UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO 0059

PROGRAMA DE DOCTORADO EN CIENCIAS BIOQUÍMICAS

INSTITUTO DE BIOTECNOLOGÍA

"ANÁLISIS DE LA REGULACIÓN DE LA EXPRESIÓN DE LOS GENES CpMYB10, CpMYB5, Y CpMYB7 DE Craterostigma plantagineum"

TESIS QUE PARA OPTAR POR EL TITULO DE

DOCTOR EN CIENCIAS

PRESENTA:

MIGUEL ANGEL VILLALOBOS LÓPEZ

CUERNAVACA, MOR., MÉXICO, 2004

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESTA TESIS NO SALE DE LA BIBLIOTECA

Instituto de Biotecnología

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

PROGRAMA DE MAESTRIA Y DOCTORADO EN CIENCIAS BIOQUIMICAS

MIGUEL ANGEL VILLALOBOS LÓPEZ Presente.

Por este conducto me permito informarle que la Comisión Académica acordó asignarle el siguiente jurado de examen para obtener el grado de Doctor en Ciencias.

Presidente:	Dr.	Omar Homero Pantoja Ayala
Secretario:	Dr.	Gabriel Iturriaga de la Fuente
Vocal:	Dra.	Georgina Hernández Delgado
Vocal:	Dra.	Svetlana Shishkova
Vocal:	Dr.	Sergio Encarnanción Guevara
Suplente:	Dra.	Rosario Vera Estrella
Suplente:	Dr.	Jorge Luis Folch Mallol

Sin mas por el momento me es grato enviarle un cordial saludo.

A T E N T A M E N T E "POR MI RAZA HABLARA EL ESPIRITU" Cuernavaca, Mor. a 8 de junio 2004

Dr. Jean Louis Charli Casalonga Coordinador de Docencia

H.g. Angel

TELS. (52-55) 56 22 76 00 TELS (777) 329 16 00 FAX 317 23 88 APDO 510-3, CUERNAVACA, MORELOS 62250, MEXICO

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente,

Dr. Omar Homero Pantoja Ayala

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente. Dr. Gabriel Iturriaga de la Fuente

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente, Dra. Georgina Hernández Delgado

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente,

Dra. Svetlana Shishkova

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente,

Dr. Sergio Encarnación Guevara

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente,

ROLARD '

Dra. Rosario Vera Estrella

14 de Junio de 2004

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar UNAM P R E S E N T E

Estimado Ing. Silva:

Después de revisar cuidadosamente y de discutir la Tesis titulada:

"Análisis de la Regulación de la Expresión de los Genes CpMYB10, CpMYB5, y CpMYB7 de Craterostigma plantagineum"

del alumno Miguel Angel Villalobos López,

con número de cuenta 93808413 y número de expediente 30932036,

inscrito en el Doctorado en Ciencias Bioquímicas, considero

que la Tesis reúne los requisitos suficientes y la acepto para ser presentada en el examen

de grado. Por tanto emito mi VOTO APROBATORIO al respecto.

Agradezco de antemano la atención que se sirva prestar a la presente.

Atentamente,

1066

Dr. Jorge Luis Folch Mallol

ÍNDICE

I-INTRODUCCIÓN	
L1 El problema de la seguía	6
1.2 Estrategias adaptativas de las plantas ante la seguía	6
I 2 1 Respuestas fisiológicas de las plantas ante la seguía	8
L 2 2 Respuestas moleculares de las plantas ante la seguía	8
1.2.3 Craterostigma plantagineum como modelo de estudio: una planta	0
de "Resurrección"	10
1.3 La transducción de la señal mediada por ABA	11
I.3.1 La percepción de ABA	13
I.3.2 La búsqueda de receptores de ABA	15
1.3.3 Identificación de intermediarios en la vía de transducción de ABA	16
I.3.4 Eventos primarios en la transducción de ABA	17
I.3.5 Mensajeros secundarios en la vía de ABA	21
I.3.6 Cascadas de fosforilación en respuesta a ABA	25
I.4 Factores transcripcionales involucrados en la respuesta a estrés medio ambiental	29
I.4.1 FTs tipo cierre de Leucina básico (b-ZIP)	29
I.4.2 FTs tipo B3	30
I.4.3 Homeodominio-cierre de leucina (HD-ZIP)	31
I.4.4 FTS tipo ERF/AP2	32
I.4.5 FTs tipo bHLH (antes MYC)	34
I.4.6 FTs tipo MYB	35
II ANTECEDENTES DEL PROYECTO	39
IIIOBJETIVOS DEL PROYECTO	43
IV METODOLOGIA ADICIONAL	44
VRESULTADOS	
IV.1 Articulo publicado de este trabajo de tesis.	48
IV.1.1 Resultados adicionales	65
IV.1.2 Análisis de la expresión de los genes CpMYB5 y CpMYB7	65
IV.2.2 Clonación y análisis de la secuencia del cDNA del gen CpMYB10	77
IV.2.2 Estudios adicionales del efecto de la sobre-expresión de	
<i>CpMYB10</i> en Arabidopsis	80
VI DISCUSION	
V.1 Cinéticas de expression de <i>CpMYB10</i> , <i>CpMYB5</i> y <i>CpMYB7</i> en	
respuesta a ABA y sequía.	86
V.2 Patrones de expresión de <i>CpMYB10</i> y <i>CpMYB5</i> en hojas y raices	00
de Craterostigma	88
V.3 Los promotores de <i>CpMYB10 y CpMYB5</i> regulan las respuestas	00
de un gen reportero ante ABA y estres en el fondo genetico de Arabidopsis	90
V.4 CpMYB10 es un gen de respuesta primaria	91
V.5 CPM Y BTO se une a su propio promotor y al de la LEA Cp11-24	92
v.o La expresion ectopica de <i>CpMTBTO</i> confiere renoupos de loierancia	02
a estres e insensionidad a giucosa a plantas transgenicas de Arabidopsis	93
VII CONCLUSIONES	98
VIII PERSPECTIVAS	
IX BIBLIOGRAFIA	100

ABREVIATURAS USADAS

AAPK	"ABA-Activated Protein Kinase"
ABA	Acido Abscísico
aba	ABA deficient
abi	ABA insensitive
ABPs	ABA-Binding Proteins
ABRE	"ABA-Responsive Element"
CBF	"C-repeat binding factor"
cDNA	Ácido desoxiribonucleico complementario
cADPR	"Cyclic ADP ribose"
CDPKs	"Calcium-dependent protein kinases"
CGMP	Guanocina cíclica monofosfato
CHX	Cicloheximida
DNA	Acido desoxiribonucleico
DIG	Digoxigenina
ej.	Por ejemplo
EMSA	"Electrophoretic Mobility Shift Assay"
FT(s)	Factor(es) Transcripcional (es)
Glc	glucosa
GUS	β-glucoronidase
hr(s)	Hora(s)
H_2O_2	Peroxido de hidrógeno
Kb	Kilobases
LEA	"Late Embryogenesis Abundant"
MALDI-ToF	"Matrix Assisted Lasser Desorption Ionization-Time of Flight"
min	minutos
pb	Pares de bases
RNA	Ácido ribonucleico
ROS	"Reactive oxygen species
RWC	contenido relativo de agua
SnRKs	"SNF1-Related Protein Kinase"
T-DNA	DNA de transferencia
UTR	"Unstranslated Región"

RESUMEN

La sequía es un grave problema que afecta a la productividad agrícola. Más de un tercio de la superficie mundial consta de zonas áridas con escasa precipitación pluvial, mientras que un 40% de las tierras de temporal de México son extremadamente áridas.

Ciertos genes vegetales se expresan durante el estrés por sequía, y sus productos ayudan a la planta a contender con los estragos causados por la pérdida de agua. Muchas de estas respuestas se encuentran controladas por la fitohórmona ácido abscísico (ABA). Las plantas desarrollaron diferentes estrategias adaptativas para contender con el estrés hídrico. Algunas toleran la deshidratación a nivel protoplasmático. *Craterostigma plantagineum* es una especie que tolera la deshidratación durante largos periodos, y recupera su fisiología normal a las 24 horas de recibir agua ("resurrección").

El grupo de investigación del Dr. Iturriaga se interesa en estudiar la vía de transducción de la señal de estrés en Craterostigma. Iturriaga y colaboradores (1996) aislaron tres genes que codifican factores transcripcionales tipo MYB (*CpMYB10*, *CpMYB5*, y *CpMYB7*), y presentaron evidencia que sugiere que alguno de estos responde a estrés hídrico. El alto nivel de identidad entre ellos (99-96 %) impidió el asignar las respuestas observadas a alguno de estos genes.

En esta Tesis, se analizó a mayor detalle la regulación de la expresión de los genes CpMYB10, CpMYB5, y CpMYB7. Los transcritos de CpMYB10 y CpMYB5 se acumulan desde los 15 minutos en respuesta a deshidratación y a ABA en hojas y raíces de Craterostigma. La expresión de CpMYB10 y CpMYB5 se lleva a cabo en distintos tipos celulares de hojas y raíces de Craterostigma tratadas con ABA, sugiriendo que estas proteínas ejercen su función en sitios diferentes. Para expresarse, CpMYB10 no requiere de síntesis de nuevas proteínas, lo cual lo clasifica como un gen de respuesta primaria. Los promotores de CpMYB10 y CpMYB5 regulan la expresión de un gen reportero en respuesta a ABA y sequía en Arabidopsis. La proteína CpMYB10 se une a DNA específicamente en secuencias de acción en *cis* tipo MYB. La expresión ectópica de CpMYB10 en Arabidopsis provoca un aumento del sistema radicular y fenotipos de tolerancia a estrés osmótico, insensibilidad a glucosa, hipersensibilidad a ABA, y alteraciones en la expresión de genes de respuesta a estrés. Los resultados obtenidos sugieren que CpMYB10 y CpMYB5 regulan la vía de señalización en respuesta a estrés en distintos tipos celulares, y que CpMYB10 es un factor transcripcional que regula la transcripción de genes de respuesta a estrés que permiten a la planta una mejor respuesta ante el estrés hídrico.

ABSTRACT

One third of the earth surface consists of arid or semiarid zones with poor rainfall averages, and close to 50% of the Mexican arable land is considered arid. Availability of water is probably the most limiting factor for crop productivity and yield, compromising economical output and human food supply.

Certain plant genes are expressed during drought stress and their products helps to compete with the damage caused by the water loss. Many of these responses are regulated by the hormone abscisic acid (ABA). The plants have developed several adaptative strategies to fight with drought. Some species are tolerant to dehydration at protoplasmic level. *Craterostigma plantagineum* can withstand long periods in a full dehydrated state, and revives a few hours after exposure to water ("resurrection phenomenon").

The Dr. Iturriaga's research group is interested in the study of the signaling pathway responding to stress in Craterostigma. Iturriaga and collaborators (1996) isolated three genes which codify to MYB type transcription factors (CpMYB10, CpMYB5, and CpMYB7), and they showed evidence suggesting that some of these genes are drought responsive. These genes share high levels of identity between them (99-96%) and very low expression levels, which hampered a precise analysis by Northern blots.

In this Thesis, a more detailed expression analysis of the *CpMYB10*, *CpMYB5*, and *CpMYB7* genes was conducted. The *CpMYB10* and *CpMYB5* transcripts accumulates since 15 minutes in response to drought or ABA treatments in both, roots and leaves of Craterostigma. Expression of *CpMYB10* and *CpMYB5* occurs at different cell types of roots and leaves of Craterostigma, suggesting that these genes exert their functions in different tissue sites. The expression of *CpMYB10* does not require *de novo* protein synthesis, which allowed classified it as a primary response gene. In Arabidopsis, the *CpMYB10* and *CpMYB5* promoters are able to regulate the expression of GUS in response to drought and ABA. A recombinant CpMYB10 protein has DNA binding activity, which is specific to MYB *cis* sites. Interestingly, the ectopic expression of *CpMYB10* in Arabidopsis results in a more abundant root system and phenotypes of osmotic stress tolerance, glucose insensibility, ABA hypersensibility, and altered expression of drought responsive genes. These results strongly suggest that both, *CpMYB10* is a transcription factor with a role in regulating the transcriptional expression of several stress responsive genes.

I. INTRODUCCIÓN

I.1 EL PROBLEMA DE LA SEQUÍA

Uno de los principales factores abióticos que afectan a la productividad agrícola es la disponibilidad de agua. Más de un tercio de la superficie terrestre consta de zonas áridas y semiáridas caracterizadas por escasa precipitación pluvial y baja productividad en las plantas (Boyer J.S., 1982). A nivel mundial, los factores medioambientales tales como la sequía, salinidad, temperaturas extremas, tóxicos químicos y el estrés oxidativo, son la principal causa de pérdida de cultivos, reduciendo las cosechas en más del 50% (Boyer J.S., 1982). En muchas regiones del mundo, los problemas relacionados a la sequía y la salinidad de los suelos se han ido expandiendo debido a los cambios climatológicos y al uso excesivo de riego artificial, lo cual provocará que para el año 2050 mas de la mitad de las tierras de cultivo se vean seriamente afectadas (Bray *et al.* 2000).

Particularmente en México, la distribución de los recursos hidráulicos es un grave problema, ya que en un 79% de las tierras cultivables la precipitación pluvial es calificada de irregular a deficiente, y de esta superficie de temporal el 41% es de extrema aridez (Molina J., 1979). Por otro lado, la irrigación es un recurso cada vez más usado y está contribuyendo progresivamente a la salinización de nuestros suelos. Es por estas razones que el estudio de los efectos del déficit hídrico en las plantas, la caracterización de los mecanismos de respuesta y adaptación, y la manipulación genética para lograr incrementos a la tolerancia al estrés hídrico, debieran ser de interés fundamental para países como el nuestro.

I.2 ESTRATEGIAS ADAPTATIVAS DE LAS PLANTAS ANTE LA SEQUÍA

Evolutivamente, las plantas han desarrollado una serie de adaptaciones fisiológicas, morfológicas, y metabólicas para contender con la falta de agua. Los mecanismos más complejos se expresan al nivel del desarrollo e implican la interacción de una multitud de productos genéticos. Los mecanismos más simples se expresan al nivel metabólico y pueden involucrar la participación de unos cuantos productos genéticos (McCue y Hanson, 1990).

Las estrategias adaptativas que algunas plantas han desarrollado para contender con la sequía son: el "escape", la "evasión" y la "tolerancia" a la sequía. El escape consiste en acortar el ciclo de vida de la planta de manera que coincida con la estación de lluvias, evitándose la sequía, y de esta manera no se expone a que disminuya el crecimiento y baje el rendimiento de la planta. En la evasión, la planta mantiene un estatus hídrico constante debido a las adaptaciones morfofisiológicas que presenta, tales como la ausencia de hojas y presencia de espinas, una cutícula cerosa, parénquima esponjoso, raíces de gran longitud; y el metabolismo del carbono tipo C4 ó CAM, como es el caso de los cactus y los agaves.

Por último, la tolerancia protoplasmática a la sequía provee a las plantas de la capacidad de sobrevivir en un estado de deshidratación total, aún por periodos de años, para continuar su desarrollo al rehidratarse en unas horas. Solo unas cuantas plantas poseen tejidos vegetativos tolerantes a la deshidratación; estas incluyen a un pequeño grupo de angiospermas, llamadas plantas de "resurrección" (Gaff, 1971), y también algunos helechos, algas, líquenes, y briofitas. Sorprendentemente, algunas de estas especies pueden equilibrar sus hojas aún en ambientes con 0 % (v/v) de humedad relativa. Las plantas de resurrección suelen ser poikilohídricas, es decir, su contenido de agua interno varía con respecto a la humedad relativa del ambiente. El nicho ecológico de las plantas de resurrección suele cubrir regiones con una disponibilidad de agua limitada por las estaciones climáticas, y crecen preferentemente sobre pequeñas elevaciones rocosas ("inselbergs") en zonas tropicales y subtropicales (Porembski y Barthlott, 2000).

Fig. 1. Ejemplos de inselbergs. Este tipo de formaciones rocosas se caracterizan por condiciones medioambientales extremas y poseen una vegetación que es marcadamente distinta a la de sus alrededores. De esta manera, los inselbergs constituyen centros de diversidad de plantas vasculares tolerantes a la deshidratación (tomado de Porembski y Barthlott, 2000).

I.2.1 RESPUESTAS FISIOLÓGICAS DE LAS PLANTAS ANTE LA SEQUÍA

Cuando una planta sufre déficit hídrico, se dispara una respuesta que involucra una serie de cambios a nivel fisiológico y bioquímico. Ante un estrés por sequía, a nivel de la planta completa se observa una disminución en la presión del turgor y consecuentemente marchitez, reducción en la tasa de fotosíntesis como producto del cierre de los estomas, y reducción en la velocidad de crecimiento de la parte aérea de la planta, respecto a la velocidad de crecimiento de la raíz. El efecto prolongado de todas estas alteraciones provoca la pérdida parcial o total de los cultivos (Bonhert y Jensen, 1996).

Durante el estrés por sequía, muchas plantas responden disminuyendo su potencial de agua por acumulación de osmolitos, tales como disacáridos, polioles, aminas cuaternarias y aminoácidos. A esta respuesta se le conoce como ajuste osmótico. El ajuste osmótico es la principal señal involucrada en mantener la presión del turgor, la cual es de suma importancia para el control del crecimiento celular y responsable en gran medida de la rigidez mecánica de los tejidos vegetales. Por lo tanto, los efectos de un déficit de agua sobre el crecimiento de las plantas son atribuidos a la pérdida de turgor (Bray E.A., 1993; Bohnert *et al.*, 1995).

I.2.2 RESPUESTAS MOLECULARES DE LAS PLANTAS ANTE LA SEQUÍA

Además, durante el estrés hídrico u osmótico se produce una síntesis de novo de ARN mensajeros y de ciertas proteínas, secuestro y entrada de iones, recambio de proteínas y modificación de membranas, entre otros (Bray E.A., 1993). Estos cambios son el resultado de la expresión de algunos genes que permiten la adaptación de la planta a las nuevas condiciones ambientales. Sin embargo, la expresión de estos genes no significa que ellos sean los que confieran la tolerancia al estrés, sino que algunos forman parte de la respuesta al daño causado por el estrés (Ingram y Bartels, 1996).

Una de las respuestas a la deshidratación mejor caracterizadas a nivel molecular es la síntesis de proteínas abundantes de la embriogénesis tardía (LEA). Las proteínas LEA se sintetizan durante la etapa tardía del desarrollo del embrión en las semillas de las plantas superiores. Estas proteínas también se expresan en el tejido vegetativo cuando existen condiciones ambientales de estrés hídrico, osmótico o bajas temperaturas. En la planta de resurrección *C. plantagineum*, las proteínas LEA también se acumulan en respuesta al estrés hídrico (Bartels *et al.*, 1990; Piatkowski *et al.*, 1990). Las características

comunes de estas proteínas es que son altamente hidrofilicas, no contienen residuos de cisteína ni triptófano y son de bajo peso molecular. Se ha postulado en base a su estructura, que la función de las LEAs es osmoprotectora, probablemente ligada a la retención del agua citoplasmática, en la preservación de la estructura de las proteínas así como en el secuestro de iones durante la deshidratación, en la preservación de la estructura de la estructura de la membrana o bien reemplazando a las moléculas de agua que se pierden durante la deshidratación. La regulación de los genes que codifican a las LEAs se lleva a cabo a nivel transcripcional, y se inducen en presencia de la hormona vegetal ácido abscísico (ABA) (Bray E.A., 1993; Ingram y Bartels, 1996).

Fig. 2. Respuestas de las plantas al déficit hídrico. Los cambios fisiológicos, bioquímicos y moleculares ayudan a la planta a mantener el metabolismo y restauran las condiciones que permiten el crecimiento bajo estrés (modificado de Bohnert *et al.*, 1995).

I.2.3 CRATEROSTIGMA PLANTAGINEUM COMO MODELO DE ESTUDIO: UNA PLANTA DE "RESURRECCIÓN".

Craterostigma plantagineum es una dicotiledónea cuyo hábitat natural se restringe a algunas regiones del desierto sudafricano (Gaff, 1971). El atractivo de *C. plantagineum* como un modelo de estudio reside principalmente en que su tolerancia a la deshidratación se manifiesta tanto en tejidos vegetativos como también en callos indiferenciados cultivados *in vitro*. Esto permite comparar la expresión de genes en dos sistemas con el mismo fondo genético, evitando así el efecto del estado de desarrollo cuando, por ejemplo, se estudia la adquisición de tolerancia a deshidratación durante el desarrollo de la semilla. Los callos obtenidos de Craterostigma solo adquieren la tolerancia cuando son cultivados en presencia de ABA (Bartels *et al.*, 1990). En callos, el ABA induce la expresión de un grupo de RNAs mensajeros que mantienen cierta equivalencia con los que normalmente se inducen en respuesta a sequía en la planta completa. Además de los estudios moleculares descritos en *C. plantagineum*, esta planta se puede transformar genéticamente mediante *Agrobacterium tumefaciens* (Furini *et al.*, 1994), y también se pueden realizar estudios de expresión usando protoplastos o biobalística (Bartels y Salamini, 2001).

в

C 0 1 2 3 4 5 6 7 8 902) incubación en medio con ABA

Los estudios con C. plantagineum han mostrado que el estado fisiológico de la planta previo a la deshidratación es importante para la sobrevivencia. Estas plantas solo desarrollan la capacidad de sobrevivir a la deshidratación si la pérdida de agua es lenta, lo cual le da el tiempo suficiente para adaptar su metabolismo al activar un programa específico de expresión génica. La mayoría de los cambios en la expresión de genes ocurre durante el proceso de deshidratación, mientras que unos cuantos cambios se observan durante la etapa de rehidratación. Precisamente, se han aislado muchos de estos genes cuya expresión es inducida por sequía, pero muy pocos inducidos por rehidratación han sido identificados hasta el momento (Bernachia et al 1996). Esto contrasta con las observaciones hechas en el musgo Tortula ruralis, un representante de las briofitas tolerantes a sequía, el cual logra sobrevivir a deshidrataciones rápidas. Para este musgo, los cambios más importantes de expresión génica ocurren durante las primeras hrs de la rehidratación (Wood y Oliver, 1999). A diferencia de C. plantagineum, los cambios de expresión génica en respuesta a deshidratación y rehidratación están regulados a nivel traduccional en T. ruralis, ya que existe un cambio en el grupo de RNAs seleccionados para ser traducidos a proteínas a partir de una poza relativamente constante de RNA presente en ambos estados fisiológicos. Este hecho apoya la idea de que la tolerancia a deshidratación en briofitas difiere a la de C. plantagineum en ser una respuesta de reparación celular inducida por seguía.

La deshidratación en *C. plantagineum* provoca una alteración de su contenido de carbohidratos, un incremento en su contenido de ABA y en los procesos relacionados a la fotosíntesis, cambios en la estructura subcelular, además del cambio en expresión génica ya mencionado. Esta planta reacciona desde las primeras 2 hr de deshidratación, y los cambios metabólicos se inician mucho antes de que se presenten los primeros signos de marchitez. Todos estos cambios inducidos por la deshidratación son revertidos durante el proceso de rehidratación (Bartels y Salamini, 2001).

I.3 LA TRANSDUCCIÓN DE LA SEÑAL MEDIADA POR ABA

La fitohormona ácido abscísico (ABA) es ubicua tanto en plantas inferiores y superiores, y en todas ellas parece estar regulando el mismo tipo de procesos. Al ABA también lo producen algunos hongos fitopatógenos, y curiosamente se ha encontrado también en el cerebro de algunos mamíferos (Finkelstein y Rock, 2002). El ABA es un ácido débil 15-C ópticamente activo que fue identificado por primera vez a principios de la década de los 60s como un inhibidor que se acumula en frutas de algodón

en abscisión ("abscisina II"), y también en hojas del árbol sicómoro con dormáncia inducida por fotoperíodo ("dormina") (Filkestein y Rock, 2002).

En realidad, el ABA normalmente se encuentra involucrado en la regulación de una variedad de eventos. Entre otras cosas, ABA regula la maduración del embrión y la dormáncia de la semilla, además de promover el cierre de los estomas. El ABA ha sido llamado la hormona del estrés, ya que ésta aumenta la adaptación a varios estreses, tales como bajas temperaturas, radiación por UV, patógenos, salinidad y durante la respuesta de la planta al déficit de agua (Giraudat *et al.*, 1994; Giraudat, 1995; Leung y Giraudat, 1998; Finkelstein *et al.*, 2002). Sin embargo, a pesar de su nombre, el ABA no parece controlar directamente el proceso de abscisión; en realidad, la presencia de ABA en órganos en abscisión es un reflejo de su papel en eventos precedentes a la abscisión, como son la promoción de senescencia y/o respuestas al estrés. A pesar de que durante muchos años se pensó en el ABA como un inhibidor del crecimiento, los tejidos jóvenes de las plantas tienen altos niveles de ABA en comparación con tejidos adultos (Finkelstein y Rock, 2002). Además, mutantes deficientes en la síntesis de ABA (mutantes *aba*) se encuentran severamente mal desarrolladas (enanas) debido al desacoplamiento entre la reducción de transpiración y el control del turgor (Finkelstein y Rock, 2002). La aplicación exógena de ABA a las mutantes *aba* normaliza la expansión celular y el crecimiento (Finkelstein y Rock, 2002).

A la fecha, todas las mutantes *aba* aisladas son pleiotrópicas (de hecho, solo una de cuatro mutantes fue identificada en un tamizado basado ABA), y lamentablemente no se han identificado mutantes involucradas en el catabolismo o con fenotipos ABA-*null* (Finkelstein y Rock, 2002). Se piensa que el metabolismo de ABA se encuentra regulado por retroalimentación, ya que muchas mutantes *abi* (insensibles a ABA) presentan niveles alterados de ABA mientras que algunos genes de la biosíntesis de ABA se encuentran regulados por esta. Estas observaciones sugieren que los procesos involucrados en la homeostasis de ABA son muy complejos. La redundancia genética podría sumarse a esta complejidad, pero se conoce muy poco sobre la regulación del metabolismo de ABA, su especificidad de tejido, o su compartamentación subcelular. Existe evidencia sólida que sugiere que la manipulación de la biosíntesis y/o señalización de ABA puede conferir adaptación al estrés en plantas transgénicas, y también que la homeostasis de ABA es parte de una compleja red hormonal que funciona integrando señales del medioambiente y los programas de desarrollo de la planta (Chory y Wu, 2001).

Debido a que el ABA es un sesquiterpenoide, durante mucho tiempo se pensó que se sintetizaba directamente a partir de farnesilfosfato, como ocurre en los hongos. Sin embargo, ahora sabemos que el ABA se sintetiza indirectamente a partir de carotenoides. El ABA ($C_{15}H_{20}O_4$) tiene un átomo de carbono

asimétrico que es activo ópticamente (C-1'). La forma mas común en la naturaleza es S-(+)-ABA; la cadena lateral de ABA es por definición 2-*cis*,-4-*trans*. La forma *trans-trans* de ABA es biológicamente inactiva. Debido a su naturaleza de ácido débil (pKa=4.8), el ABA mayoritariamente se encuentra sin carga cuando esta presente dentro del ambiente relativamente ácido del compartimiento apoplástico de las plantas, y puede entrar fácilmente a las células a través de la membrana plasmática. El concepto de captura de aniones se aplica para explicar la distribución del ABA entre los compartimentos celulares: la forma disociada (anión) de este ácido débil se acumula en compartimentos alcalinos (ej. cloroplastos iluminados) y se podría redistribuir de acuerdo a los niveles de los gradientes de pH a través de las membranas. Adicionalmente, podrían existir acarreadores específicos ABA para mantener una baja concentración de ABA en el apoplasto en plantas sin estrés (Finkelstein y Rock, 2002).

La regulación de los procesos fisiológicos controlados por ABA ocurre principalmente al nivel de la biosíntesis, y su subsiguiente catabolismo. Esto requiere síntesis *de novo* de enzimas importantes del metabolismo de ABA, mas que una redistribución de reservas de ABA preexistentes, aunque el transporte de ABA a través del xilema es una señal que viaja de la raíz al tallo en respuesta a la sequía (Zeevaart y Creelman, 1988; Finkelstein y Rock, 2002).

De esta manera, una de las primeras respuestas de las plantas al déficit de agua es un rápido aumento en los niveles de ABA. En varias especies vegetales se han aislado mutantes deficientes en la síntesis de ABA (mutantes *aba*). La caracterización de estas mutantes, en conjunción a estudios bioquímicos, ha permitido que actualmente se conozca la ruta de biosíntesis de ABA y los genes involucrados (Schwartz *et al.*, 2003). La biosíntesis de ABA inicia dentro de los cloroplastos a partir de un precursor derivado de los carotenoides, la zeaxantina, y termina en el citoplasma donde puede ser llevar a cabo su función o bien ser catabolizado (Cutler y Krochko, 1999; Schwartz *et al.*, 2003).

Varios grupos de investigación se han dado a la tarea de entender el mecanismo(s) por medio del cual se lleva a cabo la percepción de ABA en las plantas, utilizando como modelo la regulación de la apertura de estomas. Hasta la fecha, no se ha caracterizado el (los) receptor (es) de ABA, aunque se han presentado evidencias que sugieren la presencia de al menos dos sitios de reconocimiento de ABA, uno situado en la membrana plasmática, y otro localizado intracelularmente. Se ha propuesto que el receptor (es) interno (os) se encuentra (an) regulando a canales iónicos del tonoplasto para la liberación de iones vacuolares, mientras que el receptor(es) externo (os) se encuentra (an) mediando la estimulación del eflujo de iones en la membrana plasmática (MacRobbie EAC, 1995a, MacRobbie EAC, 1995b).

I.3.1 LA PERCEPCIÓN DE ABA.

Después de llegar a su sitio de acción, se espera que el primer paso de la respuesta a ABA sea algún tipo de evento de reconocimiento. A partir de dos evidencias indirectas se ha sugerido que podrían existir múltiple tipos de receptores: la estéreoespecificidad de las actividades mostradas por análogos de ABA, y que aparentemente existen sitios tanto extra como intracelulares para el reconocimiento de ABA (Finkelstein y Rock, 2002). A pesar de todo, a la fecha no se ha identificado ningún receptor de ABA.

El sitio de acción de ABA se ha estudiado desde varias estrategias: midiendo las respuestas celulares al ABA introducido vía microinyección, aplicando ABA exógeno a distintos pH para modular su entrada, o bien aplicando conjugados de ABA/proteínas para prevenir su entrada. Las evidencias iniciales que apoyan la existencia de un receptor intracelular de ABA en la regulación del estoma vienen de las siguientes observaciones: (1) la duración de la inhibición de la apertura del estoma mediada por ABA fue directamente proporcional a la entrada de ABA radioactivo; (2) La microinvección de ABA dentro del citoplasma de células guarda provoca el cierre del estoma; y (3) utilizando el electrodo de "patch-clamp" para aplicar ABA al citosol de protoplastos de células guarda se provoca la inhibición de las corrientes de entrada de K⁺, lo cual consecuentemente impide la apertura del estoma (Schwartz et al., 1994). De manera parecida, Allan et al. (1994) mostraron que los estomas se cierran después de haberse liberado intracelularmente el ABA "caged" que fue microinyectado. Otros estudios han mostrado que además, ABA tienen un efecto sobre el flujo de Ca²⁺ a través de la membrana plasmática de células guarda, ya que cuando se adiciona ABA al lado citosólico de la membrana ("inside-out patches") se provoca una rápida activación de los canales de Ca²⁺, mientras que la aplicación sobre la cara externa de la membrana provoca un retraso significativo en la activación de los canales de Ca2+ (Hamilton et al., 2000). Estos estudios sugieren la existencia de un reconocimiento de ABA en el lado citoplásmico de la membrana plasmática, además de una estrecha asociación entre el receptor de ABA y los canales Ca²⁺.

Por otro lado, varios estudios han sugerido que por si solo el ABA intracelular no es suficiente para inhibir la apertura del estoma, lo cual indicaría la existencia de un receptor extracelular. Tanto Anderson *et al.* (1994) como MacRobie (1995b) observaron un efecto mucho mayor en el cierre del estoma cuando se aplica ABA exógenamente a pH 6.15 que cuando se aplica a pH 8. Como se mencionó anteriormente, para poder atravesar la membrana plasmática el ABA (un ácido débil) debe encontrase en una forma protonada (+/- pH 6), ya que la forma aniónica (+/- pH 8) es incapaz de atravesarla. Se han reportado evidencias mas directas sobre la existencia de un sitio de percepción de ABA extracelular. Por

ejemplo Gilroy y Jones (1994) reportaron que en protoplastos de aleurona de cebada, la aplicación exógena de ABA, pero no así la microinyección de esta, reprime la inducción del gen a-amilasa dependiente de la fitohórmona ácido giberélico (GA). La percepción extracelular de ABA también se observó en dos estudios donde utilizan conjugados ABA-proteína que son incapaces de atravesar la membrana plasmática pero mantienen su actividad biológica, ya que pueden inducir la actividad de canales iónicos (Jeannette *et al.*, 1999) o bien regular expresión génica (Schultz y Quatrano, 1997; Jeannete *et al.*, 1999). Recientemente se utilizó ABA biotinilada como sonda para estudiar sus sitios de unión en protoplastos de células guardia de *Vicia faba* (Yamazaki *et al.*, 2003). Los autores primero demuestran que el ABA biotinilada posee actividad biológica ya que esta molécula induce el cierre del estoma. Utilizando microscopia de fluorescencia y confocal, los mismos autores muestran además que existe un reconocimiento extracelular de esta molécula, en sitios muy definidos de la superficie de protoplastos de células guardia, y que el pre-tratamiento de los protoplastos con proteinasa K bloquea la unión de ABA (Yamazaki *et al.*, 2003).

Todos los datos anteriores son consistentes con la idea de que existen ambos receptores: intra y extracelulares. Si embargo, podrían existir otra interpretaciones de esta observaciones, por ejemplo, la acción directa de ABA en las membranas plasmática y del tonoplasto (o canales iónicos) desde el lado citoplasmático, ó la existencia de un receptor de ABA con mayor afinidad a la forma protonada, ó bien vías dependientes de pH (Finkelstein *et al.*, 2002).

I.3.2 LA BUSQUEDA DE RECEPTORES DE ABA.

El uso de análogos de ABA en experimentos de germinación y expresión génica ha sugerido la existencia de múltiples receptores de ABA con diferentes requerimientos estructurales para funcionar en diferentes vías de respuesta (Walker-Simmons *et al.*, 1997; Kim *et al.*, 1999). Mas aún, la rápida regulación de las actividades de los canales iónicos tanto de la membrana plasmática y del tonoplasto (Assmann y Shimazaki, 1999), podría reflejar la interacción de ABA y proteínas de transporte u otros factores metabólicos (ej. vía sitios alostéricos para la unión de ABA). De acuerdo a lo anterior, la búsqueda de receptores de ABA debe incluir compartimentos tanto intra como extracelulares, además de moléculas no proteicas. Para la búsqueda de receptores resulta crítico el uso de análogos de ABA para poder correlacionar la especificidad de la interacción con el grado de actividad biológica.

A diferencia de lo ocurrido en los estudios de señalización de etileno y citocininas, en el caso de ABA ha fallado el uso de estrategias genéticas para identificar algún probable receptor. Consecuentemente, los progresos mas grandes se han realizado usando estrategias bioquímicas y biológicas. A pesar de que no se ha reportado un receptor para ABA, si se han reportado varías proteínas que se unen a ABA con alta afinidad (ABPs, ABA-Binding Proteins). En *Vicia faba* se reportó la presencia de ABPs tanto en fracciones de membrana (Hocking *et al.*, 1978) así como también en el plasmalema de células guarda (Hornberg y Weiler, 1984). En Arabidopsis también se identificó una ABP en fracciones microsomales (Pedron *et al.*, 1998); otra ABPs se identificó en el citosol de la pulpa en desarrollo de las manzanas (Zhang *et al.*, 2001). Otra proteína de unión a ABA se purificó a partir de la epidermis de hojas de fríjol ancho (Zhang *et al.*, 2002). Recientemente, se reportó el aislamiento y caracterización de ABAP1, una ABP que se aisló utilizando la estrategia de anticuerpos anti-idiotípicos a partir de un banco de cDNA de aleurona de cebada tratada con ABA (Razem *et al.*, 2004). ABAP1 presenta las características propias de un receptor: reversibilidad, saturabilidad, y alta afinidad de unión (Razem *et al.*, 2004); sin embargo queda por demostrar el efecto *in vivo* de ABAP1 para poder designarla como receptor de ABA.

I.3.3 IDENTIFICACIÓN DE INTERMEDIARIOS EN LA VÍA DE TRANSDUCCIÓN DE ABA

Hasta el momento, se han aislado docenas de mutantes con defectos en la respuesta, y la gran mayoría de estas mutantes han sido obtenidas en Arabidopsis. Las estrategias que se han utilizado para aislar mutantes en la vía han sido de lo mas diversas: a) selección de semillas vivíparas o con defectos en su germinación (Robertson, 1955); Sturaro *et al.*, 1996); b) selección de líneas con niveles de transpiración altos lo cual resulta en la disminución de la temperatura interna en las hojas (Raskin y Ladyman, 1988); c) tolerancia a la deshidratación independiente de ABA en células cultivadas (Furini *et al.*, 1997); d) desarrollo embrionario con alteraciones (Meinke *et al.*, 1994); e) pérdida o ganancia en la sensibilidad a ABA durante la germinación (Koornneef *et al.*, 1998); f) expresión incorrecta de genes reporteros (Ishitani *et al.*, 1997; Foster y Chua, 1999; Delseny *et al.*, 2001); y g) búsqueda de "enhancers" supresoras de las líneas mutantes GA-deficientes o *abi* (Steber *et al.*, 1998; Beaudoin *et al.*, 2000; Ghassemian *et al.*, 2000). Varios de estos loci han sido clonados y sus productos incluyen una

variedad de factores de transcripción, proteínas de unión a RNA, proteínas cinasas y fosfatasas, una enzima del metabolismo de fosfoinositidos, y una subunidad de farnesiltransferasa (Finkelstein *et al.*, 2002).

Utilizando otro tipo de tamizados que no se basaron en ABA, se han aislado otras mutantes defectuosas en sus respuestas a múltiples señales, entre ellas ABA. Por ejemplo, se han utilizado tamizados seleccionando líneas mutantes resistentes a NaCl (Quesada *et al.*, 2000), selección de plántulas resistentes a glucosa (Arenas-Huertero *et al.*, 2000; Huijser *et al.*, 2000; Laby *et al.*, 2000; Rook *et al.*, 2001), o bien líneas mutantes defectuosas en sus respuestas a auxina, brasinosteroides, o etileno (Wilson *et al.*, 1990; Alonso *et al.*, 1999; Ephritikhine *et al.*, 1999) (Tabla 1). El hecho de que algunos de estos loci de respuesta a hormonas parecen estar regulando varias vías de señalización sugiere que existe una interacción entre estas vías.

I.3.4 EVENTOS PRIMARIOS EN LA TRANSDUCCIÓN DE ABA.

A partir de estudios farmacológicos y bioquímicos, ahora se sabe que en los eventos primarios de señalización en respuesta a ABA participan tanto proteínas G, así como también fosfolipasas, proteínas cinasas y proteínas fosfatasas (Rock, 2000; Assmann, 2002; Yang, 2002). Debido a que los tipos de proteínas antes mencionados podrían participar en una amplia gama de eventos de señalización, existen muchas preguntas sobre la manera en que se regula la especificidad de respuesta a ABA. Es probable que algún miembro de una familia abundante de proteínas tuviera un papel especializado dentro de la vía. Sin embargo, Arabidopsis posee solamente 1 o dos isoformas de cada subunidad de proteína G, lo cual representa por lo menos un orden de magnitud por debajo del número de isoformas presentes en los genomas de animales (Finkelstein *et al.*, 2002). Al menos dos estudios han mostrado que la pérdida de función del gen único Ga (*GPA1*) provoca la disrupción de varios aspectos de la señalización de ABA y de auxinas, lo cual indica que este componente no es una fuente probable de especificidad (Ullah *et al.*, 2001; Wang *et al.*, 2001).

Existen distintas clases de GTPasas en plantas: proteínas G pequeñas, proteínas G heterotriméricas (grupo al que pertenece la subunidad GPA1 antes mencionada), y probablemente existan también otros tipos de proteínas de unión a GTP que no caen dentro de las características de las clase antes mencionadas (GTPasas no convencionales) (Assmann, 2002).

Las proteínas G heterotriméricas de mamíferos son GTPasas compuestas por las subunidades α , β y y. De manera clásica, estas GTPasas están asociadas con receptores de membrana plasmática que contienen siete dominios transmembranales conocidos como receptores heptahélicos, receptores 7-TMS, o Receptores Acoplados a Proteínas G (GPCRs). La activación del receptor provoca a su vez la activación de la proteína G mediante el cambio de GDP a GTP como nucleótido de unión por parte de la subunidad Ga. Posteriormente Ga y/o Gby interaccionan con otras proteínas efectoras. Eventualmente, la actividad GTPasa endógena de la subunidad Ga regresa a su estado inactivo que es la forma unida a GDP, y después de esto el trímero se reasocia (Assman, 2002). Una breve lista de efectores de la subunidad Gα en mamíferos: adenilato ciclasa, fosfodiestearasa de GMP cíclico, fosfoinositido 3-cinasa, fosfoinositido fosfolipasa CB (PI-PLCb), fosfolipasa D, transportadores de intercambio de Na⁺/H⁺, factores transcripcionales (FTs), y canales de K⁺, Ca²⁺, Cl⁻, Na⁺. A su vez, los blancos de las subunidades Gβy incluyen: fosfolipasa A2, canales de Ca²⁺, y algunas isoformas de PI-PLCb y de adenilato ciclasa (Assmann, 2002). Como se mencionó anteriormente, en las plantas también se han identificado proteínas G heterotriméricas. GPA1 es un gen único en Arabidopsis, aunque en algunas especies poliploides, como la soya, se han identificado al menos dos genes relacionados a GPA1. El gen GPA1 codifica para la subunidad G α en plantas. Una mutación por inserción de T-DNA en GPA1 provoca que ABA no pueda inhibir los canales de entrada de K⁺ en células guarda, además de inhibir la activación de canales aniónicos mediada por ABA de manera independiente del pH (Wang et al., 2001). La mutante gpal también presenta insensibilidad a ABA en el control de la apertura del cierre de los estomas, provocando así que la pérdida de agua sea mayor en la mutante que en las plantas silvestres (Wang et al. 2001). Por otro lado, se ha visto que al igual que en los mamíferos, en las plantas el metabolito de los esfingolipidos conocido como esfingosina-1-fosfato (S1P) funciona como un mensajero intracelular y como un ligando extracelular acoplado a proteínas G (Coursol et al., 2003). Además, se ha descubierto que S1P es una molécula señalizadora del estrés por sequía que participa en la regulación mediada por ABA del turgor de las células guarda (Ng et al., 2001). En Arabidopsis, la enzima encargada de producir S1P (esfingosina cinasa SphK) se activa por ABA, y además esta enzima participa en la inhibición de la apertura del estoma y en la promoción del cierre del estoma, ambos procesos regulados por ABA. Asimismo, la inhibición de SphK resulta en una atenuación de la regulación por ABA de los canales de entrada de K⁺ y de los canales aniónicos lentos, dos procesos implicados en la regulación del tamaño del poro del estoma. Adicionalmente, S1P puede regular tanto las aperturas del estoma como las actividades de los canales iónicos de células guarda en plantas silvestres, pero es incapaz de lograrlo en las células

guarda de una mutante en *GPA1* (Coursol *et al.*, 2003). En conjunto, en todos estos casos se involucran a las proteínas G heterotriméricas como elementos que participan corriente abajo en la vía de señalización de S1P, que a su vez modula el estado de la apertura del estoma que es regulado por ABA.

El otro tipo de GTPasas, conocidas como GTPasas pequeñas, poseen masas de entre 21 a 30 kD, son proteínas monoméricas que se unen al nucleótido guanina, y se relacionan evolutivamente con la subunidad a de las proteínas G heterotriméricas. Las GTPasas pequeñas se agrupan en una gran superfamilia de proteínas cuyos miembros comparten varias características estructurales, incluyendo cuatro dominios de unión a guanina y un dominio de unión al efector (Yang, 2002). Sin embargo, las GTPasas pequeñas también exhiben una diversidad considerable, tanto en estructura como en función. Las GTPasas pequeñas difieren de las heterotriméricas en la forma en que son reguladas por factores corriente arriba, y también en los mecanismos empleados al activar a los factores corriente abajo. Una vez que el estímulo ha llegado, el factor de intercambio de guanina (GEF) convierte a la forma inactiva (unida a GDP) en la forma activa unida a GTP mediante el reemplazamiento de los nucleótidos. A través de su dominio efector, la forma activa puede interaccionar con una ó varias proteínas efectoras. Por sí sola, la forma activa posee una actividad GTPasa muy débil para la hidrólisis de GTP, y es por esto que la GTPasa requiere de la participación de una proteína activadora (GAP). Además, dependiendo del momento, las GTPasas pequeñas se encuentran ciclando entre la forma unida a membrana y la forma citosólica. Solamente las GTPasas asociadas a membrana pueden ser activadas por GEF, y esta forma de membrana es regulada negativamente por un factor citosólico llamado inhibidor de disociación (GDI). Aparentemente, estos complejos mecanismos de regulación y acción de las GTPasas pequeñas se encuentran conservados en todos los organismos, incluyendo a las plantas. A pesar de su pequeño tamaño, la capacidad de interacción de las GTPasas pequeñas con varios reguladores y efectores, genera una gran diversidad funcional y es capaz de crear funciones novedosas (Yang, 2002). Se ha calculado que el genoma de Arabidopsis posee al menos 93 diferentes genes que codifican para este tipo de proteínas. Las GTPasas pequeñas de Arabidopsis podrían regular a toda una multitud de eventos, desde el tráfico de vesículas hasta la señalización hormonal (Yang, 2002). A diferencia de lo que ocurre en los mamíferos donde el número es elevado, el pequeño número de genes que en las plantas codifican para las subunidades de las proteínas G heterotriméricas podría significar que durante la evolución de las plantas las GTPasas pequeñas surgieron como "switches" moleculares para la señalización (Yang, 2002). En general, la superfamilia de las GTPasas pequeñas se clasifican en cinco familias: Ras, Rho, Rab, Arf, y Ran. A pesar de estar presentes en Arabidopsis, los miembros de las familias Rab, Arf, y

Ran participan en procesos esenciales para el funcionamiento de la célula, y es por esto que no se consideran como proteínas de señalización que transmitan señales extracelulares. En mamíferos, las familias Ras y Rho sí son reconocidas como proteínas bona fide de señalización que responden a estímulos medioambientales, aunque dentro del genoma de Arabidopsis solo han sido encontrados miembros de la familia Rho. El análisis filogenético de los miembros de la familia Rho en Arabidopsis, indica que todos ellos caen dentro de una subfamilia única denominada ROP. Existen al menos 11 miembros de la subfamilia ROP en Arabidopsis. En las plantas, a las proteínas de la subfamilia ROP se le ha encontrado participando en toda una variedad de procesos: control del crecimiento del tubo polínico, regulación del desarrollo de los pelos radículares, expansión celular de tejidos en desarrollo, regulación de la producción del segundo mensajero H₂O₂, y regulación negativa de las respuestas a ABA. De entre los miembros de la subfamilia ROP, solo ROP9 y ROP10 contienen un motivo probable para farnesilación, y los restantes poseen motivos para geranilgeranilación, ó bien carecen de motivos de prenilación. La función de las proteínas ROPs se ha estudiado mediante la expresión transgénica de mutantes tanto constitutivamente activas (CA), así como también dominantes negativas (DN). Estos estudios han implicado a ROP2 y a ROP6 (ambos sujetos a geranilgeranilación) en la regulación negativa de las respuesta a ABA (Li et al., 2001; Lemichez et al., 2001). Sin embargo, las mutantes CA de ambos loci también causan otro tipo de fenotipos (Li et al., 2001; Molendijk et al., 2001; Fu et al., 2002; Jones et al., 2002). Debido a la cantidad inexplicable de fenotipos que en Drosophila se han observado en mutantes DN de GTPasas, se ha propuesto que para este tipo de proteínas la mejor estrategia es usar mutantes que provoquen pérdida de la función. Estudios recientes donde se utilizaron mutantes con pérdida de función de GTPasas pequeñas de Drosophila, demostraron que las mutantes DN provocan ciertos fenotipos que no tienen relación con la señalización originalmente estudiada (Hakeda-Suzuki et al., 2002). Es por esto que no queda claro si los cambio observados en la respuesta a ABA en las mutantes DN ROP2 y ROP6 reflejan su verdadera función en la señalización de ABA. Zheng y colaboradores (2002) reportaron que ROP10 es un regulador negativo específico de las respuestas a ABA en Arabidopsis. Una mutante nula, rop10, exhibe fenotipos incrementados de la respuesta a ABA en varios procesos: germinación, elongación de las raíces, ensayos de cierre de estomas, y en la inducción de la expresión del FT AtMYB2 (que participa en la respuesta a ABA y deshidratación). Las mutantes nulas rop10 contienen niveles de ABA comparables con los de las plantas silvestres, y la respuesta a otras hormonas es normal. De manera consistente con estos fenotipos, la expresión transgénica de una forma constitutivamente activa de ROP10 provoca una reducción en la inhibición de ABA a la germinación, mientras que la expresión ectópica de una forma DN de ROP10 aumenta las respuestas a ABA y suprime a la mutante *abi2* (fosfatasa que regula negativamente la vía de ABA). A su vez, la expresión de *ROP10* se reprime en las puntas de las raíces de plantas tratadas con ABA. ROP10 se encuentra localizada en la membrana plasmática, y esta localización membranal resulta crucial para su funcionamiento (Zheng *et al.*, 2002). En conjunto, todos estos datos sugieren que ROP10 es una GTPasa pequeña de membrana plasmática que participa de manera específica en la regulación negativa de la vía de transducción en respuesta a ABA (Fig. 4). Hasta el momento, no se han reportado otras GTPasas pequeñas con fenotipos claros que indiquen su participación en la vía de ABA.

I.3.5 MENSAJEROS SECUNDARIOS EN LA VÍA DE ABA

El Ca²⁺ funciona como un mensajero intracelular en muchos procesos hormonales de señalización, entre los que se incluyen las respuestas ABA. Con frecuencia se observa un patrón cambiante en la liberación de Ca²⁺ al citoplasma de células guarda en respuesta a ABA, con fases reiteradas de aumento y disminución de Ca²⁺, a este fenómeno se le llama oscilaciones de Ca²⁺, y se presume que este evento forma parte de un evento primario de la respuesta a ABA. Cuando se analizan las señalizaciones de ABA, a menudo se separan los pasos que ocurren antes de la elevación de Ca²⁺ de los eventos de transducción posteriores a liberación de Ca²⁺. Sin embargo, es posible que algún componente de la señalización corriente abajo de Ca²⁺ pudiera afectar la propia liberación de Ca²⁺, actuando en una especie de circuito regulatorio (ej. afectando la expresión de ciertos genes) lo cual de hecho puede llegar a confundir el análisis de mutantes (Himmelbach *et al.*, 2003).

De la misma manera, varios mensajeros intracelulares derivados de lípidos se encuentran participando en las respuestas a ABA. Durante la señalización en respuesta a ABA, se activan tanto la fosfolipasa C (*PLC*) así como también la fosfolipasa D (*PLD*), lo cual resulta, respectivamente, en un incremento en los niveles de inositol trifosfato (InsP₃) y ácido fosfatídico (PA). Desde hace mucho se sabe que InsP₃ funciona como un segundo mensajero de la vía de ABA, y que regula tanto la señalización, como la regulación del estoma y la expresión de genes (Gilroy *et al.*, 1990). Utilizando transgénicas de tabaco con expresión reducida de PLC en las células guarda, Hunt y colaboradores (2003) muestran que se provoca un descontrol en la promoción del cierre del estoma mediado por ABA, y en la inhibición de la apertura del estoma. Estos datos complementan a los de un estudio previo (Sanchez y Chua, 2001), donde utilizando trangénicas sobre-expresoras y antisentidos de *PLC* los

autores concluyen que PLC es necesaria, pero no suficiente, para regular los efectos de ABA en germinación, crecimiento, y expresión génica (Sanchez y Chua, 2001). También otros tipos de fosfoinosítidos parecen estar participando en la vía de ABA. El fosfoinosítido IP₆ parece tener una papel en la inhibición de la apertura del estoma mediada por ABA (Lemtiri-Chlieh *et al.*, 2000). Por otro lado, una mutante en el gen *FIERY1* (inosil polifosfato 1-fosfatasa) que participa en el metabolismo de los fosfoinosítidos, presenta fenotipos de hipersensibilidad a ABA y a estreses abióticos (Xiong *et al.*, 2001c). Además, como se mencionó anteriormente, el fosfolípido S1P (esfingosina-1-fosfato) estimula el cierre del estoma, y para lograrlo requiere de la participación de la proteína G heterotrimérica *GPA1* (Coursol *et al.*, 2003). En conjunto, estos datos apoyan la idea de la participación de los fosfoinosítidos como mensajeros secundarios de la vía de ABA.

Tanto el pH como el estatus redox de las células también son otros factores cruciales para la regulación de la transducción de ABA. Antes del cierre de los estomas en respuesta a ABA exógeno, se sabe que aumenta la concentración tanto de H2O2 así como también de óxido nítrico (NO). Aparentemente el ABA "sensibiliza" los canales de influjo de Ca2+ mediante un aumento en la producción de especies reactivas de oxígeno (ROS; ej. H2O2), los cuales pueden funcionar como mensajeros secundarios que juegan un papel importante en la activación de canales (Finkelstein et al., 2002; Himmelbach et al., 2003). Los cambios en la concentraciones de H2O2 ó de NO pueden provocar señales redox que se caracterizan por tener una vida media biológica muy corta. Para la generación de H₂O₂ se necesita de la participación de NADPH-oxidasas unidas a membrana (Kwak et al., 2003), mientras que para la generación de NO se necesita de nitrato reductasas y de un complejo glicindecarboxilasa (Desikan et al., 2002; Chandok et al., 2003). Una doble mutante en las nitrato reductasa apoproteínas1 y 2 (nia1, nia2) presenta una deficiente producción de NO en los estomas, así como una desregulación del cerrado de estomas en presencia de ABA (Desikan et al., 2002). Hay dos reportes muy interesantes que ligan directamente al NO con las respuestas al estrés mediadas por ABA y respuesta a patógenos. Ambos son estudios farmacológicos que infieren que para que ocurra la inducción de las respuestas de ABA por parte del NO, se requiere de cADPR y de guanocina cíclica monofosfato (cGMP), lo cual indica que el NO es activo corriente arriba tanto del incremento de la concentración de Ca2+ así como también de ABI1 y ABI2 (García-Mata et al., 2002; Neill et al., 2002). Esta claro que entre los blancos susceptibles al estado redox de la célula están las fosfatasas ABI1 y ABI2, las cuales se inactivan por H₂O₂ debido a la oxidación de ciertos residuos de cisteína que resultan críticos (Fig. 4) (Meinhard et al., 2002). Por otro lado, la producción de ROS es una respuesta dependiente de ROP que

ocurre ante varios estímulos que provocan el cierre del estoma, como por ejemplo la deshidratación y el ataque por patógenos (Lee *et al.*, 1999), y es probable que esta vía dependiente de ROS sea compartida por varios estreses (Yang, 2002). El trabajo de Kovtun y colaboradores (2000), apoya a la idea anterior, ya que al provocar la activación constitutiva de una cascada de activación mediada por MAP ("mitogen activated protein") cinasas dependientes de H_2O_2 le confiere un aumento a la tolerancia de varios factores abióticos.

También se ha reportado que los efectos de ABA sobre el cierre del estoma dependen en parte por la alcalinización del citosol. Estudiando parches aislados de membrana se ha observado que existe una estimulación del cierre de estomas mediada por el pH; al menos parcialmente, esta activación parece suceder por un aumento en el número de canales de salida de K⁺. Un aumento en el pH externo provoca tanto la disminución de la actividad de los canales de entrada de K⁺, así como también un aumento en la actividad de GORK, que es un canal de salida de K⁺ presente en las células guarda (Finkelstein *et al.*, 2002).

Fig. 4. Un esquema de las señales que controlan las respuestas a ABA en células guarda. El ABA es percibido por un receptor desconocido (ABA R) el cual transmite la señal a una proteína cinasa asociada a membrana, la cual a su vez la transmite a canales rectificadores del influjo de Ca2+ localizados en el plasmalema. La activación de estos canales es antagonizada por una protein fosfatasa sensible a ácido akadoíco (PP) y por la proteína G pequeña ROP10, la cual es a su vez reclutada a la membrana plasmática mediante farnesilación. La señal de Ca²⁺ activa a una ADPR ciclasa que cataliza la formación de cADPR a partir de NAD. El cADPR provoca una liberación de Ca2+ inducida por Ca2+ (CICR). Esta movilización de Ca2+ a partir de fuentes internas esta controlada por otros mensajeros intracelulares, entre los que se incluyen: InsP₃, el cual es derivado a partir de lípidos mediante la actividad de PLC; myo-inositol hexakisfosfato (InsP₆); y el ácido fosfatídico (PA) el cual se origina de la activación de PLD mediada por ABA. La liberación de Ca2+ a partir de fuentes internas, como la vacuola, genera una concentración elevada de Ca²⁺_{cvt} que posteriormente disminuye por la captura de Ca²⁺. La repetida transición de concentraciones de Ca²⁺ llamada "Ca²⁺-oscilaciones" lleva a cabo una función central al integrar varias señales que afectan el cerrado del estoma, incluyendo a las señales elicitor y redox. Esta señal redox se origina por la activación mediada por ABA de una NADPH oxidasa y de una nitrato reductasa (NR), provocando así la generación de H₂O₂ y NO (oxido nítrico), respectivamente. Las especies reactivas de oxígeno, como el H2O2, activan el canal rectificador de influjo de Ca2+. Señales que controlan las respuestas del estoma se derivan de esfingosina (SPH) y de fosfolípidos. A su vez, la activación mediada por ABA de una esfingosina cinasa (SphK) convierte el SPH en esfingosina-1-fosfato (S1P), el cual induce el cierre del estoma por una proceso que depende de la subunidad-Ga (GPA1) o bien de una proteína G heterotrimérica. La señalización de ABA por debajo de Ca2⁺ es regulada negativamente por las proteín fosfatasas ABII y ABI2, las cuales se asocian con la proteín cinasa CIPK15 que a su vez esta asociada a su compañero de interacción CBL (que

Fig.4. Continuación.

además también se une a Ca^{2+}), para formar así un complejo trimérico de proteínas. La activación transitoria de ABI1 y ABI2 mediada por H₂O₂ (y posiblemente también por NO) transmite la señal de ABA hacia componentes mas abajo de la vía, entre los que se incluyen CDPKs y SnRKs los cuales son reguladores positivos de la expresión génica diferencial inducida por ABA así como también del cierre del estoma (modificado de Himmelbach *et al.* 2003).

I.3.6 CASCADAS DE FOSFORILACIÓN EN RESPUESTA A ABA.

Muchas cinasas se encuentran involucradas en la señalización de ABA, ya sea participando en la regulación de la apertura y cierre del estoma, o bien afectando la expresión génica. La expresión de algunas de estas cinasas es inducida en respuesta a ABA, pero otras se expresan constitutivamente aunque la activación de estas proteínas es dependiente de ABA (Finkelstein et al., 2002). En los primeros estudios de la participación de las cinasas en la vía de ABA se aplicaron estrategias farmacológicas utilizando inhibidores. En la mayoría de los casos, los grupos de investigación interesados en el estudio de la fosforilación dentro de la vía han usado los conocimientos acumulados sobre levadura buscando homólogos en las plantas. Principalmente, las cinasas de plantas han sido identificadas en tabaco, alfalfa, maíz y Arabidopsis. Algo importante de mencionar es que la mayoría de las cinasas vegetales no solo se activan por estrés osmótico, sino también por varios estímulos abióticos e incluso por patógenos, lo cual da una idea de la complejidad de este nivel regulatorio en plantas. Por mencionar un ejemplo, en Arabidopsis se reportó que al menos tres MAP cinasas se activan enzimáticamente en respuesta a sal y también por frío, daño mecánico, y otros estímulos medioambientales (Ichimura et al., 2000). Otros estudios han usado alelos dominantes negativos para analizar el papel de ciertas cinasas de manera específica (Sheen et al., 1996; Li et al., 2000). Por ejemplo, AAPK ("ABA-Activated Protein Kinase") codifica para una serina/treonina cinasa específica de célula guarda que ha sido involucrada en la regulación de la apertura del estoma (Li et al., 2000). La expresión de una versión recombinante de AAPK, la cual es incapaz de unir ATP, provoca la inhibición del cierre del estoma inducido por ABA al no activar los canales aniónicos; esto no afecta a la inhibición de la apertura del estoma mediada por ABA, lo cual pone de manifiesto el papel de AAPK en la vía que específicamente regula el cierre del estoma, el cual es sólo un segmento de la cadena de señalización en respuesta a ABA (Li et al., 2000). Tanto AAPK de trigo, así como también PKABA1 ("ABA-Induced Protein Kinase1") de Vicia, son reguladores positivos de la expresión génica y de las respuestas del

estoma mediadas por ABA (Wang et al., 2001; Johnson et al., 2002). Ambas proteínas caen dentro de la familia de las SnRKs ("SNF1-Related Protein Kinase"), las cuales se caracterizan por su homología con la proteína cinasa de levadura conocida como SNF1/AMP-regulada (Himmelbach et al., 2003). La cinasa PKABA1 activa por fosforilación al FT tipo b-ZIP conocido como TaABF, el cual es gen específico de semilla cuyo producto se une a elementos en cis tipo ABRE ("ABA-Responsive Element"). Como un dato importante, TaABF presenta una alta homología estructural con ABI5 de Arabidopsis (Johnson et al., 2002). Resulta interesante que AAPK pueda interaccionar físicamente con la proteína de unión a RNA conocida como AKIP1, evento que ocurre dentro del núcleo de las células guarda (Li et al., 2002). La fosforilación de AKIP1 por parte de de AAPK resulta en la formación de complejos compuestos por AKIP1 y por RNAs mensajeros de dehidrinas. Como se mencionó con anterioridad, el ABA estimula la acumulación de dehidrinas (LEAs, con posibles funciones de protección de macromoléculas), de ahí que estos resultados indiquen un papel para AKIP1 en la protección de mensajeros para dehidrinas, favoreciendo así su expresión (Li et al., 2002). Es probable que el ortólogo de AAPK en Arabidopsis sea el gen OST1 ("Open Stomata1"), el cual también regula las respuestas del estoma mediadas por ABA (Mustilli et al., 2002). La mutante ostl, además de presentar abiertos sus estomas, es incapaz de producir ROS en respuesta a ABA en las células guarda, pero mediante la aplicación exógena de H₂O₂ ó Ca²⁺, se rescatan los fenotipos de respuesta a ABA en las células guarda. Además, la mutante ostl no presenta fenotipos alterados en al nivel de semilla (viviparismo ó inhibición de la germinación por ABA), lo cual restringe los fenotipos observados únicamente al nivel del estoma (Mustilli et al., 2002).

En plantas, las cinasas dependientes de calcio son candidatas a ser el puente entre las respuestas corriente abajo de la liberación intracelular de calcio en respuesta a estrés osmótico. Utilizando protoplastos de maíz como un sistema de expresión transitorio, Sheen (1996) demostró que la co-expresión de mutantes constitutivamente activas de CDPKs (*ATCDPK1* y *ATCDPK1A*) junto con *GFP* regulado por el promotor *HVA1* de cebada (promotor que responde a estrés) permite la expresión del reportero sin la necesidad de inducción por estrés. Además, versiones dominantes negativas de esas cinasas bloquean la expresión del reportero en respuesta a estrés o ABA. En la actualidad no se conocen a detalle los niveles en que participan estas MAP cinasas y CDPKs de plantas ante el estrés (Zhu, 2002). La señal de entrada podría ser el estrés osmótico (cambios en turgor, por ejemplo) o el mismo daño derivado del estrés osmótico. La salida pudiera ser la acumulación de osmolitos que ayuden a restaurar
la homeostasis, o proteger ante el daño del estrés, o simplemente activar mecanismos de reparación (inducción de genes tipo *LEA*/dehidrinas) (Zhu, 2002).

La señalización de ABA también se encuentra regulada por diversas serín/treonina fosfatasas. Las proteínas con actividad fosfatasa que defosforilan residuos de serina y treonina se clasifican en dos grandes grupos. La familia PPP se constituye por las fosfatasas tipo 1 (PP1), tipo 2A (PP2A) y tipo 2B (PP2B), y se caracterizan principalmente porque sus dominios catalíticos comparten homología en secuencia, además de ser sensibles a inhibidores específicos. En el segundo grupo se encuentras las fosfatasas tipo 2C (PP2C); en la actualidad no se dispone de inhibidores específicos para este grupo de fosfatasas, debido a que el dominio catalítico de estas enzimas no se relaciona a la subunidad catalítica de la familia PPP (Zhu, 2002).

Se han identificado varias fosfatasas tipo PP2C cuya transcripción es regulada positivamente por ABA. La secuencia nucleotídica de los genes *ABI1* y *ABI2* indicó que ambos genes codifican para serina/treonina-fosfatasas tipo PP2C, y que ambos genes son muy similares (Leung et al, 1994., Leung *et al.*, 1997). Otras fosfatasas reguladas por ABA son AtPP2CA y AtP2CHA, cuya expresión también se encuentra regulada por frío. Utilizando estrategias de reversión de mutantes *abi2*, Merlot *et al.*, (2001) sugieren que ABI2 regula negativamente la vía de ABA. Por otro lado, plantas transgénicas que expresan *AtPP2CA* en antisentido presentan entre otros fenotipos un aumento en su tolerancia a frío, aumento en su sensibilidad a ABA durante el frío y un aumento en los niveles de expresión en varios genes regulados positivamente por frío o ABA (Tahtiharju y Palva, 2001). Estas evidencias apoyan la idea de que algunas fosfatasas PP2C funcionan como reguladores negativos de la vía de transducción de ABA.

Figura 5. Cascadas de Fosforilación activadas por ABA. El ABA estimula a PKABA1 (proteín-cinasa SNF1-"like" de trigo), la cual a su vez activa mediante fosforilación al factor transcripcional TaABF. Se postula que en Arabidopsis podría ocurrir una reacción similar para fosforilar al FT ABI5. La fosforilación estabiliza a ABI5 (homólogo de TaABF), y esto resulta en expresión génica inducida por ABA mediante la unión de ABI5 a elementos de regulación en cis presentes en los promotores regulados por ABA. Se requiere de la expresión de los genes "blanco" de ABI5 para el mantenimiento de la dormancia de la semilla, y también para la inhibición del crecimiento post-embrionario. Para que la semilla pueda superar el arresto embrionario, se requiere que ABI5 sea degradado. Con la interacción dada entre ABI5 y la proteína AFP se inicia el proceso de degradación de ABI5 por la vía del proteosoma 26 S dependiente de ubiquitina. A diferencia de PKABA1, cuyo producto regula la transcripción de genes inducidos por ABA, tanto la proteín cinasa AAPK (SNF1-"like") de Vicia así como también la OST1 de Arabidopsis regulan un evento posttranscripcional que ocurre durante la expresión especifica de ABA de algunos genes. De manera semejante a PKABA1, la activación mediada por ABA de AAPK provoca la fosforilación de una proteína heteronuclear de unión a RNA (RNA-BP) conocida como AKIP1. En su estado fosforilado, AKIP1 se une a RNAs mensajeros, entre los cuales se incluyen mRNAs que codifican para dehidrinas (LEA clase II)) que son requeridas para la adaptación de las células a bajos potenciales de agua. Es probable que AKIP1 pudiera incrementar la exportación al núcleo de los transcritos de las dehidrinas que se acumulen en complejos subnucleares. Estos pasos regulatorios ocurren en el núcleo (modificado de Himmelbach et al., 2003).

I.4 FACTORES TRANSCRIPCIONALES INVOLUCRADOS EN LA RESPUESTA A ESTRÉS MEDIOAMBIENTAL.

Los genomas vegetales poseen un elevado número de FTs. Como un ejemplo, Arabidopsis dedica cerca del 5.9% de su genoma en codificar mas de 1500 FTs. En los últimos años se han generado importantes avances en la caracterización de algunos genes cuyos productos regulan la transcripción en respuesta a ácido abscísico y/o sequía, aunque el conocimiento acumulado está muy lejos de ser suficiente para entender el mecanismo(s) por medio del cual estos estímulos llevan a cabo su función reguladora a nivel transcripcional. Basándose en el tipo de dominio de unión a DNA que presentan, a la fecha se han identificado al menos 6 clases de factores de transcripción que están involucrados en la respuesta a ABA, sequía, o estrés osmótico. Algunas de estas clases de FTs han sido encontradas únicamente en plantas. A continuación se presenta una revisión de los distintos tipos de FTs que se encuentran involucrados en la regulación de genes que responden a ABA y/o estrés.

I.4.1 FTs tipo cierre de Leucina básico (b-ZIP). Los FTs tipo cierre de Leucina básico (b-ZIP) contienen un dominio de unión a DNA rico en residuos básicos que se encuentra adyacente a un dominio de dimerización tipo cierre de leucina. Varios TFs tipo b-ZIP se unen al elemento en *cis* conocido como ABRE (Elemento de Respuesta a ABA, c/tACGTggc) el cual se encuentra en muchos promotores que responden a deshidratación y/o a ABA. Entre estos se encuentra EmBP1 de trigo, el cual transactiva al promotor del gen *Em* que codifica una LEA clase 1 (Guiltinan *et al.*, 1990). También se han identificado b-ZIPs cuyos productos se unen a ABRE en tabaco (*TAF1*) y en arroz (*OSBZ8, OsZIP-la, TRAB1*) (Oeda *et al.*, 1991; Nakagawa *et al.*, 1996; Nantel y Quatrano, 1996; Hobo *et al.*, 1999). Se ha demostrado que TRAB1 interacciona *in vivo* con el TF OsVP1 para juntos poder transactivar el promotor de *OsEm* (Hobo *et al.*, 1999).

De igual manera, en Arabidopsis se identificó una familia de b-ZIPs que se unen a elementos ABRE (ABF2, ABF3 y ABF4) y que además participan en la señalización de estrés osmótico (Choi *et al.*, 2000). De manera independiente, Uno y colaboradores (2000) también aislaron dos clonas de cDNA que codifican para b-ZIPs con capacidad de unirse a ABRE (*AREB1* y *AREB2*) y cuya transcripción es regulada positivamente por sequía, NaCl y ABA. Tanto AREB1 y AREB2 activan la transcripción de un gen reportero manejado por ABRE y requieren de ABA para activarse. Por último, utilizando la estrategia de clonación posicional en la mutante *abi5*, Finkelstein y Lynch (2000) reportan que *ABI5* codifica para un FT tipo b-ZIP regulado por ABR; Lopez-Molina y colaboradores (2002) demuestran

que ABI5 actúa debajo de ABI3 en la vía de ABA, y además presenta evidencia de que ABI5 regula a los genes *AtEm1* y *AtEm6*. Lo anteriormente expuesto coincide con los resultados obtenidos por Bensmihen y colaboradores (2004), donde confirman la regulación de ABI5 sobre *AtEm1* al cruzar dos tipos de plantas transgénicas, una que sobreexpresa *ABI5* y otra que porta el promotor *AtEm1* fusionado al gen reportero GUS.

I.4.2 FTs tipo B3. Este tipo de FTs se caracterizan por la presencia de un dominio de 120 aminoácidos conservados presente en la región carboxilo conocido como dominio B3 (Liu *et al.*, 1999). *VP1* de maíz es un co-activador de varios genes específicos de semilla que son regulados por ABA (McCarty *et al.*, 1991; Vasil *et al.*, 1995), y esta co-activacion depende fuertemente de ABA (Carson *et al.*, 1997; Vasil *et al.*, 1995). El TF VP1 contiene cuatro dominios conservados que se denominan A1,B1, B2, y B3 (Giraudat *et al.*, 1992). La proteína VP1 completa no puede unirse a DNA (en estudios *in vitro*), sin embargo el dominio B3, por si solo, tiene la capacidad de unirse de manera específica al elemento *cis* conocido como Sph (Suzuki *et al.*, 1997). Por otro lado, el gen *VP1* codifica para una proteína que junto con ABA es capaz de transactivar a los genes *c1* y *Em* durante la maduración de la semilla de maíz (McCarty *et al.*, 1991), aunque no se ha demostrado una interacción directa entre VP1 y el promotor *Em*. Para el caso del promotor *c1*, se ha demostrado que un dominio (conocido como B3) de la proteína VP1 es esencial para la transactivación de este promotor, además de que este mismo dominio se une de manera específica a un elemento *cis* conocido como Sph (Kao *et al.*, 1997).

En Arabidopsis, el gen *AB13*, al igual que su homólogo *VP1* de maíz, codifica para un FT que presenta una organización estructural singular para este tipo de proteínas (Giraudat *et al.*, 1992). En base a conservación de la secuencia de aminoácidos y en la similitud de los fenotipos de las mutantes, se considera que la proteína ABI3 de Arabidopsis es un ortólogo de VP1 (Suzuki *et al.*, 2001). *AB13*, el cual fue identificado inicialmente como una mutante insensible a ABA (mutante *abi3*; Giradaut *et al.*, 1992), comparte funciones complementarias con *VP1* de maíz, ya que la expresión ectópica de *VP1* en el fondo genético de *abi3* puede restaurar la sensibilidad a ABA y el fenotipo de floración temprana que exhiben las mutantes *abi3* (Suzuki *et al.*, 2001). Estas mismas planta transgénicas *355::VP1* en la mutante *abi3* fueron estudiadas por Suzuki y colaboradores (2003) utilizando microarreglos y comparando los datos al utilizar RNA de plantas *abi3*. En las plantas sobre-expresoras de *VP1* tratadas con ABA se observaron alteraciones en la expresión de cerca del 73% de los 7402 genes nucleares

representados en el microarreglo. Muchos genes específicos de semilla presentan expresión constitutiva en tejidos vegetativos de las plantas transgénicas, lo cual respalda la coparticipación de VP1 y ABI3. En las transgénicas, *ABI5* (regulador positivo de ABA) se encuentra activado, mientras que los reguladores negativos *ABI1* y *ABI2* (ambas PP2Cs) se encuentran inhibidos, revelándose así dos ramificaciones de la vía. Dependiendo de los elementos *cis* presentes en sus promotores, los genes co-activados por ambos, VP1 y ABA, caen en dos grupos: los que tienen ABREs y lo que poseen Sphs, mientras que los genes que solo son inducidos por ABA no tienen elementos Sphs. En otro trabajo, la expresión ectópica de *ABI3* reveló la importancia de este TF al mediar puntos importantes de las respuestas de Arabidopsis ante ABA y frío. Estas plantas transgénicas presentan niveles de transcrito mas altos de los genes *RAB18* y *LT178*, además de tener una mayor tolerancia a estrés por frío (Tamminen *et al.*, 2001) y una mayor sensibilidad a ABA.

Como se mencionó anteriormente, Hobo y colaboradores (1999) demostraron que la proteína OsVP1 (considerado un ortólogo de VP1) de arroz interacciona de manera específica con un TRAB1 (b-ZIP) y juntos transactivan el promotor de la LEA *OsEm*.

I.4.3 Homeodominio-cierre de leucina (HD-ZIP). Los genes tipo Homeodominio-cierre de leucina (HD-ZIP) codifican proteínas que hasta la fecha únicamente se han identificado en plantas. En general, este tipo de proteínas participan regulando procesos del desarrollo y respuestas frente al medioambiente. La actividad de las proteínas HD-ZIP se caracteriza por la presencia de un dominio de unión a DNA tipo homeobox adyacente a un motive tipo cierre de leucina. El dominio HD tiene una alta especificidad de unión a DNA, mientras que el cierre de leucina tiene la capacidad de mediar interacciones con otras proteínas. Se calcula que en Arabidopsis existen mas de 40 miembros de esta familia (Johannesson et al., 2003).

En el tejido vegetativo de Arabidopsis sometido tanto a estrés hídrico ó ABA, se observa la inducción de la expresión de una proteína tipo HD-ZIP, ATHB-7 (Söderman *et al.*, 1996). A nivel transcripcional, *ATHB7* se encuentra en niveles básales en todos los órganos de la planta, pero su transcrito aumenta rápidamente en respuesta a ABA o deshidratación. En mutantes *aba* y *abi1*, la expresión de este gen disminuye drásticamente. Hoy en día, no se conocen aún los genes blancos de *ATHB*-7.

Otro miembro de esta familia regulado por deshidratación y ABA es ATHB12. Al comparar la cinética de expresión de ATHB12 contra la de ATHB7, Lee y Chun (1998) encontraron algunas

diferencias, lo cual sugiere que estos dos genes podrían estar siendo regulados de diferente manera en respuesta a ABA. A la fecha, no han sido reportados fenotipos de mutantes o líneas sobre-expresoras de *ATHB12*, lo cual limita el conocimiento de la importancia de este gen dentro de la vía.

Recientemente se identificó a ATHB5 como otro miembro de esta familia HD-ZIP que se encuentra participando en la respuesta a ABA en plántulas en desarrollo de Arabidopsis (Johannesson et al., 2003). La expresión de ATHB5 es dependiente del estado de desarrollo, ya que aunque no se expresa en semillas secas, su expresión se induce desde las 12 hrs de inmersión en agua, y se mantiene en su punto mas alto en plántulas de 1 día de germinación y va decreciendo paulatinamente al paso de los días hasta que al día 16 de germinación el nivel de transcrito de ATHB5 es apenas 0.02% al compararse con el día 1. En estados de desarrollo temprano (día 1), la expresión del gen reportero GUS regulado por el promotor ATHB5 se restringe al hipócotilo, mientras que en estados de desarrollo posteriores (día 8) también se observa expresión de GUS en cotiledones y hojas en desarrollo. En experimentos tipo Northern, la expresión de ATHB5 se ve disminuida cuando plantas de dos días son expuestas a ABA. En experimentos con GUS, el tratamiento con GUS provoca una redistribución de la expresión, ya que disminuye considerablemente la expresión en la parte apical del hipócotilo, mientras que prácticamente no se observa variación en la zona de transición. Una mutante athb5 no presenta fenotipos, mientras que la sobre-expresión de ATHB5 provoca una mayor sensibilidad a ABA medida como porcentaje de germinación en distintas concentraciones de ABA. En comparación con plantas silvestres, las líneas sobre-expresoras de ATHB5 tratadas con ABA presentan un incremento de tres veces en la expresión del gen RAB18 (Johannesson et al., 2003).

En *C. plantagineum* también se identificaron dos genes tipo homeobox-cierre de leucina (*CPHB-1* y *CPHB-2*), cuya expresión es inducida por sequía, aunque sólo *CPHB-2* responde a ABA. Estudios *in vitro* revelaron que *CPHB-1* se une a la secuencia pseudopalindrómica CAAT(C/G) ATTG. Aunque no se conoce el promotor (es) sobre el cual estas proteínas ejercen su función, la expresión diferencial de estos genes sugiere que participan en diferentes ramificaciones de la vía de transducción durante la respuesta a sequía (Frank *et al*, 1998).

I.4.4 FTs tipo ERF/AP2. En Arabidopsis, esta numerosa familia de FTs esta compuesta por 144 miembros (Riechman *et al.*, 1998; Sakuma *et al.*, 2002). Estas proteínas presentan un dominio de unión a DNA que había sido reportado anteriormente para la proteína APETALA2 de Arabidopsis, involucrada en el desarrollo floral, y es por esto que este tipo de dominio fue llamado originalmente

AP2. A partir del trabajo de Riechman y colaboradores (1998) el nombre cambio por dominio ERF/AP2 en honor a los miembros mejor conocidos de este tipo de factores, que son APETALA2 y ERF1 (involucrado en la respuesta a etileno). Este dominio contiene un motivo de 68 aminoácidos repetido 1 o 2 veces (dominio ERF/AP2) (Jofuku *et al.*, 1994). Dentro de cada dominio AP2 existen 2 bloques de secuencias conservadas. El primero bloque (elemento YGR) consiste de 19-22 aminoácidos, es altamente básico y contiene los aminoácidos conservados YGR. El segundo bloque conservado se conoce como elemento YADR, es de 42-43 aminoácidos y contiene una región central de 18 aa altamente conservados; se ha predicho que esta región central del elemento YADR forma una α -hélice amfipática en los dominios AP2 (Okamuro *et al.*, 1997).

Las proteínas de Arabidopsis CBF1, CBF2 y CBF3 ("C-repeat binding factor"; Stockinger et al., 1997: Gilmour et al., 1998) y sus correspondientes homólogos (DREB1B, DREB1C y DREB1A; "dehydration-responsive element binding factor"; Liu et al., 1998) de la familia AP2/EREF, se unen al elemento cis de respuesta a frío y sequía conocido como DRE ("dehydration responsive element") el cual también se conoce como C-repeat (CRT) (Yamaguchi-Shinozaki y Shinozaki, 1994; Baker et al., 1994). Este elemento DRE/CRT contiene la secuencia central CCGAC, el cual por si solo es capaz de manejar la respuesta a frío en varios genes y se encuentra presente en los promotores de muchos genes regulados por frío (Yamaguchi-Shinozaki y Shinozaki, 1994; Baker et al., 1994; Tomashow, 1999). A pesar de ser inducidos por frío (y algunos por sequía), ninguno de los CBF/DREB contienen la secuencia CCGAC en sus promotores. La inducción por frío de los CBF/DREB es transitoria y muy rápida, y esta inducción antecede a la expresión de los genes regulados por frío que si portan el elemento DRE/CTR (Gilmour et al., 1998; Liu et al., 1998; Medina et al., 1999). Por otro lado, la expresión ectópica de CBF1/DREB1B y de CBF3/DREB1A provoca la inducción transcripcional de genes de respuesta a frío, aún en condiciones de temperatura cálida, además de presentar un incremento de su tolerancia a temperaturas congelantes (Liu et al., 1998; Jaglo-Ottose et al., 1998; Kasuga et al., 1999; Gilmour et al., 2000). Hasta la fecha no se ha reportado la sobre-expresión de la proteína CBF2/DREB1C, sin embargo, muy recientemente, se reportó el aislamiento y caracterización de una mutante en este gen de Arabidopsis (Novillo et al., 2004). La mutante en CBF2/DREB1C presenta un incremento en su tolerancia a estrés por frío, sequía y salinidad, lo cual sugiere que su papel es el de regular negativamente a la vía. Además de estos fenotipos, la mutante muestra un incremento en los niveles de transcripción tanto de CBF1/DREB1C como de CBF3/DREB1A, así como también incrementa la expresión de varios genes de respuesta a frío que normalmente son regulados por estos dos FTs (Novillo et al., 2004).

Otro importante miembro de este tipo de FTs es la proteína codificada por ABI4. Utilizando estrategias de clonación posicional, Finkelstein y colaboradores (1998) lograron la clonación del gen ABI4 y encontraron que codifica para un FT del tipo ERF/AP2. Debido a que los fenotipos de la mutante abi4 se observaban únicamente a nivel de semilla, fue novedoso confirmar que su expresión no estaba limitada a semilla, ya que aunque en menor medida, también se observa expresión de este gen en tejidos vegetativos sometidos a estrés o ABA (Finkelstein et al., 1998; Söderman et al., 2000). La expresión ectópica de ABI4 en el fondo genético de la mutante abi4, provoca un fenotipo de sensibilidad a ABA semejante a la silvestre (Söderman et al., 2000). Además de estar involucrado en la señalización de ABA y estrés, ABI4 también se encuentra participando de manera importante en la respuesta a azucares, específicamente glucosa (Glc), ya que la mutante abi4 muestra un claro fenotipo de insensibilidad a altas concentraciones de Glc (Arenas-Huertero et al., 2000). Un análisis detallado de la expresión de ABI4 en fondos silvestres y mutantes, indicó que además de expresarse en respuesta a estrés y ABA, el transcrito de ABI4 también se acumula mediante una respuesta específica a Glc (Arroyo et al., 2003). Por otro lado, la expresión ectópica del homologo de ABI4 de maíz (ZmABI4) en el fondo de la mutante abi4 de Arabidopsis, es suficiente para rescatar los fenotipos de insensibilidad a ABA y de insensibilidad a Glc (Niu et al., 2002).

1.4.5 FTs tipo bHLH (antes MYC). Las proteínas de este tipo poseen un dominio básico de unión a DNA tipo "helix-loop-helix" (bHLH). El dominio bHLH el cual esta compuesto de dos subdominios: la región básica y la región HLH. El subdominio HLH es la región responsable para la dimerización de la proteína. En dos reportes recientes se han analizado a esta familia de FTs utilizando herramientas informáticas para hacer una clasificación detallada de ellas (Heim *et al.*, 2003; Toledo-Ortiz *et al.*, 2003). Sin embargo, existen algunas discrepancias y contradicciones al comparar los resultados obtenidos por ambos grupos. Algunos meses después, ambos equipos de investigación y algunas autoridades en el campo, se unieron para finalmente establecer una nueva clasificación y nomenclatura para este tipo de FTs (Bailey *et al.*, 2003). Este tipo de proteínas conforma una de las familias mas abundantes de FTs en Arabidopsis, ya que se ha calculado que esta compuesta por al menos 162 miembros (Bailey *et al.*, 2003). En *A. thaliana* se reportó la presencia de un gen tipo bHLH/MYC (*rd22BP1*) cuya expresión es inducida por sequía, salinidad y ABA. La proteína rd22BP1

se une *in vitro* a un elemento en *cis* tipo MYC presente en el promotor del gen *rd22* y además, puede transactivar este promotor en experimentos realizados en protoplastos aislados a partir de hojas de *A. thaliana* (Abe *et al*, 1997). Se ha propuesto una interacción entre rd22BP1 y una proteína tipo MYB llamada AtMYB2 (Abe *et al.*, 1997; Abe *et al.*, 2003).

Recientemente, en Arabidopsis fue reportado otro miembro de este tipo de FTs involucrado en la respuesta a estrés por frío. Utilizando clonación posicional, Chinnusamy y colaboradores (2003) identificaron el gen *ICE1*, cuyo producto es un regulador transcripcional (bHLH) de los FTs de respuesta a frío conocidos como CBFs (tipo ERF/AP2). El aislamiento de la mutante se realizó buscando plantas que no pudieran inducir la transcripción del promotor CBF3 fusionado a luciferasa. La mutante *ice1* presenta varios fenotipos: bloquea la expresión de *CBF3*, la expresión de muchos genes debajo de los *CBFs* también se ve disminuida, y presenta una reducción en su tolerancia a frío y a temperaturas de congelación. Por otro lado, en ensayos de retardamiento en gel, la proteína ICE1 tiene la capacidad de unirse de forma específica a secuencias tipo MYC (consenso CATTTG) presentes en el promotor *CBF3*. La expresión de *ICE1* es constitutiva en raíz, tallo, hoja y flor, aunque el nivel de transcrito de *ICE1* aumenta ligeramente en respuesta a ABA, frío y NaCl pero no ante deshidratación. Para finalizar, la expresión ectópica de *ICE1* en plantas silvestres provoca un aumento en la expresión del regulón *CBF*, y aumenta significativamente la tolerancia a temperaturas de congelación (Chinnusamy *et al.*, 2003).

I.4.6 FTs tipo MYB. La súper familia de genes MYB ("avian myeloblastosis virus") esta compuesta por genes relacionados con orígenes tan diversos como lo son animales, hongos, y plantas (Jiang *et al.*, 2004). Debido a que fué el primer MYB identificado, el arquetipo de este tipo de genes es el oncogene *v-myb* del virus de la mieloblastosis avícola (Klempnauer *et al.*, 1982). Posterior a este descubrimiento, se han ido identificando toda una multitud de genes MYB en los tres reinos antes mencionados, sin embargo no existe este tipo de genes en procariontes. Los genes MYB codifican proteínas que poseen dominios de unión a DNA en el extremo amino terminal, que pueden estar compuestos de uno, dos o tres motivos semiconservados arreglados es tandem, y cada motivo esta compuesto de 50-52 aminoácidos (Martin y Paz-Ares., 1997; Strake *et al.*, 2001). Cada uno de los motivos tiene la capacidad de formar 3 α -hélices; se ha propuesto que la tercera α -hélice juega un papel importante en el reconocimiento y unión a una secuencia especifica de DNA (Rabinowicz *et al.*, 1999). Además de ser semi-conservados en secuencia, cada dominio MYB se caracteriza por poseer tres residuos de triptofano espaciados de manera regular cada 19 aminoácidos, aproximadamente. Estos

residuos de triptofano forman un "cluster" de triptofanos dentro de la estructura tridimensional que ha sido determinada en varias proteínas MYB (Stracke *et al.*, 2001). Dependiendo de su posición, a los motivos en tandem antes mencionados se les denominan R1, R2 y R3. Curiosamente, en Arabidopsis se reportó la presencia de un gen MYB que posee cuatro repeticiones (Strake *et al.*, 2001). Por otro lado, el dominio de transactivación de los genes MYB no se conserva, pero siempre presenta un carácter ácido y puede estar sujeto a modificaciones postraduccionales como fosforilación (Thompson y Ramsay, 1995). Dependiendo del número de repeticiones adyacentes del dominio MYB (uno, dos o tres), a las proteínas tipo MYB se les puede clasificar en tres subfamilias: las que tienen solo un dominio MYB se conocen como factores MYB1R, las de dos dominios son los factores tipo R2R3, y finalmente las que poseen tres repeticiones del dominio MYB se conocen como factores MYB3R (Jin y Martin, 1999; Rosinski y Atchley, 1998; Strake *et al.*, 2001).

Los genes MYB de plantas son muy diversos, tanto estructural como funcionalmente (Jiang *et al.*, 2004). La función de la mayoría de los MYB vegetales aún no se conoce, aunque existen ejemplos de genes MYB bien caracterizados que indican al menos tres roles perfectamente definidos para los genes MYB de plantas: controlan el metabolismo secundario, particularmente la biosíntesis de flavonoides (Grotewold *et al.*, 1994); regulan la morfogénesis celular (Oppenheimer *et al.*, 1991); y también regulan vías de transducción de señales, como es el caso de la respuesta a estrés abiótico (Urao *et al.*, 1993). Además, es probable que algunas proteínas MYB de plantas pudieran tener papeles estructurales, como es el caso de RTBP1, una proteína MYB que se ha sido implicada en la función del telómero (Yu *et al.*, 2000).

El genoma de Arabidopsis contiene 125 genes tipo MYB R2R3 (Reichmann y Ratclifee, 2000; Strake *et al.*, 2001), mientras que en maíz y otras monocotiledóneas se calcula que podrían existir mas de 200 (Dias *et al.*, 2003). Estos datos contrastan con el pequeño número de genes MYB presentes en animales y en hongos, donde existen alrededor de una docena de estos genes (Lipsick, 1996).

Muy poco se conoce sobre el papel de los genes MYB tipo R2R3 en la regulación de las respuestas a estrés osmótico. En un esfuerzo por conocer la regulación de los genes MYB de Arabidopsis, Kranz y colaboradores (1998) utilizaron "Northerns reversos" sobre un macroarreglo de genes MYBs que contenía 91 cDNAs que representan casi el 73% de los 125 miembros de la familia R2R3 de Arabidopsis (Reichmann y Ratclifee, 2000; Strake *et al.*, 2001). Entre las mas de 20 condiciones de crecimiento analizadas, Kranz y colaboradores (1998) utilizaron plantas tratadas con ABA, ó bien plantas sometidas a deshidratación. Muy pocos genes MYB fueron inducidos con estos tratamientos. Sin

36

embargo, los que mejor responden a ABA fueron: *AtMYB1*, *AtMYB2*, *AtMYB3*, *AtMYB7*, *AtMYB13*, *AtMYB38*, *AtMYB44*, *AtMYB73*, y *AtMYB74*. Por otro lado, en respuesta a sequía se induce la transcripción de los genes *AtMYB1*, *AtMYB2*, *AtMYB3*, *AtMYB4*, *AtMYB6*, *AtMYB7*, *AtMYB13*, *AtMYB29*, *AtMYB32*, *AtMYB34*, *AtMYB44*, *AtMYB59*, *AtMYB74*, *AtMYB75*, *AtMYB77*, *AtMYB90*, *AtMYB91*, *AtMYB94*, y *AtMYB102* (Kranz *et al.*, 1998). A raíz de estos datos, es evidente que existe un buen número de genes MYB regulados por estrés hídrico y ABA, lo cual indica que este tipo de FTs pudiera estar participando de manera importante en la regulación del estrés abiótico.

En A. thaliana, el gen AtMYB2 es el FT tipo MYB R2R3 mejor conocido de los que participan regulando estrés abiótico, el cual responde a ABA y a estrés osmótico. La proteína AtMYB2 se une a elementos en cis tipo MYB (MYBS) (Urao et al., 1993). Mediante ensayos de co-transfección en protoplastos de hoja de Arabidopsis, se encontró que AtMYB2 es capaz de transactivar un promotor quimérico que porta cinco repeticiones de MYBs en tandem (Urao et al., 1996). Los datos indican una interacción funcional entre las proteínas AtMYB2 y rd22BP1 (tipo MYC) durante la transactivación del promotor del gen rd22 (promotor de respuesta a ABA y a sequía) de Arabidopsis (Abe et al., 1997), tal y como ocurre en la transactivación del promotor del gen bzl (involucrado en la biosíntesis de antocianinas), donde interaccionan las proteínas B1 (MYC) y C1 (MYB) (Goff et al., 1992). Recientemente, se reportó que la sobre-expresión combinada de ATMYB2 y rd22BP1 (renombrado como AtMYC2) en Arabidopsis, provoca un aumento en la sensibilidad a ABA, así como también un aumento en la expresión de varios genes regulados por ABA (Abe et al., 2003). Estos datos indican que tanto AtMYB2 como AtMYC2 participan como activadores transcripcionales durante la vía de señalización en respuesta a ABA. Además de inducirse por ABA, estrés osmótico y sequía, el transcrito de AtMYB2 también se acumula en respuesta a frío e hipoxia, aunque la respuesta mas fuerte es ante deshidratación (Hoeren et al., 1998). Además, AtMYB2 se une a dos sitios cis tipo MYB presentes en el promotor del gen ADH1 (alcohol deshidrogenasa), un gen cuyo transcrito también se acumula en respuesta a estrés por bajo oxígeno, sequía y ABA. Utilizando la sobre-expresión de AtMYB2 y el promotor de ADH1 de Arabidopsis fusionado a GUS en ensayos de transactivación, se observó que AtMYB2 es capaz de transactivar el promotor de ADH1, tanto en protoplastos de Arabidopsis y tabaco, así como también en experimentos de bombardeo de partículas sobre hojas de chícharo (Hoeren et al., 1988), lo cual indica que AtMYB2 juega un papel en la regulación de ADH1 ante el estrés abiótico.

Figura 6. Principales Factores Transcripcionales y elementos *cis* que participan en la expresión de genes regulados por ABA y/o estrés abiótico. El complejo transcripcional esta compuesto por la asociación de la RNA polimerasa II (RNA Pol II) con reguladores transcripcionales generales, entre los que se encuentra la proteína de unión a la caja TATA. Esta maquinaria de transcripción se encuentra controlada mediante la unión de los FTs regulatorios a elementos *cis* específicos presentes en los promotores regulados por ABA. El elemento *cis* conocido como ABRE es contactado por dímeros de TFs tipo b-ZIP, tales como ABI5 de Arabidopsis, el cual se asocia con los reguladores transcripcionales ABI3 (VP1 de maíz) y la proteína 14-3-3. Por otro lado, el elemento acoplador CE1 es el blanco de TFs tipo ERF/AP2, tales como ABI4, el cual ayuda a la transcripción inducida por ABA. Las proteínas ATHB5 y ATHB6 (tipo HD-ZIP), se unen a secuencias pseudopalindromicas ricas en AT. La RNA Pol II es regulada por la fosforilación de su dominio carboxilo terminal (CTD). Es probable que la desfosforilación de CTD por una proteína fosfatasa CTD-especifica (AtCLP3) regule negativamente la expresión de los genes inducidos por ABA (modificado de Himmelbach *et al.*, 2003).

II. ANTECEDENTES DEL PROYECTO

En el laboratorio del Dr. Gabriel Iturriaga se reportó el aislamiento y secuenciación de dos clonas genómicas completas (CpMYB10 y CpMYB5), y una clona de cDNA (CpMYB7) de C. plantagineum que codifican para factores de transcripción tipo MYB (Iturriaga et al., 1996). Los tres genes poseen dos repeticiones del dominio de unión a DNA tipo MYB, por lo cual se les considera dentro de la subfamilia R2R3. Usando una sonda común para estos tres genes, en experimentos tipo "Northern" se encontró que la expresión de alguno (s) de estos genes es inducida por ABA en células de callos de C. plantagineum y en raíces sometidas a sequía, pero no se detectó su expresión en hojas ni en semillas de esta planta. En Arabidopsis, el gen más cercano a estos tres MYBs de Craterostigma es el gen AtMYB2, el cual es un FT tipo MYB cuya expresión es inducida por seguía, ABA, y estrés salino. Los dominios de unión a DNA de CpMYB10 y ATMYB2 presentan un 92% de similitud, pero la región carboxilo (230 aa) de CpMYB10 es completamente diferente a la región correspondiente de AtMYB2, a excepción de una pequeña región de 31 aa en donde ambas proteínas muestran una similitud de 87% (Fig. 7). Los resultados reportados por Iturriaga y colaboradores (1996) sugieren que los genes MYB CpMYB10, CpMYB7 y CpMYB5 podrían participar en la transducción de la señal del estrés hídrico en C. plantagineum. Sin embargo, las secuencias codificantes de los tres genes MYB presentan altos niveles de identidad entre ellos (96-98%), lo cual aunado a sus bajos niveles de expresión hace muy difícil el análisis especifico de cada uno de ellos en experimentos tipo "Northern" (Fig. 8).

Por otro lado, es probable que Craterostigma y Arabidopsis pudieran tener diferencias en la regulación de la expresión de genes en respuesta a estrés hídrico. A raíz de los proyectos genómicos que existen para distintas plantas, sobre todo en los últimos años se han ido identificando genes ortólogos para algunos de los FTs que participan en la respuesta de Arabidopsis ante el estrés. Sin embargo, hay que recordar que Craterostigma (planta de resurrección) es una planta que parece estar genéticamente mejor preparada para contender con el estrés hídrico. Arabidopsis, por el contrario, es una planta muy sensible a pequeños cambios en el ambiente. Por lo tanto, es probable que las diferencias que existen entre Craterostigma y Arabidopsis en sus tolerancias al estrés medioambiental, pudieran deberse a distintas maneras de regular genéticamente sus respuestas, más que a la presencia o ausencia de genes importantes para la respuesta ante el estés en sus genomas. Los FTs tipo MYB de Craterostigma podrían estar regulando de una manera importante las respuestas de esta planta ante el estrés por sequía. El hecho de que las regiones carboxilo terminal de CpMYB10, CpMYB7 y CpMYB5 sean diferentes a la

región correspondiente de AtMYB2, sugiere que estas proteínas podrían interaccionar con distintos FTs, lo cual implicaría que participan en distintas ramificaciones de la vía de transducción en respuesta al estrés por deshidratación. Adicionalmente, para poder entender estas ramificaciones de la vía, sería interesante lleva a cabo un análisis más detallado de los patrones de expresión de *CpMYB10*, *CpMYB7* y *CpMYB5* ante el estrés abiótico.

Atmyb2	MEDYERINSNSP THEEDSDURK GPWTEEEDNI LUMAFVSIHGD	42
Cpm5	MNOOD VKVS KNNKOVNNCE DODOSSOLRR GPWTVDEDFT LIDNYIAHHGE	49
Cpm10	MNOOD-VKVS KNNKOVNNCE DODDSSDLRR GPWTVDEDFT LUNYIAHHGE	49
Cpm7	NNOODVVKVS KN-KOINS-E DODDSSDLRR GPWTVDEDFT UINVIAHHGE	48
Atmyb2	ARWNHILARS S GLKRTGKSCR I RWLNYLRPD VRRGNITLEE OFMILKLHSL	92
ComS	ORWINSLAREA GEKREGKSCR LRWENYLRPD VRRGNITLEE DEUTLETHSR	99
(pm10	GRWINSLARFA GLKRTGKSCR LRWINYLRPD VRRGNTTLEF CULTURI HSR	99
Cpm7	GRWNSLARFA GLKRTGKSCR LRWLNYLRPD VRRGNITLEE GLUILELHSR	98

Atmyb2	WGNRWSKIAO MEPGRIDNEI KNYNRTRVOK DAKHEREDVN SNEFKETMRN	142
Cpm5	WEWRWSKIAO HLPERTONEI KNYWRTRVOK HAKOLKEDVN SKOFKDIMRY	149
Cpm10	MGNRWSKIAO HLPGRTDNEI KNYWRTRVOK HAKDLKEDVN SKOFKDIMRY	149
Cpm7	AGNRWSKIAO HLPGRTONEI KNYWRTRVOK HAKDI KODVN SKOFKDIMRY	148
	••••••••••••••••••••••••••••••••••••••	
Atmyb2	WWMPRLVERI NAOSLPTTCE OVESMITDPS OPVNEPSPVE PGFVOFSONH	192
ComS	INMPRIVERT DASATTODGA PPAVVSSP SSAMNTACYT TAMA- AGDH	195
Com10	INMERIVERT DASATTODGA PP- AVASSP SSAMNTACYS AAMAAGDH	195
Cpm2	LWMPRLVERI DRAATTODGA PPLASSASSP SSAMNTACYS TAMAAGDH	196

Atmy62	HODENP	227
Cpr5	REDEMLMPDY VATITITION SUTADENSST VASSESEDSE SSELTAEANY	245
(pm10)	RECEMENDY YATTTTTHNN SATADENSST VASSESEDSE SSELTAFANY	245
Cpm7	RROFMLMPDY YAMTTHSN LATADENSST VASSESFUSL SSELT-EANY	243
Atmyb2	DPS GOTGEGEEN	253
ComS	ANYHRYINGA DHOOIDSSTT -SYCNON CAVGINGNS DOLGHEEADD	290
Cpm10	ANYHRYINGA DHOOTDSSTT - SYDNDN CAVENINGNS DOL GHEFADD	290
Com7	ANYHOVINGA DHOOIDSSTE ISYONDNDEA INTVISINGNS DOLGNGSVIDD	293
SF 0.1		
Atmyb2	FSERVET	273
(pm5	RESNEGALARY TODVUDNEGS SOCION-IWN VODVIELOOF SSCE	333
Com18	RESNERMAN TODVIDNGS SDODNELWN VDDVNELDOE SSCE	333
Com7	BRENEAUUU DD. UDNGGE SOKONNI IWN VODVWEI ODE ESTE	335
S. Burn	KASACAMAN DE-FORMAS SUMMELEN ADVALCOMESSO	223

Fig. 7. Comparación de las secuencias de aminoácidos de las proteínas CpMYB10, CpMYB5, CpMYB7, y AtMYB2. Las regiones correspondientes a las repeticiones R2R3 tipo MYB se encuentran señaladas con asteriscos. Y delimitadas por puntas de flecha. Los puntos negros indican los 31 aminoácidos comunes entre AtMYB2 y las proteínas CpMYB que se encuentran justo al extremo carboxilo del dominio de unión a DNA (tomado de Iturriaga *et al.*, 1996).

Fig. 8. Patrón de expresión de CpMYB7 y CpMYB10 en *C. plantagineum*. Experimentos tipo Northern de diferentes tejidos. A y B: hojas (1-4), semillas maduras (5), y raíces (6 y 7) de plantas hidratadas (1, 6), incubadas con ABA 100µM por 4 días (4), deshidratadas por 2 hrs (2) y deshidratadas por 16 hrs (3, 7). C, D y E: hojas (1-3) y callos (4-6) totalmente hidratados (1, 4), incubados con ABA 100µM por 4 días (2, 5), y deshidratados por 2 días (3, 6) (tomado de Iturriaga *et al.*, 1996).

III. OBJETIVOS DEL PROYECTO

Objetivo General:

Estudiar el papel de los genes CpMYB10, CpMYB5 y CpMYB7 en la regulación de las respuestas a estrés por sequía.

Objetivos específicos:

1) Determinar las cinéticas de expresión de los genes *CpMYB10*, *CpMYB5* y *CpMYB7* en hojas y raíces de Craterostigma en respuesta a estrés

2) Determinar los tipos celulares de hojas y raíces de Craterostigma donde se lleva a cabo la expresión de *CpMYB10* y *CpMYB5*.

3) Estudiar las regiones promotoras de CpMYB10 y CpMYB5 en el fondo genético de Arabidopsis.

4) Confirmar la función de CpMYB10 como un factor transcripcional.

5) Analizar el efecto de la expresión ectópica de CpMYB10 en plantas transgénicas de Arabidopsis.

IV. METODOLOGIA ADICIONAL

Extracción de proteínas totales de Arabidopsis

Se utilizaron plántulas de Arabidopsis de 2 semanas de edad crecidas in vitro. El tratamiento con ABA (100 µM) se llevó a cabo durante una hora bajo las condiciones descritas previamente (Villalobos et al., 2004). Por cada condición, alrededor de 20 plántulas fueron congeladas en nitrógeno líquido y pulverizadas en un mortero. Para la extracción de proteínas, por cada muestra se procesaron 10 mg que fueron depositados en tubos eppendorf, mientras que el resto se almacenó a -70°C. Se probaron varios métodos de extracción, pero el que se describe fue el que tuvo mejores rendimientos y limpieza de las muestras. Para la lisis, a cada tubo se le añadió 1 ml de una solución fría de TCA al 10% (preparada en acetona) y 20 mM DTT. Las muestras fueron agitadas vigorosamente (5 min) en vortex, y para la precipitación de las proteínas, se procedió a centrifugar los tubos durante 15 min a 15,000 rpm bajo condiciones de temperatura controlada (4ºC). Inmediatamente después, los tubos fueron decantados y la pastilla de proteínas se resuspendió a homogeneidad en una solución fría de acetona con 20 mM DTT. Para facilitar el segundo paso de precipitación, los tubos fueron mantenidos a -20°C durante 1 hr, y posteriormente sometidos a una centrifugación bajo las mismas condiciones anteriormente descritas. Una vez finalizada la centrifugación se procedió a remover el sobrenadante, y las pastillas de proteínas fueron moderadamente deshidratadas al aire. Para resuspender las pastillas, se usó 1 ml de buffer de lisis adicionando 1% de buffer IPG3-10NL (Amersham Biosciences) y con agitación moderada en vortex. Con el fin de desechar el material insoluble de las muestras, los tubos fueron centrifugados de la misma manera ya descrita, y subsecuentemente los sobrenadantes fueron colectados y alicuotados (c/u de 50 µl) en tubos eppendorf. Las alícuotas fueron almacenadas a -20°C, y una de ellas fue utilizada para la determinación de la concentración de las proteínas utilizando las recomendaciones del fabricante del kit "RC RD Proteín Assay" (BIORAD).

Separación de las proteínas por Punto Isoeléctrico.

Para el isoelectroenfoque de las proteínas (1DE, primera dimensión de separación), se utilizaron tirillas "Inmobiline DryStrip" (Amersham Biosciences) con rangos de 3-10 ó 4-7 de PI en el formato de 18 cm. Se utilizaron 100 µg del extracto proteico diluido a 200 µl de volumen final con buffer de rehidratación complementado con 0.5% de buffer IPG (dependiendo del rango de PI deseado se utilizaron los búferes IPG3-10L ó IPG4-7). Esta solución diluida de proteínas fue utilizada para rehidratar las tirillas de inmobilinas dentro de "sarcófagos" de porcelana con electrodos en los extremos, y para el isoelectroenfoque se utilizó el sistema IPGPHOR de Amersham bajo las siguientes condiciones:

- S1 30 V por 5 h
- S2 60 V por 5 h
- S3 120 V por 1 h
- S4 250 V por 1 h
- S5 500 V por 1 h
- S6 1,000 V por 30 min
- S7 8,000 V a 32,000 Vh

Separación de las proteínas por Peso Molecular (2DE)

Al finalizar la 1D, se procedió a lavar 2 veces cada tirilla dentro de pipetas desechables de 20 ml recortadas manualmente en ambos extremos, y sellándolos con parafilm cada vez que fue necesario. Antes de proceder con los lavados, cada tirilla fue recortada en su extremo ácido para facilitar su posterior identificación. El primer lavado se efectuó durante 15 min a RT con agitación muy lenta, utilizando 5 ml de buffer de rehidratación complementado con DTT al 1% (el DTT se adicionó por lo menos 15 minutos antes de proceder con el lavado y se resuspendió con agitación moderada). El segundo paso para equilibrar las tirillas fue conducido de la misma manera que el anterior, solo que aquí se utilizaron 5 ml de búfer de rehidratación adicionando minutos antes 0.4% de iodo acetamida. Finalmente, las tirillas fueron enjuagadas 2 veces con agua milliQ (10 segundos c/u) antes de ser colocadas dentro de un gel de acrilamida. En caso de ser requerido, las tirillas fueron depositadas sobre papel Whatmann 3MM humedecido con agua milliQ (con la cara de las inmobilinas hacia arriba) y cubiertas cuidadosamente con megapack para ser almacenadas a 4°C (nunca más de 24 hrs) hasta su posterior procesamiento.

Dependiendo de la zona de PM a analizar, se utilizaron geles de acrilamida al 10% ó al 12.5% preparados bajo condiciones estándar, dejando un espacio libre de aproximadamente 1 cm en la parte superior para permitir la colocación de la tirilla. El tamaño de los geles utilizados fue de 18X18 cm. Los geles fueron corridos en búfer SDS de electroforesis al 1X. Las condiciones generales de corrida fueron 90V y 20 mA durante toda la noche (+/- 16 hrs).

La visualización de las proteínas se llevo a cabo mediante la tinción con nitrato de plata, utilizando el kit "Silver Staining Kit PlusOne" siguiendo las instrucciones del fabricante (Pharmacia Biotech).

Identificación molecular de las proteínas de interés

Para la identificación de las proteínas se utilizó un espectrómetro de masas tipo MALDI-ToF ("matrix assisted lasser desorption ionization-time of flight") modelo REFLEX IV de la marca Brucker-Daltonics. Después de analizar los geles de doble dimensión, se precedió a seleccionar y recortar las proteínas de interés manualmente. Los pedazos de gel (1-2 mm de diámetro) fueron depositados en placas con formato de 96 pozos para su procesamiento. Dichos fragmentos de gel (cada uno conteniendo una proteína de interés) fueron desteñidos, reducidos, alkilados, y digeridos con tripsina (Promega), para posteriormente extraer los péptidos, siguiendo las recomendaciones de Kinter y Sherman (2000). Para favorecer su cristalización, los péptidos resultantes de cada digestión fueron mezclados con la matriz conocida como ácido *a*-ciano-4-hidroxicinámico (Aldrich), y las alícuotas de cada digestión fueron dispensadas en pequeñas cantidades (2-4 µl) sobre las placas del MALDI con formato de 384 pozos. Las placas del MALDI que contenían las muestras fueron introducidas al equipo, y cada muestra fue sometida al menos a 25 bombardeos de láser. Para la identificación de las proteínas, los espectros de masas resultantes del análisis fueron comparados con la base de datos de digestiones teóricas de proteomas del NCBI (MASCOT).

Soluciones:

Búfer de Lisis:

Urea	8.4 M
Tiourea	2.4 M
CHAPS	5 %
BPB	solo unos granitos
TCEP-HCl*	2 mM
IPG buffer pH3-10L*	1% (Amersham Biosciences)
*Añadir al momento de usar	

Búfer de Rehidratación:

Urea	8 M
Tiourea	2 M
CHAPS	2 %
BPB	solo unos granitos
TCEP-HCL*	1 mM (a partir de un stock 100 mM)
IPG búfer L*"	0.5 % (Amersham Biosciences)

* Añadir en el momento de usar

" pH dependiente de la tirilla a usar.

V. RESULTADOS

V.1. Articulo publicado de este trabajo de tesis.

Miguel Angel Villalobos, Dorothea Bartels, Gabriel Iturriaga. (2004). Stress Tolerant and Glucose Insensitive Phenotypes in Arabidopsis Overexpressing the *CpMYB10* Transcription Factor Gene. Plant Physiology. 135: 309-324.

Stress Tolerance and Glucose Insensitive Phenotypes in Arabidopsis Overexpressing the *CpMYB10* Transcription Factor Gene¹

Miguel Angel Villalobos, Dorothea Bartels, and Gabriel Iturriaga*

Instituto de Biotecnología-UNAM, Cuernavaca 62210, Mexico (M.A.V.); Institute of Physiology and Biotechnology of Plants, D–53115 Bonn, Germany (D.B.); and Centro de Investigación en Biotecnología-UAEM, Cuernavaca 62210, Mexico (G.I.)

The resurrection plant *Craterostigma plantagineum* has the ability to survive complete dehydration. In an attempt to further understand desiccation tolerance in this plant, the *CpMYB10* transcription factor gene was functionally characterized. *CpMYB10* is rapidly induced by dehydration and abscisic acid (ABA) treatments in leaves and roots, but no expression was detected in fully hydrated tissues. Electrophoretic mobility shift assay experiments showed binding of rCpMYB10 to specific *mybRE* elements within the LEA *Cp11-24* and *CpMYB10* promoters. Localization of *CpMYB10* transcript by in situ reverse transcription-PCR reactions showed expression in vascular tissues, parenchyma, and epidermis both in leaves and roots in response to ABA. Transgenic Arabidopsis plants transformed with *CpMYB10* promoter fused to *GUS* gene showed reporter expression under ABA and stress conditions in several organs. Overexpression of *CpMYB10* cDNA in Arabidopsis led to desiccation and salt tolerance of transgenics lines. Interestingly, it was found that plants overexpressing *CpMYB10* exhibited Glc-insensitive and ABA hypersensitive phenotypes. Therefore, our results indicate that *CpMYB10* in Arabidopsis is mediating stress tolerance and altering ABA and Glc signaling responses.

Diurnal and seasonal environmental fluctuations as well as extreme conditions have been a major selective pressure for plant evolution. Plants are sessile organisms that cannot move to escape from adverse environmental cues, thus complex metabolic and anatomical adaptations have been developed to cope with abiotic stresses. Availability of water is probably the most limiting factor for crop productivity and yield, compromising economical output and human food supply. Therefore, there is a strong need to understand plant adaptation mechanisms against adverse environmental conditions to improve stress tolerance.

Plant stress responses involve the expression of a plethora of genes with an adaptive role. Among the products of these genes are enzymes catalyzing the synthesis of osmoprotectants or antioxidants, lateembryogenesis abundant (LEA) proteins, chaperones and heat shock proteins, lipid desaturases, water channels, and ion transporters, representing some of the best characterized examples (Ingram and Bartels, 1996). Abscisic acid (ABA) plays a major role in transducing stress responses (Knight and Knight, 2001). Rapid stress responses are in most cases ABA-independent, and there is growing evidence that ABA-dependent and independent pathways cross-talk (Shinozaki and Yamaguchi-Shinozaki, 2000). Signal transduction components include protein kinases such as calcium-dependent protein kinases (CDPK) and mitogen-activated protein (MAP) kinases, G-proteins, phosphatase 2C, and second messengers such as Ca²⁺ and phosphoinositides. A phospholipase D raises its activity minutes after dehydration (Frank et al., 2000). Also, within 1 min after osmotic shock, inositol 1,4,5-P₃, a breakdown product of phospholipase C, dramatically increases its concentration, and rapid changes in cytosolic free Ca2+ concentrations are triggered during this process (DeWald et al., 2001). It has been claimed that nitric oxide is involved in ABA-induced response to stomatal closure and requires cGMP and cADPR (Neill et al., 2002). An Arabidopsis transmembrane His kinase functions as an osmosensor in a yeast mutant, suggesting a similar role in plants (Urao et al., 1999).

Several plant model systems have been used to study responses to water deficit, according to the severity of the stress. Upon a mild water deficit, plants reduce water loss by closing stomata, retain water by osmotic adjustment, and increase water uptake. These responses have been thoroughly studied in Arabidopsis and other mesophytes (Tabaeizadeh, 1998). A different situation occurs in the so-called resurrection plants that exhibit protoplasmic desiccation tolerance. These organisms withstand long periods with air of 0% (v/v) relative humidity, reviving a few hours after

¹ This work was supported in part by CONACYT (grant no. 27703–N [Mexico] to G.I.) and by ICGEB (grant no. CRP/MEX98–01 [Trieste] to G.I.). M.A.V. was supported by a CONACyT PhD fellowship.

^{*} Corresponding author; e-mail iturri@cib.uaem.mx; fax 52-777-3297030.

Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.103.034199.

exposure to water. The best characterized example is Craterostigma plantagineum, a South African plant living on rocks in shallow soil (Gaff, 1971). An important question is whether the biochemical and molecular mechanisms to cope with dehydration stress that are present in Arabidopsis, crops, or seeds are also in Craterostigma. Although some common molecular components have been found in all these plants, in mature seeds or Craterostigma some differences with other systems have been uncovered, such as the presence of large concentrations of sugars (Bartels and Salamini, 2001). The C8 sugar octulose is very abundant in fully hydrated leaves of Craterostigma, but as soon as desiccation proceeds its concentration drastically drops down and concomitantly Suc reaches high levels. Disaccharides such as Suc or trehalose have been shown to protect enzymes and membrane structures under the dehydrated state and are abundant in anhydrobiotic organisms (Crowe et al., 1998; Hoekstra et al., 2001).

Another potential difference between Craterostigma and Arabidopsis might be the pattern of gene regulation coordinated by transcriptional activators and their tissue-specificity. Genetic and molecular approaches have identified transcription factors that modulate gene expression in response to abiotic stress and ABA. The transcription activators DREB1A, DREB2A, and CBF1, involved in ABA-independent stress response, bind to the consensus dehydration-responsive element (DRE) TACCGACAT, which is present in promoter regions of genes induced by osmotic, saline, and cold stresses (Stockinger et al., 1997; Liu et al., 1998). Genes responsive to ABA usually contain ABA-responsive elements consisting of the (C/T)ACGTGGC consensus sequence and are transactivated by bZIP transcription factors (Choi et al., 2000). Three classes of transcription factors have been characterized in Craterostigma: a heat shock transcription factor (Bockel et al., 1998), two members of the homeodomain Leu zipper family (Frank et al., 1998), and three MYB genes (Iturriaga et al., 1996). Here we show that Arabidopsis transgenic

Figure 1. Expression of CpMYB10 is regulated by drought and ABA. A, Total RNA was isolated from dehydrated Craterostigma leaves at the indicated times and the expression of CpMYB10 was determined by coupled RT and PCR. The PCR product of Cptkt3 gene was included as a cDNA loading control. B, RNA from dehydrated roots. C, RNA from leaves treated with 100 µM ABA. D, RNA from roots treated with 100 µM ABA. Specific primers were used to amplify CpMYB10 and Cptkt3 gene transcripts. The lengths of the PCR products are 1,117 and 733 bp, respectively. The linear phase of the exponential PCR reaction was corroborated for each gene (data not shown). A representative experiment from three biologically independent experiments is shown.

lines overexpressing the heterologous MYB transcription factor gene CpMYB10 are stress tolerant, Glcinsensitive, and ABA hypersensitive. The expression pattern of CpMYB10 in Craterostigma suggests a key role in desiccation tolerance.

RESULTS

CpMYB10 Gene Is Induced by Desiccation and ABA and Is Under Repression Control in Unstressed Conditions

We have previously reported the cloning of a cDNA and two genomic *MYB* genes from Craterostigma (Iturriaga et al., 1996). The *CpMYB7* cDNA and *CpMYB5* and *CpMYB10* genomic clones share between them 96% to 98% identity and have the canonical MYB DNA-binding domain with the R2R3-type structure that is predominant in plants (Stracke et al., 2001). In Arabidopsis, the closest homolog to these *MYB* genes from Craterostigma is *AtMYB2*, which is induced by ABA, dehydration, and salt stresses (Urao et al., 1993). Although the DNA-binding domain of CpMYB10 and AtMYB2 shares 92% similarity, the 230-amino acid C terminus of CpMYB10 is different from the corresponding AtMYB2 region, except for a stretch of 31 amino acids that shows 87% similarity (Iturriaga et al., 1996).

To test whether *CpMYB10* is expressed in leaves and roots, a reverse transcription coupled to PCR (RT-PCR) analysis was used. Specific oligonucleotides for the 5'and 3' unstranslated region of *CpMYB10* gene were used in this expression analysis. To confirm specific amplification of *CpMYB10* cDNA, the amplification product was cloned and sequenced. As shown in Figure 1, A and B, *CpMYB10* is induced upon desiccation in leaves and roots, respectively. No expression could be detected in unstressed organs. Since detached leaves were used for these experiments, the absence of expression also suggests that *CpMYB10* is not induced by wounding. Both in leaves and roots the *CpMYB10* transcript is detected at significant levels 15

Plant Physiol. Vol. 135, 2004

Stress Tolerance in 35S-CpMYB10 Transgenic Arabidopsis

min after dehydration suggesting that its expression began earlier. In leaves, CpMYB10 reaches its maximum level at about 15 min, sharply declining thereafter and is absent 48 h after stress treatment began (Fig. 1A). The CpTkt3 gene that encodes a transketolase (Bernacchia et al., 1995) was used as a control for constitutive expression.

In desiccated roots, CpMYB10 has a biphasic expression pattern where a first transcript peak is observed from 15 to 30 min after stress was initiated and drastically declining after 1 h (Fig. 1B). A second burst of CpMYB10 expression was observed 16 h after desiccation treatment at similarly high levels as the first peak, and it is maintained during the 48 h of the experimental time course. To determine if CpMYB10 expression is induced by ABA, fully hydrated plants were treated with 100 μ M ABA at same time points as above (Fig. 1, C and D). In contrast to desiccation treatment, ABA switches on CpMYB10 at constant levels both in leaves and roots after 15 min of treatment and continues up through 48 h. These two sets of experiments show that CpMYB10 is induced by desiccation and ABA, although its differential expression pattern upon ABA treatment suggests that the endogenous and exogenous ABA signals are sensed differently during the desiccation treatment.

To test whether CpMYB10 expression depends on de novo protein synthesis, fully hydrated Craterostigma leaves were incubated in the presence of the protein synthesis inhibitor cycloheximide (CHX) and/or ABA at different time points. The LEA Cp11-24 gene was used as a control of ABA treatment (Velasco et al., 1998). As shown in Figure 2A, CHX treatment blocked completely Cp11-24 gene expression, suggesting its dependence on de novo protein synthesis. Surprisingly, CpMYB10 expression was not inhibited but rather induced with CHX treatment (Fig. 2A) at relatively higher levels after comparison to its induction by ABA (Fig. 2B). Control experiments showed that ABA induced expression of CpMYB10 was present 15 min after treatment, whereas Cp11-24 was not detected until 1 h after ABA exposure (Fig. 2B). This delay in Cp11-24 expression may be due to the fact that it requires de novo protein synthesis, as suggested by Figure 2A. Incubation of Craterostigma leaves in the presence of both CHX and ABA resulted in higher levels of CpMYB10 expression than in ABA alone, whereas LEA Cp11-24 transcription was restored although only after 16 h of ABA treatment (Fig. 2C). These results showed that CpMYB10 does not require prior protein synthesis for its expression, instead inhibition of translation triggers CpMYB10 transcription, suggesting that somehow it is repressed under unstressed conditions.

CpMYB10 Protein Binds to Cp11-24 and CpMYB10 Promoters

To study the DNA-binding properties of CpMYB10 protein, its cDNA was expressed in *Escherichia coli* as

Figure 2. Expression of *CpMYB10* in the presence of cycloheximide. A, Total RNA was isolated from Craterostigma leaves treated with 10 μ M cycloheximide at the indicated times and the expression of *CpMYB10* was determined by coupled RT and PCR. The Craterostigma LEA gene *Cp11-24* was included in the experiment as a control of ABA treatment, whereas *Cptkt3* was used as a cDNA loading control. B, Craterostigma leaves were treated with 100 μ M ABA. C, Craterostigma leaves were treated with 100 μ M ABA and 10 μ M cycloheximide. Specific primers were used to amplify *CpMYB10*, *Cp11-24*, and *Cptkt3* gene transcripts. The lengths of the PCR products are 1,117, 629, and 733 bp, respectively. The linear phase of the exponential PCR reaction was corroborated for each gene (data not shown). A representative experiment from three biologically independent experiments is shown.

a fusion protein to a hexapeptide of His residues. The purified recombinant protein was used to perform gel mobility shift assays with double-strand oligonucleotide probes ³²P labeled. These probes contained the MYB binding sequence found in the LEA Cp11-24 (Velasco et al., 1998) and CpMYB10 (Iturriaga et al., 1996) gene promoters of Craterostigma. The consensus DNA-binding recognition sequence of several plant MYB genes including AtMYB2 has been defined as T/GAACTG/A (Urao et al., 1993; Higo and Ugawa, 1999). Three TAACTG elements and a GAACTA sequence were found in CpMYB10 and Cp11-24 promoter regions, respectively. Each DNA motif was included in either MYB-P10 or MYB-P11-24 oligonucleotide probes. To analyze the binding affinity of recombinant MYB protein (rCpMYB10) to MYB-P10 and MYB-P11-24 probes, the optimal concentration of required protein was determined (data not shown). Figure 3A shows binding of rMYB10 protein to MYB-P10 probe. To analyze the specificity of the DNA binding activity, a mutated form of MYB-P10 was used

Villalobos et al.

Figure 3. DNA-binding assays of rCpMYB10 protein. A, Purified recombinant rCpMYB10 protein expressed in *E. coli* was used in EMSA assays. Complementary 20-nucleotide length primers corresponding to the MYB-P10 DNA-binding region were used as ³²P-labeled probe. Unlabeled mutant (MYB-P10-mut) and unmodified versions of primers were used to compete radioactive probe. The concentrations used in the competition represented by the triangles were 0, 5, 25, 125, and 625 ng. B, EMSA assays using MYB-P11-24 DNA-binding region as a ³²P-labeled probe. Unlabeled mutant (MYB-P11-24-mut) probe was used for competition.

(MYB-P10-mut) as well as MYB-P10 as probes (Fig. 3A). The MYB-P10-mut oligonucleotide contained two point mutations in the MYB binding site (TCCCTG instead of TAACTG). In the electrophoretic mobility shift assay (EMSA), the DNA binding activity rMYB10 protein was reduced by the addition of excess unlabeled MYB-P10 but not by that of unlabeled MYB-P10-mut. Thus, rMYB10 protein bound to MYB-P10 but not to MYB-P10-mut. These results indicate that rMYB10 binds sequence specifically to the MYB-P10 oligonucleotide probe and suggests that CpMYB10 protein binds to its own promoter.

To further characterize the DNA binding properties of rCpMYB10 protein, it was incubated with MYB-P11-24 probe and used to perform an EMSA, as shown in Figure 3B. Unlabeled competitor MYB-P11-24 decreased rCpMYB10 protein binding activity, whereas a mutated form of MYB-P11-24, MYB-P11-24-mut (GCCCTA instead of GAACTA), was unable to compete for protein binding. Therefore, rCpMYB10 protein also binds specifically to MYB-P11-24 probe, suggesting that the LEA 11-24 might be a possible target gene.

Expression of *CpMYB10* Is Localized in Discrete Tissues in Craterostigma

The expression pattern of *CpMYB10* was further investigated by in situ RT-PCR analysis in Craterostigma. Leaf and root tissue sections obtained from control or 100 µM ABA pretreated plants were processed for in situ RT-PCR reactions, which yields high-resolution specific mRNA amplification signals in plant tissues (Xoconostle-Cázares et al., 1999). Red chlorophyll autofluorescence was superimposed with the green signal produced by the in situ RT-PCR reaction, leading to a yellow fluorescence (Fig. 4). In untreated leaves, CpMYB10 amplification products were visible at low levels in epidermis, in some parenchyma cells, and in the vascular bundle central region (Fig. 4A). In contrast, PCR products in ABA treated leaves were detected at higher levels in epidermis, palisade, and spongy parenchyma, and vascular bundle and undetectable in trichoma (Fig. 4B). ABA treated roots showed a more discrete pattern of CpMYB10 expression, limited to vascular cylinder and some isolated cortex cells (Fig. 4D). No fluorescent PCR products were detected in untreated roots (Fig. 4C). It was not possible to perform in situ RT-PCR assays from dehydrated plants since tissue sections were difficult to handle.

CpMYB10 Promoter Is Regulated in Transgenic Arabidopsis

More detailed expression patterns of CpMYB10 under stress and ABA treatments were determined by histochemical β -glucoronidase (GUS) staining of Arabidopsis transgenic plants that harbored a CpMYB10 promoter-GUS fusion construct. Three independent T3 homozygous (9.2, 11.1, and 13.5) lines with similar performance in response to ABA and dehydration were analyzed. In unstressed transgenic plants, GUS activity was detected in apical shoot meristem at low levels (Fig. 5A) and in pollen grains (Fig. 5B). After subjecting transgenic plants to 100 μ M ABA treatment, a strong staining was observed in all vegetative tissues (Fig. 5C), although staining was stronger in the subapical region of roots and no staining was visible in root tip (Fig. 5D). Dehydration treatment led to a more localized staining, mainly in leaf vascular tissues and conspicuously strong in apical shoot meristem, emerging leaves, and roots (Fig. 5E). In contrast to ABA treatment, dehydration led to a stronger GUS activity in the root tip (Fig. 5F). These results strongly suggest that in transgenic Arabidopsis the CpMYB10 promoter is regulated by ABA and dehydration as in Craterostigma.

To have a quantitative analysis of *CpMYB10* promoter strength in Arabidopsis, GUS activity was determined by fluorimetric assays. Transgenic plants 3, 6, 15, and 21 d after germination were dehydrated, treated with 100 μ M ABA, or unstressed to measure GUS activity. No significant GUS activities were detected in untransformed Arabidopsis plants (dehydrated, ABA treated, or untreated) at the developmental stages analyzed. GUS activity in unstressed transgenic plants exhibited similarly low levels at different ages, basal expression was around 10% to 30% of that observed for ABA or dehydrated plants of

Figure 4. Tissue localization of *CpMYB10* expression in Craterostigma. A, Confocal laser scanning microscope images of transverse sections from fully hydrated Craterostigma leaves or B, treated with 100 μ M ABA. C, Tissue sections of fully hydrated Craterostigma roots or D, treated with 100 μ M ABA. The sections were processed for in situ coupled RT and PCR using specific *CpMYB10* primers. Overlaps of green and red fluorescence from the same field of view are presented. Bars = 500 μ m. A representative experiment from at least three biologically independent experiments is shown.

3 to 21 d old. This basal β -glucoronidase activity is consistent with the histochemical GUS staining described above (Fig. 5A). As shown in Figure 5G, ABA treatment induced the highest levels of GUS activity, reaching a peak in 6-d-old plants. In 15-d-old plants, ABA induced GUS activity was 25% greater than that observed in dehydration stress. The maximum level of GUS activity induced by dehydration was seen in the leaves of 21-d-old plants. Only in roots were levels caused by dehydration greater than those of ABA treatment (Fig. 5G).

Ectopic Expression of *CpMYB10* Gene Confers Stress Tolerance in Arabidopsis

To investigate the in vivo function of *CpMYB10*, its cDNA was overexpressed in Arabidopsis using the 35S promoter. Thirty independent T2 lines, named 35S-*CpMYB10*, were recovered and checked by RT-PCR for *CpMYB10* expression and 10 T3 homozygous lines were corroborated by RNA gel blot (Fig. 6). Eight T3 homozygous lines showing transgene expression were used for stress tolerance tests. Representative lines 11.5, 17.1, 9.3, 22.5, and 7.6 with decreasing levels of *CpMYB10* transcript were further analyzed. Comparison of 35S-*CpMYB10* lines with wild-type plants showed no morphological alterations or growth re-

tardation except for a bulky root system in transgenic lines that was clearly visible in 3-week- old plants (data not shown). The germination rate of wild-type and 35S-CpMYB10 lines was assayed in Murashige and Skoog (MS) (1962) media containing different concentrations of osmoticum compounds. Germination was defined as radicule emergence. The sharpest differences were observed in media containing 200 mm NaCl or 400 mM sorbitol (Fig. 7). After 2 d in 200 mM NaCl, 60% to 70% of 5 selected 35S-CpMYB10 lines had already germinated compared to 30% of wild-type plants (Fig. 7A). In media containing 400 mM sorbitol, 90% of 35S-CpMYB10 lines germinated in contrast to only 40% of wild-type seedlings (Fig. 7B). After 5 d, close to 100% and around 90% of transgenic and wildtype seedlings, respectively, germinated in both treatments. All lines germinated at the same rate in the absence of osmoticum compounds. These results showed a faster rate of germination of Arabidopsis lines overexpressing CpMYB10 gene in osmotic stress conditions. In a further experiment, transgenic seeds were germinated media and grown for 4 weeks in high osmoticum media. As shown in Figure 8A, plants from the representative 11.5 line grew normally in 250 mM NaCl, whereas wild-type plants became chlorotic and died. In 500 mM sorbitol, transgenic line 11.5 grew poorly but better than wild-type plants (Fig. 8A).

Villalobos et al.

Figure 5. Expression pattern of CpMYB10 in transgenic Arabidopsis. Three-week-old plants of a representative transgenic Arabidopsis line (9.2) carrying a 1.5-kb CpMYB10 promoter-GUS construct were processed for histochemical GUS staining (A-F). β-Glucoronidase activity is visualized by the blue color. A, Unstressed plants. B, Anthers from unstressed plants. C, Plants treated with 100 µm ABA. D, Roots from plants treated with 100 µm ABA. E, Dehydrated plants. F, Roots from dehydrated plants. G, Quantification of β -Glucoronidase activity in mature seeds, and different developmental stages of untreated or 100- μ M ABAtreated seedlings for 16 h or seedlings subjected to dehydration. Treated and untreated untransformed plants were included as negative controls. The results are means of GUS activities from three independent experiments with a repetition in each experiment. Specific GUS activities are expressed as pmol of 4-methylunbelliferone per mg of total protein per min.

To asses if the overexpression of the CpMYB10 gene conferred stress tolerance, drought and salt tolerance tests in adult plants grown in soil were performed. Plants from five selected 35S lines were grown for 4 weeks under fully watered conditions followed by 2 weeks of water deprivation. As shown in Figure 8B, most 35S-CpMYB10 lines recovered water deprivation after rewatering, whereas wild-type plants did not survive this treatment. To test for salt-stress tolerance, transgenic plants overexpressing CpMYB10 were grown with increasing concentrations of salt up to 250 mM NaCl. Figure 8C shows that transgenic plants grew well, whereas wild-type plants are wilted and chlorotic. Plants from transgenic lines under both treatments continued normal growth and set viable seeds. These results suggest that the overexpression of CpMYB10 gene in Arabidopsis could be up-regulating genes involved in stress tolerance.

Altered Response to Glc and ABA

in 35S-CpMYB10 Plants

Several reports have documented that mutations in ABA-insensitive-4 (ABI4) transcription factor gene led to a Glc-insensitive phenotype (Arenas-Huertero et al., 2000) and displayed salt and osmotic stress tolerance during germination (Quesada et al., 2000), thus suggesting a cross-talk between signaling pathways for stress tolerance, ABA, and Glc. In an effort to further characterize our transgenic plants overexpressing CpMYB10 and test their germination in response to Glc, seeds from 7.6, 9.3, 11.5, 17.1 and 22.5 CpMYB10 transgenic lines were germinated in MS media supplemented with various concentrations of Glc and allowed to grow for 10 d. In Figure 9A it can be observed that MS medium supplemented with 6.5% or 7.5% Glc, or 2% Glc without MS salts, have a

Figure 6. Analysis of *CpMYB10* expression in transgenic Arabidopsis. Northern blot from Col wild- type and several transgenic lines (line number on top of the figure) grown for 15 d on MS medium. Each lane contains 10 μ g of total RNA. The complete 1.1-kb *CpMYB10* cDNA was used as a probe. On bottom part of the figure rRNAs are shown as a loading control.

detrimental effect in development of wild-type seedlings, whereas no effect could be detected in the representative 11.5 transgenic line that showed cotyledon expansion and greening. A low concentration of Glc without MS salts was tested to discard a possible effect of nitrate on germination since it is known to antagonize Glc responses (Moore et al., 2003). Thus, germination of CpMYB10 transgenic lines on 2% Glc without MS supports the observation that it is caused by Glc and it is not an osmotic effect. This Glcinsensitive phenomenon was further characterized by comparing the germination rate on different Glc concentrations, of wild-type and five selected 35S-CpMYB10 transgenic lines, as shown in Figure 9B. The largest differences in germination rate were observed after 2 d on media containing 6.5% Glc, where more than 50% of transgenic lines initiated root emergence and elongation, whereas less than 5% of wild-type seedlings had germinated on the same conditions. On 7.5% Glc, germination rate of transgenic lines after 2 d was roughly 30%, whereas the germination rate in wild-type seedlings was near 5%. All these results indicated that overexpression of CpMYB10 gene confers Glc insensitivity in Arabidopsis.

Glc analogs have been used to discriminate the sugar signaling pathway involved in specific responses such as germination, cotyledon expansion, and greening as well as gene expression. 2-deoxy-Glc (2-DG) has been shown to trigger a potent sugar response even at very low concentrations compared to Glc. For example, 2-DG strongly represses photosynthetic gene expression as well as photosynthetic efficiency (Jang and Sheen, 1994; Van Oosten et al., 1997) in an HXK mediated manner. To get insight into the sugar signaling pathway altered in CpMYB10 overexpressing lines, we examined greening and expansion of cotyledons, known to be inhibited by a low 2-DG concentration (0.8 mM; Jang et al., 1997). As in the Glc assay, the 35S-CpMYB10 lines were 2-DG hyposensitive and appeared green and had more expanded cotyledons compared to wild-type plants (Fig. 9A). The rest of the transgenic lines expressing CpMYB10 showed similar phenotypes, although at different degrees, most likely due to variations in transgene expression. Additionally, the ABI4 gene, involved in sugar and ABA signaling (Arenas-Huertero et al., 2000), has been shown to participate in the HXK-dependent sugar signaling (Pego et al., 1999; Van Oosten et al., 1997); thus we included the *abi4* mutant in our sugar bioassays. Interestingly, this mutant also showed 2-DG hyposensitivity in this assay, confirming its participation in this sugar signaling pathway. Together, these data suggest that the *CpMYB10* over-expressing lines are affected at least in part in the hexose phosphorylation-dependent sugar signaling, and also indicate that Glc resistance of these lines can be separated from their osmotic resistance.

As mentioned above, there is strong evidence for a cross-talk of Glc and ABA signaling pathways (Arenas-Huertero et al., 2000; Huijser et al., 2000; Laby et al., 2000). Therefore, we decided to investigate the ABA sensitivity of *CpMYB10* transgenic lines. As shown in Figure 10A, an ABA dose response curve in germination was conducted, which showed that 3 μ M ABA was sufficient to inhibit 35S-*CpMYB10* lines germination efficiency to 20% or less, whereas wildtype plants retained 50% germination under the same

Figure 7. Kinetics of germination of *35S-CpMYB10* lines. A, Growth of transgenic plants on MS media added with 200 mM NaCl. B, Growth of transgenic plants on MS media added with 400 mM sorbitol. The figure represents the average of 3 replicates of 100 seeds from wild-type and 5 independent transgenic (T3 generation) homozygous lines. Error bar represents sbs. Germination was defined as complete protrusion of the radicule.

Villalobos et al.

Figure 8. Salt and drought tolerance of 35S-CpMYB10 plants. A, Wild-type and 11.5 transgenic seeds were germinated on MS media containing 250 mM NaCl or 500 mM sorbitol during 4 weeks. B, Wild- type and five independent (T3 generation) homozygous lines expressing the 35S CpMYB10 transcript were withheld from water for 14 d and then rewatered before being photographed. C, Wild-type and five independent 35S-CpMYB10 lines were stressed with increasing concentrations of NaCl (50, 100, 150, 200, and 250 mM). Three plants per line are shown. See "Materials and Methods" section for details.

conditions. The line 11.5 showed 10% of germination rate at 3 μ M ABA. Additional evidence was gathered by a germination kinetics experiment using 3 μ M ABA, where selected lines of *CpMYB10* seeds had only about 10% germination after 1 d. In contrast, 50% germination was observed in wild-type seeds, as shown in Figure 10B. These results indicated that overexpression of *CpMYB10* gene in Arabidopsis conferred ABA hypersensitivity.

CpMYB10 Regulates Stress Related Genes in Arabidopsis

So far, we have shown that overexpression of *CpMYB10* confers osmotic stress tolerance, Glc insensitivity, and ABA hypersensitive phenotypes in Arabidopsis. Since CpMYB10 is a transcription factor, it might be modulating the expression of genes involved in these processes. To test this hypothesis, gene expression analysis of possible regulated genes in 11.5 and 22.5 transgenic lines was carried out by RNA

gel blot (Fig. 11). We selected the following genes for expression analysis: AtEM6 (Vicient et al., 2000) and ERD10 (Kiyosue et al., 1994), which correspond to LEA group I and group II genes, respectively; dehydrationand ABA-responsive genes RD29A, RD29B, and RD22 (Yamaguchi-Shinozaki and Shinozaki, 1993, 1994); cold-responsive gene COR15a (Baker et al., 1994), Δ^{1} -pyrroline-5-carboxylate synthetase gene P5CS1 (Yoshiba et al., 1999), alcohol dehydrogenase gene ADH1 (de Bruxelles et al., 1996), and transcription factor genes AtMYB2 (Urao et al., 1993), AtMYC2 (Abe et al., 1997), DREB1A, and DREB2A (Liu et al., 1998) as they are involved in stress response; hexokinase gene HXK2 (Jang et al., 1997) and Suc synthase gene SUS1 (Martin et al., 1993) for their role in sugar sensing and metabolism, respectively; and ABA-insensitive transcription factor genes ABI4 (Finkelstein et al., 1998) and ABI5 (Finkelstein and Lynch, 2000) and zeaxanthine epoxidase gene ZEP1 (Arabidopsis Genome Initiative, 2000) involved in ABA signaling and

Figure 9. Glc sensitivity of *35S-CpMYB10* plants. A, Transgenic lines overexpressing *CpMYB10* gene were germinated on MS salts added with 6.5 or 7.5% Glc, or 2% Glc without MS, or 0.8 mM 2-DG, or MS medium as a control, and growth for 10 d. Representative lines 11.5 and 22.5 are shown in comparison to wild type and *abi4* mutant. B, Germination of *35S-CpMYB10* transgenic lines in MS with 6.5% or 7.5% Glc. Error bar represents sos. The figure represents the average of 3 or more replicates of 100 seeds. Germination was defined as complete protrusion of the radicule.

Villalobos et al.

Figure 10. ABA sensitivity of *35S-CpMYB10* plants. A, ABA dose response in germination on MS media suplemented with 0.1, 0.3, 1, 3, 5, or 10 μ M ABA. B, Kinetic of germination of the *CpMYB10* transgenic lines on MS containing 3 μ M ABA. The data correspond to the average of 3 different experiments each containing 50 seeds per data point. Five independent transgenic (T3 generation) homozygous lines were used in the analysis. Germination was defined as complete protrusion of the radicule.

biosynthesis. Two-week-old wild-type, 11.5, and 22.5 transgenic lines were treated for 16 h with 7.5% Glc, 100 μ M ABA, or untreated before RNA-gel blot analysis. It can be observed in Figure 11 that *RD29A*, *COR15a*, and *ADH1* genes are overexpressed in transgenic lines upon ABA treatment, whereas without treatment *RD22*, *COR15a*, and *P5CS1* are repressed in both 11.5 and 22.5 transgenics after comparison to wild-type plants. Under Glc treatment, *RD29A*, *RD22*, *P5CS1*, and *AtMYC2* transcripts were up-regulated only in 11.5 transgenic line. In the case of *AB14* no differences in gene expression could be observed after comparison with wild-type plants except for a lower

level of induction upon Glc treatment in 11.5 line. Also, the *AtMYB2* gene was partially repressed upon ABA treatment in 11.5 transgenic plants. None of the other analyzed genes (*AtEM6*, *ERD10*, *RD29B*, *SUS1*, *HXK2*, *ABI5*, *ZEP1*, *DREB1A*, and *DREB2A*) were up- or down-regulated under the described conditions in both 11.5 and 22.5 transgenic lines (data not shown).

DISCUSSION

In this work, we analyzed the function of a MYB transcription factor gene, *CpMYB10*, from the resurrection plant Craterostigma using different techniques including overexpression in a heterologous back-

Figure 11. Expression of *CpMYB10* target gene mRNAs in 355-*CpMYB10* plants. RNA gel blotting was conducted to measure the amount of *RD29A*, *RD22*, *COR15A*, *P5CS1*, *ADH1*, *ABI4*, *AtMYB2*, and *AtMYC2* mRNA in transgenic Arabidopsis plants. Each lane was loaded with 10 μ g of total RNA from 2-week-old plants grown in normal MS medium and transferred to MS plates containing the indicated compound 16 h before collecting tissue. Graphics show the densitometric quantification of shown bands after normalization against loaded RNA according to Image 1.61 software from NIH. Ethidium bromide-stained rRNAs were used as a loading control (bottom section).

ground. First of all, the expression pattern of the CpMYB10 gene in Craterostigma was adressed by coupled RT and PCR since RNA blot experiments did not detect gene expression, suggesting that CpMYB10 could be a low-abundance transcript. Here we showed that CpMYB10 gene is induced by desiccation and ABA treatments in leaves and roots a few minutes after treatment began. In leaves, maximum CpMYB10 expression was observed around 15 min after desiccation, and thereafter sharply declined. This early induction and rapid shut off suggests a key role of CpMYB10 in gene activation for stress tolerance. In roots, a biphasic pattern of CpMYB10 expression was observed, raising the question of whether the same or a different set of genes are transactivated at early (30 min) and late (16 h and thereafter) desiccation stages, which physiologically represent quite different water status levels. ABA turns on CpMYB10 in leaves and roots also around 15 min after dehydration, maintaining the gene expression for as long as 48 h, the duration of the experiment. Upon dehydration, within the first 30 min, Craterostigma leaves have a relative water content of 90% and several genes are already being expressed (Bartels et al., 1990). In contrast, 16 h after dehydration the relative water content drops to only 20% and it goes down to 2.5% in plants desiccated for 48 h (Bartels et al., 1990). After 2 d, Craterostigma leaves have lost their chlorophyll, and ultrastructural changes are evident such as convoluted cell walls, shrunk organelles freely suspended in the cytosol, and loss of chloroplast grana (Schneider et al., 1993). Therefore, it is likely that two set of genes for early and late desiccation stages are transactivated by CpMYB10 in Craterostigma.

The expression pattern of CpMYB10 gene was consistent with its role in stress tolerance. Using in situ coupled RT and PCR analysis in Craterostigma tissue sections, CpMYB10 was found in epidermis, palisade, and spongy parenchyma, and vascular bundle of ABA treated leaves, whereas in ABA treated roots CpMYB10 expression was limited to the vascular cylinder and some isolated cortex cells. In untreated leaves, CpMYB10 was faintly expressed in epidermis and in some parenchyma and vascular bundle cells and totally undetectable in roots. Therefore, CpMYB10 is expressed at basal levels in unstressed leaves and shortly after stress its transcript increases dramatically in a translation-independent manner as mentioned above, suggesting a rapid posttranslational activation mechanism.

The promoter analysis of *CpMYB10* gene in Arabidopsis further supported its role in stress tolerance. These experiments showed *GUS* gene induction after dehydration in leaf vascular tissues and conspicuously strong expression in root tip, apical shoot meristem, and emerging leaves. Roots and root cap sense water deficit triggering ABA translocation from roots to shoots (Zhang et al., 1987), thus *CpMYB10* gene might play a major role on this process. Treatment with ABA led to a strong GUS staining in all vegetative tissues,

although no staining was visible in root tip. Quantification of GUS activity showed that although ABA treatment induced the highest levels of GUS at the whole plant level, in roots it was induced 2-fold higher upon dehydration. Also, CpMYB10 promoter induction by ABA reached its maximum in 6-d-old plants, whereas upon dehydration GUS activity peaked in 21-d-old plants. On the other hand, in unstressed plants GUS activity was detected at low levels in apical shoot meristem and in pollen grains. Expression of CpMYB10 promoter in mature pollen grains probably reflects that this tissue is developmentally programed for desiccation tolerance and hence prone to regulate genes responsive to stress. In addition, since 5' untranslated region leader sequence was present in the construct, posttranscriptional regulatory events cannot be excluded. Other regions, such as intergenic or 3' untranslated region, could be also required for regulation.

The use of protein synthesis inhibitors in transcription analysis in animal and plant cells allowed characterization of genes whose induction is stimulated in the absence of protein synthesis as primary response genes and many of them correspond to transcription factor genes (Herschman, 1991; Fujimoto et al., 2000). Those genes whose induction requires protein synthesis are termed secondary response genes. When unstressed tissues are pretreated with cycloheximide (CHX), CpMYB10 was highly expressed but not the LEA encoding-gene Cp11-24, suggesting that the former gene is independent on prior protein synthesis for its expression. The induction of CpMYB10 expression in the presence of CHX suggests that translation of a putative repressor protein that could act on its promoter is inhibited, thus releasing CpMYB10 transcription. Alternatively, it could indicate protection of CpMYB10 mRNA from degradation by inhibition of labile mRNases. Similar experimental criteria using CHX has been widely used to characterize several plant genes as primary responsive to stimuli (Koshiba et al., 1995; Fujimoto et al., 2000; Bouquin et al., 2001; Laskowski et al., 2002).

A role of CpMYB10 as a transcription factor was elucidated after analyzing the DNA binding properties of a recombinant CpMYB10 protein by using EMSA assays. Our results showed that rCpMYB10 protein has DNA binding recognition for two specific MYB motifs, namely TAACTG and GAACTA sequences present in CpMYB10 and Cp11-24 promoter regions, respectively. The TAACTG sequence is also the recognition site of AtMYB2 protein (Urao et al., 1993). Binding of rCpMYB10 protein to Cp11-24 promoter element suggests that a possible target gene of CpMYB10 transcription factor is the Cp11-24 gene which has been detected 30 min after dehydration of Craterostigma leaves (Bartels et al., 1990). The Cp11-24 gene encodes a LEA (late-embryogenesis abundant) protein which is among other proteins involved in stress tolerance (Ingram and Bartels, 1996). rCpMYB10 protein also binds to a MYB responsive element Villalobos et al.

present in its own promoter. The binding of rCpMYB10 to its own promoter could be indicating a possible autoregulation of *CpMYB10* gene. This mechanism has been reported in other plant genes (Schwarz-Sommer et al., 1992; Finkelstein and Lynch, 2000), although it cannot be ruled out that another *MYB* homolog might regulate *CpMYB10* promoter. Although CpMYB10 encoded sequence has three potential phosphorylation sites (Iturriaga et al., 1996), apparently no such protein modification is required for DNA binding in vitro.

A major finding of the present study was that overexpression of CpMYB10 in Arabidopsis using the 35S promoter confers both osmotic stress tolerance of transgenic seedlings germinated in tissue culture and desiccation and salt tolerance in adult plants grown in soil. Other reports have shown that overexpression of transcription factor genes improves stress tolerance. Freezing tolerance was shown in Arabidopsis overexpressing CBF1 (Jaglo-Ottosen et al., 1998). Plants overexpressing DREBA1 gene improved their freezing, drought, and salt stress tolerance, although constitutive expression of this gene led to growth retardation, whereas minimal effects were observed when a stressinducible promoter was used (Kasuga et al., 1999). On the other hand, except for a bulky root system, no other morphological or growth alterations in all transgenic lines overexpressing CpMYB10 compared to wild-type plants were observed, suggesting that CpMYB10 may also play an important role in promoting root growth and differentiation. In contrast, overexpression of AtMYB2 in Arabidopsis showed a dwarf phenotype and no stress tolerance was reported, only coexpression of both AtMYB2 and AtMYC2 conferred moderate stress tolerance (measured in an electrolyte leakage test in the presence of mannitol) and plants exhibited severe growth retardation as well (Abe et al., 2003). In contrast, in this study it was found that overexpression of the CpMYB10 gene alone led to an improved stress tolerance to severe drought and salt conditions in planta.

An important question was to determine which genes are responsible for the stress tolerance phenotype in Arabidopsis overexpressing the CpMYB10 gene. In an effort to find downstream regulated genes by CpMYB10 in Arabidopsis, we analyzed the expression pattern of 17 genes involved in either stress tolerance, sugar sensing and metabolism, or ABA signaling and biosynthesis by RNA gel blot. Only 8 of these genes showed altered gene expression in plants overexpressing CpMYB10. Two genes encoding hydrophilic proteins, RD29A and Cor15A, and the alcohol dehydrogenase ADH1 gene were up-regulated in 35S-CpMYB10 plants upon ABA treatment. Overexpression of DREB1A or CBF1 transcription factor genes in Arabidopsis led to up-regulation of several hydrophilic protein genes including RD29A and COR15a (Jaglo-Ottosen et al., 1998; Kasuga et al., 1999). In contrast, the overexpression of AtMYB2 in Arabidopsis only activates ADH1, although coexpression of

both *AtMYB2* and *AtMYC2* up-regulates several other genes, including *RD22*, *COR6.6*, and *SUS1* (Abe et al., 2003). We also found that *RD22*, *Cor15a*, and *P5CS1* are down-regulated in *35S-CpMYB10* plants without stress but not under ABA or Glc treatments, suggesting that *CpMYB10* might be acting on these genes as a repressor and activator. A transcriptomics profile would reveal other target genes of *CpMYB10* in Arabidopsis. Noteworthy is the presence of multiple plant *myb* binding sites in the 1-kb upstream sequence of the putative promoter region of all the putative target genes analyzed in this study, as revealed by PLACE computer analysis program (Higo and Ugawa, 1999), supporting a possible transactivation by CpMYB10 upon them.

Taking together these results with the EMSA analysis, it is tempting to speculate whether this dual role is also present in Craterostigma, CpMYB10 acting as a repressor in unstressed tissues and as an activator upon dehydration. For instance, it could be involved in maintaining CpMYB10 gene shut off in unstressed conditions, and could also activate Cp11-24 and other target genes upon dehydration. This dual mechanism could allow a fast down-regulation of target genes responsive to abiotic stress. This shift in activity could well be modulated by a kinase or phosphatase in order to rapidly activate gene response for adapting cells to abiotic stress.

Besides having an essential function in plant metabolism, sugars play a role in regulating developmental and physiological processes such as photosynthesis, photomorphogenesis, flowering, and germination (Smeekens, 2000). The isolation of Arabidopsis mutants exhibiting normal development and greening when germinated on high Glc concentrations has been reported. The molecular identity of some mutants with a similar phenotype corresponded to the ABI4 and ABI5 transcription factors required for ABA signaling, suggesting a link between sugar- and ABA-signaling pathways (Arenas-Huertero et al., 2000; Finkelstein and Lynch, 2000). The molecular mechanisms by which abi4 and abi5 mutants affect sugar and stress responses are currently unknown. In this work it was found that overexpression of CpMYB10 gene in Arabidopsis conferred insensitivity to high Glc concentrations and also ABA hypersensitive response. To correlate these phenotypes with a possible altered expression pattern of well-characterized genes involved in Glc and ABA responses, the transcription of ABI4, ABI5, and HXK2 genes was analyzed. ABI5 and HXK2 transcription pattern was not modified; only ABI4 was partially repressed in 11.5 line but not in 22.5 under Glc treatment. Overexpression of AtMYB2 also conferred ABA hypersensitive response but no Glc response was reported (Abe et al., 2003).

The use of 2-DG analog allows us to suggest that these transgenic lines are affected at least in part in the hexose phosphorylation-dependent sugar signaling, commonly interpreted as the HXK-dependent pathway. These data correlate with the *abi4* phenotype observed in presence of this Glc analog, which has been demonstrated to participate in the HXK-dependent sugar signaling (Pego et al., 1999). In fact, sun6 mutant, an abi4 allele, was shown to be less sensitive to photosynthesis inhibition by 2-DG than wild-type plants in adult stages (Van Oosten et al., 1997), further supporting our observations at earlier developmental stages. However, interpretations based on the use of Glc analogs must be taken carefully as no specific studies about their metabolism and effects on different tissues and plant species have been performed (Gibson, 2000). A direct link between the sugar response and stress resistance of the transgenic lines expressing CpMYB10 is still difficult to establish. Data about the molecular bases for both phenotypes in these transgenics remains to be determined in the future. However, osmotolerant phenotypes on sugar response mutants have been reported (Gibson, 2000), which correlates with our results.

In summary, in this study it is shown that a MYB homolog (CpMYB10) from the resurrection plant Craterostigma plantagineum is induced by dehydration and ABA treatments in leaves and roots and in transgenic Arabidopsis as well. The expression of CpMYB10 is induced early and could be activated by CHX treatment alone, suggesting its regulation by unknown and short-lived repressor or RNase. CpMYB10 might regulate its own promoter and transactivate the LEA Cp11-24 gene. We propose that this MYB gene might account in part for the differences between Craterostigma and Arabidopsis regarding drought tolerance. This is substantiated by the ectopic expression of CpMYB10 in Arabidopsis that confers salt and drought tolerance and led to an altered expression of several stressresponsive genes. Additionally, overexpression of CpMYB10 in Arabidopsis led to ABA hypersensitive and Glc insensitive phenotypes by an unknown mechanism. This is the first report of a transgenic plant with improved stress tolerance using a gene from a resurrection plant. Additionally, heterologous expression of CpMYB10 transcription factor gene represents a potential approach to improve stress tolerance in crops avoiding endogenous mechanisms that often cosuppress the transgene of interest.

MATERIALS AND METHODS

Plant Growth Conditions and Stress Treatments

Craterostigma plantagineum Hochst. and Arabidopsis ecotype Columbia (wild type or transgenic) were grown at 24°C/20°C with 16 h light/8 h dark cycle on sterile MS medium supplemented with 2.0% and 1.0% Suc, respectively, and solidified with 0.8% phytoagar. The carbon source was as mentioned, unless another is indicated. To break dormancy, seeds were incubated at 4°C for 4 d before germination. Fully grown Craterostigma plants (before flowering) were used to perform dehydration and ABA treatments. For Craterostigma dehydration experiments the plants were placed on filter paper in a growth chamber under described conditions. For ABA treatment, Craterostigma plants were submerged in a solution containing 100 µA ABA (Sigma-Aldrich, St. Louis). For dehydration treatment of Arabidopsis, 4-weekold plants grown on a 1:1:1 mixture of vermiculite, perlite, and peat moss were used. At week 5, watering was stopped for 2 weeks and then rewatered, and allowed to grow one more week before being photographed. For salt stress treatment in pots, 4-week-old Arabidopsis plants were watered every 4 d with increasing concentrations of NaCl, starting from 50 mM, 100 mM, 150 mM, and 200 mM, and twice with 250 mM. For salt, sugar, ABA, and osmotic stress treatments performed in plates, the wild-type and transgenic Arabidopsis seeds were germinated in MS media containing the indicated salt, Glc, 2-DG analog, or osmotic agent concentration. For treatments in GUS experiments, 3-week-old plants were transferred from standard MS medium to plates containing the indicated compounds.

RT-PCR Expression Analysis

RT-PCR experiments were performed using 5 µg of total RNA extracted from Craterostigma by standard procedures and used for first strand cDNA synthesis with SuperScript II reverse transcriptase (Invitrogen, Gaithersburg, MD) and oligo(dT). PCR program consisted of 25 to 40 cycles of amplification (1 min, 95°C; 30 s, 52°C; and 2 min, 72°C) using Taq polymerase (Roche Diagnostics, Indianapolis) and sequence-specific primers for each gene. The specific oligonucleotides designed to amplify the cDNA corresponding to CpMYB10 have the following sequence: primer CpMYB10-sense 5'-AGGCAT-CAGCTTTTTCTT-3', and CpMYB10-antisense 5'-ATGGTACGTCCCTTGATT-3'. The expected 1.1-kb PCR product was cloned and sequenced, and corresponded to the CpMYB10 cDNA after comparison with the corresponding genomic clone (Iturriaga et al., 1996). Specific oligonucleotides to amplify Cp11-24 (forward 5'-GAAGTTCGATGCTAACGA-3', reverse 5'-TGCTCATC-CGCAGCAGCAGC-3') and Cptkt3 (forward 5'-TGGATGGGAAAAAGCTC-3', reverse 5'-AAACAACCCTCACTCCC-3') gene transcripts of Craterostigma yielded 629- and 733-bp fragments, respectively. Each RT-PCR result was confirmed in three biologically independent experiments. Aliquots at different cycles of PCR reactions were analyzed to select for the linearity phase of the exponential PCR reaction. RT-PCR products were resolved in $1 \times$ Trisacetate EDTA, 1% agarose gels stained with ethidium bromide. The figures present the negatives of the fluorescent images.

Purification of Recombinant CpMYB10 Protein

To express a hexahistidine-CpMYB10 fusion protein in bacteria, the CpMYB10 cDNA was amplyfied by PCR using BgIII-CPM10.5 (5'-GAAGATC-TATGAACCAACAGCAGGTTA-3') and CPM10.3-Kpm1 (5'-GCGGTACCTT-CGTATATCTAAAAGCAGC-3') primers and cloned in the pQE30 vector (Quiagen, Valencia, CA) on BamHI and Kpm1 restriction sites. DNA fusion was sequenced to confirm the in-frame cloning and used to transform BL21 Escherichia coli strain. Protein expression was achieved by adding 1 mM isopropylthio- β -galactoside to bacterial cultures and let grown for 2 h at 37°C. The soluble protein was purified according to manufacturer's instructions by affinity chromatography in Ni-NTA resin (Quiagen) and concentrated by Centricon-10 centrifugal concentrators (Amicon, Billerica, MA), before diluting in 3 mL of binding buffer (15 mM HEPES, 8 mM Tris, 120 mM KCl, 0.14 mM EDTA, 7 mM β -ME, 0.1 mM phenylmethylsulfonyl fluoride, and 10% glycerol). The protein concentration was determined with Bradford reagent (Bio-Rad Laboratories, Hercules, CA) and checked by SDS-PAGE.

EMSA

The EMSA protocol was essentially as previously described by Armstrong et al. (1992). The double-strand complementary oligonucleotides used as probes were radioactive labeled using α -³²P dATP and α -³²P dCTP and Klenow enzyme (Roche Diagnostics), and diluted to 1 ng/µL containing at least 50,000 cpm. For each reaction, around 100 ng of pure recombinant protein was used, 1.0 µg of salmon sperm DNA, and 1 µL milk powder suspension (20 mg/mL low fat milk powder). The reaction mixture was loaded on a native polyacrylamide gel (4% acrylamide, 0.1% N,N'-methylenbisacrylamide, 0.2× Tris-acetate EDTA, 7% glycerol, 0.06% ammonium persulfate, and 0.06% N,N,N',N'-tetramethylethylenediamine). The gel was prerun at 100 V for 1 h at room temperature and run at 150 V for 3 to 4 h at 4°C. After electrophoresis, the gel was dried and exposed to x-ray film. The primer sequences used were: MYB-P10 forward 5'-GTGTATATAGTTAACTG-AAACTGC-3', MYB-P10 reverse 5'-GTGTGCAGTTTCAGTTAACTATAT-3', MYB-P10-mut forward 5'-GTGTATATAGTTCCCTGAAACTGC-3', MYB-P10mut reverse 5'-GTGTGCAGTTTCAGGGAACTATAT-3', MYB11-24 forward 5'-GTGTACAGAGGTGAACTACCGAATC-3', MYB11-24 reverse 5'-GTGT-GATTCGGTAGTTCACCTCTGT-3', MYB11-24-mut forward 5'-GTGTACA-

Villalobos et al.

GAGGTGCCCTACGAATC-3', MYB11-24-mut reverse 5'-GTGTGATTCGG-TAGGGCACCTCTGT-3'.

RT-PCR in Situ

Transversal leaf or root hand-cut sections (100–200 μ M) of Craterostigma plants pretreated with 100 μ M ABA for 1 h were tested for RT-PCR in situ technique (Xoconostle-Cázares et al., 1999) using Oregon Green 488-5-dUTP as fluorescent label (Molecular Probes, Eugene, OR) and GeneAmp EZ rTth RNA PCR kit (Perkin Elmer, San Jose, CA). The primers used in the amplification were the same as described before for CpMYB10 cDNA in the expression analysis section. The fluorescent signal was visualized in a confocal laser scanning microscope.

Plant Transformation

Two binary vector constructs were used to transform Arabidopsis. For the overexpression of CpMYB10, its 1.1-kb cDNA was amplified by RT-PCR with primers CpMYB10-sense and CpMYB10-antisense, cloned in pBluescript SK-(Stratagene, La Jolla, CA) and the DNA sequence was determined before subcloning in pBin19 vector (Bevan, 1984) containing the 0.8-kb 35S-promoter and 0.3-kb NOS polyadenylation site. This construct was introduced by electroporation in Agrobacterium tumefaciens C58C1 strain containing the pGV2260 plasmid. The second construct consisted of the 1.5 kb CpMYB10 promoter region (P10) fused to the uidA (GUS) gene (Jefferson, 1987). The promoter fragment was amplified by PCR using Expand High Fidelity PCR System (Roche) using as a template the genomic CPM10 clone (Iturriaga et al., 1996), and primers MVP.5 (5'-GGGGTACCTATATGGCTAGGATAGGAT-AC-3') and MVP.3 (5'-CGAATTCATGTCTGTATTTTCTTCTTCC-3'), cloned in pBluescript SK1 and sequenced. A translational fusion between the first putative ATG of CpMYB10 and the first codon of GUS gene was created before subcloning in pBin19 vector. This construct was introduced by electroporation in A. tumefaciens C58C1 strain. The resulting bacteria were used to transform wild-type Arabidopsis (Col) by in planta vacuum infiltration (Bechtold et al, 1993). Seedlings were grown on MS medium supplemented with 1% Suc and for selection of transgenic plants 50 μ g mL⁻¹ kanamycin (Sigma-Aldrich) was added to the medium. One-week-old plantlets were transferred to pots under described conditions until plants formed seeds. To select homozygous lines, T2 generation seeds were analyzed for germination on kanamycin. Only T3 plants with a 3:1 segregation ratio were used. Ten independent homozygous lines for 35S-CpMYB10 and three for P10-GUS construct were isolated.

Distribution of Materials

Upon request, all novel materials described in this publication will be made available in a timely manner for noncommercial research purposes, subject to the requisite permission from any third-party owners of all or parts of the material. Obtaining any permissions will be the responsibility of the requestor.

GUS Histochemical and Fluorimetric Assays

The histochemical staining of GUS activity in transgenic plants was performed as described by Jefferson et al. (1987). Seedlings were fixed in a 0.3 (w/v) formaldehyde solution containing 10 mM MES, pH 7.5, and 0.3 M mannitol for 30 min on ice prior to staining. Stained samples were rinsed extensively in 70% ethanol to remove chlorophyll. The stained plants were analyzed using a bright-field microscopy (Type 104, Nikon, Tokyo). Crude plant extracts for fluorimetric assay of GUS enzyme activity were prepared with an extraction buffer consisting of 50 mM sodium phosphate buffer, pH 7.0, 10 mM EDTA, 0.1% (w/v) Triton X-100, 0.1% (w/v) sodium lauryl sarcosine, and 10 mM β -mercaptoethanol. GUS activity was assayed as described by Jefferson et al. (1987) with 4-methylumbelliferyl- β -D-glucoronide (Sigma-Aldrich) as a substrate.

Gel Blot Analysis

Total RNA was isolated (Ausubel et al., 1989) from seedlings grown as indicated using standard protocols. For northern blots, total RNA was fractionated by electrophoresis in 1.2% (w/v) agarose gels and transferred onto Hybond N+ nylon membrane (Amersham, Buckingamshire, UK).

Hybridizations and washes were performed at high stringency conditions according to standard procedures, using ³²P-radiolabeled probes. Probes for all the used genes were obtained by PCR using specific primers and cDNAs prepared from ABA-treated Arabidopsis plants. The graphic representation of densitometric quantification of the northern experiments were done using the public domain NIH Image program (developed at the United States National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-image) and normalized in each case by the amount of rRNA in the gel.

Sequence data from this article have been deposited with the EMBL/ GenBank data libraries under accession number AF510112 for the CpMYB10 cDNA.

ACKNOWLEDGMENTS

We thank Drs. Analilia Arroyo for critical reading of the manuscript, Juan Estevez for his technical advice on Arabidopsis transformation, and Beatriz Xoconostle-Cázares and Roberto Ruiz-Medrano for training on RT-PCR in situ technique. We also thank Xochitl Alvarado for assistance on confocal laser scanning microscope and Paul Gaytán and Eugenio López for oligonucleotide synthesis.

Received September 30, 2003; returned for revision January 16, 2004; accepted February 6, 2004.

LITERATURE CITED

- Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Shinozaki K (1997) Role of MYC and MYB homologs in drought- and abscisic acidregulated gene expression. Plant Cell 9: 1859–1868
- Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815
- Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14: 2085–2096
- Armstrong GA, Weisshaar B, Hahlbrock K (1992) Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4: 525-537
- Ausubel FM, Brent R, Kingstone RE, Moore DD, Siedman JG, Smith JA, Struhl K (1989) Current Protocols in Molecular Biology. John Wiley & Sons, New York
- Baker SS, Wilhelm KS, Tomashow MF (1994) The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24: 701–713
- Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34
- Bartels D, Salamini F (2001) Dessication tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127: 1346–1353
- Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidodpsis thaliana plants. C R Acad Sci Paris 316: 1194–1199
- Bernacchia G, Schwall G, Lottspeich F, Salamini F, Bartels D (1995) The transketolase gene family of the resurrection plant Craterostigma plantagineum: differential expression during the rehydration phase. EMBO J 14: 610-618
- Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12: 8711–8721
- Bockel C, Salamini F, Bartels D (1998) Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J Plant Physiol 152: 158-166
- Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of

Plant Physiol. Vol. 135, 2004
Stress Tolerance in 35S-CpMYB10 Transgenic Arabidopsis

specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127: 450-458

- Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABAresponsive element binding factors. J Biol Chem 275: 1723–1730
- Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60: 73-103
- de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111: 381–391
- DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hamma H (2001) Rapid accumulation os phosphatidylinositol 4.5-biphosphate and inositol 1.4.5-triphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126: 759-769
- Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10: 1043–1054
- Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599–609
- Frank W, Phillips J, Salamini F, Bartels D (1998) Two dehydrationinducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J 15: 413-421
- Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12: 111–123
- Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393-404
- Gaff DF (1971) Dessication-tolerant flowering plants in Southern Africa. Science 174: 1033–1034
- Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124: 1532–1539
- Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60: 281–319
- Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27: 297-300
- Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant dessication tolerance. Trends Plant Sci 6: 431–438
- Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCI-SIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23: 577–585
- Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377–403
- Iturriaga G, Leyns L, Villegas A, Gharaibeh R, Salamini F, Bartels D (1996) A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation. Plant Mol Biol 32: 707-716
- Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106
- Jang J-C, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6: 1665–1679
- Jang J-C, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19
- Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387-405
- Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907
- Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287–291
- Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thalina. Plant Cell Physiol 35: 225–231

Plant Physiol. Vol. 135, 2004

- Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6: 262–267
- Koshiba T, Ballas N, Wong LM, Theologis A (1995) Transcriptional regulation of PS-IAA4/5 and PS-IAA6 early gene expression by indoleacetic acid and protein synthesis inhibitors in pea (Pisum sativum). J Mol Biol 253: 396–413
- Laby RJ, Kincaid S, Kim D, Gibson S (2000) The Arabidopsis sugarinsensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23: 587–596
- Laskowski M, Dreher KA, Gehring MA, Abel S, Gensler AL, Sussex IM (2002) FQRI, a novel primary axin-response gene, encodes a flavin mononucleotide-binding quinine reductase. Plant Physiol 128: 578-590
- Liu Q, Kasuga M, Sakuma Y, Abe H, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in *Arabidopsis*. Plant Cell 10: 1391–1406
- Martin T, Frommer WB, Salanoubat M, Willmitzer L (1993) Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J 4: 367-377
- Moore B, Zhou L, Rolland F, Hall Q, Cheng W-A, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXKI in nutrient, light, and hormonal signaling. Science 300: 332–336
- Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–497
- Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128: 13–16
- Pego JV, Weibeek PJ, Smeekens SCM (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol 119: 1017-1023
- Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154: 421–436
- Schneider K, Wells B, Schmelzer E, Salamini F, Bartels D (1993) Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189: 120–131
- Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönning WE, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11: 251–263
- Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3: 217-223
- Smeekens S (2000) Sugar-induced siganal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51: 49–81
- Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035–1040
- Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4: 447–456
- Tabaeizadeh Z (1998) Drought-induced responses in plant cells. Int Rev Cytol 182: 193–246
- Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539
- Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743–1754
- Van Oosten JJM, Gerbaut A, Huijser C, Dijkwel PP, Chua N-H, Smeekens SCM (1997) An Arabidopsis mutant showing reduced feedback inhibition of photosynthesis. Plant J 12: 1011–1020
- Velasco R, Salamini F, Bartels D (1998) Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant Craterostigma plantagineum Hochst. Planta 204: 459–471

Villalobos et al.

- Vicient CM, Hull G, Guilleminot J, Devic M, Delseny M (2000) Differential expression of the Arabidopsis genes coding for Em-like proteins. J Exp Bot 51: 1211–1220
- Xoconostle-Cázares B, Xiang Y, Ruiz-Medrano R, Wang HL, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283: 94–98
- Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of *rd22*, a gene responsive to dehydration stress in *Arabidopsis thaliana*. Mol Gen Genet 238: 17-25
- Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, lowtemperature, or high-salt stress. Plant Cell 6: 251–264

Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of Δ¹-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 261: 766-772

Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in roots. J Exp Bot 38: 1174–1181

V.2 RESULTADOS ADICIONALES

V.2.1 Análisis de la expresión de los genes CpMYB5 y CpMYB7.

De manera semejante a CpMYB10, para analizar la expresión de CpMYB5 y CpMYB7 se utilizó la técnica de RT-PCR. Para ello, se diseñaron oligonucleótidos específicos para cada uno de ellos, los cuales se aparean en las regiones UTR5' y 3' correspondientes. La especificidad de los iniciadores fue confirmada en reacciones de PCR independientes, utilizando como templado DNA de las clonas genómicas para CpMYB5 y CpMYB10, y una clona de cDNA correspondiente a CpMYB7. Para el diseño de estos oligos se tomaron en cuenta una serie de consideraciones: temperaturas de alineamiento semejantes (55 – 60° C), que amplificaran completamente las regiones codificantes, que no formaran estructuras secundarias ni sitios falsos de alineamiento. En la Figura 9, se observa la confirmación de la especificidad de la amplificación de los oligos diseñados.

Con el objetivo de determinar la respuesta de CpMYB5 a estrés tanto en las hojas como en las raíces, se realizaron RT-PCRs utilizando plantas de Craterostigma tratadas con ABA o sequía a diferentes tiempos. Para la síntesis de los cDNAs se utilizaron las mismas condiciones reportadas para el análisis de CpMYB10 (Villalobos *et al.*, 2004). En este análisis se observó que las respuestas que presenta el gen CpMYB5 ante sequía y ABA son distintas a las de CpMYB10 (Fig.10). Al menos dentro de los tiempos que fueron analizados, no se detecto el transcrito de CpMYB5 en hojas deshidratadas. A semejanza de la respuesta de CpMYB10, en raíces deshidratadas también se observó una respuesta bifásica de CpMYB5, ya que el transcrito se detecta a los 30 min y desaparece desde 1-3 h del tratamiento, para volverse a detectar a las 16 h (Fig. 10). Por lo que respecta a los tratamientos con ABA, en las hojas se detectó la acumulación de CpMYB5 desde los 15 min, pero esta desapareció después de 1 h de tratamiento. En las raíces tratadas con ABA, se detectó una débil expresión basal de CpMYB5 en el control (raíces expuestas a agua durante 48 hrs). Sin embargo, desde los 15 min se puede observar un aumento en la acumulación del transcrito de CpMYB5, y estos niveles suben y bajan a lo largo de la cinética (Fig. 10), mostrando un comportamiento bifásico.

El análisis de expresión de CpMYB7 también fue conducido bajo las mismas condiciones. Sin embargo, en los tratamientos y tejidos analizados, no se detectó la acumulación del transcrito de este gen en los tiempos monitoreados (Fig. 11).

Por otro lado, también se realizaron experimentos de RT-PCR *in situ* con el fin de determinar en que tipos celulares se expresa CpMYB5 (Fig. 12). Se observó una acumulación drástica del transcrito de este gen, pero a diferencia con CpMYB10, en hojas tratadas con ABA la expresión de CpMYB5 se restringe a las células del parénquima. Aparentemente no existe expresión de CpMYB5 en la epidermis de las hojas de Craterostigma. En las hojas control, se detecto una señal muy débil de CpMYB5 en células aisladas del parénquima. En los cortes de raíces control, se observó una señal muy débil que se restringe a los haces vasculares, pero esta señal se incrementa drásticamente en las células del córtex cuando las raíces son tratadas con ABA. Especialmente el patrón de expresión de CpMYB5 y CpMYB10 en las raíces, indica que ambos genes responden a ABA pero en distintos tipos celulares.

Fig. 9. PCRs que muestran la especificidad de los oligos diseñados para amplificar *CpMYB5*, *CpMYB7* y *CpMYB10*. Las reacciones fueron realizadas utilizando 10 ng de DNA templado y 0.1 μM de cada oligo, bajo las siguientes condiciones: 94° C, 30 seg.; 94° C 30 seg, 52-55° C 30 seg, 72° C 2 min por 35 ciclos; 72°C 10 min. Los DNAs utilizados como templados se obtuvieron a partir de las clonas genómicas de *CpMYB5* y *CpMYB10*, y de la clona de cDNA de *CpMYB7* previamente reportadas (Iturriaga *et al.*, 1996). Los iniciadores específicos para *CpMYB10* son los mismos previamente reportados (Villalobos *et al.*, 2004). Los iniciadores para *CpMYB5* son los siguientes: Cpm5 sense: 5'-AGCATCAGCTTTTTTGTC-3', y Cpm5 antisense: 5'-AACGTACGTCCTTGAATG-3'. Los oligos diseñados para *CpMYB7* fueron: Cpm7 sense 5'-TAAGTGCTCTCATCAATC-3', y Cpm7 antisense: 5'-AATTTGAATGTGGCTTCC-3'.

Fig. 10. Respuestas de *CpMYB5* a tratamientos de sequía y ABA. Las condiciones utilizadas para este análisis de expresión fueron las mismas reportadas para *CpMYB10* (Villalobos *et al.*, 2004). Los iniciadores para *CpMYB5* son los siguientes: Cpm5 sense: 5'-AGCATCAGCTTTTTTGTC-3', y Cpm5 antisense: 5'-AACGTACGTCCTTGAATG-3'.

Fig. 11. *CpMYB7* no responde a tratamientos de sequía y ABA bajo las condiciones analizadas. Las condiciones utilizadas para este análisis de expresión fueron las mismas reportadas para *CpMYB10* (Villalobos *et al.*, 2004). Los oligos diseñados para *CpMYB7* fueron: Cpm7 sense 5'-TAAGTGCTCTCATCAATC-3', y Cpm7 antisense: 5'-AATTTGAATGTGGCTTCC-3'.

Fig. 12. Localización de la expresión de CpMYB5 en tejidos de *Craterostigma* tratados con ABA. A, imágenes obtenidas con microscopia confocal de cortes transversales de hojas control de *Craterostigma*, ó B, tratadas con 100 μM de ABA. C, Cortes de raíz control de *Craterostigma*, ó D, tratadas con 100 μM de ABA. Las secciones de tejido fueron procesadas bajo las mismas condiciones utilizadas para *CpMYB10* (Villalobos *et al.*, 2004). Los iniciadores para *CpMYB5* son los siguientes: Cpm5 sense: 5'-AACGTACGTCCTTGAATG-3'.

Para conocer la región regulatoria 5' de CpMYB5, se procedió a la subclonación de esta región a partir de la clona genómica que para este gen fue previamente reportada (Iturriaga et al., 1996). A partir del mapa de restricción de la clona genómica de CpMYB5 se realizó una doble digestión (Eco RI/Pst I), a partir de la cual se purificó un fragmento de 1.4 Kb que contenía a la región de interés (Fig. 13). Además de contener cerca de 1 Kb de la región regulatoria 5' de CpMYB5, este fragmento también incluye aproximadamente 400 pb de la región codificante de este gen. Dicho fragmento fue ligado en los sitios correspondientes del vector pSK, y una clona positiva denominada pEP5 fue secuenciada bidireccionalmente. La secuencia obtenida se presenta en la Figura 12. Con el objetivo de determinar la existencia de similitudes en las regiones 5' corriente arriba del ATG de los genes CpMYB5 y CpMYB10, se realizó un alineamiento de las secuencias correspondientes (Fig.14). Como se muestra en este alineamiento, existen bloques idénticos de distintas longitudes a todo lo largo de ambas regiones (Fig. 14). Sin embargo, la región 5' de CpMYB5 presenta una región de 50 pb (localizada a 630 pb del ATG) que no está presente en la región correspondiente de CpMYB10, siendo esta la diferencia más importante entre ambas regiones. Con el afán de analizar con mayor profundidad estas secuencias, se realizó un análisis utilizando la base de datos contenida en el programa computacional PLACE (Higo y Ugawa, 1999), el cual permite identificar elementos de acción en cis reportados en plantas. En la Fig. 15 se muestra un resumen de los principales elementos de acción en *cis* encontrados para ambas secuencias. Fue interesante encontrar que en ambas secuencias se encuentran paralelismos en el tipo y distribución de varios elementos en cis. Dentro de la zona de 50 pb de la secuencia de CpMYB5 antes mencionada, se encontró un elemento de acción en cis tipo CE1 ("Coupling Element 1"), el cual participa en la regulación mediada por ABA de diversos genes (Shen y Ho, 1995).

Fig. 13. Región 5' del gen *CpMYB5*. A) Mapa de restricción de la clona genómica de *CpMYB5*. B) Fragmento aislado que corresponde a la región regulatoria 5' de este gen. C) Secuencia de 1049 pb correspondiente a la región corriente arriba del ATG putativo de *CpMYB5*.

Fig. 14. Alineamiento de las regiones corriente arriba del ATG de los genes CpMYB5 y CpMYB10. La región de CpMYB10 es cerca de 500 bp mas larga que la de CpMYB5. Con asteriscos se marca la caja CE1 presente en la región de 50 bp de CpMYB5 que esta ausente en la región corriente arriba de CpMYB10.

Fig. 15. Análisis comparativo de los elementos de acción en cis putativos identificados en las regiones corriente arriba de los genes *CpMYB5* y *CpMYB10*.

.

Para analizar la participación de la región corriente arriba al ATG de *CpMYB5* en la regulación transcripcional de este gen, se construyó un plásmido recombinante que contenía al gen reportero GUS bajo la dirección de dicha región. Para ello, se utilizó el plásmido pEP5 como templado en una reacción de PCR diseñada para amplificar únicamente la región corriente arriba al ATG, flanqueándola con los sitios Eco RI (5') y BamHI (3'). Este PCR se digirió con la enzimas antes mencionadas, y posteriormente fue ligado en los sitios correspondientes del vector pBin19GUS-NOS (Bevan, 1984), creando así una fusión traduccional entre los ATGs de los genes *CpMYB5* y *uidA* (GUS). El plásmido resultante, p5/GUS-NOS, se movilizó a *Agrobacterium tumefaciens* C58 para transformar plantas de *Arabidopsis thaliana* (Col) bajo las mismas condiciones utilizadas previamente (Villalobos *et al.*, 2004). Se obtuvieron varias líneas heterócigas a partir de las cuales se aislaron 2 líneas homócigas independientes, mismas que fueron utilizadas para posteriores análisis histoquímicos en respuesta a varios estreses medio ambientales.

Análisis histoquímicos preliminares mostraron que el patrón de detección de GUS en respuesta a ABA, fue idéntico en ambas líneas transgénicas. La línea representativa 6.2 fue estudiada en mayor profundidad. La actividad de GUS detectada en las hojas cotiledonarias de plántulas de 10 días de edad fue muy similar en los tratamientos de 16 hr en presencia de ABA (100 µM), NaCl (150 mM) y frío (4°C) (Fig. 16). Sin embargo, la intensidad de tinción es mayor en respuesta a deshidratación, y aparentemente cubre otros tipos celulares de la hoja (Fig. 16). En las plantas transgénicas P5/GUS bajo condiciones control no se detectó expresión basal en las hojas ni en la zona del meristemo apical en esta etapa de desarrollo, aunque si existe una expresión basal en algunas zonas de las raíces control. Esta expresión basal radicular parece incrementarse únicamente en respuesta a deshidratación y NaCl, pero bajo el tratamiento de frío esta inducción se restringe al hipócotilo y a la zona de la raíz principal más próxima a este (Fig. 16). Bajo ninguna de las condiciones estudiadas se detectó expresión de GUS en la región apical de la raíz de estas plantas. No se realizaron ensayos fluorimétricos para medir la actividad de GUS en estas plantas.

Fig. 16. Patrón de expresión de *CpMYB5* en plantas transgénicas de Arabidopsis. Análisis histoquímico de plántulas de 10 días de la línea homóciga 6.2 que porta la construcción promotor *CpMYB5*-GUS. Las plantas fueron sometidas a los tratamientos de estrés indicados (16 hr en presencia de ABA 100 μ M, NaCl 150 mM, deshidratación, ó temperatura de 4°C. El procesamiento de las plantas fue igual al reportado previamente (Villalobos *et al.*, 2004).

V.2.2 Clonación y análisis de la secuencia del cDNA del gen CpMYB10.

Dado que para CpMYB10 sólo existía una clona genómica (Iturriaga et al., 1996), se requirió del aislamiento del cDNA correspondiente a este gen para poder utilizarlo en estudios de expresión ectópica de Arabidopsis. Para ello, se realizó un RT-PCR utilizando RNAs provenientes de hojas de Craterostigma tratadas con ABA, y los mismos oligos antes descritos específicos para CpMYB10. Se amplificó un producto de 1.1 Kb que fue clonado en el sitio Sma I del plásmido pSK+. Una clona positiva (pRTPCR10) fue secuenciada bidireccionalmente. La secuencia obtenida contiene 79 pb que corresponden a la región 5' UTR, el ORF completo, y 36 pb de la región 3' UTR de este gen (Fig. 17). La secuencia de aminoácidos deducida para CpMYB10 se utilizó en un alineamiento múltiple con las secuencias correspondientes de CpMYB5, CpMYB7 y AtMYB2 (Fig. 18). Los porcentajes de identidad observados entre CpMYB10 vs CpMYB5 y CpMYB7, son de 98 y 96% respectivamente. La región de 101 aminoácidos que corresponde a las repeticiones MYB R2R3 se conserva un 92% de identidad entre las proteínas CpMYB10, CpMYB5 y CpMYB7, y AtMYB2. Inmediatamente después del dominio MYB R3, existe una región de 31 aas. que presenta un 74% de identidad (87% de similitud) entre AtMYB2 y las proteínas CpMYB10, CpMYB5 y CpMYB7. El resto de la región correspondiente al Cterminal de AtMYB2 (122 aa) es totalmente distinta a la región correspondiente de CpMYB10, CpMYB5 y CpMYB7.

	10	20	30	40	50	60	70	80	
1	aggoatcagotttt	tottqtccttt	tttatatoto	ttaaatotti	atactatta		agaaaataca	qacat cD	NA CPMYB10
	90	100	110	120	130	140	150	160	
81	paaccacacagoago	ttaaagtttoo		aggaagtta	taactgtgaa		attottogga	 catas cDi	NA CPMYB10
	NQQQ	V K V S	K N N	KÖVI	N N C E	D D D	DSSE	1- 1 -	
	170	180	190	200	210	220	230	240	
161	gaagaggacottgg R R G	actgttgatga	agacttoao	actostosaci 1 1 N	tacatogoto Y I A	accatggogaa M G E	ggaagatgga G R N	actot cD	NA CPMYB10
	250	260	270	280	290	300	310	320	
41	attacacatttaga	tggootgaaad	gaactogaaa	agagetgeage	attgagatgg	tgaactactt	gagacocgac	gttog cDl	NA CpMYB10
	LARFA	GLK	RTGI	K S C R	L R W	LNYL	R D	V R	•
	330	340	350	360	370	380	390	400	
21	togaggaaatatoa R G N 1	cactogaagaa		attottgaaci	tooattoaco	ttooooaata % G N	aataatcaas R X	gatta cD	NA СрМҮВ10
	410	420	430	440	450	460	470	480	
0.1		 ogaageaeeg							NA CEMVELO
0 t	A Q H L 2	G R T L	N E I	K N Y	W R T	R V Q K	H A K	Q L	an opnibio
	490	500	510	520	530	540	\$50	560	
81	aagtgcgacgtcaa	caqcaaacaqt	toaaaqacad	coatgagata	otttogatg	casqattqqt	cqaqaqqato	caaqo cD	NA CPMYB10
	KCDVN	SKQ	FKD	I M R Y	M W L	RLV	E R I	A Q	
	570 • • • • • • • • • • • •	\$80 	590 	600 	610	620	630 • • • • • • • • •	640 • • • • •	
61	S A T T	aogaoggagoa D D G A	acagaaggagg A	y A S S	gaagtagtag	A M N	aagootgota T A C Y	cagog cD	NA CpMYB10
	650	660	670	680	690	700	710	720	
4.1				atontoato					NA CHMVRIO
41	AAMAA	G D H F	R Q F	M L M	P Q Y	Y A T T	T T T	H N	an epairere
	730	740	750	760	770	780	790	800	
21	aattogatgatogo	ccaagaaaatt	COBOOBCOO	agaatagtag	gaatotttt	ageagtettte	ttotgaaota	Lagga cD.	NA CPMYB10
	NSMIA	QEN	SST	VASS	E S F	GSLS	S E L	A, T	
	810	\$20 	830	840	850	860	#70 	680	
01	E A N Y	otaactatcac A N Y H	R V I	N G A	toacoaacad 0 H O O	attgactoct	s T T	ctato cD. Y	NA CPMYB10
	890	900	910	920	930	940	950	960	
81	attggcagaactgc	goggtoggaas	ataatggaaat	tcogaccaa	tagggatgg	gttttgoggat	gatoggogga	gcaat cD.	NA CPMYB10
	DWQNC	AVGI	N G N	s D Q	LGM	3 F A D	DRR	SN	
	970	980	990	1000	1010	1020	1030	1040	
61	gaacagtggatgat	gatgaoggaog M T D	acgtogtogi D V V 1	ataatggtgga D N G G	s s D	Q D N N	cttgtggaat L N N	gtgga cD. V D	NA CPMYB10
	1050	1060	1070	1080	1090	1100	1110		
041	tgacgtgtggttgt	tacaacactto	agoagotgo	tttagatat	acgaaataca	accacattoaa	aggaogtacc	tt cD	NA CPMYB10
NGPONS.	D V W P	LQQF	S S C	F ·					0.000000 0 0000000000000000000000000000

Fig. 17. Secuencia nucleotídica y deducción de aminoácidos del cDNA del gen CpMYB10.

Fig. 18. Alineamiento múltiple de las proteínas CpMYB10, CpMYB5, CpMYB7 y AtMYB2. Las puntas de flecha indican el inicio y término de las repeticiones MYB R2R3 del dominio de unión a DNA (marcado como *). &, Región de 31 aa fuera del dominio MYB que se comparte entre AtMYB2, CpMYB10, CpMYB5 y CpMYB7.

V.2.2 Estudios adicionales del efecto de la sobre-expresión de CpMYB10 en Arabidopsis

Las plantas que sobre-expresan *CpMYB10* no presentan alteraciones morfológicas, excepto por la presencia de un sistema radicular más desarrollado en plantas adultas crecidas en maceta respecto a la planta de tipo silvestre. El mayor crecimiento de la raíz también se manifiesta en plántulas jóvenes crecidas *in vitro* desde los 3 días de edad y se hace más evidente en plántulas de 7 días de edad (Fig. 19).

Con el fin de determinar los niveles de ABA presentes en las plantas transgénicas sobre-expresoras de *CpMYB10*, se determinaron las concentraciones de esta hormona en la línea representativa 11.5 y en la planta tipo silvestre. Se utilizaron extractos de plántulas de 15 d de edad crecidas *in vitro* bajo condiciones estándar (Villalobos *et al.*, 2004) siguiendo las instrucciones del fabricante (Phytodetek-ABA-kit; AGDIA Inc., Elkhart, IN). Los datos recogidos muestran que aparentemente la línea 11.5 no presenta alteraciones en su contenido de ABA (Tabla 1).

Con el fin de identificar proteínas expresadas diferencialmente en respuesta a CpMYB10, se realizaron geles bidimensionales de los proteomas de la línea 11.5 que sobre-expresa CpMYB10 bajo la regulación del promotor constitutivo 35S vs. una línea transgénica control que fue transformada únicamente con el vector *pBin35S-NOS*. Se utilizaron plántulas de 15 d tratadas con ABA 100 μ M por 16 hr, ó sin tratamiento. Como se puede apreciar en la Fig. 20, la gran mayoría de las proteínas de Arabidopsis se concentran en la zona ácida de pI. Para realizar un mejor análisis de esta zona, en lo subsiguiente se utilizaron geles bidimensionales enfocados únicamente en esta fracción (Fig. 21). Se encontraron varias proteínas expresadas diferencialmente en respuesta a ABA entre estos dos tipos de plantas, y 11 de ellas fueron identificadas mediante espectrometría de masas utilizando un equipo tipo MALDI-ToF ("Matrix Assisted Lasser Desorption Ionization-Time of Flight"). Algunas de estas proteínas muestran una clara relación con respuestas a estrés medioambiental, tales como: una proteasa dependiente de ATP, el factor transcripcional RAV2, la anhidrasa carbónica, la glutatión transferasa, una ascorbato reductasa dependiente de GSH, y la chaperonina HSP60.

Fig. 19. La sobre-expresión de *CpMYB10* provoca un mayor desarrollo del sistema radicular de Arabidopsis. A. Plantas maduras (8 semanas) crecidas en maceta. B. Acercamiento de las raíces de las plantas mostradas en A, sin las partes aéreas. C y D. Plántulas crecidas *in vitro* de 3 y 7 días de edad, respectivamente. Las condiciones de crecimiento para ambos casos son las mismas reportadas previamente (Villalobos *et al.*, 2004). Se presentan individuos representativos de dos líneas transgénicas.

Planta	ABA (ng ABA/gr peso fresco)
wt	17 +/- 2
11.5	16 +/- 1

Tabla 1. Concentraciones de ABA en la línea transgénica representiva 11.5 que sobre-expresa *CpMYB10*. Se utilizaron 20 mg de tejidos pulverizados en mortero de plántulas de 15 d, los cuales se homogenizaron en un 1 ml de buffer de extracción de ABA (HCl 10 mM, PVP 1% en metanol). La extracción se condujo durante 16 hr con agitación constante a 4°C. El sobrenadante se neutralizó con 15 μ l de NaOH 1M. Para la determinación de la concentración de ABA se siguieron las instrucciones de Phytodetek-ABA-kit (AGDIA Inc., Elkhart, IN). Los datos muestran los promedios de un solo experimento biológico realizado por triplicado.

Fig. 20. Geles bidimensionales de los proteomas de la línea 11.5 que sobre-expresa *CpMYB10* bajo la regulación del promotor constitutivo 35S vs. una línea transgénica control que fue transformada únicamente con el vector *pBin35S*-*NOS*. Se utilizaron plántulas de 15 d tratadas con ABA 100 µM por 16 hr, ó sin tratamiento. El punto Isoeléctrico analizado es amplio (3-10). La fracción de proteínas ácidas se encuentra al lado izquierdo de cada gel.

Fig. 21. Geles bidimensionales de los proteomas de la línea 11.5 que sobre-expresa *CpMYB10* bajo la regulación del promotor constitutivo 35S vs. una línea transgénica control que fue transformada únicamente con el vector *pBin35S*-*NOS*. Se utilizaron plántulas de 15 d tratadas con ABA 100 µM por 16 hr, ó sin tratamiento. El punto isoeléctrico analizado es amplio (4-7). La fracción de proteínas mas ácidas se encuentra al lado izquierdo de cada gel.

Fig 22. Proteínas expresadas diferencialmente en respuesta a ABA entre las plantas 35S-CpMYB10 vs. las plantas control. Se muestran ampliaciones de ciertas regiones de los geles presentados en la Fig. 21. Algunas de estas proteínas fueron identificadas por espectrometría de masas utilizando un equipo tipo MALDI-ToF ("Matrix Assisted Lasser Desorption Ionization-Time of Flight"), y se muestran en la parte baja de la figura.

VI. DISCUSION

VI.1 CINÉTICAS DE EXPRESIÓN DE CPMYB10, CPMYB5 Y CPMYB7 EN RESPUESTA A ABA Y SEQUÍA.

En este trabajo se realizó un análisis detallado del patrón de expresión de *CpMYB10* utilizando varías estrategias: RT-PCR, RT-PCR *in situ*, y también mediante el uso de plantas transgénicas heterólogas que portan la fusión del promotor de *CpMYB10* con el gen reportero GUS. De hecho, el gen que en este trabajo fue estudiado con mayor profundidad fue *CpMYB10*, y le siguen *CpMYB5* y finalmente *CpMYB7*. Dos razones resultaron fundamentales para escoger RT-PCR como el método de estudio de *CpMYB10*: 1) Su bajo nivel de expresión, que dificilmente es detectado por "Northern"; y 2) el elevado nivel de identidad que presenta *CpMYB10* con los otros dos genes tipo MYB que también se analizaron en este trabajo (*CpMYB5* y *CpMYB7*). En cuanto a las regiones codificantes, la identidad presente entre *CpMYB10* y *CpMYB5* a nivel de nucleótidos es de 98.7%, mientras que con *CpMYB7* es de 90%. En términos de los aminoácidos deducidos de la secuencia nucleotídica, al compararse la identidad entre las proteínas completas de CpMYB10 versus CpMYB5 y CpMYB7, resulta en 98% y 96%, respectivamente. Esto sugiere que las tres proteínas pudieran estar realizando funciones redundantes en Craterostigma. De hecho, en el presente trabajo se clonó y secuenció el cDNA correspondiente a CpMYB10, a partir de los productos de PCR obtenidos en los análisis de expresión de este gen.

Datos previos reportados por Iturriaga y colaboradores (1996) muestran que el uso de una sonda común para estos tres *MYBs* en experimentos tipo "Northern", la expresión de alguno (s) de estos genes es inducida por ABA en células de callos de *C. plantagineum* y en raíces sometidas a sequía, pero no se detectó su expresión en hojas ni en semillas de esta planta. Debido al alto nivel de identidad entre estos tres genes, en el trabajo mencionado resultó difícil atribuir los cambios de expresión observados a alguno de los genes en cuestión de manera específica. En esta tesis, se decidió abordar el problema utilizando RT-PCR, que es una técnica mucho más sensible y específica. Para la amplificación de *CpMYB10, CpMYB5* y *CpMYB7* se utilizaron oligonúcleotidos específicos que amplifican toda la región codificante para cada uno de estos genes. Estos iniciadores específicos se anclan sobre las regiones UTR 5' y 3' de estos genes. De hecho, en el presente trabajo se clonó y secuenció el cDNA correspondiente a *CpMYB10,* a partir de los productos de PCR obtenidos en los análisis de expresión de este gen. La

secuencia determinada del producto amplificado resulto ser igual a la secuencia esperada para CpMYB10.

Se realizaron cinéticas de expresión de CpMYB10 en plantas de Craterostigma tratadas con ABA ó deshidratación, y a solo unos cuantos minutos (min) de haberse iniciado el tratamiento, tanto en hojas como en raíces de Craterostigma se induce la expresión del gen CpMYB10 en respuesta a deshidratación y también a ABA. En las hojas, la expresión máxima de CpMYB10 se alcanza a los 15 min de deshidratación, y de hecho esta expresión va decayendo con el paso del tiempo. La rápida inducción observada y el repentino decaimiento de la expresión de CpMYB10, sugiere que este gen pudiera tener un papel clave en la activación de genes de respuesta a estrés hídrico en las hojas de Craterostigma. En cambio, en las raíces de Craterostigma sometidas a deshidratación se observó un patrón de expresión bifásico, ya que se observa la inducción desde los 15 y se mantiene a los 30 min de tratamiento, pero existe una desaparición repentina del transcrito a 1 hora de iniciado el tratamiento. El transcrito vuelve a detectarse, aunque débilmente, a las 3 hrs, para posteriormente volver a incrementase a niveles semejantes a los iniciales hasta las 16 y 48 hrs (que fueron los tiempos más largos analizados en el experimento). Este tipo de inducción bifásica también ha sido observado en los genes AREB1 y AREB2 de Arabidopsis. Estos genes codifican para FTs tipo b-ZIP que participan en la regulación de la LEA rd29B (Uno et al., 2000). Es probable que esta respuesta bifásica signifique que CpMYB10 pudiera estar regulando dos grupos distintos de genes, aunque no se puede descartar que en ambos picos de expresión los blancos de CpMYB10 sean los mismos. Por otro lado, en respuesta a ABA el gen CpMYB10 presenta respuestas distintas a las observadas ante deshidratación. En hoja y raíces de Craterostigma el tratamiento con ABA enciende la expresión de CpMYB10 desde los 15 min, y esta inducción se mantiene durante el transcurso del experimento. A principios de los años noventa, se reportó que cuando las plantas de Craterostigma son sometidas a deshidratación por 30 min, el contenido relativo de agua (RWC) es de aproximadamente 90%, y que también se observa la expresión inducida de varios genes (Bartels et al., 1990). A las 16 hr de deshidratación, el RWC es de aproximadamente 20%, y baja a 2.5% si la deshidratación se prolonga hasta las 48 hr. De hecho, a los dos días de deshidratación el estado general observado en las hojas de Craterostigma es el siguiente: se ha perdido la clorofila, existen cambios ultraestructurales evidentes (como el enrevesamiento de las paredes celulares), encogimiento de organelos, y pérdida de la grana cloroplastica (Bartels et al., 1990). Por lo tanto, es probable que en Craterostigma, CpMYB10 transactive tanto genes de respuesta temprana como también de respuesta tardía.

Las respuestas que presenta el gen CpMYB5 ante sequía y ABA son distintas a las de CpMYB10. Al menos dentro de los tiempos que fueron analizados, no se detecto el transcrito de CpMYB5 en hojas de Craterostigma deshidratadas. A semejanza de la respuesta de CpMYB10, en raíces deshidratadas de Craterostigma se también observó una respuesta bifásica de CpMYB5, ya que el transcrito se detecta a los 30 min y desaparece desde 1-3 hrs del tratamiento, para volverse a detectar a las 16 hrs. Por lo que respecta a los tratamientos con ABA, en hojas de Craterostigma se detectó la acumulación de CpMYB10 desde los 15 min, pero su transcrito fue apenas detectable a los desde 1 hr de tratamiento hasta las 48 hr que fue el tiempo más tardío analizado en el experimento. En raíces de Craterostigma tratadas con ABA, se detectó una débil expresión basal de CpMYB10 en el control (raíces expuestas a agua durante 48 hrs). Sin embargo, desde los 15 min se puede observar un aumento en la acumulación del transcrito de CpMYB5, y estos niveles suben y bajan a lo largo de la cinética, aunque no desaparecen. Esto podría sugerir que existe una expresión bifásica de CpMYB5 en las raíces de CpMYB10, tanto en respuesta a ABA con también ante sequía.

Bajo las mismas condiciones descritas se analizó la expresión de CpMYB7, aunque nunca se detectó la acumulación de su transcrito. Solo en un experimento del cual no se realizaron repeticiones, se detectó una ligera acumulación de CpMYB7 en hojas de Craterostigma tratadas con ABA. Estos datos indican que CpMYB7 podría tener una nula (ó escasa) participación en la regulación de las respuestas de Craterostigma ante ABA y sequía, al menos bajo las condiciones analizadas. La clona de cDNA que para CpMYB7 aislaron Iturriaga y colaboradores (1996) fue obtenida a partir de un banco de cDNA preparado a partir de callos de Craterostigma tratados con ABA. En los callos, al ser masas de células indiferenciadas, es posible que los mecanismos de regulación de CpMYB7 sean distintos a los presentes en una planta completa. Aún más, en este trabajo siempre se utilizaron plantas jóvenes de Craterostigma. No se puede descartar que CpMYB7 responda ABA o sequía en otros estados de desarrollo, ó inclusive otros tejidos que no fueron analizados en este trabajo (ej. flores, semillas).

VI.2 PATRONES DE EXPRESIÓN DE CPMYB10 Y CPMYB5 EN HOJAS Y RAÍCES DE CRATEROSTIGMA

Los patrones de expresión obtenidos para los dos genes analizados, *CpMYB10* y *CpMYB5*, son consistentes con la participación de ambos en la regulación de la tolerancia a estrés en Craterostigma. En

el inicio del análisis, se intentaron técnicas convencionales de hibridación *in situ* que resultaron infructuosas debido al bajo nivel de expresión que presentan ambos genes. En un intento por lograr una hibridación más especifica, se usó sin éxito el marcaje tanto radioactivo como no radioactivo (DIG) de sondas que cubrían las regiones carboxilo terminal de *CpMYB10* ó de *CpMYB5* sin las regiones correspondientes a los dominios MYB que son muy conservados entre los genes de la familia. Finalmente, los patrones de expresión de *CpMYB10* y *CpMYB5* fueron determinados utilizando la técnica de RT-PCR *in situ* descrita por Xoconostle-Cázares y colaboradores (1999). El uso de esta técnica resultó idóneo para los objetivos de este trabajo, ya que al mismo tiempo que permite amplificar transcritos de baja expresión, también da el mismo nivel de sensibilidad del PCR, ya que se usan oligos específicos para el gen en cuestión.

Utilizando cortes *in vivo* hechos a mano sobre tejidos de Craterostigma tratados con ABA, el transcrito de CpMYB10 se detectó en los siguientes tipos celulares de las hojas: epidermis, parénquima esponjoso y de empalizada, y hazes vasculares. En raíces tratadas con ABA, la localización del transcrito de CpMYB10 se restringió a los cilindros vasculares y a algunas células aisladas del córtex. Por lo que respecta a los tejidos control, se detectó una señal muy débil del transcrito de CpMYB10 en la epidermis y en algunas células del córtex y haz vascular. La expresión de CpMYB10 en raíces control fue totalmente indetectable. Estos datos indican que en respuesta a ABA, el transcrito de CpMYB10 se incrementa de forma rápida y drástica en ciertos tipos celulares muy particulares de hojas y raíces de Craterostigma. Relacionando estos datos con los encontrados para CpMYB10 en respuesta a CHX, es probable que exista un represor con afinidad al promotor de CpMYB10 que permita únicamente la expresión basal de este gen, y que en condiciones de estrés se libere el promotor permitiendo así la acumulación del transcrito que al traducirse ira a regular a sus genes blancos. El hecho de que la proteína CpMYB10 tenga la capacidad de unirse a su propio promotor podría sugerir que CpMYB10 estuviera autoregulando a su propio promotor.

Por lo que respecta a CpMYB5, se observó una acumulación drástica de su transcrito, pero a diferencia con CpMYB10, en hojas tratadas con ABA la expresión de este gen se restringe a las células del parénquima. Aparentemente no existe expresión de CpMYB5 en la epidermis de las hojas de Craterostigma. En las hojas control, de detecto una señal muy débil de CpMYB5 en células aisladas del parénquima. En los cortes de raíces control, se observó una señal muy débil que se restringe a los haces vasculares, pero esta señal se incrementa drásticamente en las células del córtex cuando las raíces son tratadas con ABA. Especialmente el patrón de expresión de CpMYB5 y CpMYB10 en las raíces, indica

que ambos genes responden a ABA pero en distintos tipos celulares, lo cual sugiere que podrían estar controlando la expresión de genes blanco cuya expresión es requerida en distintos tipos celulares.

VI.3 LOS PROMOTORES DE *CPMYB10* Y *CPMYB5* REGULAN LAS RESPUESTAS DE UN GEN REPORTERO ANTE ABA Y ESTRÉS EN EL FONDO GENÉTICO DE ARABIDOPSIS.

El papel del gen CpMYB10 en las respuestas a estrés medioambiental quedó respaldado cuando se analizó su promotor en el fondo heterólogo de Arabidopsis. Estos experimentos muestran la inducción del gen GUS regulado por el promotor de CpMYB10 (P10) en las plantas transgénicas de Arabidopsis en respuesta a ABA y deshidratación. Cuando estas plantas son sometidas a estrés por deshidratación se observó la expresión de GUS en los tejidos vasculares de hojas, pero esta inducción fue aún más fuerte en la punta de las raíces, zona del meristemo apical, y hojas emergentes. Se sabe que las raíces y la cofia radicular participan en la percepción del estatus hídrico del ambiente, y activan la translocación de ABA de las raíces a los tallos (Zhang et al., 1987). Tomando en cuenta lo anterior, es probable que CpMYB10 juegue un papel importante en este proceso. En el segundo tratamiento analizado en las plantas transgénicas portadoras de la fusión P10/GUS, el ABA induce una respuesta todavía mas fuerte en todos los tejidos vegetativos, aunque no se detectó tinción por GUS en las puntas de las raíces. La cuantificación de la actividad de GUS mostró que a pesar de que al nivel de la planta completa el ABA induce la respuesta más fuerte, el tratamiento por deshidratación induce una actividad de GUS 2 veces mas fuerte en las raíces. Además, en respuesta a ABA la inducción máxima de GUS se observó en plántulas de 6 días de edad, mientras que en la caso de la deshidratación, el pico máximo de inducción de GUS se alcanzó en plántulas de 21 d. Por el otro lado, en las plantas sin estrés la actividad de GUS se detectó débilmente en la región del meristemo apical, mientras que en la actividad de GUS fue muy fuerte en granos de polen. La expresión del P10 en los granos de polen maduros probablemente este reflejando el hecho de que este tejido se encuentra programado para la tolerancia a la deshidratación, y tal vez, sugiriendo que CpMYB10 participa en la regulación de genes del polen que responden a estrés. Sin embargo, no se puede descartar que ocurran eventos de regulación postranscripcional en las plantas transgénicas, ya que la región UTR 5' de CpMYB10 se encuentra presente en la construcción usada para transformar Arabidopsis. También es probable que otras regiones, como la región UTR 3' ó regiones intergénicas de CpMYB10, sean requeridas para la regulación de este gen.

Las respuestas a estrés son distintas en los análisis histoquímicas de las transgénicas de Arabidopsis que portan el promotor de CpMYB5 (P5) fusionado al gen GUS. Para obtener esta construcción, primero se procedió a subclonar y secuenciar alrededor de 1 Kb correspondiente a la región promotora de CpMYB5. La actividad de GUS detectada en las hojas de estas plantas fue prácticamente la misma en los tratamientos de ABA, NaCl y frío (4°C), aunque la inducción es mayor en respuesta a deshidratación y aparentemente cubre otros tipos celulares de la hoja. A diferencia de lo observado en el caso de P10, en plantas transgénicas P5/GUS control no se detectó expresión basal en las hojas ni en la zona del meristemo apical. Sin embargo, si existe una expresión basal en algunas zonas de las raíces control. Esta expresión basal radicular parece incrementarse únicamente en respuesta a deshidratación y NaCl, pero bajo el tratamiento de frío esta inducción se restringe a la zona más apical de la raíz principal. Además, a diferencia del P10, no existe expresión de GUS en las puntas de las raíces de las plantas P5/GUS. No se puede descartar, al igual que para el caso de P10, que para la regulación de CpMYB5 sean importantes otras regiones no incluidas en la construcción usada para transformar Arabidopsis. Existe una gran identidad entre las regiones promotoras de CpMYB10 y de CpMYB5. Muchas de las regiones en cis predichas para el promotor de CpMYB10 también se encuentran en P5, aunque existen algunas diferencias en el número y disposición de ellos. Estas sutiles diferencias entre las secuencias de ambos promotores se suman a las diferencias ya discutidas en la expresión de GUS mediada por P10 y por P5 para explicar sus distintos comportamientos. Lo que queda claro, es que ambos promotores responden a ABA y sequía. Las transgénicas que portan P5/GUS no fueron posteriormente analizadas a las mismas edades a que fueron analizadas las plantas P10, y tampoco se cuantificaron las actividades de GUS. Para poder hacer un análisis comparativo más real, será interesante complementar este análisis a las mismas edades.

VI.4 CPMYB10 ES UN GEN DE RESPUESTA PRIMARIA

Tanto en animales como en plantas, el uso de inhibidores de la síntesis de proteínas en estudios de transcripción ha permitido la caracterización de genes cuya inducción es estimulada aún en la ausencia de síntesis de proteínas. A este tipo de genes se les consideran como genes de respuesta primaria, y resulta interesante que muchos FTs presentan este tipo de respuesta independiente de la síntesis de proteínas *de novo* y por ello son considerados como genes de respuesta primaria. (Herschman, 1991;

Fujimoto *et al.*, 2000). Los genes de respuesta secundaria son aquellos genes que requieren de la síntesis de proteínas *de novo* para su expresión. En base a este razonamiento, se decidió analizar la expresión de *CpMYB10* en presencia de un inhibidor de la síntesis de proteínas conocido como cicloheximida (CHX). Cuando los tejidos de Craterostigma son tratados únicamente con CHX, se observó una respuesta muy rápida en la acumulación del transcrito de *CpMYB10*. Por el contrario, el gen utilizado como control de respuesta a ABA (*LEA Cp11-24*) se mantiene apagado, lo cual sugiere que *CpMYB10* es un gen de respuesta temprana y que Cp11-24 es de respuesta tardía. Además, la inducción de *CpMYB10* en respuesta a CHX sugiere que se esta inhibiendo la traducción de un represor de *CpMYB10*, y por lo tanto el promotor de *CpMYB10* queda libre y permite la transcripción de este a partir de componentes de la maquinaria transcripcional preexistentes al momento de iniciar el tratamiento. Otra explicación probable para la acumulación del transcrito de *CpMYB10* en la ausencia de síntesis de proteínas, es que el mRNA de *CpMYB10* se este liberando de la degradación por parte de una RNasa lábil que este siendo inhibida por CHX. En las plantas, estos mismos criterios experimentales han sido usados en la caracterización de varios genes de respuesta primaria a distintos estímulos (Koshiba *et al.*, 1995; Fujimoto *et al.*, 2000; Bouquin *et al.*, 2001; Laskowski *et al.*, 2002).

VI.5 CPMYB10 SE UNE A SU PROPIO PROMOTOR Y AL DE LA LEA CP11-24

La actividad de unión a DNA del FT CpMYB10 se elucidó al analizar las propiedades de una versión recombinante de esta proteína (rCpMYB10) mediante ensayos tipo EMSA ("Electrophoretic Mobility Shift Assay"). Los resultados obtenidos muestran que la proteína rCpMYB10 posee la actividad de unirse a DNA, y que esta unión es específica para dos motivos MYB (TAACTG y GAACTA). El elemento MYB TAACTG se encuentra presente en el promotor de CpMYB10, mientras que la secuencia GAACTA se presenta en la región promotora de Cp11-24. La secuencia TAACTG también es el sitio de reconocimiento de la proteína AtMYB2 (Urao *et al.*, 1993), la cual es la proteína de Arabidopsis con homología más cercana a CpMYB10. La unión de rCpMYB10 al elemento MYB del promotor de Cp11-24 sugiere que esta LEA ("Late-Embryogenesis Abundant") podría ser uno de los blancos del FT CpMYB10. En las hojas de Craterostigma, el gen Cp11-24 codifica para una proteína tipo LEA que junto con otras proteínas esta involucrada en la tolerancia a estrés (Ingram y Bartels, 1996). Como se mencionó

anteriormente, la proteína rCpMYB10 también se une a un elemento MYB presente en su propio promotor. Esto podría indicar un probable mecanismo de autorregulación del gen *CpMYB10*. Este tipo de mecanismos también han sido observados en otros genes vegetales (Schwarz-Sommer *et al.*, 1992; Finkelstein y Lynch, 2000), aunque no se puede excluir la posibilidad de que exista otro FT tipo MYB que pudiera regular al promotor de *CpMYB10*. Al analizar la secuencia deducida para CpMYB10, Iturriaga y colaboradores (1996) observaron tres sitios probables para fosforilación en esta proteína. Por los resultados obtenidos en este trabajo, aparentemente no se requiere de la fosforilación de CpMYB10 para su actividad de unión a DNA *in vitro*.

VI.6 LA EXPRESIÓN ECTÓPICA DE *CPMYB10* CONFIERE FENOTIPOS DE TOLERANCIA A ESTRÉS E INSENSIBILIDAD A GLUCOSA A PLANTAS TRANSGÉNICAS DE ARABIDOPSIS.

Uno de los descubrimientos más importantes del presente estudio fue que la sobre-expresión de CpMYB10 (mediada por el promotor 35S) en Arabidopsis confiere tolerancia a deshidratación y a salinidad en plantas adultas crecidas en maceta, y también aumenta la tolerancia a estrés osmótico a plántulas transgénicas que han germinado en condiciones estresantes. En la literatura existen algunos reportes en donde la sobre-expresión de otros FTs induce un aumento en la tolerancia a estrés. Por ejemplo, la sobre-expresión del FT CBF en plantas de Arabidopsis, provoca un incremento a la tolerancia de temperaturas de congelamiento (Jaglo-Ottosen et al., 1998). También, cuando se sobreexpresa el FT conocido como DREBA1 se observó un incremento en la tolerancia a frío, sequía, y estrés por salinidad. Sin embargo, la expresión constitutiva de este gen (DREB1A) provoca un retraso en el crecimiento de las plantas, mientras que cuando se usó un promotor inducible solo se observaron incrementos mínimos en su tolerancia a estrés (Kasuga et al., 1999). Por otro lado, la sobre-expresión de CpMYB10 no presenta retraso alguno en el crecimiento de las plantas ni ningún otro fenotipo indeseable, solo se observó un incremento en la cantidad de raíces secundarias, y una raíz principal más larga. Como se mencionó anteriormente, se sabe que las raíces y participan en la percepción del estatus hídrico del ambiente (Zhang et al., 1987). Tomando en cuenta las cinéticas y patrones de expresión de CpMYB10 y lo fenotipos observados al sobre-expresarlo en Arabidopsis, se puede sugerir que CpMYB10 podría estar participando en la promoción del crecimiento radicular y en su diferenciación. En contraste con los datos obtenidos en esta tesis, se reportó que la sobre-expresión de AtMYB2 en Arabidopsis genera plantas enanas que no muestran incrementos en su tolerancia a estrés (Abe *et al.*, 2003). Sólo cuando AtMYB2 es co-expresado junto con AtMYC2 se presenta un incremento moderado en la tolerancia a estrés (determinado en ensayos de liberación de electrolitos en presencia de manitol), pero al igual que la expresión individual de AtMYB2, estas plantas también presentan un severo retraso en su crecimiento. En contraste, la sobre-expresión de CpMYB10 de manera individual, es suficiente para aumentar la tolerancia de Arabidopsis a condiciones severas de sequía y salinidad.

En otro orden de ideas, además de tener una función esencial en el metabolismo de las plantas, los azúcares también juegan un papel importante en la regulación del desarrollo y en otros procesos fisiológicos, tales como la fotosíntesis, fotomorfogénesis, floración, y germinación (Smeekens, 2000). En este trabajo, se encontró que la sobre-expresión de CpMYB10 en Arabidopsis también confiere insensibilidad a altas concentraciones de azúcares, además de una respuesta de hipersensibilidad a ABA. En la literatura existen reportes del aislamiento de mutantes de Arabidopsis que exhiben un desarrollo normal y enverdecimiento cotiledonarios cuando son germinadas en altas concentraciones de glucosa (Glc). Se ha reportado la identidad molecular de algunas de estas mutantes (Arenas-Huertero et al., 2000; Finkelstein y Lynch, 2000). Dos de los genes identificados en estos tamizados corresponden a los FTs ABI4 y ABI5. Como se mencionó anteriormente, las mutantes abi4 y abi5 fueron identificadas inicialmente en tamizados que buscaban mutantes insensibles a ABA. Sin embargo, no se conocen a ciencia cierta los mecanismos moleculares por medio de los cuales las mutantes abi4 y abi5 afectan las respuestas a azúcares y a estrés. Una probable explicación para los fenotipos de insensibilidad a ABA observados en las plantas sobre-expresoras 35S-CpMYB10, era que existiera una mayor producción de ABA en estas plantas. Sin embargo, en este trabajo también se midieron los niveles de ABA en una de las líneas transgénicas, los cuales resultaron ser prácticamente los mismos que los de las plantas silvestres. Otra posible explicación para los fenotipos observados en las transgénicas que sobre-expresan CpMYB10, es que la presencia de esta proteína heteróloga provoque la expresión constitutiva de al menos una parte de la batería de genes de Arabidopsis que participan en la vía de señalización de ABA, provocando de esta manera el fenotipo de hipersensibilidad a ABA. Se ha propuesto que ABI4 y ABI5 participan como intermediarios de ambas vías (ABA y azúcares), sugiriendo que existen intersecciones en algunos puntos de ambas rutas de señalización (Arenas-Huertero et al., 2000). Además, un reporte reciente muestra que ABI4 y ABI5 tienen cinéticas y patrones de expresión distintas cuando las plantas son retadas en presencia de altas concentraciones de azúcares o en presencia de ABA (Arroyo et al., 2003), lo cual sugiere que el estado fisiológico de las plantas es lo que determina la expresión de estos

genes. Dicho de otra manera, *AB14* responde en un cierto momento de la vía de señalización de ABA, mientras que la expresión de *AB14* inducida por azúcares puede llegar a ser totalmente distinta en tiempo y espacio, y los mismo parece ocurrir con *AB15* (Arroyo *et al.*, 2003). Es probable que la sobre-expresión de *CpMYB10* este provocando un efecto negativo en la expresión de algún regulador importante de la señalización de azúcares. Curiosamente, en las plantas sobre-expresoras de *CpMYB10* no se observaron cambios sustanciales en la expresión de *AB14* ni de *AB15*. Sin embargo, es probable que si se encuentre modificada la expresión de otros reguladores de la vía todavía desconocidos. En contraste, a pesar de que la sobre-expresión de *AtMYB2* también induce un fenotipo de hipersensibilidad a ABA, no se reportó algún efecto en la respuesta a azúcares.

Una pregunta indispensable a contestar, era el conocer que genes de Arabidopsis eran los responsables de los fenotipos de tolerancia a estrés que se observaron al sobre-expresar CpMYB10. Para resolver este punto se analizó la expresión de 17 genes involucrados en la tolerancia a estrés, en la percepción y metabolismo de azúcares, o bien en la biosíntesis y señalización de ABA. Estos genes analizados fueron seleccionados por presentar motivos tipo MYB en sus promotores. Resulta interesante que 8 de estos genes mostraron algún tipo de alteración en su expresión en las plantas sobre-expresoras de CpMYB10. Por ejemplo, los transcritos de los gene que codifican proteínas hidrofílicas RD29A y COR15a, y también de la alcohol deshidrogenasa ADH1, se encuentran sobre-expresados cuando las plantas 35S-CpMYB10 son pre-tratadas con ABA. Se reportó previamente que la tanto la sobreexpresión de DREB1A, así como también la de CBF1 (ambos son FTs de respuesta a estrés), provocan un aumento de la expresión de varios genes que codifican proteínas tipo LEA, entre los que se incluyen RD29A y COR15a (Jaglo-Ottosen., 1998; Kasuga et al., 1999). En contraste, la sobre-expresión de AtMYB2 en Arabidopsis solamente activa la expresión de ADH1, aunque la co-expresión de AtMYB2 y AtMYC2 induce un aumento en los niveles de expresión de varios genes, entre ellos RD22, COR6.6, y SUSI (Abe et al., 2003). En el presente trabajo también se encontró que en las plantas sobre-expresoras de CpMYB10 crecidas bajo condiciones control, existe represión de la expresión de varios genes de respuesta a estrés, entre ellos: RD22, COR15a, y P5CS1. Lo anterior sugiere que dependiendo de las condiciones prevalecientes, CpMYB10 pudiera estar funcionando como activador, o bien, como un represor. Para conocer con mayor profundidad los efectos de la sobre-expresión de CpMYB10 sobre la expresión génica general, sería realmente interesante la realización de un análisis más amplio utilizando microarreglos de Arabidopsis.

En otro intento por conocer el efecto de la sobre-expresión de CpMYB10 en el fondo heterólogo de Arabidopsis, también se realizaron análisis proteómicos utilizando electroforesis de doble dimensión y espectrometría de masas por MALDI-ToF ("Matrix Assisted Lasser Desorption Ionization-Time of Flight"). Al comparar los proteomas de las plantas silvestres con el de las transgénicas 35S-CpMYB10, se detectaron algunos cambios. Varias proteínas aparecen de novo, aunque algunos de los cambios identificados corresponden a distintos niveles de expresión de ciertas proteínas. Algunas de estás proteínas (11) fueron identificadas utilizando espectrometría de masas, y varias de ellas corresponden a proteínas claramente relacionadas con respuestas a estrés (proteasa dependiente de ATP, factor transcripcional RAV2, anhidrasa carbónica, glutatión transferasa, ascorbato reductasa dependiente de GSH, chaperonina HSP60). Es probable que bajo otras condiciones de tratamiento se pudieran detectar otras proteínas. Además, se sabe que el uso de electroforesis bidimensional solo permite la visualización de proteínas con altos niveles de expresión, lo cual deja abierta la posibilidad de que otras proteínas de baja expresión no hayan sido detectadas en nuestros análisis. Sin embargo, es interesante que sin tratamiento con ABA las plantas sobreexpresoras de CpMYB10 (35S-CpMYB10) presenten algunas proteínas que solo aparecen en las plantas control (35S-NOS) en respuesta a ABA (proteasa dependiente de ATP y peptidil isopropil isomerasa). Esto sugiere que la sobre-expresión de CpMYB10 provoca la expresión de proteínas de respuesta a ABA.

Uniendo los resultados anteriormente expuestos, con los encontrados en los experimentos EMSA, se puede sugerir que esta actividad dual del FT CpMYB10 (activador y represor) pudiera también presentarse en Craterostigma: CpMYB10 funcionando como un represor en condiciones ambientales favorables, y como un activador en condiciones de sequía. Por ejemplo, es probable que bajo condiciones no estresantes, la proteína CpMYB10 tuviera el papel de mantener apagada la expresión transcripcional de *CpMYB10* (y tal vez también de otros genes), pero que bajo condiciones de sequía, de alguna manera cambie el estatus de la proteína (ej. por fosforilación o defosforilación), liberando así el promotor de *CpMYB10* permitiendo su expresión y así cumpliendo posteriormente su papel como activador de genes de respuesta a estrés, como el de la LEA *Cp11-24*, y tal vez también, CpMYB10 active a su propio promotor. Este mecanismo dual podría facilitar el rápido encendido y apagado de genes de respuesta a estrés abiótico (Fig. 23).

Figura 23. Modelo de acción propuesto para el factor transcripcional CpMYB10. CpMYB10 podría funcionar como un represor en condiciones ambientales favorables, y como un activador en condiciones de sequía. Por ejemplo, es probable que bajo condiciones no estresantes, la proteína CpMYB10 tuviera el papel de mantener apagada la expresión transcripcional de CpMYB10 (y tal vez también de otros genes), pero que bajo condiciones de sequía, de alguna manera cambie el estatus de la proteína (ej. por fosforilación o defosforilación), liberando así el promotor de CpMYB10 permitiendo su expresión y así cumpliendo posteriormente su papel como activador de genes de respuesta a estrés, como el de la LEA Cp11-24, y tal vez también, CpMYB10 active a su propio promotor. Este mecanismo dual podría facilitar el rápido encendido y apagado de genes de respuesta a estrés abiótico.

VII. CONCLUSIONES

1) La expresión de *CpMYB10* y *CpMYB5* esta regulada por ABA y deshidratación en hojas y tallos de Craterostigma, mientras que *CpMYB7* no responde a estos estímulos bajo las condiciones analizadas.

2) La expresión de CpMYB10 en hojas de Craterostigma tratadas con ABA se presenta en células del parénquima y epidermis, mientras que CpMYB5 se limita al parénquima. Además, en respuesta a ABA CpMYB10 se expresa en los haces vasculares de raíces de Craterostigma, a diferencia de CpMYB5 que se expresa en células del córtex.

3) La región corriente arriba del ATG de CpMYB10 (1.5 Kb) regula la expresión del gen reportero GUS en respuesta a ABA y sequía; y 1 Kb de la región correspondiente a CpMYB5 regula la expresión de GUS ante ABA y varios factores medioambientales.

4) La expresión de CpMYB10 no requiere de síntesis de proteínas de novo.

5) La proteína CpMYB10 tiene la capacidad de unirse a DNA de manera especifica en sitios de acción en *cis* tipo MYB `presentes en su propio promotor y en el de la LEA *Cp11-24*.

6) La expresión ectópica de CpMYB10 en plantas transgénicas de Arabidopsis provoca una mayor abundancia del sistema radicular y fenotipos de tolerancia a estrés, hipersensibilidad a ABA, e insensibilidad a glucosa.

7) CpMYB10 regula la expresión de genes de respuesta a estrés en el fondo genético de Arabidopsis.
VIII PERSPECTIVAS

1) Análisis comparativo de la regulación mediada por los promotores de *CpMYB10* y *CpMYB5* en Arabidopsis, y ensayar la posible inducción por otros tipos de estrés.

- 2) Expresar las construcciones P10-GUS y P5-GUS en varios fondos genéticos (mutantes abi y aba)
- 3) Mutagénesis de plantas que porten el promotor de CpMYB10 (ó el de CpMYB5) fusionado a luciferesa, para aislar líneas no reguladas por ABA (identificación de reguladores de estos genes).
- 4) Analizar la respuesta adaptativa de las plantas transgénicas 35S-CpMYB10 ante otros estímulos medioambientales (frío, calor, etc.) aplicados de manera individual y combinándolos.
- 5) Realizar un análisis profundo de los genes regulados por *CpMYB10* en las plantas sobre-expresoras 35S-CpMYB10 mediante el uso de microarreglos de Arabidopsis.
- 6) Realizar un estudio más detallado del proteoma de las plantas sobre-expresoras de CpMYB10.
- 7) Mutagénesis de las plantas transgénicas sobre-expresoras de *CpMYB10* con el fin de aislar líneas mutantes sensibles a ABA (recuperación del fenotipo silvestre).
- 8) Analizar el efecto de la sobre-expresión de CpMYB10 en cultivos de interés agrícola.

IX. BIBLIOGRAFIA

- Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., & Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9: 1859-1868.
- Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
- Allan, A.C., Fricker, M.D., Warf, J.L., Beale, M.H., & Trewavas, A.J. (1994). Two transduction pathways mediate rapid effects on abscisic acid in Commelina guard cells. Plant Cell 6: 1319-1328.
- Alonso, J., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker J. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 248: 2148-2152.
- Anderson, B.E., Ward, J.M., & Schroeder, J.I. (1994). Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiology 104: 1177-1183.
- Arenas Huertero, F., Arroyo, A., Zhou, L., Sheen, J., & León, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes and Development 14: 2085-2096.
- Arroyo, A., Bossi, F., Finkelstein, R.R., & León, P. (2003). Three genes that affect sugar sensing (Abscisic Acid Insensitive 4, Abscisic acid Insensitive 5, and Constitutive Triple Response 1) are differentially regulated bu glucose in Arabidopsis. Plant Physiology 133: 231-242.
- Assmann, S.M., & Shimazaki, K.I. (1999). The multisensory guard cell: stomatal responses to blue light and abscisic acid. Plant Physiology 119: 809-815.
- Assmann, S.M. (2002). Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14 (Supplement): S355-S373.
- Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D., & Salamini, F. (1990). Molecular cloning of abscisic acidmodulated genes which are induced during desiccation

of the resurrection plant *Craterostigma plantagineum*. Planta 181: 27-34.

- Bartels, D. & Salamini, F. (2001). Desiccation tolerance in the resurrection plant *Craterostigma plantagineum*. A contribution to the study of drought tolerance at the molecular level. Plant Physiology 127: 1346-1353.
- Beaudoin, N., Serizet, C., Gosti, F., & Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12: 1103-1115.
- Bensmihen, S., To, A., Lambert, G., Kroj, T., Giraudat, J. & Parcy, F. (2004). Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 561: 127-131.
- Bernacchia, G., Salamini, F., & Bartels, D. (1996). Molecular Characterization of the Rehydration Process in the Resurrection Plant *Craterostigma plantagineum*. Plant Physiology 111: 1043-1050.
- Bohnert, H.J., Nelson, D.E., & Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell 7: 1099-1111.
- Bohnert, H.J. & Jensen, R.G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14: 89-87.
- Bouquin, T., Meier, C., Foster, F., Nielsen, ME., & Mundy, J. (2001). Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiology 127: 450-458.
- Boyer, J.S. (1982). Plant productivity and environment. Science 218: 443-448.
- Bray, E.A. (1993). Molecular responses to water deficit. Plant Physiology 103: 1035-1040.
- Bray, E.A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. En: "Biochemistry and Molecular Biology of Plants". Gruissem, W., Buchannan, B., Jones, R. (eds). American Society of Plant Physiologists, Rockville, MD; 1158-1249.
- Chandock, M.R., Ytterberg, A.J., van Wijk, K.J., & Klessig, D.F. (2003). The pathogen-inducible nitric oxid synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113: 469-482.

- Choi, H., Hong, J., Ha, J., Kang, J. & Kim, S. (2000). ABFs: a family of ABA-responsive element binding factors. Journal of Biological Chemistry 275: 1723-1730.
- Chory, J., & Wu, D. (2001). Weaving the complex web of signal transduction. Plant Physiology 125: 77-80.
- Coursol, S., Fan, L.M., Le, Stunff, H., Spiegel, S., Gilroy, S., & Assmann, S.M. (2003). Sphingolipid signaling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423: 651-654.
- Cutler, A. & Krochko, J. (1999). Formation and brakedown of ABA. Trends in Plant Science 4: 472-478.
- Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., & McCourt, P. (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273: 1239-1241.
- Delseny, M., Bies-Etheve, N., Carles, C., Hull, G., Vicient, C., Raynal, M., Grellet, F., & Aspart, L. (2001). Late Embryogenesis Abundant (LEA) protein regulation during Arabidopsis seed maturation. Journal of Plant Physiology 158: 419-427.
- Desikan, R., Griffiths, R., Hancock, J., and Neill, S. (2002). A new role for an old enzyme: nitrate reductasamediated nitric oxide generation is required for abscisic acid-induced stomatal closure in *Arabidopsis thaliana*. Proceedings of the National Academy of Science USA 99: 16314-16318.
- Dias, A.P., Braun, E.L., McMullen, M.D., & Grotewold, E. (2003). Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. Plant Physiology 131: 610-620.
- Ephritikhine, G., Fellner, M., Vannini, C., Lapous, D., & Barbier-Brygoo, H. (1999). The sax1 dwarf mutant of *Arabidopsis thaliana* shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Plant Journal 18: 303-314.
- FranK, W., Phillips, J., Salamini, F., & Bartels, D. (1998). Two dehydration-inducible transcripts from the resurrection plant *Craterostigma plantagineum* encode interacting homeodomain-leucine zipper proteins. Plant Journal 15: 413-421.
- Finkelstein, R.R. (1994). Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant Journal 5: 765-771.

- Finkelstein, R. & Lynch, T. (2000). The Arabidopsis abscisic acid response gene *ABI5* encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609.
- Finkelstein, R.R., Gampala, S.S.L., & Rock, C.D. (2002). Abscisic acid signalling in seeds and seedlings. Plant Cell 14 (Supplement): S15-S45.
- Finkelstein, R.R., & Rock, C.D. (2002). Abscisic acid biosynthesis and response. En: "The Arabidopsis Book". Somerville, C.R. and Meyerowitz, E.M., eds (American Society of Plant Biologist, Rockville, M.D. doi/10.1199/tab.0058, http.www.aspb.org/publications/arabidopsis.
- Foster, R., & Chua, N.H. (1999). An Arabidopsis mutant with deregulated ABA gene expression: Implications for negative regulator function. Plant Journal 17: 363-372.
- Fu, Y., Li, H., & Yang, Z. (2002). The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14: 777-794.
- Fujimoto, SY., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or represors of GCC box-mediated gene expression. Plant Cell 12: 393-404.
- Furini, A., Koncz, C., Salamini, F., & Bartels, D. (1994). Agrobacterium-mediated transformation of the desiccation-tolerant plant *Craterostigma plantagineum*. Plant Cell Reports 14:102-106.
- Furini, A., Koncz, C., Salamini, F., & Bartels, D. (1997). High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of *Craterostigma plantagineum*. EMBO Journal 16: 3599-3608.
- Gaff, D.F. (1971). Desiccation-tolerant flowering plants in Southern Africa. Science 174: 1033-1034.
- Garcia-Mata, C., & Lamattina, L. (2002). Nitric oxid and abscisic acid cross talk in guard cells. Plant Physiology 128: 790-792.
- Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., & McCourt, P. (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12: 1117-1126.
- Gilroy, S., Read, N.D., & Trewavas, A.J. (1990). Elevation of cytoplasmic calcium by caged calcium or caged

inositol triphosphate initiates stomatal closure. Nature 343: 769-771.

- Gilroy, S., & Jones, R. (1994). Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proceedings of the National Academy of Science USA 89: 3591-3595.
- Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., & Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251-1261.
- Giraudat, J., Parcy, F., Bertauche, N., Gosti, F., Leung, J., Morris, P.C., Bouvier-Durant, M., & Vartanian N. (1994). Current advances in abscisic acid action and signalling. Plant Molecular Biology 26: 1557-1577.
- Giraudat, J. (1995). Abscisic acid signalling. Current Opinion in Cell Biology 7: 232-238.
- Goff, S.A., Cone, K.C., & Chandler V.L. (1992). Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes & Development 6: 864-875.
- González-Gusmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodríguez, P.L. (2002). The short chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin into abscisic aldehyde. Plant Cell 14: 1833-1846.
- Grotewold, E., Drummond, B.J., Bowen, B., & Peterson, T. (1994). The Myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76: 543-553.
- Guiltinan, M., Marcotte, Jr. W., & Quantrano, R.S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267-271.
- Hakeda-Susuki, S., Ng, J., Tzu, J., Dietzl, G., Sun, Y., Harás, M., Nardine, T., Luo, L., & Dickson B.J. (2002). Rac function and regulation during Drosophila development. Nature 416: 438-442.
- Hamilton, D.W.A., Hills, A., Kohler, B., & Blatt M.R. (2000). Ca2+ channels at the plasma membrane of sotomatal guard cells are activated by hyperpolarization and abscisic acid. Proceedings of the National Academy of Science USA 97: 4967-4972.

- Herschman, HR. (1991). Primary response genes induced by growth factors and tumor promoters. Annual Review in Biochemistry 60: 281-319.
- Himmelbach, A., Iten, M., & Grill E. (1998). Signalling of abscisic acid to regulate plant growth. Philosophical Transactions Royal Society London Biological Sciences 353: 1439-1444.
- Himmelbach, A., Yang, Y., & Grill, E. (2003). Relay and control of abscísic acid signalling. Current Opinion in Plant Biology 6: 470-479.
- Hobo, T., Kowyama, Y. & Hattori, T. (1999). A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acidinduced transcription. Proceedings of the National Academy of Science USA 96: 15348-15353.
- Hocking, T., Clapham, J., & Cattell, K.J. (1978). Abscisic acid binding to subcellular fractions from leaves of Vicia faba. Planta 138: 303-304.
- Hoeren, F.U., Dolferus, R., Wu, Y., Peacock, W.J., & Dennis E.S. (1998). Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149: 479-490.
- Hornberg, C., & Weiler E. (1984). High-affinity binding sites for abscisic acid on plasmalemma of Vicia faba guard cells. Nature 310: 321-324.
- Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., & Smeekens, S. (2000). The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: Involvement of abscisic acid in sugar responses. Plant Journal 23: 577-585.
- Hunt, L., Mills, L.N., Pical, C., Leckie, C.P., Aitken, F.L., Kopka, J., Mueller-Roeber, B., McAinsh, M.R., Hetherington, A.M., & Gray, J.E. (2003). Phospholipase C is required for the control of stomatal aperture by ABA. Plant Journal 34: 47-55.
- Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., & Shinozaki, K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 y ATMPK6. Plant Journal 24: 655-665.
- Ingram, J. & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review in Plant Physiology & Plant Molecular Biology 47: 377-403.
- Ishitani, M., Xiong, L., Stevenson, B., & Zhu, J.K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic

acid-independent pathways. Plant Cell 9: 1935-1949.

- Iturriaga, G., Leyns, L., Villegas, A., Gharaibeh, R., Salamini, F., & Bartels, D. (1996). A family of novel myb-related genes from the resurrection plant *Craterostigma plantagineum* are specifically expressed in callus and roots in response to ABA or desiccation. Plant Molecular Biology 32: 707-716.
- Jiang, C., Gu, J., Chopra, S., Gu, X., & Peterson T. (2004). Ordered origin of the typical two- and three-repeat Myb genes. Gene 326: 13-22.
- Jin, H., & Martin, C. (1999). Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology. 41: 577-585.
- Jeannette, E., Rona, J.P., Bardat, F., Cornel, D., Sotta, B., & Miginiac, E. (1999). Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on extracellular perception of ABA in *Arabidopsis thaliana* suspension cells. Plant Journal 18: 13-22.
- Jofuku, K.D., den Boer, B.G., Van Montagu, M., & Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225.
- Johnson, R.R., Wagner, R.L., Verhey, S.D., & Walker-Simmons, M.K. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology 130: 837-846.
- Jones, M.A., Shen, J.J., Fu, Y., Li, L., Yang, Z., & Grierson, C.S. (2002). The Arabidopsis Rop GTPase is a positive regulator of both root-hair initiation and tip growth. Plant Cell 14: 763-776.
- Kao, C.Y., Cocciolone, S.M., Vasil, I.K., & McCarty, D.R. (1996). Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS 1, and light activation of the C1 gene of maize. Plant Cell 8: 1171-1179.
- Kim, B.T., Min, Y.K., Asami, T., Park, N.K., Kwon, O.Y., Cho, K.Y., & Yoshida, S. (1999). 2-Fluoroabscisic acid analogs: Their synthesis and biological activities. Journal of Agriculture and Food Chemistry 47:313-317.
- Kinter, M. & Sherman, N.E. (2000). "Protein sequencing and identification using tandem mass spectrometry". Wiley-Interscience Series on Mass Spectrometry. Dominic, M.

Desideri, o & Nico M.M. Nibbering, Series Editors, New York, USA.

- Klempnauer, K.H., Gonda, T.J., & Bishop, J.M. (1982). Nucleotide sequence of the retroviral leukemia gene vmyb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31: 453-463.
- Koornneef, M., Reuling, G., & Karssen, C.M. (1984). The isolation and characterization of abscisic acid-insensitive mutants of *Arabidopsis thaliana*. Physiologia Plantarum 61: 377-383.
- Koshiba, T., Ballas, N., Wong, LM., & Theologist, A. (1995). Transcriptional regulation of *PS-IAA4/5* and *PS-IAA6* gene expression by indole-acetic acid and protein synthesis inhibitors in pea (*Pisum sativum*). Journal of Molecular Biology 253: 396-413.
- Kranz, H.D., Denekamp, M., Greco, R., Jin, H., Leyva, A., Meissner, R.C., Petroni, K., Urzainqui, A., Bevan, M., Martin, C., Smeekens, S., Tonelli, C., Paz-Ares, J., & Weisshaar, B. (1998). Towards functional characterisation of the members of the R2R3-MYB gene family from *Arabidopsis thaliana*. Plant Journal 16: 263-276.
- Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., & Schroeder, J.I. (2003). NADPH oxidase *AtbohD* and *AtbohF* genes function in ROS-dependent ABA signaling in *Arabidopsis*. EMBO Journal 22: 2623-2633.
- Laby, R., Kincaid, M., Kim, D., & Gibson, S. (2000). The Arabidopsis sugar-insensitive mutants *sis4* and *sis5* are defective in abscisic acid synthesis and response. Plant Journal 23: 587-596.
- Laskowski, M, Dreher, KA, Gehring, MA, Abel, S, Gensler, AL, & Sussex, IM. (2002). FQRI, a novel primary auxin-response gene, encodes a flavin mononucleotidebinding quinine reductase. Plant Physiology 128: 578-590.
- Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., and Zhu, J.K. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encondes a ring finger protein that displays coldregulated nucleo-cytoplasmic partitioning. Genes & Development 15: 912-924.
- Lee, S., Choi, H., Suh, S., Doo, I.S., Oh, K.Y., Choi, E.J., Schroeder-Taylor, A.T., Low, P.S., & Lee, Y. (1999). Oligogalacturonid acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen

species from guard cells of tomato and Commelina communis. Plant Physiology 121: 147-152.

- Lemichez, E., Wu, Y., Sanchez, J.P., Mettouchi, A., Mathur, J., & Chua, N.H. (2001). Inactivation of AtRAC1 by abscisic acid is essential for stomatal closure. Genes and Development 15: 1808-1816.
- Lemtiri-Chlieh, F., MacRobbie, E.A.C., & Brearley, C.A. (2000). Inositol hexakisphosphate is a physiological signal regulating the K⁺-inward rectifying conductance in guard cells. Proceedings of the National Academy of Science USA 97: 8687-8692.
- Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F., & Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448-1452.
- Leung, J., Merlot, S., & Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE 2 (ABI2) and ABI1 genes encode redundant protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771.
- Li, H., Shen, J.J., Zheng, Z.L., Lin, Y.K., & Yang, Z.B. (2001). The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiology 126: 670-684.
- Li, J., Wang, X.Q., Watson, M.B., & Assmann, S.M. (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287: 300-303.
- Lipsick, J.S. (1996). One billion years of Myb. Oncogene 13: 223-235.
- Liu, Q., Kasuga, M., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391 1406.
- Lopez-Molina, L., Mongrand, S., McLachlin, D., Chait, B.T. & Chua, N.H. (2002). ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant Journal 32: 317-328.
- MacRobbie, E.A.C. (1995a). Effects of ABA on 86Rb⁺ fluxes at plasmalemma and tonoplast of stomatal guard cells. Plant Journal 7: 835-843.

- MacRobbie, E.A.C. (1995b). ABA induced ion efflux in stomatal guard cells: multiple actions of ABA inside and outside the cell. Plant Journal 7: 565-576.
- Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., & Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of *Nicotiana plumbaginifolia*, a gene involved in abscisic acid biosynthesis and corresponding to ABA locus of *Arabidopsis thaliana*. EMBO Journal 15: 2331-23342.
- Martin, C., & Paz-Ares, J. (1997). MYB transcription factors in plants. Trends in Genetics 13: 67-73.
- McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M., & Vasil, I.K. (1991). The viviparous 1 developmental gene of maize encodes a novel transcription activator. Cell 66: 895-905.
- McCue, K.F. & Hanson, A.D. (1990). Drought and salt tolerance towards understanding and application. Trends in Biotechnology 8: 358-362.
- Meinhard, M., Rodriguez, P.L., & Grill, E. (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta 214: 775-782.
- Meinke, D.W., Franzmann, L.H., Nickle, T.C., & Yeoung, E.C. (1994). Leafy cotyledon mutants of Arabidopsis. Plant Cell 6: 1049-1064.
- Merlot, S., François, G., Guerrier, D., Vavasseur, A. & Giraudat, J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant Journal 25: 295-303.
- Molendijk, A.J., Bischoff, F., Rajendrakumar, C.S.V., Friml, J., Braun, M., Gilroy, S., & Palme, K. (2001). *Arabidopsis thaliana* Rop GTPase are localizad to tips of roor hairs and control polar growth. EMBO Journal 20: 2779-2788.
- Molina, J. (1979). "Recursos agrícolas de zonas áridas y semiáridas de México". Colegio de Postgraduados, Chapingo, México.
- Mustilli, A.C., Merlot, S., Vavasseur, A., Frenzi, F., & Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089-3099.

- Nakagawa, H., Ohmiya, K. & Hattori, T. (1996). A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant Journal 9: 217-227.
- Nantel, A. & Quatrano, RS. (1996). Characterization of three basic leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. Journal of Biological Chemistry 271: 31296-31305.
- Neill, S.J., Desikan, R., Clarke, A., & Hancock, J.Y. (2002). Nitric oxide is a novel component of abscisic acid signalin in stonatal guard cells. Plant Physiology 128: 13-16.
- Ng, C.K.Y., Carr, K., McAinsh, M.R., Powell, B., & Hetherington, A.M. (2001). Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410: 596-599.
- Oeda, K., Salina, J. & Chua, NH (1991). A tobacco bZIP transcription activator (TAF-1) binds to a G-box like motif conserved in plant genes. EMBO Journal 10: 1793-1802.
- Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J., & Marks, M.D. (1991). A myb gene required for leaf trichome differentiation in *Arabidopsis* is expressed in stipules. Cell 67: 483-493.
- Pedron, J., Brault, M., Nake, C., & Miginiac, E. (1998). Detection of abscisic-acid-binding proteins in the microsonal protein fraction of *Arabidopsis thaliana* with abscisic-acid-protein conjugates used as affinity probes. European Journal of Biochemistry 252: 385-390.
- Piatkowski, D., Schneider, K., Salamini, F., & Bartels, D. (1990). Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant *Craterostigma plantagineum* and their relationship to other water-stressed genes. Plant Physiology 94: 1682-1688.
- Porembski, S. & Barthlott, W. (2000). Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecology 151: 19-28.
- Quesada, V., Ponce, M., & Micol, J. (2000). Genetic analysis of salt-tolerant mutants in *Arabidopsis thaliana*. Genetics 154: 421-436.
- Rabinowicz, P.D., Braun, E.L., Wolfe, A.D., Bowen, B., & Grotewold, E. (1999). Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants. Genetics 153: 427-444.

- Raskin, I., & Ladyman, J. (1988). Isolation and characterization of a barley mutant with abscisic-acidinsensitive stomata. Planta 173: 73-78.
- Razem, F.A., Luo, M., Liu, J.H., Abrams, S.R., & Hill, R.D. (2004). Purification and Characterization of a Barley Aleurone Abscisic Acid-binding Protein. Journal of Biological Chemistry 279: 9922-9929.
- Reichmann, J.L., & Ratcliffe, O.J. (2000). A genomic perspective of plant transcription factors. Current Opinion in Plant Biology 3: 423-434.
- Robertson, D. (1955). The genetics of vivipary in maize. Genetics 40: 745-760.
- Rook, F., Corke, F., Card, R., Munz, G., Smith, C., & Bevan, M.W. (2001). Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant Journal 26: 421-433.
- Rook, C. (2000). Pathways to abscisic acid-regulated gene expression. New Phytologist 148: 357-396.
- Rosinski, J.A., & Atchler, W.R. (1998). Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. Journal of Molecular Evolution 46: 74-83.
- Sanchez, J.P., & Chua, N.H. (2001). Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13: 1143-1154.
- Schultz, T.F., & Quatrano, R.S. (1997). Evidence for surface perception of abscisic acid by rice suspension cells as assayed by Em gene expression. Plant Science 130: 63-71.
- Schwartz, A., Wu, W.H., Tucker, E.B., & Assmann, S.M. (1994). Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proceedings of the National Academy of Science USA 91: 4019-4023.
- Schwartz, S.H., Léon-Kloosterziel, K.M., Koornneef, M., & Zeevaart, J.A.D. (a). (1997). Biochemical characterization of the aba2 and aba3 mutants in *Arabidopsis thaliana*. Plant Physiology 114: 161-166.
- Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A.D., & McCarty, D.R. (b). (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1874.

- Schwartz, S.H., Xiaoqiong, Q, & Zeevaart, J.A.D. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiology 131: 1591-1601.
- Shen, Q., & Ho, T.H.D. (1995). Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307.
- Sheen, J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 1900-1902.
- Smeekens, S. (2000). Sugar-induced signal transduction in plants. Annual Review in Plant Physiology & Plant Molecular Biology 51: 49-81.
- Söderman, E., Mattson, J., & Engström, P. (1996). The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant Journal 10: 375-381.
- Steber, C.M., Cooney, S.E., & McCourt, P. (1998). Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149: 509-521.
- Stracke, R., Werber, M., & Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4: 447-456.
- Sturaro, M., Vernieri, P., Castiglioni, P., Binelli, G., & Gavazzi, G. (1996). The rea (red embryonic axis) phenotype describes a new mutation affecting the response of maize embryos to abscisic acid and osmotic stress. Journal of Experimental Botany 47: 755-762.
- Susuki, M., Kao, C.Y., & McCarty, D.R. (1997). The conserved B3 domain of VIVIPAROUS 1 has a cooperative DNA binding activity. Plant Cell 9: 799-807.
- Tahtiharju, S, & Palva, T. (2001). Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in *Arabidopsis thaliana*. Plant Journal 26: 461-470.
- Thompson, M.A. & Ramsay, R.G. (1995). Myb: an old oncoprotein with new roles. BioEssays 17: 341-350.
- Ullah, H., Chen, J.G., Young, J., Im, K.H., Sussman, M., & Jones, A. (2001). Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292: 2066-2069.
- Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K & Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic

leucine zipper transcription factors involved in an abscisic acid- dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Science USA 97: 11632-11637.

- Urao, T., Yamaguchi-Shinozaki, K., Urao, S., & Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved Myb recognition sequence. Plant Cell 5: 1529-1539.
- Urao, T., Noji, M-a., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1996). A transcriptional activation domain of ATMYB2, a drought-inducible Arabidopsis Myb-related protein. Plant Journal 10: 1145-1148.
- Villalobos, M.A., Bartels, D., & Iturriaga, G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the *CpMYB10* transcription factor gene. Plant Physiology 135: 309-324.
- Walker-Simmons, M.K., Holappa, L.D., Abrams, G.D., & Abrams, S.R. (1997). ABA metabolites induce group 3 LEA mRNA and inhibit germination in wheat. Physiologya plantarum 100: 474-480.
- Wang, X.Q., Ullah, H., Jones, A., & Assmann, S. (2001). G protein regulation of ion channels and abscisic acid signaling in *Arabidopsis* guard cells. Science 292: 2070-2072.
- Wilson, A., Pickett, F., Turner, J., & Estelle, M. (1990). A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Molecular & General Genetics 222: 377-383.
- Wood, A.J. & Oliver, M.J. (1999). Translational control in plant stress: the formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of *Tortula ruralis* gametophytes. Plant Journal 18: 359-370.
- Xiong, L., Ishitani, M., Lee, H., & Zhu, JK. (2001a) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulforase and modulates a cold stress- and osmotic stress-responsive gene expression. Plant Cell 13: 2063-2083.
- Xiong, L., & Zhu, J.K. (2001b). Abiotic stress signal transduction on plants: Molecular and genetic perspectives. Physiologia Plantarum 112: 152-166.
- Xiong, L., Ishitani, M., Lee, H., Zhang, C., & Zhu, J.K. (2001c). *FIERY1* encoding an inositol poluphosphate 1-

phosphatase is a negative regulator of abscisic acid and stress signaling in *Arabidopsis*. Genes and Development 15: 1971-1984.

- Xoconostle-Cázares, B., Xinag, Y., Ruiz-Medrano, R., Wang, HL., Yoo, BC., McFarland, KC., Franceschi, VR., & Lucas, WJ (1999). Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283: 94-98.
- Yang, Z. (2002). Small GTPases: Versatile signaling switches in plants. Plant Cell 14 (Supplement): S375-S388.
- Yamazaki, D., Yoshida, S., Asami, T., & Kuchitsu, K. (2003). Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant Journal 35: 119-139.
- Yu, E.Y., Kim, S.E., Kim, J.H., Ko, J.H., Cho, M.H., & Chung, I.K. (2000). Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. Journal of Biological Chemistry 275: 24208-24214.

- Zeevaart, J.A.D. & Creelman, R.A. (1988). Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Molecular Biology 39: 439-473.
- Zhang, D.P. Chen, S.W., Peng, Y.B., & Shen, Y.Y. (2001). Abscisic acid-specific binding sites in the plesh of developing apple fruit. Journal of Experimental Botany 52: 2097-2103.
- Zhang, D.P., Wu, Z.Y., Li, X.Y., & Zhao, Z.X. (2002). Purification and identification of a 42-kilodlton bascisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiology 128: 714-725.
- Zhang, J., Schurr, U., & Davies, WJ. (1987). Control of stomatal behaviour by abscisic acid which apparently originates in rotos. Journal of Experimental Botany 38: 1174-1181.
- Zheng, Z.L., Nafisi, M., Tam, A., Li, H., Crowell, D.N., Chary, S.N., Schroeder, J.I., Shen, J., & Yang, Z. (2002). Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of Abscisic Acid responses in Arabidopsis. Plant Cell 14: 2787-2797.
- Zhu, J. (2002). Salt and drought stress signal transduction in plants. Annual Review in Plant Biology 53: 247-273.