

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

ANALISIS GEOMECANICO DE UNA SECUENCIA LACUSTRE EN LA CIUDAD DE MEXICO

DIRECTOR DE TESIS DRA. DORA C. CARREON FREYRE

A

MEXICO, D.F.

2003

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

- ZALZIBIAR MAR JAI AZIMMATT MEZE

> SRITA. ROSARIO PERALTA SALAZAR Presente

FACULTAD DE INGENIERÍA DIRECCIÓN 60-1-607

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso la profesora Dra. Dora Carreón Freyre y que aprobó esta Dirección para que lo desarrolle usted como tesis de su examen profesional de Ingeniero de Geólogo:

ANÁLISIS GEOMECÁNICO DE UNA SECUENCIA LACUSTRE EN LA CIUDAD DE MÉXICO

I	INTRODUCCIÓN
11	CONTEXTO GEOLÓGICO
111	ANÁLISIS GEOMECÁNICO
IV	DISCUSIÓN DE RESULTADOS
v	CONCLUSIONES Y PERSPECTIVAS
	REFERENCIAS
	ANEXOS

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el título de ésta.

Asimismo, le recuerdo que la Ley de Profesiones estipula que se deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar examen profesional.

Atentamente "POR MI RAZA HÁBLARÁ EL ESPÍRITU" Cd. Universitaria, D. H., a/13 de junio de 2003 EL DIRECTOR M. en C. GERARDO FERRANDO BR $\overline{\mathbf{vo}}$ GFB* GC*gtg-

tellis ruge terre varieuri da una percuentria **la custra de la** 41 tude 1956. Fra**cult**ed do legare o tra

DEDICATORIAS

- A MI MADRE: Por ser mi guía, sostén y refugio, por enseñarme día a día a ser mejor, por estar siempre conmigo y por sobre todas las cosas por tu immenso amor.
- A MI PADRE: Por ser mi ejemplo, por enseñarme el valor del trabajo diario, por ser pilar inquebrantable siempre, por tu honestidad y más que todo por tu amor incondicional.
- AL COMPAÑERO DE MI VIDA: Por tu gran apoyo y aliento, por ser parte de mi vida cotidiana, llenándola de ilusión al brindarme tu amor y por ese par de ángeles que tenemos la dicha de compartir.
- A MIS DOS AMORES, XANI E IVAN: Por existir y llenarme de luz día a día.
- A MI HERMANO: Por los momentos compartidos de alegría y juego y por ser imprescindible en mi vida.
- A MI ABUELA NATALIA: Por transmitirme su experiencia y darme su cariño.
- A MI SUEGRA: Por alentarme y apoyarme en los momentos más difíciles, de manera incondicional
- A MIS PRIMOS Y SUS FAMILIAS: Especialmente a Julio y Clarita, y Rocío y Angel por siempre estar cuando los he necesitado.
- A MIS AMIGOS: Zulema, Miguel y Juan Carlos, por su amistad, por compartir conmigo los buenos momentos y por su apoyo técnico en este proyecto.
 - ✤ A DIOS: por rodearme siempre de gente maravillosa.

AGRADECIMIENTOS

✤ A MI TUTORA, la Dr. Dora Celia Carreón Freyre, por su enorme paciencia y comprensión, por su acertada guía y por el empeño para realizar juntas este trabajo.

A MIS PROFESORES, Alfredo Victoria, Jorge Nieto, Héctor Macías, Benjamín Márques, Miguel Vera, Carlos Garza, Roberto Uribe, Víctor Malpica, Javier Arellano y a todos aquellos que de alguna manera contribuyeron a mi formación.

✤ A MIS SINODALES:

M. en C. Rolando de la Llata Romero Ing. Héctor Macías González Ing. Sergio Herrera Castañeda Dra. Elízabeth Solleiro Rebolledo

Por sus valiosos comentarios para mejorar este trabajo

A LA FACULTAD DE INGENIERÍA: Por transmitirme el orgullo de ser universitaria y formarme con los mejores recursos.

> A LA UNAM: Por brindarme la maravillosa oportunidad de formar parte de ella.

> > D

INDICE GENERAL

TEMA

Capítulo I. Introducción

1.1. Antecedentes	 		1 -
1.2 Obietivo	 	4	4
1.3 Metodología	 		5
1.4 Desarrollo		6	3 -
	 		-

Capítulo II. Contexto geológico

2. Historia geológica de la Cuenca de México	· 7.	
2.1. Estratigrafia cuaternaria	10	
2.2. Evolución de la zona lacustre	11,	
2.3. Estratigrafía geotécnica	. 14	
2.3.1. Zonificación Geotécnica	17	

Capítulo III. Análisis Geomecánico

3.1.1. Descripción estratioráfica preliminar	20
3.2. Selección de muestras	22
3.3. Análisis físicos	24
3.3.1. Densidad de sólidos (Ss) y Densidad Real (DR)	24
3.3.2. Granulometría	27
3.3.3. Límites de consistencia	29
3.3.4. Contenido de agua (W%)	31
3.4. Análisis guímicos	34
3.4.1 Determinación de óxidos totales	34
3.4.2 Determinación de Potencial Hidrógeno (pH)	37
3.4.3 Determinación de Materia orgánica (MO %)	38
3.4.4 Capacidad de intercambio catiónico (CI)	40
3.4.5 Aniones solubles	41
3.4.6 Determinación de amorfos y cristalinos de Fe, AI, Si	43
3.5 Análisis mecánicos	50
3.5.1 Compresibilidad	50
3.5.2 Resistencia al esfuerzo cortante	55

Pág.

Capital environment of the Capital States

len op de look leis overse taspotre de te fort

L

Capítulo IV. Discusión de resultados	
4.1 Redefinición de la secuencia estratigráfica	. 59
las condiciones de formación	63
4.3 Relación entre las propiedades fisico-químicas y la compresibilidad y resistencia al corte	. 65
Capítulo V. Conclusiones y perspectivas	
5. Conclusiones y perspectivas	69
Anexo 1. Descripción detallada de la secuencia estratigáfica	71
Anexo 2. Límites de consistencia y clasificación SUCS	7!
A nexo 3 Contenido de aque natural: óxidos totales cationes	
것이 많은 것 같은 것이 것 같은 것이 가격했던 가방에서 가장에 가려져 통해 방법에서 가려 가지 않는 것은 것 않는 것 않는 것 같은 것은 것을 하는 것은 것이 것을 가지 않는 것이 있었다. 것이 가 가 있는 것이 가 가 있는 것이 가 가 있는 것이 있는 것이 있다.	
intercamblables, anlones	9
Intercambiables, aniones	9
intercamblables, anlones	9 1(
Intercamblables, anlones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales	9 1(11
intercamblables, aniones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales	9 1(11
Intercamblables, anlones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales Bibliografia	9 1(11
Intercamblables, anlones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales Bibliografía	9 11
intercamblables, anlones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales Bibliografía	9 1(
intercamblables, anlones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales Bibliografía	9 10 1
Intercamblables, anlones Anexo 4. Curvas de compresibilidad Anexo 5. Pruebas triaxiales Bibliografía	

.

11

INDICE FIGURAS

Annel sind gever experience de la responsance la publica de la 10 stor Pourgiban de later de la responsa

Pág.

FIGURA

1.	Localización del Eje Neovolcánico Transmexicano	1
2.	Limites de la Cuenca de La Cd. de México	2
3.	Corte transversal de la Zona lacustre de la Cd. de México	3
4.	Marco Tectónico del Cinturón Volcánico Transmexicano (CVT)	
	Plioceno al Cuaternario	8
5.	Perspectiva del Valle de México desde el sur	9
6.	Columna Estratigráfica de la Cuenca de México	9 .
7.	Estratigrafia Cuatemaria (Bryan et. al., 1948; Schalaepfer, 1968)	10
8.	Eventos ambientales durante el Holoceno-Pleistoceno	11
9.	Máxima extensión del lago de México	12
10	Evolución de la Cuenca del Valle de México	13
11.	Columnas estratigráficas de la zona centro de la Cd. de México	15
12.	Estratigrafia de la Subcuenca de la Ciudad de México (Mooser, 1990)	16
13.	Estratigrafía de la Cd. de México Zona Centro (Tâmez et al, 1992)	16
14.	Zonificación de la Cuenca del Valle de México (Méndez y Auvinet, 2000)	18
15.	Estratigrafia preliminar	21
16.	Selección de muestras	. 22
17.	Presencia de óxidos al interior de uno de los núcleos	23
18.	Estructuras de inyección de arena en arcillas	23
19.	Densidad de Sólidos, Densidad real respecto a la estratigrafía	26
20.	Contacto entre arcillas y arena fina	27
21.	Contracción en una probeta de arcillas	32
22.	Relación entre los limites plástico, líquido y el contenido de agua natural.	33
23.	Variación de óxidos totales	36
24.	Comportamiento del contenido de MO respecto a la estratigrafia	39
25.	Relación de los valores de aniones solubles respecto a la estratigrafía	42
26.	Variación de aluminio	45
27.	Variación de Silice	47
28.	Variación de Fe	49
29.	Gràficas de compresibilidad	53

III.

30.	Variación del coeficiente de Compresibilidad		54
31.	Variación de la Resistencia al Esfuerzo cortante.		57
32.	Redefinición estratigráfica		60
33.	Relación entre la Compresibilidad y las características Físico-químicas		
	de la secuencia estratigráfica		66
34.	Relación entre la Resistencia al esfuerzo cortante y las características		
	Fisico-quimicas de la secuencia estratigráfica		68

INDICE DE TABLAS

	TABLA	Pág.
1.	Ss en suelos puros	25
2.	Densidad de sólidos y densidad real	25
3.	Clasificación geológica y edafológica de los sedimentos	28
4.	Limites de consistencia e índice de plasticidad	30
5.	Clasificación SUCS	31
6.	Óxidos totales	35
7.	Potencial hidrógeno, pH	37
8.	Contenido de materia orgánica %	39
9.	Capacidad de intercambio catiónico	40
10.	Variación del contenido de aniones solubles con la profundidad	42
11.	Contenido de aluminio amorfo y cristalino	44
12.	Contenido de silice amorío y cristalino	46
13.	Contenido de fierro amorfo y cristalino	48
14.	Valores de compresibilidad	55
15.	Valores de pruebas triaxiales lentas consolidadas drenadas	56

iv

uner o in de ata terbenera largate en Polidiere Deve Figura de servicia a 1955

> TESIS CON FALLA DE ORIGEN

CAPÍTULO I INTRODUCCIÓN

1.1. Antecedentes

La cuenca de México, localizada en la zona más elevada de la altiplanicie central del territorio nacional, pertenece fisiográficamente a la parte media del Cinturón Volcánico Transmexicano (Demant, 1978) (fig. 1). Su morfología corresponde a una altiplanicie lacustre rodeada por sierras volcánicas y por abanicos y llanuras aluviales (Vázquez-Sánchez et al, 1989) que en conjunto conforman la llamada Cuenca de México. Las sierras que limitan a ésta altiplanicie son, al norte y noreste Las Sierras de Pachuca y Tezontlalpan respectivamente, al sur la Sierra de Chichinautzin, al oriente la Sierra Nevada, con la mayor elevación entre las que rodean al Valle y finalmente al poniente las Sierras de Zempoala y Las Cruces (Mooser, et al, 1974)(fig. 2).

Figura 1. Localización del Eje Neovolcánico Transmexicano y mecanismos tectónicos presentes. Demant, 1978

PAGINACIÓN DISCONTINUA

Figura 2. Limites de la Cuenca de La Cd. de México Mooser, 1974

Gran parte de los asentamientos humanos de la Cd. de México se localizan sobre una alternancia de material lacustre, constituida por limo-arcilloso, arenas y ceniza volcánica con algunos estratos ricos en materia orgánica (Ortega et al, 1996) altamente compresibles.

Esta secuencia sobreyace un acuífero regional piroclástico aluvial (fig. 3), del cual se extrae gran parte del agua con que se abastece la Ciudad de México y área conurbada. El elevado ritmo de extracción de agua (50 m³/s) ha provocado una disminución en la presión de poro del acuífero y un aumento en los esfuerzos verticales efectivos en los sedimentos lacustres (Ortega et al, 1996).

La heterogeneidad de los materiales que conforman la cuenca y las discontinuidades presentes , tales como lentes de arena, capas duras y fracturas son determinantes en el comportamiento mecánico de los suelos (Carreón Freyre, 2001). El hundimiento de algunas zonas de la Cd. de México y sus deformaciones han sido analizados por diversos autores, (Zeevaert, 1953; Marsal y Mazari 1959; Hiriart y Marsal, 1969; Mesri, et al, 1975; Díaz, 1992; Marsal, 1992; Romo, 1995), con un enfoque básicamente geotécnico.

2

nr. It.k.

Figura 3. Corte transversal de la Zona lacustre de la Cd. de México Ortega, 1996

Sin embargo, en un análisis geotécnico, gran parte de los parámetros se definen basándose en valores estandar obtenidos estadísticamente y que no consideran estrictamente la gran variación de las características físico-químicas y geológicas de los materiales, lo cual en algunos casos puede ser determinante en el desarrollo de obras civiles.

Esta es la razón fundamental por la cual en este trabajo se aplicará un análisis geomecánico, que complemente los datos obtenidos en pruebas mecánicas y apoye en la interpretación del comportamiento mecánico, atendiendo a las condiciones geológicas de origen y evolución.

TESIS CON FALLA DE ORIGEN

3

1.2 Objetivo

El análisis de las propiedades intrínsecas de los sedimentos lacustres es, como ya se mencionó, un apoyo importante en las pruebas mecánicas, por lo que se justifica desarrollar este tipo de estudios mediante la aplicación de un análisis geomecánico, que consiste en cuantificar por medio de un proceso sistemático, el comportamiento y características de los materiales geológicos, atendiendo a sus variaciones espaciales y temporales.

Sec. 16

Conforme a lo expuesto, el objetivo general de este trabajo es presentar las relaciones existentes entre las características geológicas y mecánicas de los materiales lacustres, de un sondeo de los dos a los siete metros de profundidad, en la zona centro (Alameda Central) de la subcuenca de la Cd. de México, y determinar la conveniencia de aplicar este tipo de estudios en zonas problemáticas, para ello, se establecieron tres objetivos específicos:

 Caracterizar física y químicamente muestras representativas de los estratos definidos macroscópicamente, para establecer su probable origen y evolución.

2. Determinar las propiedades índice y mecánicas (compresibilidad, resistencia al corte y límites de consistencia) de los sedimentos provenientes del sondeo.

 Proponer una nueva clasificación estratigráfica de la secuencia lacustre analizada basada en el análisis geomecánico desarrollado, que sirva como guía en la toma de decisiones para obra civil.

Analais geomenatico de lina tercentra lacustra en la Cit. de l'Asori Recurso: de litgorio el fuel est

1.3 Metodología

Para la realización del presente trabajo se analizaron los materiales lacustres de la región central de la Cuenca de México, de los 2 a los 7 metros de profundidad, mediante el desarrollo de 5 etapas básicas:

- Etapa 1. Descripción macroscópica del núcleo extraido y selección de muestras para los diversos análisis.
- Etapa 2. Determinación de las características intrínsecas de los materiales por medio de pruebas físicas (contenido de agua W%, densidad y granulometría) y químicas (contenido de aniones y cationes solubles, contenido de materia orgánica MO, potencial hidrógeno Ph, conductividad eléctrica en y densidades real y aparente)
- Etapa 3. Determinación de las propiedades geotécnicas (resistencia al esfuerzo cortante, compresibilidad y límites de consistencia)
- Etapa 4. Elaboración de una columna estratigráfica basada en las variaciones de los datos obtenidos.
- Etapa 5. Interpretación de la influencia del origen y evolución de los depósitos lacustres sobre su comportamiento mecánico.

1.4 Desarrolio

El presente trabajo consta de cinco capítulos:

- El primero menciona brevemente la problemática de la Zona Lacustre de la Cuenca de la Cd. de México, los estudios hasta ahora realizados al respecto y la importancia de enriquecerlos con información geológica.
- El segundo capítulo muestra la concepción de una misma región desde dos puntos de vista, el geológico y el geotécnico, utilizando en el primer caso una escala temporal reducida (centenares de años), no usual, pero apropiada para los objetivos trazados.
- El tercer capítulo incluye los análisis realizados, su importancia para el presente estudio, en algunos casos, datos reportados por otros autores y los resultados obtenidos para la secuencia lacustre de la subcuenca de la Cd. de México.
- El cuarto capítulo contiene la presentación conjunta de los resultados y su discusión, mostrando el comportamiento de las variables y referenciándolas a la estratigrafía previamente definida.
- El quinto capítulo presenta la redefinición estratigráfica basada en los datos obtenidos, las implicaciones de la nueva estratigrafía y se sugieren probables aplicaciones para este tipo de análisis.

Ar morolgen medan morde rana kepadagia lagustre ren va Collike 1 tekas Ar morolgen medan morolgen angel medan

CAPÍTULO II CONTEXTO GEOLÓGICO

2. Historia Geológica de la Cuenca de México.

El basamento de la Cuenca, registrado del Aptiano, al Cretácico superior (119 -65 m.a.), está conformado por calcilutitas y limolitas (Fries, 1960), sobre las cuales se deposita una alternancia de calizas y dolomías (De Cserna et al, 1987), seguidas de una secuencia turbidítica de grawacas, limolitas y lutitas de aguas someras (Fries, 1960).

Durante el Cenozoico (65-1.6 m.a.) dominó la actividad volcánica dando lugar a la formación de sierras y estratovolcanes, modificando así la morfología de la cuenca. Durante este lapso se origina interdigitacion y sobreposición de coladas basálticas con depósitos piroclásticos, presentando además interestratificacion de materiales clásticos aluviales los cuales tienen espesores promedio de 6 m. (Vázquez-Sánches, et al, 1990).

El vulcanismo del Oligoceno-Plioceno (36.6-1.6 m.a.) está representado inicialmente por secuencias de material clástico, seguido de brechas volcánicas, piroclástos, tobas intercaladas y derrames lávicos cuya composición predominante es de andesita y dacita (Vázquez-Sánchez, et al, 1990). El Mioceno-Plioceno (23.7-1.6 m.a.) , se caracteriza por la formación grandes sierras, al suroriente las Cruces, Guadalupe y Río Frío, al norte Tepotzotlán; Zempoala al sudoccidente, Navajas al nororiente y finalmente al occidente la Sierra de Monte Alto, todas con composición desde basáltica a riolítica (Geyne et al, 1956) con algunos derrames andesíticos (Segerstrom, 1961). Durante el Plio-cuaternario (1.6 m.a.) se registró un cambio en el ángulo de subducción de la Placa de Cocos en la zona de la Trinchera de Acapulco el cual originó la presencía de un régimen tectónico de fracturamiento cortical

2. A consistent of setting using the country of the set of the

representado por sistemas de fallas normales y emplazamientos de derrames lávicos, (Mooser, 1978) que controló el régimen de sedimentación clástico aluvial (fig. 4). Interdigitado con estas secuencias hay material piroclástico y depósitos fluviales constituidos por gravas, arenas, limos y arcillas, cuyo espesor máximo se encuentra la centro de la cuenca y se adelgaza hacia las márgenes (Vázquez-Sánches, et al, 1990). Estos materiales son generados por una fuerte erosión fluvial ligada a los procesos de formación de las grandes sierras.

Figura 4. Marco Tectónico del Cinturón Volcánico Transmexicano (CVT) Plioceno al Cuaternario (Mooser 1978)

La actividad volcánica más reciente en la Cuenca, durante el Cuaternario (1.6 m.a. a 10,000 años) originó la aparición de los estratovolcanes Popocatépetl e Iztaccíhuatl, y de la Sierra de Chichinautzin, la cual obstruyó la única salida existente en la cuenca, transformándola en una cuenca cerrada (Fries, 1960) (fig. 5).

8

Ar acceleration de una secuencia lacuelte en la Crt Re, Deaue Facultari de Ingesiera (2017)

9

De esta manera queda definida la estratigrafía de la Cuenca del Valle de México como una alternancia de materiales volcánicos y sedimentos aluviales determinados por procesos tectónicos y erosivos (fig. 6).

Figura 6. Columna Estratigráfica de la Cuenca de México (Vázquez y Jaimes, 1989)

2.1. Estratigrafía Cuaternaria (1.6 m.a. a 10,000 años)

Durante este periodo continuó la actividad volcánica en la Cuenca, principalmente en la zona de las Grandes Sierras, formando domos andesíticos, riodacíticos y dacitas. Se presenta una reactivación tectónica que dio origen a efusiones andesíticas inicialmente y andesitas basálticas en el Cuaternario Tardío, cuya acumulación formó la Sierra de Chichinautzin provocando el cierre de la Cuenca, tras lo cual, ésta comenzó a azolvarse (Zeevaert, 1953). Las partes centrales de la cuenca fueron rellenándose con depósitos limo-arenosos, que se interestratificaron con suelos y capas de cenizas y pómez provenientes de los eventos volcánicos (Mooser, 1979). Este paquete volcánico-sedimentario constituye el acuífero principal del Valle de México (Ortega, 1996).

Sobreyaciendo a esta secuencia se encuentra una capa de caliche que indica un periodo semiárido (K. Bryan, 1948). En la zona de pie de monte se localizan depósitos eólicos y aluviales, en tanto que al centro se observan además depósitos lacustres (Zeevaert, 1953). Cubriendo la secuencia se identifica una nueva capa de caliche, sobre el cual se localizan capas eólicas y lacustres, constituidas por arcilla limosa café o negra correspondientes a las formaciones Nochebuena y Totoltsingo (Arellano, 1951) que constituye el acuitardo del sistema hidrogeológico (Ortega, 1996). Finalmente se localizan materiales superficiales como arena, aluviones, sedimentos eólicos, suelos, y materiales de relleno (Zeevaert, 1953) (fig.7).

10

er att i ge artente oa de ana bezenaa houstre en la Cti, act tok op Finstitad de Ingenienn - 2003 s

2.2. Evolución de la zona lacustre

La gran variedad de materiales que constituyen la Cuenca de México, es resultado tanto de las condiciones geológicas como climáticas, tales como la presencia de fuerte precipitación pluvial y periodos glaciales e interglaciales (Aguayo, 1989; Santoyo y Gutierrez 1990) (fig. 8).

De acuerdo con Lozano y Urrutia (1989) se registraron en la cuenca básicamente tres paleoclimas, el primero templado húmedo, donde el lago era de agua dulce y alcanzó grandes extensiones (fig. 9), en las postrimerías del Pleistoceno Superior.

El segundo comienza al inicio del Holoceno, con un enfriamiento relacionado con la glaciación Wisconsin, en la cual se detecta un gran aporte de material detrítico y culmina con calentamiento gradual que permite la recuperación del nivel de agua en el lago. Finalmente se registra un clima húmedo que presenta grandes variaciones con tendencia a hacia condiciones más cálidas, lo cual provoca una mayor evaporación y un aumento de la salinidad en la zona lacustre.

Figura 9. Máxima extensión del lago de México Finales del Pleistoceno Superior (Lozano y Urrutia, 1989)

En esta última etapa los lagos de la cuenca se dividen en tres tipos, los de agua dulce (Xochimilco y Chalco) que se nutren de manantiales, los salobres (Xaltocan y Texcoco) que son vasos de evaporación y los intermedios (como Zumpango) que eran de agua dulce pero tenían aportes de agua salada en época de lluvias cuando los niveles de los lagos aumentaban (fig. 10).

12

Certains)

Inicio de la formación de la red fluvial y evaporación de los lagos Holoceno medio

Configuración de la Cuenca de México Década de los 50's

Figura 10. Evolución de la Cuenca del Valle de México (Lozano y Urrutia, 1989)

= 13

group of

2.3. Estratigrafía geotécnica

La estratigrafía definida por Marsal y Mazari (1959) consta de depósitos arenoarcillosos o limosos, con restos arqueológicos, o bien rellenos artificiales con profundidades de hasta 10 m., que sobreyacen a arcillas volcánicas de varios colores, altamente compresibles y de consistencia baja a media, intercaladas con pequeñas capas o lentes de arena, de espesor variable (15-32 m).

Bajo esta secuencia, se localiza un paquete constituido por suelos arcillosos y limo-arenosos compactos y rígidos, de aproximadamente 3 m de espesor, denominada Capa Dura I (Marsal y Mazari, 1959) y cuya localización varía de los 33 a los 50 metros de profundidad. Una nueva secuencia de arcillas volcánicas semejantes a las ya descritas, pero más comprimidas y resistentes, con un espesor de 4-14 m se ubica bajo esta capa, finalmente se presentan depósitos de arena con grava separados por estratos de limo o arcilla-arenosa. Estudios posteriores (Támez et al, 1990) han presentado variaciones en esta secuencia, básicamente en lo referente a espesores, por medio del análisis de sondeos, pero la tendencia general es la misma (fig. 11)

El trabajo de Mooser (1990) presenta una sección que incluye a la Alameda Central, y define en la zona superficial un primer depósito arcilloso correspondiente a transgresiones lacustres, subyacido por relleno clástico aluvial intercalado con derrames y material piroclástico, finalmente se localiza una serie estratigráfica formada por depósitos limo-arcillosos, interestratificados con material piroclástico (fig. 12).

Santoyo et al (1992), definen por medio de sondeos con cono eléctrico la estratigrafía del subsuelo en la zona de la Catedral Metropolitana y su periferia, registran, de la superficie hacia el subsuelo material de relleno, una costra superficial (arena fina basáltica negra, sic), la llamada FAS (Formación Arcillosa Superior), la primer capa dura (arena fina aluvial limosa intercalada con limo arcillosos gris olivo), la FAI (Formación Arcillosa Inferior) y los depósitos profundos (arena fina aluvial, limo y algunas gravas) (fig. 13)

Analisis geomedanico de una secuencia facustre en la Cell de l

Figura 11. Columnas estratigráficas de la zona centro de la Cd. de México A.- Zona virgen del Lago B.- Catedral de la Cd. de México (Marsal y Mazari, 1959 y Támez et al, 1992)

= 15

Figura 13. Estratigrafia de la Cd. de México Zona Centro (Támez et al, 1992)

A la contraterizar i conte cona ser overco a lacuotte era la CB kon Maximi, y a labora de arte i conte de arte de arte conte arte de arte de arte.

2.3.1 Zonificación geotécnica

El Valle de México es una cuenca con fronteras constituidas por materiales volcánicos cuya composición varía de básica los más recientes, como la colada del Pedregal, al sur de la Ciudad (Marsal y Mazari, 1959), hasta ácida en la Sierra Navajas (Geyne et al, 1953). Debido a esta disposición estructural y a las características de los materiales dentro de la Cuenca, Marsal y Mazari (1959) definen tres zonas principales (fig. 14), numeradas I a III (Lomas, Transición y Lago).

Zona I. Lomas

Ubicada en la periferia de la cuenca consta de gravas, arena-limosa, tobas bien cementadas y coladas de diversas composiciones. Mecánicamente se caracteriza por su alta capacidad de carga y baja compresibilidad. Mooser (1978) detecta en esta zona seis tipos de materiales con comportamientos geotécnicos definidos: 1) tobas resistentes no compresibles, al Norponiente; 2) tobas con material arcilloso de compresibilidad media a alta al Surponiente; 3) arenas pumíticas compresibles por rotura, intercaladas con gravas, arena-limosa, coladas y tobas blen cementadas 4) rellenos constituidos de diversos materiales mal compactados y por tanto compresibles ; 5) depósitos de arena suelta, sumamente inestables al pie de la Sierra de Guadalupe, y 6) derrames basálticos sanos con gran resistencia o fracturados e inestables, en la zona Sur.

En esta zona es frecuente la presencia de oquedades en rocas, de cavernas y túneles excavados en suelos para explotar minas de arena, de las cuales no se llevaron registros de ubicación (Méndez y Auvinet, 2000)

Zona II. Transición

En esta zona los materiales que caracterizan los depósitos profundos se encuentran a 20 metros o menos de profundidad. Consta de suelos arcillosos o limos orgánicos, que sobreyacen a estratos de arcilla volcánica muy compresibles intercalados con capas de arena o arena limosa compacta, bajo esta secuencia se tiene potentes capas de grava y arena. Las variaciones estratigráficas son sumamente grandes de un punto a otro dentro de la misma zona.

• 17

Zona III. Lacustre

Está integrada por potentes depósitos (alrededor de 40 m) de arcilla blanda de alta compresibilidad que ha sido sometida a grandes variaciones climáticas, de nivel freático y de salinidad, lo cual las hace presentar características mecánicas especiales. Estos depósitos están separados por capas arenosas con contenido de limo y/o arcilla, cuya consistencia va de firme a muy dura y cuyos espesores varían de centímetros a varios metros. Los depósitos lacustres suelen estar cubiertos superficialmente por suelos aluviales, materiales desecados y rellenos artificiales. El espesor de este conjunto puede llegar hasta los 300 metros en el centro de la zona (Ortega, 1993).

Ésta división aún se conserva, pero su distribución ha sido detallada continuamente, siendo la versión más reciente presentada en 1987 y ratificada en 1995, en las Normas Técnicas Complementarias para Diseño y Construcción de Cimentaciones del Reglamento de Construcciones para el Distrito Federal (fig. 14).

Figura 14. Zonificación de la Cuenca del Valle de México (Méndez y Auvinet 2000)

An also geometricito de una secuencia lacustre de la Cid. de Nevelo Facultad de Ingenie de 11,511

CAPÍTULO III ANÁLISIS GEOMECÁNICO DE LOS DEPÓSITOS LACUSTRES

3.1 Características generales

Los parámetros geotécnicos que caracterizan a una secuencia sedimentaria, tales como la resistencia al esfuerzo cortante y la compresibilidad, dependen del tipo de material y de los esfuerzos que han actuado sobre él. Dichos esfuerzos corresponden a cambios en las condiciones físicas a las que se encuentra sometido el material, como en el caso de los abatimientos piezométricos, o a la aplicación de fuerzas externas, por ejemplo cargas de infraestructura urbana. Los materiales arcillosos, entre los que incluimos los de la zona lacustre de la Cd. de México, presentan un umbral de carga, es decir tienen la capacidad de soportar ciertos esfuerzos sin sufrir una deformación considerable, al rebasar este punto, la deformación se hace muy grande y rápida, la carga que produce este cambio en la velocidad y magnitud de deformación se denomina carga crítica. Cuando una arcilla no ha soportado cargas mayores a su carga crítica, se dice que está normalmente consolidada, cuando sobrepasa este límite se denomina preconsolidada y entonces su punto crítico cambiará al máximo esfuerzo que haya soportado, determinándose una nueva carga crítica. Las arcillas analizadas en este trabajo se consideran normalmente consolidadas.

3.1.1 Descripción estratigráfica preliminar

Se dispuso de 5.00 metros de un sondeo de 35 metros, a partir de 2.00 metros de profundidad localizado en el centro de la Cd. de México y se estableció una estratigrafía preliminar (fig. 15) para la selección de muestras con base a las características de color, consistencia y granulometría (Anexo 1).

Se identificaron cuatro estratos principales:

- a) El primer estrato, de 2.00 a 2.60 metros, es un material con muy alto contenido de materia orgánica de color gris obscuro a negro, con restos de raíces, algunos grumos y bioturbación (hoyos de lombrices y raíces).
- b) El segundo estrato, de 2.60 a 4.00 metros, es color café, con horizontes de tonos rojizos, consta de una alternancia de limos, arcillas y arena fina, con escasas raíces, abundantes grumos y tepalcates; en el contacto inferior hay lentes de arena fina dentro de arena media, manchas negras de materia orgánica, restos de conchas y vetillas de carbonatos y de limo blanco.
- c) El tercer estrato de 4 a 6.70 metros, es de color verde con matices grises, la litología predominante es de arcillas, con algunas zonas de limo arenoso (4.90 m), tiene lentes de ceniza y arena volcánica y grumos a los 5.15 y 5.95 m. A los 4.60 metros hay un lente de grava arenosa de color gris muy claro, con estructuras de inyección de arena fina en la base y en el contacto inferior existe material de ceniza volcánica gris.
- d) El cuarto estrato definido de los 6.70 a los 7.00 metros es de material arcilloso homogéneo de color pardo rojizo con moteados verdosos. Presenta lentes y grietas rellenas de arena volcánica color negro.

Analisis greanneanido de una secuencia lacustro de la Citi de Marel Fracticad de Imperio ya 1931

3.2 Selección de Muestras

Las muestras se seleccionaron de acuerdo a la estratigrafía preliminar propuesta obteniéndose muestras intactas, muestras para análisis físico-químicos y muestras para pruebas mecánicas. Se obtuvieron datos de humedad natural como puntos de control de las condiciones originales del material y se registraron las variaciones de consistencia por medio del tacto (fig. 16).

TESIS CON FALLA DE ORIGEN

Figura 16. Selección de muestras

Para las muestras intactas se consideraron rasgos físicos observados, tales como grado de fracturamiento, consistencia, color, textura, presencia de lentes, etc. La representatividad y reflejo de las características del material in situ son básicas para esta selección, ya que se utilizan para la comparación de las características megascópicas de la secuencia con los resultados del análisis geomecánico.

Las muestras para pruebas físico-químicas se eligieron de acuerdo a los cambios de color y a la granulometría. El cambio de color es un indicador de la presencia de óxidos (fig. 17) y materia orgánica, además de que es un auxiliar para la determinación de ambientes.

Anaxis geomecánico de una socucida lagustre de la Citil de Alexent Facultad de Ingenition e 1,423

La granulometría por su parte nos proporciona datos acerca del ambiente de depósito y la evolución del área a través del tiempo (fig. 18).

Figura 17. Presencia de óxidos al interior de uno de los núcleos

TESIS CON FALLA DE ORIGEN

Figura 18. Estructuras de inyección de arena en arcillas

Finalmente se eligieron muestras para las pruebas mecánicas siguiendo los mismos criterios iniciales, pero tomando en cuenta también los resultados de los análisis físico-químicos.

23

3.3 Análisis físicos

Este tipo de análisis es determinante en un estudio geomecánico, ya que funciona como apoyo en la interpretación del comportamiento mecánico de la secuencia. Se compone de cuatro pruebas básicas que son: densidad de sólidos, granulometría, limites de consistencia y contenido de humedad.

3.3.1 Densidad de sólidos (Ss) y densidad real (peso volumétrico).

Un suelo parcialmente saturado se constituye por tres fases, la sólida, la líquida, y la gaseosa, el peso específico de un suelo o su densidad de sólidos (Ss) es un parámetro definido por la relación entre el peso volumétrico de particulas sólidas presentes en la muestra y el peso volumétrico de un volumen igual de agua. Este valor se utiliza entre otras cosas para clasificación e interviene en gran parte de los cálculos en mecánica de suelos. Permite inferir por medio de sus variaciones la presencia de arcillas, vidrio volcánico, materia orgánica y lentes de arena (los cuales provocan una disminución de la densidad).

En edafología se calcula un parámetro similar, denominado densidad real (D.R.) que se encuentra por medio de la comparación entre el peso del suelo y su volumen. En este trabajo se determinaron ambos valores, encontrando que la densidad real resulta ligeramente menor que el peso específico, una probable causa es que al considerar el volumen total de la muestra se incluyen los espacios vacíos que no aportan masa pero si incrementan el volumen de la muestra, de manera que aún cuando la masa es la misma en ambas técnicas el volumen considerado es mayor en la densidad real.

Considerando los valores manejados en geotécnia para suelos puros (tabla 1), la densidad de un material aumenta conforme la granulometría disminuye, de esta manera, un sedimento arenoso generalmente tendrá menor densidad que uno arcilloso (arcillas inorgánicas), pero en ambos casos la densidad sería mayor a 2.60. Un suelo

orgánico en cambio presenta una densidad siempre menor a 2 (Instructivo para laboratorio de geotécnia, Facultad de Ingeniería, UNAM).

De acuerdo con Marsal (1975), el valor promedio de Ss para las arcillas lacustres de la Formación arcillosa superior (FAS) es de 2.55. En nuestro análisis (Tabla 2) encontramos valores que van de los 2.31 a los 2.67. La arcillas presentan una densidad de sólidos desde 2.40 a 2.60, en tanto que su densidad real oscila entre los 2.00 y 2.20 g/cm³. Los limos presentan una densidad real de 2.20 g/cm³ y las arenas de 2.10 hasta 2.38 g/cm³ (fig. 19).

Tipo de suelo	Densidad de sólidos (Ss)
Arena	2.65 - 2.67
Arena limosa	2.67 - 2.70
Arcilla inorgánica	2.60 - 2.80
Suelos con mica o fierro	2.75 - 3.00
Suelos orgánicos	< 2

Prof. (m)	Ss	D.R.
2.05		2.16
2.40	2.58	2.24
2.50		2.38
2.90	2.60	2.10
3.20		2.11
3.25		2.44
3.70	2.67	2.23
4.00		2.24
4.50	2.34	2.23
4.70		2.30
4.90		2.21
5.20	2.31	2.01
6.00	2.41	2.10
6.70	2.39	2.18

Tabla 1. Ss en suelos puros

Tabla 2. Peso específico o Densidad de sólidos (Ss) y Densidad Real (D.R.)

a a cara de encontra entra cara en encontra cara en ca

Gapitulo HH

Figura 19. Densidad de Sólidos, Densidad real respecto a la estratigrafia

3.3.2 Granulometria

El análisis granulométrico de un sedimento consiste en separar, clasificar y cuantificar por tamaños el material que lo constituye, según la naturaleza del suelo puede determinarse por medio de mallas (para partículas mayores al tamaño de limos), o bien por medio del hidrómetro o pipeta. Un análisis granulométrico completo utilizará ambos métodos. Las diferentes clasificaciones son la de Wentworth en geología; el SUCS (Sistema Unificado de Clasificación de Suelos, Juárez Badillo, 1990) en geotécnia y el SICS (Sistema Internacional de Clasificación de Suelos, Reyes Jaramillo, 1996) en edafología.

Analisis depresentacy de characterices tacustre de la Ca

Factorial the taxon betw

TESIS CON FALLA DE ORIGEN

Figura 20. Contacto entre arcillas y arena fina

El conocimiento de la distribución granulométrica de las particulas minerales en un suelo nos permite tener una idea aproximada de otras propiedades del mismo. La forma de hojas de particulas finas, como las arcillas, las convierte en materiales más compresibles que aquellos con forma semiesférica o esférica como las arenas y limos, también influye la buena o mala clasificación y gradación del sedimento, un material mal graduado será más compresible, ya que las particulas pequeñas tenderán a ocupar los espacios libres que dejan las partículas mayores. Las muestras analizadas presentan predominantemente sedimentos finos y arena fina a media (Tabla 3), ya sea interestratificados o en lentes y rellenos (fig. 20).

Como se mencionaba al inicio de este punto, son tres las clasificaciones granulométricas y solamente se han presentado dos, esto se debe a que la clasificación geotécnica además de tomar en cuanta el tamaño de las partículas de un suelo, considera la consistencia de la fracción fina del mismo mediante los llamados límites de consistencia que se detallarán posteriormente.

	(Contenido de material)Textura %		Clase textural	Clasificación	
Prof. (m)	Arcilla	Limo	Arena	Edafológica	Geológica
2.10	7.12	77.85	14.65	Franco-limoso	Limo-arenoso
2.30	12.34	78.03	10.32	Franco limoso	Limo
2.50	8.97	80.78	10.46	Limo	Limo
2.80	10.00	65.28	24.72	Franco-limoso	Limo-arenoso
3.20	12.00	33.28	54.72	Franco-arenoso	Arena-limosa
3.25	4.00	17.28	78.72	Arena-francosa	Arena
3.80	10.12	26.56	62.72	Franco-arenoso	Arena-limosa
4.10	9.72	29.56	60.72	Franco-arenoso	Arena-limosa
4.65	3.72	9.00	87.28	Arena	Arena
4.80	4.98	59.32	36.12	Franco-limoso	Limo-arenoso
5.40	10.72	36.56	52.72	Franco-arenoso	Arena-limosa
5.80	4.00	17.28	78.72	Arena-francosa	Arena
6.10	7.15	46.25	46.60	Franco-limosc	Limo-arenoso
6.15*	1.53	2.37	96.10	Arena	Arena
6.50	6.30	35.10	58.60	Franco-arenoso	Arena-limosa
6.80	7.10	29.80	63.10	Franco-arenoso	Arena-limosa
7.00	7.62	36.44	55.94	Franco-arenoso	Arena-limosa

Tabla 3. Clasificación geológica y edafológica de los sedimentos

1.1.1.1.

Archeis guorn-causo de una recursiva lacastra de la C-4 rectário Fuel dad de lacastra de la C-4 rectário

3.3.3 Límites de consistencia

Las propiedades de un suelo formado por partículas finas, como las arcillas, depende en gran parte de su contenido de agua, bajo estas condiciones, solamente puede presentar cuatro estados de consistencia: sólido, cuando está seco, y semisólido, plástico y líquido al agregar agua paulatinamente. Cada uno de estos estado presenta características definidas:

- Estado líquido, en el cual existe el comportamiento y la apariencia de una suspensión.
- · Estado semilíquido, con propiedades similares a las de un fluido viscoso.
- · Estado plástico, en el que el suelo se comporta plásticamente.
- Estado semisólido, donde el suelo a pesar de presentar la apariencia de un sólido, sufre cambios volumétricos al continuar secándolo.
- Estado sólido, en el que el volumen del suelo ya no varía aún con el secado.

La presencia de estos estados se debe a que mientras mayor sea la cantidad de agua que contiene el suelo menor será la interacción de las partículas adyacentes y más se acercará al comportamiento de un líquido.

Arbitrariamente, A. Atterberg estableció fronteras entre estos estados fijando los límites siguientes, líquido entre los estados semilíquido y plástico, plástico entre los estado plástico y semiplástico y finalmente el límite de contracción entre los estados semisólido y sólido. Los límites de consistencia, junto con la granulometría, se utilizan para clasificar los materiales finos (limos y arcillas) dentro de la tabla de clasificación SUCS (Juárez Badillo, 1990), la cual ubica el material en alguno de los grupos existentes con características mecánicas semejantes, permitiendo de esta manera tener una idea preliminar del comportamiento que puede presentarse en un material dado.

Los estudios geotécnicos realizados anteriormente (Marsal y Mazari, 1959), consideran a las arcillas de la FAS en la zona del lago, con un rango de 50 % a 500% en el límite líquido y de 40 a 80% en el límite plástico. En este análisis se determinaron valores que se encuentran dentro de este rango con ligeras variaciones y con tendencia a aumentar con la profundidad (Tabla 4). La clasificación en el sistema SUCS se puede observar en la tabla 5.

ter filt and the second second second

- è unita au s

Durf. (m)	Limite plástico	Límite líquido	Indice de	Limite de
Prof. (m)	LP (%)	LL (%)	plasticidad	contracción
			lp	LC(%)
2.00 - 2.10	31.95	44.90	12.95	31.87
2.20 - 2.30	33.96	65.70	31.74	33.74
2.38 - 2.44	30.87	54.60	23.73	30.73
2.60 - 2.70	44.54	51.30	6.36	44.48
2.79 – 2.85	38.29	53.75	15.46	38.17
2.95 - 3.02	47.78	60.10	12.32	47.66
3.78 - 3.22	39.65	53.8	14.15	39.53
3.63 - 3.74	44.05	70.95	26.90	31.87
3.74 - 3.85	36.87	47.00	10.13	36.79
3.92 - 3.97	39.38	58.45	19.07	39.38
4.08 - 4.13	69.69	143.00	73.31	68.68
4.40 - 4.45	56.61	92.00	35.39	56.21
4.45 - 4.50	43.04	78.00	34.96	42.74
4.70 - 4.75	58.65	96.80	38.15	58.20
4.78 – 4.83	48.53	156.40	107.87	47.50
4.87 - 4.92	44.59	67.70	23.11	44.53
5.00 - 5.05	93.46	166.80	73.34	92.11
5.05 - 5.07	55.88	119.80	63.92	55.17
5.13 - 5.24	52.04	95.06	43.56	51.59
5.24 - 5.30	81.39	151.25	69.86	80.27
5.95 - 6.00	68.33	156.00	87.67	67.15
6.06 - 6.09	112.14	327.50	215.36	107.51
6.09 - 6.14	53.30	158.00	104,70	52.20
6.61 - 6.84	144.81	352.00	207,19	139.05

Tabla 4. Límites de consistencia e Índice de plasticidad

30

CLOHES HI

Prof. (m)	Clasificación	
	SUCS	
2.10	OL	
2.30	он	
2.50	он	
2.80	ОН	
3.20	SM-OH	
3.25	SM-MH	
3.80	SM-OH	
4.10	SM-MH	
4.65	GM	
4.80	мн	
5.40	SC-CH	
5.80	SM-MH	
6.10	мн	
6.15*	SM	
6.50	SM-MH	
6.80	SM-MH	
7.00	SM-MH	

*Las determinaciones del sondeo se presentan

en el Anexo 2

Tabla 5. Clasificación SUCS

3.3.4 Contenido de agua w%

El contenido de agua de un suelo está determinado por la relación entre el peso del agua y el peso de los sólidos que contiene. Este valor se utiliza junto con los límites de plasticidad para determinar el comportamiento mecánico de un suelo, por ejemplo, si un suelo presenta un contenido de agua natural cercano al límite líquido, o bien superior, se comportará mecánicamente como un fluido, si en cambio se encuentra más cercano al valor del límite plástico se comportará plásticamente.

Analisis geomocanico de una socuencia lícustro de la Cid. de Merie -Facultad de Ingeriero - 1, 41

OL Limos orgánicos y arcillas

limosas de baja plasticidad

Símbolos y definición

- OH Arcillas orgánicas de media a alta plasticidad , limos orgánicos de media plasticidad.
- MH Limos Inorgánicos, limos micáceos, diatomáceos, limos elásticos.
- CH Arcillas inorgánicas de alta plasticidad, arcillas francas
- SM Arenas limosas
- SC Arenas arcillosas
- GM Gravas limosas

Los valores de éste parámetro varían teóricamente de 0% hasta ∞, en la zona lacustre de la Cd. de México se registran valores de alrededor de 300% (Marsal y Mazari, 1959). En la secuencia estudiada los valores son menores en los primeros metros pero aumentan consistentemente con la profundidad.

En relación con los límites de consistencia, la mayor parte de las muestras presentan un contenido de agua natural cercano e incluso mayor que el límite líquido (Fig. 22), lo cual le confiere al suelo un comportamiento mecánico similar al de un fluido.

Durante el análisis se tomaron valores de humedad en varias zonas de una sola muestra, y se encontró que las más confiables eran las tomadas al interior debido a que no se encontraban contaminadas por el proceso de perforación, ni alteradas por óxidos o secas por el contacto al aire. Los datos presentados corresponden a estos valores, pero el total de determinaciones se presenta en el Anexo 3.

Prof. (m)	w%
2.00 - 2.10	35
2.20 - 2.30	46
2.38 - 2.44	34
2.60 - 2.70	44
2.79 - 2.85	48
2.95 - 3.02	58
3.78 - 3.22	41
3.63 - 3.74	45
3.74 - 3.85	199
3.92 - 3.97	59
4.08 - 4.13	59
4.40 - 4.45	57

Prof. (m)	W%
4.45 - 4.50	58
4.70 – 4.75	51
4.78 – 4.83	50
4.87 - 4.92	60
5.00 - 5.05	161
5.05 - 5.07	97
5.13 - 5.24	78
5.24 - 5.30	122
5.95 - 6.00	173
6.06 - 6.09	333
6.09 - 6.14	190
6.61 - 6.84	280

Tabla 6. Contenido de Agua Natural (w%)

32

Conditions

Figura 22. Relación entre los límites plástico, líquido y el contenido de agua natural.

3.4 Análisis químicos

Las características que influyen en el comportamiento mecánico de un suelo están determinadas por factores geológicos y climáticos involucrados en su origen y evolución, y pueden determinarse en gran medida por medio de análisis químicos.

En la secuencia se realizaron los siguientes análisis: análisis de óxidos totales, potencial hidrógeno (pH), capacidad de intercambio catiónico (CIC), contenido de materia orgánica (MO), contenido de aniones (CO₃, HCO₃, Cl⁻, SO₄) y cationes (Ca, Mg, Na, K) solubles, determinación de Fe, Al, Mg y Si en estado amorfo y cristalino.

3.4.1. Determinación de óxidos totales.

Este análisis es sumamente importante debido a que sirve de guía para la realización de análisis más específicos, por ejemplo nos puede indicar cuales son los elementos predominantes en el suelo y que proporción guardan unos con otros.

En el caso particular de las arcillas lacustres de la zona centro de la Cuenca de la Cd. de México, se determinó que, además del sílice, el óxido más abundante es el de aluminio, aunque los óxidos de fierro y sodio también aparecen en cantidades apreciables. En la figura 23 se presentan los óxidos con variaciones más importantes (Tabla 7), los resultados completos se pueden consultar en el Anexo III.

Puede observarse que el comportamiento de los óxidos de calcio, magnesio y potasio (en menor grado) es similar, es decir, tienen un aumento entre los 3.20 y los 4.50 metros, en tanto que los óxidos de Al y Na, presentan los valores más altos en los primeros dos metros. De hecho, el comportamiento del calcio respecto al aluminio, se contrapone totalmente, mientras uno aumenta el otro disminuye, en todo el sondeo.

Analos permethado de una securida laborite de la futera de la com-Fiele da de la acteria com del

Profundidad	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O
(m)	%	%	%	%	%
2.00-2.15	12.92	4.86	1.17	10.19	2.99
2.25-2.44	16.80	3.44	0.35	4.61	5.01
2.48-2.53	20.15	3.44	0.35	5.79	8.38
2.59-2.98	18.94	3.44	0.35	2.36	4.74
3.18-3.23	14.69	2.83	3.60	9.44	4.96
3.22-3.29	3.91	1.21	4.58	31.52	4.89
3.60-3.80	6.13	1.62	11.59	16.41	5.25
3.97-4.15	12.94	2.43	5.91	6.76	7.29
4.42-4.63	9.04	3.24	10.73	10.37	2.95
4.63-4.70	8.28	4.05	6.82	6.83	7.30
4.70-4.80	14.84	2.20	7.48	7.38	4.95
4.80-4.90	8.04	2.03	2.77	16.42	5.27
5.10-5.35	9.88	2.43	5.57	3.97	5.62
5.70-5.95	14.23	2.84	1.43	4.72	5.71
6.43-6.56	14.66	2.84	7.88	6.46	5.45

Tabla 7 . Óxidos totales

.

Figura 23 . Variación de óxidos totales (%)

3.4.1 Determinación del Potencial Hidrógeno (pH)

El pH de un suelo se determina por medio de los iones H+ que contiene, éste parámetro nos indica el grado de acidez, neutralidad o basicidad de un suelo, característica que afecta directamente el grado de intemperización de minerales, la formación de arcillas y la descomposición de materia orgánica.

Prof. (m)	рН
2.00 - 2.15	7.52
2.25 - 2.44	7.50
2.48 - 2.53	7.65
2.59 - 2.98	7.47
3.18 - 3.23	7.55
3.22 - 3.29	7.89
3.60 - 3.80	7.49
3.97 - 4.15	7.64
4.42 - 4.63	7.61
4.63 - 4.70	7.98
4.76 - 4.83	7.46
4.88 - 4.95	7.69
5.06 - 5.35	7.65
5.80 - 5.95	7.62
6.41 - 6.56	7.56

Tabla 8. Resultados de Potencial Hidrógeno (pH)

La acidez de un suelo depende de varios factores, por ejempio, la presencia de cubierta vegetal, la cantidad y calidad del agua y la presencia de arcillas, además es un indicador de las condiciones óxidoreductoras del mismo. Se puede considerar que un suelo es ácido si presenta un pH entre 5.5 y 7.5, en tanto que un suelo con pH cercano a 8 o mayor es considerado un suelo alcalino (Génesis, identificación y uso de los suelos en México, SCT, 1998).

Análisis teorrectuico de una secuencia lacustre de la Critice

Focultad de Ingenieria - Al-

De acuerdo a los valores obtenidos en la Tabla 8, se tiene un suelo ligeramente alcalino, lo cual favorece la dispersión de ácidos húmicos y favorece la formación de alófano y amorfos de minerales de hierro.

3.4.2 Materia Orgánica (MO%)

La materia orgánica favorece la formación de agregados alterando la estructura del conjunto de suelo, confiriéndole una naturaleza coloidal que modifica su comportamiento mecánico.

El método utilizado para esta determinación es el de Walkley y Black (Reyes Jaramillo, 1996), que consiste básicamente en la cuantificación de carbono orgánico por combustión húmeda.

Con base en resultados teóricos son los suelos de zonas áridas los que presentan menores concentraciones de materia orgánica (1%), en tanto que algunos suelos turbosos (zonas pantanosas) se aproximan al 100%. Los suelos minerales presentan valores de 0.5 a 5%.

Como puede observarse en la Tabla 9 en este caso se trata de un suelo mineral, desarrollado en condiciones de alta evaporación, tendiente a la aridez.

Las variaciones también pueden definir cambios en la granulometria, ya que en general la materia orgánica se asocia a particulas finas. Los estratos o lentes de arena se ven reflejados en una disminución de la cantidad de materia orgánica, (fig. 24). Otra aportación importante es poder discernir la causa de coloración oscura en los suelos, ya que ésta, se debe al contenido de materia orgánica, pero puede estar en forma de carbón, como se observa alrededor de los 4 metros (Anexo1).

Conductor (1

Analisis geomecanico de una secuencia lacustre da la Cid. de Maxe : Facultad de Ingeniería - 354 a

Prof. (m)	M.O %
2.00 - 2.15	1.29
2.25 - 2.44	0.93
2.48 - 2.53	0.23
2.59 - 2.98	0.39
3.18 - 3.23	0.61
3.22 - 3.29	0.59
3.60 - 3.80	0.41
3.97 - 4.15	0.18
4.42 - 4.63	0.34
4.63 - 4.70	0.19
4.76 - 4.83	0.84
4.88 - 4.95	0.65
5.06 - 5.35	0.81
5.80 - 5.95	1.50
6.41 - 6.56	1.09

3.4.3 Capacidad de intercambio catiónico

Una de las propiedades más importantes de las arcillas y la materia orgánica es su actividad química y su interacción con los iones libres en soluciones acuosas. Estos iones o arreglos moleculares son atraídos y/o adsorbidos por superficies cargadas, las arcillas y la materia orgánica proporcionan estas superficies. Esta capacidad de adsorción y absorción de especies iónicas se denomina Capacidad de Intercambio Catiónico (CIC) y se mide en meq/100 g, las distintas arcillas presentan un CIC característico, de manera que este parámetro puede usarse como identificador. Por ejemplo, las arcillas del Grupo de las Esmectitas presentan CIC superiores a 25 meq/100g, de las Caolinitas de 10 a 15, la Haloisita de 15 a 25, y de las Cloritas menores a 10, aunque puede presentar en ocasiones valores cercanos a 15.

Prof. (m)	CIC (meq/100g)	
2.00 - 2.15	48.7	
2.25 - 2.44	26.7	
2.48 - 2.53	54.2	
2.59 - 2.98	64.2	
3.18 - 3.23	47.1	
3.22 - 3.29	61.9	
3.60 - 4.15	58.5	
4.42 - 4.63	28.6	
4.63 - 4.70	48.1	
4.76 - 4.83	77.2	
4.88 - 5.35	69.4	
5.80 - 5.95	74.5	

Tabla 10. Capacidad de Intercambio Catiónico

Conduio UI

Analiais geomecanico de una sociulnicia lacustre de La Col. 36 Mercio. Facultad de Innes en 1933

La determinación del tipo de arcillas presentes es un factor que permite, al usarse en combinación con otros datos como pH, palinología, etc., suponer las condiciones climáticas existentes en un periodo determinado y sus fluctuaciones.

La fracción arcillosa del suelo analizado es del grupo de las esmectitas en toda la secuencia, ya que los valores de CIC son en todos los casos mayores a 25 meq/100g (Tabla 10).

La capacidad de intercambio catiónico se obtiene mediante la suma de la cantidad de cationes intercambiables de Ca, Mg, Na y K en meq/100gr contenidos en la muestra, estas determinaciones se presentan en el Anexo 3.

3.4.4 Aniones solubles

La acumulación de sales solubles en los suelos puede ser resultado de la lixiviación, el análisis de estos aniones (Anexo 3), en forma de sales solubles permite la determinación de costras salinas y depósitos de sales, como los de yeso, y carbonato de calcio en perfiles de suelo. La acumulación de éstos se utiliza como índice de la existencia de condiciones climáticas áridas.

En la figura 25 se observa que los incrementos y decrementos en el contenido de aniones solubles corresponde en general con los cambios de coloración, los cuales reflejan su vez cambios en las condiciones climáticas.

En el caso particular se presentan cuatro cambios (Tabla 11), el primero corresponde a un suelo básicamente orgánico que pasa a un suelo depositado bajo condiciones oxidantes alrededor de los 2.70 metros, uno de los valores más altos de aniones solubles se registra en la parte baja de esta zona, coincidiendo con un cambio gradual de coloración a verde grisáceo, que indican un medio ambiente reductor y finalmente se vuelve a observar, aunque ligeramente, un poco de café alrededor de los 4.70 metros, para continuar con los tonos olivo. Otro punto alto de este valor se observa alrededor de los 4.60 a 4.70 metros, en la cual se identificaron fragmentos de conchas dentro de la secuencia.

Brof (m)	Aniones
1101. (11)	(meq/l)
2.00 - 2.15	12.7
2.59 – 2.98	4.7
3.18 – 3.23	7.3
3.22 - 3.29	8.2
3.60 - 3.80	10.1
3.97 – 4.15	5.5
4.42 - 4.63	8.9
4.88 - 4.95	7
5.06 - 5.35	8

Tabla 11. Variación del contenido de Aniones solubles con la profundidad.

Figura 25. Relación de los valores de aniones solubles respecto a la estratigrafía (meq/l)

Tatalok († 15

Analisis geomecanico do una secuencia lacuistre de la Cid. de More. Facultad de Ingéleuro: SNeC

3.4.5 Determinación de Fe, Al, y Si (amorfos y cristalinos)

Uno de los principales factores que determinan el comportamiento mecánico de un suelo, es la presencia de minerales arcillosos, coloides orgánicos y los minerales amorfos de Fe y Al.

Las arcillas del grupo de las esmectitas, en general, tienen una composición química que corresponde a la fórmula (OH)₄Si₈Al₄O₂₀nH₂O, la cual es una fórmula ideal, ya que siempre existe alguna substitución de Mg², Fe² por Al y Al por Si. Estas sustituciones y la composición interna determinan que siempre exista una carga negativa más o menos constante, siendo ésta una de las causas que favorece la hidratación de estas arcillas.

Por otro lado, en suelos derivados de materiales volcánicos los minerales de hierro se presentan como oxihidróxidos no cristalinos como la limonita (que se deposita con pH mayores a 4) y los hidróxidos de aluminio en forma de gibbsita (la cual requiere altas concentraciones de aluminio y bajas concentraciones de silice).

Considerando estas condiciones y de acuerdo a los resultados del análisis de óxidos totales, se analizó el contenido de Al, Fe y Si.

Aún cuando el análisis de estos componentes se realizó tanto para su forma cristalina, como amorfa, se dio mayor importancia a la segunda, ya que son estas variedades las que más influyen en el comportamiento mecánico.

Las relaciones que se observan en cada uno de los elementos son las siguientes:

> El aluminio se encuentra predominantemente en estado amorfo, con dos ligeras disminuciones a los 3.25 y a los 4. 65 metros aproximadamente (Tabla 12). En la Figura 26 se observa que el aluminio cristalino se mantiene constante dentro de toda la secuencia.

- En el caso del silice predomina su forma cristalina (Tabla 13); la cual presenta una tendencia a aumentar con la profundidad, aunque presenta un ligero aumento alrededor de los 3.30 metros, puede explicarse por un lente de arena. Para el silice amorfo se observa una tendencia general a aumentar con la profundidad, con un solo punto bajo a los 4.65 metros (fig. 27).
- Para el Fe, se presenta una tendencia a aumentar el Fe amorfo hacia la profundidad, aunque presenta disminuciones en las profundidades de 2.50, 3.30 y 4.45 metros; en tanto que el cristalino disminuye bruscamente alrededor de los 3.30 metros (fig. 28), profundidad en la que se presenta también un cambio gradual entre el Fe en estado oxidado a estado reducido. De acuerdo al color del suelo se determinó además si el Fe se encontraba bajo condiciones oxidantes o reductoras (Tabla 14).

		1	
	Prof. (m)	Amorfo	Cristalino
	2.00 - 2.15	1.70	0.16
	2.25 - 2.44	1.84	0.23
	2.48 - 2.53	1.38	0.19
	2.59 - 2.98	1.90	0.30
	3.18 - 3.23	1.36	0.22
	3.22 - 3.29	201821	新程 <u>0</u> :08 余法
	3.60 - 3.80	1.08	0.15
	3.97 - 4.15	1.35	0.14
	4.42 - 4.63	1.29	0.11
	4.63 - 4.70	-0.73	¥20.06225
	4.76 - 4.83	2.45	0.22
TESIS COP	4.88 – 4.95	1.86	0.19
EALLA DE ORIGEN	5.06 - 5.35	2.89	0.24
FALLA DE ORIGEET	5.80 - 5.95	2.32	0.30
-	6.41 – 6.56	2.18	0.24
	······································		······

Analisis geomocánico de una occuencia lacustre de la Cid. de 1.1 Yes

Prof (m)	Amorfo	Cristalino
2.00 - 2.15	0.58	1.03
2.25 - 2.44	0.51	0.98
2.48 - 2.53	0.11	1.55
2.59 – 2.98	0.23	1.72
3.18 - 3.23	0.42	1.95
3.22 - 3.29	0.39	1.95
3.60 - 3.80	1.08	1821123B
3.97 - 4.15	0.82	1.89
4.42 - 4.63	1.26	1.89
4.63 - 4.70	R0:23	1.66
4.76 - 4.83	1.92	1.89
4.88 - 4.95	1.05	1.83
5.06 - 5.35	1.08	1.72
5.80 - 5.95	1.14	1.66
6.41 - 6.56	1.79	279

Tabla 13. Contenido de Silice amorfo y cristalino (%)

Capitalo (11

Análisis geomecanico de una secuencia lacustre de la Crt. de Maior Facultad de Ingeniero, 1, 544

Prof. (m)	Fe amorfo (mg/g)	Fe cristalino (mg/g)
2.00 - 2.15	0.98	0.94
2.25 - 2.44	1.15	1.5
2.48 - 2.53	0.47	1.4
2.59 - 2.98	0.82	1.76
3.18 - 3.23	1.27	1.65
3.22 - 3.29	0.41	0.16
3.60 - 3.80	0.61	0.11
3.97 – 4.15	0.87	0.09
4.42 - 4.63	0.98	0.08
4.63 - 4.70	0.42	0.15
4.76 - 4.83	0.82	0.12
4.88 – 4.95	1.16	0.22
5.06 - 5.35	0.63	0.11
5.80 - 5.95	0.63	0.15
6.41 - 6.56	1.34	0.28

Tabla 14. Contenido de Fe amorío y cristalino (%)

CARRIE HE

Analisis geomecànico de una secuencia lacustra de la Oct. de Marco Pacultad de Ingemente de Analis

3.5 Análisis mecánicos

3.5.1 Compresibilidad

Cualquier material sometido a variaciones en sus condiciones de esfuerzo sufre una deformación general que es resultado principalmente del deslizamiento entre sus particulas individuales (Lambe y Whitman, 1972) dicha deformación es irreversible y, en los suelos, apreciable aún bajo la acción de cargas pequeñas. Un proceso real de deformación tiene dos componentes:

- a) De compresión, en la cual la masa de suelo conserva su forma pero cambia su volumen y
- b) De distorsión, en la cual lo que varía es la forma, manteniéndose el volumen constante.

Cuando se le aplica carga a un suelo durante un período determinado y se registra una disminución de volumen, se tiene un proceso de consolidación, si este cambio se realiza solamente en sentido vertical, será una consolidación unidimensional.

Al someter un suelo saturado a la acción de carga axial, se genera una presión (Δp) que actúa sobre él, y que es soportada inicialmente por el agua intersticial, pero en el instante siguiente parte de ésta se transmite a la estructura sólida del suelo, denominándosele presión efectiva (*p*); la presión que continúa actuando sobre el agua se conoce como presión en exceso de la hidrostática (u). De ahí que el incremento de presión sobre un suelo quede determinada por la siguiente ecuación: $\Delta p = p + u$

La presión en exceso de la hidrostática provoca que el agua intersticial drene, presentándose una reducción de volumen de la muestra, este fenómeno se conoce como consolidación primaria. Conforme el agua drena, la presión (u) disminuye y aumenta la presión efectiva, hasta que el incremento de la presión total queda soportado por la estructura sólida. Al concluir esta etapa se presenta un reacomodo en la estructura interna del suelo (flujo viscoso), las partículas en general tienden a

Capitale

Analius geomecanico de una secuencia locustra de la Col de Messie Facultad de Ingeneros, 27,233

compactarse, pero las arcillas, por la complejidad de su estructura, además comienzan a fluir, este punto se conoce como consolidación secundaria y se caracteriza por un menor cambio volumétrico que tiende a ser nulo con el paso del tiempo, siempre que no exista un nuevo incremento de carga.

La compresibilidad de un suelo queda definida como la variación de su relación de vacios (e) de acuerdo a la variación de presión a que se le someta, la relación de vacios se define como la razón entre el volumen ocupado por los poros y el ocupado por los sólidos de un suelo. El cambio en este parámetro se determina mediante una prueba de consolidación completa, esto es, sometiendo una muestra de suelo, confinada lateralmente, a incrementos de carga axial, durante el tiempo suficiente para alcanzar la consolidación secundaria en cada uno de dichos incrementos. Durante el proceso de compresión se toman datos que permiten describir la relación entre el esfuerzo efectivo, la relación de vacios o deformación y la velocidad en que puede ocurrir la compresión.

Con estos datos se obtienen tantas curvas de compresión como incrementos de carga se utilizaron, determinando para cada uno la relación de vacios. Entonces se construye una curva de compresibilidad graficando presiones actuantes contra relación de vacíos, por medio de la cual se logra conocer el rango de presiones que puede soportar un suelo sin sufrir deformaciones considerables. Esta información se utiliza comúnmente para estimar la velocidad y magnitud del asentamiento diferencial y total, parámetro sumamente importante en evaluaciones geotécnicas.

En el desglose final de la prueba se determinan dos coeficientes el de compresibilidad (a,,) y el de consolidación (C,), donde el primero indica como disminuye el volumen de la muestra bajo la acción de un esfuerzo axial determinado; el segundo es una relación entre la permeabilidad (k) del suelo y su compresibilidad, en términos de su variación volumétrica (m,), lo cual nos indica que la consolidación depende de la respuesta del material a un esfuerzo, evidenciada en la variación del volumen, y de su permeabilidad. Si recordamos que en la consolidación primaria se requiere de un drenaje del agua intersticial, un material poco permeable requerirá de mayor tiempo para consolidarse que uno más permeable bajo la acción de una misma carga.

Los valores reportados por Marsal y Mazari (1959) para estos parámetros se encuentran dentro de los siguientes intervalos:

Parámetro	a,	m,	P.	C,
Unidades	kg/cm²	Adimensional	Kg/cm ²	cm²/seg
Intervalo de valores (Zona de lago)	0.00 - 3.50	0.20 - 0.55	0.90 -1.40	0.020 - 0.005

*a, – compresibilidad *m, – variación volumétrica *P_e – carga de preconsolidación *C. – consolidación

Dentro de estos valores es importante observar los definidos entre los 6.00 a 6.06 y 6.72 a 6.77 (fig. 30), ya que se elevan mucho respecto al resto de los valores en lo referente a su compresibilidad (fig. 29). Considerando que el coeficiente de variación volumétrica se obtiene en función del coeficiente de compresibilidad, ambos presentan un comportamiento similar.

En cuanto a la carga de preconsolidación (P_e), los valores más altos se ubican entre 3.90 y los 4.70 metros. Siendo estos estratos los que presentan coloraciones verde olivo claro. Alrededor de los 6.40 metros, se observa otro valor, alto de P_e, y coincide con un nuevo estrato de color verde olivo, sólo que en este caso es más oscuro.

Los coeficientes de consolidación se podrían dividir en dos grupos de acuerdo a su orden de magnitud, el primer grupo se localiza entre los 2.30 a 3.20 y los 4.60 a 4.70 metros. El otro grupo sería el correspondiente a los metros restantes, constituidos predominantemente por partículas finas (limos y arcillas), en las que el coeficiente de consolidación es mayor. En los valores menores, se presentan en general lentes de arena y los materiales finos son predominantemente limos. Los valores determinados en el presente trabajo se presentan en la tabla 15 y su determinación se localiza en el Anexo 4.

Cardinala D

Analisis geomochnico de una socieondia lacustro de la C-E de Staro Facultad gelingere da 1993

20.0 25.0 10.0 15.0 5.0 0.0 2.00-3.00 Profundidad en metros 4.00 TH H 5.0 6.00 7.00

a, (kg/cm²)

Figura 30. Variación del coeficiente de Compresibilidad

Capitule H1

Analtais geomechinoo de una secuencia lacustre de la Cid. de blever: Recubilid de tras eras o 1.5.41

	a,	m,	P _e	C,
(m)	(kg/cm²)	(adim)	((kg/cm²)	(cm²/s)
2.34-2.44	0.32	0.15	0.8	8.60E-04
3.17-3.22	0.23	0.11	0.18	8.30E-04
3.92-3.97	0.03	0.02	2.7	1.06E-03
4.67-4.76	0.18	0.11	2.8	8.90E-04
6.00-6.06	7.09	3.85	0.15	1.21E-03
6.11-6.52	1.72	0.26	0.98	1.24E-03
6.72-6.77	21.62	4.90	0.09	1.85E-03

Tabla 15. Valores de Compresibilidad

3.5.2 Resistencia al esfuerzo cortante.

La resistencia de un material al esfuerzo cortante se refiere a la habilidad del mismo a soportar la acción de esfuerzos de cizalla. Cuando esta resistencia es vencida, se presenta una falla en el material, que puede definirse como un plano o bien como una deformación (abarrilamiento). La resistencia de los suelos al esfuerzo cortante depende básicamente de dos parámetros, la fricción y la cohesión interna del material. La cohesión interna del material resulta básicamente de la interacción de carga iónica superficial entre las particulas, esto es una propiedad típica de suelos arcillosos. La fricción en cambio se determina por el esfuerzo resultante de la oposición al movimiento entre las particulas, y es característica de los suelos granulares. La Ley de Coulomb es una relación matemática que define la resistencia al esfuerzo cortante mediante estos dos parámetros como sigue: $s = c + \sigma \tan \phi$

c = cohesión interna σ = presión intergranular efectiva normal (perpendicular al plano de falla) ϕ = ángulo de fricción interna tan ϕ = coeficiente de fricción

En los suelos no cohesivos, como las arenas, c resulta igual a cero, por lo que la ecuación anterior queda: $s = \sigma \tan \phi$

En los suelos cohesivos, como las arcillas, puede considerarse que ϕ es cero, por lo que solamente se tendría: s = c

La determinación de estos parámetros en este estudio se hizo mediante una prueba de compresión triaxial lenta consolidada, en la cual se miden los esfuerzos efectivos, es decir, aquéllos que actúan sobre las partículas sólidas del suelo. Este tipo de prueba se realiza controlando el tiempo de aplicación de carga axial y los incrementos de la misma. Con los valores obtenidos se puede construir una gráfica esfuerzo-deformación y se define la resistencia al esfuerzo cortante mediante la construcción de un círculo de Mohr (Anexo 5). Los valores determinados para las distintas profundidades se presentan en la tabla 16. Se observa en la figura 31 que los valores más altos de resistencia al esfuerzo cortante se presentan entre los 3.80 y 6.60 metros, coincidiendo con los estratos de arcillas verdes o grisáceas. La tendencia a disminuir en la parte inferior de la secuencia coincide con la aparición de tonos más obscuros, y pardos.

Prof.	Esfuerzo	Esfuerzo	esfuerzo cortante	ángulo de fricción interna (φ)
	Confinante	Axial	τ (kg/cm²)	Grados (º)
2.00-2.15	0.60	1.20	0.27	20.0
2.60-2.70	0.60	2.00	0.56	32.0
3.63-3.74	0.60	1.70	0.48	28.0
3.74-3.85	0.90	3.00	0.90	32.5
4.03-4.15	1.10	4.36	1.28	35.5
5.13-5.24	1.10	3.60	1.04	32.0
5.24-5.35	1.40	4.05	1.10	28.0
6.15-6.26	0.90	1.80	0.42	19.0
6.60-6.70	0.80	1.29	0.26	15.0

Tabla 16. Valores de pruebas triaxiales lentas consolidadas drenadas

Anglas geomecanico do una secuencia lacustre de la Cid de Merer Finalitad de trade contra 12.45

Figura 31 . Variación de la Resistencia al Esfuerzo cortante.

n na na na inse	n og samernen er sæsseret i sæs	ng yangan kalan kanan kanan	t dan anja mana ana anis dan ananan		
1997 - 19	ay da sa ka sa ka ka	alasta a atta a	alian an tao	a de la construction de la construcción de la construcción de la construcción de la construcción de la constru	Capitulo III
		a sangar sa sa			
			and the second second		
	والعالم الموريا الارا				and the second second
			and the second second		and the second
lead to the task to the second			م المراجع المر محمد المراجع ال محمد المراجع ال		
			a traditional de la compañía		
	and a state of the second	1		n de la composición d	
			nen ut interest, par e		

an an an Arran an Arran an Arran ann an Arran an Arran an Arran an Arran an Arran an Arran

e is dell'econega de una rescuenza lacustre de la Cel de Mexic Bacuttert del reperiental utilier.

Capítulo IV

DISCUSIÓN DE RESULTADOS

4.1. Redefinición de la secuencia estratigráfica.

La caracterización estratigráfica de la secuencia debe basarse en ciertas consideraciones generales respecto a los parámetros analizados, tales como el contenido de materia orgánica, cantidades y relaciones entre materiales amorfos y cristalinos, capacidad de intercambio catiónico, etc., la interpretación conjunta por medio de gráficas comparativas, de dichos datos nos permitirán alcanzar la meta trazada en el presente trabajo: definición de una estratigrafía de acuerdo a las características físico-químicas de la secuencia (origen y evolución) y relación entre estas y el comportamiento mecánico de los materiales.

De acuerdo con lo descrito anteriormente y basado en los resultados del análisis geomecánico se proponen seis estratos que se muestran en la figura 32, y cuya descripción es la siguiente:

Estrato uno. Localizado de los 2.00 a los 2.60 metros, se compone de una alternancia de limos y arcillas de color negro en los primeros centímetros y café obscuro al final. Se observan restos de raíces en la parte superior y cerca de la base pequeños lentes de materia orgánica y grumos. Presenta disminución de materia orgánica (1.29% a 0.23%) y de Fe amorfo oxidado a partir de la superficie, la presencia de arenas se refleja en el aumento de la densidad de sólidos. Estos resultados nos indican un medio ambiente oxidante, con aporte clástico durante la sedimentación. Presenta una compresibilidad y una resistencia al esfuerzo cortante bajas.

Figura 32. Redefinición estratigráfica

Estrato dos. Entre los 2.60 y 3.70 metros, está constituido por una alternancia de materiales arcillosos, limo-arcillosos y arenosos, predominando los limos y en menor grado las arenas. Su color en la base es rojo-pardo y lo demás es café rojizo, de los 2.66 y a los 3.24 metros se forman grumos de arcillas. La materia orgánica continua disminuyendo, alrededor de 30%, al igual que el Fe, pero alrededor de los 3.20 metros registra un aumento importante, para continuar con su decremento. La densidad de sólidos varia en gran medida,

Analisis geomecanico de una secuencia lacustre de la Cit. de Merco Facultari de Indonentio 1/1413

dada la presencia de lentes de arena. Hay una acumulación de sales, lo cual permite suponer condiciones de aridez. La compresibilidad del material disminuye ligeramente, pero su resistencia al corte aumenta debido a una disminución en la cantidad de materia orgánica.

Estrato tres. Este estrato es una alternancia de arenas y limos, con muy poca arcilla, abarca desde los 3.70 hasta los 4.60 metros; presenta en los primeros centimetros color café, pero a partir de los cuatro metros el color es verde, de los 4.10 a los 4.20 metros se observan estructuras de hidromorfismo (moteado) y en la base se observa la formación de grumos arcillosos. La materia orgánica continua disminuyendo, al igual que los minerales amorfos de Al, Fe y Si. El hidromorfismo y la presencia de Fe reducido, implica variaciones en el nivel freático. Dado que el cambio es gradual, no se registran fuertes fluctuaciones en la compresibilidad, pero la resistencia al corte aumenta considerablemente.

Estrato cuatro. Abarca desde los 4.60 a los 5.00 metros, presenta en los primeros ocho centímetros un material granular de color pardo-banquecino bien graduado, desde arenas finas hasta gravas medias y con estructuras de inyección en su base, bajo este se localiza un espesor de 16 cm de arcillas color verde y finalmente una alternancia de limos y arenas color café. En el material granular el contenido de materia orgánica se mantiene bajo, al mismo nivel que en el estrato superior, pero en la zona arcillosa se incrementa ligeramente. Todos los amorfos analizados marcan una fuerte disminución que coincide con el material granular de los primeros centímetros. La compresibilidad comienza a aumentar gradualmente, la resistencia al esfuerzo cortante se mantiene sin variaciones.

Estrato cinco. Este estrato se define de los 5.00 a los 6.10 metros y se caracteriza por presentar tonos grises. Es un material arcilloso, con capas delgadas de limo en los primeros 20 cm. En la base presenta tonos verdes y se obscurece gradualmente. El límite inferior de este estrato está formado por un lente de ceniza volcánica color gris muy claro con estructuras de inyección en su base. La zona más obscura del estrato (5.80-5.95) presenta la más alta concentración de materia orgánica de toda la secuencia, el Fe y el Si amorfos presentan una leve disminución, en tanto que el Al amorfo presenta su valor más alto dentro de la secuencia. Su compresibilidad es alta y su resistencia al esfuerzo cortante disminuye ligeramente.

Estrato seis. Este estrato abarca de los 6.10 a los 7.00 metros, está conformado por materiales arcillosos de color verde olivo en la parte inferior y rojizo en la base, se localizan grietas rellenas de arena volcánica, disminuye la cantidad de materia orgánica y aumentan el Fe y el Si amorfos, y el Al disminuye. La compresibilidad es la mayor de toda la secuencia en la parte superior del estrato, la resistencia al esfuerzo cortante es media con tendencia a disminuir.
4.2. Relación entre los resultados del análisis geomecánico y las condiciones de formación.

Los resultados obtenidos de densidad real, marcan el cambio entre los diferentes materiales, sobre todo en lo referente a arenas y partículas finas, en general las primeras presentan una densidad real mucho mayor que las segundas, esto puede relacionarse en algunos casos al contenido de materia orgánica o amorfos de Fe, Si o Al dentro de la fracción arcillosa.

En las curvas de minerales amorfos se refleja fuertemente la presencia de un lente de arena volcánica como una sucesión de máximos y mínimos alrededor de los 4.60 metros. Éste cambio también se refleja aunque n menor grado en los datos de contenido de materia orgánica.

El contenido de agua dentro de toda la secuencia tiende a aumentar con la profundidad, pero los valores más altos se presentan en tres zonas, una de ellas a los 3.80 metros, donde se registran valores altos de Si, Al y sobre todo Fe amorfo, así como un alto contenido arcilloso, el siguiente punto alto se observa a los 5.10 metros, donde también se registran valores altos de arcillas, Fe y Al amorfos, pero además se cuenta con un alto contenido de materia orgánica, finalmente, a los 6.10 metros se tiene el mayor contenido de agua natural, y en este punto coinciden valores elevados de materia orgánica, arcillas y minerales amorfos de Fe y Si.

Uno de los datos más útiles es la determinación de la CIC, en este caso particular se determinó una CIC mayor de 25, lo cual es indicio de que las arcillas presentes pertenecen al grupo de las esmectitas, esto a su vez implica alternancias climáticas de humedad y aridez, que también se evidencian por la presencia de colores grisáceos y moteado (hidromorfismo) alrededor de los 5 metros. Algunos de los minerales que dan origen a estas arcillas son aquellos ricos en silicatos de Fe y Mg, como las provenientes de derrames andesítico-basáltico del Cuaternario en la

Cuenca del Valle de México. Asociados a las arcillas se tienen minerales tales como el alófano, (mineral no cristalino de Si-Al), el cuál a su vez se origina a partir de ceniza volcánica no cristalina, bajo condiciones húmedas y capas amorfas de gohetita, hematita y ferhidrita, las cuales tienen una muy alta capacidad de retención de humedad.

4.3. Relación entre las propiedades físico-químicas y la compresibilidad y la resistencia al corte.

De acuerdo a los resultados obtenidos, los factores determinantes para la variación de la compresibilidad son:

- El contenido de agua natural en el suelo
- El contenido de arcillas.
- El contenido de materia orgánica
- La presencia de amorfos, principalmente de Fe.

De los dos a los 4.70 metros, la compresibilidad es baja y no presenta fuertes variaciones, coincidiendo con valores de contenido de humedad bajos también, el factor más determinante en estos metros parece ser la materia orgánica, que presenta en este intervalo los menores valores. A partir de este punto se incrementa ligeramente, coincidiendo con un aumento en los amorfos de aluminio y de materia orgánica, luego viene una disminución de la compresibilidad que coincide con una disminución de materia orgánica y de amorfos de aluminio. Finalmente se observa el valor más alto de compresibilidad a los 6.80 metros, en esta profundidad se tiene un valor medio de contenido de arcillas, un valor medio de materia orgánica y los valores más altos de Fe y Si amorfo (fig. 32).

Analisis geomecanico de una securincia lacustre de la Crt. de Mérico Pacultar de Ingeniero - Idadi

67

En lo referente a la resistencia al esfuerzo cortante, el factor determinante para las variaciones en su valor, parece ser el contenido de materia orgánica, primero se tiene una resistencia baja, determinada por el alto contenido de materia orgánica, posteriormente se observa un aumento gradual, condicionado hasta los 5.15 metros por una disminución de la materia orgánica, luego se puede ver otro aumento en la resistencia, que aunque coincide con un incremento de materia orgánica, también se relaciona con una disminución del contenido de amorfos de Si y Fe (fig. 33).

Figura 33. Relación entre la Resistencia al esfuerzo cortante y las características Físico-químicas de la secuencia estratigráfica.

68

Capítulo V

CONCLUSIÓNES Y PERSPECTIVAS

5.1. Conclusiones y perspectivas

Los resultados obtenidos muestran la estrecha relación existente entre las propiedades físico-químicas de los materiales sedimentarios v SIL comportamiento mecánico. El incremento de la compresibilidad se relaciona directamente con el contenido de humedad natural de la muestra, el contenido de minerales amorfos, sobre todo de Fe en estado reducido, el contenido de materia orgánica y la proporción de minerales arcillosos. Los valores más altos de plasticidad también corresponden con los valores altos de minerales amorfos de Fe en estado reducido y materia orgánica. La determinación de la CIC permite inferir el tipo de arcillas presentes en la secuencia por medio de su actividad guímica. Pueden también definirse condiciones de depósito y evolución, tales como la variación en el nivel de aguas freáticas (NAF) debido a cambios estacionales en el régimen de Iluvias, así como condiciones de drenaie lento o nulo, que produce coloraciones grisáceas en el suelo y en ocasiones presencia de moteado (hidromorfismo).

Las variaciones en el comportamiento mecánico de los materiales no depende únicamente de las propiedades físicas y mecánicas determinadas en laboratorio, por lo que no es recomendable asumir que un solo valor puede representar una característica dada para toda la secuencia, aún cuando éste se halla obtenido estadísticamente. En una secuencia estratigráfica no homogénea, se requiere además tomar en cuenta las propiedades químicas que intervienen directamente en las características mecánicas del material.

" without the

- Las características Físico-químicas del suelo dependen de su origen y evolución. El conocimiento de dichas condiciones y una interpretación adecuada de las observaciones de campo y los datos de laboratorio permitirán su extrapolación, en futuros análisis, a sitios con características geológicas semejantes.
- La determinación visual de las características físicas en un perfil de suelo in situ, tales como el color, textura y consistencia, son un excelente auxiliar en la caracterización mecánica de los perfiles de suelo. Su fácil determinación permite obtener una noción del comportamiento geotécnico de la secuencia y corroborarlo posteriormente por medio de análisis de laboratorio.
- La presentación conjunta de resultados en gráficas facilita la definición de estratos geotécnicamente problemáticos, permitiendo optimizar recursos en pruebas de laboratorio.
- El desarrollo de análisis de esta naturaleza, con un mayor banco de datos, permitirá establecer correlaciones confiables entre las propiedades analizadas, proporcionando una herramienta para la solución de problemas prácticos.

Analisis gennelicanics de una secuencia lacustre de la Ort. de https:// Facultart de Indenieria 1.13621

ANEXO I

DESCRIPCIÓN

DETALLADA

DE LA

SECUENCIA

Prof.	Granulometria	Color	Observaciones
2.00 - 2.30	Tierra vegetal y limo	Negro a café oscuro	Tierra vegetal con ralces y materia orgánica Limo con lentes de materia orgánica y grumos Contacto transicional Consistencia suave a media
2.30 - 2.44	Arcilla	Café oscuro	Fragmentos de carbón y tepalcates Contacto transicional de arcilla a arena fina
2.44 - 2.60	Arena fina	Café oscuro	Lente de arena
2.60 – 2.72	Limo arcilloso	Café oscuro	Raíces, bioturbación y grumos Abundantes microfracturas
2.73 - 2.99	Limo	Café oscuro	Contacto inferior alternacia de arena y limo
2.99 - 3.10	Arena limosa	Café oscuro	Contacto Inferior no transicional
3.10 - 3.14	Arcilla	Café grisáceo muy oscuro	Material muy homogéneo
3.14 - 3.17	Limo	Café oscuro	Grumos y manchas negras de materia orgánica
3.17 – 3.22	Arcilla	Café rojizo claro	Raices rodeadas con materia orgánica
3.22 - 3.45	Arena media	Café oscuro	Grumos y lentes de limo negro
3.46 - 3.78	Arcilla	Café claro	Grumos y fracturas verticales rellenas de arena Manchas irregulares de color negro (carbon)
3.78 – 3.90	Arena fina	Café oscuro	Lentes de arena café oscuro Fracturas verticales rellenas de limo café Fragmentos de roca y carbón Vetillas rellenas de limo blanco
3.90 - 4.00	Arena limosa	Café grisàceo	Fragmentos de conchas Grumos gruesos Manchas de carbón
4.00 - 4.14	Arena fina limo escaso	Gris olivo	Grumos arcillosos de color blanco Hoyos no rellenos Manchas blancas y fragmentos de conchas Fracturas rellenas de arena media
4.14 - 4.20	Limo	Gris olivo	Grumos arcillosos Fracturas rellenas de arena media Manchas irregulares de materia orgánica
4.21 - 4.60	Arcilla y limo	Olivo pálido	Manchas negras con fragmentos de conchas Vetilleo de limo gris muy claro Contacto transicional
4.60 - 4.68	Arena gruesa y grava	Gris claro	Material gradado Estructuras de inyección en el contacto inferior
4.68 - 4.86	Arcilla	Pardo grisáceo	Pequeños lentes de limo
4.86 - 4.96	Arena fina v limo	Gris oscuro	Escasos fragmentos de conchas
4.96 - 5.06	Arena fina y timo	Olivo muy claro	Cuña de arcilla gris muy fracturada verticalmente Acumulación de materia orgánica en el limite superior de la cuña

Analish geomeuaneto de una sequencia lacione de la Oli de Clerko. Bacisted de la secono di 2000

•

Prof.	Granulometría	Color	Observaciones
5.06 5.22	Arailla limana	Gris verdoso	Manchas irregulares de arcilla gris
5.00 - 5.32	Arcilla Innosa	oscuro	Grumos y fragmentos de conchas
5 32 - 5 79	Arcitta	Gris verdoso	Manchas irregulares de color negro
0.02 - 0.10		oscuro	
5.80 - 6.10	Arcilla	Gris olivo	Fracturas verticales
3.00 - 0.10	Alcilla	oscuro	Vermiculitas
			Estructuras tubiformes verticales color gris
6.10 - 6.24	Arcilla	Gris verdoso	azulado
	, Field	oscuro	Fragmentos de tezontle y tepalcates
			Lente de arena blanca
		1	Mismas estructuras tubulares
6.24 – 6.56	Arcilla	Gris olivo	Arena fina gris claro formando una estructura
	Alonia		de inyección
			Grietas rellenas de arena fina a media
6 56 - 6 72	Arcilla	Gris oscuro	Formas tubulares blancas al centro y negras
0.50 - 0.72	Aicilia	0113 030010	alrededor
			Manchas negras con un halo verde alrededor,
6.72 - 6.86	Arcilla	Pardo olivo	alargadas verticalmente
			Restos de raices (aún se observan las fibras)
6.86 - 6.94	Arcilla	Gris olivo	Lente de arena media volcánica
6.94 - 7.10	Arcilla	Pardo olivo	Fracturas rellenas con arena media volcánica
		Café	Lente da arena media
7.10 - 7.27	Arciila	amarillento	
		oscuro	

-

Analisis georecanico de una secuencia lacuntre de la 13d de Marro Facultad de ingracienta - 2010

ANEXO II

LIMITES DE CONSISTENCIA Y CLASIFICACIÓN SUCS

Profundidad: 2.00 a 2.10

PRUEBA	ND	E GO	LPES	CÁP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CÁPSULA (g)	SUELO H (g)	SUELO S (4)	AGUA (g)	SUELO S (g)	AGUA (VV%)
1	9	8	9	U-2	37 96	54 90	49 26	5 64	11 30	49 91%
2	10	11	11	C-9	37 90	43 63	41 77	1 86	3 87	48 06%
3	15	16	14	C-3	38 06	48 56	45 20	3 36	7 14	47 06%
4	26	25	26	V-8	60 25	69 49	66 63	2 86	6 38	44 83%
5	31	32	31	B-4	37 98	51 98	47 70	4 28	9 72	44 03%

LIMITE PLÁSTICO

.

PRUEBA	343-0	CAP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No	Geo.	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELOS (g)	AGUA (W%)
1	228-3	A-4	37 98	38 67	38 50	0 17	0 52	32.69%
2	3#	M-3	38 02	38 59	38 45	0 14	0 4 3	32.56%
3	100	Y-3	38 09	38 73	38 58	0 15	0 49	30 6 1%

CONTENIDO DE AGUA NATURAL

PRUEBA	\$2.	CAP.	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (9)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		D-9	113 08	173 82	157 99	15 83	44 91	35 25%

W=	35.25%
LL=	44.90%
LP=	31.95%
IP=	12.95%
LC =	31.87%

Clasificación: OL - Limos orgánicos y arcillas limosas orgánicas de baja plasticidad

TESIS CON FALLA DE ORIGEN

•

i Al of in the languide one lequencia totostra de la fort de 15 ↔. Heat d'ad des cryentients i se

Profundidad: 2.20 a 2.30

PRUEBA	ND	E GO	PES	CAP	PESO	CAP +	CAP.+	PESO	PESO	CONTENIDO
No	10	20	30	No	CÁPSULA (g)	SUELO H. (g)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	18	18	19	X-0	59 69	73 30	67 83	5.47	8.14	67 20%
2	30	31	31	8-2	37 98	53 84	47 59	6 25	9.61	65 04%
3	8	8	8	B-7	38 05	51.50	46 38	5.12	8 33	61.46%
4	41	42	42	W-0	38 19	53 54	47.56	5.98	9.37	63 82%
5	27	27	28	U-3	38 10	53 71	47.43	6.28	9 3 3	67 31%

LIMITE PLÁSTICO

PRUEBA	ALC: NO DE CONTRACTO	CAP.	PESO	CAP +	CÁP.+	PESO	PESO	CONTENIDO
No		No	CÁPSULA (g)	SUELO H. (g)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	HE WAY HE THE A WAY	Y-1	37.78	38.77	38 52	0.25	0.74	33.78%
2	10 A. M.	X-2	60 23	61.56	61.23	0.33	1.00	33.00%
з	の、ほう時間に	Z-4	60.08	61 62	61.22	0.40	1.14	35 09%

CONTENIDO DE AGUA NATURAL

PRUEBA	Genty 31.7840	CAP	PESO	CAP.+	CÁP.+	PESO	PESO	CONTENIDO
No	1.20	No	CÁPSULA (g)	SUELO H (g)	SUELO S. (g)	AGUA (g)	SUELO S. (9)	AGUA (W%)
1		A-7	38 08	45 88	43 44	2.44	5.36	45.52%
2	comin a distance	A-35	40.09	45.82	44 07	1.75	3.98	43.97%
3	10-19-0-1- B	Y-4	60 03	76.73	71 21	5.52	11.18	49.37%

W= 46.29	%
LL= 65.70	%
LP= 33.96	%
IP= 31.74	%
_C = 33.74	%

L

Clasificación: OH - Arcillas orgánicas de media a alta plasticidad ticidad, limos orgánicos de media plasticidad.

Profundidad: 2.38 a 2.44

PRUEBA	ND	E GOL	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10.	20	30	No	CAPSULA (g)	SUELOH (9)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	34	34	34	C-6	37 98	49 68	45 51	4 17	7 53	55 38%
2	19	19	19	B-7	38 06	46 16	43 31	2 85	5 25	54 29%
3	24	24	24	Y-1	37 77	49 09	45 14	3 95	7 37	53 60%
4	14	14	13	A.9	38 24	46 38	43 43	2 95	5 19	56 84%
5	10	10	9	¥.5	38 09	46 82	43 66	3 16	5 57	56 73%

LIMITE PLASTICO

PRUEBA	14 A A	CÁP.	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (9)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1		U-3	38.09	39 39	39 08	0.31	0 99	31 31%
2		W-3	38 02	38.98	38 76	0 22	0.74	29 73%
3	AXLANCES	C-4	38 09	39 34	39 04	0 30	0 95	31 58%

CONTENIDO DE AGUA NATURAL

PRUEBA	4 1	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	and the second second	No	CAPSULA (g)	SUELOH (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		B-34	37 98	63 2 3	56 57	6 66	18 59	35 83%
2		U-2	37 95	56 55	51 89	4 66	13 94	33 43%
3		V-8	60 24	88 02	80.98	7 04	20 74	33 94%

W=	34.40%
LL=	54.60%
LP=	30.87%
IP=	23.73%
LC =	30.73%

.

Clasificación: OH - Arcilias orgánicas de media a alta plasticidad , limos orgánicos de media plasticidad

		0	
 TECIC	CON		78
1010	001		10
FALLA DE	ORIGEN		

en la specie catalog destra a la son ogradutte de para la

Profundidad: 2.60 a 2.70

PRUEBA	ND	E GO	LPES	CÁP	PESO	CAP +	CAP.+	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S. (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	8	8	8	B-3	38 15	53 01	47 61	5 40	9 46	57 08%
2	28	28	29	U-3	38 09	49 14	45 47	3 67	7.38	49 73%
3	18	17	17	C-5	38 08	72 82	60 75	12 07	22 67	53.24%
4	24	23	23	X-5	37 95	48 81	45 09	3 72	7 14	52.10%
5	12	12	12	Y-8	38 03	50.94	46 35	4 59	8 32	55.17%
6	47	48	48	C-4	38 08	50 29	46 31	3 98	8 23	48.36%
7	39	39	40	Y-9	38 18	55 98	50 22	5 76	12 04	47 84%

LIMITE LÍQUIDO

LIMITE PLÁSTICO

PRUEBA	IN PROPERTY.	CÁP	PESO	CÁP.+	CÁP.+	PESO	PESO	CONTENIDO
No		No	CÁPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	55.5	X-8	60 41	62 20	61.71	0 49	1.30	37.69%
2		Z-2	60 30	62 00	61.36	0 64	1.06	60.38%
3		U-O	60 70	62 17	61.76	0 41	1.06	38.68%
4	-STATE AND AND A	C-9	37 91	39 72	39.19	0 53	1.28	41.41%

CONTENIDO DE AGUA NATURAL

PRUEBA	WINFLANSA	CAP	PESO	CÁP.+	CÁP +	PESO	PESO	CONTENIDO
No	STATES AND	No	CAPSULA (g)	SUELO H. (g)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1		2.5	38 11	53 08	48 11	4 97	10 00	49.70%
2	- 1041 A. 10	V-6	38 17	54 71	49 79	4 92	11 62	42.34%
3		X-9	37 83	51 62	47.63	3.99	9 80	40 71%

w=	44.25%
LL=	51.30%
LP=	44.54%
IP=	6.76%
LC =	44.48%

Clasificación: MH - Limos inorgánicos, limos micáceos o diatomáceos, limos elásticos

Profundidad: 2.79 a 2.85

PRUEBA	ND	E GO	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (9)	SUELO H (g)	SUELO S (7)	AGUA (g)	SUELO 5 (g)	AGUA (W%)
1	7	7	8	B-3	38 15	45 08	43 10	2 98	4 95	60 20%
2	14	14	14	X-0	59 69	67 77	64 88	2 89	5 19	55 68%
3	27	28	28	W-5	60 08	67 28	64 80	2 48	4 72	52 54%
4	39	39	39	B-1	60 48	68 13	65 52	2 61	5 04	51 79%
5	1B	19	19	Z-8	60 14	68 70	65 67	3 03	5 53	54.79%

LIMITE PLÁSTICO

PRUEBA		CÁP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	6.8.4.	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		A-8	60 69	61.81	61 49	0 32	0 80	40 00%
2		Z-2	60 31	61 24	60 99	0 25	0.68	36 76%
3	17 A.	W-0	38.18	39 05	38 81	0 24	0.63	38 10%

CONTENIDO DE AGUA NATURAL

PRUEBA		CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	2.01.0	Z-1	59 14	74 94	69 84	5 10	10 70	47 66%

W=	47.66%
LL=	53.75%
LP=	38.29%
IP=	15.46%
LC =	38.17%

Clasificación: OH - Arcillas orgánicas de media a alta plas ticidad, llmos orgánicos de m. plasticidad.

Profundidad: 2.95 a 3.02

LIMITE LÍQUIDO

PRUEBA	ND	e goi	PES	CAP	PESO	CAP.+	CÁP.+	PESO	PESO	CONTENIDO
No.	10	20	30	No	CAPSULA (g)	SUELO H (9)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	9	8	в	X-1	60 38	69 23	65 72	3 51	5 34	65 73%
2	12	11	11	Z-1	59 14	68 29	64 69	3 60	5 5 5	64 86%
3	16	16	17	V-8	60 24	67 28	64 58	2 70	4 34	62 21%
4	24	24	23	A-0	60 40	71 11	67 11	4 00	671	59 61%
5	36	36	35	Y-4	60 02	69 44	65 97	3 47	5 95	58 32%

LIMITE PLÁSTICO

PRUEBA	Martin States	CAP	PESO	CAP.+	CÁP +	PESO	PESO	CONTENIDO
No	北部市政部	No	CAPSULA (9)	SUELO H. (g)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (VV%)
1		C-8	37 89	39 73	39 11	0.62	1.22	50.82%
2		V-7	59 95	60 88	60 58	0 30	0 63	47 62%
3	四、	Z-9	60 31	61 73	61 29	0 44	0 98	44.90%

CONTENIDO DE AGUA NATURAL

PRUEBA	55.00	CÁP	PESO	CÁP +	CÁP.+	PESO	PESO	CONTENIDO
No	1. A. 1. 2. 2.	No	CAPSULA (g)	SUELO H (g)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	1. S. C. C. C.	B-1	60 48	69 86	66 40	3 46	5.92	58.45%
2		A-35	40 08	50 26	48 75	3 5 1	6 67	52 62%
3		W-5	60 08	73 42	68 31	5 11	8 23	62 09%

₩=	57.72%
LL=	60.10%
LP=	47.78%
IP=	12.32%
LC =	47.66%

Clasificación: MH - Limos inorgánicos, limos micáceos o diatomáceos, limos elásticos.

PRUEBA	ND	E GO	PES	CÁP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	17	17	16	Y-8	38 03	55 30	49 08	6 22	11 05	56 29%
2	22	22	21	X-5	37 95	51 46	46 68	4 78	873	54.75%
3	38	38	37	C.9	37 91	50 69	46 20	4 4 9	8 29	54 16%
4	30	30	29	X-9	37 84	47 75	44 33	3 42	6 4 9	52.70%

. . . .

21.15

LIMITE PLÁSTICO

PRUEBA	19 S.	CÁP	PESO	CAP +	CÁP +	PESO	PESO	CONTENIDO
No.	Sector .	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	E SS	B-4	37 98	39.61	39 15	0 46	1 17	39 32%
2		C-5	38 08	39 29	38 95	0 34	0 87	39 08%
3	C303.	Z-5	38.10	39 66	39.21	0 4 5	1 11	40 54%

CONTENIDO DE AGUA NATURAL

PRUEBA		CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	7.094 ST	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1		W-9	37 82	42 11	40 86	1 25	3 04	41 12%
2		A-8	60 69	67 47	65 53	1 94	4 84	40 08%

W=	40.60%
LL=	53.80%
LP=	39.65%
IP=	14.15%
LC =	39.53%

Clasificación: OH - Arcillas orgániças de media a alta plas ticidad, limo orgánico de m. plasticidad.

Análisis geomecanico de una secuencia lacustre de la Cd. de Mexico Facultad de Ingenieria, UNAM

> TESIS CON FALLA DE ORIGEN

> > 83

Profundidad: 3.63 a 3.74

LIMITE LÍQUIDO

PRUEBA	ND	e goi	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	to	20.	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (1)	AGUA (q)	SUELO S (q)	AGUA (W%)
1	32	32	33	Z-B	60 14	67 75	64 64	3 1 1	4 50	69 11%
2	34	34	35	X-8	60 40	70 12	66 12	4 00	5 72	69 93%
3	18	18	19	U-a	22 79	29 87	26 90	2 97	4 1 1	72 26%
4	14	1.4	15	B-2	59 36	66 91	63 66	3 25	4 30	75 58%

LIMITE PLÁSTICO

PRUEBA	ALCONT OF STREET	CÁP.	PESO	CAP +	CÁP +	PESO	PESO	CONTENIDO
No	- Ca.	No	CAPSULA (g)	SUELO H (g)	SUELO S. (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	1	B-7	38 05	39 85	39 31	0 54	1 26	42 86%
2		X-5	37 95	39 72	39 18	0 54	1 23	43 90%
3		Y-8	38 03	39 72	39 19	0 53	1 16	45 69%
4	\$ S.	A-35	40 08	42 38	41 68	0 70	1 60	43.75%

CONTENIDO DE AGUA NATURAL

PRUEBA	1.6.21	CAP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELOS (9)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	191	Y-4	60 02	72 88	69 36	3 52	9 34	37 69%
2		V-8	60 24	73 15	68 65	4 50	8 4 1	53 51%

w=	45.60%
LL=	70.95%
LP=	44.05%
iP=	26.90%
LC =	31.87%

Clasificación: OH - Arcillas orgánicas de media a alta plas ticida, limo orgánico de m. plasticidad.

Profundidad: 3.74 a 3.85

LIMITE LÍQUIDO

PRUEBA	ND	E GO	LPES	CÁP	PESO	CÁP.+	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (1)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	5	5	6	C-6	38 04	47 24	44 00	3 24	5 96	54 35%
2	40	40	39	X-0	59 69	72 06	68 12	3 94	8 43	46 74%
3	24	25	25	Y-9	38.19	45 48	43 14	2 34	4 95	47 27%
4	18	18	19	A-8	60 69	68 68	66 06	2 62	5 37	48 79%
5	11	11	10	Z-2	60 31	69 24	66 25	2 99	5 94	50 34%

LIMITE PLÁSTICO

PRUEBA	14	CAP.	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No	24.	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (WM)
1	100	X-2	60 24	62 06	61 57	0 4 9	1 33	36 84%
2		Z-9	60.31	61 65	61 30	0 35	0 99	35 35%
3		W-5	60 08	61 90	61 40	0 50	1 32	37 88%
4	18	Z-5	38.10	39 68	39 25	0 4 3	1 15	37 39%

CONTENIDO DE AGUA NATURAL

PRUEBA	4	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	and the second s	No	CAPSULA (9)	SUELO H (g)	SUELO 5 (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	, <u>5</u> 5.	A-0	60 40	71 94	64 00	7 94	3 60	220 56%
2	1 SS	A-9	38 24	46 95	41 37	5 58	3 13	178 27%

w=	199.42%
LL=	47.00%
LP≍	36.87%
IP=	10.13%
LC =	36.79%

Clasificación: OL - Limos orgánicos y arcillas limosas de baja plasticidad.

Anexos I

Anàlisis geomecànico de una secuencia lacustre de la Cd. de Mexico Facultad de Ingenieria, UNAM

> TESIS CON FALLA DE ORIGEN

> > 85

Profundidad: 3.92 a 3.97

LIMITE LÍQUIDO

PRUEBA	N D	E GO	LPES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	11	11	11	¥-8	38 03	45 73	42 77	2 96	4 74	62 45%
2	26	26	25	¥-5	38 09	45 00	42 42	2 58	4 33	59 58%
3	37	37	38	X-9	37 84	42 68	40 93	1 75	3 09	56 63%
4	16	16	17	C-9	37 91	45 12	42 42	2 70	4 5 1	59 87%
5	29	29	28	V-2	60.61	67 02	64 61	2 41	4 00	60 25%

LIMITE PLÁSTICO

PRUEBA		САР	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	23	No	CÁPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	2	B-7	38 05	39 47	39 07	0 40	1 02	39 22%
2	F	B-3	38 15	39 11	38 85	0 26	0 70	37.14%
3	APRIL 1	V-2	37 92	38 81	38 56	0 25	0 64	39 06%
4		Y-4	60 02	61 10	60 78	0 32	0 76	42 11%

CONTENIDO DE AGUA NATURAL

PRUEBA	18 ¹ ()	CÁP	PESO	CAP +	CÁP +	PESO	PESO	CONTENIDO
No	121	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (q)	AGUA (W%)
1	548.5.3 ·	Y-9	38 19	44 13	41 93	2 20	3 74	58 82%

w= ·	58.82%
LL=	58.45%
LP=	39.38%
lP≓	19.07%

			-				_
LC	=	3	9	.2	3	%	6

Clasificación: MH - Limos inorgánicos, limos micáceos o diatomáceos, limos elásticos.

Profundidad: 4.40 a 4.45

.

PRUEBA	ND	E GOL	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELOS (g)	AGUA (W%)
1	40	40	41	Y-1	37 77	46 06	39 95	6 11	2 18	280 28%
2	26	26	25	B-4	37 98	39 88	38 96	0.92	0.98	93 88%
3	32	32	33	W-9	37 82	40 95	39 47	1 48	1 65	89 70%
4	14	14	15	B-2	59 36	62 01	60 71	1 30	1 35	96 30%
5	10	10	9	C-4	38 09	40 57	39 33	1 24	1 24	100 00%

LIMITE PLÁSTICO

PRUEBA	ু, তম্মায়, প্র	CÁP	PESO	CÁP.+	CAP.+	PESO	PESO	CONTENIDO
No	1. S	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	Sec. Sec.	W-3	38 02	39 99	39 29	0 70	1 27	55 12%
2	11. Same	V-8	60 24	63 56	62 34	1 22	2 10	58 10%

PRUEBA	2 2.0	CÁP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		C-4	38 09	44 77	42 30	2 47	4 21	58 67%
2		W-9	37 82	44 83	42 33	2 50	4 51	55.43%

w=	57.05%
LL=	92.00%
LP=	56.61%
IP=	34.95%
LC =	56.21%

Clasificación: OH - Arcillas orgánicas de media a alta plas ticida, limo orgánico de m. plasticidad.

Anàlisis geomecànico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

Р	rot	fur	۱di	d	ad	: 4	.45	а	4.50	
---	-----	-----	-----	---	----	-----	-----	---	------	--

LIMI	ΤE	Ll	Q	UI	D	Э
------	----	----	---	----	---	---

PRUEBA	ND	E GO	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO 5 (9)	AGUA (W%)
1	11	11	11	¥-4	60 02	63 77	62 09	1 68	2 07	61 16%
2	25	26	26	V-5	60 27	65 49	63 20	2 29	2 93	78 16%
з	38	38	38	¥-5	38 09	44 28	41 57	271	3 48	77 87%
4	19	19	18	C-3	38 06	44 20	41 41	2 79	3 35	83 28%
5	22	22	21	C-5	38 08	44 78	41 72	3 06	3 64	84 07%

LIMITE F	PLÁSTICO
----------	----------

PRUEBA	STREES ST	CÁP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No	1.2	No	CAPSULA (g)	SUELO H (g)	SUELOS (g)	AGUA (g)	SUELO S. (9)	AGUA (W%)
1		X-9	37 84	38 79	38 51	0.28	0 67	41.79%
2	125	U-2	37 96	38 94	38 62	0 32	0 66	48 48%
3	全部 在	B-3	38 16	39 22	38 91	0 3 1	0 75	41 33%
4	7969	W-0	38 18	39 22	38 92	0 30	0 74	40 54%

CONTENIDO DE AGUA NATURAL

PRUEBA	A Black Co	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
NO		No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	1.1	A-7	38 08	45 88	· 42 99	2 89	4 91	58 86%
2		A-35	40.09	45 82	43 75	2 07	3 66	56 56%

w=	57.71%
LL=	78.00%
LP=	43.04%
IP=	34.96%
LC =	42.74%

.

Clasificación: OH - Arcillas orgánicas de media a alta plas ticida, limo orgánico de m. plasticidad.

Profundidad: 4.695 a 4.755

•

LIMITE LÍQUIDO

PRUEBA	N D	E GO	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	39	39	40	Z-8	60.14	66 70	63 52	3 18	3 38	94 08%
2	28	28	27	X-8	60 40	66 41	63 45	2 96	3 05	97 05%
3	13	13	14	W-5	60 08	65 83	62.97	2 86	2 89	98 96%
4	36	36	37	X-2	60 24	69 15	64 39	4 76	4 15	114 70%

LIMITE PLÁSTICO

PRUEBA		CÁP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No		No	CÁPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	Z.	C-6	38 04	40 03	39 28	0 75	1 24	60 48%
2		C-3	38 06	38 97	38 61	0 36	0 55	65 45%
3	AL -	C-5	38 08	38 71	38 50	0 21	0 42	50 00%

CONTENIDO DE AGUA NATURAL

PRUEBA		САР	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	1.	Y-9	38 19	44 13	42 13	2 00	3 94	50 76%

W=	50.76%
LL=	96.80%
LP=	58.65%
IP=	38.15%
LC =	58.20%

Clasificación: OH - Arcillas orgánicas de media a alta plas ticida, limo orgánico de m. plasticidad.

Anàlisis geomecanico de una secuencia lacustre de la Cd. do México Facultad de Ingenieria, UNAM

PRUEBA	N D	E GO	IPES	CAP	PESO	CAP +	CÁP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (9)	AGUA (g)	SUELO S (9)	AGUA (W%)
1	25	25	26	V-8	60 24	62 58	61 13	1 45	0.89	162 92%
2	45	45	44	B-4	37 98	41 20	39 24	1 96	1 26	155 56%
3	32	32	33	U-7	21 83	25 49	23 27	2 22	1 4 4	154 17%
4	15	15	14	A-0	60 40	63 96	61 77	2 19	1 37	159 85%
5	8	8	9	V-6	38 16	41 13	39 30	1 63	1 14	160 53%
6	20	20	19	Z-4	60 08	62 79	61 13	1 66	1 05	158 10%

ŝ	160%		 •		1
2	158%			•	·
	156%	:	 	· .	
	155%		 	•	•

LIMITE LÍQUIDO

LIMITE PLÁSTIC	ò
----------------	---

PRUEBA		CÁP	PESO	CAP +	CAP.+	PESO	PESO	CONTENIDO
No.	AL N	No	CAPSULA (9)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		U-0	60.70	61 45	61 21	0 24	0 51	47 06%
2	1.12	B-1	60 48	61 23	60 98	0 25	0 50	50 00%

CONTENIDO DE AGUA NATURAL

PRUEBA		CAP	PESO	CAP	CAP +	PESO	PESO	CONTENIDO
No	arta.	No	CÁPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
i	.17	¥-9	38 19	45 21	42 87	2 34	4 68	50 00%

w=	50.00%
LL=	156.40%
LP=	48.53%
IP=	107.87%
LC =	47.50%

Clasificación: CH - Arcillas inorgánicasde alta plasticidad arcillas francas

Profundidad: 4.87 a 4.92

LIMITE LÍQUIDO

PRUEBA	N D	E GO	LPES	CAP	PESO	CAP.+	CÁP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
	12	12	12	Z-2	60 31	64 93	62 99	194	2 68	72 39%
2	24	24	25	V-2	60 6 1	63.33	62 24	1 09	1 63	66 87%
3	41	41	40	Y-5	38 09	41 18	39 95	1 23	1 86	66 13%
4	35	35	36	C-B	37 89	41 77	40 23	1 54	2 34	65 81%
5	29	29	30	C-5	38 08	40 05	39 26	0 79	1 18	66 95%
6	7	7	8	C-3	38 06	41 78	40 20	1 58	2 14	73 83%

LIMITE PLÁSTICO

PRUEBA	24.174	CÁP	PESO	CÁP.+	CÁP +	PESO	PESO	CONTENIDO
No	المراجعة	No	CÁPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	1. 1275	A.5	60 42	62 09	61 50	0 59	1 08	54 63%
2	21792	B-7	38 05	38 68	38 49	0 19	0 4 4	43 18%
3		Y-8	38 03	38 63	38 46	0.17	0 43	39 53%
4	76. ji	A-9	38 24	38 79	38 63	0 16	0 39	41 03%

CONTENIDO DE AGUA NATURAL

PRUEBA	144 A.	CÁP	PESO	CAP.+	CAP •	PESO	PESO	CONTENIDO
No		No	CÁPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1	1.1	C.3	38 06	46 92	43 80	3 12	574	54 36%
2	2.5	C.6	38 04	46 97	43 41	3 56	5 37	66 29%

w=	60.32%
LL=	67.70%
LP=	44.59%
IP=	7.38%
LC =	44.53%

Clasificación: MH - Limos Inorgánicos, limos micáceos o diatomáceos, limos elásticos.

Analisis geomecánico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

91

Profundidad: 5.00 a 5.05

PRUEBA	ND	E GO	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	40	40	39	A-2	22 77	44 52	27 39	17 13	4 62	370 78%
2	18	18	18	w.o	38 18	40.16	38 91	1 25	0 7 3	171 23%
3	26	26	25	A-8	60 69	63 59	6178	1 81	1 09	166 06%
4	28	28	28	Y-9	38 19	43 43	40 10	3 33	1 91	174 35%

LIMITE PLASTICO

PRUEBA	Sec.	CÁP	PESO	CÁP +	CÁP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S. (g)	AGUA (WM)
1	1.1	U-2	37 96	38 98	38 45	0 53	0 4 9	108 16%
2	<u>ि</u> ले	V.7	59 95	60 7 2	60 36	0 36	0.41	67 80%
3		Z-9	60 31	60 92	60 64	0 28	0 33	84 85%
4		X-2	60 24	61 07	60 67	0 40	0 43	93 02%

CONTENIDO DE AGUA NATURAL

PRUEBA	1. A. S.	CAP	PESO	CAP +	CÁP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		Z-2	60 31	63 97	61 71	2 26	1 40	161.43%

w=	161.43%
LL=	166.80%
LP=	93.46%
IP=	73.34%
LC =	92.11%

L

Clasificación: CH - Arcillas inorgánicasde alta plasticidad arcillas francas TESIS CON FALLA DE ORIGEN

Profundidad: 5.05 a 5.07

LIMITE LÍQUIDO

PRUEBA	ND	E GOI	PES	CAP	PESO	CAP +	CAP.+	PESO	PESO	CONTENIDO
No	10	20	30	No	CÁPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (9)	AGUA (W%)
1	9	9	10	A-5	60 42	69 39	64 35	5 04	3 93	128 24%
2	27	27	27	V-7	59 95	67 43	63 38	4 05	3 4 3	118 08%
3	31	31	30	X-0	59 69	68 24	63 61	4 63	3 92	118 11%
4	29	29	30	X-1	60 38	66 54	63 19	3 35	2 81	119 22%

LIMITE PLÁSTICO

PRUEBA	2 A	CÁP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	Luce	No	CÁPSULA (g)	SUELO H (g)	SUELO S. (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1		C-4	38 09	38 84	38 55	0 29	0 46	63 04%
2		W-3	38 02	38 83	38 53	0 30	0.51	58 82%
3		Y-1	37 77	39 05	38 61	0 44	0 84	52 38%
4	12.23	W-9	37 82	38 82	38 49	0 33	0 67	49 25%

CONTENIDO DE AGUA NATURAL

PRUEBA	10 Sec.	CÁP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (9)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	والمتحد والمتحد والمتحد والمحد	A-7	38 07	49 31	43 77	5 54	5 70	97 19%

w=	97.19%
LL=	119.80%
LP=`	55.88%
IP=	63.92%
LC =	55.17%

Clasificación: CH - Arcillas inorgánicasde alta plasticidad arcillas francas

Análisis geomecánico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

Profundidad: 5.125 a 5.235

LIMITE LÍQUIDO

PRUEBA	N D	E GOI	PES	CAP	PESO	CAP +	CAP ·	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO 5 (9)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	22	22	21	A-9	38 24	46 21	42 27	3 94	4 03	97 77%
2	14	14	14	C-B	37 89	44 70	41 30	3 40	3 4 1	9971%
3	9	9	10	Y-8	38 03	45 81	41.92	3 89	3 89	100 00%
4	7	7	7	¥-5	38 09	45 00	41.50	3 50	3 4 1	102 64%
5	38	38	39	¥-4	60 02	66 56	63 42	3 14	3 40	92 35%
G	34	34	35	Y-1	60 48	67 11	63 88	3 23	3 40	95 00%

LIMITE PLÁSTICO

PRUEBA	11111	CAP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No	a and the	No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		V-6	38 16	38 86	38 62	0.24	D 46	52 17%
2		X-9	37 91	38 65	38 37	0.28	046	60 87%
3	A 45	W-0	30 1B	38 90	38.66	0 24	0.48	50 00%
4		X-0	59 69	60 43	60 20	0 2 3	0 5 1	45 10%

CONTENIDO DE AGUA NATURAL

PRUEBA		CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	1	No	CAPSULA (g)	SUELO H (1)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		B-1	60 48	66 00	63 58	2.42	3 10	78 06%
2	5 .	2.4	60.08	64 01	62 28	1 7 3	2 20	78 64%

w=	78.35%
LL=	95.60%
LP=	52.04%
!P=	43.56%
_C =	51.59%

Clasificación: OH - Arcillas orgánicas de media a alta plas ticida, limo orgánico de m. plasticidad.

Profundidad: 5.24 a 5.30

a chuir bh

LIMITE LÍQUIDO

PRUEBA	ND	E GO	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CÁPSULA (g)	SUELO H (g)	SUELO S (9)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	25	25	24	C-9	37 91	44.50	40 58	3 92	2 67	146 82%
2	38	38	37	C-6	38 04	43 80	40 36	3 44	2 32	148 28%
3	26	26	27	Y-4	60 02	65 68	62 29	3 39	2 27	149 34%
4	17	17	16	Z-5	38 10	42 47	39 80	2 67	1 70	157 06%
5	10	10	9	X-9	37 84	45 86	40 92	4 94	3 08	160 39%

LIMITE PLÁSTICO

PRUEBA	(5 6)	CÁP	PESO	CAP +	CAP.+	PESO	PESO	CONTENIDO
No	(1995) and the second s	No	CAPSULA (g)	SUELO H (7)	SUELO 5 (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		B-3	38.15	40 03	39 18	0.85	1 03	82.52%
2		X-0	59 69	61 41	60 62	0 79	0.93	84 95%
3		X-1	60 38	61 67	61 11	0.56	073	76 71%

CONTENIDO DE AGUA NATURAL

PRUEBA	1.3 ×	CÁP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CÁPSULA (g)	SUELO H (g)	SUELO S (1)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		Z-9	60 31	66 67	63 79	2 88	3 48	82.76%
2	3	C-8	37 89	45 93	42 02	3 91	4 13	94 67%
3		Y-9	38 19	48 87	. 42 22	6 65	4 03	165 01%
4		A-8	60 69	68 18	63 75	4 43	3 06	144 77%

w=	121.80%
LL=	151.25%
LP=	81.39%
IP=	69.86%
LC =	80.27%

Clasificación: CH - Arcillas inorgánicasde alta plasticidad arcillas francas

Análisis geomecánico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

Profundidad: 5.95 a 6.00

PRUEBA	ND	E GO	LPES	CAP	PESO	CÁP +	CÁP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (q)	AGUA (W%)
1	28	27	27	B-0	60 40	65 56	62 43	3 13	2 03	154 19%
2	40	40	40	B-2	59 36	64 15	61 25	2 90	1 89	153 44%
3	34	35	35	A-35	40 08	44 19	41 73	2 46	165	149 09%
4	16	16	16	C-4	38 09	43 92	40 33	3 59	2 24	160 27%
5	20	20	21	W-3	38 02	42 74	39 83	2 9 1	181	160 77%
6	11	11	12	A-5	60 42	67 80	63 19	4 61	277	166 43%

LIMITE PLÁSTICO

PRUEBA	Sec. 1	CAP	PESO	CÁP +	CÁP +	PESO	PESO	CONTENIDO
No.	12	No	CAPSULA (9)	SUELO H (g)	SUELO S (9)	AGUA (g)	SUELO S (g)	AGUA (VV%)
1		C-8	37 89	38 79	38 42	0 37	0 53	69 81%
2	1200	C-3	38 06	38 84	38 54	0 30	0 48	62 50%
3		C-5	38 08	39 09	38 67	0 42	0 5 9	71 19%
4	1	C-6	38 04	38 94	38 57	0 37	0 53	69 81%

CONTENIDO DE AGUA NATURAL

PRUEBA	1920	CÁP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		W-9	37 82	42 78	39 71	3 07	1 89	162 43%
2		A-0	60 40	68 22	63 4 1	4 81	3 0 1	159 80%
3		B-1	60 48	71 5B	64 55	7 03	4 07	172 73%
4	- S	B-0	60 40	66 16	62 34	3 82	1 94	196 91%

w=	172.97%
LL=	156.00%
LP=	68.33%
IP=	87.67%
LC = '	67.15%

Clasificación: CH - Arcillas inorgánicasde alta plasticidad arcillas francas

Profundidad: 6.06 a 6.09

LIMITE LÍQUIDO

PRUEBA	ND	e goi	PES	CÁP	PESO	CÁP +	CAP.+	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (9)	AGUA (g)	SUELO S (g)	AGUA (W%)
<u>ر</u> ا	14	14	15	X-9	37 84	40 57	38.47	21	0.63	333 33%
2	27	27	26	Z-9	60 31	63 13	60 97	2 16	0 66	327 27%
э	30	30	29	Z-5	38 10	42 05	39 04	3 01	0 94	320 21%
4	34	35	35	U-8	22 79	26 63	23 68	2 95	0 69	331 46%

LIMITE PLÁSTICO

PRUEBA	Carlo Antonio	CAP	PESO	CAP +	CAP.+	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	44	V-5	60 27	61 47	60 85	0 62	0.58	106 90%
2	344	X-0	59 69	60 48	60 04	0 44	0 35	125 71%
3		A-8	60 69	61 35	61 00	0 35	0 3 1	112.90%
4		W-5	60.08	60 75	60 4 1	0 34	0 33	103 03%

CONTENIDO DE AGUA NATURAL

PRUEBA		CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (q)	SUELO S (q)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1		U-2	60 61	66 04	61 98	4 06	1.37	296 35%
2	1	V.7	38 05	41 52	38 79	2 73	0 74	368.92%

w=	332.63%
LL=	327.50%
LP≍	112.14%
IP=	215.36%
LC =	107.51%

Clasificación: CH - Arcillas inorgánicas de alta plasticidad arcillas francas

Análisis geomecanico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

> TESIS CON FALLA DE ORIGEN

> > 97

Profundidad:	6.09	а 6	5.14	1
--------------	------	-----	------	---

PRUEBA	N D	E GO	PES	CAP	PESO	CÁP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (q)	SUELO H (q)	SUELO S (4)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	21	21	22	V-8	60 24	65 10	62 07	3 03	1 83	165 57%
2	32	33	33	8-4	37 48	42 23	39 47	2 76	199	138 69%
3	13	15	15	X-1	60 38	66 4 1	62 48	3 93	2 10	187 14%
4	10	9	9	V-7	59 95	67 12	62 30	4 82	2 35	205 11%

LIMITE PLÁSTICO

PRUEBA	1. É. 1	CÁP	PESO	CAP +	CÁP +	PESO	PESO	CONTENIDO
No.		No.	CAPSULA (g)	SUELO H (q)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
		A-35	40 08	40 67	40 45	0 22	0 37	59 46%
2		C-5	38 08	38 85	38 59	0 26	0 51	51 37%
3	<u>a</u> 21-2	Z-8	60 14	60 93	60 67	0 26	0 53	49 06%

CONTENIDO DE AGUA NATURAL

PRUEBA		CAP	PESO	CAP +	САР•	PESO	PESO	CONTENIDO
No	1	No	CAPSULA (g)	SUELO H_(g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
1		Z-5	38 10	44 68	40 37	4 31	2 27	189.87%

W= 189.87%

- LL= 158.00% LP= 53.30% IP= 104.70%
- LC = 52.20%

Clasificación: CH - Arcillas inorgánicas de alta plasticidad arcillas francas

Profundidad: 6.61 a 6.84

LIMITE LÍQUIDO

PRUEBA	ND	E GOI	PES	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No	10	20	30	No	CAPSULA (g)	SUELO H (g)	SUELO S (q)	AGUA (g)	SUELO S (g)	AGUA (W%)
,	25	25	26	X.2	60 24	64 07	61 07	3 00	0.83	361 45%
2	39	39	40	U-2	37 96	42 41	38 95	3 46	0 99	349 49%
3	30	30	30	W-0	38 18	40 88	38 78	2 10	0 60	350 00%
4	23	22	22	B-3	38 15	41 67	38 94	2 73	0 79	345 57%
5	15	15	15	B-1	60 48	64 12	61 28	2 84	0.80	355 00%
6	10	10	11	L-1	49 50	84 04	54 98	29.06	5 48	530 29%

LIMITE PLÁSTICO

PRUEBA	States and	CAP	PESO	CÁP +	CÁP +	PESO	PESO	CONTENIDO
No	1 State	No	CAPSULA (g)	SUELO H (g)	SUELO 5 (g)	AGUA (g)	SUELO S. (g)	AGUA (W%)
1		Y-8	38 03	38 74	38 31	0 43	0 28	153 57%
2	1	A-7	38 07	38 73	38 35	0 38	0.28	135.71%
3		A-9	38 24	38 78	38 47	0.31	0 23	134 78%
4	Property of	W-3	38 02	38 76	38 31	0 45	0 29	155 17%

CONTENIDO DE AGUA NATURAL

PRUEBA	1000	CAP	PESO	CAP +	CAP +	PESO	PESO	CONTENIDO
No		No	CAPSULA (g)	SUELO H (g)	SUELO S (g)	AGUA (g)	SUELO S (g)	AGUA (W%)
1	and the second sec	X-8	60 40	64 79	61 44	3 35	1 04	322 12%
2	12.0	C-9	37 51	42 40	38 96	3 4 4	1 45	237 24%

w=	279.68%
LL=	352.00%
LP=	144.81%
IP=	207.19%
LC =	139.05%

Clasificación: CH - Arcillas inorgánicasde alta plasticidad arcillas francas

ANEXO III

 Contenido de agua natural w%

Óxidos totales

Cationes intercambiables

Aniones

Anexos I

CONTENIDOS DE HUMEDAD w% (DETERMINACIONES)

	CAPSULA	PESO	CAPSULA	CAPSULA	PESO	PESO	w%	w%
PROF.	NÚMERO	CÁPSULA	+55	+SH	ss	w	COSTADO	INTERIOR
2.10	D-9	113.08	157.93	173.92	44.85	15.99		35.65%
2.40	U-2	37.96	51.89	56.55	13.93	4.66		33.45%
2.44	B-4	37.98	56.57	63.23	18.59	6.66		35.83%
2.48	C-3	38.07	46.07	47.99	8.00	1.92		24.00%
2.54	V-8	60.24	80.98	88.02	20.74	7.04		33.94%
2.54	X-9	37.85	47.62	51.62	9.77	4.00		40.94%
2.62	Z-5	38,11	48.11	53.08	10.00	4.97		49.70%
2.68	V-6	38.17	49.73	54.71	11.56	4.98		43.08%
2.80	Z-1	59.14	69.84	74.94	10.70	5.10		47.66%
2.87	U-0	60.70	64.46	66.25	3.76	1.79	47.61%	
2.90	V-6	38,16	43.71	46.16	5.55	2.45	44.14%	
3.01	B-1	60,48	66.40	69.86	5.92	3.46	58.45%	
3.10	A-35	40.08	46.75	50.26	6.67	3.51		52.62%
3.14	W-5	60.08	68.31	75.42	8.23	7.11	86.39%	
3.20	W-9	37.82	40.86	42.11	3.04	1.25		41.12%
3.21	A-8	60.69	65.53	67.47	4.84	1.94		40.08%
3.29	B-5	59.35	66.68	70.97	7.33	4.29		58.53%
3 29	X-1	60.38	77.36	80.42	_16.98	3.06		18.02%
3.62	X-5	37.95	122.31	186.37	84.36	64.06	75.94%	
3.62	Y-4	38.03	41.27	43.55	3.24	2.28		70.37%
3.70	V-8	60.24	68.65	73.15	8.41	4.50	53.51%	
3.83	A-9	38.24	41.37	46.95	3.13	5.58		178.27%
3.84	A-0	60.40	64.00	71.94	3.60	7.94		220.56%
3.90	Y-8	38.03	41.27	43.55	3.24	2.28	70.37%	
3.91	Y-9	38.19	41.93	44.13	3.74	2.20	58.82%	
4.01	V-5	60.27	70.43	76.15	10.16	5.72		56.30%
4.02	V-2	60.61	68.13	72.76	7.52	4.63		61.57%
4.18	A-5	60.42	65.19	<u>67.49</u>	4.77	2.30	48.22%	
4.40	C-4	38.09	42.30	44.77	4.21	2.47	58.67%	
4.62		37.82	42.33_ ·	44.83	4.51	2.50		55.43%
4.63	B-2	59.36	61.47	62.68	2.11	1.21_		57.35%
4.65	Y-1	37.77	42.51	44.62	4.74	2.11	44.51%	
4.80	C-5	38.08	38.50	38.71	0.42	0.21	50.00%	
4.90	C-3	38.06	43.80	46.92	5.74	3.12	54.36%	
4.95	C-6	38.04	43.41	46.97	5.37	3.56		66.29%
5.00	0	38.18	44.06	47.51	5.88	3.45		58.67%
5.06	Z-2	60.31	61.71	63.97	1.40	2.26		161.43%
5.10	A-7	38.07	43.77	49.31	5.70	5.54	97.19%	

.

PROF	CAPSULA	PESO	CÁPSULA	CÁPSULA	PESO	PESO	w%	w%
	NÚMERO	CÁPSULA	+\$\$	+SH	ss	<u>w</u>	COSTADO	INTERIOR
5.12	V-5	60.61	63.42	66.29	2.81	2.87		102.14%
5.23	B-1	60.48	63.58	66.00	3.10	2.42		78.06%
5.23	Z-4	60.08	62.28	64.01	2.20	1.73		78.64%
5.24	Z-9	60.31	63.79	66.67	3.48	2.88		82.76%
5.32	C-8	37.89	42.02	45.93	4.13	3.91	94.67%	
5.36	Y-9	38.19	42.22	48.87	4.03	6.65		165.01%
5.47	A-8	60.69	63.75	68.18	3.06	4.43		144.77%
5 80	_X-8	60.40	63.85	68.84	3.45	4.99		144.64%
5.95	A-5	60.42	61.29	63.32	0.87	2.03		233.33%
6.65	Z-5	38.10	40.37	44 68	2.27	4.31		189.87%
6.06	C-9	37.91	42.18	50.74	4.27	8.56		200.47%
6.09	A-0	60.40	63.41	68.92	3.01	5.51		183.06%
6.10	W-9	37.82	39.71	42.78	1.89	3.07	162.43%	
6.10	B-0	60.40	62.34	66.16	1.94	3.82		196.91%
6.12	B-1	60.48	64.55	71.58	4.07	7.03		172.73%
6.26	U-0	60.70	64.23	65.93	3.53	1.70	48.16%	
6.27	V-8	60.24	61.39	64 88	1.15	3.49	303.48%	
6.35	U-8	22.77	23.55	25.94	0.78	2.39		306.41%
6.38	V-7	59.95	60.99	64.48	1.04	3.49		335.58%
6.38	U-7	21.83	25.41	25.94	3.58	0.53		14.80%
6.41	V-7	38.05	38.79	41.52	0.74	2.73		368.92%
6.46	V-2	60.61	61.98	66.04	1.37	4.06	296.35%	
6.54	V-6	38.16	38.83	41.25	0.67	2.42		361.19%
6.55	Y-1	37.77	39.07	43 31	1.30	4.24	326.15%	
6.56	A-9	38.24	39.26	42.61	1.02	3.35		3.284314
6.60	X-8	60.40	61.44	64.79	1.04	3.35		3.221154
6.62	Z-4	60.08	61.29	65.47	1.21	4.18	345.45%	
6.64	Z-8	60.14	61.65	66.38	1.51	4.73		313.25%
6.72	A-7	38.07	38.85	41.77	0.78	2.92	374.36%	
6.83	Y-8	38.03	38.96	42.32	0.93	3.36	361.29%	
6.85	X-1	60.38	62.97	70.78	2.59	7.81	-	301.54%
6.85	C-9	37.91	38.96	42.40	1.05	3.44		327.62%
6.85	L-1	48.04	49.26	53.09	1.22	3.83	313.93%	
6.88	A-0	60.40	62.08	65.62	1.68	3.54	210.71%	
6.95	Y-5	38.09	38.43	39.60	0.34	1.17		344.12%
6.97	X-0	37.95	39.05	43.01	1.10	3.96	360.00%	

٠

•

CONTENIDOS DE HUMEDAD w% (DETERMINACIONES)

Anexos I

CONTENIDOS DE HUMEDAD w%

PROF.	w% COST	w% INT	W% NAT
2.15		36.65%	35.25%
2.23	45.52%		46.29%
2.30	43.97%		
2.38		48.61%	
2.40	33.45%		31.81%
2.50	33.94%		
2.44		35.83%	
2.48	24.00%		
2.54		40.94%	1684.67%
2.68		43.08%	
2.62	4970.00%		
2.80		47.66%	46.47%
2.87	47.61%		
2.90		44.14%	
3.01	58.45%		65.82%
3.10		52.62%	
3.14		86.39%	
3.20	41.12%		39.44%
3.21		40.08%	
3.29	58.53%		
3.29		18.02%	
3.62		75.94%	111.50%
3.64		70.37%	
3.70	53.51%		
3.72	220.56%		
3.83	178.27%		
3.90		70.37%	
3.91	58.82%		56.23%
4.01		56.30%	
4.02	61.57%		
4.18	48.22%		
4.40	_	58.67%	57.05%
4.42		55.43%	
4.63		57.35%	54.50%
4.65	44.51%		
4.80	50.00%		
4.90	54.36%		
4.95		66.29%	
5.00		54.36%	89.44%

PROF.	w% COST	w% INT	w% NAT
5.03		66.29%	
5.06	58.67%		
5.09	102.14%		
5.23	161.43%		
5.23		58.67%	
5.24		102.14%	109.71%
5.32	161.43%		
. 5.36		97.19%	
5.47		78.06%	
5.80	_	144.64%	192.08%
6.09		189.87%	
5.95		233.33%	
6.06		200.47%	
6.09	183.06%		213.60%
6.12		172.73%	
6.10	162.43%		
6.13	196.91%		
6.26		48.16%	
6.31	303.48%		
6.35	306.41%		
6.38	335.58%		
6.41		368.92%	
6.46	296.35%		
6.54	361.19%		
6.55	326.15%		
6.56		328.43%	
6.60		322.12%	335.09%
6.62	345.45%		
· 6.64		313.25%	
6.72	374.36%		
6.83	381.29%		
6.85		301.54%	
6.85	327.62%		
6.85		313.93%	380.02%
7.10		371.43%	
6.88	210.71%		
6.95	344.12%		
6.97		360.00%	
7.00		410.34%	

-

Profundidad	SiO,	TiO	AI20,	Fe, 0,	FeO	MnO	MgO	CaO	Na ₂ O	K,0	H,O a 100° C	PXC a 1000° C	<u> </u>
(m)	%	%	%	%	%	%	%	%	%	%	%	%	Suma
2 00-2 15	46 26	0 62	12.92	4 86	1.78	0 07	1.17	10 19	2 99	1.70	6 33	11 60	99 49
2 25-2 44	54 86	0 79	16 80	3 44	1 04	0-08	0 35	461	5 01	2 01	4 7 1	6.16	99 86
2 48-2 53	51 81	0 79	20 15	3 4 4	1.43	0 05	0 35	5 79	8 38	2 03	1.50	3 57	99 29
2 59-2 98	57 47	0 79	18 94	3 44	0 52	0 05	0 35	2 36	4 74	2 06	2.80	6 3 1	99 83
3 18-3 23	46 51	0 59	14 69	2 83	0.52	0 05	3 60	9 44	4 96	1 7 1	3 49	11 49	99 88
3 22-3 29	22 30	0 25	3 91	121	1 04	0 05	4 58	31 52	4 89	0.66	3 26	25 66	99 33
3 60-3 80	35 88	0 36	6 13	1 62	1 43	0 05	11 59	16 41	5 25	1 06	3 13	16 71	99 62
3 97-4 15	50 72	0 57	12 94	2 43	1 69	0 05	591	6 76	7 29	2 73	2 64	6 09	99 82
4 42-4 63	42 15	0 43	9 04	3 24	1 30	0 05	10 73	10 37	2 95	2 02	4 22	12 80	99 48
4 63-4 70	54 40	0 82	8 28	4 05	3 65	0.11	6 82	6 83	7 30	2 4 4	1 18	3 63	99 51
4 70-4 80	47 78	0.61	14 84	2 02	0 78	0 04	7 48	7 38	4 95	3 37	3 40	7 04	99 69
4 80-4 90	37 77	041	8 04	2 03	0 91	0 05	2.77	16 42	5 27	20 50	5 22	18 88	99.82
5 10-5 35	52 7 1	0 50	9 88	2 43	0.78	0.04	5 57	3.97	5 62	4 14	6.97	7 09	99 70
5 70-5 95	45 72	0 58	14.23	2 84	1.17	0 04	1.43	4.72	5.71	4.68	7.68	10.37	99 17
6 43-6 56	39 76	0 58	14 66	2 84	1.30	0.04	7.88	6.46	5 45	4 02	4.88	11.81	99 68

•

ÓXIDOS TOTALES

CATIONES INTERCAMBIABLES

Profundidad	Ca	Mg	Na	ĸ	Suma	%	%
(m)	meq/lt	meq/lt	meq/lt	meq/lt	CIC	SatNa	SatK
2.25-2.44	37.23	6.21	2.94	2.34	48.70	6.00	4.80
2.48-2.53	19.83	4.32	1.35	1.20	26.70	5.00	4.50
2.59-2.98	20.68	6.42	20.80	4.33	54.20	3.80	8.00
3.18-3.23	44.41	14.14	1.56	4.07	64.20	2.40	6.30
3.22-3.29	36.90	8.86	0.53	0.77	47.10	1.10	1.60
3.60-3.80	42.87	17.26	0.66	1.10	61.90	1.10	1.80
3.97-4.15	37.75	14.28	1.61	4.85	58.50	2.70	8.30
4.42-4.63	34.67	15.23	1.95	5.11	57.00	3.40	9.00
4.63-4.70	18.63	7.10	0.87	2.03	28.60	3.00	7.10
4.70-4.80	22.22	13.78	· 1.05	11.04	48.10	2.20	23.00
4.80-4.90	52.08	15.23	2.47	7 43	77.20	3.20	9.60
5.10-5.35	34.62	13.13	1.86	19.82	69.40	2.70	28.50
5.70-5.95	36.90	13.94	2.38	16.72	69.90	3.40	24.00
6.43-6.56	36 73	15.36	0.32	22.13	74.50	0.40	30.00

•

Anexos I

ANIONES

Profundidad	CO3	HCO ₃	CI	SO4	Suma	
(m)	meq/100g	meq/100g	meq/100g	meq/100g	aniones	
2.00-2.15	0.50	3.25	5.30	3.70	12.70	
2.59-2.98	0.00	2.00	2.20	0.51	4.70	
3.18-3.23	1.00	2.70	2.70	0.94	7.30	
3.22-3.29	0.50	2.70	4.60	0.42	8.20	
3.60-3.80	0.50	6.00	3.10	0.51	10.10	
3.97-4.15	0.50	1.70	3.10	0.17	5.50	
4.42-4.63	0.50	4.00	4.10	0.34	8.90	
4.88-4.95	0.50	4.20	2.10	0.17	7.00	
5.10-5.35	1.00	4.00	2.70	0.34	8.00	

-

ANEXO IV

CURVAS DE COMPRESIBILIDAD

Anexos IV

DATOS	ENERALES:			DATO	S DE PR	OCESO						
1 ·				1		CONTEN	DO DE AGI	UA .	ALTURA (DE SOLID	os	
	Øm =	6 350	Cm	1								
	Hm =	25 400	mm	Inicial = 48 660					10 459	mm		
í	AREAm =	31 6693	cm'	1								
ļ	wm.≖	127 05	gr			RELACIO	N DE VACI	20	GRADO D	GRADO DE SATURACIÓN		
	Ws =	85 46	gr			Inicial #	1 428					
1	Peso Vol = 1 57944 gr/cm ³				F	nal carga =	1 329		Gw)ini=	1376	%	
L	Ss =	2 58			Final	descarga *	1 123					
	CARGAEN	LECTURA	DEF TOT	DEF	DEF	ALTURA	CAMBIO	ESF	REL DE	ESF	COEF	
FECHA	LA MTRA	MICRO	ACUMULA	EQUIPO	FINAL	FINAL	VOL	EFECTIVO	VACIOS	MEDIO	Av	
D/M/Y	<u> *g</u>	mm		mm	mm	mm	*	kg/cm*	و	kg/cm ²	cm*/kg	
22-Jul-97	0.000	19 985	0 000	0 000	0 000	25 400	0.000	0.000	1428		1	
22-Jul-97	0.318	19875	0 110	0 008	0 102	25 298	0 403	0 0 1 0	1419	0 005	0 978	
23-Jul-97	0 956	19 790	0 195	0 0 1 7	0 178	25 222	0 701	0 030	1411	0 020	0 363	
24-Jul-97	1 912	19670	0 315	0.028	0 287	25 113	1 130	0.060	1 401	0 045	0 347	
25-Jul-97	2 550	19 560	0.425	0 0 3 5	0 390	25 0 10.	1 535	080 0	1 391	0 070	0 491	
28-Jul-97	3 187	19 498	0.487	0 050	0 437	24 963	1 722	0 100	1 387	0.090	0 2 2 7	
29-Jul-97	3 824	19 44 1	0.544	0.068	0 476	24 924	1 873	0 120	1 383	0 110	0 183	
04-Jul-97	5 099	19 383	0.602	0.083	0 5 1 9	24 88 1	2 043	0.160	1 3 7 9	0 140	0.103	
07-Jul-97	6 374	19 308	0.677	0 098	0 579	24 821	2 279	0 200	1 3 7 3	0 180	0 144	
11-Ago-97	7 967	19 222	0 763	0 120	0 643	24 757	2 533	0 250	1 367	0 225	0 1 2 3	
12-Ago-97	9 561	19 018	0.967	0148	0 8 1 9	24 581	3 224	0 300	1 350	0 275	0 3 3 6	
14-Ago-97	15 935	18 775	1210	0 169	1 041	24 359	4 099	0.500	1 329	0 400	0 106	
18-Ago-97	22 309	18 468	1 517	0 170	1 347	24 053	5 304	0 700	1 300	0 600	0 146	
19-Ago-97	28 683	18 150	1835	0 177	1 658	23 742	6 527	0.900	1 270	0 800	0 148	
20-Ago-97	35 057	17 171	2814	0 160	2 634	22 766	10 371	1 100	1 177	1 000	0 467	
20-Ago-97	41 431	16 4 38	3 547	0 182	3 365	22 035	13 248	1 300	1 107	1 200	0 349	
20-Ago-97	47 805	15 909	4 076	0 191	3 885	21 515	15 295	1 350	1 057	1 325	0 994	
20-Ago-97	0 000	16 595	3 390	0 197	3 193	22 207	12 570	0.001	1 123	0 676	0 049	

PROFUNDIDAD: 2.38 a 2.44

Compresibilidad

TESIS CON FALLA DE ORIGEN

DATOS G	ENERALES:		DATO	S DE PR	OCESO:						
						CONTEN	IDO DE AG	UA	ALTURA DE SOLICIOS		
	gim =	6 350	cm	1							
	Hm =	25.400	mm	l l		Incial =	50.117		10.88 mm		
1	AREAm =	31 6700	cm'								
	Who =	134 43	97			RELACIC	IN DE VACI-	os	GPADO DE SATURACIÓN		
	Ws =	89.55	97	1		incial ×	1 336				
ł	Peso Vol = 1-5/115 //m*					inalicarga =	1 231		Gwyme=	155 3	%
	Ss =	2.60			Final	descarga ±	1 122				
				<u> </u>							
	CARGAEN	LECTURA	DEFIOT	DEF	DEF	ALTURA	CAMHIO	LSF	REL DE	ESF	COEF
FECHA	LA MIRA	MICRO	ACUMULA	EQUIPO	FINAL	FINAL	VOL	EFECTIVO	VACIOS	MEDIO	
D/M/Y	kg	10 <i>m</i>	11W11	mm	mm	mm	~	kg/cm*		kg/cm*	cm ² /kg
22-Jul-97	0.000	18 167	0.000	0.000	0.000	25 400	0.000	0.001	1 3 36		
22-Jul-97	0.126	17.946	0.201	0.008	0 193	25 207	0.761	0.010	1.318	0.006	1 975
23-Jul-97	0.652	17.810	0.357	0.017	0 340	25 060	1 339	0 020	1 304	0.015	1 350
24-Jul-97	1 304	12.640	0.527	0.028	0 499	24 901	1.965	0.640	1.290	0.030	0 731
25-Jul 97	1.956	12 497	0.680	0 035	0.645	24 755	2 539	0.0+0	t 276	0.050	0.670
28-Jul-97	2 282	17.423	0.744	0.050	0.694	24 706	2 734	0.070	1 272	0.065	0.456
29-Ji4-97	2.608	17.365	0.802	0.008	0 734	24 666	2.689	0.040	1,268	0.075	0.361
04-34-97	2 934	17,240	0.877	0.083	0 794	24 606	3 125	0.050	1,263	0.085	0 553
07-Jul-97	3 260	17 253	0.914	0.098	0.816	24 584	3 212	0 100	1 261	0.095	0 203
11 Ago-97	3 912	17 170	0.997	0 120	0 877	24 523	3 4'.4	0.120	1.255	0 110	0.782
12-Ago 97	5 2 16	17.003	1.164	0 148	1 016	24 384	4 000	0.160	1 242	0 140	0 3 1 9
14-Aqo-97	6 520	16.863	1.304	0 169	1 135	24 265	4 469	0.200	1 231	0.180	0 274
18 Ago 97	8 150	16-704	1.463	0 170	1 293 .	24 107	5.092	0.250	1.217	0.225	0.291
19-Aga-97	9.780	16423	1644	0 177	1467	23 933	5.775	0.300	1.201	0,275	0.319
20-Ago 97	163 (K)	15.077	2.0161	0 180	1 910	23 490	7.521	0.500	1.150	0 400	0 204
20-Aqo-97	72 820	15.678	2.489	0.182	2 307	23 093	9.082	0.750	1.123	0.600	0.182
0-Aqo-97	29 340	15.683	2 444	0 191	2 293	23 107	9.027	0.5#N)	1 125	0.900	0.006
20-Ago-97	6 520	15.696	2 471	0 148	2 323	23 077	9 145	0.200	1 122	0.550	0.004
21-Ago-97	5 2 16	15 709	2 458	0 120	2 310	23 090	9 094	D 160	1 123	0.180	0 030
22-Ago 97	3 912	15 759	2 408	0.098	2 288	23 112	9.009	0.120	1 125	0 140	0.050
23-Agu-97	3 260	15 792	2 375	0.083	2 277	23 123	8 964	0 100	1 126	0 1 1 0	0.052
24-Ago 97	2 934	15.834	2 333	0.068	2 250	23 150	8 858	0.0%	1 129	0.095	0 249
-5 Ago 97	2 608	15.855	2.312	0.050	2 244	23 156	8 834	0 (189)	1 129	0.085	0.056
26 Ago 97	2 282	15 900	2.267	0.035	2 217	23 183	8 730	0.070	1 132	0.075	0 241
27 Ago 97	1.956	15.962	2 205	0.028	2 170	23 230	8 543	0.050	1 136	0.060	0.219
28-Ago-97	1 304	15 011	2 155	0 0 1 7	2 128	23 272	e 378	0.040	1 140	0.045	0 384
29 Ago-97	D 326	16 349	1.814	0.008	1801	23 599	7 091	0.010	1 170	0.025	1.002
30-Ago-97	0.000	16 468	1.675	0 000	1671	23 729	6 580	0.001	1 182	0.006	1 327

PROFUNDIDAD 3 17 a 3 22

Compresibilidad

Anexos IV

DALOS	ENERALES			0410	SDEPP	00000					
1,003 0	CAL AALL S				J DE T K	CONTEN	IDO DE AG	UA	ALTURA I	DE SOLID	os
1	Øm =	6 340	cm	Į.							
	Hm #	25 500	mm	inicial = 69 979					90139 mm		
	AREAm #	31 5700	cm ⁴								
J	Wm =	129 15	gr			RELACIO	N DE VACI	os	GRADO D	E SATUR	ACION
	Ws =	75 98	g,	[Inicial #	1 829				
	Peso Vol = 1 60428 g/cm ³				F	nal)carga =	1 546		Gw)mr=	153 3	%
	Ss = 2.67				Final	descarga =	0 808				
	CARGA EN	LECTURA	DEF TOT	DEF	DEF	ALTURA	CAMBIO	ESF	REL DE	ESF	COEF
FECHA	LA MTRA	MICRO	ACUMULA	EQUIPO	FINAL	FINAL	VOL	EFECTIVO	VACIOS	MEDIO	Cv
D/M/Y	kg	mm	mm		mm		*	kg/cm*	e	kg/cm ⁴	cm ¹ /kg
22-Jul-97	0 000	18 297	0 000	0 000	0 000	25 500	0 000	0.000	1829		
22-Jul-97	0319	18 22 1	0 0 76	0 008	0 068	25 4 32	0 268	0 100	1821	0 050	0 076
23-Jul-97	0 637	18 139	D 158	0 017	0 141	25 359	0 554	0 200	1813	0 150	0.081
24-Jul-97	1 275	17 998	0 299	0 028.	0 271	25 2 29	1 063	0 400	1799	0 300	0 072
25-Jui-97	1 912	17881	0 4 16	0 035	0.381	25 1 19	1 494	0 600	1 787	0 500	0.061
28-Jui-97	2 2 30	17 633	0 464	0 050	0 414	25 086	1 625	0 700	1783	0 650	0 037
29-Jui-97	2 549	17 782	0.515	0.068	0 447	25 053	1 752	0 800	1779	0 750	0 0 3 6
04-Jul-97	3 187	17 705	0 592	0 083	0 509	24 991	1 995	1 000	1773	0 900	0.034
07-Jul-97	3 505	17 639	0 658	860.0	0 560	24 940	2 196	1 200	1767	1 100	0.028
11-Ago-97	3 824	17 523	0 774	0 120	0 654	24 846	2 566	1 600	1 756	1 400	0 0 2 6
12-Ago-97	4 780	17 421	0 876	0 148	0728	24 772	2 855	2 000	1.748	1 800	0 0 2 0
14-Ago-97	6 374	17 277	1 020	0 169	0 851	24 649	3 338	2 500	1 735	2 250	0 0 2 7
18-Ago-97	7 967	17 121	1 176	0 170	1 006	24 494	3 946	3 000	1717	2 750	0 034
19-Ago-97	14 341	16 552	1 745	0 177	1 568	23 932	6 149	5 000	1655	4 000	0 031
20-Ago-97	20 7 15	15 988	2 309	0 180	2 129	23 371	8 350	7 000	1 593	6 000	0 031
21-Ago-97	27 089	15 562	2 735	0 182	2 553	22 947	10 011	9 000	1 546	8 000	0 023
21-Ago-97	0.000	16 295	2 002	0 191	1 811	23 689	7 102	0.001	1 628	4 501	0 009

PROFUNDIDAD, 3.92 a 3.97

LAL PLACE	LEW GALLY		lastos (d there	150						
						CONTE	IND DE AG	UA	ACTURA DE SOLIDOS		
	Om a	6350	CTT	1					5 8300	mm	
	birn r	25.400	mm			low-cal a	140 372		-		
1	AREAm	21670	rent								
	Man -	TOM RO	~			RELACIÓ	WITH VAL	05	repartion (A SATUR	ACION
						incut a		CIPACIONE SHITCHCACION			
1	Des a Mala	1.20202			-		Constant -	132.2			
1			UIII.			nan canga -	0.704				*
L	5N 7			1		KARACTECT -	0705				
1	CARGALN	LECTURA	DEF TOT	DEF	DEF	ALTURA	CAMEIO	E SF	RELIDE	ESF	COFE
FECHA	LAMIRA	MICRO	ACUMULA	EOUIPO	FINAL	FINAL	VOL	EFECTIVO	VACIOS	MEDIO	
CAMAY	•9	1 040			mm	mm		1.000	<u></u>	ka/cm	cm An
22.304.97	0.000	18 793	0.000	0.000	0.000	25 400	0.000	0.000	3 357		
22 JM 97	0.327	18.6,21	0.172	0.008	0 164	25 236	0.647	0.100	3 329	0.050	0.262
23.361.9*	0.654	10.514	0.274	0.017	0.257	25 143	1.012	0,200	3 313	0.150	0.159
24,361.97	1.008	18 193	0.4%	0.059	0.462	24 938	1.819	0.400	3,278	0300	0 176
25.001.97	1.962	14 134	0.659	0 0 3 5	0.624	24 776	2.4!6	0.600	3 2 5 0	0.500	0139
194 Juli 47	2.289	18/042	0.751	0.050	0 701	24 659	2 752	0.700	3 236	0.650	0 133
29 Jol 97	2.516	12.907	0	0.0476	0728	24 672	240	D PH KE	3.732	D 750	0 0 4 5
04 Jul 97	3 270	17.876	0.917	0.083	0834	24 566	3 283	1.000	3.214	0 100	0.091
07 JG 97	3 924	17.252	1.031	0.059	0.933	24 467	3.673	1,200	3 197	1 100	0.085
11 Ago 97	5.232	17.5.98	1.255	0 120	1 135	24 265	4.470	1600	3.162	1.400	0.087
12 April 97	6 540	17,282	1.511	0.146	1.363	24 03/	536	2 000	3 123	1 800	0.05.48
14 Ago 97 (H 175	16.740	2 044	0 169	1875	23 525	7.383 -	2 500	3 035	2 250	0 176
18 Ago 97	9 B10	16.25.2	2 541	0 170	2 371	23 029	9.336	3 000	2.950	2 750	0 170
19 Aqu 97	16 350	11717	5.076	0 177	4 899	20 501	19/297	5.000	2.517	4 000	0 2 17
20 Ago 97	22.808	11158	7.235	0.180	7.055	18 345	27.777	7.000	2 147	6.000	0.185
21-Aup 197	29.430	9.872	8.921	0 182	8739	16 661	34 405	9.000	1.858	H (KXO	0 1 4 4
23 449 107	22,850	(+1+1)	8.852	0 191	8.661	16 7 3 3	34.058	7.000	18/1	8.000	0.007
Stand.	16.350	10.00	8.734	0.177	B 557	16 843	33.681	5:00	1.889	6.000	0.009
23 496 97	94810	10.273	8 20	0 170	8350	17 050	32 875	3.000	1.924	4 000	0018
24 Aug 102	8.175	10.170	84,3	0 169	8246	17 154	32 444	2 500	1.942	2 750	0 0 36
14. 400. 97	6.540	10.481	8 3 1 2	0 148	8 142	17.258	32 056	2 000	1960	2 250	0.036
Sec. Ages w?	5 232	107.00	8 1'44	0.120	8 025	17 375	31.595	1.600	1.980	1 800	0.050
12 ADDA	3 924	10.251	8.04.2	0.0.4	7 854	37 506	31.079	1200	2 003	1.400	0.056
.8 A 10 97	3 270	111465	7.438	0.083	7.818	17 142	30.791	1.000	2 0 16	1 100	0.065
29 400 92	2.616	1.1.1.1	7.60%	0.068	7.728	17.672	42.425	0.80%	2 0 3 1	0.900	0 078
30 400 97	2.284	11.052	7.741	0.050	2658	17 742	30 149	0.700	2 0 4 3	0.750	0 120
51-Aau 97	1 962	11 122	7.675	0.035	7 603	17 797	29 932	0.600	2 053	0 650	0.095
01.500.97	1 104	11.50	2.501	0.028	2453	17.947	29.344	0.400	2.078	0.500	0.128
02 540 07	0.654	11.5.59	7.714	0.017	2 179	18 221	28.263	0.200	2 1 2 5	0.300	0 735
03 540 97	0.327	11 830	6.054	0.004	6076	18 474	27.268	0.100	2 169	0 150	1434
01.5 m 117	0,000	12.411	6 347	0000	a 365	10.036	25.000	0,000	2 205	0.050	0.067
1040 2640 267	N 10	14 - 1	20.00		0.015	10.000	19100	V (440	4.05	0000	0.442

PROFUNDIDAD 4 695 a 4 755

Anexos IV •

DATOS GENERALES:		DATOS DE FROCESO:	
(1m = 6.150	6 m	CONTENIDO DE AGUA	ALTURA DE SOLIDOS
Line 8 350	um		
him = 25 400	nım	Incial = 157 577	4 4744 mm
AREAm = 31 6700	Cm4		
Wm = 94 17	qr	RELACION DE VACIOS	GRADO DE SATURACION
Vvs ≈ 36 56	tar.	Inicial = 4.677	
Peso Vol = 1 17066	t m'	Finalicarga = 1.433	Gw)ini= 117.2 %
Ss = 2.58		Final)descarga = 0.840	

PROFUNDIDAD 6 00 a 6 06

<u> </u>	CARCAEN	LECTURA	OFF TOT	0.55	0.00		CHING			565	COFE
EECHA	LANTHA	NICRO	ACUMULA	FOUR	ENIA	EULA	CAMBIO	ESF	NACIOS	ESP	COEF
DUMAY		micho	ACOMOLA	ECONFO	FINAL	FINAL	VOL	LEFECTIVO	VACIOS	MEDIO	c milita
DINIT		L			mm			kg/cm-		ing/cm.	CHINKS
22-Jul-97	0 000	20 000	0 000	0 000	0 000	25 400	0.000	0 000	4 677		
22-Jul-97	0 3 1 9	19 759	0 241	0 008	0 2 3 3	25 167	0.919	0 0 1 0	4 625	0 005	5 2 1 4
23-Jul-97	0.991	19 390	0.610	0 017	0 593	24 907	2 3 3 5	0 0 3 0	4 5 4 4	0 020	4 021
24-Jul-97	1.948	18 906	1 094	0 028	1 066	24 334	4 197	0.060	4 4 3 8	0 045	3 523
25-Jul-97	2 62 1	18 500	1 500	0 0 35	1 465	23.935	5 767	0 080	4 349	0 070	4 4 5 6
28-Jul-97	3 295	18 049	1 951	0 050	1 90 1	23 499	7.486	0 100	4 252	0 090	4 879
29-Jul-97	3 968	17 531	2 469	0 068	2 401	22 999	9.452	0 120	4 140	0 1 1 0	5 579
04-Ago-97	5 24 2	16 189	3 811	0 083	3 728	21672	14 676	0 160	3 844	0 140	7 4 1 5
07-Ago-97	6 5 1 7	14 490	5 510	0 098	5412	19.988	21 307	0 200	3 467	0 180	9 4 1 0
11-Ago-97	8111	12 760	7 240	0 120	7 120	18 280	28 033	0 250	3 085	0 225	7 636
12-Ago-97	9705	11 4 9 0	8 510	0 148	8 362	17 038	32 921	0 300	2 808	0 275	5 5 5 0
14-Ago-97	16 079	5 317	14 683	0 169	14 5 14	10.886	57 143	0 500	1 4 3 3	0 400	6 875
18-Ago-97	22 453	3 315	16 685	0 170	16 5 15	8 885	65 021	0 700	0 986	0 600	2 236
19-Ago-97	28 827	2 657	17 343	0 177	17 166	8 2 3 4	67 582	0 900	0 640	0 800	0 727
19-Ago-97	0 000	3 220	16 780	0 180	16 600	8 800	65 356	0 00 1	0 967	0 45 1	0 141

Compresibilidad

Anexos IV

DATOS G	ENERALES			DATO	S DE PRO	CESO- CONTEN	IDO DE AG	UA	ALTURA	DE SOLID	os		
ļ	(tim = tim =	6 350 25 400	em mm		Inicial = 336 771						2 5395 mm		
	AREAM 1	10113	env ^e			RELACIO	N DE VACI	05	GRADO D	E SATUR	ACION		
	Ws = 10.7% gr			ľ	Inicial = 9 002								
Peso Vol = 1 12665 t/m*				F	Finaljearga = 5.197 Gw)/0i= 126.4 %								
Ss - 2.5H					Final)descarga ±	5 5 1 3						
CC Chia	LAMIDA	HICRO	ACURANA	LOUIDO		EINAL		LILCTING	VACIOS	LSF	COEF		
D/M/Y	ka ka	0m	then	mm	mm	1000		ka/cm ²	0	ko/cm*	cm'ho		
22-Jul 97	0.000	20.141	0.000	0.000	0 000	25 400	0 000	0.000	9 002				
22-301-97	0.327	19.951	0.1140	0.000	0 182	25 218	0.718	0.100	8 930	0.050	0718		
23-Jul 97	0.981	19.559	0.642	0017	0.565	24 835	2 2 2 5	0.300	8 7 7 9	0 200	0 754		
24 Jul 97	1.962	19.142	0.549	0.028	0 971	24 429	3 823	0.600	8 620	0.450	0 533		
25 Jul-97	2.616	14 / 97	1.344	0 0 3 5	1 309	24 091	5 1 5 3	0.800	8 487	0 700	0.665		
28 Jul 97	3 270	18-289	1.22	0 050	1 802	23 598	7.096	1.000	8 292	0.900	0 972		
20-Jul 97	3 924	17 102	3 0 19	0.068	2 971	22 429	11 696	1,500	7 832	1 100	2 300		
04 Ago 97	5 2 3 2	15.213	4 'QB	0.083	4 845	20 555	19.074	1.600	7 094	1 400	1 845		
07-Ago 97	6 540	12 739	7.402	0.098	7 304	18 096	28 7 56	2.000	6 126	1 800	2 421		
11-Ago-97	B 175	10.763	9.1/8	0 120	9 258	16 142	36 450	2 500	5 356	2 250	1 539		
12 Ago 97	9.810	9454	10.487	0148	10 539	14 861	41 492	3 000	4 852	2 750	1 009		
14 Ago-97	14 App-97 1 952 10 309 9 832		0 169	9 663	15 737	38 044	0.600	5 197	1 800	0 144			
18-Ago-97	0.981	10.588	9.453	0170	9 283	16 117	36 548	0.300	5 346	0 450	0 499		
19 Ago-97	0 327	10 878	9.263	0 177	9 086	16 314	35 771	0 100	5 424	0 200	0 389		
20 Apo 97	0.000	11 102	9.039	0 180	8 859	16 541	34 879	0.010	5 5 1 3	0 055	0 991		

PROFUNDIDAD 6 11 a 6 52

Compresibilidad

DATOS	ENERALES			DATO	S DE PRO	CESO.							
						CONTEN	IDO DE AG	UA	ALTURA	DE SOLID	os		
	(2m -	6 350	cm	1									
	Him =	25 400	mm	1	Inicial = 401 548 2 2140 mm								
	AREAm =	31 6700	cm*										
	Wm *	9073	a.		RELACION DE VACIOS GRADO DE SATURACION								
1	Ws =	18 09	ar	H	Inicial = 10 473								
	Peso Vol = 1 12790 t/m*				F	inal)carga =	3 325		Gw)ını≖	129 0	۲%,		
	Ss =			Final)descarga ≂	3 4 1 4				_			
					-								
	CARGAEN	LECTURA	DEF TOT	DEF	DEF	ALTURA	CAMBIO	ESF	REL DE	ESF	COEF		
FECHA	LA MIRA	MICRO	ACUMULA	EQUIPO	FINAL	FINAL	VOL	EFECTIVO	VACIOS	MEDIO	Cv		
D/M/Y	kg	a an	nom	mm	mm	mm	14	kg/cm*	e	kg/cm*	cm²/kg		
22-Jul-97	0 000	20 000	0 000	0 000	0 000	25 400	0.000	0 000	10 473				
22-Jul-97	0 318	19817	0 183	0 008	0 175	25 225	0.690	0 0 10	10 393	0.005	7 918		
23-Jul-97	0.956	19.449	0.551	0 0 1 7	0 534	24 866	2 103	0 0 3 0	10 231	0 0 2 0	B 104		
24-Jul-97	1.912	18 936	1 064	0.028	1 0 3 6	24 364	4 079	0.060	10 005	0.045	7 557		
25-Jul-97	2 550	18 47 1	1 529	0 0 3 5	1 4 9 4	23 906	5 882	0.80	9 7 9 8	0 070	10 339		
28-Jul-97	3 187	17 325	2 675	0 050	2 625	22 775	10 337	0 100	9 287	0 0 9 0	25 555		
29-Jul-97	3 824	15 288	4 7 1 2	0 068	4 644	20 756	18 282	0 120	8 375	0 1 1 0	45 580		
04-Jul-97	5 099	12 134	7 866	0.083	7 783	17 617	30.641	0 160	6 957	0 140	35 447		
07-Jul-97	6 374	10 251	0 749	0.098	9 65 1	15 749	37 996	0 200	6 1 1 4	0 160	21 094		
11-Ago-97	7 967	8 707	11 293	0 120	11 173	14 227	43.989	0 250	5 4 2 6	0 225	13 752		
12-Ago-97	12-Ago-97 9 561 7 653 12 347		0 148	12 199	13 201	48.027	0 300	4 963	0 275	9 265			
14-Ago-97	14-Ago-97 15 935 4 025 15 975		0 169	15 806	9 594	62 229	0 500	3 333	0 400	8 147			
18 Ago-97	22 309	4 006	15 994	0 170	15 824	9 576	62 300	0 700	3 325	0 600	0 041		
19-Ago-97	0 000	4 195	15 805	0 177	15 628	9 772	61 527	0 001	3 4 1 4	0 351	0 127		

PROFUNDIDAD 6 72 a 6 77

Compresibilidad

VIVIN STREET AND ADDRESS AND ADDRESS AND ADDRESS ADDRES

Anexos IV

,

ANEXO V

PRUEBAS TRIAXIALES

AnexosV

DATOS GENERALES: DATOS DE PROCESO D5 = 3.500 cm D medio = 3.585cm Dm = 3.580 cm h media = 6.877 cm. Area = 10 094 Di ≃ 3.690 cm cn¥ 6.880 cm Volumen = 69.414CITT H1 -6.870 cm Peso vol = 1.462 112 =g/cm^l H3 = 6400 cm ₩% = 50.00 **...** Wo≈ 101.51 gr Saturación= 95 00 % kg.cm² F Continante = 0.60 TIEMPO INC. PRESION P TOTAL MICROMETRO DEF LINEAL AREA CORR DEF UNITARIA ESF. DESVIADOR (min) (kg) (kg) (mm) (mm) (cm2) E% (kg/cm2) 0.00 0.0000 0.00 19.825 10.0941 0.0000 0.0000 2 2 00 2.00 19 775 0.0500 10.1015 0.0727 19,7991 4 1.00 3.00 19.765 0.0600 10 1029 0.0873 29.6944 6 1.00 4.00 19.735 0.0900 10.1073 0.1309 39.5752 8 1.00 5.00 19.715 0.1100 10.1103 0.1600 49.4546 0.1500 10 1.00 6.00 19675 10.1162 0.2181 59.3109 12 1 00 7.00 19635 0.1900 10 1221 0.2763 69.1557 14 1 00 8.00 19.535 0.2900 10 1369 0.4217 78.9199 17 1.00 9.00 19.415 0.4100 10.1547 0.5962 88.6293 20 0.50 9.50 19.295 0.5300 10.1725 0.7707 93.3889 23 0.50 10.00 19 195 0.6300 10.1874 0.9161 98.1600 26 0.50 10.50 19.065 0.7600 10.2069 1.1052 102.8714 30 0.50 11.00 18.845 0.9800 10,2400 1.4251 107.4214 35 0.50 11.50 18.515 1.3100 10,2901 1.9050 111.7575 40 0.50 12.00 18.125 1.7000 10.3500 2.4721 115,9423 55 0.25 12.25 17.245 2 5800 10.4876 3.7518 116.8047 70 0.25 12.50 16 805 3 0200 10.5578 4.3917 118.3961 85 0.25 12.75 16.335 3.4900 10.6338 5.0751 119,9008 110 0.25 13.00 15.445 4.3800 10.7808 6.3694 120.5850 127 0.25 13.25 14.825 .5.0000 10.8856 7 2710 121.7204 145 0.25 13.50 13,785 6.0400 11.0661 8.7833 121.9944 165 0.25 13.75 11.635 8.1900 11.4588 11.9098 119.9947 170 0.25 14.00 11.165 8.6600 11.5484 12.5933 121.2284 200 0.25 14.25 10.295 9.5300 11.7181 13.8585 121.6072 207 0.25 14.5010.175 9.6500 11.7418 14.0330 123.4900

PROFUNDIDAD: 2.00-2.15

Resistencia al esfuerzo cortante: 0.27 kg/cm2

Engulo de fricción interna; 20°

Esfuerzo normal: 0.79 kg/cm2

AnexosV

				POCESO			1
DATOS	GENERALES.		10103 02 7	100230			
Ds =	3 550	cm		Dimedaoi≈	3 543	cm	
Dm =	3 535	cm		h media =	8914	cm	
Di =	3 570	cm	1	Area₀ =	9.861	cmp	
H1=	8 890	cm i		Volumen =	87 901	cmp	
H2 =	8 920	c m		Peso voi =	1481	gcm-	
H3=	8.915	cm		W% =	50 00	%	
Wo =	130.15	ar		Saturación=	99.00	%	
		-	(Confinante =	0.60	kgcm	
							555 DE0(4000)
TIEMPO	INC. PRESION	PTOTAL	MICROMETRO	DEF LINEAL	AREA CORR		ESF. DESVIADOR
(mm)	(4g)	(kg)	(mm)	(mm)	(cm7)	E	1×g/cm2/
0	0.00	0.00	18 828	0 0000	9 8608	0 0000	10 1383
5	1.00	1.00	18 803	0 0250	9 8636	00280	20 2725
10	1 00	2 00	18 785	0 0430	9 8656	0.0774	30 3998
15	100	3.00	18759	0.0690	98685	01111	40 5194
20	100	4 00	18729	0.0990	98/18	0 1526	50 6283
25	1.00	5.00	18692	0 1300	9818	0 2120	60 7 177
30	100	6.00	18639	0,1690	9,8907	0:3018	70 7737
35	100	7.00	18.521	0 3070	9 8949	0 3444	75 7965
40	0.50	800	18 482	0 3460	9 8993	0 3681	80 8141
1 50	0.50	8.50	18 439	0 3890	9 9041	0.4364	85 8234
60	0.50	9.00	18 376	0 4520	9 9 1 1 1	0 5071	90 8073
70	0.50	9.50	18 317	0 51 10	9 9177	0 5732	95 /884
80	0.50	10.00	18.258	0 5700	9 9243	0 6394	100 7628
90	0.50	10.50	18 195	0 6330	9 9314	07101	1057237
100	0.50	11.00	16 126	0 7020	0 9391	07875	110 6739
115	0.50	11.50	18031	0 7970	0.9498	08941	115 3002
130	0.50	12:00	17942	0 6960	9 9598	1 1005	125 3690
145	0 50	12.50	17 847	0 9810	99/06	1 2160	130 2314
160	0.50	13.00	1/ /44	1 1500	0 0007	1 3002	135 1252
180	0.50	13:50	11470	1 1580	100134	1 5234	139 8129
200	0.50	14 60	1/ 122	1 5050	100302	16883	144.5637
240	0.50	15.00	17 148	1 6800	10.0503	1 8846	149 2500
240	0.50	15.50	16.940	1 8880	10 0742	2 1180	153 8582
280	0.50	16.00	16714	2 1140	10 1004	2 3715	158 4100
360	0.50	17:00	15688	3 1400	10 2209	3 5225	166.3264
375	0.50	17 50	15 522	3 3060	10 2406	3 7087	170 6878
390	0.50	18 00	14 628	4 2000	10 3484	4 71 16	173 9397
410	0 50	18 50	13 622	5 2060	10 4724	5 8401	1/6 6541
430	0.50	19.00	12 335	6 4930	10 6355	7 2839	1/0 0405
460	0.25	19 25	12 032	6 7960	10674/	7 6230	181 9890
470	0.25	19 50	11/22	7 1050	10 7150	83463	183 5707
480	025	1975	11,388	7 4400	10 / 300	8 70 77	184 9888
490	025	10.00	10950	8 1500	108115	9 14:28	186 5824
500	0.25	20.50	10 350	8 5580	10 9094	96117	187 9111
510	2010	20.50	9810	9,0180	10 9707	10 1165	189 1404
530	0.25	21.00	7 340	11 4880	113196	12 8874	185 5182
540	0.25	21 25	7 325	11 5030	11 3218	12 90 42	187 6905
945	0.25	21.50	7 307	11 5210	11 3245	12 9244	189 8546
975	0.25	21 75	7 281	11 5470	11 3282	12 9535	191 9979
990	0.25	22 00	7 242	11 5860	11 3339	12 9973	194 1072
1005	0 50	22 50	7 171	116570	11 3443	13 0769	198 3370
1035	0.50	23 00	7 091	11 7370	11 3561	13 1667	202 5351
1065	0.50	23 50	6 934	11 8940	11 3791	13 3428	206 5183
1005	0.50	24:00	6 730	12,0980	11,4093	13 57 17	210 3553

PROFUNDIDAD: 2.60-2.70

Resistencia al esfuerzo cortante: 0.56 kg/cm

Engulo de fricción interna: 32°

Esfuerzo normal: 0.94 kg/cm 2

AnexosV

PROFUNDIDAD: 3.63-3.74

DATO	DS GENERA	LES:	DATOSE	E PROCES	0		
Ds	3 970	cm		Ormedio ≈	3 906	cm	
Dm	3 890	cm		h media =	9 0 5 8	c/m	
DI	3 920	cm		Afea,=	11 997	cmb	
1 41.	9.060	cm	1	Volument	108 673	ento	
M2 =	9000	cm.	J.	Perovola	1457	0000	
	9,060	cm	1	1000	54.00	94	
1		a.,	1	5 m	00.00	м Р/	
	108.30	4	1.	Saturación*	96.95	katan'	
			Л		0.00		
		V	LAND ON TRAD	1000	1.00.0000		
TUEWADO	INC. PRESION	PIOTAL	MICROMETRO	DEF. LINEAL	AREA CORR	DEF UNHARIA	ESF. DESVIADOR
(min)	<u> (kg)</u>	(kg)	(mm)	(mm)	(cm2)	<u>E%</u>	(kg/cm2)
0	0.00	0.00	19.960	0.0000	119970	0 (1000	0 0000
10	100	100	19.940	0 0200	11 9:097	0 0221	8 3336
20	100	200	19.910	0 0500	12 0036	0.0552	16 66 16
30	100	3.00	19870	0.0500	12 0089	0.0004	24 9814
40	1 100	4 (0)	19 840	01200	120129	0 1325	33 29/5
50	100	510	19700	01/00	12/0196	0 1877	41 5658
00	100	500	FILESO -	0,2800	120342	0.3091	49 65/9
80	100	700	10 300	04500	12 0:09	0498	560580
100	100	800	19,300	0,0000	12 0770	0.6024	74 2712
140	100	10.00	19,600	1,1200	12 11/4	0.5906	82 3143
160	100	11.00	18 640	1300	12 1400	14571	60.1514
190	0.00	12.00	18 300	16000	12 2210	19372	98 1919
200	0.50	12.50	18 140	18200	12 2430	2 0092	102 0992
220	0.50	13.00	18,000	19600	12 2623	2 1638	106 0157
240	0.50	13.50	17 850	2 1100	12 2831	2 3293	109 9069
260	050	14 00	17 700	2 2600	12 3040	2 4949	113 7842
280	0.00	14.00	17 630	2 3300	12 3137	2 5722	113 6941
300	0.50	14.50	17 500	2 4600	12 33 19	2 7 157	117 5811
320	0.50	15:00	17.360	2 6000	12 3515	2 8703	121 4424
340	0.50	15 50	17.210	2 7500	12 3726	3 0359	125 2765
360	0.50	16 (D	17.040	2 9200	12 3966	3 2236	129 0674
380	0.50	16.50	15 860	3 1000	12 4221	3 4223	132 8275
400	0.50	17.00	16 680	3 2800	12 4477	3 6210	136 57 10
420	0.50	17.50	16 470	3 4900	12 4778	3 8528	140 2496
440	0.50	18 00	15 230	3 7300	12 5122	4 1178	143 8592
460	0 50	18 50	15.980	3 9800	12 5484	4 3937	147 4297
475	0 50	19.00	15 730	4 2300	12 5847	4 6697	150.9772
490	0 50	19.50	15 490	4 4700	12 6 198	4 9347	154 5196
510	0:0	20.00	15 240	4 6800	12 6506	5 1665	158 0852
520	0.50	21.50	14 10	50500	12 /053	5 5750	169 2203
5.0	0.50	22.00	14,3(1)	0000	12 /956	6 7001	1719208
540	0.50	22.50	13 570	68200	12 0017	57231	171 4057
570	0.00	2100	12 200	7 7600	12 1211	7 5400	175 2008
570	0.50	23.60	12 200	9,7000	13 1211	8 3897	175 0876
666	0.50	24 00	8 500	11 4000	13 7346	12 6513	174 7409
610	0.50	24.50	6.210	13 7500	14 1440	15 1754	173 2185
620	0.50	25.00	2 300	17,6600	14 9024	19 4959	167,7587

Resistencia al esfuerzo cortante. 0 48 kg/cm²

Engulo de fricción interna 28°

Esfuerzo normal: 0.88 kg/zm²

DATOS	GENERALES:	DATOS DE PROCESO	
		•	
Ds =	3.970 cm	D medio = 3.908	C/M
Dm =	3.850 cm	h media = 9.058	(m)
D1 =	3.920 cm	Area ₆ = 11 (9)7	(117 ⁴
H1 =	9.050 cm	Volumen = 108.673	5 (1 7
H2 =	9.050 cm	Peso vot = 1.457	Bytui,
H3 ≖	9.050 cm	W?s = 54 (Y)	nr. 5
Wo =	158/30 gr	Saturación = 98.95	··· ,
		E. Confinante = 0.60	Agom"

TIEMPO	INC. PRESIÓN	PTOTAL	MICROMETRO	DEF LINEAL	AREA CORR	DEF UNITARIA	ESF DESVIADOR
(min)	(kg)	(kg)	(mm)	(mm)	(cm2)	E%	(kg/cm2)
0	1.00	000	18.985	0 0000	11 9970	0.000	0.0000
10	1 00	1.00	18,965	0.0200	11.9297	0.0221	8.3336
20	1 00	2.00	18 935	0.0500	12 0036	0.0552	16.6616
30	1.00	3.00	18 895	0.0900	12.0089	0.0994	24.9814
40	1.00	4.00	18.865	0 1200	12 0129	O 1325	33 2975
50	1.00	5.00	18.815	0 1700	12:0196	0.1877	41.5988
60	1.00	6.00	18.705	0.2800	12:0342	0.3091	49.8579
80	1.00	7.00	18 535	0 4500	12.0569	O 4968	58.0580
100	1.00	8.00	18.385	0.6000	12 0770	0.6624	66.2416
120	1.00	9.00	18 085	0,000	12/11/4	O 9936	74.2733
140	1.00	10.00	17 855	1.1300	12 1486	1 2475	82.3143
160	1.00	11.00	17.665	1.3200	12.1744	1.4572	90.3534
180	0.50	15.00	17.325	1,6000	12 2210	1 8326	98.1919
200	0.50	12 50	17 165	1.8200	12 2430	2 0092	102.0992
220	0.50	13.00	17 025	1.9600	12 2623	2.1638	105.0157
240	0.50	13.50	16.875	2.1100	12 2831	2 3293	109.9069
260	0.50	14.00	16.725	2.2600	12/3040	2.4949	113.7842
280	0.50	14 00	16 655	2.3300	12 3137	2.5722	113.6941
300	0.50	14 50	16 525	2.4600	12 3319	2.7157	117.5811
320	0.50	15 00	16.385	2.6000	12.3515	2.8703	121.4424
340	0.50	15 50	16.235	2.7500	12.3726	3.0359	125.2765
3:0	0.50	16.00	16 065	2.9200	12.3966	3.2236	129.0674
390	0.50	16.50	15 885	3.1000	12.4221	3.4223	132.8275
400	0.50	17:00	15.705	3 2800	12.4477	3 6210	136.5710
420	0.50	17.50	15 495	3.4900	12.4778	3.8528	140.2496
-440	0.50	18.00	15 255	3 7300	12 5122	4.1178	143.8592
460	O 50	1850	15 005	3.9800	12 5484	4.3937	147.4297
475	0.50	19.00	14.755	4.2300	12:5847	4 6697	150.9772
440	0.50	19.50	14 51 5	4 4700	12.6198	4 9347	154.5196
510	0.50	20.00	14.305	4.6800	12 6506	5 1665	158.0952
250	0.50	20.50	14 135	4 8500	12 6757	5.3542	161.7269
- 630	0.50	21.00	13.765	5 2200	12 7306	5.7626	164.9564
5 -1 0	0.50	21.50	13.155	5 8300	12 8223	6 4361	167.6771
550	0.50	22.00	12.135	6.8500	12 9785	7.5621	169.5117
- 5-0 - 1	0.50	22.50	10.885	81000	13 1751	8 9420	170,7762

Resistencia al esfuerzo cortante: 0.48 kg/cm²

Ángulo de fricción interna: 28

Esfuerzo normal: 0.88 kg/cm²

• .

- -----

.

111

.

---- 123

Estuerzo desviador (kg/cm²) Deformación unitaria %

Gráfica Esfuerzo-deformación (1)

AnexosV

.

4

TESIS CON FALLA DE ORIGEN

AnexosV

PROFUNDIDAD: 3.74-3.85

DATOS	GENERALES	S: [DATOS DE PROGESC	,	
	3 760	.	Dimedio ≠	3 762	cm
US #	3760 6	.	h media #	7 450	cm
Dm *	3700 0	. 1	Area, #	11 113	cmp
Di=	3110 0	.	Volumen #	82 796	cmp
H1 =	7450 C		Peso vol =	1 573	g¢m-
H2 =	7450 67	"	W%6 =	54 00	*
H3 =	7 450 cr	n	Satiacona	98.90	%
Wo *	130.20 9/	,	E Confrank	0.90	kgtm

TITUTO	INC OPESION	P TOTAL	MICROMETRO	DEF LINEAL	AREA CORR	DEF. UNITARIA	ESF. DESVIADOR
TIEMPO	INC. PRESION	(60)	(mm)	(mm)	(cm2)	Е%	(kg/cm2)
(010)	<u> </u>	0.00	20.985	0,0000	11 1135	0 0000	0.0000
0	100	100	20,899	0 0860	11 1263	0 1154	8.9877
10		200	20.868	0 1170	11 1310	0 1570	17.9679
20		300	20.828	0 1570	11 1370	0 2107	26 9373
30		400	20 780	0 2050	11 1442	0 2752	35 8933
40	1.00	5.00	20,720	0 2650	11,1532	0 3557	44 8303
00	100	600	20.641	0.3440	11 1650	0 4617	53.7391
20	100	700	20 557	0.4280	11 1777	0 5745	62 6247
10	1.00	800	20.465	0 5200	11 1916	0 6980	71.4821
	1.00	900	20.369	0 6160	11 2061	0 8268	80 3131
100	100	1000	20 276	0 7090	11 2203	0 9517	89.1244
110	100	1100	20 189	0.7960	11 2335	1 0685	97.9213
120	100	12 00	20 102	0 8830	11 2468	1 1852	106 6971
120	100	13.00	20.019	0.9660	11 2595	1 2966	115 4582
140	100	14 00	19 933	1 0520	11 2727	1 4121	124.1942
150	100	15 00	19 853	1 1320	11 2850	1 5195	132.9203
160	1 00	16 00	19 764	1 2210	11 2987	1 6389	141.6096
170	100	17 00	19 667	1 3180	11.3136	1 7691	150.2611
180	100	18 00	19 561	1.4240	11 3301	1 9114	158.8695
190	0 50	18 50	19 486	1.4990	11 3417	2 0121	163 1149
200	0.50	19 00	19 4 12	1 5730	11 3532	2 1114	167.3536
210	0.50	19 50	19 345	1 6400	11 3636	2 2013	171.5999
220	0 50	20 00	19 275	1 7100	11.3746	2 2953	175.8308
230	0 50	20 50	19 202	1 7830	11 3860	2 3933	180.0458
240	0.50	21 00	19.122	1 8630	11 3985	2 5007	184.2343
250	0 50	21 50	19 041	1 9440	11 4113	2 6094	188.4105
260	0.50	22 00	18 951	2 0340	11.4254	2 7302	192.5530
270	0.50	22 50	18 859	2.1260	11 4400	2 8537	196.6791
280	0 50	23 00	18 751	2.2340	11.4570	2.9987	200.7498
290	0.50	23 50	18 640	2 3450	11 4747	3 1477	204.7989
300	0.50	24 00	18 609	2.3760	11 4796	3 1893	209.0664
310	0.50	24 50	18 367	2 6180	11.5183	3 5141	212.7059
320	0.50	25.00	18 210	2 7750	11 5435	3 7248	216.5727
335	0 50	25 50	17 968	3 0170	11 5825	4 0497	220.1589
350	0.50	26 00	17 740	3.2450	11 6196	4 3557	223.7597
365	0 50	26 50	17 529	3 4560	11 6541	4 6389	227.3875
380	0.50	27.00	17.291	3,6940	11.6933	4 9584	230.9017

.

.

TIENDO	INC PRESION	P TOTAL	MICRÓMETRO	DEF. LINEAL	AREA CORR	DEF. UNITARIA	ESF. DESVIADOR
(min)	(kn)	(ka)	(៣៣)	(mm)	(cm2)	E%	(kg/cm2)
205	0.50	27.50	17.057	3.9280	11.7321	5.2725	234.4004
395	0.50	28.00	16.818	4.1670	11.7719	5.5933	237.8540
410	0.50	28.00	16.571	4.4140	11.8134	5 9248	241.2511
425	0.50	20.00	16 340	4 6450	11.8525	6.2349	244.6745
440	0.50	29.00	16,119	4.8660	11.8901	6.5315	248.1056
455	0.50	20.00	15,899	5 0860	11.9278	6 8268	251.5136
470	0.50	20.50	15.667	5.3180	11.9678	7.1383	254.8509
400	0.50	21.00	15 500	5.4850	11.9967	7.3624	258.4035
500	0.50	31.00	15 341	5 6440	12.0244	7.5758	261.9664
510	0.50	32.00	15 214	5 7710	12.0467	7,7463	265.6337
520	0.50	32.00	15.060	5.9250	12.0737	7.9530	269.1798
530	0.50	32.50	14,888	6.0970	12.1041	8.1839	272.6354
540	0.50	22.50	14.780	6 2050	12.1232	8.3289	276.3293
545	0.50	24.00	14,640	6.3450	12.1481	8.5168	279.8787
550	0.50	34.00	14.458	6 5270	12.1806	8.7611	283.2362
500	0.50	34.50	14.252	6 7 3 3 0	12,2177	9.0376	286.4703
560	0.50	75.50	14.2.52	6 9750	12,2615	9.3624	289.5251
500	0.50	35.50	13.692	7 2930	12 3195	9.7893	292.2202
5/0	0.50	30.00	13.002	7 5770	12.3718	10,1705	295.0268
5/5	0.50	30.50	13,092	7 8930	12,4305	10.5946	297.6561
580	0.50	27.50	12 751	82340	12 4944	11.0523	300.1340
585	0.50	39.00	12 390	8.5950	12.5629	11.5369	302.4790
590	0.50	30.00	12.030	8 9400	12.6290	12,0000	304.8547
595	0.50	30.00	11 716	9 2690	12.6927	12.4416	307.2641
600	0.50	39.00	11 380	9 6050	12,7584	12.8926	309.6004
605	0.50	40.00	11.015	9.9700	12 8305	13.3826	311.7560
610	0.50	10.50	10.632	10 3530	12,9072	13,8966	313.7795
615	0.50	41.00	10.205	10,7800	12,9936	14,4698	315.5389
1 275	0.50	41.50	7.041	13.9440	13.6726	18.7168	303.5278
13/5	0.50	42.00	7.031	13.9540	13.6748	18.7302	307.1341
1 205	0.50	42.50	7.019	13,9660	13.6775	18,7463	310.7288
1395	0.50	43.00	7.003	13,9820	13.6811	18.7678	314.3014
1410	0.50	43.50	6 981	14.0040	13.6861	18.7973	317.8404
1425	0.50	44.00	6.951	14.0340	13.6929	18.8376	321.3343
1440	0.50	44.50	6 908	14 0770	13,7026	18.8953	324.7548
1455	0.50	45.00	6841	14.1440	13,7179	18.9852	328.0395
1470	0.50	15 50	6 7 3 4	14 2510	13.7422	19,1289	331.0964
1465	0.50	46.00	6.520	14 4650	13,7912	19.4161	333.5459
1 1616	0.50	47.00	5.912	15.0730	13 9323	20.2322	337.3455
1525	0.50	47.50	5 205	15.7800	14.1001	21.1812	336.8782
1525	0.50	48.00	4 255	16,7300	14.3319	22.4564	334.9167
1540	0.50	49.50	3 800	17.1850	14,4457	23.0671	335.7401
1555	0.50	49.00	3,797	17,1880	14,4465	23.0711	339.1836
15/0	0.50	49.50	3.796	17.1890	14.4467	23.0725	342.6387

Resistencia al esfuerzo cortante: 0.9 kg/cm2

Angulo de fricción interna: 32.5"

Esfuerzo normal: 1.42 kg/cm²

Gráfica Esfuerzo-deformación

128

Anexos

DATOS	GENERALES:	DATOS DE PROCESO	
D5 =	3-650 cm	D medio = 3.682	cm
Dm=	3.700 cm	h media = 9.395	(m)
Di =	3.640 cm	Area ₅ = 10.646	CIT2 ⁴
H1 =	9.320 cm	Volumen = 100.017	cm [*]
H2 =	9.410 cm	Peso vol = 1.613	g/cm ⁱ
H3 =	9.410 cm	W% = 56.00	.".
Wo =	161/32 gr	Saturación= 98.89	0
		E. Confinante = 1.10	Fg/cm

PROFUNDIDAD: 4.03-4.15

THEMPO	INC PRESIÓN	P TOTAL	1.NCROMETRO	DEF LINEAL	AREACORR	DEF UNITARIA	ESF DESVIADOR
(min)	(Þq)	(kg)	(mm)	(mm)	(cm2)	<u></u>	(kg/cm2)
0	0.00	0.00	19 903	00000	10.6458	0 0000	0 0000
- 30	2.00	2 00	19 871	0.0320	10.6494	0 0.341	18 7803
60	2 00	4.00	19819	0.0840	10.6553	0.0894	37 5399
90	2 00	6.00	19 740	0 1630	10.6643	01735	56 2624
120	2.00	8.00	19.650	0 25.30	10.6746	0.2693	74 9446
150	2.00	10 00	19.544	0.3540	10.6866	0.3821	93 5747
191	2.00	12.00	19 422	0 4810	10.7006	0.5120	112.1433
212	2 00	14 00	19 332	0 5710	10 7109	0.6078	130 7078
240	2 00	16.00	19 211	0.6920	, 10 7248	0.7.¥6	149 1868
265	2.00	18.00	19 112	0 7910	10.7362	0.8419	167 6570
290	2 00	20.00	19 011	0.8020	10.7479	0.9494	186 0836
315	2.00	22.00	18 901	1.00:0	10.760.6	1 (* 65	204 4500
340	2 00	24.00	18.792	1 1110	10 77 32	1.1855	222 7748
365	2 00	26.00	13 686	1 21 70	10.7855	1.19954	241.0638
390	2 00	28.00	18 573	1 3300	10 7987	1 4156	259 2909
415	2.00	30.00	18 451	1 4520	10.8129	1 5455	277 4457
440	2 00	32.00	18.335	15680	10 8265	1.6650	295 5709
460	2.00	34.00	18 222	16810	10.8398	1.7892	313 6600
480	2.00	36.00	18 094	18040	10 8548	1.9255	331 6499
500	2.00	38.00	17.945	19540	10 8724	2 0641	349 5098
515	2.00	40.00	17803	2 1000	10 59932	2 2352	367 3361
530	2.00	42 00	17.621	2 2820	10.9108	2.42%0	384 9396
1371	2.00	44.00	17.444	2 4590	10 9319	2 61 7 3	402 4903
1386	2.00	46.00	17 406	2 4970	10 9365	2 6578	420 6106
1401	2.00	48.00	17 332	· 2 5710	10 9453	2 7366	438 5429
1410	2 00	5000	17.162	2 7410	10 9+57	2 9175	455 9656
1431	2 00	52 00	16.711	3 1920	11 0202	3 3976	471 8595
1461	2 00	54 00	15.563	4 34(0)	11 1614	4 6195	483 8098
1476	2 00	56.00	4 150	15 75 30	12 2904	16 7674	437 8270
1491	2 00	58.00	1 204	18 6440	132912	10 (031	436 3798

Resistencia al esfuerzo cortante: 1.28 kg/cm²

Ángulo de fricción interna: 35.5°

Esfuerzo normal: 1.78 kg/cm²

Gráfica Esfuerzo-deformación

130

Aneros

PROFUNDIDAD: 5.13-5.24

DATOS	GENERALES:	DATOS DE PROCESO	
Ds =	3.620 cm	D medio = 3.717	cm
Dm =	3.780 cm	h media = 9.732	cm
Di =	3.560 cm	Area _o = 10.849	cm²
H1 =	9.710 cm	Volumen = 105.581	Cm²
H2 =	9.740 cm	Peso vol = 1.393	g/cm ⁱ
H3 ==	9.720 cm	W% = 79.00	%
Wo =	147.09 gr	Saturación= 98.70	%
		E. Confinante = 1.10	kg/cm ⁴

٠

TIEMPO	INC PRESION	P TOTAL	MICROMETRO	DEF. LINEAL	AREA CORR	DEF. UNITARIA	ESF. DESVIADOR
(min)	(kg)	(kg)	(mm)	(mm)	(cm2)	E%	(kg/cm2)
0	0.00	0.00	20 269	0.0000	10 8492	0.0000	0.0000
25	2.00	5.00	20 018	0 2510	10 8772	0 2579	18.3870
50	2.00	4 00	19.913	0 3560	10 8890	0.3658	36 7343
75	2.00	6.00	19 789	0.4800	10.9030	0.4932	55.0309
100	2.00	8.00	19.659	0.6100	10.9176	0.6268	73.2761
125	2.00	10.00	19.512	0 7570	10.9342	0.7779	91.4558
150	2.00	12:00	19 377	0.8920	10.9495	0.9166	109 5936
175	2 00	14 00	19.219	1.0500	10.9675	1.0790	127.6497
200	200	16.00	19 051	1 2180	10.9867	1 2516	145 6307
225	2.00	18.00	18 864	1.4050	11.0081	1.4437	163.5158
250	2.00	20.00	18.653	1.6160	11 0324	1.6606	181.2845
275	2.00	22.00	18.409	1 8600	11.0606	1 9113	198 9045
300	1.50	23.50	18.173	2.0%0	11.0880	2 1538	211.9409
325	1.50	25.00	17 913	2.3560	11 1184	2 4210	224.8534
350	1.50	26.50	17.614	2 6550	11 1535	2.7282	237.5941
375	1.50	28.00	17.265	3 0040	11 1947	3 0868	250.1173
400	1.00	29.00	16 863	3.4060	11.2427	3.4999	257.9459
425	1.00	30.00	16 495	3.7740	11.2869	3 8781	265.7949
450	1.00	31.00	16.110	4.1590	11.3335	4 2737	273.5243
475	1.00	32.00	15 663	4.6060	11.3582	4 7330	280.9929
503	1.00	33.00	15 233	5 0360	11.4413	51749	288.4299
525	1.00	34.00	14 764	5 5050	11 4997	5 6568	295.6599
550	100	35.00	1.4 272	5 9970	11 5617	6.1624	302.7248
575	1.00	35.00	1.3 740	6.5290	11.6294	6.7090	309.5601
600	U 75	36.75	13.288	6.9810	11.6876	7 1735	314.4360
645	0 75	38 50	9 730	10.5390	12.1668	10 8296	316.4349
- 716	0.75	39.25	9.687	10.5820	12 1728	108738	322.4394
741	0.75	40.00	9.609	10.6600	12 1838	10 9539	328 3051
2645	0.75	40.75	9.513	10.7560	12.1973	11 0526	334.0903
291	0.75	41.50	9.365	10 9040	12 2182	11 2047	339.6575
-816	0.75	42.25	9 1-55	11.1230	12 2402	11.4297	344 9195
841	0.75	4.3.00	8 873	11.3960	12 2882	11.7102	349.9305
866	0.75	43 75	8.450	11.8390	12.3518	12 1654	354.1982
891	0.75	44 50	7 763	12.5060	12.4490	12 8508	357.4589
-916	0.75	45.25	6 800	13.4690	12.5920	13 8404	359.3563
941	0.75	46.00	5 010	15 2590	12 8666	15 6797	357.5137
0.545	0.75	Aris 75	1.100	191690	135101	19.6976	346.0296

Resistencia al esfuerzo cortante: 1.04 kg/cm²

Ángulo de fricción interna: 32º

Esfuerzo normal: 1.7 kg/cm²

132

AnexosV

DATOS	GENERALES:	DATOS DE PROCESO	
Ds =	3550 cm	D medio = 3.5%	cm.
Dm =	3.580 cm	h media = 9.568	C111
Di≍	3580 cm	Area _a = 10.075	cut f
Ht≠	9580 cm	Volumen = 56 404	cmf
H2 =	9.570 cm	Peso vol = 1 370	g.t.m ¹
H3 =	9.550 cm	• W% = 218 00	α* 0
Wo≓	132.12 gr	Saturación = 97.89	··*
		E. Confinante = 1.40	÷r,∕cm'

PROFUNDIDAD: 5.24-5.35

THE MOO		R TOTAL	INCROMETED		ANENCORP	THE LOUTADIA	LSE DESVIADOR
1000	0.00	11.01	(mm)	Immi	1(m2)	EN.	(kaxm2)
	0.00	000	10.36	i ogran	100751	l oun	0,000
20	200	200	19.2.39	0.0570	10.0814	0.0505	19.6396
40	2(0)	4.00	19 154	0.1420	10/0103	0 1484	19 6419
60	200	00.0	19.053	0.2430	101010	0.2540	59.4000
80	200	800	18 642	0 540	101128	0.3200	79 1079
100	200	10.00	18.827	0.467.0	101.10	0.4(8)2	98 7656
1:0	200	1200	18 710	0.5450	10 1374	0.6124	118 3731
140	200	14 00	18 582	0 7140	10 1511	0.7462	137 9161
110	2.00	1 16:00	18 451	0.8450	10 1651	0 8811	157 4010
180	2.00	18 (0)	18 291	1 (1:50	10 1823	10/03	176 7773
200	200	30.00	18 110	11840	10 2018	1285	1/85 0438
220	2 00	2200	17.909	1.8870	10.2235	1.44(#)	215 1895
240	200	24 00	17 671	16250	10 2494	1(7)83	234 1596
24.0	1.00	35 (3)	17 381	1 9150	10.2811	2 0014	252 8508
280	100	27 00	17 169	21270	10:4044	2 2230	262 0236
300	1 (0)	28.00	16.962	2 3340	10 3273	2 4 7 13	271 1270
320	100	29.00	16 749	2 5470	10.3509	2 (619	280 1694
340	100	30.00	16 51 5	2 7810	10 3770	2 9665	289 1022
30	100	31.00	16 261	3 0 3 5 0	10 4054	3 1719	297.9222
390	100	32 00	15 992	3 3040	10.4357	3 4531	3/6 6396
400	1.00	33.00	15 703	3 59 30	10.4685	3 7551	315 2329
4:0	100 -	.41.00	15.392	3 1040	10.5039	4 0801	323 6685
440	100	3500	15 045	4 2510	10 54.8	4 4428	331 9490
460	0 75	.35.75	14 799	4 4970	10 5722	4 6999	3.38 1499
480	0 75	36.50	14 333	4 9630	10.6265	5 (869	343 4796
500	0 75	37.25	13 967	5 3290	10 66/16	5 5694	3/19 1232
520	0 75	38.00	13578	57180	10 7157	5 9760	354 6192
540	0.75	38 75	13 183	61130	10 7630	6 3888	360 0306
560	0 75	39.50	12 779	65170	10 8117	68110	365 3436
570	0 75	40.25	12 531	6 7650	10.8419	1 0702	371 2451
040	0 75	40.75	12 251	7 0450	10 8761	7 3628	374 6732
540	075	41.25	11 912	7.3840	10 91 79	7 7171	3778199
670	0 75	41 75	11 517	77740	10 9670	81249	390 6689
610	0.50	42 25	11 070	B 2260	11 0230	8 5971	383 2891
620	0.50	42 75	10 633	8 66 30	110/84	9 0538	385 8872
640	0.50	43 25	10 169	9 1270	11 1378	9 5398	388 3188
640	0.50	43.75	9.680	9 6 1 6 0	11,2010	10.0498	330 5889
645	0.50	44.25	94,30	9 8660	11 2337	10 3111	393 9053
650	0.50	44.75	9133	10 1630	11 2727	10 6215	316 9775
- 655	0.50	45.25	8,904	10 4920	11 3165	10 9653	349 8688
(+0	0.50	45 75	8419	10 8770	11,¥576	11 3677	402 4601
662	0.50	46.25	8 235	11 0610	11 3923	11 5600	405 9759
664	0.50	46.75	8 02 3	11 27.30	114209	11 7816	409 3367
666	0 50	47 25	7 718	11 5780	11.4623	12 1003	412 2198
668	0 50	47 75	7 378	11 9180	11 5089	12 4957	414 8979
670	0.50	48.25	6.890	12 4060	115/63	12.9657	416 /9/9
672	0.50	41175	6 158	13 1390	116790	137107	41/41/5
674	0:0	49.25	4 2413	14.41.00	1187.99	15 1468	34147/04
0/0	0.50	417.73	TALLA	1.4	1. 12.(7)	1	2012042

Resistencia al estuerzo cortante: 1.10 kg/cm² Ángulo de fricción interna: 28" Estuerzo normal: 2.10 kg/cm²

AnexosV

Anàlisis geomecánico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

PROFUNDIDAD: 6.15-6.26

DATOS	GENERALES:	DATOS DE PROCESO	· · · · · · · · · · · · · · · · · · ·
Ds =	3.670 cm	D medio = 3.648	cm
Dm =	3.640 cm	h media = 9.357	cm
Di =	3.660 cm	Area _o = 10,454	cm²
H1 =	9.370 cm	Volumen = 97,814	
H2 =	9.360 cm	Peso vol = 1.224	g/cm'
H3 =	9.330 cm	W% = 99.00	%
Wo =	119.69 gr	Saturación= 98.90 E. Confinante = 0.90	% kg/cm²

.

TIEMPO	INC. PRESION	P TOTAL	MICROMETRO	DEF LINEAL	AREA CORR	DEF UNITARIA	ESF. DESVIADOR
(min)	(kg)	(kg)	(നന)	(mm)	(cm2)	E%	(kg/cm2)
0	0.00	0.00	19.9600	0.0000	10.4539	0.0000	0.0000
20	2.00	2.00	19.6790	0.2810	10.4854	0.3003	19.0741
40	2.00	4.00	19.6020	0.3580	10.4941	0.3826	38.1168
60	2.00	6.00	19.5200	0.4400	10.5033	0.4703	57.1249
80	2.00	8.00	19.3050	0.6550	10.5276	0.7000	75,9907
100	2.00	10.00	18.9750	0.9850	10.5651	1.0527	94.6509
120	2.00	12.00	18.5680	1.3920	10.6118	1.4877	113.0818
140	2.00	14.00	17.8800	2.0800	10.6916	2.2230	130.9441
160	2.00	16.00	17.5400	2.4200	10.7315	2.5864	149.0942
180	2.00	18.00	17.4150	2.5450	10.7462	2.7200	167,5009
200	1.00	19.00	16.5100	3.4500	10.8541	3.6872	175.0486
220	1.00	20.00	FALLA	19.9600	13.2887	21.3324	150.5037

Resistencia al esfuerzo cortante: 0.42 kg/cm2

Ángulo de fricción interna: 19°

Esfuerzo normal: 1.2 kg/cm²

.

= 135

136

AnexosV

Análisis geomecánico de una secuencia lacustre de la Cd. de México Facultad de Ingenieria, UNAM

DATOS GENERALES	DATOS DE PROCESO	
Ds = 3.640 cm Dm = 3.590 cm Di = 3.610 cm H1 = 8.500 cm H2 = 8.500 cm H3 = 8.520 cm Wo = 98.12 gr	D medio = 3.602 h media = 8.503 Area _o = 10.188 Volumen = 86.634 Peso vol = 1.133 W% = 377.00 Saturación= 97.50 E, Confinante = 0.80	cm cm cnr cnr g/cm g/cm % % kg/cm ²

PROFUNDIDAD: 6.60-6.70

TIEMPO	INC. PRESION	PTOTAL	MICROMETRO	DEF LINEAL	AREA CORR	DEF UNITARIA	ESF DESVIADOR
(min)	(kg)	(k.j)	(mm)	(mm)	(cm2)	E%	(kg/crn2)
0	0.00	0.00	17.5530	0.0000	10.1882	0.0000	0.0000
10	1.00	1.00	17.1530	0.4000	10.2363	0.4704	9.7691
20	1.00	2.00	16.9990	0.5540	10.2550	0.6515	19.5027
30	1.00	3.00	16.7840	0.7690	10.2812	0.9044	29.1796
40	0.50	3.50	16.6150	0.9380	10.3018	1.1031	33.9746
50	1.00	4.50	16.3310	1.2220	10.3367	1.4371	43.5341
60	1.00	5.50	15.9900	1.5630	10.3790	1.8381	52.9918
70	1.00	6.50	15.5910	1.9620	10.4288	2.3073	62.3273
80	1.00	7.50	15.1500	2.4030	10.4845	2.8260	71.5344
90	1.00	8.50	14.6550	2.8980	10.5477	3.4081	80.5866
100	1.00	9.50	14.0780	3.4750	10.6223	4.0866	89.4347
110	0.50	10.00	13.6400	3.9130	10.6796	4.6017	93.6362
120	0.50	10.50	13.2050	4.3480	10.7372	5.1133	97.7908
130	0.50	11.00	12.7840	4.7690	10.7935	5.6084	101.9129
140	0.50	11.50	12.2520	5.3010	10.8655	6.2340	105.8391
150	0.50	12.00	11.7320	5.8210	10.9369	6.8456	109.7205
160	0.50	12.50	11.1720	6.3810	11.0147	7.5041	113.4842
170	0.50	13.00	10.5350	7.0180	11.1047	8.2532	117.0677
180	0.50	13.50	9.8430	7.7100	11.2041	9.0670	120.4920
190	0.50	14.00	9.0850	8.4680	11.3150	9.9584	123.7297
200	0.50	14.50	8.3080	9.2450	11.4310	10.8722	126.8482
210	0.50	15.00	7.3900	10.1630	11.5711	11.9518	129.6328
220	0.50	15.50	6.3010	11.2520	11.7419	13.2325	132.0055
230	0.50	16.00	4.5010	13.0520	12.0356	15.3493	132.9394
240	0.50	16.50	FALLA	17.5530	12.8383	20.6425	128.5213

Resistencia al esfuerzo cortante: 0.26 kg tm

Angulo de fricción interna: 15°

Esfuerzo normal: 1.0 kg/cm²

=

Analisis Geomecanico de una secuancia lacustre de la Cd. de México Facultad delegonierla, UNAM

BIBLIOGRAFÍA

- Alegría Celaya N., Zamora Millán F. 1985 "Instructivo para el laboratorio de geotécnia (1ª. Parte)" F.I. UNAM.
- Arellano A.R.V., 1953 "Estratigrafía de la cuenca de México". Memorias del congreso científico mexicano. Vol. 13
- Bryan, Kirk, 1984. "Los suelos complejos y fósiles de la altiplaniciede México en relación a los cambiosclimáticos" Boletín de la S.G.M.. Tomo XIII.
- Carreón Freyre, D. " Propiedades y clasificación de los suelos residuales de México" Comunicación personal.
- 5. Carreón Freyre, D. "Origen y estructura de los minerales arcillosos en cuencas lacustres de la cuenca del valle de México". Comunicación personal.
- 6. CFE, 1988 "Estudios geofísicos del valle de México"
- 7. Davis, 1992. "Depositional Systems". Prentice Hall.
- De Terra, H., 1948. "Historia del valle de México en las postrimerías del Cuaternario en relación con el hombre prehistórico" Boletín de la Sociedad Geofísica Mexicana. Tomo XIII.
- Drever, J. I., 1985 "The Chemistry of Weathering" NATO ASI Series. Serie C: mathematical and physical sciences. Vol. 149.
- Gamma, C. y Carreón Freyre, D., 1998 " Génesis, identificacióny uso de los suelos en México" IMT, UNAM. Doc. Técnico N. 19 Sanfandila, Qro.
- 11. Gerald, A. Cole, 1988 " Manual de limnología". Edit. Hemisferio Sur.
- 12. Goodman, Richard E., 1989 "Introduction to rock mechanics" Edit. John Wiley and sons, New York. Chapter 3.
- 13. Haff, P. K., 1983. "Grain Flow as a fluid- mechanical phenomenom" Journal Fluid Mechanics. Vol. 134.
- 14. Jaime, A., Reséndiz, D. yRomo M. P., 1989 " El subsuelo del valle de México: Propiedades dinámicas y zonificación" Revista Ingeniería de la Facultad de Ingeniería UNAM, Vol LVIII, N. 2.
- Juárez Badillo, E., 1982. "Mechanical Characterization of Mexico City Clay" Simposio Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones.
- 16. Juárez Badillo, E., 1990. "Mecánica de suelos I y II" Editorial Limusa, México.
- 17. Juárez Badillo, E., y Auvinet, G., 2000 "Caracterización geoestratigráfica del subsuelo del valle de México" Reunión Nacional de Mecánica de Suelos.
- Lozano García, 1989. "palinología y paleoambientes pleistocénicos de la cuenca de México" Geofísica internacional. Vol. 28-2.
- 19. Marsal y Mazari, 1969 " El subsuelo de la Cd. de México" Tomos I y II. Facultad de Ingenierpia UNAM.
- Marsal, 1978. " La estratigrafía y sus implicaciones". El Subsuelo y la Ingeniería de Cimentaciones. Sociedad Mexicana de Mecánica de Suelos.
- Méndez, E. y Auvinet, G., 2000 "Aplicación de las tecnologías de información a la zonificación del subsuelod e la cuenca de México". XX Reunión Nacional de Mecánica de Suelos. Vol. 2. SMMS.
- Mooser, F., et al., 1974 "Paleomagnetic Investigations of Terciary and Quaternary Igneous Rocks: paleomagnetic and petrologic study of volcanics of the Valley of Mexico" Geologische Rundschau. Vol. 63 N. 2
- 23. Mooser, 1978 " Geología del relieno cuaternario de la cuenca de México" el subsuelo y la ingenieria de cimentaciones en el área urbana del valle de México. SMMS.

139

Analisis Geomecanico de una secuaricía lacustre de la Cd. de México Facultad delingenio na, UNAM

- Mooser, et al, 1986. "Caracterización geológica y geotécnica del valle de México" COVITUR. Sría. Gral. de Obras DDF. Serie 100 km de metro. N 1.
- 25. Mooser, 1990 "Estratigrafía y estructura del valle de México". El subsuelo de la cuenca del valle de México y su relación con la Ingeniería de cimentaciones a 5 años del sismo. SMMS
- Palmer, G. R. Y Troeh, R. F., 1989. "Introducción a la ciancia del suelo" Manual de Laboratorio. Edit. AGT.
- Rodríguez y Ochoa, 1989. 2 Estudio geoeléctrico del sistema acuífero de la cuanca de México" Geofísica Internacional Vol. 28-2.
- Ruiz V.M., Vázquez E. y Jaimes, R., 1988 "Modelo geológico de la cuanca de México" IGF-UNAM, vol. 28.
- 29. Skempton, A.W. and Northey, R.D. 1952 "the sensitivity of clays" Geotechnique 3. No. 1.
- Solleiro, E. et al , 1997 "Cristalografía de suelos" Apuntes de curso. Sociedad Mexicana de Cristalografía.
- Taméz, E., Santoyo, E. y Cuevas, A. 1992. "La catedral y el sagrario de la Ciudad de México" Vol. Raúl J. Marsal.
- 32. Taylor, D.W., 1948 "Fundamentals of soil mechanics", New York.
- Wilding, L. y Puentes, R. 1988 "Vertisoils: Their Distribution, Properties, Classification and Management".
- 34. Zeevaert, L. 1952 "Estratigrafía y problemas de ingeniería en los depósitos de arcilla de la Cd. de México" Revista Ingeniería, vol. 25, tomo 1.
- 35. Zeevaert, 1953 "Pore pressure measurements to investigate the main surce of surface subsidence in Mexico City" Simposio Internacional de mecánica de suelos e ingeniería de cimentaciones.
- Zeevaert, 1957 "Consolidation of Mexico City volcanic clays" Proc. Conf. Solis Enggng. Purposes ASTM, STP no. 32.