

UNIVERSIDAD NACIONAL **AUTONOMA MEXICO** DE

FACULTAD DE MEDICINA DEPARTAMENTO DE POSTGRADO INSTITUTO NACIONAL DE ENFERMEDADES RESPIRATORIAS

IMPACTO DE LA ALTITUD EN LA RELACION PaO₂/FIO₂ y EL CORTO CIRCUITO.

SHBDIV DIVISION

E

QUE PARA OBTENER DIPLOMA

ESPECIALIDAD EN **NEUMOLOGIA**

R E N

SILVA JUAN DR. **GALLARDO**

TUTOR: DR. ROGENIO PEREZ PADILLA.

MEXICO, D. F.

INSTITUTO NACIONAL DE ENFERMEDADES RESPIRATORIAS

TY FNF 27 2004 53

SUBDIRECCION DE **ENSEÑANZA**

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESTA TESIS NO SALE DE LA BIBLIOTECA

IMPACTO DE LA ALTITUD EN LA RELACION PaO₂/FIO₂ y EL CORTO CIRCUITO.

TESIS DE LA ESPECIALIDAD EN NEUMOLOGÍA.

DR. JUAN SILVA GALLARDO.

Universidad Nacional Autónoma de México.

Realizada en la unidad de cuidados intensivos respiratorios y fisiología Pulmonar.

Instituto Nacional De Enfermedades Respiratorias

UNAM a difundir en formato electrónico e impreso el contenido de mi trabajo recepcional.

NOMBRE:

SING GAllardo

FECHA:

24-feb-2004

AGRADECIMIENTOS.

A MIS PROFESORES QUE ME HAN GUIADO EN MI FORMACION COMO ESPECIALISTA, A MI ABUELA ALFONSINA Y MI TIO PORFIRIO PRINCIPALES PILARES EN MIS PRIMEROS AÑOS DE FORMACION; AL INVALUABLE ESFUERZO DE MI ESPOSA ELISA QUE INCONDICIONALMENTE ME HA APOYADO EN TODOS MIS PROYECTOS Y A MIS HIJOS QUE SIN SABER PORQUE HAN TENIDO QUE ESPERAR POR HORAS PARA ESTAR JUNTOS EN CASA.

AL DR. ROGELIO PEREZ PADILLA POR SU ADMIRABLE PACIENCIA EN LA CONDUCCIÓN DE ESTE TRABAJO, AL DR. JOSE ELIZALDE G. POR LAS FACILIDADES QUE NOS PROPORCIONO PARA COMPLEMENTAR EL TRABAJO CON SUS VALIOSOS DATOS DEL HOSPITAL ABC Y AL EQUIPO DE LA UCIR DEL INER POR LAS FACILIDADES PARA REALIZAR EL ESTUDIO Y AL PACIENTE GRAVE YA QUE SIN EL ESTO NO SERIA POSIBLE.

INDICE.

- 1.- TITULO.
- 2.- RESUMEN.
- 3.- INTRODUCCIÓN Y ANTECEDENTES.
- 4.- HIPOTESIS.
- 5.- OBJETIVOS.
- 6.- JUSTIFICACIÓN.
- 7.- PLANTEAMIENTO DEL PROBLEMA.
- 8.- DISEÑO DEL ESTUDIO.
- 9.- CRITERIOS DE INCLUSIÓN.
- 10- CRITERIOS DE EXLUSION
- 11.- PACIENTES Y METODOS.
- 12- .- CONSIDERACIONES ETICAS
- 13.-ANÁLISIS ESTADÍSTICO DE LOS DATOS
- 14.- RESULTADOS
- 15.-DISCUSIÓN
- 16.-CONCLUSIONES
- 17.-DEFINICIONES.
- 18.-BIBLIOGRAFIA
- 19.-ANEXOS

IMPACTO DE LA ALTITUD EN LA RELACION PaO₂/FIO₂ y EL CORTO CIRCUITO.

AUTORES.

Silva G J. Narváez P. O, Elizalde J. L, Olvera C, Pérez Padilla J.

RESUMEN:

En los pacientes con insuficiencia respiratoria aguda, la mejor forma de determinar el grado de alteración del intercambio gaseoso es el corto circuito, lo que implica la toma de muestra de sangre arterial y venosa mixta a través de un catéter de flotación en la arteria pulmonar, lo cual no se realiza de rutina en las unidades de cuidados críticos. Las estrategias alternativas utilizadas para determinar hipoxemia son los índices de oxigenación, de los cuales el más simple es el PaO₂/FIO₂. Sin embargo este índice de oxigenación varía con la altura sobre el nivel del mar, desde el punto de vista teórico.

OBJETIVO. Explorar el impacto de la altitud sobre los índices de oxigenación en pacientes reales a nivel de la ciudad de México y del nivel del mar comparados con las gráficas predichas por un modelo computacional del pulmón.

PACIENTES Y METODO. Realizamos el estudio tanto en forma prospectiva en el periodo de tiempo de mayo del 2002 a marzo del 2003 en 50 pacientes a dultos de ambos sexos intubados, atendidos en la unidad de cuidados intensivos respiratorios del Instituto Nacional de Enfermedades Respiratorias (INER) de la Secretaría de Salud, a los cuales se les tomaron muestras de sangre arterial y venosa a través de un catéter central, para la determinación de los cortocircuitos. La otra parte del estudio fue retrospectiva tomando los casos de una base de datos del Hospital ABC de 96 pacientes atendidos en la UCI a los cuales se les realizó la determinación de índices PaO₂/FIO₂ y cortocircuitos con FIO₂ al 100% con un catéter de flotación pulmonar.

Se compararon los datos obtenidos en ambos grupos de pacientes con las curvas predichas de función pulmonar por programas computacionales, así como con los valores correspondientes en pacientes atendidos a nivel del mar.

RESULTADOS. Los datos encontrados en nuestros pacientes son consistentes con los datos de modelos computacionales en relación a que observamos que en ambos grupos estudiados, tanto el de catéter venoso central como Swan Ganz, la curva se desvía a la izquierda en relación a la de los pacientes a nivel del mar, lo que apoya nuestra hipótesis. CONCLUSIONES. Concluimos que la curva de correlación PaO₂/FIO₂ Vs Shunt en pacientes en la ciudad de México, es diferente de la de los pacientes a nivel del mar por lo que se debe considerar modificar los criterios de lesión pulmonar y SIRA a la altitud de la ciudad de México.

INTRODUCCIÓN:

Las causas respiratorias de hipoxemia son: la hipoventilación, el cortocircuito, las alteraciones de la relación ventilación-perfusión y la deficiente difusión gaseosa. En los pacientes con falla respiratoria aguda hipoxémica, como los que tienen edema pulmonar o el síndrome de insuficiencia respiratoria aguda (SIRA) el mecanismo primordial de hipoxemia es el cortocircuito o shunt, único mecanismo en el cual la presión arterial de oxígeno (PaO₂) se mantiene reducida aún durante la respiración de oxígeno al 100%.

El Síndrome de insuficiencia respiratoria aguda, se describió inicialmente en 1967 como un síndrome clínico con hipoxemia grave refractaria al tratamiento con oxígeno, opacidades pulmonares bilaterales diseminados en la radiografía del tórax, acompañado de rigidez pulmonar, descartando otras causas secundarias como falla cardiaca congestiva o atelectasia bilateral, asociada a una variedad de condiciones médicas, quirúrgicas o traumáticas.

En 1988 Murray y Cols. propusieron una definición para cuantificar el deterioro funcional respiratorio usando cuatro variables: El nivel de presión positiva al final de la espiración (PEEP) el índice de Oxigenación PaO₂/FIO₂, la distensibilidad pulmonar estática y el grado de infiltración evidente en la radiografía de tórax. Sin embargo esta definición tiene la desventaja de que carece de criterios específicos para excluir un diagnóstico de edema pulmonar cardiogénico.

En 1994 la conferencia de consenso sobre SIRA Americana-Europea generó unas definiciones que se han adoptado ampliamente por clínicos e investigadores para lesión pulmonar aguda, que incluyen: Opacidades radiológicas pulmonares bilaterales compatibles con edema pulmonar, pero sin evidencia clínica de falla cardiaca o en caso de presencia de catéter de flotación, una presión de enclavamiento de la arteria pulmonar de 18 cmH₂O o

menor. Con base en estos criterios se estableció la definición de lesión pulmonar aguda, la cual tiene un espectro de alteraciones funcionales en la que el SIRA corresponde al grado más grave, diferenciándose la lesión pulmonar aguda del SIRA por una PaO₂/FIO₂ igual o menor a 300 mmHg. y para SIRA un índice menor o igual a 200 mmHg.

En este grupo de enfermos, la cuantificación ideal del defecto en el intercambio gaseoso es a través de la medición del cortocircuito. Sin embargo esta medición requiere de la toma simultánea de una muestra de sangre arterial y otra de sangre venosa mixta (en la arteria pulmonar) lo que implica la presencia de un catéter de flotación.

Debido a que no todos los pacientes tienen un catéter de flotación en la arteria pulmonar, esta medición exacta del cortocircuito, que se hace con el paciente respirando oxígeno al 100% no está disponible de rutina. En esta circunstancia, se han diseñado una serie de índices substitutos de oxigenación que no requieren de la toma de una muestra de sangre de la arteria pulmonar para describir la hipoxemia, que en general se construyen con cocientes que resultan de dividir la PaO₂ entre un indicador de el oxígeno disponible, como la fracción inspirada de oxígeno (FIO₂). El más comúnmente usado ha sido el PaO₂/FIO₂ introducido por Horovitz en 1974 para evaluar el grado de alteración funcional pulmonar en pacientes con insuficiencia respiratoria aguda con fracciones inspiradas de oxígeno variables. Este índice es el más sencillo, debido a su fácil cálculo a partir de los datos de la gasometría arterial.

Se puede estimar el cortocircuito si se presume un gasto cardíaco normal y una diferencia arteriovenosa del contenido de oxígeno normal. Sin embargo en los pacientes graves, es frecuente que ambas variables estén alteradas, además de que los cálculos, no son sencillos a menos de que se use una computadora.

Estos indicadores simplificados, a diferencia de el cortocircuito, cambian con la FIO₂, lo cual es una desventaja importante, que puede subsanarse en parte, haciendo las mediciones con oxígeno al 100% como se describió originalmente por Berggren SM para determinar el cortocircuito real. Esto es fácil solo en pacientes intubados, ya que además de las inexactitudes que se derivan de hacer la medición de los índices con diferentes fracciones inspiradas de oxígeno, los problemas se incrementarían si estos indicadores se modifican con la altura sobre el nivel del mar.

Debido a que es esperable que la altitud modifique la relación de el índice PaO₂/FIO₂ con respecto al cortocircuito en relación a lo observado al nivel del mar, debería haber un ajuste en los criterios de SIRA y lesión pulmonar aguda, de tal forma que los pacientes clasificados como con SIRA a nivel del mar con los criterios de oxigenación establecidos en el consenso internacional, no corresponden al mismo grado de alteración funcional a otras altitudes. Si se utiliza un solo criterio de SIRA, a nivel de la ciudad de México es posible que se incorporen pacientes con un daño pulmonar mas leve en el intercambio gaseoso comparados con los mismos a nivel del mar por lo que se requiere que la definición utilizada en México y a diferentes altitudes se ajuste. Es por ello importante explorar el impacto de la altura sobre el índice PaO₂/FIO₂ y el cortocircuito.

HIPÓTESIS.

La altitud modifica los índices de oxigenación, por lo tanto el grado de lesión pulmonar al mismo valor de PaO₂/FIO₂.

Con esta modificación, los criterios de lesión pulmonar aguda y SIRA en la ciudad de México a 2240 metros sobre el nivel del mar deben ser diferentes con respecto al nivel del mar.

OBJETIVOS.

- I.- General. Explorar el impacto de la altura de la ciudad de México sobre la relación entre PaO₂/FIO₂ y el cortocircuito en pacientes y compararlas con las predichas por un modelo computacional de pulmón.
- II.- Específicos. Comparar la correlación PaO₂/FIO₂ Vs cortocircuito entre las determinaciones realizadas a nivel de sangre venosa central y sangre venosa mixta.

Comparar el grado de alteración funcional en los diferentes grupos de pacientes estudiados según los diagnósticos.

JUSTIFICACIÓN.

No se han estudiado las modificaciones que ocurren con la altura en el índice PaO₂/FIO₂ Vs cortocircuito para evaluar el grado de alteración funcional pulmonar a nivel de la ciudad de México, para identificar a pacientes con lesión pulmonar aguda y SIRA, lo cual modificaría los criterios internacionalmente aceptados para clasificar a estos pacientes a la altura de la ciudad de México.

PLANTEAMIENTO DEL PROBLEMA.

Con base en el conocimiento de que la altitud modifica los índices de oxigenación y por lo tanto el grado de alteración funcional, esta variable a nivel del mar, debe ser diferente a la altitud de la ciudad de México, por lo que nos propusimos realizar este estudio para evaluar como se alteran estas variables.

DISEÑO DEL ESTUDIO.

Es un estudio observacional, descriptivo, parte realizada en forma retrospectiva y parte prospectivo.

CRITERIOS DE INCLUSIÓN.

Todos los pacientes adultos de ambos sexos, admitidos a la unidad de cuidados intensivos e intermedios respiratorios del Instituto Nacional de Enfermedades Respiratorias (INER) intubados a quienes se les manejó con asistencia mecánica ventilatoria.

Los pacientes debían tener también catéter venoso central o catéter de flotación pulmonar para poder tomar las muestras requeridas para calcular el cortocircuito veno-arterial.

PACIENTES Y METODOS.

El estudio se llevó a cabo tanto en forma prospectiva en el primer grupo de 50 pacientes atendidos en el periodo de tiempo de mayo del 2002 a marzo del 2003 en la unidad de cuidados intensivos e intermedios del INER, con enfermedades respiratorias que ameritaron tratamiento con asistencia mecánica ventilatoria y con colocación de catéter central. Se verificó su colocación central (vena cava superior) por una radiografía de tórax portátil en todos los casos. El otro grupo estudiado fue el de 96 pacientes con diferentes diagnósticos, atendidos en la UCI no respiratoria del hospital ABC de la ciudad de México, en el cual los datos fueron obtenidos de forma retrospectiva, en pacientes a los que se les había manejado con catéter en la arteria pulmonar y que también estuvieron con asistencia mecánica

ventilatoria. En el caso de los pacientes del primer grupo, se le tomaron a cada paciente 4 muestras de sangre para su estudio (2 arteriales y 2 venosas). La muestra de sangre arterial se obtuvo de la arteria radial por punción directa o por la colocación de línea arterial, con una jeringa estéril de insulina, en tanto que la muestra venosa fue obtenida del catéter central con jeringas de 5 ml, eliminando los primeros 5 ml extraídos para evitar contaminación con soluciones intravenosas. Las jeringas fueron previamente impregnadas con heparina sódica, procurando eliminar el exceso a fin de evitar modificaciones erróneas en la determinación del pH, la PaCO₂, la PaO₂ y de la Hemoglobina. Las muestras fueron procesadas inmediatamente después de haber sido obtenidas, en un equipo de medición de gases sanguíneos marca Radiometer Serie ABL 700, el cual se calibra diariamente de acuerdo a las recomendaciones de radiometer.

Las primeras dos muestras (arterial y venosa) fueron obtenidas con FIO₂ variable de < 100%. Después de la toma de estas muestras se modificó la FIO₂ en el ventilador al 100% tomando las siguientes dos muestras pasados cuando menos 30 minutos después de haber realizado la modificación.

En el caso de los pacientes estudiados de forma retrospectiva del hospital ABC, los datos de los índices PaO₂/FIO₂ y cortocircuitos fueron realizados con FIO₂ al 100% en todos los casos y del total de determinaciones se calcularon los promedios en el periodo de tiempo desde su ingreso hasta un máximo de 72 hrs, con un equipo procesador de gases sanguíneos marca Omni Modular System y Gem 3000 de Instrumentation Laboratory.

Se realizó el cálculo de los cortocircuitos de la manera tradicional, con la ayuda de un programa de computadora utilizando los siguientes parámetros: PaO₂, SaO₂, PaCO₂, pH y la hemoglobina promedio calculada por el gasómetro. Qs/Qt= CcO₂-CaO₂ / CcO₂-CvO₂.

Todos los pacientes tenían PEEP al momento de tomar las muestras y algunos tenían aminas vaso activas.

CONSIDERACIONES ETICAS.

Los datos utilizados en el estudio son rutinarios en los pacientes y la mayoría se obtuvieron del expediente clínico o de bases de datos. No se sometió al paciente a ningún procedimiento adicional a lo que requiere la atención del padecimiento. El protocolo fue aprobado por el comité ético institucional.

ANALISIS ESTADISTICO DE LOS DATOS.

La comparación más importante es la de la relación PaO₂/FIO₂ vs shunt en la ciudad de México y a nivel del mar. Como la relación es curvilinear, los datos de cortocircuito se utilizaron en forma logarítmica, lo que fue bastante eficiente para linearizarlos.

Para comparar ambas relaciones se utilizó un modelo de regresión múltiple donde la variable dependiente es la PaO₂/FIO₂ y las independientes el cortocircuito (logarítmica) y una variable indicadora del nivel del mar vs México.

RESULTADOS.

Se incluyeron en el primer grupo 50 pacientes adultos de ambos sexos, 21 hombres y 29 mujeres, con promedio de edad de 52.5 años, con rango de 16 a 86 años. En las tablas 1 a 3 se muestran las características de los pacientes del primer grupo, se analizan solo 49 casos debido a que se descartó un caso por error en la determinación gasométrica.

La FIO₂ inicial promedio para los pacientes fue de 50.2 % y el cortocircuito promedio inicial fue de 30 %. El índice PaO₂/FIO₂ inicial promedio fue de 160.2.

En la tabla 5 se muestran las características de los pacientes del segundo grupo retrospectivo con catéter en la arteria pulmonar, y en la tabla 4 se muestran los datos de la correlación PaO₂/FIO₂ Vs Shunt de los pacientes del nivel del mar.

Observamos que los pacientes con mayores índices de oxigenación fueron aquellos con diagnósticos de enfermedades menos graves; En el grupo de pacientes con catéter venoso central, hubieron 8 casos con índices > 300 de los cuales los diagnósticos fueron: de crisis asmática (4), enfermedad pulmonar obstructiva crónica (EPOC) (3) Neumonía (1).

Hubieron 10 casos con índices de oxigenación < 100 de los cuales los diagnósticos fueron: Histoplasmosis pulmonar que evolucionó a SIRA (1) neumonía con choque séptico (4) absceso de cuello y mediastinitis (2) crísis asmática complicada con sepsis (2) infiltrados pulmonares de origen desconocido (1)

Los cortocircuitos se distribuyeron de la siguiente manera (tabla 7) <10% (2 casos ó 4%), entre 10 y 19.9 % (12 casos ó 24.5%), entre 20 y 29.9 % (14 casos ó 28.5%), entre 30 y 39.9 % (13 casos ó 26.5%), entre 40 y 49. 9 % (7 casos ó 14 %) y > 50% (1 caso ó 2%)

De estos casos el que presentó el mayor cortocircuito (53%) fue un paciente con neumonía grave con choque séptico, los casos de menor cortocircuito fueron 1 con diagnóstico de crísis asmática pura y otro con EPOC exacerbado de 70 y 74 años respectivamente, el último tenía también diagnóstico de insuficiencia cardiaca congestiva global. Del resto de los casos, los que mayores cortocircuitos tuvieron fueron los más graves que cursaron con sepsis, como las neumonías y abscesos que tuvieron cortocircuitos de más del 30%.

Con los datos obtenidos de nuestros pacientes se elaboraron las gráficas de correlación de PaO₂/FIO₂ Vs Shunt tanto del grupo 1 solo (fig.5) como de ambos grupos de México comparados con los datos del nivel del Mar (figs. 8 y 9)

En el caso de los pacientes con catéter de Swan Ganz, hubieron 3 casos con índice PaO₂/FIO₂ de > 300 que tenían diagnósticos de valvuloplastía cardiaca, politraumatizado, y un paciente post-operado de apendicectomía. Se encontraron 21 casos con índices por

o hipovolémico. Los datos obtenidos en nuestros pacientes se compararon con los del nivel del mar en un estudio publicado en 1983 de donde se tomaron la PaO₂/FIO₂ y los cortocircuitos, con dichos puntos se elaboró la gráfica del nivel del mar (fig. 4) donde observamos que los puntos tienden a distribuirse alrededor de la curva predicha y se comparó con la obtenida con los puntos de la ciudad de México (Figs. 6 y 7)

Observamos que nuestros datos tienden a desviarse a la izquierda en relación a los del nivel del mar como ocurre con las curvas predichas por el sistema computacional de pulmón a medida que aumenta la altura (Figs.1-3)

DISCUSIÓN

Nuestros datos fueron comparados con los de pacientes estudiados a nivel del mar con diagnóstico de SIRA en 1983 [16] y observamos que a 2240 m SNM en la ciudad de México, con el mismo grado de alteración funcional, el índice PaO₂/FIO₂ fue mas bajo que el correspondiente a nivel del mar, aún cuando mezclamos los datos de nuestros dos grupos de pacientes, observamos que a pesar de cortos circuitos bajos, en nuestros pacientes, se encontró solo un caso con índice de 389 (fig 5) en comparación con los del nivel del mar donde se encontraron 8 casos con índice de 490 (figs 8 y 9) con shunts equiparables de alrededor del 10%, lo cual apoya los resultados de las curvas predichas de los modelos computacionales de función pulmonar (figs.1-3). Estudiamos a dos grupos de pacientes, uno con catéter central y el otro en la arteria pulmonar como lo hizo J. A Jeevendra en su estudio en 1979 [19] donde encontró que la correlación entre la muestra venosa central y la venosa mixta fue muy baja, de apenas r²= 0.35 lo que no apoya la estrategia de tomar las muestras de la vena cava superior. Sin embargo aún así en nuestros dos grupos de pacientes observamos que la curva de los puntos obtenidos de la correlación PaO₂/FIO₂ Vs

cortocircuito se desvió a la izquierda con relación a la observada en los pacientes a nivel del mar, lo que apoya nuestra hipótesis.

Al igual que en otros estudios previos, hubieron en nuestros puntos algunos que se salieron de la relación linear esperada, lo cual ocurrió a niveles altos de shunts como en los estudios de referencia, tendiendo a ser mas linear en los niveles mas bajos de shunt.

Aunque estas disociaciones en la correlación esperada pueden atribuirse a otros factores que modifican dichos índices y el shunt como son: el gasto cardiaco y el consumo de oxígeno por los tejidos. En nuestro estudio los datos promediados de los valores de PaO₂/FIO₂ y cortocircuito en el grupo de Swan Ganz también pudo haber contribuido.

Por otro lado en nuestro estudio se incluyeron pacientes con distintos diagnósticos, los cuales no todos fueron SIRA, con mecanismos de hipoxemia distintos al shunt como el caso de los pacientes asmáticos y con EPOC, en los cuales existe un componente importante de desequilibrio V/Q o hipoventilación alveolar que solo alteraría de forma importante los resultados en caso de retención de CO₂ o bajo gasto cardiaco.

En el presente estudio se incluyeron pacientes con diagnósticos diversos tanto neumópatas crónicos agudizados, como no neumópatas, observándose en todos la misma tendencia con respecto a los pacientes del nivel del mar. Esto apoya la hipótesis que independientemente del diagnóstico el índice PaO₂/FIO₂ Vs cortocircuito a nivel de la ciudad de México es diferente del correspondiente a nivel del mar, aunque con las limitantes de este estudio, se abre el camino para nuevas investigaciones en este campo que culminen en la posible modificación de dichos índices aplicados a altitudes diferentes del nivel del mar.

CONCLUSIONES. Nuestros datos demuestran que la altitud modifica el índice PaO₂/FIO₂ en su relación con el cortocircuito, por lo que puede ser útil para la modificación del criterio de lesión pulmonar aguda y SIRA a la altitud de la ciudad de México y otras altitudes. Se necesita realizar más estudios en altitudes diferentes para evaluar la reproducibilidad y obtener los datos ajustados a las altitudes correspondientes para consolidar los hallazgos de este primer estudio en México y pueda servir de guía en el manejo de los pacientes graves.

DEFINICIONES:

Corto circuito "Shunt". Es el retorno de sangre al sistema arterial sin haber pasado por áreas del pulmón ventiladas.

Existen fundamentalmente 3 tipos de Shunts:

Shunt fisiológico. Es el causado principalmente por unidades pulmonares con baja relación de ventilación/perfusión.

Shunt anatómico. Se define como la sangre que pasa del corazón derecho al corazón izquierdo sin atravesar los capilares pulmonares.

Shunt Capilar. Se refiere a la sangre que pasa del corazón derecho al corazón izquierdo atravesando capilares pulmonares adyacentes a alvéolos no ventilados.

Indice de oxigenación. Cociente de dividir la presión arterial de Oxígeno entre la fracción inspirada de Oxígeno.

SIRA. Síndrome de Insuficiencia respiratoria aguda.

PaO₂. Presión parcial arterial de Oxígeno.

PaCO₂. Presión parcial arterial de Bióxido de carbono.

FIO2. Fracción inspirada de Oxígeno.

P (A-a)O₂. Diferencia alveolo-arterial de Oxígeno.

PAO₂. Presión alveolar de Oxígeno.

PIO₂. Presión inspirada de Oxígeno.

PEEP. Presión positiva al final de la espiración.

EPOC. Enfermedad pulmonar obstructiva crónica.

EAP. Edema agudo pulmonar.

IAM. Infarto Agudo al miocardio.

NAC. Neumonía adquirida en la comunidad.

PO. Postoperado.

ICC. Insuficiencia Cardiaca Congestiva.

TEP. Tromboembolia Pulmonar.

SAOS. Síndrome de apnea obstructiva del sueño.

DM. Diabetes Mellitus.

NID. Neumonía Intersticial difusa.

LES. Lupus eritematoso sistémico

HTA. Hipertensión arterial sistémica

CA. Cáncer

CRVC. Cirugía de revascularización coronaria

EAP. Edema agudo pulmonar

VD. Ventrículo derecho.

ACTP. Angioplastía coronaria transluminal percutánea

IRA. Insuficiencia respiratoria aguda

EVC. Enfermedad vascular cerebral

STD. Sangrado de tubo digestivo

DHE. Desequilibrio hidroelectrolítico

PCR. Paro cardiorrespiratorio

BIBLIOGRAFIA.

- Siggaard-Andersen O, Siggaard-Andersen M. The oxygen status algorithm: a computer program for calculating and displaying pH and blood gas data. Scand J Clin Lab Invest Suppl 1990;203:29-45
- Querevalú MWA, Pérez CR, García BL, et al. Determinación del «Deep picture» en sujetos sanos a la altura de la Ciudad de México Rev Asoc Mex Med Crit y Ter Int. 1998; 12(1): 16-21.
- Pérez-Martínez S y Pérez-Padilla JR. Valores gasométricos en sujetos sanos reportados en la población mexicana: revisión y análisis. Rev Invest Clin. 1992, 44:353-62.
- Chi-Lem G, Pérez-Padilla JR. Gas exchange at rest during simulated altitude in patients with chronic lung disease. Arch Med Res 1998; 29:57-62.
- Vázquez-Garcia JC, Arellano-Vega SL, Regalado-Pineda J, Pérez-Padilla JR.
 Normal ventilatory response to hypoxia and hypercapnia at an altitude of 2240 meters. Rev Invest Clin. 1998 Jul-Aug;50(4):323-9
- Murray JF, Matthay MA, LuceJ, Flick MR. An expanded definition of the adult respiratory distress syndrome. American Review of Respiratory Disease 1988;138:720-723.
- Pérez-Padilla JR, Vázquez-García JC.Estimación de los valores gasométricos en diferentes alturas sobre el nivel del mar en México. Rev Inv Clin. 2000, 52:148-155.
- Pérez-Padilla JR. Distribución de la población mexicana residente en diferentes alturas sobre el nivel del mar. Arch Med Res. En revision.
- West JB. V entilation-perfusion i nequality and o verall g as exchange in c omputer models of the lung. Respir Physiol 1969; 7:88.

- 10. Pérez-Padilla JR, Bracamonte R, Manrique G, Ruiz-Primo E. Exactitud y sensibilidad a la carboxihemoglobina del oxímetro de oído Biox-III en la ciudad de México. Arch Inst Cardiol Mex. 1986; 56:303.
- 11. Pérez-Padilla JR. Alturas en México. Neumol Cir Tórax (Mex), 1993, 52:7.
- 12. Kelman GR. Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol. 1966; 21:1375.
- 13. Bernard, G, Artigas, A, Carlet, J, et al. The American-European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149:818.
- 14. Artigas, A, Bernard, GR, Carlet, J, et al. The American-European consensus conference on ARDS, part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Am J Respir Crit Care Med 1998; 157:1332.
- Henry D.Covelli, MD; Vernon J. et al. Oxygen derived variables in acute respiratory failure. Critical Care Medicine 1983;1. 8.
- John B. West, M.D. Fisiopatología Pulmonar Edit. Panamericana. México. 4a ed, 1994. pp 149-175.
- Barry A. Shapiro, MD. William T. Peruzzi, M.D. Rozzana K.T. Manejo Clínico de los gases sanguíneos Edit Panamericana. México. 5ª ed. 1997. pp 267-278.
- J.A. Jeevendra Martín, M,B and Cols. Extrapulmonary factors influencing the ratio of arterial oxygen tensión to inspired oxygen concentration in burn patients. Critical Care Med 1979; 7.11.492.
- 19. Berggren, S.M. The oxygen deficit of arterial blood caused by non-ventilated parts of the lung. Acta Physiol.Scand.4,Suppl.XI:4-92,1942.
- Joel H Horovitz, MD, CM; Charles J. Carrico, MD and Cols. Pulmonary response to Major Injury. Arch Surg. Vol 108; 349.1974

Tabla 1. Principales datos de los pacientes INER.

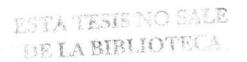
Paciente No	Sexo	Edad (años)	Peso estimado (Kg)	Talla estimada (cm)	IMC estimada (kg/m²)	Hemoglobina calculada. (gr /dl)	Diagnóstico
1	F	70	55	155	22.9	12.8	Crisis asmática
2	M	55	70	170	24.22	6.77	Absceso cuello
3	M	63	50	160	19.53	11.47	Absceso cuello
4	F	47	100	147	40.58	13.42	Crisis asmática
5	F	39	68	165	24.98	10.1	Bilobectomia PO
6	M	27	65	166	23.59	5.72	NAC
7	F	57	78	149	35.13	10.25	PO amigdalect
8	M	45	130	190	36	11.72	NAC
9	F	78	50	146	23.47	10.57	NAC+ ICC
10	F	56	85	175	27.7	9.5	TEP recurrente
11	M	16	80	180	24.7	16	Crisis asmática
12	M	56	65	168	23	14.72	NAC
13	M	50	65	160	25.39	10.6	Neum nosocom
14	M	63	100	160	39	12.2	SAOS cor pulm
15	F	67	96	157	38.9	15.4	Masa pulmonar
16	M	60	95	175	31	8.8	Absceso cuello
17	M	68	65	163	24.5	10.7	Ca laringeo
18	F	77	85	165	31.2	11.4	Crisis asmática
19	F	67	67	165	25.3	10.8	EPOC exacerbad
20	M	62	65	170	22.5	14.3	Absc pulmonar
21	F	76	48	165	17.6	13.5	Crisis asmática
22	F	86	55	155	22.9	10.6	Neum.foc mult
23	M	74	75	154	26.59	11.54	EPOC exacerb
24	F	33	37	154	15.6	11.1	NAC
25	M	55	63	146	29.6	10.97	Absceso cuello
26	F	60	100	140	51	15.35	Hipov alveolar
27	F	77	65	148	29.7	14.5	EPOC exacerb
28	M	38	85	158	34	10.27	Neum nosocom
29	M	20	75	170	25.95	9.6	NAC+D. Pleu
30	F	54	50	139	25.9	13.5	Crisis asmática
31	F	79	65	158	26	9.42	EPOC exacerbad
32	F	39	48	142	23.8	7.6	Neum foc mult
33	M	18	70	180	21.6	12	PO hemotórax
34	F	18	75	160	29.2	10.4	Hemorr alveolar
35	F	83	50	148	22.8	13.3	NAC+ D M
36	F	26	60	165	22	7.7	Inf nod bil est
37	F	58	82	168	29.1	15.7	NAC
38	F	53	45	144	21.7	13.4	Crisis asmática
39	F	18	75	163	28.2	9.1	Neum foc.mult

40	F	64	65	168	23	14.9	EPOC exacerbad
41	M	56	50	165	18	11.9	PO est traqueal
42	M	84	51	160	19.9	14.15	Crisis asmática
43	M	45	45	150	20	14.22	NAC
44	F	37	40	142	21.4	10.75	Neum. Atípica
45	F	54	40	155	16.6	11.3	NID en estudio
46	M	46	90	172	30.4	10.4	TEP múlt crón
47	F	17	45	155	18.7	11.7	Neum intersticial
48	M	31	105	180	32.4	13.2	Histoplasmosis.P
49	M	47	85	170	29.4	15.7	Histoplasmosis.P

Tabla 2. Correlación PaO₂/ FIO₂ con Qs/Qt en pacientes del INER

PACIENTE		PaO ₂ /FIO ₂		FIO ₂	PaO ₂ /FIO ₂	Qs/Qt
	Inicial %	inicial	Inicial %	Final %	Final	Final %
1	0.4	267.5	11	100	389	5
2	0.6	118.8	45	100	76.5	30
3	0.5	137.2	24	100	99.9	12
4	0.6	107.8	23	100	77.6	17
5	0.75	130.9	24	100	184	20
6	0.4	202.2	14	100	209	28
7	0.6	140	23	100	161	30
8	0.6	135	16	100	176	12
9	0.5	150.2	19	100	182	12
10	0.4	154.5	33	100	119	32
11	0.6	99.8	65	100	98.1	48
12	0.5	161	39	100	112	41
13	0.4	148.2	43	100	152	35
14	0.4	135.5	53	100	138	16
15	0.5	126.4	42	100	107	44
16	0.5	128	32	100	106	35
17	0.4	169.2	36	100	198	32
18	0.4	180	26	100	218	24
19	0.4	165	20	100	363	17
20	0.5	124.6	31	100	122	34
21	0.45	179.3	38	100	355	22
22	0.6	127	46	100	172	21
23	0.4	173.7	32	100	371	9
24	0.6	113.8	34	100	97	36
25	0.5	128	27	100	133	24
26	0.4	168.5	40	100	121	29
27	0.4	121.7	56	100	199	29
28	0.8	106.2	23	100	90.7	41
29	0.4	202.2	17	100	201	19
30	0.4	217.2	20	100	211	28
31	0.4	170.5	29	100	317	19
32	0.35	204.5	22	100	236	21
33	0.4	234.7	21	100	275	21
34	0.45	147	40	100	180	33
35	0.35	226.2	24	100	147	35
36	0.7	107.5	44	100	93.3	46
37	0.5	194	16	100	315	13
38	0.38	252.1	33	100	320	26
39	0.75	122.5	36	100	100	42
40	0.4	166.5	31	100	215	21
41	0.8	223	10	100	205	16

42	0.4	327.5	11	100	366	15
43	0.6	144.5	24	100	152	39
44				100	84.2	53
45	0.5	120	26	100	200	18
46	0.4	160.7	19	100	159	21
47	0.8	103.8	36	100	97.9	38
48	0.6	108.5	45	100	157	39
49				100	81.7	41.8


Tabla 3. Indice PaO₂/FIO₂ Vs shunt según las características de los pacientes INER.

Paciente	Sexo	Edad (años)	IMC Kg/m ₂	Diagnóstico	PaO ₂ /FIO ₂	Shunt. %
01	F	70	22.9	Crisis asm	389	5
02	M	55	24.22	Absc cuello	76.5	30
03	M	63	19.53	Absc cuello	99.9	12
04	F	47	40.58	Crisis asm	77.6	17
05	F	39	24.98	Bilobectomía	184	20
06	M	27	23.59	Neumonía	209	28
07	F	57	35.13	Amigdalectom	161	30
08	M	45	36	Neumonía	176	12
09	F	78	23.5	Neumonía	182	12
10	F	56	27.7	TEP	119	32
11	M	16	24.7	Crisis asmát	98	48
12	M	56	23	Neumonía	112	41
13	M	65	25.40	Neumonía	152	35
14	M	63	39	SAOS exacer	138	16
15	F	67	38.9	ICC+ masa	107	44
16	M	60	31	Absc mediast	106	35
17	M	68	24.5	CA laringe	198	32
18	F	77	31.2	Crisis asmat	218	24
19	F	67	25.3	EPOC exacer	363	17
20	M	62	22.5	Absc pulmon	122	34
21	F	76	17.6	Crisis asmat	355	22
22	F	86	22.9	Neumonia	172	21
23	M	74	26.6	EPOC + ICC	371	9
24	F	33	15.6	Neumonia	97	36
25	M	55	29.6	Absc faring	133	24
26	F	60	51	Sx hipovent al	121	29
27	F	77	29.7	EPOCexacerb	199	29
28	M	38	34	Neumonía	90.7	41
29	M	20	25.9	Neumonía	201	19
30	F	54	25.9	Crisis asmat	211	28
31	F	79	26	EPOC	317	19
32	F	39	23.8	Neumonía	236	21
33	M	18	21.6	Hemotórax	275	21
34	F	18	29.2	LES+hemorrag	180	33
35	F	83	22.8	NAC+ HTA	147	35
36	F	26	22	Infiltrad en est	93.3	46
37	F	58	29.1	Neumonía	315	13
38	F	53	21.7	Crisis asmat	320	26
39	F	18	28.2	Neumonía	100	42
40	F	64	23	EPOC +NAC	215	21
41	M	56	18	PO esten traq	205	16
42	M	84	19.9	Crisis asmat	366	15

42	M	84	19.9	Crisis asmat	366	15
43	M	45	20	Neumonia	152	39
44	F	37	21.4	Neumonía	84.2	53
45	F	54	16.6	NID en estudio	200	18
46	M	46	30.4	TEP	159	21
47	F	17	18.7	Neumonía	98	38
48	M	31	32.4	Histoplasmosis	157	39
49	M	47	29.4	Histoplasmosis	81.7	41.8

Tabla 4. Correlación entre la PaO₂/FIO₂ Vs cortocircuito a nivel del mar.

Pac	PaO2/FIO2	Qs/Qt	Pac	PaO ₂ /FIO ₂	Qs/Qt	Pac	PaO ₂ /FIO ₂	Qs/Qt	Pac	PaO ₂ /FIO ₂	Qs/Qt
1	38	52	68	159	31	135	222	19	202	280	24
2	38	60	69	159	32	136	222	21	203	280	25
3	38	62	70	159	34	137	222	22	204	282	27
4	38	63	71	159	35	138	222	24	205	290	10
5	38	66	72	159	36	139	222	25	206	290	11
6	39	71	73	159	37	140	222	27	207	290	12
7	39	72	74	170	14	141	222	32	208	290	14
8	38	77	75	170	17	142	230	12	209	290	17
9	38	78	76	169	18	143	230	13	210	290	18
10	50	57	77	169	20	144	230	14	211	290	22
11	50	62	78	169	22	145	230	16	212	300	7
12	50	65	79	169	24	146	230	17	213	300	11
13	50	73	80	169	26	147	230	18	214	300	16
14	50	74	81	169	27	148	230	19	215	300	17
15	78	37	82	169	28	149	230	22	216	300	18
16	79	38	83	169	29	150	230	28	217	310	11
17	79	40	84	169	31	151	230	31	218	310	12
18	79	46	85	169	33	152	230	36	219	310	13
19	79	47	86	169	35	153	238	11	220	310	14
20	88	26	87	169	36	154	238	13	221	310	18
21	88	27	88	169	40	155	238	14	222	320	13
22	88	29	89	180	11	156	238	15	223	320	.22
23	88	38	90	180	16	157	238	16	224	330	8
24	89	42	91	180	20	158	238	18	225	330	12
25	89	51	92	180	21	159	238	19	226	330	13
26	100	29	93	180	22	160	238	21	227	330	15
27	100	37	94	180	23	161	238	22	228	338	8
28	100	52	95	180	25	162	238	23	229	338	11
29	109	30	96	180	26	163	238	26	230	338	12
30	109	32	97	180	27	164	238	35	231	338	13
31	109	33	98	180	28	165	250	13	232	338	14
32	110	34	99	180	30	166	250	15	233	338	17
33	110	35	100	180	31	167	250	16	234	338	24
34	111	37	101	190	14	168	250	17	235	344	14
35	110	53	102	190	15	169	250	18	236	350	11
36	120	18	103	190	17	170	250	19	237	350	12
37	120	24	104	190	18	171	250	20	238	350	15
38	120	30	105	190	20	172	250	21	239	360	8
39	120	34	106	190	21	173	250	22	240	360	15
40	120	37	107	190	23	174	250	23	241	370	7
41	130	25	108	190	26	175	250	29	242	370	11
42	130	30	109	190	27	176	260	10	243	370	12

43	130	33	110	190	28	177	260	12	244	370	13
44	130	37	111	190	29	178	260	14	245	380	10
45	137	16	112	190	32	179	260	16	246	380	11
46	138	24	113	190	38	180	260	20	247	380	12
47	137	26	114	200	12	181	260	22	248	380	14
48	137	28	115	200	17	182	260	24	249	390	4
49	137	32	116	200	18	183	260	32	250	390	5
50	137	34	117	200	20	184	268	10	251	390	11
51	137	36	118	200	21	185	268	11	252	390	12
52	137	41	119	200	23	186	268	12	253	390	14
53	152	22	120	200	26	187	268	15	254	390	16
54	152	23	121	200	28	188	268	16	255	400	7
55	152	24	122	200	31	189	268	17	256	420	10
56	152	26	123	211	14	190	268	18	257	420	12
57	152	29	124	210	15	191	268	19	258	430	14
58	152	33	125	210	16	192	268	20	259	440	6
59	152	39	126	210	18	193	268	21	260	440	12
60	160	17	127	210	19	194	268	27	261	440	13
61	160	18	128	210	21	195	280	10	262	440	34
62	160	20	129	210	24	196	280	12	263	450	5
63	160	22	130	210	30	197	280	14	264	450	7
64	159	23	131	222	10	198	280	16	265	460	7
65	159	27	132	222	15	199	280	18	266	480	8
66	159	28	133	222	17	200	280	19	267	490	8
67	159	30	134	222	18	201	280	22	268		

Tabla 5. Correlación entre la PaO_2/FIO_2 Vs shunt según diagnósticos en pacientes con catéter de flotación pulmonar. Hospital ABC.

Causa ingreso a UTI	Causa de AMV	Shunt %	PaO ₂ /FlO ₂
Neumonia x broncoaspirac	Insuf respiratoria hipoxémica	6	166
PO cambio valv mitral.	Alteraciones hemodinámicas	8	220
IAM + EAP	Alteraciones hemodinámicas	9	194
Enfermedad coronaria + CRVC	Cirugía	10	133
Cambio valvular + CRVC	Alteraciones hemodinámicas	10	96
Cambio valvular mitral + CRVC	Cirugía	11	310
Politrauma + isquemia mesent	Alteraciones neurológicas	12	164
Sx coronario agudo + CRVC	Cirugía	12	190
Enf. Trivascular + CRVC	Cirugía	13	185
PO. perforación de colon	Cirugía	13	154
IRA hipoxémica + CA pulmonar	IRA hipoxémica	13	159
Embolia grasa + politrauma	IRA hipoxémica	14	230
IAM con extensión al VD	Alteraciones hemodinámicas	14	224
Enf. coronaria + CRVC	Cirugía	14	300
EVC + edo post paro	Alteraciones neurológicas	15	154
Enf. coronaria + pop CRVC	Cirugía	15	203
Linfoma Burkitt	Alteraciones hemodinámicas	16	156
PO arteriotomia (oclusión art)	Alteraciones hemodinámicas	17	106
Sepsis abdominal	IRA hipoxémica	17	185
Cambio valvular Ao x estenosis	Cirugía	17	174
EVC hemorrágico	Alteraciones neurológicas	18	134
PO. CRVC (angina inestable)	Cirugía	18	234
Politrauma	Alteraciones hemodinámicas	18	359
Politraumatizado	Cirugía	19	213
IAM post ACTP + HTA x ileo	Alteraciones hemodinámicas	20	133
Choque séptico (Neumonía)	Alteraciones hemodinámicas	20	146
Edema agudo pulmonar	IRA hipoxémica	20	126
Aneurisma aortico abdominal	IRA hipoxémica	20	124
Encefalitis viral	Alteraciones neurológicas	20	68
Broncoaspiración	IRA hipoxémica	20	96
PO. pancreatoduodenectomía	Cirugía	20	281
Politrauma + ruptura Aórtica	Cirugía	21	174
Neumonia x broncoaspiración	Insuficiencia ventilatoria	21	112
Neumonia x broncoaspiración	IRA hipoxémica	22	144
Timoma Maligno	Insuficiencia ventilatoria	22	122
Fascitis necrot + SIRA	Alteraciones hemodinámicas	23	167
AdenoCA colon + ulcera gastr	Cirugía	24	171
CA renal + Shock hipovolémico	Alteraciones hemodinámicas	25	70
Sepsis abdominal	Alteraciones hemodinámicas	25	226
Aneurisma aortico abdominal	Cirugía	25	169
Shock septico x mediastinitis	Alteraciones hemodinámicas	25	103
PO cambio valvular reumático	Cirugía	26	194
Neumonía x broncoaspiración	IRA hipoxémica	26	59
Colecistitis	Cirugía	26	107
PO. CRVC (Angina inestable)	Alteraciones hemodinámicas	26	138
Cardiopatía isquémica + CRVC	Cirugía	26	147
Cardiopatía isquémica + CRVC	Cirugía	27	159
Ca mets + sepsis + I renal	IRA hipoxémica	27	149

Cambio valvular mitral	Cirugía	27	175
PO. Whipple x CA pancreático	Cirugía	27	137
STD + edema ag. pulm	IRA hipoxémica	28	217
Sepsis x neumonía y EAP	IRA hipoxémica	28	332
Sx coronario agudo	Cirugía	29	138
Cardiopatía isquémica + CRVC		30	197
shock séptico + Linf N Hodgkin	Alteraciones hemodinámicas	30	57
EPOC descomp+ derrame pleu	Insuficiencia ventilatoria	30	82
Broncoaspiración	IRA hipoxémica	30	108
Ulcera gástrica perforada	IRA hipoxémica	31	107
Necrosis pancreática	Alteraciones hemodinámicas	31	54
Sepsis abdominal	Cirugía	32	148
PO. esofagectomía	Alteraciones hemodinámicas	32	169
Sepsis abdominal	Alteraciones hemodinámicas	32	164
DHE + broncoaspiración	Alteraciones neurológicas	32	111
Sx coronari agudo + pop CRVC		32	56
Broncoaspiración	IRA hipoxémica	32	127
Politraumatizado	Alteraciones hemodinámicas	33	172
Sx coronario agudo	IRA hipoxémica	33	81
Hepatitis C + absc peri-rrectal	Alteraciones hemodinámicas	33	166
Sepsis abdominal	Alteraciones hemodinámicas	35	93
Clipaje aneurisma carot int	IRA hipoxémica	35	79
Shock cardiogénico	Alteraciones hemodinámicas	35	106
Sepsis abdominal	Alteraciones hemodinámicas	35	67
Pancreatitis aguda	Alteraciones hemodinámicas	36	138
Sepsis abdominal	Alteraciones hemodinámicas	36	157
IAM + EAP	IRA hipoxémica	37	112
Encefalopx anoxoisquemica	Alteraciones neurológicas	37	133
Sepsis abdominal	Cirugía	38	106
neumonía x aspiración	Alteraciones neurológicas	38	68
STD + Pb broncoaspiración	IRA hipoxémica	39	76
Neumotórax espont. + EPOC	IRA hipoxémica	39	130
Neumonia x broncoaspiración	IRA hipoxémica	40	130
Leuc meloblástica aguda	IRA hipoxémica	40	74
IAM + shock cardiogénico	Alteraciones hemodinámicas	42	87
EAP vs hemorragia pulmonar	IRA hipoxémica	42	119
Sx hepato-renal	IRA hipoxémica	43	46
EVC + neumonía izquierda	IRA hipoxémica	43	99
CA de esófago + neumonia	IRA hipoxémica	44	161
Politraumatizado	Alteraciones hemodinámicas	45	188
Estado post PCR e IAM	Alteraciones hemodinámicas	47	93
Ulc gastrica perf + neumonia	IRA hipoxémica	48	173
gastrectom. + isquemia mesent	Cirugía	48	229
Shock séptico + neumonía	IRA hipoxémica	50	169
Apendicitis + sepsis abdominal	Alteraciones hemodinámicas	53	243
Sépsis abdominal (choque)	Alteraciones hemodinámicas	56	73
EVC + neumonía izquierda	IRA hipoxémica	75	143
Toracotomía+ CA pulmonar	IRA hipoxémica	77	145

Tabla 6. Muestra la distribución del Indice PaO₂/FIO₂. en los pacientes de México por grupos.

	< 100	100-199	200 – 300	> 300
Grupo I	10	22	9	8
	< 100	100-199	200-300	> 300
Grupo II	21	60	12	3

Tabla 7 Muestra la distribución de los cortos circuitos de los pacientes de México en porcentajes.

	< 10	10-19.9	20-29.9	30-39.9	40-49.9	50 y +
Grupo I	2	12	14	13	7	1
	< 10	10-19.9	20-29.9	30-39.9	40-49.9	50 y +
Grupo II	3	21	29	27	11	5

Tabla 8. Muestra los datos del modelo de regresión múltiple que compara los datos del mar con México donde la variable dependiente es la relación PaO₂/FIO₂ y la variable independiente el Logaritmo de shunt. Se muestra que el grupo de mar tiene 38.8 Torr mas de PaO₂/FIO₂ que México al mismo Shunt.

. regress PaO2/FIO2 log shunt sitio

Source	1	SS	đf		MS		Number of obs	=	412
	+						F(2, 409)	=	262.53
Model	1	2086447.26	2	1043	223.63		Prob > F	=	0.0000
Residual	1	1625236	409	3973	.68214		R-squared	=	0.5621
	+						Adj R-squared	=	0.5600
Total	1	3711683.26	411	9030	.85951		Root MSE	=	63.037
Pa02/FI02	· + - ·	Coef.	Sta.	Err.	t	P> t	[95% Conf	. 1	nterval
logshunt	1	-124.4751	6.012	094	-20.70	0.000	-136.2935	-1	12.6566
sitio	1	38.80925	6.61	439	5.87	0.000	25.80681	5	1.81169
cons	1	562.196	20.	118	27.94	0.000	522.6484	6	01.7436

INCLUYE PACIENTES DEL HOSPITAL ABC.

Es un modelo de regresión múltiple tomando como variable dependiente la relación PaO₂/FIO₂ y como variables independientes el logaritmo del shunt para linearizar la relación y el grupo (nivel del mar o México) como variable indicadora (tabla 8). Incluye datos del hospital ABC. Hay diferencia estadística entre los datos de México y del mar, en promedio el grupo 1 del mar, tiene 38.8 Torr más de PaO₂/FIO₂ al mismo shunt.

HOJA DE RECOLECCION DE LOS DATOS.

No PACIENTE

NOMBRE .	EXPEDIENTE:
SEXO:	
EDAD:	
DIAGNOSTICO:	
GASOMETRIAS ARTERIALES	GASOMETRIAS VENOSAS.

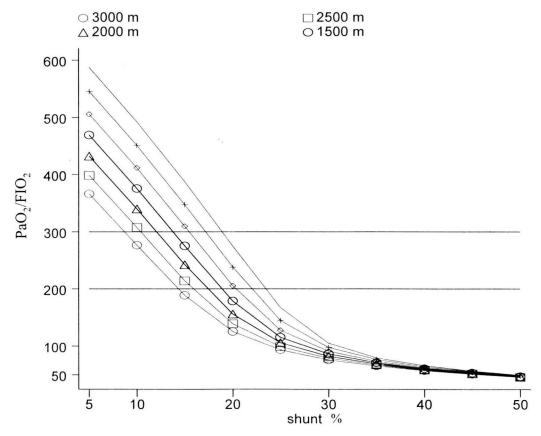


Figura 1. Se muestran las líneas predichas de distribución de PaO₂/FIO₂ Vs shunts a diferentes altitudes. Note que en la medida que la altitud incrementa las líneas se desplazan hacia abajo.



Figura 2. Se muestran 3 líneas predichas de función pulmonar a diferentes altitudes. Note que mar y México están separadas y que se corresponden con diferente grado de alteración funcional al mismo PaO₂/FIO₂ observe como se separan más en la medida que disminuyen los shunts.

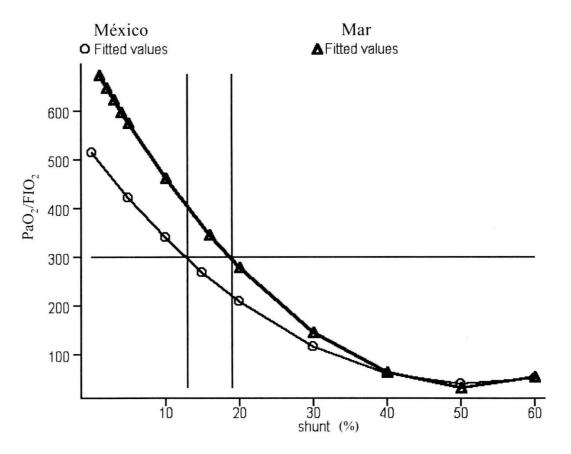


Figura 3. Se muestran dos líneas que representan el índice PaO_2/FIO_2 vs. shunt predichos por un programa computacional de función pulmonar para la altitud de mar y México. Observe que los pacientes de mar con el mismo índice PaO_2/FIO_2 (la línea horizontal) tienen mayor Qs/Qt que México (13 vs 19%)

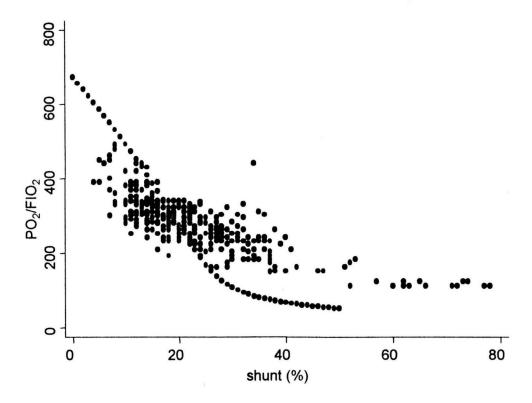


Figura 4. Se muestra la distribución de los puntos de pacientes reales del nivel del mar, con los valores predichos por el modelo computacional de pulmón. Observe que con valores de shunt < 20% el PaO_2/FIO_2 se aproxima mejor al predicho que a valores mayores.

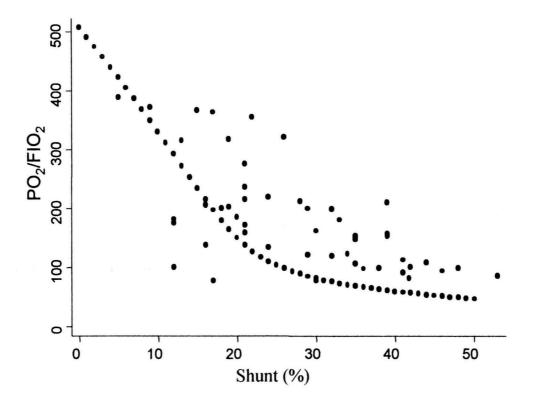


Figura 5. Muestra los puntos de PaO_2/FIO_2 Vs shunt de pacientes reales de México con catéter en vena cava superior, con los predichos de México. Note que con shunt < 20% los puntos se encuentran alrededor del predicho, pero no a valores mayores de 20% como en el caso de mar.

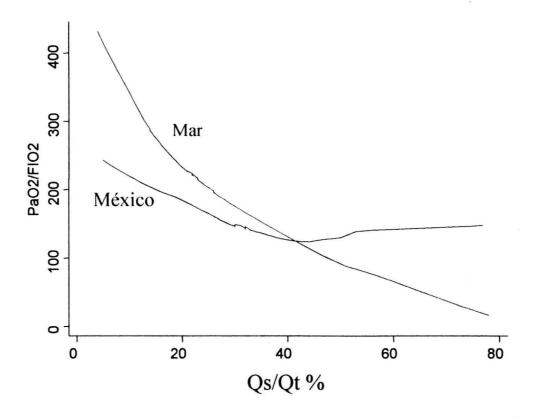
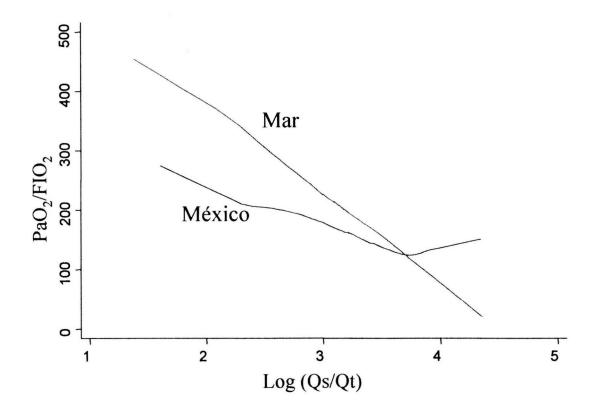



Figura 6. Muestra la relación PaO₂/FIO₂ Vs shunt de los dos grupos de pacientes de México y de los pacientes del nivel del Mar. Note la diferencia en el índice PaO₂/FIO₂ entre mar y México aún con shunts bajos.

•Figura 7. Muestra la correlación PaO₂/FIO₂ vs Shunt logarítmica de pacientes de mar y México. Observe que los datos de México siempre se encuentran por debajo de mar con tendencia a separarse más a medida que disminuye el shunt.

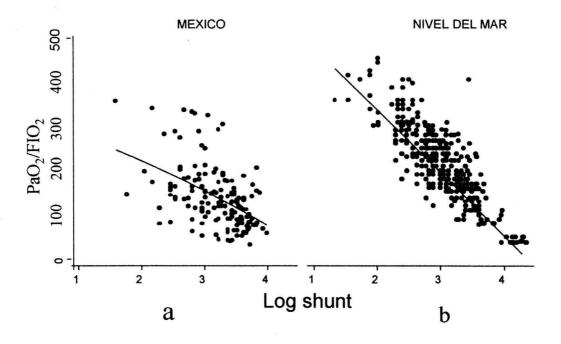


Figura 8. Se muestra a dos grupos de pacientes. México a y mar b, con shunt en unidades logarítmicas a fin de lograr una distribución linear. Nótese que en México los valores mas altos no llegan a rebasar Pao₂/FIO₂ de 400 a pesar de shunts equiparables.

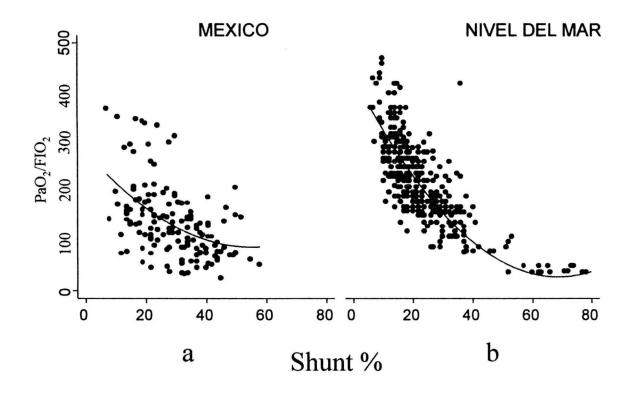


Figura 9. Se muestra a dos grupos de pacientes. México a y mar b. Observe que los valores de México se desvían a la izquierda respecto a los de mar, lo que refleja el menor grado de alteración funcional al mismo shunt conforme se aumenta la altura.