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Prólogo 
El material que se desarrolla en las páginas de esta tesis, es la culminación de 
la investigación que comencé, junto con mi tutor y otros colaboradores, en el 
último lustro del siglo pasado. Si bien parte de este material ya ha aparecido en 
otros textos, la recopilación final fue hecha durante una estancia en Budapest, 
Hungría. Dicha estancia fué financiada por la Fundación Soros (a través de la 
Universidad de Europa Central) que, a manera de intercambio, me comprometió 
a terminar mi tesis y dejar ahí una copia de ésta; es por esto que el cuerpo 
principal de esta tesis se presenta en inglés. Sin embargo, incluye también un 
amplio resumen en español (con referencias a los resultados principales) para 
facilitar su lectura. 

El texto, además de ser un tratado de la teoría de los separoides, pretende 
ser autocontenido y explicativo; la teoría es muy nueva asi que no supuse ningún 
conocimiento previo -salvo, por supuesto, una formación sólida en las ramas 
más comunes de la Matemática. Esto me llevó a organizar el material en un 
orden "que se llevara bien" con la lógica que surge detrás de los resultados, 
más que con un orden histórico o, quizás, didáctico. Sin embargo, en un intento 
de fortalecer la intuición que va detrás de la formalidad, incluí una amplia in
troducción (en inglés) que recorre con ejemplos concretos las definiciones más 
importantes, y en el resumen (en español) seguí un orden levemente diferente 
al texto central. 

., Al momento de organizar todo él material, me encontré que había 
parte de éste que, si bien no era lógicamente necesario para los re
sultados principales de la tesis, tenía que incluirlo si pretendía dar una 
exposición completa de la teoría. Así que decidí incluir este material 
en parrafos como éste. El lector, si así lo quiere, puede saltárselos sin 
perder información fundamental. 

Dado que hay muchas referencias cruzadas, para facilitar la navegación 
dentro del texto, he decidido darles la siguiente forma: cuando se hace refer
encia a un resultado dentro de la misma sección, se refiere simplemente con 
un número; si el resultado está en otra sección, pero en el mismo capítulo, se 
refiere con dos números (sección.párrafo); y, finalmente, si está en otro capítulo, 
se refiere con tres números (capítulo.sección.parrafo). 

También, para enfatizar el contexto histórico que rodea a la teoría, la biblio
grafía es referida con el nombre de los autores y el año de la publicación. 

Finalmente, he incluido una amplia colección de imágenes al margen que, 
además de revestir el texto, ayudan a explotar la intuición que surge de la geo
metría intrínseca a la teoría. 



Resumen 
El origen de la teoría de los separoides puede ser rastreada a los principios del 
siglo XX cuando Radon demuestra el teorema de Helly usando que 

Teorema (Radon 1921). Dada una familia de puntos P <;;;; lEd , si el cardinal 
de P es suficientemente grande, a saber IPI 2 d + 2, entonces existen dos 
subconjuntos ajenos A, B e P cuyos cascos convexos se intersectan: 

A n B = cp y (A) n (B ) i- cp. 

Sin embargo el nombre, y la axiomática que aquí se estudiará, no se acuñó 
sino hasta finales de los años 90 (véase Strausz 1998) cuando se describió la 
topología de la familia de hiperplanos transversales a una familia de conjuntos 
convexos (cf. Arocha, Bracho, Montejano, Oliveros & Strausz 2002). 

Los separoides son simplemente una abstracción del teorema de Radon: 
un separoiáe es una relación simétrica t e e;) en una familia de subconjuntos 
-léase " ... no se separa de ... "- que tiene dos propiedades: si A, B <;;;; S 
entonces 

• A t B =} A n B = cp, 
•• A t B Y C <;;;; S \ A =} A t B U C. 

El separoide se identifica con el conjunto S . El oráen y el tamaño son los cardi
nales ISI y I t 1. respectivamente. 

Asi, dada una familia de puntos P e lEd se puede definir un separoide 
S = S(P ) con la relación 

A t B {=? A n B = <p y (A) n (B) i- <P, 

y claramente las dos condiciones (*) se cumplen. La noción de "la dimensión 
del generado afín" de P se traduce en términos puramente combinatorios a la 
noción de áimensión {combinatoria} d(S), viz. el orden (menos uno) del máximo 
subseparoide de tamaño cero, donde todo par de subconjuntos disjuntos se 
separan. A los separoides de tamaño cero los llamaremos simpfoiáes por ser 
los asociados al conjunto de vértices de un simplejo. Entonces, si a es un 
simploide maximal de S, d eS) = lal - l. 

La motivación principal de esta tesis fué la pregunta: ¿cuándo se puede 
"realizar" un separoide con puntos? Es decir, dado un separoide "en abstracto" 
S, ¿cuándo podemos garantizar que existe una familia de puntos P tal que 
S:::::: S(P )? Llamaremos a éstos, separoiáes áe puntos. 
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1. Convexidad Abstracta 

Como sugieren Danzer et al. (1963), la interrelación entre los teoremas de 
Radon, Helly y Carathéodory "podrán ser entendidos mejor formulando varios 
conjuntos de axiomas para la teoría de convexidad". La primera aproximación 
axiomática a la convexidad fue hecha por Levi (1951) y la teoría de los sepa
roides puede ser vista como un nuevo intento en esta dirección. 

Así como cada configuración de puntos tiene asociada un separoide -y 
de hecho, la configuración puede ser "recuperada" de esta información combi
natoria (cf. Goodman & Pollack 1983)- a cada familia de conjuntos convexos 
F se le puede asociar un separoide 8 = 8(F) . Éste captura la estructura de 
separación de la familia con la relación 

A 1 B ~ (A) n (B) = 4> 

(A 1 B se lee "A se separa de B"). 
Claramente la relación 1 e e:), llamada de separación, define un separoide 

en los términos anteriores, a saber 

A t B ~ A n B = 4> y A lB. 

La relación de separación satisface las siguientes propiedades (una definición 
equivalente de separoide): si A, B ~ 8 entonces 

• AlA ~ A=4> 
•• A 1 B Y A' e A ~ A' 1 B · 

Surge la siguiente pregunta: ¿cuándo se puede "realizar" un separoide 
con conjuntos convexos? Es decir, dado un separoide 8, ¿cuándo podemos 
garantizar que existe una familia de conjuntos convexos F tal que 8 ~ 8(F)? 
Aquí la respuesta es "fácil" (véase Arocha et al. 2002, Bracho & Strausz 2000 
y Strausz 2003): 

Teorema Básico de Representación [1.2.3]. Todo separoide (finito) 8 puede 
ser representado por una familia de conjuntos convexos. Más aún, se puede 
representar con convexos compactos si y sólo si el separoide es acíclico (i.e., 
si 4> 1 8); en tal caso, la realización puede ser hecha en el espacio afín de 
dimensión 181- l. 

Este resultado juega un papel "polar" (cf. Bj6rner et al. 1993 seco 5.3) 
al teorema de representación topológica para matroiáes orientaMs de Folkman 
& Lawrence (1978). Los matroides orientados son separoides que cumplen 
además con otro par de condiciones; una abstracción de las configuraciones 
de puntos que usan la polaridad intrínseca del espacio euclidiano (los detalles 
están en el capítulo 3): si por cada punto (un vector en lRd ) tomamos su hiper
plano polar, a cada configuración de puntos se le puede asociar una configu
ración de hiperplanos concurrentes (en el origen). Si consideramos ahora la 
intersección de estos últimos con la esfera unitaria, obtenemos una configu
ración de subesferas (de codimensión uno) que contiene toda la información 
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combinatoria de la configuración original. Si permitimos que dichas subesferas 
se "enchuequen" un poco -que sigan siendo esferas, desde el punto de vista 
topológico- pero que conserven las dimensiones esperadas de sus intersec
ciones, lo que conseguimos es un matroide orientado. Más aún, el teorema 
de representación de Folkman & Lawrence demuestra que éstos son todos los 
matroides orientados. Surge la pregunta, ¿qué les pasó a los puntos polares 
cuando "enchuecamos" las subesferas? El teorema básico de representación 
responde a esta pregunta haciendo notar que los puntos "engordaron" para con
vertirse en conjuntos convexos. Sin embargo, la estructura combinatoria que 
se conserva es más general, es la de los separoides. 

El teorema básico de representación nos permite introducir un invariante 
nuevo: la tfimensifmgeométrica gd(S) , la mínima dimensión donde se puede rea
lizar el separoide. Es usando la noción de dimensión geométrica que los sepa
roides encuentran su primera aplicación en la teoría de transversales geomé
tricas (véase Arocha et al. 2002): 

Teorema de Esencialidad [1.5.2]. Sea F una familia de conjuntos convexos 
en IRd+1 y sea S = S(F ) su separoide. Si gd(S) < d entonces T (F ) '-+ ¡pd, el 
espacio de hiperplanos transversales a F , no es homotópicamente nulo. 

Para ejemplificar este resultado, considérense los 3 lados de algún triángulo 
en el plano y obsérvese que hay, topológicamente, tantas líneas transversales 
a estos 3 convexos como hay líneas por un punto. Esto es, el espacio de 
transversales sólo depende de la estructura combinatoria del separoide, no de 
su realización. En otras palabras, si cada 2 convexos comparten un punto 
entonces todos comparten un "punto virtual". 

Surge la pregunta: si cada d + 2 convexos admiten una d-transvesal ¿ad
miten todos una d-transversal virtual? El teorema de esencialidad contesta la 
pregunta afirmativamente para el caso en que gd(S) < d - 1 Y por tanto puede 
ser visto como un teorema tipo Helly en el que se ha cambiado la noción de 
intersección por la de O -transversa{ virtuaC. 

Hay otros conceptos geométricos que pueden ser traducidos en términos 
puramente combinatorios. Se dice que un separoide S está en posicióngeneraC 
si cualesquiera d(S) + 1 elementos inducen un simploide. Esto corresponde a 
que no se intesecten 2 a 2, que no exista una línea transversal por cada 3, que 
no exista un plano transversal por cada 4, etc .. . 

Otra noción útil de índole puramente combinatorio -uno de los axiomas 
de matroide orientado- es la "unicidad" de las particiones de Radon. Decimos 
que S es un separoiáe áe !/(aáon si para cualesquiera dos particiones de Radon 
minimales A t B Y C t D, 

AUB ~ CU D ===> {A , B} = {C,D }. 

No es difícil ver que los separoides de puntos son de Radon. Tenemos además 
el siguiente 
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Teorema 1.3.4. Sea S un separoide en posición general. Si d(S) = gd(S) 
entonces S es un separoide de Radon. 

La demostración del teorema anterior, pasa por la siguiente generalización 
del teorema de Carathéodory (1907) 

Lemma 1.3.1. Sea K = U iEl Ki ~ lRd la unión de una familia de conjuntos 
convexos. Six E (K) entonces existe J ~ J , con IJI ~ d+ 1, tal que x E (Kj )jEJ. 

y una aplicación inmediata a los separoides que garantiza la "buena realización" 
de cada partición mini mal de Radon 

Teorema 1.3.2. Sea S = {Ki} la realización de un separoide. Si A t B es una 
partición de Radon minimal, entonces para cada convexo, Ka E A Y Kb E B, 
existe un punto aa E Ka Y bb E JCb tal que (aa) n (bb) # cp. 

Se puede ver entonces que la teoría de separoides permite traducir no
ciones geométricas a otras puramente combinatorias, y encierra así reinter
pretaciones de los teoremas de Radon, Helly y Carathéodory -piedras angu
lares de la teoría combinatoria de los conjuntos convexos. 

2. Separoides de Puntos 

Uno de los problemas centrales dentro de la teoría de los matroides orientados 
-separoides de Radon que cumplen además el ~ áe euminación áé6i1-
es encontrar caracterizaciones "significativas" de los separoides de puntos. Se 
sabe (cf. Shor 1991) que este problema, desde el punto de vista polar de la 
representación topológica, es "NP-hard". 

Sin embargo, desde el punto de vista geométrico intrínseco a los sepa
roides, se pueden caracterizar aquellos separoides de puntos que están en 
posición general: 

Teorema 2.0.1. Un separoide en posición general es un separoide de puntos 
si y sólo si sus dimensiones geométrica y combinatoria coinciden. 

Como lo muestra el siguiente ejemplo, la hipótesis de la posición general no 
se puede quitar sin agregar algún ingrediente más. Considérese el separoide de 
orden tres S = {1 , 2, 3} generado por las dos particiones minimales 1 t 2 Y 2 t 3. 
Por un lado, S se puede realizar con un segmento (representando al 2) y sus 
dos puntos extremos; por el otro, como 1 13, el subseparoide S' = {1 , 3} induce 
un simploide de dimensión 1. Claramente S no es el simploide de dimensión 2, 
por tanto su dimensión geométrica y combinatoria coinciden. Sin embargo es 
fácil ver que S no se puede realizar con puntos -la relación t es transitiva en 
los singuletes de los separoides de puntos. 

Los ejemplos pequeños de pseudolíneas sugieren la siguiente 

Conjetura. Un matroide orientado M es un separoide de puntos si y sólo si 

d(M) = gd(M). 
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Dado que no podemos caracterizar a los puntos (al menos todavía), surge 
la pregunta ¿cómo se ve "el espacio" de todas las configuraciones de pun
tos? En otras palabras, ¿podemos asociar a cada configuración un punto de 
algún espacio topológico? Por supuesto, estamos buscando aqui algún espa
cio "significativo" que nos ayude a entender la relación entre la geometría y la 
combinatoria de los separoides. 

Una vez más, la respuesta es afirmativa. Para esto, entenderemos por 
una configuración áe puntos un subconjunto finito y ordenado de IRd , módulo 
la accion del grupo afín lA(d). Es decir, dos subconjuntos P = (PI "'" Pn ) y 
Q = (ql ' .. . , qn) representan la misma configuración si y sólo si existe una trans
formación afín <p : IRd -> IRd tal que <P (Pi) = q i ' para i = 1, ... ,n. Claramente, 
si P y Q representan la misma configuración, definen el mismo separoide (i.e., 
S(P) = S(Q) . Por otro lado, de la definición, se antoja pensar en el espacio 
de todas las configuraciones de n puntos en dimensión d -que denotaremos 
IA~- con la topología cociente de IRnxd. Tenemos el siguiente 

Teorema 2.1.2. IA~ es homeomorfo a gd (IRn - 1 ), la grassmanniana de sub
espacios lineales de IRn- 1 de dimensión d. 

Este resultado, seguido del encaje de Plücker (véase e.g., Bj6rner et al. 
1993), sugiere considerar a IA~ como subespacio de ¡pn- 2. Surge la pregunta 
¿cómo "estratifican" los separoides a gd(IRn-I )? En otras palabras, ¿tiene IA~ 
alguna descripción puramente combinatoria? Cuando la coáimensum -la dife
rencia (n - d - 2)- es pequeña, se sabe que la respuesta es afirmativa (véase 
más abajo) sin embargo el caso general sigue siendo un problema abierto. 

Dado un separoide S se puede construir un complejo "cúbico" -un sub
complejo de algún hipercubo-- cuyos vértices representan las particiones de 
Radon ~mafes. Como el separoide no está determinado por éstas, dicho 
complejo es "olvidadizo", sin embargo, en casos importantes -matroides ori
entados, puntos- el complejo determina completamente al separoide. Dicho 
complejo será llamado compCejo áe 'l(aáon y lo definiremos más abajo. Por el mo
mento, a manera de motivación, permítaseme mencionar que es la combinatoria 
del n-cubo, a traves del complejo de Radon, la que "domina" la estratificación 
de la grassmanniana inducida por los separoides de puntos. 

La familia de subconjuntos 2s del n-conjunto S puede ser identificada con 
los vértices del n-cubo Qn ; haciendo esto, las caras del n-cubo son identificadas 
con los intervalos del orden parcial <;;; inducido por la contención, i.e., las caras 
de Q n son de la forma 

[A,B] := {C E 2s : A <;;; C <;;; B} . 

Regresando al separoide S , si consideramos aquellos subconjuntos A que 
"no se separan de su complemento", A t A, y nos fijamos en el subcomplejo de 
Qn que inducen, el complejo resultante es lo que llamamos el compCejo áe 'l(aáon 
del separoide y lo denotamos por R(S) . 
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Teorema 2.2.3. Si P e lRd es un separoide de puntos de orden n, entonces 
R(P) es, homotópicamente, una esfera de dimensión n - d - 2. Más aún, el 
separoide esta en posición general si y sólo si el complejo es homeomorfo a 
dicha esfera. 

En particular, cuando tenemos d + 2 puntos en dimensión d, el complejo es 
una O-esfera -dos subcubos antípodas- y podemos dar la siguiente descrip
ción combinatoria. 

Teorema 2.3.1. El espacio de d + 2 puntos en dimensión d, módulo el grupo 
afín, es 

1R~+2 = (Qn \ {4> ,4)})*/{A,A}. 

También podemos contar cuantos de estos son poutopos -cuando cada 
punto se separa de su complemento-- para exhibir una nueva prueba de 

Teorema 2.4.1 (Grümbaum 1967). Existen exactamente lid2j tipos de polito
pos (convexos) con d + 2 vértices en lRd• 

El caso d = 1 es igualmente simple. Ya el caso n = d+3 es suficientemente 
complicado; la descripcion combinatoria de la estratificación de la grassma
nniana es (véase también García-Colín 2003) 

Teorema 2.3.3. Las facetas de 1R~+3 son los ciclos antipodales de Qn \ {4>, 4)} 
de longitud 2n. Dos facetas se intersectan en una colínea si y sólo si sus dos 
cíclos correspondientes difieren en exactamente dos puntos antípodas. 

En este caso no es tan fácil contar todos los tipos de politopos -una 
fórmula explícita puede llevar 6 líneas de texto para escribirse (cf. Lloyd 1970)
sin embargo el complejo de Radon muestra fácilmente que (véase Montellano
Ballesteros & Strausz 2003) 

Teorema. Existen exactamente v(2n) - r~l politopos convexos con n = d + 3 
vértices en lRd en posición general, donde v(2n) denota el número de collares 
bicoloreados antipodales de tamaño 2n. 

Para n > d + 3 ni el método anterior, ni ninguno que se conozca, sirve 
para contar tipos de politopos. La principal obstrucción es que aparecen "es
feras" dentro de Qn que no corresponden a ninguna configuración de puntos. 
La estructura que preservan estas esferas, al parecer, es la de los matroides 
orientados. En esta dirección tenemos el siguiente 

Teorema 3.2.5. Una gráfica 9 es la gráfica de circuitos de un matroide orientado 
uniforme si y sólo si es una gráfica antipodal de orden 2 (d~2) y existe un encaje 
i -métrico 9 ~ Q~-d-2 en el (n - d - 2)-dual del n-cubo. 
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3. Universalidad 

Dados dos separoides S, T, una función r.p: S -+ T será llamada un 11Wrfis11W áe 
separoiáes si, para todo A, B E 2T 

Al B => r.p -l(A) I r.p- l(B) . 

Un morfismo será llamado fw11W11Wrfis11W si cumple además que, para todo 
a. ,fl E 25 

a. t fl minimal => r.p(a.) t r.p(fl) minimal. 

Denotaremos por S ---+ T la existencia de algún homomorfismo. La relación 
S ::; T <==? S ---+ T define un preorden en la classe 5 de todos los separoides. 
Si identificamos además a aquellos separoides tales que T ::; S Y S ::; T, 
conseguimos una clase parcialmente ordenada. 

Si denotamos por ud al simploide de dimensión d, y por Kn al separoide 
compfeto -de tamaño máximo-- de orden n, es fácil probar que 

Proposición 4.0. 

1·ISI <n=> K n -f-+S 
2. K 1 ---+ S <==? S -f-+ Ka 
3. S :::::: ud <==? S -f-+ K 1 

4. S:::::: ud <==? 'v'T i- K o, S ---+ T . 

Por ejemplo, el enunciado 2 dice que, el filtro principal de K¡ = u O es el 
complemento del ideal principal de Ko que no es otra cosa que decir que un 
separoide tiene algún elemento si y sólo si no se mapea en el vacío . En la 
literatura, (uO, Ka) es llamado un par áua[ (cf. Nesetfil & Tardif 2000). 

De hecho, el orden de los homomorfismos (5, ---+) es una latiz que tiene a 
la suma y al proáucto de separoides, como supremo e ínfimo, respectivamente. 
Dichas operaciones existen y satisfacen las propiedades universales esperadas: 

S ---+ P x Q <==? S ---+ P y S ---+ Q, 

P + Q ---+ S <==? P ---+ S Y Q ---+ S. 

Diremos que un separoide es cone;w si no puede ser expresado como la 
suma (la unión ajena) de dos separoides 

T ---+ Ta + T¡ => T ---+ Ta o T ---+ T¡. 

En estos términos, podemos expresar el teorema de Radon como 

Teorema 4.2.1. P e lEn es un separoide de puntos de orden d(P) + 2 si y sólo 
si 

P-f-+K¡ Y P---+K2 +u, 

donde u es un simploide. Más aún, P está en posición general si y sólo si u = cp. 
En otras palabras, los elementos de 1R~+2 son los separoides bipartitos. 



El orden de los homomorfismos es también un orden denso 

Teorema 4.3.2. Si S < T entonces existe un P tal que S < S + P x T < T. 

La estructura de orden de los separoides es en cierta forma, muy parecida 
al orden de los homomorfismos de gráficas. Los dos son ordenes universales 
para la teoría de conjuntos. 

Teorema 4.4.1. Dado cualquier conjunto parcialmente ordenado (e,~) existe 
un "funtor" f: e -+ ~ tal que, a, b E e 

a ~ b <==> f(a) ---+ f(b). 

Más aún, el teorema anterior-cuando se extiende la noción de homomor
fismo al infinit~ se puede extender a clases parcialmente ordenadas y por 
tanto (cf. Nesetfil & Strausz 2002) 

Teorema 4.4.3. Toda categoría puede ser representada como una subcategoría 
de los separoides y sus homomorfismos. 

4. Hiperseparoides 

Asi como los separoides "codifican" el teorema de Radon, los liiperseparoidés lo 
hacen con el teorema de Tverberg 

Teorema (Tverberg 1966). Si P e lEd es suficientemente grande, a saber 
IPI ? (k -1)(d+ 1) + 1, entonces puede ser dividido en k partes disjuntas cuyos 
cascos convexos se intersectan. 

Claramente, para k = 2 el teorema de Tverberg es el de Radon. El teorema 
de representación junto con el teorema de Tverberg implican inmediatamente 
que 

Teorema 4.5.2. ISI ? (k - 1)(gd(S) + 1) + 1 => S ---+ Kk. 

Esto motiva la siguiente definición: un k -separaúfe es un sitema de familias 

de subconjuntos T e e:) que relaciona conjuntos disjuntos -no tiene "Ioops"
y es un filtro en el orden parcial canónico --el heredado de (28 x ... x 28 , ~). 

El teorema de representación para separoides puede ser generalizado a 

Teorema 4.5.5. Todo k-separoide acíclico S pude ser representado por una 
familia de cuerpos convexos {Ai hE8 en lE181 - 1 y sus particú:mes áe <Iver6erg 
son 

{A .}k T {AinAj=rP siii-j,y 
• .=1 E <==> n~=1 (Ai ) i- rP . 

Surgen las preguntas ¿cuándo podemos garantizar que un k-separoide es 
representable con puntos del euclidiano? ... ¿será cierto que todo k-separoide 
"uniforme", con gd(S) = d(S), es de puntos? 



Prelace xvii 

Preface 
This Ph.D. thesis is concerned with the application (and generalization) of the 
classical theorems of Helly, Radon and Carathéodory which stands as the origin 
of the Combinatoria! (jeometry of Conve;cSets. More precisely, the combinatorial 
structure defined by the separations of a (finite) family of convex sets in the 
Euclidean d-space, will be developed. Namely, two subfamilies are said to be 
separateá if there exists a hyperplane that leaves them on opposite sides of it 
or, equivalently, if their convex hulls do not intersect. The most basic -and 
trivial- properties of this relation on the subsets of the family, are the axioms of 
a separoiá. 

These three theorems were discovered in the first quarter of the last century 
and can be formulated as follows: 

• Helly's Theorem. Let K be a family of convex sets in IRd • If every 
d + 1 (and fewer) members of K have a common point, then there is a 
common point to all members. 
• Radon's Theorem. Let X be a set of d + 2 or more points in IRd • 

Then X contains two disjoint subsets whose convex hulls ha ve a com
mon point. 
• Carathéodory's Theorem. Let X be a set in IRd and p a point in 
the convex hull of X. Then there is a subset Y of X consisting of d + 1 
or fewer points such that p lies in the convex hull of Y. 

The reader will find some variations and generalizations of these results 
in the following pages. The aim of this thesis is to develop some branches of 
Combinatoria! (jeometry from a particular point of view: separoids. It is, at the 
same time, a survey and a basic reference to the subject. 

.. I use paragraphs as this one to easily differentiate the main text from 
aside information and comments. Such paragraphs contain material 
which, eventhough it is not essencial for the main line of research , it 
suplements the theory and points out some bibliographical items. 

As a result of this research some papers have (and will) be published. Most 
of it was made together with my supervisor Javier Bracho and in collaboration 
with Jorge Luis Arocha and Luis Montejano. Also, there are some parts that 
were elaborated with Juan José Montellano-Ballesteros and Deborah Oliveros. 
Nevertheless, many other people have helped in developing this theory; Victor 
Neumann-Lara, who gave me the basis to find the Radon complex of a separoid; 
Francisco Larrion, who taught me everything I know about category theory and 
helped me generalize the Representation Theorem for all separoids; Eugene 
Schepin, who put us on the road of such a theorem for the acyclic case; Karoly 
B6r6czky, who refined Theorem 2.0.1; Jaroslav Nesetfil, who suggested the 
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approach of Chapter 4, and many other friends who have read and commented 
some or all of these results . 

., Many of these results and proofs are in: Strausz 1998; Arocha, 
Bracho, Montejano, Oliveros & Strausz 1999; Bracho & Strausz 2001; 
Montellano & Strausz 2001; Strausz 2001; Neseti'il & Strausz 2002 and 
Strausz 2002. 

I have classified all this material in four chapters: Separoiás, ConfiguratúJns 
Orienteá !Matroiás and :}{onwmorplíisms. In the first one, you will find the basis 
of the theory and all the results that can be applied to the other three. The 
second one deals with geometric examples of separoids, in particular the point 
separoids are studied in detail. The third chapter is devoted to apply all previously 
developed material to the Theory of Oriented Matroids -the most explored area 
of separoids. In the fourth one, a new categorical approach is adopted and 
the universaUty aná áensity of separoids homomorphisms is proved. I added 
an introduction to introduce the theory in the basis of examples so the reader 
will find there some specific pictures to think on while the theory is developed. 
Appendix B contains a large bibliography about the subject. 

Finally, I want to thank Merari and the rest of my family, including all those 
who live -and lived- here in Hungary. They gave me all the emotional support 
I needed to end it. 

'Dino 
Budapest2002 
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Separoúfs provide a broad setting to describe those combinatorial properties that 
arise from families of conve;r.se ts and the separations they define. Mathematical 
objects which appear to be totally different, such as configurations of points, 
arre1ltJments of affine su6spaces, áirecteá aná unáirecteá grapfts, orienteá matroúfs, 
conve;r. po{ytopes and separation ~ of topo{ogica{ spaces, find a common 
generalization in the language of separoids. 

Separoids arise in the context of geometric transversa{ tlíeory in an attempt to 
answer the question: How does the space of hyperplanes transversal to a family 
of convex sets in lEd looks like? As already pointed out by Goodman, Polack 
& Wenger the existence of a transversal hyperplane depends on the existence 
of a suitable oriented matroid. We found that the space of all such hyperplanes 
is essentia{ (as a subset of JPd-l) if the geometric áimension of the underlying 
separoid is less than d - 1. Also in terms of the geometric dimension, those 
separoids that arise from a configuration of points in genera{ position have been 
characterized: A general position separoid is a point separoiá if and only if its 
com6inatoriaf dimension and its geometric dimension are equal. 

Further research lead us to an equivalent version of the Basic Sphericity 
Theorem (Folkman & Lawrence 1978): The 1(aáon compfe;r. of an oriented ma
troid is homologically equivalent to a sphere. Moreover, ifthe matroid is unifonn, 
the complex is homeomorphic to such a sphere. This result was the first step to 
reach the characterization of the cocircuit grapfts for uniform oriented matroids. 

Oriented matroids are separoids which satisfies a couple of extra properties 
(they will be formally defined in Chapter 3). Folkman and Lawrence introduced 
oriented matroids as a combinatorial description of spfiere systems. Las Vergnas 
used oriented matroids to describe a purely combinatorial setting of conve:rjty 
and, at the same time, Bland described how oriented matroids can be used to 
encode the basics properties of anear programs also in a purely combinatorial 
level. Independently, Dreiding, Dress, Haegi and Wirth introduced the equivalent 
notion of cfiirotopes to describe chirality of molecules in organic chemistry. AII 
these approaches too k place between the late 1960's and the early 1980's. 
Nevertheless, geometric objects that where studied much earlier turned out to 
be equivalent to oriented matroids. For instance, arrangements of pseuáoanes as 
already studied by Levi 1926, Ringel1956 and Grümbaum 1969, are equivalent 
to oriented matroids in dimension 2. It is not my objective in the present to 
describe the theory of oriented matroids in its full extent but most of the theory 
developed here can (and will) be applied to it. 

., An introduction to the subject can be found in the book of Bjorner, 
Las Vergnas, Sturmfels, White & Ziegler 1993, the survey of Bokowski 
1993 and the Ph.D thesis of Richter-Gebert 1992. 

Finally, separoids had been studied from a categorical point of view to prove 
that the fiomomorpfiisms oráer is universal, viz., any partially ordered class can be 
embedded into the homomorphisms order of separoids. 
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O. Sorne Motivating Examples 

Let me introduce the theory in an informal way by giving some basic examples 
to have some specific pictures in mind when the theory is developed. 

Consider a (d + 1) x n matrix M = (Xl, . .. , Xn) E (lRd+l)n and the n
set X = {1 , . . . , n}. Each of the n columns of M is interpreted as a vector 
in the real vector space lRd+1 . If these vectors span the space, the minimal 
linear dependences yield the circuits of a matroiá of ranf(d + 1. Such linear 
dependencies loo k like 

L Ai Xi = O with Ai E lR, not all zero 
i EX 

and the sets C = {i : Ai i O} corresponding to the mínima! ones are the circuits 
of the matroid. The associateá separoiá is the family of pairs A t B given by 

A = {i : Ai < O}, B = {i : Ai > O}, 

for all the minimal dependencies among the Xi. 

.. Interesting vector configurations to be studied from this point of 
view are given, for example, by the vertices of polytopes and by the 
root systems of semisimple Líe algebras. 

For a more specific example, let Xl , .. . , X-t be the vectors in lR3 given by 
the columns of the matrix 

(
O 1 O O) 

M = 1 O 1 O . 
100 1 

From M we get the separoid of rank 3 on X = {1 , 2, 3, 4} , for which the linear 
dependence Xl - X3 - X4 = O translates into the circuit 1 t 34. 

Every vector configuration in lRd+1 \ {O} corresponds to a pointconfiguration 
in a d-dimensional affine space. For this, choose a linear form f such that f (Xi ) i 
O for all i , define 

IAd := {x E lRd+1 : f (x) = 1} 

as a model of affine space, and associate to each vector Xi the point P i 

l<i .) Xi E IAd. Here, vectors Xi with f (Xi) < O determine "reoriented affine 
points". 

These "negative points" are somewhat annoying to have to deal with, al
though sometimes unavoidable. However, if the vector configuration does not 
contain any positive linear dependence (2: AiXi = O with Ai ~ O), then we can 
choose f such that f (Xi) > O for all i , which results in an honest affine point 
configuration. This corresponds to the situation where the separoid is acydic: it 
does not contain a circuit of the form </> t B. 
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Now, every affine point configuration gives rise to an acyclic separoid whose 
minima{ 1{.aáon partitions (the circuits of the matroid) are given by the mini mal 
affine dependences 

¿ AiPi = O with ¿ Ai = o. 
iEX iEX 

Starting from the vector configuration in IR3 discussed in the example aboye, 
with f(x) = LXi and dropping the first coordinate, we obtain the point configu
ration 

p=(t~~n · 
Now, from P we obtain the separoid of áimension 2 on X = {1 , 2, 3, 4}, for 

which the affine dependence PI - iP3 - iP4 = O (with 1- i - ~ = O) translates 
into the minimal Radon partition 1 t 34. Observe that from the affine point of 
view, the linear dependence PI + P2 - iP3 - iP4 = O is not a minimal Radon 
partition of the separoid. 

Since the parameters Ai of such minimal dependences are unique up to a 
common scalar, those equations can be rewritten as 

- ¿ AiPi = ¿ AiPi , 
iEA iEB 

iEA iEB 

and therefore we can redefine the relation as 

A t B <===> (A) n (B) i= 1jJ, 

where (.) denotes the conve;r..fí.u{{ operator. In this new context, we are including 
all such partitions -not only the minimal ones. 

In the previous example we have two more 1{.aáon partitions: 12 t 34 and 
1 t 234, so the separoid is 

({1 , 2, 3, 4} ; 1 t 34, 1 t234, 12 t34) . 

What happens ifwe de/ete the (minima/) partition 1 t 34 but keep the other two? 
It is not hard to see that the separoid is not any more the separoid of an affine 
configuration of points (nor a linear one). However it is the separoid of a famuy 
of (conve?() segments in the affine 3-space: A family of four convex sets given by 

F = {(albl), (a2b2), P3' P4} , 

satisfies the desired properties if 

al = (0, 1,1) bl = (~ , ~,~) 
a2 = (0, 0, O) b2 = (1 , 0, O) 
P3 = (0,1 , O) P4 = (0, 0, 1). 
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1. Main Concepts 
From the previous examples, many concepts can be introduced. First of all, it 
must be clear now that not every separoid arises from a family of points, so it is 
natural to ask: Whích separoíds aríse from such a fami/y? We will call this kind 
of objects point separoiás. A combinatorial characterization of these separoids is 
still unknown, but we will study them deeply on Chapter 2. An obstruction of F to 
be a point separoid is that it contains two different minimal Radon partitions on 
the same set. If this is not the case, we will call the separoid a 'l(adon separoiá, 
so P is a Radon separoid and F is not. 

These two separoids are quite similar -all Radon partitions of F are con
tained also in P. If that is the case, then we will say that there exists a morphism 
F ----> p, and call the class of all separoid morphisms, the separoúf category. 

If we restrict ourselves to point separoids over the same n-set and of the 
same dimension d, the natural partial order given by 

P > p' ~ P ----> p' 

describes a stratification of a manifold known as the (jrass11Wnninan. This poset 
will be denoted by IR~ and proved to be homeomorphic to gd(JRn-l), the space 
of all d-subspaces of the vector space JRn-l. 

.. It will be proved that IR¡ is the face lattice of the hemicuboctahedron 
-a well known polyhedron homeomorphic to the projective plane JP2 = 
g2(JR3). 

The separoid F cannot be reafized as a point configuration, but it was real
ized as a family of convex sets. It is also natural to ask: Whích separoíds can be 
realízed as a fami/y of convex sets? In contrast with point separoids, separoiás 01 
conve:(e5 can easily be characterized: They are all separoids. Therefore, each 
separoid has as an invariant the minimal dimension where it can be realized; this 
number will be called the geometric dimensÚJn of the separoid. The geometric 
dimension of F is 3 while its c0m6inatoria! one is 2. 

This invariant will be useful to study the space of liyperpfam transversafs 
to a family of convex sets. Observe that there is no line transverse to the four 
points of P and that there are two planes transverse to the elements of F, that 
is, the space of hyperplanes transverse to P is empty and that of F consists of 
two points. 

Also, the geometric dimension will be used to characterize those point sep
aroids which are in generaf positúm -separoids (of dimension d) whose minimal 
Radon partitions consist of exactly d + 2 points. Separoid F is in general position 
and P is not. 

An oriented matroúf is a matroid whose (ordered) bases have received an 
orientation compatible with the so called (jrass11Wnn·Pfü~r refatúms. Although 
not every matroid is orientable, every point separoid is an oriented matroid. 
However not every oriented matroid is a point separoid, Le., oriented matroids are 
more general than point separoids. On the other hand, every oriented matroid 
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is a Radon separoid but not the other way around, so separoids are even more 
general than oriented matroids. They will be studied in Chapter 3. 

Recall the vector configuration M associated to P. If the 3-sets of X are 
ordered lexicografically, their orientations can be extracted from the matrix M 
as the signs of the determinants of its minors, i.e. , if (ijk) is a 3-subset of X we 
assign to it the sign given by 

x(ijk) = sgn IXiXjXkl . 

If we do this with all 3-sets (123, 124, 134,234), we obtain the list + - O +. This 
list encodes the whole separoid P in a very compact way -it is a list of (d~l) 
elements of { - , O, +}. Unfortunately, such a compact code is not known for all 
kinds of separoids. It would be nice to find one! 

2. One more example 

As our final example, take four points in the line and consider all pairs A t B of 
disjoint subsets A, B e X = {1 , 2, 3, 4} such that (A) n (B) i= !/J. Now draw an 
edge between a pair of such subsets A ~ A' whenever they differ in only one 
element IA.6A'1 = 1. The resulting graph is a cycle of length eight. It will be 
called the 1(adon compfe;r" of the separoid. Observe that alllinear orders on four 
elements are in a one-to-one correspondence with this kind of cycles inside the 
4-cube. We are thinking about the vertices of Q4 as the family of subsets 2x of 
the 4-set X . 

., It will be proved that lA! is the projective polyhedron depicted below. 

in contrast to the matroid case oriented matroids carry information about 
the topoCogy and the conve7(jty of the underlying configurations. 

-JÜRGEN RICHTER-GEBERT, New Construction 
Methods for Oriented Matroids (1992) 

••••• 

o 

~ 
O 
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Separoids are combinatorial objects that capture the structure arising from a 
family of convex sets in lEd , where some subfamilies are naturally separated 
from others. Namely, two subfamilies are said to be separateá if there exists a 
hyperplane that leaves them on opposite sides of it -the axioms of a separoid 
are simply the obvious properties of this relation. 

O. Basic Notions 

A separoiá S = (X, 1) over the base set X # 1/> is a relation I~ 2x x 2x on the 
subsets of X with the following properties: If A, B e X, then 

o A lB===> B I A, 
00 A lA===> A = 1/>, 

o o o A I B and A' e A ===> A' lB. 

So we say that a separoid is a symmetric, quasi-antirejle;rive, iáeaf relation on the 
family of subsets. The elements of I are called separations and, when speaking 
of a separation A lB , it is said that "A is separateá from Bn

• A separoid is acycfic 
if the empty set is separated from the base one, i.e. if 1/> I X. The separations 
with the empty set are called trivial separations and, in the sequel, almost all 
separoids are finite and acyclic. Observe that it is enough to know ma;rjmaf 
separations to reconstruct the separoid -they encode the whole information. 

It is easy to see that an ideal relation is quasi-antireflexive if and only if 

o o A lB===> A n B = 1/>. 

Now, let S and T be two separoids over the base sets X and Y respectively. 
A separoiá morpfiism S ---t T is a function rp: X -+ Y with the property that for all 
A,B~ Y, 

A separoiá category is defined with such morphisms between separoids. Two 
separoids are isomorphic if there exists a bijective morphism from one onto the 
other whose inverse function is also a morphism. 

Given a subset X' ~ X of the base set of a separoid S, the ináuceá separoiá 
is defined as the restriction of I to X'. An em6eááing is an injective morphism 
between separoids such that it is an isomorphism between the doma in and the 
induced separoid of the image. The oráa is the number of elements in X. 

There is a notion of dimension on separoids which is easily and intrinsically 
determined. The d -áimensiona{ simp{oiá a = ad is a separoid of order d + 1 such 
that every subset is separated from its complement, which by the third condition 
yields A lB{=? A n B = 1/>. A simploid can be realized by the vertex set of a 
simplex, hence its name -Figure 1.a, on page 10, represents a 2 . 

The (com6inatorial) áimension of a separoid, denoted by d(S), is the maxi
mum dimension of its induced simploids. 

<1D 
• 
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With the definition of dimension at hand, it is quite easy to translate into 
separoid terms the classic Radon's theorem; they capture the combinatorial 
essence of it (cf. Danzer, Grümbaum & Klee 1963). 

0.1. Lemma (Radon). Let S = (X, 1) be a d-dimensional separoid, then every 
subset Y ~ X of cardinality greater than or equal to d + 2 contains two disjoint 
subsets A, B e y such that they are not separated from each other. 

Proof. It follows immediately from the fact that Y is not a simploid. ~ 

A <J(aáon partition consists of two non-separated disjoint sets, and it will be 
denoted by A t B. Each part (A and B) is called a <J(aáon component and the 
union A u B is known as the support of the partition. Considering the Radon 
partitions of a separoid S = (X, 1) as a relation t e 2x x 2x , it has the following 
properties: 

• A t B ===} B t A, 
•• A t B ===} A n B = f/J, 

• •• A t B and C ~ X \ A ===} A t B U C. 

This leads to an equivalent definition of a separoid. The separations can be 
reconstructed with the obvious definition; A I B iff A n B = f/J and there are no 
subsets A' ~ A and B ' ~ B such that A' t B ' . 

A mínima! <J(aáon partition is a Radon partition A t B for which each com
ponent is minimal under contention, Le., 

A' e A ===} A' I B and B' e B ===} A I B' . 

The set of all mini mal Radon partitions of a given separoid determines it and will 
be denoted by M RP, so A t B E M RP means that A t B is a minimal Radon 
partition. 

Many authors have observed that the Radon's theorem can be settled in a 
more precise way (cf. Eckhoff 1993): Let X be a set of d + 2 points in lRd in 
general position. Then X has a unique partition in two disjoint subsets whose 
convex hulls have a common point. Moreover, this point is also unique. This 
motivates the next definition. 

A <J(aáon separoid is a separoid with the property that for all A t B, C t DE 
MRP such that AUB ~ CuD itfollows that {A, B} = {C, D} , Le., the elements 
of M RP are incomparable. 

A separoid is said to be in genera! position if every subset A e X of cardinality 
d + 1 is an induced simploid. 

0.2. Lemma (general position). Let S be a d-dimensional separoid in general 
position. If A t B E M RP is a minimal Radon partition, then the cardinality of 
the support A U B is at least d + 2. 

Proof. The cardinality of the support cannot be smaller beca use every subset 
u e S of cardinality d + 1 or less is an induced simploid. ~ 

·x, ·· ····· . . 



Chapter 1: 8eparoids 9 

1. Examples 

As in any interesting category, the important part of it are not the axioms them
selves but the examples we think ofwhen developing the theory. Here are some 
ofthem. 

The Objects: 
1. Consider a subset X e lEd of the d-dimensional Euclidean space and 

define the following relation 

A 1 B {::=? (A) n (B) = <jJ, 

where (A) denotes the convex hull of A. If X is finite, the pair P = (X, 1) is an 
acyclic separo id and will be called a pointseparoiá. In tact, the name of separoids 
arises as a generalization of the fact that A 1 B is a non-trivial separation if and 
only if there exists a hyperplane strictly separating (A) from (B) . Theorem 2.0.1 
characterizes an important class of point separoids. 

2. Consider a family F of convex sets in lRd and define the separoid 8(F) 
as aboye, this is, two subsets of the family A, B e F are separated if there exists 
a hyperplane that leaves all members of A strictly on one side of it and those of B 
on the other. If F is finite and the elements of F are compact, then 8(F) = (F, 1) 
is an acyclic separoid and will be called a separoiá of conve:{sets. The Geometric 
Representation Theorem (Theorem 2.3) proves that every finite acyclic separoid 
8 is isomorphic to a separoid of convex sets in lRd , where d = 181 - 1. There is 
also a Representation Theorem (Theorem 2.2) for the non-acyclic case but with 
non-compact convex sets and in a huge dimension -as big as the number of 
separations. 

3. Consider an oriented matroid M = (E, 12) and identify it with the subset 
12 ~ {- ,O, +}E of its covectors in the usual manner. Let T = T(L) be the set 
of topes, maximal covectors, and define the following relation I ~ 2E x 2E on the 
subsets of E: A , B e E are separated, A 1 B, if and only if there exists a tope 
T E T such that A ~ T+ , and B ~ T-. The pair S(M) = (E, 1) is a separoid. 
In Chapter 3 this example will be studied in further detail, in particular it will be 
shown that the oriented matroid can be reconstructed from its separoid, and 
hence that separoids generalize oriented matroids. 

4. Edelman (1984) has defined a complex which encodes the separoid of 
an oriented matroid . He considers the set 

r(T):= {X E {_,O,+}E: X::::: T and T E T}, 

where T denotes the topes of an oriented matroid and ::::: denotes the confonna{ 
refation, Le., X ::::: y if and only if X + ~ y+ and X- ~ Y-. Clearly a signed 
vector X E r is in Edelman's complex if and only if X+ 1 X-. He uses the Basic 
Sphericity Theorem to prove that such a complex has the homotopy type of a 
sphere. Theorem 3.2.3 is a direct consequence of this result -it is some how 
the dual version of it. 

5. As a special case of oriented matroids, a separoid can be defined from a 
digraph D = (V, E). Let the set of edges be the base set and define two subsets 
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of it A, B e E to be separated A I B iff for every circuit of the graph in which the 
arrows in one direction are contained in A, the arrows in the other direction are 
not contained in B . S(D) = (E, 1) is a separoid, and it is acyclic if and only if D 
is so -hence the name. 

6. Consider a graph G = (V, E) and define two vertices u , v E V to be a 
minimal Radon partition u t v if and only if they form an edge uv E E. The pair 
S(G) = (V, t) is also a separoid. This turns out to be a functoral embedding 
and, since graphs endowed with homomorphisms are a universal category, the 
universality of separoids follows (Theorem 4.4.1). 

7. Consider a topological space T = (X, T) and define two subsets A , B e 
X to be separated if and only if there exist disjoint neighborhoods of them, i.e. 
if there exist a, f3 E T such that A ~ a, B ~ f3 and a n f3 = <1>. This is clearly an 
acyclic separoid. 

8. AII acyclic separoids on three elements arise from one of the eight families 
of convex sets in Figure 1. Those labeled a, b, e and h are the point separoids 
of order 3; in fact, they come from the four essentially different oriented matroids 
with three elements. They will be denoted by 0'2, A3 , K 2 +0'0 and K3 , respectively. 

o O 
00 

O O 

.• . b c· : • . t gh 

Figure 1. The acyclic separoids olorder 3 

The Morphisms: 
9. Consider a family of convex sets F, choose a point in each of its elements 

to construct a point separoid P and define the obvious bijection cp: P -+ F. This 
is a morphism since every hyperplane that separates A from B, subsets of F, 
also separates their respective points cp-l (A) and cp-l (B). 

10. Consider a family of convex sets F in lRd and let 'Ir: lRd -+ lRe be an 
affine projection. The obvious bijection 7r: F -+ 'Ir(F) is a morphism between 
their separoids S(F) ----+ S('Ir(F)) . 

11. Consider the embedding G ...... S(G) suggested by Example 6. If 
cp: G ----+ H is a graph homomorphism, the same map cp: S(G) -+ S(H) is a 
morphism of separoids (see Section 4.1). . 

12. Consider a family of convex sets F and give them a coloration <;: F -+ 

{cl , ... ,cd. Ifwe denote by F' = {(<;-l(Ci))} the convex hulls ofthe color 
classes' family, the obvious map F ----+ F' is a morphism. This is a key ingredient 
in our study of Tverberg's theorem (Section 4.5). 
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13. Consider a family of convex sets :F and fatlen them up. If:F' denotes 
the new family, the obvious bijection :F ----> :F' is a morphism. 

14. Consider a family of convex sets :F = {K1 , . .. , Kn} with a hyperplane 
H transversal to all of them. If we denote by :F' = {H n K 1 , ... , H n Kn} 
the separoid of the intersections, then the obvious bijection :F' ----> :F is also a 
morphism. 

15. Strong and wea/(maps of oriented matroids are both examples of mor
phisms between their respective separoids. 

16. In Figure 1, bijective morphisms go from left to right between every 
pair of separoids. Observe that there is no bijective morphism between those 
separoids labeled d and e. 

2. The Geometric Dimension 

This section introduces a basic invariant in separoid theory. It will be show that 
Example 2 is in fact the most general example, i.e. when thinking in separoids, 
we can always have in mind a family of convex sets and use all the intuition that 
comes from this picture without loss of generality. Let us start this section with 
some general facts of the separoid's category. 

Given two separoids S and T over the sets X and Y respectively, their 
proáuct S x T is defined as a separoid over the set X x Y with its two canonical 
projections 7r x, 7ry and two subsets of it A, B ~ X x Y are separated iff at least 
one projection is, i.e., 

Al B {=;. 7rx(A) l7rx(B) or 7ry(A) l7ry(B) . 

Clearly, this definition implies that the projections 7r x, 7ry are separoid mor
phisms. To próve that this is the categorical product, we have to show that it 
satisfies the universaf property of the product, this is 

2.1. Lemma (the product). Given two morphisms ep: U ----> S and 7j;: U ----> T, 
there exists a unique morphism ~ : U ----> S x T such that ep = 7r s~ and 7j; = 7rT~ . 

Proof. The category of sets (with functions) gives as unique candidate the 
function ~ = (ep,7j;) so we only have to check that in fact this is a morphism of 
separoids. For this, let A I B be a separation in S x T and suppose, without loss 
ofgenerality, that 7rs(A) l7rs(B). Since ep = 7rS~, itfollowsthat epc1(A) = 7rs(A) 
and epC 1(B) = 7rs(B). Therefore, since ep is a morphism, 

ep -l epC1(A) I ep -l epC1(B). 

Now, since C1(A) ~ ep-lepC1 (A) and C1(B) ~ ep-l epC 1 (B), we conclude that 

Cl(A) I Cl(B) , 

and therefore ~ is a morphism. \!) 

Once the product has been defined for two separoids, the definition tor a 
finite number of separoids TI::l Si is obvious. 

U 

¡J .~ y 
'P SxT '" 

0~ 
S T 
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This product has a geometric counterpart. Let S and T be separoids of 
convex sets in IR' and IRt, respectively. The geometric proáuct S ® T is a 
family of convex set in IR' x IRt whose elements are of the form K, x K t , where 
K, E S and Kt E T. In general, it is not the case that the separoid of S ® T 
is isomorphic to its combinatorial counterpart S x T however, in some special 
cases, if the convex sets are "big enough", S ® T is a realization of S x T. 

2.2. Representation Theorem. Every separoid S can be represented with a 
family of convex sets in IRm , where m is the number of separations in S. 

Proof. Given a separoid S and a separation in it Al B, a cfiaracteristic morpfiism 
XAIB: S ---+ B exists 

{ 
+, ifx E A 

XAIB(X) = -, if x E B 
O, otherwise, 

where B denotes the separoid defined in the set {-, O, +} with unique separation 
- I +. It is not hard to prove that S can be embedded into the product of as 
many copies of B as separations S has 

x: S --+ TI B. 
AIBES 

The existence of such a morphism is given by the previous lemma. In order to 
see that X can be made injective, consider two different elements x # y E S. 

In the one hand, if there exists a separation A I B, where x E A, we have 
then that xl B. Therefore, XxIB(X) # XxIB(Y) and therefore x(x) # x(y) . 

On the other hand, if there are no separations with the elements x and y, 
both are mapped to the element O = (O, ... , O) E IIB. We can then take as 
many copies of this element O to map each element x with such a property. 
Equivalently, we can identify all of them as a single element; after the realization 
below, we can then consider as many copies of the ambient space -which will 
represents the element O- to realize the original separoid. Observe that such 
a construction does not change the number of separations of the separoid. 

Finally, to see that x- 1 is al so a morphism observe that, if Al B, there is a 
projection 71': rr B --+ B such that XAIB = 71'X and therefore x(A) I X(B). 

The end of the proof is to show how to realize rr::l B as a family of convex 
sets; the restriction to x(S) will then realize S. 

For, in the realline, let B be mapped as follows: 

...... IR-, 
O ...... IR, 
+ ...... IR+ . 

Clearly this realizes the separoid B. The product of m copies of it can be 
realized in IRm by the geometric product of these convex sets: since the convex 
sets in the geometric product are "big enough", all separations can be made with 

o 
.. 
b ' ~ <:) 

,', "~.,.,, 
" . 
~ , ' 

Q Q-~~ 

O' P 
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hyperplanes which are parallel to some of the linear hyperplanes spanned by 
some m - 1 canonic vectors. ~ 

.. It can be proved that, in the acyclic case, to compactify the realiza-
tion of Bm , it is enough to take the intervals [-1, -f], [-1 , 1] and [f,l ], 
with O < f S 2~-1 (see Figure 2). 

The geometric áimension of a separoid can now be defined as the minimum 
dimension of the Euclidian space where the given separoid S can be realized 
as a separoid of convex sets; we denote it by gd (S). There are not known 
algorithms to calculate this invariant and it is conjectured that it is, at least, an 
NP-hard problem. It is important to give better upper bounds of gd (S) than that 
implicitly given in the theorem; in particular, we know that, in the acyclic case, it 
grows at most linearly with respect to the order: 

2.3. Geometric Representation Theorem. Every acyclic separoid of order n 
can be represented by a family of convex polytopes in the (n - l)-dimensional 
affine space, and therefore 

gd(S) S ISI - l. 

Proof. Let (S, t) be an acyclic separoid (Le. , A t B => IAIIBI > O). To each 
element i E S = {1 , ... , n} and each (minimal Radon) partition A t B E M RP 
such that i E A, we assign a point of lRn 

P~tB := ei + ~ [I~I 2:: eb - I~I 2:: ea] , (1) 
bEB aEA 

(where {ej} denotes the canonical basis) and realize ea eh elément i E S as the 
convex hull of all such points 

i >-+ Ki := (P~tB : i E A and A t BE MRP). 

Observe that these convex sets are in the (n - l)-dimensional affine subspace 
spanned by the basis, beco use (1) is, in fact, an affine combination. 

To see that this family of convex polytopes realizes the separoid observe 
that, in the one hand, for ea eh partition A t B, the vertex set of the two simplices 
(ea : a E A) and (eb : bE B) "moves" -half of the way each- to realize such a 
partition intersecting one another precisely in their baricenter. That is, let A t B 
be fixed ; in order to prove that 

(Ka: a E A) n (Kb : b E B ) oí 1>, 

it is enough to prove that (p~ t B : a E A) n (p~t A : b E B) oí 1> because p~ t B E Ka 
and therefore (P~tB : a E A) e (Ka: a E A) (analogously with B) . 

Now, if we let P : lRn 
---t IRn be the translation 

1 [ 1 1] p(x) = x +"2 jBj 2:: eb - iAi 2:: ea , 
bEB aEA 

DD 
DD 

Fig 2. B x B 
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and therefore 

(PAtB : a E A) n (P~tA : b E E) =1 rjJ . 

On the other hand, given a separation a I ¡J , define the affine extension of 
the equations 

{ 

-1 j E a 
"pal/3 (ej ) = 1 j E ¡J 

O otherwise 
for j = 1, ... , n . 

Now, it is enough to prove that for every i E a (resp. ¡J), we have that 
"pa l /3 (P~tB) < O (resp. > O) for all A t E such that i E A. For this, observe that, 
if i E a nA (and A t E) then, since "pal/3 (ej ) = O for all j E (A U E) \ (a U ¡J), 

"pa l/3 (P~tB) = "pal/3 (ei + H,~, (2: eb+ 2: eb) - I~I (2: ea + 2: ea)]) = 
Bna Bn/3 Ana An/3 

(lE n ¡JI - lE n a l) (lA n al - lA n ¡JI) 1 1 
=-1+ 21EI + 21AI ::;-1+"2+"2 = 0. 

Equality holds if and only if En¡J = E and An a = A leading to a contradiction.~ 

We end this section showing how to prove that the combinatorial dimension 
bounds the geometric dimensiono 

2.4. Lemma (dimension). For any separoid S, its combinatorial dimension is 
not greater than its geometric dimension, i.e., d(S) ::; gd(S). 

Proof. Let S be d-dimensional with geometric dimension 9 = gd(S), and sup
pose that 9 < d. Let S be a family of convex sets in IR9 that realizes S. Since 
S is d-dimensional, it contains a d-dimensional simploid a ~ S of order d + 1. 
Choose a point for each convex set of a. This set of points consists of 9 + 2 or 
more points in IR9 and, by the classic Radon's theorem, there exisls a partition 
of them in two subsets whose convex hulls intersect. Therefore they are not 
separated. This contradicts the fact that a was a simploid. ~ 
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3. General Results 

In this section we settle some general results on separoids that will be needed 
somewhere else. We start with a new "convex version" of the well known 
Carathéodory's theorem (cf. Danzer et al. 1963 and see also Eckhoff 1993): 

3.1. Lemma (Carathéodory). Let X = UiEI JCi ~ lRd
, be the union of some 

convex sets JCi . Ifx E (X) is a point in the convex hull of X , then there exists a 
subset J ~ 1 with IJI :s: d + 1 and, for every j E J, a point Xj E JCj such that x 
is a convex combination of the points Xj . 

Proof. By Carathéodory's theorem, we need at most d+ 1 points of X to express 
x as a convex combination of them. It is easy to see that, if two (or more) of 
these are on the same convex set JCj , they can be replaced by a single point 
Xj E JCj which is a convex combination of them. Therefore we need at most one 
point in each convexo íi) 

With this lemma at hand, it is easy to see how to "realize" each minimal 
Radon partition of a separoid . 

3.2. Theorem. Let S be a separoid of convex sets. Given a minimal Radon 
partition A t B, there exists a point on each convex set ofthe support, a; E JCi E A 
and bj E JCj E B, such that 

(ai : JCi E A ) n (bj : JCj E B) -# !/J. 

Proof. If x E (A) n (B) -# !/J, by Carathéodory's lemma, we need at most d + 1 
elements of A, JCi E A, and at most one point in each ofthem ai E JCi to express 
x as a convex combination of them. By the minimality of the partition, it is clear 
that we need at least one point in each convex of A. The same argument works 
for B and we are done. íi) 

We will also use a "continuous version" of Radon's original proof. 

3.3. Lemma (continuous Radon). Let Zi(t) = (1 - t)Xi + t y; with t E [0 , 1], 
be d + 2 segments in lRd . If their respective extreme points, {x;} and {Yi}' are 
áifferent point separoids in general position, there exists a t E (0, 1) such that 
the separoid {Zi(t)} is not in general position. 

Proof. It is easy to see that, for every t E [0 , 1] there exists a solution for the 
following equations 

L Ai(t)Zi(t) = O, L A;(t) = O, L IAi(t) 1 = 2, 

and moreover the Ai(t) can be chosen to be continuous. Since the points Xi = 
Zi(O) are in general position, such a solution for t = O is unique and every Ai(O) 
is non-zero. Such a solution leads to a unique Radon partition, the positives vs. 
the negatives 

L Ai(O)Xi = - L Ai(O)Xi, 
Ai (O» O Ai (O )< O 

-
--1-· 
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L '\i(O) = - L '\i(O) = 1 
>.,(0»0 >., (0)< 0 

or, in separoid notation 

{Xi : '\i (O) > O} t {Xi: '\i(O) < O} . 

The same argument works for t = 1, but by hypothesis it yields a "different" 
partition 

{Yi : '\ i (l) > O} t {Yi : '\i(l) < O}. 

Here, tlifferent means that there is a j such that '\ j (O) and '\ j (l) have different 
signs (while others have the same), then there exists a t E (0, 1) su eh that 
'\ j (t) = O. For that t, {Zi(t)} is not in general position. ~ 

We close this section with a beautiful theorem of separoids that will be used 
to characterize point separoids in general position. 

3.4. Theorem. If a separoid is in general position and its geometric dimension 
is equal to its dimension, then it is a Radon separoid. 

Proof. Let S be a d-dimensional separoid in general position. If its geometric 
dimension is equal to its dimension, it can be realized as a family S of convex 
sets in lRd • Not to be a Radon separoid would imply that there exists a subfamily 
S' ~ S with two "essentially different" ways of choosing points on ea eh convex 
set of it. This is, suppose that S is not a Radon separoid. Then there are 
subsets of A , B , e, D ~ S such that A t B , e t D E M RP, A U B ~ e u D and 
{A , B} f= {e, D}. Since S is in general position, the support S ' := A U B has 
at least d + 2 elements. Since e t D is minimal, applying Theorem 1 and the 
classic Radon's theorem, its support has at most d + 2 elements. Then, without 
1055 of generality, we may suppose that ISI = lA U BI = d + 2. 

Using again Theorem 1, two configuration of points can be defined, two 
points on each convex set, in such a way that they realize the two Radon parti
tions. Considering the line segment that join each couple -inside each convex 
set- and applying the continuous Radon lemma, we conclude that S is not in 
general position J ~ 
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4. The Radon Complex 

We will associate to each separoid a "cubic" complex which "lives" in the bound
ary complex of the n-cube. We will consider the Radon components of a sep
aroid. They can be identified with some vertices of the n-cube and the 'l(adon 
compfel( of the separoid will be defined as the induced complex of these vertices. 

Let Qn denote the n-cube (see Figure 3) . Its vertices V( Qn) will be identified 
with the family of subsets 2E of the n-set E. Its faces are intervals of the natural 
contention partial order defined in 2E , Le., each face is of the form 

[A , El := {X <;:; E : A <;:; X <;:; E}. 

In fact, this definition leads to an n-ball, but in the sequel the n-cube will be 
thought of as an (n - l)-sphere so the face [<p, El is dropped out. 

We call generafizeá cotopes the Radon partitions of the form A t A, where 
A = S \ A denotes the complement. Given a separoid S, for ea eh generalized 
cotope A t A, take the vertex A E V(Qn); the complex induced by all such 
vertices is what we call the 'l(adon compfel( of the separoid and we denote it by 
R = R(S). Here, by ináuceá we mean that a face of Qn is in the complex if 
and only if all of its vertices are. Some small Radon complexes are shown in 
Figure 4. 

It follows from the definition that 

4.1. Lemma (faces). If A t E is a Radon partition of S then [A , El is a face of 
R(S) . 

Proof. Let A t E be a Radon partition of a separoid S = (X, 1). It is clear that for 
all C <;:; E we have that (A u C) tE, therefore every vertex of [A , El is a Radon 
partition's component of the given separoid s. \!) 

The converse of this lemma is not true in general, this is, there exists a 
separoid S such that [A, El is a face of R(S) and A t E is not a Radon partition. 
Therefore the generalized catopes do not determine the separoid. In fact, there 
are many separoids which yield the same Radon complex (cf. Figure 1 and 4 
and observe that, while there are eight acyclic separoids on 3 elements, there 
are only four possible Radon complex in Q3). 

However, in some important cases the separoid can be recanstructed from 
its Radon complex. In particular oriented matroids, and therefore point sepa
roids, are completely encoded by the Radon complex. 

The faces of R with maximal dimension (that are not contained in a bigger 
face) are called facets . We say that two facets X , Y E R e Qn are inciáent if 
their intersection is not empty, and aájacent if it is as big as possible, Le., they 
are the only two covers of their intersection in the face lattice of R. The graph 
with the set of facets as vertices and adjacent facets as edges is called the 
circuit grapft of the separoid. Its vertices are called circuits and if every circuit 
comes from a minimal Radon partition, the separoid is said to be fu.[[, this is, 

Fig 3. Qn, n = 2,3,4 

o O 
O O 

O O 
@ 
O 

Fig 4. The Radon complex 
01 the lour points separoids 
on three elements 

c:=:::> 

00 
@ 
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full separoids are those for which the converse of the previous lemma holds. It 
will be shown that: Oriented matroids and point separoids, are full separoids. 

We will say that a separation A IBis ~mum if the union of its parts 
A U B = S is the separoid itself. We say that a separation A I B confonns to the 
separation e I D if A ~ e and B ~ D. 

4.2. Lemma (full separoids). Let S be a separoid. If every separation conforms 
to a maximum separation then S is a full separoid. 

Proof. Let [A, El be a face of R(S) and denote by e = E \ A the difference of 
those subsets. Clearly every vertex of such a tace are of the form A U e', for 
some e' ~ e. Then, since they are vertices of the complex, for all e' ~ e we 
have that A U e' t A U e', this is, the set {A U e' : e' ~ e} is a subset of the 
components of S. 

Now, in order to search for a contradiction, suppose that A I B. The hy
pothesis says that this separation conforms to a maximum one. Denote by ea, 
respectively eb, those elements of e which are on the same side of A, respec
tively B, so e = ea U eb. From this definition follows that A U ea lB U eb. But 
as previously settled, A U ea t A U ea ¡ ~ 

.. It remains an open question to find necessary and sufficient con-
ditions, in terms of Radon partitions, to characterize full separoids. 

If a separoid S is in general position, all the facets of its Radon complex have 
the same dimension, say k, so its circuit graph is a subgraph of the k·áua! of 
tlien·cu6e denoted by Q~ and defined as follows (k> O): the vertices of Q~ are 
the k-subcubes of Qn and two of them are adjacent if their respective subcubes 
intersect in a (k - l)-subcube. From now on, we denote the faces of Qn by the 
standard signed vectors, this is, each tace [A, Bl is denoted by X E {-, O, +}E 
where 

{ 
+ ifi E A, 

Xi = O if i E B \ A, 
- otherwise. 

We call antipoáa1 automorpliism the function which sends each vector X to 
its opposite - X. Observe that if every circuit of a separoid has the same support 
size (say n-k), the l-skeleton of the dual poset of the Radon complex of such 
a separoid is a subgraph of Q~ and it is closed by the antipodal automorphism. 

Fig 5. The three k-duals of 
the 3-cube (k = 1, 2,3) 
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5. Transversal Theory 

In this section we will study, from the separoids point of view, the space of al! 
hyperplanes transversal to a family of convex sets S = {JC!, . . . , JCn } in the 
Euclidian space IEd+!. 

Let S be a separoid of convex set in IEd+! . An affine subspace H '-+ IEd+! 
of dimension d is called a fiyperpfane transversal if the intersection with each 
convex set of S is non-empty. We are interested in the set of all such hyperplanes. 
This can be considered as a subset of the open manifold g d := gd(lEd+! ) which 
consists of all affine hyperplanes of IEd+!. It is ea se to see that ¡pd = gd(lRd+!), 
the (jrassmannian of linear d-subspaces of lRd+!, is an homotopical retraction 
of gd -just identify each pencil of parallels with its linear representative- and 
therefore they are homotopically equivalent gd ~ ¡pd. 

Let us denote by 

T(S) := {H E ¡pd : 3v E lRdH'iJC E S , JC n (H + v) =1= <f¡} 

the space ojfiyperpfanes transversa{ to S. 

5.1. Proposition. Let S be a separoid of convex sets in IEd+!. Then 

T(S) =1= <f¡ ==> d(S) < d + 1. 

Proof. If d(S) = d + 1, S contains a simploid !7 of order d + 2 and there is 
not a hyperplane transversal to it. The existence of such a hyperplane would 
contradict, via the Radon's theorem, that!7 is a simploid. ~ 

We say that T = T( S) is an essentiaC subspace of gd if it is not homotopically 
equivalent to a point inside ¡pd, i.e., T cannot be continuously contracted to a 
point in its ambient space ¡pd . 

5.2. Theorem. Let S be a separoid of convex sets in IEd+!. If gd( S) < d, then 
T = T(S) is an essential subspace ofgd. 

Proof. Let S be a separoid of convex sets in IEd+!, suppose that gd(S) = d - k 
and let :F be a realization of S in lRd - k • Choose a point in ea eh convex of :F to 
construct the point separoid P and define the obvious morphism <p: P ----> S. 

Now, let us denote by T1. := {v E Sd : v1. E T} the closed set of all unit 
vectors for which there exists a hyperplane transversal to S orthogonal to it, and 
let T 1. = Sd \ T 1. be its relative complement. 

For every u E T 1. we may choose continuously a hyperplane Hu E gd 
orthogonal to u such that Hu = H-u and it separates two non-empty subsets of 
the given separoid S. Denote by H~ the closed semispace determined by Hu 
that has u as normal. A straight forward argument proves that the function 

p(u):= L d(JC, Hu) 

lCC1i~ 

is never zero and depends continuously of u E S d. 
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Let the function ¡ : T 1. -> lRd - k be defined as 

¡(u) := L d(~(~u) <p-l(K:) . 

ICOt~ 

In order to find a contradiction, suppose that T is not essential in gd. Then, 
T 1. is contained in a subset of S;d homotopic to the O-sphere and, by the Alexan
der's duality, T 1. contains a (d - l)-pseudosphere. Therefore, due to Borsuk
Ulam's theorem, there most be a point Uo E T 1. such that 

¡( -Uo) = ¡(Uo). 

Let A := {K: E 5 : K: e 1tti } and B := {K: E 5 : K: e 1t~u } be the subsets 
of 5 separated by the hyperpla~e 1tua • Since <p is a separoids morphism, then 

<p-l(A) I <p-l(B) . 

On the other hand, observe that ¡(uo) is a convex combination of points of 
<p-l (A) and also ¡( -uo) is a convex combination of points of <p-l (B). Therefore, 

¡(uo) = ¡(-Uo) E (<p-l(A)) n (<p-l(B) ) i- 1/>, 

which is a contradiction ! 

.. An ea se consequence is the following Corollary (Helly). Let 5 be 
a separoid of convex sets. /f every two members of 5 have a com
mon point, then T(5) has the same homotopy type as ifthere were a 
common point to all of them. 
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Hasta que no me concedas esto con plena 
convicción, querido lector, no sigas leyendo. 

-ALBERT EINSTEIN Sobre la teoría especial 
y la teoría general de la relatividad (1917) 



2 
Configurations 
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In this chapter we will concentrate in a very specific class of separoids. We will 
study those separoids which arise from an affine configuration of points. Let us 
start with a guide example. We will think on it all across the chapter so it is a 
good idea that the reader takes all the time (s)he needs to analyze it. 

Consider the vertices of a regular pentagon and identify them with the num
bers P = {O, 1, 2, 3, 4} in some of its two cyclic orders. Due to Radon's theorem, 
there should by two disjoint subsets A, B e P whose convex hulls intersect, or 
in separoids notation, A t B. In fact, there are ten such pairs: 

02 t 13 13 t24 24 t 03 03 t 14 14 t 02 
024 t 13 013 t 24 124 t 03 023 t 14 134 t 02 

Observe how 02 t 13 ===} 024 t 13 and 02 t 134. More over, observe that for 
each minimal Radon partition A t B there exists a unique d E A U B such that 
(A \ d) t (B \ d U c), where c = A U B. 

Ifwe draw an edge between a pair of Radon partitions whenever one implies 
the other, the resulting graph is a cycle of order 10. In fact this graph is isomorphic 
to the Radon complex of the separoid. 

It is very easy to see that all regular pentagons in the plane are affinely 
equivalent. This is, given two regular pentagons, there is an affine transformation 
of the space that sends one onto the other -just translate the center of one into 
the other, scale it to reach the same size and rotate if necessary so the five 
points coincide- therefore we can identify them to say that they represent tfie 
same configuration of points. However not every two pentagons represents the 
same configuration -even their separoids are isomorphio- beca use an affine 
transformation of the plane is determined by the image of a triangle. 

Let us give a step back -in fact two steps back- to analyze IR~ in full detail. 
If we have three points in the line in general position, its separoid is of the form 
a t be and -since we are dealing with affine transformations- with out loose of 
generality we may suppose that b and e are represented by O and 1, respectively. 
The relative position of a between b and c is parametrized with a number in the 
interval (0, 1) so, we may think in the space of configurations of three points in 
the line in general position as the union of three open intervals. Now, if we miss 
the general position the separoid gets the form a t b or, equivalently, a t c. This 
configuration is "rigid" -it can not be continuously transformed without changing 
the separoid--- and there are three of them. Observe that this configurations are 
the limit of the previous described intervals. Therefore, the space IR~ of all 
configurations (modulo affine transformations) of three points in the line is a 
cycle of order 3 and it is homeomorphic tO]pl ~ 51. 

The reader most be aware to distinguish between these two examples: the 
former cycle (of length 10) was associated to a particular configuration, the 
regular pentagon; the latter cycle (of length 3) was associated to the "space" of 
all configurations of 3 points in the line. 
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Fig 6. The regular pentagon 
and its Radon complex 
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Fig 7. Five points in the plane 
in general position 
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O. Uniform Point Separoids 

Point separoiás are those separoids which can be realized by a configuration of 
points in some Euclidian space. They are extremely difficult to characterize from 
a purely combinatorial point of view. In fact, it is known that the stretcfia6iIity 
pro6fem -a polar version in dimension 2- is NP-hard (cf. Shor 1991). However, 
from the geometric point of view intrinsic to separoids, we can characterize those 
point separoids in general position. 

0.1. Theorem. Let S be a separoid in general position. S is a point separoid if 
and only if its dimension and its geometric dimension are equal. 

Proof. The necessity is clear. For the sufficiency, consider S as a separoid of 
convex sets in IRd, where d = d(S). Choose a point in each convex set, denote 
by P the point separoid that they define, and let 

rp :P ----- S 

be the obvious morphism (see Example 9). We will show that, in fact, this is an 
isomorphism of separoids. 

In the one hand, by construction, we have that for every A, B e S, 

Al B ==> rp -l(A) I rp-l(B) . 

On the other hand, let A t B E M RP be a minimal Radon partition of 
S. Since S is a separoid in general position, the cardinality of the support is 
#(A U B) 2: d + 2. Then the preimage of this union consists of d + 2 or more 
points in IRd and by the classic Radon's theorem there exists a Radon partition 
D t E of rp-l(A U B) in P. Since rp is a morphism, rp (D) t rp (E) is a Radon 
partition of A U B. Finally, due to Theorem 1.3.4, S is a Radon separoid and, 
without loss of generality rp(D) = A and rp (E) = B. Therefore rp-l(A)t rp- l(B). 
Since M RP generates all Radon partitions, it follows that for every A , B e S , 

A t B ==> rp-l(A) t rp-l(B) . 

Thus, rp is an isomorphism of separoids and S is a point separoid. ~ 

This result is sharp. The hypothesis of general position cannot be dropped 
without adding a new ingredient. The separoid B used in the proof of the Rep
resentation Theorem is a 1-dimensional separoid in general position, it can be 
realized in the line but it is not a point separoid. However, the small examples 
of non-stretchable pseudolines arrengments suggest the following (cf. Theo
rem 3.1.2) 

0.2. Conjecture. An oriented matroid is coordinatizable if and only if its dimen
sion (its rank minus one) is equal to its geometric dimension. 



Chapter 2: Configurations 25 

1. The Grassmannian 

In the study of point separoids is quite difficult to avoid their algebraic properties. 
There are plenty of them. In particular, the (jrassman-P[ük!r relations and the 
(jrassmann variety it self appears naturally in this context. 

We had review some examples of configuraticms of pvints, finite subsets of 

the affine space P = {PI ' . . . , Pn} e IRd -we will always suppose that the points 
spans affinely their ambient space. Given a configuration p, a linear function 
<p : JRn -> JRd can be defined as the linear extension of the equations 

<p(ei) = Pi ' i = 1, . . . , n , 

where {e;} denotes the canonical basis of JRn. Given two such functions <p , <pI, 
it will be said that they represent tlie same configuration if there exists an affine 
transformation 'Ij; : JRd -> JRd such that 

'Ij;<p(ei) = <pl(ei) , i=l , .. . ,n, 

Le., two configurations are the same if one is the (ordered) image of the other 
by an affine transformation of the ambient space. 

We will call space of configuratÚJns, and denote it by IR~, to the set of all 
configurations with n points in dimension d (modulo lR(d), the affine group). 
This set will be provided of structure and will be described in some detail. 

The first example is the case n = d + 1 and the space of configurations 
consists of a single point that represents the simploid ud. The object starts to be 
more interesting when n ~ d + 2. It is the case where Radon's theorem applies. 
It guarantees that there exists a partition A t JI of P and we can consider the 
set of components C = {A e P : A t JI} that is a subset of the vertices of 
the n-cube -the family of subsets of P- that induces a polytopal complex 
R(P) = Qn[CI = {[A , El E Qn : A t B in P} known as the Radon complex of P. 
We will prove later in this chapter that the Radon complex of a point separoid is 
homotopically equivalent to the (n - d - 2)-sphere. 

The space which consists of the k-subspheres of the n-sphere in known 
as the (jrassmann variety (or, for short, grassmannian) and it will be carefully 
defined bellow but, by the moment -as a motivation-Iet us say that this space 
is homeomorphic to the space of Cionfigurations. 

In the c1assic literature, grassmannians are defined as the set of all sub
spaces, with a fixed dimension, of a vector space. Here we will refer exclusively 
to subspaces of JRn and the the grassmannian of k-subspaces (k-planes) of JRn 
will be denoted by gk = gk(JRn). 

This set can be provided with a natural topology. Every k-plane is the kernel 
of some linear function <p : JRn -> JRn-k and two such functions have the same 
kernel if and only if there exists a linear transformation 'Ij; E G L( n-k) that makes 
the following diagram commutative 
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Then, the grassmannian inherits the topology ofthe space C(JRn, JRn-k) modulo 
the linear transformations of JRn-k, Le., 

gk ~ C(JRn, JRn-k)/GL(n - k). 

Observe that: in particular projective spaces ¡pn-1, defined as lines -or 
hyperplanes- of JRn, are a special case of grassmannians g1 = ¡pn-1; and 
that, as there is a natural duality between lines and hyperplanes -orthogonal 
complementation- there is a duality between grassmannians gk ~ gn-k. 

But we want to work with the affine group lA(d), not the linear one, so a 
step further is required. The next step is to prove that the grassmannian can be 
embedded also in the space of linearfunctions modulo the affine transformations, 
but with a bit of difference in the dimensions, 

gd ~ C(JRn+1, JRd)/IA(d) . 

This will be a consequence of Theorem 1 below. We will denote by II = 1.L the 
hyperplane of JRn orthogonal to the vector 1 = (1, 1, ... , 1) with all its coordinates 
equal to one, or equivalently 

II = {x E JRn : LXi = o} , 
where Xi denotes the i-th coordinate of x. 

1.1. Theorem. Two functions rp, rp' E C(JRn, JRd)/IA(d) represents the same 
configuration if and only if their respective kernels intersects the hyperplane II 
in the same subspace. 

KnII~JRn 

~!~ 
'" IAd ~lAd 

Proof. Let Pi = rp(ei) and P~ = rp'(ei) be two configurations of n points in IAd 

and let K and K' denote their respective kernels. It will be proved that 

K'nII = KnII 

if and only if there exists an affine transformation 'Ij;: IAd 
-+ IAd that sends one 

onto the other: 

P~ = 'lj;Pi' 

This will induce a bijection between the space of collfigurations and the 
(n - d - 1 )-subspaces of the linear space II of dimension n-l. 

Necessity. It is clear that is enough to prove that K' n II e K n II, this is, it is 
enough to prove that 

LAi = O and LAiP: = O => LAiPi = O. 

Fig 8. The hyperplane II 
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In fact, if 'l/;x = Mx + v denotes the affine isomorphism, then 

Since M is invertible, then ¿ AiPi = O. 

Sufficiency. In seek of simplicity, we will suppose that the first d + 1 points of the 
configuration Pi spans affinely the space -the general case is totally analogous 
but working with subindexed set of indexes- therefore there exists an affine 
function '1/;: IAd -+ IAd defined as the affine extension of the equations 

P~ = 'l/;Pi' i = 1, . . . , d + l. 
It will be proved that the rest of the points satisfies the same equation. 

For this, let Pj be any other point. Since the points {PI' ... , Pd+1} spans the 
space, there exist numbers {Al , ... , Ad+d such that ¿ Ai = 1 and Pj = ¿ AiPi· 
By hypothesis we have that 

L Ai - 1 = O and L AiPi - Pj = O =} L Ai P~ - pj = O, 

and therefore 

This concludes the proof. 

With this result at hand, we obtain the desired topology for IA~ . 

1.2. Corollary. The points on the Grassmann variety gd(JRn-l) are in one-to
one correspondence with the configurations of n vectors in JRd modulo the action 
of the affine group, 

IA~ ~ gd(JRn-I) . 

Proof. The subspace II can be identified with JRn - 1 and every (n - d - 1)
subspace of it can be extended to the kernel of a linearfunction <p E C(IRn, JRd). 
Theorem 1 guarantees that the correspondence of each configuration with its 
kernel is well defined and is a bijection of the points of gn-d-I(JRn-l) with the 
points of the space of configurations. Finally, the duality of grassmannians gives 
us a bijection of those with gd(JRn -I) . í11 

ji. We will take now a closer and more concrete look to the Grassmann 
variety by describing an explicit embedding into projective space, called 
the P{ükgr em6edáing of gd (JRn). This dissertation will take us a little bit 
out of the scope of this work, but it will aloud us to ask sorne questions 
which are in this moment in research. In particular, we would like to 
study the space of configurations of affine su6spaces. It is a natural 
generalization ofthe previous when we think on points as O-dimensional 
affine subspaces. If we denote by l lA~ the space of all configurations of 
n subspaces, each of dimension l, into the d-dimensional affine space, 
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then the previous studied space IA~ can be denoted by olA~, and, as 
we will see, in the general case we may have an embedding of the form 

(olAl+l) n (gl+1 (lRd+1) t 
llA~ '-> d+2 "'" -'----_-'---_-.:....!.._ 

where rv is denoting an equivalent relation which will be manufactured 
later ... and when I am saying later, I mean Jater beca use at the moment 
it is not known how to build it even its existence is pretty obvious. 

Let I\k lRn denote the k-fold (jrassmann {or e;u:erior} proáuct of the vector 
space lRn . The elements of I\k lRn are called antisymmetric tensors. We may 
think on it as the G)-dimensional space (over lR) which has the canonical basis 

{eil /\ ... /\ eik : 1 S i 1 < ... < ik S n} . 

The product of k vectors VI, ... , Vk E lRn is given by 

VI /\ .. . /\ Vk = 

and the basic property of this product is that, VI, ... , Vk are linearly independent 
if and only if VI /\ . . . /\ Vk =f. O. Also, if two k-subspaces ?t,?t' '-> lRn are 
equipped with basis b1 , ... , bk and b~, ... , b~ respectively, we have that ?t = ?t' 
if and only if there exists a non-zero scalar e E lR* such that 

b1 /\ . .. /\ bk = c· b~ /\ ... /\ b~ . 

Therefore we have the following embedding 

gk(lRn ) '-> 1P(~)-1. 

Let us see a concrete example of how this can be used to study configu
rations of affine subspaces. Consider a line f. '-> 1A3 spanned affinely by the 
points a and b, and think on 1A3 

'-> lR4 as the hyperplane {x E lR4 : x . e4 = 1} 
of the vectors which have the fourth coordinate equal to 1. So, we can denote 
by a = (al> a2, a3, 1) and by b = (bl> b2, b3, 1) the affine basis of f.. Observe that 

( 

alb2 - a2bl) 
al b3 - a3bl 

a/\b= a2 b3- a3b2 = (aXb) ElR6. 
al - bl a - b 
a2 - b2 

a3 - b3 

Since every change of basis makes this assignments differ by a non-zero scalar, 
we can safely define a function r.p: {f. : f. '-> 1A3

} --+ 1P5 from the space of lines in 
the affine space to the projective 5-space by 

r.p(f.) = [: ~ : ] . 
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Now, consider a family of lines [, = {f I , . . . , f k } E IIR~ . We will say that 
[, is áepenáent if the set {cp (f) : f E [,} is linearly dependent in jp5, Le. if 
cp(f¡) 1\ ... 1\ cp(fk ) = O. 

1.3. Proposition. Three fines in 1R3 are dependent if they are concurrent and 
coplanar. 

Proof. Let f l , f 2 and f3 be three lines in the affine space with p = n f i a 
common point and let them be coplanar. Let a E f l and b E f 2 be points which 
completes a basis of their respective lines, Le. , both of them are different from 
p. Since the three lines are coplanar, the line spanned by a and b intersects f3 
in a point, say e, which is different from p and therefore, completes a basis of it. 
More over, this point is an affine combination of the form 

e = Aa + J.tb, where A + J.t = 1. 

From here it is easy to see that 

cp(fl ) 1\ cp(f2) 1\ cp(f3) = [p x a] 1\ [p x bb] 1\ [p x e] = o. p-a p- p-c 
Just recall that the Grassmann product is associative, antisymmetric and that it 
satisfies x 1\ x = O for all vectors x E IRn of the space. ~ 

., The necessity is also true. More over, it can be proved that four 
skew lines in 1R3 are dependent if and only if they form part of the ruler 
of a quadratic formo 

We end this section with the dissertation started at the previous "coffee cup" 
sign above. Let tS~ denote the set of all families of n affine f -subspaces in IRd . 

As we saw, each such a subspace has associated a point in gtH (IRd+ I ), and 
each point there has associated a point configuration, Le., an element of lR~t1. 
Since we have n of such subspaces, we can assign n configurations of points 
to the family at hand. Therefore we have an embedding 

S d (IRH I )n e n '--+ d+2 . 

Now, if we make a group act in IRd , say the affine one, we naturally have an 
equivalent relation l lR~ = lS~/IR (d) and this most induce some relation on the 
previous product of grassmannians 

IR d '--+ (IRH I )n / l n d+ 2 ~ 

... but we do not know yet how it works. It would be nice to find out! 
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2. The Radon Complex of a Point Separoid 

In this section we will give a geometric proof of the fact: the Radon complex 
of a point separoid is homotopically equivalent to a sphere. In order to achieve 
this result, we will need to review so me concepts of COtnÓinatoria! Conve7(jty. 
We will be dealing with the poCytopaf compfel(e.5 that bounds the n -cuóe and its 
dual, the n-octafiedron. Both are the convex hull of a finite set of points in lEd 

and therefore, each has associated a finite poset, its Jace fattice. As we will see, 
these lattices can encade in full a point separoid but, first of all, let us prove that 
point separoids are full, this is 

2.1. Lemma (fullness of points). LetP be a point separoid. An interval [A , Bl E 
Qn is a face ofR(P), the Radon complex ofthe separoid, if and only if A t 13 is 
a Radon partition of the separoid. 

Proof. The sufficiency is the face lemma 1.4.1. For the necessity, let [A , Bl be a 
face of R(P) and denote by C = B \ A the difference of those subsets. Clearly 
every vertex of such a face are of the form A U G' , for some G' ~ G. Then, since 
they are vertices of the complex, for all G' ~ G we have that A U G' t A U G', this 
is, the set {A U G' : G' ~ G} is a subset of the components of P . 

Now, in order to search for a contradiction, suppose that A ¡ 13. This is 
equivalent to the existence of a hyperplane 1-i '-+ IRd that separates the convex 
hulls of A and 13. It is easy to see that, ones this hyperplane exists, it can be 
eh osen in such a way that it does not cantains any of the points. Denote by Ga , 

respectively Gb , those points of G which are on the same side of A, respectively 
13, so G = Ga U Gb. From this definition follows that 1-i separates A U Ga from 
13 U Gb. But as previously settled, A U Ga t A U Ga ¡ (1) 

Observe that an analogous argument proves that if every separation can be 
extended to a maximum separation then the separoid is full (cf. Lemma 1.4.2). 

In the following, we will suppose some familiarity with concepts as aóstract 
and geometric simp{iciaf compfe~ geometric reafization ¡K¡ of an aóstract compfel( 
K, Iiomeomorpliism denoted by~, óoutufary {)K, and refative interior KO. But do 
not worry to much with this... any time I say "polytope" you may think in the n
octahedron (also known as the n-crosspolytope), the convex hull ofthe canonic 
basis of IRn and its negatives; and every time I say "polytopal complex" you may 
think in a subset of its boundary. 

.. An introduction to this concepts, can be found in Ewald's "Combina-
torial Convexity and Algebraic Geometry" (1996), Munkres' "Elements 
of Algebraic Topology" (1984), or to the classic Spanier's "Algebraic 
Topology" (1966). . 

Given two simplices, (]' and T, there is a ball defined by the union of all 
segments whose extreme points are, one in ea eh simplex; it is called the join 
and denoted by (]' * T . Observe that the join is again a simplex if and only if the 
union of both vertex sets is affinely independent. 
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2.2. Lemma (join). Let TO , TI < a be two faces of a simplex, and e an affine 
subspace. If e intersects the interior of both simplices, it intersects the interior of 
their join, i.e. 

Proof. Let a E T8 n e and b E Tf n e be points in the intersections of e with 
the interiors of the two faces. Then, the segment (a, b) is contained in e and its 
interior in (TO * TI) o . ít} 

Now, given a polytopal complex K, its 6aricentric su6áivision K' can easily 
obtained from its face lattice as follows: its vertices (K')(O) are the elements of 
the poset (the faces of K); and its k-faces (K')(k) are the chains of length k in 
the poset, this is (bo, . . . , bk ) E (K')(k) ~ bo < .. . < bk E K . 

., It is ease to see that the baricentric subdivision of dual polytopes 
is the same. 

The realization of the baricentric subdivision is known to be homeomorphic 
to the space it self. More over, if the baricenter of a face is aloud to move in the 
interior of the face it represent, with out going out of such a interior, the space and 
its combinatorial properties do not change. In particular, if an affine subspace e 
intersects the polytopal complex, the following realization of the subdivision can 
be defined 

IK'I(O) .= {b . b = {b(a
O 

n e) if a
O 

n e "" 1/> } 
. (7 . (7 b(a) otherwise ' 

(b(7Q, . .. , b(7.) E IK'I (k) ~ ao < .. . < ak E K , 

where each a is a face of K and 

denotes the usual baricenter. 
In the proof of Theorem 2.2.4 we will be dealing with two different ways to 

intersect an affine subspace e with a polytopal complex: the usuaf one which 
considers only those faces of the complex intersected in the interior; and what 
we call fat intersection which considers al! faces "touched" by the subspace. 
80th intersections are to be considered as subcomplexes of the baricentric sub
division. We will prove that the usual intersection is a retract of the fat one. For 
this, let us denote by K[V] the subcomplex of K ináuceá by a subset V ~ K (O) 
of its vertices. This is, the subcomplex induced by V consists of V it self, and of 
every face of K such that all its vertices are in V. 

With all these at hand, denote by 

K n e := K'[b(7 : a n e"" 1/>] 
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and by 

K n P:= K/[bu : a
O n P # 4>] 

the fat and the usual intersections, respectively. Clearly the realization of the 

usual intersection is the intersection of the realization, Le., IK n PI = IKI n P. In 
o 

fact it is the first baricentric subdivision of the "geometric intersection", K n P = 
(Kn p)'. 

2.3. Theorem. Let K be a polytopal complex, and P an affine subspace that 
o 

intersects it in the interior. Then IK n PI is a strong retract of IK n PI. 
o 

Proof. Let f : K n P --> K n P be defined as f (bu) = b'T ' where 

T = max{T < a: TO np # 4>}. 

First of all, observe that the join lemma guarantees that f is well defined 
and, to see that it is a simplicial map, observe that ao < al implies 

{T < ao : TO n P # 4>} e {T < al : TO n P # 4>} 

and therefore f(ao) < f(a¡). 

Clearly f is the identity map on K n P. 
o 

Now, for ea eh t E [0, 1], let ft: IK n PI --> IK n PI be defined as follows: first, 
if bu E (K n P) (O) is a vertex, 

ft(bu ) = (1 - t)bu + tf(bu ). 

Observe that, since bu and f (bu) are points of la 1. then ft (bu) is also a point 
of lal . Finally, extend linearly the function to the rest of the domain, this is, if 
x E IK n PI is any other point, then x E I(buo,"" bu. )1 e lak l and x can be 
denoted as a convex combination x = E >'i bu,. Therefore ft can be defined by 

ft(x) = L >'i !t(bu ,) ' 

So, ft: IK n PI "" IK n PI is a strong retract. 

We are almost ready for the main theorem of this section. The next step is to 
give two descriptions of the n-octahedron; a geometric one and a combinatorial 
one. They will be used to define a duality of it with the n-cube. 

Let us provide IRn with an unusual metric -known as Manhattan norm
that assigns to each vector the sum of the absolute value of its coordinates 
IIxll := E IXi l· In this space, the unitary sphere turns out to be the n-octahedrQn 

IOnl := {x E IRn : Ilxll = 1} ~ ~n-l . 

It is the boundary of the convex set of a finite set of points, the canonical basis 
and its negatives 

Fig 9. The fat intersection 
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therefore it is a polytopal complex. More over, it is a simplicial complex. 
The n-octahedron has also the following combinatorial description: each 

face a can be identified with an n-vector (Zl, ... , zn) E {-1 , O, 1} n that indicates 
which vertices -which canonicals, or its negatives- are incident to it, in such 
a way that each fa ce can be realized with the simplex 

lal = (Zi e i : Zi =1= O). 

It is well known that this complex is dual of the n-cube and therefore there 
is a function between their faces that realizes such a duality. We will denote it 
by 

<5 ((Zi e i : Zi =1= O)) := [{i : Zi = 1}, {i: Zi =1= -1}] . 

., Theorem 4 plays an important role on the next chapter. It was 
the basic guide of our intuition to develop the graph theoretical charac
terization of uniform oriented matroids in terms of their circuits. 80th, 
the technics in the proof and the statement it self, serves as pictures 
to "see" points separoids -and more generally, oriented matroids. In 
fact, this theorem generalizes that of Radon and it was basically his 
technic who lead us to the proof. Although the statement was conjec
tured since the first days of the theory, more that a chandelier ago, we 
had not found a "purely combinatorial" proof of it. Always the geometry 
and topology had play an important role ... well it was supposed to be 
like that, the final statement talks about homotopy of spheres so it is 
not rare that the topology has to play so me role in the proof. 

We will see also how the proof of Theorem 4 suggests a charac
terization of all point separoids. This will be used to give explicitly the 
stratification of IR~ for n ::; d + 3 and for d = 1. 

2.4. Theorem. Let P be a d-dimensional point separoid of order n. Then, the 
(n - d - 2) -sphere is an homotopical retraction ofits Radon complex R = R (P ), 

R '\. S n- d- 2. 

More over; if the separoid is in general position, then such homotopy is in fact 
an homeomorphism, 

Proof. Let P = (PI " .. ,Pn) E (lRd)n be a configuration of points, S = S(P ) its 
separoid and R = R ( S) its Radon complex. We will identify the configuration 
with the intersection of the kernel K = '1' -1 (0) of its linear function '1': IRn ~ IRd 

(where <p(e i) = Pi)' and the hyperplane 

TI = 11- = {x E IRn 
: L Xi = O} . 

33 

Fig 10. The 3-octahedron 
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This (n - d - 1 )-subspace of n will be denoted by f = K n n. Theorem 1.1 guar
antees that this assignment is well defined and, modulo affine transformations, 
is one-to-one. 

Give to IRn the structure of a (Manhattan) normed space and denote by 

101 = {x E IRn 
: L IXi l = 2} 

the sphere of radius 2 centered at the origin (observe that here we are working 
with a radius 2 sphere -beca use a technicality that will be clear later- but 
the previous dissertation on the n-octahedron can be applied to it completely). 
Recall the definition of the fat intersection 

O n f = 0'[0' E O : O' n f # 4>l 
and define the complex of its dual faces 

~ := {8 (O' ) E Qn : O' E O and O' n f # 4>}, 

where 8: O ---t Qn is the previously defined duality function . 
Clearly ~' = O n f . Observe also that, since f is a subspace of dimension 

n - d - 1, then O nf is a sphere of dimension n - d - 2. Now, due to Theorem 3, 
<9 n f is a strong retract of O n f and therefore ~ has the homotopy type of the 
(n - d - 2)-sphere 

Claim. ~ is equal fo n 
• Since point separoids are full separoids -A t B is a Radon partition if and 
only if [A , El is a faee of n (Lemma 1)- it is enough to prove that [A , El is a faee 
of ~ if and only if (A) n (B) # 4>. For this, let O' E <9 be a face of the n-octahedron 
and (Zi ) E {-1, O, l}n its corresponding signed vector. Then O' has associated 
the 3-partition ofP given by A = {Pi E P : Zi = 1}, B = {Pi E P : Zi = -1} and 
C = A U B = {Pi E P : Zi = O} and, by the definition of 8: <9n ---t Qn , we have 
that 8(0') = [A , A U cl. Therefore, it is enough to prove that 

O' n f # 4> ~ (A) n (B) # 4>. 

For, let x E O' n f, then 

L XiPi = 0, LXi = O and L IXi l = 2. 

The first equation is due to x E K, the second beca use x E n (all these sinee 
x E f = K n TI) and the third one because x E <9. More over, sinee x E a, we 
are aloud to write 

1 
'2x = L Ai(Zie i ) 

as a convex combination (2: Ai = 1 and Ai 2 O) of the canonic basis vectors or 
its corresponding negatives. Combining these (Xi = 2Zi Ai ) we have that 

L AiPi = L AiPi 
P i EA P i EB 

000 

Fig 11. Theorem 2.4 
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and 

L .xi = L .xi = l. 
P i EA P i EB 

This last happens if and only if (A) n (B ) f- rjJ. Since all previous steps can 
be followed the otherway around, we have concluded the proof ofthe claim, and 
therefore n '" ~n-d-2. • 

For the case of general position, observe that n has a face [A , Blof dimen
sion greaterthan n-d- 2 if and only if #(B\A) > n -d-2 and this is equivalent 
to the existen ce of a partition A t 13 where #(A U 13) < d + 2. If the separoid S is 
in general position this last is impossible (Lemma 1.0.2). Since all facets have 
dimension n - d - 2 we have that 

[oné'[ = [On é'[. 

Therefore n is homeomorphic to the (n - d - 2)-sphere n ~ ~n-d-2. ít) 

Observe that the last argument of the proof implies that the points are in 
general position if and only if é' is "in general position" with respect to O. Also, 
if we think on full separoids as filters in the face latlice of the n-octahedron, 
following the same technic as above we can prove that 

2.5. Corollary (point separoids). A full separoid S e On is a point separoid if 
and only if there exists a hyperplane H '-> lRn such that S '" H n II nOn' 

Other application of this theorem, besides Theorem 0.1 is 

2.6. Corollary (uniform sphereicity). Let S be a general position separoid of 
n convex sets in lRd • Then 

d(S) = d ==? n(S) ~ ~n-d-2. 
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3. Concluding; the stratification of IA~ 

We had been working in three different categories: point configurations, thought 
of as linear functions or matrices; separoids, thought of as the combinatorial 
structure they are; subcomplexes of the n-cube, defined this as the family of 
subsets of a given finite set. 

Given a separoid S, a "cubic" complex R(S) '-+ Qn, its Radon complex, 
can be defined identifying its vertices V(R) with the components ofthe separoid 
C(S) = {A e S : A t A} and looking for the induced subcomplex of the n-cube 
R(S) = Qn[C], In general it is not possible to reconstruct the separoid from its 
Radon complex but, if the separoid is a point separoid, this complex encodes 
the fuI! separoid and it is always an sphere. 

On the other hand, given a configuration of points P E IA~ it can be thought 
of as a matrix and identified with the intersection of its kernel, the hyperplane 
TI = 11. and the n-octahedron On' Such an intersection defines the dual of 
the Radon complex of the separoid associated to the configuration. A natural 
question is when does a cubic complex is the Radon complex of a point separoid? 
It seem natural to ask for some sphericity but, as we will see on the next chapter, 
it is not enough. In general, this question is still open but in the following we will 
analyze the cases where n :S d + 3. In the way, we will find useful to study also 
the case d = l. 

We now want to bring together all these to see how the n-cube imposes a 
stratification to the grassmannian, via the Radon complex of point configurations. 

Sincethe readerwas supposed toworkwith IA¡ , lA! and lAg, and we already 
described IA~ at the beginning of this chapter, we jump to study IA ~. It is an 
example of (5 = 3 + 2) 
The case n = d + 2. 

d+2 points in general position induce a unique (Radon) partition that can be 
interpreted as a O-subsphere of the (d + 2)-cube -a pair of antipode vertices
and the other way around; given a subset and its complement it is easy to 
construct a configuration with such subsets as its unique partition. This induce 
a one-to-one relation between pairs of antipode vertices of the n-cube (different 
from the empty set and the total one) and the d-dimensional point separoids of 
order n = d + 2 in general position. 

When the general position is lost, The Radon complex is "fatten" and gets 
faces of bigger dimension; edges, squares, cubes, etc. Each of these faces has 
associated an interval [A, A u e ] in the family of subsets and this represents a 
partition of the form A t B U C, where A t B is the minimal Radon partition of the 
configuration. The dimension of the "fat" is given by the cardinal of C . 

.. To get a picture ofthe fenomena, think on five points in lE3 in general position 
and al! of them being vertices of their convex hull. They lead a unique partition 
of the form abe t de and its Radon complex consists of two antipodal vertices. 
Now move continuously one of the points, say d, and push it to the closest face 
of the tetrahedra defined by the other four, this is, the triangle defined by abe. 
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While it is on the exterior of such a tetrahedra, the separoid do not change (even 
the configuration does). 

Ones it reaches the (relative) interior of the triangle abe, the new separoid 
is defined by the minimal partition abe t d and its Radon complex consists of two 
antipodal edges. If you move the point in the interior of the triangle, while the 
configuration changes, the separo id do es not change. If you move it to the other 
side, the interior of the tetrahedra, the separo id became in general position and 
the unique partition abee t d leads again to two antipodal vertices in its Radon 
complex. But, if you move, inside the triangle, to reach an edge of it, say ab, 
the separoid changes and defines a new minimal partition ab t d. Its Radon 
complex turns now to be a pair of antipodal squares. Analogously, if this point 
reaches an other point, saya, its Radon complex became a pair of antipodal 
cubes. Observe that there is no way to put two antipodal 4-cubes inside Q5 with 
out including the empty set and inducing, by the union of the vertices, the full 
5-cube. 

We have the following easily generalizable description of this fenomena: 
with out lose of generality, we may suppose that the first (d + 1) of the points 
are the vertices of a tetrahedra (a d-simplex); the (hyper)planes defined byeach 
three (d) ofthem leads a partition ofthe space in open sets (and points). Then the 
fifth (d + 2-th) point can be localized by the po sitio n it occupies in the "polytope" 
this partition defines -each open set can be named with a signed vector that 
corresponds to the signs of the baricentric coordinates in terms of the ordered 
basis determined by the the first four (d + 1) points- and each of this regions 
define a Radon partition A t B u C -the positives vs. the negatives in the 
previous mentioned signed vector. If the fifth point lies in the plane generated 
by the first three (d), the baricentric coordinates of it contains a zero in the fourth 
ter m (the cardinality of C is 1); if it lies in a line, contains two zeros (#C = 2); 
and so on. We have then the following types of partitions: in general position 
-represented in the grassmannian by facets of dimension 3 (d)- a t bede and 
ab t ede; degeneracy of first grade -faces of dimension 2 (d - 1)- a t bcd and 
ab t cd; of second grade -edges- a t be; and finally when two points are equal 
a t b. This is, the space of configurations IR~ consists of two types of facets (5 
tetrahedra and 10 prisms), two types offaces (20 triangles and 15 squares), one 
type of edges (30 of them) and one type of vertices (10 of them) . 

., The 2-skeleton of IR ~ contains a regular polyhedra that plays the roll 
of one of the platonic solids but in the projective space. If you consider 
only the flfteen squares of it, you get a polyhedra with schli:ifli symbol 
{4, 6} (it is made of squares, six in each vertex) and it can be embedded 
in ¡p3 in such a way that all of its automorphisms (the group S5) are 
realized with isometric projectivities. As you may already proved, IR~ 
is the hemicuboctahedron whose symmetry group is S4 . .. 

., For another presentation of the { 4, 6} see Strausz 1996 and Bracho 
& Strausz 2001 . 
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3.1. Theorem. The space of configurations of n points in dimension n - 2, 
modulo the action of the affine group, is 

Proof. Since two configurations are equivalent (modulo the action of the affine 
group) if and only if the intersection of their kernels with V n n 1.L is the same and 
because such intersection is a O-dimensional sphere, the configurations are in 
a one-to-one relation with the pairs of antipodal points of V n n 1.L. The duality 
with the n-cube has already been defined. ~ 

We will also give a combinatorial description for 1R~+3 but, in the study of 
the case n = d + 3, it will be important to have a good knowledge of 
The case d = lo 

The facets of IR~ are in a one-to-one correspondence with the linear or
ders of n elements (modulo reversing all the elements in the order), and two 
of them are adjacent if and only if they differ in a permutation of two consec
utive members. It is ea se to see that the facets are always simplices -with 
out loose of generality, the ending points of the configuration, saya and z, are 
represented by O and 1 50 the configuration is parametrized by a sequence of 
numbers O < b < e < . .. < x < y < 1. On the other hand, the vertices of 
IR~ , since are rigid configurations, are pairs of accumulated points. This is, the 
vertices of the simplices are of the form 

al bed . .. y z, 
ab I ed ... yz, 
abe ld . . . yz, 

abed·· · yl z . 

where the represented linear order is abed . . . yz. We know also that this space 
IR~ ~ ¡pn-l most be homeomorphic to the projective space of dimension n - 1. 

Let us see this in a more concrete example, four point in the line: in the 
projective plane, take four points in general position -you can start, e.g., with 
[1, O, O], [0, 1, O], [O, 0, 1] and [1 , 1, 1]- which will represent the four configuration 
with a unique (maximal) separation of the form a I bed. Now, draw the six 
lines that they define by pairs. In the intersection of these lines appear three 
new points. They represent those configurations with a unique separation of the 
form ab I ed. There are two kind of edges; six which makes adjacent two vertices 
of thefirst kind -characterized by a Radon partition of the· form be t ad- and 
twelve that joins vertices of different kinds -characterized by a Radon partition 
of the form b t aed. Observe that there are not edges between two vertices of 
the second kind. Finally, there are 12 triangular facets which consist each, of 
two vertices of the first kind and one of the second. AII this dissertation can be 
resumed in the following 
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3.2. Theorem. The space of configurations of n points in the line, modulo the 
action of the affine group, is 

IR; = (Q~ \ {<p,"4i }) / {A, A}, 
where Q~ denotes the first baricentric subdivision of the n-simplex. 

Proof. The combinatorial structure of open sets defined by the (n~2) hyper
planes spanned by n points in general position in the (n - 2)-projective space 
is isomorphic to the star subdivision of the n-hemicube minus two antipodal 
vertices; the poset relation is given by A < B {=? A e éJB. ~ 

The case n = d + 3. 
As a consequence of Theorem 2.4, we have that each configuration of n = d + 3 
points in general position in dimension d gives place to the embedding C2n '-+ Q n 

of a cycle into the cube, its Radon complex. The fullness of point separoids 
(Lemma 2.1) implies that two such separoids are equal if and only if their Radon 
complexes are. Now, by Theorem 3.2.3, each antipodal cycle C2n '-+ Q n can 
be associated to an oriented matroid of codimension 1, and therefore a point 
separoid . Finally, observe that the condition of acyclicity is equivalent to say that 
the Radon complex of the separoid does not contains the empty set (neither the 
total) . We have then that 

3.3. Theorem. The facets of the space of configurations of n points in dímensíon 
n - 3, modulo the actíon of the affine group, are 

( 1R~ - 3 ) (2n - 6) = { C2n '-+ Qn \ {<p,"4i } : A E Cª~ ==;. A E Cª~) } , 

and two facets represented by the eyeles C and C' are adjaeent if and only íf 

jV(C) t. V(C') I = 2. 

.. Analyzing in detaillR~+3 for the cases d = 0, 1,2,3, in particular we 
can prove that 

• In Q3 \ {<p, "4i } there is only one cycle of order 6. 
• In Q4 \ {<p,"4i} there is, essentially, only one kind of antipodal 

cycles of order 8, and there are as many as linear orders with four 
elements. 

• In Q5 \ {<p, "4i} there are three kind of antipodal cycles of order 10. 
They correspond to the configurations depicted in Figure 7. 
This leads to complete the combinatorial description of this space of con

figurations. But one question remains open: howean we reconstruet the con
figuratíon from its Radon complex? 

For this special case, we have a construction that we know it functions in all 
small cases (n = 3,4, 5,6) but we do not have yet a prove for the general case ... 
however we are convinced that this will be the case. 

To describe the construction, let us go back to the first example of this 
chapter: the regular pentagon. Observe that, given the cycle ClO '-+ Q5 and a 
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vertex A E c~g) of it, each path from A to its antipode defines a linear order of 
the base set X = {O, 1,2,3, 4}. In the example, if we start with the set A = 02, 
one of the two paths to its antipode is 02,024,24,124,14,134. This path defines 
naturally the lineal order 40123, the elements that change in each step of it. If 
we forget for a moment some element, say 4, the remaining information is: a 
minimal Radon partition 02 t 13 and a linear order 0123. 

Recall the triangulation lA!. In this, there are tour special vertices (those that 
represents the configurations of the torm a I bcd) and ea eh facet represents a 
linear order. If you add a fifth point in the baricenter of the region that represents 
the order 0123 and we apply a projective transformation such that the four special 
vertices realizes the partition 02 t 13 in the affine plane II + e i, parallel to II thru 
the canonic basis, we obtain the desired configuration. 

Figure 12. The realization 01 the pentagon 
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4. One last application 

We close this chapter with an application of the Radon complex of point sepa
roids. We say that a separoid S is po{ytopaf if every member of it is separated 
from its complement x E S =* x ix. If a point separoid is polytopal, all its 
points are vertices of its convex hull, and therefore it is a polytope -hence the 
na me. 

One of the main problems in C0m6inatoria{ Conveí\jty is to classify convex 
polytopes and there had be en developed lots of tools to reach this. We will 
see how the Radon complex of polytopal point separoids help us to count the 
different types of polytopes in the ease case n = d + 2 . 

., The following result is usually settled using (jale áW¡¡rams which I 
will avoid, but it can be found, e.g., in the second chapter's last section 
of Ewald 1996. 

4.1. Theorem (Grümbaum 67). There are precisely lid2 J combinatorialtypes 
of d-polytopes with d + 2 vertices. 

Proof. Let P E 1A~+2 be a polytopal point separoid . By Theorem 2.4, its Radon 
complex R = R(P) is homotopically equivalent to the O-sphere and therefore is 
the un ion oftwo intervals [A , E] and [A, E] . Since it is polytopal , neither ofthese 
intervals contains a singleton (neither a subset of cardinality d + 1). With this 
extra condition we have that 

where P = -¡¡; is identified with the base set and (~) = {A e P : IAI = k} denotes 
the family of k-subsets of it. If [A , E] ~ Qo, there are r d;-l l esseritially different 
ways to embed R; if [A ,E] ~ Ql, there are rd;-21; if [A ,E] ~ Q 2, there are 
r d;-31; ... ; if [A , E] ~ Qd-l, there is one (= r ~ 1) way to embed R. Therefore 
we have the sum 

and we are done. 

l ~ J = r d; 11 + r d; 21 + ... + r~ 1 ' 

Ir you are not too ambitious, it can be a pleasure to realize 
that you have rediscovered something previously known, 

because at least you know that you were on the right track. 

-I.M. GEL 'FAND (¿1980's?) 



3 
Oriented Matroids 

: I . • ~. ' .. 
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Oriented matroid theory was introduced in the 1960's when J. Folkman and 
J. Lawrence proved that every oriented matroid can be thought of as a family of 
oriented pseudospheres. In particular, they proved that the natural partial order 
associated to an oriented matroid is the tace lattice of a sphere -this last result 
is known as the Basic Sphericity Theorem. This result has many applications 
and we will use, as our intuition source, a slightly different version of it: The 
Radon complex of an oriented matroid is a sphere. It will be shown that this is a 
direct consequence of Edelman's theorem (1984) and Alexander's duality. 

One of the main bricks of the theory is the classic Radon's theorem (1921). 
Oriented matroids encode minimal Radon partitions in terms of circuits , a set of 
signed vectors e e {-, o, +}E with some properties; in particular, they define a 
separoid which encodes all the information. As we saw, the family of all signed 
vectors has associated a natural poset which turns out to be the fa ce lattice of 
the n-cube. The Radon complex of an oriented matroid is a "cubic" complex 
(an ideal in the face lattice of the n-cube) whose vertices are identified with 
those subsets non-separated of its complement. Since oriented matroids leads 
to fu{[ separoids, this complex captures the structure of the oriented matroid. 
In Theorem 2.2 we will prove that the dual poset of such a complex, can be 
characterized via a natural combinatorial metric associated to the 1-skeleton 
of it. 

We follow here ideas explored by K. Fukuda and K. Handa (1993) but in 
the more general context of separoiás: Symmetric ideals (or filters) defined by 
an antichain in the face lattice of the n-cube (or the n-crosspolytope) . Fukuda & 
Handa characterized every topegrapli y = Y (M ) ofan oriented matroid ofrank3 
-dimension 2- showing that they are those antipodal planar graphs which can 
be embedded in the n-cube preserving their graph distance. The planarity of Y 
induces a dual graph 9 = Y * which can be proved to be the cocircuit grapli of the 
oriented matroid. No characterization is known ofthe cocircuit (or tope) graph in 
the general case, but Theorem 2.6 gives necessary and sufficient conditions for 
unifonn oriented matroids with arbitrary rank. We basically settle that a graph 9 
is the cocircuit graph of a uniform oriented matroid of order n and rank r if and 
only if it is of order 2(r~ 1 )' it is antipodal and it can be embedded "metrically" in 
the (n - r - l )-dual ofthe n-cube. 

In the way to reach this, we will apply all the theory developed in the previous 
chapters. In particular we settle that oriented matroids can be represented by 
families of convex sets and characterize those uniform matroids which can be 
realized as point separoids. 
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o. The Cryptomorphism 

In this chapter oriented matroids, and separoids, will be handled as families of 
signed vectors. Thus some notation and definitions have to be introduced. 

Let E be any set with n elements and denote by O E = { - , O, + }E the set of 
(signed) vectors with n entries in {- , O, +}. Given a signed vector X = (Xe)eEE , 
the set X± := { e E E : Xe i=- O} is called the support of X . The zero set of X is 
the complement of its support, XO := E \ X± = {e E E : Xe = O}. Its positive 
and negative sets are X+ := {e E E : Xe = + } and X - := {e E E : Xe = -}, 
respectively. The opposite -x is defined by (-X)e = - (X e). 

In the family of signed vectors OE a partial order can be defined as 

X :$ Y <=> x+ ~ y+ and X- ~ Y -. 

If X :$ Y, it will be said that X confonns to Y . 

., This poset is the face lattice of the n-crosspolytope On and dual of 
the n-cube Qn -hence the notation. 

With all this at hand, a separoid S = (E, 1) can be encoded with signed 
vectors as follows: S ~ O E is a separoid if 

(SI) X E S ===> -X E S, (symmetry) 
(S3) X E S and X' :$ X ===> X' E S. (it is an ideal) 

The separations can be reconstructed with the obvious definition: 

X E S <=> X+ I X- . 

Recall that it suffices to know maximal separations to reconstruct the whole 
separoid -they encode the whole information of it. 

To define separoid morphisms in this context, the set OE can be interpreted 
as the family of functions of the form a : E -+ {- , O, +} where, given one such a 
function a = X E OE, its applications are denoted by a (e) = X e . Also, if F is 
any other m-set -together with its family OF- and <p: E -+ F is any function, 
the cofunction <po: OF -+ OE can be defined in the usual way: if f3 E OF then 
<po f3 E O E is defined as 

(<p*f3 )(e) = f3 (<p(e)) . 

Now, given two separoids S ~ OE and F ~ OF, a separoiá morpliism, 
denoted by S ---+ F, is a function <p: E -+ F such that 

f3 E F ===> <po f3 E S. 

Analogously to the former definition of a separoid, the Radon partitions of 
a separoid S = (E , t) can be encoded with signed vectors: S ~ OE are the 
Radon partitions of a separoid if 

(Rl ) X E S ===> -X E S, (symmetry) 
(R3) X E S and X :$ X' ===> X' ES. (it is a filter) 
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Once again, recall that the minimal Radon partitions encode the whole informa
tion of the separoid. 

An orienteá matraiá M = (E , C) of order n = IEI is a set of signed vectors, 
C ~ VE, with the following properties: 

(el) Oíl'C 
(e2) XEC ==} -XEC 
(e3) x , y E C and X± ~ y± ==} X = ±Y 
(C4) x , y E C and X e = -Ye i- o ==} there exists Z E C 

such that Z+ ~ X+ U Y+ , Z- ~ X- u Y- and Ze = o 
The elements of C are known as the circuits of the matroid. 

Given an oriented matroid M the set of its circuits C can be identified, in a 
one to one fashion, with the MRP set of a separoid on the same base set E. We 
have the following obvious cryptomorphism. 

0.1. Theorem. The minimal Radon partitions MRP of a separoid S are the 
circuits of an oriented matroid if and only if 

(MI) 4>t</J íl' MRP, 
(M3) S is a Radon separoid, 
(M4) AtE,AltE/EMRP and xEAnE' ==} 

:lA" t E" E M RP : A" ~ A' U A \ x and E" ~ E U E' \ x. 

Given the circuits of an oriented matroid, its vector s, V = V(M), can be 
reconstructed by an operation known as composition, defined as 

(X o Y) = {Xe if X e i-. O, 
e Ye otherwlse, 

via the following: V 2 C is the minimal superset of C closed by composition, i.e., 
X, y E V ==} X o Y E V. Observe that VeS, i.e., since vectors close circuits 
by composition and separoids by conformal relation, in general there are more 
Radon partitions in the separoid than vectors in the oriented matroid. Therefore, 
generalized cotopes (maximal Radon partitions) effectively generalize cotopes, 
maximal vectors. 

Recall the example of Section 0.1; the configuration P contains only two 
circuits 1 t 34 = (+, O, - , -) and its opposite. From the oriented matroid point 
of view these two circuits are all the vectors, but for the separoid there are four 
more Radon partitions 1 t 234, 12 t 34 and its opposites. 

The topes T(M) ~ VE of the oriented matroid are the maximal separations 
and its covectors L(M) ~ VE are those separations which composed with topes 
give topes, i.e., 

XEL ~ 'VT E T:X oTET. 

Observe once again that not every separation is a covector, this is, there are 
more separations than covectors in an oriented matroid. 
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It can be proved that the covectors of an oriented matroid M are the vectors 
of another one known as the áuaf oriented matroid M *. More over, (M*)· = M . 

., There are different axiomatizations of oriented matroids; in terms 
oftopes, vectors, covectors, circuits and cocircuits. They are rigorously 
treated in Chapter 3 of Bj6rner et al. (1993). 

1. Representations of oriented matroids 

"Oriented matroids can be thought of as a combinatorial abstraction of point con
figurations over the reals' -so reads the opening remark of Bj6rner et al.'s basic 
reference book. However, they are more general than that, and one of the basic 
problems in the area is to give meaningful characterizations of those oriented 
matroids that do arise from point configurations, they are called anear or rea!
iza6fe. They can also be thought of, by polarity, as a combinatorial abstraction 
of configurations of oriented hyperplanes, or of oriented (codimension 1) sub
sphere arrangements on a sphere. From this point of view, it is remarkable that 
all oriented matroids can be realized if the spheres are let to "wiggle" a bit, that is, 
if they are not asked to be geometrically flat but only that they keep the topological 
behavior of spheres, they are then called "pseudospheres arrangements". 

5 
6 

Fig 13. An oriented matroid. 

Thinking again in terms of points, there should be an analogue of the extra 
freedom that comes from "wiggling" hyperplanes ... 

The Representation Theorems (1.2.2 y 1.2.3), besides Theorem 0.1, implies 
that 

1.1. Theorem. Every oriented matroid of order n can be represented with a 
family of convex sets in some Euclidian space . . More,over, if the separoid is 
acyclic, such a representation can be don& in the(n - l)-dimensional affine 
space . 

... this result plays the dual role of the Topological Representation Theorem 
due to Folkman & Lawrence. This is, when hyperplanes ''wiggle'' to beca me 
pseudohyperplanes, their dual points "fatten" to beca me convex bodies. But 
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then the natural combinatorial abstraction becomes more general-becomes a 
separoid. 

An oriented matroid is said to be Unif017n if its separoid is in general position. 
Its ran/( is the dimension of the separoid plus one. Theorem 2.0.1 implies that 

1.2. Theorem. A uniform oriented matroid is linear if and only if its geometric 
dimension equals its rank minus one. 

Now, since Edelman's complex (cf. Example 4) is a sphere and it is the 
complement of the Radon complex, due to Alexander's duality we have that 

1.3. Theorem. The Radon complex of an oriented matroid is homotopically 
equivalent to a sphere. 

This result was our intuition guide to the following section, but first we have 
to introduce some definitions. 

2. The circuit graph of an oriented matroid 

Given two signed vectors X and Y, the separator of X and Y, is the set 

SeX, Y) = {e E E: X e = -Y., =P O} . 

Two signed vectors X, Y with the same support size (IX± I = IY± I < n) will 
be said to be adjacent if there exist i, j E E such that Xk = Yk for all k !fe {i, j}, 
X i = O =P Y; and lj = O =P X j . 

This notion of adjacency defines a graph en with vertex set the family of all 
signed vectors. It leads naturally to the definition of nw'llÍng azero from one place 
to another (non-zero place) which is a stepof a walk in the graph. Therefore 
the distance in en from one vector to other is the minimum number of moves 
of zeros needed to reach the destination vector. This motivates the following 
definition: the traversen of two signed vectors X, Y is 

T(X, Y) = {e E E : X e = O =P Ye or Ye = O =P X e } . 

2.1. Remark. X and Y are adjacent in en if and only if 

S(X, Y) = cp and IT(X, Y)I = 2. 

This notion will be interpreted in three different settings: as adjacency on 
the circuit graph of an oriented matroid; as adjacency in the k-dual graph of the 
n-cube; and as adjacency of k-subcubes of the n-cube. 

Every oriented matroid M = (E , C) has associated a graph Q = Q(M) 
whose vertices are the circuits of the matroid and two of them X, Y E C are 
adjacent if X o Y = Y o X and for every Z 'S: X o Y, it follows that Z E {X, Y}. 
This graph is what we call the circuit graplí of the oriented matroid -in the 
literature this graph is studied via the dual oriented matroid so it is beUer known 
as cocircuit graplí. 
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., Previous attempts to understand the cocircuit graph of an oriented 
matroid can be found in: Fukuda & Handa 1993; Babson, Finschi & 
Fukuda 1999; and Finschi & Fukuda 2000. 

It is well known that the cocircuit graph of an oriented matroid is the 1-
skeleton of the cell decomposition induced by the pseudospheres that realize 
the oriented matroid via the Topological Representation Theorem therefore, if 
the matroid is uniform, two (co)circuits X, Y are adjacent if and only if 

¡S(X, Y)¡ = O and ¡T(X, Y)¡ = 2. 

From this follows 

2.2. Theorem. Let M be an oriented matroid, S its associated separoids and 
n its Radon complex. If Mis uniform then Q(M) is the l-skeleton ofn", the 
dual of its Radon complex. ~ 

This is the first step to reach the characterization of the cocircuit graphs of 
oriented matroids. We will analyze different ways of walking with this notion of 
adjacency, and develop a series of metrical restrictions on such paths. Recall 
the definition ot Q~, the k-dual of the n-cube (Section 1.4). 

2.3. Lemma (metric). The graph distance in Q~ (k > O) is, for X i= y 

{
¡S(X, Y)¡ + 1 if X± = Y±, 

dQ~ (X, Y) = ¡S(X, Y)¡ + !¡T(X, Y)¡ otherwise. 

Proof. Let X, Y E V(Q~). First ot all, we exhibit a XY-path with the desired 
length -this will show that the distance in Q~ is at most that of the statement. 
There are tour cases: 

Case 1 (S(X, Y) = 1> and T(X, Y) = 1». This condition is equivalent to X = Y. 

Case 2 (S(X, Y) = 1> and T(X, Y) i= 1». Let To(X, Y) = {i E E : Xi = O i= Y;} 
and analogously To(Y,X) = {i E E : Y; = O i= Xi} . 

Clearly T(X, Y) = To(X, Y) U To(Y, X) and, since X and Y have the same 
support size, ¡To(X, Y)¡ = ¡To(Y, X)¡. Let us give an arbitrary (but fixed) lin
ear order in both previously defined sets: To(X, Y) = (TI, .. . ,TITo(X,Yll) and 
To(Y, X) = (1T1, . . . , 1TITo(Y,Xll) ' Now, let {Z1, Z2, . .. , Z!IT(X,Yll} be defined as 
follows: 

(zm) . = {Y; iti E {TI, ... ,Tm, 1Tl,·· · ,1Tm }, 
, Xi otherwise. 

Observe that 

S(X, Zl) = S(Zl, 'Z2) ;= .: : i= sez!IT(.X,Y)I-1 ,y»= 1>, 

¡T(X,Zl)¡ = ¡T(Zl,Z2)¡ = . .. = ¡T(Z!IT(X,Yll-l, Y)¡ = 2, 

and Z!IT(X,Yl l = Y. Therefore, by the remark, (X, Zl , Z2 , .. . , Z!IT(X,Yll = Y) 
is a XY-path and its length is !¡T(X, Y)¡. 

'. 
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Case 3 (S (X, Y) # <f¡ and T(X, Y) # <f¡). Let us give an arbitrary (but fixed) 
linear order in the separator: S(X, Y) = (0"1, ... , O"IS(X,Y)I)' and let 

{zl, Z2 , . .. , ZIS(X, Y)I} 

be defined as follows: 

m {Yi ~f ~E{Tl>0"1 " ",O"m-d, 
(Z )i = O If t = O"m, 

Xi otherwise. 

Observe that, 

S(X, Z1) = S(Z1, Z2) = . .. = S(ZIS(X,Y)I-1, ZIS(X,Y) I) = <f¡ , 

IT(X,Z1)1 = IT(Z1, Z2)1 = .. . = IT(Z IS(X,Y)I-1,Z IS(X,Y)I)1 = 2. 

Moreover, S(ZIS(X,Y) I, Y) = <f¡ and 

IT(ZIS(X ,Y) I, Y)I = IT(X, Y) \ {Td U {O"S(x,y)}1 = IT(X, Y)I· 

Now, construct a ZIS(X,Y)lY-path as in the previous case. This completes the 
XY -path of the desired length. 

Case 4 (S (X, Y) # <f¡ and T(X, Y) = <f¡). Let io E XO = y O be arbitrary (but 
fixed) and let Z1 defined as follows 

{

O if i = 0"1, 
(Z1)i= + if i = i o, 

Xi otherwise. 

Observe that S(Zl, Y) = S(X, Y) \ {O"d and T(ZI, Y) = {O"l , i o} , therefore the 
previous cases applies. . 

To end the proof, we have to show that the distance in Q~ is at least that of 
the statement. We do it by induction. 

Let d: V(Q~) x V(Q~) -> IN be the following function 

d(X Y) _ { IS(X, Y)I + 1 if X± = Y± , 
, - IS(X, Y)I + ~IT(X, Y)I otherwise. 

By the remark it follows that d(X, Y) = 1 if and only if dQk (X, Y) = 1. Let 
suppose that for every X , Y and for every m < mo, we have that d(X, Y) = m if 
and only if dQ~ (X, Y) = m. Let (X, Z1, . .. , zmo = Y) be a geodesic XY-path 
(of minimum length) . We want to prove that d(X, Y) S mo so, suppose that 
d(X, Y) > mo. 

Since the path is geodesic, it follows that 

dQ~ (X, Y) = dQ~ (X, Z1) + dQ~ (Z1 , Y) 

which by hypothesis implies that mo = 1 + d(Z1, Y) and so d(X, Y) > 1 + 
d(Zl , Y). If we denote as 

{
l ifX± =Y±, 

ÓXY = O otherwise, 
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we can write d(X, Y) = IS(X, Y) I + ~ IT(X, Y) 1+ 8xy including in one equation 
both cases of its definition. Recall that X± = y± if and only if T(X, Y) = 4>. 

With this notation at hand we have that 

1 1 1 1 
IS(X, Y)I + 2 IT(X, Y)I + 8xy > 1 + IS(Z , Y)I + 2IT(Z , Y)I + 8Z 1 Y ' 

Since X is adjacent to Zl, there exist i, j E E such that for all e ~ {i, j} 
we have that Xl = (Zl )l, Xi = o i= (Zl)i and X j i= o = (Zl )j. Then S(X, Y) 
and S(Zl, Y) , and respectively T(X, Y) and T(Zl, Y), differs only in the i th 
and jth coordinates. This motivates the following notation: Given F ~ E, let 
SF(X, Y) = F n S(X, Y) and TF(X, Y) = F n T(X, Y). Therefore we have that 

ISij(X, Y)I + 4 ¡T;j (X, Y)I + 8xy > 1 + ISij(Zl, Y)I + 4ITij(Zl, Y)I + 8Z 1Y ' 

We consider two cases: 

Case 1 (T;j(X, Y) = 4». Since Xi = O i= (Zl)i and X j i= O = (Zl )j, then Y; = O 
and Yj i= O therefore {i,j} e Tij (Zl, Y) and i ~ Sij(X, Y). But 

2 2 ISij(X, Y)I+4¡T;j(X, Y)I+8xy > 1+ ISij(zl, Y)I+4¡T;j(Zl, Y)I+8z 1 Y 2 2 

an obvious contradiction ! 
Case 2 (Tij (X, Y) i= 4» . Clearly, in this case, 8xy = O. Then 

ISij(X, Y)I + ~ITij(X, Y)I > 1 + ISij(Zl , Y)I + ~ITij(Zl , Y)I· 

Since Xi = O then i ~ Sij(X, Y), and then j E Sij(X, Y). Therefore j E 
Tij (Zl, Y) which implies that 

1 + ~ > IS ·(X Y)I + ~IT . (X Y)I > 1 + IS·(Zl Y)I + ~IT . . (Zl Y)I > 1 + ~ 2 - 'J' 2 'J , 'J' 2 'J , - 2 

a new contradiction ! This concludes the proof. ~ 

Bya graph etnÓeááing G '-+ H is meant an injective function i: V (G) ---+ V (H) 
of its vertices that sends edges to edges. Moreover, in such a case, we will 
identify the vertices of the doma in with those of its image. In fact we will refer to 
the vertices of the doma in with the name of their respective image. In particular, 
if a graph is embedded in Q~, the vertices of the graph will be denoted by those 
signed vectors of their images. As usual, an embedding is said to be isometric if 
the graph distance of the domain is preserved by its image. 

2.4. L~mma (weak elimination). Let G '-+ Q~ be an isometric embedding such 
that X± = y± if ami only if X = ±Y. Given X, YE V(G) two non-antipodal 
vertices (X i= ±Y) and an element in its separator e E S(X, Y), there exists a 
vertex Z E V(G) such that e E ZO, Z+ ~ X+ U y+ and Z- ~ X- U Y-. 

Proof. Since changing the separator S(X, Y) in a XY-path from one sign to the 
other requires to move a sign to zero and, after that, to the other sign, then for 

: • • 00. 
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every element in the separator there exists a vertex Z in the path with a zero in 
that position. It remains to prove that this vertex works. 

Let (X, Zl , Z2, ... zm = Y) be a geodesic path in G. It follows that 

dQ~ (X, Y) = 1 + dQ~ (Zl, Y) 

which by Lemma 3 implies that 

1 1 
IS(X, Y)I + 2IT(X, Y)I + OXY = 1 + IS(Zl, Y)I + 2IT(Zl, Y)I + 8Z 1 y . 

By an analogous argument to that in proof of Lemma 3, it is easy to see that 

1 1 1 1 
ISij(X, Y)I + 2ITij(X, Y)I + OXY = 1 + ISij(Z ,Y) I + 21Tij(Z ,Y) I + 8Z 1 Y , 

where Xi = ° =1= (Zl)i and X j =1= O = (Zl}j. Since X =1= ±Y then 8xy = O and, 
because Xi = O we have that i f/. Sij(X, Y) and therefore 

1 1 1 1 1 
1 + 2 2 ISij(X, Y)I + 2 ITij (X, Y)I = 1 + ISij(Z ,Y)I + 21Tij(Z ,Y)I + 8Z 1 Y 

which implies that ISij(Zl, Y)I = 8Z 1 Y = O. 
In particular this implies that two antipodal vectors belongs to a geodesic 

path if and only if they are the extreme points of it. 
Observe the following contradiction; if (Zl)i =1= Yi then Yi = O = Xi, i E 

Tij(Zl, Y) and so 

1 1 1 1 L 
1> IS(X Y)I + -17: (X Y)I = 1 + -17:(Z Y)I > 1 + - l' - ']' 2 '] ' 2 '] , - 2 

Therefore (Zl)i = Yi. 
Since for every e f/. {i,j}, Xl = (Zl)t and (Zl)j = 0, we have that 

(Zl)+ <;;; x+ U y+ and (ZI)- <;;; X- u y-o 

Finally, since Zl =1= - Y then the previous argument works all over along the 
path, i.e. 

and 

(zm+l)- <;;; (zm)- UY- <;;; X- UY- , 

therefore we have that every Z in the path has the desired property. í!) 

2.5. Theorem 17. Let 9 be a graph. If there exísts an antípodal embeddíng 
9 '-+ Q~ and 
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then Q is the circuit graph of an oriented matroid. 

Proof. First of all observe that the metric Lemma 3 implies that the extra condition 
(*) is true if and only if the embedding is isometric and there are not two non
antipodal vertices with the same support. 

Let Q '-+ Q~ be an antipodal embedding with the property (*) . We want 
to construct an oriented matroid such that its circuit graph is Q. Let S be the 
following separoid over the base set E = {1 , . . . , n}: tor every X E V (9) , 
which corresponds to the face [A , Bl < Qn, define a minimal Radon partition as 
A t R. We have to prove that the set of all such partitions are the circuits of a 
uniform oriented matroid. The axiom (C1) is trivial. Since Q is closed by the 
antipodal automorphism, the relation is symmetric and axiom (C2) follows. (C3) 
is equivalent to say that S is a Radon separoid, a direct consequence of (*) . 
In order to prove (C4) we apply the weak elimination Lemma 4 to see that in a 
geodesic path trom a vertex X to a vertex Y =1= ±X there should exists another 
vertex Z with the desired property. ~ 

However the condition of isometry is too strong to be necessary as Figure 13 
shows. In it, the vertices X and Y are non-antipodal (in fact we are depicting 
only the projective half ofthe oriented matroid) and IS(X, Y)I + ~IT(X, Y)I = 2 
but dg(X, Y) = 3. 

So, let us introduce the weaker (and therefore more general) concept of 
metric embedding; an embedding G '-+ H is said to be metric if for every pair of 
vertices X, Y E V (G) there exists an XY -path P such that 

Z E V(P) ===> dH(Z, Y) :S dH(X, Y) . 

Such a path P will be called a metric patfi. Observe that, if an embedding 
Q '-+ Q~ is not metric then for every XY -path P there exists a vertex Z E V (P) 
such that 

IS(Z, Y)I > IS(X, Y ) I or IT (Z, Y)I > IT (X, Y )I · 

The existence of a metric embedding is necessary. 

2.6. Theorem. Let Q be the circuit graph of an uniform oriented matroid then 
the natural embedding Q '-+ Q~ is a metric embedding. 

Proof. We analyze two cases: first, suppose that X , Y E V(Q) have empty 
separator and they do not have common zeros, i.e., S(X, Y) = tjJ = X O n yO. 
Then their composition T = X o Y E T is a tope of the oriented matroid. 

In the topological representation this tope is the ball that results of intersect
ing a number of Glos~-semispaces -hence the na me- and we may suppose, 
with a little abuse of notation, that '. . 

T = nHt = + + ... +, 

where Ht = {V E V(M) : V; E {O, +}}. Since the boundary of such a ball 8T 
is connected and it contains both X and Y , there exists a geodesic XY-path 

" " 
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p e 8T in it. As we walk into this path from X to Y, neither the separator nor 
the traversen increase. This is, for every Z E V(P) we have that 

S(Z, Y) = rp and IT(Z, Y)I :S IT(X, Y)I = 2k . 

Therefore P is a metric path. More over, it is an i-metric path (see the definition 
below). 

In the case where the separator or the set of common zeros of X and Y are 
non-empty, we use an inductive argument in the matroid 

M' = M \ S(X, Y)/(XO n yO) 

to find there a metric path Pi. It is easy to see that if P e 9 is the subdivision 
of pi that comes from "putting back the separator and the common zeros" of X 
and Y then P is a metric path . (1) 

However, this metric condition is to weak to be sufficient. In order to prove 
the sufficiency we should be able to prove a generalization of the weak elimina
tion Lemma 4 but this kind of embedding allow us to construct metric paths of 
the form 

X = O + xxxxx 
Z = - O xxxxx 

Y= + - yyyyy 

In such a path, when giving the step from X to Z, neither the separator nor 
the traversen increase but we are "walking with the wrong direction". This is, 
Z- r:t X- UY-. 

Therefore, in order to find a necessary and sufficient condition, we have to 
strength ones more our concept of metric. We say that an embedding 9 '--+ Q~ 
is i-metric if for every pair of vertices X, Y E V(9) there exists an XY-path 
P = (X, Zl , ... , zm = Y) in 9 in which every step takes "the right direction". 
This is, for every pair of adjacent vertices, if (Zl); = (Zl+l)j = O i (Zl)j -ifwe 
are moving a zero from i to j - then (Zl+l)i E {Xi , Yi} and therefore, for every 
ZEP 

S(Z, Y) ~ S(X, Y) and IT(Z, Y)I :S IT(X, Y)I· 

Such a path is called an i -metric patli_ This concept allow us to generalize 
Lemma4. 

2_7_ Lemma (i -metric paths). Let 9 '--+ Q~ be an embedding. If P e gis an 
i -metric path from X to Y then forevery e E S(X, Y) there exists Z E V(P) such 
that e E ZO, Z- ~ X- U Y- and Z+ ~ X+ U Y+ . 

Proof. Since changing an element of the separator the separator S(X, Y), while 
walking in an XY-path, from one sign to the other requires to move the sign to 
zero and, after that, to the other sign, then for every element in the separator 
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there exists a vertex Z in the path with a zero in that position. Such a vertex 
satisfies the extra sign conditions because we are in an í-metric path. ~ 

2.8. Theorem. A graph 9 is the circuit graph of a d-dimensional uniform oriented 
matroid of order n > d + 2 if and only if it is of order 2(d~2) and there exist an 
antípodal embedding 9 '-+ Q~-d-2 with the following properties: if X =1 ±Y E 9, 

(Gl) dQ;:-d-2(X, Y) = IS(X, Y)I + ~IT(X, Y)J, (uniqueness) 
(G2) There exists an í-metric XY -path. (weak elimination) 

Proof. The necessity is proved by an analogous argument to that in the proof 
of Theorem 6. Just observe that the path P e Eh is also an i-metric path. 
The sufficiency is analogous to that of proof of Theorem 5 but using the previous 
lemma in the i-metric path instead ofweak elimination lemma in a geodesic one. 
Finally, the condition of uniformity is equivalent to the condition on the order. ~ 

This theorem leads to a new axiomatization of uniform oriented matroids. 
On the other hand, the hypothesis of uniformity cannot be dropped without a 
new ingredient because the circuit graph of a non-uniform oriented matroid may 
not be embedable in Q~. We believe that there should be a notion of distance 
in the first baricentric subdivision of the n-cube that leads to a similar theorem 
but for the general (non-uniform) case. 

Finally, putting together Theorem 1.3 and Theorem 8, we have the following 

2.9. Corollary. The Radon complex of a uniform oriented matroid of order n 
and dimension d, is homeomorphic to the (n - d - 2)-sphere. 
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Jon Folkman began working on oriented matroids by 1967, in an attempt to 
prove the lower bound conjecture for polytopes by generalizing it. Tragically, he died 

before pUblishing his theory. His notes resided with Victor Klee and Ray Fulkerson. 
Later, when Klee discovered that his doctoral student, Jim Lawrence, was already 
thinking along similar lines, and had made substantial progress, Klee gave him the 

notes. Lawrence completed the theory in his doctoral thesis (1975), and later 
published the results in a joint paper with Folkman (Folkman & Lawrence 1978). 

-ANDERS BJÓRNER, MICHEL LAS VERGNAS, BERND STURMFELS, 
NEIL WHITE & GÜNTER M. ZIEGLER Oriented Matroids (1993) 
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Given a category, if two objects are identified S ~ T when there exist morphisms 

'P 

S .-----.... T 
~ 

'" 
a partially ordered class is obtained when we define S ::; T {=} S -+ T. Its 
elements are called cofor cfasses. The category is called iense if for every S < T 
there exists a P such that S < P < T. We are going to introduce a dense 
category on the class of separoids. . 

Since the constant function is a separoid morphism, the category of mor
phisms collapses into a single color class. In the light of this, we introduce a kind 
of morphisms that, in the case of injective functions -the most used until now
coincide with the original concept, but it is a bit more restrictive ; we call them 
fUJ1Twmorpfiisms beca use they resemble homomorphisms of relational systems. 
We prove that the homomorphism category of separoids is universal , i.e., any 
partially ordered class -hence the existence of morphisms in any category
can be represented by the existence of separoids homomorphisms . 

., The reader is encouraged to take a look to Hell & Nesetl'iI 1990, 
Nesetl'iI 2000 and Nesetl'iI & Tardif 2000 to read more about this "struc
tural" approach to the study of some categories. 

O. Basic notions 

Let us start with a review of some basic definitions. We do this in order to gener
alize some concepts to infinite separoids -this is necessary to the universality 
theorem. 

A separoiáis a relation t ~ 25 X 25 defined on the family of subsets of a set 
S with three simple properties: for every A , E ~ S 

o AtE =* EtA 
00 A t E =* A n E = cp 

o o o A t E and C ~ S \ A =* A t E U C 

The separoid is identified with the set S . An element A tE is called a '.l(aáon 
partitíon and the union of its parts A U E is called the support of the partition. 
The oria of the separoid is the cardinal ISI and the size is half of the Radon 
partitions ~ I t l. The separoid is acydic if A t E =* IA II E I > o. A separation 
A I E is a pair of disjoin sets that are not a Radon partition. 

It is very easy to see that a separoid S of order n E IN can be defined as 
an antipodal filter (cf. Chapter 3) 

S ~ On = ({ _ , O,+ }n , -<) 

in the face latlice of the n-crosspolytope (or by duality, as an antipodal ideal 
of the n-cube S ~ Qn)' Observe that it is enough to know minima! Radon 
partitions to reconstruct all Radon partitions, therefore we can concentrate on 
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the study of them. In particular, when defining an operation, it is enough to define 
so me (minimal Radon) partitions and close the separoid to became a filter. To 
emphasize this, with a little abuse of notation, we will denote A t B E S to mean 
that "A t B is a minimal Radon partition of the separoid S ." In other words, S will 
denote a set of generators of the antipodal filter (S, -<). 

Given two finite separoids S and T, a separoid fwmomorpft.ism <p: S --> T 
is a function that sends minimal Radon partitions into minimal Radon partitions, 
Le., for every A, B <; S 

A t B E S =? <p(A) t <p(B) E T. 

Clearly these functions defines a category on the class of finite separoids. 
In fact it is a concrete category. This is also a subcategory of separoids with 
morpft.isms in the sense of Chapter 1, this is, the preimage of separations are 
separations: for every C, D <; T 

CID =? <p-1(C) I <p-1(D). 

In order to generalize homomorphisms of separoids to infinite sets, we have 
to give a meaning to mini mal Radon partitions. However, in contrast with the 
finite case, there exist non-trivial infinite separoids with out any mini mal Radon 
partition. To see this, consider the following separoid: t e 2N x 2N , where 
1 t A <=> 1 rf. A and IDV\AI E DV, Le., the singleton of 1 forms a Radon partition 
with every set A which does not contains it and is the complement of a finite sel. 
Clearly this defines a separoid but, in this separoid there is not such a thing as 
minimal Radon partitions and therefore the previous definition does not make 
sense in this contexl. This motivates the following definition. In it, we think on 
separoids t e OS as subsets of the generafizeá crosspo{ytope OS = {J: S --> O} 
(where O = {-,O, +}) ordered naturally by I ::5 9 <=> 1-1 (-) <; g-1 (-) and 
1-1 (+) <; g-1 (+), with the obvious properties (cf. Section 3.0) 

o IEt=?-/Et 
o o o I E t and I -< 9 =? 9 E t 

(we denote A t B <=> 31 E t: 1-1(-) = A and 1-1(+) = B). 
Given two separoids t e OS and :j: e OT, a function <p: S --> T will be 

called an fwmomorpft.ism if the following two conditions holds: 

• I E OT \:j: =? <po (1) E OS \ t , 
• l,gE:j:,J-<gand <p*(g)Et =? 3hEt:h-<<p*(g), 

where <po : OT --> OS denotes the usual cofunction <p*(g) = 9 o <p. Informally, 
this can be read as follows: <p is an homomorphism if it is a morphism and, the . 
preimage of non-minímal Radon partitions are not minimal. Observe that, in the 
previous definition, it may be that h i- <po (1) rf. t. 

Two separoids are isomorpft.ic S :::::: T if there is a bijective homomorphism 
between them whose inverse function is also a homomorphism. If S <; T is a 
subset of a separoid t <; 2T X 2T , the ináuceá separoid T[S] is the restriction 
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t <; 28 X 28 and an em6eááing S '-> T is an injective homomorphism that is an iso
morphism between the doma in and the induced separoid of its image. Observe 
that these notions do not change if we replace morphisms by homomorphisms. 

Finite separoids have an intrinsic notion of dimension which is easy to de
termine. 

The á·tfimensWna( simpCaiá is the separoid of order d + 1 and size O and it 
will be denoted by ad • The áimenswn of a separoid S is the maximum dimension 
of its induced simploids 

d(S) = max d. 
qd<--+S 

It is said that S is a generar position separoid if every subset with d( S) + 1 elements 
induces a simploid. S is called compCete if for every i, j E S follows that i ti. The 
complete separoid of order n is denoted by Kn' We will adopt the conventions 
a- 1 = Ko = rP and a O = Kl = {.} . 

From now on, will denote by S --+ T the fact that there exists an homomor
phism, and by S -1-+ T the other case. Also, as mention in the first paragraph, 
we write 

~ S ~ T <==? S __ T. 

This last defines an equivalence relation and, in its coCar cCasses, a partially or
dered class called the ftomomorpftisms oráer: 

S :S T <==? S --+ T . 

It is easy to see now that the homomorphisms order, do not collapses. 
Indeed we have the following ease-to-check facts (Propositio.n 2 is an example 
of a áuaCity pairo It will play the main role in Section 4 where we prove that, 
indeed, it is the only duality pair in the homomorphisms order). 

0.1. Proposition. ISI < n =} Kn -1-+ S 
0.2. Proposition. K l --+ S <==? S -1-+ Ko 

0.3. Proposition. S ~ ad <==? S --+ Kl 

0.4. Proposition. S ~ ad <==? VT t= K o, S --+ T 

Proposition 1 can be read: there are no homomorphisms in every direction, 
i.e., the homomorphisms order do not collapses; Proposition 2 says that, in 
the homomorphisms order, the principaC fiCter generated by Kl is equal to the 
complement of the principa( iáea( generated by Ko; Proposition 3 settles that 
the color class of the singleton is constituted by all simploids; and Proposition 4 
settles that Kl is the only cover of the 6ottom eCement Ko. AII of them implies, in 
one way or the other, that the homomorphisms order is not trivial. 
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1. The homomorphisms lattice 

The homomorphisms order is in fact a lattice. The category of separoids ho
momorphisms has products x and sums + and they play the role of the meet 
(infimum) and the joint (supremum), respectively. 

T+P 

/~ 
T P 

~/ 
T x P 

They satisfy the categoric properties of products and coproducts: 

• S --+ P x T <==} S --+ P and S --+ T , 
• P + T --+ S <==} P --+ S and T --+ S , 

and, in the finite case, they have the following internal definitions. 
Given two separoids P and T , their product is a separoid defined in the 

cartesian product P x T, with projections 11' and r respectively, such that for 
every A , B ~ P x T 

A t B E P x T <==} lI'(A) t lI'(B) E P and r(A) t r(B) E T. 

Given two separoids P and T, their sum is a separoid defined in the disjoin 
union P U T such that for every A, B ~ P U T 

A t B E P + T <==} A n P t B n P E P xor A n T t B n T E T. 

There is also a notion of e;rponentiation but it deserves a more detailed 
analysis. For this, let us introduce the notion of a pseudoseparoiá; a relation 
% ~ 28 X 28 which satisfies the first and the third conditions of a separoid. That 
is, we do not ask for the related subsets A ,.f B to be disjoint. As an example, 
consider the relation of being "non-separated": 

A % B <==} A t B or A n B =1= <p. 

The pairs of related subsets with non-empty intersection will be called ÚJops. So, 
a separoid is a pseudoseparoid with out loops. 

Now, consider the following construction. 
Given two separoios 8 . and T, their power (or exponentation) is a pseu

doseparoid defined in the family of functions ST = {J: T:..... S } such that for 
every F, G ~ ST 

FIGEST 
<==} VAtBET, F(A)tG(B) ES, 

where, F(A) = {J(a) j f E F and a EA} and analogously with G(B). 
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It is not hard to see that, the power ST of two separoids is a separoid only 
if T + S. That is, if the power does not eontain any loop then no funetion 
f : T -> S is an homomorphism. 

The power satisfies the eategorie property of exponentation when T + S 

• T x P ---+ S {=? P ---+ ST o 

.., The following results were first isolated in the context of relational 
systems in Nesetñl & Tardif 2000. Here we will generalize them to any 
eategory. These results will appear in Nesetñl & Strausz 2002. 

We will denote by S « T the faet that S < T and there is no P sueh that 
S < P < T, i.e., 

S« T {=? S::; P ::; T implies S'" P or P", T. 

The pair (S, T) is ealled a gap. So, a dense order is an order with out gaps. 
Also we denote S ->=-1-> T if for all P we have that (ef. Proposition 0.2) 

S ---+ P {=? P + T . 

The pair (S, T) is ealled a áuafity pairo That is, (S, T) is a duality pair if, in the 
homomorphism order, the filter generated by S is equal to the eomplement of 
the ideal generated by T. 

We say that the separoid T is connecteá if it eannot be expressed as the 
sum of other two separoids, i.e., 

T ---+ To + 71 ==> T ---'----+ To or T ---+ TI. 

1.1. Lemma (Duality pairs). T ->=-1-> S ímplies that 

• T ís connected, and 
• T x S« T. 

Proof. If T is not eonnected then T ;::::: To + 71 and T + Ti. Therefore 
Ti ---+ S and then T ---+ S whieh is a contradiction. Now, suppose that T x S ---+ 

P ---+ T. If T + P then P ---+ S and P ---+ T x S. Therefore P '" T or 
P ~ T x S which eoncludes the proof. \t) 

1.2. Theorem (Characterization of gaps). If there ís a gap P « Q, wíth Q 
not-connected, there exísts another gap S « T where T ís connected. Fur
thermore, Q ~ T + P and S ;::::: T x P. 



62 Chapter 4: Homomorphisms 

Proof. First, let Q = TI + .. . + Tk, where each Ti is connected. Clearly 
P --> P + Ti --> Q and then P ~ P + Ti or P + Ti ~ Q. Since Q + P, there 
exists a T = Ti such that T + P and therefore P + T + P and P + T ~ Q. 
Finally, let R be such that P x T --> R --> T. Since P --> P + R --> T , then 
P ~ P + R or P+R ~ T. Therefore, if T + R, then R --> P and R --> T x P 
which concludes the proof. ~ 

2. A comment on Radon's theorem 

If we restrict more our homomorphisms to consider only those r.p which do not 
allow any Radon partition (not only the minimal ones) to collapse, Le., 

A t B =} r.p (A ) t r.p (B) =} r.p (A) n r.p (B) = 4>, 

we can characterize Radon's theorem in the following 

2.1. Theorem. P e lEn is a point separoid of order IPI = d(P) + 2 if and only if 

P + KI and P --> K 2 + a , 

where a is a simploid. Furthermore, a = 4> if and only if P is in general position. 

Proof. A separoid S is a point separoid of order d(S) + 2 if and only if it is 
determined by a unique minimal Radon partition A t B (d. Theorem 2.2.4). 
Let e = S \ (A U B) be the complement of the support and give it an arbitrary 
(but fixed) linear order e = (co, ... , Cd) . Now, let K 2 = {a, b}, where a t b, and 
ad = {c~, . . . ,cd} ' Clearly the function r.p : S -> K 2 + ad , where 

{

a if s E A, 
r.p(s ) = b, !f s E B, 

c i If s =Ci , 

is a strong homomorphism of separoids. More over, if this is the case, S is in 
general position if and only if A U B = S. ~ 

However, in this subcategory there is not any more a meaningful notion of 
product which made out of the projections, strong homomorphisms. To see this, 
consider the separoids P3 = {O, 1, 2} where O t 12, and K 2 = {a , b} where a t b. 
Let us denote by P3 X K 2 = {Oa, Ob, la, lb, 2a, 2b} the elementsofthe productand 
by 1r and K the two projections. If A t B implies that 1r(A) t 1r(B) and K(A) t K(B) 
then the natural candidates to A and B are A = {Oa}, B = {lb, 2b}. This would 
imply that A t B U {Ob} but 

1r(Oa) n 1r(Ob, lb, 2b) = {O} n {O, 1, 2} = {O} .=/=. 4>, 

therefore P3 x K 2 ::::::: 175 ~ KI ' So, every pairofseparoids meetson thesingleton. 
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3. On density 

., The following result is due to Welzl 1982 and Perles & Neseti'il 
1990. See also Neseti'il 2001. 

3.1. Theorem (Density of graphs). The class of all colorclasses of (undirected) 
graphs is dense, with the unique exception of the pairs (Ko, K 1 ) and (Kl , K 2 ) . 

And the idea ofthe proof is explained; Let GI, G2 graphs such that G1 ---> G2 

but G2 + G1. For every graph H we have that G1 ---> G1 + (H x G2 ) ---> G2 • If 
H has odd-girth and chromatic numbers big enough, the opposite arrows does 
not exist and we are done. Such a graph H exists due to a theorem of Erdos 
(1959). ID 

The following settles that the trivial gap K o « K l is the only gap on finite 
separoids. 

3.2. Theorem. Let S and T be finite separoids. If S < T f K l and T is 
connected, then there exists a separoid P such that S < S + (P x T) < T . 

Proof. Clearly, since S ---> T, tor every P we have that S ---> S + (P x T) ---> T. 
So, we want a separoids P for which the opposite arrows do not exist. In this 
case a separoid P can explicitly be constructed. Let n and n' denote the orders 
of S and T respectively. Let P be the separoid of order IPI = 2n'nn ' and Radon 
partitions as follows: for every A, E ~ P 

A t E ~ IAI 2: n' ::; IEI and A n E = </J. 

Observe that d(P) = 2(n' - 1) and P is in general position . 
Since T is connected and T + S, every homomorphism T ---> S + (P x T) 

most be an homomorphism T ---> P x T which, followed by the projection, would 
lead an homomorphism <p: T ---> P . Since ITI = n' and the supports in P have 
at least 2n' elements, then P [<p(T) ] ~ a d (for some d < n') which contradicts the 
fact that T f K l ' Therefore, such an homomorphism <p does not exists. 

Now, every homomorphism S + (P x T) ---> S restricts to an homomorphism 
<p: P X T ---> S . For every p E P there is a function <Pp: T -> S defined as 
<pp(t) = <p(p, t) (such functions does not have to be homomorphisms). Since 
there are at most IST I = nn' different functions, there exists a subset p' ~ P 
of order IPII = 2n' such that for every p,p' E p ' we have that <pp = <Pp" Let 

A, E E (::) such that A U E = p ' and then A t E E P . 
Since T + S there there exists a Radon partition Q t fJ E T such that 

<PP' ( Q) I <PP' (fJ) ( or <Pp' ( Q) n <Pp' (fJ) i= </J) . 

But <pp,(Q) = <p(p' x Q) = <p(A x Q) and <pp,(fJ) = <p(E x fJ), therefore we have 
also that 

<Pp' ( Q) t <Pp' (fJ) , 

an obvious contradiction. Hence the homomorphism <p does not exists and we 
are done. ID 
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3.3. Corollary. The class of all color classes of separoids is dense, with the 
unique exception of the pair (K o, K ¡ ). 

Proof. On the one hand, due to the duality pairs Lemma 1.1 , 

T --->=-r S =? T x S «T, 

and therefore, by Proposition 0.2, we have that Ko «K¡. 
On the other hand, due to the characterization of gaps Theorem 1.2, there 

is a gap only if there is a connected gap. Therefore, since there are no other 
connected gap (Theorem 2), there are no other gap at all and we are done. ~ 

4. On universality 

The functor W: GRA '---> SEP that maps each (simple) graph G = (V, E) to a 
separoid S = (V, t), where í t j E S *==> ij E E , is an order embedding. A 
straight forward argument shows that 

G ---- H *==> w(G) ---- w(H) . 

Since GRA is a set-uníverstÚ partía! oráer it follows that 

4.1. Theorem. The homomorphisms order SEP is a set-universal partial order. 
Explicitly: For any partially ordered set X there exists an injective mapping 
~ : X '---> SEP such that, for all x, y E X 

x S y *==> ~(x) S ~(y) . 

In this direction, we can formulate the following: ís any parlially ordered 
class X representable by SEP? The analogous question for graphs cannot be 
formalized in set theory, Le., the principie 

P(X): X cannot be represented by GRA 
is an axiom independent from ZFC. However, for separoids the history is different. 

4.2. Theorem. The homomorphisms order of hypergraphs can be embedded 
into that of separoids. Explicitly: there exists an injective functor iP : H G ---> SEP 
which maps each (simple) hypergraph H to a separoid iP(H) and 

H ---- G *==> iP(H) ---- iP(G). 

Proof. Let iP: HG '---> SEP be the function which assigns to each (simple) 
hypergraph (without isolated pints) H = (V, E) the separoid S = (V U E , t), 
whose minimal Radon partitions are U t e E S *==> U = e E E. A straight 
forward argument shows·that this function is injective. More over, if <p: y ---> V' 
is an homomorphism of hypergraphs (the image of edges are edges) that sends 
the hypergraph H = (V, E ) to the hypergraph G = (V', E' ), it defines a function 
in the edges (denoted again by <p: E ---> E') and therefore a function in their union 

<p: V U E ---> V' U E' . 
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To see that this function is a separoid homomorphism if>(H) --------> <Í>(G), observe 
that each minimal Radon partition U t e is mapped to the minimal Radon partition 
cp(U) t cp(e). 

To the turn, let cp: V U E -+ V' U E' be a separoid homomorphism if>(H) --------> 

if> (G). First observe that cp(V) ~ V'; for, let v E V a vertex and v E U = e E E an 
edge that contains it. Since U t e then cp(U) t cp(e) and therefore cp(v) E cp(U) ~ 
V' . That is, cp restricts in a function from V to V'. Now, observe that such a 
restriction is an homomorphism; for, let U = e E E be an edge then U t e and 
therefore cp(U) t cp(e). This implies that cp(e) E E' and therefore cp defines an 
homomorphism of hypergraps and we had proved that, as desired, 

H --------> G <==} if>(H) --------> if>(G). 

Since HG is a cfass-universa{ partía{ orier it follows that 

4.3. Corollary. The homomorphisms order SEP is a class-universal partial or
der. Explicitly: For any partially ordered class X there exists an injective 
mapping ¿; X '-+ SEP such that, for all x , y E X 

x ::::; y <==} ¿(x) ::::; ¿(y) . 

5. Hyperseparoids 

In the remainder of this chapter the focus is put in a famous generalization of 
Radon's theorem: 

5.1. Theorem (Tverberg 1966). Let P e IEd be a set of (k - 1)(d + 1) + 1 . 
points. Then P can be divided into k pairwise disjoint sets P = PI U ... U Pk 
whose convex hulls have a common point: 

The partition P = PI U . . . U Pk will be called a 'Iver6erg partition . 

., In Eckhoff's 1993 (sec. 9.3) it can be found more about Tverberg's 
theorem and its relatives. To the references there, I should add those 
of Bárány & Onn 1997, Matousek 1999, Kalai 2000 and Sarkaria 2000. 

Clearly, Tverberg's theorem reduces to Radon's when k = 2, and for k = 1 it 
is trivial. However, even for k = 3, it is a hard -and deep- result. The simplest 
proof known to me is based in a variant of Sarkaria's (1992) argument and uses 
the colorful version of Charathéodory's theorem due to Bárány (1982). It seems 
that, contrasting Radon's theorem which only depends on the affine structure of 
lRd

, Tverberg's theorem is deeply tied to the metric (and topological) properties 
of the Euclidian d-space. 

A simple consequence of Tverberg's theorem is the following 
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5.2. Corollary. If S is a separoid of order (k - l)(gd(S) + 1) + 1, then there 
exists a morphism ~: S --> Kk such that, for each minimal Radon partition i t j 
in Kk, follows thatcl(i) t cl(j). 

Proof. Let us denote by K k = {1, ... , k} the elements of the complete separoid 
of order k and let S be a separoid of (k - 1) ( d + 1) + 1 convex sets in lEd , where 
d = gd(S) . For any choice c.p: P --> S, due to Theorem 1, there exists a partition 
P = PI U . . . U Pk such that n(pú -1 ifi. Clearly the function ~: S --+ Kk defined 
as ~(s) = i <=> c.p-I (s) E Pi has the desired property. í1} 

Observe that this result is far from imply Theorem 1 (cf. the two realizations 
of K3 given in Figure 1 and Figure 2). A naTve first look may suggest that it is 
weaker to ask for the existence of a k-partition whose convex hulls are isomorphic 
to Kk than to ask for such a partition whose convex hu lis have a common point 
-think on the vertices of a regular hexagon and perturb them a bit- and in this 
direction we may be tempted to reduce Tverberg's number, say to (k - 1) (d + 1). 
However it is ease to see that the six points in the plane given by the vertices 
of a regular pentagon and it baricenter, cannot be partitioned in three sets such 
that the convex hu lis of the parts are isomorphic to K 3. 

Another direction may be to try to prove (or disprove) the following 

5.3. Conjecture. If S is a separoid of order (k - l)(d(S) + 1) + 1, then there 
exists a morphism~ : S --> Kk such that, for each minimal Radon partition i t j 
in Kk, follows that ~-I (i) t ~-I(j). 

The rest of this section is a first attempt to understand the combinatorial 
structure of "Tverberg's partitions". For this, let me first give some "esoteric" 
names to all acyclic separoids of order 3 (modulo isomorphism) and show their 
bijective morphisms -the names are intended to remind us their "shape" - (cf. 
Figure 1): 

Diagram 1 . .The acyclic separoids olorder :1 and their epimorphisms. 

Observe that only 172 , A3 , K 2 + 17° and K3 are point separoids. 
Now, consider a separoid (S, t) of convex sets in lEdo If we give a 3-

coloration of its elements~: S -» {a, 1, 2} and consider the convex hulls of each 
coloration class, then we are constructing a morphism onto one of these eight 
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separoids of order 3. These morphisms satisfies the extra property that the 
preimage of minimal Radon partitions are Radón partitions. Such morphisms 
will be called cr011Wt1UJrpfiísms. 

Let see how this works for the point separoids of order 4 and dimension 2. 
There are four of them. It is easy to see that we have the following combina
tions (where the number on each dashed arrow counts the number of different 
cromomorphisms 1,: S -> Ti) : 

4.- - - -

Diagram 2. The 3-cromomorphisms 014 point in the planeo 

Here, X4 and 6 4 denote the separoids of order four with unique Radon 
partitions of the form 12 t 34 and 1 t 234, respectively. 

Observe that these cromomorphisms does not commute with the epimor
phisms A and K. 

This example suggested the following Tverberg-type theorem for transver
sals. It basically says that, for a point separoid of order d + 2, there is always 
a cromomorphism onto the simploid (72 and, there is a cromomorphism onto A3 
or onto J(2 + (70. 

5.4. Theorem. Let d > 1. If S is the separoid of d + 2 points in lEd , then 

1,: S -> (/21 (1,: S -> A31 + 1,: S -> J(2 + (7°1) > O. 

Proof. Given d + 2 points X e lEd , due to Radon's theorem, its separoid 
S = (X , t) is determined by a unique minimal partition A t B. To construct a 
cromomorphism onto (72, take an element in each part a E A, b E B and give 
any separation of the complement al (3. It is easy to see that the function 

{

O x E {a, b}, 
,(x)= 1 xEa, 

2 x E (3 , 

has the desired properties. The refo re, the first factor is non-zero. 
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If there is some element in the complement of A U B (Le., the separoid is 
not in general position), say C = X \ (AUB), then the function (cf. Theorem 10) 

{

O x E A, 
~(x) = 1 x E B, 

2 x E G, 

is clearly a cromomorphism onto K 2 + 0'0 and the second factor is non-zero. If 
not, A or B has more than one element, say A . Let Ao U Al be a partition of A . 
It is easy to see that the function 

{

O x E Ao, 
~(x)= 1 xEA I , 

2 xE B, 

is a cromomorphism onto 11.3 and therefore the second factor is non-zero and 
we are done. ~ 

Observe how the fact that the second factor is never zero implies, in the case 
k = 3 and e = 1, Stangeland's (1978) generalization of Tverberg's theorem: 

5.5. Corollary. Let X e lEd be a set of (k - e - l)(d - e + 1) + e + 1 points. /f 
k = 3 and e = 1, there exists a 3-partition of the set X = X o U Xl U X2 and a 
fine L such that 

(Xi)nL#fjJ, fori=1 , 2,3. 

Proof. Any realization of 11.3 or K 2 + 0'0 have a line transversal. ~ 

It seems that, while the existence of a Tverberg partition depends on the 
realization, the existence of a cromomorphism onto Kk do not (see Figure 14). 

Figure 14. Two configurations 01 seven points in the planeo 

These observations motivates the following definition 
A k-separoúi is a relational system t <;::; 28 X ... x 28 (k times) defined on a 

family of subsets with the following properties, for Ai <;::; S, i = 1, ... , k 

o Al t .. . t Ak =? A7I'(I) t .. . t A7I'(k) 
.. 00 Al t .... · t Ak =? Ai n Aj = fjJ , 1:S; i < j :s; k,.: .. . ' . . 

o o o Al t .. . t Ak and B <;::; S \ U Ai =? Al t ... t Ak U B 

where 7r is any permutation of the indices. The elements of such a relational 
system will be called 'Iller6erg partitúms. Clearly separoids are 2-separoids. As 
before, we identify the k-separoid with the given set S . We say that the separoid 
is acydic if Al t .. . t Ak =? rr IAd > o. 
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The following discussion can be made in a more general context -for all 
k E IN- but, in order to keep things simple, we will restrict to the case k = 3. 

Given three pairwise disjoint subsets of a 3-separoid which are not a Tver
berg partition, we say that they are a 3·separation and denote it by a I {JI l· 

5.6. Theorem. Every acyclic 3-separoid of order n can be represented with a 
family of convex polytopes and their T verberg partitions in the (n -1 ) -dimensional 
affine space. 

Proof. Let S be a 3-separoid. For each Tverberg partitions A t B t C and each 
element i E A, we assign a point of IRn 

and realize each element i E S as the convex hull of all such points 

i >-+ (P~tBtC : i E A and A t B t C). 

These convex polytopes "Iive" in the (n - l)-dimensional affine subspace of IRn 

spanned by the basis. 

The construction is made to guarantee that the Tverberg partitions are pre
served, i.e., for each partition A t B t C the vertices ofthe simplices (ea : a E A), 
(eb : b E B) and (ec : e E C) moves to realize such a partition intersecting 
precisely in their baricenter, therefore 

On the other hand, to prove that also the 3-separations a I {J I1 are pre
served, we use the following well-known fact: compact convex sets K..¡ , ... ,K..n in 
IRd have no point in common if and only if there are open semispaces e~, .. . , e¡ 
such that K..i e e~ for every i and n e~ = cp. The case n = 2 is the basic 
separation theorem and the general case follows by induction. 

Define the affine extension 'Ij; = 'Ij;"' I.B¡': IRn -> IR2 of the following equations, 
for j = 1, ... , n, 

where 

{

U if j E a, 

'Ij;(e )= v !fjE{J, 
) w If J E l' 

O otherwise, 
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It follows from the definition, and with a little abuse of the notation, that 

l/J (pi ) = l/J (ei) - 31~1 (I~ ~ ~I) . (~) 
IAn , 1 w 

+ 31~1 (I~~ ~I) . (~) 
IBn , 1 w 

+ 31~1 (ig~ ~i) · m· 
Let us denote by l/Jo = l/J (pi ) when i E o: and analogously with fJ and , . 

If we have that l/Jo . u > O and l/J(3 . v > O and l/J-y . w > O, we are done (the 
semispaces l/J-l (U:j:), l/J- l (V:j:) and l/J-l(W:j:) will do). So let us suppose, with 
out loose of generality, that l/Jo . u = O. Since 

./ . . __ 2lAno:l- (IAn fJl + IAn, 1) 
% u - 1 31AI 

lB n 0:1- t(IB n fJ l + lB n , 1) 
+ 31BI 

Ic no:l- t (le nfJl + le n, l) 
+ 31C1 2 O, 

we have that l/Jo . u = O if and only if A ~ o: and B ~ fJ u, and C ~ fJ u,. In 
such a case, we have also that 

./ . . =1 ! ![(IBn fJl len fJl)_!(IBn , 1 ICn, I)] > 1 
0/(3 v + 3 + 3 IBI + ICI 2 IBI + ICI -

and, analogously, l/J-y . w 2 1. Then we can pick any small number O < E < 1, 
define the semispaces 

f~ = {x E JR2 : x · U > - E}, 

f! = {x E JR2 : X . V > 1 - E}, 

f¡ = {x E JR2 : x · W > 1 - E}, 

and their preimage l/J-l(f+), l/J-l(f!) and l/J-l(f ¡) will do the work, concluding 
the proof. í9 

• . . :: Every 3-separoid has associated a 2-separoid in a natural way: e~ch Tver-
berg partition A t B t e, implies the Radon partitions A t B, A t e and B t c. 
This separoid is already realized with the construction of Theorem 6. However, 
we miss sorne structure; e.g., consider the point separoid of five points in the 
line in general position, and give the points the linear order (1 ,2,3,4,5). This 
configuration has two Tverberg partitions: 14t25p and 15t24p . Ifwe applythe 
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previous construction, in the final family of convex sets we will miss some Radon 
partitions, for example 13 t 2. To correct this 'anomaly', we can go one step 
further in our generalization of separoids with the following natural definition. 

A Iiyperseparoúf is a collection of families of subsets T ~ 225 with the fol
lowing three properties: for all Ai ~ S, i = 1, . . . , k 

o {A l , . .. , Ad E T =? Ai n Aj = 4> 
0 0 {A I , .. . , AdE T =? {AI , ... ,Ak-¡}ET 

o o o {Al , .. " Ad E T and E ~ S \ U Ai . =? {Al , ... , Ak U E } E T 

The elements of Tare the Tverberg partitions. The hyperseparoid is acydic if 
{ 4>} rt T. From the second and third axioms follows that it is enough to know the 
principa{ partitions; those partitions {Al, . . . , Ak} where k is maximal and each 
Ai is minimal. The morpliisms and Iionwnwrpliisms can be defined analogously 
as before. 

Clearly, we can combine the Geometric Representation Theorem and The
orem 6 (in its general version -for k ~ 3) to conclude that 

5.7. Corolla ry. Every acyclic hyperseparoid can be represented by a family of 
convex polytopes, and its Tverberg partitions, in sorne affine space. 

6. Remarks and open problems 

Hyperseparoids seems to be "the right concept" to study Tverberg's Theorem 
from a purely combinatorial point of view, but this will have to be done some 
where else . . . Here I will formulate so me questions which may guide such a 
further development. 

Let us start with the most challenge (and may be difficult) one. In the spirit 
of Theorems 2.0.1 and 4.2.1, 

Problem 1. Find necessary and sufficient conditions for a hyperseproid to be a 
point separoid. 

In the light of Shor's theorem (1991), it may be that problem 1 remains NP
hard , however it may have a simple solution as the following argument suggest. 
Consider a realization of a full Radon hyperseparoid S with convex sets as "thin" 
as possible; if each convex set is a point, we are done. If there exist a convex 
set JC E S with dimension greater that O, it will contain at least one segment 
(a, b) ~ JC. The extreme points of such a segment, have to be participating in 
two different principal partitions, saya t Al t .. . t Ak and b t E l t . .. t Eko which 
are "far" each from the other . . . they are "separated". So it may be sufficient to 
ask for a cond ition of the form if a t Al t· . . t Ak and b t E l t· . . t Ek are principal 
then Ai t Ej \ Ai or E j t Ai \ E j , in order to guarantee that S is a point separoid 
(see Figure 15). 
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Figure 15. A "mínimal" segment whose extreme points are "separated". 

The next problem has to do with an invariant which may be called 'Iver6erg 
dimensiono Given a hyperseparoid S, define dk(S) as the minimum natural num
ber d such that every subset X ~ S of cardinality (k - l)(d + 1) + 1 contains a 
k-partition Al t · .. t Ak. Clearly, d(S) = d2(S) and dk(S) :::; gd(S) :::; ISI- 1, but 
no more can be said, at least in principie (see Figure 16). 

Problem 2. Fínd necessary and sufficíent condítíons to guarantee that 

d(S} = d2 (S) :::; d3 (S) :::; . .. :::; gd(S) :::; ISI- 1. 

o O 

O 

O O 

Figure 16. Two separoíds with different values ofd2 (S) and d3 (S). 

Finally, let me present a problem whose character may look more technical. 
For each separoid S, define the infinite vector Y(S) E lNN whose coordinates 
are indexed by finite separoids (modulo isomorphism) and each of these, 

Y(S)T = le;: S --+ TI, 

counts the number of homomorphisms (cromomorphisms, strong morphisms). 

.. This definition has to be contrasted with that of Lovász 1971 where 
he proved that, with the arrows in the opposite direction, such a vector 
characterizes each object of a relational system.See.also N eseti'i I 
1999. ' ... . .: ' 

Problem 3. Is íttrue that S ~ T (or S ~ T) íf and only ífY(S) = Y(T)? 

If we restrict to finite families of separoids, the answer may be negative as 
the following (and last) diagram shows. In it, X5 and ~5 denotes the general 
position point separoids with Radon partitions 12 t 345 and 1 t 2345, respectively. 
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21 

Diagram 3. The 3-cromomorphisms 01 5 point in the space. 

A rnathernatieal staternent is just a story you tell about sorne deviees. Sorne of 
those stories are ele ver, sorne are stupid; sorne of those stories are true, sorne other 

are false. Doing rnathernaties is telling elever stories whieh are true. 

-FRANCIS BORCEUX Handbook of Categorieal Algebra (1994) 
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