11161

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

"Análisis de las Propiedades Mecánicas del Acero 502, en la zona Afectada por el Calor al Soldarse Bajo Condiciones de Temperatura Controlada a 500oC"

TESIS

PARA OBTENER EL GRADO DE: MAESTRO EN INGENIERIA METAL - MECANICA PRESENTA: ROGELIO RAMOS CARRANZA

ASESOR: M. EN I. HECTOR ENRIQUE CURIEL REYNA

20034

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

VNIVERADAD NACIONAL AVFNMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN UNAM

DIRECCION

OFICIO/FES-C/D/1537/10/2002.

ASUNTO: Designación de Jurado.

BIOL. FRANCISCO J. INCERA UGALDE JEFE DE LA UNIDAD DE ADMINISTRACIÓN DE POSGRADO DE LA DIRECCIÓN GENERAL DE ADMINISTRACIÓN ESCOLAR Presente.

La Dirección de esta Facultad de Estudios Superiores Cuautitlán, autoriza al alumno RAMOS CARRANZA ROGELIO con número de expediente 100991019 y número de cuenta 7456829-9, para presentar su examen de grado de la Maestría en Ingeniería Metal-Mecánica con la tesis titulada "ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL ACERO 502, EN LA ZONA AFECTADA POR EL CALOR AL SOLDARSE BAJO CONDICIONES DE TEMPERATURA CONTROLADA A 500°C.", a quien se le ha designado el siguiente jurado:

Presidente:	DRA. MARÍA ELENA VILLAFUERTE CASTREJÓN
Vocal:	DR. ARMANDO AGUILAR MÁRQUEZ
Secretario:	DRA. FRIDA MARÍA LEÓN RODRÍGUEZ
Primer Suplente:	M. En I. CARLOS GÓMEZ GARCÍA
Segundo Suplente:	M. en I. HÉCTOR ENRIQUE CURIEL REYNA

Sin más por el momento, reciba un cordial saludo.

A t e n t a m e n t e " POR MI RAZA HABLARA EL ESPÍRITU " Cuautitlán Izcalli, Méx., a 2 de octubre del 2002.

DR. JUAN ANTONIO MONTARAZ CRESP DIRECTOR

c.c.p. Exp. Alumno c.c.p. Archivo IAMC/SRR/PRN/sgu

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN COORDINACIÓN GENERAL DE ESTUDIOS DE POSGRADO

CARTA DE VOTOS APROBATORIOS

VALVERADAD NACIONAL AVENIMA DE MEXICO Coordinación General de Estudios de Posgrado FES-Cuautitlán P r e s e n t e.

Por medio de este conducto nos permitimos comunicar a usted que revisamos la tesis titulada "ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL ACERO 502, EN LA ZONA AFECTADA POR EL CALOR AL SOLDARSE BAJO CONDICIONES DE TEMPERATURA CONTROLADA A 500°C." que presenta el alumno RAMOS CARRANZA ROGELIO con número de cuenta 7456829-9 y número de expediente 100991019 para obtener el grado de Maestro en Ingeniería Metal-Mecánica. Consideramos que dicha tesis reúne los requisitos necesarios para ser discutida en el Examen de Grado correspondiente, otorgamos el voto aprobatorio.

A tentamente "POR MI RAZA HABLARA EL ESPÍRITU"

	a	de	del
	NOMBRE DE L	OS SINODALES	
Presidente:	DRA. MA. ELENA VILLAFUERTE	CASTREJON	Mu Elema Hollafraste
Vocal:	dr. Armando Aguilar Márqu	EZ	- And -
Secretario:	dra. Frida María León Rodr	GUEZ	Tinde Ver
Primer Suplente:	M. en I. CARLOS GÓMEZ GARCÍA		
Segundo Suplente:	M. en I. HÉCTOR ENRIQUE CURI	EL REYNA	2 lieur

Reconocimientos a:

Ing. Adolfo Altamirano M. Por su valíoso apoyo en el manejo de la máquina de pruebas de tensión

Biol. German Álvarez Por su pacíente ayuda para la realízación de las fotografías en el mícroscopío electrónico

Agradecimientos a:

Dra. Frida León R. Por su insistencia en mejorar la presente investigación

Dr. Armando Aguilar M. Por sus observaciones acerca de la metodología de la investigación

M.I. Carlos Gómez Por su atención y acertadas indicaciones a la presente investigación

Dra. Maria Elena Villafuerte C. Por su conocímiento, paciencia y apreciable atención.

Mi asesor de tesis: M.I. Enrique Curiel R. Por sus valíosas aportaciones y su presencia en los momentos difíciles durante la realización de la investigación

A mis compañeros de investigación: Miguel Zamora C., Miguel Pineda, Juan Contreras E. Por sus observaciones, siempre oportunas

A mis compañeros de Trabajo: Ing. Juan R. Garibay B., Jorge De La Cruz T., José L. Hernández C., Jorge Altamira I., Celina Urrutia V. Por el apoyo para la realízación de mí tesis. Dedíco esta tesís:

A mi Esposa Rocio Guadalupe Por estar a mí lado en todo momento A mi hija: Luci Rocio Por tu caríño y Comprensión A mi Hija Lluvia Rubi Por tu ejemplo de gratítud y gran capacidad

A mis Padres Ángel Ramos Ch. y Luci Carranza de R. Porque han estado conmígo todo el tíempo y por haberme enseñado a trabajar con tenacidad, respeto y honradez

A mis hermanos Briseida, Miguel A., Jorge A., Francisco J., Rosalía y Leticia Por su ejemplo de competencía y por su espírítu de cordialidad y hermandad

> A mis tios Luci y Alfredo Por su ejemplo de honradez, cultura y superación

A mis compañeros de Grupo

Que me han enseñado a ser agradecído y reconocer que, a quíen hay que agradecer, reconocer y dedícar todo trabajo o actívidad es a DIOS, el Gran Constructor del Universo A tí Gracías señor por ser mí más grande Amígo, por tu luz y por tu amor.

> A mi querida Escuela, la UNAM y en especial a la FESC Por el gran soporte educativo y formativo

INDICE

Indice	i
Resumen	ii
I. Antecedentes	1
II. Planteamiento del problema	13
II.1. Objetivos	13
II.2. Hipótesis	13
II.3. Material utilizado	13
II.4. Metodología para la caracterización del material	14
III. Aplicación de las pruebas y recopilación de datos	20
III.1. Muestra soldada a temperatura ambiente	20
III.2. Muestra soldada a 500° C, con permanencia en el horno durante una hora	42
III.3. Muestra soldada a 500° C, con permanencia en el horno durante cinco horas	62
III.4. Muestra soldada a 500° C, con permanencia en el horno durante diez horas	83
IV. Discusión de los resultados y conclusiones	104
Bibliografía de consulta	107

.

Resumen

En la investigación presente, se analizaron las propiedades mecánicas del acero 502 en la Zona Afectada por el Calor (ZAC) por efecto del arco de soldadura bajo 4 condiciones distintas. Estas condiciones consistieron en: 1) aplicación de soldadura a temperatura ambiente y enfriado al aire tranquilo, 2) aplicación de soldadura a 500ºC y postcalentado a 500°C durante una hora, 3) aplicación de soldadura a 500°C y postcalentado a 500°C durante cinco horas y 4) aplicación de soldadura a 500°C y postcalentado a 500°C durante diez horas. Una vez que se realizaron las pruebas para las cuatro condiciones citadas se encontraron los siguientes resultados: en general el acero 502 se comporto como un material elástico con fractura frágil, resultado que se determina por el comportamiento de las curvas esfuerzo deformación ingenieriles y verdaderas, dado que para estas no se puede determinar el límite de fluencia por el método del "offset" del 0.2%. Este resultado se verifica con el ensayo de dureza para el que solamente la cuarta condición se presenta una mayor dureza que en las otras tres condiciones, sin embargo esto marca aun más el comportamiento elástico con fractura frágil del material. En las técnicas empleadas para la caracterización de microestructuras se pone en relieve las causas de la fragilidad del material, dado que con esas técnicas se pudo observar la presencia de cristales inntercristalinos y transcristalinos, tanto de Austenita retenida como de Carburos precipitados en la matriz del material, aun cuando la Austenita tiende a desaparecer en la tercer y cuarta condiciones (5 y 10 horas de postcalentamiento), así mismo la presencia de Carburos del tipo M₃C tiende a aumentar en estas dos últimas condiciones, lo cual indica que el material se fragiliza en los bordes de cristal; este fenómeno de fragilización se puede observar en las fotografías obtenidas por microscopía óptica y por microscopía electrónica de barrido, en las cuales se puede observar el mecanismo de fractura que corresponde a la fractura frágil, es decir, se observan los mecanismos de fractura por microhuecos y el de fractura decohesiva, además de la presencia de Carburos intercristalinos y transcristalinos y la existencia de fisuras.

La investigación presente esta compuesta por cuatro capítulos. En el primer capítulo se mencionan los antecedentes de los aceros inoxidables obtenidos por fundición, dentro de los cuales se encuentra el acero 502 que se utilizo en esta investigación. Así mismo se describe la estructura y constitución de las aleaciones Fe-Cr-Ni, el efecto del cromo en la estructura y propiedades de los aceros inoxidables y finalmente se presenta el propósito y efecto de los elementos de aleación.

El segundo capítulo consiste en el planteamiento del problema. Este capítulo esta integrado por los objetivos, la hipótesis, el material utilizado y la metodología que se empleó, explicando lo relacionado a las pruebas realizadas en la parte experimental, de la cual esta constituido principalmente este trabajo.

El tercer capítulo consiste en la descripción de las pruebas realizadas en la experimentación, las cuales se aplican a cada una de las muestras que corresponden a cada una de las condiciones descritas líneas arriba. Dichas pruebas consisten en los ensayos de

tensión y de dureza y en la aplicación de las técnicas de caracterización de microestructuras a través de difracción de rayos X, microscopía óptica, microscopía electrónica y por último se realiza el análisis químico. Se presentan los datos que resultan de la aplicación de las técnicas y ensayos. Una vez aplicadas los cálculos en las pruebas que así lo requieran, se presentan los datos obtenidos en forma grafica. Así mismo se presentan los difractogramas obtenidos de la difracción de rayos X y las fotografías de la microscopía óptica y de la microscopía electrónica y una tabla de resultados del análisis químico.

En el cuarto capítulo se hace la discusión de resultados y se establecen las conclusiones de la investigación.

I. ANTECEDENTES

Los aceros inoxidables han sido utilizados ampliamente, en muy variadas aplicaciones, por ejemplo en la industria de la construcción, en la industria automotriz, en la elaboración de herramientas y maquinaria, etc. por citar solo algunas.

Los aceros inoxidables se pueden obtener por fundición o conformación, los aceros conformados son más difíciles de obtener que los fundidos, ya que para conformar las aleaciones deben tener una ductilidad considerable a temperaturas de trabajo en caliente o en frío, lo cual no es necesario en la fundición.

Con las fundiciones se logra obtener materiales cuyas composiciones estructurales son difíciles o imposibles de obtener por medios mecánicos; los aceros inoxidables fundidos tienen dos series distintas de aleaciones, la primera, corresponde a aquellos que son, usados generalmente para resistir medios corrosivos a temperaturas por debajo de 650°C (1200°F) y la segunda, de composiciones modificadas para proveer mayor resistencia a temperaturas elevadas, usadas para componentes estructurales que operan por arriba de 1205°C (2200°F).

A causa de las variaciones en la composición química, en las propiedades físicas y mecánicas entre los aceros fundidos y los conformados, las aleaciones fundidas son generalmente clasificadas por el sistema de designación del Instituto de Fundición de Aleaciones (ACI); mientras que para el manejo de las aleaciones conformadas se encarga el Instituto Americano del Hierro y el Acero (AISI).

La variación de hierro, cromo y níquel para las composiciones químicas más usadas se muestra en la figura 1. Se puede observar que cuando el contenido de Níquel aumenta la clasificación corresponde al orden alfabético de la A a la Z.

Figura 1. Variaciones de Cromo Níquel en grados estándares de fundiciones resistentes a la corrosión y al calor

En la designación de la norma ACI la primer letra indica si la aleación es para servicio a altas temperaturas o para corrosión. Aquellas designadas con la letra C son normalmente usados para resistir ataques corrosivos a temperaturas menores de 650° C (1200° F) y las designadas con la letra H son generalmente usadas bajo condiciones donde la temperatura del metal excede los 650° C (1200° F). La segunda letra de la designación representa el porcentaje de cromo-níquel nominal. Los números siguientes a las letras indican el contenido máximo de carbono de las aleaciones en centésimas de %; el contenido de carbono se designa en los grados resistentes al calor, por el número que indica el punto medio de un $\pm 0.05\%$ de carbono. Si se incluyeran elementos especiales en la composición, estos se indican con la adición del símbolo químico del elemento a la designación.

I.1 Aceros usados para servicio de resistencia a altas temperaturas

Los intervalos en porcentaje de los elementos que constituyen a estos aceros son: de 6 a 32% de cromo, de 0 a 68% de níquel y de 13 a 90% de fierro. Las aleaciones resistentes al calor contienen cantidades menores de silicio, manganeso, azufre y fósforo, pero el contenido de carbono es más alto que para las otras series, en general los contenidos de cromo y níquel son también altos. Los tipos HH (26Cr-12Ni) constituyen la mayor producción de aceros fundidos resistentes al calor. Aunque el molibdeno es un constituyente en el tipo HA, usualmente no se agrega a otras clases. De las aleaciones fundidas resistentes al calor, solo 4 tienen correspondencia con clases conformadas como se muestra en la siguiente tabla de designación del Instituto de Fundiciones de Aleaciones.

Aleación	Aleación				Co	omposic	ción %			
Fundida	Forjada	С	Mn	Si	Р	S	Cr	Ni	Fe	otros elementos
HA		0.20	0.65	1.00	0.04	0.04	6-10		Bal.	0.9- 1.2Mo
HC	446	0.50	1.00	2.00	0.04	0.04	26-30	4	Bal.	0.5Mo
HD		0.50	1.50	2.00	0.04	0.04	26-30	4-7	Bal.	0.5Mo
HE		0.2-0.5	2.00	2.00	0.04	0.04	26-30	8-11	Bal	0.5Mo
HF	302B	0.2-0.4	2.0	2.0	0.04	0.04	19-23	9-12	Bal.	0.5Mo
HH	309	0.2-0.5	2.0	2.0	0.04	0.04	24-28	11-14	Bal.	0.5Mo
HI		0.2-0.5	2.0	2.0	0.04	0.04	26-30	14-18	Bal.	0.5Mo
HK	310	0.2-0.6	2.0	2.0	0.04	0.04	24-28	18-22	Bal.	0.5Mo
HL		0.2-0.6	2.0	2.0	0.04	0.04	28-32	18-22	Bal.	0.5Mo
HN		0.2-0.5	2.0	2.0	0.04	0.04	19-23	23-27	Bal.	0.5Mo
HP		0.35-0.75	2.0	2.0	0.04	0.04	24-28	33-37	Bal.	0.5Mo
HT		0.35-0.75	2.0	2.5	0.04	0.04	28-32	33-37	Bal.	0.5Mo
HU		0.35-0.75	2.0	2.5	0.04	0.04	19-23	37-41	Bal.	0.5Mo
HW		0.35-0.75	2.0	2.5	0.04	0.04	24-28	58-62	Bal.	0.5Mo
HX		0.35-0.75	2.0	2.5	0.04	0.04	15-19	64-68	Bal.	0.5Mo
502		0.2-0.6	1.0	1.0	0.04	0.03	4-6	0-2	Bal.	0.5Mo

Tabla 1. Designación del Instituto de Fundición de Aleaciones e Intervalos de la Composición química para Aleaciones Fundidas resistentes al calor. En la correspondencia de tipos solo se encuentran los aceros designados como 302B,309 y 310, que son comparables en niveles de cromo y níquel, pero tienen contenidos de carbono más bajos que las aleaciones fundidas HF, HH y HK. Estas aleaciones tienen contenidos más altos de carbono, que le aporta una resistencia mayor. De igual modo a esfuerzos de trabajo bajos, las aleaciones conformadas tienen vida corta para valores de deslizamiento mínimos con respecto a su vida total antes de la ruptura. Por esta razón la distorsión de las aleaciones fundidas es considerablemente menor que las correspondientes aleaciones conformadas, por arriba de períodos comparables. Así, para una vida media, la aleación fundida puede durar dos o tres veces más para un esfuerzo dado que una aleación conformada.

El esfuerzo máximo designado para una aleación fundida resistente al calor con alto contenido de carbono, por un largo tiempo de servicio a altas temperaturas, generalmente es limitado, por el esfuerzo que producirá la ruptura antes de un espacio de vida deseado.

1.2 Estructura y constitución de las aleaciones Fierro-cromo-níquel

Las aleaciones Fe-Cr-Ni tienen una importancia técnica y comercial como materiales especiales. Estas aleaciones inoxidables son materiales base de la construcción y tiene una gran variedad de aplicaciones industriales que requieren una resistencia a la corrosión en medios acuosos a baja temperatura, y en medios con gases oxidantes o reductores a alta temperatura.

I.2.1 Microestructura

Los aceros inoxidables fundidos Fe-Cr-Ni son considerados como una estructura austenítica uniforme, aunque también encontramos micrestructuras duplex ferrita en austenita. Dependiendo principalmente de la composición pero también de la historia térmica, las microestructuras son completamente austeníticas en los grados que contienen más níquel hasta duplex ferrita en austenita en los grados de mayor contenido de cromo. Las microestructuras de las aleaciones fundidas Fe-Cr-Ni son estables en un amplio intervalo de temperaturas y el balance entre las fases austenita y ferrita no son fácilmente alteradas con los tratamientos térmicos.

Los carburos de distintos tipos son constituyentes comunes en las microestructuras de las aleaciones Fe-Cr-Ni, las aleaciones fundidas son de composición hipoeutectoides por su contenido de carbono. Cuando el contenido de carbono es alto, durante la solidificación algo de ferrita delta suele ser formada primero, seguida por austenita y carburos eutécticos a límites de grano de austenita,. La cantidad de carburos depende del contenido de carbono y de la velocidad de enfriamiento de la fundición. La morfología de los carburos en la microestructura de fundición puede alinearse desde partículas pequeñas dispersas en la aleación hasta colonias masivas delineando los granos de austenita de más alto carbono. Los diversos carburos que precipitan el $M_{23}C_6$ rico en cromo (donde M representa la suma de elementos metálicos que forman carburos complejos) es predominante. La precipitación ocurre comúnmente como partículas finas, pero puede ocurrir también en la forma laminar, plaquetas y películas en el límite de grano. Un constituyente laminar, en el cual las láminas

de carburo del tipo M_6C alternando con láminas de austenita en una estructura semejante a la perlita y carburos de los tipos M_7C_3 y M_3C puede también presentarse en las aleaciones Fe-Cr-Ni de mayor contenido de carbono. Parte del carbono de la aleación Fe-Cr-Ni en condición de fundición precipita como un carburo fino secundario del tipo $M_{23}C_6$ por encima de las temperaturas de 650 a $1060^{\circ}C(1200^{\circ}F a 1940^{\circ}F)$: estas temperaturas ocurren, por ejemplo, bajo condiciones de servicio o durante reparaciones por soldadura; esos carburos secundarios son indeseables ya que afectan la resistencia a la corrosión de las aleaciones. En aleaciones de bajo contenido de carbono (menor de 0.08%C) los carburos son eliminados por tratamiento térmico de solución. En las aleaciones de más alto contenido de carbono (0.20 a 0.75%C) para aplicaciones resistentes al calor, esos carburos finos repartidos son constituyentes deseables ya que dan resistencia a la ruptura por deslizamiento a temperatura de servicio.

En particular la microestructura del acero HK es austenitica estable en cualquier intervalo de temperatura. Como fundición contiene carburos masivos presentes como islas o redes dispersas. Después de un tiempo a temperatura de servicio, precipitan carburos granulares finos, dando a la aleación alta resistencia al deslizamiento. Las composiciones pueden desequilibrarse, teniendo como resultado ferrita, la cual puede transformarse si la austenita es retenida a 815°C (1500°F) por un corto tiempo.

I.2.2 Constitución

La constitución de las aleaciones Fe-Cr-Ni, se basa en los diagramas de fase binaria Fe-Cr como se muestra en la figura 2. La región de intersección entre los campos líquidos y sólidos para aleaciones Fe-Cr puras indica la amenaza del punto de congelación causado por adición de carbono.

Figura 2. Diagrama de constitución Fe-Cr.

El efecto pronunciado del cromo en la estabilización de la fase Ferrita (α) del fierro se ve cuando el contenido de cromo es aumentado. El intervalo de temperatura por arriba del cual la fase Austenita (γ) es estable disminuye hasta que los más altos contenidos de cromo (22%), provocan que la austenita desaparezca a cualquier temperatura. Puesto que el carbono esta presente en algún porcentaje en todas las aleaciones Fe-Cr-Ni, se considera el efecto de ese elemento en el equilibrio de fases en el sistema Fe-Cr como se indica en la figura 2.

Figura 3. El diagrama de constitución muestra el efecto del Níquel en equilibrio de fases en una aleación Fe-Cr que contiene 18 % de Cromo con poco carbono. El Fierro es reemplazado con Níquel hacia la derecha del diagrama.

La adición de carbono amplia significativamente el campo de estabilidad de la fase Austenita con el aumento de carbono, el campo de la fase Austenita aumenta, hasta alcanzar un contenido de cromo máximo (aproximadamente 0.60 % de carbono sumado). Por eso el carbono es un estabilizador potente de Austenita; además, el aumento de carbono arriba de 0.60 % produce carburos, pero sin expansión del campo de la Austenita.

Considerando los efectos del cromo y carbono en la constitución, también se debe considerar el níquel como el componente elemental básico restante de las aleaciones Fe-Cr-Ni. Este se observa en la figura 3, la cual describe el efecto del aumento de contenido de níquel en el equilibrio de fases en un acero 18 % Cr, que contiene poco carbono. El níquel como el carbono es un estabilizador de Austenita. La Austenita empieza a aparecer con adiciones de níquel de menos de 2 %. Con el aumento de níquel la Austenita llega a ser estable con 13 % de níquel, la Austenita es estable a cualquier temperatura hasta el punto de fusión de la aleación. La microestructura de las aleaciones Fe-Cr-Ni depende fundamentalmente de la composición química de sus elementos, los cuales promueven las fases de Austenita o Ferrita en la microestructura.

1.3 Aleaciones fundidas Fe-Cr-Ni resistentes al calor

Entre las aleaciones fundidas Fe-Cr-Ni resistentes al calor encontramos las que se emplean para resistir gases corrosivos oxidantes a reductores a temperatura por arriba de 650° C (1200°F). Los requerimientos para las aleaciones resistentes al calor son: (1) que la aleación

sea resistente a la atmósfera específica y (2) que las propiedades mecánicas y microestructurales de la aleación permanezcan relativamente estables por tiempos largos de exposición a elevadas temperaturas de servicio. En general las aleaciones resistentes al calor son más aleadas que las aleaciones resistentes a la corrosión y tienen mayor contenido de carbono, lo cual causa la precipitación de carburos y da propiedades mecánicas superiores a temperaturas elevadas. La resistencia a la oxidación, abrasión y sulfuración son impartidas por el alto contenido de cromo, mientras que la resistencia a la corrosión, choques térmicos y resistencia al deslizamiento son impartidas por el contenido de níquel. Las aleaciones resistentes al calor están clasificadas en tres grupos que son: aleaciones Fe-Cr, Fe-Ni-Cr y Fe,Cr-Ni.

I.4 Efecto del cromo en la estructura y en las propiedades de los aceros inoxidables

I.4.1 Efecto en la microestructura

Los aceros inoxidables son aleaciones caracterizadas por su resistencia a la corrosión ya sea a temperatura ambiente o a altas temperaturas. Los aceros inoxidables muestran pasividad, la cual los vuelve adecuados para ser usados en medios en los que los aceros ordinarios no responden. Las características de un acero inoxidable son impartidas por el cromo más que por cualquier otro elemento. En algunos aceros inoxidables, la inoxidabilidad o pasividad es impartida solamente por la adición de cromo. Hay otros elementos de aleación que ayudan al efecto del cromo en muchos medios e imparten propiedades especiales. Del gran número de factores que influyen en la pasividad son:

- 1.- Contenido de cromo.
- 2.- Condiciones de oxidación.
- 3.- Susceptibilidad al ion cloro (picado)
- 4.- Contenido de níquel.
- 5.- Tratamiento Térmico(sensibilización).
- 6.- Contenido de carbono.
- 7.- Contenido de molibdeno.

La resistencia a la corrosión y oxidación de los aceros inoxidables aumenta con el contenido de cromo. El concepto que también tiene apoyo científico, es que el cromo forma un oxido adherente, el cual retarda o previene la oxidación y corrosión.

I.4.2 Sistema Fierro-Cromo

La influencia del cromo en la estructura de fierro es mostrada en el diagrama de la figura 4.

Figura 4. Diagrama Fe-Cr

En la figura 4 se ve que conforme aumenta el contenido de cromo disminuye el intervalo de temperaturas encima de la cual existe Austenita, hasta aproximadamente 12 % de cromo. La ferrita es estable a cualquier temperatura del sólido. En el sistema Fe-Cr la Austenita no existe arriba de 1390^oC (2534^oF) o por debajo de 848^oC (1558^oF).

La influencia del cromo en la estructura de fierro que contiene 8%Ni, (el tercer elemento de aleación más común en aceros inoxidables después del carbono), se muestra en la figura 5.

La presencia del 8% de Ni ha extendido el campo de austenita aproximadamente a 22% de Cr y desciende la temperatura más baja del campo aproximadamente a 550°C (1022°F)

I.5 Formación de Carburos

I.5.1 Propósito y efecto de los elementos de aleación

El tratamiento y propiedades de los aceros al carbono pueden ser modificados por el uso de elementos de aleación. La tabla 2 lista los elementos de aleación usados en la tecnología de aceros.

Elemento	s formadores de (FERRITA)	e fierro α	Elementos formac (AUSTE	lores de fierro γ ENITA)
cromo	tungsteno	columbio	manganeso	cobre
molibdeno	titanio	tantalio	níquel	cobalto
vanadio	circonio	silicio	nitrógeno	carbono

Tabla 2. Elementos formadores de alfa y gama

Cuando se suman esos elementos solos o en combinación con otros a los aceros al carbono, sufren las siguientes modificaciones:

- 1. Mayor resistencia en secciones grandes
- 2. Menor distorsión en el proceso de endurecimiento
- 3. Mayor resistencia a la abrasión con la misma dureza
- 4. Mas alta resistencia mecánica a la misma dureza en secciones pequeñas
- 5. Mayor dureza y resistencia mecánica a temperaturas elevadas

Esas mejoras son llevadas a cabo mediante:

- 1. Alteración de las características de dureza del acero
- 2. Alteraciones en la dureza y cantidad de la fase de carburos del acero
- 3. Alteraciones en las características de templado del acero.

Un acero aleado es descrito primero en términos de las fases presentes y la composición de esas fases, usando los diagramas de constitución de equilibrio como los mostrados en la figura 6.

1.5.2 Efectos de los elementos de aleación en la constitución de equilibrio

Aleaciones Fe-Cr-C. La adición de un tercer elemento de aleación al sistema fierrocarbono ocasiona cambios en la constitución, que pueden ser descritos por referencia a tres componentes o diagrama de fase ternario. La representación convencional de un sistema de tres componentes emplea un triangulo equilátero. Sin embargo, en la esquina de máximo carbono tiene poca importancia práctica en la metalurgia de aceros. El diagrama Fe-C es similar en su explicación; sin embargo para completar, nótese que en la condición recocida, las aleaciones Fe-C, con menos de 6.67 % (composición de cementita) consiste en ferrita(la fase alfa de la estructura cúbica centrada en el cuerpo que disuelve relativamente poco carbono) y cementita (Fe₃C). Arriba de la temperatura eutectoide 720^{0} C (1333⁰F), se encuentra austenita (fase gama de estructura cúbica centrada en las caras que puede disolver hasta 2.06 % de carbono) formada con una reducción consecuente de la cantidad de alfa y Fe₃C. El carbono aumenta el rango de temperatura sobre la cual la austenita es estable y resulta en un diagrama de fase con campo alfa+gama.

En el diagrama de fases binario Fe-Cr, se ve que el cromo en lugar de expandir el campo alfa+gama como lo hace el carbono, causa una contracción y cuando el contenido de cromo excede del 13 %, la austenita no es estable en ningún rango de temperatura.

El diagrama binario de interés en el sistema ternario Fe-Cr-C, es el diagrama Cr-C. El cromo combinado con carbono forma tres carburos diferentes, dos de los cuales son $Cr_{23}C_6$ y Cr_7C_3 , el tercer carburo es Cr_3C (13.34 % carbono) estos son mostrados en la figura 6.

Figura 6. Diagrama de equilibrio Fe-Cr-C, sección isotérmica para aleaciones recocidas

La sección isotérmica del sistema ternario Fe-Cr-C representativo de la constitución en aleaciones templadas, se considero el efecto de la adición de cromo a un acero con 1 % de carbono. Se puede sumar a un acero con 1 % carbono, hasta 3 % de cromo sin alterar la estructura de la fase presente, y así los aceros con 1 % carbono nominal con menos del 3% de cromo, consisten de ferrita y cementita. Se noto que esta cementita es aleada y que contiene hasta 18 % cromo; la cual se designa como (Fe-Cr)₃C.

Si el cromo se aumenta arriba de 3 %, se formarán carburos aleados. Así, un acero con 1 % carbono y 4 % cromo contendrá los carburos aleados (CrFe)₇C₃ en adición a la cementita

aleada. Si se aumenta el cromo arriba del 5 % la cementita aleada será inestable y el único carburo presente será el $(CrFe)_7C_3$. Además el contenido de cromo en la matriz ferritica soporta un aumento de alrededor de 1 a 5 % de cromo; a contenidos mayores de cromo el $(CrFe)_7C_3$ es desplazado por un carburo rico en cromo como el $(CrFe)_{23}C_6$.

Los efectos más significantes del cromo en la constitución de aleaciones Fe-C se pueden resumir como sigue:

- 1. Introduce los nuevos carburos aleados, Cr_7C_3 y $Cr_{23}C_6$, los cuales tienen una gran solubilidad en el fierro.
- 2. Aumenta la temperatura para la formación de austenita.
- 3. Promueve la estabilidad de ferrita y para cantidades mayores de 12 %, fija un contenido de carbono menor con el cual no se puede obtener una estructura austenitica completamente endurecible.
- I.5.3 Aleaciones multicompuestas

La discusión de este punto concierne a aleaciones ternarias, mientras que en realidad la mayoría de los aceros para herramientas contiene cuatro o más elementos de aleación. Por ejemplo, los aceros que no son de alta velocidad contienen menos de cuatro elementos de aleación, en adición de menores cantidades de elementos tales como el silicio y el manganeso. A primera vista, esto podría parecer complejo y realmente si demanda una representación gráfica de constitución tal como la empleada para aleaciones binarias y ternarias. No obstante, es posible razonar cualitativamente el efecto de la aleación múltiple basándose en su conducta individual en los sistemas ternarios.

Los carburos que aparecen en aceros para herramientas multicompuestas templadas son estructuralmente similares a los fundamentados en sistemas binarios y ternarios. Ciertos carburos son usualmente formados solo en los aceros de alta aleación endurecidos y templados y no existen en el estado de equilibrio.

A causa de que esos carburos tienen una cierta solubilidad para todos los elementos de aleación metálicos, son generalmente designados como M_6C y $M_{23}C_6$, donde M coloca todos los átomos de metal. Uno de los seis tipos generales pueden ser especificados en aceros para herramientas.

El M₃C es un carburo rico en fierro con estructura ortorrómbica de cementita, Fe₃C. En aceros templados, el M₃C, aparece a muy bajo contenido de tungsteno, molibdeno o vanadio junto con moderado cromo. Sin embargo, el manganeso puede ser alto. También el M₃C aparece en todos los aceros aleados después de tratamientos isotérmicos o templado a temperaturas por debajo de 540^oC (1000^oF). La M puede ser fierro, manganeso y cromo con muy poco Tungsteno, molibdeno o Vanadio.

El M₇C₃ es un carburo rico en cromo con la estructura hexagonal del Cr₇C₃. Generalmente es utilizados para aceros de medio-alto cromo con moderada adición de otros elementos de aleación. En estos aceros al cromo, el carburo solo parcialmente disuelto durante el calentamiento para endurecimiento, deja un exceso de partículas duras en la estructura para un acero altamente resistente a la abrasión. El M₇C₃ también aparece en aceros para alta velocidad después del templado a muy altas temperaturas o después de un largo periodo de tratamientos de templado y es capaz de disolver grandes cantidades de fierro pero probablemente tiene muy poca solubilidad para otros elementos de aleación, particularmente el tungsteno. El $M_{23}C_6$ es un carburo rico en cromo con estructura cúbica centrada en las caras. Tiene una gran solubilidad en fierro y un poco menos de solubilidad en tungsteno y molibdeno. Cuando hay suficiente tungsteno o molibdeno presente en este carburo, el cromo puede ser completamente reemplazado por fierro para ceder carburos con la formula aproximada $Fe_{21}W_2C_6$ o $Fe_{21}Mo_2C_6$. En adición, el manganeso se concentra en este carburo. Este carburo esta presente en casi todos los aceros de alta velocidad templados.

II. PLANTEAMIENTO DEL PROBLEMA

II.1. Objetivos

Investigar las propiedades mecánicas y estructurales en la zona afectada por el calor del acero 502, después del efecto térmico del arco de soldadura, en la condición de la temperatura de inestabilidad de transformación del acero a 500⁰C, por medio de precalentamiento y tiempo de postcalentamiento.

Establecer los antecedentes que puedan servir como punto de partida para efectuar otras investigaciones bajo condiciones similares pero aplicadas a otros materiales de interés en aplicaciones de la Metal-Mecánica.

II.2. Hipótesis

La formulación quedará fundamentada en el supuesto de que el acero 502 sometido a ciclos térmicos provocados por la soldadura y el proceso de precalentamiento y postcalentamiento, sufrirá cambios estructurales y de composición de tal manera que alteren su comportamiento mecánico en forma notable en el uso y aplicación de este en la industria, lo que se determinara mediante las pruebas realizadas, las cuales fundamentarán esta idea a través de los resultados obtenidos por medio de ellas.

II.3. Material utilizado

El material utilizado para alcanzar el objetivo de la presente investigación, es un acero de alta aleación inoxidable designado como 502.

La muestra de acero 502, corresponde a una tubería de conducción de hidrocarburos el cual se clasifica como inoxidable por su contenido de carbono y cromo, cuya composición química es la siguiente:

Tipo	%C	%Mn	%Cr	%V	%P	%S	%Mo	%Ni	%Si
502	Arriba de 0.10	1.0	4.0 a 6.0	0.02	0.04	0.03	0.4 a 0.65	0.8	1.0

De la clasificación de los aceros de ASTM.

Análisis químico realizado

Tipo	%C	%Mn	%Cr	%V	%P	%S	%Mo.	%Ni	%Si
502	0.131	0.456	4.75	0.018	0.037	0.028	0.484	0.75	0.98

II.4. Metodología de la caracterización.

Una vez realizada la soldadura de tres muestras del acero 502 a una temperatura de 500°C que corresponde a la zona de inestabilidad de la Austenita según el diagrama Tiempo-Temperatura-Transformación (TTT), cada una de ellas fue colocada después de la unión en un horno a la misma temperatura de 500° C durante una hora, 5 y 10 horas, las que fueron sacadas al termino de los citados periodos y puestas a enfriar a temperatura ambiente; mientras que una cuarta muestra del acero 502 fue soldada a la temperatura ambiente y puesta a enfriar al aire tranquilo, la cual sirvió de referencia.

De cada una de estas muestras se prepararon las probetas para la caracterización de las pruebas de tensión, dureza, difracción de rayos X, microscopia óptica, y microscopia electrónica.

Estas condiciones se resumen junto con las pruebas realizadas a cada una de ellas en la siguiente tabla.

Número de muestra	Temperatura De Unión	Tiempo en el horno	Pruebas realizadas			
1	Ambiente		Tensión, Dureza, Difracción de Rayos X, Microscopia óptica y Electrónica y Análisis Químico.			
2	500° C	1 hora	"			
3	500° C	5 horas	"			
4	500° C	10 horas	"			

Tabla 3. Condiciones experimentales

II.4.1. Ensayo de tensión

Se fabricaron probetas utilizando máquinas de corte y rectificación enfriados para evitar el calentamiento del material. El ensayo se realizó mediante la máquina universal de tensión marca Instron Corporation, serie IX, sistema automático de pruebas versión 1.04, con una interfase integrada del tipo serie 4200.

El tipo de las probetas es de geometría rectangular y sus dimensiones están de acuerdo a las normas de los estándares americanos para prueba de materiales (ASTM).

A través del equipo mencionado y con las probetas fabricadas se llevo a cabo esta prueba, para la cual especificaremos los parámetros del sistema, así como las dimensiones de las probetas para cada uno de los casos mencionados en la tabla No. 3.

Con la información así obtenida, se calculan tanto las deformaciones ingenieril y verdadera como los esfuerzos ingenieril y verdadero correspondientes a cada uno de los puntos proporcionados por la maquina. Las fórmulas utilizadas son:

$$\sigma_{ing} = \frac{P}{A_0}$$
 Esfuerzo ingenieril expresado en MPa

$$\varepsilon_{ing} = \frac{l_f - l_i}{l_i}$$
 Deformación ingenieril

$$\sigma_v = \frac{P}{A_i}$$
 Esfuerzo verdadero expresado en MPa

$$\varepsilon_v = \ln(\varepsilon_{ing} + 1)$$
 Deformación verdadera

En las que:

P es la carga expresada en Newtons A_0 es el área de la sección transversal inicial expresada en m² l_f es la longitud final l_i es la longitud inicial expresadas en mm A_i es el área de la sección transversal instantánea m²

II.4.2. Ensayo de dureza

La prueba de dureza se realizó en un durómetro marca Amsler Otto Wolper modelo D-6700, hecho en Alemania. Maneja durezas en las escalas Rockwell, Brinell y Vickers. Calibrado según normas ASTM E-18 DIML-39. El cual fue usado para medir la dureza en la escala de Vickers-2, a través de un penetrador con punta de diamante y preparando la probeta según la técnica metalográfica(descrita detalladamente en la prueba de microscopía óptica), cuyo objetivo es obtener una superficie plana, sin ralladuras, semejante a un espejo. La carga aplicada por el durómetro fue de 2 kilogramos en todas las probetas. Las medidas se tomaron en la zona del material base, material de aporte y en la zona afectada por el calor. Una vez realizadas las medidas se convirtieron a la dureza de la escala Vickers y se expresaron gráficamente.

La formula de la dureza Vickers se expresa de la siguiente manera:

$$HV = \frac{1.854L}{d^2}$$

donde:

L es la carga aplicada expresada en Kg d^2 es la longitud de la diagonal del cuadrado de la impresión en *mm* II.4.3. Difracción de rayos X

Se utilizó un difractometro de polvos, marca Siemens serie 5000, que trabaja, con una diferencia de potencial de 30 Kv y un amperaje de 20 miliampers, utiliza un filamento de cobre de radiación K α_1 . El ángulo de barrido 2 θ va desde 2⁰ hasta 85° grados, el paso es de 0.03 grados/seg., la longitud de onda es de 1.5406 Amstrongs.

Las probetas para esta medición fueron pulidas a espejo (de acuerdo a la técnica metalográfica, pero sin ataque químico) y la técnica se aplicó en la zona afectada por el calor. Obteniendo así los difractoramas correspondientes para su interpretación.

La fórmula utilizada para determinar las distancias interplanares es la definida por la Ley de Bragg:

$$n\lambda = 2dsen\theta$$

en la que:

 λ es la longitud de onda del haz de rayos x θ es el ángulo de difracción *n* es el número de orden

Para la interpretación de los difractogramas se usaron las tarjetas que se enlistan a continuación:

Para la Ferrita: Sistema Cristalino: Cúbico Centrado en el Cuerpo Referencia: Swanson et al., Natl. Bur. Stand. (U.S.). Circ. 539.IV.3

(A)	20	②h k l 梁	2.1/16
2.0268	44.6714372	110	100
1.4332	65.0182769	200	20
1.1702	82.3287154	211	30
1.0134	98.939963	220	10
0.9064	116.377853	310	12
0.8275	137.124772	222	6

Para el fierro γ :

Sistema Cristalino Cúbico Centrado en las Caras Referencia: Goldschmidt, Metallurgia, 40 103 (1949)

ē((Āy)	20	n k l	//I _b
2.0883	43.28924	.111	100
1.8086	50.4165	200	80
1.2788	74.0734	220	50
1.0906	89.8678	311	80
1.0442	95.0712	222	50

Para el carburo del tipo: M₃C: Sistema Cristalino Ortorrómbico Referencia: Nat. Bur. Stand. (U.S.) Monogr. 25, 21 72 (1984)

d(A)	20	hķi	Mo.		20	₽hkl	Wiges.
3.372	26.408779	020	4	1.4372	64.8151392	321	1
3.024	29.5131016	111	3	1.4143	65.9968689	113	3
2.5452	35.2311181	200	4	1.4057	66.4527086	240	6
2.3882	37.6312088	121	43	1.3514	69.4955566	232	4
2.3815	37.7410741	210	41	1.3426	70.017385	241	2
2.2631	39.7966432	002	22	1.3293	70.8224327	123	17
2.2186	40.6296949	201	22	1.2978	72.8122353	203	2
2.1074	42.8764752	211	57	1.2927	73.1459782	051	3
2.0678	43.7394717	102	67	1.2593	75.4177756	322	5
2.0313	44.567157	220	56	1.2527	75.8852865	033	3
2.0132	44.9896701	031	100	1.2253	77.8970597	401	14
1.977	45.8599435	112	53	1.2162	78.5918094	133	16
1.8792	48.3948688	022	5	1.2054	79.4345777	411	2
1.8723	48.5847082	131	32	1.194	80.3464903	242	3
1.8534	49.1126894	221	43	1.1918	80.5251954	250	11
1.763	51.8122153	122	19	1.1622	83.0202113	332	20
1.6914	54.1803616	202	5	1.1563	83.5387351	341	1
1.6852	54.3961142	230	15	1.1524	83.8855695	251	15
1.6406	56.0028124	212	8	1.1315	85.8020545	004	6
1.589	57.9907743	301	19	1.1296	85.9813003	152	12
1.5789	58.3974207	231	2	1.12766	86.1652144	303	12
1.5466	59.7392796	311	5	1.1238	86.5338662	060	9
1.5216	60.8235425	132	2	1.1121	87.6739877	313	2
1.5118	61.2600473	222	8	1.1076	88.1218692	430	11
1 5082	61 4220706	141	6				

Para el carburo del tipo M_7C_3 : Sistema Cristalino Ortorrómbico Referencia: Ref = Level-1 PDF#36-1269

d(A)	20	hkl	J/Jo	d(A)	20	hki	171 ₀
2.2863	39.703	210	11	1.898	47.886	112	15
2.1243	42.52	102	16	1.8296	49.796	301	100
2.0301	44.598	211	43	1.8116	50.327	202	83
2.002	45.257	300	40	1.7321	52.81	220	53

Para el carburo del tipo $M_{23}C_6$: Sistema Cristalino Ortorrómbico Referencia: Ref = Ibid. PDF#28-0646

d(A)	20	h k l		d(A)	24	n ki 🐇	Al/Jo
6.11	14.445	111	4	1.482	62.632	551	2
5.29	16.745	200	6	1.323	71.214	880	3
3.74	23.771	220	6	1.284	73.726	820	5
2.646	33.849	400	8	1.247	76.298	660	12
2.428	36.993	331	2	1.222	78.151	751	6
2.367	37.983	420	45	1.183	81.253	840	2
2.161	41.764	422	40	1.162	83.042	911	3
2.037	44.438	511	100	1.155	83.658	842	2
1.871	48.623	440	18	1.08	90.995	844	5
1.789	51.007	531	20	1.064	92.763	771	3
1.764	51.783	600	9	1.0585	93.389	1000	2
1.674	54.793	620	4	0.8095	144.184	13 1 1	3
1.614	57.012	533	3	0.8071	145.253	1066	2
1.596	57.715	622	5				

II.4.4. Microscopía óptica.

El equipo utilizado para la realización de esta prueba, es un microscopio marca VERSAMET, Modelo Unión 6510.

Las probetas se prepararon de acuerdo a la técnica metalografica para seleccionar y preparar adecuadamente la muestra, que consiste en un proceso de las siguientes etapas:

a). Seleccionar la muestra que contenga las características del objetivo que se busca en la experimentación, en este caso la zona afectada por el calor.

b). El corte de la muestra se realizo por medio de un disco de carburo de silicio y enfriando continuamente la muestra.

c). Desbaste burdo de la superfície de la muestra, por medio de una pulidora de banda rotatoria y utilizando lijas de los números 100,200,500 y 1000.

d). Pulido fino de la superficie de la muestra, usando una pulidora de banda rotatoria, colocando ahora una superficie de paño húmedo y agregando alumina de grano fino (0.3).

f). El ataque químico se realizo usando una solución de cloruro ferrico (10 gr.), ácido clorhídrico(50 ml.) y agua (50 ml.).

Conjuntamente con el microscopio se acoplo una cámara fotográfica marca Canon "SX100" con la cual se obtuvieron las fotografías correspondientes en las zona afectada por el calor.

II.4.5. Microscopía electrónica

El microscopio de barrido electrónico usado para esta prueba, es de la marca Philips serie XL-20, por medio del cual se aplica esta técnica de caracterización microestructural. Se prepararon las probetas para observar la fractura del material en la zona afectada por el calor, para su interpretación.

III.2.6. Análisis químico

El análisis químico se realizó mediante el equipo EDAX ZAF de barrido electrónico en forma puntual y de área, se determinó como resultado de este la composición química del material fracturado en la zona afectada por el calor, en un área de aproximadamente 1 mm², es decir, el análisis realizado es regional o puntual. Las características del equipo son:

Tipo de detector: SUTW-Saphire Resolución: 156.81 Inclinación 15.00 KV: 25.00 Cuantificación estandarizada Normalización de elementos

III. APLICACIÓN DE LAS PRUEBAS Y RECOPILACIÓN DE DATOS

III.1.Muestra soldada a temperatura ambiente

A continuación describimos las pruebas aplicadas a la probeta soldada a temperatura ambiente, incluyendo los resultados de estas a través de los gráficos y tablas correspondientes.

III.1.1. Aplicación del ensayo de tensión, descripción de los parámetros del sistema y dimensiones de la probeta.

La probeta ensayada en esta prueba fue construida de acuerdo a las normas establecidas por ASTM (American Standard for Testing Materials) y sus dimensiones están dentro de estas normas. Los datos de la prueba se definen en la siguiente tabla:

Parámetros de la	máquina de prueba	
Velocidad de muestreo:	0.5 puntos/segundo	
Velocidad de los cabezales:	0.15 mm/min	
Dimensi	ones de la probeta:	
Ancho:	15.12 mm	
Espesor:	4.18 mm	
Longitud:	50.8 mm	

Una vez realizado el ensayo, la máquina proporcionó, dos columnas de datos, la primera se refiere al desplazamiento detectado por el extensometro medido en pulgadas y la segunda se refiere a las cargas correspondientes a cada desplazamiento medida en libras, formando de esta manera un conjunto de 362 puntos en total.

Con el conjunto de datos proporcionado por la maquina se efectuaron los cálculos correspondientes a través de las fórmulas citadas en la metodología para este ensayo, indicando los puntos característicos de la prueba, como se muestra en las siguientes gráficas.

fig. 7 Curva Ingenieril Esfuerzo-Deformación de la Muestra 1

CURVA VERDADERA ESFUERZO DEFORMACIÓN MUESTRA SOLDADA A TEMPERATURA AMBIENTE acero 502

fig. 8 Curva Verdadera Esfuerzo-Deformación de la Muestra 1

22

COEFICIENTE DE ENDURECIMIENTO MUESTRA SOLDADA A TEMPERATURA AMBIENTE acero 502

Fig. 9 Coeficiente de Endurecimiento de la Muestra 1

MODULO DE YOUNG MUESTRA SOLDADA A TEMPERATURA AMBIENTE acero 502

fig.10 Modulo de Young de la Muestra 1

Los resultados de las cuatro gráficas anteriores permiten observar:

Que las curvas esfuerzo-deformación ingenieril y verdadera son prácticamente iguales entre si.

En las curvas esfuerzo-deformación se puede apreciar que si trazamos una línea recta paralela a dichas curvas desde el eje horizontal a partir de una deformación correspondiente a un valor de 0.002 (0.2 %), esta recta no corta a esas curvas en punto cercano al esfuerzo máximo lo que significa que el límite de cedencia coincide con la resistencia máxima y no se puede determinar el punto de fluencia de acuerdo a la norma del offset del 0.2 % = 0.002 mm/mm de deformación. Los resultados de este ensayo se pueden resumir en las siguientes tablas.

Tabla No. 4 Resultados del Límite de Cedencia y resistencia máxima ingenieriles:

	SOLDADA AL AIRE	
	TRANQUILO	
LIMITE DE CEDENCIA	92.9562 MPa.	
RESISTENCIA MÁXIMA	92.9562 MPa.	
DEFORMACIÓN EN LA RESISTENCIA MÁXIMA	0.0027 mm/mm	

Tabla No. 5 Resultados de la gráfica Esfuerzo Deformación Verdadera:

	SOLDADA AL AIRE TRANQUILO
LIMITE DE PROPORCIONALIDAD	90.0255 MPa.
MODULO DE YOUNG	43648 MPa.
LIMITE DE CEDENCIA	92.9562 Mpa.
COEFICIENTE DE ENDURECIMIENTO	0.954
ENERGIA	0.15235 Jouls

Discusión de resultados del ensayo de tensión para la muestra 1.

El material presenta una fragilidad que no fue posible determinar el límite elástico, con lo que se puede pensar que el límite coincide con el de ruptura, esto se confirma con el coeficiente de endurecimiento que tiende a 1.

III.1.2. Ensayo de dureza

La toma de dureza en la muestra se realizo sobre el eje perpendicular al sentido de la soldadura y desde el centro de la misma hacia el metal base, se realizaron 47 indentaciones, de las cuales se obtuvieron los datos de las medidas de las diagonales de la huella y después se aplico la fórmula de la dureza Vickers.

La distancia entre huella y huella fue de 0.3175 mm., la cual se determino con una platina micrometrica.

Los resultados así obtenidos se presentan en la gráfica 11.

DUREZA VICKERS-2 MUESTRA SOLDADA A TEMPERATURA AMBIENTE acero 502

fig.11 Curva de Dureza de la Muestra 1

4.

.....

: ~

Nomenclatur	a 🐘 Identificacion de la Zona
Z1	Zona de Soldadura
Z2	Zona de Dilución
Z3	Zona Afectada por el Calor
Z4	Zona del Metal Base

Nomenclatura de la Figura 11
En la grafica de la figura 11 se pueden definir 4 zonas específicamente, estas son: La primera corresponde a las lecturas de dureza que van de la indentación 1 a la 18 y son las que corresponden al material de soldadura, de la indentación 18 a la 20 corresponde a la zona de dilución, entre la 20 y la 21 se encuentra la línea de fusión y de la indentación 21 hasta la 40 se determina la zona afectada por el calor (ZAC) y de la 42 a la 47 se presenta el metal base.

En la soldadura se presentaron dos durezas 370.8 y 410.8 lo cual indica una alta dureza y una variación no significativa.

La caída de la dureza de la indentacion 18 a la 20 la podemos considerar como la zona de dilución, este lugar es el que representa la liga metálica de la soldadura, que da la continuidad metalúrgica cuya dimensión es de 0.95 mm.

La indentacion de la 21 a la 40 representa la presencia de la zona afectada por el calor en la cual se puede notar variaciones de dureza por arriba de la del metal base pero por debajo de la soldadura y de la zona de dilución, estas variaciones se pueden considerar fenómenos de transformación estructural que dependen de la isoterma de temperatura. La dimensión de la zona afectada por el calor es de 6.35 mm.

De la indentación 42 a la 47 por su continuidad y constancia nos indica la presencia del metal base que no sufrió ningún efecto térmico por el arco de la soldadura.

Discusión de resultados de este ensayo: La presencia de la estructura dentrítica de fundición se manifiesta en el ensayo de dureza. En la zona afectada por el calor la presencia de las estructuras metalúrgicas del acero 502 se hace notar su efecto por las isotermas de la influencia del calor.

III.1.3. Aplicación de la prueba de difracción de rayos X

En el difractograma cada uno de los picos corresponden a la geometría del arreglo cristalino que controla las direcciones de los rayos difractados, las intensidades de esos rayos depende de los tipos de átomos en el cristal y de su arreglo en una celda unitaria. Sí una celda unitaria fuera compuesta de un solo electrón, todos los rayos difractados tendrían intensidades idénticas, lo cual no se presenta en este caso. Luego entonces se determina a que tipo de cristales corresponde cada uno de los picos que compone al difractograma considerando que el acero 502 esta compuesto principalmente por: ferrita, fierro γ , y carburos de los tipos M₃C, M₇C₃ y M₂₃C₆.

Los datos de esta prueba se muestran en el difractograma de la figura 12.

Fig. 12 Difractograma de la muestra soldada a temperatura ambiente acero 502

Fig. 12 a Detalle del Pico 1

Fig. 12b Detalle del Pico 2

Fig. 12c Detalle del Pico 3

Resumen de los resultados encontrados en el difractograma de la muestra soldada a temperatura ambiente.

ГАЗ				FASE	S FRESENTES		
PICO	(d)	20	FERRITA	FIERRO γ	M ₃ C	M ₇ C ₃	M ₂₃ C ₆
1	2.089	43.31		SI			
	2.077	43.58			SI		
	2.038	44.45	SI		SI	SI	SI
2	1.810	50.42		SI			
	1.795	50.87					SI
3	1.273	74.59		SI			

FASES PRESENTES

III.1.4. Aplicación de la prueba de microscopía óptica

Las fotografías fueron tomadas con el microscopio óptico, las cuales se obtienen de la probeta preparada de acuerdo con la técnica metalografica que es el procedimiento descrito en el tema II.4.2, con la finalidad de disponer la superficie a observar.

Las fotografías se tomaron en las distintas zonas de interés, que corresponden al metal base, a la soldadura y a la zona afectada por el calor, además fueron tomadas a distintos aumentos. Las fotografías tomadas de esta muestra son las siguientes:

Fotografia 1. se observa una estructura de Ferrita equiaxial cerca de la línea de fusión, con precipitación íntercristalina y transcristalina.50X

Fotografia 2. Aquí esta presente una estructura de Ferrita equiaxial con Austenita retenida ínter cristalina y transcristalina, con escasos Carburos ínter cristalinos y transcristalinos. 100X.

Fotografia 3. Se observa una estructura equiaxial de Ferrita con escasa Austenita retenida inter cristalina y transcristalina, escasos Carburos inter cristalinos y transcristalinos, con cristales pequeños de Perlita. 600X.

Fotografia 4. Se observa una estructura Ferritica Austenita retenida con intercristalina y transcristalina, con pequeños escasos y Carburos ínter cristalinos transcristalinos y у pequeños cristales de Perlita fina. 1000X.

III.1.5. Microscopía electrónica de la fractura.

La fractura del material fue dirigida a la zona afectada por el calor. Las fotografías se tomaron en distintas zonas de la superficie fracturada, considerando aquellas que mostraban los rasgos de mayor interés para la investigación. Las fotografías de la probeta de la muestra soldada a temperatura ambiente se muestran a continuación.

Fotografía No. 5

Vista panorámica, donde se observa la superficie irregular de microhuecos, obtenida por la fractura del material.

Fotografía No. 6

En esta fotografía se aprecia la superficie fracturada del material como son los huecos, que son resultado del mecanismo conocido como microhuecos y el efecto copa-cono, así como la presencia de partículas de carburos en el plano de la fractura. Corresponde a la región central de la fotografía anterior, en ella señalamos a través de una flecha la zona que se mostrará en la siguiente fotografía.

Fotografía No. 7

Se observan detalles que confirman la presencia de los microhuecos profundos, así como los microhuecos superficiales, los cuales se pueden ver con mayor claridad en la parte superior izquierda de la fotografía. También podemos apreciar un cono bien definido ubicado en el ángulo inferior izquierdo de esta imagen, al lado derecho de dicho cono observamos el efecto contrario, es decir un par de copas alargadas. Señalamos con una flecha la región que observaremos en la siguiente fotografía.

Fotografía No. 8

En esta imagen se aprecian los micro-huecos o microhuecos de varios tamaños (grandes, pequeños y muy pequeños), profundos y superficiales, así como de las dos formas características de los microhuecos, equiaxiales y alargados.

Además se puede observar la presencia de fisuras en distintas regiones de la fotografía, así como la presencia de carburos. Indicamos con una flecha la región que se muestra en la siguiente fotografía.

Fotografía No. 9

En esta fotografía tomada a 2000x, correspondiente a la región señalada por la flecha en la fotografía anterior, exhibe con mayor claridad las grandes microhuecos situados en la parte superior izquierda de esta fotografía, las fisuras que se observan en la parte central, así como aquella fisura que se encuentra también al centro pero al extremo izquierdo, así como la presencia de partículas de carburo.

Fotografía No. 10

En esta fotografía podemos observar cristales deformados producto de la fractura, grietas que manifiestan los inicios de fisuras entre los límites de grano; otro rasgo característico es el que se encuentra en el ángulo inferior derecho en el que se observa el efecto en forma de copa con un cierto alargamiento y a su izquierda se encuentra el efecto de cono marcado por un circulo brilloso del cual se desprenden tres líneas, este efecto lo señalamos con una flecha por el interés que representa en la interpretación de esta imagen y lo que podría ser un triple punto de fisura en límite de grano como es el que se presenta en el mecanismo de la fractura decohesiva.

III.1.6.-Aplicación de la prueba de análisis químico

Elemento	% Peso
Mn	0.456
C	0.131
S	0.028
Cr	4.75
V	0.018
Ni	0.75
Si	0.98
Р	0.037
Mo	0.484
Fe	92.366
Total	100

El resultado del análisis se muestra en la siguiente tabla:

Tabla No. 6

En esta tabla de resultados se observa que la suma de los aleantes es de 7.634 en porcentaje de peso, y el contenido de fierro es del 92.366 en porcentaje de peso.

Discusión general de resultados de la probeta 1 :

La Zona Afectada por el Calor del acero 502 soldado al aire presenta una fragilidad en su comportamiento, que dista mucho del material nuevo en cuanto a su comportamiento mecánico. III.2. Muestra soldada a 500° C y postcalentada a 500° C durante una hora.

Las pruebas aplicadas a la probeta soldada a una temperatura de 500^o C, incluyendo los resultados de estas a través de los gráficos correspondientes.

III.2.1. Aplicación del ensayo de tensión, descripción de los parámetros del sistema y dimensiones de la probeta.

La probeta ensayada en esta prueba fue construida de acuerdo a las normas establecidas por ASTM (American Standard for Testing Materials) y sus dimensiones están dentro de estas normas. Los datos de la prueba se definen en la siguiente tabla:

Parámetros de la	máquina de prueba
Velocidad de	0.5 puntos/segundo
Velocidad de los cabezales:	0.15 mm/min
Dimensi	ones de la probeta:
Ancho:	10.6 mm
Espesor:	3.3 mm
Longitud:	50.8 mm

Después de la realización del ensayo, la máquina proporciono dos columnas de datos, una de desplazamiento y la otra de las cargas correspondientes, formando un conjunto de 338 puntos.

Con estos datos se calculan los esfuerzos y las deformaciones, ingenieriles y verdaderos, mediante las formulas ya citadas en la metodología correspondiente a este ensayo. A continuación se presentan a los resultados de los cálculos en las siguientes gráficas.

Fig. 13 Curva Ingenieril Esfuerzo-Deformación de la Muestra 2

Fig. 14 Curva Verdadera Esfuerzo-Deformación de la Muestra 2

Fig. 15 Coeficiente de Endurecimiento de la Muestra 2

45

Las gráficas anteriores permiten hacer las siguientes observaciones: -

Las curvas esfuerzo deformación ingenieril y verdadera resultan ser iguales entre si prácticamente; es decir, no hay cambios notables entre ellas. El límite de cedencia coincide con la resistencia máxima debido a que no se puede determinar el punto de fluencia de acuerdo a la norma del offset del 0.2 % = 0.002 mm/mm de deformación.

Tabla No. 7 Resultados del Límite de Cedencia y resistencia máxima ingenieriles:

	Soldada a 500 ⁰ C 1 Hora en el Horno
LIMITE DE CEDENCIA	119.6043 Mpa.
RESISTENCIA MÁXIMA	119.6043 MPa.
DEFORMACIÓN EN LA RESISTENCIA MÁXIMA	0.0031 mm/mm

Tabla No. 8 Resultados de la gráfica Esfuerzo Deformación Verdadera:

	Soldada a 500 ⁰ C 1 Hora en el Horno
LIMITE DE PROPORCIONALIDAD	59.3993 MPa.
MODULO DE YOUNG	47352 MPa.
LIMITE DE CEDENCIA	119.6043 Mpa.
COEFICIENTE DE ENDURECIMIENTO	0.8372
ENERGIA	1.94126 Jouls

Discusión de resultados del ensayo de tensión para la muestra No. 2 La probeta No. 2 usada en el ensayo, presentó un comportamiento en el que no fue posible determinar el límite de fluencia, es decir su patrón de comportamiento corresponde a un modelo de tipo elástico. Esto se verifica con el valor del coeficiente de endurecimiento que tiende a la unidad.

III.2.2 Aplicación de la prueba de dureza

Los datos obtenidos de esta prueba, son procesados de la misma forma en la que se realizaron los cálculos para el ensayo de dureza en este capitulo para la probeta soldada a temperatura ambiente. Los resultados del proceso para esta probeta se muestran gráficamente en la siguiente pagina.

DUREZA VICKERS-2 MUESTRA SOLDADA A 500 GRADOS C 1 HORA EN EL HORNO acero 502

Nomenclatur	a 🚽 Identificación de la Zona 🖄
Z1	Zona de Soldadura
Z2	Zona de Dilución
Z3	Zona Afectada por el Calor
Z4	Zona del Metal Base

Nomenclatura de la Figura 17

En la grafica de la figura 17se presentaron 4 zonas especificas, estas son:

La primer zona queda definida por las lecturas de las indentaciones de la 1 a la 30, que corresponden al material de aporte E-502.

La segunda zona esta comprendida entre las lecturas de las indentaciones de la 30 a la 32 y corresponde a la zona de dilución. Entre las indentaciones 32 y 33 se localiza la línea de fusión.

La tercer zona se encuentra entre las lecturas de las indentaciones 33 a la 37 y determina la zona afectada por el calor (ZAC).

La cuarta zona representa el metal base y se define por las lecturas de las indentaciones de la 37 a la 49.

En la zona de soldadura solo se presentó una magnitud de dureza, por lo que no existe variación alguna.

La caída de la dureza corresponde a la zona de dilución y representa la liga metálica de la soldadura, su dimensión es de 0.635 mm.

Las indentaciones de la 33 a la 37 definen la zona afectada por el calor (ZAC), la cual presenta variaciones de dureza por debajo de la zona de soldadura y aproximadamente iguales a las de la zona del metal base, esta variación significa que el fenómeno de transformación estructural solo se observa en la soldadura. La dimensión de la ZAC es de 1.6 mm. De las indentaciones 37 a la 49 por su continuidad y constancia nos indica la presencia del metal base el cual no sufrió ningún efecto térmico por el arco de soldadura.

Discusión de resultados del ensayo: La presencia de la estructura detrítica de fundición se manifiesta en el ensayo de dureza. En la ZAC se hace poco notable el efecto por las isotermas de la influencia del calor, lo cual puede determinarse por la dimensión de esta zona.

III.2.3. Aplicación de la prueba de difracción de rayos X a la probeta soldada a 500° C y postcalentada a 500° C durante una hora.

Los datos de esta prueba se muestran en el difractograma que se muestra a continuación.

Fig. 18 Difractograma de la muestra soldada a 500[°] C con permanencia de 1 hora en el horno a 500[°] C acero 502

Fig. 18 a Detalle del Pico 1

Fig. 18b Detalle del Pico 2

Fig.18c Detalle del Pico 3

Resumen de los resultados encontrados en el difractograma de la muestra soldada 500^0 C, con permanencia de una hora en el horno a 500^0 C.

						The second se	
PICO	(d)	20	FERRITA	FIERRO y	M ₃ C	M ₇ C ₃	M ₂₃ C ₆
1	2.077	43.58		SI	SI		
	2.03	44.54	SI		SI	SI	SI
2	1.8	50.72		SI		SI	SI
3	1.27	74.72		SI			

FASES PRESENTES

111.2.4. Aplicación de la prueba de microscopía óptica

A continuación mostraremos las fotografías obtenidas con el microscopio óptico, las cuales provienen de la probeta pulida a espejo de la muestra soldada a 500⁰ C y postcalentada a la misma temperatura durante una hora, utilizando la misma técnica metalografica que en el caso de la probeta soldada a temperatura ambiente descrito en este capitulo. A continuación se presentan las imágenes tomadas de esta muestra.

Fotografia 11. Se observa el aumento en el contenido de Carburos, los cuales coalecen y migran al borde de cristal. Se observa la estructura de Ferrita equiaxial cerca de la línea de fusión, con precipitación inter cristalina y transcristalina. 50X.

Fotografia 12. Se observa crecimiento de la el retenida. Austenita el crecimiento de Carburos por coalescencia migrando al borde de cristal. Se observa la estructura de Ferrita equiaxial inter cristalina y transcristalina 100X.

Fotografía 13.Se observa el crecimiento de la Austenita retenida, el aumento de la cantidad de Carburos los cuales coalecen y migran al borde de grano. Se observa la estructura equiaxial de Ferrita y pequeños cristales de Perlita. 600X.

Fotografia 14.Se observa el crecimiento de la Austenita retenida, el aumento en la cantidad de Carburos por coalescencia migrando al borde de cristal. Se observa la estructura Ferritica y pequeños cristales de perlita fina.1000X.

III.2.5. Aplicación de la prueba de microscopía electrónica

La fotografía de la fractura del material fue dirigida a la zona afectada por el calor. Las fotografías se tomaron en distintas zonas de la superficie fracturada, considerando aquellas que mostraban los rasgos de mayor interés para el estudio a distintos aumentos. a continuación se muestran las fotografías de la probeta de la muestra soldada a 500° C y postcalentada durante una hora a 500° C.

Fotografía No. 15

Vista en forma panorámica, donde se observa la superficie irregular, obtenida por la fractura del material. Se observan con poca definición zonas que muestran los efectos de la fractura. Se observara en la siguiente imagen la parte central de esta fotografía señalada por una flecha.

En esta fotografía notamos la presencia de nucleaciones en las zonas marcadas en la fotografía por sitios oscuros los cuales contienen pequeñas esferas. Se observa casi en toda la fotografía el efecto producido por el mecanismo de fractura por microhueco. El mecanismo produjo microhuecos pequeños y equiaxiales (como los que son señalados por una flecha vertical) así como microhuecos medianos y alargados, siendo todos ellos superficiales.

En esta fotografía se observa el efecto producido por la fractura por microhueco, el cual es acompañado de la presencia de tres fisuras bien definidas una al margen izquierdo en la parte superior y dos más en el margen superior de la fotografía. También se observa la presencia de una pequeña inclusión señalada por una flecha. Se señala con una flecha vertical la zona que se observa en la siguiente fotografía.

En la anterior fotografía se observa el cristal alargado que se presenta aquí en esta otra fotografía a mayor número de aumentos en la parte central. Además se observan pequeñas fisuras al lado izquierdo del mencionado cristal, así como al lado derecho tanto en la parte superior como en la parte inferior, también se puede observar la existencia de los efectos "copa-cono" en la zona ubicada en el ángulo superior derecho de la fotografía.

Esta fotografía tiene el mismo número de aumentos que la fotografía No. 18. Muestra una físura que cruza en forma horizontal casi la totalidad del cuadro, por encima de tal físura se observan algunos microhuecos alargados y una zona clara que muestra la fractura en los bordes de grano. Se indica con una flecha la región que será mostrada en la siguiente fotografía.

En esta fotografía se ven claramente la existencia de algunos efectos de la fractura por microhuecos los cuales corresponden aquellos del tipo superficial y alargados. Así mismo se observan algunas fisuras y el efecto copa-cono, que son rasgos característicos del mecanismo de fractura por microhuecos. Se señala con una flecha el microhueco superficial y alargado y que además esta abierto.

III.2.6. Aplicación de la prueba de análisis químico

Elemento	% Peso	
Mn	0.453	
C	0.160	
S	0.031	
Cr	4.796	
V	0.017	
Ni	0.751	
Si	0.990	
P	0.038	
Mo	0.478	
Fe	92.286	
Total	100	

El resultado del análisis se muestra en la siguiente tabla:

Tabla No. 9

La suma total de los aleantes presentes en porcentaje de peso es de 7.714, mientras que el porcentaje en peso de la presencia de fierro es de 92.286.

Discusión general de resultados de la probeta No. 2:

En esta probeta soldada a 500⁰C, con permanencia en el horno de una hora, la zona Afectada por el Calor, aun cuando presento una ligera mejoría en sus propiedades mecánicas (con respecto a la muestra No. 1), su comportamiento continuó siendo frágil de acuerdo con los resultados de la experimentación realizada.

III.3.Muestra soldada a 500° C y postcalentada a 500° C durante 5 horas.

Las pruebas aplicadas a la probeta soldada a 500^{0} C y postcalentada a la misma temperatura durante cinco horas, incluyendo los resultados de estas a través de los gráficos correspondientes.

III.3.1. Aplicación del ensayo de tensión, descripción de los parámetros del sistema y dimensiones de la probeta.

La probeta ensayada en esta prueba fue construida de acuerdo a las normas establecidas por ASTM (American Standard for Testing Materials) y sus dimensiones están dentro de estas normas. Los datos de la prueba se definen en la siguiente tabla:

Parámetros de la	máquina de prueba
Velocidad de muestreo:	0.5 puntos/segundo
Velocidad de los cabezales:	0.15 mm/min
Dimensi	ones de la probeta:
Ancho:	13.355 mm
Espesor:	4.2225mm
Longitud:	50.8 mm

Una vez realizados los cálculos con un conjunto de 472 datos suministrados por la máquina universal de tensión utilizada para este ensayo, se muestran los resultados para esta probeta en las cuatro gráficas siguientes.

CURVA INGENIERIL ESFUERZO DEFORMACIÓN MUESTRA SOLDADA A 500 GRADOS CENTIGRADOS 5 HORAS EN EL HORNO acero 502

Fig. 19 Curva Ingenieril Esfuerzo-Deformación de la Muestra 3

63

CURVA VERDADERA ESFUERZO DEFORMACIÓN MUESTRA SOLDADA A 500 GRADOS CENTIGRADOS

Fig. 20 Curva Verdadera Esfuerzo-Deformación de la Muestra 3

64

Fig. 21 Coeficiente de Endurecimiento de la Muestra 3

Fig. 22 Modulo de Young de la Muestra 3

66

Las gráficas anteriores permiten hacer las siguientes observaciones:

Las curvas esfuerzo deformación ingenieril y verdadera resultan ser iguales entre si prácticamente; es decir, no hay cambios notables entre ellas.

Tabla No. 10 Resultados del Límite de Cedencia y resistencia máxima ingenieriles:

	Soldada a 500 ⁰ C 5 Horas en el Horno
LIMITE DE CEDENCIA	151.8104Mpa.
RESISTENCIA MÁXIMA	151.8104 Mpa.
DEFORMACIÓN EN LA RESISTENCIA MÁXIMA	0.0380 mm/mm

Tabla No. 11 Resultados de la gráfica Esfuerzo Deformación Verdadera:

	Soldada a 500 ⁰ C 5 Horas en el Horno
LIMITE DE PROPORCIONALIDAD	151.8104 Mpa.
MODULO DE YOUNG	3271.5 Mpa.
LIMITE DE CEDENCIA	151.8104
COEFICIENTE DE ENDURECIMIENTO	1.0413
ENERGIA	2.9825 Jouls

Discusión de resultados para este ensayo en la probeta No. 3

En esta probeta el material presentó un comportamiento que corresponde al modelo de los materiales elásticos, haciendo más notable su fragilidad, reduciendo la posibilidad de determinar el limite de fluencia por medio del método del offset del 0.2 %. A pesar de haber aumentado la energía requerida para su fractura.

III.3.2 Aplicación de la prueba de dureza

Los datos obtenidos de esta prueba, son procesados de la misma forma en la que se realizaron los cálculos para el ensayo de dureza en este capitulo para las probetas No. 1 y No. 2. Los resultados del proceso para esta probeta se muestran gráficamente en la siguiente página.

DUREZA VICKERS-2 MUESTRA SOLDADA A 500 GRADOS C 5 HORAS EN EL HORNO acero 502

Fig 2	Curve	de	Dureza	de	10	Muestra	3
112. L.	Julva	uc	Duicza	uç	Ia	widestia	2

Nomenclatur	a 🐨 🖉 Identificación de la Zona 🐇
Z1	Zona de Soldadura
Z2	Zona de Dilución
Z3	Zona Afectada por el Calor
Z4	Zona del Metal Base

Nomenclatura de la Figura 23

68

En la grafica de la figura 23 se observan 4 zonas especificas siguientes:

La primera zona queda comprendida entre las lecturas de la indentaciones de la 1 a la 24 y corresponde a la soldadura.

La segunda zona comprendida entre las lecturas de las indentaciones 24, 25 y 26 corresponde a la zona de dilución. Entre las lecturas de las indentaciones 26 y 27 se encuentra la línea de fusión.

La tercera zona esta comprendida entre las lecturas de las indentaciones comprendida entre las lecturas de las indentaciones 27 a la 39 se encuentra la zona afectda por el calor (ZAC).

La cuarta zona queda comprendida entre las indentaciones 39 a 55, la cual corresponde al metal base.

En la zona de soldadura se presentan tres durezas 164.8, 189.18 y 219.4 lo que indica una pequeña variación en la soldadura, la cual no es de consideración. Se presenta un aumento de dureza en la zona de dilución, la cual tiene una longitud de 0.635 mm. En la zona afectada por el calor se presenta una dureza que es aproximadamente igual a la del metal base y arriba de las durezas de la soldadura y abajo de las de la zona de dilución, lo que indica que el fenómeno de transformación estructural fue atenuado por el proceso de precalentamiento y poscalentamiento. La dimensión de la ZAC es de 4.13 mm. De las indentaciones 39 a la 55 por su continuidad y constancia nos indica la presencia del metal base, zona que no sufrió ningún efecto térmico por el arco de soldadura.

Discusión de resultados para la probeta No. 3: En el ensayo de dureza se manifestó la presencia de la estructura dentrítica de fundición. En la ZAC la presencia de las estructuras metalúrgicas del acero 502, fue atenuado el efecto de las isotermas de la influencia del calor por el calentamiento durante el proceso de soldar y después de haber soldado. Se redujo la dimensión de la ZAC comparado con la condición de la probeta soldada al aire tranquilo.

III.3.3. Aplicación de la prueba de difracción de rayos x a la probeta soldada a 500° C y postcalentada a 500° C durante 5 horas.

Los datos de esta prueba se muestran en el difractograma que se muestra a continuación.

Fig. 24 Difractograma de la muestra soldada a 500° C con permanencia de 5 horas en el horno a 500° C acero 502

Fig.24 a. Detalle Pico 1

Fig. 24 b. Detalle pico 2

Fig. 24 c. Detalle Pico 3

Resumen de los resultados encontrados en el difractograma de la muestra soldada a 500^{0} C, con permanencia de 5 horas en el horno a 500^{0} C.

	TASESTRESENTES						
PICO	(d)	20	FERRITA	FIERRO γ	M ₃ C	M ₇ C ₃	M ₂₃ C ₆
1	2.077	43.58		SI	SI		
	2.036	44.51	SI		SI	SI	SI
2	1.801	50.69		SI		SI	SI
3	1.27	74.75		SI			

FASES PRESENTES

III.3.4. Aplicación de la prueba de microscopía óptica

A continuación mostraremos las fotografías obtenidas con el microscopio óptico, las cuales son producto de la probeta pulida a espejo de la muestra soldada a 500° C y postcalentada a la misma temperatura durante cinco horas. Las fotografías se tomaron en las distintas zonas de interés, que corresponden al metal base, a la soldadura y a la zona afectada por el calor, además fueron tomadas a distintos aumentos. A continuación se presentan las imágenes tomadas de esta muestra.

Fotografia 21. Se observa una estructura de Ferrita equiaxial cerca de la línea de fusión con precipitación inter cristalina y transcristalina. Se observa la reducción de la Austenita retenida y el aumento en la cantidad de Carburos que coalecen y borde migran al de grano.50X.

Fotografia 22. Se observa la estructura de ferrita equiaxial con Austenita retenida que se reduce en tamaño y el aumento en la cantidad de Carburos por coalescencia los cuales migran al borde de cristal. 100X

Fotografia 23. Se observa la estructura de Ferrita equiaxial con la disminución de la Austenita retenida ínter cristalina. Se observa el aumento en la cantidad de Carburos los cuales migran al borde de pequeños cristal У de Perlita. cristales 600X.

Fotografia 24. Se observa la estructura ferritica, aumenta la cantidad de Carburos intercristalinos y transcristalinos por coalescencia los cuales migran al borde de cristal. Se observan pequeños cristales de Perlita fina. 1000x.

III.3.5. Aplicación de la prueba de microscopía electrónica

La fotografía de la fractura del material fue dirigida a la zona afectada por el calor. Las fotografías se tomaron en distintas zonas de la superficie fracturada, considerando aquellas que mostraban los rasgos de mayor interés para el estudio, a distintos aumentos. A continuación se presentan las fotografías que corresponden a la muestra del material soldada a 500° C y puesta en el horno a la misma temperatura durante cinco horas.

Fotografía No. 25

En esta fotografía podemos observar algunas físuras distribuidas en el área expuesta y los efectos de la fractura debidos al mecanismo de microhuecos.

En esta fotografía se puede observar el efecto producido por el mecanismo de fractura por microhuecos, en el que se puede observar la tendencia o dirección que produce este tipo de fractura la cual se indica con una flecha en una dirección aproximada. Se pueden observar algunas fisuras y algunos rasgos del tipo copa-cono. Se puede observar la presencia de pequeños y grandes microhuecos. Se señala con una flecha vertical el área que será observada en la siguiente fotografía.

Se observan algunas fisuras al centro de esta fotografía. También se pueden observar algunos pequeños microhuecos profundos, y algunos grandes que son superficiales. Se señala con una flecha la zona que se verá en la siguiente fotografía.

En esta fotografía se puede observar la presencia de partículas nucleadas dentro de los microhuecos profundos. Es notable la existencia de pequeñas fisuras formadas en los bordes de grano. Es notable la existencia de los microhuecos alargados y superficiales.

Los rasgos observados en esta fotografía son principalmente los grandes microhuecos superficiales y las fisuras que se presentan en la parte inferior de la fotografía. La región ubicada en la parte inferior de la fotografía se observará a mayores aumentos en la siguiente fotografía.

La fisura que fue observada en la fotografía anterior se puede observar con mayor claridad aquí, en la que se hace notable que esta fisura se ha iniciado en los bordes de grano, ya que se puede observar como la fisura existente corresponde al patrón de comportamiento del mecanismo de fractura decohesiva que se realiza en la región de los bordes de grano.

Se observan algunas fisuras, una que se encuentra al centro y que presenta una posición horizontal, otra que se ubica a la derecha de la anterior y cuya posición es vertical y otras más pequeñas en posición diagonal. Las fisuras observadas son formadas en los límites de grano y en esta fotografía se puede observar en la que se encuentra al centro esta asociada con nucleaciones de espacios que se encuentran a su izquierda, marcadas por la presencia de pequeños microhuecos.

III.3.6. Aplicación de la prueba de análisis químico

El resultado del análisis se muestra en la siguiente tabla:

Elemento	% Peso		
Mn	0.450		
С	0.170		
S	0.037		
Cr	4.916		
V	0.180		
Ni	0.750		
Si	0.982		
P	0.040		
Mo	0.479		
Fe	91.996		
Total	100		

Tabla No. 12

La suma total de los aleantes presentes en porcentaje de peso es de 8.004, mientras que el porcentaje en peso de la presencia de fierro es de 91.996.

Discusión general de resultados de la probeta No. 3:

En esta probeta soldada a 500° C, con permanencia en el horno de 5 horas, presenta una ligera mejoría con respecto a las probetas anteriores sin embargo, su comportamiento sigue siendo de tipo frágil en la Zona Afectada por el Calor y dista mucho del comportamiento del mismo material sin el efecto de la soldadura y sin haber sido trabajado.

III.4. Muestra soldada a 500° C y postcalentada a 500° C durante 10 horas.

Las pruebas aplicadas a la probeta soldada a 500^{0} C y postcalentada a la misma temperatura durante diez horas, incluyendo los resultados de estas a través de los gráficos correspondientes.

III.4.1. Aplicación del ensayo de tensión, descripción de los parámetros del sistema y dimensiones de la probeta.

La probeta ensayada en esta prueba fue construida de acuerdo a las normas establecidas por ASTM (American Standard for Testing Materials) y sus dimensiones están dentro de estas normas. Los datos de la prueba se definen en la siguiente tabla:

Parámetros de la	máquina de prueba
Velocidad de muestreo:	0.5 puntos / segundo
Velocidad de los cabezales:	0.15 mm / min.
Dimensi	ones de la probeta:
Ancho:	13.800 mm
Espesor:	5.850 mm
Longitud:	50.8 mm

Una vez realizados los cálculos con un conjunto de 586 datos suministrados por la maquina universal de tensión utilizada para este ensayo, se muestran los resultados para esta probeta en las cuatro graficas siguientes.

Fig. 25 Curva Ingenieril Esfuerzo-Deformación de la Muestra 4

CURVA VERDADERA ESFUERZO DEFORMACIÓN MUESTRA SOLDADA A 500 GRADOS CENTIGRADOS 10 HORAS EN EL HORNO acero 502

Fig. 26 Curva Verdadera Esfuerzo-Deformación de la Muestra 4

COEFICIENTE DE ENDURECIMIENTO MUESTRA SOLDADA A 500 GRADOS CENTIGRADOS 10 HORAS EN EL HORNO acero 502

Fig. 27 Coeficiente de Endurecimiento de la Muestra 4

Fig. 28 Modulo de Young de la Muestra 4

Las gráficas anteriores permiten hacer las siguientes observaciones:

Las curvas esfuerzo deformación ingenieril y verdadera resultan ser iguales entre si prácticamente; es decir, no hay cambios notables entre ellas.

Tabla No. 13 Resultados del Límite de Cedencia y resistencia máxima ingenieriles:

	Soldada a 500 ⁰ C 10 Horas en el Horno
LIMITE DE CEDENCIA	269.0965 Mpa.
RESISTENCIA MÁXIMA	269.0965 MPa.
DEFORMACIÓN EN LA RESISTENCIA MÁXIMA	0.0533 mm / mm

Tabla No. 14 Resultados de la grafica Estuerzo Deformación Verdad

	Soldada a 500 ⁰ C 10 Horas en el Horno
LIMITE DE PROPORCIONALIDAD	269.0965 MPa.
MODULO DE YOUNG	3332.9 MPa.
LIMITE DE CEDENCIA	269.0965 Mpa.
COEFICIENTE DE ENDURECIMIENTO	1.1308
ENERGIA	6.3291 Jouls

Discusión de resultados para la muestra No. 4

El límite de cedencia coincide con la resistencia máxima, debido a que no se puede determinar el punto de fluencia de acuerdo a la norma del offset del 0.2 % = 0.002 mm/mm de deformación. Y dado que la recta utilizada por la norma del offset es paralela a la curva esfuerzo deformación ingenieril en su totalidad, entonces el esfuerzo es proporcional a la deformación para una zona muy amplia, lo cual es indicativo de un comportamiento Frágil del acero 502.

III.4.2 Aplicación de la prueba de dureza

Los datos obtenidos de esta prueba, son procesados de la misma forma en la que se realizaron los cálculos para el ensayo de dureza en este capitulo para las probetas No. 1, No. 2 y No. 3. Los resultados del proceso para esta probeta se muestran gráficamente en la siguiente página.

Nomenclatur	a 👷 🖕 Identificación de la Zona 🗸
Z1	Zona de Soldadura
Z2	Zona de Dilución
Z3	Zona Afectada por el Calor
Z4	Zona del Metal Base

Nomenclatura de la Figura 29

89

En la grafica de la figura 29 se definen 4 zonas, esta son:

La primera zona queda comprendida por las lecturas de dureza de las indentaciones 1 a la 27 y estas corresponden al material de la soldadura.

La segunda zona que incluye las indentaciones de la 27 a la 30 corresponde a la zona de dilución. Entre las indentaciones 30 y 31 se encuentra la línea de fusión.

La tercera zona se encuentra comprendida entre la indentaciones 31 a la 45 y corresponde a la zona afectada por el calor (ZAC).

La cuarta zona corresponde al metal base y se encuentra entre las indentaciones 45 a la 55.

En la zona de soldadura se presentaron dos durezas de 219.4 y de 203.45 lo cual indica que no existen variaciones en la dureza en esta zona. El aumento en la dureza de las indentaciones 27 a la 30 lo podemos considerar como la zona de dilución la cual tiene una dimensión de 0.9525 mm. Entre las indentaciones 41 a la 45 se presenta la zona afectada por el calor cuya dureza varia por debajo de las durezas de la zona de dilución y de las de la línea de fusión pero se mantiene invariante con respecto a las durezas de la zona de la soldadura y de las de la zona del metal base, esta variación se puede considerar como fenómeno de transformación estructural que depende de la isoterma de temperatura. La dimensión de la ZAC es de 4.44 mm. La cuarta zona que corresponde al metal base fue determinada así, por su continuidad y constancia; la cual no sufrió ningún efecto térmico por el arco de soldadura.

Discusión de resultados para la probeta No. 4: Se manifestó en el ensayo de dureza, la presencia de la estructura dentrítica de fundición. Las isotermas producidas por el calor hacen notar su efecto en la ZAC por la presencia de las estructuras metalúrgicas del acero 502.

III.4.3. Aplicación de la prueba de difracción de rayos x a la probeta soldada a 500° C y postcalentada a 500° C durante 10 horas.

Los datos de esta prueba se muestran en el difractograma que se muestra a continuación.

Fig. 30 Difractograma de la muestra soldada a 500° C con permanencia de 10 horas en el horno a 500° C acero 502

Fig. 30 a Detalle del Pico 1

Fig. 30b Detalle Pico 2

Fig. 30c Detalle del Pico 3

Resumen de los resultados encontrados en el difractograma de la muestra soldada a 500^{0} C, con permanencia de 10 horas en el horno a 500^{0} C.

		THOEST HESELTES						
PICO	(d)	20	FERRITA	FIERRO y	M ₃ C	M ₇ C ₃	M ₂₃ C ₆	
1	2.082	43.46		SI				
	2.075	43.61			SI			
	2.041	44.39					SI	
	2.028	44.669	SI			SI		
2	1.801	50.69		SI		SI	SI	
3	1.272	74.60		SI				

FASES PRESENTES

III.4.4. Aplicación de la prueba de microscopía óptica

A continuación mostraremos las fotografías obtenidas con el microscopio óptico, las cuales son producto de la probeta pulida a espejo de la muestra soldada a 500° C y postcalentada a la misma temperatura durante diez horas. Las fotografías se tomaron a distintos aumentos. A continuación se presentan las fotografías tomadas de esta muestra.

Fotografia 32. Se observa una estructura de Ferrita equiaxial cerca de la línea fusión de y la precipitación de Austenita retenida se reduce notablemente. Se observa el aumento de Carburos por coalescencia y estos migran al borde de cristal. 50X.

Fotografia 33.Se observa la estructura de Ferrita equiaxial con la Austenita retenida que se reduce notablemente, aumenta la cantidad de Carburos los cuales coalecen y migran al borde de cristal. 100X

Fotografia 34. Se observa la estructura de Ferrita equiaxial con escasa retenida. Austenita aumenta la cantidad de Carburos los cuales coalecen y migran al borde de cristal. Se observan pequeños cristales de Perlita. 600X.

Fotografia 35. Se observa la estructura de Ferrita con muy escasa Austenita retenida, se hace notable el aumento de Carburos que coalecen y migran al borde de cristal y se observan pequeños cristales de Perlita fina. 1000X.

III.4.5. Aplicación de la prueba de microscopía electrónica

Las fotografías de la fractura del material fueron dirigidas a la zona afectada por el calor. Las fotografías se tomaron en distintas zonas de la superficie fracturada, considerando aquellas que mostraban los rasgos de mayor interés para el estudio, a distintos aumentos. El caso es el de la probeta soldada a 500[°] C y postcalentada a la misma temperatura durante 10 horas. A continuación mostramos las fotografías.

Fotografia No. 36

En esta fotografía se presenta una panorámica de la superficie de la fractura en la parte central de la muestra.

En esta fotografía se pueden observar algunos rasgos característicos de la fractura, tales como las fisuras que se alcanzan a visualizar en algunos puntos y el ya mencionado efecto producido por la fractura del tipo microhueco. Se señala con una flecha la región que será observada en la siguiente fotografía.

Aquí se observa la presencia de dos pequeñas fisuras. Se observa además la presencia de pequeños, medianos y grandes microhuecos. Los medianos y los grandes son superficiales y alargados. Se indica con una flecha horizontal el caso de uno de estos rasgos. Se señala con una flecha la región que será observada en la siguiente fotografía.

Se observa la presencia de los microhuecos pequeños y profundos, cercanos a las zonas en las que predomina el tono claro de la fotografía. Los microhuecos alargados son superficiales y quedan abiertos como el que se indica por medio de una flecha en posición horizontal y el cual esta rodeado por microhuecos medianos alargados y superficiales. También se observa una fisura (en la parte inferior del microhueco señalado por la flecha) ubicada en los bordes de grano. Se indica con una flecha la zona que será mostrada en la siguiente fotografía.

Fotografía No. 40

Se puede observar la existencia de algunas fisuras, tales como las que se encuentran en la parte superior derecha de la fotografía. Se observan los grandes y superficiales microhuecos alargados presentes en casi la totalidad de la zona fotografiada. Se indica con una flecha la región que será observada en las dos siguientes fotografías.

Fotografía No. 41

Se observa la presencia de unos cuantos microhuecos pequeños y profundos, así como la presencia de los grandes que son superficiales y alargados. Es notable en la fotografía las líneas de tono claro que corresponden a los limites de grano.

Fotografía No. 42

Esta fotografía corresponde a la misma región que la de la anterior fotografía No. 41 solo que a un menor número de aumentos. En esta se puede observar la forma tridimensional de dos cristales que se señalan por medio de una flecha posicionada entre ellos, lo cual indica la presencia de una característica del mecanismo de fractura por microhuecos.

III.4.6. Aplicación de la prueba de análisis químico

El resultado del análisis se muestra en la siguiente tabla:

Elemento	% Peso
Mn	0.451
С	0.171
S	0.039
Cr	5.023
V	0.181
Ni	0.751
Si	0.979
Р	0.042
Мо	0.478
Fe	91.885
Total	100

Tabla No. 15

La suma total de los aleantes presentes en porcentaje de peso es de 8.115, mientras que el porcentaje en peso de la presencia de fierro es de 91.885.

Discusión general de resultados de la probeta No. 4:

La Zona Afectada por el Calor del acero 502 soldado a 500^{0} C, con permanencia en el horno de 10 horas, aun cuando mejoró sus propiedades con respecto a las tres muestras anteriores en la Zona Afectada por el Calor, sigue presentando un comportamiento Frágil.

IV. DISCUSIÓN DE LOS RESULTADOS Y CONCLUSIONES

DISCUSIÓN DE RESULTADOS

Para el análisis de los resultados obtenidos se consideran los datos de cada una de las pruebas y técnicas de caracterización realizadas, es decir, se inició con los ensayos de tensión realizados a todas y cada una de las muestras y se hizo una interpretación parcial, de esta misma manera se procedió con el ensayo de dureza y con la difracción de rayos x, además se consideraron descripciones de las metodologías de caracterización por medio de microscopia óptica, microscopia electrónica de barrido y el análisis químico, las cuales apoyaron las interpretaciones realizadas para cada una de las condiciones utilizadas en la experimentación de la investigación. A partir de las respectivas interpretaciones parciales se hace una interpretación general de la investigación y finalmente se dan las conclusiones.

En relación a las pruebas de tensión practicadas al acero 502, su comportamiento fue totalmente elástico y por tanto no mostró una zona de comportamiento plástico, se presento un incremento en la resistencia de las condiciones en la medida en la que se incremento el tiempo de permanencia a la temperatura de 500^oC, es decir la probeta soldada al aire tranquilo presento la menor resistencia mecánica. Así mismo la energía mecánica requerida para fracturar al acero 502 se incremento relativamente de la primera condición, la cual fue soldada al aire tranquilo y se emplearon 0.1523 Jouls a la última condición que tuvo una permanencia en el horno de 10 horas a 500^oC y la cual necesito de 6.3291 Jouls.

El resultado de las pruebas de tensión conjuntamente con el ensayo de dureza, reflejan la presencia de micro estructuras o fases componentes del acero, debido a que como se explico para el ensayo de tensión, en el ensayo de la dureza de las cuatro condiciones se puede verificar al observar los gráficos de dureza correspondientes, las variaciones en las medidas de la dureza en la Zona Afectada por el Calor, lo cual debe ser interpretado como la presencia de las micro estructuras que han de provocar la fragilidad del acero 502, aun cuando se podría mejorar con tratamientos térmicos como lo indicaron los distintos tiempos de permanencia en el horno.

La presencia de las micro estructuras mencionadas se pudo corroborar por medio de la experimentación de Difracción de Rayos X, la cual pone en relieve la presencia de fases o micro estructuras tales como las correspondientes al fierro Gama o Austenita, fierro Alfa o Ferrita, Carburos del tipo M_3C , M_7C_3 y $M_{23}C_6$.

Esas estructuras responsables del comportamiento del material se pudieron observar también en la metalografía practicada a las cuatro condiciones las que incluyeron para su estudio las zonas de material base, zona de soldadura y la Zona Afectada por el Calor en las cuales se pueden observar las distintas fases presentes en el material tanto dentro de los cristales como en los bordes de grano, que por cierto la presencia de estos últimos y la cantidad de energía almacenada en ellos son los responsables de la fragilidad en cualquier material cristalino y específicamente en el acero tratado en esta investigación, en donde se ve una mayor concentración de carburos superiores en borde de cristal y cerca de él. Por último con la microscopía electrónica de barrido (SEM) al estudiar la fractura encontramos que existen dos tipos de mecanismos, el que se conoce como microhuecos y en menor cantidad la fractura Decohesiva, los cuales son mecanismos propios del comportamiento que se conocen como fracturas frágiles.

CONCLUSIONES

A través de un análisis comparativo de los resultados del ensayo de tensión por medio de las probetas usadas, se observa un aumento progresivo en sus resistencias máximas incrementándose de la probeta No. 1 a la No. 4, lo cual implica que se necesito de mayor energía para llegar a fracturarlas. En los parámetros correspondientes al modulo de Young se observo un comportamiento decreciente de la probeta No. 1 a la probeta No. 4, lo que indica un menor grado de recuperación del material después de la deformación. En los coeficientes de endurecimiento de cada una de las probetas ensayadas se observa un comportamiento en el cual no se presento variación alguna prácticamente. Por tanto el resultado general de los análisis realizados al Acero 502, muestra que este material se comporto mecánicamente frágil en todas y cada una de las condiciones usadas para su caracterización de resistencia.

El ensayo de dureza indico que con el incremento del tiempo de permanencia en el horno (postcalentamiento a 500^oC) la Zona Afectada por el Calor disminuyo sus dimensiones, así mismo se redujo la diferencia entre las durezas máximas y mínimas de cada una de las probetas ensayadas, sin embargo, no se consiguió tener un resultado que pudiera ser recomendado para la solución en la reparación de este material.

En la aplicación de la técnica de caracterización de estructuras por medio de rayos X, se observa que con el incremento del tiempo de postcalentamiento a 500^{0} C, la intensidad de los picos que corresponden al fierro gama (Austenita) presentan muy poca variación, así como los picos que corresponden a la Ferrita y a los carburos del tipo M₃C que también presentan muy poca variación. Se observa además que con el incremento del tiempo de postcalentamiento se presentan dos picos que corresponden a la existencia de carburos de los tipos M₂₃C₆ y M₇C₃, los cuales solo aparecen en los difractogramas de las probetas No. 3 y No. 4. Este análisis comparativo coincide con el realizado con los resultados que proporcionan la metalografía con el incremento del tiempo de permanencia en el horno, y con las fotografías correspondientes, presentan un aumento de carburos en los bordes de grano, lo cual implica que la presencia de las estructuras cristalinas encontradas por medio de la difracción de rayos X, así como las observaciones descritas en torno a la metalografía y la microscopia electrónica de barrido para cada una de las condiciones del acero 502, permiten confirmar el comportamiento de tipo frágil del material en la Zona Afectada por el Calor.

Las interpretaciones hechas en base a la experimentación de la investigación conducen a la conclusión de un comportamiento mecánico de tipo frágil en la Zona Afectada por el Calor, debido al efecto de las isotermas del arco de soldadura, lo que indica que el acero 502 reducirá su tiempo de vida media cada vez que se realice en el una reparación de este tipo.

Quedando para una investigación posterior la búsqueda de las condiciones necesarias para mejorar el comportamiento mecánico del acero 502 en la Zona Afectada por el Calor.

BIBLIOGRAFÍA DE CONSULTA

- 1. Aballe, M. et al, "Microscopia electrónica de barrido y microanálisis de rayos X, Madrid: Rueda: Consejo Superior de Investigaciones Científicas, 1996
- 2. Adam, J. Schwartz, Makul Kumar and Brent L. Adams., "Electron Backscatter in materials science", New York : Klumer Academic/Plenum, 2000
- 3. American Society for Metals. Handbook Committee, Ruth E. coord. "Materials characterization", 1981
- 4. American Society for Metals., Symposium On Applications Of Modern Metalographic Techniques (1969 : Filadelfia, Filadelfia)
- American Society for Testing and Materials., metallography- a practical tool for correlating the structure and properties of materials : A symposium presented at the seventy-sixth annual meeting American society for testing and materials, Philadelphia, pa., 25-26 june 1973
- American Welding Society., A Study Concerning Intercritical HAZ Microstructure and Thoughness in Steels., By D. P. Ffairchild, N. V. Banguru, J. Y. Koo, P. L. Harrison and A. Ozekcin., Supplement to the Welding Journal, December 1991
- American Welding Society., Heat-Affected Zone Thoughness of SMA Welded 12%Cr Martensitic-Ferritic Steels. By T. G. Gooch and B. J. Ginn., april 22-27, 1990
- American Welding Society., Usefulness of Undermatched Welds for High-Strength Steels. Undermatched welds reduce preheating requirements and improve the feasibility of using high-strength steels. By A. Umekuni and K. Masubuchi., July, 1997
- American Welding Society., Prediction of HAZ Hardness in Welds of Quenched and tempered HSLA Steels. Carbon equivalent formulas are evaluated for accuracy in predicting the critical HAZ hardness at which the tendency for cold cracking occurs., By Z. Zaczek and J. Cwiek., January, 1993
- American Welding Society., Soft Zone Formation in Dissimilar Welds between Two Cr-Mo Steels., Data on hard and soft zone formation are used to assist in the selection of welding consumables for joining., By S. K. Albert, T. P. S. Gill, A. K. Tyagi, S. D. Kulkarni and P. Rodriguez., march, 1997
- 11. American Welding Society., In Situ Determination of Transformation Temperatures in the Weld HAZ, By Phillip R. H., January, 1983
- 12. Anderson, Robert Clark.,"Destructive Testing", Metals park, ohio: Asm international, 1988
- 13. Authier, Andre., "Dynamical theory of X-Ray diffraction", Oxford : University, 2001
- 14. Avner, S., "Introducción a la metalurgia Física", McGrae-Hill, 1988
- 15. Boyer, Howard E., "Atlas of stress-strain curves" Metals park, ohio: Asm international, 1987
- Brady, George Stuart and Clauser Henry R. Materials Handbook: An encyclopedia for managers, technical professional, purchasing and production managers, technicians, supervisors and foreman, McGraw-Hill, 1986
- 17. Gerardo, Cabañas Moreno.,"Texturas cristalográficas por difracción de rayos X y neutrones", México, D.F. : Sociedad Mexicana de Cristalografía, 1998

- Cloud, Gary L., "Optical methods of engineering analysis", Cambridge; New York : Cambridge University Press, 1995
- 19. R. Delhez and E. J. Mittemeijer., "European Powder Conference(7: 2000: Barcelona, España)", Switzerland: Trans Tech, 2001
- 20. Dieter George., "Metalurgia Mecánica", Madrid, España, Agular ediciones, 1967
- 21. Ferrer B. Miguel., "Resistencia de materiales", Alfaomega, 2001
- Gliner, Boris Moissevich., "Determination mechanical and technological properties of metals", New York: Pergamon, 1960
- 23. Goulet, Jean., "Prontuario de resistencia de materiales", Madrid: Paraninfo: Thomson Learning, 2001
- Guerra Romero, M. Ignacio., "Apuntes Gráficos de resistencia de materiales", Leon, España: Universidad de Leon: Fundación "institución Chicarro-Canseco-Banciella, deposito legal 2001
- 25. Harker, Anthony Henry.,"Elastic waves un solids with applications to nondestructive testing of pipelines", Bristol philadelphia: A. Hilger: British gas,1988
- 26. Horwitz, H., "Soldadura, Aplicaciones y Práctica", Alfaomega, 1990
- 27. International Metallographic Society., Technical Meeting (18 : 1985 : Denver, Colorado)., Welding, failure analysis and metallography : Proceedings of the eighteenth annual technical meeting of the international metallographic society/ Ed. By macInter r. louthan, idin lemay, george f. vander voort
- Ivorra Chorro, Salvador, "Elasticidad y resistencia de materials": colección de ejercicios, Valencia UPV, 2001
- Mark Aindow et al, "Influences of interface and dislocation behavior on microstructure evolution", symposium held November 27-30,2000, Boston Massachussets, U.S.A., Warrendale, Pennsylvania: Materials Research Society, 2001
- Materials Research Society symposium proceedings; v.652.,"Influences of Interfaces and dislocation behavior on microstructure evolution": symposium held November 27-30, 2000, Boston, Massachusetts, U.S.A., Warrendale, Pennsylvania : Materials Research Society, 2001
- 31. Metals Handbook., Vol. 3, 9a. ed., ASM, 1980
- 32. Metals Handbook., Vol. 4, 9a. ed., ASM, 1981
- 33. Metals Handbook., Vol. 6, 9a. ed., ASM, 1983
- 34. Metals Handbook., Vol. 10, 10a. ed., ASM, 1993
- 35. Metals Handbook., Vol. 11, 10a. ed., ASM, 1993
- 36. Minerals, Metals and Materials Society. Meeting(1998: San Antonio Texas), "Processing of metals and advanced materials".
- Polzin, T. Bcr information, applied metrology: Intercomparison of microhardness measurements, Luxemburg: Comision de las comunidades europeas, directorategeneral science, research and development, 1992
- 38. Reed-Hill, R., "Principios de Metalurgia Física", CECSA, 1979
- 39. Ross, Robert B., "Investigating mechanical failures: the metalurgist's approach",London: Chapman & Hall, 1995
- Snyder, Robert L., "Defect and microstructure analysis by diffraction", New York : Oxford University, 1999

- 41. Suryanarayana, C.,"X-Ray diffraction : a practical aproach", New York, Plenum, 1998
- 42. Symposium On Metallography In Failure Analysis Houston, Tex. 1977., "Metallography in failure analysis / Edited by james l., mccal snd p. m. French., New York : Plenum, 1978
- 43. Tabor, D. "The hardness of metals", Oxford; México City: Clarendon, 2000
- 44. Theo Hahn., "International tables of crystallography : Volumen A, space group symmetry", Dordrecht : Published for the International Union of Crystallography by Kluwer Academic, 2002
- 45. Vidal Borbolla, Miguel Angel et al., "Curso de elementos de difracción de rayos X de alta resolución" México : Sociedad Mexicana de Cristalografía, 1997
- 46. Welding Journal., Effect of Composition and Energy Input on Structure and Properties of High-Strength Weld Metals. Strength and toughness properties of welds deposited under low, medium and high heat input conditions are detailed., By J. A. Gianetto, N. J. Smith, J. T. Mcgrath and J. T. Bowker., November, 1992
- 47. Welding Research Council., Oxidation Behavior of Weld Metal, HAZ and Base Metal Regions in Weldments of Cr-Mo Steels. Chromium content was found to significantly affect the oxidation behavior in different regions of the weldment. By R.K. Singh and J. B. Gnanamoorthy., Supplement to the welding journal, july 1995
- 48. Welding Research Council., Alloy Recovery in 12% Cr Continuos Caster Roll Welding. Chromium and Carbon recovery vary significantly with acid flux, but not with basic flux, when the flux-to-wire ratio is varied., By D. J. Kotecki., January, 1994
- 49. Welding Research Journal., Influence of Chromium on the Mechanical Properties and Microstructure of Weld Metal from High Strength SMA Electrode. Increasing Chromium leads to larger proportions of columnar structure in the weld metal at the expense of a refined microstructure., By E. Surian, J. Trotti, A. Cassanelli and L. A. De Vedia., March, 1994
- 50. Wilson, A.J.C., "International tables of crystallography", Dordretch : Published for the international Union of Crystallography by Kluwer Academic, 1999