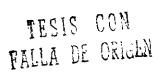


MEXICO DE

UNIVERSIDAD NACIONAL AUTONOMA

FACULTAD DE INGENIERIA

"ESTUDIO DEL MODELO DE STREETER Y PHELPS PARA DETERMINAR LA CAPACIDAD DE ASIMILACION Y DILUCION DE CONTAMINANTES EN CORRIENTES SUPERFICIALES"


> E S I S QUE PARA OBTENER TITULO EL DE INGENIERO CIVIL RESE N 1 A : **MIGUEL ANGEL HERNANDEZ MERCADO**

MEXICO, D. F.

1999.

11215

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIERIA DIRECCION FING/DCTG/SEAC/UTIT/043/98

Señor
MIGUEL ANGEL HERNANDEZ MERCADO
Presente

En atención a su solicitud me es grato hacer de su conocimiento el tema que propuso el profesor ING. MIGUEL ANGEL GONZALEZ LOPEZ, que aprobó esta Dirección, para que lo desarrolle usted como tesis de su examen profesional de INGENIERO CIVIL.

"ESTUDIO DEL MODELO DE STREETER Y PHELPS PARA DETERMINAR LA CAPACIDAD DE ASIMILACION Y DILUCION DE CONTAMINANTES EN UNA CORRIENTE SUPERFICIAL"

INTRODUCCION

- I. LEGISLACION NACIONAL EN MATERIA DE USO Y MANEJO DEL AGUA
- II. GENERALIDADES SOBRE LA CONTAMINACION DEL AGUA
- III. PRINCIPALES FACTORES QUE INTERVIENEN EN LA CAPACIDAD DE ASIMILACION Y DILUCION DE CONTAMINANTES EN CORRIENTES SUPERFICIALES
- IV. MODELO DE STREETER Y PHELPS
- V. APLICACION EN LA COMPUTADORA DEL MODELO MATEMATICO
- VI. CASO ESTUDIO CONCLUSIONES

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el Título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar Examen Profesional.

Atentamente

"POR MI RAZA HABLARA EL ESPIRITU"

Cd. Universitaria a/16 de abril de 1998.

EL DIRECTOR

ING. JOSE MANUEL COVARRUBIAS SOLIS

JMCS/GMP*lmf

COLUMN GCI INICACIO GI	orroofer & 1 melbe bara as	tollimat in represent the
asimilación v dilución	de contaminantes en una	corriente superficial

DEDICATORIA

Con mucho amor, respeto y admiración a mi madre *Elena Hernández Mercado* y con profundo agradecimiento a la memoria de mi madrina *Fernandina Poulat Popocati*.

Y a todas aquéllas personas que de una forma u otra han contribuido para que hoy cumpla una de mis más anheladas metas. Gracias.

AGRADECIMIENTO

Estoy especialmente agradecido con el ingeniero Miguel Ángel González López, ya que a él se debe en primer lugar que éste trabajo haya llegado a buen término, pues su estímulo, consejos y apoyo técnico lo hizo materialmente posible.

También quiero agradecer de manera afectuosa, a los ingenieros Alba Beatriz Vázquez González y Enrique César Valdez, por el interés mostrado para la realización de ésta tesis y el apoyo técnico y bibliográfico que fué fundamental en éste logro.

Mi más sincero agradecimiento al ingeniero Carlos M. Menéndez Martínez por brindarme la oportunidad de desarrollarme profesionalmente, contribuyendo de manera significativa a la realización de éste proyecto.

A Miguel Ángel Amado Olmos, que colaboró con material para las impresiones; y a Juan Paulino Hernández Islas, que cooperó con las traducciones. El apoyo incondicional de éstas personas ha sido una ayuda inapreciable.

Por último agradezco a todas aquellas personas que directa o indirectamente contribuyeron para que haya sido realizado éste sencillo trabajo.

ÍNDICE

			Pág.
	INTR	ODUCCIÓN	
١.	LEGI	ISLACIÓN NACIONAL EN MATERIA DE USO Y MANEJO DEL AGUA.	
	1.1	Ley de Aguas Nacionales.	1.1
		1.1.1 Reglamento de la Ley de Aguas Nacionales.	1.3
	1.2	Ley General del Equilibrio Ecológico y la Protección al Ambiente.	1.4
	1.3	Ley Federal de Derechos.	·, I.6
	1.4	Normas Oficiales Mexicanas.	1.20
		I.4.1 NOM-001-ECOL-1996	1.21
II.	GENI	ERALIDADES SOBRE LA CONTAMINACIÓN DEL AGUA	
	11.1	Clasificación y descripción de los contaminantes del agua.	11.2
	11.2	Clasificación de las fuentes de contaminación del agua.	11.3
	11.3	Índice de calidad del agua (ICA).	11.4
	11.4	Programa de aforo.	11.6
		II.4.1 Aforo en corrientes.	11.7
		II.4.2 Aforo en descargas.	11.12
	11.5	Programa de muestreo.	II.15
	11.6	Análisis de campo y laboratorio.	11.22
		II.6.1 Determinaciones en campo.	II.22
		II.6.2 Determinaciones en laboratorio.	II.23
	11,7	Capacidad de asimilación y dilución.	II.28

Indice IND.1

HI.		_	FACTORES QUE INTERVIENEN EN LA CAPACIDAD DE ASIMILACIÓN CONTAMINANTES EN CORRIENTES SUPERFICIALES.	Y
	III.1	Advecci	ión y difusión.	III.2
	111.2	Caracte	erísticas hidráulicas de la corriente.	III.4
	111.3	Factore	s que afectan la autodepuración de las corrientes.	111.7
IV	MODE	LO DE S	TREETER Y PHELPS	
	IV.1	Represe	entación conceptual.	IV.1
	IV.2	Represe	entación funcional.	IV.2
		IV.2.1	Modelo de Streeter y Phelps.	IV.2
		IV.2.2	Ecuación de transporte de masa.	IV.7
		IV.2.3	Flujo incremental.	IV.8
		IV.2.4	Clorofila a.	IV.8
		IV.2.5	Ciclo del nitrógeno.	IV.13
		IV.2.6	Ciclo de fósforo.	IV.16
		IV.2.7	DBO carbonoso.	IV.18
		IV.2.8	Coliformes.	IV.19
		IV.2.9	Parámetro no conservativo arbitrario.	IV.20
		IV.2.10	Coeficientes dependientes de la temperatura.	IV.20
		IV.2.11	Representación funcional de la temperatura.	IV.20
		IV.2.12	Definición de la energía que pasa a través de la interfase aire-agua (Hn).	IV.21
		IV.2.13	Radiación solar neta de onda corta.	IV.22
		IV.2.14	Radiación atmosférica de onda larga.	IV.22
		IV.2.15	Radiación de salida de la superficie del agua.	IV.23
		IV.2.16	Evaporación.	IV.23
		IV.2.17	Conducción.	IV.24
		IV.2.18	Oxígeno disuelto.	IV.25
V.	APLIC	ACIÓN E	EN LA COMPUTADORA DEL MODELO MATEMÁTICO	
	V.1	Progran	mas QUAL2E para windows.	V.1
	V.2	Descrip	oción del software.	V.5
		V.2.1	Descripción de las pantallas del modelo QUAL2E.	V.6

	V.2.2	Corridas.	V.30
	V.2.3	Gráficas.	V.31
	V.2.4	Diagrama del sistema.	V.34
V.3.	Valor d (calibra	e ajuste del modelo a los parámetros obtenidos en campo y laboratorio ción).	V.35
CASO	ESTUD	0	
VI.1	Región	y cuenca hidrológica.	VI.1
VI.2	Hidrom	etría.	VI.8
VI.3	Progra	ma de aforos, muestreos y análisis de muestras del Río Blanco.	VI.12
VI.4	Estacio	ones de monitoreo de calidad del agua.	VI.17
VI.5	Aplicac	ción del modelo matemático.	VI.22
VI.6	Importa	ancia relativa de cada fuente de contaminación	VI.46
VI.7	Evalua	ción de las características de calidad del agua	VI.49
	VI.7.1	Evaluación de la calidad del agua de las descargas	VI.49
	VI.7.2	Evaluación de la calidad del agua del Río Blanco y sus afluentes	VI.62
VI.8	Clasific	cación de la corriente en función a los usos a que se destina.	
VI.9		ción de la capacidad de asimilación, dilución, porcentaje de remoción y de contaminantes.	VI.71
VI.10		ninación de límites máximos permisibles de cargas de contaminantes de scargas de aguas residuales.	VI.77
VI.11	Plazos	de Calidad del Agua	VI.79
VI.12		ciones de cargas contaminantes debidas a desarrollos a corto mediano plazo y evaluación de efectos.	VI.90
VI.13	Recom	endación de alternativas de manejo, prevención y control de contaminación.	VI.90
VI 14	Análisi	s de costo beneficio.	VI.94

CONCLUSIONES

VI.

INTRODUCCIÓN

Hoy en día el agua es el recurso natural más importante, y evidentemente indispensable, para la existencia y desarrollo de la humanidad. A medida que ésta progresa, crece y se densifica, el volumen de aguas residuales que produce es mayor y su calidad se vuelve más nociva.

El agua de los ríos a través de su recorrido, se va degradando en su calidad natural, debido a que recoge material producto de la erosión de los suelos por los cuales pasa, además de recibir descargas de poblaciones e industrias.

Cuando los contaminantes se descargan en el cuerpo receptor, se produce una sucesión de cambios en la calidad del mismo. El efecto inicial de la contaminación sobre una corriente tiende a degradar la calidad del agua. Conforme la descomposición se activa, se produce biológicamente un cambio hacia la degradación química. Simultáneamente se efectúa la degradación biológica.

La purificación natural de las aguas contaminadas nunca es rápida, y las corrientes fuertemente contaminadas pueden recorrer grandes distancias durante muchos días de flujo, antes de que alcance un grado considerable de purificación.

Es fácil entender la gravedad de las amenazas que se ciernen sobre los cuerpos de agua de nuestro país. Primero por la creciente urbanización, industrialización y tecnificación agropecuaria, lo que implica mayor generación de aguas contaminadas; segundo, por la presencia de nuevos compuestos sintéticos que amenazan con romper en forma permanente los equilibrios ecológicos naturales; y tercero, por el simple hecho de que las principales actividades productivas se concentran en las zonas donde el agua es más escasa y consecuentemente los equilibrios ecológicos más frágiles.

Actualmente, para lograr el objetivo de proteger y mejorar la calidad de los cuerpos de agua, se utilizan diversos métodos científicos que permiten conocer el grado de contaminación de una corriente y se emplean modelos matemáticos para simular la misma.

El propósito del presente trabajo es el estudio de una herramienta de análisis numérico y de visualización gráfica para la simulación de parámetros de calidad del agua en corrientes superficiales mediante el modelo matemático QUAL2E que es la versión modificada del modelo original desarrollado por Harold W. Streeter y Earl Phelps en 1925.

Con el uso del modelo mencionado se logra determinar la carga máxima de contaminantes que se pueden verter en una corriente al conocer su capacidad de dilución y asimilación, fijando las condiciones particulares de descarga mediante el documento legal denominado "Declaratoria de Clasificación" que emite la Comisión Nacional del Agua (CNA) en el Diario Oficial de la Federación.

A continuación se presenta una breve descripción de los seis capítulos que conforman la presente tesis:

En el Capítulo I "Legislación Nacional en Materia de Uso y Manejo del Agua" se describen los mecanismos legales para evitar, prevenir y controlar la contaminación de corrientes superficiales.

Introducción INT.1

Para conocer el grado de contaminación de cualquier corriente es necesario llevar a cabo un programa de muestreo, aforo y determinación en campo y laboratorio de los parámetros de calidad del agua, por lo que en el Capítulo II "Generalidades Sobre la Contaminación del Agua" se hace una descripción de los diversos métodos que existen y su forma de aplicación.

En el Capítulo III "Principales factores que Intervienen en la capacidad de asimilación y dilución de contaminantes en corrientes superficiales", se analizan las influencias de diversos factores y las inevitables simplificaciones que son necesarias para desarrollar un modelo de calidad del agua.

Debido a que el modelo matemático más reciente simula hasta quince parámetros de calidad del agua en cualquier combinación es necesario resolver simultáneamente alrededor de cuarenta ecuaciones, por lo que en el Capítulo IV "Modelo de Streeter y Phelps", además de plantear las formulación original se describen ampliamente cada una de las ecuaciones empleadas en el modelo.

Desde 1960 el Consejo de Desarrollo del Agua de Texas y posteriormente la Agencia de Protección Ambiental de Estados Unidos (EPA), desarrollaron el software que mediante la técnica de elementos finitos soluciona las ecuaciones mencionadas. En el Capítulo V "Aplicación en la computadora del modelo matemático" se describe la última versión del modelo denominada QUAL2E ("Enhanced Stream Water Quality Model", 1995).

Finalmente, en el Capítulo VI "Caso estudio", se presenta el estudio de clasificación del Río Blanco que se localiza en el estado de Veracruz.

CAPÍTULO I

LEGISLACIÓN NACIONAL EN MATERIA DE USO Y MANEJO DEL AGUA

Debido a la necesidad de conciliar las diferentes demandas de los recursos hidráulicos, se tienen autoridades que controlan la contaminación y conservan la calidad del agua. Para controlar la contaminación, estas autoridades tienen poderes otorgados en los diferentes reglamentos y leyes. Estos ordenamientos les permiten otorgar licencias para la descarga de efluentes en aguas superficiales sujetas a normas fijadas por las autoridades en cuanto a la composición de la descarga y la velocidad del caudal de acuerdo con la capacidad asimilativa y usos específicos del cuerpo receptor, buscando siempre reducir los costos de saneamiento y maximizar las posibilidades de aprovechamiento.

I.1 Ley de Aguas Nacionales

La Ley de Aguas Nacionales¹ es reglamentaria del artículo 27 de la Constitución Política de los Estados Unidos Mexicanos en materia de Aguas Nacionales; es de observancia general en todo el territorio nacional, sus disposiciones son de orden público e interés social y tiene por objeto regular la explotación, uso o aprovechamiento de dichas aguas, su distribución y control, así como la preservación de su cantidad y calidad para lograr su desarrollo integral sustentable.

Las disposiciones de la Ley de Aguas Nacionales son aplicables a todas las aguas nacionales, sean superficiales o del subsuelo. Estas disposiciones también son aplicables a los bienes nacionales que se señalan en esta Ley.

Para el manejo del recurso hidráulico, la Comisión Nacional del Agua (CNA) es el organismo federal que cuenta con las atribuciones necesarias para proteger, conservar, mejorar y explotar racionalmente los diferentes cuerpos de agua nacionales.

Para controlar y prevenir la contaminación del agua, la CNA, de acuerdo con el Artículo 87 de la Ley de Aguas Nacionales, debe determinar la capacidad de asimilación y dilución de contaminantes de los cuerpos de agua nacionales, que son utilizados para las diferentes actividades humanas (como fuente de abastecimiento o como cuerpo receptor).

La capacidad de asimilación y dilución de contaminantes de las corrientes se determinará a través de estudios de clasificación, lo cual permitirá a la CNA regular las fuentes de contaminación y/o el volumen de aprovechamiento. Además, dichos estudios servirán para elaborar las Declaratorias de

¹ Publicada en el Diario Oficial de la Federación el día 10, de diciembre de 1992.

Clasificación de corrientes, las cuales serán la base técnico-jurídica en las que se apoyará la CNA, conforme al artículo 89 de la Ley de Aguas Nacionales, para otorgar permisos a los responsables de las descargas de aguas residuales.

Así las Declaratorias de Clasificación de las corrientes permitirán, a través de su publicación en el Diario Oficial de la Federación, dar a conocer las causas que originan la degradación de la calidad del agua y de esta manera regular las descargas a través del establecimiento de condiciones particulares de descarga, de acuerdo a las metas de calidad requeridas para preservar el uso actual y potencial del recurso.

La Ley de Aguas Nacionales, en su Título Séptimo, Capítulo Único, referente a la prevención y control de la contaminación de las aguas, establece que:

ARTÍCULO 86 (Extracto). "La Comisión" tendrá a su cargo:

- Promover y, en su caso, ejecutar y operar la infraestructura federal y los servicios necesarios para la preservación, conservación y mejoramiento de la calidad del agua en las cuencas hidrológicas y acuíferos, de acuerdo con las Normas Oficiales Mexicanas respectivas y las condiciones particulares de descarga, en los términos de la ley;
- * Establecer el cumplimiento de las condiciones particulares de descarga que deben satisfacer las aguas residuales que se generen en bienes y zonas de jurisdicción federal; de aguas residuales vertidas directamente en aguas y bienes nacionales, o en cualquier terreno cuando dichas descargas puedan contaminar el subsuelo o los acuíferos; y en los demás casos previstos en la Ley General del Equilibrio Ecológico y la Protección al Ambiente.

ARTÍCULO 87. "La Comisión" determinará los parámetros que deberán cumplir las descargas, la capacidad de asimilación y dilución de los cuerpos de aguas nacionales y las cargas de contaminantes que éstos puedan recibir, así como las metas de calidad y los plazos para alcanzarlas, mediante la expedición de Declaratorias de Clasificación de los Cuerpos de Aguas Nacionales, las cuales se publicarán en el Diario Oficial de la Federación, lo mismo que sus modificaciones, para su observancia.

Las declaratorias contendrán:

- La delimitación del cuerpo de agua clasificado;
- * Los parámetros que deberán cumplir las descargas según el cuerpo de agua clasificado conforme a los periodos previstos en el reglamento de esta ley;
- La capacidad del cuerpo de agua clasificado para diluir y asimilar contaminantes;
 v
- * Los límites máximos de descarga de los contaminantes analizados, base para fijar las condiciones particulares de descarga.

ARTÍCULO 88 (Extracto). Las personas físicas o morales requieren permiso de "La Comisión" para descargar en forma permanente, intermitente o fortuita aguas residuales en cuerpos receptores que sean aguas nacionales o demás bienes nacionales.

ARTÍCULO 89 (Extracto). "La Comisión", para otorgar los permisos deberá tomar en cuenta la clasificación de los cuerpos de aguas nacionales a que se refiere el artículo 87, las Normas Oficiales Mexicanas correspondientes y las condiciones particulares que requiera cumplir la descarga.

ARTÍCULO 92 (Extracto). "La Comisión", en el ámbito de su competencia, podrá ordenar la suspensión de las actividades que den origen a las descargas de aguas residuales:

- * Cuando no se cuente con el permiso de descarga de aguas residuales en los términos de esta Ley;
- Cuando la calidad de las descargas no se sujete a las Normas Oficiales Mexicanas correspondientes a las condiciones particulares de descarga o a lo dispuesto en esta Ley y su Reglamento; y
- * Cuando el responsable de la descarga utilice el proceso de dilución de las aguas residuales para tratar de cumplir con las Normas Oficiales Mexicanas respectivas o las condiciones particulares de descarga.

La Ley de Aguas Nacionales, en su Título Octavo, Capítulo IV, referente al cobro por explotación, uso o aprovechamiento de aguas nacionales y bienes nacionales, establece que:

ARTÍCULO 112. La explotación, uso o aprovechamiento de aguas nacionales, incluyendo las del subsuelo, así como de los bienes nacionales que administre "La Comisión", motivará el pago por parte del usuario de las cuotas que establece la Ley Federal de Derechos.

La explotación, uso o aprovechamiento de bienes del dominio público de la Nación como cuerpos receptores de descargas de aguas residuales motivará el pago del derecho que establece la Ley Federal de Derechos. El pago es independiente del cumplimiento de lo dispuesto en esta ley sobre la prevención y control de la calidad del agua; de lo dispuesto en la Ley General del Equilibrio Ecológico y la Protección al Ambiente; y en la Ley General de Salud.

La Ley de Aguas Nacionales en su Título Décimo, Capítulo 1, referente a infracciones y sanciones administrativas, establece que:

ARTÍCULO 119 (Extracto). "La Comisión" sancionará, conforme a lo previsto por esta ley, las siguientes faltas:

- * Descargar en forma permanente, intermitente o fortuita aguas residuales en contravención a lo dispuesto en la presente ley en cuerpos receptores que sean bienes nacionales sin perjuicio de las sanciones que fijen las disposiciones sanitarias y de equilibrio ecológico y protección al ambiente; y
- * Utilizar volúmenes de agua mayores que los que generan las descargas de aguas residuales para diluir y así tratar de cumplir con las Normas Oficiales Mexicanas en materia ecológica o las condiciones particulares de descarga.

ARTÍCULO 120 (Extracto). Las faltas a que se refiere el artículo anterior serán sancionadas administrativamente por "La Comisión", con multas que serán equivalentes a los siguientes días del salario mínimo general vigente en el área geográfica y en el momento en que se cometa la infracción:

 500 a 1000, en el caso de violación a las fracciones mencionadas en el artículo anterior.

I.1.1 Reglamento de la Ley de Aguas Nacionales

El Reglamento² de la Ley de Aguas Nacionales tiene por objeto reglamentar la Ley de Aguas Nacionales.

² Publicado en el Diario Oficial de la Federación el día 12 de enero de 1994.

El Reglamento, en su Título Séptimo, Capítulo Único, referente a la prevención y control de la contaminación de las aguas, establece que:

ARTÍCULO 137 (Extracto). Es responsabilidad de los usuarios del agua y de todos los concesionarios a que se refiere el Capítulo II, del Título Sexto de la "Ley", incluidas las unidades y los distritos de riego, cumplir con las Normas Oficiales Mexicanas y en su caso con las demás condiciones particulares de descarga, para la prevención y control de la contaminación extendida o dispersa que resulte del manejo y aplicación de substancias que puedan contaminar la calidad de las aquas nacionales y los cuerpos receptores.

ARTÍCULO 140. Para determinar las condiciones particulares de descarga, "La Comisión" tomará en cuenta los parámetros y límites máximos permisibles contenidos en las Normas Oficiales Mexicanas que emitan las autoridades competentes en materia de descargas de aguas residuales y para el tratamiento de agua para uso o consumo humano, así como los parámetros y límites máximos que deriven de las Declaratorias de Clasificación de los Cuerpos de Aguas Nacionales que se publiquen en los términos del artículo 87 de la "Ley".

Asimismo, para determinar las condiciones particulares de descarga, "La Comisión" tomará en cuenta los derechos de terceros para explotar, usar o aprovechar las aguas nacionales del cuerpo receptor de que se trate, las restricciones que imponga la programación hidráulica aprobada en los términos de la "Ley" y el "Reglamento" y las demás consideraciones de interés público o de salubridad general que, debidamente fundadas y motivadas, emitan las autoridades competentes y que establezcan restricciones adicionales para la descarga de aguas residuales en los cuerpos receptores a que se refiere la "Ley".

ARTÍCULO 141. "La Comisión", conforme a las Normas Oficiales Mexicanas que emitan las autoridades competentes, las metas y plazos establecidos en la programación hidráulica y las Declaratorias de Clasificación de los Cuerpos de Agua Nacionales, podrá modificar las condiciones particulares de descarga, señalando a los permisionarios el plazo para que sus descargas se ajusten a las mismas.

Las condiciones particulares de descarga no podrán ser modificadas sino después de transcurridos cinco años, contados a partir de su expedición o modificación, salvo situaciones comprobadas de emergencia para evitar graves daños a la salud, a un ecosistema o a terceros.

ARTÍCULO 142. Para efectos de la fracción III, del artículo 86 de la "Ley", "La Comisión" podrá publicar en el Diario Oficial de la Federación los parámetros y concentraciones máximos que por lo menos deberán observar las condiciones particulares de descarga de aguas residuales.

1.2 Ley General del Equilibrio Ecológico y Protección al Ambiente

La Ley General del Equilibrio Ecológico y la Protección al Ambiente³ es reglamentaria de las disposiciones de la Constitución Política de los Estados Unidos Mexicanos que se refieren a la preservación y restauración del equilibrio Ecológico, así como a la Protección al ambiente, en el territorio nacional y las zonas sobre las que la nación ejerce su soberanía y jurisdicción. Sus disposiciones son de orden público e interés social y tienen por objeto propiciar el desarrollo sustentable y establecer las bases para: garantizar el derecho de toda persona a vivir en un medio ambiente adecuado para su desarrollo, salud y bienestar; la preservación, la restauración y el mejoramiento del ambiente; y la prevención y el control de la contaminación del aire, agua y suelo.

Los criterios para la prevención y control de la contaminación del agua serán considerados en la formulación de las Normas Oficiales Mexicanas que deberán satisfacer el tratamiento del agua para el uso y consumo humano, así como para la descarga de aguas residuales en cuerpos receptores considerados aguas nacionales; y la clasificación de estos cuerpos de acuerdo a su capacidad de asimilación o dilución y la carga contaminante que éstos puedan recibir, conforme al artículo 118.

³ Esta Ley entró en vigor el día 10. de marzo de 1988.

La Ley General del Equilibrio Ecológico y la Protección al Ambiente, en su Capítulo IV, Sección VI, referente a Normas Oficiales Mexicanas en materia ambiental, establece que:

ARTÍCULO 36 (Extracto). Para garantizar la sustentabilidad de las actividades económicas, la Secretaría emitirá Normas Oficiales Mexicanas en materia ambiental y para el aprovechamiento sustentable de los recursos naturales, que tengan por objeto:

- * Establecer los requisitos, especificaciones, condiciones, procedimientos, metas, parámetros y límites permisibles que deberán observarse en regiones, zonas, cuencas o ecosistemas, en aprovechamiento de recursos naturales, en el desarrollo de actividades económicas, en el uso y destino de bienes, en insumos y en procesos;
- * Considerar las condiciones necesarias para el bienestar de la población y la preservación o restauración de los recursos naturales y la protección al ambiente.

ARTÍCULO 37 Bis. Las Normas Oficiales Mexicanas en materia ambiental son de cumplimiento obligatorio en el territorio nacional y señalarán su ámbito de validez, vigencia y gradualidad en su aplicación.

La Ley General del Equilibrio Ecológico y la Protección al Ambiente, en su Título tercero, Capítulo III, referente a la exploración y explotación de los recursos no renovables en el equilibrio ecológico, establece que:

ARTÍCULO 108 (Extracto). Para prevenir y controlar los efectos generados en la exploración y explotación de los recursos no renovables en el equilibrio ecológico e integridad de los ecosistemas, la Secretaría expedirá las Normas Oficiales Mexicanas que permitan el control de la calidad de las aguas y la protección de las que sean utilizadas o sean el resultado de esas actividades, de modo que puedan ser objeto de otros usos.

La Ley General del Equilibrio Ecológico y la Protección al Ambiente, en su Título Cuarto, Capítulo III, referente a la prevención y control de la contaminación del agua y de los ecosistemas acuáticos, establece que:

ARTÍCULO 117 (Extracto). Para la prevención y control de la contaminación del agua se considerarán los siguientes criterios:

- * La prevención y control de la contaminación del agua, es fundamental para evitar que se reduzca su disponibilidad y para proteger los ecosistemas del país;
- Corresponde al Estado y la sociedad prevenir la contaminación de ríos, cuencas, vasos, aguas marinas y demás depósitos y corrientes de agua, incluyendo las aguas del subsuelo;
- * El aprovechamiento del agua en actividades productivas susceptibles de producir su contaminación, conlleva la responsabilidad del tratamiento de las descargas, para reintegrarla en condiciones adecuadas para su utilización en otras actividades y para mantener el equilibrio de los ecosistemas; y
- La participación y corresponsabilidad de la sociedad es condición indispensable para evitar la contaminación del agua.

ARTÍCULO 118 (Extracto). Los criterios para la prevención y control de la contaminación del agua serán considerados en:

* La expedición de Normas Oficiales Mexicanas para el uso, tratamiento y disposición de aquas residuales, para evitar riesgos y daños a la salud pública;

- * La formulación de las Normas Oficiales Mexicanas que deberán satisfacer el tratamiento del agua para el uso y consumo humano, así como para la infiltración y descarga de aguas residuales en cuerpos receptores considerados aguas nacionales; y
- La clasificación de cuerpos receptores de descarga de aguas residuales, de acuerdo a su capacidad de asimilación o dilución y la carga contaminante que éstos puedan recibir.

ARTÍCULO 119. La Secretaría expedirá las Normas Oficiales Mexicanas que se requieran para prevenir y controlar la contaminación de las aguas nacionales, conforme a lo dispuesto en esta Ley, en la Ley de Aguas Nacionales, su Reglamento y las demás disposiciones que resulten aplicables.

ARTÍCULO 119 Bis (Extracto). En materia de prevención y control de la contaminación del agua, corresponde a los gobiernos de los Estados y de los Municipios, por sí o a través de sus organismos públicos que administren el agua, así como al del Distrito Federal, de conformidad con la distribución de competencias establecida en esta Ley y conforme lo dispongan sus leyes locales en la materia:

- * El control de las descargas de aguas residuales a los sistemas de drenaje y alcantarillado; y
- * La vigilancia de las Normas Oficiales Mexicanas correspondientes, así como requerir a quienes generen descargas a dichos sistemas y no cumplan con éstas, las instalación de sistemas de tratamiento.

ARTÍCULO 120. Para evitar la contaminación del agua, quedan sujetos a regulación federal o local:

- Las descargas de origen industrial;
- Las descargas de origen municipal y su mezcla incontrolada con otras descargas;
- Las descargas derivadas de actividades agropecuarias;
- Las descargas de desechos, sustancias o residuos generados en las actividades de extracción de recursos no renovables;
- La aplicación de plaquicidas, fertilizantes y sustancias tóxicas;
- Las infiltraciones que afecten los mantos acuíferos; y
- * El vertimiento de residuos sólidos, materiales peligrosos y lodos provenientes del tratamiento de aguas residuales, en cuerpos y corrientes de agua.

ARTÍCULO 121. No podrán descargarse o infiltrarse en cualquier cuerpo o corriente de agua o en el suelo o subsuelo, aguas residuales que contengan contaminantes, sin previo tratamiento y el permiso o autorización de la autoridad federal, o de la autoridad local en los casos de descargas de aguas de jurisdicción local o a los sistemas de drenaje y alcantarillado de los centros de población.

ARTÍCULO 123 (Extracto). Todas las descargas en las redes colectoras, ríos, acuíferos, cuencas, cauces, vasos, aguas marinas y demás depósitos o corrientes de aguas y los derrames de aguas residuales en los suelos y su infiltración en terrenos, deberán satisfacer las Normas Oficiales Mexicanas que para tal efecto se expidan, y en su caso, las condiciones particulares de descarga que determine la Secretaría o las autoridades locales.

1.3 Lev Federal de Derechos

Para lograr los objetivos y metas de calidad del agua, se ha establecido un esquema de cobro por el derecho por uso o aprovechamiento de bienes del dominio público de la Nación como cuerpos receptores de las descargas de aguas residuales que se establece en el artículo 276 de ésta ley.

Este esquema de cobro tiene como objetivo principal alentar a los usuarios industriales a tomar acciones para reducir el volumen y la concentración del agua residual por medio de un mejor control de los procesos y, si es posible, una modificación de los mismos. Si los desechos industriales se vacían al sistema de drenaje principal, es importante asegurarse que el agua residual no contenga material que dañe al alcantarillado, a los trabajadores del drenaje o a los procesos de tratamiento de agua residual. Es por esto que en algunos casos puede ser necesario dar un pretratamiento antes de hacer una descarga al alcantarillado. La política de "el que contamina paga", algunas veces invocada para tratar las descargas de desecho industrial, puede no ser totalmente satisfactoria a no ser que las cuotas se fijen racionalmente. En algunas ocasiones un industrial podría preferir considerar como gasto de operación y pagar el costo de causar contaminación en vez de invertir en una planta de tratamiento. Tal enfoque tendría efectos directamente perjudiciales en la calidad del agua.

Los derechos que establece la Ley Federal de Derechos, se pagarán por el uso o aprovechamiento de los bienes del dominio público de la Nación, así como por recibir servicios que presta el Estado en sus funciones de derecho público, excepto cuando se presten por organismos descentralizados u órganos desconcentrados y en este último caso, cuando se trate de contraprestaciones que no se encuentren previstas en esta Ley. También son derechos las contribuciones a cargo de organismos públicos descentralizados por prestar servicios exclusivos del Estado.

La Ley Federal de Derechos, en su Capítulo XIV, referente al derecho por uso o aprovechamiento de bienes del dominio público de la nación como cuerpos receptores de las descargas de aguas residuales, establece que:

ARTÍCULO 276. Están obligados a pagar el derecho por uso o aprovechamiento de bienes del dominio público de la Nación como cuerpos receptores de las descargas de aguas residuales, las personas físicas o morales que descarguen en forma permanente, intermitente o fortuita aguas residuales en ríos, cuencas, cauces, vasos, aguas marinas y demás depósitos o corrientes de agua, así como los que descarguen aguas residuales en los suelos o las infiltren en terrenos que sean bienes nacionales o que puedan contaminar el subsuelo o los acuíferos, en términos de lo dispuesto en esta Ley.

ARTÍCULO 278 (Extracto). Por el uso o aprovechamiento de bienes del dominio público de la Nación como cuerpos receptores de las descargas de aguas residuales, se causará el derecho de acuerdo con el tipo del cuerpo receptor en donde se realice la descarga, conforme al volumen de agua descargada y los contaminantes vertidos, en los que rebasen los límites máximos permisibles establecidos en las condiciones particulares de descarga o a falta de éstas, los previstos en la presente Ley.

ARTÍCULO 278-A. Los cuerpos de propiedad nacional, receptores de las descargas de aguas residuales, se considerarán como tipo A, a excepción hecha de los que se señalan como B o C; todos los Embalses Naturales o Artificiales, se considerarán como tipo B a excepción de los que se señalan como tipo C; todos los Estuarios y Humedales Naturales, se considerarán como tipo C.

Cuerpos receptores tipo B:

Aguascalientes		
Rio San Pedro	Aguascalientes, Rincón de Romos, Jesús Maria, San Francisco de los Romo, Pabellón de Arteaga, Tepezala y Cosío	
Ríos Mai Paso, Manzano, La Labor y Calvillo Arroyos Rincón Verde, Ojocaliente y Cebolletas	Calvillo	
Río Bianco y Río Prieto	San José de Gracia	
Rio Pabellón	Pabellón de Arteaga y Rincón de Romos	
Arroyos El Saucillo, El Túnel y Las Burras	Rincón de Romos	
Río Santiago y Arroyo Ojo Zarco	Pabellón de Arteaga	
Rio Morciniquo	Josús María y Aguascaliontes	
Arroyos Las Viboras San Nicolás, La Escondida, Salto de Montoro (Las Venas), La Pileta (Peñuelas) y La Chevena	Aguascalientes	
Arroyos La Concepción y San José de Guadalupe	Jesús Maria	

Cuerpos Receptores	Municipies		
Arroyo Piedras Negras	Asientos		
Río Chicalote	Asientos, San Francisco de los Romo y Jesús María		
Arroyo San Francisco	Aguascalientes y Et Llano		
Río Gil	Jesús María y Calvillo		
Baja Ca	difornia		
Arroyos Doña Petra, Aguajito, Ensenada, San Carlos, Las Anmas, El Galto, Cuatro Milpas, El Sauzal, El Carmen, San Vicente, Salado, San Rafael, San Telmo, Santo Domingo, Las Escopetas, Aguachiquita, Nueva York, San Simón, El Socorro, El Rosario, La Misión y Las Amarillas	Ensenada		
Arroyos Las Palmas, San Pablo, San José y Cañada Joe Bill y Río Tecate	Tecate		
Arroyos Las Palmas, Sáinz, La Meza, México Lindo, Sánchez Taboada, Lázaro Cárdenas, Camino Verde, Agua Caliente, Matanuco, El Florido, Cerro Colorado, Presidentes, Gato Bronco, Sistema Álamo, Alamar, La Pechuga, Aviación o Pesteje, Aguaje de la Tuna Cañón del Sol, Matadero, E. Zapata, Sistema Centro, Los Laureles, San Antonio de los Buenos y Río Tijuana	Tijuana		
Rios Nuevo Colorado y Hardy y Arroyo Las Amarıllas	Mexicali		
Arroyos Guaguatay y El Descanso	Playas de Rosarito		
Bahías San Francisquito o Luis Gonzaga, De Los Ángeles, Camalú, Todos Santos, San Quintín y San Felipe Punta Estrella	Ensenada		
Costa de Tijuana	Tijuana		
Bahia de San Felipe-Punta Estrelia y Golfo de Santa Clara	Mexicali		
Costa de Rosarito	Playas de Rosarito		
Baja Calif			
Arroyos San José de Gracia, La Purisima, San Isidro, Paso Hondo, Comondú, Santo Domingo y Las Bramonas	Comondú		
Аrroyos La Paz, San Bartolo, Los Gatos y San Antonio	La Paz		
Arroyos Boca de la Sierra, San Bartolo, Agua Caliente, Miraflores, Caduaño y San Jorge	Los Cabos		
Атгоуо San José de Magdalena, Santa Agueda, Las Parras y Ligui	Loreto		
Bahía Santa María, San Juanico, Las Barrancas, La Poza Grande y Magdalena, Punta Santo Domingo y Puerto San Andresito	Comundú		
Bahías Tortugas, San Cristóbal, Asunción, San Hipólito, Ballenas, Santa Inés, Santa Rosalía, San Bruno, Consepción y Santa Ana, Estero Cordón, Puerto Escondido, Ensenada La Escondida, Punta Matarrimo, y Punta Abreojos	Mulegé		
Bahías Santa Marina, Las Almejas, La Paz, La Ventana, Los Muertos, Las Palmas y Plutarco Elías Calles, Ensenada San Juan de la Costa y Las Cruces, Punta Pescadero, Boca El Carrizal y Punta y Punta Lobos	La Paz		
Bahías Migriño, San Lucas y San José del Cabo, Estero San José del Cabo, Boca de la Vinorama, Cabos Pulmo, La Rivera y Los Frailes	Los Cabos		
Bahías Loreto, Juncalipto y Ligui, Ensenadas Blanca, Agua Verde y Tembabichi, Puerto Escondido	Loreto		
Camp			
Río Champotón y Laguna de Silvrtuc	Champotón		
Rio Palizada	Palizada		
Ríos Mamantel y Candelaria	El Carmen y Escárcega		
Rio Chumpán	El Carmen		
Acuífero de la Península de Yucatán	En los nueve municípios del Estado		
Zona Costera del Estado de Campeche	El Carmen, Tenabo, Hecelchacán, Calkiní, Champotón y Campeche		
Coahuila			
Río Bravo	Ocampo, Acuña, Jiménez, Piedras Negras, Nava, Guerrero e Hidalgo		
Arroyo Las Vacas	Acuña		
Río San Diego	Zaragoza y Jiménez		
Rio San Rodrigo	Zaragoza, Jiménez y Piedras Negras		
Arroyo El Tomillo	Piedras Negras		
Rio Escondido	Zaragoza, Nava y Piedras Negras		
Río San Juan de Sabinas	Múzquiz y San Juan de Sabinas		
Rio Álamos	Múzquiz y San Juan de Sabinas		
Río Sabinas	San Juan de Sabinas, Sabinas, Progreso y Juárez		
Río Salado de los Nadadores	Lamadrid, Sacramento, Nadadores, San Buenaventura, Escobedo, Progreso y Juárez		
Rio Salado	Juárez		
Río Monclova	Monclova		
Coli			
Arroyos San José y Punta de Agua	Manzanillo		
Arroyo Zacualpan	Comale		
Río Colima	Cuauhtémoc y Villa de Álvarez		

	Chiapas
Río Grijalva y sus afluentes	Berriozábal, La Concordia, Tzimol, Venustiano Carranza, Socoltenango, Acq
	Totolapa, Chiapilla, Tuxtla Gutiérrez, San Fernando, Chicoasén, Usumacir Copainalá, Ocozocoautla y Tecpatán
Río Santo Domingo y Grijalva	Chiapa de Corzo
Rio Sabinal y sus afluentes	Tuxtia Gutierrez
Rio Frio	San Cristobal de Las Casas, San Lucas y Chiapilla
Río La Venta-Soyatenco	Cintalapa, Jiquipilas y Ocozocoautla de Espinoza
Río Santo Domingo	Villacorzo, Villaflores, Chiapa de Corzo y Suchiapa
Río Coatán	Tapachula y Mazatán
Acuifero Cintalapa	Cintalapa y Jiquipilas
Acuífero Tuxtla	Tuxtla Gutiérrez, Chiapa de Corzo, Suchiapa, Berriozábal y Acalá
Acuifero Comitán	Comitán de Domínguez, Las Margantas, La Independencia, Altamirano y Teopis
Acuifero San Cristobal	San Cristobal de Las Casas e Ixtapa
Acuitero Amaga-Pijijiapan	Amaga, Tonalá y Píjijapan
Acuifero Acapetahua	Mapastepec, Acapetahua, Villa Comaltitlán, Acacoyagua y Escuintla
Acuifero Soconusco	Tapachula, Suchiate, Metapa, Tuxtla Chico, Mazatán, Huixtla y Frontera Hidalgo
Humedal Hueyate	Huixtla
Mar Muerto	Arriaga y Tonalá
	Chihuahua
Río Conchos	Carichi, Nonoava y Bocoyna
Río Casas Grandes	Ignacio Zaragoza
Rio Santa Maria	Bachlniva
Río Papigochi	Temósachi
Río San Pedro	Cusihuiriachi
Rio Mayo	Chinipas y Moris
Rio Chinipas	Chinipas, Guazapares y Unachi
Río Urique	Batopilas, Guachochi y Urique
Rio San Miguel	Balleza, Batopilas, Guachochi y Morelos
Rio Sinaloa, Mohinora y Chinatu	Guadalupe y Calvo
Rio Septentrión	Temoris y Urique
Río Mons	Ocampo y Moris
Rio Candameño	Balleza
Río Nonoava	Nonoava
Río Los Loera	Guadalupe y Calvo
Rio Oteros	Boccoyna
Río Batopilas	Batopilas y Guachochi
Río Verde	Guerrero y Temósachi
Ríos Aros y Tutuaca	Temósachi y Madera
	Distrito Federal
Rio Magdalena	Delegación La Magdalena Contreras
	Durango
Río Sauceda	Durango y Canatlán
Río Nazas	Cuencamé, Indé, El Oro, Rodeo, Nazas, Lerdo y Gómez Palacio
Río Santiago	Durango, Canatlán y Santiago Papasquiaro
Rio Tepehuanes	Tepehuanes y Santiago Papasquiaro
Río Ramos	Santiago Papasquiaro, El Oro e Indé
Rio Sextin (El Oro)	Tepehuanes, Guanacevi, San Bernardo, El Oro e Indé
Rio San Juan	Pánuco de Coronado, San Juan del Rio y Rodeo
Río del Peñón o Covadonga	Peñón Blanco y Nazas
Arroyo Cuencamé	Cuencamé
Río Tamazula	Canelas, Tamazula y Topia
Rio San Lorenzo	Santiago Papasquiaro, Tamazula y Canelas
Río Aguanaval	Santa Clara, Cuencamé y Poanas
Rio Piaxtia	Durango y San Dimas
Rio Presidio	Durango, Pueblo Nuevo y Sen Dimas
Ríos el Tunal y Santiago Bayacora	Durango y Mezquital
Rio Durango	Durango y Nombre de Dios
Río Acaponeta	Durango y Pueblo Nuevo
Rio Humaya	Guanacevi, Tepehuanes, Tamazula, Canelas y Topia
Rio Florido	Hidalgo, Indé, Ocampo y San Bernardo
	Hidalgo
	i industra
Arroyo y Cerro Gordo	Mozoutal y Nombre de Dios
Arroyo y Cerro Gordo Río Mezquital Río Súchil	Mezquital y Nombre de Dios Nombre de Dios, Vicente Guerrera y Súchil

Guerpos Receptores	Municipias
Río Poenas	Poanas
Río Baluarte	Pueblo Nuevo
Río Verde	San Dimas
Río Habitas	San Dimes y Tamazula
Río Graseros	Súchil, Vicente Guerrero y Nombre de Dios
Arroyos Seco y Asequia Grande	Durango
Estado d	e México
Río Amanaico	Amanaico
Guan	ajuato
Río Lerma	Acámbaro, Salvatierra, Jaral del Progreso, Salamanca, Valle de Santiago, Pueblo Nuevo, Abasolo, Huanimaro y Pénjamo
Arroyos La Patiña, El Calvillo y Los Castillos	León
Arroyos Santa Ana y Liano Largo	Guanajuato
Gue	rrero
Rio La Cofradía	La Unión de Isidoro Montes de Oca
Ríos La Unión, San Cristobal y Las Juntas	La Unión de Isidoro Montes de Oca y Coahuayutla de José María izazaga
Rio Pantia	Teniente José Azueta
Río Ixtapa	José Maria Izazaga y la Unión
Río San Jeronimito	Teniente José Azueta y Petatlán
Ríos San Luis y Tecpan	Tecpan de Galeana
Ríos Tecpan y Chiquito	Tecpan de Galeana y Atoyac de Álvarez
Rio Atoyac	Atoyac de Álvarez y Benito Juárez
Río Pilonallo	Atoyac de Álvarez
Rios Coyuca y La Hamaca o Aguas Blancas	Coyuca de Benítez
Río La Sabana y Arroyos El Camarón, Aguas Biancas, Ganta, Costa Azul, , Deportivo e (cacos	Acapuloo de Juárez
Río Papagayo	Acapulco de Juárez, San Marcos, Juan R. Escudero y Chilpancingo de los Bravo
Río Omitián	Juan R. Escuriero y Teccanapa
Río San Miguel	Chilpancingo de Los Bravo
Río La Unión	Quechultenango, Tiacoapa, Tecoanapa y Acatepec
Rio Azul	Quechultenango
Río Huacapa	Chilpancingo de Los Bravo, Quechultenango y Mochitlán
Ríos Cortés y La Estancia	San Marcos
Rio Nexpa	Cruz Grande y Ayutla de Los Libres
Rios Sauces, Teccanapa y Tlatenango	Teccanapa y Ayutla de Los Libres
Río Ayutla	Tecoanapa, Acatepec y Ayutia de Los Libres
Rio Copala	Copala y Cuautepec
Rio Copala Rio Cuautepec	Copala y Cuautepec Cuautepec
Rio Cuautepec	Cuautepec
Rio Cuautepec Rio Concordia	Cuautepec Cuautepec, San Luis Acatlán y Ayutla de Los Libres
Rio Cuautspec Rio Concordia Rio Yautspec	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán	Cuaufepec Cuaufepec, San Luis Acatlán y Ayutla de Los Libres Cuaufepec y San Luis Acatlán Cuajinicullapa, Azoyú y San Luis Acatlán Azoyú
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito	Cuautapec Cuautapec, San Luis Acattán y Ayutla de Los Libres Cuautapec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuitapa, Ometepec, igualapa y Metiatonoc
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuitapa, Ometepec, Igualapa y Metlatonoc Cuajinicuitapa
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copatillo, Mártir de Cuitapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuacuitco, Apaxita, San Miguel Totolapan, Arcelia, Tlapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas	Cuaufepec Cuaufepec, San Luis Acattán y Ayutla de Los Libres Cuaufepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuilapa, Ometepec, Igualapa y Metiatonoc Cuajinicuilapa, Ometepec, Igualapa y Metiatonoc Cuajinicuilapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtla, San Miguel Totolapan, Aroelia, Tlapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comortfort, Xalpatlánuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa Cuajinicuitapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuitapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuacuitco, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuata, Purgarabato, Coyuca de Catalán, Zirándaro, Coahuyutta y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiánuac, Alpoyeca, Huamuxtitán, Xochihuehuettán, Olinalá y Copatillo
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuitapa, Ometepec, Igualapa y Metiatonoc Cuajinicuitapa, Ometepec, Igualapa y Metiatonoc Cuajinicuitapa Cuajinicuitapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalullo, Mártir de Cuitapa, Eduardo Nen, Cuetzalapa del Progreso, Tepecuacuitco, Apaxtia, San Miguel Totolapan, Arelia, Tiapehuata, Purgarabato, Coyuca de Catalán, Zirándaro, Coahuyutta y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiánuac, Alpoyeca, Huamuxtitán, Xochihuehuettán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuetzingo y Copalillo
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancingo Rio Mittancingo Rio Tlapehualapa o Atzacualoya	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa Cuajinicuilapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copatillo, Mártir de Cuilapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiánuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copatillo Atlistac, Olinalá, Ahuacuotzingo y Copatillo Zitlala y Copatillo
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancingo Rio Mittancingo Rio Tapehualapa o Atzacualoya Rio Apango	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copatillo, Mártir de Cuilapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tiapa de Comonfort, Xalpatiánuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copatillo Atlistac, Olinalá, Ahuacuotzingo y Copatillo Zitlala y Copatillo Měrtir de Cuilapa y Tixtla de Guerrero
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancango Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuaculico	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tiapa de Comonfort, Xalpatiánuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuotzingo y Copelillo Zitlala y Copalillo Měrtir de Cuilapa y Tixtla de Guerrero Tepecuacuilco de Trujano y Eduardo Neri
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancango Rio Tlapehuatapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Igualapa y Mettatonoc Cuajinicuilapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tiapa de Comonfort, Xalpatiáhuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuotzingo y Copalillo Zitlala y Copalillo Měrtir de Cuilapa y Tixtla de Guerrero Tepecuacuilco de Trujano y Eduardo Neri Eduardo Neri
Rio Cuautepec Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancango Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajiniculiapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa Cuajiniculiapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepecuaculico, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tiapa de Comonfort, Xalpatiáhuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuetzingo y Copalillo Zitlala y Copalillo Měrtir de Cuilapa y Tixtla de Guerrero Tepecuaculico de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo
Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancango Rio Tlapehuatapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa Rio Cocula o Iguala	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajiniculiapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalislo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepecuaculico, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiáhuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuetzingo y Copalillo Zitlala y Copalillo Měrtir de Cuilapa y Tixtla de Guerrero Tepecuaculico de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia
Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Río Mittancingo Río Tlapehualapa o Atzacualoya Rio Apango Río Tepecuacuilco Río Cañón del Zopilote Río Huacapa Río Cocula o Iguala Río Ahuehuepán	Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuitapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa, Ometepec, Igualapa y Mettatonoc Cuajinicuitapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copaliilo, Mártir de Cuitapa, Eduardo Nen, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtia, San Miguel Totolapan, Arcelia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpattáhuac, Alpoyeca, Huamudritán, Xochihuehuettán, Olinatá y Copalitio Attistac, Olinatá, Ahuacuetzingo y Copalitio Zittata y Copalitio Mártir de Cuitapa y Tixtia de Guerrero Tepecuacuilco de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia Iguala de La Independencia y Teloloapan
Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Baisas Rio Tlapaneco Rio Miltancingo Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa Rio Cocula o Iguala Rio Ahuehuepán Rio Los Sabinos Rio Cuetzala	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajiniculiapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepacuaculico, Apaxita, San Miguel Totolapan, Arcelia, Tiapehuala, Purgarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiánuac, Alpoyeca, Huamuxtitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuctzingo y Copalillo Zitlala y Copalillo Mártir de Cuilapa y Tixtla de Guerrero Tepecuaculico de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia Iguala de La Independencia y Teloloapan Cocula, Teloloapan, Iguala de La Independencia e Ixcateopan de Cuauhtémoc
Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Baisas Rio Tlapaneco Rio Mittancingo Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa Rio Cocula o Iguala Rio Abuehuepán Rio Los Sabinos Rio Coatepec	Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajiniculiapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepacuaculloo, Apaxita, San Miguel Totolapan, Arcelia, Tiapehuala, Purgarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiáhuac, Alpoyeca, Huamustitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuetzingo y Copalillo Zittala y Copalillo Mártir de Cuilapa y Tixtla de Guerrero Tepecuaculco de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia Iguala de La Independencia y Teloloapan Cocula, Teloloapan, Iguala de La Independencia e Ixcateopan de Cuauhtémoc Cuetzala del Progreso Gral Heliodoro Castillo
Rio Concordia Rio Yautepec Rio Marquellia Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancingo Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa Rio Cocula o Iguala Rio Abuehuepán Rio Los Sabinos Rio Cuetzala Rio Coatepec	Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajiniculiapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepacuaculloo, Apaxita, San Miguel Totolapan, Arcelia, Tiapehuala, Purgarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiáhuac, Alpoyeca, Huamustitán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuetzingo y Copalillo Zittala y Copalillo Mártir de Cuilapa y Tixtla de Guerrero Tepecuaculco de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia Iguala de La Independencia y Teloloapan Cocula, Teloloapan, Iguala de La Independencia e Ixcateopan de Cuauhtémoc Cuetzala del Progreso
Rio Concordia Rio Yautepec Rio Marquella Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancingo Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa Rio Cocula o Iguala Rio Abuehuepán Rio Los Sabinos Rio Cuetzala Rio Costepec Rio Costepec Rio Ototlán o Truchas o Tetela	Cuautepec Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajinicuilapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajinicuilapa, Ometepec, Igualapa y Metiatonoc Cuajinicuilapa, Ometepec, Igualapa y Metiatonoc Cuajinicuilapa, Ometepec, Igualapa y Metiatonoc Cuajinicuilapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Nen, Cuetzalapa del Progreso, Tepecuacuilco, Apaxtia, San Miguel Totolapan, Aroslia, Tiapehuala, Pungarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comorfort, Xalpatiánuac, Alpoyeca, Huamuditián, Xochihuahuetlán, Olinatá y Copalillo Atlistac, Olinatá, Ahuacuetzingo y Cepalillo Zittala y Copalillo Mártir de Cuilapa y Tixtia de Guerrero Tepecuacuilco de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia Iguala de La Indepandencia y Tetoloapan Cocula, Teloloapan, Iguala de La Independencia e Ixcateopan de Cuauhtémoc Cuetzala del Progreso Gral Heliodoro Castillo Teloloapan y Apaxtla Gral Heliodoro Castillo y San Miguel Totolapan
Rio Concordia Rio Yautepec Rio Marquellia Rio Juchitán Rio Chiquito Rio Quetzal Rio Cortijos Rio Santa Catarina Rio Balsas Rio Tlapaneco Rio Mittancingo Rio Tlapehualapa o Atzacualoya Rio Apango Rio Tepecuacuilco Rio Cañón del Zopilote Rio Huacapa Rio Cocula o Iguala Rio Los Sabinos Rio Coatepec Rio Coatepec Rio Coatepec Rio Coatepec Rio Cototitián	Cuautepec, San Luis Acattán y Ayutla de Los Libres Cuautepec y San Luis Acattán Cuajiniculiapa, Azoyú y San Luis Acattán Azoyú San Luis Acattán Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Igualapa y Mettatonoc Cuajiniculiapa, Ometepec, Xochistlahuaca y Tlacoachistlahuaca Copalillo, Mártir de Cuilapa, Eduardo Neri, Cuetzalapa del Progreso, Tepecuaculico, Apaxita, San Miguel Totolapan, Arcelia, Tiapehuala, Purigarabato, Coyuca de Catalán, Zirándaro, Coahuyutla y La Unión de Isidoro Montes de Oca Tlapa de Comonfort, Xalpatiáhuac, Alpoyeca, Huamuxittán, Xochihuehuetlán, Olinalá y Copalillo Atlistac, Olinalá, Ahuacuetzingo y Copalillo Zitiala y Copalillo Mártir de Cuilapa y Tixtla de Guerrero Tepecuacuilco de Trujano y Eduardo Neri Eduardo Neri y Leonardo Bravo Cocula, Eduardo Neri e Iguala de La Independencia Iguala de La Independencia y Tetoloapan Cocula, Teloloapan, Iguala de La Independencia e txcateopan de Cuauhtémoc Cuetzala del Progreso Gral Heliodoro Castillo Teloloapan y Apaxitla

Rio Poliutia o San Pedro o Palos Altos Rio Santo Niño y Rio Arcelia Rio Tialchapa Rio Ajuchitián Rio Amuco o Tamacua o El Coyol Rio Cuiro o Hacienda de Dolores y Rio Tarétaro o Las Trojas Rio Cutzamala Rios Ixtapan y Palmar Grande Rio del Oro o Frio Rio San José y Arroyo El Chivo Rios Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida Rio Calabozo	Tlapehuala, Tlaichapa, Arcelia y Graf Canuto A Nen Arcelia Tlaichapa Ajuchitlán del Progreso Ajuchitlán del Progreso y Coyuca de Catalán Coyuca de Catalán Cutzamela de Pinzón y Pungarabato Cutzamela de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Río Tlaichapa Río Ajuchitián Río Ajuchitián Río Amuco o Tamacua o El Coyol Río Cuiro o Hacienda de Dolores y Río Tarétaro o Las Trojas Río Cutzamala Ríos txtapan y Pairnar Grande Río del Oro o Frío Río San José y Arroyo El Chivo Ríos Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Tlatchapa Ajuchitlán del Progreso Ajuchitlán del Progreso y Coyuca de Catalán Coyuca de Catalán Cutzamala de Pinzón y Pungarabato Cutzamala de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Río Ajuchitián Río Amuco o Tamacua o El Coyol Río Cuiro o Hacienda de Dolores y Río Tarétaro o Las Trojas Río Cutzamaia Ríos Ixtapan y Pairnar Grande Río del Oro o Frío Río San José y Arroyo El Chivo Ríos Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Ajuchitlán del Progreso Ajuchitlán del Progreso y Coyuca de Catalán Coyuca de Catalán Cutzamela de Pinzón y Pungarabato Cutzamela de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Río Amuco o Tamacua o El Coyol Río Cuiro o Hacienda de Dolores y Río Tarétaro o Las Trojas Río Cutzamaia Ríos Ixtapan y Pairnar Grande Río del Oro o Frío Río San José y Arroyo El Chivo Ríos Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Ajuchitlán del Progreso y Coyuca de Catalán Coyuca de Catalán Cutzamela de Pinzón y Pungarabato Cutzamela de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Rio Cuiro o Hacienda de Dolores y Río Tarétaro o Las Trojas Rio Cutzamala Ríos Ixtapan y Palmar Grande Río del Oro o Frío Rio San José y Arroyo El Chivo Ríos Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marquès y de Acapulco Hida	Coyuca de Catalán Cutzamala de Pinzón y Pungarabato Cutzamala de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Rio Cutzamala Rios Ixtapan y Palmar Grande Rio del Oro o Frio Rio San José y Arroyo El Chivo Rios Santa Rita y San Antonio Bahias de Zihuatanejo e Ixtapa Bahia de Puerto Marquès y de Acapulco Hida	Cutzamala de Pinzón y Pungarabato Cutzamala de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Ríos Ixtapan y Palmar Grande Río del Oro o Frío Río San José y Arroyo El Chivo Ríos Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Cutzamaía de Pinzón Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Río del Oro o Frío Rio San José y Arroyo El Chivo Rios Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marquès y de Acapulco Hida	Coyuca de Catalán y Zirándaro Zirándaro Cohuayutla Teniente José Azueta
Rio San José y Arroyo El Chivo Rios Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Zirándaro Cohuayutla Teniente José Azueta
Rios Santa Rita y San Antonio Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Cohuayutla Teniente José Azueta
Bahías de Zihuatanejo e Ixtapa Bahía de Puerto Marqués y de Acapulco Hida	Teniente José Azueta
Bahía de Puerto Marquès y de Acapulco Hida	
Hida	
	Acapulco de Juárez
	algo
	Huautla
Río Atlapexco	Atiapexco
Ric Candelana	
Ríos Candelaria, Chinguiñoso, Malila, Tahuizán y Tecoluco	Tianchinol
Río Claro	Huejutla de Reyes
	Juárez de Hidalgo, Molango y Chapulhuacán
Jalis	sco
Río San Miguel o Tuxcacuesco	Ejutla, El Limón, Tonaya, Tuxcacuesco y Tolimán
Rio Ayuguila o Armería	Tolimán y Zapotitlán
Río Ayutla	Ayutla, Unión de Tula, Autlán, El Grullo, Tuxcacuesco y Tolimán
Rio Tomatlán	Tomatián
Río Salado	Tala y Teuchitlán
Río Ameca	Teuchitlán, Ameca, Guachinango, San Sebastián y Puerto Vallarta
Río El Arenal	Zapoapan, El Arenal y Amatitán
Ríos Teocultatlán y Citala	Teocultatián de Corona
Arroyos Yahualica y Las Pilas	Yahualica de González Gallo
Río Chico o Bolaños	Mezquitic, Villa Guerrero, Bolaños, Chimalittán y San Martín de Bolaños
Rio Teocaltiche	Teocaltiche y Villa Hidalgo
Río Lerma	Degollado, Ayotlán y La Barca
Ríos Huascato o Río Chico y Agua Blanca	Jesús María, Degollado y Ayotlán
Rio Colorado o San Onofre	La Barca y Ayotián
Río Paso Blanco	La Barca y Atotonilco
Rio Santa Rita	La Barca y Ayotlán
Arroyo El Caracol	Ayotlán
Arroyo Ayo o Charco Verde	Ayotlán y Jesús María
Rio San Marcos	txtlahuacán de Los Membrillos
Río La Pasión	La Menzanilla de la Paz y Mazamitla
Rio Santiago	Juanacatián, Chapala, ixtlahuacán de Los Membrillos, Tiajocomulco de Zuñiga, E Salto, Tonalá, Zapotlanejo, Guadalajara, btlahuacán del Rio, Zapopan, San Cristóbi de la Barranca, Amatitán, Tequilla y Hostotipaquillo
Rio San Pedro o Verde	Teocaltiche, Villa Hidalgo, Jalostotitlán, Mexticacán, Villa Obregón, Valle d Guadalupe, Yahualica, Cuquío, Tepatitlán de Morelos, Acatic, Zapotlanejo (xtlahucán del Río
Arroyos Tamazula, San Lorenzo, Río Grande o Ejutla	Ejutia
Arroyo Chiquito, Ríos Atengo y San Juan Caloma	Ayutla
Río San José	Autlán
Arroyo Los Prietos y Río María Garcia	Tomatián
Arroyo Chapulimita	Teuchitlán
Arroyo El Cocolisco	Teuchitlán, Ahualulco y Antonio Escobedo
Río San Martín	Ameca
Río El Salitre	San Martin Hidalgo
Arroyo Las Pilas	El Arenal
Rio Atoyac	Atoyac
Arroyo Barrotes	Bolaños y Chimaltitán
· · · · · · · · · · · · · · · · · · ·	San Martin de Bolaños
Arroyos Guásimas, El Platanilo, Cortapico y Cuixtla	Tamazula de Gordiano
Arroyos Guásimas, El Platanito, Cortapico y Cuixtía Arroyos Zapatero o Las Canoas, El Sallo o Río Contla	
Arroyos Zapatero o Las Canoas, El Sallo o Río Contla	Tamazula, Zapotiltic v Tuxpan
Arroyos Zapatero o Las Canoas, El Sallo o Río Contla Río Tamazula o Tuxpan	Tamazula, Zapolitic y Tuxpan Villa Hidalgo
Arroyos Zapatero o Las Canoas, El Sallo o Río Contla Río Tamazula o Tuxpan Arroyos San Ignacio y San Antonio	Villa Hidalgo
Arroyos Zapatero o Las Canoas, El Sallo o Río Contla Río Tamazula o Tuxpan Arroyos San Ignacio y San Antonio Arroyo Atizcoa o Soco o Tequila	Villa Hidalgo Tequila
Arroyos Zapatero o Las Canoas, El Sallo o Río Contla Río Tamazula o Tuxpan Arroyos San Ignacio y San Antonio	Villa Hidalgo

Río Mololoa Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintía Río Cañas Huajicon, Acaponeta y Tecuala Bahia de Matanchén San Blas Ensenada del Toro Compostela Nuevo León Río San Juan Santiago, Caderayta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Galeana, Rayones y Montemorelos Santiago, Santa Catarina San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Cuerpos Receptores	Municipios
Monticacian Monticacian Monticacian Monticacian Carulo Monticacian Carulo Not I Salah Not I Sala		Lagos de Moreno
Montacidada Metalocada Me	Arroyos Jalpino o San Julián y Carrizo	Unión de San Antonio
Social Station		Mexticacán
Rio Tepestation Amryon Lapprillies y Ban Pablo Rio san Modela La Fluerse y Tomation Rio san Modela La Fluerse y Tomation Tomation Rio Sancy Pit Transfordo Rio Sancy Pit Transfordo Rio Gulzerania y Arridración, Arroyo Chamela Arroyo Tao Sancy Petro y Pit Transfordo Considera Arroyo Sancy Pit Transfordo Considera Arroyo Sancyo Pit Transfordo Considera Arroyo Sancyo Comman so Zination Arroyo Considera Arroyo Co	Arroyo Manalisco	Cuquio
Arroys De Jacob Carriero Servicio de Servicio Servicio de Servicio Servicio de Servicio Servi	Río El Salto	
Rio Sent Nordis Rio sent Nordis Rio sent Nordis Rio Sent Nordis Rio Sent Parter Vallatira Rio Select Parter Vallatira Rio Gibbratira Parter Vallatira Rio Gibbratira Parter Vallatira Rio Gibbratira Parter Vallatira Rio Gibbratira Parter Vallatira Rio Gibratira Parter Vallatira Rio Gibratira Parter Vallatira Rio Gibratira Parter Vallatira Rio Gibratira Parter Vallatira Rio La Partera Chaudita Rio La Partera Chaudita Rio La Partera Chaudita Rio Cabana Cardina Rio	Rio Tepatitlán	<u></u>
Rio sam Nicolata Arroys 7 Agus 2 Agus Arroys 1 Tamarándo Rios Guizerala y Furificación, Arroys Channals Rios Saco y El Tamarándo Rios Guizerala y Furificación, Arroys Channals Rios Guizerala y Furificación, Arroys Channals Arroys 2 Rec., Partino Cofincione, Rio Cifucutário n Minsistian o Marabasco Rios La Puerta, El Turio, Taso, Los Coquidos, Teoclorión, Arroyse Masoque o Coquidos, Arroys Comano Dicilidado Rios Guizerala y El Turio, Taso, Los Coquidos, Teoclorión, Arroyse Masoque o Coquidos, Arroyse Comano O Civilidado Arroyse Da Morgado Arroyse Called y Maradida Rios Masocota Rios La Davelta e El Sabla o Las Tortugas y Rio Blanco Arroyse El Jacido, Maradida Rios Masocota Rios Tupa Masocota Rios Tupa Masocota y Talga de Allende Rios Sabla o Las Rios Agus Arroyse Sabla o Maradida Rios Masocota Rios Sabla Miguel Arroyse Sabla o Maradida Rios Masocota y Talga de Allende Rios Sabla Miguel Arroyse Scoc Arroyse Arroyse Arroyse Agus Arroyse Sabla o Maradida Rios Masocota Sabla de Allende Rios Sabla Miguel Arroyse Scoc Arroyse Arr	Arroyos Lagunillas y San Pablo	
Arroyea Topas y Agus Zurces Rio Sales y El Tamelindo Rio Galeman y Purificación, Arroyo Chamais Chinustin o Minatitán o Raroyo Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Chilarrejo, El Coute y Minamistra Arroyos Capulin a Caracel o El Julia y Minacola y Talga de Alderde Arroyo San Artono Rio San Miguel Arroyo San Artono Agusa Couteres Capulin Capulin Capulin a Capulin a Capulin Capuli	Río Pitillal	
Rio Siedo y El Tamarándo Rios Guizmala y Purificación, Arroyo Chamala Rios Guizmala y Purificación, Arroyo Chamala Arroyo Bece, Pariño Cofinicare, Rio Cirhustáin o Minathára o Manabasco Rios La Puarta, El Turio, Tabo, Los Coquidos, Tiecolotáin, Arroyos Mareque o Capustós, Arroyo Comano a Dizabá Arroyo El Abegado Rios La Duartia, El Turio, Tabo, Los Coquidos, Tiecolotáin, Arroyos Mareque o Capustós, Arroyo Capustós, Tiecolotáin, Arroyos Mareque o Capustós, Arroyo Capustós, Tiecolotáin, Arroyos Mareque o Capustós, Arroyo Capustós, Tiecolotáin, Arroyos Mareque o Rios Capustós, Partir de Capustós, Tiecolotáin, Arroyos Roberto Rios Sam Miguel Rios Masocias Puerto Valletra y Masocias Puerto Valletra y Masocias Rios Sam Miguel Masocias Plagado Masocia	Río san Nicolás	
Ros Gulzmania y Furticación, Arroya Chameia Arroya Sec, Plantico Cómica de Comustán o Minathian o Marabasaba Carola Describa E Tuto, Tazo, tos Coquitos, Teoclotian, Arroyas Maxequia o Capolos, Arroya Chameia e Josephia Arroya Capolina Comunia de Capolos, Arroya Chameia e Josephia Arroya Capolina Comunia de Capolos, Arroya Capolina Comunia de Capolos, Arroya Capolina Comunia de Capolos, Arroya Capolina Celescia de Capolos, Arroya Capolina de Sebilito La Las Tortugas y Rio Bilanco Arroya Capolina Celescia de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Edelito Las Entrotages y Rio Bilanco Arroya Capolina de Rio Capolina de Ca	Arroyos Tejas y Agua Zarca	
Arroyo Seco, Palmido o Centosro, Rio Chuastián o Menatalacio Cinaditán Rios La Pauria, El Tuto, Tabo, Los Coquitos, Tecciortián, Arroyos Maxequo o Cabo Corrientos Capacido, Arroyo Cohano e Zizabia Arroyo El Andigado Arroyo Seco Arroyo Arroyo Arroyo Arroyo Arroyo Arroyo Seco Arroyo Arroyo Arroyo Arroyo Arroyo Seco Arroyo Arroyo Arroyo Arroyo Seco Arroyo Arroy		
Rios La Brustis, El Tutto, Tator, Los Coquitos, Tecolotán, Artoyos Maveque o Capados, Arroyo Comara o Zicatán Arroyo El Abogado Arroyo El Abogado Arroyo El Caracol o El Chilerejo, El Cocte y Madrastra Arroyo La Currilla o El Saltito o Las Tortugas y Rio Blanco Arroyo El Jacel y Marandilla Rio Mascota Puerto Vallarta y Mascota Rio Tembembe Instal ia derivadora Perritos Rio Assistaco es uparte alta Arroyos Chapithuegan, Zempantia, Anatian, Atzingo, El Tecolos, Caraca Rio Samawaa Rio Assistaco Rio Capatispo Chapitaso Rio Tembembe Instal ia derivadora Perritos Rio Assistaco Rio Tembembe Instal ia derivadora Perritos Rio Assistaco Rio Samawaa Rio Sam Peddro Rio Samawaa Rio Sam Peddro Rio Samawaa Rio Sam Peddro Rio Samawaa Rio Assistaco Rio Mascota Rio Samawaa Rio Assistaco Rio Mascota Rio Samawaa Rio Assistaco Rio Mascota Rio Pidon Rio Samawaa Rio Assistaco Rio Mascota Rio Pidon Rio Samawaa Rio Ratira, Assonata R		
Caguiste, Arroyo Comano Ozicalan Arroyo El Alogado Arroyo Capadin o Caraccio Del Chilarejo, El Code y Madrastra Arroyo El Jode O El Chilarejo, El Code y Madrastra Arroyo La Lourdia o El Sellito o Las Tortugas y Ris Blanco Arroyo La Lourdia o El Sellito o Las Tortugas y Ris Blanco Arroyo El Jadel y Marandilla Rio Mascota Rio Mascota Rio Mascota Arroyo Velasioro Talpa do Allende Arroyo Seco Talguegaque Talguegaque Arroyo Seco Talguegaque Talguegaque Arroyo Seco Talguegaque Talguegaque Arroyo Cheches Talguegaque Arroyo Cheches Talguegaque Talguegaqu		
El salto Arroyo Capulin o Caracel o El Chilarejo, El Coste y Madrastra Arroyo La Currilla e El Saltito o Las Tortugas y Rio Blanco Arroyo El Jacal y Marandilla Mascota Mascota Mascota Pupuro Valinita y Mascota Rio Talpa Arroyo El Jacal y Marandilla Rio Nasota Rio Talpa Mascota y Talpa de Allende Rio San Niguel Rio San Niguel Arroyo Saco Arroyo Arlesa Arroyo San Antono Tala Arroyo San Antono Tala Arroyo San Antono Tala Arroyo San Antono Tala Rio San San Antono Tala Rio San Antono Tala Tala Tala Tala Tala Tala Tala Tal		Capo Comentes
Arroyse Capulin o Caracol o El Chilarejo, El Cocte y Madrastra Arroyse I Joan L Cuartilla o El Saltito e Las Tortugas y Rio Bánoo Arroyse I Joan y Marandilla Rio Mascota Rio San Miguel y Marandilla Rio Mascota Rio San Miguel y Marandilla Rio Mascota Rio San Miguel y Jalondolitán Arroys Oveladoro Rio San Miguel y Jalondolitán Arroys Seco Arroys Anetes Arroys Seco Arroys Anetes Arroys Seco Arroys Anetes Arroys El Tecolota, Carmesi y La Zopilota Rio San Majoel y Jalondolitán Arroys Seco Arroys Anetes Arroys San Antono Tala Rio San Majoel y Jalondolitán Arroys Seco Arroys Anetes Arroys San Antono Tala Rio San Majoel y Jalondolitán Arroys El Tecolota, Carmesi y La Zopilota Rio La Saloy Yapotlamajo Zapotlanejo Rio La Las Saloy Yapotlamajo Zapotlanejo Rio La Corrientes Aguas Costerras Michoacán Rio Cupatitzo Rio Capulitzo Rio Capulitzo Rio Capulitzo Rio La Capulitzo Rio San Rio San Rio San Rio Rio La Rio Rio Rio La Rio Rio Rio La Rio Rio La Rio Rio Rio La Rio Rio Rio La Rio Rio Rio La Rio Rio Rio Rio La Rio Rio Rio La Rio		El salto
Arroyo El Josel y Marandilla Ris Gilacal y Marandilla Ris Mascota Ris Talpa Arroyo Bil Josel y Marandilla Ris Mascota Ris Talpa Arroyo Vallarta y Mascota Ris Talpa de Allande Arroyo Vallarta y Mascota Ris Talpa de Allande Arroyo Vallarta y Mascota Ris Talpa de Allande Arroyo Areladaro Talpa de Allande Arroyo Arelada Arroyo Seco Talpa de Allande Talpa de Allande Arroyo Seco Talpa de Allande Talpa de Allande Arroyo Seco Talpa de Allande Talpa de		
Mascota Mascota Mascota Pust Vallaria y Mascota Rio Mascota Pust Vallaria y Mascota Pust Vallaria y Mascota Rio Taipa de Allande Rio Rio		
Rio Tripa Arroyo Vellanta y Mascola Rio Talpa Mascola y Talpa de Allende Rio Talpa Arroyo Vellanta y Mascola Rio Talpa de Allende Arroyo Vellandero Rio San Miguel Arroyo Antelas Arroyo Antelas Arroyo Antelas Arroyo Antelas Arroyo San Antonio Arroyo San Antonio Casimiro Castilio Rio Zula e Los Sabinos Rio San Alguel Rio San Antonio Rio San Rio San Antonio Rio San Rio San Rio San Antonio Rio San Rio S		
Rio Tapa Arroyo Veladerro Tajas de Allende Arroyo Veladerro Tajas de Allende Arroyo Veladerro San Miguel Arroyo Saco Arroyo Saco Arroyo San Antonio Tala Arroyo San Antonio Tala Arroyo San Antonio Tala Arroyo San Antonio Tala Arroyo San Antonio Totolda, Aldonio El alto y Arandas Rios La Laja y Zapotlanejo Casimiro Castillo Rio Lada o Los Salmons Rios La Laja y Zapotlanejo Rio Los Horcones Capotlanejo Cabo Corrientes Estado de Jalasco Michoacán Rios Cichota y Duero Chilchota Durapan y Gabnel Zamora Rio Zaldouaro aguas arriba de La Presa del Bosque Rio Balasa Rios Balasa Arasega y Lézaro Cárdenas Rio Lema José Sordo Verduzco, Angamacutiro, Pengerillo, Numarán, La Pieded, Y Tartutato, Vista Hermosa y Briseñas Morelos Rio Tembembe hasta la derivadora Perritos Morelos Rios Tinde y Tinpetio Cuernavaca y Temoco Cuernavaca y Temoco Arroyo Chapitilepec Arroyo Chapiti		
Arroyo Velaudero Rio San Miguel Arroyo San Antonio Taisa Arroyo San Antonio Taisa Arroyo San Antonio Taisa Arroyo San Antonio Rio La Laiga Zapollanajo Zapollana		
Rio San Miguel Arroyo Seco Taquapaque Arroyo Seco Acadên de Jubrez Arroyo San Antono Tela Arroyo San Antono Tela Arroyo San Antono Tela Casimic Castillo Totolán, Automico El alto y Arandas Rio Zula Luja y Zapollanejo Rio Los Harcores Gausa Costeras Totolán, Automico El alto y Arandas Rio Luja y Zapollanejo Rio Los Harcores Aguas Costeras Michoacán Rios Cikhota y Duero Chilchota Rios Cikhota y Duero Chilchota Rios Cikhota y Duero Chilchota Rio Cupatitzo Uruapan y Gabnel Zamora Zideuaro Rio Santo Verduzco, Argamacutino, Penyamillo, Numarán, La Predad, Y Arreago y Lázaro Cardenas Rio Lema Arroyo Sato Verduzco, Argamacutino, Penyamillo, Numarán, La Predad, Y Tanhusto, Vista Hermosa y Brisáñas Rio Lema Rios Tirio y Tinpetio Morellos Morellos Morellos Rio Tembembe hasta la derivadora Perritos Minadatián Arroyos Chachihuapan, Zempantle, Ahatlán, Alzingo, El Tecolote, El Mango y El Tubal Arroyos Chachihuapan, Zempantle, Ahatlán, Alzingo, El Tecolote, El Mango y El Tubal Arroyos Chachihuapan, Zempantle, Ahatlán, Alzingo, El Tecolote, El Mango y El Tubal Arroyos Chachihuapan, Zempantle, Ahatlán, Alzingo, El Tecolote, El Mango y El Tubal Arroyos Chachihuapan, Zempantle, Ahatlán, Alzingo, El Tecolote, El Mango y El Tubal Arroyos Chachihuapan, Zempantle, Ahatlán, Alzingo, El Tecolote, El Mango y El Lumón Arroyos Los Arquillos, Piloaya y El Limón Temisco Arayarit Rio Acaponeta Filo San Pedro La Yesoa, Aldina del Rio, Jalas, Santa María del Cro, El Nayar, Tepic, Incurita y San Blas Rio Gañas Bahia do Matanchén La Yesoa, Gaderay ta Jiménez Santiago, Santa Catarina, San Pedro Garza García, Morterroy, Guadalu, y Cadereyta Jiménez Santiago, Santa Catarina, San Pedro Garza García, Morterroy, Guadalu, y Cadereyta Jiménez		
Taquapaque Arroyo Arietas Arroyo Arietas Arroyo Arietas Arroyo Arietas Arroyo Arietas Arroyo San Antonio Trala Arroyo San Antonio Trala Arroyo San Antonio Trala Arroyo San Antonio Trala Arroyo San Antonio Arroyo San Pedro		
Arroyo Arietes Arroyo San Antono Tata Arroyo El Tacolde, Carmesi y La Zopilota Casimiro Castillo Rio Zula o Los Sabunos Rios La Laja y Zapolanejo Rios La Laja y Zapolanejo Rios La Laja y Zapolanejo Rio Los Horcores Aguas Costeras Michoacán Rios Cichota y Duero Chilchota Rio Zulácuaro aguas arriba de La Presa del Bosque Rio Ediscuaro Rio Zitácuaro aguas arriba de La Presa del Bosque Rio Balsas Rio Lema Areaga y Lázaro Cárdenas Rio Lema Rio Tinfo y Tinpetio Morelos Rio Tinfo y Tinpetio Morelos Rio Tinfo y Tinpetio Rio Aguas Costeras Rio Estado de Jalesco Arteaga y Lázaro Cárdenas Rio Lema Areaga y Lázaro Cárdenas Rio Lema Morelos Rio Tinfo y Tinpetio Morelos Rio Tinfo y Tinpetio Morelos Rio Aguas con su parte alta Arroyos Chapitlugean Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tonel Arroyos Chapitlugean Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tonel Rio Acaponeta Rio Acaponeta Rio Sandago La Yassa Kilán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Incumity y Santiago Ixcuntta Rio Sandago La Yassa Rida del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Incumity y Santiago Ixcuntta Rio Sandago Rio Sandago Rio Sanda Maria del Oro, Asiasco, Tepic y Santiago Ixcuntta Rio Sandago Nuevo León Rio Sandana Rio Pitón Rio Sanda Caterina Rio Sandana Rio Sandana Rio Sandana Rio Pitón Rio Sanda Caterina Rio Sanda Caterina Rio Sandana Rio Sanda Caterina Rio Sandana		
Arroys San Antonio Arroys El Tecolote, Camesi y La Zopilota Casimiro Castillo Ticlotán, Autoniulo El alto y Arandas Ríos La Laja y Zapolitanejo Ríos La Laja y Zapolitanejo Ríos La Laja y Zapolitanejo Ríos Los Horcones Gabo Corrientes Estado de Jalisco Michoacán Ríos Cilchota y Duero Río Cupatizzo Río Capatizzo Río El Estado de Jalisco Michoacán Ríos Cilchota y Duero Río Cupatizzo Río El Estado de Jalisco Michoacán Ríos Cilchota y Duero Río Cupatizzo Río Estado de Jalisco Michoacán Ríos El Estado de Jalisco Michoacán Río Estado de Jalisco Michoacán Río Estado de Jalisco Michoacán Río Zafácuaro aguas arriba de La Presa del Bosque Zibácuaro Río Editado Aragan y Cardenas Río Ema José Sard Verduzzo, Aragamacutiro, Penyamillo, Numarán, La Predad, Y Tanhusto, Vista Hermosa y Brisañas Ríos Tirio y Tiripetio Morellos Río Tembembe hasta la derivadora Perritos Micrellos Río Tembembe hasta la derivadora Perritos Morellos Río Tembembe hasta la derivadora Perritos Micrellos Río Tembembe hasta la derivadora Perritos Río Tembembe hasta la derivadora Perritos Morellos Río Tembembe hasta la derivadora Perritos Ríos Tembembe hasta la deri		
Arroyos El Tecolote, Carmesi y La Zopilota Río Zula o Los Sabnos Río La Laig y Zapotlanejo Río Los Horsones Aguas Costeras Estado de Jalasco Michoacán Ríos Cilichota y Duero Río Cupatitzio Río Lerma Río Santia Catarina Río Santia Catarina Arregga Charlinuagan, Zempantile, Ahatian, Atzingo, El Tecolote, El Mango y El Río Apatitac Río Acaponeta Río Santiago Río Sa		Tala
Rio Zula o Los Sabrios Tototán, Atotonico El allo y Arandas Rios La Laja y Zapotlanejo Zapotlanejo Cabo Corrientes Gausa Costreanas Estado de Jalasco Michoacán Rios Cichota y Duero Cichichota Rio Cuentro Rio Cuentro Rio Cuentro Rio Cuentro Rio Zulacuaro aguas arriba de La Presa del Bosque Rio Balsas Rio Lema Joes Santo Ventuzco, Angamecutro, Penyamillo, Numarán, La Predad, Y Tarbualo, Vista Hermosa y Briseñas Rios Trifo y Tiripetio Moreilos Rio Apatlaco en su parte alta Arroyos Chashihuagan, Zempanile, Ahatián, Atzingo, El Tecolote, El Mango y El Timel Arroyos Chashihuagan, Zempanile, Ahatián, Atzingo, El Tecolote, El Mango y El Tomel Arroyos Chashihuagan, Zempanile, Ahatián, Atzingo, El Tecolote, El Mango y El Rio San Pedro Rio San Maria del Oro, Ralsco, Tepic y Santiago locuintía Rio Cañas Balia de Matanchén San Balia de Matanchén San Balia de Matanchén San Balia de Matanchén San Juan Sertiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Padro Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Padro Galsana, Rayones y Montemorelos Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Padro Galsana, Rayones y Montemorelos Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Padro Galsana, Rayones y Montemorelos	<u></u>	
Rios Laja y Zapotlanejo Rio Los Horcones Aguas Costeras Michoacán Rios Cistenta y Duero Rio Cupettuzo Rio Eupatuzo Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Educar aguas amba de La Presa del Bosque Rio Lerma Arteaga y Lázaro Cárdenas José Suto Verduzco, Angamacutiro, Penyamillo, Numarán, La Predad, Y Tanchusdo Verduzco, Angamacutiro, Penyamillo, Numarán, La Predad, Y Tanchusdo y Verduzco, Angamacutiro, Penyamillo, Numarán, La Predad, Y Tanchusdo y Verduzco, Angamacutiro, Penyamillo, Numarán, La Predad, Y Tanchusdo y Verduzco, Angamacutiro, Penyamillo, Numarán, La Predad, Y Tanchusdo y Verduzco, Angamacutiro, Penyamillo, Numarán, La Predad, Y Tanchusdo y Rios Angatlaco en su parte alta Arroyos Chachihuapan, Zempantile, Ahattán, Azingo, El Tecolote, El Mango y El Tundo Arroyo Chaputilepec Arroyos Chachihuapan, Zempantile, Ahattán, Azingo, El Tecolote, El Mango y El Tundo Arroyo Chaputilepec Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Rio Asan Pedro El Nayar, Ruiz, Rosamorada, Turpan y Santuago Ixculntila El Nayar, Ruiz, Rosamorada, Turpan y Santuago Ixculntila Rio Santuago La Yesca, Istán del Rio, Jala, Santa María del Oro, El Nayar, Tepio, Ixculnila Rio Carias Bahía do Matanchén San Blas Bahía do Matanchén Compostela Rio San Juan Santago, Cadersyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Santa Catarina Santara, San Pedro Garza Gancia, Monterroy, Guadalu, y Cadereyta Jiménez		
Rio Los Horonos Aguas Costeras Estado de Jalisco Michoacán Rios Cilchota y Duero Rios Cilchota y Duero Rio Zitácuaro aguas amba de La Presa del Bosque Zhácuaro Rio Balsas Rio Lema Arteaga y Lázaro Cárdenas Alesa Sato Verduzco, Argamacutiro, Penjamillo, Numarán, La Predad, Y Tanhuato, Vista Hermosa y Briseñas Rio Lema Rios Tirlo y Tinpetio Morelos Rio Tembembe hasta la derivadora Perritos Morelos Rio Apatlaco en su parte alta Arroyos Chachihuapan, Zempantile, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Chachihuapan, Zempantile, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Chaputilopeo Arroyos Chaputilos, Pilicaya y El Limón Nayarit Rio San Pedro Rio Cañas Balhia do Matanchén Ensenada del Toro Nuevo León Rio San Juan Rio San Juan Rio San Juan Santia Maria del Oro, Xalisco, Tepic y Santiago Ixcuintia Rio San Juan Rio San Juan Santiago, Caderayta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Rio Pilón Rio Santia Ran, Rayone y Montemorelos Rio Pilón Rio Santiago, Caderayta Jiménez, General Terán, China, General Bravo, Los Corropostela Rio Pilón Rio Santia Rayone y Montemorelos Santiana, Rayones y Montemorelos Rio Pilón Rio Santia Rayone y Montemorelos Santiana, Rayones y Montemorelos		
Aguas Costeras Michoacán Rios Cilchota y Duero Rio Lopatizzo Rio Cupatizzo Rio Edisas Rio Baisas Rio Lerma Arteaga y Lázaro Cárdenas Rio Lerma Morellos Morellos Rio Trinbettio Morellos Rio Tembembe hasta la derivadora Perritos Rio Apatiaco en su parte alta Arroyos Chachihuapan, Zempantile, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Chachihuapan, Zempantile, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Chachihuapan, Zempantile, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Rio Acaponeta Rio San Pedro Rio Santago La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Iscultula y San Blas Rio Motoloa Rio Gañas Behia de Matanchén Ensenada del Toro Nuevo León Rio San Juan Sartiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Galcana, Rayones y Montemorelos Sartiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Santago, Santa Gatarina, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez		
Rios Cilchota y Duero Chilchota Rio Cupatitzio Unusper y Gabnel Zamore Unusper y Gabnel Zamore Rio Zutácuaro aguas amba de La Presa del Bosque Rio Estasas Rio Lerma Artesga y Lázaro Cárdenas Rio Lerma José Sixto Verduzco, Angamacutiro, Penjamillo, Numarán, La Predad, Y Tanhuato, Vista Hermosa y Briseñas Rios Tirio y Timpetio Morellos Rio Tembembe hasta la derivadora Perritos Rio Apatiaco en su parte alta Arroyas Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnol Arroyas Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnol Arroyas Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnol Arroyas Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnol Arroyas Chaputlepac Arroyas Chaputlepac Arroyas Los Arquillos, Pilcaya y El Limón Nayarit Rio Acaponeta Rio San Pedro El Nayar, Ruiz, Rosamorada, Tuxpen y Santuago ixcuintla Rio San Pedro El Nayar, Ruiz, Rosamorada, Tuxpen y Santuago ixcuintla Rio San Redro El Nayar, Ruiz, Rosamorada, Tuxpen y Santuago ixcuintla La Yesca, tidán de Rio, Jala, Santa María del Oro, El Nayar, Tepic, ixcuintla y San Blas Rio Molotoa Santa María del Oro, Xeljsco, Tepic y Santiago ixcuintla Rio Cañas Bahia de Matanchén Ensenada del Toro Nuevo León Rio San Juan Sartiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Doctor Coes y Los Aldama Galoana, Rayones y Montemorelos Sartiago, Santa Catarina, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez		
Rio Cupatizio Rio Zitácuaro aguas arriba de La Prasa del Bosque Rio Zitácuaro aguas arriba de La Prasa del Bosque Rio Balsas Rio Lerma José Sudo Verduzco, Angamacutiro, Penjamillo, Numarán, La Piedad, Y Tambuato, Vista Hermosa y Briseñas Morella Rio Tirlo y Tinpetio Miscatlán Rio Apatlaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunol Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunol Arroyos Chapullepec Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Rio Acaponets Rio San Pedro Rio San Agore Rio Sandago La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Incultu y San Blas Behía del Matanchén Ensenada del Toro Nauo Rio San Juan Sartiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Rio Pilón Rio Santa Rara del Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez Rio Santa Catarina Rio Santa Catarina Rio Santa Catarina Santago, Cadereyta Jiménez Rio Santa Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez		oacán
Río Zitácuaro aguas arriba de La Presa del Bosque Río Baisas Río Lema José Soto Verduzco, Angamacutiro, Penjamillo, Numaràn, La Piedad, Y Tarrhuato, Vista Hermosa y Briseñas Ríos Tirio y Tinpetio Morellos Río Tembembe hasta la derivadora Perritos Río Apattaco en su parte alta Arroyos Chachinuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunol Arroyos Chachinuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Temixco Cuernavaca y Temixco Cuernavaca y Temixco Arroyos Los Arquillos, Plicaya y El Limón Nayarít Río Acaponeta Río Acaponeta Río San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago lxcuintla La Yesca, Ixtilán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuinta y Santiago Río Mololoa Río Mololoa Santa María del Oro, Xalisco, Tepic y Santiago lxcuintla Río Cañas Bahía de Matanchén Ensenada del Toro Nuevo León Río San Juan Río Pilón Galagna, Rayones y Montemorelos Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Galagna, Rayones y Montemorelos Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadallu, y Cadereyta Jiménez	Rios Cilchota y Duero	
Rio Balsas Rio Lerma José Sato Verduzco, Angamacutiro, Penjamillo, Numaràn, La Piedad, Y Tanhuato, Vista Hermosa y Briseñas Rio Trino y Tinpetio Morelos Rio Tembembe hasta la derivadora Perritos Miscatlán Rio Apatlaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Tunel Arroyos Los Arquillos, Plicaya y El Limón Cuernavaca y Temixco Cuernavaca y Temixco Arroyos Los Arquillos, Plicaya y El Limón Nayarit Rio Acaponeta Rio San Pedro El Nayar, Ruiz, Rossamorada, Tuxpan y Santuago Ixcuintla La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y San Blas Rio Motoloa Rio Cañas Rio Matanchén Ensenada del Toro Nuevo León Rio Pilón Galaara, Rayones y Montemorelos Santa Gatarina Santa Catarina Santa Catarina, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez	Rio Cupatitzio	
Rio Erma José Sixto Verduzco, Angamacutiro, Penjamillo, Numarán, La Predad, Y Tanhuato, Vista Hermosa y Briseñas Morelia Morelos Rio Tinio y Tiripetio Morelos Rio Tambembe hasta la derivadora Perritos Rio Apatlaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Cuernavaca y Temixco Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Cuernavaca y Temixco Arroyos Los Arquillos, Plicaya y El Limón Rio Acaponeta Rio Acaponeta Rio Acaponeta Rio San Pedro Rio Sandago La Yesca, Itálan del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Icculnita y San Blas Rio Motoloa Rio Cañas Bahia de Matanchén Ensenada del Toro Nievo León Rio San Juan Rio Santa Catarina Asan Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez, Jiménez	Río Zitácuaro aguas arriba de La Presa del Bosque	
Rios Tirio y Tiripetio Morelia Morelia Miscatlán Rio Tembembe hasta la derivadora Perritos Rio Tembembe hasta la derivadora Perritos Rio Apatlaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Cuernavaca y Temixco Arroyos Chaputlepec Arroyos Los Arquillos, Plicaya y El Limón Nayarit Rio Acaponeta Rio San Pedro Rio San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y San Blas Rio Motoloa Rio Cañas Bahia del Matanchén Ensenada del Toro Nuevo León Rio San Juan Santiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Octor Coos y Los Aldama Rio Santa Catarina Rio Santa Catarina, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez	Río Balsas	
Morelos Río Tembembe hasta la derivadora Perritos Río Apatlaco en su parte alta Arroyos Chachihuapan, Zempanile, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnel Arroyo Chapulitapan, Zempanile, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnel Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Río Acaponeta Río San Pedro El Nayar, Ruíz, Rosamorada, Tuxpan y Santuago lxcuintía El Nayar, Ruíz, Rosamorada, Tuxpan y Santuago lxcuintía Río Santago La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintía y San Blas Río Motoloa Río Cañas Bahía de Matanchén Ensenada del Toro Nuevo León Río San Juan Santago, Caderayta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Río Santa Catarina Río Santa Catarina Santago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Río Lerma	Tanhuato, Vista Hermosa y Briseñas
Río Tembembe hasta la derivadora Perritos Río Apatlaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnel Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnel Arroyos Los Arquillos, Plicaya y El Limón Río Acaponeta Río Acaponeta Río Acaponeta Río San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santago lxcuintla Río Santago La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y San Blas Río Motoloa Río Motoloa Río Cañas Bahía de Matanchén Ensenada del Toro Nuevo León Río San Juan Río San Juan Río San Juan Río Santa Catarina Río Santa Catarina Río Santa Catarina Santa Catarina, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez Santago, Santa Catarine, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez	Ríos Tirio y Tiripetio	Morelia
Rio Apattaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahattán, Atzingo, El Tecolote, El Mango y El Túnel Arroyos Chaputitepec Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Rio Acaponeta Rio Acaponeta Rio San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santuago ixcuintla Rio Santuago El Nayar, Ruiz, Rosamorada, Tuxpan y Santuago ixcuintla Rio Santuago La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, ixcuintla y San Blas Rio Cañas Bahía de Matanchén Ensenada del Toro Nuevo León Rio San Juan Rio Santuago, Caderayta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Rio Santa Catarina Santuago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez Santuago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Mor	elos
Rio Apattaco en su parte alta Arroyos Chachihuapan, Zempantle, Ahattán, Atzingo, El Tecolote, El Mango y El Túnel Arroyos Chaputitepec Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Rio Acaponeta Rio Acaponeta Rio San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santuago ixcuintla Rio Santuago El Nayar, Ruiz, Rosamorada, Tuxpan y Santuago ixcuintla Rio Santuago La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, ixcuintla y San Blas Rio Cañas Bahía de Matanchén Ensenada del Toro Nuevo León Rio San Juan Rio Santuago, Caderayta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Rio Santa Catarina Santuago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez Santuago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Río Tembembe hasta la derivadora Perritos	Miacatlán
Arroyos Chachihuapan, Zempantle, Ahatlán, Atzingo, El Tecolote, El Mango y El Túnel Arroyo Chapultepec Arroyos Los Arquillos, Plicaya y El Limón Nayarit Río Acaponeta Río San Pedro Río San Pedro Río Santago La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y San Blas Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintla Huajicon, Acaponeta y Tecuala El Nayar, Ruiz, Rosamorada, Tuxpan y Santago Ixcuintla La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y San Blas Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintla Huajicon, Acaponeta y Tecuala Bahía de Matanchén Ensenada del Toro Nuevo León Río San Juan Santiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pitón Río Santa Catarina Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez		
Túnel Arroyo Chaputtepec Arroyos Los Arquillos, Pilcaya y Ef Limón Temixco Nayarit Rio Acaponeta Rio San Pedro Rio Santiago Rio Santiago La Yesca, Ixtián del Rio, Jala, Santa María del Oro, El Nayar, Tepio, Ixcuinta y San Blas Rio Cañas Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintia Rio Cañas Bahía de Matanchén San Blas Ensenada del Toro Nuevo León Rio San Juan Rio Pilón Rio Santa Catarina Calerra, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez Santiago, Santa Catarina, San Pedro Garza Garcia, Monterrey, Guadalu, y Cadereyta Jiménez		
Arroyos Los Arquillos, Pilcaya y El Limón Nayarit Rio Acaponeta Huajicon, Acaponeta y Tecuala Rio San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santago Ixcuintla Rio Santago La Yesca, Ixtlán del Rio, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y San Blas Rio Mololoa Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintla Río Cañas Huajicon, Acaponeta y Tecuala Bahía de Matanchén San Blas Ensenada del Toro Compostela Nuevo León Rio San Juan Santago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Galeana, Rayones y Montemorelos Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadallu, y Cadereyta Jiménez		
Nayarit Río Acaponeta Huajicon, Acaponeta y Tecuala Río San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santago ixcuintla Rio Santago La Yesca, ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, ixcuintla y San Blas Río Mololoa Santa María del Oro, Xalisco, Tepic y Santiago ixcuintla Río Cañas Huajicon, Acaponeta y Tecuala Bahía de Matanchén San Blas Ensenada del Toro Compostela Nuevo León Río San Juan Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Galeana, Rayones y Montemorelos Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez		
Río Acaponeta Río San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepio, Ixcuintla y San Blas Río Motoloa Río Cañas Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintla Río Cañas Bahía de Matanchén San Blas Ensenada del Toro Nuevo León Río San Juan Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Río Santa Catarina Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Arroyos Los Arquillos, Pilcaya y El Limón	Ternixco
Río San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla Río Sankiago La Yesca, Ixtlán del Río, Jala, Santa María del Óro, El Nayar, Tepic, Ixcuintla y San Blas Río Motoloa Río Cañas Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintla Huajicon, Acaponeta y Tecuala San Blas Ensenada del Toro Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Santa Catarina Río Santa Catarina El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y Santiago Ixcuintla Canposte y Tecuala Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Río Santa Catarina Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadallu, y Cadereyta Jiménez	Nay	yarit
Río San Pedro El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla Río Sankiago La Yesca, Ixtlán del Río, Jala, Santa María del Óro, El Nayar, Tepic, Ixcuintla y San Blas Río Motoloa Río Cañas Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintla Huajicon, Acaponeta y Tecuala San Blas Ensenada del Toro Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Santa Catarina Río Santa Catarina El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Ixcuintla y Santiago Ixcuintla Canposte y Tecuala Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Río Santa Catarina Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadallu, y Cadereyta Jiménez	Río Acaponeta	Huajicori, Acaponeta y Tecuala
Rio Santiago La Yesca, Ixtlán del Río, Jala, Santa María del Óro, El Nayar, Tepic, Ixcuintla y San Blas Rio Motoloa Río Cañas Bahia de Matanchén Ensenada del Toro Nuevo León Río San Juan Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Río Pilón Río Santa Catarina Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez		El Nayar, Ruiz, Rosamorada, Tuxpan y Santiago Ixcuintla
Rio Motoloa Santa María del Oro, Xalisco, Tepic y Santiago Ixcuintia Río Cañas Huajicon, Acaponeta y Tecuala San Blas Ensenada del Toro Compostela Nuevo León Río San Juan Santiago, Caderayta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Galeana, Rayones y Montemorelos Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez		La Yesca, Ixtlán del Río, Jala, Santa María del Oro, El Nayar, Tepic, Santrago
Río Cañas Huajicon, Acaponeta y Tecuala Bahía de Matanchén San Blas Ensenada del Toro Compostela Nuevo León Río San Juan Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pitón Galeana, Rayones y Montemorelos Rio Santa Catarina San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Rio Mololoa	<u> </u>
Bahia de Matanchén Ensenada del Toro Nuevo León Rio San Juan Rio Pilón Rio Santia Catarina Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Galeana, Rayones y Montemorelos Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez Y Cadereyta Jiménez		
Ensenada del Toro Nuevo León Río San Juan Santiago, Cadereyta Jiménez, General Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Río Santa Catarina Río Santa Catarina Cadereyta Jiménez Santiago, Cadereyta Jiménez Galeana, Rayones y Montemorelos Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalui, y Cadereyta Jiménez		
Nuevo León Río San Juan Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pilón Galeana, Rayones y Montemorelos Santiago, Cadereyta Jiménez Galeana, Rayones y Montemorelos Santiago, Cadereyta Jiménez Cadereyta Jiménez Cadereyta Jiménez		Compostela
Río San Juan Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Doctor Coos y Los Aldama Rio Pitón Galeana, Rayones y Montemorelos Rio Santa Catarina San Pedro Garza García, Monterrey, Guadalui, y Cadereyta Jiménez		o León
Rio Pitón Galeana, Rayones y Montemorelos Rio Santa Catarina Santa Catarina, San Pedro Garza García, Monterrey, Guadalui y Cadereyta Jiménez		Santiago, Cadereyta Jiménez, Ganeral Terán, China, General Bravo, Los Ramones,
Rio Santa Catarina Santa Catarina, San Pedro Garza García, Monterrey, Guadalu, y Cadereyta Jiménez	Die Olién	
y Cadereyta Jiménez		Santiago, Santa Catarina, San Pedro Garza García, Monterrey, Guadalupe, Juárez
Rio La Silla Monterrey y Guadalupe	KIO Sailla Caldinia	
(1)7	Rio La Silla	Monterrey y Guadalupe
Ríos Bianquillo y Ramos, Arroyo Mireles Allende		Allende
Arroyo La Chueca Santiago		Santiago
Arroyo Mohinos China		China

Guerpos Receptores	Municipios
Río Pablillo .	Galeana, Iturbide y Linares
Río Camacho o Hualahuises	Hualahuises y Linares
Canal Sotolar	Linares
Ríos Salado y Bravo	Anáhuac
Río Blanco	General Zaragoza y Arambern
	ахаса
Río Papaloapan tramo Tuxtepec-Veracruz	San Juan Bautista Tuxtepec y San Miguel Soyaltepec
Río Manialtepec	San Pedro Tututepec y Santo Reyes Nopala
Río Mixteco	Huajuapan de León
Acuifero Valles Centrales	Región Valles Centrales del Estado
Bahías de Huatulco	Santa Maria Huatulco
Bahía de Salina Cruz y Golfo de Tehuantepec	Salina Cruz
Bahia La Ventosa	Salina Cruz
Oceáno Pacífico	San Pedro Mixtepec
	ruebla
Río Pantepec	Pantepec y Metialtoyuca
Río Acalmán	Naupan, Tlacuilotepec, Tlaxco, Honey, Pahuatlan y Jaipan
Río San Marcos	Naupan, Tlacuilotepec, Xicotepec y Jalpan
Río Necaxa	Nuevo Necaxa, Tlaola, Zihuateutla y Jopala
Rio Amixtlán	Zihuateutla, Xicotepec, Jaipan y Venustiano Carranza
Río Cozapa	Tlaoia, Tlapacoya y Jopala
Río Agrio	Zacatlán y Chignahuapan
Río Ajajalpan	Chignahuapan, Zacatlán, Tepetzintia, Ahuacatlán, Chiconcuautia, Tiepacoya, S Felipe Tepatlán, Hermenegildo Galeana y Jopala
Rio Zempoala	Tetela de Ocampo, San Esteban Cuautempan, Huitzilán, Zapotitlán de Méno Zoquiapan, Atlequizayan, Caxhuacan, Huehuetia, Tuzamapan de Galeana Tenampulco
Río Apulco	Ixtacamaxtitlán, Santiago Zautia, Xochiapulco, Zacapoaxtia, Nauzontia, Xochitlár Vicente Suárez, Cuetzalán del Progreso, Yaonáhuac, Ayotoxco de Guerrer Tenampulco
Río María de la Torre	Teziutlán, Xiutetelco, Hueytamalco y Acateno
Río Tilapa	Chichiquita y Quimixtlán
Río Huizilapan	Tlachichuca, Chichotla y Quimixtlán
Río Atoyac	Tlahuapan, San Miguel Xoxtla, San Juan Cuautlancingo y Puebla
Arroyo Tiapalac	San Miguel Xoxtla
Barranca Guadalupe, Barranca del Conde, Barranca San Jerónimo	Puebla
Arroyo Rabanillo	San Pedro Choiula y Puebla
Arroyo Zapatero	San Andrés Cholula y Puebla
Rio San Francisco, Arroyo Maravillas y Barranca Xaltonac	Puebia
Río Alseseca	Puebla
Barranca San Sebastián, Barranca Manzanilla, Barranca San Antonio	Puebla
Barranca San Diego	Amozoc y Puebla
Rio Nexapa	San Nicolás de los Ranchos y Nealtican
	Ixcaquixtla y Tepexi de Rodríguez
Río Axamilpa	
Río Aloyac (cuenca baja)	Tzicatlacoyan, Atoyatempan, Huatlatlahuaca, Coatzingo, Ahuatlán, Cuayuca Andrade, Tehuitzingo, Chiautla de Tapia y Santa Maria Cohetzala
Qı	Jerétaro
Río Jaípan	Jaipan, Pinal de Amoles y Arroyo Seco
Rio Extoraz	Tolimán, Peñamiller, Pinaj de Amoles y Jaipan
Río Tolimán	Colón y Tolimán
Arroyo Arenal	Querétaro
Río Humilpan	Huimilpan, Querétaro y Corregidora
Río Santa Maria	Arroyo Seco y Jalpan
Río Querétaro	Querétaro y El Marqués
	ntana Roo
Arroyos Huay Pıx y Milagros, y Río Hondo o Azul o Santa María	Othón P. Blanco
	Benito Juárez
Arroyo Canal y Canal Nizuc	Othon P Blanco
Bahía de Chetumal	
Playa Linda	Benito Juárez uis Potosí
Sani	Armadillo de Los Infante, San Nicolás de Tolentino, Villa Juárez, Cerri
Rio Verde	Guadaicázar, Rioverde, Rayón, Cárdenas, Sante Catarina, Ciudad Fernández,
Rio Verde	Guadaleázar, Ríoverde, Rayón, Cárdenas, Santa Catarina, Ciudad Fernández, Ciro de Acosta y Lagunillas
	Guadaicázar, Rioverde, Rayón, Cárdenas, Sante Catarina, Ciudad Fernández,

Guerpos Receptores	Мильтрів
Río Coy	Aquismón, Ciudad Valles, Tariajás y Ciudad Santos
Rio Amajac	Tamazunchale
Rio Moctezuma	Tamazunchale, Axtia de Terrazas, Coxcatlán, Tampamolón Corona, San Vicente Tancuayalab y Tamuín
Río Choy	Tamauín
Sina	aloa
Rio Fuerte	El Fuerte y Ahome
Ríos San Lorenzo y Tamazula	Culiacán
Rio Humaya	Baridaguato y Culiacán
Río Culiacán	Culiacán
Río Cañas	Escuinapa
Bahía de Mazatlán	Mazatlán
	nora
Río Colorado	San Luis Río Colorado
Río Sonoyta	General Plutarco Elias Calles
Río Altar	Sanc, Nogeles, Tubatama, Atil, Oquitoa y Altar
Río Magdalena y Arroyos Cocospera, Coyotillo, Bambuto y Los Alisos	Imuris, Benjamin Hill, Nogales, Santa Cruz, Trincheras, Magdatena y Santa Ana Caborca
Río Asunción y Arroyos Seco, El Sasabe y El Plomo	Caborca
Rio Consepción Rio Sonora, San Miguel de Horcasitas, Zanjón y Bacanuchi	Aconchi, Arizpe, Bacoachi, Banamichi, Baviácora, Benjamín Hill, Cananea, Carbó,
And Survice, Serr Milgues de Francesticas, Certifori y Educatica in	Cucurpe, Hermosillo, Opodepe, Rayón, San Felipe de Jesús, San Miguel de Horcasitas, Santa Ana y Ures
Río Matape y sus afluentes	Colorada Empalme, guaymas, Mazatán y Villa Pesqueira
Ríos Yaqui, Bavispe, Aros, Nacon, Sahuaripa, Agua Prieta, Frontera, Negro, Chico, Banacora, Moclezuma y Suaqui, y Arroyos Bacadehuachi y Agua Caliente	Agua Pneta, Arivechi, Bacadehuachi, Bacanora, Bacerac, Bacum Bavispe, Cajeme, La Colorada, Cumpas, Divisaderos, Fronteras, Granados, Guaymas, Huachineras, Huasabas, Moctezuma, Naco, Nacozari de García, Nacori Chico, Onavas, Quiriego, Rosarro, Sahuaripa, San Ignacio Río Muerto, San Javier, San Pedro de la Cueva, Soyopa, Suaqui Grande, Tepache, Villa Hidalgo, Villa Pesqueira y Yécora
Río Mayo y Arroyos Los Cedros y Quiriego	Álamos, Navojoa, Etchojoa Huatabampo, Quiriego y Rosario Tezopaco
Arroyo Cocoraque	Benito Juárez y Quiriego
Río San Pedro	Cananea, Naco y Santa Cruz
Río Santa Cruz	Nogales y Santa Cruz
Drenes Agricolas: Dren T-O, Yávaros, Moroncarit, Las animas, Dren K y Dren L	Etchojoa, Huatabampo y Navojoa
Drenes Agricolas del Valle del Yaqui	Bacum, Benito Juárez, Cajeme, Etchojoa, Guaymas y San Ignacio Río Muerto
Canal de Riego. Canal Principal Alto	Benito Juárez, Cajeme y Navojoa
Canal de Riego. Canal Principal Bajo	Benito Juárez y Cajeme Etchojoa, Huatabampo y Navojoa
Canal de Riego: Canal Principal Margen Izquierda Canal de Riego: Tramo comprendido desde el Golfo de Santa Clara hasta la Bahía	San Luis Río Colorado y Puerto Peñasco
San jorge	
Bahias Kino, Kumkaak y San Agustin	Hermosillo
Bahias de Guaymas, San Carlos y Guásimas	Guaymas
Bahía de Empaime	Empairne
Bahías Santa Bárbara, Huatabampito y Yávaros	Huatabampo
Tab	asco
Rios Carrizal y Grijalva	Centro
Río Puxcatán	Macuspana y Tacotalpa
Río Tacotalpa	Tacotalpa
Rio Teapa de La Sierra	Teapa
Rio Bravo	ulípas Nuevo Laredo, Guerrero, Chamarreo, Mire, Miguel Alemán, Gustavo Díaz Ordaz, Reynosa, Rio Bravo y Matamoros
Canal Soliseño	Matamoros
Rio Conches	San Fernando y Méndez
Río Pilón	Mainero, Villagrán, Hidalgo, San Carlos y Padilla
Río Punficeción	Gŭemas e Hidalgo
Río San Marcos	Victoria y Güernes
Rio Soto La Marina	Soto La Marina
Rio Tigre	Aldama y Altamira
Rio Guayalejo	Jaumave, Llera, El Mante, Altamira y González
Ríos Sabinas	Llera y Xicotéricati
Rio Frio	Gómex Farias y El Mante
Rio Mante, Canai Principal K-O y Arroyo Las Cazuelas	El Mante
Río Tamesi	González, Altamira y Tampico
Arroyo E! Coyote	Nuevo Laredo Camargo
Río San Juan y Dren Puertecitos	Miguel Alemán y Camargo
Dren Rancherías	magazi zaminat i Aminago

Cuerpos Receptores	Municipios
Dren Huizache	Camargo y Díaz Ordaz
Orenes El Anhelo y La Rosita, Ramat II del Dren Río Bravo, Desalinador Ramal 5.67 Izulerdo	Reynosa
Dren Ei Murillo	Río Bravo y Reynosa
Drenes Rio Bravo, E-128 y E-119 y Emisor Marginal	Río Bravo
Drenes SR-14+400, 1+343, Valle Hermoso, Guadalupe, Agricola 122 y Colector Anáhuac Principal, E-30, E-32 izquierdo y Colector	Valle Hermoso
Drenes Emisor Marginal, Principal, Agricola 2-26920, Agricola E-25, Las Vacas y 20 de Noviembre	Matamoros
Dren Las Blancas	Matamoros y Valle Hermoso
Canales Laterales 25+600 y Principal Margen Derecha, Drenes Ramal IV y Contadero IV	Abasolo
Ríos Blanco y Carrizal	Aidama
Rio Barberena	Aldama y Altamira
Dren San Mamerto	Jiménes y Abasolo
Arroyo El Olmo y Bordo El Saladito	Victoria
Canal Sublateral 6+425, Canal Lateral 12+790 y Dren I	Xicoténcati
Arroyo Santa Bárbara	Ocampo
Arroyo El Cojo	González
Canal Guillermo Rodhe	Camargo, Díaz Ordaz, Reynosa y Rio Bravo
Canal Anzaldúas	Reynosa, Río Bravo y Valle Hermoso
Canal Principal Acuifero Zona Norte	Abasolo
Acuitero Zona Norte Acuitero Méndez	Camargo, Reynosa, Río Bravo y Valle Hermoso
	Méndez, San Fernando y Burgos
Acuifero Hidalgo-Villagrán	Hidalgo, Villagrán y Mainero
Acuífero de San Carlos-Jiménez Acuífero Victoria-Güemes	San Carlos y Jiménez
Acifero Paimillas-Jaumave	Victoria y Guernes
Acuifero Tula-Bustamante	Palmillas y Jaumave
Acuitero Llera-Xicoténcati	Tula y Bustamante
Acuifero Ocampo-Antiguo Morelos	Llera y Xicoténcati Ocampo, Antiguo Morelos y Nuevo Morelos
Presa La Patria es Primero	Abasolo
Zona Costera	Matamoros, Altamira y Ciudad Madero
Marismas y Estero Ragapatas	Altamira
Marismas de Tierra Negra	Ciudad Madero
Estuarios del Río Pánuco	Tampico y Cludad Madero
Río Álamo	Mier
Arroyo El Coronel	Guerrero
Алтоуо El Buey	Miguel Alemán
Arroyo San Juan	Hidalgo
Vera	cruz
Río Pánuco	Pánuco y Pueblo Viejo
Rio Tempoal	Platón Sánchez, Tempoal, El Higo y Tantoyuca
Río Chicayán	Pánuco
Rio Calabozo	Tantoyuca y Chicontepec
Río Tuxpan	Tuxpan y Álamo Temache
Rio Vinazco	Huayacocotta, Texcatepec, Tichichilco, Ixhuatlán y Chicontepec
Die Connec	Cazones de Herrera, Poza Rica de Hidalgo y Coatzintla
Río Cazones	
Rio Tecolutia	Tecolutla, Gutiérrez Zamora y Papantia
Río Tecolutia Río Nautia (Río Bobos)	
Rio Tecolutia	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia
Rio Tecolutia Rio Nautia (Rio Bobos)	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia Villa Azueta, Tlacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan Rodríguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia
Río Tecolutia Río Nautia (Río Bobos) Río Misantia	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia Villa Azueta, Tlacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan
Rio Tecolutia Rio Nautia (Rio Bobos) Rio Misantia Rio San Juan	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia Villa Azueta, Tlacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan Rodríguez Clara, Isla, San Andrés Tuxta y Santiago Tuxtia Calcahualco, Alpatiáhuac, Huatusco, Ixhuattán del Café, Tepatiaxco, Zentia, Adalberto Tejada, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellín y Boca del Río
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río Jamapa	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia Villa Azueta, Tiacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan Rodríguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatiáhuac, Huatusco, Ixhuatián del Café, Tepatiaxco, Zantia, Adalberto Tejeda, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellín y Boca del Rio Olutia, Ixhuatián del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán,
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río Jamapa Río Coatzacoalcos	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia Villa Azueta, Tiacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan Rodriguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatiáhuac, Huatusco, Ixhuatián del Café, Tepatiaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Maniio Fabio Altamirano, Jamapa, Medellín y Boca del Rio Olutia, Ixhuatián del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitián, Texistepec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río Jamapa Río Coatzacoalcos Río Huazuntián	Tecolutia, Gutiérrez Zamora y Papantia Naulta y Martinez de La Torre Misantia Villa Azueta, Tiacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juar Rodriguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuattán del Café, Tepattaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Febio Altamirano, Jamapa, Medellír y Boca del Río Oiutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán Texistepec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río Jamapa Río Coatzacoalcos Río Huazuntián Río Tonalá	Tecolutia, Gutiérrez Zamora y Papantia Naulta y Martinez de La Torre Misantia Villa Azueta, Tiacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juar Rodriguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuattán del Café, Tepattaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Febio Altamirano, Jamapa, Medellír y Boca del Río Oiutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán Texistepec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca Las Choapas y Agua Dulce
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río San Juan Río Jamapa Río Coatzacoalcos Río Huazuntián Río Tonalá Río Uspanapa Río Colipa Río Pantepec	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martinez de La Torre Misantia Villa Azueta, Tiacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juar Rodriguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuatlán del Café, Tepatlaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellír y Boca del Río Olutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán Texistepec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca Las Choapas, Minatitlán, Moluacán e Ixhuatlán del Surestey
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río San Juan Río Coatzacoalcos Río Huazuntián Río Tonalá Río Uspanapa Río Colipa Río Pantepec Río Pantepec Ríos Tomata e Itzapa	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martínez de La Torre Misantia Villa Azueta, Tlacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juar Rodríguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuatlán del Café, Tepatlaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellír y Boca del Río Olutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán Texistèpec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca Las Choapas y Agua Dulce Las Choapas, Minatitlán, Moluacán e Ixhuatlán del Surestey Vega de Alatorre, Colipa y Yecuatla Alamo Temapache Tiapacoyen
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río San Juan Río Coatzacoalcos Río Huazuntián Río Tonalá Río Uspanapa Río Colipa Río Pantepec Ríos Tomata e Itzapa Río Atoyac	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martínez de La Torre Misantia Villa Azueta, Tlacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juar Rodríguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuatlán del Café, Tepatlaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellír y Boca del Río Olutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán Texistèpec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca Las Choapas y Agua Dulce Las Choapas, Minatitlán, Moluacán e Ixhuatlán del Surestey Vega de Alatorre, Colipa y Yecuatla Alamo Temapache Tiapacoyen Paso del Macho
Río Tecolutia Río Naulta (Río Bobos) Río Misantia Río San Juan Río San Juan Río Coatzacoalcos Río Coatzacoalcos Río Huazuntián Río Tonalá Río Uspanapa Río Colipa Río Pantepec Ríos Tomata e Itzapa Río Atoyac Río Moctazuma	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martínez de La Torre Misantia Villa Azueta, Tlacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan Rodríguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuatlán del Café, Tepatlaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellín y Boca del Río Olutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán, Texistèpec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca Las Choapas y Agua Dulce Las Choapas, Minatitlán, Moluacán e Ixhuatlán del Surestey Vega de Alatorre, Colipa y Yecuatla Alamo Temapache Tiapacoyen Paso del Macho El Higo
Río Tecolutia Río Nautia (Río Bobos) Río Misantia Río San Juan Río San Juan Río Coatzacoalcos Río Huazuntián Río Tonalá Río Uspanapa Río Colipa Río Pantepec Ríos Tomata e Itzapa Río Atoyac	Tecolutia, Gutiérrez Zamora y Papantia Nautia y Martínez de La Torre Misantia Villa Azueta, Tiacotalpan, San Juan Evangelista, Hueyapan de Ocampo, Juan Rodríguez Clara, Isla, San Andrés Tuxtia y Santiago Tuxtia Calcahualco, Alpatláhuac, Huatusco, Ixhuatlán del Café, Tepatlaxco, Zentia, Adaiberto Tejeda, Soledad de Doblado, Manlio Fabio Altamirano, Jamapa, Medellin y Boca del Río Olutia, Ixhuatlán del Sureste, Coatzacoalcos, Jesús Carranza, Hidalgotitlán, Texistèpec, Nanchitla de Lázaro Cárdenas del Río y Minatitlán Soteapan, Mecayapan, Pajapan y Chinameca Las Choapas y Agua Dulce Las Choapas, Minatitlán, Moluacán e Ixhuatlán del Surestey Vega de Alatorre, Colipa y Yecuatla Alamo Temapache Tiapacoyen Paso del Macho

Cuerpos Receptores	Municipies
Ríos Aguacatlán, Huehueyapan y Cinco Palos	Coatepec
Río Suchiapa	Coatepec
Ríos Ocotal, Tezizapa y Yurivia	Mecayapán
Rios Socoyolapa y Pixquiac	Tlanelhuayocan
Río La Antigua	Xalapa, Coatepec, Jalcomulco, Tialteteia, Totutia, Emiliano Zapata, Apazapan, Paso
	de Ovejas y La Antigua
Río Adopan	Actopan y Ursulo Galván
Ríos Sedeño y Sordo	Bandenila y Xalapa
Río Paso de La Milpa	Emiliano Zapata y Actopan
Río Los Pescados	Ixhuacán de Los Reyes, Teocelo, Cosaulián, Coalepec, Tuzamapán, Jalcomulco,
	Apazapán, Emiliano Zapata, Puente Nacional y La Antigua
Playa Norte y Barra de Tuxpan	Tuxpan
Barra de Tecolutía	Tecolutia
Playa Las Gaviotas	Coatzacoaicos
Playa Mocambo	Boca del Río
Playa Villa del Mar y Norte	Veracruz
Yuc	
Acultero	Boca, Bokobá, Caltmut, Cansancab, Cantamayec, Canotillo, Chacsinkin, Chankom, Chapab, Chixulub Puebio, Chikindzonot, Chocholá, Chumayel, Cuncunul, Cuzamá, Dzan, Dzemuí, Dzilam del Bravo, Dzitás, Dzoncauich, Huhi, Isil, Káua, Kinchil, Kopomá, Mama, Maní, Mayapán, Mocochá, Muxupip, Opichén, Quintana Roo, Rio Lagartos, Sacalum, Samahil, San Felipe, Snahcat, Santa Elena, Sinanché, Sucilá, Suma, Tahtziù, Tahmek, Teabo, Tekal de Venegas, Tekantó, Tekom, Teicha Pueblo, Telchac Puerto, Tepakán, Tetiz, Teya, Tixcacalcupul, Tixméhuac, Tunkás, Uayme, Xocchel, Yaaxkukul y Yobain
Zaca	tecas
Río Tenayuca	Nochistián y Apuico
Rio San Antonio en el tramo población de Gualteno hasta su confluencia con el río	Chalchihuites
San José	
Arroyo de Enmedio	General Enrique Estrada
Río San Pedro dentro del tramo cabecera municipal de Genaro Codina hasta antes	Genaro Codina y Cíudad Cuauhtémoc
de la Presa San Pedro Piedra Gorda	
Aculferos Sabinas e Hidalgo	Chalchihutes y Sombrerete
Acuifero Corrales	Chalchihuites, Jiménez del Teúl, Sombrerete y Valparaíso
Acuifero Valparaiso	Monte Escobedo, Susticacán y Valparaiso
Acuifero Jerez	Jerez, Tepetongo, Susticacán y Fresnillo
Acuífero Tialtenango de Sánchez Roman-Tepechitlán	Momax, Atolinga, Tlaltenango, Tepechitlan, General de Joaquín Amaro, Teúl de González Ortega y Benito Juárez
Acuifero García de La Cadena	Ynnidad Garcia de La Cadena, Teúl de González Ortega y Benito Juárez
Acuifero Nochistlán	Nochistlán de Mejía y Apulco
Acuifero Jalpa-Juchipila	Villanueva, Tabasco, Huanusco, Jalpa, Apozol, Juchipila, Moyahuá de Estrada, General Joaquín Amaro, Tialtenango, Tepechitlán, Teúl de González Ortega,
1	Mezquital del Oro y Nochiostlán de Mejía
Acultero Benito Juárez	Mezquital del Oro y Nochiostlán de Mejřa Zacatecas, Genaro Codina y Villa Nueva
	Mezquital del Oro y Nochiostlán de Mejía
Acuifero Villanueva	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva
Acuifero Villanueva Acuifero Ojocaliente	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego	Mezquital del Oro y Nochiostián de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrereta, Saín Alto y Fresnillo Sain Alto y Sombrerete
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Rio Grande, Sombrerete y Saín Alto
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto	Mezquital del Oro y Nochiostián de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrereta, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador	Mezquital del Oro y Nochiostián de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Lus Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Salvador y Concepción del Oro Mazapil Concepción del Oro
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe	Mezquital del Oro y Nochiostián de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Salvador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho Acuifero Camacho	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadelupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R. Murguia Mazapil y Villa de Cos Mazapil, Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho Acuifero Camacho Acuifero Candalupe de las Corrientes	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Lus Moya, Ojocaliente y Guadelupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saívador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R. Murguia Mazapil y Villa de Cos Mazapil y Villa de Cos Mazapil, Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho Acuifero Camacho Acuifero Candalupe de las Corrientes Acuifero Guadalupe de las Corrientes Acuifero Puerto Madero Acuifero Calera	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadelupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R. Murguia Mazapil y Villa de Cos Mazapil, Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho Acuifero Camacho Acuifero El Cardito Acuifero Puerto Madero Acuifero Puerto Madero Acuifero Calera Acuifero Chupadero	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil, Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos Frenillo, Calera, Enrique Estrada, Morelos, Pánuco y Zacatecas
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho Acuifero Camacho Acuifero El Cardito Acuifero Puerto Madero Acuifero Puerto Madero Acuifero Calera Acuifero Calera Acuifero Calera Acuifero Chupadero Acuifero Guadalupe-Bañuelos	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Lus Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil, Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos Frenillo, Calera, Enrique Estrada, Morelos, Pánuco y Zacatecas Villa de Cos, Pánuco, Fresnillo, Vetagrande y Guadalupe
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero del Palmar Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Garzón Acuifero Camacho Acuifero El Cardito Acuifero El Cardito Acuifero Fuerto Madero Acuifero Cupadalupe de las Corrientes Acuifero Caudalupe de las Corrientes Acuifero Calera Acuifero Calera Acuifero Chupadero Acuifero Chupadero Acuifero Guadalupe-Bañuelos Acuifero La Blanca	Mezquital del Oro y Nochiostlán de Mejřa Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Salvador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil y Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos Frenillo, Calera, Enrique Estrada, Morelos, Pánuco y Zacatecas Villa de Cos, Pánuco, Fresnillo, Vetagrande y Guadalupe Guadalupe General Pánfilo Natero, Ojocaliente y Villa González Ortega
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero Gedros Acuifero Cedros Acuifero El Salvador Acuifero Guadalupe Acuifero Guadalupe Acuifero Camacho Acuifero El Cardito Acuifero Cadadupe de las Corrientes Acuifero Puerto Madero Acuifero Calera Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero La Blanca Acuifero Loreto	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Salvador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil y Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos Frenillo, Calera, Ennque Estrada, Morelos, Pánuco y Zacatecas Villa de Cos, Pánuco, Fresnillo, Vetagrande y Guadalupe Guadalupe General Pánfilo Natero, Ojocaliente y Villa González Ortega Loreto, Ojocaliente, Noria de Angeles y Villa González Ortega
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero Gel Palmar Acuifero El Salvador Acuifero Guadalupe Acuifero Guadalupe Acuifero Camacho Acuifero El Cardito Acuifero Camacho Acuifero Cuadalupe de las Corrientes Acuifero Puerto Madero Acuifero Calera Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero La Blanca Acuifero Loreto Acuifero Loreto	Mezquital del Oro y Nochiostián de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Lus Moya, Ojocaliente y Guadalupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Salvador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil y Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos Frenillo, Calera, Enrique Estrada, Morelos, Pánuco y Zacatecas Villa de Cos, Pánuco, Fresnillo, Vetagrande y Guadalupe Guadalupe General Pánfilo Natero, Ojocaliente y Villa González Ortega
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero Gel Palmar Acuifero El Salvador Acuifero El Salvador Acuifero Guadalupe Acuifero Guadalupe Acuifero Camacho Acuifero Camacho Acuifero El Cardito Acuifero Buadalupe de las Corrientes Acuifero Puerto Madero Acuifero Puerto Madero Acuifero Calera Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero La Blanca Acuifero Loreto Acuifero Loreto Acuifero Villa Hidalgo Acuifero Villa Hidalgo	Mezquital del Oro y Nochiostián de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadelupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saívador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil y Villa de Cos Frentillo, Villa de Cos, Francisco R. Murguía, Cañitas de Felipe Pescador y Fresnillo Villa de Cos Frentillo, Calera, Ennque Estrada, Morelos, Pánuco y Zacatecas Villa de Cos, Pánuco, Fresnillo, Vetagrande y Guadalupe Guadalupe General Pánfilo Natero, Ojocaliente y Villa González Ortega Loreto, Ojocaliente, Noria de Angeles y Villa González Ortega Noria de Angeles, Loreto, Pinos, Villa González Ortega y Villa Hidalgo
Acuifero Villanueva Acuifero Ojocaliente Acuifero Villa Garcia Acuifero de Aguanaval Acuifero Abrego Acuifero Sain Alto Acuifero Galros Acuifero Gedros Acuifero El Salvador Acuifero Guadalupe Acuifero Guadalupe Acuifero Camacho Acuifero El Cardito Acuifero El Cardito Acuifero Floradalupe de las Corrientes Acuifero Puerto Madero Acuifero Calera Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero Chupadero Acuifero La Blanca Acuifero Loreto Acuifero Loreto	Mezquital del Oro y Nochiostlán de Mejía Zacatecas, Genaro Codina y Villa Nueva Genaro Codina, Villa Nueva y Tepetongo Cuauthémoc, Genaro Codina, Luis Moya, Ojocaliente y Guadelupe Villa García y Loreto Fresnillo, Saín Alto y Cañitas de Felipe Pescador Sombrerete, Saín Alto y Fresnillo Sain Alto y Sombrerete Francisco R. Murguia, Miguel Auza, Juan Aldama, Río Grande, Sombrerete y Saín Alto Melchor Ocampo y Mazapil El Saivador y Concepción del Oro Mazapil Concepción del Oro Mazapil y Francisco R Murguia Mazapil y Villa de Cos Mazapil, Villa de Cos Frenillo, Calera, Enrique Estrada, Morelos, Pánuco y Zacatecas Villa de Cos, Pánuco, Fresnillo, Vetagrande y Guadalupe Guadalupe General Pánfilo Natero, Ojocaliente y Villa González Ortega Loreto, Ojocaliente, Noria de Angeles y Villa González Ortega Noria de Angeles, Loreto, Pinos, Villa González Ortega y Villa Hidalgo

Cuerpos Receptores Tipo C:

Cuerpos Receptores	Municipios
Aguasc	alientes
Presa Plutarco Elías Calies	San José de Gracia
Presa Abelardo L Rodríguez	Jesús Maria
Presa Pabellón	Rincón de Romos
Baja Ca	alifornia
Presa Emilio López Zamora	Ensenada
Presa El Camizo	Tecate
Presa Abelardo L. Rodríguez	Tijuana
Acuífero Río Guadalupe, La Misión, Ensenada, San Quintín, Maniadero, Tijuana, Río Colorado y San Felipe	Mexicalı
	fornia Sur
Acuiferos Punta Eugenia, Vizcaino, San Ignacio, Mulegé-8 Concepción, San Marcos-Palo, Verde, San Bruno, San Lucas y L. Virg-S. Rosas-S- Agueda	Mulegé
Acuiferos La Purísima, Mezquital Seco y Santo Domingo	Comendú
Acuíferos Santa Rita, Las Pozitas-San Hilario, El Conejo-Los Viejos, Melitón Albañes, Cariada Honda, El Carrizal, Los Planes, Valle La Paz, El Coyote, Todos Santos, Pescadero y Plutarco Elías Calles	La Paz
Acuifero Migniño, Cabo San Lucas, Cabo Pulmo, San José del Cabo, Santiago y San Bartolo	Los Cabos
Acuifero A V Bonfil-Tepentú	La Paz y Loreto
Acuiferos Loreto-Puerto Escondido y San Juan Bautista-Londo Rosarito	Loreto
Camp	peche
Laguna de Términos y Sistema Lagunar Adyacente	El Carmen y Palizada
Coal	huila
Presa La Amistad	Acuña
Presa Venustiano Carranza	Progreso y Juárez
Chihu	<u> </u>
Presa Chihuahua y El Rejon	Chihuahua
Presa Parrai	Hidalgo del Parral
Dura	
Presa Lázaro Cárdenas	Indé
Presa La Rasilla	Pueblo Nuevo
Presa La Vieja	Guadalupe Victoria
Presa Francisco Zarco	Cuencamé, Nazas y Lerdo
Estado d	e México
Presa Salazar	Lema y Occyoacac
Presa Villa Victoria	Villa Victoria
Presa Valle de Bravo y Colorines	Valle de Bravo
Presa Santo Tomás	Santo Tomás
Presa Madin Presa Chilesdo	Naucalpan de Juárez, Jilotzingo y Cuautitlán-Izcalli
Presa Tilostoc	Donato Guerra Valle de Bravo
Presa Tecuán	Amatepec
	ajuato
Presa El Palote	León
Presa La Esperanza y La Soledad	Guanajuato
Guer	
Presa Vicente Guerrero	Arcelia
Presa Valeria Trujano	Tepecuacuilco de Trujano
Laguna de Tuxpan	iguala de la Independencia
Presa Jaltipan	Tixtla
Hlda	algo
Presa Jaramillo y Bordo La Estansuela	Pachuca de Soto
Jali	SCO
Lago Chapala	Jamai, Ocotlan, Poncillán, Chapala, Jocotepec, Tuxcueca y Tizapan El Alto
Presa El Salto	Valle de Guadalupe
Prosa Caldorón	Acatic
Prosa La Red	Tepatitlán
Río Lerma	Jama:

Cirerpos Receptores	Милісіріas
Río San Marcos	Chapala
Río La Pasión	Tizapan El Alto
Río Santiago	Ocotlán, Poncitlán y Zapotlán del Rey
Río Calderón	Tepatitlán y Acatic
Río El Valle y Arroyo Prieto	Valle de Guadalupe
Canal de Atequiza	Chapala, Ixilahuacán de los Membrillos, Poncitián Tiajomulco de Zúñiga y Tiaquepaque
Río Sula	Ocation
Arroyos Las Amapas y El Nogalito, Ríos Cuale y Mismatoya	Puerto Vallarta
Bordo Carrizillo	Acatic
Presa y Rio El Jihuite	Tepatitlán de Morelos
Río Bramador	Tomatlán y Talpa de Allende
Río San Juan de los Lagos, Presa Alcalá, Arroyos El Salto y Ojo de Agua	San Juan de los Lagos
Presa Cajón de Peña	Tomatlán
Presa La Joya	Zapotlanejo
	oacán
Lago de Chapala	Venustiano Carranza y Cojumatián de Régules
Presa José María Morelos (La Villita)	Lázaro Cárdenas
Presas Cointzio y La Mintzita	Morelia
Presa del Bosque	Zitácuaro
Presa Barraje de Ibarra	Briseñas
Presa Ei Rosano	Angamacutiro
Lago de Camécuaro	Tanganzicuaro
Lago de Cuitzeo	Cuitzeo, Huandacareo, Chucándiro, Copándaro, Tarimbaro, Álvaro Obregón, Queréndaro, Zinapécuaro y Santa Ana Maya
Lago de Pátzcuaro	Pátzcuaro, Quiroga, Erongarícuaro, Tzintzúntzan
Laguna de Zacapu	Zacapu
Lago Zirahuén	Salvador Escalante
Río Aquila	Coahuyana y Aquila
Río Coahuyana	Chinicuila y Coahuyana
Río Nexpa	Aguililla, Coalcomán de Vázquez Pallares, Lázaro Cárdenas, Aquila y Arteaga
Rio Balsas	Hustamo y San Lucas
Río Coalcoman	Coalcomán de Vázquez Pallares, Chinicula y Aquila
Ríos El Marquez y Tepalcatepec	Mujica
Rio Zicuirán aguas abajo de la Presa Zicuirán	La Huacana
	elos
Laguna de Tequezquitengo	Puente de lxtla y Jojutla
Laguna de Zempoala	Huizılac
	León
Presa El Cuchillo Solidaridad	China
Presa Rodrigo Gómez La Boça	Santiego
Presa José López Portillo Cerro Prieto	Linares
Laguna Salinillas	Anáhuac
L	etaro
Presa Jalpan	Jalpan de Serra
Presa La Ceja	Humilpan
L	na Roo
Sistema Lagunar Nichupté o Bojórquez o Río Inglés o del Amor	Benito Juárez
San Lui	s Potosí
Presas Gonzalo N. Santos, El Potosino y San José	San Luis Potosí
Sina	
, 300	3108
	, <u> </u>
Presa Eustaquio Buelna	Moconto y Salvador Aivarado
Presa Eustaquio Buelna Presa Lic. Adolfo Lópaz Mateos	Moconto y Salvador Aivarado Barridaguato
Presa Eustaquio Buelna Presa Lic. Adolfo Lópaz Mateos Presa Sanalona	Moconto y Salvador Alvarado Barridaguato Culiacán
Presa Eustaquia Buelna Presa Lic. Adolfo Lópaz Mateos Presa Sanalona Presa Lic. José López Portillo	Moconto y Salvador Alvarado Barridaguato Culiacán Cosalá
Presa Eustaquia Bueina Presa Lic. Adolfo Lópaz Mateos Presa Sarialona Presa Lic. José Lópaz Portillo Presa Agustina Ramíraz	Moconto y Salvador Alvarado Barridaguato Culiacán Cosalá Escumapa
Presa Eustaquia Buelna Presa Lic. Adolfo Lópaz Mateos Presa Sarialona Presa Lic. José Lópaz Portillo Presa Agustina Ramíraz Aculfero Río Fuente	Moconto y Salvador Alvarado Barridaguato Culiacán Cosalá Escunapa Ahome y El Fuenta
Presa Eustaquia Buelna Presa Lic. Adolfo López Mateos Presa Sanalona Presa Lic. José López Portillo Presa Agustina Ramírez Aculfero Río Fuente Aculfero Río Sinaloa	Moconto y Salvador Alvarado Barridaguato Culiacán Cosalá Escunapa Ahome y El Fuenta Sinaloa y Guasave
Presa Eustaquia Buelna Presa Lic. Adolfo López Mateos Presa Sanalona Presa Lic. José López Portillo Presa Agustina Ramírez Aculfero Río Fuente Aculfero Río Sinaloa Aculfero Mocorito	Moconto y Salvador Alvarado Barridaguato Culiacán Cosalá Escumapa Ahome y El Fuenta Sinaioa y Guasava Moconto, Salvador Alvarado y Angostura
Presa Eustaquio Buelna Presa Lic. Adolfo López Mateos Presa Sanalona Presa Lic. José López Portillo Presa Agustina Ramírez Aculfero Río Fuente Aculfero Río Sinaloa Aculfero Mocorito Aculfero Río Culacán	Moconto y Salvador Aivarado Barridaguato Culiacán Cosalá Escuinapa Ahome y El Fuente Sinaloa y Guasave Mocorito, Salvador Alvarado y Angostura Culiacán y Navolato
Presa Eustaquio Buelna Presa Lic. Adolfo Lópaz Mateoe Presa Sanalona Presa Lic. José López Portillo Presa Agustina Ramírez Aculfero Río Fuente Aculfero Río Sinaloa Aculfero Mocorito Aculfero Río Culiacán Aculfero Río San Lorenzo	Moconto y Salvador Aivarado Barridaguato Culiacán Cosalá Escuriapa Ahome y El Fuente Sinaloa y Guasave Moconto, Salvador Alvarado y Angostura Culiacán y Navolato Culiacán
Presa Eustaquio Buelna Presa Lic. Adolfo López Mateos Presa Sanalona Presa Lic. José López Portillo Presa Agustina Ramírez Aculfero Río Fuente Aculfero Río Sinaloa Aculfero Mocorito Aculfero Río Culacán	Moconto y Salvador Aivarado Barridaguato Culiacán Cosalá Escuinapa Ahome y El Fuente Sinaloa y Guasave Mocorito, Salvador Alvarado y Angostura Culiacán y Navolato

Cuerpas Receptores	Municipios
Acuifero Rio Quelite	Mazatlén
Aculfero Río Presidio	Mazatlán y Concordia
Acuifero Río Baluarte	Rosario
Acuíferos del Valle de Escuinapa, Barra de Teacapan, Río Canas	Escuinapa
Son	ora
Presa Álvaro Obregón	Cajeme
Presa Abelardo L. Rodríguez	Hermosillo
Presa Lázaro Cárdenas	Villa Hidalgo
Tamau	ılipas
Presa Felcon	Guerrero
Laguna La Nacha	San Fernando
Presa Vicente Guerrero	Casas
Laguna de Champayán y La Puerta	Altamira
Laguna del Chairel	Tampico
Presa La Patria es Primero	Abasolo
Presa República Española	Aidama
Vera	
Laguna de Chairel	Pánuco
Manantial Ojo de Agua	Orizaba e Ixtaczotitlán
Manantiales La Cañada y Rancho Nuevo	Alto Lucero
Manantiales El Pozito, Rincón de las Aguilas y Arroyo Escondido	Banderilla
Manantiales Los Amelitos, Cerro de Nacimiento y La Poza	Altotonga
Manantial Matacatzintla	Catemaco
Manantial El Rincón de Chapuitepec	Coacoatzintla
Manantiales Ojo de Agua, Las Lajas y Los Bonilla	Coatepec
Manantial Dos Cruces	Comapa
Manantial Las Tortugas	Cuitláhuac
Manantial El Chorro	Chicontepec
Manantiales El Resumidero, El Chico de Vaquerías, El Castillo y La Represa	Emiliano Zapata
Manatiales Axol, Coxolo y Tepetzingo	Huatulgo
Manahales Pozo de Piedra y El Lindero	Huayacocotla
Manantial El Naranjo, Arroyos El Rincón, El Pozo y Tezacobalt	ixhuacán de Los Reyes
Manatiales Dos Árroyos y Los Berros	Ixtaczotitlán
Manantiales Tiaculalostoc, Nixcamalonía y Arroyo Tiacullalostoc	Jalacingo
Manantial Corazón Poniente	Jilotepec
Manantial Chicahuantia	Maltrata
Manantial El Coratillo	Miahuatlan
Manantiales Las Lajas y La Lima	Mizantla
Manantial Las Mantillas	Naolinco
Manantial Piedra Gacha	Nogales
Manantial Cofre de Perote	Perote
Manantial El Infiemillo	Puente Nacional
Maniantales Talixto, El Salto y Piletas	Rafael Lucio
Manantiales 1º de Mayo, Nacimiento de Otapan, Avescoma, Tular I, Tular II, Tres Comtos y El Caracol	San Andrés Tuxtla
Manantiales El Chorro de Tío Jaime y El Balcón	Teocelo
Manantiales Río de Culebras y Dos Positos	Tonayan
Manantial La Represa	Vilia Aldama
Manantial El Castillo	Jalapa
Manantiales Pozo Santo y Mata de Agua	Xica
Rio Tonto	Tres Valles
Río Tecolapan	Angel R. Cabada, Saltabarranca y Lerdo de Tejada
Rio Papaloapan	Tres Váiles, Ccatillán, Tlacotalpan, Tuxtilla, Chacaltianguis, Cosamaioapan, Amatill y Tlacojalpan
V	atán
YUÇ	
	Abalá, Conkal, Mérida, Kanasín, Tecoh, Timucuy, Tixpéhual, Ucu, Umán v Vallado
Acuifero	Abalá, Conkal, Ménda, Kanasín, Tecoh, Timucuy, Tixpéhual, Ucu, Umán y Vallado tecas

ARTÍCULO 278-B (Extracto). Una vez determinadas las concentraciones de los contamínantes básicos, metales pesados y cianuros, expresados en miligramos por litro o en las unidades respectivas, se compararán con los valores correspondientes a los límites máximos permisibles (Cuadro I.1), por cada contaminante establecido en sus condiciones particulares de descarga y a falta de éstas, los que se establecen en este Capítulo. En caso de que las concentraciones sean superiores a dichos límites, se causará el derecho, por el excedente del contaminante correspondiente.

Cuadro I.1. Límites máximos permisibles para contaminantes básicos, metales pesados y cianuros.

Juadio I. I. Littilles maximos	permisibles t	Jara Contaniii	lantes basicos, i	netales pesados y ciandros
Parametros			Cuerpos receptores	
	TpcA		60 8	Tipo C
	Rice con uso de	Rios con uso	Embalses naturates y	Rios con uso en protección de vida
			anniciales curtiso en nego agrico la	Acuatica: embalses naturales con uso publico urbano: Acuferos
	P.86	P.M.	24	P.M.
Grasas y Aceites	15	15	15	15
Sólidos Suspendidos Totales	150	75	75	40
Demanda Bioquímica de Oxígeno	150	75	75	30
Nitrógeno Total	40	40	40	15
Fósforo Total	20	20	20	5
Arsénico (*)	0.2	0.1	0.2	0.1
Cadmio (*)	0.2	0.1	0.2	0.1
Cianuros (*)	2	1	2	_ 1
Cobre (*)	4	4	4	4
Cromo (*)	1	0.5	1	0.5
Mercurio (*)	0.01	0.005	0.01	0.005
Niquel (*)	2	2	2	2
Plamo (*)	0.5	0.2	0.5	0.2
Zinc (*)	10	10	10	10

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

Para los efectos del Cuadro I.1., se entiende que la concentración de los contaminantes Arsénico, Cadmio, Cianuros, Cobre, Cromo, Mercurio, Níquel, Plomo y Zinc debe ser considerada en forma total.

Para coliformes fecales, si la descarga presenta un valor que supere el límite máximo permisible de 1 000 como número más probable (NMP) de coliformes fecales por cada 100 mililitros, se causará el derecho conforme a las disposiciones del presente Capítulo.

Para el potencial Hidrógeno (pH), si la descarga presenta un valor superior a 10 o inferior a 5 unidades, se causará el derecho conforme a las disposiciones del presente Capítulo.

1.4 NORMAS OFICIALES MEXICANAS

Las Normas Oficiales Mexicanas son el conjunto de reglas científicas o tecnológicas emitidas por la Federación que establecen los requisitos, especificaciones, condiciones, procedimientos, parámetros y límites permisibles que deberán observarse en el desarrollo de actividades o uso y destino de bienes, su aplicación y vigilancia corresponderá a las autoridades federales, estatales o municipales, en el ámbito de sus respectivas jurisdicciones territoriales, así como en los términos que establezcan en su propia legislación.

P.M. Promedio Mensual

^(*) Medidos de manera total

L4.1 NOM-001-ECOL-1996

La Norma Oficial Mexicana NOM-001-ECOL-1996⁴ establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales, con el objeto de proteger su calidad y posibilitar sus usos, y es de observancia obligatoria para los responsables de dichas descargas. Esta Norma Oficial Mexicana no se aplica a las descargas de aguas provenientes de drenajes pluviales independientes.

La concentración de contaminantes básicos, metales pesados y cianuros para las descargas de aguas residuales a aguas y bienes nacionales, no debe exceder el valor indicado como límite máximo permisible en los Cuadros I.2 y I.3 de esta Norma Oficial Mexicana. El rango permisible del potencial hidrógeno (pH) es de 5 a 10 unidades.

Para determinar la contaminación por patógenos se tomará como indicador a los coliformes fecales. El límite máximo permisible para las descargas de aguas residuales vertidas a aguas y bienes nacionales, así como a las descargas vertidas a suelo (uso en riego agrícola) es de 1 000 y 2 000 como número más probable (NMP) de coliformes fecales por cada 100 ml para el promedio mensual y diario, respectivamente.

Para determinar la contaminación por parásitos se tomará como indicador los huevos de helminto. El límite máximo permisible para las descargas vertidas a suelo (uso en riego agrícola), es de un huevo de helminto por litro para riego restringido, y de cinco huevos por litro para riego no restringido.

La vigilancia del cumplimiento de la presente Norma Oficial Mexicana corresponde a la Secretaría de Medio Ambiente, Recursos Naturales y Pesca, por conducto de la Comisión Nacional del Agua, y a la Secretaría de Marina en el ámbito de sus respectivas atribuciones, cuyo personal realizará los trabajos de inspección y vigilancia que sean necesarios. Las violaciones a la misma se sancionarán en los términos de la Ley de Aguas Nacionales y su Reglamento, Ley General del Equilibrio Ecológico y la Protección al Ambiente, la Ley Federal sobre Metrología y Normalización y demás ordenamientos jurídicos aplicables.

Cuadro I.2. Límites máximos permisibles para contaminantes básicos.

	Ríos						Embalses naturales y artificiales			
Parámetros	Uso en Riego Agricola (A)		Uso Público Urbano (B)		Protección a la Vida Acuática (C)		Uso en Riego Agricola (B)		Uso Público Urbano (C)	
' '	PM	PD	PM	PD	PM	PD	РM	PD	PM	dd.
Temperatura (°C) *(1)	NA	NA	40	40	40	40	40	40	40	40
Grasas y Aceites *(2)	15	25	15	25	15	25	15	25	15	25
Matena Flotante *(3)	Ausente	Ausente	Ausente	Ausente	Ausente	Ausente	Ausente	Ausente	Ausente	Ausente
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	1	2	1	2
Sólidos Suspendidos Totales	150	200	75	125	40	60	75	125	40	60
Demanda Bioquímica de Oxígeno	150	200	75	150	30	60	75	150	30	60
Nitrógeno Total	40	60	40	60	15	25	40	60	15	25
Fósforo Total	20	30	20	30	5	10	20	30	5	10

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

PM= Promedio mensual, promedio ponderado de al menos dos muestras compuestas.

PD= Promedio diario, valor del análisis de una muestra compuesta.

⁽A), (B) y (C): Tipo de Cuerpo Receptor según la Ley Federal de Derechos.

⁽¹⁾ Instantáneo.

⁽²⁾ Muestra simple promedio ponderado.

⁽³⁾ Ausente según el Método de Prueba definido en la NMX-AA-006.

⁴ Publicada en el Diario Oficial de la Federación el día 6 de enero de 1997.

Cuadro I.3. Límites máximos permisibles para metales pesados y cianuros.

- Oue	41 O 1. O. 1		. I . GAII I I O	~ ~~		21 - III - II	p	,		•
				Cast Control			Emb	lses natur	ales y artif	ciales o
Parametros	VI. 2. 1927 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3.598 - 35.535 - 35.63	E. 1995 MARCHANIA	740. The CACOM	Protección				Usa Pübli	o Urbano
	Agric	ola (A)		100000	Acua	2,0000000000000000000000000000000000000		ola (B)		
	PM	PD	PM	PD	PM	₽Đ	PM	PB	PM	P0
Arsénico	0.2	0.4	0.1	0.2	0.1	0.2	0.2	0.4	0.1	0.2
Cadmio	0.2	0.4	0.1	0.2	0.1	0.2	0.2	0.4	0.1	0.2
Cianuro	2	3	1	2	1	2	2	3	1	2
Cobre	4	6	4	6	4	6	4	6	4	6
Cromo	1	1.5	0.5	1	0.5	1	1	1.5	0.5	1
Mercurio	0.01	0.02	0.005	0.01	0.005	0.01	0.01	0.02	0.005	0.01
Niquel	2	4	2	4	2	4	2	4	2	4
Plomo	0.5	1	0.2	0.4	0.2	0.4	0.5	1	0.2	0.4
Zinc	10	20	10	20	10	20	10	20	10	20

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.
PM= Promedio mensual, promedio ponderado de al menos dos muestras compuestas.
PD= Promedio diario, valor del análisis de una muestra compuesta.

⁽A), (B) y (C): Tipo de Cuerpo Receptor según la Ley Federal de Derechos.

CAPÍTULO II

GENERALIDADES SOBRE LA CONTAMINACIÓN DEL AGUA

Se considera a un cuerpo de agua como contaminado cuando la composición de sus aguas ha sido directa o indirectamente modificada por las actividades humanas, en tal medida que, se disminuye la posibilidad de utilización para todos o algunos de los fines que podría haber servido en su estado natural.

Entre las principales fuentes contaminantes en México pueden señalarse las aguas residuales urbanas; los basureros; las descargas industriales, principalmente de las industrias petroquímica, celulosa y papel, curtiduría, madera, productos de hule, minera, alimenticia, azucarera, productos químicos y textil; así como la utilización de fertilizantes, pesticidas y herbicidas en la agricultura.

Aunque el término contaminación se ha definido en función de la actividad humana, la calidad de las aguas también puede alterarse localmente por causas geológicas como la presencia de yacimientos minerales, emanaciones volcánicas, cuerpos intrusivos, etc.

El término calidad del agua se utiliza para caracterizar la composición química, principalmente orgánica que determina la adecuación del agua para algún uso específico. A fin de conocer el estado que guarda el agua respecto a su calidad, se hace uso de ciertos parámetros característicos que rigurosamente pueden llegar a ser del orden de cientos; sin embargo no todos son necesarios para la mayoría de las investigaciones, pudiéndose disminuir a solo decenas. Entre estos se hallan las determinaciones de oxígeno disuelto, DBO, DQO, pH, temperatura, turbiedad, conductividad eléctrica, NMP de coliformes y plancton. Además, los que pudieran servir en particular y según los objetivos del estudio como: detergentes, metales pesados y sustancias tóxicas. Por ejemplo, si el agua que se investiga sostiene una basta extensión agrícola, los parámetros solicitados en el análisis serán diferentes a los del agua que se usa para producción de peces y también serán distintos a los del agua destinada para recreación; de todas maneras, subsisten parámetros comunes que son en general los mínimos a que se ha hecho referencia.

El tipo y forma de análisis a que se someten las muestras dependen de la magnitud del proyecto, recursos económicos y algo que siempre se escatima, el tiempo disponible. El número y frecuencia de los muestreos debe ser objeto de estudios minuciosos que finalmente definan el plan a seguir durante la etapa de investigación ya que de esta información se derivaran los resultados y medidas correctivas a emplear. Es aquí donde debe considerarse el aspecto económico porque implica muchas veces el uso de equipo especializado, personal competente y experimentado, así como laboratorios fijos o móviles con todos los elementos para efectuar los análisis solicitados.

II.1 Clasificación y descripción de los contaminantes del agua

Los tipos de contaminantes del agua se dividen en conservativos y no conservativos. Los contaminantes conservativos (que incluyen a los metales pesados como el arsénico, cadmio, mercurio, plomo, zinc, etc.) se caracterizan por concentraciones que permanecen constantes al transcurrir el tiempo. Los contaminantes no conservativos (que incluyen a la mayoría de las sustancias orgánicas, algunas sustancias inorgánicas y muchos microorganismos) se degradan, por los procesos naturales de autopurificación), al transcurrir el tiempo. La degradación es función del tiempo, del tipo y concentración del contaminante y del tipo de microorganismos.

Además de tener presente la clasificación de acuerdo a las características conservativas o no conservativas, es importante conocer las siguientes propiedades de los contaminantes:

- a) Compuestos tóxicos que causan la inhibición o destrucción de la actividad biológica en el agua. La mayoría de estos materiales provienen de las descargas industriales. Algunas especies de algas pueden liberar toxinas potentes y se han dado casos en los que el ganado muere después de beber agua con este tipo de toxinas.
- b) Materiales que afectan el balance de oxígeno en el agua.
 - * Sustancias que consumen oxígeno; éstas pueden ser materiales orgánicos que se oxidan bioquímicamente o agentes reductores inorgánicos.
 - * Sustancias que entorpecen la transferencia de oxígeno a través de la interfase aireagua. Los aceites y los detergentes pueden formar películas protectoras en la interfase, las que reducen la cantidad de transferencia de oxígeno y amplifican los efectos de sustancias que consumen oxígeno.
 - * La contaminación térmica puede alterar el balance de oxígeno debido a que la concentración de saturación de OD se reduce con el aumento de la temperatura.
- c) Los sólidos inertes en suspensión o disueltos causan problemas a altas concentraciones, por ejemplo, los lavados de kaolín china pueden recubrir el lecho de una corriente lo que impide el crecimiento del alimento para los peces y los ahuyenta de las inmediaciones en forma tan efectiva como lo haría el veneno. La descarga de agua salobre por el drenaje de las minas puede hacer que un río sea inadecuado para propósitos de abastecimiento de agua.

II.2 Clasificación de las fuentes de contaminación del agua

La contaminación del agua puede tener su origen en muchas fuentes. Si bien no todas las fuentes indicadas a continuación están presentes en todas las situaciones, ellas son comunes a la mayoría de áreas o regiones. Las fuentes de contaminación del agua se clasifican, de acuerdo al origen de las descargas, de la siguiente manera:

a) De origen industrial.

La actividad industrial, especialmente la producción de pulpa y de papel, azucarera, eléctrica, la elaboración de alimentos y la manufactura química, engendran una gran variedad de productos de desecho que pueden ser descargados en las corrientes de agua. Muchos desechos industriales son compuestos orgánicos que pueden ser degradados por las bacterias, pero sólo muy lentamente, de modo que podrán ilevar acaso olores y gustos desagradables hasta distancias considerables a lo largo de una vía acuática.

Durante el proceso de transformación de la madera, llamado proceso kraft, los compuestos orgánicos disueltos que son arrastrados y derramados ocasionalmente, junto con el proceso de blanqueo convencional que utiliza cloro en varias de sus formas, las operaciones de descortezado, y la manufactura de papel en caso de fábricas integradas, producen un agua residual compleja cuyo tratamiento presenta grandes retos. Así, esto se traduce en descargas de sólidos suspendidos

orgánicos e inorgánicos, material orgánico coloidal y soluble desagradable y persistente, sales solubles y compuestos solubles tóxicos.

Los compuestos de diversos metales, tales como el cobre, el cadmio, el cromo y la plata, también son contaminantes industriales del agua. Las descargas que incluyen metales pesados como residuo, son las derivadas de las operaciones de acabado y cromado de metales, repelentes de polilla utilizados en la manufactura de textiles, herbicidas y plaguicidas, etc. La solución salina salmuera contiene mercurio y cuando es desechada sigue cualquier curso que se le presente. También el producto hidróxido de sodio está contaminado con mercurio y lo lleva a muchos productos para los cuales este es una materia prima.

El agua también puede resultar contaminada por la descarga de materiales radioactivos. Las principales fuentes son los laboratorios de investigación, hospitales que usan isótopos radioactivos, lavanderías que prestan servicios a dichos laboratorios y hospitales, reactores nucleares refrigerados con agua, plantas que procesan combustibles para reactores y actividades de extracción y preparación del uranio.

Finalmente, cabe agregar que la descarga de cualquiera de estos residuos en las aguas superficiales constituye un grave riesgo a corto plazo.

b) De origen municipal.

Este tipo de residuo es común a todas las comunidades y centros poblacionales (ya sean urbanos, marginales y rurales). Generalmente consiste de una combinación de residuos domésticos mezclados con cantidades variables de efluentes industriales provenientes de pequeñas industrias y comercios. En áreas altamente industrializadas, las descargas de residuos industriales pueden constituir el principal componente.

Los desechos transportados por el agua de fuentes tales como los hogares, hospitales, escuelas y edificios comerciales contienen desechos de alimentos, excrementos humanos, papel, jabón, detergentes, polvo, ropa y otros residuos diversos y, por supuesto, microorganismos.

En los centros urbanos, generalmente se recolectan los residuos y se descargan en un punto central para su tratamiento o disposición final. Muchas ciudades tienen un sistema que conduce tanto el agua de lluvia como las aguas residuales domésticas (a este se le conoce como sistema combinado). En épocas de lluvia, diferentes cantidades de residuos líquidos, compuestos por una mezcla de aguas residuales sin tratar y agua de lluvia, no ingresan a la planta de tratamiento, sino que se descargan directamente a los cursos de agua, causando un incremento efectivo en los niveles de contaminación de dicha corriente durante el período de avenidas.

c) De origen agropecuario.

Los fertilizantes agrícolas son elementos nutritivos vegetales y, cuando se aplican a la tierra, pueden ser arrastrados mediante escorrentías hacia el agua superficial; infiltrados y penetrados en aguas subterráneas; y también trasladados por el viento hasta las aguas superficiales. Los contaminantes provenientes de las actividades agrícolas incluyen sedimentos, nutrientes, plaguicidas, cargas orgánicas y organismos patógenos.

En cuanto a la actividad pecuaria el estiércol producido por cabeza de ganado, en las instalaciones dedicadas a la crianza y engorda de ganado mayor y menor, cada día es una fuente importante de generación de aguas residuales.

d) De origen de desechos, sustancias o residuos generados en las actividades de extracción de recursos no renovables.

Las descargas originadas por las actividades correspondientes a la extracción y transformación de recursos naturales en bienes de consumo y satisfactores para la población como por ejemplo la industria del petróleo, la siderúrgica y las actividades mineras, son también una fuente importante de contaminación de las aguas de corrientes superficiales.

El contaminante más grave que producen las actividades mineras, es el líquido que drena de ellas cuando existe oxidación de los compuestos de pirita con el aire en presencia de agua. Este drenaje consiste en una mezcla ácida de sales de hierro y de otro tipo de sales con ácido sulfúrico. El líquido que drena de las minas proviene tanto de actividades subterráneas como superficiales. Los residuos de la extracción, los materiales residuales dejados cerca al lugar de extracción luego de haberse extraído los minerales (también llamados relaves), constituyen otra fuente de contaminación. La lluvia que llega a estos cúmulos de residuos lixiviará parte de los contaminantes presentes y los drenará, ya sea hacia el subsuelo (pudiendo contaminar las aguas subterráneas) o hacia las aguas superficiales adyacentes.

II.3 Índice de Calidad del Agua (ICA)

El Índice de Calidad del Agua (ICA), proporciona un método que permite relacionar los parámetros reportados con el fin de determinar el grado de contaminación que presenta el agua. Mediante el índice de calidad se logra un patrón de comparación entre los distintos cuerpos de agua, comprendido con mayor claridad por el público en general. No obstante que se logra un valor de conjunto, debe considerarse el resultado de cada uno de los parámetros que intervienen, con objeto de dilucidar efectos específicos. En parte esta observación esta contemplada al definir la curva y su ecuación de los factores, así como por el coeficiente que se propone asignarle por importancia a cada parámetro.

El grado de contaminación queda representado por el Índice de Calidad del Agua, el cual esta expresado como un porcentaje del agua pura; así, el agua altamente contaminada tendrá un ICA global cercano o igual a 0 %, en cambio el agua en excelente condición tendrá un valor cercano a 100 %.

El índice de calidad general se puede conocer aplicando la Ecuación II.1.

$$I = \frac{\sum_{i=1}^{n} (I_i w_i)}{\sum_{i=1}^{n} w_i}$$
 Ecuación II.1

Donde:

i = Indice de calidad general;

I = Índice de calidad del parámetro considerado; y

w = Valor de la importancia relativa del parámetro considerado.

El Cuadro II.1 contiene los valores de la importancia relativa para 18 parámetros que se proponen como básicos en un estudio.

Las ecuaciones definidas para el índice de calidad individual, de cada uno de los 18 parámetros seleccionados para conformar el índice general, se muestran en el Cuadro II.2.

Con ayuda del ICA se pueden determinar los usos a los que se puede destinar el agua según su grado de contaminación, dichos usos quedan establecidos en la Escala de Calificación General de la Calidad del Agua y corresponden a: abastecimiento público, recreación, pesca y vida acuática, uso industrial o agrícola, navegación y transporte de desechos tratados. En el Cuadro II.3 se presenta la Escala de Clasificación de la Calidad del Agua (ICA).

, E

Cuadro II.1. Importancia relativa de los parámetros para definir el índice de calidad.

Parámetro	lmportancia Relativa (w)	Parámetro	Importancia relativa (w)	
Hq	1.0	N de nitratos	2.0	
Color	1.0	N amoniacal	2.0	
Turbiedad	0.5	Fosfatos totales	2.0	
Grasas y aceites	2.0	Cloruros	0.5	
Sólidos suspendidos	1.0	Oxígeno disuelto	5.0	
Sólidos disueltos	0.5	DBO	5.0	
Conductividad eléctrica	2.0	Coliformes totales	3.0	
Alcalinidad	1.0	Coliformes fecales	4.0	
Dureza total	1.0	Detergentes (SAAM)	3.0	

Fuente: SARH (1979)

Cuadro II.2. Ecuaciones para cada índice de calidad individual.

Parámetro	Ecuaciones	Observaciones
рН	$I_{pH} = 10^{0.2335pH + 0.440}$	Si el pH es menor que 6.7
	$I_{pH} = 100$	Si el pH está entre 6.7 y 7.3
	$I_{pH} = 10^{4.22 - 0.293pH}$	Si el pH es mayor que 7.3
Color	I _C = 123C ^{-0.295}	C en unidades de color escala platino-cobalto
Turbiedad	$I_t = 108t^{-0.178}$	t en UTJ
Grasas y aceites	$I_{GyA} = 87.25(GyA)^{-0.298}$	GyA expresado en mg/l
Sólidos suspendidos	I _{SS} = 266.5(SS) ⁻⁰³⁷	SS expresado en mg/l
Sólidos disueltos	$I_{sd} = 109.1 - 0.0175(sd)$	sd expresado en mg/l
Conductividad eléctrica	I _{CE} = 540(<i>CE</i>) ⁻⁰³⁷⁹	CE expresado en µmhos/cm
Alcalinidad	I _a = 105a ⁻⁰¹⁸⁶	a expresado en mg/l como CaCO ₃
Dureza total	$I_D = 10^{1974} - 0.00174D$	D expresado en mg/l como CaCO ₃
N de nitratos	$I_{NO_3} = 162.2(NO_3)^{-0.343}$	NO ₃ expresado en mg/l
N amoniacal	$I_{NH_3} = 45.8(NH_3)^{-0.343}$	NH ₃ expresado en mg/l
Fosfatos totales	$I_{PO_4} = 34.215(PO_4)^{-0.460}$	PO4 expresado en mg/l
Cloruros	I _{Ci} = 121(Ci) ⁻⁰²²³	C! expresado en mg/l

Parămetro	Ecuaciones	Observaciones
Oxígeno disuelto	$I_{OD} = \frac{OD}{OD_{sat}} 100$	OD expresado en mg/l a temperatura de campo; Odsat expresado en mg/l de saturación a la misma temperatura de campo
Demanda bioquímica de oxígeno	$I_{DBO} = 120(DBO)^{-0.673}$	DBO expresado en mg/l
Coliformes totales	$I_{CT} = 97.5(CT)^{-0.270}$	CT expresado en NMP coli/ml
Coliformes fecales	I _{EC} = 97.5[5(<i>EC</i>)] ⁻⁰²⁷⁰	EC expresado en Escherichia coli/mł
Detergentes	I _{SAAM} = 100 - 16.678(SAAM) - 0.1587(SAAM) ²	SAAM expresado en mg/i

Cuadro II.3. Escala de Clasificación de la Calidad del Agua (ICA).

Mana	Abastecimiento		December 1	Industrial y		
Rango	Público	Recreacion	Pesca y Vida Acuática	Agricola	Navegación	Transporte de Desechos Tratados
90-100	No requiere purificación	Aceptable para	Aceptable para	No requiere purificación		
80-90	Ligera purificación	cualquier deporte	todos los organismos	Ligera purificación		
70-80		acuático		para algunos procesos		
60-70	Mayor necesidad de tratamiento	Aceptable pero	ero Excepto especies muy sensibles Sin tratamiento para industria Acepta	Aceptable		
50-60		recomendable				Aceptable
40-50	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la		
30-40		Sin contacto con el agua	indy resistentes	industria		
20-30	Inaceptable	Uso muy restringido		Uso muy restringido	Restringido	
10-20	пасергаріе	Inaceptable	Inaceptable	Inaceptable	Inaceptable	
0-10		·		шасерцаоне	шасеріаліе	Inaceptable

II.4 Programas de aforo

En las estaciones localizadas sobre los afluentes y la corriente principal se debe realizar el aforo simultáneamente a la toma de las muestras simples con las que se elabora la muestra compuesta que debe ser enviada al laboratorio para su análisis. En ocasiones el aforo en corrientes muy grandes o rápidas se dificulta, por eso es recomendable que al realizar el programa de aforos se tenga contemplado dentro del mismo, equipo especial para las brigadas encargadas del aforo y muestreo. Este equipo debe contener al menos: salvavidas para cada integrante de la brigada; cuerdas y guantes especiales para posibles escaladas; botas y guantes de hule o algún material impermeable; botes de hule con motor fuera de borda o en su defecto lanchas (de madera o metal) con remos, las cuales no son muy recomendables debido a su inestabilidad; y equipo de primeros auxilios para casos de emergencia. También es recomendable elegir adecuadamente al equipo humano de acuerdo a sus cualidades, ya que se requiere de gente que de preferencia conozca el lugar; la manera de hacer un aforo correcto; y esté capacitada para hacer frente a cualquier posible eventualidad.

II.4.1 Aforo en corrientes

Aforar una corriente significa determinar a través de mediciones el gasto que pasa por una sección dada. De acuerdo a las condiciones de cada una de las descargas y de las estaciones de monitoreo seleccionadas se podrá utilizar alguno de los métodos que a continuación se enlistan:

a) Sección de control

Una sección de control de una corriente se define como aquella en la que existe una relación única entre el tirante y el gasto. De los muchos tipos de secciones de control que se pueden usar para aforar una corriente, los más comunes son los que producen un tirante crítico (Y_o) y los vertedores.

Se forma un tirante crítico elevando el fondo del cauce, estrechándolo o con una combinación de las dos técnicas. Cuando se utiliza la primera (véase Figura II.1), el gasto se calcula usando la fórmula de vertedores de pared gruesa, dada por la Ecuación II.2.

$$Q = \frac{2}{3} BH \frac{\sqrt{2}}{3} gH = 1.7BH^{\frac{3}{2}}$$
 Ecuación II.2

Donde:

Q = Gasto. en m³/s:

B = Ancho del cauce, en m;

g = Aceleración de la gravedad, en m/s²; y

H = Carga sobre el vertedor, en m.

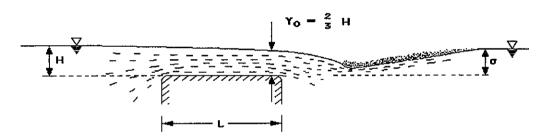


Figura II.1. Vertedor de pared gruesa.

En la Figura II.1 Yo es el tirante crítico y su valor debe ser de 2/3 de H; σ es la diferencia entre la cresta y la altura de la superficie, aguas abajo, del vertedor (σ es negativo cuando el nivel está por debajo de la cresta y positivo en caso contrario). Para que el dispositivo tenga un buen funcionamiento, se recomienda que:

$$3 < \frac{L}{H} < 4$$

$$\sigma < 0.8 H$$

Otra manera de provocar la formación de un tirante crítico es cuando la topografía permite disponer de una caída libre (véase Figura II.2); en este caso el gasto se calcula con el tirante medido justo en la caída y la Ecuación II.3.

$$Q = 1.65By\sqrt{gy}$$

Ecuación II.3

Donde:

Q = Gasto, en m³/s;

y = Tirante crítico, en m; B = Ancho del cauce, en m; y

q = Aceleración de la gravedad, en m/s².

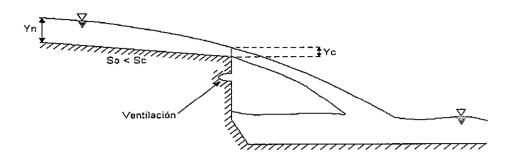


Figura II.2. Caída libre.

En la Figura II.2 la pendiente del terreno (S_o) debe ser menor a la pendiente crítica (S_c) para que al inicio de la caída se forme un tirante crítico (Y_c) y aguas arriba el perfil sea el del tirante normal (Y_n) .

Si se utilizan vertedores de pared delgada se recomiendan: el triangular (con ángulo de 90°) para gastos pequeños (de 0 a 100 l/s) y el rectangular para gastos mayores (de 100 a 1 000 l/s).

El método de secciones de control es el más preciso de todos para el aforo, pero presenta algunos inconvenientes. En primer lugar, es relativamente costoso y, en general, sólo se puede usar cuando los gastos no son muy altos. En el caso de los estrechamientos se restringe el transporte de objetos arrastrados por la corriente y la sección puede obstruirse. Un inconveniente de los vertedores es que generan un remanso aguas arriba de la sección. Por ello, este método es adecuado en ríos pequeños, cauces artificiales o cuencas experimentales.

b) Relación sección-pendiente

Este método se utiliza para estimar el gasto máximo que se presentó durante una avenida reciente en un río donde no se cuenta con ningún otro tipo de aforos. Para su aplicación se requiere solamente contar con topografía de un tramo del cauce y las marcas del nivel máximo del agua durante el paso de la avenida. La velocidad se obtienen con la fórmula de Manning (Ecuación II.4).

$$v = \frac{1}{n} R^{\frac{2}{3}} S_f^{\frac{1}{2}}$$
 Ecuación II.4

Donde:

v = velocidad, en m/s;

R = Radio hidráulico;

Sf = Pendiente de la línea de energía específica; y

n = Coeficiente de rugosidad.

En la Figura II.3 se tienen los siguientes elementos: carga de posición (z) medida desde un plano horizontal de referencia (P.H.R.); carga de posición (y); carga de velocidad (h); pérdida de carga (hf); y diferencia en elevación de las marcas del nivel máximo del agua en los extremos del tramo (Δy).

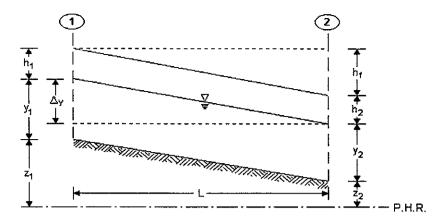


Figura II.3. Método relación sección-pendiente.

Además, se obtiene la fórmula del gasto utilizando la ecuación de continuidad y por medio de la sección que se muestra en la Figura II.3, se llega a la Ecuación II.5, con la que se obtiene el gasto pico de la avenida.

Q =
$$\frac{\sqrt{\frac{\Delta y}{L}}}{\sqrt{\frac{1}{K_{d^2}} - \frac{1}{bgL}(\frac{1}{A_1^2} - \frac{1}{A_2^2})}}$$
 Ecuación II.5

Donde:

Q = Gasto pico de una avenida;

Δy Diferencia en elevación del agua de las secciones 1 y 2 del tramo;

L = Distancia horizontal entre las secciones 1 y 2;

A = Área de la sección;

b = Es igual a 2 si $A_1 > A_2$ e igual a 4 si $A_2 > A_3$;

g = Coeficiente de gravedad; y

Kd = Coeficiente de conducción medio en el tramo, el cual puede calcularse como el promedio geométrico de los coeficientes de conducción en los extremos del mismo (Ecuación II.6).

$$\overline{K_d} = \sqrt{K_{d_1} K_{d_2}}; \ K_{d_i} = \frac{A_i R_i^{\frac{2}{3}}}{n_i}$$
 Ecuación II.6

c) Relación sección-velocidad

Este es el método más usado para aforar corrientes. Consiste básicamente en medir la velocidad en varios puntos de la sección transversal y después calcular el gasto por medio de la ecuación de continuidad.

Para determinar el gasto no es suficiente entonces medir la velocidad en un solo punto, sino que es necesario dividir la sección transversal del cauce en varias subsecciones llamadas dovelas (veáse Figura II.4). El gasto que pasa por cada dovela se obtiene con la Ecuación II.7.

$$q_i = a_i v_{mi}$$
 Ecuación II.7

Donde:

a_i = Área de la dovela i, en m²; y

 $v_m = Velocidad media en la misma dovela, en m/s.$

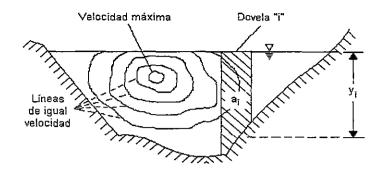


Figura II.4. Velocidad del flujo en la sección transversal de la corriente.

La velocidad media v_{mi} se puede tomar como la medida a una profundidad de 0.6 y aproximadamente, donde y, es el tirante medido al centro de la dovela cuando y, no es muy grande; en caso contrario, conviene tomar al menos dos medidas a profundidades de 0.2 y, y 0.8 y,; así la velocidad media es el promedio de ambas velocidades (Ecuación II.8).

$$V_{mi} = \frac{V_{20} + V_{80}}{2}$$
 Ecuación II.8

Donde:

 $v_{20} y v_{80} =$

Velocidades medias medidas a 0.2 y, y 0.8 y respectivamente. Cuando y es muy grande, puede ser necesario tomar tres o más lecturas de velocidad en la dovela. Es recomendable, además, medir la profundidad de cada dovela cada vez que se haga un aforo. Entonces, el gasto total será el obtenido con la Ecuación II.9.

$$Q = \sum_{i=1}^{i-1} q_i$$
 Ecuación II.9

Donde:

n = Número de dovelas.

La velocidad se mide con unos aparatos llamados molinetes que tienen una hélice o rueda de aspas o copas que gira impulsada por la corriente y, mediante un mecanismo eléctrico, transmiten por un cable el número de revoluciones por minuto o por segundo con que gira la hélice. Esta velocidad angular se traduce después a velocidad del agua usando una fórmula de calibración que previamente se determina para cada aparato en particular.

Para que el molinete pueda colocarse a la profundidad deseada se fija a un peso hecho de plomo y con forma hidrodinámica, llamado escandallo. La profundidad a la que se hace la medición se calcula usando la Ecuación II.10.

$$\overline{bc} = (1 - K)\overline{de}$$

Ecuación II.10

Donde:

bc = Distancia que existe entre el fondo y la superficie de la corriente;

de = Medida del cable sumergido; y

K = Coeficiente de corrección que se calcula en función del ángulo θ mediante el Cuadro II.4.

Cuadro II.4. Coeficiente de corrección l	K.
--	----

θ°	K	θ°	K	₽°	K
4	0.0006	16	0.0128	28	0.0408
6	0.0016	18	0.0164	30	0.0472
8	0.0032	20	0.0204	32	0.0544
10	0.0050	22	0.0248	34	0.0620
12	0.0072	24	0.0296	36	0.0698
14	0.0098	26	0.0350		

El punto a donde se coloca el operador para hacer el aforo puede estar situado en un puente o en una canastilla suspendida de un cable (veáse Figura II.5).

En algunos casos se aceptan aforos hechos desde un bote, aunque este método no es muy recomendable debido a que se perturba el flujo y el bote es arrastrado por la corriente, impidiendo que el aforo se haga en una sección transversal a la dirección del flujo. Por otra parte, las mediciones desde puentes son más recomendables cuando éstos son de un solo claro, pues las pilas o pilotes dentro del cauce producen distorsiones en las líneas de corriente, lo que puede introducir errores de consideración en los aforos.

El número de puntos en los cuales se debe de medir la velocidad debe limitarse a aquellos que se puedan realizar dentro de un tiempo razonable, especialmente si el nivel esta cambiando rápidamente, puesto que es deseable completar la medición con un cambio mínimo en el nivel.

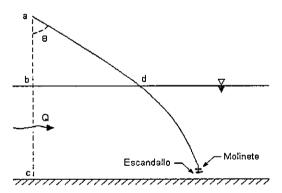


Figura II.5. Posición que adopta el molinete con el escandallo.

La determinación de la velocidad media en la vertical se realiza como sigue:

- * Se mide la profundidad total del agua mediante un sondeo con cable.
- Se levanta el correntómetro hasta 0.6 de la profundidad y se mide la velocidad accionando el cronómetro en un impulso del correntómetro y parándolo en otro impulso aproximadamente 45 segundos después. El número de impulsos contados (tomando el primero como cero) y el tiempo recorrido permite el cálculo de la velocidad a partir de la curva de calibración del correntómetro.

Si las velocidades son altas, el correntómetro y su peso no estarán suspendidos verticalmente por debajo del punto, sino que serán arrasados aguas abajo por la corriente. Bajo estas condiciones la longitud del cable desarrollada es mayor que la distancia vertical verdadera y el correntómetro estará más alto de lo indicado.

La corrección real depende de las longitudes relativas de la línea por encima y por debajo de la superficie del agua.

Finalmente el cálculo del caudal se obtiene como sigue:

- 1. Se calcula la velocidad promedio en cada dovela (q_m);
- 2. Se multiplica la velocidad promedio de la dovela por el área de la sección vertical (a,)que se extiende hasta la mitad del camino de los verticales adyacentes (ver Figura II.4). Esta área se toma como la correspondiente a la profundidad media en la vertical por el ancho.
- 3. Se suman los incrementos de caudal de las diferentes dovelas ($\sum q$).

d) Otros métodos

Existen otros métodos con los que es posible realizar aforos. Uno de ellos es el de trazadores, que consiste en soltar una cantidad conocida de partículas fluorescentes, radiactivas, etc., en una sección situada a una cierta distancia aguas arriba de la sección de aforos para medir el tiempo que tardan en llegar a la última. Esto se puede hacer visualmente, con contadores de radiactividad o con algún otro procedimiento, dependiendo del tipo de partículas usadas. Este y otros métodos aún se encuentran en la etapa de experimentación y su uso todavía esta limitado en la práctica.

II.4.2 Aforo en descargas

La posibilidad de medir los caudales de agua residual es de fundamental importancia al proyectar todas las instalaciones de recogida y evacuación. Los dos métodos más empleados para la medida de caudales son de descarga directa y los de velocidad-área.

Métodos de descarga directa

Los métodos de descarga directa son aquellos en que la magnitud de la descarga es función de una o dos variables fácilmente medibles. Los principales métodos y aplicaciones se describen enseguida:

a) Tubo de California

En este método se relaciona el caudal con el calado del flujo a través del extremo abierto de una tubería horizontal parcialmente llena que descarga libremente a la atmósfera. La tubería de descarga debe de estar horizontal y tener una longitud de al menos seis diámetros de la tubería. Si se espera que la tubería fluya casi llena, debe instalarse una ventosa aguas arriba de la entrada de la tubería para asegurar la libre circulación del aire en la porción no llena de la tubería de descarga.

b) Cálculo

Este método requiere la medida en el campo del calado del flujo y de la pendiente de la alcantarilla. También debe seleccionarse un valor del coeficiente de rugosidad. El método, en el mejor de los casos, es una aproximación dependiente de la continuidad del flujo en el momento de la observación y de la presición con que se adopte el coeficiente de rugosidad en las condiciones existentes. Este método se basa, asimismo, en el supuesto de que el flujo se produce con un calado normal. A pesar de estas limitaciones, este método es utilizado a menudo para efectuar mediciones del caudal de aqua residual.

c) Peso directo

En este método, que se utiliza para medir pequeños caudales, la masa del flujo descargado en un periodo especificado de tiempo es pesada y convertida a caudal utilizando el peso específico del fluido.

d) Toberas de flujo

Los medidores del caudal con toberas hacen uso del principio de Venturi, pero utilizan una tobera que se inserta en la tubería en vez del tubo de Venturi para producir la presión diferencial. La forma de la tobera, el método de la inserción en la tubería, y el método de medida de la diferencia de presión, varían con el fabricante. Las toberas de flujo abiertas unidas al final de la tubería suelen ser normalmente, del tipo Kennison. Dado que las toberas situadas al final de las tuberías son esencialmente vertederos proporcionales, solamente se necesita una conexión a presión para medir la carga.

e) Medidores magnéticos

Cuando un conductor eléctrico pasa a través de un campo electromagnético, se induce en aquel una fuerza electromotriz o voltaje que es proporcional a la velocidad del conductor. Este enunciado de la ley de Faraday es la base para el diseño de medidores electromagnéticos de flujo.

El líquido que circula por la tubería (generalmente agua o agua residual) sirve como conductor. El campo electromagnético es generado colocando bobinas alrededor de la tubería. El voltaje inducido es entonces medido por electrodos colocados a ambos lados de la tubería. En aquellos casos en que el material de la tubería es conductor, no es preciso que los electrodos atraviesen la pared de aquélla, cosa que es necesaria cuando el material no es conductor y se precisa que los electrodos entren en contacto directo con el líquido que fluye. Los medidores magnéticos de caudal que suelen encontrarse disponibles en el mercado son adecuados generalmente para tamaños de tubería variables entre 50 y 900 mm de diámetro; los tamaños mayores requieren encargarlos especialmente.

f) Orificio

Un orificio es una abertura cilíndrica o prismática a través de la cual fluye el líquido. El orifico normalizado, como se define generalmente, es aquel en que el borde del orificio que determina el chorro es tal que este en su salida no toca de nuevo la pared del orificio. En la práctica ello puede conseguirse biselando el borde del orificio. El caudal que fluye alsu través se determina utilizando el teorema de Torricelli.

g) Placa de orificio

Se inserta en una conducción cerrada una placa que tiene una abertura cilíndrica en el centro. El caudal se determina a partir de las lecturas de las presiones diferenciales.

h) Trazadores químicos y radiactivos

En el calibrado químico o radiactivo se hace una adición continua de una sustancia química o radiactiva de concentración conocida, a caudal constante, a la corriente cuya descarga se quiere determinar. A una distancia aguas abajo suficiente para asegurar una mezcla completa del trazador con la corriente, se toman muestras de ésta y se determina la concentración de la sustancia química o radiactiva. El caudal en la corriente puede determinarse entonces utilizando un balance de masa.

i) Canales de aforo Venturi

Los canales de aforo Venturi utilizan el principio del calado crítico para medir caudales en canales. Los dos mejores tipos conocidos son los canales de aforo Parshall y Palmer-Bowlus. El canal de aforo Parshall es generalmente fijo y se usa a menudo para medir caudales en las plantas de tratamiento. El canal de aforo Palmer-Bowlus es pequeño y móvil y se usa normalmente para medir caudales de agua residual en alcantarillas.

j) Tubos de Venturi

El tubo Venturi que se utiliza para medir caudales en conducciones cerradas, consta de tres partes: el cono de entrada, en el cual el diámetro de la tubería se reduce gradualmente; la garganta o

sección contraída; y el cono de salida, en el cual el diámetro aumenta gradualmente hasta el de la tubería en la que se inserta el medidor.

La garganta en los tubos normalizados varía entre un quinto y tres cuartos del diámetro de la tubería, y su longitud es aproximadamente igual al diámetro. Se inserta un piezómetro diferencial en la garganta y en la porción recta de entrada, y la determinación de la cantidad de agua que fluye se basa en la diferencia de presiones entre la entrada y la garganta del medidor.

k) Medida volumétrica

Se mide el volumen de fluido descargado en un período especificado de tiempo. Generalmente, ello puede hacerse sólo con caudales muy bajos.

Vertedero de pared delgada

Un vertedero de pared delgada es una barrera (generalmente una placa de plástico o metal) sobre la cual se hace fluir el fluido que quiere ser medido. Los tres tipos más comúnmente utilizados son los vertederos rectangulares, triangulares y trapezoidales. El caudal se determina midiendo la carga en la cresta del vertedero (en vertederos rectangulares o trapezoidales) o sobre el vértice de la abertura del vertedero (en vertedores triangulares). La carga es la diferencia de cotas entre la cresta y la superficie del agua en el canal en un punto aguas arriba tomado si ello es posible más allá del comienzo de la superficie curva del líquido. El caudal se determina a partir de una curva de calibrado en el cual se representa gráficamente el caudal en relación con la carga observada.

Métodos velocidad-área

Utilizando el método velocidad-área, se determina el caudal multiplicando la velocidad del flujo (m/s) por la superficie de la sección recta (m²), a través de la que circula el caudal. Los principales métodos y aparatos utilizados para la obtención de las velocidades se resumen a continuación:

a) Molinetes

Las mediciones con molinetes se utilizan para la determinación precisa de la velocidad de flujo en grandes alcantarillas o canales, siempre y cuando no haya demasiadas materias suspendidas que puedan obturar el medidor. Los aforos del flujo pueden realizarse siguiendo diversos métodos: el de un solo punto, el de dos puntos, el de puntos múltiples, el de integración por secciones y el de integración de una sola operación.

En el método de un sólo punto, se mantiene el medidor a una profundidad de 0.6 veces el calado de la corriente y en el centro de la misma. El resultado se supone indicativo de la velocidad media del flujo pero no deja de ser sino una aproximación general, adecuada solamente para observaciones rápidas que no pretenden ser exactas. En el método de dos puntos se observa la velocidad a 0.2 y 0.8 del calado de la corriente, tomándose el promedio de estos dos valores para representar la velocidad media en la sección vertical. La corriente puede dividirse en varias secciones verticales y la velocidad media en cada una de ellas se determina aproximadamente por este método.

b) Métodos eléctricos

Los métodos eléctricos utilizados para medir el caudal de agua que fluye en una corriente suponen el uso de un equipo que incluyen pilas de conductividad, anemómetros de hilo caliente y anemómetros de película caliente. Aunque algunos de estos métodos se han utilizado en la práctica, no son del todo idóneos para efectuar mediciones de flujo de aguas residuales, ya que las materias suspendidas y en flotación que normalmente se encuentran en ellas interfieren con la relación de las mediciones.

c) Medidas con flotadores

Las medidas de flujo con flotadores en alcantarillas son muy raramente realizadas, excepto en canales rectangulares o para la determinación aproximada de la velocidad del flujo entre dos pozos

de registro; pero los flotadores son universalmente utilizados en estudios de corrientes de mareas o de aguas residuales en masas de agua en las que aquéllas son vertidas. Se utilizan tres tipos de flotadores: superficial, sumergido y de varilla.

Con los flotadores superficiales sólo pueden obtenerse velocidades en la superficie. Debido a los efectos perturbadores del viento, los resultados sólo pueden considerarse como aproximaciones.

Los flotadores sumergidos se componen de cuerpos relativamente grandes, algo más pesados que el agua, conectados por alambres finos a flotadores superficiales de tamaño suficiente para proporcionar la flotación necesaria, que llevan marcadores mediante los cuales pueden trazarse sus trayectorias. La resistencia del flotador superficial y del alambre de conexión es, por lo general, tan ligera que puede suponerse que ambos se desplazan con la velocidad del agua en la posición del flotador sumergido.

Los flotadores de varilla se han utilizado para medir con mucha precisión el flujo en canales. Consisten, generalmente, en unos cilindros metálicos lastrados de tal manera que pueden flotar en posición vertical. Se ha comprobado que la velocidad de la varilla coincide, prácticamente, con la velocidad media del agua residual en la trayectoria seguida por el flotador.

d) Tubos de Pitot

El tubo de Pitot, que a lo largo del tiempo ha resultado muy útil en aforos de tuberías de agua, no se aplica en aforo de alcantarillas debido a que la materia suspendida en el agua residual tiende a obturarlo.

e) Trazadores químicos y radiactivos

Cuando se trata de medir velocidad, se inyectan los trazadores químicos o radiactivos normalmente en la corriente en dos puntos de control, situados aguas arriba. El tiempo de recorrido del prisma de agua que contiene el trazador es anotado en estos dos puntos de control y se calcula la velocidad dividiendo la distancia entre los puntos de control y el tiempo de recorrido.

Cuando se usa la sal (NaCl) como trazador, el tiempo de recorrido entre los puntos de control es medido con electrodos conectados a un amperímetro o registrador. Cuando se utilizan trazadores radiactivos, el tiempo de recorrido es la diferencia entre los tiempos medidos, cuando los registros máximos son contabilizados en cada estación de registro.

f) Trazadores con colorantes

El empleo de colorantes para medir la velocidad de flujo en las alcantarillas, especialmente en las tuberías pequeñas, es uno de los métodos utilizados más sencillos y de mayor éxito. Una vez elegida una sección de una alcantarilla en la que el flujo es prácticamente constante y uniforme, se inyecta el colorante en el extremo superior y se determina el tiempo de su llegada al extremo inferior. Si se usa un colorante de tipo brillante, como la eosina, y se suspende horizontalmente una placa en el extremo inferior de la alcantarilla, el tiempo de aparición y de desaparición del colorante en el extremo inferior puede observarse con notable precisión, pudiéndose tomar la medida entre estos dos tiempos observados como representativa del tiempo medio de flujo. Otros colorantes que han sido utilizados con éxito son la fluoresceína, el rojo congo, permanganato potásico, sodamina B y pontacil rosa brillante B, el cual es especialmente útil en los estudios de dispersión en el mar.

II.5 Programa de muestreo

El procedimiento para la colección de muestras simples y la integración de muestras compuestas se debe llevar a cabo de acuerdo a lo indicado en las Normas Oficiales Mexicanas vigentes aplicables o, en su defecto, se deben seguir las recomendaciones señaladas en el "Standar Methods for the Examination of Wastewater" o en su versión en español "Métodos Normalizados para el Análisis de Agua Potable y Residuales".

La mayoría de las aguas crudas y aguas residuales son muy variables tanto en calidad como en cantidad y es poco probable que con una muestra aleatoria se obtenga un cuadro significativo de la naturaleza de la fuente. Para evaluar exactamente esta situación, es necesario obtener una muestra compuesta por todas las muestras tomadas a intervalos conocidos durante cierto período y en proporción al caudal. Al mezclar las muestras individuales en proporción con los flujos apropiados se obtiene una muestra compuesta integrada. Se aplican procedimientos similares cuando se toman muestras de corrientes y ríos; con secciones de canales muy grandes es necesario tomar muestras en varios puntos de la sección transversal y a diferentes profundidades. Existen diferentes equipos automáticos para tomar muestras compuestas que operan por tiempo o en proporción al caudal. El muestreo de descargas da agua residual de origen industrial puede ser aún más difícil, ya que con frecuencia éstas son intermitentes. En estas circunstancias es importante que se entienda completamente el tipo de las operaciones que producen la descarga para poder implementar un programa de muestreo apropiado y obtener así la imagen real de la descarga.

Cuando se diseña un programa de muestreo es fundamental que se especifique claramente su objetivo, por ejemplo, estimar percentiles o tener una base para cobrar por cada efluente industrial. También se debe especificar el margen de error tolerable; y también es necesario tener en mente los recursos disponibles para la toma de muestras y el análisis, pues se puede encontrar que reducir la incertidumbre de los resultados podría requerir doble número de muestras, lo que haría costoso el análisis. En forma ideal, todos los análisis se deben practicar inmediatamente después de la recolección de las muestras, ya que entre más rápido se hagan, es más probable que los resultados sean una evaluación verdadera de la naturaleza real del líquido in situ. Con características inestables, como gases disueltos, constituyentes oxidables o reducibles, etc., los análisis deben efectuarse en el campo o tratar la muestra adecuadamente para fijar las concentraciones de los materiales inestables. Los cambios que ocurren al transcurrir el tiempo en la composición de una muestra se puede retardar si se almacena a baja temperatura (4°C); también se recomienda no exponerla a la luz. Entre más contaminada esté el agua es más corto el tiempo disponible para la toma de muestras y el análisis si se quieren evitar errores significativos.

El muestreo se deberá efectuar de acuerdo a las características del tipo de descarga o corriente, conforme a los procedimientos siguientes:

a) Muestreo en corrientes

La toma de muestras simples en las estaciones localizadas en los afluentes y sobre la corriente principal se realizará de tal forma que al formular la muestra compuesta, esta represente las condiciones particulares de la corriente. Generalmente en corrientes de gran magnitud el muestreo se dificulta, pero es importante tratar de que la muestra compuesta sea tomada de forma correcta, es decir, las muestras individuales se deben tomar de acuerdo al diagrama de la Figura II.6, donde P es el punto de muestreo, h la profundidad y L el ancho del espejo de agua de la sección transversal.

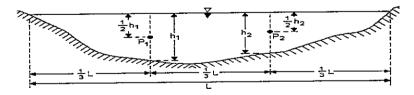


Figura II.6. Puntos de muestreo.

b) Muestreo en tomas

Se recomienda se instalen tomas en conductos a presión o en conductos que permitan el fácil acceso para muestrear a cielo abierto con el objeto de caracterizar debidamente las aguas residuales. Las tomas deben tener un diámetro adecuado para muestrear correctamente las aguas residuales en función de los materiales que puedan contener, deben ser de la menor longitud posible, y procurar situarlas de tal manera que las muestras sean representativas de la descarga. Se recomienda utilizar materiales similares a los del conducto (acero al carbón, acero inoxidable, etc.).

Se debe dejar fluir un volumen aproximadamente igual a 10 veces el volumen de la muestra y a continuación se llenan los recipientes de muestreo.

c) Muestreo en descargas libres.

Cuando las aguas residuales fluyan libremente en forma de chorro, se empleará el siguiente procedimiento:

- * El recipiente muestreador se debe enjuagar repetidas veces antes de efectuar el muestreo.
- * Se introduce el recipiente muestreador en la descarga o de ser posible, se toma directamente la muestra en su recipiente.
- La muestra se transfiere del recipiente muestreador al recipiente para la muestra cuidando de que ésta siga siendo representativa.

d) Muestreo en Canales y Colectores.

Se recomienda tomar las muestras en el centro del canal o colector de preferencia en lugares donde el flujo sea turbulento a fin de asegurar un buen mezclado.

Si se va a evaluar el contenido de grasas y aceites se deben tomar porciones, a diferentes profundidades, cuando no haya mucha turbulencia para asegurar una mayor representatividad.

El recipiente muestreador se debe enjuagar repetidas veces con el agua por muestrear antes de efectuar el muestreo.

El recipiente muestreador atado con una cuerda y sostenido con la mano de preferencia enguantada, se introduce en el agua residual completamente y se extrae la muestra.

Si la muestra se transfiere de recipiente, se debe cuidar que ésta siga siendo representativa.

e) Consideraciones adicionales.

En este punto se establecen los lineamientos generales y recomendaciones para realizar adecuadamente los muestreos, con el fin de determinar las características físicas y químicas de cada muestra.

Obtención de muestras compuestas.

Se recomienda que las muestras sean compuestas, para que representen el promedio de las variaciones de los contaminantes. El procedimiento para la obtención de dichas muestras es el siguiente:

La muestra compuesta se obtiene mezclando el número de muestras simples según lo indicado en el Cuadro II.5. Para conformar la muestra compuesta, el volumen de cada una de las muestras simples deberá ser proporcional al caudal de la descarga en el momento de su toma.

Cuadro II.5. Frecuencia de muestreo.

Horas por día que opera el proceso	Número de	Intervalo entre toma de muestras simples (horas)		
generador de la descarga	muestras simples	: Minimo	Máximo	
Menor que 4	mínimo 2	-	-	
De 4 a 8	4	1	2	
Mayor que 8 y hasta 12	4	2	3	
Mayor que 12 y hasta 18	6	2	3	
Mayor que 18 y hasta 24	6	3	4	

El intervalo entre la toma de cada muestra simple para integrar la muestra compuesta, debe ser el suficiente para determinar la variación de los contaminantes del agua residual.

Las muestras compuestas se deben tomar de tal manera que cubran las variaciones de la descarga durante 24 horas como mínimo.

La muestra simple es aquella que se toma en el punto de descarga, de manera continua, en un día normal de operación que refleje cuantitativa y cualitativamente el o los procesos más representativos de las actividades que genera la descarga, durante el tiempo necesario para completar cuando menos, un volumen suficiente para que se lleven a cabo los análisis necesarios para conocer su composición, aforando el caudal descargado en el sitio y en el momento del muestreo.

El volumen de cada muestra simple necesario para formar la muestra compuesta se determina mediante la Ecuación II.11.

$$VMS_i = VMC \frac{Q_i}{Q_t}$$
 Ecuación II.11

Donde:

VMS_i = Volumen de cada una de las muestras simples "i", en litros;

VMC = Volumen de cada muestra compuesta necesario para realizar la totalidad de los análisis de laboratorio requeridos, en litros;

Q_i = Caudal medido en la descarga en el momento de tomar la muestra simple, en l/s; y

 $Q_i = Suma de Q_i hasta Q_n, en I/s.$

Frecuencias del muestreo y análisis, y del reporte de datos

La frecuencia de muestreo y análisis, y de reporte, será de acuerdo al tamaño de población en el caso de efluentes municipales, y en el caso de descargas no municipales, de acuerdo a la carga de contaminantes según los Cuadros II.6 y II.7, respectivamente.

Cuadro II.6. Efluentes municipales.

Intervalo de población	Frecuencia de muestreo y análisis	Frecuencia de reporte
mayor que 50 000 habitantes	uno mensual	uno trimestral
de 20 001 a 50 000 habitantes	uno trimestral	uno trimestral
de 2 501 a 20 000 habitantes	uno semestral	uno trimestral

Cuadro II.7. Efluentes no municipales.

Demanda Bioquímica de oxígeno en ton/dia	Sólidos suspendidos totales en ton/día	Frecuencia de muestreo y análisis	Frecuencia de reporte	
mayor de 3.0	mayor de 3.0	uno mensual	uno trimestral	
de 1.2 a 3.0	de 1.2 a 3.0	uno trimestral	uno trimestral	
menor de 1.2	menor de 1.2	uno trimestral	uno trimestral	

Los parámetros a ser considerados en el muestreo, análisis y reporte son los que se indican en el Cuadro I.1 del artículo 278-B de la Ley Federal de Derechos (el cual se repite a continuación para fines de este capítulo): potencial Hidrógeno (pH), Grasas y Aceites, Sólidos Suspendidos Totales, Demanda Bioquímica de Oxígeno total (DBO5), Nitrógeno Total, Fósforo Total, Coliformes Fecales y Arsénico, Cadmio, Cianuros, Cobre, Cromo, Mercurio, Níquel, Plomo y Zinc en forma total.

El rango permisible del potencial hidrógeno (pH) es de 5 a 10 unidades. Para determinar la contaminación por patógenos se tomará como indicador a los coliformes fecales. El límite máximo permisible para las descargas de aguas residuales vertidas a aguas y bienes nacionales, así como a las descargas vertidas a suelo (uso en riego agrícola) es de 1 000 y 2 000 como número más probable (NMP) de coliformes fecales por cada 100 ml para el promedio mensual y diario, respectivamente.

Parámetros			Cuerpos receptores		
	Tipo A	1	Tipo B	Tipo C	
	Ríos con uso de riego agrícola; Acuíferos	público urbano;	artificiales con uso en	Ríos con uso en protección de vida Acuática; embalses naturales con uso público urbano; Acuíferos	
	P.M.	P.M.	P.M.	P.M.	
Grasas y Aceites	15	15	15	15	
Sólidos Suspendidos Totales	150	75	75	40	
Demanda Bioquímica de Oxígeno	150	75	75	30	
Nitrógeno Total	40	40	40	15	
Fósforo Total	20	20	20	5	
Arsénico (*)	0.2	0.1	0.2	0.1	
Cadmio (*)	0.2	0.1	0.2	0,1	
Cianuros (*)	2	1	2	1	
Cobre (*)	4	4	4	4	
Cromo (*)	1	0.5	1	0.5	
Mercurio (*)	0.01	0.005	0,01	0.005	
Níquel (*)	2	2	2	2	
Plomo (*)	0.5	0.2	0.5	0.2	
Zinc (*)	10	10	10	10	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

Identificación de las muestras

Se deben tomar las precauciones necesarias para que en cualquier momento sea posible identificar las muestras. Se deben emplear etiquetas pegadas o colgadas, o numerar los frascos anotándose la información en una hoja de registro. Estas etiquetas deben contener como mínimo la siguiente información:

- Identificación de la descarga.
- Número de muestra.
- Fecha y hora de muestreo.
- Punto de muestreo.
- * Temperatura de la muestra.
- Profundidad de muestreo.
- Nombre y firma de la persona que efectua el muestreo.

Se debe de llevar una hoja de registro con la información que permita identificar el origen de la muestra y todos los datos que en un momento dado permitan repetir el muestreo. Se recomienda que la hoja de registro contenga la siguiente información:

- * Los mismos datos que contienen las etiquetas de los frascos.
- Resultados de pruebas de campo practicadas en la descarga muestreada.
- Cuando proceda, el gasto o flujo de la descarga que se muestreo.
- Descripción detallada del punto de muestreo, de manera que cualquier persona pueda tomar otras muestras en el mismo lugar.
- * Descripción cualitativa del olor y el color de las aguas muestreadas.

P.M. Promedio Mensual

^(*) Medidos de manera total

Recipientes de muestreo.

Los recipientes para las muestras deben ser de materiales inertes al contenido de las aguas residuales. Se recomiendan los recipientes de polietileno o vidrio, y que tengan una capacidad mínima de 2 litros.

Las tapas de los recipientes deben proporcionar un cierre hermético y se recomienda que sean de material afín al del recipiente.

Análisis físico-químicos.

A continuación se describen los aspectos más relevantes, para la colección de muestras de agua, que son aplicables para la determinación de análisis físico-químicos:

- * Las muestras deberán colectarse en garrafones de polietileno o jarras de vidrio que deberán estar perfectamente limpios, estos recipientes estarán debidamente rotulados con el número de la estación, número de muestreo, análisis a efectuar y la fecha y hora de colección.
- Para las muestras individuales colectar aproximadamente un litro de agua del lugar requerido. Procurar respetar los tiempos recomendados durante su colección, manejo y transporte, cuidando no exponer las muestras a la luz solar directa.
- Para la determinación de grasas y aceites la muestra deberá tomarse por separado en un frasco limpio de vidrio de boca ancha de un litro de capacidad, con el cual se procederá a colectar y preservar la muestra.

Análisis bactereológicos

A continuación se describen los aspectos más relevantes, para la colección de muestras de agua, que son aplicables para la determinación de análisis bacteriológicos:

- * Colectar la muestra en frasco de boca ancha esmerilada de color ámbar perfectamente esterilizado a una profundidad de dos a cuatro pulgadas bajo de la superficie del agua. Evitando tomar la muestra en el espejo del agua para no contaminar la muestra con partículas o bacterias que se encuentren en el ambiente.
- * Rotular la muestra con el número de la estación, número de muestreo, análisis a efectuar y la fecha y hora de colección.
- Después de su colección preservar inmediatamente la muestra colocándola en hielo y en un lugar obscuro.
- Las muestras pueden ser filtradas e incubadas dentro de las seis horas de su colección.

Preservación y estabilidad de muestras.

La preservación, almacenamiento y tiempo de estabilidad de las muestras se debe efectuar de acuerdo con los lineamientos que se muestran en la Cuadro II.8. En dicho cuadro se incluyen el nombre del parámetro, el tipo de recipiente (vidrio y/o plástico), la cantidad y conservador utilizado, los tiempos máximos de estabilidad desde la colección de la muestra hasta su análisis, etc.

Se recomienda preservar la muestra durante el transporte por medio de un baño de hielo y que el intervalo de tiempo entre la extracción de la muestra y su análisis sea el menor posible y que en ningún caso exceda de tres días.

En relación al transporte de las muestras se debe hacer con sumo cuidado de tal forma que no se produzcan derrames de líquidos ni rupturas de frascos. Las muestras colectadas deben preservarse y enviarse inmediatamente al laboratorio para su análisis.

Cuadro II.8. Preservación, almacenamiento y tiempo de estabilidad de muestras.

Parámetro	Tipo de recipiente	Volumen minimo de la muestra mi	Conservación	Tiempo máximo de conservación recomendado/obligado	Řef.
Aceites y grasas	V. Calibrado, de boca ancha	1.000	Añadir H2SO4 hasta pH2, refrigerar a 277 K (4°C)	No más de 24 hrs/no más de 24 hrs	NMX-AA-005-1981
DBO₅	P,V	1.000	Refrigerar a 277 K (4°C)	No más de 24 hrs/no más de 24 hrs.	NMX-AA-028-1981
DQO	P,V	100	Analizar lo antes posible, o añadir H2SO4 hasta pH2, refrigerar a 277 K (4°C)	No más de 24 hrs/no más de 24 hrs	NMX-AA-030-1981
Clorofila	P,V	500	30 días en oscuridad	30 d/N.C	
Color	P,V	500	Refrigerar a 277 K (4°C)	Analizar antes de 24 hrs	NMX-AA-045-1981
Fosfato	V(A)	100	Para fosfato disuelto, filtrar inmediatamente refrigerar		NMX-AA-029-1981
Cromo VI	P(A), V(A)	300	Refrigerar inmediatamente a 278 K (5°C)	24 d/24 d	NMX-AA-051-1981
Niquel	P(A), V(A)	300	Refrigerar inmediatamente a 278 K (5°C)	24 d/24 d	NMX-AA-051-1981
Plomo	P(A), V(A)	300	Refrigerar inmediatamente a 278 K (5°C)	24 d/24 d	NMX-AA-051-1981
Zinc	P(A), V(A)	300	Refrigerar inmediatamente a 278 K (5°C)	24 d/24 d	NMX-AA-051-1981
Nitratos	P,V	100	Analizar lo antes posible, o refrigerar		NMX-AA-079-1986
Micraios		100	Arianzar lo arites posible, o temperar	48 h/48 h (27 días para	
Nitritos	P,V	100	Analizar lo antes posible, o refrigerar	muestras cloradas)	NMX-AA-099-1987
Amoniaco	P,V	500	Analizar lo antes posible, o añadir H2SO4 hasta pH2, refrigerar a 277 K (4°C)	Ninguno/28 d	NMX-AA-026-1980
Orgánico, Kjeldahi	P,V	500	Analizar lo antes posible, o añadir H2SO4 hasta pH2, refrigerar a 277 K (4°C)	7 d/28 d	NMX-AA-026-1980
Oxigeno Disuelto	V, botella ĐQO	300	Analizar inmediatamente o conservar fijando en campo con 1 cm3 (ml) de solución de cloruro de potasio, 2 cm3 (ml) de sulfato manganosos, 2 cm3 (ml) de yoduro nitruro y 2 cm3 (ml) de ácido sulfúrico	7 d/28 d	NMX-AA-012-1980
рН	P.V hermético	-	Refrigerar	8 hrs/8 hrs	NMX-AA-008-1980
Sólidos totales	P.V	-	Refrigerar a 4°C ± 2°C	2 h/inmediato	NMX-AA-020-1980
Sólidos disueltos totales	P,V	-	Refrigerar a 4°C ± 2°C	7 D/2-7; ver referencia citada	NMX-AA-020-1980
Sólidos suspendidos totales					NMX-AA-004-1977
Sólidos sedimentables		ļ			NMX-AA-004-1977
Temperatura	P,V	-	Analizar inmediatamente		NMX-AA-007-1980
Turbiedad	P,V		Analizar el mismo día, guardar en obscuridad hasta 24 hr, refrigerar a 277 K (4°C)	No más de 24 hrs.	NMX-AA-038-1981
Conductividad eléctrica	V, de silicato de boro o polietileno		Refrigerar a 277 K (4°C)	No más de 24 hrs.	NMX-AA-093-1984
Dureza total (CaCo3)	V	100	Refrigerar a 277 K (4°C)	No más de 7 días	NMX-AA-072-1981
Fenoles	-		Refrigerar de 5 a 10°C durante 24 hrs.		NMX-AA-050-1981
R.A.S		1			
Cioruros	V,P,Ambar	 	Refrigerar a 4°C	No más de 7 días	NMX-AA-100-1987
Sulfatos	-	1 -		-	NMX-AA-074-1981
S A A.M.	 	-	Refrigerar a 4°C	No más de 24 hrs.	NMX-AA-039-1980
Fósforo orgánico	\ -	+ -			NMX-AA-005-1980
Fósforo disuelto		+		I	NMX-AA-005-1980
Coliformes totales	V,P, estenlizados	100	Refrigerar inmediatamente a 4°C	No más de 24 hrs para agua potable y no más de 6 para otro tipo de agua.	NMX-AA-042-1987
Coliformes fecales	V.P. esterilizados	100	Refrigerar inmediatamente a 4°C	No más de 24 hrs para agua potable y no más de 6 para otro tipo de agua.	NMX-AA-042-1987

- * Para las determinaciones no reseñadas, emplear envases de vidrio o plástico.
- * R = Refrigerar preferentemente durante su conservación y analizar lo antes posible. Refrigerar = conservar a 4°C, en la oscuridad.
- P = Plástico (polietileno o equivalente)
- V = Vidrio;
- * V(A) = lavado con 1 + 1 HNO3;
- V(B) = vidrio, borosilicato = vidrio lavado con disolventes orgánicos
- NC = No consta en la referencia citada

Fuente: Environmental Protection Agency, Rules and Regulation, Federal Register 49; núm 209, 26 de octubre de 1984 Veáse esta referencia para posibles diferencias relativas a requerimientos.

II.5 Análisis de campo y laboratorio

Los análisis dan por resultado las cantidades que contiene el agua de lo que se determina. Para efectos comparativos, independientemente del laboratorio, personal o procedimiento empleado, se han establecido unas normas que han adoptado la gran mayoría de los países en algunos casos con ligeras modificaciones; éstas son las publicadas por varias asociaciones de los Estados Unidos de Norteamérica bajo el título de "Standar Methods for the Examination of Water and Wastewater" (Métodos Estándar para Análisis de Aguas y Aguas Negras).

No se dan detalles de procedimientos ni preparación de reactivos porque el fin de esta información es solamente tener idea de lo que se puede hacer y pedir a un laboratorio con objeto de, posteriormente, hacer el estudio interpretativo de los resultados. Para conocer el procedimiento completo consultar la bibliografía donde se hace referencia a las fechas de publicación en el Diario Oficial de la Federación de la determinación de cada parámetro mencionado.

Al indicar el método que se sigue en el campo y en el laboratorio para la determinación de algunos parámetros se ha considerado que en algunas ocasiones el ingeniero mismo los puede efectuar. Para otros, es que debe conocerlos para apreciar el grado de confiabilidad de los resultados, el tiempo de elaboración, necesidades técnicas en cuanto a personal especializado, uso de equipo y aparatos específicos, costos, manejo de las muestras, así como para definir el tipo y cantidad de análisis por realizar de acuerdo a la investigación y fines que se persiguen.

II.5.1 Determinaciones en campo

La mayor parte de estas pruebas no dan resultados satisfactorios debido a las interferencias que ocasionan los mismos compuestos que acarrea la corriente muestreada. Sin embargo son útiles para fines de comparación con los resultados que se obtienen en el laboratorio.

Turbiedad

La presencia de sólidos coloidales le da al líquido una apariencia nebulosa que es poco atractiva y puede ser dañina. La turbiedad en el agua puede causarla partículas de arcilla y limo, descargas da agua residual, desechos industriales o la presencia de numerosos microorganismos.

Dependiendo de la corriente o del tipo de agua, se usa un disco de 20 cm de diámetro dividido en cuadrantes pintados de blanco y negro sujeto al extremo de una barra o cable. Este disco denominado Secchi, se sumerge en el agua hasta que desaparezca la imagen; la barra que lo sostiene tiene una graduación que da la turbiedad en función de la longitud del tramo sumergido. La función del disco Secchi es medir la penetración de la luz en el agua; sin embargo se puede usar con buenos resultados considerando la penetración de la luz como función del grado de turbiedad o de color.

Para corrientes con gran velocidad el uso del disco Secchi se limita bastante, debido a la dificultad que representa el mantenerlo en posición horizontal, por lo que en este caso se usan turbidímetros electrónicos.

pН

La intensidad de acidez o alcalinidad de una muestra se mide en la escala de pH, que en realidad mide la concentración de iones de hidrógeno presentes. La escala va de o a 14 con 7 como neutralidad, siendo ácido por debajo de 7 y siendo alcalino por arriba de 7. El pH controla muchas reacciones químicas y la actividad biológica normalmente se restringe a una escala bastante estrecha de pH entre 6 y 8. Las aguas muy ácidas o muy alcalinas son indeseables debido a que son corrosivas o presentan dificultades en su tratamiento.

Se deben utilizar potenciómetros ya que dan una muy buena aproximación del pH que se obtiene en laboratorio. En su defecto se usará el método colorimétrico que no es muy recomendable porque solamente da una idea de los valores del pH; no es exacto debido a las interferencias producidas por color, turbiedad, materia coloidal y cloro libre entre otras. En este método se emplean tiras de

papel tornasol, las cuales al contacto con el agua toman colores variables dependiendo de la acidez o basicidad y su intensidad. Por comparación directa o intermedia entre los colores, se determina el valor del pH.

Temperatura

Básicamente importante por su efecto en otras propiedades, por ejemplo, aceleración de reacciones químicas, reducción en la solubilidad de los gases, intensificación de sabores y olores, etc.

Se mide con un termómetro de laboratorio que tiene una precisión apreciativa de 1/10 de grado, aunque es suficiente con indicarla con aproximación de medio grado. Hay diversos tipos de termómetros que se emplean según la investigación o las condiciones del medio. Basta y se recomienda usar un termómetro de laboratorio que se sumerge en el agua hasta la marca que tiene para este objeto. Dado que algunas veces no se puede hacer de esa manera, la muestra se saca en un frasco y de allí es de donde se toma; el error que se pudiera cometer al hacerlo así, es despreciable.

Color

Es necesario diferenciar entre el color verdadero debido al material en solución y el color aparente debido a la materia suspendida.

Se usan cristales de colores montados en discos que permiten comparar éstos sobre agua destilada con la muestra directa. Es procedimiento aceptado como prueba estándar de campo porque dan buenos resultados si se comparan con el método de Platino-Cobalto usado en laboratorio. Estos discos se colocan en bases metálicas que contienen tubos para la muestra y para el agua destilada.

II.5.2 Determinaciones en laboratorio

Los procedimientos para los análisis de las muestras colectadas se apegarán a las Normas Oficiales Mexicanas correspondientes o en su caso al "Standard Methods for the Examination of Water and Wastewater".

Turbiedad

Para la determinación se usan aparatos denominados turbidímetros, los cuales usan la técnica fotoeléctrica que mide la dispersión de la luz por las partículas coloidales. Es deseable que la prueba se verifique el mismo día de la recolección pero si esto no fuera posible, la muestra se conserva en la oscuridad hasta por 24 horas; si fuera necesario más tiempo se agrega 1 g de cloruro mercúrico por litro. En ambos casos, antes de hacer el análisis la muestra se debe agitar.

Color

Se emplea el método de Platino-Cobalto que consiste en una escala preparada para definir unidades conocidas, usando tubos de Nessler de 50 ml de forma alta. La escala se prepara a base de cloroplatinato de potasio y cloruro cobaltoso cristalizado, diluidos en agua destilada en proporciones establecidas para que observada a través de una lámina de 200 mm, den la coloración estándar deseada. En caso de que se tuviera un agua que excediera las 70 unidades, la muestra se diluye con agua destilada hasta que esté dentro de los límites recomendados; el factor de dilución se multiplica posteriormente por las unidades observadas para obtener el resultado real.

Sólidos totales

Éstos pueden estar presentes en suspensión, en solución o ambos y se divide en materia orgánica y materia inorgánica. Los sólidos disueltos totales (SDT) se deben a materiales solubles, mientras que los sólidos en suspensión (SS) son partículas discretas que se pueden medir al filtrar una muestra a través de un papel fino. Los sólidos sedimentables son aquellos removidos en un procedimiento estándar de sedimentación con el uso de un cilindro de 1 litro.

Los sólidos totales (ST) se obtienen al evaporar generalmente 100 ml de la muestra a 103°C en una cápsula seca y tarada, operación que se realiza en una hora. La diferencia de pesos entre el registrado para la cápsula seca y limpia y el de la cápsula que contiene los residuos, dará el contenido de este material que después se transforman a mg/l de acuerdo al volumen evaporado.

Conductividad eléctrica

La conductividad de una solución depende de la cantidad de sales disueltas presentes y para soluciones diluidas es aproximadamente proporcional al contenido de sólidos disueltos totales (SDT): K = conductividad (S/m)/SDT (mg/l); si se conoce el valor apropiado de K para un agua en particular, la medición de la conductividad da una indicación rápida del contenido de sólidos disueltos totales.

Se usa un Puente de Wheatstone que mide el paso de la corriente entre dos electrodos separados un centímetro y con una área de un centímetro cuadrado manteniendo el agua a 25°C. La conductividad eléctrica o conductancia específica como también se le conoce, es la recíproca de la resistencia entre los electrodos; por tanto y debido a los valores normales tan bajos, se da en micro mhos/cm.

Oxígeno disuelto

Esta prueba comienza en el mismo sitio de muestreo, donde se fija el oxígeno como yodo. Se usa el método básico de Winkler o de iodización con sus modificaciones para evitar interferencias; una de las más empleadas para aguas negras y muestras de ríos es la del nitruro que elimina la interferencia tan común de los nitritos.

Este método se basa en el hecho de que el oxígeno oxida el Mn⁺⁺ a un estado mayor de valencia, bajo condiciones alcalinas; y que el manganeso a un estado mayor de valencia, es capaz de oxidar el lón Yodo (l') a yodo libre (l₂) bajo condiciones ácidas. Entonces la cantidad de yodo libre liberado es equivalente al OD originalmente presente. El yodo es medido con una solución de tiosulfato de sodio e interpretado en términos de OD.

Nitrógeno

Es un elemento importante ya que las reacciones biológicas sólo pueden efectuarse en presencia de suficiente nitrógeno. Existe en cuatro formas principales por lo que toca a la ingeniería sanitaria: amoniacal (nitrógeno como sales de amoníaco), orgánico o proteico (nitrógeno en la forma de proteínas, amino ácidos y urea), nitritos (etapa intermedia de oxidación que normalmente no se presenta en grandes cantidades) y nitratos (producto final de la oxidación del nitrógeno).

La presencia de amoniaco en el agua es frecuentemente interpretado como una contaminación reciente con productos nitrogenados. Contenidos elevados de nitrógeno orgánico o proteico se relaciona con una contaminación de aguas negras o desechos industriales. Los nitratos provienen generalmente de la materia orgánica nitrogenada de origen animal. Los nitritos se relacionan con una contaminación con aguas negras o desechos industriales, sujeta a oxidación puesto que el proceso continua hasta terminar en nitratos. El nitrógeno orgánico y el amoniacal integran el nitrógeno total.

Este método se basa en la determinación de la suma del nitrógeno del amoníaco libre y del nitrógeno orgánico, los cuales son convertidos a sulfato de amonio bajo determinadas condiciones de digestión.

Mediante digestión en presencia de ácido sulfúrico, sulfato de potasio y sulfato mercúrico, el nitrógeno de compuestos orgánicos es convertido a sulfato de amonio. El amoníaco es destilado en medio alcalino, absorbido en solución de ácido bórico y determinado por titulación.

Sustancias activas al azul de metileno (SAAM)

Para la determinación de los surfactantes aniónicos, constituyentes importantes de los detergentes sintéticos, se emplea el método de extracción del azul de metileno; dicha anilina es soluble en agua pero insoluble en cloroformo y los surfactantes aniónicos sulfonados reaccionan con el azul de metileno para formar una sal insoluble que sí lo es en cloroformo. La intensidad del color producido

por el complejo soluble en cloroformo puede medirse fotométricamente y compararse con una curva de calibración producida por un surfactante aniónico técnico (producto puro) previamente analizado. En forma genérica este método se aplica a los productos denominados sustancias activas del azul de metileno (SAAM) que incluyen a los detergentes.

Acidez y alcalinidad

Valores comprendidos entre pH 3.5 a 9.0 se consideran resultado de la presencia de ácidos o bases débiles. Si la alcalinidad sobrepasa este límite o la acidez está abajo de él, se debe a la presencia de bases o ácidos fuertes respectivamente. En general el dato que se proporciona en los análisis es el de la alcalinidad a la fenolftaleína (F) y al anaranjado de metilo o total (AM o T); los resultados se dan en mg/l como CaCO₃ puesto que son varios componentes los que la producen.

Demanda química de oxígeno (DQO)

Es una prueba muy usada para detectar contaminación de origen industrial; valora todo lo que es oxidable y no solamente a la materia orgánica, de manera que siempre es mayor el valor de la DQO con respecto de la DBO, variando los resultados de acuerdo a la composición del agua, concentraciones del reactivo, temperatura, período de contacto y otros factores.

El equivalente de oxígeno de la materia orgánica que puede oxidarse se mide utilizando un fuerte agente químico oxidante en medio ácido. El dicromato potásico resulta excelente para tal fin. El ensayo debe realizarse a temperatura elevada. Para facilitar la oxidación de ciertas clases de compuestos orgánicos se necesita un catalizador (sulfato de plata). Puesto que algunos compuestos inorgánicos interfieren con el ensayo, se tendrá cuidado en eliminarlos previamente. La reacción principal utilizando dicromato como agente oxidante puede representarse de un modo general por la Ecuación II.12.

Materia orgánica
$$(C_aH_bO_c) + Cr_2O_7^- + H^+ \frac{catalizador}{calor} Cr_3^+ + CO_2^- + H_2O$$
 Ecuación II.12

El ensayo de la DQO se utiliza igualmente para medir la materia orgánica en aguas residuales industriales y municipales que contengan compuestos tóxicos para la vida biológica. La DQO de un agua residual es, por lo general, mayor que la DBO porque es mayor el número de compuestos que pueden oxidarse por vía química que biológicamente. En muchos tipos de aguas residuales es posible correlacionar la DQO con la DBO. Ello puede resultar muy útil porque la DQO puede determinarse en 3 horas comparado con los 5 días que supone la DBO. Una vez que la correlación ha sido establecida, puede utilizarse las medidas de DQO para el funcionamiento y control de la planta de tratamiento.

Demanda bioquímica de oxígeno (DBO)

La demanda bioquímica de oxígeno es la cantidad de oxígeno requerida por los microorganismos aerobios para descomponer o degradar la materia orgánica disuelta en un tiempo y a una temperatura determinada.

Si los desechos consistieran exclusivamente de aguas negras de tipo doméstico, la medición de la demanda de oxígeno se podría realizar por medio del método directo pero como los desechos son generalmente de naturaleza compleja, es necesario usar el método de dilución.

El procedimiento del método directo consiste en tener la muestra a 20°C y aereada cerca de la saturación. A dos frascos se les determina de inmediato su oxígeno disuelto (DBO₀) y otros dos se pasan a incubación durante 5 días a 20°C. Después de 5 días se les determina la cantidad de OD (DBO₅); la DBO es calculada por la diferencia de los dos valores así conocidos. Se usan dos frascos para sacar promedio y a veces 3, en caso de que los valores de las determinaciones sean muy distintos.

Para el método de dilución se agregan elementos nutrientes al agua de dilución en cantidades conocidas para que los organismos que van a descomponer la materia orgánica no mueran. Dependiendo del agua por analizar se usa un inoculo satisfactorio: para desechos industriales alimenticios, se usa el líquido sobrenadaste de aguas negras domésticas que se han mantenido por 24 a 36 horas a 20°C; para desechos industriales que contengan materia orgánica, se emplean inóculos cultivados en laboratorio o el agua de la misma corriente receptora tomada a unos 3 a 8 km aguas abajo del punto de descarga del desecho. Es suficiente con verter 2 ml de desechos por litro de agua de dilución; ésta puede tener una gama de pH de 6.5 a 8.5 y debe conservarse tan cerca de 20°C como sea posible.

Para el control del agua de dilución se llenan 2 frascos para DBO con esta agua; uno de ellos se tapa y se incuba; al otro se le determina de inmediato el OD. Se usan soluciones testigo que sirven como referencia para todos los cálculos de la DBO.

Coliformes totales y fecales

El tracto intestinal del hombre contiene innumerables bacterias en forma de bastoncillo conocidas como organismos coliformes. Cada persona evacua de 100 000 a 400 000 millones de organismos coliformes por día, además de otras clases de bacterias. Los organismos coliformes no son dañinos al hombre y, de hecho, son útiles para destruir la materia orgánica en los procesos biológicos de tratamiento de las aguas residuales.

Los organismos patógenos son evacuados por los seres humanos que se vean afectados por alguna enfermedad o que sean portadores de alguna enfermedad particular. Los organismos patógenos que normalmente pueden ser excretados por el hombre causan enfermedades del sistema gastrointestinal, tales como la fiebre tifoidea, disentería, diarrea y, en ciertas partes del mundo cólera.

Dado que el número de organismos patógenos presentes en las aguas residuales y aguas contaminadas son poco difíciles de aislar, el organismo coliforme, que es más numeroso y de determinación más sencilla, se utiliza como organismo indicador. La presencia de organismos coliformes se interpreta como una indicación de que los organismos patógenos también pueden estar presentes y su ausencia indica que el agua se halla exenta de organismos productores de enfermedades.

Los organismos coliformes incluyen los géneros Escherichia y Aerobacter. El uso de los coliformes como organismos indicadores es problemática debido a que la Aerobacter y ciertas especies de Escherichia pueden crecer en el suelo. Por tanto, la presencia de coliformes no siempre significa contaminación con residuos humanos. Parece ser que la Escherichia coli (E. coli) son totalmente de origen fecal. Es difícil determinar la E. coli sin incluir los coliformes del suelo; como resultado de ello, todo el grupo coliforme se utiliza como indicador de la contaminación fecal.

En los últimos años se han desarrollado una serie de ensayos que permiten distinguir los coliformes totales, los coliformes fecales y los estreptococos fecales; sobre estas tres clases la literatura técnica ha informado ampliamente, especialmente en artículos que tratan de la escorrentía de zonas urbanas.

El procedimiento más corriente para determinar la presencia de coliformes consiste en la realización de ensayos presuntivos y confirmados. El ensayo presuntivo se basa en la capacidad del grupo coliforme para fermentar el caldo de lactosa, con desprendimiento de gas. El ensayo confirmado consiste en el desarrollo de cultivos de bacterias coliformes sobre medios que eliminan el crecimiento de otros organismos. El ensayo completo se basa en la capacidad de los cultivos desarrollados en el ensayo confirmado para fermentar el nuevo caldo de lactosa.

Existen en la actualidad dos métodos aceptados para obtener los números de los organismos coliformes presentes en un volumen de agua dado. La técnica del número más probable (NMP) se ha utilizado durante mucho tiempo y se basa en un análisis estadístico del número de resultados positivos y negativos obtenidos al hacer ensayos múltiples sobre fracciones de igual volumen y fracciones que constituyen una serie geométrica, para la presencia del organismo coliforme. Hay que

hacer notar que el NMP no es la concentración absoluta de organismos que están presentes, sino solamente una estimación estadística de dicha concentración.

La técnica del filtro de membrana puede utilizarse igualmente para determinar el número de organismos coliformes presentes en el agua. La determinación se consigue haciendo pasar un volumen conocido de la muestra del agua a través de un filtro de membrana que tenga unos poros de tamaño muy pequeño; esta membrana se coloca en un receptáculo provisto de un embudo fijado a un matraz de filtración al vacío. Después de filtrada la muestra se retira la membrana, las bacterías que son retenidas en el filtro debido a que son mayores que los poros se ponen, entonces, en contacto con agar que contiene los elementos nutritivos necesarios para el crecimiento de las mismas, y se mantiene en incubación en un medio de cultivo durante 20±2 h y a 35±0.5°C. Tras su incubación, las colonias coliformes pueden ser contadas y determinarse seguidamente la concentración en la muestra de agua original. Para el conteo de las colonias se usa un microscopio binocular de disección de campo amplio con aumento de 10 a 15 diámetros. La técnica del filtro de membrana tiene la ventaja de ser más rápida que el procedimiento del NMP y de dar un recuento directo del número de organismos coliformes. Ambos métodos por supuesto están sujetos a ciertas limitaciones.

pН

El método se basa en que al poner en contacto dos soluciones de diferente concentración de iones hidrógeno, se establece una fuerza electromotriz. Si una de las soluciones tiene una concentración de iones conocida (pH), por medio de la fuerza electromotriz producida, se puede conocer el pH de la otra solución (solución problema), ya que esta fuerza electromotriz es proporcional al pH de la solución problema.

Grasas y aceites

El método para determinar el contenido de grasas y aceites (en aguas potables, superficiales o subterráneas, de desechos domésticos o industriales y salinas) consiste en acidificar una muestra para extraer las grasas y aceites en solución, la grasa es entonces separada por filtración y extraída con un solvente con ayuda del aparato Soxhlet, posteriormente se evapora el solvente y se cuantifica gravimétricamente el material extraído.

Fósforo total

Los métodos se basan en transformar los compuestos fosforados a ortofosfatos, los cuales se hacen reaccionar con molibdato de amonio para formar el ácido molibdofosfórico.

En el método del azul de molibdeno o del cloruro estanoso, el ácido molibdofosfórico se reduce para producir el complejo colorido conocido como azul de molibdeno. La intensidad de la coloración se determina por espectrofotometría.

Por el método del ácido vanadomolibdofosfórico, el fósforo en presencia del vanadio da lugar al complejo de fosfovanadomolibdato, produciendo una coloración amarilla cuya intensidad se determina por espectrofotometría.

Metales

Para la determinación de bario, cadmio, plomo, cromo, cobre, mercurio, selenio, arsénico, níquel y zinc, que se encuentran disueltos y suspendidos en aguas naturales y residuales, se utiliza el método espectrofotométrico de absorción atómica.

Este método se basa en la medición de la cantidad de luz monocromática absorbida por el elemento atomizado a determinarse en una flama, por medio de un detector, siendo dicha energía absorbida proporcional a la concentración del elemento.

2.7 Capacidad de asimilación y dilución

En este punto se definen los conceptos referentes a la capacidad de asimilación y dilución de contaminantes en corrientes superficiales. En el Capítulo III se explican los principales factores que intervienen en la capacidad de asimilación y dilución de contaminantes; y en el Capítulo VI se da un claro ejemplo de como calcularlas en función del balance hidráulico para el caso del Río Blanco.

Capacidad de dilución

La capacidad de dilución se define como la cantidad de cualquier elemento, compuesto o sustancia que, tomando como base el balance hídráulico, pueda recibir un cuerpo receptor.

Por lo que, la capacidad de dilución de la corriente estará relacionada con un determinado límite que no se quiera rebasar. Este límite en general está dado por los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89), aunque existen ciertos parámetros que no cuentan con Criterios Ecológicos, siendo uno de ellos la Demanda Bioquímica de Oxígeno.

Debido a lo anterior no es posible estimar la capacidad de dilución de la corriente expresada como Demanda Bioquímica de Oxígeno en mg/l; en cambio se puede estimar la dilución de la corriente en todas sus descargas y afluentes con base a un balance hidráulico, de la siguiente manera:

$$Dilución = \frac{Q_a \times C_a}{Q_r}$$

Donde:

Dilución = Dilución de la corriente en la entrada de un afluente o descarga, mg/l

Q_a = Flujo del afluente o descarga de entrada al río, m³/s
C_a = Concentración de entrada del afluente o descarga, mg/l

Q = Flujo de la corriente inmediatamente después de la entrada del afluente o descarga.

Es importante hacer notar que de acuerdo a lo comentado en párrafos anteriores, los valores presentados corresponden a la cantidad de material que el río está diluyendo y no a lo que el río puede llegar a diluir con respecto a un límite específico. Además los resultados dependen directamente del caudal del río en cada una de las secciones, el cual es bastante variable. La capacidad de dilución, siguiendo la definición descrita en párrafos anteriores, será mayor conforme la carga de material diluido sea menor.

Capacidad de asimilación

La capacidad de asimilación está definida como la propiedad que tiene un cuerpo receptor, con su gasto medio de estiaje para restablecer su calidad. Es decir, que la capacidad de asimilación estará dado con respecto a un límite determinado. Este límite, al igual que para la capacidad de dilución, está generalmente dado por los Criterios Ecológicos de Calidad del Agua, aunque no existe Criterio para la Demanda Bioquímica de Oxígeno; en cambio se calculó la cantidad de material asimilado por el río, de la siguiente manera:

Donde:

Asimilación = Cantidad de material asimilado por el río en cada elemento.

 $C_1 =$ Concentración al inicio del elemento. $C_2 =$ Concentración al final del elemento.

La asimilación de toda una sección simplemente se estima como la suma de las asimilaciones de los elementos que componen dicho tramo.

CAPÍTULO III

PRINCIPALES FACTORES QUE INTERVIENEN EN LA CAPACIDAD DE ASIMILACIÓN Y DILUCIÓN DE CONTAMINANTES EN CORRIENTES SUPERFICIALES

Es sabido que usualmente se expresan concentraciones de parámetros de calidad del agua en unidades que convencionalmente se han adoptado. Así por ejemplo las bacterias coliformes se expresan en NMP/100 ml (número más probable en 100 ml de agua); los iones en g/m³, mg/l o ppm (partes por millón) esto último con ciertas reservas; el fitoplancton en microgramos de clorofila "a"/l y otros similares. Si un cuerpo de agua recibe en cierto punto y en determinado tiempo un aporte líquido con concentraciones de determinados parámetros, por múltiples razones existe interés en conocer cómo se afectan por ese aporte las concentraciones iniciales de cada parámetro.

Los modelos de calidad del agua tienen por finalidad determinar las nuevas concentraciones del cuerpo de agua en cada punto y en el intervalo de tiempo en el que existen cambios cuando las condiciones de modificación y el estado inicial son conocidos.

La Figura III.1 precisa este concepto, suponiendo un punto cualquiera. Se busca el valor de ΔC para un incremento Δt , siendo t el tiempo y C la concentración. Como se verá Δt puede ser cualquiera, desde un segundo a un año.



Figura III.1. Condiciones de modificación y estado inicial conocidos.

Existen ciertas influencias de grado mayor que permiten la elección de caminos tendientes a categorizar el tipo de modelos a emplear.

Se debe fijar la atención en las escalas de tiempo y espacio que rigen cada problema. En grandes cuerpos de agua, como son los lagos, es de esperar que las respuestas de cambios significativos puedan tomar meses o aún años. En los ríos, los lapsos significativos pueden reducirse a días. Sin embargo, si nuestra preocupación no es el cuerpo de agua en conjunto (otra escala espacial) los

períodos se reducen como podría ser el caso si se desea estudiar los efectos locales de una descarga submarina en las playas advacentes.

Es casi superfluo llamar la atención del lector en la influencia de las condiciones geomorfológicas, hidrológicas e hidrodinámicas. Aún en un cuerpo de agua geomorfológicamente definido es menester considerar usualmente diferencias en respuestas de concentraciones cuando varían las condiciones hidrológicas (por ejemplo estacionalmente) o hidrodinámicas (influencia de vientos en océanos, etc.).

Cabe identificar un tercer grupo de factores. Este es el que presta consideración a la influencia de la cinética (o termodinámica) de las transformaciones de los parámetros. Estas transformaciones pueden ser físicas, químicas o biológicas y la magnitud del cambio respecto al tiempo puede también encuadrar en el tipo de modelo a emplear. Por último, aunque no menos importante a este respecto, se debe efectuar el análisis previo de las cargas de contaminantes con respecto a la magnitud de su influencia y al impacto de sus cambios temporales.

Los modelos de calidad del agua son pues mecanismos de predicción específicos para cada caso. El análisis de las influencias que se han mencionado así como un conocimiento cabal de las inevitables simplificaciones que introducen los modelos, permiten predecir lo que pasará a ciertos parámetros en un cuerpo de agua en el espacio y en el tiempo. Y esto cada vez más se constituye en un esencial requerimiento de las sociedades modernas, si se piensa en lo limitado de los recursos hídricos y el legado que legítimamente esperan las futuras generaciones.

III.1 Advección y difusión

Para que un modelo de calidad del agua pueda ser aplicado confiablemente para predecir las condiciones de los diversos parámetros en el futuro, tiene que cumplir una condición básica: reproducir aceptablemente las condiciones actuales.

Con esto se quiere decir que si uno o más parámetros están indicados para ser seleccionados como representativos de los cambios de calidad que interesa investigar, es esencial que el modelo elegido calcule los valores de concentración en el momento actual (o ligeramente anterior) de modo que sean sensiblemente iguales a los que se determinen por pruebas de campo y laboratorio. Esto es lo que se llama calibración de un modelo. Como la calibración se refiere generalmente a un intervalo de tiempo (por ejemplo estacional o con determinadas condiciones hidrometereológicas) normalmente se valida la calibración y el modelo, con otro período estacional o lapso, de modo que también se reproduzcan las condiciones actuales.

En la Figura III.2 (también con condiciones en un punto) se aprecian estos conceptos. La concentración se estudia de modo que el modelo reproduzca el valor de campo en A (calibración) con condiciones indicadas por la temperatura T_1 pero que en realidad refleja las variables estacionales. La validación sería la reproducción del punto B para condiciones T_2 .

Tanto la calibración como la validación reflejan las diversas influencias que inciden en los modelos aplicados. Variando ciertos valores de los componentes de los modelos, tanto el calibrado como la validación cambiarán en diversos grados. Esto es el fundamento de las pruebas de sensibilidad de estas operaciones de comprobación. Con ellas es posible apreciar el impacto de cada componente del modelo en el ajuste a las condiciones actuales. Conviene pues ahora indagar algo en los mencionados componentes de la estructura de los modelos. Cuando una carga de contaminantes se introduce en un cuerpo de agua, aquél sufre tres acciones fundamentales:

- (a) Difusión;
- (b) Advección; y
- (c) Transformación (reacción o degradación).

Si se encuentra la manera de conocer cómo se producen estos cambios de concentración por esas acciones, en el tiempo y en el espacio, se tendrá definido el modelo.



Figura III.2. Calibración del modelo.

En la Figura III.3 se presenta un aspecto intuitivo del concepto de dispersión. Se supone que en un compartimiento se introduce agua a una temperatura T_1 y en el otro a una temperatura T_2 . Si las alturas de agua son iguales, al abrir el orificio O en la pantalla P, no pasará agua por efectos hidrodinámicos pero la temperatura se igualará en ambos compartimientos al cabo de cierto tiempo. Es evidente que la temperatura pasa de uno a otro por dispersión, realmente por difusión en este caso. También se debe apreciar que a mayor área de orificio y a mayor gradiente de temperatura $(\Delta T/\Delta x)$, el efecto será más rápido. En consecuencia la dispersión será proporcional a la superficie de contacto y al gradiente de concentración.

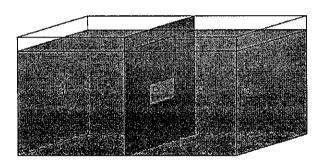


Figura III.3. Concepto de dispersión.

La Figura III.4 trata de introducir el concepto de transporte advectivo. En una corriente de agua el segmento 1, con su concentración de contaminante, pasa al segmento adyacente 2 en el intervalo Δt. Es claro que al variar la forma y volumen del segmento (esto provocado por cambios en la pendiente, ancho y profundidad de la sección transversal, dirección de la corriente, etc) varía la concentración, lo cual es una consecuencia del arrastre por Advección provocado por el flujo Q del agua en el curso.

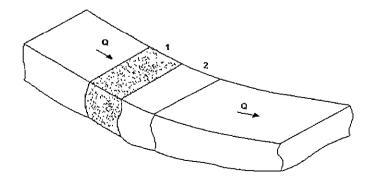


Figura III.4. Concepto de transporte advectivo.

La tercera acción es la transformación del contaminante por reacciones físicas, químicas, biológicas o combinación de ellas. Esto se traduce en un incremento positivo o negativo de la concentración que es independiente en sus causa de los anteriores.

Si se introduce en un río una descarga municipal con alto contenido de bacterias, y se supone que N_o es el NMP/100 ml inicial de coliformes de la mezcla, varias influencias harán generalmente decrecer el número de coliformes aguas abajo. Por una parte habrá depredadores, además pudiera suceder que el medio diferente en el que se encuentran las bacterias represente mayor dificultad para conseguir el alimento o que éste no sea el más apropiado, que existan tóxicos, que se produzcan sedimentaciones que arrastren bacterias, que exista mayor penetración de la luz solar, que varíe la temperatura o la salinidad, etc.

El número N a una distancia de la introducción inicial del desagüe tiene que reflejar estas reducciones. Si $\Delta N = N - N_0$ en general el cambio de una distancia Δx se constata que es proporcional a la concentración en ese punto o sea:

Cambio de concentración =
$$\frac{\Delta N}{\Delta x}$$
 = $-K_B N$ Ecuación III.1

Donde:

K_a = Coeficiente de reacción o de mortalidad.

En el límite:

$$\frac{dN}{dx} = -K_B N$$
 Ecuación III.2

donde el signo menos denota la reducción.

De lo expuesto, se puede indicar que la estructura de los modelos será una forma más o menos complicada de la Ecuación III.3.

$$C_c = E_F + E_A + E_R + D_C$$
 Ecuación III.3

Donde:

C_c = Cambio de concentración por unidad de tiempo;

E = Efectos dispersivos;

E, = Efectos advectivos;

Ep = Efectos reactivos; y

 $D_c = Descargas contaminantes.$

El último término toma en cuenta los cambios en cada espacio por efecto de la introducción o extracción de cargas del contaminante.

Debido a que los efectos advectivos influyen de manera predominante en los cambios de concentración de los contaminantes en las corrientes, se considera en los modelos de calidad del agua que se presenta un mezclado instantáneo en la sección transversal de la corriente anulándose así los efectos dispersivos.

III.2 Características hidráulicas de la corriente

Se asume que el régimen hidráulico se encuentra en estado estacionario, es decir, $\partial Q/\partial t = 0$, por lo que el balance para cada elemento se escribe como:

$$\left(\frac{\partial Q}{\partial x}\right)_i = (Q_x)_i$$

Ecuación III.4

Donde:

(Q_v)_i = Suma de flujos de entrada y/o pérdidas a ese elemento.

Coeficientes de descarga

Una vez que la ecuación ha sido resuelta para Q, las otras características hidráulicas pueden ser resueltas de las Ecuaciones III.5, III.6 y III.7.

$$\ddot{\mathbf{u}} = \mathbf{a}\mathbf{Q}^h$$

Ecuación III.5

$$A_x = \frac{Q}{\overline{u}}$$

Ecuación III.6

У

$$d = \alpha Q^B$$

Ecuación III.7

Donde:

a, b, $\alpha y \beta$ = Constantes empíricas;

d = Profundidad de la corriente;

Q = Flujo;

ū = Velocidad media; y A = Área transversal.

Secciones Trapezoidales

Alternativamente, si las propiedades de la sección transversal del segmento son conocidas en función de la profundidad d, ū puede determinarse como una función de la descarga resolviendo la ecuación de Manning expresada en la Ecuación III.8.

$$Q = \frac{1}{n} A_{x} R_{x}^{\frac{2}{3}} S_{e}^{\frac{1}{2}}$$

Ecuación III.8

Donde:

A, = Área transversal del canal, en m²;

R = Radio hidráulico medio efectivo, en m;

n = Factor de Manning, adimensional;

S_a = Pendiente de la línea de grados de energía, adimensional; y

Q = Descarga, en m³/s.

Dispersión longitudinal

El término de dispersión generalmente se usa para el transporte asociado con la variación de la velocidad promediada espacialmente, al contrario de difusión, la cual se reserva para cambios de la velocidad media promediada con respecto al tiempo (Ecuación III.9).

$$D_L = 3.048 r_o u^*$$

Ecuación III.9

Donde:

D_L = Dispersión longitudinal, en m/s;

r。= Radio de la tubería, en m; y

u = Velocidad cortante promedio, en m/s, definida por la Ecuación III.10.

$$u^* = 0.305 \sqrt{\frac{T_o}{\rho}}$$
 Ecuación III.10

Donde:

 T_0 = Esfuerzo cortante en la frontera, en N/m²; y ρ = Densidad del fluio de masa, en Ns²/m⁴.

Han existido varios intentos de predecir el coeficiente de dispersión en corrientes de agua. Elder (1959) asumió que solamente el gradiente de velocidad vertical era importante y desarrolló una expresión análoga a la de Taylor (Ecuación III.11).

$$D_i = 0.0929 \text{Kdu}^*$$
 Ecuación III.11

Donde:

D, = Coeficiente de dispersión longitudinal, m²/s;

K = Constante de dispersión;

d = Profundidad media, m; y

u = Velocidad cortante promedio, m/s.

Esta expresión es adecuada para canales unidimensionales no muy anchos. Fisher (1964) encontró que para canales anchos el valor de la ½ del ancho del canal era la dominante y no la profundidad.

Aumento de flujo

Cuando la concentración de oxígeno disuelto baja de un nivel requerido específico, es posible que se requiera aumentar esta concentración, aumentando el flujo de la corriente. El modelo permite estimar este aumento. Debido a que no es posible calcular el flujo necesario para aumentar el OD mediante una relación funcional exacta, una buena aproximación es utilizada en el programa con la Ecuación III.13.

$$DO_R = DO_T - DO_{min}$$
 Ecuación III.12

$$Q_R = Q_0 \left(\frac{DO_R}{DO_T} + 0.15 \left(\frac{DO_R}{DO_T}\right)^2\right)$$
 Ecuación III.13

Donde:

DO_R = Concentración de oxígeno disuelto requerida para alcanzar el nivel requerido, mg/l;

 $DO_T = Nivel de oxígeno disuelto requerido, mg/l;$

Do_{min} = Concentración mínima de oxígeno disuelto (nivel crítico) en la curva de oxígeno, mg/l;

Q_P = Aumento de flujo requerido, ft³/s; y

 $Q_c = Flujo$ en el punto crítico en la curva de oxígeno, ft³/s.

El programa encuentra aquellas fuentes que el usuario especificó como corrientes de dilución, y aumenta el flujo de agua de manera equivalente en todas estas fuentes, hasta alcanzar el nivel especificado.

III.3 Factores que afectan la autodepuración de las corrientes

Los factores que afectan el proceso de autodepuración de las corrientes son: dilución, aereación, sedimentación, luz solar, temperatura y la transferencia de gases debido principalmente a la presión atmosférica.

Dilución

La dilución ayuda a los mecanismos de autodepuración de las aguas superficiales, sin embargo, su ocurrencia depende de que se descarguen relativamente pequeñas cantidades de desecho en grandes volúmenes de agua. El crecimiento de la población y la actividad industrial junto con el incremento de los consumos y cantidad de aguas residuales impide el uso de muchas corrientes para dilución de aguas crudas o pobremente tratadas, por lo que se requieren tratamientos para minimizar el impacto en la calidad del agua con las descargas de agua residual.

La capacidad de dilución de una corriente puede calcularse usando el principio de conservación de la masa. Si se conocen la tasa de flujo volumétrico y la concentración de un material determinado, tanto en la corriente como en la descarga de desechos, la concentración después de la mezcla puede calcularse con la Ecuación III.14.

$$\chi_c Q_c + \chi_d Q_d = \chi_m Q_m$$
 Ecuación III.14

Donde:

x = Concentración (masa/volumen) de material contaminante;

Q = Gasto (volumen/tiempo); y

c, d y m = Subíndices que designan la corriente, descarga y condiciones de la mezcla.

Cuando se descarga agua residual en una corriente como se muestra en la Figura III.5, se asume que el mezclado es completo. Para obtener la concentración de material contaminante en el punto B, aguas abajo del punto de descarga A, se procede de la siguiente forma:

Primero se establece un balance de masa entre los puntos A y B:

Masa entrante = Masa saliente

$$\chi_c Q_c + \chi_d Q_d = \chi_m Q_m$$
 Ecuación III.15

Posteriormente, como Q_m es la suma de los otros dos gastos (Q = Q + Q) se sustituye para obtener la Ecuación III.16.

$$\chi_m = \frac{\chi_c Q_c + \chi_d Q_d}{Q_c + Q_d}$$
 Ecuación III.16

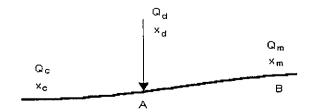


Figura III.5. Descarga de agua residual en un punto de la corriente.

Aereación

La aereación del agua en las corrientes propicia la dispersión del agua residual, disminuyendo la posibilidad de creación de zonas localizadas con altas concentraciones de contaminantes. El oxígeno de la atmósfera se disuelve en el agua a una velocidad que depende del déficit de saturación, de la agitación en la superficie y de la temperatura del agua. Puesto que la reaereación varía en proporción directa al déficit de oxígeno, una curva representada gráficamente por los déficits de oxígeno en las coordenadas y los tiempos en las abscisas, es de pendiente negativa, y la correspondiente ecuación diferencial es la dada por la Ecuación III.7.

$$\frac{dD}{dt} = -K_2D$$
 Ecuación III.17

Donde:

D = Déficit de saturación a un tiempo cualquiera;

t = Tiempo cualquiera; y

K₂ = Constante de rapidez de la reaereación.

La constante de reaereación K₂ es función de la turbulencia de la corriente, y de forma general puede calcularse por medio de la ecuación de Oconnor y Dobbins (Ecuación III.18).

$$k_2 = \left(\frac{D_m u}{H^3}\right)^{\frac{1}{2}}$$
 Ecuación III.18

Donde:

u = Velocidad media de la corriente;

H = Profundidad media del cauce; y

D_m = Coeficiente de difusión molecular igual a 2.037 x 10⁻⁵ cm/s a 20°C.

En el Capítulo IV se exponen siete ecuaciones adicionales para el cálculo de K2.

La ecuación diferencial puede expresarse también como:

$$\frac{dD}{D} = -k_2 dt$$
 Ecuación III.19

Integrando la Ecuación III.19 se tiene:

$$\int_{D_0}^{D} \frac{dD}{D} = -k_2 \int_{t=0}^{t=t} dt$$
 Ecuación III.20

$$\ln |D|_{D_0}^D = -k_2 t|_0^t$$
 Ecuación III.21

$$\ln D - \ln D_0 = -k_2 t$$
 Ecuación III.22

$$\frac{D}{D_0} = e^{-k_2 t}$$

Ecuación III.23

$$D = D_0 e^{-k_2 t}$$

Ecuación III.24

Donde:

D = Déficit de oxígeno para cualquier tiempo, en mg/l;

t = Tiempo, en días:

 $D_0 = Déficit inicial para t = 0; y$

k₂ = Constante de reaereación o reoxigenación.

El coeficiente de reaereación k_2 es función de la temperatura y la profundidad del agua, de la velocidad y turbulencia de la corriente. Para corrientes agitadas puede llegar a ser hasta 0.5, para grandes corrientes de lenta velocidad puede ser 0.15 a 0.20 l/día, mientras que para embalses puede ser un valor tan bajo como 0.05 l/día. Estos valores son para una temperatura del agua de 20°C. La correción de k_2 por razón de la temperatura puede hacerse con la Ecuación III.25.

$$k_{2(T)} = k_{2(20^{\circ}C)}(1.025^{(T-20)})$$

Ecuación III.25

Donde:

 $k_{2(T)}$ = Constante de reaereación a T°C.

Las corrientes rápidas favorecen la reaereación, a la vez que se reduce el tiempo de recuperación; pero pueden aumentar la longitud del tramo de la corriente afectado por el vertido.

Sedimentación

La sedimentación puede eliminar los sólidos suspendidos, los que contribuyen a la DBO, si la velocidad de la corriente es menor que la de arrastre de las partículas. Tal eliminación mejora la calidad del agua corriente abajo de la zona de sedimentación, pero no cabe duda que es perjudicial en la zona en que los sólidos se acumulan.

Luz solar

La luz solar actúa como desinfectante y estimula el crecimiento de las algas. Estas producen oxígeno durante el día, pero lo consumen durante la noche. Las aguas que contienen gran desarrollo de algas pueden llegar a sobresaturarse de OD durante las horas de sol y tornarse anaerobias durante la noche.

Temperatura

La temperatura afecta la solubilidad del OD en el agua, a la actividad de las bacterias (medibles a través de k_1) y a la velocidad de reaereación (medible a través de k_2). La condición crítica se suele alcanzar en épocas de altas temperaturas en las que el consumo de oxígeno es elevado y su disponibilidad es reducida.

Transferencia de gases

La transferencia de gases dentro y fuera del agua es una parte importante de los procesos naturales de purificación. La reposición del oxígeno perdido en la degradación bacteriana de desechos orgánicos es llevada a cabo por la transferencia de oxígeno del aire dentro del agua. Por otra parte,

los gases transformados en el agua por procesos químicos y biológicos pueden ser transferidos del agua a la atmósfera. El conocimiento de los principios de transferencia de gases es esencial para entender estos procesos naturales.

Considérese el sistema simple mostrado en la Figura III.6 en el cual un recipiente con líquido es sellado con un gas sobre él. Si el líquido es inicialmente puro con respecto al gas, las moléculas de gas migrarán a través de la interfase gas-líquido y se disolverán en el líquido. Aunque algunas moléculas de gas comenzarán a dejar el líquido regresando a la fase gaseosa, la reacción neta será hacia el líquido hasta que alcance un estado de equilibrio. En este punto, el número de moléculas que salen del líquido es igual al número de moléculas que entran otra vez, y se dice que el líquido está saturado del gas. El equilibrio en este caso implica un estado estacionario dinámico, no un estado estático en el que todo movimiento de moléculas de gas se detendría una vez alcanzada la saturación.

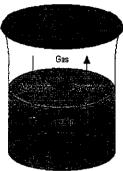


Figura III.6. Contacto gas-líquido con transferencia de gas entre las dos fases.

Modelo matemático de la solubilidad

La solubilidad de un gas en equilibrio con un líquido se cuantifica con la ley de Henry y se expresa matemáticamente por la Ecuación III.26.

$$\chi = \frac{P}{H}$$
 Ecuación III.26

Donde:

H = Coeficiente de absorción (constante de Henry, la cual es única para cada sistema gaslíquido);

P = Presión del gas arriba del líquido; y

χ = Fracción molar en equilibrio del gas disuelto a una atmósfera.

$$X = \frac{moles \ del \ gas \ (ng)}{moles \ del \ líquido \ (nl)}$$

Otros factores que afectan χ son la temperatura (la solubilidad se incrementa conforme la temperatura decrece) y la concentración de otros sólidos (la solubilidad decrece conforme se incrementan otros materiales disueltos en el líquido).

Si el espacio arriba del líquido es ocupado por una mezcla de gases, cada gas tendrá su propia fracción molar en equilibrio. De acuerdo con la Ley de Dalton, cada gas en una mezcla ejerce una presión parcial en proporción a su porcentaje por volumen en la mezcla (Ecuación III.27).

$$PV = (P_1 + P_2 + P_3 + ... + P_n)$$
 o $P = \sum P_i$ Ecuación III.27

Sustituyendo en la ley de Henry, se observa que χ para el iésimo gas en una mezcla es el dado por la Ecuación III.28.

$$\chi = \frac{P_i}{H}$$
 Ecuación III.28

En la cual χ_i , H_i y P_i son, respectivamente, la fracción molar en equilibrio, el coeficiente de absorción, y la presión parcial del lésimo gas.

Los coeficientes de absorción o coeficientes de Henry varían sustancialmente con la temperatura, los valores de varios gases comúnmente encontrados en aguas naturales se muestran en el Cuadro III.1.

Cuadro III.1. Coeficiente de absorción H.

T,°C	10 rd , atm/fracción molar							
	Aire	CO ₂	CO	H ₂	H₂S	C⊁l₄	N ₂	O ₂
0	4.32	0.0728	3.52	5.79	0.0268	2.24	5.29	2.55
10	5.49	0.104	4.42	6.36	0.0367	2.97	6.68	3.27
20	6.64	0.142	5.36	6.83	0.0483	3.76	8.04	4.01
30	7.71	0.186	6.20	7.29	0.0609	4.49	9.24	4.75
40	8.70	0.233	6.96	7.51	0.0745	5.20	10.40	5.35
50	9.46	0.283	7.61	7.65	0.0884	5.77	11.30	5.88
60	10.10	0.341	8.21	7.65	0.1030	6.26	12.00	6.29

La conversión en fracción molar en equilibrio χ a concentración en equilibrio χ_s se ilustra en el siguiente procedimiento para calcular O_2/H_2O :

$$\chi_{gas|l|quido} = \frac{Presión \ parcial \ del \ gas}{Constante \ de \ absorción \ del \ gas|l|quido} = \frac{P_l}{H}$$
 Ecuación III.29

Debido a que la atmósfera esta compuesta de 78% de nitrógeno, 21% de oxígeno y 1% de otros gases, entonces la presión parcial del oxígeno es:

Presión parcial del oxígeno = Presión atmosférica local x 0.21

$$P_t = 0.21P_T$$
 Ecuación III.30

Sustituyendo en la Ecuación III.29, se tiene:

$$\chi_{ox/geno/agua} = \frac{0.21P_T}{H}$$
 Ecuación III.31

Donde P_{τ} está expresada en atmósfera y H en fracción molar/atmósfera; por lo tanto χ queda expresada en fracción molar. Para fines de un estudio conviene más que la ecuación anterior se exprese en mg / l, por lo que se procede de la siguiente forma:

$$F.M. = \frac{moles\ del\ gas}{moles\ del\ líquido}$$
 Ecuación III.32

El peso molecular de un elemento se determina multiplicando la cantidad de moleculas que dicho elemento tiene en la fórmula analizada por su número en la tabla periódica, así para O₂ y H₂O se tiene:

$$O_2 \Rightarrow P. M. = 2 \times 16 = 32 \text{ g/mol de } O_2$$

 $H_2O \Rightarrow P.M. = (2 \times 1) + (1 \times 16) = 18 \text{ g/mol de } H_2O$

De tal forma, se sustituye en la Ecuación III.32 dando:

$$F.M. = \frac{mol \ de \ O2}{mol \ de \ H2O} (32 \frac{g \ O_2}{mol \ de \ O_2}) (\frac{1 mol \ de \ H_2O}{18g \ H_2})$$
 Ecuación III.33

Como es sabido mil gramos de agua son el equivalente a un litro, por lo tanto sustituyendo en la Ecuación III.33 se tiene:

$$F.M. = 1.7778 \frac{g O_2}{g H_2 O} (\frac{1000 g H_2 O}{1 I H_2 O})$$
 Ecuación III.34

$$F.M. = 1.7778 \times 1000 \frac{g O_2}{I H_2 O} \left(\frac{1000 mg O_2}{1 g O_2} \right)$$
 Ecuación III.35

Finalmente:

Fracción Molar =
$$1.7778 \times 10^6 \frac{mg}{I}$$
 Ecuación III.36

CAPITULO IV

MODELO DE STREETER Y PHELPS

En el año de 1925 Harold W. Streeter y Earl Phelps presentaron la ecuación, ahora clásica, que se utiliza con frecuencia en el análisis de corrientes. La forma de la ecuación de Streeter-Phelps ofrece la curva de disminución de oxígeno disuelto en una corriente. La descomposición biológica activa comienza inmediatamente después del vertido. Puesto que la radiación atmosférica es proporcional al déficit de oxígeno disuelto, su tasa aumentará a medida que el déficit sea mayor. Por último, se alcanza un punto en el cual la tasa de oxígeno utilizado para la descomposición del residuo iguala a la tasa de reaereación atmosférica. Aguas abajo de este punto, la tasa de reaereación es mayor que la de utilización y el oxígeno disuelto comienza a aumentar. Al cabo del tiempo la corriente no mostrará efecto alguno por causa de las descargas residuales. Este fenómeno es conocido como el de purificación natural de las corrientes o autodepuración.

Posteriormente a la publicación de la fórmula de Streeter-Phelps se ha seguido investigando la influencia de otros parámetros en la calidad de las corrientes. El principal objetivo de desarrollar un modelo de calidad del agua es el de producir una herramienta que tenga la capacidad de simular el comportamiento de los componentes hidrológicos y de calidad del agua, de una corriente; por lo que en este Capítulo además de presentar el planteamiento de la fórmula de Streeter-Phelps se muestran las ecuaciones correspondientes a otros parámetros y que son utilizadas en el modelo Qual2e. El desarrollo de esta herramienta cuenta con tres etapas:

1	Representación conceptual
2	Representación funcional
3	Representación en computadora

El primero involucra la representación gráfica del modelo, el segundo se refiere a la formulación de las condiciones físicas, procesos y condiciones de frontera en una serie de ecuaciones algebraicas. El tercero es la etapa en donde se transfiere lo anterior a un lenguaje computacional.

IV.1 Representación conceptual

La Figura IV.1 muestra un segmento de corriente que ha sido subdividido en un número determinado de elementos de una misma longitud Δx . Para cada uno de estos elementos, el balance hidrológico puede ser escrito en términos del flujo de entrada proveniente del elemento (Q_n) , entradas o pérdidas externas (Q_n) , y por el flujo de salida del elemento (Q). De manera similar, un balance de materia para el parámetro C (concentración) puede ser escrito para cada elemento. En este balance se consideran el transporte (QC), la dispersión $(AD_L/\Delta x * \partial C/\partial x)$, y los movimientos de masa a lo largo del eje principal. La masa puede ser añadida o removida del sistema mediante fuentes y pérdidas externas (Q_xC_x) , o mediante fuentes o demandas internas (S_i) como lo son las fuentes del bentos y la transformación biológica.

Por lo tanto cada elemento puede ser conceptualizado como una cadena de reactores completamente mezclados, que están unidos uno con otro secuencialmente mediante los mecanismos de transporte y dispersión.

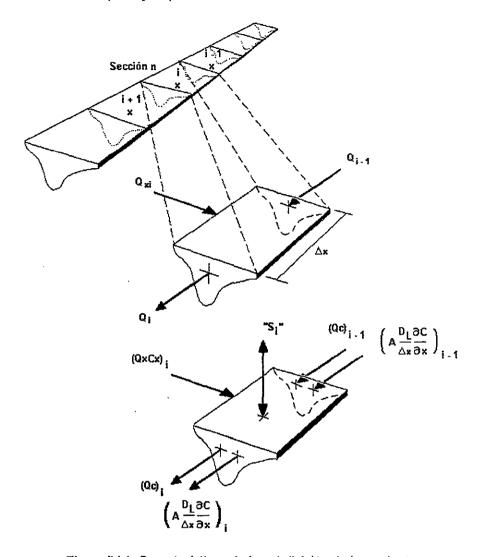


Figura IV.1. Características de la subdivisión de la corriente.

IV.2 Representación funcional

En este punto se explica cada uno de los parámetros simulados en el modelo a partir del modelo original, el cual simulaba oxígeno disuelto y demanda bioquímica de oxígeno (que se basa en las ecuaciones originales descubiertas por Streeter y Phelps), y que después con el aporte de otros autores se fue modificando hasta obtener el modelo actual.

IV.2.1 Modelo de Streeter v Phelps

Earl B. Phelps, uno de los mejores conocedores en su época de la calidad de las corrientes, escribió lo siguiente: "Una corriente es algo más que un accidente geográfico, una línea en un mapa, o una parte fija del terreno. No puede considerársele solamente desde el punto de vista geológico y topográfico. Una corriente es algo con vida propia, con energía con movimiento algo cambiante". Las corrientes están sometidas a bastante contaminación natural, ya que actúan como canales de desagüe de grandes zonas del campo. Por otro lado las corrientes son capaces de absorber parte de la contaminación industrial y municipal porque tienen la capacidad de autodepurarse por la acción de los organismos vivientes que consumen materia orgánica y por el proceso de sedimentación que facilita la formación del lecho de la corriente.

Aparte del oxígeno contenido en los afluentes de la corriente, drenaje superficial y agua freática, las fuentes para la reposición de oxígeno en una corriente son la reaereación atmosférica y la fotosíntesis de algas y plantas acuáticas. La reaereación es proporcional al déficit de oxígeno disuelto, en tanto que la cantidad de oxígeno aportado por la fotosíntesis está en función del tamaño de la población de algas y de la luz solar que se proyecte sobre ellas. La radiación solar incidente es mayor a medio día que al amanecer y atardecer; por tanto la tasa de fotosíntesis se supone que es sinusoidal. Por otro lado la respiración se supone constante, ya que no depende de la radiación lumínica. Cuando la población de algas sea grande, tendrá lugar una variación diurna en la concentración de oxígeno disuelto. A continuación se explicará la formulación del modelo original desarrollado por Streeter y Phelps en el año de 1925.

Se denomina déficit de oxígeno en una corriente a la diferencia entre el oxígeno de saturación (concentración de equilibrio de acuerdo con la ley de Henry), y la concentración de oxígeno disuelto medida en el agua.

El déficit de oxígeno en una corriente es función de la utilización del oxígeno en la degradación de la materia orgánica y de la reaereación.

Analizando las ecuaciones IV.1 y IV.2,

$$\frac{dy}{y} = -k_1 dt$$
 Ecuación IV.1

$$\frac{dD}{dt} = -k_2D$$
 Ecuación IV.2

que se grafican de forma simultánea en la Figura IV.2, se observa que los dos procesos representan fenómenos opuestos, por lo que el déficit de oxígeno en una corriente con degradación y reaereación, se expresa por:

$$\frac{dD}{dt} = -k_2D - (-k_1y)$$
 Ecuación IV.3

$$\frac{dD}{dt} = -k_2D + k_1y$$
 Ecuación IV.4

y de la ecuación $y = L e^{-k_1 t}$

$$\frac{dD}{dt} = -k_2D + k_1L e^{-k_1t}$$
 Ecuación IV.5

Por lo que la Ecuación IV.5 puede ser escrita como

$$\frac{dD}{dt} + k_2 D = k_1 L e^{-k_1 t}$$
 Ecuación IV.6

La que corresponde a una ecuación diferencial de la forma

$$\frac{dy}{dx} + Py = Q$$
 Ecuación IV.7

Donde P y Q son funciones de x. El factor de integración necesario para la solución de este tipo de ecuación es

$$e^{\int k_2 dt} = e^{k_2 t}$$
 Equación IV.9

Multiplicando la Ecuación IV.6 por el término e^{k_2t} , se obtiene

$$e^{k_2t}\frac{dD}{dt} + k_2D e^{k_2t} = k_1L e^{(k_2 - k_1)t}$$
 Ecuación IV.10

Factorizando el lado izquierdo de la Ecuación IV.10

$$e^{k_2t}\frac{dD}{dt} + k_2D e^{k_2t} = \frac{dD}{dt} e^{k_2t}$$
 Ecuación IV.11

Separando variables e integrando la Ecuación IV.11

$$\int dD e^{k_2 t} = k_1 L \int e^{(k_2 - k_1)t} dt$$
 Ecuación IV.12

$$D e^{k_2 t} = \frac{k_1 L}{k_2 - k_1} e^{(k_2 - k_1)t} + C$$
 Ecuación IV.13

A partir de las condiciones de frontera $D = D_0$ para t = 0 (Ecuación IV.14) se determina la constante de integración C (Ecuación IV.15).

$$D_0 = \frac{k_1 L}{k_2 - k_1} (1) + C$$
 Ecuación IV.14

$$C = D_0 - \frac{k_1 L}{k_2 - k_1}$$
 Ecuación IV.15

Sustituyendo el valor de C en la Ecuación IV.13, se tiene

$$D e^{k_2 t} = \frac{k_1 L}{k_2 - k_1} e^{(k_2 - k_1)t} + D_0 - \frac{k_1 L}{k_2 - k_1}$$
 Ecuación IV.16

$$D = \frac{K_1 L}{k_2 - k_1} \left(\frac{e^{(k_2 - k_1)t}}{e^{k_2 t}} \right) - \frac{k_1 L}{(k_2 - k_1) e^{k_2 t}} + \frac{D_0}{e^{-k_2 t}}$$
 Ecuación IV.17

Y finalmente

$$D = \frac{k_1 L}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t}) + D_0 e^{-k_2 t}$$
 Ecuación IV.18

En la Ecuación IV.18, t representa el tiempo de recorrido a partir del punto de descarga y hasta un punto de interés y se obtiene como:

$$t = \frac{d}{u}$$
 Ecuación IV.19

Donde:

d = Distancia de recorrido

u = Velocidad de la corriente

Dado que D = O_s - O la Ecuación IV.18 se puede escribir como:

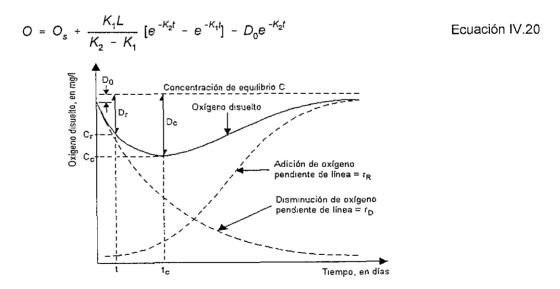


Figura IV.2. Evolución del oxígeno disuelto, curva sag. DBO y adición de oxígeno.

En la Figura IV.2 se muestra la curva de evolución del oxígeno disuelto o curva sag El punto de mayor interés en la curva está representado por la concentración más baja de oxígeno, ya que corresponde al máximo impacto debido a la descarga de aguas residuales. El punto para el cual el oxígeno disuelto es mínimo se conoce como concentración crítica u oxígeno mínimo C_c , y el tiempo en el que se presenta se define como tiempo crítico t_c .

$$D_c = O_s - O_{min}$$
 Ecuación IV.21

$$O_{min} = O_s - \frac{K_1}{K_2} L e^{-K_1 t_c}$$
 Ecuación IV.22

La solución de la Ecuación IV.22 depende del valor numérico de t_c. La ecuación para el cálculo de t_c se obtiene de la Ecuación IV.18 derivando e igualando a cero, ya que el déficit crítico es máximo para t_c.

$$\frac{k_1 L}{k_2 - k_1} \left(-k_1 e^{-k_1 t_o} + k_2 e^{-k_2 t_o} \right) - k_2 D_0 e^{-k_2 t_o} = 0$$
 Ecuación IV.23

Dividiendo la Ecuación IV.23 por $e^{-k_2t_c}$

$$\frac{k_1 L}{k_2 - k_1} \left(-k_1 e^{(k_2 - k_1)tc} + k_2 \right) - k_2 D_0 = 0$$
 Ecuación IV.24

Ordenando

$$k_2 D_0 \left(\frac{(k_2 - k_1)}{k_1 L} \right) = k_2 - k_1 e^{(k_2 - k_1)tc}$$
 Ecuación IV.25

$$k_1 e^{(k_2 - k_1)tc} = k_2 - D_0 \frac{k_2}{k_1} \frac{k_2 - k_1}{L}$$
 Ecuación IV.26

Dividiendo la Ecuación IV.26 por k₁ y tomando antilogaritmos

$$(k_2 - k_1)tc = \ln \left(\frac{k_2}{k_1} - D_0 \frac{k_2}{k_1^2} \frac{k_2 - k_1}{L}\right)$$
 Ecuación IV.27

y de otra forma

$$tc = \frac{1}{k_2 - k_1} \ln \left[\frac{k_2}{k_1} \left(1 - D_0 \frac{k_2 - k_1}{k_1 L} \right) \right]$$
 Ecuación IV.28

Con las Ecuaciones IV.22 y IV.28 puede predecirse para una descarga de aguas residuales, la concentración mínima de oxígeno disuelto en la corriente y la distancia aguas abajo para la cual ocurre.

En los siguientes apartados se describirán las ecuaciones utilizadas por el modelo actual para el análisis de calidad del agua en una corriente.

IV.2.2 Ecuación de transporte de masa

La principal ecuación resuelta por el modelo es la ecuación de transporte de masa por dispersiónadvección, la cual se integra numéricamente en el espacio y tiempo para cada parámetro de calidad del agua. Esta ecuación incluye los efectos de advección, dispersión, dilución, reacciones e interacciones, fuentes y demandas. Para un parámetro C, puede escribirse como la Ecuación IV.29.

$$\frac{\partial M}{\partial t} = \frac{\partial (A_x D_L \frac{\partial C}{\partial x})}{\partial x} dx - \frac{\partial (A_x \overline{u}C)}{\partial x} + (A_x dx) \frac{dC}{dt} + s$$
 Ecuación IV.29

Donde:

M = Masa (M)

x = Distancia (L)

t = Tiempo (T)

C = Concentración (ML⁻³) A = Área transversal (L²)

 $D_i = Coeficiente de dispersión (L^2T^1)$

ū = Velocidad media (LT⁻¹)

s = Fuentes o demandas externas (MT-1).

Como M = VC, la Ecuación IV.29 se puede escribir como

$$\frac{\partial C}{\partial t} = \frac{\partial (A_x D_L \frac{\partial C}{\partial x})}{A_x \partial x} dx - \frac{\partial (A_x \overline{u}C)}{A_x \partial x} \frac{dC}{dt} + \frac{s}{V}$$
 Ecuación IV.30

Donde:

 $V = A_x dx = Volumen diferencial (L^3)$

Si se asume que el flujo es estacionario, es decir, $\partial Q/\partial t=0$ entonces $\partial V/\partial t=0$, y:

$$\frac{\partial M}{\partial t} = V \frac{\partial C}{\partial t}$$
 Ecuación IV.31

Combinando las ecuaciones y reordenando:

$$\frac{\partial C}{\partial t} = \frac{\partial (A_x D_L \frac{\partial C}{\partial x})}{A_x \partial x} - \frac{\partial (A_x \overline{u}C)}{A_x \partial x} + \frac{dC}{dt} + \frac{s}{V}$$
 Ecuación IV.32

Los términos de la derecha de la ecuación representan, respectivamente, dispersión, advección, cambios del parámetro, fuentes/demandas externas y dilución; el término dC/dt se refiere solamente a cambios como crecimiento y consumo, y no deben ser confundidos con el término ∂C/∂t, el cual representa el gradiente local de concentración. Bajo condiciones estacionarias la derivada local es cero, es decir:

$$\frac{\partial C}{\partial t} = 0$$
 Ecuación IV.33

Los cambios independientes a la advección, dispersión y descargas de contaminantes se definen por la Ecuación IV.34.

$$\frac{dC}{dt} = 0$$
 Ecuación IV.34

Estos cambios incluyen las reacciones físicas, químicas y biológicas que ocurren en la corriente.

IV.2.3 Fluio incremental

Cuando la concentración de oxígeno disuelto baja de un nivel requerido específico, es posible que se requiera aumentar esta concentración, aumentando el flujo de la corriente. El modelo permite estimar este aumento. Debido a que no es posible calcular el flujo necesario para aumentar el OD mediante una relación funcional exacta, una buena aproximación es utilizada en el programa:

$$DO_R = DO_T - Do_{min}$$
 Ecuación IV.35

$$Q_R = Q_0(\frac{DO_R}{DO_T} + 0.15(\frac{DO_R}{DO_T})^2)$$
 Ecuación IV.36

Donde:

DO_R = Concentración de oxígeno disuelto requerida para alcanzar el nivel requerido, mg/l

 $DO_T = Nivel de oxígeno disuelto requerido, mg/l$

Domin = Concentración mínima de oxígeno disuelto (nivel crítico) en la curva de oxígeno, mg/l

 $Q_R = Aumento de flujo requerido, ft³/s$

Q_c = Flujo en el punto crítico en la curva de oxigeno, ft³/s

El programa encuentra aquellas fuentes que el usuario especificó como corrientes de dilución, y aumenta el flujo de agua de manera equivalente en todas estas fuentes, hasta alcanzar el nivel especificado.

IV.2.4 Clorofila a

La presencia de algas o plantas acuáticas también puede tener un efecto en el oxígeno disuelto de las aguas superficiales. Durante los períodos de luz, el oxígeno es producido como un subproducto de la fotosíntesis y es consumido debido a la respiración. Durante la noche, la producción de oxígeno se detiene pero la respiración continúa. Este proceso complejo, que incluye tanto una fuente como un consumo de oxígeno, puede causar un aumento o un déficit de oxígeno que frecuentemente provoca variaciones de oxígeno disuelto durante el día. Estas variaciones dependen de diversas condiciones incluyendo intensidad de la luz, nutrientes disponibles y turbidez.

Las algas plantónicas se representan en el modelo mediante la clorofila <u>a</u>. La clorofila <u>a</u> es uno de los pigmentos que determina la actividad fotosintética de la alga. Aunque está presente en todas las algas, es predominante en las algas verdes. Tanto el alga plantónica como los macrofitos requieren ciertos nutrientes para su crecimiento. Aunque otros nutrientes son necesarios, el fósforo y el nitrógeno son generalmente los factores limitantes y son los de principal interés.

Se considera que la clorofila es directamente proporcional a la concentración de la biomasa de alga fitoplanctónica. En el modelo, la biomasa de algas se convierte a clorofila <u>a</u> mediante la simple relación:

Chla =
$$\alpha_{*}A$$
 Ecuación IV.37

Donde:

chla = Concentración de clorofila a, ug-Chl a/L A = Concentración de biomasa de algas, mg-A/L

α_o = Factor de conversión, ug Chl <u>a</u>/mg A

La Ecuación IV.38 gobierna el crecimiento y producción de algas.

$$\frac{dA}{dt} = \mu A - \rho A - \frac{\sigma_1}{d} A$$

Ecuación IV.38

Donde:

A = Concentración de la biomasa de las algas, mg-A/L

t = Tiempo, días

 μ = Razón de crecimiento local de algas, función de la temperatura f(T), días⁻¹

 ρ = Velocidad de respiración local de las algas, f(T), días⁻¹

 σ_i = Velocidad de sedimentación local de las algas, f(T), ft/día

d = Profundidad promedio, ft

Velocidad de respiración de algas

Este parámetro se usa para aproximar tres procesos: (a) la respiración endógena de las algas, (b) la conversión de fósforo de algas a fósforo orgánico, y © la conversión de nitrógeno de algas a nitrógeno orgánico.

Velocidad de crecimiento específica de algas

La velocidad local de crecimiento de las algas, µ, está relacionada directamente con la disponibilidad de los nutrientes (nitrógeno y fósforo) y la luz. El modelo cuenta con la capacidad de modelar la interacción entre estos factores limitantes de tres maneras diferentes.

Opción 1. Multiplicativa.- Las expresiones cinéticas usadas para determinar los efectos de nitrógeno, fósforo y luz se multiplican para determinar el efecto neto en la velocidad local de crecimiento de las algas. Esta opción tiene su base en los efectos multiplicativos de los procesos enzimáticos involucrados en la fotosíntesis (Ecuación IV.39).

$$\mu = \mu_{max}(FL)(FN)(FP)$$

Ecuación IV.39

Donde:

μ_{max} = Velocidad máxima específica de crecimiento de algas, días⁻¹

FL = Factor limitante debido a la luz FN = Factor limitante debido a nitrógeno FP = Factor limitante debido al fósforo

Opción 2. Nutriente limitante.- Esta opción representa a la razón de crecimiento local limitada por la luz y, ya sea por nitrógeno o fósforo, pero no por los dos. Por lo que los efectos nutriente/nutriente son alternados (Ecuación IV.40).

$$\mu = \mu_{max}(FL)Min(FN,FP)$$

Ecuación IV 40

La razón de crecimiento está controlada por el nutriente que tenga el menor factor limitante.

Opción 3. Inversa aditiva.- En esta opción, un factor limitante efectivo de nutrientes se calcula como el promedio de los recíprocos inversos de los factores limitantes individuales de nitrógeno y fósforo (Ecuación IV.41).

$$\mu = \mu_{\text{max}}(FL)\left[\frac{2}{1/FN + 1/FP}\right]$$
 Ecuación IV.41

Esta última opción debe evitarse cuando uno de los nutrientes está en exceso (F→1) y el otro es extremadamente limitante (F→0), ya que en este caso el factor de atenuación se acercaría a 2.

Relación alga-luz

a) Funciones de luz

El modelo da al usuario la opción de utilizar una de tres opciones para calcular el factor limitante debido a la luz (FL):

Opción 1. Saturación media.- En esta opción, el factor limitante debido a la luz se define mediante una expresión tipo Monod (Ecuación IV.42).

$$FL_z = \frac{I_z}{K_1 + I_z}$$
 Ecuación IV.42

Donde:

FI_z = Factor de atenuación de crecimiento de algas por la luz a una intensidad I_z

, = Intensidad de la luz a una profundidad determinada (z), BTU/ft²-hr

K. = Coeficiente de saturación media de luz, BTU/ft2

z = Profundidad variable, ft

Opción 2. Función de Smith.- En esta opción, el factor de limitación por luz se formula para incluir efectos de segundo orden de la intensidad de luz (Ecuación IV.43).

$$FL_z = \frac{I_z}{(K_l^2 + I_z^2)^{1/2}}$$
 Ecuación IV.43

Donde:

K_L = intensidad de la luz correspondiente al 71% de la razón máxima de crecimiento, BTU/ft²-hr

Opción 3.- Ecuación de Steel.- Esta opción incorpora una función exponencial para modelar el efecto de la fotoinhibición en el crecimiento de las algas (Ecuación IV.44).

$$FL_z = (\frac{I_z}{K_I}) e^{(1-\frac{I_z}{K_L})}$$
 Ecuación IV.44

Donde:

K_L = Intensidad de saturación de la luz, a la que la razón de crecimiento de las algas está en un máximo, BTU/ft²-hr Las tres funciones anteriores (Ecuaciones IV.42, IV.43 y IV.44) expresan el valor de FL para una capa ópticamente delgada. En el modelo la fotosíntesis ocurre a través de una cierta profundidad de acuerdo a la ley de Beer (Ecuación IV.45).

$$I_{\gamma} = I e^{(-\lambda Z)}$$
 Ecuación IV.45

Donde

I_z = Intensidad de la luz a una cierta profundidad (z), BTU/ ft²-hr

i = Intensidad de la luz en la superficie, BTU/ft²-hr

λ = Coeficiente de extinción de la luz, ft⁻¹

z = Profundidad variable, ft

Cuando la Ecuación IV.45 se sustituye en las anteriores se obtiene el factor de atenuación en función de la profundidad (Ecuaciones IV.46, IV.47 y IV.48).

Opción 1. Saturación media

$$FL = (1/\lambda d) \ln \left[\frac{K_L + I}{K_L + I e^{-\lambda d}} \right]$$
 Ecuación IV.46

Donde:

K_L = Intensidad de la luz a la que el crecimiento es de 50% del crecimiento máximo.

Opción 2. Función de Smith.

$$FL = (1/\lambda d) \ln \left[\frac{I/K_L + (1 + (I/K_L)^2)^{1/2}}{I/K_I e^{-\lambda d} + (1 + (I/K_I e^{-\lambda d})^2)^{1/2}} \right]$$
 Ecuación IV.47

Donde:

K₁ = Intensidad de la luz a la que el crecimiento es el 71% del crecimiento máximo.

Opción 3. Ecuación de Steel.

$$FL = \frac{2.718}{\lambda d} \left[e^{-(e^{-\lambda d(VK_L)})} - e^{-VK_L} \right]$$
 Ecuación IV.48

Donde:

K_L = Intensidad de la luz a la que el crecimiento es igual al crecimiento máximo.

Donde para las tres opciones:

FL = Factor de atenuación de crecimiento de algas debido a la luz en función de la profundidad.

K_i = Coeficiente de intensidad de la luz, BTU/ft⁻²-hr

λ = Coeficiente de extinción de la luz, ft⁻¹

d = Profundidad del flujo, ft

I = Intensidad de la luz en la superficie, BTU/ft²-hr

b) Opciones para promediar los efectos de la luz.

La simulación en estado estacionario requiere de un valor promedio de FL de las variaciones diurnas. Existen 4 opciones en el modelo para calcular este promedio. Como ejemplo se utiliza la función de saturación media, en realidad se puede usar cualquiera de las cuatro funciones de luz.

Opción 1.- FL se calcula de un valor de radiación solar promedio calculado a partir del balance de calor considerado la temperatura en estado estacionario (Ecuación IV.49).

FL = AFACT*f*FL1

Ecuación IV.49

$$FL_1 = \frac{1}{\lambda d} \ln \left[\frac{K_L + \bar{l}_{alg}}{K_L + \bar{l}_{alg} e^{-\lambda d}} \right]$$

Ecuación IV.50

$$\bar{l}_{alq} = TFACT * \bar{l}_{TEMP}$$

Ecuación IV.51

Donde:

FL = Factor de atenuación de crecimiento de algas por la luz ajustado.

AFACT= Factor de promedio de luz, usado para proveer similaridad entre los cálculos usando

un solo valor promedio de la radiación solar y los cálculos usando el promedio de

los valores horarios de FL.

f = Fracción de horas con luz del día.

FL = Factor de atenuación de crecimiento por luz, basado en la intensidad promedio de

a luz del día.

λ = Coeficiente de extinción de la luz, ft⁻¹.
 d = Profundidad promedio de la corriente, ft.

K = Coeficiente de saturación media de la luz, BTU/ft²-hr

l_{ata} = Promedio de intensidad de luz del día, fotosintéticamente activa, BTU/ft²-hr.

TFACF7 = Fracción de radiación solar estimada en el balance de la energía, que es

fotosintéticamente activa.

I_{temp} = Intensidad promedio de la luz durante el día, estimada del balance de energía,

BTU/ft2-dia.

Opción 2.- FL se calcula de un valor promedio de radiación solar durante el día. Los cálculos requeridos para obtener FL mediante esta opción son los mismos que para la opción 1, excepto que el valor de l_{aig} se calcula directamente del dato de entrada de radiación solar fotosintéticamente activa (Ecuación IV.52).

$$\bar{I}_{alg} = I_{tot}/N$$

Ecuación IV.52

Donde:

l_{tot} = Radiación solar fotosintéticamente activa diaria total.

N = Número de horas con luz durante el día.

Tanto I_{tot} como N son valores dados por el usuario. Ya que se asume que I es la radiación fotosintéticamente activa, el factor TFACT no se usa en esta opción.

Opción 3.-.FL se obtiene promediando los valores de FL por hora de las horas con luz del sol; los cuales se estiman de los valores por hora de la radiación solar calculados en el balance de energía (Ecuación IV.53).

Ecuación IV.53

$$FL_{2} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda d} \left[\frac{K_{L} + I_{alg,i}}{K_{I} + I_{alg,i} e^{-\lambda d}} \right]$$
 Ecuación IV.54

$$I_{alg,i} = TFACT*I_{temp,i}$$
 Ecuación IV.55

Donde:

Promedio de los valores por hora de FL, basado en los valores por hora de la intensidad de FL, =

 $I_{aig,i}$ = Valor por hora de la intensidad de la luz fotosintéticamente activa, BTU/ft²-hr. Valor por hora de la intensidad de la luz calculado del balance de energía con temperatura en estado estacionario, BTU/ft²-hr.

Debido a que el valor promedio calculado en esta opción es un promedio de los valores durante el día de FL, AFACT no se usa en esta opción.

Opción 4.- FL se obtiene promediando los valores por hora durante las horas con luz de sol los cuales son calculados de los valores de radiación solar por hora, calculados de un solo valor de la radiación solar fotosintéticamente activa total y asumiendo que la radiación solar se comporta como una función coseno. Los cálculos requeridos son iguales que para el punto 3, excepto que los valores de l_{aigu} se calculan a partir de una función coseno (Ecuación IV.56).

$$I_{alg,i} = I_{tol}/N \left[1 - \frac{\cos 2\pi i}{N + 2}\right], \quad i = 1,N$$
 Ecuación IV.56

Como en el caso 2, Itat y N son dados por el usuario. Ya que se asume que I es la radiación fotosintéticamente activa, el factor TFACT no se usa en esta opción.

IV.2.5 Ciclo del Nitrógeno

El nitrógeno juega un papel importante en muchos problemas ambientales. Como nutriente, el nitrógeno es esencial porque es el componente mayor de las proteínas, y la ausencia de proteínas en la dieta es la principal causa de desnutrición humana. El nitrógeno se usa en los fertilizantes artificiales lo que tiene implicaciones en la contaminación del agua. Además, durante la combustión se generan óxidos de nitrógeno los cuales son componentes principales del smog fotoquímico.

La atmósfera contiene en forma abundante el nitrógeno (alrededor del 78 % del aire) pero en esta forma no puede ser utilizado directamente por las plantas. Parte del nitrógeno utilizado por las plantas es fijado del N2 atmosférico por las bacterias fijadoras del nitrógeno, las que se encuentran en las raíces de leguminosas tales como el trébol y la alfalfa. Estas bacterias fijadoras del nitrógeno atmosférico N₂ lo oxidan a nitratos NO₃ los que son usados por las plantas. Este es un ejemplo de mutualismo donde las bacterias y las plantas viven juntas y con mutua ventaja. Las bacterias reciben energía de las plantas en forma de carbohidratos y las plantas reciben una fuente de nitrógeno. Las plantas que no tiene esta fuente de nitratos, las obtienen directamente del suelo. Sin embargo, siembras constantes agotan el nitrógeno a menos que se sigan algunos mecanismos de recuperación, éste es el propósito de la rotación de cultivos. Las bacterias fijadoras del nitrógeno asociadas con los cultivos de legumbres mantienen la fertilidad del suelo sin el uso de fertilizantes artificiales. Sin embargo, debido al incremento de la población a nivel mundial es difícil evitar el uso de fertilizantes artificiales, los cuales contribuyen a la contaminación del agua.

Actualmente en la Universidad Nacional Autónoma de México existe un Centro de Investigación sobre Fijación del Nitrógeno, donde se realizan estudios con el fin de aprovechar la fijación natural del elemento, utilizando a los microorganismos en lugar de fertilizantes artificiales.

La Figura IV.3 muestra el ciclo del nitrógeno. En él se puede observar que los nitratos (NO₃), o amoníaco (NH₃), son tomados por las plantas y usados en la síntesis de proteínas. Los productos de podredumbre y de excremento de los miembros de la cadena alimenticia son convertidos a amoníaco por las bacterias y hongos. Entonces las bacterias de los nitritos (nitrosomas) convierten el amoniaco a nitritos (NO₂), y las bacterias de los nitratos (nitrobacter) convierten los nitritos a nitratos (NO₃). El nitrógeno retorna a la atmósfera cuando las bacterias desnitrificantes convierten el nitrato en nitrógeno atmosférico (N₂). En la Figura IV.3 no se muestra la fijación del nitrógeno hecha por el hombre en la manufactura de fertilizantes artificiales. Actualmente la cantidad de nitrógeno fijado artificialmente es mayor que el fijado en forma natural, y los efectos de esta nueva entrada a la biosfera son desconocidos.

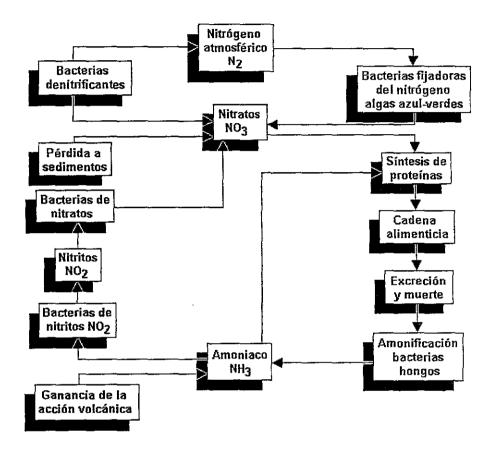


Figura IV.3. Ciclo del nitrógeno.

En aguas naturales aerobias, existe una transformación por etapas de nitrógeno orgánico a amoniaco, a nitrito y finalmente a nitrato.

Varios compuestos de nitrógeno presentes en descargas de aguas residuales también presentan una demanda de oxígeno en el agua conforme cambian de una forma a otra. Estos cambios de forma requieren la presencia de poblaciones específicas de baterías. El nitrógeno amoniacal (NH₃-N) se convierte a nitrógeno en forma de nitrito (NO₂-N) mediante la bacteria Nitrobacter. La conversión de nitrógeno orgánico a nitrógeno amoniacal se lleva acabo mediante la electrólisis y por lo tanto no consume oxígeno. Bajo ciertas circunstancias, como una baja concentración de oxígeno disuelto, las poblaciones bacterianas de nitrificación y/o su actividad pueden ser suprimidas. Investigaciones experimentales han mostrado que niveles de oxígeno disuelto menores a 2 mg/l inhiben significativamente la nitrificación. Bajo condiciones anaerobias, el nitrógeno de nitrato puede ser convertido a gas nitrógeno en un proceso conocido como desnitrificación.

Las ecuaciones diferenciales que describen la transformación del nitrógeno de una a otra forma se describen a continuación (Ecuaciones IV.57 a IV.61).

Nitrógeno Orgánico

$$\frac{dN_4}{dt} = \alpha_1 \rho A - \beta_3 N_4 - \sigma_4 N_4$$
 Ecuación IV.57

Donde:

 N_4 = Concentración de nitrógeno orgánico, mg-N/L.

ß₃ = Constante de reacción de la hidrólisis de nitrógeno orgánico a hidrógeno amoniacal f(T), días⁻¹.

 α_1 = Fracción de nitrógeno de la biomasa de algas, mg-N/mg-A.

ρ = Velocidad de respiración de las algas, días-1.

A = Concentración de biomasa de las algas, mg-A/L.

 σ_{λ} = Coeficiente de velocidad de sedimentación de nitrógeno orgánico f(T), días⁻¹.

Nitrógeno Amoniacal

$$\frac{dN_1}{dt} = \beta_3 N_4 - \beta_1 N_1 + \sigma_3 / d - F_1 \alpha_1 \mu A$$
 Ecuación IV.58

$$F_1 = \frac{P_N N_1}{P_N N_1 + (1 - P_N) N_3}$$
 Ecuación IV.59

Donde:

N. = Concentración de nitrógeno amoniacal, mg-N/L

N₃ = Concentración de nitrógeno como nitrato, mg-N/L

N₄ = Concentración de nitrógeno orgánico, mg-N/L

ß, = Constante de velocidad de reacción de la oxidación biológica de nitrógeno amoniacal, días⁻¹.

β₃ = Constante de velocidad reacción de la hidrólisis de nitrógeno orgánico, días⁻¹.

 α_1 = Fracción de nitrógeno en la biomasa de las algas, mg-N/mg-A.

σ₃ = Velocidad de alimentación de nitrógeno amoniacal de bentos, mg-N/ft²-día.

d = Profundidad media del flujo, ft.

 F_1 = Fracción de consumo de nitrógeno por las algas.

μ = Razón de crecimiento específico local de las algas, días⁻¹.

A = Concentración de biomasa de las algas, mg-A/L.

P_N = Factor de preferencia por nitrógeno amoniacal, (0 a 1). Cuando es igual a cero, las algas sólo usan nitrato para su crecimiento; cuando es 0.5, las algas tienen igual preferencia por el amoníaco que por el nitrato; y cuando es 1, las algas solamente usan amoníaco para su crecimiento.

Nitrógeno de Nitritos

$$\frac{dN_2}{dt} = \beta_1 N_1 - \beta_2 N_2$$
 Ecuación IV.60

Donde:

 $N_1 = Concentración de nitrógeno amoniacal, mg-N/L.$

 N_2 = Concentración de nitrógeno como nitritos, mg-N/L.

B₁ = Constante de velocidad de reacción para la oxidación de nitrógeno amoniacal, f(T), días⁻¹.

ß₂ = Constante de velocidad de reacción para la oxidación de nitrógeno como nitritos, f(T), días⁻¹

Nitrógeno de Nitrato

$$\frac{dN_3}{dt} = \beta_2 N_2 - (1 - F)\alpha_1 \mu A$$

Ecuación IV.61

Donde:

F = Fracción del nitrógeno consumido por las algas.

 α_1 = Fracción de nitrógeno en la biomasa de las algas, mg-N/mg-A

μ = Razón de crecimiento específica local de las algas, días 1.

Inhibición de la nitrificación en niveles bajos de oxígeno disuelto

El modelo tiene la capacidad de inhibir (retardar) la velocidad de nitrificación en niveles bajos de oxígeno disuelto. La velocidad de nitrificación se modifica calculando un factor de corrección de inhibición (que tiene valores entre 0 y 1) y aplicándolo a los valores de los coeficientes de nitrificación, β_4 y β_2 . Este factor de corrección se calcula de acuerdo a la Ecuación IV.62.

$$CORDO = 1.0 - exp (- KNITRF*DO)$$

Ecuación IV.62

Donde:

CORDO = Factor de corrección de nitrificación.

exp = Función exponencial.

KNITRIF = Coeficiente de inhibición de nitrificación de primer orden, mg/L⁻¹.

DO = Concentración de oxígeno disuelto, mg/L.

El factor de corrección se aplica directamente a las constantes de velocidad de reacción de amoníaco y nitritos (Ecuaciones IV.63 y IV.64).

Amoníaco: (\$\mathbb{G}_1\$) inhib. = CORDO * (\$\mathbb{G}_1\$) entrada

Ecuación IV.63

Nitritos: (\$\mathbb{G}_2\$) inhib. = CORDO * (\$\mathbb{G}_2\$) entrada

Ecuación IV.64

IV.2.6 Ciclo de fósforo

El fósforo es otro de los elementos absolutamente esenciales para la vida. Es requerido por todas las formas de vida en los procesos metabólicos que proporcionan energía para las células. El uso del fósforo en detergentes y fertilizantes artificiales puede producir un excesivo desarrollo de plantas en los cuerpos de agua.

La principal fuente de fósforo son las rocas fosfatadas y los depósitos naturales de fosfato, de guano y animales fósiles. El ciclo del fósforo es especial en que es más un proceso unidireccional que un ciclo. Como se muestra en la Figura IV.4, el fósforo se mueve de las rocas por erosión o minería, se usa en las cadenas alimenticias, y eventualmente puede depositarse en las profundidades del océano donde se pierde hasta que un cambio geológico lo ponga disponible otra vez. Parte de los fosfatos perdidos en el mar circulan hacia la tierra cuando se consumen especies marinas o en el depósito del excremento de pájaros (guano).

La minería de las rocas fosfatadas para la manufactura de fertilizantes acelera la pérdida hacia el mar del fósforo.

El ciclo de fósforo opera de manera parecida al de nitrógeno en muchos sentidos. Las formas orgánicas de fósforo se generan por la muerte de algas, el cual entonces se convierte al estado inorgánico disuelto, donde está disponible para las algas. El fósforo descargado de plantas de tratamiento municipales generalmente se encuentra en la forma de fósforo inorgánico disuelto y es fácilmente consumido por las algas. A continuación se describen las ecuaciones que controlan las transformaciones de fósforo de una a otra forma (Ecuaciones IV.65 y Iv.66).

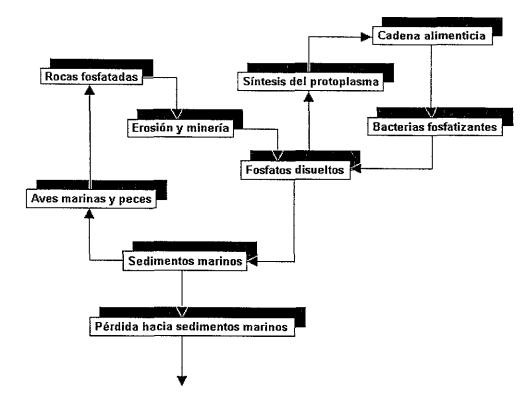


Figura IV.4. Ciclo del fósforo.

Fósforo Orgánico

$$\frac{dP_1}{dt} = \alpha_2 \rho A - \beta_4 P_1 - \sigma_5 P_1$$
 Ecuación IV.65

Donde:

 P_1 = Concentración de fósforo orgánico, mg-P/L. α_2 = Contenido de fósforo en las algas, mg-P/mg-A. ρ = Velocidad de respiración de las algas, días⁻¹. A = Concentración de biomasa de algas, mg-A/L.

 $\mathbb{G}_4 = Velocidad de disminución de fósforo orgánico, f(T), días⁻¹.

<math>
\sigma_5 = Velocidad de sedimentación de fósforo orgánico, f(T), días⁻¹.$

Fósforo disuelto

$$\frac{dP_2}{dt} = \beta_4 P_1 + \sigma_2 / d - \alpha_2 \mu A$$
 Ecuación IV.66

Donde:

P₂ = Concentración de fósforo inorgánico o disuelto, mg-P/L.

 α_2 = Razón de alimentación de fósforo disuelto de bentos, f(T), mg-P/ft²-día.

d = Profundidad media de la corriente, ft.

μ = Razón de crecimiento de algas, días⁻¹.

A = Concentración de la biomasa de las algas, mg-A/L.

IV.2.7 DBO Carbonoso

La Demanda Bioquímica de Oxígeno (DBO), es uno de los parámetros más ampliamente usados para estimar la contaminación potencial de desechos orgánicos en el agua.

La DBO es una medida de la cantidad de oxígeno consumido por las bacterias en la degradación de materia orgánica presente en el agua en condiciones aerobias. El oxígeno consumido en el proceso es proporcional a la cantidad de materia orgánica existente en el agua.

La DBO normalmente se determina en laboratorio para 5 días y a una temperatura de incubación de 20°C, y se le denomina DBO₅. Para las aguas residuales la DBO₅ representa aproximadamente las dos terceras partes de la demanda que sería ejercida si se oxidara toda la materia orgánica por vía biológica.

En la realización de la prueba de DBO deben considerarse dos aspectos: por una parte, el agua puede tener un inóculo adecuado de bacterias, pero si se trata de agua residual industrial poco cargada de bacterias, entonces habrá que añadir inóculo. Por otra parte, la solubilidad del oxígeno en el agua es muy limitada, por lo que para valores altos de DBO deben hacerse diluciones. El agua de dilución se prepara conteniendo los nutrientes necesarios para la actividad biológica, además se aerea para saturarla de oxígeno, antes de mezclarla con el agua residual.

Se considera que la DBO sigue una ley matemática exponencial en la que la velocidad de consumo de oxígeno en cualquier instante, es directamente proporcional a la cantidad de materia orgánica oxidable restante par algún tiempo (Ecuación IV.67).

$$\frac{dy}{dt} = -k_1 y$$
 Ecuación IV.67

Donde:

y = DBO en el tiempo t

k, = Constante de proporcionalidad de la reacción

En la Figura IV.2 se muestra la representación gráfica de la Ecuación IV.67, donde se nota que la DBO decrece conforme transcurre el tiempo, a partir de un máximo ocurrido en un tiempo específico.

Integrando la Ecuación IV.67 y llamando L a la DBO existente para t = 0, se tiene

$$\frac{dy}{v} = -k_1 dt$$
 Ecuación IV.68

$$\int_{v=t}^{y=y} \frac{dy}{v} = -k_1 \int_{t=0}^{t=t} dt$$
 Ecuación IV.69

$$\ln y|_{y=L}^{y=y} = -k_1 t|_{t=0}^{t=t}$$
 Ecuación IV.70

$$ln y - ln L = -k_1 t$$
 Ecuación IV.71

$$\ln \frac{y}{t} = -k_1 t$$
Ecuación IV.72

$$y = L e^{-K_1 t}$$
 Ecuación IV.73

La DBO ejercida al cabo de un tiempo t es la diferencia entre la existente en el momento inicial y la remanente, por lo que

$$DBO = L - Y = L(1 - e^{-k_1 t})$$
 Ecuación IV.74

El valor de k_1 y L se obtiene de un conjunto de datos de la DBO para ciertos tiempos. La constante k_1 varía con la temperatura de acuerdo con la Ecuación IV.75.

$$k_{1_{(0)}} = k_{1_{(20)}} (1.047^{(t-20)})$$
 Ecuación IV.75

Donde:

k₁₍₂₀₎ = Valor de la DBO obtenida en la determinación a 20°C t = Temperatura real existente

La Ecuación IV.75 puede utilizarse para determinar la velocidad a que se ejerce la DBO a temperaturas diferentes a 20°C, valor que es importante conocer cuando se trata de investigar el efecto de las descargas de aguas residuales en los cuerpos de agua receptores.

La velocidad a la que la DBO desaparece se debe a dos mecanismos: consumo y sedimentación. El consumo es la razón a la que la DBO se remueve debido a la descomposición bacterial. Cuando las concentraciones de oxígeno disuelto son altas, este proceso se realiza rápidamente.

Actualmente el modelo asume una ecuación de primer orden para describir la desoxigenación de la DBO_u. La función de DBO también toma en cuenta la remoción adicional de DBO debido a la sedimentación y floculación, que no ejercen una demanda de oxígeno (Ecuación IV.76).

$$\frac{dL}{dt} = -K_1L - K_3L$$
 Ecuación IV.76

L = Concentración de DBO_u carbonosa, mg/L.

 $K_1 = Coeficiente de desoxigenación, f(T), días⁻¹.$

K_a = Velocidad de pérdida de DBO debido a sedimentación, f(T), días⁻¹.

El modelo simula la DBO en el caso general, de cualquier manera el usuario puede escoger los valores de DBO $_5$ como datos de entrada o de salida. En este caso, el modelo lleva a cabo las conversiones necesarias de DBO $_5$ a DBO $_{u}$, mediante la Ecuación IV.77.

$$DBO_s = DBO_u (1.0 - exp (5 * KDBO))$$
 Ecuación IV.77

Donde:

 $DBO_5 = DBO$ a 5 días, mg/L. $DBO_{ii} = DBO$ última, mg/L.

KDBO = Factor de conversión de DBO, días⁻¹.

IV.2.8 Coliformes

Los coliformes son un indicador de la contaminación patógena en aguas superficiales. El modelo utiliza la Ecuación IV.78.

$$\frac{dE}{dt} = -K_5E$$

Ecuación IV.78

Donde:

E = Concentración de coliformes, colonias/100 ml.

 $K_5 = Velocidad de muerte de coliformes, f(T), días⁻¹.$

IV.2.9 Parámetro no conservativo arbitrario

El modelo puede simular un parámetro no conservativo arbitrario (ANC). La Ecuación IV.79 describe el comportamiento de este parámetro.

$$\frac{dR}{dt} = -K_6R - \sigma_6R + \sigma_7/d$$

Ecuación IV.79

Donde:

R = Concentración del elemento no conservativo, mg-ANC/L.

K_s = Velocidad de disminución para el elemento no conservativo, f(T), días⁻¹.

 σ_6 = Coeficiente de sedimentación del parámetro, f(T), días⁻¹.

 σ_7 = Fuente del bentos para el parámetro, f(T), mg-ANC/ft²-día.

d = Profundidad media de la corriente, ft.

IV.2.10 Coeficientes dependientes de la temperatura

Muchas de las reacciones que determinan la calidad del agua en sistemas naturales están en función de la temperatura; esta dependencia se considera generalmente variando los diferentes coeficientes de reacción.

Los valores de temperatura calculados en el modelo se usan para corregir los coeficientes de reacción de los diferentes parámetros. Estos coeficientes se dan a 20°C y son entonces corregidos por la temperatura de acuerdo a la formulación de tipo Streeter-Phelps (Ecuación IV.80).

$$X_T = X_{20} \theta^{(T-20^\circ)}$$

Ecuación IV.80

Donde:

 X_{τ} = Valor del coeficiente a la temperatura local (T).

X₂₀ = Valor del coeficiente a temperatura estándar (20°C)

θ = Constante empírica para cada coeficiente de reacción.

Si la temperatura no se simula, el valor de temperatura especificado en las condiciones iniciales se toma como el valor de la simulación.

IV.2.11 Representación funcional de la temperatura

En la simulación de la temperatura, °C (de la ecuación básica de transporte) se toma como la concentración de calor y puede ser relacionada con la temperatura de acuerdo a la Ecuación IV.81.

$$C = \rho c(T - T_0)$$

Ecuación IV.81

Doride:

 ρ = Densidad del agua, (ML⁻³)

c = Capacidad calorífica del agua (HM-1D-1)

T = Temperatura del agua (T)

 T_0 = Temperatura base arbitraria (T)

M = Masa

H = Flujo de energía calorífica

D = Grados

Los parámetros c y p pueden considerarse constantes para fines prácticos. Además, la generación interna de calor, debida a la disipación viscosa y la fricción, puede considerarse igual a cero (Ecuación IV.82).

$$\frac{\partial T}{\partial t} = \frac{\partial (A_x D_L \frac{\partial T}{\partial x})}{A_x \partial x} - \frac{\partial (A_x \overline{u}T)}{A_x \partial x} + \frac{1}{\rho c} \frac{S}{V}$$
 Ecuación IV.82

El término S/V toma en cuenta el valor transferido a través de las fronteras, es decir, el calor transferido a través de la interfase aire-agua y a través de la interfase agua-suelo. Este último es generalmente insignificante, por lo que S/V representa la razón de calor transmitido por unidad de volumen a través de la interfase aire-agua.

Es más conveniente representar la transmisión de calor interfacial como flujo (Hn). Por lo que S/V se calcula con la Ecuación IV.83.

$$\frac{S}{V} = \frac{S}{A_x \partial x} = \frac{H_N(W \partial x)}{\overline{A_x \partial x}} = \frac{H_N}{d}$$
 Ecuación IV.83

Donde:

W = Ancho superficial. A_x = Área transversal. ū= Velocidad media.

d = A_xW = Profundidad hidráulica de la corriente.

Substituyendo la Ecuación IV.83, queda la Ecuación IV.84 generalizada para la temperatura:

$$\frac{\partial T}{\partial t} = \frac{\partial (A_x D_L \frac{\partial T}{\partial x})}{A_x \partial x} - \frac{\partial (A_x \overline{u}T)}{A_x \partial x} + \frac{H_N}{\rho cd}$$
 Ecuación IV.84

IV.2.12 Definición de H_N

El calor se transfiere a través de la interfase aire-agua debido a tres diferentes procesos: radiación, evaporación y conducción. Los términos individuales de energía relacionados con estos procesos se definen en el Cuadro IV.1.

La Ecuación IV.85 es la resultante de la suma de estos flujos.

$$H_N = H_{sn} + H_{an} - (H_b \pm H_c + H_e)$$
 Ecuación IV.85

Donde:

 H_N = Energía que pasa a través de la interfase aire-agua, BTU/ft²-día.

H_{sn} = Radiación solar neta de onda corta que pasa a través de la interfase después de las pérdidas por absorción y dispersión en la atmósfera y por reflexión en la interfase BTU/ft²-día

H_{an} = Radiación atmosférica neta de onda larga que pasa a través de la interfase después de la reflexión, BTU/ft²-día.

H_b = Flujo de salida de radiación de onda larga, BTU/ft²-día.

H_c = Energía convectiva que pasa de la atmósfera a la interfase y viceversa, BTU/ft²-día.

H_o = Pérdida de energía por evaporación, BTU/ft²-dia.

Cuadro IV.1. Términos individuales de energía.

Guadio IV: 1: 1 Cirillios Mariadales de chergia:		
Término	Unidades	
H _s (radiación de onda corta o radiación solar total)	HL-2T-1	
H _{sr} (radiación de onda corta reflejada)	HL-2T-1	
H _a (radiación de entrada atmosférica total)	HL-2T-1	
H _{ar} (radiación atmosférica reflejada)	HL-2T-1	
H _b (radiación de la superficie del agua)	HL-2T-1	
H _e (pérdida de calor por evaporación)	HL-2T-1	
H _c (pérdida de calor por conducción a la atmósfera)	HL-2T-1	

IV.2.13 Radiación solar neta de onda corta (H_{sn})

La radiación solar neta de entrada es una radiación de onda corta que pasa directamente del sol a la superficie de la tierra. Su magnitud depende de: la latitud del sol, que varía diaria y estacionalmente; el efecto de dispersión y absorción en la atmósfera debido a la nubosidad; y la reflexión en la superficie terrestre.

La cantidad neta de radiación solar que llega a la superficie de la corriente puede representarse por hora con la Ecuación IV.86.

$$H_{sn} = H_0 a_i (1 - R_s) (1 - 0.65 C_i^2)$$

Ecuación IV.86

Donde:

H_{sn} = Radiación solar neta de onda corta, BTU/ft²-hr.

H₀ = Cantidad de radiación que llega a la atmósfera terrestre, BTU/ft²-hr.

a_t = Término de transmisión atmosférica

R_s = Coeficiente Albedo o de reflexión

C₁ = Nubosidad como una fracción de cobertura del cielo.

La Ecuación IV.86 se compone de 4 elementos diferentes:

- * Radiación solar
- * Absorción y dispersión de la radiación
- * Reflectividad
- * Nubosidad

IV.2.14 Radiación atmosférica de onda larga (H_{an})

La radiación de onda larga emitida por la atmósfera varia directamente con respecto al contenido de humedad en la atmósfera. Aunque depende principalmente de la temperatura y humedad, también puede ser afectada por el ozono, bióxido de carbono y otros materiales de la atmósfera.

El flujo neto de radiación se expresa en la Ecuación IV.87.

$$H_{an} = [2.89*10^{-6}]\sigma(T_a + 460)^6(1.0 + 0.17C_t^2)(1 - R_t)$$

Ecuación IV.87

Donde:

H_{an} = Radiación atmosférica neta de onda, BTU/ft²-hr.

 σ = Constante de Stefan-Boltzman, 1.73 x 10⁻⁹ BTU/ft²/hr°R⁴.

T_a = Temperatura del aire a 6 pies de altura por arriba de la superficie del agua, °F.

R_L = Reflectividad de la superficie del agua por radiación atmosférica = 0.03.

C₁ = Nubosidad, expresada como una fracción de cobertura del cielo.

IV.2.15 Radiación de salida de la superficie del agua (Hb)

La tercer fuente de transferencia de radiación de la superficie del agua, Hb, representa una porción substancial de la pérdida de calor de un cuerpo de agua, y se expresa por la ley de la cuarta potencia de Stefan-Boltzman (Ecuación IV.88).

$$H_h = 0.97\sigma(T_s + 460)^4$$

Ecuación IV.88

Donde:

H_b = Radiación de salida de la superficie del agua, BTU/ft²-hr.

T_s = Temperatura de la superficie del agua, °F.

Esta ecuación puede ser linearizada en un cierto rango de temperatura para dar:

$$H_b = \alpha_2 + \beta_2 T_2$$

Ecuación IV.89

Donde:

 α_2 y β = Constantes definidas en el rango de 35 a 135°F.

La Ecuación IV.89 se usa en el modelo para condiciones en estado estacionario.

IV.2.16 Evaporación

Un cuerpo de agua también pierde calor a la atmósfera por evaporación. Cada libra de agua que se evapora desprende su calor latente de evaporación (aproximadamente 1050 BTU a 60°F), además de su calor sensible. Esta pérdida de calor puede expresarse con la Ecuación IV.90.

$$H_{e} = \gamma H_{i}E + H_{v}$$

Ecuación IV.90

Donde:

γ = Peso específico del agua evaporada, lb/ft³

H_L = Calor latente de evaporación, BTU/lb, dado por:

 $H_{L} = 1084 - 0.5T_{s}$

E = Velocidad de evaporación, ft/hr

H, = Pérdida de calor sensible, BTU/ft₂-hr.

La velocidad de evaporación se expresa como:

$$E = (a + bW)(e_s - e_s)$$

Ecuación IV.91

Donde:

a y b = Constantes

W = Velocidad del viento, en mph, medida 6 pies por arriba de la superficie del aqua

Presión de vapor de saturación del aire, en in de Hg, a la temperatura de la superficie del aqua, dada por:

 $e_s = 0.1001 \exp(0.03T_s) - 0.0837$

e_a = Presión de vapor del agua, en in de Hg, a una altura de 6 pies por arriba de la superficie del agua, dada por:

$$e_a = e_{wb} - 0.000367 P_a (T_a - T_{wb}) (1.0 + \frac{T_{wb} - 32}{1571})$$
 Ecuación IV.92

Donde:

e_{wb} = Presión de vapor de saturación, en in de Hg, a la temperatura de bulbo húmedo obtenida de la expresión:

 $e_{wb} = 0.1001 \exp(0.03T_{wb}) - 0.0837$

P_a = Presión barométrica local, in de Hg.

T_{wb} = Temperatura de bulbo húmedo, °F.

T_a = Temperatura de bulbo seco, °F.

La velocidad de evaporación se lineariza con respecto a la temperatura de acuerdo a la Ecuación IV.93.

$$e_s = \alpha_1 + \beta_1 T_s$$
 Ecuación IV.93

esta ecuación linearizada se usa en la simulación en estado estacionarjo.

La pérdida de calor sensible en la evaporación es muy pequeña comparada con los otros componentes, por lo que el modelo no la utiliza en sus cálculos.

IV.2.17 Conducción (Hc)

El calor que se transfiere a través del agua y de la atmósfera debido a la diferencia de temperaturas entre las dos fases normalmente se conoce como conducción. Debido a que la transferencia por conducción es función de las mismas variables que la evaporación, se puede llegar a una proporcionalidad entre la conducción de calor y la pérdida de calor por evaporación. Esta proporcionalidad se conoce con el nombre de razón de Bowen, y se expresa como sigue:

$$B = \frac{H_c}{H_e} = C_B \left(\frac{T_s - T_a}{e_s - e_a}\right) \frac{P_a}{29.92}$$
 Ecuación IV.94

Donde:

 C_R es un coeficiente = 0.01.

Usando la ecuación de Bowen, la razón de pérdida de calor a la atmósfera por conducción, $H_{\rm c}$, se define como:

$$H_c = \gamma H_L(a + bw)(0.01 \frac{P_a}{29.92})(T_s - T_a)$$
 Ecuación IV.95

Para propósitos prácticos, P_a/29.92 se toma igual a 1.

IV.2.18 Oxígeno disuelto

El balance de oxígeno disuelto en una corriente depende de la capacidad de la corriente de reaerearse ella misma. Esta capacidad es una función de los procesos de advección y difusión que ocurren dentro del sistema y las fuentes y demandas internas. Las principales fuentes de oxígeno, adicionalmente a la reaereación atmosférica, son el oxígeno producido por fotosíntesis y el oxígeno contenido en el flujo de entrada. Las demandas de oxígeno disuelto incluyen la oxidación bioquímica de materia orgánica, demanda de oxígeno del bentos y el oxígeno utilizado para la respiración.

La ecuación diferencial que gobierna los cambios de oxígeno disuelto se muestra a continuación.

$$\frac{dO}{dt} = K_2(O^* - O) + (\alpha_3 \mu - \alpha_4 \rho)A - K_1 L - K_4/d - \alpha_5 \beta_1 N_1 - \alpha_6 \beta_2 N_2$$
 Ecuación IV.96

Donde:

O = Concentración de oxígeno disuelto a la presión y temperatura local, mg/L.

O' = Concentración de saturación de oxígeno disuelto a la presión y temperatura local, mg/L.

 α_3 = Velocidad de producción de oxígeno por unidad de fotosíntesis de algas, mg-O/mg-A.

 α_4 = Velocidad de consumo de oxígeno por unidad de alga que respira, mg-O/mg-A.

α₅ = Velocidad de consumo de oxígeno por unidad de oxidación de nitrógeno amoniacal, mg-O/mg-N.

α_e = Velocidad de consumo de oxígeno por unidad de oxidación de nitrógeno como nitrito, mg-O/mg-A.

 μ = Velocidad de crecimiento de las algas, f(T), días⁻¹.

 ρ = Velocidad de respiración de las algas, f(T), días⁻¹.

A = Concentración de la biomasa de las algas, mg-A/L.

L = Concentración de DBOu carbonosa, mg/L.

d = Profundidad media de la corriente, ft.

K₁ = Velocidad de desoxigenación de DBO carbonosa, f(T), días⁻¹.

 K_2 = Velocidad de reareación, f(T), días⁻¹.

 K_{4} = Velocidad de demanda de oxígeno del sedimento, f(T), g/ft²-día.

B1 = Coeficiente de oxidación de amoníaco, f(T), días⁻¹.

ß2 = Coeficiente de oxidación de nitrito, f(T), días¹.

 N_1 = Concentración de nitrógeno amoniacal, mg-N/L.

 N_2 = Concentración de nitrógeno como nitritos, mg-N/L.

Demanda de Oxígeno del sedimento

Una importante demanda de oxígeno en el agua es la demanda de oxígeno del sedimento. Los depósitos en el fondo en forma de materia orgánica sedimentada acumulada a lo largo de la corriente pueden ejercer una demanda de oxígeno. La demanda de oxígeno de sedimentos resultantes de descargas no puntuales puede variar entre 0.05 mg de oxígeno/m²-día en suelos minerales a 2.0 mg de oxígeno/m²-día en lodos estuarios, a 20 C. Adicionalmente a las fuentes anteriormente mencionadas, el material orgánico proveniente plantas de tratamiento de aguas residuales domésticas o industriales puede sedimentarse por debajo de las caídas de agua creando demandas de oxígeno disuelto que varían entre 0.05 mg de oxígeno/m²-día a 10 mg de oxígeno/m²-día.

Concentración de saturación de oxígeno disuelto

La solubilidad de oxígeno disuelto en agua disminuye conforme la temperatura aumenta, conforme aumenta la concentración de sólidos disueltos, y conforme disminuye la presión atmosférica. El modelo utiliza una ecuación predictiva para la concentración de saturación (equilibrio) de oxígeno disuelto:

 $\ln O^{-} \sim 139\ 3441 + (1\ 575701 \times 10^{5}/T) \sim (6.642308 \times 10^{7}/T^{2}) + (1\ 2438 \times 10^{10}/T^{3}) \sim (8.621949 \times 10^{11}/T^{4})$

Ecuación IV.97

Donde:

0*= concentración de equilibrio de oxígeno a 1 atm. mg/L

T = temperatura, K (dentro del rango de 0 a 40°C)

Para condiciones no estándar de presión, la concentración de equilibrio de oxígeno disuelto se corrige mediante la Ecuación IV.98.

$$Op = O *P[\frac{(1-P_w/P)(1-\Phi P)}{(1-P_{ww})(1-\Phi)}]$$
 Ecuación IV.98

Donde:

Concentración de oxígeno en equilibrio en condiciones no estándar de presión, mg/L.

O_p = Concentración de oxígeno en equilibrio a 1 atm de presión, mg/L.

Presión, atm (entre 0 y 2 atm).

Presión parcial de vapor de agua, atm, que puede calcularse de:

$$\ln P_{wv} = 11.8571 - (3840.7/T) - 216961/T^2$$

Ecuación IV.99

У

$$\phi = 0.000975 - (1.426*10^{-5}t) + (6.436*10^{-8}t^{2})$$

Ecuación IV.100

Donde:

Temperatura, °C t =

Estimación del coeficiente de reaereación atmosférica

El proceso por el que el oxígeno disuelto en la corriente se incrementa por el aire de la superficie se conoce como reaereación atmosférica y es la fuente primaria de oxígeno disuelto en el agua. El proceso de reaereación es generalmente una función de la geometría de la corriente y de sus características hidráulicas. Diferentes técnicas y ecuaciones han sido desarrolladas para estimar los coeficientes de reaereación con base en la geometría y las características hidráulicas de la corriente.

El coeficiente de reaereación (K2) generalmente se expresa como una función de la profundidad de la corriente y su velocidad. El modelo cuenta con ocho diferentes opciones para estimar o leer los valores de K2.

Opción 1.- Esta opción permite leer los valores de K2 previamente seleccionados por el usuario. Esta opción generalmente se usa en casos inusuales como cuando existe cubierta de hielo.

Opción 2. Ecuación de Churchill, Elmore y Buckingham.-

$$K_2^{20} = 5.026 \bar{u}^{0.969} d^{-1.673} *2.31$$

Ecuación IV.101

Donde:

ũ = Velocidad promedio de la corriente, ft/s

Profundidad media de la corriente, ft d =

K₂ = Coeficiente de reareación, días⁻¹.

Opción 3. Ecuación de O'Connor y Dobbins.- La cual generalmente se usa para corrientes con bajas velocidades y condiciones isotrópicas:

$$K^{20_2} = \frac{(D_m \overline{u})^{0.5}}{d^{1.5}}$$

Ecuación IV.102

Donde:

Coeficiente de difusión molecular, ft²/día, y está dado por:

$$D_m = 1.91 * 10^3 (1.037)^{T-20}$$

Ecuación IV.103

Opción 4. Ecuación de Owens, et al.- La cual se usa para corrientes con profundidades entre 0.4 y 11.0 pies y velocidades de 0.1 a 5 ft/s:

$$K_2^{20} = 9.4 \tilde{u}^{0.67} / d^{1.85} * 2.31$$

Ecuación IV.104

Donde:

ŭ = Velocidad promedio de la corriente, ft/s

d =Profundidad media de la corriente, ft.

Opción 5. Ecuación de Thackston y Krenkel.-

$$K_2^{20} = 10.8(1 + F^{0.5})\frac{u^*}{d} *2.31$$

Ecuación IV.105

Donde:

F = número de Froude dado por:

$$F = \frac{u^*}{\sqrt{qd}}$$

Ecuación IV.106

 u^* = velocidad cortante, en ft/s, y está dada por:

$$u^* = \sqrt{dS_e g} = \frac{\tilde{u}n\sqrt{g}}{1.49d^{1.167}}$$

Ecuación IV.107

Donde:

d =Profundidad media, ft.

Aceleración de la gravedad, ft/s².

Pendiente del gradiente de energía.

Velocidad media, ft/s. Coeficiente de Manning. n =

Opción 6. Ecuación de Langbien y Durum .-

$$K_2^{20} = 3.3\overline{u}/d^{133}*2.31$$

Ecuación IV.108

Donde:

ū = Velocidad promedio de la corriente, ft/s.

d = Profundidad media de la corriente, ft.

Opción 7. Función exponencial de flujo.- Esta es una ecuación empírica dada por:

Ecuación IV.109

Donde:

a = Coeficiente de flujo para K₂.

Q = Flujo, ft³/s.

b = Exponente en flujo para K₂.

Opción 8. Ecuación de Tsivoglou y Wallace.- Esta asume que el coeficiente de reareación es proporcional al cambio en la elevación de la superficie del agua en el segmento e inversamente proporcional al tiempo de flujo a través del segmento.

$$K_2^{20} = c \frac{\Delta h}{t_f}$$

Ecuación IV 110

Asumiendo un cambio uniforme en el flujo. El cambio del nivel del agua en el canal esta dada por:

$$\Delta h = S_a \Delta x$$

Ecuación IV.111

Donde:

c = Coeficiente de escape, ft1

ŭ = Velocidad media, ft/s

S_a = Pendiente del gradiente de energía, dado por:

$$S_e = \frac{\overline{u^2 n^2}}{(1.49)^2 d^4/3}$$

Ecuación IV.112

Donde:

d = Profundidad media, ft

n = Coeficiente de Manning

El coeficiente de escape es empírico y se recomienda usar los siguientes valores:

c = 0.054 ft⁻¹ (a 20°C) para 15
$$\leq$$
 Q \leq 3000 ft³/s.

Ecuación IV.113

 $c = 0.110 \text{ ft}^{-1} \text{ (a } 20^{\circ}\text{C) para } 1 \le Q \le 15 \text{ ft}^{3}\text{/s}.$

Ecuación IV.114

Cubierta de hielo

Las cubiertas de hielo en la época de invierno puede afectar significativamente la reaereación. La razón de reareación disminuyen debido a que las cubiertas de hielo reducen el área superficial de la interfase aire-agua. Para ajustar la razón de reaereación en caso de cubiertas de hielo, la velocidad de reaereación se multiplica por un factor de cobertura de hielo.

Para el caso de México, muy raras veces se presenta esta característica por lo que no es necesario profundizar en dicho tema.

Reareación debido a represas

El modelo QUAL2E tiene la capacidad de modelar la cantidad de oxígeno que entra al sistema debido a la reaereación en represas. La Ecuación IV.115 descrita por Zison et. Al. y atribuida a Gameson es la que se utiliza para este cálculo:

$$D_a - D_b = [1 - \frac{1}{1 + 0.118bH(1 + 0.34H)(1 + 0.046T)H}]D_a$$
 Ecuación IV.115

Donde:

D_a = Déficit de oxígeno sobre la represa, mg/L. D_b = Déficit de oxígeno bajo la represa, mg/L

T = Temperatura, °C.

H = Altura a través de la cual el agua cae, ft.a = Parámetro empírico de calidad del agua.

1.25 para agua clara a ligeramente contaminada.

1 para agua contaminada.

b = Parámetro empírico de aereación.

1 para vertedor con caída libre.

1.3 para cascadas.

CAPÍTULO V

APLICACIÓN EN LA COMPUTADORA DEL MODELO MATEMÁTICO

El modelo QUAL-1 fue desarrollado inicialmente por el Consejo de Desarrollo del Agua de Texas en los años sesenta y sólo modelaba demanda bioquímica de oxígeno y oxígeno disuelto, a partir de las ecuaciones de Harol W. Streeter y Earl Phelps' descritas en el Capítulo IV del presente trabajo. Desde entonces varias versiones mejoradas del modelo han sido desarrolladas por la EPA, hasta llegar a la versión Qual2e la cual actualmente es extensamente usada. Este modelo ayuda mucho para estimar el grado de contaminación de una corriente, aunque se debe poner especial cuidado al interpretar los resultados que el modelo llega a obtener debido a las limitantes que el mismo tiene. Es importante planear un adecuado programa de muestreos ya que para introducir correctamente los datos en el modelo se debe dividir la corriente en tramos de iguales características hidráulicas, por lo tanto es recomendable determinar con anticipación los puntos de muestreo en campo más convenientes para una mejor simulación. También es de mucha ayuda dibujar un croquis general de la corriente conteniendo todos los afluentes, descargas residuales, aprovechamientos hidráulicos y poblaciones que se encuentran a lo largo de la corriente, así como la distancia respectiva (en km o millas) siempre empezando esta aguas abajo y terminando aguas arriba; esto facilitará en mucho la introducción de los datos que cada pantalla requiere.

El modelo Qual2e se obtiene de forma gratuita por medio de la página de internet correspondiente de la EPA. Los archivos están compactados en formato zip y por tanto es necesario descompactarlos en una carpeta nueva. Para instalar el programa es suficiente con hacer un doble click en "setup". Una vez que se ha instalado Qual2e se puede obtener de la carpeta "models" el "acceso directo" a la pantalla de windows.

V.1 Programa QUAL2E para Windows

El modelo QUAL2E es un modelo versátil de calidad de corrientes de agua. Puede simular hasta 15 parámetros de calidad del agua en cualquier combinación que se requiera. Los parámetros que puede simular el modelo se listan en el Cuadro V.1.

Cuando el ciclo del fósforo o del nitrógeno no se simulan, el modelo asume que estos no limitarán el crecimiento de las algas. El modelo puede simular tanto DBO última como DBO a 5 días.

El modelo es aplicable a corrientes que estén bien mezcladas. Asume que los principales mecanismos de transporte, advección y dispersión, son significativos solamente en la dirección principal del flujo (eje longitudinal del canal o corriente). Permite la entrada de descargas de agua

¹ Publicadas en "Public Health Service Bulletin 146" en 1925.

múltiples, aprovechamientos, flujos tributarios e incrementos o decrementos de flujo. También tiene la capacidad de calcular los flujos de dilución necesarios para cumplir con un nivel determinado de oxígeno disuelto. Para resolver las ecuaciones de transporte de masa y reacción utiliza la herramienta de diferencias finitas; es decir, que divide al río en un número específico de elementos computacionales y para cada elemento realiza un balance hidrológico en términos de flujo, un balance de energía en términos de temperatura, y un balance de materia en términos de concentración.

Cuadro V.1. Parámetros que puede simular Qual2e.

Parâmetro simulado	Siglas
Oxígeno Disuelto	(OD)
Demanda Bioquímica de Oxígeno	(DBO)
Temperatura	m
Algas como Clorofila a	(A)
Nitrógeno Orgánico	(N-O)
Nîtrógeno Amoniacal	(N-NH3)
Nitrógeno como Nitritos	(N-NO2)
Nitrógeno como Nitratos	(N-NO3)
Fósforo Orgánico	(P-O)
Fósforo Disuelto	(P-Dis)
Coliformes	(CI)
Parámetro arbitrario no conservativo	(ANC)
Tres parámetros conservativos	(PC)

Hidráulicamente, el modelo está fimitado a la simulación de períodos de tiempo durante los cuales tanto el flujo de la corriente como las descargas de contaminantes son constantes. El modelo puede operar en estado estacionario o en estado dinámico. Cuando se opera en estado estacionario, puede ser usado para estudiar el impacto de descargas de agua (magnitud, calidad y ubicación) en la calidad del agua de la corriente; y también puede ser usado junto con un programa de muestreos para identificar la magnitud y características de descargas no puntuales. Operando el modelo dinámicamente, el usuario puede estudiar los efectos de variaciones diurnas de los datos metereológicos en la calidad del agua (principalmente oxígeno disuelto y temperatura) y también puede estudiar las variaciones diurnas de oxígeno disuelto debidas al crecimiento de las algas.

Esta última versión del modelo incluye el QUAL2E-UNCAS, el cual permite al usuario realizar un análisis de incertidumbre. Las opciones empleadas dentro del QUAL2E-UNCAS son: análisis de sensibilidad, análisis de error de primer orden, y simulación Monte Carlo.

La interfase incluida en esta última versión del modelo fue desarrollada para ayudar al usuario en lo que respecta a la entrada de datos y ejecución del modelo. La interfase para Windows fue desarrollada por la División de Estándares y Ciencia Aplicada de la Oficina de Ciencia y Tecnología de la Agencia de Protección Ambiental de los Estados Unidos (EPA).

La última versión. QUAL2E, simula hasta 15 parámetros de calidad del agua en cualquier combinación que se requiera. En todos los programas de la serie QUAL, se asume explícitamente un flujo constante; las únicas funciones variables con respecto al tiempo son las climatológicas que afectan principalmente la temperatura y el crecimiento de algas. La función usada para estimar el transporte es el flujo, que, como se mencionó anteriormente se asume constante. La velocidad, área transversal y profundidad de la corriente se calculan a partir del flujo.

El proceso simula cambios en las condiciones de flujo a lo largo de la corriente calculando una serie de perfiles de agua en estado estacionario. El balance de masa determina las concentraciones de los minerales conservativos, bacterias coliformes y de los componentes no conservativos. Además de los flujos de masa, otros procesos incluidos en el balance de material son: transformación de nutrientes, producción de algas, demanda carbonosa y del bentos, reaereación atmosférica y el efecto de estos procesos en el balance de oxígeno disuelto.

Una de las consideraciones más importantes para determinar la capacidad asimilativa de una corriente es su habilidad para mantener una concentración adecuada de oxígeno disuelto. El programa QUAL2E lleva a cabo un balance incluyendo los principales términos de disminución y aumento de Oxígeno disuelto.

La Figura V.1 muestra las interacciones entre los parámetros modelados por el QUAL2E; el ciclo del nitrógeno está compuesto de cuatro partes: nitrógeno orgánico, nitrógeno amoniacal, nitrógeno como nitrito y nitrógeno como nitrato. El ciclo de fósforo es similar pero más sencillo que el de nitrógeno, teniendo solamente dos etapas. La demanda bioquímica de oxígeno carbonosa última (CDBOu) se modela como un proceso de degradación de primer orden. Si se utiliza DBO5 como dato de entrada, el modelo QUAL2E convierte el DBO5 en DBOu mediante cálculos internos. Los procesos de oxidación relacionados con la caída de CDBO y con los ciclos de nutrientes representa el principal factor de disminución de oxígeno disuelto en el programa. La principal fuente de oxígeno disuelto, a parte de la fotosíntesis de las algas, es la reaereación atmosférica.

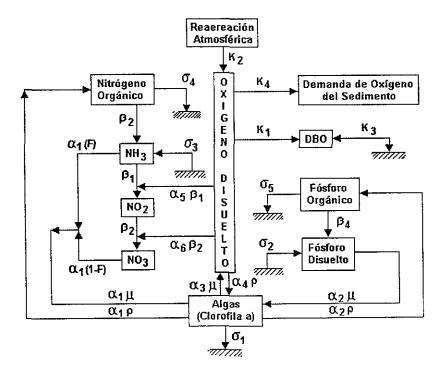


Figura V.1. Interacción de los principales elementos en el modelo Qual2e.

El modelo permite la simulación de cualquier sistema uni-dimensional ramificado. El primer paso para realizar la modelación del sistema es subdividir la corriente en segmentos, los cuales tienen características hidráulicas uniformes. Cada segmento se subdivide en elementos computacionales Delta-x de igual longitud. Por lo que todos los segmentos deben consistir en un número entero de elementos. Para definir un segmento lo principal es determinar que constituye un cambio significativo en cuanto a los resultados de la simulación, y no tanto a los datos de entrada.

Existen siete tipos de elementos computacionales, los cuales se listan en el Cuadro V.2. Los suministros de agua comienzan en cada tributario así como en el sistema principal del río. Un elemento estándar es aquél que no califica como ninguno de los otros. Debido a que se permite incremento de flujo en todos los tipos de elementos, la única entrada permitida en un elemento estándar es el incremento de flujo. Un elemento del tipo 3 es aquel que está ubicado en el sistema principal justo aguas arriba de una unión. Un elemento de unión simula la entrada de un tributario al sistema principal. El elemento tipo 5 identifica el último elemento computacional del sistema; solamente existe un solo elemento del tipo 5. Los elementos de los tipos 6 y 7 representan entradas (descargas de aguas residuales y tributarios) y aprovechamientos, respectivamente. La información hidráulica, los coeficientes de reacción, las condiciones iniciales y los incrementos de flujo son constantes para todos los elementos computacionales de un segmento.

Cuadro V.2. Elementos computacionales del Qual2e.

No.	Elemento computacional
1	Suministro de agua
2	Elemento estándar
3	Elemento justo aguas arriba de una unión
4	Elemento unión
5	Ultimo elemento del sistema
6	Descarga
7	Aprovechamiento

Debido a que se pueden especificar nuevos coeficientes biológicos e hidráulicos en cada segmento; la manera en que un sistema es dividido puede afectar apreciablemente los resultados finales de la simulación. Nuevos segmentos pueden ser establecidos debido a cambios de velocidad, profundidad o dispersión. La presencia de tributarios o descargas también pueden hacer que se tengan que definir nuevos segmentos. Una variación espacial de la demanda de oxígeno del sedimento o de los parámetros de fotosíntesis/respiración también puede influenciar la segmentación.

Limitaciones del modelo

En la Figura V.2 se muestra como el modelo está diseñado para ser relativamente general, aún así, existen algunas limitaciones dimensionales las cuales se mencionan en el Cuadro V.3.

Cuadro V.3. Limitaciones del QUAL2E.

Oddio V.S. Limitaciones dei QOALZE.				
Elemento computacional	Lîmitantes			
Segmento	un máximo de 50			
Elemento computacional Delta-x	no más de 20 por segmento y un total de 500			
Suministros de agua (inicio de corriente o afluente)	un máximo de 10			
Elemento de unión	un máximo de 9			
Elemento de descarga o aprovechamiento	un máximo de 50			
Segmento con incrementos de flujo	todos los segmentos del sistema			
Último elemento del sistema	1			

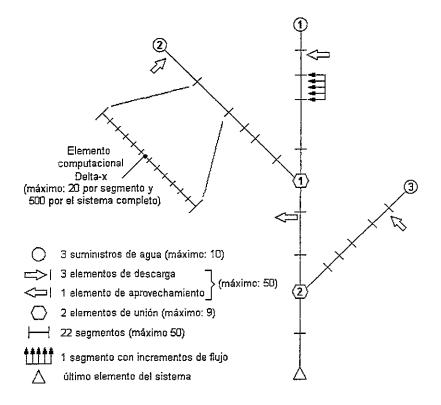


Figura V.2. Ejemplo del esquema general de un sistema de corriente y sus limitaciones.

V.2 Descripción del Software

El modelo requiere algún grado de experiencia por parte del usuario, ya que este debe dar más de 100 datos de entrada individuales, algunos de los cuales requieren de juicio y experiencia para estimarse. Los datos de entrada pueden ser agrupados en tres categorías: el sistema de la corriente, variables globales y funciones "forcing". Adicionalmente a estos grupos están los datos de entrada para el análisis de incertidumbre.

Las variables globales incluyen a las variables de simulación, los elementos del agua, y algunas características físicas de la corriente.

Los datos climatológicos locales son requeridos para la simulación de algas y temperatura. La simulación de temperatura utiliza un balance de energía a través de la interfase aire-agua, por lo que requiere de las temperaturas de bulbo húmedo y de bulbo seco, presión atmosférica, velocidad del viento y nubosidad. La simulación de algas requiere de valores de radiación solar neta. Para simulaciones dinámicas estos datos deben ser dados en intervalos de tiempos regulares y son aplicados uniformemente en toda la corriente. Para modelar temperatura y algas en estado estacionario, se requiere de datos promedio diarios.

Las funciones "forcing" son datos o funciones de entrada que inducen al sistema que está siendo modelado. Estos datos se especifican en términos de flujo, calidad del agua y climatología local. Estas funciones son especificadas por el usuario e inducen al sistema que está siendo modelado. Esta información de entrada se especifica en términos de flujo, características de calidad del agua y datos climatológicos locales. Adicionalmente a los factores climatológicos locales, el modelo cuenta con cuatro tipos de funciones hidráulicas y de carga de masa: datos de suministro de agua, descargas y aprovechamientos, incrementos/decrementos de flujo a lo largo del segmento, y las condiciones de frontera (opcional).

Los datos de entrada de suministro de agua representan las condiciones de frontera requeridas para generar la solución de los balances de masa para el primer elemento computacional.

Las descargas y aprovechamientos o pérdidas puntuales representan descargas puntuales al sistema y pérdidas del mismo. En el modelo estas descargas pueden representar agua tratada o no. El efecto del tratamiento puede ser simulado aplicando una fracción de remoción de Demanda bioquímica de oxígeno en cada descarga puntual.

El modelo tiene la capacidad de manejar un aumento o disminución uniforme de agua a lo largo del segmento (incremento de flujo). El flujo total de agua se subdivide equitativamente entre los elementos. Este puede usarse para simular cargas no puntuales o los efectos de filtración de agua en el subsuelo.

Se pueden incorporar concentraciones conocidas en la frontera aguas abajo de los parámetros de calidad del agua. Las condiciones de frontera deben escogerse en donde la calidad tenga pocas posibilidades de cambiar sin importar las condiciones aguas abajo o aguas arriba. Este límite debe ser un cuerpo de agua lo suficientemente grande para actuar como recipiente del agua sin ser afectado por las condiciones de la corriente que está recibiendo. Estas condiciones de frontera generalmente sólo se utilizan en sistemas dispersivos.

El programa esta proyectado a ser lo más eficiente posible. Consiste de 24 pantallas que cubren todos los datos requeridos por Qual2e y Qual2e-UNCAS (Figura V.3.). Las primeras 20 representan los datos para Qual2e y las 4 restantes son para Qual2e-UNCAS. Debido a que en las simulaciones realizadas no se contempló la utilización de análisis de incertidumbre, las 4 últimas pantallas correspondientes a Qual2e-uncas no se explicarán.

En general la interface esta dividida en 6 componentes:

 Simulación de control. Describe la simulación de control de variables y el número de tramos en el sistema.

- 2. Sistema de la corriente. En el se describe el sistema completo de la corriente: unión de tramos, tipo de elemento, etc.
- Variables globales. Incluye un número de elementos a ser simulados: información geográfica y climatológica, opción de graficación (OD y DBO); y factores de corrección cinética y de temperatura.
- 4. Datos funcionales. Proporcionan datos del gasto, coeficiente de reacción, condiciones límite y punto de origen de las descargas.
- Datos climatológicos. Sólo se requieren para la simulación nocturna del oxígeno disuelto.
- 6. Análisis de incertidumbre. Consiste en tipos de análisis de incertidumbre.

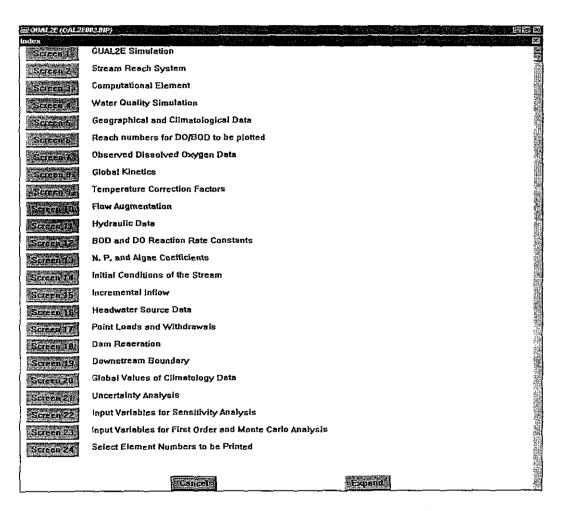


Figura V.3. Contenido del Qual2e y Qual2e-UNCAS.

V.2.1 Descripción de las pantallas del modelo QUAL2E

En este punto se explican las pantallas correspondientes al modelo Qual2e, cabe aclarar que si en una pantalla no se introducen correctamente los datos, entonces se tendrán problemas en las posteriores a ésta. A manera de ejemplo, dos problemas que se pueden presentar son los siguientes:

- * Si en la pantalla 2 se introducen mal los valores correspondientes a comienzo y fin de tramo, entonces las pantallas 3, 12, 14, 15 y 16 no aparecerán. La diferencia entre los dos valores debe ser exactamente divisible entre el valor delta-x para que no haya ningún contratiempo.
- * Puede suceder que el programa no marque errores en ningún momento en la introducción de los datos, aunque estos sean incorrectos. Pero al correr el programa se generará un error que aparecerá en pantalla, probablemente el balance hidráulico sea inadecuado.

Para que el balance hidráulico sea el correcto se debe tener cuidado en verificar que el gasto final del tramo sea igual al gasto inicial más los incrementos y decrementos que pudieran existir a lo largo del tramo:

$$Q_i = Q_i + E - S$$
 Ecuación V.1

Existe la posibilidad de que los valores obtenidos en campo no solucionen la Ecuación V.1, es decir, el lado izquierdo de la ecuación no concuerde con el lado derecho. Este problema se debe a que a lo largo del tramo existen pérdidas y aumentos de flujo no contemplados en el balance hidráulico (debido a infiltraciones, evaporación, descargas, escurrimientos y afluentes no detectados). Para solucionar dicho problema es suficiente con introducir en la pantalla 15 el valor de la diferencia de gastos y automáticamente el modelo simulará un incremento de flujo constante a lo largo del tramo.

Pantalla 1. Simulación de QUAL2E

En esta pantalla (Figura V.4) se describen los datos generales correspondientes a título de la corrida, tipo de simulación, tipo de unidades, análisis de incertidumbre, aumento de flujo, canales trapezoidales, iteraciones máximas, tiempo transcurrido, día de comienzo de la simulación, longitud total de la simulación, incremento de tiempo y número de tramos. Al introducir éste último aparecerán automáticamente las pantallas 2, 4, 5, 9 y 20.

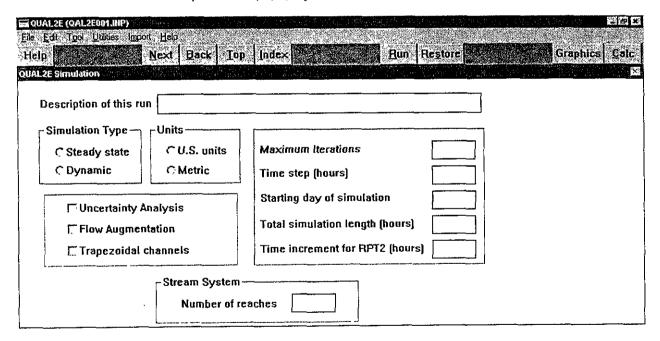


Figura V.4. Pantalla 1 de Qual2e.

Título de la corrida

Se puede escribir el título de la corrida para que aparezca en las corridas impresas.

Tipo de simulación

Se tienen dos opciones disponibles para el tipo de simulación: la simulación en estado estable o la simulación dinámica.

Unidad

Se debe indicar las unidades en las que el usuario requiere expresar los resultados (unidad de EE.UU. o unidad métrica). En el caso de nuestro país se utiliza el Sistema Internacional, por lo que en este Capítulo, los valores de rango y default de los coeficientes y parámetros se manejaran en dicho sistema.

* Análisis de incertidumbre

Se selecciona esta opción si se quiere incluir un análisis de incertidumbre en la corrida de QUAL2E. Se emplean tres técnicas de análisis de incertidumbre en este modelo: análisis de sensibilidad, análisis de error de primer orden y simulación Monte Carlo.

* Aumento de flujo

Esta opción de aumento de flujo esta incluida en la simulación del modelo para usarse cuando la concentración en la corriente baje y se requiera que más adelante ésta se nivele. Por lo tanto, para disminuir la concentración es necesario aumentar el flujo en dicha corriente.

Canales trapezoidales

La opción de canales trapezoidales se selecciona para describir las características hidráulicas del sistema de la corriente. Hay dos opciones disponibles: descarga y trapezoidal. La primera opción utiliza una representación funcional y la segunda una geométrica. Los coeficientes de descarga especifican la representación funcional. Los canales trapezoidales denotan la representación geométrica.

Iteraciones máximas

Es el número máximo de iteraciones que se permiten en la convergencia de solución para una simulación regular. El valor que se usa de default es 30.

Tiempo que transcurre

Es el tiempo que transcurre en horas para el caso de la simulación dinámica.

Día de comienzo de la simulación

Es el día del año (fecha Juliana) en que comienza la simulación. Por ejemplo, si la fecha es 26 de febrero de 1999, entonces el día de simulación es 56.

Longitud total de simulación

Es el tiempo máximo de recorrido que se debe introducir, para una simulación dinámica, en horas. Este valor representa el tiempo aproximado en horas que requiere una partícula de agua para viajar desde el punto más elevado (aguas arriba) al punto menos elevado (aguas abajo) en el sistema.

* Incremento de tiempo

El incremento de tiempo en horas se utiliza para obtener el resumen intermedio de los informes de perfiles de concentración.

Número de tramos

Es el número de tramos que tiene el sistema de la corriente. El número mínimo de tramos requerido es 1 y el máximo es 50.

Pantalla 2. Sistema de flujo del tramo

En esta pantalla (Figura V.5) se describe el sistema por tramos nombrados, empezando y finalizando un tramo en términos de millas o kilómetros y señalando cuales tramos son inicio de corriente. La secuencia de los tramos dada en esta pantalla, se usa en la interface para mostrar las uniones de los tramos. Cada tramo es entonces subdividido en elementos de cálculo de igual longitud, los cuales también se visualizan gráficamente (Figura V.49). Al introducir los datos correspondientes a ésta pantalla automáticamente aparecerán las pantallas 3, 11, 12, 14, 15 y 16.

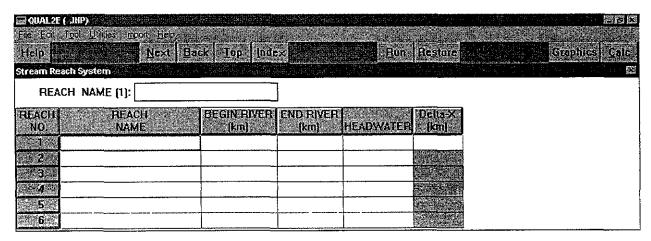


Figura V.5. Pantalla 2 de Qual2e.

Nombre del tramo

Sirve para proveer de una identificación al tramo.

Comienzo y término de tramo

Se debe introducir la milla fluvial o el kilómetro donde comienza y termina cada tramo de corriente, enumerando éstos desde el punto más elevado (aguas arriba) al punto menos elevado (aguas abajo) del sistema. Cuando exista un entronque en un tramo, el orden se continúa desde el punto más elevado (aguas arriba) del tributario.

Es importante dar el orden correcto que cada tramo tiene cuando se describe el sistema de la corriente. El plan ordenador usado en QUAL2E es una llave para sacar la red de tramos. Se recomienda hacer un diagrama como el mostrado en la Figura V.7., para que se detecte donde se encuentran las conexiones de tramos antes de introducir los datos de esta pantalla.

Tramo de inicio de corriente

Se debe indicar si el tramo es inicio de corriente. Comúnmente en el tramo de inicio de corriente comienza el sistema fluvial principal y el de cada tributario (es decir, el primer tramo debe ser el tramo de inicio de corriente)

Longitud del elemento Delta-x

La longitud del elemento Delta-x es la más pequeña que el modelo usa para la simulación. QUAL2E permite cualquier bifurcación de la corriente del sistema. El primer paso para modelar el sistema de una corriente está en subdividirla en tramos (alargamientos de corriente que tiene características hidráulicas uniformes). El segundo paso es dividir cada tramo en elementos de longitud Delta-x, es decir, la distancia de cada tramo debe ser múltiplo exacto de éste elemento, el cual se debe introducir en milla o kilómetro.

La longitud que debe introducirse se basa en la longitud total del tramo y no en el número de elementos Delta-x existentes en el mismo. El número máximo de elementos Delta-x dentro cualquier tramo de la corriente debe ser de 20 y el mínimo de 1.

Pantalia 3. Tipos de elementos computacionales.

En esta pantalla (Figura V.6) se identifica cada tipo de elemento computacional en cada tramo. Hay ocho tipos diferentes de elementos computacionales listados en el Cuadro V.4.

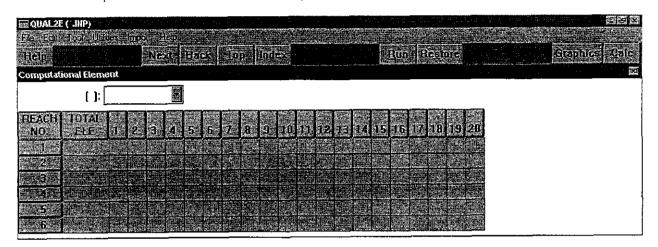


Figura V.6. Pantalla 3 de Qual2e.

Cuadro V.4. Elementos computacionales simulados por Qual2e.

No.	Elemento	Sigla
1	Inicio de corriente	Н
2	Elemento estándar	S
3	Elemento antes de un entronque	Ü
4	Elemento después de un entronque	J
5	Ultimo elemento del sistema	E
6	Elemento de entrada	P
7	Elemento de salida	W
8	Embalse	D

En el tipo de elemento 1 es donde comienzan cada tributario así como también el sistema fluvial principal, y como tal, estos deben siempre ser el primer elemento en un tramo. Un elemento tipo 2 es el que no se clasifica como uno de los restantes siete tipos de elementos. Como el flujo incremental se permite en todos los tipos de elementos, el aporte único permite que un elemento estándar sea incremental. Un tipo de elemento 3 se usa para designar un elemento sobre la corriente antes de un entronque. Un elemento 4 representa un tributario o afluente fingido entrando en la corriente. El tipo 5 es el último elemento computacional en el sistema completo. El tipo de elemento 6 y 7 representan aportes (descargas directas) y aprovechamientos de agua, respectivamente. El tipo de elemento 8 se define como elemento de embalse, que es el único usado en el interfase de ventanas. Este último se utiliza cuando existen pequeñas presas a lo largo del corriente. Un ejemplo de una corriente con diversos elementos computacionales se da en la Figura V.7.

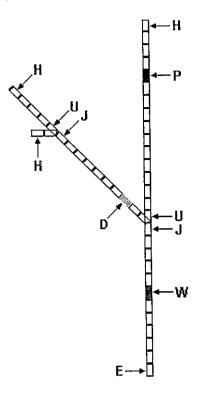


Figura V.7. Diagrama de una corriente con diversos elementos computacionales.

Cuando aparecen elementos en color gris oscuro (por ejemplo: inicio de corriente, elemento antes de un entronque, etc.) significa que éstos no pueden cambiarse debido a que son elementos fijos determinados en la pantalla 2. Por tanto el único elemento que puede ser cambiado es el elemento estándar para dar cabida a un punto de entrada, de salida o embalse (ver Figura V.8.), y si esto ocurre se debe indicar el lugar de éstos últimos.

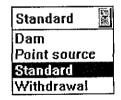


Figura V.8. Elementos que pueden ser introducidos en la pantalla 3.

Una vez que la información fue proporcionada, la interface automáticamente enlaza todos los tramos del sistema y asigna el tipo de elemento: inicio de corriente, elemento estándar, elemento antes o después de un entronque, último elemento del sistema, elemento de entrada o salida y elemento de embalse.

Pantalla 4. Calidad del agua de la simulación

En ésta pantalla (Figura V.9) se indican los parámetros de calidad del agua que serán simulados. El modelo Qual2e puede simular hasta 15 elementos en cualquier combinación deseada. Los elementos que pueden ser simulados se indican en el Cuadro V.5. Los tres elementos conservativos pueden ser metales como: plomo, zinc, plata, cobre, etc.

Cabe recordar que los elementos pueden ser simulados bajo condición estable o dinámica. Si el ciclo del fósforo o nitrógeno no son simulados, el modelo supondrá que no hay límite de crecimiento de algas. Es importante destacar que Qual2e puede simular DBOúltima o DBO₅.

2017E	QUAL2E (QAL2E001.INP)		의 ×
	ev.Edt. (Took Unities Almoort & Heir		
R185		Back for inter Egants Graphies to	alc
W	ster Quality Simulation		
	Temperature	Conservative constituent Number of constituents	
	□BOD	Constituent #1 Unit	
	∏Algae	Constituent #2 Unit Constituent #3 Unit	
	□ Phosphorus cycle	□Non- Conservative constituent	
	□Nitrogen cycle	Constituent Unit	
	□Dissolved Oxygen	☐ Specified d/s boundary constituent concentrations	
	∏Fecał coliform	Coeff. for converting 5-day to ultimate BOD	

Figura V.9. Pantalla 4 de Qual2e.

Cuadro V.5. Parámetros simulados por el Qual2e.

Número	Parámetro a ser simulado				
1	Oxigeno Disuelto				
2	Demanda Bioquímica de Oxígeno				
3 Temperatura					
4	Algas como Clorofila				
5 y 6	Ciclo del Fósforo (Orgánico y Disuelto)				
7, 8, 9 y 10	Ciclo del Nitrógeno (Orgánico, Amoniacal, Nitritos y Nitratos)				
11	Coliformes				
12	Elemento no conservativos arbitrarios				
13, 14 y 15	Tres elementos conservativos				

Pantalla 5. Datos geográficos y climatológicos

En esta pantalla (Figura V.10.) se ingresan los datos geográficos y climatológicos. Los datos climatológicos pueden variar o ser constantes en los tramos, lo cual depende del tipo de simulación. El factor de corrección de temperatura podrá ser dado por el modelo o especificado por el usuario. También si se tiene el dato de oxígeno disuelto almacenado en el archivo podrá especificarse bajo el archivo "Observed Dissolved Oxigen" en esta misma pantalla.

* Latitud

La latitud de la cuenca se introduce en grados. El rango normal de la latitud es desde 0 hasta 90 grados. La latitud de default que se usa en el modelo es 34.

Longitud

La longitud de la cuenca se introduce en grados. El rango normal de la longitud es desde 0 hasta 180 grados. La latitud de default que se usa en el modelo es 75.

☑ QUAL2E (OAL2E001.INP) Fie _Edit Tool Uthres Import Help 5	
	idex Tables 18 18 Hun Regiore 18 18 18 Graphics Calc
Latitude (deg) Longitude (deg) Standard meridian (deg)	Evaporation coefficient AE [[m/hr]/mbar] BE [[m/hr]/[mbar-m/s]] Temperature correction factors
Basin elevation [m] Dust attenuation coeff.	O Default O User specified
Climatological Data CReach variable temp. Climatological file	Output Print ☐Summary ☐Climatological data printout
CIDO and BOD plot Number of DO/BOD plots Observed Dissolved Oxygen file	

Figura V.10. Pantalla 5 de Qual2e.

* Meridiano estándar

El meridiano estándar de la cuenca se introduce en grados. El rango normal del meridiano estándar es desde 1 hasta 266 grados. La latitud de default que se usa en el modelo es 180.

* Elevación de la cuenca.

La elevación de la cuenca se introduce en metros sobre el nivel del mar. El rango máximo de la elevación en metros es de 3650. La latitud de default que se usa en el modelo es de 305 metros.

Coeficiente de atenuación de polvo

Aquí se introduce el coeficiente de atenuación de polvo para la radiación solar. El coeficiente de atenuación de polvo generalmente oscila entre 0 y 0.13. Para mayor precisión se debe consultar con meteorólogos locales para asignar valores más exactos. El valor de default que se usa en el modelo es de 0.06.

Datos climatológicos

Se tienen dos opciones para introducir los datos climatológicos: tramo de aportes variables de temperatura o valores globales. Para una simulación en estado estable pueden aplicarse las dos opciones, mientras que para una simulación dinámica, sólo pueden seleccionarse los valores globales. En los tramos de aportes variables el usuario especifica explicitamente los valores de los aportes de la simulación de la temperatura para todos los tramos del sistema. Estos valores se introducen en la Pantalla 11. En los valores globales se puede especificar un valor único para cada aporte de simulación de temperatura y QUAL2E asumirá que estos valores se aplican a todos los tramos del sistema modelado. Los datos requeridos de este aporte se enumeran sobre la Pantalla 20.

Para la simulación dinámica, se pueden introducir una serie de datos de tiempo climatológicos. Estos datos climatológicos pueden leerse también desde un archivo separado. Este archivo debe de tener la terminación CLI (ver Figura V.11.). En la cuenca de tiempo variable los datos promedio de climatología se diseñan para ser cronológicamente ordenados en 3 intervalos. Debe haber un número suficiente de líneas de datos para cubrir el período de tiempo especifico para la longitud de simulación.

Global values

Climatological file

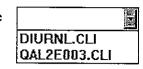


Figura V.11. Lectura del archivo correspondiente a datos climatológicos.

Coeficiente de evaporación

Se introduce un coeficiente de evaporación, AE. Los valores típicos son:

AE = 6.8⁻⁰⁴ ft/hr-in Hg para la unidad Inglesa;

AE = 6.2⁻⁰⁶ ft/hr-mbar para la unidad métrica.

* Factores de corrección de temperatura

Se tienen dos opciones para los factores de corrección de temperatura: el de default o el especificado por el usuario. Varios de los procesos representados en Qual2e son afectados por la temperatura. Los factores de default de corrección de temperatura se enumeran sobre la pantalla 9. Si se usa la segunda opción, los coeficientes de temperatura sobre la pantalla 9 pueden cambiarse.

* Impresión del resumen

Se selecciona esta opción si únicamente se quiere la copia impresa del resumen.

Impresión de la copia climatológica de datos

Se selecciona esta opción para imprimir aparte los datos climatológicos.

* Diagramas de Oxígeno disuelto y Demanda bioquímica de oxígeno

Se selecciona esta opción para que aparezcan los diagramas de oxígeno disuelto y demanda bioquímica de oxígeno al final de la corrida del modelo.

* El número de diagramas de OD/DBO

Aquí se especifica el número de diagramas de OD/DBO de cada tramo que se quiere aparezcan en la corrida.

Archivo de oxígeno disuelto observado

Se debe seleccionar el archivo que contiene los datos de oxígeno disuelto observado. Este archivo debe tener la terminación DO, por ejemplo QAL2E001.DO (ver Figura V.12).

☑DO and BOD plot Number of DO/BOD plots Observed Dissolved Oxygen file

Figura V.12. Selección del archivo de oxígeno disuelto observado.

Pantalla 6. Número de tramo OD/DBO para ser simulado

Esta pantalla (Figura V.13) aparecerá únicamente si en la pantalla 5 se elige que aparezcan los diagramas de oxígeno disuelto y demanda bioquímica de oxígeno al final de la corrida del modelo, y además se especifica el número de puntos de oxígeno disuelto y demanda bioquímica de oxígeno que se requiere en los mencionados diagramas.

Figura V.13. Pantalla 6 de Qual2e.

Número de tramo

Este es el número de tramo dado en el archivo de oxígeno disuelto observado.

* Selección del tramo

Se selecciona con un doble click el número de tramo de OD/DBO para ser simulado.

Pantalla 7. Datos de oxígeno disuelto observado

Esta pantalla (Figura V.14.) aparecerá únicamente si se selecciona la opción de diagramas de oxígeno disuelto y demanda bioquímica de oxígeno en la pantalla 5.

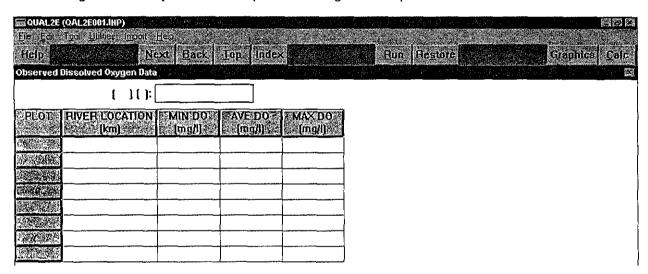


Figura V.14. Pantalla 7 de Qual2e.

Ubicación fluvial

Esta ubicación fluvial se introduce en kilómetros.

Mínimo valor de oxígeno disuelto

Se introduce el mínimo valor de concentración de oxígeno disuelto en mg/l.

* Promedio de oxígeno disuelto

Aquí se introduce el valor promedio de concentración de oxígeno disuelto en mg/l.

Máximo valor de oxígeno disuelto

Se introduce el máximo valor de concentración de oxígeno disuelto en mg/l.

Pantalla 8. Cinéticos Globales

Esta pantalla (Figura V.15.) aparecerá si en la pantalla 4 se selecciona cualquiera de los siguientes parámetros: algas, ciclo del fósforo o ciclo del nitrógeno.

OVAL2E (QAL2E002.HP)	E95
Fig. Ed. 100, Usas Support lec	
Help Next Back Tops I	ridex Run Festore Graphics Calc
Global Kinetics	
Oxygen uptake by	-Light-
Ammonia oxidation (mg O/mg N)	Light function
Nitrite oxidation (mg O/mg N)	Saturation coeff. (BTU/ft2-min)
Algae	Intensity (BTU/ft2-min)
Oxygen production by growth [mg O/mg A] Oxygen uptake by respiration [mg O/mg A]	Light ave. from solar radiation
Nitrogen content (mg N/mg A)	Light averaging factor
Phosphorus content (mg P/mg A)	Number of daylight hours
Max. specific growth rate (1/day)	Daily radiation (BTU/ft2)
Respiration rate (1/day)	Light nutrient reactions
Nitrogen half saturation coeff.	
Phosphorus half saturation coeff.	Algal preference factor for NH3
Linear coeff. [1/ft-ug-Chla/L]	Solar radiation factor
Nonlinear coeff. [1/ft-{ug-Chla/L}"2/3]	Nitrification inhibition coeff.

Figura V.15. Pantalla 8 de Qual2e.

Oxidación de amoníaco.

Se introduce el dato referente a la producción de oxígeno por la unidad de oxidación de amoníaco (mg O/mg N).

Oxidación de nitritos

Se introduce el valor de la producción de oxígeno por la unidad de oxidación de nitritos (mg O/mg N), comúnmente 1.14, con un rango de 1 a 1.2.

Producción de oxígeno por el crecimiento de las algas

Se introduce la producción de oxígeno por la unidad de crecimiento de algas, comúnmente 1.6 mg O/mg A, con un rango de 1.4 a 1.8.

Producción de oxígeno por la respiración de las algas

Se introduce la captación de oxígeno por la unidad de respiración de algas, comúnmente 2.0 mg O/mg A respirado, con un rango de 1.6 a 2.3.

Contenido de nitrógeno

Se introduce el contenido de nitrógeno de algas en mg N por mg de algas. La fracción de biomasa de algas que es el nitrógeno está dentro del rango 0.08 a 0.09.

Contenido de fósforo

Se introduce en el contenido de fósforo de algas en mg N por mg de algas. La fracción de biomasa de algas que es el fósforo está dentro del rango 0.012 a 0.015.

Crecimiento máximo de algas por día

Se introduce el crecimiento específico máximo por día. El valor tiene un rango de 1.0 a 3.0 por día.

Respiración específica máxima por día

Se introduce la respiración específica máxima por día. El valor tiene un rango de 1.0 a 3.0 por día. El valor de respiración de 0.05 es para corrientes limpias, mientras que el valor de 0.2 se usa cuando las concentraciones sean dos veces el valor de los constantes medios de saturación.

* Coeficiente de saturación media de nitrógeno

Se introduce el coeficiente de saturación media de nitrógeno. El rango de valores para el nitrógeno es de 0.01 a 0.3 mg/L.

Coeficiente de saturación media de fósforo

Se introduce el coeficiente de saturación media de fósforo. El rango típico de valores para el fósforo es de 0.001 a 0.05 mg/L.

* Coeficiente lineal

Se introduce el coeficiente de extinción lineal de las algas. La unidad es (1/ft)/(ug chla/L) o (1/m)/(ug chla/L).

Coeficiente no lineal

Se introduce el coeficiente liviano de extinción no lineal alfa. La unidad es (1/ft)/(ug chla/L)2/3 o (1/m)/(ug chla/L)2/3.

* Función liviana

Esta opción contiene la función liviana solar y el coeficiente liviano de saturación para introducir los efectos de atenuación liviana sobre el valor de crecimiento de las algas. QUAL2E reconoce tres opciones diferentes de función liviana solar (Figura V.16). El coeficiente liviano de saturación se acopla a la selección de la función liviana, así que se debe tener cuidado al especificar el par de valores.

El análisis de la forma de las tres funciones livianas y las definiciones correspondientes a los coeficientes livianos de saturación se dan en el manual del QUAL2E (EPA, 1987). Como se explicó se tienen tres opciones para escoger, el Cuadro V.6 da una guía general.

Cuadro V.6. Opciones de función liviana y coeficiente liviano de saturación.

Opción	Función liviana	Coeficiente liviano de saturación (BTU/ft2-mìn) o (Langleys/mín)
1	Medio de saturación	Coeficiente medio de saturación
2	Función Smith's	Intensidad liviana que corresponde al 71% del crecimiento máximo
3	Función Steelés	Intensidad liviana de saturación

La opción 1 para la función liviana de saturación usa la fórmula de Michaelis-Menton para modelar el crecimiento de algas limitando los efectos de la luz (FL). La opción 2 es parecida a la fórmula de Michaelis-Menton pero ésta es de segundo orden para simular el efecto liviano. Las opciones 1 y 2 simulan las funciones crecientes de intensidad liviana. La opción 3 incluye fotoefecto a intensidades livianas altas y se debe a Bowie (1985).

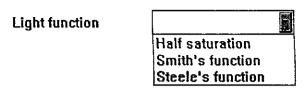


Figura V.16. Opciones de función liviana.

Coeficiente de saturación

Se introduce el coeficiente de saturación (BTU/ft²or Langleys/min). El coeficiente oscila desde 0 a 0.15 BTU/ft². El valor de default que se usa es de 0.11 BTU/ft².

* Factor que promedia la luz

Se introduce el factor que promedia la luz. El factor que promedia la luz se usa para hacer un cálculo único usando la luz del día, la radiación solar promedio (opción 1 ó 2) es similar al promedio de cálculos que usan valores de radiación solar horaria (opciones 3 ó 4) (ver Figura V.17). El factor se ha determinado para variar de 0.85 a 1.00.

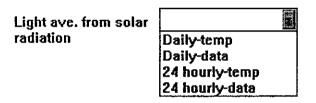


Figura V.17. Opciones para el factor que promedia la luz.

Número de horas de luz del día

Se introduce el número de horas de luz del día. El valor que se usa por default es de 14.0 horas. El rango de valores normal es de 4 a 18 horas. Esta información se usa si el factor que promedia la luz que se especifica para la simulación corresponde a las opciones 2 ó 4.

Radiación diaria

Se introduce la radiación diaria total (BTU/ft² o Langleys). El rango de valores es de 0 a 1500 BTU/ft². El valor de default es 1300 BTU/ft².

* El alimento liviano

Se selecciona una opción de alimento liviano para introducir el valor de crecimiento de algas. Hay tres opciones de alimento liviano disponibles: el multiplicativo, limitador de alimento, y significado armónico (Figura V.18). La descripción para cada opción es como se indica a continuación:

Opción 1. Multiplicativo: (FL) * (FN) * (FP)
Opción 2. Limitador de alimento: FL * [mínimo (FN, FP)]
Opción 3. Significado armónico: (FL * 2)/ (1/FN + 1/FP)

Light nutrient reactions Multiplicative Limiting nutrient Harmoni mean

Figura V.18. Opciones de alimento liviano del crecimiento de algas.

Factor de preferencia de algas

Se introduce el factor de preferencia de algas. La opción del factor de preferencia de algas para el amoníaco define la preferencia relativa de algas para el nitrógeno de nitrato y amoníaco. Para ésta preferencia se especifica un valor decimal entre 0 a 1.0. En el Cuadro V.7 se dan valores e interpretación de este factor.

Cuadro V.7. Factor para la preferencia de algas para el amoniaco.

Factor para la preferencia de algas para el amoníaco	,	Interpretación			
0.0	Se usa únicamente para el crecimiento de algas para el nitrógeno de nitrato				
0.5	Se usa cuando se tiene la misma preferencia de las algas para el amoniaco y nitrato				
1.0	Se usa únicamente	para el crecimiento de algas para el amoníaco			

Factor de la radiación solar

Se introduce el factor para convertir la radiación solar desde el valor del calor hasta equilibrar al valor asignado de radiación solar para la simulación de algas.

El factor de radiación solar especifica la fracción de la radiación solar introducida en el balance de calor (el calentador de subrutina) que es la fotosíntesis activa (es decir, el calor usado por las células de alga para el crecimiento). Se requiere únicamente en simulación de estados que utilizan las opciones 1 ó 3 del factor que promedia la luz. Un valor decimal entre 0 y 1.0 especifica el valor de esta fracción. Comúnmente el valor de default de ésta fracción es 0.45 (Bannister, 1974).

Coeficiente de inhibición-nitrificación

Aquí se introduce el coeficiente de inhibición nitrificación. El rango típico es de 0.0 a 10.0.

Pantalla 9. Factor de corrección de temperatura.

En la pantalla 5 se tienen dos opciones para los factores de corrección de temperatura: el de default o el especificado por el usuario. Sí se escogen los factores de default de corrección de temperatura se pondrán en color gris oscuro para que éstos no puedan cambiarse. Los valores usados por el Qual2e se enumeran en el Cuadro V.8. Sí se escoge la segunda opción, los coeficientes de temperatura pueden cambiarse en esta pantalla (Figura V.19).

Decaimiento de la demanda bioquímica de oxígeno

Se introduce el valor del factor de corrección de temperatura para el deterioro de la Demanda bioquímica de oxígeno. El rango de este factor es de 1 a 1.1 y el valor de default que se usa en el modelo es 1.047.

Valor de ajuste de la demanda bioquímica de oxígeno

Se introduce el valor del factor de corrección de temperatura para el valor de ajuste de la Demanda bioquímica de oxígeno. El rango es de 1 a 1.1. y el valor de default que se usa en el modelo es 1.024.

Issi OUAL2E (QAL2E004.INP)	
File Edit at ool Utilities Himports Heroman seems with the	可能是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
tale text Back for	intex Run Resign Graphics Calc.
Temperature Correction Factors	
FBOD	Phosphorus
Decay	Organic P decay
Settling	Organic P settling Dissolved P source
_DO	Algae
Reacration SOD uptake	Growth Respiration Settling
- Nitrogen	
Organic N decay	Coliform decay
Organic N settling	Non-conservative —
Ammonia decay	Decay
Ammonia source	Settling
Nitrite decay	Source

Figura V.19. Pantalla 9 de Qual2e.

Reaeración

Se introduce el valor del factor de corrección de temperatura para reaeración. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.024.

Captación de oxígeno disuelto de saturación

Se introduce el valor del factor de corrección de temperatura para la captación de oxígeno disuelto de saturación. El rango es de 1 a 1.1. El valor de que se usa en el modelo es 1.060.

Cuadro V.8. Valores de default de corrección de temperatura usados por el Qual2e.

Número	Coeficiente	Valor de default
1	Decaimiento de la DBO	1.047
2	Valor de ajuste de la DBO	1.024
3	Reaereación	1.024
4	Captación del OD de saturación	1.060
5	Decaimiento del nitrógeno orgánico	1.047
6	Valor de ajuste del nitrógeno orgánico	1.024
7	Decaimiento del amoniaco	1.083
8	Fuente de Amoniaco	1.074
9	Decaimiento de nitritos	1.047
10	Decaimiento de fósforo orgánico	1.047
11	Valor de ajuste del fósforo orgánico	1.024
12	Fuente del fósforo disuelto	1.074
13	Crecimiento de Algas	1.047
14	Respiración de Algas	1.047
15	Valor de ajuste de algas	1.024
16	Decaimiento de coliformes	1.047
17	Decaimiento de elementos no conservativos	1.000
18	Valor de ajuste de elementos no conservativos	1.024
19	Fuente de elementos no conservativos	1.000

Decaimiento del nitrógeno orgánico

Se introduce el valor del factor de corrección de temperatura para deterioro del nitrógeno orgánico. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.047.

Valor de ajuste del nitrógeno orgánico

Se introduce el valor de ajuste del factor de corrección de temperatura para nitrógeno orgánico. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.024.

Decaimiento del amoníaco

Se introduce el valor del factor de corrección de temperatura para el deterioro de amoníaco. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.083.

Fuente de amoníaco

Se introduce el valor del factor de corrección de temperatura para la fuente de amoníaco. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.074.

Decaimiento de nitritos

Se introduce el valor del factor de corrección de temperatura para deterioro de nitritos. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.047.

Decaimiento de fósforo orgánico

Se introduce el valor del factor de corrección de temperatura para el deterioro del fósforo orgánico. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.047.

Fuente de fósforo disuelto

Se introduce el valor del factor de corrección de temperatura para la fuente de fósforo disuelto. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.074.

Crecimiento de algas

Se introduce el valor del factor de corrección de temperatura para el crecimiento de algas. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.047.

Respiración de algas

Se introduce el valor del factor de corrección de temperatura para la respiración de algas. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.047.

Valor de ajuste de algas

Se introduce el valor de ajsute del factor de corrección de temperatura para algas. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.024.

Decaimiento de coliformes

Se introduce el valor del factor de corrección de temperatura para deterioro de coliformes. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.047.

Decaimiento de elementos no conservativos

Se introduce el valor del factor de corrección de temperatura para deterioro de elementos no conservativos. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.

Valor de ajuste de elementos no conservativos

Se introduce el valor de ajuste del factor de corrección de temperatura para elementos no conservativos. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.024.

* Fuente de elementos no conservativos

Se introduce el valor del factor de corrección de temperatura para fuente de elementos no conservativos. El rango es de 1 a 1.1. El valor de default que se usa en el modelo es 1.

Pantalla 10. Aumento de flujo

Para que aparezca ésta pantalla (Figura V.20), se elige la opción de aumento de flujo en la pantalla 1. El aumento de flujo en la corriente está incluido en la simulación del modelo, debido a que dicha opción puede usarse cuando la concentración de oxígeno disuelto en una corriente baja más adelante y algunas veces se requiere aumentar el flujo en dicha corriente para que se nivele la concentración de oxígeno disuelto, es decir, el aumento del flujo puede aplicarse cuando la concentración de oxígeno disuelto esté por debajo de algún nivel requerido.

Mínimo valor de Oxígeno disuelto

Este es el mínimo valor de concentración de oxígeno disuelto en mg/l.

	OAL2F001.INP										SERVICE STORES
Help	col Udilies.	Next	Back	Iop: Inde			Run Re	atore		Graphics	Cate
Flow Augme	entation				2	Labertan periodos	Spec				ß
# of H	EAD ():										
REACH #	of MIN	nor I so	URCE SO	OPICE I'S	OURCE 1	SOURCE	SOURCE	SOURCE			
NO. H	OL LIMIN EAC ** (D)	VI) = - Le	# 1	#2:T	#3	24	#5	#6			
26156			i						_		
3 2											
8 3 4									7		
4.:			i								
5.55											
- 6			t	-				1	7		

Figura V.20. Pantalla 10 de Qual2e.

Pantalla 11. Datos hidráulicos

En esta pantalla (Figura V.21) se introducen los datos hidráulicos correspondientes a constante de dispersión, coeficiente para la velocidad, exponente para la velocidad, coeficiente para la profundidad y coeficiente de Manning. Si es un canal el que se simula, además de los valores anteriores, se deberán introducir los datos de: talud de inclinación izquierdo y derecho, ancho inferior de canal, inclinación de canal, elevación de la cuenca, elevación del tramo, coeficiente de atenuación de polvo, nubosidad, temperatura seca, temperatura húmeda, presión barométrica y velocidad del viento.

we CHALZE (DALZEGOLINE)	Was a first of the contract of						The second second second	2 22 11
		444	4 m 1 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2					
			· Control of Control of Control		Harris Charles of Contribution of the	AND DESCRIPTION OF THE PERSON NAMED IN		and the second second
	Tel Inc.		and the same and the same of t	and the same of th	and the second state of the second			State of King
Tredewater their	Maria de la Companya							23
				·		,,		
ι	F							
SEACH POSPER O COPPE	GEOGRAFIA COEFFE	COEST SAMPORE	BIDE SECRET ELECT SHOPE	PLANTING TEXT OF		L committees are	WE I THUR THANDACTRIC PO	ESCHOLAND STREET
NO CONST VEL	VEL DEPTH	DEFIN	that the	tes sumi	HE COURT			
acepteen		1					3	
32		! 		·			····	
								
<u> </u>		3	-			l. [
30 1 0 3	1	1		1		1		
:::5x:						-		-
0.000			· · · · · · · · · · · · · · · · · · ·			:		
		·	 		<u></u>	<u>-L </u>	<u> </u>	

Figura V.21. Pantalla 11 de Qual2e.

Constante de dispersión

Se introduce la constante de dispersión para cada tramo. La constante de dispersión es el valor de K en la expresión general que relaciona el coeficiente longitudinal de dispersión con la profundidad de corriente y la velocidad. Los rangos constantes de dispersión van desde 6 hasta 6000.

Coeficiente para la velocidad

Se introduce el coeficiente para la velocidad.

Exponente para la velocidad

Se introduce el exponente para la velocidad, el cual está en el rango entre 0 y 1.0.

Coeficiente para la profundidad

Se introduce el coeficiente para la profundidad.

Coeficiente de Manning n

Se introduce la constante de fricción de Manning para el tramo. El rango normal de n es de 0.001 a 0.1. El valor de default es de 0.02.

* Talud de inclinación 1

Se introduce el talud de inclinación del lado 1 del canal trapezoidal.

* Talud de inclinación 2

Se introduce el otro talud de inclinación del lado 2 del canal trapezoidal.

* Anchura inferior del canal

Se introduce la anchura inferior del canal.

Inclinación del canal

Se introduce la inclinación del canal.

* Elevación de la cuenca

Se introduce la elevación de la cuenca en metros sobre el nivel del mar. El rango de la elevación en metros es de -120 a 3650. El valor de default es de 305 metros.

* Elevación del tramo

Se introduce la elevación del tramo en metros sobre el nivel del mar. El rango de la elevación es de -120 a 3650 metros.

Coeficiente de atenuación de polvo

Se introduce el coeficiente de atenuación de polvo. El rango de valores del coeficiente varía desde 0.01 a 0.15 y el valor de default es de 0.06.

Nubosidad

Se introduce la nubosidad, fracción en décimas de portada de nube. Esta se requiere si la temperatura se simula.

* Temperatura seca

Se introduce la temperatura seca de bulbo (°F o °C) para el tramo.

Temperatura húmeda de bulbo

Se introduce la temperatura húmeda de bulbo (°F o °C) para el tramo.

* Presión barométrica

Se introduce la presión barométrica (atmosférica) en milibares.

* Velocidad del viento

Se introduce la velocidad del viento en m/s.

Pantalla 12. Constante de reacción de la Demanda bioquímica de oxígeno y el Oxígeno disuelto

En esta pantalla (Figura V.22) se proporcionan los datos correspondientes a valor de decaimiento de la DBO, valor de ajuste de la DBO, valor de oxígeno disuelto por sedimento, cálculo del coeficiente de reareación, coeficiente de reaereación, coeficiente para k_2 , exponente para k_2

OUAL2E (QAL2E08-LINP)				阿伊尼
File Eur Tool Listes Justinit Hea	and the services	医多体多性多性结节	STATE OF STATE OF	service in all all the control
Fig. Fat. Tool Dinas Incom. Hes Help Next	Back Top Index	Eune Resid	ig.	Graphics (Cale
BOB and BO Reaction Rate Constants	in any organic li	ter ere for had a clotter for the constitution to the constitution of the constitution		E
[][]:				-
REACH BOD DECAY BOD SE NO: (1/03y) (1/0	TIEING SOD FATE	September 1970 BEACHAIDN	REAFRATION	COEFF EXPONENT
E4465				
(C)7(3)			······································	
\$277 : \$50			:	
4				
5			1	
338 986	<u> </u>			

Figura V.22. Pantalla 12 de Qual2e.

Valor de decaimiento de la DBO

Se introduce el valor de decaimiento de la DBO (días-1).

Valor de ajuste de la DBO

Se introduce el valor de ajuste de la DBO (días⁻¹).

Valor del oxígeno disuelto debido al sedimento

Se introduce el valor del oxígeno disuelto que el sedimento exige (ODS) en g/m².

Cálculo del coeficiente de reaereación.

Se tienen disponibles ocho opciones para el cálculo del coeficiente de reaereación, enlistadas en el Cuadro V.9. En la mayoría de las ecuaciones el coeficiente de reaereación (k_2) está expresado como una función de la velocidad y profundidad de la corriente. De las ocho opciones que provee Qual2e para estimar o leer el valor de k_2 se selecciona nada más una para el análisis.

Cuadro V.9. Opciones para el cálculo del coeficiente de reaereación (k2).

Opción	Nombre de la ecuación						
1	Churchill						
2	Langbien y Durum						
3	O'Connor y Dobbins						
4	Owens,Edwards y Gibbs						
5	Función de poder						
6	Coeficiente simple						
7	Thackston y Krenkel						
8	Tsivoglou-Wallace						

Coeficiente de reaereación

Se introduce el coeficiente de reaereación por día, base e, 20°C. Este valor se requiere únicamente cuando se escoja la opción 6 de coeficiente simple.

Coeficiente para K₂

Se introduce el coeficiente a, para K₂ (K₂ = a Q b).

Exponente para K₂

Se introduce el exponente b, para K_2 ($K_2 = a Q^b$).

Pantalla 13. N, P, y Coeficientes de Algas

En esta pantalla (Figura V.23) se dan los valores correspondientes a coeficiente para hidrólisis de nitrógeno orgánico, valor del coeficiente para el ajuste del nitrógeno orgánico, coeficiente para oxidación de nitritos, coeficiente para la oxidación de amoníaco, fuente de bentos para el amoníaco, coeficiente para el deterioro orgánico del fósforo, ajuste del valor para el fósforo orgánico, fuente de bentos para fósforo disuelto, valor de ajuste de las algas, coeficiente de extinción ligero de las algas, coeficiente de decaimiento de coliformes, coeficiente de decaimiento de elementos no conservativos, valor del coeficiente de ajuste de elementos no conservativos y fuente de bentos para elementos no conservativos.

\$ 10000.45	(OAL2103	LHP3							***************************************																	10.00	n az
£0 £00	1007 180	es vience	N. Raby		10 (10)	5 may 4		10.5	20.00	- (SINE)	100		27.00		10	City Dig				40	200			16.2	100	34.34.3	
			es con to	200	A 1500	10			学研	的知识 在			-		7					6			1000	A			180 -0-1
Help,	100	DOM:	N.XI. I	ecc. lare	ar Laub	2X 300	a contact sta		Hun.	in Ford			ونونس بلاك	dialogie de la Constitució de la Const		ub add	Karla waite				(Constant)	Acres de					Cole
H. P, and Al	gae Conff	e let rete																								27/11/25/0	5 T
1		[]	[]-[- 1
THE 1 WEST	(STO-N	DUMPE TO	O-N	: OFF NE	Tank Self	William .	realistic de	Times and	127700	PTRION POW	rel proper	DAPTIES.	Tesamo n	19-0 2700	- Bergreen	STORY OF THE	NOTE THE	WALGAE	2575	DM-6TG	ाः । स्वरः	RECTEL-RE	THONEC	ONSTR	ION CONS	MINON-C	BN3**
REACH			ETTLING		TION.	PEN	THOS	nign.	ล้ากห	DECAY	Mice	LILING	d ar	THOSE	in.	ALGA	进域			JGHT EX	pleo	L FOR	DEC	AV I	SETTLING	DENT	HOS
100	411 de		Tiday			lo all	to dayl	10 00	lau V	Title	"IS" in	Admirt A	i mai	rz davi	วับก	chlining		The day		lo find	2	1/days	n An		[I/day]	mg/lt2	
-	2.30	تإننى			-			1		23717	نطستن إسنا	1			-		-النسائين		-					-			استطلكمسبد
5°, 14°1		. }		19-14	,	1.1.81		4 .			-	-	, , , , , , , , , , , , , , , , , , ,		.j	н 🕳	н т			1 10 0	4	1.4	+		H11 1 M		0.00
, 15 2 , 15								—			_		<u> </u>		!												
Ster J. rid					1			1		L			i						[.! .				
384 54		L		1				1					[1			1	I		- 1		1	Į.			,
~7.5. ≒													1						7		_						
500 6538		ł		ŀ	l l		••	1 "		***	· † -		10011 10011		t		н			H Hen	1		<u>" </u>	Ť			1
- P									~	l													<u> </u>				,

Figura V.23. Pantalla 13 de Qual2e.

Coeficiente para hidrólisis de nitrógeno orgánico

Se introduce el valor del coeficiente para hidrólisis de nitrógeno orgánica (días-1).

Valor del coeficiente para el de ajuste del nitrógeno orgánico

Se introduce el valor del coeficiente para ajuste del nitrógeno orgánico (días-1).

Coeficiente para oxidación de nitritos

Se introduce el valor del coeficiente para oxidación de nitritos (días⁻¹).

Coeficiente para la oxidación de amoníaco

Se introduce el valor del coeficiente para la oxidación de amoníaco (días⁻¹).

Fuente de bentos para el amoníaco

Se introduce la fuente de bentos para el amoníaco en mg/m². Hay que tener en cuenta que la fuente de bentos se expresa por la unidad de área inferior. Otras versiones de Qual expresan el valor por la longitud de corriente. Para convertir al valor de área, se debe dividir el valor de la longitud por el ancho de la corriente.

Coeficiente para el deterioro de fósforo orgánico

Se introduce el valor del coeficiente para el decaímiento del fósforo orgánico (días-1).

* Ajuste del valor para el fósforo orgánico

Se introduce el valor de ajuste del coeficiente para el fósforo orgánico (días-1).

Fuente de bentos para el fósforo disuelto

Se introduce la fuente de bentos para el fósforo disuelto en mg/m². Hay que tener en cuenta que la fuente de bentos se expresa por la unidad de área inferior. Otras versiones de Qual expresan el valor por la longitud de corriente. Para convertir al valor de área, se debe dividir el valor de la longitud por el ancho de la corriente.

Relación de clorofila-a algas

Se introduce la relación de clorofila-a algas (ug chla/mg algas). El valor de default es de 50 ug chla.

Valor de aiuste de las algas

Se introduce el valor de ajuste de las algas en m/día.

Coeficiente de extinción ligero de las algas

Se introduce el coeficiente de extinción ligero de las algas en m⁻¹. El valor de default es de 0.01/ft que corresponde al coeficiente de extinción para el agua destilada.

Coeficiente de decaimiento de coliformes

Se introduce el coeficiente de deterioro de coliformes en días-1.

Coeficiente de decaimiento de elementos no conservativos

Se introduce el coeficiente de decaimiento de elementos no conservativos en dias⁻¹.

Valor del coeficiente de ajuste de elementos no conservativos

Se introduce el valor del coeficiente de ajuste de elementos no conservativos en días-1.

Fuente de Bentos para un elemento no conservativo

Se introduce la fuente de bentos para un elemento no conservativo en mg/m².

Pantalla 14. Condiciones iniciales de la corriente

En esta pantalla (Figura V.24) se describen las condiciones iniciales de la corriente mediante los datos correspondientes a temperatura, oxígeno disuelto, demanda bioquímica de oxígeno inicial, elementos conservativos, elemento no conservativo, coliformes, clorofila-a, nitrógeno orgánico, nitritos, nitratos, amoníaco, fósforo orgánico y fósforo disuelto.

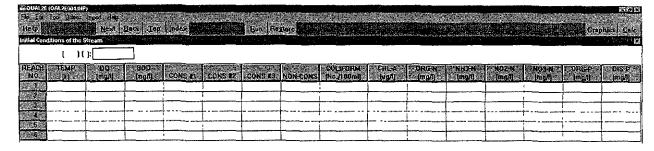


Figura V.24. Pantalla 14 de Qual2e.

* Temperatura

Se introduce la temperatura inicial en el tramo en °F o °C. Las condiciones iniciales para la temperatura siempre se especifican ya sea que se simulen o no. Las razones son las siguientes: cuando la temperatura no es simulada, los valores iniciales de esta condición se usan para dejar el valor de la temperatura como un valor constante; para simulaciones dinámicas la condición inicial para la temperatura, define el estado del sistema al tiempo cero; y para simulaciones estables de temperatura, una estimación inicial de la temperatura entre 35°F y 135°F es necesaria para comenzar los cálculos de balance de calor. Especificar 68°F o 20°C para todos los tramos es una condición inicial suficiente para el caso de la simulación de temperatura.

Pantalla 15. Flujo incremental

En esta pantalla (Figura V.25) se introducen los datos de incremento de flujo de la corriente mediante los valores correspondientes a temperatura, oxígeno disuelto, demanda bioquímica de oxígeno inicial, elementos conservativos, elemento no conservativo, coliformes, clorofila-a, nitrógeno orgánico, nitritos, nitratos, amoníaco, fósforo orgánico y fósforo disuelto.

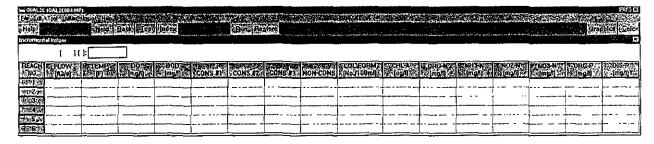


Figura V.25. Pantalla 15 de Qual2e.

Pantalla 16. Datos de tramo de inicio de corriente

En esta pantalla (Figura V.26) se dan los datos de tramo de inicio de corriente correspondientes a temperatura, oxígeno disuelto, demanda bioquímica de oxígeno inicial, elementos conservativos, elemento no conservativo, coliformes, clorofila-a, nitrógeno orgánico, nitritos, nitratos, amoníaco, fósforo orgánico y fósforo disuelto.

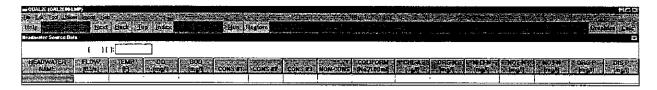


Figura V.26. Pantalla 16 de Qual2e.

Pantalla 17. Descargas y aprovechamientos

En esta pantalla (Figura V.27) se proporcionan los datos de descargas y aprovechamientos como son el nombre, porcentaje de tratamiento, gasto, temperatura, oxígeno disuelto, demanda bioquímica de oxígeno, elementos conservativos, elemento no conservativo, coliformes, clorofila-a, amoníaco, nitratos, nitrógeno orgánico, fósforo disuelto y fósforo orgánico.

Figura V.27. Pantalla 17 de Qual2e.

Nombre

Se introduce el nombre de la descarga o aprovechamiento para efectos de identificación de las mismas.

Porcentaje de tratamiento

Se introduce el porcentaje de tratamiento, el cual únicamente influye en la demanda bioquímica de oxígeno. Esta opción se incluye para ser utilizada una vez que ha sido calibrado el modelo. La importancia radica en saber cual debe ser el porcentaje de tratamiento del tramo para que con determinados parámetros límite.

* Gasto

Se introduce el gasto de la descarga o el aprovechamiento en m³/s. Si se trata de éstos últimos el valor debe ser negativo.

Pantalla 18. Reaereación del embalse

En esta pantalla (Figura V.28) se introducen los datos de reaereación del embalse, los cuales son: el coeficiente A, coeficiente B, porcentaje de corriente sobre la cortina y altura de la cortina. Esta pantalla aparecerá únicamente si en la pantalla 3 se selecciona simular un embalse.

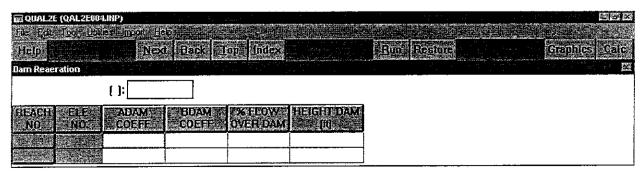


Figura V.28. Pantalla 18 de Qual2e.

Coeficiente A

Se introduce el coeficiente A para embalses. Los valores comunes se dan en del Cuadro V.10.

Cuadro V.10. Coeficiente A o B para embalses.

Coeficiente A o B	Para agua:
1.80	limpia
1.60	ligeramente contaminada
1.00	moderadamente contaminada
0.65	excesivamente contaminada

Coeficiente B

Se introduce el coeficiente B para embalses.

Porcentaie de corriente sobre la cortina

Se introduce el porcentaje de corriente sobre la corriente (como una fracción entre 0.0 y 1.0).

Altura de la cortina

Se introduce la altura de la cortina (ft o m).

Pantalla 19. Límite aguas abajo

Esta pantalla (Figura V.29) aparecerá sí en la pantalla 4 se selecciona la opción límite aguas abajo donde las concentraciones de elementos límite de la calidad de agua se fijan. Cuando las concentraciones límite se abastecen aguas abajo, la solución generada por QUAL2E será limitada por esta condición. Si no se selecciona esta opción, QUAL2E calculará las concentraciones en el elemento aguas abajo con la moda normal donde se usa la suposición de gradiente cero (ver manual de QUAL2E).

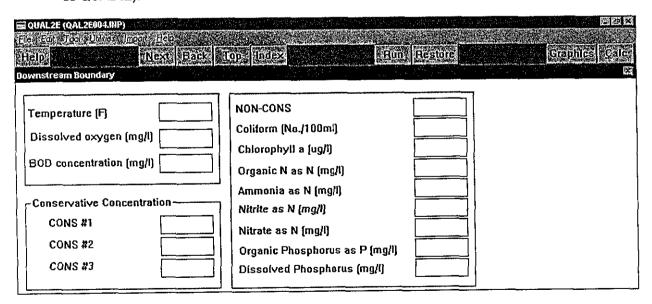


Figura V.29, Pantalla 19 de Qual2e.

Pantalla 20. Valores globales de datos de climatología

En esta pantalla (Figura V.30) se introducen los valores globales de datos de climatología como el mes, día, hora, radiación solar, nubosidad, temperatura seca, temperatura húmeda, presión barométrica y velocidad para toda la corriente.

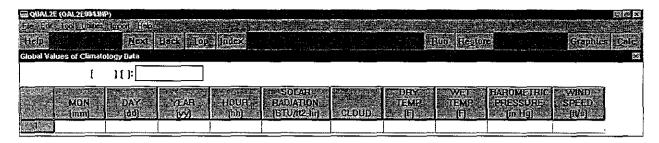


Figura V.30. Pantalla 20 de Qual2e.

V.2.2 Corridas

Una vez que se han introducido todos los datos correspondientes a la simulación deseada, se procede a correr el programa, para lo cual se siguen los siguientes pasos:

- 1. Hacer un click en "RUN" (Figura V.31).
- 2. Hacer un click en "Qual2e models" (Figura V.32) y esperar a que el programa haga los cálculos internos de la simulación deseada (Figura V.33).
- 3. Si se quiere ver el archivo correspondiente a la corrida (Figura V.34), hacer un click en "aceptar". En caso contrario hacer un click en "cancelar" (Figura V.35).

Cabe hacer la aclaración de que cada vez que se cambien los valores de los coeficientes o parámetros de las pantallas antes descritas se debe correr nuevamente el programa Qual2e. Entonces, a modo de ejemplo, para hacer la calibración de dicho modelo aproximadamente se hacen 5000 corridas.

Figura V.31. Paso 1 para correr el programa Qual2e.

Figura V.32. Paso 2 para correr el programa Qual2e.

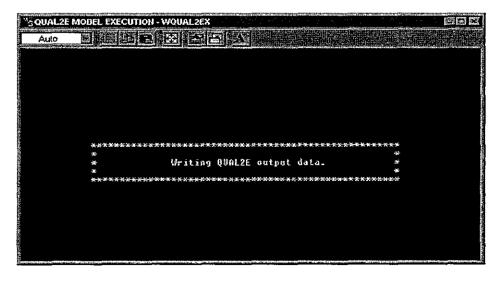


Figura V.33. Pantalla que aparece después del paso 2.

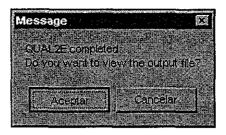


Figura V.34. Selección para ver el archivo de salida del Qual2e.

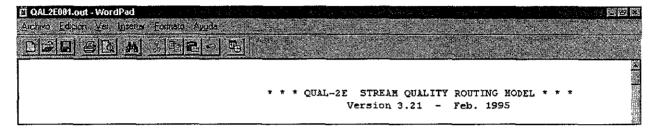


Figura V.35. Archivo de salida del Qual2e.

V.2.3 Gráficas

Para obtener las gráficas que el modelo arroja después de correr el programa se prosigue de la siguiente forma:

- 1. Hacer un click en "Graphics" (Figura V.36) para que aparezca la pantalla correspondiente a la selección de gráficas (Figura V.37), en la cual se introduce el título de la gráfica.
- Seleccionar el archivo de salida (Figura V.38).
- 3. Escoger el tramo inicial (Figura V.39) y el tramo final (Figura V.40) que se requiere ver en la gráfica.
- 4. Escoger la simulación deseada: gasto contra tiempo (Figura V.41) o distancia contra valor del parámetro (Figura V.46).
- 5. Hacer un click en "Run" (Figura V.43) y después en "ok" (Figura V.44).
- Seleccionar "aceptar" para que aparezca la pantalla de la gráfica (Figura V.45).
- Si se seleccionó la simulación gasto contra tiempo aparecerá una gráfica como la mostrada en la Figura V.45, con la opción alternativa se logrará obtener una gráfica como la que se muestra en la Figura V.47.

Figura V.36. Paso 1 para obtener las gráficas del programa Qual2e.

🔤 QUAL2E GRAPHICS (QAL	GR003.1NP) ¢			
File: Edita Toole Help Res	A CONTRACTOR SHOWING THE			Battanada (siya katalan ka
Help	Ned Back Brook	(hijext	time lienoe	Réaches Calc
Graph Selection			7001100	
Description [
	QUAL2E output file			
	Type of graph— OFlow versus OWater Qual	s Distance ity Constituents		
	Starting reach	200 200		
	Ending reach	<u> </u>		

Figura V.37. Paso 2 para obtener las gráficas del programa Qual2e.

QUAL2E output file QAL2E001.OUT QAL2E001.OUT

Figura V.38. Selección del archivo de salida.

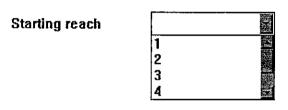


Figura V.39. Selección del tramo de inicio.

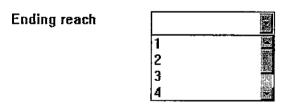


Figura V.40. Selección del tramo final.

Figura V.41. Selección del tipo de gráfica "distancia contra valor del parámetro".

Figura V.42. Paso 3 para obtener las gráficas del programa Qual2e.

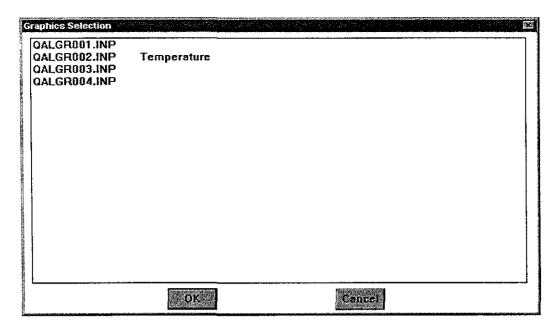


Figura V.43. Paso 4 para obtener las gráficas del programa Qual2e.

Figura V.44. Paso 4 para obtener las gráficas del programa Qual2e.

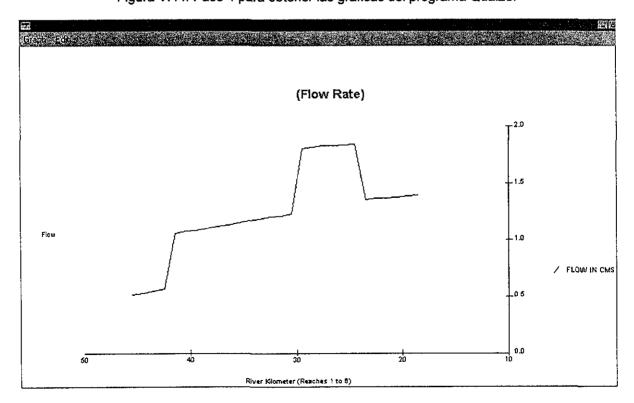


Figura V.45. Ejemplo de una gráfica "gasto contra distancia".

-Type of graph OFlow versus Distance ⊙Water Quality Constituents

Figura V.46. Selección del tipo de gráfica

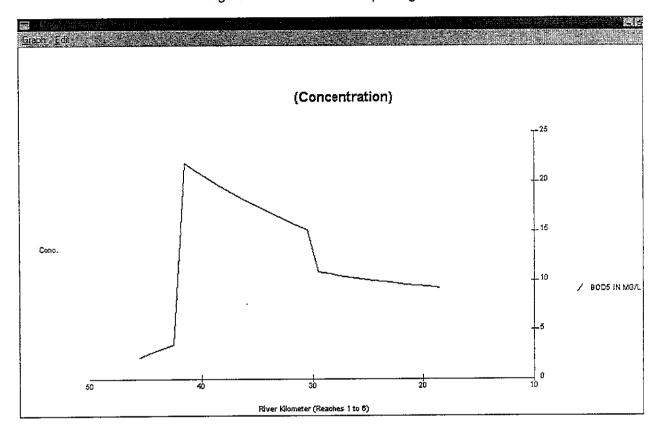


Figura V.47. Ejemplo de gráfica "distancia contra valor del parámetro".

V.2.4 Diagrama del sistema

Para ver el diagrama del sistema que se quiere simular en el Qual2e se hace lo descrito a continuación:

- 1. Hacer un click en "Graphics" (Figura V.36) para que aparezca la pantalla correspondiente a la selección de gráficas (Figura V.37).
- 2. Hacer un click en "Reaches" (Figura V.48) para que aparezca la pantalla donde se puede observar el diagrama del sistema completo (Figura V.49).

Figura V.48. Paso 1 para obtener el sistema que simula el programa Qual2e.

SOUAL 2E REACHES (QAL 2E 001.RCH) File Edit Background

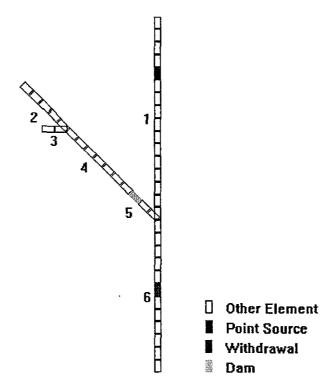


Figura V.49. Ejemplo de un sistema que puede ser simulado por el programa Qual2e.

V.3 Valor de ajuste del modelo a los parámetros obtenidos en campo y laboratorio (Calibración)

Como se explicó en la descripción del modelo, es necesario definir una serie de valores, parámetros y constantes de reacción para poder llevar a cabo la simulación del río. La especificación de estos parámetros se conoce como **Calibración del Modelo Matemático** y se lleva a cabo de acuerdo al método sugerido por el manual del usuario que consiste en utilizar los valores de "default" para las diferentes constantes y posteriormente variarlas hasta que los resultados en cuanto a concentración de contaminantes coincidan con los valores estimados de laboratorio.

Las gráficas que se obtienen en la corrida se compararan contra los puntos obtenidos con los valores de los parámetros de campo. Esto se facilita si se utiliza una tabla de cálculo (por ejemplo Excel o Quatro Pro) donde se obtienen las gráficas de ambos valores para después sobreponer éstas gráficas en un programa de dibujo (por ejemplo Paint) y así analizar que procedimiento seguir para ajustar los valores. La calibración no es sencilla ya que poco a poco se ajustarán los valores simulados a los reales y esto puede llevar cerca de 5000 corridas según el grado de experiencia que se tenga con el modelo, ya que existen valores que hacen aumentar o disminuir el valor de un determinado parámetro y hacer lo contrario con otro. La calibración se habrá realizado con éxito cuando exista un margen de error pequeño entre los valores reales y los que arroja el modelo en cada uno de los parámetros que se han seleccionado para ser simulados al mismo tiempo. Hay que aclarar que los parámetros más importantes son la DBO y el OD por lo tanto estos son los que deben de tener el mínimo error.

Para dar una mejor idea de lo expuesto anteriormente, a manera de ejemplo, en las Figuras V.50 y V.51 se muestran con una línea los valores de oxígeno disuelto que se obtienen con el modelo y con puntos los valores de laboratorio. Se observa que los valores iniciales del modelo pueden estar muy alejados de los reales (Figura V.50), pero después de la calibración, los valores finales del modelo se acercan suficientemente a los reales (Figura V.51) finalizando el proceso.

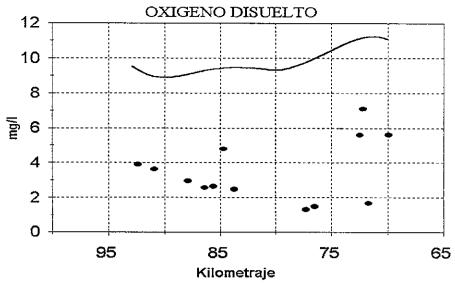


Figura V.50. Gráfica obtenida al inicio de la calibración.

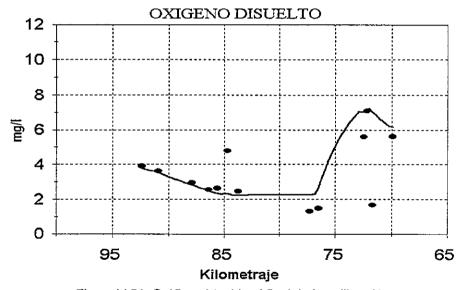


Figura V.51. Gráfica obtenida al final de la calibración.

Si se simulan varios parámetros se recomienda calibrar de la siguiente forma: primero se deberá calibrar la gráfica correspondiente a la demanda bioquímica de oxígeno (DBO) ya que ésta es la más importante, además de que difícilmente variará si los demás parámetros cambian. Después se recomienda calibrar las gráficas de nitrógeno y fósforo en sus diversas formas, junto con la del oxígeno la cual es la más difícil de calibrar debido a que es sumamente afectada por casi todos los parámetros anteriores (sobre todo por la DBO). Finalmente las gráficas de coliformes, temperatura y parámetros conservativos se pueden calibrar casi en forma independiente ya que la variación de los demás parámetros afecta de manera muy poco significativa en éstos.

La existencia de embalses de gran tamaño afectan la calibración del modelo, por lo tanto es recomendable dividir la corriente para evitar este problema. Se tendrá entonces una corriente antes del embalse y otra posterior a este; y las dos deberán ser simuladas.

Un claro ejemplo de calibración se muestra en el Capítulo VI del presente trabajo.

CAPÍTULO VI

CASO ESTUDIO

Actualmente la Comisión Nacional del Agua (CNA) a través de la Gerencia de Saneamiento y Calidad del Agua realiza Estudios de Clasificación de todas los corrientes importantes del país. Una de éstas es el Río Blanco, al cual por ser una cuenca de atención prioritaria se le han realizado seis estudios (1977 y 1987 estudios de calidad del agua; y 1979, 1988, 1991 y 1997 estudios de clasificación) para determinar la calidad del agua, lo cual ha permitido llevar a cabo acciones conducentes al control de las descargas de aguas residuales, industriales y municipales, que se vierten en dicha corriente.

En el último estudio efectuado (1997) fue necesario modelar varios parámetros que en los estudios realizados en otros años no se incluían debido a que los modelos anteriores al Qual2 sólo simulaban dos parámetros (OD y DBO). Para la actualización fue necesario contar con valores recientes de los parámetros de cantidad y calidad del agua, que aparecen en la NOM-001-ECOL-96 y que requiere dicho modelo para simular la evolución de la calidad del agua; por lo que se aforó y muestreó el Río Blanco, sus afluentes y las descargas de contaminantes.

En este apartado se hace una breve pero completa descripción de los pasos a seguir para clasificar una corriente de caudal mediano y grandes caídas, como lo es el Río Blanco, y así determinar la capacidad de asimilación y dilución de contaminantes.

VI.1 Región y Cuenca Hidrológica

La cuenca hidrológica del Río Blanco se encuentra ubicada políticamente en el estado de Veracruz y pequeñas porciones del estado de Puebla. Esta cuenca forma parte de la Región Hidrológica No. 28 denominada Cuenca del Río Papaloapan.

Por la forma de esta cuenca y su intensa red de drenaje, se puede considerar como "rendidora", la cual se confirma con las observaciones hidrométricas que se tienen hasta la fecha. Esta cuenca puede o no considerarse que forma parte de la cuenca del Río Papaloapan, ya que tanto este río como el Blanco, que se une al Río Limón, desembocan a la Laguna de Alvarado, que es nivel base de equilibrio de ambos ríos, desfogando ésta última al Golfo de México.

Delimitación de la zona de estudio.

De acuerdo a la información recopilada, se concluye que la cuenca del Río Blanco está dividida en tres zonas con problemas de contaminación y condiciones hidrológicas muy diferentes. Estas tres zonas son:

Alto Río Blanco. Es la zona comprendida entre el nacimiento del río en Acultzingo y la Presa

Tuxpango. Desde el punto de vista de contaminación del agua, esta zona es la más conflictiva, debido a la presencia de los principales asentamientos

humanos y desarrollos industriales dentro de la cuenca.

Medio Río Blanco. Este tramo del río está limitado, aguas arriba, por la Presa Tuxpango y,

aguas abajo, por la presa Camelpo. En esta zona de la cuenca se presenta

parte de las descargas de la Ciudad de Córdoba.

Bajo Río Blanco. Es el tramo ubicado entre la Presa Camelpo y la Laguna de Alvarado. Esta

zona de la cuenca corresponde a la llanura costera y se caracteriza por

escasas fuentes de contaminación.

Delimitación seleccionada

La supervisión de la CNA decidió limitar la aplicación del modelo matemático a las zonas denominadas Alto y Medio Río Blanco. Esta delimitación de la zona de estudio se debió a la necesidad de contar con un elemento de análisis de los efectos que pudieran tener las descargas de aguas residuales de la zona industrial, ante diversos niveles de tratamiento de las mismas.

Localización Geográfica de la Corriente.

Geográficamente la cuenca del Río Blanco queda ubicada aproximadamente entre los paralelos 18° 32' y 19° 03' de latitud Norte, y entre los meridianos 95° 52' y 97° 23' de longitud Oeste. La extensión de la cuenca es de aproximadamente 3,130 km², que corresponden al 6.87 % de la cuenca total del Papaloapan, que es de 45, 579 km². En la Figura VI.1 se presenta un plano de la cuenca del Río Blanco, a escala 1:250,000.

Para los fines del presente estudio, la cuenca está limitada, al Norte, por la cuenca del Río Atoyac; al Este, por la confluencia del Río Limón y la desembocadura a la Laguna de Alvarado, Veracruz, y al Sur, por los tributarios que conforman la cuenca del Río Papaloapan.

Tributarios o Afluentes de la Corriente

El Río Blanco se forma con la aportación de varios arroyos, pero principalmente del Río Acatla; todos estos nacen entre la Sierra de Zongolica, las cumbres de Acultzingo y las faldas del Pico de Orizaba. En su trayectoria recibe la aportación de innumerables arroyos y ríos que, en su mayoría, son de tipo torrencial.

El Río Blanco, al pasar de las poblaciones de Ciudad Mendoza y Orizaba, le confluyen, por su margen izquierda, los arroyos de Maltrata, Carbonera y el río Orizaba, y por su margen derecha, el río Manzinga; aguas abajo de este último sitio se localiza la presa Tuxpango, que recibe la aportación del arroyo Escamela.

El colector principal del río continúa y, por su lado derecho, confluye el río Juan Antonio y, por la izquierda, recibe la aportación del río Metlac; éste drena las laderas del Pico de Orizaba. Aguas abajo, y por la margen izquierda, recibe la aportación de varios arroyos; así como la del río Zoquiapan por la derecha.

El Río Blanco, al pasar el poblado de Cuichapa, es cuando toma una dirección francamente hacia el Este, para recibir, por la margen izquierda, la aportación de tres arroyos: el primero, sin nombre, el segundo es el Zapote y el otro es el Permanente, que se inicia cerca del poblado de Yanga. Al continuar su recorrido, un poco antes de llegar al poblado de La Campana (La Isla) se le unen el arroyo el Cocinero y el río Pizahua.

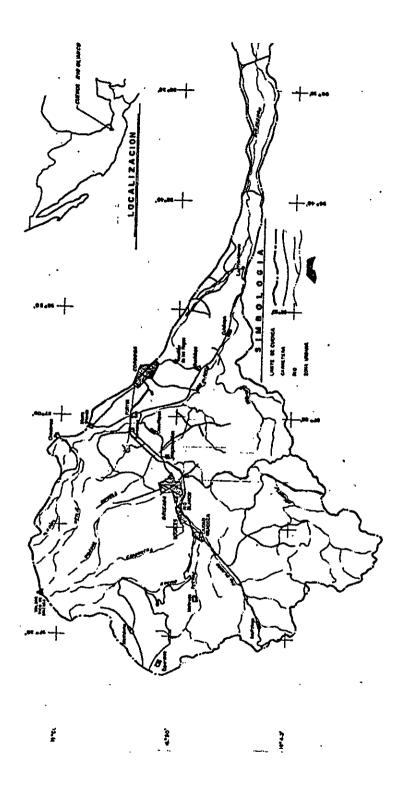


Figura VI.1.a. Cuenca del Río Blanco (parte alta).

Caso estudio

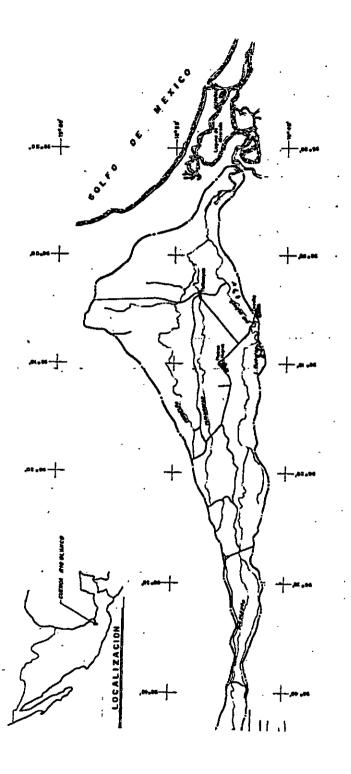


Figura VI.1.b. Cuenca del Río Blanco (parte baja).

Al pasar La Campana se localizan las derivaciones correspondientes a los canales Piedras Negras y Joachín, éstos alimentan al Distrito de Riego No. 82, donde se cultivan aproximadamente 34,000 ha pertenecientes a los municipios de Tlalixcoyan y Tierra Blanca; esta región se localiza en la planicie costera del Estado de Veracruz. Aguas abajo de las derivaciones, por la margen derecha del Río Blanco, confluyen los ríos Las Pozas y Viejo; posteriormente pasa por la población Las Calderas y más abajo se le unen el Río Tlalixcoyan y el Arroyo Paso El Burro, para que al final de su recorrido desemboque al Río Limón y este último a la Laguna de Alvarado.

La longitud aproximada del Río Blanco, desde su formación hasta el punto de unión con el Río Limón, es de 210 km. En la Figura VI.1 se presenta la Cuenca del Río Blanco con sus principales tributarios.

Infraestructura Hidráulica

El Río Blanco, a lo largo de su cauce, particularmente en su parte alta, entre Orizaba y Córdoba, cuenta con un número considerable de presas derivadoras, construidas éstas para generar energía eléctrica en pequeñas plantas hidroeléctricas como: Boquerón, Yute, Tuxpango, Ixtaczoquitlán y Zoquitlán. Se estima que la capacidad instalada es aproximadamente de 57,000 kW. Adicionalmente, la Comisión Federal de Electricidad opera la planta de generación de la presa Tuxpango.

En las márgenes de este río se asienta la principal zona industrial del área, además de varias poblaciones importantes, como Orizaba y Córdoba, lo que ha ocasionado que el Río Blanco se convierta en el colector de aguas residuales domésticas e industriales de la región y presente altos índices de contaminación.

Otro aprovechamiento importante, en la parte baja de la cuenca, lo constituye el Distrito de Riego No. 82, donde se cultivan aproximadamente 34,000 ha.

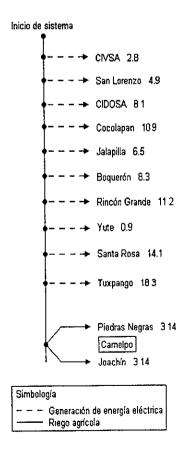


Figura V.2. Aprovechamientos de agua.

Descargas de Aguas Residuales

Las principales fuentes de contaminación del Río Blanco se agrupan en el sector industrial y aportan aproximadamente el 30 % de la carga orgánica contaminante. Más del 60 % de la carga orgánica contaminante, es aportada por los usuarios de la Planta del Fideicomiso del Alto Río Blanco (FIRIOB), menos del 10 % restante de la carga contaminante vertida en la cuenca, es de origen público urbano y de servicios.

En la Figura VI.3 se presenta un esquema de las principales fuentes de contaminación del Río Blanco y en el Cuadro VI.1 se presenta un resumen de las principales descargas por giro y cuerpo receptor.

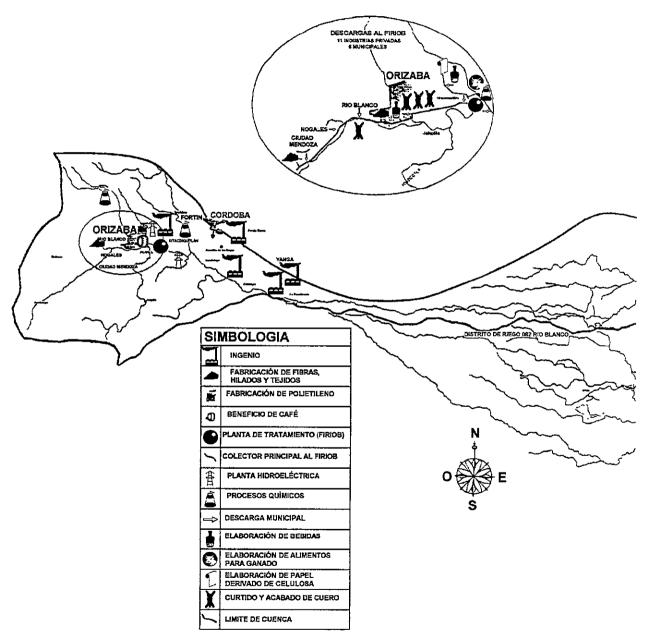


Figura VI.3. Esquema de las principales fuentes de contaminación del Río Blanco.

Cuadro VI.1. Número de descargas y cuerpos receptores.

Cuadro VI.1. Número de Cuerpo receptor	Municipal	industrial	Servicios	Pecuario
Canales de riego	1	IIIGustilai	CENTICIOS	1 ecdano
Río Blanco	12	15	3	
Río Orizaba	1	2		
	1			
Río Aljajuca y Resumidero				
Río Ixhuatlancillo	1	ļ		
Arroyo Seco	2	ļ	ļ	
Río Chiquito	1	<u> </u>		
Arroyo Xalapa	1		<u> </u>	
Río Matzinga	2			
Arroyo Innominado	4	6	6	
Caños de Unión y Progreso	1			
Río Grande	1 1	<u> </u>		
Río La Joya	1			
Río Sonso	1			
Río Tendido	4			
Sumidero del Rincón	1		T	
Arroyo El Coyol	5			
Arroyo Las Ánimas	2	1	1	
Arroyo Tepachero	2	3		
Arroyo Del Chivo	1			
Arroyo La Sidra	1	6	9	
Laguna Del Salado	1 1			
Río Amapa	1 1			
Laguna de Tlalixcoyan	1	1	 	
Dren Agricola en Maltrata	 	1	 	
Barrança Maltrata	<u> </u>	1	 	
Arroyo El Encinar	-	3		
Arroyo Caliente	 	4	 	
Arroyo Escamela	 	4	1	
Arroyo Ixtaczoquitlán	 	1		
Arroyo Rincón Brujo	 	1	 	
Rio Ojo de Agua	 	1		
Arroyo Tendido		1		-
Arroyo Valderrama	<u> </u>	1		
	-	1 1	-	
Dren Agrícola Ixtaczoquitlán Río Juan Antonio	 	2		
Río Metlac		2	3	<u> </u>
	-	1	-	1
Río San Antonio	 	1	1	
Arroyo Toribio	<u> </u>	1	1	-
Arroyo San Nicolás		1 1	4	
Barranca en Amatlán	<u> </u>	1 1		
Arroyo Manzanillo	.	1		
Dren Agricola Omealca	ļ			·
Río Zapote		1		
Arroyo Cara Sucia		1		
Rio Pala	 	- }	1 1	
Arroyo Totolitos	<u> </u>	 	1	
Cañada en Fortín			1	
Arroyo Chapón			2	
Arroyo Limón			1	<u> </u>
Arroyo Platano Morado		 	1 1	
Cultivos de Caña en Córdoba			1	
RIo Tres Zapotes y San Miguel			1	<u> </u>
Arroyo Conejillo			11	
Arroyo Hondo			1	
Arroyo en Córdoba			1	2
				1 2

VI.2 Hidrometría

Sobre el Río Blanco se identificaron cuatro estaciones hidrométricas, de las cuales se recopiló información de escala y gasto de la corriente; las cuatro estaciones son Cuichapa, Camelpo, La Boca y El Naranjal, la última operada por la Comisión Federal de Electricidad. Actualmente sobre los afluentes del Río Blanco no se encuentra operando ninguna estación hidrométrica, sin embargo se obtuvo información de las que operaron.

Dentro de la cuenca se recabó información de doce estaciones hidrométricas, de las cuales únicamente dos (El Naranjal y Camelpo) operan hasta la fecha.

Análisis de resultados de las estaciones Hidrométricas

Con base en los datos de los registros de volúmenes mensuales escurridos en las diversas estaciones hidrométricas de la cuenca del Río Blanco, se identificó que las estaciones Zapoapan, El Naranjal, Cuichapa y Camelpo son las que cuentan con un número total de registros que permiten un análisis estadístico más confiable.

De acuerdo a los lineamientos que marca la CNA se requirió realizar dos análisis hidrológicos que corresponden al gasto mínimo y al gasto medio. Se determinó adicionalmente el gasto máximo crítico que podría presentarse en el Río Blanco.

Para el análisis del gasto mínimo se identificó al mes de abril como el más crítico, por lo que se ordenaron los caudales observados en dicho mes en forma ascendente en las estaciones. Zapoapan, El Naranjal, Cuichapa y Camelpo, definiéndose para cada gasto mensual observado su periodo de retorno respecto al total de observaciones disponibles de la siguiente manera:

$$T_r = \frac{(N+1)}{m}$$

Donde:

T. = Periodo de retorno en años.

N = Número de observaciones.

m = Orden ascendente de la observación.

Los periodos de retorno calculados, conjuntamente con las relaciones resultantes de dividir el caudal observado para cada número de orden entre el gasto medio para todas las observaciones en el mes de abril, para cada estación, se correlacionaron por el método de mínimos cuadrados en 4 formas: x-y, x-ln(y), ln(x)-y y ln(x)-ln(y), resultando los coeficientes de correlación más altos para la última alternativa de análisis (superiores al 90%), considerándose éstos adecuados para realizar el análisis de regresión correspondiente. Las ecuaciones de regresión resultantes del análisis fueron las mostradas en el Cuadro VI.2.

Cuadro VI.2. Ecuaciones de regresión resultantes.

Estación Zapoapan						
In(Qmin/Qmed) = 0.3635-0.4628 in(Tr)	R = 96.6 %					
Estación El Naranjal						
ln(Qmin/Qmed) = 0.123-0.138 ln(Tr) R = 98.4 %						
Estación Cuichapa						
In(Qmin/Qmed) = 0.1275-0.14471 In(Tr)	R = 90.5 %					
Estación Camelpo						
In(Qmin/Qmed) = 0.2112-0.2464 in(Tr)	R = 96.2 %					

Con respecto a las demás estaciones hidrométricas, dado el escaso número de registros con que cuentan, el análisis estadístico se efectuó en forma separada.

Por otra parte, es conveniente destacar el hecho que aguas arriba de la estación El Naranjal, o sea la zona urbano-industrial que va desde Ciudad Mendoza hasta la presa Tuxpango, no existen estaciones hidrométricas sobre el cauce principal del río, por lo que fue necesario estimar los caudales escurridos empleando la información de dicha estación y de acuerdo a las áreas drenadas hasta cada uno de los sitios.

Para el caso del gasto medio se obtuvieron en cada estación los gastos medios anuales de todos los registros recabados, se ordenaron y se efectuó una prueba de bondad de ajuste de Kolmogorov-Smirnov utilizando su estadígrafo crítico con un nivel de significancia α de 0.05. En el Cuadro VI.3 se presenta el análisis efectuado con los datos de la Estación "El Naranjal". Se observa que al efectuar la prueba los datos se ajustan a una distribución gaussiana y la media muestral se puede utilizar como media adecuada de los gastos.

Finalmente con respecto al gasto máximo se efectuó un análisis de frecuencias para caudales utilizando la distribución de Gumbel y para periodos de retorno de 10, 20, 50 y 100 años. En el Cuadro VI.4 se presenta el análisis de los datos de la Estación "El Naranjal".

Cuadro VI.3. Análisis de la Prueba de bondad de ajuste para el gasto medio.

	Cuadro VI.3. Análisis de la Prueba de bondad de ajuste para el gasto medio.							
Año	Promedio anual	Gastos ordenados	p(e).∵	ZE	P(E)	p(e) - p(E)	ordenados	
1986	37.9	30.3	0.090909091 -1.91156295		0.02796607	0.062943021	0.150456429	
1987	1987 36.8 35.1		0.181818182	-0.663966858	0.253355692	0.07153751	0.133915382	
1988	36.2	35.5	0.272727273	-0 560000517	0.287739506	0.015012233	0.133340346	
1989	35.5	36.2	0.363636364	-0.378059421	0.35269328	0.010943084	0 110929289	
1990	38.4	36.3	0.454545455	-0.352067835	0.362393756	0.092151699	0.092151699	
1991	39.5	36.8	0.545454545	-0.222109909	0 412114199	0.133340346	0.07153751	
1992	45.8	37.9	0.636363636	0.063797529	0.525434347	0.110929289	0.062943021	
1993	42.4	38.4	0.727272727	0.193755455	0.576816299	0.150456429	0.017800739	
1994	30.3	39.5	0.818181818	0.479662892	0.684266436	0.133915382	0.01712423	
1995	35.1	42.4	0.909090909	1.233418864	0.89129017	0.017800739	0.015012233	
1996	36.3	45.8	1	2.117132763	0.98287577	0.01712423	0.010943084	
Del an	álisis anterior s	se obtiene:	Parám 	etros Estadísticos	Muestrales:		:	
	= 0,15048	fo Crítico con n	• • •	X = 37 654545 Sx = 3.847399036				
= 11 y	$\alpha = 0.05 \text{ y}$	efectuando una ange se obtiene:	Estadígrafo crítico para la prueba de bondad de ajuste de Kolmogorov-Smirnov (1).				ov ⁽¹⁾ .	
D* ≃ 0	.3933		Tamaňo muestral α = 0.10		10	x = 0.05	α = 0.01	
Dado	que D* > Dma	ax entonces se					2.07	
acepta	el ajuste y ${\mathcal X}$	= μ _x	5 10 15 20 25 30	51,0 37.0 0,30 0,26 0 24 0,30	i	0.56 0.41 0.34 0.29 0.26 0.24	0.67 0 49 0.40 0.35 0 32 0.19	
			40	0 19		0.21	0.25	
			n grande	1.22/ y	rn	ı.36/ <i>√n</i>	1.63/ √ <i>n</i>	
			(1) Tabla resun	nida de Lindgren, ":	Statistical Theory".	The Macmillan Comp	oany, Nueva York.	

Relación entre estaciones hidrométricas

Se efectuó un análisis entre las estaciones "El Naranjal" y "Camelpo" por medio de gráficas utilizando los niveles máximos, encontrándose que la cantidad de flujo local entre las estaciones, en cada avenida, tiene una relación fija con la cantidad de flujo que entra al tramo por la sección de aguas arriba.

Entre ambas estaciones no se encontraron incongruencias notables en cuanto a los volúmenes escurridos, salvo algunos datos de gastos máximos reportados en la estación Camelpo, como el del 3 de septiembre de 1988 que fue de 1531.449 m³/s mientras que en El Naranjal se presentó de 386 m³/s, considerándose una diferencia no consistente.

En la Figura VI.4 se presentan las gráficas de gastos máximos y mínimos en las Estaciones "El Naranjal" y "Camelpo", en ellas se observa que los picos de flujo mantienen una relación temporal fija.

Cuadro VI.4 Análisis de frecuencias de caudales máximos empleando la distribución de Gumbel.

Año	Fecha	Gasto máximo	N N			
1986	19 de septiembre	465	1			
1987	19 de septiembre	366	2			
1988	3 de septiembre	386	3			
1989	22 de septiembre	276	4			
1990	14 de julio	269	5			
1991	23 de septiembre	638	6			
1992	8 de septiembre	338	7			
1993	22 de septiembre	347	8			
1994	26 de agosto	294	9			
1995	7 de agosto	327	10			
1996	28 de junio	283	11			
	75456 ución de Gumbel y	r para diferentes perio ores de K para datos e				
	Tr (años)	К	·			
	10 20 50 100	1.7677 2.4809 3.3856 4.15077				
F .	Para la determinación del gasto máximo esperado se emplea la siguiente ecuación: $q_{eep} = \overline{q} + K_n x \sigma_q y$ se obtienen los siguientes resultados:					
	Tr Gasto máximo (años) (m³/s)					
	10 20 50 100	544.404616 617.7412215 710.769302 789.4498551				

Estimación del volumen de la corriente.

Debido a que las estaciones sobre los afluentes tienen un número de registros muy escaso se decidió estimar la variación del volumen de agua a lo largo del Río Blanco utilizando las estaciones ubicadas sobre la corriente.

Dado que algunos valores son incongruentes en la Estación "Camelpo" se efectuó la estimación con "El Naranjal" y se verificaron los resultados con todas las estaciones, incluyendo "Camelpo".

Se decidió emplear un periodo de retorno de 20 años debido a que este tiempo cubre totalmente los plazos de Calidad del Agua fijados en el presente estudio.

En el Cuadro VI.5 se presentan los gastos estimados en la Estación "El Naranjal" para un periodo de retorno de 20 años.

Observando los datos generados por los análisis se decidió que para el caso de los gastos mínimo y máximo se utilicen los promedios generales que son más representativos. En el Cuadro VI.6 se presentan los gastos de diseño por tramos y las descargas de afluentes puntuales.

Cuadro VI.5. Gastos estimados en la Estación "El Naranjal" para un periodo de retorno de 20 años.

Gasto	, , , , , , , , , , , , , , , , , , ,	m³/s	Promedio general (m³/s)
medio	Prueba de bondad de Ajuste de Kolmogorov-Smirnov con α = 0.05	37.655	37.655
minimo	Análisis de regresión de gasto mínimo vs periodo de retorno	28.1643	10.61
máximo	Análisis de frecuencia utilizando la distribución de crecientes de Gumbel	617.7412	312.02

Cuadro VI.6. Gastos de diseño por tramos.

		onamiento antes o			<u>. </u>	
Tramos		lometraje	Gastos (m³/s)			
3,3	inicial		medio	mínimo	, máximo .	
1	92.4	90.9	5.53	1,14	33.84	
2	90.9	87.9	6.93	1.14	33,84	
3	87.9	83.7	13.71	2.46	67,97	
4	83.7	82.8	13.71	2.46	67 97	
5	82.8	76.8	14.24	2.55	70,59	
6			13.18	3,08	86.36	
7	76.5	71.7	18.47	3.42	96.13	
8	71.7	69.6	20.82	3.42	96.13	
		namiento después	·-		250 1	
Tramos	* * * * * * * * * * * * * * * * * * * *	lometraje		Gastos (m³/s)		
, , ;	Inicial	Final	medio .	minimo	máximo	
1	64.8	60.0	30.38	10.45	307.44	
2	60.0	59.7	37.40	10.45	307.44	
3	59.7	55.2	37.84	10.58	311.09	
4	55,2	50.7	39.55	10.58	311.09	
5 6	50 7 44.7	44.7 38.7	40.27 41.11	10.58 10.58	311.09 311.09	
7	38.7	34.8	41.11	10.59	311.10	
8	34.8	31.8	41.25	10.73	311.24	
9	31.8	25.8	44.29	11.14	323.09	
10	25.8	19.8	44.29	11.14	323.09	
11	19.8	13.8	44.29	11.14	323.09	
12	13.8	7.8	44.29	11.14	323.09	
13	7.8	1.8	45.73	11.14	323.09	
14	1.8	0	37.82	11.14	323.09	
	Descargas	de afluentes y pui	ntuales sobre			
			Gastos (m³/s)			
<u> </u>			medio	mlnimo	máximo	
1. Població	n de Ojo Za	arco	0.00375			
2 Arroyo R	incón de la	s Doncellas	0.879 0.24939 7.734			
3. Ciudad I	vlendoza		0.118			
4. Río malt	rata		0.128	0.03632	1.068	
5. Arroyo C			3.943	1,11871	32,899	
6. Població	n de Nogal	es		0.045		
7. Arroyo L	a Carboner	a	0.4047	0.08909	2.620	
8. Río Oriz	aba		1 889	0.53594	15.761	
9. Агтоуо С			0.6942	0.18954	5.574	
10. Arroyo Totolitos			0.504	0 14299	4,205	
11. Río Metlac			10 099	2.86529	84.2628	
12. Río Ne	gro		0.437 0.12398 3.646			
	San Nicola		0.0062			
	ión Omealc		0,009			
15. Ingenio	La Provide	encia		0.14		
16. Arroyo	El Zapote		1.42	0.40288	11,848	

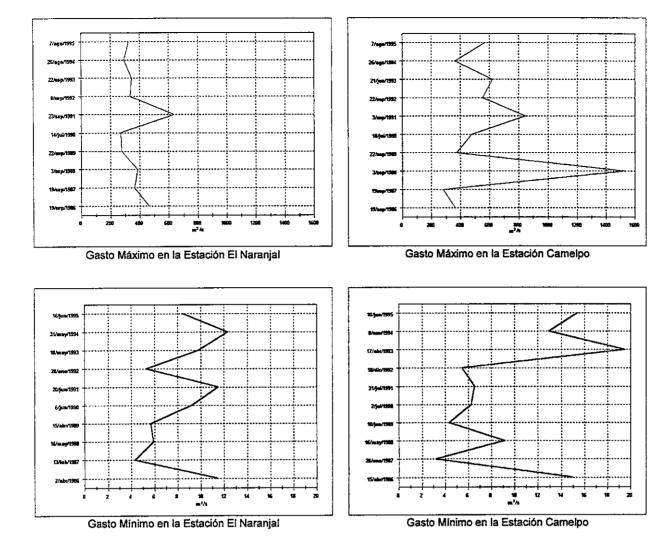


Figura VI.4. Gastos máximos y mínimos de las estaciones "El Naranjal" y "Camelpo".

VI.3 Programa de aforos, muestreos y análisis de muestras del Río Blanco.

El objetivo principal del programa fue determinar las características físico-químicas y bacteriológicas del Río Blanco, afluentes y descargas de aguas residuales. También se determinó la magnitud de las descargas y aprovechamientos de la corriente.

Se obtuvieron los valores de los parámetros (físico-químicos y biológicos) que permitieron identificar la importancia relativa de cada fuente de contaminación con base en la magnitud y características de sus aportaciones y el efecto que producen en la calidad de agua de la corriente; y que se utilizaron en el modelo matemático, para cada uno de los tramos en que se dividió la corriente.

También se realizaron recorridos de campo para validar la información recabada de los aprovechamientos, descargas y principales afluentes. De lo anterior se observó que existen 11 afluentes importantes y 20 industrias que descargan en el Río Blanco o su afluentes. En los Cuadros VI.7 y VI.8 se listan éstos afluentes e industrias.

Cuadro VI.7. Afluentes importantes dei Río Blanco.

aro v	i. 7. Alidentes importantes del 1110 bia
No.	Afluente
1	Rincón de Las Doncellas
2	Río Maltrata
3	Arroyo Chiquito
4	Arroyo La Carbonera
5	Río Orizaba
6	Arroyo Caliente
7	Arroyo Totolitos
8	Río Escamela
9	Río Metlac
10	Arroyo San José de Abajo (ΕΙ Zapote)
11	Río Negro

Cuadro VI.8. Industrias que descargan en el Río Blanco o sus afluentes.

No.	industrias ,
1	Santa Rosa (CIDOSA)
2	PLAMAT 1
3	PLAMAT 2
4	Aceitera La Patrona
5	Harinera y Manufactura de Orizaba
6	Tenería Trueba
7	Tenerías Unidas
8	PROQUINA 1
9	PROQUINA 2
10	Kimberly Clark 2
11	Fermentaciones Mexicanas (FERMEX) 1
12	Fermentaciones Mexicanas (FERMEX) 2
13	CAFIVER
14	Cementos Veracruz (APASCO)
15	FIRIOB
16	Ingenio El Carmen
17	Ingenio San Nicolás
18	Ingenio San Miguelito
19	Ingenio San José de Abajo
20	Ingenio La Providencia

Con las observaciones anteriores y junto con el personal de la CNA, se procedió a dividir la corriente del Río Blanco y a establecer las estaciones de monitoreo.

Estaciones de monitoreo y aforo.

Se seleccionaron 50 estaciones de monitoreo las cuales cubren el total de los afluentes, descargas de aguas residuales de origen municipal e industrial, así como cada una de las secciones en que fue dividida la corriente del Río Blanco. En común acuerdo con la CNA se decidió cubrir el programa completo tres veces, es decir, cada estación fue aforada y muestreada en tres ocasiones distintas; esto con el fin de corroborar los datos obtenidos durante los tres recorridos. Las estaciones de monitoreo distribuidas en función del cuerpo de agua o descarga se listan en el Cuadro VI.9. La Latitud, Longitud y Altitud de cada estación se determino por medio de un geoposicionador Magallanes, el cual trabaja por medio de varios satélites, puestos en órbita especialmente para obtener este tipo de información; estos datos se confirmaron con las cartas de INEGI. Las Figuras VI.5 y VI.6 muestran las estaciones seleccionadas durante el recorrido en campo, estos diagramas sirvieron para facilitar el llenado de las tablas del modelo Qual2e.

Cuadro VI.9. Estaciones de monitoreo.

	Cuadro VI.9. Estaciones de	monitoreo.		
No de Estación	Identificación	Latitud	Longitud	Altitud m.s.n.m
1	La Tasa	18 * 46 ' 51 "	97 * 12 * 21 "	1433
2	Rincón de Las Doncellas	18 * 47 ' 35 "	97 * 11 ' 56 "	1331
3	Ojo Zarco	18*47'18"	97 * 11 * 49 "	1408
4	Santa Rosa (CIDOSA)	18 * 48 ' 18 "	97 * 10 ' 41 "	1188
5	Río Blanco (antes de la confluencia con el Río Maltrata)	18 * 48 ' 10 "	97 * 10 * 24 "	ND
6	Río Maltrata	18 * 48 ' 20 "	97 * 10 ' 31 "	1460
7	Río Blanco (Puente Cuauhtémoc)	18 * 48 ' 55 "	97 * 09 * 40 "	1290
8	Arroyo Chiquito (Laguna Nogales)	18 * 49 ' 12 "	97 * 09 * 42 "	1340
9	Rio Blanco (puente Malintzi en SIVESA)	18 * 49 ' 07 "	97 * 09 * 28 "	1310
10	Río Blanco (estación de FFCC)	18 * 49 ' 47 "	97 * 09 * 01 "	1250
11	PLAMAT 1	18 * 49 ' 49 "	97 * 09 * 03 "	1256
12	PLAMAT 2	18 * 49 ' 55 "	97 * 08 * 57 "	1257
13	Río Blanco (compuertas por arroyo la carbonera)	18 * 50 ' 03 "	97 * 08 * 34 "	1248
14	Arroyo La Carbonera	18 * 50 * 12 "	97 * 08 * 23 "	1262
15	Rio Onzaba	18 * 51 * 28 "	97 * 06 ' 51 "	1358
16	Harinera y Manufacturera de Orizaba	18 * 50 ' 36 "	97 * 05 * 54 "	1169
17	Rio Orizaba (por la capilla de Carlota)	18 * 50 1 06 "	97 * 05 * 29 "	1183
18	Río Blanco (antes de la confluencia con el Río Orizaba	18 * 49 ' 59 "	97 * 05 ' 31 "	1194
19	Río Blanco (presa derivadora El Boquerón)	18 * 50 ' 08 "	97 * 05 * 23 "	1174
20	Tenerias Unidas	18 * 50 ' 54 "	97 * 05 * 41 "	1252
21	Tenería Trueba	18 * 50 * 50 "	97 * 05 ' 33 "	1216
22	Arroyo Caliente	18 * 50 * 25 "	97 ° D4 ' 47 "	1086
23	Río Blanco (Hidroeléctrica Rincón Grande)	18 * 50 * 27 "	97 * 04 * 13 "	1049
24	Río Blanco (después de la confluencia con Arroyo Caliente)	18 * 50 ' 34 "	97 • 04 • 19 "	1040
25	Arroyo Totolitos	18°50'38"	97 * 04 * 35 "	1088
26	Río Blanco (aguas abajo de la derivación de la Hidroeléctrica Yute)	18 * 50 * 37 "	97 • 04 · 20 "	1140
27	Río Blanco (después de la caída del efluente Hidroeléctrica Yute)	18 * 50 * 44 "	97 * 04 ' 09 "	1000
28	Río Blanco (antes de entrar a la Presa Tuxpango)	ND	ND	ND
29	Río Escamela	ND	ND	ND
30	Río Blanco (aguas abajo de la Presa Tuxpango)	18 * 50 * 02 "	97 * 01 ' 27 "	854
31	CAFIVER	18 * 52 * 03 "	97 * 04 * 26 "	1157
32	PROQUINA 1	18 ° 51 ' 40 "	97 " 04 ' 22 "	1154
33	PROQUINA 2	ND	ND	ND
34	FERMEX (Proceso)	18 * 51 ' 54 "	97 * 04 ' 09 "	1142
35	Kimberly Clark 2	18 * 51 ' 33 "	97 * 04 * 01 "	1137
36	Cementos Veracruz (APASCO)	18 ° 51 ' 38 "	97 * 02 * 21 "	1122
37	FIRIOB (descarga de la planta de tratamiento)	18 * 51 ' 13 "	97 * 02 * 50 "	1130
38	Río Apestoso (Ingenio El Carmen)	18 ° 52 ' 18 "	97 * 01 * 30 "	980
39	Río Metiac	18 * 50 * 17 "	96 ° 59 ' 00 "	798
40	Rio Blanco (antes de la confluencia con el Rio Metlac)	18 * 49 * 51 "	96 * 58 * 51 **	856
41	Río Blanco (después de la confluencia con el Río Mettac)	18 * 48 * 52 "	96 * 57 * 42 *	634
42	Rio Negro	18 49 11 "	96 * 57 * 36 "	766
43	Rio Bianco (Ingenio San Nicolás)	18 * 46 ' 48 "	96 * 53 * 28 "	628
44	Arroyo San José de Abajo (El Zapote)	18 * 46 ' 07 "	96 * 46 ' 22 "	368
45	Rio Blanco (Xuchilez)	18 * 45 * 49 "	96 * 49 * 31 "	470
46	Rio Bianco (gasolinera de la población Omealca)	18 * 45 * 45	96 * 47 ' 21 "	393
		18 44 55 "	96 ° 39 ' 08 "	229
47	Rio blanco (Matatenatitos)	18 * 44 * 28 "	96 * 27 ' 22 "	115
49	Río Blanco (Puente ICA) Río Blanco (después de la derivadora Camelpo)	18 * 44 ' 25 "	96 * 26 * 57 "	98
50	FERMEX 1 (pluvial)	ND	90 20 37 ND	ND ND
51	Ingenio San Miguelito	18 ° 51 ' 44 "	96 * 54 ' 50 "	773
	· · · ·	ND	90 34 30 .	ND
52 53	Ingenio San Nicolás Ingenio La Providencia	ND	ND ND	ND
54	Ingenio La Providencia Ingenio San José de Abajo	ND	ND ND	ND
55		18 * 50 * 10 "	97 " 02 ' 20 "	991
	Presa Tuxpango	18 * 52 * 25 "	96 * 54 * 58 "	ND ND
56	Aceitera La Patrona eterminado	10 02 20	~ ~ ~ ~ ·	NU

N.D. = No determinado

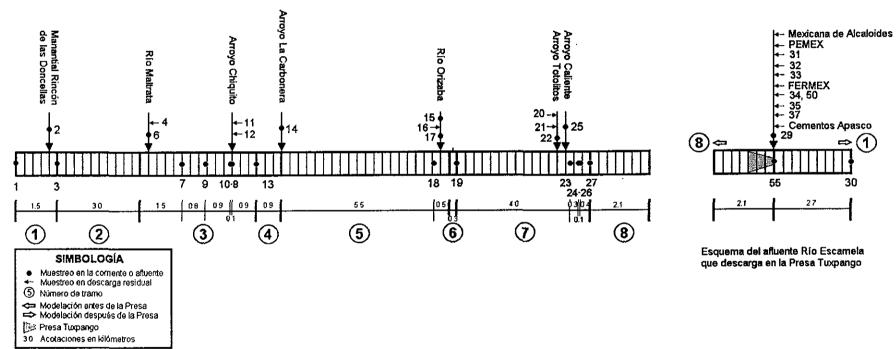


Figura V.5. Estaciones antes de la Presa Tuxpango.

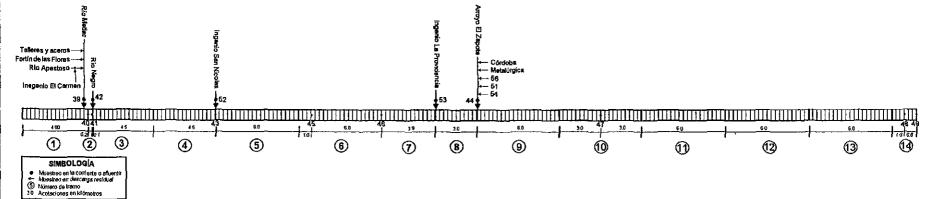


Figura VI.6. Estaciones después de la Presa Tuxpango.

Cuadro V.10. Ica general de las estaciones del Río Blanco, afluentes y descargas.

elleral de las estaciones dei Nio bianco, aliden						
Estación	ICA General	Estación	ICA General			
RB-1	82.00	RB-26	79.86			
RB-2	71.51	RB-27	45.76			
RB-3	70.35	RB-28	52.36			
RB-5	51.78	RB-29	35.23			
RB-6	48.06	RB-30	45.34			
RB-7	50.67	RB-38	44.58			
RB-8	58.37	RB-39	52.23			
RB-9	55.93	RB-40	49.77			
RB-10	68.40	RB-41	50.07			
RB-13	56.64	RB-42	69.11			
RB-14	51.49	RB-43	51.39			
RB-15	65.58	RB-44	47.99			
RB-17	54.56	RB-45	51.13			
RB-18	50.84	RB-46	52.58			
RB-19	59.06	RB-47	54.01			
RB-22	38.17	RB-48	51.91			
RB-23	85.05	RB-49	52.25			
RB-24	73.63	RB-55	40.17			
RB-25	47.57					

VI.4 Estaciones de Monitoreo de Calidad del agua

La Comisión Nacional del Agua (CNA) a través de la Red Nacional de Monitoreo tiene instaladas en el área de estudio 4 estaciones de monitoreo de Calidad del Agua, las cuales se localizan sobre el Río Blanco. Las características de las estaciones se presentan en el Cuadro VI.11.

Cuadro VI.11. Características de las estaciones de monitoreo de Calidad del Agua ubicadas sobre el Río Blanco

	40100	ada can ic	or rue blance.				
No. Sección	Estación	Gerencia	Nombre de la Estación	Corriente	Año de Inicio	Longitud	Latitud
S28-011	00VC28AV0300001	Veracruz	Puente Ciudad Mendoza	Río Blanco	1975	-97.1797	18.7964
S28-012	00VC28AV0850002	Veracruz	Presa Tuxpango	Río Blanco	1982	-97.0847	18.8461
S28-013	00VC28AV1180002	Veracruz	Puente Orizaba (Boquerón)	Río Blanco	1975	-97.0881	18.8353
S28-016	00VC28AV1810003	Veracruz	La Tinaja	Río Blanco	1975	-96.4284	18.7362

Análisis de resultados de las estaciones de monitoreo

Con las hojas de datos (Cuadro VI.12) que la CNA proporcionó para el estudio, se procedió a evaluar la calidad del agua de acuerdo a su uso. En esta corriente se puede observar la marcada degradación de la calidad del agua a medida que avanza.

En las estación Puente Ojo Zarco, Cd. Mendoza se obtuvo un índice de calidad máximo de 70.28 % correspondiente al mes de enero y un mínimo de 60.59 % correspondiente al mes de diciembre, el comportamiento general de los ICA obtenidos durante el periodo anual 1996, tiende al valor más alto, por lo cual y en base a la Escala de Calificación General de la Calidad del Agua, ésta es aceptable para el desarrollo de la vida acuática excepto para especies muy sensibles, para recreación es aceptable para cualquier deporte acuático, pero no es recomendable y para uso industrial ésta puede ser utilizada sin tratamiento en la industria normal. Como fuente de abastecimiento necesariamente requiere de un mayor tratamiento, ya que presenta una alta concentración de coliformes fecales, rebasando los límites máximos permisibles establecidos en los Criterios Ecológicos de Calidad del Agua. Aguas arriba de esta estación, el cuerpo de agua no recibe grandes aportaciones de aguas residuales, únicamente se ve afectada por escurrimientos provenientes de los poblados de Maltrata y Ojo Zarco. Aguas bajo de este punto, el río Blanco empieza a recibir las aportaciones de escurrimientos y arroyos, que a su paso colectan importantes cargas orgánicas, contribuyendo al gradual deterioro de su calidad a medida que avanza.

Cuadro VI.12. Reporte del ICA para la estación Puente Ciudad Mendoza.

Fecha de muestreo Fecha (Correlacionada Calculado (ICA) Fecha (ICA)	Cuadro VI.12. Reporte del ICA para la estación Puente Ciudad Mendoza.							
90 1 1 1 55.09 94 1 49 67.95 90 2 2 2 59.17 94 2 50 67.61 90 3 3 3 64.69 94 3 51 63.07 90 7 7 7 63.81 94 5 53 57.81 90 9 9 9 61.94 94 6 54 66.88 90 11 11 62.80 94 7 55 62.31 91 1 13 69.98 94 8 56 62.81 91 1 1 13 69.98 94 8 56 62.81 91 2 14 64.46 94 9 57 62.36 91 3 15 50.61 94 10 58 56.38 91 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 45.02 95 1 61 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 22 4 64.82 95 8 68 49.98 92 2 2 266 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 7 31 50.70 96 1 73 60.80 92 8 3 27 58.37 95 10 70 68.08 92 9 33 47.54 96 3 75 61.05 92 11 35 60.41 96 97 77 68.08 92 12 266 76.41 95 9 69 64.89 92 13 27 58.37 95 10 70 68.08 92 14 28 57.12 95 11 71 66.80 92 19 33 47.54 96 3 75 61.05 92 11 35 60.41 96 77 64.90 92 11 35 60.41 96 77 79 67.94 93 3 3 39 65.64 96 8 60 77 79 67.94 93 3 44 40 49.93 96 96 77 79 67.94 93 1 44 66 67.91 93 1 44 77.421 96 11 83 65.09 93 1 45 77.72 95 11 71 68.90 93 1 47.54 96 3 75 61.05 93 1 47.54 96 3 75 61.05 93 1 40 40 49.93 96 96 77 79 67.94 93 10 46 67.91 93 10 46 67.91 93 11 47 74.21 93 12 48 77.22 10 60 60.04 10 60 60.00 10 6					1	-		1
90	Año	Mes	F	ICA	Año	Mes	F	ICA
90 3 3 3 64.69 94 3 51 63.07 90 5 5 5 48.95 94 4 52 58.21 90 7 7 7 63.61 94 5 53 57.81 90 9 9 9 61.94 94 6 54 66.68 90 11 11 11 62.80 94 7 55 62.23 91 1 133 69.98 94 8 56 62.81 91 2 14 64.46 94 9 57 62.36 91 3 15 50.61 94 10 58 56.38 91 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 66.69 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 2 66 76.41 95 9 69 64.89 92 3 3 27 58.37 95 10 70 63.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78.89 93 1 37 65.80 96 7 79 67.94 93 1 37 65.80 96 96 10 82 62.05 93 8 44 99.99 96 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 1 37 7 43.59 96 96 96 16.50 93 1 3 77 43.59 96 96 96 16.50 93 1 37 65.80 96 7 79 67.94 93 1 37 7 43.57 65.80 96 96 98 16.50 93 1 37 7 43.57 65.80 96 7 79 67.94 93 1 4 40 49.93 96 9 81 65.15 93 1 37 65.80 96 7 79 67.94 93 1 4 40 49.93 96 9 81 65.15 93 1 4 4 77 74.21 93 1 5 74.21 93 1 7 43 57.55 96 12 84 60.59 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 1 47 74.21 93 1 1 1 47 74.21 93 1 1 1 47 74.21 93 1 1 1 47 74.21 93 1 1 1 47 74.21 93 1 1 1 48 74.82 1 1 66.51 96 12 84 60.59 93 1 10 66 67.91 93 1 10 66 67.91 93 1 10 66 16.78 10.60 10	90	1	1	56.09	94	1	49	67.95
90 5 5 5 6 48.95 94 4 52 58.21 90 7 7 7 63.61 94 5 53 57.81 90 9 9 9 61.94 94 6 54 66.68 90 11 111 62.80 94 7 55 62.23 91 1 13 69.98 94 8 56 62.61 91 2 14 64.46 94 9 57 62.36 91 1 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.80 92 4 28 57.12 95 11 71 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 71 66.80 92 10 34 59.62 96 4 76 68.07 92 10 34 59.62 96 4 76 68.07 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.80 92 13 37 65.80 96 7 79 67.94 93 3 3 99 65.64 96 8 80 65.90 93 1 37 64.81 96 2 74 65.47 94 65.47 95 10 34 59.62 96 4 76 65.76 95 11 35 60.41 96 5 77 64.90 95 10 34 59.62 96 4 76 65.76 95 11 35 60.41 96 5 77 64.90 96 10 34 59.62 96 4 76 65.76 97 11 35 60.41 96 5 77 64.90 98 31 3 77 64.90 99 33 47.54 96 3 75 61.05 99 10 34 59.62 96 4 76 65.76 99 11 35 60.41 96 5 77 64.90 99 11 35 60.41 96 5 77 64.90 99 11 37 65.80 96 7 79 67.94 93 3 9 65.64 96 8 80 65.90 93 7 43 57.55 96 10 82 62.14 93 11 37 65.80 96 7 79 67.94 93 3 9 65.64 96 8 80 65.90 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 1 47 74.21 93 1 10 46 67.91 93 11 47 774.21 93 1 10 46 67.91 93 11 47 74.21 93 1 10 46 67.91 94 61.05	90	2	2	59.17	94	2	50	67.61
90 7 7 7 63.61 94 5 53 57.81 90 9 9 9 61.94 94 6 54 66.68 90 111 11 62.80 94 7 55 62.23 91 1 13 69.98 94 8 56 62.81 91 2 14 64.46 94 9 57 62.36 91 3 15 50.61 94 10 58 56.38 91 4 16 40.15 94 11 59 61.96 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 2 66 76.41 95 9 69 64.89 92 3 3 27 58.37 95 10 70 63.08 92 4 28 57.12 95 11 71 66.80 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 66.57 92 10 34 59.62 96 4 76 64.99 93 1 37 65.80 96 7 79 67.94 93 1 37 65.80 96 12 84 60.59 93 10 46 67.91 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 18.03 10 28 10.03 10 10 46 67.91 93 10 46 50.91 10 50.03 10 10 10 10 10 10 10 10 10 10 10 10 10 1	90	3	3	64.69	94	3	51	63.07
90 9 9 9 61.94 94 6 54 66.68 90 111 111 62.80 94 7 55 62.23 91 1 133 69.98 94 8 56 62.81 91 2 14 64.46 94 9 57 62.36 91 3 15 50.61 94 10 58 56.38 91 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 56 73.39 91 11 23 63.63 95 6 66 71.85 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 8 32 54.81 96 2 74 65.67 92 10 34 59.62 96 4 76.65 92 11 35 60.41 96 5 77 64.90 93 1 37 65.80 96 7 79 67.94 93 3 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 1 37 65.80 96 7 79 67.94 93 3 3 7 43 57.55 96 10 82 62.14 93 6 42 66.21 96 11 83 65.90 93 1 47 74.21 96 11 83 65.91 93 11 47 74.21 96 11 83 65.91 94 65 50.08 95 66 67.91 93 11 47 74.21 93 12 48 74.82 10 68.08 10 69.91 10 46 67.91 93 11 47 74.21 93 12 48 74.82 10 69.08 10 69.08 10 69.08 10 60.42 95 12 84 60.59 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 66.61 96 10 82 62.14 11 77 74.21 11 77 74.21 11 77 74.21 12 74 65.47 12 75 65.80 12 77 74.31 57.55 13 75 75.51 14 77 74.21 15 77 77 77 77 77 77 77 77 77 77 77 77 77	90	5	5	48.95	94	4	52	58.21
90 111 11 11 62.80 94 7 55 62.23 91 1 1 13 69.98 94 8 56 62.81 91 2 14 64.46 94 9 57 62.38 91 3 15 50.61 94 11 59 61.96 91 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 63.3 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.76 92 10 34 59.62 96 4 76.49 93 1 37 65.80 96 7 79 67.94 93 3 3 99 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.17 93 6 42 66.21 96 11 83 65.09 93 1 3 7 43 57.55 96 12 83 65.90 93 10 46 67.91 96 11 83 65.09 93 11 37 65.80 96 7 79 67.94 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 11 47 74.21 99 11 83 60.08 1CA = 0.13 F + 56.11 ETITOT TIPICO de la Estima 1 7.39 1 Coefficiente de correlación 1 66 Student en Tablas 1.66	90	7	7	63.61	94	5	53	57.81
90 11 11 11 62.80 94 7 55 62.23 91 1 1 13 69.98 94 8 56 62.81 91 2 14 64.46 94 9 57 62.38 91 3 15 50.61 94 10 58 56.38 91 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.32 95 8 68 49.98 92 2 2 66 76.41 95 9 59 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 11 35 60.41 96 5 77 64.90 92 11 35 60.41 96 5 77 64.90 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 1 37 43 57.55 96 12 84 60.59 93 1 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 12 84 60.59 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09 93 10 46 67.91 96 11 83 65.09	90	9	9	61.94	94	6	54	66.68
91	90	11	11	62.80	94	7	55	62.23
91	91	1	13	69.98	94	8	56	62.81
91 4 16 40.15 94 11 59 61.96 91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 <t< td=""><td>91</td><td>2</td><td>14</td><td>64.46</td><td>94</td><td>9</td><td>57</td><td></td></t<>	91	2	14	64.46	94	9	57	
91	91	3	15	50.61	94	10	58	56.38
91 5 17 45.92 94 12 60 60.27 91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 2 3 27 58.37 95 10 70 68.08 92 3 27 58.37 95 11 71 71 66.80 </td <td>91</td> <td>4</td> <td>16</td> <td>40.15</td> <td>94</td> <td>11</td> <td>59</td> <td>61.96</td>	91	4	16	40.15	94	11	59	61.96
91 6 18 46.02 95 1 61 65.80 91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 7 31 50.70 96 1 73 70.28 <t< td=""><td>91</td><td>5</td><td>17</td><td>45.92</td><td>94</td><td>12</td><td>60</td><td></td></t<>	91	5	17	45.92	94	12	60	
91 7 19 49.59 95 2 62 64.64 91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 4 28 57.12 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 </td <td>91</td> <td>6</td> <td>18</td> <td></td> <td>95</td> <td></td> <td>61</td> <td>· · · · · · · · · · · · · · · · · · ·</td>	91	6	18		95		61	· · · · · · · · · · · · · · · · · · ·
91 8 20 34.87 95 3 63 64.31 91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 </td <td>91</td> <td>7</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>	91	7			-	-		
91 9 21 52.23 95 4 69 68.67 91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 4 28 57.12 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92<	91		20	34.87	 	ļ —		
91 10 22 61.50 95 5 55 73.39 91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92<	91	9	21 .		95	4	69	
91 11 23 63.63 95 6 66 71.85 91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92<	91	10	22		95	5	55	
91 12 24 54.82 95 8 68 49.98 92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93<	91	11	23				66	
92 2 26 76.41 95 9 69 64.89 92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 79 67.94 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 <t< td=""><td>91</td><td></td><td>24</td><td></td><td></td><td></td><td></td><td></td></t<>	91		24					
92 3 27 58.37 95 10 70 68.08 92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 </td <td>92</td> <td>2</td> <td></td> <td>76.41</td> <td>95</td> <td>9</td> <td>69</td> <td>64.89</td>	92	2		76.41	95	9	69	64.89
92 4 28 57.12 95 11 71 66.80 92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 <tr< td=""><td>92</td><td>3</td><td></td><td></td><td>95</td><td>10</td><td>70</td><td></td></tr<>	92	3			95	10	70	
92 6 30 60.42 95 12 72 63.48 92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 <td>92</td> <td></td> <td></td> <td></td> <td>95</td> <td></td> <td>71</td> <td></td>	92				95		71	
92 7 31 50.70 96 1 73 70.28 92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 <td></td> <td>6</td> <td>30</td> <td></td> <td>95</td> <td>12</td> <td>72</td> <td></td>		6	30		95	12	72	
92 8 32 54.81 96 2 74 65.47 92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 </td <td>92</td> <td></td> <td>31</td> <td></td> <td>96</td> <td>1</td> <td></td> <td>70.28</td>	92		31		96	1		70.28
92 9 33 47.54 96 3 75 61.05 92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 10 46 67.91 93 11 47 74.82 1	92	8	32		96	2	74	
92 10 34 59.62 96 4 76 65.76 92 11 35 60.41 96 5 77 64.90 92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 74.70 93 10 46 67.91 67.91 93 11 47 74.21 93 12 48 74.82	92	9	33	47.54	96	3	75	
92 12 36 79.60 96 6 78 69.46 93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 74.70	92	10	34	59.62	96	4	76	65.76
93 1 37 65.80 96 7 79 67.94 93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 34 74.70 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 67.91 34 34<	92	11	35	60.41	96	5	77	64.90
93 3 39 65.64 96 8 80 63.90 93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 9 45 74.70 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 10 62.05 10	92	12	36	79.60	96	6	78	69.46
93 4 40 49.93 96 9 81 65.15 93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 9 8 84 60.59 93 9 45 74.70 9 74.70 9 93 11 47 74.21 93 12 48 74.82 9 74.82 9 80.8 8 80.8 8 80.8 8 80.8 8 80.8 8 80.8 8 80.8 8 80.8 8 80.8 8 8 80.8 8 8 80.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	93	1	37	65.80	96	7	79	67.94
93 5 41 66.61 96 10 82 62.14 93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 9 93 9 45 74.70 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 74.82 74.82 10	93	3	39	65.64	96	8	80	63.90
93 6 42 66.21 96 11 83 65.09 93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 9 74.70 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82	93	4	40	49.93	96	9	81	65.15
93 7 43 57.55 96 12 84 60.59 93 8 44 73.59 9 93 9 45 74.70 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 74.8	93	5	41	66.61	96	10	82	62.14
93 8 44 73.59 93 9 45 74.70 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 Indice Medio Encontrado 62.05 Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	6	42	66.21	96	11	83	65.09
93 9 45 74.70 93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 İndice Medio Encontrado 62.05 Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	7	43	57.55	96	12	84	60.59
93 10 46 67.91 93 11 47 74.21 93 12 48 74.82 Índice Medio Encontrado 62.05 Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	8	44	73.59				
93 11 47 74.21 93 12 48 74.82 Índice Medio Encontrado 62.05 Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	9	45					
93 12 48 74.82 Índice Medio Encontrado 62.05 Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	10	46	67.91				
Índice Medio Encontrado 62.05 Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	11	47	74.21				
Desviación Estándar 8.08 Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	93	12	48	74.82				
Ecuación de la Recta ICA = 0.13 F + 56.11 Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	Índice	Medio E	ncontrado				62.05	
Error Típico de la Estima 7.39 Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	Desvia	ción Est	ándar				8.08	
Coeficiente de correlación 0.38 T de Student Calculada 3.60 T de Student en Tablas 1.66	Ecuaci	ón de la	Recta			IC	CA = 0.13 F + 56.11	
T de Student Calculada 3.60 T de Student en Tablas 1.66	Error T						7.39	
T de Student en Tablas 1.66	Coefici	ente de	correlación		···· · ·······························			
	T de St	udent C	alculada					
Para el 90% de confianza, la calidad del agua ha aumentado	T de St	udent er	n Tablas				1.66	
	Para el	90% de	confianza, la calida	d del agua ha a	umenta	do		

Cuadro VI.13. Estación Presa Tuxpango

Cuadro VI.13. Estación Presa Tuxpango Fecha de Fecha Indice Fecha e Fecha Indice					Indice		
mues		Correlacionada	Calculado	mue		Correlacionada	Calculado
Año	Mes	F	ICA	Año	Mes	F	ICA
90	1	1	43.92	94	1	49	36.79
90	2	2	35.93	94	2	50	38.58
90	3	3	37.09	94	3	51	36.20
90	5	5	31.00	94	4	52	39.50
90	7	7	58.51	94	5	53	36.44
90	9	9	54.30	94	6	54	38.34
90	11	11	45.16	94	7	55	35.27
91	1	13	48.16	94	8	56	39.39
91	2	14	54.74	94	9	57	49.83
91	3	15	32.73	94	10	58	34.79
91	4	16	28.66	94	11	59	35.62
91	5	17	40.83	94	12	60	35.15
91	6	18	26.71	95	. 1	61	48.87
91	7	19	42.03	95	2	62	32.94
91	8	20	45.94	95	3	63	31.61
91	9	21	45.53	95	4	64	37.89
91	10	22	49.83	95	5	65	35.60
91	11	23	48.19	95	6	66	54.72
91	12	24	44.48	95	8	68	44.00
92	2	26	42.06	95	9	69	49.85
92	3	27	40.36	95	10	70	47.74
92	4	28	34.66	95	11	71	42.11
92	6	30	42.77	95	12	72	40.42
92	7	31	39.78	96	1	73	34.15
92	8	32	51.13	96	2	74	34.31
92	9	33	53.04	96	3	75	30.55
92	10	34	49.69	96	4	76	34.78
92	11	35	31.74	96	5	77	27.14
92	12	36	51.61	96	6	78	35.15
93	1	37	38.31	96	7	79	46.54
93	3	39	34.59	96	9	81	45.72
93	4	40	31.56	96	10	82	44.76
93	5	41	35.66	96	11	83	43.97
93	6	42	26.78	96	12	84	25.80
93	7	43	55.60	+ "	 	 	1
93	8	44	59.44	+	 		
93	10	46	50.61	+	+		
93	11	47	43.25	+-	- 	<u> </u>	
93	12	48	39.34	+	1		<u> </u>
		Encontrado	1 00.04	1	1	40.93	1
ļ		<u> </u>		+		8.13	
	Desviación Estándar Ecuación de la Recta			+	10	A = - 0.064 F + 43.	BO
Error Típico de la Estima			┪		7.93		
	Coeficiente de correlación			- 0.18			
T de Student Calculada				- 1.61			
		en Tablas		1.66			
			av suficiente e	videncia	de corr		
i mara	Para el 90% de confianza, no hay suficiente evidencia de correlación						

Cuadro VI.14. Estación Puente Orizaba.

Cuadro VI.14. Estación Puente Orizaba.								
Fech mue:	a de Fecha Indice Fecha e streo Correlacionada Calculado muestr			Fecha Correlacionada	Indice Calculado			
Año	Mes	F	ICA	Año	Mes	F	ICA	
90	1	1	45.05	94	1	49	44.65	
90	2	2	49.56	94	2	50	47.26	
90	3	3	46.45	94	3	51	40.37	
90	5	5	43.33	94	4	52	43.42	
90	7	7	58.60	94	5	53	38.47	
90	9	9	58.49	94	6	54	42.74	
90	11	11	61.68	94	7	55	44.83	
91	1	13	54.81	94	8	56	49.39	
91	2	14	44.84	94	7	57	54.72	
91	3	15	42.04	94	10	58	48.73	
91	4	16	47.53	94	11	59	49.03	
91	5	17	40.82	94	12	60	49.19	
91	6	18	40.10	95	1	61	41.46	
91	7	19	42.79	95	2	62	42.82	
91	8	20	46.09	95	3	63	47.61	
91	9	21	41.52	95	4	64	48.90	
91	10	22	53.03	95	5	65	51.12	
91	11	23	53.85	95	6	66	55.72	
91	12	24	49.19	95	8	68	53.55	
92	2	26	50.59	95	9	69	65.41	
92	3	27	50.80	95	10	70	61.55	
92	4	28	39.88	95	11	71	53.76	
92	6	30	45.64	95	12	72	54.84	
92	7	31	46.08	96	1	73	50.14	
92	8	32	56.93	96	2	74	46.23	
92	9	33	53.17	96	3	75	51.66	
92	10	34	42.16	96	4	76	55.46	
92	11	35	56.35	96	5	77	46.90	
92	12	36	53.96	96	6	78	53.03	
93	1	37	44.19	96	7	79	55.52	
93	3	39	48.88	96	8	80	62.89	
93	4	40	42.75	96	9	81	62.23	
93	5	41	49.59	96	10	82	62.74	
93	6	42	42.21	96	11	83	57.86	
93	7	43	55.58	96	12	84	53.17	
93	8	44	66.65	<u> </u>				
93	9	45	61.04					
93	10	46	55.63					
93	11	47	49.03					
93 12 48 50.18								
		Encontrado		50.16				
	ación Es			6.64				
ļ	a Recta			iC/	A = 0.074 F + 46.80	1		
		e la Estima		6.35				
⊢		correlación		0.26				
		Calculada		2.37				
		en Tablas	lad dal seve b	1	ntado	1.66		
Para 6	Para el 90% de confianza, la calidad del agua ha aumentado							

Cuadro VI.15, Estación La Tinaja.

Cuadro VI.15. Estación La Tinaja.										
Fecha de muestreo		Fecha Correlacionada	Indice Calculado	Fecha de muestreo		Fecha Correlacionada	Indice Calculado			
Año	Mes	F	CA	Año	Mes	F	ICA			
90	1	1	39.94	94	1	49	46.12			
90	2	2	47.92	94	3	51	50.51			
90	3	3	51.43	94	4	52	41.97			
90	5	5	44.13	94	. 5	53	41.61			
90	7	7	65.10	94	6	54	38.80			
90	10	10	63.61	94	7	55	46.55			
90	11	11	52.01	94	8	56	45.14			
91	1	13	59.17	94	9	57	47.36			
91	2	14	53.30	94	10	58	50.21			
91	3	15	39.36	94	11	59	46.06			
91	4	16	42.47	94	12	60	49.55			
91	5	17	38.07	95	1	61	61.52			
91	6	18	42.48	95	2	62	39.08			
91	7	19	51.20	95	3	63	38.82			
91	8	20	44.09	95	4	64	34.21			
91	10	22	60.77	95	5	65	44.49			
91	11	23	49.06	95	6	66	42.64			
91	12	24	56.60	95	8	68	44.94			
92	3	27	42.15	95	9	69	52.47			
92	4	28	44.62	95	10	70	47.19			
92	6	30	45.39	95	11	71	55.06			
92	7	31	50.62	95	12	72	62.49			
92	8	32	50.06	96	1	73	49.16			
92	9	33	50.41	96	2	74	46.18			
92	10	37	63.79	96	3	75	40.54			
92	11	35	50.06	96	4	76	42.21			
92	12	36	48.64	96	5	77	39.33			
93	1	37	39.79	96	6	78	48.57			
93	3	39	38.03	96	7	79	56.07			
93	4	40	48.94	96	8	80	52.55			
93	5	41	53.51	96	9	81	52.47			
93	6	42	50.14	96	10	82	56.34			
93	7	43	51.00	96	11	83	54.85			
93	9	45	60.41	96	12	84	43.35			
93	10	46	56.33	1						
93	11	47	57.14							
93	12	48	55.86							
Índice	Medio	Encontrado		49.05						
Desvi	iación E	stándar			7,31					
Ecuación de la Recta					ICA = - 0.011 F + 49.58					
Error Típico de la Estima					7.25					
Coefi	Coeficiente de correlación					- 0.038				
T de	T de Student Calculada					- 0.32				
T de	Student	en Tablas		1.66						
Para	Para el 90% de confianza, no hay suficiente evidencia de correlación									

En la segunda estación denominada Derivadora Boquerón se obtuvo un índice de calidad máximo de 62.89 % correspondiente al mes de agosto y un mínimo de 46.23 % correspondiente al mes de febrero, lo cual pone de manifiesto el creciente deterioro de la calidad de esta corriente. Con base en la Escala de Calificación General de la Calidad del Agua, en la zona de influencia de esta estación, la calidad del agua es aceptable sólo para organismos acuáticos muy resistentes, para recreación es aceptable para cualquier deporte acuático, pero no es recomendable con contacto primario, para uso industrial debe ser tratada en la mayor parte de la industria. En cuanto a sus características fisicoquímicas y bacteriológicas, presenta alta concentración de coliformes fecales, rebasando los límites máximos permisibles establecidos en los Criterios Ecológicos de Calidad del Agua, ya que este punto se ubica a aproximadamente 200 m aguas abajo de la confluencia con el río Orizaba, mismo que se considera el colector principal de las descargas de aguas residuales provenientes de la Ciudad de Orizaba, independientemente de que a esta altura el río Blanco ya ha colectado las aguas residuales municipales de Cd. Mendoza, Nogales, Río Blanco, Orizaba, Villa Atzacan, así como de industrias de la región tales como papelera y Cervecera.

En la estación denominada Presa Tuxpango se obtuvo un índice de calidad mínimo de 25.8 % correspondiente al mes de diciembre y un máximo de 46.54 % correspondiente al mes de julio; en base a la Escala de Calificación General de la Calidad del Agua, de manera general y resumida ésta se clasifica como fuertemente contaminada no aceptable para el desarrollo de la vida acuática, aceptable para recreación sin contacto, requiere tratamiento para uso en la mayor parte de la industria, inclusive con tratamiento mayor, no se recomienda su uso como fuente de abastecimiento. Rebasa los límites máximos permisibles establecidos en los Criterios Ecológicos de Calidad del Agua, para la mayoría de los usos considerados en éstos. Antes de este punto de monitoreo, el río Blanco recibe las descargas provenientes de la Planta de Tratamiento del Fideicomiso del alto río Blanco (se encuentra en etapa de acondicionamiento), de los municipios de Rafael Delgado y Tilapan e industrias químicas tales como: Fermentaciones Mexicanas S.A. de C.V., Mexicana de Alcaloides, S.A. de C.V., Productos Químicos Naturales S.A., Kimberly Clark, etc., las cuales contribuyen con importantes volúmenes de descarga.

En la estación denominada La Tinaja se obtuvo un índice de calidad máximo de 59.47 % correspondiente al mes de septiembre y un mínimo de 39.33 % correspondiente al mes de mayo, por lo que en base a la Escala de Calificación General de la Calidad del Agua, ésta es aceptable sólo para organismos acuáticos muy resistentes. En cuanto a su uso para recreación es aceptable para cualquier deporte acuático, sin contacto; para uso industrial debe ser tratada en la mayor parte de la industria. En este punto la corriente empieza a recuperarse de la gran carga contaminante recibida aguas arriba del punto anterior, así como en el trayecto a éste ya que recibe las descargas provenientes de las poblaciones de Tierra Blanca, unidades habitacionales del municipio de lxtaczoquitlán, Fortín, Córdoba, Omealca y descargas provenientes de ingenios azucareros; sin embargo aún presenta valores que la clasifican como una corriente fuertemente contaminada, con altas concentraciones de coliformes fecales, sólidos totales, sólidos suspendidos totales y grasas y aceites, rebasando los límites máximos permisibles establecidos en los Criterios Ecológicos de Calidad del Agua, para los usos considerados en éstos.

En cuanto al comportamiento a lo largo del año, la tendencia general para los diferentes parámetros presentan los valores más altos durante el primer semestre del año, especialmente de febrero a mayo; mientras que los valores más bajos se encuentran durante el segundo semestre del año especialmente de agosto a octubre. Esto se explica debido a que los gastos más bajos de la corriente se presentan en los meses de abril a mayo, mientras que los más altos se dan de julio a octubre, lo que influye apreciablemente en la capacidad de dilución del río; además de que la zafra de los ingenios azucareros se lleva a cabo durante el primer semestre del año lo que también contribuye en el aumento de la concentración de contaminantes en esta época.

VI.5 Aplicación del Modelo Matemático

De acuerdo a las necesidades del modelo matemático QUAL2E, la corriente se conceptualiza como una cadena de reactores completamente mezclados que están unidos secuencialmente por mecanismos de transporte y dispersión. Cada uno de estos elementos se agrupan por tramos que tienen las mismas propiedades hidrológicas, como son: pendiente del fondo, sección transversal y

VI.22 Caso estudio

rugosidad, y las mismas constantes biológicas de reacción. Con las consideraciones mencionadas se elaboró el seccionamiento del Río Blanco el cual se describe a continuación.

Seccionamiento de la corriente

Para alimentar al Programa QUAL2E fue necesario dividir la corriente en dos, debido a la presencia de la Presa Tuxpango (este tipo de cuerpos de agua se clasifican de forma distinta y por lo tanto no se pueden modelar con el Qual2). Para establecer el incremento Δx es necesario considerar la mínima distancia entre descargas y/o afluentes; en el caso del Río Blanco la distancia más corta entre estaciones fue de 300 m, entre el Río Metlac y el Río Negro, como se observa en la Figura VI.8.

Para seccionar la corriente se toma en cuenta principalmente el perfil de la corriente (Figura VI.7) ya que se debe procurar que las secciones tengan características de pendiente y velocidad constantes. Se recomienda que las descargas y/o afluentes sean inicio de tramo, para que el gasto también se mantenga constante. En la Figura VI.8 se presenta el seccionamiento antes y después de la Presa Tuxpango.

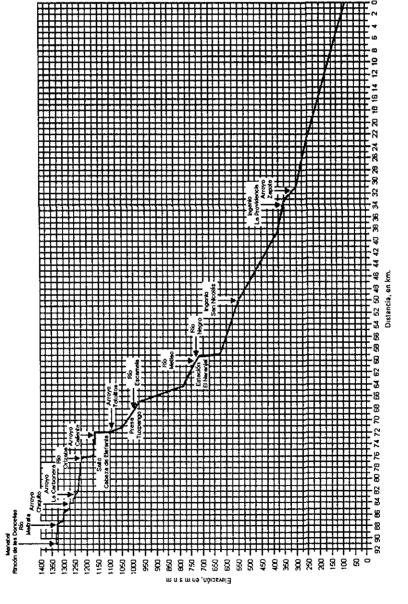


Figura VI.7 Perfil del Río Blanco.

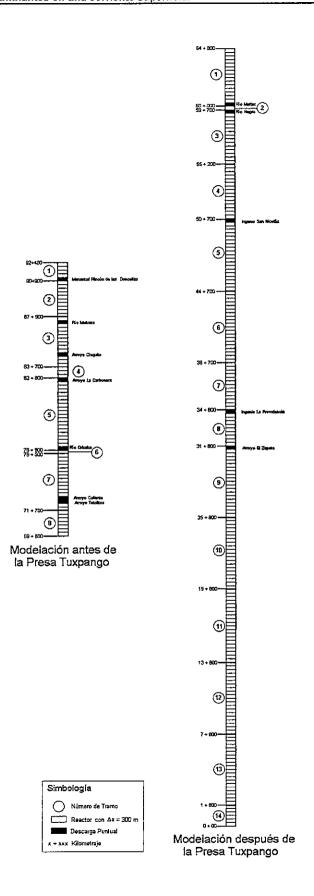


Figura VI.7. Seccionamiento del Río Blanco antes y después de la Presa Tuxpango.

VI.24

Calibración del modelo

En este apartado se describen brevemente las tablas de datos de entrada que se utilizaron para la calibración del modelo. Debido a que el Río Blanco se dividió en dos solo se muestra la calibración de la corriente "aguas abajo de la presa Tuxpango" a manera de ejemplo. En el Capítulo V se explica detalladamente cada uno de los componentes de las pantallas.

Tabla A. Títulos de la Calibración

En este punto se especificaron los parámetros a simular, que para el caso del Río Blanco fueron: Temperatura, DBO₅, Ciclo del Fósforo (Fósforo disuelto y orgánico), Ciclo del Nitrógeno (N-Orgánico, N-Amoniacal, N-Nitritos, N-Nitratos), Oxígeno Disuelto y Coliformes fecales, adicionalmente se simularon tres contaminantes no conservativos que fueron en primera instancia: Zinc, Cromo y Plomo, y posteriormente todos los sólidos (Figura VI.12)

Tabla 1. Datos de control

En esta tabla se definen las diferentes características de la corriente. Los datos de altitud y localización (latitud y longitud) de la corriente representan valores medios (Figura VI.13).

Tabla 1A. Constantes de Producción de Algas y Oxidación

Las diferentes constantes listadas en esta tabla son los valores de "default". Estos no fueron variados durante la calibración debido a que no se modelaron (Figura VI.16).

Tabla 1B. Coeficientes de Corrección por temperatura

Los coeficientes listados en esta tabla son los valores de "default". Estos no fueron variados durante la calibración (Figura VI.17).

Tabla 2. Identificación de segmentos

En esta tabla se introdujo el seccionamiento de la corriente de acuerdo a lo que se determinó en el programa de aforos y caracterización de la corriente. Se usó una longitud de 300 m por elemento y se ajustaron las distancias entre estaciones de acuerdo a este valor (Figura VI.10).

Tabla 3. Nivel determinado de OD y fuentes para aumento de flujo

En este caso no se estipuló ningún nivel específico de OD..

Tabla 4. Identificación de elementos

En esta tabla se identificaron las descargas puntuales en la corriente de acuerdo al seccionamiento de la Tabla 2 (Figura VI.11).

Tabla 5. Datos hidráulicos para determinar velocidad y profundidad

En este punto se dieron los valores de las constantes por sección de las ecuaciones de velocidad y profundidad:

$$d = \alpha Q^{\beta}$$

Estos fueron determinados a partir de los valores medidos en campo de velocidad media, profundidad y gasto. Para cada sección se llevó a cabo un valor de valor de ajuste por mínimos cuadrados de las corridas obteniéndose los valores para a, b y α y β .

El coeficiente de Manning utilizado es el recomendado para corrientes naturales sinuosas y con estanques (Figura VI.18).

Tabla 5A. Datos climatológicos

Para este caso se utilizó un sólo dato promedio para toda la corriente. La temperatura de bulbo húmedo se determinó de una carta psicométrica a partir de un dato promedio de temperatura de bulbo seco y de humedad. El valor promedio de humedad, la presión atmosférica y la velocidad del viento fueron determinados a partir de valores climatológicos de cartas del Atlas Nacional del Instituto de Geografía de la UNAM (Figura VI.25).

Tabla 6. Coeficientes de reacción para desoxigenación y reaeración

Inicialmente se utilizaron los valores "default", los cuales fueron variados hasta calibrar el modelo. Estos valores finales son los que se utilizaron en todas las corridas del modelo (Figura VI.19).

Tabla 6A. Constantes de Nitrógeno y Fósforo

Inicialmente se utilizan los valores de "default", los cuales son variados hasta calibrar el modelo. Estos valores finales son los que se utilizaron en todas las corridas del modelo (Figura VI.20).

Tabla 6B. Coeficientes de Algas

No se utilizó esta tabla debido a que este parámetro no fue incluido en la modelación (Figura VI.20).

Tabla 7. Condiciones iniciales

Estas son las condiciones para que el modelo comience la iteración. Estos valores no necesitan ser especificados a excepción de la temperatura (Figura VI.21).

Tabla 7A. Condiciones iniciales para Clorofila a, Nitrógeno y Fósforo

Estas son las condiciones para que el modelo comience la iteración. Estos valores no necesitan ser especificados (Figura VI.21).

Tabla 8. Condiciones de Incremento de flujo.

No se considera ningún tipo de incremento de flujo a lo largo de la corriente (Figura VI.22).

Tabla 8A. Condiciones de Incremento de flujo para Clorofila a, Nitrógeno y Fósforo.

No se considera ningún tipo de incremento de flujo a lo largo de la corriente (Figura VI.22).

Tabla 9. Uniones en la Corriente

No existen uniones en el seccionamiento propuesto.

Tabla 10. Características de los elementos cabeza de sección

Existe solamente un elemento de este tipo el cual está representado por la estación "Las Tazas". Los datos de entrada de gasto y concentración de contaminantes son promedios ponderados de los valores determinados en campo y/o laboratorio (Figura VI.23).

Tabla 10A. Características de los elementos de cabeza de sección, Nitrógeno, Fósforo y Coliformes.

En este punto se introdujeron los datos de entrada de concentración de Nitrógeno, Fósforo y Coliformes Fecales para la estación "Las Tazas". Estos valores son promedios pesados de los resultados de las diferentes campañas de muestreo y caracterización (Figura VI.23).

Tabla 11. Características de descargas.

En esta tabla se introdujeron los valores promedio de gasto y promedios ponderados de concentración de OD y DBO para las diferentes descargas a la corriente incluyendo los principales afluentes, de acuerdo al seccionamiento previamente dado. Para el caso de los ingenios solamente se realizó un sólo muestreo, obteniéndose datos reales, que fueron introducidos en la calibración (Figura VI.24).

Tabla 11A. Características de descargas, Nitrógeno, Fósforo y Coliformes.

En esta tabla se introdujeron los valores de los valores ponderados de concentración (de Nitrógeno, Fósforo y Coliformes) para las diferentes descargas a la corriente, incluyendo los principales afluentes, de acuerdo al seccionamiento previamente dado (Figura VI.24).

Tabla 12. Características de Represas

Este punto no fue aplicado en la modelación.

Tabla 13. Condiciones de Frontera-1.

Este punto no se aplicó en la modelación.

Tabla 13A. Condiciones de Frontera-2

Este punto no aplica para el caso del Río Blanco.

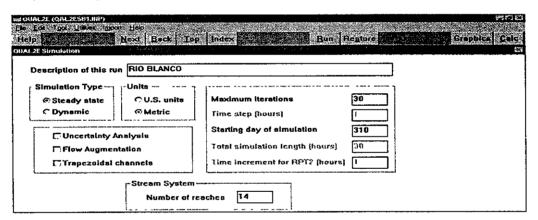


Figura VI.9. Pantalla 1 de la calibración del Río Blanco.

E LANGE COM	: (OALZESDI.HIP) Sicol (Microsoffico) (EUP)		225 KA 687 KA			
Helpk Treem Re	Next: Se	k Dop Inde	* Charles	Bung	Flagtore:	Graphics 2C
	ACH NAME (1): EST. 30 A 40]			
HEACH NO.	REACH NAME	BEGIN RIVER	END RIVER	HEADWATER	Dolta X	
Columbia	EST. 30 A 40	64.8		1	0.3	
38 Z	EST. 40-R.NEGRO	60	[*] 59.7	44 10 1 0 000 00 01	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
X 350	R. NEGRO-A.52	59.7	55.2		7-1- AND 3	
	A.52-EST.43	55.2	50.7		Jabija 8.3	
1838 5 1811	EST43-A.45	50.7	44.7		7 7 0 3	
mir 6arc	EST A.45-46	44.7	38.7		F2 70,0,3	
Verteen.	EST. 46-EST.53	30.7	34.8		R (202)	
1 B 1 3 1 4	53-A.ZAPOTE	34.8	31.6		(15.05.00.00)	
COLE PICE	A.ZAPOTE-A.47	31.8	25.8		> 4.0.3	
1,043	A.47-DESP.47	25.8	19.8		0.0	
का एक	D47-ANTES46-1	i 19.0	13.8		77 × 7 0.3	
E 1 2.	D47-ANTES48-2	13.8	7.8		MCXXXXXX	
⊉13 ≪	ANTES40	7.8			3 4 3 2 0 9	
T\$14%	ANTES 48 -49	1.8		į.	<u> </u>	

Figura VI.10. Pantalla 2 de la calibración del Río Blanco.

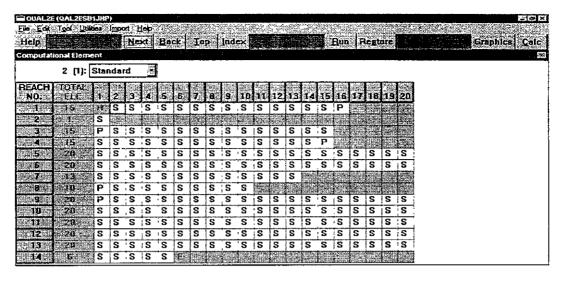


Figura VI.11. Pantalla 3 de la calibración del Río Blanco.

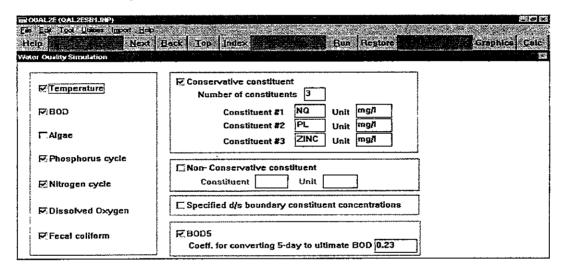


Figura VI.12. Pantalla 4 de la calibración del Río Blanco.

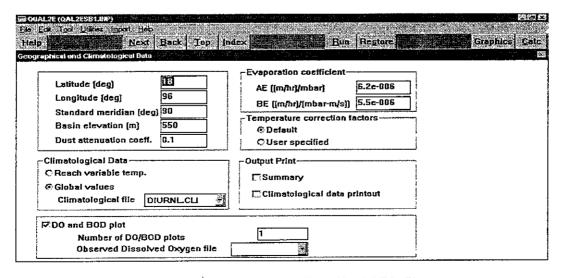


Figura VI.13. Pantalla 5 de la calibración del Río Blanco.

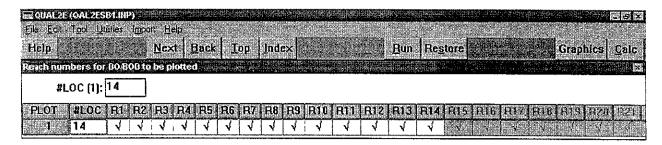


Figura VI.14. Pantalla 6 de la calibración del Río Blanco.

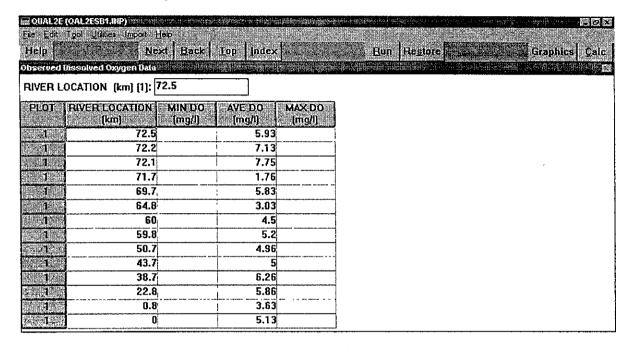


Figura VI.15. Pantalla 7 de la calibración del Río Blanco.

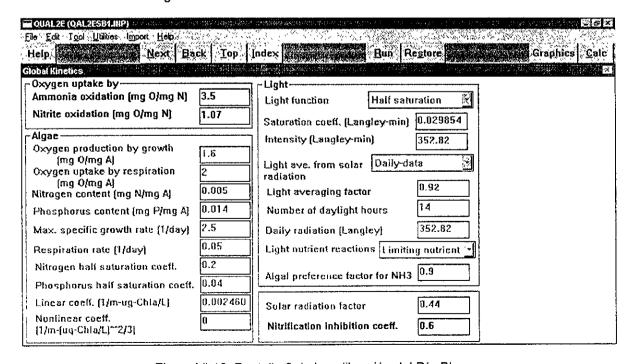


Figura VI.16. Pantalla 8 de la calibración del Río Blanco.

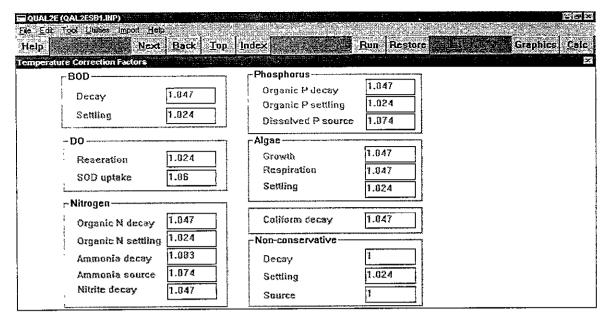


Figura VI.17. Pantalla 9 de la calibración del Río Blanco.

- C-20140	roal ZESELBRAN	a garanta da kanara kanara da ka	nata saturga bi ebiş elş	, y je sa ka nispanjih stali ka ka ka ka ka			· ·	252
Ja 54	Type (believe apport blek)	Commence of the second				STATE OF STREET	Mark on town	STREET, SALL I CALL
ricle 1	Ned Back Top	Index					A SECTION AND A	5 - S
	DISPER CONST (1): 6000	=						
REACH	DISPER O COEFF O DOR	SCORF ARR	MANNING SEC. SEC.	daneros I veni		ara Care box	MP CELTER SHOW	ETHICITE THE WIND TO
NO.	CONST VEL VEL	DEFTH DEPTH	to see	stated in terms	toda tel	944	12 12 12 12 12	160
1200		B.18207706 0.41761124	0.11				18.90	200
2	6000 0,13410249 0.6542794	0.02632 1 0.05482 7	0.11			3.00	410 w/45/S26/www.	1692
****	5000 2.71024E-2 60 2.71024E-2	0.05482 1	0.11		11111	1.65 Lat 3.3.3	111 145556	3687
5	EB 0.95643333	2,104			111/2	100 17	and this seed to be	4.602
., 6, 1		2,104 0	D 11		190.5	ars ny ort	THE CHARGE SE	107
1227 (35)	60 0.95643333	2,104 "0	011		444	1.54	201 . 16.555	36 780C .
	EB 8.95643333	2,164 6	0.71		12.17.5	100 L4 2		11629
9.1	6ff p.95643333	2.104 D	0.11		13.7.4	3,00	O. 153556	E CALL DE LA CALLET
15	60 9.62745E-3	2.4645 B	011					The state of the s
13	60, 9.62745E-3	2 4645 D	- copromises content		100.00			970
- 32	80 9.62745E-3	2,4549. 0	0.11					
13.	60, 9.5274SE-3	2 4649 1	0.11	CONTRACTOR OF THE			10 15 00 0	Section 1994
2013	EQ 0.42775	32.5445550	TI I					The state of the s

Figura VI.18. Pantalla 11 de la calibración del Río Blanco.

	QAL2ESB1_RIP)					reconstant appropriate to	Malan III.	8 1 3 ×
File Edi	pol Utilities Imp	or <u>H</u> eb Lacadoral	Too linday	New York	Run Restore		Granh	ics <u>C</u> alc
		nstants		All states of the	<u>Latin Aussauli</u>			
	· · · ·		arim www.gomary.com	CONTRACTOR CONTRACTOR AND	A CONTRACTOR OF THE PROPERTY O			
BOD DEC	AY (1/day) [1)	: 18						
REACH E	OD DECAY I		SOD RATE		TYPE REAERATION	The second secon		XPONENT
	10	(1/cay)		Single coeff.		100,	D.	0
2	10	0	;	Single coeff.		50	0	(
3	3	0	0	Single coeff.		15	Œ	ε
4	0.1	O,	0	Single coeff.		7	0	
5	0.05	0,	9	Single coeff.		7,	<u> </u>	
6	0.05	0	1	Single coeff.		7	<u> </u>	Ţ
7	0.05	0		Single coeff.		7:	<u> </u>	
0	0.3	0		Single coeff.		5	<u> </u>	
9	8.3	0,		Single coeff.		5	O.	
10	0.3	0.		Single coeff.			ŭ Û	
71	0.1	0,		Single coeff.		3 2	0	
12	0.1	0		Single coeff.		3	n:	
-13	0.1,	0		Single coeff.		3	· 0:	
_&14.E	0.05	8	U	Single coeff.			U;	

Figura VI.19. Pantalla 12 de la calibración del Río Blanco.

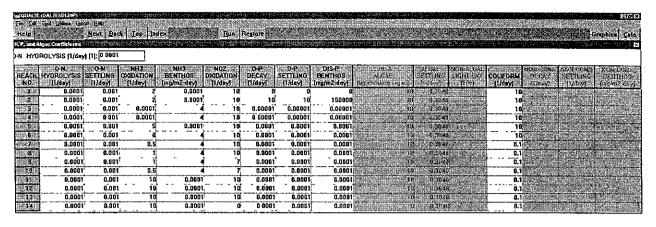


Figura VI.20. Pantalla 13 de la calibración del Río Blanco.

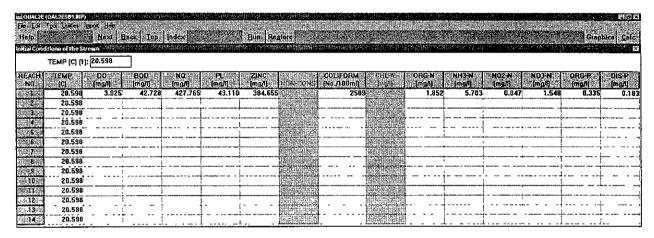


Figura VI.21. Pantalla 14 de la calibración del Río Blanco.

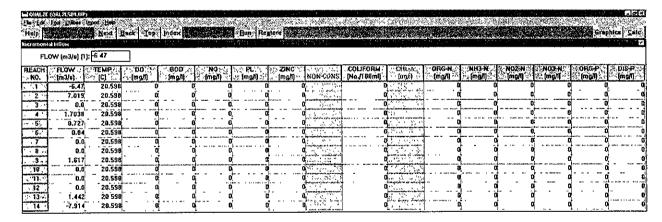


Figura VI.22. Pantalla 15 de la calibración del Río Blanco.

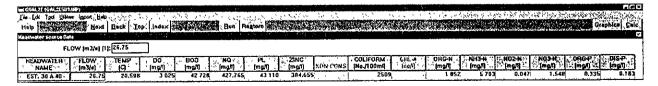


Figura VI.23. Pantalla 16 de la calibración del Río Blanco.

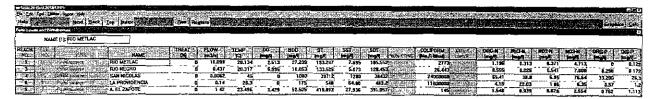


Figura VI.24. Pantalla 17 de la calibración del Río Blanco.

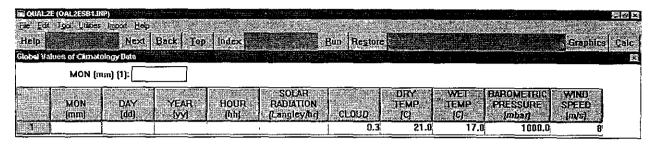
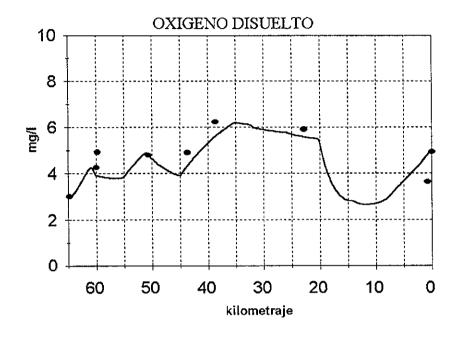


Figura VI.25. Pantalla 20 de la calibración del Río Blanco.

Descripción de las diferentes corridas del modelo matemático.

Para poder evaluar la capacidad de asimilación, dilución y porcentaje de remoción de la corriente, y así determinar los Límites Máximos Permisibles de Cargas de Contaminantes de las Aguas Residuales, fue necesario llevar a cabo una serie de simulaciones con la ayuda del modeio QUAL2E para los diferentes parámetros que pueden ser modelados. Estas simulaciones se listan en el Cuadro VI.16.

Cuadro VI.16. Simulaciones que se hicieron con el modelo Qual2.


Simulación No.	Condiciones
1	Calibración del Modelo Matemático
2	Asumiendo que las descargas cumplen con la NOM-001-ECOL-1996 para cuerpo receptor tipo A (Riego agrícola) y los afluentes con la calidad actual del agua antes de las descargas.
3	Asumiendo que las descargas cumplen con la NOM-001-ECOt1996 para cuerpo receptor tipo B (Fuente de abastecimiento para uso público urbano) y los afluentes con la calidad actual del agua antes de las descargas.
4	Asumiendo que las descargas cumplen con la NOM-001-ECOL-1996 para cuerpo receptor tipo C (Protección a la vida acuática) y los affuentes con la calidad actual del agua antes de las descargas.
5	Asumiendo que los afluentes antes de las descargas cumplen con los Critenos Ecológicos de Calidad del Agua (CE-CCA-001/89) para fuente de abastecimiento de uso público urbano y las descargas con la NOM-001-ECOL-1996 para cuerpo receptor tipo B.
6	Asumiendo que los afluentes antes de las descargas cumplen con los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89) para riego agrícola y las descargas con la NOM-001-ECOL-1996 para cuerpo receptor tipo A.
7	Asumiendo que los afluentes antes de las descargas cumplen con los Criterios Ecológicos de Calidad del Água (CE-CCA-001/89) para protección a la vida acuática y las descargas con la NOM-001-ECOL-1996 para cuerpo receptor tipo C.
8	Asumiendo que los afluentes antes de las descargas cumplen con los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89) para fuente de abastecimiento de uso público urbano y las descargas restringidas para que el Río Blanco sea un cuerpo receptor tipo B.
9	Asumiendo que los afluentes antes de las descargas cumplen con los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89) para riego agrícola y las descargas restringidas para que el Río Blanco sea un cuerpo receptor tipo A.
10	Asumiendo que los afluentes antes de las descargas cumplen con los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89) para protección a la vida acuática y las descargas restringidas para que el Río Blanco sea un cuerpo receptor tipo C.
11	Asumiendo el gasto mínimo extremo histórico para los afluentes de la comente.
12	Asumiendo el gasto máximo extremo histórico para los afluentes de la corriente.
13	Asumiendo la proyección de descargas Municipales al año 2010.

Gráficas de calibración

Para poder realizar todas las simulaciones se requiere primero calibrar el modelo. Esto se logra por medio de las gráficas que arroja el programa y los puntos que se obtienen de los resultados del aforo y muestreo en cada una de las estaciones seleccionadas para la corriente. Para poder graficar simultáneamente ambos valores se utiliza una hoja de cálculo (en este caso Quatro Pro).

Para el Río Blanco se necesito dividir la corriente debido a la presencia de la presa Tuxpango, por lo que se necesitaron más de 5000 corridas para calibrar el modelo, las gráficas que se obtuvieron se muestran en las Figuras VI.x a VI.x. Como se observa en las figuras, para cada uno de los parámetros se tiene una gráfica antes de la presa Tuxpango y una después.

Al modelar varios parámetros la calibración se complica, ya que se deben calibrar todos los elementos al mismo tiempo, y algunos coeficientes tienen efectos contrarios para diferentes parámetros. Es importante los valores del modelo se acerquen a los valores reales, pero no necesariamente deben coincidir. Esto se muestra claramente en las Figuras correspondientes a la calibración, donde se observa que no todos los valores coinciden pero la mayoría se encuentran con un margen de error pequeño. Por último cabe señalar que el personal de la CNA es quien decide cuando la calibración se ha realizado con éxito.

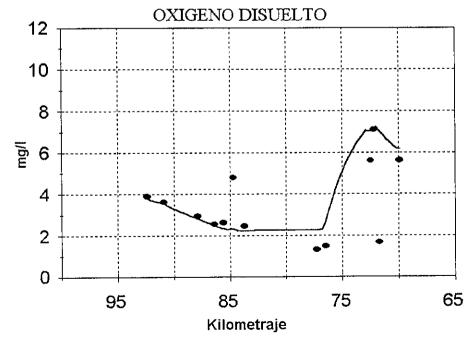


Figura VI.26. Oxígeno Disuelto.

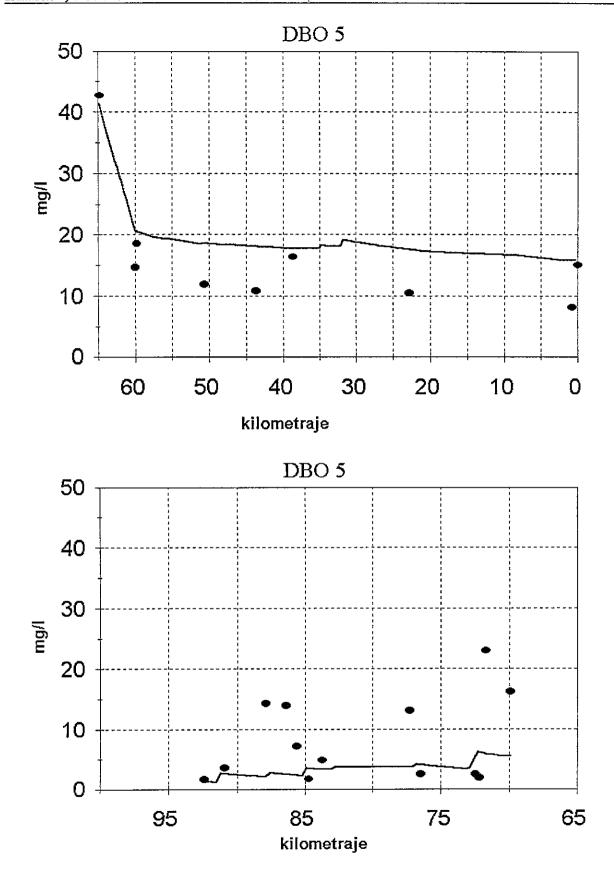
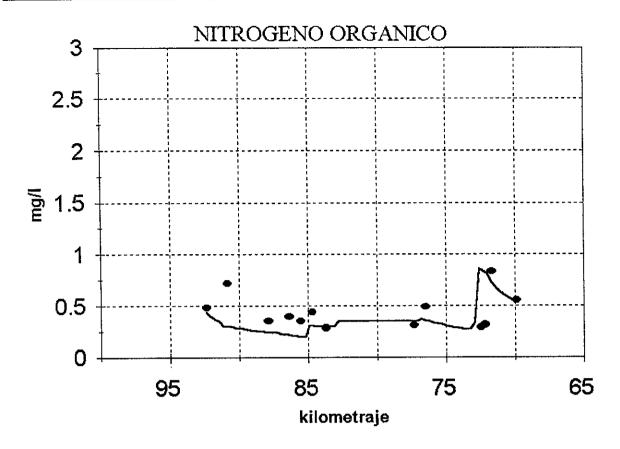



Figura VI.27. Demanda Bioquímica de Oxígeno, DBO₅.

VI.34

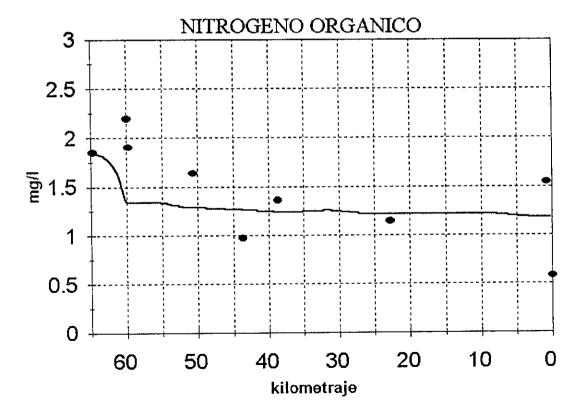


Figura VI.28. Nitrógeno Orgánico.

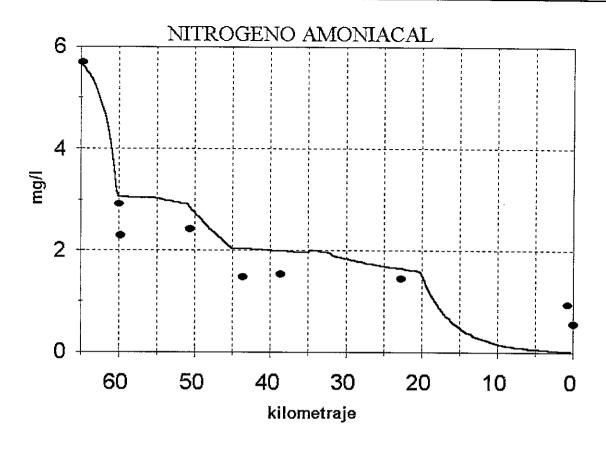


Figura VI.29. Nitrógeno Amoniacal.

VI.36

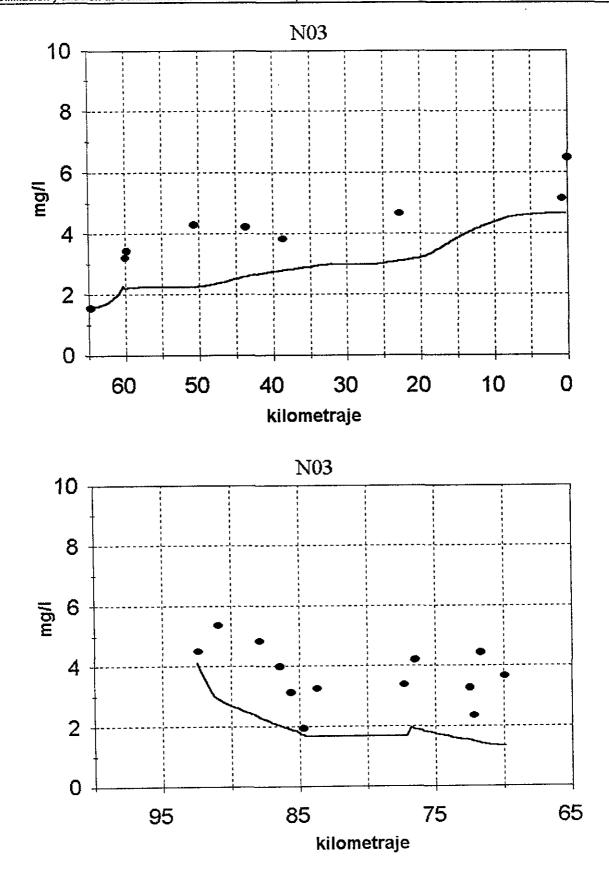


Figura VI.30. Nitratos.

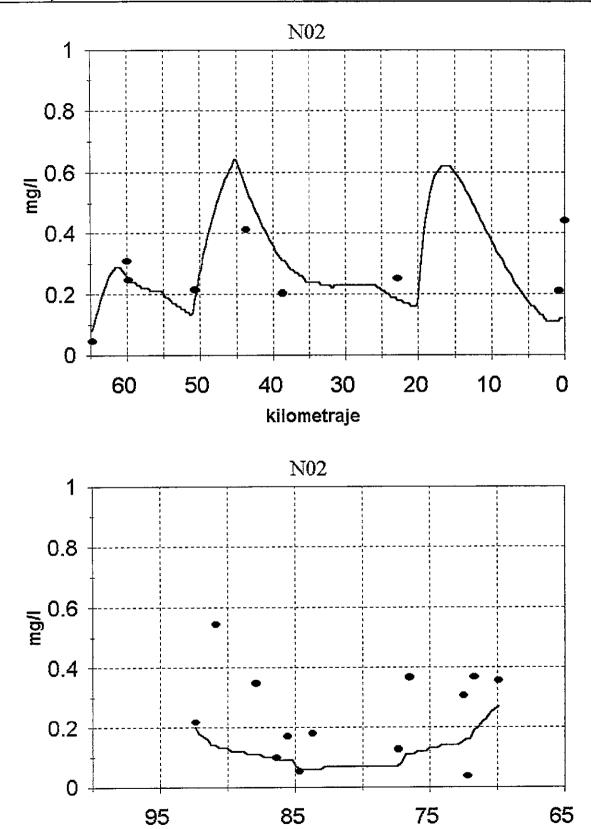
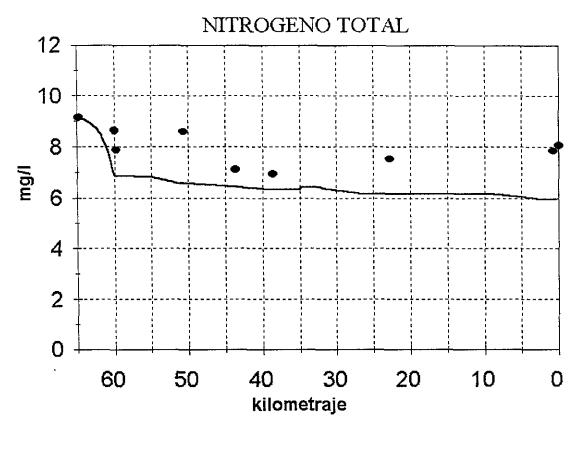



Figura VI.31. Nitritos.

kilometraje

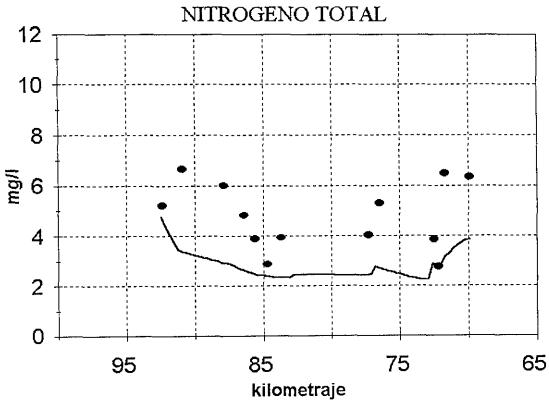
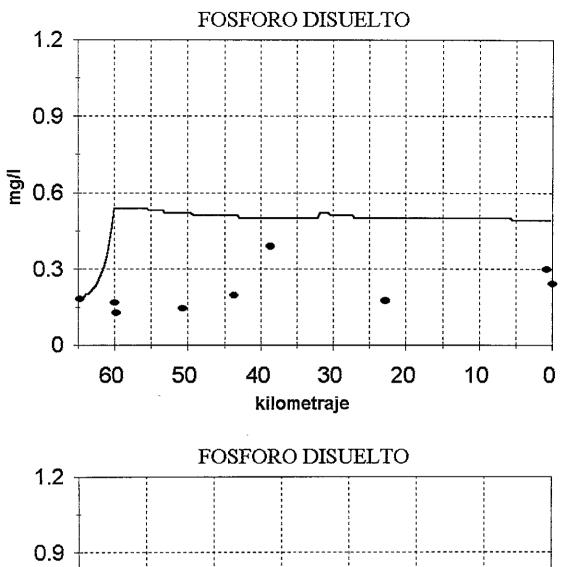



Figura VI.32. Nitrógeno Total.

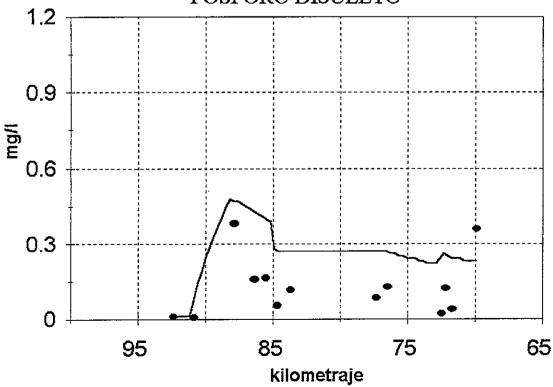
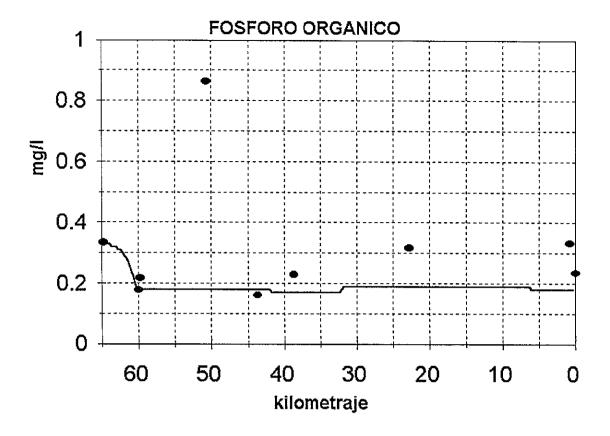



Figura VI.33. Fósforo disuelto.

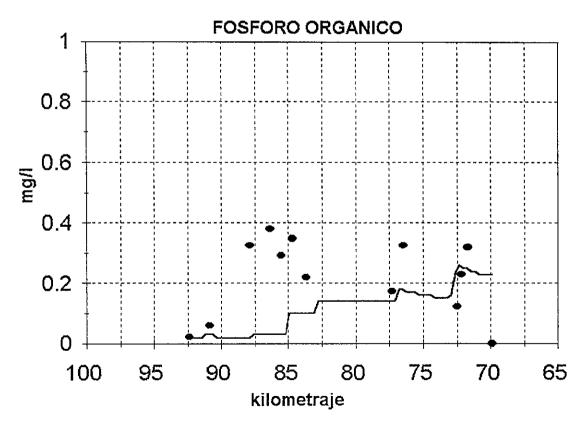
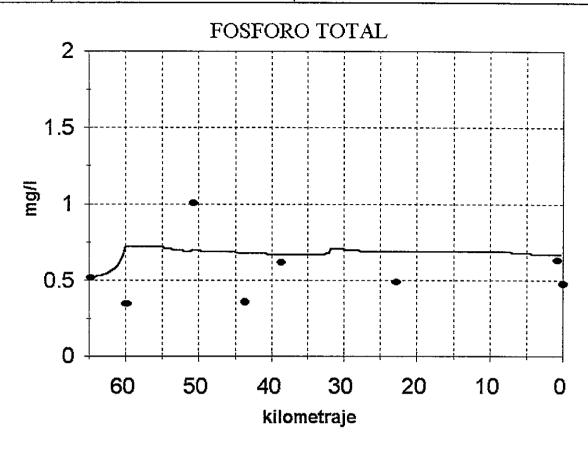



Figura VI.34. Fósforo orgánico.

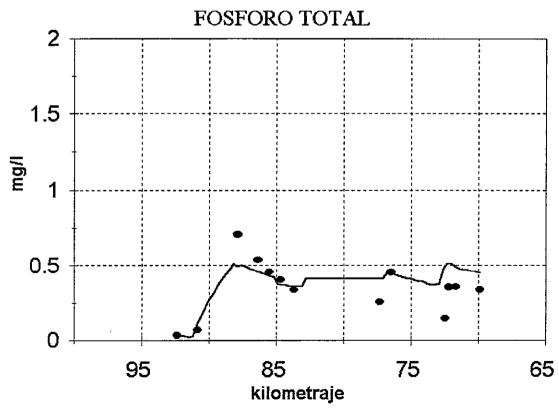
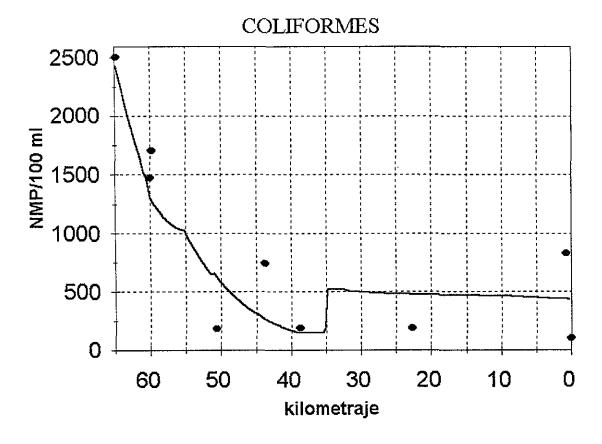



Figura VI.35. Fósforo Total.

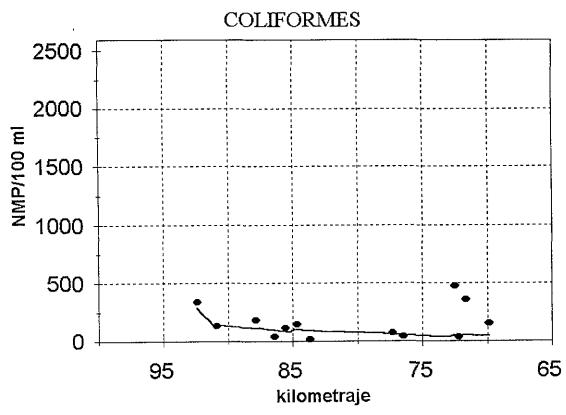
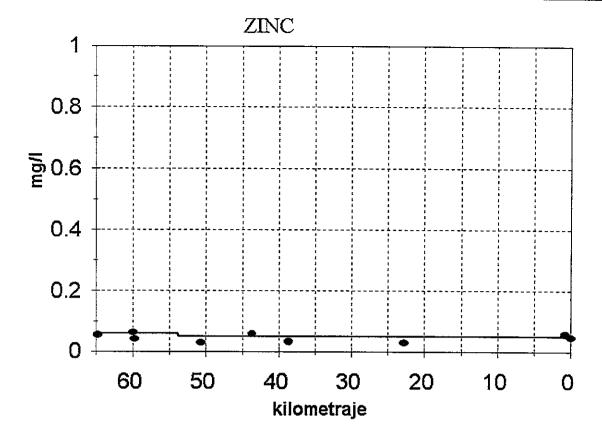



Figura VI.36. Coliformes fecales

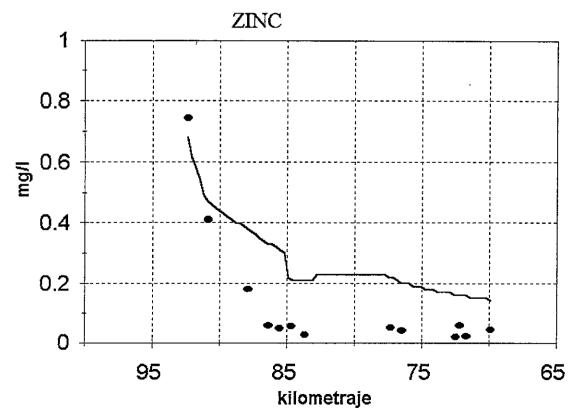
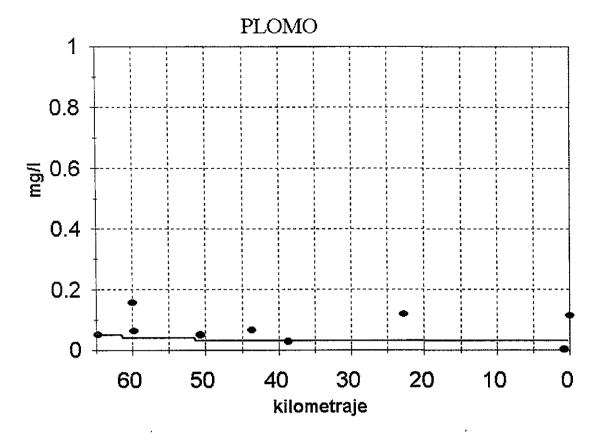



Figura VI.37. Zinc.

VI.44

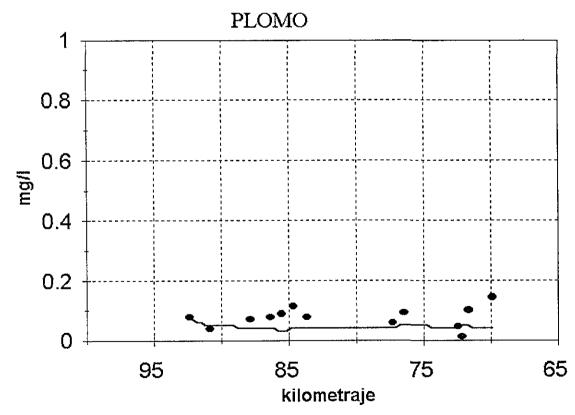


Figura VI.38. Plomo.

VI.6 Importancia relativa de cada fuente de contaminación.

Las principales fuentes de contaminación del Río Blanco se agrupan en el sector industrial y aportan aproximadamente el 30 % de la carga orgánica contaminante. Más del 60 % de la carga orgánica contaminante, es aportada por los usuarios de la Planta del Fideicomiso del Alto Río Blanco (FIRIOB), menos del 10 % restante de la carga contaminante vertida en la cuenca, es de origen público urbano y de servicios.

La cuenca del Río Blanco es una de las más grandes e importantes debido a lo caudaloso de sus afluentes y por la actividad agrícola e industrial que se desarrolla en esta zona.

Para determinar la importancia de cada fuente de contaminación es necesario considerar las diferentes descargas al Río Blanco, es decir: industriales, municipales y agrícolas.

En lo que se refiere a las descargas municipales e industriales, se cuantificó la carga de contaminantes de cada descarga incluyendo las de los ingenios azucareros.

Las principales fuentes de contaminación del Río Blanco se agrupan en el sector industrial y aportan aproximadamente el 30 % de la carga orgánica contaminante. Dichas fuentes se listan, en orden decreciente de acuerdo a su carga orgánica, en el Cuadro VI.17.

Cuadro VI.17. Principales fuentes de contaminación del Río Blanco.

Fuente:	Pertenece a:
Ingenio San Nicolás	Sin Inf.
Kimberly Clark de México	Kimberly Clark de México
Ingenio La Providencia	Grupo Escorpión
Ingenio San Miguelito	Grupo Escorpión
Ingenio San José de Abajo	PERNO, S.A.
Ingenio El Carmen	CALIPAN, S.A.

Más del 60 % de la carga orgánica contaminante es aportada por los usuarios de la Planta del Fideicomiso del Alto Río Blanco (FIRIOB), quien ya ha presentado el Programa de Acciones correspondiente, que le permitirá cumplir para el año 2000, con los límites máximos permisibles establecidos en la NOM-001-1996. Menos del 10 % restante de la carga contaminante vertida en la cuenca, es de origen público urbano y de servicios. En los Cuadros VI.18 a VI.24 se muestra la carga contaminante de las principales descargas la cual fue obtenida a través de información proporcionada por la CNA.

Cuadro VI.18. Carga contaminante de las principales descargas.

Giro	No de usuarios	Carga DBO ₅ (Ton/año)	Carga DQD (Ton/año)	Carga SST (Ton/año)	Carga G y A (Ton/año)	Volumen Descarga (Millones m³/año)
Industriai	14	20654 20.36 %	33816 21.57%	8168 26.62%	445 13.12%	41.81 28.88%
Ingenios	5	16730 16.49%	29599 18.88%	4608 15.02%	395 11.65%	18.48 12.77%
Otros	9	3,924 3.87%	4217 2.69%	3560 11.60%	50 1.47%	23.33 16.12%
FIRIOB	17	57479 56.65%	83242 53.10%	10998 35.84%	2097 61.82%	47.30 32.67%
Servicios	2	1 0.001%	2 0%	1 0%	0 0%	0.02 0.01%
Municipal	32	2680 2.64%	5880 3.75%	3351 10.92%	405 11.94%	13.83 9.55%
Total	65	101 468	156 756	30 686	3 392	144.77

Cuadro VI.19. Carga contaminante de ingenios.

No	Nombre o razón social	Município	Cuerpo receptor	No. desc.	Cárga DBO _s (Ton/año)	Carga DQO (Ton/año)	Carga SST (Ton/año)	Carga G y A (Ton/año)	Volumen descarga (m³/año)
1	Ingenio San Nicolás	Cuichapa	Río Blanco	1	13174	23943	2034	243	2210380
2	Ingenio La Providencia S.A.	Cuichapa	Río Blanco	1	1084	2394	347	27	3541667
3	Ingenio San Miguelito, S.A.	Córdoba	Arr. Tepachero, Afl. Río Blanco	2	1302	1472	300	22	342210
4	Ingenio San José de Abajo S.A de C.V.	Cuitlahuac	Infiltración y Río Zapote Afl. Río Blanco	3	947	1421	1867	89	7713792
5	Ingenio El Carmen, S.A. de C.V.	fxtaczoquitlán	Arroyo Rincón Brujo	2	223	369	60	14	4677092
		TOTAL			16730	29599	4608	395	18485141

Cuadro VI.20. Carga contaminante de las principales descargas de aguas residuales de origen industrial (no incluye ingenios y EIRIOR)

		industrial	(no incluye i	ngeni	os y FIR	OB).				
No.	Nombre o razón social	Municipio	Cuerpo receptor	No. Desc	Carga DBO5 (ton/año)	Carga DQO (ton/año)	Carga SST (ton/año)	Carga GyA (ton/año)	Volumen (m3/año)	Fecha análisis
	Kimberly Clark de México, S.A. de C.V.	lxtaczoquitián	Río Escamela	2	3 313	4 186	2 231	0	16 537 785	abnl'97 (declarado-LA)
	West Grand de México S. De R.L. de C.V	ixtaczoquitlán	Arroyo Innominado afluente al Río Escamela	1	56	27	30	2	1 492 992	junio'97 (declarado-LA)
3	Talleres y aceros, S.A. de C.V.	Orizaba	Arroyo Innominado afluente al Río Escamela	1	1	3	80.0	0.02	20 640	junio'96 (declarado-LA)
	Cementos Apasco, S.A. de C.V.	lxtaczoquitlán	Arroyo Sembradores e Infiltración	1	0.25	1	1	0.26	34 719	abnl'97 (declarado-LA)
5	Polietilenos de Onzaba, S.A. de C.V.	lxtaczoquitlán	Cañada Pluvial	1	0.02	0 20	0.14	0.30	24 090	junio'95 (CNA)
6	PEMEX-Refinación. Supttcia. Local de Ventas Escamela	lxtaczoquitlán	Arroyo innominado	1	0.02	0.07	0 01	0.01	730	julio'95 (CNA)
7	PEMEX E y P Campamento Tinajas	Tierra Blanca	Río Blanco	1	0.01	0.05	0.07	0.01	289	julio'95 (CNA)
8	Productos Químicos Naturales, S.A. de C.V.	Ixtaczoquitián	Río Escamela afluente al Río Blanco	2	554	0	1 298	48	5 219 208	abril'97 (declarado-LA)
9	Captación de Reciclaje de Materiales, S.A. de C.V.	lxtaczoquitlán	Arroyo Sonso, afluente al Río Metlac	1	. 0	0	0	0		junio'96 (CNA)
	TOTAL				3 924	4 217	3 560	50	23 330 453	

Cuadro VI.21. Carga Contaminante de las principales descargas de aguas residuales de servicios.

No.	Nombre o razón social	Municipio	Cuerpo receptor	No. Desc	Carga DBO _s (Ton/año)	Carga DQO (Ton/año)	Carga SST. (Ton/arlo)	Carga G y A (Ton/año)	Volumen (m³/año)
1	Talleres y Aceros S A. de C.V.	Orizaba	Arroyo innominado afluente al Río Blanco	1	1	2	0	0	14052
2	PEMEX-Refinación Suptcia. Local de Ventas Escamela	lxtaczoquitlán	Arroyo Innominado	2	0	0	0	0	4380
	· · · · · · · · · · · · · · · · · · ·	Total			1	2	1	0	18432

Cuadro VI.22. Carga Contaminante de las principales descargas municipales.

CORDOBA CORDOBA CORDOBA APROYO TEPACHERO 628 779 1256 33 6279400 6270970 627097450 7070974		Cuadio VI.22. Carga							57-1
1 CORDOBA CORDOBA ARROYO TEPACHERO 628 779 1256 33 6279400 2 PALMIRA MARIANO ESCOBEDO RIO GRIZABA 288 621 267 38 863517 3 ALUZ FCO. I. MADERO (SAN ROMAN) CORDOBA RIO BILANCO 245 379 152 1 559910 4 CHOCAMAN CHOCAMAN RIO TILAPA 142 376 154 30 538740 5 PIEDRAS NEGRAS TALIXCOYAN TILAIXCOYAN 127 337 138 27 482676 6 AMATLAN DE LOS REYES AMATLAN DE LOS REYES RIO TEPACHERO 104 276 113 22 395514 7 CUATLAPAN XTACZOQUITLAN RIO BLANCO 100 265 109 21 379454 8 YANGA RIO SECO 92 244 100 20 349527 9 MALTRATA MALTRATA SARRANCA SECA 89 235 97 19 338267 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 235 97 19 338267 11 ATZACAN ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 13 OMEALCA OMEALCA RIO BLANCO 66 1174 71 14 248383 14 PROVIDENCIA CUICHAPA RIO BLANCO 66 174 71 14 248381 15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 226665 16 XHUATLANALILLO RIO RIZABA 55 144 59 12 206606 17 SUMIDERO XHUATLANCILLO RIO BLANCO 39 103 42 8 147666 19 UNION Y PROGRESO XHUATLANCILLO RIO BLANCO 39 103 42 8 147666 19 UNION Y PROGRESO XHUATLANCILLO RIO BLANCO 36 95 39 8 13 184437 21 JALAPILLA RAFEL DELGADO RAFAEL DELGADO RIO BLANCO 39 103 42 8 147666 19 UNION Y PROGRESO XHUATLANCILLO RIO BLANCO 36 95 39 8 13 130930 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 13 141626 24 PERLA LA PERLA LA PERLA LA ORIZABA 37 99 40 9 141182 25 GUICHAPA CIUICHAPA RIO BLANCO 35 95 39 8 1305437 24 PERLA LA PERLA LA PERLA LA ORIZABA 37 99 40 9 1 141182 25 GUICHAPA RIO BLANCO 35 95 39 38 1 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 1 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 1 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 1 130079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 1 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 7 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 7 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 7 133079 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO	No.	Localidad	Municipio	Cuerpo receptor				Carga GyA	Volumen descarga
2 PALMIRA MARIANO ESCOBEDO RIO ORIZABA 258 621 267 38 863517 3 LA LUZ FCO. I. MADERO (SAN ROMAN) CORDOBA RIO BLANCO 245 378 152 1 559910 4 CHOCAMAN CHOCAMAN RIO TILLARA 142 376 154 30 538740 5 PIEDRAS NEGRAS TALIXCOYAN TILALIXCOYAN 127 337 138 27 482676 6 AMATLAN DE LOS REYES AMATLAN DE LOS REYES RIO TEPACHERO 104 276 113 22 385514 7 CUATLAPAN XTACZOQUITLAN RIO BLANCO 100 265 109 21 379454 8 YANGA YANGA RIO SECO 92 244 100 20 349597 9 MALTRATA MALTRATA SARRANCA SECA 89 236 97 19 338209 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 235 97 19 338209 11 ATZACAN ATZACAN ARROYO TENDIDO 84 222 91 18 317471 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 66 1174 71 14 24830 13 OMEALCA OMEALCA RIO BLANCO 66 1174 71 14 24830 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 57 13 226590 15 IOMATLAN TOMATLAN TOMATLAN TILAPA 60 158 65 13 226580 17 SUMIDERO XTACZOQUITLAN RIO BLANCO 39 103 103 42 8 147606 19 UNION Y PROGRESO XHUATLANCILLO XHUATLANCILO XHUATLANCILLO XHUATLANCILLO XHUATLANCILLO XHUATLANCILLO XHUATLANCI					(Ton/año)	(Ton/año)	(Fon/año)	(Ton/año)	(m³/año)
3 LLUZ FCO. I. MADERO (SAN ROMAN) CORDOBA RIG BLANCO 245 379 162 1 559910 4 CHOCAMAN CHOCAMAN RIG TILAPA 142 376 154 30 538740 5 PIEDRAS NEGRAS TALIXCOYAN TILAUXCOYAN 127 337 138 27 482676 6 AMATLAN DE LOS REYES AMATLAN DE LOS REYES RIO TEPACHERO 104 276 113 22 395514 7 CUATLAPAN XTACZOQUITLAN RIO BLANCO 100 255 109 21 379454 8 YANGA YANGA RIO SECO 92 244 100 20 346597 9 MALTRATA MALTRATA SARRANCA SECA 89 236 97 19 338209 10 PEÑUBLA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 338240 11 PEÑUBLA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 338241 12 RAFABL DELGADO RAFAEL DELGADO RIO BLANCO 84 222 91 18 317471 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 65 174 71 14 24830 13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 24830 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 57 13 224530 15 TOMATLAN TOMATLAN TILAPA 60 158 51 3 226665 15 UNIDERRO XTACZOQUITLAN RIO BLANCO 45 122 50 10 174691 18 CUICHAPA RIO BLANCO 45 144 59 12 26660 19 UNION Y PROGRESO XHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 SUADALUPE (LA PATRONA) AMATLAN BLOS REYES RIO BLANCO 32 94 17 9 277032 21 PLEBLITO (GRUCERO NACIONAL) CORDOBA RIO BLANCO 32 94 17 9 277032 22 PUEBLITO (GRUCERO NACIONAL) CORDOBA RIO BLANCO 35 95 38 1436437 22 PUEBLITO (GRUCERO NACIONAL) CORDOBA RIO BLANCO 35 95 38 7 130079 23 PARAJE NUEVO AMATLAN BLOS REYES RIO BLANCO 35 95 38 7 130079 24 PERLA LA PERLA RAFAEL DELGADO RIO BLANCO 35 95 38 7 130079 25 PUEBLITO (GRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 130079 25 PUEBLITO (GRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 130079 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA RAFAEL DELGADO RIO BLANCO 25 66 27 5 94535 28 ACULTZINGO ACULTZINGO ACATLA 26 68 27 5 94535 29 ARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 92 38 7 130079 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA REPAREL DELGADO RIO BLANCO 25 66 27 5 94535 28 ACULTZINGO ACULTZINGO ACATLA 26 68 27 5 94535 29 ARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 25 66 27 5 94535 29 ARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 25 66 27 5 94	1	CORDOBA	CORDOBA	ARROYO TEPACHERO	628	779	1256	33	6279460
4 CHOCAMAN CHOCAMAN RIO TILAPA 142 376 154 30 5387-0 5 PIEDRAS NEGRAS TALIXCOYAN TILALIXCOYAN 127 337 138 27 482576 6 AMATLAN DE LOS REYES AMATLAN DE LOS REYES RIO TEPACHERO 104 276 113 22 395514 7 CUATLAPAN IXTACZOQUITLAN RIO BLANCO 100 265 109 21 379454 8 YANGA YANGA RIO SECO 92 244 100 20 346597 9 MALTRATA MALTRATA SARRANCA SECA 89 236 97 19 333209 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 333209 11 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATZACAN ARATCAN ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 14 PROVIDENCIA CUICHAPA RIO BLANCO 66 1774 71 14 248330 15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 226685 16 KHUATLANCILLO XHUATLANCILLO RIO GRIZABA 55 144 59 12 206809 17 SUNIDERO XTACZOQUITLAN RIO BLANCO 45 122 50 10 174981 18 CUICHAPA CUICHAPA RIO BLANCO 45 122 50 10 174981 18 CUICHAPA CUICHAPA RIO BLANCO 45 122 50 10 174981 19 UNION Y PROGRESO XHUATLANCILLO RIO GRIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 35 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 35 95 39 8 136437 22 PUEBLITO (GRICGERO NACIONAL) CORDOBA RIO BLANCO 35 95 39 8 136437 22 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 8 136437 23 JALAPILLA RAFAEL DELGADO RIO BLANCO 25 66 27 5 94635 24 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 8 136437 25 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 8 136437 26 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 25 66 27 5 94635 27 PEGUILA FEQUILA PERLALA PERLAL	2	PALMIRA	MARIANO ESCOBEDO	RIO ORIZABA	258	621	267	38	863517
5 PIEDRAS NEGRAS TALIXCOYAN TLALIXCOYAN 127 337 138 27 482676 6 AMATLAN DE LOS REYES AMATLAN DE LOS REYES AMATLAN DE LOS REYES RIO TEPACHERO 104 276 113 22 395514 7 CUATLAPAN IXTACZOQUITLAN RIO BLANCO 100 265 109 21 379454 8 YANGA YANGA RIO SECO 92 244 100 20 349597 9 MALTRATA MALTRATA BARRANCA SECA 89 236 97 19 338209 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATZACAN ARTACAN ARROYO TENDIDO 84 2222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 66 174 71 14 248330 13 OMEALCA QUICHAPA RIO BLANCO 66 174 71 14 248330 15 TOMATLAN TOMATLAN <td< td=""><td>3</td><td>LA LUZ FCO. I. MADERO (SAN ROMAN)</td><td>CORDOBA</td><td>RIO BLANCO</td><td>245</td><td>379</td><td>162</td><td>1</td><td>559910</td></td<>	3	LA LUZ FCO. I. MADERO (SAN ROMAN)	CORDOBA	RIO BLANCO	245	379	162	1	559910
6 AMATLAN DE LOS REYES AMATLAN DE LOS REYES RIO TEPACHERO 104 276 113 22 395514 7 CUATLAPAN XTACZOQUITLAN RIO BLANCO 100 265 109 21 379454 8 YANGA YANGA RIO SECO 92 244 100 20 349597 9 MALTRATA MALTRATA BARRANCA SECA 89 236 97 19 333209 10 PÉNUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATZACAN ATZACAN ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 248330 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 224830 15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 226665 16 IXHUATLANCILLO XHUATLANCILLO RIO CRIZABA 55 144 59 12 208809 17 SUMIDERO IXTACZOQUITLAN RIO BLANCO 39 103 42 8 147666 19 UNION Y PROGRESO XHUATLANCILLO RIO CRIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 35 95 39 8 139437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 35 95 39 8 139437 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 24 PERLA LA RAFAEL DELGADO RIO BLANCO 25 66 27 5 94635 25 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 35 92 34 17 99 277035 27 PERLA LA RAFAEL DELGADO RIO BLANCO 35 92 38 7 133079 28 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 35 95 39 38 7 133079 29 PERLA LA PERLA RAFAEL DELGADO RIO BLANCO 35 92 38 7 133079 20 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 93 38 7 133079 21 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 93 38 7 133079 22 PERLA LA PERLA RAFAEL DELGADO RIO BLANCO 15 92 15 10 12 38635 25 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 16 68 27 5 94635 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 17 11 22 3879 27 PERLA LA PERLA RAFAEL DELGADO RIO BLANCO 17 11 22 3879 28 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 17 11 22 3879 28 PARAJE NUEVO AMATLAN DE LOS REYES RIO BLANCO 17 11 22 3879 29 PERLA LA PERLA PERL	4	CHOCAMAN	CHOCAMAN	RIO TILAPA	142	376	154	30	538740
7 CUATLAPAN IXTACZOQUITLAN RIO BLANCO 100 265 109 21 379454 8 YANGA YANGA RIO SECO 92 244 100 20 346597 9 MALTRATA MALTRATA SARRANCA SECA 89 236 97 19 338209 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATZACAN ATZACAN ARROYO TENDIDO 84 222 91 18 317844 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 13 OMEALCA OMEALCA RIO BLANCO 66 1174 71 14 248330 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 234330 15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 226685 16 IXHUATLANCILLO XHUATLANCILLO RIO CRIZABA 55 144 59 12 205809 17 SUMIDERO XYACZOQUITLAN RIO BLANCO 46 122 50 10 174981 18 CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO XHUATLANCILLO RIO CRIZABA 37 99 40 9 141182 20 SUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 35 95 39 8 193494 21 IALAPILLA RAFAEL DELGADO RIO SECO 35 93 38 7 133079 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 13027 24 PERLA LA PERLA ARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 13027 25 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 13027 26 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 27 TEQUILA PERLA ARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 13027 28 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 13027 29 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 20 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 25 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 26 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 27 TEQUILA PERLA ARAJE NELVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 13027 28 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 13027 29 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 20 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 20 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 21 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 13027 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7	5	PIEDRAS NEGRAS	TALIXCOYAN	TLALIXCOYAN	127	337	138	27	482676
8 YANGA YANGA RIO SECO 92 244 100 20 349597 9 MALTRATA MALTRATA SARRANCA SECA 89 236 97 19 338209 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATACAM ATZACAM ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 14 PROVIDENCIA CUICHAPA RIO BLANCO 66 174 71 14 248330 15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 224685 16 IXHUATLANCILLO XHUATLANCILLO RIO ORIZABA 55 144 59 12 206805 17 SUMIDERO XTACZOQUITLAN RIO BLANCO 46 122 50 10 174981 18 CUICHAPA CIICHAPA RIO BLANCO 46 122 50 10 174981 18 CUICHAPA CIICHAPA RIO BLANCO 46 122 50 10 174981 18 CUICHAPA CIICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO XHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 SUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 138437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 35 95 39 8 136437 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 26 5 98039 25 TURDANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA RODOBA RIO SECO 35 92 38 7 131079 26 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 27 PERLA LA PERLA A ORIZABA 30 79 32 6 113223 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53654 29 TEQUILA TEQUILA RODOBA RIO SECO 15 66 27 5 94535 29 ZEDULTZINGO ACULTZINGO ACATLA 26 68 26 5 98039 25 TURDANGUILLO XTACZOQUITLAN RIO BLANCO 10 27 11 2 33679 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53654 31 PATRONATO DE LA U HAB. 27 DE SEP. XTACZOQUITLAN RIO BLANCO 10 27 11 2 33679 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. XTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA CACTLA	6	AMATLAN DE LOS REYES	AMATLAN DE LOS REYES	RIO TEPACHERO	104	276	113	22	395514
9 MALTRATA MALTRATA BARRANCA SECA 89 236 97 19 332809 10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATZACAN ATZACAN ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 248330 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 234330 15 FOMATLAN TOMATLAN TILAPA 60 158 65 13 226685 16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206803 16 CUICHAPA RIO BLANCO 46 122 50 10 174981 18 CUICHAPA RIO BLANCO 46 122 50 10 174981 18 CUICHAPA RIO BLANCO 47 10 10 10 10 10 10 10 10 10 10 10 10 10	7	CUATLAPAN	IXTACZOQUITŁAN	RIO BLANCO	100	265	109	21	379454
10 PEÑUELA AMATLAN DE LOS REYES RIO TEPACHERO 89 236 97 19 337844 11 ATZACAN ATZACAN ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 248330 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 234330 15 FOMATLAN TOMATLAN TILAPA 60 158 65 13 226685 16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206809 17 SUMIDERO XTACZOQUITLAN RIO BLANCO 46 122 50 10 174981 18 CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 36 95 39 8 136437 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 92 38 7 131079 23 PARJIE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TIXAPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 277 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 88766 28 DOS RIOS (TOCUILA) ATROCAN ARROYO TENDIDO 14 37 15 3 35855 28 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 26 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 11 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.35 0.15 0.03 511	8	YANGA	YANGA	RIO SECO	92	244	100	20	349597
11 ATZACAN ATZACAN ATZACAN ARROYO TENDIDO 84 222 91 18 317477 12 RAFAEL DELGADO RAFAEL DELGADO RIO BLANCO 82 217 89 17 310990 13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 248330 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 234330 15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 226665 16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206809 17 SUMIDERO IXTACZOQUITLAN RIO BLANCO 46 122 50 10 174981 18 CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 26 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53656 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 536524 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 1 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO TENDIDO 14 37 15 3 536524 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	9	MALTRATA	MALTRATA	BARRANCA SECA	89	236	97	19	338209
12 RAFAEL DELGADO RIO BLANCO 82 217 89 17 310980 13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 24830 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 234330 15 FOMATLAN TOMATLAN TILAPA 60 158 65 13 226685 16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206809 17 SUMIDERO IXTACZOQUITLAN RIO BLANCO 45 122 50 10 174981 18 CUICHAPA CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 35 93 38 7 133079 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 13079 24 PERLA LA PERLA A ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO TENDIDO 15 10 11 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.013 0.36 0.15 0.03 511	10	PEŇUELA	AMATLAN DE LOS REYES	RIO TEPACHERO	89	236	97	19	337844
13 OMEALCA OMEALCA RIO BLANCO 66 174 71 14 24830 14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 67 13 234330 15 ITOMATLAN TOMATLAN TILAPA 60 158 65 13 226655 16 IXHUATLANCILLO IXHUATLANCILLO RIO CRIZABA 55 144 59 12 206809 17 SUMIDERO IXTACZOQUITLAN RIO BLANCO 46 122 50 10 174991 18 CUICHAPA CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO CRIZABA 37 99 40 9 141162 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 ITUXPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN XTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP, XTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA ARROYO EL MANGUITO 2 5 10 11 116004	11	ATZACAN	ATZACAN	ARROYO TENDIDO	84	222	91	18	317477
14 PROVIDENCIA CUICHAPA RIO BLANCO 62 164 57 13 234330 15 TOMATLAN TILAPA 60 158 65 13 226685 16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206809 17 SUMIDERO XXACZOQUITLAN RIO BLANCO 45 122 50 10 174981 18 CUICHAPA QUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 QUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 35 93 38 7 133079 22 PUEBLITO (GRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 131079	12	RAFAEL DELGADO	RAFAEL DELGADO	RIO BLANCO	82	217	89	17	310980
15 TOMATLAN TOMATLAN TILAPA 60 158 65 13 226665 16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206809 17 SUMIDERO IXTACZOQUITLAN RIO BLANCO 46 122 50 10 174991 18 CUICHAPA CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA ARROYO EL MANGUITO 2 5 10 11 116004	13	OMEALCA	OMEALCA	RIO BLANCO	66	174	71	14	248930
16 IXHUATLANCILLO IXHUATLANCILLO RIO ORIZABA 55 144 59 12 206809 17 SUMIDERO IXTACZOQUITLAN RIO BLANCO 46 122 50 10 174981 18 CUICHAPA CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68	14	PROVIDENCIA	CUICHAPA	RIO BLANCO	62	164	57	13	234330
17 SUMIDERO XTACZOQUITLAN RIO BLANCO 46 122 50 10 174981 18 CUICHAPA CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO XHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN XTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. XTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA ARROYO EL MANGUITO 2 5 10 1 116004 33 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	15	TOMATLAN	TOMATLAN	TILAPA	60	158	65	13	226665
18 CUICHAPA CUICHAPA RIO BLANCO 39 103 42 8 147606 19 UNION Y PROGRESO IXHUATLANCILLO RIO ORIZABA 37 99 40 9 141182 20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA ARROYO EL MANGUITO 2 5 10 1 116004	16	IXHUATLANCILLO	IXHUATLANCILLO	RIO ORIZABA	55	144	59	12	206809
19 UNION Y PROGRESO	17	SUMIDERO	IXYACZOQUITLAN	RIO BLANCO	46	122	50	10	174981
20 GUADALUPE (LA PATRONA) AMATLAN DE LOS REYES RIO BLANCO 36 95 39 8 136437 21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	18	CUICHAPA	CUICHAPA	RIO BLANCO	39	103	42	8	147606
21 JALAPILLA RAFAEL DELGADO RIO BLANCO 32 94 17 9 277035 22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 59655 29 ZAPOAPAN XTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA	19	UNION Y PROGRESO	IXHUATLANCILLO	RIO ORIZABA	37	99	40	9	141182
22 PUEBLITO (CRUCERO NACIONAL) CORDOBA RIO SECO 35 93 38 7 133079 23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO XTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN XTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA AC	20	GUADALUPE (LA PATRONA)	AMATLAN DE LOS REYES	RIO BLANCO	36	95	39	8	136437
23 PARAJE NUEVO AMATLAN DE LOS REYES RIO SECO 35 92 38 7 131079 24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	21	JALAPILLA	RAFAEL DELGADO	RIO BLANCO	32	94	17	9	277035
24 PERLA LA PERLA LA ORIZABA 30 79 32 6 113223 25 ACULTZINGO ACULTZINGO ACATLA 26 68 26 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	22	PUEBLITO (CRUCERO NACIONAL)	CORDOBA	RIO SECO	35	93	38	7	133079
25 ACULTZINGO ACULTZINGO ACATLA 26 68 28 5 98039 26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	23	PARAJE NUEVO	AMATLAN DE LOS REYES	RIO SECO	35	92	38	7	131079
26 TUXPANGUILLO IXTACZOQUITLAN RIO BLANCO 25 66 27 5 94535 27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	24	PERLA LA	PERLA LA	ORIZABA	30	79	32	6	113223
27 TEQUILA TEQUILA POPOCATL 18 48 20 4 68766 28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	25	ACULTZINGO	ACULTZINGO	ACATLA	26	68	28	5	98039
28 DOS RIOS (TOCUILA) ATZACAN ARROYO TENDIDO 14 37 15 3 53655 29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	26	TUXPANGUILLO	IXTACZOQUITLAN	RIO BLANCO	25	66	27	5	94535
29 ZAPOAPAN IXTACZOQUITLAN RIO BLANCO 10 27 11 2 38179 30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	27	TEQUILA	TEQUILA	POPOCATL	18	48	20	4	68766
30 MARIANO ESCOBEDO MARIANO ESCOBEDO RIO ORIZABA 9 25 10 2 35624 31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	28	DOS RIOS (TOCUILA)	ATZACAN	ARROYO TENDIDO	14	37	15	3	53655
31 PATRONATO DE LA U HAB. 27 DE SEP. IXTACZOQUITLAN ARROYO EL MANGUITO 2 5 10 1 116004 32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	29	ZAPOAPAN	IXTACZOQUITLAN	RIO BLANCO	10	27	11	2	38179
32 ATZOMPA SOLEDA ATZOMPA ACATLA 0.13 0.36 0.15 0.03 511	30	MARIANO ESCOBEDO	MARIANO ESCOBEDO	RIO ORIZABA	9	25	10	2	35624
	31	PATRONATO DE LA U HAB. 27 DE SEP.	IXTACZOQUITLAN	ARROYO EL MANGUITO	2	5	10	1	116004
TOTAL 2680 5880 3351 405 13830514	32	ATZOMPA	SOLEDA ATZOMPA	ACATLA	0.13	0.36	0.15	0.03	511
			TOTAL		2680	5880	3351	405	13830514

Cuadro VI.23. Carga contaminante de la descarga proveniente del FIRIOB.

FIRIOB :	Municipio	Cuerpo receptor	Carga DBO5 (ton/año)	Carga DQO (ton/año)	Carga SST (ton/año)	Carga G y A (ton/año)	Gasto (I.p.s.)	Volumen Descarga (m3/año)*
Descarga de aguas residuales tratadas: 16% Municipal, 84% industrial	Ixtaczoquitlán	Río Escamela	634	786	675	32	107	3 374 352
Descarga de aguas residuales sin tratamiento: 84% Municipal, 16% industrial	Ixtaczoquitlán	Río Escamela	56 845	82 456	10 323	2 065	1 393	43 929 648
TOTAL			57 479	83 242	10 998	2 097	1 500	47 304 000

Cuadro VI.24. Empresas que descargan en el FIRIOB.

FIDEICOMISO DEL ALTO	RIO BLANCO
Empresas	- Municipios
1 Embotelladora Tropical, S.A. de C.V. 2 Compañía Industrial de Orizaba 3 Fermentaciones Mexicanas 4 Kimberly Clark de México, S.A. de C.V. 5 Tenerias Company, S.A. de C.V. 6 Cervecería Cuauhtémoc-Moctezuma, S.A. de C.V. 7 Compañía Industrial Veracruzana, S.A. 8 Tenerías Unidas S.A. de C.V. 9 Industrias Chahin de Orizaba, S.A. de C.V. 10 Papelera Veracruzana, S.A. de C.V.	1 Camerino Z. Mendoza 2 Huiloapan de Cuauhtémoc 3 ktaczoquitlán 4 Nogales 5 Orizaba 6 Río Blanco

CNA-LA: Análisis realizados en laboratorio acreditado (visita de inspección).

* El volúmen total de descarga corresponde al volumen declarado en su titulo.

VI.7 Evaluación de las características de calidad del agua

Con la información generada en campo y laboratorio se procedió a evaluar las características de calidad del agua de las descargas de acuerdo con la Norma Oficial Mexicana NOM-001-ECOL-96 y las condiciones particulares de descarga; y del Río Blanco y sus afluentes de acuerdo a su uso y considerando lo establecido en los criterios ecológicos.

De acuerdo con lo establecido en la Ley Federal de Derechos, en el caso del Río Blanco y sus afluentes, se clasifican como cuerpo receptor tipo A. Como propuesta se estipula que en un futuro el río cumpla como tipo B y posteriormente como tipo C; por lo que se comparan los valores de las descargas así como de las estaciones muestreadas sobre la corriente y sus afluentes, con los tres usos.

VI.7.1 Evaluación de la calidad del agua de las descargas

En este rubro se procedió a comparar cada una de las descargas industriales con la Norma Oficial Mexicana NOM-001-ECOL-96 y las condiciones particulares de descarga.

De acuerdo a la NOM-001-ECOL-1996

Se compararon los resultados con la Norma NOM-001-ECOL-1996 (Cuadro VI.25) la cual establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas v bienes nacionales.

Cuadro VI.25. Límites Máximos Permisibles para Descargas a Ríos (NOM-001-ECOL-1996).

Parámetro	Uso en Riego	Agricola (A)	Uso Público	o Urbano (B)	Protección a la	Vida Acuática©
,	PM	PD	PM	PD	PM	PD
Temperatura (° C)	NA	NA	40	40	40	40
Grasas y Aceites	15	25	15	25	15	25
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2
Sólidos Suspendidos Totales	150	200	75	125	40	60
Demanda Bioquímica de Oxígeno	150	200	75	150	30	60
Nitrógeno Total	40	60	40	60	15	25
Fósforo Total	20	30	20	30	5	10
pH (U. pH)	5-10	5-10	5-10	5-10	5	5-10
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000
Níquel	2	4	2	4	2	4
Plomo	0.5	1	0.2	0.4	02	0.4
Zinc	10	20	10	20	10	20

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

A continuación se presenta una comparación de los datos observados con los límites del Cuadro VI.25 y se listan los contaminantes que no cumplen con estos límites.

Descarga Santa Rosa CIDOSA (RB4)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio, a excepción de la temperatura que para el caso del valor máximo diario no cumple con los usos B y C (Cuadro VI.26).

PM= Promedio mensual, promedio ponderado de al menos dos muestras compuestas.

PD= Promedio diario, valor del análisis de una muestra compuesta.

Cuadro VI.26, Comparación de la descarga Santa Rosa CIDOSA (RB4) con la NOM-001-ECOL-1996.

Parámetro		go Agricola A)	Uso Público Urbano (B)		Protección a la Vida Acuática @			o medido en laboratorio
	РМ	PD	РМ	PD	РМ	PD	PP	P _{MAX}
Temperatura (° C)	NA NA	NA.	40	40	40	40	39.905	47.60
Grasas y Aceites	15	25	15	25	15	25	Б 387	6.600
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.000	0.000
Sólidos Suspendidos Totales	150	200	75	125	40	60	6 673	8.000
Demanda Broquimica de Oxígeno	150	200	75	150	30	60	7.073	17.000
Nîtrógeno Total	40	60	40	60	15	25	7.248	9,160
Fósforo Total	20	30	20	30	5	10	0.155	0.230
pH (U pH)	5-10	5-10	5-10	5-10	5	5-10	8 793	9.430
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000	8.103	20.000
Niquel	2	4	2	4	2	4		
Plomo	0.5	1	02	0.4	0.2	0.4	0.037	0 106
Zine	10	20	10	20	10	20	0.054	0.062

No cumple con la Norma

Descarga PLAMAT No. 1 (RB11)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio, a excepción de la DBO que para el caso del valor máximo diario no cumple con el uso C (Cuadro VI.27).

Cuadro VI 27 Comparación de la descarga PI AMAT No. 1 (RB11) con la NOM-001-FCOI -1996

Parámetro	Uso en Rie	go Agrícola A)	Uso Públic	Uso Público Urbano (B)		n a la Vida tica ©	Parámetro campo y la	
	PM	PD	PM	PD	РМ	PD	PP	P _{MX}
Temperatura (° C)	NA NA	NA.	40	40	40	40	18.303	19.600
Grasas y Aceites	15	25	15	25	15	25	17.341	22.300
Sólidos Sedimentables (mi/l)	1	2	1	2	1	2	0.034	0.0100
Sólidos Suspendidos Totales	150	200	75	125	40	60	24 403	26,000
Demanda Bioquímica de Oxígeno	150	200	75	150	30	65	39.087	64 000
Nitrógeno Total	40	60	40	60	15	25	6 793	7.350
Fósforo Total	20	30	20	30	5	10	2.030	2.400
pH (U pH)	5-10	5-10	5-10	5-10	5	5-10	7.221	7.34
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000	281 803	750
Niquel	2	4	2	4	2	4		
Plomo	0.5	1	02	0.4	02	04	0.002	0.005
Zinc	10	20	10	20	10	20	0 085	0,109

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga PLAMAT No. 2 (RB12)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso de promedio pesado no cumple con los usos B y C, y para el caso del valor máximo diario no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso de promedio pesado no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso de promedio pesado no cumple con ningún tipo de uso; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.28).

Cuadro VI.28 Comparación de la descarga PLAMAT No. 2 (RB12) con la NOM-001-ECOL-1996

Parámetro		Uso en Riego Agricola (A)		Urbano (B)	Protección Acuát		Parámetro medido en campo y laboratorio		
	PM	PD	PM	PD	PM	PD	PP	P _{MAX}	
Temperatura (° C)	NA	NA.	40	40	40	40	22 372	23,100	
Grasas y Aceites	95 95	25			1000		625	# 8% 60Q	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.065	0.200	
Sólidos Suspendidos Totales	150	200	000 B			60	0.00	250 M Q	
Demanda Bioquímica de Oxígeno	150	200			30	60	253.368		
Nitrógeno Total	40	60	40	60	15	25	19.441	24.650	
Fósforo Total	20	30	20	30	5	10	2 311	4,810	
pH (U. pH)	5-10	5-10	5-10	5-10		5-10		8.200	
Coliformes fecales (NMP/100 ml)	6000	2000	0,000	2000	1000	2000	1 4 4 5 5 W	1500 000	
Niquel	2	4	2	4	2	4	L		
Plomo	0.5		0.2		1 0	0.4		0.00	
Zinc	10	20	10	20	10	20	0.045	0.091	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga Harinera y Manufacturera de Orizaba (RB16)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso de promedio pesado no cumple con ningún tipo de uso, y para el caso del valor máximo diario no cumple con los usos B y C; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Total para el caso de promedio pesado así como del valor máximo diario no cumple con el uso C; PH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso de promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.29).

Cuadro VI.29. Comparación de la descarga Harinera y Manufacturera de Orizaba (RB16) con la NOM-001-ECOL-1996.

Parámetro	Uso en Rieg (A)	-	Uso Pública	Urbano (B)	Protección Acuát		Parámetro campo y la	
	PM	PD	PM	PD	PM	PD	PP	P _{MX}
Temperatura (° C)	NA NA	NA	40	40	40	40	17.044	25 200
Grasas y Aceites	3000 page 1	25	15	22.00			90.50	41,400
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0 199	0 200
Sólidos Suspendidos Totales	0150	200	73	120			152.250	156 A
Demanda Bioquímica de Oxígeno	150	200	75			60	12.437	193,000
Nitrógeno Total	40	60	40	60	15	26	9.188	27.720
Fósforo Total	20	30	20	30	(300 \$ 00 000	00 010	12.274	12.840
pH (U, pH)	5-10	5-10	5-10	5-10	(0) (1) (1) (1) (1) (1)	5-10	7.00	7,900
Coliformes fecales (NMP/100 ml)	(% 1000 .0%	2600	1600	2000 c	4,000	2006	4340,723	7500000
Niquel	2	4	2	4	2	4		
Píomo	0.5	1	0.2	04	0.2	0.4	0.106	0.106
Zinc	10	20	10	20	10	20	0 152	0 206

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga Tenerías Unidas (RB20)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Sedimentables para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso de promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.30).

Cuadro VI.30. Comparación de la descarga Tenerías Unidas (RB20) con la NOM-001-ECOL-1996

Parámetro		go Agrícola A)	Uso Públic	Drbano (B)		in a la Vida ática ©	Parámetro med	ido en campo y atorio
	₽M	PD	РM	PD	PM	PD	PP	P _{MX}
Temperatura (° C)	NA.	NA	40	40	40	40	22 067	23.000
Grasas y Aceites	3 19	25	450	26		25	145808	274,300
Sólidos Sedimentables (ml/l)						2.2	51755	95.850
Sólidos Suspendidos Totales	750	200	76	125	40	60	2492.067	5340-000
Demanda Bioquímica de Oxigeno	950	790	75	75.0	- 35	60	764 000	1676,000
Nitrógeno Total	900	60	40	50	16	. 25	134,020	16084
Fósforo Total	20	30	20	30	5	10	3,150	7 25
pH (U pH)	5-10	5-10	5-10	5-10		5-10	6.92	9.57
Coliformes fecales (NMP/100 ml)	1000	2000	1936	2000	*600	2000	178672 667	465000
Niquel	2	4	2	4	2	4		
Piomo	0.5	1	0.2	0.4	02	0.4	0.059	0 176
Zinc	10	20	10	20	10	20	0.720	1.876

No cumple con la Norma

Descarga Tenerías Trueba (RB21)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Sólidos Sedimentables para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del valor máximo diario no cumple con el uso C; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.31).

Cuadro VI.31. Comparación de la descarga Tenerías Trueba (RB21) con la NOM-001-ECOL-1996

Parámetro		go Agricola A)	Uso Públic	o Urbano (B)		n a la Vida tica ©		dido en campo ratorio
	PM	PD	PM	PD	PM	PD	PP	P _{MX}
Temperatura (° C)	NA NA	NA	40	40	40	40	20.233	22.700
Grasas y Aceites	15	25	15	25	15	25	5.533	7.700
Sólidos Sedimentables (mill)							4500	10,000
Sólidos Suspendidos Totales	150	200	75	125	40	-60	39.767	85.983
Demanda Bioquímica de Oxigeno	199	. 200	77.75	1150	90	- 60	219867	408.000
Nitrógeno Total	44	-80	40		345	25	146.570	309.910
Fósfore Total	20	30	20	30	5	10	2.433	3.500
pH (U pH)	5-10	5-10	5-10	5-10		5-10	8053	8.860
Coliformes fecales (NMP/100 ml)	100	2000	1000	2000	1000	2,007	10225304	4000000
Níquel	2	4	2	4	2	4		
Plomo	0.5	1	0.2	0.4	0.2	04	0 127	0.225
Zinc	10	20	10	20	10	20	0.355	0 956

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga CAFIVER (RB31)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C (Cuadro VI.32).

Cuadro VI.32. Comparación de la descarga CAFIVER (RB31) con la NOM-001-ECOL-1996.

Parámetro	Uso en Rie (A							tro medido en y laboratorio	
	PM	PD	PM	PD	PM	PD	PP	P _{mx}	
Temperatura (° C)	NA NA	NA.	40	40	40	40	22,411	25.000	
Grasas y Aceites	15	25	15	25	15	25	5 240	6 800	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.000	0 000	
Sólidos Suspendidos Totales	150	200	75	125	40	60	8.711	12.000	
Demanda Bioquímica de Oxígeno	150	200	75	150	90	60	44,670	90.000	
Nitrógeno Total	40	60	40	60	15	25	9.676	11.740	
Fósforo Total	20	30	20	30	5	10	0.853	1 500	
pH (U pH)	5-10	5-10	5-10	5-10		5-10	7.465	7.800	
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000	808 204	1500.000	
Niquel	2	4	2	4	2	4			
Plomo	0.5	1	02	0.4	0.2	0.4	0 121	0 160	
Zinc	10	20	10	20	10	20	0 166	0 351	

No cumple con la Norma

Descarga PROQUINA No. 1 (RB32)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y Aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso de promedio pesado no cumple con el uso C; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.33).

Cuadro VI.33. Comparación de la descarga PROQUINA 1 (RB32) con la NOM-001-ECOL-1996.

Parámetro	Uso en Rieg (A		Uso Público	Urbano (B)		Protección a la Vida Parámetro medido Acuática © laborator		
	PM	PD	PM	PĐ	PM	PD	PP	P _{MAX}
Temperatura (° C)	NA NA	NA	40	40	40	40	26.664	27,000
Grasas y Aceites	0.95				10	25	38.000	57 640
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.000	0,000
Sólidos Suspendidos Totales	150	200	75	125	40	60	AB 721	52,000
Demanda Bioquímica de Oxigeno	3:::1 50 ::::	208	75		80	69	390-8 2 0	412.000
Nitrógeno Total	40	60	40	60	15		26,834	
Fósforo Total	20	30	20	30	5	10	0 307	0 330
рН (U. pH)	5-10	5-10	5-10	5-10		5-10	7.073	7.300
Coliformes fecales (NMP/100 ml)	1999	. 200 0	1000	2000	1000	2000	215920 965	476000 00D
Niquel	2	4	2	4	2	4		
Plomo	0.5	1	0.2	04	02	04	0 070	0.102
Zinc	10	20	10	20	10	20	0.160	0 312

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga PROQUINA No. 2 (RB33)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Sólidos Suspendidos Totales para el caso de promedio pesado no cumple con ningún tipo de uso y para el caso del valor máximo diario no cumple con los usos B y C; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.34).

Cuadro VI.34. Comparación de la descarga PROQUINA 2 (RB33) con la NOM-001-ECOL-1996

Parámetro	Uso en Rieg (A		Uso Públic	o Urbano (B)		n a la Vida lica ©		Parámetro medido en campo y laboratono	
	PM	PD	PM.	PD	PM	PĐ	PP	P _{MAX}	
Temperatura (° C)	NA.	NA NA	40	40	40	40	27.437	27.500	
Grasas y Aceites	15	25	15	25	15	25	11.987	12 500	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.139	0.200	
Sólidos Suspendidos Totales	::50:::	200		165	•	6	163.40E	777.00	
Demanda Bioquímica de Oxígeno	0.0150	. 200		150		82	\$35.54	4.00.00	
Nitrógeno Total	40	60	40	60	15	25	Z4 317	25,630	
Fósforo Total	20	30	20	30	5	10	3.718	3.800	
pH (U pH)	5-10	5-10	5-10	5-10	5	5-10	6.263	6,720	
Coliformes fecales (NMP/100 ml)	1900	2000	1906	7000	19.0	7300	2475.240	2860 000	
Níquel	2	4	2	4	2	4			
Plomo	0.5	1	0.2	0.4	0.2	0.4	0.184	0.210	
Zinc	10	20	10	20	10	20	0 177	0.200	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga FERMEX No. 1 (RB50)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y Aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; pH para el caso de promedio pesado no cumple con el uso C y para el caso del valor máximo diario no cumple con ningún tipo de uso; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.35).

Cuadro VI.35. Comparación de la descarga FERMEX No. 1 (RB50) con la NOM-001-ECOL-1996

Parámetro	Uso en Rieg (A		Uso Públic	o Urbano (B)	Protección Acuát				
	PM	PD	PM	PD	PM	PD	PP	P _{MAX}	
Temperatura (° C)	NA NA	NA	40	40	40	40	34 105	38.200	
Grasas y Aceites	70 A 5	25	15	2.0			39.36	96 150	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.065	0.100	
Sólidos Suspendidos Totales	150	200		128	4		\$4.789	185,486	
Demanda Bioquímica de Oxígeno	150	200	75.00	490		60	654.031	1939,600	
Nitrógeno Total	40	60	42	60	16	26	176.361	520,140	
Fósforo Total	20	30	20	30	5	10	1.466	2.200	
pH (U pH)	5-10	5-10	5-10		÷.	5/40	9412	\$1,140	
Coliformes fecales (NMP/100 ml)	1955	2000	-100	2.00	10.0	2000	1484.701	3060-000	
Níquel	2	4	2	4	2	4			
Plomo	0.5	1	0.2	0.4	02	0.4	0.112	0,176	
Zinc	10	20	10	20	10	20	0.177	0 366	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga FERMEX No. 2 (RB34)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y Aceites para el caso del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Fósforo Total para el caso del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.36).

Cuadro VI.36. Comparación de la descarga FERMEX No. 2 (RB34) con la NOM-001-ECOL-1996.

Parámetro	Uso en Rieg (A		Uso Público	Urbano (B)		n a la Vida lica ©		etro medido en campo y laboratorio	
	PM	PD	PM	PD	PM	PD	PP	P _{MAX}	
Temperatura (° C)	NA	NA	40	40	40	40	34 633	37.500	
Grasas y Aceites	15	30	15	25	15	25	13 019	49 846	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0 020	0.100	
Sólidos Suspendidos Totales	150	270	75	120			0.000	1044.00	
Demanda Bioquímica de Oxígeno	160	290	75	153	77	66	3957	1846 (40	
Nitrógeno Total	40	60	40	60	15		368 545	177.97	
Fósforo Total	20	30	20	30	5	10	4.364	21 600	
pH (U, pH)	5-10	5-10	5-10	5-10		5-10	\$ 597	9.000	
Coliformes fecales (NMP/100 ml)	1500	2000	1000	2000	1000	2000	2217 554	4600000000	
Niquel	2	4	2	4	2	4			
Piomo	0.5	1	02	04	0.2	0.4	0.014	0.067	
Zinc	10	20	10	20	10	20	0.234	0.667	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga Kimberly Clark No. 2 (RB35)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Demanda Bioquímica de Oxígeno para el caso de promedio pesado no cumple con los usos B y C, y para el caso del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C (Cuadro VI.37).

Cuadro VI.37. Comparación de la descarga Kimberly Clark No. 2 (RB35) con la NOM-001-ECOL-1996.

Parámetro	Uso en Rie		Uso Público	Urbano (B)	Irbano (B) Protección a la Vida Acuática ©			nedido en boratorio
	PM	PD	РМ	PD	PM	PD	PP	P _{MAX}
Temperatura (° C)	NA	NA	40	40	40	40	31 672	32 800
Grasas y Aceites	15	25	15	25	15	25	9 019	10 300
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.100	0 100
Sólidos Suspendidos Totales	150	200	75	125	40	60	32 493	36 000
Demanda Bioquímica de Oxígeno	150	200	75.00	150	30	60	115.045	324,000
Nitrógeno Total	40	60	40	60	15	25	10 705	20 850
Fósforo Total	20	30	20	30	5	10	1 025	1 420
pH (U. pH)	5-10	5-10	5-10	5-10		5-10	6324	6 920
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000	202.987	300,000
Niquel	2	4	2	4	2	4		
Plomo	0.5	1	02	04	0.2	04	0 058	0,153
Zinc	10	20	10	20	10	20	0,103	0.211

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga FIRIOB (RB37)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y Aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso de promedio pesado no cumple con los usos B y C, y para el caso del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.38).

Cuadro VI.38. Comparación de la descarga FIRIOB (RB37) con la NOM-001-FCOL-1996

Parametro		go Agricola A)	Uso Pública	o Urbano (B)		n a la Vida tica ©	lido en campo y atorio	
	PM	PD	PM	PĐ	РМ	PD	PP	P
Temperatura (° C)	NA NA	NA	40	40	40	40	33 656	34 400
Grasas y Aceites		25	00.00 5 .000	25	18	25	37.820	2,00
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.100	0.200
Sólidos Suspendidos Totales	450	200	75	128	40	50	230718	230.761
Demanda Bioquímica de Oxígeno	150	200	75	157	- 30	-50	78.035	580.00
Nitrógeno Total	4C	. 60	. 48	64	15	25	89 844	.89.960
Fósforo Total	20	30	20	30	5	10	4.601	6.270
pH (U pH)	5-10	5-10	5-10	5-10	5	5-10		7.000
Coliformes fecales (NMP/100 ml)	1000	200	1000	2000	1000	2000	438905-405	#80,000,0001
Niquel	2	4	2	4	2	4		
Plomo	0.5	1	0.2	0.4	0.2	04	0.156	0 156
Zinc	10	20	10	20	10	20	0.236	0 236

No cumple con la Norma

Descarga Cementos Veracruz (APASCO) (RB36)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción del pH que para el caso de promedio pesado no cumple con el uso C (Cuadro VI.39).

Cuadro VI.39. Comparación de la descarga Cementos Veracruz (Apasco) (RB36) con la NOM-001-ECOL-1996.

Parámetro		go Agrícola A)	Ųso Públic				Parámetro campo y la	
	PM	PD	PM	PD	PM	PD	PP	P _{MAX}
Temperatura (° C)	NA	NA .	40	40	40	40	24.268	25.330
Grasas y Aceites	15	25	15	25	15	25	8 471	8.560
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0 020	0.100
Sólidos Suspendidos Totales	150	200	75	125	40	60	12.671	30 000
Demanda Bioquímica de Oxigeno	150	200	75	150	30	60	3.966	4.600
Nitrógeno Total	40	60	40	60	15	25	1.538	1 630
Fósforo Total	20	30	20	30	5	10	0.016	0.020
pH (U. pH)	5-10	5-10	5-10	5-10	3 (S	5-10	73.8	7 920
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000	3.198	4 000
Niquel	2	4	2	4	2	4		
Plomo	0.5	1	0.2	0.4	0.2	0.4	0.133	D.176
Zinc	10	20	10	20	10	20	0 061	0.062

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga Ingenio San Nicolás No. 2 (RB52)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Temperatura para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Grasas y Aceites para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Fósforo Total para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Plomo para el caso de promedio pesado no cumple con los usos B y C (Cuadro VI.40).

Cuadro VI.40. Comparación de la descarga Ingenio San Nicolás No. 2 (RB52) con la NOM-001-FCOL-1996.

Parámetro	Uso en Rieg (A		Uso Público	o Urbano (B) Protección a la Vida Acuática ©			Parámetro med labora	
	РМ	PD	PM	PD	РM	PD	PP	P _{MAX}
Temperatura (° C)	NA	NA	100	46	100		40000	
Grasas y Aceites	15	2.5	7.6		0.00	25	81200	60200
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.000	0 000
Sólidos Suspendidos Totales	150				40		1230.000	1287 000
Demanda Bioquímica de Oxígeno	350	400		100	98	60	4000,000	4000 000
Nitrógeno Total	40	60	40	60	15	24	107.800	187,600
Fósforo Total	70	30	70	30			99.500	59.800
pH (U pH)	5-10	5-10	5-10	5-10	5	5-10	4.400	4,400
Coliformes fecales (NMP/100 ml)	1000	- 2200	1000	2,000	1000	2000	24/00/07/00/07/0	246550000000
Níquel	2	4	2	4	2	4		
Plomo	0.5	1		04		04		0.207
Zinc	10	20	10	20	10	20	0.993	0 993

No cumple con la Norma

Descarga Ingenio La Providencia (RB53)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y Aceites para el caso de promedio pesado no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Demanda Bioquímica de Oxígeno para el caso de promedio pesado no cumple con ningún tipo de uso y para el caso del valor máximo diario no cumple con los usos B y C; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Plomo para el caso de promedio pesado no cumple con los usos B y C (Cuadro VI.41).

Cuadro VI.41. Comparación de la descarga Ingenio La Providencia (RB53) con la NOM-001-ECOL-1996.

Parámetro		Uso en Riego Agrícola (A)		Uso Público Urbano (B)		Protección a la Vida Acuática ©		Parámetro medido en campo y laboratorio	
	PM	PD	PM	PD	PM	PD	PP	P _{MX}	
Temperatura (° C)	NA NA	NA	40	40	40	40	28 300	28 300	
Grasas y Aceites	335	25	15	25		25		24.000	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.900	0.900	
Sólidos Suspendidos Totales	150	200	75	125	30.500	.∵• € 0	64.800	64.800	
Demanda Bioquímica de Oxígeno	1880	200	75	8 (19 86) (19	30%	· 60	175 0 00	8 378 060 8	
Nitrógeno Total	40	60	40	60	15	28	33/590	30,590	
Fósforo Total	20	30	20	30	5	10	1.770	1 770	
pH (U pH)	5-10	5-10	5-10	5-10		5-10	100	6 960	
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2800	436080600	438060.00g	
Niquel	2	4	2	4	2	4			
Plomo	05	1	62	0.4	0.0	0,4	0.398	0.398	
Zinc	10	20	10	20	10	20	0 089	0.089	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga Aceitera La Patrona (RB56)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasas y Aceites para el caso de promedio pesado no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso de promedio pesado no cumple con los usos B y C, y para el caso del valor máximo diario no cumple con el uso C; pH para el caso de promedio pesado no cumple con el uso C (Cuadro VI.42).

Cuadro VI.42. Comparación de la descarga Aceitera La Patrona (RB56) con la NOM-001-ECOL-1996.

.000									
Parámetro		Uso en Riego Agrícola (A)		Uso Público Urbano (B)		Protección a la Vida Acuática ©		nedido en boratorio	
	PM	PD	PM	PD	PM	PĐ	PP	PMAX	
Temperatura (° C)	NA NA	NA	40	40	40	40	18.800	18,800	
Grasas y Aceites	3000 13 00 800	25	270003450000	25		25	11.00	17.070	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0.000	0.000	
Sólidos Suspendidos Totales	150	200	75	125	40	60	40.000	40.000	
Demanda Bioquímica de Oxígeno	150	200	30025	150	(0. 2 4000)	60	10.00	105:000	
Nitrógeno Total	40	60	40	60	15	25	4.230	4.230	
Fósforo Total	20	30	20 .	30	5	10	2.310	2.310	
PH (U pH)	5-10	5-10	5-10	5-10		5-10	A #30	8.830	
Coliformes fecales (NMP/100 ml)	1000	2000	1000	2000	1000	2000	70.000	70.000	
Niquel	2	4	2	4	2	4			
Plomo	0.5	1	0.2	0.4	02	0.4	0.005	0.005	
Zinc	10	20	10	20	10	20	0,009	0.009	

No cumple con la Norma

Descarga Ingenio San Miguelito (RB51)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Temperatura para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Sólidos Sedimentables para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Nitrógeno Total para el caso de promedio pesado no cumple con ningún tipo de uso, y para el caso del valor máximo diario no cumple con el uso C; Fósforo Total para el caso del promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.43).

Cuadro VI.43. Comparación de la descarga Ingenio San Miguelito (RB51) con la NOM-001-ECOL-

Parámetro	Uso en Rie		Uso Público	Urbano (B)	Protección a la Vida Acuática ©			Parámetro medido en campo y laboratorio	
	PM (A	PD	PM	PD	PM	PD	PP	P _{MX}	
Temperatura (° C)	NA NA	NA			33. A3.33.	40	52,160	246	
Grasas y Aceites	15	25	15	25	15	25	6 320	6 320	
Sólidos Sedimentables (ml/l)	999999		100	2		2.0	2.064	31447	
Sólidos Suspendidos Totales	33.350	200	75	325	10.00	60	255.504	255 500	
Demanda Bioquímica de Oxígeno	33,350	200	78	150	20	-22	640,000	540,000	
Nitrógeno Total	96 40	60	200 C	60	15		52,170	52 (70	
Fósforo Total	20	30	20	30		10	6.190	6,190	
pH (U. pH)	5-10	5-10	5-10	5-10	5	5-10	5.000	5.000	
Coliformes fecales (NMP/100 mi)	000 16000 00	2006	1000	2000			280000000	28000.000	
Niquel	2	4	2	4	2	4			
Piomo	0.5	1	0.2	0.4	0.2	0.4	0,196	0.196	
Zinc	10	20	10	20	10	20	0 307	0.307	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con la Norma

Descarga Ingenio San José de Abajo (RB54)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Grasa y Aceites para el caso de promedio pesado no cumple con ningún tipo de uso; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Demanda Bioquímica de Oxígeno para el caso de promedio pesado no cumple con los usos B y C, y para el caso del valor máximo diario no cumple con el uso C; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; pH para el caso del promedio pesado no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso (Cuadro VI.44).

Cuadro VI.44. Comparación de la descarga Ingenio San José de Abajo (RB54) con la NOM-001-ECOL-1996

Parámetro		Uso en Riego Agrícola (A)		Uso Público Urbano (B)		Protección a la Vida Acuática ©		Parámetro medido en campo y laboratorio	
	PM	PD)	PM	PD	PM	PD	PP	P _{MAX}	
Temperature (° C)	NA NA	NA	40	40	40	40	39 500	39 500	
Grasas y Aceites	3005	25		25		25	17.000	17 000	
Sólidos Sedimentables (ml/l)	1	2	1	2	1	2	0,100	0.100	
Sólidos Suspendidos Totales	150	200	75	125	40	66	50.700	60,700	
Demanda Bioquímica de Oxígeno	150	200	74	150		-66-	#1C.090	110.030	
Nitrógeno Total	40	60	40	60	- 69		8.00	(5.81)	
Fósforo Total	20	30	20	30	5	10	0 670	0.670	
pH (U pH)	5-10	5-10	5-10	5-10	5.00	5-10	6,660	6 660	
Coliformes fecales (NMP/100 ml)	3000	2003	100.0	2000	1000	270	150000.000	50000000	
Niquel	2	4	2	4	2	4			
Plomo	0.5	1	0.2	0,4	02	0.4	0.001	0.001	
Zinc	10	20	10	20	10	20	0 031	0.031	

No cumple con la Norma

De acuerdo a las condiciones particulares de descarga

Algunas industrias y localidades cuentan con condiciones particulares de descarga para las aguas residuales que arrojan al Río Blanco o a alguno de sus afluentes por lo que a continuación se comparan los resultados de concentraciones de contaminantes medidos para estas descargas con sus condiciones particulares.

Descarga PROQUINA No. 1 (RB32)

Cumple con las condiciones particulares de descarga para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario; Grasas y Aceites para el caso del promedio pesado así como del valor máximo diario; pH para el caso del promedio pesado (Cuadro VI.45).

Cuadro VI.45. Comparación de la descarga PROQUINA No.1 (RB 32) con sus condiciones particulares de descarga.

Parámetro	Concentración Promedio	Concentración Máxima Instantánea	Carga kg/día	Parámetro medido laborato	
	ļ			PP	P _{MAX}
Arsénico	0.2	0.4			
Cádmio	02	0.4			
Cianuro	2	3			
Cobre	4	6			
Coliformes fecales (NMP/100 ml)	3500	2000		315 330 53 6	470 000
Cromo	1	1.5			
DBO5 total	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	200	3045.60	399,820	412
Fósforo total	20	30	406.08	0 307	0.33
Grasas y aceites		75	304 56	26.860	44.9
Materia flotante	Ausente	Ausente		Ausente	Ausente
Mercurio	0.01	0.02			
Nitrógeno total	40	60	812.16	26 834	35,39
Niquel	2	4			
Plomo	0.5	1		0 070	0,102
SST	150	200	3045 60	48,721	52
Sólidos sedimentables (ml/l)	1	2		0,0	0
Zinc	10	20		0,160	0 312
pH (U, de pH)		10		2021	73

Todos los parámetros están expresados en mg/l excepto los que se especifiquen

No cumple con sus Condiciones Particulares de Descarga

Descarga PROQUINA No. 2 (RB33)

Cumple con las condiciones particulares de descarga para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario; pH para el caso del promedio pesado (Cuadro VI.46).

Cuadro VI.46. Comparación de la descarga PROQUINA No.2 (RB 33) con sus condiciones

Parámetro	Concentración Promedio	Concentración Máxima Instantánea	Carga kg/día		fido en campo y ratorio
				PP	P _{MAX}
Arsénico	0.2	0.4			
Çádmio	02	0.4			
Cianuro	2	3			
Cobre	4	6			
Coliformes fecales (NMP/100 ml)	1000	2000		2475.34	ZB00
Cromo	1	1.5			
DBO5 total	150	208	119.88	395,184	419
Fósforo total	20	30	15.98	3.718	3.8
Grasas y aceites	15	25	11 99	11.987	12.5
Materia flotante	Ausente	Ausente		Ausente	Ausente
Mercurio	0.01	0.02			
Nitrógeno total	40	60	31.97	24.317	25.63
Nique!	2	4			
Plomo	0.5	1	•	0.184	0.21
SST	150	200	119.88	163.408	177
Sólidos sedimentables (m1/i)	1	2		0 139	0.2
Zinc	10	20		0.177	0.2
pH (U de pH)	1	10		6.283	6.72

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con sus Condiciones Particulares de Descarga

Descarga Fermentaciones Mexicanas S. A. de C. V. (RB34)

Cumple con las condiciones particulares de descarga para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Coliformes Fecales para el caso del valor máximo diario; Coliformes Totales para el caso del valor máximo diario; Conductividad Eléctrica para el caso del promedio pesado así como del valor máximo diario; Demanda Bioquímica de Oxígeno para el caso del promedio pesado así como del valor máximo diario; Demanda Química de Oxígeno para el caso del promedio pesado así como del valor máximo diario; Fosfatos Totales para el caso del valor máximo diario; Materia Flotante para el caso del promedio pesado así como del valor máximo diario; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario; Nitrógeno Total para el caso del promedio pesado así como del valor máximo diario; Sólidos Suspendidos Totales para el caso del promedio pesado así como del valor máximo diario; Temperatura para el caso del valor máximo diario (Cuadro VI.47).

VI.60 Caso estudio

Cuadro VI.47. Comparación de la descarga Fermentaciones Mexicanas S.A. de C.V. (RB34) con sus condiciones particulares de descarga.

Parámetro	Concentración Promedio	Concentración Máxima	Carga kg/dia		ildo en campo y atorio
		Instantánea		PP	P _{MAX}
Alcalınıdad total (como CaCO3)	216	234			
Coliformes fecales (NMP/100 ml)		100		9281.554	49080
Coliformes totales (NMP/100 ml)		606		22246 424	110000
Color	70	90			
Conductividad eléctrica (mS/cm)	861	536		19677.44	6530
DBQ5 total	60	60	665.28	390.477	1946
DQO	- 4	142	1463.62	1457,679	7177
Dureza total (como CaCO3)	196	210			
Fosfatos totales	15	40		13.333	\$8.12
Grasas y aceites		15	133 06	49.009	49.94
Materia flotante	Austrilia	Austrile		Protente	Prosente
Nitrógeno Amoniacal		- 24		901.556	1472.52
Nitrógeno total	30	1111		368 545	1777.97
pH (U de pH)		68-65		8.597	9.
Relación de absorción de sodio RAS	20	2.0			
SST	50.00	and sections.	665.28	212.361	1044.4
Sustancias activas al azul de metileno	506	10		0,43	2,1
Sulfatos	46	51			
Sólidos sedimentables (ml/l)	1	12		0 020	01
Temperatura (°C)		35		34,633	27.5

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con sus Condiciones Particulares de Descarga

Descarga Kimberly Clark de México S. A. de C. V. No. 2 (RB35)

Cumple con las condiciones particulares de descarga para cada uno de los parámetros medidos en campo y laboratorio a excepción de Materia Flotante para el caso del valor máximo diario (Cuadro VI.48).

Cuadro VI.48. Comparación de la descarga Kimberly Clark de México S.A. de C.V. No. 2 (RB35) con sus condiciones particulares de descarga.

Parámetro	Concentración Promedio	Concentración Máxima Instantánea	Carga kg/día		edido en campo y oratorio
				₽P	P _{MX}
DB05	125	150	1265.6	115.045	124
SST	125	150	150 1265.6		36
pH (U de pH)		No sea menor de 6 ni mayor de 9		6 774	6.92
Temperatura (°C)		35		31,672	32 8
Sólidos sedimentables (ml/l)		10		0.1	0.1
Grasas y aceites	10	15	101 25	9 019	103
Materia flotante		Assabrita.		Presente	Preserve
Color		200		1	Ī.
RAS		5			
Conductividad eléctrica (m\$/cm)		1000		647 822	687
Coliformes fecales (NMP/100 ml)		1000		202 987	300

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con sus Condiciones Particulares de Descarga

Descarga Cementos APASCO S. A. de C. V. (RB36)

Cumple con las condiciones particulares de descarga para cada uno de los parámetros medidos en campo y laboratorio (Cuadro VI.49).

Cuadro VI.49. Comparación de la Cementos Apasco S.A. de C.V. (RB 36) con sus condiciones particulares de descarga.

Parámetro	Concentración Promedio	Concentración Máxima	Carga kg/dia		lido en campo y atono
		Instantanea		PP	P _{MAX}
Demanda Bioquímica de Oxigeno	30	45	1 644	3 966	46
Demanda Química de Oxígeno	100	120	5.480	11,766	13
Sólidos Suspendidos Totales	30	40	1,644	12.671	30
Sólidos Sedimentables (ml/l)	1.0	1.2		0.020	01
Potencial de Hidrógeno (U. de pH)	65-85	6.5-8 5		7 318	7.92
Temperatura (°C)		C.N. ±2		24.268	25.33
Grasas y aceites	10	15	0.548	8.471	8.8
Nitrógeno total	30	42	1,544	1.538	1.63
Materia flotante	Ausente	Ausente		Ausente	Ausente
Coliformes totales (NMP/100 ml)	1000	1000		7.519	23
Coliformes fecales (NMP/100 ml)	10000	10000		3.198	4

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con sus Condiciones Particulares de Descarga

VI.7.2 Evaluación de la calidad del agua del Río Blanco y sus afluentes

Para llevar a cabo la evaluación de los resultados reportados por las estaciones muestreadas, de acuerdo a su uso, se utilizó el Indice de Calidad del Agua (ICA), el cual proporciona un método que permite relacionar los parámetros reportados con el fin de determinar el grado de contaminación que presenta el agua. Adicionalmente los resultados reportados se compararon con los valores recomendados para cada parámetro en los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89), publicados en el D.O.F. el 13 de diciembre de 1989, los que establecen los límites mínimos de calidad requeridos para los usos a los que establecen los límites mínimos de calidad requeridos para los usos a los que se pueda destinar el recurso.

a) De acuerdo a su uso

Para cada estación muestreada durante el proyecto se evaluó el ICA global para determinar el grado de contaminación de acuerdo al uso. En el Cuadro VI.50 se presenta el ICA global de las estaciones ubicadas sobre el Río Blanco y en el Cuadro VI.51 el ICA global de las estaciones sobre los afluentes.

Cuadro VI.50. ICA global de las estaciones ubicadas sobre el Río Blanco.

			-	Usos del:	agua		
Estación	ICA General	-Abastecimiento Público	Recreación	Pesca y vida acuática	Industrial y agrícola	Navegación.	Transporte de desechos Tratados
RB-1	82.01	Ligera punficación	Aceptable para cualquier deporte acuático	Aceptable para todos los organismos	Ligera punficación para algunos procesos	Aceptable	Aceptable
RB-3	70.35	Mayor necesidad de tratamiento	Aceptable para cualquier deporte acuático	Aceptable para todos los organismos	Ligera purificación para algunos procesos	Aceptable	Aceptable
RB-5	51.79	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-7	50.68	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-9	55 94	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-10	68 40	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Excepto especies muy sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-13	56 65	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-18	50.84	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-19	59.07	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-23	85.06	Ligera purificación	Aceptable para cualquier deporte acuático	Aceptable para todos los organismos	Ligera punficación para algunos procesos	Aceptable	Aceptable
RB-24	73.63	Mayor necesidad de tratamiento	Aceptable para cualquier deporte acuático	Aceptable para todos los organismos	Ligera punficación para algunos procesos	Aceptable	Aceptable
RB-26	79 86	Mayor necesidad de tratamiento	Aceptable para cualquier deporte acuático	Aceptable para todos los organismos	Ligera punticación para algunos procesos	Aceptable	Aceptable

	ICA			Usos del	agua		
Estación	General	Abastecimiento Público	Recreación	Pesca y vida acuática	Industrial y agricola	Navegación	Transporte de desechos Tratados
RB-27	45.76	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-28	52 37	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-30	45 35	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-40	49.77	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-41	50 07	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normat	Aceptable	Aceptable
RB-43	51,39	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-45	51.14	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tretamiento para industria normal	Aceptable	Aceptable
RB-46	52 59	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normat	Aceptable	Aceptable
RB-47	54 01	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-48	51.91	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-49	52 26	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-55	40.18	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable

Cuadro VI.51. ICA global de las estaciones ubicadas sobre los afluentes del Río Blanco.

	ICA			Usos det	agua-		
Estación	General	Abastecimiento Público	Recreación	Pesca y vida acuática	Industrial y agrícola	Navegación	Transporte de desechos Tratado
RB-2	71 51	Mayor necesidad de tratamiento	Aceptable para cualquier deporte acuatico	Aceptable para todos los organismos	Ligera purificación para algunos procesos	Aceptable	Aceptable
RB-6	48.06	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-8	58.37	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-14	51 49	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-15	65 58	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Excepto especies muy sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-17	54 56	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
R8-22	38.17	Inaceptable	Sin contacto con el agua	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-25	47 57	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-29	35 23	Inaceptable	Sin contacto con el agua	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-38	44,58	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable
RB-39	52 23	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Dudoso para especies sensibles	Sin tratamiento pera industria normal	Aceptable	Aceptable
RB-42	69.11	Mayor necesidad de tratamiento	Aceptable pero no recomendable	Excepto especies muy sensibles	Sin tratamiento para industria normal	Aceptable	Aceptable
RB-44	47 99	Dudoso	Dudoso para contacto directo	Solo organismos muy resistentes	Con tratamiento en la mayor parte de la industria	Aceptable	Aceptable

b) De acuerdo a lo establecido en los criterios de calidad del agua

Los resultados obtenidos a partir de la caracterización de la corriente y sus afluentes pueden ser comparados con los Criterios Ecológicos de Calidad del Agua CE-CCA-001/89, en donde se establecen los límites máximos permisibles de contaminantes para los diferentes usos del agua de los cuerpos de agua nacionales.

Afluentes

Existen criterios de calidad para un número apreciable de parámetros, aunque para el análisis solamente se usarán los que coinciden con los parámetros medidos durante la caracterización de la corriente y los cuáles se listan a continuación:

Afluente Manantial Rincón de las Doncellas (RB2)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitritos para el caso del valor máximo diario no cumple con el uso B; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.52).

Cuadro VI.52. Comparación del Afluente Manantial Rincón de las Doncellas (RB2) con la CE-CCA-001/89.

• • •	+				
Parámetro	Riego Agrícola (A)	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en camp y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxígeno Disuelto				1100	
Nitrógeno Amoniaca!			0.06	0.010	0.01
Nitratos		5		2 849	3.36
Nitritos		9.00		0.104	***
Coliformes Fecales (NMP/100 ml)	1000	1000	200	43.225	70
Zinc	2	5		0.424	1026
Plomo	5	7.2		0.00	

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Río Maltrata (RB6)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.53).

Cuadro VI.53. Comparación del Afluente Río Maltrata (RB6) con la CE-CCA-001/89.

Parámetro	133	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxígeno Disuelto			5	3,092	34
Nitrógeno Amoniacal			0.06	5.02	6.16
Nitratos		5		0.958	1 88
Nitritos		0.05		0.029	0,05
Coliformes Fecales (NMP/100 ml)	1903	100	200	847.484	7900
Zinc	2	5		0.000	0.722
Plomo	5	0.75	0.00	11.07.0	Q.ac.

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Arroyo Chiquito (RB8)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Coliformes Fecales para el caso del valor máximo diario no cumple con el uso C; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.54).

Cuadro VI.54. Comparación del Afluente Arroyo Chiquito (RB8) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxígeno Disuelto		4	4	2.576	22
Nitrógeno Amoniacal			0.00	6512	0.72
Nitratos		5		1,515	2.96
Nitritos		0.05		0.020	0.03
Coliformes Fecales (NMP/100 ml)	1000	1000	2,63	170 574	250
Zinc	2	5	-	11863	2.5
Plomo	5	0.05		0.067	0348

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Arroyo La Carbonera (RB14)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción del Oxígeno Disuelto que para el caso del promedio pesado no cumple con los usos B y C (Cuadro VI.55).

Cuadro VI.55. Comparación del Afluente Arrovo La Carbonera (RB14) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	A) Fuente de Abastecimiento de Agua Potable (B)	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
				PP	P _{MAX}
Oxígeno Disuelto		4		3 8 33	52
Nitrógeno Amoniacal			0.06	2 412	3,36
Nitratos		5		2.167	35
Nitritos		0.05		0.077	0,1
Coliformes Fecales (NMP/100 ml)	1000	1000	200	72.223	150
Zinc	2	5	0	0 875	2 232
Piomo	5	0.05	0	0 104	0 13

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Río Orizaba (RB17)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Nitritos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.56).

Cuadro VI.56. Comparación del Afluente Río Orizaba (RB17) con la CE-CCA-001/89.

Parámetro	Riego Agricola (A)	Fuente de Abastecimiento de	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Agua Potable (B)		PP	P _{MMX}
Oxígeno Disuelto		433		2.826	32
Nitrógeno Amoniacal			9.06	70.204	0.77
Nitratos		i ever i se		4.202	5.39
Nitritos		28.8((8)(3)(0,05)(2)(x((0))		0.266	0.42
Coliformes Fecales (NMP/100 ml)	1000	1000	200	20.746	28
Zinc	2	5		0.880	
Plomo	5	ules en e e. 65 9 0 0 0 8 18 0	0	0.448	0.176

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Arroyo Caliente (RB22)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Nitritos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.57).

Cuadro VI.57. Comparación del Afluente Arroyo Caliente (RB22) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	Riego Agrícola (A) Fuente de Abastecimiento de Agua		Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MX}
Oxigeno Disuelto		.		1198	W 2400
Nitrógeno Amontacal			G.06	2862	
Nitratos		5		1.978	4.61
Nitritos		2.05		0.151	0.6
Coliformes Fecales (NMP/100 ml)	1900	1500	200	143139.018	460686
Zinc	2	5		0.00 74	0.418
Plomo	5	0.06		3 137	0.274

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Arroyo Totolitos (RB25)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Nitritos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.58).

Cuadro VI.58. Comparación del Afluente Arroyo Totolitos (RB25) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)		Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxigeno Disuelto		4	5 (%)	0.363	0.8
Nitrógeno Amoniacal		···	0.96	D 985	6 14
Nitratos		5		0.883	1.41
Nitritos		G05		0.265	2.8
Coliformes Fecales (NMP/100 ml)	1000	1000	200	278.77	700
Zinc	2	5	3	0.254	0.345
Plomo	5	906		0.206	0.5B

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Río Escamela (RB29)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado no cumple con los usos B y C, y para el caso del valor máximo diario no cumple con el uso C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Nitratos para el caso del valor máximo diario no cumple con el uso B; Nitritos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.59).

VI.66 Caso estudio

Cuadro VI.59. Comparación del Afluente Río Escamela (RB29) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxígeno Disuelto		4.00	5	2.697	
Nitrógeno Amoniacal			0.06	6,492	40
Nitratos		5	*************************	4.277	8 41
Nitritos		0.60		300	0.3
Coliformes Fecales (NMP/100 ml)	1500	1000	200	2708522	7500
Zinc	2	5		00062	0.100
Plomo	5	0.55		379	0.463

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Río Metlac (RB39)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del valor máximo diario no cumple con el uso B; Nitritos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Coliformes Fecales para el caso del promedio pesado así como del valor máximo diario no cumple con ningún tipo de uso; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado no cumple con el uso C, y para el caso del valor máximo diario no cumple con los usos B y C (Cuadro VI.60).

Cuadro VI.60. Comparación del Afluente Río Metlac (RB39) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxigeno Disuelto		4			2.0
Nitrógeno Amoniacai			9.00	0.010	0.81
Nitratos				4 713	5.90
Nitritos		0.05		0.591	0.9
Coliformes Fecales (NMP/100 ml)	1006	1940	200	2773.BQA	7900
Zinc	2	5	(1) (1) (Q (1) (1) (1)	0.059	0.168
Plomo	5	0.05		0.00216	0.0065

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

Afluente Río Negro (RB42)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Nitratos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Nitritos para el caso del promedio pesado así como del valor máximo diario no cumple con el uso B; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.61).

Cuadro VI.61. Comparación del Afluente Río Negro (RB42) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxigeno Disuelto		4	5	6.995	8.2
Nitrógeno Amoniacal			0,06	0 026	0.06
Nitratos				7.608	9.84
Nitritos		13 / 3 10 10 1 0 00 00 10 10 10 10 10 10 10 10 10 10 10 10		0.5462	98
Coliformes Fecales (NMP/100 ml)	1000	1000	200	26,443	43
Zinc	2	5	Secretary and the second	0.078	0.091
Plomo	5	**************************************	SHOWNER, O . SHOWNER,	0.243	0.386

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

No cumple con Los Criterios Ecológicos de Calidad del Agua

Afluente Arroyo El Zapote (RB44)

Cumple con los tres usos (A, B y C) para cada uno de los parámetros medidos en campo y laboratorio a excepción de los siguientes: Oxígeno Disuelto para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C; Nitrógeno Amoniacal para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Nitratos para el caso del valor máximo diario no cumple con el uso B; Coliformes Fecales para el caso del valor máximo diario no cumple con el uso C; Zinc para el caso del promedio pesado así como del valor máximo diario no cumple con el uso C; Plomo para el caso del promedio pesado así como del valor máximo diario no cumple con los usos B y C (Cuadro VI.62).

Cuadro VI.62. Comparación del Afluente Arroyo El Zapote (RB44) con la CE-CCA-001/89.

Parámetro	Riego Agrícola (A)	Fuente de Abastecimiento de Agua	Protección a la Vida Acuática ©	Parámetro medido en campo y laboratorio	
		Potable (B)		PP	P _{MAX}
Oxígeno Disuelto		#		3.423	
Nitrógeno Amoniaca!			236	0.998	1.44
Nitratos				2.554	521
Nitritos		0.05		0.029	0.04
Coliformes Fecales (NMP/100 ml)	1000	1000	200	145,169	230
Zinc	2	5	- 9	100	3.27
Plomo	5	6.04		0.646	0.00

Todos los parámetros están expresados en mg/l excepto los que se especifiquen.

No cumple con Los Criterios Ecológicos de Calidad del Agua

Río Blanco

De manera general se puede concluir que actualmente el agua del Río Blanco a lo largo de toda la corriente solamente y en forma parcial es aceptable para uso de Riego Agrícola de acuerdo a los límites especificados por los criterios ecológicos.

Una comparación entre los criterios ecológicos y los resultados promedio de campo y laboratorio se muestran en las gráficas de calibración. Además en los Cuadros VI.63 a VI.76 se muestran los parámetros que sobrepasan los límites por tipo de uso de aqua y estación.

Oxígeno disuelto

Cuadro VI.63. Comparación del Río Blanco con la CE-CCA-001/89 para Fuente de Abastecimiento de Agua Potable (B).

Kilom	etraje	CE-CCA-001/89		
Del km	al km	4 mg/l		
97.40	75.60	res cumples		
75,60	69,60	cumple		
1 to 1 to 1	1000	an occasion to		
61,80	60,00	cumple		
60,00	54,60	nc sussile		
54,60	45,90	cumple		
45,90	4470	no cumpril		
44,70	18,30	cumple		
18-30	3.60	ng curelle		
3,60	0,00	cumple		

Cuadro VI.64. Comparación del Río Blanco con la CE-CCA-001/89 para Protección a la Vida Acuática (C).

Kilometraje		CE-CCA-001/89
Del km	al km	5 mg/l
92.48	75,00	nu tumple
75,00	69,60	cumple
54 X0	41.0	подиние
41,80	19,50	cumpie
19.50	0.00	ACCUMPIE

Nitrógeno amoniacal

Cuadro VI.65. Comparación del Río Blanco con la CE-CCA-001/89 para Protección a la Vida Acuática (C)

. 0 (0 0 0 10 1	otooolori a la vida ribaatica (o).		
Kilometraje		CE-CCA-001/89	
Delkm alkm		0.06 mg/l	
92,40	90,60	cumple	
90.63	89-80	flo tampie	
\$4,90	5.70	no comple	
5,70	0,00	cumple	

Nitratos

Cuadro VI.66. Comparación del Río Blanco con la CE-CCA-001/89 para Fuente de Abastecimiento de Agua Potable (B).

Kılometraje		CE-CCA-001/89
Del km	al km	5 mg/l
92,40	69,60	cumple
64,80	0,00	cumple

Nitritos

Cuadro VI.67. Comparación del Río Blanco con la CE-CCA-001/89 para Fuente de Abastecimiento de Agua Potable (B).

Kilometraje		CE-CCA-001/89
Del km	al km	0.05 mg/l
92.40	69.80	no cumple
######################################	9.00	ng cumpig

Coliformes fecales

Cuadro VI.68. Comparación del Río Blanco con la CE-CCA-001/89 para Riego Agrícola (A).

Kilometraje		CE-CCA-001/89
Del km	al km	1000 NMP/100 ml
92,40	69,60	cumple
54.80	54.90	SECURDIO
54,90	0,00	cumple

Cuadro VI.69. Comparación del Río Blanco con la CE-CCA-001/89 para Fuente de Abastecimiento de Agua Potable (B).

Kilometraje		CE-CCA-001/89
Del km	al km	1000 NMP/100 ml
92,40	69,60	cumple
**************************************	5 56.90 6.00	go GIARGIO
54,90	0,00	cumple

Cuadro VI.70. Comparación del Río Blanco con la CE-CCA-001/89 para Protección a la Vida Acuática (C).

Kılometraje		CE-CCA-001/89
Del km	al km	200 NMP/100 ml
92,40	⊕8, 5 €	ាច់ សេក្សាសុខ
91,50	69,60	cumple
54.80	880 46 (0.00	no perpie
41,10	34,80	cumple
34.80	0.00	ne comple

Zinc

Cuadro VI.71. Comparación del Río Blanco con la CE-CCA-001/89 para Riego Agrícola (A).

Caso estudio

Cuadro VI.72. Comparación del Río Blanco con la CE-CCA-001/89 para Fuente de Abastecimiento de Agua Potable (B).

Kilome	straje	CE-CCA-001/89 5 mg/l
Del km	al km	
92,40	69,60	cumple
64,8D	00,00	cumple

Cuadro VI.73. Comparación del Río Blanco con la CE-CCA-001/89 para Protección a la Vida Acuática (C).

Kilometraje		traje	CE-CCA-001/89
D	el km	al km	0 mg/I
	240	69-60	ис ештова
	484	0.90	recempé

Plomo

Cuadro VI.74. Comparación del Río Blanco con la CE-CCA-001/89 para Riego Agrícola (A).

Kılometraje		CE-CCA-001/89
Del km al km		5 mg/l
92,40	69,60	cumple
64,80	0,00	cumple

Cuadro VI.75. Comparación del Río Blanco con la CE-CCA-001/89 para Fuente de Abastecimiento de Agua Potable (B).

Kilometraje		CE-CCA-001/89	
Del km	ai km	0,05	
52.85	99.20	no-sumple	
91,20	69,60	cumple	
64,80	0,00	cumple	

Cuadro VI.76. Comparación del Río Blanco con la CE-CCA-001/89 para Protección a la Vida Acuática (C).

Kilometraje		CE-CCA-001/89
Del km	al km	0 mg/l
10.00	69.50	no tampia
64,80	0.00	et custore

En los Cuadros VI.77 a VI.79 se presenta la comparación de los parámetros promedio medidos en las estaciones de la Red Nacional de Monitoreo ubicadas sobre el Río Blanco con los Criterios Ecológicos de Calidad del Agua.

Cuadro VI.77. Comparación de los parámetros, para corrientes tipo B (Fuente de abastecimiento).

		<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	, , , , , , , , , , , , , , , , , , , 				\ <u>. ~~.</u>			31	· /·
NOSEC	ESTACION	ALC_TOT	CLORUROS	COLL_FEC	COLOR_APA	GRAS_ACEI	N_AMONIAC	N_NITRATO	OXI_DIS	PH_LAB	SDT	SST	SOLID_TOT	SULF_DIS	SAAM
S28-011	00VC2BAVD300001	152.98268	5 4435525316	(4) 42,34 0	42.694079	53,6394	1.5947368	0.7358986	6445/661		8013942	65 12	605,56164	10.203863	0.43573
528-012	00VC26AV0850002	244.06608	34.887459459	6464023831	10.00	100	13,584222	0.2611563	2.034274	7.3184507	(m)	123,06849	995,90278	61.851522	0.54368
528-016	00VC28AV1810003	226,70773	9.2677866667	990200	57,557432	14,100052	1 7156316	0 4195882	6.2855	7.5430556	280,84119	144.75342	907.98592	27.585583	320 FF
S28-016	00VC28AV1810003	190 67265	14.335085714	48314-20665		4607348	2.7502778	1 1150484	****	7 5592547	S-45-46	111.59957	620.0625	27.942063	0 4126
CRITERIO	S ECOLÓGICOS			I			L"		L						
FUENTE D	E ARAST	400	250	1000	75	AUSENTE		5	4	5 # 9	500	500	1000	500	

Parametro que no cumple con los Criterios Ecológicos de Calciad del Agua

Cuadro VI.78. Comparación de los parámetros, para corrientes tipo A (Riego agrícola).

NOSEC	ESTACION					1	N_AMONIAC	N_NITRATO	OXI_DIS	PH_LAB	SDT	SST	SOLID_TOT	SULF_DIS	SAAM
S28-011	00VC28AV0300001	15238299	5 4435526316	46,00 2507	40,694079	13.479694	1,5947368	0 7358986	6.4487051	7,3425	S\$190823		605,56164	10,203863	0 4357308
S28-012	00VCZ8AV0850002	44000	34.887459459	56649300	144,14845	21.503542	13.584222	0.2611563	2.034274	7.3184507	884 7839	123,664.09	995,90278	61.851522	0.5436892
\$28-016	1	P.2800, 280 274		946228			1 7156316	0.4195882	6.2855	7.5430556		99.7594	907,98592	27,885583	2.3197792
528-016	00VC28AV1810003	1900.07.75	14.335085714	40.00	\$2,2453.9	19.312403	2,7502778	1,1150484	4,6056901	7 6692647	249		620,0625	27.942063	0.412525
CRITERIO	s ECOLÓGICOS														
RIEGO AG	RÍCOLA	20	147.5	1000	1	<u> </u>			<u> </u>	4.5 a 9.0	500	50	-	130	

Parámetro que no cumple con los Crderios Ecológicos de Calidad del Agua

Cuadro VI.79. Comparación de los parámetros para corrientes tipo C (Protección a la vida acuática).

NOSEC		_				GRAS_ACEI	N_AMONIAC	N_NITRATO	OXI_DIS	PH_LAB	TOS	SST	SOLID_TOT	SULF_DIS	SAAM
S28-011	00VC28AV0300001	150,000	5.4435525315	44.60256	42.594079	13 479694	334746	0 7358986	6,4487051	7.3425	537,53521	65 12	605,56164	80.203803	×
S28-012	00VC28AV0850002	(#C668)	34.887459459	96643.801	143 14885					7 3184507	894,74627	123,06849	995.90278	60,441542	
S28-016		200000000000000000000000000000000000000							6.2855		780 94118	144 75342	907 98592	J7 8855942	386.78
S28-016	00VC28AV1810003	30.813e4	14.335085714	60 (000)	82.315217	19,312403		\$ 849		7 5592547	504 56452	111,66667	620,0625	\$1,069063	04300
CRITERIO	S ECOLÓGICOS								_						
PROTECO	ION DE LA VIDA	20	250	200			0.08	1	5	-	-		-	0.005	01

Parámetro que no cumple con los Criterios Ecológicos de Calidad del Agua

VI.8 Clasificación de la corriente en función a los usos a que se destina.

De acuerdo a las normas y acuerdos mexicanos (NOM-001-ECOL-1996 y CE-CCA-001/89) pueden existir cinco diferentes tipos de clasificación para uso del agua en Ríos:

- a) Uso en Riego Agrícola.
- b) Uso público Urbano (Fuente de Abastecimiento de Agua).
- c) Protección de Vida Acuática (agua dulce).
- d) Recreativo con Contacto Primario.
- c) Pecuario.

De acuerdo a la Ley Federal de Derechos en Materia de Agua (1996), el Río Blanco está clasificado como cuerpo receptor tipo "A" (ver Capítulo I), es decir, como de Riego Agrícola por lo que se considera adecuado clasificar en una primera etapa la corriente en toda su extensión de esta forma.

Pensando en un posible incremento del aprovechamiento del río Blanco y el establecimiento de áreas recreacionales en la zona de estudio y en una mejora en el manejo, prevención y control de la contaminación del agua, la clasificación presentada en el párrafo anterior no descarta la posibilidad de que a futuro la corriente pueda ser clasificada en una segunda etapa como fuente de uso público urbano y finalmente para Protección de Vida Acuática, la cual presenta en general Criterios Ecológicos de Calidad más estrictos que los especificados para Riego Agrícola. Estas opciones son analizadas con más detalle en los siguientes apartados de este capítulo.

Como se determinó anteriormente, hoy en día el Río Blanco no cumple en toda su extensión con los límites establecidos para riego agrícola, por lo cuál en los puntos subsecuentes del presente capítulo se establecen los límites máximos permisibles de cargas contaminantes de las descargas de aguas residuales, así como las alternativas de manejo, prevención y control de la contaminación del agua para que la corriente cumpla en los plazos establecidos con los criterios ecológicos de calidad del agua.

VI.9 Evaluación de la capacidad de asimilación, dilución, porcentaje de remoción y carga de contaminantes.

a) Carga de contaminantes

En el punto VI.x se determinó la carga de contaminantes de las principales descargas puntuales al Río Blanco. Para determinar la capacidad de asimilación y dilución del Río también es importante tomar en cuenta la aportación de contaminantes de los principales afluentes.

En el Cuadro VI.80 se lista la carga diaria de contaminantes que llega al río a través de los diferentes afluentes: Rincón de las Doncellas, Río Maltrata, Arroyo Chiquito, Arroyo La Carbonera, Río Orizaba, Arroyo Caliente, Arroyo Totolitos, Río Escamela, Río Metlac, Río Negro, Arroyo El Zapote, Ingenio San Nicolás e Ingenio La Providencia.

Caso estudio VI.71

Cuadro VI.80 Carga diaria (kg/día) de contaminantes de afluentes y descargas directas al Río Blanco.

PARÁMETRO	RINCÓN DE LAS DONGELLAS	RÍO MALTRATA	ARROYO CHIQUITO	arhoyo (a Careonera	RÍO ORIZABA	ARROYO CALIENTE	ARROYD TOTOLITOS	HÍO ESCAMELA	rìo Metlag	rio Negro	ARROYO'EL ZAPOTE	ingenio San micolàs	INGENIO LA PROVIDENCIA
GYA	250 496	117 726	1348,209	220 503	803 03a	1050 791	884.861	779 241	4533 941	164 178	781.230	33 855	289,578
DBO	847 023	497 193	2212.272	390,970	1288 276	2505.009	2376.837	21206.328	23741 704	379.342	6441 733	2142,720	2111 508
DOO	1885.386	972,700	7339 547	1524 692	2679,390	6784880	5331,389	66071 123	_60151.026	1094.225	12992.117	26576.864	3502,690
51	17375 277	4083,551	166525 618	6818.589	45407,524	27039247	19239 334	143077 533	168523 599	5038 429	51515.892	21272-924	6612.036
557	216,138	318.347	1667 232	354,523	2658 585	2062,923	1836 142	13980 238	5714.228	191 422	3427 464	585.570	781.851
STD	17159 139	3765,204	164858 386	6264 066	42748,938	24976:324	17403 192	129097.295	151909.371	4847 008	48088,428	20587,254	5830 1 <u>7</u> 5
Nerógeno orgánico	18.985	6 037	198,095	55,624	93,099	917,374	41 888	663,374	1043.632	20.947	189.953	35,036	50.073
Nitrógeno emoniacal	0 760	64,562	174.381	55,471	33 237	165 162	3.665	514.241	272,807	0.975	115.214	20 784	265,809
Nitrógeno Total	244 104	81,553	895,306	121 095	871.799	1062,536	95,324	1698 718	5752.845	329 388	622,147	100.601	405.289
PO4 Totales	27 729	72.178	114 857	82,934	322 071	500.811	330 299	1164,222	207.223	51,098	765,272	97,494	65.517
Fásforo Total	12.392	26 136	28.195	54 413	70,090	164,042	125 772	411 595	105.715	15.565	256 716	31 573	21,356
Fésioro disuelto	9 011	23 440	<u>76</u> 100	13 724	103,556	41 736	107,388	378.352	68745	16 781	247 826	31 673	21,356
Fenoles	0.076	0145	1,090	0.234	2,877	2,148	0 842	3.385	1 417	0,193	0,539	1,687	0.253
ND3	216,422	10,627	516 048	58.810	685,917	114,298	38.433	405 281	4112.093	287.063	313.365	41.055	76,618
NO2	7.937	0,327	6.784	2.089	59 547	9.289	11,538	15,622	324.013	20,402	3 615	3 723	12.790
SAAM	0.760	452.447	17,026	10.248	17_273	98 417	32,523	ಮ 491	5.830	0.282	6,500	0.257	0 121
504	819,975	471,565	9351 329	130.917	3404_397	3391 674	1730.457	9374.252	7363.291	419.416	5370.590	751.988	1118 496
Cr	259 813	208.066	6373,395	185 486	1267 151	3437 688	1019.263	17738.119	2025.899	301.967	1971.421	671,475	247 831
Zn	32,230	3.276	361,241	23 755	13 135	10,051	10 196	7.842	85,954	2.936	4.226	0.532	1.074
Pb	4148	0.319	22,989	2.832	19 264	7.888	8.947	10.563	18.247	9 163	3.395	0111	4,802
Fésforo orgánico	8 321	10 719	57.500	15 916	55,133	158 708	57,248	267 527	0.891	10.279	111.265	17 785	6.877

b) Porcentaje de remoción.

Para estimar el porcentaje de remoción es necesario llevar a cabo un balance de masa de cada una de las secciones del Río. Es esta una de las razones por las que se usó el modelo matemático QUAL2E, ya que se basa en un balance hidráulico y de masa para determinar la variación de los diferentes contaminantes dentro de cada elemento de la corriente. Por lo anterior y para determinar de manera precisa el porcentaje de remoción por sección, se usan los datos aportados por el modelo para los diferentes parámetros que fueron simulados.

El porcentaje de remoción se estimó simplemente a partir del cálculo de las cargas de contaminantes que entran y de las que salen de cada una de las secciones en que se dividió la corriente. Los resultados se muestran en el Cuadro Vt.81.

Los porcentajes de remoción llegan a variar apreciablemente de una sección a otra, el hecho de que las remociones sean negativas en algunas partes de la corriente indica que el parámetro en cuestión esta siendo producido más rápido de lo que está siendo consumido por los diferentes procesos fisicoquímicos involucrados. El comportamiento observado naturalmente depende de las cargas de contaminantes recibidas por el río y de la capacidad de dilución y asimilación en cada sección.

Cuadro VI.81. Porcentaie de remoción en cada sección de la Corriente.

					0.001.0		TES DE LA				511 45 14	Comente		
NO:	TEMP	Zn	Pb	OĐ	P80	N ORG	NH3	NO2	NO3	N TOT,	F. ORGÁNICO	F. DISUELTO	F, TOTAL	COLIFORMES FECALES
SECCIÓN	DEG-C	mg/l	mg/l	rag/i	ng/i	mg/l	тдЛ	mg/I	mg/t	rog/f	rig/l	നുൾ	mo/f	NMP/100-mt
1	19 216	27 941	28 571	5 000	<u>-7</u> 9.470	29.545	0 000	30.000	27.007	27,101	-50 000	0 000	0.000	47.785
2	18.052	17,021	20.000	18,310	18.251	16,667	-400.000	21 429	17 869	12.059	33 333	-500.000	-363.636	18,507
3	-5 6 27	44.737	0.000	21.127	-60.952	-25 000	-37,500	45 456	28.755	19,863	-400 .000	42.553	26.531	15.464
4	-0 745	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0 000	0.000	4,565
5	-5.216	4 348	0 000	1 316	-0 813	0.000	2 632	-14.286	-1.198	-0 810	0 000	0 000	0 000	27,274
6				_	,		-		-		_	,		
7	11.741	20 000	0.000	-174 525	-48,649	-125 000	-14 706	-45.455	21,990	4 779	-38.889	7 407	-15.909	8,297
- 8	6 0 0 6	12.500	20 000	12 358	7 509	24.658	-110 976	-42,105	7.639	-22 397	8.000	4 167	8 163	7 417
						DES	PUES DE L	PRESA TU	XPANGO					
1	0.826	0.000	20 000	-34,219	46.915	24 865	43 717	-237.500	<u>-45.5</u> 13	22 125	42.424	-147.368	-28.846	41,644
. 2	<u></u> _					'	-					-		
3	0.049	0.000	0.000	2.806	5 839	0 000	0.328	16 000	-1 351	0.146	0 000	0.000	8 000	18,913
4	0.049	16 667	25 000	-28 198	3.619	3 731	3 947	33 333	0 444	3,655	0 000	1.887	2.778	3 <u>5,</u> 977
5	0.147	0 000	0.000	18 841	2,095	1,550	28 920	-255.556	-11.556	1 821	0.000	1,923	1,429	50,522
6	0 098	0.000	0.000	-37.811	2.252	2 352	1.961	48.387	-9 881	2 009	5.556	1.961	1.471	50 376
7	D 098	0.000	0.000	-10.714	-0 112	-0 806	2,000	22 581	-3 943	-0,158	0.000	0.000	0.000	-27 771
	0 049	0.000	0.000	1.618	0 328	-0 800	2.985	4 167	-2 740	0.000	-5 882	0 000	-1 493	0.625
9	0.147	0 000	0 000	3 846	5.477	3 175	9 948	-4 54 5	-0 336	3.297	0.003	3.845	2 817	4,123
10	0 294	0.000	0.000	5 391	4 588	0.000	8 187	26.087	-6.667	0.000	0.000	0.000	0.000	1,563
11	0.245	0.000	0.000	44.794	1 566	0.000	73,288	-119.231	-23.602	0 000	0.000	0.000	0.000	1 557
12	0.246	0.000	0 000	-3.943	1 592	0 000	70.270	48.214	-13.217	0.162	0.000	0.000	0.000	1 579
13	0.148	0 000	0 000	-48 986	4,444	3.279	70.000	60 714	-2 198	2,932	5.263	2 000	2.899	4 452
14	0.049	0.000	0 000	-9 333	0.251	0 000	0.000	-9 091	0 000	0 000	0.000	0.000	0.000	0.380

c) Capacidad de asimilación y dilución

Capacidad de dilución

La capacidad de dilución se define como la cantidad de cualquier elemento, compuesto o sustancia que, tomando como base el balance hidráulico, pueda recibir un cuerpo receptor.

Por lo que, la capacidad de dilución de la corriente estará relacionada con un determinado límite que no se quiera rebasar. Este límite en general está dado por los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89), aunque existen ciertos parámetros que no cuentan con Criterios Ecológicos, siendo uno de ellos la Demanda Bioquímica de Oxígeno.

Debido a lo anterior no fue posible estimar la capacidad de dilución de la corriente expresada como Demanda Bioquímica de Oxígeno en mg/l; en cambio se estimó la dilución del Río Blanco en todas sus descargas y afluentes con base a un balance hidráulico, de la siguiente manera:

$$Dilución = \frac{Q_a \times C_a}{Q_r}$$

Donde:

Dilución = Dilución de la corriente en la entrada de un afluente o descarga, mg/l

Q_a = Flujo del afluente o descarga de entrada al río, m³/s C_a = Concentración de entrada del afluente o descarga, mg/l

Q_r = Flujo de la corriente inmediatamente después de la entrada del afluente o descarga.

Los cálculos se realizaron a partir de los resultados de DBO de la corrida de calibración del modelo matemático, obteniéndose los valores para cada descarga y afluente que se presenta en el Cuadro VI.82.

Cuadro VI.82, Capacidad de dilución.

AFLUENTE,	DILUCIÓN (mg DE DBO/I DEL CAUDAL ESCURRIDO POR EL RÍO)
RINCÓN DE LAS DONCELLAS	1 772
RÍO MALTRATA	0.83
ARROYO CHIQUITO	1,87
ARROYO LA CARBONERA	0.3177
RÍO ORIZABA	1 13
ARROYO CALIENTE	1.30
ARROYO TOTOLITOS	1 49
RÍO ESCAMELA	9 18
RÍO METLAC	9.05
RÍO NEGRO	0 11
ARROYO EL ZAPOTE	1 75
INGENIO SAN NICOLÁS	0 63
INGENIO LA PROVIDENCIA	0 59

Es importante hacer notar que de acuerdo a lo comentado en párrafos anteriores, los valores presentados en el Cuadro VI.82 corresponden a la cantidad de material que el río está diluyendo y no a lo que el río puede llegar a diluir con respecto a un límite específico. Además los resultados dependen directamente del caudal del río en cada una de las secciones, el cual es bastante variable.

La capacidad de dilución, siguiendo la definición descrita en párrafos anteriores, será mayor conforme la carga de material diluido sea menor.

Capacidad de asimilación

La capacidad de asimilación está definida como la propiedad que tiene un cuerpo receptor, con su gasto medio de estiaje para restablecer su calidad.

Caso estudio

Es decir que la capacidad de asimilación estará dado con respecto a un límite determinado. Este límite, al igual que para la capacidad de dilución, está generalmente dado por los Criterios Ecológicos de Calidad del Agua, aunque no existe Criterio para la Demanda Bioquímica de Oxígeno; en cambio se calculó la cantidad de material asimilado por el río, de la siguiente manera:

Donde:

Asimilación = Cantidad de material asimilado por el río en cada elemento.

 $C_1 =$ Concentración al inicio del elemento. $C_2 =$ Concentración al final del elemento.

La asimilación de toda una sección simplemente se estimó como la suma de las asimilaciones de los elementos que componen dicho tramo.

Los cálculos se realizaron a partir de la corrida de calibración del modelo matemático y se muestran en el Cuadro VI.83.

Los valores de cero en la tabla simplemente representan secciones en donde no existe asimilación debido a que no cuentan con descargas importantes de DBO, por lo que estas secciones cuentan en realidad con una alta capacidad de asimilación. En el caso de los valores negativos se presentan debido a descargas con altos contenidos de materia orgánica y ubicados prácticamente al final de la sección en estudio.

De acuerdo a lo comentado en párrafos anteriores, los valores presentados en el Cuadro VI.83 corresponden a la cantidad de material que el río está asimilando actualmente y no a lo que el río puede llegar a asimilar. Por lo anterior se decidió efectuar una simulación en el Modelo QUAL2E para determinar la DBO máxima que puede asimilar la corriente por tramo para que cumpla con el oxígeno mínimo de 4 mg/l que marcan los Criterios Ecológicos de Calidad del Agua. Para la simulación se empleó el gasto mínimo promedio de diseño en ambas secciones de la corriente, adicionalmente se consideró que en el inicio de la corriente y en cada sección anterior al tramo analizado se presente la concentración de saturación del oxígeno. En el Cuadro VI.84 se presentan los resultados de dicha simulación y en las Figuras VI.9.1 y VI.9.2 se presentan las secciones antes y después de la Presa Tuxpango indicándose la concentración máxima de DBO por tramo.

Cuadro VI.83. Capacidad de asimilación.

SECCIÓN	Asimilación (DBC) en mg/l del caudal escurrido por el Río)
A	NTES DE LA PRESA TUXPANGO
1	-1.2
2	0.48
3	-1 28
4	
5	-0.03
6	0
7	-1.98
8	0.44
DE	SPUES DE LA PRESA TUXPANGO
1	19.39
2	0
3	1.2
4	0.7
5	0,39
6	0.41
7	-0 02
8	0.06
9	1,05
10	0.83
11	0,27
12	0.27
13	0.74
14	0.04

Cuadro VI.84. Concentración máxima de DBO antes y después de la presa Tuxpango.

SECCIÓN	DBO en mg /l
ANTE	S DE LA PRESA TUXPANGO
1	350
2	450
3	180
4	180
5	530
6	530
7	635
8	
DESPU	ES DE LA PRESA TUXPANGO
1	480
2	480
3	145
4	145
5	600
6	600
7	600
8	360
9	140
10	140
11	140
12	140
13	140
14	140

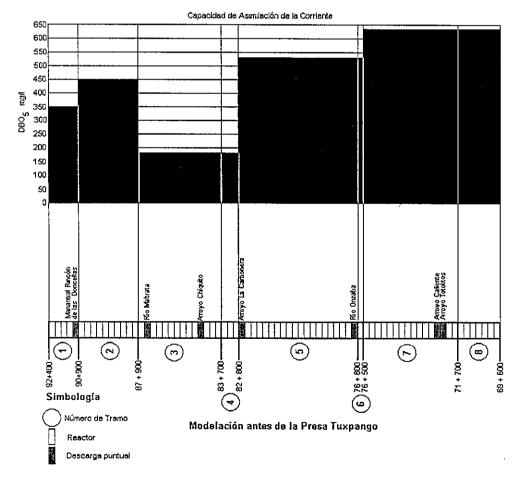


Figura VI.39. Concentración máxima de DBO admisible en los tramos del seccionamiento antes de la Presa Tuxpango.

Caso estudio

Figura VI.40. Concentración máxima de DBO admisible en cada tramo del seccionamiento después de la Presa Tuxpango.

VI.10 Determinación de límites máximos permisibles de cargas de contaminantes de las descargas de aguas residuales.

Parámetros simulados por el modelo matemático.

Primeramente se consideraron los parámetros que si pudieron ser simulados mediante el Modelo Matemático utilizado (QUAL2E), ya que estos pueden ser manejados y analizados de manera adecuada mediante el uso del modelo.

Para determinar los límites máximos permisibles fue necesario en primera instancia comparar el comportamiento de la calidad del agua a lo largo de la corriente con los Criterios Ecológicos de Calidad del Agua (CE-CCA-001/89) establecidos para la clasificación de la corriente estipulada en el punto 6.4, la cuál se especificó como de Riego Agrícola para todas las secciones del río. Para esto se llevó a cabo la simulación de la corriente incluyendo todos los principales afluentes y descargas al Río Blanco (Simulación No. 1, Calibración, Anexo D).

Fue también necesario llevar a cabo una simulación en la que se asumió que las descargas actuales a la corriente cumplen con los límites especificados por la NOM-001-ECOL-1996 para descargas a cuerpos receptores Tipo A (Riego Agrícola) y los afluentes considerando su calidad actual antes de las descargas (Simulación No. 2, Anexo D) de manera que se pudiera establecer cuantitativamente si es que los límites de la norma son suficientes o se tiene que variar, para que el río en toda su extensión y en todo momento cumpla con lo establecido en los Criterios Ecológicos de Calidad del Agua. Del análisis anterior se determinó que todos los parámetros que cuentan con un Criterio Ecológico de Calidad del Agua cumplen con los límites establecidos, esto es que si actualmente se fija la NOM-001-ECOL-1996 Tipo A a todas las descargas, el Río Blanco en toda su extensión cumplirá el uso establecido por la Ley Federal de Derechos.

Considerando que en un futuro el Río Blanco pueda cumplir los usos Tipo B (Fuente de Uso Público Urbano) y Tipo C (Protección a la Vida Acuática) se realizaron las simulaciones No. 3 y 4 en las cuales se considera que las descargas cumplen con la NOM-001-ECOL-1996 y los afluentes con la calidad actual del agua antes de las descargas principales. De este análisis se determinó que la Norma no es suficiente para que el Río Blanco pueda cumplir con dichos usos por lo cual fue necesario realizar otras simulaciones ahora considerando que los afluentes cumplen con los criterios ecológicos para cada uso determinado antes de recibir las descargas principales (Simulaciones 5, 6 y 7). Con estas simulaciones se cubrieron sólo parcialmente los criterios de calidad del agua por lo cual fue necesario comenzar a restringir por debajo de la NOM-001-ECOL-1996 a las descargas, para esto se realizaron las Simulaciones 8, 9 y 10 en las cuales se consideró que los afluentes antes de las descargas cumplen con los Criterios Ecológicos. Los resultados de estas simulaciones proporcionaron los límites máximos permisibles de contaminantes descargados a los afluentes y al Río Blanco para que en una segunda y tercera etapa este pueda cumplir con los usos Tipo B y Tipo C respectivamente.

Por lo tanto, tomando en cuenta la clasificación propuesta para el Río Blanco, se recomienda:

- a) Establecer en todas las descargas municipales e industriales directas al Río Blanco y a sus afluentes los límites especificados por la Norma Oficial Mexicana NOM-001-ECOI-1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales para cuerpos receptores tipo A.
- b) Llevar a cabo un estudio de clasificación de los principales afluentes de la corriente, para que estos también cumplan con los límites permisibles por los Criterios Ecológicos para los usos Tipo B y Tipo C. Dado que es un número considerable de afluentes con que cuenta el Río Blanco, como primera instancia se pueden tomar los límites máximos permisibles estimados en el presente estudio los cuáles se obtuvieron considerando que los afluentes antes de dichas descargas cumplen los Criterios Ecológicos.

Es importante mencionar que todas las estimaciones anteriores fueron realizadas con el gasto medio de diseño. Una variación brusca en el gasto de la corriente, principalmente una disminución, podría llegar a causar graves problemas de calidad a lo largo de la corriente. No es parte de los objetivos

Caso estudio VI.77

de este estudio el determinar el gasto que debe llevar el Río, pero a manera de ejemplo se simuló el comportamiento de la corriente para los gastos mínimos y máximos extremos reportados por los datos históricos de aforo y los resultados se muestran en el Anexo D (Simulaciones 11 y 12). Es apreciable la degradación de la calidad del agua cuando se consideran los gastos mínimos.

Finalmente para estimar la influencia de posibles crecimientos tanto municipales como industriales se realizó la simulación No.13 proyectando las descargas al año 2010, de esta simulación se determinó que la influencia en la calidad del agua es despreciable.

Otros parámetros.

En la modelación del Río Blanco se simularon parámetros específicos los cuales a continuación se analizan.

Metales

Los metales considerados en las descargas, afluentes y sobre el Río Blanco fueron: Cromo Hexavalente, Zinc y Plomo.

En el caso del Cromo Hexavalente no se encontraron concentraciones en ninguna estación de muestreo, por lo cual se descarta este problema en el Río Blanco y se fija para las descargas la NOM-001-ECOL-1996.

Para el caso del Zinc y el Plomo actualmente no se tienen problemas en cuanto al uso de Riego Agrícola, pero para tratar de clasificar en un futuro la corriente como uso Tipo C se deberán restringir dichos parámetros de acuerdo a los límites máximos permisibles que más adelante se presentan.

Grasas y Aceites

Para este parámetro es conveniente aplicar la NOM-001-ECOL-1996 a todas las descargas, aunque actualmente en la mayoría de las descargas las concentraciones son muy inferiores a la Norma se encuentran industrias que no cumplen con dicho parámetro (Cuadro VI.85).

Cuadro VI.85, Industrias que no cumplen con el parámetro grasas y aceites.

Descarga	Grasas y aceites (mg/l) medido				
1. Plamat No 1	17341.00				
2. Plamat No 2	56.255				
3 Harinera y Manufacturera de Orizaba	28.582				
4. Tenerías Unidas)	110,800				
5, Proquina No. 1	38 860				
6 FIRIOB	32.820				
7 FERMEX	39.062				

рΗ

Este parámetro tiene como límite en la NOM-001-ECOL-1996 un mínimo de 5 y un máximo de 10. Ninguna de las descargas sobrepasa estos límites y tampoco son sobrepasados por el río los Criterios de Calidad del Agua, por lo que se recomienda establecer en todas las descargas los límites especificados por la NOM-001-ECOL-1996, para cuerpos receptores Tipo A, B y C en los plazos que se especifican más adelante.

Sólidos Sedimentables y Sólidos Suspendidos Totales

De forma general actualmente se cumplen estos parámetros en cuanto a la calidad del agua del Río Blanco pero en sus afluentes se encuentran concentraciones superiores a los Criterios de Calidad del Agua por lo que se recomienda que a todas las descargas se les haga cumplir la NOM-001-ECOL-1996 en cuanto a los sólidos suspendidos totales que es lo que marca dicha norma.

Cloruros

Los cloruros no cuentan con un límite permisible en la NOM-001-ECOL-1996 pero si tienen un criterio ecológico de calidad del agua. En ninguna de las secciones de la corriente sobrepasa el límite permisible, por lo cual estos no se restringirán en ninguna descarga.

Otros parámetros no especificados en la NOM-001-ECOL-1996

Los siguientes parámetros fueron analizados tanto en el Río como en los afluentes y las descargas y no cuentan con un límite permisible especificado en la NOM-001-ECOL-1996:

Conductividad Eléctrica, Demanda Química de Oxígeno, Fenoles, Fosfatos, Sustancias Activas al Azul de Metileno, Sólidos Totales, Sólidos Disueltos totales, y Sulfatos.

De todos los parámetros anteriores los que presentan problemas son los siguientes:

Sólidos Disueltos Totales

Sólo presenta problemas en la descarga del Río Escamela presentando una concentración promedio de 1362.35 mg/l, esto es debido a que 5 de las descargas sobre este afluente tienen concentraciones mayores a 2000 mg/l por lo cual fue necesario determinar para este parámetro en el Río Escamela como límite máximo permisible 550 mg/l.

Fosfatos

No cumplen con lo especificado por los Criterios Ecológicos en cuanto a Fuentes de Abastecimiento de Agua en 36 de las estaciones de monitoreo de la Corriente, los valores varían desde 0.37 hasta 23 mg/l marcando los Criterios Ecológicos el límite de 0.1 mg/l . Es importante mencionar que los afluentes tampoco cumplen con el criterio de calidad del agua, por lo que es probable que gran parte del incumplimiento del límite permisible en el Río se deba a la baja calidad del agua de los afluentes. Tomando como referencia los resultados del modelo matemático, en donde se cumpla con las normas respectivas, el Río cumpliría a su vez con los Criterios Ecológicos de Calidad del Agua y considerando que la NOM-001-ECOL-1996 específica un límite para el fósforo total el cual está intimamente relacionado con los fosfatos totales, ya que el fósforo se encuentra en las aguas residuales casi completamente en forma de fosfatos, se considera adecuado establecer los límites permisibles especificados por la NOM-001-ECOL-1996 en cuanto a fósforo en las descargas de aguas residuales, de manera que se pueda controlar la carga de fosfatos que llegan al Río Blanco.

Sulfatos

El Río Blanco así como todos los afluentes cumplen con este parámetro con el uso Tipo A y Tipo B en toda su extensión, el problema radica al tratar de en un futuro clasificarlo como uso Tipo C ya que en ninguna estación se cumple con dicho parámetro por lo cual es conveniente fijar como límite máximo permisible el valor de 5 mg/l con lo cual la mayoría de las descargas lo cumplirían sin ninguna dificultad a excepción de Las Tenerías Unidas que como resultados de las mediciones tienen una concentración promedio de 1126.4 mg/l.

VI.11 Plazos de Calidad del Agua

Actualmente el Río Blanco y todos sus afluentes se clasifican en toda su extensión como Cuerpo Receptor Tipo A (Riego Agrícola) y a futuro se propone que cumpla en una segunda etapa como Tipo B (Fuente de Uso Público Urbano) y finalmente como Cuerpo Receptor para protección de la Vida Acuática (Tipo C). Para determinar los plazos para aplicar estas clasificaciones se analizan los propuestos por la NOM-001-ECOL-1996 para cada una de las descargas de la Corriente (Cuadro VI.87).

Descargas Municipales

Cuadro VI.86. Plazos propuestos por la NOM-001-ECOL-1996, para descargas municipales.

Descarga	Población (hab) 1997	Plazo
Ojo Zarco	2880	1 de enero de 2010
Ciudad Mendoza	45312	1 de enero de 2005
Nogales	25920	1 de enero de 2005
Ríc Blanco	71194	1 de enero de 2000
Orizaba	136320	1 de enero de 2000
Cumbre de Tuxpango	1536	1 de enero de 2010
Omealca	6912	1 de enero de 2010
Córdoba	117504	1 de enero de 2000
Congregación El Encinar	2734	1 de enero de 2010
Fortin de la Flores	31795	1 de enero de 2005

Descargas Industriales

Para las siguientes descargas el plazo de cumplimiento es el 1 de enero de 2000:

- 1. Descargas sobre el Río Escamela.
- Descargas sobre el Río Metlac.
- 3. Descargas sobre el Arroyo el Zapote.

Para las descargas restantes el plazo de cumplimiento es el 1 de enero de 2005

De acuerdo a lo mencionado en los apartados anteriores y tomando en cuenta que los ingenios son la principal fuente de contaminación de la corriente, se proponen los siguientes plazos, para la clasificación del Río:

- a) Uso de Riego Agrícola: 1 de enero de 2000.
- b) Fuente de abastecimiento de agua : 1 de enero de 2005.
- c) Protección de la vida acuática: 1 de enero de 2015.

Sabiendo que actualmente el Río Blanco prácticamente cumple con los Criterios de Calidad del Agua para uso Tipo A (Riego Agrícola), para que lo haga en toda su extensión de acuerdo a las simulaciones del modelo matemático se debe aplicar la NOM-001-ECOL-1996 en todas las descargas (Cuadro VI.87).

Cuadro VI.87. Límites máximos permisibles para contaminantes (Tipo A).

PARAMETRO	USO EN RIEGO AGRICOLA			
(miligramos por litro, excepto cuando se especifique)	PROMEDIO MENSUAL	PROMEDIO DIARIO		
TEMPERATURA (°C)	NO ES APLICABLE	NO ES APLICABLE		
GRASAS Y ACEITES (2)	15	25		
MATERIA FLOTANTE (3)	AUSENTE	AUSENTE		
SÓLIDOS SEDIMENTABLES (ML/L)	1	2		
SÓLIDOS SUSPENDIDOS TOTALES	150	200		
DEMANDA BIOQUÍMICA DE OXIGENO	150	200		
NITRÓGENO TOTAL	40	60		
FOSFORO TOTAL	20	30		
ARSÉNICO	0.2	0.4		
CADMIO	0.2	0.4		
CIANURO	2.0	3.0		
COBRE	4.0	6.0		
СКОМО	1	15		
MERCURIO	0.01	0.02		
Niquel	2	4		
PLOMO	0.5	1		
ZINC	10	20		

⁽¹⁾ Instantáneo

Parámetros secundarios:

Conductividad Eléctrica, Demanda Química de Oxígeno, Fenoles, Fosfatos, Cloruros, Nitrógeno Amoniacal, Sustancias Activas al Azul de Metileno, Sólidos Totales, Sólidos Disueltos Totales, Sulfatos, Turbiedad, Coliformes Totales.

⁽²⁾ Muestra simple promedio ponderado

⁽³⁾ Ausente según el método de prueba definido en la NMX-AA-006

En los Cuadros VI.88 y VI.89 se presentan los límites máximos permisibles para contaminantes para cuerpos receptores Tipo B y Tipo C para las industrias que descargan en cada uno de los afluentes mencionados. En los Cuadros VI.90 a VI.114 se presentan los límites máximos permisibles de descargas de contaminantes para cada una de las Industrias para cuerpos receptores Tipo B y C.

Cuadro VI.88. Límites máximos permisibles para contaminantes, (Uso Público Urbano).

		río Maltrata	ARROYO CHIQUITO	ARROYO LA CARBONERA	ARROYO TOTOLITOS	RÍO. ORIZABA	ARROYO CALIENTE	RIO METHAG	arroyo el Zapote	RÍO ÉSCAMELA	LAS DONGELEXE	rio negro
Temp	oc	40 000	40.000	40 000	20.000	40.000	40,000	40.000	40.000	40,000	18	20
Grasas y Acellea	mg/l	25.000	25,000	25,000	25.000	25,000	25.000	25 000	25.000	25,000	25 000	25.000
Materia Flotanta	mg/l	<u>susente</u>	ausente	ausente	ausente	ausente	ausente	ausente	gusente	ausonte	ausente	ausorde
Sólidos sedimentables	mi/i	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2,000	2 000	2,000
Sólidos suspendidas totales	mg/l	126 000	125.000	125,000	(25.000	125.000	125,000	125.000	125,000	125.000	125.000	125.000
Colif F	NMP/100mi	2000,000	2000	2000	270	2000	2000	2000	2000	1000	. 40	26
DBOS	mg/l	150,000	150.000	150.000	55.000	150,000	150.000	150,000	150 000	100.000	10	50
N Orgánico	mg/l	8.000	0 700	4,000	0.200	1 000	8.000	2.500	1 000	1 000	0.25	0 14
N Amoniscal	mg/l	3.000	2,500	7 000	0.017	4.000	5.000	9 000	4.000	10,000	0.01	0.007
NO3	mg/l	40.000	15 000	0.000	0.900	6.000	5.000	3,000	0 500	25,000	. 3	1 25
NO2	mg/l	4.500	0.020	0 000	0.010	0.500	0 100	0.300	0 100	1 000	0.05	0.013
F Disuelto	mg/l	13,000	4 000	21 000	1000	2,000	2,000	10 000	7 000	23.000	0.009	017
F Orgánico	mg/l	17 000	9,000	9.000	0.900	5.000	5.000	10 000	3.000	2,000	0.09	0.3
Zn	mg/l	20,000	20.000	20 000	0.200	20.000	20,000	20.000	20 000	0.500	0.4	80.0
Pb	mg/l	0.400	0.400	0.150	0 050	0.040	0.400	0.400	0 400	2 100	0.05	0.05
Arsénico	mg/l	0.2	02	0.2	02	0.2	0.2	0.2	. 02	0.2	0.2	02
Cadmio	mg/l	0.2	02	0.2	02	0.2	0,2	0.2	02	0.2	02	02
Cianuro	mg/l	2	2	2	2	2	2	2	2	. 2	2	2
Cobre	mg/l	- 6	6	6	6	6		5				6
Cromo	ngs	1	1	1	<u> </u>	1	1	1			1	<u> </u>
Mercurio	mg/l	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Niquel	rng/L	4	<u>ه</u>	4	4	<u> </u>		4	4	4	4	4

Cuadro VI.89. Límites máximos permisibles para contaminantes, (Protección de la Vida Acuática).

	,	rio Maltrata	ARROYO CHIQUITO	ARROYOLA CARBONERA	ARROYD TOTOLITOS	rio Orizaba	ARROYO CALIENTE	rio metlac	ARROYO EL ZAPOTÉ	RÍO ESCAMELA	ias Dondelias	rio negro
Yemp	۵Ç.	40.000	15 000	40 000	20 000	40 000	40 000	40 000	40.000	40 000	18	_20
Grases y acettes	mg/l	25.000	25 000	25 000	25.000	25,000	25,000	25.000	25 000	25 000	25.000	25,000
Materia Flotante	mg/l	ausanio	zusente	ausente	ausente	ausente	Busente	aceante	ausente	ausante	ausente	ausente
Sólidos Sedimentables	mV	2 000	2 000	5 000	2.000	2,000	2,000	2.000	2 000	2,000	2000	2,000
Sólidos Suspandidos Totalos	mg/l	60 000	60,000	50 000	60.000	60.000	60,000	60 000	60 000	60 000	60.000	60.000
Colf F	NMP/100mi	2000 000	2000,000	2000 000	280.000	2000.000	2000.000	2000.000	_2000 000	1000 000	40	21
DBO	mg/t	50,000	60,000	60 000	55.000	60,000	60,000	60,000	60 000	80 000	10	10
N Orgánico	mg/i	0 070	0 500	0.500	0.050	0 700	3.000	3.000	8 000	1000	0,013	0.3
N Amoniacal	mg/l	0.000	0,100	0 700	0.004	1 000	0 100	3.000	1 000	5,000	0.003	0,005
NOS	mol	0 500	0.300	0 100	0.040	0 600	0.400	5.000	2.500	4,000	014	75
NO2	mg/ī	0.080	0.010	0 000	0.003	0.200	0 100	0 300	3 000	1000	0.005	<u> </u>
F Disuello	mg/t	4,000	7 000	7 000	1 000	2 000	1 000	7 000	7.000	1000	0 000	0 17
F Orgánico	mg/l	6.000	3,000	3 000	0.900	5,000	9.000	3 000	3 000	0 500	0.09	
Zn	mg/l	0 030	0.040	0 700	0 012	0 100	1 000	0 100	0.500	0 250	0 025	0.007
Pb	mg/i	0.001	0.001	0 001	0.001	0.001	0.001	0 001	0.010	0.010	0.00015	0.000
Arsénico	mg/l	02	0.2	0.2	0.2	02	0.2	02	0.2	02	0.2	0.3
Cadmio	mg/t	02	02	0.2	0.2	02	0.2	0.2	02	02	0.2	0.2
Clanuro	mg/l	2	2	2	2	2	2	2	2	2	2	
Cobre	mg/l	- 6		6		- 6	6					<u> </u>
Cromo	mg/l	1	1 1	1	1	1	1		1	1	1	
Mercurio	mg/l	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	00
Niquel	mg/l	4	1	4	4	4	4		4	4	<u> </u>	<u> </u>

Cuadro VI.90. Santa Rosa (CIDOSA)

Parámetro	Unidad	Tipo B	Tipa C
Temp	oÇ	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2,000	2.000
Sólidos suspendidos totales	mg/l	125.000	60 000
Colif. F	NMP/100ml	2000 000	2000.000
DBO5	mg/l	150,000	60 000
N. Orgánico	mg/l	8.000	0.070
N Amoniacal	mg/l	3.000	0.080
NO3	mg/l	40 000	0.600
NO2	mg/l	4.500	0 080
F Disuelto	. mg/i	13 000	4.000
F.Orgánico	mg/l	17 000	6,000
Zn	mg/i	20.000	0.030
Pb	mg/l	0 400	0.001
Arsénico	mg/i	02	0.5
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/l	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.91, PLAMAT 1

Parametro	Unidad	Tipo B	Tipo C
Temp	oC	40.000	15 000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/I	2,000	2.000
Sólidos suspendidos totales	mg/l	125 000	60.000
Colif. F	NMP/100ml	2000	2000.000
DBO5	mg/l	150.000	60.000
N Orgánico	mg/l	0.700	0.500
N. Amoniacal	mg/l	2.500	0.100
NO3	mg/l	15,000	0.300
NO2	mg/l	0.020	0.010
F. Dísuelto	mg/i	4.000	7.000
F.Orgánico	mg/l	9 000	3.000
Zn	mg/l	20.000	0.040
Pb	mg/l	0.400	0.001
Arsénico	mg/l	0.2	0.2
Cadmio	mg/i	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/I	1	1
Mercurio	mg/l	0.01	0.01
Níquel	mg/l	4	4

Cuadro VI.92, PLAMAT 2

Perametro	Erroran	Tope B	Epo C
Temp	oC	40.000	15 000
Grasas y Aceites	mg/l	25 000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	πl/I	2.000	2 000
Sólidos suspendidos totales	mg/t	125.000	60 000
Colif. F	NMP/100ml	2000	2000.000
DB05	mg/l	150.000	60.000
N. Orgánico	mg/t	0.700	0.500
N. Amoniacal	mg/l	2.500	0.100
NO3	mg/l	15 000	0,300
NO2	mg/l	0.020	0.010
F. Disuelto	mg/l	4.000	7.000
F.Orgánico	mg/l	9.000	3.000
Zn	mg/i	20.000	0.040
Pb	mg/l	0,400	0.001
Arsénico	mg/l	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/t	2	2
Cobre	mg/l	6	E
Cromo	mg/l	1	
Mercurio	mg/t	0.01	0.01
Níquel	mg/l	4	4

Cuadro VI.93. Harinera y Manufacturera de Orizaba

Parámetro	- Unidad -	. Тіра В.	Tipo C
Temp	OC	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Matena Flotante	mg/l	ausente	ausente
Sólidos sedimentables	Mm	2,000	2.000
Sólidos suspendidos totales	mg/i	125.000	60,000
Colif. F	NMP/100ml	2000	2000.000
DBO5	mg/l	150,000	60 000
N Orgánico	mg/l	1 000	0.700
N, Amoniacal	mg/l	4.000	1 000
NO3	mg/l	6.000	0.600
NO2	mg/i	0.500	0.200
F. Disuelto	mg/l	2.000	2.000
F Orgánico	mg/l	5.000	5.000
Zn	mg/l	20,000	0.100
Pb	mgЛ	0 040	0 001
Arsénico	mg/l	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/t	1	1
Mercurio	mg/I	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.94. Papelera Veracruzana

Parámetro	Unidad	Tipo B	Tîpo C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/I	2 000	2.000
Sólidos suspendidos totales	mg/l	125 000	60.000
Colif F	NMP/100ml	2000	2000.000
DBO5	mg/l	150,000	60,000
N Orgánico	mg/l	1.000	0 700
N. Amoniacal	mg/l	4.000	1 000
NO3	mg/l	6,000	0.600
NO2	mg/l	0.500	0.200
F. Disuelto	mg/l	2 000	2 000
F Orgánico	mg/l	5.000	5.000
Zn	mg/l	20 000	0 100
Pb	mg/l	0.040	0.001
Arsénico	mg/l	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	E
Cromo	· mg/l	1	1
Mercurio	mg/l	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.95. Tenerías Unidas

Pérêmetro	Unidad	Tipò B	Tipo C
Temp	оС	40.000	40.000
Grasas y Aceites	mg/l	25 000	25 000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/i	2.000	2.000
Sólidos suspendidos totales	mg/l	125.000	60.000
Colif, F	NMP/100ml	2000	2000,000
DBO5	mg/l	150.000	60.000
N Orgánico	mg/l	8 000	3.000
N Amoniacal	mg/l	5 000	0.100
NO3	mg/l	5 000	0 400
NO2	mg/l	0 100	0 100
F Disuelto	mg/l	2 000	1 000
F,Orgánico	mg/l	5.000	9 000
Zn	mg/l	20.000	1.000
Pb	mg/l	0.400	0.00
Arsénico	mg/l	02	02
Cadmio	mg/l	02	02
Cianuro	mg/l	2	
Cobre	mg/l	6	
Cromo	mg/l	1	· · · · · · · · · · · · · · · · · · ·
Mercurio	mg/l	0.01	0.01
Níquel	mg/l	4	4

Cuadro VI.96. Tenerías Trueba

Parámetro	, Unidad	Тіро В	Tipo C
Temp	оС	40 000	40 000
Grasas y Aceites	mg/l	25,000	25 000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2.000	2.000
Sólidos suspendidos totales	mg/l	125.000	60,000
Colif, F	NMP/100ml	2000	2000.000
DBO5	mg/l	150 000	60.000
N. Orgánico	mg/l	8,000	3,000
N Amoniacai	mg/l	5 000	0.100
NO3	mg/l	5 000	0.400
NO2	mg/l	0,100	0 100
F Disuelto	mg/l	2.000	1,000
F.Orgánico	mg/l	5,000	9.000
Zn	mg/l	20.000	1.000
РЬ	mg/l	0 400	0.001
Arsénico	mg/l	02	0.2
Cadmio	mg/l	0.2	0,2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/l	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.97. Ingenio El Carmen

	07. 11.901.20 <u>-</u> 1	041111011	
Parámetro	Unidad	Tipo B	Tipa C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	mi/l	2 000	2.000
Sólidos suspendidos totales	mg/l	125.000	60 000
Colif F	NMP/100ml	2000	2000 000
DB05	mg/l	150,000	60.000
N. Orgánico	mg/l	2.500	3.000
N. Amoniacal	mg/l	9,000	3.000
NO3	mg/l	3,000	5.000
NO2	mg/l	0,300	0.300
F. Disuelto	mg/l	10.000	7,000
F.Orgánico	mg/l	10.000	3.000
Zn	mg/l	20.000	0.100
Pb	mg/i	0.400	0.001
Arsénico	mg/l	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Стото	mg/I	1	1
Mercurio	mg/l	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.98. Talleres v Aceros

	.au. ralleles		
Parámetro.	Unidad	Tipo B	. Tipo C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2.000	2 000
Sótidos suspendidos totales	mg/l	125,000	60.000
Colif. F	NMP/100ml	2000	2000.000
D805	mg/l	150.000	60.000
N. Orgánico	mg/l	2 500	3.000
N. Amoniacal	mg/l	9 000	3.000
NO3	mg/l	3,000	5.000
NO2	mg/l	0.300	0.300
F. Disuelto	mg/l	10.000	7.000
F.Orgánico	mg/l	10.000	3.000
Zn	mg/l	20,000	0.100
Pb	mg/l	0.400	0.001
Arsénico	mg/l	02	0.2
Cadmio	mg/I	02	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	€
Cromo	mg/l	1	1
Mercuno	mg/l	0.01	0.01
Nîquel	mg/l	4	4

Cuadro VI.99. Ingenio San Miguelito

Parámstro	Unidad	Tipo B	. Fipo C
Temp	оС	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	mill	2,000	2.000
Sólidos suspendidos totales	mg/l	125.000	60 000
Colif. F	NMP/100ml	2000	2000 000
DBO5	mg/l	150.000	60,000
N Orgánico	mg/l	1.000	8.000
N. Amoniacal	mg/l	4.000	1 000
NO3	mg/l	0.500	2.500
NO2	mg/l	0.100	3.000
F. Disuelto	mg/l	7.000	7.000
F.Orgánico	mg/l	3 000	3.000
Zn	mg/l	20 000	0.500
Pb	mg/l	0 400	0.010
Arsénico	mg/!	0.2	02
Cadmio	mg/l	0.2	02
Cianuro	mg/i	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/I	0.01	0.01
Níquel	mg/l	4	4

Cuadro VI.100. Aceitera La Patrona

Parámetro	Unidad	Tipo B	Tipo C
Temp	oC	40,000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2.000	2 000
Sólidos suspendidos totales	mg/!	125 000	60.000
Colif, F	NMP/100ml	2000	2000.000
DBO5	mg/i	150,000	60.000
N. Orgánico	mg/l	1.000	8.000
N Amoniacal	mg/l	4.000	1.000
NO3	mg/l	0.500	2.500
NO2	mg/l	0.100	3 000
F. Disuelto	mg/l	7 000	7.000
F.Orgánico	mg/l	3 000	3.000
Zn	mg/l	20 000	0 500
Pb	mg/l	0.400	0.010
Arsénico	mg/i	02	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/i	6	6
Cromo	mg/l	1	1
Mercurio	mg/i	0.01	0.01
Níquel	mg/l	4	4

Cuadro VI.101. Ingenio San José de Abaio

Parámetro:	Unidad	Tipo 8	Tipo C
Temp	oC	40 000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2 000	2,000
Sólidos suspendidos totales	mg/l	125.000	60.000
Colif F	NMP/100ml	2000	2000.000
DBO5	mg/l	150.000	60.000
N. Orgánico	mg/l	1.000	8.000
N Amoniacal	mg/l	4.000	1.000
NO3	rng/l	0.500	2.500
NO2	mg/l	0.100	3.000
F. Disuelto	mg/l	7.000	7.000
F.Orgánico	mg/l	3.000	3.000
Zn	mg/l	20.000	0.50
Pb	mg/l	0.400	0.010
Arsénico	mg/l	0.2	0:
Cadmio	mg/l	0.2	0:
Cianuro	mg/l	2	-
Cobre	mg/l	6	
Cromo	mg/i	1	
Mercurio	mg/l	0.01	0,0
Niquel	mg/l	4	1

Cuadro VI.102. Metalúrgica Veracruzana

Parámetro	Unidad	Tipo B	Tipo C
Temp	oC	40,000	40.000
Grasas y Aceites	mg/l	25.000	25 000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/I	2 000	2 000
Sólidos suspendidos totales	mg/l	125.000	60 000
Colif. F	NMP/100ml	2000	2000 000
DBO5	mg/l	150 000	60 000
N. Orgánico	mg/l	1 000	8 000
N Amoniacal	mg/l	4 000	1,000
NO3	mg/l	0.500	2 500
NO2	mg/l	0 100	3 000
F Disuelto	mg/l	7 000	7.000
F Orgánico	mg/l	3 000	3,000
Zn	mg/l	20 000	0,500
Pb	mg/l	0 400	0.010
Arsénico	mg/l	0,2	0.2
Cadmio	mg/I	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/l	0.01	0.01
Niquel	/mg/l	4	4

Cuadro VI.103. CAFIVER

Parámetro	Unidad	T⊤po B	Tîpê C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/l	25 000	25.000
Materia Flotante	mg/I	ausente	ausente
Sólidos sedimentables	ml/I	2.000	2.000
Sólidos suspendidos totales	mg/l	125,000	60.000
Colif. F	NMP/100ml	1000	1000.000
DBQ5	mg/l	100.000	60.000
N. Orgánico	mg/l	1.000	1 000
N Amoniacal	mg/l	10.000	5.000
NO3	mg/l	25,000	4.000
NO2	mg/l	1.000	1.000
F. Disuelto) mg/l	20.000	1 000
F.Orgánico	mg/l	2,000	0.500
Zn	mg/l	0 500	0.250
Pb	mg/l	0.100	0.010
Arsénico	mg/l	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercuno	mg/l	0.01	0.01
Niquel	mg/l	4	.4

Cuadro VI.104, PROQUINA 1

Parametro	Unidad	Tipo B	Tipa C
Temp	oC	40,000	40 000
Grasas y Aceites	mg/l	25,000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	mVI	2.000	2 000
Sólidos suspendidos totales	mg/l	125.000	60.000
Colif. F	NMP/100ml	1000	1000.000
DB05	mg/l	100 000	60.000
N. Orgánico	mg/l	1.000	1 000
N. Amoniacal	mg/l	10,000	5.000
NO3	mg/l	25.000	4.000
NO2	rng/l	1.000	1 000
F. Disuelto	mg/!	20.000	1.000
F.Orgánico	mg/l	2,000	0.500
Zn	mg/l	0 500	0.250
Pb	mg/l	0 100	0.010
Arsénico	mg/l	02	02
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	e
Стогно	mg/i	1	7
Mercurio	mg/l	0.01	0.01
Niquel	mg/l	4	

Cuadro VI.105. PROQUINA 2

Parametro -	Unidad	Tipo B	Tipe C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/i	25.000	25 000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	mi/ī	2 000	2.000
Sólidos suspendidos totales	mg/l	125 000	60.000
Colif. F	NMP/100ml	1000	1000 000
DBO5	j mg/l	100,000	60 000
N Orgánico	mg/l	1.000	1.000
N. Amoniacal	mg/l	10,000	5.000
NO3	mg/l	25.000	4 000
NO2	mg/l	1,000	1.000
F. Disuelto	mg/l	20.000	1 000
F.Orgánico	mg/l_	2 000	0 500
Zn	mg/l	0,500	0.250
Pb	mg/l	0 100	0.010
Arsénico	mg/l	0.2	0,2
Cadmio	mg/l	02	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercuno	mg/l	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.106, FERMEX 1

Parámetro	Unidad	Tipo &	Tipe C
Temp	oC oC	40.000	40,000
Grasas y Aceites	mg/l	25.000	25 000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2,000	2,000
Sólidos suspendidos totales	mg/l	125,000	60,000
Colif F	NMP/100ml	1000	1000 000
DBO5	mg/l	100.000	60,000
N. Orgánico	mg/l	1.000	1,000
N. Amoniacal	mg/l	10.000	5 000
NO3	mg/l	25 000	4,000
NO2	mg/l	1 000	1.000
F. Disuelto	mg/i	20 000	1 000
F Orgánico	mg/l	2 000	0.500
Zn	mg/l	0.500	0.250
Pb	mg/l	0.100	0.010
Arsénico	mg/l	02	0.2
Cadmio	mg/l	0.2	02
Cianuro	mg/l	2	- 2
Cobre	mg/l	6	E
Cromo	mg/l	1	1
Mercuno	mg/l	0.01	0.01
Niquel	mg/l	4	

Cuadro VI.107, FERMEX 2

Parámetro	Unidad	Tipo B	Tipo C
Temp	°C	40.000	40.00
Grasas y Aceites	mg/l	25 000	25,00
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2.000	2.00
Sólidos suspendidos totales	mg/l	125,000	60,00
Colif F	NMP/100ml	1000	1000 00
DBO5	mg/l	100 000	60.00
N. Orgánico	mg/l	1.000	1.00
N. Amoniacal	mg/l	10.000	5.00
NO3	mg/l	25.000	4 00
NO2	mg/l	1 000	1.00
F. Disuelto	mg/l	20 000	1 00
F.Orgánico	mg/l	2 000	0.50
Zn	mg/l	0.500	0,25
РЬ	mg/l	0 100	0.01
Arsénico	mg/l	02	0
Cadmio	mg/l	0,2	O.
Cianuro	mg/l	2	
Cobre	mg/l	6	
Cromo	mg/l	1	<u> </u>
Mercurio	mg/l	0.01	00
Niguel	mg/l	4	

Cuadro VI.108. Kimberly Clark

Parámetro	Unidad	Tipo B	Tipo C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/l	25 000	25 000
Matena Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2.000	2 000
Sólidos suspendidos totales	mg/l	125.000	60,000
Colif F	NMP/100ml	1000	1000,000
DBO5	mg/l	100 000	60.000
N Orgánico	mg/l	1 000	1.000
N Amoniaçal	mg/l	10 000	5 000
NO3	mg/l	25 000	4.000
NO2	mg/i	1 000	1,000
F Disuelto	mg/l	20 000	1,000
F.Orgánico	mg/l	2.000	0.500
Zn	mg/l	0.500	0,250
РЬ	mg/l	0 100	0,010
Arsénico	mg/l	02	02
Cadmio	mg/l	0.2	02
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/l	0.01	0 01
Níquel	mg/l	4	4

Cuadro VI.109. FIRIOB

Parámetro	Unidad	Tipo B	Tipo C
Temp	oC	40,000	40.000
Grasas y Aceites	mg/l	25 000	25 000
Matena Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/i	2.000	2,000
Sólidos suspendidos totales	mg/I	125.000	60.000
Colif. F	NMP/100mi	1000	1000 000
DBO5	mg/l	100,000	60.000
N. Orgánico	mg/l	1.000	1.000
N. Amoniacal	mg/l	19.000	5.000
NO3	mg/l	25 000	4.000
NO2	mg/l	1.000	1.000
F. Disuelto	mg/I	20.000	1,000
F.Orgánico	mg/l	2,000	0 500
Zn	mg/l	0.500	0.250
Pb	mg/l	0.100	0.010
Arsénico	mg/I	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/i	1	1
Mercurio	mg/l	0.01	0.01
Niquel	mg/l	4	4

Cuadro VI.110. Cementos Veracruz (APASCO)

Parametro	l trestara .	Tope B	Hepar C
Temp	oC	40.000	40.000
Grasas y Aceites	mg/l	25.000	25.000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2 000	
Sólidos suspendidos totales	mg/l	125.000	60.000
Colif. F	NMP/100ml	1000	1000.000
DBO5	mg/l	100.000	60.000
N. Orgánico	mg/l	1,000	1.000
N. Amoniacal	mg/l	10,000	
NO3	mg/l	25.000	4.000
NO2	mg/l	1.000	1.000
F. Disuelto	mg/l	20 000	1 000
F.Orgánico	mg/I	2,000	0.500
Zn	mg/l	0.500	0.250
Pb	mg/l	0.100	0.010
Arsénico	mg/l	0.2	02
Cadmio	mg/I	0.2	0.2
Cianuro	mg/l	2	- 2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/l	0.01	0.01
Niguel	mg/l	4	

Cuadro VI.111. Mexicana de Alcaloides

Perametro	Unidad	Tipo B	Tîpe:C
qmeT	OC	40 000	40 000
Grasas y Aceites	mg/l	25,000	25 000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	ml/l	2 000	2.000
Sólidos suspendidos totales	mg/l	125 000	60 000
Colif F	NMP/100ml	1000	1000 000
DBO5	mg/l	100.000	60.000
N. Orgánico	πg/l	1.000	1.000
N. Amoniacal	mg/l	10.000	5.000
NO3	mg/l	25.000	4,000
NO2	mg/l	1,000	1 000
F. Disuelto	mg/l	20,000	1 000
F.Orgánico	mg/l	2.000	0 500
Zn	mg/l	0.500	0.250
Pb	mg/l	0.100	0.010
Arsenico	mg/l	0.2	0.2
Cadmio	mg/l	0.2	0.2
Cianuro	mg/l	2	2
Cobre	mg/l	6	6
Cromo	mg/l	1	1
Mercurio	mg/l	0 01	0.01
Niquel	mg/i	4	4

Cuadro VI.112. PEMEX

Parámetro			Tipo C	
Temp	oC .	40 000	40.000	
Grasas y Aceites	mg/i	25 000	25,000	
Materia Flotante	mg/l	ausente	ausente	
Sólidos sedimentables	ml/i	2 000	2.000	
Sólidos suspendidos totales	mg/l	125.000	60.000	
Colif. F	NMP/t00ml	1000	1000.000	
DBO5	mg/l	100.000	60 000	
N. Orgánico	mg/l	1,000	1.000	
N. Amoniacal	mg/l	10.000	5.000	
NO3	mg/l	25,000	4.000	
NO2	mg/l	1.000	1.000	
F Disuelto	rng/l	20 000	1 000	
F.Orgánico	mg/l	2.000	0.500	
Zn	mg/l	0.500	0 250	
Pb	mg/l	0.100	0.010	
Arsénico	mg/l	02	0.2	
Cadmio	mg/i	0.2	0.2	
Cianuro	mg/l	2	2	
Cobre	mg/l	6	(
Cromo	mg/l	1	1	
Mercurio	mg/l	0.01	0.01	
Niquel	mg/l	4	4	

Cuadro VI.113. Ingenio San Nicolás

Parámetro	Unidad	Tipo B	Tipo C
Temp	oC	40	40
Grasas y Aceites	mg/l	25,000	25,000
Materia Flotante	mg/l	ausente	ausente
Sólidos sedimentables	mi/l	2.000	2 000
Sólidos suspendidos totales	mg/l	125 000	60,000
Colif. F	NMP/100ml	2000	2000
D805	mg/l	150	60
N. Orgánico	mg/l	0.6	4.3
N Amoniacal	mg/l	04	1
NO3	mg/l	15	
NO2	mg/i	0.06	
F Disuelto	mg/l	13	44
F.Orgánico	mg/l	17	5 6
Zn	mg/l	20	0.6
Pb	mg/l	0.4	0.04
Arsénico	mg/l	0.2	02
Cadmio	mg/l	02	02
Cianuro	mg/i	2	2
Cobre	mg/l	6	- 6
Cromo	mg/l	1	1
Mercurio	mg/l	0.01	0.01
Níquel	mg/l	4	

Cuadro VI.114. Ingenio La Providencia

Parámetro	- Unidad	TIPO B	Tipo C.	
Temp	oC	40	40	
Grasas y Acertes	mg/l	25,000	25.000	
Materia Flotante	mg/l	ausente	ausente	
Sólidos sedimentables	ml/l	2,000	2 000	
Sólidos suspendidos totales	mg/l	125.000	60 000	
Colif. F	NMP/100ml	2000	2000	
DBO5	mg/l	150	60	
N Orgánico	mg/l	0.5	1.5	
N. Amoniacal	mg/l	2.5	0.8	
NO3	mg/l	07	47	
NO2	mg/i	01	0.8	
F. Disuelto	mg/l	20	68	
F,Orgánico	mg/l	10	3.2	
Zn	mg/l	20	0,6	
Pb	mg/l	04	0.04	
Arsénico	mg/l	02	0.2	
Cadmio	mg/l	02	0.2	
Cianuro	mg/i	2	2	
Cobre	Ngm	e	e	
Cromo	mg/i	1	1	
Mercurio	mg/l	0.01	0.01	
Niquel	mg/l	4	4	

VI.12 Proyecciones de cargas contaminantes debidas a desarrollos a corto mediano y largo plazo y evaluación de efectos.

Para poder determinar la carga futura de contaminantes aportada por descargas de aguas residuales, fue necesario estimar las aportaciones individuales principalmente de Descargas municipales e Industriales.

Descargas Municipales

Estas descargas se estimaron mediante el cálculo de la población total que aporta sus aguas residuales al Río Blanco o a sus afluentes. Se decidió llevar a cabo la proyección de población tomando en cuenta los datos del censo de 1990 y el conteo de 1995. Debido a que el conteo de 1995 solamente reporta población por municipio, se proyectó la población de los diferentes municipios que atraviesa la corriente y se asumió que el crecimiento por localidad era el mismo que por municipio.

Para el cálculo de la población futura se utilizó el modelo geométrico de crecimiento de población ya que se caracteriza por tener una velocidad de crecimiento directamente proporcional al valor de la población en cada instante de tiempo siendo esta consideración la que garantizaría el mayor gasto futuro. El periodo de diseño se estimó de 15 años a partir de 1995 con lo cual las proyecciones son al año 2010.

En el Cuadro VI.115 se presenta en resumen los gastos futuros de las poblaciones que descargan sobre el Río Blanco o en sus afluentes.

Cuadro VI.115. Gastos futuros de las poblaciones en estudio.

Población	Gasto actual (m³/s)	Población actual	Población Futura (mêtodo geométrico) (2010)	Gasto Futuro (m³/s)	
Ojo Zarco	0.00375	2880	4654	0 00606	
Ciudad Mendoza	0.118	45312	73228	0.19070	
Nogales	0.045	25920	41889	0.09090	
Río Blanco	0.1854	71193.6	115055	0.29962	
Orizaba	0.355	136320	220303	0.66932	
Cumbre de Tuxpango	0 0.002 1536 2482		2482	0,00323	
Omeaica 0 009		6912	11170	0 01454	
Córdoba	0 306	117504	189895	0 57694	
Congregación El Encinar	0 00356	2734	4418	0.00575	
Fortin de la Flores	0,069	31795	51383	0.115	

Descargas Industriales

En lo que se refiere a las descargas industriales no se cuenta con ninguna información precisa de posibles proyectos para la instalación de nuevas industrias o de ampliación de las ya existentes.

Simulación

Para estimar los efectos que tendrían las estimaciones para las descargas presentadas para los municipios se decidió realizar una simulación mediante el modelo matemático considerando las descargas al año 2010. Los resultados se muestran en el anexo D en donde se aprecia claramente que el cambio entre el estado actual de calidad del agua y el proyectado para el año 2010 es generalmente pequeño y a veces inapreciable. Lo que indica que el Río Blanco no se verá afectado a futuro siempre y cuando no se instalen nuevas industrias o se amplíen las actuales.

VI.13 Recomendación de alternativas de manejo, prevención y control de contaminación.

Es importante hacer notar en primera instancia que dependiendo de los contaminantes que deben ser removidos y el porcentaje de remoción requerido se pueden desarrollar un número casi limitado de alternativas o diagramas de flujo o trenes de tratamiento de aguas residuales usando las operaciones y los procesos unitarios existentes en la actualidad. Por lo que no se intentará detallar o dar soluciones específicas a los problemas de calidad del agua de las diferentes descargas municipales e industriales del Río Blanco, para esto se recomienda llevar a cabo un estudio específico para cada una de las principales descargas de la corriente.

Los principales factores a considerar para seleccionar y evaluar las operaciones y procesos de tratamiento incluyen los siguientes:

- 1. Aplicabilidad de los procesos: la aplicabilidad de un proceso se evalúa de acuerdo con la experiencia, datos existentes de plantas de tratamiento y datos de planta piloto. Si existen condiciones nuevas o poco comunes, será necesario efectuar estudios experimentales.
- 2. Ámbitos de flujos: Los procesos deberán ser diseñados para soportar los ámbitos de flujo esperados. Por ejemplo, las zanjas de estabilización no son adecuadas para flujos extremadamente grandes.
- Variaciones de flujo: La mayoría de los procesos trabajan mejor con un flujo constante, sin embargo, se pueden aceptar variaciones. Si la variación del flujo es demasiado grande, la igualación o regulación de flujo podrá ser necesaria.
- 4. Características del afluente: Las características del influente afecta el tipo de proceso que se pretende usar (químico o biológico) y a los requerimientos para una operación adecuada.
- Contaminantes inhibidores: Se deberán detectar los contaminantes que están presentes y bajo que condiciones; además de, determinar el tipo de contaminantes que no son afectados durante el tratamiento.
- Restricciones climatológicas: La temperatura afecta a la mayoría de los procesos químicos y biológicos.
- 7. Eficiencia: La eficiencia de tratamiento es medida en términos de la calidad del efluente, el cual deberá ser consistente con los requerimientos dados.
- 8. Residuos producidos: Los tipos y cantidades de residuos sólidos, líquidos y gaseosos producidos se deben conocer o estimar. Es conveniente realizar estudios en plantas piloto para identificar propiamente los residuos y su posible disposición.
- 9. Restricciones en el manejo de lodos: Se deberá determinar y conocer las posibles restricciones que pudiera hacer muy caro o inoperante el manejo de los lodos. En cualquier caso, un método de tratamiento deberá ser seleccionado solamente después de que los procesos y operaciones de manejo del lodo han sido estudiados.
- Restricciones ambientales: Factores ambientales, tales como vientos predominantes y direcciones del viento pueden restringir el uso de ciertos procesos, especialmente cuando se producen malos olores.
- Requerimientos químicos: Se deberán definir los recursos y las cantidades de químicos necesarios, para un período largo de tiempo, para la operación exitosa de las operaciones o procesos unitarios.
- 12. Requerimientos de energía: Si se requiere de sistemas de tratamiento económicos, se tiene que estimar los requerimientos de energía, así como los costos futuros de energía.
- 13. Otros requerimientos de recursos: Deben ser considerados los recursos adicionales para la implementación exitosa del tratamiento propuesto.
- 14. Rehabilitación: La experiencia en rehabilitación de los procesos bajo consideración es esencial, para determinar si la operación del proceso será fácilmente afectada o si se puede soportar cargas pico periódicas, se deberá estimar como influyen estos eventos en la calidad del efluente.
- 15. Complejidad: Será recomendable conocer la complejidad de la operación, bajo condiciones de emergencia, tales como cargas pico, así como el entrenamiento que deben tener los operadores para operar debidamente el proceso.

Caso estudio VI.91

16. Compatibilidad: Se deberá conocer si los procesos propuestos pueden ser usados exitosamente con las unidades y procesos existentes, si se puede ser llevada a cabo fácilmente la extensión de la planta y si es el que el tipo de reactor podrá ser modificado.

Es conveniente señalar que además de los factores anteriormente mencionados, la determinación del proceso de tratamiento a seleccionar dependerá de factores, tales como:

- Experiencias previas.
- Políticas actuales de las dependencias reguladoras en la aplicación de métodos específicos de tratamiento.
- Disponibilidad de equipos para métodos específicos de tratamiento.
- Costos de construcción iniciales.
- Costos de operación y mantenimiento.

Existen una gran variedad de procesos unitarios de tratamiento en la actualidad, los cuales pueden combinarse en un número casi ilimitado de combinaciones para desarrollar alternativas de tratamiento de aguas residuales, las que dependerán de la calidad del agua cruda, del flujo y los niveles de calidad esperados en el efluente.

Los procesos unitarios se clasifican de acuerdo al nivel de tratamiento requerido para las aguas residuales: Medición de Caudal, Pretratamiento, Tratamiento Primario, Tratamiento Secundario, Tratamiento Terciario y Tratamiento Avanzado. Para obtener aguas con calidad adecuada para uso público urbano se requeriría llegar hasta un nivel secundario de tratamiento. A continuación se enlistan los procesos unitarios de acuerdo al nivel de tratamiento que pertenecen:

Medición de caudal:

- Medidor Parshall
- * Medidor de Orificio
- Vertedores

Pretratamiento:

- Cribado
- Desarenación
- Remoción de Grasa y Aceites
- igualación, Regulación

Tratamiento Primario:

* Sedimentación Primaria

Tratamiento Secundario:

- * Infiltración
- Filtros Percoladores
- Discos Biológicos

- * Lodos Activados
- Sedimentación
- * Aereación Extendida
- Lagunas Aeróbicas, Anaeróbicas o Facultativas
- Zanjas de Oxidación
- Desinfección
- * Lagunas Aereadas Mecánicamente
- * Tratamiento en Tierra

Tratamiento Terciario:

- Remoción de Nitrógeno
- Tratamiento con Cal
- Filtración
- Desinfección

Tratamiento Avanzado:

- Remoción de Amoniaco
- * Adsorción en Carbón Activado Granular
- Filtración en Membranas Semipermeables

A continuación se enlistan los principales procesos unitarios y sus eficiencias de acuerdo los contaminantes que rebasan actualmente los límites permisibles establecidos en los puntos anteriores de este mismo capítulo.

Los porcentajes de remoción se basan en el tratamiento de aguas residuales domésticas, por lo que estos podrían variar si la calidad del influente fuera de tipo industrial. Además es natural que al combinar dos o más de estos tratamientos las eficiencias se verían incrementadas, por lo que los procesos solamente se mencionan a manera de referencia, estudios de ingeniería más a detalle darán la solución específica requerida para cada descarga a la corriente.

A manera de comparación en los Cuadros VI.116 y VI.117 se muestran también las remociones requeridas para que cada tipo de descarga cumpliera con los límites establecidos para riego agrícola, para uso público urbano y para protección a la vida acuática.

Los porcentajes de remoción que se incluyeron corresponden a los mayores de todas las descargas coincidiendo en varios parámetros con las descargas de los ingenios.

Cuadro VI.116. Porcentajes de remoción requeridos y obtenidos por cada tipo de descarga.

DESCARGA	PORCENTAJE DE REMOCIÓN REQUERIDO									
	D80	Ζn	Pb	Cblif.	N orp	NH3	NO2	МОЗ	Fósforo Orgánico	Fòstoro Disuelto
TIPO A	80			99,992	68,051	68,051	81,132	68,051	49,58	49,58
TIPO B	85		79,424	99,992	99,002	99,002	99,137	98,003	49,58	49,58
TIPO C	94	96,88	100	99,992	95	99,908	99,057	95	83,193	83,193

Cuadro VI.117. Porcentajes de remoción requeridos y obtenidos por cada tipo de proceso unitario respectivamente.

PROCESOS UNITARIOS	Grasas y acertes	Solidos Suspendidos	Sólidos Sedimentables	Demanda Bioquímica de	Coliformes Fecales	Nitrógano Total	Fósforo Total
		Totales		Oxigeno	1	10.5.	
Tratamiento Primario	62%	53%		41%	33% **	18% *	21%
Lodos Activados	80%	67%]	88%	81% **	58% *	39%
Aereación Extendida	80%	94%		94%	81% **	98% *	39%
Nitrificación en Medio Suspendido		61%		75%	73%	97% *	50%
Filtros Biológicos		63%		69%			
Discos Biológicos		89%		94%		74% *	
Coagulación Sedimentación (Sales de Fierro)	91%	67%		62%	66% ***	14% *	71%
Coagulación Sedimentación (Ad. De Cal.)	40%	65%	,	53%	73% **	22% *	91%
Coagulación Sedimentación (Ad. de sulfato de alumínio)	89%	83%		76%	51% **		78%
Coagulación Sedimentación (Cal y sales de fierro)		91%		81%	73% **		96%
Filtración después de Tratamiento Secundario		73%		39%	33% **	33% *	57%
Filtración después de Tratamiento Físico-Químico		42%		36%	25% **		
Absorción en Carbón Activado	47%	64%	1	53%	64% **	39% *	88%
Torres de Separación de Amoniaco			1	Ţ <u> </u>		98% ***	
Intercambio Iónico Selectivo		62%		40%		84% *	
Lodos Activados + Osmosis Inversa]		95.1%*	99.7% ****
Lodos Activados + Carbón Activado + Osmosis Inversa	}					96 7% *	99.9% ****
Primario / Clarificación Química + Osmosis Inversa						90 2% *	99.4% ****
Cloración (Trat. Previo Floculación - Coagulación y Filtración)					99.9% **		
Ozonación (Tratamiento Previo Floculación - Coagulación y Filtración)							

- Porcentaje de remoción para N-NH3.
- ** Porcentaje de remoción para Coliformes Totales.
- *** Influente: pH = 10.2 y T = 22°C.
- **** Porcentaje de remoción para Fosfatos.

Casillas en blanco = sin datos.

VI.14 Análisis de costo beneficio.

Los costos involucrados en la implantación de las medidas a tomar dependerá principalmente del flujo de agua a tratar, su calidad y la alternativa de tratamiento seleccionada. Como cada tipo de descarga requerirá seguramente trenes de tratamiento diferentes, no es posible llevar a cabo un análisis exacto del costo probable del manejo y prevención de la contaminación. Aún así a manera de ejemplo se estima el costo para tratar la suma total de las aguas tanto industriales como municipales descargadas directamente al Río Blanco. Para esto se tomó como base uno de los trenes de tratamiento que consiste en un tratamiento secundario con nitrificación y que presenta las remociones indicadas en el Cuadro VI.118.

Cuadro VI.118. Porcentaje de remoción por parámetro.

Parámetro	Remoción (%)
Demanda Bioquímica de Oxígeno	98
Sólidos Suspendidos Totales	97
Nitrogeno Amoniacal	99
Fósforo	80
Grasas y Aceites	94
Coliformes Totales	97

No se intenta recomendar este tratamiento, simplemente se toma como referencia ya que en base a las remociones reportadas, sería suficiente para que las aguas residuales cumplieran con los límites especificados anteriormente.

Los costos de construcción, operación y mantenimiento reportados consideran: equipos, materiales, herramientas, mano de obra, servicios, mantenimiento, etc. A partir de estos costos y considerando que, actualmente se requeriría tratar aproximadamente 1.578 m³/s de agua residual (incluyendo las descargas industriales de los ingenios y municipales), se pudieron estimar los costos totales, los cuales se muestran en el Cuadro VI.119.

Cuadro VI.119. Costos totales para que las aguas residuales cumplan con los límites especificados.

	Costo por m²/s (millones de pasos)	Costo Total (millones de pesos)
Inversión inicial	98	154.64
Costo anual de operación y mantenimiento	23.138	36.511

Estos costos no incluyen estudio de factibilidad, proyecto de ingeniería, supervisión de la construcción, gastos legales y administrativos, costos de terreno, edificaciones administrativas y laboratorio.

En cuanto a los beneficios que se tendrían al implementar las medidas adecuadas de control y prevención de la contaminación del agua para el Río Blanco, se pueden mencionar entre otros:

- * Cumplimiento de la Ley por parte de los responsables de las descargas de aguas residuales, evitando el tener que ser sancionados y multados por las autoridades.
- * Se evitaría tener que tomar en un futuro acciones correctivas para la remediación de los problemas de contaminación del agua, las cuales generalmente son mucho más costosas que las acciones preventivas.
- * Cumplimiento de los Criterios Ecológicos de Calidad del Agua a todo lo largo de la corriente, permitiendo así el uso del recurso de acuerdo a la clasificación propuesta con anterioridad.
- * Conservación de la ecología de la zona de estudio, evitando el deterioro de los recursos naturales y promoviendo actividades recreativas y de pesca.

Finalmente es adecuado recordar que todo lo anterior solamente se cumpliría, como ya se ha mencionado varias veces, si se llevaran a cabo estudios adicionales de clasificación en los principales afluentes de la corriente, para que estos también cumplieran con los Criterios de Calidad del Agua.

CONCLUSIONES

El agua constituye uno de los principales factores ambientales debido a su importancia determinante en la salud de los seres vivos y particularmente del hombre.

Tradicionalmente, el agua ha sido estudiada sólo desde aquellos atributos que resultaban importantes para la realización de proyectos.

Actualmente ante los problemas de contaminación es necesario realizar estudios más profundos para conocer con detalle las alteraciones que puedan sufrir sus atributos y las repercusiones en el ambiente con el fin de mejorar fundamentalmente la calidad de vida, que en muchas zonas del país se está afectando por descargas de aguas residuales.

El carácter de los estudios de clasificación de corrientes, eminentemente predictivo, requiere el empleo de técnicas que, a partir de las acciones generadas por descargas de aguas residuales, permitan prever sus efectos en el ambiente, con el objeto de proponer las medidas que atenúen los efectos adversos ante la incapacidad de las corrientes de autopurificarse en forma natural.

Con respecto al impacto en la calidad del agua, para poder predecir con suficiente confiabilidad la concentración de contaminantes como consecuencia de la presencia de múltiples descargas en una corriente superficial, se debe recurrir al uso de un modelo matemático.

Los modelos matemáticos están basados en consideraciones que simplifican el fenómeno y para su aplicación se requiere contar con datos proporcionados por un muestreo y aforo adecuados.

El modelo original de Streeter y Phelps fue modificado para conocer el grado de contaminación de una corriente en la cual se vierten aguas residuales industriales y municipales y ofrece las ventajas siguientes:

- Es capaz de simular simultáneamente hasta 15 parámetros de calidad del agua en cualquier combinación.
- b) Después de cada simulación se obtiene un archivo de salida con datos hidráulicos, parámetros de calidad del agua y coeficientes de degradación y aereación por cada tramo; además permite visualizar gráficas de gastos y parámetros de calidad del agua.
- Permite corregir las deficiencias de balance hidráulico mediante incrementos de flujo dentro del mismo modelo.

El modelo es una herramienta muy útil, sin embargo, se debe tener en cuenta las consideraciones simplificatorias que se establecen para su desarrollo, tales como:

a) El modelo asume un flujo advectivo, despreciando el flujo difusivo. Es importante tomar en cuenta este concepto, ya que las condiciones reflejadas en el modelo muestran la concentración de contaminantes en la dirección de la corriente y nunca en la sección transversal. De modo que el resultado de las simulaciones indica el grado de contaminación

Conclusiones CON.1

en forma longitudinal, considerando un mezclado instantáneo y una concentración uniforme en cualquier sección transversal.

- b) Una de las principales limitantes del modelo es que no simula grandes cuerpos de agua como presas o lagos y por lo tanto éstos se deben evitar dividendo la corriente en tramos, antes y después de dicho cuerpo, a lo largo de la corriente. Este problema afecta de manera considerable al modelador puesto que debe calibrar y simular cada una de las subdivisiones de la corriente.
- c) Otra limitante del modelo es que no proporciona una opción para efectuar una sobreposición de los valores obtenidos en laboratorio con los que se obtienen en el modelo. Por tanto es necesario utilizar otras herramientas que ocasionan demoras en la calibración.
- El modelo admite 50 tramos con 20 elementos "Delta-x" cada uno hasta conformar como máximo 500 elementos.

Para hacer posible la simulación del efecto en la calidad del agua en una corriente superficial ante diversas condiciones de las múltiples descargas y del ambiente, en forma expedita y sin errores de cálculo, resulta imprescindible el empleo de software como es el caso del QUAL2E. Esto, por otra parte, es condición necesaria, pero no suficiente, ya que el carecer de las suficientes bases teóricas del fenómeno conduciría a la aplicación incorrecta del modelo y convertiría al usuario del programa en un capturista imposibilitado para interpretar adecuadamente los resultados que se proporcionan.

En el caso estudio analizado "Río Blanco, Veracruz", se detectó la siguiente problemática:

- Las estaciones de la Red de Monitoreo de calidad del agua son insuficientes y las que se encuentran operando no funcionan en forma constante, por tanto los datos proporcionados no son los ideales para estimar el índice histórico de calidad del agua.
- b) Las estaciones hidrométricas que se encuentran sobre la corriente y sus afluentes presentan deficiencias que impiden obtener un adecuado gasto de diseño.
- c) El número de estaciones de monitoreo, aforo y de muestras por estación que la CNA propuso para realizar el estudio de clasificación fue insuficiente, limitando así la división de la corriente en tramos de menor distancia.
- d) Es necesario que las autoridades sean más estrictas para evitar descargas sin permiso que afecten la calidad de las corrientes y el balance hidráulico en el modelo matemático.
- e) En el caso de las descargas se observó que en su mayoría no cumplen con la NOM-001-ECOL-1996 y con sus condiciones particulares de descarga.
- f) El Río Blanco a lo largo de su trayecto cuenta con grandes caídas y cambios de pendiente bruscos que ayudan en mucho a su autopurificación. Sin embargo debido a la cantidad y calidad de las descargas industriales y municipales actualmente sólo es posible que cumpla con los criterios ecológicos en cuanto al uso en riego agrícola.
- g) Después de efectuadas las simulaciones se detectó que aunque todas las descargas cumplieran con la NOM-001-ECOL-1996, el Río Blanco no alcanzaría a recuperarse para cumplir con los usos B y C de los criterios ecológicos. Por lo tanto es necesario restringir las descargas industriales y someter a un proceso de tratamiento las municipales. Debido a la necesidad inmediata de efectuar una depuración del Río Blanco se propone un plazo de 5 años para que se cumpla con el uso A y de 10 años para el uso C.

Debido a la escasa literatura existente, esta tesis y el software empleado servirán como apoyo didáctico para las asignaturas de Impacto Ambiental y Contaminación del Agua impartidas a los alumnos de la Carrera de Ingeniero Civil en la Facultad de Ingeniería de la Universidad Nacional Autónoma de México.

BIBLIOGRAFÍA

Libros

Alba B. Vázquez González, Enrique César Valdez Impacto Ambiental Facultad de Ingeniería, UNAM. 1994

Ernesto Murguía Vaca Evaluación, efectos y solución de la contaminación del agua Editado por el autor

Francisco Javier Aparicio Mijares Fundamentos de Hidrología de Superficie Editorial LIMUSA. 1994

Gilbert M. Masters Introduction To Environmental Engineering and Science Prentice Hall

Gilberto Sotelo Ávila Hidráulica General Editorial LIMUSA. 1995

Metcalf Leonard, Eddy Harrison Tratamiento y depuración de las aguas residuales Editorial Labor. 1981

Ralph C. Palange, Alfonso Zavala Control de la contaminación del agua Documento técnico del Banco Mundial No. 73S. 1989

Tebbutt

Fundamentos de control de la calidad del agua Editorial LIMUSA

Turk, Wittes Ecología, contaminación, medio ambiente Editorial Interamericana. 1973

Walter A. Castagnino Contaminación de agua. Modelos y control Organización Panamericana de la Salud. Serie técnica No. 20

Warren Viessman, Mark J. Hammer Water Supply and Pollution Control Harper Collins College Publishers. 1993

Leyes y Reglamentos

Declaratoria de Clasificación del Río Lerma Diario Oficial de la Federación del 1o. de abril de 1996

Ley de Aguas Nacionales Diario Oficial de la Federación del 1o, de diciembre de 1992

Ley Federal de Derechos Disposiciones publicadas en el Diario Oficial de la Federación hasta 1998

Ley General del Equilibrio Ecológico y la Protección al Ambiente Diario Oficial de la Federación del 1o. de marzo de 1988

Norma Mexicana NMX-AA-3. Muestreo Diario Oficial de la Federación del 25 de marzo de 1980

Norma Mexicana NMX-AA-5. Determinación de grasas y aceites Diario Oficial de la Federación del 8 de agosto de 1980

Norma Mexicana NMX-AA-8. Determinación de pH Diario Oficial de la Federación del 25 de marzo de 1980

Norma Mexicana NMX-AA-26. Determinación del nitrógeno total Diario Oficial de la Federación del 27 de octubre de 1980

Norma Mexicana NMX-AA-28. Determinación de demanda bioquímica de oxígeno Diario Oficial de la Federación del 6 de julio de 1981

Norma Mexicana NMX-AA-29. Determinación de fósforo total Diario Oficial de la Federación del 21 de octubre de 1981

Norma Mexicana NMX-AA-34. Determinación de sólidos en agua Diario Oficial de la Federación del 3 de julio de 1981

Norma Mexicana NMX-AA-42. Determinación del número más probable de coliformes Diario Oficial de la Federación del 22 de junio de 1987

Norma Mexicana NMX-AA-51. Determinación de metales Diario Oficial de la Federación del 22 de febrero de 1982

Norma Mexicana NMX-AA-079. Determinación de nitrógeno de nitrato Diario Oficial de la Federación del 14 de abril de 1986

Norma Mexicana NMX-AA-52. Determinación 099. Determinación de nitrógeno de nitritos Diario Oficial de la Federación del 11 de febrero de 1987

Procedimiento obligatorio para el muestreo de descargas Diario Oficial de la Federación del 14 de febrero de 1997

Reglamento de la Ley de Aguas Nacionales Diario Oficial de la Federación del 12 de enero de 1994

Artículos

Douglas M. Grant

La técnica de tomar muestras: primer paso para determinar el origen de la contaminación Prevención de la Contaminación. Marzo de 1993

Poggi Varaldo

Prevención de la contaminación y tratamiento del agua en la industria de la celulosa y el papel Prevención de la Contaminación. Julio de 1994

Bibliografía BIB.3