

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO

FACULTAD DE INGENIERIA

DISEÑO DE UN SISTEMA DE ALUMBRADO INDUSTRIAL EN AMBIENTE CORROSIVO Y POLVOS EN SUSPENSIÓN

TESIS

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA

PRESENTA:

ANTONIO LEDESMA FONSECA

DIRECTOR DE TESIS: ING. ALEJANDRO SOSA FUENTES

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DE LA BIBLIOTECA

CON EL PRESENTE TEXTO QUIERO DARLE LAS GRACIAS A MIS
PADRES POR HABERME APOYADO PARA TERMINAR LOS ESTUDIOS DE UNA
CARRERA PROFESIONAL, LA CUAL ME HABIA FIJADO DESDE NIÑO.

Y A TODOS MIS HERMANOS, EN ESPECIAL GENARO LEDESMA FONSECA A QUIEN EN GRAN PARTE LA CULMINACION DE ESTE TRABAJO SE LO DEBO A EL.

A OFELIA MI ESPOSA Y COMPAÑERA POR SU COMPRENSIÓN E IMPULSO QUE ME DIO PARA SALIR ADELANTE Y TERMINAR LA CARRERA DE INGENIERO.

ASI COMO TAMBIEN AGRADECER A TODAS AQUELLAS PERSONAS QUE
ME BRINDARON SU AYUDA PARA MI FORMACIÓN ACADEMICA, Y QUE
AHORA GRACIAS A ELLOS ESTOY TERMINANDO LA META FIJADA.

A TODOS ELLOS GRACIAS

Autorizo a la Dirección General de Bibliotecas de la UNAM a difundir en formato electrónico a impreso el contenido de mi trabajo recepcional.

FECHA: 21 - MAYO - 2 MY

FIRMA: P. A. OFEliv RV12

ANTONIO LEDESMA FONSECA

I N D I C E

	PAGINA
INTRODUCCION Y OBJETIVO	5
CAPITULO I: ALCANCE	
1.1 MARCO DE TRABAJO	7
1.2 CRITERIOS DE DISEÑO	8
1.2.1 GENERALES	8
1.2.2 NIVELES DE ILUMINACIÓN	8
1.2.3 UTILIZACION DE REFLECTANCIA	8
1.2.4 SELECCIÓN DE EQUIPO DE ILUMINACIÓN	9
1.2.5 SISTEMA DE ILUMINACIÓN Y EMPLAZAMIENTO DE LUMINARIAS	10
1.2.6 CLASIFICACION DE AREAS	14
1.2.7 VOLTAJE DE UTILIZACIÓN	16
1.2.8 SISTEMAS DE CANALIZACIÓN	16
1.2.9 CONDUCTORES	17
1.2.10 CIRCUITOS DERIVADOS	18
1.2.11 DISPOSITIVOS DE PROTECCIÓN	18
1.2.12 TABLEROS DE ALUMBRADO	19
1.2.13 TRANSFORMADORES	20
1.2.14 CONTACTOS	21
1.2.15 ALUMBRADO DE EMERGENCIA	23

CAPITULO II: PROCEDIMIENTOS DE CALCULO DE ILUMINACION

	PAGINA
2.1 METODO DEL FLUJO LUMINOSO O DE LOS LUMENES	25
2.2 METODO DE CAVIDAD POR ZONAS (ZONAL)	30
2.3 METODO DE PUNTO POR PUNTO	34
2.4 CALCULOS DE ILUMINACIÓN	38
CAPITULO III: CALCULO DE LA ALIMENTACIÓN ELECTRICA	
3.1 SELECCIÓN DEL CONDUCTOR POR CAPACIDAD DE CORRIENTE	78
3.2 SELECCIÓN DEL CONDUCTOR POR CAIDA DE TENSIÓN	80
3.3 CALCULO DE LOS CONDUCTORES ALIMENTADORES DERIVADOS A LAMPARAS Y CONTACTOS	82
3.4 CALCULO DEL CONDUCTOR ALIMENTADOR A UN MOTOR	98
3.5 CALCULO DEL CONDUCTOR ALIMENTADOR A UN TABLERO "C"	101
3.6 CALCULO DEL CONDUCTOR ALIMENTADOR A UN GRUPO DE MOTORES Y OTRAS CARGAS	105
3.7 CALCULO DEL CONDUCTOR ALIMENTADOR AL TRANSFORMADOR DE 75KVA 480/220-127 (TIPO SECO)	110
CAPITULO IV: ESPECIFICACIONES DE EQUIPO	
4.1 MATERIAL Y EQUIPO	115

CAPITULO V: ANEXOS

	PAGINA
5.1 NIVELES MINIMOS DE ILUMINACIÓN RECOMENDADO PARA EL ALUMBRADO GENERAL DE INTERIORES	122
5.2 TABLA DE REFLECTANCIAS APROXIMADAS	129
5.3 COEFICIENTES DE UTILIZACIÓN DE LAS LAMPARAS UTILIZADAS EN ESTE TRABAJO	134
5.4 CUADROS DE CARGA	138
5.5 DIAGRAMA UNIFILAR DEL AREA EN ESTUDIO	144
5.6 DIAGRAMA UNIFILAR GENERAL	145
5.7 PLANO DE CONJUNTO	146
5.8 ESTUDIO DE CORTO CIRCUITO	147
5.9 TABLAS PARA CALCULO DE CONDUCTORES	165
5.10 CONCLUSIONES	173
5.8 BIBLIOGRAFÍA	174

DISEÑO DE UN SISTEMA DE ALUMBRADO INDUSTRIAL EN AMBIENTE CORROSIVO Y POLVOS EN SUSPENSION

INTRODUCCIÓN Y OBJETIVO.

En la actualidad el desarrollo técnico- económico del país, en general, presenta un notable incremento, tanto a corto, mediano y largo plazo; lo que implica mejorar constantemente los diseños de los sistemas de iluminación en las industrias, por lo cual el presente trabajo titulado.

" DISEÑO DE UN SISTEMA DE ALUMBRADO INDUSTRIAL EN AMBIENTE CORROSIVO Y POLVOS EN SUSPENSIÓN".

Cumple con el objetivo de dar los criterios que se emplean en el diseño de alumbrado en plantas industriales donde se genera polvo combustible, debido a la fabricación de llantas para automóvil y el cual se encuentra suspendido en el ambiente.

Los materiales empleados en este tipo de industria son muy peligrosos por que arden con facilidad ya que es polvo de hule.

Por lo tanto se debe tener cuidado para seleccionar el equipo de iluminación y los materiales de instalación eléctrica adecuados, tanto para el polvo como para la salinidad del medio ambiente, por el lugar geografico donde esta localizada esta industria.

CAPITULO I

1.- ALCANCE

CAPITULO I: ALCANCE

1.1- MARCO DE TRABAJO

El proyecto de un sistema de alumbrado comprende fundamentalmente dos aspectos que son:

- Calculo de la iluminación
- Calculo de la alimentación eléctrica

Por consideraciones de orden practico se hace esta subdivisión, pero desde luego ambos son dependientes entre si.

En términos generales existen aspectos que deben considerarse detalladamente en los procesos de calculo como son:

El numero de luminarias para proporcionar un determinado nivel de iluminación, distribución de las luminarias, la alimentación eléctrica de las mismas, los sistemas de canalización de los conductores, protección, distribución y control de circuitos, fuentes de energía alumbrado de emergencia y contactos; cuya alimentación proviene de los mismos tableros de distribución.

La planta industrial esta dividida en cuatro áreas principales:

- Almacén
- Área de proceso y producción
- Oficinas
- Estacionamiento

1.2.- CRITERIOS DE DISEÑO

1.2.1.- GENERALES.

Todos los métodos y procedimientos de diseño puestos en practica, para realizar este proyecto de alumbrado esta basado en experiencias propias, y tomando como base el Manual del Alumbrado Westinghouse

1.2.2.- NIVELES DE ILUMINACIÓN.

Los niveles de iluminación, para realizar el calculo de alumbrado de un determinado local en una planta industrial, se obtendrá de la siguiente manera:

- Si las especificaciones del proyecto proporcionadas por el cliente lo indican.
- Consultando las tablas de niveles mínimos de iluminación, editadas por la Sociedad
 Mexicana de Ingeniería E Iluminación, las cuales dan valores mínimos de iluminación y
 que por consideraciones de orden económico son aplicables en la Republica Mexicana.

1.2.3.- UTILIZACIÓN DE REFLECTANCIA

Es la relación que existe entre la luz reflejada por una superficie y la luz incidente sobre ella.

La reflectancia de una superficie dada, puede variar considerablemente de acuerdo con la dirección y la naturaleza de la luz incidente.

Por lo tanto, la reflectancia de techo y muros queda determinado por su acabado y color.

En este trabajo se presenta en el CAPITULO V una tabla de valores aproximados, en por ciento, de reflectancia en diferentes acabados y colores.

1.2.4.- SELECCIÓN DE EQUIPO DE ILUMINACIÓN

Factores importantes que deben tenerse en cuenta para seleccionar el equipo de alumbrado:

La intensidad luminosa, propia para aplicarse en cada caso particular de alumbrado, debe ser considerada como primer termino.

La construcción mecánica es importante en toda clase de tipos de luminarias. Es esencial que las partes de metal sean lo suficientemente rígidas para mantenerse alineadas, y poder soportar con seguridad sus accesorios.

Otro factor también importante, es la accesibilidad que han de tener las lámparas y las demás partes eléctricas para su mantenimiento.

La apariencia externa de la luminaria que se usa en plantas industriales es de menor importancia, pero si se requiere, deberá estudiarse de acuerdo a la arquitectura y decoración de la zona a que se destinara.

1.2.5.- SISTEMAS DE ILUMINACIÓN Y EMPLAZAMIENTO DE LUMINARIAS.

La iluminación producida por los diferentes modelos de luminarias pueden clasifificarse de acuerdo al tipo de trabajo a realizar y las necesidades especificas del local, de la siguiente manera:

1.2.5.1.- ALUMBRADO GENERAL

1.2.5.2.- ALUMBRADO GENERAL LOCALIZADO

1.2.5.3.- ALUMBRADO SUPLEMENTARIO

1.2.5.1.- ALUMBRADO GENERAL.

Se llama así a la disposición de las luminarias que proporcionen un nivel razonablemente uniforme de iluminación en un área interior.

Las dimensiones del local, las características de distribución, son factores que determinan el emplazamiento de los equipos.

La distribución uniforme se obtiene mediante la colocación simétrica de las luminarias necesarias para producir el nivel de iluminación deseado.

Se debe estudiar una ubicación aproximada de las luminarias, ajustándolas de forma tal que, el numero total de ellas sea divisible por el numero de filas.

La separación exacta entre lámparas se obtiene dividiendo la longitud del local por el numero de luminarias de una fila, dando una tolerancia aproximada de un tercio de dicho espacio entre la pared y la primera unidad.

Para una distribución uniforme de la iluminación con la mayor parte de luminarias, estas dos dimensiones deben ser aproximadamente iguales.

En algunos casos, cuando se usan lámparas fluorescentes para obtener niveles de iluminación relativamente altos, en el aspecto general y fácil instalación de los conductores, se recomienda el uso de hileras continuas de luminarias, separadas lo suficiente para cumplir los requisitos de una buena distribución.

La relación entre la separación y la altura de montaje debe estar dentro de los limites establecidos por las características de distribución de la luminaria, proporcionadas por los fabricantes.

1.2.5.2.- ALUMBRADO GENERAL LOCALIZADO.

Consiste en colocar los equipos de alumbrado en zonas especificas de trabajo donde se necesite mas iluminación, bastando con la luz emitida por dichas luminarias para iluminar las áreas contiguas.

Las luminarias del tipo directo indirecto son las que mas se utilizan.

Este tipo de alumbrado, puede utilizarse ventajosamente en la iluminación de los puntos de trabajo de las grandes maquinas o equipos de proceso, los bancos de trabajo en talleres y áreas de producción.

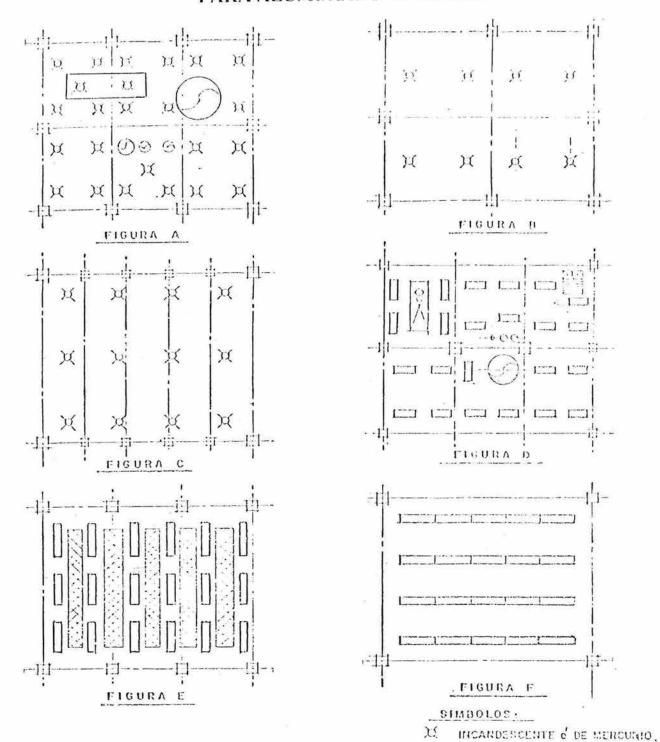
1.2.5.3.- ALUMBRADO SUPLEMENTARIO.

Proporciona una intensidad relativamente alta en puntos específicos de trabajo, mediante un equipo de alumbrado directo, combinado con la iluminación general o localizada.

Notas relativas a la disposición de luminarias

Nota 1.- En términos generales, se debe tratar de localizar las luminarias haciendo una distribución uniforme.

Nota 2.- Si las características propias del local impiden la distribución uniforme de las luminarias. Estas se podrán eliminar o relocalizar dentro de los limites de iluminación tolerables. La distribución de las luminarias en A y D es típica para áreas de proceso. Ver hoja (anexa) de disposiciones típicas de luminarias para alumbrado interior.


Nota 3.- Lo anterior se debe tener presente al realizar los cálculos de iluminación, debido a que se podrá estimar una disminución del área que este ocupando un determinado equipo, lo cual trae como consecuencia la reducción de equipos de alumbrado necesarios para producir el nivel de iluminación deseado (ver fig. A,D y E).

Nota 4.- La distribución en B y C es típica para áreas de producción, almacenes, bodegas, casas de maquinas, talleres comedores y cafeterías.

Nota 5.- La distribución en E es típica para oficinas, áreas de producción, laboratorios, almacenes, talleres, subestaciones eléctricas, cuartos de control, baños y vestidores

Nota 6.- La distribución en F es típica para oficinas, salas de juntas y cafeterías

DISPOSICINES TIPICAS DE LUMINARIAS PARA ALUMBRADO INTERIOR

FLUDRESCENTE.

Son aquellas que contienen vapores, líquidos o gases inflamables, polvos combustibles y fibras inflamables dispersas en el aire que pueden causar fuegos o explosiones.

Las áreas están clasificadas con base en sus características de peligrosidad:

AREAS CLASIFICADAS:

CLASE I	DIVISIÓN 1 DIVISIÓN II	GRUPOS A B C D
CLASE II	DIVISIÓN 1 DIVISIÓN II	E F G
CLASE III	DIVISIÓN I DIVISIÓN II	

Se hace énfasis en que esta información solo se esta dando para fines de ubicar a que clase, división y grupo pertenece el actual texto y que la información completa se tiene en la Norma Oficial Mexicana NOM- 001-SEDE- 1999 capitulo 5.

Por lo tanto:

Se debe considerar el tipo de producción de la planta industrial y el medio ambiente en que se efectuara la instalación, es decir, que se deberán aplicar las limitaciones impuestas a cada área en especial; para lo cual se requiere establecer si es área normal, ambiente corrosivo, húmedo, seco, etc.. De tal forma que:

El presente trabajo esta ubicado en CLASE II DIVISIÓN I GRUPO G y el medio ambiente es corrosivo de origen SALINO

CLASE II: Son aquellos que son peligrosos debido a la presencia de polvo combustible.

CLASE II, DIVISIÓN I: Son aquellas áreas en la cual hay o puede haber polvo combustible suspendido en el aire en forma continua, intermitente o periódicamente bajo condiciones normales de operación, en cantidades suficientes para producir mezclas explosivas o inflamables.

GRUPO G: Atmósferas que contienen polvos de madera, granos, flúor, plásticos o químicos.

1.2.7.- VOLTAJE DE UTILIZACIÓN

El voltaje que se utiliza en las plantas industriales o comerciales, en los circuitos que alimentan exclusivamente reactores para lámparas de vapor de mercurio o fluorescente, pueden ser, para mas de 150v. entre fase y tierra pero no mas de 300v.

Cuando las lámparas de descarga eléctrica sean utilizadas con base de rosca, las luminarias no deberán ser instaladas a menos de 2.44 mts. sobre el piso. Esto permite el uso de instalaciones a 480-277v., 3 fases, 4 hilos, con el equipo conectado entre fases o entre fase y neutro.

1.2.8.- SISTEMA DE CANALIZACIÓN

Se utilizaran sistemas de canalización que proporcione la protección adecuada a los conductores, para lograr una correcta y eficiente distribución, con lo cual se obtenga un sistema funcional y a su vez se logre una ruta o trayectoria para los conductores lo mas corta posible, lo que redituara grandes ventajas en el aspecto económico e instalación.

El tipo de canalización debe ser metálica rígida, roscada, esmaltada según Norma

Oficial DGN-J-16, grado de calidad A tipo 2 puede usarse en todos los lugares y bajo

cualquier atmósfera o bien utilizar ductos herméticos al polvo fosfatizados y tropicalizados.

El tamaño de la tubería conduit sera de acuerdo con las previsiones de la Norma

Oficial Mexicana NOM-001-SEDE-1999. Apéndice "C". Teniéndose en cuenta el número
y el área transversal de los conductores.

El diámetro mínimo de la tubería conduit para instalaciones de alumbrado y contac-

tos deberá ser de 21mm. (De la experiencia propia de la empresa)

Las cajas registro serán tipo condulet, de serie rectangular u ovalada y estarán de acuerdo con las previsiones marcadas en la Norma Oficial Mexicana NOM-001-SEDE-1999 Artículos 502-4 (b)

1.2. 9.- CONDUCTORES.

Los conductores deberán tener un aislamiento adecuado para operar hasta un voltaje de 600 v., serán unipolares, de cobre suave electrolítico, formado por varios alambres cableados concentricamente según clase "B" tipo XLP-RHH-RHW a 600v.

Como base general de diseño, los conductores serán del calibre tal que una corriente normal máxima (de carga), que no exceda el 80% de la capacidad de corriente permitida en los conductores; después de las correcciones propias que se hacen por temperatura ambiente, así como cercanía con otros conductores, numero de cables en el mismo conduit y espaciamiento entre conduits que son factores que pueden contribuir al calentamiento del cable durante su operación.

A petición del cliente el calibre mínimo de los conductores para circuitos de alumbrado deberán ser del num. 12 awg y para contactos num. 10 awg .

Todos los conductores serán del tamaño tal que la caída del voltaje máxima permi-

sible entre el equipo de entrada de servicio y la ultima carga conectada, no deban exceder del 5%.

Si los alimentadores tienen una caída de tensión 2% entonces solamente el 3% será para los circuitos derivados o viceversa.

1.2. 10.- CIRCUITOS DERIVADOS

Es el conjunto de los conductores de los circuitos desde los últimos dispositivos finales de sobrecorriente que protege a esos circuitos hasta la salida o salidas de las cargas.

La carga máxima en un circuito no deberá exceder el 80% de la capacidad de conducción del conductor .

La capacidad de un circuito esta dada por el ajuste del dispositivo de protección de sobrecorriente del mismo, aun cuando los conductores empleados sean de mayor capacidad.

En edificios comerciales e industriales deberán proveerse circuitos separados para alumbrado y contactos.

1.2.11.- DISPOSITIVOS DE PROTECCIÓN

El dispositivo de protección debe tener la capacidad adecuada para interrumpir el circuito con seguridad bajo cualquier condición anormal posible, es decir que de protección contra sobrecarga y contra corto circuito.

La selección correcta a ellos depende de varios factores como son el voltaje de

operación, la capacidad de corriente normal, la capacidad para interrumpir y soportar sin dañarse la corriente de corto circuito.

El rango de corriente normal para interruptores termomagneticos no será menor del 125% del rango de corriente nominal del circuito (de la carga)

1.2.12.- TABLEROS DE ALUMBRADO

Los tableros de alumbrado estarán fabricados bajo normas de fabricación contra polvo y corrosión es decir sus acabados serán bonderizados y a prueba de polvo.

Los tableros de alumbrado alimentan principalmente cargas monofásicas, tales como: lámparas, máquinas de oficina, acondicionadores de ventana y los receptaculos comunes de enchufe. también pueden usarse para alimentar pequeñas cargas trifásicas.

Generalmente constan de un grupo de interruptores termomagneticos en caja moldeada, los cuales están montados en gabinete metálico adecuado para instalarse en una pared o en una columna. pueden colocarse empotrados o sobrepuestos.

Las barras de los tableros de alumbrado deberán tener un rango en amperes no menor que la capacidad de los conductores de alimentación para la carga total suministrada por el tablero, como mínimo. Las barras de un tablero pueden tener un rango en amperes mayor o igual que el rango de corriente de su alimentador, pero nunca podrán tener un rango de corriente menor que el requerido por el alimentador.

Los tableros deben estar colocados tan cerca como sea posible del centro de la

carga que alimentan y ser fácilmente accesibles.

1.2.13.- TRANSFORMADORES

Los transformadores deberán ser tipo seco, a prueba de polvo y recubrimiento bonderizado para operar al nivel del mar y cumplir con la Norma Oficial Mexicana NOM-001-SEDE-1999.

Para seleccionar un transformador de alumbrado, se deberán tener presentes las siguientes consideraciones.

- 1.- Capacidad en KVA
- 2.- Numero de fases
- 3.- Relación de transformación
- 4.- Derivaciones de voltaje (taps)
- 5.- Tipo de enfriamiento
- 6.- Impedancia
- La capacidad en kva a primera instancia debe ser tal que, cubra la totalidad de la carga instalada.
- 2.- la utilización de transformadores monofásicos o trifásicos esta condicionada principalmente por la capacidad de kva, es decir, resulta mas económico utilizar transfo dores monofásicos debajo de 7 ½ kva. de igual manera, resulta mas ventajoso utilizar

transformadores trifásicos cuyo rango este por arriba de los 7 ½ kva.

- 3. y 4.- La relación de transformación y derivaciones de voltaje necesarias; son seleccionadas para suministrar el correcto valor del voltaje a las terminales de la carga, tomando en cuenta las variaciones de voltaje de la fuente y las líneas de distribución.
- 5.- El tipo de enfriamiento depende principalmente de la capacidad de los kva del transformador, así como de las condiciones ambientales del lugar donde se instalara.
 - 6.- El valor de la impedancia será usado para el calculo de corto circuito

1.2.14.- CONTACTOS

La instalación de contactos en una planta industrial estará condicionada por las propias necesidades que se tengan, tomando en cuenta lo siguiente:

La clasificación del local, en cuanto a limitaciones que existan, para instalar el equipo adecuado en este caso a prueba de polvo.

La capacidad de circuitos, que se determina considerando contactos de 180 VA por salida Art. 220-3 (c)-7 de Norma Oficial Mexicana NOM-001-SEDE-1999.

Como en la mayoría de los casos en áreas de proceso la carga a conectar no la

podemos determinar, se estimaran 5 amperes por cada 3 contactos.

De esta manera los contactos se agruparan en conjuntos de no mas de 6 contactos por circuito.

La cantidad de contactos en áreas de oficina, laboratorios y cuartos de control, se determina de acuerdo a lo siguiente:

En superficies menores de 40 m2 usar 1 contacto por cada tres metros de muro.

En áreas de proceso, producción, almacenamiento y similares, se proveerán contactos ubicados sobre la base de cubrir toda la planta, considerando el uso de cordones de 15mts. De extensión, excepto para subestaciones donde se proveerán 2 receptáculos.

En áreas de operación externa se instalaran contactos sobre la base de cordones de 30m de extensión.

Considerando lo anterior, el proyectista puede disminuir o aumentar el numero de contactos dependiendo de las necesidades para cada caso en particular o bien, utilizando los criterios o especificaciones proporcionadas por el cliente.

El espaciamiento o distribución de contactos debe hacerse en forma equidistante, siempre que las condiciones lo permitan.

1.2.15.- ALUMBRADO DE EMERGENCIA

Un sistema de alumbrado de emergencia en una planta industrial será aquel que proporcione la iluminación esencial mínima, para que en caso de interrupción del suministro garantice un mínimo de visibilidad, proporcione seguridad a la vida de los trabajadores, a la continuidad de las operaciones y a las propiedades de la empresa.

La cantidad de iluminación necesaria para un sistema de emergencia en términos generales será de un 20% de la iluminación producida normalmente, empleando de manera practica las siguientes consideraciones:

- Porcentaje aplicado al nivel de iluminación en lux
- Porcentaje aplicado al numero total de equipos
- Porcentaje aplicado al numero total de watts.

En este trabajo las consideraciones para el alumbrado de emergencia solicitadas por el cliente fueron al 100% del alumbrado instalado así como la alimentación al aire acondicionado y algunas áreas de proceso, para garantizar la seguridad de la planta.

El sistema de suministro de voltaje de emergencia estará compuesto por un generador o planta de emergencia, y un tablero de transferencia automático.

La conexión a este tablero de transferencia es por un lado el suministro de corriente del sistema normal y por el otro, la corriente generada por la planta de emergencia, de tal forma que al ocurrir una falla eléctrica en el sistema de alimentación normal, el equipo de transferencia lo detecta y entra en servicio la planta de emergencia y proporciona así, el suministro de energía eléctrica requerida para la carga conectada.

CAPITULO II

2.- PROCEDIMIENTO DE CALCULO DE ILUMINACION

CAPITULO II PROCEDIMIENTOS DECALCULO DE ILUMINACION

Para poder diseñar la distribución de luminarias que mejor cumpla con los requerimientos de iluminación y uniformidad en el área de trabajo, se necesitan por lo general dos tipos de información: Nivel de iluminancia promedio y de iluminancia mínima en un punto dado. El calculo de iluminancia en puntos específicos se hace para ayudar al diseñador a evaluar la uniformidad de iluminación, especialmente cuando se usan luminarias donde las las recomendaciones de espaciamiento máximas no son proporcionados o donde los niveles de iluminación de acuerdo a la actividad deban ser verificados en el sitio de instalación.

- Para situaciones de alumbrado interior el método a utilizar es el de cavidad zonal.
- Para determinar la luminancia en un punto se utiliza el método de punto por punto.

2.1.- METODO DEL FLUJO LUMINOSO O DE LOS LUMENES

Este método proporciona valores promedio de iluminación y se aplica unicamente a interiores.

A continuación se describe el proceso a seguir y en el cual se deben tener en cuenta seis pasos fundamentales:

2.1.1.-Determinar el nivel de iluminación requerido.

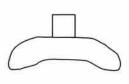
Puede ser de dos formas:

- 2.1.1.1.- Si las especificaciones del proyecto lo determinan
- 2.1.1.2.- Consultando las tablas e niveles de iluminación.
- 2.1.2.-Seleccionar el sistema de alumbrado y las luminarias.

Los sistemas de alumbrado se clasifican de la siguiente forma:

Directo, semi- directo, general difuso o directo- indirecto, semi-indirecto e indirecto.

Generalmente las oficinas quedan mejor iluminadas mediante un sistema indirecto o directo - indirecto.


Las áreas de proceso y producción regularmente utilizan un sistema directo o semi – directo.

La elección de un sistema para una mejor aplicación, dependerá de las tareas visuales a realizar y de las características del área a iluminar.

APLICACIÓN DE LAS CURVAS TIPICAS DE DISTRIBUCION

CONCENTRADA

INTENSIVA

EXTENSIVA

- 2.1.2.1.- Concentrada: Áreas de proceso de gran altura.
- 2.1.2.2.- Intensiva: Oficinas.

2.1.2.3.- Extensiva: Bodegas, almacenes.

2.1.3.- Determinar el coeficiente de utilización.

El coeficiente de utilización es un factor que tiene en cuenta: La eficiencia, distribución y altura de montaje de las luminarias, las dimensiones del local y la reflexión de las paredes, techos y pisos.

Los locales se clasifican con relación a sus dimensiones y se forman en diez grupos, cada uno de los cuales es identificado por una letra conocida bajo el nombre de "índice del local".

Los índices del local para una amplia gama de dimensiones, se dan en la tabla de índice del local (anexa) o bien, pueden ser calculados mediante las siguientes formulas:

Para luminarias directas, semi-directas y directas- indirectas o general difusa

Para luminarias semi-indirectas e indirectas

Cada índice de local representa el valor de la relación del local y las tablas de coeficientes de utilización se basan en el valor del punto central de esas relaciones del local.

Una vez obtenido el valor de la relación del local, se buscara el índice del local en la tabla de valores de las relaciones del local.

TABLA DE INDICE DEL LOCAL

Indice del local	Relación del local		Punto central
J	Menos	0.7	0.60
Ī	0.7	0.9	0.80
H	0.9	1.12	1.00
G	1.12	1.38	1.25
F	1.38	1.75	1.50
E	1.75	2.25	2.00
D	2.25	2.75	2.50
C	2.75	3.50	3.00
В	3.50	4.50	4.00
Α	Mas de	4.50	5.00

El coeficiente de utilización puede entonces determinarse por el índice del local y por la reflectancia adecuada en las superficies de la habitación (techos y paredes), haciendo uso de las tablas de coeficientes de utilización, aplicables a una luminaria determinada o bien, directamente de las tablas proporcionadas por el fabricante de la luminaria seleccionada.

2.1.2.4.- Estimar el factor de mantenimiento.

El nivel luminoso en servicio, producido por cualquier instalación de alumbrado,

se determina por un análisis, dependiendo de las condiciones bajo las que el sistema deberá funcionar.

En las tablas de coeficientes de utilización también encontramos los factores de conservación que sedan para las lámparas y luminarias. Y han sido identificadas para tres condiciones definidas, que son las siguientes:

- 2.1.2.4.1.- Factor de mantenimiento bueno. Cuando las condiciones atmosféricas y ambientales son buenas, las luminarias se limpian frecuentemente y las lámparas se reemplazan por el sistema de sustitución en grupo.
- 2.1.2.4.2.- Factor de mantenimiento medio. Cuando existen condiciones atmosféricas y ambientales menos limpias. es decir la limpieza de la luminaria no es frecuente y solo se sustituyen las lámparas cuando se funden.
- 2.1.2.4.3.- Factor de mantenimiento malo. Cuando el medio ambiente es bastante sucio y la instalación tiene una conservación deficiente.

El proyectista debe forzosamente hacer un examen cuidadoso respecto a las condiciones existentes y futuras, para llegar a un factor de conservación practico.

El factor de mantenimiento para esta planta en cuestión se tomo de la experiencia propia de la empresa y se le dio el factor de mantenimiento de 0.6 por considerarlo en términos generales muy sucio.

2.1.2.5.- Calculo de los lumenes totales.

2.2.2.6.- Calculo del numero de equipos requeridos.

Es recomendable, una vez que se tenga el numero de equipos necesarios para proporcionar el nivel de iluminación deseado se proceda a la inversa, es decir, se calcule el nivel de iluminación proporcionado por el numero de equipos obtenidos.

2.2.- METODO DE CAVIDAD POR ZONAS (ZONAL)

En general, el método de cavidad por zonas comprende:

- 2.2.1.- Suposición o medición de las reflexiones del techo (acabado), pared y piso.
- 2.2.2.- Sustitución de valores en formulas simples para encontrar las relaciones de cavidad de cuarto.
 - 2.2.3.- Uso de la tabla de reflexiones efectivas por cavidad.
- 2.2.4.- Uso de las tablas de fabricantes para encontrar los coeficientes de utilización de las unidades de alumbrado que se van a emplear.

2.2.5.- Sustitución de valores en una formula simple para determinar los luxes deseados o el numero de unidades de alumbrado.

Dicho lo anterior, a continuación se explica el procedimiento de calculo, el cual nos determinara el numero de unidades requeridas para proporcionar el nivel de iluminación deseado.

- 2.2.6.- Determinar el nivel de iluminación requerido puede ser de dos formas:
 - 2.2.6.1.- Si las especificaciones del proyecto la determinan.
 - 2.2.6.2.- Consultando las tablas de iluminación.

2.2.7.- Selección del tipo de luminaria

Este es un punto de vital importancia, ya que su adecuada elección debe ser apropiada para el tipo de trabajo que se desarrollara en la zona para la cual se realizara el calculo de iluminación.

A juicio del proyectista y como medida practica, se podrán elegir luminarios idénticos a las ya existentes, si se trata de una ampliación. O en instalaciones completamente nuevas, tomar como referencia las recomendaciones de los fabricantes.

2.2.8.- Determinación del coeficiente de utilización.

El valor del coeficiente de utilización se encuentra haciendo uso de las tablas que para este fin son proporcionadas por los fabricantes de luminarias.

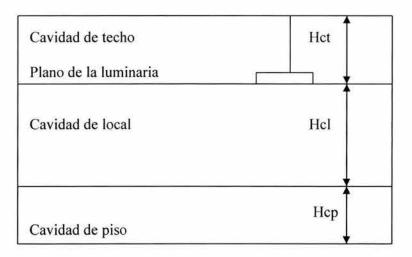
El uso de las tablas de coeficientes de utilización proporcionadas por los fabricantes de luminarias, requiere que previamente se establezcan:

- 2.2.8.1.- El valor de la relación de la cavidad del local (Rcl)
- 2.2.8.2.- El valor de la reflectancia efectiva de pared
- 2.2.8.3.- El valor de la reflectancia efectiva de techo
- 2.2.8.4.- El valor de la reflectancia efectiva de piso

Para determinar el valor de la relación de la cavidad del local (Rcl) se puede hacer uso de la siguiente formula:

La relación de la cavidad de techo se determina utilizando la misma formula que se uso para la relación de cavidad del local.

$$Rct = \frac{5Hct(longitud + ancho)}{longitud x ancho}$$


la relación de la cavidad de piso se determina utilizando la misma formula que se uso para la relación de cavidad del local.

En donde: Rcl = relacion de la cavidad del local

Hcl = altura de la cavidad del local

Hct = altura de la cavidad del techo

Hcp = altura de la cavidad del piso

- El valor de la reflectancia efectiva de la pared, se obtiene como dato o se localiza en las tablas de reflexiones recomendadas.
 - El valor de la reflectancia efectiva de la cavidad del techo es:

Para luminarias sobrepuestas o empotradas en el techo, la misma que la del techo real.

Para luminarias suspendidas, se usa la tabla de reflectancias efectivas de cavidad, teniendo como datos la relación de cavidad de techo, y reflectancia base de techo y paredes.

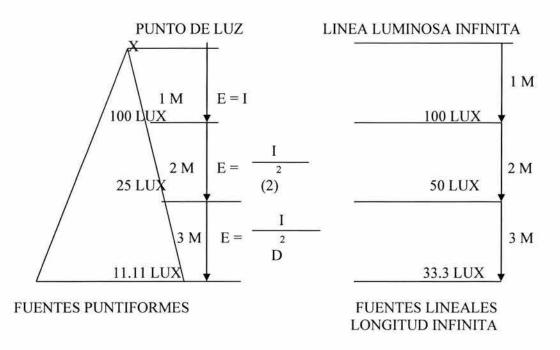
- El valor de la reflectancia efectiva de la cavidad del piso será:

Para luminarias suspendidas, sobrepuestas o empotradas en techo, se usa la tabla de reflectancias efectivas de cavidad, teniendo como datos la relación de cavidad de piso, y reflectancia base de piso y paredes.

Para calculo de lumenes totales se emplea la siguiente formula:

Para el calculo del numero de equipos requeridos se tiene la siguiente formula:

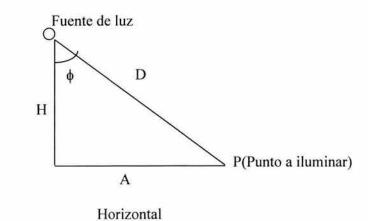
2.3.- METODO DE PUNTO POR PUNTO

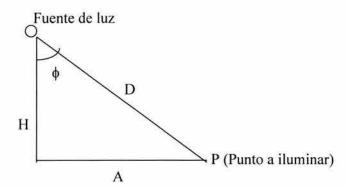

El método de punto por punto, determina con exactitud el nivel de iluminación en cualquier punto dado en una instalación, al sumar las contribuciones de iluminación hacia un punto determinado provenientes de cada luminaria.

Este método es útil en la determinación de variación de niveles de iluminación, y se usa con mucha frecuencia en el área industrial.

Este método no toma en consideración contribuciones de otras fuentes como reflexión de las paredes, techos, etc..

Se tienen las siguientes relaciones fundamentales:


- 2.3.1.- Fuentes puntiformes.- la iluminación e inversamente proporcional al cuadrado de la distancia. una lámpara incandescente sola o una esfera cerrada, puede ser tratada como una fuente de luz puntiforme.
- 2.3.2.- Fuentes lineales de longitud infinita.- La iluminación es inversamente proporcional a la distancia. una fila de lámparas fluorescentes o incluso una lámpara fluorescente a corta distancia se a aproximan a una fuente lineal.
- 2.3.3.- Fuente superficial de área infinita.- La iluminación no cambia con la distancia.
 Un grupo panel luminoso, o un techo iluminado por medios indirectos se aproxima a esta condición y dentro de ciertos limites la iluminación no cambiara mucho con la distancia.


Ley de la inversa de los cuadrados se puede usar para calcular cuando la distancia de la fuente es al menos cinco veces la máxima dimensión de la fuente. Por tal motivo cuando son áreas de trabajo normales no se utiliza.

En los casos en que se den estas condiciones, y en los que haya curva de distribución luminosa de la fuente, se puede determinar la iluminación sobre la superficie horizontal o vertical, mediante el empleo de las formulas siguientes:

$$E = \frac{I \times \cos \phi}{2}$$
 (Superficie horizontal)

$$E = \frac{I \times sen \phi}{2}$$
 (Superficie vertical)

Vertical

Donde:

E = Nivel de iluminación en luxes

I= Intensidad de la luz en lumenes

D = Distancia de la fuente luminosa al lugar iluminado en metros

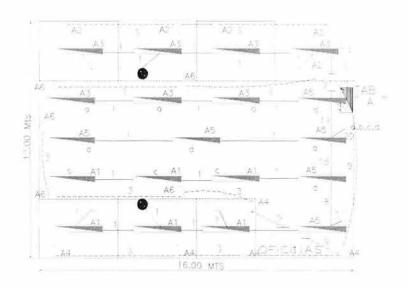
Y como:

Sen
$$\phi = A/D$$
 y, $\cos \phi = H/D$

Las formulas pueden escribirse de la siguiente manera:

En el plano horizontal:

$$E = \frac{I \times H}{(D)} = \frac{I \cos \phi}{(H)}$$


En el plano vertical:

$$E = \underbrace{I \times A}_{3} = \underbrace{I \cos \phi \times \operatorname{Sen} \phi}_{2}$$

$$(D) \qquad (H)$$

2.4.- CALCULOS DE ILUMINACION

OFICINAS

Lámpara fluorescente luz de dia alta emisión tipo F96T8/W/HO 127 volts. la luminaria seleccionada es cat. DV59-27 de 2x 59W para empotrar en plafon mca Ilinsa.

Largo (a)	= 15mts.	
Ancho (b)	= 12 mts.	
Altura (c)	= 4 mts	
Factor de envejecimiento de la lamp. (fll) = 0.85		Reflectancia de techo = 80%
Factor de mantenimiento	= 0.70	Reflectancia de pared = 50%
Altura montaje de la lamp (h)	= 3 mts.	Reflectancia de piso = 30%
Е	= 300 Lux	

Lumenes por luminaria = $6000 \times 2 = 12000$

Altura del plano de trabajo =1 mts

La oficina cuenta con falso plafon

De las tablas de relacion de cavidad encontramos:

Cavidad de techo = 0.0

Cavidad de piso = 0.72

Cavidad del local = 1.6

Calculados con la formula:

$$Rct = 5Hct(b+a)/axb = 0.0$$

$$Rcp = 5Hcp(b+a)/axb = 5x1x(15+12)/15x12 = 0.75$$

$$Rcl = 5Hcl(b+a)/axb = 5x2x(15+12)/15x12 = 1.5$$

Se toman las calculadas por considerar que son las mas acertadas.

Calcular las reflexiones efectivas para, de esta manera conocer el valor verdadero de las Reflectancias para piso y techo.

Reflectancia efectiva de techo = 80% (Por ser una luminaria empotrada en plafón)

Reflectancia efectiva de piso = 0.25

De la tabla de coeficientes de utilización de la luminaria seleccionada y utilizando la tabla de índice de local pagina num. 28 se obtiene el valor para este caso particular.

$$c.u. = 0.55$$

Corrección de la reflectancia efectiva de piso, se hace a partir de la tabla de factores multiplicativos para reflectancia de piso diferentes al 20% = 1.065

$$c.u = 0.55 \times 1.065 = 0.5858$$

El factor de depreciación (d) = fll x fm = $0.85 \times 0.7 = 0.595$

N= núm. de luminarios = E x (a x b) / (No. de lámparas / luminario x lumenes / lampara x Coeficiente de utilización x depreciación)

$$N = 400 \times 12 \times 15 / 2 \times 6000 \times 0.5858 \times 0.595 = 17.21 = 18 \text{ lámparas}$$

El máximo espaciamiento entre luminarias es: (se toma de los datos del fabricante)

$$h \times s = 3 \times 1.4 = 4.2 \text{ mts.}$$

Área promedio del luminario

Área total /
$$n = 180/18 = 10 \text{ m}2$$

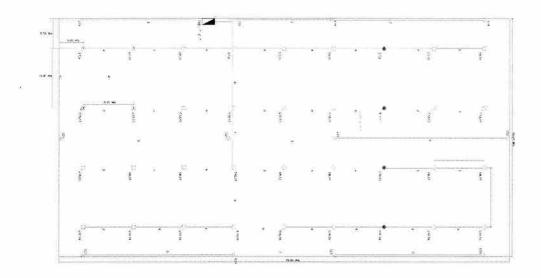
Espaciamiento entre luminarias $\sqrt{10}$ = 3.16 mts

a lo largo
$$15/3.16 = 4.74$$

$$5 \times 4 = 20$$

a lo ancho
$$12/3.16 = 3.8$$

$$4 \times 5 = 20$$


Comprobación del nivel de iluminación.

E = Núm. de luminarias x Nlamparas / luminaria x lumenes/lámpara x c.u. x depreciación

Largo x Ancho

$$E = \underbrace{18 \times 2 \times 6000 \times 0.5858}_{15 \times 12} \times 0.595 = 418.26 \text{ Lux}$$

ALMACEN

Lámpara vapor de mercurio 400w, 220v marca Wide Lite cat. 1LH-400-1ST colgante en techo

Factor de envejecimiento de la lampara (fll) = 0.9

Factor de mantenimiento = 0.70

Altura montaje de la lamp = (h) =7 mts.

Largo (a)

=76mts.

Ancho (b)

=40mts.

Alto (c)

= 8.5 mts.

E

= 100 Lux

Lumenes de la luminaria

= 23000

Altura del plano de trabajo =0.0 mts

Suspensión con cadena al techo = 1.5 mts

De las tablas de relación de cavidad encontramos:

Cavidad de techo = 0.3

Cavidad de piso = 0.0

Cavidad del local = 1..1

Reflectancia de techo = 80% Reflectancia de pared = 30% Reflectancia de piso = 20% Calculados con la formula:

$$Ret = 5Het(b+a)/axb = 5x2x(76+40)/76x40 = 0.381$$

$$Rcp = 5Hcp (b+a) / axb = 0.0$$

$$Rcl = 5Hcl(b+a)/axb = 5x7x(76+40)/76x40 = 1.33$$

Se toman las calculadas por considerar que son las mas acertadas.

Calcular las reflexiones efectivas para de esta manera conocer el valor verdadero de las Reflectancias de para piso y techo.

Reflectancia efectiva de techo =0.72

Reflectancia efectiva de piso = 20%

De la tabla de coeficientes de utilización de la luminaria seleccionada y utilzando la tabla de índice de local pagina num. 28 se obtiene el valor para este caso particular.

$$c.u. = 0.712$$

El factor de depreciación (d) = fll x fm = $0.9 \times 0.7 = 0.63$

N= núm. de luminarios = E x (a x b) / (No. de lámparas / luminario x lumenes / lámpara x Coeficiente de utilización x depreciación)

$$N = 100 \times 40 \times 76 / 23000 \times 0.712 \times 0.63 = 29.466 = 30$$
 lámparas

El máximo espaciamiento entre luminarias es: (se toma de los datos del fabricante)

$$h \times s = 7 \times 1.2 = 8.4 \text{ mts}.$$

Área promedio del luminario

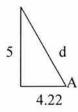
Área total /
$$n = 3040 / 30 = 101.33 m2$$

Espaciamiento entre luminarias $\sqrt{101.33}$ = 10.06 mts

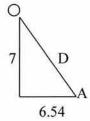
a lo largo
$$76/10 = 7.6$$
 8 x 4 = 32

a lo ancho
$$40/10=4$$
 $4 \times 8 = 32$

Comprobación del nivel de iluminación.


E = <u>Número de luminarios x Nlámparas / luminaria x lumenes x c.u. x de</u>preciación Largo x Ancho

$$E = 30 \times 1 \times 23000 \times 0.712 \times 0.63 = 101.81 \text{ Lux}$$


$$76 \times 40$$

Se aplica el método de punto por punto para comprobar nuestro nivel de iluminación en los puntos críticos.

Para el punto A de la lámpara 1

$$d = \sqrt{(4.22)^2 + (5)^2} = 6.54 \text{ mts}$$

$$D = \sqrt{\frac{2}{(6.54)^2 + (7)^2}} = 9.58 \text{ mts}$$

$$\phi = \tan 6.54/7 = 43$$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 5095.20 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

E= Lumenes calculados de la lamp. x cos φ

- 2

(Distancia de la lámpara al punto seleccionado)

$$E = \frac{5095.20 \times \cos 43}{2} = \frac{3726.39}{91.776} = 40.60 \text{ Lux}$$

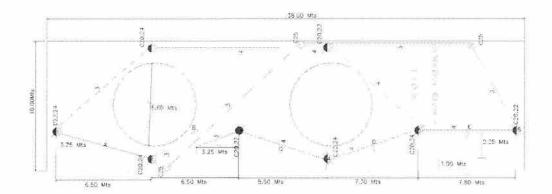
$$(9.58)$$

Como la lámpara 2, esta a la misma distancia del punto A, se tiene:

$$E = 40.60 \text{ x } 2 = 81.20 \text{ lux}$$

Aplicando el factor de mantenimiento de 0.63

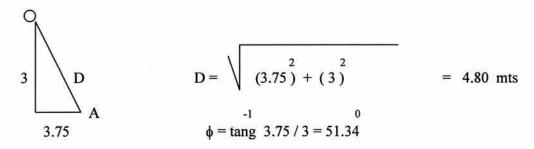
$$E = 81.20 \times 0.63 = 51.16 \text{ lux}$$


Para el punto B de la lámpara 1, 2, 3 y 4 por ser simétricas, se tiene:

$$E = 40.60 \text{ x } 4 = 162.40 \text{ lux}$$

Aplicando el factor de mantenimiento de 0.63

$$E = 162.40 \times 0.63 = 102.31 \text{ Lux}$$


SILOS DE ALMACENAMIENTO

Lámpara vapor de mercurio 250w, 220v, marca Crouse-Hinds-Domex tipo champ bt/28 montaje en poste.

Altura =h = 3 mts
$$E$$
 = 50 Lux Largo = b = 38 mts $Reflectancia techo$ = 10% $Reflectancia de pared$ = 10% $Reflectancia de pared$ = 10% $Reflectancia de pared$ = 0.6

Para el punto A de la lámpara 1

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1085 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1.46 \times 1085 \times \cos 51.34^{0}}{2} = \frac{989.58}{23.04} = 42.95 \text{ Lux}$$

Como la lámpara 2, esta a la misma distancia del punto A, se tiene:

$$E = 42.95 \times 2 = 85.90 \text{ Lux}$$

aplicando el factor de mantenimiento de 0.6

$$E = 85.9 \times 0.6 = 51.54 \text{ Lux}$$

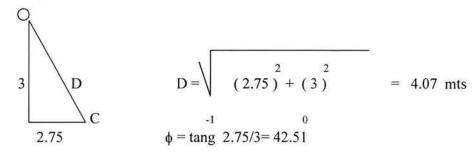
Para el punto B de la lámpara 2

O
3
D =
$$\sqrt{(3.25)^2 + (3)^2}$$
 = 4.42 mts
 $\phi = \tan 3.25/3 = 47.29$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1134 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1.46 \times 1134 \times \cos 47.29}{2} = \frac{1123}{19.53} = 57.50 \text{ Lux}$$


Como la lámpara 3, esta a la misma distancia del punto B, se tiene:

$$E = 57.50 \text{ x } 2 = 115 \text{ Lux}$$

Aplicando el factor de mantenimiento de 0.6

$$E = 115 \times 0.60 = 69 \text{ Lux}$$

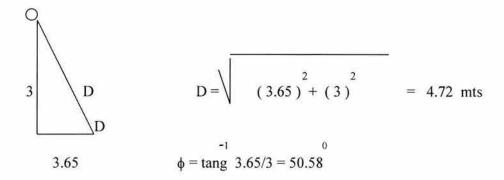
Para el punto C de la lámpara 3

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1134 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{\text{Lumenes calculados de la lamp. } x \cos \phi}{\text{(Distancia de la lámpara al punto seleccionado)}}$$

$$E = \frac{1.46 \times 1134 \times \cos 42.51}{2} = \frac{1220.47}{16.56} = 73.70 \text{ Lux}$$


Como la lámpara 4, esta a la misma distancia del punto C, se tiene:

$$E = 73.70 \times 2 = 147.40 \text{ Lux}$$

Aplicando el factor de mantenimiento de 0.6

$$E = 147.40 \times 0.60 = 88.44 \text{ Lux}$$

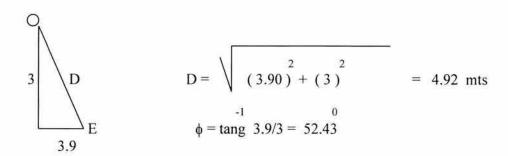
para el punto D de la lámpara 4

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1085 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

E =
$$\frac{\text{Lumenes calculados de la lamp. x cos } \phi}{\text{(Distancia de la lámpara al punto seleccionado)}}^{2}$$

$$E = \frac{1.46 \times 1085 \times \cos 50.58}{2} = \frac{1005.9}{22.28} = 45.25 \text{ Lux}$$


Como la lámpara 5, esta a la misma distancia del punto D, se tiene:

$$E = 45.25 \times 2 = 90.50 \text{ Lux}$$

aplicando el factor de mantenimiento de 0.6

$$E = 90.50 \times 0.6 = 54.30 \text{ Lux}$$

Para el punto E de la lámpara 5

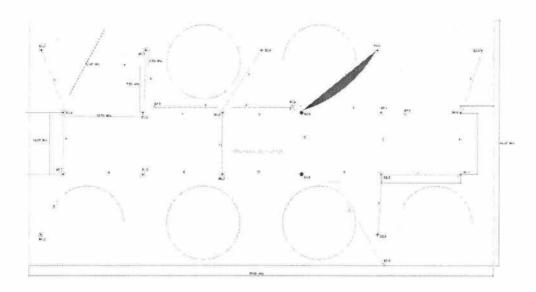
Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1085 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

E =
$$\frac{\text{Lumenes calculados de la lámp. x cos } \phi}{\text{(Distancia de la lámpara al punto seleccionado)}}^{2}$$

$$E = \frac{1.46 \times 1085 \times \cos 52.43}{2} = \frac{965.87}{24.21} = 39.89 \text{ Lux}$$

$$(4.92)$$


Como la lámpara 6, esta a la misma distancia del punto E, se tiene:

$$E = 39.89 \times 2 = 79.78 \text{ lux}$$

Aplicando el factor de mantenimiento de 0.6

$$E = 79.78 \times 0.6 = 47.87 \text{ Lux}$$

UNIDADES DE FILTROS

Lámpara vapor de mercurio 400w, 220v marca Wide Lite cat. 1LH-400-4ST montaje en poste con globo de cristal sin guarda.

Factor de envejecimiento	= 0.9 = 0.6
Factor de mantenimiento	
Altura montaje de la lamp (h)	= 7 mts.
Largo = b	=76mts.
Ancho = a	=40mts.
Altura $= c$	
E	= 50 lux

Reflectancia de techo = 80% Reflectancia de pared = 50% Reflectancia de piso = 20%

Lumenes de la luminaria = 23000

Altura del plano de trabajo =0.0 mts

Suspensión con tubo conduit al techo = 1.5 mts

De las tablas de relación de cavidad encontramos:

Cavidad de techo = 0.3

Cavidad de piso = 0.0

Cavidad del local = 1..1

Calculados con la formula:

$$Rct = 5Hct(b+a)/axb = 5x2x(76+40)/76x40 = 0.381$$

$$Rcp = 5Hcp(b+a)/axb = 0.0$$

$$Rcl = 5Hcl(b+a)/axb = 5x7x(76+40)/76x40 = 1.33$$

Se toman las calculadas por considerar que son las mas acertadas.

Calcular las reflexiones efectivas para de esta manera conocer el valor verdadero de las Reflectancias de para piso y techo.

Reflectancia efectiva de techo =0.72

Reflectancia efectiva de piso = 20%

De la tabla de coeficientes de utilización de la luminaria seleccionada y utilizando la tabla de índice de local pagina num. 28 se obtiene el valor para este caso particular.

$$c.u. = 0.649$$

El factor de depreciación (d) = fll x fm = $0.9 \times 0.7 = 0.63$

N= num. de luminarios = E x (a x b) / (No. de lámparas / luminario x lumenes / lámpara x Coeficiente de utilización x depreciación)

$$N = 50 \times 40 \times 76 / 23000 \times 0.649 \times 0.63 = 16.16 = 17 \text{ lámparas}$$

El máximo espaciamiento entre luminarias es: (se toma de los datos del fabricante)

$$h \times s = 7 \times 1.5 = 10.5 \text{ mts.}$$

Área promedio del luminario

Área total /
$$n = 3040 / 17 = 178.82m2$$

Espaciamiento entre luminarias $\sqrt{178.82} = 13.37 \text{ mts}$

a lo largo
$$76/13.37 = 5.68$$

$$6 \times 3 = 18$$

a lo ancho
$$40/13.37 = 2.99$$

$$3 \times 6 = 18$$

Comprobación del nivel de iluminación.

E = Número de luminarios x Nlámparas / luminaria x lumenes x c.u. x depreciación Largo x Ancho

$$E = \frac{18 \times 1 \times 23000 \times 0.649 \times 0.63}{76 \times 40} = 55.68 \text{ Lux}$$

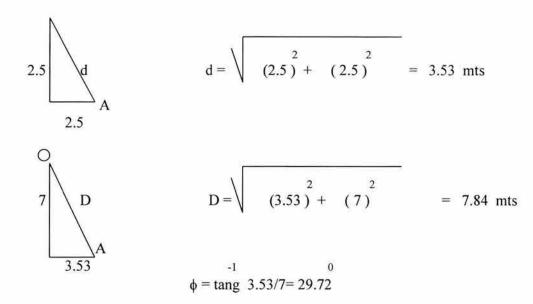
Se aplica el método de punto por punto para comprobar nuestro nivel de iluminación en los puntos críticos.

Para el punto A de la lámpara 1

7.5 d
$$d = \sqrt{(2.5)^2 + (7.5)^2} = 7.9 \text{ m}$$

$$D = \sqrt{(7.9)^{2} + (7)^{2}} = 10.56 \text{ mts}$$

$$7.9 \qquad \phi = \tan 7.9/7 = 53.84$$


Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 3222.62 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

 $E = \frac{\text{Lumenes calculados de la lámp. } x \cos \phi}{\text{(Distancia de la lámpara al punto seleccionado)}}$

$$E = \frac{32222.62 \times \cos 53.84^{0}}{2} = \frac{2701.83}{111.5} = 24.23 \text{ Lux}$$

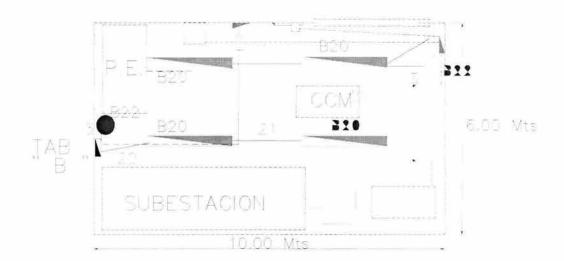
Para el punto A de la lámpara 2

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 6472.5 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{\text{Lumenes calculados de la lámp. } x \cos \phi}{\text{(Distancia de la lámpara al punto seleccionado)}}$$

$$E = \frac{6472.5 \times \cos 29.72}{2} = \frac{5779.91}{61.5} = 93.98 \text{ Lux}$$


$$(7.84)$$

$$E_{totl} = 24.23 + 93.98 = 118.21 Lux$$

Aplicando el factor de mantenimiento de 0.63

$$E = 118.21 \times 0.63 = 74.47 \text{ Lux}$$

SUBESTACION

Lámpara fluorescente luz de dia alta emisión tipo F96T8/W/HO 127 volts. la lampara seleccionada es GPV13-21 de 2 x 59 w Ilinsa.

Factor de flujo luminoso = 0.85

Factor de mantenimiento = 0.70

Altura montaje de la lamp = h = 4 mts.

Largo = b

 $= 10 \mathrm{mts}.$ Ancho = a= 6 mts.

Altura = c= 6 mts

E = 300 lux

Lumenes por luminaria = $6000 \times 2 = 12000$

Altura del plano de trabajo = 1 mts.

Suspendida con varilla roscada = 1 mts.

Calculo del indice del local

Relación de suspensión = J = h' / h + h'

$$h = 6 - (1 + 1) = 4$$
 mts.

$$Rcl = (b x a) / (a + b) = (10 x 6) / 4 (10 + 6) = 0.9375$$

Reflex. de techo = 50%

Reflex. de pared = 50%

Reflex. de piso = 20%

De la tabla de coeficientes de utilización de la luminaria seleccionada y utilizando la tabla de índice de local pagina num. 28 se obtiene el valor para este caso particular.

$$c.u. = 0.44$$

El factor de depreciación (d) = fll x fm = $0.85 \times 0.7 = 0.595$

N= núm. de luminarios = E x (a x b) / (No. de lámparas / luminario x lumenes / lámpara x Coeficiente de utilización x depreciación)

$$N = 300 \times 10 \times 6 / 2 \times 6000 \times 0.44 \times 0.595 = 5.7 = 6 \text{ lámparas}$$

El máximo espaciamiento entre luminarias es: (se toma de los datos del fabricante)

$$h \times s = 4 \times 1.25 = 5 \text{ mts.}$$

Área promedio del luminario

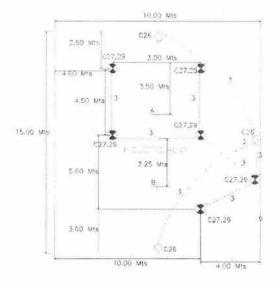
Área total / n = 60/8 = 7.5 m2

Espaciamiento entre luminarias $\sqrt{7.5}$ = 2.74 mts

a lo largo
$$10/2.74 = 3.64$$

$$4 \times 2 = 8$$

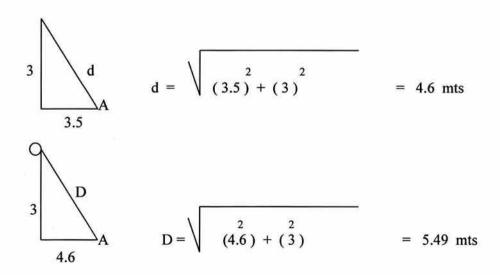
a lo ancho
$$6/2.74 = 2.19$$


$$3 \times 2 = 6$$

Comprobación del nivel de iluminación.

E = Número de luminarias x Nlámparas / luminaria x lumenes x c.u. x depreciación Largo x Ancho

$$E = \frac{6 \times 2 \times 6000 \times 0.44 \times 0.595}{10 \times 6} = 314.16 \text{ Lux}$$


PELETIZADO

Lámpara vapor de mercurio 175w, 220v, marca crouse-hinds-domex tipo champ cat. VMC-2TW-175 GP montaje en poste.

Altura =
$$h = 3$$
 mts
Largo = $b = 15$ mts
Ancho = $a = 14$ mts

Para el punto A de la lámpara 2

$$\phi = \tan \theta \ 4.6 / 3 = 56.88$$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1085 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{\text{Lumenes calculados de la lámp. } x \cos \phi}{\text{(Distancia de la lámpara al punto seleccionado)}}^{2}$$

$$E = \frac{1085 \times \cos 56.88}{2} = \frac{592.84}{30.14} = 19.66 \text{ Lux}$$

Como la lámpara 3, esta a la misma distancia que la lámpara 2 al punto A, se tiene:

$$E = 19.66 \times 2 = 39.33$$
 Lux

Para el punto A de la lámpara 4

3 d d =
$$\sqrt{\frac{2}{(1)^2 + (3)^2}}$$
 = 3.16 mts

$$D = \sqrt{\frac{2}{(1)^2 + (3)^2}}$$
 = 4.36 mts

$$\phi = \tan 3.16/3 = 46.48$$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1134 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

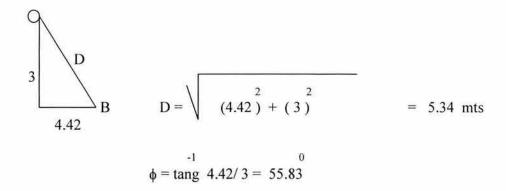
E = Lumenes calculados de la lámp.
$$x \cos \phi$$
(Distancia de la lampara al punto seleccionado)

$$E = \frac{1134 \times \cos 46.48}{2} = \frac{780}{19} = 41.10 \text{ lux}$$

$$(4.36)$$

Como la lámpara 5, esta a la misma distancia que la lámpara 4 del punto A, se tiene:

$$E = 41.1 \times 2 = 82.2 \text{ Lux}$$


$$E_{total} = 39.33 + 82.2 = 121.53$$
 Lux

Aplicando el factor de mantenimiento de 0.6

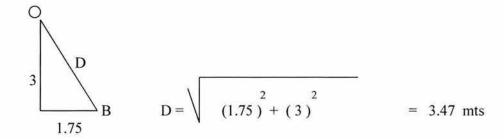
$$E = 121.53 \times 0.6 = 72.92 \text{ lux}$$

para el punto B de la lámpara 4

3
$$d = \sqrt{(3.25)^2 + (3)^2} = 4.42 \text{ mts}$$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1085 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.


$$E = \frac{1085 \times \cos 55.83}{2} = \frac{609.40}{28.51} = 21.37 \text{ Lux}$$

$$(5.34)$$

Como las lámparas 5,6 están a la misma distancia que la lámpara 4 del punto B, se tiene:

$$E = 21.37 \times 3 = 64.11 \text{ Lux}$$

Para el punto B de la lámpara 6

$$\phi = \tan \theta \quad 1.75/3 = 0.53$$

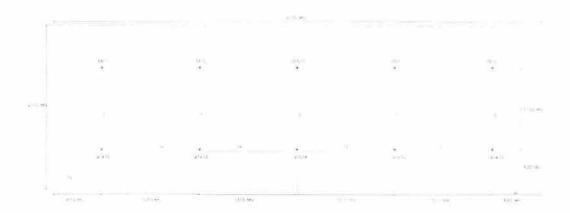
Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 688 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{\text{Lumenes calculados de la lámp. } x \cos \phi}{\text{(Distancia de la lámpara al punto seleccionad)}}^{2}$$

$$E = \frac{156 \times \cos 60.53^{0}}{2} = \frac{134.6}{12.04} = 10.85 \text{ Lux}$$

$$(3.47)$$


Por lo tanto en el punto B se tiene:

$$E = 64.11 + 10.85 = 74.96$$
 Lux

Aplicando el factor de mantenimiento de 0.6

$$E = 74.96 \times 0..6 = 44.98 \text{ Lux}$$

ESTACIONAMIENTO

Lámpara vapor de mercurio 400w, 220v marca Wide Lite cat. 1LH-400-4ST, montaje en poste con globo de cristal sin guarda.

Factor de mantenimiento = 0.60Altura montaje de la lámp = h = 7 mts. Largo = b = 60mts. Ancho = a = 20mts. E = 50 lux Reflectancia de techo = 80% Reflectancia de pared = 30% Reflectancia de piso = 30%

Lumenes de la luminaria = 23000

Altura del plano de trabajo =0.0mts

Relacion de local RIc = 5hcc x (b + a) / b x a

$$Rlc=5x7 (60+20)/60 \times 20 = 2.33$$

Con este dato y las reflectancias dadas se localiza en las tablas el coeficiente de utilización

$$c.u. = 0.541$$

N= Número de luminarios =Ex a x b / (lumenes de la lamparaxcuxfm)

 $N = 60 \times 20 \times 50 / 23000 \times 0.541 \times 0.6 = 8$ lámparas.

Nivel de iluminación= N x lumenes de la luminarias x cu x fm /axb)

Nivel de iluminación = $8 \times 23000 \times 0.541 \times 0.6 / 60 \times 20 = 49.78 \text{ lux}$

Espaciamiento máximo entre lámparas sera:

(Tomados de datos del fabricante)

Espaciamiento = $1.5 \times 7 = 10.5 \text{ mts.}$

Área promedio del luminario

Área total / n = 1200/8 = 150

Espaciamiento entre luminaries = $\sqrt{150}$ =12.25

a lo largo 60/12.25 = 4.89

 $5 \times 2 = 10$

a lo ancho 20/12.25 = 1.63

 $2 \times 4 = 8$

Se aplica el método de punto por punto para comprobar nuestro nivel de iluminación en los puntos críticos.

Para el punto A de la lámpara 1

$$d = \sqrt{\frac{2}{(5) + (6)}^2} = 3$$

$$D = \sqrt{\frac{2}{(7.41) + (7)}} = 10.19 \text{ mts}$$

$$\phi = \tan \theta$$
 7.41/7= 46.62

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 4857.23 lumenes

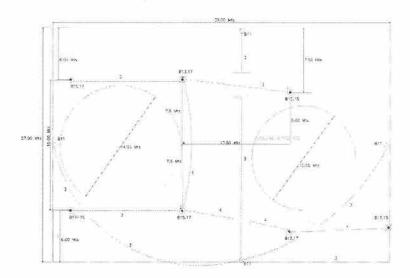
Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{4857.23 \times \cos 46.62}{2} = \frac{3336.1}{103.83} = 32.12 \text{ Lux}$$

como la lámpara 2, esta a la misma distancia del punto A, se tiene:

$$E = 32.12 \times 2 = 64.24$$
 Lux

Aplicando el factor de mantenimiento de 0.6


$$E = 64.24 \times 0.6 = 38.54 \text{ Lux}$$

Para el punto B de lámparas 1,2,3 y 4 por estar a l a misma distancia se tiene:

$$E = 32.12 \text{ x } 4 = 128.48 \text{ Lux}$$

$$E = 128.48 \times 0.6 = 77$$
. Lux

COMBUSTOLEO

Lámpara vapor de mercurio 400w, 220v marca Wide Lite cat. 1LH-400-4ST, montaje en poste con globo de cristal sin guarda

Factor de mantenimiento
$$= 0.60$$

Altura montaje de la lamp $= h= 7$ mts.
Largo $= b$ $= 39$ mts.
Ancho $= a$ $= 27$ mts.
E $= 50$ lux

Reflecatancia de techo =80% Reflecatancia de pared = 30% Reflectancia de piso =30 %

Lumenes de la luminaria = 23000

Altura del plano de trabajo =0.0mts

Calculo del indice de cuarto k= ab/h(a+b)

Con este dato y las reflectancias dadas se localiza en las tablas el coeficiente de utilización

$$c.u. = 0.6$$

N= Número de luminarios =a x bx E / Lumenes de la lampara x cu x fm

 $N=39 \times 27 \times 50 / 23000 \times 0.6 \times 0.6 = 6.35 = 7 \text{ lámparas}.$

Nivel de iluminación= N x Lumenes de la luminaria x cu x fm / a x b

Nivel de iluminación = $7 \times 23000 \times 0.6 \times 0.6 / 39 \times 27 = 55 \text{ Lux}$

El máximo espaciamiento entre luminarias es: (se toma de los datos del fabricante)

Espaciamiento = $h \times s = 7 \times 1.5 = 10.5 \text{ mts.}$

Área promedio del luminario

Área total / n = 1053/7 = 150.4

Espaciamiento entre luminarias =
$$\sqrt{150} = 12.26$$

a lo largo
$$39/12.26 = 3.09$$
 $3 \times 2 = 6$

a lo ancho
$$20/12.26 = 1.63$$
 $2 \times 3 = 6$

Se aplica el método de punto por punto para comprobar nuestro nivel de iluminación en los puntos críticos.

Para el punto A de la lámpara 1

6 d
$$d = \sqrt{(6)^2 + (12.25)^2} = 13.86 \text{ mts}$$
12.25

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 680 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{680 \times \cos 70^{0}}{2} = \frac{308.71}{241.25} = 1.28 \text{ Lux}$$
(15.53)

Para el punto A de la lámpara 2

$$d = \sqrt{\frac{2}{(7.5) + (7)}} = 10.26 \text{ mts}$$

$$7.5 \qquad \phi = \tan \frac{7.5}{7} = 47$$

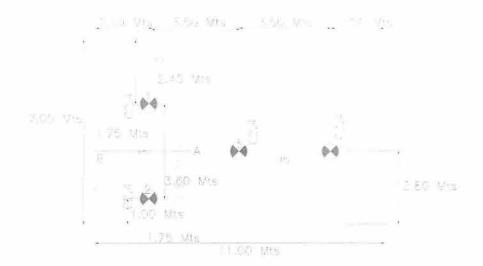
Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 4771.2 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{4771.2 \times \cos 47}{2} = \frac{3253.95}{105.27} = 30.91 \text{ Lux}$$

$$(10.26)$$

Como la lámpara 3 esta a la misma distancia de la lámpara 2 se tiene


$$E = 30.91 \text{ x } 2 = 61.82 \text{ Lux}$$

$$E_{total} = 1.28 + 61.82 = 63.1 Lux$$

Aplicando el factor de mantenimiento de 0.6

$$E = 63.1 \times 0.6 = 37.86 \text{ LUX}$$

CRIBADO

Lámpara vapor de mercurio 175w, 220v, marca Crouse-Hinds-Domex tipo Relamp Champ II cat. VMVC-J-175 GP con globo, y guarda, montaje ne poste.

Altura = $h = 2.7 \text{ mts}$	E	=60 lux
Largo = $b = 11 \text{ mts}$	Reflectancia techo	= 10%
Ancho = $a = 7 \text{ mts}$	Reflectancia de pared	= 10%
	Factor de mantenimiento	= 0.6

Para el punto A de la lámpara 1

1.8 d
$$d = \sqrt{\frac{2}{(1.80) + (1.75)}} = 2.51 \text{ mts}$$

O
D

$$d = \sqrt{\frac{2}{(2.51) + (2.7)}} = 3.69 \text{ mts}$$

 $\phi = \tan 2.51 / 2.7 = 42.91$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1134 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1134 \times \cos 42.91}{2} = \frac{886}{13.61} = 65.1 \text{ Lux}$$

Como la lámpara 2, esta a la misma distancia del punto A, se tiene:

$$E = 65.1 \times 2 = 130.2$$
 Lux

Para el punto A de la lámpara 3

2.7 D
$$D = \sqrt{\frac{2}{(2.7) + (1.75)}} = 3.22 \text{ mts}$$

 $\phi = \tan \theta = 1.75/2.7 = 32.95$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1014 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1014 \times \cos 32.95}{2} = \frac{881.19}{10.37} = 84.97 \text{ Lux}$$

$$(3.22)$$

Sumando los luxes en el punto A

$$E = 130.2 + 84.97 = 215.17 Lux$$

Aplicando el factor de mantenimiento = 0.6

$$E = 215.17 \times 0.6 = 129.12 \text{ Lux}$$

Para el punto B de la lámpara 1

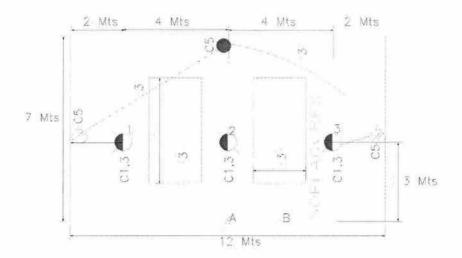
1.8
$$d = \sqrt{(1.80)^{2} + (1.75)^{2}} = 2.51 \text{ mts}$$

2.7 D D =
$$\sqrt{(2.7)^2 + (2.51)^2}$$
 = 3.69 mts
 $\phi = \tan 2.51/2.7 = 42.91$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1134 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1134 \times \cos 42.91}{2} = \frac{886}{13.61} = 65.1 \text{ lux}$$


Como la lámpara 2, esta a la misma distancia del punto B, se tiene:

$$E = 65.1 \times 2 = 130.2$$
 Lux

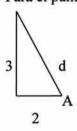
Aplicando el factor de mantenimiento de 0.6

$$E = 130.2 \times 0.60 = 78.12 \text{ Lux}$$

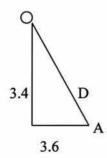
SOPLADORES

Lámpara vapor de mercurio 250w, 220v, marca Crouse-Hinds-Domex tipo Relamp Champ II con globo, y reflector semi-profundo, montaje en poste.

Altura = h = 3.40 mts


Largo = b = 12 mts

Ancho = a = 7 mts


E = 50 luxReflectancia techo = 10%Reflectancia de pared = 10%

Factor de mantenimiento = 0.7

Para el punto A de la lámpara 2

$$d = \sqrt{\frac{2}{(3) + (2)}} = 3.6 \text{ mts}$$

$$D = \sqrt{(3.4)^2 + (3.6)^2} = 4.95 \text{ mts}$$

$$\phi = \tan 3.6 / 3.4 = 46.63$$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1044 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1.46 \times 1044 \times \cos 46.63}{2} = \frac{1133.31}{24.5} = 46.26 \text{ Lux}$$

Como la lámpara 3, esta a la misma distancia que la lámpara 2 del punto A del punto (a)

$$E = 46.26 \times 2 = 92.52$$
 Lux

Aplicando el factor de mantenimiento de 0.7

$$E = 92.52 \times 0.7 = 64.76 \text{ Lux}$$

Para el punto B de la lampara 2

3.4 D
$$D = \sqrt{\frac{2}{(3.4) + (3)}} = 4.53 \text{ mts}$$

$$\phi = \tan 3/3.4 = 41.42$$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1044 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1.46 \times 1044 \times \cos 41.42}{2} = \frac{1212.85}{20.52} = 59.1 \text{ Lux}$$

Para el punto B de la lámpara 3

3 d d
$$d = \sqrt{(3)^2 + (4)^2} = 5 \text{ mts}$$

3.4 D $D = \sqrt{(5)^2 + (3.4)^2} = 6.05 \text{ mts}$

5 $\phi = \tan 5/3.4 = 55.78$

Utilizando este ángulo se busca en la grafica polar de la lámpara a cuantos lumenes corresponde, y haciendo interpolaciones se llega a el siguiente valor = 1111 lumenes

Se aplica la formula para calcular el nivel de iluminación en ese punto especifico.

$$E = \frac{1.46 \times 1111 \times \cos 55.78}{2} = \frac{1038.25}{36.6} = 28.36 \text{ lux}$$

Como la lámpara 1 esta a la misma distancia que la lámpara 3 en el punto B se tiene:

$$E = 28.36 \text{ x } 2 = 56.72 \text{ Luxes}$$

$$E_t = 59.1 + 56.72 = 115.82 \text{ Lux}$$

Aplicando el factor de mantenimiento = 0.7

$$E_t = 115.82 \times 0.7 = 81.07 lux$$

CAPITULO III 3.-CALCULO DE ALIMENTACIÓN ELECTRICA

CAPITULO III CALCULO DE ALIMENTACIÓN ELECTRICA.

Para seleccionar adecuadamente el calibre de un conductor de circuito principal o derivado es importante tomar en consideración dos factores:

- 3.1.- Capacidad de conducción de corriente.
- 3.2.- Caída de tensión.

Estos dos factores deben considerarse por separado y hacer la selección utilizando ambos. El resultado obtenido en uno y otro probablemente difiera y debe tomarse como bueno el que resulte mayor, pues de este modo el conductor se comportara satifactoriamente o sea, trabajara presentando una caída de tensión reglamentada y el calentamiento por el paso de la corriente en el conductor podrá restringirse dentro del limite precalculado.

3.1.- Selección del conductor por capacidad de conducción de corriente.

Se deben tener los siguientes aspectos.

3.1.1.- Haciendo uso de formulas de aplicación simple y de sistemas mas comunes:

CARGA MONOFASICA 1F – 2H	CARGA BIFÁSICA 2F – 2H	CARGA TRIFÁSICA 3F- 3H O 4H
A 127 V	A 220V	A 220V
$I = \frac{\text{WATTS}}{127 \text{ (fp)}}$	$I = \frac{\text{WATTS}}{220 \text{ (fp)}}$	$I = \frac{WATTS}{1.732 \times 220 \times (Fp)}$

f P= Factor de Potencia

3.1.2.- Selección de la capacidad de conducción de los conductores debido a tres factores fundamentales.

3.1.2.1.- Factor de seguridad o de normatividad.

De la Norma Mexicana NOM- 001- SEDE-1999. Art 220-3 (a). El tamaño nominal mínimo de los conductores del circuito derivado, sin aplicar ningún factor de ajuste o corrección, debe permitir una capacidad de conducción de corriente igual o mayor que la de la carga no-continua mas 125% de la carga continua.

3.1.2.2.- Corrección por agrupamiento.

Es un factor que tiene en cuenta el número de conductores que conducen energía eléctrica en una misma canalización.

3.1.2.3.- Corrección por temperatura ambiente mayor a 30°C. Este factor se toma de la tabla 310-16 de la Norma Oficial Mexicana NOM-SEDE-1999. Según la columna vertical que se este utilizando (Temperatura de operación del conductor) en el diseño.

Aplicando estos conceptos, se emplea la siguiente formula que nos dará el valor de la corriente real que se desea conducir.

$$I_{CORREGIDA} = \frac{1.25 \text{ x Inom.}}{Fa \text{ x Ft}}$$

Icorregida = Intensidad de corriente que deberá ser conducida

I nominal = intensidad de corriente nominal

Fa = Factor de agrupamiento.

Ft = Factor de corrección por temperatura ambiente mayor de 30°

Una vez obtenida la corriente que debe ser conducida se selecciona el calibre adecuado del conductor haciendo uso de las tablas de capacidad de conducción de corriente para el caso específico del conductor y el medio de canalización utilizado

3.2.- Selección del conductor por caída de tensión.

Considerando los criterios de diseño, la caída de voltaje máxima permisible desde la entrada de servicio hasta el ultimo punto de distribución final para la carga, no debe ser mayor del 5%.

De acuerdo a lo anterior, es importante una vez que se haya elegido el conductor adecuado por el calculo de capacidad de conducción, se recalcule por caída de voltaje, de acuerdo a las siguientes formulas.

CARGA MONOFASICA 1F – 2H	CARGA BIFÁSICA 2F – 2H	CARGA TRIFÁSICA 3F- 3H O 4H
A 127 V	A 220V	A 220V
$V\% = \frac{4 L I}{127 \times S}$	$V\% = \frac{2LI}{220 \times S}$	$V\% = \frac{2 \times 1.732 \times LI}{220 \times S}$

I = Corriente por fase en amperes

L = Longitud en metros

S = Sección del conductor en mm2

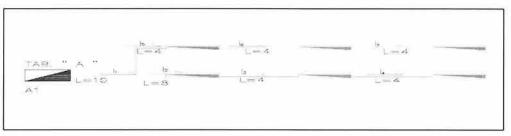
V% = Caída de tensión en por ciento.

La formula aplicada en este texto para la caída de tensión por considerarla la más adecuada para demostrar esta caída desde el tablero a la primera carga y después lámpara y lámpara, o contacto y contacto es la siguiente:

$$%V = \frac{3.28 \times L \times I \times K}{10,000}$$

I = Corriente por fase en amperes

L = Longitud en metros


K = constante que depende del calibre del conductor

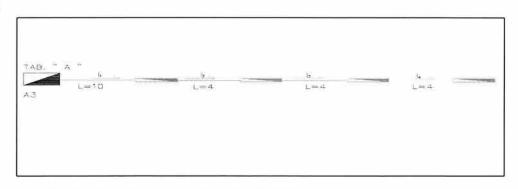
V% = caída de tensión en por ciento

Obtenida del HAND BOOK IEEE de alumbrado y de la cual se anexa copia de esta tabla para determinar el valor de la constante (K)

3.3.- CALCULO DE LOS CONDUCTORES ALIMENTADORES A LAMPARAS Y CONTACTOS

LÁMPARAS FLUORESCENTES DE 2x 59W 127V + 10% BALASTRA

 $I = 130/127 \times 0.9 = 1.374 \text{ Amp.}$


LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

CIRCUITO A1

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11= 1.374	6	12	30	10	8.24	0.47
12 = 1.374	3	12	30	8	4.12	0.19
13 = 1.374	2	12	30	4	2.75	0.06
14 = 1.374	1	12	30	4	1.37	0.03
15 = 1.374	3	12	30	4	4.12	0.09
16 = 1.374	2	12	30	4	2.75	0.06
17 = 1.374	1	12	30	4	1.37	0.03
					SUMA C. T.	0.94

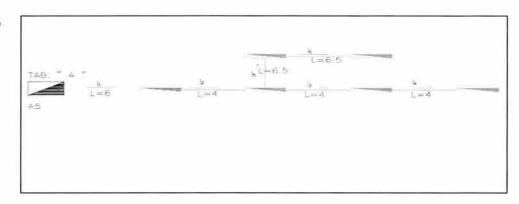
APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

CIRCUITO A3

LÁMPARAS FLUORESCENTES DE 2x 59W 127V + 10% BALASTRA

 $I = 130/127 \times 0.9 = 1.374 \text{ Amp.}$

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO A3

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11= 1.374	4	12	30	10	5.50	0.31
12 = 1.374	3	12	30	4	4.12	0.09
13 = 1.374	2	12	30	4	2.75	0.06
14 = 1.374	1	12	30	4	1.37	0.03

SUMA C. T. 0.50

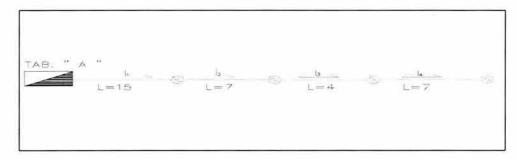
APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

OFICINAS CIRCUITO A5

LÁMPARAS FLUORESCENTES DE 2x 59W 127V + 10% BALASTRA

 $I = 130/127 \times 0.9 = 1.374 \text{ Amp.}$

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO A5

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11= 1.374	6	12	30	8	8.24	0.37
12 = 1.374	5	12	30	4	6.87	0.16
13 = 1.374	2	12	30	4	2.75	0.06
14 = 1.374	1	12	30	4	1.37	0.03
15 = 1.032	2	12	30	6.5	2.75	0.10
16 = 1.032	1	12	30	6.5	1.37	0.05

SUMA C. T. 0.78

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

CIRCUITO A2

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO A2

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	4	10	19	15	5.68	0.31
12 = 1.42	3	10	19	7	4.26	0.11
13 = 1.42	2	10	19	4	2.84	0.04
14 = 1.42	1	10	19	7	1.42	0.04

SUMA C. T.

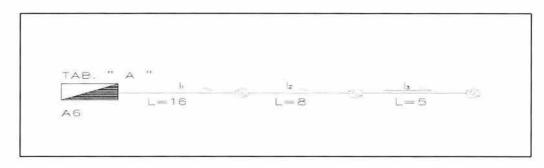
0.49

CIRCUITO A4

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO A4

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	4	10	19	10	5.68	0.20
12 = 1.42	2	10	19	7	2.84	0.07
13 = 1.42	1	10	19	4	1.42	0.02
14 = 1.42	1	10	19	7	1.42	0.04

SUMA C. T. 0.33

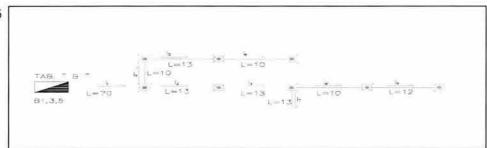
APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

CIRCUITO A6

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO A6

	NO. CONT	CALIBRE	CIE. (K)	L (MIS)	CORRIENTE	%V
11 = 1.42	3	10	19	16	4.26	0.25
12 = 1.42	2	10	19	8	2.84	0.08
13 = 1.42	1	10	19	5	1.42	0.03

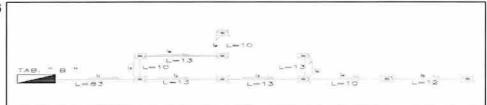
SUMA C. T.

0.35

FILTROS CIRCUITO B1,3,5

LÁMPARAS VAPOR DE MERCURIO 400W + 10% DE LA BALASTRA, 220V

 $I = 440/220 \times 0.9 = 2.23$ Amp.


LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6VOLTS

CIRCUITO B1,3,5

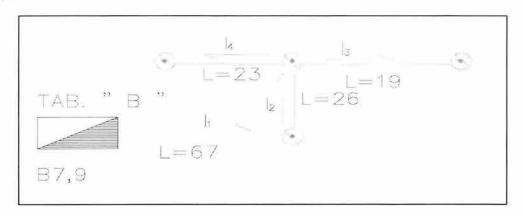
	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 2.23 Amp	9	4	5.2	70	20.07	2.83
12 = 2.23	5	6	8	13	11.15	0.45
13 = 2.23	4	8	12	13	8.92	0.54
14 = 2.23	3	10	19	10	6.69	0.49
15 = 2.23	2	10	19	13	4.46	0.43
16 = 2.23	1	10	19	10	2.23	0.16
17 = 2.23	1	10	19	13	2.23	0.21
18 = 2.23	2	10	19	10	4.46	0.33
19 = 2.23	1	10	19	12	2.23	0.20
					SUMA C. T.	5.64

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix1.18/10000

CIRCUITO B2,4,6

LÁMPARAS VAPOR DE MERCURIO 400W + 10% DE LA BALASTRA, 220V

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6VOLTS


CIRCUITO B2,4,6

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 2.23	9	4	5.2	83	20.07	3.35
12 = 2.23	5	4	5.2	13	11.15	0.29
13 = 2.23	4	8	12	13	8.92	0.54
14 = 2.23	2	6	8	10	4.46	0.14
15 = 2.23	1	6	8	12	2.23	0.08
16 = 2.23	1	10	19	13	2.23	0.21
17 = 2.23	3	10	19	10	6.69	0.49
18 = 2.23	2	10	19	13	4.46	0.43
19 = 2.23	1	10	19	10	2.23	0.16

SUMA C. T.

5.70

FILTROS CIRCUITO B7,9

CONTACTOS BIFASICOS 220V, 250W

I = 250/220x0.9 = 1.26 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6VOLTS

CIRCUITO B7,9

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.26	4	10	19	67	5.04	2.48
12 = 1.26	3	10	19	26	3.78	0.72
13 = 1.26	1	10	19	19	1.26	0.18
14 = 1.26	1	10	19	23	1.26	0.21

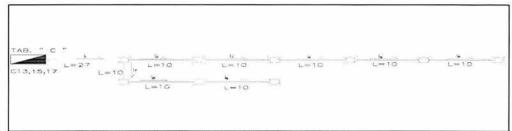
SUMA C. T. 3.60

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx1.18/10000

ALMACEN CIRCUITO C7,9,11

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V

 $I = 440/220 \times 0.9 = 2.23$ Amp.


LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

CIRCUITO C7,9,11

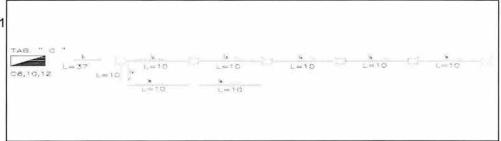
	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 2.23 Amp	9	10	19	16	20.07	2.36
12 = 2.23	5	10	19	10	11.15	0.82
13 = 2.23	4	10	19	10	8.92	0.66
14 = 2.23	3	10	19	10	6.69	0.49
15 = 2.23	2	12	30	10	4.46	0.52
16 = 2.23	1	12	30	10	2.23	0.26
17 = 2.23	3	10	19	10	6.69	0.49
18 = 2.23	2	10	19	10	4.46	0.33
19 = 2.23	1	12	30	10	2.23	0.26
					SUMA C. T.	6.18

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix1.18/10000

CIRCUITO C13.15.17

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V

I = 440/220x0.9 = 2.23 Amp.


LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

CIRCUITO C13.15.17

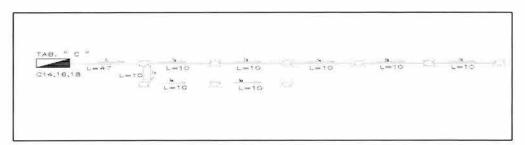
	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 2.23 Amp	9	8	12	27	20.07	2.52
12 = 2.23	5	10	19	10	11.15	0.82
13 = 2.23	4	10	19	10	8.92	0.66
14 = 2.23	3	10	19	10	6.69	0.49
15 = 2.23	2	10	19	10	4.46	0.33
16 = 2.23	1	12	30	10	2.23	0.26
17 = 2.23	3	10	19	10	6.69	0.49
18 = 2.23	2	12	30	10	4.46	0.52
19 = 2.23	1	12	30	10	2.23	0.26
					SUMA C. T.	6.34

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix1.18/10000

ALMACEN CIRCUITO C8,1

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V

 $I = 440/220 \times 0.9 = 2.23 \text{ Amp.}$


LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

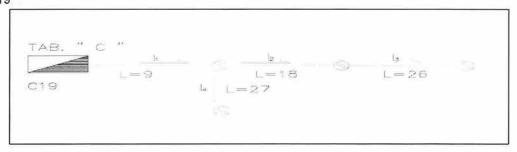
CIRCUITO C8, 10, 12

	NO. LAMP	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 2.23 Amp	9	6	8	37	20.07	2.30
12 = 2.23	5	8	12	10	11.15	0.52
13 = 2.23	4	10	19	10	8.92	0.66
14 = 2.23	3	12	30	10	6.69	0.78
15 = 2.23	2	12	30	10	4.46	0.52
16 = 2.23	1	12	30	10	2.23	0.26
17 = 2.23	3	10	19	10	6.69	0.49
18 = 2.23	2	12	30	10	4.46	0.52
19 = 2.23	1	12	30	10	2.23	0.26
					SUMA C. T.	6.30

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx1.18/10000

CIRCUITO C14,16,18

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V


 $I = 440/220 \times 0.9 = 2.23$ Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

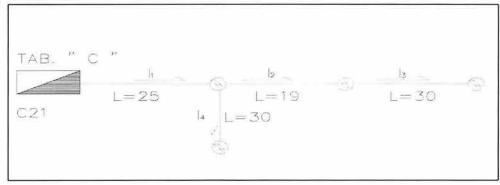
CIRCUITO C14,16,18

0000	NO. LAMP	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 2.23 Amp	9	6	8	47	20.07	2.92
12 = 2.23	5	6	8	10	11.15	0.35
13 = 2.23	4	10	19	10	8.92	0.66
14 = 2.23	3	10	19	10	6.69	0.49
15 = 2.23	2	12	30	10	4.46	0.52
16 = 2.23	1	12	30	10	2.23	0.26
17 = 2.23	3	10	19	10	6.69	0.49
18 = 2.23	2	12	30	10	4.46	0.52
19 = 2.23	1	12	30	10	2.23	0.26
					SUMA C. T.	6.46

ALMACEN CIRCUITO C19

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.


LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

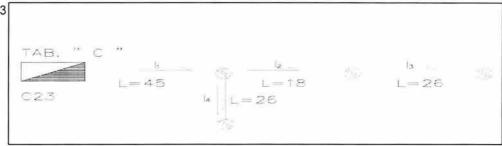
CIRCUITO C19

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	4	10	19	9	5.68	0.18
12 = 1.42	2	10	19	18	2.84	0.18
13 = 1.42	1	10	19	26	1.42	0.13
14 = 1.42	1	10	19	27	1.42	0.14
					SUMA C. T.	0.64

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

CIRCUITO C21

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V


I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

CIRCUITO C21

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	4	10	19	25	5.68	0.51
12 = 1.42	2	10	19	19	2.84	0.19
13 = 1.42	1	10	19	30	1.42	0.15
14 = 1.42	1	10	19	30	1.42	0.15
					SUMA C. T.	1.01

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx0.577/10000

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

CIRCUITO C23

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V	
11 = 1.42	4	10	19	45	5.68	0.92	
12 = 1.42	2	10	19	18	2.84	0.18	
13 = 1.42	1	10	19	26	1.42	0.13	
14 = 1.42	1	10	19	26	1.42	0.13	
					SUMA C. T.	1.37	

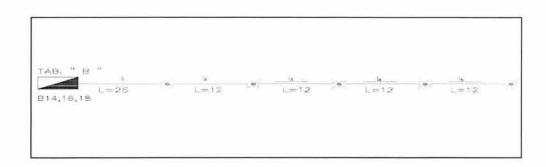
APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

ESTACIONAMIENTO

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V

I = 440/220x0.9 = 2.23 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS


CIRCUITO B8,10,12

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 2.23 Amp	5	10	19	31	11.15	2.54
12 = 2.23	3	12	30	22	6.69	1.71
13 = 2.23	2	12	30	22	4.46	1.14
14 = 2.23	1	12	30	22	2.23	0.57
15 = 2.23	1	12	30	22	2.23	0.57

SUMA C. T. 6.53

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx1.18/10000

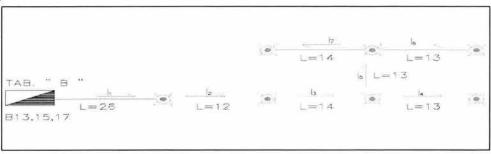
CIRCUITO B14,16,18

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V

I = 440/220x0.9 = 2.23 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

CIRCUITO B14,16,18


	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 2.23 Amp	5	10	19	21	11.15	1.72
12 = 2.23	4	12	30	12	8.92	1.24
13 = 2.23	3	12	30	12	6.69	0.93
14 = 2.23	2	12	30	12	4.46	0.62
15 = 2.23	1	12	30	12	2.23	0.31

SUMA C. T. 4.83

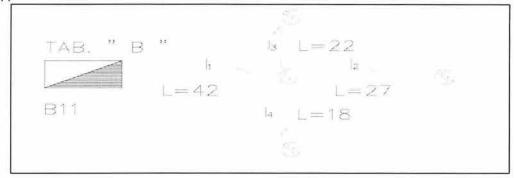
APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix1.18/10000

COMBUSTOLEO

CIRCUITO B13,15.17

LAMPARA VAPOR DE MERCURIO 400W+10% DE LA BALASTRA, 220V

I = 440/220x0.9 = 2.23 Amp.


LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

CIRCUITO B13,15,17

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 2.23 Amp	7	8	12	26	15.61	1.89
12 = 2.23	6	10	19	12	13.38	1.18
13 = 2.23	5	10	19	14	11.15	1.15
14 = 2.23	1	12	30	13	2.23	0.34
15 = 2.23	3	12	30	13	6.69	1.01
16 = 2.23	1	12	30	12	2.23	0.31
17 = 2.23	1	12	30	13	2.23	0.34

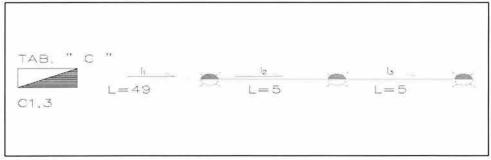
SUMA C. T. 6.21

CIRCUITO B11

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

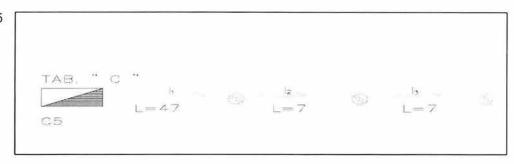

CIRCUITO B11

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	4	10	19	42	5.68	0.86
12 = 1.42	1	10	19	27	1.42	0.14
13 = 1.42	1	10	19	22	1.42	0.11
14 = 1.42	1	10	19	18	1.42	0.09

SUMA C. T. 1.20

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

LÁMPARAS VAPOR DE MERCURIO 250W + 10% DE LA BALASTRA


I = 250/220x0.9 = 1.26 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6VOLTS

CIRCUITO C1,3

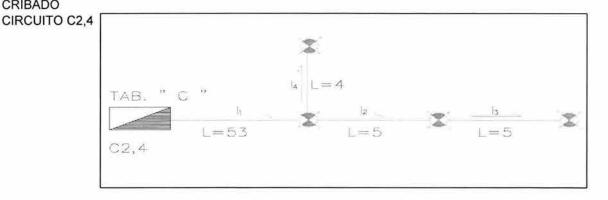
	NO. LAMP	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.26 Amp	3	10	19	49	3.78	0.67
12 = 1.26	2	10	19	5	2.52	0.05
13 = 1.26	1	10	19	5	1.26	0.02

SUMA C. T. 0.73

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO C5

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	3	10	19	47	4.26	0.72
12 = 1.42	2	10	19	7	2.84	0.07
13 = 1.42	1	10	19	7	1.42	0.04

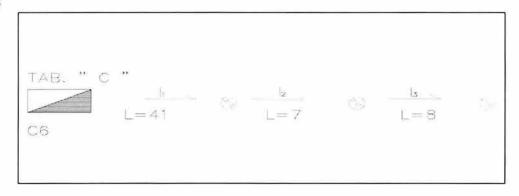
SUMA C. T. 0.83

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

CRIBADO

LÁMPARAS VAPOR DE MERCURIO 175W + 10% DE LA BALASTRA

I = 193/220x0.9 = 0.98 Amp.


LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6VOLTS

CIRCUITO C2.4

	NO. LAMP	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 = 0.98 Amp	4	10	19	53	3.92	0.75
12 = 0.98	2	10	19	5	1.96	0.04
13 = 0.98	1	10	19	5	0.98	0.02
14 = 0.98	1	10	19	4	0.98	0.01

SUMA C. T. 0.81

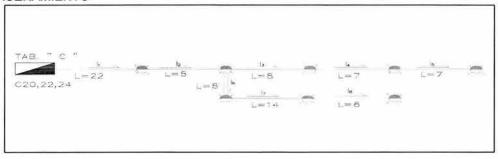
APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx0.577/10000

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

CIRCUITO C6


	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	3	10	19	41	4.26	0.63
12 = 1.42	2	10	19	7	2.84	0.07
13 = 1.42	1	10	19	8	1.42	0.04

SUMA C. T. 0.74

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx0.577/10000

SILOS DE ALMACENAMIENTO

CIRCUITO C20,22,24

LAMPARA VAPOR DE MERCURIO 250W+10% DE LA BALASTRA, 220V

I = 275/220x0.9 = 1.40 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

CIRCUITO C20,22,24

	NO. LAMP	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 1.40 Amp	8	10	19	22	11.20	1.81
12 = 1.40	7	10	19	8	9.80	0.58
13 = 1.40	3	12	30	8	4.20	0.39
14 = 1.40	2	12	30	7	2.80	0.23
15 = 1.40	1	12	30	7	1.40	0.11
16 = 1.40	3	12	30	8	4.20	0.39
17 = 1.40	2	12	30	14	2.80	0.46
18 = 1.40	1	12	30	8	1.40	0.13

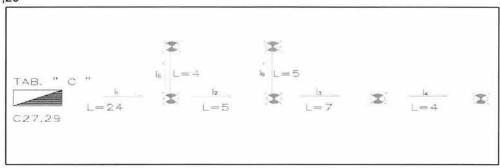
SUMA C. T. 4.10

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx1.18/10000

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO C25

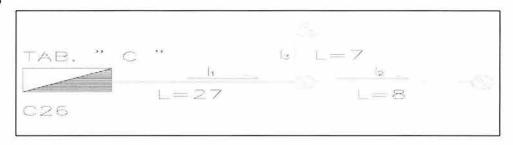
	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	3	10	19	29	4.26	0.44
12 = 1.42	2	10	19	14	2.84	0.14
13 = 1.42	1	10	19	11	1.42	0.06

SUMA C. T. 0.64

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix0.577/10000

CIRCUITO C27,29

LAMPARA VAPOR DE MERCURIO 175W+10% DE LA BALASTRA, 220V


I = 193/220x0.9 = 0.97 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=220X3/100= 6.6 VOLTS

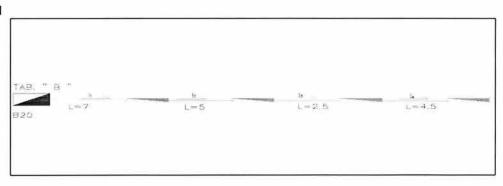
CIRCUITO C27,29

	NO. LAMP:	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 0.97 Amp	6	10	19	24	5.82	1.03
12 = 0.97	4	12	30	5	3.88	0.23
13 = 0.97	2	12	30	7	1.94	0.16
14 = 0.97	1	12	30	4	0.97	0.05
15 = 0.97	1	12	30	4	0.97	0.05
16 = 0.97	1	12	30	5	0.97	0.06
					SUMA C. T.	1.56

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxix1.18/10000

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS


CIRCUITO C26

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	3	10	19	27	4.26	0.41
12 = 1.42	1	10	19	7	1.42	0.04
13 = 1.42	1	10	19	8	1.42	0.04

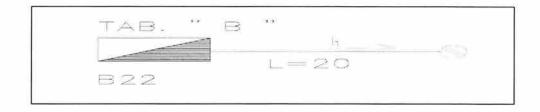
SUMA C. T. 0.49

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx0.577/10000

SUBESTACION CIRCUITO B20

LAMPARA FLUORESCENTE DE 2X 59 W +10% DE LA BALASTRA, 127V

 $I = 130/127 \times 0.9 = 1.374 \text{ Amp.}$


LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81 VOLTS

CIRCUITO B20

	NO. LAMP	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
I1 1.374 Amp	4	12	30	7	5.50	0.22
12 = 1.374	3	12	30	5	4.12	0.12
13 = 1.374	2	12	30	2.5	2.75	0.04
14 = 1.374	1	12	30	4.5	1.37	0.04

SUMA C. T. 0.41

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxlx0.577/10000

CONTACTOS DUPLEX POLARIZADOS DE 180VA, 127V

I = 180/127 = 1.42 Amp.

LA CAIDA DE TENSION PERMISIBLE %V=127X3/100= 3.81VOLTS

CIRCUITO B22

	NO. CONT	CALIBRE	CTE. (K)	L (MTS)	CORRIENTE	%V
11 = 1.42	1	10	19	20	1.42	0.10
12 = 1.42	1	10	19	3	1.42	0.02

SUMA C. T. 0.12

APLICANDO LA FORMULA DE LA CAIDA DE TENSION %V= 3.28xKxLxIx0.577/10000

3.4.-CALCULO DEL CONDUCTOR ALIMENTADOR A UN MOTOR

3.4.1.-Antecedentes.

Las memorias de calculo están basadas en la Norma Oficial Mexicana NOM-001-SEDE -1999, y en información tomada del NEC para el calculo de caída de tensión así, como de las graficas de Conductores Mexicanos para la determinación de la corriente de corto circuito permisible para cables aislados con conductor de cobre.

3.4.2.- Procedimientos de calculo.

Datos:

Potencia del motor = 10 HP= 480 VVoltaje Frecuencia $= 60 \, \mathrm{HZ}$ = 3 Fases Longitud = 10 mtsTemperatura operación Temperatura ambiente $= 75^{\circ}C$ $= 40^{\circ}C$ Tipo de aislamiento EP-RHW Material Cobre

De tabla 430-150 corriente a plena carga de motores trifásicos de corriente alterna

Para un motor de 10 HP, a 480V, 3 Fases

In (corriente nominal) = 14 amps

3.4.2.1.- Calculo del alimentador por ampacidad.

(Conductor para circuitos de motor)

$$Ic = In \times 1.25$$
 (Art. 430-22 (a))

$$Ic = 14 \times 1.25 = 17.5 \text{ Amps}$$

El conductor se selecciona en base al rango de las terminales del equipo de acuerdo al articulo 110-14 (c) y utilizando y la tabla 310-16. de NOM-SEDE-001

Factores de corrección:

Por temperatura ambiente a 40° C = Ft = 0.88 Por agrupamiento = Fa = 1.0

Aplicando los factores de corrección.

$$Ic = \frac{1.25 \text{ x In}}{\text{Ft x Fa}} = \frac{17.5}{0.88 \text{ x } 1.0}$$
 19.88 amps

El calibre del conductor seleccionado es 12 AWG que conduce 25 amps (tabla 310-16)

3.4.2.2.- Calculo del alimentador por caída de tensión (Art. 215 –2 (Nota 1))

Formula a utilizar

para circuitos trifásicos % V =
$$\frac{\text{In x L x 1.732 x (Rcos\phi + Xsen \phi) x 100}}{\text{E}}$$

donde:

%V = Caída de tensión en el conductor en %

In = Corriente nominal de la carga instalada

E = Volts de línea a línea

R = Resistencia en el conductor en ohms/km

X = Reactancia en el conductor en ohms/km

L = Longitud en km

 $Cos \phi = Factor de potencia = 0.9$

Sen $\phi = 0.43$

Utilizando la tabla num. 9 de resistencia y reactancia del National Electric Code

Para calibre num. 12 awg en tubo de acero.

R= 2.0 ohms/pie = 6.56 ohms/km

X = 0.068 ohms/pie = 0.22304 ohms/km

Sustituyendo valores en la formula de la caída de tensión

%V =
$$\frac{14 \times 10 \times 1.732 \times (6.56 \times 0.9 + 0.22304 \times 0.43)}{480 \times 10} = 0.303$$

La caída de tensión es menor que el 1% por lo tanto el conductor cumple.

3.4.2.3.- Calculo de la protección contra corto circuito y falla a tierra del circuito derivado.

De acuerdo a la tabla 430-152 capacidad o ajuste para los circuitos de un solo motor.

Factor seleccionado = 250%

$$I_{int} = 2.5 \text{ x } I n = 2 \text{ x } 14 = 35 \text{ amps}$$

El interruptor seleccionado deberá de ser de 3P- 20 amps.

3.4.2.4.-Protección contra sobrecarga.

El ajuste de esta protección se realiza en campo de acuerdo al factor de servicio y a la elevación de temperatura del motor.

$$I_{ol} = In \times 1.15$$

$$I_{ol} = In \times 1.25$$

Considerando la corriente nominal (De la NOM-001-SEDE-1999)

$$I_{ol} = 14 \times 1.15 = 16.1$$
 amp

$$I_{ol} = 14 \times 1.25 = 17.5 \text{ amp.}$$

3.4.2.5.- Calculo de la canalizacion:

La selección del tubo conduit será en base al capitulo 10 tabla C1 del apéndice "C"

3 conductores del cal. 12 en tubo conduit de 16 mm

3.5.-CALCULO DEL CONDUCTOR ALIMENTADOR A UN TABLERO "C".

3.5.1.- Antecedentes.

Las memorias de calculo están basadas en la Norma Oficial Mexicana NOM-001-SEDE -1999, y en información tomada del NEC para el calculo de caída de tensión así, como de las graficas de Conductores Mexicanos para la determinación de la corriente de corto circuito permisible para cables aislados con conductor de cobre.

3.5.2.- Procedimientos de calculo.

Datos	*
1 1010	•

Carga instalada = 28 038 VA
Voltaje = 220 V
Frecuencia = 60 HZ
Fases = 3
Longitud = 70 mts
Temperatura operación = 75°C
Temperatura ambiente = 40°C
Tipo de aislamiento EP -RHW
Material Cobre

3.5.2.1.-Calculo de la corriente nominal de acuerdo al Art. 220-10

(Tablero" C " ver cuadro de cargas en anexos capitulo V)

Para tableros desbalanceados

Carga instalada de la fase mayor = 9 625 VA

$$Im = 9625 = 75.79 A$$

Im = Corriente demandada por la fase con mayor carga

3.5.2.2.-Calculo del alimentador por ampacidad de acuerdo al Art. 220.3 (a).

El tamaño nominal de los conductores del circuito derivado, sin aplicar ningún factor de ajuste o corrección, debe de permitir una capacidad de conducción de corriente igual o mayor que la de la carga no-continua, más 125% de la carga continua.

Por lo tanto:

Alumbrado = 23 538 = 1.25 x 23 538 = 29 422.5 VA (Carga Continua)

Contactos = 4 500
$$= 4500 \text{ VA}$$
 (Carga No-Continua)

$$= 33 922.5 \text{ VA}$$

$$Ic = \frac{33\ 922.5}{1.732\ x\ 220} = 89\ A$$

El conductor se selecciona en base al articulo 110-14 (c) y tabla 310-16 y considerando los factores de corrección por tempera y agrupamiento.

Factores de corrección:

Por temperatura a 40° c = 0.88

Por agrupamiento consideramos el articulo 310-15 nota 10 (C) referente al conductor neutro. En un circuito de cuatro hilos tres fases en estrella cuyas principales cargas sean no-lineales, por el conductor neutro pasarán armónicas de la corriente por lo que se debe considerar como conductor activo.

$$Ico = \frac{89}{0.8 \times .88} = 126.42 \text{ A}$$

El conductor seleccionado es del calibre 1/0awg que conduce 150 Amps (tabla 310-16)

3.5.2.3. - Calculo del alimentador por caída de tensión

Formula a utilizar

$$Im x L x 1.732 x (R\cos\phi + X \sin\phi) x 100$$

para circuitos trifásicos % V =

E

donde:

%V = Caída de tensión en el conductor en %

Im = Corriente demandada por la fase con mayor carga

E = Volts de línea a línea

R = Resistencia en el conductor en ohms/km

X = Reactancia en el conductor en ohms/km

L = Longitud en km

 $Cos \phi = Factor de potencia = 0.9$

Sen $\phi = 0.43$

Utilizando la tabla num. 9 de resistencia y reactancia del National Electric Code

Para calibre num. 1/0 awg en tubo de acero.

R = 0.12 ohms/pie = 0.3936 ohms/km

X = .055 ohms/pie = 0.1804 ohms/km

Sustituyendo valores en la formula de la caída de tensión

%V =
$$\frac{75.79 \times 70 \times 1.732 \times (0.3936 \times 0.9 + 0.1804 \times 0.43)}{220 \times 10} = 1.80$$

La caída de tensión no es mayor del 2% por lo tanto el conductor cumple.

3.5.2.3.- Selección del alimentador por corto circuito utilizando las graficas de conductores mexicanos.

Datos

Calibre del conductor

Conductores de aislamiento

1/0

EP-RHW

Tipo de aislamiento Polímero Sintético

Material conductor Cobre

Temperatura de operación del

Conductor e 75°C Corriente total en karms 25

(por corto circuito)

Tipo de protección del circuito Termomagnetico

Tiempo de operación del dispositivo

de protección 5 segundos

Calibre seleccionado de la grafica

no. 35 de condumex 1/0

Este calibre de 1/0 según la tabla no. 35 de condumex soporta hasta 13 000 amp de corto circuito.

3.5.2.4.- Calculo de la protección contra sobrecorriente

De acuerdo al articulo 220-10 (b)

La capacidad nominal del dispositivo de protección contra sobrecorriente no debe ser inferior a la carga no-continua, más 125% de la carga continua.

Por lo tanto si la corriente bajo estas condiciones es de:

I = 89 A

El dispositivo seleccionado es de 3P-100 A que es el inmediato superior.

3.5.2.5.- Calculo de la canalización:

La selección del tubo conduit sera en base al capitulo 10 tabla C1 del apéndice "C"

4 conductores cal. 1/0 en tubo conduit de 53 mm

3.6.- CALCULO DEL CONDUCTOR ALIMENTADOR A UN GRUPO DE MOTORES Y OTRAS CARGAS.

3.6.1.- Antecedentes.

Las memorias de calculo están basadas en la Norma Oficial Mexicana NOM-001-SEDE -1999, y en información tomada del NEC para el calculo de caída de tensión así, como de las graficas de Conductores Mexicanos para la determinación de la corriente de corto circuito permisible para cables aislados con conductor de cobre.

3.6.2.- Procedimientos de calculo.

Datos:

Carga instalada = 170 285 VAVoltaje = 480 VFrecuencia = 60 HZFases = 3Longitud = 10 mtsTemperatura operación $= 75^{\circ}C$ Temperatura ambiente $= 40^{\circ}C$ Tipo de aislamiento EP-RHW Material Cobre

3.6.2.1.-Calculo de la corriente nominal

(Tablero" P "ver cuadro de cargas en anexos capitulo V)

Para tableros balanceados

$$In = \underbrace{170\ 285}_{1.732\ x\ 480} = 204.81\ A$$

De acuerdo al art. 430-24, 430-25 y 430-26 el alimentador que alimenta a varios motores y otras cargas debera tener una capacidad de conducción de corriente igual a la suma de la corriente nominal de todos los motores mas 25% de la corriente nominal del motor mayor mas la suma de las otras cargas.

$$In = Inm + 0.25Inmm + Inc$$

In = Corriente del alimentador

Inm = Suma de corriente nominal de todos los motores

Inmm = Corriente nominal del motor mayor

Inc = Suma de las corrientes de las demas cargas

(Ver tabla de análisis de cargan numero 1 anexa al final de este calculo)

$$In = 204.81 + 0.25 (14) = 208.31A$$

Ft = Factor de temperatura tomado del Art. no. 310-10 y de las tablas numero 310-16 a 310-19 de NOM-001-SEDE-1999.

Fa = 1

Ic = Corriente nominal corregida de acuerdo a formula.

$$I_c = \frac{In}{Ft \times fa} = \frac{208.31}{0.88 \times 1} = 236.71 \text{ amps}$$

Calibre obtenido de acuerdo a la tabla no 310-16 NOM-001-SEDE-1999. Es de un conductor de 250 KCM por fase que conduce una corriente de 255 amperes

3.6.2.2 Calculo del conductor por caída de tensión

De acuerdo al articulo no. 215.2 (nota 1) NOM-001-SEDE-1999. La caída de tensión global desde el medio de desconexión principal hasta la salida mas alejada de la instalación, considerando alimentadores y circuitos derivados no debe exceder del 5%, la caída de tensión, se debe distribuir razonablemente en el circuito alimentador, procurando que en cualquiera de ellos, la caída de tensión no sea mayor al 3%.

La caída de tensión se calcula de acuerdo a la siguiente formula.

$$\%V = \underbrace{\frac{1.732 \times \ln x L(R\cos\phi + X \sin\phi)}{V} \times 100}_{V}$$

Donde:

%V = Caída de tensión en el alimentador

In = Corriente nominal de la carga instalada

L = Longitud

V = Tensión nominal del circuito entre fases

R = Resistencia unitaria

X = Reactancia unitaria del circuito tomada de

 $Cos \phi = Factor de potencia = 0.9$

Sen $\phi = 0.43$

Utilizando la tabla num. 9 de resistencia y reactancia del National Electric Code

Para calibre num. 250KCM en tubo de acero.

R = .054 ohms/pie = 0.17712 ohms/km

X = .052 ohms/pie = 0.17056 ohms/km

Sustituyendo valores en la formula de la caída de tensión

%V =
$$\frac{208.31 \times 10 \times 1.732 \times (0.17712 \times 0.9 + 0.17056 \times 0.43)}{480 \times 10} = .055$$

La cual es una caída menor del 1%

3.6.2.3.- .- Selección del alimentador por corto circuito utilizando las graficas de conductores mexicanos.

Datos

Calibre del conductor 250KCM Conductores de aislamiento EP-RHW

Tipo de aislamiento Polímero Sintético

Material conductor Cobre

Temperatura de operación del

Conductor 75°C Corriente total en karms 25

(por corto circuito)

Tipo de protección del circuito Termomagnetico

Tiempo de operación del dispositivo

de protección 5 segundos

Calibre seleccionado de la grafica no. 35 de condumex

250KCM

Este calibre de 250 KCM según la tabla no. 35 de condumex soporta hasta 25 000 amp de corto circuito.

3.6.2.4.- Selección de la capacidad nominal de los dispositivos de protección.

3.6.2.4.1.- Ajuste del dispositivo de protección contra corto circuito y falla a tierra seleccionando del circuito correspondiente al motor de mayor potencia (10 HP listado en la Tabla de Análisis de carga numero 1 anexa al final de este calculo)

20 amps

3.6.2.4.2.- De acuerdo al articulo 430.62, 430.63 Nom-001-Sede-1999. Las corrientes nominales de los motores derivados tomados de la tabla no. 1 (análisis de carga) sin incluir el motor de mayor potencia.

Un circuito alimentador que suministre energia a una carga fija y especifica de motores cuyos conductores tienen tamaño nominal basado en el Árt. 430-24, debe estar provisto de un dispositivo de protección de circuitos derivados y falla a tierra de cualquiera de los motores del grupo, **más** la suma de las corrientes a plena carga de los otros motores del grupo selección basada en la Tabla 430-152.

194.31 Amps

3.6.2.4.3.- Capacidad o ajuste del dispositivo de protección contra corto circuito y fallas a tierra del circuito alimentador.

20 + 194.31 =

214.31 Amps

3.6.2.4.4.- Capacidad comercial del interruptor seleccionado es de:

3P- 225 Amps

3.6.2.4.5.- Capacidad de corriente del conductor de 250KCM seleccionado es de

255 Amps

3.7.- Selección del diámetro de la canalización (tubo conduit).

De acuerdo a las tablas de ocupación en tubo (conduit) de conductores y cables del mismo tamaño nominal (informativo) Apéndice "C"

3 Conductores de 250KCM en tubo de

63mm

TABLA DE ANÁLISIS DE CARGA NUM. 1

	TABLERO "P"	
CLAVE	POTENCIA	EN OPERACIÓN
PCI	10 HP	14 AMPS
ULA-01	5 HP	7.6 AMP
ULA-02	5 HP	7.6 AMP
VE-01	5 HP	7.6 AMP
VE-02	5 HP	7.6 AMP
VE-03	5 HP	7.6 AMP
VE-04	5 HP	7.6 AMP
VE-05	5 HP	7.6 AMP
VE-06	3 HP	4.8 AMPS
VE-07	3 HP	4.8 AMPS
VE-08	3 HP	4.8 AMPS
VE-09	7.5 HP	11 AMPS
VE-10	7.5 HP	11 AMPS
VE-11	7.5 HP	11 AMPS
TR-03	75 KVA	90.21 AMP
		TOTAL 204.81

3.7.-CALCULO DEL CONDUCTOR ALIMENTADOR AL TRANS-FORMADOR DE 75 KVA 480/220-127V (TIPO SECO)

3.7.1.- Antecedentes.

Las memorias de calculo están basadas en la Norma Oficial Mexicana NOM-001-SEDE -1999, y en información tomada del NEC para el calculo de caída de tensión así, como de las graficas de Conductores Mexicanos para la determinación de la corriente de corto circuito permisible para cables aislados con conductor de cobre.

3.7.2.- Procedimientos de calculo.

Datos:

(Ver pagina 113 para la selección del transformador en KVA)

Potencia del transformador	= 75 Kva
Voltaje	= 480 V
Frecuencia	= 60 Hz
Fases	= 3
Longitud	= 10 Mts
Temperatura de operación	$= 75^{\circ}C$
Temperatura ambiente	$= 40^{\circ}C$
Factor de potencia	= 0.9
Impedancia (Z)	= 4.5%

3.7.2.1.- Calculo de alimentador por ampacidad

In (corriente nominal) =
$$\frac{\text{KVA transformador}}{1.732 \text{ x ky}} = \frac{75}{1.732 \text{ x 0.48}} = 90.21 \text{ amp}$$

Ft = Factor de temperatura tomado del Art. no. 310-10 y de las tablas numero 310-16 a 310-19 de NOM-001-SEDE-1999

Por temperatura = 0.88

Por agrupamiento = 1.0

Aplicando los factores de corrección.

$$Ic = \frac{1.25 \times 90.21}{0.88 \times 1.0} = 128.14 \text{ amps}$$
 cal. 1/0 (150 Amps)

El calibre del conductor seleccionado es 1/0 awg que conduce 150 Amps (tabla 310-16)

3.7.2.2.- Calculo del alimentador por caida de tensión (Art. 215-2 (Nota 1)).

Formula a utilizar

Para circuitos trifásicos % V =
$$\frac{\text{In x L x 1.732 x (Rcos } \phi + Xsen \phi) x 100}{E}$$

Donde:

%V = Caída de tensión en el conductor en %

In = Corriente nominal del transformador

E = Volts entre fases

R = Resistencia en el conductor en ohms/km

X = Reactancia en el conductor en ohms/km

L = Longitud en km

 $\cos \phi = \text{factor de potencia} = 0.9$

Sen $\phi = 0.43$

Utilizando la tabla num. 9 de resistencia y reactancia del National Electric Code

Para calibre num. 1/0 AWG en tubo de acero.

R = 0.12 ohms/pie = 0.3936 ohms/km

X = 0.055 ohms/pie = 0.1804 ohms/km

Sustituyendo valores en la formula de la caída de tensión

%V =
$$\frac{90.21 \times 10 \times 1.732 \times (0.3936 \times 0.9 + 0.1804 \times 0.43)}{480 \times 10} = 0.4455$$

La caida de tensión es menor que el 1% por lo tanto el conductor cumple.

3.7.2.3.- Selección del alimentador por corto circuito utilizando las graficas de conductores mexicanos

Datos:

Calibre 1/0
Conductores de aislamiento EP-RHW
Tipo de aislamiento Polimero
Material del conductor cobre
Temperatura de operación del conductor 75°C
Corriente total en karms 10 karms

(Por corto circuito)

Tipo de protección del circuito Termomagnetico

Tiempo de operación del dispositivo de

de protección. 5 segundos

Calibre seleccionado de la grafica

no 35 de condumex. 1/0

Este calibre de 1/0 según tabla no 35 de condumex soporta hasta 13 000 Amp. de corto circuito.

3.7.2.4.- Calculo de la protección contra corto circuito y falla tierra del circuito derivado.

De acuerdo al Art. 450-3 (b) y las notas 1,2 debe protegerse en el primario con un dispositivo de corriente individual con capacidad o ajustado a no mas de 125% de la corriente primaria nominal del transformador.

$$I_{int} = 1.25 \text{ x } In = 1.25 \text{ x } 90.21 = 112.76 \text{ amps}$$

El interruptor seleccionado debera de ser de 3P-125 amps. por ser el inmediato superior.

3.7.2.5.- Calculo de la canalización:

La selección del tubo conduit sera en base al capitulo 10 tabla 'C1 del apéndice "C"

3 conductores del cal. 1/0 en tubo conduit de 53mm

Para la selección del transformador se en cuanto a capacidad en KVA

	VA	Alumbrado VA	Contactos VA
Tablero "A"	5 436	2 736	2 700
Tablero "B"	20 063	18 054	2 372
Tablero "C"	28 038	25 231	4 500
Total	53 537	43 965	9 572

De Taba 220-11 factores de demanda para otros edificios no indicados Se debe considerar el 100% en carga de alumbrado.

De Taba 220-13 factores de demanda para los primeros 10 KVA se debe considerar el 100% de la carga y para los KVA restantes el 50% en carga de contactos.

Y como el transformador mas próximo es el de 50 KVA y no cubre las necesidades se opto por tomar el inmediato superior que es el de 75KVA

CAPITULO IV 4.- ESPECIFICACIONES DE MATERIAL Y EQUIPO

CAPITULO IV ESPECIFICACIONES DE MATERIAL Y EQUIPO

4.1.- Material y equipo

 Tubería conduit metalica pared gruesa , según norma DGN-J-16 y esmaltada de 21mm de diámetro mca. Júpiter.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diametro.

Idem a la anterior pero de 53mm de diametro.

Idem a la anterior pero de 63mm de diametro.

 Condulet serie ovalada herméticos al polvo con tapa y empaque de neopreno de 21mm diámetro tipo C marca C.H.Domex.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

Idem a la anterior pero de 53mm de diámetro.

Idem a la anterior pero de 63mm de diámetro.

 Condulet serie ovalada herméticos al polvo con tapa y empaque de neopreno de 21mm diámetro tipo LL marca C.H.Domex.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

Idem a la anterior pero de 53mm de diámetro.

Idem a la anterior pero de 63mm de diámetro.

4.- Condulet serie ovalada herméticos al polvo con tapa y empaque de neopreno de 21mm diámetro tipo T marca C.H.Domex. Idem a la anterior pero de 27mm de diametro. Idem a la anterior pero de 35mm de diametro. Idem a la anterior pero de 41mm de diámetro. Idem a la anterior pero de 53mm de diámetro. Idem a la anterior pero de 63mm de diámetro. 5.- Condulet serie GUA a prueba de explosion tipo GUAC de 21mm de diámetro C.H. Domex. Idem a la anterior pero de 27mm de diametro. Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

Idem a la anterior pero de 53mm de diámetro.

Idem a la anterior pero de 63mm de diámetro.

6.- Condulet serie GUA a prueba de explosion tipo GUAL de 21mm de diámetro C.H. Domex.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

7.- Condulet serie GUA a prueba de explosion tipo GUAX de 21mm de diámetro C.H. Domex.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

Idem a la anterior pero de 53mm de diámetro.

Idem a la anterior pero de 63mm de diámetro.

 Condulet serie GUA a prueba de explosion tipo GUAT de 21mm de diámetro C.H. Domex.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

Idem a la anterior pero de 53mm de diámetro.

Idem a la anterior pero de 63mm de diámetro.

9.- Sello tipo EYS para 21mm de diámetro C.H. Domex.

Idem a la anterior pero de 27mm de diametro.

Idem a la anterior pero de 35mm de diametro.

Idem a la anterior pero de 41mm de diámetro.

Idem a la anterior pero de 53mm de diámetro.

Idem a la anterior pero de 63mm de diámetro.

 Conector flexible a prueba de explosion tipo EC de 21mm de diámetro mca. C.H. Domex.

Idem a la anterior pero de 27mm de diametro.

11.- Reducción bushing de aluminio de 27-21mm de diámetro mca. C.H.Domex.

Idem a la anterior pero de 35-27mm de diametro.

Idem a la anterior pero de 41-35mm de diámetro

- Arrancador magenetico combinado tipo EPC tamaño 0 con iterruptor magnetico a prueba de explosion Nema 9G mca. C.H.Domex
- 13.- Contacto FSQC con interruptor entrelazado para 2 hilos para tubo conduit de 21mm cat. FSQC-232 para 220V 30A mca C.H:Domex.
- . Idem a la anterior pero para 3 hilos en tubo conduit de 21mm de diametro.
- 14.-Contacto doble servicio extrapesado 2 polos, 3 hilos, 15A, 127V color marfil catalogo AH5262-1 con tapa a prueba de polovo marca Arrow Hart.
- 15.-Contacto doble servicio extrapesado 2 polos, 3 hilos, 15A, 250V, color marfil catalogo M-5650-M con tapa a prueba de polvo marca Arrow hart.
- 16.-Contacto doble servicio reforzado 2 polos, 3 hilos, 30A, 250V, color negro catalogo AH5700-N con tapa a prueba de polvo marca Arrow hart.
- 17-Contacto con circuito interruptor por falla a tierra 2 polos 3 hilos, 15A 127V, color marfil cat. AHFG 5242-1 con tapa aprueba de polvo marca Arrow Hart.
- 18.- Apagador sencillo intercambiable de 10A, 127V de un polo color marfil catalogo MT-1391 con tapa a prueba de polvo marca Arrow Hart.
- 19.- Abrazadera de aluminio de 21mm tipo uña
- . Idem a la anterior pero de 27mm de diametro.
- . Idem a la anterior pero de 35mm de diametro.
- . Idem a la anterior pero de 41mm de diametro.
 - Idem a la anterior pero de 53mm de diametro.
 - Idem a la anterior pero de 63mm de diametro.

- Unidad de alumbrado vapor de mercurio de 175W, 220V, con balastro electrónico integrado cat. VMVC-J-175GP modelo Relamp Champ II motaje en poste mca. C.H. Domex.
- 21.- Unidad de alumbrado vapor de mercurio de 250W, 220V, con balastro electrónico integrado cat. vmvc-j-250gp modelo Relamp Champ II montaje en poste mca. C.H. Domex
- 22.- Unidad de alumbrado vapor de mercurio de 400W, 220V, con balastro electrónico integrado cat. ILM-400-1ST montaje en poste o techo mca Wide Lite.
- Unidad de alumbrado vapor de mercurio de 400W, 220V, con balastro electrónico integrado cat. ILM-400-4ST montaje en poste mca Wide Lite.
- 24.- Luminaria de sobreponer fluorescente de 2x59 W, 127V con gabinete de fibra de vidrio y balastro electrónico encendido instantáneo aprueba de polvo cat. OG13-21 mca. Ilinsa.
- 25.- Luminaria de sobreponer fluorescente de 2x59 W, 127V con gabinete de fibra de vidrio y balastro electrónico encendido instantáneo aprueba de polvo cat. AV13-21 mca. Ilinsa.
- 26.- Cable vulcanel EP de cobre tipo RHW 600 v, mca. Condumex cal. 12 AWG.

Idem a la anterior pero cal. num. 10 AWG

Idem a la anterior pero cal. num. 8 AWG

Idem a la anterior pero cal. num. 6 AWG

Idem a la anterior pero cal. num. 4 AWG

Idem a la anterior pero cal. num. 2 AWG

Idem a la anterior pero cal. num. 1/0 AWG

Idem a la anterior pero cal. num. 2/0 AWG

Idem a la anterior pero cal. num. 250 KCM

- 27.- Tablero de alumbrado y distribución EWP para 220-127V, 3F, 4H, cat. EWP-5345 Tipo sobreponer de 30 circuitos incluye interruptores
- 28.- Tablero de alumbrado y distribución I LINE para 480-277V, 3F, 4H cat. LA400181A tipo sobreponer incluye interruptores derivados marca Square D bonderizado tropicalizado hermético al polvo.
- 29.- Tablero de alumbrado y distribución NQD para 220-277V, 3F, 4H cat. NQOD-24-4A B, tipo sobreponer incluye interruptores derivados marca Square D bonderizado tropicalizado hermético al polvo.
- 30.- Subestación tipo compacta uso interior para voltaje de 13200V bonderizada, tropicali zada, hermética al polvo, con las siguientes secciones:
 - 1.- Sección de acometida
 - 2.- Sección de paso con cuchillas de operación sin carga de 400Ampers.
 - 3.- Sección de fusibles o cámara de arqueo con apartarrayos de 25KV.
 - 4.- Sección de acoplamiento para transformador
- 31.- Transformador de potencia de 750 KVA, 13200/4160-2401V; neutro aterrizado con 4 derivaciones en el lado de baja tensión de 2.5 dos hacia arriba y dos hacia abajo tipo seco enfriamiento AA, bonderizado y tropicalizado para operar a nivel del mar y aprueba de polvo totalmente cerrados.
- 32.- Grupo motor generador de 150 KW 187 KVA 480-277 V fp= 0.8 incluye tablero de transferencia y tanque de dáa de 300 lts. Apropiado para operar a nivel del mar y a a prueba de polvo.
- 33.- Subestación unitaria en paquete Power Zone Modelo III con transformador tipo seco de 112.5 KVA, 4160/480-277V y sección de distribución con tablero tipo I line para operar a nivel del mar, bonderizado, tropicalizado, aprueba de polvo.
- 34.- Centro de control de motores para operación de trabajo de 4160-2401V con 3 3 secciones de 4 modulos. bonderizado y tropicalizado herméticamente cerrado y aprueba de polvo.
- 35.- Tablero blindado para media tensión tipo metal clad, con interruptores en vacio tipo VAD para 4160-2401V. Para operar a nivel del mar, bonderizado, tropicalizado y herméticamente cerrado al polvo.

CAPITULO V 5.ANEXOS

5.1.- NIVELES MINIMOS DE ILUMINACIÓN RECOMENDADOS PARA ALUMBRADO GENERAL DE INTERIORES

	LUXES	LUXES		LUXES	LUXES
	I.E.S.	S.M.I.L.		I.E.S	S.M.I.I.
	99%	95%		99%	95%
I. EDIFICIOS INDUSTRIALES			Elaboración de crema.		(7
			Mezclado, cocción y moldeado	500	300
ACERO (Véase Hierro y Acero)			Pastillas de goma y jaleas	300	7/28/20
ACUMULADORES MANUFACTURA DE Meldeado celdas	500	300	Decoración a meno Caramelos:	1000	600
ARCILLA Y CEMENTOS PRODUCTOS DE	300	500	Mezdada, cocción y moldeado	500	300
Moliendo, prensa filtrado, homos de secado,		1200	Corte y salección	1000	600
vaciado y devastado	1000	200 600	Elaboración de pesos y envoltura	1000	600
Esmaltado, pintura y vidriado (frabajo burdo) Pintura y vidriado (frabajo tino)	3000s	1700#	EMPACADORAS DE CARNE		
AUTOMOVILES, MANUFACTURA DE	SUVVE	17004	Matadgro (Rastro)	360	200
Ensamblado pastidor	500	300	Limpiado, destizado, cocido, moleindas, em-		
Ensamblado Chasis	1000	600	latade y empasado	1000	600
Ensambles final e Inspección	2000a	1100a	ENCUADERNACION		
Manufactora carroceria: Ensamblado	1000	600			
Portes	700	400	Doblado, ensamblado, empaste, cortado, pun-	1800011	Color at 1
Acabado a inspección	2000a	1100a	zonado y socido	700	400
AVIONES MANUFACTURA DE			Grabado en realce e inspección	2900a	1100a
Parties:	1000	600	ENLATADORAS DE CONSERVAS		
Producción Inspección	2000a	1100a	Clasificación inicial:		
Acabado de piezas:			Jitomates Otras muestras	1000	600
Taladrado, remachado y apretado de tomi-	21		Clasificación por color (quartos de cortado)	500 2000w	300 1100a
llos	700	400	Preparacion.		11000
CUARTO PINTURA	1000 m	600	Setección preliminar		100 00 00 11
liazado sobre aluminio, formado partes pe- queñas de fusciajo y alas	1000	600	Chebacanos y duraznos. Jitomatos	1000	300 600
Soldadura:	((3.53))	Same Co.	Aceitunas	1500	900
thuminación general	500	300	Cortado y picado	1000	600
ILUMINACION LOCALIZADA	10000	6000	Selección final Folatado:	8569	600
Subersamblado			Enlatació en bandas sin fin	1000	600
fren de atomicaje fusulaje, secciones, alas			Enlatado estacionario	1000	600
y ctras partes grandes	1000	600	Empacado a mano Aceituras	1000	600
ENSAMBLADO FINAL			Inspección de muestras enlatadas	20004	1100#
Colocación de materas, hélices, secciones ,			Manejo de envases:		
alas y tren de aterrizaje	1000	600	Inspección	2000a	1100a
inspección de la nave ensamblada y su equipo	1000	600	Euquetado y empucado	300	200
Reparación con máquinas herramientas	1000	600		0.00	
ASERRADEROS			ENSAMBLADO		
Clasificación de la madera	2000	1700	Tosco, fácil de ver	300	200
AZUCAR, REFINERIAS DE			Tosco, difficil de ver	500	300
Clasificación	500	300	Medio Fino	5000	3000
Inspección color	2000	1100	Extralino		
CAJAS DE CARTON, MANUFACTURA				19000	6000
Area general de manufactura	500	300	ENSAYOS O PRUEBAS		
CARBON, VERTEDORES DE			General	500	300
Quebradores, cernidos y limpiado	100	60	Instrumentos, extrafinos, escalas, etc.	2000a	100a
	3000a	1700a		20000	1004
CARPINTERIAS	30000	17003	EQUIPO ELECTRICO, MANUFACTURA:		
- [200] [설명 (1905년 1905년 -	7200	222	Impregnado	500	300
Trabajo burdo de banco y sierra	300	200	Aistado, embobinado	1000	600
Encolado, cepillado, lijado, trabajo de me- diana calidad, en máquinas y banco	500	300	Pruebas	OCDE	500
Trabajo fine de máquina y banco, fijado y			EXTRUCTURAS DE ACERO,		
acabado fino	1000	600	MANUFACTURA DE	500	300
CERVECERAS, INDUSTRIAS			EXPLOSIVOS, MANUFACTURA DE		
Elaboración y lavado de barriles	300	200		300	200
Llenado (de botellas, lata, barriles)	500	300	FORJADO, TALLERES DE		
CUARTOS DE CONTROL (Véase Pian			FUNDICIONES		
tas Generadoras)			Templade (Homos)	360	360
DULCES INDUSTRIAS			(10.00 to 10.00 to 1		
Departemento de Chocolate			Limpiado	100	500
Descascarado, selección, extracción, de acei-	473000	Q800	Hechara de colaziones:		
te, quebrado y retinación, alimentación	500	300	Finos	1000	500
Empieza de grano, selección limersión, empacado y envoltura	500	300	Medianos	500	300
Molienda	1000	600	hispección:	50000	20005
			Film	1100,000	30005

2/01/

		LUXES LE.S 99%	LUXES S.M.I.I. 95%		LUXES I.E.S. 99%	LUXES S.M.I.I. 95%
	4				33.4	33.76
	Hilo de color Tróciles	500	300	parte superior y suelos. Rodillos de suelas, procesos de hechura y	500	300
	Devariado:	300	200	acabado	1000	600
	Hito blanco Hito de color	500	300	ZAPATOS DE PIEL,		
	Urdidorns:	10000		MANUFACTURA DE		
	Hilly blanco	500	300	Cortado y costura:		
	Hilo bianco (en el peine)	1000	600	Tablas de cortado	3000n	1700s
	Hilo de salor	1000 3000a	600 1700a	Marcado, ojalado, adelgazado, selección, remendado y contadores	3000a	1700a
	Hio de color les el peine; l Tendo:	SINCIA	Section	Coside:	Social	1700a
	Telas blancas	1000	600	Materiales claros	500	300
	Telas ste color	2000	1100	Materiales obscuros	3000a	2000a
	Cuarto de telas crudas:	1500 min 150	20000	Hechura y acabado	2000	1100
	Quitar nudos de la tela	1500a 3000a	900a	OFICINAS, ESCUELAS Y EDIFIC	IOS PUBLI	ICOS
	Cosido Deblado	700	1700a 400	AUDITORIOS		
	Acabado humedo	500	300	Para exhibiciones	300	200
	lenido	1000a	600	Para asambleas	150	100
	Acabado en seco			Para actividades sociales	50	50
	Despeluzado, acondicionamiento y planchado	700	600	BANCOS		
	Cortado	1000	600	Vestibulo (iluminación general)	500	300
	Inspectión	2000a	1100a	Pagadores, contadores y recibidores	1500	900
	Coblado	700	400	Gerencia y Correspondencia	1500	900
7.0	TALLERES TEXTILES SEDA			BIBLIOTECAS		0(0)00
432	Y SINTETICOS			Sala de lectura	700	400
35	Macufactura			Anaqueles	300	200
	Repojedo, trá do Jugaz y proparación de			Reparación de libros	500	300
	treados	300	200	Archiveros y catalogar	700	400
	Devarrado, forcido, reflevanado y coneras, forcido			Mesa checadora de salidas y entradas de	230000	
	de fantasia, engomado	200	-200	libras	700	400
	Hila chara	2000	1100	CENTRAL DE BOMBEROS		
	Unidares (South)	2000	1100	(Véase Edificios Municipales)	44	
	En estupia, finales de canera, devanadora,			CLUBES		
	lanzadera y plogadore	1000	600	Salas de desconso y de lectura	300	200
	Repaso en lisos y en el neine	2000a	1100a	CORREOS		
	Tejido	1000	600	Vestibulos, sobre mesas	300	200
	TAPICERIA DE AUTOMOVILES,			Correspondencia, selección, etc.	1000	600
	MUEBLES, ETC	1000	600	CORTES DE JUSTICIA		
	TELA DEPONICTOR DE			(O TRIBUNALES)		
	TELA, PRODUCTOS DE		2045E	Areas de asientos (público)	300	200
	Inspección tela	20000a	10000a	Areas de actividades propias de la corte	700	400
	Cortado	3000a 5000	2000a 300a	EDIFICIOS MUNICIPALES.		
	Costun			BOMBEROS Y POLICIA		
	Flanchado	3000a	2000a	Policia:		
	TIPOGRAFICAS, INDUSTRIAS			Archivos de identificación	1500	900
	Fundición de tipo:			Ceklas y cuartos para interrogatorios	300	200
30	Manufactora matrices, acabado de tipos	1000	600	Bomberos:	17500	PATE.
3	Proparación de tipos, elección	500	300	Dornitorios	200	100
	Fundición Impresión	500	300	Sala recreativa	300	200
	Espección de colores	2000a	1100a			
	Linetipos y cajistas	1000	600	Garage carros bomba ESCUELAS	300	200
	Prensas	700	400		200.00	
	Mesa de formación	1500	900	Salones de clase	700	400
	Corrección de prochas	1500	900	Salones de dibujo (sobre restirador)	1000a	600a
	Electrotipia			Lectura de movimientos de labios	1000	22200
	Moldeario, rauteado, acabado, nivelado, moldes y recertado	1000	600	Isordo mudos), pizarrones, costura	1500a	900a
	Galvanoplastia	500	300	GALERIAS DE ARTE	2010/00/00	
	Fotograbado:	SATISTANI.		lluminación general:	300	200
	Grabado al ácido y montado	500	300	Sobre pinturas (localizado)	300	2006
	Rauteado, acabado, pruebas, entintado	1000	600	Sobre estatuas y otras exhibiciones	10000	500c
	VIDRIO, FABRICAS DE			IGLESIAS		
	Cuarto de Homos y mezcladora, prensado,			Altar, retables	1000e	600e
	máquinas sopladores y templado	300	200	Cora (D) y presbiterio	300e	200e
	Esmerilado, cortado y plateado	500	300	Púlpito (iluminación adicional) Nave principal de la iglesia (iluminación general)	500e 150e	300e
	Esmeritado fino, biselado, pulido	1000	600	Ventenales emplomados:	1506	100e
	Inspección, grabado y decoración	2000a	1100a		500	200
	ZAPATOS DE HULE,			Color blanco	500	300
7	MANUFACTURA DE			Color mediano	1000	600
	lavado, recubrimiento, molinos de ingredien			Calor obscura	5000	3000
	tes	300	200	Ventanal muy dansa	10000	6000
	Banuzado, inicanizacio, calandras, certado	. 7.7.70		MERCADOS	10000	2000
				MENONDOS		

	LUXES I.E.S.	LUXES S.M.I.I.		LUXES I.E.S.	LUXES S.M.I.J.
Bodegas y cuartos de almacenamiento	99%	95%		99%	95 X
Activos	200	100	mesa de frocturas	2000	1100
Inactivos	50	50	Laboratorio:		
Carnicerlas, Barbacoa, Pescaderlas	500 500	300	Cuartos de ensayo	300	200
Cocines (Areas de trabajo) Comedores	300	200	Musas de trabajo Trabajos más precisos	1000	300 600
Cuartos de máquinas	300	200	Vestibulo	300	200
Ferreterias y Accesorios eléctricos	500	300	Salas de reposo	300	200
Lavadoras para verduras y varios	500	300	Cuartos para archivar historias clínicas	1000	600
Mercerias, vestidos y zapaterlas	500	300	Sala de Rayos X :	1000	100
Mueblerias y artículos para el hogar Papelerias, libros y juguetes	500 500	300	Radiografia y Fluoroscopia Terapia superficial y profunda	100	60
Piataformas de descarga	200	100	Cuarto obscuro	100	60
Sanitarios y baños	100	100	Sala para ver placas	350	200
Verduras, frutas, flores y plantas	500	300	Archivos, revelado	300	200
MUSEOS (Véase Galerias de Arte)			Closet de blancos	160	€0
OFICINAS			Guarderla intantiti Iluminación general	100	60
Proyectos y diseños	2000	1100	Mesa de moonocamiento	700	400
Contabilidad, auditoria, máquinas de contabilidad	1500	900	Cuarto de juego, pediátrico	3120	200
Trabajos ordinarios de oficina selección de			Obstetricia		
correspondencia, archivado activo o continuo v	1000	600	Cuarto de limpreza tristrumentosi	37,61	200
Archivado intermitante o descontinuado	700	400	Sala de preparación Sala de partos (lluminación graf.)	200	100
Sala de conferencias, entrevistas, salas de re-			Meso para partos	1000 25000	14000
ceso, archivos de poco uso o sean las áreas em las queles no se exige la fijación de la			Farmacia:	80000	1000000
vista en forma prolongada	300	200	fluminación general	300	200
PELUQUERIAS Y SALONES DE BELLEZA	1000	600	Mesa de trabajo	1000	600
	1000	603	Almacén activo	300	200
TEATROS Y CINES			Cuartos privados y salas comunes:	1025	120
Sala de espectácidos Durante intermedios	50	50	lluminación general Buminación localizada (lectura)	300	60
Durante exhibición	1	1	Area para desequilibrados muntales	100	80 200
Vestiguio	200	100	Tratamiento con isotopos radioactivos	100	
Sala de descenso (foyer)	50	30	Laboratorio radioquímico	300	200
TERMINALES Y ESTACIONES			Mesa de reconocimiento	500	309
Salas de espera	300	200	Cirupía:		
Oficina de boletos	1000	500	Cuarto de Impieza (instrumentos)	1000	6.00
Oficina de checar equipaje	500	300	Sala de operaciones, lluminación general Levabo de cirujano	1000 300	260
Vestibulo	100	60	Mesa de operaciones	25905	14000
Andenes y Plataformas	200	1100	Sala de restablecimiento	300	250
HOSPITALES			Terapia		
Sala de preparación y anestesia	300	200	Física	200	100
Autopsia y Anfiteatro			Ocupacional	300	200
Mesa-de notopsia	25000	14000	Salas de espera	300	3041
Sala de autopsia filuminación generall	1000	600	Cuarto otderia	200	116.0
Anfiteatro (ilunimación gral.) Central de instrumentos esterilizados:	200	100	Puesto de enferrorias		
Nominación general	300	200	llammanión general	21,11,1	1,717
Afriado agujas	1500	900	Escuturio	200	30/7
Sala de Cistoscópica:			Mostrador para medicinas	1000	509
Furnisación general	1000	600	Accountance feature and accountance	100.00	06900
Mesa distoscópica	25000	14000			
Sala dental: Cuarro de espera	300	200	4. HOTELES, RESTAURANTES, TIENE	DASY	
Cirugia dental (Huminación graf).	700	400		539(535)(0	
Silla dental	10000	6000	RESIDECIAS		
Laboratorio (banco de trabajo)	1000	600	AUTOMOVILES, SALAS DE EXHIBICION		
sala de recuperación	50	30			
Sala de electroencefalogramas:	1000	600	(Véase tiendas)		
Oficina Cuarto de trabajo	300	200	CASAS (Véase residencias)		
Sala de espera	300	200	Alumbrado necturno:		
Sala de emergencia:			Zonas comerciales principales:		
fluminación general	1000	60	General	2000	1100
fluminación localizada	20000	9000	Atracciones principales	10000	6000
Sala da electrocardiograma, de metabolismo			Zonas comerciales secundarias:	2005	****
y de muestras:			General Attacciones principales	2000 10000	1100 6000
Ruminación general	200	100	COCINAS (Vense restaurantes o residencias)	1440.2	0000
Mesa de moestras	500	300	ESCAPARALES to		
Salas de recunocimiento y tratamiento:			Alumbrado diorno:		
Burninación general	500	300	General	1000	600
Mesas de reconocimiento	1000	600	Atracciones principales	5000	3000
Sala para ojos, cidos, nariz y garganta	***	(4.00		3000	3000
Cuarto obscuro	500	300	GASOLINERAS:	ar.	The state of
Cuarto de reconocimiento y tratamiento. Sala de fracturas	500	300	Areas de Servicio Cuarto de ventes	300 500	200
Burninación Gral,	500	309	Estantes	1000	600
	2,47425,		HOTELES	1997	12000
			(Consumerable)		

		LUXES I.E.S. 99%	LUXES S.M.I.I. 95%		LUXES I.E.S. 99%	UXES S.M.I.I. 95%
	Works	1000	600	Inspección	2000a	100a
	Mediana Meldeo:		57075	JABONES, MANUFACTURA DE		
	Mediano	500	300	Paila, corte, escamas de jabón y detergentes		
	Grande Colado	500	300	en polvo	300	200
	Selección	500	300	Troquelado, envoltura y empaque. Ilenado y	3.1.0	
	Cubitate Desmoide	200 300	100 200	detergenies en polvo	300	200
		300	200	LACTEOS Y PRODUCTOS		
	GALVANOPLASTIA	300	200	Industria liquida:		
	GARAGES AUTOMOVILES Y CAMIONES			Cuarro marmitas y almacén botellas	300	200
	Taller de Servicio: Reputaciones	1000	600	Botellas Lavadoras hotellas	500	300
	Areas activas de tráfico	200	100	Lavadoras latas	300	200
	Garages have detectorismicator.	500	300	Equipos de refrigeración	300	200
	Entrada Especio para contratorion	100	100	Lierado: Inspección	1000	900
	Espacio para estacionamiento	50	50	Manômetros y tubleros de medidores Isolare		3700
	GRANJAS			carátulas)	500	300
	familia i California	100	100	Laboratorios Pasteurizadores	300	200
	fistable y Gallinero			Separadores y cuartos refrigerados	300	200
	GRABADO (CERA)	2000a	1100a	langues y cubas	500	300
	GUANTES, MANUFACTURA DE			Termómetro (sobre carátula)	500	300
	Flanchado y cortado	3000a	2000a	Cuarto para pesar(lluminación gral.)	355	200
	Tejido v clasificado	1000	eca	Básculas LAMINA DE FIERRO Y ACERO, TRABAJOS	700 E EN:	400
	Cosido e histrescular	5000a	3000a	Frensas, guiliotinas, troqueladoras trabajo		
	HANGARES			mediano de banco	5CO	300
	Servoio de replicación unicamente	1000	600	Purzadoras y rechazado Trozado	2000	300
	HIELO, FABRICA DE			LAVADO Y PLANCHADO, INDUSTRIAS DE		1100
	Cuarto de compresores y máquina	200	100	Checado y selección	500	*300
	HIERRÓ Y ACERO MANUFACTURA DE			Levado en seco, homedo y vaporizado	500	300
	Hornes de hoper abserto			Inspección y desmanchado	5000a	30004
	Patio de almacenaje	100	60	Composturas y modificaciones	2000a	1100a
	Pass de carga Resbaladera de vacuarlo	200	100	planchado	1500	900
	Fosos de escoria	200	100	LAVANDERIAS		
	Plataformus de control	300	200	Lavado	300	200
	Patio de moldes Colado	300	30 200	Planchados de blancos, pesado, hacer listas,		
	Almacenamiento de coladas	100	60	marcado	500	300
	Bodeya pesado	100	60	Planchado a máquina y selección	700	400
	Reparaciones	300	200	Planchade fino a mano	1000	600
	Pario de riesmolde	200	100	LLANTAS DE HULE Y CAMARAS:		
	Patro de Chaterra Edificio de inszola	300	200	MANUFACTURA DE:		
1	Edition de calcinación	100	60	Preparación materia prima:		
p)	Bela rompedora	100	60	Plasticación, molienda banbuy	300	200
	Mobres de lambración de Lingute, planchos, soloras y laminas en			Prensado en calandra Preparación de la tela:	500	300
	callente	300	200	Cortado y construcción de cejas	500	300
	Laminación en Irlo en places	300 500	300	Máquinas para -las cómaras y recubierto Construcción de llantas:	500	300
	Tubo, varilla y alambron Fierro estructural y planchas	300	200	Llantas sólidas	300	200
	Melinos de laminación de hejalata:			Liantas neumáticas	500	300
	Estañado y galvanizado	500	300	Departamento de Vulcanización: Cámaras y llantas	700	400
	Laminación en filo	500	300	Inspección final	2000a	1100a
	Cuarto de motores y máquinas	300	200	Envoltura	500	300
	Inspection:			MOLINO DE HARINA		
	Rebabeo de lámina negra, lingutes y billetes	1000	600	Redillos, cernidores, purificadores	500	300
	Hojatata v otros superficies brillantes	1000)	600	Enpacado Control de producción	1000	200 600
	HULE, PRODUCTO DE			Limpiado, cargadores, andenes, telvas	300	200
	Preparación de la materia prima:			PAN INDUSTRIAS DE Cuarto de fermentado	300	200
	Plastificación, molienda Banbury	300	200	Formado;		
	Prensado en palandra	500	300	Pan blanco	300	200
	Preparación de la telas:	E00	200	Pastelillos y pan de dulce Coartos de hornos	300	200
	Cortado y tubos flexibles	500	300	Referro y atros ingredientes	500	300
	Productos par extrusión	500	300	Decorado:	250	

	LUXES LE.S. 99%	S.M.I.I. 95%		LUXES 1.E.S.	S.M.I.I
Mecánico	500	300	71	99%	99%
Manual	1000	600	Plano horizontal Inivel de la mesal	500	300
Básculas y termometros	500	300	Superficie vertical del tablero (1.25 M. Sobre		
Envolturas	300	200	el piso viendo hacia el operador!		
PAPEL MANUFACTURA DE			Cuarto despachador sistema de carga Cuarto despachador secundario	360	200
Bustidores, molinos, calandras	300	200	Area para tanques de hidrógeno y biexido		2000
Acabado, certado, recorto y máquinas para			de carbono	200	100
hacer el Papel Contado a mano lado hamedo de la máquina	500	300	taberatorio quimico	500	300
de papel	700	400	Precipitadores Casa de rejilias	100	100
Carrete ináguna de papel inspección y labo			Plataforna, supladores de holla a escona	1074	60
ratorio	1000	600	Cabezales para vapor y válvulas	160	60
Enrollado	1500	900	Cuarto de interruptores de potencia	200	100
PIEL MANUFACTURA DE (TENERIAS)			Cuarto para inquipo telefórico Túnetes o gaterías para tuberia	200 100	100
Limpiado, curtido y estirado, pailas	300	200	Sub-sotano (parte inferior turbina)	200	100
Cortado descarnado y secado	500	300	Cuarto de tiubinas	300	200
Acabado	1000	600	Area para tratamiento de agua:	200	100
PIEL, TRABAJO SOBRE			Plataforma para visitantes	200	100
Pranchado, trenzado y bernizado	2000	1100	PULIDORAS Y BRUNIDORAS QUIMICA, II	4-	
Clasificación, igualado, conado y cosido	3000	1700	DUSTRIA		
PIEDRA, TRITURADO Y CERNIDO DE			Homos manuales, torques de hervido, seca-		
transportadores de bandas espacios de des- sargo de tiro, cuarto de tolvas interior de			deras estacionarias, cristalizadores por gra-		
los depósitos	100	60	vedad y estacionarios ,	300	200
Cuarto de quebradoras primarias			Hornus mecanicos, generadores y destilado		
auxiliares debajo de los depósito	100	60	res, aceros mecánicos, evaporadores, filtrado.		
Cernidores	200	100	chatalizadores macámicos y depolarado	300	200
PINTURA, MANUFACTURA DE			farques para cucción, extractores, colarfores,		
Hamiltagións general	300	200	nitradoros y celúas ejectrolíticas	1881	200
Comparación de las mezclas con la muestras			SOMBREROS, MANUFACTURA DE		
u patrones	2000)	1100		100000	color
PINTURAS TALLERES DE Pinturas por inmersión o baño con pistola			Tendo tensado, galoneado, limpiado y retirelets	1000	600
de are, esmalte a luego	500	500	Formado, calibrado, realizado, terminado y planchado	2000a	1100a
Pulido, pintura ordinaria a mano y decorado,			Condo	5000	50000
ociado especiul y con plantille	500	300	SOLDADURA	177000000	790,000,000
Acatedo de pinturas a maito: fizicajo abajo fino.	1000	600:	homesación general	3.09	TRANS
	3000a	FZOOa	Seldadura Mercial de prociseiri Jon arce	100000	SEE 51.75
Public extra line (correceiles, pianos)	30004	Designation .	TABACO, PRODUCTOS DE	15/09/95/95	A30202524
PLANTAS GENERADORES					. *
Equipo de acondicionamiento de aire, parca- entadores y pise de ventiladores, exclusaje			Secado: desmondamento diaminoción generali	300	2016
de perizas	100	60	Clasificación y selección	20000	18300
Auxiliares, sala de acumuladores, bombas ali			TALLERES MECANICOS		
mentadoras de calderas, tonques, compre-			Irabaio burdo de mananana y horses	500	300
sores y diea de manometros	200	100	Italiaja mediano de maquissia y liauco, in missia	tt die	
Platuformas calderas	100	60	automáticos grilinarias, esmededo curdo. polído mediano.	100	51%
Placaformas quemador	200	100	kabajo fino de maquinana y banco, máquinas	15214	200
Cuarto de cables, nove de bombas o circula-			automáticas finas, esmeritado mediano,		
dores	100	60	y putido lino	6000a	30000
Transportador carbón, quebradores, alimenta-			Trabajo extra-fino de maquinaria y esmanlado	10000a	60008
dores, básculas, pulverizador, área de ven-			TALLERES TEXTILES, ALGODON		
tiladores, torre de transbordo	100	60	Abridoras, mezcladorus, batientes	300	200
Condensador, piso de areadores, piso evapo-	1130.0		Cardos y estradoros	500	300
redor y piso calentadores	100	60	Pabilidoras, veloces, tróciles y cañoneros	500	300
Cuartos de control:			Enrolladorez y Engomadores: telas crudas	500	200
Superficie vertical de los tableros "Simplex"			Mezofilas	1500	300 900
o sección de "Duplex" viendo hacia el			Inspectión:	1000	500
operador:			Telas crudas (volteadas a mano)	1000	600
Tipo A.: Cuarto de control largo, 170			Atado automático 500a 900a		
cm. Sotve el piso	500	300	Telares Broaso y stado a mano	1000	600
	30.0370	5795	TALLERES TEXTILES LANA Y ESTAMBRE	2000a	1100
Tipo B. Control de cuarto ordinario.				#.752 ···	
170 cm, sobre el piso	300	200	Abridores, mezcladores y battentes	300	200
Sección de "Duplex" viêndose desde			Clasificación	1000a	600a
cualquier ángulo	300	200	calado, peinado y repeinado Estirado:	500	30
Puritre de distribución (nivel horizontal)	500	300			2400 C
Anias dentro de los tableros "Duplex"	100	60	Hilo blanco	500	300
Parre posterior de cualquiera de los tableros	1.40		Hillo da color	1000	600
(vertical)	100	60	Tráciles		
Alumbrado de emergencia en cualquier área Tableros despachadores:	30	20	Hilo blunco	500	300

)

	LUXE\$ 1.E.S. 99%	LUXES S.M.I.I. 95%		I.E.S. S.M.I.I LUXES
Recămaras.			6. ALUMBRADO EXTERIOR	
tiomnación general	100	60	- " - " - " - " - " - " - " - " - " - "	
Para lectora y escritora	300h	200h 300	ALUMBRADO DE PROTECCION	725
Administración Vestibulo:	1100	300	Alrededores de áreas activas de embarque . Alrededores de edificios	50
Areas de trabajo y lectura	300	200	Areas de almacenomiento activas	200
fluminacion general	100	200	Areas de almocenamiento inactivos:	10
Marquesina	500	300	Entradas:	
JOYERIA Y RELOJES, MANUFACTURA DI RESIDENCIAS	5000a	3000a	Activas (peatones y/o (cansportes) inactivos (normalmente cerradas, no usadas con frecuencia)	50
Fareas visuales aspectocas (1):			Limites de propiedad:	100
Juegos de masa	300	200	Destambramento por medio de la técnica	
Cocina isobre fregadero u otra auperficie de	500	300	de protección illetlectores de dentro hacia	
trabajo) Lavadoro, mesa de planchado	500	300	afuera)	1.5
Cuarte de estudio Isobre escritorio/	700	400	Técnica de lluminación general Illuminación general áreas Inactivas	2
Costina	1000	600	Plataformas de carga y desdarga	200
lluminación general			Ultreaciones y estructuras de importancia	50
Entradas, halis, escaleras y descanso do	0.0000	1221	ASTILLEROS	30
escaleres	100m	60m	fluminación general	50
Salas, comedores, recâniaras, quartos de estudio, hibitotica y cuartos de recreo o			Carrinos, sendas	100
wego	100m	60m	Areas de construcción	300
Cocina, lavardoria, cuarto de baño	300	200	BANDERAS, ILUMINACIÓN CON PROYECTORES	0.000000
RESTAURANTES Y CAFETERIAS			(Véase Tabloros para boletines y Carteles)	
			CALLES	
Area de comedor: Cajera	500	300		a
Del tipo mirmo:	550	2122	CAMINOS	4
Con ambiente agero	100	60	CANTERAS	50
Con ambiente acogador	30	30	CARBONO PATIOS FARA (de protección)	2
Del tipo ordinario.	9223	51330	CARRETERAS	71
Con ambiente ligero	300	200	DRAGADO	20
Con ambiente acogedor	150 -	100	EDIFICIOS "	
Del tipo servicio répido: Cocma:			Construcción general	10
Inspección, etiquetado y precia	200	400	Trabajes de excavación	20
Otras areas	306	200	ESTACIONAMIENTOS	
SALONES DE BAILES	50	30		50
	30	30	FACHADAS DE EDIFICIOS Y MONUMENTOS	
TIENDAS (6)	220	200	lluminación con protectores: Alrededores brillantes:	
Areas de circulación	300	200	Superficies claras	150
Areas de mercancias Con servicio de veridedores	1000	600	Superficies medio claras	200
Autoservicio	2000	1100	Superficies medio obscuras	300
Mostradores y vitrinas en muro:			Superficies obscuras:	500
Con servicio de vendedoras	2000	1100	Alrededores obscuros:	
Autoservicio	5000	3000	Superficies claras	50
Attacciones Eclocopales	5000	3000	Superficies medias claras Superficies media obscuras	150
Con sgruttid de liendedoras Autoservicio	19000	6000		
			Superlicies obscuras	200
5. AREAS COMUNES			FERROCARRILES PATIOS DE	
BODEGAS O CUARTOS DE ALMACENAMIE	NITO		De recepción Clasificación	2
Inactions	50	30	GASOLINERAS:	3
Activas	20	50	Alrededores britiantes:	
	100	60	Acceso	30
Piezas toscas			Calzada para coches	50
Piezas reedianas	200	100	Areas bomba de gasolina	300
Finzas finas	500	300	Fachadas edificios (de vidrio)	300r
ELEVADORES DE CARGA Y PASAJERO	200	100	Aleas de servicio Alrededores obscuros:	70
ESCALERAS	200	100	Acceso	15
		100	Calzadas para coches	15
PASILLOS Y COPREDORES	200	100	Areas bombas de gasolina	200
BANOS Y TOCADORES			Fachadas edificio (de vidrio) 100r	
Hominación general	100	60	Areas de Servicio	30
Espejo	300g	2000	JARDINES (p)	
Dado que en el curso de 10 años, los niveles de Bumino			Raminación general	5
			Senderos, escalones, lejanos de la casa	10
por el I.F.S., para Alumbrado Exterior, Arcas Deportivas			Farte posterior de la casa, bardas, paredes, árboles, arbustos	20
prácticamente no han variado habiendo demostrado dur			Flores, jardines entre rocas Arboles y arbustos, cuando se quieran hacer destacar	50
the second secon	gemena de l	Hanesta-		50
resultation en su adilicación, la Sociedad Mexicuna de In		1 recoman	MADERAS PARA COMSTRUCCIONI DATIOS DE	
ción A. C. Ifominading Engineering Society. México Ch	Spier, aprobe		MADERAS PARA CONSTRUCCION, PATIOS DE	10
	apter, aprobe gar los lug	a) es	MADERAS PARA CONSTRUCCION, PATIOS DE MUELLES PATIOS DE ALMACENAMIENTO (ACTIVOS)	200 200

5.2.- TABLA DE REFLECTANCIAS

TABLA DE REFLEXIONES APROXIMADAS 1.- SUPERFICIES DE PINTURA

TONO	COLOR	REFLEXION EN %
2-14-1	Blanco nuevo	. 88
	Blanco viejo	76
	Azul verde	76
Muy claro	Crema	81
	Azul	65
	Miet	76
	Gris	83
	Azul verde	72
	Crema	79
Claro	Azul	.55
	Miel	70
	Gris	73
	Azul verde	54
26.0	Amarillo	65
Mediano	Miel	63
	Gris	61
9	Azul	1 8
	Amarillo	50
Obscuro	Cale	10
Obscuro	Gris	25
	Verde	
	Negro	7 3

II. SUPERFICIES DE MADERA

III. ACABADOS METALICOS

COLOR	REFLEXION EH %	COLOR	HEFLEXION EH %
		Blanco polarizado	70-05
Maple	43	Esmalle homeado	
Nogal	16	Aluminio pulido	25
Caoba	12	Aluminio maté	75
Pino	40	Aliminio clare	79
		Aluminio claro	59

IV ACABADOS DE CONSTRUCCION APARENTES

TIPO	REFLEXION EN	
Roca basáltica	18	
Cantera clara	18	
Tabique muy pulido	48	
Tabique rojo vidriado	30	
Tabique pulido	40	
Tabique rojo barnizado	30	
Cemento	27	
Concreto	40	
Mármol blanco	45	
Vegetación	25	
Asfalto limpio	7	
Adoquin de roca iguea	17	
Grava	13	
Pasto (verde obscuro)	6	
Pizarra	8	

DEL TOC			-	13.51	-	-	116	1.	ويباطأه	-	VID		5	10	11	12	14	15	29	25. 1	39
ANCHO Fi	EARGO JI III III JJ RI	10	15 17 15 15 17	24	31 28 25 25 20	3.7 3.4 3.0 7.0 7.1	35	5000000	67 50 40 41	75 67 50 51 51 48	(\$ (\$ 2,0 6 (0 8 (1 1) fu	10 G -0 G 7 H 7 H 7 H	11.2 19.1 2% 2.1	125 115 117	12 4 12 7 96 10 7	11 7 102 03	17.2		73	#I	outsi
tit.	80 104 104 201 407 60	0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	707 15 13	10 2510740	7.4 2633001	36 36 36 27 37 37 37 37 37	10 21 20 21 22	233310	50 51 50 40 40 17	5 T 6 D 5 T 4 T 4 T	80 69 69 69 63 63	55 90 78 69 69 69	7,4 10:0 16:0 75:06 6.2 6.3	11 0 9 0 9 0 9 0 11 0 4 0 8	8.8 12.0 10.1 0.0 1.0 7.5 7.1	17 () 17 () 10 () 10 () 11 () 11 ()	12.0 12.0 10.0 10.0	105		
3 ,0	- 12 16 24 30 50 50	08 07 06 06 05	100 110 000 000 000	1077100	21 16 16 13	A 100 100 100 100 100 100 100 100 100 10	215.7	1727220	4 0 1 2 2 2 3	1.0 1.4 1.7 1.3 2.0	5.8 5.1 3.9 16 1.4	67 58 50 44 41 30	16 65 50 50 46 44	84 82 55 51 40	12 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	10 0 8 7 7 6 6 6 8 7 5 8	11.7 10.2 8.7 2.4 2.6 6.0	11.6 30.0 8.8 8.2 7.8	127 111 107 07	62.2	
14	1.4 242 264 4.7 655 961	6.7 17: 17: 17:	11	142111	111	2.1	21	24 + 2 H H	31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	531 12 13 14 14 14 14	3/ 10 12 13 13 13	6.1 5.5 4.7 4.0 4.7	1000	18) 642 642 645	#14 6 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	100 27 64 64	014 98 93 76 76	12.3 10.6 12.5 12.5 12.5 12.5	116 193 10 1	1.
1.	1.7 25 30 100 100 100	100 51 11 11 11 11 11	00		1.1	157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000000	EE/57.73	1101111	4.5 10 11 11 21 17	513 315 310 310 310 310 310	10 11 11 11 11 11	100 000 400 400 400 400 400 400 400	50 5 1 1 1 0 5 1 1 1 1 0	20 01 04 04 07 27	9 1 9 0 20 5 0 1 0 2 0 2 0 3 0 3 0 4	380 63 34 37 62	(2.6 (3.0 (3.4 (3.0 (6.4	101
56)	200 200 200 200 200 200 200 200	0.1	0	1.0	1,00	10.			111111111111111111111111111111111111111	144 177 214 178 1 - 1	52(1)23	11 11	10	50 41 41 41 41 41 41	3-51 - 8-51 - 3-71 - 1-71 - 1-71	# (0) 	4.0 4.7 4.7 4.7 4.0	200 0.0 0.0 0.0 0.0 0.0 1.0	3947 41.5 7.1 11.0 1.1	121: 00:1 11:1 11:1 2 ()	
1	14 15 16 161 264 261 1604	0.1 0.1 0.1	124		1000	111	111			10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	THE STATE OF THE S	1245.VAR	D 13 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 11 8 11 8 11 2 14 2 14 2 14	# 10 # 11 # 11 # 13 # 13	10 11 11 11 11	5/F 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# 2 1-11 1-6 4-7 4-8		50 (8) 20 (1) 4 (4) 5 (4) 5 (4) 5 (4)	1
a)	20 20 501 500 410 500	0.2	31	11 14 1 11 1 11 1	17.8	01 H 01 7 10 7 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.4	111	1177	1.7 1.7 1.0 1.0 1.0	111 111 111 111 111	100 mm		12 10 27 16 17 28	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.7 10 10 20 20 20	111 40 30 30 30	0.+ 1-1- 7-14 2/5 1/6 4/2	83 64 65 64 7	1
4	Political Politi	0007		149.0	33.4	11.1 12.41 12.41 114. 113. 411.	10 04 07 07 07 06	1 7 1 0 0 A 1 A 4 A 1 A	1 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	17574	10	10 10 10 10 11	27 27 18 17 16 16	100000000000000000000000000000000000000	10 20 21 21 21 12 13	17 27 27 27 27 27 27 27 27 27 27 27 27 27	17.16	44 18 13 16 26 26	575 531 11 18 33 33	60 50 50 50 50 40 41	
£.	-1.7 621 583 841 2681 588	0.7 0.7 0.7 0.7 0.7 0.7 0.7	11.1	11.5	11.1	11 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /		1 (1) (1) (1) (1) (1) (1) (1) (2) (1) (1)	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14 12 11	J. 10 10 10 10 10 10 10 10 10 10 10 10 10	74 74 17 15 13	10 10 16 16	28 24 21 10 11	11 28 24 22 23 19	38 32 28 25 27 27	47 4.0 35 31 22 28	59 59 44 39 38 35	
M.	-160 /60 	0.2 0.2 0.1 0.1	11.7 0.1 41.7 41.7		11.4		0.0 0.0 0.0 0.0 0.4	0.00 0.7 0.00 0.00 0.00 0.00	10 00 00 10 10 10	1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	1.1 1.2 1.0 1.0 0.8	15 12 12 11	15 15 12 12 13	17	1.0 1.0 1.6 1.5	24 26 18 18	2 8 2 3 2 1 1 1 1 6	327 24 21 13	40 11 11 11 12 12 13	5.0 4:3 3:7 3:3 2:9	
(A)	1671 1671 1611 1611	01 01 01	0.1	0.3	0.3	0.4 0.1 0.1	0.4	017 025 035 036	0 8 0 5	133 031 07 04	1111	171 141 140 140 140	1.5 1.2 1.0 1.0 0.0	17 13 12 10	1 17 1 () 1 () 1 ()	7.0 1.0 1.4 1.3	2.1 1.0 1.1 1.4	2.7 2.1 1.0 1.8	3000	20 20 20 20	-
75.	75 1,04 240 340		0.7 0.1 0.1	(L) (L) (L)		0.1 0.7 0.7	0.0	01 01 113 113	41 7 11 11 11 7 11 7	#10 114 115 115	14.11	1 1 10 1 10 2 10 3 10 3	111	1.7 1.1 0.2	10	1.1 1.1 1.0	15 15 13 12	1190	65 19	3.1 2.7 2.1 2.1	
519.	11/1/ 21/11 (1/1)	0 f 6 f 0 f	() 1 4) 1 4) 1	13.3	13.2	13	0	10 1	11 1	0.4	10.0	11 13 11 14 11 14	10 (1) 10 (2) 10 (1)	1.0 0.7 11.7	1.3 1121 117	1.9 0.8 0.8	1.6	1.7	高	10	l l
e)	300	tr.1	(† † († †	0.1	0.1	(i)	0.2	11 /	B	0.1	11.5	0.4	# 6 # 6	0.7-	11.6	11.17	0.7	0.0	10	12	-
EFT	29113 28107		41. j (i. j	12.1	1 (1	ET E	(C)	11.	11.	11.7		11.1	0.5 0.1	0.4 0.4	11.	11.55 11.14	0.2	13.88	11)	1.0	
11119	1043			0.1	0.1	154	01	0-1 0-1	0.1	no n r	0.1	11.1 (1).2	0.2	0.7	11.7	0.2	0.5	1031	10.4	(11.7 (0.3s	

f.— PORCENTAJE DE LAS REFLECTANCIAS EFECTIVAS DE TECHO O PISO PARA VARIAS COMBINACIONES DE REFLECTANCIAS

BELLECIVACIA	9.0	8 0	Z.u.	r, q	5.0
UE HEFLECTANEIA HE PARED	90 80 70 50 50 48 30 20 10 0	90 80 7H 60 50 49 30 20 10 B	90 80 70 60 50 40 30 70 10 0	98 89 70 60 50 40 30 70 10 B	90 80 70 60 50 40 30 20 10
RELACION					
EL EAVIDAD	29 PH BK 87 89 85 85 84 84 82	19 78 78 11 11 76 75 75 74 17	70 59 58 18 67 67 65 56 65 64	E0 50 50 50 58 57 56 56 55 53	56/50/49/49/48/48/47/46/46/4
H.4	88 87 80 85 84 83 81 80 79 76	29 77 76 75 74 73 72 71 78 68	69 63 67 66 65 64 63 67 61 58	60 59 59 58 57 55 54 57 57 58	59 49 48 48 47 46 45 45 45 44 4
0.6	87 86 84 87 EU 79 77 76 74 73	78 76 75 73 71 70 58 66 65 63	69 67 65 64 63 61 59 59 57 54	50 58 57 58 55 53 51 51 50 AG	50) 49 47 46 45 41 41 47 47 41 3
U.S	82 85 87 80 77 75 73 71 69 67	78 75 73 71 69 67 65 63 61 57	58 50 64 62 60 58 56 55 53 50	59 57 56 55 54 51 48 47 46 41	50 48 47 45 41 47 40 39 38 3
1.0	86 ET 58 17 75 17 69 66 64 67	71 74 72 69 67 65 67 60 57 55	68 65 52 60 58 55 53 57 50 47	50 57 55 57 51 48 45 44 43 41	58 48 46 44 43 41 38 37 36 3
1.2	85 87 78 75 72 69 66 63 60 57	75 73 20 67 64 61 58 55 53 51	67 63 61 59 57 54 50 48 46 44	59 56 54 61 89 46 48 47 49 38	50 47 45 43 41 39 36 35 34 2
14	85 80 77 73 63 65 62 59 57 57	76 77 68 65 62 59 55 53 58 48	67 63 60 58 55 51 47 45 44 41	59 56 53 49 47 44 41 39 38 36	50:47 45:42 46:30:35:34:37:5
1.6	£4 /9 /6 /1 6/ 63 59 56 53 58	75 71 67 63 60 57 53 50 47 44	EJ EZ 59 56 53 47 45 43 41 38	49 55 52 48 45 47 39 37 35 33	59.47.44.41.39.36.33.37.30.7
15	83 75 73 69 64 60 56 53 50 48	75 76 66 67 58 54 50 47 44 41	66 1 1 58 54 51 46 42 40 38 35	58 59 51 47 44 40 37 35 33 31	50 46 43 40 38 35 31 36 28 2
20	81 77 77 67 62 56 53 58 47 41	74 69 64 66 56 52 48 45 41 38	66 60 56 57 49 45 40 18 36 33	58 54 59 46 43 39 35 33 33 79	50 46 40 40 37 34 10 20 20 20 2
	82 76 70 65 50 54 50 57 44 40	74 68 63 58 54 49 45 42 38 35	66 60 55 51 48 43 38 36 34 32	58 53 49 45 42 37 34 31 29 28	50 45 47 18 36 33 29 27 71 7
77	82 75 69 64 58 53 48 45 41 37	73 67 51 56 52 47 43 40 36 33	65 08 54 58 46 41 37 35 32 30	58 53 48 44 41 36 37 30 77 76	54 45 47 37 35 31 27 75 73 7
24	£1 /4 6/ 67 56 51 56 47 38 35	73 66 69 55 50 45 41 38 14 31	65 59 54 49 45 40 35 31 10 28	58 54 48 43 39 35 31 78 76 74	QB 46, 41 30 34 30 26 23 21 2
2.5	B1 /3 66 60 54 49 14 40 36 34	73 65 50 53 48 43 39 36 37 79	65 50 50 48 43 38 33 36 28 26	58 53 47 43 38 34 28 27 24 27	50 46 41 36 33 29 25 27 20 1
3.0	80 72 64 58 52 47 47 38 34 39	12 65 58 52 47 42 37 34 39 21	64 58 52 47 42 37 32 29 27 24	57 52 46 42 37 37 78 25 73 20	50 35 40 36 32 28 24 21 11 3
entre .	29 73 63 96 50 45 40 36 32 28	12 65 57 51 45 49 35 33 28 75	64 58 51 46 49 36 34 28 25 21	57 51 15 41 36 31 77 71 22 18	30 44 00 35 31 77 23 20 (8.1)
3.7	/3 /0 57 54 48 43 38 34 30 7/	71 64 56 49 44 39 34 37 27 21	64 52 50 45 20 25 29 27 74 27	52 51 45 40 25 40 26 23 23 17	50.44 20.25 30.26 22 33 17 1
3.6	28 69 51 53 47 42 36 32 28 25	71 63 54 48 41 38 37 30 25 23	6.1 56 49 44 38 33 28 25 22 20	57 59 44 70 34 29 25 77 19 16	50 44 39 34 29 25 21 12 46 1
3.0	78 63 50 51 45 40 35 31 77 73	20 62 53 57 47 41 36 31 28 23 72	63 56 49 43 17 17 27 24 21 19	5.2 50 43 22 33 29 24 21 19 15	SE44 DE ROYEZS 21 17 15 1
40	27 59 59 51 44 39 33 79 25 27	70 61 51 45 40 35 30 26 22 78	63 55 48 42 35 31 26 23 20 17	57 49 42 37 37 78 23 70 18 14	50 14 30 31 20 21 20 17 15 1
-	17 62 57 50 43 37 32 28 24 24	69 :: 0 52 45 39 34 79 75 71 10	62 95 47 41 15 30 25 22 19 16	56 89 87 37 37 77 77 19 17 18	10 to 27 tr # 1 (0.17 to 1)
4.7	76 61 56 49 42 36 31 77 23 78	69 69 51 44 38 33 28 24 28 17	62 34 46 40 34 29 24 21 19 15	56 49 47 46 31 27 77 19 36 13	50 43 37 37 27 21 19 16 13 1
4.4.	26 CO 55 47 40 35 30 76 27 19	69 59 50 41 37 32 27 73 19 15	62 53 45 19 33 28 24 21 17 14	56 49 41 35 (0) 26 21 18 16 13	50 54 95 31 76 27 18 19 13 1
3.6	75 50 54 46 30 34 78 75 71 18	68 50 49 42 36 31 26 22 18 14	62 53 45 36 32 27 23 20 16 13	56 48 41 34 79 75 71 18 15 17	66 43 36 41 28 77 19 15 17 9
4.8 5.0	75 50 53 45 38 33 28 24 20 16	68 58 48 41 35 39 25 21 18 14	61 52 44 36 31 76 22 19 16 17	56 48 40 34 78 74 78 17 14 11	30 47 35 39 75 71 12 14 17 0
5.600.1	73 61 43 41 34 79 74 70 16 11	56 55 44 28 31 77 22 19 15 10	60 51 41 35 28 21 11 16 13 63	55.45.0 1175.71 1/ 11 11:07	OF 17 14 29 23 43 15 13 18 B
K. 1)		61 53 41 35 78 74 19 16 17 07	58 48 38 32 26 22 17 14 11 85	53 33 35 30 71 20 15 12 03 05	20141-32-24-21 19 11 11 18 0
F(f)	78 55 47 35 77 77 11 18 14 08 68 55 47 35 77 73 18 15 17 16	62 59 38 32 75 71 17 14 11 15	57 46 35 29 23 19 15 13 10 05	51 12 11 29 22 19 14 11 08 01	#9 40 3H 75 49 TG 17 10 07 H
6.0	56 57 38 31 75 71 16 14 11 05	61 49 36 39 23 15 15 13 10 04	56 45 23 27 21 18 13 12 (8) 14	52 40 31 26 20 46 12 30.07 03	19 19 29 74 18 15 11 16 11 7
19.41	65 51 36 29 22 19 15 11 09 14		55-31-31-25-19-16-12-10-00-01	61 29 29 21 10 15 11 89 87 07	1/ 3/7/22 1/ 14 15 00 00 0
10.0	100 31 No NY NY 13 19 11 (61 16)	Paragraph of the same	(NE 3670540V) - 152		1

DEL 100			-	USI		_	1) E	1.		and distances	V 10		9	10	111	12	14	16	29	26	30
ANCHO N	# 10 10 14 20 30 30	1.0 1.1 1.0 0.0 0.0	15	29 20 20 20 20 11 15	11 78 71 71 71 71	3.0 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	4.4 3.0 3.1 2.6	50 50 50 50 50 50 50 50 50 50 50 50 50 5	6.0 4.0 4.0 4.0 4.0 4.0 7.7	5 to 10 to 1	631 731 631	8 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.7	11.7 H11 H31 79 21 13	126	12 8 61,0 9 6 8 7 8 1	11 / 10 5 10 5 8 8	12.2 11.0 10.3	11.0			100
10	10 13 20 30 30 30	10 07 07 07 06	15 13 11 10 10 10	2111111111	21) 71 10 17 16 16	36600	26 23	3 0 7 10 T	743744	6.0 6.1 4.0 4.0 1.0 1.0	10 00 51 42 44	80 60 60 60 60 60 47	00 23 60 60 60 61	10.0 4.6 7.5 6.6 6.2 5.9	1111 9.5 6.3 1.3 6.6 6.6	12.0 10.1 0.0 1.0 7.5 7.1	120 100 100 100 100	12:0 10:0 10:0 10:0	12.5		
100	7 16 24 36 (I) (I)	0.07 0.7 0.6 0.6 0.6 0.6 0.6	17 11 90 93 93 93	111111111111111111111111111111111111111	21 14 16 14 17	2070704		33 25 25 27 20 20 20	42 31 28 24 24	5-1) 5-4 3-3 3-1 3-1 3-1	5-1 4-3 1-4 1-6 1-4	67 58 58 14 14 30	75 65 50 50 44	8427510 6510	9 8 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10.0 8.7 6.5 6.5 5.8	10.2 10.2 1.3 1.3 5.3 8.1	11 (i 10,0) 11 (i 11 (i 12 (i 12 (i 13 (i)))	12.5 (1.5 (0.7 (0.7	12.2	
(1)	14 [30 [30] [30] [2] [80]	0.7 0.0 0.0 0.1 0.1	100	1 4	111	10.11	257	20 27 27 21 11 11	16 0 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	18	500 12 13 13 14 15 16	97 40 19 10 11	E 5 E 5 1 / 1 / 1 / 1 / 1 / 1 /	1.7	が を を を を を を を を を を を を を	# 17 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 U 11 1 12 1 12 1 12 1 12 1	11 5 0.80 0.4 7 6 7 6 5 6	12.3 10.6 11. 10.6 10.6 10.6	11.0 10.0 10.3	1
17	17 50 81 10 100 100	(1.4 (1.4 (1.4 (1.4	137	10	1.7 1.7 1.1 1.0 101 101		70.000	201111111	24.700.80	\$10 mm	112211	46	100000000000000000000000000000000000000	579 1.0 1.1 1.0 1.0 1.1	01, 63, 63, 33, 33, 12	744 047 477 474 40	11 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 / 10 0 13 / 12 / 13 / 14 /	12 to 10 to	
718	133 45 45 144 144 140	10 1 10 1 10 1 10 1 10 1		1.05	1 .1 1 #1 1 #1 1 #1 1 #1 1 #4	111111111111111111111111111111111111111		10 10 10 10 10 10 10 10 10 10 10 10 10 1	111111111111111111111111111111111111111	11/2 / 11/11/11/11/11/11/11/11/11/11/11/11/1	47.07.78	101	16 17 13 30 21 21	5/34 3/3 3/4 3/4 3/1 2/1	5/2 4/1 1/2 1/2 1/2	100 111 113 110 114	#18 500 40 40 40	220 64 63 63 63 63 63 63 63	10 0 2 2 3 3 4 4 4 4 7 1 7 1 7 1 7 1	124	
· F	73 -03 -03 -03 -03 -00 100 100	0-1 0-1 0-1 0-1 1-1 1-1	4		1 () () -7 () () () () () () () () () ()	111	in an		7.4	2001	2 to 1 to	177 770	2000	11 11 23 24 24	35 35 33 30 20 20	11 11 11 11 11 11	0.7 1.4 4.4 1.7	6.7 1.0 1.0 4.4 4.7	12 12 12 12 12 12 12 12 12 12 12 12 12 1	10.0 6.0 6.0 6.0 6.0 6.0	1
#I	#3 17.1 6/1 16/1 16/1 49/1	0.5		0.1	1241 124 1340 1341 1351 1451	13.19	0.1	1 1 2 1 2 1 7 1 1 1 1 1 1 1 1 1 1 1		10000	7000	7.5 7.6 7.6 1.6 1.6	100000	100 Miles	100 X 000 H	10 A A A A A A A A A A A A A A A A A A A	47 48 10 41 28 28	113 40 30 30 30	5.7 5.0 45 49 3.7	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
0 1	11, 20, 25, 1031 1731 493	0.1 0.2 0.2 0.7 0.7	11 1	0.4 0.4 0.1	18.5	or to		1111	1 1 1 10 1 10 1 10 1 10 1 10 1 10 1 10	111	14	27 16 15 15 15	7 V	2012	78 75 71 71 10	77.77.73	107 114 120 121 231	44 98 43 10 78 26	5.5 3.0 3.0 3.0 3.0 3.0	10 to 60 1 3. d 3. d 4. f	
6	4.7 401 401 340 200 100	0.7 0.7 0.7 0.7 0.1	10.1	11 %	(1 t) (2 t) (1 t) (1 t) (1 t) (1 t)	11/15	11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7-17 (1.7) (1.7) (1.1) (1.1) (1.1)	1 (1 (2 (1 (2 (1) (3 (1) (4 (1) (4 (1)	111	11	13 13 12 11	7 1 1 6 1 7 1 7 1 7 2 7 3	24 26 15 15 15	27 19 17 18	28 24 21 10 17	11 28 24 23 23 23 19	38 32 28 25 22 2	47 48 36 37 28 28	50 50 44 30 30 30	
5(9)	(+) (4) 31(0) (+4) (4)	0.7 0.2 0.1 0.1	11 1 11 2 11 2 11 2 11 2			11.4	0.5	0.7 0.7 0.6 0.5 0.5	0.0 0.7 0.7 0.7	13 10 10 10 10 10 10 10 10 10 10 10 10 10	7.75	13 13 13 14 14 10	15 13 17 10	1 7 1 7 1 3 1 1	72 10 10 11 13	24 24 18 18	78 24 21 10 16	17 27 27 10 10	48 34 30 22 23	5 0 4 0 3 7 3 3 3 9	
191	423 1623 1623 483	# / # / # / # / # / # /	# # #	11.1	0.1	65 64 63 63	0.3	0.7 05 04	12 18 11 16 13 6 13 6 13 74	1 0 0 H 0 L	1.7 0.9 0.8 0.4	13 13 09 08	120	17 13 12 10	135 15 13 13	3 U 1 G 1 4 1 2	20 13 17 14	27 21 10 10	3.3 2.7 2.4 2.6	Augusta September	
24	775 1,491 ,493 341		14 1 14 1 14 1	18 16 17 1 14 1 17 1	10.1	11.4	#0 #1 #1	70% PAID 11.11 11.11	11 d 12 d 11 d 11 d	011 014 015 015	0.0	1.1 0.9 0.7 0.1	10	1.7 0.0 0.0	1.0 1.0 1.0	1 H 1 H 1 H 1 O	1.9 1.5 4.3 1.7	21	10	1227	
A.F	1(#) (25) (00	71	11 1	100	11.20	11.0	0.7		11:1	Ship	NI I	100 110 110	0.0 0.7 0.6	10 0/ 0/	1 X 22 1) 10 1	130 0.0 0.0	14	11	11	7.5 1.0 1.7	
et.	(K)	11,1	1) I	17.1	0.1	0.5	0.7	11.7 11.7	11 1	0.1		18.4	0.0	3,6	0.0	016	0.5	0.0	1.0	12	
in)	7003 3601		1) 1	15 Y 10 H	16 f 10 f	() 1 (E)	0.5 10.1	11.7	17.2	18.8	0.3	13.4	0.1	0.5	115	(11)	07	0.7	10	1.7	
itay	J##1			31.1	11.1	(11	0.1	-	19:0	18.2 19.1		#11 192	0.1	B3	0.4	11.11	03	0.3	114	85	-

5.3 .- COEFICIENTES DE UTILIZACIÓN DE LAS LAMPARAS UTILIZADAS EN ESTE TRABAJO

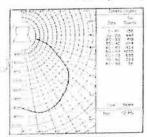
Crouse-Hinds-Domex

Champ

Luminarias

A Prueba de Vapor

Clase I, División 2


Datos Folométricos 100, 175, 250 Walls

Luminaria con globo y reflector Domo

Luminaria con globo y reflector angular

Lâmparas Vapur de mercurio. 100 watts/BT-25; 175 watts/BT-28: 250 watts/BT-28

trata la información es para finunciarias con lamparas de 175 watts. Use las siguentes bictores para otres tambiés de l'amparas. 100W/BL25 0.43, 250W/BL28 1.46

Femipio Lumena Zona-les para 175 watts sin puarda, para 30°-40° son 1014.

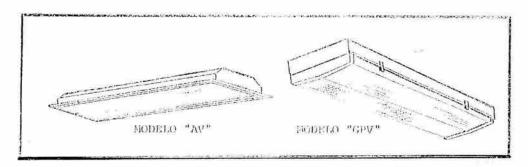
tumom Zunates para 193 watts sie gomda para 30*-40* soe: 1914 × 0.43 = 436.

EN(E)MANUE	Lumens Eliciencia Totales %
	Ganda 5527 68.5
	Las indicaciones fueron tumadas sobre el plana A A A A A A A A A A A A A A A A A A

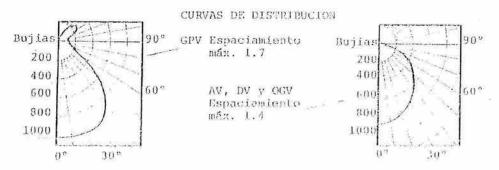
Coeficiente de Utilización:

% Het	lectancia		Radio de	cavidae	t de cuart	0.5
	ctiva	1	2	3	4	5
tectio						
	50	765	.680	663	533	4331
20	30	737	.636	554	430	419
	10	712	539	512	435	323
	50	749		596	74.517	7.7.2
71	30	723		549	A75	414
	161	0.33	594	ADDR.	421	371
	58)	717		575	514	458
365	30	636	ROW	533	111.1	407
4	10	4178	5.7B	493	326	163
()	529	1019	519	556	495	111
30	311	673		528	45-1	378
1787	10	657	.566	420	421	364
	50	:665	.537	539	.480	.431
111	30	551		508	444	.392
*7.	122	637		482	415	.350
%Reff	ectancia		Radin de e	avidad		
efec	otiva	G	7	8	9	10
Techa	based				7232	444
	50	432		348	317	275
80	30	3714	327	288	.258	178
	10	327	285	246		
	50	425	382	343	313	271
70	313	367		286	255	216
	1.0	324	787	215	217	178
	50	435	320	333	304	-251
5/1	30	360		281	252	212
	1.0	121	239	243	215	172
	50	400	359	325	296	258
311	30	354	313	276	247	303
	10	319	277	242	214	175
	50	189	351	316	298	251
t0	30	347	303	777	254 212	174

Luminaria con refractor de cristal Tipo V



lipmedo Limens Zena les para 12592 ene or fracter, para 165 dis-sea 732.


tunness Zatrales para 100 with som orbite for pure 30° dus son 732 × 0.43 = 313

Lamp: Me Lamp watt Lamp lume Catalog	5: 40	Vapo 00 vert.):	23,0	00	Lens: Floor	Clea Refl	ar gla ectar	iss nce:		-,	Mid-Zan Angla 09 57 157 259 359	3 LH- 7 8 2 7 6	409 1 5 ,735 ,079 ,786 ,231 ,401	5 ILH-1 5 5 6 0, 6	lapowa 30-4-SG 073 641 055 131 153	IL16-456	262 560 133 130 547	7.77		
02-lgnailea LH-460-H-66 LH-460-H-66 LH-163-7-80		Positio #1 #4 #4	a	S/	12 17		,	977 973 981	ł		45° 55° 65° 75° 85°	1	104 413 50 16	2	886 816 89 20	1.3	142 063 260 26		1	
leibra Pullacia K. Wali Kulasia	SECTION .	70%	5015	30%	101,	74%	76 83%	55 2344	10%	5011	50% 30%	10%	50%	30%	10 %	50%	1015	1055	٥٠.	
n19403-1 EG	0. 2. 3. 4. 5. 6. 7. 8. 9.	840 792 745 706 653 815 530 533 468 423	340 770 710 635 600 551 500 463 424 308 339	810 679 815 524 423 414 374 338 235	310 731 651 655 521 439 413 329 343 345 345	900 774 702 691 ,647 ,616 987 529 493 459 415	320 .754 .697 .645 .551 .544 .560 .453 .418 .354 .354	820 756 863 850 850 500 455 411 372 337 258	\$20 .719 .611 533 513 .467 421 .378 .339 .534 .255	782 725 .674 .676 .575 .531 .481 .449 .411 .377 .329	787 .711 .650 .596 .596 .492 .443 .467 .565 .533 .245	.782 .657 .629 .571 .512 .402 .419 .376 .337 .337 .333 .254	.758 .653 .653 .605 .519 .479 .419 .419 .419 .419 .423	750 667 633 563 530 465 443 432 264 330 262	750 576 816 562 500 458 415 374 306 202 223	720 675 633 562 547 567 469 431 366 363 317	.720 .665 .617 .571 .521 .478 .437 .397 .361 .327 .261	.725 .657 .663 .563 .503 .451 .412 .572 .354 .501 .202	511 541 448 412 461 260 323 260 211	
HH400 4 SG	0 1 2 3 4 5 6 7 8 9	850 795 717 805 815 533 455 512 473 437 353	850 770 701 6:0 877 323 474 427 365 318 301	.850 .747 .666 .816 .826 .470 .420 .372 .330 .254 .247	853 727 636 581 423 451 381 331 233 257 210	630 630 536 537 501 462 428 264	810 .754 .081 .629 .513 .463 .463 .422 .391 .311 .293	A10 .734 .653 .512 .403 .418 .279 .328 .292 .215	800 715 629 813 486 423 374 331 202 257 210	790 .725 609 .562 .458 .412 .372 .337 291	793 708 638 638 512 418 410 375 524 283 242	750 603 615 547 453 455 576 251 250 250 250	760 698 643 591 517 499 445 402 361 329 284	760 684 621 592 502 451 474 360 263 240	7(0 672 601 534 474 421 373 323 263 255 204	.730 673 623 574 522 477 434 323 350 322 276	,700 ,662 ,604 ,550 413 ,443 ,301 ,355 ,317 283 ,237	.730 .653 .588 .531 .463 .417 .371 .257 .263 .207	.711 .679 .575 .517 .453 .451 .359 .314 .370 .241 .193	
ци-тээ-т-ба	0.	860 797 740 633 630 579 523 423	860 769 602 603 559 463 464 305 363	860 744 653 575 591 428 065 045 201 255	800 722 670 536 453 385 372 203 292	840 778 723 670 614 563 520 476	640 753 679 612 546 463 438 391 348	840 731 613 507 454 404 353	.840 .719 .613 .531 .455 353 340 232	600 723 655 502 528 474 425 370	800 .705 625 654 484 426 375 225	809 683 593 322 4-3 389 338 253 253	.764 .696 .632 .573 .512 .485 .413 .323	764 651 557 547 474 418 369 363 261 243	.764 667 585 .514 443 .365 .335 .238 248	.733 .671 .611 .555 .493 .447 .463 .360 .321	733 559 591 528 465 410 363 318 279	733 613 573 505 407 391 112 263 247	770 634 559 491 423 367 318 273 273	
H-400-1	10.	417 412 ,203	363 310 272	,255 ,255 ,214	218	401 363	312	.291 253 212	251 218 174	393 364 261	267 262 209	216	330 296 254	265	.248 .215 .173	289 247	215 203	THE COL	100	
LH-400-1 amp: Mer amp watt amp lume Catalog Catalog LH-400-1-ST 3-460-4-ST	-ST cury s: 40 ens (Vapo	252 r (DX 23,0) 100	Refle Lens:	ator: Tell	Spe on ectar	253 212 cular nce: 976 983 \$55	, Hex	364 261	113-Zone Angle 50- 15- 25- 25- 25- 25- 25- 25- 25- 25- 25- 2	216 ,173	.254 ne Dis	205 SIMISUI Candio T ILH 40 5.1 6.5 6.5 2.5	110H D power 0-4 ST 179 179 172 183	289 247	7:SI ::77:SI ::77:SI ::17:SI :	214		
amp: Mer amp watt amp lume catolog subjustion 14-400-1-ST A-400-7-ST A-400-7-ST	-ST cury s: 40 ens (Vapo No vert): Social Pealite #1 #4 #7	272 r (DX 23,0) 1000 570 535	Refle Lens: Floor	ctor: Tell Befl	Sperion ectar	253 212 cular nce: React 976 983 265	, Hex 20%	36 261 261	109 113-Zone Angle 50 15 25 25 25 25 25 25 25 25 25 2	216 173 JEHONAS 1 IL H- 8 8 8 7 7 7 4 2	254 RE DIS 080 1-S 080 1-S	205 Candle 7 il. 140 5 1 5 1 6 2 6 3 7 2 8	110H D. power of 4 ST 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	289 247 247 4.40 4.40 4.50 5.28 5.28 5.28 5.43 3.61 1.41 29 6	7.51 7.51 3.7 7.3 4.4 1.5 5.9 1.5 5.30%		095	
amp: Mer amp watt amp lume Catalog bealgration 41-400-1-ST 2-460-4-ST	-ST cury s: 40 ens (Vapo 00 Vert): 50ctate #1 #4 #7 #7 #551	310 212 212 7 (DX 23,0 81 81 517 743 627 743 627 743 627 743 645 654 654 654 654 654 654 654 654 654	212 000 57/ 51/ 51/ 51/ 51/ 51/ 51/ 51/ 51/ 51/ 51	218 175 Refle Lens: Floor 215 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	ctor: Tell Refl	500 Special Sp	253 212 cular nce: 976 983 \$55	, Hex 20%	36 261	113 Zone Angle 50 15 25 25 25 25 25 25 25 25 25 25 25 25 25	215 1773 JAMINAS B. 88 887 704 2	254 RE DIS 400 I-S 083 416 110 505 672 761 166 487 126 39	205 TAISUT Candia T H H 10 5 1 5 1 5 2 8	110H 0 power 0-4 ST 22 279 772 772 772 772 773 774 60 34 49	289 247 ATA 4.40 4.61 5.06 5.26 5.43 3.61 1.41 29	7.51 7.51 7.51 1.55 1.15 1.55 1.15 1.15	114 117 110% 110% 110% 110% 110% 110% 110%	0%5 740 674 674 674 740 674 740 740 740 740 740 740 740 740 740 7	
amp: Mer amp watt amp lume catolog subjustion 14-400-1-ST A-400-7-ST A-400-7-ST	-ST curry s: 40 ens (Vapo Vapo Wert): Social Positio #1 #4 #7 70% \$615 505 505 505 505 505 505 505 5	310 272 7 (DX 23,0 60 60% 681 681 681 681 681 681 681 681 681 681	212 000 576 5376 631 763 763 763 763 763 763 763 763 763 763	218 175 175 175 175 175 175 175 175 175 175	263 263 263 263 263 263 263 263 263 263	502 500 500 500 500 500 500 500 500 500	253 212 Cullar Cullar General 976 953 265 869 869 869 877 22 475 470 364 480 365 365	214 1172 , Hex 20% 10% 804 754 160 160 160 160 160 160 160 160 160 160	50% 822 761 766 622 653 541 441 451 451 451 451 451 451 451 451	1113-Zone Angla 50 15 15 15 15 15 15 15 15 15 15 15 15 15	216 ,173 HARIETAA 8, 8, 8, 8, 7, 7, 6, 6, 6, 4, 4, 2, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 4, 5, 6, 2, 2, 4, 5, 6, 2, 2, 2, 3, 3, 6, 3, 1, 4, 2, 2, 4, 5, 6, 2, 2, 3, 2, 3, 6, 3, 1, 6, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 16, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	254 400-1-5 050 050 110 050 5072 761 1125 072 761 126 36 773 753 553 553 553 553 553 553 553	203 SIA(301) Candies 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	110M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	289 247 247 247 4.610 5.60 5.60 5.43 760 760 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 6.70 762 762 762 762 762 762 762 762 762 762	215 209 209 209 209 209 209 209 209 209 209	1112 A 2014 A 20	0055 0056 0056 0056 0057 0057 0057 0057	

LINEA INDUSTRIAL PLUORESCENTE A PRUEBA DE VAPOR Y POLVO SERIES "GPV" "AV" "DV" "OGV"

DATOS FOTOMETRICOS Tipo de iluminación: Directa

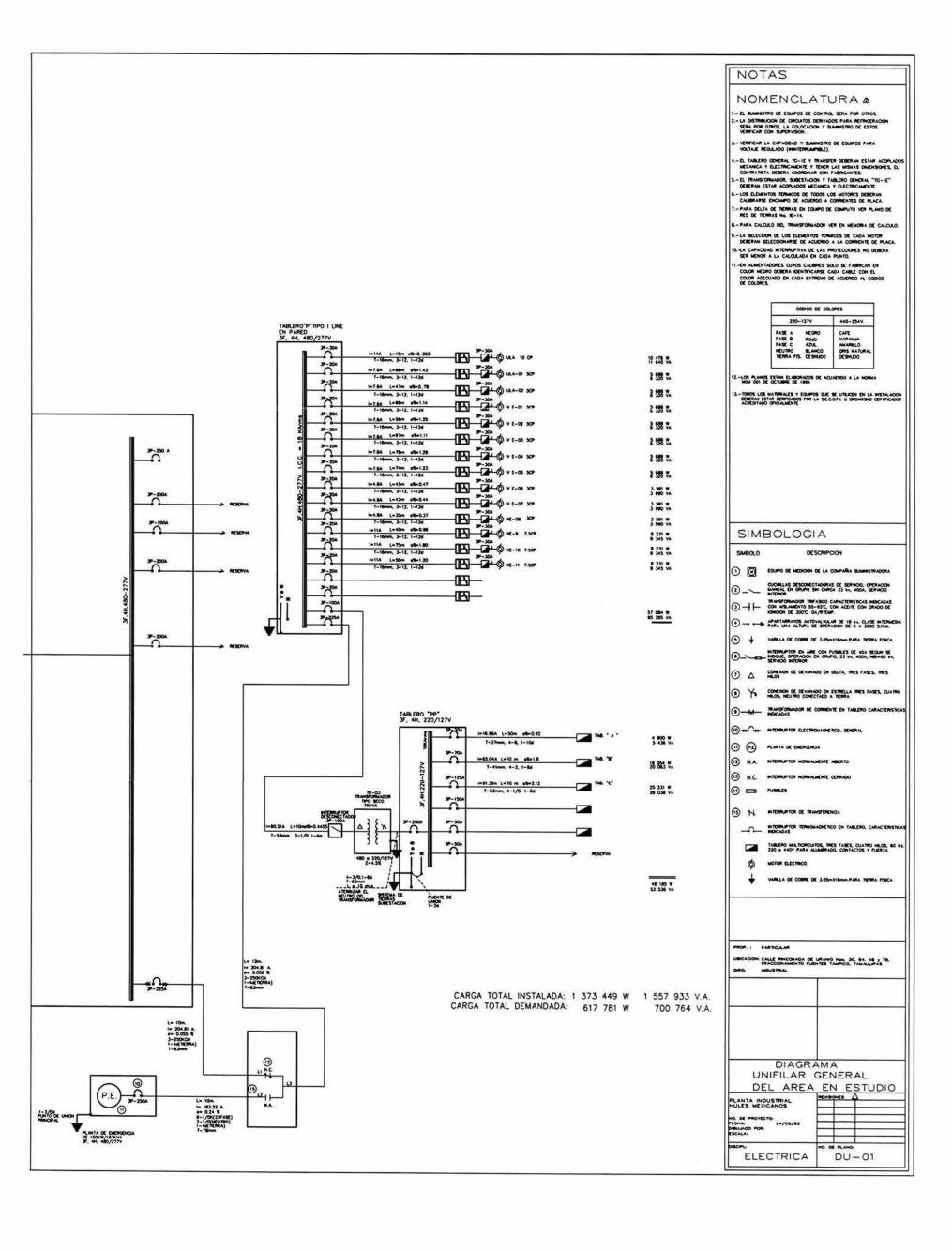
COEFICIENTES DE UTILIZACION

PIS	Ю	3	30	1	0 %
TEC	НО		80	9,	
PAF	ED	50%	30%	50%	308
INDICE DE CUARTO Y ELO CHATO HE ELE PER LE	0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0	.32 .40 .46 .51 .55 .60 .65 .66	.27 .35 .40 .46 .50 .56 .60 .62	.31 .39 .43 .48 .51 .55 .59 .57	.27 .34 .39 .44 .47 .52 .55 .54

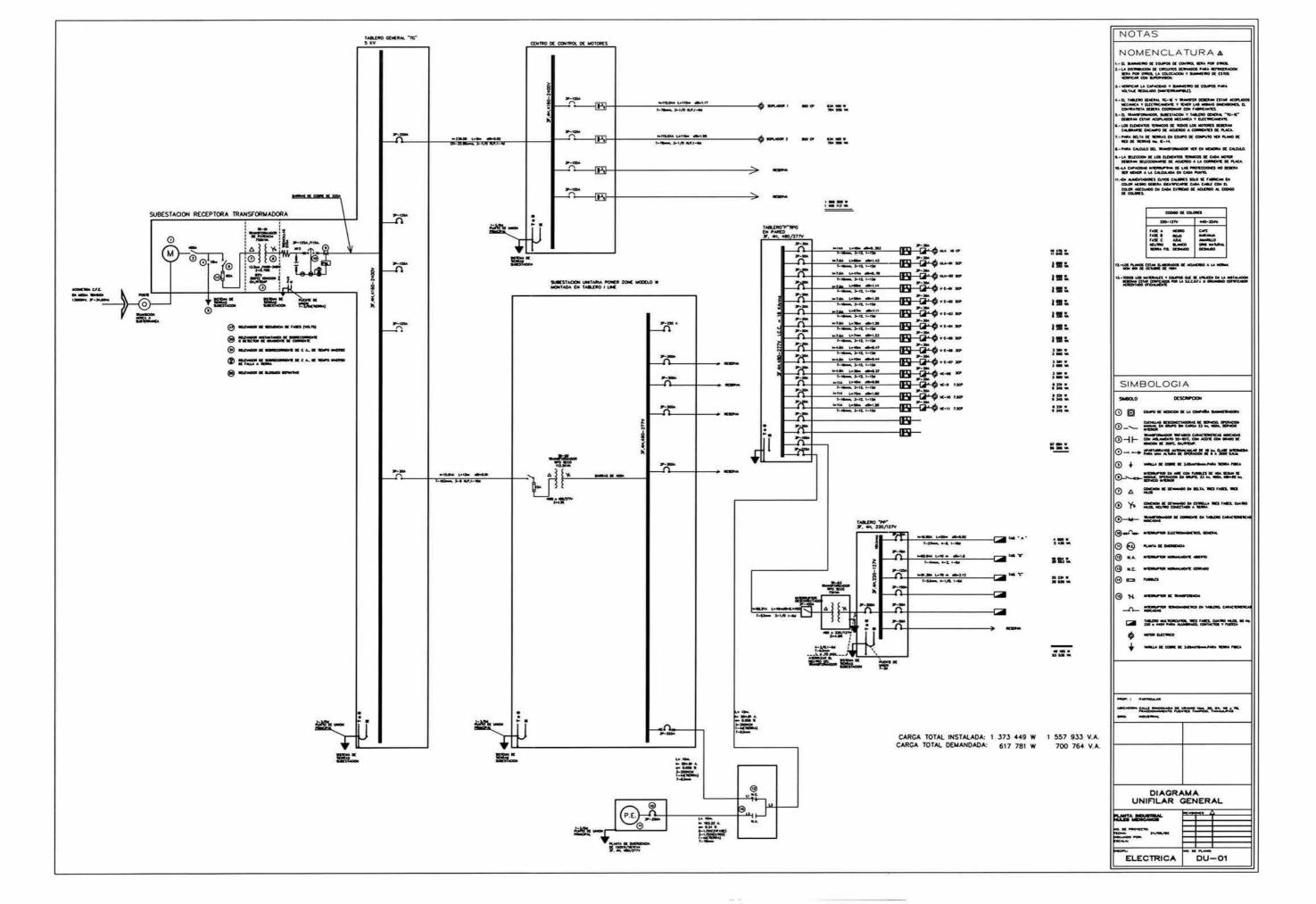
5.4.- CUADROS DE CARGA

TNI NC	O " A" VOLTS, S ERRUPTO DD12-4AE	OR PRIM		S, 60 HZ	LOCA	LIZADO		ICINAS P	PLANT	A BA.	IA		COL	MBRAI NTACTO DTORE ESERV.	OS= S=	9		VA VA VA		TOTA	L VA'S= L WATT ALANCE	S=	5,436 4,900 7.55	%
	W	130	162																					
	Simbolo		0	POT	٧	I.	l x 1.25	INTERR.	FAC	TOR	IC	LO	L1	CALIB	RE	SEC	CION	VOL	TAJE E	EN:	POT	POT	POT	_=
FASES	Potencia	2T-59W	162W	V.A.	VOLT	AMP	AMP	P-A	Agr.	Temp	AMP	m.	m,	#	#	mm2	mm2	PRIN.	SEC.	TOT.	fase a	fase b	fase c	
	V.A.	144	180				CONTINU	A									-	%	%	%				-111
					, ,	-			_	-			_									_		_
ABC	CTO.			004	107	640	7.00	10.164	0.00	1.00	7.05	10	-	10	10	2.24		ximo =			904	2.000		
	3	6		864	127	6.12 7.14	7.65 8.93	1P-15A				10	5	12	12	3.31	3.31	0.58	0.29		864	1,008		
	5	6	-	1,008	127	6.12	7.65	1P-15A				10	5	12	12	3.31	3.31	0.58	0.34	And the second	-	1,000	864	
	7	0	_	004	121	0.12	7.00	ESP	0.00	1.00	7,05	10	9	12	12	3.31	3.31	0.50	0.29	0.07	0	-	004	
	9	-	-	0				ESP	_	-	-				-			_	-		0	0		-14
•	11	-	-	0			-	ESP			_		_	-	-						-	- 0	0	
	2	-	5	900	127	6.38	7.97	1 TO 1 TO 1 TO 1	0.80	1.00	7.97	12	8	10	10	5.26	5.26	0.46	0.31	0.76	900		-	
-,-	4	_	5	900	127	6.38	7.97			1.00		12	8	10	10	5.26	5.26	0.46	0.31	0.76		900		
•	6		5	900	127	6.38		1P-20A				12	8	10	10	5.26	5.26	0.46	0.31	0.76			900	-
	8			0				ESP													0			
•	10	-		0				ESP														0		
•	12			0			1	ESP															0	
	unid.	19	15									10-2												
	watts	2,470	2,430	4,900																				
	va	2,736	2,700	5,436										1 3					4		1,764	1,908	1,764	

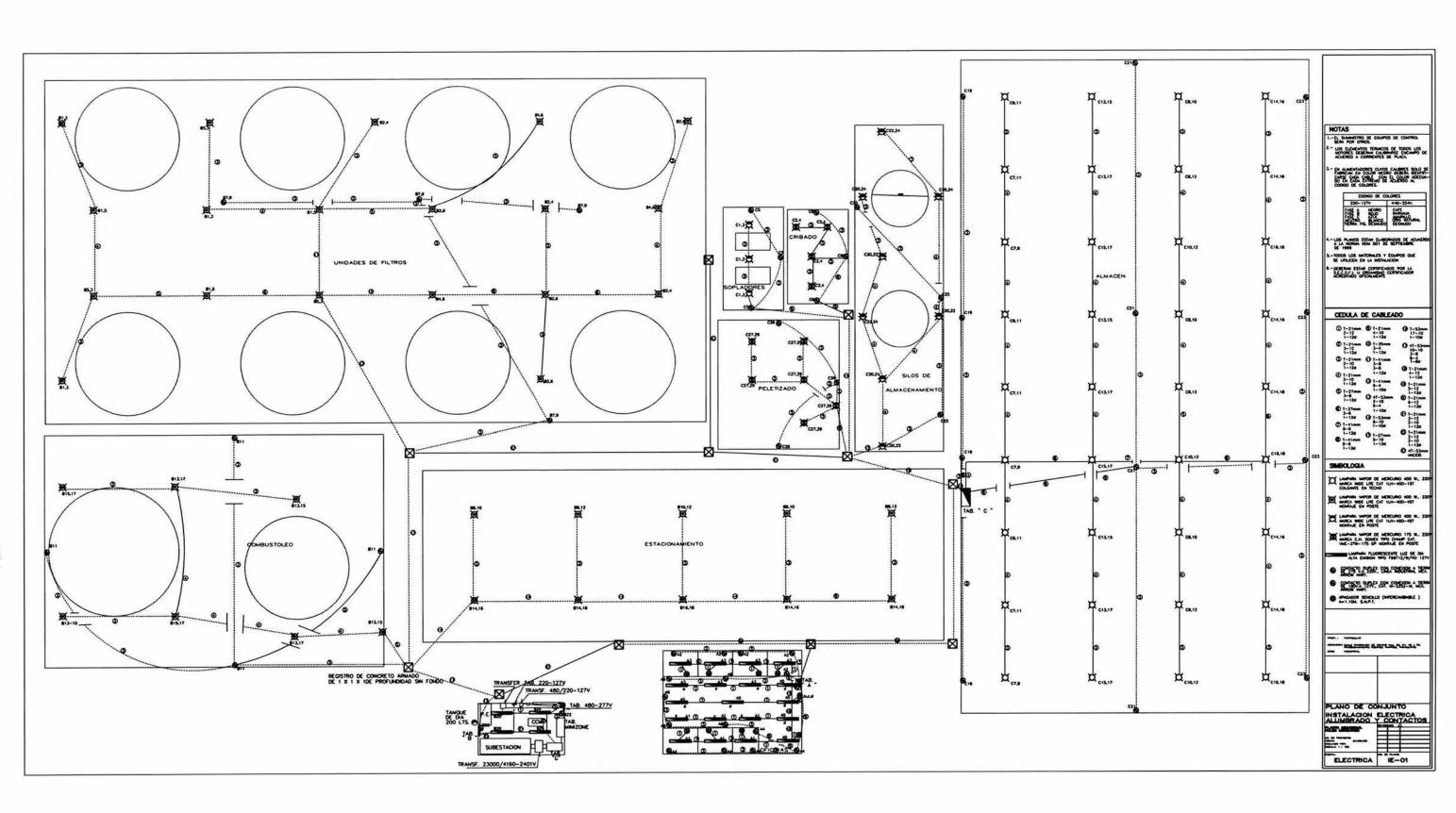
	INDUSTRI	AL																								
ABLER	O . B.						TABL	ERO DE	ALUMB	RADO					ALU	MBRA	00=		17,691	VA		TOTA	L VA'S=		20,063	
20 / 127	VOLTS, 3	FASES,	4 HILO	S, 60 HZ			LOCA	LIZADO	EN: SU	BESTACI	NO				CON	NTACT	OS=		2,372	VA		TOTA	L WATT	S=	18,054	
ON INT	ERRUPTO	R PRIN	CIPAL 3	P-70A.			SERV	ICIO EN	ERGEN	CIA					M	OTORE	S=	- 2	0	VA		DESB	ALANCE	MAX =	3.39 %	6
	OD24-4AB	200 11000010						500.00		<i></i>						ESERV	7.3			VA				- Commence		
MI, NO	UU24-4AD	120													133	= =			54							
																-			54	^						
	W	440	130	162	250																					
	Simbolo	0		0	(1)	POT	٧	7	l v 1 25	INTERR.	FAC	TOR	IC	LO	11	CALIB	RF	SEC	CION	VOLT	TAJE E	N.	POT	POT	POT	
	Ollifolo	79		4	}	10:	•	^				10	••	-,	OI ILIU		010	0.01,	, 02		-121	,	, 0,	3		
FASES	Potencia	400//	2T-59W	162W	250W	V.A.	VOLT	AMP	AMP	P-A	Agr.	Temp	AMP	m.	m.	#	#	mm2	mm2	PRIN.	SEC.	TOT.	fase a	fase b	fase c	
	V.A.	489	144	180	278			- 1	CONTINU	\										%	%	%				
												_		_												
ABC	CTO.																			ximo =	7797	74.5				_
	1,3,5	9				4,401	220			3P-20A				70	25	8	10	8.37	5.26	1.52	_	2.39	1,467	1,467	1,467	
8 8	7,9				4	1,112	220	5.05	6.32	2P-20A				67	28	10	10	5.26	5.26	0.59	_	0.83	556	556		
•	11			5		900	127	7.09	8.86	1P-20A	-	_	_	42	25	10	10	5.26	5.26	1.78	1.06	2.84			900	
	13,15,17	7				3,423	220	15.56	19.45	3P-20A	0.80	1.00	19.45	26	18	8	10	8.37	5.26	0.76	0.84	1.60	1,141	1,541	1,141	
	19					0				ESP													0			
•	21					0				ESP														0		
5.9	23					0				ESP															0	
1 4	2,4,6	9				4,401	220	11.55		3P-15A				83	26	8	10	8,37	5.26	1.80	0.90	2.70		1,487	1,467	
	8,10,12	5				2,445	220	6.42	8.02	3P-15A	0.00			21	30	10	10	5.26	5.26	0.40	0.58	0.98	815	815	815	
F . F	14,16,18	5				2,445	220	6.42	8.02	3P-15A	0,80	1.00	8.02	25	15	10	10	5.26	5.26	0.48	0.29	0.77	815	815	815	
	20		4			576	127	5.04	6.30	1P-15A	0.80	1.00	6.30	7	8	10	10	5.26	5.26	0.21	0.24	0.45	578			
	22			2		360	127	2.55	3.19	1P-20A	0.80	1.00	3.19	20	2	10	10	5.26	5.26	0.31	0.03	0.34		360		
1	24					0				ESP															0	
	unid.	35	4	7	4																					
	watts	16,400	520	1,134	1,000	18,054																				
	va	17,115	5/8	1,260	1 112	20,063				1												1	6,837	6,521	6,605	


BLER	0 * C*						TABL	ERO DE	ALUM	BRADO					ALU	MBRA	DO=		23,538	VA		TOTA	L VA'S=		28,038	
	VOLTS, 3	REASE	S A HILL) S 60 1	17				7. (1 (Ame) (2000)	MACEN					-10000	NTACT		26	4,500	•		HOMESSES	L WATT		25,231	
	1.11-18-1-1-10-1		Nation 1 and 1 and													EAUTOR STORY	71.00.01	9				110000000000000000000000000000000000000	99.23 2000 5 2			
	ERRUPTO	JK PKI	NCIPAL	JP-100	Α.		SERV	ICIO EI	MERGE	NCIA					300.0	TORE		- 0		VA		DESE	ALANC	E MAX.	4.58	7e :
AT. EW	/P-5345S														RE	SERV	A=			VA						
																l=			76	Α						
			-	_	-		_					_	_	_	-	_			-							
	W	275	440	193	162																					
	Simbolo		X	X	\bigcirc	POT	٧	1	l x 1.25	INTERR	FAC	TOR	IC	LO	L1	CALIE	RE	SEC	CION	VOL	TAJE	EN;	POT	POT	POT	ii.
FASES	Potencia	1-250W	1-400W	1-175W	162W	V.A.	VOLT	AMP	AMP	P-A	Agr	Temp	AMP	m.	m.	#	#	mm2	mm2	PRIN.	SEC.	TOT.	fase a	fase b	fase c	
	V.A.	306	489	214	180		-		CONTINU		-	-	_	-	_	-	-	-	_	%	%	96	_	-		_
_		200	4670	414	100	_	_				_	_			_		_						-	-		_
BC	CTO.	-																	má	ximo =	2.42	%				_
	1,3	3				918	220	4.17	5.22	2P-15A	0.80	1.00	5.22	49	6	8	10	8.37	5.26	0.22	0.04	0.27	459	459		_
*	5				3	540	127	4.25	5.31	1P-15A	0.80	1.00	5.31	47	7	10	10	5.26	5.26	1,20	0.18	1.37			540	_
	7,9,11		9			4,401	220	11.55	14.44	3P-15A	0.80	1.00	14.44	16	23	8	10	8.37	5.26	0.35	0.80	1.14	1,487	1,487	1,467	
* 8	13,15,17		9			4,401	220	11.55	The state of the s	3P-15A				27	23	8	10	8.37	5.26	0.59	0.80	1.38	1,487	1,487	1,467	
4 1	19				4	720	127	5.67	7.09	1P-20A	7170000			9	22	10	10	5.26	5,26	0.31		1.05	720			
71	21				5	900	127	7.09	8,86	1P-20A				25	28	10	10	5.26	5.26	1.06		2.25		900		
	23				4	720	127	5.67	7.09	1P-20A		_		45	22	10	10	5.26	5,26	1.53		2.27			720	
	25				3	540	127	4.25	5.31	1P-20A				29	13	10	10	5.26	5.26	0.74		1.07	540			
	27,29			8		1,712	220	7.78	9.73	2P-15A				24	8	10	10	5.26	3,31	0.32	0.17	0.49		856	856	
	2,4			4		856	220	3.89	4.86	2P-15A				53	6	10	10	5.26	5.26	0.36		0.40	285	285	285	-
,	6				3	540	127	4.25	5.31	1P-20A	ACCEPTED.	1754.72.0	2000	41	7	10	10	5.26	5.26	1.04		1,22			540	
	8,10,12		9			4,401	220	11.55	14.44	3P-15A				37	23	10	10	5,26	5.26	1.28		2.07	1,487	1,467	1,487	ill ill
	14,16,18		9			4,401	220	11.55	14.44	3P-15A				47	23	10	10	5.26	5.26	1.62		2.42	1,457	1,487	1,467	
	20,22,24	8				2,448	220	6.42	8.03	3P-15A		A	7.000000	22	18	10	10	5.26	5.26	0.42	100000000000000000000000000000000000000	0.77	818	816	816	
	26				3	540	127	4.25	5.31	1P-20A	0.80	1.00	5.31	27	8	10	10	5.26	5.26	0.60	0.18	0.77	540			
-	28					0				ESP														0		
	30		- 00		05	0	_			ESP															0	
	unid.	11	36	12	25	20.001						_														
	watts	3,025	15,840			25,231	_				_	_			_										-	
	va	9,500	17,004	4,000	4,500	28,038			ente de l														8,228	9,184	8,625	

	INDUSTRI	UL						15210 Brasiles St.	200-02/2021							0020		Taran Canada	ere en		. 500 24 25 70 70			
ABLER	0 " PP "					TABLE	RO DE	DISTRIE	BUCION					ALU	MBRAD	00=		53,537	VA		TOTAL	.VA'S=		53,537
220 / 127	VOLTS, 3	FASES	, 4 HILO	S, 60 HZ		LOCA	LIZADO	EN: CU	ARTO DE	SUB	STAC	ION		CO	NTACTO	OS=		0	VA		TOTAL	WATTS	S=	48,185
CON INT	ERRUPTO	R PRIN	CIPAL 3	P-400A.		SERV	ICIO EN	MERGEN	CIA					MO	OTORE	S=		0	VA		DESB	ALANCE	MAX.=	0.00 %
	200M61A	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							• 1.1						SERV				VA					
TIPO ILII														T(η		141						
IIPO ILII	NE	-					_				_				ļ=		-	141	٨					
-	-	-	_	-	_		_	_		_	_		-	-	-	-			_	_	_	_		
	W	4,800	18,054	25,231																				
	0:11				пот	· ·		1. 10-	WYCOO	F4.0	TO5	10		1.4	04115	25	050	OLON	UOLO		-41	DOT	207	207
	Simbolo	TABA	TAB B	TABC	POT	٧	1	1 x 1.25	INTERR.	FAC	TOR	IC	LO	L1	CALIB	KE	SEC	CION	VOL	AJE E	:N:	POT	POT	POT
FASES	Potencia	4900 W	18054 W	25231 W	V.A.	VOLT	AMP	AMP	P-A	Agr.	Temp	AMP	m.	m.	#	ŧ	mm2	mm2	PRIN.	SEC.	TOT.	fase a	fase b	fase c
	V.A.	5.439	20.063	28,038				CONTINU	4			-	-		_				%	%	76	-	-	
		0,100	_	10.000	-	_			_		_							-			_			
ABC	CTO.	-																mi	ximo =	1.37	%			
	1	1			5,436	220	14.27	17.83	3P-20A	0.80	1.00	17.83	40		8		8.37	1.00	0.62	0.00	0.62	1,812	1,812	1,812
* * *	3		1		20,063	220	52.65	65.82	3P-70A	0.80	1.00	65.82	20		2		33.62	1.00	0.57	0.00	0.57	6,688	6,888	6,688
9 2 1	5			1	28,038	220	73.58	91.98	3P-100A	0.80	1.00	91.98	80		2/0		67.43	1.00	1.37	0.00	1.37	9,346	9,348	9,348
	2				0				3P-100A								1.00					0	0	0
2 4 5	4				0				3P-100A													0	0	0
	6				0				3P-100A													0	0	0
	unid.	1	1	1																				
	watts		18,054		48,185																			
	va	5,436	20,003	28,038	53,537																	17,640	17,846	17,846


^{*} LO es la longitud del tablero a la primer salida, L1 es la longitud equivalente de la primer salida a la última.

ABLERO 30 / 277 ON INT	INDUSTRIA D " P" VOLTS, 3 ERRUPTO 400181A	FASES, 4						LOCA	LIZADO		BUCION ARTO DE CIA	E SUB	ESTA	CION		CO	MBRAI NTACTI DTORE ESERVI	S=	9	95,285	VA VA VA		TOTA	L VA'S= L WATT ALANCE	3	170,285 153,257 0.00 %
	W	67,500	5,688	10,476	3,591	8,231								***************************************	_			-								
	Simbolo	TR-03	6 CP	10 CP	300	7.5 CP	РОТ	٧	Ţ	I x 1.25	INTERR.	FAC	TOR	IC	LO	L1	CALIB	RE	SEC	CION	VOL	TAJE E	N:	POT	РОТ	POT
FASES	Potencia			lvj.			V.A.	VOLT	AMP	AMP	P-A	Agr.	Temp	AMP	m.	m.	#	#	mm2	mm2	PRIN.	SEC	TOT.	fase a	fase b	fase c
	V.A.	75,000	6,320	11,640	3,990	9,145				CONTINU	1										%	76	75			
												_	_			_		-Compa				7.05	-			
BC	cto.					1	9.145	480	11.00	13.75	3P-20A	1.00	0.92	15.62	40	_	10		3.31	me	ximo ≅ I 0.96	1.60	0.96	3.048	3,945	3,548
-	3					1	9,145	480	11.00	13.75	3P-20A				75		10	San Arres	3.31	_	1.80	-	1.80	3,048	3,048	3.048
	5	-				1	9,145	480	1 1 1 1 1 1 1 1 1 1 1 1 1	13.75		10000		15.63	50	_	10		3.31		1.20	-	1.20	3,048	3,048	3,048
-	7	-	1	_	-		6,320	480	7.60	9.50	3P-20A			10.80	86	-	10		3.31		1.43		1.43	2,107	2,107	2,107
1.1	9	-	\rightarrow		-	-	6,320	480	7.60	9.50	3P-20A			10.80	47	-	10		3.31		0.78		0.78	2,107	2,107	2,107
4. 1	11		1				6,320	480	7.60	9.50	3P-20A			10.80	69	_	10		3.31		1.14		1.14	2,107	2,107	2,107
1 ×	13		1		-	-	6,320	480	7.60	9.50	3P-20A	100000		10.80	56		10		3.31		0.93		0.93	2.107	2.107	2.107
	15	1					75,000	480	90.21	The same of the same of	3P-100A				10		1/0		53.48		0.12		0.12		25.000	25,000
	17	-		17.7		-					ESP	-		-	- 1			-								
2.3	2		1	_	_		6,320	480	7.60	9.50	3P-20A	1.00	0.88	10.80	67	_	10		3.31		1.11	-	1.11	2,507	2,107	2,107
1 +	4		1				6,320	480	7.60	9.50	3P-20A	1.00	0.88	10.80	78		10	-	3.31		1.29		1.29	2,107	2,107	2,107
1. 1	6		1				6,320	480	7,60	9.50	3P-20A	1.00	0.88	10.80	74		10		3.31		1.23		1.23	2,107	2,107	2,107
4 8	8			1			11,640	480	14.00	17,50	3P-20A	1.00	0.88	19.89	35		10		3.31		1.07		1.07	3,680	3,580	3,880
	10				1		3,990	480	4.80	6.00	3P-20A		0.88		45		10	2.12.11.11.2	3.31		0.47		0.47	1,330	1,330	1,380
9 4	12				1		3,990	480	4.80	6.00	3P-20A	_	0.88	Annual Control of the Park	42		10		3.31		0.44		0.44	1,330	1,330	1,330
	14				1		3,990	480	4.80	6.00	3P-20A	1.00	0.88	6.82	35		10	ğ I	3.31		0.37		0.37	1,330	1,330	1,330
* *	16										ESP.				Ĭ					teres de				Q		
3 5	18										ESP.														0	
	unid.	1 1	. 7	1	3	3																1		7.17		
	walls	67,500	and the later of t	10,476		24,692	153,257																		l	
	va	(6,000	44,240	11,590	11,970	27,435	170,285					1			7				W. D. W. C. S. H. J.			1000	10000000	55,752	56,762	56,762


5.5.- DIAGRAMA UNIFILAR DEL AREA EN ESTUDIO

5.6.- DIAGRAMA UNIFILAR GENERAL

5.7.- PLANO DE CONJUNTO

5.8.-ESTUDIO DE CORTO CIRCUITO

5.8.1.- Objetivo

El objetivo de este estudio es el determinar la capacidad de corto circuito mínimo que debe tener el equipo eléctrico seleccionado para soportar una falla de corriente eléctrica.

5.8.2.- Condiciones de calculo

- El método a utilizar será por unidad
- Para contribución de corto circuito por C.F.E. se considera de bus infinito
 13.2 KV (Aportación de corto circuito trifásico)
- El método utilizado, formulas y referencias fueron tomados del standard IEEE-STD-141-1996 (Libro Rojo)
- No se considera las reactancias de barras e instrumentos de los tableros.

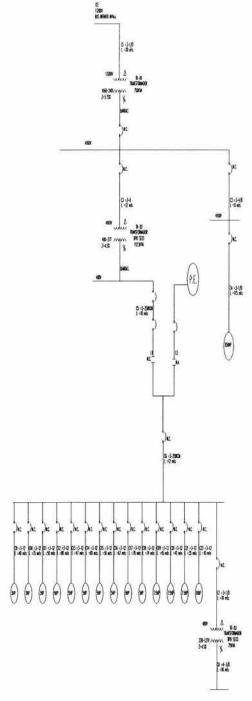


DIAGRAMA UNIFILAR PARA C.C.

5.8.3 VALORES BASE

Potencia Base = 10 MVA

A) EN 13.2 KV

1.- Corriente Base = (I_B)

$$I_B = MVA_B \times 1000 = 10 \times 1000 = 437.39 A$$

 $1.732 \times KV$ 1.732×13.2

2.- Impedancia Base (ZB)

$$Z_B = (KV) = \frac{2}{MVA_B} = \frac{(13.2)^2}{10} = 17.424 \text{ OHMS}$$

B) EN 4.16 KV

Corriente Base = (I_B)

$$I_B = MVA_B \times 1000 = 10 \times 1000 = 1387.9 \text{ A}$$

 $1.732 \times KV$ 1.732×4.16

Impedancia Base (Z_B)

$$Z_B = (KV)^2 = (4.16)^2 = 1.73 \text{ OHMS}$$
 $MVA_B = 10$

C) EN 0.48 KV

Corriente Base = (I_B)

$$I_B = MVA_B \times 1000 = 10 \times 1000 = 12028.48 \text{ A}$$

 $1.732 \times KV$ 1.732×0.48

Impedancia Base (ZB)

$$Z_B = (KV) = (0.48)^2 = 0.02304 \text{ OHMS}$$
 $MVA_B = 10$

D) EN 0.22 KV

Corriente Base = (I_B)

$$I_B = MVA_B \times 1000 = 10 \times 1000 = 26243.96 \text{ A}$$

 $1.732 \times KV$ 1.732×0.22

Impedancia Base (ZB)

$$Z_B = (KV)^{\frac{2}{}} = (0.22)^{\frac{2}{}} = 0.00484 \text{ OHMS}$$

$$\frac{10}{}$$

CALCULO DE LAS REACTANCIAS EN PU

CIR	Longitud Cable Km	Num. de conduc. Por fase y calibre	Reactancia X(OHM/KM)	Reactancia X(PU)
C-1	0.20	1-1/0 AWG	0.1493	0.00171
C-2	0.012	1-8 AWG	0.1727	0.00120
C-3	0.008	1-4/0 AWG	0.1203	0.000556
C-4	0.115	1-1/0 AWG	0.1297	0.00862
C-5	0.010	1-250 KCM	0.17056	0.074028
C-6	0.012	1-250 KCM	0.17056	0.088833
C-7	0.010	1-1/0 AWG	0.1804	0.078298
C-8	0.010	1-3/0 AWG	0.17384	0.359173
C-9	0.040	1-12 AWG	0.2234	0.38722
C-10	0.010	1-12 AWG	0.2234	0.72604
C-11	0.050	1-12 AWG	0.2234	0.4840278
C-12	0.086	1-12 AWG	0.2234	0.832528
C-13	0.047	1-12 AWG	0.2234	0.454986
C-14	0.069	1-12 AWG	0.2234	0.6679583
C-15	0.056	1-12 AWG	0.22304	0.542111
C-16	0.067	1-12 AWG	0.22304	0.648597

C-17	0.075	1-12 AWG	0.22304	0.7550833
C-18	0.074	1-12 AWG	0.22304	0.7163611
C-19	0.045	1-12 AWG	0.22304	0.435625
C-20	0.042	1-12 AWG	0.22304	0.406583
C-21	0.035	1-12 AWG	0.22304	0.33882
C-22	0.010	1-12 AWG	0.22304	0.095709

Se considera que Z(OHMS) = X(OHMS)

$$Z_B = X_B$$

$$X(OHM) = X(OHM/KM \times Longitud en KM$$
Num de conduct

$$X(PU) = \underline{X (OHM)}$$

$$X_B$$

Para C-1 = CALIBRE 1/0 AWG (15KV en trebol)

L= 0.396 mmHenrys/Km (Inductancia del conductor)

$$X = 2 \times 3.1416 \times FL = 2 \times 3.1416 \times 60 \times 0.396/1000 = 0.1493 \text{ OHMS/KM}$$

$$X(OHM) = \underbrace{0.1493 \times 0.20}_{1} = 0.02986$$

$$X(PU) = 0.02986 = 0.00171$$

17.424

PARA C-2 = CALIBRE 8 (5KV)

L= 0.458 mmHenrys/Km (Inductancia del conductor)

$$X = 2 \times 3.1416 \times FL = 2 \times 3.1416 \times 60 \times 0.458/1000 = 0.1727 \text{ OHMS/KM}$$

$$X(OHM) = \underbrace{0.1727 \times 0.12}_{1} = 0.00207$$

$$X(PU) = 0.00207 = 0.0012$$

1.73

TRANSFORMADORES

* Se considera la potencia máxima del transformador

$$TR-01 = 750 \text{ KVA}$$

$$Z\% = 5.75$$

$$X(PU) = 10 x 5.75 = 0.7667$$

$$0.75 100$$

$$TR-02 = 112.5KVA$$

$$Z\% = 4.5$$

$$X(PU) = 10 x 4.5 = 4$$

$$0.1125 100$$

$$TR-03 = 75KVA$$

$$Z\% = 4.5$$

PARA MOTORES

$$KVA = \underbrace{0.746 \times HP}_{Fp}$$

Fp = factor de potencia

$$Z(OHM) = \frac{(KV)^{2}}{MVA MOTOR}$$

$$Z(PU) = Z(OHM)$$

$$Z BASE$$

Para motores de 3 HP

$$KVA = \underbrace{0.746 \times 3HP}_{0.9} = 2.49$$

$$Z(\text{ohms}) = \frac{(0.48)^2}{0.00249} = 92.53$$

$$Z(PU) = \underbrace{92.53}_{0.02304} = 4016.064$$

Para motores de 5 HP

$$KVA = \underbrace{0.746 \times 5HP}_{0.9} = 4.14$$

$$Z(\text{ohms}) = \frac{(0.48)^2}{0.00414} = 55.652$$

$$Z(PU) = \underbrace{55.652}_{0.02304} = 2415.45$$

Para motores de 7.5 HP

$$KVA = \underbrace{0.746 \times 7.5HP}_{0.9} = 6.2166$$

$$Z(\text{ohms}) = \frac{(0.48)^2}{0.0062166} = 37.06$$

$$Z(PU) = \underbrace{37.06}_{0.023304} = 1608.5$$

Para motores de 10 HP

$$KVA = \underbrace{0.746 \times 10}_{0.9} \text{ HP} = 8.2889$$

$$Z(\text{ohms}) = \frac{(0.48)^2}{0.0082889} = 27.7962$$

$$Z(PU) = \underbrace{27.7962}_{0.023304} = 914.34$$

Para motores de 850 HP

$$KVA = \underbrace{0.746 \times 850 \text{ HP}}_{0.9} = 704.55$$

$$Z(\text{ohms}) = \frac{(4.16)^2}{0.70455} = 24.5663$$

$$Z(PU) = \underbrace{24.5663}_{1.73} = 14.198$$

APORTACIÓN DEL SISTEMA C.F.E.

$$X(PU) = \frac{MVAB}{MVAcc} = \frac{10}{INFINITO}$$

$$X(PU) = \frac{10}{INFINITO} = 0.0$$

Se diseña el diagrama de reactancias y se calcula las reactancias equivalentes para cada falla señalada (ver páginas 160 a 164)

$$X(PU)$$
 Equivalente para $F1 = 0.0017096$

$$X(PU)$$
 Equivalente para $F2 = 0.71525$

$$X(PU)$$
 Equivalente para F3 = 2.7288

$$X(PU)$$
 Equivalente para $F4 = 11.17738$

$$X(PU)$$
 Equivalente para F5 = 0.68585

CALCULO DEL CORTO CIRCUITO TRIFASICO

$$P_{CC} = MBA_B$$
 $X(PU) EQI.$

$$Icc = \frac{Pcc}{1.732 \text{ x KV}}$$

Para la falla en el punto F-1

Pcc en F-1 =
$$\frac{10}{0.0017096}$$
 = 5849.32 MVA

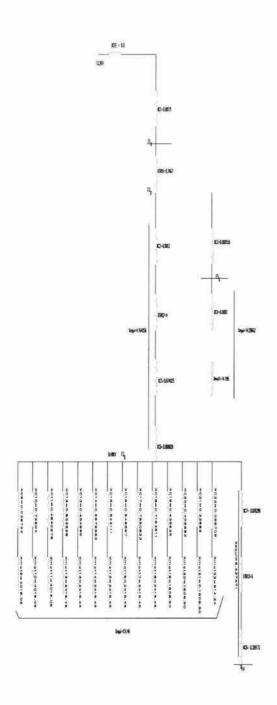
Para la falla en el punto F-2

Pcc en F-2 =
$$\frac{10}{0.71525}$$
 = 13.9811 MVA

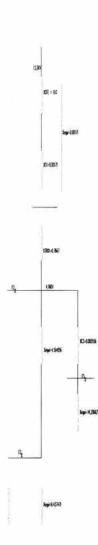
Para la falla en el punto F-3

$$Pcc en F-3 = 10 = 3.66461 MVA$$
 2.7288

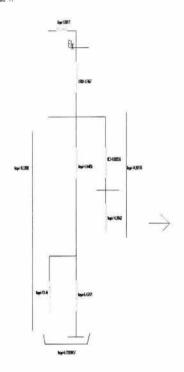
Para la falla en el punto F-4

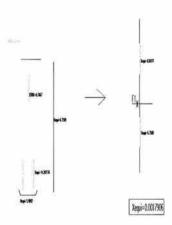

$$Pcc en F-4 = 10 = 0.89466 MVA$$
 11.17738

Para la falla en el punto F-5

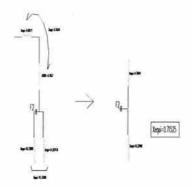

Pcc en F-5 =
$$\frac{10}{0.68585}$$
 = 14.58044 MVA

Por lo tanto los equipos se seleccionaran con las capacidades de 25 KA simétricos, para 4160, 480 y 220-127volts.

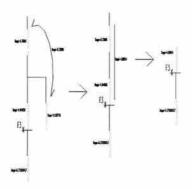

Para los equipos en 13.2KV se seleccionaran para 300 KA simétricos.

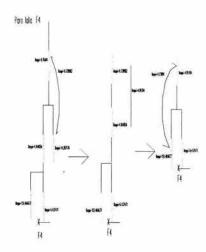


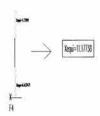
DIACRAMA DE REACTANCIAS



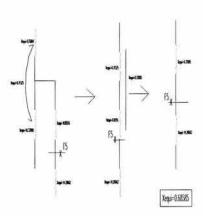
Para late FT







Para fallo 13



Xequi= 2.7288

Para lata F5

50	TADI	AS PARA	CALCIII	OC DE	CONDU	CTODES
3.4	LABL	ASPAKA	CALCUI	US DE	CONDU	CIURES

Table 11

Three-Phase Line-to-Line Voltage Drop 6 / 500 V Single-Conductor Cable per 10 000 A - ft

60°C Conductor Temperature, 50 Hz

	2_		_																			-			2
Lord Powe	er									9:	in.			-											
Eactor		1000	900	800	750	700	600	500	400	350		Size / 250		3/0	2/0	1/0	1	2	4	6	8*	10.	12*	14.	3
Section 1: 0				. 1		. C	4						7									7		-	- 1
1.00	opp							0.50	0.00	0.68	0.00	0.00	1.1		7	2.1	2.6	3.4	5.3	8.4	13	21	33	53	
0.95	O 1									0.88		1.1	1.3	1.5	1.9	2.3	2.8	3.5	5.3	8.2	13	21	32	50	
- 0.53										0.95			1.3	1.6	1.9	2.3	2.8	3.4	5.2	8 0	12	19	30	48	
- 0.30						0.74					1.1		1.4	1.6	1.9	2 3	2.6	3.2	4.8	7.3	11	17	27	43	
0.70						63.6					1.1	1 2	1.3	1.5	1.8	2.1	2.5	3.0	4.4	0.6.	2.9	15	2:	38	
Section 2: (Conti	er Con	dueto	rs in S	er ma	enetic	Cond	nit																	
1.00									0.55	0.62	0.73	0.38	1.0	1.3	1.6	2.1	2.6	3.3	5.3	8.4	13	21	23	53	
0.95										0.80			1.1	1.5	1.3	2.2	2.7	3.4	5.3	8.2	13	20	32	50	
0.50										0.85			1.1	1.5	1.8	2.2	2.7		. 5.1	7.9	12	19	30	4.8	
0.80										0.88			1.1	1.4	1.7	2.1	2.5	3.1	4.7	7.2	1.1	17	27	43	
0.70										0.88			1.1	1.4	1.6	2.0	2,4,	2.8	4.3	6.4	9.7	15	24	38	
Section 3:	Alum	tiaum (Condu	ctors	n Mai	certic	Cond	űt						1774			- 1								
1.90		0 12	0.15	0,49	0.52	0.55	0.63	071	0.91	1.0	1.2	1.4	1.7	2.1	2.6	3 3	4.2	5.2	8.4	13	21	3.3	52	-	
0.55						0.76				1.2	1.4	1.6	1.3	2.3	2.7	3 4	4.2	5.3	8.2	13	20	32 30	50 48	-	
0.90		0.69	0.72	0.75	0.79	0.82	0.86	0.99	1.2	1.3	1.4	1.6	1.9	2.3	2.7	3 4	4.1	5.1	79	12	19	30	48	-	
0.50		0.76	0.80	0.63	0 45	0.88	0.95	1.0	1.2	1.3	1.4	1.6	1.8	2.2	2.5	3.2	3.3	4.7	7.3	1.1	17	27	43	-	
0.70		0.50	0.53	0.87	0.59	0.92	0.98	1.1	1.2	1.3	1.4	1.6	1.7	2.1	2.4	2.0	3.6	4.3	6.5	10	15	24	. 37	-	0
Section 4:	Alun	กโกษต	Condu	sctors	in No	unagn	etic C	indu	t			24	4	3.1											÷
1.00		0.35	0.39	0.14	0.17	0.51	0.59	0.70	0.88	1.0	1.2	1.4	1.7	2.1	2.5	3.3	4.2	5.2	8.4	13	21	33	5.2	-	
0 9 5		0.52	0.56	0.60	0.63	0.67	0.74	0.55	1.0	1.1	1.3	1.5	1.3	2.2	2.7	3.1	4.2	5.2	B 2	13	20	32	50	_	
0 90						0.71				1.2	1.3	1.5	1.1	2.2 2.2	2.7	3.4	4.1	5.0	7.9	12	19	30	4.8	-	
0.80		0.63	0.66	0.71	0.73	0.76	0.53	0.92	1.1	1.2	1.3	1.5	1.7	2.1	2.5	3.1	3.8	4.6	7.2	11	17	27	42	-	
0.70		0.66	0.69	0.73	0.75	0.78	0.83	0.92	1.1	1.1	1.3	1.4	1.6	1.7	2.3	2.8	3.4	4.2	6.4	9.9	15	24	37	-	

· Solid Conductor, Other conductors are stranded.

To convert voltage drop to	Multiply by
Single phase, three wire, line to line Single phase, three wire, line to neutral	1.18
Three phase, line to neutral;	0.577 _

TABLA No. 9 , DE RESISTENCIA Y REACTANCIA DE C.A. DE CABLES TRIFASICOS DE 600 VOLTS A 60 Hz. Y 75 ° C (167° F.), DE TRES CONDUCTORES EN TUBERIA

					RESISTENC	IA AL NEUT	TRO POR CA	DA 1000 P	IES (EN OF	(MS)					
						NE	C. 1993							F.P.=	0.9
ECCION EN	REACTANO	IA (XL)	RESISTE	NCIA DE C.A	DE LOS	RESISTE	NCIA DE CA	DE LOS	Z EFICA	Z DE LOS CA	BLES DE	Z EFICAZ	Z DE LOS CA	BLES DE	SECCION EN
AWG O KCM	DE TODOS LO	S CABLES	CABLES	DE COBRE DI	ESNUDOS	CABL	ES DE ALUM	AINIO	COBRE D	ESNUDOS P.	ARA F.P.0.9	ALUM	INIO PARA	P, 0,9	AWG O KCM
	TUBO DE PVC	TUBO DE	TUBO DE	TUBO DE	TUBO DE	TUBO DE	TUBO DE	TUBO DE	TUBO DE	TUBC DE	TUBO DE	TUBO DE	TUBO DE	TUBO DE	
	Y ALUMINIO	ACERO	P.V.C	ALUMINIO	ACERO	P V.C.	ALUMINIO	ACERO	P.V.C.	ALUMINIO	ACERO	P.V.C.	ALUMINIO	ACERO	
14	0.0580	0.0730	3.1000	3,1000	3,1000				2.815	2.815	2.822				14
12	0.0540	0.0680	2.0000	2.0000	2.0000	3.2000	3.2000	3.2000	1.824	1.824	1.830	2.904	2.904	2.910	12
10	0.0500	0.0630	1.2000	1,2000	1.2000	2 0000	2.0000	2.0000	1.102	1.102	1,107	1.822	1.822	1.827	10
8	0.0520	0.0650	0.7800	0.7800	0.7800	1.3000	1.3000	1.3000	0 725	0.725	0.730	1.193	1.193	1.198	8
6	0.0510	0.0640	0,4900	0,4900	0.4900	0 8100	0.8100	0 8100	0.463	0.463	0.469	0.751	0.751	0.757	6
4	0.0480	0.0600	0.3100	0.3100	0.3100	0.5100	0.5100	0.5100	0.300	0.300	0.305	0.480	0.480	0.485	4
3	0.0470	0.0590	0.2500	0.2500	0.2500	0.4000	0.4000	0.4000	0.245	0.245	0.251	0.380	0.380	0.386	3
2	0.0450	0.0570	0.1900	0.2000	0.2000	0,3200	0.3200	0.3200	0.191	0.200	0.205	0.308	0,308	0.313	2
- 1	0.0460	0.0570	0.1500	0.1600	0.1600	0.2500	0.2500	0.2500	0.155	0.164	0.169	0.245	0.245	0.250	1
1/0	0.0440	0.0550	0.1200	0.1300	0.1200	0.2000	0.2100	0.2000	0.127	0.136	0.132	0.199	0.208	0.204	1/0
2/0	0.0430	0.0540	0,1000	0.1000	0.1000	0.1600	0,1600	0.1600	0.109	0.109	0,114	0.163	0.163	0.168	2/0
. 3/0	0.0420	0.0520	0.0770	0.0820	0.0970	0.1300	0.1300	0.1300	0.088	0.092	0.110	0.135	0.135	0.140	3/0
4/0	0.0410	0.0510	0.0620	0.0670	0.0630	0.1000	0.1100	0.1000	0.074	0.078	0.079	0.108	0.117	0.112	4/0
250	0.0410	0.0520	0.0520	0.0570	0.0540	0.0850	0.0900	0,0860	0,065	0.069	0.071	0.094	0.099	0.100	250
300	0.0410	0.0510	0.0440	0.0490	0.0450	0.0710	0.0760	0.0720	0.057	0.062	0.063	0.082	0.086	0.087	300
350	0.0400	0 0500	0 0380	0,0430	0.0390	0.0610	0.0860	0.0630	0.052	0.056	0.057	0.072	0.077	0.078	350
400	0.0400	0.0490	0.0330	0.0380	0.0350	0.0540	0.0590	0.0550	0.047	0.052	0.053	0.066	0.071	0.071	400
500	0.0390	0.0480	0.0270	0.0320	0.0290	0.0430	0.0480	0.0450	0.041	0.046	0.047	0.056	0.060	0.061	500
600	0.0390	0.0480	0.0230	0.0280	0.0250	0.0380	0.0410	0.0380	0,038	0.042	0.043	0.049	0,054	0.055	600
750	0.0380	0.0480	0.0190	0.0240	0.0210	0.0290	0.0340	0.0310	0 034	0.038	0.040	0.043	0.047	0.049	750
1000	0.0370	0.0460	0.0150	0.0190	0.0180	0 0230	0 0270	0.0250	0.030	0.033	0.035	0.037	0.040	0.043	1000

DIARIO OFICIAL APÉNDICE C

TABLAS DE OCUPACIÓN EN TUBO (CONDUIT) DE CONDUCTORES Y CABLES DE DEL MISMO TAMAÑO NOMINAL (INFORMATIVO)

C1. Número máximo de conductores y cables de aparatos en tubo (conduit) metálico tipo ligero (según la Tabla 1 del Capítulo 10)

	nominal able:				Diar	netro noi	minal en m	rn			
mm²	AWG kcmil	16	21	27	35	41	53	63	78	91	103
2,082	14	6	10	16	28	39	64	112	169	221	282
3.307	12	4	8	13	23	31	51	90	136	177	227
5.507			-	x							
2,082	14	4	7	11	20	27	46	80	120	157	20
3,307	12	3 .	6	9	17	23	38	66	100	131	167
5,26	10	2	5	8	13	18	30	53	81	105	135
8,367	8	1	2	4	7	9	16	28	42	55	70
13,3	6	1	1	3	5	8	13	22	34	44	56
21,15	4	1	1 2	2	4	6	10	17	26	34	44
26,67	3	1	1	1	4	5	9	15	23	30	38
33,62	2	1	1	1	3	4	7	. 13	20	26	33
12,41	1	0	1	1	1	3	5	9	13	17	22
53,48	1/0	0	1	1	1	2	4 .	7	. 11	15	19
67,43	2/0	0	1	1	1	2	4	6	10	13	17
85,01	3/0	0	0	1	10	1	3	5	8	11	14
107,2	4/0	0	0	. 1	-1	1	3	5	7	9	12
26,67	250	0	0	0	1	1	1	3	5	. 7	9
52,01	300	0	0	0	1	1.	1	3	5	6	8
77.34	350	0	0	0	1	1	1	3	4	6	7
02,68	400	0	0	0	1	1	1	2	4	5	7
53,35	500	0	0	0	0	1	1	2	3	4	6
04,02	600	0	.0	0	0	1	1	1	3	4.	5
54,69	700	0	0	0	0	0	21	1	2"	. 3	. 4
80,03	750	0	0	0	0	0	1	1	2	3	4
05,37	800	0	О	0	0	0	1	1	2	3	4
56,04	900	0	0	0	0	0	1	1	X.	3	3
06,71	1000	0	0	0	0	0	,	1	1	2	3
33,39	1250	0	0	0	0	0	0	1	1 .	1	2
60,07	1500	0	0	0	0	0	0	1 .	*, 1	1 4	1
86,74	1750	0	0	0	0	0	0	1	7	1	1
013,4	2000	0	0	0	0	0	0	1	1	1	1

Tabla 310-16. Capacidad de conducción de corriente (A) permisible de conductores aislados para 0 a 2000 V nominales y 60 °C a 90 °C. No más de tres conductores activos en una canalización, cable o directamente enterrados, para una temperatura ambiente de 30 °C

Tamaño nominal		Temperate	ura nominal del co	inductor (véase T	abla 310-13)		Tama
	60 °C	75 °C	90 °C	60 °C	75 °C	90 °C	
→mm²	TIPOS TW* TWD* CCE TWD-UV	TIPOS RHW, THHW, THW, THW-LS, THWN, XHHW, TT	TIPOS RHH*, RHW-2, THHN*, THHW*, THHW-LS THW-2*, XHHW*, XHHW-2,	TIPOS UF*	TIPOS RHW*, XHHW*, BMAL	TIPOS RHW-2, XHHW, XHHW-2, DRS	AWGW
		Cobre			Aluminio		
0,8235	· · · · · · · ·	T	14		_	***	18
1,307			18	***	199		16
2,082	20*	20*	25*				14
3,307	25*	25*	30*	1940	***	5 80 AC	:2
5,26	30	35*	40*		144		10
8,367	40	50	55	***	***		8
13.3	55	65	75	40	50	60	5 -
21,15	70	85	95	55	65	75	4
26,67	85	100	110	65	75	85	3
33,52	95	115	130	75	90	100	2
42,41	110	130	150	85	100	115	1_
53,48	125	150	170	100	120	135	1/3
67,43	145	175	195	115	135	150	2/0
85,01	165	200	225	130	159	175	3.0
107,2	195	230	260	150	180	205	4.0
126,67	215	255	290	170	205	230	250
152,01	240	285	320	190	230	255	300
177,34	260	310	350	210	250	280	350
202,68	280	335	380	225	270	305	400
253 35	320	380	430	260	310	350	500
304,02	355	420	475	285	34/1	385	590
354,69	385	450	520	315	375	420	700
380,03	400	475	535	320	385	435	750
405,37	410	490	555	330	395	450	800
455,04	435	520	585	355	425	480	900
506,71	455	545	615	375	445	500	1,000
633,39	495	590	565	405	485	545	1255
760,07	520	625	705	435	520	585	1500
886.74	545	650	735	455	545	615	1750
1013,42	560	665	750	470	560	630	2000

FACTORES DE CORRECCIÓN

Temperatura ambiente en °C	Para tempera		istintas de 30 °C, r por el correspondie			conducción de	Temperal armbiente
21-25	1,08	1,05	1,04	1,08	1.05	1,04	21-25
26-30	1,00	1.00	1.00	1.00	1.00	1,00	26-30
31-35	0,91	0,94	0.95	0.91	0,94	0.96	31-35
36-40	0.82	5,88	0.91	0.82	0.88	0,91	36-41
41-45	0,71	0.82	0.87	0,71	0,82	0,87	41.45
46-50	0,58	0,75	0.82	0,58	0,75	0.82	46-50
51-55	0.41	0,67	0.78	0.41	0,67	0.76	51-55
56-60	96	0,58	0.71	****	0,58	0,71	56-60
61-70	344	0.33	0,58	300	0.33	0.58	61.70
71-80	1444	200	0.41	200 6	740	0.41	71.80

"A menos que se permita otra cosa especificamente en utro lugar de esta NOM, la protección contra sobrecomente de los conda murcados con un astensco (*), no debe superar 15 A para 2,082 mm² (14 AWG); 20 A para 3,307 mm² (12 AV/G) y 30 A para 5.3 (10 AWG), todos de cobre,

1430-149. Corriente a plena carga (A), de motores a dos fases de c. a. (cuatro hilos)

penles valores de corriente eléctrica a plena carga corresponden a motores que funcionan a las a normales de motores con bandas y a motores con par normal. Los motores construidos repara baja velocidad o alto par, pueden tener corrientes eléctricas mayores. Los motores de obtades tienen corriente eléctrica que varía con la velocidad, en cuyo caso se debe utilizar las extracas nominales que indique su placa de características. La corriente eléctrica del conductor la sistemas de dos fases tres hilos será de 1,41 veces el valor dado.

riones eléctricas son las nominales de los motores. Las corrientes eléctricas listadas son las prainstalaciones a 110 - 120 V, 220 - 240 V, 440 - 480 V y 550 - 600 V y 2200V - 2 400V.

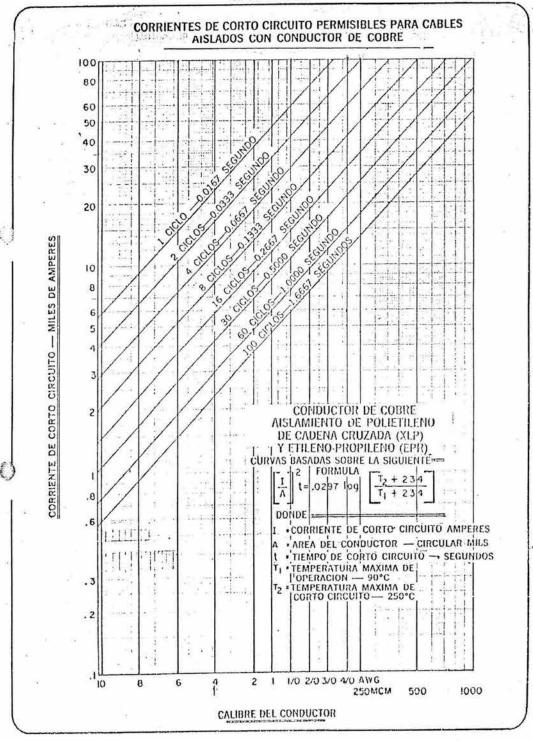

CP -	MOTORES DE INDUCCIÓN DE JAULA DE ARDILLA Y ROTOR DEVANADO (A)								
	115 V	230 V	460 V	575 V	2 300 V				
%	4	2	1	0,8					
A.	4.8	2.4	1.2	1.0					
	6.4	3.2	1.6	1.3					
175	9	4,5	2,3	1,8					
	11.8	5.9	3	2.4					
		8.3	4.2	3.3					
5		13,2	5,6	5 3					
		19	9	В					
		24	12	10					
15		36	18	14					
		47	23	19					
		59	29	24	4				
30		69	35	28					
		90	45	36	1				
		113	56	45					
60		133	67	53	14				
		166	83	66	18				
		218	109	87	23				
125		270	135	108	28				
		312	156	125	32				
		416	208	167	43				

Tabla 430-150 Corriente eléctrica a plena carga de motores trifásicos de c.a.

ventes valores de corriente eléctrica a plena carga son típicos para motores que funcionen a ves normales para transmisión por banda y con características de par también normales. Los de velocidad especialmente baja o de alto par pueden requerir corrientes a plena carga mayores, relocidades múltiples deben tener una corriente a plena carga que varia con la velocidad; en estos be usarse la corriente a plena carga indicada en la placa de datos. Las tensiones eléctricas son nominales de motores. Las corrientes listadas deben usarse para sistemas de tensiones sominales de 110 V hasta 120 V, 220 V hasta 240 V, 440 V hasta 480 V y 550 V hasta 600 V.

,	Motor de inducción Jaula de ardilla y rotor devanado (A)						Motor sincrono, con factor de potencia unitario (A)					
	V											
	115	200	208	230	460	575	2300	230	460	575	2300	
17	4.4	2,5	2.4	2.2	1,1	0,9					1	
×	6.4	3.7	3,5	3.2	1,6	1,3	1	1	fi V		1	
1	8,4	4.8	4,5	4,2	2,1	1,7	36					
-X	12,0	6.9	8,6	6.0	3,0	2,4						
2	13,6	7,8	. 7,5	6.8	3.4	2.7	1		. 0			
1		11.0	10,6	9,6	4.8	3,9						
5		17.5	15,7	15.2	7.6	6.1					1	
X .		25,3	24.2	22	11	9		9 0				
	33	32.2	30,8	28	14	11					1	
5		48,3	46,2	42	21	17	1	de est	100		-	
	4	62.1	59.4	54	27	22 27		53	26	21	1 -	
8		78,2	74,8	68	34						ļ	
	Walley to see 1.25	92	88	80	40	32		63	32	26		
0	1	120	114	104	52	41	1	83	. 41	33	l	
9	Commence of the last	150	143	130	65	52		104	52	42		

GRAFICA 35

5.10.- CONCLUSIONES

5.10.- CONCLUSIONES.

En el presente trabajo fueron expuestos los lineamientos normativos, criterios, recomendaciones y desarrollo de la Ingeniería conceptual de la Planta Industrial de Hules Mexicanos localizada en Ciudad Altamirano Tamaulipas.

El desarrollo de este trabajo tiene la finalidad de cubrir los aspectos de seguridad, y confiabilidad en el sistema de alumbrado con los materiales y equipos acordes con la tecnología de la planta.

Se hace necesario que cada vez la ingeniería de proyecto eléctrico se realice con los lineamientos normativos y de calidad pero sin incrementar el costo.

Para lo cual se requiere que los ingenieros en esta rama acumulen experiencia y traten de estar al día en el manejo de programas de computadora y conocer los materiales y equipos mas modernos para llevar a cabo los diseños eléctricos utilizando el menos tiempo posible en su ejecución.

En general se considera que esta planta industrial opera actualmente en forma segura.

5.11.- BIBLIOGRAFIA.

- 1.- Manual de Alumbrado Westinghouse
- 2.- Recommended, Practice for Electrical Power Distribution for Industrial Plants. ANSI/IEEE-STD-141-1999 (Red Book)
- Instalación Eléctrica para la Industria Petrolera (Instituto Mexicano del Petroleo)
- 4.- Normas Técnicas para Instalaciones Eléctricas (NOM-001-SEDE-1999)
- 5.- Industrial Power Systems, Hand Book Donald Beeman