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Prologo

El material que se desarrolla en las paginas de esta tesis, es la culminacién de
la investigacion que comenceé, junto con mi tutor y otros colaboradores, en el
ultimo lustro del siglo pasado. Si bien parte de este material ya ha aparecido en
otros textos, la recopilacion final fue hecha durante una estancia en Budapest,
Hungria. Dicha estancia fué financiada por la Fundacion Soros (a través de la
Universidad de Europa Central) que, a manera de intercambio, me comprometié
a terminar mi tesis y dejar ahi una copia de ésta; es por esto que el cuerpo
principal de esta tesis se presenta en inglés. Sin embargo, incluye también un
amplio resumen en espafiol (con referencias a los resultados principales) para
facilitar su lectura.

El texto, ademas de ser un tratado de la teoria de los separoides, pretende
ser autocontenido y explicativo; la teoria es muy nueva asi que no supuse ningun
conocimiento previo —salvo, por supuesto, una formacion sélida en las ramas
mas comunes de la Matematica. Esto me llevd a organizar el material en un
orden “que se llevara bien” con la légica que surge detras de los resultados,
mas que con un orden histérico o, quizas, didactico. Sin embargo, en un intento
de fortalecer la intuicion que va detras de la formalidad, inclui una amplia in-
troduccién (en inglés) que recorre con ejemplos concretos las definiciones mas
importantes, y en el resumen (en espanol) segui un orden levemente diferente
al texto central.

# Al momento de organizar todo €l material, me encontré que habia
parte de éste que, si bien no era ldgicamente necesario para los re-
sultados principales de la tesis, tenia que incluirlo si pretendia dar una
exposicion completa de la teoria. Asi que decidi incluir este material
en parrafos como éste. El lector, si asi lo quiere, puede saltarselos sin
perder informacién fundamental.

Dado que hay muchas referencias cruzadas, para facilitar la navegacion
dentro del texto, he decidido darles la siguiente forma: cuando se hace refer-
encia a un resultado dentro de la misma seccion, se refiere simplemente con
un numero; si el resultado esta en otra seccion, pero en el mismo capitulo, se
refiere con dos nimeros (seccion.parrafo); y, finalmente, si esta en otro capitulo,
se refiere con tres nimeros (capitulo.seccion.parrafo).

También, para enfatizar el contexto histérico que rodea a la teoria, la biblio-
grafia es referida con el nombre de los autores y el afio de la publicacion.

Finalmente, he incluido una amplia coleccién de imagenes al margen que,
ademas de revestir el texto, ayudan a explotar la intuicion que surge de la geo-
metria intrinseca a la teoria.



Resumen

El origen de la teoria de los separoides puede ser rastreada a los principios del
siglo XX cuando Radon demuestra el teorema de Helly usando que

Teorema (Radon 1921). Dada una familia de puntos P C IE?, si el cardinal
de P es suficientemente grande, a saber |P| > d + 2, entonces existen dos
subconjuntos ajenos A, B C P cuyos cascos convexos se intersectan:

ANB=¢ y (AN(B)#¢.

Sin embargo el nombre, y la axiomatica que aqui se estudiard, no se acufié
sino hasta finales de los afios 90 (véase Strausz 1998) cuando se describi6 la
topologia de la familia de hiperplanos transversales a una familia de conjuntos
convexos (cf. Arocha, Bracho, Montejano, Oliveros & Strausz 2002).

Los separoides son simplemente una abstraccion del teorema de Radon:
un separoide es una relacion simétrica  C (2;) en una familia de subconjuntos
—Iléase “...no se separa de..."— que tiene dos propiedades: si A,B C S
entonces

. AtB = ANB=¢,

e« AfByCCS\A = AtBUC. (*)

El separoide se identifica con el conjunto S. El orden y el tamafio son los cardi-
nales |S|y | 1|, respectivamente.

Asi, dada una familia de puntos P c IE¢ se puede definir un separoide
S = S(P) con la relacion

AtB < ANB=¢ y (A)N(B)#¢,

y claramente las dos condiciones (*) se cumplen. La nocién de “la dimension
del generado afin” de P se traduce en términos puramente combinatorios a la
nocion de dimension (combinatoria) d(S), viz. el orden (menos uno) del maximo
subseparoide de tamaiio cero, donde todo par de subconjuntos disjuntos se
separan. A los separoides de tamafio cero los llamaremos simploides por ser
los asociados al conjunto de vértices de un simplejo. Entonces, si ¢ es un
simploide maximal de S, d(S) = || — 1.

La motivacion principal de esta tesis fué la pregunta: ;cuando se puede
“realizar” un separoide con puntos? Es decir, dado un separoide “en abstracto”
S, ¢cuando podemos garantizar que existe una familia de puntos P tal que
S ~ S(P)? Llamaremos a éstos, separoides de puntos.



X

Resumen

1. Convexidad Abstracta

Como sugieren Danzer et al. (1963), la interrelacion entre los teoremas de
Radon, Helly y Carathéodory “podran ser entendidos mejor formulando varios
conjuntos de axiomas para la teoria de convexidad”. La primera aproximacion
axiomatica a la convexidad fue hecha por Levi (1951) y la teoria de los sepa-
roides puede ser vista como un nuevo intento en esta direccion.

Asi como cada configuracion de puntos tiene asociada un separoide —y
de hecho, la configuracién puede ser “recuperada” de esta informacién combi-
natoria (cf. Goodman & Pollack 1983)— a cada familia de conjuntos convexos
F se le puede asociar un separoide S = S(F). Este captura la estructura de
separacion de la familia con la relacién

A|B < (AN(B)=¢

(A | B se lee "A se separa de B").

-y 5 - -
Claramente la relacién |c (%), llamada de separacién, define un separoide
en los términos anteriores, a saber

AfB < AnB=¢ y A /|B.

La relacion de separacion satisface las siguientes propiedades (una definicion
equivalente de separoide): si A, B C S entonces

® AlA = A=9¢
ee A|ByA'cA = A'|B’

Surge la siguiente pregunta: ;cuando se puede “realizar” un separoide
con conjuntos convexos? Es decir, dado un separoide S, jcuando podemos
garantizar que existe una familia de conjuntos convexos F tal que S = S(F)?
Aqui la respuesta es “facil” (véase Arocha et al. 2002, Bracho & Strausz 2000
y Strausz 2003):

Teorema Basico de Representacién [1.2.3]. Todo separoide (finito) S puede
ser representado por una familia de conjuntos convexos. Mas aln, se puede
representar con convexos compactos si y sélo si el separoide es aciclico (i.e.,
si ¢ | S); en tal caso, la realizacién puede ser hecha en el espacio afin de
dimensién |S| — 1.

Este resultado juega un papel “polar” (cf. Bjérner et al. 1993 sec. 5.3)
al teorema de representacion topoldgica para matroides orientados de Folkman
& Lawrence (1978). Los matroides orientados son separoides que cumplen
ademas con otro par de condiciones; una abstraccion de las configuraciones
de puntos que usan la polaridad intrinseca del espacio euclidiano (los detalles
estan en el capitulo 3): si por cada punto (un vector en IR?) tomamos su hiper-
plano polar, a cada configuracion de puntos se le puede asociar una configu-
racion de hiperplanos concurrentes (en el origen). Si consideramos ahora la
interseccion de estos Ultimos con la esfera unitaria, obtenemos una configu-
racién de subesferas (de codimensidn uno) que contiene toda la informacion



Resumen

combinatoria de la configuracién original. Si permitimos que dichas subesferas
se “enchuequen” un poco —que sigan siendo esferas, desde el punto de vista
topolégico— pero que conserven las dimensiones esperadas de sus intersec-
ciones, lo que conseguimos es un matroide orientado. Mas aun, el teorema
de representacion de Folkman & Lawrence demuestra que éstos son todos los
matroides orientados. Surge la pregunta, ¢qué les paso a los puntos polares
cuando “enchuecamos” las subesferas? El teorema basico de representacion
responde a esta pregunta haciendo notar que los puntos “engordaron” para con-
vertirse en conjuntos convexos. Sin embargo, la estructura combinatoria que
se conserva es mas general, es la de los separoides.

El teorema basico de representacién nos permite introducir un invariante
nuevo: la dimension geométrica gd(S), la minima dimension donde se puede rea-
lizar el separoide. Es usando la nocion de dimension geométrica que los sepa-
roides encuentran su primera aplicacion en la teoria de transversales geomeé-
tricas (véase Arocha et al. 2002):

Teorema de Esencialidad [1.5.2). Sea F una familia de conjuntos convexos
en IRt y sea S = S(F) su separoide. Sigd(S) < d entonces T (F) — IP%, el
espacio de hiperplanos transversales a F, no es homotdpicamente nulo.

Para ejemplificar este resultado, considérense los 3 lados de algin triangulo
en el plano y obsérvese que hay, topolégicamente, tantas lineas transversales
a estos 3 convexos como hay lineas por un punto. Esto es, el espacio de
transversales solo depende de la estructura combinatoria del separoide, no de
su realizacion. En otras palabras, si cada 2 convexos comparten un punto
entonces todos comparten un “punto virtual”.

Surge la pregunta: si cada d + 2 convexos admiten una d-transvesal ;ad-
miten todos una d-transversal virtual? El teorema de esencialidad contesta la
pregunta afirmativamente para el caso en que gd(S) < d — 1 y por tanto puede
ser visto como un teorema tipo Helly en el que se ha cambiado la nocién de
interseccion por la de 0-transversal virtual .

Hay otros conceptos geométricos que pueden ser traducidos en términos
puramente combinatorios. Se dice que un separoide S esta en posicion general
si cualesquiera d(S) + 1 elementos inducen un simploide. Esto corresponde a
que no se intesecten 2 a 2, que no exista una linea transversal por cada 3, que
no exista un plano transversal por cada 4, etc...

Otra nocion util de indole puramente combinatorio —uno de los axiomas
de matroide orientado— es la “unicidad” de las particiones de Radon. Decimos
que S es un separoide de Radon si para cualesquiera dos particiones de Radon
minimales At ByC 1D,

AUBCCUD = {4,B} ={C,D}.

No es dificil ver que los separoides de puntos son de Radon. Tenemos ademas
el siguiente

Xi



xii

Resumen

Teorema 1.3.4. Sea S un separoide en posicién general. Si d(S) = gd(S)
entonces S es un separoide de Radon.

La demostracion del teorema anterior, pasa por la siguiente generalizacion
del teorema de Carathéodory (1907)

Lemma 1.3.1. Sea K = [J;c; Ki C IR la unién de una familia de conjuntos
convexos. Six € (K) entonces existe J C I, con |J| < d+1, tal quex € (Kj)jey.

y una aplicacién inmediata a los separoides que garantiza la “buena realizacion”
de cada particién minimal de Radon

Teorema 1.3.2. Sea S = {K;} la realizacién de un separoide. Si A1 B es una
particion de Radon minimal, entonces para cada convexo, K, € Ay Ky € B,
existe un punto a, € K, y by € Ky tal que (a,) N (by) # ¢.

Se puede ver entonces que la teoria de separoides permite traducir no-
ciones geométricas a otras puramente combinatorias, y encierra asi reinter-
pretaciones de los teoremas de Radon, Helly y Carathéodory —piedras angu-
lares de la teoria combinatoria de los conjuntos convexos.

2. Separoides de Puntos

Uno de los problemas centrales dentro de la teoria de los matroides orientados
—separoides de Radon que cumplen ademas el axioma de eliminacién débil—
es encontrar caracterizaciones “significativas” de los separoides de puntos. Se
sabe (cf. Shor 1991) que este problema, desde el punto de vista polar de la
representacion topologica, es “NP-hard”.

Sin embargo, desde el punto de vista geométrico intrinseco a los sepa-
roides, se pueden caracterizar aquellos separoides de puntos que estan en
posicion general:

Teorema 2.0.1. Un separoide en posicién general es un separoide de puntos
si y sélo si sus dimensiones geométrica y combinatoria coinciden.

Como lo muestra el siguiente ejemplo, la hipétesis de la posicién general no
se puede quitar sin agregar algun ingrediente mas. Considérese el separoide de
orden tres S = {1, 2,3} generado por las dos particiones minimales 112y 21 3.
Por un lado, S se puede realizar con un segmento (representando al 2) y sus
dos puntos extremos; por el otro, como 1 | 3, el subseparoide S’ = {1, 3} induce
un simploide de dimension 1. Claramente S no es el simploide de dimensién 2,
por tanto su dimension geométrica y combinatoria coinciden. Sin embargo es
facil ver que S no se puede realizar con puntos —la relacion { es transitiva en
los singuletes de los separoides de puntos.

Los ejemplos pequefios de pseudolineas sugieren la siguiente

Conjetura. Un matroide orientado M es un separoide de puntos si y sélo si
d(M) = gd(M).
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Dado que no podemos caracterizar a los puntos (al menos todavia), surge
la pregunta ;como se ve “el espacio” de todas las configuraciones de pun-
tos? En otras palabras, ¢podemos asociar a cada configuracion un punto de
algun espacio topologico? Por supuesto, estamos buscando aqui algun espa-
cio “significativo” que nos ayude a entender la relacion entre la geometria y la
combinatoria de los separoides.

Una vez mas, la respuesta es afirmativa. Para esto, entenderemos por
una configuracién de puntos un subconjunto finito y ordenado de [R¢, médulo
la accion del grupo afin R(d). Es decir, dos subconjuntos 7 = (p,,...,P,) ¥
Q= (q,...,q,) representan la misma configuracion siy sélo si existe unatrans-
formacion afin ¢: IRY — IR tal que ¢(p;) = q;, parai = 1,...,n. Claramente,
si P y Q representan la misma configuracion, definen el mismo separoide (i.e.,
S(P) = 5(Q)). Por otro lado, de la definicion, se antoja pensar en el espacio
de todas las configuraciones de n puntos en dimension d —que denotaremos
FF\;*;— con la topologia cociente de IR™*¢. Tenemos el siguiente

Teorema 2.1.2. RZ es homeomorfo a G4(IR™~1), la grassmanniana de sub-
espacios lineales de IR"~! de dimensién d.

Este resultado, seguido del encaje de Pllicker (vease e.g., Bjorner et al.
1993), sugiere considerar a RS como subespacio de IP"~2. Surge la pregunta
¢,como “estratifican” los separoides a G¢(IR"~')? En otras palabras, ;tiene B¢
alguna descripcion puramente combinatoria? Cuando la codimensién —la dife-
rencia (n — d — 2)— es pequena, se sabe que la respuesta es afirmativa (véase
mas abajo) sin embargo el caso general sigue siendo un problema abierto.

Dado un separoide S se puede construir un complejo “ctibico” —un sub-
complejo de algun hipercubo— cuyos vértices representan las particiones de
Radon maximales. Como el separoide no esta determinado por éstas, dicho
complejo es “olvidadizo”, sin embargo, en casos importantes —matroides ori-
entados, puntos— el complejo determina completamente al separoide. Dicho
complejo sera llamado complejo de Radon y lo definiremos méas abajo. Por el mo-
mento, a manera de motivacion, permitaseme mencionar que es la combinatoria
del n-cubo, a traves del complejo de Radon, la que “domina” la estratificacion
de la grassmanniana inducida por los separoides de puntos.

La familia de subconjuntos 2° del n-conjunto S puede ser identificada con
los vertices del n-cubo @,,; haciendo esto, las caras del n-cubo son identificadas
con los intervalos del orden parcial C inducido por la contencién, i.e., las caras
de Q,, son de la forma

[A,B]:={Ce€2°:ACCCB}.

Regresando al separoide S, si consideramos aquellos subconjuntos A que
“no se separan de su complemento”, A t 4, y nos fijamos en el subcomplejo de
Q,, que inducen, el complejo resultante es lo que llamamos el complejo de Radon
del separoide y lo denotamos por R(S). ’

xiii
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Resumen

Teorema 2.2.3. Si P c IR? es un separoide de puntos de orden n, entonces
R(P) es, homotépicamente, una esfera de dimensién n — d — 2. Mas aun, el
separoide esta en posicién general si y sélo si el complejo es homeomorfo a
dicha esfera.

En particular, cuando tenemos d + 2 puntos en dimension d, el complejo es
una 0-esfera —dos subcubos antipodas— y podemos dar la siguiente descrip-
cién combinatoria.

Teorema 2.3.1. El espacio de d + 2 puntos en dimensién d, médulo el grupo
afin, es

Rdi2 = (2 \ {9,6})"/{A, A}

También podemos contar cuantos de estos son politopos —cuando cada
punto se separa de su complemento— para exhibir una nueva prueba de

Teorema 2.4.1 (Griimbaum 1967). Existen exactamente | }d?| tipos de polito-
pos (convexos) con d + 2 vértices en R4,

Elcaso d = 1 esigualmente simple. Ya el caso n = d+3 es suficientemente
complicado; la descripcion combinatoria de la estratificacion de la grassma-
nniana es (véase también Garcia-Colin 2003)

Teorema 2.3.3. Las facetas de 3, 5 son los ciclos antipodales de Q, \ {4, $}
de longitud 2n. Dos facetas se intersectan en una colinea si y sélo si sus dos
ciclos correspondientes difieren en exactamente dos puntos antipodas.

En este caso no es tan facil contar todos los tipos de politopos —una
formula explicita puede llevar 6 lineas de texto para escribirse (cf. Lloyd 1970)—
sin embargo el complejo de Radon muestra facilmente que (véase Montellano-
Ballesteros & Strausz 2003)

Teorema. Existen exactamente v(2n) — [%] politopos convexos conn = d + 3
vértices en IR? en posicién general, donde v(2n) denota el niumero de collares
bicoloreados antipodales de tamafio 2n.

Para n > d + 3 ni el método anterior, ni ninguno que se conozca, sirve
para contar tipos de politopos. La principal obstruccion es que aparecen “es-
feras” dentro de Q,, que no corresponden a ninguna configuracién de puntos.
La estructura que preservan estas esferas, al parecer, es la de los matroides
orientados. En esta direccion tenemos el siguiente

Teorema 3.2.5. Una gréfica G es la gréfica de circuitos de un matroide orientado
uniforme si y sélo si es una gréfica antipodal de orden 2(,,"!,) y existe un encaje
i-métrico G — Q792 en el (n — d — 2)-dual del n-cubo.
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3. Universalidad
Dados dos separoides S, 7', una funcion y: S — 7' sera llamada un morfismo de
separoides si, para todo A4, B € 2T

A|B = ¢7}(A) | ¢~}(B).
Un morfismo sera llamado fAomomorfismo si cumple ademas que, para todo
a,B €25
at 8 minimal = ¢(a) T ¢(8) minimal.

Denotaremos por S — T la existencia de algin homomorfismo. La relacion
S <T <= S — T defineun preorden en la classe & de todos los separoides.
Si identificamos ademas a aquellos separoides tales que ' < Sy S < T,
conseguimos una clase parcialmente ordenada.

Si denotamos por o4 al simploide de dimension d, y por K, al separoide
completo —de tamafno maximo— de orden n, es facil probar que
Proposicion 4.0.
IS|l<n = K,—-+~ S
KI — § <= § +’ Kn
Sxod &= S/ K
Sxod = VI'#£Ky,S—T.

Por ejemplo, el enunciado 2 dice que, e/ filtro principal de K; = ¢" es el
complemento del ideal principal de K, que no es otra cosa que decir que un
separoide tiene algun elemento si y sélo si no se mapea en el vacio. En la
literatura, (¢, Kj) es llamado un par dual (cf. NeSetfil & Tardif 2000).

De hecho, el orden de los homomorfismos (%, —) es una latiz que tiene a
la suma y al producto de separoides, como supremo e infimo, respectivamente.
Dichas operaciones existen y satisfacen las propiedades universales esperadas:

PR

S§S—PxQ < S—Py S—0Q,

P+Q—S < P—Sy Q—S

Diremos que un separoide es conexo si no puede ser expresado como la
suma (la unién ajena) de dos separoides

Y‘—>T0+T1 — T—>T0 (o] T—}Tl
En estos términos, podemos expresar el teorema de Radon como
Teorema 4.2.1. P c IE™ es un separoide de puntos de orden d(P) + 2 si y sélo
si
P+4—~K y P—Ky+o,

donde o es un simploide. Mas aun, P esté en posicion general si y sélo sic = ¢.
En otras palabras, los elementos de R, , son los separoides bipartitos.

xXv



El orden de los homomorfismos es también un orden denso
Teorema 4.3.2. Si S < T entonces existe un P talque S < S+P xT < T.

La estructura de orden de los separoides es en cierta forma, muy parecida
al orden de los homomorfismos de graficas. Los dos son ordenes universales
para la teoria de conjuntos.

Teorema 4.4.1. Dado cualquier conjunto parcialmente ordenado (C, <) existe
un “funtor” f:C — % tal que, a,b € C

a<b < f(a) — f(b).

Mas aun, el teorema anterior —cuando se extiende la nociéon de homomor-
fismo al infinito— se puede extender a clases parcialmente ordenadas y por
tanto (cf. NeSetfil & Strausz 2002)

Teorema 4.4.3. Toda categoria puede serrepresentada como una subcategoria
de los separoides y sus homomorfismos.

4. Hiperseparoides

Asi como los separoides “codifican” el teorema de Radon, los fiperseparoides lo
hacen con el teorema de Tverberg

Teorema (Tverberg 1966). Si P c IEY es suficientemente grande, a saber
|P| = (k—1)(d+1)+1, entonces puede ser dividido en k partes disjuntas cuyos
cascos convexos se intersectan.

Claramente, para k = 2 el teorema de Tverberg es el de Radon. El teorema
de representacion junto con el teorema de Tverberg implican inmediatamente
que

Teorema 4.5.2. |S|> (k—1)(gd(S)+1)+1 = S — K.

Esto motiva la siguiente definicion: un k -separoide es un sitema de familias

de subconjuntos T C (2: ) que relaciona conjuntos disjuntos —no tiene “loops™—
y es un filtro en el orden parcial canénico —el heredado de (25 x ... x 25, C).
El teorema de representacion para separoides puede ser generalizado a

Teorema 4.5.5. Todo k-separoide aciclico S pude ser representado por una
familia de cuerpos convexos {A;}ies en IEIS\=1 y sus particiones de Tverberg
son

ANA=¢ siitjy

ﬂi:l (Ai> ?é ¢' e

Surgen las preguntas ; cuando podemos garantizar que un k-separoide es
representable con puntos del euclidiano? ... ¢ sera cierto que todo k-separoide
“uniforme”, con gd(S5) = d(S), es de puntos?

(A}, €T <= {



Preface

Preface

This Ph.D. thesis is concerned with the application (and generalization) of the
classical theorems of Helly, Radon and Carathéodory which stands as the origin
of the Combinatorial Geometry of Convex Sets. More precisely, the combinatorial
structure defined by the separations of a (finite) family of convex sets in the
Euclidean d-space, will be developed. Namely, two subfamilies are said to be
separated if there exists a hyperplane that leaves them on opposite sides of it
or, equivalently, if their convex hulls do not intersect. The most basic —and
trivial— properties of this relation on the subsets of the family, are the axioms of
a separoid.

These three theorems were discovered in the first quarter of the last century
and can be formulated as follows:

e Helly’s Theorem. Let K be a family of convex sets in IR?. If every

d + 1 (and fewer) members of K have a common point, then there is a

common point to all members.

« Radon’s Theorem. Let X be a set of d + 2 or more points in IR%,

Then X contains two disjoint subsets whose convex hulls have a com-

mon point.

e Carathéodory’s Theorem. Let X be a set in IR* and p a point in

the convex hull of X. Then there is a subsetY of X consisting of d + 1

or fewer points such that p lies in the convex hull of Y.

The reader will find some variations and generalizations of these results
in the following pages. The aim of this thesis is to develop some branches of
Combinatorial Geometry from a particular point of view: separoids. It is, at the
same time, a survey and a basic reference to the subject.

# |useparagraphs as this one to easily differentiate the main text from
aside information and comments. Such paragraphs contain material
which, eventhough it is not essencial for the main line of research, it
suplements the theory and points out some bibliographical items.

As a result of this research some papers have (and will) be published. Most
of it was made together with my supervisor Javier Bracho and in collaboration
with Jorge Luis Arocha and Luis Montejano. Also, there are some parts that
were elaborated with Juan José Montellano-Ballesteros and Deborah Oliveros.
Nevertheless, many other people have helped in developing this theory; Victor
Neumann-Lara, who gave me the basis to find the Radon complex of a separoid;
Francisco Larrion, who taught me everything | know about category theory and
helped me generalize the Representation Theorem for all separoids; Eugene
Schepin, who put us on the road of such a theorem for the acyclic case; Karoly
Boréczky, who refined Theorem 2.0.1; Jaroslav NeSetfil, who suggested the
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approach of Chapter 4, and many other friends who have read and commented
some or all of these results.

#  Many of these results and proofs are in: Strausz 1998; Arocha,
Bracho, Montejano, Oliveros & Strausz 1999; Bracho & Strausz 2001;
Montellano & Strausz 2001; Strausz 2001; Nesetril & Strausz 2002 and
Strausz 2002.

| have classified all this material in four chapters: Separoids, Configurations
Oriented Matroids and Homomorphisms. In the first one, you will find the basis
of the theory and all the results that can be applied to the other three. The
second one deals with geometric examples of separoids, in particular the point
separoids are studied in detail. The third chapteris devoted to apply all previously
developed material to the Theory of Oriented Matroids —the most explored area
of separoids. In the fourth one, a new categorical approach is adopted and
the universality and density of separoids homomorphisms is proved. | added
an introduction to introduce the theory in the basis of examples so the reader
will find there some specific pictures to think on while the theory is developed.
Appendix B contains a large bibliography about the subject.

Finally, | want to thank Merari and the rest of my family, including all those
who live —and lived— here in Hungary. They gave me all the emotional support
| needed to end it.

Dino
Budapest 2002
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Chapter 0: Introduction

Separoids provide a broad setting to describe those combinatorial properties that
arise from families of convex sets and the separations they define. Mathematical
objects which appear to be totally different, such as configurations of points,
arrengments of affine subspaces, directed and undirected graphs, oriented matroids,
convex, polytopes and separation axjioms of topological spaces, find a common
generalization in the language of separoids.

Separoids arise in the context of geometric transversal theory in an attempt to
answer the question: How does the space of hyperplanes transversal to a family
of convex sets in IE? looks like? As already pointed out by Goodman, Polack
& Wenger the existence of a transversal hyperplane depends on the existence
of a suitable oriented matroid. We found that the space of all such hyperplanes
is essential (as a subset of IP*~!) if the geometric dimension of the underlying
separoid is less than d — 1. Also in terms of the geometric dimension, those
separoids that arise from a configuration of points in general position have been
characterized: A general position separoid is a point separoid if and only if its
combinatorial dimension and its geometric dimension are equal.

Further research lead us to an equivalent version of the Basic Sphericity
Theorem (Folkman & Lawrence 1978): The Radon complex of an oriented ma-
troid is homologically equivalent to a sphere. Moreover, if the matroid is uniform,
the complex is homeomorphic to such a sphere. This result was the first step to
reach the characterization of the cocircuit graphs for uniform oriented matroids.

Oriented matroids are separoids which satisfies a couple of extra properties
(they will be formally defined in Chapter 3). Folkman and Lawrence introduced
oriented matroids as a combinatorial description of spfere systems. Las Vergnas
used oriented matroids to describe a purely combinatorial setting of convexity
and, at the same time, Bland described how oriented matroids can be used to
encode the basics properties of [finear programs also in a purely combinatorial
level. Independently, Dreiding, Dress, Haegi and Wirth introduced the equivalent
notion of chirotopes to describe chirality of molecules in organic chemistry. All
these approaches took place between the late 1960's and the early 1980's.
Nevertheless, geometric objects that where studied much earlier turned out to
be equivalent to oriented matroids. For instance, arrangements of pseudolines as
already studied by Levi 1926, Ringel 1956 and Griimbaum 1969, are equivalent
to oriented matroids in dimension 2. It is not my objective in the present to
describe the theory of oriented matroids in its full extent but most of the theory
developed here can (and will) be applied to it.

#  Anintroduction to the subject can be found in the book of Bjérner,

Las Vergnas, Sturmfels, White & Ziegler 1993, the survey of Bokowski

1993 and the Ph.D thesis of Richter-Gebert 1992,

Finally, separoids had been studied from a categorical point of view to prove
that the fiomomorphisms order is universal, viz., any partially ordered class can be
embedded into the homomorphisms order of separoids.

1
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0. Some Motivating Examples
Let me introduce the theory in an informal way by giving some basic examples
to have some specific pictures in mind when the theory is developed.

Consider a (d + 1) x n matrix M = (Xy,...,X,) € (R*1)" and the n-
set X = {1,...,n}. Each of the n columns of M is interpreted as a vector
in the real vector space R4*!, If these vectors span the space, the minimal
linear dependences yield the circuits of a matroid of rank.d + 1. Such linear
dependencies look like

E Aix; =0 with ); € IR, not all zero
i€X
and the sets C = {i : A\; # 0} corresponding to the minimal ones are the circuits
of the matroid. The associated separoid is the family of pairs A t B given by
A:{i:Ai(O}, Bz{i:z\i >0},

for all the minimal dependencies among the x;.

# Interesting vector configurations to be studied from this point of
view are given, for example, by the vertices of polytopes and by the
root systems of semisimple Lie algebras.

For a more specific example, let xy,...,x4 be the vectors in IR? given by

the columns of the matrix
01 0
M=110 01
10 1

From M we get the separoid of rank 3 on X = {1, 2, 3, 4}, for which the linear
dependence x; — X3 — x4 = 0 translates into the circuit 1 { 34.

o= o

Every vector configuration in JR4+1\ {0} corresponds to a point configuration
in a d-dimensional affine space. For this, choose a linear form ¢ such that £(x;) #
0 for all 7, define

R? = {x € R : ¢(x) = 1}

as a model of affine space, and associate to each vector x; the point p;, =
% € R Here, vectors x; with £(x;) < 0 determine “reoriented affine
points”.

These “negative points” are somewhat annoying to have to deal with, al-
though sometimes unavoidable. However, if the vector configuration does not
contain any positive linear dependence (3 A;x; = 0 with A; > 0), then we can
choose ¢ such that £(x;) > 0 for all 7, which results in an honest affine point
configuration. This corresponds to the situation where the separoid is acycfic: it
does not contain a circuit of the form ¢ 1 B.
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Now, every affine point configuration gives rise to an acyclic separoid whose
minimal Radon partitions (the circuits of the matroid) are given by the minimal

affine dependences
> Ap; =0 with > X =0.
ieX iEX
Starting from the vector configuration in JR? discussed in the example above,
with £(x) = >_ z; and dropping the first coordinate, we obtain the point configu-
ration

Now, from P we obtain the separoid of dimension 2 on X = {1,2,3,4}, for
which the affine dependence p, — ;p; — 3p4 = 0 (with 1 — § — } = 0) translates
into the minimal Radon partition 1 { 34. Observe that from the affine point of
view, the linear dependence p, + p, — 3P; — 3P4 = 0 is not a minimal Radon
partition of the separoid.

Since the parameters A; of such minimal dependences are unique up to a
common scalar, those equations can be rewritten as

=D APi=Y_Aip;,

i€EA iEB
icA i€B

and therefore we can redefine the relation as

AtB < (A)N(B) #4,
where (.) denotes the convex hull operator. In this new context, we are including
all such partitions —not only the minimal ones.

In the previous example we have two more Radon partitions: 12 | 34 and
1 1 234, so the separoid is

({1,2,3,4};1134,11234,12 1 34).

What happens if we delete the (minimal) partition 1 1 34 but keep the other two?
It is not hard to see that the separoid is not any more the separoid of an affine
configuration of points (nor a linear one). However it is the separoid of a family

of (convex) segments in the affine 3-space: A family of four convex sets given by

F= {(albl}? (azbz)r p3? p4} 3
satisfies the desired properties if

a] =[0?1|1) bl=(%!%1%)
ap = (070: 0) b2 = (ls an)
ps =(0,1,0) p,=(0,0,1)

3



4  Chapter 0: Introduction

1. Main Concepts

From the previous examples, many concepts can be introduced. First of all, it
must be clear now that not every separoid arises from a family of points, so it is
natural to ask: Which separoids arise from such a family? We will call this kind
of objects point separoids. A combinatorial characterization of these separoids is
still unknown, but we will study them deeply on Chapter 2. An obstruction of F to
be a point separoid is that it contains two different minimal Radon partitions on
the same set. If this is not the case, we will call the separoid a Radon separoid,
so P is a Radon separoid and F is not.

These two separoids are quite similar —all Radon partitions of F are con-
tained also in P. If that is the case, then we will say that there exists a morphism
F — P, and call the class of all separoid morphisms, the separoid category.

If we restrict ourselves to point separoids over the same n-set and of the
same dimension d, the natural partial order given by

P>P = P—P

describes a stratification of a manifold known as the Grassmanninan. This poset
will be denoted by A2 and proved to be homeomorphic to G¢(IR*~1), the space
of all d-subspaces of the vector space IR" 1.

# Itwill be proved that R? is the face lattice of the hemicuboctahedron
—awell known polyhedron homeomorphic to the projective plane IP? =
G2(IR3).

The separoid F cannot be realized as a point configuration, but it was real-
ized as a family of convex sets. It is also natural to ask: Which separoids can be
realized as a family of convex sets? In contrast with point separoids, separoids of
convexes can easily be characterized: They are all separoids. Therefore, each
separoid has as an invariant the minimal dimension where it can be realized; this
number will be called the geometric dimension of the separoid. The geometric
dimension of F is 3 while its combinatorial one is 2.

This invariant will be useful to study the space of Ayperplane transversals
to a family of convex sets. Observe that there is no line transverse to the four
points of P and that there are two planes transverse to the elements of F, that
is, the space of hyperplanes transverse to P is empty and that of F consists of
two points.

Also, the geometric dimension will be used to characterize those point sep-
aroids which are in general position —separoids (of dimension d) whose minimal
Radon partitions consist of exactly d+ 2 points. Separoid F is in general position
and P is not.

An oriented matroid is a matroid whose (ordered) bases have received an
orientation compatible with the so called Grassmann-Pliiker relations. Although
not every matroid is orientable, every point separoid is an oriented matroid.
However not every oriented matroid is a point separoid, i.e., oriented matroids are
more general than point separoids. On the other hand, every oriented matroid
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is a Radon separoid but not the other way around, so separoids are even more
general than oriented matroids. They will be studied in Chapter 3.

Recall the vector configuration M associated to P. If the 3-sets of X are
ordered lexicografically, their orientations can be extracted from the matrix AM
as the signs of the determinants of its minors, i.e., if (ijk) is a 3-subset of X we
assign to it the sign given by

x(ijk) = sgn [X;X;Xg|.

If we do this with all 3-sets (123, 124, 134, 234), we obtain the list + — 0 +. This
list encodes the whole separoid P in a very compact way —it is a list of ( dil)
elements of {—,0,+}. Unfortunately, such a compact code is not known for all
kinds of separoids. It would be nice to find one!

2. One more example

As our final example, take four points in the line and consider all pairs A 1 B of
disjoint subsets A, B ¢ X = {1,2, 3,4} such that (A) N (B} # ¢. Now draw an
edge between a pair of such subsets A ~ A’ whenever they differ in only one
element |[AAA’| = 1. The resulting graph is a cycle of length eight. It will be
called the Radon complex_ of the separoid. Observe that all linear orders on four
elements are in a one-to-one correspondence with this kind of cycles inside the
4-cube. We are thinking about the vertices of Q4 as the family of subsets 2% of
the 4-set X.

#  Itwill be proved that R} is the projective polyhedron depicted below.

.. in contrast to the matroid case oriented matroids carry information about
the tapofogy and the convexity of the underlying configurations.

—JURGEN RICHTER-GEBERT, New Construction
Methods for Oriented Matroids (1992)
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Chapter 1: Separoids

Separoids are combinatorial objects that capture the structure arising from a
family of convex sets in IE¢, where some subfamilies are naturally separated
from others. Namely, two subfamilies are said to be separated if there exists a
hyperplane that leaves them on opposite sides of it —the axioms of a separoid
are simply the obvious properties of this relation.

0. Basic Notions

A separoid S = (X,|) over the base set X # ¢ is a relation |C 2% x 2% on the
subsets of X with the following properties: If A, B c X, then

o A|B = B| A,
oo AlA = A=¢,
coo A|BandA'c A = A'|B.

So we say that a separoid is a symmetric, quasi-antireflexive, ideal relation on the
family of subsets. The elements of | are called separations and, when speaking
of a separation A | B, it is said that “A is separated from B". A separoid is acyclic
if the empty set is separated from the base one, i.e. if ¢ | X. The separations
with the empty set are called trivial separations and, in the sequel, almost all
separoids are finite and acyclic. Observe that it is enough to know maximal
separations to reconstruct the separoid —they encode the whole information.
It is easy to see that an ideal relation is quasi-antireflexive if and only if

co A|B = ANnB=2¢.

Now, let S and 7" be two separoids over the base sets X and Y respectively.
A separoid morphism S — T is a function ¢: X — Y with the property that for all
ABCY,

A|B = ¢7'(4) | ¢7!(B).

A separoid category is defined with such morphisms between separoids. Two
separoids are isomorphic if there exists a bijective morphism from one onto the
other whose inverse function is also a morphism.

Given a subset X’ C X of the base set of a separoid S, the induced separoid
is defined as the restriction of | to X’. An embedding is an injective morphism
between separoids such that it is an isomorphism between the domain and the
induced separoid of the image. The order is the number of elements in X.

There is a notion of dimension on separoids which is easily and intrinsically
determined. The d-dimensional simploid o = o is a separoid of order d+ 1 such
that every subset is separated from its complement, which by the third condition
yields A | B <= AN B = ¢. A simploid can be realized by the vertex set of a
simplex, hence its name —Figure 1.a, on page 10, represents o2.

The (combinatorial) dimension of a separoid, denoted by d(S), is the maxi-
mum dimension of its induced simploids.

7
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With the definition of dimension at hand, it is quite easy to translate into
separoid terms the classic Radon’s theorem; they capture the combinatorial
essence of it (cf. Danzer, Grimbaum & Klee 1963).

0.1. Lemma (Radon). Let S = (X, |) be a d-dimensional separoid, then every
subsetY C X of cardinality greater than or equal to d + 2 contains two disjoint
subsets A, B C Y such that they are not separated from each other.

Proof. It follows immediately from the fact that Y is not a simploid. 53]

A Radon partition consists of two non-separated disjoint sets, and it will be
denoted by A t B. Each part (4 and B) is called a Radon component and the
union A U B is known as the support of the partition. Considering the Radon
partitions of a separoid S = (X, |) as arelation t C 2X x 2%, it has the following
properties:

o AtB = BtA,
oo AtB = ANB =g,
see AfBandCCX\A = AfBUC.

This leads to an equivalent definition of a separoid. The separations can be
reconstructed with the obvious definition; A | B iff AN B = ¢ and there are no
subsets A’ C A and B’ C B such that A’ { B'.

A minimal Radon partition is a Radon partition A 1 B for which each com-
ponent is minimal under contention, i.e.,

AcA= A'|B and B'cB = A|B.

The set of all minimal Radon partitions of a given separoid determines it and will
be denoted by MRP, so At B € MRP means that A t B is a minimal Radon
partition.

Many authors have observed that the Radon’s theorem can be settled in a
more precise way (cf. Eckhoff 1993): Let X be a set of d + 2 points in R in
general position. Then X has a unique partition in two disjoint subsets whose
convex hulls have a common point. Moreover, this point is also unique. This
motivates the next definition.

A Radon separoid is a separoid with the property that forall At B,C 1D ¢
MRP such that AUB C CUD itfollows that {A, B} = {C, D}, i.e., the elements
of MRP are incomparable.

A separoid is said to be in generalposition if every subset A C X of cardinality
d + 1 is an induced simploid.

0.2. Lemma (general position). Let S be a d-dimensional separoid in general
position. If At B € MRP is a minimal Radon partition, then the cardinality of
the support AU B is at least d + 2.

Proof. The cardinality of the support cannot be smaller because every subset
o C S of cardinality d + 1 or less is an induced simploid.

X
A,
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1. Examples
As in any interesting category, the important part of it are not the axioms them-
selves but the examples we think of when developing the theory. Here are some
of them.
The Objects:

1. Consider a subset X ¢ IE¢ of the d-dimensional Euclidean space and
define the following relation

A|B < (A)N(B) = ¢,

where (A) denotes the convex hull of A. If X is finite, the pair P = (X,|) is an
acyclic separoid and will be called a point separoid. In fact, the name of separoids
arises as a generalization of the fact that A | B is a non-trivial separation if and
only if there exists a hyperplane strictly separating (A) from (B). Theorem 2.0.1
characterizes an important class of point separoids.

2. Consider a family F of convex sets in IR? and define the separoid S(F)
as above, this is, two subsets of the family A, B ¢ F are separated if there exists
a hyperplane that leaves all members of A strictly on one side of it and those of B
on the other. If F is finite and the elements of F are compact, then S(F) = (F,|)
is an acyclic separoid and will be called a separoid of convex sets. The Geometric
Representation Theorem (Theorem 2.3) proves that every finite acyclic separoid
S is isomorphic to a separoid of convex sets in IR?, where d = |S| — 1. There is
also a Representation Theorem (Theorem 2.2) for the non-acyclic case but with
non-compact convex sets and in a huge dimension —as big as the number of
separations.

3. Consider an oriented matroid M = (E, £) and identify it with the subset
L C {~,0,+}F of its covectors in the usual manner. Let T = T (L) be the set
of topes, maximal covectors, and define the following relation | 2% x 2% on the
subsets of E: A, B C E are separated, A | B, if and only if there exists a tope
T € Tsuchthat A C T+, and B C T~. The pair S(M) = (E,|) is a separoid.
In Chapter 3 this example will be studied in further detail, in particular it will be
shown that the oriented matroid can be reconstructed from its separoid, and
hence that separoids generalize oriented matroids.

4. Edelman (1984) has defined a complex which encodes the separoid of
an oriented matroid. He considers the set

I(7T):={Xe{-0,+}f: X <Tand T e T},

where T denotes the topes of an oriented matroid and < denotes the conformal
relation, i.e., X < Y ifand only if X* C Y+ and X~ C Y. Clearly a signed
vector X € I'is in Edelman’s complex if and only if X+ | X ~. He uses the Basic
Sphericity Theorem to prove that such a complex has the homotopy type of a
sphere. Theorem 3.2.3 is a direct consequence of this result —it is some how
the dual version of it.

5. As a special case of oriented matroids, a separoid can be defined from a
digraph D = (V, E). Let the set of edges be the base set and define two subsets
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of it A, B C E to be separated A | B iff for every circuit of the graph in which the
arrows in one direction are contained in A, the arrows in the other direction are
not contained in B. S(D) = (E,|) is a separoid, and it is acyclic if and only if D
is so —hence the name.

6. Consider a graph G = (V, E) and define two vertices u,v € V to be a
minimal Radon partition u t v if and only if they form an edge uv € E. The pair
S(G) = (V,1) is also a separoid. This turns out to be a functoral embedding
and, since graphs endowed with homomorphisms are a universal category, the
universality of separoids follows (Theorem 4.4.1).

7. Consider a topological space T = (X, 7) and define two subsets A, B C
X to be separated if and only if there exist disjoint neighborhoods of them, i.e.
if there exist o, 8 € T suchthat A C a, B C fand a N 3 = ¢. This is clearly an
acyclic separoid.

8. All acyclic separoids on three elements arise from one of the eight families
of convex sets in Figure 1. Those labeled a, b, e and h are the point separoids
of order 3; in fact, they come from the four essentially different oriented matroids
with three elements. They will be denoted by o2, A3, K»+¢° and K3, respectively.

b
208 =0 €0D

a b e . t g h
Figure 1. The acyclic separoids of order 3

The Morphisms:

9. Consider a family of convex sets F, choose a point in each of its elements
to construct a point separoid P and define the obvious bijection p: P — F. This
is a morphism since every hyperplane that separates A from B, subsets of F,
also separates their respective points ¢~1(A) and ¢~*(B).

10. Consider a family of convex sets F in JR% and let 7: R — IR® be an
affine projection. The obvious bijection #: F — = (F) is a morphism between
their separoids S(F) — S(m(F)).

11. Consider the embedding G — S(G) suggested by Example 6. If
¢:G — H is a graph homomorphism, the same map ¢: S(G) — S(H) is a
morphism of separoids (see Section 4.1).

12. Consider a family of convex sets F and give them a coloration ¢: ¥ —
{c1,...,cx}. If we denote by F' = {(<~*(c;))} the convex hulls of the color
classes’ family, the obvious map 7 — F' is amorphism. This is a key ingredient
in our study of Tverberg’s theorem (Section 4.5).
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13. Consider a family of convex sets F and fatten them up. If 7’ denotes
the new family, the obvious bijection # — F’ is a morphism.

14. Consider a family of convex sets F = { K, ..., K,} with a hyperplane
H transversal to all of them. If we denote by 7' = {H N K,,...,H N K,}
the separoid of the intersections, then the obvious bijection 7' — F is also a
morphism.

15. Strong and weak maps of oriented matroids are both examples of mor-
phisms between their respective separoids.

16. In Figure 1, bijective morphisms go from left to right between every
pair of separoids. Observe that there is no bijective morphism between those
separoids labeled d and e.

2. The Geometric Dimension

This section introduces a basic invariant in separoid theory. It will be show that
Example 2 is in fact the most general example, i.e. when thinking in separoids,
we can always have in mind a family of convex sets and use all the intuition that
comes from this picture without loss of generality. Let us start this section with
some general facts of the separoid’s category.

Given two separoids S and 7" over the sets X and Y respectively, their
product S x T'is defined as a separoid over the set X x Y with its two canonical
projections 7 x, my and two subsets of it A, B C X x Y are separated iff at least
one projection is, i.e.,

A|B < nx(A) | nx(B) or my(A)|ny(B).

Clearly, this definition implies that the projections wx,my are separoid mor-
phisms. To prove that this is the categorical product, we have to show that it
satisfies the universal property of the product, this is

2.1. Lemma (the product). Given two morphisms p:U — S and y:U — T,
there exists a unique morphism £: U — S x T such that ¢ = wg€ and ¢ = wp€.

Proof. The category of sets (with functions) gives as unique candidate the
function £ = (p,) so we only have to check that in fact this is a morphism of
separoids. For this, let A | B be a separation in S x 7" and suppose, without loss
of generality, that ms(A) | ms(B). Since ¢ = ws¢, itfollows that p€~1(A) = mg(A)
and €~ 1(B) = ns(B). Therefore, since  is a morphism,
¢ 7rpE1(A) | ¢ pETH(B).
Now, since £71(A) C p~1pt~1(A)and £71(B) C p~ 1t~ (B), we conclude that
£71(A) 1 €71(B),
and therefore ¢ is a morphism. o

Once the product has been defined for two separoids, the definition for a
finite number of separoids []:", S; is obvious.

11
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This product has a geometric counterpart. Let S and 7 be separoids of
convex sets in IR* and IR!, respectively. The geometric product S ® T is a
family of convex set in IR® x IR* whose elements are of the form K, x K;, where
Ks € Sand K; € 7. In general, it is not the case that the separoid of S ® T
is isomorphic to its combinatorial counterpart S x 7 however, in some special
cases, if the convex sets are "big enough”, S ® T is a realization of S x 7.

2.2. Representation Theorem. Every separoid S can be represented with a
family of convex sets in IR™, where m is the number of separations in S.

Proof. Given a separoid S and a separation init A | B, a characteristic morphism
XA|B: S — B exists

+, fze A

xaB(z) = { —, ifzeB
0, otherwise,

where B denotes the separoid defined in the set { —, 0, +} with unique separation
— | +. Itis not hard to prove that S can be embedded into the product of as
many copies of B as separations S has

x: 5 — H B.
A|Bes

The existence of such a morphism is given by the previous lemma. In order to
see that y can be made injective, consider two different elements = # y € S.

In the one hand, if there exists a separation A | B, where =z € A, we have
then that z | B. Therefore, x,5(z) # xz|5(y) and therefore x(z) # x(v).

On the other hand, if there are no separations with the elements = and y,
both are mapped to the element 0 = (0,...,0) € IIB. We can then take as
many copies of this element 0 to map each element = with such a property.
Equivalently, we can identify all of them as a single element; after the realization
below, we can then consider as many copies of the ambient space —which will
represents the element 0— to realize the original separoid. Observe that such
a construction does not change the number of separations of the separoid.

Finally, to see that x~1 is also a morphism observe that, if A | B, there is a
projection 7: [] B — B such that x 4 = 7x and therefore x(A) | x(B).

The end of the proof is to show how to realize [~ , B as a family of convex
sets; the restriction to x(.S) will then realize S.

For, in the real line, let B be mapped as follows:

- = IR,
0 —» IR,
+ — Rt

Clearly this realizes the separoid B. The product of m copies of it can be
realized in IR™ by the geometric product of these convex sets: since the convex
sets in the geometric product are “big enough”, all separations can be made with

)
J’:
(A

9,
’ ’
00,

2,

I”

()
o::’:
(/
12 Vs

L/
e
9,
0"

‘.

I"
'3

5,92,




Chapter 1: Separoids

hyperplanes which are parallel to some of the linear hyperplanes spanned by
some m — 1 canonic vectors. &

# Itcan be proved that, in the acyclic case, to compactify the realiza-
tion of B™, it is enough to take the intervals [-1,—¢], [-1,1] and [e, 1],

The geometric a’m:euswn of a separoid can now be defined as the minimum
dimension of the Euclidian space where the given separoid S can be realized
as a separoid of convex sets; we denote it by gd(S). There are not known
algorithms to calculate this invariant and it is conjectured that it is, at least, an
NP-hard problem. It is important to give better upper bounds of gd(S) than that
implicitly given in the theorem; in particular, we know that, in the acyclic case, it
grows at most linearly with respect to the order:

2.3. Geometric Representation Theorem. Every acyclic separoid of order n
can be represented by a family of convex polytopes in the (n — 1)-dimensional
affine space, and therefore

gd(s) < |S] - 1.

Proof. Let (S, 1) be an acyclic separoid (i.e., Af B = |A||B| > 0). To each
elementi € § = {1,...,n} and each (minimal Radon) partiton At B € MRP
such that i € A, we assign a point of IR"

1

PAtB |B[Zeb ' Zeu g (1)
beB agA

(where {e;} denotes the canonical basis) and realize each element i € S as the

convex hull of all such points

i K= (plyyp:i€ Aand At B € MRP).

Observe that these convex sets are in the (n — 1)-dimensional affine subspace
spanned by the basis, becouse (1) is, in fact, an affine combination.

To see that this family of convex polytopes realizes the separoid observe
that, in the one hand, for each partition A t B, the vertex set of the two simplices
(eq :a € A) and (e, : b € B) “moves” —half of the way each— to realize such a
partition intersecting one another precisely in their baricenter. Thatis, let A1 B
be fixed; in order to prove that

(Ka:a€ A)N(Ky:be B) # ¢,

itis enough to prove that (p%,  : a € A)N(p; 4 : b € B) # ¢ because p%;; € K,
and therefore (p%;p : a € A) C (K, : a € A) (analogously with B).
Now, if we let p : IR™ — IR™ be the translation

p()—x+ |B|Eb |A|Zeu,

beB

13

Fig2. Bx B
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we have that p%; 5 = p(e,) and the baricenter of (0, : a € A) is

1 . 1 (1 11 1
mZPmB—Wgﬁ(%)—P(W;%)ﬂE E§9b+mzea]

aEA acA

Analogously, using that ,o’_’FH 4 = —p(—ep), we have that
1 i Bl 3 1
2 Pba=3 [‘—Z°b+_ Z:ea]
lBl beB 2 !Bl beB lAl acA
and therefore
(Patp:a € A)”(P?sm:be B) # ¢.

On the other hand, given a separation « | 3, define the affine extension of
the equations

-1 jea
Yap(@j) =91 j€p forj=1,...,n.
0 otherwise

Now, it is enough to prove that for every i € « (resp. (), we have that
f,f)aw(pfqm) < 0 (resp. > 0) for all At B such thati € A. For this, observe that,
ifi € an A (and A t B) then, since v, 5(e;) =0forall j € (AUB)\ (aUp),

Yalp (Pats) = Yais (e,— 4 % [ﬁi! (B;xeb 3 _;_;Zmeb) - |_jﬂ (Z: ety ea)]) _

ANa Ang
B (IBnpl=1BNeal) , (|IANa|=]ANA]) 1.1
=14 2|B| + 2{1‘1' S—1+§+§—0.

Equality holds if and only if BNg = B and ANa = A leading to a contradiction.®

We end this section showing how to prove that the combinatorial dimension
bounds the geometric dimension.

2.4. Lemma (dimension). For any separoid S, its combinatorial dimension is
not greater than its geometric dimension, i.e., d(S) < gd(S).

Proof. Let S be d-dimensional with geometric dimension g = gd(S), and sup-
pose that g < d. Let S be a family of convex sets in IR? that realizes S. Since
S is d-dimensional, it contains a d-dimensional simploid ¢ C S of order d + 1.
Choose a point for each convex set of . This set of points consists of g + 2 or
more points in IR? and, by the classic Radon’s theorem, there exists a partition
of them in two subsets whose convex hulls intersect. Therefore they are not
separated. This contradicts the fact that & was a simploid. 23]
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3. General Results

In this section we settle some general results on separoids that will be needed
somewhere else. We start with a new “convex version” of the well known
Carathéodory's theorem (cf. Danzer et al. 1963 and see also Eckhoff 1993):

3.1. Lemma (Carathéodory). Let X = |J,.; K; C IR4, be the union of some
convex sets K;. If x € (X) is a point in the convex hull of X, then there exists a
subset J C I with |J| < d + 1 and, forevery j € J, a point x; € K; such that x
is a convex combination of the points x;.

Proof. By Carathéodory’s theorem, we need at most d+1 points of X to express
x as a convex combination of them. It is easy to see that, if two (or more) of
these are on the same convex set K;, they can be replaced by a single point
x; € KC; which is a convex combination of them. Therefore we need at most one
point in each convex. @

With this lemma at hand, it is easy to see how to “realize” each minimal
Radon partition of a separoid.

3.2. Theorem. Let S be a separoid of convex sets. Given a minimal Radon
partition At B, there exists a point on each convex set of the support, a; € K; € A
and b; € K; € B, such that

(ai:Kic A)n(b; : K; € B) # ¢.

Proof. If x € (A) N (B) # ¢, by Carathéodory’s lemma, we need at most d + 1
elements of A, K; € A, and at most one point in each of them a; € K; to express
X as a convex combination of them. By the minimality of the partition, it is clear
that we need at least one point in each convex of A. The same argument works
for B and we are done. &

We will also use a “continuous version” of Radon’s original proof.

3.3. Lemma (continuous Radon). Let z;(t) = (1 — t)x; + ty; with t € [0,1],
be d + 2 segments in IR. If their respective extreme points, {x;} and {y,}, are
different point separoids in general position, there exists a t € (0,1) such that
the separoid {z;(t)} is not in general position.

Proof. It is easy to see that, for every t € [0, 1] there exists a solution for the
following equations

Yo Azt) =0, Y M) =0, Y |N(t)] =2

and moreover the );(t) can be chosen to be continuous. Since the points x; =
z;(0) are in general position, such a solution for ¢ = 0 is unique and every );(0)
is non-zero. Such a solution leads to a unique Radon partition, the positives vs.

the negatives
Z A.‘(O)ng— Z A.—(O)x,-,

Xi(0)>0 Ai(0)<0

15
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Z Ai(0) = - Z Ai(0) =1

Ai(0)>0 Ai(0)<0
or, in separoid notation
{x.,- 3 /\,(0) > D} t {X" : /\,(0) < 0}

The same argument works for ¢ = 1, but by hypothesis it yields a “different”
partition

{yi: X(1) >0} f{y; = (1) <0}

Here, different means that there is a j such that A;(0) and );(1) have different
signs (while others have the same), then there exists a t € (0,1) such that
A;(t) = 0. For that ¢, {z;(¢)} is not in general position.

We close this section with a beautiful theorem of separoids that will be used
to characterize point separoids in general position.

3.4. Theorem. If a separoid is in general position and its geometric dimension
is equal to its dimension, then it is a Radon separoid.

Proof. Let S be a d-dimensional separoid in general position. If its geometric
dimension is equal to its dimension, it can be realized as a family S of convex
sets in JR4. Not to be a Radon separoid would imply that there exists a subfamily
&' C & with two “essentially different” ways of choosing points on each convex
set of it. This is, suppose that S is not a Radon separoid. Then there are
subsets of A, B,C,D C Ssuchthat A1 B,C{De MRP, AUBC CUD and
{A, B} # {C, D}. Since S is in general position, the support S’ := AU B has
at least d + 2 elements. Since C t D is minimal, applying Theorem 1 and the
classic Radon’s theorem, its support has at most d + 2 elements. Then, without
loss of generality, we may suppose that |S| = |AUB|=d + 2.

Using again Theorem 1, two configuration of points can be defined, two
points on each convex set, in such a way that they realize the two Radon parti-
tions. Considering the line segment that join each couple —inside each convex
set— and applying the continuous Radon lemma, we conclude that S is not in
general position £ &
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4. The Radon Complex

We will associate to each separoid a “cubic” complex which “lives” in the bound-
ary complex of the n-cube. We will consider the Radon components of a sep-
aroid. They can be identified with some vertices of the n-cube and the Radon
complex of the separoid will be defined as the induced complex of these vertices.

Let @, denote the n-cube (see Figure 3). Its vertices V' (Q,,) will be identified
with the family of subsets 2% of the n-set E. Its faces are intervals of the natural
contention partial order defined in 2%, i.e., each face is of the form

[A,B]:={XCE:ACXC B}.

In fact, this definition leads to an n-ball, but in the sequel the n-cube will be
thought of as an (n — 1)-sphere so the face [¢, E] is dropped out.

We call generalized cotopes the Radon partitions of the form A { A, where
A = S\ A denotes the complement. Given a separoid S, for each generalized
cotope A t A, take the vertex A € V(Q,); the complex induced by all such
vertices is what we call the Radon complex of the separoid and we denote it by
R = R(S). Here, by induced we mean that a face of Q, is in the complex if
and only if all of its vertices are. Some small Radon complexes are shown in
Figure 4.

It follows from the definition that

4.1. Lemma (faces). If At B is a Radon partition of S then A, B] is a face of
R(S).

Proof. Let A B be a Radon partition of a separoid S = (X, [). Itis clear that for
all C C B we have that (AU C) 1 B, therefore every vertex of [A, B] is a Radon
partition’s component of the given separoid S. &

The converse of this lemma is not true in general, this is, there exists a
separoid S such that [A, B] is a face of R(S) and A t B is not a Radon partition.
Therefore the generalized cotopes do not determine the separoid. In fact, there
are many separoids which yield the same Radon complex (cf. Figure 1 and 4
and observe that, while there are eight acyclic separoids on 3 elements, there
are only four possible Radon complex in Q3).

However, in some important cases the separoid can be reconstructed from
its Radon complex. In particular oriented matroids, and therefore point sepa-
roids, are completely encoded by the Radon complex.

The faces of R with maximal dimension (that are not contained in a bigger
face) are called facets. We say that two facets X,Y € R C Q, are incident if
their intersection is not empty, and adjacent if it is as big as possible, i.e., they
are the only two covers of their intersection in the face lattice of R. The graph
with the set of facets as vertices and adjacent facets as edges is called the
circuit graph of the separoid. Its vertices are called circuits and if every circuit
comes from a minimal Radon partition, the separoid is said to be full, this is,
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full separoids are those for which the converse of the previous lemma holds. It
will be shown that: Oriented matroids and point separoids, are full separoids.

We will say that a separation A | B is maximum if the union of its parts
AU B = S is the separoid itself. We say that a separation A | B conforms to the
separation C | Dif ACCand BC D.

4.2. Lemma (full separoids). Let S be a separoid. If every separation conforms
to a maximum separation then S is a full separoid.

Proof. Let [A, B] be a face of R(S) and denote by C = B\ A the difference of
those subsets. Clearly every vertex of such a face are of the form Au C’, for
some C’' C C. Then, since they are vertices of the complex, for all C* C C we
have that AUC’'t AUC, this is, the set {AUC’ : C’' C C} is a subset of the
components of S.

Now, in order to search for a contradiction, suppose that A | B. The hy-
pothesis says that this separation conforms to a maximum one. Denote by C,,
respectively Cj, those elements of C which are on the same side of A, respec-
tively B, so C = C, U Cp. From this definition follows that AU C, | B U C}. But
as previously settled, AUC, 1 AUC, # &

# It remains an open question to find necessary and sufficient con-
ditions, in terms of Radon partitions, to characterize full separoids.

If a separoid S is in general position, all the facets of its Radon complex have
the same dimension, say k, so its circuit graph is a subgraph of the k-dual of
the n-cube denoted by Q% and defined as follows (k > 0): the vertices of Q% are
the k-subcubes of Q,, and two of them are adjacent if their respective subcubes
intersect in a (k — 1)-subcube. From now on, we denote the faces of Q,, by the
standard signed vectors, this is, each face 4, B] is denoted by X € {—,0,+}®
where

+ ifie A,
Xi=40 ifie B\ A,
— otherwise.

We call antipodal automorphism the function which sends each vector X to
its opposite —X. Observe that if every circuit of a separoid has the same support
size (say n — k), the 1-skeleton of the dual poset of the Radon complex of such
a separoid is a subgraph of QF and it is closed by the antipodal automorphism.

o a L

Fig 5. The three k-duals of
the 3-cube (k=1,2,3)

PP -
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5. Transversal Theory

In this section we will study, from the separoids point of view, the space of all
hyperplanes transversal to a family of convex sets S = {K,,...,K,} in the
Euclidian space JE9+!,

Let S be a separoid of convex set in JE4*+!. An affine subspace H — IF4+!
of dimension d is called a fiyperplane transversal if the intersection with each
convex set of S is non-empty. We are interested in the set of all such hyperplanes.
This can be considered as a subset of the open manifold G¢ := G4(IE4+!) which
consists of all affine hyperplanes of JE4t1, Itis ease to see that P4 = G4(IR*+1),
the Grassmannian of linear d-subspaces of JR**!, is an homotopical retraction
of g¢ —just identify each pencil of parallels with its linear representative— and
therefore they are homotopically equivalent G2 ~ P4,

Let us denote by

T(S):={HelP!:3Ive R*WK € S,KN(H+V) # ¢}
the space of hyperplanes transversal to S.
5.1. Proposition. Let S be a separoid of convex sets in IE%+. Then
TS)#¢ = d(S)<d+1.

Proof. If d(S) = d + 1, S contains a simploid o of order d + 2 and there is
not a hyperplane transversal to it. The existence of such a hyperplane would
contradict, via the Radon's theorem, that ¢ is a simploid. &

We say that7 = 7(S) is an essential subspace of G¢ if itis not homotopically
equivalent to a point inside P4, i.e., T cannot be continuously contracted toa
‘point in its ambient space IP¢,

5.2. Theorem. Let S be a separoid of convex sets in IE4t!, If gd(S) < d, then
T = T(S) is an essential subspace of G°.

Proof. Let S be a separoid of convex sets in JE4*!, suppose that gd(S) = d — k
and let F be a realization of S in JR?~*. Choose a point in each convex of F to
construct the point separoid P and define the obvious morphism ¢: P — S.

Now, let us denote by 7+ := {v € &% : v+ € T} the closed set of all unit
vectors for which there exists a hyperplane transversal to S orthogonal to it, and
let 7+ = 5\ 7+ be its relative complement.

For every u € 7+ we may choose continuously a hyperplane Hy € G¢
orthogonal to u such that Hy = H_y and it separates two nan-empty subsets of
the given separoid S. Denote by Hyj the closed semispace determined by Hy
that has u as normal. A straight forward argument proves that the function

> d(K, Hu)
ECHE

is never zero and depends continuously of u € S¢.

19
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Let the function f: 7+ — IR?-* be defined as

f= 3 %wm)-
ncua

In order to find a contradiction, suppose that 7 is not essential in G¢. Then,
T+ is contained in a subset of %4 homotopic to the 0-sphere and, by the Alexan-
der’s duality, 7+ contains a (d — 1)-pseudosphere. Therefore, due to Borsuk-
Ulam’s theorem, there most be a point uy € 7+ such that
f(=uo) = f(uo).
LetA:={KeS:KCHj}andB:={KeS:KcCHT, }bethesubsets
of S separated by the hyperplane Hy,. Since ¢ is a separoids morphism, then
¢~1(A4) | ¢71(B).

On the other hand, observe that f(up) is a convex combination of points of
¢~ 1(A) and also f(—uyp) is a convex combination of points of =1 (B). Therefore,

f(uo) = f(—uo) € (¢~ (A) N {p™'(B)) # ¢,

which is a contradiction # &

d  An ease consequence is the following Corollary (Helly). Let S be
a separoid of convex sets. If every two members of S have a com-
mon point, then T (S) has the same homotopy type as if there were a
common point to all of them.
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Hasta que no me concedas esto con plena
conviccion, querido lector, no sigas leyendo.
—ALBERT EINSTEIN Sobre la teoria especial
v la teoria general de la relatividad (1917)
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In this chapter we will concentrate in a very specific class of separoids. We will
study those separoids which arise from an affine configuration of points. Let us
start with a guide example. We will think on it all across the chapter so it is a
good idea that the reader takes all the time (s)he needs to analyze it.

Consider the vertices of a regular pentagon and identify them with the num-
bers P = {0, 1,2, 3,4} in some of its two cyclic orders. Due to Radon'’s theorem,
there should by two disjoint subsets A, B C P whose convex hulls intersect, or
in separoids notation, A t B. In fact, there are ten such pairs:

02113 13724 24703 03114 14702
024713 013124 124703 023714 134702

Observe how 02 f 13 = 024 { 13 and 02 { 134. More over, observe that for
each minimal Radon partition A 1 B there exists a unique d € A U B such that
(A\d)t(B\dUc), wherec= AUB.

If we draw an edge between a pair of Radon partitions whenever one implies
the other, the resulting graph is a cycle of order 10. In fact this graph is isomorphic
to the Radon complex of the separoid.

It is very easy to see that all regular pentagons in the plane are affinely
equivalent. Thisis, given two regular pentagons, there is an affine transformation
of the space that sends one onto the other —just translate the center of one into
the other, scale it to reach the same size and rotate if necessary so the five
points coincide— therefore we can identify them to say that they represent the
same configuration of points. However not every two pentagons represents the
same configuration —even their separoids are isomorphic— because an affine
transformation of the plane is determined by the image of a triangle.

Let us give a step back —in fact two steps back— to analyze P} in full detail.
If we have three points in the line in general position, its separoid is of the form
a T be and —since we are dealing with affine transformations— with out loose of
generality we may suppose that b and c are represented by 0 and 1, respectively.
The relative position of a between b and ¢ is parametrized with a number in the
interval (0, 1) so, we may think in the space of configurations of three points in
the line in general position as the union of three open intervals. Now, if we miss
the general position the separoid gets the form a t b or, equivalently, a  c. This
configuration is “rigid” —it can not be continuously transformed without changing
the separoid— and there are three of them. Observe that this configurations are
the limit of the previous described intervals. Therefore, the space R} of all
configurations (modulo affine transformations) of three points in the line is a
cycle of order 3 and it is homeomorphic to P! = &',

The reader most be aware to distinguish between these two examples: the
former cycle (of length 10) was associated to a particular configuration, the
regular pentagon; the latter cycle (of length 3) was associated to the “space” of
all configurations of 3 points in the line.
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0. Uniform Point Separoids

Point separoids are those separoids which can be realized by a configuration of
points in some Euclidian space. They are extremely difficult to characterize from
a purely combinatorial point of view. In fact, it is known that the stretchability
problem —a polar version in dimension 2— is NP-hard (cf. Shor 1991). However,
from the geometric point of view intrinsic to separoids, we can characterize those
point separoids in general position.

0.1. Theorem. Let S be a separoid in general position. S is a point separoid if
and only if its dimension and its geometric dimension are equal.

Proof. The necessity is clear. For the sufficiency, consider S as a separoid of
convex sets in IR, where d = d(S). Choose a point in each convex set, denote
by P the point separoid that they define, and let

p:P— 8

be the obvious morphism (see Example 9). We will show that, in fact, this is an
isomorphism of separoids.
In the one hand, by construction, we have that for every A, B C S,

A|B = ¢7'(A) | ¢7(B).

On the other hand, let A+ B € MRP be a minimal Radon partition of
&S. Since S is a separoid in general position, the cardinality of the support is
#(AU B) > d + 2. Then the preimage of this union consists of d + 2 or more
points in IR? and by the classic Radon's theorem there exists a Radon partition
Dt E of 71 (AU B) in P. Since g is a morphism, ¢(D) t ¢(E) is a Radon
partition of AU B. Finally, due to Theorem 1.3.4, S is a Radon separoid and,
without loss of generality (D) = A and ¢(E) = B. Therefore ¢~1(A) t ¢~}(B).
Since M RP generates all Radon partitions, it follows that for every A, B c S,

AtB = ¢ (A)te7'(B).
Thus, ¢ is an isomorphism of separoids and S is a point separoid. 53]

This result is sharp. The hypothesis of general position cannot be dropped
without adding a new ingredient. The separoid B used in the proof of the Rep-
resentation Theorem is a 1-dimensional separoid in general position, it can be
realized in the line but it is not a point separoid. However, the small examples
of non-stretchable pseudolines arrengments suggest the following (cf. Theo-
rem 3.1.2)

0.2. Conjecture. An oriented matroid is coordinatizable if and only if its dimen-
sion (its rank minus one) is equal to its geometric dimension.
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1. The Grassmannian

In the study of point separoids is quite difficult to avoid their algebraic properties.
There are plenty of them. In particular, the Grassman-Pliker relations and the
Grassmann variety it self appears naturally in this context.

We had review some examples of configurations of points, finite subsets of

the affine space P = {p,,...,p,} ¢ A?—we will always suppose that the points
spans affinely their ambient space. Given a configuration P, a linear function
¢: R™ — IR can be defined as the linear extension of the equations

‘P(ei] =P, 1= 1)"'}“1

where {e;} denotes the canonical basis of IR*. Given two such functions ¢, ¢/,
it will be said that they represent tfie same configuration if there exists an affine
transformation : IR¢ — IR? such that

‘U')‘P(Qi) = ‘pr(ei)s 1= 11 ey Ny

i.e., two configurations are the same if one is the (ordered) image of the other
by an affine transformation of the ambient space.

We will call space of configurations, and denote it by RZ, to the set of all
configurations with n points in dimension d (modulo R(d), the affine group).
This set will be provided of structure and will be described in some detail.

The first example is the case n = d + 1 and the space of configurations
consists of a single point that represents the simploid ¢¢. The object starts to be
more interesting when n > d + 2. It is the case where Radon’s theorem applies.
It guarantees that there exists a partition A t 4 of P and we can consider the
set of components C = {A C P : A1 A} that is a subset of the vertices of
the n-cube —the family of subsets of P— that induces a polytopal complex
R(P) = Qn[C] = {[A, B] € Q. : A1 B in P} known as the Radon complex of P.
We will prove later in this chapter that the Radon complex of a point separoid is
homotopically equivalent to the (n — d — 2)-sphere.

The space which consists of the k-subspheres of the n-sphere in known
as the Grassmann variety (or, for short, grassmannian) and it will be carefully
defined bellow but, by the moment —as a motivation— let us say that this space
is homeomorphic to the space of configurations.

In the classic literature, grassmannians are defined as the set of all sub-
spaces, with a fixed dimension, of a vector space. Here we will refer exclusively
to subspaces of IR™ and the the grassmannian of k-subspaces (k-planes) of IR"
will be denoted by G* = G¥(IRM).

This set can be provided with a natural topology. Every k-plane is the kernel
of some linear function ¢: IR® — IR™* and two such functions have the same
kernel if and only if there exists a linear transformation » € GL(n— k) that makes
the following diagram commutative

K\._lg.. R"

1 X

Rﬂ—k ;.L IRk
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Then, the grassmannian inherits the topology of the space L(JR™, IR*~*) modulo
the linear transformations of IR"~%, i.e.,
gk < L(R*, R**)/GL(n - k).

Observe that: in particular projective spaces IP"~!, defined as lines —or
hyperplanes— of IR", are a special case of grassmannians G! = P"~!; and
that, as there is a natural duality between lines and hyperplanes —orthogonal
complementation— there is a duality between grassmannians Gk = gn—*,

But we want to work with the affine group R(d), not the linear one, so a
step further is required. The next step is to prove that the grassmannian can be
embedded also in the space of linear functions modulo the affine transformations,
but with a bit of difference in the dimensions,

G4 — L(R™*, RY)/R(d).

This will be a consequence of Theorem 1 below. We will denote by IT = 1* the
hyperplane of IR™ orthogonal to the vector1 = (1, 1,... ., 1) with all its coordinates
equal to one, or equivalently

n:{xeR":Zx.:o},
where z; denotes the i-th coordinate of x.

1.1. Theorem. Two functions ¢, ¢’ € L(IR™ IRY)/R(d) represents the same
configuration if and only if their respective kernels intersects the hyperplane I1
in the same subspace.

K NII—— R

4N

qu -— Hd
Proof. Let p; = (e;) and p, = ¢'(e;) be two configurations of n points in R¢
and let K and K’ denote their respective kernels. It will be proved that
K'nll=KnII

if and only if there exists an affine transformation v: R? — A? that sends one
onto the other:
P; = ¥p;.
This will induce a bijection between the space of configurations and the
(n — d — 1)-subspaces of the linear space II of dimension n — 1.

Necessity. It is clear that is enough to prove that K’ NII ¢ K NTI, this is, it is
enough to prove that

Y A=0and Y Ap;=0= ) Ap,=0.

X

Fig 8. The hyperplane I1
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In fact, if 'x = Mx + v denotes the affine isomorphism, then

0=3"npl =S np,+v) =M (T am) + (T A)v=m (3 ap).
Since M is invertible, then 3~ A\;p; = 0.

Sufficiency. In seek of simplicity, we will suppose that the first d + 1 points of the
configuration p; spans affinely the space —the general case is totally analogous

but working with subindexed set of indexes— therefore there exists an affine
function v: RY — MA? defined as the affine extension of the equations

p::ibpu 3:1,‘,d+1

It will be proved that the rest of the points satisfies the same equation.

For this, let p; be any other point. Since the points {p,, ..., P44, } spans the
space, there exist numbers {A;,...,Aa+1} suchthat 3°\; = land p; = - Aip;.
By hypothesis we have that

D> A-1=0 and Y Ap;—p; =0 = > A\p.-p;=0,
and therefore
P =S api=3 Aupi=vY Ap; = ;.
This concludes the proof. @
With this result at hand, we obtain the desired topology for IFIﬁ.

1.2. Corollary. The points on the Grassmann variety G%(IR™~') are in one-to-
one correspondence with the configurations of n vectors in IRY modulo the action
of the affine group, .

RS = GY(R"1).

Proof. The subspace II can be identified with I/R*~! and every (n — d — 1)-
subspace of it can be extended to the kernel of a linear function ¢ € L(IR", IR%).
Theorem 1 guarantees that the correspondence of each configuration with its
kernel is well defined and is a bijection of the points of G"~4-1(IR"~1) with the
points of the space of configurations. Finally, the duality of grassmannians gives
us a bijection of those with G¢(IR"~1). o

#  We will take now a closer and more concrete look to the Grassmann
variety by describing an explicit embedding into projective space, called
the Pliiker embedding of G¢(IR™). This dissertation will take us a little bit
out of the scope of this work, but it will aloud us to ask some questions
which are in this moment in research. In particular, we would like to
study the space of configurations of affine subspaces. It is a natural
generalization of the previous when we think on points as 0-dimensional
affine subspaces. If we denote by ,iR¢ the space of all configurations of
n subspaces, each of dimension ¢, into the d-dimensional affine space,
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then the previous studied space R can be denoted by (R4, and, as
we will see, in the general case we may have an embedding of the form

(uﬂfﬁ.lg n - (gH—l(RcHl))"

where ~ is denoting an equivalent relation which will be manufactured
later... and when | am saying later, | mean later because at the moment
it is not known how to build it even its existence is pretty obvious.

Let A, IR™ denote the k-fold Grassmann (or exterior) product of the vector
space IR". The elements of A, IR" are called antisymmetric tensors. \We may
think on it as the (};)-dimensional space (over IR) which has the canonical basis

(R -

n

{B,;l Ao Agy 11 <4 <o < < n}.
The product of k vectors vy, ...,V € IR" is given by

Vi, - Ukiy
VIA.. AV = Z : D len A...Ae,.

iy nip <
1<ip<--<ixEn Vi o Vkig

and the basic property of this product is that, vy, .. ., v; are linearly independent
if and only if v; A ... Avg # 0. Also, if two k-subspaces H,H' — IR" are
equipped with basis by, ..., by and b}, .. ., b}, respectively, we have that H = H’
if and only if there exists a non-zero scalar ¢ € IR* such that

biA...Aby=c-biA...ADbj.
Therefore we have the following embedding
Gk (R™) — PG)-,
Let us see a concrete example of how this can be used to study configu-
rations of affine subspaces. Consider a line ¢ — R* spanned affinely by the
points a and b, and think on R? — IR* as the hyperplane {x € IR* : x - &5 = 1}

of the vectors which have the fourth coordinate equal to 1. So, we can denote
by a = (a1, a2,as,1) and by b = (b1, b2, b3, 1) the affine basis of £. Observe that

arbz — azby
a1b3~aab1
_ ashs — asbs _[ax b
aAb= Al _(a_b)emﬁ.
az — by
a3 — bs

Since every change of basis makes this assignments differ by a non-zero scalar,
we can safely define a function ¢: {£ : £ — R?*} — IP® from the space of lines in
the affine space to the projective 5-space by
axb
p(f) = [a = b] :
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Now, consider a family of lines £ = {¢;,...,4:} € 1R}. We will say that
L is dependent if the set {p(€) : ¢ € L} is linearly dependent in IP5, i.e. if
el N ... ANp(€) =0.

1.3. Proposition. Three lines in R* are dependent if they are concurrent and
coplanar.

Proof. Let ¢;, £; and ¢; be three lines in the affine space with p =4 a
common point and let them be coplanar. Leta € ¢, and b € ¢, be points which
completes a basis of their respective lines, i.e., both of them are different from
p. Since the three lines are coplanar, the line spanned by a and b intersects ¢
in a point, say ¢, which is different from p and therefore, completes a basis of it.
More over, this point is an affine combination of the form

c = )a+ ub, where A\ + p = 1.

From here it is easy to see that

X a x b X €
@(02) A p(la) A p(ls) = [ﬁ_aJ A [,':_b A [,‘:_c] =0.
Just recall that the Grassmann product is associative, antisymmetric and that it
satisfies x A x = 0 for all vectors x € IR" of the space. &

% The necessity is also true. More over, it can be proved that four
skew lines in A* are dependent if and only if they form part of the ruler
of a quadratic form.

We end this section with the dissertation started at the previous “coffee cup”
sign above. Let ,S¢ denote the set of all families of n affine ¢-subspaces in IR?.
As we saw, each such a subspace has associated a point in G+ (R4*!), and
each point there has associated a point configuration, i.e., an element of RSt}
Since we have n of such subspaces, we can assign n configurations of points
to the family at hand. Therefore we have an embedding

d £ *
5y < (Fd"-l-lz) :
Now, if we make a group act in JR9, say the affine one, we naturally have an

equivalent relation ;A% = ,S4/MA(d) and this most induce some relation on the
previous product of grassmannians

Ry — (RGES)"/ ~

...but we do not know yet how it works. It would be nice to find out!
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2. The Radon Complex of a Point Separoid

In this section we will give a geometric proof of the fact: the Radon complex
of a point separoid is homotopically equivalent to a sphere. In order to achieve
this result, we will need to review some concepts of Combinatorial Convexity.
We will be dealing with the polytopal complexes that bounds the n-cube and its
dual, the n-octahedron. Both are the convex hull of a finite set of points in IE¢
and therefore, each has associated a finite poset, its face lattice. As we will see,
these lattices can encode in full a point separoid but, first of all, let us prove that
point separoids are full, this is

2.1. Lemma (fullness of points). LetP be a point separoid. Aninterval (A, li] €
Q, is a face of R(P), the Radon complex of the separoid, if and only if At B is
a Radon partition of the separoid.

Proof. The sufficiency is the face lemma 1.4.1. For the necessity, let [A, B]be a
face of R(P) and denote by C = B\ A the difference of those subsets. Clearly
every vertex of such a face are of the form AU C”’, for some C’ C C. Then, since
they are vertices of the complex, for all C' C C we have that AUC’1 AU C7, this
is, the set {AU C’: C' C C} is a subset of the components of P.

Now, in order to search for a contradiction, suppose that A | B. This is
equivalent to the existence of a hyperplane H — R? that separates the convex
hulls of A and B. It is easy to see that, ones this hyperplane exists, it can be
chosen in such a way that it does not contains any of the points. Denote by C,,
respectively Cy, those points of C which are on the same side of A, respectively
B, so C = C, U Cj,. From this definition follows that H separates A U C, from
B U Cs. But as previously settled, AUC, 1 AUC, # L2}

Observe that an analogous argument proves that if every separation can be
extended to a maximum separation then the separoid is full (cf. Lemma 1.4.2).

In the following, we will suppose some familiarity with concepts as abstract
and geometric simplicial complex, geometric realization |KC| of an abstract complex
K, homeomorphism denoted by =, boundary 8K, and relative interior K°. But do
not worry to much with this... any time | say “polytope” you may think in the n-
octahedron (also known as the n-crosspolytope), the convex hull of the canonic
basis of IR™ and its negatives; and every time | say “polytopal complex” you may
think in a subset of its boundary.

#  Anintroduction to this concepts, can be found in Ewald’s “Combina-

torial Convexity and Algebraic Geometry” (1996), Munkres' “Elements

of Algebraic Topology” (1984), or to the classic Spanier's “Algebraic

Topology” (1966). v

Given two simplices, o and 7, there is a ball defined by the union of all
segments whose extreme points are, one in each simplex; it is called the join
and denoted by o * 7. Observe that the join is again a simplex if and only if the
union of both vertex sets is affinely independent.
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2.2. Lemma (join). Let 7y, 71 < o be two faces of a simplex, and £ an affine
subspace. If £ intersects the interior of both simplices, it intersects the interior of
their join, i.e.

(N7, #¢ = LN (10 x71)° # ¢.

Proof. Leta € 75 N £ and b € 77 N £ be points in the intersections of £ with
the interiors of the two faces. Then, the segment (a, b) is contained in £ and its
interior in (7o * 11)°. 3]

Now, given a polytopal complex K, its baricentric subdivision K' can easily
obtained from its face lattice as follows: its vertices (K')(© are the elements of
the poset (the faces of K); and its k-faces (K')*) are the chains of length k in
the poset, this is (by, ..., bx) € (K)*) = by <--- < bp € K.

# Itis ease to see that the baricentric subdivision of dual polytopes
is the same.

The realization of the baricentric subdivision is known to be homeomorphic
to the space it self. More over, if the baricenter of a face is aloud to move in the
interior of the face it represent, with out going out of such a interior, the space and
its combinatorial properties do not change. In particular, if an affine subspace ¢
intersects the polytopal complex, the following realization of the subdivision can

be defined
bo°Ne) ifo°ne#¢
A1) - ; s
e {b“ wPg = {b(a) otherwise |’

(Boys---,Bg, ) € [K'|®) = g9 < -+ <o €K,

where each ¢ is a face of X and

1
b(o):#T((ﬁ Z v

Vea©

denotes the usual baricenter.

In the proof of Theorem 2.2.4 we will be dealing with two different ways to
intersect an affine subspace ¢ with a polytopal complex: the usual one which
considers only those faces of the complex intersected in the interior; and what
we call fat intersection which considers all faces “touched” by the subspace.
Both intersections are to be considered as subcomplexes of the baricentric sub-
division. We will prove that the usual intersection is a retract of the fat one. For
this, let us denote by X[V] the subcomplex of K induced by a subset V C K(©
of its vertices. This is, the subcomplex induced by V consists of V it self, and of
every face of X such that all its vertices are in V.

With all these at hand, denote by

Kne:=K'b, :ant+# 4|

3
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and by

KAE:=K'[by:0°NE#¢|
the fat and the usual intersections, respectively. Clearly the realization of the
usual intersection is the intersection of the realization, i.e., |K A f=|KINn& In
fact it is the first baricentric subdivision of the “geometric intersection”, ne=
(Kneg.
2.3. Theorem. Let K be a polytopal complex, and ¢ an affine subspace that
intersects it in the interior. Then |K A £| is a strong retract of [KC M £].

Proof. Let f:XM{— K 1 ¢ be defined as f(bs) = b;, where
T=max{T <o :7°NL# ¢}.
First of all, observe that the join lemma guarantees that f is well defined
and, to see that it is a simplicial map, observe that o¢ < o; implies
{r<oo:m°NE#£ @} C{r <o1:7°NLF# ¢}
and therefore f(o9) < f(o1).
Clearly f is the identity map on K ne.
Now, foreacht € [0,1], let fi: [N ¥ — |K A £] be defined as follows: first,
if b, € (KM £)© is a vertex,
fr(bg) = (1 - t)bs +tf(bs).

Observe that, since b, and f(b,) are points of |o|, then f;(b,) is also a point
of |o|]. Finally, extend linearly the function to the rest of the domain, this is, if
X € [K ¢ is any other point, then x € |(b,,,...,b,.}| C |ox| and x can be
denoted as a convex combination x = 3" A;b,,. Therefore f, can be defined by

fe(x) = E Aifi(bg,).

So, fi: [N €|\ |K M £ is a strong retract. 12)

We are almost ready for the main theorem of this section. The next stepis to
give two descriptions of the n-octahedron; a geometric one and a combinatorial
one. They will be used to define a duality of it with the n-cube.

Let us provide IR™ with an unusual metric —known as Manhattan norm—
that assigns to each vector the sum of the absolute value of its coordinates
[Ix|| :== 3 |:]. Inthis space, the unitary sphere turns out to be the n-octahedron

|On] :={x€ R": ||x|| =1} @ "~ 1.

It is the boundary of the convex set of a finite set of points, the canonical basis
and its negatives

!oni == a(iels reey :EB">,

Fig 9. The fat intersection



Chapter 2: Configurations

therefore it is a polytopal complex. More over, it is a simplicial complex.

The n-octahedron has also the following combinatorial description: each
face o can be identified with an n-vector (z1,..., z,) € {-1,0,1}" that indicates
which vertices —which canonicals, or its negatives— are incident to it, in such
a way that each face can be realized with the simplex

lo| = (zi@ : z; #0).

It is well known that this complex is dual of the n-cube and therefore there
is a function between their faces that realizes such a duality. We will denote it

by
6:On — @,

G((zi€:2: #£0)):=[{i:2s =1}, {i : z: # —-1}].

# Theorem 4 plays an important role on the next chapter. It was
the basic guide of our intuition to develop the graph theoretical charac-
terization of uniform oriented matroids in terms of their circuits. Both,
the technics in the proof and the statement it self, serves as pictures
to “see” points separoids —and more generally, oriented matroids. In
fact, this theorem generalizes that of Radon and it was basically his
technic who lead us to the proof. Although the statement was conjec-
tured since the first days of the theory, more that a chandelier ago, we
had not found a “purely combinatorial” proof of it. Always the geometry
and topology had play an important role... well it was supposed to be
like that, the final statement talks about homotopy of spheres so it is

"not rare that the topology has to play some role in the proof.

We will see also how the proof of Theorem 4 suggests a charac-
terization of all point separoids. This will be used to give explicitly the
stratification of Y forn < d + 3 and for d = 1.

2.4. Theorem. Let P be a d-dimensional point separoid of order n. Then, the
(n —d — 2)-sphere is an homotopical retraction of its Radon complex R = R(P),

R, B,
More over, if the separoid is in general position, then such homotopy is in fact
an homeomorphism,

R gn-9-2,
Proof. Let P = (p,,...,p,) € (RY)" be a configuration of points, S = S(P) its
separoid and R = R(S) its Radon complex. We will identify the configuration

with the intersection of the kernel K = ¢~1(0) of its linear function ¢: IR™ — IR?
(where ¢(e;) = p;), and the hyperplane

H:1J’:{XER”:ZL—:0}.

33

Fig 10. The 3-octahedron
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This (n — d — 1)-subspace of II will be denoted by £ = K NII. Theorem 1.1 guar-
antees that this assignment is well defined and, modulo affine transformations,
is one-to-one.

Give to IR™ the structure of a (Manhattan) normed space and denote by

0= {xe R*: 3" |l =2}
the sphere of radius 2 centered at the origin (observe that here we are working 000
with a radius 2 sphere —because a technicality that will be clear later— but
the previous dissertation on the n-octahedron can be applied to it completely).
Recall the definition of the fat intersection

ONE=0'lo e O:anNt# ¢ 0 KN g

and define the complex of its dual faces Fig 1. Thisorem 2.4
R:={6(c) € Qn:0 € Oand s NL# ¢},

where §: O — Q, is the previously defined duality function.

Clearly ® = @ n£. Observe also that, since ¢ is a subspace of dimension
n—d— 1, then On{is a sphere of dimension n — d — 2. Now, due to Theorem 3,
O N ¢is a strong retract of © M ¢ and therefore R has the homotopy type of the
(n — d — 2)-sphere

R \ Sn—d—2'

Claim. RisequaltoR
» Since point separoids are full separoids —A t B is a Radon partition if and
only if [4, B] is a face of R (Lemma 1)— it is enough to prove that [A, B] is a face
of Rif and only if (A) N (B) # ¢. For this, let & € O be a face of the n-octahedron
and (z;) € {—1,0,1}" its corresponding signed vector. Then o has associated
the 3-partition of P givenby A = {p; € P: 2 =1}, B={p; € P: z; = —1} and
C =AUB = {p; € P: z; = 0} and, by the definition of §: 0, — Q,, we have
that (o) = [A, AU C]. Therefore, it is enough to prove that

oNé+# ¢ < (A)N(B) # ¢.
For, let x € e N ¢, then

inpizﬂ, Zx;:ﬂ and Z|zi|=2.

The first equation is due to x € K, the second because x € II (all these since
X € £ = K N1II) and the third one because x € @. More over, since x € o, we
are aloud to write

%X = M(z0)

as a convex combination (3~ A; = 1 and A; > 0) of the canonic basis vectors or
its corresponding negatives. Combining these (z; = 2z;A;) we have that

Z Aip; = Z AiP;

P4 P.B
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and

Y A= Y, M=

P PeB

This last happens if and only if {4) N (B) # ¢. Since all previous steps can
be followed the other way around, we have concluded the proof of the claim, and
therefore R \, "2, .

For the case of general position, observe that R has a face [A, B] of dimen-
sion greater than n —d — 2 if and only if #(B\ A) > n—d—2 and this is equivalent
to the existence of a partition At B where #(A UF) < d+2. Ifthe separoid S is
in general position this last is impossible (Lemma 1.0.2). Since all facets have
dimension n — d — 2 we have that

long =long.

el

Therefore R is homeomorphic to the (n — d — 2)-sphere R = G~ 4-2, L)

Observe that the last argument of the proof implies that the points are in
general position if and only if £ is “in general position” with respect to ©. Also,
if we think on full separoids as filters in the face lattice of the n-octahedron,
following the same technic as above we can prove that

2.5. Corollary (point separoids). A full separoid S C O,, is a point separoid if
and only if there exists a hyperplane H — IR™ such that S \, HNII N O,,.

Other application of this theorem, besides Theorem 0.1 is

2.6. Corollary (uniform sphereicity). Let S be a general position separoid of
n convex sets in IR%, Then

dS)=d — R(S) 2" 42,
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3. Concluding; the stratification of RZ

We had been working in three different categories: point configurations, thought
of as linear functions or matrices; separoids, thought of as the combinatorial
structure they are; subcomplexes of the n-cube, defined this as the family of
subsets of a given finite set.

Given a separoid S, a “cubic” complex R(S) — @, its Radon complex,
can be defined identifying its vertices V' (R) with the components of the separoid
C(S) = {A Cc §: At A} and looking for the induced subcomplex of the n-cube
R(S) = Q,[C]. In general it is not possible to reconstruct the separoid from its
Radon complex but, if the separoid is a point separoid, this complex encodes
the full separoid and it is always an sphere.

On the other hand, given a configuration of points P IF\f, it can be thought
of as a matrix and identified with the intersection of its kernel, the hyperplane
IT = 1* and the n-octahedron ©,. Such an intersection defines the dual of
the Radon complex of the separoid associated to the configuration. A natural
question is when does a cubic complex is the Radon complex of a point separoid?
It seem natural to ask for some sphericity but, as we will see on the next chapter,
itis not enough. In general, this question is still open but in the following we will
analyze the cases where n < d + 3. In the way, we will find useful to study also
the case d = 1.

We now want to bring together all these to see how the n-cube imposes a
stratification to the grassmannian, via the Radon complex of point configurations.

Since the reader was supposed to work with R%, IR} and RZ, and we already
described R} at the beginning of this chapter, we jump to study R3. Itis an
example of (5 =3 + 2)

Thecasen =d + 2.

d-+2 points in general position induce a unique (Radon) partition that can be
interpreted as a 0-subsphere of the (d + 2)-cube —a pair of antipode vertices—
and the other way around; given a subset and its complement it is easy to
construct a configuration with such subsets as its unique partition. This induce
a one-to-one relation between pairs of antipode vertices of the n-cube (different
from the empty set and the total one) and the d-dimensional point separoids of
order n = d + 2 in general position.

When the general position is lost, The Radon complex is “fatten” and gets
faces of bigger dimension; edges, squares, cubes, etc. Each of these faces has
associated an interval [4, A U C] in the family of subsets and this represents a
partition of the form A BUC, where A { B is the minimal Radon partition of the
configuration. The dimension of the “fat” is given by the cardinal of C.

" To get a picture of the fenomena, think on five points in JE3 in general position
and all of them being vertices of their convex hull. They lead a unique partition
of the form abe t de and its Radon complex consists of two antipodal vertices.
Now move continuously one of the points, say d, and push it to the closest face
of the tetrahedra defined by the other four, this is, the triangle defined by abc.
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While it is on the exterior of such a tetrahedra, the separoid do not change (even
the configuration does).

Ones it reaches the (relative) interior of the triangle abe, the new separoid
is defined by the minimal partition abc { d and its Radon complex consists of two
antipodal edges. If you move the point in the interior of the triangle, while the
configuration changes, the separoid does not change. If you move it to the other
side, the interior of the tetrahedra, the separoid became in general position and
the unique partition abce 1 d leads again to two antipodal vertices in its Radon
complex. But, if you move, inside the triangle, to reach an edge of it, say ab,
the separoid changes and defines a new minimal partition ab { d. Its Radon
complex turns now to be a pair of antipodal squares. Analogously, if this point
reaches an other point, say a, its Radon complex became a pair of antipodal
cubes. Observe that there is no way to put two antipodal 4-cubes inside Q5 with
out including the empty set and inducing, by the union of the vertices, the full
5-cube.

We have the following easily generalizable description of this fenomena:
with out lose of generality, we may suppose that the first (d + 1) of the points
are the vertices of a tetrahedra (a d-simplex); the (hyper)planes defined by each
three (d) of them leads a partition of the space in open sets (and points). Thenthe
fifth (d + 2-th) point can be localized by the position it occupies in the “polytope”
this partition defines —each open set can be named with a signed vector that
corresponds to the signs of the baricentric coordinates in terms of the ordered
basis determined by the the first four (d + 1) points— and each of this regions
define a Radon partition A + B U C —the positives vs. the negatives in the
previous mentioned signed vector. If the fifth point lies in the plane generated
by the first three (d), the baricentric coordinates of it contains a zero in the fourth
term (the cardinality of C is 1); if it lies in a line, contains two zeros (#C = 2);
and so on. We have then the following types of partitions: in general position
—represented in the grassmannian by facets of dimension 3 (d)— a 1 bede and
ab t cde; degeneracy of first grade —faces of dimension 2 (d — 1)— a { bed and
ab t cd; of second grade —edges— a 1 be; and finally when two points are equal
atb. This is, the space of configurations R consists of two types of facets (5
tetrahedra and 10 prisms), two types of faces (20 triangles and 15 squares), one
type of edges (30 of them) and one type of vertices (10 of them).

#  The 2-skeleton of R contains a regular polyhedra that plays the roll
of one of the platonic solids but in the projective space. If you consider
only the fifteen squares of it, you get a polyhedra with schiafli symbol
{4, 6} (itis made of squares, six in each vertex) and it can be embedded
in IP? in such a way that all of its automorphisms (the group S;) are
realized with isometric projectivities. As you may already proved, R}
is the hemicuboctahedron whose symmetry group is Sy. ..

#  Foranother presentation of the {4, 6} see Strausz 1996 and Bracho
& Strausz 2001.
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3.1. Theorem. The space of configurations of n points in dimension n — 2,
modulo the action of the affine group, is

A2 = 0, N1 /{—x,x} = (2 \ {4, 9})" /{4, 4}.

Proof. Since two configurations are equivalent (modulo the action of the affine
group) if and only if the intersection of their kernels with ©,, N1+ is the same and
because such intersection is a 0-dimensional sphere, the configurations are in
a one-to-one relation with the pairs of antipodal points of @, N 1*. The duality
with the n-cube has already been defined. 3

We will also give a combinatorial description for R3, 5 but, in the study of
the case n = d + 3, it will be important to have a good knowledge of
The case d = 1.

The facets of R are in a one-to-one correspondence with the linear or-
ders of n elements (modulo reversing all the elements in the order), and two
of them are adjacent if and only if they differ in a permutation of two consec-
utive members. It is ease to see that the facets are always simplices —with
out loose of generality, the ending points of the configuration, say a and z, are
represented by 0 and 1 so the configuration is parametrized by a sequence of
numbers 0 < b < ¢ < -+ < z < y < 1. On the other hand, the vertices of
ML, since are rigid configurations, are pairs of accumulated points. This is, the
vertices of the simplices are of the form

a|bed...yz,
ab|cd...yz,
abe|d...yz,
abed. ..y | z.

where the represented linear order is abed . . . yz. We know also that this space
AL = IP"~! most be homeomorphic to the projective space of dimension n — 1.

Let us see this in a more concrete example, four point in the line: in the
projective plane, take four points in general position —you can start, e.g., with
[1,0,0], [0,1,0], [0,0,1] and [1, 1, 1]— which will represent the four configuration
with a unique (maximal) separation of the form a | bcd. Now, draw the six
lines that they define by pairs. In the intersection of these lines appear three
new points. They represent those configurations with a unique separation of the
form ab | cd. There are two kind of edges; six which makes adjacent two vertices
of the first kind —characterized by a Radon partition of the form be 1 ad— and
twelve that joins vertices of different kinds —characterized by a Radon partition
of the form b t acd. Observe that there are not edges between two vertices of
the second kind. Finally, there are 12 triangular facets which consist each, of
two vertices of the first kind and one of the second. All this dissertation can be
resumed in the following



Chapter 2: Configurations

3.2. Theorem. The space of configurations of n points in the line, modulo the
action of the affine group, is

A, = (20 \ {#,9}) /{4, 4},
where Q?, denotes the first baricentric subdivision of the n-simplex.

Proof. The combinatorial structure of open sets defined by the (,,",) hyper-
planes spanned by n points in general position in the (n — 2)-projective space
is isomorphic to the star subdivision of the n-hemicube minus two antipodal
vertices; the poset relation is givenby A < B <= A c §B. &

The case n = d + 3.

As a consequence of Theorem 2.4, we have that each configurationofn = d+3
points in general position in dimension d gives place to the embedding Cs,, — 9,
of a cycle into the cube, its Radon complex. The fullness of point separoids
(Lemma 2.1) implies that two such separoids are equal if and only if their Radon
complexes are. Now, by Theorem 3.2.3, each antipodal cycle C5, — @, can
be associated to an oriented matroid of codimension 1, and therefore a point
separoid. Finally, observe that the condition of acyclicity is equivalent to say that
the Radon complex of the separoid does not contains the empty set (neither the
total). We have then that

3.3. Theorem. The facets of the space of configurations of n points in dimension
n — 3, modulo the action of the affine group, are

—gy(2n=6 — —
(@) = {Con - @\ (98} : A€ Cf)) = Ae i},
and two facets represented by the cycles C and C' are adjacent if and only if
[V(Cc) Av(CH| =2

%  Analyzing in detail FF}§+:, for the cases d = 0, 1,2, 3, in particular we

can prove that

e InQ;\ {¢,¢} there is only one cycle of order 6.

e In 9\ {¢, 0} there is, essentially, only one kind of antipodal
cycles of order 8, and there are as many as linear orders with four
elements.

e In Q;\{¢, 4} there are three kind of antipodal cycles of order 10.
They correspond to the configurations depicted in Figure 7.

This leads to complete the combinatorial description of this space of con-
figurations. But one question remains open: how can we reconstruct the con-
figuration from its Radon complex?

For this special case, we have a construction that we know it functions in all
small cases (n = 3,4, 5, 6) but we do not have yet a prove for the general case...
however we are convinced that this will be the case.

To describe the construction, let us go back to the first example of this
chapter: the regular pentagon. Observe that, given the cycle C;y — Q5 and a
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vertex A € C\J) of it, each path from A to its antipode defines a linear order of
the base set X = {0, 1,2,3,4}. In the example, if we start with the set A = 02,
one of the two paths to its antipode is 02,024, 24, 124, 14, 134. This path defines
naturally the lineal order 40123, the elements that change in each step of it. If
we forget for a moment some element, say 4, the remaining information is: a
minimal Radon partition 02 { 13 and a linear order 0123.

Recall the triangulation R1. In this, there are four special vertices (those that
represents the configurations of the form a | bed) and each facet represents a
linear order. If you add a fifth point in the baricenter of the region that represents
the order 0123 and we apply a projective transformation such that the four special
vertices realizes the partition 02 { 13 in the affine plane II + e;, parallel to II thru
the canonic basis, we obtain the desired configuration.

Figure 12. The realization of the pentagon
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4. One last application

We close this chapter with an application of the Radon complex of point sepa-
roids. We say that a separoid S is polytopal if every member of it is separated
from its complement z € S = =z | Z. If a point separoid is polytopal, all its
points are vertices of its convex hull, and therefore it is a polytope —hence the

name.

One of the main problems in Combinatorial Convexity is to classify convex
polytopes and there had been developed lots of tools to reach this. We will
see how the Radon complex of polytopal point separoids help us to count the
different types of polytopes in the ease case n =d + 2.

#  The following result is usually settled using Gale diagrams which |
will avoid, but it can be found, e.g., in the second chapter’s last section
of Ewald 1996.

4.1. Theorem (Griimbaum 67). There are precisely | 3d*| combinatorial types
of d-polytopes with d + 2 vertices.

Proof. Let P € R4, , be a polytopal point separoid. By Theorem 2.4, its Radon
complex R = R(P) is homotopically equivalent to the 0-sphere and therefore is
the union of two intervals A, B] and [4, B]. Since it is polytopal, neither of these
intervals contains a singleton (neither a subset of cardinality d + 1). With this
extra condition we have that

meaun (o (0).(21)7).

where P = ¢ is identified with the base setand (%) = {A c P : |4| = k} denotes
the family of k-subsets of it. If (4, B] = Q,, there are [25] essentially different
ways to embed R; if (4, B] = Q,, there are [452]; if [A, B] = Q,, there are

[452]; ...; if [A, B] = Qq_,, there is one (= [1]) way to embed R. Therefore
we have the sum

| _[d=1], [d=2] ... ,[L

41| 2 2 2/
and we are done. &

If you are not too ambitious, it can be a pleasure to realize
that you have rediscovered something previously known,
because at least you know that you were on the right track.

—I.M. GEL'FAND (;1980's?)
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Oriented matroid theory was introduced in the 1960's when J. Folkman and
J. Lawrence proved that every oriented matroid can be thought of as a family of
oriented pseudospheres. In particular, they proved that the natural partial order
associated to an oriented matroid is the face lattice of a sphere —this last result
is known as the Basic Sphericity Theorem. This result has many applications
and we will use, as our intuition source, a slightly different version of it: The
Radon complex of an oriented matroid is a sphere. It will be shown that this is a
direct consequence of Edelman’s theorem (1984) and Alexander’s duality.

One of the main bricks of the theory is the classic Radon’s theorem (1921).
Oriented matroids encode minimal Radon partitions in terms of circuits, a set of
signed vectors C c {—, 0, +}¥ with some properties; in particular, they define a
separoid which encodes all the information. As we saw, the family of all signed
vectors has associated a natural poset which turns out to be the face lattice of
the n-cube. The Radon complex of an oriented matroid is a “cubic” complex
(an ideal in the face lattice of the n-cube) whose vertices are identified with
those subsets non-separated of its complement. Since oriented matroids leads
to full separoids, this complex captures the structure of the oriented matroid.
In Theorem 2.2 we will prove that the dual poset of such a complex, can be
characterized via a natural combinatorial metric associated to the 1-skeleton
of it.

We follow here ideas explored by K. Fukuda and K. Handa (1993) but in
the more general context of separoids: Symmetric ideals (or filters) defined by
an antichain in the face lattice of the n-cube (or the n-crosspolytope). Fukuda &
Handa characterized every topegraph T = T (M) of an oriented matroid of rank 3
—dimension 2— showing that they are those antipodal planar graphs which can
be embedded in the n-cube preserving their graph distance. The planarity of 7
induces a dual graph G = 7* which can be proved to be the cocircuit graph of the
oriented matroid. No characterization is known of the cocircuit (or tope) graph in
the general case, but Theorem 2.6 gives necessary and sufficient conditions for
uniform oriented matroids with arbitrary rank. We basically settle that a graph G
is the cocircuit graph of a uniform oriented matroid of order n and rank r if and
only if it is of order 2(, ), it is antipodal and it can be embedded “metrically” in
the (n — r — 1)-dual of the n-cube.

In the way to reach this, we will apply all the theory developed in the previous
chapters. In particular we settle that oriented matroids can be represented by
families of convex sets and characterize those uniform matroids which can be
realized as point separoids.
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0. The Cryptomorphism

In this chapter oriented matroids, and separoids, will be handled as families of
signed vectors. Thus some notation and definitions have to be introduced.

Let E be any set with n elements and denote by O = {—,0, +} the set of
(signed) vectors with n entries in {—,0, +}. Given a signed vector X = (X¢)eck,
the set X* := {e € E : X, # 0} is called the support of X. The zero set of X is
the complement of its support, X° := E\ X* = {e € E : X, = 0}. Its positive
and negative sets are Xt :={e€ E: X, =+}and X~ :={e€ E: X, = -},
respectively. The opposite —X is defined by (—X), = —(X.).

In the family of signed vectors O a partial order can be defined as

X<Y < X*cYtandX CY".
If X <Y, it will be said that X conforms toY .

# This poset is the face lattice of the n-crosspolytope @,, and dual of
the n-cube Q,, —hence the notation.

With all this at hand, a separoid § = (E,|) can be encoded with signed
vectors as follows: S C O is a separoid if

(S1) XeS§ = —-XeS§, (symmetry)
(83) XeSand X'< X = X'eS. (itisanideal)

The separations can be reconstructed with the obvious definition:
XesS = Xt |X".

Recall that it suffices to know maximal separations to reconstruct the whole
separoid —they encode the whole information of it.

To define separoid morphisms in this context, the set O can be interpreted
as the family of functions of the form a: E — {—,0, +} where, given one such a
function o = X € Og, its applications are denoted by a(e) = X.. Also, if F is
any other m-set —together with its family Or— and ¢: E — F is any function,
the cofunction ¢*: O — Og can be defined in the usual way: if 3 € O then
@*B € O is defined as

(" B)(e) = Blp(e))-

Now, given two separoids S C Og and F C O, a separoid morphism,
denoted by § — F, is a function ¢: E — F such that

BeF = p*BeS.

Analogousiy to the former definition of a separoid, the Radon parﬁtibns of
a separoid S = (E, 1) can be encoded with signed vectors: S C O are the
Radon partitions of a separoid if

(R1) XeS§ = —-XeS8§, (symmetry)
(R3) XeSand X < X' = X'eS. (itisafilter)

-~



Chapter 3: Oriented Matroids

Once again, recall that the minimal Radon partitions encode the whole informa-
tion of the separoid.

An oriented matroid M = (E,C) of order n = | E| is a set of signed vectors,
C C Og, with the following properties:

(C1) 0gcC

(C2) XeC = -XecC

(C3) X, YeCand X*CY* — X=4Y

(C4) X, YeCand X,=-Y.#0 = thereexists ZeC

suchthat Zt C XtuYt+t, Z-CX-uY - and Z, =0

The elements of C are known as the circuits of the matroid.

Given an oriented matroid M the set of its circuits C can be identified, in a
one to one fashion, with the MRP set of a separoid on the same base set E. We
have the following obvious cryptomorphism.

0.1. Theorem. The minimal Radon partitions MRP of a separoid S are the
circuits of an oriented matroid if and only if

(M1) ¢t¢¢&MRP,
(M3) & is a Radon separoid,
(M4) AtB,A"tB'e MRPandz € ANB' —
JA"{B" e MRP: A" C AAUA\zand B" C BUB'\ z.
Given the circuits of an oriented matroid, its vectors, V = V(M), can be

reconstructed by an operation known as composition, defined as

X, ifX.#0,
Y. otherwise,

(Xor)e={

via the following: V D C is the minimal superset of C closed by composition, i.e.,
X,YeV = XoY eV. Observe that vV c S, i.e., since vectors close circuits
by composition and separoids by conformal relation, in general there are more
Radon partitions in the separoid than vectors in the oriented matroid. Therefore,
generalized cotopes (maximal Radon partitions) effectively generalize cotopes,
maximal vectors.

Recall the example of Section 0.1; the configuration P contains only two
circuits 1t 34 = (+,0,—, —) and its opposite. From the oriented matroid point
of view these two circuits are all the vectors, but for the separoid there are four
more Radon partitions 1 { 234, 12 { 34 and its opposites.

The topes T (M) C Og of the oriented matroid are the maximal separations
and its covectors L(M) C Og are those separations which composed with topes
give topes, i.e.,

XeL &= VIeT:XoTeT.

Observe once again that not every separation is a covector, this is, there are
more separations than covectors in an oriented matroid.
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It can be proved that the covectors of an oriented matroid M are the vectors
of another one known as the dual oriented matroid M*. More over, (M*)* = M

# There are different axiomatizations of oriented matroids; in terms
of topes, vectors, covectors, circuits and cocircuits. They are rigorously
treated in Chapter 3 of Bjorner et al. (1993).

1. Representations of oriented matroids

“Oriented matroids can be thought of as a combinatorial abstraction of point con-
figurations over the reals” —so reads the opening remark of Bjérner et al.'s basic
reference book. However, they are more general than that, and one of the basic
problems in the area is to give meaningful characterizations of those oriented
matroids that do arise from point configurations, they are called finear or real-
izable. They can also be thought of, by polarity, as a combinatorial abstraction
of configurations of oriented hyperplanes, or of oriented (codimension 1) sub-
sphere arrangements on a sphere. From this point of view, it is remarkable that
all oriented matroids can be realized if the spheres are let to “wiggle” a bit, that is,
if they are not asked to be geometrically flat but only that they keep the topological
behavior of spheres, they are then called “pseudospheres arrangements”.

Fig 13. An oriented matroid.

Thinking again in terms of points, there should be an analogue of the extra
freedom that comes from “wiggling” hyperplanes...

The Representation Theorems (1.2.2y 1.2.3), besides Theorem 0.1, implies
that

1.1. Theorem. Every oriented matroid of order n can be represented with a
family of convex sets in some Euclidian space.. More over, if the separoid is
acyclic, such a representation can be done in the (n — 1)-dimensional affine
space.

...this result plays the dual role of the Topological Representation Theorem
due to Folkman & Lawrence. This is, when hyperplanes “wiggle” to became
pseudohyperplanes, their dual points “fatten” to became convex bodies. But



Chapter 3: Oriented Matroids 47

then the natural combinatorial abstraction becomes more general —becomes a
separoid.

An oriented matroid is said to be uniform if its separoid is in general position.
Its rank _is the dimension of the separoid plus one. Theorem 2.0.1 implies that

1.2. Theorem. A uniform oriented matroid is linear if and only if its geometric
dimension equals its rank minus one.

Now, since Edelman’s complex (cf. Example 4) is a sphere and it is the
complement of the Radon complex, due to Alexander’s duality we have that

1.3. Theorem. The Radon complex of an oriented matroid is homotopically
equivalent to a sphere.

This result was our intuition guide to the following section, but first we have
to introduce some definitions.

2. The circuit graph of an oriented matroid
Given two signed vectors X and Y/, the separator of X and Y, is the set

S(X,Y)={e€ E: X.=-Y, #0}.

Two signed vectors X, Y with the same support size (| X *| = |Y£| < n) will
be said to be adjacent if there exist i, j € E such that X, = Y} for all £ € {i, j},
Xi=0#Y,andY; =0 # Xj.

This notion of adjacency defines a graph G,, with vertex set the family of all
signed vectors. It leads naturally to the definition of moving a zero from one place
to another (non-zero place) which is a step of a walk in the graph. Therefore
the distance in G,, from one vector to other is the minimum number of moves
of zeros needed to reach the destination vector. This motivates the following
definition: the traversen of two signed vectors X, Y is

X, Y)={c€ B: X, =04V, or Y5 =04 X:).

2.1. Remark. X and Y are adjacent in G, if and only if
S(X,Y)=¢ and |T(X,Y)l =2

This notion will be interpreted in three different settings: as adjacency on
the circuit graph of an oriented matroid; as adjacency in the k-dual graph of the
n-cube; and as adjacency of k-subcubes of the n-cube.

Every oriented matroid M = (E,C) has associated a graph G = G(M)
whose vertices are the circuits of the matroid and two of them X,Y € C are
adjacentif X oY =Y o X and forevery Z < X oY, it follows that Z € {X,Y}.
This graph is what we call the circuit graph of the oriented matroid —in the
literature this graph is studied via the dual oriented matroid so it is better known
as cocircuit graph.
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#  Previous attempts to understand the cocircuit graph of an oriented
matroid can be found in: Fukuda & Handa 1993; Babson, Finschi &
Fukuda 1999; and Finschi & Fukuda 2000.

It is well known that the cocircuit graph of an oriented matroid is the 1-
skeleton of the cell decomposition induced by the pseudospheres that realize
the oriented matroid via the Topological Representation Theorem therefore, if
the matroid is uniform, two (co)circuits X, Y are adjacent if and only if

|[S(X,Y)|=0 and |T(X,Y)| =2
From this follows

2.2. Theorem. Let M be an oriented matroid, S its associated separoids and
R its Radon complex. If M is uniform then G(M) is the 1-skeleton of R*, the
dual of its Radon complex. &

This is the first step to reach the characterization of the cocircuit graphs of
oriented matroids. We will analyze different ways of walking with this notion of
adjacency, and develop a series of metrical restrictions on such paths. Recall
the definition of QF, the k-dual of the n-cube (Section 1.4).

2.3. Lemma (metric). The graph distance in Q% (k > 0) is, for X #Y

_[ISX 1) +1 =
dox (X,Y) = {|S(X, Y)|+3IT(X,Y)| otherwise.

Proof. Let X,Y € V(QF). First of all, we exhibit a XY -path with the desired
length —this will show that the distance in QF is at most that of the statement.
There are four cases:

Case 1(S(X,Y) =¢and T'(X,Y) = ¢). This condition is equivalentto X =Y.
Case2(S(X,Y)=¢and T(X,Y) #¢). Let Th(X,Y)={i€e E: X; =0#Y;}
and analogously Tp(Y, X) = {i € E: Y; =0 # X;}.

Clearly T(X,Y) = To(X,Y) U To(Y, X) and, since X and Y have the same
support size, |Tp(X,Y)| = |To(Y, X)|. Let us give an arbitrary (but fixed) lin-
ear order in both previously defined sets: Ty(X,Y) = (m1,...,7jm(x,y)) and
To(Y, X) = (w1, - -, Timy(v,x)))- Now, let {21, Z2,..., ZHT(XY)I} be defined as

follows:
(Zm)i;_{Y,- ifiE{’.:'1,...,‘1',-,-.,11'1,...,11',-_.-,}.
X; otherwise.
Observe that , - _
S(X,ZY) = S(Z},2%) = --- = S(ZITEY)I-1 yy_ ¢
IT(X,2Y)| = [T(2}, 2%)| = --- = [T(ZHTCNI-L y)| = 2,

and Z3IT(X.Y)l = Y. Therefore, by the remark, (X, Z!, Z2,..., Z}TXYV)| = v)
is a XY-path and its length is 3|7'(X,Y))|.
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Case 3 (S(X,Y) # ¢ and T'(X,Y) # ¢). Let us give an arbitrary (but fixed)
linear order in the separator: S(X,Y) = (61,...,0)s(x.y)), and let

{7',2%,..., 5950

be defined as follows:
}/f ifie{-rl)glr'“:o'm—l}l
(Z2™);=<0 ifi=om,
X; otherwise.

Observe that,
S(X,2") = 8(2,2°) = -+ = §(ZISC0VI1, ZI5C) = ,
IT(X,2")| = T(2", 2%)| = -+ = [D(ZISXDI, ZISCN =9,

Moreover, S(ZIS(XY)l y) = ¢ and

IT(Z5XNY)| = |T(X,Y) \ {n} U {osix}l = [T(X,Y)|.
Now, construct a ZIS(X:¥)ly.path as in the previous case. This completes the
XY -path of the desired length.

Case 4 (S(X,Y) # ¢and T(X,Y) = ¢). Letiz € X° = Y be arbitrary (but
fixed) and let Z! defined as follows

0 ifi = T,
(2*); = {+ if 2 = 4,
X; otherwise.
Observe that S(Z1,Y) = S(X,Y) \ {s1} and T(Z},Y) = {01,140}, therefore the
previous cases applies.
To end the proof, we have to show that the distance in Q¥ is at least that of
the statement. We do it by induction.
Let d: V(QF) x V(QF) — IN be the following function
_ 18X, Y)|+1 Xty
AxX,Y) = { IS(X,Y)| + 3T(X,Y)| otherwise.
By the remark it follows that d(X,Y) = 1 if and only if dox (X,Y) = 1. Let
suppose that for every X, Y and for every m < m,, we have that d(X,Y) = m if
and only if dgx (X,Y) = m. Let (X, Z?,...,Z™ =Y) be a geodesic XY -path
(of minimum length). We want to prove that d(X,Y) < m, so, suppose that
d(X,Y) > my.
Since the path is geodesic, it follows that
dok (X,Y) =dgx (X, 2") +dgx (2',Y)

which by hypothesis implies that my = 1 + d(Z!,Y) and so d(X,Y) > 1+
d(Z',Y). If we denote as

ey = {1 HXE=YE,

XY =10 otherwise,
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we can write d(X,Y) = |S(X,Y)| + 3|T(X,Y)| + dxy including in one equation
both cases of its definition. Recall that X* = Y* if and only if T'(X,Y) = ¢.
With this notation at hand we have that

1 1
IS Y|+ 5IT(X,Y)| +6xy > 1+(8(21,Y)| + SIT(ZY)| + 6z

Since X is adjacent to Z!, there exist i, j € E such that for all £ ¢ {i,j}
we have that X, = (Z'), X; = 0 # (Z%); and X; # 0 = (2');. Then S(X,Y)
and S§(Z',Y) , and respectively T'(X,Y) and T(Z',Y), differs only in the ith
and jth coordinates. This motivates the following notation: Given F C E, let
Sp(X,Y)=FnS(X,Y)and Tr(X,Y) = FNT(X,Y). Therefore we have that

1 1
[Si(X,Y)| + §IT=-3'{X= Y)| +6xy > 1+(8:5(Z2',Y)| + §IT@(Z‘,Y)I + dz1y-
We consider two cases:
Case 1 (7;;(X,Y) = ¢). Since X; =0 # (2'); and X;#0= (Zl)j. thenY; =0
and Y; # 0 therefore {i,j} c 7i;(Z2",Y) and i & S;;(X,Y). But
1 1
2 > 18;5(X, Y)i+§|Tij(X, Y)|+dxy > 1+(Si;(27, Y)f+§|ﬂj(zl,y)|+5zly >2

an obvious contradiction #
Case 2 (T};(X,Y) # ¢). Clearly, in this case, §xy = 0. Then

1 1
|S‘J'(X:Y)| T §|TlJ(X!Y)| >1+ |Sij(Z]1Y)| + §|TlJ(ZI)Y)|

Since X; = 0 then i ¢ S;;(X,Y), and then 5 € S;;(X,Y). Therefore j €
T;;(Z',Y) which implies that

1 1 1 1
143 2 [S5(X, V)| + 5IT5(X, V)| > 1+ 185(2", V)| + 51T5(27, V) 2 1+ 3

a new contradiction # This concludes the proof. 5]

By a graph embedding G — H is meant an injective functioni: V(G) — V(H)
of its vertices that sends edges to edges. Moreover, in such a case, we will
identify the vertices of the domain with those of its image. In fact we will refer to
the vertices of the domain with the name of their respective image. In particular,
if a graph is embedded in QF, the vertices of the graph will be denoted by those
signed vectors of theirimages. As usual, an embedding is said to be isometric if
the graph distance of the domain is preserved by its image.

2.4. Lemma (weak elimination). Let G — QF be an isometric embedding such
that X* = Y* ifand only if X = +Y. Given X,Y € V(G) two non-antipodal
vertices (X # +Y') and an element in its separator e € S(X,Y), there exists a
vertex Z € V(G) suchthate e Z°, Zt C XtuY*tand Z-C X~ UY~.

Proof. Since changing the separator S(X,Y) in a XY -path from one sign to the
other requires to move a sign to zero and, after that, to the other sign, then for
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every element in the separator there exists a vertex Z in the path with a zero in
that position. It remains to prove that this vertex works.
Let (X, Z,22,...Z™ = Y) be a geodesic path in G. It follows that

dor (X,Y) =1+dgk(Z2',Y)
which by Lemma 3 implies that
ISCEY)|+ 5ITCGY)| + by = 14[S(Z1,Y)] + 31121, Y)] + 51y
By an analogous argument to that in proof of Lemma 3, it is easy to see that
15X, Y)] + 31T (X, V)] +6xy = 1+[85(2%, V)| + 31T5(2 V)| + 8,

where X; = 0 # (Z'); and X; # 0 = (Z1);. Since X # +Y then §xy = 0 and,
because X; = 0 we have that: ¢ S;;(X,Y’) and therefore

1 1... 1,
I+52 18i;(X,Y)| + §l3sj(erJl =1+15;(2",Y)|+ E[r,-j(Z‘,YH + 07y

which implies that |S;;(Z,Y)| = 6z1y = 0.

In particular this implies that two antipodal vectors belongs to a geodesic
path if and only if they are the extreme points of it.

Observe the following contradiction; if (Z!); # Y; thenY; = 0 = X;,i €
Ti;(Z',Y) and so

1218;(X,Y)| + %f’[}j()(,YN =1+ %|?}j(Z’,Y)| >1+ % 4
Therefore (Z'); = Y;.
Since for every £ & {i,j}, X¢ = (Z')¢ and (Z'); = 0, we have that
(ZHYtc XtuY* and (Z)-C X UuY~.

Finally, since Z! # —Y then the previous argument works all over along the
path, i.e.

(ZmY*t C (Z™M*Puyt Cc Xtuyt
and

(@) c (@) uy-cx-uy-,
therefore we have that every Z in the path has the desired property. &

2.5. Theorem 17. Let G be a graph. If there exists an antipodal embedding
G — QF and

X££Y €V(G) = dg(X,¥) =|SX, V) +3T(X, V), (¥)
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then G is the circuit graph of an oriented matroid.

Proof. Firstofall observe that the metric Lemma 3 implies that the extra condition
(*) is true if and only if the embedding is isometric and there are not two non-
antipodal vertices with the same support.

Let G — QF be an antipodal embedding with the property (x). We want
to construct an oriented matroid such that its circuit graph is G. Let S be the
following separoid over the base set E = {1,...,n}: for every X € V(G),
which corresponds to the face [A, B] < Q,, define a minimal Radon partition as
A1 B. We have to prove that the set of all such partitions are the circuits of a
uniform oriented matroid. The axiom (C1) is trivial. Since G is closed by the
antipodal automorphism, the relation is symmetric and axiom (C2) follows. (C3)
is equivalent to say that S is a Radon separoid, a direct consequence of (x).
In order to prove (C4) we apply the weak elimination Lemma 4 to see that in a
geodesic path from a vertex X to a vertex Y # +X there should exists another
vertex Z with the desired property. 2]

However the condition of isometry is too strong to be necessary as Figure 13
shows. In it, the vertices X and Y are non-antipodal (in fact we are depicting
only the projective half of the oriented matroid) and |S(X,Y)| + 3|T(X,Y)| =2
butdg(X,Y) = 3.

So, let us introduce the weaker (and therefore more general) concept of
metric embedding; an embedding G — H is said to be metric if for every pair of
vertices X, Y € V(G) there exists an XY -path P such that

ZeV(P) = du(2,Y) <du(X,Y).

Such a path P will be called a metric path. Observe that, if an embedding
G — QF is not metric then for every XY -path P there exists a vertex Z € V(P)
such that

[S(Z,Y)| > [S(X,Y)| or [T(2,Y) >|T(X,Y)|
The existence of a metric embedding is necessary.

2.6. Theorem. Let G be the circuit graph of an uniform oriented matroid then
the natural embedding G — QF is a metric embedding.

Proof. We analyze two cases: first, suppose that X,Y € V(G) have empty
separator and they do not have common zeros, i.e., S(X,Y) = ¢ = X°nY"°
Then their composition 7 = X oY € T is a tope of the oriented matroid.

In the topological representation this tope is the ball that results of intersect-
ing a number of closed-semispaces —hence the name— and we may suppose
with a little abuse of notation, that 3 ;

r=(Hf =++--+,

where H' = {V € V(M) : V; € {0,+}}. Since the boundary of such a ball or
is connected and it contains both X and Y, there exists a geodesic XY-path
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P c 87 init. As we walk into this path from X to Y, neither the separator nor
the traversen increase. This is, for every Z € V(P) we have that

S(2,Y)=¢ and |T'(Z,Y)| <|T(X,Y)| = 2k.

Therefore P is a metric path. More over, it is an i-metric path (see the definition
below).

In the case where the separator or the set of common zeros of X and Y are
non-empty, we use an inductive argument in the matroid

M =M\ S(X,Y)/(X"nY®)

to find there a metric path P’. It is easy to see that if P c G is the subdivision
of P’ that comes from “putting back the separator and the common zeros” of X
and Y then P is a metric path. @

However, this metric condition is to weak to be sufficient. In order to prove
the sufficiency we should be able to prove a generalization of the weak elimina-
tion Lemma 4 but this kind of embedding allow us to construct metric paths of
the form

X= 0 + zzzzx
Z= — 0 zxzxxzx

Y=+ - yyyyy
In such a path, when giving the step from X to Z, neither the separator nor
the traversen increase but we are “walking with the wrong direction”. This is,
Z=g X—Uu¥-. ,

Therefore, in order to find a necessary and sufficient condition, we have to
strength ones more our concept of metric. We say that an embedding G — QF
is 1-metric if for every pair of vertices X,Y € V(G) there exists an XY -path
P = (X,Z',...,Z™ = Y) in G in which every step takes “the right direction”.
This is, for every pair of adjacent vertices, if (Z¢); = (Z¢*1); = 0 # (Z%); —if we
are moving a zero from i to j— then (Z¢+1); € {X;,Y;} and therefore, for every
ZeP

§(2,Y)C S(X,Y) and [T(Z,Y)| <|T(X,Y)|.

Such a path is called an i-metric path. This concept allow us to generalize
Lemma 4.

2.7. Lemma (i-metric paths). Let G — QF be an embedding. If P C G is an
i-metric path from X to Y then forevery e € S(X,Y) there exists Z € V(P) such
thatee Z2°, Z- C X~ UY and Z+ C Xt uY™,

Proof. Since changing an element of the separator the separator S(X, V'), while
walking in an X'Y-path, from one sign to the other requires to move the sign to
zero and, after that, to the other sign, then for every element in the separator
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there exists a vertex Z in the path with a zero in that position. Such a vertex
satisfies the extra sign conditions because we are in an i-metric path. 13]

2.8. Theorem. A graph G is the circuit graph of a d-dimensional uniform oriented
matroid of order n > d + 2 if and only if it is of order 2(,,},) and there exist an
antipodal embedding G — Q7~9=2 with the following properties: if X # +Y € G,

(G1) dgn-4-2(X,Y) =|S(X,Y)| + 3IT(X,Y)|,  (uniqueness)
(G2) There exists an i-metric XY -path. (weak elimination)

Proof. The necessity is proved by an analogous argument to that in the proof
of Theorem 6. Just observe that the path P C &7 is also an i-metric path.
The sufficiency is analogous to that of proof of Theorem 5 but using the previous
lemma in the i-metric path instead of weak elimination lemma in a geodesic one.
Finally, the condition of uniformity is equivalent to the condition on the order. &

This theorem leads to a new axiomatization of uniform oriented matroids.
On the other hand, the hypothesis of uniformity cannot be dropped without a
new ingredient because the circuit graph of a non-uniform oriented matroid may
not be embedable in QF. We believe that there should be a notion of distance
in the first baricentric subdivision of the n-cube that leads to a similar theorem
but for the general (non-uniform) case.

Finally, putting together Theorem 1.3 and Theorem 8, we have the following

2.9. Corollary. The Radon complex of a uniform oriented matroid of order n
and dimension d, is homeomorphic to the (n — d — 2)-sphere.
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Jon Folkman began working on oriented matroids by 1967, in an attempt to

prove the lower bound conjecture for polytopes by generalizing it. Tragically, he died
before publishing his theory. His notes resided with Victor Klee and Ray Fulkerson.
Later, when Klee discovered that his doctoral student, Jim Lawrence, was already
thinking along similar lines, and had made substantial progress, Klee gave him the
notes. Lawrence completed the theory in his doctoral thesis (1975), and later
published the results in a joint paper with Folkman (Folkman & Lawrence 1978).

—ANDERS BJORNER, MICHEL LAS VERGNAS, BERND STURMFELS,
NEIL WHITE & GUNTER M. ZIEGLER Oriented Matroids (1993)
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Given a category, if two objects are identified S ~ T' when there exist morphisms

a partially ordered class is obtained when we define S <7 «— S —T. Its
elements are called color classes. The category is called dense if for every S < T
there exists a P such that S < P < T. We are going to introduce a dense
category on the class of separoids. )

Since the constant function is a separoid morphism, the category of mor-
phisms collapses into a single color class. In the light of this, we introduce a kind
of morphisms that, in the case of injective functions —the most used until now—
coincide with the original concept, but it is a bit more restrictive; we call them
homomorphisms because they resemble homomorphisms of relational systems.
We prove that the homomorphism category of separoids is universal, i.e., any
partially ordered class —hence the existence of morphisms in any category—
can be represented by the existence of separoids homomorphisms.

# The reader is encouraged to take a look to Hell & NeSetiil 1990,
Nesetfil 2000 and Nesetfil & Tardif 2000 to read more about this “struc-
tural” approach to the study of some categories.

0. Basic notions

Let us start with a review of some basic definitions. We do this in order to gener-
alize some concepts to infinite separoids —this is necessary to the universality
theorem.

A separoidis a relation 1 C 25 x 25 defined on the family of subsets of a set

S with three simple properties: forevery A, BC S
o AiB = BiA
oo AtB = ANnB=¢
000 ATBaﬂngS\AﬁATBUC

The separoid is identified with the set S. An element At B is called a Radon
partition and the union of its parts A U B is called the support of the partition.
The order of the separoid is the cardinal |S| and the size is half of the Radon
partitions 1| 1 |. The separoid is acyclic if At B = |A||B| > 0. A separation
A | B is a pair of disjoin sets that are not a Radon partition.

It is very easy to see that a separoid S of order n € IN can be defined as
an antipodal filter (cf. Chapter 3)

SCO,=({-0,+}",=)

in the face lattice of the n-crosspolytope (or by duality, as an antipodal ideal
of the n-cube S C Q,). Observe that it is enough to know minimal Radon
partitions to reconstruct all Radon partitions, therefore we can concentrate on
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the study of them. In particular, when defining an operation, itis enough to define
some (minimal Radon) partitions and close the separoid to became a filter. To
emphasize this, with a little abuse of notation, we will denote A { B € S to mean
that “A t B is a minimal Radon partition of the separoid S.” In other words, S will
denote a set of generators of the antipodal filter (S, <).

Given two finite separoids S and 7', a separoid fomomorphism ¢:S — T
is a function that sends minimal Radon partitions into minimal Radon partitions,
i.e., forevery A, BC S

AtBeS => p(A)ty(B)€eT.

Clearly these functions defines a category on the class of finite separoids.
In fact it is a concrete category. This is also a subcategory of separoids with
morphisms in the sense of Chapter 1, this is, the preimage of separations are
separations: forevery C,D C T

C|D = ¢7(C) | ¢™!(D).

In order to generalize homomorphisms of separoids to infinite sets, we have
to give a meaning to minimal Radon partitions. However, in contrast with the
finite case, there exist non-trivial infinite separoids with out any minimal Radon
partition. To see this, consider the following separoid: 1 ¢ 2V x 2V, where
11A < 1¢ Aand|IN\ A| € IN, i.e., the singleton of 1 forms a Radon partition
with every set A which does not contains it and is the complement of a finite set.
Clearly this defines a separoid but, in this separoid there is not such a thing as
minimal Radon partitions and therefore the previous definition does not make
sense in this context. This motivates the following definition. In it, we think on
separoids 1 C OF as subsets of the generalized crosspolytope OS5 = {f: S — O}
(where © = {—,0,+}) ordered naturally by f < g « f~1(-) C g7 !(-) and
f~Y(+) € g~1(+), with the obvious properties (cf. Section 3.0)

o fet = —-fet
coo fetandf<g = g€t

(wedenote At B «= 3fet:f}(-)=Aand f~}(+) = B).
Given two separoids t ¢ 0% and § ¢ ©7, a function : § — T will be
called an fomomorphism if the following two conditions holds:

g FeOT\i = ¢*(f) € O\1,
e fig€t, f<gandp*(9) €t = 3het:h=<p*(g),

where ¢*: OT — O denotes the usual cofunction ¢*(g) = g o . Informally,
this can be read as follows: ¢ is an homomorphism if it is a morphism and, the
preimage of non-minimal Radon partitions are not minimal. Observe that, in the
previous definition, it may be that h # ¢*(f) € t.

Two separoids are isomorphic S ~ T if there is a bijective homomorphism
between them whose inverse function is also a homomorphism. If S C T is a
subset of a separoid 1 C 27 x 27, the induced separoid T'[S] is the restriction
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t C 25x2% and an embedding S — T is an injective homomorphism that is an iso-
morphism between the domain and the induced separoid of its image. Observe
that these notions do not change if we replace morphisms by homomorphisms.

Finite separoids have an intrinsic notion of dimension which is easy to de-
termine.

The d-dimensional simploid is the separoid of order d + 1 and size 0 and it
will be denoted by o?. The dimension of a separoid S is the maximum dimension
of its induced simploids

d(S) = max d.
ot §
Itis said that S is a general position separoid if every subset with d(.S) +1 elements
induces a simploid. S is called complete if for every i, j € S follows that it j. The
complete separoid of order n is denoted by K,,. We will adopt the conventions
o1 =Ky=¢and ¢” = K; = {e}.

From now on, will denote by S — T the fact that there exists an homomor-
phism, and by S -~ T the other case. Also, as mention in the first paragraph,
we write

" —h
ST == S‘F_____,T.

This last defines an equivalence relation and, in its color classes, a partially or-
dered class called the fomomorphisms order:

S<T <= §—T.

It is easy to see now that the homomorphisms order, do not collapses.
Indeed we have the following ease-to-check facts (Proposition 2 is an example
of a duality pair. It will play the main role in Section 4 where we prove that,
indeed, it is the only duality pair in the homomorphisms order).

0.1. Proposition. |[S|<n — K, /4~ §

0.2. Proposition. K; — S <— S -~ K,

0.3. Proposition. S ~0? <— § — K,

0.4. Proposition. S~o¢ < VI'# Ky, S — T

Proposition 1 can be read: there are no homomorphisms in every direction,
i.e., the homomorphisms order do not collapses; Proposition 2 says that, in
the homomorphisms order, the principal filter generated by K, is equal to the
complement of the principal ideal generated by K,; Proposition 3 settles that
the color class of the singleton is constituted by all simploids; and Proposition 4
settles that K is the only cover of the bottom element K. All of them implies, in
one way or the other, that the homomorphisms order is not trivial.

59



60

Chapter 4: Homomorphisms

1. The homomorphisms lattice
The homomorphisms order is in fact a lattice. The category of separoids ho-

momorphisms has products x and sums + and they play the role of the meet
(infimum) and the joint (supremum), respectively.

I'+P

D
N

TxP

They satisfy the categoric properties of products and coproducts:

e S—PxT <+ S— P and §—T,
e P+T—S <+« P—S and T — S,

and, in the finite case, they have the following internal definitions.

Given two separoids P and T, their product is a separoid defined in the
cartesian product P x T, with projections = and T respectively, such that for
every AABCPxT

AtBePxT <= =n(A)fn(B)eP and 7(A)t7(B)eT.

Given two separoids P and T', their sum is a separoid defined in the disjoin
union P U T such that forevery A,BC PUT

AtBeP+T < ANP{BNPeP xor ANTtBNTeT.

There is also a notion of exponentiation but it deserves a more detailed
analysis. For this, let us introduce the notion of a pseudoseparoid’; a relation
[ € 25 x 25 which satisfies the first and the third conditions of a separoid. That
is, we do not ask for the related subsets A | B to be disjoint. As an example,
consider the relation of being “non-separated™

A{B <> AtB or ANB# ¢.

The pairs of related subsets with non-empty intersection will be called loops. So,
a separoid is a pseudoseparoid with out loops.

Now, consider the following construction.

Given two separoids S and T, their power (or exponentation) is a pseu-
doseparoid defined in the family of functions ST = {f:T = S} such that for
every F,G C ST

FIGeST < VAtBeT, F(A)tG(B) €S,
where, F(A) = {f(a); f € F and a € A} and analogously with G(B).
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It is not hard to see that, the power ST of two separoids is a separoid only
if ' -~ S. That is, if the power does not contain any loop then no function
f:T — S is an homomorphism.

The power satisfies the categoric property of exponentation when T" -4~ S

e TxP—8 « P— 57,

# The following results were first isolated in the context of relational
systems in NesSetfil & Tardif 2000. Here we will generalize them to any
category. These results will appear in Nesetfil & Strausz 2002.

We will denote by S << T the fact that S < 7" and there is no P such that
S'<P<T;le,
S<<T < S<P<T implies S~P or P~T.
The pair (8, T) is called a gap. So, a dense order is an order with out gaps.
Also we denote S —=+ T if for all P we have that (cf. Proposition 0.2)
S§S— P < P41

The pair (S,T) is called a duality pair. Thatis, (S,7) is a duality pair if, in the
homomorphism order, the filter generated by S is equal to the complement of
the ideal generated by T'.

We say that the separoid T is connected if it cannot be expressed as the
sum of other two separoids, i.e.,

T—1T9+17 = T—1Ty, or T —1T).
1.1. Lemma (Duality pairs). " —=+ S implies that

e 71 js connected, and
e I'xS<<T.

Proof. If T is not connected then T' ~ T, + 11 and T' -4~ T;. Therefore
T; — Sandthen T — S which is a contradiction. Now, suppose that T'x S —
P— T IfT -/ Pthen P — Sand P — T x S. Therefore P ~ T or
P ~ T x S which concludes the proof. @

1.2. Theorem (Characterization of gaps). If there is a gap P << Q, with Q
not-connected, there exists another gap S << T where T is connected. Fur-
thermore, @ ~T + Pand S~ T x P.

< N\
N

ST x P
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Proof. First, let Q@ = T} + --- + T}, where each T; is connected. Clearly
P— P+T;, — Qandthen P~ P+ T;0or P+ 1T; ~ Q. Since @ -~ P, there
exists a T = T; such that T -~ P and therefore P+ T -/~ Pand P+ T ~ Q.
Finally, let R be suchthat P x T — R — T. Since P — P + R — T, then
P~P+RorP+R~T. Therefore, ifT"—+#+ R,thenR — Pand R — T x P
which concludes the proof. )

2. A comment on Radon’s theorem

If we restrict more our homomorphisms to consider only those ¢ which do not
allow any Radon partition (not only the minimal ones) to collapse, i.e.,

AtB = ¢(A)t¢(B) = ¢(A) Nyp(B) = ¢,
we can characterize Radon’s theorem in the following
2.1. Theorem. P C IE™ is a point separoid of order |P| = d(P) + 2 if and only if
P-4~ K, and P— K, +o,
where o is a simploid. Furthermore, o = ¢ if and only if P is in general position.

Proof. A separoid S is a point separoid of order d(S) + 2 if and only if it is
determined by a unique minimal Radon partiton A + B (cf. Theorem 2.2.4).
Let C = S\ (AU B) be the complement of the support and give it an arbitrary
(but fixed) linear order C = (co,...,cq). Now, let K = {a,b}, where a { b, and
o4 ={c},...,c,}. Clearly the function ¢: S — K + o9, where

a ifseA,
p(s)=4q b ifseB,

¢, ifs=g,
is a strong homomorphism of separoids. More over, if this is the case, S is in
general positionifand onlyif AUB = S. 2]

However, in this subcategory there is not any more a meaningful notion of
product which made out of the projections, strong homomorphisms. To see this,
consider the separoids P; = {0,1,2} where 012, and K, = {a,b} where a tb.
Letus denote by P3 x K3 = {0a, 0b, 1a, 1b, 2a, 2b} the elements of the product and
by 7 and & the two projections. If A1 B implies that n(A) t w(B) and x(A) t x(B)
then the natural candidates to A and B are A = {0a}, B = {1b,2b}. This would
imply that A + B U {0b} but

7(0a) N 7(0b, 16, 2b) = {0} N {0, 1,2} = {0} % ,
therefore P; x K, =~ o® ~ K. So, every pair of separoids meets on the singleton.
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3. On density
# The following result is due to Welzl 1982 and Perles & NeSetfil
1990. See also NeSetfil 2001.

3.1. Theorem (Density of graphs). The class of all color classes of (undirected)
graphs is dense, with the unique exception of the pairs (Ky, K1) and (K, K»).

And the idea of the proof is explained; Let G, G» graphs such that G, — G
but G, -~ G;. For every graph H we have that G; — G+ (H xG3) — Gb. If
H has odd-girth and chromatic numbers big enough, the opposite arrows does
not exist and we are done. Such a graph H exists due to a theorem of Erdos
(1959). o

The following settles that the trivial gap Ky << K is the only gap on finite
separoids.

3.2. Theorem. Let S and T be finite separoids. If S < T « K, and T is
connected, then there exists a separoid P suchthat S < S+ (P xT) < T.

Proof. Clearly, since S — 7', forevery Pwe havethatS — S+(PxT) — T.
So, we want a separoids P for which the opposite arrows do not exist. In this
case a separoid P can explicitly be constructed. Let n and n’ denote the orders
of S and T respectively. Let P be the separoid of order | P| = 2n'n™ and Radon
partitions as follows: for every A, B C P

AtB < |A|=2n'<|B| and ANB=¢.

Observe that d(P) = 2(n’ — 1) and P is in general position.

Since T'is connected and 7' -/~ S, every homomorphism T — S+ (P x T)
most be an homomorphism T' — P x T" which, followed by the projection, would
lead an homomorphism ¢: 7' — P. Since |T| = n’ and the supports in P have
at least 2n’ elements, then P[p(1")] = ¢ (for some d < n’) which contradicts the
fact that T" #£ K. Therefore, such an homomorphism ¢ does not exists.

Now, every homomorphism S+ (P xT) — S restricts to an homomorphism
p:P xT — §. Forevery p € P there is a function ¢,: T — S defined as
wp(t) = @(p,t) (such functions does not have to be homomorphisms). Since
there are at most |ST| = n™' different functions, there exists a subset P’ C P
of order |P’| = 2n’ such that for every p,p’ € P’ we have that v, = ¢, Let
A,B e (¥)) suchthat AUB = P’ and then At B € P.

Since T' -~ S there there exists a Radon partition o t 3 € T such that

er (@) [ep(B)  (or @p(a)Npp(B) # ¢). .
But ¢y (@) = ¢(p’ x a) = p(A x a) and ¢ (8) = ¢(B x 3), therefore we have
also that
‘Pp'(a) | sap*(ﬁ),

an obvious contradiction. Hence the homomorphism ¢ does not exists and we
are done. , &
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3.3. Corollary. The class of all color classes of separoids is dense, with the
unique exception of the pair (Ky, K;).

Proof. On the one hand, due to the duality pairs Lemma 1.1,
To=4A8 = T'x ST,

and therefore, by Proposition 0.2, we have that K, << K;.

On the other hand, due to the characterization of gaps Theorem 1.2, there
is a gap only if there is a connected gap. Therefore, since there are no other
connected gap (Theorem 2), there are no other gap at all and we are done. &

4. On universality

The functor ¥: GRA — SEP that maps each (simple) graph G = (V,E) to a
separoid S = (V,1), whereitj € S <= ij € E, is an order embedding. A
straight forward argument shows that

G — H < ¥(G) — Y(H).
Since GRA is a set-universal partial order it follows that

4.1. Theorem. The homomorphisms order SEP is a set-universal partial order.
Explicitly: For any partially ordered set X there exists an injective mapping
1: X — SEP such that, forall z,y € X

z<y <= iz) < uy)-

In this direction, we can formulate the following: is any partially ordered
class X representable by SEP? The analogous question for graphs cannot be
formalized in set theory, i.e., the principle

P(X): Xcannot be represented by GRA
is an axiom independent from ZFC. However, for separoids the history is different.

4.2. Theorem. The homomorphisms order of hypergraphs can be embedded
into that of separoids. Explicitly: there exists an injective functor : HG — SEP
which maps each (simple) hypergraph H to a separoid ®(H) and

H— G < 3(H) — (G).

Proof. Let : HG — SEP be the function which assigns to each (simple)
hypergraph (without isolated pints) H = (V, E) the separoid S = (V U E, t),
whose minimal Radon partitions are Ute € § < U = e € E. A straight
forward argument shows that this function is injective. More over, if ¢: V — V*
is an homomorphism of hypergraphs (the image of edges are edges) that sends
the hypergraph H = (V, E) to the hypergraph G = (V’, E"), it defines a function
in the edges (denoted again by ¢: E — E’) and therefore a function in their union

p:VUE - V'UE'".
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To see that this function is a separoid homomorphism ®(H) — ®(G), observe
that each minimal Radon partition U 1 e is mapped to the minimal Radon partition
e(U) 1 p(e)

To the turn, let p: VU E — V'U E’ be a separoid homomorphism ®(H) —
®(G). Firstobserve that (V) C V/; for, letv € V avertexandv e U =e € Ean
edge that contains it. Since U t e then ¢(U) 1 ¢(e) and therefore ¢(v) € ¢(U) C
V'. That is, ¢ restricts in a function from V to V’'. Now, observe that such a
restriction is an homomorphism; for, let U = e € E be an edge then U 1 e and
therefore o(U) t ¢(e). This implies that ¢(e) € E’ and therefore ¢ defines an
homomorphism of hypergraps and we had proved that, as desired,

H— G < ®(H) — &(G).
@
Since HG is a class-universal partial order it follows that

4.3. Corollary. The homomorphisms order SEP is a class-universal partial or-
der.  Explicitly: For any partially ordered class X there exists an injective
mapping v: X — SEP such that, forall z,y € X

z<y <= uz) < uy).

5. Hyperseparoids

In the remainder of this chapter the focus is put in a famous generalization of
Radon’s theorem:

5.1. Theorem (Tverberg 1966). Let P c IE be a set of (k — 1)(d + 1) + 1 °

points. Then P can be divided into k pairwise disjoint sefs P = P, U --- U P
whose convex hulls have a common point:

(P # ¢.
The partition P = P, U - - - U P will be called a Tverberg partition.

#  In Eckhoff's 1993 (sec. 9.3) it can be found more about Tverberg'’s
theorem and its relatives. To the references there, | should add those
of Barany & Onn 1997, Matousek 1999, Kalai 2000 and Sarkaria 2000.

Clearly, Tverberg’s theorem reduces to Radon's when k£ = 2, and for k = 1 it
is trivial. However, even for k = 3, it is a hard —and deep— result. The simplest
proof known to me is based in a variant of Sarkaria’s (1992) argument and uses
the colorful version of Charathéodory’s theorem due to Barany (1982). It seems
that, contrasting Radon’s theorem which only depends on the affine structure of
R4, Tverberg's theorem is deeply tied to the metric (and topological) properties
of the Euclidian d-space.

A simple consequence of Tverberg’s theorem is the following
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5.2. Corollary. If S is a separoid of order (k — 1)(gd(S) + 1) + 1, then there
exists a morphism ¢: S — K, such that, for each minimal Radon partition i t j
in Ky, follows that ¢= (i) t s~ (5).

Proof. Let us denote by K, = {1,..., k} the elements of the complete separoid
of order k and let S be a separoid of (k— 1)(d + 1) + 1 convex sets in IE¢, where
d = gd(S). For any choice y: P — S, due to Theorem 1, there exists a partition
P = P,U---U P such that (P} # ¢. Clearly the function s: § — K. defined
as(s) =i <= ¢~1(s) € P; has the desired property. )

Observe that this result is far from imply Theorem 1 (cf. the two realizations
of K3 given in Figure 1 and Figure 2). A naive first look may suggest that it is
weaker to ask for the existence of a k-partition whose convex hulls are isomorphic
to K than to ask for such a partition whose convex hulls have a common point
—think on the vertices of a regular hexagon and perturb them a bit— and in this
direction we may be tempted to reduce Tverberg’s number, say to (k—1)(d+1).
However it is ease to see that the six points in the plane given by the vertices
of a regular pentagon and it baricenter, cannot be partitioned in three sets such
that the convex hulls of the parts are isomorphic to K.

Another direction may be to try to prove (or disprove) the following

5.3. Conjecture. If S is a separoid of order (k — 1)(d(S) + 1) + 1, then there
exists a morphism s: S — K. such that, for each minimal Radon partition i t j
in Ky, follows that <=1 () 1 s~1(j).

The rest of this section is a first attempt to understand the combinatorial
structure of “Tverberg’s partitions”. For this, let me first give some “esoteric”
names to all acyclic separoids of order 3 (modulo isomorphism) and show their
bijective morphisms —the names are intended to remind us their “shape”— (cf.
Figure 1):

®

N

@—C®)—@ @@ &)

) K; + o
Diag'raml 1. The acyclic separoids of order 8 and their epimorphisms.

Observe that only ¢2, A3, K3 + ¢ and K; are point separoids.

Now, consider a separoid (S,1) of convex sets in IE4. If we give a 3-
coloration of its elements ¢: § — {0, 1, 2} and consider the convex hulls of each
coloration class, then we are constructing a morphism onto one of these eight



Chapter 4: Homomorphisms

separoids of order 3. These morphisms satisfies the extra property that the
preimage of minimal Radon partitions are Radon partitions. Such morphisms
will be called cromomorphisms.

Let see how this works for the point separoids of order 4 and dimension 2.
There are four of them. It is easy to see that we have the following combina-
tions (where the number on each dashed arrow counts the number of different
cromomorphisms |¢: S — T|):

Diagram 2. The 3-cromomorphisms of 4 point in the plane.

Here, x4 and A, denote the separoids of order four with unique Radon
partitions of the form 12 1 34 and 1 t 234, respectively.

Observe that these cromomorphisms does not commute with the epimor-
phisms A and x. _

This example suggested the following Tverberg-type theorem for transver-
sals. It basically says that, for a point separoid of order d + 2, there is always
a cromomorphism onto the simploid o2 and, there is a cromomorphism onto A4
oronto K; + a”.

5.4. Theorem. Letd > 1. If S is the separoid of d + 2 points in IE¢, then
ls:8 — 02| (|s: S — As| + [|s: 8 — Kz +37]) > 0.

Proof. Given d + 2 points X ¢ IE9, due to Radon’s theorem, its separoid
S = (X, 1) is determined by a unique minimal partition A 1 B. To construct a
cromomorphism onto ¢2, take an element in each part a € A, b € B and give
any separation of the complement « | 3. It is easy to see that the function

0 ze€ {a,b},
s(z)=<1 z€a,
2 zef,

has the desired properties. Therefore, the first factor is non-zero.
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If there is some element in the complement of A U B (i.e., the separoid is
not in general position), say C = X \ (AU B), then the function (cf. Theorem 10)

0 z€ A,
s(z) = { 1 z€B,
2 zeC,
is clearly a cromomorphism onto K> + ¢° and the second factor is non-zero. If

not, A or B has more than one element, say A. Let A, U A; be a partition of A.
It is easy to see that the function

0 EGA().
c(m):{l T € Ay,
2 ze€B,

is a cromomorphism onto Az and therefore the second factor is non-zero and
we are done. 2]

Observe how the fact that the second factor is never zero implies, in the case
k =3 and £ = 1, Stangeland’s (1978) generalization of Tverberg's theorem:

5.5. Corollary. Let X c IE% be asetof (k—¢—1)(d — £+ 1) + £+ 1 points. If
k = 3 and £ = 1, there exists a 3-partition of the set X = Xy U X, U X, and a
line L such that

(X;)NL#¢, fori=1,2,3.
Proof. Any realization of Az or K, + ¢° have a line transversal. 2]

It seems that, while the existence of a Tverberg partition depends on the
realization, the existence of a cromomorphism onto K;. do not (see Figure 14).

XX XX

Figure 14. Two configurations of seven points in the plane.

These observations motivates the following definition
A k-separoid is a relational system t C 25 x - - - x 25 (k times) defined on a
family of subsets with the following properties, for A; € S,i=1,...,k

o At TA:e = Ar)t- T Arw
© - 00 Alf_--_-tA;,=:-A,-nAj=¢, 1S4 <iSkiss
ooo Ajt---tArand BC S\ JAi = A1 f---1AxUB

where 7 is any permutation of the indices. The elements of such a relational
system will be called Tverberg partitions. Clearly separoids are 2-separoids. As
before, we identify the k-separoid with the given set S. We say that the separoid
is acyclicif Ay t---t Ax = []|4i| >0.
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The following discussion can be made in a more general context —for all
k € IN— but, in order to keep things simple, we will restrict to the case k = 3.

Given three pairwise disjoint subsets of a 3-separoid which are not a Tver-
berg partition, we say that they are a 3-separation and denote itby o | | 7.

5.6. Theorem. Every acyclic 3-separoid of order n can be represented with a
family of convex polytopes and their Tverberg partitions in the (n—1)-dimensional
affine space.

Proof. Let S be a 3-separoid. For each Tverberg partitions A f B  C and each
element i € A, we assign a point of IR"

; 11 1 1 1
Paiptc = @i + 3 [|—A|Z°u + Ezeb e ﬁzﬁc] == mzem
and realize each element i € S as the convex hull of all such points
i (phipic i€ Aand A1 BtC).

These convex polytopes “live” in the (n — 1)-dimensional affine subspace of IR™
spanned by the basis.

The construction is made to guarantee that the Tverberg partitions are pre-
served, i.e., for each partition At B 1 C the vertices of the simplices (e, : a € A),
(ep : b € B) and (e, : ¢ € C) moves to realize such a partition intersecting
precisely in their baricenter, therefore

(%) N (%) N (p°) # ¢.

On the other hand, to prove that also the 3-separations a | 3 | v are pre-
served, we use the following well-known fact: compact convex sets Ky,..., K, in
IR* have no point in common if and only if there are open semispaces £ , ..., 7
such that K; c ¢ for every i and (¢, = ¢. The case n = 2 is the basic
separation theorem and the general case follows by induction.

Define the affine extension ¢ = 14),: R™ — IR? of the following equations,
forj=1,...,n,

u ifjeaq,

L _Jv ifjep,

T‘b(aa) - w |fj €7,
0 otherwise,

where
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It follows from the definition, and with a little abuse of the notation, that

, , [lAnal u

¥(o) = (o) -z | 1AL |- [ v

) =400 =7 14l ) - ¥

1 |B N u

+=—= | |BNnBl|-| Vv

31B| \ |Bn+| w

1 [CNnel u
+—V[i1cna |- [v].

A \jcny) \w

Let us denote by ¥, = ¥(p') when i € o and analogously with 5 and ~.

If we have that 1 - u > 0 and ¢5 - v > 0 and ¢, - w > 0, we are done (the
semispaces ¢~ (ut), ¥~1(v4) and =1 (w1) will do). So let us suppose, with
out loose of generality, that ¢, - u = 0. Since

_2Ana| - (JANAI+]ANA])

YPa-U=1

3lA|
i |Bnal - 3(1BNBl+|Bn1l)
3|B]
ICnal-3(ICNnBl+|CNAy)
>
+ 3} >0,

we have that ¢, -u=0ifandonlyif ACaand BC fU~yand C C fU~. In
such a case, we have also that

1 1((1Bngl ICﬂﬁg 10307|I0070}
W=14=-+= + o [ EEe B e S T ] 5
Yo 3 3[(|B: er )2\ ter )2

and, analogously, 3., - w > 1. Then we can pick any small number 0 < ¢ < 1,
define the semispaces

2 ={xeR*:x-u> —¢},
# ={xeR*:x-v>1-—g¢},
£ ={xeR*:x-w>1—¢},

and their preimage ¢ ~(¢%), v~1(¢3) and ¢~ (£2) will do the work, concluding
the proof. . @

= ~ Every 3-separoid has associated a 2-separoid in a natural way: each Tver-
berg partition A t B 1 C, implies the Radon partitions At B, At C and Bt C.

This separoid is already realized with the construction of Theorem 6. However,
we miss some structure; e.g., consider the point separoid of five points in the
line in general position, and give the points the linear order (1,2, 3,4,5). This
configuration has two Tverberg partitions: 1412513 and 15124 13. If we apply the
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previous construction, in the final family of convex sets we will miss some Radon
partitions, for example 13 t 2. To correct this ‘anomaly’, we can go one step
further in our generalization of separoids with the following natural definition.

A fiyperseparoid is a collection of families of subsets 7 C 22° with the fol-
lowing three properties: forall 4; C S,i=1,...,k

o {A1,..., A4} eT = AiNA;=¢
oo {A1,..., Ak} €T = {A1,...,Ap1} €T
coo {A,...,Ax}eTand BC S\UA:i = {A1,...,AxUB}eT

The elements of 7 are the Tverberg partitions. The hyperseparoid is acyclic if
{#} ¢ T. From the second and third axioms follows that it is enough to know the
principal partitions; those partitions {A;, ..., Ax} where k is maximal and each
A; is minimal. The morphisms and homomorphisms can be defined analogously
as before.

Clearly, we can combine the Geometric Representation Theorem and The-
orem 6 (in its general version —for k& > 3) to conclude that

5.7. Corollary. Every acyclic hyperseparoid can be represented by a family of
convex polytopes, and its Tverberg partitions, in some affine space.

6. Remarks and open problems

Hyperseparoids seems to be “the right concept” to study Tverberg's Theorem
from a purely combinatorial point of view, but this will have to be done some
where else...Here | will formulate some questions which may guide such a
further development.

Let us start with the most challenge (and may be difficult) one. In the spirit
of Theorems 2.0.1 and 4.2.1,

Problem 1. Find necessary and sufficient conditions for a hyperseproid to be a
point separoid.

In the light of Shor’s theorem (1991), it may be that problem 1 remains NP-
hard, however it may have a simple solution as the following argument suggest.
Consider a realization of a full Radon hyperseparoid S with convex sets as “thin”
as possible; if each convex set is a point, we are done. If there exist a convex
set K € S with dimension greater that 0, it will contain at least one segment
(a,b) C K. The extreme points of such a segment, have to be participating in
two different principal partitions, sayai A; f---t Ax and b{ By - - T B, which
are “far” each from the other. .. they are “separated”. So it may be sufficient to
ask for a condition of the form ifat A; t-- -1 Ax and b{ By 1 - -t By are principal
then A; T Bj\ A; or Bj 1 A; \ B;, in order to guarantee that S is a point separoid
(see Figure 15). - -
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A

Figure 15. A “minimal” segment whose extreme points are “separated”.

The next problem has to do with an invariant which may be called Tverbery

dimension. Given a hyperseparoid S, define d;(S) as the minimum natural num-
ber d such that every subset X C S of cardinality (k — 1)(d + 1) + 1 contains a
k-partition A, {--- 1 Ag. Clearly, d(S) = d(S) and di(S) < gd(S) < |S]| -1, but
no more can be said, at least in principle (see Figure 16).

Problem 2. Find necessary and sufficient conditions to guarantee that
d(S) = da(S) < ds(5) <... <gd(S) < [S| - 1.

O O
O
O @)

Figure 16. Two separoids with different values of d2(S) and d3(S).

Finally, let me present a problem whose character may look more technical.
For each separoid S, define the infinite vector T(S) € IN® whose coordinates
are indexed by finite separoids (modulo isomorphism) and each of these,

T(S)r=Is:8 — T,
counts the number of homomorphisms (cromomorphisms, strong morphisms).

#  This definition has to be contrasted with that of Lovéasz 1971 where
he proved that, with the arrows in the opposite direction, such a vector
characterizes each object of a relational system. See also Ne3etfil
1999. BT M.

Problem 3. /sittrue that S =~ T (or S ~ T) if and only if Y(S) = Y(T')?

If we restrict to finite families of separoids, the answer may be negative as
the following (and last) diagram shows. In it, x5 and As; denotes the general
position point separoids with Radon partitions 121345 and 1t 2345, respectively.
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Diagram 3. The 3-cromomorphisms of 5 point in the space.

A mathematical statement is just a story you tell about some devices. Some of
those stories are clever, some are stupid;, some of those stories are true, some other
are false. Doing mathematics is telling clever stories which are true.

—FRANCIS BORCEUX Handbook of Categorical Algebra (1994)
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