

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN

"OPTIMIZACION DE BASES POR METODOS BASADOS EN LA TEORIA DE FUNCIONALES DE LA DENSIDAD"

Т	E		S		Ι	S
QUE	PARA	OBTE	NER	EL	TITULO	DE:
Q	U	I	Μ	Ţ	С	0
Ρ	R E	S	Е	Ν	Т	A :
ROB	FRTO	N	FIL.	Α		/FRA

ASESOR: DRA. PATRIZIA CALAMINICI COASESOR: DRA. ESTHER AGACINO VALDES

CUAUTITLAN IZCALLI, EDO. DE MEXICO

m344952

2005

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN UNIDAD DE LA ADMINISTRACION ESCOLAR DEPARTAMENTO DE EXAMENES PROFESIONALES

Zorzensense Baard (nag.) Azimota de Mezer

DR. JUAN ANTONIO MONTARAZ CRESPO DIRECTOR DE LA FES CUAUTITLAN P R E S E N T E

ાં વામણક

ATN: Q. Ma. del Carmen García Mijares Jefe del Departamento de Exámenes Profesionales de la FES Cuautitlán

Con base en el art. 28 del Reglamento General de Exámenes, nos permitimos comunicar a usted que revisamos la TESIS:

"Optimización de bases por métodos basados en la teoría de funcionales de la densidad".

que presenta <u>e1</u> pasante: <u>Roberto Mejia Olvera</u> con número de cuenta: <u>9141403-6</u> para obtener el título de : <u>Químico.</u>

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el EXAMEN PROFESIONAL correspondiente, otorgamos nuestro VOTO APROBATORIO.

ATENTAMENTE

"POR MI RAZA HABLARA EL ESPIRITU"

de Enero de	de <u>2005</u>
MC. María Ines Nicolás Váz	quez
MC. Juana Cabrera Hernánde	z
Dra. Esther Agacino Valdés	alphotus
Q. Pablo Hernández Matamore	os public
Q. Alejandro Solano Peralta	a tom St.
	<u>31</u> de <u>Enero</u> <u>MC. María Ines Nicolás Váz</u> <u>MC. Juana Cabrera Hernánde</u> <u>Dra. Esther Agacino Valdés</u> <u>Q. Pablo Hernández Matamor</u> Q. Alejandro Solano Peralta

AGRADECIMIENTOS

A Dios, por ayudarme a salir adelante en los momentos más dificiles de mi vida y permitirme terminar mi carrera.

A mis padres. Roberto Mejia Martinez y Maria Inés Olvera Corona por todos los desvelos y esfuerzos que pasaron para poder ofrecerme la mejor educación. así como su confianza y apoyo incondicional en todas las decisiones de mi vida. Gracias

A mis hermanos, Jesus, Ulises y Cynthia por su cariño y los buenos inomentos que hemos compartido a pesar de esas discusiones de hermanos. Gracias

A Sandy Maria Pacheco Ortín, por todo el apoyo que me ha brindado, ya que cuando necesite siempre tuve su ayuda y paciencia para salir adelante en todo momento. Sus consejos me han servido para ser una persona mejor cada día y me siento muy afortunado al tener a mi lado a alguien como ella. Gracias mi AMOR por todo lo que haz hecho por mi, espero seguir dandote más satisfacciones, como tu me las haz dado. TE AMO.

A mis Abuelos, Trinidad Corona, Jesus Olvera, Soledad Martinez y Leopoldo Zamudio por el cariño y el apoyo que tuvieron con mi familia.

A la familia Olvera, por su apoyo y por los domingos que disfrute al convivir con ellos. Gracias

A la familia Mejia, por el apoyo y por compartir agradables momentos.

A la familia Pacheco Ortín, por su apoyo y confianza. Gracias

A mis primos. Julio. Pilar, Carmela, Rebeca, Ernesto, Norma, Salvador, Jorge. Griselda, Fernando, Gonzalo, Israel. Ricardo. Francisco, Susana, Guillermina. Mariana. Alma, Eder, Ingrid, Jesus, Brenda, Samanta y Emanuel por compartir los mejores momentos de mi niñez y la amistad que hemos mantenido. Gracias A mis Amigos, Armando. Jair y Mario por la amistad que hemos mantenido todos estos años y sus consejos que me han ayudado a salir adelanten en mi carrera. Gracias

A todos los compañeros de la generación Q25, Raymundo. Cesar, Ana, Ruben, Jose Luis, Eva. Claudia, Rafael, Rosa, Tere, Lidia, David, Ernesto, Sandra, Jorge, Mary, Alejandra. Wendy, Alejandro por su apoyo y por todos los momentos que disfrutamos juntos. Gracias

A la Prof. Maria E. Villatoro y al Mat. Humberto Santillana, por haberme ayudado en mis estudios en el bachillerato cuando más lo necesitaba. Gracias

A la Universidad Nacional Autonoma de México, por haberme formado como universitario desde el bachillerato y haber pasado los momentos más felices de mi vida.

A la Dra. Patrizia Calaminici, por todos los conocimentos, sus consejos, su paciencia y confianza que me ha brindado. Gracias

A Roberto Flores y Ulises Reveles por su amistad, enseñanza y consejos que me han brindado durante el desarrollo de esta tesis. Gracias

A todos los compañeros del Cinvestav, por su amistad, su enseñanza y los momentos agradables que hemos pasado juntos. Gracias

A los sinodales. de está tesis Maria Inés Nicolas, Juana Cabrera, Esther Agacino. Pablo Hernandez y Alejandro Solano por sus contribuciones. Gracias

A Conacyt, por el apoyo que me brindo al otorgarme la beca de licenciatura del proyecto 36037-E.

DEDICATORIAS

A mi padre Roberto Mejia Martinez por su ejemplo de trabajo y su apoyo incondicional.

A mi madre Maria Inés Olvera Corona por el amor. el esfuerzo y la cducación que recibí de ella, y que siempre conservaré.

A Sandy Maria Pacheco Ortín con todo mi amor, ya que por ti soy una persona mejor cada dia. Garacias mi vida. *TE AMO*.

A mis Hermanos Jesus, Ulises y Cynthia por su cariño.

A mi asesora Dra. Patrizia Calaminici por su enseñanza y paciencia que tuvo hacia conmigo y ser un ejemplo de disciplina en al investigación científica. Esta tesis se desarrollo en el departamento de química del centro de investigación y de estudios avanzados (CINVESTAV) en el area de química teórica, bajo la asesoria de la Dra. Patrizia Calaminici.

Agradezco a el CONACYT por el apoyo que me brindo al otorgarme la beca de licenciatura del proyecto 36037-E.

Este trabajo de tesis se presentó en un cartel, en la Tercera Reunión Mexicana de Fisicoquímica Teórica que se celebró en la ciudad de Puebla, Pue. del 18 al 20 de Noviembre del 2004. Parte de este trabajo se publicará en un artículo en una revista con arbitraje internacional, el cual se encuentra en preparación. (R. Mejia Olvera, B.A. Zuñiga Gutierrez, P. Calaminici).

Índice general

O	bjetiv	os	1
In	trodu	leción	2
1.	Met	odología	6
	1.1	Teoría del Funcional de la Densidad (DFT)	6
	1.2	Teorema de Hohenberg-Kohn	7
	1.3	Teorema de Kohn-Sham	8
	1.4	La aproximación de la densidad local (LDA)	11
	1.5	La aproximación de la densidad de espín local (LSDA).	12
	1.6	Aproximaciones BASIS y AUXIS	13
	1.7	Funcionales del gradiente corregido	15
2.	Deta	lles Computacionales	17
3.	Desa	urrollo	20
	3.1	Datos experimentales de los átomos del H hasta el Xe	20
	3.2	Nomenclatura de las bases	23
	3.3	Configuración electrónica	25
	3.4	Bases contraídas y primitivas	29
	3.5	Construcción de las nuevas bases	30
	3.6	Cálculo de energías atómicas	36
4.	Resu	lltados y Discusiones	48

4.1	Energía de excitación en metales de transición.	48							
4.2	Parámetros geométricos	56							
4.3	Tablas de los parámetros geométricos	66							
4.4	Analisis de Frecuencias	76							
4.5	Energías de Atomización	98							
Conclus	iones	107							
Bibliografía 1									

Objetivos

Objetivo General

Desarrollar conjuntos de bases por métodos basados en la teoría de funcionales de la densidad. Realizar su validación con cálculos de energía de átomos y cálculos de propiedades geométricas y espectroscópicas de moléculas pequeñas.

Objetivos Particulares

1. Optimizar un conjunto de bases con funcionales locales y no locales usando las contribuciones de intercambio y de correlación.

2. Validar las bases optimizadas con cálculos de energía de átomos y de moléculas pequeñas con geométrias optimizadas.

3. Comparar los resultados teóricos obtenidos con los datos experimentales disponibles en la literatura.

Introducción

Un orbital es una función espacial monoelectrónica, donde la palabra espacial significa que la función depende de las tres coordenadas espaciales del electrón x, y, z o r, θ , ϕ , dependiendo si el sistema de referencia, es un sistema de coordenadas cartesianas o polares. La existencia del espín electrónico añade una cuarta coordenada a la función monoelectrónica, dando lugar a lo que se denomina un espín orbital. Los orbitales se usan para construir funciones de onda aproximadas para moléculas.

Un desarrollo clave, que ayudó a hacer más factible el cálculo de funciones de onda moleculares precisas, por el metódo del campo auto consistente (SCF, Self Consistent Field) propuesto por Roothaan y Hall [1,2] en 1951. Este metódo consiste en expandir los orbitales espaciales, como combinaciones lineales de una serie de funciones de base de un electrón (LCAO-MO, Linear Combination Atomic Orbital-Molecular Orbital). Para representar exactamente los orbitales moleculares (MO, por sus siglas en inglés Molecular Orbital), las funciones de base deberían formar una serie completa, lo que requiere un número infinito de funciones de base. Una base mínima para un cálculo SCF molecular consta de una función de base simple para cada orbital atómico (AO, Atomic Orbital) de capa interna y cada AO de la capa de valencia de cada átomo. Una base extendida es una base que es mayor que la base mínima. Los cálculos SCF con bases mínimas son más fáciles que los cálculos con bases extendidas, pero estos últimos son considerablemente más precisos.

Los tres tipos de orbitales atómicos más comúnmente utilizados son, los orbitales de tipo Slater (STO, Slater Type Orbital), los orbitales de tipo Gausiano (GTO, Gaussian Type Orbital) y los orbitales de tipo hidrógeno o hidrogenoide, aunque existen otros como, los orbitales númericos y ondas planas.

Los orbitales númericos (NAO, Numeric Atomic Orbital) [3, 4] son adecuados para lograr un buen método de escalamiento lineal, ya que son muy flexibles y pueden estar estrictamente localizadas. Originalmente dentro del contexto tight-binding se concentran sobre una base mínima (ζ). Estos se obtienen encontrando las funciones propias (*eigenfuctions*) de los átomos aislados confinados dentro del pozo de potencial esférico de diferentes formas, o directamente modificando las funciones propias de los átomos. Las múltiples (ζ) son construidas basándose en el split-valence de la química cuántica.

La principal desventaja es la falta de un procedimiento sistemático para garantizar una rápida convergencia variacional con respecto al número de orbitales, el rango y la forma de cada orbital.

Los métodos de ondas planas (PW, Plane Waves) [5] se encuentran basados en el teorema de Bloch [6,7] el cual establece que una función de onda puede expandirse por medio de un conjunto de ondas planas. Las ondas planas (PW) se adoptan para una eficiente y flexible examinación de mínima estructura y son funciones de bases no localizadas ya que consideran todo el espacio en el cual se encuentra confinado un sistema. El grupo de bases de ondas planas es implementado para una celda periodica. Los cálculos más exitoso realizados con las ondas planas con la teoría de funcionales de la densidad (DFT. Density Functional Theory) son los hechos por la propuesta de Roberto Car y Michele Parrinello [8]

Los orbitales STO [9], son similares en su forma a los orbitales de tipo hidrógeno, pero estos son considerablemente más simples de usar. En general, los STO difieren de los orbitales de tipo hidrógeno en dos aspectos: los STO son completos, y no son mutuamente ortogonales. También los STO se diferencian de los orbitales de tipo hidrógeno en que los primeros STO no poseen nodos radiales y los orbitales de tipo hidrógeno si. Para moléculas diatómicas, las funciones de base se toman habitualmente como orbitales atómicos, algunos centrados sobre un átomo y los restantes centrados sobre el otro átomo. Para moléculas poliatómicas. el método de combinación lineal de orbitales tipo Slater (LCSTO, Linear Combination Slater Type Orbitals) usa los STO centrados en cada uno de los átomos. La presencia de más de dos átomos causa dificultades en la evaluación de las integrales necesarias. Para una molécula triatómica, se debe tratar con integrales de tres centros. Para moléculas con cuatro o más átomos, se tienen también integrales de cuatro centros, pero el número de centros en cualquiera de las integrales no excede de cuatro. La evaluación por computadora de integrales de tres y cuatro centros con funciones de base STO, consume mucho tiempo.

Para acelerar la evaluación de las integrales de tres y cuatros centros que aparecen al utilizar las funciones de Slater, Boys [10] propuso en 1950 el empleo de orbitales de tipo GTO en lugar de los STO. Una gausiana cartesiana centrada en el átomo a se define como:

$$g_k(r) = (x - A_x)^{a_x} (y - A_y)^{a_y} (z - A_z)^{a_z} e^{-\zeta_k (r - A)^2}$$
(1)

En una forma más sencilla se puede escribir la ec. (1) en la (2).

$$g_{ijk} = N x_a^i y_a^j z_a^k e^{-\alpha r_a^2} \tag{2}$$

En la ec. (2) N es la constante de normalización, i. j y k son enteros positivos, α es un exponente orbital positivo y x_a, y_a y z_a son coordenadas cartesianas con el origen en el núcleo a.

Cuando i+j+k=0, la GTO se denomina gausiana de tipo s; cuando i+j+k=1, tenemos la gausiana de tipo p. Cuando i+j+k=2, tenemos una gausiana de tipo d. De forma similar, hay diez gausiana de tipo f. Una función gausiana no tiene la cúspide deseada sobre el núcleo, y por tanto, da una representación pobre de un AO. Para representar precisamente un AO, debemos usar una combinación lineal de varias gausianas. Por tanto, la combinación lineal de un orbital tipo Gausiana por el método del campo autoconsistente de un orbital molecular implica la evaluación de muchas más integrales que las correspondientes a un cálculo de la combinación lineal de un orbital tipo Slater por el método del campo autoconsistente de un orbital molecular, ya que el número de integrales de dos electrones es proporcional a la cuarta potencia del número de funciones de base. Sin embargo, la evaluación de integrales gausianas consume menor tiempo de cómputo que la evaluación de integrales de Slater. Esto es debido a que el producto de dos funciones gausianas centradas en dos diferentes puntos, es igual a una gausiana simple centrada en un tercer punto.

Un sistema ampliamente utilizado en las funciones base GTO, es el de la función tipo gausiana contraída (CGTF, Contracted Gaussian Type Function), la cual se define de la siguiente manera:

$$\chi_r = \sum_{\mu} d_{\mu k} g_k(r) \tag{3}$$

donde los coeficientes de contracción $d_{\mu k}$ son constantes que se mantienen fijas durante el cálculo y las g_k se llaman gausianas primitivas.

Usando las bases de funciones gausianas contraídas, en lugar de las funciones primitivas, se reduce el número de coeficientes variacionales a determinar, lo que ahorra mucho tiempo de cálculo con poca pérdida de precisión si los coeficientes de contracción $d_{\mu k}$ se eligen bien.

Capítulo 1

Metodología

1.1 Teoría del Funcional de la Densidad (DFT)

La historia comenzó con los trabajos de Thomas y Fermi [11-14] en 1920, los cuales se dieron cuenta que las consideraciones estadísticas, pueden ser usadas para aproximar la distribución del electrón en un átomo. La suposición hecha por Thomas consiste en que los electrones están distribuidos uniformemente en un espacio de fase de 6 dimensiones moviéndose bajo un potencial efectivo. Este espacio puede ser dividido en celdas de volumen h³; asociando, a cada celda de volumen h³ del espacio de fase un estado cuántico, cada celda podrá acomodar a dos electrones, siempre que se cumpla el principio de antisimetría de Pauli.

Si se tiene un electrón descrito por la función de onda $\psi_a(\mathbf{r})$, entonces la probabilidad de encontrarlo en el elemento de volumen dr es $|\psi_a(\mathbf{r})|^2$ dr. La función de distribución de probabilidad es $|\psi_a(\mathbf{r})|^2$. Si se tiene una molécula con capa cerrada con dos electrones en cada orbital molecular, la densidad de carga total es:

$$\rho(r) = 2 \sum_{a}^{N/2} |\psi_{a}(r)|^{2}$$
(1.1)

de tal manera que $\rho(\mathbf{r})$ es la probabilidad de encontrar un electrón en el elemento de volumen dr.

Por lo tanto, la Teoría del Funcional de la Densidad (DFT) intenta calcular E_0 y otras propiedades moleculares del estado fundamental a partir de la densidad electrónica del estado fundamental. ρ_o .

1.2 Teorema de Hohenberg-Kohn

En 1964, Pierre Hohenberg y Walter Kohn [15] demostraron que para sistemas con un estado fundamental no degenerado, la densidad de probabilidad electrónica del estado fundamental, $\rho_o(\mathbf{r})$, determina el potencial externo y determina el número de electrones. Por tanto, la función de onda del estado fundamental y la energía están determinadas por la densidad electrónica del estado fundamental.

Esto se resume en dos postulados:

a) El potencial externo $v_{ext}(\mathbf{r})$ es un funcional de la densidad electrónica $\rho(\mathbf{r})$. Como $\rho(\mathbf{r})$ determina el número de electrones, entonces también determina el estado base de la función de onda y todas las propiedades electrónicas del sistema.

b) Para cualquier función de densidad electrónica de prueba $\rho^t(\mathbf{r})$ la energía obtenida es una cota superior de la energía externa en el estado basal.

$$E[\rho(r)] \leq E[\rho^t(r)] \tag{1.2}$$

Del primer postulado la energía puede expresarse como un funcional de la densidad electrónica del estado base:

$$E[\rho] = T[\rho] + V_{ne}[\rho] + V_{ee}[\rho]$$
(1.3)

donde $T[\rho]$ es la energía cinética de un sistema imaginario donde los electrones no

interactúan, V_{ne} la energía potencial generada por la interacción entre los núcleos y los electrones, V_{ee} es la energía potencial generada por interacciones electrón-electrón.

1.3 Teorema de Kohn-Sham

En 1965, Kohn y Sham [16] idearon un método práctico para obtener ρ_o y para obtener E_o a partir de ρ_o . Su método es capaz de obtener resultados exactos, pero debido a que las ecuaciones de su método contienen un funcional desconocido que debe aproximarse, la formulación de Kohn-Sham (KS) del DFT da lugar a resultados aproximados.

Kohn y Sham consideraron un sistema de referencia ficticio (denotado mediante el subíndice s y llamado a menudo sistema no interactuante) de n electrones no interactuantes que experimentan todos ellos la misma función de energía potencial, $v_s(r_i)$, donde $v_s(r_i)$ es tal, que hace que la densidad de probabilidad electrónica del estado fundamental $\rho_s(r)$, del sistema de referencia sea igual a la densidad electrónica del estado fundamental exacta, $\rho_0(r)$ de la molécula en que estamos interesados: $\rho_s(r) = \rho_0(r)$.

Ya que Hohenberg y Kohn probaron que la función de densidad de probabilidad del estado fundamental determina el potencial externo, una vez que $\rho_s(\mathbf{r}_i)$ está definido por el sistema de referencia, el potencial externo $\mathbf{v}_s(\mathbf{r}_i)$ en el sistema de referencia esta unívocamente determinado, pese a que no podríamos saber cómo obtenerlo realmente. Los electrones no interactúan entre sí en el sistema de referencia. de forma que el Hamiltoniano del sistema de referencia es:

$$\hat{H}_{s} = \sum_{i=1}^{n} \left[-\frac{1}{2} \nabla_{i}^{2} + v_{s}(\mathbf{r}_{i}) \right] \equiv \sum_{i=1}^{n} \hat{h}_{i}^{KS} \qquad donde \quad \hat{h}_{i}^{KS} \equiv -\frac{1}{2} \nabla_{i}^{2} + v_{s}(\mathbf{r}_{i}) \tag{1.4}$$

 h_i^{KS} es el Hamiltoniano de un electrón de Kohn-Sham.

Kohn y Sham rescribieron la ecuación de Hohenberg-Kohn de la siguiente manera. Definimos $\Delta \bar{T}$ como:

$$\Delta \bar{T}[\rho] \equiv \bar{T}[\rho] - \bar{T}_s[\rho] \tag{1.5}$$

 $\Delta \bar{T}$ es la diferencia en la energía cinética electrónica media del estado fundamental entre la molécula y el sistema de referencia de electrones no interactuantes con densidad electrónica igual a la de la molécula. Sea

$$\Delta \bar{V}_{ee}[\rho] \equiv \bar{V}_{ee}[\rho] - \frac{1}{2} \int \int \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$$
(1.6)

donde r_{12} es la distancia entre los puntos de coordenadas x_1 , y_1 , z_1 y x_2 , y_2 , z_2 .

La cantidad $\frac{1}{2} \int \int \rho(\mathbf{r_1}) \rho(\mathbf{r_2}) r_{12}^{-1} d\mathbf{r_1} d\mathbf{r_2}$ es la expresión clásica (en unidades atómicas) de la energía de repulsión electrostática interelectrónica si los electrones están dispersos en una distribución continua de carga con densidad electrónica ρ .

Con las definiciones (1.5) y (1.6) obtenemos la siguiente eçuación para la energía total:

$$E_{v}[\rho] = \int \rho(\mathbf{r})v(\mathbf{r})d\mathbf{r} + \bar{T}_{s}[\rho] + \frac{1}{2} \int \int \frac{\rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2})}{r_{12}}d\mathbf{r}_{1}d\mathbf{r}_{2} + \Delta \bar{T}[\rho] + \Delta \bar{V}_{ee}[\rho]$$

Los funcionales $\Delta \bar{T}$ y $\Delta \bar{V}_{ee}$ son desconocidos.

Definimos el funcional de la energía de intercambio y correlación, $E_{xc}[\rho]$, como:

$$E_{xc}[\rho] \equiv \Delta \bar{T}[\rho] + \Delta \bar{V}_{ee}[\rho] \tag{1.7}$$

y tenemos

$$E_{0} = E_{v}[\rho] = \int \rho(\mathbf{r})v(\mathbf{r})d\mathbf{r} + \bar{T}_{s}[\rho] + \frac{1}{2} \int \int \frac{\rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2})}{r_{12}}d\mathbf{r}_{1}d\mathbf{r}_{2} + E_{xc}[\rho]$$
(1.8)

El motivo para las definiciones (1.5), (1.6) y (1.7) es expresar $E_v[\rho]$ en términos de tres cantidades. los tres primeros términos del segundo miembro de la ecuación (1.8), que son fáciles de evaluar a partir de ρ y que incluyen las principales contribuciones de energía del estado fundamental, más una cuarta cantidad, la energía de intercambio y correlación (E_{xc}), que pese a que no es fácil de evaluar con precisión. será un termino relativamente pequeño. La clave para efectuar un cálculo con precisión KS DFT (Kohn-Sham Density Functional Theory) de propiedades moleculares es tener una buena aproximación para E_{xc} .

Antes de evaluar los términos de la ecuación (1.8), necesitamos obtener la densidad electrónica del estado fundamental. El sistema ficticio de electrones no interactuantes se define por tener la misma densidad electrónica que en el estado fundamental de la molécula: $\rho_s = \rho_0$. La densidad de probabilidad electrónica de un sistema de n-partículas cuya función de onda es un determinante de Slater de los espin-orbitales $u_i^{KS} = \theta_i^{KS} \sigma_i$, está dado por $\sum_{i=1}^n |\theta_i^{KS}|^2$. Por tanto

$$\rho = \rho_s = \sum_{i=1}^n |\theta_i^{KS}|^2$$
(1.9)

Los orbitales de Kohn-Sham θ_i^{KS} son orbitales para el sistema de referencia ficticio de electrones no interactuantes, de forma que, estrictamente hablando, estos orbitales no tienen otro significado físico que el permitir que se calcule ρ del estado fundamental molecular exacto. Asi (1.8) se convierte en:

$$E_{0} = -\sum_{\alpha} Z_{\alpha} \int \frac{\rho(\mathbf{r}_{1})}{r_{1\alpha}} d\mathbf{r}_{1} - \frac{1}{2} \sum_{i=1}^{n} \langle \theta_{i}^{KS}(1) \mid \nabla_{1}^{2} \mid \theta_{i}^{KS}(1) \rangle + \frac{1}{2} \int \int \frac{\rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + E_{xc}[\rho]$$
(1.10)

Los orbitales de Kohn-Sham que minimizan la expresión (1.10) para la energía molecular del estado fundamental satisfacen

$$\left[-\frac{1}{2}\nabla_{1}^{2}-\sum_{\alpha}\frac{Z_{\alpha}}{r_{1\alpha}}+\int\frac{\rho(\mathbf{r}_{2})}{r_{12}}d\mathbf{r}_{2}+v_{xc}(1)\right]\theta_{i}^{KS}(1)=\epsilon_{i}^{KS}\theta_{i}^{KS}(1)$$
(1.11)

donde la función $v_{xc}(1)$, el potencial de intercambio y correlación está definido por

$$v_{xc}(\mathbf{r}) \equiv \frac{\delta E_{xc}[\rho(\mathbf{r})]}{\delta \rho(\mathbf{r})}.$$
(1.12)

Otras formas alternativas de escribir la ecuación (1.11) son:

$$\left[-\frac{1}{2}\nabla_{1}^{2}+v_{s}(1)\right]\theta_{i}^{KS}(1)=\epsilon_{i}^{KS}\theta_{i}^{KS}(1)$$
(1.13)

$$\hat{h}^{KS}\theta_i^{KS}(1) = \epsilon_i^{KS}\theta_i^{KS}(1) \tag{1.14}$$

El potencial de intercambio y correlación. v_{xc} , se obtiene como la derivada del funcional de la energía de intercambio y correlación, E_{xc} .

Existe solamente un problema al usar el método de Kohn-Sham para obtener ρ y E_0 , ya que no sabemos cuál es la forma de el funcional correcto $E_{xc}[\rho]$.

Para una molécula de capa cerrada, cada energía de un orbital ocupado de Hartree-Fock es una buena aproximación al negativo de la energía necesaria para arrancar un electrón de ese orbital. Sin embargo, esto no es cierto para las energías orbitales de Kohn-Sham.

1.4 La aproximación de la densidad local (LDA)

Hohenberg y Kohn mostrarón que si ρ varía de forma extremadamente lenta con la posición, entonces $E_{xc}[\rho]$ está dada con precisión por

$$E_{xc}^{LDA}[\rho] = \int \rho(\mathbf{r}) \epsilon_{xc}(\rho) d\mathbf{r}$$
(1.15)

donde la integral se extiende a todo el espacio, $d\mathbf{r}$ representa el elemento infinitesimal de volumen dxdydz, y $\epsilon_{xc}(\rho)$ es la energía de intercambio y correlación para el electrón en un gas de electrones homogéneo con densidad electrónica ρ . Tomando la derivada del funcional de \mathbf{E}_{xc}^{LDA} , se obtiene

$$v_{xc}^{LDA} = \frac{\delta E_{xc}^{LDA}}{\delta \rho} = \epsilon_{xc}(\rho(\mathbf{r})) + \rho(\mathbf{r}) \frac{\partial \epsilon_{xc}(\rho)}{\partial \rho}$$
(1.16)

Se puede demostrar que ϵ_{xc} se puede escribir como la suma de las partes de intercambio y de correlación:

$$\epsilon_{xc}(\rho) = \epsilon_x(\rho) + \epsilon_c(\rho) \tag{1.17}$$

donde

$$\epsilon_x(\rho) = -3/4(3/\pi)^{1/3}\rho(\mathbf{r})^{1/3} \tag{1.18}$$

La parte de correlación $\epsilon_c(\rho)$ ha sido calculada, y los resultados han sido expresados como una función ϵ_c^{VWN} de ρ por Vosko, Wilk y Nusair(VWN) [17]. Así.

$$\epsilon_c(\rho) = \epsilon_c^{VWN}(\rho) \tag{1.19}$$

A partir de (1.9), (1.10), (1.12), (1.13), obtenemos:

$$v_{xc}^{LDA} = v_x^{LDA} + v_c^{LDA}, \qquad v_x^{LDA} = -[(3/\pi)\rho(\mathbf{r})]^{1/3}, \qquad v_c^{LDA} = v_c^{VWN}$$
(1.20)

$$E_x^{LDA} \equiv \int \rho \epsilon_x d\mathbf{r} = -(3/4)(3/\pi)^{1/3} \int [\rho(\mathbf{r})]^{4/3} d\mathbf{r}$$
(1.21)

En la práctica, los orbitales KS que se obtienen son más bien muy parecidos a los orbitales Hartree-Fock, la energía de intercambio DFT es próxima a la energía de intercambio Hartree-Fock.

1.5 La aproximación de la densidad de espín local (LSDA).

Para moléculas de capa abierta y geometrías moleculares próximas a la disociación, la aproximación de la densidad de espin local (LSDA) da mejores resultados que la (LDA). Mientras que en LDA, los electrones con espín opuesto, apareados entre sí, tienen el mismo orbital espacial KS, la LSDA permite que tales electrones tengan diferentes orbitales espaciales KS, $\theta_{i\alpha}^{KS}$ y $\theta_{i\beta}^{KS}$. Los teoremas de Hohenberg, Kohn y Sham no requieren usar diferentes orbitales para electrones con diferentes espines, y si el funcional exacto $E_{xc}[\rho]$ fuera conocido no se haría así.

Con los funcionales aproximados E_{xc} que se usan en los cálculos DFT-KS, es ventajoso permitir la posibilidad de orbitales diferentes para electrones con diferentes espines; de esta forma, mejoramos las propiedades calculadas para especies de capa abierta y especies con geometrías cercanas a la disociación.

La generalización de la teoría de funcionales de la densidad que permite emplear diferentes orbitales para electrones con diferentes espines se denomina teoría del funcional de la densidad espín. En la DFT espín, se tratan separadamente la densidad electrónica $\rho^{\alpha}(r)$ debido a los electrones de espín α , y la densidad $\rho^{\beta}(\mathbf{r})$ de los electrones con espín β y funcionales tales como E_{xc} , se convierten en función de estas dos densidades: $E_{xc} = E_{xc}[\rho^{\alpha}, \rho^{\beta}]$.

Para especies con todos los electrones apareados y geometrías moleculares en la región de la geometría de equilibrio, podemos esperar que $\rho^{\alpha} = \rho^{\beta}$, y el DFT espín se reducirá a la forma ordinaria de la DFT.

1.6 Aproximaciones BASIS y AUXIS

Utilizando la combinación lineal de los orbitales de tipo gausiana (LCGTO, Linear combination of Gaussian-type orbitals) de los orbitales de Kohn-Sham de la ecuación (3), la densidad electronica que se define como:

$$\rho(r) = \sum_{\mu,\nu} P_{\mu,\nu}\mu(r)\nu(r)$$
 (1.22)

y la ecuación de la energía de Kohn-Sham (1.10), se puede reescribir lo siguiente:

$$E = E_{SCF} + \sum_{A>B}^{Atomos} \frac{Z_A Z_B}{|A-B|}$$
(1.23)

$$E_{SCF} = \sum_{\mu,\nu} P_{\mu,\nu} H_{\mu,\nu} + \frac{1}{2} \sum_{\mu,\nu} \sum_{\sigma,\tau} P_{\mu,\nu} P_{\sigma,\tau} \langle \mu \nu \| \sigma \tau \rangle + E_{xc}[\rho]$$
(1.24)

$$E_{xc}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}[\rho] d\mathbf{r}$$
(1.25)

Donde E_{SCF} reune todos los términos que dependen de la densidad electrónica. La convergencia del SCF está basada sobre esta expresión de energía. La energía total (1.23) es la suma de las E_{SCF} más el segundo término que es la energía de repulsión nuclear (núcleo-núcleo). Los $H_{\mu,\nu}$ son elementos de la matriz del core. El primer término de la ecuación (1.24) representa el Hamiltoniano monoelectrónico y el segundo término representa la energía de repulsión coulómbica de los elementos. Para el cálculo de la energía de intercambio y correlación (1.25) es necesario efectuar una integración numérica. La escala de integración formalmente es $N^2 \times G$, donde G es el número de puntos necesarios en la malla para la integración numérica y N es el número de funciones de base.

La introducción de la aproximación variacional de el potencial coulómbico reduce la escala formal de este termino a $N^2 \times M$. Donde M es el número de funciones auxiliares que usualmente es del orden de dos a tres veces N. Esta técnica es utilizada en el programa deMon.

$$E_{SCF} = \sum_{\mu,\nu} P_{\mu,\nu} H_{\mu,\nu} + \sum_{\mu,\nu} \sum_{\overline{k}} P_{\mu,\nu} \langle \mu \nu \| \overline{k} \rangle x_{\overline{k}} - \frac{1}{2} \sum_{\overline{k}}, \overline{l} x_{\overline{k}} x \overline{l} \langle \overline{k} \| \overline{l} \rangle +$$
(1.26)
$$E_{xc}[\rho] - \lambda \left(\sum_{\overline{k}} x_{\overline{k}} \langle \overline{k} \rangle - N \right)$$

Nosotros llamamos a esta expresión de energía la aproximación de energía BASIS por que la densidad del conjunto de bases $\rho(\mathbf{r})$ es utilizada para el cálculo de la energía de intercambio y correlación.

Para el cálculo de la energía utilizando la densidad de función auxiliar, $\tilde{\rho}(\mathbf{r})$, a partir de la aproximación variacional de el potencial coulómbico para el cálculo de el potencial de intercambio y correlación, la ecuación de la energía modificada (1.26) está dada como:

$$E_{SCF} = \sum_{\mu,\nu} P_{\mu,\nu} H_{\mu,\nu} + \sum_{\mu,\nu} \sum_{\overline{k}} P_{\mu,\nu} \langle \mu \nu || \overline{k} \rangle x_{\overline{k}} - \frac{1}{2} \sum_{\overline{k}}, \overline{l} x_{\overline{k}} x \overline{l} \langle \overline{k} || \overline{l} \rangle +$$
(1.27)
$$E_{xc}[\bar{\rho}] - \lambda \left(\sum_{\overline{k}} x_{\overline{k}} \langle \overline{k} \rangle - N \right)$$

Nosotros llamamos a esta expresión de energía la aproximación AUXIS porque la densidad de función auxiliar, $\tilde{\rho}(\mathbf{r})$ es utilizada para el cálculo de la energía de intercambio y correlación.

1.7 Funcionales del gradiente corregido

El integrando de la expresión (1.15) para E_{xc}^{LDA} es función solamente de ρ , y el integrando de E_{xc}^{LDSA} es solamente función de ρ^{α} , y ρ^{β} . Funcionales que van mas alla del objetivo del LSDA, persiguen corregir el método LSDA para la variación de la densidad electrónica con la posición. Esto lo hacen incluyendo los gradientes de ρ^{α} , y ρ^{β} en el integrando. Así.

$$E_{xc}^{GGA}[\rho^{\alpha},\rho^{\beta}] = \int f(\rho^{\alpha}(\mathbf{r}),\rho^{\beta}(\mathbf{r}),\nabla\rho^{\alpha}(\mathbf{r}),\nabla\rho^{\beta}(\mathbf{r}))d\mathbf{r}$$
(1.28)

donde f es una función de las densidades de espín y sus gradientes. Las letras GGA significan aproximación del gradiente generalizado. También se usa el término funcional del gradiente corregido. (A menudo. los funcionales del gradiente corregido se denominan funcionales "no locales"). E_{xc}^{GGA} usualmente se desdobla en partes de intercambio y correlación que se modelan separadamente:

$$E_{xc}^{GGA} = E_x^{GGA} + E_c^{GGA} \tag{1.29}$$

Algunos funcionales de intercambio de gradiente corregido. E_x . comúnmente empleados son el funcional de Perdew y Wang de 1986 [18–20] (que no contiene parámetros empíricos), designado como PW86 o PWx86. el funcional de Becke de 1988 [21] denotado como B88, Bx88, o B, y el funcional de Perdew y Wang de 1991 [22]. PWx91. Los funcionales de correlación de gradiente corregido comúnmente usados, E_c son entre otros el funcional de Lee-Yang-Parr (LYP) [23]. el funcional de correlación de Perdew 1986 (P86 o Pc86), el funcional de correlación libre de parámetros de Perdew-Wang 1991 (PW91 o PWc91) y el funcional de correlación de de Becke llamado Bc95 o B96. El funcional de intercambio y correlación de Perdew-Burke-Ernzerhof (PBE) [24] no tiene parámetros empíricos.

Cualquier funcional de intercambio se puede combinar con cualquier funcional de correlación.

Capítulo 2

Detalles Computacionales

Todos los cálculos se realizaron con el programa deMon [25]. Con este programa se desarrollaron todos los conjuntos de bases. así como los cálculos de la energía del estado basal y del primer estado exitado de los átomos del H hasta el átomo de Xe empleando diferentes funcionales LDA y GGA.

También se realizó el cálculo de optimización de parámetros geométricos de 46 moléculas orgánicas e inorgánicas, así como los analisis de frecuencias de los compuestos optimizados y se calcularon las energías de atomización.

Se empleó el funcional LDA (Local Density Approximation) usando las contribuciones de intercambio y correlación propuestas por Vosko, Wilk y Nusair (VWN) [17] Así como con los funcionales GGA (Generalized Gradient Approximation) propuestas por Perdew y Wang (PW86) [18–20], Lee, Yang, Parr (BLYP) [23] y Perdew. Burke, Ernzerhof (PBE) [24].

Para realizar estos cálculos se utilizaron las funciones de base DZVP [26] (Doble zeta de capa de valencia) y TZVP [26] (Triple zeta de capa de valencia) las cuales fueron optimizadas con el funcional VWN.

Nuevos conjuntos de bases se desarrollaron y fueron optimizados con aproximaciones LDA y GGA, empleando los funcionales VWN. PW86, BLYP y PBE. Las nuevas bases se llamarán de aquí en adelante DZVP-NEW, DZVP-NEW-PW86, DZVP-NEW-BLYP, DZVP-NEW-PBE y TZVP-NEW de acuerdo al funcional con las cuales fueron optimizadas.

Las bases DZVP-NEW y TZVP-NEW se optimizarón con el funcional VWN.

Se emplearon las funciones auxiliares A2 y GEN-A2.

Las funciones auxiliares A2 contienen orbitales s, p y d, las GEN-A2 poseen una estructura similar a las A2 solo que estas incluyen los orbitales f y g.

El criterio de convergencia para el SCF de los cálculos realizados es de 10^{-5} a.u. (unidades atómicas o Hartrees).

Se utilizó para la optimización de las estructuras el método quasi-Newton [27] en coordenadas internas redundantes con gradientes de energía analíticos.

La convergencia se basó en los gradientes cartesianos y vectores de desplazamiento con una exactidud de 10^{-4} y 10^{-3} a.u. respectivamente.

Este programa esta disponible para utilizarse en cualquier computadora independientemente del sistema operativo, inclusive en paralelo.

El programa inicia leyendo un archivo de entrada file.inp. Dentro del archivo de entrada se define la geometría de las moléculas con las que se va a trabajar.

El programa deMon al concluir genera tres archivos: uno de salida file.out donde se revisan los resultados de los cálculos ya que han terminado: un archivo file.rst que si por alguna causa el sistema no llega a convergencia se usa para continuar el cálculo a partir del punto en que se quedo el cálculo anterior. Finalmente un archivo file.mol. que permite visualizar la molécula bajo estudio.

Se visualizarón los resultados estructurales con el programa de visualización Molden [28].

La siguiente figura muestra la estructura de deMon de una forma general.

Figura 2.1: Estructura del código deMon

En particular para el desarrollo de la tesis se utilizó un cumuló Beowulf que tiene las siguientes características: trece nodos duales con procesadores Xeon y 2.4 GHz, 2 GB en RAM y comunicaciones Myrinet y una terminal (IBM netstation).

Capítulo 3

Desarrollo

3.1 Datos experimentales de los átomos del H hasta el Xe

En muchos tipos de cálculos mecanocuánticos como DFT los orbitales moleculares se representan como una combinación lineal de funciones base. Para construir las nuevas bases se buscaron en la literatura los datos experimentales del estado basal y del primer estado excitado de los átomos del Hidrógeno hasta el Xenón [29–31]. Se encontraron datos relativos a sus configuraciónes electrónicas y las energías de los niveles de los dos estados para obtener la energía de excitación entre estos. En la Tabla 3.1 se presenta el átomo de Carbono que tiene las siguientes configuraciones y energías para los niveles del estado basal y del primer estado excitado respectivamente [29].

Estado	Configuración	Designación	J	Nivel (cm^{-1})
Estado	$2s^22p^2$	2p ² ³ P	0	0.0
basal			1	16.4
			2	43.5
Primer estado excitado	$2s^22p^2$	$2p^{2-1}D$	2	10193.70

Tabla 3.1: Configuraciónes electrónicas y energías de los niveles

Para obtener la energía de excitación experimental del átomo de Hidrógeno hasta el átomo de Xenón se calcula el promedio de las energías de los niveles de los dos estados. Posteriormente se obtiene la diferencia entre los dos promedios de energía y por ultimo se hace la conversión de cm⁻¹ a kcal/mol. La conversión utilizada es de 1 cm⁻¹ = 2.8591×10^{-3} kcal/mol. En la Tabla 3.2 se muestran los estados espectroscópicos y las configuraciones electrónicas relativas para el estado basal y el primer estado excitado, así como las energías de exitación experimentales en (kcal/mol) para todos los átomos que se consideraron:

Tabla 3.2: Energías de exitación, configuración electronica

У	multi	plicidad	de	los	átomos	de	Hidrógeno	al	Xenón
---	-------	----------	----	-----	--------	----	-----------	----	-------

Elemento	Est	ado Basal	Prim	er Estado Excitado	Δ Exp. (kcal/mol)
Н	$^{2}\mathrm{S}$	ls	^{2}S	2s	235.19^{a}
He	^{1}S	$1s^2$	³ S	1s2s	457.03^{a}
Li	^{2}S	2s	$^{2}\mathrm{P}$	2p	42.61^{a}
Be	^{1}S	$2s^2$	$^{3}\mathrm{P}$	2s2p	62.84^{a}
В	$^{2}\mathrm{P}$	$2s^22p$	⁴ P	$2s2p^2$	82.35 ^a
С	³ P	$2s^22p^2$	1D	$2s^22p^2$	29.09^{a}
Ν	⁴ S	$2s^22p^3$	² D	$2s^22p^3$	54.97^{a}
0	³ P	$2s^22p^4$	1D	$2s^22p^4$	45.00^{a}
F	$^{2}\mathrm{P}$	$2s^22p^5$	⁴ P	$2s^22p^43s$	292.89 ^a
Ne	$^{1}\mathrm{S}$	$2s^22p^6$	$[1\frac{1}{2}]$	$2s^2 2p^5 3s$	383.84^{a}
Na	$^{2}\mathrm{S}$	3s	$^{2}\mathrm{P}$	3р	48.50^{a}
Mg	^{1}S	$3s^2$	$^{3}\mathrm{P}$	3s3p	62.55^{a}
Al	$^{2}\mathrm{P}$	$3s^23p$	^{2}S	$3s^24s$	72.31 ^a
Si	$^{3}\mathrm{P}$	$3s^23p^2$	$^{1}\mathrm{D}$	$3s^23p^2$	17.72^{a}
Р	⁴ S	$3s^23p^3$	$^{2}\mathrm{D}$	$3s^23p^3$	32.51^{a}
S	$^{3}\mathrm{P}$	$3s^23p^4$	$^{1}\mathrm{D}$	$3s^23p^4$	25.49^{a}
Cl	$^{2}\mathrm{P}$	$3s^23p^5$	⁴ P	$3s^23p^44s$	205.80^{a}
Ar	$^{1}\mathrm{S}$	$3s^23p^6$	$[1\frac{1}{2}]$	$3s^23p^54s$	267.17^{a}
K	$^{2}\mathrm{S}$	$3p^{6}4s$	² P	$3p^{6}4p$	37.21 ^a

Elemento	Est	ado Basal	Prin	ner Estado Excitado	Δ Exp. (kcal/mol)
Ca	¹ S	$4s^2$	³ P	4s4p	43.54^{a}
Sc	² D	$3d4s^2$	${}^{4}\mathrm{F}$	$3d^24s$	32.90^{a}
Ti	³ F	$3d^24s^2$	⁵ F	$3d^34s$	18.57^{a}
V	⁴ F	$3d^34s^2$	⁶ D	$3d^44s$	5.69^{a}
Cr	⁷ S	$3d^54s$	⁵ S	$3d^54s$	21.71^{b}
Mn	⁶ S	$3d^54s^2$	⁶ D	$3d^{6}4s$	49.74^{b}
Fe	⁵ D	$3d^64s^2$	⁵ F	$3d^{7}4s$	20.12^{b}
Co	⁴ F	$3d^74s^2$	⁴ F	$3d^84s$	9.55^{b}
Ni	³ D	$3d^94s$	$^{3}\mathrm{F}$	$3d^84s^2$	0.71^{b}
Cu	^{2}S	3d ¹⁰ 4s	$^{2}\mathrm{D}$	$3d^94s^2$	34.95 ^b
Zn	^{1}S	$4s^2$	$^{3}\mathrm{P}$	4s4p	93.11^{b}
Ga	$^{2}\mathrm{P}$	$4s^24p$	^{2}S	$4s^25s$	69.69^{b}
Ge	$^{3}\mathrm{P}$	$4s^24p^2$	$^{1}\mathrm{D}$	$4s^24p^2$	18.50^{b}
As	^{4}S	$4s^24p^3$	² D	$4s^24p^3$	30.75^{b}
Se	³ P	$4s^24p^4$	$^{1}\mathrm{D}$	$4s^24p^4$	23.07^{b}
Br	$^{2}\mathrm{P}$	$4s^24p^5$	⁴ P	$4s^24p^45s$	180.77^{b}
Kr	$^{1}\mathrm{S}$	$4s^24p^6$	$[1\frac{1}{2}]$	$4s^24p^55s$	230.00^{b}
Rb	$^{2}\mathrm{S}$	$4p^{6}5s$	² P	$4p^{6}5p$	36.30^{b}
Sr	$^{1}\mathrm{S}$	$4p^{6}5s^{2}$	³ P	5s5p	41.67^{b}
Y	² D	$5s^24d$	$^{2}\mathrm{P}$	$5s^25p$	30.53^{b}
Zr	$^{3}\mathrm{F}$	$4d^25s^2$	³ P	$4d^25s^2$	10.43^{b}
Nb	⁶ D	$4d^45s$	⁴ F	$4d^{3}5s^{2}$	4.18^{b}
Mo	7S	$4d^55s$	⁵ S	$4d^55s$	30.79^{c}
Tc	⁶ S	$4d^55s^2$	⁶ D	$4d^{6}5s$	10.12^{c}
Ru	⁵ F	$4d^75s$	³ F	$4d^75s$	17.49^{c}
Rh	⁴ F	$4d^85s$	² D	$4d^9$	7.39 ^c
Pd	$^{1}\mathrm{S}$	4d ¹⁰	³ D	$4d^95s$	23.27^{c}
Ag	^{2}S	$4d^{10}5s$	$^{2}\mathrm{P}$	4d ¹⁰ 5p	85.81 ^c

Continuación Tabla 3.2

Elemento	Estado Basal		Prim	er Estado Exitado	Δ Exp. (kcal/mol)	
Cd	$^{1}\mathrm{S}$	$4d^{10}5s^{2}$	³ P	4d ¹⁰ 5s5p	88.25 ^c	
In	$^{2}\mathrm{P}$	$5s^25p$	^{2}S	$5s^26s$	66.52^{c}	
Sn	³ P	$5s^25p^2$	¹ D	$5s^25p^2$	19.75 ^c	
Sb	⁴ S	$5s^25p^3$	$^{2}\mathrm{D}$	$5s^25p^3$	26.26^{c}	
Te	³ P	$5p^4$	¹ D	$5p^4$	21.17^{c}	
I	$^{2}\mathrm{P}$	$5s^25p^5$	⁴ P	$5s^25p^46s$	158.15^{c}	
Xe	$^{1}\mathrm{S}$	$5p^6$	$\left[1\frac{1}{2}\right]$	$5p^56s$	193.15^{c}	

Continuación Tabla 3.2

^a[29]; ^b[30]; ^c[31]

3.2 Nomenclatura de las bases

En el código deMon para que el archivo de entrada (input) pueda leer las bases para cada átomo, necesita de dos opciones una para las bases orbitálicas y una para las bases auxiliares. Para leer las bases orbitálicas hay dos formas:

 a) Anotando la palabra BASIS en el input y entre paréntesis el conjunto de base que se quiera utilizar.

A continuación se muestra el ejemplo del átomo de Hidrógeno:

```
Title (átomo de H)
BASIS
H (DZVP)
```

Los puntos verticales representan diferentes palabras claves (keywords) para el input.

La siguiente opción es más sencilla para leer las bases orbitálicas ya que no se necesita anotar toda la base como se muestra a continuación. b) Otra forma es definiendo la base directamente en el input file de la siguiente forma:

```
BASIS
SYMBOL Read
N L K
EXPONENTE COEFICIENTE
```

donde SYMBOL es un elemento o un símbolo atómico. N es el número cuántico principal, L es el número cuántico de momento angular de esta capa y K es el grado de contracción. Como se muestra en el siguiente ejemplo con el átomo de Hidrógeno:

```
Title (átomo de H)
BASIS
H read
104
50.9991800000
                 0.0037352343
                 0.0275943661
7.4832180000
1.7774680000
                 0.1280126680
0.5193295000
                 0.3239918944
201
0.1541100000
                 1.0000000000
211
0.7500000000
                 1.0000000000
```

Otros conjuntos de bases pueden ser obtenidas de la red en la pagina http://www. emsl.pnl.gov:2080/forms/basisform.html. Las funciones auxiliares son aproximaciones propuestas por Sambe y Felton [32], en donde ellos aproximan el potencial $v_{xc}(\mathbf{r})$ y la densidad que aparece en el término de potencial de Coulomb $\rho(\mathbf{r})$.

Para el cálculo de los átomos se utilizarón como funciones auxiliares las GEN-A2 y para la validación de las moléculas se utilizaron las funciónes auxiliares la A2. Para el cálculo de las energías de atomización de los sistemas moléculares que se estudiaron en la presente tesis. los átomos que se encuentran involucrados en estas moléculas se calcularón también con las funciones auxiliares A2.

La forma en la cual se introduce la función auxiliar a nuestro archivo de entrada (input) es muy sencillo, ya que solo se escribe AUXIS y entre paréntesis el nombre de la función auxiliar que se quiera utilizar, como ejemplo mostramos el input para el átomo de hidrógeno:

```
Title (átomo de H)
```

AUXIS (GEN-A2)

3.3 Configuración electrónica

Para ingresar la configuración electrónica del estado que se quiera (estado basal o primer estado excitado) al archivo de entrada (input), lo primero es conocer el número atómico, así como la configuración electrónica del elemento que se quiera.

En la primera fila se acomodan los electrones α y en la segunda fila los electrones β . Para poder conocer la multiplicidad se sigue la siguiente fórmula:

 $Multiplicidad = Electrones \alpha - Electrones \beta + 1$

En la siguiente tabla se observa como son ordenados los orbitales.

Tabla 3.3: Tabla del orden de los orbitales s, p. d, f, etc...

Orbital	s	p_y	p_z	p_x	d_{xy}	d_{yz}	d_{z^2}	d_{xz}	$d_{x^2-y^2}$	
m	0	-1	0	1	-2	-1	0	1	2	
1	0		1				2			
Shell	s		p				d			

El orden de los números enteros en la línea de configuración sigue el índice de la capa $l \ge m$ de los armónicos esféricos reales.

Como por ejemplo el átomo de Hidrógeno:

```
Title (átomo de H)
```

Este átomo (H) solo contiene en el orbital de tipo s un electrón alfa y ningún electrón beta.

Otro ejemplo es el átomo de Litio, como se muestra a continuación:

```
Title (átomo de Li)
CONFIGURATION
2
1
```

Este átomo (Li) tiene dos electrones alfa y uno beta en el orbital de tipo s. Un ejemplo en el cual se involucran orbitales de tipo p es el átomo de Potasio como se muestra a continuación:

```
Title (átomo de K)
CONFIGURATION
4 2 2 2
3 2 2 2
```

En este átomo (K) tenemos cuatro electrones alfa y tres electrones beta en el orbital de tipo s y seis electrones alfa y seis electrones beta en los orbitales de tipo p. Si el elemento involucra orbitales de tipo d la ocupación de los electrones en este orbital debe de ser como se muestra en la siguiente tabla:

Tabla 3.4: Tabla para la ocupación de los electrones en los orbitales d.

$$\begin{aligned} &d^{1}(^{2}D): (d_{z^{2}})^{1} \\ &d^{2}(^{3}F): (d_{z^{2}})^{1} (d_{x^{2}-y^{2}})^{1} \\ &d^{3}(^{4}F): (d_{xy})^{1} (d_{xz})^{1} (d_{yz})^{1} \\ &d^{4}(^{5}D): (d_{x^{2}-y^{2}})^{1} (d_{xy})^{1} (d_{xz})^{1} (d_{yz})^{1} \\ &d^{5}(^{6}S): (d_{z^{2}})^{1} (d_{x^{2}-y^{2}})^{1} (d_{xy})^{1} (d_{xz})^{1} (d_{yz})^{1} \\ &d^{6}(^{5}D): (d_{z^{2}})^{2} (d_{x^{2}-y^{2}})^{1} (d_{xy})^{1} (d_{xz})^{1} (d_{yz})^{1} \\ &d^{7}(^{4}F): (d_{z^{2}})^{2} (d_{x^{2}-y^{2}})^{2} (d_{xy})^{1} (d_{xz})^{1} (d_{yz})^{1} \\ &d^{8}(^{3}F): (d_{z^{2}})^{1} (d_{x^{2}-y^{2}})^{1} (d_{xy})^{2} (d_{xz})^{2} (d_{yz})^{2} \\ &d^{9}(^{2}D): (d_{z^{2}})^{1} (d_{x^{2}-y^{2}})^{2} (d_{xy})^{2} (d_{xz})^{2} (d_{yz})^{2} \end{aligned}$$

Para las configuraciones d¹, d⁴. d⁶, y d⁹, la ocupación de los orbitales es puramente arbitraria. pero para las configuraciones d², d³, d⁷, y d⁸ la ocupación de los orbitales
debe ser como la que se muestra en la tabla 3.4.

Como ejemplo, tenemos al átomo de Escandio. su número atómico es 21, su estado espectroscópico en el estado basal es ^{2}D y su configuración electrónica en el estado basal es $^{3}d4s^{2}$. Por lo tanto, de acuerdo al estado espectroscópico (^{2}D) la ocupación de los electrones en los orbitales de tipo d es la siguiente:

 $d^1(^2D):(d_{z^2})^1$

Y el orden es de acuerdo a la tabla 3.3. Como se muestra en el input:

En este átomo se tienen cuatro electrones alfa y cuatro electrones beta en el orbital de tipo s, seis electrones alfa y seis electrones beta en los orbitales de tipo p y un solo electrón alfa en los orbitales de tipo d.

Para construir las nuevas bases a partir de la base DZVP y TZVP [26] se utilizó el funcional local VWN [17], así como los funcionales no locales PW86 [18–20], BLYP [23] y PBE [24]. En la siguiente tabla se muestra con mayor claridad los funcionales que se emplearón para la optimización de las nuevas bases:

Tabla 3.5: Tabla de funcionales utilizado para la optimización de las nuevas bases

Elementos	Funcional	Base	Función Auxiliar
H-Xe	VWN	DZVP	GEN-A2
H-Xe	PW86	DZVP	GEN-A2
Sc-Zn	BLYP	DZVP	GEN-A2

Continu	ación	Tabla	3.5:

Elementos	Funcional	Base	Función Auxiliar
Sc-Zn	PBE	DZVP	GEN-A2
Sc-Cu	VWN	TZVP	GEN-A2

3.4 Bases contraídas y primitivas

Las bases contraídas son aquellas bases en las cuales se encuentran los coeficientes y los exponentes agrupados por capas (s, p, d, f,...). Como ejemplo, tenemos la base contraída del átomo de Hidrógeno:

O-HYDROGEN HYDROGEN H (41/1) (DZVP)

 1 0 4

 50.9991800000
 0.0096604760

 7.4832180000
 0.0737288600

 1.7774680000
 0.2958581000

 0.5193295000
 0.7159053000

 2 0 1
 0.1541100000

 0.1541100000
 1.000000000

 2 1 1
 0.7500000000

Donde (41/1) nos indica el número de contracciones que tenemos en cada capa. Los orbitales son separados por (/), por ejemplo, (41) significa que en la capa 1s existen 4 contracciones y en la capa 2s existe una sola contracción, llamada también primitiva. El siguiente orbital (p), solo tiene una contracción en la capa 2p. Donde (DZVP) es el nombre de la base, y si se tiene otra base, se escribe el nombre entre paréntesis. Las bases primitivas son aquellas bases en donde se descontrae la base, es decir, solo existe una sola contracción para cada capa y los coeficientes son 1.0 como por ejemplo. la base primitiva del átomo de Hidrógeno es:

```
O-HYDROGEN HYDROGEN H (41/1) (DZVP)
101
50,9991800000 1.0
201
 7.4832180000
             1.0
301
 1.7774680000
              1.0
401
 0.5193295000
              1.0
501
 0.1541100000
              1.0
211
 0.7500000000
             1.0
```

3.5 Construcción de las nuevas bases

Para construir una nueva base [33], lo que se necesita es tomar una base contraída de cualquier átomo, en nuestro caso se consideran las bases que se encuentran en el programa deMon [28]. Posteriormente se descontrae la base, es decir, convertirla en una base primitiva y optimizarla. Ese cálculo nos permite obtener nuevos exponentes y con estos exponentes formar nuestras nuevas bases. Para su mejor entendimiento daremos un ejemplo de como fue construida la nueva base del átomo de carbono. Lo primero que se realizó fue tomar en cuenta un conjunto de bases orbitálicas. En este caso la base DZVP del átomo de carbono:

```
O-CARBON CARBON C (621/41/1*) (DZVP)

1 0 6

6

2808.0640000000 0.0020178300

421.1383000000 0.0154332000

95.5866200000 0.0755815500
```

```
26.7390000000 0.2478282000
  8.4328270000
               0.4793725000
  2.7605820000
               0.3338344000
202
 5.4470040000 -0.0778407700
 0.4792422000
               0.5689560000
301
 0.1461565000
               1.0000000000
214
 18.1308500000 0.0158547300
 4.0998830000
               0.0956827700
 1.1858370000
               0.3049119000
 0.3685974000 0.4935017000
311
 0.1097200000
               1.0000000000
321
 0.6000000000
               1.0000000000
```

Posteriormente se creó la correspondiente base descontraída:

```
Title (átomo de C)
BASIS
C (DZVP)
1 0 1
2808.0640000000 1.0
2 0 1
421.1383000000 1.0
3 0 1
95.5866200000 1.0
```

401 26.7390000000 1.0 501 8.4328270000 1.0 601 2.7605820000 1.0 701 5.4470040000 1.0 801 0.4792422000 1.0 901 0.1461565000 1.0 21118.1308500000 1.0 3114.0998830000 1.0 411 1.1858370000 1.0 5110.3685974000 1.0 611 0.1097200000 1.0 3210.6000000000 1.0

Con las bases descontraídas se hizo el cálculo de energía del estado basal experimental del átomo de carbono. De esta salida se obtienen los orbitales atómicos y sus exponentes que se muestran en la tabla 3.6. Con estos exponentes se van construyendo las nuevas bases de la siguiente manera:

a) Se toman los primeros seis valores (exponentes en color rojo) de la columna 1 que corresponde al orbital 1s. Y se sustituyen los exponentes igual a uno de la primera capa de la base vieja;

 b) Posteriormente se toman de la columna 2 los exponentes que corresponden al orbital 2s dos valores (exponentes en verde), a partir de 7s y 8s;

c) Luego como el orbital 3s solo contiene un solo exponente, lo dejamos como primitiva es decir, con un coeficiente que vale 1.0;

d) Ahora para el orbital 2p, nos vamos a la columna 3 y tomamos los primeros cuatro valores (exponentes en amarillo) a partir de $2p_x$, $2p_y \circ 2p_z$;

e) Los orbitales 3p y 3d solo contienen un exponente, por lo tanto, quedan como primitivas;

f) Por último se contrae la base nueva considerando la misma contracción de la base vieja.

Tabla 3.6: Orbitales atómicos y nuevos exponentes para crear la nueva base del átomo de carbono.

				1	2	3
				-9.9304317174	-0.4841925170	-0.1756493454
				2.0000000000	2.0000000000	1.0000000000
1	1	С	1s		-0.0004574451	0.0000000000
2	1	С	2s		-0.0036183060	0.0000000000
3	1	С	3s	ganki Pirashi	-0.0174092641	0.0000000000
4	1	С	4s	noother Every	-0.0664993204	0.0000000000
5	1	С	5s	山市民民国际国	-0.1182613545	0.0000000000
6	1	С	6s	गोरको के संगतिन	-0.0930132588	0.0000000000
7	1	С	7s	0.0196197915	and routestrat	0.0000000000
8	1	С	8s	0.0149846632	0.0197651091	0.0000000000
9	1	С	9s	-0.0041877616	0.4980663669	0.0000000000
10	1	С	2py	0.0000000000	0.0000000000	0.0000000000
11	1	С	2pz	0.0000000000	0.0000000000	0.0158821635
12	1	С	2px	0.0000000000	0.0000000000	0.0000000000

				1	2	3
13	1	\mathbf{C}	Зру	0.0000000000	0.0000000000	0.0000000000
14	1	\mathbf{C}	3pz	0.0000000000	0.0000000000	0.0958795473
15	1	С	3px	0.0000000000	0.0000000000	0.0000000000
16	1	С	4py	0.0000000000	0.0000000000	0.0000000000
17	1	С	4pz	0.0000000000	0.0000000000	0.3065097803
18	1	С	4px	0.0000000000	0.0000000000	0.0000000000
19	1	С	5py	0.0000000000	0.0000000000	0.0000000000
20	1	\mathbf{C}	5pz	0.0000000000	0.0000000000	0.4893952759
21	1	С	5px	0.0000000000	0.0000000000	0.0000000000
22	1	С	бру	0.0000000000	0.0000000000	0.000000000
23	1	С	6pz	0.0000000000	0.0000000000	0.3475848425
24	1	С	6px	0.0000000000	0.0000000000	0.0000000000
25	1	С	3d-2	0.0000000000	0.0000000000	0.0000000000
26	1	С	3d-1	0.0000000000	0.0000000000	0.0000000000
27	1	С	3d+0	0.000000000	0.0000000000	0.0000000000
28	1	С	3d+1	0.0000000000	0.0000000000	0.0000000000
29	1	С	3d+2	0.0000000000	0.00000000000	0.0000000000

				4	5	6
				-0.1774838650	-0.1956481867	0.2447646238
				1.0000000000	0.0000000000	0.0000000000
1	1	С	ls	0.0000000000	0.0000000000	0.0000000000
2	1	\mathbf{C}	2s	0.0000000000	0.0000000000	0.0000000000
3	1	С	3s	0.0000000000	0.0000000000	0.0000000000
4	1	С	4s	0.0000000000	0.0000000000	0.0000000000
5	1	С	5s	0.0000000000	0.0000000000	0.0000000000
6	1	С	6s	0.0000000000	0.0000000000	0.0000000000
7	1	С	7s	0.0000000000	0.0000000000	0.0000000000
8	1	С	8s	0.0000000000	0.0000000000	0.0000000000
9	1	С	9s	0.0000000000	0.0000000000	0.0000000000

10	1	С	2py	0.0153918549	0.0000000000	-0.0115889344
11	1	С	2pz	0.0000000000	0.0000000000	0.0000000000
12	1	С	2px	0.0000000000	0.0159332558	0.0000000000
13	1	С	Зру	0.0923663711	0.0000000000	-0.0927849689
14	1	С	3pz	0.0000000000	0.0000000000	0.0000000000
15	1	С	3px	0.0000000000	0.0963073393	0.0000000000
16	1	С	4py	0.2914469534	0.0000000000	-0.1883929145
17	1	С	4pz	0.0000000000	0.0000000000	0.0000000000
18	1	С	4px	0.0000000000	0.3025261105	0.0000000000
19	1	С	5py	0.4633142699	0.0000000000	-0.7829241425
20	1	С	5pz	0.0000000000	0.0000000000	0.0000000000
21	1	С	5px	0.0000000000	0.5067721754	0.0000000000
22	1	С	6py	0.3972773608	0.0000000000	1.1878004646
23	1	С	6pz	0.0000000000	0.0000000000	0.0000000000
24	1	С	6px	0.0000000000	0.3293150046	0.0000000000
25	1	С	3d-2	0.0000000000	0.0000000000	0.0000000000
26	1	С	3d-1	0.0000000000	0.0000000000	0.0000000000
27	1	С	3d+0	0.0000000000	0.0000000000	0.0000000000
28	1	С	3d+1	0.0000000000	0.0000000000	0.0000000000
29	1	\mathbf{C}	3d+2	0.0000000000	0.0000000000	0.0000000000

La nueva base DZVP-NEW obtenida para el átomo de carbono es por lo tanto la siguiente:

```
O-CARBON CARBON C (621/41/1*) (DZVP-NEW)
```

6

106

2808.0640000000

421.1383000000

95.5866200000

8.4328270000

26.7390000000

202 5.4470040000 0.4792422000 301 0.1461565000 1.0000000000 21418.1308500000 0.0158821635 4.0998830000 0.0958795473 1.1858370000 0.3065097803 0.3685974000 0.4893952759 3110.1097200000 1.0000000000 3210.6000000000 1.0000000000

Los exponentes de las nuevas bases DZVP se optimizaron con los funcionales VWN, PW86, BLYP y PBE. Las nuevas bases obtenidas con el uso de estos funcionales se dedujo el nombre de DZVP-NEW, DZVP-NEW-PW86, DZVP-NEW-BLYP y DZVP-NEW-PBE respectivamente.

Los exponentes de las nuevas bases TZVP se optimizaron con el funcional VWN para el primer grupo de metales de transición. Las nuevas bases obtenidas con el uso de este funcional se dedujo el nombre de TZVP-NEW.

3.6 Cálculo de energías atómicas

Para todos los átomos considerando la configuración del estado basal así como la del primer estado excitado se realizaron cálculos de energía usando las bases viejas (DZVP), las bases primitivas y las nuevas bases optimizadas. Como ejemplo se muestran los resultados de energía (en u.a.) obtenidos para el átomo de carbono en la Tabla 3.7:

Elem.		Estado Basal		Primer estado excitado			
	EDZVP	E _{DZVP-NEW}	EPRIM.	EDZVP	E _{DZVP-NEW}	EPRIM.	
С	-37.46107	-37.45758	-37.46187	-37.39361	-37.39036	-37.39472	

Tabla 3.7: Energía (en u.a.) del estado basal y primer estado excitado del carbono

En la tabla (3.8) se muestran las diferencias de (en kcal/mol) energías para cada base entre el estado basal y el primer estado excitado del átomo de carbono:

Tabla 3.8: Diferencias de energías para cada base en [kcal/mol]

Elem.	ΔE_{DZVP}	$\Delta \to_{DZVP-NEW}$	ΔE_{PRIM}	ΔE_{EXP}
С	42.33	42.18	42.14	29.09

Las energías se obtuvieron con diferentes bases y funcionales como se muestra en la siguiente tabla:

Tabla 3.9: Tabla de los elementos para el cálculo de las energías

Elementos	Funcional	Base
H-Xe	VWN	DZVP
		DZVP-NEW
		DZVP-PRIM.
H-Xe	PW86	DZVP
		DZVP-NEW-PW86
		DZVP-PRIM.
Н, В. С,	VWN	TZVP
N, O. F,		TZVP-NEW
Si, P. S,		TZVP-PRIM.
Sc-Cu	VWN	TZVP
		TZVP-NEW
		TZVP-PRIM.

A continuación se presentan las tablas de las energías calculadas para todos los elementos estudiados. Tabla 3.10: Energías totales del estado basal y del primer estado excitado y diferencias de energías entre el estado basal y el primer estado excitado del átomo de H al Xe obtenidas con el funcional VWN, y las bases DZVP, DZVP-NEW y DZVP-PRIM. Las energías totales (E) se reportan en u.a. y las diferencias de energías (ΔE) se reportan en kcal/mol. Las diferencias experimentales se reportan también para su comparación.

Atomo	Energ	gía de Estado	Basal	Energía de	Primer Estad	o Excitado		ΔE	5	
	Edzvp	EDZVP-NEW	Eprim.	Edzvp	EDZVP-NEW	Eprim.	DZVP	DZVP-NEW	PRIM	EXP.
Н	-0.476522	-0.476772	-0.476772	0.391239	0.361995	0.203196	544.53	526.33	171.69	235.19^{a}
He	-2.834524	-2.834525	-2.834525	-1.835297	-1.835567	-1.929474	627.01	626.85	567.92	457.03 ^a
Li	-7.342763	-7.342763	-7.342881	-7.283018	-7.283034	-7.283023	37.49	37.48	37.56	42.61^{a}
Be	-14.444905	-14.441156	-14.445319	-14.294506	-14.292404	-14.294941	94.38	93.39	94.36	62.84^{a}
В	-24.350621	-24.347021	-24.351236	-24.231283	-24.228580	-24.228151	74.88	74.32	77.24	82.35 ^a
С	-37.461075	-37.457587	-37.461879	-37.393618	-37.390361	-37.394720	42.33	42.18	42.14	29.09 ^a
N	-54.124106	-54.120525	-54.125138	-54.009141	-54.005643	-54.010446	72.14	72.09	71.97	54.97 ^a
0	-74.512205	-74.506944	-74.513682	-74.411377	-74.406288	-74.412970	63.27	63.16	63.20	45.00^{a}
F	-99.090635	-99.084666	-99.092476	-97.586734	-97.563057	-97.689770	943.70	954.81	880.20	292.89 ^a
Ne	-128.203520	-128.195796	-128.205750	-126.233546	-126.187221	-126.362938	1236.16	1260.38	1156.36	383.84 ^a
Na	-161.408338	-161.394631	-161.419591	-161.333199	-161.320295	-161.344275	47.15	46.65	47.26	48.50^{a}
Mg	-199.102587	-199.071243	-199.108342	-198.980982	-198.949954	-198.986818	76.31	76.11	76.26	62.55^{a}
Al	-241.281214	-241.238613	-241.288729	-241.062190	-241.023629	-241.080267	137.44	134.90	130.81	72.31 ^a
Si	-288.174857	-288.117090	-288.183975	-288.133233	-288.075812	-288.142693	26.12	25.90	25.90	17.72 ^a

Continuación Tabla 3.10

Atomo	Ener	gía de Estado I	Basal	Energía de Primer Estado Excitado			ΔΕ			
	Edzvp	EDZVP-NEW	Eprim.	Edzvp	Edzvp-new	Eprim.	DZVP	DZVP-NEW	PRIM.	EXP.
Р	-339.952471	-339.877236	-339.963484	-339.885121	-339.809921	-339.896541	42.26	42.24	42.01	32.51^{a}
S	-396.681710	-396.586658	-396.695087	-396.622765	-396.527818	-396.636305	36.99	36.92	36.89	25.49^{a}
Cl	-458.599114	-458.480439	-458.615118	-457.894602	-457.783230	-457.954818	442.08	437.50	414.34	205.80 ^a
Ar	-525.868320	-525.728054	-525.887077	-524.962369	-524.829418	-525.038432	568.48	563.90	532.53	267.17 ^a
K	-598.120906	-597.947647	-598.144247	-598.058720	-597.885853	-598.082089	39.02	38.78	39.00	37.21 ^a
Ca	-675.646344	-675.429389	-675.673980	-675.570346	-675.353888	-675.598029	47.69	47.38	47.66	43.54^{a}
Sc	-758.566356	-758.328513	-758.606523	-758.556841	-758.305777	-758.589275	5.97	14.27	10.82	32.90^{a}
Ti	-847.177374	-846.906405	-847.225713	-847.192263	-846.902160	-847.229053	-9.34	2.66	-2.10	18.57^{a}
v	-941.592082	-941.277384	-941.646877	-941.625970	-941.290386	-941.666969	-21.26	-8.16	-12.61	5.69^{a}
Cr	-1042.027259	-1041.674693	-1042.072133	-1041.950074	-1041.590566	-1041.995227	48.43	52.79	48.26	21.71 ^b
Mn	-1148.406704	-1148.005058	-1148.473755	-1148.389513	-1147.958795	-1148.440275	10.79	29.03	21.01	49.74 ^b
Fe	-1260.958045	-1260.550595	-1261.029805	-1260.988001	-1260.554732	-1261.041632	-18.80	-2.59	-7.42	20.12^{b}
Co	-1379.887851	-1379.409141	-1379.966425	-1379.924623	-1379.414991	-1379.984304	-23.07	-3.67	-11.22	9.55 ^b
Ni	-1505.291394	-1504.779078	-1505.376938	-1505.334453	-1504.789083	-1505.399238	-27.02	-6.28	-13.99	0.71 ^b

Atomo	Ener	gía de Estado I	Basal	Energía de	e Primer Estado) Excitado		Δŀ	2	
	Edzvp	Edzvp-new	EPRIM.	Edzvp	EDZVP-NEW	EPRIM	DZVP	DZVP-NEW	PRIM.	EXP.
Cu	-1637.395782	-1636.772992	-1637.466650	-1637.300962	-1636.675638	-1637.395566	59.50	61.09	44.60	34.95^{b}
Zn	-1776.185167	-1775.571267	-1776.260820	-1775.972635	-1775.359754	-1776.048445	133.36	132.72	133.27	93.11^{b}
Ga	-1921.382515	-1920.720273	-1921.474856	-1921.125644	-1920.464347	-1921.231209	161.19	160.59	152.89	69.69^{b}
Ge	-2073.343272	-2072.499032	-2073.446097	-2073.302557	-2072.458726	-2073.406179	25.55	25.29	25.05	18.50^{b}
As	-2232.085655	-2231.155053	-2232.195694	-2232.023616	-2231.093143	-2232.134604	38.93	38.85	38.33	30.75 ^b
Se	-2397.611875	-2396.591569	-2397.729704	-2397.558268	-2396.538023	-2397.676756	33.64	33.60	33.22	23.07 ^b
Br	-2570.081327	-2569.078007	-2570.203498	-2569.471002	-2568.470884	-2569.634477	382.98	380.97	357.06	180.77 ^b
Kr	-2749.582891	-2748.512679	-2749.712617	-2748.831304	-2747.764823	-2749.011648	471.62	469.28	439.86	230.00 ^b
Rb	-2935.994527	-2934.725727	-2936.133663	-2935.935642	-2934.667464	-2936.074863	36.95	36.56	36.90	36.30 ^b
Sr	-3129.042478	-3127.690285	-3129.191858	-3128.972879	-3127.621454	-3129.122323	43.67	43.19	43.63	41.67 ^b
Y	-3329.094913	-3327.646643	-3329.263834	-3329.008790	-3327.560214	-3329.179373	54.04	54.23	53.00	30.53 ^b
Zr	-3536.305122	-3534.744658	-3536.284651	-3536.304978	-3534.744512	-3536.284605	0.1	0.09	0.03	10.43^{b}
Nb	-3750.802138	-3749.144121	-3750.784692	-3750.759994	-3749.103014	-3750.744485	26.44	25.79	25.23	4.18 ^b
Mo	-3972.636464	-3970.842358	-3972.629237	-3972.576596			37.57			30.79 ^c

Continuación Tabla 3.10

40

Atomo	Ener	gía de Estado I	Basal	Energía d	e Primer Estado	o Excitado	ΔE			
	Edzvp	EDZVP-NEW	Eprim.	Edzvp	Edzvp-new	Eprim.	DZVP	DZVP-NEW	PRIM.	EXP.
Тс	-4201.783009	-4199.870153	-4201.731146	-4201.820059	-4199.893120	-4201.762511	-23.25	-14.41	-19.68	10.12^{c}
Ru	-4438.511230	-4436.455586	-4438.454721	-4438.467510	-4436.412186	-4438.411286	27.43	27.23	27.25	17.49 ^c
Rh	-4682.779547	-4680.638735	-4682.724666	-4682.784450	-4680.641121	-4682.732182	-3.08	-1.50	-4.72	7.39^{c}
Pd	-4934.760262	-4932.411671	-4934.721547	-4934.703977	-4932.354034	-4934.661904	35.32	36.17	37.42	23.27^{c}
Ag	-5194.412913	-5191.941142	-5194.374935	-5194.258921	-5191.787401	-5194.220833	96.63	96.47	96.70	85.81 ^c
Cd	-5461.734990	-5459.022873	-5461.705936	-5461.577289	-5458.865415	-5461.548088	98.96	98.80	99.05	88.25 ^c
In	-5736.667666	-5733.872062	-5736.664228	-5736.442600	-5733.645095	-5736.453556	141.23	142.42	132.20	66.52^{c}
Sn	-6019.262851	-6016.317395	-6019.260365	-6019.226990	-6016.281713	-6019.225253	22.50	22.39	22.03	19.75 ^c
Sb	-6309.665473	-6306.490054	-6309.671472	-6309.612645	-6306.437502	-6309.619532	33.15	32.98	32.59	26.26^{c}
Te	-6607.870082	-6604.489090	-6607.884417	-6607.824600	-6604.443795	-6607.839655	28.54	28.42	28.09	21.17 ^c
I	-6913.977518	-6910.372130	-6913.990735	-6913.494679	-6909.888964	-6913.541591	302.98	303.19	281.84	158.15 ^c
Xe	-7228.042524	-7224.152537	-7228.060866	-7227.446761	-7223.553948	-7227.519639	373.84	375.61	339.62	193.15 ^c
	· · · · · · · · ·									

Continuación Tabla 3.10

^a[29]; ^b[30]; ^c[31]

Tabla 3.11: Energías totales del estado basal y del primer estado excitado y diferencias de energías entre el estado basal y el primer estado excitado del átomo de H al Xe obtenidas con el funcional PW86, y las bases DZVP, DZVP-NEW-PW86 y DZVP-PRIM. Las energías totales (E) se reportan en u.a. y las diferencias de energías (ΔE) se reportan en kcal/mol. Las diferencias experimentales se reportan también para su comparación.

Atomo	Energ	gía de Estado	Basal	Energía de	Primer Estad	o Excitado	ΔE			
	Edzvp	ENEW-PW86	Eprim.	Edzvp	ENEW-PW86	Eprim.	DZVP	NEW-PW86	PRIM.	EXP.
Н	-0.500101	-0.500259	-0.500259	0.348297	0.330119	0.174212	532.37	521.06	423.23	235.19^{a}
He	-2.914302	-2.914600	-2.914599	-1.907597	-1.902567	-1.996736	631.71	635.05	575.96	457.03 ^a
Li	-7.494939	-7.495075	-7.495233	-7.436920	-7.437159	-7.437198	36.41	36.34	36.42	42.61 ^a
Be	-14.680488	-14.676778	-14.682480	-14.530729	-14.529529	-14.533360	93.97	92.40	93.57	62.84 ^a
В	-24.680740	-24.677206	-24.683223	-24.551886	-24.548077	-24.554756	80.85	81.03	80.61	82.35 ^a
С	-37.886017	-37.883722	-37.888939	-37.822736	-37.820024	-37.826127	39.71	39.97	39.41	29.09^{a}
N	-54.640030	-54.638356	-54.643540	-54.540652	-54.538743	-54.544444	62.36	62.51	62.18	54.97^{a}
0	-75.141512	-75.138860	-75.145813	-75.043368	-75.040684	-75.047746	61.58	61.60	61.54	45.00^{a}
F	-99.823596	-99.820690	-99.828508	-98.331459	-98.313994	-98.438580	936.31	945.45	872.18	292.89 ^a
Ne	-129.031185	-129.026986	-129.036824	-127.085825	-127.040471	-127.219804	1220.71	1246.54	1140.18	383.84^{a}
Na	-162.353566	-162.345006	-162.366373	-162.279415	-162.270910	-162.292033	46.53	46.49	46.65	48.50 ^a
Mg	-200.166796	-200.142613	-200.176058	-200.042344	-200.018232	-200.051702	78.09	78.05	78.03	62.55 ^a
Al	-242.467391	-242.432753	-242.478643	-242.249314	-242.218808	-242.271271	136.84	134.25	130.12	72.31 ^a
Si	-289.482627	-289.436392	-289.495593	-289.439667	-289.393503	-289.453101	26.96	26.91	26.66	17.72 ^a

	3.6 Cá
	culo
1	de
	eneroías
	atómicas

Continuación Tabla 3.11										
Atomo	Ener	gía de Estado I	Basal	Energía de Primer Estado Excitado			ΔΕ			
	Edzvp	ENEW-PW86	EPRIM.	Edzvp	ENEW-PW86	EPRIM.	DZVP	NEW-PW86	PRIM.	EXP.
Р	-341.381102	-341.320047	-341.396039	-341.314505	-341.253605	-341.330031	41.79	41.69	41.42	32.51 ^a
S	-398.233286	-398.155207	-398.251001	-398.171532	-398.093707	-398.189504	38.75	38.59	38.59	25.49 ^a
Cl	-460.270711	-460.174599	-460.291491	-459.569187	-459.484261	-459.635724	440.20	433.19	411.49	205.80 ^a
Ar	-527.658544	-527.546345	-527.682509	-526.758145	-526.658407	-526.840980	565.00	557.18	528.06	267.17 ^a
К	-600.041777	-599.897085	-600.070398	-599.980574	-599.835962	-600.009247	38.40	38.35	38.37	37.21^{a}
Ca	-677.700401	-677.517272	-677.733527	-677.621498	-677.438614	-677.654758	49.51	49.36	49.43	43.54^{a}
Sc	-760.750597	-760.549419	-760.796161	-760.736805	-760.521056	-760.774506	8.65	17.80	13.59	32.90^{a}
Ti	-849.490255	-849.255222	-849.544277	-849.495325	-849.237914	-849.537207	-3.18	10.86	4.44	18.57^{a}
v	-944.026902	-943.744082	-944.087116	-944.044008	-943.736024	-944.090552	-10.73	5.06	-2.16	5.69^{a}
Cr	-1044.558022	-1044.235831	-1044.608681	-1044.493752	-1044.171577	-1044.544570	40.33	40.32	40.23	21.71 ^b
Mn	-1151.065759	-1150.689346	-1151.139160	-1151.047596	-1150.640162	-1151.104380	11.40	30.86	21.82	49.74^{b}
Fe	-1263.743263	-1263.367614	-1263.821558	-1263.770374	-1263.365666	-1263.830253	-17.01	1.22	-5.46	20.12^{b}
Co	-1382.797231	-1382.355857	-1382.882590	-1382.822345	-1382.346758	-1382.888205	-15.76	5.71	-3.52	9.55 ^b
Ni	-1508.314390	-1507.840865	-1508.406780	-1508.336214	-1507.826607	-1508.407644	-13.69	8.95	-0.54	0.71 ^b

					D	P 11 1				
Atomo	Ener	gía de Estado I	Basal	Energía de	e Primer Estado	o Excitado			9	
	Edzvp	ENEW-PW86	EPRIM.	Edzvp	ENEW-PW86	EPRIM.	DZVP	NEW-PW86	PRIM.	EXP.
Cu	-1640.501103	-1639.910937	-1640.578924	-1640.425914	-1639.838255	-1640.527911	47.18	45.61	32.01	34.95 ^b
Zn	-1779.410507	-1778.826235	-1779.493670	-1779.194096	-1778.611023	-1779.277456	135.80	135.04	135.67	93.11 ^b
Ga	-1924.732261	-1924.100525	-1924.831938	-1924.474359	-1923.843343	-1924.588063	161.83	161.38	153.03	69.69^{b}
Ge	-2076.813370	-2075.999566	-2076.923912	-2076.773038	-2075.959305	-2076.884271	25.31	25.26	24.87	18.50^{b}
As	-2235.673610	-2234.773674	-2235.791663	-2235.614828	-2234.715031	-2235.733703	36.88	36.80	36.37	30.75^{b}
Se	-2401.320680	-2400.331282	-2401.446556	-2401.266207	-2400.276965	-2401.392721	34.18	34.08	33.78	23.07^{b}
Br	-2573.906169	-2572.942381	-2574.036532	-2573.298377	-2572.335785	-2573.471254	381.39	380.64	354.71	180.77^{b}
Kr	-2753.521778	-2752.500548	-2753.659892	-2752.776030	-2751.756882	-2752.965676	467.96	466.65	435.62	230.00^{b}
Rb	-2940.060954	-2938.837691	-2940.207775	-2940.002761	-2938.779986	-2940.149725	36.52	36.21	36.43	36.30^{b}
Sr	-3133.237963	-3131.934488	-3133.393781	-3133.165485	-3131.862716	-3133.321444	45.48	45.04	45.39	41.67^{b}
Y	-3333.417877	-3332.016747	-3333.593119	-3333.330566	-3331.927913	-3333.506670	54.79	55.74	54.25	30.53^{b}
Zr	-3540.754580	-3539.241460	-3540.726664							10.43^{b}
Nb	-3755.362925	-3753.757274	-3755.338051	-3755.332584	-3753.731301	-3755.312826	19.04	16.30	15.83	4.18^{b}
Mo	-3977.316859	-3975.578257	-3977.300745	-3977.262659	-3975.524768		34.01	33.56		30.79^{c}

Continuación Tabla 3.11

Atomo	Ener	gía de Estado I	Basal	Energía de	e Primer Estade	o Excitado	ΔΕ			
	Edzvp	ENEW-PW86	EPRIM	Edzvp	Enew-pw86	Eprim.	DZVP	NEW-PW86	PRIM.	EXP.
Tc	-4206.593761	-4204.713633	-4206.537356	-4206.626753	-4204.727098	-4206.563571	-20.70	-8.45	-16.45	10.12^{c}
Ru	-4443.441470	-4441.411431	-4443.379489	-4443.396754	-4441.367504	-4443.335125	28.06	27.56	27.84	17.49 ^c
Rh	-4687.828205	-4685.710684	-4687.768029	-4687.822187	-4685.698390	-4687.763989	3.78	7.71	2.53	7.39 ^c
Pd	-4939.911803	-4937.572964	-4939.867550	-4939.865836	-4937.530470	-4939.819204	28.84	26.66	30.34	23.27 ^c
Ag	-5199.688925	-5197.233212	-5199.646751	-5199.536446	-5197.080869	-5199.494315	95.68	95.59	95.65	85.81 ^c
Cd	-5467.136751	-5464.454117	-5467.103723	-5466.977772	-5464.295364	-5466.944813	99.76	99.62	99.71	88.25 ^c
In	-5742.199183	-5739.409299	-5742.190715	-5741.972222	-5739.178248	-5741.979324	142.42	144.98	132.65	66.52^{c}
Sn	-6024.918964	-6021.981571	-6024.911061	-6024.883485	-6021.946175	-6024.876173	22.26	22.21	21.89	19.75 ^c
Sb	-6315.442445	-6312.277884	-6315.443184	-6315.392375	-6312.228148	-6315.393816	31.42	31.21	30.98	26.26 ^c
Te	-6613.770332	-6610.406360	-6613.779845	-6613.724251	-6610.360620	-6613.734392	28.91	28.70	28.52	21.17 ^c
1	-6919.997511	-6916.392779	-6920.006108	-6919.520451	-6915.914611	-6919.559544	299.35	300.05	280.22	158.15 ^c
Xe	-7234.178968	-7230.303907	-7234.192949	-7233.586882	-7229.704762	-7233.658651	371.53	375.96	335.27	193.15 ^c

Continuación Tabla 3.11

^a[29]; ^b[30]; ^c[31]

Tabla 3.12: Energías totales del estado basal y del primer estado excitado y diferencias de energías entre el estado basal y el primer estado excitado del átomo de H, B, C, N, O, F, Si, P, S, Cl, Sc-Cu obtenidas con el funcional VWN, y las bases TZVP, TZVP-NEW y TZVP-PRIM. Las energías totales (E) se reportan en u.a. y las diferencias de energías (ΔE) se reportan en kcal/mol. Las diferencias experimentales se reportan también para su comparación.

Atomo	Energ	gía de Estado	Basal	Energía de Primer Estado Excitado			ΔΕ			
	Etzvp	ETZVP-NEW	Eprim.	Etzvp	ETZVP-NEW	EPRIM.	TZVP	TZVP-NEW	PRIM.	EXP.
Н	-0.476643	-0.476876	-0.476876	-0.099882	-0.099882	-0.099882	236.42	236.56	236.56	235.19^{a}
В	-24.353087	-24.353100	-24.353655	-24.233635	-24.233654	-24.233977	74.96	74.95	75.10	82.37^{a}
С	-37.464489	-37.464491	-37.465273	-37.397540	-37.397545	-37.398394	42.01	42.01	41.97	29.14^{a}
N	-54.129750	-54.129722	-54.130774	-54.015283	-54.015257	-54.016414	71.83	71.83	71.76	54.97^{a}
0	-74.521020	.74.521025	-74.522446	-74.420170	-74.420197	-74.421642	63.28	63.27	63.25	45.37^{a}
F	-99.103522	+99.103550	-99.105355	-97.662635	-97.662350	-97.718572	904.15	904.35	870.20	293.47^{a}
Si	-288.201634	-288.175523	-288.209035	-288.160249	-288.133862	-288.167487	25.97	26.14	26.07	18.01^{a}
Р	-339.982520	-339.957736	-339.991327	-339.915397	-339.890596	-339.924349	42.12	42.13	42.03	32.51^{a}
S	-396.715398	-396.690341	-396.726259	-396.656472	-396.631410	-396.667421	36.98	36.98	36.92	26.42^{a}

	Cont	inuac	tión	Tal	bla	3.	12
--	------	-------	------	-----	-----	----	----

Atomo	Ener	gía de Estado I	Basal	Energía de Primer Estado Excitado			ΔE			
	Etzvp	ETZVP-NEW	EPRIM.	ETZVP	ETZVP-NEW	EPRIM.	TZVP	TZVP-NEW	PRIM.	EXP.
Cl	-458.637031	-458.610138	-458.650244	-457.947631	-457.919584	-457.990362	432.60	433.32	414.07	207.06 ^a
Sc	-758.302704	-758.330687	-758.606508	-758.286869	-758.314597	-758.589222	9.94	10.10	10.85	33.14^{a}
V	-941.244944	-941.279887	-941.646891	-941.265798	-941.301078	-941.666966	-13.08	-13.30	-12.60	6.42^{a}
Cr	-1041.640506	-1041.676786	-1042.072132							
Mn	-1147.965367	-1148.007243	-1148.473747	-1147.932479	-1147.974369	-1148.440272	20.64	20.63	21.00	49.74 ^b
Fe	-1260.513118	-1260.553453	-1261.029795	-1260.525801	-1260.566196	-1261.041602	-7.96	-8.00	-7.41	21.83 ^b
Co	-1379.366017	-1379.411180	-1379.966410	-1379.385130	-1379.430329	-1379.984283	-11.99	-12.01	-11.21	12.43 ^b
Ni	-1504.737258	-1504.781576	-1505.376952	-1504.761211	-1504.805603	-1505.399245	-15.03	-15.08	-13.99	2.676
Cu	-1636.726229	-1636.775933	-1637.466650	-1636.652870	-1636.702476	-1637.395572	46.03	46.09	44.60	34.95 ^b

a[29]; b[30]

Capítulo 4

Resultados y Discusiones

En este capítulo se presentan y se discuten los resultados obtenidos en este trabajo de tesis. Parte de estos resultados son objeto de un artículo que se encuentra en preparación [33].

4.1 Energía de excitación en metales de transición.

Para analizar los resultados que se obtuvierón con las nuevas bases, lo que se realizó fue calcular y graficar la energía de exitación de los átomos del primer grupo de metales de transición (Sc-Cu), así como también los átomos del segundo grupo de transición (Y-Ag).

Para estas gráficas se utilizaron los valores de energía interconfiguracional entre el estado $s^2 d^{n-1}$ y el estado sd^n . Los estados espectroscópicos y las configuraciones electrónica que se emplearon en dichos átomos estan reportadas en la Tabla 4.1. Asi como también se reportan las energías de excitación experimentales entre estos estados en eV.

Las bases TZVP solo se optimizaron para la primera fila de metales de transición y algunos elementos (H, B, C. N, O, F. Si, P y S) pero no se realizó la validación con estas bases. Solo se realizó la validación con las bases DZVP con los elementos de la primera y segunda fila de metales de transición.

Atomo	E	stado	E	stado	Expt.
	s	d^{n-1}		sd^n	(eV)
Sc	$^{2}\mathrm{D}$	$3d4s^2$	⁴ F	$3d^24s$	1.43ª
Ti	$^{3}\mathrm{F}$	$3d^24s^2$	⁵ F	$3d^34s$	0.80ª
V	٩Ł	$3d^34s^2$	6D	$3d^44s$	0.25^{a}
Cr	⁵ D	$3d^44s^2$	⁷ S	$3d^{5}4s$	0.99 ^b
Mn	6S	$3d^54s^2$	⁶ D	$3d^{6}4s$	2.16 ^b
Fe	⁵ D	$3d^64s^2$	⁵ F	$3d^{7}4s$	0.876
Co	٩F	$3d^74s^2$	⁴ F	$3d^84s$	0.41 ^b
Ni	³ F	$3d^84s^2$	³ D	$3d^94s$	0.03^{b}
Cu	$^{2}\mathrm{D}$	$3d^94s^2$	$^{2}\mathrm{S}$	$3d^{10}4s$	1.51^{b}
Y	$^{2}\mathrm{D}$	$4d5s^2$	⁴ F	$4d^25s$	1.36^{b}
Zr	³ F	$4d^25s^2$	۶F	$4d^35s$	0.58^{b}
Nb	٩F	$4d^35s^2$	6D	$4d^45s$	0.18^{b}
Mo	⁵ D	$4d^45s^2$	⁷ S	$4d^55s$	1.43^{c}
Tc	⁶ S	$4d^{5}5s^{2}$	۹D	$4d^{6}5s$	1.40^{c}
Ru	⁵ D	$4d^65s^2$	⁵ F	$4d^75s$	0.86^{c}
Rh	Rh 4 F 4d ⁷ 5s		⁴ F	4d ⁸ 5s	1.64 ^c
Pd	³ F	$4d^85s^2$	³ D	4d ⁹ 5s	2.42 ^c
Ag	Ag 2 D 4d 9 5s		² S	4d ¹⁰ 5s	4.03^{c}

Tabla 4.1: Energías de excitación experimental (en eV) entre los estados $s^2 d^{n-1} \rightarrow s d^n$ de metales de transición del Sc hasta el Ag.

^a[29]; ^b[30]; ^c[31]

Las energías de excitación se calcularon empleando diferentes funcionales (VWN, PW86, BLYP y PBE) y diferentes bases (DZVP y TZVP) para el primero y segundo grupo de metales de transición. Los valores calculados se compararon con las energías de excitación experimentales.

También se realiza la comparación de los datos obtenidos con el funcional PW86 y la

base nueva se presenta la gráfica donde se compara la curva realizada con el funcional PW86 y la base nueva (DZVP-NEW-BLYP) con la curva experimental.

Las gráficas de las energías de excitación se realizarón con diferentes bases y funcionales. Todas las gráficas obtenidas se presentaran y se discutiran enseguida:

Gráfica 1: Energías interconfiguracionales $s^2d^{n-1} \rightarrow sd^n$ en (eV) calculadas con el funcional local VWN. la base vieja DZVP y la nueva DZVP-NEW. Así como con los funcionales no locales PW86. BLYP y PBE y las bases nuevas DZVP-NEW-PW86, DZVP-NEW-BLYP y DZVP-NEW-PBE respectivamente. Las energías experimental se muestran con el objeto de su comparación.

En la gráfica 1 se presentan los resultados de las energías $s^2 d^{n-1} \rightarrow s d^n$ calculadas con el funcional VWN y la base vieja DZVP (linea roja). Las energías calculadas con el mismo funcional (VWN) pero ahora utilizando la base nueva DZVP-NEW (línea verde), muestran la misma tendencia con respecto a la curva hecha con la base vieja DZVP, excepto que la energía del átomo de Ti es positiva al igual que su energía experimental. Las energías calculadas con el funcional no local PW86 y la base nueva DZVP-NEW-PW86 (línea azul), son las mejores energías, ya que muestran la mejor tendencia con respecto a la curva experimental. Debido a que todos los átomos (del Sc hasta el Cu) tienen el mismo valor (positivo o negativo) y se aproximan más a las energías experimentales. Las energías calculadas con el funcional no local BLYP y la base nueva DZVP-NEW-BLYP (línea amarilla), muestran también una muy buena tendencia para todos los átomos con respecto a la curva experimental, solo que, los valores de energía calculados con la base nueva DZVP-NEW-PW86 se aproximan un poco más a los valores experimentales.

Por ultimo, las energías calculadas con el funcional no local PBE y la base nueva DZVP-NEW-PBE (línea rosa), muestran que la tendencia no es muy buena para los átomos de V y Fe. debido a que, se tienen energías negativas diferentes a las energías experimentales que son positivas en dichos átomos. De está comparación podriamos concluir que las energías calculadas con las bases nuevas DZVP-NEW-PW86 y DZVP-NEW-BLYP y los funcionales PW86 y BLYP respectivamente, dan los mejores resultados para las energías interconfiguracionales s²dⁿ⁻¹ \rightarrow sdⁿ del primer grupo de metales de transición.

Para demostrar que es un hecho importante la aplicación de las bases con funcionales no locales, en la gráfica 2 se presentan los resultados de las energías $s^2d^{n-1} \rightarrow sd^n$ calculadas con el funcional no local PW86 y la base vieja DZVP (línea roja) y la base nueva DZVP-NEW-PW86 (línea azul) y se comparan las dos curvas con los datos experimentales.

Se observa que para los átomos de Sc. Cr. Mn. Ni y Cu las energías calculadas con el funcional PW86 y las bases DZVP siguen la misma tendencia con respecto a la curva experimental, pero se presentan problemas para los demas átomos.

Las energías calculadas con el funcional no local PW86 y la base nueva DZVP-NEW-PW86 (línea azul), dan mejores resultados, ya que muestran una mejor tendencia con respecto a la curva experimental. Debido a que todos los átomos (del Sc hasta el Cu) tienen el mismo valor (positivo o negativo) y se aproximan más a las energías experimentales. Esto nos indica que es importante optimizar la base con este funcional para poder calcular correctamente estas energías.

Gráfica 2: Energías interconfiguracionales $s^2 d^{n-1} \rightarrow s d^n$ calculadas con el funcional no local PW86, la base vieja DZVP y la base nueva (DZVP-NEW-PW86). Las energías experimental se muestran con el objeto de su comparación.

En la gráfica 3 se presentan los resultados de las energías interconfiguracionales $s^2 d^{n-1} \rightarrow s d^n$ calculadas en la referencia [34] (línea roja), donde se utilizó el funcional BLYP y la base Wachters [35] aumentada con la función difusa d propuesta por Hay [36], denominada Wachters/Hay. Se observa que con los datos de la referencia [34] los átomos de V. Fe y Co no siguen la misma tendencia con respecto a la curva experimental, debido a que, las energías de estos átomos tienen valor de energía diferentes.

Con las energías calculadas con el funcional no local PW86 y la base nueva DZVP-NEW-PW86 (línea azul), se obtienen valores más apropiados que los mostrados en la referencia, ya que la tendencia es la misma para todos los átomos (del Sc hasta el Cu) con respecto a la curva experimental. Por ello es, que con estas nuevas bases DZVP-NEW-PW86 los resultados son mejores a nivel energético que las obtenidas con otros funcionales utilizados en esta tesis, así como las reportadas en la literatura.

Gráfica 3: Energías interconfiguracionales $s^2 d^{n-1} \rightarrow s d^n$ calculadas con el funcional no local PW86 y la base nueva (DZVP-NEW-PW86), y la gráfica de la referencia [33]. La energías experimental se muestran con el objeto de su comparación.

En la gráfica 4 se presentan los resultados de las energías s²dⁿ⁻¹ \rightarrow sdⁿ calculadas con el funcional PW86 y la base nueva DZVP-NEW-BLYP (línea verde). En esta gráfica podemos concluir que no existen cambios en las energías de los átomos al utilizar la base nueva DZVP-NEW-BLYP, ya que se obtienen los mismos resultados. si utilizamos el funcional PW86 con su respectiva base nueva DZVP-NEW-PW86. Por lo tanto con este resultado se encuentra que es importante optimizar las bases con funcionales no locales para obtener mejores resultados en las propiedades energéticas de los metales de transición.

Gráfica 4: Energías interconfiguracionales $s^2 d^{n-1} \rightarrow s d^n$ calculadas con el funcional no local PW86 y la base nueva DZVP-NEW-BLYP optimizada con el funcional no local BLYP. La energías experimental se muestran con el objeto de su comparación.

En la gráfica 5 se presentan los resultados de las energías $s^2d^{n-1} \rightarrow sd^n$ del segundo grupo de metales de transición, calculadas con el funcional local VWN y la base vieja DZVP (línea roja), se observa que casi todos los átomos de este grupo, siguen la misma tendencia respecto a la curva experimental, con excepción del átomo de Zr, ya que, la energía experimental de este átomo tiene valor positivo y la de la base vieja DZVP tiene valor negativo.

Las energías calculadas con el mismo funcional VWN pero ahora utilizando la base nueva DZVP-NEW (línea verde). muestra la misma tendencia con respecto a la curva hecha con la base vieja DZVP, se podria decir, que son muy similares.

Las energías calculadas con el funcional no local PW86 y la base nueva DZVP-NEW-PW86 (línea azul). son las que dan mejores energías, ya que muestran la misma tendencia con respecto a la curva experimental. En el átomo de Zr se puede observar que con la base nueva DZVP-NEW-PW86, se logró obtener una energía positiva. a comparación con la base vieja DZVP y la base nueva DZVP-NEW. Con la optimización de las bases utilizando el funcional de PW86 es obtenienen mejores energías interconfiguracionales $s^2 d^{n-1} \rightarrow s d^n$.

Gráfica 5: Energías interconfiguracionales $s^2 d^{n-1} \rightarrow s d^n$ calculadas con el funcional local VWN. la base vieja DZVP, la nueva DZVP-NEW. Así como el funcional no local PW86 y la base nueva DZVP-NEW-PW86. Las energías experimental se muestran con el objeto de su comparación.

4.2 Parámetros geométricos

Para la validación de las nuevas bases se realizó un analisis estadístico de parámetros geométricos optimizados para 46 moléculas orgánicas e inorgánicas. Estos cálculos se realizarón con los funcionales VWN, PW86 y BLYP, con dos aproximaciones diferentes (BASIS y AUXIS), así como con la base vieja (DZVP) y las bases nuevas (DZVP-NEW y DZVP-NEW-PW86). Para los cálculos con el funcional BLYP se utilizó la nueva base DZVP-NEW-PW86, debido a que solo hemos desarrollado nuevas bases (DZVP-NEW-BLYP) para el primer grupo de metales de transición en este trabajo de tesis.

En la aproximación AUXIS, el cálculo de los de los gradientes de energía se lleva a cabo utilizando el potencial de intercambio y correlación calculado de la densidad auxiliar. En la aproximación BASIS, el cálculo de los de los gradientes de energía se lleva a cabo utilizando el potencial de intercambio y correlación calculado de la densidad de los orbitales.

Los parámetros geométricos optimizados de enlaces y ángulos se presentan en las tablas 4.2, 4.3 y 4.4 en la sección 4.3 de este capítulo. En estas tablas se reportan también los parámetros experimentales para su comparación. Las geometrías experimentales fueron tomadas de las referencias [37–39]. Estas geometrías experimentales fueron obtenidas por espectroscopía de infrarojo y Raman, espectroscopía de microondas y difracción electrónica en fase gaseosa. La incertidumbre de estos métodos es de el rango de 1 a 5 pm en distancias de enlace y de 1 a 3 grados en ángulos. Para poder observar un analisis estadístico de los parámetros estructurales, obtenidos de la optimización de las 46 moléculas estudiadas se separaron las 46 moléculas en orgánicas e inorgánicas, en 34 moléculas inorgánicas (HLi, LiF, CO, CN, CO₂, HCN, NO, N₂, N₂H₄, NH, NH₂, OH, ¹SiH₂, H₂O, HF, CS, NaCl, Na₂, O₂, H₂O₂, Li₂, F₂, HOCl. P₂, S₂, H₂S, NH₃, PH₃, HCl, Cl₂, SO₂, ClF, SiH₄, Si₂H₆) y 12 moléculas orgánicas (CH₄, C₂H₂, C₂H₄, C₂H₆, CH₂O, CH₃, CH₃SH, CH₃Cl, CHO. ³CH₂, ¹CH₂, CH). Posteriormente se cálculo la desviación absoluta media de los parámetros estructurales (enlaces y ángulos) de estos dos grupos (orgánicos e inorgánicos) empleando la base

vieja (DZVP) y las bases nuevas (DZVP-NEW y DZVP-NEW-PW86), las aproximaciones AUXIS y BASIS y los funcionales (VWN, PW86 y BLYP) según sea el caso, como se plantea más adelante. Las barras amarillas corresponden a las distancias y las barras azules a los ángulos. A continuación se muestran en la gráfica 6 hasta la 14 los resultados del analisis estadístico:

En la gráfica 6 podemos observar que la desviación absoluta media con el funcional VWN, las aproximaciones (AUXIS y BASIS) y la base vieja (DZVP) la distancia de enlace es alrededor de 1.6 pm y 0.8° el ángulo de enlace. Para el funcional PW86, con las mismas aproximaciones y la misma base la distancia de enlace es alrededor de 1.7 pm y 0.7° el ángulo de enlace. Y por último, la desviación absoluta media con el funcional BLYP, las mismas aproximaciones y la misma base la distancia de enlace es alrededor de 2.1 pm y 0.8° el ángulo de enlace. Por lo tanto, se puede deducir que existe una mejor aproximación al utilizar la aproximación BASIS y el funcional VWN ya que se obtienen distancias de enlaces más cortas que si emplearamos los funcionales PW86 y BLYP. La desviación absoluta media obtenida con los tres funcionales se encuentran en el rango de la incertidumbre experimental, ya que el rango de incertidumbre es de 1 a 5 pm en distancias de enlace y de 1 a 3 grados en ángulos como se indico al inicio de este subcapítulo.

Grafica 6: Histogramas de parámetros geométricos de moléculas orgánicas utilizando la base vieja (DZVP), la función auxiliar A2, los funcionales VWN, PW86 y BLYP con las aproximaciones AUXIS y BASIS.

En la gráfica 7 se puede observar que la desviación absoluta media con el funcional VWN, la base nueva (DZVP-NEW) y la aproximación (AUXIS y BASIS), la distancia de enlace es de alrededor de 1.8 pm y 0.8° el ángulo de enlace.

La desviación absoluta media con el funcional PW86, la base nueva (DZVP-NEW-PW86) y las mismas aproximaciónes la distancia de enlace es alrededor de 1.9 pm y 0.7° el ángulo de enlace.

Y por ultimo, la desviación absoluta media para el funcional BLYP y la base nueva (DZVP-NEW-PW86) y las mismas aproximaciónes la distancia de enlace es alrededor de 2.3 pm y 0.8° el ángulo de enlace.

Al igual que en la gráfica anterior (11) se puede deducir que cuando se utiliza el funcional VWN, la base nueva (DZVP-NEW) y la aproximación BASIS existe una mejoría ya que se obtienen distancias de enlaces más cortas que si emplearamos los funcionales PW86 y BLYP. Con respecto a el ángulo existe una mejoría al utilizar el funcional PW86 y la base nueva DZVP-NEW-PW86 que si utilizaramos el funcional DZVP y la base nueva DZVP-NEW.

Gráfica 7: Histogramas de parámetros geométricos de moléculas orgánicas utilizando la bases nuevas (DZVP-NEW, DZVP-NEW-PW86), los funcionales VWN, PW86 y BLYP. con las aproximaciones AUXIS Y BASIS.

En la gráfica 8 se realiza la comparación de la desviación absoluta media de los parámetros geométricos calculados con la base vieja (DZVP) y la base nueva (DZVP-NEW), en los dos casos con el funcional VWN y la aproximación BASIS. Observandose que la distancia de enlace realizada con la base vieja es muy silmilar a la distancia que obtenida con la base nueva, y la desviación con el ángulo permanece en el mismo rango de 0.8°.

De igual forma, pero ahora utilizando la aproximación AUXIS se puede observar que la distancia de enlace y el ángulo son muy similares ya que la desviación para el ángulo permanece en el mismo rango de 0.6° .

Podemos concluir que la desviación absoluta media con respecto al ángulo permanece constante al utilizar cualquier aproximación BASIS o AUXIS y las distancias de enlace son muy parecidas al utilizar la base nueva o la base vieja con cualquiera de las dos aproximaciónes (AUXIS y BASIS).

Gráfica 8: Histogramas de parámetros geométricos de moléculas orgánicas utilizando la base vieja y la base nueva (DZVP, DZVP-NEW), el funcional VWN.

En la gráfica 9 se realizó la comparación de la desviación absoluta media de los parámetros geométricos realizados con la base nueva (DZVP-NEW-PW86), los funcionales PW86 y BLYP asi como las aproximaciones BASIS y AUXIS.

Se observa que la desviación absoluta media realizada con la base nueva, el funcional PW86 y las aproximaciónes BASIS y AUXIS la distancia de enlce es alrededor de 1.9 pm y el ángulo de 0.7 °.

La desviación absoluta media realizada con la base nueva, el funcional BLYP y las aproximaciones BASIS y AUXIS la distancia de enlce es alrededor de 2.3 pm y el ángulo de 0.8 °. Así que, podemos deducir que se obtienen mejores resultados tanto de distancia como de ángulo cuando se utiliza el funcional PW86 y la aproximación BASIS ya que se obtienen los mejores resultados.

Gráfica 9: Histogramas de parámetros geométricos de moléculas orgánicas utilizando la base nueva (DZVP-NEW-PW86), la función auxiliar A2, los funcionales PW86 y BLYP con las aproximaciones AUXIS y BASIS.

En la gráfica 10 se realizó la comparación de la desviación absoluta media de los parámetros geométricos realizados con la base vieja (DZVP), los funcionales PW86 y BLYP así como las aproximaciones BASIS y AUXIS.

Se observa que la desviación absoluta media realizada con el funcional PW86, la base vieja y las aproximaciónes BASIS y AUXIS la distancia de enlace es al rededor de 1.7 pm mientras que el ángulo permanece en el rango de 0.7°.

De igual manera se observa que la desviación absoluta media realizada con la base vieja, el funcional BLYP y las aproximaciónes BASIS y AUXIS la distancia de enlace es al rededor de 2.1 pm y el ángulo es de 0.8° .

Por lo tanto, se puede deducir que al utilizar el funcional PW86 se obtienen distancias de enlace más cercanas que con el funcional BLYP, con respecto al ángulo los valores son similares al utilizar cualquiera de los dos funcionales PW86 o BLYP.

Gráfica 10: Histogramas de parámetros geométricos de moléculas orgánicas utilizando la base vieja (DZVP), la función auxiliar A2, los funcionales PW86 y BLYP con las aproximaciones AUXIS y BASIS.

En la gráfica 11 se muestra la desviación absoluta media de las moléculas inorgánicas utilizando el funcional VWN, las aproximaciones BASIS y AUXIS y la base vieja (DZVP) la distancia de enlace es alrededor de 2.2 pm y 1.6° el angúlo de enlace.

La desviación absoluta media utilizando el funcional PW86, las aproximaciones BASIS y AUXIS y la base vieja la distancia de enlace es alrededor de $3.1 \text{ pm y } 1.1^{\circ}$ el ángulo de enlace.

La desviación absoluta media para el funcional BLYP, las aproximaciones BASIS y AUXIS y la base vieja la distancia de enlace es alrededor de 3.3 pm y 1.2° para el ángulo de enlace. En general cuando se utiliza la aproximación BASIS se observa una mejoría con respecto a la distancia de enlace y el ángulo así como con el funcional VWN se presentan las distancias de enlaces más cortos que con los funcionales PW86 y BLYP. En las moléculas inorgánicas la desviación absoluta media obtenida con los tres funcionales se encuentran en el rango de la incertidumbre experimental. Sin embargo, con el funcional VWN se obtienen las mejores geométrias comparadas con las geométricas experimentales.

Gráfica 11: Histogramas de parámetros geométricos de moléculas inorgánicas utilizando la base vieja (DZVP), la función auxiliar A2, los funcionales VWN, PW86 y BLYP con las aproximaciones AUXIS y BASIS.

En la gráfica 12 se muestra la desviación absoluta media con el funcional VWN, las aproximaciones BASIS y AUXIS y la base nueva (DZVP-NEW) la distancia de enlace es de 2.3 pm y la desviación para los ángulo permanece en el mismo rango de 1.4°.

La desviación absoluta media con el funcional PW86, las aproximaciones BASIS y AUXIS y la base nueva (DZVP-NEW-PW86) la distancia de enlace es de 3.2 pm y la desviación para los ángulo es de 1.1°.

Por ultimo, la desviación absoluta media con el funcional BLYP, las aproximaciones BASIS y AUXIS y la base nueva (DZVP-NEW-PW86) la distancia de enlace es de 3.5 pm y la desviación para los ángulo es de 1.2°.

Por lo tanto, se puede deducir que la desviación de los ángulos mejora cuando se utiliza la aproximación BASIS y el funcional BLYP, y la distancia de enlace mejora al utilizar el funcional VWN.

Gráfica 12: Histogramas de parámetros geométricos de moléculas inorgánicas utilizando las bases nuevas (DZVP-NEW y DZVP-NEW-PW86). la función auxiliar A2, los funcionales VWN, PW86 y BLYP con las aproximaciones AUXIS y BASIS.
En la gráfica 13 se presenta la comparación de la desviación absoluta media de los parámetros geométricos realizados con la base nueva (DZVP-NEW-PW86), el funcional PW86 y las aproximaciónes BASIS y AUXIS obteniendose una desviación con respecto a la distancia de enlace de 3.2 pm y 1.1° para los ángulos.

De la misma forma, pero ahora utilizando el funcional de BLYP, las aproximaciónes BASIS y AUXIS y la base nueva se obtuvo una desviación con respecto a la distancia de enlace de 3.5 pm y 1.2° para los ángulos.

Por lo tanto, podemos deducir que utilizando la aproximación BASIS y el funcional PW86 se obtienen mejores resultados con respecto a la distancia y cuando empleamos el funcional BLYP y la aproximación BASIS se mejoran los ángulos.

Gráfica 13: Histogramas de parámetros geométricos de moléculas inorgánicas utilizando la base nueva (DZVP-NEW-PW86), la función auxiliar A2, los funcionales PW86 y BLYP con las aproximaciones AUXIS y BASIS.

En la gráfica 14 se muestra la comparación entre las desviaciones realizada con la base vieja (DZVP), el funcional VWN y las aproximaciónes BASIS y AUXIS obteníendose una desviación con respecto a la distancia de 2.2 pm y 1.6° para los ángulos.

De la misma forma se presenta la comparación de las desviaciones pero ahora realizadas con la base nueva (DZVP-NEW), con el funcional VWN y las aproximaciónes BASIS y AUXIS donde se obtuvo una desviación con respecto a la distancia de 2.3 pm y 1.4° para los ángulos. Por lo tanto, se deduce que con la aproximación BASIS se obtienen las mejores distancias de enlace comparadas con las distancias experimentales. Con el funcional VWN se hacen más pequeños los enlaces.

Las nuevas bases DZVP-NEW con la aproximación BASIS y el funcional VWN dan enlaces similares a los obtenidos con las bases viejas DZVP, pero reducen el error en los ángulos.

Gráfica 14: Histogramas de parámetros geométricos de moléculas inorgánicas utilizando la base vieja y la base nueva (DZVP y DZVP-NEW), la función auxiliar A2, el funcional VWN con las aproximaciones AUXIS y BASIS.

4.3 Tablas de los parámetros geométricos

A continuación se muestran las tablas con los resultados teóricos y experimentales de los parámetros geométricos. Los enlaces estan reportados en Å y los ángulos en grados [°]. Tabla 4.2: Parámetros estructurales de moléculas orgánicas e inorgánicas, con el funcional VWN y la base vieja (DZVP) y la base nueva (DZVP-NEW). En los cálculos se usaron las aproximaciones BASIS y AUXIS. Los parámetros experimentales se presentan también para su comparación.

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
LiH	r(LiH)	1.602	1.602	1.601	1.600	1.596^{a}
LiF	r(LiF)	1.558	1.559	1.558	1.558	1.564^{a}
со	r(CO)	1.145	1.146	1.145	1.145	1.128 ^b
CH_4	r(CH)	1.100	1.103	1.102	1.105	1.092ª
HCN	r(CN)	1.167	1.168	1.166	1.167	1.153°
	r(CH)	1.084	1.087	1.086	1.089	1.065
N_2	r(NN)	1.115	1.116	1.114	1.115	1.098 ^a
H_2O	r(OH)	0.975	0.977	0.978	0.980	0.958^{c}
	∠(HOH)	105.3	105.2	105.1	105.0	104.5
HF	r(FH)	0.936	0.938	0.939	0.941	0.917^{a}
SiH4	r(SiH)	1.503	1.505	1.511	1.513	1.481 ^a
CS	r(CS)	1.550	1.551	1.550	1.551	1.535^{a}
NaCl	r(NaCl)	2.365	2.365	2.373	2.373	2.361^{a}
Na ₂	r(NaNa)	3.021	3.023	3.033	3.034	3.078^{a}
H_2O_2	r(OO)	1.439	1.439	1.444	1.444	1.452^{a}
	r(OH)	0.982	0.985	0.986	0.988	0.965
and and a second se	L(OOH)	100.4	100.5	100.1	100.2	100.0
	ω (HOOH)	112.5	112.2	112.0	111.5	119.1
$\rm CO_2$	r(CO)	1.175	1.176	1.175	1.175	1.160^{b}
Li ₂	r(LiLi)	2.711	2.711	2.715	2.715	2.673°

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
F ₂	r(FF)	1.397	1.397	1.401	1.402	1.412 ^a
Si_2H_6	r(SiSi)	2.329	2.330	2.338	2.339	2. 3 27ª
	r(SiH)	1.505	1.506	1.512	1.514	1.482
	∠(HSiH)	108.6	108.6	108.8	108.8	107.8
PH_3	r(PH)	1.438	1.441	1.445	1.448	1.420^{c}
	Z(HPH)	93.2	93.3	93.9	94.0	93.3
HOCI	r(OCl)	1.704	1.705	1.704	1.705	1.690 ^a
	r(OH)	0.984	0.986	0.987	0.989	0.975
	∠(HOCl)	103.0	103.0	102.8	102.8	102.5
P ₂	r(PP)	1.908	1.911	1.909	1.911	1.893 ^b
H_2S	r(SH)	1.360	1.362	1.366	1.368	1.336 ^a
	Z(HSH)	92.6	92.5	93.5	93.5	92.1
NH3	r(NH)	1.026	1.028	1.029	1.031	1.012 ^a
	∠(HNH)	107.4	107.3	107.4	107.3	106.7
Eteno,	r(CC)	1.334	1.335	1.332	1.333	1.339^{c}
C_2H_4	r(CH)	1.099	1.102	1.101	1.104	1.085
	∠(CCH)	121.5	121.5	121.4	121.4	117.8
Formaldehído,	r(CO)	1.213	1.213	1.214	1.214	1.208 ^c
CH_2O	r(CH)	1.124	1.127	1.127	1.131	1.116
	∠(HCH)	116.2	116.5	116.7	116.7	116.5
	∠(HCO)	121.7	121.7	121.6	121.6	121.9
CH3	r(CH)	1.094	1.097	1.096	1.099	1.079 ^a
N_2H_4	r(NN)	1.409	1.409	1.414	1.415	1.449 ^a
	$r(NH_i)$	1.025	1.027	1.029	1.031	1.021
	$r(NH_e)$	1.029	1.031	1.033	1.035	1.021
	\angle (NNH _t)	108.9	108.9	108.3	108.2	106.0
	$\mathbb{I}(\mathrm{NNH}_{e})$	113.9	113.9	113.3	113.3	112.0
	$\omega(\mathbf{H}_i N N H_e)$	90.7	90.5	90.3	90.2	91.0

Continuación Tabla 4.2

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	DZVP NEW	DZVP	DZVP-NEW	
HCl	r(ClH)	1.298	1.300	1.304	1.305	1.275 ^b
Cl_2	r(ClCl)	2.023	2.023	2.027	2.027	1.988 ^a
SO_2	r(SO)	1.470	1.470	1.468	1.468	1.431 ^c
	∠(OSO)	118.5	118.5	118.9	118.9	119.3
Metil-	r(CS)	1.812	1.812	1.817	1.817	1.819 ^a
mercaptano	r(SH)	1.361	1.363	1.367	1.369	1.336
CH ₃ SH	$r(\overline{CH})$	1.102	1.105	1.104	1.107	1.091
	≟(CSH)	97.2	97.2	97.3	97.3	96.5
	$\angle(\overline{HCH})$	108.3	108.2	108.7	108.6	109.8
ClF	r(ClF)	1.651	1.651	1.648	1.649	1.628 ^a
CH_3Cl	r(CCl)	1.779	1.779	1.787	1.786	1.781 ^a
1	r(CH)	1.101	1.104	1.103	1.106	1.096
	_(HCH)	110.0	110.0	110.4	110.3	110.0
Etano,	r(CC)	1.516	1.516	1.515	1.515	1.531 ^a
C_2H_6	r(CH)	1.106	1.108	1.108	1.111	1.096
	$_{-}(HCH)$	107.2	107.2	107.5	107.5	107.8
Oxometil,	r(CH)	1.140	1.143	1.144	1.148	1.119 ^a
СНО	r(CO)	1.189	1.189	1.189	1.189	1.175
	_(HCO)	123.5	123.4	123.5	123.5	124.4
CH	r(CH)	1.149	1.153	1.152	1.155	1.120 ^a
$^{3}\mathrm{CH}_{2}$	r(CH)	1.095	1.098	1.097	1.101	1.075°
	_(HCH)	135.4	135.4	134.1	134.1	133.8
¹ CH ₂	r(CH)	1.131	1.135	1.133	1.137	1.111¢
	_(HCH)	100.9	100.8	101.1	101.1	102.4
NH	r(NH)	1.063	1.066	1.069	1.072	1.036 ^a
$\rm NH_2$	r(NH)	1.044	1.046	1.048	1.051	1.024 ^a
	$_{-}(HNH)$	102.9	102.8	103.1	102.9	103.3
ОН	r(OH)	0.992	0.994	0.997	0.999	0.970 ^a

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	DZVP NEW	DZVP	DZVP-NEW	
¹ SiH ₂	r(SiH)	1.549	1.549	1.557	1.558	1.516 ^a
	∠(HSiH)	90.5	90.6	90.8	91.0	92.1
CN	r(CN)	1.182	1.184	1.182	1.184	1.172^{a}
NO	r(NO)	1.166	1.167	1.166	1.167	1.151ª
O2	r(OO)	1.223	1.223	1.224	1.224	1.208^{a}
S_2	r(SS)	1.926	1.927	1.929	1.930	1.889^{a}
C_2H_2	r(CC)	1.218	1.219	1.219	1.220	1.203 ^c
	r(CH)	1.081	1.083	1.082	1.085	1.061

Continuación Tabla 4.2

^{*a*}[37]; ^{*b*}[38]: ^{*c*}[39]

Tabla 4.3: Parámetros estructurales de moléculas orgánicas e inorgánicas. con el funcional PW86 y la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86). En los cálculos se usarón las aproximaciones BASIS y AUXIS. Los parámetros experimentales se presentan también para su comparación.

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
LiH	r(LiH)	1.592	1.595	1.589	1.591	1.596^{a}
LiF	r(LiF)	1.578	1.582	1.574	1.579	1.564^{a}
СО	r(CO)	1.154	1.156	1.152	1.154	1.128 ^b
HCN	r(CN)	1.172	1.175	1.170	1.173	1.153 ^c
	r(CH)	1.078	1.081	1.079	1.082	1.065
CH_4	r(CH)	1.097	1.100	1.099	1.102	1.092^{a}
N_2	r(NN)	1.121	1.124	1.119	1.121	1.098^{a}
H_2O	r(OH)	0.975	0.977	0.975	0.977	0.958°
	∠(HOH)	104.4	104.3	104.5	104.4	104.5
HF	r(FH)	0.938	0.939	0.938	0.939	0.917 ^a

	Moléculas	Parámetro		BASIS		AUXIS	Expt.
		Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
	SiH4	r(SiH)	1.499	1.501	1.515	1.517	1.481ª
	CS	r(CS)	1.562	1.563	1.562	1.564	1.535ª
	NaCl	r(NaCl)	2.397	2.398	2.409	2.409	2.361 ^a
	Na_2	r(NaNa)	3.012	.012 3.005		2.989	3.078 ^a
	H_2O_2	r(OO)	1.491	1.491	1.499	1.500	1.452 ^a
		r(OH)	0.983	0.984	0.984	0.985	0.965
		∠(OOH)	99.2	99.3	98.7	98.7	100.0
		ω (HOOH)	113.7	113.5	115.0	114.8	119.1
	$\rm CO_2$	r(CO)	1.185	1.186	1.184	1.185	1.160^{b}
	Li_2	r(LiLi)	2.672	2.672	2.673	2.673	2.673 ^a
	F_2	r(FF)	1.441	1.441	1.444	1.444	1.412^{a}
ĺ	Si_2H_6	r(SiSi)	2.359	2.362	2.365	2.368	2.327^{a}
		r(SiH)	1.501	1.503	1.518	1.520	1.482
ĺ		∠(HSiH)	108.5	108.6	108.8	108.9	107.8
	PH_3	r(PH)	1.437	1.438	1.449	1.451	1.420^{c}
		\angle (HPH)	93.5	93.6	95.7	95.88	93.3
	HOCl	r(OCl)	1.753	1.754	1.751	1.751	1.690^{a}
		r(OH)	0.984	0.986	0.985	0.987	0.975
		∠(HOCl)	101.8	101.9	102.0	102.0	102.5
	P_2	r(PP)	1.924	1.926	1.927	1.929	1.893 ^b
	H_2S	r(SH)	1.359	1.360	1.367	1.368	1.336^{a}
		∠(HSH)	92.7	92.8	94.3	94.4	92.1
	NH_3	r(NH)	1.026	1.028	1.026	1.029	1.012^{a}
		$\angle(HNH)$	106.3	106.1	106.5	106.4	106.7
	Eteno,	r(CC)	1.342	1.345	1.335	1.337	1.339^{c}
	C_2H_4	r(CH)	1.095	1.098	1.096	1.099	1.085
ļ		$\angle(CCH)$	121.6	121.6	121.4	121.4	117.8
	CH_3	r(CH)	1.090	1.092	1.092	1.095	1.079^{a}

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
HCI	r(ClH)	1.296	1.297	1.301	1.302	1.275^{b}
Formaldehído,	r(CO)	1.225	1.226	1.225	1.226	1.208^{c}
CH ₂ O	r(CH)	1.118	1.121	1.120	1.124	1.116
Annual on the later. In	∠(HCH)	116.3	116.3	116.7	116.7	116.5
	∠(HCO)	121.8	121.8	121.6	121.6	121.9
N_2H_4	r(NN)	1.455	1.455	1.456	1.456	1.449 ^a
	r(NH _i)	1.025	1.027	1.025	1.028	1.021
	$r(NH_e)$	1.029	1.031	1.030	1.032	1.021
	$\angle(\mathrm{NNH}_i)$	106.5	106.5	106.1	106.1	106.0
	$\angle(\mathrm{NNH}_{e})$	111.6	111.7	111.3	111.3	112.0
	$\omega(\mathrm{H}_i N N H_e)$	90.9	90.1	90.6	90.4	91.0
Metil-	r(CS)	1.846	1.845	1.848	1.848	1.819 ^a
mercaptano	r(SH)	1.359	1.361	1.366	1.368	1.336
CH ₃ SH	$r(\overline{CH})$	1.098	1.101	1.101	1.104	1.091
	\angle (CSH)	97.0	97.0	96.9	97.0	96.5
	$\angle(\overline{HCH})$	108.9	108.8	109.1	109.1	109.8
SO ₂	r(SO)	1.489	1.489	1.493	1.493	1.431 ^c
	Z(OSO)	118.5	118.6	119.1	119.2	119.3
CIF	r(ClF)	1.695	1.696	1.690	1.690	1.628ª
CH ₃ Cl	r(CCl)	1.816	1.815	1.820	1.820	1.781ª
1. de	r(CH)	1.096	1.099	1.099	1.102	1.096
and the second se	∠(HCH)	110.6	110.5	110.9	110.8	110.0
Etano,	r(CC)	1.538	1.539	1.520	1.521	1.531°
C_2H_6	r(CH)	1.103	1.105	1.105	1.108	1.096
	∠(HCH)	107.5	107.5	107.7	107.7	107.8
Oxometil,	r(CH)	1.134	1.137	1.138	1.142	1.119 ^a
СНО	r(CO)	1.199	1.200	1.200	1.201	1.175
	Z(HCO)	123.7	123.7	123.8	123.8	124.4

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
Cl ₂	r(ClCl)	2.068	2.070	2.062	2.063	1.988^{a}
O_2	r(OO)	1.243	1.243	1.246	1.247	1.208^{a}
S_2	r(SS)	1.947	1.948	1.952	1.953	1.889 ^a
C_2H_2	r(CC)	1.221	1.224	1.220	1.223	1.203^{c}
	r(CH)	1.075	1.077	1.076	1.079	1.061
СН	r(CH)	1.142	1.145	1.145	1.149	1.120^{a}
$^{3}\mathrm{CH}_{2}$	r(CH)	1.089	1.092	1.093	1.096	1.075^{c}
	∠(HCH)	134.1	134.1	132.3	132.2	133.8
$^{1}\mathrm{CH}_{2}$	r(CH)	1.127	1.130	1.129	1.133	1.111 ^c
	∠(HCH)	100.9	100.8	101.1	102.4	
NH	r(NH)	1.057	1.060	1.062	1.065	1.036^{a}
$\rm NH_2$	r(NH)	1.042	1.045	1.044	1.047	1.024^{a}
	∠(HNH)	102.4	102.3	102.8	102.7	103.3
OH	r(OH)	0.991	0.993	0.993	0.995	0.970^{a}
$^{1}\mathrm{SiH}_{2}$	r(SiH)	1.545	1.547	1.560	1.562	1.516^{a}
	∠(HSiH)	91.4	91.5	92.6	92.7	92.1
CN	r(CN)	1.189	1.191	1.187	1.189	1.172^{a}
NO	r(NO)	1.178	1.180	1.179	1.181	1.151 ^a

^a[37]: ^b[38]; ^c[39]

Tabla 4.4: Parámetros estructurales de moléculas orgánicas e inorgánicas, con el funcional BLYP y la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86). En los cálculos se usarón las aproximaciones BASIS y AUXIS. Los parámetros experimentales se presentan también para su comparación.

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
LiH	r(LiH)	1.596	1.596	1.595	1.596	1.596 ^a
LiF	r(LiF)	1.580	1.584	1.577	1.581	1.564 ^a
CO	r(CO)	1.154	1.156	1.154	1.156	1.128^{b}
HCN	r(CN)	1.173	1.176	1.172	1,175	1.153 ^c
	r(CH)	1.079	1.083	1.081	1.084	1.065
CH_4	r(CH)	1.099	1.102	1.102	1.105	1.092ª
N_2	r(NN)	1.122	1.125	1.122	1.125	1.098ª
H_2O	r(OH)	0.977	0.979	0.979	0.981	0.958 ^c
	∠(HOH)	104.6	104.5	104.4	104.4	104.5
HF	r(FH)	0.939	0.940	0.939	0.940	0.917 ^a
$\rm SiH_4$	r(SiH)	1.499	1.501	1.510	1.513	1.481^{a}
CS	r(CS)	1.566	1.567	1.566	1.567	1.535^{a}
NaCl	r(NaCl)	2.410	2.409	2.402	2.416	2.361ª
Na ₂	r(NaNa)	3.078	3.078	3.062	3.055	3.078^{a}
H_2O_2	r(OO)	1.496	1.496	1.500	1.499	1.452^{a}
	r(OH)	0.984	0.986	0.986	0.988	0.965
	∠(OOH)	99.2	99.3	99.0	99.0	100.0
	$\omega(\mathrm{HOOH})$	114.3	114.0	115.2	115.0	119.1
$\rm CO_2$	r(CO)	1.186	1.188	1.185	1.187	1.160^{b}
Li ₂	r(LiLi)	2.713	2.713	2.715	2.717	2.673 ^a
F ₂	r(FF)	1.443	1.443	1.440	1.440	1.412 ^a
Si_2H_6	r(SiSi)	2.372	2.375	2.382	2.386	2.327 ^a 1
	r(SiH)	1.501	1.502	1.512	1.514	1.482
	\angle (HSiH)	108.5	108.5	108.8	108.9	107.8

Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
CH3	r(CH)	1.091	1.094	1.095	1.098	1.079^{a}
PH_3	r(PH)	1.437	1.439	1.448	1.450	1.420^{c}
	∠(HPH)	94.1	94.1	95.6	95.7	93.3
HOCI	r(OCl)	1.762	1.762	1.758	1.760	1.690^{a}
	r(OH)	0.986	0.987	0.988	0.989	0.975
	∠(HOCl)	101.9	101.9	102.0	101.9	102.5
H_2S	r(SH)	1.361	1.362	1.370	1.371	1.336^{a}
	\angle (HSH)	93.0	93.0	94.1	94.1	92.1
NH3	r(NH)	1.027	1.030	1.031	1.034	1.012^{a}
	∠(HNH)	106.4	106.3	106.4	106.2	106.7
Eteno,	r(CC)	1.345	1.347	1.341	1.344	1.339^{c}
C_2H_4	r(CH)	1.096	1.099	1.099	1.103	1.085
	∠(CCH)	121.6	121.6	121.5	121.5	117.8
Formaldehído,	r(CO)	1.226	1.227	1.227	1.228	1.208^{c}
CH ₂ O	r(CH)	1.119	1.122	1.124	1.128	1.116
	∠(HCH)	116.3	116.3	116.5	116.6	116.5
	∠(HCO)	121.9	121.8	121.7	121.7	121.9
N_2H_4	r(NN)	1.463	1.464	1.472	1.473	1.449^{a}
	$r(NH_i)$	1.026	1.029	1.030	1.032	1.021
	$r(NH_e)$	1.030	1.033	1.034	1.037	1.021
	$\angle(\mathrm{NNH}_i)$	106.3	106.3	105.6	105.6	106.0
	$\angle(\mathrm{NNH}_e)$	111.5	111.5	110.9	110.9	112.0
	$\omega(\mathrm{H}_i N N H_e)$	90.8	90.6	92.3	92.1	91.0
Metil-	r(CS)	1.858	1.858	1.865	1.864	1.819ª
mercaptano	r(SH)	1.361	1.362	1.370	1.371	1.336
CH ₃ SH	$r(\overline{CH})$	1.099	1.102	1.103	1.107	1.091
	∠(CSH)	97.1	97.1	97.1	97.2	96.5
	$\angle(\overline{HCH})$	109.0	109.0	109.4	109.3	109.8

	1	7		}		
Moléculas	Parámetro		BASIS		AUXIS	Expt.
	Estructural	DZVP	NEW-PW86	DZVP	NEW-PW86	
HC	r(ClH)	1.299	1.301	1.306	1.307	1.275
Cl_2	r(ClCl)	2.083	2.085	2.074	2.077	1.988 ^a
SO_2	r(SO)	1.492	1.491	1.491	1.491	1.431 ^c
	Z(OSO)	118.6	118.7	118.9	119.0	119.3
CIF	r(ClF)	1.700	1.700	1.690	1.690	1.628^{a}
CH_3Cl	r(CCi)	1.830	1.829	1.836	1.836	1.781^{a}
	r(CH)	1.097	1.100	1.101	1.104	1.096
	∠(HCH)	110.8	110.7	111.1	111.1	110.0
Etano.	r(CC)	1.546	1.547	1.542	1.543	1.531^{a}
C_2H_6	r(CH)	1.104	1.107	1.108	1.111	1.096
	∠(HCH)	107.6	107.5	107.9	107.9	107.8
Oxometil,	r(CH)	1.137	1.140	1.143	1.147	1.119 "
СНО	r(CO)	1.201	1.202	1.201	1.202	1.175
	Z(HCO)	123.4	123.4	123.3	123.3	124.4
СН	r(CH)	1.144	1.147	1.149	1.153	1.120^{a}
NH	r(NH)	1.061	1.064	1.067	1.070	1.036 ^a
$\rm NH_2$	r(NH)	1.044	1.047	1.049	1.052	1.024^{a}
	∠(HNH)	102.4	102.3	102.4	102.3	103.3
OH	r(OH)	0.994	0.995	0.996	0.998	0.970°
¹ SiH ₂	r(SiH)	1.545	1.546	1.557	1.560	1.516 ^a
	∠(HSiH)	91.8	91.9	92.7	92.8	92.1
CN	r(CN)	1.191	1.194	1.190	1.193	1.172°
NO	r(NO)	1.182	1.183	1.183	1.184	1.151^{a}
S_2	r(SS)	1.961	1.962	1.964	1.965	$^{[3]}1.889^{a}$
C_2H_2	r(CC)	1.222	1.225	1.222	1.224	1.203^{c}
	r(CH)	1.076	1.078	1.078	1.081	1.061

 $^{a}[37]; \ ^{b}[38]; \ ^{c}[39]$

4.4 Analisis de Frecuencias

Se realizó el análisis de frecuencias de las 46 moléculas con los funcionales VWN, PW86 y BLYP, la función auxiliar A2 y las aproximaciones BASIS y AUXIS. Los resultados obtenidos se reportan en las tablas 4.5, 4.6 y 4.7 (en cm⁻¹). Los resultados experimentales disponibles en la literatura se reportan también para su comparación.

Se observa que las frecuencias obtenidas de estas 46 moléculas son muy similares al utilizar los diferentes métodos teóricos, ya que no existe una gran diferencia cuando se utiliza la base vieja (DZVP) o las bases nuevas (DZVP-NEW y (DZVP-NEW-PW86), así como las aproximaciones (BASIS y AUXIS).

Los mejores resultados se obtienen cuando se utiliza la aproximación BASIS, por ejemplo para la molécula de CO (Monoxido de carbono) teoricamente se tiene una frecuencia de 2150 cm⁻¹ y utilizando la aproximación BASIS la frecuencia experimental es de 2143 cm⁻¹, existe una diferencia muy pequeña (7 cm⁻¹) entre estas dos frecuencias. Esto ocurre también con las demás moléculas, sólo que para las moléculas orgánicas se obtienen frecuencias un poco mas grandes que las experimentales.

Con esto se reafirma que los parámetros geométricos obtenidos son apropiados, ya que las frecuencias de estas moléculas son muy similares. Por lo tanto, se deduce que las nuevas bases utilizadas con cualquier funcional VWN, PW86 y BLYP proporciona buenos resultados comparados con las frecuencias que se obtuvieron con la base vieja y el funcional VWN, asi como con las frecuencias experimentales.

Existen algunas moléculas donde no se reportan las frecuencias experimentales, debido a que no se encuentran reportadas en la literatura. Por lo tanto los resultados obtenidos en está tesis predicen estos datos no existentes. Experimentos futuros seran necesarios para corroborar los datos teorícos aquí obtenidos.

Tabla 4.5: Frecuencias (en cm⁻¹) de moléculas orgánicas e inorgánicas, con el funcional VWN, la base vieja (DZVP), la base nueva (DZVP-NEW) y las aproximaciones AUXIS y BASIS. Las frecuencia experimentales se presentan también para su comparación.

			_		
Moléculas		BASIS		AUXIS	Expt.
,	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
LiH	1384	1386	1415	1416	1360 ^e
CO	2150	2150	2153	2153	2143^e
LiF	936	935	940	939	
HCN	672	666	648	646	713 ^c
	2130	2127	2132	2131	2097
	3354	3345	3310	3298	3311
N ₂	2364	2361	2362	2359	2331 ^e
HF	4015	4011	4043	4039	3962 ^e
Cl_2	532	533	535	537	
CH ₄	1249	1243	1251	1245	1306 ^c
	1478	1466	1468	1458	1534
	2877	2849	2927	2916	2917
	3095	3090	3043	3036	3019
H ₂ O	1565	1558	1589	1582	1588 ^a
	3744	3742	3728	3730	3650
	3870	3867	3854	3853	3742
SiH4	836	838	835	837	914^e
	922	921	905	907	975
	2167	2166	2109	2109	2187
	2169	2167	2129	2126	2191
H_2S	1146	1141	1133	1146	1183 ^c
	2616	2618	2581	2616	2615
	2639	2639	2600	2639	2627
Na ₂	160	166	159	164	

Moléculas		BASIS		AUXIS	Expt.
	DZVP	DZVP NEW	DZVP	DZVP-NEW	
CO ₂	628	628	635	631	667 ^e
	1347	1347	1351	1351	1333
	2431	2430	2424	2423	2349
NO	1932	1932	1927	1926	
Si_2H_6	126	126	93	94	
	332	334	308	312	
	431	431	408	408	
	613	614	590	591	
	791	792	761	765	
	851	852	807	802	
	882	882	861	867	
	898	897	865	871	
	2151	2150	2086	2084	
	2154	2153	2112	2112	
	2160	2157	2126	2125	
C_2H_4	807	801	798	795	826^d
	919	928	918	915	943
	932	938	934	933	949
	1017	1015	1014	1010	1023
	1202	1198	1196	1193	1236
	1322	1311	1317	1312	1342
	1417	1415	1377	1370	1444
	1658	1658	1665	1665	1623
	2991	2971	3021	3011	2989
	3065	3055	3036	3026	3026
	3138	3130	3087	3078	3103
	3161	3153	3116	3107	3106

Moléculas		BASIS		AUXIS	Expt.
	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
¹ SiH ₂	952	952	931	930	995^e
	1951	1954	1913	1916	1973
	1959	1960	1933	1934	1993
PH ₃	953	951	935	934	992 ^e
	1079	1076	1062	1059	1118
	2322	2319	2276	2273	2323
	2334	2331	2299	2296	2328
NH ₃	966	975	978	978	950 ^d
	1591	1584	1615	1604	1627
	3435	3357	3385	3381	3337
	3562	3554	3524	3521	3444
CH_3	528	526	507	505	506^{e}
	1324	1316	1333	1326	1402
	3038	3029	3000	2989	3004
	3221	3214	3170	3161	3171
N_2H_4	493	490	475	473	377 ^b
	730	732	754	757	780
	881	882	905	9 06	9 6 6
	1146	1146	1130	1129	1098
	1243	1 2 40	1240	1236	1275
	1274	1272	1276	1273	1275
	1608	1600	1616	1607	1587
	1621	1612	1631	1622	1628
	3385	3378	3355	3349	3280
	3392	3388	3361	3357	3314
	3501	3496	3469	3465	3325
	3511	3505	3481	3477	3350

ESTA TESIS NO SALE DE LA BIBLIOTECA

Moléculas		BASIS		AUXIS	Expt.
	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
HCl	2886	2890	2874	2879	
Li ₂	337	337	335	335	346 ^e
P ₂	778	777	775	773	
CH ₃ SH	236	238	191	195	
	714	713	699	698	708 ^e
	773	771	756	755	803
	925	922	913	910	976
	1049	1047	1039	1038	1074
	1296	1290	1285	1279	1319
	1393	1382	1395	1385	1430
	1400	1390	1406	1397	1475
	2612	2613	2578	2580	2572
	2980	2971	2951	2941	2931
	3070	3063	. 3029	3020	3000
	3080	3073	3037	3030	3000
C_2H_6	291	291	274	276	289 ^e
	788	785	777	775	822
	1027	1028	1015	1016	995
	1158	1155	1156	1153	1190
	1336	1329	1316	1310	1379
	1355	1351	1344	1341	1388
	1421	1411	1416	1405	1468
	1422	1412	1420	1410	1468
	1423	1413	1421	1412	1469
	2965	2956	2932	2918	2954
	3030	3023	2983	2976	2969
	3054	3048	2993	2986	2985

Moléculas		BASIS		AUXIS		
	DZVP	DZVP-NEW	DZVP	DZVP-NEW		
NH ₂	1459	1451	1461	1452	1497 ^e	
	3265	3264	3227	3224	3220	
	3381	3378	3334	3331	3301	
CH ₂ O	1142	1136	1149	1144	1167 ^c	
	1198	1194	1187	1182	1251	
	1448	1438	1418	1410	1500	
	1801	1803	1790	1791	1746	
	2807	2804	2742	2727	2766	
	2865	2858	2799	2790	2843	
S ₂	690	689	681	680		
OH	3610	3609	3590	3590		
O ₂	1602	1602	1587	1586		
SO ₂	484	484	494	494	497 ^a	
	1118	1118	1125	1127	1101	
	1306	1310	1315	1317	1318	
CH ₃ OH	311	311	284	285		
	604	606	616	617		
	1018	1013	1040	1037		
	1062	1061	1081	1079		
	1173	1168	1180	1179		
	1272	1269	1279	1276		
	1321	1313	1336	1330		
	1326	1318	1348	1341		
	2981	2971	2934	2924		
	3165	3156	3088	3077		
	3173	3165	3104	3094		
	3738	3737	3734	3735		

Moléculas		BASIS		AUXIS	
	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
CN	2120	2118	2117	2116	
NH	3129	3130	3072	3074	
CH ₃ Cl	747	747	726	726	732 ^d
	977	973	967	963	1020
	1315	1310	1300	1295	1355
	1400	1389	1400	1390	1460
	2992	2982	2959	2948	2928
	3095	3088	3046	3037	3047
CHO	1059	1056	1044	1043	1081 ^e
	1907	1908	1904	1906	1868
	2629	2620	2563	2556	2434
F ₂	1056	1054	1058	1057	891 ^e
CH	2703	2701	2646	2642	
$^{3}\mathrm{CH}_{2}$	1001	1004	1037	1039	
	3043	3038	3004	2995	
	3281	3272	3228	3217	
$^{1}\mathrm{CH}_{2}$	1322	1312	1301	1293	1353^e
	2801	2796	2754	2745	2806
	2885	2879	2826	2819	2865
C_2H_2	575	578	577	582	612^{c}
	670	670	643	637	729
	2006	2004	1995	1996	1973
	3326	3318	3285	3273	3295
	3422	3414	3385	3375	3372
HOCI	750	748	743	750	725 ^a
	1210	1201	1219	1210	1242
	3681	3680	367 2	3681	3609

Moléculas		BASIS		AUXIS	Expt.
	DZVP	DZVP-NEW	DZVP	DZVP-NEW	
ClF	783	782	781	780	
H_2O_2	413	413	412	414	371 ^a
	972	972	966	967	877
	1268	1266	1274	1273	1266
	1381	1377	1378	1376	1402
	3671	3669	3669	3667	3599
	3676	3673	3677	3676	3608
CS	1273	1273	1268	1268	
NaCl	355	356	349	350	

 ${}^{a}[40]; {}^{b}[41]; {}^{c}[42]; {}^{d}[43]; {}^{e}[44]:$

Tabla 4.6: Frecuencias (en cm⁻¹) de moléculas orgánicas e inorgánicas. con el funcional PW86, la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86) y las aproximaciones AUXIS y BASIS. Las frecuencia experimentales se presentan también para su comparación.

Moléculas		BASIS		AUXIS	
	DZVP	NEW-PW86	DZVP	NEW-PW86	
LiH	1406	1400	1449	1447	1360 ^e
LiF	910	907	917	912	
CO	2088	2086	2089	2087	2143 ^e
HCN	673	689	677	677	713 ^c
	2096	2091	2100	2094	2097
	3378	3371	3317	3311	3311
CH_4	1292	1286	1290	1285	1306 ^c
	1512	1503	1503	1495	1534
	2862	2851	2900	2885	2917
	3083	3080	3014	2999	3019
N2	2314	2308	2311	2305	2331 ^e
H_2O	1600	1610	1654	1650	1588 ^a
	3594	3629	3725	3725	3650
	3814	3815	3856	3855	3742
HF	3958	3956	4042	4051	3962^e
SiH4	878	876	891	897	914 ^e
	943	940	936	943	975
	2175	2171	2092	2092	2187
	2183	2181	2105	2100	2191
CS	1243	1244	1233	1233	
NaCi	343	343	338	338	
H_2S	1179	1175	1162	1158	1183 ^c
	2620	2623	2585	2586	2615
	2632	2634	2599	2600	2627

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
HCI	2888	2893	2893	2897	
NH	3179	3176	3039	3039	
¹ SiH ₂	979	977	964	964	995 ^e
	1952	1952	1890	1884	1973
	1955	1955	1908	1901	1993
CO2	617	614	632	629	667 ^e
	1302	1302	1304	1303	1333
	2343	2342	2337	2333	2349
Li ₂	346	348	350	350	346^e
F_2	959	959	968	969	891 ^e
$\mathrm{Si}_2 H_6$	128	122	94	95	
	349	351	327	327	
	419	418	399	399	
	619	623	616	616	
	628	626	616	617	
	828	827	810	810	
	895	894	879	878	
	906	908	922	925	
	914	923	926	929	
	934	924	928	931	
	2157	2153	2068	2067	
	2162	2155	2075	2071	
	2168	2165	2093	2088	
PH ₃	991	989	962	960	992 ^e
	1103	1101	1076	1075	1118
	23 22	2324	2261	2262	2323
	2328	2329	2282	2280	2328

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
Cl ₂	482	480	498	497	
P2	756	755	747	750	
HOCI	681	676	679	678	725 ^a
	1207	1211	1218	1214	1242
	3642	3637	3660	3659	3609
H_2O_2	378	377	387	384	371 ^a
	871	870	862	861	877
	1208	1302	1243	1241	1266
	1363	1362	1356	1354	1402
	3636	3616	3676	3677	3599
	3642	3632	3682	3684	3608
NH3	1019	1015	1045	1050	950^d
	1642	1634	1656	1650	1627
	3199	3189	3348	3348	3337
	3517	3514	3485	3482	3444
C_2H_4	820	815	837	833	826 ^d
	943	944	930	925	943
	948	952	934	930	949
	1026	1023	1021	1018	1023
	1228	1224	1225	1221	1236
	1342	1338	1353	1349	1342
	1454	1449	1401	1395	1444
	1646	1643	1676	1675	1623
	3001	2991	3021	3008	2989
	3078	3071	3033	3020	3026
	3142	3136	3080	3066	3103
	3167	3161	3109	3095	3106

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	ÐZVP	NEW-PW86	
ClF	734	735	712	712	
N_2H_4	414	416	393	391	3776
	788	786	781	784	780
	1025	1013	985	987	966
	1080	1081	1068	1067	1098
	1266	1261	1252	1249	1275
	1292	1290	1287	1286	1275
	1627	1623	1634	1629	1587
	1658	1642	1649	1643	1628
	3319	3329	3329	3331	3280
	3353	3348	3330	3332	3314
	3467	3462	3450	3454	3325
	3478	3476	3479	3481	3350
CH3SH	230	231	187	191	
	676	677	661	662	708 ^e
	774	775	750	749	803
	943	941	920	918	976
	1064	1063	1048	1048	1074
	1312	1309	1298	1295	1319
	1431	1423	1430	1423	1430
	1432	1423	1444	1437	1475
	2615	2618	2591	2593	2572
	3036	3035	2932	2919	2931
	3078	3072	3018	3004	3000
	3086	3082	3023	3009	3000
NH ₂	1516	1507	1503	1499	1497^e
	3206	3179	3185	3185	3220
	3356	3355	3293	3293	3301

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
O ₂	1498	1498	1464	1461	
SO_2	469	470	483	483	497 ^a
	1061	1079	1047	1048	1101
	1225	1225	1226	1229	1318
C_2H_6	284	284	286	290	289 ^e
	795	792	804	801	822
	981	984	993	994	995
	1179	1175	1187	1183	1190
	1358	1352	1342	1337	1379
	1392	1391	1384	1382	1388
	1455	1447	1448	1440	1468
	1458	1451	1452	1448	1468
	1460	1453	1454	1452	1469
	2889	2876	2912	2899	2954
	2902	2892	2919	2 907	2969
	3022	3018	2987	2975	2985
CH ₃ OH	295	298	201	204	
	511	517	541	540	
	999	999	1048	1047	
	1051	1050	1091	1090	
	1158	1145	1182	1180	
	1270	1264	1286	1284	
	1366	1360	13 91	1387	
	1367	1362	1395	1391	
	3008	3000	2942	2928	
	3192	3185	3092	3076	
	3200	3193	3106	3091	
	3689	3692	3717	3716	

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
OH	3531	3526	3579	3583	
Na ₂	160	163	162	166	
CH	2750	2750	2613	2603	
CH3	510	512	418	413	506 ^e
	1358	1355	1363	1358	1402
	2996	2990	2977	2961	3004
	3232	3227	3143	3126	3171
CH ₃ Cl	685	684	670	671	732 ^d
	994	990	972	970	1020
	1303	1302	1310	1307	1355
	1428	1416	1428	1421	1460
	2955	2929	2940	2926	2928
	3109	3103	3034	3020	3047
CH ₂ O	1150	1144	1145	1137	1167 ^c
I	1211	1207	1193	1188	1251
	1462	1479	1426	1419	1500
	1740	1739	1725	1727	1746
	2843	2812	2747	2733	2766
	2884	2880	2789	2773	2843
NO	1852	1851	1828	1825	
СНО	1079	1075	1059	1055	1081^e
	1843	1843	1827	1826	1868
	2615	2611	2535	2521	2434
CN	2069	2064	2065	2061	
¹ CH ₂	1368	1362	1330	1322	1353^e
	2820	2815	2731	2718	2806
	2883	2881	2787	2775	2865

Moléculas	BASIS			Expt.	
	DZVP	NEW-PW86	DZVP	NEW-PW86	
$^{3}\mathrm{CH}_{2}$	1066	1063	1099	1098	
	3049	3042	2988	2971	
	3303	3296	3195	3175	
S ₂	658	657	649	647	
C_2H_2	560	601	529	527	612 ^c
	687	745	675	672	729
	1995	1982	1982	1978	1973
	3353	3338	3292	3280	3295
	3449	3439	3384	3372	3372

 ${}^{a}[40]; {}^{b}[41]; {}^{c}[42]; {}^{d}[43]; {}^{e}[44];$

Tabla 4.7: Frecuencias (en cm⁻¹) de moléculas orgánicas e inorgánicas, con el funcional BLYP, la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86) y las aproximaciones AUXIS y BASIS. Las frecuencia experimentales se presentan también para su comparación.

Moléculas		BASIS		AUXIS	
	DZVP	NEW-PW86	DZVP	NEW-PW86	
LiH	1385	1387	1404	1406	1360 ^e
LiF	895	896	912	902	
CO	2082	2079	2079	2078	2143 ^e
HCN	672	689	653 64	647	713°
	2084	2079	2087	2082	2097
	3360	3352	3308	3299	3311
CH ₄	I ₄ 1299	1293	1290	1284	1306°
	1513	1503	1495	1485	1534
	2850	2910	2886	2874	2917
	3059	3054	2981	2971	3019
N ₂	2296	2288	2288	2280	2331^e
H_2O	1596	1581	1639	1636	1588 ^a
	3619	3607	3667	3667	3650
	3796	3795	3795	3799	3742
HF	3945	3944	4040	4047	3962 ^e
SiH ₄	884	883	903	886	914 ^e
	946	943	947	976	975
	2168	2163	2127	2111	2187
	2177	2174	2138	2135	2191
CS	1222	1223	1217	1217	
NaCl	337	338	277	330	
H_2S	1181	1178	1161	1218	1183 ^c
	2590	2593	2549	2548	2615
	2602	2603	2557	2667	2627

Moléculas		BASIS		AUXIS		
	DZVP	NEW-PW86	DZVP	NEW-PW86		
Cl ₂	474	472	489	483		
Na ₂	156	156	157	159		
HCI	2851	2854	2836	2837		
NH	3144	3139	3034	3031		
¹ SiH ₂	983	982	936	949	995 ^e	
	1947	1944	1859	1857	1973	
	1949	1948	1895	1897	1993	
CO_2	611	609	606	604	667 ^e	
	1292	1292	1292	1291	1333	
	2325	2322	2316	2316	2349	
Li_2	336	336	331	331	346 ^e	
F_2	955	955	985	986	891 ^e	
Si_2H_6	121	119	98	95		
	360	359	345	341		
	409	409	370	377		
	629	628	620	623		
	836	835	833	834		
	903	902	904	896		
	915	913	933	936		
	932	930	942	945		
	2151	2147	2109	2100		
	2156	2151	2120	2107		
	2161	2159	2122	2115		
PH_3	999	996	982	983	992^{e}	
	1108	1108	1100	1090	1118	
	2305	2305	2256	2259	2323	
	2310	2311	22 80	2262	232 8	

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
OH	3512	3504	3535	3538	
H_2O_2	377	373	393	390	371 ^a
	867	866	882	881	877
	1231	1228	1234	1228	1266
	1356	1353	1349	1344	1402
	3609	3601	3632	3637	3599
	3624	3622	3639	3640	3608
NH ₃	1012	1031	1044	1045	950 ^d
	1641	1631	1646	1638	1627
	3170	3220	3319	3312	3337
	3493	3488	3444	3437	3444
C_2H_4	823	818	823	818	826^d
	942	944	928	925	943
	947	951	934	930	949
	1021	1018	1017	1012	1023
	1232	1227	1233	1234	1236
	1341	1337	1332	1326	1342
	1460	1453	1410	1404	1444
	1635	1632	1643	1640	1623
	2981	2971	2994	2981	2989
	3060	3052	3003	2992	3026
	3122	3115	3047	3038	3103
	3148	3142	3079	3069	3106
CH ₃	502	508	405	397	506 ^e
	1366	1359	1367	1362	1402
	2974	2972	2964	2952	3004
	3211	3204	3128	3116	3171

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
P ₂	743	743	737	737	
CH	2726	2724	2613	2606	
CH ₂ O	1148	1143	1143	1137	1167 ^c
	1212	1207	1201	1201	1251
	1484	1479	1436	1435	1500
	1727	1728	1714	1715	1746
	2800	2793	2736	2726	2766
	2868	2862	2778	2766	2843
NH ₂	1515	1506	1505	1497	1497^{ϵ}
	3187	3154	3168	3163	3220
	3326	3324	3269	3266	3301
N_2H_4	402	404	367	366	377 ⁶
	773	779	774	777	780
	977	1007	985	983	966
	1072	1069	1047	1.046	1098
	1255	1252	1240	1237	1275
	1284	1280	1266	1264	1275
	1621	1618	1612	1605	1587
	1638	1636	1628	1621	1628
	3336	3318	3293	3286	3280
	3345	3327	3300	3293	3314
	3448	3440	3403	3396	3325
	3455	3451	3427	3422	3350
SO_2	468	468	490	490	497 ^a
	1064	1043	1050	1052	1101
	1205	1205	1224	1229	1318
NO	1825	1825	1809	1809	

Moléculas	(BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
ClF	706	715	709	702	
O2	1476	1476	1453	1453	
CH ₃ SH	229	231	127	172	
	659	659	249	640	708 ^e
	759	757	763	746	803
	930	928	941	910	976
	1054	1053	1126	1040	1074
	1310	1306	1389	1286	1319
	1437	1431	1424	1406	1430
	1440	1432	1494	1421	1475
	2572	2574	2559	2544	2572
	2863	2855	2884	2906	2931
	3060	3053	2996	2981	3000
	3069	3061	3000	2991	3000
C_2H_6	282	281	231	232	289 ^e
	797	795	786	783	822
	962	966	944	946	995
	1181	1179	1174	1169	1190
	1365	1356	1332	1328	1379
	1391	1391	1357	1353	1388
	1458	1449	1435	1426	1468
	1462	1455	1438	1429	1468
	1463	1456	1442	1433	1469
	2883	2871	2890	2885	2954
	3001	2995	2935	2924	2969
	3027	3021	2956	2947	2985

Moléculas		BASIS		AUXIS	Expt.
	DZVP	NEW-PW86	DZVP	NEW-PW86	
HOCI	668	666	676	669	725 ^a
	1209	1205	1201	1196	1242
	3622	3622	3618	3626	3609
CH ₃ Cl	669	667	657	657	732 ^d
	984	990	970	963	1020
	1331	1300	1304	1297	1355
	1436	1423	1423	1415	1460
	2986	2947	2930	2917	2928
	3094	3085	3022	3009	3047
CH ₃ OH	294	295	185	188	
	483	482	504	504	
	1001	995	1019	1016	
	1046	1046	1063	1065	
	1173	1171	1168	1165	
	1257	1253	1260	1258	
	1370	1362	1379	1373	
	1370	1365	1379	1375	
	2994	2984	2922	2908	
	3176	3168	3083	3081	
	3183	3175	3102	3089	
	3674	3676	3676	3683	
CHO	1075	1072	1046	1060	1081^e
	1826	1826	1817	1818	1868
	2591	2586	2510	2502	2434
^l CH ₂	1371	1363	1349	1340	1353^e
	2800	2794	2721	2713	2806
	2862	2857	2782	2774	2865

Moléculas	BASIS			AUXIS	
	DZVP	NEW-PW86	DZVP	NEW-PW86	
$^{3}\mathrm{CH}_{2}$	1068	1064	1133	1143	
	3018	3009	2969	2955	
	3274	3266	3177	3163	
CN	2047	2042	2044	2040	
S ₂	639	639	635	635	
C_2H_2	581	597	532	540	612 ^c
	725	744	637	646	729
	1982	1977	1972	1969	1973
	3328	3320	3285	3277	3295
	3431	3424	3377	3369	3372

 ${}^{a}[40]; {}^{b}[41]; {}^{c}[42]; {}^{d}[43]; {}^{e}[44];$

4.5 Energías de Atomización

Por último se realiza el cálculo de las energías de atomización por enlace de las 46 moléculas con los funcionales PW86 y BYLP, la función auxiliar A2 y las aproximaciones AUXIS y BASIS. Donde la abreviación $BASIS_{opt, PW86}$ nos indica que se utilizó como función auxiliar (BASIS), y los parámetros geométricos optimizados con el funcional PW86.

Asi también, la abreviación $BASIS_{opt,VWN-sp,PW86}$ nos indica que se utilizó como función auxiliar (BASIS), los parámetros geométricos optimizados con el funcional VWN y se realizó el cálculo de energía de punto sencillo [single point] (considerando la geométria optimizada con el funcional VWN) con el funcional PW86.

Se observa que no existe una gran diferencia de las energías de atomización al utilizar cualquiera de las dos función auxiliares (BASIS o AUXIS), asi como también la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86). Por lo tanto se tiene, que con cualquiera de las dos bases utilizadas aquí se obtienen resultados aceptables. El rango de error de la energías de atomización entre las energías obtenida en el cálculo y las energías experimental es de 0.01 a 7.0 kcal/mol.

Por ejemplo, la molécula de CH_3SH con la base nueva (DZVP-NEW-PW86) y los parámetros geométricos optimizados con el funcional BLYP se obtiene una energía de atomización con un rango de error con respecto a la energía experimental de 0.07 kcal/mol, que es casí igual a la experimental.

El simbolo \triangle representa la diferencia entre la energías de atomización experimentales y las energías por enlace. En las tablas el resultado correspondiente a la molécula de NH₃ no se logró la optimización con la base auxiliar A2. La optimización de está molécula se logra con el set de bases auxiliares GEN-A2^{*}. A continuación se muestran los resultados obtenidos en las tablas 4.8-4.11:

Tabla 4.8: Energías de atomización (en kcal/mol) por enlace de moléculas orgánicas e inorgánicas, con el funcional PW86 y la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86) y la aproximación BASIS. Las energías experimentales se presentan también para su comparación.

Molécula	BASIS _{opt.PW86}		BASIS _{opt.V}	ASISopt.VWN-sp.PW86		Exp. ^a
	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (\triangle)	enlace				
LiH	58.97 (2.97)	58.76 (2.76)	58.97 (2.97)	58.75(2.75)	56.0	56.0
LiF	137.12 (0.48)	136.77 (0.83)	137.03 (0.57)	$136.64 \ (0.95)$	137.6	137.6
CO	85.0(0.40)	84.87 (0.53)	84.95 (0.45)	84.80(0.60)	85.4	256.2
HCN	78.07 (2.62)	77.79 (2.34)	78.04 (2.59)	77.76 (2.31)	75.4	301.8
CH_4	100.65 (2.53)	100.40 (2.28)	100.66 (2.54)	100.38 (2.26)	98.1	392.5
N_2	77.24 (2.24)	76.81 (1.81)	77.20 (2.20)	76.72 (1.72)	75.0	225.1
H_2O	111.74 (2.14)	111.43 (1.83)	111.61 (2.01)	111.32 (1.72)	109.6	219.3
HF	135.47 (0.27)	135.22 (0.02)	$135.41 \ (0.21)$	$135.15\ (0.05)$	135.2	135.2
SiH4	78.66 (2.96)	78.71 (3.01)	78.72 (3.02)	78.77(3.07)	75.7	302.8
CS	56.6 (0.10)	56.26 (0.24)	56.21 (0.29)	56.19 (0.31)	56.5	169.5
NaCl	91.17 (6.33)	91.47 (6.03)	91.07 (6.43)	91.37(6.13)	97.5	97.5
Na_2	18.93 (2.33)	18.96 (2.36)	18.93 (2.33)	18.96(2.36)	16.6	16.6
H_2O_2	89.19 (5.09)	88.94 (4.84)	88.80 (4.70)	88.57 (4.47)	84.1	252.3
CO_2	97.94 (2.44)	97.92 (2.42)	97.82 (2.32)	97.77 (2.27)	95.5	381.9
Li ₂	21.87 (2.13)	21.88 (2.12)	21.88 (2.12)	21.89 (2.10)	24.0	24.0
F_2	48.47 (11.57)	48.23 (11.33)	47.50 (10.60)	47.25 (10.35)	36.9	36.9
Si ₂ H ₆	73.95 (2.51)	74.04 (2.60)	73.98 (2.54)	74.06 (2.62)	71.4	500.1
PH ₃	79.03 (3.23)	79.12 (3.32)	79.07 (3.27)	79.16 (3.36)	75.8	227.4
HOCI	81.2 (3.05)	81.03 (2.88)	80.84 (2.69)	80.67 (2.52)	78.1	156.3
P_2	112.17 (3.92)	112.50 (3.60)	111.99 (4.11)	112.29 (3.80)	116.1	116.1
H ₂ S	89.18 (2.58)	89.38 (2.78)	89.21 (2.61)	89.41 (2.81)	86.6	173.2
$\rm NH_3$	96.77 (4.54)		95.9 (3.67)	95.52 (3.29)	92.2	276.7
C_2H_4	91.85 (3.20)	91.65 (3.00)	91.88 (3.23)	91.66 (3.01)	88.6	531.9
Molécula	BASIS _{opt.PW86}		BASIS _{opt.VWN-sp.PW86}		Expt.	Exp.ª
------------------------	---------------------------	------------------------------	------------------------------------	---------------------------	--------	-------
	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (Δ)	E_{enlace} (\triangle)	\mathbf{E}_{enlace} (Δ)	E_{enlace} (Δ)	enlace	
CH ₃	100.75 (4.35)	100.49 (4.09)	100.77 (4.37)	100.51 (4.11)	96.4	289.2
$\rm CH_2O$	92.7 (3.40)	92.57 (3.27)	92.66 (3.36)	92.53 (3.23)	89.3	357.2
N_2H_4	86.48 (5.40)	86.22(5.14)	86.35 (5.27)	$86.07 \ (4.99)$	81.1	405.4
CH_3SH	91.90 (2.88)	91.82 (2.80)	90.89 (1.87)	91.82(2.80)	89.0	445.1
HCI	103.49 (1.29)	$103.72\ (1.52)$	103.49 (1.29)	103.72(1.52)	102.2	102.2
Cl_2	52.79 (4.41)	52.88(4.31)	52.31 (4.89)	52.37(4.83)	57.2	57.2
SO_2	61.07 (2.43)	61.17(2.33)	60.88 (2.62)	60.98(2.52)	63.5	254.0
ClF	62.99(2.69)	62.95(2.65)	62.35 (2.05)	62.30(2.00)	60.3	60.3
CH ₃ Cl	95.71 (2.96)	95.58 (2.83)	95.65 (2.90)	95.51(2.76)	92.7	371.0
C_2H_6	98.60 (3.42)	98.32 (3.14)	98.59 (3.41)	98.37 (3.19)	95.2	666.3
СНО	94.22 (4.12)	94.13 (4.03)	94.16 (4.06)	94.06 (3.96)	90.1	270.3
CH	84.69 (4.79)	84.48 (4.58)	84.74 (4.84)	84.54 (4.64)	79.9	79.9
$^{3}\mathrm{CH}_{2}$	94.70 (4.90)	94.49 (4.69)	94.75 (4.95)	94.55 (4.75)	89.8	179.6
$^{1}\mathrm{CH}_{2}$	87.91 (2.61)	87.67 (2.37)	87.94 (2.64)	87.71 (2.41)	85.3	170.6
NH	88.02 (9.02)	87.72 (8.72)	88.08 (9.08)	87.78 (8.78)	79.0	79.0
$\rm NH_2$	92.05 (7.05)	91.73 (6.73)	92.01 (7.01)	91.66 (6.66)	85.0	170.0
OH	106.33 (5.03)	106.09 (4.79)	106.21 (4.91)	105.96 (4.66)	101.3	101.3
$^{1}\mathrm{SiH}_{2}$	74.72 (2.52)	74.69 (2.49)	74.72 (2.52)	74.69(2.49)	72.2	144.4
CN	62.68(3.81)	62.47 (3.60)	62.64 (3.77)	62.42 (3.55)	58.9	176.6
NO	53.89 (3.86)	53.75 (3.72)	53.79 (3.76)	53.63 (3.60)	50.0	150.1
O2	66.17 (7.17)	66.04 (7.04)	65.90 (6.90)	65.76 (6.76)	59.0	118.0
S_2	50.63 (0.28)	50.67 (0.32)	50.51 (0.16)	50.54 (0.19)	50.3	100.7
C_2H_2	78.97 (1.19)	78.70 (0.92)	78.97 (1.19)	78.75 (0.97)	77.8	388.9

 $^{a}[45]$ y referencias contenidas en este artículo

Tabla 4.9: Energías de atomización (en kcal/mol) por enlace de moléculas orgánicas e inorgánicas, con el funcional PW86 y la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86) y la aproximación AUXIS. Las energías experimentales se presentan también para su comparación.

Molécula	AUXIS _{opt.PW86}		AUXISopt. VWN-sp. PW86		Expt.	Exp. ^a
	DZVP	NEW-PW86	DZVP	NEW-PW86	рот	
	E_{enlace} (\triangle)	\mathbf{E}_{enlace} (Δ)	E_{enlace} (Δ)	E_{enlace} (\triangle)	enlace	
LiH	62.46 (6.46)	62.28 (6.28)	62.51 (6.51)	62.34 (6.34)	56.0	56.0
LiF	135.80 (1.80)	135.40 (2.20)	135.74 (1.86)	135.30 (2.29)	137.6	137.6
со	84.71 (0.69)	84.63 (0.77)	84.67 (0.73)	84.57 (0.83)	85.4	256.2
HCN	78.54 (3.09)	78.30 (2.85)	78.50 (3.05)	78.25 (2.80)	75.4	301.8
CH_4	102.86 (4.74)	$102.60^{\circ}(4.48)$	102.78 (4.66)	102.48 (4.36)	98.1	392.5
N_2	77.09 (2.09)	76.71 (1.71)	77.05 (2.05)	76.66 (1.66)	75.0	225.1
H ₂ O	114.66 (5.06)	114.45 (4.85)	114.69 (5.09)	114.46 (4.86)	109.6	219.3
$_{\mathrm{HF}}$	139.57 (4.37)	139.40 (4.20)	139.63 (4.43)	139.46(4.26)	135.2	135.2
SiH_4	82.93 (7.23)	83.05 (7.35)	82.87 (7.17)	82.97 (7.27)	75.7	302.8
CS	56.09(0.41)	56.11 (0.39)	56.03 (0.47)	56.05(0.45)	56.5	169.5
NaCl	87.80 (9.70)	88.06 (9.44)	87.65 (9.85)	87.90 (9.60)	97.5	97.5
Na ₂	14.42(2.17)	14.33 (2.27)	14.46 (2.14)	14.36 (2.23)	16.6	16.6
H_2O_2	91.33 (7.23)	91.18 (7.08)	90.93 (6.83)	90.78 (6.68)	84.1	252.3
$\rm CO_2$	97.62 (2.15)	97.63 (2.16)	97.53 (2.06)	97.53 (2.06)	95.5	381.9
Li ₂	20.92 (3.08)	20.96 (3.04)	20.94 (3.06)	20.98 (3.02)	24.0	24.0
F_2	49.45 (12.55)	49.22 (12.32)	48.32 (11.42)	48.08 (11.18)	36.9	36.9
Si_2H_6	77.60 (6.16)	77.74 (6.30)	77.47 (6.03)	77.60 (6.16)	71.4	500.1
PH_3	83.70 (7.90)	83.86 (8.06)	83.53 (7.73)	83.66 (7.86)	75.8	227.4
HOC	82.89 (4.74)	82.81 (4.66)	82.57 (4.42)	82.45 (4.30)	78.1	156.3
P_2	115.41 (0.69)	115.79 (0.31)	115.19 (0.90)	115.54 (0.55)	116.1	116.1
H_2S	93.60 (7.00)	93.85 (7.25)	93.53 (6.93)	93.77 (7.17)	86.6	173.2
NH3			98.39 ((6.19)	98.03 (5.83)	92.2	276.7

Molécula	AUXIS	opt.PW86	AUXIS _{opt.VWN-sp.PW86}		Expt.	Exp.ª
	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (\triangle)	\mathbf{E}_{enlace} (Δ)	E_{enlace} (Δ)	E_{enlace} (\triangle)	enlace	
C_2H_4	93.35 (4.70)	93.15 (4.50)	93.35 (4.70)	93.13 (4.48)	88.6	531.9
CH_3	102.93 (6.53)	102.68 (6.28)	102.82 (6.42)	102.53 (6.13)	96.4	289.2
CH_2O	93.37 (4.07)	93.27 (3.97)	93.25 (3.95)	93.12 (3.82)	89.3	357.2
N_2H_4	88.50 (7.42)	88.25 (7.17)	88.34 (7.26)	88.08 (7.00)	81.1	405.4
CH_3SH	94.22 (5.20)	94.17 (5.15)	94.10 (5.08)	94.03(5.01)	89.0	445.1
HCl	107.88 (5.68)	108.16 (5.96)	107.87 (5.67)	108.14 (5.94)	102.2	102.2
Cl_2	53.88 (3.31)	53.98 (3.22)	53.48 (3.72)	53.55 (3.65)	57.2	57.2
SO_2	61.02(2.48)	61.17 (2.33)	60.84(2.66)	60.99(2.51)	63.5	254.0
CIF	63.22(2.92)	63.18 (2.88)	62.58 (2.28)	62.54(2.24)	60.3	60.3
CH ₃ Cl	97.34 (4.59)	97.21 (4.46)	97.19 (4.44)	97.03 (4.28)	92.7	371.0
C_2H_6	100.52 (5.34)	100.31 (5.13)	100.48 (5.30)	100.25 (5.07)	95.2	666.3
CHO	94.68 (4.58)	94.62 (4.52)	94.57 (4.47)	94.49 (4.39)	90.1	270.3
CH	86.33 (6.43)	86.15 (6.25)	86.20 (6.30)	85.96 (6.06)	79.9	79.9
$^{3}CH_{2}$	97.24 (7.44)	97.03 (7.23)	97.18 (7.38)	96.94 (7.14)	89.8	179.6
$^{1}\mathrm{CH}_{2}$	89.77 (4.47)	89.53 (4.23)	89.64 (4.34)	89.37 (4.07)	85.3	170.6
NH	90.33 (11.33)	90.04 (11.04)	90.20 (11.20)	89.91 (10.91)	79.0	79.0
$\rm NH_2$	94.43 (9.43)	94.1 (9.10)	94.34 (9.34)	94.00 (9.00)	85.0	170.0
ОН	109.35 (8.05)	109.18 (7.88)	109.34 (8.04)	109.17 (7.87)	101.3	101.3
¹ SiH ₂	78.4 (6.20)	78.40 (6.20)	78.24 (6.04)	78.23 (6.03)	72.2	144.4
CN	62.46(3.59)	62.30 (3.43)	62.43 (3.56)	62.25 (3.38)	58.9	176.6
NO	53.31 (3.28)	53.20 (3.17)	53.21 (3.18)	53.10 (3.07)	50.0	150.1
O2	65.58 (6.58)	65.49 (6.49)	65.27 (6.27)	65.17 (6.17)	59.0	118.0
S ₂	51.11 (0.76)	51.17 (0.82)	50.97(0.62)	51.02 (0.67)	50.3	100.7
C_2H_2	79.66 (1.88)	79.46 (1.68)	79.61 (1.83)	79.39 (1.61)	77.8	388.9

 $^{a}[45]$ y referencias contenidas en este artículo

Tabla 4.10: Energías de atomización por enlace de moléculas orgánicas e inorgánicas, con el funcional BLYP y la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86) y la aproximación BASIS. Las energías experimentales se presentan también para su comparación.

Molécula	BASIS _{opt, BLYP}		BASISopt.VI	BASIS _{opt.VWN-sp.BLYP}		Exp.ª
4	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (\triangle)	\mathbf{E}_{enlace} (Δ)	E_{enlace} (Δ)	E_{enlace} (Δ)	enlace	
LiH	57.08 (1.08)	56.87 (0.87)	57.07 (1.07)	56.86 (0.86)	56.0	56.0
LiF	136.10 (1.50)	135.73 (1.87)	$135.95\ (1.65)$	135.55 (2.05)	137.6	137.6
CO	83.68 (1.72)	83.58 (1.82)	83.60 (1.80)	83.49 (1.91)	85.4	256.2
HCN	75.85 (0.40)	75.62 (0.17)	75.82 (0.37)	75.57 (0.12)	75.4	301.8
CH_4	97.71 (0.41)	97.45 (0.67)	97.70 (0.42)	97.40 (0.72)	98.1	392.5
N_2	75.17(0.14)	$74.81 \ (0.22)$	75.10 (0.07)	74.71 (0.32)	75.0	225.1
H_2O	109.46 (0.19)	109.17 (0.48)	109.33 (0.32)	109.03 (0.62)	109.6	219.3
HF	133.93 (1.27)	133.65 (1.55)	133.86 (1.34)	133.57 (1.62)	135.2	135.2
SiH_4	76.97 (1.27)	77.03 (1.33)	77.03 (1.33)	77.10 (1.40)	75.7	302.8
CS	54.99 (1.51)	55.00 (1.50)	54.92 (1.58)	54.92 (1.58)	56.5	169.5
NaCl	89.08 (8.42)	89.37 (8.13)	88.93 (8.57)	89.23 (8.27)	97.5	97.5
Na ₂	17.33 (0.73)	17.39 (0.79)	17.29 (0.69)	17.36 (0.76)	16.6	16.6
H_2O_2	86.90 (2.80)	86.69 (2.59)	86.45 (2.35)	86.24 (2.14)	84.1	252.3
$\rm CO_2$	95.75~(0.25)	95.76 (0.26)	95.60 (0.10)	95.59 (0.10)	95.5	381.9
Li ₂	19.90 (4.09)	19.94 (4.06)	19.90 (4.10)	19.93 (4.06)	24.0	24.0
F_2	47.57 (10.67)	47.39 (10.49)	46.58 (9.68)	46.38 (9.48)	36.9	36.9
$\rm Si_2H_6$	72.02 (0.58)	72.11 (0.67)	72.04 (0.60)	72.13 (0.69)	71.4	500.1
PH_3	77.55 (1.75)	77.64 (1.84)	77.56 (1.76)	77.66 (1.86)	75.8	227.4
HOCI	78.93 (0.78)	78.77 (0.62)	78.45 (0.30)	78.28(0.13)	78.1	156.3
P ₂	113.53 (2.57)	113.83 (2.27)	113.29 (2.81)	113.55 (2.54)	116.1	116.1
H_2S	$87.13 \ (0.53)$	87.31 (0.71)	87.09 (0.49)	87.28 (0.68)	86.6	173.2
NH3	94.05 (1.82)	93.71 (1.48)	93.07 (0.84)	92.68 (0.45)	92.2	276.7
C_2H_4	88.95 (0.30)	88.78 (0.13)	88.97 (0.32)	88.75 (0.10)	88.6	531.9

Molécula	BASIS _{opt.BLYP}		BASIS _{opt.V}	BASISopt.VWN-sp.BLYP		Exp. ^a
	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (\triangle)	enlace				
CH3	97.44 (1.04)	97.17 (0.77)	97.44 (1.04)	97.15 (0.75)	96.4	289.2
CH ₂ O	90.34 (1.04)	90.24 (0.94)	90.29 (0.99)	90.16(0.86)	89.3	357.2
N_2H_4	59.60 (1.69)	59.42 (1.51)	59.45 (1.54)	59.25 (1.34)	57.9	405.4
CH ₃ SH	89.03 (0.01)	88.95 (0.07)	88.91 (0.11)	88.82(0.20)	89.0	445.1
HCl	101.08 (1.11)	101.27 (0.93)	101.02 (1.18)	101.20 (1.00)	102.2	102.2
Cl_2	$50.85 \ (6.35)$	50.94(6.26)	50.12 (7.08)	50.16 (7.04)	57.2	57.2
SO_2	59.66 (3.84)	59.79 (3.71)	59.45(4.05)	59.57 (3.93)	63.5	254.0
CIF	61.74 (1.44)	61.70 (1.40)	60.93 (0.63)	60.88 (0.58)	60.3	60.3
CH ₃ Cl	92.60 (0.15)	92.48 (0.27)	92.48 (0.27)	92.32 (0.43)	92.7	371.0
C_2H_6	95.39(0.21)	95.18 (0.0)	95.34 (0.16)	$95.11 \ (0.07)$	95.2	666.3
CHO	91.85 (1.75)	91.78 (1.68)	91.76 (1.66)	91.68 (1.58)	90.1	270.3
CH	81.88 (1.98)	81.68 (1.78)	81.87 (1.97)	81.68 (1.78)	79.9	79.9
$^{3}\mathrm{CH}_{2}$	90.66 (0.86)	90.45 (0.65)	90.68 (0.88)	90.45 (0.65)	89.8	179.6
$^{1}\mathrm{CH}_{2}$	85.47 (0.17)	85.23 (0.07)	85.47 (0.17)	85.23(0.07)	85.3	170.6
NH	84.43 (5.43)	84.15 (5.15)	84.49 (5.49)	84.22 (5.22)	79.0	79.0
NH_2	88.91 (3.91)	88.61 (3.61)	88.85 (3.85)	88.51 (3.51)	85.0	170.0
OH	103.72 (2.42)	103.48 (2.18)	103.59 (2.29)	103.34 (2.04)	101.3	101.3
¹ SiH ₂	73.58 (1.38)	73.58 (1.38)	73.57 (1.37)	73.56 (1.36)	72.2	144.4
CN	60.44 (1.57)	60.29 (1.42)	60.40 (1.53)	60.22 (1.35)	58.9	176.6
NO	52.36 (2.33)	52.27 (2.24)	52.23 (2.20)	52.12(2.09)	50.0	150.1
O ₂	64.81 (5.81)	64.73 (5.73)	64.45 (5.45)	64.37 (5.37)	59.0	118.0
S ₂	49.56 (0.79)	49.59 (0.76)	49.35 (1.00)	49.36 (0.99)	50.3	100.7
C_2H_2	76.47(1.31)	76.22 (1.56)	76.46 (1.32)	76.25 (1.53)	77.8	388.9

 $^{a}_{+}[45]$ y referencias contenidas en este artículo

Tabla 4.11 Energías de atomización por enlace de moléculas orgánicas e inorgánicas, con el funcional BLYP y la base vieja (DZVP) y la base nueva (DZVP-NEW-PW86) y la aproximación AUXIS. Las energías experimentales se presentan también para su comparación.

Molécula	BASIS _{opt.BLYP}		BASIS _{opt.VWN-sp.BLYP}		Exp.	Exp. ^a
1	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (Δ)	E_{enlace} (\triangle)	E_{enlace} (\triangle)	E_{enlace} (\triangle)	enlace	
LiH	57.98 (1.98)	57.75 (1.75)	60.24 (4.24)	60.04 (4.04)	56.0	56.0
LiF	134.40 (3.20)	133.94 (3.66)	134.33 (3.26)	133.85 (3.75)	137.6	137.6
co	83.45 (1.95)	83.36 (2.04)	83.38 (2.02)	83.28 (2.12)	85.4	256.2
HCN	76.42 (0.97)	76.21 (0.76)	76.36 (0.91)	$76.12 \ (0.67)$	75.4	301.8
CH_4	100.19 (2.07)	99.91 (1.79)	100.07 (1.95)	99.75 (1.63)	98.1	392.5
N_2	75.37 (0.34)	75.05 (0.02)	75.30 (0.27)	74.95 (0.08)	75.0	225.1
H_2O	112.57 (2.92)	112.31 (2.66)	112.49 (2.84)	112.22 (2.57)	109.6	219.3
HF	137.17 (1.97)	136.95 (1.75)	137.23 (2.03)	137.01 (1.81)	135.2	135.2
SiH_4	80.96 (5.26)	81.04 (5.34)	81.00 (5.30)	81.09 (5.39)	75.7	302.8
CS	54.79 (1.71)	54.81 (1.69)	54.72 (1.78)	54.74 (1.76)	56.5	169.5
NaCl	82.88 (14.61)	86.60 (10.90)	86.14 (11.36)	86.38 (11.11)	97.5	97.5
Na ₂	15.56 (1.04)	15.59 (1.01)	15.54 (1.06)	15.57 (1.02)	16.6	16.6
H_2O_2	89.51 (5.41)	89.36 (5.26)	89.05 (4.95)	88.88 (4.78)	84.1	252.3
CO_2	95.38 (0.10)	95.39 (0.08)	95.24 (0.23)	95.23 (0.24)	95.5	381.9
Li ₂	18.99 (5.01)	19.00 (5.00)	18.84 (5.15)	18.88 (5.12)	24.0	24.0
Fa ₂	48.69 (11.79)	48.49 (11.59)	47.73 (10.83)	47.52 (10.62)	36.9	36.9
Si ₂ H ₆	75.41 (3.97)	75.53 (4.09)	75.34 (3.90)	75.46 (4.02)	71.4	500.1
PH_3	81.75 (5.95)	81.74 (5.94)	81.57 (5.77)	81.68 (5.88)	75.8	227.4
HOCI	80.87 (2.72)	80.72 (2.57)	80.41 (2.26)	80.26 (2.11)	78.1	156.3
P ₂	114.84 (1.26)	115.20 (0.90)	114.58 (1.52)	114.91 (1.19)	116.1	116.1
H_2S	91.16 (4.56)	91.23 (4.63)	91.02 (4.42)	91.21 (4.61)	86.6	173.2
NH ₃	96.96 (4.76)	96.60 (4.40)	95.98 (3.78)	95.59 (3.39)	92.2	276.7

Molécula	BASIS _{opt.BLYP}		BASIS _{opt.VWN-sp.BLYP}		Exp.	Exp.ª
	DZVP	NEW-PW86	DZVP	NEW-PW86	por	
	E_{enlace} (\triangle)	E_{enlace} (Δ)	E_{enlace} (\triangle)	E_{enlace} (\triangle)	enlace	
C_2H_4	90.52 (1.87)	90.32 (1.67)	90.48 (1.83)	90.24 (1.59)	88.6	531.9
CH3	99.89 (3.49)	99.61 (3.21)	99.75 (3.35)	99.43 (3.03)	96.4	289.2
CH_2O	91.31 (2.01)	91.21 (1.91)	91.17 (1.87)	91.04 (1.74)	89.3	357.2
N_2H_4	86.03 (4.95)	85.80 (4.72)	85.68 (4.60)	$85.42 \ (4.34)$	81.1	405.4
CH ₃ SH	91.42 (2.40)	91.30 (2.28)	91.15 (2.13)	$91.05\ (2.03)$	89.0	445.1
HCl	105.15 (2.95)	105.35 (3.15)	105.06 (2.86)	105.24 (3.04)	102.2	102.2
Cl_2	51.75 (5.45)	51.81(5.38)	51.15 (6.05)	51.17 (6.03)	57.2	57.2
SO_2	59.84 (3.66)	59.97 (3.53)	59.64 (3.86)	59.78 (3.72)	63.5	254.0
CIF	61.59 (1.29)	61.51 (1.21)	60.90 (0.60)	60.82 (0.52)	60.3	60.3
CH ₃ Cl	94.58 (1.83)	94.43 (1.68)	94.31 (1.56)	94.14(1.39)	92.7	371.0
C_2H_6	97.46 (2.28)	97.25 (2.07)	97.31(2.13)	97.06 (1.88)	95.2	666.3
CHO	92.46 (2.36)	92.36 (2.26)	92.30 (2.20)	92.22(2.12)	90.1	270.3
CH	84.03 (4.13)	83.88 (3.98)	83.91 (4.01)	83.69 (3.79)	79.9	79.9
$^{3}\mathrm{CH}_{2}$	93.52 (3.72)	93.28 (3.48)	93.42 (3.62)	93.15(3.35)	89.8	179.6
$^{1}\mathrm{CH}_{2}$	87.73 (2.43)	87.47 (2.17)	87.61 (2.31)	87.34 (2.04)	85.3	170.6
NH	87.52 (8.52)	87.26 (8.26)	87.38 (8.38)	87.11 (8.11)	79.0	79.0
NH_2	91.91 (6.91)	91.58 (6.58)	91.77 (6.77)	91.43 (6.43)	85.0	170.0
OH	107.0 (5.70)	106.80 (5.50)	106.92 (5.62)	106.71 (5.41)	101.3	101.3
$^{1}\mathrm{SiH}_{2}$	77.06 (4.86)	77.06 (4.86)	76.88 (4.68)	76.88 (4.68)	72.2	144.4
CN	60.44 (1.57)	60.33(1.46)	60.40 (1.53)	60.25(1.38)	58.9	176.6
NO	52.16 (2.13)	52.08(2.05)	51.99 (1.96)	51.90(1.87)	50.0	150.1
O2	64.79 (5.79)	64.71 (5.71)	64.35 (5.35)	64.26(5.26)	59.0	118.0
S_2	49.77 (0.58)	49.79 (0.56)	49.49 (0.86)	49.50 (0.85)	50.3	100.7
C_2H_2	77.31 (0.47)	77.06 (0.72)	77.22 (0.56)	76.99 (0.79)	77.8	388.9

 $^{a}[45]$ y referencias contenidas en este artículo

Conclusiones

El objetivo principal de este trabajo de tesis fue el desarrollo de nuevos conjuntos de bases de átomos del H hasta el Xe para métodos basados en la teoria de funcionales de la densidad. Las nuevas bases DZVP y TZVP se realizaron con el nuevo código deMon que se desarrolla en el departamento de química del CINVESTAV y se emplearon diferentes funcionales, locales y no locales. Las nuevas bases se validaron con cálculos energéticos interconfiguracionales de átomos del primero y segundo grupo de metales de transición. Además las nuevas bases se validaron con cálculos de parámetros geométricos, frecuencias y energías de atomización, considerando una serie de moléculas orgánicas e inorgánicas para las cuales existen parámetros experimentales en fase gaseosa. Estos resultados se analizaron en forma estadística. De los resultados obtenidos se pueden desprender las siguientes conclusiones.

Para las energías interconfiguracionales de los átomos del primero y segundo grupo de metales de transición se demostró que los mejores resultados se obtienen con el funcional PW86 y las bases nuevas DZVP-NEW-PW86. Además los resultados obtenidos en esta tesis son mejores que los publicados en la literatura.

Con respecto a la validación estadística que se realizó al conjunto de moléculas inorgánicas utilizando las nuevas bases DZVP-NEW con la aproximación BASIS y el funcional VWN se observa que dan enlaces similares a los obtenidos con las bases viejas DZVP, pero reducen el error en los ángulos. Por otro lado, con respecto al conjunto de moléculas orgánicas podemos deducir que también existe una mejoría cuando se utiliza la aproximación BASIS y el funcional VWN ya que se obtienen desviaciones absolutas más cortas que si emplearamos los funcionales PW86 y BLYP.

En la validación de frecuencias y energías de atomización no se observó una variación uniforme con respecto a los valores experimentales, es decir, se obtienen diferentes valores al utilizar las diferentes bases (DZVP, DZVP-NEW y DZVP-NEW-PW86).

Ademas estas nuevas bases se validaron también para una serie de 79 moléculas que contienen metales de transición. Estas validaciones fueron objeto de una tesis de licenciatura [46]. Donde se demostró que las bases nuevas DZVP-NEW-PW86 son importantes para el cálculo de propiedades energéticas para moléculas que contienen metales de transición.

,

Bibliografía

- [1] C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
- [2] G.G. Hall. Proc. Roy. Soc. A, 205, 541 (1951).
- [3] J. Junquera. O. Paz. D. Sánchez-Portal, Phys. Rev. B., 64, 235111 (2001).
- [4] E. Artacho. D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, *Phys. Stat. Sol.*, **215**, 809 (1999).
- [5] C. Massobrio, E. Ruiz, Monatshe für Chemie., 134, 317 (2003)
- [6] C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, New York, 1996
- [7] N.W. Ashoroft, N.D. Mermin, Solid State Physics, Seunders Collage, Philadelphia, 1981
- [8] R. Car, M. Parrinello, Phys. Rev. Lett., 55, 22 (1985)
- [9] J.C. Slater. Phys. Rev., 36, 57 (1930)
- [10] S.F. Boys. Proc. Roy. Soc. A, 200, 542 (1950)
- [11] L.H. Thomas, Proc. Cambr. Phil. Soc., 23, 542 (1927)
- [12] E. Fermi, Z. Physik. 48, 73 (1928)
- [13] E. Fermi, Rend. Accad. Lincei, 6. 602 (1927)
- [14] E. Fermi, Rend. Accad. Lincei, 7. 342 (1928)

- [15] P. Hohenberg, W. Kohn, Phys. Rev. B. 136, 864 (1964)
- [16] W. Kohn, L.J. Sham, Phys. Rev. A. 140, 1133 (1965)
- [17] S.J. Vosko, L. Wilk, M. Nusair, J. Phys., 58, 1200 (1980)
- [18] J.P. Perdew, Y. Wang, Phys. Rev. B, 33, 8800 (1986)
- [19] J.P. Perdew, Phys. Rev. B, 33, 8822 (1986)
- [20] J.P. Perdew, Phys. Rev. B, 34, 7406E (1986)
- [21] A.D. Becke, Phys. Rev. A, 38, 3098 (1988)
- [22] J.P. Perdew, Y. Wang, Phys. Rev. B, 45, 12344 (1992)
- [23] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37, 785 (1988)
- [24] J.P. Perdew, K. Burke, M. Ernzerhof, Rev. Lett., 77, 3865 (1996)
- [25] A.M. Köster, G. Geudtner, A. Goursot, J.U. Reveles, A. Vela, D.R. Salahub, NRC, Canada (2003)
- [26] N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem., 70, 560 (1992)
- [27] J.U. Reveles, A.M. Köster, J. Comp. Chem., 25, 1109 (2004)
- [28] G. Schaftnear, J.H. Noordir, J. Comput-Aided Mol. Design, 14, 123 (2000)
- [29] C. E. Moore, Atomic Energy Levels. Volume I, NSRDS-NBS-35 (National Bureau of Standards, Washington, D.C., 1949)
- [30] C. E. Moore, Atomic Energy Levels. Volume II, NSRDS-NBS-35 (National Bureau of Standards, Washington, D.C., 1971)
- [31] C. E. Moore, Atomic Energy Levels, Volume III, NSRDS-NBS-35 (National Bureau of Standards, Washington, D.C., 1971)

- [32] H. Sambe, R.H. Felton, J. Chem. Phys., 62, 1122 (1975)
- [33] R. Mejia Olvera, B.A. Zuñiga Gutierrez, P. Calaminici, en preparación
- [34] T. V. Russo, Richard L. Martin, P. Jeffrey Hay, J. Chem. Phys., 101, 7729 (1994)
- [35] A.J.H. Wachters, J. Chem. Phys., 52, 1033 (1970)
- [36] P.J. Hay, J. Chem. Phys., 66, 4377 (1977)
- [37] W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986)
- [38] M.W. Chase C.A. Davies, J.R. Downey, D.J. Frurip, A.N. Syverud, R.A.McDonald, JANAF *Thermochemical Tables*, Third Edition, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985)
- [39] J.H. Callomon, E. Hirota, K. Kuchitsu, W.J. Lafferty, A.G. Maki, C.S. Pote. Structure Data on Free Polyatomic Molecules, Landolt Börnstein, New Series, Group II, Vol. 7, (Springer-Verlag, Berlin, 1976)
- [40] T. Shimanouchi, J. Phys. Chem. Ref. Data 6, 993 (1977)
- [41] L.M. Sverdlov, M.A. Kovner, E.P. Krainov, Vibrational Spectra of Polyatomic Molecules (Wiley, New York, 1974)
- [42] K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, III. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)
- [43] D.R. Stull, H. Prophet. JANAF Thermochemical Tables. Second Edition, NSRDS-NBS-32 (National Bureau of Standards, Washington, D.C., 1971)
- [44] W.G. Mallard, P.J., Linstrom (Eds.), NIST Chemistry WebBook. NIST Standard. Reference Database Number 69, March, 1998 http://webbook.nist.gov./chemistry
- [45] L.A Curtiss. K. Raghavachari, G.W. Trucks. J.A. Pople, J. Chem. Phys., 94, 7221 (1991)

[46] B.A. Zuñiga Gutierrez Tesis de Licenciatura. CINVESTAV, en proceso de revisión.