

Universidad Nacional Autónoma de México

3.162,0

01161

División de Estudios de Posgrado

Facultad de Ingeniería

Amplificación de los Desplazamientos de Aisladores de Base por Efectos Bidireccionales

TESIS

Para obtener el grado de:

Maestro en Ingeniería (Estructuras)

PRESENTA

Dr. Arturo Tena Colunga

México DF, 2004

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TABLA DE CONTENIDO

Introducción	1
Capítulo 1: Antecedentes sobre reglas de combinación	
por efectos bidireccionales horizontales en estructuras en general	5
Estudios previos	
Figuras	10
Capítulo 2: Modelo estructural en estudio	13
Introducción	13
Características generales de la estructura	14
Propiedades de la superestructura (estructura en base rígida)	14
análisis de la superestructura	14
Determinación de las propiedades de los aisladores de comportamiento elástico lineal	14
Determinación de las propiedades de los aisladores de comportamiento inelástico bilineal	16
Tablas	18
Figuras	21
Capítulo 3: Base de datos utilizada para el presente estudio	25
Introducción	25
Sismicidad en México	
Regiones sísmicas en México	26
Criterios generales de selección de acelerogramas	26
Identificación de los acelerogramas seleccionados para aisladores	
de comportamiento elástico lineal	27
Criterios de escalamiento y selección de acelerogramas para aisladores	
de comportamiento bilineal	28
Identificación de los acelerogramas seleccionados para aisladores de comportamiento biline:	al 29
Tablas	30
Figuras	66

Capítulos 4: Factores de amplificación de los desplazamientos de los	
aisladores de base de comportamiento elástico lineal por efectos	
bidireccionales	83
Descripción del procedimiento de análisis utilizado	83
Criterio estadístico utilizado	
Discusión de los resultados observados	
Función de amplificación propuesta	87
Tablas	89
Figuras	

Capítulos 5: Factores de amplificación de los desplazamientos de los aisladores de base de comportamiento bilineal por efectos

bidireccionales	105
Descripción del procedimiento de análisis utilizado	105
Criterio estadístico utilizado	106
Discusión de los resultados observados para cada zona	106
zona B-I	106
zona C-I	
zona D-I	110
Funciones de amplificación propuestas para cada zona	111
zona B-I	
zona C-I	
zona D-I	113
Funciones de amplificación propuestas de demandas de ductilidad para cada zona	
zona B-I	
zona C-I	
zona D-I	
Figuras	

Introducción	
Comparaciones con la regla del 100%+30%.	
caso lineal	
caso no-lineal	
Comparaciones entre comportamiento elástico lineal e inelástico bilineal	
Figuras	
Capítulos 7: Resumen y conclusiones	155

Referencias 1	10	(5	2
---------------	----	---	---	---

Introducción

Gracias a los recientes adelantos en los métodos de análisis de estructuras (aisladas sísmicamente o no), y al aumento de las investigaciones hechas para considerar los efectos ortogonales, se han dado en los últimos 40 años las primeras reglas prácticas de combinación que permitieron implantar la regla de combinación del 100%+30% por efectos bidireccionales, que hoy en día es tan popular en los principales reglamentos de diseño sísmico del mundo.

Con respecto a las reglas de combinación de acciones bidireccionales para estructuras con aislamiento sísmico, las recomendaciones de diseño del reglamento UBC desde su versión de 1991 ha propuesto aumentar un 30% en los espectros de diseño para considerar los efectos bidireccionales. Esta consideración reglamentaria supone basarse en la regla del 100%+30%, pero como se comenta en el capítulo 6, no son siguiera equivalentes.

Además, el UBC indirectamente ha establecido los desplazamientos de diseño para los aisladores a partir del espectro de diseño de aceleración para estructuras convencionales, en vez de hacerlo transparentemente a partir de un espectro de desplazamientos. Por lo tanto, los desplazamientos asociados a dicho espectro en el intervalo de periodos donde se define la meseta no son rigurosamente proporcionales a los que se definirían procesando independientemente un espectro de desplazamientos y, por tanto, pueden resultar inapropiados para el diseño de sistemas de aislamiento.

Por tal motivo, en este trabajo se trata de dar un mejor enfoque para tomar en cuenta los efectos bidireccionales para obtener los desplazamientos de diseño en estructuras con aislamiento sísmico.

En el capítulo 2 se presenta una breve explicación de cómo en las últimas décadas en nuestro país se ha ido incrementando el interés en el uso de sistemas de aislamiento como control activo, por su versatilidad y capacidad de mantener a las estructuras dentro de los estados límites de servicio y resistencia ante las acciones sísmicas. Para el desarrollo de este estudio paramétrico en particular, se presentan las propiedades del modelo analítico empleado, así como las propiedades de los aisladores lineales y bilineales, considerando periodos en base aislada (T_a) siguiendo las recomendaciones del UBC.

En el capítulo 3 se presenta la selección y filtración de acelerogramas de la Base Mexicana de Sismos Fuertes con características de suelo firme (roca), registrados en estaciones cercanas a la zona de subducción de la costa mexicana del Pacífico, para estudiar las amplificaciones y sus respectivas desviaciones, con la finalidad de obtener expresiones simples que permitan tomar en cuenta los efectos bidireccionales en el diseño de aisladores sísmicos.

Algunos requisitos para la selección de los acelerogramas fueron que: (1) deberán pertenecer a sismos de magnitudes mayor o iguales a 6.5, (2) las aceleraciones máximas del terreno estén cercanas a 10 cm/seg^2 en ambas componentes ortogonales y, (3) que la curva de la integral correspondiente a la intensidad de Arias sea adecuada. De lo anterior, este estudio aceptó 154 pares de acelerogramas organizados en 13 eventos sísmicos, como se explicara con detalle en el capítulo 3.

Se realiza primero un estudio paramétrico que considera un comportamiento elástico lineal de los aisladores, empleando la base de datos depurada, tomando para cada registro sus componentes N-S y E-W, para elaborar los archivos de datos que requiere el programa 3D-BASIS.

Para el caso del estudio paramétrico que considera el comportamiento no-lineal de los aisladores, los acelegramas seleccionados para el analisis lineal se escalaron de manera que tuvieran la misma aceleración espectral para un periodo efectivo dado. En este estudio, dicha ordenada espectral de aceleración corresponde a los espectros de diseño de las zonas D-I, C-I y B-I propuestos por el Manual de Obras Civiles de 1993 (MOC-93), seleccionando el valor del periodo T=2.24seg.

Para el estudio paramétrico con aisladores bilineales, se considera una pendiente posterior a la fluencia del 10%, además de los siguientes valores de cortante de fluencia para cada zona sísmica en estudio, según la zonificación del Manual de Obras Civiles de 1993 (MOC-93, 1993):

Zona B – I
$$\begin{cases} V_y = 3\% \\ V_y = 5\% \end{cases}$$
, Zona C – I $\begin{cases} V_y = 8\% \\ V_y = 10\% \end{cases}$, Zona D – I $\begin{cases} V_y = 8\% \\ V_y = 10\% \\ V_y = 12\% \end{cases}$

En el capítulo 4 se describe la metodología empleada para obtener los factores de amplificación de los desplazamientos de los aisladores con comportamiento elástico lineal por efectos bidireccionales y el procedimiento de análisis del modelo estructural con base aislada. Se emplearon los 154 pares de acelerogramas correspondientes a los 13 eventos sísmicos diferentes.

Se define la componente dominante normalizada, considerando el criterio de la mínima sumatoria de los factores de amplificación (promedio "pesado"), con base en un criterio energético evaluado de manera indifecta. También se realiza un estudio paramétrico que considera los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$), evaluándolos primero considerando a cada evento independientemente, con el fin de determinar si existe alguna relación fuerte entre los factores de amplificación y las características de cada evento, donde se trata de concluir si estas respuestas máximas están ó no están directamente relacionadas entre sí, y también si existe o no una relación en función de la magnitud.

Paralelamente a este estudio, se evalúan los factores de amplificación entre acción bidireccional $(D_{max}BID)$ y la componente dominante $(D_{max}UNI)$ correspondientes a la media, la media más una desviación estándar y la media más vez y media la desviación estándar, considerando los 154 registros acelerográficos. Por último, se definen en este capítulo expresiones prácticas simples (una recta) como propuesta de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$.

De manera análoga, en el capítulo 5 se presenta la metodología empleada para obtener los factores de amplificación de los desplazamientos de los aisladores de base de comportamiento bilineal por efectos bidireccionales. Para este estudio, se analizaran 73 pares de acelerogramas para la zona D-I, 90 pares para la zona C-I y, 135 pares para la zona B-I, que corresponden a 13 eventos sísmicos diferentes, siguiendo el criterio de escalamiento definido en el capítulo 3.

Se realiza un estudio paramétrico para evaluar los factores de amplificación máximos para la media y la media más una desviación estándar $(X+1.5\sigma)$ de cada uno de los cortantes de fluencia correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los

27

C3

desplazamientos máximos de los aisladores ante la excitación dominante ($D_{max}BID/D_{max}UNI$) de cada una de las zonas en estudio, con el fin de determinar si existe alguna relación fuerte entre los factores de amplificación de cada uno de los cortantes de fluencia para distintas zonas, si son semejantes en el intervalo de periodos considerado, o sí sus características pueden depender de las características del sismo.

Para definir las envolventes de diseño para la media más una desviación estándar $(X+\alpha)$ y la media más una y media la desviación estándar $(X+1.5\alpha)$ en el intervalo de periodos de interés, se decidió emplear ecuaciones prácticas y simples de primer orden correspondientes a los distintos cortantes de fluencia de las zonas B-I, C-I y D-I, para los factores de amplificación máximos.

En este capítulo también se estudian las relaciones entre el periodo de vibración en base aislada (T_a) y el cociente obtenido del desplazamiento dinámico máximo normalizado con el desplazamiento de fluencia del aislador para cada caso (demanda de ductilidad), ante la correspondiente componente dominante. Para las demandas de ductilidad correspondientes a los distintos cortantes de fluencia de las zonas B-I, C-I y D-I, se proponen funciones suaves exponenciales simples para definir una envolvente de diseño para la media más una desviación estándar (X+q) y la media más vez y media la desviación estándar (X+1.5q) en el intervalo de periodos de interés.

Para ambos estudios presentados en los capítulos 4 y 5, se presentan las respuestas medias de los efectos bidireccionales de todas las simulaciones realizadas, además de la media más una desviación estándar, asociada este último criterio a una función de densidad de probabilidad acumulada de 0.8413, que se considera un criterio razonable en ingeniería civil. El criterio estadístico correspondiente a la media más vez y media la desviación estándar está asociado a una función de densidad de probabilidad acumulada de 0.9332, y se incluyó en el estudio tomando en cuenta que algunos ingenieros sienten que en el diseño de aisladores sísmicos, se deben tomar criterios estadísticos más conservadores.

Finalmente, en el capítulo 6, se comparan los factores de amplificación resultado de los efectos bidireccionales del análisis lineal y los factores de amplificación resultado de los efectos bidireccionales del análisis no lineal con la regla del 100%+30%, donde las interrogantes son sí realmente esta regla para combinar efectos bidireccionales es aplicable también al diseño por desplazamientos, si es independiente del periodo de la estructura y de las características de los movimientos del terreno y si es segura. Además, se comparan también los factores de amplificación resultado de los efectos bidireccionales del análisis lineal con los factores de amplificación resultado de los efectos bidireccionales del análisis no-lineal.

Miguel Ángel Pérez Osornio

4)

CAPÍTULO

Antecedentes sobre reglas de combinación por efectos bidireccionales horizontales de estructuras en general

1.1 Estudios Previos

En los inicios de la ingeniería sismo-resistente, la mayoría de las investigaciones sobre la respuesta dinámica de sistemas estructurales solamente se consideraba una componente ante la excitación de sismos fuertes. Actualmente ha ido en aumento en las investigaciones considerar dos e incluso tres componentes traslacionales de los movimientos del terreno para el análisis de estructuras, que con los recientes adelantos en los métodos de análisis por computadora hacen posible su estudio, aunque no de manera generalizada, pues en la práctica normalmente no se usa y varias investigaciones aún se basan en estudiar sistemas planos ante la acción de una de las componentes del terreno.

Dada la complejidad del estudio de la dirección de propagación de las ondas sísmicas, Penzien y Watabe (1975) aplican modelos estocásticos para establecer los movimientos del terreno por medio de análisis estadísticos, lo cual es posible si se cuenta con una extensa base de acelerogramas. En su estudio emplearon la siguiente base:

- 1. Long Beach, California, 10 de marzo de 1933
- 2. El Centro, California, 18 de mayo de 1940
- 3. Taft, California, 21 de julio de 1952
- 4. Tokachi-Oki, Japón, 16 de mayo de 1968
- 5. Hiddaka-Sankei, Japón, 21 de enero de 1970
- 6. Izu-Hanto-Oki, Japón 9 de mayo de 1974

El tratamiento que presentaron fue introducir el concepto de ejes principales del movimiento del sismo, a través de una transformación ortogonal completamente análoga a la transformación típica de esfuerzos; sin embargo, los autores mostraron que a lo largo del movimiento del terreno existe un sistema de ejes ortogonales y que se presentan sin correlación, y que estas direcciones de ejes principales permanecen aproximadamente constantes durante la fase intensa de un sismo, además de que el eje principal mayor es dirigido hacia el epicentro del sitio, el eje intermedio permanece perpendicular al eje mayor y el eje principal menor es casi vertical.

Smeby y Der Kiureghian (1985), basándose en el modelo de Penzien y Watabe, y los conceptos de vibraciones aleatorias estacionarias, propusieron la regla de combinación modal para el análisis de estructuras sujeta a las tres componentes del sismo, donde esta regla responde a la correlación entre las respuestas modales de las estructuras así como entre las componentes del sismo.

6)

Emplean la teoría de vibraciones aleatorias para determinar el ángulo crítico de incidencia para el caso de dos componentes del terreno con formas espectrales idénticas que toman en cuenta una apropiada correlación en las componentes del sismo. Las reglas que desarrollaron son para los casos donde la dirección de ejes principales es conocida y cuando no lo es, el modelo analítico propuesto se ilustra en la figura 1.1. De su estudio concluyeron lo siguiente:

Se deben especificar los espectros de entrada para las componentes del movimiento del sismo a lo largo de los ejes principales y, considerar que a lo largo de cualquier otra dirección puede haber un modelado poco realista en las correlaciones intracomponente. El efecto de correlación entre las componentes de entrada en la respuesta de la estructura es pequeño y casi insignificante a lo largo de los ejes principales que casi son iguales en intensidades.

Recomiendan para fines prácticos usar la regla CQC para la combinación de la respuesta modal cuando se usen componentes individuales del sismo y la regla de Rosenblueth (SRSS) cuando se desee realizar combinaciones que incluyan las tres componentes traslacionales, porque las componentes ortogonales son casi iguales en intensidad.

Debido a que el movimiento del sismo puede actuar en cualquier dirección horizontal, es posible que el ángulo crítico de incidencia que lleva a una mayor respuesta dinámica a una estructura cambie. López y Torres (1997), propusieron un método para calcular el ángulo crítico de incidencia, que ellos consideran un método simple que se puede aplicar a los reglamentos de diseño sísmico. Es un método aproximado, porque no toman en cuenta la correlación apropiada de las componentes del movimiento del terreno cuando actúa a lo largo de los ejes principales de la estructura.

López y Torres (1997) comentan que se puede determinar la respuesta máxima de una estructura para el caso general de las tres componentes de traslación del sismo y que puede ó no tener una forma espectral idéntica. Se basaron en la teoría de vibraciones aleatorias obteniendo expresiones idénticas a las propuestas por Smeby y Der Kiureghian, aplicándolas a un modelo estructural donde se ignora la respuesta vertical y solamente se incluyen las acciones ortogonales. La estructura que emplearon es de concreto reforzado como se ilustra en la figura 1.2 y sujeta a dos espectros de diseño por lo que definieron cinco casos de carga sísmica, demostrando que el ángulo crítico de incidencia no depende de la proporción espectral de las componentes ortogonales para el caso práctico de dos espectros horizontales con formas idénticas y un espectro vertical arbitrario. Para el caso de espectros idénticos a lo largo de las dos direcciones horizontales, la respuesta estructural es crítica en cualquier dirección. Este valor de la respuesta de la estructura es un límite superior para toda posible combinación espectral y ángulo crítico de incidencia.

La intensidad de cada componente del movimiento del terreno es comúnmente evaluada por el espectro de respuesta. La intensidad de varias componentes se evalúa generalmente por reglas de combinación. Por ejemplo, las reglas propuestas por Smeby y Der Kiureghian, son una extensión de la regla de combinación CQC, donde se combinan las contribuciones de las tres componentes traslacionales del sismo para estimar la respuesta total.

Menun y Der Kiureghian (1998) nombraron su regla CQC3, que en su opinión es un procedimiento más general y racional que la regla SRSS que emplean varios reglamentos de diseño sísmico. Hasta donde saben estos autores, no se han estudiado estructuras tridimensionales más complejas. En su artículo ilustran con un ejemplo numérico la respuesta de un puente vehicular donde comentan las ventajas que ofrece la regla CQC3 y los errores que presenta si se consideran las reglas de combinación que actualmente presentan los reglamentos de diseño.

Antecedentes sobre reglas de combinación por efectos...

C7

La orientación critica de los ejes principales de la estructura por medio de la regla SRSS, sólo se puede encontrar a través de pruebas de ensaye y error que requieren demasiados análisis dinámicos, además de que la orientación crítica de los ejes principales será diferente para cantidades de respuesta también diferentes. En contraste, señalan los autores que la formulación de la regla CQC3 proporciona una estimación simple para encontrar la orientación crítica de los ejes relativos de la estructura con los ejes principales del movimiento del terreno y el valor máximo asociado a una respuesta dada.

Según la idealización propuesta por Penzien y Watabe en 1975 (Anastassiadis, *et al.* 1998), el movimiento ortotrópico se describe para tres espectros de respuesta independientes como se ilustra en la figura 1.3.

Las formulas simplificadas que desarrollaron Anastassiadis *et al.* (1998) han sido ya incluidas en algunos reglamentos de diseño sísmico y la simplificación consiste en usar un mismo espectro de respuesta para las componentes ortogonales y 2/3 del espectro usado en las componentes ortogonales para la componente vertical.

De manera similar como comentan otros autores, este tema aún no se ha investigado a fondo, a pesar de la simplicidad que se puede manejar y de ser incorporadas expresiones en los reglamentos ó en los programas de análisis, además de las indagaciones en conocer la respuesta de una estructura sometida a la acción bidireccional, debido a que en la actualidad el análisis está basado en reglas de combinación porcentual formuladas empíricamente, pasando por alto formulaciones digamos "exactas".

Anastassiadis *et al.* (1998) presentan un ejemplo numérico de una estructura de seis pisos a base de marcos de concreto como se ilustra en la figura 1.4, donde determinan la orientación de la respuesta máxima, los valores máximos y mínimos de la respuesta y, las combinaciones más desfavorables de algunas fuerzas presentadas en la columna "C" de la figura 1.4, para poder evitar así un sobre diseño. Demuestran que para espectros horizontales de diseño iguales, la respuesta en la estructura bajo la acción bidireccional no está en función de la orientación del sismo, y que este caso no se presenta si se usan las reglas de combinación empíricas.

El estudio de la respuesta de estructuras a la acción multidireccional del sismo ha sido estudiado recientemente por López *et al.* (2000), quienes cuestionan que la ubicación del epicentro no se conoce y que es necesario determinar la respuesta de una estructura para todas las posibles ubicaciones de los ejes principales y que se diseñe para la respuesta más critica. En su artículo se basan en la regla de combinación CQC3 que describe la respuesta estructural en función del ángulo de incidencia y comentan que no es posible determinar la respuesta para varios valores de ángulos de incidencia. La meta principal de los autores es comprender mejor la respuesta de la estructura ante la acción bidireccional del sismo, por ello propusieron una expresión para calcular el valor crítico de la respuesta para cualquier ángulo de incidencia, además de poder aplicar dicha expresión en los reglamentos, sin necesidad de calcular el ángulo crítico de incidencia.

El coeficiente de correlación depende de la las propiedades de la estructura, pero siempre limitado entre -1 y 1. Para un valor fijo del parámetro γ que proponen, la relación r_{cr}/r_{srss} es más grande sí $\beta = 1$ y $\alpha = \pm 1$.

$$\gamma = \frac{A(T_n) \text{ eje mayor}}{A(T_n) \text{ eje intermedio}} = \text{ relación entre eje principal mayor y el eje intermedio del espectro de intensidades}$$
$$T_n = \text{ periodo natural de vibración para un sistema de un grado de libertad}$$

$$\beta = \frac{r_y}{r_x} = \text{relación entre respuestas}$$

$$\alpha = \frac{r_y}{r_x r_y} = \text{coeficiente de correlación}$$

$$\frac{r_e}{r_{eres}} = \text{relación de la respuesta crítica entre la respuesta de la regla SRSS}$$

Del estudio paramétrico que realizaron a un edificio de un piso concluyen que el coeficiente de correlación γ propuesto puede satisfacerse para las fuerzas axiales en las columnas de edificios simétricos ó aproximarse a los desplazamientos laterales de los elementos de edificios asimétricos mostrados en la figura 1.5.

López *et al.* (2001) comentan que en la práctica es normal determinar las tres respuestas por separado de una estructura y estas reglas que nos dan esta respuesta son la regla SRSS, la regla del 100%+40% (Newmark), la regla del 100%+30% (Rosenblueth y Contreras). El objetivo de López *et al.* (2001) fue evaluar la exactitud que presentan estas reglas comparadas con las estimaciones resultantes de la respuesta contra los valores críticos de la respuesta determinadas de acuerdo con la regla CQC3, presentando expresiones analíticas para límites inferiores y superiores para relaciones re/r_{cr}, donde r_e son las respuestas estimadas por las reglas de combinación empíricas empleadas en los reglamentos y r_{cr} es la respuesta crítica determinada por los procedimientos racionales.

López *et al.* (2001) demostraron que estas expresiones son válidas para estructuras elásticas y para cualquier espectro de diseño, para valores de espectro de intensidad (g) entre 0.5 y 0.85. La regla SRSS simplificada estima la relación r_e/r_{cr} limitada entre 1 y 1.265, y la SRSS entre 0.79 y 1.0, la regla 100%+30% entre 0.92 y 1.16 y la regla del 100%+40% limitada entre 0.99 y 1.25 (figura 1.5). Concluyen que aumenta la respuesta crítica para estructuras simétricas y asimétricas cuando el periodo de vibración de los dos modos contribuyen en toda la respuesta sísmica, Este efecto no es tomado en cuenta por las reglas de combinación empíricas.

El estudio paramétrico que realizaron para estructuras simétricas de un piso demostraron que la respuesta crítica sobre-estima 18% más la regla del 100%+40%, en todo el intervalo en la relación de periodos para γ =0.65, y subestima la respuesta crítica por mas del 16% la regla SRSS para γ =0.65, cuando T_x \approx T_y

Con respecto a las reglas de combinación de acciones bidireccionales para estructuras con aislamiento sísmico, las recomendaciones de diseño del reglamento UBC desde su versión de 1991 han propuesto aumentar un 30% los espectros de diseño para considerar los efectos bidireccionales. Esta consideración reglamentaria supone basarse en la regla del 100%+30%, que como comentan y demuestran Naeim y Kelly (1999), no son ni siquiera equivalentes, como se ilustra en la figura 1.6.

Antecedentes sobre reglas de combinación por efectos...

Para el diseño de aisladores conforme al método estático del reglamento UBC, es común que los diseñadores tomen la regla del 100%+30% para obtener desplazamientos de diseño, aunque el UBC no establece en el capítulo de las normas de diseño de aisladores que así deba hacerse conforme al método estático, pero se supone que así se debe hacerse conforme a lo establecido por las normas de diseño sísmico y de la lectura del escalamiento de la ordenada espectral del espectro de diseño para análisis dinámicos.

59

Este trabajo trata de dar un enfoque más transparente a partir de obtener los factores de amplificación de los desplazamientos de los aisladores de base de comportamiento elástico lineal y bilineal por efectos bidireccionales empleando un modelo lineal cuyas propiedades en base rígida se obtuvieron de estudios previos (Gómez 1999, Tena-Colunga y Gómez-Soberón, 2002).

En este estudio se comparan los factores de amplificación resultado de los efectos bidireccionales del análisis lineal y los factores de amplificación resultado de los efectos bidireccionales del análisis no lineal con la regla del 100%+30%, donde la interrogante es sí realmente esta regla para combinar efectos bidireccionales es aplicable también al diseño por desplazamientos, si es independiente del periodo de la estructura y de las características de los movimientos del terreno y, si es segura.

Por lo tanto, este estudio paramétrico ha considerado rigurosamente la selección y filtración de registros con características de suelo firme ubicados en su mayoría frente a la zona de subducción de la costa mexicana del Pacífico, para estudiar las amplificaciones y sus respectivas desviaciones, con la finalidad de obtener expresiones simples que permita tomar en cuenta los efectos bidireccionales en el diseño de aisladores sísmicos.

Como se discute capítulos adelante, se empleó un criterio estadístico para evaluar los cocientes de la acción bidireccional entre unidireccional de sistemas de aislamiento sísmico (lineales y bilineales) en un intervalo de periodos entre 1.5s y 3s de todas las simulaciones realizadas, correspondiente a la media más una desviación estándar, asociado a una función de densidad de probabilidad acumulada de 0.8413, que se considera un criterio razonable en ingeniería civil. El criterio estadístico correspondiente a la media más vez y media la desviación estándar también se estudió, tomando en cuenta que algunos ingenieros sienten que en el diseño de aisladores sísmicos se deben tomar criterios estadísticos más conservadores.

En los siguientes capítulos se presenta el estudio con detalle, que como se apreciará, parte de un planteamiento muy distinto al que han hecho otros estudios, pues los resultados que aquí se presentan se basan en la estadística de las respuestas máximas de análisis paso a paso rigurosos, mientras que en la mayoría de los estudios que se resumen en este capítulo parte de combinaciones de las respuestas máximas obtenidas a partir de espectros de respuesta calculados independientemente.

10 >

Figura 1.1 Modelo de Smeby y Der Kiureghian (1985)

Nine-storey reinforced concrete asymmetric building. Dimensions of beams and columns are in centimeters. Length of bays and storey heights are in meters. (a) plan view, (b) frames 2 and 3 in direction $Y_{-}(c)$ frames A and D in direction X

Figura 1.2 Modelo de López y Torres (1997)

Response quantity notation for unidirectional (a to d) and for bidirectional (c,f) seismic excitations.

Figura 1.3 Anastassiadis, Avramidis y Panetsos (1998)

Figura 1.4 Modelo propuesto por Anastassiadis, Avramidis y Panetsos (1998)

Figura 1.5 Modelos propuestos por López, Chopra y Hernández (2000)

(11

Miguel Ángel Pérez Osornio

12)-

Antecedentes sobre reglas de combinación por efectos...

CAPÍTULO

Modelo estructural en estudio

2.1 Introducción

El aislamiento en estructuras es un procedimiento basado en la idea de reducir las demandas sísmicas, a través de disipación de energía. Dichas demandas están en función de las propiedades dinámicas de la estructura, como el periodo natural de vibración y el amortiguamiento, también dependen de las características del suelo y de las fallas activas que puede presentarse en dicha zona en particular.

Los sistemas de aislamiento usualmente proporcionan amortiguamiento adicional a la estructura, que ayudan a controlar los desplazamientos relativos entre el suelo y la edificación; también proporcionan la rigidez necesaria ante cargas de servicio. Para lograr reducir las demandas sísmicas de la estructura, los sistemas aislantes aumentan la flexibilidad para dar así paso a que se presenten periodos de vibración traslacionales mucho mayores a los que habría en condiciones de empotramiento perfecto (figura 2.1), lo cual se logra por medio de rodillos, esferas, sistemas de fricción pendular y elastómeros laminados, siendo estos últimos los que han dado auge importante para la aplicación del concepto.

En las últimas décadas se ha ido incrementando poco a poco el uso de sistemas de aislamiento como control activo por su versatilidad y capacidad de mantener a las estructuras dentro de los estados límite de servicio y resistencia ante las acciones sísmicas. En los últimos 40 años se han realizado investigaciones experimentales y analíticas para comprender el comportamiento de los distintos sistemas de aislamiento. A partir de ello, se ha propuesto recomendaciones de diseño, tales como las incluidas en el reglamento UBC (*Uniform Building Code*) para edificios y el reglamento AASHTO (*American Association of State Highway and Transportation Officials*) para puentes. Los países a la vanguardia en la investigación y aplicación del aislamiento sísmico son Nueva Zelanda, Estados Unidos y Japón. La aplicación de aislamiento en estructuras y puentes también se ha destinado para proyectos de reparación. En la figura 2.2 se presenta un censo de los sistemas de aislamiento aplicados en algunos países hasta el año 1996 y en la figura 2.3 el censo hasta el año 2002.

Nótese que en los últimos tiempos se ha dado un gran aumento en los sistemas de aislamiento y la innovación de otros. En México las aplicaciones se han dado por innovaciones tecnológicas nacionales como el sistema deslizante a base de balines metálicos desarrollado por el Ing. Manuel González Flores en la década de los años setentas y el sistema pendular GT-BIS desarrollado el Ing. Federico Garza Tamez, cuyas aplicaciones se han realizado durante la segunda mitad de la década de los noventas, por ejemplo, en el edificio del periódico REFORMA

2.2 Características generales de la estructura

14)

En este capítulo se presenta la respuesta de una estructura, con planta regular, sin excentricidades de rigideces y aislada en su base ante la acción de carga por sismo. Para lo anterior se propuso como modelo a la estructura mostrada en la figura 2.4, cuyo modelo tambien es descrito en un estudio previo (*Gómez 2000*) donde se presenta la planta tipo del edificio y en la cual bajo cada una de las 16 columnas (enumeradas en la figura 2.4) se localiza un aislador sísmico. En la segunda parte de esta figura se observa la vista frontal.

A continuación se describen brevemente las propiedades del modelo.

2.3 Propiedades de la superestructura (estructura en base rígida)

Se trata de una estructura regular, simétrica en ambos ejes ortogonales (eje E-W y eje N-S) como se observa en la figura 2.4, formada por marcos de concreto reforzado y contraventeada en las crujías de esquina en toda su altura. Cuenta con tres niveles y altura de entrepiso de 3 m. Existen tres claros de 7 m por crujía en cada una de las direcciones (E-W y N-S); el área en planta es de 441 m^2 . Existen un total de 16 apoyos; en cada uno de ellos, se localiza un aislador.

El sistema estructural consiste de columnas rectangulares de 50 X 50 cm. y vigas rectangulares de 35 X 75 cm. El esfuerzo nominal a la falla a compresión del concreto (f_c) en ambos elementos fue de 250 kg/cm², el esfuerzo límite de fluencia del acero (f_y) fue de 4200 kg/cm² y el módulo de elasticidad del concreto fue de $E = 14000 \sqrt{f'_c}$. En las crujías de esquina (entre ejes A y B, ejes C y D, ejes 1 y 2, y ejes 3 y 4) existen contravientos de acero sección cajón de 25 X 25 cm. con espesor de 0.8 cm. El peso total del sistema estructural del edificio (W) es de 991 ton.

2.3.1 Análisis de la superestructura

Se realizó un análisis estructural previo del modelo en estudio, considerando a la estructura empotrada en su base (Gómez 2000) con el programa ETABS (Habibullah, 1991). De este análisis se obtuvieron los modos y periodos fundamentales de vibración del edificio en base rígida, que son datos que requiere el programa 3D-BASIS (Nagarajaiah *et al.*, 1991) para obtener los parametros necesarios para el análisis dinámico no lineal de estructuras tridimensionales con base aislada. Este estudio se comentará en secciónes más adelante en los capítulos 4 y 5.

En las tablas (2.1 y 2.2) se resumen los resultados obtenidos del análisis con el programa ETABS, y que requiere el programa 3D-BASIS.

2.4 Determinación de las propiedades de los aisladores de comportamiento elástico lineal

Para diseño de los aisladores, este estudio se basó en trabajos anteriores (Gómez, 1996; Tena, Gómez y Salazar, 1997; Tena, 1997; Tena y Gómez, 1997; Gómez y Tena, 1999 y Gómez 2000), donde se emplearon para el diseño elastómeros laminados que están formados por placas de acero vulcanizadas con hule en ambas caras formando capas alternas. En la figura 2.5 se ilustran los dos principales tipos de elástomeros laminados (con y sin corazón de plomo) que han sido utilizados en varias partes del mundo como una alternativa de aislamiento sísmico.

(15

Para el cálculo de las propiedades de los aisladores lineales se consideró el modelo matemático de la figura 2.6.

En primer lugar se determinó el intervalo de periodos naturales de vibración para la estructura aislada sísmicamente (T_a). De acuerdo con las recomendaciones del UBC (*Uniform Building Code*), este periodo debe ser menor o igual a tres segundos y mayor a tres veces el periodo natural de vibración de la estructura con base rígida. También, según criterios de Nueva Zelanda, se recomienda mantener como mínimo un periodo en base aislada de 1.5 segundos. Por lo anterior, se estableció el intervalo en:

$$1.5 \le T_a \le 3.0$$
 (2.1)

Ya establecido el intervalo de periodos en base aislada, se procedió con el cálculo de la rigidez efectiva global del sistema de aislamiento (k_{eff}); a continuación se resumirá el desarrollo para la obtención de la ecuación que determina esta rigidez. Un estudio más detallado del mismo puede observarse en Gómez, 1996; Gómez y Tena, 1999; Tena, Gómez y Salazar, 1997; Tena y Gómez, 1997; Tena, 1997 y Gomez 2000.

En primer lugar suponemos que la rigidez total del sistema de aislamiento es la misma que la rigidez efectiva, mínima y máxima, esto es:

$$k = k_{min} = k_{max} = k_{eff} \tag{2.2}$$

donde

 k_{max} es la rigidez máxima del sistema de aislamiento k_{min} es la rigidez mínima del sistema de aislamiento k_{eff} es la rigidez efectiva del sistema de aislamiento k es la rigidez del sistema de aislamiento.

Los periodos en base aislada (T_a) se determinan de la siguiente manera:

$$T_a = 2\pi \sqrt{\frac{W}{k_{\min}g}}$$
(2.3)

donde

W es el peso total de la estructura g es la aceleración de la gravedad.

A partir de la anterior fórmula se despeja el valor de la rigidez total del sistema y de ella la rigidez efectiva, para cada uno de los aisladores como se muestra.

$$k = \frac{W}{\left(\frac{T_a}{2\pi}\right)^2 g}$$
(2.4)

$$k_{efais} = \frac{k}{N_{ais}}$$
(2.5)

donde

Nais es el número de aisladores a ubicarse bajo la estructura.

Con el anterior desarrollo matemático se cuenta con los datos necesarios para poder realizar los análisis dinámicos lineales del modelo tridimensional con base aislada.

Se establecieron 16 casos de estudio, donde el periodo en base aislada (T_a) varía a partir de 1.5 hasta 3 segundos cada 0.1 segundos. En cada caso se tomaron como datos iniciales el peso de la estructura (W), la aceleración de la gravedad (g) y el número de aisladores (N_{ais}). Se obtuvieron, entre otros resultados, la rigidez efectiva del sistema de aislamiento (k_{effais}) y la rigidez efectiva de cada aislador (k_{effais}). En la tabla 2.3 se presentan tanto los datos, como los valores obtenidos para los aisladores en cada uno de los 16 casos.

2.5 Determinación de las propiedades de los aisladores de comportamiento inelástico bilineal

De igual manera que en el punto anterior, se determinó el intervalo de periodos en base aislada, para el cálculo de las propiedades de los aisladores bilineales donde se consideró el modelo matemático de la figura 2.7.

De acuerdo con el método estático del UBC y de la figura 2.7, se tiene que para el 20% del desplazamiento máximo total para el sistema de aislamiento (Δ_{im}) existe una rigidez efectiva $k_{e/2}$, también sabe que la rigidez efectiva del sistema de aislamiento para el desplazamiento de diseño ($k_{e/2}$) debe ser mayor a un tercio de la rigidez efectiva al 20% del desplazamiento de diseño ($k_{e/2}$); esto es:

$$k_{ef2} = \frac{V_2}{0.2\Delta_{max}} \tag{2.6}$$

$$k_{ef} = \frac{1}{3} k_{ef2} \implies k_{ef2} = 3k_{ef}$$
(2.7)

Por lo que desarrollando, se obtienen los valores que definen la curva primaria del modelo histerético para aisladores con comportamiento bilineal con pendiente posterior a la fluencia del 10%, además de satisfacer los requerimientos del UBC.

$$k_2 = 0.1k_1$$
 (2.8)

$$k_{l} = 5 \frac{V_{max}}{\Delta_{max}} = 5k_{eff}$$
(2.9)

$$k_2 = 0.5k_{eff}$$
 (2.10)

Para conocer el valor de la fuerza total necesaria para iniciar el comportamiento inelástico del sistema de aislamiento (V_{yiot}), se consideraron los siguientes valores, donde el cortante de fluencia sea igual al 3%, 5%, 8%, 10% y 12% de W, esto es:

$$V_{ytot} = \frac{V}{W} = 0.03 \tag{2.11}$$

$$V_{ytot2} = \frac{V}{W} = 0.05 \tag{2.12}$$

$$V_{ytot3} = \frac{V}{W} = 0.08 \tag{2.13}$$

$$V_{ytot4} = \frac{V}{W} = 0.10$$
 (2.14)

16)

$$V_{ytot5} = \frac{V}{W} = 0.12$$
 (2.15)

(17

Con los valores obtenidos de las ecuaciones (2.11), (2.12), (2.13), (2.14) y (2.15) se determina el valor de la fuerza de fluencia V_y para cada aislador.

$$V_{yais} = \frac{V_{ytot}}{N_{ais}}$$
(2.16)

Con la fórmula (2.16) y de la gráfica 2.7, se obtiene el desplazamiento de fluencia de cada aislador, esto es:

$$\Delta_{yais} = \frac{V_{yais}}{k_I} \tag{2.17}$$

De manera similar con el anterior desarrollo matemático, se cuenta con los datos necesarios para poder realizar los análisis dinámicos no lineales del modelo tridimensional con base aislada.

Se establecieron 16 casos de estudio, en los que el periodo en base aislada (T_a) varía a partir de 1.5 hasta 3 segundos cada 0.1 segundos. Para cada periodo, los datos iniciales fueron el peso de la estructura (W), la aceleración de la gravedad (g), el número de aisladores (N_{ais}) y los valores de los cortantes básales para los valores del cortante de fluencia mencionados, (V=0.03W, V=0.05W, V=0.08W, V=0.10W y V=0.12W). Se obtuvieron la rigidez efectiva del sistema de aislamiento (k_{effiot}), la rigidez efectiva de cada aislador ($k_{effiais}$), la rigidez inicial anterior a la fluencia (k_1), la fuerza necesaria para producir fluencia en cada uno de los aisladores (V_{yais}), y el desplazamiento de fluencia de cada uno de los aisladores (Δ_{yais}). En la tabla 2.4 se presentan los datos y en la tabla 2.5 los valores obtenidos para los aisladores en cada uno de los 16 casos.

Modo	Periodo (T)	Frecuencia (f)	Frec. Circular (ω)
1 I	0 18738	5 33683	(100/5)
2	0.18738	5 33683	33 53228
3	0.15617	6.40319	40.23244
4	0.06248	16.00421	100,55743
5	0.06248	16.00421	100.55743
6	0.05356	18.67220	117.32091

Table 21 Deviad .: 1. 1.1 . ~ .

Nivel	Dirección	ler. Modo	2do. Modo	3er. Modo	4to. Modo	5to. Modo	6to. Modo
3er. Nivel	X	0.0000000	0.0040312	0.0000000	0.0000000	0.0031339	0.0000000
3er. Nivel	Y	0.0040312	0.0000000	0.0000000	0.0031339	0.0000000	0.0000000
3er. Nivel	rot. Z	0.0000000	0.0000000	0.0003445	0.0000000	0.0000000	0.0002751
2do. Nivel	X	0.0000000	0.0030382	0.0000000	0.0000000	-0.0021609	0.0000000
2do. Nivel	Y	0.0030382	0.0000000	0.0000000	-0.0021609	0.0000000	0.0000000
2do. Nivel	rot. Z	0.0000000	0.0000000	0.0002663	0.0000000	0.0000000	-0.0001735
ler. Nivel	X	0.0000000	0.0014426	0.0000000	0.0000000	-0.0035479	0.0000000
ler. Nivel	Y	0.0014426	0.0000000	0.0000000	-0.0035479	0.0000000	0.0000000
ler, Nivel	rot. Z	0.0000000	0.0000000	0.0001328	0.0000000	0.0000000	-0.0003135

T_{a}	W	g	k _{efftot}		k_{effais}
(seg)	(&)	$\left(\frac{m}{s^2}\right)$	$\left(\frac{k}{m}\right)$	N _{ais}	$\left(\frac{\underline{k}}{m}\right)$
1.5	991000	9.81	1772482.1314	16	110780.1332
1.6	991000	9.81	1557845.6233	16	97365.3515
1.7	991000	9.81	1379960.1369	16	86247.5086
1.8	991000	9.81	1230890.3690	16	76930.6481
1.9	991000	9.81	1104732.6304	16	69045.7894
2.0	991000	9.81	997021.1989	16	62313.8249
2.1	991000	9.81	904327.6181	16	56520.4761
2.2	991000	9.81	823984.4619	16	51499.0289
2.3	991000	9.81	753891.2657	16	47118.2041
2.4	991000	9.81	692375.8326	16	43273.4895
2.5	991000	9.81	638093.5673	16	39880.8480
2.6	991000	9.81	589953.3721	16	36872.0858
2.7	991000	9.81	547062.3862	16	34191.3991
2.8	991000	9.81	508684.2852	16	31792.7678
2.9	991000	9.81	474207.4668	16	29637.9667
3.0	991000	9.81	443120.5329	16	27695.0333

Table 2 3 Dat J discoño ht nida dala aiclade do h

Tabla 2.4 Datos obtenidos para el diseño de los aisladores de base a ubicarse en el modelo estructural bilineal en estudio.

T _a	W	g	k _{effior}		k _{effais}	k,	<i>k</i> ₂
(seg)	(k)	$\left(\frac{m}{s^2}\right)$	$\left(\frac{\underline{k}}{m}\right)$	N _{ais}	$\left(\frac{\underline{k}}{m}\right)$	$\left(\frac{\underline{k}}{m}\right)$	$\left(\frac{\underline{k}}{m}\right)$
1.5	991000	9.81	1772482.1314	16	110780.1332	553900.6661	55390.0666
1.6	991000	9.81	1557845.6233	16	97365.3515	486826.7573	48682.6757
1.7	991000	9.81	1379960.1369	16	86247.5086	431237.5428	43123.7543
1.8	991000	9.81	1230890.3690	16	76930.6481	384653.2403	38465.3240
1.9	991000	9.81	1104732.6304	16	69045.7894	345228.9470	34522.8947
2.0	991000	9.81	997021.1989	16	62313.8249	311569,1247	31156.9125
2.1	991000	9.81	904327.6181	16	56520.4761	282602.3806	28260.2381
2.2	991000	9.81	823984.4619	16	51499.0289	257495.1444	25749.5144
2.3	991000	9.81	753891.2657	16	47118.2041	235591.0205	23559.1021
2.4	991000	9.81	692375.8326	16	43273.4895	216367.4477	21636.7448
2.5	991000	9.81	638093.5673	16	39880.8480	199404.2398	19940.4240
2.6	991000	9.81	589953.3721	16	36872.0858	184360.4288	18436.0429
2.7	991000	9.81	547062.3862	16	34191.3991	170956.9957	17095.6996
2.8	991000	9.81	508684.2852	16	31792.7678	158963.8391	15896.3839
2.9	991000	9.81	474207.4668	16	29637.9667	148189.8334	14818.9833
3.0	991000	9.81	443120.5329	16	27695.0333	138475.1665	13847.5167

T	Caso I 3%			Caso II 5%			Caso III 8%		
• u	$V_b = V_{\mu is} = \Delta_{\mu is}$		$V_{b} = V_{\mu is} = \Delta_{\mu is} = V_{b} = V_{\mu is} = \Delta_{\mu is}$		V_{b}	V_{pis}	$\Delta_{\mu is}$		
(seg)	(&)	(&)	(m)	(g)	(&)	(m)	(g)	(g)	<i>(m)</i>
1.5	29730	1858.125	0.003354618	49550	3096.875	0.005591030	79280	4955	0.008945647
1.6	29730	1858.125	0.003816810	49550	3096.875	0.006361349	79280	4955	0.010178159
1.7	29730	1858.125	0.004308820	49550	3096.875	0.007181367	79280	4955	0.011490187
1.8	29730	1858.125	0.004830650	49550	3096.875	0.008051083	79280	4955	0.012881732
1.9	29730	1858.125	0.005382298	49550	3096.875	0.008970496	79280	4955	0.014352794
2.0	29730	1858.125	0.005963765	49550	3096.875	0.009939608	79280	4955	0.015903373
2.1	29730	1858.125	0.006575051	49550	3096.875	0.010958418	79280	4955	0.017533469
2.2	29730	1858.125	0.007216155	49550	3096.875	0.012026926	79280	4955	0.019243081
2.3	29730	1858.125	0.007887079	49550	3096.875	0.013145132	79280	4955	0.021032211
2.4	29730	1858.125	0.008587821	49550	3096.875	0.014313036	79280	4955	0.022900857
2.5	29730	1858.125	0.009318383	49550	3096.875	0.015530638	79280	4955	0.024849020
2.6	29730	1858.125	0.010078763	49550	3096.875	0.016797938	79280	4955	0.026876700
2.7	29730	1858.125	0.010868961	49550	3096.875	0.018114936	79280	4955	0.028983897
2.8	29730	1858.125	0.011688979	49550	3096.875	0.019481632	79280	4955	0.031170611
2.9	29730	1858.125	0.012538816	49550	3096.875	0.020898026	79280	4955	0.033436842
3.0	29730	1858.125	0.013418471	49550	3096.875	0.022364118	79280	4955	0.035782589

Tabla 2.5 Valores obtenidos para el diseño de los aisladores de base a ubicarse en el modelo estructural bilineal en estudio (*continuación*).

T		Caso IV 10%	/		Caso V 12%	iso V 2%		
1 0	V_{b}	V _{µis}	$\Delta_{\mu is}$	V_{b}	$V_{\mu is}$	$\Delta_{\mu i s}$		
(seg)	(g)	(g)	(m)	(g)	(g)	(m)		
1.5	99100	6193.75	0.011182059	118920	7432.5	0.013418471		
1.6	99100	6193.75	0.012722698	118920	7432.5	0.015267238		
1.7	99100	6193.75	0.014362734	118920	7432.5	0.017235280		
1.8	99100	6193.75	0.016102165	118920	7432.5	0.019322598		
1.9	99100	6193.75	0.017940993	118920	7432.5	0.021529191		
2.0	99100	6193.75	0.019879216	118920	7432.5	0.023855059		
2.1	99100	6193.75	0.021916836	118920	7432.5	0.026300203		
2.2	99100	6193.75	0.024053852	118920	7432.5	0.028864622		
2.3	99100	6193.75	0.026290263	118920	7432.5	0.031548316		
2.4	99100	6193.75	0.028626071	118920	7432.5	0.034351286		
2.5	99100	6193.75	0.031061275	118920	7432.5	0.037273530		
2.6	99100	6193.75	0.033595875	118920	7432.5	0.040315051		
2.7	99100	6193.75	0.036229872	118920	7432.5	0.043475846		
2.8	99100	6193.75	0.038963264	118920	7432.5	0.046755917		
2.9	99100	6193.75	0.041796052	118920	7432.5	0.050155263		
3.0	99100	6193.75	0.044728237	118920	7432.5	0.053673884		

20)

Figura 2.1. Sistema de aislamiento de una estructura

Figura 2.2 Trabajos sobre Aislamiento Sísmico 11WCEE (42 en total), Acapulco (1996)

Figura 2.3 Trabajos sobre aislamiento sísmico 12WCEE (74 en total), Nueva Zelanda (2002)

b) vista frontal

Figura 2.4 Modelo en estudio

Figura 2.4 Modelo en estudio

Fig. 2.5. Elastómeros laminados, sin y con corazón de plomo

C23

Fig. 2.6 Gráfica esfuerzo-deformación de un aislador lineal

Fig. 2.7 Gráfica esfuerzo-deformación de un aislador bilineal

24)

CAPÍTULO

Base de datos utilizada para el presente estudio

3.1 Introducción

Durante el periodo de Porfirio Díaz, se fundó el Servicio Sismológico Nacional (SSN), cuyo propósito primordial era de difundir todos aquellos sismos ocurridos dentro de la República Mexicana y así determinar la magnitud y epicentros de cada uno de los sismos, cuyos datos fueron agrupados en catálogos mensuales para ser difundidos a los investigadores. En aquel tiempo solo se contaba con sismógrafos de alta ganancia, que por lo regular saturaban sus registros durante los eventos y por consiguiente eran poco adecuados para propósitos ingenieriles. Se comenzó en aquella época con una red que permitió localizar sismos en toda la República con magnitudes mayores a 6.0 (figura 3.1, tomada de "Servicio", 2002).

Para el ingeniero es importante saber el papel que desempeñan los registros en las teorías donde son aplicadas, y una de ellas es la respuesta estructural. Esta situación se viene generando desde 1940 que se instalaron los primeros instrumentos de medición de registros sísmicos fuertes, y que después del terremoto de San Marcos ocurrido en 1957 (M = 7.5), el ingeniero tuvo la necesidad de medir las ondas sísmicas generadas por temblores fuertes y estudiar sus efectos en suelos y estructuras vulnerables a daños.

En 1960 se instalaron los primeros dos acelerógrafos en la Ciudad de México, uno en la Alameda Central y el otro en la Ciudad Universitaria. Los primeros registros que se obtuvieron fueron los temblores de Acapulco de 1962 que motivó a seguir instrumentando la Ciudad de México y otras regiones sísmicas del país, particularmente en las presas hidroeléctricas.

En las siguientes décadas aumentó el crecimiento de la red en México y de igual manera la generación de registros aumentó exponencialmente, en particular después del sismo de 1985, año en el cual se generó la máxima destrucción del terremoto de Michoacán. En esta fecha sólo se contaba en operación 110 estaciones de la República, y posterior al evento más instituciones se sumaron al esfuerzo de instalar y operar redes sísmicas para recolectar datos de sismos fuertes ("Base", 2000).

En la actualidad la red de acelerógrafos de México está integrada por 547 estaciones y cerca de 50 instrumentos de medición, desde los mecánicos que se instalaron a principio de siglo hasta los más modernos, la mayor parte con registros digitales, las cuales se localizan en la Ciudad de México y estados vecinos, a lo largo de la zona de subducción en la costa del Pacífico y en la parte noroeste del país ("Servicio", 2002).

3.2 Sismicidad en México

26)

La República Mexicana se encuentra dividida por cinco placas tectónicas y el mayor peligro lo presentan los sismos que ocurren a lo largo de las costas del Pacífico donde se presentan los mayores sismos registrados, entre las ciudades de Puerto Vallarta y Tapachula (Figura 3.2, "Servicio", 2002). Estos sismos, que por su cercanía a las costas representan un grave peligro a las poblaciones costeras, también afectan al Valle de México, que por sus condiciones del suelo ha sido afectado, como se ha constatado durante los grandes sismos de 1911, 1957, 1979 y 1985.

En la figura 3.3 se muestran las zonas de ruptura de algunos sismos que se han presentado en este siglo que son producto de la subducción de la placa oceánica bajo la placa continental, dicha falla denominada fosa mesoamericana es en donde se han generado los grandes sismos, cuya zona de ruptura ha alcanzado los 200km., como en el sismo registrado en 1932 frente a las costas de Jalisco, el de Michoacán en 1985 y el de Oaxaca de 1965. Se ha notado en la figura otras pequeñas brechas, una en las costas de Colima-Michoacán y frente al Istmo de Tehuantepec, de las cuales no se ha tenido información histórica de ocurrencias de sismos importante en el pasado. Por último el otro segmento importante es la brecha de Guerrero donde se tiene conocimiento de sismos ocurridos entre los años 1909 y 1911 donde los sismos alcanzaron magnitudes de 7.5 que pudieron haber fracturado este segmento, pero no se ha contado con información suficiente para definir esta zona de ruptura. En la figura se muestran con estrellas rojas a los sismos más significativos que han provocado daños a las ciudades de Morelia y Michoacán en 1858, Oaxaca en 1931 y Orizaba en 1973, y con estrellas azules a los sismos que han ocurrido dentro del continente a poco profundidad. La magnitud de estos sismos rara vez ha llegado a sobrepasar la magnitud 7.0, y su periodo de ocurrencia se da más esporádicamente que el de los sismos provenientes de la costa.

3.3 Regiones sísmicas en México

El Manual de Diseño de Obras Civiles en su sección de diseño por sismo ha dividido la República Mexicana en cuatro zonas sísmicas (figura 3.4 cortesía *MOC-93*, "Servicio", 2002), estas zonas por sus regiones representan las máximas aceleraciones del terreno a esperarse en un siglo y la frecuencia en que se dan los sismos en dichas regiones. La zona A es una zona donde no se han reportado eventos sísmicos en los últimos años y que pueden esperarse aceleraciones del terreno menores al 10%. Las zonas C y B son zonas donde se pueden presentar sismos frecuentes y en donde las aceleraciones no sobrepasan el 70% de la aceleración de la gravedad. Por último la zona D considerada como una zona donde se han reportado los grandes sismos y de mayor ocurrencia cuyas aceleraciones sobrepasan el 70% de las aceleraciones del suelo.

3.4 Criterios generales de selección de acelerogramas

Inicialmente se seleccionaron las estaciones ubicadas en la zona sísmica D. terreno tipo I (Roca) ubicadas en la costa del Pacífico. Para ello se recurrió al disco compacto con archivos estándar de aceleración (ASA ver 2.0, 1999). Las estaciones seleccionadas se indican en la tabla 3.1, su localización se ilustra en las figuras 3.5 y 3.6 y sus características para cada evento en la tabla 3.2.

Existen dos propósitos en este capítulo para su elección:

 Seleccionar los acelerogramas cuya magnitud sea mayor o igual que 6.5 y que además presentaran las aceleraciones máximas del terreno cercanas a 10 cm/seg² en ambas componentes ortogonales y 2) Que la curva obtenida a partir del cálculo de la intensidad de Arias muestre una forma adecuada, es decir, que la curva de dicha integral no se parezca a la que se obtiene para un pulso o para una señal de ruido. La intensidad de Arias se calcula como:

$$I_u = \frac{\pi}{2g} \int_{a}^{\infty} a^2(t) dt$$

Este estudio fue calculado con el programa *Degtra* desarrollado por investigadores y estudiantes del Instituto de Ingeniería de la Universidad Nacional Autónoma de México, (UNAM), donde el

programa *Degtra* no aplica, en el cálculo, la constante $\frac{\pi}{2g}$, por lo que el resultado es una cantidad

proporcional a la intensidad de Arias. El programa realiza la evaluación para la parte limitada por los cursores, y los resultados obtenidos son: el valor de la intensidad, la duración de la fase intensa, y el punto inicial y final de dicha fase. La fase intensa es la porción de la señal en que se desarrolla entre el 5% y el 95% de la intensidad de Arias, normalizada por el valor máximo alcanzado por dicha curva, siendo esta la unidad.

En la figura 3.7 se muestran algunos ejemplos de acelerogramas seleccionados bajo el criterio presentado y en la figura 3.8 ejemplos de acelerogramas que no cumplieron el criterio de selección.

3.5 Identificación de los acelerogramas seleccionados para aisladores de comportamiento elástico lineal

Una vez seleccionadas las estaciones, se eligieron los eventos sísmicos de los que se tienen registros que se presentan en la tabla 3.3 en forma resumida por evento. Los sismos seleccionados son los siguientes:

- 1) 19 de septiembre de 1985 (M = 8.1).
- 2) 21 de septiembre de 1985 (M = 7.6).
- 3) 30 de abril de 1986 (M = 7.0).
- 4) 25 de abril de 1989 (M = 6.9).
- 5) 24 de octubre de 1993 (M = 6.6).
- 6) 14 de marzo de 1994 (M = 6.8).
- 7) 14 de septiembre de 1995 (M = 6.4).
- 8) 9 de octubre de 1995 (M = 6.5).
- 9) 21 de octubre de 1995 (M= 6.5).
- 10) 15 de julio de 1996 (M = 6.5).
- 11) 11 de enero de 1997 (M = 6.9).
- 12) 15 de julio de 1999 (M = 6.5).
- 13) 30 de septiembre de 1999 (M = 7.5).

De cada evento sísmico se eligieron, de los acelerogramas de diferentes estaciones, sus componentes N-S y E-W, para ello se desarrolló un programa en FORTRAN que tiene como objetivo agilizar el proceso para obtener por separado los archivos de las componentes horizontales; este proceso se describe detalladamente a continuación:

El programa lee el formato de los archivos seleccionados de la "Base Mexicana de Sismos Fuertes Volumen 2" ("Base",2000) y obtiene como salida las componentes N-S y E-W, ademas un archivo que nos proporciona información necesaria para elaborar los archivos de datos que requiere el

27

programa 3D-Basis (Nagarajaiah *et al.*, 1991); como es la clave del registro, número de muestras, el incremento de tiempo y el factor de diezmado.

Luego se procedió a corregir por línea base y filtrar cada una de las componentes de los acelerogramas seleccionados mediante el programa FILTRAACEL desarrollado por el Dr. Eduardo Reinoso y modificado para este estudio en particular por el Dr. Arturo Tena; el filtrado se hace en el dominio de la frecuencia. Sea y(t) la señal filtrada. Su transformada de Fourier $Y(\omega)$, estará dada por: $Y(\omega) = X(\omega)H(\omega)$

donde

 $X(\omega)$, es la transformada de Fourier de la señal original después de haber aplicado tapering

 $H(\omega)$, es el filtro.

La función $H(\omega)$ toma diferentes valores, que se indican a continuación en las siguientes expresiones, donde N es el número de polos.

Un filtro Pasa-banda, entre las frecuencias Fmin y Fmax

$$H(f) = \frac{l}{\sqrt{l + \left(\frac{f^2 - F_{\min}F_{\max}}{f(F_{\max} - F_{\min})}\right)^{2N}}}$$

Un filtro Pasa-Alta, desde la frecuencia Fmin

$$H(f) = \frac{I}{\sqrt{I + \left(\frac{F_{\min}}{f}\right)^{2N}}}$$

Para el filtrado de cada uno de los acelerogramas, con un filtro pasa-alta, se emplearon los siguientes datos:

Frecuencia mínima $(F_{min}) = 0.1$ Número de polos (N) = 6Tapering = 5%

3.6 Criterios de escalamiento y selección de acelerogramas para aisladores de comportamiento bilineal

Despúes de haber filtrado cada uno de los acelerogramas seleccionados, se procedió a escalar cada uno de ellos de manera que tuvieran la misma aceleración espectral, que en este caso partícular corresponde al espectro de diseño de las zonas D-I, C-I y B-I propuesto por el Manual de Obras Civiles de 1993 (*MOC-93*), seleccionando el valor del periodo T=2.24seg. siendo este un valor intermedio del intervalo de periodos 1.5seg. $\leq T_a \leq 3.0seg$. considerando para el diseño sísmico de

28

sistemas de aislamiento las recomendaciones del UBC-97. En la figura 3.1 se ilustran algunos registros escalados tomando como parámetro el valor del periodo T=2.24seg.

Para seleccionar cada uno de los acelerogramas escalados, se cuidó que presentaran una forma adecuada en su señal (como se explicó anteriormente), además de observar que no se sobrepasaran aceleraciones máximas del terreno mayores de *1.2 g* (*1200 gals*), ni que el factor de escala fuera superior de 100. El máximo factor de escala utilizado fue de 66.51 para la zona D-I, de 96.19 para la zona C-I y de 45.32 para la zona B-I. Este último criterio evita amplificar la aceleración máxima del terreno a valores extremos que pudieran estar fuera de la realidad registrada para terrenos firmes en sismos intensos.

3.7 Identificación de los acelerogramas seleccionados para aisladores de comportamiento bilineal

En las tablas 3.3 a 3.5 se presentan los factores de escalamiento que regirán para ambas componentes de cada uno de los eventos, de manera que su aceleración espectral para el periodo T=2.24 seg. coincida con los espectros de diseño de las zonas D-I, C-I y B-I.

(29

_
- 1
. 4

	Estación		Local	ización	Tipo de suelo	
Estado	Nombre de la estación	Clave ACAP	Lat. N	Lat, W		
Guerrero	ACAPULCO PELLANDINI		16.8360	99.9140	Roca Granitica	
Guerrero	ACAPULCO SOP	ACAS	16.8580	99.8940	Aluvial	
Guerrero	ATOYAC	ATYC	17.2110	100.4310	Roca	
Guerrer o	AGUACALIENTE	AGCA	16.830	99.639	Roca	
Guerrero	ACAPULCO DIANA POZO 63 M.	ACPD	16.867	99.880	Roca	
Guerrero	AEROPUERTO ZIHUATANEJO	AZIH	17.6030	101.4550	Roca	
Michoacán	CALETA DE CAMPOS	CALE	18.0730	102.7550	Roca	
Guerrero	COYUCA	COYC	16.9680	100.0840	Roca	
Guerrero	CERRO DE PIEDRA	CPDR	16.7690	99.6330	Roca	
Guerrero	CHILPANCINGO	CHI1	17.5530	99.5000	Roca	
Guerrero	FILO DE CABALLO	FIC2	17.6520	99.8420	Roca	
Guerrero	LAS MESAS	MSAS	17.0070	99.4560	Roca	
Guerrero	EL OCOTITO	OCTT	17.2500	99.5110	Roca	
Guerrero	PAPANOA	PAPN	17.3280	101.0400	Roca	
Guerrero	EL PARAISO	PARS	17.3440	100.2140	Roca	
Guerrero	EL SUCHIL	SUCH	17.2260	100.6420	Roca	
Guerrero	TEACALCO	TEAC	18.6180	99.4530	Roca	
Guerrero	LA UNION	UNIO	17.9820	101.8050	Roca	
Guerrero	VILLITA MARGEN DERECHA	VILE	18.0160	102.2050	Roca	
Guerrero	LA VENTA	VNTA	16.9230	99.8160	Roca	
Guerrero	XALTIANGUIS	XALT	17.0950	99,7200	Roca	
Michoacán	ZACATULA	ZACA	18.0090	102.1780	Arcilla Compacta	
Michoacán	ARTEAGA	ARTG	18.3560	102.2930	Roca	
Colima	COLIMA	COLI	19.2380	103.7210	Suelo Duro	
Michoacán	GUACAMAYAS	GUAC	18.0250	102.2040	Arcilla Compacta	
Michoacán - Guerrero	VILLITA MARGEN DERECHA	VILD	17.9820	102.1900	Brecha Andesitica	
Guerrero	ACAPULCO RENACIMIENTO	ACAR	16.8990	99.8270	Aluvial	
Guerrero	LA COMUNIDAD	COMD	18.1240	100.5070	Roca	
Guerrero	COPALA	COPL	16.6050	98.9740	Roca	
Puebla	CIUDAD SERDAN	CSER	18.9910	97.3840	Roca	
Guerrero	LA LLAVE	LLAV	17.3460	100.7920	Roca	
Guerrero	LOS MAGUEYES	MAGY	17.3770	100.5770	Roca	
Guerrero	OCOTILLO	OCLL	17.0380	99.8750	Roca	
Guerrero	SAN MARCOS	SMR2	16.7760	99.4080	Roca	
Guerrero	LAS VIGAS	VIGA	16.7570	99.2360	Roca	
Guerrero	ESTACION No.1, ACAPULCO, superficie	ACAJ	16.8731	99.8769	Roca	
Guerrero	ACAPULCO LA SALLE	ACAN	16.8660	99.8630	Granito Alterado	
Morelos	ESTACION No.5, CUERNAVACA, Sup.	CUER	18.9841	99.2371	Roca	
Guerrero	ESTACION No.2, CHILPANCINGO, Sup.	CHIL	17.4660	99.4520	Roca	
Guerrero	LA ESTANCIA	ESTA	17.3130	100.2560	Roca	
Guerrero	ESTACION No.4, IGUALA, superficie	IGUA	18.3912	99.5038	Roca	
Guerrero	ESTACION No.3, MEZCALA. superficie	MEZC	17.9302	99.5910	Roca	
Guerrero	POZUELOS	POZU	17.1000	99.6300	Granito	
Guerrero	PETAOUILLAS	PTQL	17.4660	99.4530	Roca	

	Estación		Loca	lización	Tine de quele	
Estado	Nombre de la estación	Clave	Lat. N	Lat. W	Tipo de suelo	
Puebla	CENTRAL UPAEP	RIPC	19.0500	98.2200	Roca Caliza Fragmentada	
Guerrero	TONALAPA DEL SUR	TNLP	18.0980	99.5590	Roca	
Oaxaca	HUATULCO	HUIG	15.7684	96.1082	Cuarzomonzita	
Guerrero	CAYACO	CAIG	17.0478	100.2673	Diorita	
Oaxaca	OAXACA FACULTAD DE MEDICINA	OAXM	17.0840	96.7160	Aluvial	
Guerrero	ANAFREUD	RICA	17.5400	99.5100	Roca Caliza	
Edo. de México	CENTRAL UAEM	RITC	19.2800	99.6800	Roca	
Jalisco	MIRAVALLE	MIRV	20.6330	103.3420	Roca	
Michoacán	PETACALCO SUBESTACION	PTSU	17.9830	102.1170	Conglomerado Sobre Lutitas	
Jalisco	SAN RAFAEL	SNRA	20.6540	103.3110	Roca	
Jalisco	TONALA	TONA	20.6410	103.2790	Roca	
Guerrero	NUXCO	NUXC	17.2070	100.7580	Roca	
Edo. de México	ESTACION No. 17, TLAMACAS, superfície	TLAM	19.0663	98.6278	Roca	
Guerrero	ZIHUATANEJO	ZIIG	17.6070	101.4650	Cuarzomonzonita	
Guerrero	SAN LUIS DE LA LOMA	SLUI	17.2720	100.8910	Roca	
Puebla	POPOCATEPETL	PPIG	19.0670	98.6270	Colada De Lava	
Guerrero	COYUQUILLA	COYQ	17.3800	101.0000	Roca	
Guerrero	PETATLAN	PETA	17.542	101.271	Roca	
Guerrero	PETATLAN II	PET2	17.5400	101.3000	Roca	
Guerrero	IGUALA	PLIG	18.3920	99.5020	Caliza	
Oaxaca	PINOTEPA	PNIG	16.3920	98.1270	Diorita	
Morelos	YAUTEPEC	YAIG	18.8620	99.0670	Caliza	
Jalisco	CHAMELA	CJIG	19.4990	105.0430	Andesita	

Coordenadas del enicentro			Profundidad focal (Km) Magnitud						
18.081 LAT. N 102.942 LONG. W		15			8.1				
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y Orientació				rientación		
ACAP	0.01	9.42	-16.611	NOOE	-27.597	+V	27.72	N90	
ACAS	0.02	11.98	19.219	SOOE	-17.468	V	-25.168	N90	
ATYC	0.005	42.11	59.96	S90E	-59.70	V	53.04	S00	
AZIH	0.01	72.64	-100.09	+V	-153.93	S90W	-98.62	S00	
CALE	0.005	50.60	-140.68	S90E	88.45	+V	-139.73	S00	
COYC	0.01	38.8	18.841	+V	35.689	N90W	42.042	SOC	
CPDR	0.01	25.63	-12.30	+V	-15.30	S90W	25.78	SOC	
CHI1	0.02	84.66	-157.371	NOOE	84.473	+V	187.33	N90	
FIC2	0.02	58.72	67.274	NOOE	37.330	+V	69.182	N90	
MSAS	0.005	14.78	17.44	S90E	22.12	+V	22.69	S00	
OCTT	0.01	85.95	-20.49	+V	-53.22	S90W	-48.08	SOC	
PAPN	0.01	89.29	-80.68	+V	111.61	S90W	154.95	SOC	
PARS	0.005	52.8	87.320	S90E	67.675	+V	-109.817	SOC	
SUCH	0.01	60.01	49,623	+V	-81.446	S90W	-103.120	SOC	
TEAC	0.01	38.41	-24.733	S90E	27.136	+V	-51.302	SOC	
UNIO	0.005	62.89	148.58	S90E	-129.46	+V	-165.29	SOC	
VILE	0.005	64.31	122.54	S90E	58.40	+V	-125.17	SOC	
VNTA	0.005	10.27	-20.08	S90E	-18.30	+V	19.20	SOC	
XALT	0.005	16.55	-17.11	S90E	24.16	+V	-30.82	SOC	
ZACA	0.01	146.38	-147.38	+V	-174.18	N90W	262.23	500	

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Coordenadas del epicentro			Profundidad focal (Km) 15				Magnitud		
18.021 LAT. N 101,479 LONG. W		7.6							
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y Orientaci				rientación	n	
ACAP	0.02	11.62	-18.705	NOOE	-22.324	+V	26.369	N901	
ACAS	0.02	13.72	28,960	SOOE	-22.418	+V	35.767	N90E	
ATYC	0.005	34.55	74.26	S90E	-73,59	+V	79.66	SOOR	
AZIH	0.01	33.86	95.02	+V	133.14	N90E	-158.23	NOOE	
COYC	0.01	44.99	-24.85	+V	-47.92	S90W	-42.32	SOON	
CPDR	0.01	21.51	9.00	+V	-10.51	N90E	-11.83	NOOE	
CHI1	0.02	66.3	93.481	NOOE	0.000	+V	-18.135	N901	
FIC2	0.02	33.22	56.899	NOOE	-37.872	+V	-47.422	N901	
PAPN	0.01	63.79	171.62	+V	-219.83	S90W	242.69	SOOL	
PARS	0.005	46.29	-473.78	S90E	169.63	+V	-625.78	S001	
SUCH	0.01	41.47	-39.04	+V	72	\$90W	-85.98	SOOL	
TEAC	0.005	18.09	-22.68	S90E	-19.47	+V	30.74	S00	
UNIO	0.005	41.48	-76.98	S90E	59.23	+V	-49.54	S00	
VILE	0.005	11.65	41.10	590E	23.34	+V	30.41	\$00	
VNTA	0.005	9.35	18.50	S90E	-14.17	+V	-13.40	S00	
XALT	0.005	16.59	16.01	S90E	19.09	+V	-17.19	S00	
ZACA	0.01	60.89	36.37	+V	70.82	N90W	-72.73	S00	

32)-
Co	ordenadas del epico	entro	Profundi	dad focal	(Km)	1	Magnitud	
17.407 LA	T. N 101	.506 LONG. W		<5	Long of L		4.30	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y Orientació					
AZIH	0.01	14.20	3.486	+V	9.071	S90W	5.024	SOOW
CALE	0.005	25.40	50.98	S90E	25.49	+V	41.15	SOOE
2000	0.01	15 71	4 70	+V	15 31	NGOW	-12.44	SOOF

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Co	ordenadas del epic	entro	Profundidad focal (Km)			Magnitud		
18.024 LA	Г. N 103	.057 LONG. W		20			7.0	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ac	eleració	n Máxima (gals.) y O	rientación	
ARTG	0.01	36.47	22.53	+V	20.39	\$90W	-27.06	SO
CALE	0.005	25.185	97.170	S90E	-34.420	+V	-76.515	S01
COLI	0.02	50.64	-69.192	NOOW	0.000	+V	-84.052	N90
GUAC	0.01	44.49	-21.94	+V	31.489	N90W	55.444	SO
VILD	0.01	31.11	19.47	V	-25.71	S85W	-24.75	SO
23.03	0.01	36.24	17 301	+17	-54 265	NGOW	-35 887	SO

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (*continuación*)

Co	ordenadas del epic	entro	Profundi	idad foca	(Km)		Magnitud	
16.603 LA	Г. М 99.	400 LONG, W		19			6.9	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ac	Aceleración Máxima (gals.) y Orientación				
ACAP	0.01	41.02	61.50	V	-63.86	N90E	104.39	NOC
ACAR	0.01	49.24	75.63	V	-106.37	N90E	-105.70	NO
ACAS	0.02	14.88	-139.619	SOOE	28.465	V	-116.709	S9
ATYC	0.005	15.61	16.47	S90E	10.41	V	-19.18	SO
COMD	0.005	16.08	8.69	S90E	10.69	V	-8,10	S0
COPL	0.005	35.65	31.48	S90E	57.74	v	-105.14	SO
COYC	0.01	24.18	-47.86	V	85.08	N90E	-41.09	NO
CPDR	0.01	38.70	-65.75	V	-92.89	N90E	102.53	NO
CSER	0.01	57.59	-5.40	V	14.84	N90E	12.80	NO
FIC2	0.005	64.89	-15.23	N90E	12.08	V	-14.47	NO
LLAV	0.005	17.02	11.96	S90E	9.77	V	12.29	SO
MAGY	0.005	12.21	-7.94	S90E	9.72	V	7.50	SO
MSAS	0.005	34.19	111.97	S90E	-63.16	V	-107.19	SO
OCLL	0.01	26.85	-35.24	V	30.93	N90E	28.66	NO
OCTT	0.01	53.08	195.74	V	-201.16	N90E	126.54	NO
PARS	0.005	36.63	-102.22	S90E	36.91	V	-117.11	SO
SMR2	0.005	30.82	127.29	S90E	132.07	V	-175.14	SO
TEAC	0.005	161.84	13.83	N90E	7.32	V	13.34	NO
VIGA	0.005	34.39	-310.08	S90E	128.20	V	345.94	S0
VNTA	0.005	22.68	-62.03	S90E	-40.76	V	29.11	SO
XALT	0.005	95.71	-54.14	N90E	78.13	v	-55.03	NO

(33

Coo	rdenadas del epic	entro	Profundi	dad foca	(Km)		Magnitud	
16.54 LAT.	N 98	.98 LONG. W		19			6.6	
Clave	Intervalo de muestreo (s)	Duración del Aceleración Máxima (gals.) y			(gals.) y O	rientación		
ACAJ	0.01	84.48	28,56	NOOE	26.03	N90E	13.52	+V
ACAN	0.005	22.58	-23.83	S90E	-13.57	٧	24.57	S00
ACAR	0.01	44.42	43.07	V	-73.21	N90E	71.30	N00
ATYC	0.005	18.80	5.34	S90E	5.66	V	-8.78	S00
COPL	0.01	58.86	-125.04	V	-274.03	N90E	-211.53	N00
COYC	0.01	23.29	-14.36	V	20.10	N90E	21.05	N00
CPDR	0.01	25,30	39,24	V	-44.02	N90E	60.29	N00
CSER	0.01	18.06	2.87	V	-4.79	N90E	-4.79	N00
CUER	0.01	104.96	5.43	NOOE	5.28	N90E	-4.09	+V
CHIL	0.01	96.42	-19.65	NOOE	-20.78	N90E	13.34	+V
ESTA	0.01	20.97	-8.61	V	-6.70	N90E	9.57	NOO
FIC2	0.005	49.79	10.42	N90E	6.44	V	-8.84	NOO
IGUA	0.01	97.28	-3.69	NOOE	3.51	N90E	-2.62	+V
MEZC	0.01	81.92	-6.59	NOOE	7.51	N90E	6.62	+V
MSAS	0.005	46.65	67.73	S90E	-40.24	V	119.05	S00
OCLL	0.01	23.41	-15.31	V	-18.18	N90E	-17.23	NOC
OCTT	0.01	39.02	-43.07	V	-59.34	N90E	65.08	N00
POZU	0.005	90.03	-71.70	N90E	-20.89	V	44.91	NOO
PTQL	0.01	53.49	-13.40	V	-22.01	N90E	-19.14	NOC
RIPC	0.005	24.285	-4.02	NOOE	2.55	+V	-4.83	N90
SMR2	0.005	35.62	60.24	S90E	46.86	V	62.21	S00
TEAC	0.005	69.71	7.36	N90E	2.59	V	-6.35	N00
TNLP	0.005	59.24	-7.19	N90E	-6.96	V	-7.53	N00
VIGA	0.005	34.33	261.71	S90E	-140.40	V	-347.64	S00
VNTA	0.005	28.52	15.28	S90E	-14.16	V	17.09	500

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Co	ordenadas del epic	entro	Profundia	lad focal	l (Km)	1	Magnitud	
16.54 LAT	F. N 98	.98 LONG, W	<i>6</i> .	19			6.6	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ace	eleración	n Máxima ((gals.) y Or	ientación	
CSER	0.01	51.78	2.87 V -8.61 N901		N90E	-11.48	NOOE	

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Co	ordenadas del epice	entro	Profundi	dad focai	(Km)	Λ	lagnitud	
15.68 LAT	.N 92	.43 LONG, W		204			6.8	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y O				ientación	
CSER	0.01	54.77	-4.79	V	10.53	N90E	-9.57	NOOF
HUIG	0.0125	425	36.512	N90E	-10.726	V	28.76	N00

34)

Co	ordenadas del epico	entro	Profundi	idad focal	(Km)	1	Magnitud	
16.31 LAT	". N 98	.88 LONG, W		22			6.4	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y Orientación					
ACAJ	0.01	93.86	13.76	NOOE	-13.28	N90E	-11.60	+1
ACAN	0.005	35.76	-10.20	S90E	-7.82	v	-14.45	S00
ACAR	0.01	51.78	-23.45	V	-31.58	N90E	-41.15	NOC
ATYC	0.005	19.16	-6.80	S90E	-5.10	V	8.75	S00
CAIG	0.0125	608.0	-3.617	N90E	4.081	V	6.037	NO
COPL	0.01	63.15	46.42	V	68.91	N90E	-77.04	NO
COYC	0.01	34.89	-8.61	V	12.44	N90E	11.48	NO
CUER	0.01	157.86	12.70	NOOE	12.85	N90E	7.78	+1
CHIL	0.01	109.22	-26.31	V	19.10	N90E	-18.55	NO
IGUA	0.01	139.09	-6.84	NOOE	-6.96	N90E	-7,84	+
MEZC	0.01	104.10	0.00	NOOE	-15.32	N90E	7.66	+
OAXM	0.01	57.26	-31.29	V	-40.96	N90E	40.02	NO
OCLL	0.005	137.0	-12.17	N90W	-10.35	V	11.68	NO
OCTT	0.01	61.0	31.58	V	-48.81	N90E	59.34	NO
POZU	0.004	81.96	19.27	V	31.54	N90E	41.68	NO
RICA	0.005	64.0	49.35	NOOE	26.69	+V	-46.61	N9
RIPC	0.005	148.36	11.20	NOOE	10.42	+V	-16.93	NO
RITÇ	0.005	102.305	5.89	NOOE	3.56	+V	5.59	N9
TEAC	0.005	157.38	-7.69	N90E	-6.89	+V	11.69	NO
TNLP	0.005	95.06	-11.20	N90E	11.28	V	10.96	NO
VIGA	0.005	40.97	-79.42	S90E	57.98	V	100.35	S0

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Co	ordenadas del epic	entro	Profundi	Profundidad focal (Km)			Magnitud			
16.31 LAT	. N 98	.88 LONG, W	22 6.4							
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ac	eleración	Máxima (áxima (gals.) y Orientación				
COPL	0.01	20.72	-9.57	V	-25.84	N90E	-21.53	NOOE		
OCTT	0.01	16.45	-6.70	V	-13.40	N90E	-17.23	NOOE		
POZU	0.004	47.00	5.24	V	8.67	N90E	6.44	NOOE		
RICA	0.005	85.76	5.66	NOOE	-2.97	+V	-3.65	N90E		
TNLP	0.005	31.12	0.75	N90E	0.57	V	-0.65	NOOF		

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Coord	lenadas del epice	entro	Profundi	idad focal	(Km)	Λ	lagnitud	
18.74 LAT. N	104	4.67 LONG. W	2	5 y 33			6.5	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ac	eleración	Máxima (gals.) y Or	ientación	
IGUA	0.01	157.01	-1.92	NOOE	1.80	N90E	-1.95	+V
MIRV	0.005	121.605	-7.411	N90W	7.697	V	6.910	NOOW
PTSU	0.01	102.61	-10.53	V	-12.92	N90E	-14.36	NOOE
RICA	0.005	203.52	6.40	NOOE	-3.83	+V	5.56	N90E
SNRA	0.005	64.005	-5.857	N90W	5.834	v	6.924	NOOW
TEAC	0.005	165.78	-2.43	N90E	-2.42	V	-2.98	NOOE
TNLP	0.005	139.20	-1.82	N90E	1.77	V	-1.98	NOOE
TONA	0.005	85.765	7.330	N90W	6.741	V	5.514	NOOM
VILD	0.01	20,49	3.91	V	-5.59	S85W	4.44	SOSE

(35

Con	ordenadas del epic	entro	Profund	idad focal	(Km)		Magnitud	
16.92 LAT	. N 93	.62 LONG. W		98		Mb	= 6.2, M _c = 6.5	5
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y Orient				ientación	
OAXM	0.01	84.25	-18.74	V	-32.99	N90E	-34.41	NOOE
RIPC	0.005	95.88	2.78	NOOE	-1.77	+V	-3.45	N90E
TEAC	0.005	47.15	0.78 N90E -0.41 V -0.55					NOOE

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Coo	ordenadas del epice	entro	Profundi	Profundidad focal (Km) Magnitud					
15.83 LAT.	N 98	25 LONG. W		3			6.9		
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceleración Máxima (gals.) y Orient					ión	
CAIG	0.0125	1404.00	0.3482	V	0.4461	NOOE	-0.2706	N90E	
CSER	0.01	14.74	-1.45 V -4.37 N90E		-4.85	NOOR			
TNLP	0.005	44.08	0.89 N90E -1.47 V 0.85				0.85	NOO	

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Sismo del 15 ju	ulio de 1996 (960	(715)						
Coo	ordenadas del epice	entro	Profundi	dad focal	(Km)		Magnitud	
17.45 LAT. N	101.1	6 LONG. W		20			6.5	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ac	eleración	n Máxima ((gals.) y O	rientación	
ACAJ	0.01	76.80	4.61	NOOE	4.82	N90E	4.49	+V
ACAR	0.01	30.39	11.98	V	-22.61	N90E	16.40	NOOE
ATYC	0.005	89.00	26.88	N90W	18.30	V	25.80	NOOW
AZIH	0.01	32.26	-27.64	V	-36.24	N90E	31.58	NOOE
CAIG	0.0125	961.00	5.01	V	7.3876	NOOE	-6.4577	N90E
COMD	0.005	60,73	-15.94	S90E	21.63	V	22.24	SOOE
CPDR	0.005	63.00	3.97	N90W	-3.06	V	-4.79	NOOW
CUER	0.01	120.00	-5.46	NOOE	-3.03	+V	-6.23	N90E
CHIL	0.01	75.09	4.76	NOOE	3.30	N90E	3.63	+V
IGUA	0.01	122.02	2.66	NOOE	-3.42	N90E	-3.60	+V
MEZC	0.01	74.24	-4.61	NOOE	4.36	N90E	3.72	+V
NUXC	0.005	83.00	-44.94	N90W	24.87	V	-49.58	NOOW
OCLL	0.005	68.00	-6.99	N90W	6.58	V	-7.83	NOOW
OCTT	0.01	25.43	-5.34	V	-18.05	N90E	-14.63	NODE
PAPN	0.005	127.00	-319.64	N90W	145.73	V	-292.86	NOOW
PETA	0.005	48.97	135.03	S90E	123.24	V	-183.45	SOOE
POZU	0.004	47.00	-4.37	V	5.37	N90E	-6.22	NOOE
PTSU	0.01	47.77	-14.83	V	30.15	N90E	-21.05	NOOE
RICA	0.005	108.80	-21.08	NOOE	-11.97	+V	-22.15	N90E
RIPC	0.005	83.20	-3.42	NOOE	-1.72	+V	-3.73	N90E
TEAC	0.005	77.75	6.49	N90E	6.50	V	9.56	NOOE
TLAM	0.01	123.91	-4.02	NOOE	1.77	+V	8.44	N90E
TMLP	0.005	91.69	-9.21	N90E	-6.33	V	-10.68	NOOE
UNIO	0.005	42.60	18.35	S90E	-14.76	V	16.11	SOOE
VNTA	0.005	73.00	-4.72	N90W	-4.27	V	-4.58	NOOW
ZIIG	0.0125	441.00	22.6708	V	46.3571	NOOE	-4.7919	N90E

36)

Coo	ordenadas del epice	ntro	Profundi	dad focal	(Km)		Magnitud	
17.91 LAT. N	103.04	LONG. W		16			6.9	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ace	eleración	Máxima (gals.) y O	rientación	
ACAR	0.01	33.16	-9.36	V	13.65	N90E	17.06	NOOE
ACPD	0.004	51.00	0.00	V	-2.10	N90E	-2.11	NOOE
ATYC	0.005	111.00	-10.37	N90W	8.91	V	9.98	NOOW
CALE	0.005	65.50	396.21	S90E	413.94	V	-350.27	SOOE
COYC	0.005	73.00	7.13	N90W	-3.62	V	-6.75	NOOW
CPDR	0.005	67.00	-4.21	N90W	3.26	V	4.03	NOOW
CSER	0.01	7.28	-2.44	V	3.02	N90E	4.94	NOOE
CUER	0.01	140.99	9.96	NOOE	-4.87	+V	-9.78	N90E
CHIL	0.01	113.99	3.74	NOOE	3.41	+V	3.23	N90E
IGUA	0.01	156.99	-5.65	NOOE	-2.65	+ V	3.16	N90E
MEZC	0.01	111.99	4.21	NOOE	3.18	+V	3.91	N90E
NUXC	0.005	80.00	-13.27	N90W	-7.03	V	-13.44	NOON
OCLL	0.005	62.94	4.95	N90W	-3.48	V	4.21	NOOW
PAPN	0.005	119.00	-36.62	N90W	-37.15	V	-53.35	NOON
PETA	0.005	64.61	50.67	S90E	-45.72	V	59.58	SOOE
POZU	0.004	56.00	-2.85	V	-5.26	N90E	4.57	NOOE
PTSU	0.01	106.12	-170.35	V	221.07	N90E	-311.04	NOOE
RICA	0.005	124.16	-19.50	NOOE	9.48	+7	-14.24	N90E
RIPC	0.005	88.32	-5.22	NOOE	1.97	+V	-5.12	N90E
SLUI	0.005	100.00	9.50	N90W	+11.59	V	13.86	NOON
SUCH	0.005	81.00	-5.69	N90W	5.45	V	6.97	NOOW
TLAM	0.01	122.25	-4.07	NOOE	2.04	+V	5.94	N90E
UNIO	0.005	66.58	-77.81	S90E	68.13	V	-76.51	SOOE
VILE	0.005	55.10	99.50	S90E	70.82	V	-103.36	SOOE
VNTA	0.005	61.00	2.45	N90W	1.86	V	2.21	NOOW

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

smo del 01 ma	yo de 1997 (970)	501)						
Coor	denadas del epicer	ntro	Profundidad	l focal	(Km)	N	lagnitud	
18.91 LAT. N	107.25	LONG, W		5			7.0	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceler	aclón	Máxima (g	als.) y Ori	entación	
CAIG	0.0125	595.638	0.0743	V	-0.0869	NOOE	0.0893	N90E
PPIG	0.0125	782.00	-0.1255	V	-0.0091	NOOE	-0.1505	N90F

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Sismo del 03 fe	ebrero de 1998 (98	0203)							
Co	ordenadas del epicer	itro	Profundida	d focal (H	(m)	M	lagnitud		
15.69 LAT. N	96.371	.ONG. W		33		6.2			
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Aceler	ación Má	xima (gal	s.) y Orie	ntación		
VIGA	0.005	65.00	-2.78	N90W	-1.58	V	4.42	NOOW	

mo del 15 jur	nio de 1999 (9906	015)						
Coor	denadas del epicer	ntro	Profundi	dad focal	(Km)		Magnitud	
18.18 LAT. N	97.511	ONG. W		69			6.5	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Acel	eración N	4áxima (ga	ıls.) y Ori	entación	
ACAJ	0.01	153.00	-5.53	NOOE	4.86	+V	5.69	N90E
ACAR	0.01	87.59	-12.59	v	17.99	N90E	15.66	NOOE
ACPD	0.004	114.00	-3.19	v	4.48	N90E	-5.05	NOOE
AGCA	0.005	140.00	-8.97	N90W	-8.24	v	11.43	NOOW
ATYC	0.005	133.00	-7.16	N90W	-6.96	v	-7.35	NOOW
CAIG	0.0125	444.00	3.8053	v	-4.9208	NOOE	-3.6924	N90E
COMD	0.005	94.00	14.49	N90W	12.07	v	16.72	NOOW
COPL	0.005	143.00	10.83	N90W	14.75	v	-8.52	NOOW
COYC	0.005	133.00	-7.63	N90W	12.23	V	-9.07	NOOW
COYQ	0.005	91.00	8.35	N90W	5.88	v	10.01	NOOW
CSER	0.01	134.41	-108.06	v	199.13	N90E	-171.19	NOOE
CUER	0.01	195.00	42.88	NOOE	-17.40	v	-44.69	N90E
CHIL	0.01	186.00	23.16	NOOE	18.45	+V	-21.23	N90E
HUIG	0.0125	512.00	6.2933	v	-13.0202	NOOE	-11.1606	N90E
IGUA	0.01	177.00	14.15	NOOE	11.16	+V	-19.01	N90E
MEZC	0.01	150.00	-23.59	NOOE	-18.11	+V	31.90	N90E
OCLL	0.005	129.00	7.25	N90W	7.21	v	8.42	NOOW
PET2	0.005	92.00	3.59	N90W	2.386	v	-3.24	NOOW
PLIG	0.0125	547.00	14.370	v	-18.358	NOOE	19.165	N90E
PNIG	0.0125	372.00	-3.3086	v	3.4938	NOOE	3.4530	N90E
POZU	0.005	152.00	-20.20	N90W	-10.92	v	17.06	NOOW
PPIG	0.0125	564.00	35.638	v	-0.020	NOOE	-56.495	N90E
RICA	0.005	80.64	51.21	NOOE	28.30	+V	84.48	N90E
SMR2	0.005	128.00	-7.50	N90W	15.55	V	-7.65	NOOW
TEAC	0.005	126.00	35.11	N90W	-15.80	V	31.65	NOOW
TNLP	0.005	129.00	35.07	N90W	22.14	V	-36.46	NOOW
UNIO	0.005	79.00	2.15	N90W	-2.04	v	-2.75	NOOW
VIGA	0.005	142.00	-17.03	N90W	-11.57	v	18.50	NOON
VNTA	0.005	131.00	5.56	N90W	-5.27	V	-6.60	NOOW
YAIG	0.0125	503.00	-26.974	v	69.285	NOOE	-55.569	N90E
ZIIG	0.0125	542.00	-1 6299	v	-2 0666	NOOE	1 8594	NOOF

Tabla 3.2 Características de los acelerogramas originales seleccionados de la base ASA V2.0 (continuación)

Sismo del 30 sep	tiembre de 1999 (990930)						
Coord	denadas del epicenti	ro	Profundi	dad focal	(Km)		Magnitud	
15.95 LAT. N	97.03 LO	NG. W		16			7.5	
Clave	Intervalo de muestreo (s)	Duración del registro (s)	Ace	eración	Máxima (g	als.) y Or	ientación	
CJIG	0.0125	569.00	-0.183700	v	-0.2113	NOOE	-0.1816	/N90E
CSER	0.01	143.00	-15.43	v	-32.32	N90E	43.37	NOOE
CUER	0.01	194.00	16.20	NOOE	-10.80	+V	16.52	N90E
HUIG	0.0125	443.00	-76.371	v	-146.553	NOOE	124.933	N90E
PNIG	0.0125	330.09	32.314	v	-35.607	NOOE	-40.489	N90E
PPIG	0.0125	561.00	-5.850	v	15.577	NOOE	-22.310	N90E
YAIG	0.0125	579.00	9.160	v	13.826	NOOE	17.486	N90E

38)

atada	alarra								Eventos							
stado	ciave	850919	850919r	850921	860430	890425	931024	940314	950914	950914r	951009	951021	960715	970111	990615	99063
	ACAP															
	ACAS					ALC ALC A										
	ATYC	地区 市				国际家门										
	AZIH	Ser Ser														
	COYC	10.222														
	CPDR												S - 53			
	CHI1	12.4														
	FIC2					國國務 第二										
	MSAS															
	OCTT												文書書 書			
	PAPN												的基金和		7	
	PARS															
	SUCH															
arraro	TEAC					and the second s							的特征的			
errero	UNIO	教堂教													報告 · · · ·	
	VILE													教育		
	VNTA			and the second			and set a						41 	Sala 10 aŭ		
	XALT					新学校										
	ACAR					《 》《注注》										
1	COMD														All and a second	
	COPL					in set and set	場合的行行		Anna Pris							
	LLAV			1												
	MAGY					14 4										
	OCLL					的場款	國際部門									
	SMR2														1 3.19	
	VIGA					25 A 2 2 3 4			And States						新教授的 非正	
	ACAJ						of spins									
	ACAN						ALC: N									

Fatada	Classe								Evento							
Estado	Clave	850919	850919r	850921	860430	890425	931024	940314	950914	950914r	951009	951021	960715	970111	990615	99063
	CHIL								(weither)				m 5 新花		人民美国	< -8
	ESTA															
	IGUA				2										100	0
	MEZC											14				
	POZU												ta ak		den serve	
	PTQL															
	TNLP												変換する			
	CAIG															1
Guerrero	RICA													行动的		
	NUXC															
	ZIIG															
	SLUI													行机的		
	COYQ			1												
	PET2															
	PLIG													- *		
	PETA											$\hat{e}_{i_1 = i_1}$	States -			
	AGCA															
Aichoacán-Guerrero	VILD				建設建				1.0	19		e -				
	CALE	San Ine			のないで				1							
	ZACA															
Michoacán	ARTG				N. S.											
	GUAC															
	PTSU	į.														
Colima	COLI)														
	CSER														建筑学	
Puebla	RIPC								· 注意的学习							
	PPIG	t														

Miguel Ángel Pérez Osornio

ŝ

CAP. 3

	~								Evento							
estado	Clave	850919	850919r	850921	860430	890425	931024	940314	950914	950914r	951009	951021	960715	970111	990615	990€
Manalas	CUER						had brought							11 1 20	Section 2	
Morelos	YAIG															
	HIUG							Service			А.					31-23
Oaxaca	OAXM								and the second							
	PNIG														5.20 m	Ser.
Eda Mau	RITC															
Eao. Mex.	TLAM												in Stars	the such		
	MIRV										Star Br					
Taliana	SNRA															
Jansco	TONA															
	CJIG															
			total 154		No se pro Acelerog Acelerog	esentó re grama act grama rec	gistro eptado chazado				r.					

Cap. 3

4

i) ZONA D-I

					Factor de	escala (f)	Amax es	scalada	Passion
Estación	A _{ma}	, (g)	S_a	(g)	para igua T=2.	lar la amplit la Zona 24 seg., (A _n	tud del esp t D-l max = 0.258	bectro de 8 g)	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAP	0.0282	0.0169	0.0013	0.0021	202.1899	126.0337	5.7044	2.1357	111
ATYC	0.0609	0.0549	0.0186	0.0447	13.8885	5.7949	0.8454	0.3179	5.7949
AZIH	0.1591	0.099	0.1099	0.1161	2.3538	2.2282	0.3745	0.2206	2.2282
CALE	0.1418	0.1403	0.1048	0.1655	2.4706	1.5637	0.3504	0.2194	1.5637
COYC	0.0364	0.0429	0.0149	0.0523	17.4125	4.9442	0.6334	0.2119	4.9442
CPDR	0.0151	0.0266	0.0087	0.0122	29.8832	21.1933	0.4504	0.5645	21.1933
MSAS	0.018	0.0234	0.0182	0.0154	14.2298	16.7784	0.2566	0.392	14.2298
OCTT	0.0545	0.048	0.0186	0.0462	13.9028	5.6007	0.7582	0.2689	5.6007
PAPN	0.113	0.1593	0.0188	0.0323	13.774	8.0124	1.5563	1.276	111
PARS	0.0877	0.1119	0.0193	0.0371	13.425	6.9773	1.1778	0.781	6.9773
SUCH	0.083	0.1051	0.0346	0.0523	7.4873	4.947	0.6216	0.52	4.947
TEAC	0.0252	0.0523	0.0337	0.0436	7.6851	5.9356	0.1938	0.3103	5.9356
UNIO	0.1502	0.1673	0.0695	0.1191	3.724	2.1735	0.5595	0.3636	2.1735
VILE	0.1237	0.1252	0.0578	0.0704	4.4812	3.6768	0.5545	0.4602	3.6768
VNTA	0.0211	0.0182	0.0167	0.0265	15.5426	9.7553	0.3278	0.1776	9.7553
XALT	0.0179	0.0313	0.0214	0.0305	12.0833	8.4936	0.2158	0.2662	8.4936
ZACA	0.1784	0.2681	0.0507	0.0932	5.1048	2.7766	0.9105	0.7444	2.7766
ACAS	0.0257	0.0196	0.0023	0.0022	110.7344	120.1676	2.8501	2.3572	111
CHI1	0,191	0.1597	0.3476	0.343	0.7445	0.7545	0.1422	0.1205	0.7445
FICA	0.0705	0.0685	0.0279	0.0572	9.2644	4.521	0.6535	0.3099	4.521

				Sismo	del 19 de s	eptiembre	de 1985,	2° even	10 (850919)
					Factor de	escala (f)	Amax es	scalada	Escalar
Estación	A _{ma}	(g) $S_a(g)$		(g)	para igua T=2.	bectro de 8 g)	ambas componentes		
	E-W N-S		E-W	N-S	E-W	N-S	E-W	N-S	
CALE	0.0517	0.0408	0.0177	0.0227	14.5894	11.4192	0.7548	0.4656	11.4192
ZACA	0.0159	0.0129	0.0005	0.0006	523.9856	432.7559	8.3192	5.5874	111

					Easter de	accela (A	d ac	calada	05 (05072
		(N	C	7.3	Pactor de	lor lo ompli	Amax CS	calaua	Escalar
Estación	Ama	r (g)	S_a	(g)	para igua	la la Zon	a D-1	ectro de	ambas
					T=2.	24 seg., (A,	max =0.258	8 g)	a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ATYC	0.0727	0.0819	0.0091	0.0165	28.3817	15.6617	2.0625	1.283	111
AZIH	0.137	0.159	0.0568	0.0788	4.5571	3.2862	0.6241	0.5225	3.2862
COYC	0.0491	0.0421	0.006	0.0144	43.014	17.9477	2.1123	0.7562	111
CPDR	0.0098	0.0123	0.0047	0.0044	55.0942	58.216	0.541	0.717	55.0942
PAPN	0.2243	0.249	0.0212	0.0308	12.2345	8.3903	2.7448	2.0891	111
PARS	0.4836	0.5131	0.0074	0.0185	34.7971	13.9967	16.8279	7.1815	111
SUCH	0.0731	0.087	0.0114	0.0278	22.7503	9.3214	1.6632	0.8108	111
TEAC	0.0218	0.0314	0.0067	0.0151	38.6008	17.1876	0.8405	0.5401	17.1876
UNIO	0.0779	0.0475	0.0177	0.0146	14.6537	17.7206	1.1413	0.8416	14.6537
VILE	0.0411	0.034	0.0241	0.038	10.7343	6.8113	0.4413	0.2318	6.8113
VNTA	0.0182	0.013	0.0035	0.0072	73.862	35.7201	1.3437	0.4651	111
XALT	0.0151	0.017	0.0045	0.0114	57.2393	22.7523	0.8623	0.3859	22.7523
ZACA	0.0725	0.0742	0.0301	0.0518	8.5894	4.9992	0.6231	0.3707	4.9992
ACAP	0.0268	0.0191	0.0052	0.0028	49.5453	92.2939	1.3289	1.7638	111
ACAS	0.0365	0.0295	0.0036	0.0037	71.583	69.4489	2.6126	2,0486	ш
CHI1	0.12	0.0959	0.1553	0.1634	1.6667	1.5836	0.2001	0.1519	1.5836
FICA	0.0483	0.058	0.0122	0.0119	21.2018	21.658	1.0249	1.2553	111

						Sismo de	l 30 de ab	ril de 19	86 (860430
					Factor de	escala (f)	A_{max} es	calada	Escolar
Estación	A _{ma}	, (g)	Sa	(g)	para igual T=2.	ar la ampli la Zon 24 seg., (A,	tud del esp a D-I max =0.258	ectro de 8 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ARTG	0.0209	0.0272	0.005	0.0068	51.7487	38.0802	1.0803	1.0375	38.0802
CALE	0.0991	0.0778	0.0244	0.0267	10.5946	9.7058	1.0494	0.7547	9.7058
GUAC	0.0321	0.0565	0.0004	0.0113	713.0259	22.8116	22.8879	1.289	111
VILD	0.0246	0.0232	0.0089	0.0059	28.9945	43.8893	0.714	1.0167	28.9945
ZACA	0.0553	0.0366	0.0057	0.0065	45.3897	40.1171	2.5108	1.4677	111
COLI	0.0857	0.0705	0.042	0.0221	6.1605	11.7356	0.5278	0.8278	6.1605

						Sismo del	25 de ab	oril de 19	89 (89042
					Factor de	escala (f)	A_{max} es	scalada	Fecalar
Estación	A_{max}	, (g)	S_a	(g)	para igual	ar la ampli la Zona 24 seg. (A.	tud del esp a D-I =0.258	bectro de	ambas
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAP	0.0652	0.107	0.0099	0.0254	26.2561	10.2032	1.7132	1.0918	111
ACAR	0.1085	0.1077	0.0066	0.017	39.4185	15.2556	4.2754	1.6433	111
ATYC	0.0166	0.0186	0.0024	0.0038	107.5012	68.6181	1.7858	1.2772	111
COPL	0.0585	0.1067	0.0062	0.0172	41.8851	15.0871	2.4487	1.6101	!!!
COYC	0.0865	0.0421	0.0076	0.0081	33.9523	32.1415	2.9372	1.3536	111
CPDR	0.0947	0.1049	0.0337	0.0307	7.6709	8.4272	0.7265	0.8838	7.6709
CSER	0.015	0.0127	0.0105	0.0074	24.587	34.7732	0.3676	0.4427	24.587
FIC2	0.0156	0.0148	0.0086	0.0074	30.068	35.0769	0.4682	0.5174	30.068
LLAV	0.0118	0.0125	0.0017	0.0036	156.754	72.3037	1.8539	0.9011	111
MSAS	0.1141	0.1088	0.0281	0.0198	9.2208	13.0785	1.0518	1.4224	111
OCLL	0.0314	0.0293	0.0081	0.0108	32.0097	23.8676	1.0055	0.6986	23.8676
OCTT	0.2046	0.1289	0.0148	0.0096	17.4554	26.8562	3.5705	3.4617	111
PARS	0.1023	0.1173	0.0041	0.004	62.7486	64.4373	6.4198	7.5583	111
SMR2	0.1254	0.178	0.0737	0.0641	3.511	4.036	0.4402	0.7185	3.511
TEAC	0.014	0.0138	0.008	0.0075	32.5461	34.3726	0.4563	0.4727	32.5461
VIGA	0.2978	0.3536	0.016	0.0373	16.165	6.9302	4.8141	2.4505	301
VNTA	0.0612	0.0296	0.0077	0.0119	33.6448	21.7979	2.0602	0.646	111
XALT	0.0552	0.0535	0.0082	0.0105	31.4333	24.5418	1.735	1.314	111
ACAS	0.1189	0.1423	0.0093	0.0131	27.9505	19.7021	3.3244	2.8044	111

						Sismo del 1	14 de mar	zo de 19	94 (940314)	
					Factor de escala (f) A_{max} escalada		calada	Fecalar		
Estación	A _{ma}	, (g)	Sa	(g)	para igua T=2.	lar la ampli la Zon 24 seg., (A,	$\frac{A_{max} \operatorname{escalada}}{\operatorname{itud} \operatorname{del} \operatorname{espectro} \alpha}$ itud del espectro o ia D-1 $\frac{B_{max}}{B_{max}} = 0.2588 \text{ g}$ E-W N-S	ud del espectro de t D-1 $_{max} = 0.2588 \text{ g}$		Escalar ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S		
CSER	0.0111	0.0104	0.0021	0.0033	121.395	78.5018	1.349	0.8162	111	
HUIG	0.0372	0.0293	0.0008	0.001	331.6975	265.8226	12.3432	7.791	111	

					Factor de	escala (f)	Aes	scalada	
Estación	A _{ma}	, (g)	Sa	(g)	para igual T=2.	lar la ampli la Zona 24 seg., (A _n	tud del esp a D-I max = 0.258	pectro de	Escalar ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAJ	0.0266	0.0292	0.0029	0.005	89.8567	51.7301	2.3946	1.5127	111
ACAN	0.024	0.0241	0.0031	0.0058	84.4346	44.8047	2.0267	1.0804	111
ACAR	0.0745	0.073	0.0029	0.0032	90.791	80.4357	6.7683	5.8719	111
COPL	0.2854	0.2089	0.0277	0.0917	9.3502	2.8232	2.6687	0.5898	111
COYC	0.0202	0.0217	0.0022	0.0049	119.0342	52.6396	2.4041	1.1435	!!!
CPDR	0.0445	0.0614	0.0059	0.0131	43.5986	19.7311	1.9388	1.2119	111
CHIL	0.0212	0.0201	0.0037	0.0061	70.4948	42.181	1.4936	0.8459	ा।
FIC2	0.0106	0.0092	0.0019	0.0019	135.505	133.62	1.4363	1.2256	111
MSAS	0.0691	0.1216	0.0043	0.0133	60.0963	19.4747	4.1532	2.369	111
OCLL	0.0192	0.0176	0.0041	0.0055	63.1696	46.717	1.2114	0.8241	111
OCTT	0.0603	0.0662	0.009	0.0063	28.9043	41.0877	1.7433	2.7205	111
POZU	0.0732	0.0457	0.0056	0.0071	46.1643	36.5789	3.3787	1.6731	111
PTQL	0.0221	0.02	0.0032	0.0064	80.0481	40.4813	1.7691	0.8089	111
SMR2	0.0613	0.0621	0.0121	0.0303	21.3732	8.529	1.3096	0.53	111
VIGA	0.2663	0.3546	0.0078	0.0369	33.1132	7.0089	8.8172	2.4851	111
VNTA	0.0159	0.0173	0.004	0.004	63.9107	65.4848	1.0137	1.1345	63.9107

				Sismo	del 14 de s	septiembre	de 1995	2° even	to (950914)
					Factor de	escala (f)	A_{max} es	scalada	Feedlan
Estación	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud del es la Zona D-I T=2.24 seg., ($A_{max} = 0.256$			bectro de 8 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
COPL	0.0265	0.0218	0.0011	0.002	225.3368	128.9793	5.9782	2.8071	111
OCTT	0.0135	0.0169	0.0007	0.0013	387.2799	201.8508	5.2307	3.4167	111

(45

					Factor de	e escala (f)	Amax es	scalada	Photos de secto
Estación	A _{ma}	r (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A _n	tud del esp a D-l max = 0.258	bectro de	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAJ	0.0134	0.0142	0.0035	0.0069	73.1301	37.3498	0.9792	0.5288	37.3498
ACAR	0.0332	0.0421	0.0081	0.0071	31.878	36.2202	1.058	1.5238	111
COPL	0.0705	0.0787	0.0197	0.0449	13.1386	5.7626	0.9266	0.4534	5.7626
COYC	0.0122	0.0121	0.0038	0.0066	67.6292	39.0718	0.8234	0.4715	39.0718
CUER	0.0132	0.0131	0.0226	0.0343	11.4381	7.5439	0.151	0.0985	7.5439
CHIL	0.0194	0.027	0.0039	0.0065	67.0388	40.0819	1.3004	1.0812	HE
OAXM	0.0416	0.0405	0.0143	0.0156	18.1213	16.5821	0.7542	0.672	16.5821
OCLL	0.0122	0.0117	0.0042	0.0077	62.1065	33.6588	0.7603	0.3944	33.6588
OCTT	0.0496	0.0613	0.0063	0.0067	40.8666	38.7258	2.0272	2.3723	111
RICA	0.0475	0.0503	0.0175	0.0195	14.7897	13.241	0.703	0.6663	13.241
RIPC	0.0172	0.0114	0.0334	0.0381	7.7397	6.7948	0.1335	0.0776	6.7948
TEAC	0.008	0.012	0.0096	0.0086	26.8862	29.9348	0.2158	0.359	26.8862
TNLP	0.0115	0.0107	0.0075	0.0076	34.3227	34.0843	0.3943	0.3652	34.0843
VIGA	0.079	0.1024	0.0095	0.0186	27.1283	13.926	2.1425	1.426	111
POZU	0.0317	0.0423	0.005	0.0023	52.2024	113.9672	1.6541	4.8186	111

						Sismo dei	1 09 de oc	tubre de	1995 (951009)
					Factor de	escala (f)	A _{max} es	calada	
Estación	$A_{max}\left(g ight)$		$S_a\left(g ight)$		para igualar la amplitu la Zona I T=2.24 seg., (Amax		tud del esp a D-I _{nax} =0.2588	ectro de 8 g)	Escalar ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
PTSU	0.0133	0.0149	0.0085	0.0088	30.5672	29.5272	0.4069	0.44	29.5272

					Si	ismo del 21	de octul	bre de 19	95 (951021
					Factor de	e escala (f)	A _{max} es	scalada	Feedlar
Estación	A _{mas}	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud del e la Zona D-l T=2.24 seg., $(A_{max} = 0.2.$		pectro de 8 g)	 Escalar ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	M
OAXM	0.0337	0.0351	0.0036	0.0022 72.5806 119.656		119.6564	2.4424	4.2008	111

					Factor de	escala (f)	A _{max} es	scalada	
Estación	Ama	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a D-1 max = 0.258	pectro de 8 g)	ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ACAR	0.0236	0.0167	0.004	0.0018	64.3597	142.1927	1.5212	2,3725	111
ATYC	0.0274	0.0262	0.0019	0.0043	133.5527	59.6059	3.6595	1.5619	111
AZIH	0.0365	0.032	0.0146	0.0231	17.7154	11.1965	0.6474	0.3587	11.1965
COMD	0.0163	0.0216	0.0016	0.0015	161.7725	174.4386	2.6364	3.7656	111
NUXC	0.0445	0.0505	0.0022	0.0048	119.8266	53.8938	5.3272	2.7242	111
OCLL	0.007	0.008	0.0011	0.0025	237.5177	104.3548	1.6649	0.8389	111
OCTT	0.0184	0.015	0.001	0.0013	262.7741	196.2627	4.8308	2.9383	111
PAPN	0.296	0.2985	0.0085	0.0146	30.4709	17.6822	9.0206	5.2773	111
PETA	0.138	0.1865	0.0126	0.0168	20.5915	15.4167	2.842	2.8757	111
PTSU	0.0308	0.0217	0.0122	0.0136	21.2831	19.0067	0.6564	0.4122	19.0067
RICA	0.0226	0.0214	0.0052	0.0064	49.578	40.5676	1.1189	0.8696	40.5676
TEAC	0.0065	0.0097	0.0017	0.002	148.9551	128.8015	0.9683	1.2495	111
TNLP	0.0093	0.0107	0.0013	0.002	198.8435	126.9838	1.8589	1.3576	111
UNIO	0.0176	0.0163	0.0053	0.0028	48.9176	93.3301	0.8617	1.5192	111
ZIIG	0.0456	0.0471	0.0132	0.0239	19.6532	10.838	0.8969	0.5104	10.838

					Factor de	escala (f)	A	calada	
Estación	A_{max}	, (g)	S_a	(g)	para igua T=2.	lar la amplit la Zona 24 seg., (A,	ud del esp a D-l ux = 0.258	pectro de	Escalar ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ACAR	0.0138	0.0175	0.0019	0.0015	132.9933	171.9397	1.8295	3.0015	111
ATYC	0.0106	0.0092	0.0013	0.0023	193.6528	112.0503	2.0463	1.0335	111
CALE	0.3906	0.3568	0.0369	0.0646	7.0134	4.0056	2.7391	1.4294	111
COYC	0.0072	0.0069	0.0014	0.0012	188.2851	216.2412	1.3635	1.4887	111
NUXC	0.0135	0.0136	0.0014	0.0027	184.9068	94.2748	2.502	1.2808	!!!
PAPN	0.0374	0.0544	0.0016	0.0018	163.8586	144.61	6.1217	7.8613	!!!
PETA	0.0519	0.0611	0.0029	0.0035	88.749	73.3437	4.6041	4.4803	111
PTSU	0.2255	0.3167	0.1253	0.0814	2.0646	3.181	0.4656	1.0074	2.0646
RICA	0.0145	0.0198	0.0067	0.0103	38.6671	25.2247	0.5609	0.4982	25.2247
SLUI	0.0097	0.0125	0.0024	0.0016	108.019	160.1189	1.0437	2.0056	111
UNIO	0.0794	0.0771	0.0352	0.0228	7.3435	11.347	0.5832	0.8746	7.3435
VILE	0.1014	0.1054	0.0289	0.0255	8.9511	10.1498	0.9072	1.0699	8.9511

					Sismo	o del 30 de	septiemb	pre de 19	99 (990930
		1			Factor de	escala (f)	A_{max} es	calada	Ecolor
Estación	A_{max}	, (g)	S_a	(g)	para igual T=2.	lar la amplit la Zona 24 seg., (A _m	tud del esp a D-I max = 0.258	bectro de 8 g)	ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
CSER	0.0329	0.044	0.0401	0.0342	6.4465	7.5665	0.212	0.3328	6.4465
CUER	0.0168	0.0166	0.0158	0.0171	16.3782	15.1314	0.2748	0.2506	15.1314
HUIG	0.1272	0.1494	0.0159	0.0058	16.2546	44.8183	2.0684	6.6956	111
PNIG	0.0412	0.0363	0.0015	0.0014	176.3557	188.3976	7.27	6.8322	111
PPIG	0.0226	0.0157	0.0371	0.0359	6.9686	7.2021	0.1575	0.1134	6.9686
YAIG	0.0179	0.0142	0.0057	0.0049	45.2449	52.7527	0.8111	0.748	45.2449

					Factor de	escala (f)	Amax es	scalada	record > *
Estación	A _{mav}	, (g)	S_a	(g)	para igual T=2.	lar la amplit la Zona 24 seg., (<i>A</i> ,	tud del esp n D-l ax = 0.258	pectro de 8 g)	ambas componente:
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAR	0.0187	0.0159	0.0059	0.0019	43.8085	136.3948	0.8194	2.1726	111
AGCA	0.0092	0.0117	0.0041	0.0061	62.8053	42.6728	0.575	0.4984	42.6728
ATYC	0.0073	0.0074	0.0025	0.0039	102.9057	66.513	0.7528	0.4915	66.513
COMD	0.0148	0.017	0.0023	0.0083	114.4321	31.0607	1.6932	0.5296	111
COPL	0.0094	0.0086	0.0039	0.0054	66.7554	47.5781	0.629	0.408	47.5781
COYC	0.0078	0.0092	0.0037	0.0048	70.5351	54.0786	0.5498	0.4991	54.0786
COYQ	0.0085	0.0096	0.0016	0.0026	157.3901	98.6598	1.3383	0.9506	111
CSER	0.2027	0.1748	0.0428	0.0401	6.0446	6.4599	1.2254	1.1289	!!!
CUER	0.0455	0.0437	0.0238	0.0122	10.8596	21.2937	0.4944	0.9298	10.8596
CHIL	0.0216	0.0236	0.0054	0.0062	47.7253	41.6169	1.0306	0.9822	41.6169
IGUA	0.0193	0.0144	0.0043	0.0045	59.9207	57.6838	1.1577	0.8288	57.6838
MEZC	0.0326	0.0241	0.004	0.0055	65.228	47.055	2.1259	1.133	111
POZU	0.0206	0.0174	0.0059	0.005	43.9794	51.544	0.9065	0.8965	43.9794
RICA	0.0861	0.0517	0.0183	0.0312	14.1576	8.2935	1.2188	0.4289	111
TEAC	0.0358	0.0316	0.0066	0.0056	39.3973	46.3323	1.4086	1.4655	111
TNLP	0.0347	0.0364	0.0051	0.0048	51.1839	53.9608	1.7763	1.9633	111
VIGA	0.0173	0.0188	0.0068	0.0077	38.0625	33.6569	0.6573	0.6343	33.6569
HUIG	0.0114	0.0133	0.0018	0.0014	144.8558	186.5379	1.6489	2.4763	111
PLIG	0.0196	0.0187	0.0045	0.0043	57.2802	59.9905	1.1225	1.1239	57.2802
YAIG	0.0566	0.0706	0.0057	0.0125	45.642	20.6461	2.5812	1.4583	111

ii) ZONA C-I

					Factor de	escala (f)	Amax es	scalada	
Estación	A _{ma}	x (g)	S_a	(g)	para igual	ar la ampli la Zona 24 seg., (A,	tud del esp a C-I max = 0.186	bectro de 3 g)	Escalar ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAP	0.0282	0.0169	0.0013	0.0021	145.5486	90.7267	4.1064	1.5374	111
ATYC	0.0609	0.0549	0.0186	0.0447	9.9978	4.1715	0.6086	0.2288	4.1715
AZIH	0.1591	0.099	0.1099	0.1161	1.6944	1.604	0.2696	0.1588	1.604
CALE	0.1418	0.1403	0.1048	0.1655	1.7785	1.1256	0.2522	0.1579	1.1256
COYC	0.0364	0.0429	0.0149	0.0523	12.5346	3.5592	0.4559	0.1526	3.5592
CPDR	0.0151	0.0266	0.0087	0.0122	21.5117	15.2562	0.3242	0.4064	15.2562
MSAS	0.018	0.0234	0.0182	0.0154	10.2435	12.0781	0.1847	0.2822	10.2435
OCTT	0.0545	0.048	0.0186	0.0462	10.0081	4.0317	0.5458	0.1936	4.0317
PAPN	0.113	0.1593	0.0188	0.0323	9.9154	5.7678	1.1203	0.9186	5.7678
PARS	0.0877	0.1119	0.0193	0.0371	9.6641	5.0227	0.8479	0.5622	5.0227
SUCH	0.083	0.1051	0.0346	0.0523	5.3898	3.5612	0.4475	0.3743	3.5612
TEAC	0.0252	0.0523	0.0337	0.0436	5.5322	4.2728	0.1395	0.2234	4.2728
UNIO	0.1502	0.1673	0.0695	0.1191	2.6808	1.5646	0.4028	0.2617	1.5646
VILE	0.1237	0.1252	0.0578	0.0704	3.2258	2.6468	0.3992	0.3313	2.6468
VNTA	0.0211	0.0182	0.0167	0.0265	11.1885	7.0225	0.2359	0.1279	7.0225
XALT	0.0179	0.0313	0.0214	0.0305	8.6983	6.1142	0.1554	0.1917	6.1142
ZACA	0.1784	0.2681	0.0507	0.0932	3.6747	1.9988	0.6554	0.5359	1.9988
ACAS	0.0257	0.0196	0.0023	0.0022	79.7134	86.504	2.0517	1.6969	!!!
CHI1	0.191	0.1597	0.3476	0.343	0.536	0.5431	0.1024	0.0868	0.536
FICA	0.0705	0.0685	0.0279	0.0572	6.6691	3.2545	0.4704	0.2231	3.2545

				Sismo	del 19 de s	eptiembre	de 1985,	2° even	to (850919r
					Factor de escala (f) A_{max} e		A_{max} es	scalada	Feaslar
Estación	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud del la Zona C-I T=2.24 seg., (A _{max} =0. J		tud del esp a C-I $_{max} = 0.186$	bectro de	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
CALE	0.0517	0.0408	0.0177	0.0227	10.5023	8.2202	0.5434	0.3352	8.2202
ZACA	0.0159	0.0129	0.0005 0.0006		377.1968	311.5241	5.9887	4.0222	111

50)-----

Ĩ

					Factor de	escala (f)	Amor es	calada	
Estación	Ama	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zon 24 seg., (A,	tud del esp a C-I max = 0.186	bectro de 3 g)	ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ATYC	0.0727	0.0819	0.0091	0.0165	20.4309	11.2742	1.4847	0.9236	111
AZIH	0.137	0.159	0.0568	0.0788	3.2805	2.3656	0.4493	0.3761	2.3656
COYC	0.0491	0.0421	0.006	0.0144	30.9641	12.9198	1.5206	0.5444	111
CPDR	0.0098	0.0123	0.0047	0.0044	39.6601	41.9074	0.3894	0.5162	39.6601
PAPN	0.2243	0.249	0.0212	0.0308	8.8071	6.0399	1.9759	1.5039	
PARS	0.4836	0.5131	0.0074	0.0185	25.0491	10.0757	12.1137	5.1697	ш
SUCH	0.0731	0.087	0.0114	0.0278	16.3771	6.7101	1.1973	0.5837	6.7101
TEAC	0.0218	0.0314	0.0067	0.0151	27.7872	12.3727	0.605	0.3888	12.3727
UNIO	0.0779	0.0475	0.0177	0.0146	10.5486	12.7564	0.8216	0.6059	10.5486
VILE	0.0411	0.034	0.0241	0.038	7.7272	4.9032	0.3177	0.1669	4.9032
VNTA	0.0182	0.013	0.0035	0.0072	53.1704	25.7135	0.9673	0.3348	25.7135
XALT	0.0151	0.017	0.0045	0.0114	41.2043	16.3785	0.6207	0.2778	16.3785
ZACA	0.0725	0.0742	0.0301	0.0518	6.1832	3.5987	0.4485	0.2668	3.5987
ACAP	0.0268	0.0191	0.0052	0.0028	35.6657	66.4388	0.9566	1.2697	310
ACAS	0.0365	0.0295	0.0036	0.0037	51.5298	49.9936	1.8807	1.4747	111
CHI1	0.12	0.0959	0.1553	0.1634	1.1998	1.1399	0.144	0.1093	1.1399
FICA	0.0483	0.058	0.0122	0.0119	15.2624	15.5907	0.7378	0.9036	15.2624

						Sismo de	l 30 de ab	oril de 19	86 (860430	
					Factor de	escala (f)	A _{max} es	scalada	Feedlar	
Estación	A _{ma}	, (g)	S_a	(g)	para igual T=2.	ar la ampli la Zon 24 seg., (A,	tud del esp a C-I max =0.186	bectro de 3 g)	ambas componentes a	
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	u	
ARTG	0.0209	0.0272	0.005	0.0068	37.2519	27.4125	0.7777	0.7468	27.4125	
CALE	0.0991	0.0778	0.0244	0.0267	7.6266	6.9869	0.7554	0.5433	6.9869	
GUAC	0.0321	0.0565	0.0004	0.0113	513.2794	16.4212	16.4761	0.9279	111	
VILD	0.0246	0.0232	0.0089	0.0059	20.872	31.5942	0.514	0.7319	20.872	
ZACA	0.0553	0.0366	0.0057	0.0065	32.6742	28.8788	1.8074	1.0566	111	
COLI	0.0857	0.0705	0.042	0.0221	4.4347	8.448	0.38	0.5959	4.4347	

					Factor de	escala (f)	Amax es	scalada	227 12
Estación	A_{ma}	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a C-I max =0.186	bectro de 3 g)	Escalar ambas component
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ACAP	0.0652	0.107	0.0099	0.0254	18.9007	7.3449	1.2332	0.7859	111
ACAR	0.1085	0.1077	0.0066	0.017	28.3758	10.9819	3.0777	1.183	111
ATYC	0.0166	0.0186	0.0024	0.0038	77.3859	49.3955	1.2856	0.9194	111
COPL	0.0585	0.1067	0.0062	0.0172	30.1514	10.8606	1.7627	1.159	111
COYC	0.0865	0.0421	0.0076	0.0081	24.4409	23.1374	2.1144	0.9744	111
CPDR	0.0947	0.1049	0.0337	0.0307	5.522	6.0664	0.523	0.6362	5.522
CSER	0.015	0.0127	0.0105	0.0074	17.6992	25.0319	0.2646	0.3187	17,6992
FIC2	0.0156	0.0148	0.0086	0.0074	21.6448	25.2505	0.337	0.3725	21.6448
LLAV	0.0118	0.0125	0.0017	0.0036	112.8411	52.0486	1.3345	0.6486	111
MSAS	0.1141	0.1088	0.0281	0.0198	6.6377	9.4147	0.7572	1.024	6.6377
OCLL	0.0314	0.0293	0.0081	0.0108	23.0426	17.1814	0,7238	0.5029	17.1814
OCTT	0.2046	0.1289	0.0148	0.0096	12.5654	19.3327	2.5703	2.4919	111
PARS	0.1023	0.1173	0.0041	0.004	45.1702	46.3859	4.6213	5.4409	111
SMR2	0.1254	0.178	0.0737	0.0641	2.5275	2.9053	0.3168	0.5172	2.5275
TEAC	0.014	0.0138	0.008	0.0075	23.4287	24.7435	0.3284	0.3403	23.4287
VIGA	0.2978	0.3536	0.016	0.0373	11.6366	4.9888	3.4655	1.764	111
VNTA	0.0612	0.0296	0.0077	0.0119	24.2195	15.6915	1.4831	0.4651	111
XALT	0.0552	0.0535	0.0082	0.0105	22.6276	17.6667	1.2489	0.9459	- 111
ACAS	0.1189	0.1423	0.0093	0.0131	20.1205	14.1828	2.3931	2.0188	111

						Sismo del 1	4 de mai	rzo de 19	94 (940314
					Factor de escala (f) A_{max} esc		scalada	Feedlar	
Estación	$A_{max}\left(g ight)$		$S_a(g)$		para igualar la amplitud del la Zona C-1 T=2.24 seg., ($A_{max} = 0$.)		tud del esp a C-1 _{nax} =0.186	bectro de 3 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	· · · · ·
CSER	0.0111	0.0104	0.0021	0.0033	87.3875	56.5104	0.9711	0.5876	56.5104
HUIG	0.0372	0.0293	0.0008	0.001	238.7761	191.3553	8.8854	5.6085	!!!

E

					Factor de	escala (f)	A _{max} es	scalada	
Estación	A _{ma}	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zoni 24 seg., (A,	tud del esp a C-1 max = 0.186	bectro de 3 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAJ	0.0266	0.0292	0.0029	0.005	64.6843	37.2385	1.7238	1.0889	111
ACAN	0.024	0.0241	0.0031	0.0058	60.7812	32.2531	1.4589	0.7778	111
ACAR	0.0745	0.073	0.0029	0.0032	65.3569	57.9025	4.8722	4.2269	111
COPL	0.2854	0.2089	0.0277	0.0917	6.7308	2.0323	1.9211	0.4245	iii
COYC	0.0202	0.0217	0.0022	0.0049	85.6881	37.8932	1.7306	0.8232	111
CPDR	0.0445	0.0614	0.0059	0.0131	31.385	14.2037	1.3957	0.8724	111
CHIL	0.0212	0.0201	0.0037	0.0061	50.7464	30.3645	1.0752	0.6089	30.3645
FIC2	0.0106	0.0092	0.0019	0.0019	97.5448	96.1878	1.0339	0.8823	96.1878
MSAS	0.0691	0.1216	0.0043	0.0133	43.261	14.0191	2.9897	1.7054	111
OCLL	0.0192	0.0176	0.0041	0.0055	45.4733	33.6298	0.872	0.5933	33.6298
OCTT	0.0603	0.0662	0.009	0.0063	20.8071	29.5774	1.2549	1.9584	111
POZU	0.0732	0.0457	0.0056	0.0071	33.2319	26.3317	2.4322	1.2044	111
PTQL	0.0221	0.02	0.0032	0.0064	57.6235	29.1409	1.2735	0.5823	ш
SMR2	0.0613	0.0621	0.0121	0.0303	15.3857	6.1397	0.9427	0.3815	6.1397
VIGA	0.2663	0.3546	0.0078	0.0369	23.8369	5.0454	6.3472	1.7889	III
VNTA	0.0159	0.0173	0.004	0.004	46.0068	47.14	0.7297	0.8167	46.0068

				Sismo	del 14 de s	eptiembre	de 1995,	2° even	to (950914r
					Factor de	escala (f)	A_{max} escalada		Econlor
Estación	$A_{max}\left(g ight)$		$S_a\left(g ight)$		para igualar la amplitud del e la Zona C-1 T=2.24 seg., (A _{max} =0.1)		tud del esp a C-I max = 0.186	pectro de	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
COPL	0.0265	0.0218	0.0011	0.002	162.2111	92.8472	4.3035	2.0207	111
OCTT	0.0135	0.0169	0.0007 0.0013		278.7877	145.3045	3.7653	2.4596	ш

					Factor de	escala (f)	A _{max} es	scalada	
Estación	A _{max}	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a C-l max = 0.186	bectro de 3 g)	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ACAJ	0.0134	0.0142	0.0035	0.0069	52.6435	26.8866	0.7049	0.3806	26.8866
ACAR	0.0332	0.0421	0.0081	0.0071	22.9477	26.0735	0.7616	1.0969	22.9477
COPL	0.0705	0.0787	0.0197	0.0449	9.4579	4.1482	0.667	0.3264	4.1482
COYC	0.0122	0.0121	0.0038	0.0066	48.6836	28.1263	0.5928	0.3394	28.1263
CUER	0.0132	0.0131	0.0226	0.0343	8.2338	5.4306	0.1087	0.0709	5.4306
CHIL	0.0194	0.027	0.0039	0.0065	48.2586	28.8534	0.9361	0.7783	28.8534
OAXM	0.0416	0.0405	0.0143	0.0156	13.0448	11.9368	0.5429	0.4838	11.9368
OCLL	0.0122	0.0117	0.0042	0.0077	44.708	24.2296	0.5473	0.2839	24.2296
OCTT	0.0496	0.0613	0.0063	0.0067	29.4183	27.8772	1.4593	1.7077	111
RICA	0.0475	0.0503	0.0175	0.0195	10.6465	9.5317	0.506	0.4796	9.5317
RIPC	0.0172	0.0114	0.0334	0.0381	5.5715	4.8913	0.0961	0.0558	4.8913
TEAC	0.008	0.012	0.0096	0.0086	19.3544	21.5489	0.1553	0.2585	19.3544
TNLP	0.0115	0.0107	0.0075	0.0076	24.7076	24.536	0.2839	0.2629	24.536
VIGA	0.079	0.1024	0.0095	0.0186	19.5286	10.0248	1.5423	1.0265	111
POZU	0.0317	0.0423	0.005	0.0023	37.5785	82.0405	1.1907	3.4687	111

						Sismo dei	1 09 de oc	ctubre de	1995 (951009)
					Factor de	e escala (/)	A _{max} es	scalada	
Estación	$A_{max}\left(g ight)$		Sa	$S_a\left(g ight)$		para igualar la amplit la Zona T=2.24 seg., (A _n		pectro de 63g)	Escalar ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
PTSU	0.0133	0.0149	0.0085	0.0088	22.0041	21.2555	0.2929	0.3168	21.2555

					Sis	mo del 2	l de octub	bre de 19	95 (951021
					Factor de	escala (f)	A _{max} es	calada	Ecolor
Estación	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud del esp la Zona C-1 T=2.24 seg., (A _{max} =0.186		bectro de 3 g)	ambas componentes	
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
OAXM	0.0337	0.0351	0.0036 0.0022		52.2479	86.136	1.7582	3.024	III

					Factor de	escala (f)	A _{max} es	scalada	
Estación	A _{ma}	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a C-I _{nax} =0.186	bectro de 3 g)	Escalar ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ACAR	0.0236	0.0167	0.004	0.0018	46.3301	102.359	1.0951	1.7079	111
ATYC	0.0274	0.0262	0.0019	0.0043	96.1394	42.908	2.6344	1.1243	!!!
AZIH	0.0365	0.032	0.0146	0.0231	12.7526	8.0599	0.4661	0.2582	8.0599
COMD	0.0163	0.0216	0.0016	0.0015	116.4537	125.5715	1.8978	2.7107	111
NUXC	0.0445	0.0505	0.0022	0.0048	86.2585	38.796	3.8349	1.961	111
OCLL	0.007	0.008	0.0011	0.0025	170.9797	75.121	1.1985	0.6039	75.121
OCTT	0.0184	0.015	0.001	0.0013	189.1608	141.2818	3.4775	2.1151	111
PAPN	0.296	0.2985	0.0085	0.0146	21.9348	12.7287	6.4936	3.7989	111
PETA	0.138	0.1865	0.0126	0.0168	14.823	11.0979	2.0458	2.0701	111
PTSU	0.0308	0.0217	0.0122	0.0136	15.3209	13.6822	0.4725	0.2967	13.6822
RICA	0.0226	0.0214	0.0052	0.0064	35.6893	29.203	0.8055	0.626	29.203
TEAC	0.0065	0.0097	0.0017	0.002	107.227	92.7191	0.697	0.8995	92,7191
TNLP	0.0093	0.0107	0.0013	0.002	143.1397	91.4107	1.3381	0.9772	!!!
UNIO	0.0176	0.0163	0.0053	0.0028	35.2138	67.1847	0.6203	1.0936	35.2138
ZIIG	0.0456	0.0471	0.0132	0.0239	14.1476	7.8018	0.6457	0.3674	7.8018

					Pasta de	contro der	i i de en	cro de 1	
					Factor de	escala (f)	A_{max} es	scalada	Escalar
Estación	A_{mw}	, (g)	S_a	(g)	para igua T=2.	lar la amplit la Zona 24 seg., (A"	tud del esp a C-l _{nax} =0.186	bectro de 3 g)	ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
ACAR	0.0138	0.0175	0.0019	0.0015	95.7367	123.7727	1.317	2.1606	111
ATYC	0.0106	0.0092	0.0013	0.0023	139.4031	80.6606	1.4731	0.744	111
CALE	0.3906	0.3568	0.0369	0.0646	5.0487	2.8835	1.9718	1.029	111
COYC	0.0072	0.0069	0.0014	0.0012	135.5391	155.6636	0.9815	1.0716	135.5391
NUXC	0.0135	0.0136	0.0014	0.0027	133.1072	67.8648	1.8011	0.922	111
PAPN	0.0374	0.0544	0.0016	0.0018	117.9554	104.0991	4.4068	5.6591	!!!
PETA	0.0519	0.0611	0.0029	0.0035	63.8869	52.7973	3.3143	3.2252	111
PTSU	0.2255	0.3167	0.1253	0.0814	1.4862	2.2899	0.3352	0.7252	1.4862
RICA	0.0145	0.0198	0.0067	0.0103	27.8349	18.1583	0.4038	0.3587	18.1583
SLUI	0.0097	0.0125	0.0024	0.0016	77.7587	115.2633	0.7513	1.4438	.111
UNIO	0.0794	0.0771	0.0352	0.0228	5.2863	8.1682	0.4198	0.6296	5.2863
VILE	0.1014	0.1054	0.0289	0.0255	6.4435	7.3064	0.6531	0.7702	6.4435

					Sismo	o del 30 de	septieml	bre de 19	99 (990930)
					Factor de	escala (f)	A_{max} es	scalada	Ecolor
Estación	A _{ma}	, (g)	S_a	$S_a(g)$ para igualar la a Ia T=2.24 seg				bectro de 3 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
CSER	0.0329	0.044	0.0401	0.0342	4.6406	5.4468	0.1526	0.2396	4.6406
CUER	0.0168	0.0166	0.0158	0.0171	11.79	10.8925	0.1978	0.1804	10.8925
HUIG	0.1272	0.1494	0.0159	0.0058	11.7011	32.2629	1.4889	4.8199	111
PNIG	0.0412	0.0363	0.0015	0.0014	126.9516	135.6201	5.2334	4.9182	111
PPIG	0.0226	0.0157	0.0371	0.0359	5.0164	5.1845	0.1133	0.0816	5.0164
YAIG	0.0179	0.0142	0.0057	0.0049	32.57	37.9746	0.5839	0.5384	32.57

					Factor de	e escala (f)	Amax es	scalada	Part
Estación	A _{max}	, (g)	S_a	(g)	para igua T=2.	lar la amplit la Zona 24 seg., (A"	tud del esp a C-I $_{max} = 0.186$	pectro de	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAR	0.0187	0.0159	0.0059	0.0019	31.536	98.1853	0.5898	1.564	111
AGCA	0.0092	0.0117	0.0041	0.0061	45.2111	30.7185	0.4139	0.3588	30.7185
ATYC	0.0073	0.0074	0.0025	0.0039	74.0778	47.8801	0.5419	0.3538	47.8801
COMD	0.0148	0.017	0.0023	0.0083	82.3752	22.3594	1.2188	0.3812	111
COPL	0.0094	0.0086	0.0039	0.0054	48.0546	34.2496	0.4528	0.2937	34.2496
COYC	0.0078	0.0092	0.0037	0.0048	50.7754	38.9291	0.3958	0.3593	38.9291
COYQ	0.0085	0.0096	0.0016	0.0026	113.299	71.0213	0.9634	0.6843	71.0213
CSER	0.2027	0.1748	0.0428	0.0401	4.3513	4.6502	0.8821	0.8127	4.3513
CUER	0.0455	0.0437	0.0238	0.0122	7.8174	15.3285	0.3559	0.6694	7.8174
CHIL	0.0216	0.0236	0.0054	0.0062	34.3556	29.9584	0.7419	0.707	29.9584
IGUA	0.0193	0.0144	0.0043	0.0045	43.1346	41.5243	0.8334	0.5966	41.5243
MEZC	0.0326	0.0241	0.004	0.0055	46.9551	33.8731	1.5303	0.8156	111
POZU	0.0206	0.0174	0.0059	0.005	31.659	37.1045	0.6525	0.6454	31.659
RICA	0.0861	0.0517	0.0183	0.0312	10.1915	5.9702	0.8774	0.3088	5.9702
TEAC	0.0358	0.0316	0.0066	0.0056	28.3606	33.3528	1.014	1.055	28.3606
TNLP	0.0347	0.0364	0.0051	0.0048	36.8453	38.8443	1.2787	1.4133	111
VIGA	0.0173	0.0188	0.0068	0.0077	27.3997	24.2283	0.4732	0.4566	24.2283
HUIG	0.0114	0.0133	0.0018	0.0014	104.276	134.2814	1.187	1.7826	111
PLIG	0.0196	0.0187	0.0045	0.0043	41.2337	43.1848	0.8081	0.809	41.2337
YAIG	0.0566	0.0706	0.0057	0.0125	32.8559	14.8623	1.8581	1.0498	111

—(57

iii) ZONA B-I

					Faatar da	accele (A	d an	aslada	1
	640	AL 2		20	Factor de	escala (7)	A _{max} es	scalada	Escalar
Estación	A _{ma}	, (g)	S_a	(g)	T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a B-l $_{max} = 0.072$	5 g)	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAP	0.0282	0.0169	0.0013	0.0021	56.6413	35.3070	1.5980	0.5983	111
ATYC	0.0609	0.0549	0.0186	0.0447	3.8907	1.6234	0.2368	0.0891	1.6234
AZIH	0.1591	0.0990	0.1099	0.1161	0.6594	0.6242	0.1049	0.0618	0.6242
CALE	0.1418	0.1403	0.1048	0.1655	0.6921	0.4381	0.0981	0.0615	0.4381
COYC	0.0364	0.0429	0.0149	0.0523	4.8779	1.3851	0.1774	0.0594	1.3851
CPDR	0.0151	0.0266	0.0087	0.0122	8.3714	5.9371	0.1262	0.1581	5.9371
MSAS	0.0180	0.0234	0.0182	0.0154	3.9863	4.7003	0.0719	0.1098	3.9863
OCTT	0.0545	0.0480	0.0186	0.0462	3.8947	1.5690	0.2124	0.0753	1.569
PAPN	0.1130	0.1593	0.0188	0.0323	3.8586	2.2446	0.4360	0.3575	2.2446
PARS	0.0877	0.1119	0.0193	0.0371	3.7609	1.9546	0.3300	0.2188	1.9546
SUCH	0.0830	0.1051	0.0346	0.0523	2.0975	1.3859	0.1741	0.1457	1.3859
TEAC	0.0252	0.0523	0.0337	0.0436	2.1529	1.6628	0.0543	0.0869	1.6628
UNIO	0.1502	0.1673	0.0695	0.1191	1.0433	0.6089	0.1567	0.1018	0.6089
VILE	0.1237	0.1252	0.0578	0.0704	1.2553	1.0300	0.1553	0.1289	1.03
VNTA	0.0211	0.0182	0.0167	0.0265	4.3541	2.7329	0.0918	0.0498	2.7329
XALT	0.0179	0.0313	0.0214	0.0305	3.3850	2.3794	0.0605	0.0746	2.3794
ZACA	0.1784	0.2681	0.0507	0.0932	1.4301	0.7778	0.2551	0.2085	0.7778
ACAS	0.0257	0.0196	0.0023	0.0022	31.0210	33.6637	0.7984	0.6604	31.021
CHI1	0.1910	0.1597	0.3476	0.3430	0.2086	0.2114	0.0398	0.0338	0.2086
FICA	0.0705	0.0685	0.0279	0.0572	2.5953	1.2665	0.1831	0.0868	1.2665

				Sismo	del 19 de s	eptiembre	de 1985,	2° even	to (8509191
					Factor de	escala (f)	A_{max} es	scalada	Essalar
Estación	$A_{max}\left(g ight)$		$S_a\left(g ight)$		para igualar la amplitu la Zona l T=2.24 seg., (A _{ma}		ud del espectro de B-l max = 0.0725g)		ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
CALE	0.0517	0.0408	0.0177	0.0227	4.0871	3.1990	0.2115	0.1304	3.199
ZACA	0.0159	0.0129	0.0005	0.0006	146.7889	121.2319	2.3305	1.5653	111

					Factor de	escala (A	A e	scalada	
Estación	A _{ma}	r (g)	Sa	(g)	para igua	lar la ampli la Zon	tud del esp a B-1 = 0.077	pectro de	Escalar ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ATYC	0.0727	0.0819	0.0091	0.0165	7.9508	4.3874	0.5778	0.3594	4.3874
AZIH	0.137	0.159	0.0568	0.0788	1.2766	0.9206	0.1748	0.1464	0.9206
COYC	0.0491	0.0421	0.006	0.0144	12.0499	5.0278	0.5917	0.2118	5.0278
CPDR	0.0098	0.0123	0.0047	0.0044	15.434	16.3086	0.1515	0.2009	15.434
PAPN	0.2243	0.249	0.0212	0.0308	3.4274	2.3505	0.7689	0.5852	2.3505
PARS	0.4836	0.5131	0.0074	0.0185	9.748	3.921	4.7141	2.0118	111
SUCH	0.0731	0.087	0.0114	0.0278	6.3732	2.6113	0.4659	0.2271	2.6113
TEAC	0.0218	0.0314	0.0067	0.0151	10.8136	4.8149	0.2355	0.1513	4.8149
UNIO	0.0779	0.0475	0.0177	0.0146	4.1051	4.9642	0.3197	0.2358	4.1051
VILE	0.0411	0.034	0.0241	0.038	3.0071	1.9081	0.1236	0.0649	1.9081
VNTA	0.0182	0.013	0.0035	0.0072	20.6916	10.0066	0.3764	0.1303	10.0066
XALT	0.0151	0.017	0.0045	0.0114	16.035	6.3738	0.2416	0.1081	6.3738
ZACA	0.0725	0.0742	0.0301	0.0518	2.4062	1.4005	0.1745	0.1038	1.4005
ACAP	0.0268	0.0191	0.0052	0.0028	13.8796	25.8551	0.3723	0.4941	13.8796
ACAS	0.0365	0.0295	0.0036	0.0037	20.0532	19.4554	0.7319	0.5739	19.4554
CHI1	0.12	0.0959	0.1553	0.1634	0.4669	0.4436	0.0561	0.0425	0.4436
FICA	0.0483	0.058	0.0122	0.0119	5.9395	6.0672	0.2871	0.3517	5.9395

						Sismo del	30 de at	oril de 19	86 (860430
					Factor de	escala (f)	A _{max} es	scalada	Escolar
Estación	A _{ma}	, (g)	<i>S_a</i> (<i>g</i>)		para igual T=2.1	ar la ampli la Zon 24 seg., (A,	tud del esp a B-I max =0.072	pectro de 5 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	u
ARTG	0.0209	0.0272	0.005	0.0068	14.4968	10.6678	0.3026	0.2906	10.6678
CALE	0.0991	0.0778	0.0244	0.0267	2.9679	2.719	0.294	0.2114	2.719
GUAC	0.0321	0.0565	0.0004	0.0113	199.7464	6.3904	6.4118	0.3611	111
VILD	0.0246	0.0232	0.0089	0.0059	8.1225	12.2951	0.2	0.2848	8.1225
ZACA	0.0553	0.0366	0.0057	0.0065	12.7154	11.2384	0.7034	0.4112	11.2384
COLI	0.0857	0.0705	0.042	0.0221	1.7258	3.2876	0.1479	0.2319	1.7258

_						Sismo del	25 de at	oril de 19	89 (890425
					Factor de	escala (f)	A_{max} es	scalada	Escalar
Estación	A _{ma}	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a B-I =0.072	bectro de	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAP	0.0652	0.107	0.0099	0.0254	7.3554	2.8583	0.4799	0.3059	2.8583
ACAR	0.1085	0.1077	0.0066	0.017	11.0427	4.2737	1.1977	0.4604	4.2737
ATYC	0.0166	0.0186	0.0024	0.0038	30.1153	19.2226	0.5003	0.3578	19.2226
COPL	0.0585	0.1067	0.0062	0.0172	11.7336	4.2265	0.686	0.4511	4.2265
COYC	0.0865	0.0421	0.0076	0.0081	9.5114	9.0041	0.8228	0.3792	9.0041
CPDR	0.0947	0.1049	0.0337	0.0307	2.1489	2.3608	0.2035	0.2476	2.1489
CSER	0.015	0.0127	0.0105	0.0074	6.8878	9.7413	0.103	0.124	6.8878
FIC2	0.0156	0.0148	0.0086	0.0074	8.4232	9.8264	0.1312	0.1449	8.4232
LLAV	0.0118	0.0125	0.0017	0.0036	43.9129	20.2551	0.5193	0.2524	20.2551
MSAS	0.1141	0.1088	0.0281	0.0198	2.5831	3.6638	0.2947	0.3985	2.5831
OCLL	0.0314	0.0293	0.0081	0.0108	8.9672	6.6863	0.2817	0.1957	6.6863
OCTT	0.2046	0.1289	0.0148	0.0096	4.8899	7.5235	1.0002	0.9697	4.8899
PARS	0.1023	0.1173	0.0041	0.004	17.5783	18.0514	1.7984	2.1174	111
SMR2	0.1254	0.178	0.0737	0.0641	0.9836	1.1306	0.1233	0.2013	0.9836
TEAC	0.014	0.0138	0.008	0.0075	9.1174	9.6291	0.1278	0.1324	9.1174
VIGA	0.2978	0.3536	0.016	0.0373	4.5285	1.9414	1.3486	0.6865	111
VNTA	0.0612	0.0296	0.0077	0.0119	9.4252	6.1064	0.5771	0.181	6.1064
XALT	0.0552	0.0535	0.0082	0.0105	8.8057	6.8751	0.486	0.3681	6.8751
ACAS	0.1189	0.1423	0.0093	0.0131	7.83	5.5193	0.9313	0.7856	5.5193

						Sismo del 1	4 de mai	zo de 19	94 (940314)
					Factor de	escala (1)	A _{max} es	scalada	Ecolor
Estación	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud del e la Zona B-I T=2.24 seg., ($A_{max} = 0.07$		tud del esp a B-I _{nax} =0.072	bectro de 5 g)	ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
CSER	0.0111	0.0104	0.0021	0.0021 0.0033		21,9914	0.3779 0.2287		21.9914
HUIG	0.0372	0.0293	0.0008	0.001	92.9214	74.4673	3.4578	2.1826	111

					Factor de	escala (f)	Amax es	scalada	
Estación	A _{max}	r (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A,	tud del esp a B-I max = 0.072	bectro de (5 g)	Escalar ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAJ	0.0266	0.0292	0.0029	0.005	25.1724	14.4916	0.6708	0.4238	14.4916
ACAN	0.024	0.0241	0.0031	0.0058	23.6534	12.5515	0.5678	0.3027	12.5515
ACAR	0.0745	0.073	0.0029	0.0032	25.4341	22.5332	1.8961	1.6449	111
COPL	0.2854	0.2089	0.0277	0.0917	2.6194	0.7909	0.7476	0.1652	0.7909
COYC	0.0202	0.0217	0.0022	0.0049	33.3461	14.7464	0.6735	0.3203	14.7464
CPDR	0.0445	0.0614	0.0059	0.0131	12.2137	5.5275	0.5431	0.3395	5.5275
CHIL	0.0212	0.0201	0.0037	0.0061	19.7483	11.8165	0.4184	0.237	11.8165
FIC2	0.0106	0.0092	0.0019	0.0019	37.9603	37.4322	0.4024	0.3433	37.4322
MSAS	0.0691	0.1216	0.0043	0.0133	16.8353	5.4556	1.1635	0.6637	5.4556
OCLL	0.0192	0.0176	0.0041	0.0055	17.6963	13.0873	0.3393	0.2309	13.0873
OCTT	0.0603	0.0662	0.009	0.0063	8.0972	11.5103	0.4884	0.7621	8.0972
POZU	0.0732	0.0457	0.0056	0.0071	12.9324	10.2472	0.9465	0.4687	10.2472
PTQL	0.0221	0.02	0.0032	0.0064	22.4246	11.3404	0.4956	0.2266	11.3404
SMR2	0.0613	0.0621	0.0121	0.0303	5.9875	2.3893	0.3669	0.1485	2.3893
VIGA	0.2663	0.3546	0.0078	0.0369	9.2763	1.9635	2.4701	0.6962	111
VNTA	0.0159	0.0173	0.004	0.004	17.9039	18.3449	0.284	0.3178	17.9039

				Sismo	del 14 de s	eptiembre	de 1995,	2° even	to (950914)
					Factor de	Factor de escala (f) A_{max}		scalada	Faalar
Estación	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud del la Zona B-I T=2.24 seg., $(A_{max} = 0.0$		tud del esp a B-I _{nax} =0.072	bectro de 5 g)	ambas componentes
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	<u> </u>
COPL	0.0265	0.0218	0.0011	0.002	63.1256	36.1321	1.6747	0.7864	111
OCTT	0.0135	0.0169	0.0007	0.0013	108,4922	56.5463	1.4653	0.9572	111

					Factor de	escala (/)	A _{max} es	scalada	r
Estación	A _{ma}	, (g)	S_a	(g)	para igua T=2.	lar la ampli la Zona 24 seg., (A _n	tud del esp a B-1 max = 0.072	pectro de 5 g)	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAJ	0.0134	0.0142	0.0035	0.0069	20.4866	10.4631	0.2743	0.1481	10.4631
ACAR	0.0332	0.0421	0.0081	0.0071	8.9303	10.1467	0.2964	0.4269	8.9303
COPL	0.0705	0.0787	0.0197	0.0449	3.6806	1.6143	0.2596	0.127	1.6143
COYC	0.0122	0.0121	0.0038	0.0066	18.9456	10.9455	0.2307	0.1321	10.9455
CUER	0.0132	0.0131	0.0226	0.0343	3.2043	2.1133	0.0423	0.0276	2.1133
CHIL	0.0194	0.027	0.0039	0.0065	18.7802	11.2285	0.3643	0.3029	11.2285
OAXM	0.0416	0.0405	0.0143	0.0156	5.0765	4.6453	0.2113	0.1883	4.6453
OCLL	0.0122	0.0117	0.0042	0.0077	17.3984	9.4291	0.213	0.1105	9.4291
OCTT	0.0496	0.0613	0.0063	0.0067	11.4483	10.8486	0.5679	0.6646	10.8486
RICA	0.0475	0.0503	0.0175	0.0195	4.1432	3.7093	0.1969	0.1866	3.7093
RIPC	0.0172	0.0114	0.0334	0.0381	2.1682	1.9035	0.0374	0.0217	1.9035
TEAC	0.008	0.012	0.0096	0.0086	7.5319	8.3859	0.0604	0.1006	7.5319
TNLP	0.0115	0.0107	0.0075	0.0076	9.6151	9.5484	0.1105	0.1023	9.5484
VIGA	0.079	0.1024	0.0095	0.0186	7.5997	3.9012	0.6002	0.3995	3.9012
POZU	0.0317	0.0423	0.005	0.0023	14.6239	31.9267	0.4634	1.3499	111

						Sismo del	09 de o	ctubre de	1995 (951009)
					Factor de	e escala (f)	(f) A _{max} escalada		
Estación	A _{ma}	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud de la Zona B-I T=2.24 seg., (A _{max} =0		pectro de 25g)	Escalar ambas componentes a
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
PTSU	0.0133	0.0149	0.0085 0.0088		8.5631	8.2717	0.114	0.1233	8.2717

				Sismo del 21 de octubre de 1995 (951021					
Estación	$A_{max}\left(g ight)$		$S_a\left(g ight)$		Factor de escala (f)		A_{max} escalada		Escalar ambas componentes a
					para igualar la amplitud del es la Zona B-I T=2.24 seg., ($A_{max} = 0.07$			bectro de 5 g)	
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	
OAXM	0.0337	0.0351	0.0036	0.0022	20.3327	33.5204	0.6842	1.1768	20.3327

Estación	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		Factor de escala (f) para igualar la amplitu la Zona T=2.24 seg., (Ama		A_{max} escalada tud del espectro de a B-1 max =0.0725 g)			
									ambas componentes	
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a	
ACAR	0.0236	0.0167	0.004	0.0018	18.0297	39.8337	0.4262	0.6646	18.0297	
ATYC	0.0274	0.0262	0.0019	0.0043	37.4133	16.6979	1.0252	0.4375	16.6979	
AZIH	0.0365	0.032	0.0146	0.0231	4.9628	3.1366	0.1814	0.1005	3.1366	
COMD	0.0163	0.0216	0.0016	0.0015	45.3188	48.8671	0.7386	1.0549	45.3188	
NUXC	0.0445	0.0505	0.0022	0.0048	33.5681	15.0978	1.4924	0.7632	111	
OCLL	0.007	0.008	0.0011	0.0025	66.538	29.2339	0.4664	0.235	29.2339	
OCTT	0.0184	0.015	0.001	0.0013	73.6133	54.9809	1.3533	0.8231	111	
PAPN	0.296	0.2985	0.0085	0.0146	8.5361	4.9535	2.527	1.4784	111	
PETA	0.138	0.1865	0.0126	0.0168	5.7685	4.3188	0.7962	0.8056	4.3188	
PTSU	0.0308	0.0217	0.0122	0.0136	5.9622	5.3245	0.1839	0.1155	5.3245	
RICA	0.0226	0.0214	0.0052	0.0064	13.8887	11.3646	0.3135	0.2436	11.3646	
TEAC	0.0065	0.0097	0.0017	0.002	41.7282	36.0823	0.2713	0.35	36.0823	
TNLP	0.0093	0.0107	0.0013	0.002	55.7038	35.5731	0.5207	0.3803	35.5731	
UNIO	0.0176	0.0163	0.0053	0.0028	13.7037	26.1454	0.2414	0.4256	13.7037	
ZIIG	0.0456	0.0471	0.0132	0.0239	5.5056	3.0361	0.2513	0.143	3.0361	

Base de datos utilizada para el presente estudio

					and a	Sismo uei	Ti de en	ero de 1	97 (970111)	
Estación	A _{max} (g)		$S_{a}\left(g ight)$		Factor de escala (f) para igualar la amplit la Zona T=2.24 seg., $(A_n$		A_{max} escalada itud del espectro de ta B-I max = 0.0725 g		Escalar	
									ambas componentes	
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	u	
ACAR	0.0138	0.0175	0.0019	0.0015	37.2566	48.167	0.5125	0.8408	37.2566	
ATYC	0.0106	0.0092	0.0013	0.0023	54.2497	31.3897	0.5733	0.2895	31.3897	
CALE	0.3906	0.3568	0.0369	0.0646	1.9647	1.1221	0.7673	0.4004	1.1221	
COYC	0.0072	0.0069	0.0014	0.0012	52.746	60.5776	0.382	0.417	52.746	
NUXC	0.0135	0.0136	0.0014	0.0027	51.7996	26.4101	0.7009	0.3588	26.4101	
PAPN	0.0374	0.0544	0.0016	0.0018	45.9032	40.5109	1.7149	2.2023	111	
PETA	0.0519	0.0611	0.0029	0.0035	24.8621	20.5464	1.2898	1.2551	111	
PTSU	0.2255	0.3167	0.1253	0.0814	0.5784	0.8911	0.1304	0.2822	0.5784	
RICA	0.0145	0.0198	0.0067	0.0103	10.8322	7.0664	0.1571	0.1396	7.0664	
SLUI	0.0097	0.0125	0.0024	0.0016	30.2604	44.8556	0.2924	0.5619	30.2604	
UNIO	0.0794	0.0771	0.0352	0.0228	2.0572	3.1787	0.1634	0.245	2.0572	
VILE	0.1014	0.1054	0.0289	0.0255	2.5075	2.8433	0.2541	0.2997	2.5075	

					Sismo	o del 30 de	septieml	bre de 19	99 (990930
Estación	A _{max} (g)		$S_{a}\left(g ight)$		Factor de escala (f) para igualar la amplit la Zona T=2.24 seg., (A_n		A_{max} escalada itud del espectro de na B-I $_{max} = 0.0725$ g)		Escalar ambas componentes
	CSER	0.0329	0.044	0.0401	0.0342	1.8059	2.1197	0.0594	0.0932
CUER	0.0168	0.0166	0.0158	0.0171	4.5882	4.2389	0.077	0.0702	4.2389
HUIG	0.1272	0.1494	0.0159	0.0058	4.5536	12.5553	0.5794	1.8757	111
PNIG	0.0412	0.0363	0.0015	0.0014	49.4041	52.7775	2.0366	1.914	111
PPIG	0.0226	0.0157	0.0371	0.0359	1.9522	2.0176	0.0441	0.0318	1.9522
YAIG	0.0179	0.0142	0.0057	0.0049	12.6749	14.7781	0.2272	0.2095	12.6749

						Sismo de	l 15 de ju	nio de 1	999 (99061:
Estación					Factor de	A _{max} es	scalada	Escalar	
	$A_{max}\left(g ight)$		$S_{a}\left(g ight)$		para igualar la amplitud de la Zona B-I T=2.24 seg., (A _{max} =0			pectro de 5 g)	ambas componente
	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	a
ACAR	0.0187	0.0159	0.0059	0.0019	12.2725	12.2725	0.2295	0.6086	12.2725
AGCA	0.0092	0.0117	0.0041	0.0061	17.5942	17.5942	0.1611	0.1396	11.9543
ATYC	0.0073	0.0074	0.0025	0.0039	28.8279	28.8279	0.2109	0.1377	18.6329
COMD	0.0148	0.017	0.0023	0.0083	32.0569	32.0569	0.4743	0.1483	8.7013
COPL	0.0094	0.0086	0.0039	0.0054	18.7008	18.7008	0.1762	0.1143	13.3285
COYC	0.0078	0.0092	0.0037	0.0048	19.7596	19.7596	0.154	0.1398	15.1495
COYQ	0.0085	0.0096	0.0016	0.0026	44.0911	44.0911	0.3749	0.2663	27.6385
CSER	0.2027	0.1748	0.0428	0.0401	1.6933	1.6933	0.3433	0.3163	1.6933
CUER	0.0455	0.0437	0.0238	0.0122	3.0422	3.0422	0.1385	0.2605	3.0422
CHIL	0.0216	0.0236	0.0054	0.0062	13.3697	13.3697	0.2887	0.2751	11.6585
IGUA	0.0193	0.0144	0.0043	0.0045	16.7861	16.7861	0.3243	0.2322	16.1595
MEZC	0.0326	0.0241	0.004	0.0055	18.2729	18.2729	0.5955	0.3174	13.182
POZU	0.0206	0.0174	0.0059	0.005	12.3203	12.3203	0.2539	0.2512	12.3203
RICA	0.0861	0.0517	0.0183	0.0312	3.9661	3.9661	0.3414	0.1202	2.3233
TEAC	0.0358	0.0316	0.0066	0.0056	11.0367	11.0367	0.3946	0.4105	11.0367
TNLP	0.0347	0.0364	0.0051	0.0048	14.3386	14.3386	0.4976	0.55	14.3386
VIGA	0.0173	0.0188	0.0068	0.0077	10.6628	10.6628	0.1841	0.1777	9.4286
HUIG	0.0114	0.0133	0.0018	0.0014	40.5798	40.5798	0.4619	0.6937	40.5798
PLIG	0.0196	0.0187	0.0045	0.0043	16.0464	16.0464	0.3145	0.3148	16.0464
YAIG	0.0566	0.0706	0.0057	0.0125	12.7861	12.7861	0.7231	0.4085	5.7838

		2
de las estaciones seleccionadas para	a la zona B-I (continuación)	

66)

Figura 3.3 Zonas de ruptura de los grandes sismos del sigo XX. (cortesía SSN)

Figura 3.4 Regiones Sísmicas en México (cortesía MOC-93)

68)

Figura 3.5 Estaciones en Zona B, C y D Terreno Tipo I

Figura 3.6 Estaciones en Zona B, C y D Terreno Tipo I (continuación)

Intensidad de Arias

Figura 3.7 ejemplos de acelerogramas que cumplieron el criterio de selección

Figura 3.8 ejemplos de acelerogramas que no cumplieron el criterio de selección

Figura 3.9 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona D-I (MOC-93, 850919)

Figura 3.10 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona D-I (MOC-93, 850921)

Figura 3.11 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona D-I (MOC-93, 890425)

Figura 3.12 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona D-I (MOC-93, 950914)

Figura 3.13 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona D-I (MOC-93, 990615)

Figura 3.14 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 850919)

Figura 3.15 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 850921)

Figura 3.16 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 890425)

Figura 3.17 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 931024)

Figura 3.18 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 950914)

C75

Figura 3.19 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 960715)

Figura 3.20 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 970111)

Figura 3.21 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona C-I (MOC-93, 990615)

Figura 3.22 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 850919)

77

0.0

Figura 3.24 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 860430)

Figura 3.25 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 890425)

Figura 3.26 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 931024)

79

Figura 3.27 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 950914)

Figura 3.28 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 960715)

Figura 3.29 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 970111)

Figura 3.30 Escalamiento de algunos acelerogramas seleccionados de manera que su aceleración espectral para T = 2.24s. coincida con la del espectro de diseño de la zona B-I (MOC-93, 990615)

C81

Miguel Ángel Pérez Osornio

82)

Base de datos utilizada para el presente estudio

CAPÍTULO

Factores de amplificación de los desplazamientos de los aisladores de base de comportamiento elástico lineal por efectos bidireccionales

4.1 Descripción del procedimiento de análisis utilizado

Se procedió a realizar un análisis dinámico no lineal del modelo estructural con base aislada, empleando el programa 3D-BASIS (Nagarajaiah *et al.*, 1991), donde se considera a la superestructura como elástica. En este estudio, se consideraron 154 pares de acelerogramas correspondientes a 13 eventos diferentes, como se identifican en las tablas 3.2 y 3.3.

Para cada condición de carga dinámica se tienen 16 casos, considerando un intervalo de periodos en base aislada entre 1.5 seg. a 3.0 seg. con incrementos a cada 0.1 segundos. Los análisis se organizaron clasificando los archivos de datos por evento. Para cada par de acelerogramas, se consideraron tres casos. Primero, se excitó a los modelos con la componente *E-W* exclusivamente; segundo, con la componente *N-S exclusivamente* y, finalmente, con la excitación *bidireccional* de ambas componentes ortogonales (figura 4.1). Por lo tanto, se realizaron 48 simulaciones por cada par de acelerogramas. Por tanto, se realizaron un total de 7,392 simulaciones para este estudio en particular.

De los resultados obtenidos se seleccionaron los desplazamientos dinámicos máximos que experimentan los aisladores. Debido a la simetría del modelo y a la ausencia de una componente rotacional del terreno, se puede seleccionar cualquier aislador de los 16 aisladores del modelo (figura 2.4), ya que todos experimentan los mismos desplazamientos, como se comprobó aleatoriamente.

Para la agilización del análisis se elaboró el programa *TAB* desarrollado en FORTRAN, que extrae de cada una de las simulaciones hechas en el programa *3D-BASIS* los desplazamientos de los aisladores seleccionados de las componentes horizontales y la acción bidireccional a lo largo del intervalo de vibración T_a seleccionado. En las tablas 4.1 a 4.4 se ejemplifica como el programa TAB tabula, para cada simulación, los desplazamientos máximos de los aisladores (columna 2), los desplazamientos máximos de las componentes ortogonales (*E-W* y *N-S*, columnas 3 y 4 respectivamente), la acción bidireccional máxima (columna 5), la acción bidireccional normalizada ante la correspondiente excitación *E-W* (columna 6), la acción bidireccional normalizada ante la acción *N-S* (columna 7), la acción dominante de una de las dos anteriores (columna 8).

Para definir cuál es la componente dominante normalizada (columna 8), se puede proceder de varias maneras, como se discute a continuación.

En la tabla 4.1 se ilustra un criterio que considera que podría tomarse el factor de amplificación menor que resulte de las columnas 6 y 7 para cada incremento de periodo en el intervalo de periodos de interés, esto es, formar una especie de envolvente que nos permita obtener los máximos desplazamientos normalizados ante la acción bidireccional (columna 8), representado en la tabla con flechas el mínimo valor en color sombreado tomados entre la columna 6 y 7. Este criterio envolvente, aunque fácil de implantar, resultaría conceptualmente inadecuado, pues no define precisamente qué componente es la dominante, que es un objetivo importante en este estudio paramétrico en particular. Por lo anterior, este procedimiento fue rechazado.

En la tabla 4.2 se presenta un criterio distinto al mostrado en la tabla 4.1, donde en color sombreado se identifican los valores que representan los mínimos factores de amplificación (columnas 6 y 7), dichos valores nos permitirán contar con la cantidad de periodos dominantes en el intervalo de interés ($1.5seg. \le T_a \le 3.0seg.$) para ambas columnas. Para determinar la componente dominante (columna 8), en este criterio se considera la sumatoria de los factores de amplificación de las columnas 6 y 7 (promedio "pesado") y, por lo tanto, la componente dominante se identifica con la columna asociada a la menor sumatoria. Este criterio es el adoptado en este trabajo, aunque es obvio que otros autores pudieran considerar procedimientos distintos. Sin embargo, este criterio luce razonablemente práctico para definir qué componente es la dominante en el intervalo de periodos de interés con base en un criterio energético evaluado de manera indirecta.

Nótese que en la tabla 4.2 la mínima sumatoria queda representada por la columna 7 con un valor de 18.003, comparada con la columna 6 cuya sumatoria resulta ser 33.093. Obsérvese también que la cantidad de periodos dominantes que *a-priori* se identifican es de 15 para la columna 7 y de uno para la columna 6; de esta observación puede concluirse que la acción dominante para esta simulación en particular queda representada por la columna 7 (acción N-S) y que queda expresada en la columna 8 en un recuadro enmarcado.

No siempre resulta simple definir a la componente dominante como en el caso presentado en la tabla 4.2, y esto se ilustra con la tabla 4.3 (estación CHIL del sismo de junio del 99). Nótese que al comparar los mínimos factores de amplificación de las columnas 6 y 7, en algunos incrementos de periodo rige la columna 6 (acción E-W con 7 periodos dominantes) y en otras la columna 7 (acción N-S con 9 periodos dominantes), lo cual no resulta tan claro a simple vista como quedó ejemplificado en la simulación de la tabla 4.2, por sólo el hecho que ambas columnas pudieran ser candidatas a ser identificadas como la componente dominante, por lo cual resulta difícil tomar una decisión al respecto. Es precisamente en estos casos donde el criterio propuesto muestra sus bondades. Si la decisión se toma con el criterio de la sumatorias mínimas de las columnas 6 y 7, éste nos da otro parámetro más para tomar una decisión razonable, lo que se puede observar en la tabla 4.3, ya que la mínima sumatoria corresponde a la columna 7 con un valor de 20.603, por lo que se concluye que esta componente representa la acción dominante y, por lo tanto, se identifica como tal con un marco en la columna 8.

Por lo tanto, este criterio de la mínima sumatoria de los factores de amplificación fue aplicado para las 7392 simulaciones. Se observó que cuando se presenta un cierto equilibrio en el número de periodos dominantes entre las columnas 6 y 7, existen ciertas excepciones donde no siempre coincide el máximo número de periodos dominantes con la mínima sumatoria de los factores de amplificación, esto es, cuando el número de periodos dominantes oscila entre los 11 a 7 para una de las columnas y de 5 a 9 para la otra. Por ejemplo, se observa en la tabla 4.4 que la columna 7 (acción N-S) presenta el máximo número de periodos dominantes con un total de 9, pero la mínima sumatoria de los factores de amplificación le corresponde a la columna 6 con un total de 21.091; de lo anterior, la acción dominante (columna 8) queda definida por la columna 6 para esta simulación en particular, que hemos identificado en la columna 8 en un recuadro y con una flecha en la tabla.

En la figura 4.2 se presenta un histograma que resume el patrón de periodos dominantes (E-W o N-S) en el intervalo considerado para los 154 registros seleccionados. Cada barra del histograma representa una combinación donde rigen los mínimos factores de amplificación para cada incremento de periodo tanto para la acción E-W como para la acción N-S con base en la información extraída de las columnas 6 y 7 de los archivos generados por el programa TAB para cada registro, esto es, desde considerar que todos los desplazamientos máximos en cada incremento de periodo están relacionados con la componente N-S = 16, hasta donde todos los desplazamientos máximos en cada incremento de periodo están asociados con la componente E-W = 16, dentro del intervalo de interés ($1.5 seg. \le T_a \le 3.0 seg.$). Además, cada barra representa la cantidad de registros que caen dentro de dicha combinación.

De la figura 4.2 se observa que en 19 registros de diferentes eventos, los mínimos factores de escala están asociados a la componente N-S y sólo uno por la acción E-W, y existen 13 donde los mínimos factores de escala son por igual para ambas componentes, esto es, E-W = 8 y N-S = 8. De igual manera, se ilustran la frecuencia en que se observan las demás combinaciones posibles dentro de las simulaciones realizadas. Cabe señalar que, en general, la componente N-S tiende a ser la dominante.

En la figura 4.3 se presenta un histograma donde se agrupan los casos de estadística similar, es decir, donde domina una componente (por ejemplo 0-16 y 16-0 de la figura 4.2), o donde esto no resulta tan claro (por ejemplo, 7-9 y 9-7 de la tabla 4.2). De la figura 4.3 se aprecia que los casos donde una componente es claramente dominante (13-3, 14-2, 15-1 y 16-0) son prácticamente igualados por los casos donde esto no es obvio (11-5, 10-6, 9-9 y 8-8), por lo que el criterio utilizado es importante en el análisis de los resultados que se presentan.

En las figuras 4.4 a 4.8 se ilustran las relaciones entre el periodo aislado (T_a) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de algunas estaciones representativas, para determinar en que dirección se presentan los máximos desplazamientos en el intervalo de interés. Esta información complementa la que estadísticamente se resume en las figuras 4.2 y 4.3 y las tablas 4.2 y 4.3. Por ejemplo, en la estación ATYC del sismo del 15 de julio del 96 (figura 4.4), durante todo el intervalo los factores de amplificación mínimos están asociados a la componente N-S, identificada con línea discontinua. En la estación OCTT del sismo del 25 de abril del 89 (figura 4.7), se observa que entre los periodos 1.7 a 2.1 segundos los máximos desplazamientos se dan en la dirección N-S (línea discontinua), pero el resto del intervalo los máximos corresponden bajo la excitación E-W (línea continua); sin embargo, el criterio utilizado identifica que los máximos desplazamientos se dan generalmente bajo la acción E-W.

Se mencionó en párrafos anteriores que cuando se presenta un cierto equilibrio en el número de periodos dominantes entre las acciones E-W y N-S, no es fácil determinar, *a-priori*, bajo qué excitación se presentan los máximos desplazamientos para algunas de las estaciones seleccionadas. Esta situación se ejemplifica en las estaciones VNTA, CPDR y OCLL (figuras 4.9 a 4.12) de los sismos del 21 de septiembre de 85, del 19 de septiembre del 85 y del 15 de julio del 96 respectivamente.

En la figura 4.11 se observa que entre el intervalo de periodos de 1.9 a 2.2 segundos, los máximos desplazamientos se dan bajo la excitación E-W, y entre el intervalo de 2.3 a 2.6 segundos se asocian a la componente N-S, pero los factores de amplificación son menores bajo la componente E-W entre el intervalo de 2.3 a 2.6. Igualmente, se puede también hacer notar que es difícil apreciar en qué incrementos de periodo domina una componente, aunque sea insignificante, o en su defecto igual (figura 4.12). Por lo tanto, a simple vista podemos concluir que un conteo simple (E-W=9, N-S=7) no constituye un buen parámetro para decidir qué componente es la dominante, porque

además de la cantidad de periodos dominantes que se identifican para cada componente en el intervalo estudiado, influyen otros parámetros relevantes en los factores de amplificación. Por lo tanto, consideramos que el criterio elegido y que se ha ilustrado anteriormente es razonable y consistente.

4.2 Criterio estadístico utilizado

En este trabajo, se estudian las respuestas medias de los efectos bidireccionales de todas las simulaciones realizadas (154 registros acelerográficos en terreno firme para sismos de magnitud mayor o igual a 6.5 e identificados en la tabla 3.2). Además, se consideraron las respuestas asociadas a la media más una desviación estándar, y la media más vez y media la desviación estándar. El criterio estadístico correspondiente a la media más una desviación estándar, asociado a una función de densidad de probabilidad acumulada de 0.8413 se considera un criterio razonable en ingeniería civil. El criterio estadístico correspondiente a la media más vez y media la desviación estándar se estudió tomando en cuenta que algunos ingenieros sienten que en el diseño de aisladores sísmicos se deben tomar criterios estadísticos más conservadores. Con este último criterio, se obtiene una función de densidad de probabilidad acumulada de 0.9332.

4.3 Discusión de los resultados observados

Se realizó un estudio paramétrico que considera los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) para sismos de magnitud mayor a 6.5, evaluándolos primero considerando a cada evento independientemente, con el fin de determinar si existe alguna relación fuerte entre los factores de amplificación y las características de cada evento (por ejemplo, magnitud).

De lo observado en las figuras 4.13 a 4.18, se puede concluir que los factores de amplificación correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante ($D_{max}BID/D_{max}UNI$):

- (1) No son constantes en el intervalo de periodos considerado.
- (2) No son semejantes entre un evento y otro, pero aunque sus características pueden depender de las características del sismo, parecen no depender claramente de su magnitud.
- (3) Pueden presentarse amplificaciones mayores al 30% en algún intervalo de periodos, pero de igual manera no existe un patrón definido entre un evento y otro.
- (4) Como es lógico, presentan mayor dispersión si la muestra del evento es reducida y esto se refleja en sus desviaciones estándar.

De las figuras 4.13 a 4.18 se observa que las respuestas máximas no están directamente relacionadas si, pues dependen de muchos factores, y se necesita de un análisis más exhaustivo para intentar entender si existe o no una relación en función de la magnitud o del mecanismo de falla que genera el sismo (subducción, sismo de falla normal, etc), aspectos que están fuera del alcance de este estudio.

En la figura 4.19 se presentan los resultados cuando se consideran los 154 registros acelerográficos al mismo tiempo, sin discriminar por evento o magnitud. A partir de su observación se puede concluir que la media de los factores de amplificación tanto para la componente N-S ($D_{max}BID/D_{max}N$ -S), como para la componente dominante como se define en este estudio ($D_{max}BID/D_{max}UNI$) no son constantes, ni semejantes en todo el intervalo de periodos considerado. En la figura 4.19 se observa que en el criterio empleado se obtienen factores de amplificación

Factores de amplificación de los desplazamientos de los...

menores que si se hubiera elegido una componente en particular (por ejemplo, N-S), por lo que el criterio en realidad si identifica de una manera más consistente a la que estadísticamente es la componente dominante del terreno.

En la figura 4.20 se presentan los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) correspondientes a la media (línea continua), la media más una desviación estándar (línea con punto y raya) y la media más vez y media la desviación estándar (línea discontinua), cuando se consideran los 154 registros acelerográficos. En la figura 4.20 se observa que la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), por lo que es claro que el factor de amplificación depende del periodo. Además, se aprecia que en el intervalo de periodos de 2.2 a 2.7 segundos, la amplificación toma una forma senoidal de dos jorobas, además que se incrementan estos factores de amplificación; esto se debe a que en dicho intervalo se presenta una mayor desviación estándar. En general, en la curva correspondiente a $X+\sigma$ se pueden presentar amplificaciones mayores al 35%, y esta curva es la que regularmente está asociada a criterios convencionales de diseño.

En las últimas décadas nuestro país ha comenzado a introducir el sistema de aislamiento como una opción estructural en las zonas sísmicas, principalmente en el Pacífico. Debido a lo poco informado que se encuentra el gremio mexicano, y por lo tanto, la gran desconfianza e incertidumbre que muchos ingenieros tienen sobre su potencial aplicación, se consideró por tal motivo valorar curvas para $X+1.5\sigma$, que es un criterio más conservador, pero que pudiera imbuir mayor confianza a los diseñadores. Si la diferencia al considerar este criterio más conservador ($X+1.5\sigma$) lleva a factores de amplificación ligeramente mayores a los del criterio estadístico común ($X+\sigma$), entonces valdrá la pena considerar que, para fines de diseño, se utilicen los factores de amplificación correspondientes al criterio más conservador. En caso contrario, deberá evaluarse el impacto económico que tendría el seleccionar un criterio más conservador al que normalmente se utiliza en otros elementos estructurales.

4.4 Función de amplificación propuesta

En los Estados Unidos, sus reglamentos para aislamiento sísmico establecen que los desplazamientos de diseño para los aisladores se obtienen indirectamente a partir del espectro de diseño de aceleración para estructuras convencionales, en vez de hacerlo transparentemente a partir de un espectro de desplazamientos. Además, el espectro de diseño de aceleración es una envolvente que define mesetas que toman en cuenta la incertidumbre en el dominio de la aceleración de la respuesta de estructuras convencionales. Por lo tanto, los desplazamientos asociados a dicho espectro en el intervalo de periodos donde se define la meseta no son rigurosamente proporcionales a los que se definirían procesando independientemente un espectro de desplazamientos y, por tanto, pueden resultar inapropiados para el diseño de sistemas de aislamiento. Esto ha sido reconocido por el Dr. Arturo Tena y colaboradores, que con fines reglamentarios han dado los primeros pasos para definir ecuaciones transparentes para obtener desplazamientos de diseño en sistemas de aislamiento sísmico a partir de espectros de desplazamientos (por ejemplo, Villegas 1999, Villegas y Tena 1999, Villegas-Jiménez y Tena-Colunga 2000 y Gómez 2000).

Por lo tanto, este estudio paramétrico ha considerado rigurosamente la selección y filtración de los 154 registros con características de suelo firme ubicados en la zona de la costa del Pacífico para estudiar las amplificaciones y sus respectivas desviaciones, con la finalidad de obtener una

expresión simple que permita tomar en cuenta los efectos bidireccionales en el diseño de aisladores sísmicos.

Se decidió definir una ecuación simple de primer orden (una recta) para definir una envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$ en el intervalo de periodos de interés, por lo que vienen a ser poco conservadoras entre el intervalo de periodos de 2.3 a 2.6 segundos como se ilustra en las figuras 4.21 y 4.22.

La ecuación obtenida para la media más una desviación estándar $(X+\sigma)$ (figura 4.21) es:

 $\frac{D_{max}BID}{D_{max}UNI} = 1.437 - 0.00621T_a$ válida en el intervalo 1.5 s. $\leq T_a \leq 3.0$ s. 1.5s.

La ecuación obtenida para la media más una y media la desviación estándar (X+1.5 σ) (figura 4.22) es:

 $\frac{D_{max}BID}{D_{max}UNI} = 1.555 - 0.00597T_a$ válida en el intervalo $1.5 \ s. \le T_a \le 3.0 \ s. 1.5 \ s.$

1	2	3	4	5	6	7	8
T _a (seg.)	D _{ais} (m)	D _{Max} E-W (m)	D _{Max} N-S (m)	D _{Max} BID (m)	$\frac{D_{Max}BID}{D_{Max}E-W}$	$\frac{D_{Max}BID}{D_{Max}N-S}$	$\frac{D_{Max}BID}{D_{Max}UNI}$
1.5	0.00559	0.00906	0.00788	0.00911	1.006	1.157	1.006
1.6	0.00636	0.00665	0.00624	0.00811	1.219	1.301	1.219
1.7	0.00718	0.00774	0.00970	0.01148	1.484	1.184	1.184
1.8	0.00805	0.00883	0.01491	0.01507	1.708	1.011 🛉	▲ 1.011
1.9	0.00897	0.01424	0.00875	0.01458	1.024	1.667	1.024
2.0	0.00994	0.01147	0.01278	0.01295	1.129	1.014	1.014
2.1	0.01096	0.00595	0.00943	0.00967	1.626	1.026	1.026
2.2	0.01203	0.00502	0.00780	0.00781	1.555	1.001	1.001
2.3	0.01315	0.01205	0.00847	0.01363	1.130	1.609	∳ 1.130
2.4	0.01431	0.01171	0.00722	0.01260	1.076	1.745	1.076
2.5	0.01553	0.01218	0.00806	0.01221	1.002	1.514	1.002
2.6	0.01680	0.00647	0.00829	0.00864	1.335	1.042	1.042
2.7	0.01812	0.01459	0.02215	0.02508	1.719	1.133	1.133
2.8	0.01948	0.00890	0.02107	0.02107	2.367	1.000	1.000
2.9	0.02090	0.01566	0.01660	0.01865	1.191	1.124	1.124
3.0	0.02236	0.01911	0.01031	0.02139	1.119	2.075	1.119

Tabla 4.1Desplazamientos extraídos del programa 3D-BASIS, cocientesnormalizados generados por el programa TAB (criterio rechazado)

1	2	3	4	5	6	7	8
T _a seg.)	D _{ais} (m)	D _{Max} E-W (m)	D _{Max} N-S (m)	D _{Max} BID (m)	$\frac{D_{Max}BID}{D_{Max}E - W}$	$\frac{D_{Max}BID}{D_{Max}N-S}$	$\frac{D_{Max}BIL}{D_{Max}UNI}$
1.5	0.00559	0.04202	0.09732	0.10036	2.389	1.031	1.031
1.6	0.00636	0.11005	0.18809	0.20244	1.840	1.076	1.076
1.7	0.00718	0.08439	0.19345	0.20382	2.415	1.054	1.054
1.8	0.00805	0.07651	0.11364	0.11373	1.487	1.001	1.001
1.9	0.00897	0.07626	0.18937	0.20052	2.630	1.059	1.059
2.0	0.00994	0.04222	0.20124	0.20131	4.769	1.000	1.000
2.1	0.01096	0.08367	0.13919	0.14736	1.761	1.059	1.059
2.2	0.01203	0.08609	0.14859	0.16738	1.944	1.126	1.126
2.3	0.01315	0.04623	0.10262	0.10617	2.297	1.035	1.035
2.4	0.01431	0.06907	0.14618	0.15688	2.271	1.073	1.073
2.5	0.01553	0.12558	0.12573	0.15902	1.266	1.265	1.265
2.6	0.01680	0.13469	0.15594	0.19734	1.465	1.266	1.266
2.7	0.01812	0.19733	0.14288	0.21792	1.104	1.525	1.525
2.8	0.01948	0.11661	0.17289	0.19937	1.710	1.153	1.153
2.9	0.02090	0.13512	0.25807	0.28930	2.141	1.121	1.121
3.0	0.02236	0.22712	0.31427	0.36437	1.604	1.159	1.159
				Σ	33.093	18.003	•
			Periodos	s dominantes	1	15	

Tabla 4.2Desplazamientos extraídos del programa 3D-BASIS, cocientesnormalizados generados por el programa TAB (empleando el criterio de la mínimasumatoria)

90 J

		Estación	CHIL (si	ismo del 1.	5 de junio de	1999)	
1	2	3	4	5	6	7	8
T _a (seg.)	D _{ais} (m)	D _{Max} E-W (m)	D _{Max} N-S (m)	D _{Max} BID (m)	$\frac{D_{Max}BID}{D_{Max}E-W}$	$\frac{D_{\scriptscriptstyle Max}BID}{D_{\scriptscriptstyle Max}N-S}$	$\frac{D_{Max}BID}{D_{Max}UNI}$
1.5	0.00559	0.00906	0.00788	0.00911	1.006	1.157	1.157
1.6	0.00636	0.00665	0.00624	0.00811	1.219	1.301	1.301
1.7	0.00718	0.00774	0.00970	0.01148	1.484	1.184	1.184
1.8	0.00805	0.00883	0.01491	0.01507	1.708	1.011	1.011
1.9	0.00897	0.01424	0.00875	0.01458	1.024	1.667	1.667
2.0	0.00994	0.01147	0.01278	0.01295	1.129	1.014	1.014
2.1	0.01096	0.00595	0.00943	0.00967	1.626	1.026	1.026
2.2	0.01203	0.00502	0.00780	0.00781	1.555	1.001	1.001
2.3	0.01315	0.01205	0.00847	0.01363	1.130	1.609	1.609
2.4	0.01431	0.01171	0.00722	0.01260	1.076	1.745	1.745
2.5	0.01553	0.01218	0.00806	0.01221	1.002	1.514	1.514
2.6	0.01680	0.00647	0.00829	0.00864	1.335	1.042	1.042
2.7	0.01812	0.01459	0.02215	0.02508	1.719	1.133	1.133
2.8	0.01948	0.00890	0.02107	0.02107	2.367	1.000	1.000
2.9	0.02090	0.01566	0.01660	0.01865	1.191	1.124	1.124
3.0	0.02236	0.01911	0.01031	0.02139	1.119	2.075	2.075
				Σ	21.69	20.603	↑
Periodos dominantes					7	0	

Estación AZIH (sismo del 15 de julio de 1996)									
1	2	3	4	5	6	7	8		
T _a (seg.)	D _{ais} (m)	D _{Max} E-W (m)	D _{Max} N-S (m)	D _{Max} BID (m)	$\frac{D_{Max}BID}{D_{Max}E-W}$	$\frac{D_{Max}BID}{D_{Max}N-S}$	$\frac{D_{Max}BID}{D_{Max}UNI}$		
1,5	0.00559	0.00897	0.01215	0.01491	1.662	1.228	1.662		
1.6	0.00636	0.00841	0.00915	0.01204	1.431	1.315	1.431		
1.7	0.00718	0.01291	0.01107	0.01558	1.207	1.408	1.207		
1.8	0.00805	0.01572	0.01637	0.02190	1.394	1.338	1.394		
1.9	0.00897	0.01970	0.01750	0.02618	1.329	1.496	1.329		
2.0	0.00994	0.01716	0.01727	0.02397	1.397	1.388	1.397		
2.1	0.01096	0.01267	0.01699	0.01917	1.514	1.128	1.514		
2.2	0.01203	0.01252	0.01347	0.01568	1.253	1.164	1.253		
2.3	0.01315	0.02474	0.01351	0.02474	1.000	1.832	1.000		
2.4	0.01431	0.03546	0.01549	0.03637	1.025	2.347	1.025		
2.5	0.01553	0.03333	0.02040	0.03814	1.144	1.869	1.144		
2.6	0.01680	0.03140	0.02256	0.03799	1.210	1.684	1.210		
2.7	0.01812	0.02614	0.02211	0.03366	1.288	1.522	1.288		
2.8	0.01948	0.02282	0.02290	0.02921	1.280	1.275	1.280		
2.9	0.02090	0.02055	0.02574	0.03005	1.462	1.167	1.462		
3.0	0.02236	0.02118	0.02780	0.03166	1.495	1.139	1.495		
				Σ	21.091	23.3	<u> </u>		
			Periodos	7	9				

Figura 4.1 Sistema simétrico a) unidireccional dirección E-W, b) unidireccional dirección N-S, c) bidireccional dirección E-W, N-S y d) bidireccional dirección N-S, E-W

Figura 4.2 Histograma que resume el patrón de periodos dominantes [(E-W) o (N-S)] en el intervalo considerado para los 154 registros seleccionados

Figura 4.3 Histograma donde se agrupan los casos de estadística donde domina una componente

Figura 4.4 Relaciones entre el periodo aislado (T_a) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación ATYC (960715)

Figura 4.5 Relaciones entre el periodo aislado (*T_a*) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación PAPN (850919)

Figura 4.6 Relaciones entre el periodo aislado (*T_a*) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación UNIO (850921)

Figura 4.7 Relaciones entre el periodo aislado (*T_a*) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación OCTT (890425)

Figura 4.8 Relaciones entre el periodo aislado (*T_a*) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación TNLP (950914)

Figura 4.9 Relaciones entre el periodo aislado (T_a) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación VIGA (990615)

Figura 4.10 Relaciones entre el periodo aislado (T_a) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación VNTA (850921)

98

Figura 4.11 Relaciones entre el periodo aislado (*T_a*) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación CPDR (850919)

Figura 4.12 Relaciones entre el periodo aislado (*T_a*) y los máximos desplazamientos ante la acción bidireccional normalizados con los máximos correspondientes a la excitación E-W y N-S de la estación ATYC (960715)

Figura 4.13 Estudio paramétrico que considera los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) para sismos de magnitud de 8.1 para el evento del 19 de septiembre de 1985

Figura 4.14 Estudio paramétrico que considera los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) para sismos de magnitud de 7.6 para el evento del 21 de septiembre de 1985

Figura 4.15 Estudio paramétrico que considera los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) para sismos de magnitud de 6.9 para el evento del 25 de abril de 1989

Figura 4.16 Estudio paramétrico que considera los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) para sismos de magnitud de 6.5 para el evento del 15 de julio de 1996

Figura 4.17 Estudio paramétrico que considera los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) para sismos de magnitud de 6.9 para el evento del 11 de enero de 1997

Figura 4.18 Estudio paramétrico que considera los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) para sismos de magnitud de 6.5 para el evento del 15 de junio de 1999

C101

Figura 4.19 Estudio paramétrico considerando los 154 registros acelerográficos al mismo tiempo, sin discriminar por evento o magnitud, al comparar los factores de amplificación de la componente N-S (D_{max}BID/D_{max}N-S) con la componente dominante (D_{max}BID/D_{max}UNI)

Figura 4.20 Estudio paramétrico donde se gráfica la variación que experimentan los factores de amplificación máximos de la acción bidireccional ($D_{max}BID$) entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a)

C103

Figura 4.21 Función de amplificación propuesta para la X+o (ecuación primer orden)

Figura 4.22 Función de amplificación propuesta para la X+1.5 (ecuación primer orden)

Miguel Ángel Pérez Osornio

104)-
CAPÍTULO

Factores de amplificación de los desplazamientos de los aisladores de base de comportamiento bilineal por efectos bidireccionales

5.1 Descripción del procedimiento de análisis utilizado

Se procedió a realizar un análisis dinámico no lineal del modelo estructural con base aislada, para el sistema bilineal con pendiente posterior a la fluencia del 10% ($k_2/k_1 = 0.10$) empleando el programa 3D-BASIS (Nagarajaiah *et al.*, 1991), donde se considera a la superestructura como elástica. En este estudio se analizaron 73 pares de acelerogramas para la zona D-I, 90 pares para la zona C-I y 135 pares para la zona B-I del Manual de Obras Civiles, que corresponden, como se menciona en capítulos anteriores, a 13 eventos diferentes siguiendo el criterio de escalamiento definido en el capítulo 3, como se identifican en las tablas 3.4 a 3.6.

De igual manera como se describió en el capítulo 4, para cada condición de carga dinámica se tienen 16 casos, considerando un intervalo de periodos en base aislada entre 1.5 seg. a 3.0 seg. con incrementos a cada 0.1 segundos. Los análisis se organizaron clasificando los archivos de datos por evento, en cada archivo se contó como información adicional el valor del cortante basal (V_{yais}) para el valor del cortante de fluencia correspondiente y el desplazamiento de fluencia de cada uno de los aisladores (Δ_{yais}) como se identifica en la tabla 2.5. De cada par de acelerogramas, se consideraron los mismos tres casos de análisis descritos en el capítulo 4. Por lo tanto, se realizaron 48 simulaciones por cada par de acelerogramas.

Este estudio se organizó para cada zona de la siguiente manera:

Zona D-I, se realizaron análisis para un cortante de fluencia del 8%, 10% y 12%, por lo que para cada cortante de fluencia se realizaron un total de 3,504 simulaciones.

Zona C-I, se realizaron análisis para un cortante de fluencia del 8% y 10%, por lo que para cada cortante de fluencia se realizaron un total de 4,320 simulaciones.

Zona B-I, se realizaron análisis para un cortante de fluencia del 3% y 5%, por lo que para cada cortante de fluencia se realizaron un total de 6,480 simulaciones.

Por lo tanto, se realizaron un total de 32,112 simulaciones para este estudio en particular.

Para determinar la componente dominante (columna 8), se considera el criterio de la sumatoria de los factores de amplificación de las columnas 6 y 7 (promedio "pesado" como se describió con detalle en el capítulo 4) y, por lo tanto, la componente dominante se identifica con la columna asociada a la menor sumatoria. Este criterio de la mínima sumatoria de los factores de amplificación fue aplicado para cada uno de los cortantes de fluencia correspondientes a cada zona.

El criterio de escalamiento mencionado en el capítulo 3 se ejemplifica en las simulaciones de las estaciones A \mathbf{v} , PAPN, UNIO (figuras 5.1 a 5.3) de los sismos del 15 de julio del 96, del 19 de septiembre del 85 y del 21 de septiembre del 85 respectivamente.

En la figura 5.1 se observa que para un cortante de fluencia del 5% para la zona B-I del Manual de Obras Civiles, donde se escalaron ambas componentes con un valor de 16.69, conforme a lo establecido en el capítulo 3; los factores de amplificación durante el intervalo de interés tienden a uniformizar los factores provenientes para el caso lineal de la figura 4.4, además como se ilustra en la figura 5.2, la relación de factores de escala dominantes entre la componente E-W y N-S varían de una manera más suave a la observada en el caso lineal (figura 4.7). De esta comparación se puede concluir que cuando se escalan cada uno de los acelerogramas para distintos cortantes de fluencia tienden a suavizarse los factores de amplificación, y que pueden variar el factor de escala dominante en algunos incrementos de periodo en el intervalo de interés como puede apreciarse al comparar las figuras 4.4 a 4.6 del caso lineal con las figuras 5.1 a 5.3 del caso no lineal.

5.2 Criterio estadístico utilizado

En este trabajo, se estudian las respuestas medias de los efectos bidireccionales para todas las simulaciones realizadas de cada una de las zonas y para distintos cortantes de fluencia como se discutió en párrafos anteriores. Además, se consideraron las respuestas asociadas a la media más una desviación estándar, y la media más vez y media la desviación estándar. El criterio estadístico correspondiente a la media más una desviación estándar, asociado a una función de densidad de probabilidad acumulada de 0.8413 se considera un criterio razonable en ingeniería civil. El criterio estadístico correspondiente a la media más vez y media la desviación estándar asociado a una función de densidad de 0.9332, que es más conservador.

5.3 Discusión de los resultados observados para cada zona

Se realizó un estudio paramétrico que considera los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) para sismos de magnitud mayor a 6.5, evaluándolos primero considerando a cada evento independientemente, con el fin de determinar si existe alguna relación fuerte entre los factores de amplificación y las características de cada evento (por ejemplo, magnitud).

5.3.1 Zona B-I

Como se describió con detalle en el capítulo 4, en las figuras 5.4 y 5.5 se presenta un histograma que resume el patrón de periodos dominantes (E-W o N-S) en el intervalo considerado para los 135 registros seleccionados para un cortante de fluencia del 3% y 5%. Cada barra del histograma representa una combinación donde rigen los mínimos factores de amplificación para cada incremento de periodo tanto para la acción E-W como para la acción N-S con base en la información extraída de las columnas 6 y 7 de los archivos generados por el programa **A**B para cada registro y cortante de fluencia.

Factores de amplificación de los desplazamientos de los...

De las figuras 5.4 y 5.5 se observa que los mínimos factores de escala están asociados a la componente N-S, 61 registros para un cortante de fluencia del 3% y de 46 para un cortante del 5%, y para la acción E-W 18 registros para un cortante de fluencia del 3% y de 15 para un cortante del 5%. De igual manera, se ilustran la frecuencia en que se observan las demás combinaciones posibles dentro de las simulaciones realizadas que tienden a ser minoría. Cabe señalar que, en general, para esta condición donde se escalaron los acelerogramas al ser filtrados de la condición lineal se define muy fuertemente que la componente N-S tiende a ser la dominante.

En las figuras 5.6 y 5.7 se presenta un histograma donde se agrupan los casos de estadística similar, se aprecia que los casos donde una componente es claramente dominante (13-3, 14-2, 15-1 y 16-0) superan a los casos donde esto no es obvio (11-5, 10-6, 9-9 y 8-8). De esta observación se concluye que es más dominante la componente N-S cuanto menor sea el cortante de fluencia.

En las figuras 5.8 y 5.9 se presentan los factores de amplificación entre acción bidireccional $(D_{max}BID)$ y la componente dominante $(D_{max}UNI)$ correspondientes a la media (línea continua), la media más una desviación estándar (línea con punto y raya) y la media más vez y media la desviación estándar (línea discontinua), cuando se consideran los 135 registros acelerográficos con cortantes de fluencia $V_y/W=3\%$ y $V_y/W=5\%$. En las figuras 5.8 y 5.9 se observa la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), por lo que es claro que el factor de amplificación depende del periodo. Además, se aprecia que en el intervalo de periodos de 1.5 a 1.8 segundos, la amplificación es ligeramente mayor y se acentúa de manera constante el resto del intervalo. En general, en la curva correspondiente a $X+\sigma$ se pueden presentar amplificaciones aproximadamente del 30% para un cortante de fluencia del 3% y del orden del 20% para el 5% del cortante de fluencia, y esta curva es la que regularmente está asociada a criterios convencionales de diseño.

En las figuras 5.10 y 5.11 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia del 3% y 5% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante (D_{max}BID/D_{max}UNI). De estas figura se observa que dichos factores:

- (1) No son semejantes en el intervalo de periodos considerado.
- (2) Sus características pueden depender de las características del sismo.
- (3) Conforme disminuye la fuerza de fluencia el sistema es más no lineal, por lo que a medida que el sistema es más no lineal, los factores de amplificación aumentan.
- (4) Cuando el cortante de fluencia es del 5% del peso de la estructura, se observan amplificaciones menores en los aisladores por efectos bidireccionales que cuando dicho cortante es del 3% de W.
- (5) A partir del periodo de 2.7s, los factores de amplificación tienden a ser constantes en sus valores, sin importar el cortante de fluencia.

Por último, en las figuras 5.12 y 5.13 se presentan las relaciones entre el periodo de vibración en base aislada (T_a) y el cociente obtenido del desplazamiento dinámico máximo normalizado con el desplazamiento de fluencia del aislador para cada caso (tabla 2.5), que también puede llamarse demanda de ductilidad, ante la correspondiente dominante ($D_{max}BID/D_{max}UNI$). De estas gráficas se observa lo siguiente.

En la figura 5.12, correspondiente a la media para los dos cortantes de fluencia considerados (3% y 5%), se observó que la demanda máxima de ductilidad de desplazamiento de los aisladores no rebasa el límite de 9 obtenido a partir de la curva primaria definida por el UBC para aisladores bilineales donde la pendiente posterior a la fluencia es del 10%.

En la figura 5.13, correspondiente a la media más una desviación estándar, se observa que las demandas de ductilidad asociadas a un cortante de fluencia del 5% no son tan altas para el intervalo periodo de interés y que se encuentran valores inferiores a 9 en ese mismo intervalo. Para un cortante de fluencia de 3%, esto sólo se observa para periodos mayores o iguales a 2.1s. En general se puede concluir que, a medida que aumenta el cortante de fluencia, las demandas de ductilidad disminuyen, como era de esperarse.

Desde el punto de vista de demandas de ductilidad aceptables para un comportamiento estable de los aisladores en estudio (iguales o inferiores a nueve, de acuerdo con la restricción mecánica de la curva primaria recomendada por el reglamento UBC), a partir de la figura 5.13 se aprecia que lo más correcto para la curva con cortante de fluencia del 3%, sería acotarla para el intervalo de periodos entre 2.0s. y 3.0s. Sin embargo, lo que el estudio nos indica es que, para la zona B, sería más adecuado diseñar para cortantes de fluencia más cercanos al 5% que para el 3% en todo el intervalo de periodos considerado.

Se observa que con los cortantes de fluencia considerados los aisladores efectivamente incursionan en el comportamiento no lineal, es decir, desarrollan una respuesta de desplazamiento dinámico mayor a la de fluencia. Esta característica se acentúa, generalmente, en los periodos cortos del intervalo en estudio y desciende en forma ligera y paulatina para valores mayores de T_a .

5.3.2 Zona C-I

En las figuras 5.14 y 5.15 se presenta el histograma que resume el patrón de periodos dominantes (E-W o N-S) en el intervalo considerado para los 90 registros seleccionados para un cortante de fluencia del 8% y 10%. Se observa que los mínimos factores de escala están asociados a la componente N-S, 38 registros para un cortante de fluencia del 8% y de 37 para un cortante del 10%, y para la acción E-W, 12 registros para un cortante de fluencia del 8% y de 13 para un cortante del 10%. De manera similar, se ilustran la frecuencia en que se observan las demás combinaciones posibles dentro de las simulaciones realizadas que tienden a ser minoría. Cabe señalar que, en general como se observó del análisis para la zona B-I, para esta condición donde se escalaron los acelerogramas al ser filtrados de la condición lineal, también se identifica que la componente N-S es más intensa en el intervalo de periodos de interés.

En las figuras 5.16 y 5.17 se presenta un histograma donde se agrupan los casos de estadística similar, se aprecia que los casos donde una componente es claramente dominante (13-3, 14-2, 15-1 y 16-0) también superan notablemente a los casos donde esto no es obvio (11-5, 10-6, 9-9 y 8-8).

En las figuras 5.18 y 5.19 se presentan los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) correspondientes a la media (línea continua), la media más una desviación estándar (línea con punto y raya) y la media más vez y media la desviación estándar (línea discontinua), cuando se consideran los 90 registros acelerográficos con cortantes de fluencia $V_y/W = 8\%$ y $V_y/W = 10\%$. En las figuras 5.18 y 5.19 se observa la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), por lo que es claro que el factor de amplificación depende del periodo. Además, se aprecia que en el intervalo de periodos de 1.8 a 2.2 segundos, la

C109

amplificación es ligeramente menor que el resto del intervalo, también podemos apreciar que para esta zona en particular los factores de amplificación en sus curvas presentan cierta similitud para ambos cortantes de fluencia en el intervalo de periodos de 1.5s a 2.1s y esto se ve reflejado en la media y la media más una desviación estándar mostradas en las figuras 5.20 y 5.21. En general, en la curva correspondiente a $X+\sigma$ se pueden presentar amplificaciones del 25% para ambos cortantes de fluencia, y esta curva es la que regularmente está asociada a criterios convencionales de diseño.

En las figuras 5.20 y 5.21 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia del 8% y 10% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante (D_{max}BID/D_{max}UNI). De estas figuras se observa que dichos factores:

- Presentan cierta similitud en sus curvas en el intervalo de 1.5s. a 2.1s., como se mencionó en párrafos anteriores que los presentados en las curvas de la zona B-I.
- (2) Sus características pueden depender de las características del sismo.
- (3) Conforme disminuye la fuerza de fluencia el sistema es más no lineal, por lo que a medida que el sistema es más no lineal, los factores de amplificación aumentan.
- (4) Cuando el cortante de fluencia es del 10% del peso de la estructura, se observan amplificaciones menores en los aisladores por efectos bidireccionales que cuando dicho cortante es del 8% de W.
- (5) Podría decirse que en el periodo de 2.8s. los factores de amplificación son los mismos para ambos cortantes de fluencia.
- (6) Los factores de amplificación son menores en el intervalo de periodos de 1.5s a 1.9s. comparados con los obtenidos para la zona B-I.

Por último, en las figuras 5.22 y 5.23 se presentan las demandas de ductilidad, ante la correspondiente dominante ($D_{max}BID/D_{max}UNI$). De estas gráficas se observa lo siguiente.

En la figura 5.22, correspondiente a la media para los dos cortantes de fluencia considerados (8% y 10%), se observó que la demanda máxima de ductilidad de desplazamiento de los aisladores no rebasa el límite de 9 obtenido a partir de la curva primaria definida por el UBC para aisladores bilineales donde la pendiente posterior a la fluencia es del 10%. Además, su variación es más suave y se parecen más entre sí, en comparación con las presentadas para la zona B-I.

En la figura 5.23, correspondiente a la media más una desviación estándar, se observa que las demandas de ductilidad asociadas a un cortante de fluencia del 10% no son tan altas para el intervalo periodo de interés y que se encuentran valores inferiores a 9 en ese mismo intervalo. Para un cortante de fluencia de 8%, esto sólo se observa para periodos mayores o iguales a 1.8s.

Desde el punto de vista de demandas de ductilidad aceptables para un comportamiento estable de los aisladores en estudio (iguales o inferiores a nueve), a partir de la figura 5.23 se aprecia que lo más correcto para la curva con cortante de fluencia del 8%, sería acotarla para el intervalo de periodos entre 1.8s. y 3.0s. Sin embargo, lo que el estudio nos indica es que, para la zona C, sería más adecuado diseñar para cortantes de fluencia más cercanos al 10% que para el 8% en todo el intervalo de periodos considerado.

5.3.3 Zona D-1

En las figuras 5.24 a 5.26 se presentan los histogramas que resumen el patrón de periodos dominantes (E-W o N-S) en el intervalo considerado para los 73 registros seleccionados para un cortante de fluencia del 8%, 10% y 12%. Se observa que los mínimos factores de escala están asociados a la componente N-S, 30 registros para un cortante de fluencia del 8%, 31 para un cortante del 10%, y de 27 para un cortante del 12%. Para la acción E-W, 15 registros para un cortante de fluencia del 8%, 11 para un cortante del 10%, y diez para un cortante del 12%. De manera similar, se ilustran la frecuencia en que se observan las demás combinaciones posibles dentro de las simulaciones realizadas que tienden a ser minoría. Cabe señalar que, en general como se observó del análisis para la zona B-I y C-I, para esta condición donde se empleó el criterio de escalación mencionado en el capítulo 3, los acelerogramas al ser filtrados de la condición lineal se define por igual que la componente N-S es más intensa en el intervalo de periodos de interés.

De manera análoga como se procedió para las zonas B-I y C-I, en las figuras 5.27 a 5.29 se presenta un histograma donde se agrupan los casos de estadística similar, y se aprecia nuevamente que los casos donde una componente es claramente dominante (13-3, 14-2, 15-1 y 16-0) superan notablemente los casos donde esto no es obvio (11-5, 10-6, 9-9 y 8-8). Se concluye entonces que el criterio de escalamiento utilizado impacta notablemente la definición de una componente dominante, que en este estudio por lo general resultó ser la componente N-S.

En las figuras 5.30 y 5.32 se presentan los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) correspondientes a la media (línea continua), la media más una desviación estándar (línea con punto y raya) y la media más vez y media la desviación estándar (línea discontinua), cuando se consideran los 73 registros acelerográficos con cortantes de fluencia $V_y/W = 8\%$, $V_y/W = 10\%$, y $V_y/W = 12\%$. En las figuras 5.30 a 5.32 se observa la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), de la misma manera se hace notar que es claro que el factor de amplificación depende del periodo. Además, podemos hacer notar que para esta zona en particular los factores de amplificación en sus curvas no presentan similitud para los tres cortantes de fluencia, pero si podemos observar que para el 8% del cortante de fluencia se amplifican en el intervalo de 1.5s. a 2.0s. y se acentúa el resto del intervalo de periodos; en el intervalo de periodos de 2.0s a 3.0s. los factores de amplificación tienden a aumentar ligeramente para los cortantes de fluencia del 10% y 12%; esto se ve reflejado en la media y la media más una desviación estándar mostradas en las figuras 5.30 a 5.32. En general, en la curva correspondiente a $X+\sigma$ se aprecia que los factores de amplificación son mayores entre menor sea el cortante de fluencia, esto es, se presentan amplificaciones ligeramente por encima del 30% para el 8% del cortante de fluencia, del 30% para el 10% del cortante de fluencia y del 25% para el 12% del cortante de fluencia, y estas curvas son las que están asociadas a criterios convencionales de diseño.

En las figuras 5.33 y 5.34 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia del 8%, 10% y 12% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante (D_{max}BID/D_{max}UNI). De estas figuras se observa que dichos factores:

(1) Presentan cierta similitud en sus curvas en el intervalo de periodos de interés, aunque con diferencias en algún intervalo entre las curvas de 12% con las demás. De hecho, existe menor similitud en las curvas si se comparan éstas con las obtenidas para las zonas B-I y C-I. Sin embargo, se puede decir que en el intervalo de periodos de 2.1s. a 3.0s., estas curvas tienden a comportarse de la misma manera para todas las resistencias consideradas.

- (2) Sus características parecen depender de las características de los sismos.
- (3) Como se presentó para los casos de las zonas B-I y C-I, entre más disminuye la fuerza de fluencia, los factores de amplificación son ligeramente mayores.
- (4) Cuando el cortante de fluencia es del 12% del peso de la estructura, se observan amplificaciones menores en los aisladores por efectos bidireccionales que cuando dicho cortante es del 10% y 8% de W.
- (5) A partir de la figura 5.34 se observa que en el periodo de 2.7s, los factores de amplificación tienden a ser similares para los tres cortantes de fluencia considerados.
- (6) Los factores de amplificación son mayores en la mayor parte del intervalo de periodos de interés, con respecto a los obtenidos para la zona B-I y C-I.

Por último, en las figuras 5.35 y 5.36, se presentan las demandas de ductilidad, ante la correspondiente dominante ($D_{max}BID/D_{max}UNI$). De estas gráficas se puede concluir lo siguiente:

En la figura 5.35 correspondiente a la media, sólo para dos cortantes de fluencia (10% y 12%) se observó que la demanda máxima de ductilidad de desplazamiento de los aisladores no rebasa el límite de nueve obtenido a partir de la curva primaria definida por el UBC. Para el 8% del cortante de fluencia, la curva estuvo por encima de este límite en el intervalo de periodos entre 1.5s y 1.7s.

En la figura 5.36, correspondiente a la media más una desviación estándar, se puede hacer notar que las demandas de ductilidad asociadas a un cortante de fluencia del 12% están muy cerca del valor límite de nueve para el intervalo periodo de interés, y que para los cortantes de fluencia del 8% y 10% los valores se encuentran por encima de este límite para un cierto intervalo de periodos. En general, se observa que se presentó una mayor desviación al inicio del intervalo de periodos para esta zona.

Desde de punto de vista de demandas de ductilidad aceptables para un comportamiento estable de los aisladores en estudio (iguales o inferiores a nueve), a partir de la figura 5.36 se aprecia que lo más correcto para la curva con cortante de fluencia del 8%, sería acotarla para el intervalo de periodos entre 2.3s. y 3.0s y en el intervalo de periodos entre 1.9s y 3.0s para el cortante de fluencia de 10%. Sin embargo, lo que el estudio nos indica es que, para la zona D, sería más adecuado diseñar para cortantes de fluencia más cercanos al 12% que para el 10% en todo el intervalo de periodos considerado, pero que en el intervalo de periodos más largos, 8% puede ser adecuado.

5.4 Funciones de amplificación propuestas para cada zona

Como se describió en el capítulo 4, este estudio ha considerado la selección y filtración de cada uno de los registros correspondientes a las zonas en estudio con características de suelo firme ubicados en la zona de la costa del Pacífico para estudiar las amplificaciones y sus respectivas desviaciones, con la finalidad de obtener una expresión simple que permita tomar en cuenta los efectos bidireccionales en el diseño de aisladores sísmicos.

Para los factores de amplificación de los desplazamientos máximos entre acción bidireccional $(D_{max}BID)$ y la componente dominante $(D_{max}UNI)$, correspondientes a los distintos cortantes de fluencia de las zonas B-I, C-I y D-I, se decidió emplear una ecuación simple de primer orden (una recta) para definir una envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$ en el intervalo de periodos de interés, por lo que vienen a ser poco conservadoras dentro del intervalo de periodos de interés, como se ilustra en las figuras 5.38 a 5.43.

5.4.1 Las ecuaciones obtenidas para la zona B-I son (figuras 5.38 y 5.39):

i)
$$V_y/W = 3\%$$

La media más una desviación estándar (X+ σ)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.362 - 0.0349T_a \text{ y cuya correlación es } r = 0.798$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.463 - 0.0402T_a \text{ y cuya correlación es } r = 0.769$$

Válidas en el intervalo $1.5 s \le T_a \le 3.0 s$.

ii)
$$V_y/W = 5\%$$

La media más una desviación estándar (X+\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.302 - 0.0362T_a \text{ y cuya correlación es } r = 0.608$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.399 - 0.0466T_a \text{ y cuya correlación es } r = 0.632$$

Válidas en el intervalo $1.5s \le T_u \le 3.0s$.

5.4.2 Las ecuaciones obtenidas para la zona C-1 son (figuras 5.40 y 5.41):

$$V_y/W = 8\%$$

La media más una desviación estándar (X+\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.221 + 0.0193T_a \text{ y cuya correlación es } r = 0.486$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.281 + 0.0309T_a \text{ y cuya correlación es } r = 0.546$$

Válidas en el intervalo $1.5 s \le T_a \le 3.0 s$.

ii) $V_y/W = 10\%$

La media más una desviación estándar $(X+\sigma)$

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.198 + 0.0160T_a \text{ y cuya correlación es } r = 0.340$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.258 - 0.0231T_a \text{ y cuya correlación es } r = 0.382$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.

5.4.3 Las ecuaciones obtenidas para la zona D-I son (figuras 5.42 y 5.43):

$$i) \qquad V_y/W = 8\%$$

La media más una desviación estándar (X+o)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.400 - 0.0271T_a \text{ y cuya correlación es } r = 0.664$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\max}BID}{D_{\max}UNI} = 1.513 - 0.0308T_a \text{ y cuya correlación es } r = 0.534$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.

ii)
$$V_y/W = 10\%$$

La media más una desviación estándar $(X+\sigma)$

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.186 + 0.0506T_a \text{ y cuya correlación es } r = 0.851$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.236 + 0.0706T_a \text{ y cuya correlación es } r = 0.854$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.

iii) $V_y/W = 12\%$

114)

La media más una desviación estándar (X+ σ)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.176 + 0.0404T_a \text{ y cuya correlación es } r = 0.851$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\frac{D_{\text{max}}BID}{D_{\text{max}}UNI} = 1.232 + 0.0541T_a \text{ y cuya correlación es } r = 0.828$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.

5.5 Funciones de amplificación propuestas de demandas de ductilidad para cada zona

Para las demandas de ductilidad correspondientes a los distintos cortantes de fluencia de las zonas B-I, C-I y D-I, y en función de su variación suave y descaradamente exponencial, se decidió definir ecuaciones simples exponenciales para definir una envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$ en el intervalo de periodos de interés, por lo que vienen a ser muy precisas en todo el intervalo de periodos de interés como se ilustra en las figuras 5.44 a 5.49, ya que los datos se identifican con símbolos y la curva de regresión propuesta se ilustra con líneas discontinúas.

5.5.1 Las ecuaciones obtenidas para la zona B-I son (figuras 5.44 y 5.45):

$$i) \qquad V_y/W = 3\%$$

La media más una desviación estándar (X+ σ)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.596e^{5.218 \cdot 0.488^{T_{ais}}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.956e^{5.454 + 0.483^{T_{ij}}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.,

ii) $V_v/W = 5\%$

La media más una desviación estándar (X+o)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 1.663e^{4.489 \cdot 0.483^{7_a}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 1.856e^{4.713 \cdot 0.483^{T_a}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.

5.5.2 Las ecuaciones obtenidas para la zona C-1 son (figura 5.46 y 5.47):

$$i) \qquad V_y/W = 8\%$$

La media más una desviación estándar (X+o)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.571e^{5.021 \cdot 0.460^{T_a}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.872e^{5.165 \cdot 0.462^{T_a}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5 s \le T_a \le 3.0 s$.,

ii)
$$V_y/W = 10\%$$

La media más una desviación estándar (X+ σ)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 1.909e^{4.384 \cdot 0.494^{T_a}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.180e^{4.632 \cdot 0.486^{T_a}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5s \le T_a \le 3.0s$.

5.5.3 Las ecuaciones obtenidas para la zona D-1 son (figuras 5.48 y 5.49):

i) $V_y/W = 8\%$

116)

La media más una desviación estándar (X+ σ)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.688e^{4.579 \cdot 0.562^{7_a}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5\sigma)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 3.156e^{4.756 \cdot 0.552^{T_a}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5 s \le T_o \le 3.0 s$.,

ii)
$$V_y/W = 10\%$$

La media más una desviación estándar (X+ σ)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.513e^{4.261 \cdot 0.524^{T_u}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5o)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.856e^{4.417 * 0.523^{T_{ar}}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5 s \le T_a \le 3.0 s$.

iii)
$$V_y/W = 12\%$$

La media más una desviación estándar (X+o)

$$\mu = \frac{D_{\text{max}}BID}{D_{als}} = 1.995e^{3.901 \cdot 0.539^{T_a}} \text{ y cuya correlación es } r = 0.999$$

La media más una y media la desviación estándar (X+1.5o)

$$\mu = \frac{D_{\text{max}}BID}{D_{ais}} = 2.271e^{4.069 \cdot 0.535^{T_{\theta}}} \text{ y cuya correlación es } r = 0.999$$

Válidas en el intervalo $1.5 s \le T_a \le 3.0 s$.

Figura 5.1 Factores de amplificación para un cortante de fluencia del 5% para la zona B-I, donde se escalaron ambas componentes con un valor de 16.69 conforme a lo establecido en el capítulo 3. *(simulación de la estación ATYC del sismos del 15 de julio del 96)*

Figura 5.2 Factores de amplificación para un cortante de fluencia del 8% para la zona C-I, donde se escalaron ambas componentes con un valor de 5.76 conforme a lo establecido en el capítulo 3. *(simulación de la estación PAPN del sismos del 19 de septiembre del 85)*

C117

Figura 5.3 Factores de amplificación para un cortante de fluencia del 8% para la zona D-I, donde se escalaron ambas componentes con un valor de 14.65 conforme a lo establecido en el capítulo 3. *(simulación de la estación UNIO del sismos del 21 de septiembre del 85)*

Figura 5.4 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 3%, zona B-I

Figura 5.5 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 5%, zona B-I

Figura 5.6 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 3%, zona B-I

Figura 5.7 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 5%, zona B-I

Figura 5.8 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 3%, zona B-I

Figura 5.9 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 5%, zona B-I

Figura 5.10 Factores de amplificación donde se registra la media para los cortantes de fluencia del 3% y 5% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante

Figura 5.11 Factores de amplificación donde se registra la media más una desviación estándar para los cortantes de fluencia del 3% y 5% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante

Figura 5.12 Demandas de ductilidad donde se registra la media para los cortantes de fluencia del 3% y 5%, zona B-I a lo largo del intervalo de vibración en base aislada (T_a)

Figura 5.13 Demandas de ductilidad donde se registra la media más una desviación estándar para los cortantes de fluencia del 3% y 5%, zona B-I a lo largo del intervalo de vibración en base aislada (T_a)

Figura 5.14 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 8%, zona C-I

Figura 5.15 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 10%, zona C-I

Figura 5.16 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 8%, zona C-I

Figura 5.17 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 10%, zona C-I

Figura 5.18 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 8%, zona C-I

Figura 5.19 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 10%, zona C-I

Figura 5.20 Factores de amplificación donde se registra la media para los cortantes de fluencia del 8% y 10% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante

Figura 5.21 Factores de amplificación donde se registra la media más una desviación estándar para los cortantes de fluencia del 8% y 10% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante

Figura 5.22 Demandas de ductilidad donde se registra la media para los cortantes de fluencia del 8% y 10%, zona B-I a lo largo del intervalo de vibración en base aislada (T_a)

Figura 5.23 Demandas de ductilidad donde se registra la media más una desviación estándar para los cortantes de fluencia del 8% y 10%, zona C-I a lo largo del intervalo de vibración en base aislada (T_a)

Figura 5.24 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 8%, zona D-I

Figura 5.25 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 10%, zona D-I

Figura 5.26 Histograma que resume el patrón de periodos dominantes en el intervalo de interés para un cortante de fluencia del 12%, zona D-I

Figura 5.27 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 8%, zona D-I

Figura 5.28 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 10%, zona D-I

Figura 5.29 Histograma donde se agrupan los casos de estadística donde domina una componente para un cortante de fluencia del 12%, zona D-I

Figura 5.30 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 8%, zona D-I

Figura 5.31 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 10%, zona D-I

Figura 5.32 Estudio paramétrico donde se registra la variación que experimentan los factores de amplificación máximos de la acción bidireccional entre la componente dominante a lo largo del intervalo de periodo de vibración seleccionado (T_a) para un cortante de fluencia del 12%, zona D-I

Figura 5.33 Factores de amplificación donde se registra la media para los cortantes de fluencia del 8%, 10% y 12% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante

Figura 5.34 Factores de amplificación donde se registra la media más una desviación estándar para los cortantes de fluencia del 8%, 10% y 12% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante

Figura 5.35 Demandas de ductilidad donde se registra la media para los cortantes de fluencia del 8%, 10% y 12%, zona B-I a lo largo del intervalo de vibración en base aislada (*T_a*)

Figura 5.36 Demandas de ductilidad donde se registra la media más una desviación estándar para los cortantes de fluencia del 8%, 10% y 12%, zona D-I a lo largo del intervalo de vibración en base aislada (T_a)

Figura 5.38 Funciones de amplificación propuestas para la X+σ y cortantes de fluencia del 3% y 5%, zona B-I (*ecuaciones de primer orden*)

Figura 5.39 Funciones de amplificación propuestas para la X+1.5σ y cortantes de fluencia del 3% y 5%, zona B-1 (*ecuaciones de primer orden*)

Figura 5.40 Funciones de amplificación propuestas para la X+σ y cortantes de fluencia del 8% y 10%, zona C-1 (*ecuaciones de primer orden*)

Figura 5.41 Funciones de amplificación propuestas para la X+1.5σ y cortantes de fluencia del 8% y 10%, zona C-I (*ecuaciones de primer orden*)

Figura 5.42 Funciones de amplificación propuestas para la X+σ y cortantes de fluencia del 8%, 10% y 12%, zona D-I (ecuaciones de primer orden)

Figura 5.43 Funciones de amplificación propuestas para la X+1.5σ y cortantes de fluencia del 8%, 10% y 12%, zona D-I (*ecuaciones de primer orden*)

Figura 5.44 Funciones de amplificación propuestas de demandas de ductilidad para la X+σ y cortantes de fluencia del 3% y 5%, zona B-I (*ecuaciones exponenciales*)

Figura 5.45 Funciones de amplificación propuestas de demandas de ductilidad para la X+1.5σ y cortantes de fluencia del 3% y 5%, zona B-I (*ecuaciones exponenciales*)

Figura 5.46 Funciones de amplificación propuestas de demandas de ductilidad para la X+σ y cortantes de fluencia del 8% y 10%, zona C-I (*ecuaciones exponenciales*)

Figura 5.47 Funciones de amplificación propuestas de demandas de ductilidad para la X+1.5σ y cortantes de fluencia del 8% y 10%, zona C-I (*ecuaciones exponenciales*)

Figura 5.48 Funciones de amplificación propuestas de demandas de ductilidad para la X+σ y cortantes de fluencia del 8%, 10% y 12%, zona D-I (*ecuaciones exponenciales*)

Figura 5.49 Funciones de amplificación propuestas de demandas de ductilidad para la X+1.5σ y cortantes de fluencia del 8%, 10% y 12%, zona D-I (*ecuaciones exponenciales*)

C141

Miguel Ángel Pérez Osornio

Factores de amplificación de los desplazamientos de los...

142)-

CAPÍTULO

Comparación de los efectos de amplificación por efectos bidireccionales

6.1 Introducción

En el diseño de cualquier estructura tridimensional (aislada sísmicamente o no) es muy importante tomar en cuenta la acción bidireccional de los movimientos del terreno. Ha sido costumbre de muchos reglamentos de diseño sísmico, entre ellos los reglamentos mexicanos, tomar en cuenta los efectos de ambas componentes horizontales del movimiento del terreno combinado, en cada dirección en que se analice la estructura, el 100 por ciento de los efectos del componente que obra en esa dirección y el 30 por ciento de los efectos del que obra perpendicularmente a ella, con los signos que resulten más desfavorables para cada concepto. Esta regla se basa en estudios que toman en cuenta las aceleraciones registradas y, como es obvio, la combinación es independiente del periodo fundamental de la estructura en cuestión. La extensión de esta regla al diseño por desplazamiento no está justificada en ningún estudio, sino más bien por costumbre (Tena, 2001).

A continuación se describe en este estudio la comparación de los factores de amplificación resultado de los efectos bidireccionales del análisis lineal y los factores de amplificación resultado de los efectos bidireccionales del análisis no lineal con la regla del 100%+30%, donde la interrogante es sí realmente esta regla para combinar efectos bidireccionales es aplicable también al diseño por desplazamientos, si es independiente del periodo de la estructura y de las características de los movimientos del terreno y, si es segura.

6.2 Comparaciones con la regla del 100%+30%.

6.2.1 Caso lineal

En la figura 6.1 se presentan los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) correspondientes a la media más una desviación estándar (línea discontinua) y la media más vez y media la desviación estándar (línea con punto y raya) del análisis lineal, y la recta que define la regla del 100%+30% (línea continua). Observando la figura 6.1 es clara la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), por lo que es claro también que el factor de amplificación depende del periodo, como se mencionó en el capítulo 4. Además, se puede concluir, entre otras cosas, que los factores de escalamiento del análisis lineal supera notablemente la recta de la regla del 100%+30%, por lo que para un sistema de aislamiento lineal no es seguro diseñar conforme a la regla del 100%+30%.

En la figura 6.2 se presentan las ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar (X+ σ), la media más una y media la desviación estándar (X+1.5 σ) y la recta que define la regla del 100%+30% en el intervalo de periodos de interés. Se observa en la figura 6.2, en la curva correspondiente a X+ σ que se pueden presentar amplificaciones que superan la regla del 100%+30% del orden del 12.5%, y esta curva es la que regularmente está asociada a criterios convencionales de diseño. Debido a la incertidumbre que algunos diseñadores de la práctica sienten por aplicar los mismos criterios de diseño usados para materiales convencionales para sistemas de aislamiento, se consideró para tal motivo valorar curvas para X+1.5 σ , que es un criterio más conservador. La recta resultante supera la regla del 100%+30% en un 25%, por lo que valdrá la pena considerar que, para fines de diseño, se utilicen los factores de amplificación correspondientes a este criterio más conservador. Por supuesto, deberá evaluarse el impacto económico que tendría el seleccionar este criterio más conservador al que normalmente se utiliza para otros elementos estructurales.

6.2.2 Caso no-lineal

Para el caso de la zona B-I, en la figura 6.3 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante (D_{max}BID/D_{max}UNI) para los cortantes de fluencia del 3% (línea discontinua), del 5% (línea con punto y raya) y, con línea continua la recta que define la regla del 100%+30%. En la figura 6.3 se observa la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), por lo que es claro, como se mencionó en el capítulo 5, que el factor de amplificación depende del periodo. Además, se aprecia que en el intervalo de periodos de 1.5 a 1.8 segundos, para el cortante de fluencia del 3% la amplificación es ligeramente mayor que la recta que define la regla del 100%+30%. En general, en la curva correspondiente a $X+\sigma$ para ambos cortantes de fluencia se pueden presentar amplificaciones menores a lo que define la regla del 100% y 30%, por lo que para un sistema de aislamiento bilineal con estos cortantes de fluencia, parece seguro diseñar conforme a la regla del 100%+30%.

En la figura 6.4 se presentan las ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ para los cortantes de fluencia del 3% y 5% y la recta que define la regla del 100%+30% en el intervalo de periodos de interés. Se observa en la figura 6.4, para el periodo de 1.8 segundos la recta para el cortante de fluencia del 3% coincide el valor del factor de amplificación que define la regla del 100%+30%, además que para ambas cortantes de fluencia sus pendientes en sus rectas se consideran paralelas y con pendiente negativa en todo el intervalo de periodos de interés con una diferencia en sus factores de amplificación del 6%.

Para el caso de la zona C-I, en la figura 6.5 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia del 8% y 10% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante (D_{max}BID/D_{max}UNI). De esta figura se observa para el cortante de fluencia del 8% para el periodo de 2.4s. el factor de amplificación es similar al a lo que define la regla del 100%+30%, además que ambos cortantes de fluencia en sus factores de amplificación dependen del periodo. En general, en la curva correspondiente a $X+\sigma$ para ambos cortantes de fluencia se presentan amplificaciones menores a lo

que define la regla del 100%+30%, por lo que para un sistema de aislamiento bilineal con estos cortantes de fluencia parece seguro diseñar conforme a la regla del 100%+30%.

En la figura 6.6 se presenta las ecuaciones de primer orden que define la envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ para los cortantes de fluencia del 8% y 10% y la recta que define la regla del 100%+30% en el intervalo de periodos de interés. Se puede observar en la figura 6.6, caso contrario como se presento para la zona B-I, las rectas para ambos cortantes de fluencia se acercan más a los valores de los factores de amplificación que define la regla del 100%+30%, mientras mayor sean los periodos en el intervalo de periodos de interés, además que para ambas cortantes de fluencia sus pendientes en sus rectas se pueden considerar paralelas en todo el intervalo de periodos de interés con una diferencia en sus factores de amplificación del 2%.

Para el caso de la zona D-I, en la figura 6.7 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia del 8%, 10% y 12% correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante (D_{max}BID/D_{max}UNI). De esta figura se observa que dichos factores presentan cierta similitud en sus curvas en el intervalo de periodos de interés, aunque con diferencias en algún intervalo entre las curvas de 12% con las demás. De hecho, existe menor similitud en las curvas si se comparan éstas con las obtenidas para las zonas B-I y C-I. Sin embargo, se puede decir que en el intervalo de periodos de 2.1s. a 3.0s., estas curvas tienden a comportarse de la misma manera para todas las resistencias consideradas y semejarse a la recta de la regla del 100%+30%.

De la figura 6.7 se concluye, entre otras cosas, que los factores de escalamiento para el cortante de fluencia del 8% del análisis no-lineal superan la recta de la regla del 100%+30% dentro del intervalo de periodos de 1.5s a 2.7s y para un cortante de fluencia del 10% supera la recta de la regla del 100%+30% en el intervalo 2.2s a 2.6s. y de 2.7s. a 3.0s., por lo que para un sistema de aislamiento bilineal en la zona D-I no es conservador diseñar conforme a la regla del 100%+30%.

En la figura 6.8 se presentan las ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ para los cortantes de fluencia del 8%, 10%, 12% y la recta que define la regla del 100%+30% en el intervalo de periodos de interés. Se puede observar en la figura 6.8 lo siguiente:

1) mientras mayor sea el periodo en el intervalo de periodos de interés de las rectas que definen los cortantes de fluencia del 10% y 12% se acercan más a los valores de los factores de amplificación que define la regla del 100%+30%.

2) la recta para el cortante de fluencia del 8% presenta una pendiente negativa sobreestimando la recta que define la regla del 100%+30% mientras el periodo sea más corto en en el intervalo de periodos de interés.

3) para el cortante de fluencia del 10% se superan los factores de amplificación que define la recta de la regla del 100%+30% en el intervalo de periodos de 2.3s. a 3.0s.

4) para un cortante de fluencia del 12% los factores de amplificación tienden a valores similares a los que define la regla del 100%+30% mientras mayor sea el periodo en el intervalo de periodos de interés.

6.3 Comparaciones entre comportamiento elástico lineal e inelástico bilineal

A continuación se describe la comparación de los factores de amplificación resultado de los efectos bidireccionales del análisis lineal con los factores de amplificación resultado de los efectos bidireccionales del análisis no-lineal.

En la figura 6.9 se presenta la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia del 3% (línea discontinua), 5% (línea con punto y raya), los factores de amplificación entre acción bidireccional (D_{max}BID) y la componente dominante (D_{max}UNI) correspondientes a la media más una desviación estándar del análisis lineal empleando la base de datos de los 154 registros seleccionados (línea continua) y la media más una desviación estándar del análisis lineal empleando la base de datos de los 137 registros (sin escalar) seleccionados para la zona B-I (línea con puntos y raya). De lo observado en la figura 6.9 se presenta la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a) y la similitud que existe entre la variación de las curvas del análisis lineal tomando los 154 registros y los 137 registros de la base empleada para la zona B-I, donde se observa que existe poca dispersión y que en las curvas se ilustra que, en este caso, no se modifican de manera apreciable los factores de amplificación si se tomara la base completa (línea continua). Además, se puede concluir, entre otras cosas, que los factores de amplificación para los cortantes de fluencia del 3% y 5%, son siempre inferiores a los correspondientes a los factores de amplificación del análisis lineal.

En la figura 6.10 se presentan las ecuaciones de primer orden que define la envolvente de diseño para la media más una desviación estándar $(X+\sigma)$, de los factores de amplificación para los cortantes de fluencia (3% y 5%) y la ecuación obtenida para el análisis lineal tomando la base de datos de los 154 registros seleccionados en el intervalo de periodos de interés. Se observa en la figura 6.10 que los factores de amplificación para los cortantes de fluencia del 3% y 5%, son inferiores a los obtenidos de los factores de amplificación del análisis lineal. Además, se observa en el intervalo de periodos de interés que mientras menor sea el periodo, las rectas que definen los cortantes de fluencia del 3% y 5% se acercan más a los valores de los factores de amplificación que define la recta para el caso lineal.

De manera análoga, se observa en la figura 6.11 la similitud que existe entre la variación de las curvas del análisis lineal tomando los 154 registros y los 90 registros de la base empleada para la zona C-I (línea con puntos y raya), donde se observa que existe una mayor dispersión que la presentada para la zona B-I, como consecuencia lógica de promediar un menor número de simulaciones, y que en las curvas se ilustra una mayor variación de éstas en los factores de amplificación que si se tomara la base completa (línea continua). Además, se concluye, entre otras cosas, que los factores de amplificación para los cortantes de fluencia del 8% y 10%, siguen siendo inferiores a los correspondientes a los factores de amplificación del comportamiento lineal de los aisladores. Cabe señalar que a diferencia de la zona B-I, en la figura 6.12 se observa, en el intervalo de periodos de interés, que mientras mayor sea el periodo, las rectas que definen los cortantes de fluencia del 8% y 10% se acercan más a los valores de los factores de amplificación que define la recta para el comportamiento lineal.

En la figura 6.13 se presenta el estudio para la zona D-I, donde se comparan las ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar $(X+\sigma)$, de los factores de amplificación para los cortantes de fluencia del 8% (línea discontinua), 10% (línea con punto y raya), y 12% (línea con rayas) y los factores de amplificación correspondientes al análisis lineal empleando la base de datos de los 154 registros seleccionados (línea continua) y el análisis lineal empleando la base de datos de los 73 registros (sin escalar) seleccionados para la zona D-I (línea con puntos y raya), donde se observa que existe una mayor dispersión en este estudio que en los presentados para el análisis de la zona C-I y B-I respectivamente, consecuencia lógica de contar con un menor número de datos. Además, se concluye, entre otras cosas, que los factores de amplificación para los cortantes de fluencia del 8% 10% y 12%, difieren menos de los obtenidos para el caso lineal que los calculados para las zonas C-I y B-I. Esto puede ser consecuencia de utilizar una base más reducida, pues se observa claramente que la curva elástica

asociada a 73 registros normalmente obtiene mayores amplificaciones que cuando se consideran los 154 registros y, por ende, esto también se debe reflejar en la estadística del caso no lineal.

En la figura 6.14 se presentan las ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar $(X+\sigma)$, de los factores de amplificación para los cortantes de fluencia (8%, 10% y 12%) y la ecuación obtenida para el análisis lineal tomado la base de datos de los 154 registros seleccionados en el intervalo de periodos de interés. Se observa para el cortante de fluencia del 8%, en el intervalo de periodos de interés, que mientras menor sea el periodo, la recta que define los cortantes de fluencia se acerca más a los valores de los factores de amplificación para los cortantes de fluencia del 10% y 12%, se observa en el intervalo de periodos de interés que, mientras mayor es el periodo, los cortantes de fluencia se acerca más a los valores de periodos de interés que, mientras mayor es el periodo, los cortantes de fluencia se acercan más a los valores de los factores de amplificación que define la recta para el comportamiento lineal. En contraste, para los factores de amplificación para los cortantes de fluencia del 10% y 12%, se observa en el intervalo de periodos de interés que, mientras mayor es el periodo, los cortantes de fluencia se acercan más a los valores de los factores de los factores de amplificación que define la recta para el caso lineal.

C147

Figura 6.1 Variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodo de vibración seleccionado (T_a) correspondiente entre acción bidireccional y la componente dominante para la X+ σ , X+1.5 σ , y la recta que define la regla del 100%+30%

Figura 6.2 Ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar, la media más una y media la desviación estándar y la recta que define la regla del 100%+30% en el intervalo de periodos de interés

Figura 6.3 Variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodo de vibración seleccionado (T_a) para la media y la media más una desviación estándar correspondientes entre la acción bidireccional y la componente dominante para los cortantes de fluencia del 3%, 5% y la recta que define la regla del 100%+30%

Figura 6.4 Ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar, media la desviación estándar para los cortantes de fluencia del 3%, 5% y la recta que define la regla del 100%+30% en el intervalo de periodos de interés

Comparación de los efectos de amplificación por efectos bidireccionales

150

Figura 6.6 Ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar, media la desviación estándar para los cortantes de fluencia del 8%, 10% y la recta que define la regla del 100%+30% en el intervalo de periodos de interés

Figura 6.7 Variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodo de vibración seleccionado (T_a) para la media y la media más una desviación estándar correspondientes entre la acción bidireccional y la componente dominante para los cortantes de fluencia del 8%, 10%, 12% y la recta que define la regla del 100%+30%

Figura 6.8 Ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar, media la desviación estándar para los cortantes de fluencia del 8%, 10%, 12% y la recta que define la regla del 100%+30% en el intervalo de periodos de interés

Zona B-I

Figura 6.9 Variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodo de vibración seleccionado (T_a) y la similitud que existe entre la variación de las curvas del análisis lineal tomando los 154 registros y los 137 registros de la base empleada para la zona B-I

seleccionados en el intervalo de periodos de interés

Zona C-I

Figura 6.11 Variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodo de vibración seleccionado (T_a) y la similitud que existe entre la variación de las curvas del análisis lineal tomando los 154 registros y los 90 registros de la base empleada para la zona C-I

seleccionados en el intervalo de periodos de interés

Zona D-I

(153

Figura 6.13 Variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodo de vibración seleccionado (T_a) y la similitud que existe entre la variación de las curvas del análisis lineal tomando los 154 registros y los 73 registros de la base empleada para la zona C-I

Figura 6.14 Ecuaciones de primer orden que definen la envolvente de diseño para la media más una desviación estándar (X+σ), de los factores de amplificación para los cortantes de fluencia (8%, 10% y 12%) y la ecuación obtenida para el análisis lineal tomado la base de datos de los 154 registros seleccionados en el intervalo de periodos de interés

CAPÍTULO

Resumen y conclusiones

Hoy en día ha ido en aumento, en las investigaciones, el considerar los efectos ortogonales de un sismo para el análisis de estructuras (aisladas sísmicamente o no), que con los recientes adelantos en los métodos de análisis por computadora lo hacen posible. En el pasado era prácticamente imposible hacerlo, pero gracias a las primeras investigaciones hechas por algunos autores, se dieron las primeras reglas de carácter práctico, que permitieron implantar la regla de combinación del 100%+30% por efectos bidireccionales tan popular en los últimos 30 años en los principales reglamentos de diseño sísmico del mundo.

Varios autores han comentado que el tema de efectos multidireccionales aún no se ha investigado a fondo. Con respecto a las reglas de combinación de acciones bidireccionales para estructuras con aislamiento sísmico, las recomendaciones de diseño para estructuras con aislamiento sísmico del reglamento UBC desde su versión de 1991 han propuesto aumentar un 30% en los espectros de diseño para considerar los efectos bidireccionales. Esta consideración reglamentaria supone basarse en la regla del 100%+30%, que como comentan y demuestran en su libro Naeim y Kelly, no son ni siquiera equivalentes. En los reglamentos mexicanos, por mucho tiempo han tomado en cuenta los efectos de ambas componentes horizontales del movimiento del terreno combinado, en cada dirección en que se analice la estructura, el 100 por ciento de los efectos del componente que obra en esa dirección y el 30 por ciento de los efectos del que obra perpendicularmente a ella.

Para el diseño de aisladores conforme al método estático del reglamento UBC, es común que los diseñadores tomen la regla del 100%+30% para obtener desplazamientos de diseño, aunque el UBC no establece en el capítulo de las normas de diseño de aisladores que así deba hacerse conforme al método estático. Establecen los desplazamientos de diseño para los aisladores indirectamente a partir del espectro de diseño de aceleración para estructuras convencionales, en vez de hacerlo transparentemente a partir de un espectro de desplazamientos. Por lo tanto, los desplazamientos asociados a dicho espectro en el intervalo de periodos donde se define la meseta no son rigurosamente proporcionales a los que se definirían procesando independientemente un espectro de desplazamientos y, por tanto, pueden resultar inapropiados para el diseño de sistemas de aislamiento.

Por tal motivo, se trata de dar un mejor enfoque para tomar en cuenta los efectos bidireccionales en una estructura para obtener los desplazamientos de diseño. Este estudio compara los factores de amplificación resultado de los efectos bidireccionales del análisis lineal y los factores de amplificación resultado de los efectos bidireccionales del análisis no lineal con la regla del 100%+30%, donde la interrogante es sí realmente esta regla para combinar efectos bidireccionales es aplicable también al diseño por desplazamientos, si es independiente del periodo de la estructura y de las características de los movimientos del terreno y, si es segura.

Para obtener las propiedades de los aisladores lineales y bilineales que requiere el programa 3D-BASIS, este estudio empleó un modelo lineal cuyas propiedades en base rígida se obtuvieron de estudios previos, considerando periodos en base aislada (T_a) que varían entre 1.5 y 3.0 segundos con incrementos cada 0.1 segundos.

Para el cálculo de las propiedades de los aisladores lineales, se consideró un modelo lineal para la estructura aislada sísmicamente (T_a) con base en una rigidez efectiva siguiendo las recomendaciones del UBC.

De manera similar, para el cálculo de las propiedades de los aisladores bilineales se estudió dicho modelo con pendiente posterior a la fluencia del 10%, considerando los siguientes valores de cortante de fluencia para cada zona sísmica en estudio del Manual de Obras Civiles:

Zona B – I
$$\begin{cases} V_y = 3\% \\ V_y = 5\% \end{cases}$$
 Zona C – I $\begin{cases} V_y = 8\% \\ V_y = 10\% \end{cases}$ Zona D – I $\begin{cases} V_y = 8\% \\ V_y = 10\% \\ V_y = 12\% \end{cases}$

Este estudio paramétrico ha considerado con cierto rigor la selección y filtración de acelerogramas con características de suelo firme (roca) registrados en estaciones cercanas a la zona de subducción de la costa mexicana del Pacífico, para estudiar las amplificaciones y sus respectivas desviaciones, con la finalidad de obtener expresiones simples que permitan tomar en cuenta los efectos bidireccionales en el diseño de aisladores sísmicos.

La selección se realizó empleando los archivos de la Base de Acelerogramas de Sismos Fuertes, vol. 2. Como requisitos de su selección los acelerogramas deberían presentar magnitudes mayor o iguales a 6.5, que las aceleraciones máximas del terreno estén cercanas a 10 cm/seg^2 en ambas componentes ortogonales y que hayan mostrado una forma adecuada calculando la intensidad de Arias. De lo anterior se aceptaron 154 sismos organizados de la manera siguiente por 13 eventos:

- 1) 19 de septiembre de 1985 (M = 8.1).
- 2) 21 de septiembre de 1985 (M = 7.6).
- 3) 30 de abril de 1986 (M = 7.0).
- 4) 25 de abril de 1989 (M = 6.9).
- 5) 24 de octubre de 1993 (M = 6.6).
- 6) 14 de marzo de 1994 (M = 6.8).
- 7) 14 de septiembre de 1995 (M = 6.4).
- 8) 9 de octubre de 1995 (M = 6.5).
- 9) 21 de octubre de 1995 (M= 6.5).
- 10) 15 de julio de 1996 (M = 6.5).
- 11) 11 de enero de 1997 (M = 6.9).
- 12) 15 de julio de 1999 (M = 6.5).
- 13) 30 de septiembre de 1999 (M = 7.5).

Paso siguiente, por cada evento sísmico se eligieron los acelerogramas de diferentes estaciones sus componentes N-S y E-W, para elaborar los archivos de datos que requirió el programa 3D-Basis y proceder al estudio parametrico lineal.

Para el caso del estudio parametrico no-lineal, los acelegramas seleccionados para el analisis lineal se escalaron cada uno de ellos de manera que tuvieran la misma aceleración espectral, que en este caso partícular corresponde al espectro de diseño de las zonas D-I, C-I y B-I propuesto por el Manuel de Obras Civiles de 1993 (MOC-93), seleccionando el valor del periodo T=2.24seg. del perido del intervalo de interés. Para la selección de cada uno de los acelerogramas escalados para cada zona en estudio (B, C y D) se cuidó que en cada uno de ellos presentara una forma adecuada en su señal, que no se sobrepasaran aceleraciones máximas del terreno mayores de 1.2 g.

De lo anterior, se procedió a realizar un análisis dinámico no lineal del modelo estructural con base aislada, para el sistema bilineal con pendiente posterior a la fluencia del 10% ($k_2/k_1 = 0.10$) empleando el programa 3D-BASIS, donde se considera a la superestructura como elástica. En este estudio, se analizaron 73 pares de acelerogramas para la zona D-I, 90 pares para la zona C-I y, 135 pares para la zona B-I. Para cada archivo se contó con información adicional como el valor del cortante basal (V_{yais}) para el valor del cortante de fluencia correspondiente y el desplazamiento de fluencia de cada uno de los aisladores (Δ_{yaus}).

De cada uno de los estudios paramétricos, para cada par de acelerogramas, se consideraron tres casos. Primero, se excitó a los modelos con la componente E-W exclusivamente; segundo, con la componente N-S exclusivamente y, finalmente, con la excitación bidireccional de ambas componentes ortogonales.

De los resultados obtenidos para ambos estudios se seleccionaron los desplazamientos dinámicos máximos que experimentan los aisladores. Para definir la componente dominante normalizada (columna 8) en el intervalo de interés ($1.5 seg. \le T_a \le 3.0 seg.$), se consideró la mínima sumatoria de los factores de amplificación (promedio "pesado"), con base en un criterio energético evaluado de manera indirecta.

El criterio estadístico utilizado para el estudio de las respuestas medias de los efectos bidireccionales de todas las simulaciones realizadas, corresponde a la media más una desviación estándar, asociado a una función de densidad de probabilidad acumulada de 0.8413, se considera un criterio razonable en ingeniería civil. El criterio estadístico correspondiente a la media más vez y media la desviación estándar se estudió tomando en cuenta que algunos ingenieros sienten que en el diseño de aisladores sísmicos se deben tomar criterios estadísticos más conservadores. Este último criterio está asociado a una función de densidad de probabilidad acumulada de 0.9332.

A continuación se resumen las observaciones y conclusiones más importantes del estudio de los factores de amplificación por efectos bidireccionales de los desplazamientos de los aisladores de base de comportamiento lineal y no lineal.

i) Factores de amplificación de los desplazamientos de los aisladores de base de comportamiento elástico lineal por efectos bidireccionales.

Se realizó un estudio paramétrico que considera los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) para sismos de magnitud mayor a 6.5, evaluándolos primero considerando a cada evento independientemente, con el fin de determinar

si existe alguna relación fuerte entre los factores de amplificación y las características de cada evento (por ejemplo, magnitud). Se concluyó lo siguiente:

- (1) No son constantes en el intervalo de periodos considerado.
- (2) No son semejantes entre un evento y otro, pero aunque sus características pueden depender de las características del sismo, parecen no depender claramente de su magnitud.
- (3) Pueden presentarse amplificaciones mayores al 30% en algún intervalo de periodos, pero de igual manera no existe un patrón definido entre un evento y otro.
- (4) Como es lógico, presentan mayor dispersión si la muestra del evento es reducida y esto se refleja en sus desviaciones estándar.

De esta observación las respuestas máximas no están directamente relacionadas entre sí, pues dependen de muchos factores, y se necesita de un análisis más exhaustivo para intentar entender si existe o no una relación en función de la magnitud o del mecanismo de falla que genera el sismo (subducción, sismo de falla normal, etc), aspectos que están fuera del alcance de este estudio.

En un segundo estudio se evaluaron los resultados cuando se consideran los 154 registros acelerográficos al mismo tiempo, sin discriminar por evento o magnitud. A partir de su observación se puede concluir que la media de los factores de amplificación tanto para la componente N-S ($D_{max}BID/D_{max}N-S$), como para la componente dominante como se define en este estudio ($D_{max}BID/D_{max}UNI$) no son constantes, ni siquiera semejantes en todo el intervalo de periodos considerado, que con el criterio empleado de la mínima sumatoria de los factores de amplificación se obtienen factores de amplificación menores que si se hubiera elegido la componente N-S, por lo que el criterio en realidad si identifica de una manera más consistente a la que estadísticamente es la componente dominante del terreno.

Se evaluaron los factores de amplificación entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$) correspondientes a la media, la media más una desviación estándar y la media más vez y media la desviación estándar, cuando se consideran los 154 registros acelerográficos. Se pudo observar nuevamente que la variación que experimentan los factores de amplificación de los desplazamientos máximos a lo largo del intervalo de periodos de vibración seleccionado (T_a), depende del periodo. Además, que en el intervalo de periodos de 2.2 a 2.7 segundos, debido a que en dicho intervalo se presenta una mayor desviación estándar la amplificación toma una forma senoidal incrementándose estos factores de amplificación. En general, en la curva correspondiente a $X+\sigma$ se pueden presentar amplificaciones mayores al 35%, y esta curva es la que regularmente está asociada a criterios convencionales de diseño.

Se decidió definir una ecuación simple de primer orden (una recta) como propuesta de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$ en el intervalo de periodos de interés, por lo que vienen a ser poco conservadoras entre el intervalo de periodos de 2.3 a 2.6 segundos.

Se comparó también a los factores de amplificación resultado de los efectos bidireccionales del análisis lineal con la regla del 100%+30%. De lo observado, en la curva correspondiente a $X+\sigma$ se pueden presentar amplificaciones que superan la regla del 100%+30% del orden del 12.5%, y esta curva es la que regularmente está asociada a criterios convencionales de diseño. Debido a la incertidumbre que algunos diseñadores de la práctica sienten por aplicar los mismos criterios de diseño usados para materiales convencionales para sistemas de aislamiento, se consideró para tal motivo valorar curvas para $X+1.5\sigma$, que es un criterio más conservador. La recta resultante supera la regla del 100%+30% del orden del 25%, por lo que valdrá la pena considerar que, para fines de diseño, se utilicen los factores de amplificación correspondientes a este criterio más conservador.

158

Por supuesto, deberá evaluarse el impacto económico que tendría el seleccionar este criterio más conservador al que normalmente se utiliza para otros elementos estructurales.

ii) Factores de amplificación de los desplazamientos de los aisladores de base de comportamiento bilineal por efectos bidireccionales

De manera semejante que para el caso lineal, se realizó un estudio paramétrico donde se presentan la media y la media más una desviación estándar $(X+\sigma)$ de los factores de amplificación para los cortantes de fluencia correspondientes al cociente entre los desplazamientos máximos bidireccionales entre los desplazamientos máximos de los aisladores ante la excitación dominante $(D_{max}BID/D_{max}UNI)$, donde se concluyó lo siguiente:

- a) Conclusiones generales para todas las zonas:
 - (1) No son semejantes en el intervalo de periodos considerado.
 - (2) Sus características pueden depender de las características del sismo.
 - (3) Conforme disminuye la fuerza de fluencia el sistema es más no lineal, por lo que a medida que el sistema es más no lineal, los factores de amplificación aumentan.
- b) Conclusiones particulares, zona B-I, para cortantes de fluencia del 3% y 5%
 - Cuando el cortante de fluencia es del 5% del peso de la estructura, se observan amplificaciones menores en los aisladores por efectos bidireccionales que cuando dicho cortante es del 3% de W.
 - (2) A partir del periodo de 2.7s, los factores de amplificación tienden a ser constantes en sus valores, sin importar el cortante de fluencia
- c) Conclusiones particulares, zona C-I, para los cortantes de fluencia del 8% y 10%
 - Cuando el cortante de fluencia es del 10% del peso de la estructura, se observan amplificaciones menores en los aisladores por efectos bidireccionales que cuando dicho cortante es del 8% de W.
 - (2) Podría decirse que en el periodo de 2.8s. los factores de amplificación son los mismos para ambos cortantes de fluencia.
 - (3) Los factores de amplificación son menores en el intervalo de periodos de 1.5s a 1.9s. comparados con los obtenidos para la zona B-I.
- d) Conclusiones particulares, zona D-I, para los cortantes de fluencia del 8%, 10% y 12%
 - (1) Presentan cierta similitud en sus curvas en el intervalo de periodos de interés, aunque con diferencias en algún intervalo entre las curvas de 12% con las demás. De hecho, existe menor similitud en las curvas si se comparan éstas con las obtenidas para las zonas B-I y C-I. Sin embargo, se puede decir que en el intervalo de periodos de 2.1s. a 3.0s., estas curvas tienden a comportarse de la misma manera para todas las resistencias consideradas.
 - (2) Cuando el cortante de fluencia es del 12% del peso de la estructura, se observan amplificaciones menores en los aisladores por efectos bidireccionales que cuando dicho cortante es del 10% y 8% de W.
 - (3) A partir del periodo de 2.7s, los factores de amplificación tienden a ser similares para los tres cortantes de fluencia considerados.

(4) Los factores de amplificación son mayores en la mayor parte del intervalo de periodos de interés, con respecto a los obtenidos para la zona B-I y C-I.

Se compararon también los factores de amplificación resultado de los efectos bidireccionales del análisis no-lineal con la regla del 100%+30%, para cada una de las zonas en estudio. Para ello se emplearon también ecuaciones simples de primer orden para definir una envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$ en el intervalo de periodos de interés, para los factores de amplificación de los desplazamientos máximos entre acción bidireccional ($D_{max}BID$) y la componente dominante ($D_{max}UNI$), correspondientes a los distintos cortantes de fluencia de las zonas B-I, C-I y D-I,, donde los coeficientes de correlación para estas ecuaciones propuestas oscilan entre el 40% y 50%.

Para la zona B-I, para el periodo de 1.8 segundos, la recta para el cortante de fluencia del 3% coincide el valor del factor de amplificación que define la regla del 100%+30%, además que para ambas cortantes de fluencia sus pendientes en sus rectas se consideran paralelas y con pendiente negativa en todo el intervalo de periodos de interés con una diferencia en sus factores de amplificación del 6%.

Para la zona C-I, se observó lo contrario a lo que se presentó para la zona B-I, las rectas para ambos cortantes de fluencia se acercan más a los valores de los factores de amplificación que define la regla del 100%+30%, mientras mayor sean los periodos en el intervalo de periodos de interés, además que para ambas cortantes de fluencia sus pendientes en sus rectas se pueden considerar paralelas en todo el intervalo de periodos de interés con una diferencia en sus factores de amplificación del 2%.

Para el caso de la zona D-I, los factores de escalamiento para el cortante de fluencia del 8% superan la recta de la regla del 100%+30% dentro del intervalo de periodos de 1.5s a 2.7s y para un cortante de fluencia del 10% supera la recta de la regla del 100%+30% en el intervalo 2.2s a 2.6s. y de 2.7s. a 3.0s., por lo que para un sistema de aislamiento bilineal en la zona D-I no es conservador diseñar conforme a la regla del 100%+30%.

Se estudiaron además las relaciones entre el periodo de vibración en base aislada (T_a) y el cociente obtenido del desplazamiento dinámico máximo normalizado con el desplazamiento de fluencia del aislador para cada caso (demanda de ductilidad), ante la correspondiente dominante ($D_{max}BID/D_{max}UNI$). De lo anterior se observa lo siguiente:

a) Observaciones generales para todas las zonas y cortantes de fluencia

Para los cortantes de fluencia considerados, con base en la media se observó que la demanda máxima de ductilidad de desplazamiento de los aisladores no rebasa el límite de nueve obtenido a partir de la curva primaria definida por el UBC para aisladores bilineales donde la pendiente posterior a la fluencia es del 10%.

Para la media más una desviación estándar, se observa en general que las demandas de ductilidad asociadas a un cortante de fluencia del 5% no son tan altas para el intervalo periodo de interés y que se encuentran valores inferiores a nueve en ese mismo intervalo.

Se observa que con los cortantes de fluencia considerados los aisladores desarrollan una respuesta de desplazamiento dinámico mayor a la de fluencia. Esta característica se acentúa, generalmente, en los periodos cortos del intervalo en estudio y desciende en forma ligera y paulatina para valores mayores de T_a .

b) Observaciones particulares para la zona B-I, para cortantes de fluencia del 3% y 5%.

Desde de punto de vista de demandas de ductilidad aceptables para un comportamiento estable de los aisladores en estudio para la curva con cortante de fluencia del 3%, sería acotarla para el intervalo de periodos entre 2.0s. y 3.0s. Sin embargo, lo que el estudio nos indica es que, para la zona B, sería más adecuado diseñar para cortantes de fluencia más cercanos al 5% que para el 3% en todo el intervalo de periodos considerado.

c) Observaciones particulares para la zona C-I, para cortantes de fluencia del 8% y 10%.

Desde de punto de vista de demandas de ductilidad aceptables para un comportamiento estable de los aisladores en estudio (iguales o inferiores a nueve), se aprecia que lo más correcto para la curva con cortante de fluencia del 8%, sería acotarla para el intervalo de periodos entre 1.8s. y 3.0s. Sin embargo, lo que el estudio nos indica es que, para la zona C, sería más adecuado diseñar para cortantes de fluencia más cercanos al 10% que para el 8% en todo el intervalo de periodos considerado.

d) Observaciones particulares para la zona D-I, para cortantes del 8%, 10% y 12%

Desde de punto de vista de demandas de ductilidad aceptables para un comportamiento estable de los aisladores en estudio (iguales o inferiores a nueve), se aprecia que lo más correcto para la curva con cortante de fluencia del 8%, sería acotarla para el intervalo de periodos entre 2.3s. y 3.0s y en el intervalo de periodos entre 1.9s y 3.0s para el cortante de fluencia de 10%. Sin embargo, lo que el estudio nos indica es que, para la zona D, sería más adecuado diseñar para cortantes de fluencia más cercanos al 12% que para el 10% en todo el intervalo de periodos considerado, pero que en el intervalo de periodos más largos, 8% puede ser adecuado.

Para las demandas de ductilidad correspondientes a los distintos cortantes de fluencia de las zonas B-I, C-I y D-I, y en función de su variación suave (con coeficientes de correlación del 99%), se definieron ecuaciones exponenciales simples para definir una envolvente de diseño para la media más una desviación estándar $(X+\sigma)$ y la media más una y media la desviación estándar $(X+1.5\sigma)$ en el intervalo de periodos de interés, por lo que vienen a ser muy precisas en todo el intervalo de periodos de interés.

En este trabajo se compararon también los factores de amplificación resultado de los efectos bidireccionales del análisis lineal con los factores de amplificación resultado de los efectos bidireccionales del análisis no lineal para la media más una desviación estándar $(X+\sigma)$.

Cabe señalar que la componente dominante (D_{max} UNI) correspondientes a la media más una desviación estándar del análisis lineal empleando la base de datos de los 154 registros seleccionados y las correspondientes medias más una desviación estándar del análisis lineal empleando la base de datos de los 137 registros (sin escalar) seleccionados para la zona B-I, los 90 registros de la base empleada para la zona C-I y, los 73 registros para la zona D-I, donde se observó que existe poca dispersión, por lo que no influye trascendentalmente los factores de amplificación que si se tomara la base completa.

De lo anterior se concluye que para la zona B-I los factores de amplificación para los cortantes de fluencia del 3% y 5%, son inferiores a los obtenidos de los factores de amplificación del análisis

lineal. Además, se observa en el intervalo de periodos de interés que mientras menor sea el periodo, las rectas que definen los cortantes de fluencia del 3% y 5% se acercan más a los valores de los factores de amplificación que definen la recta para el caso lineal.

De manera análoga, para la zona C-I los factores de amplificación para los cortantes de fluencia del 8% y 10%, siguen siendo inferiores a los correspondientes a los factores de amplificación del comportamiento lineal de los aisladores. A diferencia de la zona B-I, en el intervalo de periodos de interés, mientras mayor sea el periodo, las rectas que definen los cortantes de fluencia del 8% y 10% se acercan más a los valores de los factores de amplificación que define la recta para el comportamiento lineal.

Para la zona D-I, el cortante de fluencia del 8%, para periodos cortos dentro del intervalo de periodos de interés, la recta que define los cortantes de fluencia se acerca más a los valores de los factores de amplificación que define la recta para el comportamiento lineal. En contraste, para los factores de amplificación para los cortantes de fluencia del 10% y 12%, se observa en el intervalo de periodos de interés que, mientras mayor es el periodo, los cortantes de fluencia se acercan más a los valores de los factores de amplificación que define la recta para el caso lineal.

Finalmente, se puede concluir que el resultado más importante del estudio realizado es demostrar fehacientemente que la respuesta estadística de desplazamientos ante acción bidireccional y unidireccional para sistemas de aislamiento sísmico simétricos en ambas direcciones no es constante y no cumple con la regla de combinación del 100%+30%, tanto para aisladores de comportamiento lineal, como de comportamiento bilineal. Se observa que dicha respuesta depende en gran medida del comportamiento del sistema de aislamiento (lineal o bilineal inelástico), por lo que se cree que también dependerá de ciertos parámetros que definen la respuesta inelástica, como son la pendiente posterior a la fluencia y las características generales de rigidez y resistencia del modelo inelástico (con o sin degradación), lo que deberá valorarse en estudios futuros.

Dada la variabilidad de este cociente en el intervalo de periodos observado, se propone una regresión lineal simple para su posible introducción en reglamentos de diseño, cuya finalidad es hacer saber al usuario de un reglamento de una manera simple que esta respuesta no es independiente del periodo, cubriendo razonablemente la respuesta para la media más una desviación estándar de las respuestas estudiadas. Se podría tener un mejor ajuste con algún otro tipo de curva de regresión, incluyendo algunas expresiones muy complicadas; sin embargo, de momento se consideró poco práctico.

Referencias

- Anastassiadis K, I E Avramidis y P K Panetsos (1998), "Earthquake resistant design of structures under three-component orthotropic seismic excitation", *Memorias, XIth European Conference on Earthquake Engineering.*, Paris, France, CDROM, septiembre.
- 2. "Base Mexicana de Datos de Sismos Fuertes volumen 2" (2000), CDROM, Sociedad Mexicana de Ingeniería Sísmica, A.C., diciembre
- Gómez, L A A y A Tena (2000), "Importancia de la excentricidad en la superestructura en la respuesta torsional de estructuras con aislamiento sísmico", *Memorias, XII Congreso* Nacional de Ingeniería Estructural, León, CDROM, noviembre.
- 4. Hernández, J J y O A López (2002), "Response to three-component seismic motion of arbitrary direction", *Earthquake Engineering & Structural Dynamics*, Vol. 31, pp. 55-77.
- Hernández, J J y O A López (2002), "Revision of code combination rules for response to three components of seismic motion", *Memorias, Seventh U.S. National Conference on Earthquake Engineering* (7NCEE), Urban Earthquake Risk, Boston, Massachusetts, USA, CDROM, julio.
- López, O A y R Torres (1997), "The critical angle of seismic incidence and the maximum structural response", *Earthquake Engineering & Structural Dynamics*, Vol. 26, pp. 881-894.
- López, O A, A K Chopra y J J Hernández (2000), "Critical response of structures to multicomponent earthquake excitation", *Earthquake Engineering & Structural Dynamics*, Vol. 29, pp.1759-1778.
- López, O A, A K Chopra y J J Hernández (2001), "Evaluation of combination rules for maximum response calculation in multicomponent seismic analysis", *Earthquake Engineering & Structural Dynamics*, Vol. 30, pp. 1379-1398.
- 9. Menun, C, y A Der Kiureghian (1998), "A replacement for the 30%, 40% and SRSS rules for multicomponent seismic analysis", *Earthquake Spectra*, Vol. 14, No. 1, pp.153-156.
- 10. Naeim, F y J M Kelly (1999), Design of Seismic Isolated Structures (from theory to practice), primera edición, John Wiley & Sons, Nueva York.
- Nagarajaiah, S, A M Reinhorn y M C Constantinou (1991), "3D-Basis: Nonlinear dynamic analysis of three-dimensional base isolated structures: Part II", *Technical Report NCEER-*91-0005, National Center for Earthquake Engineering, State University of New York at Buffalo.
- 12. Penzien, J y M Watabe (1975), "Characteristics of 3-dimensional earthquake ground motion", *Earthquake Engineering & Structural Dynamics*, Vol. 3, pp. 365-374.
- 13. Smeby, W y A Der Kiureghian (1985), "Modal combination rules for multicomponent earthquake excitation", *Earthquake Engineering & Structural Dynamics*, Vol. 13, pp.1-12.
- 14. "Servicio Sismológico Nacional" (2002), página web: http://www.ssn.unam.mx/

- Tena, A (1997), "Evaluación de un método de diseño estático para el aislamiento sísmico de estructuras de la costa Mexicana del Pacífico", *Revista de Ingeniería Sísmica*, SMIS, No. 57, pp. 1-34, septiembre-diciembre.
- Tena Colunga, A (2001), "Diseño de estructuras con aislamiento sísmico mediante el uso de espectros de diseño por capacidad", *Revista de Ingeniería Sísmica*, SMIS, No. 65, pp 49-80, julio-diciembre.
- Villegas, O y A Tena (1999), "Criterios de diseño dinámico para estructuras aisladas sísmicamente en zonas costeras del Pacífico mexicano", *Memorias, XII Congreso Nacional de Ingeniería Sísmica*, Morelia, Michoacán, Vol. II, pp. 1172-1180, noviembre.

likint ana ≂2 lika∦ 3n in

. . . <u>.</u> . £

An end of the second