UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

Aplicación de la Destilación Diabática en Procesos de Hidrodesulfuración y Reformación de Naftas

265589

E S S

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERÍA QUÍMICA (PROCESOS)

P E N

ING. LEODEGARIO MONROY VARGAS

Cd. de México, Septiembre de 1998

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE QUÍMICA DIRECCIÓN

ING. LEOPOLDO SILVA GUTIÉRREZ

Director General de la Administración Escolar P r e s e n t e .

AT'N: Lic. Antonio Díaz García

Jefe de la Unidad de Administración del Posgrado.

Me es grato informarle que el alumno IQ LEODEGARIO MONROY VARGAS presentará próximamente su examen para obtener el grado de Maestría en Ingeniería Química (Procesos) ante el siguiente jurado:

Presidente: Dr. Javier Audry Sánchez
Primer Vocal Dr. Roberto Best Brown (CIE)

Secretario: Dr. Jesús Torres Merino

Primer Suplente: M. en C. Natalia de la Torre Aceves Segundo Suplente: Dr. Alejandro Lara Márquez (PEMEX)

Sin otro particular de momento, aprovecho la ocasión para enviarle un cordial saludo.

A t e n t a m e n t e

"POR MI RAZA HABLARÁ EL ESPÍRITU"

Ciudad Universitaria, D. F., 10 de agosto de 1998.

El Director

Dr. Enrique R. Bazúa Rueda

C.c.p. Integrantes del Jurado /

C.c.p. Coordinador de Área

C.c.p. Departamento de Control Escolar

C.c.p. Interesado

*ggm.

RESUMEN

En este trabajo de investigación desarrollado dentro del marco del proyecto FIDE-PEMEX [15] se estudió la aplicación de la destilación diabática en columnas de destilación con multicomponentes, donde la destilación diabática es una metodología esbozada por el teorema de la equipartición de la producción entrópica que consiste en la aportación o extracción de cierta cantidad de calor repartidas en las diferentes etapas para disminuir las pérdidas de exergia en una columna de destilación a fin de reducirlas al mínimo.

Aquí se enuncian los conceptos básicos para el análisis exérgico y de aplicación de la destilación diabática (Capitulo 1). Los procesos seleccionados para la aplicación de la destilación diabática fueron la hidrodesulfuración y reformación catalítica de naftas. Donde la hidrodesulfuración catalítica de naftas consiste en la eliminación de los compuestos de azufre presentes en la alimentación así como preparar la carga a la planta reformadora; la reformación catalítica consiste en incrementar el contenido de octano en la nafta hidrodesulfurada y producir hidrógeno necesario para los procesos de hidrotratamiento.

La descripción de los procesos, así como los balances de materia, entalpia y exergia se analiza detalladamente en el capitulo 2. El desarrollo de las ecuaciones para los balances de materia, entalpia y exergia de las columnas adiabáticas y diabáticas han sido minuciosamente detalladas en el capitulo 3. En el capitulo 4 se hace el análisis de exergia de las columnas en forma adiabática.

La aplicación de la destilación diabática se desarrolló en el capitulo 5, donde se evalúa inicialmente con cargas térmicas repartidas equitativamente a lo largo de la columna y posteriormente con extracciones o aportaciones de calor a dos o más niveles térmicos.

Como conclusión se determinó que la destilación diabática al utilizar dos o más fuentes distintas de aporte o extracción de calor se convierte en una técnica termodinámica mas eficiente que la destilación adiabática convencional, debido a que el aporte y la extracción de calor esta mejor repartida a lo largo de la columna permitiendo así mejorar los procesos de transferencia de masa y energía en interior de la misma.

Debido a las variaciones de los flujos del líquido y vapor, la disminución térmica del condensador y rehervidor, al aumento del número de etapas y la utilización de diversos fluidos térmicos se recomienda efectuar estudios económicos y ecológicos que permitan hacer factible la aplicación de este tipo de destilación en los procesos de refinación.

PRÓLOGO

Esta Tesis se desarrolló dentro del grupo de investigación de exergia en el marco del proyecto E0A-7442, GIDT-Pemex Refinación/Grupo de Exergia-IMP, "Optimización Exérgica de un Esquema de Refinación", dirigida por el Dr. Ricardo Rivero Rodríguez (Jefe del Grupo de Exergia) en la Gerencia de Investigación Aplicada de Procesos(GIAP) del Instituto Mexicano del Petróleo(IMP).

La realización de este trabajo de investigación fue posible gracias al "Programa de Formación de Recursos Humanos" del IMP y al apoyo económico otorgado por el Consejo Nacional de Ciencia y Tecnología (Conacyt).

La estrucctura general de este trabajo de investigación fue hecha de acuerdo a los alcances del proyecto EOA-7442.

Con respecto a la presentación, esta tesis se constituye por cinco capítulos donde el primero hace referencia a las bases metodológicas, el segundo a la descripción y análisis de exergia de los procesos, el tercero a las ecuaciones del balance de materia, entalpia y exergia de las columnas de destilación, el cuarto al análisis de exergia detallado de las columnas adiabáticas y por último el quinto a la aplicación de la destilación diabática a las columnas en estudio.

Para realizar esta tesis se necesitó de programas de computación disponibles en el Grupo de Exergia tal como el Simulador de Procesos ASPEN-Plus en su versión 9.3.2., en el cual se efectuaron las simulaciones y se recuperaron los archivos de resultados necesarios para los análisis de exergia,

para el cálculo de las exergias se utilizó una subrutina elaborada en FORTRAN y acoplada al simulador ASPEN-Plus[15].

Deseo expresar mi agradecimiento al Dr. Ricardo RIVERO RODRÍGUEZ por apoyarme y aceptar ser el director de este trabajo de investigación.

Así mismo agradezco al Dr. Armando Manjarrez (Gerente de Recursos Humanos del IMP) por la autorización del apoyo económico recibido y al M en C Roberto del Rio Soto (GIDT Pemex Refinación) por ser el responsable ante Pemex del Proyecto E0A-7442.

Leodegario MONROY México, Agosto 1998.

CONTENIDO

RESUMEN
PRÓLOGO
CONTENIDO
LISTA DE GRAFICAS
LISTA DE FIGURAS
LISTA DE TABLAS
NOMENCLATURA

INTRODUCCIÓN

CAPITULO 1 GENERALIDADES

ANTECEDENTES4
1. CONCEPTOS BÁSICOS5
1.1 PRIMERA LEY DE LA TERMODINÁMICA5
1.2 SEGUNDA LEY DE LA TERMODINÁMICA5
1.3 DEFINICIÓN DE EXERGIA6
1.4 PARAMETROS EXERGICOS PARA SISTEMAS ABIERTOS9
1.4.1 Pérdidas Irreversibles de Exergia
1.4.2 Pérdidas Efluentes de Exergia
1.4.3 Pérdidas Totales de Exergia
1.4.4 Efectividad Exérgica
1.4.5 Potencial de Mejoramiento Exérgico
1.4.6 Diagrama de Exergia Específica
1.5 DEFINICIÓN DE LA DESTILACIÓN DIABÁTICA
1.5.1 Destilación Diabática
1.5.2Equipartición de la Producción de Entropia
1.5.3Fuerzas Motrices
CAPITULO2
ANÁLISIS DE EXERGIA DE LAS PLANTAS REFORMADORA E
HIDRODESULFURADORA DE NAFTAS
2.1 DESCRIPCIÓN DE LOS PROCESOS18
2.1.1 HIDRODESULFURACIÓN DE NAFTAS
2.1.2 REFORMACIÓN CATALÍTICA DE NAFTAS
2.2 BALANCES DE MATERIA Y ENTALPIA DE LOS PROCESOS30
2.2 BALANCES DE MATERIA Y ENTALPIA DE LOS PROCESOS
REFORMADORA DE NAFTAS
iai oidillioididii iai

2.3 BALANCE DE EXERGIA DE LOS PROCESOS
CAPITULO3 ECUACIONES DEL BALANCE DE MATERIA, ENTALPIA Y EXERGIA DE LAS COLUMNAS ADIABÁTICA Y DIABÁTICA.
3.1. BALANCE DE MATERIA Y ENERGÍA52
3.2. BALANCE DE EXERGIA61
CAPITULO 4 ANÁLISIS EXÉRGICO DE LAS COLUMNAS DA-401, DA-402, DA-501 Y EQUIPOS AUXILIARES.
4.1. ANÁLISIS DE EXERGIA DE LA COLUMNA DA-40165
4.2 ANÁLISIS DE EXERGIA DE LA COLUMNA DA-40268
4.3. ANÁLISIS DE EXERGIA DE LA COLUMNA DA-50171
4.4 ANÁLISIS DE RESULTADOS74
CAPITULO5 APLICACIÓN DE LA DESTILACIÓN DIABÁTICA
5.1 EVALUACIÓN CON CARGAS TÉRMICAS REPARTIDAS
5.1.3COLUMNAESTABILIZADORADA-501 5.2 EVALUACIÓN DE LAS COLUMNAS ADIABÁTICAS CON EXTRACCIÓN CAPORTACIÓN DE CALOR A DOS O TRES NIVELES TÉRMICOS CON LA FINALIDAD DE HACERLAS DIABÁTICAS
5.3 ANÁLISIS DE RESULTADOS106
CONCLUSIONES
BIBLIOGRAFÍA

Apéndice l	
BALANCE DE MATERIA Y ENTALPIA DE LAS CORRIENTES DE LOS	PROCESOS116
Apéndice 2	
BALANCE DE EXERGIA DE LAS CORRIENTES DE LOS PROCESOS	135
Apéndice 3	
LISTA DE EQUIPO DE LOS PROCESOS	142

GRÁFICAS. FIGURAS Y TABLAS

Gráficas

Gráfica 2.1 Pérdidas irreversibles y efluentes de HDS.

Gráfica 2.2 Pérdidas irreversibles y efluentes de Reformación.

Gráfica 4.1 Pérdidas totales de la columna adiabática de desbutanización.

Gráfica 4.2 Pérdidas totales de la columna adiabática de desisohexanizado.

Gráfica 4.3 Pérdidas totales de la columna adiabática de estabilizado.

Gráfica 4.4 Perfiles de pérdidas totales de exergia de las columnas adiabáticas.

Gráfica 5.1 Pérdidas totales de exergia de la columna diabática DA-401 con Q ctes.

Gráfica 5.2 Efectividad exérgica de la columna diabática DA-401 con Q ctes.

Gráfica 5.3 Potencial de mejoramiento de la columna diabática DA-401 con Q ctes.

Gráfica 5.4 Perfiles del líquido y vapor de la columna diabática DA-401 con Q ctes.

Gráfica 5.5 Comparaciíon de las pérdidas totales de exergia de la columna DA-401.

Gráfica 5.6 Efectividades exérgicas de la columna diabática con Q ctes. y una etapa

Gráfica 5.7 Comparación de pérdidas de exergia de las columnas diabáticas DA-401.

Gráfica 5.8 Pérdidas totales de exergia de las columnas diabáticas DA-401.

Gráfica 5.9 Pérdidas totales de exergia columna DA-402.

Gráfica 5.10 Perfil de pérdidas totales de exergia columna DA-402 con Q ctes.

Gráfica 5.11 Perfil de efectividades exérgicas de la columna DA-402 con Q ctes.

Gráfica 5.12 Perfiles de vapor y del líquido de la columna DA-402 con Q ctes.

Gráfica 5.13 Pérdidas totales de exergia de la columna diabática DA-501.

Gráfica 5.14 Pérfil de pérdidas totales de exergia columna DA-501 con Q ctes.

Gráfica 5.15 Perfiles de líquido y vapor de la columna DA-501 con Q ctes.

Gráfica 5.16 (a,b) Pérdidas de exergia de la columna adiabática DA-401 sin rehervidor ni

Gráfica 5.17 Perfiles del líquido y del vapor de la columna diabática DA-401 con aporte de

Gráfica 5.18 Pérdidas totales de exergia de la columna diabática DA-401 con aporte de calor.

Gráfica 5.19 Pérfiles del líquido y vapor de la columna diabática DA-402 con extracciones y

Gráfica 5.20 Pérdidas totales de exergia de la columna diabática DA-402.

Gráfica 5.21 Perfiles del líquido y vapor de la columna DA-501 con extracción y aporte de

Gráfica 5.22 Pérdidas totales de exergia columna DA-501 con extracción y aporte de calor.

Figuras

Figura I.1 Destilación Adiabática / Diabática.

Figura 1.2 Diagrama Mc Cabe Thiele.

Figura 1.3 Diagrama de Ponchon Savarit.

Figura 1.4 Representación de la destilación diabática en forma de bloques.

Figura 2.1 Diagrama de flujo de Hidrodesulfuración Catalítica de Naftas.

Figura 2.2 Diagrama de flujo de Reformación Catalítica de Naftas.

Figura 2.3 Diagrama de bloques de Hidrodesulfuración Catalítica de Naftas.

Figura 2.4 Diagrama de bloques de Reformación Catalítica de Naftas.

Figura 3.1 Representación exérgica de un sistema de destilación.

- Figura. 4.1 Diagrama de la torre desbutanizadora.
- Figura 4.2 Diagrama de la columna desisohexanizadora.
- Figura 4.3 Diagrama de la columna Estabilizadora.
- Figura 5.1 Columna DA-401 Diabática con Q ctes.
- Figura 5.2 Columna Diabática (DA-401) con precalentamiento de carga.
- Figura 5.3. Columna diabática DA-402 con cargas térmicas constantes.
- Figura 5.4 Columna diabática de estabilización DA-501.
- Figura 5.5 Propuesta de modificación de la columna DA-401.
- Figura 5.6 Columna diabática de desisohexanizado DA-402 con extracciónes y aporte de
- Figura 5.7 Columna estabilizadora DA-501 con extracción y aporte de calor.
- Figura 5.8 Etapa diabática con serpentín sumergido.
- Figura 5.9 Etapa diabática con vertedero central.

Tablas

- Tabla 2.1 Composición de la nafta hidrodesulfurada.
- Tabla 2.2 Composición de pentanos y hexanos.
- Tabla 2.3 Composición del gas combustible a HDS.
- Tabla 2.4 Composición de la alimentación de reformadora.
- Tabla 2.5 Composición de la nafta reformada.
- Tabla 2.6 Composición de licuables de reformadora.
- Tabla 2.7 Composición de hidrógeno de reformadora.
- Tabla 2.8 Composición del gas combustible de reformadora.
- Tabla 2.9 Análisis de exergia global del proceso de Hidrodesulfuración de Naftas.
- Tabla 2.10 Análisis de exergia de la sección de carga y reacción.
- Tabla 2.11 Análisis de exergia de la sección de recirculación de hidrógeno.
- Tabla 2.12 Análisis de exergia de la sección de seoaración a alta presión.
- Tabla 2.13 Análisis de exergia de la sección de desbutanización.
- Tabla 2.14 Análisis de exergia de la sección de desisohexanizado.
- Tabla 2.15 Análisis de exergia global del proceso de reformación.
- Tabla 2.16 Análisis de exergia de la sección de carga y reacción (Reformación).
- Tabla 2.17 Análisis de exergia de la sección de purificación de hidrógeno.
- Tabla 2.18 Análisis de exergia de la sección de estabilización.
- Tabla 4.1 Parámetros exérgicos de la columna Desbutanizadora.
- Tabla 4.2 Parámetros exérgicos de la columna Desisohexanizadora.
- Tabla 4.3 Parámetros exérgicos de la columna Estabilizadora.
- Tabla 5.1 Parámetros exérgicos columna DA-401 diabática con Q cte.
- Tabla 5.2 Parámetros exérgicos columna diabática DA-401 con Precalentamiento de Carga.
- Tabla 5.3 Parámetros exérgicos columna DA-402 diabática con Q cte.
- Tabla 5.4 Perfil de parámetros exérgicos de la columna diabática DA-501.
- Tabla 5.5 Perfil de parámetros exérgicos de la columna diabática de desbutanización DA-401 con aporte de calor.
- Tabla 5.6 Perfil de parámetros exérgicos de la columna diabática DA-402 con extracciones y aportes de calor.
- Tabla 5.7 Perfil de parámetros exérgicos de la columna diabática DA-501 con extracción y aporte de calor.

NOMENCLATURA

-		W1 :			e
A *		Alimentación	aa		Aire atmosférico
An		Anergia	ae		Agua de enfriamiento
В		Fondos	ar		Agua de retorno
D		Destilado	CS		Salida del condensado
E		Energía	g		Gravedad
Efl		Pérdidas efluentes	gc		Gas combustible
Ex		Exergia	gdc		Gases de combustión
Exf		Exergia física	r		Rápidez
Exh		Exergia de calor	ve	=	Vapor de entrada
Exi		Exergia inercial	x	=	Composición
Exm		Exergia de la materia	X	=	Fracción del líquido
Exq	=	Exergia química	У	=	Fracción del vapor
Exs	=	Exergia sustancial	Z	=	Distancia
Exntp	=	Exergia neta producida			
Exntp	=	Exergia neta suministrada	Griegas		
Extte	=	Exergia total a la entrada			
Extts	=	Exergia total a la salida	Δ	=	Cambio
Exv	=	Exergia cinética	ε	=	Efectividad exérgica
Exw	=	Exergia de trabajo	θ	=	Factor de carnot
Exx	=	Exergia composicional			
Exz	=	Exergia potencial	Subindices		
H	=	Entalpia			
HD	=	Entalpia del destilado	C	=	Extracciones de calor
Hl	=	Entalpia del líquido	C0	=	Condensador
Hv	=	Entalpia del vapor	j	=	Etapa
L		Líquido	k		Intercambios de calor
Irr	=	Irreversibilidades	ml	=	Media logarítmica
Pex	=	Pérdidas totales de exergia	n		Enésimo punto o etapa
Pot		Potencial de mejoramiento	0		Punto inicial
Q		Calor	R		Aportaciones de calor
R		Cte. de los gases	RE		Rehervidor
S		Entropia	0		Condiciones de ref.
T		Temperatura	-		
U		Energía interna			
v		Vapor			
W		Trabajo			
		•			

INTRODUCCIÓN

La crisis energética ha producido un creciente interés hacia la aplicación de los analisis exérgicos en todas partes del mundo, por lo que actualmente este tipo de análisis se encuentra a la vanguardia mundial en lo que a estudios energéticos se refiere.

La destilación diabática es un enfoque para mejorar termodinámicamente los procesos de destilación mediante el uso del análisis de exergia, este tipo de análisis consiste en efectuar transferencias de calor en distintos puntos de una columna a parte del rehervidor y el condensador, este enfoque se justifica termodinámicamente por el "Teorema de Equipartición de la Producción Entrópica propuesto por Daniel Tundeur y Eric Kvaalen en 1987 [9].

La comprobación experimental de la destilación diabática con mezclas binarias realizadas por Ricardo Rivero [4] dan la pauta para aplicar este tipo de destilación en sistema con multicomponentes. En este análisis se demostró que se reducen las pérdidas totales de exergia al suministrar y extraer cierta cantidad de calor en distintos puntos de la columna a parte del rehervidor y del condensador.

A partir de los estudios mencionados se plantea el objetivo de este trabajo de investigación, que es el aplicar la destilación diabática en columnas con multicomponentes en procesos de refinación, diseñados con columnas con una alimentación y dos productos. La destilación diabática se aplica por la evaluación exérgica en forma rigurosa en las columnas de los procesos seleccionados mediante la aportación o extracción de cargas térmicas en

distintas etapas de manera que se obtenga más de un aporte de calor y más de una extracción de calor para así poder reducir las pérdidas totales de exergia.

Los procesos seleccionados para de aplicación de la destilación diabática son la hidrodesulfuración y reformación catalítica de naftas.

CAPÍTULO UNO GENERALIDADES

ANTECEDENTES

En las últimas dos decadas la crisis de energéticos ha ocasionado un gran auge en el uso eficiente de la energía, esto lleva a que en diferentes partes del mundo se esten haciendo análisis para tratar de mejorar su uso; en el área de refinación y procesamiento de hidrocarburos también se han aplicado diferentes tipo de análisis para mejorar el uso de la energía uno de los cuales es el **Análisis de Exergía**.

" El análisis de exergia es una aplicación sistemática de las dos leyes fundamentales de la termodinámica (en particular la segunda) para el análisis y la optimización energética de procesos y sistemas industriales. Constituye una herramienta excelente que permite considerar la calidad de la energía y determinar los puntos críticos en un sistema en los que puede obtenerse una mejora energética." [18]

"Por otra parte existen múltiples enfoques para intentar mejorar termodinámicamente los procesos de destilación. La Destilación Diabática es uno de estos enfoques que consiste en efectuar una transferencia de calor en el seno del dispositivo de contacto de fases líquido - vapor con el objeto de acercar la operación al equilibrio. Este enfoque, cuyo principio se justifica termodinámicamente por el Teorema de Equipartición de la Producción Entrópica fue propuesto por Daniel Tondeur y Eric Kvaalen en 1987 [9] y establece que para una capacidad dada, la mejor configuración de un intercambiador, de un dispositivo de contacto, de un separador, es aquella en la que la producción de entropia (o sea las pérdidas irreversibles de exergia) se encuentran lo más uniformemente distribuida; la producción mínima de entropia se obtiene cuando las fuerzas motrices son uniformes en el tiempo y en el espacio." [18]

El análisis de exergia establece la factibilidad de aplicar la destilación diabática en columnas de destilación, en función de los porcentajes que se determinan en los distintos parámetros exérgicos de la planta que se está analizando. Ricardo Rivero en sus trabajos[3], menciona que en la Destilación Diabática, el análisis de exergia permite determinar la distribución óptima de calores a transferir al interior de la columna verificando el Teorema de Equipartición de la Producción Entrópica.

La distribución óptima de calores se lleva a cabo cuando hay un arreglo con los aspectos económicos, energético y ambientales, tal que lleve a una mejora en el proceso de destilación.

1. CONCEPTOS BÁSICOS

1.1 Primera Ley de la Termodinámica.

Ley de la conservación de la energía.

"La energía no puede ser creada ni destruida y en todo proceso real su cantidad permanece constante" [10].

Existe una propiedad extensiva, llamada energía interna, tal que el cambio en su valor para un sistema sin movimiento, esta dado por la diferencia entre el calor suministrado al sistema y el trabajo hecho por el sistema durante cualquier cambio de estado.

$$dU = dQ - dW ag{1.0}$$

donde:

U = Energía Interna

O = Calor

W = Trabajo

1.2 Segunda Ley de la Termodinámica.

Ley de la degradación de la energía.

"La energía se degrada y en todo proceso real su calidad disminuye" [5].

Existe una propiedad extensiva de un sistema, llamada exergia tal que en todo proceso real, su valor disminuye.

$$\mathbf{E} = \mathbf{E}\mathbf{x} + \mathbf{A}\mathbf{n} \tag{1.1}$$

donde:

E = Energía

Ex = Exergia (Energía útil para producir trabajo)

An = Anergia (Energía que no es útil)

Existe una propiedad extensiva, llamada entropia tal que en todo proceso real, tiende a un máximo.

$$\Delta \mathbf{E} \mathbf{x} = \mathbf{To} \ \Delta \mathbf{S} \ \uparrow \tag{1.2}$$

donde:

To = Temperatura de referencia

 $\Delta S = Generación de entropia$

1.3 Definición de Exergia

La aplicación del concepto de exergia para la evaluación termodinámica de sistemas energéticos fue formalizada en los años cincuenta, principalmente en Europa, y desde entonces se ha extendido al resto del mundo.

El término "exergia", creado en 1956 [18] para caracterizar la propiedad de un sistema para producir trabajo con respecto a sus alrededores, es mundialmente aceptado en la actualidad.

La exergia de un sistema se define como la energía (útil) que puede obtenerse del sistema al llevarlo al equilibrio con el medio ambiente que lo rodea; es una medida de la capacidad del sistema para producir un cambio.

$$Ex = (H-Ho) - To(S-So)$$
 (1.3)

La aplicación de la segunda ley de la termodinámica es realizada de una manera mucho más intuitiva y coherente utilizando el enfoque exérgico en lugar de utilizar el enfoque entrópico dado que la exergia constituye un recurso que es necesario utilizar racionalmente y que depende del medio ambiente en el que el sistema se localiza; es solamente mediante el enfoque de la exergia que pueden tenerse en cuenta cuestiones económicas y ecológicas.

Propiedades de la Exergia

- 1. La exergia de un sistema es la energía neta útil que puede obtenerse del conjunto sistema alrededores al llevarlo al equilibrio.
- 2. La exergia de un sistema es la porción de la energía que en un medio ambiente dado puede transformarse en otras formas de energía.
- 3. La exergia de un sistema es la capacidad del sistema para producir un cambio.
- 4. La exergia de un sistema es la medida de la calidad de la energía que contiene el sistema.
- 5. La exergia es el potencial de trabajo máximo del sistema en relación con sus alrededores.

El valor mínimo de la exergia total es cero cuando el sistema alcanza las condiciones del medio ambiente.

Ecuación general:

$$\mathbf{E}\mathbf{x} \equiv (\mathbf{H} - \mathbf{Ho}) - \mathbf{To} (\mathbf{S} - \mathbf{So})$$

En la actualidad, el análisis de exergia ha alcanzado un grado tal de desarrollo que le permite ser aplicado a cualquier sistema industrial.

La exergia, de la misma manera que la energía, tiene formas múltiples de manifestarse que es importante de distinguir en el análisis de un sistema. Desde un punto de vista terminológico es recomendable calificarlas diversas formas de la exergia. Así la exergia del trabajo y la exergia inercial, que son iguales a sus formas de energía correspondientes, son comparadas con la exergia del calor y con la exergia sustancial que involucran términos entrópicos.

$$Exw = W ag{1.4}$$

donde:

Exw = Exergia de trabajo

La exergia de calor, sobre la cual se basa el método de pinch para el análisis de procesos de transferencias de calor, puede ser generalizada al análisis de todo tipo de procesos al identificar el polo donador (la fuente) y el polo receptor (el pozo) y al utilizar el concepto de la temperatura de Carnot, que es igual al factor de Carnot cuando la temperatura de la fuente es la temperatura termodinámica media ($\equiv \Delta H/\Delta S$) y cuando la temperatura del pozo es la temperatura del medio ambiente local ($\equiv To$).

Exergia del Calor

$$Exh = Q\theta = Q(1 - (To/T))$$
 (1.5)

$$\theta = 1 - (\text{To/T}) \equiv 1 - \text{To}(\Delta H / \Delta S)$$
 (1.6)

donde:

Exh = Exergia del calor*

 θ = Factor de Carnot

Por lo que respecta a la exergia de la materia, es muy importante distinguir los componentes térmico, mecánico y químico de la exergia sustancial. La exergia química es el componente exérgico más complejo, dado que necesita un modelo de sustancias de referencia; esta exergia debe calcularse únicamente cuando se trata de analizar procesos con reacciones químicas, en cuyo caso el modelo más riguroso es el de Szargut [11].

Exergia de la Materia

$$Exm = Exi + Exs (1.7)$$

donde:

Exm = Exergia de la materia

Exi = Exergia inercial

Exs = Exergia sustancial

Exergia Inercial

$$Exi = Exv + Exz (1.8)$$

donde:

Exv = Exergia cinética

Exz = Exergia potencial

$$Exz = \int_{z_0}^{z_c} g dz = g (z - z_0)$$
 (1.9)

$$Exv = \int_{v_0}^{v} r \, dv = (v^2 - v_0^2)$$
 (1.10)

Exergia Sustancial

$$Exs = Exf + Exq (1.11)$$

donde:

Exf = Exergia física

Exq = Exergia química

$$Exf = |(H - Ho) - To (S - So)|_{x,z,y}$$
 (1.12)

$$Exq = |(H - Ho) - To (S - So)|_{P.T.z.y}$$
 (1.13)

Otro término exérgico fundamental en el análisis de procesos con cambios de composición pero sin reacción química, es la exergia composicional que debe calcularse de manera explícita si se desea obtener una medida de la efectividad de un proceso de separación. Este término es calculado normalmente de manera implícita en la determinación de la exergia física de una mezcla, y por consiguiente es la variación de exergia física, entre un estado mezclado y un estado separado, la que debe calcularse.

Exergia Composicional

$$Exx = \Delta Hx - To \Delta Sx$$
 (1.14)

$$\Delta Sx = R (x \ln x + (1 - x) \ln(1 - x))$$
 (1.15)

1.4 Parámetros Exérgicos

El enfoque general para la aplicación de un análisis de exergia es el Método de Bloques[6] que permite establecer las bases para la determinación de los puntos críticos de un sistema, evaluando, para cada bloque, los parámetros de funcionamiento pertinentes. Estos parámetros son:

1.4.1 Pérdidas Irreversibles de Exergia

Las pérdidas Irreversibles de Exergia (Irr) es la diferencia entre la exergia total que se le suministra al bloque y la exergia total que sale de dicho bloque, dicho de otra manera es la exergia que se pierde debido al proceso de transferencia de masa o de calor

Pérdidas irreversible = Exergia total a la entrada - Exergia total a la salida

$$Irr = Extte - Extts (1.16)$$

donde:

Extte = Exergia total a la entrada

Extts = exergia total a la salida

1.4.2 Pérdidas Efluentes de Exergia

Las Pérdidas Efluentes de Exergia (Efl) es la exergia que no es aprovechada en el bloque y es arrojada al medio ambiente.

1.4.3 Pérdidas Totales de Exergia

Las Pérdidas Totales de Exergia (Pex) es la suma de las pérdidas irreversibles de exergia más la pérdidas efluentes de exergia del bloque analizado.

Pérdidas Totales de Exergia = Pérdidas Irreversibles de Exergia + Pérdidas Efluentes de Exergia

$$Pex = Irr + Efi (1.17)$$

1.4.4 Efectividad Exérgica

Parámetro cualitativo para determinar la efectividad del bloque para producir trabajo.

$$\varepsilon = (\text{Exntp}) / (\text{Exnts})$$
 (1.18)

$$\varepsilon = 1 - (Irr / (Exnts)) \tag{1.19}$$

donde:

Exnts = Exergia neta suministrada al sistema

Exntp = Exergia neta producida por el sistema

1.4.5 Potencial de Mejoramiento Exérgico

El potencial de mejoramiento permite conocer la factibilidad de mejorar el sistema. Para mejorar un proceso se requiere atacar los bloques con mayor potencial de mejoramiento.

$$Pot = Irr(1-\varepsilon) + Efl$$
 (1.20)

1.4.6 Diagrama de Exergia Específica

Este tipo de diagrama nos permite determinar que corrientes de un proceso son de mejor calidad que otras.

1.5 Definición de Destilación Diabática

1.5.1 Destilación Diabática

La Destilación Diabática se define como todo proceso de separación de una mezcla líquida o vapor de dos o más componentes (de los cuales por lo menos uno es volátil) [1] en un sistema multietapas, gracias a la transferencia de una cierta cantidad de calor, de tal manera que la aportación o la extracción de calor es realizada a dos o más niveles térmicos diferentes. A diferencia de la destilación diabática, la destilación adiabática convencional es realizada con una aportación de calor a un solo nivel térmico (el del rehervidor) y con una extracción de calor a un solo nivel térmico (el del condensador) (Figura 1.1).

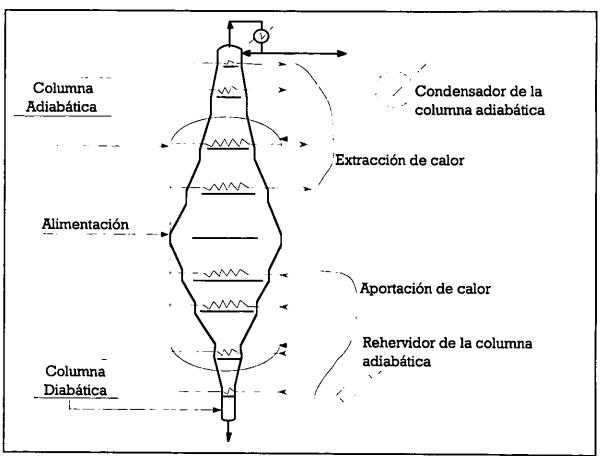
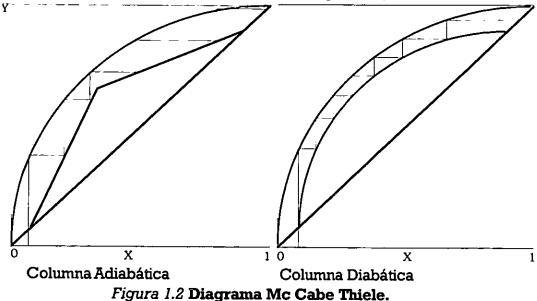



Figura 1.1 Destilación Adiabática / Diabática.

En el caso de mezclas binarias, las diferencias más importantes introducidas por la destilación diabática con respecto a la destilación convencional son claras en el diagrama de McCabe-Thiele [7][16] en el que las rectas de operación son reemplazadas por una curva paralela a la curva de equilibrio (Figura 1.2), y en el diagrama de Ponchon-Savarit en el que los dos polos de operación son reemplazados por dos series de polos de operación (la distancia entre los cuales representa las cantidades de calor transferidas) (Figura 1.3).

Vapor Saturado

Vapor Saturado

Vapor Saturado

Líquido Saturado

XS

XM

Composición

XD

Figura 1.3 Diagrama de Ponchon Savarit.

La destilación diabática necesita entonces un mayor número de platos y opera con una variación muy importante de los flujos de líquido y vapor; lo que podría traducirse por una disminución de diámetro hacia los extremos de la columna (Figura 1.1)

La destilación diabática debe ser entonces el resultado del compromiso clásico de la reducción de los costos de operación debida a la posibilidad de realizar transferencias de calor en cascada (disminución del consumo necesario de medios de calentamiento y enfriamiento) de la reducción de los costos de inversión debida a la eliminación o disminución del condensador, del tanque de reflujo y del rehervidor, y debida a la disminución de diámetro y del incremento de inversión ocasionado por la mayor complejidad de los dispositivos de contacto entre las fases (platos con intercambiador de calor integrado) y por el mayor número de platos requerido.

El análisis de exergia de procesos de destilación puede seguir varios enfoques en función de las características del sistema de destilación, de los objetivos del análisis y de la precisión deseada en los resultados.

Para sistemas de destilación simples, como la separación adiabática de mezclas binarias, un análisis externo de la transferencia de calor y materia puede ser aplicado, cuyos resultados pueden representarse en diagramas Exergia-Composición y Temperatura de Carnot-Entalpia. Este último diagrama es la representación del método de pinch generalizado (sin la simplificación de reemplazar la temperatura de Carnot por la temperatura Celsius) que permite representar en forma gráfica las pérdidas de exergia de los procesos de transferencias simultánea de calor y materia.

Por el contrario, para sistemas de destilación complejos como la separación adiabática de mezclas multi-componentes o la destilación diabática de mezclas binarias o multi-componentes, un análisis Externo no es aplicable y es necesario entonces realizar un análisis interno. Los resultados de este último tipo de análisis mucho más detallado pueden representarse en diagramas Temperaturas de Carnot-Entalpia, otros diagramas muy útiles son los diagramas de Grassmann.

La modelización exérgica de la destilación permite determinar principalmente la distribución de pérdidas de exergia en el interior de la columna [1].

En el análisis de exergia de la columna adiabática el máximo de pérdidas de exergia se sitúa en el plato que presenta la mayor diferencia de temperatura y composiciones del líquido y del vapor.

La modelización exérgica permite investigar la distribución óptima de calores a extraer de los platos. Esta distribución es complementaria a la distribución de las pérdidas de exergia asociadas a la transferencia simultánea de calor y materia del lado del proceso, lo cual quiere decir que en el óptimo, la máxima cantidad de calor transferida corresponde al plato con las pérdidas de exergia más bajas del lado del proceso; existe entonces una distribución específica de calores a extraer de los platos, para cada número de platos, que permite obtener la equipartición de las pérdidas de exergia totales, y por consiguiente acercarse al óptimo desde el punto de vista exérgico.

La distribución óptima de calores a extraer de los platos de una columna diabática depende del número de platos. El aumento del número de platos en el enriquecimiento de una mezcla permite reducir las pérdidas totales de exergia, tanto en una columna adiabática como en una columna diabática cualquiera que sea la distribución de calores extraídos en los platos, pero existe un valor mínimo de pérdidas de exergia a partir del cual el aumento del número de platos no aporta ninguna ventaja y este valor es menor para una columna diabática que para una columna adiabática.

En el caso de la columna diabática de agotamiento, la equipartición de las pérdidas totales de exergia totales permite también acercarse al óptimo pero la distribución óptima depende sobretodo de la forma de la curva de operación y de su alejamiento con respecto a la curva de equilibrio. Para un determinado número de platos, existe un alejamiento mínimo entre la curva de operación y la curva de equilibrio que corresponde al óptimo exérgico y para ir más allá es entonces necesario cambiar el número de platos.

Finalmente, la modelización de la columna de destilación completa permite constatar que las ventajas exérgicas de la destilación diabática serán aún más evidentes entre mayor sea la diferencia de temperaturas entre el destilado y el residuo.

1.5.2 Equipartición de la Producción Entrópica [9].

El teorema de Equipartición de la producción de Entropia fue enunciado por Tondeur et Kvaalen [9] de la manera siguiente:

"Para una capacidad dada, la mejor configuración de un intercambiador de calor, un contactor o de un separador es aquella en que la producción de entropia está lo más uniformemente distribuida".

Esto equivale a decir que las pérdidas de exergia también se encuentran uniformemente distribuidas (teorema de Gouy-Stodola ec. 1.25). Esto está demostrado bajo las condiciones de la termodinámica clásica de no equilibrio y de las relaciones de Onsanger (relaciones de reciprocidad), la producción mínima de entropia se obtiene cuando las fuerzas motrices son uniformes en el tiempo y espacio.

La columna de destilación se representa por una serie de bloques como se muestra en la figura 1.4, consiste en la separación de una mezcla de dos productos mediante un condensador y un rehervidor en el primer y el último bloque y los bloques restantes como unidades de transferencia. La distribución uniforme de las pérdidas de exergia se hace mediante el aporte y extracción de cierta cantidad de calor de cada bloque; para obtener esta distribución uniforme de las pérdidas de exergia es necesario aumentar el calor del sistema y la superficie de transferencia mediante etapas mas complejas con intercambio térmico. El problema se resuelve cuando existe una distribución óptima que minimice los costos de operación y de inversión del sistema

Mediante un determinado número de suposiciones Kvaalen y Tondeur demostraron que para cierto tamaño de un dispositivo de contacto existe una distribución óptima.

La primera suposición es que el sistema trabaje a regimen permanente y que la equipartición de fuerzas motrices sea la misma para cada unidad de transferencia. Esto determina que la producción de entropia es directamente proporcional a la fuerza motriz que permite la realización de la transferencia. Debido a estas condiciones las pérdidas irreversibles están determinadas por la expresión de la forma:

$$Im_{j} = \Delta H_{j} \Delta \theta_{ml} \qquad (1.21)$$

Donde ΔH_j representa la capacidad del bloque j (Carga térmica) que es igual a la cantidad de calor transferido del bloque y

 $\Delta\theta_{ml}$ representa la fuerza motriz disponible que es la misma para cada bloque j (diferencia de temperaturas de Carnot).

1.5.3 Fuerza motriz

Se denomina fuerza motriz al elemento que permite la realización de la transferencia de masa, energía o momentum. Una fuerza motriz puede ser el delta de concentraciones para transferencia de masa o delta de temperaturas de Carnot para transferencia de energía. Cuando la fuerza motriz está lo más uniformemente distribuida a lo largo de una columna de destilación se obtienen las mínimas pérdidas irreversibles de exergia [1].

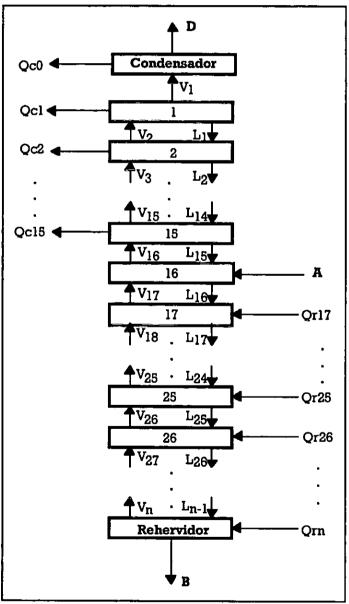


Figura 1.4 Representación de la destilación diabática en forma de bloques.

CAPÍTULO DOS ANÁLISIS DE EXERGIA DE LAS PLANTAS REFORMADORA E HIDRODESULFURADORA DE NAFTAS

CAPITULO 2

ANÁLISIS DE EXERGIA DE LAS PLANTAS REFORMADORA E HIDRODESULFURADORA DE NAFTAS.

2.1 DESCRIPCIÓN DE LOS PROCESOS

2.1.1 Hidrodesulfuración de Naftas

Introducción

El objetivo de este proceso es eliminar los compuestos de azufre presentes en la alimentación, así como preparar la carga a la Planta Reformadora [12].

El proceso se realiza en dos etapas: Sección de Reacción y Sección de Estabilización y Fraccionamiento, tal como se muestra en el diagrama de flujo de proceso (Figura 2.1).

Sección de Reacción

El objetivo de esta sección es llevar a cabo la eliminación de compuestos de azufre y nitrógeno fundamentalmente, mediante la reacción de hidrogenación en un reactor catalítico de lecho fijo.

La alimentación formada por una mezcla de nafta ligera y nafta de despunte proveniente de la Planta Atmosférica y de una corriente de gasolina procedente de las Plantas de Destilados Intermedios, esta alimentación se recibe en el tanque acumulador FA-401; esta mezcla se envía por medio de la bomba de alimentación GA-401 hacia dos trenes de cambiadores de calor en paralelo, previa inyección de la corriente de hidrógeno proveniente del compresor de recirculación GB-401. Los trenes están formados por los cambiadores EA-401 y EA-402, los cuales utilizan el efluente del reactor para precalentar la carga de una temperatura de 48.3 °C a 267 °C.

La carga con estas condiciones pasa al calentador de carga BA-401, para suministrarle el calor requerido en el proceso y alcanzar la temperatura de 313 °C necesaria en el reactor DC-401. La carga totalmente vaporizada a esta temperatura pasa a través del reactor DC-401 de lecho fijo, en el cual se efectúan las reacciones de hidrogenación y transformación de los compuestos de nitrógeno y oxígeno.

El efluente del reactor intercambia calor con la carga en los cambiadores de calor EA-401 y EA-402 y con el líquido procedente del tanque separador de producto desulfurado FA-402 en el cambiador EA-405. El efluente del reactor que sale del cambiador EA-405 se enfría con agua en el enfriador EA-404 hasta una temperatura de 43.3 °C. La mezcla líquido-vapor fraccionada se lleva al tanque

separador de producto desulfurado FA-402. En este tanque la mezcla se separa en dos fases: una fase vapor que pasa a través del tanque separador del compresor de recirculación de hidrógeno (GB-401), para unirse con la descarga de la bomba de alimentación (GA-401), tal como se mencionó anteriormente. La fase líquida separada en el tanque separador de producto desulfurado se envía a la sección de estabilización y fraccionamiento.

Sección de Estabilización y Fraccionamiento.

La finalidad de esta sección es la separación de ligeros, lo cual se logra en la torre desbutanizadora DA-401 y la reposición de la carga a la Planta Reformadora que se efectúa en la torre desisohexanizadora DA-402, la cual realiza la separación del isohexano de los hexanos y productos más pesados.

La fase líquida procedente del tanque separador FA-402 se precalienta en los cambiadores EA-405 y EA-406 al intercambiar calor con el efluente del reactor y los fondos de la torre desisohexanizadora DA-402 respectivamente. Al líquido así calentado se le reduce la presión y a causa de esto se efectúa la separación de hidrocarburos ligeros e hidrógeno de los hidrocarburos pesados en el primer tanque separador de carga a la desbutanizadora FA-404.

La corriente gaseosa formada por los hidrocarburos ligeros, hidrógeno y cierta cantidad de compuestos de azufre, pasa a través del enfriador de gas amargo EA-403, enfriándose a una temperatura de 38 °C, inyectándose antes una corriente de inhibidor de corrosión para proteger al equipo contra la corrosión. El objeto de hacerla pasar por este enfriador es condensar y recuperar los hidrocarburos presentes en la mezcla.

El efluente del enfriador de gas amargo EA-403, pasa al segundo tanque separador de carga a desbutanizadora FA-405, donde se efectúa la separación de la fase gaseosa y líquida.

La fase gaseosa constituida por gas amargo, se envía a la Planta de Tratamiento con DEA.

La fase líquida procedente de los tanques separadores FA-404 y FA-405, se envía mediante las bombas GA-402 y GA-403 respectivamente, para alimentarse al plato 15 de la torre desbutanizadora DA-401. La torre desbutanizadora, cuyas condiciones de operación son de 16.8 kg/cm² man. y 93.3°C en los domos, tiene por objeto separar los hidrocarburos ligeros y butanos de los hexanos más pesados. Por los domos de la torre salen los vapores conteniendo una cierta cantidad de compuestos de azufre que pudieran ocasionar problemas de corrosión en los equipos, por lo que es necesario inyectarle inhibidor de corrosión. Estos vapores se condensan parcialmente al pasar a través del condensador de la torre

EA-408. La separación se lleva a cabo en el tanque acumulador de reflujo de la torre desbutanizadora.

El vapor formado por gas amargo se une a la corriente que sale del segundo tanque separador de carga a desbutanizadora FA-405 y se envía a la Planta de Tratamiento con DEA. El condensado se divide en dos corrientes: una es enviada mediante la bomba GA-404 a la Planta de Tratamiento con DEA pasando primero a través del enfriador del domo de la desbutanizadora EA-407 y la otra corriente se envía como reflujo hacia la torre.

Los fondos de la torre desbutanizadora conteniendo principalmente pentanos, hexanos e hidrocarburos pesados se divide en dos corrientes, la primera se envía al calentador de fondos de la torre BA-402, en el cuál se le suministra el calor necesario para la torre desbutanizadora y la segunda corriente de los fondos de la torre desbutanizadora se envía a la torre desisohexanizadora, previa disminución de presión de 17.2 kg/cm² man. hasta 2.1 kg/cm² man. que es la presión de la torre desisohexanizadora.

En la torre desisohexanizadora cuya temperatura en el domo es de 86.7 °C, se efectúa la separación de pentanos y hexanos de los hidrocarburos pesados. Los pentanos y hexanos salen por el domo de la torre condensándose totalmente al pasar a través del condensador de reflujo de la torre desisohexanizadora EA-409 y parte del condensado se recircula hacia la torre para mantener la relación de reflujo requerida, la corriente restante se envía como carga a la Planta Isomerizadora de Pentanos y Hexanos.

De la corriente que sale de los fondos de la torre desisohexanizadora, constituida principalmente por una mezcla de hexanos y más pesados, parte se recircula a través del rehervidor de fondos de la torre desisohexanizadora BA-403 y la restante se envía mediante la bomba GA-405 al segundo precalentador de carga a la torre desbutanizadora para enfriarse y mandar el producto enfriado a la Planta Reformadora.

Especificaciones de las alimentaciones,

Las siguientes corrientes constituyen las alimentaciones a la Planta Hidrodesulfuradora de Naftas.

Mezcla de Naftas ligera y de despunte procedente de las Plantas de Destilación Combinada.

Gasolina proveniente de las Plantas Hidrodesulfuradoras de Destilados Intermedios.

Hidrógeno procedente de la Planta Reformadora.

MMSCFD a 20.0 °C y 1 kg/cm 2 abs (68 °F y 14.2 psia).

Especificaciones de los productos.

Los productos de la Planta Hidrodesulfuradora de Naftas están constituidos por las siguientes corrientes:

Gasolina Desisohexanizada, de la que se envían 208,842 kg/h a la Planta Reformadora referidos a 15,6°C(60°F).

Composición:	
% Vol. de Parafinas	66
% Vol. de Olefinas	0
% Vol. de Nafténicos	26
% Vol. de Aromáticos	8
Arsénico, ppb	1
Nitrógeno, ppm	0.5
Azufre, ppm	0.5
Cloruros, ppm	0.5
Fluoruros, ppm	0.5
Plomo, ppb	20
Cobre, ppb	25
Oxígeno combinado, ppm	2
(incluye agua)	

Tabla 2.1 Composición de la nafta hidrodesulfurada.

Pentanos e Isohexanos que pasarán a la Planta Isomerizadora con flujo y características siguientes:

Flujo normal 50,000 kg/h a 15.6 °C (60 °F).

COMPUESTO	ESPECIFICACION DE ALIMENTACION kgmol/h	
RON	(C _g /C _g) 69	
Propano	0	
iso-Butano	0	
n-Butano	0	
iso-Pentano	97.0	

n-Pentano	322.37
2,2 DiMe Butano	7.54
	
2,3 DiMe Butano	25.03
2 Me Pentano	81.64
3 Me Pentano	77.24
n-Hexano	142.23
Me Ciclopentano	31.12
Ciclohexano	17.19
Benceno	27.89
n-Heptano	0.89
2,2 DiMe Pentano	0

Tabla 2.2 Composición de pentanos y hexanos.

Servicios Auxiliares.

Vapor.

Vapor de media presión.

Presión:

17.6 kg/cm² man (250 psig.).

Temperatura:

310 °C (590 °F).

Calidad:

Sobrecalentado.

Vapor de baja presión.

Presión:

3.5 kg/cm² man (50 psig.).

Temperatura: 147 °C (297°F).

Calidad:

Saturado.

Condensado.

Presión:

27.46 kg/cm² man (390 psig.).

Temperatura: 40 °C (120 °F).

Agua de Enfriamiento.

Presión de entrada:

3.5 kg/cm² man.

Temperatura de entrada:

32 °C (90 °F).

Presión de retorno mínima:

2.54 kg/cm² man. (36 psig.).

Temperatura de retorno máxima: 46 °C (115 °F).

Aire de Planta.

La presión del sistema será de 7 kg/cm² man. (100 psig.).

Combustible.

Gas.

Fuente de suministro: Red General de la Refinería.

Propiedades:	
Naturaleza:	Gas natural
Peso Molecular:	18.06
Densidad relativa:	0.62
Poder calorífico:	8206 kcal/m³ (922 BTU/ft³)
Condiciones en límite de batería:	
Presión:	3.5 kg/cm ² man. (50 psig.).
Temperatura:	20 °C (60 °F).
Disponibilidad:	La requerida.

Tabla 2.3 Composición del gas combustible a HDS.

2.1.2 Reformación Catalítica de Naftas

El Objeto de esta planta es incrementar el contenido de octano en la nafta hidrodesulfurada y producir hidrógeno necesario para los procesos de hidrotratamiento. [13].

La planta consta de varias secciones comprendidas en el diagrama de flujo de proceso (Figura 2.2).

Sección de Carga y Reacción.

La nafta desisohexanizada proveniente de la Planta Hidrodesulfuradora de naftas entra a la planta a control de flujo a 74°C y 33kg/cm² man. y se mezcla a continuación con el hidrógeno de recirculación FA-502. A esta mezcla se le inyecta una corriente dosificada de 1,1,1 tricloroetano con el fin de mantener el nivel de cloruros en el catalizador y se le envía a precalentamiento al intercambiador Carga-Efluente EA-501, donde se recupera parte del calor contenido en el efluente del último reactor, obteniéndose la mezcla de nafta e hidrógeno totalmente vaporizada. A continuación se inyecta a esta mezcla una corriente dosificada de agua con el fin de mantener la acidez del catalizador y se le envía a la primera celda del calentador de carga a reactores BA-501A, donde se calienta hasta temperatura de alimentación a los mismos (504°C al inicio de corrida, 540 °C al final de corrida). De aquí al sistema de reactores de reformación constituido por cuatro reactores radiales en serie (ler. Reactor de Reformación DC-501, 2º Reactor de Reformación DC-502, 3er. Reactor de Reformación DC-503 y 4º Reactor de Reformación DC-504) donde se llevan a cabo las reacciones de isomerización, dehidrociclización, aromatización y desintegración; el efluente de cada uno de los tres primeros reactores es desviado a la celda correspondiente del calentador de carga a reactores BA-501 B-D donde se proporciona a la mezcla calor consumido por la reacción, elevando su temperatura nuevamente hasta el valor requerido para la operación de los reactores. La temperatura de alimentación a los reactores es controlada mediante flujo de alimentación a los combustibles a cada celda del homo, incrementándose la temperatura a lo largo de la corrida de la planta para compensar la desactivación del catalizador y obtener un reformado con el número de octano especificado. La presión de operación normal de los reactores va desde 13.7 kg/cm² man. a la entrada del primero hasta 11.5 kg/cm² man. a la salida del último.

El efluente del último reactor pasa al intercambiador carga efluente EA-501 donde se precalienta la carga al sistema de reactores y posteriormente al primer enfriador del efluente del reactor EC-501 y al segundo enfriador del efluente del reactor EA-502, obteniéndose una condensación parcial. Los hidrocarburos condensados se separan del gas en el separador de baja presión FA-501, que opera a 43°C y 10.5 kg/cm² man. uniéndose posteriormente a la corriente de

hidrocarburos condensados antes del enfriador de recontacto EA-503 a control de nivel, mediante la bomba de recontacto GA-501; el gas proveniente de este separador pasa a la succión del compresor de recirculación GB-501 del tipo centrífugo, donde se aumenta su presión hasta 15 kg/cm² man., uniéndose posteriormente a la corriente de hidrocarburos condensados, antes del enfriador de recontacto EA-503. La corriente de salida de este enfriador pasa al separador de hidrógeno de recirculación FA-502 que opera a 38°C y 14.6 kg/cm² man.; la fase líquida de este tanque se envía al intercambiador alimentación fondos EA-505 de la Sección de Estabilización, a control de nivel mediante la bomba de alimentación a torre estabilizadora GA-502. La fase vapor se divide en tres corrientes: una constituida por el hidrógeno requerido por las plantas Hidrodesulfuradora de Nafta, y de Destilados Intermedios, la segunda que va a la succión de la primera etapa del compresor de hidrógeno excedente lo cual se envía a control de presión al sistema de gas combustible de la Refinería, previa unión con el gas del acumulador de reflujo de torre estabilizadora FA-504 y se entrega en L.B. a 38°C y 5 kg/cm² man. y la tercera que es el hidrógeno de recirculación que se mezcla con la nafta desisohexanizada de carga al proceso pasando después al intercambiador cargaefluente EA-501.

Sección de Purificación de Hidrógeno.

El hidrógeno requerido por las Plantas Hidrodesulfuradoras e Isomerizadora, provenientes del Separador de Hidrógeno de Recirculación FA-502 pasa a la primera etapa del compresor de hidrógeno producto GB-502 de tipo reciprocante, donde se eleva su presión hasta 38.7 kg/cm² man. de aquí al enfriador de hidrógeno EA-504, donde se obtiene una pequeña cantidad de hidrocarburos condensados que se separan en un tanque separador de alta presión FA-503 y se envían a control de nivel para unirlos a la corriente líquida del separador de hidrógeno de recirculación FA-502. Esta corriente se envía al intercambiador alimentación-fondos EA-505 de la sección de estabilización.

La fase vapor del separador de alta presión FA-503 se divide en dos corrientes: el hidrógeno requerido por la planta Hidrodesulfuradora de Naftas que se entrega en L.B. a 38 °C y 38 kg/cm² man. y el hidrógeno a plantas de Hidrodesulfuradora de Destilados Intermedios e Isomerizadora, que es enviado a la segunda etapa del compresor de hidrógeno producto GB-502 donde se eleva su presión hasta 68 kg/cm² man. y una temperatura entre 100 y 95 °C.

Sección de Estabilización.

Los hidrocarburos condensados provenientes del Separador de Hidrógeno de Recirculación FA-502 y del Separador de Alta Presión FA-503 son precalentados en el Intercambiador Alimentación-Fondos EA-505, aprovechando

Especificación de la alimentación

La planta se diseñó para procesar nafta con las siguientes características.

Composición:	
% Vol. de Parafinas	66
% Vol. de Olefinas	0
% Vol. de Nafténicos	26
% Vol. de Aromáticos	8
Arsénico, ppb	1
Nitrógeno, ppm	0.5
Azufre, ppm	0.5
Cloruros, ppm	0.5
Fluoruros, ppm	0.5
Plomo, ppb	20
Cobre, ppb	25
Oxígeno combinado, ppm	2
(incluye agua)	

Tabla 2.4 Composición de la alimentación de reformadora.

Especificación de los productos

Nafta Reformada Estabilizada. Flujo, kg/h (15.5 °C) 176,264

Composición	
Componentes	% mol
Propano	0.053
I - butano	0.714
N - butano	2.028
C5 +	97.205

Tabla 2.5 Composición de la nafta reformada.

Licuables.

Flujo, kg/h (15.5 °C) 616.45

Composición	
Componentes	% mol
Hidrógeno	0.497
Metano	0.906
Etano	9.088
Propano	46.910
I - butano	17.862
N - butano	24.565
C5 +	0.171

Tabla 2.6 Composición de licuables de reformadora.

Hidrógeno

Flujo, m³/h (20 °C y 1.0 kg/cm²) 1045

Composición	
Componentes	% mol
Hidrógeno	83.379
Metano	4.446
Etano	4.467
Propano	4.780
I - butano	0.847
N - butano	1.077
C5 +	1.004

Tabla 2.7 Composición de hidrógeno de reformadora.

Servicios Auxiliares.

Vapor.

Vapor de alta presión.

Presión:

58.37 kg/cm² man (830 psig.).

Temperatura: 471 °C (880 °F).

Calidad:

Sobrecalentado.

Vapor de media presión.

Presión:

17.6 kg/cm² man (250 psig.).

Temperatura: 310 °C (590 °F).

Calidad:

Sobrecalentado.

Vapor de baja presión.

Presión:

3.5 kg/cm² man (50 psig.).

Temperatura: Sobrecalentado Vapor Generado en la Planta

Presión:

19.3 kg/cm² man (275 psig.).

Calidad:

Temperatura: 310 °C (590 °F).

Sobrecalentado.

Limitada a la capacidad de generación de la caldereta de la sección de convección del calentador de carga a reactores BA-501 A/D.

Condensado.

Presión:

3.5 kg/cm² man (50 psig.).

Temperatura: 52 °C (126 °F).

Aqua de Enfriamiento.

Presión de entrada:

3.5 kg/cm² man.

Temperatura de entrada:

32 °C (90 °F).

Presión de retorno mínima:

2.54 kg/cm² man. (36 psig.).

Temperatura de retorno máxima: 46 °C (115 °F).

Aire de Planta.

La presión del sistema será de 7 kg/cm² man. (100 psig.).

Combustible.

Gas.

Fuente de suministro: Red General de la Refinería.

Propiedades:	
Naturaleza:	Gas natural
Peso Molecular:	18.06
Densidad relativa:	0.62
Poder calorífico:	8206 kcal/m³ (922 BTU/ft³)
Condiciones en límite de batería:	
Presión:	3.5 kg/cm ² man. (50 psig.).
Temperatura:	20 °C (60 °F).
Disponibilidad:	La requerida.

Tabla 2.8 Composición del gas combustible de reformadora.

2.2 BALANCES DE MATERIA Y ENTALPIA DE LOS PROCESOS

2.2.1 Simulación de las plantas Hidrodesulfuradora y Reformadora de Naftas

La planta hidrodesulfuradora de Naftas es la unidad preparadora de carga a la planta reformadora de Naftas.

La simulación de las plantas hidrodesulfuradora y reformadora de Naftas se llevó a cabo con el simulador de procesos ASPEN Plus versión 9.3.2. [14] bajo el marco de un proyecto FIDE-PEMEX en el Instituto Mexicano del Petróleo [15].

Los datos tomados como base fueron los datos de diseño de la Refinería Hector Lara Sosa de Cadereyta N.L. y la capacidad de las plantas fueron producto de los resultados obtenidos del proyecto FIDE-PEMEX. Se implementaron diferentes módulos de simulación adicionales tales como: Calentadores a fuego directo y Rehervidores, así como subrutinas de cálculo contenidas dentro del marco del proyecto FIDE-PEMEX para el cálculo de exergias físicas, químicas y totales además de algunos cálculos de los parámetros exérgicos, las cuales nos reservamos de publicar por derechos de autor enmarcados en el proyecto.

Propiedades termodinámicas

La unidad de Reformación de Naftas así como las secciones de carga y reacción, recirculación de hidrógeno y separación a alta presión de la unidad Hidrodesulfuradora de Naftas, utilizaron el modelo GRAYSON que es un modelo predictivo recomendable para sistemas que contienen Hidrógeno; los tipos de mezclas que maneja son hidrocarburos y gases ligeros tales como dióxido de carbono y ácido sulfhídrico. El modelo Grayson se recomienda sobre el Chao-Seader cuando el sistema contiene hidrógeno.

Siendo los límites de Temperatura y de Presión:

$$200 \text{ K} < \text{T} < 700 \text{ K}$$

0.5 < P < 210 atm

El modelo Grayson no debe usarse a altas presiones especialmente cerca del punto crítico de la mezcla, debido al comportamiento anómalo observado en estas regiones.

El modelo que emplea Grayson para predecir la fase vapor es el modelo de Redlich-Kwong y para la fase líquida el modelo de Lee-Kesler.

Para poder efectuar las separaciones en las secciones de desbutanización y deshexanizado de la unidad Hidrodesulfuradora de Naftas se empleo el método Chao-Seader que al igual que el método Redlich-Kwong-Soave está diseñado para hidrocarburos ligeros en ausencia de hidrógeno.

La sección más importante de esta unidad de hidrodesulfuración es la sección de carga y reacción pero para fines de análisis exérgicos y de aplicación de la destilación diabática se consideró que las secciones más importantes son la de desbutanización y la de desisohexanizado que son las que presentan las torres de destilación que se pretenden analizar. El modelo de ASPEN utilizado para la simulación de dichas columnas fue *RADFRAC*, que es el modelo de ASPEN de simulación rigurosa sin coeficiente de transferencia de masa para columnas de destilación.

Por motivos de análisis exérgicos y de aplicación de la destilación diabática se precisó simular con gran exactitud tanto la zona de aporte de calor como la extracción del mismo.

Zona de Aporte de Calor

Los modelos de los rehervidores (Calentador a fuego directo) fueron simulados como un conjunto de equipos que emulan a un calentador de fuego directo ya que el simulador no cuenta con un modelo que simule estos rehervidores. Los modelos empleados para la simulación de calentadores a fuego directo (rehervidores de las torres) fueron:

Con el modelo *HEATX* se simuló el precalentamiento del aire y la zona de convección.

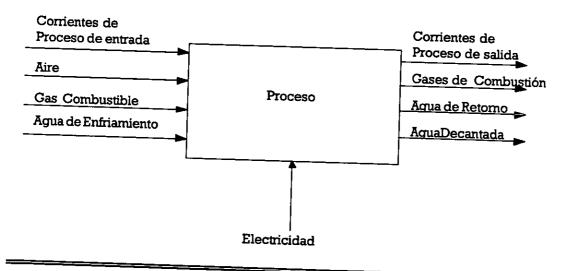
Con el modelo **RSTOIC** se simuló la zona de radiación donde se efectua la reacción de combustión del gas combustible con el aire atmosférico hasta alcanzar la temperatura de flama adiabática.

Zona de Extracción de Calor

Para la extracción de calor de las columnas de destilación se utilizaron distintos modelos de ASPEN como lo es el *HEATX* que hizo la función del condensador de la columna; el modelo *FLASH2*, el cual simuló el tanque acumulador de reflujo; el modelo *PUMP*, que simuló la bomba de reflujo y el modelo *FSPLIT*, el cual separó la corriente líquida del tanque acumulador de reflujo en producto líquido y reflujo a la columna.

2.3. BALANCE DE EXERGIA DE LOS PROCESOS

Para la evaluación exérgica de los procesos es necesario construir un diagrama de bloques en el cual se representen todas las corrientes de entrada y salida así como los servicios auxiliares que se necesiten, además de los resultados de la simulación hecha del proceso como son flujos de masa, entalpia y exergia. La metodologia para el análisis de exergia se muestra a continuación:


Metodología para el análisis de exergia

- 1. Establecimiento de un diagrama de flujo de proceso.
- 2. Balance de materia/entalpia (Simulación en ASPEN Plus)
- 3. Balance de exergia.
- 4. Cálculos de parámetros exérgicos.
- 5. Conclusiones.

En primera instancia se analizaron los procesos de manera global es decir, tomando todo el proceso como si fuese un solo bloque, de tal manera que los parámetros calculados permitan mostrar que tan bien utilizan la exergia estos procesos. En segundo lugar se hicieron análisis por secciones de los procesos con el fin de determinar las secciones donde es posible atacar las pérdidas de exergia. Por último se analizaron individualmente todos los equipos que comprenden cada proceso, esto para determinar la factibilidad de atacar las pérdidas de exergia y proponer (si se permiten) cambios para mejorar la utilización de la exergia en dicho equipo.

Mediante el análisis de exergia se determina la factibilidad de implementar la Destilación Diabática, mediante este tipo de análisis se permite observar la importancia de los procesos de destilación en el consumo de energía.

Balance de Exergia Global de los Procesos

2.3.1 Hidrodesulfuración Catalítica de Naftas

Diagrama de bloques del proceso

Este diagrama consta de todas las corrientes de entrada y salida del proceso así como las corrientes de servicio como son gas combustible, aire, agua de enfriamiento, electricidad, agua de retorno, agua decantada y vapor si es necesario (Figura 2.3).

Balance de materia y entalpia

Para el balance de materia y entalpia se utilizó el simulador de procesos ASPEN Plus versión 9.3.2 con el cuál se reprodujo de manera rigurosa los flujos de materia y entalpia de todas las corrientes que intervienen en el proceso(ver apéndice 1).

Balance de exergia.

En el balance de exergia se utilizaron los resultados del simulador para los flujos másicos y de entalpia, además de utilizar un programa para el cálculo de exergias físicas y químicas, lo que dió como resultado la exergia total de todas las corrientes que intervienen en el proceso para el cálculo de los parámetros exérgicos (ver apéndice 2).

Parámetros exérgicos.

Después de obtener toda la información necesaria se calcularon los distintos parámetros exérgicos de la manera siguiente.

Extte = Corr. de proceso de entrada + Aire a combustión + Gas combustible + Agua de enfriamiento + Electricidad

Extts = Corr. de proceso de salida + Agua decantada + Agua de retorno + Gases de combustión.

Irr = Extte - Extts

Exntp = Gas combustible + Aire a combustión + Electricidad - Gases de combustión.

Exnts = (Agua de retorno - Agua de enfriamiento) + (Corr. de salida de proceso + Agua decantada - Corr. de entrada de proceso)

 $\varepsilon = \text{Exntp} / \text{Exnts}$

 $\mathbf{Pot} = \mathbf{Irr} (1 - \varepsilon) + \mathbf{Efl}$

Efl = (Agua de retorno - Agua de enfriamiento) + Gases de combustión

Pex = Irr + Efl

RESULTADOS DEL ANÁLISIS DE EXERGIA

	Entradas	Salidas	Diferencia
	MWe	MWe	
Materia =	927.643	927.643	0.000
Entalpia =	-13411.158	-13410.509	-0.649
	Extte	Extts	
Exergia física =	72.578	4.965	67.613
Exergia total =	3527.065	3462.838	64.227
	Parámetros	Exérgicos	
	Exergia total		
Exnts =	66.313	MWe	
Exntp =	2.085	MWe	
Im =	64.227	MWe	
Efectividad =	0.031		!
Pot =	68.498	MWe	
Efi =	6.291	MWe	
Pex =	70.518	MWe	

Tabla 2.9 Análisis de exergia global del proceso de Hidrodesulfuración de Naftas.

Balance de Exergia por Secciones

Sección de Carga y Reacción

Balance Global

	Entradas	Salidas	Diferencia
	MWe	MWe	
Materia =	79.741	79.741	0.000
Entalpia =	-139.655	-140.316	0.661
	Extte	Extts	
Exergia física =	19.412	8.524	10.888
Exergia total =	3538.899	3525.961	12.938
	Parámetros	Exérgicos	
	Exergia total		į
· Exnts =	13.465	MWe	
Exntp =	0.527	MWe	
Irr =	12.938	MWe	
Efectividad =	0.039		
Pot =	14.157	MWe	
Efl =	1.726	MWe	
Pex =	14.663	MWe	

Tabla 2.10 Análisis de exergia de la sección de carga y reacción.

Sección de Recirculación de Hidrógeno

	Entradas MWe	Salidas MWe	Diferencia
Materia =	410.037	410.037	0.000
Entalpia =	-4614.635	-4614.635	0.000
	Extte	Extts	
Exergia física =	11.030	7.831	3.199
Exergia total =	6250.371	6248.727	1.643

Parámetros Exérgicos			xérgicos	_
	Exergia total			
Exnts =		3.897	MWe	
Exntp =		2.254	MWe	
Irr =		1.643	MWe	
Efectividad =		0.578		
Pot =		1.391	MWe	
Efl =		0.698	MWe	
Pex =	:	2.342	MWe	

Tabla 2.11 Análisis de exergia de la sección de recirculación de hidrógeno.

Sección de Separación a Alta Presión

	Entradas	Salidas	Diferencia
	MWe	MWe	
Materia =	81.282	81.282	0.000
Entalpia =	-255.468	-255.300	-0.168
	Extte	Extts	
Exergia física =	3.595	3.127	0.468
Exergia total =	3425.226	3424.825	0.402
	Parámetros Ex	érgicos	
	Exergia total	Exergia física	
Exnts =	0.498		MWe
Exntp =	0.096		MWe
Irr =	0.402		MWe
Eficiencia =	1.000	0.870	
Efectividad =	0.194		
Pot =	0.354		MWe
Efi =	0.030		MWe
Pex =	0.432		MWe

Tabla 2.12 Análisis de exergia de la sección de separación a alta presión.

Sección de Desbutanización

Balance Global

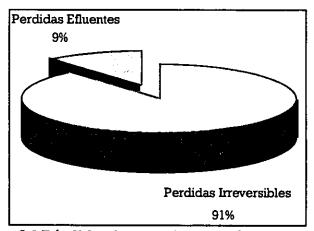
	parance		
	Entradas	Salidas	Diferencia
	MWe	MWe	
Materia =	147.522	147.522	0.000
Entalpia =	-1176.216	-1176.216	0.00.0
·	Extte	Extts	
Exergia física =	50.486	18.687	31.799
Exergia total =	3 44 2.001	3410.351	31.650
		,	
	Parámetros Es	cergicos	·
	The sector dedails		
	Exergia total		
Exnts =	45.452	MWe	
Exntp =	13.802	MWe	
Irr =	31.650	MWe	
Efectividad =	0.304		
Pot =	24.311	MWe	
Efl =	2.271	MWe	
Pex =	33.922	MWe	

Tabla 2.13 Análisis de exergia de la sección de desbutanización.

Sección de Desisohexanizado

Dilance Orobar			
-	Entradas	Salidas	Diferencia
	MWe	MWe	
Materia =	560.156	560.156	0.000
Entalpia =	-7797.333	-7797.333	-0.001
	Extte	Extts	
Exergia física =	23.836	5.457	18.379
Exergia total =	3406.114	3388.520	17.594
			•

Parámetros Exérgicos			
	Exergia total		<u>-</u>
Exnts =	19.294	MWe	
Exntp =	1.700	MWe	
Irr =	17.594	MWe	
Efectividad =	0.088		
Pot =	17.609	MWe	
Efl =	1.565	MWe	
Pex =	19.159	MWe	


Tabla 2.14 Análisis de exergia de la sección de desisohexanizado.

Discusión de Resultados

La Unidad de Hidrodesulfuración Catalítica de Naftas prepara la carga a la planta reformadora con una efectividad global de tan sólo 3.1 %, esto es que la exergia neta suministrada se degrada el 96.9 %.

La degradación total de energía de la unidad (pérdidas totales de exergia) representan el 1.82 % de la energía útil contenida originalmente en la Nafta más Hidrógeno a procesar.

Las pérdidas irreversibles representan el 91 % de las pérdidas totales, mientras que las pérdidas efluentes representan solamente el 9 % del total, de manera que éstas últimas, que son las únicas que pueden detectarse mediante un análisis convencional de primera ley de manera incorrecta, son las menos importantes.

Gráfica 2.1 Pérdidas irreversibles y efluentes de HDS

Sección Carga y Reacción

La Sección más importante de la Unidad de Hidrodesulfuración de Naftas es la Sección de Reacción, que representa el 21 % de la degradación total de energía (pérdidas totales de exergia) de la unidad, dentro de las cuales el 45.25 % corresponden al sistema de calentamiento de la alimentación al reactor.

Las pérdidas en el calentador se deben a la irreversibilidad de la reacción de combustión y a la diferencia de temperatura entre la flama y el fluido de proceso y en mucho menor grado al desalojo de los gases de combustión a la atmósfera.

Dado que el equipo ya cuenta con precalentamiento de aire, la única manera de reducir estas pérdidas sería precalentando lo más posible al crudo, aunque desafortunadamente, no podrá llegarse muy lejos en este equipo, a menos que el proceso mismo de combustión fuera reemplazado por otro más eficiente como las celdas de combustible, lo cual deberá ser estudiado con mucho detalle. La sección que más perdidas totales generó fue la sección de desbutanización debido a los procesos de intercambio de calor y el homo BA-401.

El segundo equipo en importancia dentro de la sección de Reacción es el precalentador de carga EA-402.

Sección de Desbutanización.

La sección de desbutanización aporta el mayor porcentaje de pérdidas totales (48 %) debido a la degradación de energía (pérdidas de exergia); el equipo crítico es el rehervidor de la torre de desbutanización (BA-402), debido a la irreversibilidad del proceso de combustión y del proceso de transferencia de calor entre la temperatura de la flama y la temperatura del fluido de proceso y por último en mucho menor grado, debido al desalojo de gases de combustión a la atmósfera, por este motivo se analizará mas a fondo para tratar de implementar la destilación diabática mediante la integración de rehervidor y el condensador dentro de la torre de desbutanización.

Sección de Desisohexanizado.

La tercera sección en importancia representa el 27 % de las pérdidas totales de la unidad. En esta sección los equipos críticos son el rehervidor de la torre de desisohexanizado BA-403 y la válvula de expansión de la alimentación a la torre, las irreversibilidades del rehervidor son debido al proceso de combustión y al proceso de transferencia de calor entre la temperatura de la flama y la temperatura del fluido de proceso y las pérdidas irreversibles de la válvula de expansión son debido a la destrucción irracional de la exergia ya que dicho equipo puede ser sustituido por algún otro equipo que haga un uso más racional de exergia como lo es el caso de un expansor; al igual que en la sección de desbutanización esta sección se analizará más profundamente para tratar de implementar la destilación diabática mediante la integración del rehervidor y el condensador con la torre de desisohexanizado.

Secciones restantes.

Las dos secciones restantes como son la sección de recirculación de hidrógeno y la sección de separación a alta presión solo representan el 4 % de las pérdidas totales de exergia de la unidad con lo cual se observa que los puntos críticos se encuentran en las tres primeras secciones.

2.3.2 Reformación Catalítica de Naftas

Diagrama de bloques del proceso

Este diagrama consta de todas las corrientes de entrada y salida del proceso así como las corrientes de servicio como son gas combustible, aire, agua de enfriamiento, electricidad, agua de retorno y vapor generado (Figura 2.4).

Balance de materia y entalpia

Para el balance de materia y entalpia se utilizó el simulador de procesos ASPEN Plus versión 9.3.2 con el cuál se reprodujo de manera rigurosa los flujos de materia y entalpia de todas las corrientes que intervienen en el proceso (ver apéndice 1).

Balance de exergia.

En el balance de exergia se utilizaron los resultados del simulador para los flujos másicos y de entalpia, además de utilizar un programa para el cálculo de exergias físicas y químicas, lo que dio como resultado la exergia total de todas las corrientes que intervienen en el proceso para el cálculo de los parámetros exérgicos (ver apéndice 2).

Parámetros exérgicos.

Después de obtener toda la información necesaria se calcularon los distintos parámetros exérgicos de la manera siguiente.

Extte = Corr. de proceso de entrada + Aire a combustión + Gas combustible + Agua de enfriamiento + Agua desaereada + Aire atmosférico + Electricidad

Extts = Corr. de proceso de salida + Agua de retorno + Vapor generado + Gases de combustión + Aire efluente.

Exnts = Gas combustible + Aire a combustión + Electricidad - Gases de combustión.

Exntp = (Corr. de proceso de salida-Corr. de proceso de entrada) + (Agua de retorno-Agua de enfriamiento) + (Aire efluente-Aire atmosférico) + (Vapor generado-Agua desaereada).

 $\varepsilon = \text{Exntp} / \text{Exnts}$

$$\mathbf{Pot} = \mathbf{Irr} (1 - \varepsilon) + \mathbf{Efl}$$

Efl = (Agua de retorno-Agua de enfriamiento) + Gases de combustión + Aire efluente

Pex = Irr + Efl

RESULTADOS DEL ANALISIS DE EXERGIA

	Entradas	Salidas	
	MWe	MWe	Diferencia
Materia =	1347.146	1347.146	0.000
Entalpia =	-9047.953	-9047.952	-0.001
	Extte	Extts	
Exergia física =	108.757	25.509	83.248
Exergia total =	2845.172	2777.069	68.103
			_
Parámetros Exérgicos			
	Exergia total		
Exnts =	101.168	MWe	
Exntp =	33.065	MWe	
Irr =	68.103	MWe	
Efectividad =	0.327		
Pot =	58.351	MWe	
Ef1 =	12.506	MWe	
Pex =	80.609	MWe	

Tabla 2.15 Análisis de exergia global del proceso de reformación.

Balance de Exergia por Secciones

Sección de Carga y Reacción

Balance Global

	Entradas	Salidas	
	MWe	MWe	Diferencia
Materia =	97.071	97.071	0.000
Entalpia =	-172.425	-172.425	0.000
	Extte	Extts	
Exergia física =	77.661	26.067	51.595
Exergia total =	3527.143	3487.422	39.721
Parámetros Exérgicos			
			,
	Exergia total		
Exnts =	60.669	MWe	
Exntp =	20.948	MWe	
Irr =	39.721	MWe	
Efectividad =	0.345	1	
Pot =	30.062	MWe	
E11 =	4.057	MWe	
Pex =	43.778	MWe	

Tabla 2.16 Análisis de exergia de la sección de carga y reacción (Reformación).

Sección de Purificación de Hidrógeno

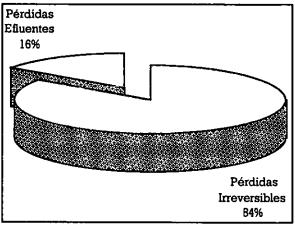
	Entradas	Salidas	
	MWe	MWe	Diferencia
Materia =	1300.185	1300.185	0.000
Entalpia =	-8544.865	-8544.864	-0.001
	Extte	Extts	
Exergia física =	29.041	25.798	3.243
Exergia total =	3517.017	3516.606	0.411
			_

Parámetro Exérgicos			
	Exergia total		
Exnts =	10.042	MWe	
Exntp =	9.632	MWe	
Irr =	0.411	MWe	
Efectividad =	0.959		
Pot =	6.816	MWe	
Efi =	6.799	MWe	
Pex =	7.210	MWe	

Tabla 2.17 Análisis de exergia de la sección de purificación de hidrógeno.

Sección de Estabilización

·	Entradas	Salidas	_
	MWe	MWe	Diferencia
Materia =	85.948	85.948	0.000
Entalpia =	-508.285	-508.286	0.000
	Extte	Extts	
Exergia física =	33,546	5.138	28.408
Exergia total =	2447.188	2419.219	27.969
Parámetros Exérgicos			
	Exergia total		
Exnts =	31.565	MWe	
Exntp =	3.596	MWe	
Irr =	27.969	MWe	
Efectividad =	0.114		
Pot =	26.433	MWe	
$\mathbf{Efl} =$	1.650	MWe	
Pex =	29.620	MWe	


Tabla 2.18 Análisis de exergia de la sección de estabilización.

Discusión de Resultados

La Unidad de Reformación Catalítica de Naftas tiene como fin aumentar el octanaje de la nafta hidrodesulfurada con una efectividad global de 32.7 %, esto es que la exergia neta suministrada se degrada el 67.3 %.

La degradación total de energía de la unidad (pérdidas totales de exergía) representan el 2.83 % de la energía útil contenida originalmente en la Nafta a procesar.

Las pérdidas irreversibles representan el 84 % de las pérdidas totales, mientras que las pérdidas efluentes representan solamente el 16 % del total, de manera que éstas últimas son las únicas que pueden detectarse mediante un análisis convencional de primera ley de manera incorrecta, las cuales son las de menor importancia.

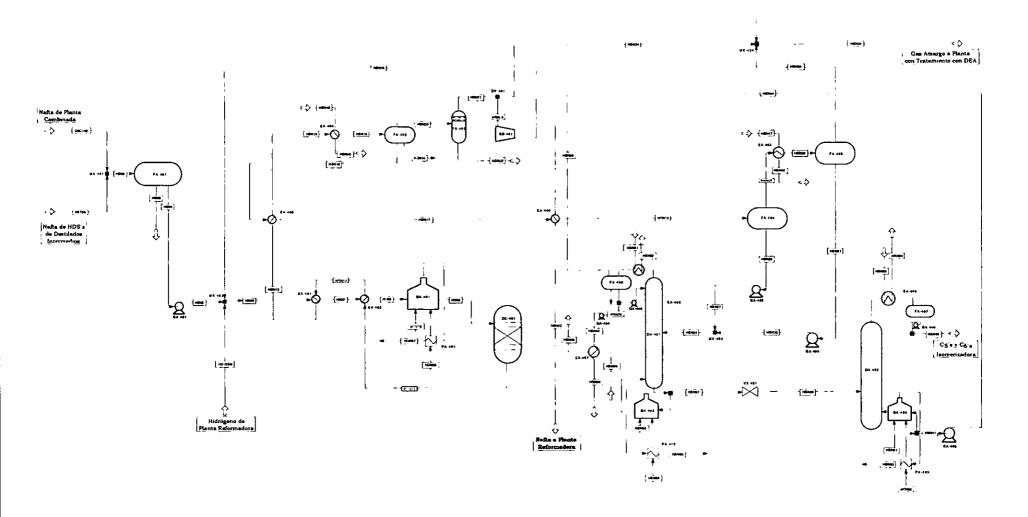
Gráfica 2.2 Pérdidas irreversibles y efluentes de Reformación

Sección de Carga y Reacción

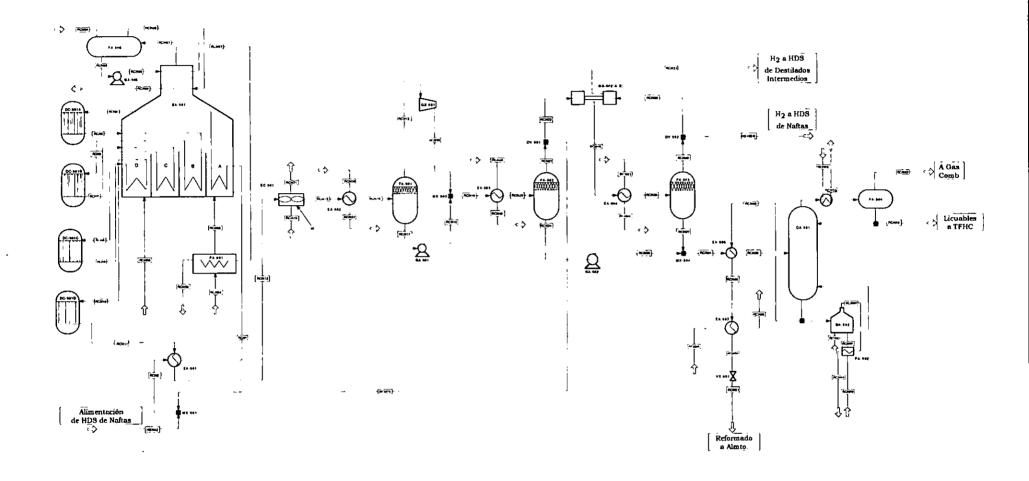
La Sección más importante de la Unidad de Reformación Catalítica de Naftas es la Sección de Carga y Reacción, que representa el 54.3 % de la degradación total de energía (pérdidas totales de exergía) de la unidad dentro de las cuales el 75.17 % corresponden al sistema de calentamiento de la alimentación a los reactores.

Las pérdidas en el calentador se deben a la irreversibilidad de la reacción de combustión y a la diferencia de temperatura entre la flama y el fluido de proceso y en mucho menor grado al desalojo de los gases de combustión a la atmósfera.

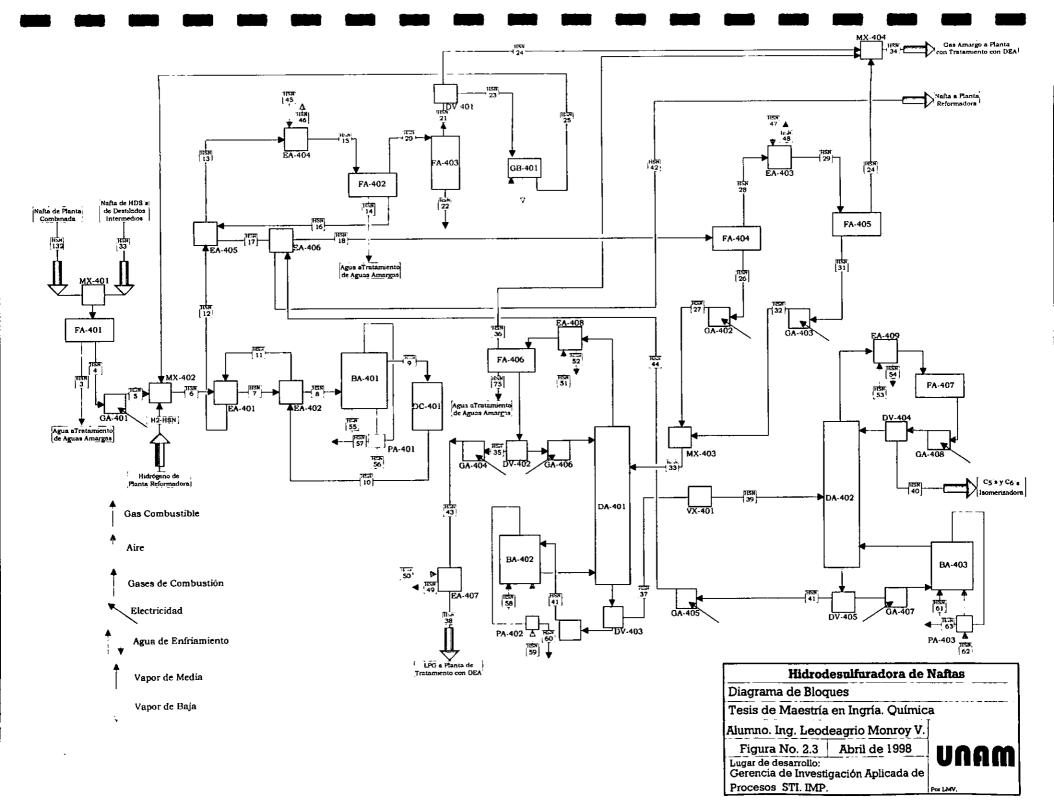
Dado que el equipo ya cuenta con precalentamiento de aire, la única manera de reducir estas pérdidas, sería precalentando lo más posible la carga.

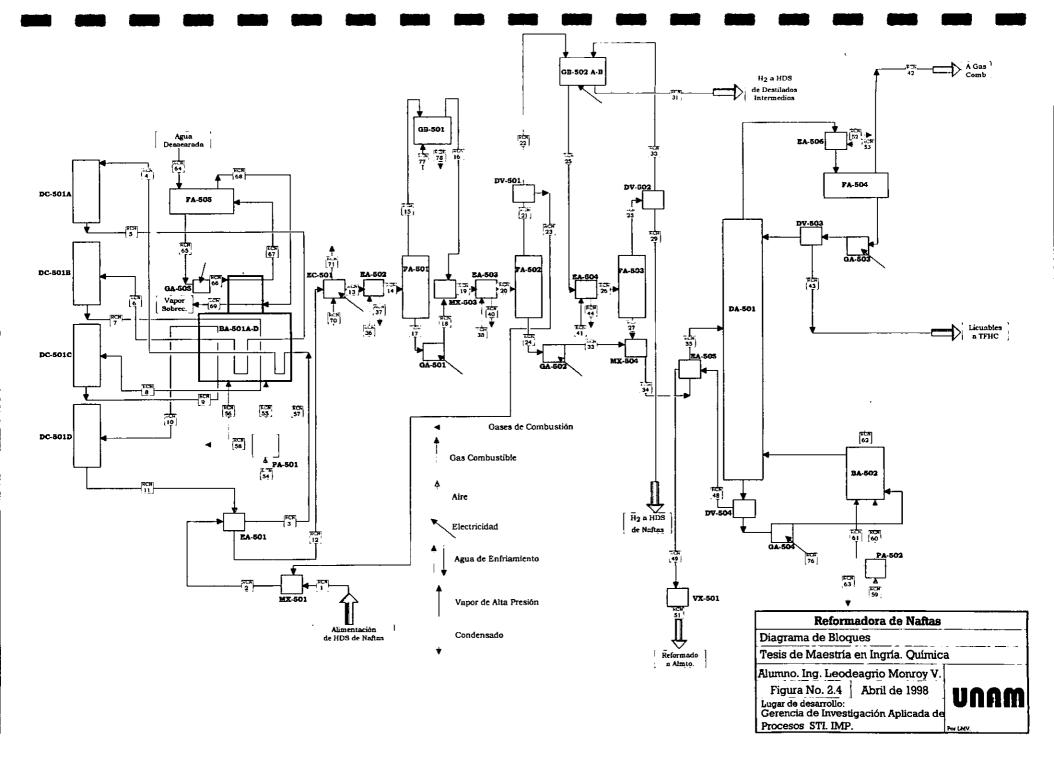

El segundo equipo en importancia dentro de la sección de Carga y Reacción son los reactores DC-501A-D.

Sección de Purificación de Hidrógeno.


En la sección de purificación de Hidrógeno la cual corresponde al 8.9 % de las pérdidas de exergia de la unidad, el equipo crítico es el enfriador con aire EC-501 el cual tiene el 94.4 % de las pérdidas totales de la sección el cual representa el 15.4 % de las pérdidas totales de la unidad. En esta sección tiene alto grado de importancia las pérdidas efluentes que representan el 10.72 % de las pérdidas totales de la sección esto es la exergia arrojada a la atmósfera. El segundo equipo en importancia son los compresores de hidrógeno de recirculación GB-501 y 502 Å y B.

Sección de Estabilización.


La tercera sección representa el 36.8 % de las pérdidas totales de la unidad. En esta sección el equipo crítico es el rehervidor de la torre de estabilizadora BĀ-502 las irreversibilidades del rehervidor son debido al proceso de combustión y al proceso de transferencia de calor entre la temperatura de la flama y la temperatura del fluido de proceso por este motivo se analizará mas profundamente esta sección para tratar de implementar la destilación diabática y así reducir la perdidas de exergia totales del proceso.



Hidrod	esulfuradora de l	Naftas
Diagrama de Flujo)	
Tesis de Maestría	en Ingría. Químic	a
Alumno. Ing. Leod	eagrio Monroy V.	
Figura No. 2.1 Lugar de desarrollo: Gerencia de Invest		บกกก
Procesos STI. IMP.	-	Por LMV.

Reformadora de Naftas Diagrama de Flujo Tesis de Maestría en Ingría. Química Alumno. Ing. Leodeagrio Monroy V. Figura No. 2.2 | Abril de 1998 Lugar de desarrollo: Gerencia de Investigación Aplicada de Procesos STI. IMP.

CAPÍTULO TRES ECUACIONES DEL BALANCE DE MATERIA, ENTALPIA Y EXERGIA DE LAS COLUMNAS ADIABÁTICA Y DIABÁTICA

CAPITULO 3

ECUACIONES DEL BALANCE DE MATERIA, ENTALPIA Y EXERGIA DE LAS COLUMNAS ADIABÁTICA Y DIABÁTICA.

3.1. BALANCES DE MATERIA Y ENERGÍA.

Columna DA-401

Planta Hidrodesulfuradora de Naftas Torre Desbutanizadora (DA-401).

Columna Adiabática.

Condensador:

$$V_2 - L_1 = D$$

 $y_2 V_2 - x_1 L_1 = x_D D$ [17] (3.1)

$$H\nu_2V_2 - Hl_1L_1 = H_DD + Q_C$$

Plato de Alimentación(plato No. 15):

$$V_{16} + L_{14} + A = V_{15} + L_{15}$$

$$y_{16}V_{16} + x_{14}L_{14} + x_A A = y_{15}V_{15} + x_{15}L_{15}$$

$$Hv_{16}V_{16} + Hl_{14}L_{14} + H_A A = Hv_{15}V_{15} + Hl_{15}L_{15}$$
(3.2)

Platos del 2 al 14 y del 16 al 27:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$(3.3)$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} + Hv_jV_j + Hl_jL_j$$

$$j = 2...14 \text{ y } 16...27$$

Rehervidor(Plato No. 28):

$$L_{27} - V_{28} = B$$

$$x_{27}L_{27} - y_{28}V_{28} = x_B B$$
(3.4)

$$Hl_{27}L_{27} - H\nu_{28}V_{28} = H_BB - Q_R$$

 $Hv_1V_1 = H_DD + Q_{C0}$

 $V_{i+1} + L_{i-1} = V_i + L_i$

Columna Diabática.

Condensador:

$$V_{i} = D$$

$$y_{i}V_{i} = x_{D}D \tag{3.5}$$

Plato de Alimentación(plato No. 15):

$$V_{16} + L_{14} + A = V_{15} + L_{15}$$

$$y_{16}V_{16} + x_{14}L_{14} + x_A A = y_{15}V_{15} + x_{15}L_{15}$$

$$Hv_{16}V_{16} + Hl_{14}L_{14} + H_A A = Hv_{15}V_{15} + Hl_{15}L_{15}$$
(3.6)

Platos del 1 al 14:

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} = Hv_jV_j + Hl_jL_j + Q_{Ck}$$
(3.7)

$$j = 1...14$$

 $k = 1...14$

Platos del 16 al 27:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} + Hv_jV_j + Hl_jL_j - Q_{rk}$$
(3.8)

$$j = 16...27$$

 $k = 16...27$

Plato No. 28:

$$L_{27} - V_{28} = B$$

$$x_{27}L_{27} - y_{28}V_{28} = x_BB$$

$$Hl_{27}L_{27} - Hv_{28}V_{28} = H_BB - Q_{r28}$$
(3.9)

Cargas térmicas totales de enfriamiento y calentamiento:

$$Q_C = Q_{C0} + \sum_{k=1}^{14} Q_{Ck}$$
 $Q_R = Q_{RE} + \sum_{k=16}^{28} Q_{rk}$ (3.10)

Columna DA-402

Planta Hidrodesulfuradora de Naftas Torre Desisohexanizadora.

Columna Adiabática.

Condensador:

$$V_{2} - L_{1} = D$$

$$y_{2}V_{2} - x_{1}L_{1} = x_{D}D$$

$$Hv_{2}V_{2} - Hl_{1}L_{1} = H_{D}D + Q_{C}$$
(3.11)

Plato de Alimentación(plato No. 25):

$$V_{26} + L_{24} + A = V_{25} + L_{25}$$

$$y_{26}V_{26} + x_{24}L_{24} + x_A A = y_{25}V_{25} + x_{25}L_{25}$$

$$Hv_{26}V_{26} + Hl_{24}L_{24} + H_A A = Hv_{25}V_{25} + Hl_{25}L_{25}$$
(3.12)

Platos del 2 al 24 y del 26 al 31:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} + Hv_jV_j + Hl_jL_j$$
(3.13)

j = 2...24 y 26...31

Rehervidor(Plato No. 32):

$$L_{31} - V_{32} = B$$

$$x_{31}L_{31} - y_{32}V_{32} = x_B B$$

$$Hl_{31}L_{31} - Hv_{32}V_{32} = H_B B - Q_B$$
(3.14)

Columna Diabática.

Condensador:

$$V_1 = D$$

$$y_1 V_1 = x_D D$$

$$H v_1 V_1 = H_D D + Q_{C0}$$
(3.15)

Plato de Alimentación(plato No. 25):

$$V_{26} + L_{24} + A = V_{25} + L_{25}$$

$$y_{26}V_{26} + x_{24}L_{24} + x_A A = y_{25}V_{25} + x_{25}L_{25}$$

$$Hv_{26}V_{26} + Hl_{24}L_{24} + H_A A = Hv_{25}V_{25} + Hl_{25}L_{25}$$
(3.16)

Platos del 1 al 24:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} = Hv_jV_j + Hl_jL_j + Q_{Ck}$$
(3.17)

$$j = 1...24$$

 $k = 1...24$

Platos del 26 al 31:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} + Hv_jV_j + Hl_jL_j - Q_{rk}$$
(3.18)

$$j = 26...31$$

 $k = 26...31$

Plato No. 32:

$$L_{31} - V_{32} = B$$

$$x_{31}L_{31} - y_{32}V_{32} = x_B B$$

$$Hl_{31}L_{31} - Hv_{32}V_{32} = H_B B - Q_{r32}$$
(3.19)

Cargas térmicas totales de enfriamiento y calentamiento:

$$Q_C = Q_{C0} + \sum_{k=1}^{24} Q_{Ck}$$
 $Q_R = Q_{RE} + \sum_{k=26}^{32} Q_{rk}$ (3.20)

TORRE DA-501

Planta Reformadora de Naftas Torre Estabilizaadora (DA-501).

Columna Adiabática.

Condensador:

$$V_{2} - L_{1} = D$$

$$y_{2}V_{2} - x_{1}L_{1} = x_{D}D$$

$$Hv_{2}V_{2} - Hl_{1}L_{1} = H_{D}D + Q_{C}$$
(3.21)

Plato de Alimentación(plato No. 16):

$$V_{17} + L_{15} + A = V_{16} + L_{16}$$

$$y_{17}V_{17} + x_{15}L_{15} + x_A A = y_{16}V_{16} + x_{16}L_{16}$$

$$Hv_{17}V_{17} + Hl_{15}L_{15} + H_A A = Hv_{16}V_{16} + Hl_{16}L_{16}$$
(3.22)

Platos del 2 al 15 y del 17 al 29:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} + Hv_jV_j + Hl_jL_j$$
(3.23)

j = 2...15 y 17...29

Rehervidor(Plato No. 30):

$$L_{29} - V_{30} = B$$

$$x_{29}L_{29} - y_{30}V_{30} = x_B B ag{3.24}$$

$$Hl_{29}L_{29} - Hv_{30}V_{30} = H_BB - Q_R$$

Columna Diabática.

Condensador:

$$V_1 = D$$

$$y_1 V_1 = x_D D \tag{3.25}$$

$$Hv_1V_1 = H_DD + Q_{C0}$$

Plato de Alimentación(plato No. 16):

$$V_{17} + L_{15} + A = V_{16} + L_{16}$$

$$y_{17}V_{17} + x_{15}L_{15} + x_AA = y_{16}V_{16} + x_{16}L_{16}$$
 (3.26)

$$Hv_{17}V_{17} + Hl_{15}L_{15} + H_AA = Hv_{16}V_{16} + Hl_{16}L_{16}$$

Platos del 1 al 15:

$$V_{i+1} + L_{i-1} = V_i + L_i$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

(3.27)

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} = Hv_{j}V_{j} + Hl_{j}L_{j} + Q_{Ck}$$

$$j = 1...15$$

$$k = 1...15$$

Platos del 17 al 29:

$$V_{j+1} + L_{j-1} = V_j + L_j$$

$$y_{j+1}V_{j+1} + x_{j-1}L_{j-1} = y_jV_j + x_jL_j$$

$$(3.28)$$

$$Hv_{j+1}V_{j+1} + Hl_{j-1}L_{j-1} + Hv_jV_j + Hl_jL_j - Q_{rk}$$

$$j = 17...29$$

 $k = 17...29$

Plato No. 30:

$$L_{29} - V_{30} = B$$

$$x_{29}L_{29} - y_{30}V_{30} = x_B B$$

$$Hl_{29}L_{29} - Hv_{30}V_{30} = H_B B - Q_{r30}$$
(3.29)

Cargas térmicas totales de enfriamiento y calentamiento:

$$Q_C = Q_{C0} + \sum_{k=1}^{15} Q_{Ck}$$
 $Q_R = Q_{RE} + \sum_{k=17}^{30} Q_{rk}$ (3.30)

3.2 ANÁLISIS DE EXERGIA.

Irr = Extte - Extts (ver ec. 1.16)
Pex = Irr + Efl (ver ec. 1.17)

$$\varepsilon$$
 = Exntp / Exnts (ver ec. 1.18)
Pot = Irr (1 - ε) Efl (ver ec. 1.20)

Excs

Ex L

Ex L_a

Columna:

Sección de Recticación:

 $Extte = Ex V_{i+1} + Ex L_{i-1} + Ex ae$

 $Extts = Ex V_i + Ex L_i + Ex ar$

Exnts = $(\text{Exf } V_{j+1} + \text{Exf } L_{j-1})$ - $(\text{Exf } V_{j} + \text{Exf } L_{j})$

 $Exntp = [(Exq V_i + Exq L_i) - (Exq V_{i+1} + Exq L_{i+1})] + (Ex ar - Ex ae)$

Efl = No hay efluentes

$$\sum_{j=2}^{A-1} Pex_{j} = \sum_{j=2}^{A-1} Irr_{j} + Efl_{j}$$

Sección de Agotamiento:

 $\mathbf{Extte} = \mathbf{Ex}\,\mathbf{V}_{_{j+1}} + \mathbf{Ex}\,\mathbf{L}_{_{j+1}} + \mathbf{Exve}$

 $Extts = Ex V_j + Ex L_j + Excs$

Exnts = $[(Exf V_{i+1} + Exf L_{i+1}) - (Exf V_i + Exf L_i)] + (Exve - Excs)$

 $Exntp = (Exq V_i + Exq L_i) - (Exq V_{i+1} + Exq L_{i+1})$

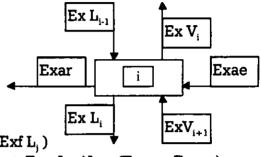
Efl = No hay efluentes

$$\sum_{A+1}^{n-1} Pex_{j} = \sum_{A+1}^{n-1} Irr_{j} + Efl_{j}$$

Plato de Alimentación:

 $Exte = Ex V_{A+1} + Ex L_{A-1} + Ex A$

 $Extts = Ex V_A + Ex L_A$


Exnts = $(Exf V_{A+1} + Exf L_{A-1} + Ex A) - (Exf V_A + Exf L_A)$

Exntp = $(\text{Exq } V_A + \text{Exq } L_A) - (\text{Exq } V_{A+1} + \text{Exq } L_{A-1} + \text{Ex } A)$

Efl = No hay efluentes

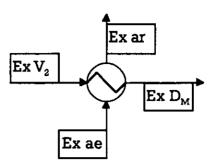
 $Pex_A = Irr_A + Efl_A$

Nota: En la columna Adiabática \Rightarrow ae = 0, ar = 0, ve = 0 y cs = 0

Exve

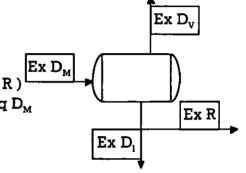
Ex A

 $\overline{\mathbf{ExV}}_{i+1}$


 $\operatorname{Ex} V_{n}$

Α

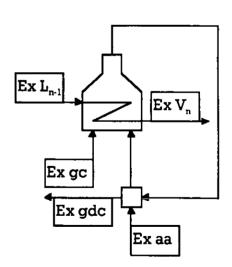
Condensador:


Intercambiador:

Extte = $Ex V_2$ - Ex ae Extts = $Ex D_M$ + Ex ar Exnts = $Ex V_2$ - $Ex D_M$ Exntp = Ex ar - Ex ae Efl = Ex ar₁ - Ex ae Pex(int) = Irr + Efl

Acumulador de reflujo:

Extte = $\operatorname{Ex} \operatorname{D}_{\operatorname{M}}$ Extts = $\operatorname{Ex} \operatorname{D}_{\operatorname{v}} + \operatorname{Ex} \operatorname{D}_{\operatorname{l}} + \operatorname{Ex} \operatorname{R}$ Exnts = $\operatorname{Exf} \operatorname{D}_{\operatorname{M}} - (\operatorname{Exf} \operatorname{D}_{\operatorname{v}} + \operatorname{Exf} \operatorname{D}_{\operatorname{l}} + \operatorname{Exf} \operatorname{R})$ Exntp = $(\operatorname{Exq} \operatorname{D}_{\operatorname{v}} + \operatorname{Exq} \operatorname{D}_{\operatorname{l}} + \operatorname{Ex} \operatorname{R}) - \operatorname{Exq} \operatorname{D}_{\operatorname{M}}$ Efl = No hay efluentes $\operatorname{Pex}(\operatorname{sep}) = \operatorname{Irr} + \operatorname{Efl}$



Pérdidas totales del condensador Pex (cond) = Pex(int) + Pex(sep)

Nota: En la columna Diabática \Rightarrow Efl = 0 y r = 0

Rehervidor:

 $\begin{aligned} \text{Extte} &= \text{Ex gc.} + \text{Ex aa} + \text{Ex } \mathbf{L}_{n\text{-}1} \\ \text{Extts} &= \text{Ex } \mathbf{V}_n + \text{ Ex gdc} \\ \text{Exnts} &= (\text{Exgc} + \text{Ex aa}) - \text{Ex gdc} \\ \text{Exntp} &= (\text{Ex } \mathbf{V}_n - \text{Ex } \mathbf{L}_{n\text{-}1}) \\ \text{Efl} &= \text{Ex gdc} \\ \text{Pex (reh)} &= \text{Irr} + \text{Efl} \end{aligned}$

Pérdidas Totales de Exergia de la Columna

Extte = Ex gc + Ex aa + Ex A + Ex ae + Ex ve
Extts = Ex gdc + Ex F + Ex
$$D_v$$
 + Ex D_i + Ex ar + Ex cs
Exnts = (Ex gc + Ex aa - Ex gdc) + (Exf A - Exf D_v - Exf D_i) + (Ex ve - Ex cs)
Exntp = (Exq D_v + Exq D_i - Exq A) + (Ex ar - Ex ae)
Efl = Ex gdc + (Ex ar - Ex ae) \Rightarrow Adiabática
Efl = Ex gdc \Rightarrow Diabática
Pex = Pex (cond) + Pex (reh) + Pex A + $\sum_{j=2}^{A-1} Pex_j$ + $\sum_{A+1}^{n-1} Pex_j$

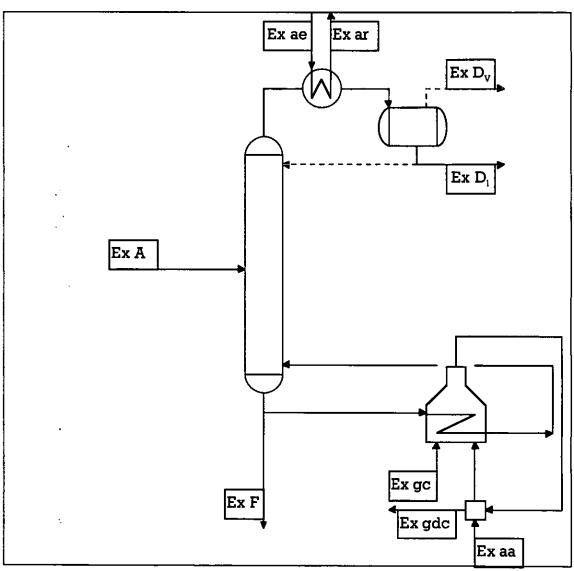


Figura 3.1 Representación exérgica de un sistema de destilación.

CAPÍTULO CUATRO ANÁLISIS EXÉRGICO DE LAS COLUMNAS DA-401, DA-402, DA-501 Y EQUIPOS AUXILIARES

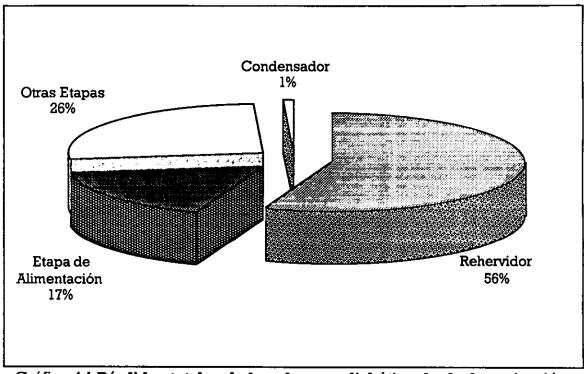
CAPITULO 4

ANALISIS EXÉRGICO DE LAS COLUMNAS DA-401, DA-402, DA-501 Y EQUIPOS AUXILIARES.

En el capitulo anterior se enlistaron las ecuaciones para el analisis de exergia de los diferentes equipos que comprenden los sistemas de destilación, en esta ocasión se muestran los resultados del analisis de exergia de las columnas a analizar.

4.1 ANALISIS DE EXERGIA DE LA COLUMNA DA-401

Diagrama de flujo de la torre DA-401, el rehervidor BA-402, el condensador EA-408 y demás equipos.


Figura. 4.1 Diagrama de la torre desbutanizadora.

Perfil de los parámetros exérgicos totales originados por la columna de desbutanización DA-401

	Exnts	Exntp	Pex	Efectividad	Pot
_	MWe	MWe	MWe		MWe
EA-408	0.273	0.090	0.273	0.329	0.213
1	0.490	0.034	0.455	0.070	0.423
2	0.010	0.003	0.007	0.302	0.005
3	0.080	0.010	0.070	0.122	0.062
4	0.091	0.013	0.078	0.139	0.068
5	0.113	0.015	0.098	0.133	0.085
6	0.146	0.019	0.127	0.133	0.110
7	0.002	0.001	0.001	0.349	0.001
8	0.004	0.001	0.003	0.267	0.002
9	0.007	0.001	0.006	0.148	0.005
10	0.014	0.001	0.012	0.098	0.011
11	0.026	0.002	0.024	0.068	0.023
12	0.053	0.002	0.051	0.045	0.048
13	0.125	0.003	0.122	0.024	0.119
Alimentación	5.755	0.070	5.685	0.012	5.617
15	0.316	0.019	0.297	0.061	0.279
16	0.129	0.002	0.127	0.014	0.125
17	0.085	0.007	0.078	0.083	0.072
18	0.080	0.010	0.070	0.122	0.062
19	0.091	0.013	0.078	0.139	0.068
20	0.113	0.015	0.098	0.133	0.085
21	0.146	0.019	0.127	0.133	0.110
22	0.197	0.025	0.172	0.127	0.150
23	0.277	0.034	0.243	0.123	0.213
24	0.417	0.051	0.367	0.121	0.322
25	0.686	0.081	0.604	0.119	0.533
26	1.215	0.138	1.077	0.114	0.955
27	2.348	0.217	2.131	0.092	1.934
28	2.928	0.718	2.210	0.245	1.668
BA-402	22.948	5.157	18.381	0.225	14.383
Total	39.166	6.771	33.075		27.750

Tabla 4.1 Parámetros exérgicos de la columna Desbutanizadora

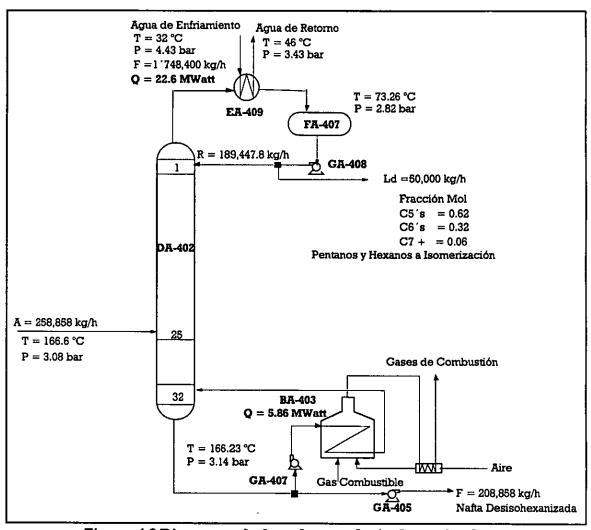
La columna DA-401 tiene un total del 97.5 % de las pérdidas totales correspondientes a la sección de Desbutanización con una efectividad del 17.28 %, esto se debe a la gran cantidad de perdidas originadas por el proceso de combustión del rehervidor de la columna (BA-402) con el 55.57 % de las perdidas totales de la columna de desbutanización, le sigue en importacia las perdidas originadas por la etapa de alimentación con el 17.19 % debido a que las condiciones de la alimentación están muy diferentes a las condiciones del plato en que se alimenta. En este caso el condensador de la columna (EA-408) no representa perdidas significativas para el sistema.

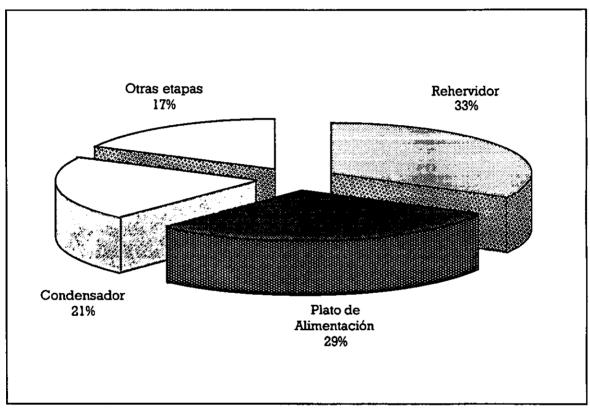
Gráfica 4.1 Pérdidas totales de la columna adiabática de desbutanización.

La menor efectividad exérgica se localiza en la etapa de alimentación producto de las condiciones muy distintas de la corriente de entrada con las condiciones de la etapa.

4.2 ANALISIS DE EXERGIA DE LA COLUMNA DA-402

Diagrama de flujo de la torre DA-402, el rehervidor BA-403, el condensador EA-409 y demás equipos.




Figura 4.2 Diagrama de la columna desisohexanizadora.

Perfil de los parámetros exérgicos totales originadas por la columna de desisohexanizado DA-402

	Exnts	Exatp	Pex	Efectividad	Pot
	MWe	MWe	MWe		MWe
EA-509	3.300	0.915	3.300	0.277	2.638
1	0.245	0.139	0.106	0.567	0.046
2	0.255	0.081	0.174	0.317	0.119
3	0.214	0.070	0.144	0.326	0.097
4	0.166	0.048	0.118	0.289	0.084
5	0.132	0.031	0.101	0.236	0.077
6	0.110	0.020	0.090	0.183	0.073
7	0.096	0.015	0.082	0.154	0.069
8	0.087	0.012	0.075	0.139	0.065
9	0.080	0.011	0.069	0.135	0.060
10	0.075	0.010	0.065	0.136	0.056
11	0.071	0.009	0.062	0.131	0.054
12	0.068	0.010	0.058	0.142	0.050
13	0.066	0.010	0.057	0.146	0.048
14	0.065	0.010	0.056	0.147	0.048
15	0.065	0.010	0.055	0.159	0.046
16	0.066	0.011	0.055	0.167	0.046
17	0.068	0.012	0.056	0.176	0.046
18	0.070	0.013	0.057	0.189	0.046
19	0.072	0.014	0.058	0.196	0.047
20	0.073	0.016	0.057	0.215	0.045
21	0.070	0.018	0.052	0.262	0.038
22	0.051	0.022	0.029	0.429	0.017
23	0.083	0.027	0.055	0.331	0.037
24	0.120	0.035	0.084	0.296	0.059
Alimentación	4.840	0.194	4.645	0.040	4.459
26	0.099	0.005	0.094	0.047	0.090
27	0.106	0.006	0.100	0.053	0.095
28	0.120	0.007	0.113	0.061	0.106
29	0.147	0.011	0.136	0.072	0.127
30	0.196	0.019	0.177	0.096	0.160
31	0.299	0.044	0.254	0.148	0.217
32	1.695	1.597	0.098	0.942	0.006
BA-403	6.336	1.654	5.273	0.261	4.051
Total	19.607	5.106	16.007		13.322

Tabla 4.2 Parámetros exérgicos de la columna Desisohexanizadora.

La columna DA-402 tiene un total del 83.54 % de las pérdidas totales correspondientes a la sección de Desisohexanizado con una efectividad del 26.04 %. Esto es debido a la gran cantidad de perdidas originadas por el proceso de combustión del rehervidor de la columna (BA-403) con el 32.94 % de las perdidas totales de la columna de desbutanización, le sigue en importacia las perdidas originadas por la etapa de alimentación con el 29.01 % debido a que las condiciones de la alimentación están muy diferentes a las condiciones del plato en que se alimenta y el condensador de la columna (EA-409) representa el 20.89 % de las perdidas totales del sistema.

Gráfica 4.2 Pérdidas totales de la columna adiabática de desisohexanizado.

La menor efectividad exérgica se localiza en la etapa de alimentación producto de las condiciones muy distintas de la corriente de entrada con las condiciones de la etapa.

4.3 ANALISIS DE EXERGIA DE LA COLUMNA DA-501

Diagrama de flujo de la torre DA-501, el rehervidor BA-502, el condensador EA-506 y demás equipos.

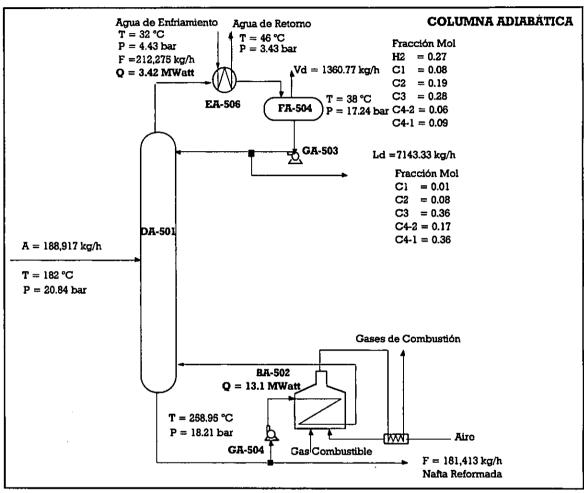


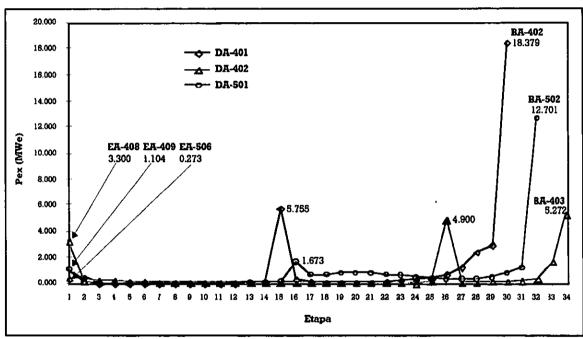
Figura 4.3 Diagrama de la columna Estabilizadora.

Perfil de parámetros exeérgicos totales originadas por la torre de estabilización DA-501

	Exents	Exntp	Pex	Efectividad	Pot
	MWe	MWe	MWe		MWe
EA-506	1.104	0.230	1.104	0.209	0.922
1	0.055	0.021	0.033	0.391	0.020
2	0.025	0.016	0.009	0.649	0.003
3	0.011	0.010	0.001	0.895	0.000
4	0.007	0.005	0.002	0.721	0.001
5	0.004	0.003	0.001	0.834	0.000
6	0.003	0.003	0.000	0.995	0.000
7	0.003	0.002	0.001	0.567	0.001
8	0.006	0.002	0.004	0.352	0.002
. 9	0.010	0.002	800.0	0.231	0.006
10	0.019	0.003	0.016	0.173	0.013
11	0.038	0.005	0.032	0.135	0.028
12	0.070	0.008	0.061	0.121	0.054
13	0.112	0.015	0.096	0.138	0.083
14	0.143	0.018	0.126	0.124	0.110
Alimentación	0.673	0.013	0.659	0.020	0.646
16	0.707	0.023	0.685	0.032	0.663
17	0.679	0.024	0.655	0.035	0.632
18	0.726	0.032	0.694	0.044	0.664
19	0.765	0.033	0.732	0.043	0.701
20	0.756	0.029	0.727	0.038	0.699
21	0.690	0.024	0.667	0.034	0.644
22	0.588	0.018	0.570	0.031	0.552
23	0.476	0.015	0.461	0.031	0.447
24	0.381	0.012	0.368	0.032	0.356
25	0.315	0.013	0.302	0.040	0.290
26	0.288	0.015	0.273	0.054	0.258
27	0.316	0.024	0.291	0.076	0.269
. 28	0.432	0.044	0.388	0.102	0.348
29	0.743	0.080	0.663	0.108	0.591
30	5.231	0.719	4.512	0.137	3.892
BA-502	14.348	3.066	12.403	0.214	9.992
Total	29.721	4.528	26.545		22.889

Tabla 4.3 Parámetros exérgicos de la columna Estabilizadora.

La columna DA-501 tiene un total del 89.62 % de las pérdidas totales correspondientes a la sección de Desisohexanizado con una efectividad del 15.23 %. Esto es debido a la gran cantidad de perdidas originadas por el proceso de combustión del rehervidor de la columna (BA-403) con el 46.72 % de las perdidas totales de la columna de desbutanización, le sigue en importacia las perdidas originadas por la etapa 30 con el 16.99 % y el condensador de la columna (EA-409) representa el 4.15 % de las perdidas totales del sistema. En esta columna la etapa de alimentación no representa perdidas de exergia significativas debido a que las condiciones de la alimentación son muy similares a las condiciones del plato de alimentación, ya que esta columna precalienta esta alimentación con su producto de fondos.



Gráfica 4.3 Pérdidas totales de la columna adiabática de estabilizado.

La menor efectividad exérgica se localiza en la etapa de alimentación, producto de las composiciones diferentes de la corriente de entrada con las existentes en la etapa.

4.4 ANÁLISIS DE RESULTADOS

Como se puede observar los puntos donde existen mayores pérdidas de exergia en las columnas de la planta Hidrodesulfuradora son el rehervidor, la etapa de alimentación y el condensador (figura 4.4) por lo que se puede aplicar la destilación diabática para tratar de abatir estas perdidas así de como suministrar o extraer calor en la corriente de alimentación dependiendo de las condiciones del plato. A diferencia de las columnas de la planta de hidrodesulfuración, la columna estabilizadora de la planta de reformación tiene muy pocas pérdidas en la etapa de alimentación debido a que esta se precalienta con el producto de fondos de la misma torre lo que dá como resultado que las pérdidas en esta etapa no sean significativas.

Gráfica 4.4 Perfiles de pérdidas totales de exergia de las columnas adiabáticas.

CAPÍTULO CINCO APLICACIÓN DE LA DESTILACIÓN DIABÁTICA

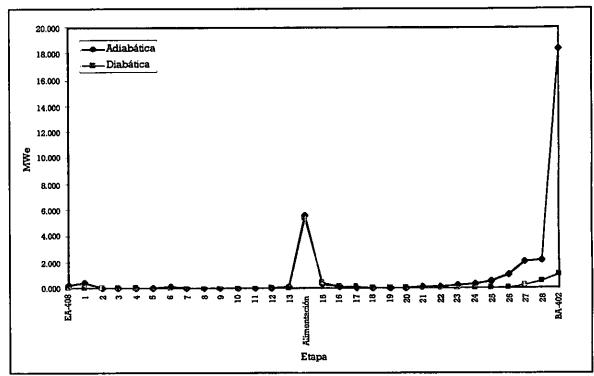
CAPITULO 5 APLICACIÓN DE LA DESTILACIÓN DIABÁTICA

5.1. EVALUACIÓN CON CARGAS TERMICAS REPARTIDAS EQUITATIVAMENTE

Para la evaluación de las columnas de destilación con cargas térmicas repartidas equitativamente se debe dividir la carga del condensador entre el total de etapas de la sección de rectificación de la columna de destilación mas el propio condensador y extraerles esta cantidad de calor en cada etapa de esta sección; para la sección de agotamiento se divide la carga del rehervidor entre el número de etapas de la sección de agotamiento considerando el rehervidor y se le suministra esta cantidad de calor en todas las etapas. A continuación se mostraran los resultados de estas modificaciones junto con su respectivo análisis de exergia, hay que señalar que en estos resultados no se considera la transferencia de calor en la etapa de alimentación.

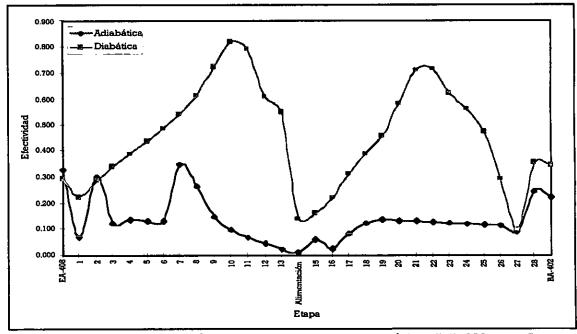
5.1.1 Columna de Desbutanización DA-401

Perfil de parámetros exérgicos

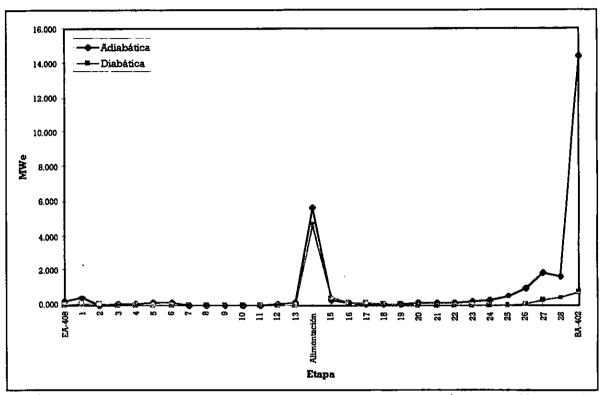

	Exnts	Exntp	Pex	Efectividad	Pot	
	(MWe)	(MWe)	(MWe)		(MWe)	(MWe
EA-408	0.020	0.006	0.020	0.295	0.020	-0.17
1	0.058	0.013	0.045	0.223	0.035	-0.17
2	0.056	0.016	0.040	0.289	0.029	-0.17
3	0.056	0.019	0.037	0.341	0.024	-0.17
4	0.056	0.022	0.034	0.390	0.021	-0.17
5	0.055	0.024	0.031	0.438	0.017	-0.17
6	0.055	0.027	0.028	0.486	0.014	-0.17
7	0.053	0.029	0.024	0.542	0.011	-0.17
8	0.051	0.031	0.020	0.615	0.008	-0.17
9	0.047	0.034	0.013	0.722	0.004	-0.17
10	0.040	0.037	0.003	0.914	0.000	-0.17
11	0.047	0.039	0.007	0.842	0.001	-0.17
12	0.085	0.042	0.043	0.493	0.022	-0.17
13	0.081	0.045	0.036	0.551	0.016	-0.17
Alimentación	6.304	0.881	5.423	0.140	4.665	γ - <u>-</u>

		Sección de	Agotam	iento		
	Exats	Exntp	Pex	Efectividad	Pot	Q
	(MWe)	(MWe)	(MWe)	·	(MWe)	(MWe)
15	0.561	0.091	0.470	0.163	0.394	1.333
16	0.289	0.064	0.225	0.221	0.176	1.333
17	0.202	0.063	0.139	0.312	0.096	1.333
18	0.154	0.060	0.094	0.389	0.058	1.333
19	0.121	0.056	0.066	0.459	0.036	1.333
20	0.090	0.052	0.037	0.582	0.016	1.333
21	0.068	0.048	0.020	0.709	0.006	1.333
22	0.062	0.044	0.018	0.716	0.005	1.333
23	0.065	0.040	0.025	0.622	0.009	1.333
24	0.066	0.037	0.029	0.562	0.013	1.333
25	0.072	0.034	0.038	0.473	0.020	1.333
26	0.107	0.031	0.076	0.291	0.054	1.333
27	0.306	0.031	0.275	0.101	0.247	1.333
28	0.936	0.332	0.604	0.354	0.390	1.333
BA-402	1.437	0.500	1.069	0.348	0.743	1.333
Total	11.602	2.749	8.992		7.149	

Tabla 5.1 Parámetros exérgicos columna DA-401 diabática con Q cte.


En la columna diabática de desbutanización las pérdidas totales de exergia disminuyen de manera drástica en un 73 % con respecto a las pérdidas obtenidas con la destilación adiabática, ya que se disminuyó la carga del rehervidor en un 93.33 % con respecto a la carga térmica original y se sustituyó el fluido de calentamiento en las etapas de agotamiento por vapor de media presión sobrecalentado y la efectividad de la columna de desbutanización diabática aumentó a un 23.7 %.

La etapa que no mostró variación alguna fué la etapa de alimentación ya que sigue teniendo casi la misma cantidad de pérdidas totales de exergia, por lo que no se pudieron reducir más las pérdidas totales de la columna; para poder disminuir las pérdidas totales de exergia en la etapa de alimentación es necesario efectuar un intercambio de calor previo a la alimentación, este intercambio de calor debe de estar en función de las condiciones de la etapa de alimentación y del fluido considerado para el intercambio. En las siguientes gráficas se nota el perfil de pérdidas totales de exergia (Figura 5.1), efectividad exérgica (Figura 5.2) y potencial de mejoramiento (Figura 5.3) de las columnas adiabática y diabática con cargas térmicas repartidas equitativamente a lo largo de la columna.


Gráfica 5.1 Pérdidas totales de exergia de la columna diabática DA-401 con Q ctes.

En esta gráfica se observa que las pérdidas de exergia disminuyen de manera muy significativa a partir de la etapa 25 hasta lograr una disminución bastante grande en el rehervidor BA-402.

Gráfica 5.2 Efectividad exérgica de la columna diabática DA-401 con Q ctes.

En la gráfica de efectividades exérgicas se aprecia la mejora de las efectividades en casi todos los platos debido al proceso de transferencia de calor interetapa lo que da como resultado que la destilación diabática mejore significativamente la efectividad exérgica global con respecto a la destilación adiabática.

Gráfica 5.3 Potencial de mejoramiento de la columna diabática DA-401 con Q ctes.

En la gráfica del potencial de mejoramiento se aprecia que la etapa de alimentación representa un punto donde es suceptible reducir las pérdidas de exergia de la columna.

En el siguiente esquema de flujo de proceso (Figura 5.1) se tienen los resultados de la destilación diabática, observándose una pequeña disminución en la cantidad del vapor destilado y manteniéndose las composiciones de los productos destilados; por otro lado el reflujo de la torre adiabática desaparece en la columna diabática, debido a la disminución de los flujos del líquido y vapor en las etapas de la torre como se muestra en la gráfica 5.4, esta disminución de flujos se debe al intercambio de calor que hay en las etapas de la torre diabática. El flujo de agua de enfriamiento disminuye en 84.7 % y la temperatura del agua de retorno se eleva a 122.4 °C, la carga del rehervidor disminuye en 92.8% quedando solo con 1.44 MWe, la carga térmica restante fué suministrada por vapor de media sobrecalentado con un flujo de 32,200 kg/h.

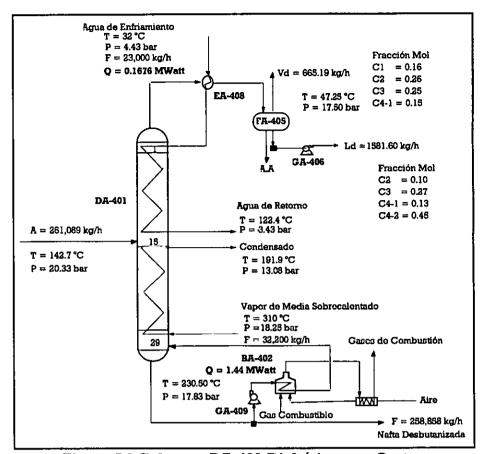
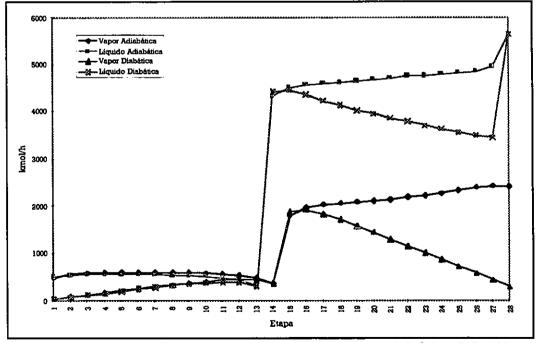
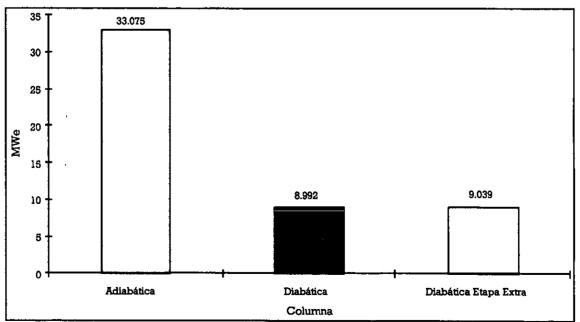



Figura 5.1 Columna DA-401 Diabática con Q ctes.

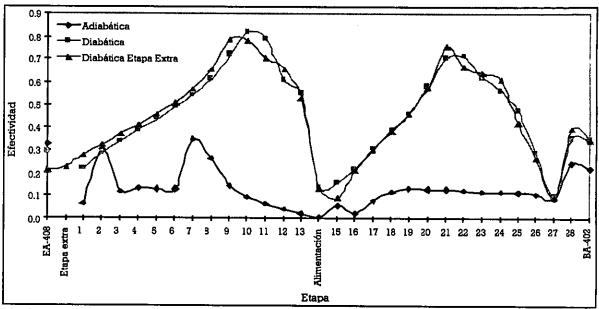
Gráfica 5.4 Perfiles del líquido y vapor de la columna diabática DA-401 con Q ctes.

Como se observa en la *gráfica 5.4* los flujos tanto de líquido como de vapor disminuyen en los extremos de la torre cambiando de manera significativa el diámetro de la columna.


Otra diferencia apreciable de la destilación diabática a la adiabática es que no se logra obtener la misma cantidad de destilado, en este caso del vapor destilado por lo que se plantea la posibilidad de adicionar etapas de tal manera de poder obtener la misma cantidad de destilado.

Adición de etapas en la sección de rectificación de la torre DA-401.

En el siguiente análisis se examinó la columna DĀ-401 de forma diabática con cargas térmicas repartidas equitativamente adicionándole etapas en la parte de rectificación para lograr obtener la misma cantidad y composición del destilado.


Como resultado de este análisis, se tiene que al añadir solo una etapa en la zona de rectificación se obtuvo el flujo y la composición deseada del producto destilado, por lo que no se siguieron añadiendo más etapas. En base a esta pronta solución los perfiles de pérdidas de exergia, efectividad y potencial de mejoramiento, no mostraron variación significativa, solo un ligero incremento en sus valores globales; las pérdidas de exergia de esta columna pasaron de 8.992 a 9.039 MWe incrementándose solo el 0.52 % como se observa en la gráfica 5.5.

La adición de etapas en la zona de rectificación se debió a la disminución de los flujos en el extremo superior e inferior de la columna necesitando mayor área de contacto para lograr la separación que se tenía en la columna adiabática.

Gráfica 5.5 Comparación de las pérdidas totales de exergia de la columna DA-401

Así como el perfil de exergia de pérdidas totales es similar entre las dos columnas diabáticas, el perfil de efectividades de las etapas es similar también, tal como se muestra en la *gráfica 5.6*.

Gráfica 5.6 Efectividades exérgicas de la columna diabática con Q ctes. y una etapa adicional

Intercambio de Calor en la Corriente de Alimentación

Para abatir las pérdidas de exergia en la etapa de alimentación es necesario intercambiar calor antes de alimentar la corriente a la torre, se propone calentar hasta condiciones próximas a la etapa de alimentación con el vapor efluente de la etapa 15 de la columna diabática, esto plantea un aumento de la carga térmica suministrada.

Los resultados de este precalentamiento de carga se observan en la figura 5.2, la cuál contempla la columna totalmente diabática con cargas térmicas repartidas de manera equitativa, note que los productos son similares a los de la columna diabática sin precalentamiento de carga, y por consiguiente los demás resultados de la columna son también similares.

En el análisis de exergia se notó un decremento considerable de las pérdidas de exergia en la etapa de alimentación y en consecuencia una disminución del 33.4 % de la pérdidas globales de exergia con respecto a la destilación diabática sin precalentamiento de carga, en la tabla 5.2 se observan los parámetros exergicos de esta columna.

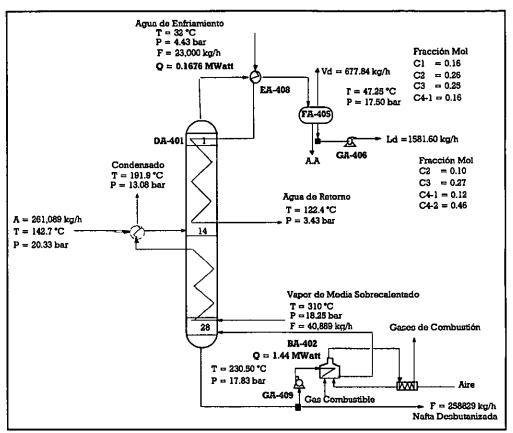


Figura 5.2 Columna Diabática (DA-401) con precalentamiento de carga.

		Sección de	e Rectific	cación	· ·-	
	Exnts	Exntp	Pex	Efectividad	Pot	Q
[]	(MWe)	(MWe)	(MWe)		(MWe)	(MWe)
EA-408	0.020	0.006	0.020	0.295	0.020	-0.173
1	0.058	0.013	0.045	0.223	0.035	-0.173
2	0.056	0.016	0.040	0.289	0.029	-0.173
3	0.056	0.019	0.037	0.341	0.024	-0.173
4	0.056	0.022	0.034	0.390	0.021	-0.173
5	0.055	0.024	0.031	0.438	0.017	-0.173
6	0.055	0.027	0.028	0.486	0.014	-0.173
7	0.053	0.029	0.024	0.542	0.011	-0.173
8	0.051	0.031	0.020	0.615	0.008	-0.173
9	0.047	0.034	0.013	0.722	0.004	-0.173
10	0.040	0.037	0.003	0.914	0.000	-0.173
11	0.047	0.039	0.007	0.842	0.001	-0.173
12	0.085	0.042	0.043	0.493	0.022	-0.173
13	0.081	0.045	0.036	0.551	0.016	-0.173
Alimentación	4.458	2.039	2.420	0.457	1.313	1.850

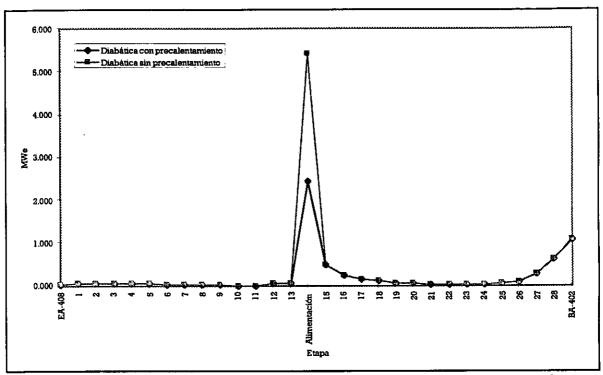
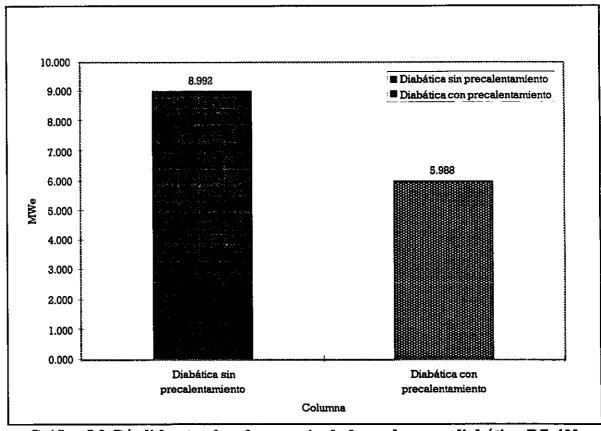

	······································	Sección d	e Agotan	niento		
	Exnts	Exntp	Pex	Efectividad	Pot	Q
	(MWe)	(MWe)	(MWe)		(MWe)	(MWe)
15	0.561	0.091	0.470	0.163	0.394	1.333
16	0.289	0.064	0.225	0.221	0.176	1.333
17	0.202	0.063	0.139	0.312	0.096	1.333
18	0.154	0.060	0.094	0.389	0.058	1.333
19	0.121	0.056	0.066	0.459	0.036	1.333
20	0.090	0.052	0.037	0.582	0.016	1.333
21	0.068	0.048	0.020	0.709	0.006	1.333
22	0.062	0.044	0.018	0.716	0.005	1.333
23	0.065	0.040	0.025	0.622	0.009	1.333
24	0.066	0.037	0.029	0.562	0.013	1.333
25	0.072	0.034	0.038	0.473	0.020	1.333
26	0.107	0.031	0.076	0.291	0.054	1.333
27	0.306	0.031	0.275	0.101	0.247	1.333
28	0.936	0.332	0.604	0.354	0.390	1.333
BA-402	1.437	0.500	1.069	0.348	0.743	1.333
Total	9.756	3.906	5.988		3.796	

Tabla 5.2 Parámetros exérgicos columna diabática DA-401 con Precalentamiento de Carga.


En la gráfica 5.7 se observa la distribución de las pérdidas de exergia de la columna diabática con precalentamiento de carga comparada con la columna diabática sin precalentamiento de carga, así como la reducción de las pérdidas globales de exergia mostrada en la gráfica 5.8, con este precalentamiento de carga la efectividad de la columna mejoró notablemente pasando de una efectividad del 23.7 % de la columna diabática sin precalentamiento de carga a una efectividad del 40% con el precalentamiento de carga.

Con respecto al potencial de mejoramiento este disminuyo considerablemente por efecto de las pérdidas totales de exergia y el aumento de la efectividad.

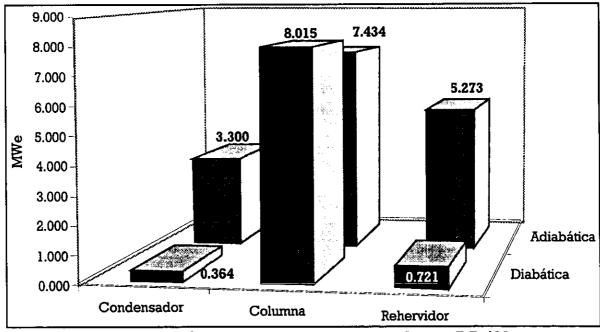
Los pérfiles del líquido y vapor se mantuvieron estables con respecto a la columna diabática sin precalentamiento de carga, por lo que se obtuvieron las mismas características de productos. El único incremento que se observó fué el del vapor que se utilizó para suministrar calor a la columna, ya que también se ocupó para suministrar calor en la corriente de alimentación con el fin de precalentarla, este incrmento fue del 26.8 %.

Gráfica 5.7 Comparación de pérdidas de exergia de las columnas diabática DA-401

Gráfica 5.8 Pérdidas totales de exergia de las columnas diabática DA-401

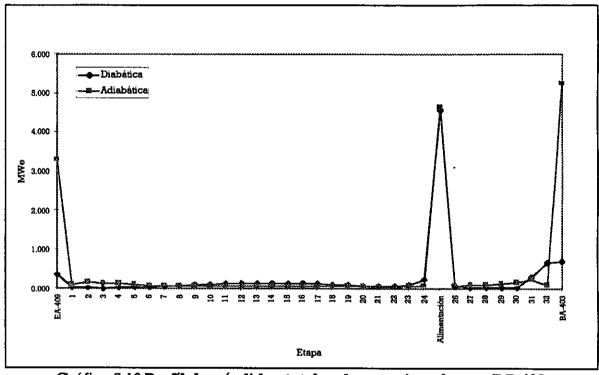
5.1.2 Columna de Desisohexanizado DA-402

La columna DA-402 elimina los pentanos y hexanos de la nafta hidrodesulfurada, a esta columna le preceden una válvula de expansión donde la corriente de líquido se vaporiza parcialmente para ayudar a la separación.


En la tabla 5.3 se muestran los parámetros exérgicos de esta columna etapa por etapa.

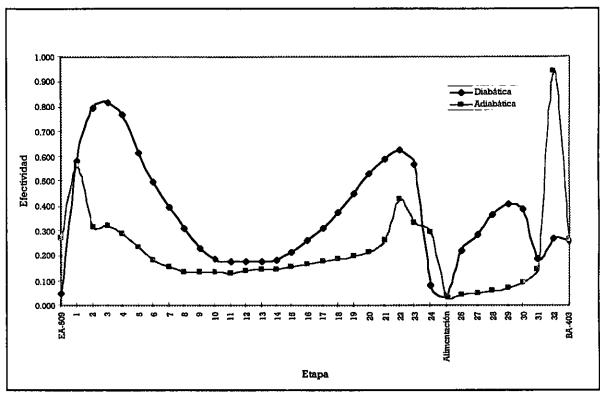
	Exnts	Exatp	Pex	Efectividad	Pot	(
	(MWe)	(MWe)	(MWe)		(MWe)	(MWe
EA-409	0.385	0.021	0.364	0.054	0.232	-0.94
1	0.072	0.042	0.030	0.587	0.029	-0.94
2	0.068	0.054	0.014	0.798	0.014	-0.94
3	0.066	0.064	0.002	0.969	0.002	-0.94
4	0.077	0.059	0.018	0.770	0.017	-0.94
5	0.087	0.054	0.033	0.619	0.032	-0.94
6	0.097	0.049	0.049	0.499	0.046	-0.94
7	0.107	0.043	0.064	0.398	0.060	-0.94
8	0.116	0.036	0.080	0.311	0.074	-0.9
9	0.125	0.029	0.096	0.232	0.087	-0.9
10	0.134	0.021	0.113	0.159	0.100	-0.9
11	0.143	0.013	0.130	0.090	0.113	-0.9
12	0.151	0.003	0.148	0.022	0.126	-0.9
13	0.159	0.007	0.152	0.046	0.129	-0.9
14	0.167	0.019	0.148	0.115	0.126	-0.9
15	0.175	0.033	0.143	0.187	0.122	-0.9
16	0.184	0.048	0.135	0.263	0.117	-0.9
17	0.192	0.066	0.126	0.343	0.110	-0.9
18	0.200	0.086	0.114	0.429	0.101	-0.9
19	0.210	0.109	0.101	0.520	0.090	-0.9
20	0.219	0.135	0.085	0.614	0.078	-0.9
21	0.229	0.161	0.068	0.701	0.064	-0.9
22	0.241	0.177	0.064	0.735	0.060	-0.9
23	0.256	0.146	0.110	0.570	0.098	-0.9
24	0.276	0.023	0.253	0.082	0.189	-0.9
Uimentación	4.774	0.194	4.580	0.041	4.395	0.0

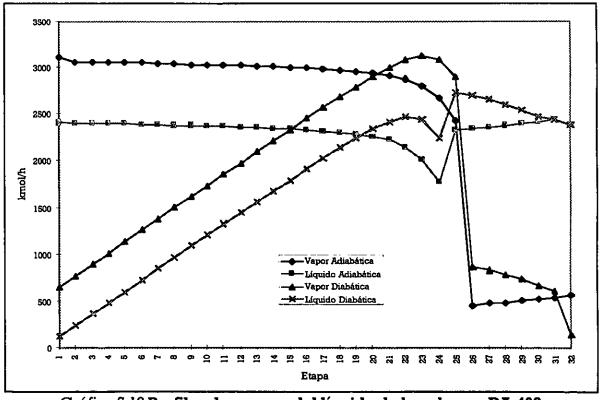
	Sección de Agotamiento									
	Exnts Exntp Pex Efectividad					Q				
	(MWe)	(MWe)	(MWe)		(MWe)	(MWe)				
26	0.106	0.039	0.067	0.364	0.063	0.651				
27	0.033	0.009	0.024	0.283	0.023	0.651				
28	0.053	0.031	0.021	0.595	0.021	0.651				
29	0.082	0.033	0.048	0.408	0.046	0.651				
30	0.067	0.047	0.020	0.700	0.020	0.651				
31	0.357	0.067	0.290	0.187	0.206	0.651				
32	1.319	0.631	0.688	0.478	0.215	0.651				
BA-403	0.792	0.205	0.721	0.258	0.569	0.651				
Total			9.100) 	7.773					


Tabla 5.3 Parámetros exérgicos columna DA-402 diabática con Q cte.

En la columna diabática de desisohexanizado DA-402 se logra apreciar una reducción considerable de las pérdidas totales de exergia del orden del 43.15 %; la reducción de las pérdidas en el rehervidor fueron del 86.33% y las del condensador del 88.96 %, la columna sin rehervidor y condensador aumentó sus pérdidas totales alrededor del 8% tal como se muestra en la gráfica 5.9.

Gráfica 5.9 Pérdidas totales de exergia columna DA-402


La gráfica 5.10 muestra el pérfil de pérdidas totales de exérgia de la columna diabática y adiabática DÃ-402, aquí se aprecia como disminuyen las pérdidas de exergia en el condensador y rehervidor, además se observa que las pérdidas en la etapa de alimentación no sufren ningún cambio, por lo que se intentará intercambiar calor en la corriente de alimentación para tratarlas de disminuir esto es debido a que representan mas del 50 % de las pérdidas totales que tiene esta columna sin considerar el condensador y el rehervidor.


Gráfica 5.10 Perfil de pérdidas totales de exergia columna DA-402

En la gráfica de efectividades exérgicas (gráfica 5.11) se aprecia que casi todas las etapas de la columna diabática tienen efectividades mayores que en la columna adiabática, esto se debe a que se mejoró la transferencia de calor de cada etapa lo que dá como resultado un mejor aprovechamiento de la exergia sumistrada y producida de la columna.

Los perfiles de líquido y de vapor se afectaron de manera muy significativa (gráfica 5.12) debido a que la cantidad de reflujo bajó de 189, 447.8 a 0.0 kg/h y la cantidad de destilado manteniendo la misma composición disminuyó de 50, 000 a 46, 548 kg/h (figura 5.2), asi mismo la carga térmica de condensador y rehervidor disminuyerón en 96 y 87.5 % respectivamente, el suministro de agua de enfriamiento decreció en 98.7 % y el agua de retorno resultante se obtuvo a mejores condiciones para ser rehusada (119.8 °C y 2.09 bar).

Gráfica 5.11 Perfil de efectividades exérgicas de la columna DA-402

Gráfica 5.12 Perfiles de vapor y del líquido de la columna DA-402

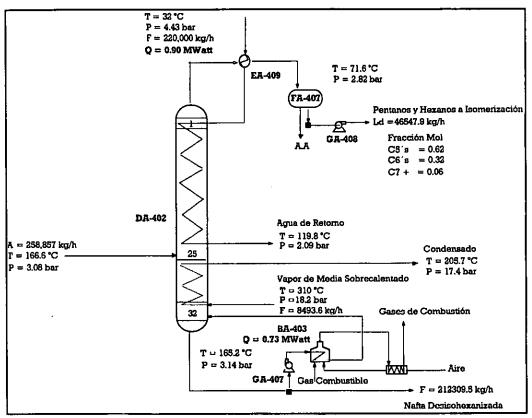


Figura 5.3. Columna diabática DA-402 con cargas térmicas constantes.

En esta columna no fué posible efectuar intercambios de calor en la corriente de alimentación para disminuir las pérdidas totales de exergia, debido a que al realizar el intercalbio de calor, la fracción vapor contenida por la corriente variaba muy bruscamente y por consiguiente la simulación de la torre no se realizaba adeacuadamente.

5.1.3 Columna de Estabilización DA-501

En esta columna se eliminan los hidrocarburos ligeros de la nafta reformada obteniéndose un destilado vapor (hidrógeno e hidrocarburos ligeros), un destilado líquido (propano y butanos) y un producto de fondos (nafta estabilizada y reformada).

Si se extrae la misma cantidad de calor en la zona de rectificación y se aporta la misma cantidad de calor en la zona de agotamiento el perfil de parámetros exérgicos da como resultado que las pérdidas totales de exergia se reduzcan considerablemente (tabla 5.4).


Lás pérdidas totales de exergia disminuyeron de 26.545 a 17.345 un decremento de solo el 34.6 %, las pérdidas totales de exergia en el rehervidor de la columna disminuyeron en 94.3 %, las pérdidas del condensador en 1.7 % y las pérdidas totales de la columna (sin rehervidor y condensador) aumentaron en aproximadamente 20 % (gráfica 5.13).

Pérfil de parámetros exérgicos.

	Exnts	Excntp	Efectividad	Pex	Pot	(
	MWe	MWe		MWe	MWe	MW
EA-506	1.347	0.024	0.018	1.323	1.299	-0.22
1	0.363	0.010	0.027	0.354	0.344	-0.22
2	0.237	0.013	0.054	0.224	0.212	-0.22
3	0.261	0.016	0.061	0.245	0.230	-0.22
4	0.308	0.019	0.062	0.289	0.271	-0.22
5	0.349	0.022	0.063	0.327	0.306	-0.22
6	0.383	0.025	0.066	0.358	0.334	-0.22
7	0.409	0.028	0.070	0.381	0.354	-0.22
8	0.428	0.031	0.074	0.396	0.367	-0.22
9	0.436	0.035	0.079	0.402	0.370	-0.22
10	0.428	0.037	0.087	0.391	0.357	-0.22
11	0.392	0.040	0.102	0.352	0.316	-0.22
12	0.330	0.043	· 0.129	0.288	0.250	-0.22
13	0.360	0.044	0.122	0.316	0.278	-0.22
14	0.626	0.033	0.053	0.593	0.561	-0.22
Alimentación	0.998	0.020	0.020	0.978	0.958	

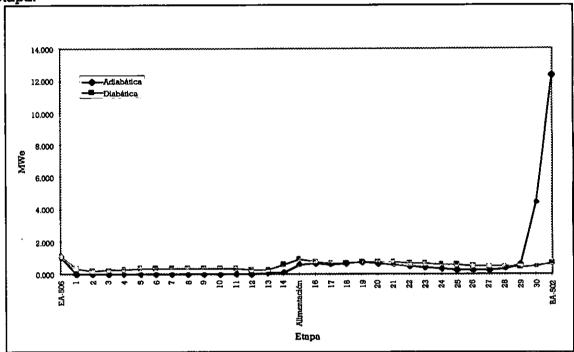
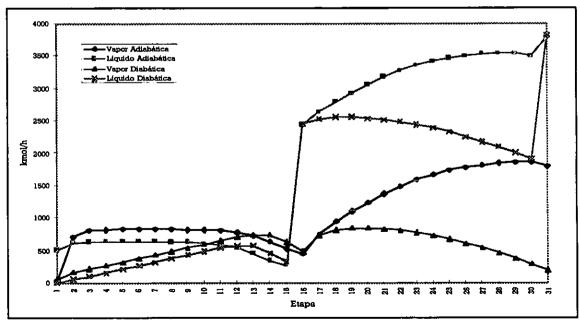

		Sección	de Agotamien	ito		
	Exnts	Exntp	Efectividad	Pex	Pot	Q
1	MWe	MWe		MWe	MWe	MWe
16	0.838	0.027	0.032	0.811	0.786	0.771
17	0.766	0.042	0.054	0.724	0.685	0.771
18	0.770	0.044	0.057	0.726	0.685	0.771
19	0.788	0.042	0.053	0.746	0.707	0.771
20	0.799	0.039	0.048	0.760	0.723	0.771
21	0.790	0.035	0.044	0.755	0.721	0.771
22	0.758	0.031	0.040	0.727	0.698	0.771
23	0.709	0.027	0.038	0.682	0.656	0.771
24	0.654	0.024	0.036	0.631	0.608	0.771
25	0.602	0.020	0.034	0.582	0.563	0.771
26	0.561	0.018	0.032	0.543	0.526	0.771
27	0.533	0.016	0.030	0.517	0.502	0.771
28	0.516	0.014	0.028	0.502	0.488	0.771
29	0.477	0.014	0.029	0.463	0.450	0.771
30	0.561	0.064	0.114	0.497	0.440	0.771
BA-502	0.852	0.284	0.334	0.701	0.512	0.771
Total	18.630	1.180	2.090	17.583	16.557	0.771

Tabla 5.4 Perfil de parámetros exérgicos de la columna diabática DA-501.



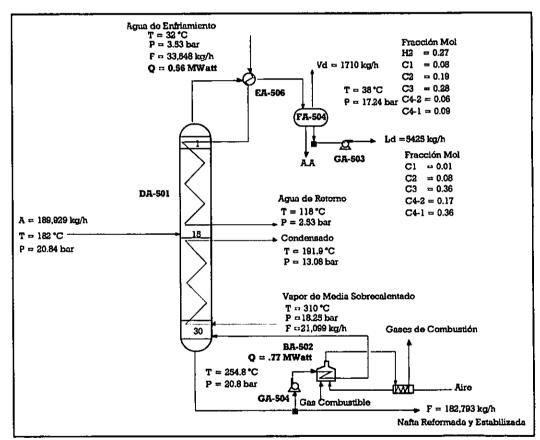
Gráfica 5.13 Pérdidas totales de exergia de la columna diabática DA-501.

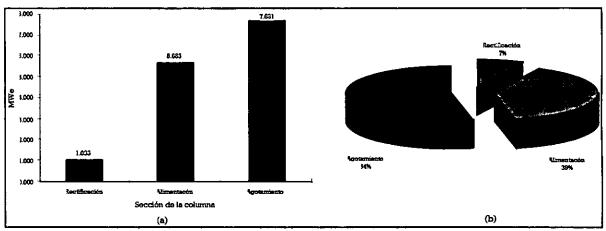
Las pérdidas totales en la columna sin considerar el revervidor y el condensador aumentaron sustancialmente (gráfica 5.14) debido a las modificaciones de los flujos de líquido y vapor (gráfica 5.15); en la etapa de alimentación las pérdidas de exergia son significativamente pequeñas debido a la existencia de un precalentador carga-efluente que hace que las condiciones de esta corriente sean muy similares a las condiciones a las que se encuentra la etapa.

Gráfica 5.14 Pérfil de pérdidas totales de exergia columna DA-501.

Gráfica 5.15 Perfiles de líquido y vapor de la columna DA-501.

Como consecuencia de la variación de los flujos del líquido y vapor, el reflujo tiende a desaparecer, los flujos de líquido y vapor destilado disminuyeron apreciablemente sin cambiar de composición; las cargas del condensador y rehervidor se reducen en 93.3 y 94,1 % respectivamente y el flujo de agua de enfriamiento utilizada en la sección de rectificación para extraer calor bajó de 212,275 a 33,547 kg/h mostrando un incremento en la temperatura de 32 a 118 °C a 2.53 bar, (condiciones apropiadas para generar vapor de baja presión), así mismo la mayor parte el gas combustible utilizado para la combustión en el rehervidor y suministrar calor a la columna en la zona de agotamiento fue sustituido por 21,099 kg/h de vapor de media presión sobrecalentado, el cual se suministró en la zona de agotamiento, resultando un condensado con 192 °C a 13.08 bar. En la figura 5.4 se muestra el diagrama de flujo de la columna diabática con cargas térmicas repartidas equitativamente.




Figura 5.4 Columna diabática de estabilización DA-501.

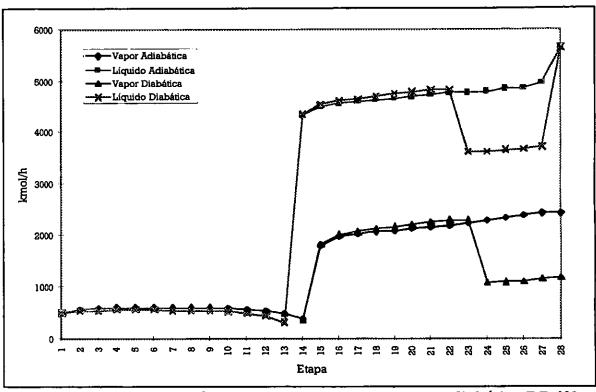
5.2. EVALUACION DE LAS COLUMNAS ADIABÁTICAS CON EXTRACCIÓN O APORTACIÓN DE CALOR A DOS O TRES NIVELES TÉRMICOS CON LA FINALIDAD DE HACERLAS DIABÁTICAS.

5.2.1 Columna Desbutanizadora DA-401

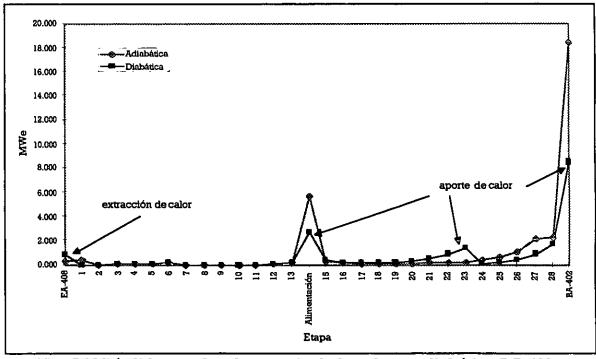
A continuación se presentan los resultados de la columna diabática de desbutanización (DA-401) con aportación de calor a dos niveles térmicos diferentes, una en el rehervidor y la otra en el plato número 23; la aportación de calor en el rehervidor se hace mediante gas combustible en el horno a fuego directo ya existente y la aportación de calor en el plato número 23 se lleva a cabo con vapor de media presión sobrecalentado. Se decidió hacer la aportación de calor en el plato número 23 y en la corriente de aliemntación ya que las temperaturas de la columna así lo permitieron; solo se hicieron estas aportaciones debido a que el 93 % de las pérdidas totales de exergia de la columna (sin rehervidor y condensador) se encuentran en la sección de agotamiento y en el plato de alimentación (gráfica 5.16 a y b) y en la zona de rectificación las pérdidas irreversibles son de 7 %. Dando como resultado que las pérdidas totales de exergia reduzcan de 33.075 a 22.956 MWe teniendo una disminución del 39.7 %.

Con estos intercambios de calor se logra una mejora del aprovechamiento de la exergia al aumentar el valor de la efectividad exérgica de 17.3 a 22.8 %

Gráfica 5.16 (a,b) Pérdidas de exergia de la columna adiabática DA-401 sin rehervidor ni condensador.


En la tabla 5.5 se muestra el perfil de los parámetros exérgicos, asi como de la cantidad de calor que se intercambio en las diferentes etapas del sistema de destilación. Los flujos de líquido vapor tienen ligeras variaciones a partir de la etapa 23 con respecto a la columna adiabática (gráfica 5.17) y las efectividades son muy parecidas a la columna adiabática, en la gráfica de pérdidas totales de exergia

(gráfica 5.18) se tiene un ligero pico en el plato número 23 donde incrementan las pérdidas de exergia por el suministro de calor efectuado.


Perfil de parámetros exérgicos

	Exnts	Exntp	Pex Efe	ctividad	Pot	Q Calor
	MWe	MWe	MWe		MWe	MWe
EA-408	0.791	0.090	0.791	0.114	0.712	-2.420 Extracción
1	0.025	0.011	0.014	0.433	0.008	
2	0.010	0.003	0.007	0.302	0.005	
3	0.080	0.010	0.070	0.122	0.062	
4	0.091	0.013	0.078	0.139	0.068	
5	0.113	0.015	0.098	0.133	0.085	
6	0.146	0.019	0.127	0.133	0.110	
7	0.002	0.001	0.001	0.349	0.001	
8	0.004	0.001	0.003	0.267	0.002	
9	0.007	0.001	0.006	0.148	0.005	
10	0.014	0.001	0.012	0.098	0.011	
11	0.026	0.002	0.024	0.068	0.023	
12	0.053	0.002	0.051	0.045	0.048	
13	0.125	0.003	0.122	0.024	0.119	
Alimentación	3.972	1.228	2.744	0.309	1.896	5.052 Aporte
15	0.360	0.014	0.345	0.040	0.332	
16	0.174	800.0	0.166	0.045	0.159	
17	0.145	0.015	0.130	0.104	0.117	
18	0.167	0.021	0.146	0.125	0.128	
19	0.225	0.031	0.194	0.136	0.168	
20	0.341	0.047	0.294	0.137	0.254	
21	0.573	0.080	0.493	0.139	0.425	
22	1.058	0.147	0.912	0.139	0.785	
23	1.546	0.159	1.387	0.103	1.245	10.000 Aporte
24	0.098	0.007	0.090	0.077	0.083	
25	0.186	0.016	0.170	0.084	0.156	
26	0.401	0.037	0.364	0.093	0.330	
27	0.979	0.089	0.890	0.090	0.810	
28	1.945	0.232	1.713	0.119	1.509	
BA-402	10.780	3.260	8.508	0.302	6.233	10.000 Aporte
Total	24.436	5.562	19.952			

Tabla 5.5 Perfil de parámetros exérgicos de la columna diabática de desbutanización DA-401 con aporte de calor.

Gráfica 5.17 Perfiles del líquido y del vapor de la columna diabática DA-401 con aporte de calor.

Gráfica 5.18 Pérdidas totales de exergia de la columna diabática DA-401 con aporte de calor.

Con esta modificación a la columna de desbutanización se logra obtener casi la misma cantidad de destilado con la misma composición solo se reduce en l kg/h la cantidad de vapor destilado (ver figura 5.5), por lo que se considera que nos es necesario incrementar ninguna etapa adicional lo que lo hace una propuesta muy factible exérgicamente.

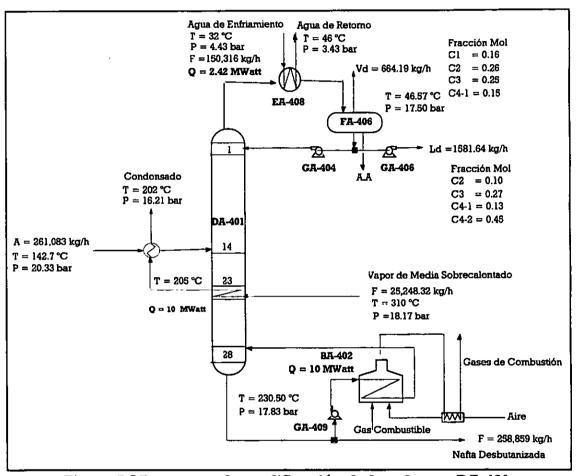


Figura 5.5 Propuesta de modificación de la columna DA-401.

5.2.2 Columna Desisohexanizadora DA-402

Evaluación de la columna de desisohexanizado (DA-402) mediante la aportación de calor a tres niveles térmicos diferentes adicionales al condensador y rehervidor.

En esta columna las mayores pérdidas se encontraban en la zona de rectificación por ser la sección con mayor número de etapas y en menor medida en la zona de agotamiento, por lo cual se planteó hacer dos intercambios adicionales en la zona de rectificación (Etapas No. 15 y 23) y uno en la zona de agotamiento (Etapa No. 29) (ver figura 5.6).

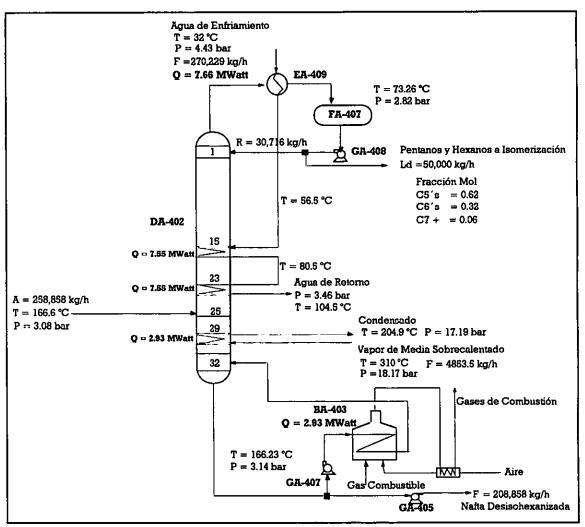
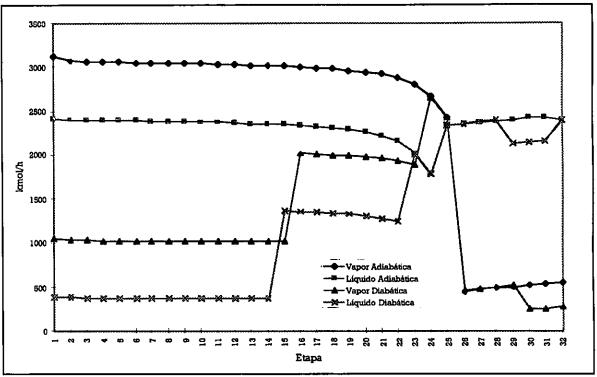



Figura 5.6 Columna diabática de desisohexanizado DA-402 con extracciónes y aporte de calor.

Con este intercambio de calor se logra una reducción significativa de las pérdidas totales de exergia pasando de 16.007 a 14.103 MWe, la cantidad de reflujo disminuye considerablemente de 189,447.8 a 30,516 kg/h y la carga del condensador se reduce de 22.6 a 7.66 MW, el agua de enfriamiento se reduce de 1'748, 400 a 270, 229 con temperatura y presión de retorno de 104.5 °C y 3.46 bar, lo que hace que el agua de retorno sea de mayor utilidad; en la zona de agotamiento se repartió la carga térmica entre el rehervidor y la etapa número 29, resultando una reducción del rehervidor y a la vez del gas combustible utilizado, sustituyendo esta reducción del gas combustible por 4853.5 kg/h de vapor de media presión sobrecalentado.

Debido al intercambio de calor interetapa, los flujos del líquido y vapor fueron afectados de manera significativa (gráfica 5.19), aún así la cantidad de producto tanto en el destilado como el de fondos no tuvieron modificación alguna

Gráfica 5.19 Pérfiles del líquido y vapor de la columna diabática DA-402 con extracciones y aportes de calor.


En la tabla 5.6 del perf'il de parámetros exérgicos se muestran los flujos de calor que se extrajeron y que se aportaron en las diferentes etapas del sistema de destilación.

Perfil de parámtros exérgicos.

	MWe	BATTIT-				
		MWe	MWe		MWe	MWe
EA-409	0.745	0.459	0.745	0.616	0.569	7.550 Extracción
1	0.049	0.022	0.026	0.461	0.014	
2	0.025	0.018	0.007	0.709	0.002	
3	0.011	0.008	0.003	0.721	0.001	
4	0.004	0.003	0.001	0.800	0.000	
5	0.003	0.002	0.001	0.567	0.001	
6	0.002	0.001	0.001	0.541	0.000	
7	0.002	0.001	0.001	0.325	0.001	
8	0.001	0.001	0.001	0.508	0.000	
9	0.002	0.001	0.001	0.410	0.001	
10	0.002	0.001	0.001	0.364	0.001	
11	0.002	0.001	0.001	0.341	0.001	
12	0.002	0.001	0.001	0.325	0.001	
13	0.002	0.001	0.001	0.317	0.001	
14	0.002	0.001	0.001	0.312	0.001	
0	3.382	1.001	2.381	0.296	1.676	7.550 Extracción
16	0.171	0.058	0.114	0.336	0.075	
17	0.125	0.038	0.087	0.303	0.061	
18	0.097	0.026	0.070	0.272	0.051	
19	0.079	0.021	0.058	0.265	0.043	
20	0.068	0.019	0.049	0.282	0.035	
21	0.057	0.019	0.038	0.337	0.025	
22	0.040	0.021	0.019	0.530	0.009	
0	2.112	0.474	1.638	0.224	1.270	7.550 Extracción
24	0.176	0.097	0.078	0.555	0.035	
Alimentación	4.706	0.195	4.511	0.041	4.325	
26	0.132	0.008	0.124	0.062	0.116	
27	0.165	0.014	0.151	0.082	0.139	
28	0.235	0.029	0.205	0.125	0.180	
0	0.932	0.052	0.880	0.056	0.832	2.930 Aporte
30	0.055	0.003	0.052	0.062	0.049	
31	0.120	0.015	0.105	0.124	0.092	
32	0.788	0.679	0.109	0.862	0.015	
BA-403	3.168	0.825	2.638	0.260	2.028	2.930 Aporte
Total	17.462	4.113	14.103	*	<u></u>	<u> </u>

Tabla 5.6 Perfil de parámetros exérgicos de la columna diabática DA-402 con extracciones y aportes de calor.

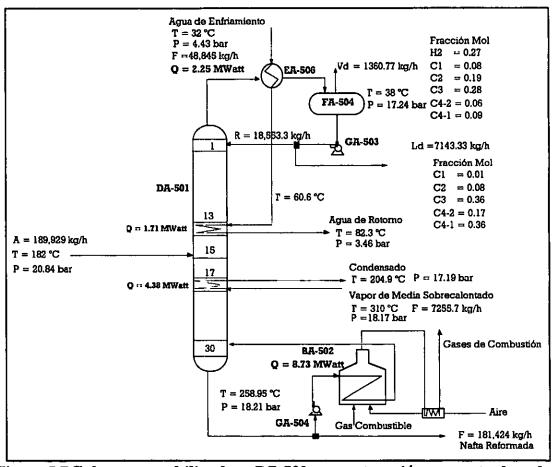
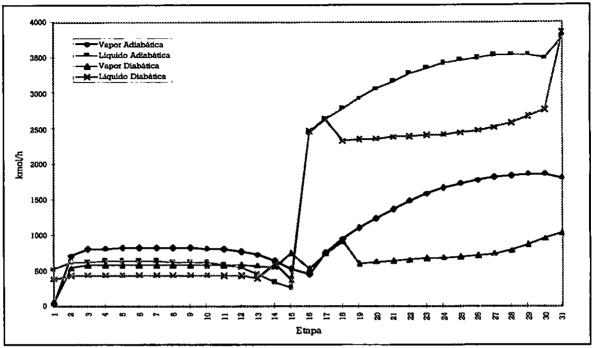
Como se observa en la gráfia 5.20, disminuyen las pérdidas en el rehervidor y en el condensador y se incrementan las pérdidas totales de exergia en las etapas donde se intercambió calor, aún así se logra una importante reducción de las pérdidas totales de exergia; con respecto a las efectividades la tendencia observada en esta modificación es intermedia a la observada para la columna adiabática y la diabática con calores repartidos equitativamente.

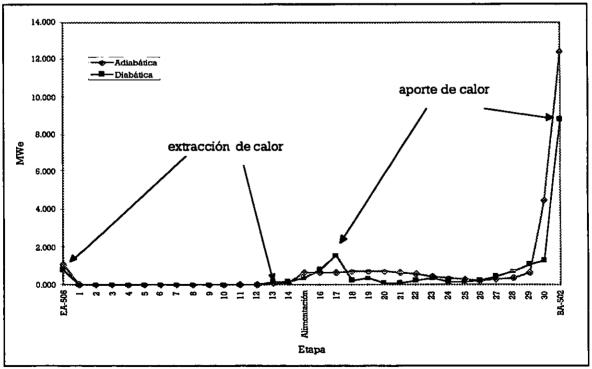
Gráfica 5.20 Pérdidas totales de exergia de la columna diabática DA-402.

5.2.3 Columna de Estabilización DA-501.

En esta columna se hicieron modificaciones a dos niveles térmicos diferentes, se le extrajo calor en la etapa número 13 de la zona de rectificación y se le aportó calor en la etapa número 17.

En la zona de rectificación la carga del condensador se redujo a 2.25 MW y la cantidad de reflujo se redujo de 25, 509 a 18, 553 kg/h, la cantidad de destilado, vapor y líquido no variaron significativamente; los flujos de líquido y vapor disminuyeron en los extremos de la torre como se ve en la gráfica 5.21, el agua de enfriamiento se redujo de 212, 275 a 68, 000 kg/h obteniendo como agua de retorno agua a 82.3 °C y 3.46 bar. La carga intercambiada en esta etapa fue de 1.71 MW (figura 5.7).


Figura 5.7 Columna estabilizadora DA-501 con extracción y aporte de calor.

En la zona de agotamiento se suministraron 7, 255.7 kg/h de vapor de media sobrecalentado y se obtuvo condensado de media presión, la carga térmica intercambiada en esta etapa fue de 4.38 MW; la carga del rehervidor pasó de 13.1 a 8.73 MW.

Los perfiles del líquido y vapor sufrieron variaciones a partir de las etapas donde se extrajo o se aportó calor (gráfica 5.21).

Gráfica 5.21 Perfiles del líquido y vapor de la columna DA-501 con extracción y aporte de calor.

Gráfica 5.22 Pérdidas totales de exergia columna DA-501 con extracción y aporte de calor.

En la gráfica 5.22 de pérdidas totales de exergia, la etapa número 17 tiene un incremento considerable de pérdidas en comparación con la etapa número 13 donde el aumento es poco significativo; se logró un incremento en la efectividad global de la torre y una disminución considerable en las pérdidas totales de exergia. El calor intercambiado en las diferentes etapas se muestra en la tabla 5.7 del perfil de parámetros exérgicos.

	Exnts	Exntp	Pex	Efectividad	Pot	Q	Calor
	MWe	MWe	MWe	MWe	MWe	MWe	
EA-506	0.811	0.148	0.811	0.183	0.690	-2.250	Extracción
1	0.026	0.017	0.009	0.661	0.006		
2	0.028	0.013	0.015	0.475	0.007		
3	0.016	0.010	0.006	0.607	0.004		
4	0.009	0.007	0.003	0.701	0.002		
5	0.006	0.004	0.002	0.672	0.001		
6	0.004	0.003	0.002	0.611	0.001		
9	0.002	0.001	0.001	0.400	0.001		
10	0.001	0.001	0.001	0.566	0.000		
11	0.005	0.001	0.005	0.119	0.001		
12	0.020	0.000	0.020	0.018	0.000		
13	0.421	0.246	0.175	0.584	0.102	-1.710	Extracción
14	0.196	0.020	0.176	0.100	0.018		
Alimentación	0.433	0.070	0.363	0.161	0.058		
16	0.840	0.056	0.783	0.067	0.052		
17	1.658	0.078	1.580	0.047	0.074	4.380	Āporte
18	0.280	0.012	0.268	0.044	0.012		"
19	0.363	0.021	0.342	0.058	0.020		
20	0.153	0.011	0.141	0.075	0.011		
21	0.149	0.011	0.138	0.077	0.011		
22	0.254	0.022	0.233	0.085	0.020		
23	0.372	0.024	0.348	0.064	0.022		
24	0.209	0.018	0.191	0.084	0.016		
25	0.178	0.013	0.165	0.074	0.012		
26	0.298	0.021	0.277	0.072	0.020		
27	0.487	0.031	0.456	0.063	0.029		
28	0.761	0.043	0.717	0.057	0.041		
29	1.151	0.069	1.082	0.060	0.065		
30	1.365	0.070	1.295	0.051	0.066		
BA-502	9.565	1.748	8.764	0.183	7.335	8.730	Aporte
Total	20.067	2.791	18.370				

Tabla 5.7 Perfil de parámetros exérgicos de la columna diabática DA-501 con extracción y aporte de calor.

5.3 ANÁLISIS DE RESULTADOS

De los resultados del análisis de exergia en las columnas diabáticas en comparación con las columnas adiabáticas se comprueba que mediante la destilación diabática la exergia se aprovecha mejor que en las columnas adiabáticas.

Se observó una ligera disminución en los flujos de los destilados, lo cual se debe a la reducción en los flujos de líquido y vapor en los extremos de las columnas de destilación.

El flujo de agua empleada para la extracción de calor en la zona de rectificación disminuye significativamente en comparación con el flujo de agua de enfriamiento utilizada en los condensadores de las columnas adiabáticas, así mismo se incrementa la calidad exérgica del agua de retorno.

En las columnas diabáticas con intercambio de calor repartido equitativamente la carga térmica del rehervidor disminuye a tal grado que las pérdidas de exergia originadas por el rehervidor son equiparables a las pérdidas de exergia de cualquier plato en la columna excepto de la etapa de alimentación.

Fue posible reemplazar la mayor parte del gas combustible con vapor de media presión sobrecalentado, debido a las condiciones de operación de la sección de agotamiento en las columnas.

La eliminación de las pérdidas de exergia en la etapa de alimentación de la columna diabática de desbutanización se realizó precalentando con vapor la corriente de alimentación a condiciones cercanas a las del la etapa de alimentación.

En la columna diabática de desisohexanizado no fue posible reducir las pérdidas totales de exergia en la etapa de alimentación debido a que se requiere enfriar la corriente a las condiciones de la etapa y cuando esta se enfria, la fracción vapor de la corriente disminuye, lo que inhibe el proceso de destilación. Siendo la única manera de disminuir las pérdidas totales de exergia el cambiar la etapa de alimentación a una etapa de la columna que presente condiciones similares a la corriente que se va a alimentar.

La aplicación de la destilación diabática empleando cargas térmicas repartidas equitativamente es un proceso más ideal que real, debido a que las variables de operación incrementan los costos de inversión, lo cual se debe al requerimiento de etapas más complejas para poder efectuar los procesos de transferencia de calor y de masa.

En las columnas diabáticas intercambiando calor en algunas etapas se logran importantes reducciones en las pérdidas totales de exergia sin llegar a la reducción obtenida con las columnas diabáticas con las cargas térmicas repartidas equitativamente, pero estas columnas tienen la ventaja de que no aumentan mucho los costos de inversión debido a que el intercambio de calor solo se realiza en una, dos o tres etapas, por lo cual estas modificaciones pueden tomarse en cuenta como una opción para su aplicación en casos reales.

Se debe considerar para su posible aplicación hacer un análisis económico profundo que demuestre la rentabilidad, este análisis debe considerar que las etapas de las columnas donde se intercambia calor son más complejas y requieren más dispositivos de control, algunas de las posibles etapas a implementar son las siguientes [Rivero]** :

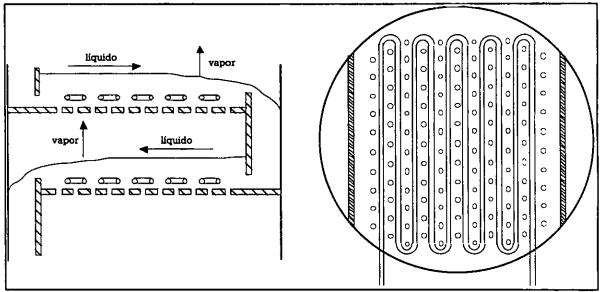


Figura 5.8 Etapa diabática con serpentín sumergido.

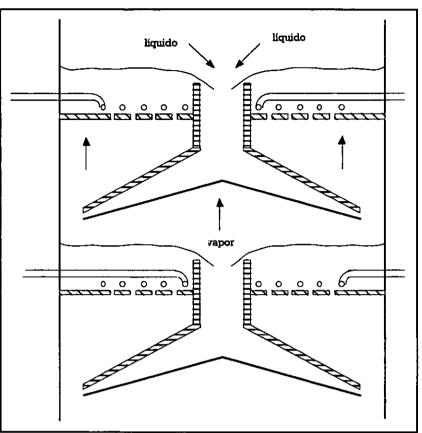


Figura 5.9 Etapa diabática con vertedero central.

^{**} Para mayor información sobre las etapas diabáticas consultar la tesis doctoral de Ricardo Rivero Rodríguez [1].

Resumiendo, pueden señalarse los siguientes puntos:

- l.- La destilación diabática reduce de manera importante las pérdidas totales de exergia y aumenta la efectividad de la misma.
- 2.- Los flujos de líquido y vapor se reducen en los extremos de las columnas debido a los intercambios de calor en las etapas.
- 3.- La cantidad de reflujo se reduce significativamente con la destilación diabática disminuyendo las dimensiones del condensador.
- 4.- El flujo de agua para enfriamiento empleada se reduce y el agua de retorno generada sale con mayor calidad exérgica.
- 5.- Las pérdidas totales de exergia en las etapas donde se intercambia calor aumentan significativamente.
- 6.- El gas combustible utilizado en los homos a fuego directo pueden sustituirse por energía de menor calidad exérgica, como vapor o algún otro fluido de calentamiento.
- 7.- Se debe reajustar el número de etapas en las columnas si es necesario para lograr extraer la misma cantidad de destilado.
- 8.- Las dimensiones de la columna se alteran debido a los cambios en el flujo de líquido y vapor.
- 9.- Se debe realizar un análisis económico para lograr la rentabilidad en la destilación diabática.
- 10.- Existen etapas probadas con intercambio de calor que se pueden utilizar para implementar la destilación diabática.
- 11.- En la unidad de hidrodesulfuración y reformación catalítica de naftas es factible la aplicación de la destilación diabática debido a la alta degradación de energía que se produce en los calentadores a fuego directo.

Conclusiones

CONCLUSIONES

- La destilación diabática es una técnica termodinámica mas eficiente que la destilación adiabática convencional.
- El utilizar dos o más fuentes distintas de aportes térmicos permite utilizar diversos servicios disponibles de menor valor económico y energético que el utilizado por la destilación adiabática. Por ejemplo, cuando se reemplaza parte del gas combustible en los calentadores a fuego directo (los cuales se utilizan como rehervidores) por vapor que se suministra en distintos puntos de la sección de agotamiento de la columna, o al reemplazar el vapor de los rehervidores por algún efluente generado en la refinería que suministre la misma cargatérmica.
- La extracción de calor en diferentes puntos de la columna permite utilizar una menor cantidad del fluido de enfriamiento y a su vez obtener el fluido de retorno con mayor calidad exérgica que permite utilizarlo en algún otro proceso.
- La aplicación de la destilación diabática tiene efectos en los flujos de líquido y vapor en el interior de la columna (disminución de flujos en los extremos de la columna), lo que hace necesario que el diámetro de la columna varie a lo largo de la misma.
- La variación de flujos da como resultado una menor cantidad de vapor destilado lo que hace que disminuyan considerablemente las dimensiones del condensador así como la cantidad del reflujo.
- Se incrementó el número de etapas necesarias en la columna para la misma cantidad de producto destilado con el uso de la destilación diabática.

- La disminución del vapor destilado varía en proporción inversa a la cantidad de extracciones o aportaciones hechas a lo largo de la columna.
- El implemento de los intercambios de calor interetapa origina que las etapas de la columna deban ser de mayor complejidad debido a que además de ser dispositivos de contacto se convierten en intercambiadores de calor internos.
- El análisis de exergia es una poderosa herramienta para analizar cualquier tipo de proceso químico, debido a que permite identificar los puntos críticos donde se encuentra la mayor cantidad de pérdidas de exergia, así mismo este análisis permite determinar las posibilidades de reducir estas pérdidas de exergia.
- La destilación diabática es un compromiso clásico de la reducción de los costos de operación debido a la posibilidad de realizar transferencias de calor en cascada (disminución del consumo necesario de medios de calentamiento y enfriamiento).
- La reducción de los costos de inversión ocurre debido a la eliminación o disminución del condensador, del tanque de reflujo y del rehervidor, así como a la disminución del diámetro y del incremento en inversión ocasionado por la complejidad de los dispositivos de contacto entre las fases (platos con intercambiador de calor integrado) y por el mayor número de platos requerido.

BIBLIOGRAFÍA

- 1.- RIVERO, R., "L'Analyse d'Exergie: Application à la Distillation Diabatique et aux Pompes à Chaleur à Absorption", Thèse de Doctorat, Institut National Polytechnique de Lorraine, Nancy 1993.
- 2.- RIVERO, R. "Exergy Simulation of a Distillation Tower: Diabatic Rectification Column", Engineering Systems Design and Analysis., Roma 1995.
- 3. LE GOFF, P.; RAMADANE, A; RIVERO, R; CACHOT, T. "Diabatic Distillation: Simulation-Optimisation of a Column with Integrated Heat Exchanger", Distillation and Absorption 92. IChemE Symposium Series, No. 128., London 1992.
- 4.- RIVERO, R.; CACHOT, T.; LE GOFF. "P. Exergy Analysis of Diabatic Distillation Columns: An Experimental Study", Elsevier Applied Science Publishers., London, 1993
- 5.- RIVERO, R. "Tridimensional Exergy Diagram", Energy System and Ecology, Cracow, 1993
- 6.- RIVERO, R. "Exergy Analysis of a Naphtha Reforming Heater", IX International Confress on Chemical Engineering, Chemical Equipment Design and Automation, Praha, 1987
- 7.- RAMADAME, A.; WIEDEMANN, S.; CACHOT, T.; RIVERO, R.: LE GOFF, P. "Le Procedé de Distillation Diabatique Part. I: Simulation Numérique et Otimisation", Récents Progrès en Génie des Procédés, Paris, 1991.
- 9.- TONDEUR D. and KVAALEN E. "Equipartition of Entropy Production. An Optimality Criterion for Transfer and Separation Process", Am. Chem. Soc., 1987, 26, 50-56.
- 10.- RIVERO, R. "Apuntes del curso de Uso Eficiente de Energía", México. 1996.
- 11. SZARGUT, J.; MORRIS, D. R.; STEWARD, F. R. "Exergy Analysis of thermal, Chemical and Metallurgical Processes", New York 1988.
- 12. IMP. "Manual de Operación de la Unidad de Hidrodesulfuración Catalítica de Naftas", Cadereyta N.L. México 1984.
- 13. IMP. "Manual de Operación de la Unidad de Reformación Catalítica de Naftas", Cadereyta N.L. México 1984.
- 14. Aspen Tech. "Aspen Plus Release 9.3. User Guide", vol. 1, Aspen Technology Inc. Cambridge 1996.
- 15. RIVERO, R.; Investigador en Jefe, "Optimización Exérgica de un esquema de refinación", Proyecto E0A-7442-2, GIDT-Pemex-Refinación/Grupo de Exergia-IMP, proyecto en desarrollo.
- 16. SAUAR, E.; RIVERO, R.; RATKJE, S.K.; LIEN, K.M. "Diabatic Column Optimization Compared to Isoforce Columns", Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems, Stockholm 1996 pp. 635-640.
- 17. RIVERO, R.; CACHOT, T.; RAMADANE, A.; LE GOFF, P. "Diabatic or Quasi-Reversible Distillation Exergy Analysis Industrial Applications", Analysis of thermal and Energy Systems Athens 1991 pp. 129-140.

- 18. RIVERO, R. "Resumen del seminario impartido en el Instituto Mexicano del Petróleo", Septiembre 21, 1993.
- 19. RIVERO, R. " Exergy Simulation of Distillation Tower: Diabatic Stripping Column", Efficency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, vol. 1 pp. 163-167, Istambul, 1995
- 20. RIVERO, R. " Exergy Simulation of Distillation Tower: Diabatic Rectification Column", Second Law Analysis of Energy Systems: Towards the 21st Century pp. 465-476, Roma, 1995
- 21. RIVERO, R.; CACHOT, T.; LE GOFF, P. "La Distillation Fractionnée Diabatique ou Quasi-Reversible", Entropie, 27e Année, No. 164/165, 1991, pp. 109-110.

Apéndice UNO Balance de Materia y Entalpia de las Corrientes de los Procesos

UNIDAD DE HIDRODESULFURACION DE NAFTAS

		Nafta de DSC	Nafta de D.J.	H2. de RCN	HSN2	HSN3	HSN4	HSN5	HSN6	HSN7	HSN8	HSN9
Nitrógono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxígeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Blóxido de carbono	fracc. moi	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.080	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	frace, mol	0.000	0.000	0.840	0.000	0.000	0.000	0.000	0.337	0.337	0.337	0.337
Agua	fracc. mol	0.004	0.000	0.000	0.004	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	fracc. mol	0.000	0.000	0.045	0.000	0.000	0.000	0.000	0.012	0.012	0.012	0.012
Etano	frace, mol	0.000	0.000	0.044	0.000	0.000	0.000	0.000	0.005	0.005	0.005	0.005
Propano	fracc. mol	0.001	0.000	0.047	0.001	0.000	0.001	0.001	0.005	0.005	0.005	0.005
Iso-Butano	fracc. mol	0.001	0.000	0.008	0.001	0.000	0.001	0.001	0.002	0.002	0.002	0.002
n-Butano	frace. mol	0.023	0.000	0.009	0.023	0.000	0.023	0.023	0.017	0.017	0.017	0.017
Pentanos + Pesados	frace, mol	0.970	0.999	0.006	0.970	0.000	0.974	0.974	0.623	0.623	0.623	0.623
Flujo Total	kmol/h	2567.276000	2.206650	280.000000	2569.483000	11.225650	2558.257000	2558.257000	4028.631000	4028.631000	4028.631000	4028.631000
Fiujo Total	kg/h	2.602120E+05	313.056000	2059.376000	2.608250E+05	202.233300	2.603220E+05	2.603220E+05	2.672450E+05	2.672450E+05	2.672450E+05	2.672450E+05
Temperatura	*C	68.527280	240.268300	38,000000	68.846680	38.000000	38.000000	37.523210	41.410120	117.000000	267.000000	313.000000
Presión	bar	6.825810	4.078249	38.886530	4.078249	3.759112	3.759112	37.265270	35.760000	35.760000	35.760000	28.962200
Entalpia	Watt	-1.368900E+08	-1.089300E+05	-1.097300E+06	-1.370000E+08	-8.882000E+05	-1.413500E+03	-1.409200E+08	-1.431600E+08	-1.288900E+08	-9.109100E+07	-7.274100E+07
Peso Molecular		101.357000	141.869400	7.354913	101.391800	18.015280	101.757700	101.757700	66.336400	66.336400	66.336400	68.336410
Azufre Total	fracc. masa	0.005168	0.059664	2.178700E-07	0.082179	0.000000	0.082243	0.082243	0.102201	0.102201	0.102201	0.102201
API	std	59.825260	42.382240	220.532300	59.804300	10.000000	59.842990	59.842990	64.492610	64.492610	64.492610	64.492620

		HSN9A	HSN10	HSN11	HSN12	HSN13	HSN15	HSN16	HSN 17	HSN18	HSN20	HSN21
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxigeno	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	frace, mol	0.337	0.327	0.327	0.327	0.327	0.327	0.009	0.009	0.009	0.941	0.941
Agua	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	fracc. mol	0.012	0.012	0.012	0.012	0.012	0.012	0.003	0.003	0.003	0.030	0.030
Etano	fracc. mol	0.005	0.006	0.006	0.006	0.008	0.006	0.004	0.004	0.004	0.008	0.008
Propanop	fracc. mol	0.005	0.008	0.005	0.005	0.005	0.005	0.008	0.006	0.006	0.003	0.003
Iso-Butano	fracc. mol	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001
n-Butano	fracc. mol	0.017	0.017	0.017	0.017	0.017	0.017	0.024	0.024	0.024	0.004	0.004
Pentanos + Pesados	frace, mol	0.623	0.632	0.632	0.632	0.632	0.632	0.951	0.951	0.951	0.014	0.014
Fluio Total	kmol/h	4028,631000	3970.982000	3970.982000	3970.982000	3970.982000	3970.983000	2618.285000	2618.285000	2618.285000	1352.698000	1352.698000
Findo Total	kg/h	2.672450E+05	2.672450E+05	2.672450E+05	2.672450E+05	2.672450E+05	2.672450E+03	2.617190E+05	2.617190E+05	2.617190E+05	5526.332000	5526.332000
Temperatura	°C	313.000000	319.238800	200.191700	141.490300	125.200300	43,333330	43.497650	65.655560	112.098200	43.497650	43.026410
Presión	bar	28.962200	28.962200	28.962200	28.962200	28.962200	28.962200	23,352260	23.352260	23.352260	23.352260	22.339010
Entalpia	Watt	-7.274100E+07	-7.274100E+07	-1,105400E+08	-1.248100E+08	-1.283600E+08	-1.441700E+08	-1.421800E+08	-1.386300E+08	-1.306300E+08	-1.992500E+06	-1.992500E+06
Peso Molecular		66.336410	67.299450	67.299450	67.299450	67.299450	67.299450	99.958020	99.958020	99.958020	4.085415	4.085415
Azufre Total	fracc. masa	0.011436	0.102201	0.102201	0.102201	0.102201	0.102201	0.078729	0.078729	0.078729	1.213816	1.213816
API	atd	64.492620	64.786110	64.788110	64.786110	64.786110	64.788140	60.932120	60.932120	60.932120	247.306400	247.306400

- (min) (min)

		HSN22	HSN23	HSN24	HSN25	HSN25A	HSN26	HSN27	HSN28	HSN29	HSN30	HSN31
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxigeno	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	fracc. mol	0.000	0.941	0.941	0.941	0.941	0.001	0.001	0.284	0.284	0.616	0.002
Agua	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001
Metano	fracc. mol	0.000	0.030	0.030	0.030	0.030	0.001	0.001	0.083	0.053	0.111	0.003
Etano	fracc. mol	0.000	0.008	0.008	0.008	0.008	0.003	0.003	0.049	0.049	0,089	0.015
Propanop	fracc. mol	0.000	0.003	0.003	0.003	0.003	0.005	0.008	0.032	0.032	0.041	0.024
Iso-Butano	fracc. mol	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.008	0.008	0.006	0.009
n-Butano	fracc. mol	0.000	0.004	0.004	0.004	0.004	0.022	0.022	0.068	0.068	0.045	0.087
Pentanos + Pesados	fracc. mol	0.000	0.014	0.014	0.014	0.014	0.968	0.968	0.506	0.508	880.0	0.859
Fluio Total	kmol/h	0.000000	1190.374000	162.323700	1190,374000	1190.374000	2537.300000	2537.300000	80.984730	80.984730	37.030240	43.954490
Flujo Total	log/h	0.000000	4863.172000	663.159800	4863.172000	4863.172000	2.575220E+05	2.575220E+05	4196.367000	4198.367000	635.333400	3561.034000
Temperatura	°C		43.026410	43.026410	100.994800	101.870500	143.333300	144.115600	143.333300	37.777770	37.777770	37.777770
Presión	bar	22.339010	22,339010	22.339010	35.762830	35.760000	7.191440	20.332350	7.191440	7.191440	6.460108	6.460108
Entalpia	Watt		-1.753400E+06	-2.391000E+05	-1.138600E+06	-1.138600E+06	-1.227200E+08	-1.225300E+08	-2.000700E+06	-2.599400E+06	-4.068500E+05	-2.188100E+06
Peso Molecular	*****		4.085415	4,085415	4.085415	4.085415	101.494600	101.494600	51.816770	51.816770	17.157150	81.016370
Azufre Total	fracc. masa		1.213816	1.213816	1.213816	1.213816	0.065387	0.065387	0.897457	0.897457	3.746905	0.389079
API	atd		247.306400	247.306400	247.308400	247.306400	60.394900	60.394900	93.900270	93.900270	171.681000	79.987520

		HSN32	HSN33	Gas Amargo	HSN35	HSN36	HSN37	LPG	HSN39	Pentanos y Hexanos	HSN41
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxígeno Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000			0.000	0.101	0.000	0.002	0.000	0.000	0.000
Hidrógeno	frace. mol	0.002	0.001	0.814					0.000	0.000	0.000
Agua	frace, mol	0.000	0.000	0.000	0,000	0.000	0.000	0.000			0.000
Ac. Sulfhidrico	fracc. mol	0.001	0.000	0.001	0.005	0.010	0.000	0.005	0.000	0.000	
Metano	fracc. mol	0.003	0.001	0.055	0.017	0.165	0.000	0.017	0.000	0.000	0.000
Etano	fracc. mol	0.015	0.003	0.043	0.107	0.282	0.000	0.107	0.000	0.000	0.000
Propanop	frace. mol	0.024	0.005	0.031	0.274	0.248	0.000	0.274	0.000	0.000	0.000
Iso-Butano	fracc. mol	0.009	0.002	0.007	0.134	0.059	0.000	0.134	0.000	0.000	0.000
n-Butano	fracc. mol	0.087	0.023	0.024	0.451	0.153	0.017	0.451	0.017	0.066	0.000
Pentanos + Pesados	frace. mol	0.859	0.964	0.025	0.009	0.002	0.933	0.009	0.983	0.933	1.000
					01 000110	10.000000	0703 100000	31.368110	2531.199000	653.101700	1878.099000
Flujo Total	kmol/h	43.954490	2581.255000	218.043000	31.368110	18.689020	2531.1990C0				
Flujo Total	kg/h	3561.034000	2.610830E+05	1942.688000	1581.645000	644.194600	2.588580E+C3	1581.645000	2.588580E+05		
Temperatura	°C	40.154190	142.741000	40.118520	46.005730	46.005730	230.505200	43.333330	166.872000		166.230800
Presión	bar	20.332350	20.332350	6.460108	17.491720	17.491720	17.836460	23.764680	3.081677		3.140178
Entalpia	Watt	-2.181600E+06	-1.247100E+08	-1.101200E+06	-1.140100E+08	-4.552300E+05	-1.055400E+C3	-1.143200E+06	-1.055400E+08	3 -3.082400E+07	-9.149900E+07
Peso Molecular		81.016370	101.145900	8.909656	50.422070	34.469140	102.266700	50.422070	102.268700	76.557750	111.207000
Azufre Total	fracc. masa	0.389079	0.069802	6.943738	5.011939	15.995210	4.260690E-07	5.011939	4.260690E-07	7 1.174550E-08	5.252560E-07
API	std	79.987520	60.662130	200.235300	132.617600	179.742600	59.926160	132.617600	59.926160	87.395810	53.349960

.

		NaftaHidrodesulfurada	HSN43	HSN44	HSN45	HSN46	HSN47	HSN48	HSN49	HSN50	HSN51
Nitrógeno	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxigeno	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido do Azufre	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	fracc. mol	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Agua	frace, mol	0.000	0.000	0.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
Ac. Sulfhidrico	frace, mol	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	frace, mol	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Etano	frace, mol	0.000	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Propanop	frace. mol	0.000	0.274	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Iso-Butano	frace, mol	0.000	0.134	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butano	frace, mol	0.000	0.451	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pentanos + Pesados		1.000	0.009	1.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
Penianos T Pesauos	nacc. moi	1.000	0.000	2.000	V.UU-						
Flujo Total	kmol/h	1878.099000	31,368110	1878.099000	55510.770000	55510.770000	1640.537000	1640.537000	349.452600	349.452600	12879.240000
Fluio Total	kg/h	2.088580E+05	1581.645000	2.088580E+05	1.000040E+06	1.000040E+08	29554.740000	29554.740000	6295.486000	6295.486000	2.320230E+05
Temperatura	°C	112.789000	47.551750	167.486500	32.000000	45.641990	32.000000	49.480780	32.679100	32.000000	32.000000
Presión	bar	24.255010	23,764680	24.255010	3.432328	3.432328	3.432328	3.432328	3.432328	3.432328	3.432328
Entalpia	Watt	-9.925000E+07	-1.138200E+06	-9.125000E+07	-4.399100E+09	-4.383300E+09	-1.300100E+08	-1.294100E+08	-2.768800E+07	-2.769300E+07	-1.020700E+09
Peso Molecular		111.207000	50.422070	111.207000	18.015280	18.015280	18.015280	18.015280	18.015280	18.015280	18.015280
Azufre Total	frace, masa	5.252560E-07	5.011939	5.252560E-07	0.000000	0.000000	0.000000	0,000000	0.000000	0.000000	0.000000
API	std	53,349960	132.617600	53,349960	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000

		HSN52	HSN83	HSN84	HSN58	HSN56	HSN57	HSN58	HSN59	HSN60	HSN61	HSN62
Nitrógeno	frace, mol	0.000	0.000	0.000	0.018	0.763	0.693	0.018	0.763	0,699	0.018	0.763
Oxígeno	fracc. mol	0.000	0.000	0.000	0.018	0.205	0.025	0.018	0.205	0.025	0.018	0.205
Bióxido de carbono	frace, mol	0.000	0.000	0.000	0.000	0.000	0.097	0.000	0.000	0.098	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.000	0.000	6.75E-03	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	fracc. mol	0.000	0.000	0.000	0.230	0.000	0.015	0.230	0.000	0.016	0.230	0.000
Agua	frace, mol	1.000	1.000	1.000	0.030	0.032	0.161	0.000	0.032	0.162	0.000	0.032
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.000
Metano	fracc. mol	0.000	0.000	0.000	0.301	0.000	0.000	0.301	0.000	0.000	0.301	0.000
Etano	fracc. mol	0.000	0.000	0.000	0.099	0.000	0.000	0.099	0.000	0.000	0.099	0.000
Propanop	fracc. mol	0.000	0.000	0.000	0.103	0.000	0.000	0.103	0.000	0.000	0.103	0.000
Iso-Butano	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butano	fracc. mol	0.000	0.000	0.000	0.031	0.000	0.000	0.031	0.000	0.000	0.031	0.000
Pentanos + Pesados	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.181	0.000	0.000	0.181	0.000
Fluio Total	kmol/h	12879.240000	97050.950000	97050.950000	70.950100	960.856300	1050.005000	77.373370	1047.861000	1145.080000	22.768610	308.353300
Fluio Total	log/h	2.320230E+05	1.748400E+08	1.748400E+06	1645.262000	27394.520000	29039.780000	1794.212000	29875.060000	31669.270000	527.981500	8791.314000
Temperatura	°C	41.007370	32.000000	43.177890	118.000000	25.000000	184.886200	118.000000	25.000000	185.874900	118.000000	25.000000
Presión	bar	3.432328	3.432328	3.432328	92.968110	1.000000	1.840900	92.968110	1.000000	1.840900	92.968110	1.000000
Entalpia	Watt	-1.018200E+09	-7.691100E+09	-7.668400E+09	-7.696300E+05	-2.071400E+06	-2.119100E+07	-8.393000E+05	-2.258400E+06	-2.309900E+07	-2.469800E+05	-6.645900E+05
Peso Molocular		18.015280	18.015280	18.015280	23.189010	28.510530	27.656800	23.169010	28.510530	27.656810	23.189010	28.510530
Azufre Total	fracc. masa	0.000000	0.000000	0.000000	0.146699	0.000000	0.031227	0.146699	0.000000	0.031227	0.146699	0.000000
API	std	10.000000	10.000000	10.000000	221.881500	333.327300	305.193300	221.881500	333.327300	305.193300	221.881500	333.327300

t

		HSN63	HSN64	HSN66	HSN66	HSN67	HSN68	HSN69	HSN70	HSN71	HSN72	HSN73
Nitrógeno	fracc. mol	0.699	0.699	0.699	0.763	0.699	0.763	0.699	0.000	0.000	0.000	0.000
Oxígeno	fracc. mol	0.025	0.025	0.025	0.205	0.025	0.205	0.025	0.000	0.000	0.000	0.000
Bióxido de carbono	frace. mol	0.098	0.097	0.097	0.000	0.098	0.000	0.098	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	6.75E-05	6.75E-05	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	fracc. mol	0.016	0.015	0.015	0.000	0.016	0.000	0.016	0.006	0.006	0.002	0.002
Agua	fracc. mol	0.162	0.161	0.161	0.032	0.162	0.032	0.162	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.008	0.005	0.005
Metano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.023	0.023	0.017	0.017
Etano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.113	0.113	0.107	0.107
Propanop	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.273	0.273	0.274	0.274
Iso-Butano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.131	0.131	0.134	0.134
n-Butano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.440	0.440	0.451	0.451
Pentanos + Pesados	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.009	0.009	0.009
Flujo Total	lanol/h	336.962000	960.856300	1050.005000	1047,861000	1145.060000	308.353300	336.962000	489.040100	489.040100	470.351100	438.983000
Flujo Total	kg/h	9319.296000	27394.520000	29039.790000	29875.060000	31669.270000	8791.314000	9319.296000	24360.270000	24360.270000	23716.070000	22134.430000
Temperatura	*C	193,900000	148.888900	289.369800	148,888900	290.308300	148.934800	298.176100	83.410570	46.015790	46.005730	46.005730
Presión	bar	1.840000	1.000000	1.840900	1.000000	1.840200	1.000000	1.840900	17.491720	17.491720	17.491720	17.491720
Entalpia	Watt	-6.773500E+06	-1.091900E+06	-2.021100E+07	-1.190800E+06	-2.203200E+07	-3.503000E+03	-6.459200E+06	-1.512800E+07	-1.755000E+07	-1.709500E+07	-1.595500E+07
Peso Molecular		27.656810	28.510530	27.656800	28.510530	27.656810	28.510530	27.656810	49.812410	49.812410	50.422070	50.422070
Azufre Total	fracc. masa	0.031227	0.031227	0.031227	0.000000	0.031227	0.000000	0.031227	5.302385	5.302385	5.011939	5.011939
API	std	305.193300	305.193300	305.193300	333.327300	305.193300	333.327300	305.193300	133.863800	133.863800	132.617600	132.617600

		HSN74	HSN75	HSN76	HSN77	HSN78	HSN79	HSN80	HSN80A	HSN81	HSN82	HSN83
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxígeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	frace, mol	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Agua	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	fracc. mol	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	frace, mol	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Etano	frace. mol	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Propanop	frace, mol	0.274	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000
Iso-Butano	frace. mol	0.134	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
n-Butano	fracc. mol	0.451	0.000	0.017	0.017	0.017	0.066	0.066	0.176	0.068	0.066	0.068
Pentanos + Pesados	fracc. mol	0.009	0.000	0.983	0.983	0.983	0.933	0.933	0.823	0.933	0.933	0.933
Flujo Total	kmol/h	438.983000	0.000000	5643.153000	3111.953000	3111.953000	3127.672000	3127.672000	0.002648	3127.669000	3127.669000	2474.572000
Fluio Total	kg/h	22134.430000	0.000000	5.771070E+05	3.182490E+05	3.182490E+05	2.394480E+05	2.394480E+05	0.191108	2.394470E+05	2.394470E+05	1.894480E+05
Temperatura	°C	46.005720		230.505200	230.505200	261.700600	84,994060	73.263820	73.263820	73.263820	73.264460	73.264460
Presión	bar	17.491720	17.491720	17.838460	17.836460	17.840000	2.816334	2.805887	2.805887	2.805887	2.816334	2.616334
Entahola	Watt	-1.595500E+07		-2.352900E+08	-1.297500E+08	-1.097500E+08	-1.249700E+08	-1.476200E+08	-104.163000	-1.476200E+08	-1.476200E+08	-1.167900E+08
Peso Molecular		50.422070		102.266700	102.266700	102.266700	76.557750	76.55 <i>775</i> 0	72.173810	76.557750	76.557790	76.557820
Azufre Total	fracc. masa	5.011939		4.260690E-07	4.260690E-07	4.260690E-07	1.174550E-08	1.174550E-08	3.823090E-09	1.174550E-08	1.174550E-08	1.174530E-08
API	std	132.617600		59.926160	59.926160	59.926160	87.395810	87.395810	92.759630	87.395810	87.395810	87.395740

		HSN84	HSN88	HSN87
Nitrógeno	fracc. mol	0.000	0.000	0.000
Oxígeno	fracc. mol	0.000	0.000	0.000
Bióxido de carbono	frace. mol	0.000	0.000	0.000
Bióxido de Azufre	frace. mol	0.000	0.000	0.000
Aire	frace. mol	0.000	0.000	0.000
Kidrógeno	fracc. mol	0.000	0.000	0.000
Agua	fracc. mol	0.000	0.000	0.000
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000
Metano	fracc. mol	0.000	0.000	0.000
Etano	fracc. mol	0.000	0.000	0.000
Propanop	fracc. mol	0.000	0.000	0.000
Iso-Butano	fracc. mol	0.000	0.000	0.000
n-Butano	fracc. mol	0.000	0.000	0.000
Pentanos + Pesados	frace. mol	1.000	1.000	1.000
Flujo Total	kmol/h	2401.642000	523.543000	523.543000
Flujo Total	kg/h	2.670800E+05	58221.670000	58221.67000
Temperatura	. C	166.230800	203.203800	166.230800
Presión	bar	3.140178	3.150625	3.140178
Entalpia	Watt	-1.170100E+08	-1.964400E+07	-2.550600E+0
Peso Molecular		111.207000	111.207000	111.207000
Azufre Total	fracc. masa	5.252560E-07	5.252560E-07	5.252560E-0
API	std	53.349960	53.349950	53.349950

UNIDAD DE REFORMACION DE NAFTAS

		Nafta Hidrodesulfurada R	CN2 RC	N3 RC	cN4 RC	ens re	en6 RC	N7 RC	:N8
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxigeno	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	fracc. mol	0.000	0.637	0.637	0.637	0.687	0.667	0.693	0.693
Agua	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	fracc. mol	0.000	0.034	0.034	0.034	0.097	0.097	0.088	0.088
Etano	fracc. mol	0.000	0.034	0.034	0.034	0.088	0.088	0.080	0.080
Propano	fracc. mol	0.000	0.036	0.036	0.038	0.086	0.086	0.079	0.079
Iso-Butano	frace, mol	0.000	0.006	0.006	0.006	0.014	0.014	0.012	0.012
n-Butano	fracc. mol	0.000	0.007	0.007	0.007	0.018	0.018	0.017	0.017
Pentanos + Pesados	frace. mol	1.000	0.246	0.246	0.246	0.032	0.032	0.029	0.029
Flujo Total	kmol/h	1878.099000	7848.110000	7848.110000	7848.110000	18359.240000	18359.240000	19699.320000	19699,320000
Flujo Total	kg/h	208858.0000C0	254375.000000	254375.000000	254375.000000	254375.000000	254375.000000	254375.000000	254375.000000
Temperatura	℃	70.000000	60.215470	382.000000	504.000000	483.962500	504.000000	485.537800	504.000000
Presión	bar	24.260000	15.000000	15.000000	14.664110	14.664110	14.075710	12.781000	13.389240
Entalpia	Watt	-1.05020E+08	-1.28730E+08	-4.42720E+07	-1.32590E+07	-1.32590E+07	-7.03860E+06	-7.03860E+06	-1.13550E+06
Peso Molecular		111.207000	32.412190	32.412190	32.412190	13.855400	13.855400	12.912850	12.912850
API	std	53.349960	82.147750	B2.147740	82.147740	183,330100	183.330100	185.252200	185.252200
Octano	RON								
Octano	MON								

		RCN9	RCN10	RCN11	RCN12	RCN12A	RCN13	RCN14	RCN15	RCN16
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxágeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	frace. mol	0.713	0.713	0.688	0.688	0.688	0.688	0.688	0.833	0.833
Agua	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	fracc. mol	0.081	0.081	0.037	0.037	0.037	0.037	0.037	0.044	0.044
Etano	frace. mol	0.074	0.074	0.038	0.038	0.038	0.038	0.038	0.045	0.045
Propanop	frace. mol	0.075	0.075	0.045	0.045	0.045	0.045	0.045	0.049	0.049
Iso-Butano	frace. mol	0.012	0.012	0.010	0.010	0.010	0.010	0.010	0.009	0.009
n-Butano	frace, mol	0.017	0.017	0.013	0.013	0.013	0.013	0.013	0.011	0.011
Pentanos + Pesados	fracc. mol	0.028	0.028	0.169	0.169	0.169	0.169	0.169	0.011	0.011
Made Mass	lgmol/h	20615.550000	20615.550000	10403.660000	10403.660000	10403.660000	10403,660000	10403.660000	8586,986000	8586.986000
Flujo Total	kg/h	254375.000000	254375.000000	254374.000000	254374.000000	254374.000000	254374.000000	254374.000000	68149.100000	68149.100000
Flujo Total Temperatura	.C vo∖u	486.943100	504.000000	486.300000	134.710000	146.486200	100.000000	38.000000	37.651060	67.789530
Presión	bar	12.128000	12,800840	12.250000	12.250000	12.250000	12,585100	12.585100	11.800560	15.723220
Entalpia	Watt	-1.13550E+08	4.428C0E+08	9.56722E+06	-8.00260E+07	-7.48870E+07	-9.07890E+07	-1.07350E+08	-3.51030E+07	-3.26E+07
Peso Molecular	*****	12,338960	12.338960	24.450460	24.450460	24.450460	24.450460	24.450460	7.936323	7.936323
API	std	185.058100	185.058100	92.192250	92.192250	92.192250	92.192250	92.192250	208.913400	208.913400
Octano	RON			91,558200	91.558200	91,558200	91,558200	91.558200		
				79,98258	79.96258	79.96258	79,98258	79.96258		
Octano	MON			06208.61	15,50200	10.00000	20.00200	10.00230		

		RCN17	RCN18	RCN19	RCN20	RCN21	RCN22	RCN23	RCN24	RCN25	
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Oxigeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Bióxido de carbono	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Bióxido de Azufre	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Aire	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Hidrógeno	frace, mol	0.005	0.005	0.688	0.688	0.837	0.837	0.837	0.007	0.837	
Agua	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Metano	fracc. mol	0.002	0.002	0.037	0.037	0.045	0.045	0.045	0.003	0.045	
Etano	frace. mol	0.009	0.009	0.038	0.038	0.044	0.044	0.044	0.011	0.044	
Propanop	fracc. mol	0.028	0.028	0.045	0.045	0.047	0.047	0.047	0.035	0.047	
Iso-Butano	fracc. mol	0.012	0.012	0.010	0.010	0.008	0.008	0.008	0.015	0.008	
n-Butano	frace. mol	0.028	0.026	0.013	0.013	0.010	0.010	0.010	0.030	0.010	
Pentanos + Pesados	fracc. mol	0.917	0.917	0.169	0.169	0.009	0.009	0.009	0.900	0.009	
Flujo Total	kmol/h	1816.672000	1816.672000	10403.660000	10403.660000	8533.731000	2048.095000	6485.636000	1869.927000	2048.095000	
Flujo Total	kg/h	186225.000000	186225.000000	254374.000000	254374.000000	65063.130000	15615.150000	49447.980000	189311.000000	15615.150000	
Temperatura	•C	37.651060	37.814810	50.212180	38.000000	37.762320	37.762320	37.762320	37.762320	145.318600	
Presión	bar	11.800560	15.723220	15.723220	15.723220	15.000000	15.000000	15.000000	15.000000	39.259190	
Entalpia	Watt	-7.22490E+07	-7.22150E+07	-1.04770E+08	-1.07620E+08	-3.38900E+07	-8.13370E+06	-2.57570E+07	-7.37280E+07	-5.91E+06	
Peso Molecular		102,508900	102.508900	24.450460	24.450460	7.624229	7.624229	7.624229	101.239800	7.624229	
API	std	49.478120	49.478120	92.192250	92.192250	214.289100	214.289100	214.289100	50.229560	214.289100	
Octano	RON	91.182520	91.182520	91.558200	91.558200				91.258650		
Octano	MON	79.64369	79.64369	79.96258	79.96258				79.70832		

v

Oxígeno frace. mol 0.000			RCN26	RCN27	RCN28	H2 a HSN	RCN30	H2 a D.I.	RCN33	RCN34	RCN35
Oxígeno frace. mol 0.000											
Bióxido de carbono frace. mol 0.000 0.00	Nitrógeno	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre fracc. mol 0.000	Oxígeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire frace. mol 0.000 0.	Bióxido de carbono	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno fracc. mol 0.837 0.020 0.840 0.840 0.840 0.840 0.007 0.007 0.007	Bióxido de Azufre	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrogeno Race. Rich C.S.F. C.S.E. C.	Aire	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Hidrógeno	frace. mol	0.837	0.020	0.840	0.840	0.840	0.840	0.007	0.007	0.007
Agua fracc. mol 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Agua	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Suifhidrico fracc. mol 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ac. Suifhidrico	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano fracc. mol 0.045 0.007 0.045 0.045 0.045 0.045 0.003 0.003 0.003	Metano	frace. mol	0.048	0.007	0.045	0.045	0.045	0.045	0.003	0.003	0.003
Etano frace. mol 0.044 0.029 0.044 0.044 0.044 0.044 0.011 0.011 0.011	Etano	frace, mol	0.044	0.029	0.044	0.044	0.044	0.044	0.011	0.011	0.011
Propanop frace. mol 0.047 0.085 0.047 0.047 0.047 0.047 0.035 0.035 0.035	Propanop	fracc. mol	0.047	0.085	0.047	0.047	0.047	0.047	0.035	0.035	0.035
Iso-Butano frace. mol 0.008 0.035 0.008 0.008 0.008 0.008 0.015 0.015 0.015	Iso-Butano	fracc. mol	0.008	0.035	0.008	0.008	0.008	0.008	0.015	0.015	0.015
n-Butano frace. mol 0.010 0.068 0.009 0.009 0.009 0.009 0.030 0.030 0.030	n-Butano	frace, mol	0.010	0.068	0.009	0.009	0.009	0.009	0.030	0.030	0.030
Pentanos + Pesados fracc. mol 0.009 0.757 0.008 0.008 0.008 0.006 0.000 0.899 0.899	Pentanos + Pesados	frace, mol	0.009	0.757	0.006	0.006	0.008	0.006	0.900	0.899	0.899
Flujo Total kmol/h 2048.095000 7.423342 2040.672000 280.000000 1760.672000 1869.927000 1877.350000 1877.350000	Flujo Total	kmol/h	2048.095000	7.423342	2040.672000	280.000000	1760.672000	1760.672000	1869.927000	1877.350000	1877.350000
Flujo Total kg/h 15615.150000 606.183200 15008.970000 2059.376000 12949.590000 189311.000000 189917.000000 189917.000000	Flujo Total	kg/h	15615.150000	606.183200	15008.970000	2059.376000	12949.590000	12949.590000	189311.000000	189917.000000	189917.000000
Temperatura °C 38,000000 38,000000 38,000000 38,000000 99,895490 38,007350 38,009900 182,00000	Temperatura	°C	38.000000	38.000000	38.000000	38.000000	38.000000	99.895490	38.007350	38.009900	182.000000
Presión bar 39.259190 38.886530 38.886530 38.886530 68.188800 20.842300 20.842300 20.842300	Presión	bar	39.259190	38.886530	38.886530	38.886530	38.886530	68.188800	20.842300	20.842300	20.842300
Entalpia Watt -8.20910E+06 -2.10750E+05 -7.99730E+06 -1.09730E+06 -5.82590E+06 -7.36760E+07 -7.38870E+07 -5.63E+07	Entalpia	Watt	-8.20910E+06	-2.10750E+05	-7.99730E+06	-1.09730E+06	-6.90000E+06	-5.82590E+06	-7.36760E+07	-7.38870E+07	-5.63E+07
Peso Molecular 7.624229 81.659070 7.354913 7.354913 7.354913 101.239800 101.162400 101.162400	Peso Molecular		7.624229	81.659070	7.354913	7.354913	7.354913	7.354913	101.239800	101.162400	101.162400
API std 214.289100 59.708230 220.532300 220.532300 220.532300 50.229560 50.259820 50.25982	API	std	214.289100	59.708230	220.532300	220.532300	220.532300	220.532300	50.229560	50.259820	50.259820
Octano RON 100.788700 94.414890 94.414890 94.414890 94.414890	Octano	RON		100.788700					94.414890	94.414890	94.41489
Octano MON 87.81657 82.37013 82.37013 82.37013	Octano	MON		87.81657					82.37013	82.37013	82.37013

.

		RCN36	RCN37	RCN38	RCN40	RCN41	RCN42	RCN43	RCN44	RCN48
Nitrógeno	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxigeno	fracc. mol	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0,000
Bióxido de carbono	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	frace. mol	0.000	0.000	0.000	0.000	, 0,000	0.000	0.000	0.000	0.000
Hidrógeno	frace. mol	0,000	0.000	0.000	0.000	0.000	0.273	0.008	0.000	0.000
Agua	frace. mol	1.000	1.000	1.000	1.000	1,000	0.000	0.000	1.000	0.000
Ac. Sulfhidrico	fracc. mol	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.082	0.010	0.000	0.000
Etano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.195	0.087	0.000	0.000
Propanop	frace. mol	0.000	0.000	0.000	0.000	0.000	0.289	0.363	0.000	0.000
Iso-Butano	frace, mol	0.000	0.000	0.000	0.000	0.000	0.062	0.173	0.000	0.000
n-Butano	fracc. mol	0,000	0.000	0.000	0.000	0.000	0.099	0.381	0.000	0.000
Pentanos + Pesados	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	1.000
Flujo Total	kmol/h	71791.690000	71791.690000	13067.150000	13067.150000	22066.530000	45.621590	143.295800	22068.530000	1688.433000
Flujo Total	kg/h	1293350.000000	1293350.000000	235408.000000	235408.000000	397535.000000	1360.770000	7143.332000	397535.000000	181413.000000
Temperatura	° C	32,000000	43.050900	32.000000	42.449260	32.000000	38.000000	38.000000	36.986580	258.953900
Presión	bar	3.432328	3.432328	3.285228	3.285228	3.432328	17.249290	17.249290	3.432328	18.216780
Entalpia	Watt	-5.68930E+09	-5.67280E + 09	-1.03550E+09	-1.03270E+09	-1.74870E+09	-9.30430E+05	-5.21610E+06	-1.74640E+09	-4.04E+07
Peso Molecular		18.015280	18.015280	18.015280	18.015280	18.015280	29.827330	49.850260	18.015280	107.444700
API	std	10.000000	10.000000	10.000000	10.000000	10.000000	172.155400	133.121600	10.000000	46.082710
Octano	RON									94.52319
Octano	MON									82.46224

		RCN49 Nafta Reformada		RCN52	RCN53	RCN54	RCN55	RCN56	RCN57	RCN58
Nitrógeno	fracc, mol	0.000	0.000	0.000	0.000	0.763	0.763	0.018	0.699	0.699
Oxígeno	frace, mol	0.000	0.000	0.000	0.000	0.205	0.205	0.018	0.025	0.025
Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.098	0.098
Bióxido de Azufre	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	frace, mol	0.000	0,000	0.000	0.000	0.000	0.000	0.230	0.016	0.016
Agua	fracc. mol	0.000	0,000	1.000	1.000	0.032	0.032	0.000	0.162	0.162
Ac. Sulfhidrico	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Metano	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.301	0.000	0.000
Etano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.099	0.000	0.000
Propanop	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.103	0.000	0.000
Iso-Butano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butano	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.031	0.000	0.000
Pentanos + Pesados	fracc. mol	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Flujo Total	kmol/h	1688.433000	1688.433000	5455.369000	5455.369000	2881.290000	2881.290000	212.752700	3148.614000	3148.614000
Fluio Total	kg/h	181413.000000	181413.000000	98280.000000	98280.000000	82147.100000	82147.100000	4933.523000	87080.630000	87080.630000
Temperatura	°C	126.141100	126.493200	32,000000	62.052940	25.000000	148.888900	117.777800	284.434400	179.793800
Presión	bar	18.216780	5.543922	4.445578	3.464912	1.000000	1.000000	92.771350	1.000000	1.000000
Entalpia	Watt	-5.80170E+07	-5.80170E+07	-4.32320E+08	-4.28900E+08	-6.21000E+08	-3.27440E+08	-2.30850E+06	-6.07450E+07	-6.37E+07
Peso Molecular		107.444700	107.444700	18.015280	18.015280	28.510530	28.510530	23.189010	27.656810	27.656810
API	std	46.082710	46.082710	10.000000	10.000000	333.327300	333.327300	221.881500	305.193300	305.193300
Octano	RON	94.523190	94.523190							
Octano	MON	82.46224	82.46224							

		RCN59	RCN60	RCN61	RCN62	RCN63	RCN64	RCN65	RCN66	RCN67
Nitrógeno	fracc. mol	0.763	0.763	0.018	0.699	0.699	0.000	0.000	0.000	0.000
Oxígeno	fracc. mol	0.205	0.205	0.018	0.025	0.025	0.000	0.000	0.000	0.000
Bióxido de carbono	frace, mol	0.000	0.000	0.000	0.098	0.098	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	frace. mol	0.000	0.000	0.230	0.016	0.016	0.000	0.000	0.000	0.000
Agua	frace, mol	0.032	0.032	0.000	0.162	0.162	1.000	1.000	1.000	1.000
Ac. Sulfhidrico	fracc. mol	0,000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Metano	fracc. mol	0.000	0.000	0.301	0.000	0.000	0.000	0.000	0.000	0.000
Etano	frace. mol	0.000	0.000	0.099	0.000	0.000	0.000	0.000	0.000	0.000
Propanop	frace. mol	0.000	0.000	0.103	0.000	0.000	0.000	0.000	0.000	0.000
Iso-Butano	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butano	frace. mol	0.000	0.000	0.031	0.000	0.000	0.000	0.000	0.000	0.000
Pentanos + Pesados	fracc. mol	0.000	0.000	0.181	0.000	0.000	0.000	0.000	0.000	0.000
Fluio Total	kmol/h	702.007000	702.007000	51.835760	767.138700	767.138700	444.067500	474.217800	474.217800	474.217800
Flujo Total	kg/h	20014.590000	20014.590000	1202.020000	21216,610000	21216.610000	8000,000000	8543.167000	8543,167000	8843.167000
Temperatura	°C	25.000000	148.900200	118.000000	326,904600	223.388900	32.000000	99.622390	100.448500	212.235300
Presión	bar	1.000000	0.999740	92.968110	1.840900	1.840900	1.000000	1.000000	19.940080	19.940080
Entalpia	Watt	-1.51300E+06	-7.97710E+05	-5.62290E+05	-1.45050E+07	-1.52200E+07	-3.51920E+07	-3.69100E+07	-3.68980E+07	-3.13E+07
Peso Molecular		28.510530	28,510530	23.189010	27.656810	27.656810	18.015280	18.015280	18.015280	18.015280
API	etd	333,327300	333.327300	221.881500	305.193300	305.193300	10.000000	10.000000	10.000000	10.000000
Octano	RON									
Colatio	61424									

MON

Octano

		RCN68	RCN69	RCN70	RCN71	RCN77	RCN78	RCN80	RCN81	RCN82
Nitrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Oxígeno	fracc. mol	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000
•						0.000	0.000	0.000	0.000	0.000
Bióxido de carbono	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bióxido de Azufre	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aire	frace. mol	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000
Hidrógeno	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.837	0.837
Agua	frace. mol	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ac. Sulfhidrico	frace, mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Metano	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.045	0.045
Etano	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.044	0.044
Propanop	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.047	0.047
Iso-Butano	frace. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.008
n-Butano	fracc. mol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.010
Pentanos + Pesados	fracc. mol	0.000	0.000	0.000	0.000	1.000	1.000	1.000	0.009	0.009
Flujo Total	kmol/h	444.059300	444.059300	86353.080000	86353.080000	3785.025000	2096.592000	2096.592000	515.623800	5970.012000
Flujo Total	kg/h	7999.852000	7999.852000	2500000.000000	2500000.000000	406681.000000	225268.000000	225268.000000	3931.234000	45516.740000
Temperatura	*C	99.622390	310.000000	25.000000	40.790490	258.953900	258.953900	281.944900	37.762320	37.762320
Presión	bar	1.000000	19.940080	1.000000	1.100000	18.216780	18.216780	18.250140	15.000000	15.000000
Entalpia	Watt	-2.95460E+07	-2.87180E+07	-1.54080E+08	1.08328E+07	-9.05390E+07	-5.01510E+07	-3.70060E+07	-2.04770E+06	-2.37E+07
Peso Molecular		18.015280	18.015280	28.950910	28.950910	107.444700	107.444700	107.444700	7.624229	7.624229
API	std	10.000000	10.000000	28.970300	28.970300	46.082710	46.082710	46.082710	214.289100	214.289100
Octano	RON					91.280710	91.280710	91,280710		211.200100
Octano	MON					79.72709	79.72709	79.72709		
						10.12108	10.12109	19.12109		

RCN83

Nitrógeno	fracc. mol	0.000
Oxígeno	frace. mol	0.000
Bióxido de carbono	fracc. mol	0.000
Bióxido de Azufre	fracc. mol	0.000
Aire	fracc. mol	0.000
Hidrógeno	frace, mol	0.791
Agua	frace. mol	0.000
Ac. Sulfhidrico	fracc. mol	0.000
Metano	fracc. mol	0.048
Etano	fracc. mol	0.057
Propanop	fracc. mol	0.067
Iso-Butano	fracc. mol	0.013
n-Butano	fracc. mol	0.017
Pentanos + Pesados	fracc. mol	0.008
Flujo Total	kmol/h	561.245400
Flujo Total	kg/h	5292.005000
Temperatura	°C	38.126780
Presión	bar	15.000000
Entalpia	Watt	-2.97820E+06
Peso Molecular		9.429038
API	std	203.455000
Octano	RON	
Octano	MON	

Apéndice DOS Lista de Equipo de los Procesos

Apéndice 2 BALANCE DE EXERGIA DE LAS CORRIENTES DE LOS PROCESOS

UNIDAD DE HIDRODESULFURACION DE NAFTAS

CORRIENTE	Flujo kg/s	Entalpia MWe	Exergia Física MWe	Exergia Química MWe	Exergia Total MWe
Nafta de DSC	72.281	-136.886	0.472	3371.820	3372.292
Nafta de D.I.	0.087	-0.109	0.012	4.020	4.032
H2 de RCN	0.575	-1.163	0.709	28.210	28.919
HSN2	72.368	-136.995	0.463	3375.836	3376.300
HSN3	0.056	-0.888	0.000	0.003	0.003
HSN4	72.312	-141.345	0.050	3375.883	3375.933
HSN5	72.312	-140.923	0.289	3375.883	
HSN6	74.237	-143.227	4.205	3468.385	
HSN7	74.237	-128.962	6.056	3468.385	
HSN8	74.237	-91.168	17.836	3468.385	
HSN9	74.237	-72.813	26.888	3468.385	
HSN10	74.237	-72.813	27.429	3470.147	
HSN11	74.237	-110.607	10.515	3470.147	
HSN12	74.237	-124.872			
HSN13	74.237	-128.427		3470.147	
HSN14	0.000	0.000	0.000		0.000
HSN15	74.237	-144.240		3470.147	
HSN16	72.703	-142.246			
HSN17	72.703	-138.690			
HSN18	72.703	-124.947			
HSN20	1.534	-1.995			
HSN21	1.534	-1.995			
HSN22	0.000	0.000			
HSN23	1.350	-1.756			
HSN24	0.184	-0.239			
HSN25	1.350	-1.142			
HSN26	71.531	-122.770			
HSN27	71.531	-122.579			
HSN28	1.172	-2.014			
HSN29	1.172				
HSN30	0.178				
HSN31	0.994				
HSN32	0.994				
HSN33	72.525	-124.773	3 2.812	3388.137	3390.949

CORRIENTE	Flujo kg/s	Entalpia MWe	Exergia Física MWe	Exergia Química MWe	Exergia Total MWe
HSN34	0.547	-1.120	0.280	26.608	26.888
HSN35	0.439	-1.139	0.036	21.252	21.289
HSN36	0.185	-0.470	0.036	9.019	9.055
HSN37	71.900	-105.584	16.302	3358.015	3374.317
HSN38	0.439	-1.143	0.037	21.252	21.289
HSN39	71.900	-105.584	11.485	3358.015	3369.499
HSN40	13.889	-30.854	0.145	650.772	650.916
HSN41	58.011	-91.511	7.613	2708.028	2715.641
HSN42	58.011	-105.005	0.576	2708.028	2708.604
HSN43	0.439	-1.137	0.037		21.289
HSN44	58.011	-91.262	3.448		2711.476
HSN45	277.789	-4399.114		13.878	14.049
HSN46	277.789	-4383.301			14.747
HSN47	8.210	-130.009			0.415
HSN48	8.210	-129.407			0.445
HSN49	1.749	-27.688			0.089
HSN50	1.749	-27.693			0.088
HSN51	64.451	-1020.653			3.259
HSN52	64.451	-1018.232			3.349
HSN53	485.667	-7691.087			24.562
HSN54	485.667	-7668.443			
HSN55	0.309	-0.520			
HSN56	5.140	-1.399			0.000
HSN57	5.449	-14.556			1.726
HSN58	0.498	-0.839			
HSN59	8.299	-2.258			
HSN60	8.797	-23.099			
HSN61	0.147	-0.247			
HSN62	2.442	-0.665			-0.019
HSN63	2.589	-6.774			
HSN66	8.299	-1.191			
HSN67	8.797	-22.032			
HSN68	2.442	-0.350			
HSN69	2.589	-6.459			
HSN70	6.804	-15.211			
HSN71	6.804				
HSN72	6.618				
HSN73	6.179				
HSN74 HSN75	6.179 0.000				
	0.000	0.00	0.00	2.000	3.330

CORRIENTE	Flujo kg/s	Entalpia MWe	Exergia Física MWe	Exergia Química MWe	Exergia Total MWe
HSN76	160.303	-235.402	36.345	7486.739	7523.084
HSN77	88.403	-129.817	20.043	4128.724	4148.768
HSN78	88.403	-109.816	25.201	4128.724	4153.925
HSN79	66.502	-125.090	3.992	3115.979	3119.971
HSN80	66.502	-147.734	0.693	3115.979	3116.672
HSN81	66.502	-147.734	0.693	3115.979	3116.672
HSN82	66.502	-147.734	0.693	3115.979	3116.672
HSN83	52.613	-116.879	0.548	2465.192	2465.740
HSN84	74.184	-117.024	9.735	3462.987	3472.722
HSN86	16.173	-19.650	3.776	754.959	758.734
HSN88	16.173	-25.512	2.122	754.959	757.081

UNIDAD DE HIDRODESULFURACION DE NAFTAS

CORRIENTE	Flujo kg/s	Entalpia MWe	Exergia Física MWe	Exergia Química MWe	Exergia Total MWe
RCN1	58.016	-105.017	1.764	2708.208	2709.972
RCN2	70.660	-128.726	12.391	3446.487	3458.878
RCN3	70.660	-44.272	44.877	3446.487	3491.364
RCN4	70.660	-13.259	62.829	3446.487	3509.315
RCN5	70.660	-13.259	83.409	3691.659	3775.068
RCN6	70.660	-7.039	86.691	3691.659	3778.350
RCN7	70.660	-7.039	86.040	3729.255	3815.295
RCN8	70.660	-1.136	90.305	3729.255	3819.559
RCN9	70.660	-1.136	88.414	3753.926	3842.340
RCN10	70.660	4.428	92.588	3753.926	3846.514
RCN11	70.660	9.567	61.496	3461.245	3522.741
RCN12	70.660	-80.026	19.782	3461.245	3481.026
RCN13	70.660	-90.789	18.636	3461.245	3479.881
RCN14	70.660	-107.352	15.539	·	3476.783
RCN15	18.930	-35.103	14.636		1114.008
RCN16	18.930	-32.554	16.552		1115.924
RCN17	51.729	-72.249	0.388		2365.041
RCN18	51.729	-72.215	0.436		2365.088
RCN19	70.660	-104.768	= *		3478.482
RCN20	70.660	-107.619	16.892		3478.137
RCN21	18.073	-33.890	15.961	1059.442	1075.403
RCN22	4.338	-8.134	3.831	254.266	258.097
RCN23	13.736	-25.757	12.130		817.306
RCN24	52.586	-73.728	0.467	2404.617	2405.084
RCN25	4.338	-5.912	5.592	254.266	259.858
RCN26 RCN27	4.338	-8.209	5.193	254.266	259.460
RCN28	0.168	-0.211	0.004	7.662	7.666
RCN29	4.169 0.572	-7.997	5.167	246.623	251.791
RCN30		-1.097	0.709	33.839	34.548
RCN31	3.597 3.597	-6.900	4.458	212.784	217.242
RCN33	52.586	-5.826 -73.676	5.285	212.784	218.069
RCN34	52.755		0.538	2404.617	2405.155
RCN35	52.755	-73.887 -56.258	0.541	2412.278	2412.819
RCN36	359.263	-5689.343	6.911 0.221	2412.278	2419.189
RCN37	359.263	-5672.781	0.221	17.948	18.169
RCN38	65.391	-1035.546	0.039	17.948	18.835
RCN40	65.391	-1033.695	0.039	3.267 3.267	3.306 3.418
•			41.01	0.201	0.410

CORRIENTE	Flujo kg/s	Entalpia MWe	Exergia Física MWe	Exergia Química MWe	Exergia Total MWe
O TELEDITE	g, 5				
RCN41	110.426	-1748.727	0.068	5.517	5.585
RCN42	0.378	-0.930	0.087	18.777	18.864
RCN43	1.984	-5.216	0.168	96.211	96.379
RCN44	110.426	-1746.430	0.139	5.517	5.655
RCN48	50.393	-40.388	12.481	2297.730	2310.210
RCN49	50.393	-58.017	3.320		2301.050
RCN51	50.393	-58.017	3.212	2297.730	2300.942
RCN52	27.300	-432.324	0.020		1.384
RCN53	27.300	-428.902			1.614
RCN54	22.819	-6.210	0.000		0.000
RCN55	22.819	-3.274			0.482
RCN56	1.370	-2.308			64.716
RCN57	24.189	-60.745			5.256
RCN58	24.189	-63.680	1.138		4.057
RCN59	5.560	-1.513			0.000
RCN60	5.560	-0.798	0.117		0.117
RCN61	0.334	-0.562	0.152	2 15.616	15.768
RCN62	5.894	-14.505	1.034		1.746
RCN63	5.894	-15.220			1.420
RCN64	2.222	-35.192			0.112
RCN65	2.373	-36.910			0.198
RCN66	2.373				0.205
RCN67	2.373	-31.265			2.158
RCN68	2.222				1.171
RCN69	2.222				2.339
RCN70	694.444				0.000
RCN71	694.444				5.950
RCN77	112.967				5178.887
RCN78	62.574				2868.677
RCN80	62.574				
RCN81	1.092				64.978
RCN82	12.644				
RCN83	1.470	-2.978	3 1.04	2 82.765	83.807

Apéndice TRES Lista de Equipo de los Procesos

Apéndice 3 LISTA DE EQUIPOS DE LA UNIDAD DE HIDRODESULFURACIÓN DE NAFTAS

Intercambiadores de Calor

Equipo	Función	Carga Térmica
		Watt
EA-401	Primer precalentador de carga / efluente del reactor	1.427E+07
EA-402	Segundo precalentador de carga / efluente del reactor	3.780E+07
EA-403	Enfriador con agua de la sección de separación a alta presión	6.018E+05
EA-404	Enfriador con agua de la sección de compresión de hidrógeno	1.581E-07
EA-405	Intercambiador proceso-proceso efluente del reactor / líquido de FA-402	3.556E+06
EA-406	Intercambiador proceso-proceso efluente del EA-405 / nafta producto	8.000E+06
EA-407	Enfriador con agua de LPG producto	5.628E+03
EA-408	Condensador parcial de la torre DA-401	2.422E+06
EA-409	Condensador total de la torre DA-402	2.264E+07
PA-401	Precalentamiento de aire del homo BA-401	
PA-402	Precalentamiento de aire del horno BA-402	1.068E+06
PA-403	Precalentamiento de aire del horno BA-403	3.143E+05

Tanques Separadores

Equipo	Función	Temp	Presión
1		°C	bar
FA-401	Tanque de balance de corrientes de alimentación	38.00	3.76
FA-402	Primer separador de la sección de compresión de hidrógeno	43.49	23.35
FA-403	Segundo separador de la sección de compresión de hidrógeno	43.02	22.34
FA-404	Primer separador de la sección de separación de alta presión	143.3	7.19
FA-405	Segundo separador de la sección de separación de alta presión	37.77	6.46
FA-406	Tanque acumulador de reflujo de torre DA-401	46.57	17.49
FA-407	Tanque acumulador de reflujo de torre DA-402	73.23	2.80

Bombas y Compresor

Equipo	Función	Presión
		bar
GA-401	Bomba de carga	37.27
GA-402	Bomba de efluente del primer separador de alta presión	20.33
GA-403	Bomba de efluente del segundo separador de alta presión	20.33
GA-404	Bomba de LPG producto	23.76
GA-405	Bomba de nafta producto	24.26
GA-406	Bomba de reflujo de la torre DA-401	17.49
GA-407	Bomba de reflujo inferior de torre DA-402	3.15
GA-408	Bomba de tanque acumulador de reflujo de torre DA-402	2.82
GA-409	Bomba de reflujo inferior de torre DA-401	17.84
GB-401	Compresor de hidrógeno	35.76

Divisores y Mezcladores

Equipo	Función
DV-401	Divisor de corrientes gaseosas de la sección de compresión de hidrógeno
DV-402	Divisor de reflujo y LPG producto
DV-403	Divisor de corriente de fondo de torre DA-401
DV-404	Divisor de reflujo y pentanos y hexanos producto
DV-405	Divisor de corriente de fondo de torre DA-402
MX-401	Mezclador de corrientes de alimentación
MX-402	Mezclador de corrientes de hidrógeno con nafta
MX-403	Mezclador de corrientes provenientes de los separadores de alta presión
MX-404	Mezclador de corrientes de gas amargo a tratamiento con DEA

Válvula de Expansión

Equipo	Función	Presión
		bar
VX-401	Válvula de expansión de productos de fondos de torre DA- 401	3.08

Hornos a Fuego Directo

Equipo	Función	Temp	Presión
		°C	bar
BA-401	Calentador de carga al reactor	313.0	28.96
BA-402	Rehervidor de torre DA-401	261.7	17.84
BA-403	Rehervidor de torre DA-402	203.2	3.15

Reactor

Equipo	Función	Temp	Presión
		°C	bar
DC-401	Reactor de hidrodesulfuración	319.2	28.96

Columnas de Destilación

Equipo	Función		Temp	Presión		
			°C	bar		
DA-401	Torre desbutanizadora	D	83.38	17.49		
		F	230.4	17.83		
DA-402	Torre desisohexanizadora	D	84.98	2.81		
		F	166.2	3.14		

LISTA DE EQUIPOS DE LA UNIDAD DE REFORMADORA DE NAFTAS

Intercambiadores de Calor

	Intercandiadores de Cazor						
Equipo	Función	Carga					
_		Térmica					
		Watt					
EA-501	Intercambiador carga / efluente del último reactor	1.02E+08					
	Primer enfriador con agua de la sección de purificación de hidrógeno	1.73E+07					
EA-503	Segundo enfriador con agua de la sección de purificación de hidrógeno	2.87E+06					
EA-504	Tercer enfriador con agua de la sección de purificación de hidrógeno	2.87E+06					
EA-505	Precalentador de carga de torre atmosférica con producto de fondos	1.79E+07					
EA-506	Condensador de torre DA-501	2.63E + 06					
1	Enfriador con agua de la nafta reformada producto	1.13E+07					
PA-501	Precalentador de aire del homo BA-501A-D						
PA-502	Precalentador de aire del homo BA-502	7.15E+05					

Tanques Separadores

Equipo	Función	Temp	Presión
		°C	bar
1	Primer separador de la sección de purificación de hidrógeno	35.5	11.8
FA-502	Segundo separador de la sección de purificación de hidrógeno	37.8	
FA-503	Tercer separador de la sección de purificación de hidrógeno	38.0	38.9
FA-504	Tanque acumulador de reflujo de torre DA-501	147.1	17.2
FA-505	Tanque de balance para generación de vapor		

Bombas v Compresores

Equipo	Función	Presión
		bar
GA-501	Bomba de efluente del FA-501	15.7
GA-502	Bomba de efluente del FA-502	38.0
GA-503	Bomba de efluente de FA-503	147.2
GA-504	Bomba de reflujo inferior de torre DA-501	18.2
GA-505	Bomba de agua a zona de convección del	
	homo BA-501	

GB-501	Compresor centrífugo de hidrógeno del primer		15.7
GB-502	separador FA-501 Compresor de dos etapas de hidrógeno producto	Primera etapa	39.3
	producto	Segunda etapa	68.2

Divisores v Mezcladores

Equipo	Función
DV-501	Divisor de corriente de hidrógeno a recirculación y a GB-502
DV-502	Divisor de corriente de hidrógeno producto
DV-503	Divisor de efluente líquido de la bomba GA-503
DV-504	Divisor de corriente de fondos
MX-501	Mezclador de nafta e hidrógeno
MX-502	Primer mezclador de la sección de purificación de hidrógeno
MX-504	Segundo mezclador de la sección de purificación de hidrógeno

Válvula de Expansión

Equipo	Función	Presión
		bar
VX-501	Válvula de expansión de nafta reformada producto	5.5

Enfriador con Aire

Equipo	Función	Temp	Presión
		°C	bar
	Enfriador con aire de la sección de purificación de	100.0	12.6
	hidrógeno		

Hornos a Fuego Directo

Equipo	Función		Temp	Presión bar
			℃	
	Horno a fuego directo con cuatro secciones de radiación	A	504.0	14.7
		В	504.0	14.1
		C	504.0	13.4
		D	504.0	12.8
BA-502	Rehervidor de torre DA-501		297.6	18.3

Reactores de Reformación

Equipo		Función	Temp	Presión
			℃	bar
DC-501	A	Primer reactor de reformación	490.4	14.7
	В	Segundo reactor de reformación	479.2	13.5
	c	Tercer reactor de reformación	484.1	12.9
	D	Cuarto reactor de reformación	486.3	12.3

Columna de Destilación

Equipo	Función		Temp °C	Presión bar
DA-501	Columna de Estabilización	D F	184.3 269.9	