
	_
Año 🌲	
1994 59,440	
1995 65,661	
1996 67,094	
1997 76,797	i
1998 75,097	
1999 78,084	1
2000 79,993	
2001 81,684	-
2002 83,205	
2003 84,590	İ

3.3.2 Chicles

Observando el diagrama de dispersión de la producción de chicles y realizando el cálculo correspondiente al realizar diversas pruebas de ajuste, con el coeficiente de determinación resultante de cada modelo, llegamos a que esta serie se explica con un modelo de tipo potencial.

Por el método de mínimos cuadrados llegamos a que la ecuación que determina la mejor relación es;

 $v = 34692 \times 0.2418$

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TESIS CON FALLA DE ORIGEN

es decir,

$$ln y = ln(34692) + .2418 ln x$$

si
$$v'=\ln v$$
 $x'=\ln x$ $v \cdot b_{x'}=b_{x}$

si $y' = \ln y$, $x' = \ln x$ y, $b_1' = b_1$ y $b_0' = 10.4542 = \ln(34692) = \ln b_0$

Estadísticas de la regresión

Coeficiente de correlación múltiple	0.87980233
Coeficiente de determinación R^2	0.77405214
R^2 ajustado	0.69873619
Error típico	0.09585551
Observaciones	5

		ANÁLISIS E	DE VARIANZA		
	Grados de libertad	cuadrados	Promedio de los cuadrados		Valor critico de F
Regresión	1	0.094431612	0.09443161	10.2773996	0.04911212
Residuos		0.027564836			0.04011212
Total	4	0.121996449			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	10.4542668	0.083976654	124.490157	1.1428E-06	10 1870154	10 7215182
Variable X 1	0.24177239	0.075416275	3.20583836	0.04911212	0.00176392	0.48178086

Análisis de los residuales

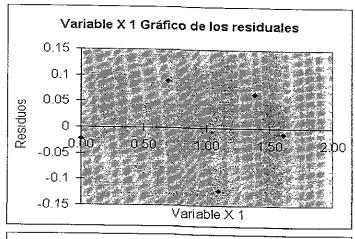
	Pronóstico		Residuos
Observación		Residuos	estándares
1	10.4542668	-0.021500699	-0.25900305
2	10.6218506	0.089659465	1.08006136
3	10.7198809	-0.121382605	-1.4622066
4	10.7894345	0.064780043	0.78035734
5	10.8433844	-0.011556204	-0.13920905

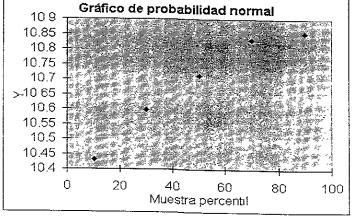
Resultados de datos de probabilidad

5 "	
Percentil	Y
10	10.4327661
30	10.5984983
50	10.7115101
70	10.8318282
90	10.8542145

Por el análisis anterior tenemos un buen ajuste debido a lo siguiente:

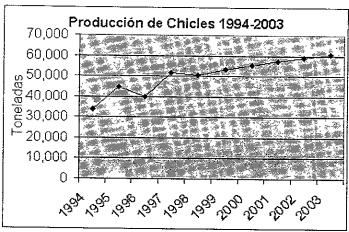
El coeficiente de determinación, R^2 = 0.77405214, señala que el modelo explica el 77% de las variaciones en la producción de chicles. El coeficiente de correlación, R = 0.87980233, señala fuerte asociación con el modelo, con un error tipico = 0.09585551.


Al ser SSE = 0.027564836 cercano a cero y $SSR \approx 0.094431612$ parecido a SST = 0.121996449. Si MSR = 0.09443161 = SSR/1, y MSE = 0.00918828 = SSE/3,

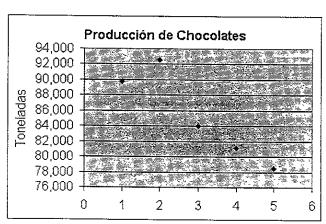

tenemos que $F = MSR/MSE = 10.2773996 > 10.13 = F_{.05}$, con 1 grado de libertad en el numerador y 3 grados de libertad en el denominador, llegamos a que las variables se relacionan según la hipótesis de la prueba F, como p = 0.04911212 es menor que .05 se confirma la conclusión de la prueba F.

En este caso $b_0' = 10.4542668 = \ln b_0$ (Intercepción) con un intervalo de confianza de β_0 del 95% en la transformación de (10.1870154, 10.7215182). es decir, existe el 95% de confianza que el coeficiente se encuentra en el intervalo, así Variable X1 =

 $b_1' = 0.24177239 = b_1$ cuenta con un intervalo de confianza del 95% de β_1 (0.00176392, 0.48178086).


La gráfica de los residuales y de probabilidad normal por la clara distribución que presentan en el plano indican que la ecuación es adecuada.

El análisis nos indica que el modelo es adecuado para la relación entre x y y. Al efectuar el pronóstico de acuerdo a la ecuación obtenida se espera lo siguiente:


F 100 100 100 100 100 100 100 100 100 10	
Año	
1994	33,954
1995	44,869
1996	40,075
1997	51,752
1998	50,606
E1 000000000000000000000000000000000000	53,504
2000	55,536
	57,358
	59,015
	60,538

3.3.3 Chocolates

De manera clara, se aprecia tendencia en la serie, al obtener el coeficiente de determinación de cada modelo posible, el modelo que presenta un mejor ajuste es el que tiene como variable dependiente a y, y como variable independiente a x^2 .

x	x ²	y
1	1	89,758
2	4	92,569
3	9	84,005
4	16	81,122
5	25	78,434

Por el método antes descrito se tiene que la mejor relación entre las variables se tiene con la siguiente ecuación:

$$y = 91350 - 561.19 x^2$$

Al realizar la transformación se llega a que,

si
$$y' = y$$
, $x' = x^2$, $b_1' = b_1 = -561.19$ y $b_0' = 91350 = b_0$, tal que $y' = b_0' + b_1 x'$

Estadísticas de la regresión

Coeficiente de correlación múltiple	0.92082465
Coeficiente de determinación R^2	0.84791803
R^2 ajustado	0 79722404
Error típico	2653.6713
Observaciones	5

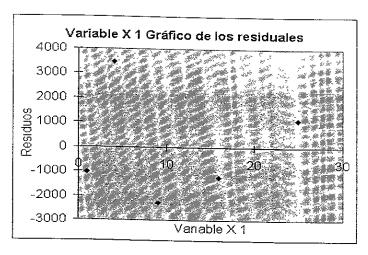
		ANÁLISIS	DE VARIANZA		
	Grados de libertad		Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	117785453	117785453	16.7262045	0.02642364
Residuos	3	21125914.1	7041971.36		
Total	4	138911368			

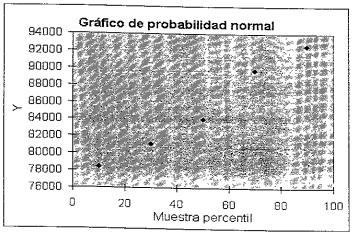
	s Error típico		Probabilidad Inferior 95% Superior 95%
Intercepción 91350.6102	1920.07269	47.5766416	2.0446E-05 85240.0762 97461.1442
Variable X 1 -561.19013	5 137.218076	-4.08976828	0.02642364 997.879704 124.500566

Análisis de los residuales

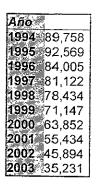
	Pronóstico		Residuos
Observación		Residuos	estándares
1	90789.4201	1031.7849	-0.44896388
2	89105.8497	3463.26836	1.50698312
3	86299.899	-2295.08291	-0.99866682
4	82371.568	-1249.38573	-0.54364924
5	77320.8568	1112.98517	0.48429682

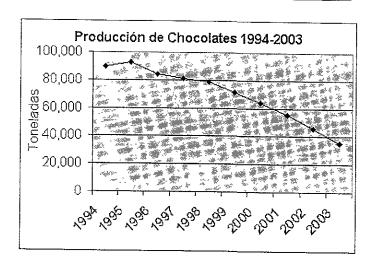
Resultados de datos de probabilidad


Percentil	Y
10	78433.842
30	81122.1823
50	84004.8161
70	89757.6352
90	92569.118


 R^2 = 0.84791803, como medida de bondad de ajuste indica que el 84% de las variaciones en la serie se explican con este modelo, el coeficiente de correlación, R = 0.92082465, indica una muy buena relación entre las variables y un error estándar del estimado o error típico = 2653.6713 que de acuerdo a la escala es muy bueno.

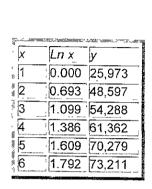
SSE = 21125914.1 es un buen ajuste, SSR = 117785453 similar a SST = 138911368. Si MSR = 117785453 = SSR/1, y MSE = 7041971.36 = SSE/3, entonces $F = MSR/MSE = 16.7262045 > 10.13 = F_{05}$, con 1 grado de libertad en el

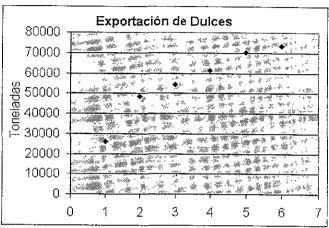

numerador y 3 grados de libertad en el denominador, rechaza la hipótesis nula y existe significancia al resultar la relación correcta. Como ρ = 0.02642364 es menor que .05 se llega a la misma conclusión de la prueba F.


Los coeficientes $b_0' = 91350.6102 = b_0$ (Intercepción) y $b_1' = -561.190135 = b_1$ (Variable X1) cuentan con los siguientes intervalos de confianza del 95% respectivamente, (85240.0762, 97461.1442) y (-997.879704, -124 500566).

El análisis de residuales confirma la utilidad del modelo, su gráfico presenta un patrón adecuado y la gráfica de probabilidad normal parece ser lineal. Al comprobar la validez, realizamos los pronósticos siguientes para los próximos años.

3.4 Pronósticos en Exportación


El comportamiento de cada división en valor y volumen es similar, por lo que nos limitaremos a estudiar las cifras expresadas en toneladas. A continuación se presentan las cifras reales de exportación utilizando los índices correspondientes.


EXP	DULCES		CHICLES		CHOCOLATE		CONFITERÍA	
	Tons.	Miles de pesos	Tons.	Miles de pesos	Tons.	Miles de pesos	Tons.	Miles de pesos
1994	25,973	149,867	7,651	77,977	6,374	42,308	39,998	270,152
1995	48,597	275,900	14,106	189,017	8,796	81,669	71,499	546,586
1996	54,288	337,826	15,548	198,983	10,291	103,708	80,127	640,517
1997	61,362	366,405	18,882	258,873	12,836	91,743	93,080	717,020
1998	70,279	454,192	18,296	272,023	9,149	86,098	97,725	812,313
1999	73,211	470,800	15,071	198,700	10,465	125,357	98,747	794,857
TMCA	23.03	25.73	14.52	20.57	10.43	24.26	19.81	24.09

Fuente:World Trade Atlas.

3.4.1 Dulces

Utilizando el mismo criterio, observamos que la gráfica de dispersión tiene una tendencia logarítmica, es decir, puede ser que una ecuación logarítmica se ajuste de manera adecuada a la serie de tiempo

Para llegar a la ecuación de regresión adecuada utilizamos el método de mínimos cuadrados, da como resultado la ecuación

$$y = 25849 Ln(x) + 27273.$$

Para adecuarla ésta a la forma lineal simple,

$$y' = b_0' + b_1 x'$$

tenemos que:

si
$$y' = y$$
,
 $x' = \ln x$,
 $b_1' = b_1 = 25849$ y
 $b_0' = b_0 = 27273$, tal que

Estadísticas de la regresión

Coeficiente de correlación múltiple	0.99312967
Coeficiente de determinación R^2	0.98630654
R^2 ajustado	0.98288318
Error típico	2256.50402
Observaciones	6

ANÁLISIS DE VARIANZA

	Grados de libertad	cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	1467002977	1467002977	288 110292	7 064F-05
Residuos	4	20367241.53	5091810.38		7.00 12 00
Total	5	1487370218			

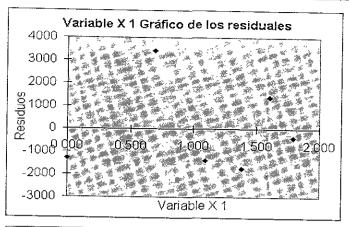
Coeficientes	-willow tripitor	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción 27273.3624	1907.164691	14.3004757	0.00013891	21978 2134	32568.5114
Variable X 1 25849.4054	1522.899242	16.973812			30077.6603

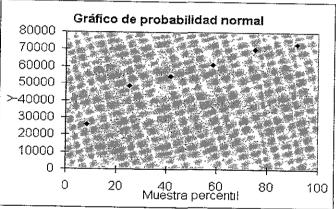
Análisis de los residuales

	Pronóstico		Residuos
Observación	J	Residuos	estándares
			-0.64449964
		3406.069569	1.68761124
3	55671.8368	-1383.377089	-0.68542426
4	63108.2473	-1746.402798	-0.86529325
5	68876.3754		0.69494795
6	73589.2792	-378.1084327	-0.18734205

Resultados de datos de probabilidad

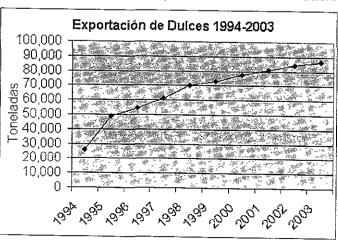
Percentil	Y
8.33333333	25972.5826
25	48596.8744
	54288.4597
58.3333333	61361.8445
75	70278.9739
91.6666667	73211.1708


 R^2 = 0.98630654 representa un muy buen ajuste, al utilizar este modelo, se explica el 98% de las variaciones en la exportación de dulces, R = 0.99312967, señala una fuerte asociación, el error estándar del estimado = 2256.50402 es muy bueno por ser bastante pequeño.

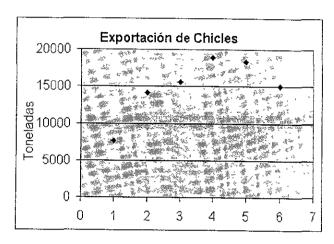

SSE = 20367241.53 es bastante bajo, lo que ocasiona que SSR = 1467002977 sea cercano a SST = 1487370218 al proporcionar un buen ajuste.

Si MSR = 1467002977 = SSR/1, por ser una variable independiente, y MSE = 5091810.38 = SSE/4, por ser n - 2 grados de libertad. El modelo parece ser una buena aproximación, al efectuar una prueba de significancia estadística, con $H_0:\beta_1=0$ y $H_a:\beta_1\neq 0$, a un nivel de confianza del 95%, $F=MSR/MSE=288.110292>7.71=F_{05}$, con un 1 g.l. en el numerador y 4 g.l. en el denominador, tenemos que se rechaza H_0 , es decir, existe significancia, al igual que p=7.064E-05 resulta menor que .05, lo que conlleva a la misma conclusión que F.

 b_0' = 27273.3624 = b_0 (Intercepción) y b_1' = 25849.4054 = b_1 (Variable X1) tienen como intervalo de confianza del 95%, de β_0 es (21978.2134, 32568.5114) y el intervalo de β_1 es (21621 1505, 30077.6603).


El análisis de residuales arroja que el modelo es adecuado, los residuos se encuentran distribuidos en forma de banda y la gráfica de probabilidad normal en forma de recta.

De lo anterior, concluimos que el modelo propuesto es adecuado para la exportación de dulces, enseguida se presentan los pronósticos con esta ecuación.


Año :
1994 , 25,973
1995 48,597
1996 54,288
1997 61,362
1998 70,279
1999 73,211
2000 77,573
2001 81,024
2002 84,069
2003 86,793

3.4.2 Chicles

Para empezar, el análisis de esta serie de tiempo formada por la exportación de chicle, analizando la gráfica de dispersión de puntos, se identifica una tendencia logarítmica a través del tiempo, según el coeficiente de determinación.

\$ 186.00mm	- 3000 - 390- 500- 500-	
X	Ln x	у
1	0	7,651
2	0.693	14,106
3	1.099	15,548
4	1.386	18,882
5	1.609	18,296
6	1.792	15,071
-		

Llegamos a la ecuación $y = 5139.8 \ Ln(x) + 9289.7$, para la forma lineal simple,

$$y' = b_0' + b_1 x'$$
, tomamos

$$y' = y$$
, $x' = \ln x$, $b_1' = b_1 = 5139.8$ y $b_0' = b_0 = 9289.7$

Aplicando regresión obtenemos lo siguiente:

Estadísticas de la regresión

Coeficiente de correlación múltiple	0.84615172
Coeficiente de determinación R^2	0.71597273
R^2 ajustado	0.64496592
Error típico	2398.36985
Observaciones	6

		ANÁLISIS DE VARIANZA					
	Grados de libertad		Promedio de los cuadrados	F	Valor crítico de F		
Regresión	1	58000101.5	58000101.5	10 083155	0.0336832		
Residuos	4	23008711.8	5752177.94				
Total	5	81008813.3					

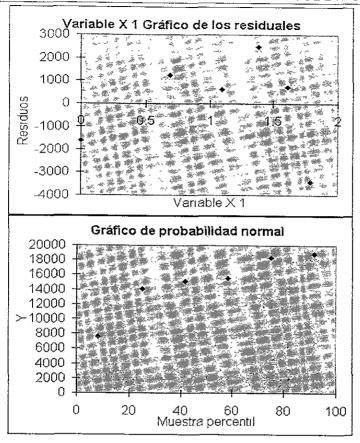
Coeficientes Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción 9289.69881 2027.06765	4.58282624	0 01016173	3661.64511	14917.7525
Variable X 1 5139 83806 1618 64353	3.17539839	0.0336832	645.75385	9633 92228

Análisis de los residuales

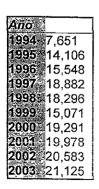
	Pronóstico		Residuos
Observación	para Y	Residuos	estándares
1		1 .000 -00	-0.763695
2	12852.3631	1253.68191	0.58442153
3	14936.3881	611.429647	0.28502657
4	16415.0273	2467.2464	1.15014176
5	17561.9491	734.157568	0.34223792
6	18499.0523	-3428.26205	-1.59813279

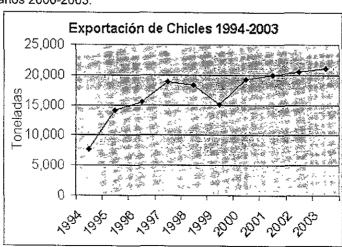
Resultados de datos de probabilidad

Percentil	Y
8 33333333	7651 44535
25	14106.045
	15070.7903
58.3333333	15547.8177
75	18296.1066
91.6666667	18882.2737

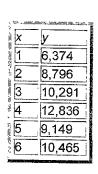

Con SSE = 23008711.8, SSR = 58000101.5 y SST = 81008813.3, se obtiene un coeficiente de determinación, $R^2 = 0.71597273$, el 71% de las variaciones en la producción de chicles se explican con este modelo, o bien, es el porcentaje de la suma total de cuadrados (SST) que se puede explicar aplicando la ecuación de regresión logarítmica. Otra medida de bondad de ajuste, el coeficiente de correlación, R = 0.84615172, funciona de manera favorable, además de presentarse un error típico = 2398.36985 con este modelo.

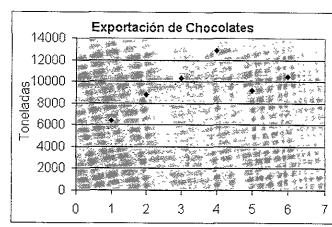
Para identificar si las dos variables se relacionan procedemos a realizar una prueba de significancia. Si MSR = 58000101.5 y MSE = 5752177.94, al efectuar la prueba, $F = MSR/MSE = 10.083155 > 7.71 = F_{05}$, con 1 grado de libertad en el numerador y 4 grados de libertad en el denominador, concluimos que existe significancia estadística, como se da con p = 0.0336832.


Los coeficientes de la ecuación son b_0' = 9289.69881 = b_0 y b_1' = 5139 83806 = b_1 donde el intervalo de confianza del 95% de β_0 es (3661.64511, 14917.7525), mientras que el de β_1 es (645.75385, 9633.92228).


Al obtener las cifras de los residuales y los percentiles correspondientes se tiene una distribución favorable.

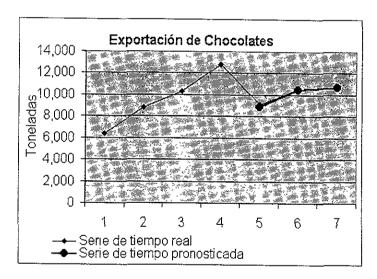
Por los resultados obtenidos individualmente podemos decir que el modelo se puede utilizar para predecir y se cumplen los supuestos acerca del error.


Utilizando la ecuación y = 5139.8 Ln(x) + 9289.7 tenemos los siguientes pronósticos para los años 2000-2003.



3.4.3 Chocolates

Al apreciar la gráfica se vislumbra una serie de tiempo sin tendencia a través del tiempo. Con el coeficiente de determinación (r^2) como medida de bondad de ajuste, se realizaron varias pruebas de ecuaciones, y el ajuste de éstas a los datos, donde llegamos a la conclusión que no presenta grandes efectos de tendencia, es decir, la serie es estable con algunas variaciones, por lo que resultan adecuados los métodos de Suavizamiento


Al efectuar los tres métodos de pronóstico de Suavizamiento antes explicados, obtenemos diversos pronósticos que se miden en precisión de acuerdo al valor del promedio de los errores al cuadrado (MSE), en la siguiente tabla se muestra el valor MSE en cada método con diversos valores según corresponda.

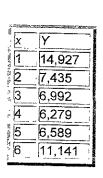
	PROMEDIOS MÓVILES	PROMEDIOS MÓVI PONDERADOS		LES SUAVIZ EXPO	
N	MSE	n Factores de ponderación	MSE	Alfa	MSE
1	5,980,245	4 1/10,1/10,2/10,6/10	2,387,589	0	17,484,780
2	6,067,980	1/10,1/10,4/10,4/10	1,337,755	0.1	12,725,465
3	7,075,299	1/10,2/10,2/10,5/10	1,559,190	0.2	9,804,667
4	109,617	1/10,2/10,3/10,4/10	1,078,846	0.3	8,031,710
5	952,722	1/10,3/10,3/10,3/10	571,621	0.4	6,962,030
6	0	3/10,3/10,3/10,1/10	26,273	0.5	6,321,134
<u> </u>		4/10,3/10,2/10,1/10	263,097	0.6	5,948,327
% ***		4/10,4/10,1/10,1/10	495,348	0.7	5,756,391
3		5/10,2/10,2/10,1/10	510,099	8_0	5,703,896
~[_		6/10,2/10,1/10,1/10	1,218,936	0.9	5,777,268
*L				1	5,980,245

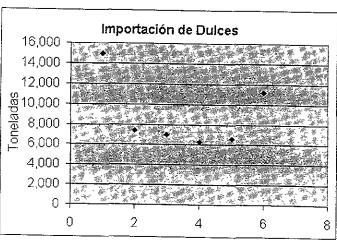
El método de Promedio Móviles Ponderados parece presentar la medida de error más baja, a continuación aparece la tabla que muestra el cálculo de este pronóstico al utilizar n = 4 que se obtuvo como mejor medida en Promedios Móviles, para posteriormente elegir los pesos de 3/10,3/10,3/10 y 1/10 que tienen como medida de error 26,273.

	Serie de	Serie de tiempo:	Errora
3/10,3/10,3/10,1/10	tiempo real	pronosticada	Error cuadrado
	374		
	3,796		4 - 1 - 1
	0,291 2,836		
		3.922 3.922	200
The second of th		10.492 =	228 - 51,842 27 - 705
			Z. MSE≡ 26,273

Para el siguiente año se espera una exportación de chocolate de 10,730 toneladas.

3.5 Pronósticos en Importación

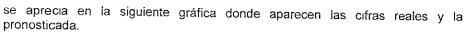

Dentro de las importaciones la tasa de cambio juega un papel importante, debido a que si la tasa de cambio del dólar se incrementa los productos que importamos los pagamos a precios excesivos. A continuación se presentan las cifras reales de importación.

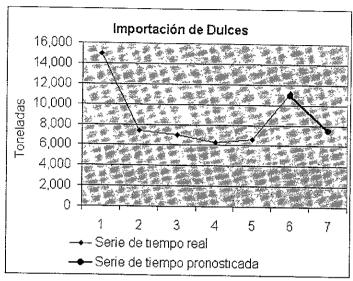

IMP	DULCE	S	CHICL	ES	СНОСС	LATES	CONFIT	ERÍA
	Tons	Miles de pesos	Tons.	Miles de pesos	Tons.	Miles de pesos	Tons.	Miles de pesos
		147,524	6,200	74,297	25,707	305,195	46,833	527,016
1995	7,435	84,647	1,826	31,164	18,093	248,222	27,354	364,033
1996	6,992	87,134	880	13,619	23,423	238,443	31,296	339,196
1997	6,279	71,771	903	13,547	14,380			288,276
1998	6,589	87,665	1,334	20,573				381,695
1999	11,141	127,289	922	15,712	21,019			452,801
TMCA	-5.68	-2.91	-31.69	-26.71	-3.95			-2.99

Fuente:World Trade Atlas

3.5.1 Dulces

Esta serie de tiempo parece no presentar grandes efectos de tendencia, al utilizar el coeficiente de determinación para verificarlo vemos que estos resultan demasiado bajos, por lo que consideramos más certeros los métodos de Suavizamiento.

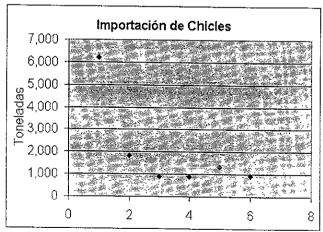

Con los métodos de Suavizamiento se obtiene la siguiente tabla que muestra la medida de precisión en cada proceso, el método de Promedio Móviles Ponderados y el Suavizamiento Exponencial con la constante de Suavizamiento grande aparecen con los mejores resultados de acuerdo a las características de la serie de tiempo.


# K	DROMEDIOC	tengr, la				
	PROMEDIOS MÓVILES		PROMEDIOS MÓVI		VIZAMIENTO	
all I			PONDERADOS		EX	PONENCIAL
ı,	MSE	็ม	Factores de ponderación	MSE	alfa	MSE
<u>*</u> 1	15,530,041	5	1/10,1/10,2/10,2/10,4/10	13,070,105	0	55,540,459
[*] 2	10,144,079		1/10,1/10,2/10,3/10,3/10	13,295,137	0.1	39,623,395
3	10,942,829		1/10,2/10,2/10,2/10,3/10	12,465,550	0.2	30,438,150
4	12,009,850		1/10,1/10,1/10,2/10,5/10	13,363,546	0.3	25,090,159
<u></u> 3 5	7,273,209		2/10,2/10,2/10,2/10,2/10	7,273,209	0.4	21,854,354
6	0		3/10,2/10,2/10,2/10,1/10	3,471,212	0.5	19,757,926
*			5/10,2/10,1/10,1/10,1/10	42,004	0.6	18,289,430
*	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.			·	0.7	17,204,159
*			4/10,2/10,2/10,1/10,1/18	996,722	8.0	16,400,199
March Aller					0.9	15,844,158
ý.					1	15,530,041

Al utilizar el método de Promedios Móviles para elegir n, resulta 5 el número a utilizar en Promedios Móviles Ponderados, se escogen diferentes pesos para n = 5, mientras que para Suavizamiento Exponencial al probar con diversos valores de alfa resultan más precisos los números grandes. Así entonces, el método de promedios móviles ponderados con 5/10,2/10,1/10,1/10 y 1/10 como pesos tiene el promedio de los errores al cuadrado (*MSE*) más favorable, el procedimiento es el siguiente:

3/10-2/10-1/10-1/10-1/10) 🕶 💉 feal 🗽	o Serie de tiempo • pronosticada	Enor - cuadrado
and the second	14.927		
	7.435	1.04	
	6.002		
	6.279		
	6 589 1		
Activities to the second	11 141	10:036	205@42,004
		7517	

Ya que los métodos de Suavizamiento resultan favorables al corto plazo, el pronóstico para el siguiente año se espera sea aproximadamente de 7,517. como



3.5.2 Chicles

En la gráfica, la serie de tiempo de importaciones de chicle tiende a disminuir, por lo que presenta un efecto de tendencia, efectuando los cálculos correspondientes para obtener el tipo de tendencia observamos que la relación entre las variables parece ser de tipo potencial de acuerdo a r^2 .

- ALTHOUSE	· Carrier		
X	У	Ln x	Ln y
1	6,200		8.732
2	1,826	0.693	7.510
اً 3	880	1.099	6.780
. 4	903	1.386	6.806
5	1,334	1.609	7.196
6	922	1.792	6.826

Llegamos a que la ecuación es $y=4439.8x^{-0.9939}$, aplicando la transformación necesaria se tiene $\ln y=\ln(4439.8)-0.9939\ln x$

si $y' = \ln y$, $x' = \ln x$, $b_1' = b_1 = -0.9939$ y $b_0' = 8.3984 = \ln(4439.8) = \ln b_0$

Estadísticas de la regresion	ón
Coeficiente de correlación múltiple	0.87316872
Coeficiente de determinación R^2	0.76242362
R^2 ajustado	0.70302952
Error típico	0.41105512
Observaciones	6

		ANÁLISIS D	E VARIANZA		
	Grados de libertad		Promedio de los cuadrados		Valor crítico de F
Regresión	1	2.16896829	2.16896829	12.8366905	0.02310914
Residuos	4	0.67586526			5.02510511
Total	5	2.84483355			

Co	eficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción 8.3		0.34741787	24.1736595	1.7372E-05	7.43377265	9.36294994
Variable X 1-0.9	9394342	0.27741831	-3.58283274	0.02310914	-1.76418173	-0 2237051

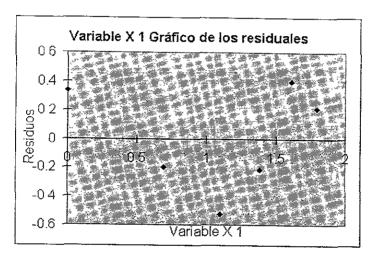
Análisis de los residuales

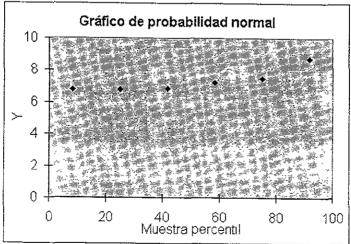
Resultados de datos de probabilidad

	Pronóstico		Residuos
Observación	para Y	Residuos	estándares
1	8.3983613	0.33395692	0.9083336
2	7.70941222	-0.19926706	-0.54198899
3	7.30640284	-0.52651452	-1.43207345
4	7.02046314	-0.21437681	
5	3.79867108	0.39721662	
6	6.61745377	0.20898486	

Percentil	Y
8.33333333	6.77988832
25	6.80608633
41.6666667	6.82643863
58.3333333	7.1958877
75	7.51014515
91.6666667	8.73231821

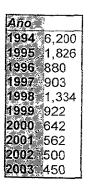
 R^2 = 0.76242362, señala que el 76% de la suma total de cuadrados se puede explicar aplicando esta ecuación. El error típico = 0.41105512 es casi nulo.

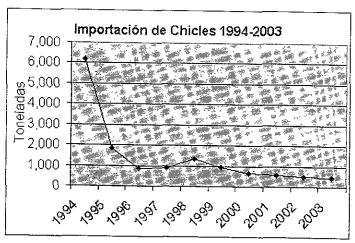

SSE = 0.67586526 cercano a cero, por lo que SSR = 2.16896829 similar a SST = 2.84483355.


Aunque el coeficiente de determinación es satisfactorio, hay que realizar el análisis de adecuación del modelo con una prueba de significancia, de acuerdo a la prueba F y su estadístico de prueba, tenemos que si MSR = 2.16896829 y MSE = 0.16896632, F = 12.8366905 > 7.71 = F $_{\infty}$, con 1 grado de libertad en el numerador

y 4 grados de libertad en el denominador, existe significancia al rechazar H_0 , por otro lado, p = 0.02310914 refuerza esta conclusión.

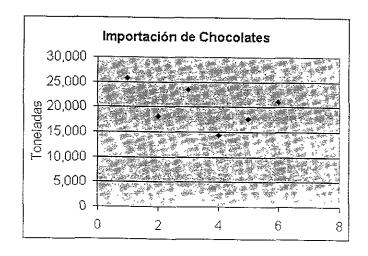
Además, $b_0'=8.3983613=\ln b_0$ (Intercepción) y $b_1'=-0.99394342=b_1$ (Variable X1). El intervalo de confianza de β_0 es (7.43377265, 9.36294994) y el de β_1 es (-1.76418173, -0.2237051) con el 95% de confianza.


A continuación se presentan las gráficas de residuales.



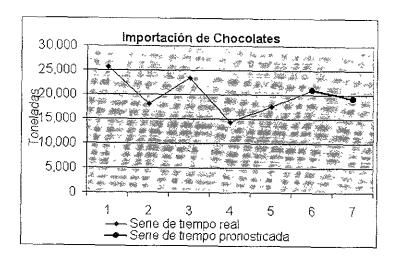
Con base en lo anterior, se fundamenta que la ecuación se ajusta de forma adecuada a los datos, a continuación aparecen los datos reales de 1994-1999,

mientras que para los siguientes años se da el pronóstico según la ecuación obtenida.



3.5.3 Chocolates

Esta serie de tiempo parece ser estable, sin tendencia, al realizar los cálculos del coeficiente de determinación de varios modelos, estos son muy bajos, por lo que se opta por métodos de Suavizamiento, como se explica enseguida.


Utilizando los métodos de Suavizamiento obtenemos los siguientes resultados:

(本)							
. PROMEDIOS			PROMEDIOS MÓVILES			SUAVIZAMIENTO	
MÓVILES			PONDERADOS			EXPONENCIAL	
N	MSE	n	Factores de ponderación	MSE	alfa	MSE	
1	38,050,361		1/10,1/10,2/10,2/10,4/10		0	56,003,642	
2	17,599,785		1/10,1/10,2/10,3/10,3/10		0.1	42,334,377	
3	24,075,367		1/10,2/10,2/10,2/10,3/10		0.2	34,494,654	
4	7,603,096		1/10,1/10,1/10,2/10,5/10	7,008,216	0.3	30,265,206	
5	1,414,557		2/10,2/10,2/10,2/10,2/10	1,414,557	0.4	28,282,536	
6	0		3/10,2/10,2/10,2/10,1/10	139,479	0.5	27,746,930	
			5/10,2/10,1/10,1/10,1/10	975,315	0.6	28,221,159	
		·	3/10,3/10,2/10,1/10,1/10	£	0.7	29,497,674	
<u> </u>		C.	4/10,2/10,2/10,1/10,1/18	576,439	8.0	31,516,752	
					0.9	34,322,766	
					1	38,050,361	

De lo cual podemos concluir que el método de Promedios Ponderados es aquel que cuenta con la mayor precisión.

El pronóstico para el siguiente año es de 19,188 toneladas.

	Serie de tien	Error at	
3/410,3/410,2/410,4/40,4/4	0 - real as	≽ ∗ , proπosticada∗ Er	ror Cuadrado
for the second	25 707	The second second	CALL TANK
2	- 18 093 P		Application of the second
	23/428		transfer to the
41-46-45-45-55	14,380		
	17,548		
	21.019	7 ± 21.017.	2.14 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x
	60.00000000000000000000000000000000000	19,188	

3.6 Perspectivas

Al efectuar el análisis de cifras reales de la industria, se identifica de manera clara el comportamiento de división en esta industria, así como lo que se espera de ésta en el mediano y corto plazo, que es en muchos casos, tendencias de crecimiento favorables. A pesar del fuerte ataque de las compañías extranjeras, la fuerte competencia derivada de acuerdos comerciales y la dificultad de abasto de materiales, las compañías mexicanas han luchado por mantener la industria confitera mexicana en un buen lugar en el mercado, impulsando a esta industria al crecimiento sostenido.

Las tres industrias requieren de apoyo, como cualquier industria mexicana, unas para mejorar, como es el caso del dulce y chicle, y otras para mantenerse vigentes como la división de chocolates. En términos generales, se creé que este ritmo se mantendrá, ya que el gobierno ha empezado a tomar acciones en apoyo a esta industria. El gobierno en la industria alimentaría ha lanzado un programa llamado México Exporta Confitería que pretende apoyar a empresas exportadoras y potenciales, así como a aquellas que sustituyen importaciones, por otra parte, han implementado programas de financiamiento para el pequeño y mediano empresario, además de ferias y eventos nacionales e internacionales para promocionar la industria mexicana, lo que respecta a la asociación y empresarios realizan esfuerzos para promover el prestigio de sus productos y mantenerse en la lucha por el mercado nacional.

La Confitería mexicana cada vez se valora más en el exterior, esto ha derivado que mayor porcentaje de la producción pueda ser destinado a las exportaciones, que han crecido en promedio 25% anualmente.

La división del dulce muestra avances importantes, ya que la actividad exportadora ha crecido constantemente y mantendrá este ritmo, la importación se espera disminuya en el corto plazo, la producción necesita ser apoyada aún más para mantener el ritmo de crecimiento en las exportaciones. Esta división es la más importante para México en este ramo, y lo seguirá siendo, cada producto puede encontrar un nicho de mercado en algún país, los gustos en cada región son diferentes y resulta un producto muy adaptable sin grandes necesidades económicas (donde la mano de obra puede ser aprovechada). En dulces se tienen registradas 159 empresas que exportan a diversos países, en muchos de ellos nuestro país se ubica como principal proveedor, con una tendencia creciente.

De las tres divisiones, el chicle es la que ha presentado el mejor crecimiento, en este caso cada una de las variables han mostrado tendencia positiva como son potencial y logarítmica, de acuerdo a lo anterior, se espera que la industria continué esta tendencia, en la producción y exportaciones se tendrá un crecimiento rápido.

Las importaciones también seguirán creciendo desafortunadamente, aunque a un ritmo más lento, esto puede ser aprovechado por fabricantes nacionales. Aquí hay que elegir el producto adecuado al mercado objetivo, este rubro es dominado por compañías extranjeras, no se tiene la tecnología suficiente, ni el capital necesario para poder competir con éstas directamente en el corto plazo, pero puede avanzarse cada vez más.

La industria chocolatera, la más baja de las tres divisiones, decrece y de acuerdo a los pronósticos, el comercio exterior permanecerá estable, sin aumentar y disminuir a gran medida, pero la producción se espera siga decreciendo de no ofrecerse alternativas a los productores, la maquinaria es muy costosa para competir con las grandes compañías extranjeras, el descuido y falta de apoyo a las empresas nacionales ha originado que esta industria sea cada vez menor, esto se refleja en la producción y exportación, lo que en gran parte origina que el país satisfaga las necesidades con importaciones. Para incrementar la industria debe elegirse el producto selectivamente, aquellos productos con alto valor agregado, la mano de obra es una ventaja de los fabricantes mexicanos, a pesar de la competencia, si se activa esta industria y se apoya en general la industria del cacao puede tener buenos resultados, ya que en la mayor parte de los países se consume en grandes cantidades hablando de las grandes potencias, sin embargo, éstas también son buenas receptoras de productos de chocolate.

Tomando en cuenta lo anterior, según fuentes oficiales, se identificaron 150 empresas productoras interesadas en exportar, de las cuales 48 podrían estar exportando en el corto plazo.

Las compañías extranjeras que fabrican en nuestro país aportan beneficios entre ellos fuentes de empleo y entrada de divisas por ser inversión extranjera. Si se apoyan los productos mexicanos disminuyen las importaciones.

CONCLUSIONES

El comercio exterior como actividad relevante y tema de vanguardia en la situación económica y financiera de México, requiere ser impulsada a gran escala, y tomar en cuenta diversos factores que intervienen en el crecimiento de la economía, como es la diversificación de industrias con potencial, que conllevan en beneficios para el país, y no cerrar las posibilidades al cargar todo el desempeño del comercio exterior a un solo sector, por otra parte, promover las exportaciones con alto grado de integración nacional que maximizan los beneficios adquiridos.

El sector de alimentos es un sector que puede con facilidad convertirse en un sector mayor, al igual que otros más, por la gran aceptación que tienen varios productos mexicanos en el mercado exterior, la industria de la Confiteria es una de las industrias que puede encontrar nichos de mercado externos, principalmente en dulces y chicles donde se pueden explotar todas aquellas ventajas que tiene nuestro país. Existen otras industrias que no sólo se dirigen al comercio exterior, como la del chocolate, que más aún, requieren ser impulsadas para satisfacer el consumo nacional.

El crecimiento económico en gran medida depende de la importancia y análisis de variables relacionadas con la actividad industrial, el poder identificar industrias prometedoras, es decir, el poder tener una idea de lo que vendrá, esto puede facilitarse con la ayuda de pronósticos de series de tiempo de la industria, ya que el empresario puede planear y hacer mejor uso de una estrategia más certera, de acuerdo a las perspectivas de la industria. Los pronósticos cuantitativos es un procedimiento que puede beneficiar a toda persona que requiera información acerca de una o varias variables, en forma numérica.

Algunos empresarios no tienen otra opción que importar insumos, por la escasa producción y restricciones existentes, como es el caso del cacao, esto se puede canalizar de tal manera que se fabriquen productos con alto valor agregado y el producto terminado puede destinarse a la exportación.

Aquellas industrias o sectores que cuentan con un sólido crecimiento deben recibir apoyo por parte del gobierno, asociaciones, empresarios y consumidor, éste último clave en el crecimiento, ya que como mexicanos debemos dar preferencia a productos mexicanos, no sólo estaremos ayudando a esa empresa mexicana, sino a aquellos trabajadores y microempresas que contribuyen directa o indirectamente en la elaboración de éste, entre mayor grado de integración nacional tenga el producto se generarán divisas y no se perderán fuentes de empleo, para depender de transnacionales.

BIBLIOGRAFIA

Anderson, Sweeney, Williams, Estadística para administración y economía, 7ª edición. International Thomson Editores, 1999. Anderson, Sweeney, Williams, Métodos Cuantitativos para los Negocios, 7ª edición, International Thomson Editores, 1999. A Bancomext, México Exporta Alimentos Procesados y Bebidas. Programa de Apoyo Integral, 2000. Edmond Malinvaud, Métodos Estadísticos de la econometría, Ediciones Ariel, 1967 Euromonitor International Inc., The World Market for Confectionery. Euromonitor Plc, Gran Bretaña, 1998. George C Canavus, Probabilidad y Estadística. Aplicaciones y Métodos, Mc. Graw Hill, 1988 ☐ John E Freud, Frank J Williams, Elementos Modernos de Estadística Empresarial, Primera Edición, Prentice Hall hispanoamericana, 1979 I J J Thomas, Introducción al análisis estadístico para economistas, Primera Edición, Marcombo Boixareu Editores, 1986 R.J. Allard, Introducción a la Econometría, Primera edición, Limusa, 1980. Stephen P Shao, Estadística para economistas y administración de empresas, Décima primera Edición, Herrero Hermanos, 1976 Ta-Lun-Chou, Análisis Estadístico, Segunda Edición, Interamericana, 1977

DOCUMENTOS Y PRESENTACIONES

- Act. Enrique Vilatela. México y el Comercio Exterior. Encuentro Académico Actuarial, Bancomext, 1999.
- Enrique Vilatela Riba, Transformación, Avances y Retos del sector exportador mexicano. Bancomext; Congreso Internacional de Economía Universidad de las Américas, 1999.
- Rabobank International, The Confectionery Industry in Mexico, Rabobank International, 1999.

☐ Ing. María de la Luz Romo Ramírez, Alcance de los Productos Mexicanos en el Exterior Asesoría y Promoción en el Mundo, Bancomext, 1999
☼ Bancomext, México Exporta Artículos de Confitería, 1999.
├─ Ing. María de la Luz Romo, México Exporta Confitería, Bancomext, 2000.
È El Financiero 24 Agosto 1999
PAGINAS DE INTERNET
www.aschoco.org.mx www.bancomext.gob.mx www.candyusa.org www.inegi.gob.mx www.mexflavours.com.mx Infosel Financiero Notimex Reforma