficientes.

Igualmente se calcularán las presiones a la salida de los tramos ($P_3, P_4, ..., P_{12}$); de acuerdo al número de tramo habrá número de presiones en la tubería, por lo cual se tendrán más ecuaciones. A continuación se muestran los sistemas de ecuaciones para algunos tramos de la tubería.

En el Tramo 4 (i = 3):

Cuando i=3

Para j = 1, 2, ..., i-1 $\Rightarrow j = 1, 2$

$$\frac{P_0}{L_1} - \left(\frac{1}{L_1} + \frac{1}{L_2}\right) P_1 + \frac{P_2}{L_2} = \gamma \left(\sin \theta_2 - \sin \theta_1\right) + \rho \left(\frac{fV_1^2}{2D} - \frac{fV_2^2}{2D}\right)$$
(3.25)

$$\frac{P_1}{L_2} - \left(\frac{1}{L_2} + \frac{1}{L_3}\right) P_2 + \frac{P_3}{L_3} = \gamma \left(\sin \theta_3 - \sin \theta_2\right) + \rho \left(\frac{fV_2^2}{2D} - \frac{fV_3^2}{2D}\right)$$
(3.26)

Para j= i ⇒ j=3

$$\frac{L}{L_3}P_2 - \left(1 + \frac{L}{L_3}\right)P_3 = \gamma L\left(\sin\theta_4 - \sin\theta_3\right) + \rho L\left(\frac{fV_3^2}{2D} - \frac{fV_4^2}{2D}\right)$$
(3.27)

Resolviendo simultáneamente las ecuaciones (3.25) y (3.26) y (3.27), obtenemos los valores de P_1 , P_2 y P_3 .

En el Tramo 5 (i = 4):

Cuando i = 4

Para j = 1, 2, ..., i-1 $\Rightarrow j = 1, 2, 3$

$$\frac{P_0}{L_1} - \left(\frac{1}{L_1} + \frac{1}{L_2}\right) P_1 + \frac{P_2}{L_2} = \gamma \left(\sin \theta_2 - \sin \theta_1\right) + \rho \left(\frac{fV_1^2}{2D} - \frac{fV_2^2}{2D}\right)$$
(3.28)

$$\frac{P_1}{L_2} - \left(\frac{1}{L_2} + \frac{1}{L_3}\right) P_2 + \frac{P_3}{L_3} = \gamma \left(\sin \theta_3 - \sin \theta_2\right) + \rho \left(\frac{fV_2^2}{2D} - \frac{fV_3^2}{2D}\right)$$
(3.29)

$$\frac{P_2}{L_3} - \left(\frac{1}{L_3} + \frac{1}{L_4}\right) P_3 + \frac{P_4}{L_4} = \gamma \left(\sin\theta_4 - \sin\theta_3\right) + \rho \left(\frac{fV_3^2}{2D} - \frac{fV_4^2}{2D}\right)$$
(3.30)

Para $j=i \Rightarrow j=4$

$$\frac{L}{L_4} P_3 - \left(1 + \frac{L}{L_4}\right) P_4 = \gamma L \left(\sin \theta_5 - \sin \theta_4\right) + \rho L \left(\frac{fV_4^2}{2D} - \frac{fV_5^2}{2D}\right)$$
(3.31)

En el Tramo 6 (i = 5):

Cuando i = 5

Para j = 1, 2, ..., i-1 $\Rightarrow j = 1, 2, 3, 4$

$$\frac{P_0}{L_1} - \left(\frac{1}{L_1} + \frac{1}{L_2}\right) P_1 + \frac{P_2}{L_2} = \gamma \left(\sin \theta_2 - \sin \theta_1\right) + \rho \left(\frac{fV_1^2}{2D} - \frac{fV_2^2}{2D}\right)$$
(3.32)

$$\frac{P_1}{L_2} - \left(\frac{1}{L_2} + \frac{1}{L_3}\right) P_2 + \frac{P_3}{L_3} = \gamma \left(\sin \theta_3 - \sin \theta_2\right) + \rho \left(\frac{fV_2^2}{2D} - \frac{fV_3^2}{2D}\right)$$
(3.33)

$$\frac{P_2}{L_3} - \left(\frac{1}{L_3} + \frac{1}{L_4}\right) P_3 + \frac{P_4}{L_4} = \gamma \left(\sin\theta_4 - \sin\theta_3\right) + \rho \left(\frac{fV_3^2}{2D} - \frac{fV_4^2}{2D}\right)$$
(3.34)

$$\frac{P_3}{L_4} - \left(\frac{1}{L_4} + \frac{1}{L_5}\right) P_4 + \frac{P_5}{L_5} = \gamma \left(\sin \theta_5 - \sin \theta_4\right) + \rho \left(\frac{fV_4^2}{2D} - \frac{fV_5^2}{2D}\right)$$
(3.35)

Para $j=i \Rightarrow j=5$

$$\frac{L}{L_5} P_4 - \left(1 + \frac{L}{L_5}\right) P_5 = \gamma L \left(\sin \theta_6 - \sin \theta_5\right) + \rho L \left(\frac{fV_5^2}{2D} - \frac{fV_6^2}{2D}\right)$$
(3.36)

Para los últimos tramos (7, 8, 9, 10, 11 y 12), se sigue un procedimiento análogo, para determinar los sistemas de ecuaciones correspondientes. Estos sistemas de ecuaciones tienen un número igual de ecuaciones que de incógnitas, por tanto se podrán resolver utilizando un método matricial; el método utilizado en la solución del problema es él de la matriz inversa.

A continuación se muestran los resultados del problema; en el Anexo II se incluye el código del programa utilizado, así como también algunos de los resultados obtenidos.

El historial de la velocidad del sistema es mostrado en las Figuras 3.4 y 3.5. En la Figura 3.5 se muestra el inicio del llenado en los primeros instantes. Se puede observar que la alta velocidad se desarrolla con una rápida aceleración inicial. Esta alta velocidad no se puede sostener debido al incremento de la masa de la columna y la resistencia del flujo. En la Figura 3.4 se muestra el comportamiento

del transitorio en toda la longitud del acueducto, se puede observar el decrecimiento de la velocidad cuando más larga es la columna de agua.

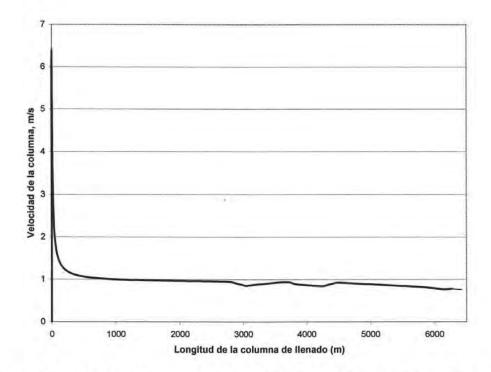


Figura 3.4. Velocidad de la columna de agua en función de la longitud.

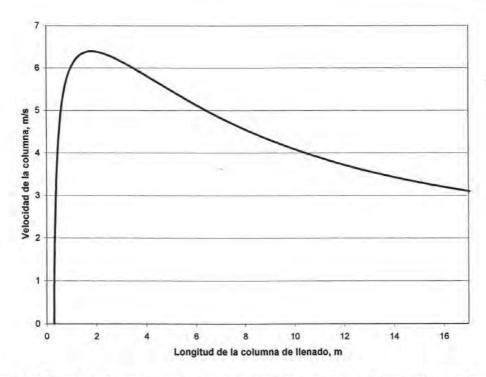


Figura 3.5. Velocidad de la columna de agua en los primeros instantes del llenado.

De acuerdo a la ecuación (1.2), para tuberías con pendiente descendente, la celeridad del aire, resulta de 0.45 m/s. La velocidad mínima del llenado fue de 0.74 m/s (ver Figura 3.5), por tanto la intrusión del aire no ocurre y la teoría de flujo pistón es aplicable.

Al llenar una conducción con perfil ondulado, hay posibilidad de separación de columna, asumiendo que no hay entrada de aire. Un simple análisis para acceder a esta posibilidad es dibujar una línea recta conectando la carga piezométrica entre la entrada del conducto con el frente de la columna de agua. Esta línea puede quedar abajo del perfil de algunos puntos altos, lo que indica la presencia de presiones negativas.

Para el ejemplo analizado la ocurrencia de separación de columna de agua no sucede, debido a que las presiones no alcanzan la presión de vapor (P_i = -10.33 m.c.a).

La Figura 3.6 muestran las cargas de presión obtenidas a través de dibujar la línea recta entre el depósito y el frente de agua (interfase del agua), en un punto alto en el ejemplo de la conducción (estación 4250 (P₅)). La separación de la columna debería ocurrir en este punto, lo cual no sucede, tal y como lo evidencian los resultados obtenidos en el ejemplo.

Considerando los resultados obtenidos en el ejemplo y el dibujo de la línea recta entre la entrada y la salida, se puede decir que ambos resultados casi se traslapan, lo cual indica que la línea piezométrica aproximada es exacta.

Tiempo desde que empezó el llenado, s

Figura 3.6. Comparación de la presión en un punto alto de la conducción.

Para demostrar que el trazo de la "línea recta" aproximada puede ser inexacto en algunos sistemas, se reduce la longitud de la tubería de la entrada hasta la estación 6150 a un veintavo de la longitud original, manteniéndose las elevaciones; lo cual resulta una línea más corta con pendientes más grandes; las otras condiciones permanecen iguales. Las cargas de presión calculadas en el punto alto (estación 4250) son mostradas en la Figura 3.7. Dibujando la "línea

recta" entre la entrada y la interfase del agua, proporciona cargas de presión relativas demasiado bajas de lo calculado en la teoría; basado en las cargas de presiones mínimas de la "línea recta", uno concluiría que la separación de la columna de agua ocurre en el punto alto. Sin embargo, basado en la carga de presión mínima calculado de la teoría, uno concluiría lo opuesto. Puesto que los flujos con o sin separación de columna son drásticamente diferentes, la teoría debe ser usada para evaluar la probabilidad de separación de columna cuando el margen a la carga de vapor es pequeña y los cambios de pendiente en la tubería son grandes.

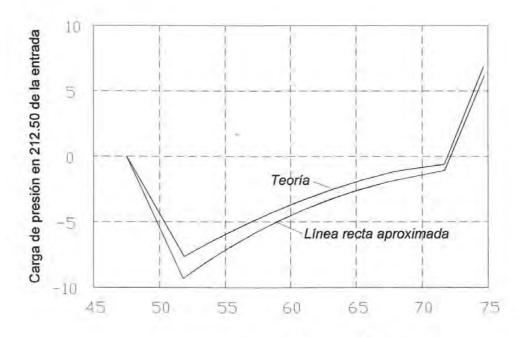


Figura 3.7. Comparación de las cargas de presión en un punto alto de la tubería reducida.

Tiempo desde que empezó el llenado, s

CAPITULO 4 MODELO DE FUERTES, IZQUIERDO, ABREU E IGLESIAS.

4.1 Introducción

En el presente capítulo se describe el modelo de flujo pistón elaborado por Fuertes et al (1997), que simula el comportamiento del llenado de un conducto a presión con un perfil irregular, y en donde al inicio de la operación tiene algunos tramos llenos de agua y otros vacíos.

El aire atrapado entre dos columnas de agua en una conducción a presión constituye, con o sin presencia de válvulas de expulsión, un motivo de preocupación por las importantes sobrepresiones que pueden generarse con motivo del arranque o llenado de la instalación. Por ello, el conocimiento físico del problema y la posibilidad de evaluar los picos de presión que potencialmente pueden generarse presenta un indudable interés práctico.

Es habitual la colocación de válvulas de expulsión de aire, también llamadas ventosas que, entre otras funciones, permiten la salida de aire durante el llenado de la instalación. Sin embargo, la presencia de ventosas no siempre ofrece la

fiabilidad que demandan determinados suministros de agua. Una mala selección, un funcionamiento incorrecto o incluso, en el peor de los casos, su deficiente respuesta consecuencia de la ausencia de mantenimiento, puede llevar a la instalación a situaciones más adversas que las inicialmente previstas.

La presencia de aire en los sistemas hidráulicos puede ser tanto intencionada (llenado y vaciado de la conducción, presencia de válvulas para proteger a la instalación contra las depresiones, interrupción temporal de servicio, etc.) como accidental (vórtices en la aspiración de las bombas, liberación de aire disuelto al reducirse la presión, roturas, etc.). Este aire puede originar presiones muy importantes capaces de reventar la tubería más robusta.

La explicación cualitativa del fenómeno es muy sencilla. Considérese una bolsa de aire atrapado entre dos columnas de agua, una de las cuales empieza a moverse como consecuencia del arranque de la instalación. La segunda columna de agua, o columna de bloqueo, comenzará a moverse cuando la interfase aire, que viene moviéndose a instancias de la columna motriz, alcance la presión necesaria. Ocurre, sin embargo, que el aire (con una densidad en condiciones atmosféricas normales $\rho_{aire}=1.25~kg/m^3$) tiene una inercia despreciable frente al agua (con densidad $\,\rho=1000~kg/m^3$). En consecuencia, las respuestas a las presiones que vienen experimentando son del todo diferentes. El aire, como si de un muelle de muy baja constante elástica se tratara, se comprime hasta presiones muy elevadas antes de conseguir un movimiento de la columna de bloqueo suficiente como para que pueda expandir su volumen y, con ello, aliviar la enorme presión alcanzada. Y es precisamente esta diferencia de inercias entre el aire y el agua la causa final de un problema que jamás se hubiera generado en ausencia de aire atrapado.

El fenómeno que se estudia va ligado a interrupciones el servicio del suministro. En una tubería de presión en servicio, si la presión en su interior no se encuentra por debajo de la atmosférica, jamás podrá acceder aire a su interior. Pero al interrumpir el servicio, y como quiera que ninguna instalación es perfecta (siempre se fuga algo de agua a través de las válvulas, juntas, tomas, etc.), se inicia un lento vaciado que da lugar a presiones manométricas negativas en los puntos altos de la conducción y, con ello, a la presencia de aire atrapado en su interior. En resumen, una interrupción temporal en conducciones de perfil irregular puede generar problemas de aire atrapado.

En las conducciones de agua de riego las interrupciones son necesarias. Tras unas prolongadas lluvias de invierno los campos no requieren agua durante algunos meses. El nuevo arranque de la instalación debe, sin duda, contemplar la presencia de aire atrapado.

Para acabar de relacionar los conceptos de perfil irregular más interrupción temporal de servicio con aire atrapado se considera la instalación real de la Figura 4.1.a. Se trata de una conducción por bombeo con perfil uniforme de agua de riego que conduce agua de un depósito inferior a un canal superior. La necesidad de construir una autopista, con un importante movimiento de tierras para así evitar un impacto ambiental de cierta significación en la zona, obliga a considerar un nuevo perfil en la conducción que, ahora, pasa a ser irregular (Figura 4.1.b). Una prolongada interrupción del riego y las fugas a través de las juntas de la tubería más vieja así como de la válvula de, posibilitan la presencia de una bolsa de aire atrapado de longitud L_{aire} y el riesgo de presiones elevadas en este tramo de la tubería cuando se proceda a arrancar la instalación. Debe destacarse que esa situación jamás se hubiera presentado con el perfil original uniforme.

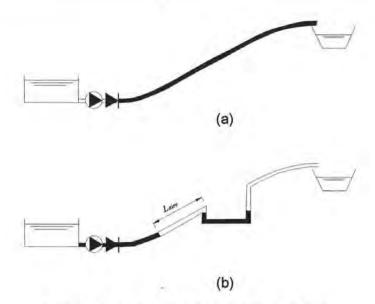


Figura 4.1. Conducción de agua de riego.

- a) perfil uniforme.
- b) perfil irregular.

Así pues, el llenado de tuberías de perfil irregular, con el potencial peligro que supone la presencia de aire atrapado en la conducción, es una operación que debe llevarse a cabo con sumo cuidado. Incluso sin la presencia de aire atrapado, esta cuestión se estudió con atención, tal y cual se evidencia en el trabajo Liou y Hunt (ref.3), que se abordó en el capítulo anterior, por el potencial riesgo de cavitación en los puntos altos de la tubería. Sin embargo, no se considera en este trabajo de Liou y Hunt la presencia de aire atrapado, que es la situación más desfavorable.

En el presente capítulo se va a presentar un modelo matemático para el estudio de los transitorios generados por n bolsas de aire atrapado en una tubería de perfil irregular (Fuertes, et al (1997); Fuertes, et al (1998); Izquierdo et al (1999)). El análisis no incluye la presencia de válvulas de expulsión, siendo ésta la situación más desfavorable y, por tanto, la que mayores picos de presión va a originar.

A continuación se presentan las ecuaciones desarrolladas por Fuertes et al, las cuales modelan el fenómeno.

4.2 Ecuaciones básicas generalizadas

Se considera la conducción de perfil irregular, constituida por una serie de m tramos (con longitudes L_1 , L_2 ,..., L_p ,..., L_q ,..., L_m) de pendiente constante en cada tramo (θ_1 , θ_2 ,..., θ_p ,..., θ_p ,..., θ_m), en la cual se tienen n bolsas de aire atrapado (con longitudes $L_{aire1,0}$, $L_{aire2,0}$,..., $L_{airei,0}$,..., $L_{airen,0}$, y presiones en el instante inicial $p^*_{1,0}$, $p^*_{2,0}$,..., $p^*_{i,0}$,..., $p^*_{n,0}$) y n columnas de bloqueo (con longitudes $L_{b,1}$, $L_{b,2}$, ..., $L_{b,b}$,..., $L_{b,n}$).

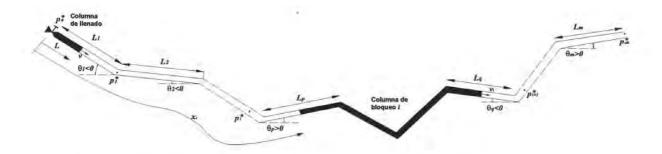


Figura 4.2. Tubería de perfil irregular con n bolsas de aire atrapado.

La instalación es alimentada en su extremo de aguas arriba por una fuente de energía (depósito o estación de bombeo), y descarga a la atmósfera en su extremo de aguas abajo, tal y como puede apreciarse en la Figura 4.2.

En el origen de la tubería se tiene una válvula que definirá, en función de cómo se maniobre, y conjuntamente con la fuente de suministro de energía dispuesta, las condiciones de contorno en ese extremo.

El sistema se analizará con el modelo rígido, lo que supone no considerar ni la elasticidad del fluido ni la de la propia tubería, que es lo que caracteriza al modelo

elástico, más conocido por golpe de ariete. La precisión del modelo rígido es más que suficiente para el caso que nos ocupa (Chaudhry et al (1981))

Una de las principales novedades que se introduce en el presente modelo, frente a otros trabajos que abordan el problema del aire atrapado, es la movilidad de las interfases (o fronteras) aire-agua de manera que sus avances en el tiempo quedan perfectamente definidos.

Las hipótesis empleadas para el desarrollo del modelo son:

- a) Análisis de transitorio hidráulico mediante la aplicación del modelo rígido.
- b) Interfases aire-agua perfectamente definidas y coincidentes con la sección transversal de la tubería (flujo pistón)
- c) El aire atrapado sigue una evolución politrópica de exponente n. El modelo permite fijar la presión inicial de cada bolsa de aire aunque, cuando se va iniciar el llenado y no hay flujo, todas las bolsas de aire se encuentran a la presión atmosférica.
- d) El factor de cortante que caracteriza la ecuación de pérdidas de Darcy-Weisbach se mantiene constante durante todo el transitorio.

En estas condiciones, las ecuaciones básicas que modelan el sistema son las que se describen a continuación:

Para la columna de llenado se tienen 2 ecuaciones:

1.- Ecuación del modelo rígido que caracteriza el movimiento de la columna de llenado impulsada por la fuente de energía (p^*_0 es la presión aguas arriba de la conducción). Como puede observarse estas ecuaciones son similares a las ecuaciones (3.1) y (3.2) del modelo de Liou y Hunt.

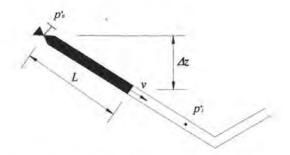


Figura 4.3. Columna de llenado.

$$\frac{dv}{dt} = \frac{p_0^* - p_1^*}{\rho L} - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
 (4.1)

2.- Posición de la columna de llenado

$$L = L_0 + \int_0^t v dt \qquad \left(\frac{dL}{dt} = v\right) \tag{4.2}$$

Donde v, es la velocidad de la columna de llenado, t es el tiempo que transcurre el llenado, p_{θ}^{*} es la presión absoluta aguas arriba de la tubería, p_{I}^{*} es la presión absoluta de la bolsa de aire 1, ρ es la densidad del agua, L es la longitud de la columna de llenado, g es la aceleración de la gravedad, Δz es el desnivel entre las secciones aguas arriba y aguas abajo de la columna de llenado, f es factor de cortante, D es el diámetro de la tubería y L_{θ} es la longitud inicial de la columna de llenado antes de arrancar la instalación.

Para cada una de las n columnas de bloqueo / bolsas de aire se tienen 3 ecuaciones (3n en total):

3.- Ecuación del modelo rígido que caracteriza el movimiento de la columna de bloqueo i (i = 1, 2, ..., n)

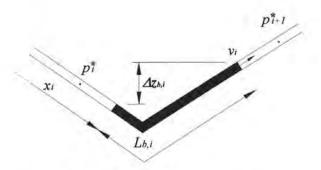


Figura 4.4. Columna de bloqueo i.

$$\frac{dv_i}{dt} = \frac{p_i^* - p_{i+1}^*}{\rho L_{b,i}} - g \frac{\Delta z_{b,i}}{L_{b,i}} - \frac{f v_i |v_i|}{2D}$$
(4.3)

Donde, para la última columna de bloqueo (i = n), se deberá sustituir $p^*_{n+1} = p^*_{atm.}$

4.- Evolución de la bolsa de aire i (i = 1, 2, ..., n), caracterizada por la expresión politrópica (se desprecia el rozamiento del aire y se considera presión uniforme en toda la bolsa de aire)

$$p_1^* \cdot (x_i - x_{i-1} - L_{b,i-1})^n = p_{i,0}^* \cdot (x_{i,0} - x_{i-1,0} - L_{b,i-1})^n = cte$$
(4.4)

Donde, *cte* es una constante y para la primera bolsa de aire (i=1), se deberá sustituir $x_0=0$ y $L_{b,0}=L$.

Habitualmente, la evolución de la bolsa de aire se modela considerando que cumple la ecuación politrópica para los gases perfectos ($p^* \forall^n = cte$), donde n es el índice politrópico. El valor del exponente n =1 es válido para procesos isotermos (temperatura constante) generalmente asociado a procesos "lentos", mientras que n=1.4 se utiliza para procesos adiabáticos (sin transferencia de calor) normalmente asociados a procesos rápidos.

Algunos investigadores han estado analizando con gran profundidad la evolución del aire en las tuberías, llegando a la conclusión de que el valor del índice politrópico no se mantiene constante durante el transitorio. En algunas circunstancias, un valor medio n=1.2 proporciona buenos resultados pero, en general, la expresión $p^*\forall^n$ no describe adecuadamente el comportamiento del aire (Graze y Horlacher, 1996)

Los investigadores han adoptado valores, desde un comportamiento isotermo (n=1.0) hasta una evolución adiabática (n=1.4). Por tanto ante la falta de información, se opta por el valor medio n=1.2

5.- Posición de la columna de bloqueo i (i = 1, 2, ..., n)

$$x_i = x_{i,0} + \int_0^t v_i dt \qquad \left(\frac{dx_i}{dt} = v_i\right) \tag{4.5}$$

Donde, v_i es la velocidad de la columna de bloqueo i, p_i^* es la presión absoluta de la bolsa de aire i, $L_{b,i}$ es la longitud de la columna de bloqueo i, $\Delta z_{b,i}$ es el desnivel entre las secciones aguas arriba y aguas abajo de la columna de bloqueo i, x_i es la posición (medida desde el origen) de la sección aguas arriba de la columna de bloqueo i.

Obsérvese (ver Figura 4.2) que las longitudes de los diferentes tramos se notan, sencillamente, con el subíndice correspondiente L_p (p = 1, 2, ..., m) y las pendientes vienen dadas por el ángulo θ_p (p = 1, 2, ..., m).

Así pues, se tiene un sistema de 2+3n ecuaciones diferenciales. La resolución de dicho sistema, junto con las condiciones iniciales y las condiciones de contorno adecuadas, nos permite determinar las 2+3n incógnitas del problema:

$$v, L$$

 $v_i, p^*_i, x_i (i = 1, 2, ..., n)$

Las condiciones iniciales (en t = 0) del problema son:

$$v(0) = 0, L(0) = L_0$$

 $v_i(0) = 0, p^*_i(0) = p^*_{i,0}, x_i(0) = x_{i,0} (i = 1,2,....,n)$

Y las condiciones de frontera en los dos extremos:

a) la expresión de p*₀ depende de la condición de contorno aguas arriba de la instalación. En el caso de alimentar la instalación mediante bomba (Figura 4.5), se cumplirá

$$H_D + \frac{p^*_{anm}}{\gamma} + H_B = \frac{p^*_0}{\gamma} + \frac{v^2}{2g} + k\frac{v^2}{2g}$$
 (4.6)

$$\frac{p^{*_0}}{\gamma} = H_D + \frac{p^{*_{atm}}}{\gamma} + H_B - (1+k)\frac{v|v|}{2g}$$
 (4.7)

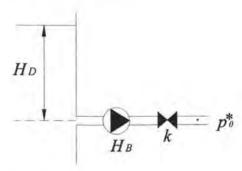


Figura 4.5. Condición de contorno aguas arriba.

b) condición de contorno aguas abajo: la conducción descarga directamente a la atmósfera y, por tanto, en el extremo final se tiene la presión atmosférica, $p_{n+1}^* = p_{alm}^*$ (ecuación correspondiente a la última columna de bloqueo, i = n).

En las ecuaciones (4.1) y (4.3), las expresiones $\Delta z/L$ e $\Delta z_{b,i}/L_{b,j}$, correspondientes a los términos gravitatorios de la columna de llenado y

de bloqueo respectivamente, irán variando en función de dónde se encuentre la columna de agua correspondiente. Denotamos con el subíndice p el tramo donde se encuentra el principio de la columna de agua y con el subíndice q el tramo donde se encuentra el final de la columna de agua (tramos =1,2,...,m). Así pues, se tiene:

a) Evolución de la columna de bloqueo i

a.1) Hasta que la columna de bloqueo alcance el extremo final de la conducción ($x_i + L_{b,i} < L_{total}$)

-cuando el principio y el final de la columna de bloqueo i se encuentran en el mismo tramo (q = p)

$$\frac{\Delta z_{b,i}}{L_{b,i}} = sen\theta_p \tag{4.8}$$

-Cuando el principio y el final de la columna de bloqueo i se encuentran en tramos contiguos (q = p + 1)

$$\frac{\Delta z_{b,i}}{L_{b,i}} = \frac{\left(\sum_{j=1}^{J=p} L_{j}\right) - x_{i}}{L_{b,i}} sen\theta_{p} + \left(1 + \frac{x_{i} - \left(\sum_{j=1}^{J=q-1} L_{j}\right)}{L_{b,i}}\right) sen\theta_{q}$$
(4.9)

-Cuando el principio y el final de la columna de bloqueo i se encuentran separados por uno o más tramos (q>p+1)

$$\frac{\Delta z_{b,i}}{L_{b,i}} = \frac{\left(\sum_{J=1}^{J=p} L_{J}\right) - x_{i}}{L_{b,i}} sen\theta_{p} + \frac{\sum_{J=p+1}^{J=q-1} L_{J} sen\theta_{J}}{L_{b,i}} + \left(1 - \frac{x_{i} - \left(\sum_{J=1}^{J=q-1} L_{J}\right)}{L_{b,i}}\right) sen\theta_{q}$$
 (4.10)

a.2) Cuando la columna de bloqueo alcance el extremo final y comience a desaguar $(x_i + L_{b,i} = L_{total})$

-Cuando el principio de la columna de bloqueo i se encuentra en el último tramo (p = m)

$$\frac{\Delta z_{b,i}}{L_{b,i}} = sen\theta_m \qquad L_{b,i} = L_{total} - x_i = cte \qquad (4.11)$$

-Cuando el principio de la columna de bloqueo i se encuentra en cualquier tramo distinto del último (p < m)

$$\frac{\Delta z_{b,i}}{L_{b,i}} = \frac{\left(\sum_{j=1}^{J=p} L_{j}\right) - x_{i}}{L_{total} - x_{i}} sen\theta_{p} + \frac{\sum_{j=p+1}^{J=m} L_{j} sen\theta_{j}}{L_{total} - x_{i}}$$

$$(4.12)$$

a.3) Cuando la columna de bloqueo i ha salido totalmente ($x_i = L_{total}$)

Se reduce el sistema de ecuaciones a resolver: desaparecen las 3 ecuaciones correspondientes a la columna de bloqueo / bolsa de aire i, y la presión de la última bolsa de aire pasa a ser la atmosférica, modificándose la ecuación correspondiente.

b) Evolución de la columna de llenado

b.1) Hasta que la columna de llenado alcance el extremo final de la conducción ($L < L_{total}$)

-Cuando el final de la columna de llenado se encuentra en el primer tramo (q=1)

$$\frac{\Delta z}{L} = sen\theta_1 \tag{4.13}$$

-Cuando el final de la columna de llenado se encuentra en cualquier tramo distinto del primero (q > 1)

$$\frac{\Delta z}{L} = \frac{\sum_{J=1}^{J=q-1} L_J sen\theta_J}{L} + \left(1 - \frac{\sum_{J=1}^{J=q-1} L_J}{L}\right) sen\theta_q$$
 (4.14)

b.2) Cuando el final de la columna de llenado alcance el extremo final y comience a desaguar ($L=L_{total}$)

$$\frac{\Delta z}{L} = \frac{\sum_{J=1}^{J=m} L_J sen\theta_J}{L_{total}} = \frac{z_d - z_0}{L_{total}} = cte$$
 (4.15)

Desaparecen todas las columnas de bloqueo y todas las bolsas de aire, de forma que queda una única ecuación

$$\frac{dv}{dt} = \frac{p_0^* - p^*_{atm1}}{\rho L} - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
 (4.16)

Hasta alcanzar el régimen permanente.

Con el modelo presentado puede analizarse el transitorio que se genera cuando se pone en funcionamiento una instalación de perfil irregular donde existe un número cualquiera de bolsas de aire atrapado. En el epígrafe siguiente se particulariza el sistema de ecuaciones para la situación más simple. Se considera una conducción de perfil irregular que tiene una única bolsa de aire.

4.2 Aplicación al caso de una bolsa de aire atrapado

Se va a particularizar el modelo presentado en el apartado anterior para una conducción con tan solo una bolsa de aire. Se considera una instalación con únicamente dos tramos de pendiente constante (m = 2) donde existe una bolsa de aire atrapado (n = 1), tal y como se muestra en la Figura 4.6.

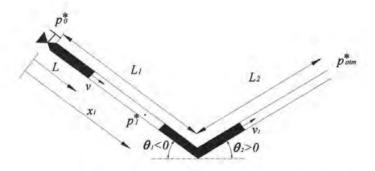


Figura 4.6 Tubería con dos tramos y una bolsa de aire atrapado.

Para este caso particular las ecuaciones que modelan el fenómeno son:

Para la columna de llenado se tienen 2 ecuaciones:

1.- Ecuación del modelo rígido que caracteriza el movimiento de la columna de llenado (con la ecuación de contorno aguas arriba dada por la ecuación (4.7))

$$\frac{dv}{dt} = \frac{g}{L} \left(H_D + \frac{p^*_{atm}}{\gamma} + H_B - (1+k) \frac{v|v|}{2g} \right) - \frac{p^*_1}{\rho L} - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
(4.17)

2.- Posición de la columna de llenado

$$L = L_0 + \int_0^t v dt \qquad \left(\frac{dL}{dt} = v\right) \qquad (4.18)$$

Para la columna de bloqueo y la bolsa de aire se tienen 3 ecuaciones:

 Ecuación del modelo rígido que caracteriza el movimiento de la columna de bloqueo (con la condición de contorno aguas abajo)

$$\frac{dv_1}{dt} = \frac{p_1^* - p_{alm}^*}{\rho L_{b1}} - g \frac{\Delta z_{b,1}}{L_{b1}} - \frac{fv_1|v_1|}{2D}$$
(4.19)

4.- Evolución de la bolsa de aire

$$p_1^* \cdot (x_1 - L)^n = p_{10}^* \cdot (x_{10} - L_0)^n = cte$$
 (4.20)

5.- Posición de la columna de bloqueo

$$x_1 = x_{1,0} + \int_0^1 v_1 dt$$
 $\left(\frac{dx_1}{dt} = v_1\right)$ (4.21)

Se obtiene así un sistema de 5 ecuaciones diferenciales cuya resolución, junto con las condiciones iniciales (t = 0)

$$v(0) = 0, L(0) = L_0$$

 $v_1(0) = 0, p_1^*(0) = p_{atm}^*, x_1(0) = x_{1,0}^*$

y las condiciones de contorno ya descritas nos permite determinar las 5 incógnitas del problema:

$$v, L$$
 v_1, p_1^*, x_1

En las ecuaciones (4.17) y (4.19), las expresiones $\Delta z/L$ e $\Delta z_{b,1}/L_{b,1}$, correspondientes a los términos gravitatorios de la columna de llenado y de bloqueo respectivamente, irán variando en función de dónde se encuentre la columna de agua correspondiente. Denotamos con el subíndice p el tramo donde se encuentra el principio de la columna de agua y con el subíndice q el tramo donde se encuentra el final de la columna de agua (tramos = 1, 2,..., m). Así pues, para una bolsa de aire y 2 tramos, el término gravitatorio se calcula con las expresiones siguientes:

a) Evolución de la columna de bloqueo 1 (modificación del término $\Delta z_{b,1}$ / $L_{b,1}$, en la ecuación (4.19))

Casos posibles: (p = 1, 2; q = 2)

a.1) Hasta que la columna de bloqueo alcance el extremo final de la conducción $(x_I + L_{b,I} < L_{total})$

-Cuando el principio y el final de la columna de bloqueo 1 se encuentran en el mismo tramo (q = p)

Casos posibles: (p = q = 2)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = sen\theta_p \tag{4.22}$$

-Cuando el principio y el final de la columna de bloqueo 1 se encuentra en tramos contiguos (q = p+1)

Casos posibles: (p = 1; q = 2)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \frac{\left(\sum_{J=1}^{J=p} L_J\right) - x_1}{L_{b,1}} sen\theta_p + \left(1 + \frac{x_1 - \left(\sum_{J=1}^{J=q-1} L_J\right)}{L_{b,1}}\right) sen\theta_q$$
(4.23)

a.2) Cuando la columna de bloqueo alcance el extremo final y comience a desaguar $(x_I + L_{b,I} = L_{total})$

-Cuando el principio de la columna de bloqueo 1 se encuentra en el último tramo (p = 2)

Casos posibles: (p = 2)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = sen\theta_2 \qquad L_{b,1} = L_{total} - x_1 \neq cte \tag{4.24}$$

-Cuando el principio de la columna de bloqueo 1 se encuentra en cualquier tramo distinto del último (p < 2)

Casos posibles: (p = 1)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \frac{\left(\sum_{J=1}^{J=p} L_J\right) - x_1}{L_{total} - x_1} sen\theta_p + \frac{\sum_{J=p+1}^{J=2} L_J sen\theta_J}{L_{total} - x_1}$$
(4.25)

a.3) Cuando la columna de bloqueo 1 ha salido totalmente $(x_I = L_{total})$

Se reduce el sistema de ecuaciones a resolver: desaparecen las ecuaciones (4.19), (4.20) y (4.21) correspondientes a la columna de bloqueo / bolsa de aire 1, la presión de la última bolsa pasa a ser la atmosférica $(p^*) = p^*_{atm}$, modificándose la ecuación (4.17).

 b) Evolución de la columna de llenado (modificación del termino Δz/L en la ecuación (4.17)) Casos posibles: (q = 1, 2)

b.1) Hasta que la columna de llenado alcance el extremo final de la conducción $(L < L_{total})$

-Cuando el final de la columna de llenado se encuentra en el primer tramo (q =1)

Casos posibles: (q = I)

$$\frac{\Delta z}{L} = sen\theta_1 \tag{4.26}$$

-Cuando el final de la columna de llenado se encuentra en cualquier tramo distinto del primero (q > 1)

Casos posibles: (q = 2)

$$\frac{\Delta z}{L} = \frac{\sum_{J=1}^{J=q-1} L_J sen\theta_J}{L} + \left(1 - \frac{\sum_{J=1}^{J=q-1} L_J}{L}\right) sen\theta_q$$
 (4.27)

b.2) Cuando la columna de llenado alcance el extremo final y comience a desaguar ($L=L_{total}$)

$$\frac{\Delta z}{L} = \frac{\sum_{J=1}^{J=2} L_J sen\theta_J}{L_{total}} = \frac{z_d - z_0}{L_{total}} = cte$$
 (4.28)

Desaparecen todas las columnas de bloqueo y todas las bolsas de aire, de forma que queda una única ecuación

$$\frac{dv}{dt} = \frac{g}{L} \left(H_D + H_B - (1+k) \frac{v|v|}{2g} \right) - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
 (4.29)

Hasta alcanzar el régimen permanente.

Para una instalación en la que la longitud de la columna de bloqueo sea menor que la longitud del tramo final de la conducción ($L_{b,I} < L_2$), la modificación del término gravitatorio se simplifica ligeramente y las expresiones se reducen a:

 a) Evolución de la columna de bloqueo 1 (modificación del término Δz_{b,1}/L_{b,1} en la ecuación (4.19))

1.- Inicialmente

hasta $x_1 = L_1$

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \frac{L_1 - x_1}{L_{b,1}} \operatorname{sen}\theta_1 + \left(1 + \frac{x_1 - L_1}{L_{b,1}}\right) \operatorname{sen}\theta_2 \tag{4.30}$$

2

2.- Cuando $x_1 = L_1$

hasta
$$x_1 + L_{b,1} = L_1 + L_2 = L_{total}$$

$$\frac{\Delta z_{b,1}}{L_{b,1}} = sen\theta_2 \tag{4.31}$$

3

3.- Cuando $x_1+L_{b,1}=L_1+L_2=L_{total}$ hasta $x_1=L_1+L_2=L_{total}$

$$\frac{\Delta z_{b,1}}{L_{b,1}} = sen\theta_2 \qquad L_{b,1} = L_{total} - x_1 \neq cte$$
 (4.32)

4.- Cuando $x_1 = L_1 + L_2 = L_{total}$

Se reduce el sistema de ecuaciones a resolver: desaparecen las ecuaciones (4.19), (4.20) y (4.21) correspondientes a la columna de bloqueo / bolsa de aire 1, la presión de la última bolsa pasa a ser la atmosférica $(p^*_1 = p^*_{alm})$, modificándose la ecuación (4.17).

b) Evolución de la columna de bloqueo 1 (modificación del término Δz/L en la ecuación (4.17))

1

1.- Inicialmente

hasta
$$L=L_I$$

$$\frac{\Delta z}{L} = sen\theta_1 \tag{4.33}$$

2.- Cuando $L=L_1$

 $L = L_1 + L_2 = L_{total}$ hasta

$$\frac{\Delta z}{L} = \frac{L_1 sen\theta_1}{L} + \left(1 - \frac{L_1}{L}\right) sen\theta_2 \tag{4.34}$$

3

3.- cuando $L = L_1 + L_2 = L_{total}$

$$\frac{\Delta z}{L} = \frac{z_d - z_0}{L_{total}} = cte \tag{4.35}$$

Desaparecen todas las columnas de bloqueo y todas las bolsas de aire, de forma que queda una única ecuación

$$\frac{dv}{dt} = \frac{g}{L} \left(H_D + H_B - (1+k) \frac{v|v|}{2g} \right) - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
(4.36)

Hasta alcanzar el régimen permanente.

Todo este conjunto de ecuaciones aquí presentadas se utilizará posteriormente para resolver un caso práctico y extraer algunas conclusiones interesantes.

4.3 Métodos de resolución

El caso más general que se puede plantear, n bolsas de aire atrapado en un sistema de m tramos de tubería de diferentes pendientes, consiste en resolver un sistema de 2+3n ecuaciones que determinan las tres incógnitas asociadas a cada una de las bolsas de aire (situación de la frontera de aguas arriba x_i , presión de la bolsa de aire atrapado p^*_i , y velocidad de la columna de bloqueo v_i) así como el comportamiento de la columna de llenado (Longitud L y velocidad v).

Las ecuaciones integrales (4.2) y las de tipo (4.5), que representan las evoluciones de las fronteras móviles, pueden ser fácilmente escritas en forma diferencial con la condición inicial correspondiente como

$$\frac{dL}{dt} = v$$
 , $L(0) = L_0$ (4.37)

$$\frac{dx_i}{dt} = v_i$$
 , $x_i(0) = x_{i,0}$ (4.38)

Por otra parte, las ecuaciones (4.4), que describen la evolución de las bolsas de aire, son relaciones algebraicas de las que se puede despejar fácilmente p_{ii}^* que queda en función de x_{i-1} y x_i . Se observa que mientras la longitud $L_{b,i}$ de la columna de bloqueo i- se mantiene constante, p_i^* es claramente función de x_{i-1} y x_i y cuando la columna de bloqueo i comienza a desaguar $L_{b,i}$ es variable pero, de acuerdo a (4.11), su variación es función tan solo de x_i . Así que resulta $p_i^* = g(x_{i-1}, x_i)$ mientras que la bolsa i esté confinada. Estas expresiones pueden ser sustituidas en las ecuaciones (4.1) y las de tipo (4.3). Así, se obtiene un sistema de 2(n+1) ecuaciones diferenciales ordinarias que, denotando $v_0 = v$ y $x_0 = L$, puede escribirse de manera compacta como

$$\begin{cases} v_i' = f_i(v_i, x_{i-1}, x_i, x_{i+1}) & i = 0, 1, \dots, n \\ x_i' = v_i & i = 0, 1, \dots, n \end{cases}$$

$$(4.39)$$

La solución numérica puede obtenerse mediante un método adecuado. Dos situaciones sugieren utilizar un método con paso de tiempo pequeño. Por un lado, en la fase inicial del fenómeno, especialmente si la fuente de energía aguas arriba es importante, y/o la bolsa de aire primera es de pequeña entidad, las variaciones pueden ser muy bruscas por lo que la integración de las ecuaciones requiere un paso muy pequeño. Luego, otras variaciones de interés acontecen con las invasiones de las columnas líquidas (tanto la de llenado como las de bloqueo) de nuevos tramos de tubería. En estas circunstancias, el término gravitatorio correspondiente, aunque continuo, no es diferenciable (ver (4.8) a (4.15)) y provoca cambios representativos de tendencia en las magnitudes. En la fase final del desagüe de una columna líquida de bloqueo se tiene el siguiente efecto. La longitud $L_{h,i}$ tiende a 0 (ver ecuación (4.11)), por lo que el término de presión en la ecuación (4.3) correspondiente, se hace muy grande, haciendo que la velocidad de dicha columna crezca de manera muy rápida. Por lo cual, es preciso un paso ∆t muy pequeño para capturar adecuadamente esta variación rápida. En la resolución de estas ecuaciones puede emplearse el método de Runge-Kutta de quinto orden.

Finalmente, hay que observar que con el desagüe de cada columna de bloqueo las ecuaciones correspondientes a ella y a la bolsa de aire que la sigue desaparecen del sistema, que queda reducido en dos ecuaciones diferenciales. Cuando, eventualmente todas las columnas de bloqueo han sido evacuadas sólo quedan las ecuaciones (4.1) y (4.2) y cuando la columna de llenado ya ocupa toda la instalación, la única ecuación que queda es (4.1), que define la última fase del régimen transitorio. En resumen, pues, la solución numérica del fenómeno supone la resolución de una sucesión de problemas del valor inicial con un número decreciente de ecuaciones diferenciales.

Para entender mejor el problema se presenta un ejemplo con dos tramos, una columna de bloqueo y una bolsa de aire.

4.4 Ejemplo de aplicación

Se va utilizar el modelo matemático presentado para estudiar una instalación con dos tramos de pendiente constante (m=2) y una bolsa de aire (n=1). Dicha instalación es alimentada mediante un tanque de carga constante y descarga a la atmósfera en su extremo de aguas abajo, tal y como se observa en la Figura 4.7. Se trata de una tubería por gravedad con una longitud total L_{total} =167 metros, diámetro D = 4" y un factor de fricción f =0.03.

Se va a suponer que tras una paro continuo de la instalación se acumula una cierta cantidad de aire dentro de la tubería lo que origina la presencia de una bolsa de aire atrapado (ver Figura 4.7). Cuando se proceda a un nuevo arranque de la instalación, la conducción estará llena de agua tan sólo parcialmente y el resto estará ocupado por aire. Se pretende estudiar cómo la presencia de este aire en la conducción provoca importantes picos de presión, que pueden ser muy peligrosos para la integridad de la tubería.

Una cuestión que debe aclararse es la elección del índice politrópico para modelar el comportamiento del aire durante el transitorio. No es nada fácil conocer a priori el valor de este coeficiente politrópico, puesto que depende de las características de la instalación, de la naturaleza del transitorio e, incluso, varía durante el desarrollo del propio transitorio.

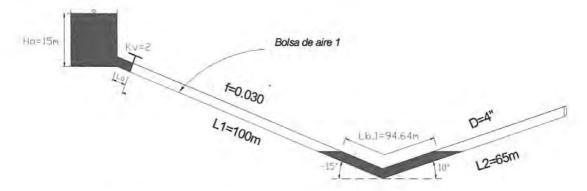


Figura 4.7. Instalación con dos tramos y una bolsa de aire.

En principio, suele adoptarse un valor próximo a n = 1.0 cuando el proceso es relativamente lento y puede asemejarse a una evolución isoterma, mientras que se emplean valores próximos a n = 1.4 cuando el proceso es muy rápido y el comportamiento del aire es prácticamente adiabático. Para el desarrollo del ejemplo aquí presentado se considera un valor medio n = 1.2, al tratarse de un valor ampliamente utilizado.

Como se ejemplifica en el epígrafe 4.3, se tienen que resolver las ecuaciones diferenciales (4.17) a (4.21); cambiando la condición de frontera a un depósito solamente y poniendo las ecuaciones que caracterizan evolución de las columnas de agua en ecuaciones diferenciales se escribe de la siguiente manera:

$$\frac{dv}{dt} = \frac{g}{L} \left(H_D + \frac{p^*_{atm}}{\gamma} - (1+k) \frac{v|v|}{2g} \right) - \frac{p^*_1}{\rho L} - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
(4.40)

$$\frac{dL}{dt} = v \tag{4.41}$$

$$\frac{dv_1}{dt} = \frac{p_1^* - p^*_{atm}}{\rho L_{b1}} - g \frac{\Delta z_{b,1}}{L_{b1}} - \frac{fv_1|v_1|}{2D}$$
(4.42)

$$p_1^* = \frac{p_{1,0}^* \cdot (x_{1,0} - L_0)^n}{(x_1 - L)^n} \tag{4.43}$$

Donde

$$p_{1,0}^* \cdot (x_{1,0} - L_0)^n = cte$$

$$\frac{dx_1}{t} = v_1 \tag{4.44}$$

Con las condiciones iniciales

$$v(0) = 0, L(0) = 2.00 \text{ m}$$

 $v_1(0) = 0, p_1(0) = 10,333 \text{ kg/m}^2, x_1(0) = 64.00 \text{ m}$

Se resuelve simultáneamente las ecuaciones (4.40) a (4.44) aplicando el método de Runge-Kutta (ref. 10) de quinto grado utilizando las condiciones iniciales.

$$W_{i,j+1} = W_{i,j} + \frac{25}{216}k_{1,i} + \frac{1408}{2565}k_{3,i} + \frac{2197}{4104}k_{4,i} - \frac{1}{5}k_{5,i}$$
 (4.45)

Para
$$i = 1, 2, ..., m$$
 ($m = N$ úmero de ecuaciones diferenciales)
y $j = 0, 1, 2, ..., N$ ($j = N$ úmero del paso de tiempo)

Es decir, para un paso de tiempo:

 $w_{I,I}$ = Es la velocidad de la columna de llenado (v)

 $w_{2,l}$ = Es la posición de la columna de llenado (L)

 $w_{3,I}$ = Es la velocidad de la columna de bloqueo $(v_{I,I})$

 $W_{4,1}$ = Es la posición de la columna de bloqueo $(x_{1,1})$

donde

$$k1, j = hf\left(t, w_1, w_2, ..., w_m\right),$$

$$k2, j = hf\left(t + \frac{h}{4}, w_1 + \frac{1}{4}k_{1,1}, w_2 + \frac{1}{4}k_{1,2}, ..., w_m + \frac{1}{4}k_{1,m}\right),$$

$$k3, j = hf\left(t + \frac{3h}{8}, w_1 + \frac{3}{32}k_{1,1} + \frac{9}{32}k_{2,1}, w_2 + \frac{3}{32}k_{1,2} + \frac{9}{32}k_{2,2}, ..., w_m + \frac{3}{32}k_{1,m} + \frac{9}{32}k_{2,m}\right).$$

$$k4, j = hf\left(t + \frac{12h}{13}, w_1 + \frac{1932}{2197}k_{1,1} - \frac{7200}{2197}k_{2,1} + \frac{7296}{2197}k_{3,1}, ..., w_m + \frac{1932}{2197}k_{1,m} - \frac{7200}{2197}k_{2,m} + \frac{7296}{2197}k_{3,m}\right),$$

$$k5, j = hf\left(t + h, w_1 + \frac{439}{216}k_{1,1} - 8k_{2,1} + \frac{3680}{513}k_{3,1} - \frac{845}{4104}k_{4,1}, ..., w_m + \frac{439}{216}k_{1,m} - 8k_{2,m} + \frac{3680}{513}k_{3,m} - \frac{845}{4104}k_{4,m}\right),$$

$$k6, j = hf\left(t + \frac{h}{2}, w_1 - \frac{8}{27}k_{1,1} + 2k_{2,1} - \frac{3544}{2565}k_{3,1} + \frac{1859}{4104}k_{4,1} - \frac{11}{40}k_{5,1}, ..., w_m - \frac{8}{27}k_{1,m} + 2k_{2,m} - \frac{3544}{2565}k_{3,m} + \frac{1859}{4104}k_{4,m} - \frac{11}{40}k_{5,m}\right).$$

se obtiene para un paso de tiempo, la velocidad de la columna de llenado (v), la posición de la columna de llenado (L), la velocidad de la columna de bloqueo $(v_{I,I})$, y la posición de la columna de bloqueo $(x_{I,I})$ respectivamente.

Enseguida se calcula la constante de la ecuación (4.43):

$$cte = p_{1.0}^* \cdot (x_{1.0} - L_0)^n = 10333*(64 - 2)^{1.2} = 1462501.96$$

Se tienen que modificar los términos gravitatorios $\Delta z/L$ e $\Delta z_{b,1}/L_{b,1}$ en las ecuaciones (4.40) y (4.42), de acuerdo al avance de la columna de llenado (L) y de la columna de bloqueo (x_I), se emplearán las ecuaciones (4.22) a (4.28) como se indica en el epígrafe 4.3.

Evolución de la columna de bloqueo 1 (modificación del término $\Delta z_{b,1}$ / $L_{b,1}$, en la ecuación (4.42))

Casos posibles: (p = 1, 2; q = 2)

Hasta que la columna de bloqueo alcance el extremo final de la conducción ($x_1 + L_{b,1} < L_{total}$)

-Cuando el principio y el final de la columna de bloqueo 1 se encuentran en el mismo tramo (q = p)

Casos posibles: (p = q = 2)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \operatorname{sen} \theta_2 \tag{4.47}$$

-Cuando el principio y el final de la columna de bloqueo 1 se encuentra en tramos contiguos (q = p+1)

Casos posibles: (p = 1; q = 2)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \frac{L_1 - x_1}{L_{b,1}} \operatorname{sen} \theta_1 + \left(1 + \frac{x_1 - L_1}{L_{b,1}}\right) \operatorname{sen} \theta_2$$
 (4.48)

-Cuando la columna de bloqueo alcance el extremo final y comience a desaguar $(x_l + L_{b,l} = L_{total})$

-Cuando el principio de la columna de bloqueo 1 se encuentra en el último tramo (p=2)

Casos posibles: (p = 2)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \sec \theta_2$$
 $L_{b,1} = L_{total} - x_1 \neq cte$ (4.49)

-Cuando el principio de la columna de bloqueo 1 se encuentra en cualquier tramo distinto del último (p < 2)

Casos posibles: (p = 1)

$$\frac{\Delta z_{b,1}}{L_{b,1}} = \frac{L_1 - x_1}{L_{total} - x_1} \operatorname{sen} \theta_1 + \frac{L_2 \operatorname{sen} \theta_2}{L_{total} - x_1}$$
(4.50)

Cuando la columna de bloqueo 1, ha salido totalmente $(x_I = L_{total})$

Se reduce el sistema de ecuaciones a resolver: desaparecen las ecuaciones (4.42), (4.43) y (4.44) correspondientes a la columna de bloqueo 1, bolsa de aire 1,

la presión de la última bolsa pasa a ser la atmosférica $(p^*_1 = p^*_{atm})$, modificándose la ecuación (4.40).

Evolución de la columna de llenado (modificación del termino Δz/L en la ecuación (4.40))

Casos posibles: (q = 1, 2)

Hasta que la columna de llenado alcance el extremo final de la conducción $(L < L_{total})$

-Cuando el final de la columna de llenado se encuentra en el primer tramo (q =1)

Casos posibles: (q = I)

$$\frac{\Delta z}{L} = sen\theta_1 \tag{4.51}$$

-Cuando el final de la columna de llenado se encuentra en cualquier tramo distinto del primero (q > 1)

Casos posibles: (q = 2)

$$\frac{\Delta z}{L} = \frac{L_1 \operatorname{sen} \theta_1}{L} + \left(1 - \frac{L_1}{L}\right) \operatorname{sen} \theta_2 \tag{4.52}$$

b.2) Cuando la columna de llenado alcance el extremo final y comience a desaguar ($L=L_{total}$)

$$\frac{\Delta z}{L} = \frac{L_1 \operatorname{sen}\theta_1 + L_2 \operatorname{sen}\theta_2}{L_{total}} = \frac{z_d - z_0}{L_{total}} = cte$$
(4.53)

Desaparecen todas las columnas de bloqueo y todas las bolsas de aire, de forma que queda una única ecuación

$$\frac{dv}{dt} = \frac{g}{L} \left(H_D - (1+k) \frac{v|v|}{2g} \right) - g \frac{\Delta z}{L} - \frac{fv|v|}{2D}$$
(4.54)

Hasta alcanzar el régimen permanente.

En el anexo 3, se presenta el código del programa utilizado para resolver el ejemplo de aplicación estudiado. Además en el mismo anexo se presentan los resultados más relevantes.

De acuerdo a los resultados obtenidos por el programa realizado se tienen los resultados que se muestran en las Figuras 4.8. y 4.9. En estas gráficas se representa la evolución del transitorio (la presión de la bolsa de aire y las velocidades de columna de llenado y de bloqueo).

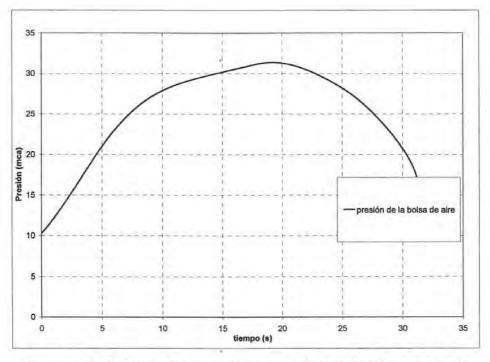


Figura 4.8. Análisis del transitorio para la instalación estudiada (dos tramos y una bolsa de aire).

Como se observa, la duración del transitorio es de unos 40 segundos aproximadamente hasta alcanzar las condiciones de régimen permanente, sin embargo, el pico máximo de presión como consecuencia de la compresión de la bolsa de aire se produce en la mitad de la duración del transitorio.

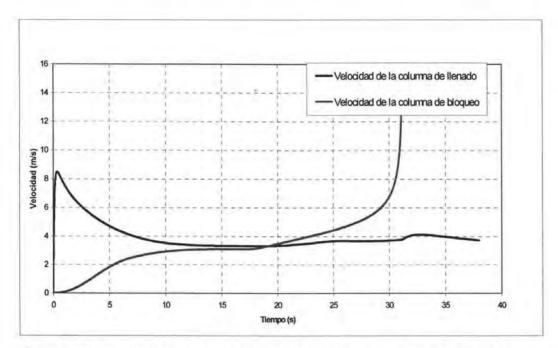


Figura 4.9. Análisis de la velocidad de la columna de llenado y bloqueo.

En las Figuras 4.8 y 4.9 se observan los instantes donde alcanza los valores máximos de presión y velocidad de columna de bloqueo que, concretamente, son:

Tabla 4.1 Presión y velocidades máximas

	Valor Máximo	Tiempo
Presión de la bolsa de aire	p* _{I,max} =31.3528 mca	t= 19.22 s
Velocidad de la columna de llenado	v _{max} =8.477 m/s	t= 0.35 s

Nada más arrancar la instalación, la columna de llenado se acelera bruscamente (la velocidad máxima, v_{max} =8.477 m/s, se alcanza en 0.35 segundos) comprimiendo la bolsa de aire de manera que a los 19.22 segundos se alcanza la

máxima presión, $p^*_{l,max}$ =31.3528 mca. Obsérvese que durante todo este tiempo la columna de bloqueo se ha movido poco. Esto es debido a la elevada inercia que tiene el agua con relación al aire. Cuando las presiones de la bolsa de aire comienzan a ser importantes es cuando se inicia el movimiento de la columna de bloqueo. A partir de ese momento, el transitorio es menos brusco y va evolucionando más suavemente según se mueven las bolsas de aire y las columnas de agua a lo largo del perfil de conducción. La presión de la bolsa de aire va aumentando mientras la columna de llenado se desplaza por el tramo descendente de longitud L_l hasta alcanzar el máximo en 19.22 s con una Longitud de la columna de llenado en L = 83.740 m antes de culminar el llenado en ese tramo, enseguida empieza la columna de llenado a llenar el tramo ascendente de longitud de longitud L_2 y la presión del aire va disminuyendo poco a poco hasta que la columna de bloqueo abandona la conducción (t = 31.18 s) con lo que desaparece la bolsa de aire atrapado. Poco después la columna de llenado llega al final de la instalación quedando ésta completamente llena de agua (t= 41.74 s).

En la gráfica de la Figura 4.9 puede observarse como la columna de bloqueo de acelera de manera notable cuando está a punto de abandonar la tubería como consecuencia de que su longitud es cada vez más corta y presenta una menor inercia, dando lugar a un aumento brusco de la velocidad que finaliza con la expulsión total de la columna de agua.

No hay que olvidar que por la sección de salida está circulando alternativamente aire y agua, dos fluidos con densidades muy dispares. Este orificio de salida presenta, lógicamente, unas pérdidas localizadas. Cuando el fluido que está saliendo es aire, el orificio genera unas pérdidas de energía de acuerdo al caudal circulante. Cuando llega la columna de agua (nótese que $Q_{agua} = Q_{aire}$), las pérdidas localizadas en dicho orificio para mantener el mismo caudal son unas 800 veces superior, puesto que el peso específico del agua γ_{agua} es muy superior al del aire γ_{aire} . Por lo tanto, al llegar el agua a la sección de salida se produce un

brusco aumento de la presión que se propagará aguas arriba de la conducción, y cuando llega el aire lo que tiene lugar es una brusca disminución de presión.

CAPITULO 5 MODELOS PARA CALCULO DE PRESIONES MÁXIMAS

5.1 Introducción

En los capítulos anteriores se presentaron los modelos matemáticos que permiten estudiar los transitorios generados por el llenado inicial de acueductos (Safwat et al, Liou y Hunt) y los transitorios generados por n bolsas de aire atrapado en tuberías de perfil irregular (Fuertes et al). Tal y como se ha justificado, la presencia de aire atrapado puede ocasionar grandes sobrepresiones que pueden dañar la instalación. Por ello, la posibilidad de estimar de forma relativamente sencilla las máximas presiones que se alcanzarán presenta un interés práctico notable.

Para estimar de forma sencilla las sobrepresiones generadas por el llenado de una conducción cuando se tienen bolsas de aire de, se presentan dos formas para determinar tales picos de presión máxima; Por una parte se presentan las graficas adimensionales desarrolladas por Fuertes (ref. 6) y por otra las curvas de Martín (ref.7).

Primero de acuerdo al modelo matemático de Fuertes et al, se presentan las ecuaciones adimensionales obtenidas por él; se identifican los parámetros que, de manera más significativa, condicionan el valor de los picos de presión; se presentan las gráficas a partir de los cuales se pueden estimar, con suficientemente de precisión ingenieril, los picos de presión máxima que se alcanzan en instalaciones prácticas reales.

Seguidamente se presentan las curvas para la estimación de los picos de presión obtenidas por Martín; el cual considera, a partir de un depósito, el llenado de una tubería ciega con aire atrapado en su extremo final. Finalmente se presentan dos ejemplos que han sido calculados con el modelo matemático de Fuertes et al, para posteriormente comprobar el uso de las gráficas ya mencionadas.

5.2 Sobrepresión durante el llenado de acueductos utilizando las gráficas de Fuertes

5.2.1 Ecuaciones adimensionales

Tal y como fue desarrollado en el capitulo anterior (modelo de Fuertes et al), se considera la conducción de perfil irregular de la Figura 5.1

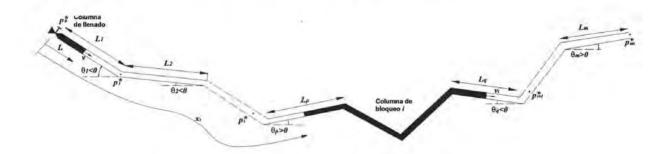


Figura 5.1. Tubería con n bolsas de aire atrapado.

El sistema de ecuaciones que caracteriza el modelo de Fuertes et al, presentado en el capítulo anterior (ecuaciones 4.1 a 4.5) para la resolución de una instalación, considerando aguas arriba de la conducción una fuente de energía (depósito o

bomba) junto con una válvula para controlar el caudal (ecuación (4.7)). Estas 2+3n ecuaciones del modelo matemático propuesto posibilitan el cálculo de un número idéntico de incógnitas: tres asociadas a cada una de las n columnas de bloqueo y bolsas de aire (situación de la frontera de aguas arriba x_i , presión del aire p_i y la velocidad de la columna de bloqueo v_i), y otras dos asociadas a la columna de llenado (longitud L y velocidad v).

Las escalas de referencia que se adoptan en la adimensionalización del conjunto de ecuaciones son:

Escala de alturas de presión:

$$H_e^* = \frac{p^*_e}{\gamma} = H_D + H_{am}^* + H_B(Q = 0)$$
 (5.1)

Escala de velocidades

$$V_e = \sqrt{2g(H_e^* - H_{alm}^*)} {(5.2)}$$

Escala de longitudes

$$L_e = L_{aire1,0}$$
 = longitud inicial de la primera bolsa de aire (5.3)

Escala de volúmenes

$$\forall_e = \forall_{1,0} = (x_{1,0} - L_0) \cdot A = \text{volumen inicial del aire}$$
 (5.4)

Escala de tiempos

$$T_{e} = \frac{L_{e}}{v_{e}} = \frac{L_{aire1,0}}{\sqrt{2g(H_{e}^{*} - H_{atm}^{*})}}$$
(5.5)

Con estos valores de referencia se obtienen las variables adimensionales del problema, las cuales quedan reflejadas en la tabla 5.1:

Tabla 5.1. variables adimensionales.

Variable adimensional	Escala utilizada
Altura de presión: $h^* = \frac{p_i^*}{p_e^*} = \frac{H_0^*}{H_e^*}$	$H_e^* = \frac{p^*_e}{\gamma} = H_D + H_{atm}^* + H_B(Q = 0)$
Altura de presión de la bolsa de aire i: $h_i^* = \frac{p_i^*}{p_e^*} = \frac{H_i^*}{H_e^*}$	$H_e^* = \frac{p^*_e}{\gamma} = H_D + H_{atm}^* + H_B(Q = 0)$
Velocidad de la columna de llenado: $v = \frac{v}{v_e}$	$V_e = \sqrt{2g(H_e^* - H_{alm}^*)}$
Velocidad de la columna de bloqueo i: $v_i = \frac{v_i}{v_e}$	$V_e = \sqrt{2g(H_e^* - H_{atm}^*)}$
Longitud de la columna de llenado: $l = \frac{L}{L_e}$	$L_e = L_{aire1,0}$
Posición de la columna de bloqueo i: $\chi_i = \frac{x_i}{L_e}$	$L_e = L_{aire1,0}$
Desnivel de la columna de llenado: $\Delta \zeta = \frac{\Delta z}{H_e^*}$	$H_e^* = \frac{p^*_e}{\gamma} = H_D + H_{atm}^* + H_B(Q = 0)$
Desnivel de la columna de bloqueo i: $\Delta \zeta_i = \frac{\Delta z_{b,i}}{H_v^*} \ .$	$H_e^* = \frac{p^*_e}{\gamma} = H_D + H_{atm}^* + H_B(Q = 0)$
Volumen de la bolsa de aire i:	$\forall_e = \forall_{1,0} = (x_{1,0} - L_0) \cdot A$

$arphi_{_{I}}=rac{orall_{_{I}}}{orall_{_{E}}}=rac{L_{aire,i}}{L_{e}}$	$L_e = L_{aire1,0}$	
Tiempo: $\tau = \frac{t}{T_e}$	$T_e = \frac{L_e}{v_e} = \frac{L_{airel,0}}{\sqrt{2g(H_e^* - H_{atm}^*)}}$	

Se van a presentar en primer lugar las ecuaciones adimensionales para la situación en la que se tiene una única bolsa de aire atrapado entre dos columnas de agua. y en seguida se generalizará para una instalación con n bolsas de aire atrapado.

a) Ecuaciones adimensionales para el caso de una bolsa de aire atrapado

En el supuesto de que la instalación tenga únicamente una bolsa de aire, el sistema de ecuaciones que modela el comportamiento de dicha instalación se reduce a un total de cinco ecuaciones (ecuaciones 4.17 a 4.21), cuya resolución nos permite determinar la velocidad de la columna de llenado (v), la posición de la columna de llenado (L), la velocidad de la columna de bloqueo (v_I) , la posición de la columna de bloqueo (x_I) , y la presión de la bolsa de aire (p_I^*) .

Utilizando las variables adimensionales ya referidas, adimensionalizando cada una de las cinco ecuaciones para el caso de una bolsa de aire atrapado, resulta:

Movimiento de la columna de llenado:

$$\frac{h^* - h_1^*}{l} = \frac{v_e^2}{gH_e^*} \frac{dv}{d\tau} + \frac{\Delta \zeta}{l} + \frac{fv_e^2 L_e}{2gDH_e^*} v^2$$
 (5.6)

Posición de la columna de llenado:

$$\frac{dl}{d\tau} = v \to l = l_0 + \int v d\tau \tag{5.7}$$

Movimiento de la columna de bloqueo:

$$h_1^* - h_{atm}^* = \frac{v_e^2}{gH_e^*} \frac{L_{b,1}}{L_e} \frac{dv_1}{d\tau} + \Delta \zeta_1 + \frac{fv_e^2 L_e}{2gDH_e^*} \frac{L_{b,1}}{L^e} v_1^2$$
 (5.8)

Evolución de la bolsa de aire:

$$h_1^* \cdot (\chi_1 - 1)^n = \frac{H_{alm}^*}{H_a^*} \tag{5.9}$$

$$y h_1^* \varphi_1^n = \frac{H_{atm}^*}{H_a^*} (5.10)$$

Posición de la columna de bloqueo:

$$\frac{d\chi_1}{d\tau} = \nu_1 \to \chi_1 = \chi_{1,0} + \int \nu_1 d\tau \tag{5.11}$$

Si se expresa la ecuación de la posición de bloqueo en función del volumen de aire, queda:

$$\frac{d\varphi_1}{d\tau} = v_1 - v \tag{5.12}$$

b) Ecuaciones adimensionales para el caso de n bolsas de aire atrapado

Para la situación más general (Figura 5.1), el sistema de ecuaciones que modela el comportamiento del sistema es el definido por las ecuaciones (4.1) a (4.5). Se trata de un sistema de 2+3n ecuaciones cuya resolución nos permite determinar la

velocidad de la columna de llenado (v), la posición de la columna de llenado (L), la velocidad de la columna de bloqueo i $(v_i$, con i=1,2,...,n), la posición de la columna de bloqueo i $(x_i$, con i=1,2,...,n), y la presión de la bolsa de aire i $(p_i^*$, con i=1,2,...,n). A continuación se muestran las ecuaciones adimensionalizadas del sistema de 2+3n ecuaciones.

Movimiento de la columna de llenado:

$$\frac{h^* - h_1^*}{l} = \frac{v_e^2}{gH_e^*} \frac{dv}{d\tau} + \frac{\Delta \zeta}{l} + \frac{fv_e^2 L_e}{2gDH_e^*} v^2$$
 (5.13)

Posición de la columna de llenado:

$$\frac{dl}{d\tau} = v \to l = l_0 + \int v d\tau \tag{5.14}$$

Movimiento de la columna de bloqueo i (i =1,2,...,n):

$$h_1^* - h_{i+1}^* = \frac{v_e^2}{gH_e^*} \frac{L_{b,i}}{L_e} \frac{dv_i}{d\tau} + \Delta \zeta_i + \frac{fv_e^2 L_e}{2gDH_e^*} \frac{L_{b,i}}{L^e} v_i^2$$
 (5.15)

Evolución de la bolsa de aire i (i =1,2,...,n):

$$h_{i}^{*} \cdot \left(\chi_{i} - \chi_{i-1} - l_{i-1}1\right)^{n} = \frac{H_{atm}^{*}}{H_{e}^{*}} \cdot \left(\frac{\chi_{i,0} - \chi_{i-1,0} - L_{b,i-1}}{L_{e}}\right)^{n}$$
 (5.16)

$$Y h_1^* \varphi_1^n = \frac{H_{alm}^* \cdot \forall_{i,0}^n}{H_e^* \cdot \forall_e^n} (5.17)$$

Posición de la columna de bloqueo i (i =1,2,...,n):

$$\frac{d\chi_i}{d\tau} = v_i \to \chi_i = \chi_{i,0} + \int_0^t v_i d\tau \tag{5.18}$$

Si se expresa la ecuación de la posición de bloqueo en función del volumen de aire, queda:

$$\frac{d\varphi_i}{d\tau} = v_i - v_{i-1} \tag{5.19}$$

c) Parámetros adimensionales

A partir de las ecuaciones anteriores se definen los siguientes parámetros adimensionales:

 Parámetro de escala de inercia (relación entre las fuerzas de inercia y las fuerzas motrices)

$$\Pi_{i} = \frac{v_{e}^{2}}{gH_{e}^{*}} = 2\left(1 - \frac{H_{alm}^{*}}{H_{e}^{*}}\right) = 2 - \frac{2}{\Pi_{m}}$$
(5.20)

Cuyo valor tiende a 2 para fuentes de energía poderosas ($(H_e^* >> H_{atm}^*)$). El parámetro motriz Π_m viene definido por (5.29.a).

 Parámetro de escala de fricción (relación entre las fuerzas de fricción y las fuerzas motrices)

$$\Pi_{f} = \frac{f v_{e}^{2} L_{e}}{2gDH_{e}^{*}} = \frac{f L_{e}}{D} \left(1 - \frac{1}{\Pi_{m}} \right)$$
 (5.21)

Cuyo valor tiende al parámetro de Martín fL_e/D (ref.7), si $H_e^*>>H_{atm}^*$, es decir, cuando el parámetro motriz Π_m es grande.

Parámetros característicos de las columnas de agua

a) Columna de bloqueo i:
$$\beta_i = \frac{L_{b,i}}{L_e}$$
 (5.22.a)

b) Columna de Ilenado:
$$\beta = \frac{L}{L_e}$$
 (5.22.b)

c) Columna de llenado inicial:
$$\beta_0 = \frac{L_0}{L_c}$$
 (5.22.c)

Donde hay que resaltar que β es variable en el tiempo (L es variable) por lo que, en sentido estricto, no es un parámetro. Por tanto, en modo alguno puede incluirse en las gráficas que se presentarán más adelante y constituyen la primera simplificación del problema.

La combinación de los parámetros de las columnas de agua con los parámetros de escala de fricción e inercia, Π_f y Π_b dan lugar a la fricción e inercia total de las columnas de bloqueo.

$$\Pi_{f,i} = \Pi_f \cdot \beta_i \tag{5.23.a}$$

$$\Pi_{i,i} = \Pi_i \cdot \beta_i \tag{5.23.b}$$

Los términos gravitatorios de (5.13) y (5.15) son, respectivamente, $\Delta \zeta$ y $\Delta \zeta$ i, representan la diferencia de cotas entre las interfases de una columna de agua, referidas a la escala de alturas

$$\Delta \zeta = \frac{\Delta z}{H_e^*} \tag{5.24.a}$$

$$\Delta \zeta_i = \frac{\Delta z_{b,i}}{H_e^*} \tag{5.24.b}$$

Estas variables no constituyen nuevas incógnitas por cuanto, conocido el perfil, se determinan a partir de x_i . Están, íntimamente unidas al trazado de la conducción y, si estuviera horizontal, no existirían. Dichas variables controlan la semejanza geométrica que es la primera exigencia de todo análisis dimensional. Entonces se definen los parámetros de perfil de la conducción, para un determinado tramo p, de acuerdo con:

Parámetros de perfil de la conducción

$$\delta_p = \frac{L_p sen\theta_p}{H_*^*} \tag{5.25}$$

la cual viene a exigir una semejanza geométrica parcial del tramo más influyente del problema en estudio.

Finalmente, se define el parámetro α_i que relaciona las longitudes significativas de las diferentes bolsas de aire:

Parámetros característicos de las bolsas de aire

$$\alpha_i = \frac{L_{b,i}}{L_{airei,0}} \tag{5.26}$$

la cual viene a relacionar la magnitud del bloqueo de la bolsa frente a su capacidad de almacenamiento de energía.

Analizadas las ecuaciones adimensionales definidas anteriormente, conviene referirse a las condiciones iniciales y de contorno, que son:

Condiciones iniciales (t=0)

a) Columna de llenado:

$$v(0) = 0$$
 , $l(0) = \frac{L_0}{L_e} = \beta_0$ (5.27.a)

b) Columna de bloqueo i / bolsa de aire i:

$$v_i(0) = 0$$
 , $h_i^*(0) = \frac{H_i^*(0)}{H_e^*} = \frac{H_{i,0}^*}{H_e^*} = \frac{H_{atm}^*}{H_e^*}$, $\varphi_i(0) = \frac{\forall_i(0)}{\forall_e} = \frac{\forall_{i,0}}{\forall_e}$ (5.27.b)

Condiciones de contorno

a) En
$$x=0$$

$$h_1^*(0) = \frac{H_D + H_B^* + H_B(Q)}{H_e^*}$$
 (5.28.a)

b) En
$$x = x_n + L_{b,n}$$
 $h_{n+1}^* = h_{atm}^*$ (5.28.b)

Las características del contorno que contemplan la fuente de energía origen del movimiento, transmiten su influencia al sistema a partir de (5.28.a), e influyen de manera definitiva en los picos de presión rápidos, perdiendo su protagonismo, en beneficio de los efectos gravitatorios, en los picos lentos. Dos parámetros definen bien sus características:

Parámetro motriz de contorno

$$\Pi_m = \frac{H_e^*}{H_{adm}^*} \tag{5.29.a}$$

 Parámetro de forma del contorno, μ el cual tiene en cuenta la pendiente de la relación H-Q propia de la fuente de energía. En el caso de una bomba, H_B = A_B - C_B · Q², el parámetro μ se define como

$$\mu = \sqrt{\frac{A_B}{H_{perm}}} = \sqrt{\frac{C_B - Q_{perm}^2}{H_{perm}} + 1} \frac{C_B - Q_{perm}^2}{C_B \cdot Q_{perm}^2}$$

$$(5.29.b)$$

Siendo, H_B la altura de la bomba; A_B , C_B las constantes de la curva característica de la bomba; H_{perm} y Q_{perm} son la altura y caudal de la fuente en régimen permanente. Si ésta es un depósito, C_B =0 resultando $\mu = \infty$.

Haciendo uso de todos estos parámetros adimensionales, el sistema de ecuaciones con variables adimensionales queda de la siguiente forma:

Para una bolsa de aire atrapado

- Columna de llenado (2 ecuaciones)
 - Ecuación del modelo rígido para la columna de llenado

$$h^* - h_1^* = \left(\prod_i \beta\right) \frac{dv}{d\tau} + \Delta \zeta + \left(\prod_f \beta\right) v^2 \tag{5.30}$$

2. Posición de la interfase agua-aire para la columna de llenado

$$\frac{dl}{d\tau} = v \to l = \beta_0 + \int v d\tau \tag{5.31}$$

- Columna de bloqueo / bolsa de aire (3 ecuaciones)
 - 3. Ecuación del modelo rígido para la columna de bloqueo

$$h^* - h_{atm}^* = (\prod_i \beta_1) \frac{dv_1}{d\tau} + \Delta \zeta_1 + (\prod_f \beta_1) v_1^2$$
 (5.32)

4. Bolsa de aire atrapado

$$h_1^* \varphi_1^n = \frac{1}{\prod_m} \tag{5.33}$$

5. Posición de la interfase agua-aire para la columna de bloqueo

$$\frac{\varphi_1}{d\tau} = v_1 - v \tag{5.34}$$

La resolución de este sistema de ecuaciones determina las dos variables l y v de la columna de llenado, otras dos por la bolsa de aire φ_i y h_i^* , y una quinta, v_i , que proporciona la velocidad de la columna de aguas debajo de la bolsa. Todas ellas están expresadas adimensionalmente y referidas a las magnitudes de escala definidas anteriormente.

Para n bolsas de aire atrapado

- Columna de llenado (2 ecuaciones)
 - 1. Ecuación del modelo rígido para la columna de llenado

$$h^* - h_1^* = \left(\prod_i \beta\right) \frac{dv}{d\tau} + \Delta \zeta + \left(\prod_f \beta\right) v^2 \tag{5.35}$$

2. Posición de la interfase agua-aire para la columna de llenado

$$\frac{dl}{d\tau} = v \to l = \beta_0 + \int v d\tau \tag{5.36}$$

- Columna de bloqueo / bolsa de aire (3n ecuaciones)
 - 3. Ecuación del modelo rígido para la columna de bloqueo i (i =1,2,...,n)

$$h_{i}^{*} - h_{i+1}^{*} = \left(\prod_{i} \beta_{i}\right) \frac{dv_{i}}{d\tau} + \Delta \zeta_{i} + \left(\prod_{f} \beta_{i}\right) v_{i}^{2}$$
(5.37)

Donde, para la última columna de bloqueo (i=n), se debe sustituir $h_{n+1}^*=h_{aim}^*$.

4. Bolsa de aire atrapado i (i = 1, 2, ..., n)

$$h_1^* \varphi_1^n = \frac{1}{\prod_m} \left(\frac{\beta_i}{\alpha_i} \right)^n \tag{5.38}$$

Posición de la interfase agua-aire para la columna de bloqueo i (i =1,2,...,n)

$$\frac{\varphi_i}{d\tau} = \nu_i - \nu_{i-1} \tag{5.39}$$

siendo $v_0 = v$ para la primera bolsa de aire atrapado (i=1).

Se tiene así un sistema de 2+3n ecuaciones adimensionales, cuya resolución permite calcular las dos variables l y v de la columna de llenado, otras dos por cada bolsa de aire φ_i y h_i^* (i = 1,2,...,n), y otra por cada columna de bloqueo, v_i (i = 1,2,...,n). Todas ellas están expresadas adimensionalmente y referidas a las magnitudes de escala que se han definido anteriormente.

5.2.2 Clasificación de los picos de presión y parámetros que los caracterizan

El conjunto de ecuaciones (5.35) a (5.39), junto con las condiciones iniciales (5.27) y condiciones de contorno (5.28), sin olvidarnos del resto de datos de entre los cuales, a los efectos que se ocupan, el más relevante es el perfil irregular bien definido a partir de los parámetros (5.25), define el problema.

Como quiera que las variables están expresadas en forma adimensional, si los parámetros que constituyen los coeficientes se mantienen, los resultados obtenidos son universales. Existe, sin embargo, el problema de las variables gravitatorias $\Delta \zeta$, las cuales son imposibles de mantener en estudio paramétrico, por cuanto ello supondría recurrir a perfiles y situaciones semejantes, lo que quitaría todo el atractivo del problema en los términos que aquí se plantea. Con todo, su comportamiento en los casos extremos que se consideran está perfectamente definido. No constituyendo, pues, un obstáculo, es estos casos, para encontrar posibles soluciones

En total, con la semejanza geométrica del perfil de la tubería simplificada, se tienen tres parámetros de contorno (Π_m, μ, δ_p) , dos parámetros del sistema (β_0, y, n) junto con otros tres parámetros característicos por cada bolsa de aire hasta alcanzar la que es objeto de estudio $(\Pi_{i,b}, \Pi_{f,i}, y, \alpha_i)$. Es decir, si estudiamos la primera tenemos ocho parámetros, once si se trata de la segunda, etc.

Sin embargo, la resolución del modelo completo evidencia con claridad que son muchos menos los que, de manera significativa, contribuyen al valor final del pico estudiado. A tal efecto, el criterio fundamental es la rapidez del transitorio que lo genera por lo que parece necesario agruparlos en dos bloques, picos de presión muy rápidos y picos de presión lentos. A continuación se explican cada uno de ellos.

a) Picos de presión muy rápidos

Sólo son posibles en la primera bolsa de aire (i=1), son generados por transitorios de escasa duración y requieren fuentes de energía importantes ($\Pi_m \ge 5$) que, actuando bruscamente, por la apertura instantánea de la válvula (Figura 5.1), debe vencer inercias iniciales pequeñas ($\beta_0 \to 0$). Todo ello hace que los efectos gravitatorios sean irrelevantes, lo que deja sin contribución al parámetro δ_p . Por

tanto, de los ocho parámetros teóricamente contribuyentes al pico quedan tan solo cinco: $\beta_0, n, \beta_1 = \alpha_1, \prod_m y\mu$.

Si se considera que la columna de llenado inicialmente tiene una longitud muy corta, entonces se verifica $\beta_0 \cong 0$ (siendo ésta la situación más desfavorable). En este caso, los parámetros más significativos que influyen en el valor máximo H_{max}^* de la presión que deberá soportar la instalación son:

$$\frac{H_{\max}^*}{H_e^*} = F(\Pi_m, \beta_1, \mu, n)$$
 (5.40)

b) Picos de presión lentos

Son los que se generan tras la compresión de una bolsa de aire en un tiempo del orden de minutos. Son propios de bolsas alejadas de la fuente de energía ($i \ge 2$), aunque pueden producirse también en la primera bolsa de aire si el parámetro Π_m es pequeño ($\Pi_m \le 1.5$) y/o β_0 grande (importante inercia inicial). Al ser Π_m tan discreto pierde totalmente su protagonismo en beneficio de δ_p .

La solución completa del problema muestra que los picos máximos se alcanzan en el instante en que la columna de aguas arriba a la bolsa de aire considerada alcanza, tras haber descendido a través del tramo p, el mínimo relativo. En este caso, el parámetro motriz relevante es el impuesto por el perfil, δ_p , en detrimento de Π_m y μ aunque, en determinados casos, su contribución no es del todo despreciable. Ésta y posteriores simplificaciones van a suponer que el cálculo aproximado de estos picos de presión tenga una precisión inferior de los picos rápidos.

Entonces los parámetros más significativos que influyen en el valor máximo $H_{max,i}^{*}$ de los picos de presión lentos son

$$\frac{H_{\max,i}^*}{H_o^*} = F(\alpha_i, \delta_p, n)$$
 (5.41)

5.2.3 Análisis paramétrico de los picos de presión

Una vez conocidos los parámetros que caracterizan cada tipo de pico de presión, la elaboración de unas gráficas que permiten su rápido cálculo es inmediata a partir de la resolución del modelo completo cuantas veces sea necesario.

Las graficas que a continuación se presentan, se han obtenido para un índice politrópico (n=1.2). Asimismo, debe indicarse que todas las gráficas presentan idéntica variable, la relación H_{max}^{*}/H_e^{*}, valor a partir del cual resulta inmediato determinar la presión máxima.

a) Gráficas para la determinación de picos rápidos

Fijado en el índice politrópico (n=1.2 para las gráficas aquí presentadas) y supuesto que $\beta_0 \cong 0$ (lo que indica una columna de llenado inicialmente de corta longitud, es decir, con escasa inercia), quedan tres parámetros significativos $\beta_1 = \alpha_1, \Pi_m y \mu$.

La Figura 5.2 presenta cuatro gráficas adimensionales correspondientes a diversos valores del parámetro motriz $\Pi_m = 5,10,20 \text{ y } 30 \text{ para valores de } \alpha_l$ dentro del intervalo 0-48 y factores de forma $\mu = 2,5,10,15,20 \text{ e} \infty$.

b) Gráficas para la determinación de picos lentos

Supuesto un coeficiente politrópico (n=1.2), y de acuerdo con lo visto en el apartado 5.2.1, se trata de establecer una relación entre α_1 y H_{max}^*/H_e^* para diferentes valores del parámetro δ_p .

La Figura 5.3 presenta la gráfica adimensional correspondiente para determinar el pico de presión H_{max}^*/H_e^* para valores de α_l dentro del intervalo 0-16 y parámetros del perfil δ_p = 0.2, 0.5, 1, 1.5, 2, 3 y 5.

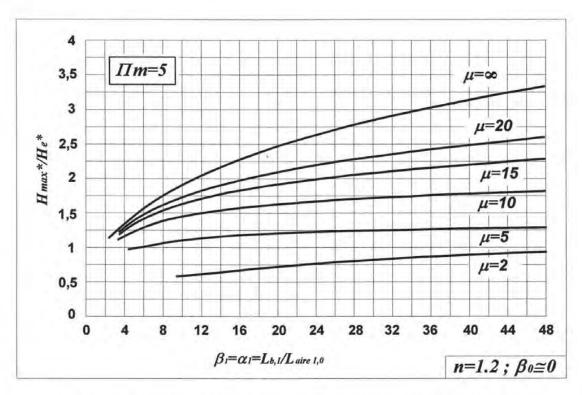


Figura 5.2a. Gráfica correspondiente a picos rápidos ($\Pi_m = 5$).

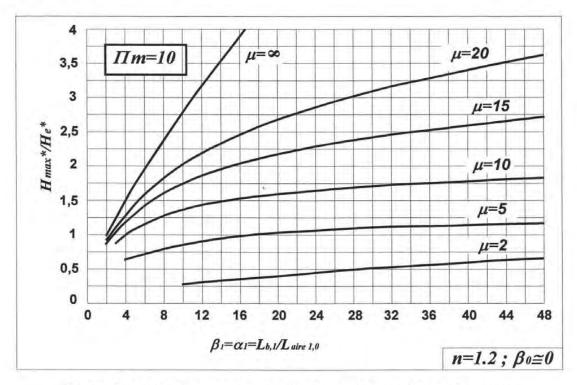


Figura 5.2b. Gráfica correspondiente a picos rápidos ($\Pi_m = 10$).

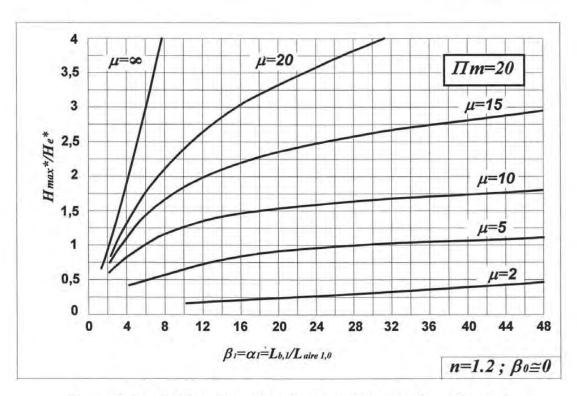


Figura 5.2c. Gráfica correspondiente a picos rápidos ($\Pi_m = 20$).

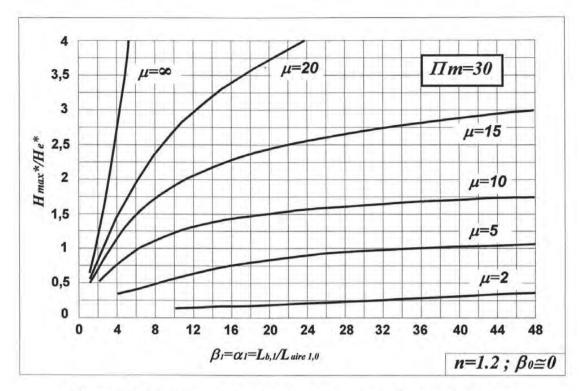


Figura 5.2d. Gráfica correspondiente a picos rápidos ($\Pi_m = 3\theta$).

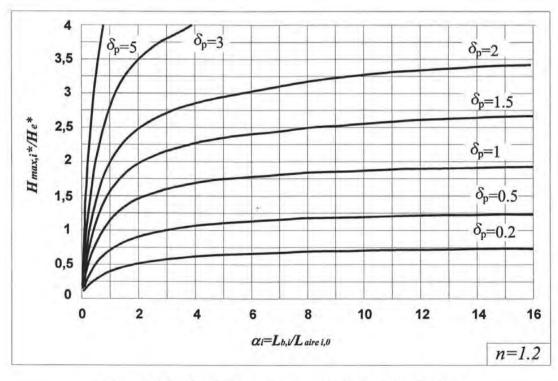


Figura 5.3. Gráfica correspondiente a picos lentos.

5.2.4 Frontera entre picos rápidos y lentos

Se han analizado una serie de casos con el objeto de determinar el tamaño de la bolsa de aire (β_l) que marca la frontera entre el pico rápido y el pico lento, y el cual depende, como ya se ha comentado, de los parámetros motrices Π_m y μ , del parámetro del perfil δ_p , así como también del índice politrópico n.

En la tabla 5.2 se muestran los resultados obtenidos para un coeficiente politrópico n = 1.2 y valores del parámetro del perfil: $0.15 < \delta_p < 1.5$.

	$\Pi_{\rm m} = 30$	$\Pi_{\rm m}$ = 20	$\Pi_{\rm m} = 10$	$\Pi_{\rm m} = 5$	$\Pi_{\rm m} = 4$
μ = ∞	0.64	1.2	3.2	15	39
μ = 20	1.1	1.8	4.3	27	77
μ = 15	1.6	2:2	5.4	45	120
μ = 10	3.0	4.0	11.6	154	300
μ = 5	11.7	16.9	370	1000	2000
$\mu = 2$	60	75	1900	7500	

Tabla 5.2. Frontera entre picos rápidos y lentos

Por ejemplo, supongamos que se trata de una instalación donde el parámetro motriz tiene un valor $\varPi_m=10$ y el parámetro de forma $\mu=20$. Según la tabla anterior, la frontera que marca la mayor importancia de los picos rápidos o picos lentos se produce para un valor de $\beta_1=L_{b,1}/L_{aire1,0}>4.3$, el pico rápido será superior al pico lento. Pero si el tamaño de la bolsa de aire es <u>relativamente</u> grande de forma $\beta_1=L_{b,1}/L_{aire1,0}<4.3$, entonces será el pico lento superior al pico rápido.

Supuesto un coeficiente politrópico (n = 1.2 en las gráficas aquí presentadas), se ha representado gráficamente la pareja de valores β_I y Π_m para diferentes valores del parámetro μ donde el pico rápido coincide con el pico lento. Es decir, por

encima de las curvas representadas el valor del pico rápido es superior al pico lento, mientras que por debajo de dichas curvas sucede lo contrario. La Figura 5.4 presenta la gráfica correspondiente para valores de β_l dentro del intervalo 0-100, mientras que la Figura 5.5 puede verse un detalle de la misma gráfica con valores de β_l ahora dentro del intervalo 0-24.

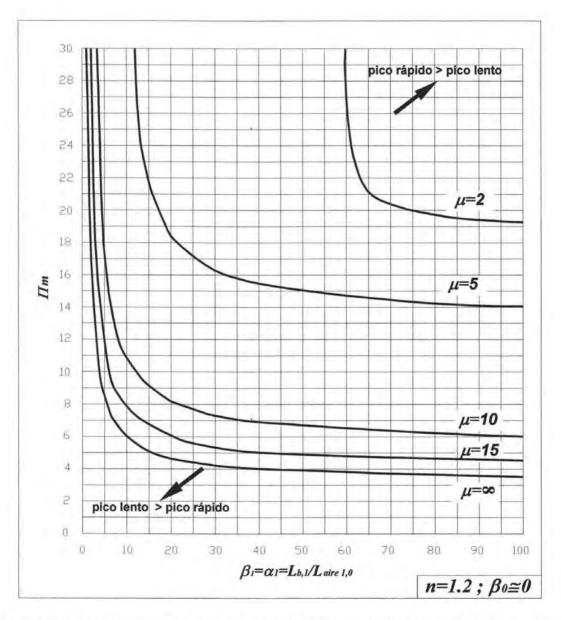


Figura 5.4. Frontera entre picos rápidos y lentos (por encima de la curva: pico rápido > pico lento; por debajo de la curva: pico lento > pico rápido).

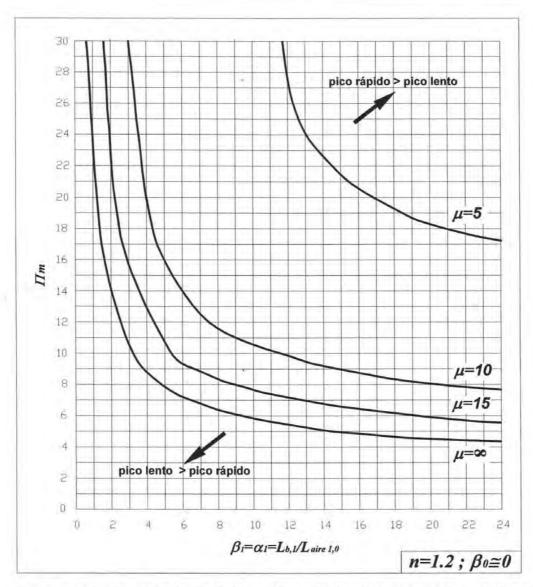


Figura 5.5. Frontera entre picos rápidos y lentos (detalle) (por encima de la curva: pico rápido > pico lento; por debajo de la curva: pico lento > pico rápido).

5.3 Sobrepresión durante el llenado de acueductos utilizando las graficas de Martín

Martín (1976) propone unas graficas adimensionales que permiten determinar la máxima sobrepresión que se alcanzará durante el llenado de una conducción, como consecuencia de la compresión dinámica, durante la fase de llenado, de aire atrapado en la conducción por deficiente capacidad de evacuación.

En su trabajo se estudian los picos de presión que se alcanzan en una conducción como consecuencia del aire atrapado pero sin considerar el movimiento de la columna de bloqueo, es decir, estudia la conducción como si la bolsa de aire estuviera completamente taponada y sin posibilidad de evacuar el aire almacenado en su interior.

A continuación se presentan las gráficas de Martín para la situación más desfavorable (tubería taponada) y también considerando una tubería con un orifico a la salida de la misma.

5.3.1 Gráficas adimensionales

En la Figura 5.6 se presenta un esquema elemental de una instalación donde ocurre el fenómeno referido. Se trata de una tubería alimentada desde un depósito y que posee un orificio de diámetro D_0 en su extremo, donde D es el diámetro, L es la longitud y f el factor de cortante (Darcy-Weisbach) de la tubería, V_o el volumen del aire atrapado, H_d la diferencia de cotas entre la superficie libre del líquido en la bolsa de aire atrapado y la superficie libre del depósito de alimentación, H_0 la presión manométrica (en m.c.a.) a la que esta sometida inicialmente la bolsa de aire, y H_{max} la presión manométrica (en m.c.a) máxima a la que llega la bolsa de aire en su evolución. Se designarán como H_d^*, H_0^*, H_{max}^* las correspondientes cargas absolutas (en m.c.a). La tubería se conecta con el depósito mediante una válvula que se abre instantáneamente al comenzar el llenado.

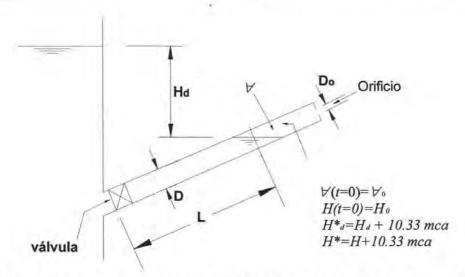


Figura 5.6. Esquema para el estudio de sobrepresiones debidas al aire atrapado.

Las sobrepresiones referidas anteriormente se producen en virtud de que, al abrirse la válvula que comunica el depósito con la tubería, la columna líquida de longitud L se acelera hasta que es decelerada por la compresión de la bolsa de aire o por el choque con el extremo de la tubería, donde se encuentra el orificio. A continuación se presentan las relaciones funcionales entre las variables adimensionales de interés práctico y las expresiones gráficas de las mismas.

a) Tubería con el extremo cerrado ($D_0 = 0$)

$$\frac{H_{\text{max}}^*}{H_d^*} = F_1 \left(\frac{H_d^*}{H_0^*}; f \frac{\forall_0}{D^3}; n \right)$$
 (5.42)

Con $1 < H_d^*/H_0^* < 7$; $f \forall_0/D^3 = 0,0.25,0.5,1,2,3,4$ y coeficiente politrópico n = 1.2.

En la Figura 5.7 se presenta la función (5.42) calculada para los intervalos y valores indicados anteriormente.

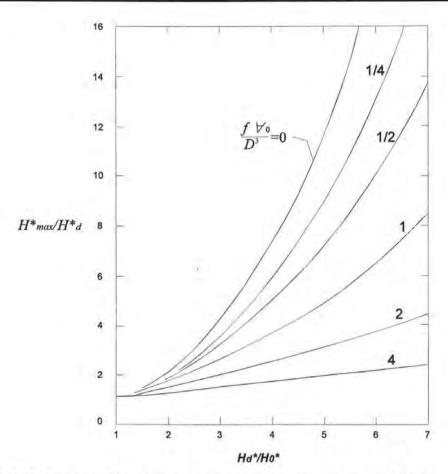


Figura 5.7. Sobrepresión máxima en una tubería con bolsa de aire atrapado y extremo cerrado.

b) Tubería con un orificio en el extremo

$$\frac{H_{\text{max}}^*}{H_d^*} = F_2 \left(\frac{H_d^*}{H_0^*}; f \frac{\forall_0}{D^3}; \frac{D_0}{D} \right)$$
 (5.43)

Con $1 < D_0/D < 0.16$; $H_d^*/H_0^* = 2,3,4$; $f \forall_0/D^3 = 1,2,4$ y coeficiente politrópico n = 1.2.

En la Figura 5.8.a, 5.8.b y 5.8.c, se presenta la función (5.43), calculada para los intervalos y valores indicados anteriormente.

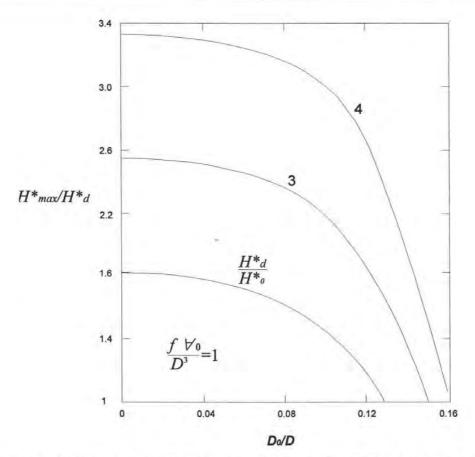
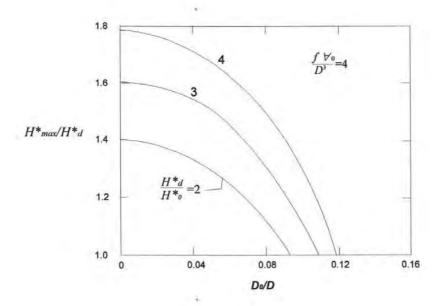



Figura 5.8.a. Sobrepresión máxima en una tubería con bolsa de aire atrapado y orificio de expulsión.

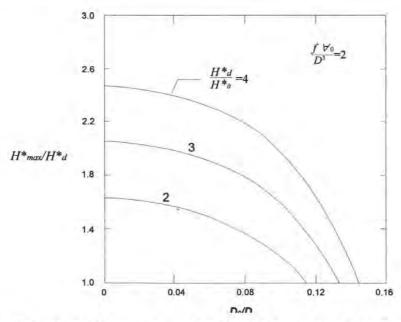


Figura 5.8.c. Sobrepresión máxima en una tubería con bolsa de aire atrapado y orificio de expulsión.

5.4 Ejemplos de aplicación

Se presentan a continuación dos ejemplos, correspondientes a instalaciones reales con perfil irregular. La primera de ellas, Figura 5.9, muestra una conducción por bombeo en la que, tras una prolongada interrupción del servicio, se tienen dos bolsas de aire atrapado. Exactamente lo mismo que ocurre en la instalación de la Figura 5.13, siendo en este caso una conducción por gravedad entre dos depósitos.

Ejemplo 1 (conducción por bombeo con dos bolsas de aire atrapado)

Se va a utilizar el modelo matemático desarrollado por Fuertes et al (1997) en el capítulo anterior y las graficas adimensionales para estudiar una conducción con cuatro tramos de pendiente constante (m=4) y dos bolsas de aire (n=2).

Dicha instalación es alimentada mediante una bomba que aspira de un depósito cuya solera se encuentra a una cota de z = 0 metros y descarga a la atmósfera en

su extremo de aguas abajo con una cota z = 150 m, tal y como se observa en la Figura 5.9. Se trata de una conducción por bombeo con una longitud total L_{total} = 3500 metros, diámetro D = 300 mm y factor de fricción f = 0.016. una vez que se ha establecido el régimen permanente, el caudal es Q_{perm} = 99.4 l/s (con una velocidad v_{perm} = 1.4061 m/s).

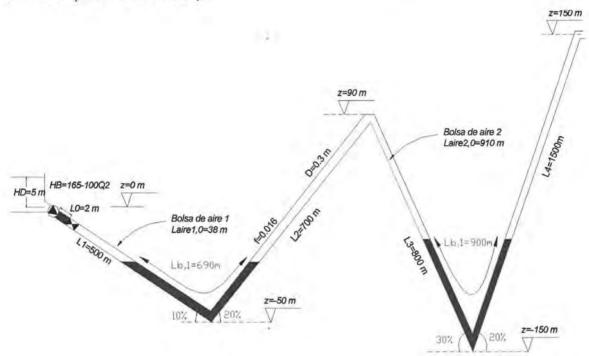


Figura 5.9. Conducción por bombeo con dos bolsas de aire atrapado.

Aplicando el modelo matemático de Fuertes et al, se obtienen a los pocos segundos de iniciado el llenado, los valores máximos de presión y velocidad; en la tabla 5.3 se muestran estos resultados.

Tabla 5.3. Presiones y velocidades máximas (Instalación de la Figura 5.9).

	Valor máximo	Tiempo
Presión bolsa de aire 1	$p_{1,max}^* = 334.59 \mathrm{mca}$	t = 2.58 s
Velocidad columna de llenado	$v_{\rm max} = 16.674 \text{m/s}$	t = 0.10 s
Velocidad columna de bloqueo 1	$v_{\rm max} = 7.749 \text{m/s}$	t = 0.10 s

Ahora se va a estimar la presión máxima que alcanza la primera bolsa de aire a partir de las gráficas adimensionales de Fuertes. La escala de alturas de presión H_e^* es:

$$H_e^* = \frac{p_e^*}{\gamma} = H_D + H_{atm}^* + H_B(Q=0) = 5 + 10.33 + 165 = 180.33 \text{ mca}$$

Y los parámetros adimensionales necesarios para determinar la presión máxima en las gráficas de las Figuras 5.2 son:

Tabla 5.4. Parámetros adimensionales necesarios para la determinación del pico rápido (Instalación de la Figura 5.9)

	Valor		
Parámetro motriz	$\frac{H_e^*}{H_{atm}^*} = \frac{180.33}{10.33} = 17.46$		
Parámetro motriz	$\mu = 12.92$		
Parámetro bolsa de aire 1	$\beta_1 = \alpha_1 = \frac{L_{b,1}}{L_{aire1,0}} = \frac{690}{38} = 18.16$		

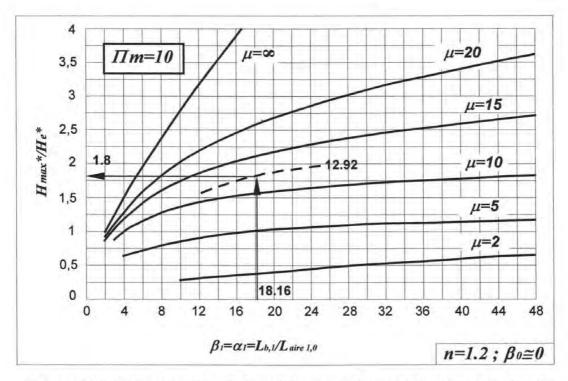


Figura 5.10. Determinación de la máxima presión para la primera bolsa de aire del ejemplo 1 ($\Pi_m = 10$).

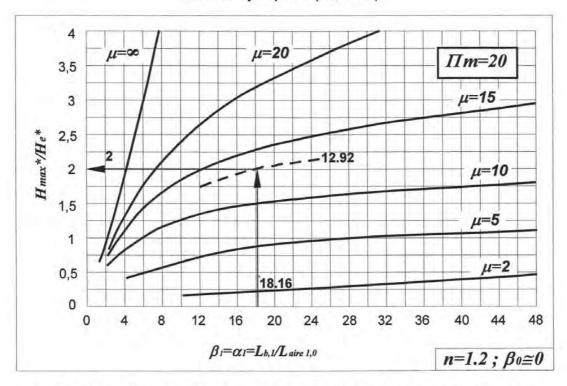


Figura 5.11. Determinación de la máxima presión para la primera bolsa de aire del ejemplo 1 ($\Pi_m = 20$).

Puesto que el parámetro motriz de la instalación es Π_m = 17.46, se va a interpolar entre las gráficas Π_m = 10 (ver Figura 5.10) y Π_m = 20 (ver Figura 4.12), obteniéndose una estimación para el pico de presión

$$\Pi_{m} = 10 \rightarrow \frac{H_{\text{max}}^{*}}{H_{e}^{*}} = 1.8$$

$$\Pi_{m} = 20 \rightarrow \frac{H_{\text{max}}^{*}}{H_{e}^{*}} = 2.0$$

$$\Pi_{m} = 17.46 \rightarrow \frac{H_{\text{max}}^{*}}{H_{e}^{*}} = 1.9 \rightarrow H_{\text{max}}^{*} = 343 \text{ mca}$$

Siendo la presión máxima proporcionada por el modelo $H^*_{mdx,1} = 334.59 \, \text{mca}$ en el instante t = 2.58 s, es decir, el error cometido es de +2.51%. Como se observa, el error que se comete al utilizar las gráficas correspondientes a los picos rápidos es pequeño, puesto que se han obtenido con sólidas simplificaciones.

Ahora, se determina la presión máxima de la segunda bolsa de aire. Por supuesto, se trata de un pico lento y los parámetros adimensionales necesarios para utilizar la gráfica de la Figura 5.3 son:

Tabla 5.5. Parámetros adimensionales necesarios para la determinación del pico lento (Instalación de la Figura 5.9).

	Valor	
Parámetro de perfil	$\delta_p = \frac{L_p sen\theta_p}{H_e^*} = \frac{800 * 0.3}{180.33} = 1.3$	
Parámetro bolsa de aire 2	$\alpha_2 = \frac{L_{b,2}}{L_{aire2,0}} = \frac{900}{910} = 0.99$	

A partir de las gráficas adimensionales se obtiene (ver Figura 5.12)

$$\begin{cases} \delta_p = 1.33 \\ \alpha_2 = 0.99 \end{cases} \rightarrow \frac{H_{\text{max},2}^*}{H_e^*} = 1.4$$

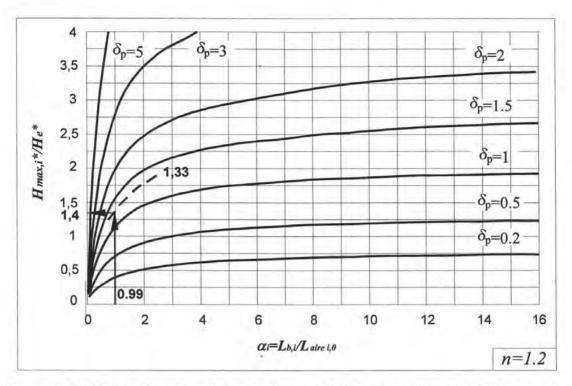


Figura 5.12. Determinación de la máxima presión para la segunda bolsa de aire del ejemplo 1.

Con la relación $H^*_{max,2}/H^*_e$ obtenida puede estimarse la presión máxima que alcanzará la segunda bolsa de aire.

$$\frac{H_{\text{max},2}^*}{H_e^*} = 1.4 \rightarrow H_{\text{maz},2}^* = 252 \,\text{m.c.a.}$$

Puesto que la presión máxima proporcionada por el modelo es $H_{máx,2}^* = 229.75 \,\mathrm{mca}$ en el instante $t = 256.21 \,\mathrm{s}$, el error cometido es de +9.68%. Al utilizar la gráfica correspondiente a los picos lentos los errores que se cometen son mayores porque las simplificaciones que se han tenido que realizar no son tan evidentes.

Ejemplo 2 (conducción por gravedad con una bolsa de aire atrapado)

Se va a analizar ahora una conducción por gravedad pero tan solo una bolsa de aire atrapado en un punto alto de la instalación, tal y como se muestra en la Figura 5.13. La longitud de esta bolsa es L_{aire1.0} = 25 metros.

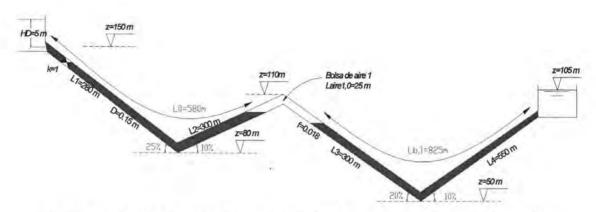


Figura 5.13. Conducción por gravedad con una bolsa de aire atrapado.

Resolviendo las ecuaciones del modelo matemático para esta instalación se obtiene los resultados mostrados en la tabla 5.6.

Tabla 5.6. Presión y velocidad máxima (Instalación de la Figura 5.13).

	Valor máximo	Tiempo
Presión bolsa de aire	$p_{1,m\acute{a}x}^* = 84.38 \mathrm{mca}$	t = 129.08 s
Velocidad columna de llenado	$v_{\text{max}} = 2.936 \text{m/s}$	t = 7.09 s

Se procede a determinar la presión máxima que alcanza la bolsa de aire utilizando las gráficas adimensionales obtenidas anteriormente.

La inercia de la columna de llenado es muy grande puesto que su longitud inicial es muy elevada ($L_0 = 580$ m), con el parámetro β_0 tiene un valor

$$\beta_0 = \frac{L_0}{L_{circl 0}} = \frac{580}{25} = 23.2$$

Además, el parámetro motriz Π_m = 1.48 es relativamente pequeño. En estas condiciones, lo que se tiene un pico lento. Y es precisamente el valor de este pico lento lo que vamos estimar con la gráfica de la Figura 5.3.

Para esta instalación, la escala de alturas de presión H_e^* es

$$H_e^* = 5 + 10.33 + 40 = 55.33$$
 mca

y los parámetros adimensionales necesarios para utilizar la gráfica correspondiente a los picos lentos son:

Tabla 5.7. Parámetros adimensionales necesarios para la determinación del pico lento (Instalación de la Figura 5.13).

	Valor	
Parámetro de perfil	$\delta_p = \frac{L_p sen\theta_p}{H_e^*} = \frac{110 - 50}{55.33} = 1.0$	
Parámetro bolsa de aire 2	$\alpha_1 = \frac{L_{b,1}}{L_{aire1,0}} = \frac{825}{25} = 33$	

Con la gráfica adimensional se obtiene $H^*_{max,l}/H^*_e$

$$\begin{cases} \delta_p = 1.08 \\ \alpha_1 = 33 \end{cases} \rightarrow \frac{H_{\text{max},1}^*}{H_e^*} = 2.1$$

De manera que el pico máximo de presión que alcanza la bolsa de aire puede estimarse fácilmente

$$\frac{H_{\text{max},1}^*}{H_e^*} = 2.1 \rightarrow H_{\text{max},1}^* = 116 \text{ m.c.a}$$

De acuerdo al modelo matemático la presión máxima es de $H^*_{max,l}$ = 84.38 mca, por tanto el error cometido es de +37.47%. otra vez se encuentra un error importante a causa de las simplificaciones ya comentadas que han tenido que realizarse para obtener la gráfica adimensional (se utiliza un único parámetro δ_p para caracterizar el perfil geométrico y se desprecian los efectos de inercia y fricción).

De los dos casos analizados, sólo el segundo, la instalación de la Figura 5.13, es susceptible de ser resuelto con las curvas de Martín (1976), en los casos restantes resulta imposible identificar todas las variables que allí se utilizan. Para la conducción por gravedad con una bolsa de aire atrapado, de acuerdo a la Figura 5.7, los valores de los parámetros de entrada y los resultados que se obtienen con las gráficas de Martín son:

$$\frac{f \forall_{0}}{D^{3}} = \frac{0.018 * 0.4418}{0.15^{3}} = 2.36$$

$$\frac{H_{0}^{*}}{H_{atm}} = \frac{(155 - 110) + 10.33}{10.33} = 5.36$$

$$\rightarrow \frac{H_{\text{ma'x}}^{*}}{H_{0}^{*}} = 3 \rightarrow H_{\text{max}}^{*} = 166 \text{ mca}$$

Según las graficas de Martín, la presión máxima es H^*_{max} = 166 m.c.a., mientras que la presión máxima calculada por el modelo es $H^*_{max,I}$ = 84.38 m.c.a. Es decir, el error cometido es del +96.7%, casi tres veces superior al error cometido con la estimación realizada a partir de las gráficas que aquí se presentan (+37.47%). Como se puede observar, las gráficas de Martín se aumentan notablemente las presiones máximas porque consideran un extremo final cerrado. Si dejamos que la columna de bloqueo se mueva (situación mucho más realista), la presión máxima que se alcanza es mucho menor, tal y como lo hacen las gráficas adimensionales de Fuertes.

CAPITULO 6 LLENADO DE ACUEDUCTOS

6.1 Introducción

Las conducciones de agua deben se llenadas antes de comenzar a trabajar por primera vez y deberán ser vaciadas para realizar reparaciones, luego de ser vaciadas, deberá repetirse la operación de llenado y ello ocurrirá durante toda la vida útil de la conducción.

La operación del llenado se puede realizar considerando un llenado lento o un llenado rápido, éste último implica la evacuación del aire rápidamente y también presenta riesgos en la operación. Por tal motivo, es necesario simular el llenado aplicando uno de los modelos tipo pistón, antes de realizar propiamente el llenado.

Entonces para analizar el llenado, se tienen que determinar algunos datos de inicio para aplicar los modelos, de manera adecuada, en el llenado de un acueducto.

En los siguientes epígrafes se describirán los datos necesarios para aplicar los modelos tipo pistón estudiados (Safwat et al (1986), Liou y Hunt (1996), y Fuertes et al (1997)) para una revisión práctica del llenado de las conducciones.

Seguidamente se determinarán las condiciones iniciales del sistema cuando se tiene el primer llenado, y cuando se hacen llenados de rutina, cuando se tienen vaciados accidentales.

Por ultimo se describen unas medidas de supervisión que se requieren verificar, para realizar un llenado rápido.

6.2 Datos necesarios para aplicar los modelos de llenado

Antes de simular el llenado inicial (modelos de Safwat et al y de Liou y Hunt) de una conducción utilizando un llenado rápido (flujo pistón), o analizar un llenado de rutina (modelo de Fuertes et al) se deben verificar y obtener varios datos, que servirán para hacer un análisis previo a esta actividad. Los datos que se necesitan para analizar un llenado son: la geometría y topografía del acueducto, cargas piezométricas disponibles, localización de accesorios y válvulas de aire.

a) Geometría y topografía del acueducto

Las características de la geometría y topografía del acueducto son datos importantes que deben conocerse para aplicar los modelos. Como se comentó en el primer capítulo el diámetro y la pendiente de la tubería son factores que pueden ser determinantes para tener un flujo pistón.

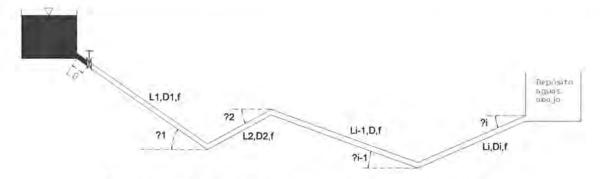


Figura 6.1. Trazo de una conducción con perfil irregular.

En la Figura 6.1 se muestra el perfil irregular de una conducción , la cual conecta a dos depósitos; la figura muestra los datos necesarios que se deben de recabarse. Los datos son los siguientes:

- Longitud de cada uno de los tramos de la tubería (Li)
- Pendiente de todos los tramos de la tubería (θ)
- Diámetro de los conductos de la tubería (D_i)
- Longitud inicial de la columna de la columna de llenado (L₀)

Igualmente se deben considerar el coeficiente de cortante del la tubería (/) y los coeficientes de pérdidas por válvulas (k).

b) Cargas piezométricas disponibles

Se deben conocer las cargas piezométricas en las fronteras aguas arriba y abajo. Conocer el tipo de fuente de alimentación, si se trata de un depósito o un cárcamo de bombeo, etc., el conocimiento de esta carga determina en gran medida la velocidad inicial con que saldrá el agua al llenar la conducción (ver Figura 6.2)

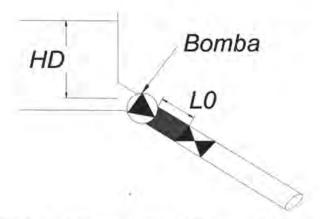


Figura 6.2. Carga piezométrica en la frontera aguas arriba.

c) Localización de accesorios y válvulas de aire

Una conducción generalmente está dotada de algunos accesorios para tener un buen funcionamiento, la localización de estos accesorios depende básicamente del trazo de la conducción. Una conducción con perfil irregular estará provista seguramente de varias válvulas de aire para su protección, en cambio una conducción con perfil uniforme no necesitará tantos elementos para su buen funcionamiento.

Cuando se llena una conducción con un perfil irregular como el mostrado en la Figura (6.1), es muy frecuente la aparición de la ruptura de la columna de agua, ya sea porque el agua se vaporiza (cavitación) o por la presencia de aire en la tubería. Por tanto resulta forzoso dotar a la instalación de medios para conseguir la evacuación de aire. Las válvulas de expulsión o admisión de aire (ventosas) son utilizadas tanto para eliminar el aire en los puntos altos de la conducción en forma de purga permanente, como para la evacuación de grandes cantidades de aire en las operaciones del llenado de las tuberías, o en fin, para introducir el aire atmosférico cuando se generan las depresiones (ver Figura 6.3).

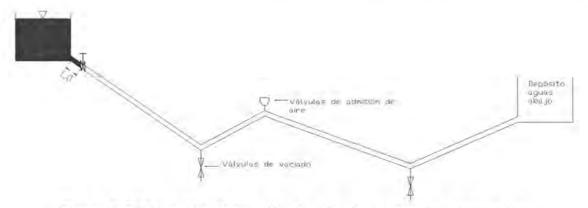


Figura 6.3 Ubicación de las válvulas de aire y algunos accesorios

Para realizar la simulación del llenado inicial del acueducto con los modelos ya descritos, se deberá conocer perfectamente la ubicación de estás válvulas y demás accesorios, tales como, la válvula check, cárcamos de bombeo, cambios de sección transversal, torres de oscilación, depósitos, etc.

6.3 Condiciones iniciales del sistema

6.3.1 Primer llenado del sistema

El llenado inicial se ejecuta una vez que la conducción ha sido construida, para funcionar la obra por primera ocasión. Durante la operación del primer llenado se presenta el período más crítico del conducto, debido al riesgo de falla que presenta la estructura por posibles defectos constructivos.

Para iniciar el llenado de una conducción con flujo pistón, y para que no ocurran fallas en el proceso, se deberán revisar las condiciones iniciales del sistema; estas condiciones se enlistan a continuación.

- Antes de iniciar el llenado la línea deberá estar vacía.
- Revisar si los diámetros y pendientes de la tubería son adecuados para propiciar un flujo rápido.

- La carga piezométrica de la frontera aguas arriba, inspeccionar si se trata de un depósito o una bomba.
- Revisar si la válvula de compuerta a la salida del depósito es automática, para que se pueda abrir repentinamente.
- Localización de válvulas de aire, deben estar abiertas al inicio del llenado.

Dependiendo de las características del sistema se podrá saber si se puede aplicar los modelos tipo pistón para el llenado inicial (Safwat et al y Liou y Hunt). Como se mencionó en el primer capítulo, para realizar el llenado rápido, la válvula a la salida del depósito se debe abrir en forma repentina con un gasto mayor que produzca una velocidad del agua superior a la celeridad del aire C. A medida que se desplaza el frente de agua por el conducto, se irá desacelerando por el esfuerzo cortante que se produce sobre las paredes del conducto y el aire de adentro se moverá con ese mismo gasto. Cuando el agua alcanza alguna salida (conexión con un tanque de oscilación, tanque de entrega, válvula de aire, etc.) hay un cambio del flujo de aire por el del agua en ese punto, debido a las diferencias de densidades de los fluidos, en consecuencia, se genera un cambio súbito de presión que se propaga aguas arriba. Adicionalmente, si la salida del aire está restringida por un orificio muy pequeño, el golpe de ariete producido será de mayor magnitud.

Otro fenómeno que se presenta en el llenado de conducciones con flujo pistón en un perfil con trazos ondulados, son los cambios de velocidad del frente de agua en las cimas y en los valles por el efecto de la gravedad. Las aceleraciones y desaceleraciones del agua provocan continuas sobrepresiones y subpresiones, respectivamente en estos lugares, y en estos casos extremos efectos de cavitación.

Entonces para aplicar los modelos tipo pistón en el llenado de un acueducto, se tendrán que revisar las características del sistema; y dependiendo del tipo de conducción se aplicará los modelos de Safwat et al, ó Liou y Hunt. Si se tiene una

conducción con un perfil uniforme y se requieren conocer los efectos locales provocados por el golpe de ariete en la salida de las válvulas y algún orificio que conecte al depósito de entrega; el modelo de Safwat et al, es suficiente para atrapar esos fenómenos.

Por otro lado si se tiene una conducción con perfil irregular, la aplicación del modelo de Liou y Hunt puede determinar las sobrepresiones y subpresiones que se presentan en los puntos de cambios de pendiente, tal y como se evidenció en el capítulo tres.

6.3.2 Llenados de rutina de la conducción

El llenado de rutina se efectúa durante toda la vida útil del sistema, cuando se requiere poner a operar nuevamente la conducción después de que suceden vaciados accidentales o programados del conducto. La diferencia con el llenado inicial es que en éste toda la línea se encuentra vacía, mientras que en el llenado de rutina algunos tramos pueden tener agua y otros no (Figura 6.4).

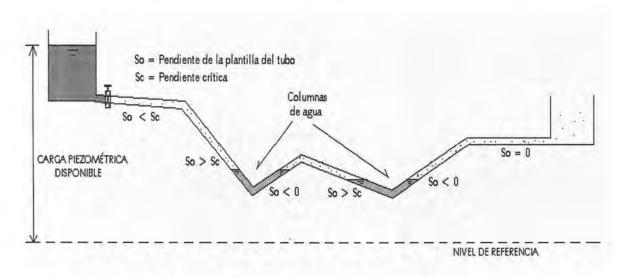


Figura 6.4. Condición inicial antes de realizar un llenado de rutina.

Cuando sucede el paro de un acueducto, ésta deberá mantenerse llena de agua, pero puede vaciarse accidentalmente por algunas partes de la tubería, ya sea por las juntas, acometidas etc. Este vaciado se debe al tiempo que estuvo sin funcionar la instalación, tal y como puede suceder en las conducciones de riego; esto da lugar a presiones manométricas negativas en los puntos altos del perfil del acueducto y, con ello, a la presencia de aire atrapado en su interior.

La presencia de aire en una conducción también puede ocurrir cuando se admite aire por la válvula de admisión producto de una depresión (presión por debajo de la atmosférica). Si al detenerse el flujo líquido en la conducción, ésta queda sometida a la carga de un tanque de entrega, la evolución de la bolsa de aire formada como consecuencia de la depresión generada, sufrirá un proceso de compresión dinámica análogo a lo descrito por Martín (tubería ciega a la salida) en el llenado de la conducción. Como se vio en el capitulo cinco la referida compresión dinámica puede ser la causa de sobrepresiones capaces de afectar estructuralmente el sistema.

Esta situación complica la operación de llenado, puesto que el aire se comprimirá antes de que se puedan mover las columnas de agua y se ocasionarán incrementos de presión importantes en estas zonas si no se tiene un control adecuado de los trabajos (Modelo de Fuertes et al). Además, comúnmente no se puede conocer a priori donde ha quedado el aire atrapado, y mucho menos las características geométricas de las bolsas, antes de iniciar el llenado, por lo que el riesgo de falla se vuelve aún mayor.

Teniendo las condiciones mostradas es muy peligroso llenar rápidamente; como se mencionó, el flujo pistón implica realizar una operación de llenado rápida, por consiguiente el agua actuará contra el aire como un émbolo que se desplaza rápidamente sobre una cámara de aire formada entre dos columnas de agua. Se producirá entonces una compresión cuya magnitud dependerá del volumen de

aire, de la velocidad de desplazamiento del agua y de la carga de presión principalmente.

Por tanto, un acueducto con aire atrapado entre dos columnas de agua, se tendrá que llenar lentamente, para disminuir los efectos de sobrepresión, tal y como sucede cuando se llena con flujos combinados.

6.4 Medidas de supervisión en el llenado de acueductos

Cuando se está llenando rápidamente una conducción, es necesario verificar algunos parámetros que indican que el llenado se está desarrollando en buenas condiciones, es decir, se debe supervisar la operación de llenado para tener buenos resultados, y por tanto se den resultados similares que en la simulación. Para ello se tendrán que verificar las condiciones hidráulicas del sistema, se deben revisar los equipos a utilizar en el llenado, monitorear información de los parámetros físicos y por último reportar una minuta de trabajo del desarrollo del llenado y puesta en operación del llenado.

a) Verificar condiciones hidráulicas iniciales

Para lograr un flujo tipo pistón en el llenado de una conducción, la condición de frontera aguas arriba, en el caso de alimentar mediante una bomba o un depósito, se tendrá que mantener constante, es decir, la bomba deberá trabajar con las condiciones nominales y el depósito siempre tendrá carga constante. Estas condiciones hidráulicas son importantes verificarlas, puesto que la velocidad de llenado puede disminuir hasta valores tales que, pueda ocurrir la intrusión de aire, y por tanto no ocurra un flujo tipo pistón.

b) Revisar equipos a utilizar en el llenado

Se deben revisar los equipos que actúan en el llenado de la conducción cuidadosamente. La válvula de compuerta que se encuentra a la salida del depósito de alimentación deberá calibrarse antes de iniciar el llenado; la apertura de la válvula deberá ser rápida y de forma repentina, si esto no ocurre, el llenado puede no salir en forma de pistón.

Cuando se trate de llenar una conducción por bombeo; el equipo de bombeo a utilizar deberá funcionar perfectamente, se le harán pruebas de simulación antes de iniciar el llenado; puesto que si falla una bomba, el transitorio que se generaría podría ser perjudicial para la instalación.

c) Monitorear información de parámetros físicos

Cuando se esté llenando una conducción, se deben colocar medidores de presión y caudal en puntos estratégicos de la instalación para monitorear como varían esos parámetros, cuando avanza el frente de agua. En la conducción, los medidores de caudal y presión se deben colocar por lo menos, además de la zona de la válvula de compuerta, en las zonas de cambios de pendientes.

Se debe reportar una minuta de trabajo del desarrollo del llenado y la puesta de operación del acueducto. La minuta debe registrar los siguientes datos:

- Tiempo de inicio del llenado de la conducción
- Características de la fuente de alimentación (depósito o bomba).
- Tiempo de apertura completa de la válvula de compuerta.
- Registro de las mediciones de presiones y caudal en diferentes tiempos.

CONCLUSIONES

A continuación se muestran las conclusiones más importantes de la tesis:

Capítulo 1. Flujo tipo pistón

En este capítulo se explica el modelo tipo pistón aplicado al llenado de conducciones, los rangos de aplicabilidad del modelo; se explica de manera cualitativa como sucede el llenado rápido en una conducción, y predice los efectos que ocurrirían si se llenara con este tipo de flujo. Por último se describen los modelos que se han utilizado para analizar el llenado de acueductos con flujo tipo pistón.

La principal conclusión de este capitulo es que el llenado de acueductos con flujo pistón tiene aplicabilidad sólo para ciertas condiciones; el sistema debe tener diámetros pequeños; teniendo en cuenta la velocidad del flujo que depende de la energía en la fuente de alimentación. Que el llenado rápido implica la evacuación del aire completamente, pero se deben tener cuidados por las presiones que puedan generarse.

Capítulo 2. Modelo de Safwat et al (1986)

En este capítulo se presenta el modelo de Safwat et al, que analiza el comportamiento del llenado de conducciones con flujo pistón cuando se tienen secciones vacías; utiliza el método de las características de la teoría elástica para simular los efectos de presión y velocidad producidos por el llenado inicial.

El modelo de Safwat puede predecir los efectos de golpe de ariete generados localmente; se puede modelar el llenado de una conducción utilizando varias condiciones de frontera, tanto internas como externas, ya sean válvulas de aire, bombas, depósitos etc.

La fase inicial del llenado de una conducción se caracteriza por acelerarse de manera muy notable, lo cual experimenta una velocidad muy grande. Cuando la columna de agua va creciendo, la velocidad del agua va disminuyendo debido al incremento de la masa de la columna de agua y del esfuerzo cortante producido por el agua en las paredes de la tubería.

En el ejemplo se muestra como las cargas piezométricas en los nodos analizados van creciendo a medida que avanza la columna de llenado.

Capítulo 3. Modelo de Liou y Hunt (1996)

En este capítulo se presenta el Modelo de Liou y Hunt que analizan el movimiento transitorio generado en el llenado de un acueducto con flujo pistón en un perfil irregular, considerando que la tubería está vacía. Como conclusiones más significativas podemos citar:

 Del análisis realizado se deduce que, cuando la carga del suministro es grande, la pérdida de carga en la entrada es pequeña y la columna de agua

- al inicio es corta, se pueden alcanzar altas velocidades al inicio del llenado en cortos tiempos.
- La pendiente del segmento de la tubería y la resistencia al esfuerzo cortante de la columna de llenado son determinantes en la disminución de la aceleración del agua.
- Cuando se está llenando una conducción con perfil irregular, se demuestra que la columna de agua se acelera y desacelera en los cambios de pendiente.
- Cuando el sistema tiene segmentos y pendientes de tuberías grandes se puede evaluar la separación de la columna de agua utilizando el método de la "línea recta", dibujando una línea recta entre la carga piezométrica de la frontera aguas arriba con el frente de la columna de agua. En el ejemplo se muestra que la carga en un punto alto (estación 4250), la presión llega a -8.358 m.c.a. por lo cual no llega a la presión de vaporización, por tanto no se rompe la continuidad del flujo.

Capítulo 4. Modelo de Fuertes et al (1997)

En este capítulo se presenta un modelo general que analiza el comportamiento de n bolsas de aire atrapado en tuberías de perfil irregular cuando se llena la tubería con flujo pistón. Como conclusiones más significativas podemos citar:

- El análisis del transitorio que se genera en una tubería de perfil irregular con n bolsas de aire atrapado puede realizarse mediante un modelo matemático que se reduce a un sistema de 2+3n ecuaciones diferenciales, cuya resolución nos permite determinar las presiones de las bolsas de aire, las velocidades de las columnas de agua y las posiciones de las interfases aireagua.
- Puesto que la inercia del aire es mucho más pequeña que la del agua, las bolsas de aire se comprimen bruscamente, pudiéndose alcanzar picos e presión muy elevados que pueden ocasionar graves problemas.

- Los primeros instantes del transitorio (donde se produce el máximo pico de presión y también la velocidad máxima de columna de llenado) dependen únicamente de la primera bolsa de aire y primera columna de bloqueo, independientemente de lo que se encuentre aguas abajo.
- Nada más arrancar la instalación del ejemplo mostrado, la columna de llenado se acelera bruscamente, con una velocidad de 8.477 m/s, alcanzándose en 0.35 segundos. Si el depósito de alimentación tuviera mayor carga, la velocidad inicial sería mayor.
- Para el ejemplo analizado, la presión máxima se genera a los 19.22 segundos de arrancar la instalación con una magnitud 31.3528 m.c.a, ésta presión no se alcanza en pocos segundos porque la fuerza motriz no es tan importante como una instalación que tuviera bombas.
- Si la conducción tiene pendientes y longitudes más grandes que en el ejemplo mostrado, habrá más picos de presión en el llenado, pero de menos importancia que el primero.
- Realizar el llenado de acueductos con aire atrapado utilizando un flujo pistón produciría picos de presión muy grandes. Entonces se debe realizar lo más lentamente posible. Cuanto más lento sea el llenado más se reducirán los valores extremos de presión y velocidad.

Capítulo 5. Modelos para el cálculo de presiones máximas

De acuerdo al modelo matemático desarrollado por Fuertes et al, se ha visto que cuando se hace el llenado de una tubería con flujo tipo pistón y hay aire atrapado entre dos columnas de agua, puede ocasionar grandes sobrepresiones que pueden llegar a colapsar la tubería. Entonces estimar las sobrepresiones de forma sencilla presenta un interés notable. Del capítulo 5, se concluye:

 Las gráficas adimensionales obtenidas a partir del modelo de Fuertes et al, para la estimación de las presiones máximas, proporcionan resultados bastante aceptables, siendo más precisas las gráficas correspondientes a los picos rápidos, debido a que éstas se han obtenido realizando sólidas simplificaciones.

- En los ejemplo mostrado (conducción por bombeo), la presión máxima calculada por el modelo de Fuertes et al, proporciona un valor de 334.59 m.c.a., que comparándola con el valor obtenido de las gráficas adimensionales, resulta igual a 343 m.c.a., teniéndose un error del 2.51 %. Para la segunda bolsa de bloqueo, la presión calculada por el modelo es de 229.75 m.c.a., y por las graficas adimensionales es de 252 m.c.a., cometiéndose un error del 9.68 %.
- Las curvas de Martín que estiman la presión máxima, proporcionan resultados muy elevados, puesto que, éstas curvas se obtuvieron considerando un tapón al final de la tubería, que a diferencia de la columna de bloqueo, ésta tiene movimiento. Del ejemplo mostrado en el capítulo correspondiente (ejemplo 2), los valores de las presiones proporcionados por las curvas de Martín, son demasiados altos, casí tres veces superior al obtenido con las gráficas adimensionales de Fuertes.
- Solo el ejemplo de la conducción por gravedad es susceptible a resolver por las curvas de Martin, puesto que, no permite determinar los picos de presión en el caso de conducciones por bombeo por no contemplar la bomba como fuente de energía; además si hubiera más bolsas de aire, resultaría imposible identificar las variables que allí se utilizan.

Capítulo 6. Llenado de acueductos

La operación del llenado ocurrirá durante toda la vida útil de las conducciones, puesto que, primero deben ser llenadas antes de comenzar a trabajar (llenado inicial) o cuando son vaciadas para realizar reparaciones, o en su defecto cuando ocurren vaciados accidentales (llenados de rutina). Considerando realizar un llenado rápido en una conducción, se deben conocer algunas datos para poder aplicar los modelos tipo pistón. Las conclusiones principales que pueden extraerse son las siguientes:

- Para realizar la simulación del llenado inicial en una conducción utilizando el modelo tipo pistón, se requiere algunos datos de inicio; la geometría, los diámetros, cargas piezométricas en las fronteras, etc., éstas son necesarias para la aplicación de los modelos para llenados iniciales (Safwat et al, Liou y Hunt).
- En el caso de tener una conducción con perfil irregular, en la cual se tengan cambios de pendiente, se debe utilizar el modelo de Liou y Hunt, debido a que, puede determinar las sobrepresiones o subpresiones que se puedan generar en esos puntos, cuando está ocurriendo el llenado rápido.
- El modelo de Safwat et al, permite calcular los efectos locales que se pueden presentar en el llenado, por ejemplo el golpe de ariete que se presenta cuando sale el agua a través de un orificio, tal como puede ocurrir en el cierre parcial de la válvula que se encuentra colocada en la salida de la conducción.
- El modelo de Liou y Hunt es más adecuado de utilizar, puesto que está basado en la teoría de la columna rígida, la cual es más sencilla de usar; a diferencia del modelo de Safwat, que emplea la teoría elástica. Además los resultados obtenidos por el modelo de Liou y Hunt están comprobados experimentalmente, por lo cual se tiene una confiabilidad aceptable.
- El modelo de Fuertes et al, es adecuado utilizarlo para predecir las sobrepresiones que se pueden generar cuando se tiene aire atrapado entre dos columnas de agua, el cual ocurre por varias causas; ya sea por un vaciado accidental, por la presencia de cavitación, aire en el interior etc. Si los resultados de la simulación presentan sobrepresiones pequeñas, puede considerarse realizar un llenado rápido.
- Si por el contrario las sobrepresiones superan la resistencia de la tubería,
 el llenado deberá hacerse lentamente.
- La dificultad de aplicar el modelo de Fuertes et al, será conocer las características de las bolsas de aire y las columnas de bloqueo.

 Para realizar el llenado inicial de una conducción con flujo pistón, se debe verificar que cumpla con ciertas condiciones; geometría adecuada, es decir, diámetros pequeños; fuente de alimentación con cargas importantes, éste dato va a depender para que la velocidad de llenado supere a la celeridad del aire. Igualmente, debe verificarse que la apertura de la válvula se realice instantáneamente para poder propiciar el flujo.

REFERENCIAS

- {1} Zukoski, E.E., 1966 "Influence of Viscosity, Surface Tensión and Inclination Angle on Motion of Long Bubbles in Closed Tubes "J. Fluid Mechanics, Vol 25, pp 821-837.
- {2} Safwat, H.H., Arastu A.H., Husaini S.M., 1986 "Generalized Applications of Method of Characteristics for the Analysis of Hidraulic Transient Involving Empty sections" BHRA, 5° <u>Internacional Conference on Pressure Surges</u>, Hannover Germany.
- {3} Liou P. Ch., Hunt A.W., 1996 "Filling of pipelines with Undulating Elevation Profiles" Journal of Hidraulics Engineering, ASCE, October. Pp. 534-539.
- {4} Fuertes V., Izquierdo J., Iglesias P., Cabrera E. Y García-Serra J., 1997 "Llenado de Tuberías con Aire Atrapado" Revista de Ingeniería del Agua, Vol.4, No.3, Septiembre, UPV, España.
- {5} Chaudhry, M.H., Yevjevich, V. (Ed.) (1981), <u>Closed-Conduit flow</u>, Ed. Water Respurces Publications, Littleton, Colorado, USA.
- {6} Fuertes, V.S., (2001), "Transitorios Hidráulicos con Aire Atrapado", <u>Tesis</u> <u>Doctoral.</u>
- {7} Martin, C,S. (1976) "Entrapped air in pipelines", Proceedings of the 2nd International Conference on Pressure Surges, BHRA, Londres, Inglaterra.

- {8} Cabrera M. E., y Abreu J. M., 1994 "Transitorios Hidráulicos con Separación de Columna de Agua" <u>Transitorios y Oscilaciones en Sistemas Hidráulicos a Presión</u>, Editado por Abreu, Guarga e Izquierdo, UPV–UC –UROU, Impreso en Uruguay.
 {9} Wylie B., Streeter V., 1978 "Fluid Transients" McGrraw Hill Inc. USA.
- {10} Richard L. Burden y J. Douglas., 2000 "Problemas de valor inicial para ecuaciones diferenciales ordinarias" <u>Análisis Numérico</u> editado por International Thomson, capitulo 5,, México.
- {11} Fuertes, V.S; Cabrera, E., Izquierdo, J., Iglesias, P.L. (1999), "Peak pressure evaluation in pipelines with entrapped air pockets", Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, USA.
- {12} Cabrera M. E., y Abreu J.M., 1994 "Introducción al Estudio de los Transitorios Hidráulicos" <u>Transitorios y Oscilaciones en Sistemas Hidráulicos a Presión</u>, Editado por Abreu, Guarga e Izquierdo, UPV–UC –UROU, Impreso en Uruguay.
- {13} Graze, H.R., Horlacher, H.B, (1996) "Thermodynamic behavior of the entrapped air in an air chamber", proceedings of the 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, BHRA, Harrogate, Reino Unido, pág. 549-560.
- {14} Fuertes, V.S; Cabrera, E., Izquierdo, J., Iglesias, P.L., García-Serra, J. (1998), "Filling of pipelines with entrapped air", Proceedings of the XIX Symposium on Hydraulic Machinery and Cavitation, IAHR, Singapur, pág. 673-685.

BIBLIOGRAFÍA COMPLEMENTARIA

- {1} Ochoa A. L., 1999 "Remoción de Aire Atrapado" <u>Simulación de Aire Atrapado</u> <u>en Conducciones Hidráulicas a Presión"</u> Editado por el IMTA.
- {2} Tzatchkov, V.G., Guerrero A. O., y Vilchis V.,R., "Conducción" <u>Manual de</u> <u>Diseño de Agua Potable Alcantarillado y Saneamiento</u>, Editado por CNA, Noviembre de 1997;
- {3} Guarga R., 1994 "Llenado, Vaciado y Evolución del Aire Atrapado en una Conducción de Agua a presión" <u>Transitorios y Oscilaciones en Sistemas</u> <u>Hidráulicos a Presión</u>, Editado por Abreu, Guarga e Izquierdo, UPV–UC –UROU, Impreso en Uruguay.
- {4} Cabrera M. E., y Pérez G.R., 1994 "Introducción al Estudio de los Transitorios Hidráulicos" <u>Transitorios y Oscilaciones en Sistemas Hidráulicos a Presión</u>, Editado por Abreu, Guarga e Izquierdo, UPV–UC –UROU, Impreso en Uruguay.

ANEXO I LISTADO Y RESULTADOS DE PROGRAMA DE SAFWAT ET AL (1986)

Para resolver el problema propuesto utilizando el modelo de Safwat et al (1986), se empleó un programa de cómputo escrito en el lenguaje C. A continuación se presenta el código del programa.

LISTADO DE PROGRAMA

```
#include<conio.h>
#include<stdio.h>
#include<iostream.h>
double sqr();
main()
{
```

// DATOS DEL PROBLEMA

double V0, Vp, Hp, Hinter, Hr, Hs, P0, Lt, Dx, Dt, ms, Temp, A, a, R,

```
D, H, Abr, f, K, H0, t0, xs, g, m, m1, Hv, den, t, xs0, vp1, Hp1,
      vp2, Hp2, vp3, Hp3, vp4, Hp4, vp5, Hp5, vp6, Hp6, vp7, Hp7, vp8,
      Hp8, vp9, Hp9, vp10, Hp10;
int j,,j1;
// CONDICIONES INICIALES
V0= 20.74; H0= 25; t0= 0; Hinter= 0; xs= 0; g= 9.81; a= 1000; Dx= 35;
Dt= 0.035; Temp= 293; R= 287.433; D= 0.1524; Abr= 0.03648; ms= 0.01282107;
f= 0.021; K= 0.14, den= 0.124, A= 0.018241512, Lt= 350, P0= 10000; xs0= 0;
clrscr();
gotoxy(1,2);cout<<"t";
gotoxy(8,2);cout<<"VP";
gotoxy(20,2);cout<<"xs";
gotoxy(30,2);cout<<"m";
gotoxy(40,2);cout<<"Hv";
gotoxy(50,2);cout<<"Hinter";
gotoxy(60,2);cout<<"Hp";
gotoxy(1,3);cout<<t0;
gotoxy(8,3);cout<<V0;
gotoxy(20,3);cout<<xs0;
gotoxy(30,3);cout<<"0";
 gotoxy(40,3);cout<<"0";
 gotoxy(50,3);cout<<Hinter;
```

gotoxy(60,3);cout<<H0;

```
j=0;
j1=35;
// CALCULO DE LA VELOCIDAD Y PRESIONES
do{
 t = t0 + Dt;
 Vp = (V0 + ((V0*V0)/a) + ((g/a)*H0) - ((g/a)*Hinter) - (((f*V0*V0)/(2*D))*Dt))
   / (1+(V0/a));
 xs = xs0+(Vp*Dt);
  m= (den*A*(Lt-xs))-ms;
  Hv=(((m*R*Temp)/(A*(Lt-xs)))-P0)/1000;
  Hinter= Hv;
  Hp= 25-((K^*(Vp^*Vp))/(2^*g));
  H0 = Hp;
  V0 = Vp;
  t0 = t;
  xs0 = xs;
  gotoxy(1,4+j);cout<<t;</pre>
  gotoxy(8,4+j);cout<<Vp;
```

```
gotoxy(20,4+j);cout<<xs;
 gotoxy(30,4+j);cout<<m;
 gotoxy(40,4+j);cout << Hv;
 gotoxy(50,4+j);cout<<Hinter:
 gotoxy(60,4+j);cout<<Hp;
 j++;
 if(j==j1){
   cout<<endl<<endl;
   cout<<"Presiona Una Tecla Para Continuar..."<<endl;
   getch();
   clrscr();
   gotoxy(1,2);cout<<"t";
   gotoxy(8,2);cout<<"VP";
   gotoxy(20,2);cout<<"xs";
   gotoxy(30,2);cout<<"m";
   gotoxy(40,2);cout<<"Hv";
   gotoxy(50,2);cout<<"Hinter";
   gotoxy(60,2);cout<<"Hp";
  j=0;
 }
} while ( xs \le Dx );
do{
t = t + Dt:
vp2 = (Vp+((Vp*Vp)/a)+((g/a)*Hp)-((g/a)*Hinter)-(((f*Vp*Vp)/(2*D))*Dt))
  /(1+(Vp/a));
xs=xs+(vp2*Dt);
```

```
m= (den*A*(Lt-xs))-ms;
Hv = (((m*R*Temp)/(A*(Lt-xs)))-P0)/1000;
Hinter= Hv;
Hp2 = (Hinter + (((xs-35)*(vp2-Vp))/(g*0.035)));
vp1 = vp2 + ((g/a) * (25 - ((K * vp2 * vp2) / 19.62) - Hp2)) - ((f * vp2) / (f * vp2) / (f * vp2)) - ((f * vp2) / (f * v
                  * Dt * vp2) / (2*D));
Hp1=25-((K*(vp2*vp2))/(2*g));
Hp1= Hp;
vp2 = Vp;
      gotoxy(1,4+j);cout<<t;
       gotoxy(8,4+j);cout<<vp1;
      gotoxy(20,4+j);cout<<Hp1;
      gotoxy(30,4+j);cout<<vp2;
      gotoxy(40,4+j);cout<<Hp2;
      gotoxy(50,4+j);cout<<xs;
      //gotoxy(60,4+j);cout<<Hp;
      j++;
       if(j==j1){
                cout<<endl<<endl;
                cout<<"Presiona Una Tecla Para Continuar..."<<endl;
```

```
getch();
   clrscr();
   gotoxy(1,2);cout<<"t";
   gotoxy(8,2);cout<<"VP1";
   gotoxy(20,2);cout<<"Hp1";
   gotoxy(30,2);cout<<"Vp2";
   gotoxy(40,2);cout<<"Hp2";
   gotoxy(50,2);cout<<"xs";
   //gotoxy(60,2);cout<<"Hp";
   j=0;
 }
\frac{1}{2} while (xs <= 70);
do{
t = t + Dt;
vp3 = (vp2+((vp2*vp2)/a)+((g/a)*Hp2)-((g/a)*Hinter)-(((f*vp2*vp2)/(2*D))*Dt))
  /(1+(vp2/a));
xs=xs+(vp3*Dt);
m= (den*A*(Lt-xs))-ms;
Hv = (((m*R*Temp)/(A*(Lt-xs)))-P0)/1000;
Hinter= Hv;
```

```
Hp3 = (Hinter + (((xs-70)*(vp3-vp2))/(g*0.035)));
vp2 = ((vp1+vp3)-(((f*Dt)/(2*D))*((vp3*vp3)+(vp1*vp1)))-((g/a)*(vp3-vp1)))/2;
 Hp2 = ((vp1-vp3)-((f^*vp1^*vp1^*Dt)/(2^*D))+((g/a)^*Hp1))^*(a/g);
 vp1 = vp2 + ((g/a) * (25 - ((K * vp2 * vp2) / 19.62) - Hp2)) - ((f * vp2) / (f * vp2) / (f * vp2)) - ((f * vp2) / (f * v
               * Dt * vp2) / (2*D));
 Hp1=25-((K*(vp2*vp2))/(2*g));
      gotoxy(1,4+j);cout<<t;
      gotoxy(8,4+j);cout<<vp2;
      gotoxy(20,4+j);cout<<Hp2;
      gotoxy(30,4+j);cout<<vp2;
      gotoxy(40,4+j);cout<<Hp3;
      gotoxy(50,4+j);cout<<xs;
      //gotoxy(60,4+j);cout<<Hp;
      j++;
      if(j==j1){
              cout<<endl<<endl;
              cout<<"Presiona Una Tecla Para Continuar..."<<endl;
              getch();
              clrscr();
              gotoxy(1,2);cout<<"t";
               gotoxy(8,2);cout<<"VP2";
               gotoxy(20,2);cout<<"Hp2";
               gotoxy(30,2);cout<<"Vp3";
```

```
gotoxy(40,2);cout<<"Hp3";
   gotoxy(50,2);cout<<"xs";
   //gotoxy(60,2);cout<<"Hp";
   j=0;
 }
\mathbf{while}(\mathbf{xs} \leq 105);
do{
t = t + Dt;
vp4 = (vp3+((vp3*vp3)/a)+((g/a)*Hp3)-((g/a)*Hinter)-(((f*vp3*vp3)/(2*D))*Dt))
  / (1+(vp3/a));
xs=xs+(vp4*Dt);
m= (den*A*(Lt-xs))-ms;
Hv=(((m*R*Temp)/(A*(Lt-xs)))-P0)/1000;
Hinter= Hv;
Hp4 = (Hinter + (((xs-105)*(vp4-vp3))/(g*0.035)));
vp3 = ((vp2+vp4)-(((f*Dt)/(2*D))*((vp4*vp4)+(vp2+vp2)))-((g/a)*(vp4-vp2)))/2;
Hp3 = ((vp4-vp2)-((f^*vp2^*vp2^*Dt)/(2^*D))+((g/a)^*Hp2))^*(a/g);
vp2 = ((vp1+vp3)-(((f*Dt)/(2*D))*((vp3*vp3)+(vp1*vp1)))-((g/a)*(vp3-vp1)))/2;
```

```
Hp2 = ((vp1-vp4)-((f^*vp1^*vp1^*Dt)/(2^*D))+((g/a)^*Hp1))^*(a/g);
vp1 = vp2 + ((g/a) * (25 - ((K * vp2 * vp2) / 19.62) - Hp2)) - ((f * vp2) / (f * vp2) / (f * vp2)) - ((f * vp2)) - ((f * vp2) / (f * vp2)) - ((f * vp2) / (f * vp2)) - ((f * vp2)) - ((f * vp2) / (f * vp2)) - ((f * vp2)) - ((f * vp2) / (f * vp2)) - ((f
               * Dt * vp2) / (2*D));
 Hp1=25-((K*(vp4*vp4))/(2*g));
      gotoxy(1,4+j);cout<<t;
      gotoxy(8,4+j);cout<<vp3;
      gotoxy(20,4+j);cout << Hp3;
      gotoxy(30,4+j);cout<<vp4;
      gotoxy(40,4+j);cout<<Hp4;
      gotoxy(50,4+j);cout<<xs;
      j++;
      if(j==j1){
              cout<<endl<<endl;
              cout<<"Presiona Una Tecla Para Continuar..."<<endl;
             getch();
              clrscr();
              gotoxy(1,2);cout<<"t";
              gotoxy(8,2);cout<<"VP3";
               gotoxy(20,2);cout<<"Hp3";
               gotoxy(30,2);cout<<"Vp4";
               gotoxy(40,2);cout<<"Hp4";
               gotoxy(50,2);cout<<"xs";
              j=0;
      }
 }while( xs <= 140);
```

printf("\n\nPresione Una Tecla Para Finalizar");	
getch(); return 0;	

A continuación se muestran algunos de los resultados obtenidos en la solución del problema utilizando el modelo de Safwat et al.

Tabla I.1. Velocidad y presión del primer tramo.

t (s)	V (m/s)	Xs(m)	H1(m)		
0	20.7423305	0.72598	25		
0.035	19.9030831	1.422587907	22.2717		
0.07	19.1167577	2.091674427	22.3921		
0.105	18.7038161	2.746307989	22.5036		
0.14	18.3127423	3.387253968	22.6069		
0.175	17.9420974	4.015227378	22.7027		
0.21	17.5905275	4.630895841	22.7919		
0.245	17.2567658	5.234882643	22.8749		
0.28	16.9396319	5.827769759	22.9523		
0.315	16.6380294	6.41010079	23.0245		
0.35	16.3509415	6.982383742	23.0921		
0.385	16.0774263	7.545093662	23.1554		
0.42	15.816612	8.098675082	23.2147		
0.455	15.5676921	8.643544307	23.2705		
0.49	15.3299203	9.180091516	23.3229		
0.525	15.1026056	9.708682714	23.3723		
0.56	14.8851088	10.22966152	23.4188		
0.595	14.6768373	10.74335083	23.4627		
0.63	14.4772421	11.2500543	23.5043		
0.665	14.2858139	11.75005778	23.5436		
0.7	14.1020799	12.24363058	23.5808		
0.735	13.9256012	12.73102662	23.6161		
0.77	13.7559693	13.21248555	23.6496		
0.805	13.5928043	13.6882337	23.6814		
0.84	13.4357526	14.15848504	23.7117		
0.875	13.2844844	14.623442	23.7405		
0.91	13.2844844	15.08839895	23.7405		
0.945	13.138692	15.54825317	23.7680		
0.98	12.9980883	16.00318626	23.7943		
1.015	12.8624047	16.45337042	23.8193		
1.05	12.7313904	16.89896909	23.8432		

Tabla I.2. Velocidad y presión del tercer tramo.

t (s)	V (m/s)	Xs(m)	H1(m)	H2(m)	H3(m)
7.0350	7.27678382	0.87145389	24.6220	12.4326	0.2994
7.0700	7.25290638	1.12579902	24.6244	12.4772	0.3862
7.1050	7.23252713	1.37935555	24.6265	12.5211	0.4720
7.1400	7.21449349	1.63223007	24.6284	12.5645	0.5570
7.1750	7.19813928	1.88449564	24.6301	12.6075	0.6412
7.2100	7.18304242	2.13620533	24.6316	12.6500	0.7246
7.2450	7.16891785	2.38739933	24.6331	12.6920	0.8073
7.2800	7.15556369	2.63810895	24.6345	12.7337	0.8892
7.3150	7.1428317	2.88835918	24.6357	12.7750	0.9705
7.3500	7.13060984	3.1381703	24.6370	12.8159	1.0510
7.3850	7.11881142	3.387559	24.6382	12.8564	1.1309
7.4200	7.10736815	3.6365392	24.6394	12.8966	1.2101
7.4550	7.09622532	3.88512259	24.6405	12.9364	1.2886
7.4900	7.08533857	4.13331911	24.6416	12.9759	1.3665
7.5250	7.07467149	4.38113724	24.6427	13.0151	1.4438
7.5600	7.06419397	4.62858426	24.6437	13.0539	1.5204
7.5950	7.05388086	4.87566649	24.6448	13.0925	1.5965
7.6300	7.04371103	5.1223894	24.6458	13.1307	1.6719
7.6650	7.03366664	5.36875778	24.6468	13.1686	1.7467
7.7000	7.02373252	5.61477581	24.6478	13.2062	1.8209
7.7350	7.01389577	5.86044721	24.6488	13.2435	1.8946
7.7700	7.00414531	6.10577522	24.6497	13.2806	1.9677
7.8050	6.99447167	6.35076276	24.6507	13.3173	2.0402
7.8400	6.98486667	6.59541242	24.6517	13.3538	2.1122
7.8750	6.9753233	6.8397265	24.6526	13.3899	2.1836
7.9100	6.96583548	7.0837071	24.6536	13.4258	2.2544
7.9450	6.95639798	7.32735609	24.6545	13.4615	2.3247
7.9800	6.94700628	7.57067519	24.6554	13.4968	2.3945
8.0150	6.93765647	7.81366596	24.6564	13.5319	2.4638
8.0500	6.92834516	8.05632982	24.6573	13.5668	2.5326
8.0850	6.91906947	8.29866809	24.6582	13.6013	2.6008
8.1200	6.90982688	8.54068199	24.6591	13.6357	2.6685
8.1550	6.90061525	8.78237267	24.6600	13.6697	2.7358
8.1900	6.89143272	9.02374118	24.6609	13.7036	2.8025
8.2250	6.88227773	9.26478854	24.6618	13.7371	2.8687
8.2600	6.87314895	9.50551569	24.6627	13.7705	2.9345
8.2950	6.86404524	9.74592356	24.6636	13.8036	2.9998
8.3300	6.85496566	9.986013	24.6645	13.8364	3.0646
8.3650	6.84590942	10.2257849	24.6654	13.8690	3.1290
8.4000	6.83687587	10.46524	24.6663	13.9014	3.1928
8.4350	6.8278645	10.7043791	24.6671	13.9336	3.2563
8.4700	6.81887489	10.943203	24.6680	13.9655	3.3193
8.5050	6.80990671	11.1817125	24.6689	13.9972	3.3818
8.5400	6.80095973	11.4199084	24.6698	14.0287	3.4439
8.5750	6.79203379	11.6577913	24.6706	14.0599	3.5055
8.6100	6.78312878	11.895362	24.6715	14.0910	3.5667
8.6450	6.77424464	12.1326212	24.6724	14.1218	3.6275
8.6800	6.7653814	12.3695698	24.6732	14.1524	3.6879

Tabla I.3. Velocidad y presión del sexto tramo.

t (s)	V (m/s)	xs (m)	H1 (mca)	H2 (mca)	H3 (mca)	H4 (mca)	H5 (mca)	H6 (mca)
26.2500	4.4788	1.5183	24.8567	19.8674	14.9344	10.0198	5.1137	0.2123
26.2850	4.4762	1.6750	24.8568	19.8719	14.9432	10.0329	5.1311	0.2341
26,3200	4.4738	1.8317	24.8570	19.8763	14.9520	10.0460	5.1485	0.2558
26.3550	4.4715	1.9882	24.8571	19.8808	14.9607	10.0590	5.1659	0.2774
26.3900	4.4694	2.1447	24.8573	19.8852	14.9695	10.0720	5.1832	0.2990
26.4250	4.4675	2.3011	24.8574	19.8896	14.9781	10.0850	5.2004	0.3205
26.4600	4.4656	2.4574	24.8575	19.8940	14.9868	10.0980	5.2176	0.3420
26.4950	4.4639	2.6137	24.8576	19.8984	14.9955	10.1109	5.2348	0.3635
26.5300	4.4622	2.7699	24.8577	19.9028	15.0041	10.1238	5.2520	0.3849
26.5650	4.4606	2.9261	24.8578	19.9071	15.0127	10.1366	5.2691	0.4063
26.6000	4.4591	3.0822	24.8579	19.9114	15.0213	10.1494	5.2861	0.4276
26.6350	4.4576	3.2382	24.8580	19.9158	15.0298	10.1622	5.3032	0.4488
26.6700	4.4562	3.3942	24.8581	19.9201	15.0384	10.1750	5.3202	0.4701
26.7050	4.4548	3.5502	24.8582	19.9244	15.0469	10.1877	5.3371	0.4912
26.7400 26.7750	4.4535	3.7061	24.8583	19.9287	15.0554	10.2005	5.3540	0.5124
	4.4522 4.4509	3.8619	24.8584	19.9330	15.0639	10.2132	5.3709 5.3878	0.5335 0.5545
26.8100 26.8450	4.4496	4.0177 4.1735	24.8584 24.8585	19.9373 19.9415	15.0724 15.0808	10.2258 10.2384	5.4046	0.5755
26.8800	4.4483	4.3292	24.8586	19.9418	15.0892	10.2504	5.4214	0.5965
26.9150	4.4471	4.4849	24.8587	19.9500	15.0832	10.2636	5.4381	0.6174
26.9500	4.4459	4.6405	24.8588	19.9543	15.1061	10.2030	5.4549	0.6383
26.9850	4.4447	4.7961	24.8588	19.9585	15.1144	10.2887	5.4715	0.6591
27.0200	4.4435	4.9517	24.8589	19.9627	15.1228	10.3012	5.4882	0.6799
27.0550	4.4423	5.1072	24.8590	19.9669	15.1311	10.3137	5.5048	0.7006
27.0900	4.4411	5.2626	24.8591	19.9711	15.1395	10.3262	5.5214	0.7214
27.1250	4.4400	5.4181	24.8591	19.9753	15.1478	10.3386	5.5379	0.7420
27.1600	4.4388	5,5734	24.8592	19.9795	15.1561	10.3510	5.5545	0.7626
27.1950	4.4376	5.7288	24.8593	19.9837	15.1644	10.3634	5.5709	0.7832
27.2300	4.4365	5.8841	24.8594	19.9878	15.1726	10.3757	5.5874	0.8038
27.2650	4.4353	6.0393	24.8594	19.9920	15.1809	10.3881	5.6038	0.8243
27.3000	4.4342	6.1946	24.8595	19.9962	15.1891	10.4004	5.6202	0.8447
27.3350	4.4330	6.3497	24.8596	20.0003	15.1973	10.4127	5.6366	0.8652
27.3700	4.4318	6.5049	24.8597	20.0044	15.2055	10.4249	5.6529	0.8856
27.4050	4.4307	6.6600	24.8597	20.0086	15.2137	10.4372	5.6692	0.9059
27.4400	4.4295	6.8150	24.8598	20.0127	15.2219	10.4494	5.6854	0.9262
27.4750	4.4284	6.9700	24.8599	20.0168	15.2300	10.4616	5,7016	0.9465
27.5100	4.4272	7.1250	24.8599	20.0209	15.2381	10.4737	5.7178 5.7340	0.9667 0.9869
27.5450 27.5800	4.4260 4.4248	7.2800 7.4348	24.8600 24.8601	20.0250 20.0291	15.2463 15.2544	10.4859 10.4980	5.7501	1.0070
27.6150	4.4237	7.5897	24.8602	20.0291	15.2624	10.4900	5.7662	1.0070
27.6500	4.4225	7.7445	24.8602	20.0332	15.2705	10.5101	5.7823	1.0472
27.6850	4.4213	7.8993	24.8603	20.0413	15.2786	10.5342	5.7983	1.0672
27.7200	4.4201	8.0540	24.8604	20.0453	15.2866	10.5462	5.8143	1.0872
27.7550	4.4189	8.2087	24.8605	20.0494	15.2946	10.5582	5,8303	1.1071
27.7900	4.4177	8.3633	24.8605	20.0534	15.3026	10.5702	5.8462	1.1270
27.8250	4.4165	8.5179	24.8606	20.0575	15.3106	10.5821	5.8622	1.1469
27.8600	4.4153	8.6725	24.8607	20.0615	15.3186	10.5941	5.8780	1.1667
27.8950	4.4141	8.8270	24.8608	20.0655	15.3266	10.6060	5.8939	1.1865
27.9300	4.4129	8.9815	24.8609	20.0695	15.3345	10.6178	5.9097	1.2063
27.9650	4.4116	9.1359	24.8609	20.0735	15.3424	10.6297	5.9255	1.2260
28.0000	4.4104	9.2903	24.8610	20.0775	15.3504	10.6415	5.9412	1.2457
28.0350	4.4092	9.4447	24,8611	20.0815	15.3583	10.6534	5.9570	1.2653
28.0700	4.4079	9.5990	24.8612	20.0855	15.3662	10.6651	5.9727	1.2849
28.1050	4.4067	9.7532	24.8612	20.0895	15.3740	10.6769	5.9883	1.3045
28.1400	4.4054	9.9074	24.8613	20.0934	15.3819	10.6887	6.0040	1.3240
28.1750	4.4042	10.0616	24.8614	20.0974	15.3897	10.7004	6.0196 6.0351	1.3435 1.3629
28.2100 28.2450	4.4029 4.4016	10.2157 10.3698	24.8615	20.1014	15.3975 15.4054	10.7121 10.7238	6.0507	1.3823
28.2450	4.4016	10.3698	24.8616 24.8616	20.1053 20.1092	15.4054	10.7238	6.0662	1.4017
28.3150	4.3991	10.5236	24.8617	20.1092	15.4132	10.7354	6.0817	1.4210
28.3500	4.3978	10.8318	24.8618	20.1132	15.4209	10.7470	6.0971	1.4403
28.3850	4.3965	10.9857	24.8619	20.1171	15.4365	10.7702	6.1125	1.4596
28.4200	4.3952	11,1395	24.8620	20.1249	15.4442	10.7818	6.1279	1.4788
28.4550	4.3939	11.2934	24.8620	20.1288	15.4519	10.7933	6.1433	1.4980
28.4900	4.3926	11.4471	24.8621	20.1327	15.4596	10.8049	6.1586	1.5171
28.5250	4.3913	11.6008	24.8622	20.1366	15.4673	10.8164	6.1739	1.5362
28.5600	4.3900	11.7545	24.8623	20.1405	15.4750	10.8278	6.1892	1.5553
-	+			+			+	

Tabla I.4. Velocidad y presión del octavo tramo.

t (s)	V (m/s)	xs (m)	H1 (mca)	H2 (mca)	H3 (mca)	H4 (mca)	H5 (mca)	H6 (mca)	H7 (mca)	H8 (mca)
43.4000	3.7748	1.6919	24,8981	21.2961	17,7503	14.2230	10.7041	7,1899	3,6787	0.1695
43.4350	3.7736	1.8240	24.8982	21,2980	17.7542	14,2286	10.7116	7.1994	3.6900	0.1827
43.4700	3.7724	1.9561	24.8983	21.3000	17.7579	14.2343	10.7192	7.2088	3.7013	0.1958
43.5050	3,7714	2.0881	24.8983	21.3019	17.7617	14,2399	10.7267	7.2181	3.7125	0.2089
43.5400	3.7704	2.2201	24.8984	21.3038	17,7655	14.2456	10.7342	7.2275	3.7238	0.2220
43.5750	3.7695	2.3520	24.8984	21.3057	17.7693	14.2512	10.7417	7.2369	3.7350	0,2351
43.6100	3.7686	2.4840	24.8985	21.3076	17.7731	14.2568	10.7492	7.2462	3.7462	0.2481
43.6450	3.7678	2,6159	24.8985	21.3095	17.7768	14.2625	10.7566	7.2555	3.7574	0.2612
43.6800	3.7670	2.7477	24.8985	21.3114	17.7806	14.2681	10.7641	7.2648	3.7685	0.2742
43.7150	3.7662	2.8796	24.8986	21.3133	17,7843	14.2737	10.7715	7.2741	3.7797	0.2872
43.7500	3.7655	3.0114	24.8986	21.3152	17.7880	14.2792	10.7790	7.2834	3.7908	0.3002
43.7850	3.7648	3.1431	24.8987	21.3171	17.7918	14.2848	10.7864	7,2927	3.8020	0.3132
43,8200	3.7642	3.2749	24.8987	21.3190	17.7955	14.2904	10.7938	7.3020	3.8131	0.3262
43.8550	3.7635	3.4066	24.8987	21.3208	17.7992	14.2960	10.8012	7.3112	3.8242	0.3391
43.8900	3.7629	3.5384	24.8988	21.3227	17.8030	14.3015	10.8086	7.3205	3.8353	0.3520
43.9250	3.7623	3.6701	24.8988	21.3246	17.8067	14.3071	10.8160	7.3297	3.8463	0.3649
43.9600	3.7617	3.8017	24.8988	21.3264	17.8104	14.3126	10.8234	7.3389	3.8574	0.3778
43.9950	3.7612	3.9334	24.8989	21.3283	17.8141	14.3182	10.8308	7.3482	3.8684	0.3907
44.0300	3.7606	4.0650	24.8989	21.3302	17.8178	14.3237	10.8382	7.3573	3.8795	0.4036
44.0650	3.7600	4.1966	24.8989	21.3320	17.8215	14.3292	10.8455	7.3665	3.8905	0.4164
44.1000	3.7595	4.3282	24.8990	21.3339	17.8251	14,3347	10.8529	7.3757	3,9015	0.4293
44.1350	3.7590	4.4598	24.8990	21.3358	17.8288	14.3403	10.8602	7.3849	3.9125	0.4421
44.1700	3.7584	4.5914	24.8990	21.3376	17.8325	14.3458	10.8675	7.3940	3.9235	0.4549
44.2050	3.7579	4.7229	24.8990	21.3395	17,8362	14.3513	10.8748	7.4032	3.9344	0.4677
44.2400	3.7574	4.8544	24.8991	21.3413	17.8399	14.3567	10.8822	7.4123	3.9454	0.4804
44.2750	3,7569	4.9859	24.8991	21.3432	17.8435	14.3622	10.8895	7.4214	3.9563	0.4932
44.3100	3.7564	5.1174	24.8991	21.3450	17.8472	14.3677	10.8967	7.4305	3.9673	0.5059
44.3450	3.7559	5.2489	24.8991	21.3468	17.8508	14.3732	10.9040	7.4396	3.9782	0.5187
44.3800	3.7554	5.3803	24.8992	21.3487	17,8545	14,3786	10.9113	7.4487	3.9891	0.5314
44.4150	3.7549	5.5118	24.8992	21.3505	17.8581	14.3841	10.9186	7.4578	4.0000	0.5441
44.4500	3.7544	5.6432	24.8992	21.3523	17.8618	14.3895	10.9258	7.4669	4.0108	0.5568
44.4850	3.7539	5.7746	24.8993	21.3542	17.8654	14.3950	10.9331	7.4759	4.0217	0.5694
44.5200	3.7534	5.9060	24.8993	21.3560	17.8690	14,4004	10.9403	7.4850	4.0325	0.5821
44.5550	3.7529	6.0373	24.8993	21.3578	17,8727	14.4059	10.9476	7.4940	4.0434	0.5947
44.5900	3.7524	6.1687	24.8993	21.3597	17.8763	14.4113	10.9548	7.5030	4.0542	0.6073
44.6250	3.7519	6.3000	24.8994	21.3615	17.8799	14.4167	10.9620	7.5120	4.0650	0.6199
44.6600	3.7514	6.4313	24.8994	21.3633	17.8835	14.4221	10,9692	7.5210	4.0758	0.6325
44.6950	3.7509	6.5626	24.8994	21.3651	17.8871	14.4275	10.9764	7.5300	4.0866	0.6451
44,7300	3.7504	6.6939	24.8994	21.3669	17.8908	14.4329	10.9836	7.5390	4.0973	0.6577
44.7650	3.7499	6.8251	24.8995	21.3688	17.8944	14.4383	10.9908	7.5480	4.1081	0.6702
44.8000	3.7493	6.9563	24.8995	21.3706	17.8980	14.4437	10.9979	7.5569	4.1189	0.6827
44.8350	3.7488	7.0876	24.8995	21.3724	17.9016	14.4491	11.0051	7.5659	4.1296	0.6953
44.8700	3.7483	7.2188	24.8996	21.3742	17.9051	14,4544	11.0123	7.5748	4.1403	0.7078
44.9050	3.7478	7.3500	24.8996	21.3760	17.9087	14.4598	11.0194	7.5837	4.1510	0.7203
44.9400	3.7473	7.4811	24.8996	21.3778	17.9123	14.4652	11.0265	7.5927	4.1617	0.7327
44.9750	3.7468	7.6123	24.8996	21.3796	17.9159	14.4705	11.0337	7.6016	4.1724	0,7452
45.0100	3.7462	7.7434	24.8997	21,3814	17.9195	14.4759	11.0408	7.6105	4.1831	0.7576
45.0450	3.7457	7.8745	24.8997	21.3832	. 17,9230	14.4812	11.0479	7.6193	4.1937	0.7701
45.0800	3.7452	8.0056	24.8997	21.3850	17.9266	14.4866	11.0550	7.6282	4.2044	0.7825
45.1150	3.7447	8.1367	24.8997	21.3868	17.9302	14.4919	11.0621	7.6371	4.2150	0.7949
45.1500	3.7441	8.2677	24.8998	21.3886	17.9337	14.4972	11.0692	7.6459	4.2256	0.8073
45.1850	3.7436	8.3988	24.8998	21.3904	17.9373	14.5025	11.0763	7.6548	4.2362	0.8196
45.2200	3.7430	8.5298	24.8998	21.3922	17.9408	14.5078	11.0834	7.6636	4.2468	0.8320
45.2550	3.7425	8.6608	24.8999	21.3940	17.9444	14.5131	11.0904	7.6724	4.2574	0.8443
45.2900	3.7419	8.7918	24.8999	21.3958	17.9479	14.5184	11.0975	7.6813	4.2680	0.8566
45,3250	3.7414	8.9227	24.8999	21.3975	17.9515	14.5237	11.1045	7.6901	4.2785	0.8690

ANEXO II LISTADO Y RESULTADOS DE PROGRAMA DE LIOU Y HUNT (1996)

Para resolver el problema propuesto utilizando el modelo de Liou y Hunt (1996), se empleó un programa de cómputo escrito en el lenguaje C; A continuación se presenta el código del programa.

LISTADO DE PROGRAMA

```
long double Lmin, L0, f, D, A, den, pes, Hr, h, dv, v1, tiemp1, k;
long double w1,w2,t0,w11,w21,p0,t1,val,val1,val2,c,p1,w111;
long double k11,k12,k21,k22,k31,k32,k41,k42,k51,k52,k61,k62;
long double a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3,e1=0.0,e2=0.0,e3=0.0;
int j,j1;
clrscr();
\\ DATOS DEL PROBLEMA
L1=2450;L2=350;L3=250;L4=590;L5=610;L6=250;L7=1350;L8=300;L9=15;L10=78
L11=72;L12=109;
o1=0.01469;o2=0.01285;o3=-0.0003837;o4=0.0005023;o5=-
0.000819;06=0.03995;
07=0.007403;08=-0.026644;09=0.33959;010=-0.01922;011=0.03468;012=-
0.036657;
Lmin=0.30;L0=0.0;f=0.015;D=0.0446;A=0.00156228;Hr=2.29;den=101.936;pes=10
00;
k=0.5;
h=0.01;
\\ CONDICIONES INICIALES
t=0:
p0=2290;
w1=0;
w2=Lmin;
```

```
gotoxy(1,1);cout<<"tiempo";
gotoxy(9,1);cout<<"V";
gotoxy(25,1);cout<<"L";
gotoxy(40,1);cout<<"P0";
gotoxy(55,1);cout<<"P1"<<endl;
gotoxy(1,2);cout<<t;
gotoxy(9,2);cout<<w1;
gotoxy(25,2);cout<<w2;
gotoxy(40,2);cout<<p0<<endl;
i=0;
i1=35;
do{
\\ MÉTODO DE RUNGE - KUTTA
k11 = h^*((p0/(den^*w2)) + (9.81^*sin(o1)) - ((f^*w1^*w1)/(2^*D)));
k12=h*w1;
//cout<<"k11"<<k11;
//cout<<"k12"<<k12;
a2=w1+((1.0/4.0)*k11);
a3=w2+((1.0/4.0)*k12);
k21=h^*((p0/(den^*a3))+(9.81^*sin(o1))-((f^*a2^*a2)/(2^*D)));
k22=h*a2;
b2=w1+((3.0/32.0)*k11)+((9.0/32.0)*k21);
b3=w2+((3.0/32.0)*k12)+((9.0/32.0)*k22);
```

```
k31=h*((p0/(den*b3))+(9.81*sin(o1))-((f*b2*b2)/(2*D)));
k32=h*b2:
c2=w1+((1932.0/2197.0)*k11)-((7200.0/2197.0)*k21)+((7296.0/2197.0)*k31);
c3=w2+((1932.0/2197.0)*k12)-((7200.0/2197.0)*k22)+((7296.0/2197.0)*k32);
k41=h*((p0/(den*c3))+(9.81*sin(o1))-((f*c2*c2)/(2*D)));
k42=h*c2:
d2=w1+((439.0/216.0)*k11)-((8.0)*k21)+((3680.0/513.0)*k31)-
((845.0/4104.0)*k41);
d3=w2+((439.0/216.0)*k12)-((8.0)*k22)+((3680.0/513.0)*k32)-
((845.0/4104.0)*k42);
k51=h*((p0/(den*d3))+(9.81*sin(o1))-((f*d2*d2)/(2*D)));
k52=h*d2:
e2=w1-((8.0/27.0)*k11)+((2.0)*k21)-((3544.0/2565.0)*k31)+((1859.0/4104.0)*k41)-
((11.0/40.0)*k51);
e3=w2-((8.0/27.0)*k12)+((2.0)*k22)-((3544.0/2565.0)*k32)+((1859.0/4104.0)*k42)-
((11.0/40.0)*k52);
k61=h*((p0/(den*e3))+(9.81*sin(o1))-((f*e2*e2)/(2*D)));
k62=h*e2;
t1=t+h;
w11=w1+((25.0/216.0)*k11)+((1408.0/2565.0)*k31)+((2197.0/4104.0)*k41)-
((1.0/5.0)*k51);
w21=w2+((25.0/216.0)*k12)+((1408.0/2565.0)*k32)+((2197.0/4104.0)*k42)-
((1.0/5.0)*k52);
t=t1;
w1=w11;
w2=w21;
```

```
dv = ((9.81/w21)*(Hr-((w11*w11)/19.62))+(9.81*sin(o1))-
((f^*(w11^*w11))/(2^*D)))/(1+(L0/w21));
p0=(den*9.81)*(Hr-((L0/9.81)*dv)-((k*w11*w11)/19.62));
gotoxy(1,j+3);cout << t1;
gotoxy(9,j+3);cout << w11;
gotoxy(25,j+3);cout<<w21;
gotoxy(40,j+3);cout<<p0<<endl;
j++;
if(j==j1){
  cout<<endl;
  cout<<"Presiona Enter Para Continuar..."<<endl;
  getch();
  j=0;
}
}while(w21<L1);
\\ CONDICIONES INICIALES (SEGUNDO TRAMO)
p1=0;
w1=w11;
w2=0.10;
do{
 w111=w11;
\\ MÉTODO RUNGE - KUTTA
k11=h*((p1/(den*w2))+(9.81*sin(o2))-((f*w1*w1)/(2*D)));
```

```
k12=h*w1;
a2=w1+((1.0/4.0)*k11);
a3=w2+((1.0/4.0)*k12);
k21=h*((p1/(den*a3))+(9.81*sin(o2))-((f*a2*a2)/(2*D)));
k22=h*a2:
b2=w1+((3.0/32.0)*k11)+((9.0/32.0)*k21);
b3=w2+((3.0/32.0)*k12)+((9.0/32.0)*k22);
k31=h*((p1/(den*b3))+(9.81*sin(o2))-((f*b2*b2)/(2*D)));
k32=h*b2;
c2=w1+((1932.0/2197.0)*k11)-((7200.0/2197.0)*k21)+((7296.0/2197.0)*k31);
c3=w2+((1932.0/2197.0)*k12)-((7200.0/2197.0)*k22)+((7296.0/2197.0)*k32);
k41=h*((p1/(den*c3))+(9.81*sin(o2))-((f*c2*c2)/(2*D)));
k42=h*c2:
d2=w1+((439.0/216.0)*k11)-((8.0)*k21)+((3680.0/513.0)*k31)-
((845.0/4104.0)*k41);
d3=w2+((439.0/216.0)*k12)-((8.0)*k22)+((3680.0/513.0)*k32)-
((845.0/4104.0)*k42);
k51=h*((p1/(den*d3))+(9.81*sin(o2))-((f*d2*d2)/(2*D)));
k52=h*d2;
e2=w1-((8.0/27.0)*k11)+((2.0)*k21)-((3544.0/2565.0)*k31)+((1859.0/4104.0)*k41)-
((11.0/40.0)*k51);
e3=w2-((8.0/27.0)*k12)+((2.0)*k22)-((3544.0/2565.0)*k32)+((1859.0/4104.0)*k42)-
((11.0/40.0)*k52);
k61=h*((p1/(den*e3))+(9.81*sin(o2))-((f*e2*e2)/(2*D)));
k62=h*e2;
```

```
t1=t+h;
w11=w1+((25.0/216.0)*k11)+((1408.0/2565.0)*k31)+((2197.0/4104.0)*k41)-
((1.0/5.0)*k51);
w21=w2+((25.0/216.0)*k12)+((1408.0/2565.0)*k32)+((2197.0/4104.0)*k42)-
((1.0/5.0)*k52);
t=t1:
w1=w11;
w2=w21;
dv = ((9.81/w21)*(Hr - ((w11*w11)/19.62)) + (9.81*sin(o1)) -
((f^*(w11^*w11))/(2^*D)))/(1+(L0/w21));
p0=(den*9.81)*(Hr-((L0/9.81)*dv)-((k*w11*w11)/19.62));
p1=((p0/L1)+(pes*(sin(o1)-sin(o2)))-(den*(((f*w111*w111)/(2*D))-
((f^*w11^*w11)/(2^*D))))/((1/L1)+(1/w21));
gotoxy(1,j+3);cout << t1;
gotoxy(9,j+3);cout << w11;
gotoxy(25,j+3);cout<<w21;
gotoxy(40,j+3);cout << p0;
gotoxy(55,j+3);cout<<p1<<endl;
gotoxy(70,j+3);cout << w111 << endl;
 j++;
if(j==j1)
  cout<<endl;
  cout<<"Presiona Enter Para Continuar..."<<endl;
  getch();
```

```
j=0;
}
while(w21<L2);

getch();
return 0;
}</pre>
```

A continuación se muestran algunos de los resultados obtenidos en la solución del problema propuesto por Liou y Hunt en el capítulo tres.

Tabla II.1. Datos iniciales del primer tramo.

t (s)	V	L	P0
0	0.000	0.300	2290.000
0.01	0.747	0.304	2275.764
0.02	1.470	0.315	2234.938
0.03	2.144	0.333	2172.841
0.04	2.754	0.357	2096.686
0.05	3.293	0.388	2013.594
0.06	3.762	0.423	1929.330
0.07	4.165	0.463	1847.900
0.08	4.510	0.506	1771.720
0.09	4.803	0.553	1702.007
0.1	5.054	0.602	1639.170
0.11	5.267	0.654	1583.127
0.12	5.448	0.707	1533.523
0.13	5.603	0.763	1489.867
0.14	5.736	0.819	1451.621
0.15	5.849	0.877	1418.246
0.16	5.945	0.936	1389.232
0.17	6.028	0.996	1364.108
0.18	6.098	1.057	1342.448
0.19	6.157	1.118	1323.868
0.13	6.207	1.180	1308.028
0.21	6.250	1.242	1294.626
0.22	6.285	1.305	1283.393
0.23	6.314	1.368	1274.093
0.23	6.337	1.431	1266.517
0.25	6.356	1.494	1260.478
0.25	6.370	1.558	1255.812
0.27	6.381	1.622	1255.612
0.28	6.388	1.686	1250.033
0.29	6.392	1.750	1248.674
0.3	6.394	1.814	1248.194
0.31	6.393	1.877	1248.501
0.32	6.390	1.941	1249.513
0.33	6.385	2.005	1251.156
0.34	6.378	2.069	1253.364
0.35	6.370	2.133	1256.078
0.36	6.360	2.196	1259.245
0.37	6.349	2.260	1262.815
0.38	6.337	2.323	1266.746
0.39	6.323	2.387	1271.000
0.4	6.309	2.450	1275.539
0.41	6.294	2.513	1280.332
0.42	6.279	2.576	1285.351
0.43	6.262	2.638	1290.569
0.44	6.245	2.701	1295.963
0.45	6.228	2.763	1301.509
0.46	6.210	2.826	1307.190
0.47	6.192	2.888	1312.987
0.48	6.173	2.949	1318.884
0.49	6.154	3.011	1324.866
0.5	6.135	3.072	1330.919
0.51	6.115	3.134	1337.032
.			

t (s)	V	L	P0
0.52	6.095	3.195	1343.194
0.53	6.075	3.256	1349.394
0.54	6.055	3.316	1355.623
0.55	6.035	3.377	1361.872
0.56	6.014	3.437	1368.135
0.57	5.994	3.497	1374.404
0.58	5.973	3.557	1380.673
0.59	5.953	3.617	1386.936
0.6	5.932	3.676	1393.188
0.61	5.911	3.735	1399.424
0.62	5.891	3.794	1405.640
0.63	5.870	3.853	1411.832
0.64	5.850	3.912	1417.997
0.65	5.829	3.970	1424.131
0.66	5.808	4.028	1430.232
0.67	5.788	4.086	1436.297
0.68	5.767	4.144	1442.324
0.69	5.747	4.201	1448.310
0.7	5.727	4.259	1454.254
0.71	5.706	4.316	1460.154
0.72	5.686	4.373	1466.009
0.73	5.666	4.430	1471.818
0.74	5.646	4.486	1477.578
0.75	5.626	4.543	1483.290
0.76	5.606	4.599	1488.953
0.77	5.587	4.655	1494.565
0.78	5.567	4.711	1500.127
0.79	5.548	4.766	1505.637
0.8	5.528	4.822	1511.095
0.81	5.509	4.877	1516.501
0.82	5.490	4.932	1521.855
0.83	5.471	4.987	1527.156
0.84	5.452	5.041	1532.405
0.85	5.434	5.096	1537.600
0.86	5.415	5.150	1542.744
0.87	5.396	5.204	1547.834
0.88	5.378	5.258	1552.872
0.89	5.360	5.311	1557.858
0.9	5.342	5.365	1562.791
0.91	5.324	5.418	1567.673
0.92	5.306	5.471	1572.503
0.93	5.288	5.524	1577.281
0.94	5.271	5.577	1582.008
0.95	5.253	5.630	1586.685
0.96	5.236	5.682	1591.311
0.97	5.219	5.735	1595.886
0.98	5.202	5.787	1600.413
0.99	5.185	5.839	1604.890
1	5.168	5.890	1609.318
1.01	5.151	5.942	1613.698
1.02	5.135	5.993	1618.030
1.03	5.119	6.045	1622.314

t (s)	V	L	P0
1.04	5.102	6.096	1626.551
1.05	5.086	6.147	1630.742
1.06	5.070	6.197	1634.887
1.07	5.054	6.248	1638.986
1.08	5.038	6.299	1643.040
1.09	5.023	6.349	1647.049
1.1	5.007	6.399	1651.015
1.11	4.992	6.449	1654.936
1.12	4.977	6.499	1658.815
1.13	4.962	6.549	1662.651
1.14	4.946	6.598	1666.444
1.15	4.932	6.647	1670.197
1.16	4.917	6.697	1673.907
1.17	4.902	6.746	1677.578
1.18	4.888	6.795	1681.208
1.19	4.873	6.844	1684.798
	4.859	6.892	1688.349
1.21	4.845	6.941	1691.862
1.22	4.831	6.989	1695.336
1.23	4.817	7.037	1698.773
1.24	4.803	7.085	1702.172
1.25	4.789	7.133	1705.534
1.26	4.775	7.181	1708.860
1.27	4.762	7.229	1712.151
1.28	4.748	7.276	1715.405
1.29	4.735	7.324	1718.625
1.3	4.722	7.371	1721.811
1.31	4.709	7.418	1724.962
1.32	4.696	7.465	1728.079
1.33	4.683	7.512	1731.164
1.34	4.670	7.559	1734.215
1.35	4.657	7.606	1737.235
1.36	4.645	7.652	1740.222
1.37	4.632	7.698	1743.178
1.38	4.620	7.745	1746.103
1.39	4.607	7.791	1748.997
1.4	4.595	7.837	1751.860
1.41	4.583	7.883	1754.694
1.42	4.571	7.929	1757.499
1.43	4.559	7.974	1760.274
1.44	4.547	8.020	1763.021
1.45	4.536	8.065	1765.739
1.46	4.524	8.110	1768.429
1.47	4.512	8.156	1771.092
1.48	4.501	8.201	1773.727
1.49	4.490	8.246	1776.335
1.5	4.478	8.291	1778.917
1.51	4.467	8.335	1781.473
1.52	4.456	8.380	1784.003
1.53	4.445	8.424	1786.507
1.53	4.434	8.469	1788.986
1.55	4.434	8.513	1791.441
1.00	4.423	0.010	1/91.441

t (s)	V	L	P0
1.56	4.412	8.557	1793.870
1.57	4.401	8.601	1796.276
1.58	4.391	8.645	1798.658
1.59	4.380	8.689	1801.016
1.6	4.370	8.733	1803.350
1.61	4.359	8.776	1805.662
1.62	4.349	8.820	1807.951
1.63	4.339	8.863	1810.218
1.64	4.329	8.907	1812.463
1.65	4.319	8.950	1814.685
1.66	4.309	8.993	1816.887
1.67	4.299	9.036	1819.067
1.68	4.289	9.079	1821.226
1.69	4.279	9.122	1823.364
1.7	4.269	9.165	1825.482
1.71	4.260	9.207	1827.579
1.72	4.250	9.250	1829.657
1.73	4.241	9.292	1831.715
1.74	4.231	9.335	1833.754
1.75	4.222	9.377	1835.773
1.76	4.212	9.419	1837.773
1.77	4.203	9.461	1839.755
1.78	4.194	9.503	1841.718
1.79	4.185	9.545	1843.663
1.8	4.176	9.587	1845.591
1.81	4.167	9.629	1847.500
1.82	4.158	9.670	1849.391
1.83	4.149	9.712	1851.266
1.84	4.140	9.753	1853.123
1.85	4.132	9.795	1854.963
1.86	4.123	9.836	1856.787
1.87	4.114	9.877	1858.594
1.88	4.106	9.918	1860.385
1.89	4.097	9.959	1862.159
1.9	4.089	10.000	1863.918
1.91	4.081	10.041	1865.661
1.92	4.072	10.082	1867.389
1.93	4.064	10.122	1869.101
1.94	4.056	10.163	1870.798
1.95	4.048	10.204	1872.480
1.96	4.039	10.244	1874.148
1.97	4.031	10.284	1875.800
1.98	4.023	10.325	1877.439
1.99	4.016	10.365	1879.063
2	4.008	10.405	1880.673
2.01	4.000	10.445	1882.269
2.02	3.992	10.485	1883.851
2.03	3.984	10.525	1885.420
2.04	3.977	10.565	1886.975
2.05	3.969	10.604	1888.518
2.06	3.962	10.644	1890.047
2.07	3.954	10.684	1891.563

Tabla II.2. Datos iniciales del segundo tramo.

t (s)	V	L	P0	P1	t (s)	V	L	P0	P1
2379	0.95448	0.100	2266.76527	0	2379.53	0.95404	0.606	2266.787	1.6745
2379.01	0.95421	0.110	2266.778	0.3019	2379.54	0.95404	0.615	2266.787	1.7009
2379.02	0.95420	0.119	2266.779	0.3293	2379.55	0.95403	0.625	2266.787	1.7272
2379.03	0.95419	0.129	2266.779	0.3556	2379.56	0.95403	0.634	2266.787	1.7536
2379.04	0.95418	0.138	2266.780	0.3820	2379.57	0.95403	0.644	2266.787	1.7800
2379.05	0.95417	0.148	2266.780	0.4084	2379.58	0.95403	0.653	2266.787	1.8063
2379.06	0.95416	0.157	2266.781	0.4348	2379.59	0.95403	0.663	2266.787	1.8327
2379.07	0.95416	0.167	2266.781	0.4612	2379.60	0.95403	0.672	2266.787	1.8591
2379.08	0.95415	0.176	2266.781	0.4876	2379.61	0.95403	0.682	2266.787	1.8854
2379.09	0.95414	0.186	2266.782	0.5139	2379.62	0.95403	0.692	2266.787	1.9118
2379.10	0.95414	0.195	2266.782	0.5403	2379.63	0.95403	0.701	2266.787	1.9382
2379.11	0.95413	0.205	2266.782	0.5667	2379.64	0.95403	0.711	2266.787	1.9645
2379.12	0.95413	0.215	2266.782	0.5931	2379.65	0.95403	0.720	2266.787	1.9909
2379.13	0.95412	0.224	2266.783	0.6195	2379.66	0.95403	0.730	2266.787	2.0173
2379.14	0.95412	0.234	2266.783	0.6459	2379.67	0.95403	0.739	2266.787	2.0436
2379.15	0.95411	0.243	2266.783	0.6722	2379.68	0.95403	0.749	2266.787	2.0700
2379.16	0.95411	0.253	2266.783	0.6986	2379.69	0.95403	0.758	2266.787	2.0964
2379.17	0.95411	0.262	2266.783	0.7250	2379.70	0.95403	0.768	2266.787	2.1227
2379.18	0.95410	0.272	2266.784	0.7514	2379.71	0.95403	0.777	2266.787	2.1491
2379.19	0.95410	0.281	2266.784	0.7778	2379.72	0.95402	0.787	2266.787	2.1755
2379.20	0.95410	0.291	2266.784	0.8041	2379.73	0.95402	0.796	2266.787	2.2018
2379.21	0.95409	0.300	2266.784	0.8305	2379.74	0.95402	0.806	2266.787	2.2282
2379.22	0.95409	0.310	2266.784	0.8569	2379.75	0.95402	0.816	2266.788	2.2546
2379.23	0.95409	0.319	2266.784	0.8833	2379.76	0.95402	0.825	2266.788	2.2809
2379.24	0.95408	0.329	2266.785	0.9096	2379.77	0.95402	0.835	2266.788	2.3073
2379.25	0.95408	0.339	2266.785	0.9360	2379.78	0.95402	0.844	2266.788	2.3337
2379.26	0.95408	0.348	2266.785	0.9624	2379.79	0.95402	0.854	2266.788	2.3600
2379.27	0.95408	0.358	2266.785	0.9888	2379.80	0.95402	0.863	2266.788	2.3864
2379.28	0.95407	0.367	2266.785	1.0152	2379.81	0.95402	0.873	2266.788	2.4128
2379.29	0.95407	0.377	2266.785	1.0415	2379.82	0.95402	0.882	2266.788	2.4391
2379.30	0.95407	0.386	2266.785	1.0679	2379.83	0.95402	0.892	2266.788	2.4655
2379.31	0.95407	0.396	2266.785	1.0943	2379.84	0.95402	0.901	2266.788	2.4919
2379.32	0.95406	0.405	2266.786	1.1207	2379.85	0.95402	0.911	2266.788	2.5182
2379.33	0.95406	0.415	2266.786	1.1470	2379.86	0.95402	0.920	2266.788	2.5446
2379.34	0.95406	0.424	2266.786	1.1734	2379.87	0.95402	0.930	2266.788	2.5709
2379.35	0.95406	0.434	2266.786	1.1998	2379.88	0.95402	0.940	2266.788	2.5973 2.6237
2379.36 2379.37	0.95406 0.95406	0.443 0.453	2266.786	1.2262 1.2525	2379.89	0.95402 0.95402	0.949 0.959	2266.788 2266.788	2.6500
2379.38	0.95405	0.463	2266.786 2266.786	1.2525	2379.90	0.95402	0.968	2266.788	2.6764
2379.39	0.95405	0.472	2266.786	1.3053	2379.91	0.95402	0.978	2266.788	2.7028
2379.40	0.95405	0.472	2266.786	1.3317	2379.92	0.95402	0.987	2266.788	2.7028
2379.40	0.95405	0.491	2266.786	1.3580	2379.93	0.95402	0.997	2266.788	2.7555
2379.41	0.95405	0.491	2266.786	1.3844	2379.94	0.95402	1.006	2266.788	2.7555
2379.42	0.95405	0.510	2266.786		2379.95	0.95402	1.016	2266.788	2.8082
2379.43	0.95405	0.510	2266.786	1.4108 1.4371	2379.96	0.95402	1.016	2266.788	2.8346
2379.44	0.95404	0.520	2266.787	1.4635	2379.97	0.95402	1.025	2266.788	2.8609
2379.46	0.95404	0.529	2266.787	1.4899	2379.98	0.95402	1.035	2266.788	2.8873
2379.47	0.95404	0.539	2266.787	1.5163	2379.99	0.95402	1.045	2266.788	2.9136
2379.48	0.95404	0.558	2266.787	1.5426	2380.00	0.95402	1.064	2266.788	2.9400
2379.49	0.95404	0.568	2266.787	1.5426	2380.01	0.95402	1.073	2266.788	2.9664
2379.49	0.95404	0.500	2266.787	1.5954	2380.02	0.95402	1.073	2266.788	2.9004
2379.51	0.95404	0.587	2266.787	1.6217	2380.04	0.95402	1.083	2266.788	3.0191
2379.52	0.95404	0.596	2266.787	1.6481	2380.04	0.95402	1.102	2266.788	3.0454
2019.02	0.00404	10.090	2200.101	1.0401	2300.03	0.50402	1.102	2200.700	0.0404

t (s)	V	L	P0	P1
2380.06	0.95402	1,111	2266.788	3.0718
2380.07	0.95402	1.121	2266.788	3.0982
2380.08	0.95402	1.130	2266.788	3.1245
2380.09	0.95402	1,140	2266.788	3.1509
2380.10	0.95402	1.149	2266.788	3.1772
2380.11	0.95402	1.159	2266.788	3.2036
2380.12	0.95402	1.169	2266.788	3.2300
2380.13	0.95402	1.178	2266.788	3.2563
2380.14	0.95402	1.188	2266.788	3.2827
2380.15	0.95402	1.197	2266.788	3.3090
2380.16	0.95402	1.207	2266.788	3.3354
2380.17	0.95402	1.216	2266.788	3.3617
2380.18	0.95402	1.226	2266.788	3.3881
2380.19	0.95402	1.235	2266.788	3.4144
2380.20	0.95402	1.245	2266.788	
				3.4408
2380.21	0.95402	1.254	2266.788	3.4672
2380.22	0.95402	1.264	2266.788	3.4935
2380.23	0.95402	1.273	2266.787	3.5199
2380.24	0.95402	1.283	2266.787	3.5462
2380.25	0.95402	1.293	2266.787	3.5726`
2380.26	0.95402	1.302	2266.787	3.5989
2380.27	0.95402	1.312	2266.787	3.6253
2380.28	0.95402	1.321	2266.787	3.6516
2380.29	0.95403	1.331	2266.787	3.6780
2380.30	0.95403	1.340	2266.787	3.7044
2380.31	0.95403	1.350	2266.787	3.7307
2380.32	0.95403	1.359	2266.787	3.7571
2380.33	0.95403	1.369	2266.787	3.7834
2380.34	0.95403	1.378	2266.787	3.8098
2380.35	0.95403	1.388	2266.787	3.8361
2380.36	0.95403	1.398	2266.787	3.8625
2380.37	0.95403	1.407	2266.787	3.8888
2380.38	0.95403	1.417	2266.787	3.9152
2380.39	0.95403	1.426	2266.787	3.9415
2380.40	0.95403	1.436	2266.787	3.9679
2380.41	0.95403	1.445	2266.787	3.9942
2380.42	0.95403	1.455	2266.787	4.0206
2380.43	0.95403	1.464	2266.787	4.0469
2380.44	0.95403	1.474	2266.787	4.0733
2380.45	0.95403	1.483	2266.787	4.0996
2380.46	0.95403	1.493	2266.787	4.1260
2380.47	0.95403	1.502	2266.787	4.1523
2380.48	0.95403	1.512	2266.787	4.1787
2380.49	0.95403	1.522	2266.787	4.2050
2380.50	0.95403	1.531	2266.787	4.2314
2380.51	0.95403	1.541	2266.787	4.2577
2380.52	0.95403	1.550	2266.787	4.2841
2380.53	0.95403	1.560	2266.787	4.3104
2380.54	0.95403	1.569	2266.787	4.3368
2380.55	0.95403	1.579	2266.787	4.3631
2380.56	0.95403	1.588	2266.787	4.3895
2380.57	0.95403	1.598	2266.787	_
2380.58				4.4158
2300.56	0.95403	1.607	2266.787	4.4422

t (s)	V	L	P0	P1
2380.59	0.95403	1.617	2266.787	4.4685
2380.60	0.95403	1.626	2266.787	4.4949
2380.61	0.95403	1.636	2266.787	4.5212
2380.62	0.95404	1.646	2266.787	4.5476
2380.63	0.95404	1.655	2266.787	4.5739
2380.64	0.95404	1.665	2266.787	4.6003
2380.65	0.95404	1.674	2266.787	4.6266
2380.66	0.95404	1.684	2266.787	4.6530
2380.67	0.95404	1.693	2266.787	4.6793
2380.68	0.95404	1.703	2266.787	4.7057
2380.69	0.95404	1.712	2266.787	4.7320
2380.70	0.95404	1.722	2266.787	4.7584
2380.71	0.95404	1.731	2266.787	4.7847
2380.72	0.95404	1.741	2266.787	4.8110
2380.73	0.95404	1.751	2266.787	4.8374
2380.74	0.95404	1.760	2266.787	4.8637
2380.75	0.95404	1.770	2266.787	4.8901
2380.76	0.95404	1.779	2266.787	4.9164
2380.77	0.95404	1.789	2266.787	4.9428
2380.78	0.95404	1.798	2266.787	4.9691
2380.79	0.95404	1.808	2266.787	4.9955
2380.80	0.95404	1.817	2266.787	5.0218
2380.81	0.95404	1.827	2266.787	5.0482
2380.82	0.95404	1.836	2266.787	5.0745
2380.83	0.95404	1.846	2266.787	5.1008
2380.84	0.95404	1.855	2266.787	5.1272
2380.85	0.95404	1.865	2266.787	5.1535
2380.86	0.95404	1.875	2266.786	5.1799
2380.87	0.95405	1.884	2266.786	5.2062
2380.88	0.95405	1.894	2266.786	5.2326
2380.89	0.95405	1.903	2266.786	5.2589
2380.90	0.95405	1.913	2266.786	5.2852
2380.91	0.95405	1.922	2266.786	5.3116
2380.92	0.95405	1.932	2266.786	5.3379
2380.93	0.95405	1.941	2266.786	5.3643
2380.94	0.95405	1.951	2266.786	5.3906
2380.95	0.95405	1.960	2266.786	5.4169
2380.96	0.95405	1.970	2266.786	5.4433
2380.97	0.95405	1.979	2266.786	5.4696
2380.98	0.95405	1.989	2266.786	5.4960
2380.99	0.95405	1.999	2266.786	5.5223
2381.00	0.95405	2.008	2266.786	5.5487
2381.01	0.95405	2.018	2266.786	5.5750
2381.02	0.95405	2.027	2266.786	5.6013
2381.03	0.95405	2.037	2266.786	5.6277
2381.04	0.95405	2.046	2266.786	5.6540
2381.05	0.95405	2.056	2266.786	5.6804
2381.06	0.95405	2.065	2266.786	5.7067
2381.07	0.95405	2.075	2266.786	5.7330
2381.08	0.95405	2.084	2266.786	5.7594
2381.09	0.95405	2.094	2266.786	5.7857
2381.10	0.95405	2.104	2266.786	5.8120
2381.11	0.95405	2.113	2266.786	5.8384

t (s)	V	L	P0	Pi
2381.12	0.95406	2.123	2266.786	5.8647
2381.13	0.95406	2.132	2266.786	5.8911
2381.14	0.95406	2.142	2266.786	5.9174
2381.15	0.95406	2.151	2266.786	5.9437
2381.16	0.95406	2161	2266.786	5.9701
2381.17	0.95406	2170	2266.786	5.9964
2381.18	0.95406	2 180	2266.786	6.0227
2381.19	0.95406	2.189	2266.786	6.0491
2381.20	0.95406	2.199	2266.786	6.0754
2381.21	0.95406	2.208	2266.786	6.1018
2381.22	0.95406	2.218	2266.786	6.1281
2381.23	0.95406	2.228	2266.786	6.1544
2381.24	0.95406	2.237	2266.786	6.1808
2381.25	0.95406	2.247	2266.786	6.2071
2381.26	0.95406	2.256	2266.786	6.2334
2381.27	.0.95406	2.266	2266.786	6.2598
2381.28	0.95406	2.275	2266.786	6.2861
2381.29	0.95406	2.285	2266.786	6.3124
2381.30	0.95406	2.294	2266.786	6.3388
2381.31	0.95406	2.304	2266.786	6.3651
2381.32	0.95406	2313	2266.786	6.3914
2381.33	0.95406	2.323	2266.786	6.4178
2381.34	0.95406	2.332	2266.786	6.4441
2381.35	0.95407	2342	2266.785	6.4704
2381.36	0.95407	2.352	2266.785	6.4968
2381.37	0.95407	2.361	2266.785	6.5231
2381.38	0.95407	2.371	2266.785	6.5494
2381.39	0.95407	2.380	2266.785	6.5758
2381.40	0.95407	2.390	2266.785	6.6021
2381.41	0.95407	2.399	2266.785	6.6284
2381.42	0.95407	2.409	2266.785	6.6548
2381.43	0.95407	2.418	2266.785	6.6811
2381.44	0.95407	2.428	2266.785	6.7074
2381.45	0.95407	2.437	2266.785	6.7338
2381.46	0.95407	2447	2266.785	6.7601
2381.47	0.95407	2.457	2266.785	6.7864
2381.48	0.95407	2.466	2266.785	6.8128
2381.49	0.95407	2476	2266.785	6.8391
2381.50	0.95407	2.485	2266.785	6.8654
2381.51	0.95407	2.495	2266.785	6.8917
2381.52	0.95407	2.504	2266.785	6.9181
2381.53	0.95407	2514	2266.785	6.9444
2381.54	0.95407	2.523	2266.785	6.9707
2381.55	0.95407	2.533	2266.785	6.9971
2381.56	0.95407	2.542	2266.785	7.0234
2381.57	0.95407	2.552	2266.785	7.0497
2381.58	0.95407	2.561	2266.785	7.0761
2381.59	0.95408	2571	2266.785	7.1024
2381.60	0.95408	2.581	2266.785	7.1287
2381.61	0.95408	2.590	2266.785	7.1550
2381.62	0.95408	2.600	2266.785	7.1814
2381.63	0.95408	2.609	2266.785	7.2077
2381.64	0.95408	2619	2266.785	7.2340

t (s)	V	L	P0	P1
2381.65	0.95408	2.628	2266.785	7.2604
2381.66	0.95408	2638	2266.785	7.2867
2381.67	0.95408	2647	2266.785	7.3130
2381.68	0.95408	2657	2266.785	7.3393
2381.69	0.95408	2666	2266.785	7.3657
2381.70	0.95408	2676	2266.785	7.3920
2381.70	0.95408	2685	2266.785	7.4183
2381.71	0.95408	2695	2266.785	7.4446
2381.73	0.95408	2705	2266.785	7.4710
2381.74	0.95408	2714	2266.785	7.4973
2381.75	0.95408	2.724	2266.785	7.5236
2381.76	0.95408	2.733	2266.785	7.5499
2381.77	0.95408	2743	2266.785	7.5763
2381.78	0.95408	2.752	2266.785	7.6026
2381.79	0.95408	2.762	2266.785	7.6289
2381.80	0.95408	2771	2266.785	7.6552
2381.81	0.95408	2781	2266.785	7.6816
2381.82	0.95408	2790	2266.785	7.7079
2381.83	0.95409	2800	2266.785	7.7342
2381.84	0.95409	2810	2266.784	7.7605
2381.85	0.95409	2819	2266.784	7.7869
2381.86	0.95409	2.829	2266.784	7.8132
2381.87	0.95409	2.838	2266.784	7.8395
2381.88	0.95409	2.848	2266.784	7.8658
2381.89	0.95409	2.857	2266.784	7.8922
2381.90	0.95409	2.867	2266.784	7.9185
2381.91	0.95409	2.876	2266.784	7.9448
2381.92	0.95409	2.886	2266.784	7.9711
2381.93	0.95409	2.895	2266,784	7.9974
2381.94	0.95409	2905	2266.784	8.0238
2381.95	0.95409	2914	2266.784	8.0501
2381.96	0.95409	2.924	2266.784	8.0764
2381.97	0.95409	2.934	2266.784	8.1027
2381.98	0.95409	2.943	2266.784	8.1291
2381.99	0.95409	2.953	2266.784	8.1554
2382.00	0.95409	2.962	2266.784	8.1817
2382.01	0.95409	2972	2266.784	8.2080
2382.02	0.95409	2.981	2266.784	8.2343
2382.03	0.95409	2991	2266.784	8.2607
2382.04	0.95409	3.000	2266.784	8.2870
2382.05	0.95409	3.010	2266.784	8.3133
2382.06	0.95409	3.019	2266.784	8.3396
2382.07	0.95409	3.029	2266.784	8.3659
2382.08	0.95409	3.038	2266.784	8.3923
2382.09	0.95410	3.048	2266.784	8.4186
2382.10	0.95410	3.058	2266.784	8.4449
2382.11	0.95410	3.067	2266.784	8.4712
2382.12	0.95410	3.077	2266.784	8.4975
2382.13	0.95410	3.086	2266.784	8.5239
2382.14	0.95410	3.096	2266.784	8.5502
2382.15	0.95410	3.105	2266.784	8.5765
2382.16	0.95410	3.115	2266.784	8.6028
2382.17	0.95410	3.124	2266.784	8.6291

Tabla II.3. Datos iniciales del tercer tramo.

t (s)	V	L	P0	P1	P2	t (s)	V	L	P0	М	P2
2748	0.94384748	0.10	2267.280	847.350	0.000	2748.52	0.937940	0.58812687	2267.563	866,051	21.916
2748.01	0.940196	0.10942021	2267.455	850.418	4.065	2748.53	0.937929	0.59750627	2267.563	866.357	22.265
2748.02	0.940048	0.11882167	2267.462	850.736	4.428	2748.54	0.937918	0.60688555	2267.564	866.663	22.615
2748.03	0.939922	0.12822175	2267.468	851.044	4.778	2748.55	0.937908	0.61626473	2267.564	866.968	22.964
2748.04	0.939806	0.1376206	2267.474	851.351	5.129	2748.56	0.937899	0.62564381	2267.565	867.274	23.313
2748.05	0.939699	0.14701832	2267.479	851.658	5.479	2748.57	0.937890	0.6350228	2267.565	867.580	23.663
2748.06	0.939600	0.156415	2267.484	851.965	5.829	2748.58	0.937881	0.64440169	2267.566	867.886	24.012
2748.07	0.939507	0.16581071	2267,488	852.272	6.179	2748.59	0.937872	0.6537805	2267.566	868.191	24.362
2748.08	0.939421	0.17520551	2267.492	852.579	6.529	2748.6	0.937864	0.66315923	2267.567	868.497	24.711
2748.09	0.939339	0.18459947	2267.496	852.886	6.879	2748.61	0.937857	0.67253788	2267.567	868.803	25.060
2748.1	0.939263	0.19399263	2267.500	853.192	7.229	2748.62	0.937850	0.68191645	2267.567	869.109	25.410
2748.11	0.939192	0.20338504	2267.503	853,499	7.579	2748.63	0.937843	0.69129496	2267.568	869.415	25.759
2748.12	0.939124	0.21277675	2267.506	853,806	7.929	2748.64	0.937836	0.70067339	2267.568	869.720	26.109
2748.13	0.939060	0.2221678	2267.509	854.112	8.279	2748.65	0.937830	0.71005176	2267.568	870.026	26.458
2748.14	0.938999	0.23155822	2267.512	854.419	8.629	2748.66	0.937824	0.71943007	2267.569	870.332	26.807
2748.15	0.938942	0.24094805	2267.515	854.726	8.979	2748.67	0.937818	0.72880832	2267.569	870.638	27.157
2748.16	0.938888	0.25033731	2267.518	855.032	9.329	2748.68	0.937813	0.73818652	2267.569	870.943	27.506
2748.17	0.938836	0.25972604	2267.520	855.338	9.679	2748.69	0.937808	0.74756466	2267.569	871.249	27.866
2748.18	0.938787	0.26911426	2267.522	855,645	10.029	2748.7	0.937803	0.75694276	2267.569	871.555	28.205
2748.19	0.938740	0.278502	2267.525	855.951	10.379	2748.71	0.937799	0.76632081	2267.570	871.860	28.554
2748.2	0.938695	0.28788928	2267.527	856.258	10.729	2748.72	0.937795	0.77569881	2267.570	872.166	28.904
2748.21	0.938653	0.29727611	2267.529	856.564	11.078	2748.73	0.937791	0.78507678	2267.570	872.472	29.253
2748.22	0.938612	0.30666253	2267.531	856.870		2748.74	0.937788	0.79445471	2267.570	872777	29.602
2748.23	0.938573	0.31604855			11.428			0.80383261	2267.570	873.083	29.962
2748.24	0.938536	0.32543419	2267.533	857.177	11.778	2748.75 2748.76	0.937784	0.81321047	2267.571	873.389	30.301
2748.25	0.938501	0.3234341946	2267.534 2267.536	857.483 857.789	12.128	2748.77	0.937781	0.8225883	2267.571	873.695	30.650
2748.26	0.938467	0.33461946			12477		0.937776	0.8319661	2267.571	874.000	31.000
2748.27	0.938434	0.35358897	2267,538	858,095	12.827	2748.78			2267,571	874.306	31.349
2748.28	0.938403	0.36297323	2267.539 2267.541	858,401	13.177	2748.79 2748.8	0.937773	0.84134388	2267.571	874.612	31.698
				858.708	13.527		0.937771	_		874.917	32.048
2748.29	0.938373	0.37235719	2267.542	859.014	13.876	2748.81	0.937769	0.86009937	2267.571		32.397
2748.3	0.938345	0.38174086	2267.544	859.320	14.226	2748.82	0.937767	0.86947709	2267.571	875.223	
2748.31	0.938317	0.39112424	2267.545	859.626	14.576	2748.83	0.937766	0.87885479	2267.571	875.529	32.746
2748.32	0.938291	0.40050736	2267.546	859.932	14.925	2748.84	0.937765	0.88823247	2267.571	875.834	33.095
2748.33	0.938266	0.40989021	2267.547	860.238	15.275	2748.85	0.937763	0.89761014	2267.571	876.140	33.445
2748.34	0.938242	0.41927282	2267.549	860.544	15.624	2748.86	0.937762	0.9069678	2267.571	876.445	33.794
2748.35	0.938218	0.42865518	2267,550	860.850	15.974	2748.87	0.937762	0.91636546	2267.571	876.751	34.143
2748.36	0.938196	0.43803732	2267.551	861.156	16,324	2748.88	0.937761	0.9257431	2267.572	877.057	34.493
2748.37	0.938175	0.44741924	2267.552	861.462	16.673	2748.89	0.937761	0.93512074	2267.572	877.362	34.842
2748.38	0.938154	0.45680095	2267.553	861.768	17.023	2748.9	0,937761	0.94449838	2267.572	877.668	35.191
2748.39	0.938134	0.46618245	2267.554	862.074	17.372	2748.91	0.937760	0.95387601	2267.572	877.974	35.541
2748.4	0.938116	0.47556376	2267.555	862.380	17.722	2748.92	0.937761	0.96325365	2267.572	878.279	35.890
2748.41	0.938097	0.48494489	2267.555	862.686	18.071	2748.93	0.937761	0.97263129	2267.572	878.585	36.239
2748.42	0.938080	0.49432583	2267.556	862,992	18.421	2748.94	0.937761	0.98200892	2267.572	878.891	36.588
2748.43	0.938063	0.5037086	2267.557	863.298	18,770	2748.95	0.937762	0.99138657	2267.571	879.196	36.938
2748.44	0.938047	0.51308721	2267.558	863,604	19.120	2748.96	0.937763	1.00076422	2267.571	879.502	37.287
2748.45	0.938032	0.52246766	2267.559	863.910	19.469	2748.97	0.937763	1.01014188	2267.571	879.807	37.636
2748.46	0.938017	0.53184796	2267.559	864.216	19.819	2748.98	0.937764	1,01951955	2267.571	880.113	37.986
2748.47	0.938003	0.54122811	2267.560	864.522	20.168	2748.99	0.937766	1.02889722	2267.571	880.419	38.335
2748.48	0.937989	0.55060812	2267.561	864.827	20.518	2749	0.937767	1.03827491	2267.571	880,724	38.684
2748.49	0.937976	0.55998799	2267.561	865.133	20,867	2749.01	0.937768	1.04765262	2267.571	881.030	39.033
2748.5	0.937964	0.56936774	2267,562	865.439	21.217	2749.02	0.937770	1.05703033	2267.571	881.335	39.383
2748.51	0.937952	0.57874737	2267.562	865.745	21.566	2749.03	0.937772	1.06640807	2267.571	881.641	39.732

t (s)	٧	L	P0	М	P2	t (s)	V	L	P0	PI	P2
2749.04	0.937773	1.07578582	2267.571	881.947	40.081	2749.56	0.937984	1.56347583	2267.561	897.835	58.241
2749.05	0.937775	1.08516369	2267.571	882.252	40.430	2749.57	0.937990	1.57285572	2267,561	898.141	58.590
2749.06	0.937777	1.09454138	2267.571	882.558	40.780	2749.58	0.937995	1.58223567	2267.560	898.447	58.940
2749.07	0.937779	1.10391919	2267.571	882.863	41.129	2749.59	0.938001	1.59161567	2267.560	898.752	59.289
2749.08	0.937782	1.11329702	2267.571	883.169	41.478	2749.6	0.938007	1.60099572	2267.560	899.058	59.638
2749.09	0.937784	1.12267487	2267.570	883.475	41.827	2749.61	0.938012	1.61037583	2267.560	899.363	59.987
2749.1	0.937787	1.13205275	2267.570	883.780	42,177	2749.62	0.938018	1.619756	2267.559	899.669	60.337
2749.11	0.937789	1.14143066	2267.570	884.086	42.526	2749.63	0.938024	1.62913623	2267.559	899.974	60.686
2749.12	0.937792	1.15080859	2267.570	884.391	42.875	2749.64	0.938030	1.63851651	2267.559	900.280	61.035
2749.13	0.937795	1.16018654	2267.570	884.697	43.224	2749.65	0.938035	1.64789685	2267.558	900.585	61.384
2749.14	0.937798	1.16956453	2267.570	885.002	43.574	2749.66	0.938041	1.6572/725	2267.558	900.891	61.733
2749.15	0.937801	1.17894255	2267.570	885.308	43.923	2749.67	0.938047	1.66665771	2267.558	901.196	62.083
2749.16	0.937804	1.18832059	2267.569	885.614	44.272	2749.68	0.938053	1.67603823	2267.558	901.502	62.432
2749.17	0.937807	1.19769867	2267.569	885.919	44.621	2749.69	0.938059	1.68541881	2267.557	901.807	62.781
2749.18	0.937810	1.20707678	2267.569	886.225	44.971	2749.7	0.938065	1.69479944	2267.557	902.113	63.130
2749.19	0.937813	1.21645492	2267.569	886.530	45.320	2749.71	0.938071	1.70418014	2267.557	902.418	63,479
2749.2	0.937817	1.22583309	2267.569	886.836	45.669	2749.72	0.938077	1.71356089	2267.556	902.724	63.829
2749.21	0.937820	1.2352113	2267.569	887.141	46.018	2749.73	0.938083	1.72294171	2267.556	903.029	64.178
2749.22	0.937824	1.24458965	2267.569	887.447	46.368	2749.74	0.938089	1.73232258	2267.556	903.335	64.527
2749.23	0.937828	1.25396783	2267.568	887.753	46.717	2749.75	0.938095	1.74170351	2267.556	903.640	64.876
2749.24	0.937831	1.26334615	2267.568	888.058	47.066	2749.76	0.938101	1.75108451	2267.555	903.946	65.226
2749.25	0.937835	1.2727245	2267.568	888.364	47.415	2749.77	0.938107	1.76046557	2267.555	904.252	65.575
2749.26	0.937839	1,2821029	2267.568	888.669	47.765	2749.78	0.938113	1.76984668	2267.555	904.557	65.924
2749.27	0.937843	1.29148133	2267.568	888.975	48.114	2749.79	0.938119	1.77922786	2267.554	904.863	66.273
2749.28	0.937847	1.3008598	2267.567	889.280	48.463	2749.8	0.938126	1.7886091	2267.554	905.168	66.622
2749.29	0.937851	1.31023832	2267.567	889.586	48.812	2749.81	0.938132	1.79799041	2267.554	905.474	66.972
2749.3	0.937856	1.31961688	2267.567	889.891	49.161	2749.82	0.938138	1.80737177	2267.554	905.779	67.321
2749.31	0.937860	1.32899547	2267.567	890.197	49.511	2749.83	0.938144	1.81675319	2267.553	906.085	67.670
2749.32	0.937864	1.33837412	2267.567	890.503	49.860	2749.84	0.938150	1.82613468	2267.553	906.390	68.019
2749.33	0.937869	1.3477528	2267.566	890.808	50.209	2749.85	0.938157	1.83651623	2267.553	906.696	68.368
2749.34	0.937873	1.35713153	2267.556	891,114	50.558	2749.86	0.938163	1.84489785	2267.552	907.001	68.718
2749.35	0.937878	1.3665103	2267.566	891.419	50.908	2749.87	0.938169	1.85427952	2267.552	907.307	69.067
2749.36	0.937882	1.37588912	2267.566	891.725	51.257	2749.88	0.938175	1.86366126	2267.552	907.612	69.416
2749.37	0.937887	1.38526799	2267.556	892,030	51.606	2749.89	0.938182	1.87304306	2267.551	907.918	69.765
2749.38	0.937891	1.3946469	2267.565	892336	51.955	2749.9	0.938188	1.88242492	2267.551	908.223	70.115
2749.39	0.937896	1.40402586	2267.565	892.641	52305	2749.91	0.938194	1.89180685	2267.551	908.529	70.464
2749.4	0.937901	1.41340486	2267.565	892,947	52.654	2749.92	0.938201	1.90118884	2267.551	908.834	70,813
2749.41	0.937906	1.42278392	2267.565	893.252	53.003	2749.93	0.938207	1.9105709	2267.550	909.140	71.162
2749.42	0.937911	1.43216302	2267.564	893,558	53.362	2749.94	0.938213	1.91995301	2267.550	909.445	71.511
2749.43	0.937916	1.44154217	2267.564	893.863	53.701	2749.95	0.938220	1.9293352	2267.550	909.751	71.861
2749.44	0.937921	1.45092137	2267.564	894.169	54.051	2749.96	0.938226	1.93871744	2267.549	910.056	72.210
2749.45	0.937926	1.46030062	2267.564	894.475	54.400	2749.97	0.938233	1.94809975	2267.549	910.362	72.559
2749.46	0.937931	1.46967993	2267.563	894.780	54.749	2749.98	0.938239	1.95748212	2267.549	910.668	72908
2749.47	0.937936	1.47905928	2267.563	895.086	55.098	2749.99	0.938246	1.96696456	2267.548	910.973	73.257
2749.48	0.937941	1.48843869	2267.563	895.391	55.448	2750	0.938252	1.97624706	2267.548	911.279	73,607
2749.49	0.937946	1.49781814	2267.563	895.697	55.797	2750.01	0.938258	1.98562963	2267.548	911.584	73.956
2749.5	0.937952	1.50719765	2267.562	896.002	56.146	2750.02	0.938265	1.99501226	2267.547	911.890	74.305
2749.51	0.937957	1.51657721	2267.562	896.308	56.495	2750.03	0.938271	200439495	2267.547	912.195	74.654
2749.52	0.937962	1.52595683	2267.562	896,613	56.844	2750.04	0.938278	201377771	2267.547	912.501	75.004
2749.53	0.937968	1.5353365	2267.562	896.919	57.194	2750.05	0.938284	202316054	2267.547	912.806	75.363
2749.54	0.937973	1.54471622	2267.561	897.224	57.543	2750.06	0.938291	203254343	2267.546	913.112	75.702
2749.55	0.937979	1.554096	2267.561	897.530	57.892	2750.07	0.938297	204192638	2267.546	913.417	76.051

\$\frac{2750.08}{2750.01} \tag{0.0838310} \tag{2.0858686} \tag{2.67568} \tag{0.08586}	t (s)	V	I 1	P0	P1	P2	t (s)	V	L	P0	Pi	P2
\$\begin{align*} \begin{align*} \be			2.0512004					•				
2750.11 0.938373 2.07007863 2267.546 914.538 77.096 2750.02 0.938874 2.9586888 2.2675.02 900.027 96.807 2750.12 0.938303 0.28886412 2257.548 914.945 77.797 2750.84 0.938967 2.9786229 2.267.529 900.027 96.807 2750.13 0.938968 2.2675.024 2257.548 2257.548 914.95 77.797 2750.84 0.938967 2.9786229 2.267.529 901.027 96.807 2750.13 0.938968 2.2675.024 2257.548 916.975 76.46 2750.06 0.938967 2.9786229 2.267.529 931.143 96.855 2257.543 916.107 78.194 2750.06 0.938968 2.26052025 2257.527 931.443 96.855 2750.15 0.938968 2.18052036 2.2675.02 931.443 96.855 2750.15 0.938968 2.18052036 2.2675.02 931.443 96.855 2750.16 0.938968 2.18052036 2.2675.02 931.443 96.855 2750.16 0.938968 2.2675629 2357.542 931.749 2750.16 0.938968 2.2675629 2357.542 931.749 2750.16 0.938968 2.2675629 2357.542 931.749 2750.16 0.938968 2.18052036 2.2675.02 931.443 96.855 2750.16 0.938968 2.18052036 2.2675.02 931.443 96.855 2750.16 0.938968 2.267562 2257.52 932.00 97.00 2750.16 0.938968 2.1805208 2.267562 2.267562 2.2666 93.26756 2.2666 93.26756 2.2666 93.26756 2.2666 93.26756 2.2666 93.26756 2.2666 93.26756 93.26876 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.26756 93.2												
\$\begin{align*} \begin{align*} \be												
\$275.012	=											
\$\begin{align*}												
\$\begin{align*} \begin{align*} \be	$\overline{}$		_									
2750.15												
2750 16 0.983856 2 2.12637588 2.2657583 916 167 79 194 2750.018 0.983820 2 2.1255490 22575.33 916 472 79 533 2750.17 0.983850 2 2.2657569 2875.75 39 2.280 97 70.22 2750.18 0.983860 2 2.1656288 2.267.542 916 778 78 880 2750.19 0.983850 2 2.2657.526 932.280 97 70.22 2.750.19 0.983850 2 2.26581680 2.267.542 917.888 0.96827 2.750.77 0.9838705 2.2675.26 932.286 97.07 0.9838705 2.2675.26 932.286 98.062 2750.21 0.983886 2.12667482 2267.542 917.888 0.591 2.750.72 0.983716 2.681635 2267.525 933.827 9.870 2750.22 0.983808 2.20836748 2267.541 918.306 81.639 2750.74 0.983737 2.6901962 2267.525 933.887 9.949 2750.22 0.983402 2.2014465 2267.540 918.9187 82.256 2750.77 0.983737 2.												
2750.17												
2750.18												
2750 19 0.938375 2.15452889 2267 542 917.384 80.242 2750.21 0.938382 2.16381089 2267 542 917.389 80.591 2750.21 0.938382 2.1752485 2267 542 917.985 80.591 2750.21 0.938781 2.6615778 2257.528 933.275 2.985889 2.1752485 2267 541 918.000 81.289 2750.74 0.938713 2.6615784 2.267 541 918.000 81.289 2750.74 0.938730 2.67073223 2267 525 933.882 99.978 2750.24 0.938402 2.20144654 2.267.541 918.611 11.988 2750.75 0.938737 2.267.525 934.183 99.788 2750.25 0.938412 2.2021486 2.267.540 919.222 2.2666 2750.76 0.938747 2.267.525 934.488 100.146 2750.25 0.938442 2.2388544 2.267.539 920.144 84.082 2.750.78 0.938776 2.7206203 2.267.524 935.71 10.154 2750.25 0.938461 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Z750.2 0.938382 2.15391090 2267.542 917.898 80.591 2750.21 0.938388 2.17329455 2267.542 917.895 80.940 2750.73 0.938714 2.66196778 2267.525 933.582 98.099 2750.22 0.938386 2.18267848 2267.541 918.000 81.289 2750.73 0.938737 2.68011962 2267.525 933.887 99.449 2750.24 0.938401 2.19000248 2267.541 918.010 81.899 2750.76 0.938737 2.68011962 2267.525 934.489 100.147 2750.25 0.938415 2.21083067 2267.540 919.528 33.055 2750.77 0.938749 2.6888946 2267.525 94.884 100.147 2750.27 0.938428 2.22569911 2267.540 919.528 33.055 2750.79 0.938749 2.6886846 2267.523 95.721 101.844 2750.3 0.938447 2.2358374 2267.539 920.198 33.35 2750.73 0.938769 2.275.523												
2750.21 0.938388 2.17329455 2267.541 918.000 81.289 2750.72 0.938407 2.18267648 2267.541 918.000 81.289 2750.73 0.938407 2.2827.525 593.887 99.449 2750.24 0.938408 2.20144654 2267.541 918.016 81.639 2750.75 0.938737 2.68011862 2267.525 594.488 190.147 2750.25 0.938401 2.21020367 2.675.40 918.917 82.337 2750.77 0.938743 2.6866 2750.26 0.938421 2.22021486 2267.540 919.222 82.686 2750.77 0.938743 2.6867540 918.222 82.686 2750.78 0.938765 2.71028693 2267.524 944.80 100.147 2750.29 0.938441 2.24856782 2267.539 920.139 83.734 2750.79 0.938762 2.71766983 2267.523 965.721 10.154 2750.31 0.938467 2.2575285 925.7538 920.144 84.083 2750.81 9.938762 2.71766983 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Z750 22 0.938395 2.18267648 2267.541 918.000 81.289 2750.73 0.938730 2.6707328 2267.525 938.887 99.449 2750 24 0.938408 2.20144654 2267.541 918.011 81.639 2750.75 0.938737 2.68011962 2267.525 934.498 100.147 2750 26 0.938408 2.20144654 2267.540 918.971 22.337 2750.75 0.938732 2.6866003 2267.525 994.498 100.147 2750 27 0.938408 2.202696911 2267.540 919.522 2.666 2750.76 0.938762 2.666 2750.78 0.938762 2.66862 2750.78 0.938762 2.675.244 995.101 904.90 10.486 2750.78 0.938762 2.675.249 995.101 90.908.90 10.486 2750.78 0.938762 2.775.628 994.80 10.406 2750.78 0.938762 2.775.629 994.80 10.406 2750.78 0.938762 2.775.629 2667.525 994.101 10.466 2750.78 0.9												
2750.23 0.938401 2.19006284 2.687.541 918.916 81.639 2750.75 0.938737 2.68011862 2267.525 994.183 99.788 2750.24 0.938415 2.21083057 2.287.540 918.917 82.337 2750.77 0.938743 2.68660703 2267.524 994.804 100.446 2750.26 0.938421 2.22021486 2.267.540 918.22 2.666 2750.79 0.938756 2.760280 0.938424 2.23895944 2.267.539 996.109 0.938756 2.750.78 0.938765 2.750.78 0.938765 2.750.78 0.938765 2.750.78 0.938765 2.750.78 9.86762 2.750.78 9.938762 2.750.78 9.938762 2.750.78 9.938762 2.760.78 9.66.19 100.845 2750.31 0.938447 2.23895944 2.267.539 920.144 4.80.63 2.750.81 0.938762 2.750.750 9.957.522 936.32 101.544 2750.31 0.938447 2.2575.33 920.575.38 920.544 4.80.63 2.750.82												
\$\frac{2750.24}{2750.25} \text{0.938408} \text{2.20144686} \text{2267.540} \text{918.917} \text{8.2377} \text{2.2021486} \text{2.2221486} \text{2275.75} \text{9.918.917} \text{2.2686} \text{2.2750.27} \text{0.938428} \text{2.222598911} \text{2.2675.52} \text{9.918.922} \text{2.6866} \text{2.750.78} \text{9.938496} \text{2.22569911} \qquad												
\$\frac{2750.25}{2750.26} \text{0.938415} \frac{22150.87}{2250.26} \qq \qq\qua												
2750.26 0.938421 2.22021486 267.540 919.222 82.686 2750.78 0.938765 2.7082803 2267.524 935.109 100.195 2750.28 0.938424 2.229589911 2267.539 919.833 83.385 2750.78 0.938762 2267.523 935.721 101.195 2750.29 0.938441 2.24856782 2267.539 920.139 83.734 2750.81 0.938762 2267.523 936.022 101.844 2750.31 0.938467 2.2577528 2267.539 920.139 83.734 2750.81 0.938760 2.745044501 2267.523 936.322 101.842 2750.31 0.938467 2.267533 2267.533 2367.538 921.056 84.782 2750.83 0.938460 2.2756213 2267.537 921.866 85.480 2750.34 0.938467 2.26550002 2267.537 921.696 85.480 2750.85 0.938860 2.275521 937.554 103.290 2750.37 0.938486 2.3446036 2267.537 922.583												
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c												
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c												_
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c									$\overline{}$			
2750.3 0.938447 2.25775228 2267.539 920.444 84.083 2750.82 0.938760 2.74583279 2267.523 936.332 102.242 2750.31 0.938464 2.276513679 2267.538 920.750 84.432 2750.83 0.938760 2.7652063 267.522 936.637 102.941 2750.32 0.938467 2.28590602 2267.538 921.381 85.131 2750.84 0.938732 2.76460854 2267.522 936.934 102.941 2750.34 0.938473 2.2852074 2267.537 921.966 85.849 2750.85 0.938805 2.785328 2267.522 937.548 103.389 2750.36 0.938480 2.31406008 2267.537 922.277 86.629 2750.87 0.938812 23267.521 938.165 103.389 2750.37 0.938493 2.3244527 2267.537 922.288 86.877 2750.89 0.938823 2.8114699 2267.521 938.165 103.389 2750.4 0.938519 2.3608566 2267.536 <td></td>												
2750.31 0.938454 2.26713679 2267.538 920.750 84.432 2750.32 0.938460 2.27652138 2267.538 921.055 84.782 2750.84 0.938793 2.7666684 2267.522 936.933 102.941 2750.34 0.938467 2.28590602 2267.537 921.666 85.480 2750.86 0.938473 2.267.522 937.248 103.290 2750.35 0.938473 2.28590602 2267.537 921.972 86.629 2750.86 0.938493 2.267.522 937.248 103.290 2750.36 0.938480 2.34067552 2267.537 921.972 86.629 2750.87 0.938811 2.790.2762 2267.521 937.859 103.898 2750.39 0.938499 2.33243024 2267.536 922.888 86.877 2750.91 0.938812 2267.520 938.470 104.687 2750.41 0.938512 2.3516039 2267.535 923.805 87.924 2750.94 0.938852 2.8971399 2267.520 939.876 105.335 <tr< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>			_									
2750.32 0.938460 2.27652138 2267.538 921.055 84.782 2750.33 0.938467 2.28590602 2267.538 921.055 84.782 2750.84 0.938793 2.7660854 2267.522 936.943 102.941 2750.35 0.938460 2.28590602 2267.537 921.966 85.480 2750.35 0.938480 2.30467552 2267.537 921.972 85.629 2750.36 0.938480 2.30467552 2267.537 922.277 86.178 2750.37 0.938493 2.32344527 2267.537 922.288 86.528 2750.37 0.938499 2.33283024 2267.536 922.888 86.628 2750.39 0.938499 2.33283024 2267.536 922.888 86.628 2750.4 0.938519 2.35160039 2267.536 923.500 87.575 22750.4 0.938512 2.35160039 2267.535 923.500 87.575 2750.92 0.938848 2.89071299 2267.520 939.801 105.385 2750.4 0.938551 2.35905603 924.741 88.724 2750.92 <td></td>												
2750.33 0.938467 2.28590602 2.267.538 921.361 85.131 2750.85 0.938799 2.7739865 2.267.522 937.248 103.290 2750.34 0.938473 2.29629074 2267.537 921.696 85.480 2750.85 0.938805 2.78338453 2267.522 937.544 103.639 2750.35 0.938480 2.31406036 2267.537 922.277 86.178 2750.88 0.938811 2.7927262 2267.521 937.554 103.898 2750.37 0.938493 2.32344527 2267.537 922.288 86.528 2750.89 0.938829 2.60263726 2267.521 938.470 104.687 2750.39 0.938493 2.33234527 2267.536 922.888 86.877 2750.89 0.938829 2.60263726 2267.521 938.766 104.338 2750.4 0.938512 2.35160039 2267.536 923.805 87.575 2750.91 0.938842 2.83971399 2267.520 939.891 105.335 2750.41 0.938552 2.370												
2750.34 0.938473 2.29529074 2267.537 921.666 85.480 2750.35 0.938480 2.30467552 2267.537 921.666 85.480 2750.36 0.938480 2.30467552 2267.537 922.877 86.178 2750.37 0.938493 2.3244527 2267.537 922.878 86.528 2750.38 0.938490 2.332283024 2267.536 922.888 86.877 2750.39 0.938506 2.34221528 2257.536 922.888 86.877 2750.4 0.938512 2.35160039 2267.536 923.805 87.575 2750.91 0.938849 2.3627520 938.776 105.394 2750.41 0.938512 2.35160039 2267.535 923.805 87.924 2750.92 0.938849 2.839797609 2267.520 939.887 105.734 2750.45 0.938525 2.3797608 2.267.534 924.712 88.972 2750.94 0.938545 2.38962688 2267.534 924.772 88.972 2750.95 0.938864 <												
2750.35 0.938480 2.30467552 2267.537 921.972 85.829 2750.36 0.938486 2.31406036 2267.537 922.277 85.829 2750.37 0.938493 2.32344527 2267.537 922.277 86.178 2750.37 0.938493 2.3236024 2267.537 922.583 86.528 2750.39 0.938493 2.3236024 2267.536 922.888 86.877 2750.9 0.938522 2.800360726 2267.521 938.76 104.687 2750.39 0.938506 2.34221528 2267.536 922.805 87.524 2750.91 0.938522 2.80032559 2267.520 938.776 105.036 2750.41 0.938512 2.3606039 2267.536 923.805 87.924 2750.94 0.938532 2.8971999 2267.520 939.981 106.433 2750.43 0.938532 2.37975609 2267.535 924.416 88.623 2750.45 0.938545 2.39856888 2267.534 925.027 89.321 2750.96 0.938860 2.8678964 2267.519 940.930												
2750.36 0.938486 2.31406036 2267.537 922.277 86.178 2750.37 0.938493 2.32344527 2267.537 922.583 86.528 2750.38 0.938499 2.33283024 2267.536 922.888 86.877 2750.39 0.938506 2.34221528 2267.536 922.88 86.877 2750.41 0.938512 2.35160039 2267.536 923.500 87.575 2750.42 0.938525 2.37037079 2267.535 923.805 87.924 2750.43 0.938532 2.3975609 2267.535 924.411 88.623 2750.44 0.938532 2.391446 2267.534 925.027 89.321 2750.45 0.938553 2.391446 2267.534 924.722 88.972 2750.46 0.938551 2.4079123 2267.534 925.027 89.321 2750.47 0.938551 2.4079123 2267.534 925.333 926.5944 90.369 2267.518 941.526 107.31 2750.54 0.												
2750.37 0.938493 2.32344527 2267.537 922.583 86.528 2750.38 0.938499 2.33283024 2267.536 922.888 86.877 2750.39 0.938506 2.34221528 2267.536 923.500 87.575 2750.41 0.938512 2.35160039 2267.536 923.500 87.575 2750.42 0.938525 2.37037079 2267.535 923.411 88.274 2750.43 0.938532 2.38941446 2267.535 924.111 88.274 2750.44 0.938532 2.3797560 2267.535 924.111 88.274 2750.44 0.938532 2.38941446 2267.535 924.111 88.274 2750.45 0.938545 2.39852688 2267.534 925.027 88.972 2750.47 0.938551 2.40791238 2267.534 925.027 89.321 2750.49 0.938564 2.4268356 2267.533 925.638 90.020 2750.49 0.938567 2.4454555 2267.532 926.639												
2750.38 0.938499 2.33283024 2267.536 922.888 86.877 2750.39 0.938506 2.34221528 2267.536 923.194 87.226 2750.4 0.938512 2.35160039 2267.536 923.500 87.575 2750.41 0.938519 2.36098566 2267.535 923.805 87.924 2750.42 0.938525 2.37037079 2267.535 924.111 88.274 2750.43 0.938532 2.37975609 2267.535 924.416 88.623 2750.44 0.938545 2.389314146 2267.534 925.027 89.321 2750.46 0.938545 2.3985268 2267.534 925.027 89.321 2750.47 0.938551 2.40791238 2267.533 925.627 89.321 2750.49 0.938564 2.4268356 2267.533 925.638 90.020 2750.49 0.938571 2.4360836 2267.533 925.638 90.020 2750.49 0.938571 2.43608366 2267.533 925.553												
2750.39 0.938506 2.34221528 2267.536 923.194 87.226 2750.4 0.938512 2.35160039 2267.536 923.500 87.575 2750.41 0.938519 2.36098566 2267.535 923.500 87.575 2750.42 0.938525 2.37037079 2267.535 924.111 88.274 2750.43 0.938532 2.37975609 2267.535 924.416 88.623 2750.44 0.938538 2.38914146 2267.534 924.722 88.972 2750.45 0.938545 2.39852688 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.533 925.638 90.020 2750.48 0.938568 2.41729794 2267.533 925.638 90.020 2750.51 0.938571 2.464855 2267.532 926.555 91.067 2750.52 0.938590 2.4642267 2267.532 926.555 91.067 2750.54 0.938699 2.4642267 2267.531 927.777												
2750.4 0.938512 2.35160039 2267.536 923.500 87.575 2750.41 0.938519 2.36098566 2267.535 923.805 87.924 2750.42 0.938525 2.37077609 2267.535 924.111 88.274 2750.43 0.938532 2.37975609 2267.535 924.416 88.623 2750.44 0.938538 2.38914146 2267.534 924.722 88.972 2750.45 0.938545 2.38862688 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.534 925.333 89.671 2750.47 0.938568 2.41729794 2267.533 925.638 90.020 2750.49 0.938577 2.445455 2267.532 926.860 91.417 2750.50 0.938599 2.445455 2267.532 926.860 91.417 2750.50 0.938590 2.4642267 2267.532 926.860 91.417 2750.55 0.938610 2.482938473 2267.531 927.116												
2750.41 0.938519 2.36098566 2267.535 923.805 87.924 2750.42 0.938525 2.37037079 2267.535 924.111 88.274 2750.43 0.938532 2.37975609 2267.535 924.111 88.274 2750.44 0.938532 2.37975609 2267.535 924.712 88.972 2750.45 0.938545 2.38962688 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.534 925.333 89.671 2750.49 0.938564 2.42668356 2267.533 925.638 90.020 2750.49 0.938571 2.43608925 2267.532 926.555 91.067 2750.51 0.9385890 2.446455 2267.532 926.860 91.417 2750.55 0.938697 2.47361265 2267.532 926.860 91.766 2750.55 0.938690 2.4642267 2267.531 927.166 91.766 2750.55 0.9388692 2.47361265 2267.531 928.862												
2750.42 0.938525 2.37037079 2267.535 924.111 88.274 2750.43 0.938532 2.37975609 2267.535 924.416 88.623 2750.44 0.938538 2.38914146 2267.534 924.722 88.972 2750.45 0.938545 2.3985268 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.534 925.333 89.671 2750.47 0.938558 2.41729794 2267.533 925.638 90.020 2750.49 0.938561 2.42668356 2267.533 925.944 90.389 2750.49 0.938571 2.43606925 2267.533 926.944 90.389 2750.50 0.938584 2.45484082 2267.532 926.860 91.417 2750.51 0.938597 2.447361265 2267.532 926.860 91.766 2750.52 0.938690 2.4642267 2267.532 926.860 91.766 2750.52 0.938690 2.47361265 2267.532 927.777												
2750.43 0.938532 2.37975609 2267.535 924.416 88.623 2750.44 0.938538 2.38914146 2267.534 924.722 88.972 2750.45 0.938545 2.38952688 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.534 925.333 89.671 2750.47 0.938551 2.40791238 2267.533 925.633 90.020 2750.48 0.938564 2.4268356 2267.533 925.944 90.389 2750.49 0.938571 2.43606925 2267.532 926.555 91.067 2750.5 0.938577 2.445455 2267.532 926.860 91.417 2750.52 0.938599 2.4642267 2267.531 927.777 92.16 2750.55 0.938610 2.49238473 2267.531 927.777 92.464 2750.50 0.938690 2.4642267 2267.532 926.860 91.766 2750.55 0.938691 2.47361265 2267.532 927.777 <												
2750.44 0.938538 2.38914146 2267.534 924.722 88.972 2750.45 0.938538 2.38952688 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.534 925.027 89.321 2750.47 0.938551 2.40791238 2267.533 925.633 89.671 2750.48 0.938564 2.4268356 2267.533 925.9344 90.369 2750.49 0.938571 2.43606925 2267.533 926.249 90.718 2750.5 0.938577 2.445455 2267.532 926.860 91.417 2750.5 0.938590 2.4642267 2267.532 926.860 91.417 2750.5 0.938590 2.4642267 2267.532 926.860 91.766 2750.5 0.938590 2.4642267 2267.532 926.860 91.766 2750.5 0.938590 2.4642267 2267.532 927.166 91.766 2750.5 0.938590 2.4642267 2267.532 928.882 227												
2750.45 0.938545 2.39852688 2267.534 925.027 89.321 2750.46 0.938551 2.40791238 2267.534 925.027 89.321 2750.47 0.938558 2.41729794 2267.533 925.638 90.020 2750.48 0.938568 2.41729794 2267.533 925.638 90.020 2750.49 0.938571 2.43608925 2267.533 926.249 90.718 2750.5 0.938577 2.445455 2267.532 926.855 91.067 2750.51 0.938584 2.45484082 2267.532 926.860 91.417 2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.54 0.938697 2.47361265 2267.531 927.777 92.464 2750.55 0.938690 2.4642267 2267.531 927.777 92.464 2750.55 0.938603 2.48293473 2267.531 927.777 92.464 2750.56 0.938616 2.50177087 2267.531 928.082												
2750.46 0.938551 2.40791238 2267.534 925.333 89.671 2750.47 0.938558 2.41729794 2267.533 925.638 90.020 2750.48 0.938564 2.42686356 2267.533 925.638 90.020 2750.49 0.938571 2.43669925 2267.533 926.249 90.718 2750.5 0.938577 2.446455 2267.532 926.860 91.417 2750.51 0.938584 2.45484082 2267.532 926.860 91.417 2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.53 0.938597 2.47361265 2267.531 927.471 92.115 2750.54 0.938690 2.4642267 2267.532 927.471 92.115 2750.55 0.938603 2.482938473 2267.531 927.777 92.464 2750.55 0.938616 2.50177087 2267.531 928.082 92.813 2750.55 0.938616 2.50177087 2267.531 928.082												
2750.47 0.938558 2.41729794 2267.533 925.638 90.020 2750.48 0.938564 2.4268356 2267.533 925.944 90.369 2750.49 0.938571 2.43606925 2267.533 926.249 90.718 2750.5 0.938577 2.445455 2267.532 926.860 91.417 2750.51 0.938584 2.45464082 2267.532 926.860 91.417 2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.53 0.938590 2.47361265 2267.532 927.471 92.114 2750.54 0.938603 2.48299866 2267.531 927.471 92.114 2750.55 0.938610 2.482238473 2267.531 928.082 92.813 2750.57 0.938622 2.51115708 2267.530 928.683 93.661 2750.58 0.938629 2.5264334 2267.530 928.989 93.861 2750.58 0.938622 2.51115708 2267.530 928.989												
2750.48 0.938564 2.42668356 2267.533 925.944 90.369 2750.49 0.938571 2.43606925 2267.533 926.249 90.718 2750.5 0.938577 2.445455 2267.532 926.555 91.067 2750.51 0.938584 2.45484082 2267.532 926.860 91.417 2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.53 0.938599 2.47361265 2267.532 927.471 92.115 2750.54 0.938603 2.48299866 2267.531 927.777 92.484 2750.55 0.938610 2.48238473 2267.531 928.082 92.813 2750.57 0.938622 2.51115708 2267.530 928.683 93.612 2750.58 0.938616 2.50147087 2267.531 928.989 93.861 2750.58 0.938622 2.51115708 2267.530 928.693 93.512 2750.58 0.938629 2.52054334 2267.530 928.999												
2750.49 0.938571 2.43606925 2267.533 926.249 90.718 2751.01 0.938896 2.92421227 2267.517 942.137 106.877 2750.5 0.938577 2.445455 2267.532 926.855 91.067 2751.02 0.938902 2.93360126 2267.517 942.442 109.227 2750.51 0.938590 2.4642267 2267.532 927.166 91.766 2751.03 0.938908 2.94299032 2267.517 942.442 109.227 2750.52 0.938590 2.4642267 2267.532 927.471 92.115 2751.04 0.938914 2.96237944 2267.516 943.063 109.925 2750.54 0.938603 2.48299866 2267.531 927.777 92.464 2751.06 0.938920 2.97115785 2267.516 943.369 110.274 2750.55 0.938610 2.49238473 2267.531 928.082 92.818 93.163 2751.07 0.938937 2.98054715 2267.516 943.970 110.973 2750.57 0.938622 <td></td>												
2750.5 0.938577 2.445455 2267.532 926.555 91.067 2750.51 0.938584 2.45484082 2267.532 926.860 91.417 2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.53 0.938597 2.47361265 2267.532 927.471 92.115 2750.54 0.938610 2.49238473 2267.531 927.777 92.464 2750.55 0.938610 2.49238473 2267.531 928.082 92.813 2750.57 0.938622 2.51115708 2267.530 928.693 93.512 2750.58 0.938629 2.52054334 2267.530 928.999 93.861												
2750.51 0.938584 2.45484082 2267.532 926.860 91.417 2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.53 0.938597 2.47361265 2267.532 927.471 92.115 2750.54 0.938603 2.48299866 2267.531 927.777 92.464 2750.55 0.938610 2.49238473 2267.531 928.082 92.813 2750.56 0.938616 2.50177087 2267.531 928.388 93.163 2750.57 0.938622 2.51115708 2267.530 928.693 93.512 2750.58 0.938629 2.52054334 2267.530 928.999 93.861						90.718						
2750.52 0.938590 2.4642267 2267.532 927.166 91.766 2750.53 0.938597 2.47361265 2267.532 927.471 92.115 2751.05 0.938692 2.96176862 2267.516 943.063 109.925 2750.54 0.938603 2.48299866 2267.531 927.777 92.464 2751.06 0.938926 2.97115785 2267.516 943.664 110.623 2750.55 0.938610 2.49238473 2267.531 928.082 92.813 2751.07 0.938931 2.98054715 2267.516 943.970 110.973 2750.57 0.938622 2.51115708 2267.530 928.693 93.512 2751.09 0.938943 2.99932591 2267.515 944.886 112.020 2750.58 0.938629 2.52064334 2267.530 928.989 93.861 2751.1 0.938949 3.00871538 2267.515 944.886 112.020												
2750.53 0.938597 2.47361265 2267.532 927.471 92.115 2751.05 0.938820 2.96176862 2267.516 943.359 110.274 2750.54 0.938603 2.48299866 2267.531 927.777 92.464 2751.06 0.938926 2.97115785 2267.516 943.664 110.623 2750.55 0.938610 2.49238473 2267.531 928.082 92.813 2751.07 0.938931 2.98054715 2267.516 943.970 110.973 2750.57 0.938622 2.51115708 2267.530 928.693 93.512 2751.09 0.938943 2.99932591 2267.515 944.886 112.020 2750.58 0.938629 2.52064334 2267.530 928.999 93.861 2751.1 0.938949 3.00871538 2267.515 944.886 112.020												
2750.54 0.938603 2.4829866 2267.531 927.777 92.464 2751.06 0.938926 2.97115785 2267.516 943.664 110.623 2750.55 0.938610 2.49238473 2267.531 928.082 92.813 2751.07 0.938931 2.98054715 2267.516 943.970 110.973 2750.56 0.938616 2.50177087 2267.531 928.683 93.163 2751.08 0.938937 2.9899365 2267.515 944.275 111.322 2750.58 0.938629 2.52064334 2267.530 928.989 93.861 2751.1 0.938949 3.00871538 2267.515 944.886 112.020				2267.532	927.166	91.766	2751.04		2.95237944			
2750.55 0.938610 2.49238473 2267.531 928.082 92.813 2750.56 0.938616 2.50177087 2267.531 928.388 93.163 2750.57 0.938622 2.51115708 2267.530 928.693 93.512 2750.58 0.938629 2.52064334 2267.530 928.999 93.861 2751.01 0.938949 3.00871538 2267.515 944.886 112.020												
2750.56 0.938616 2.50177087 2267.531 928.388 93.163 2751.08 0.938937 2.9899365 2267.515 944.275 111.322 2750.57 0.938622 2.51115708 2267.530 928.693 93.512 2751.09 0.938943 2.99932591 2267.515 944.581 111.671 2750.58 0.938629 2.52054334 2267.530 928.999 93.861 2751.1 0.938949 3.00871538 2267.515 944.886 112.020	2750.54	0.938603	2.48299866	2267.531	927,777	92.464	2751.06	0.938926	2.97115785	2267.516	943.664	110.623
2750.57 0.938622 251115708 2267.530 928.693 93.512 2751.09 0.938943 2.99932591 2267.515 944.581 111.671 2750.58 0.938629 2.52054334 2267.530 928.999 93.861 2751.1 0.938949 3.00871538 2267.515 944.886 112.020	2750.55	0.938610	2.49238473	2267.531	928.082	92.813	2751.07	0.938931	2.98054715	2267.516	943.970	110.973
2750.58 0.938629 2.52054334 2267.530 928.999 93.861 2751.1 0.938949 3.00871538 2267.515 944.886 112.020	2750.56	0.938616	2.50177087	2267.531	928,388	93.163	2751.08	0.938937	2.9899365	2267.515	944.275	111.322
		0.938622	251115708	2267.530	928.693	93.512	2751.09	0.938943	2.99932591	2267.515	944.581	111.671
0750 50 0 000005 0 50000007 0007 500 000 0	2750.58	0.938629	2.52054334	2267.530	928.999	93.861	2751.1	0.938949	3.00871538	2267.515	944.886	112.020
	2750.59	0.938635	2.52992967	2267.530	929.304	94.210	2751.11	0.938955	3.01810491	2267.514	945.192	112.370

Tabla II.4. Datos iniciales del tercer tramo.

t (s)	V	L	P0	P1	P2	P3
3028.42	0.844	0.100	2272.231	8332.709	8554.666	0.000
3028.43	0.846	0.108	2271.749	8330.222	8551.799	-1.794
3028.44	0.846	0.117	2271.746	8330.104	8551.665	-1.939
3028.94	0.890	0.549	2269.796	8324.543	8545.588	-8.384
3029.44	0.909	0.997	2268.926	8318.288	8538.563	-15.959
3029.94	0.916	1.453	2268.601	8311.947	8531.364	-23.773
3030.44	0.917	1.910	2268.547	8305.646	8524.170	-31.604
3030.94	0.915	2.367	2268.632	8299.410	8517.031	-39.388
3031.44	0.912	2.824	2268.787	8293.242	8509.959	-47.105
3031.94	0.908	3.278	2268.975	8287.138	8502.957	-54.749
3032.44	0.904	3.731	2269.174	8281.093	8496.020	-62.323
3032.94	0.899	4.181	2269.371	8275.100	8489.143	-69.832
3033.44	0.895	4.629	2269.559	8269.153	8482.319	-77.282
3033.94	0.891	5.076	2269.736	8263.245	8475.542	-84.680
3034.44	0.888	5.520	2269.900	8257.372	8468.806	-92.032
3034.94	0.884	5.963	2270.049	8251.528	8462.106	-99.343
3035.44	0.881	6.404	2270.185	8245.710	8455.437	-106.620
3035.94	0.879	6.844	2270.308	8239.914	8448.796	-113.865
3036.44	0.876	7.282	2270.419	8234.137	8442.178	-121.084
3036.94	0.874	7.720	2270.519	8228.377	8435.581	-128.279
3037.44	0.872	8.156	2270.609	8222.632	8429.002	-135.453
3037.94	0.870	8.591	2270.689	8216.899	8422.438	-142.610
3038.44	0.868	9.026	2270.762	8211.178	8415.889	-149.750
3038.94	0.867	9.459	2270.826	8205.466	8409.353	-156.876
3039.44	0.866	9.892	2270.884	8199.763	8402.827	-163.990
3039.94	0.864	10.325	2270.936	8194.068	8396.311	-171.092
3040.44	0.863	10.757	2270.983	8188.380	8389.804	-178.184
3040.94	0.862	11.188	2271.025	8182.699	8383.304	-185.268
3041.44	0.862	11.619	2271.063	8177.023	8376.812	-192.343
3041.94	0.861	12.049	2271.097	8171.352	8370.326	-199.411
3042.44	0.860	12.479	2271.128	8165.686	8363.847	-206.472
3042.94	0.860	12.909	2271.155	8160.024	8357.372	-213.527
3043.44	0.859	13.339	2271.180	8154.367	8350.903	-220.576
3043.94	0.858	13.768	2271.203	8148.713	8344.438	-227.620
3044.44	0.858	14.197	2271.223	8143.063	8337.978	-234.659
3044.94	0.858	14.626	2271.241	8137.416	8331.522	-241.693
3045.44	0.857	15.054	2271.258	8131.772	8325.069	-248.724
3045.94	0.857	15.483	2271.273	8126.131	8318.620	-255.750
3046.44	0.857	15.911	2271.287	8120.493	8312.175	-262.772
3046.94	0.856	16.339	2271.299	8114.858	8305.732	-269.790
3047.44	0.856	16.767	2271.311	8109.225	8299.293	-276.805
3047.94	0.856	17.195	2271.321	8103.594	8292.857	-283.817
3048.44	0.856	17.623	2271.330	8097.967	8286.424	-290.826
3048.94	0.855	18.050	2271.339	8092.341	8279.993	-297.831
3049.44	0.855	18.478	2271.347	8086.718	8273.566	-304.833
3049.94	0.855	18.905	2271.354	8081.096	8267.140	-311.833
3050.44	0.855	19.332	2271.360	8075.477	8260.718	-318.830
3050.94	0.855	19.760	2271.366	8069.860	8254.297	-325.824
3051.44	0.855	20.187	2271.371	8064.245	8247.880	-332.815
3051.94	0.854	20.614	2271.376	8058.632	8241.464	-339.804
3052.44	0.854	21.041	2271.381	8053.021	8235.051	-346.790
3052.94	0.854	21.468	2271.385	8047.412	8228.640	-353.774
3053.44	0.854	21.895	2271.388	8041.805	8222.231	-360.756

t (s)	V	L	P0	P1	P2	P3
3053.94	0.854	22.322	2271.392	8036.199	8215.824	-367.735
3054.44	0.854	22.749	2271.395	8030.595	8209.419	-374.712
3054.94	0.854	23.176	2271.397	8024.993	8203.016	-381.686
3055.44	0.854	23.603	2271.400	8019.393	8196.616	-388.659
3055.94	0.854	24.030	2271.402	8013.794	8190.217	-395.629
3056.44	0.854	24.457	2271.404	8008.198	8183.820	-402.597
3056.94	0.854	24.884	2271.405	8002.602	8177.426	-409.563
3057.44	0.854	25.311	2271.407	7997.009	8171.033	-416.526
3057.94	0.854	25.738	2271.408	7991.417	8164.642	-423.488
3058.44	0.854	26.164	2271.409	7985.826	8158.253	-430.448
3058.94	0.854	26.591	2271.410	7980.238	8151.865	-437.406
3059.44	0.854	27.018	2271.411	7974.650	8145.480	-444.361
3059.94	0.854	27.445	2271.411	7969.065	8139.096	-451.315
3060.44	0.854	27.872	2271.412	7963.480	8132.714	-458.267
3060.94	0.854	28.298	2271.412	7957.898	8126.334	-465.217
3061.44	0.854	28.725	2271.412	7952.317	8119.955	-472.165
3061.94	0.854	29.152	2271.412	7946.737	8113.578	-479.111
3062.44	0.854	29.579	2271.412	7941.159	8107.203	-486.055
3062.94	0.854	30.005	2271.412	7935.582	8100.830	-492.998
3063.44	0.854	30.432	2271.412	7930.007	8094.458	-499.938
3063.94	0.854	30.859	2271.411	7924.433	8088.088	-506.877
3064.44	0.854	31.286	2271.411	7918.860	8081.720	-513.814
3064.94	0.854	31.712	2271.410	7913.289	8075.353	-520.750
3065.44	0.854	32.139	2271.410	7907.719	8068.987	-527.683
3065.94	0.854	32.566	2271.409	7902.151	8062.624	-534.615
3066.44	0.854	32.993	2271.408	7896.584	8056.262	-541.545
3066.94	0.854	33.420	2271.407	7891.019	8049.901	-548.473
3067.44	0.854	33.847	2271.406	7885.455	8043.542	-555.400
3067.94	0.854	34.273	2271.405	7879.892	8037.185	-562.325
3068.44	0.854	34.700	2271.404	7874.330	8030.829	-569.248
3068.94	0.854	35.127	2271.403	7868.770	8024.475	-576.170
3069.44	0.854	35.554	2271.402	7863.211	8018.122	-583.090
3069.94	0.854	35.981	2271.401	7857.654	8011.771	-590.008
3070.44	0.854	36.408	2271.399	7852.097	8005.421	-596.924
3070.94	0.854	36.835	2271.398	7846.542	7999.073	-603.839
3071.44	0.854	37.262	2271.397	7840.989	7992.726	-610.753
3071.94	0.854	37.689	2271.395	7835.437	7986.380	-617.664
3072.44	0.854	38.116	2271.394	7829.885	7980.037	-624.575
3072.94	0.854	38.543	2271.392	7824.336	7973.694	-631.483
3073.44	0.854	38.970	2271.390	7818.787	7967.353	-638.390
3073.94	0.854	39.397	2271.389	7813.240	7961.014	-645.295
3074.44	0.854	39.824	2271.387	7807.694	7954.676	-652.199
3074.94	0.854	40.251	2271.385	7802.149	7948.339	-659.101
3075.44	0.854	40.678	2271.384	7796.606	7942.004	-666.002
3075.94	0.854	41.105	2271.382	7791.064	7935.670	-672.901
3076.44	0.854	41.532	2271.380	7785.523	7929.338	-679.799
3076.94	0.854	41.959	2271.378	7779.983	7923.007	-686.694
3077.44	0.854	42.387	2271.376	7774.444	7916.678	-693.589
3077.94	0.854	42.814	2271.374	7768.907	7910.350	-700.482
3078.44	0.855	43.241	2271.373	7763.371	7904.023	-707.373
3078.94	0.855	43.668	2271.371	7757.836	7897.698	-714.263
3079.44	0.855	44.095	2271.369	7752.302	7891.374	-721.151
3079.94	0.855	44.523	2271.367	7746.770	7885.051	-728.038

t (s)	٧		P0	P1	P2	P3
3080.44	0.855	44.950	2271.364	7741.239	7878.730	-734.923
3080.94	0.855	45.377	2271.362	7735.709	7872.411	-741.807
3081.44	0.855	45.805	2271.360	7730.180	7866.092	-748.690
3081.94	0.855	46.232	2271.358	7724.652	7859.775	-755.570
3082.44	0.855	46.660	2271.356	7719.126	7853.460	-762.450
3082.94	0.855	47.087	2271.354	7713.601	7847.145	-769.328
3083.44	0.855	47.515	2271.352	7708.077	7840.832	-776.204
3083.94	0.855	47.942	2271.349	7702.554	7834.521	-783.079
3084.44	0.855	48.370	2271.347	7697.032	7828.211	-789.952
3084.94	0.855	48.797	2271.345	7691.511	7821.902	-796.824
3085.44	0.855	49.225	2271.343	7685.992	7815.594	-803.695
3085.94	0.855	49.652	2271.340	7680.474	7809.288	-810.564
3086.44	0.855	50.080	2271.338	7674.957	7802.983	-817.431
3086.94	0.855	50.508	2271.336	7669.441	7796.680	-824.297
3087.44	0.855	50.935	2271.333	7663.926	7790.378	-831.162
3087.94	0.855	51.363	2271.331	7658.413	7784.077	-838.025
3088.44	0.856	51.791	2271.329	7652.900	7777.777	-844.887
3088.94	0.856	52.218	2271.326	7647.389	7771.479	-851.747
3089.44	0.856	52.646	2271.324	7641.879	7765.182	-858.606
3089.94	0.856	53.074	2271.321	7636.370	7758.887	-865.464
3090.44	0.856	53.502	2271.319	7630.862	7752.592	-872.320
3090.94	0.856	53.930	2271.316	7625.356	7746.300	-879.174
3091.44	0.856	54.358	2271.314	7619.850	7740.008	-886.027
3091.94	0.856	54.786	2271.311	7614.346	7733.718	-892.879
3092.44	0.856	55.214	2271.309	7608.843	7727.429	-899.729
3092.94	0.856	55.642	2271.306	7603.341	7721.141	-906.578
3093.44	0.856	56.070	2271.304	7597.840	7714.854	-913.426
3093.94	0.856	56.498	2271.301	7592.340	7708.569	-920.272
3094.44	0.856	56.926	2271.299	7586.841	7702.285	-927.116
3094.94	0.856	57.354	2271.296	7581.344	7696.003	-933.960
3095.44	0.856	57.782	2271.294	7575.847	7689.722	-940.802
3095.94	0.856	58.210	2271.291	7570.352	7683.442	-947.642
3096.44	0.856	58.638	2271.288	7564.858	7677.163	-954.481
3096.94	0.857	59.067	2271.286	7559.365	7670.886	-961.319
3097.44	0.857	59.495	2271.283	7553.873	7664.610	-968.155
3097.94	0.857	59.923	2271.281	7548.382	7658.335	-974.990
3098.44	0.857	60.351	2271.278	7542.893	7652.061	-981.823
3098.94	0.857	60.780	2271.275	7537.404	7645.789	-988.655
3099.44	0.857	61.208	2271.273	7531.917	7639.518	-995.486
3099.94	0.857	61.637	2271.270	7526.430	7633.248	-1002.315
3100.44	0.857	62.065	2271.267	7520.945	7626.980	-1009.143
3100.94	0.857	62.493	2271.265	7515.461	7620.713	-1015.970
3101.44	0.857	62.922	2271.262	7509.978	7614.447	-1022.795
3101.94	0.857	63.350	2271.259	7504.496	7608.182	-1029.618
3102.44	0.857	63.779	2271.257	7499.015	7601.919	-1036.441
3102.94	0.857	64.208	2271.254	7493.535	7595.657	-1043.262
3103.44	0.857	64.636	2271.251	7488.057	7589.396	-1050.081
3103.94	0.857	65.065	2271.248	7482.579	7583.136	-1056.900
3104.44	0.857	65.494	2271.246	7477.103	7576.878	-1063.717
3104.94	0.858	65.922	2271.243	7471.628	7570.621	-1070.532
3105.44	0.858	66.351	2271.240	7466.154	7564.365	-1077.346
				1 1 2 2 1 1 2 1		
3105.94	0.858	66.780	2271.237	7460.680	7558.110	-1084.159

ANEXO III LISTADO Y RESULTADOS DE PROGRAMA DE FUERTES ET AL (1997)

Para resolver el problema utilizando el modelo Fuertes et al (1997), se empleó un programa de cómputo escrito en el lenguaje C; A continuación se presenta el código del programa.

LISTADO DE PROGRAMA

```
#include<stdio.h>
#include<conio.h>
#include<iostream.h>
#include<dos.h>
#include<math.h>

// DECLARACIÓN DE VARIABLES

main()
{
   int a,b,t;//tiempos
```

```
int v,v1,L,x1,p,k,N,i;
double tol1,tol2,tol3,tol4;
double hmax,hmin;
double w1,w2,w3,w4,w5,w11,w21,w31,w41,w51;
double k11,k12,k13,k14,k21,k22,k23,k24,k31,k32,k33,k34,k41,k42,k43,k44,k51,
      k52,k53,k54,k61,k62,k63,k64;
double s,z,R1,R2,R3,R4,x,y,y1,H;
double t1,h,Z,L1,L2,p1,p2,Lt,Lb,s1,s2,s3,s4;
double P11,P21,P31,P41,P51,P61;
clrscr();
// DATOS DE ENTRADA DEL PROBLEMA
cout<<"datos de entrada(tiempos)"<<endl;
cout<<"tiempo a:"<<endl;
cin>>a;
cout<<"tiempo b:"<<endl;
cin>>b;
cout<<"Entero positivo N:"<<endl;
cin>>N;
cout < "condicion inicial v:" < < endl;
cin>>v;
cout<<"condicion inicial v1:"<<endl;
cin>>v1;
cout << "condicion inicial L:" << endl;
cin>>L;
cout<<"condicion inicial x1:"<<endl;
cin>>x1;
cout<<"condicion inicial p:"<<endl;
cin>>p;
```

```
cout<<"Longitud del tramo (L1):"<<endl;
cin>>L1;
cout<<"Angulo de inclinaci\u00e9n del tramo 1 (p1):"<<endl;
cin>>p1;
cout<<"Longitud del tramo (L2):"<<endl;
cin>>L2;
cout<<"Angulo de inclinaci\u00e9n del tramo 2 (p2):"<<endl;
// CONDICIONES INICIALES
Lt=L1+L2;
t=a;
w1=v;
w2=v1;
w3=L;
w4=x1;
w5=p;
h=(.1*(b-a))/(N*.1);
H=248.51673;
cout<<"tiempo\t";
cout<<"w1\t";
cout<<"w2\t";
cout<<"w3\t";
cout<<"w4\t";
cout<<"w5\t"<<endl;
cout<<t;
cout<<"\t"<<w1;
cout<<"\t"<<w2;
cout<<"\t"<<w3;
```

```
cout<<"\t"<<w4;
cout<<"\t"<<w5<<endl:
// CONDICIONES PARA LA VARIACIÓN DEL TERMINO GRAVITATORIO
for(k=1;k<N;k++)
  // t=a+k*h; //i=1,2,3.... N
   if((w4+Lb)<Lt&&w4>L1)
      z=sin(p2);
   if((w4+Lb)<Lt\&w4<=L1)
      z=(((L1-w4)/Lb)*sin(p1))+(1+(w4-L1)/Lb)*sin(p2);
   if((w4+Lb)>=Lt\&w4>L1)
      {
      z=sin(p2);
      Lb=Lt-w4;
      }
   if((w4+Lb)>=Lt\&w4<=L1)
      z=(((L1-w4)/(Lt-w4))*sin(p1))+((L2*sin(p2))/(Lt-w4));
      Lb=Lt-w4;
      }
   if (w3<Lt\&w3<=L1)
      s=sin(p1);
   if (w3<Lt&&w3>L1)
      s=((L1*sin(p1))/w3)+((1-(L1/w3))*sin(p2));
   if(w3>=Lt)
      s=((L1*sin(p1))+(L2*sin(p2)))/Lt;
      H=147.15;
      }
```

```
P11=(1462501.96/pow(w4-w3,1.2));
    if (w4>=Lt)
        P11=10333;
       if(w3>=Lt)
         P11=0;
// APLICACIÓN DEL MÉTODO DE RUNGE-KUTTA
k11=h^*((H/w3)-((1.5*pow(w1,2))/w3)-(P11/w3)
(101.936*w3))-(9.81*s)-(0.147637*pow(w1,2));
k12=h*((((1462501.96/pow(w4-w3,1.2))-10333)/(101.936*Lb))-(9.81*z)
-(0.1476378*pow(w2,2)));
//q = pow((w4-w3), 1.2);
// cout<q<endl;
k13=h*(w1);
k14=h*(w2);
P21=(1462501.96/pow((w4+((.1/.4)*k14))-(w3+((.1/.4)*k13)),1.2));
    if (w4>=Lt)
        P21=10333;
        if(w3>=Lt)
          P21=0:
k21=h^*((H/(w3+((.1/.4)*k13)))-((1.5*pow((w1+((.1/.4)*k11)),2))/
(w3+((.1/.4)*k13)))-(P21/(101.936*(w3+((.1/.4)*k13))))-(9.81*s)-(0.147637)
```

```
*pow(w1+((.1/.4)*k11),2)));
 // q = 248.51673/(w3 + ((1/4)*k13));
  // cout<<q<endl:
k22=h^*((((1462501.96/pow((w4+((.1/.4)*k14))-(w3+((.1/.4)*k13)),1.2))-
10333)/(101.936*Lb))
-(9.81*z)-(0.1476378*pow(w2+((.1/.4)*k12),2)));
k23=h*((w1+(.1/.4*k11))):
k24=h*((w2+(.1/.4*k12)));
   P31=(1462501.96/pow((w4+((.03/.32)*k14)+((.09/.32)*k24))-
   (w3+((.03/.32)*k13)+((.09/.32)*k23)),1.2));
        if (w4>=Lt)
          P31=10333:
          if(w3>=Lt)
             P31=0;
k31=h^*((H/(w3+((.03/.32)*k13)+((.09/.32)*k23)))-((1.5*pow((w1+((.03/.32)*k11)
+((.09/.32)*k21)),2))/(w3+((.03/.32)*k13)+((.09/.32)*k23)))-(P31/(101.936
*(w3+((.03/.32)*k13)+((.09/.32)*k23))))-(9.81*s)-(0.147637*pow
(w1+((.03/.32)*k11)+((.09/.32)*k21),2)));
k32=h*((((1462501.96/pow((w4+((.03/.32)*k14)+((.09/.32)*k24))-
(w3+((.03/.32)*k13)
+((.09/.32)*k23)),1.2))-10333)/(101.936*Lb))-(9.81*z)-
(0.1476378*pow(w2+((.03/.32)
*k12)+((.09/.32)*k22),2)));
```

```
k33=h*((w1+((.03/.32)*k11)+((.09/.32)*k21)));
k34=h*((w2+((.03/.32)*k12)+((.09/.32)*k22)));
  P41=(1462501.96/pow((w4+((.1932/.2197)*k14)-((.7200/.2197)*k24)
  +((.7296/.2197)*k34))-(w3+((.1932/.2197)*k13)-((.7200/.2197)*k23)
  +((.7296/.2197)*k33)),1.2));
       if (w4>=Lt)
         P41=10333;
         if(w3>=Lt)
            P41=0:
k41=h*((H/(w3+((.1932/.2197)*k13)-((.7200/.2197)*k23)+((.7296/.2197)*k33)))-
((1.5*pow((w1+((.1932/.2197)*k11)-((.7200/.2197)*k21)+((.7296/.2197)*k31)),2))/
(w3+((.1932/.2197)*k13)-((.7200/.2197)*k23)+((.7296/.2197)*k33)))-(P41/
(101.936*(w3+((.1932/.2197)*k13)-((.7200/.2197)*k23)+((.7296/.2197)*k33))))-
(9.81*s)-
(0.147637*pow(w1+((.1932/.2197)*k11)-
((.7200/.2197)*k21)+((.7296/.2197)*k31),2)));
k42=h*((((1462501.96/pow((w4+((.1932/.2197)*k14)-
((.7200/.2197)*k24)+((.7296/.1297)*k34))
-(w3+((.1932/.2197)*k13)-((.7200/.2197)*k23)+((.7296/.2197)*k33)),1.2))-10333)
/(101.936*Lb))-(9.81*z)-(0.1476378*pow(w2+((.1932/.2197)*k12)-
((.7200/.2197)*k22)
+((.7296/.2197)*k32),2)));
 k43=h*((w1+((.1932/.2197)*k11)-((.7200/.2197)*k21)+((.7296/.2197)*k31)));
 k44=h*((w2+((.1932/.2197)*k12)-((.7200/.2197)*k22)+((.7296/.2197)*k32)));
```

```
/* x = (w4 + ((439/216)*k14) - ((8)*k24) + ((3680/513)*k34) -
 ((845/4104)*k44))-(w3+((439/216)*k13)-((8)*k23)+((3680/513)*k33)-((845/4104)*
 k43));
  y=pow(x,1.2);*/
 /* pow((w4+((439/216)*k14)-((8)*k24)+((3680/513)*k34)-
 ((845/4104)*k44))-(w3+((439/216)*k13)-((8)*k23)+((3680/513)*k33-((845/4104)*
 k43)),1.2)))*/
      P51=(1462501.96/pow((w4+((.439/.216)*k14)-((8)*k24)+((.3680/.0513)*k34)-
 ((.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((8)*k23)+((.3680/.0513)*k33)-((.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((.0845/.4104)*k44))-(.3680/.0513)*k33)-(.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((.0845/.4104)*k44))-(.3680/.0513)*k33)-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44))-(.0845/.4104)*k44)
 ((.0845/.4104)*k43)),1.2));
         if (w4>=Lt)
                 P51=10333:
                 if(w3>=Lt)
                     P51=0:
 k51=h*((H/(w3+((.439/.216)*k13)-((8)*k23)+((.3680/.0513)*k33)-
 ((.0845/.4104)*k43)))-((1.5*pow((w1+((.439/.216)*k11)-
((8)*k21)+((.3680/.0513)*k31)
 -((.0845/.4104)*k41)),2))/(w3+((.439/.216)*k13)-((8)*k23)+((.3680/.0513)*k33)-
 ((.0845/.4104)*k43)))-(P51/(101.936*(w3+((.439/.216)*k13)-
((8)*k23)+((.3680/.0513)*k33)-
 ((.0845/.4104)*k43)))-(9.81*s)-(0.147637*pow(w1+((.439/.216)*k11)-((8)*k21)+
 ((.3680/.0513)*k31)-((.0845/.4104)*k41),2)));
 k52=h*((((1462501.96/pow((w4+((.439/.216)*k14)-((8)*k24)+((.3680/.0513)*k34)-
 ((.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((8)*k23)+((.3680/.0513)*k33)-((.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((.0845/.4104)*k44))-(w3+((.439/.216)*k13)-((.0845/.4104)*k44))-(.3680/.0513)*k33)-(...)
 ((.0845/.4104)*k43)),1.2))-10333)/(101.936*Lb))-(9.81*z)-(0.1476378*
 pow(w2+((.439/.216)*k12)-((8)*k22)+((.3680/.0513)*k32)-((.0845/.4104)*k42),2)));
```

```
k53=h^*((w1+((.439/.216)*k11)-((8)*k21)+((.3680/.0513)*k31)-((.0845/.4104)*k41)));
 k54=h^*((w2+((.439/.216)*k12)-((8)*k22)+((.3680/.0513)*k32)-((.0845/.4104)*k42)));
/* x1=(w4-((8/27)*k14)+((2)*k24)-((3544/2565)*k34)+
 ((1859/4104)*k44)-((11/40)*k54))-(w3-((8/27)*k13)+((2)*k23)-
((3544/2565)*k33)+((1859/4104)*
 k43)-((11/40)*k53));
 y1=pow(x1,1.2);*/
 /*pow((w4-((8/27)*k14)+((2)*k24)-((3544/2565)*k34)+
  ((1859/4104)*k44)-((11/40)*k54))-(w3-((8/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((18/27)*k13)+((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23)-((2)*k23
((3544/2565)*k33+((1859/4104)*
  k43)-((11/40)*k53)),1.2)))*/
       P61=(1462501.96/pow((w4-((.08/.27)*k14)+((2)*k24)-((.3544/.2565)*k34)+
  ((.1859/.4104)*k44)-((.11/.40)*k54))-(w3-((.08/.27)*k13)+((2)*k23)-
  ((.3544/.2565)*k33)+((.1859/.4104)*k43)-((.11/.40)*k53)),1.2));
            if (w4>=Lt)
                        P61=10333;
                        if(w3>=Lt)
                             P61=0:
   k61=h*((H/(w3-((.08/.27)*k13)+((2)*k23)-((.3544/.2565)*k33)+
   ((.1859/.4104)*k43)-((.11/.40)*k53)))-((1.5*pow((w1-((.08/.27)*k11)+((2)*k21)-((.1859/.4104)*k43)))))
 ((.3544/.2565)*k31)
   +((.1859/.4104)*k41)-((.11/.40)*k51)),2))/(w3-((.08/.27)*k13)+((2)*k23)-
 ((.3544/.2565)*k33)+
  ((.1859/.4104)*k43)-((.11/.40)*k53)))-(P61/(101.936*(w3-((.08/.27)*k13)+((2)*k23)-
 ((.3544/.2565)*k33)+
```

```
((.1859/.4104)*k43)-((.11/.40)*k53))))-(9.81*s)-(0.147637*pow(w1-
((.08/.27)*k11)+((2)*k21)-
  ((.3544/.2565)*k31)+((.1859/.4104)*k41)-((.11/.40)*k51),2)))
  k62=h*((((1462501.96/pow((w4-((.08/.27)*k14)+((2)*k24)-((.3544/.2565)*k34)+
 ((.1859/.4104)*k44)-((.11/.40)*k54))-(w3-((.08/.27)*k13)+((2)*k23)-((.1859/.4104)*k44)-((.11/.40)*k54))-(w3-((.08/.27)*k13)+((2)*k23)-((.11/.40)*k54))-(w3-((.08/.27)*k13)+((2)*k23)-((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.27)*k13)+((.08/.
((.3544/.2565)*k33)+
  ((.1859/.4104)*k43)-((.11/.40)*k53)), 1.2))-10333)/(101.936*Lb))-(9.81*z)-
(0.1476378*
  pow(w2-((.08/.27)*k12)+((2)*k22)-((.3544/.2565)*k32)+((.1859/.4104)*k42)
 -((.11/.40)*k52),2)));
  k63=h*((w1-((.08/.27)*k11)+((2)*k21)-((.3544/.2565)*k31)+((.1859/.4104)*k41)-
((.11/.40)*k51)));
  k64=h*((w2-((.08/.27)*k12)+((2)*k22)-((.3544/.2565)*k32)+((.1859/.4104)*k42)-
((.11/.40)*k52)));
                if(w3>=Lt){
                           k12=0;
                           k13=0;
                           k14=0:
                           k22=0:
                           k23=0;
                           k24=0;
                           k32=0;
                           k33=0:
                           k34=0;
                           k42=0;
                           k43=0;
                           k44=0;
```

```
k52=0;
       k53=0;
       k54=0;
       k62=0;
       k63=0;
       k64=0;
      if(w4>=Lt){}
       k12=0;
       k22=0;
       k32=0:
       k42=0;
       k52=0;
       k62=0;
       k14=0:
       k24=0;
       k34=0;
       k44=0;
       k54=0;
       k64=0;
      }
R1=(((.001/.360)*k11)-((.0128/.4275)*k31)-
((.02197/.75240)*k41)+((.01/.50)*k51)+((.02/.55)*k61))/h;
R2=(((.001/.360)*k12)-((.0128/.4275)*k32)-
((.02197/.75240)*k42)+((.01/.50)*k52)+((.02/.55)*k62))/h;
R3=(((.001/.360)*k13)-((.0128/.4275)*k33)-
((.02197/.75240)*k43)+((.01/.50)*k53)+((.02/.55)*k63))/h;
R4=(((.001/.360)*k14)-((.0128/.4275)*k34)-
((.02197/.75240)*k44)+((.01/.50)*k54)+((.02/.55)*k64))/h;
```

```
if(R1<0)
  R1=R1*-1;
 if(R2<0)
  R2=R2*-1;
  if(R3<0)
      R3=R3*-1:
      if(R4<0)
       R4=R4*-1:*/
/*cout<<"r1"<<R1<<endl;
cout<<"r1"<<R2<<endl;
cout<<"r1"<<R3<<endl:
cout<<"r1"<<R4<<endl;
if(R1<tol1&&R2<tol2&&R3<tol3&&R4<tol4)*/
  // {
   t1=a+(k*h);
   w11=w1+((.025/.216)*k11)+((.1408/.2565)*k31)+((.2197/.4104)*k41)-
((.1/.5)*k51);
   w21=w2+((.025/.216)*k12)+((.1408/.2565)*k32)+((.2197/.4104)*k42)-
((.1/.5)*k52);
   w31=w3+((.025/.216)*k13)+((.1408/.2565)*k33)+((.2197/.4104)*k43)-
((.1/.5)*k53);
   w41=w4+((.025/.216)*k14)+((.1408/.2565)*k34)+((.2197/.4104)*k44)-
((.1/.5)*k54);
   w51=1462501.96/pow(w41-w31,1.2);
       if(w3>=Lt||w4>=Lt)
        w51=10333;
  //}
  /* else{
   s1=0.84*pow((tol1/R1),0.25);
```

```
s2=0.84*pow((tol2/R2),0.25);
 s3=0.84*pow((tol3/R3),0.25);
 s4=0.84*pow((tol4/R4),0.25);
 }
 h=s1*h;
 if(h>hmax)
    h=hmax;*/
 cout<<t1;
 cout<<"\t"<<w11;
 cout<<"\t"<<w21;
 cout<<"\t"<<w31;
 cout<<"\t"<<w41;
 cout<<"\t"<<w51<<endl;
  /* cout<<k41<<endl;
    cout<<k31<<endl;
    cout<<k42<<endl;
    cout<<k52;*/
w1=w11;
w2=w21;
w3=w31;
w4=w41;
w5=w51;
for(j=1;j<=100;j++){
  if(k==j)
     delay(5000);
   }
```


A continuación se muestran algunos resultados, obtenidos en la solución del problema propuesto del modelo de Fuertes et al, en el capítulo cuatro.

Los valores están dados a cada segundo.

Tabla III.1. Transitorio generado con una bolsa de aire.

t (s)	V (m/s)	V1(m/s)	L(m)	X1(m)	P (m.c.a)
0	0	0	2	64	10.333
1	7.58732	0.081047	9.556611	64.02484	12.070
2	6.49025	0.356407	16.553695	64.227659	14.163
3	5.739641	0.798371	22.649628	64.793875	16.421
4	5.162391	1.323065	28.089666	65.85231	18.734
5	4.697663	1.82144	33.011534	67.430831	20.938
6	4.323416	2.215939	37.515058	69.459889	22.899
7	4.028089	2.484962	41.684683	71.820472	24.558
8	3.800382	2.664776	45.593764	74.398764	25.926
9	3.630279	2.807647	49.304625	77.138127	27.016
10	3.509645	2.913313	52.870833	80.001624	27.857
11	3.429101	2.985819	56.337288	82.953712	28.505
12	3.378477	3.031971	59.738999	85.964521	29.015
13	3.348331	3.058936	63.101046	89.011319	29.439
14	3.331028	3.072961	66.439917	92.07815	29.815
15	3.321071	3.078896	69.76553	95.154618	30.166
16	3.314886	3.080214	73.083301	98.234478	30.509
17	3.310365	3.079222	76.395846	101.314351	30.851
18	3.306813	3.126137	79.704276	104.405927	31.176
19	3.310369	3.274813	83.011793	107.601328	31.347
20	3.331101	3.457706	86.33083	110.9666	31.276
21	3.372487	3.642962	89.680954	114.517358	30.973
22	3.43168	3.823368	93.081765	118.250891	30.483
23	3.503373	4.003846	96.548472	122.164195	29.846
24	3.582752	4.193891	100.091053	126.261889	29.088
25	3.653101	4.404811	103.713262	130.559075	28.213
26	3.66057	4.64616	107.373251	135.081884	27.162
27	3.652624	4.9277	111.029779	139.864712	25.894
28	3.651527	5.282186	114.680942	144.961306	24.418
29	3.662706	5.795699	118.336949	150.480865	22.729
30	3.688647	6.740604	122.011218	156.688605	20.751
31	3.739171	10.596286	125.721985	164.67666	18.048
32	4.049489	21.008921	129.622495	167.025309	10.579
33	4.093938	21.008921	133.709488	167.025309	10.333
34	4.035443	21.008921	137.777981	167.025309	10.333
35	3.952881	21.008921	141.772879	167.025309	10.333
36	3.867102	21.008921	145.682809	167.025309	10.333
37	3.783443	21.008921	149.507825	167.025309	10.333
38	3.703116	21.008921	153.250814	167.025309	10.333