Universidad Nacional Autónoma de México Facultad de Medicina División de Estudios de Posgrado e Investigación Secretaría de Salud Instituto Nacional de Pediatría

HIPOTIROIDISMO CONGÉNITO: ¿ ES ÚTIL LA DOSIS PONDERAL DE L-TIROXINA UTILIZADA ACTUALMENTE EN EL TRATAMIENTO?

TRABAJO DE INVESTIGACIÓN QUE PRESENTAN

Tax, Jame Strendet Messy, Hendtho

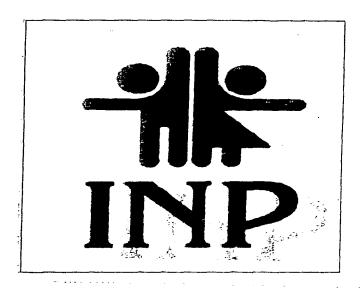
Maria (provide Santanaba).

Dra. Maritza García Flores.

PARA OBTENER EL DIPLOMA DE ESPECIALISTA EN

Endocrinología y Metabolismo Pediátricos.

México D.F.



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TRABAJO DE INVESTIGACIÓN QUE PRESENTAN.

Dra. Maritza Garcia Flores.

PARA OBTENER EL DIPLOMA DE ESPECIALISTA EN

> Endocrimologia y Metabolismo Padiátricos.

HIPOTIROIDISMO CONGENITO: ¿ ES ÚTIL LA DOSIS PONDERAL DE L-TROXÍNA UTILIZADA ACTUALMENTE. EN EL TRATAMIENTO?

And the same conditions

HOJA DE APROBACION

HIPOTIROIDISMO CONGÉNITO: ¿ ES ÚTIL LA DOSIS PONDERAL DE L-TIROXINA UTILIZADA ACTUALMENTE EN EL TRATAMIENTO?

UTILIZADA ACTUALMENTE EN EL TRATAMIENTO?
huteford I mile form
Dr. Silvestre Frenk F. Director General y Profesor Titular del Curso de Pediatria Médica INP
- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
By Francisco Diagrams
Dr. Ernesto Díaz del Castillo Subdirector General de Enseñanza, INP
John Whill
Dr. Luis Heshiki N.
Jefe del Departamento de Enseñanza de Pre y Posgrado, INP
Jad Deler (all Cla.
Dr. Carlos Robles Valdés
Profesor Titular del Curso de Endocrinología y Metabolismo Pediátricos, INP
Dr. Raúl Calzada León utor del Trabajo de Investigación del Servicio de Endocrinología, INP
Dr. Raúl Calzada León utor del Trabajo de Investigación
del Servicio de Endocrinología, INP
Section 1 Contract

INDICE

SECCIÓN	PÁGINA	
Autores		1
Palabras Clave		1
Resumen		1
Summary		4
Introducción		6
Objetivos		11
Material y Método:		12
Análisis Estadístico		16
Resultados		18
Discusión		36
Conclusiones:		40
Bibliografia:		42
ANEXOS		
IBase de datos crudos		50
IIEstadísticas descriptivas		58
IIIRelación de Promedios de Dosis y		66
Niveles de Hormonas		
Agradecimientos		60

Título: Hipotiroidismo congénito: ¿Es útil la dosis ponderal de L-tiroxina utilizada actualmente en el tratamiento?

Autores: Pérez-Rendón JG, García-Flores M, Calzada-León R.

Palabras Clave: Hipotiroidismo congénito: diagnóstico, clasificación, tratamiento farmacológico, fisiopatología, epidemiología, estado bioquímico. Hipertiroidismo iatrógeno Hipotiroidismo primario severo. Estudio comparativo, estudio prospectivo; recién nacido y lactante.

Valores de referencia, tiroxina, trilodotironina en sangre, tirotropina en sangre, tetralodotironina en sangre, tamiz neonatal, función tiroldea, perfil tiroldeo. Levotiroxina, uso terapéutico de levotiroxina, administración y dosis de levotiroxina, efectos adversos. Edad ósea, radiografía de mano, radiografía de rodilla.

Resumen:

La dosis de levotiroxina de 10-15 µg/kg/día, para el tratamiento del hipotiroidismo congénito ha sido cuestionada por el riesgo que existe de ocasionar hipertiroidismo iatrogéno. Por otro lado, hay variantes clínicas con diferente patrón de maduración biológica de los pacientes atribuibles al momento de inicio del padecimiento o la presencia de tejido residual funcionante. **Objetivo:** Evaluar el efecto de la dosis de levotiroxina recomendada en la actualidad, sobre el nivel sérico de las hormonas tiroideas y la edad ósea en diferentes subgrupos de pacientes con hipotiroidismo primario. **Método:** se incluyeron en un estudio prospectivo y comparativo a 56 pacientes eutróficos con hipotiroidismo congénito detectado mediante tamiz neonatal y confirmado posteriormente con perfil tiroideo completo realizado por la técnica de radioinmunoensayo (RIA) para T3, T4, T3L,T4L y ensayo inmunoradiométrico (IRMA) para TSH. Se clasificaron en hipotiroidismo congénito extra o intrauterino de acuerdo a la presencia del núcleo proximal de la tibia y el núcleo distal del fémur en la radiografía de rodilla tomada al momento del diagnóstico o la ausencia de cualquiera de ellos, respectivamente. La presencia de

ambos núcleos corresponde a una edad ósea mayor de 32 semanas y la ausencia de cualquiera de ellos o ambos equivale a una edad menor a la mencionada. Mediante gamagrama tiroideo con Tecnecio 99m se estableció la presencia de nódulo ectópico o atirosis. De acuerdo a estas características los pacientes fueron asignados a alguno de los siguientes 4 grupos: hipotiroidismo congénito extrauterino con atirosis (EA), hipotiroidismo congénito extrauterino con nódulo ectópico (EN), hipotiroidismo congénito intrauterino con atirosis (IA), hipotiroidismo congénito intrauterino con nódulo ectópico (IN). Se compararon los perfiles hormonales y la maduración ósea entre los grupos y con los parámetros poblacionales (valores de referencia) de las mismas variables.

Resultados: La edad promedio al momento de iniciar el tratamiento en los 56 pacientes fue de 41,929 sin diferencias significativas entre los grupos. De estos, 34 cursaron con nódulo ectópico (65.38%) v 22 con atirosis (42.3%). De la muestra estudiada, 38 (73%) pacientes fueron considerados con hipotiroidismo extrauterino y 18 (34.6%) con hipotiroidismo intrauterino. La dosis inicial promedio fue de 12.93 +/-2.02 µg/kg/día (rango de 9-15 µg/kg/día). Los niveles de TSH se normalizaron en los 56 pacientes en menos de 8 semanas. Hubo una diferencia significativa en los niveles de T3, T4, T3L, y T4L entre los pacientes con N y A antes de iniciar el tratamiento (T3N=118.5ng/dl vs T3A 20ng/dL; T4N= 3.92 nmol/L vs T4A=1.5nmol/L, T3L N= 2.5 ng/dL vs T3LA= 0.1ng/dL; T4LN= 0.1ng/dL vs T4LA=0.1ng/dL. (p<.05)). Otras diferencias encontradas en los subgrupos fueron atribuibles a la proporción de pacientes con nódulo ectópico o atirosis que estuvieron en cada uno independientemente de la presencia de hipotiroidismo congénito intra o extrauterino. Al comparar el promedio de las determinaciones hormonales a cada edad y de cada grupo con los valores de referencia máximos aceptados de T3, T3L, T4 y T4L se encontró que los niveles estuvieron significativamente por arriba de esos valores (promedio poblacional) durante todo el seguimiento en los caso de T4 y T4L y no así de T3 y T3L, quizás porque aún no se establece plenamente el proceso de conversión tisular de T4 a T3 lo cuál enmascara el fenómeno. El resto de los niveles de hormonas tiroideas se mantuvieron en rango suprafisiológico en todo el grupo, sin existir una diferencia significativa entre los 4 grupos de pacientes (EA, EN, IA, IN) durante el resto del seguimiento.

Hay correlación entre la modificación de la dosis y la modificación de los niveles hormonales. La mejor correlación fue para T4 con una r≂-0.807 con una p de 0.0008564 en todo el grupo. Los niveles más elevados correspondieron a T4 y T4L. Conclusiones: No se aprecian diferencias estadísticamente significativas entre los grupos de estudio con hipotiroidismo congénito. Sin embargo los niveles séricos de T4 y T4L se mantuvieron en rangos suprafisiológicos a lo largo de los 2 años de tratamiento a pesar de un porcentaje promedio de reducción de la dosis de 56.2%.

Se observó una correlación significativa entre el porcentaje de modificación de la dosis con el nivel de T4 evidenciado al calcular el coeficiente de correlación de Pearson de los promedios de hormonas de todos los pacientes incluidos en el estudio (r= 0.807, p = 0.0008564).

El hipotiroidismo congénito secundario a NSL inicia con niveles más altos de hormonas tiroideas que los atiróticos probablemente por un efecto del tejido residual, que se anula al iniciar el tratamiento con levotiroxina. Al comparar los pacientes con hipotiroidismo extrauterino (edad ósea en rodilla al momento del diagnóstico >de 32 semanas) con aquellos con hipotiroidismo congénito intrauterino (edad ósea < 32 semanas) no se encontraron diferencias estadísticamente significativas.

Después de iniciado el tratamiento la TSH se normaliza en menos de 8 semanas en todos los grupos (56 semanas).

Respecto a la frecuencia de determinaciones por arriba del valor normal de las hormonas tiroideas se observó un patrón de comportamiento diferente entre los grupos con respecto a T4 y T4L. Debido a lo reducido de los grupos no se pudo establecer una diferencia estadísticamente significativa sobre estas diferencias. Como se puede apreciar al parecer hay una mayor frecuencia de determinaciones suprafisiológicas para T4 y T4L después de los 10 meses y hasta

los 18 meses de edad en los pacientes del grupo. IA que no se observa en los pacientes con EA, EN e IN en quienes tiende a disminuir.

La importancia clínica de mantener niveles significativamente mayores de los esperados de hormonas tiroideas (suprafisiológicos) está por definirse en investigaciones posteriores.

Title: Congenital hypothyroidism.- Is Currently recomended levothyroxine dose adecquate?

Key words: Congenital hypothyroidism, primary hypothyroidism,- classiffication, severe, cretinism, thyroid hormones, iatrogenic hyperhtyroidism, levothyroxine.*Hypothyroidism-congenital; Congenital hypothyroidism: biochemical status. *Hypothyroidism-epidemiology.

Comparative-Study; Follow-Up-Studies;

Reference-values; Thyrotropin-blood; Thyroxine-blood Hypothyroidism-diagnosis; Human, Infant,-Newborn; Hypothyroidism-radionuclide-imaging; *Hypothyroidism-classification; Neonatal-Screening; *Hypothyroidism-physiopathology Child-; Infant-; Thyroid-Function-Tests; Treatment Outcome; *Hypothyroidism-congenital; *Hypothyroidism-drug-therapy; *Levothyroxine-administration-and-dosage, Levothyroxine-Therapeutic-use; Thyrotropin-blood; Thyroxine-blood; Trijodothyronine-blood; Thyroid-Function-Tests.

Age-Determination-by-Skeleton; Hand-radiography; Knee-radiography, bone age

Summary: Currently recomended levothyroxine dose from 10 to 15 µg/kg/day for treatment of congenital hypothyroidism has been questioned because there is suspicion that may carry some risk to produce iatrogenic hyperthyroidism. On other hand, there are some clinical variants that have different outcome and biological maturation profiles may be related with disease onset and presence of residual thyroid tissue. In order to evaluate the effect of currently recomended dose of levothyroxine on serum thyroid hormone levels and skeletal maturation we included 56 patients with primary hipothyroidism detected by the neonatal screening program at National Institute of Pediatrics at México City between March 1992 to July 1996. All patients were

prospectively followed for 24 months and asigned to one of four following groups: extrauterine congential hypothyroidism with thyroid agenesis (EA), extrauterine congenital hypothyroidism with ectopic gland (EE), intrauterine congenital hypothyroidism with ectopic gland (IE) and intrauterine congenital hypothyroidism with thyroid agenesis (IA). Patients were asigned to each group accordly with thyroid scan with Tc 99m and presence or absence of ossifcation nuclei at knee radiography taked at diagnosis moment. If the baby had evidence of distal femoral or proximal tibial ossification nuclei it was catalogued as extrauterine or intrauterine if there was abscence of one or two of them. Serum levels of total T4, free T4, total T3, free T3 and thyrotropin were measured at 2 month interval the first year of life and at 3 month interval there after. The former were mesaured with radioimmunoassay (IRA) and the last with immunoradiometric assay (IRMA). Bone age was estimated by same researcher in blind fashion based on hand radiographs (without distinction between left or right hand because patient's did not require it) taked at 6, 12 and 24 months of chronological age. Knee radiographs taked at initial diagnosis were used in order to determine if the patients had intra or extrauterine congenital hypothyroidism variants. Mean age at treatment starting was 41.929 days. Of 56 patients, 34 (65.38%) had ectopic gland and 22 (42.3%) thyroid absence. Accordly with knee radiographs there were 38(73%) classiffied as extrauterine and 18 (34.5%) as intrauterine. Mean sarting dose of levothyroxine was 12.93 +/-2..02 ug/kg/day (range 9 to 15 ug/kg/day). TSH levels were normal before 8 weeks in all patients. There were no differences between the four groups. Also there was no risk associated with one feature with another between the studied groups. However, serum levels of T4 and FT4 were over the normal range trough all the 2 year follow-up interval. This was true even when the starting dose of levothyroxine was reduced about 56.2% after 2 years. There was a good correlation between levothyroxine dose and serum levels of T4 evidenced by Pearson's Correlation Coefficient (r= 0.807, p value = 0.0008564).

Patients with congenital hypothyroidism with ectopic gland had significantly high level of thyroid hormones before starting replacement therapy with levothyroxine. This differences were eliminated after beginning treatment in four groups. There were no intergroup differences.

Clinical outcome and long term effect of high thyroid hormone levels remains to be determined in further studies including clinical evaluation.

INTRODUCCIÓN:

El hipotiroidismo congénito (HC) se caracteriza por producción insuficiente de hormonas tiroideas, debido a diferentes causas como agenesia, disgenesia-hipoplasia o deficiencia enzimática de la glándula tiroides (1) (cuadro 1).

Cuadro 1
TIPOS DE HIPOTIROIDISMO CONGÉNITO (2)

Tipo		Permanente (89%)		isitorio 1%)
Causa	Agenesia o atirosis Nódulo ectópico Bocio Glándula normal	25% 50% 18% 7%	Inducido por medicamento (PTU*), amrinona étc Anticuerpos + Desconocida	25% 13% 62%

^{*}Propiltiouracilo

Tradicionalmente se clasifica en base a la imagen gamagráfica resultante de la captación de un radiotrazador (Tecnecio 99m), considerándose como atirosis cuando no se visualiza concentración tisular (habiendo captación del isótopo a nivel de las glándulas parótidas) y como nódulo ectópico cuando se observa una estructura única, medial y por lo general localizada en la región sublingual o alta del cuello (1,3). (Fig. 1 y 2)

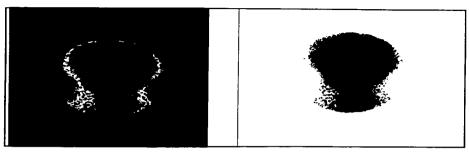


Figura 1: Gamagrama tiroideo con Tecnecio 99m de un paciente en el que no se aprecia lejido tiroideo funcionante (atirosis).

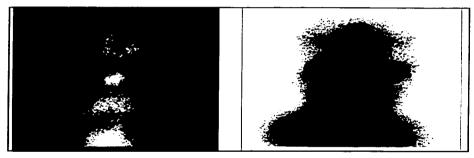


Figura 2: Gamagrama tiroideo con Tecnecio 99m de un paciente en el que se aprecia tejido tiroideo funcional de tamaño y localización anormales (nódulo sublingual único)

Esta clasificación se utilizaba con fines pronósticos de desarrollo neurológico, ya que los pacientes con nódulo ectópico con frecuencia alcanzan puntuaciones más altas en la evaluación del coeficiente intelectual (CI) que aquéllos con atirosis, lo que podría ser reflejo indirecto de alguna diferencia en la severidad del hipotiroidismo de manera que los pacientes con atirosis están más afectados. (1)

Con el inicio del programa de tamiz neonatal ha cambiado radicalmente el momento del diagnóstico y por lo tanto el inicio del tratamiento substitutivo de hormonas tiroideas ha sido más precoz y oportuno, lo que ha motivado a realizar más estudios para evaluar la utilidad del mismo en la prevención del retraso mental al identificar distintos subgrupos de pacientes. (1.3)

En la actualidad se sabe que es necesario el aporte materno de hormonas tiroideas hacia el producto durante toda la gestación siendo que en el primer trimestre, el feto las obtiene el 100% de la concentración de hormonas tiroideas a través de la placenta y aún al término del embarazo, produce por sí mismo sólo 30-40% de sus requerimientos, por lo que la unidad placentaria tiene que compensar, permitiendo el paso de suficiente hormona para que los niveles séricos fetales estén acordes con las necesidades orgánicas. (1, 4)

El paciente con HC, es incapaz de producir la cantidad necesaria de hormonas tiroideas desde la segunda mitad de la gestación por lo que la unidad materno-placentaria realiza un proceso de ajuste que favorece una mayor transferencia hormonal, manteniendo un estado de "eutiroxinemia transgestacional". Este fenómeno posterga el cuadro clínico de la deficiencia hormonal hasta el momento del nacimiento, en cuyo caso se denomina hipotiroidismo congénito extrauterino (HCE). Sin embargo, cuando la madre cursa con déficit de hormonas tiroideas durante el embarazo ("hipotiroidismo materno transgestacional"), o la compensación efectuada por la unidad materno-placentaria es insuficiente (hipotiroxinemia transgestacional) el resultado final es una deficiencia neta de hormonas tiroideas durante el desarrollo que se manifestará "in útero", situación que se denomina hipotiroidismo congénito intrauterino (HCI), (4,5)

En baso a lo anterior parece evidente que en la actualidad es tan importante definir si el HC es de inicio intrauterino o extrauterino, como si existe nódulo ectópico o atirosis ya que de estos criterios puede mejorar substancialmente la posibilidad de definir el pronóstico neurológico y quizás influya en los lineamientos terapéuticos de manera que el tratamiento se pueda individualizar en una forma mas racional y precisa. Esta diferencia se explica por una

fisiopatología distinta de la enfermedad. Sin embargo, desde el punto de vista clínico, resulta difficil diferenciar uno de otro.

Aunque no se ha determinado un cuadro clínico patognomonico de hipotiroidismo intrauterino o extrauterino, existe un subgrupo de pacientes que muestran una edad ósea (determinada mediante radiografía de rodilla) menor a la esperada para la edad gestacional con niveles séricos de tiroxina menores a 2 µg/dl en los que a pesar del tratamiento inicial temprano (en los primeros 15 días de vida postnatal), el coeficiente de desarrollo intelectual (CI) a los 4 y 6 años es menor de 90. A este conjunto de pacientes se les cataloga como hipotiroideos congenitos intrauterinos. Es posible que estos pacientes requieran dosis substitutivas mayores de L-tiroxina durante el primer año de vida para mejorar su pronostico neurológico e intelectual. (5. 5) ver Fig. 3.1

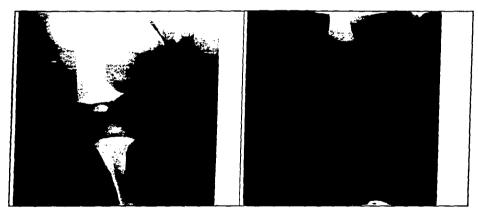


Figura 3: a) radiografia de un paciente con hipotiroidismo congenito extrauterino (HCE) se observan los núcleos proximal de la tibia y distal del femur al nacimento (> 32 semanas) b) radiografia de rodilla de un paciente con hipotiroidismo congenito intrauterino en la que no se observa núcleo de osficiación alguno (HCI)

Dubuis et. al. hacen una distinción entre aquellos pacientes con edad ósea en rodilla acorde a la edad cronológica al nacimiento a quienes cataloga como hipotiroidismo moderado de aquéllos con edad ósea al nacimiento retrasada calificados como hipotiroidismo severo. Como puede observarse se trata de los mismos criterios de clasificación. La validez de esta terminología esta en función de que se demuestre que una característica conlleva un pronóstico diferente en los pacientes.(7)

No existe consenso en torno a la dosis ideal de levotiroxina que se debe emplear en estos pacientes (8). El concepto de "dosis ponderat" de la hormona tiroldea para el manejo substitutivo del HC ha tenido cambios importantes con el transcurso del tiempo. La dosis y el tipo de hormonas administradas han ido cambiando de un programa y de un país a otro (8, 6,9,10). Durante las dos décadas anteriores las dosis se fueron incrementando en forma gradual desde 6 a 8 µg/kg hasta 7 a 9 µg/kg y luego a 8 a 10 µg/kg y en fecha mas reciente 10 a 15 µg/kg de acuerdo con la Academia Americana de Pediatría en concordanca con Fisher y Foley. (6, 11,12, 13). El argumento que apoya este concepto es que la dosis elevada de hormonas tiroideas en el tratamiento de los pacientes con HC mejora su desarrollo neurológico e incluso revierte los efectos del hipotiroldismo previo al tratamiento. A la fecha no hay estudios que demuestren, en forma categórica, el efecto benéfico de diferentes dosis de levotiroxina sobre el desarrollo intelectual final de todos los pacientes con hipotiroidismo primario (6). Otros investigadores sugieren que deben tomarse en cuenta otros parámetros como la severidad del hipotiroidismo (para lo que no se cuenta con criterios uniformes) y el momento de inicio del tratamiento que podrían ser aún mas importantes en el pronóstico neurológico de estos niños que la dosis de levotiroxina misma (7). La tendencia a aumentar la dosis recomendada de hormona tiroidea en los diferentes países ha continuado a pesar de haber reportes de pacientes detectados por tamiz, con un desarrollo neurológico normal tratados con dosis menores de la hormona (6.9.10). Tradicionalmente se recomendaba una dosis terapéutica substitutiva de 10 µg/k/d/a durante el primer año de vida, pero ésta normaliza el nivel sérico de tiroxina en un lapso de 8-10 semanas,

considerado insuficiente para prevenir el retraso mental, por lo que se comenzó a utilizar una dosis de 15 µg/k/día que ha permitido alcanzar niveles fisiológicos de tiroxina sérica en 4-6 semanas, es decir, antes de los 45 días de vida extrauterina, punto al parecer crítico para prevenir el retraso mental. Con este aporte el 35% de los pacientes presentan niveles séricos que sobrepasan el límite superior descrito como fisiológico en la literatura tanto de tiroxina total como de tiroxina libre en sangre entre los 3 y 6 meses de edad así como taquicardia, diaforesis, velocidad de crecimiento acelerada y cierre prematuro de la fontanela anterior (6,9,10,8,14,15,16). Incluso algunos investigadores reportan como anecdótica la presencia de edad ósea adelantada en un subgrupo de pacientes (2). También se ha descrito que los niveles hormonales necesarios para lograr una utilización óptima de la hormona a nivel neuronal quizás deban ser más altas de lo previamente descrito (14-16 nmol/L de T4). Esto se debe a que el mayor aprovechamiento intraneuronal de hormonas tiroideas es a partir de T4, la cual se convierte a T3 una vez dentro de la neurona. Es obvio que esta idea sólo toma en cuenta el aspecto neurológico sin tomar en cuenta los demás órganos y sistemas.

Además, existen reportes de pacientes con una evolución diferente en quienes la administración de una dosis similar de L-tiroxina durante el primer año está asociada a elevación de TSH hasta en el 52% de los casos, debiéndose asumir que se está proporcionando una sustitución subóptima, lo que puede ocasionar un desarrollo psicomotriz menor a la capacidad genética del paciente. (10.17)

Parece entonces que el ajuste de la dosis ponderal debe realizarse en base a los niveles séricos de tiroxina total, tiroxina libre y TSH revisando al paciente cada 2 meses durante el primer año de vida, para mantener los niveles hormonales en rangos suficientes para permitir la conversión intraneuronal de T4 a T3 y como consecuencia la TSH inhibida.(18,19,20,21,22). De hecho la mayor parte de los autores coincide en utilizar los niveles de T4 o las determinaciones cuantitativas de TSH para vigilar la respuesta la tratamiento pero no hay un consenso al respecto(16, 23,3). Debe considerarse que los neonatos requieren dosis mayores que los

lactantes para lograr estas metas, por lo que frecuentemente la dosis administrada por kilogramo de peso, disminuye conforme progresa la edad, debido en parte a la maduración del tirotropo hipofisiario (18,19,20,21,22)

Por último, en el subgrupo denominado hipotiroidismo congénito intrauterino es probable que la dosis de levotiroxina deba ser diferente, que la normalización de tiroxina total y tiroxina libre así como la inhibición de TSH se realice en un lapso distinto y que la progresión de la edad ósea y la velocidad de crecimiento a un ritmo mayor del habitual represente un evento fisiológico (crecimiento de recuperación) y no un efecto sobresubstitución hormonal pero los estudios al respecto no son claros (14,24,25).

OBJETIVO:

Comparar el perfil tiroideo y el patrón de maduración ósea de los pacientes con hipotiroidismo congénito intrauterino con nódulo ectópico (IN), hipotiroidismo congénito intrauterino con atirosis (IA), hipotiroidismo congénito extrauterino con nódulo ectópico (EN) e hipotiroidismo congénito extrauterino con atirosis (EA), durante el lapso de tratamiento de 2 años.

Correlacionar el perfil tiroideo con las dosis administradas.

Investigar la relación entre el nivel de hormonas tiroideas durante el tratamiento con la edad ósea.

Establecer el tiempo que transcurre para la normalización de TSH, después de iniciado el tratamiento.

MATERIAL Y MÉTODO:

Con el propósito de evaluar el efecto de la dosis de levotiroxina recomendada en los niveles séricos de hormonas tiroideas y en la edad ósea, se incluyeron en un estudio prospectivo y longitudinal a 56 pacientes, seleccionados entre 100 pacientes enrolados en el programa de

hipotiroidismo congénito detectado por tamiz neonatal que se lleva a cabo en el Instituto Nacional de Pediatría de la Ciudad de México, México. Los pacientes fueron captados entre Marzo de 1992 a Julio de 1996. Los pacientes incluidos eran eutróficos tanto para peso como para talla con hipotiroidismo congénito detectado mediante tamiz neonatal y confirmado posteriormente mediante la determinación de perfil tiroideo completo que incluyó la medición de T3, T4, T31, T41 (por la técnica de radioinmunoensayo o RIA) y TSH (por ensayo nmunoradiométrico o IRMA). Para clasificar a los pacientes se efectuó radiografía de rodilla al nacimiento (o al momento del diagnóstico) para determinación de la edad ósea (EO) por el método de Pyle(26). Se consideró hipotiroidismo de inicio intrauterino (HIU) si la EO al momento del diagnóstico estaba retrasada (< 32 semanas), es decir, a la ausencia del núcleo proximal de la tibia y/o el núcleo distal del fémur; e hipotiroidismo de inicio extrauterino (HEU) a la presencia de ambos núcleos. Para su estudio se formaron 4 grupos de acuerdo a la siguiente distribución

Cuadro 2
GRUPOS DE COMPARACIÓN SEGÚN VARIEDAD DE HIPOTIROIDISMO CONGÉNITO.

Entidad	Abreviatura	Grupo
Hipotiroidismo congénito extrauterino con atirosis	EA	T
Hipotiroidismo congénito extrauterino con nódulo ectópico	EN	11
Hipotiroidismo congénito intrauterino con atirosis	IA	111
Hipotiroidismo congénito intrauterino con nódulo ectópico	Z	IV_

Se inició tratamiento con levotiroxina indicando la toma de la tableta en ayunas y difiriendo la dosis correspondiente al día de la toma de la muestra sanguínea para la determinación del perfil tiroideo.

Se midieron los niveles de hormonas tiroideas cada 2 meses durante el primer año (2,4,6,8,10 y 12 meses) y cada 3 meses durante el 2o, año (15,18, 21 y 24 meses) tomando como patrón de

comparación los niveles de referencia siguientes. T3=130-180 ng/dL, T4= 7-11 μ g/dL, T3L= 1.4-4-4 pg/mL, T4L= 0.8-2.0 ng/dL, TSH= 0.4-4 μ U/mL.

El seguimiento de la edad ósea se realizó de acuerdo al método de Greulich y Pyle en radiografía de mano (27). Se tomaron en cuenta de manera indistinta radiografías de ambas manos, ya que no hay dominancia por el uso preferencial de una de ellas en las edades estudiadas. Se determinó una EO menor de 3 meses a la falta de núcleos de osificación en el carpo, de 3 meses si se evidenciaba el hueso grande, de 6 meses si se encontraban tanto el hueso grande como el hueso ganchoso. Io anterior para ambos sexos. A partir de ese momento se hizo la estimación de acuerdo al sexo (ver Figuras 4 y 5)

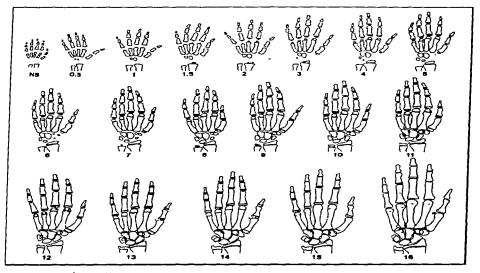


Figura 4: Edad Ósea en Hombres

MASCULINO				
12 meses	3er. metacarpiano			
18 meses	2a, 3a y 4a primeras falanges, 2o y 3er metacarpiano y distal del radio.			
24 meses	20. a 40. metacarpianos 2a a 5a primeras falanges, 2a a 4a- segundas falanges, 3a y 4a terceras falanges.			

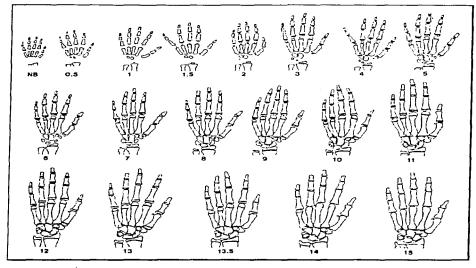


Figura 5: Edad Ósea en Mujeres

FEMENINO				
12 meses	2o, 3o, y 4o. metacarpiano, primeras falanges (1a a 5a) y distal del radio			
18 meses	2a a 4a segundas falanges			
24 meses	2o a 5o metacarpianos, 2a. a 5a primeras falanges, 2a a 4a 2as. falanges, 2a a 4a terceras falanges.			

CRITERIOS DE EXCLUSIÓN:

Pacientes que hayan iniciado tratamiento fuera del INP, prematuros o con peso/talla menores a los esperados para la edad gestacional y/o datos sugestivos de retraso en el crecimiento intrauterino. Además se excluyeron los pacientes con enfermedad crónica o padecimiento agregado de cualquier índole de una duración de más de 2 semanas, incluyendo aquéllos con otras malformaciones congénitas y desnutrición de cualquier causa y pacientes con dishormonogénesis.

CRITERIOS DE ELIMINACIÓN:

Pacientes que durante el estudio hayan suspendido la ingesta de L-tiroxina por más de 3 días o que hayan presentado vómito inmediato a la toma del medicamento, o bien que no lo hayan ingerido en ayunas en el mismo lapso. También se eliminaron los pacientes que durante el estudio recibieron otro medicamento diferente a L-tiroxina por más de dos semanas, a excepción de antibióticos, antigripales o antidiarreicos, así como aquéllos que desarrollaron cualquier enfermedad con una duración mayor de 2 semanas.

ANÁLISIS ESTADÍSTICO:

De la base de datos global (Anexo 1) Se obtuvieron los valores de estadística descriptiva (medidas de tendencia central y dispersión) de los valores hormonales (T3,T4, T3L,T4L, TSH), dosis de L-tiroxina y edad de inicio del tratamiento de cada uno de los 4 grupos de pacientes (EA, EN, IA e IN) en cada consulta (inicial y a los 2, 4, 6, 8, 10, 15, 18, 21 y 24 meses) (Anexo 2). Para investigar si había diferencia significativa entre los grupos respecto perfiles hormonales, edad de inicio del tratamiento y dosis antes y durante el tratamiento substitutivo con levotiroxina se aplicaron pruebas estadísticas comparativas no paramétricas para muestras independientes

(U de Mann-Whitney o prueba de tino pareada con razón de varianzas según el caso) tomando como nivel de significancia un valor de p < 0.05 (intervalo de confianza del 95%).

Las comparaciones efectuadas fueron las que se señalan a continuación:

Cuadro 3
RELACIÓN DE COMPARACIONES EFECTUADAS ENTRE LOS GRUPOS DE ESTUDIO.

Extrauterino	Intrauterino
Nódulo Ectópico	Atirosis
Extrauterino con Atirosis	Extrauterino con Nódulo
Extrauterino con Atirosis	Intrauterino con Atirosis
Extrauterino con Atirosis	Intrauterino con Nódulo Ectópico
Extrauterino con Nódulo Ectópico	Intrauterino con Atirosis
Extrauterino con Nódulo Ectópico	Intrauterino con Nódulo Ectópico
Intrauterino con Atirosis	Intrauterino con Nódulo Ectópico

Se compararon los promedios de nivel sérico de T3, T3L, T4 y T4L de los diferentes grupos (promedio muestral) con los valores de referencia (promedio poblacional) mediante t de Student utilizándose también como valor de p el que fuera < 0.05 para establecer cuál era el comportamiento bioquímico de los pacientes estudiados y determinar si se encontraban en rangos esperados o suprafisiológicos.

Respecto a la edad ósea, se procedió a calcular promedio y desviación estándar del incremento observado en la maduración ósea de los 6 a las 12 meses y de los 12 a los 24 meses entre los 4 grupos. Estos valores fueron contrastados con los valores de referencia poblacionales según Pyle y Gruelich Pyle (27). Se calculó la diferencia del promedio de edad ósea esperado para la edad cronológica y se comparó con un rango ± 2 DS, de los valores correspondientes en la

población general (para una edad ósea acorde con la edad cronológica) de acuerdo con los siguientes criterios: ± 3 meses para el primer año y ± 6 meses a partir de esa edad cronológica. También, se procedió a calcular la frecuencia de determinaciones en rango suprafisiológico de T3, T3L,T4 y T4L en cada grupo y en cada visita de seguimiento.

El análisis estadístico se realizó con el auxilio de los programas: Epi Info Versión 5.01 - Octubre 1990 (Centers for Disease Control, Atlanta, Georgia, EU y Organización Mundial de la Salud, Génova Suiza), True Epistat (por Gustafson TL, Epistat Services, 1989) y Primer on Biostatystics (por McGraw-Hill, Inc. Version 1.0, 1988).

RESULTADOS:

De un total de 100 pacientes captados entre Marzo de 1992 y Julio de 1996 se incluyeron un total de 56 pacientes que cumplieron con los requisitos de ingreso al proyecto. La edad inicial promedio fue de 41.929 días (rango de 1 a 100 días) con una relación de sexos de 2:1. Los niveles hormonales iniciales en los 56 pacientes fueron de T4= 2,723; T4L=0,381; T3=26,419; T3L=1,777. Del total de pacientes, 34 cursaron con nódulo ectópico (65.38%) y 22 con atirosis (42.3%). De la muestra estudiada, 38 (73%) pacientes tuvieron una edad ósea mayor de 32 semanas (extrauterinos) y 18 (34.6%) menor a esta (intrauterino).

Cuadro 4
DISTRIBUCIÓN DE LOS PACIENTES INCLUIDOS EN EL ESTUDIO DENTRO DE LOS 4 GRUPOS
COMPARATIVOS.

Grupo	Hipotiroidismo	No	Proporción		
[EA	15	27%		
11	EN	23	40%		
111	IA	7	13%		
IV.	IN	11	20%		
n = 56					

En la figura 9 se puede observar la distribución porcentual y el número total de pacientes incluidos en cada grupo

DISTRIBUCION DE LA MUESTRA POR SEXO



Figura 6.Distribución de la muestra por sexo

Se comparó la edad de inicio del tratamiento en los cuatro grupos sin encontrarse diferencia estadísticamente significativa alguna. La edad promedio de inicio del tratamiento fue de 41.929 días (rango de 1 a 100 días) con una relación de sexos de 2 1

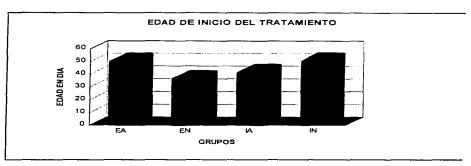


Figura 7: Edad Inicial promedio en los 4 grupos de estudio. Las diferencias No fueron estadisticamente significativas.

Cuadro 5
EDAD. DOSIS Y NIVEL DE TSH INICIAL EN EL TOTAL DE PACIENTES ESTUDIADOS

Variable	Numero	Promedio	Mediana	Desv. Est	Varianza
EI	56	41.929	39.5	417.63	20.436
DI	56	12.75	12	4.627	2.151

ITCLI	F 6	F2 470		107.57	10.000
1130	1 56	1 32.179	1 51	1 187.57	13.696

La dosis inicial promedio fue de 12.93+/-2.02µg/kg/día (rango de 9-15 µg/kg/día). Tampoco hubo diferencias estadísticamente significativas entre la dosis inicial promedio de los grupos.

Cuadro 6
DOSIS INICIAL PROMEDIO EN LOS 4 GRUPOS DE ESTUDIO.

GRUPO	Dosis inicial promedio	Desviación Estándar
EADI	13.680	1.875
ENDI IADI	13.161	2.489
IADI	12.086	1.514
INDI	12.900	1.210

Los niveles de TSH se normalizaron en los 56 pacientes en menos de 8 semanas de edad cronológica y en menos de 4 semanas después de iniciado el tratamiento. De hecho al comparar la edad promedio de inicio del tratamiento con el momento en que la hormona fue suprimida en el 100% de los pacientes transcurrieron 14.07 días en promedio. Este patrón fue similar en los 4 grupos. No hubo diferencias significativas en el nivel inicial de la hormona en los diferentes grupos de pacientes. Es claro que la técnica de medición empleada hasta el momento en el servicio no permite detectar pequeñas diferencias

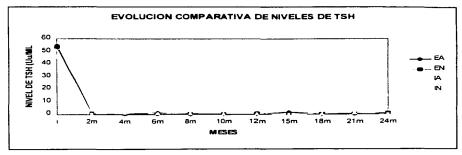


Figura 8: Inhibición de TSH en los 4 grupos de pacientes.

Al comparar el perfil tiroideo, nivel de TSH, dosis y edad de inicio de los pacientes con HE vs HI no se encontraron diferencias estadísticamente significativas.

Sin embargo, cuando se comparó el perfil tiroldeo de los pacientes con nódulo ectópico vs atirosis se encontró una diferencia significativa entre. Jos niveles de T3, T4, T3L, y T4L antes de iniciar el tratamiento (basales) :T3N=118 5ng/dl vs T3A 20 ng/dl; T4N= 3 92 nmol/L vs T4A=1.5 nmol/L, T3L N= 2.5 ng/dl vs T3LA= 0.1 ng/dl; T4LN= 0.1 ng/dl vs T4LA=0.1 ng/dl (p< 05)). Esta diferencia persiste en T4 a los 2 meses. (NSL 15.8 nmol/L vs A 20 ng/dl) y posteriormente se anula.

Cuadro 7
DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN EL
PERFIL TIROIDEO INICIAL (NÓDULO ECTÓPICO VS ATIROSIS

Nivel hormonal	Nódulo ectópico		nal Nódulo ectópico Atirosis		
Ì	Promedio	Mediana	Promedio	Mediana	p (dos colas) (U de Mann-whitney
T3 ng/dl	116.965	111.500	50.482	31.000	0.0006357
T4 nmol/L	3.827	2.200	1.766	0 300	0 0027994
T3L ng/dl	2.119	2.550	0.943	0.130	0.017
T4L ng/dl	0.541	0.335	0.19	0 000	0.027
T42 ng/dl	16.3	924 182	20.0	4 086	0 028

Hubo diferencia en la determinación inicial de T4 entre los pacientes con EA vs EN y EN vs IA, a los 2 meses entre EA vs EN, a los 6 meses entre EA vs EN. EN vs IA, a los 12 meses entre IA e IN y a los 24 meses entre EA y EN. También se encontraron diferencias significativas en T4L entre los 4 grupos al inicio EN vs EA, a los 2 meses EA vs EN, EN vs IA e IA vs IN, a los 12 meses entre EA vs IN, EN vs IA e IA vs IN, así como a los 21 meses entre EN vs IA.

Cuadro 8
DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN EL
PERFIL TIROIDEO ENTRE LOS 4 GRUPOS

	p (dos colas) U de Mann- Whitney	Promedio 1	Promedio 2	Comentario
EAT4 VS ENT4	0.0082505	0.31	2.2	
EAT4L VS ENT4L	0.049	0	0.335	
EAT3 VS ENT3	0.0010306	36.000	120.5	
EAT3 VS INT3	0.013	120.5	23.85	
EAT3L VS ENT3L	0.0043956	0.11	2.6	

EAT42 VS ENT42	0.038	20	16.3	Diferencia atribuible a la diferencia de dosis
EAD2 VS IND2	0.036	12.2	9.1	
EAT4L4 VS ENT4L4	T 0.04	2.8	3.45	
EAT4L4 VS IAT4L4	0.026	2.8	1.95	
ENT4L4 VS IAT4L4	0.011	3.45	1 95	T1.
IAT4L4 VS INT4L4	0.034	1.95	3.5	
EAT46 VS ENT46	0.0011116	18	12	
ENT4L12 VS IAT4L12	0.024	2.6	2.3	
IAT4L12 VS INT4L12	0.019	2.3	3	
EAT424 VS ENT424	0 027	15.55	118	Diferencia atribuible a la diferencia de dosis
DEA24 VS DIA24	0.013	5.545	7 03	

Estas últimas diferencias entre los subgrupos fueron atribuibles a la proporción de pacientes con nódulo ectópico o atirosis que estuvieron en cada uno, independientemente de la presencia de hipotiroidismo congénito intra o extrauterino.

Hay correlación entre la modificación de la dosis y la modificación de los niveles hormonales. La mejor correlación fue para T4 con una r = -0.807 con una p=0.0008564 en todo el grupo. Los niveles más elevados correspondieron a T4 y T4L. En el anexo 3 se muestran los valores promedio de cada hormona y la dosis de levotiroxina correspondiente tal y como se consideró para este análisis.

Cuadro 9

COEFICIENTES DE CORRELACIÓN DE PEARSON (r) OBTENIDOS AL COMPARAR LA DOSIS
ADMINISTRADA DE LEVOTIROXINA CON LAS DIFERENTES DETERMINACIONES HORMONALES
EN EL TOTAL DE PACIENTES OBSERVADOS.

Hormona	Coeficiente de Correlación (r)	Valor de p	
T4	-0.807	0.0008564	
T4L	0.267	0.378	
Т3	-0.629	0.021	
T3L	0.381	0.199	

Al comparar la proporción de pacientes con hipotirodismo congénito intrauterino, extrauterino, con atirosis o nódulo ectópico en toda la muestra, para saber si había alguna asociación entre

estas características, no se detectó ninguna diferencia estadísticamente significativa aún cuando en número absolutos hay una mayor proporción de pacientes con nódulo ectópico entre los pacientes con hipotiroidismo congénito extrauterino

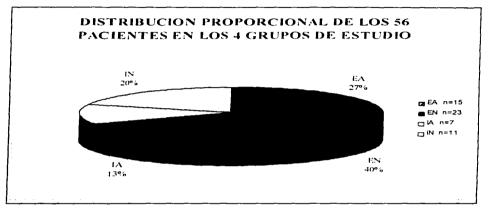


Figura 9: Distribución proporcional de la muestra en los 4 grupos de estudio

Cuadro 10 COMPARACIÓN DE LAS CARACTERÍSTICAS DE LOS PACIENTES EN LA MUESTRA ESTUDIADA (CHI CUADRADA)

	Extrauterino	Intrauterino	Total	
Nodulo	23	11	34	
Atirosis	15	7		
Total	38	18	56	

Chi cuadrada = 0.063, p = 0.80O(dos-colas). Intervalo de confianza de 95%: entre 0.265 y 3.560

Se analizaron los valores de los niveles hormonales encontrados en los 4 grupos estudiados utilizando una prueba de T no pareada para comparar los promedios muestrales con los

poblacionales aceptados. Al comparar el promedio de las determinaciones hormonales a cada edad y cada grupo con los valores de referencia máximos aceptados de T3,T3L,T4 y T4L se encontró que los niveles estuvieron significativamente por arriba de esos valores (promedio poblacional) durante todo el seguimiento en los caso de T4 y T4L y no así de T3 y T3L. El resto de los niveles de hormonas tiroideas tienden a mantenerse en rango suprafisiológico en todo el grupo, sin existir una diferencia significativa entre los 4 grupos de pacientes (EA, IA, EN, IN) durante el resto del seguimiento. El análisis pormenorizado para cada hormona en cada consulta de seguimiento, para los 4 grupos se aprecia en las figuras ** Este mismo análisis se hizo a nivel global con los promedios de cada hormona (una vez iniciado el tratamiento) durante los 24 meses de seguimiento. También en este caso las diferencias fueron estadisticamente significativas (p<0.05).

Cuadro 11
COMPARACIÓN DEL PROMEDIO GLOBAL DE CADA DETERMINACIÓN HORMONAL EN CADA
GRUPO CON EL VALOR DE REFERENCIA MÁXIMO ESPERADO (PROMEDIO POBLACIONAL)
PARA CADA UNA DE ELLAS (t. de student)...

Variable	Promedio muestral	Promedio poblacional	Desviación estándar	p (una cola)	Signifcancia
EAT3L	4.953	4.4	1.354	0.0001816	
EAT3	186.8	180	49.816	0.109	
EAT4L	3.115	2	1.296	< .00000001	1.0
EAT4	14.535	11	3.899	< .00000001	
ENT3L	4.759	4.4	2.503	0.057	
ENT3	180.14	180	62.881	0.11	
ENT4L	4.298	2	11.878	0.016	
ENT4	13.508	11	10.838	0.0034971	
INT3L	4.389	4.4	1.493	0.476	
INT3	165.55	180	57.559	0.043	
INT4L	2.921	2	1.031	< .00000001	
INT4	13.777	11	3.878	< .00000001	

IAT3L	4.738	4.4	1.385	0.065	
IAT3	167.52	180	74.403	0.255	\Box
IAT4L	7.165	2	26.272	0.111	

IATA	145	11	2 702	0.0000004	
	14.3	' '	J./93 [0.00000	1

A nivel general sólo hubo diferencias estadísticamente significativas entre el promedio de T4 y T4L en los 4 grupos. El promedio global de T3 en los 4 grupos no tuvo diferencia estadísticamente significativa con respecto al valor de referencia. En el caso de T3L sólo fue estadísticamente significativo en el grupo EA, mientras que T4L sólo lo fue en los grupos EA, EN e IN pero no así en el grupo de IA. Dado que se comparó el promedio de cada grupo con el nivel máximo de referencia se considero como valor de p al menor a 0.05 (intervalo de confianza del 95%) de una cola.

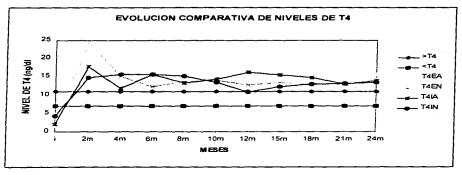


Figura 10: Evolución comparativa de niveles de T4. Note como se mantienen por arriba de los valores de referencia.

Cuadro 12 COMPARACIÓN DEL PROMEDIO DE T4 A CADA EDAD Y EN CADA GRUPO CON EL VALOR DE REFERENCIA MÁXIMO.

Variable	Promedio	Desviación	Valor de p	Significancia
		estándar	(una cola)	
EAT41	1 668	3.227	0 0000012	
EAT42	20.36	0 59	0 0000019	
EAT44	15.036	4.789	0 009472	
EAT46	17.409	2.862	0 0000112	
EAT48	14 391	3.286	0 0032592	•
EAT410	13 457	3 04	0 038	
EAT412	12.29	3.354	0 127	
EAT415	12.525	3 058	0 101	
EAT418	12.7	2.471	0 076	
EAT421	14.12	2.906	0 037	
EAT424	15.633	3 581	0 012	

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
ENT4I	3.696	4.028	0.0000014	
ENT42	24.55	35.424	0.117	
ENT44	15.012	3 676	0 0001818	
ENT3L4	4.244	1.785	0.366	
ENT46	12.344	5.173	0.143	
ENT48	13.75	3.703	0.022	
ENT410	14.086	2.875	0 015	
ENT412	12.653	3.583	0.03	
ENT415	13.45	4.207	0.049	
ENT418	12.675	2.549	0 053	
ENT421	12.99	2.512	0.017	
ENT424	10.282	4.883	0 318	

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
IAT4I	2.075	4.003	0.0013995	
IAT42	17.9	2.816	0.026	
IAT44	11.8	5.696	0.399	
IAT46	15.65	3.775	0.045	
IAT48	13.24	2.538	0.06	
IAT410	14,333	1.973	0.05	
IAT412	16.3	5.789	0.055	

IAT415	15.425	2.347	0.016	
IAT418	14.767	4.535	0.143	
IAT421	13.02	1.835	0.035	
IAT424	13.867	5.263	0.223	
Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
INT4I	4.183	4.354	0.0003953	
INT42	14.775	6.044	0.15	
INT44	15.689	3.468	0.0018272	
INT46	15.612	3.322	0.002848	
INT48	15.162	4.759	0.021	
INT410	13.511	4.672	0.073	
INT412	10.88	3.583	0.459	
INT415	12.22	4.028	0.225	
INT418	13.02	3.12	0.111	
INT421	13.2	2.092	0.025	
INT424	13.387	2.91	0.027	

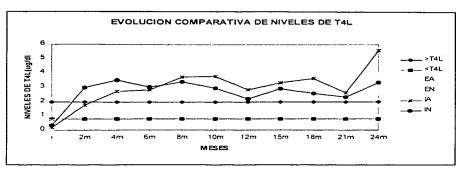


Figura 11: Evolución comparativa de niveles de T4L. Note como se mantienen por arriba de los valores de referencia.

Cuadro 13 COMPARACIÓN DEL PROMEDIO DE T4L A CADA EDAD Y EN CADA GRUPO CON EL VALOR DE REFERENCIA MÁXIMO.

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
EAT4LI	0	0	•	
EAT4L2	3.36	1.636	0.068	
EAT4L4	2.855	0.47	0.0000633	
EAT4L6	3.555	0.619	0.0000041	
EAT4L8	2.964	0.85	0.0018614	
EAT4L10	3.029	1.211	0.033	
EAT4L12	2.82	0.79	0.0047447	
EAT4L15	2.6	0.513	0.0064702	
EAT4L18	4.267	3.707	0.097	
EAT4L21	3.26	1.322	0.05	
EAT4L24	3.2	0.834	0.0084297	

Variable	Promedio	Desviación	Valor de p	Significancia
L		estándar	(una cola)	
ENT4L	0.666	1.171	0.0028662	
ENT4L2	4.65	3.558	0.021	
ENT4L4	3.369	0.854	0.0000058	

ENT4L6	3.173	1.035	0.000309
ENT4L8	3	0.669	0.0010216
ENT4L10	3.3	1.328	0.021
ENT4L12	3 305	2.204	0.0094012
ENT4L15	2.76	0.873	0.011
ENT4L18	2 7	0.535	0.0038071
ENT4L21	4 24	3.325	0 031
ENT4L24	16.01	41.818	0.159

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
IAT4LI	0.19	0.425	0.000339	
IAT4L2	2.533	0.503	0.104	
IAT4L4	1.77	1.017	0.341	
IAT4L6	2.752	1.793	0.231	
IAT4L8	2.86	1.146	0.084	
IAT4L10	3.767	0.808	0.032	
IAT4L12	3.78	1.477	0.027	
IAT4L15	2.85	0.37	0.0096646	
IAT4L18	3.333	1.201	0.097	
IAT4L21	36.3	74.185	0.18	
IAT4L24	2.633	1.15	0.22	

Variable	Promedio	Desviación	Valor de p	Significancia
	l	estándar	(una cola)	
INT4LI	0.332	0.398	0.0000753	
INT4L2	3	0.648	0.027	
INT4L4	3.511	1.159	0.0022376	
INT4L6	3.05	1.125	0.017	
INT4L8	3.414	1.142	0.0084553	
INT4L10	2.977	1.385	0.034	
INT4L12	2.21	0.603	0.15	
INT4L15	2.94	0.725	0.0069095	
INT4L18	2.6	0.943	0.114	
INT4L21	2.34	0.483	0.095	
INT4L24	3.337	1.156	0.0068208	

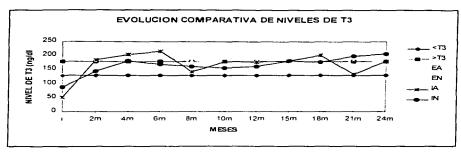


Figura 12: Evolución comparativa de niveles de T3L.

Cuadro 14
COMPARACIÓN DEL PROMEDIO DE T3 A CADA EDAD Y EN CADA GRUPO CON EL VALOR DE REFERENCIA MÁXIMO.

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
EAT3I	50.027	45.466	0.0000013	
EAT32	185.6	72.092	0.435	
EAT34	187.73	42.441	0.28	
EAT36	200.27	52.582	0.115	
EAT38	181.64	38.087	0.021	
EAT310	177	55.636	0.168	
EAT312	183.8	48.689	0.405	
EAT315	177.13	46.169	0.433	
EAT318	187.33	74.08	0.409	
EAT321	199	39.287	0.17	
EAT324	198.67	67.417	0.264	

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
ENT31	135	64.962	0.0071369	
ENT32	224	139.81	0.186	
ENT34	201	55.257	0.068	
ENT36	198.29	56.665	0.101	
ENT38	175	45.874	0.369	

ENT310 175.43 60.221 0.424 ENT312 187.11 53.371 0.284 ENT315 201.1 44.988 0.086 ENT318 155.23 44.972 0.082 ENT321 183.7 35.459 0.015 ENT321 176.7 50.912 0.421 Variable Promedio Desviación Valor de p (una cola) IAT31 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104 IAT310 178.67 24.028 0.466					
ENT315 201.1 44.988 0.086 ENT318 155.23 44.972 0.082 ENT321 183.7 35.459 0.015 ENT324 176.7 50.912 0.421 Variable Promedio Desviación valor de p (una cola) IAT3I 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	ENT310	175.43	60.221	0.424	
ENT318 155 23 44 972 0.082 ENT321 183.7 35.459 0.015 ENT324 176.7 50.912 0.421 Variable Promedio Desviación estándar (una cola) IAT3I 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214 75 47.141 0.118 IAT38 143.26 54.676 0.104	ENT312	187.11	53.371	0.284	
ENT321 183.7 35.459 0.015 ENT324 176.7 50.912 0.421 Variable Promedio Desviación (una cola) IAT3I 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	ENT315	201.1	44.988	0.086	
ENT324 176.7 50.912 0.421 Variable Promedio Desviación Valor de p estándar (una cola) IAT31 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	ENT318	155.23	44.972	0.082	
Variable Promedio Desviación estándar Valor de p (una cola) Significancia IAT3I 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	ENT321	183.7	35.459	0.015	
estándar (una cola) IAT3I 51.967 79.626 0.0054874 IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	ENT324	176.7	50.912	0.421	
IAT3	Variable	Promedio	Desviación	Valor de p	Significancia
IAT32 186 19.468 0.323 IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	l		estándar	(una cola)	
IAT34 205 39.741 0.149 IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	IAT3I	51.967	79.626	0.0054874	
IAT36 214.75 47.141 0.118 IAT38 143.26 54.676 0.104	IAT32	186	19.468	0.323	
IAT38 143.26 54.676 0.104	IAT34	205	39.741	0.149	
	IAT36	214.75	47.141	0.118	
IAT310 178.67 24.028 0.466	IAT38	143.26	54.676	0.104	
	IAT310	178.67	24.028	0.466	
IAT312 177 38.955 0.436	IAT312	177	38.955	0.436	
IAT315 181.75 29.971 0.457	IAT315	181.75	29.971	0.457	
IAT318 202 90.089 0.357	IAT318	202	90.089	0.357	
IAT321 134 36 82 642 0.142	IAT321	134.36	82.642	0.142	
IAT324 180.33 40.501 0.495	IAT324	180.33	40.501	0.495	

Variable	Promedio	Desviación	Valor de p	Significancia
1	1	estándar	(una cola)	= 13.1
INT3I	88.218	63.14	0.0006482	
INT32	145	40.108	0.09	
INT34	180.7	59.161	0.486	
INT36	169.5	52.454	0.294	
INT38	162	51.222	0.177	
INT310	155.78	39.48	0.051	
INT312	161.7	37.736	0.08	
INT315	181.7	66.055	0.474	
INT318	177	14.283	0.332	
INT321	198.3	66.262	0.264	
INT324	205.75	34.25	0.036	

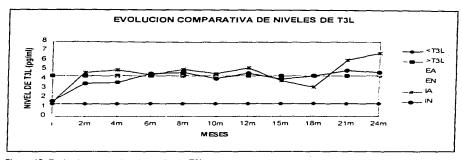


Figura 13: Evolución comparativa de niveles de T3L.

Cuadro 15

COMPARACIÓN DEL PROMEDIO DE T3L A CADA EDAD Y EN CADA GRUPO CON EL VALOR DE REFERENCIA MÁXIMO.

Variable	Promedio	Desviación	Valor de p	Significancia
L	<u> </u>	estándar	(una cola)	
EAT3LI	0.1	0.056	0.0000279	
EAT3L2	5	0.93	0.111	
EAT3L4	4.945	1.672	0.152	
EAT3L6	5.145	1.553	0.071	
EAT3L8	5.4	1.934	0.059	
EAT3L10	4.3	0.963	0.396	
EAT3L12	4.85	0.987	0.092	
EAT3L15	4.912	0.72	0.042	
EAT3L18	5.3	1.442	0.093	
EAT3L21	5.3	1.208	0.086	
EAT3L24	4.633	1.136	0.318	

Variable	Promedio	Desviación estándar	Valor de p (una cola)	Significancia
ENT3LI	2.348	1.64	0.0005928	
ENT3L2	7.387	7.859	0.159	
ENT3L4	4.244	1.785	0.366	
ENT3L6	5.207	1.609	0.036	
ENT3L8	4.5	1.146	0.4	
ENT3L10	3.929	1.284	0.184	
ENT3L12	4.639	1.85	0.295	
ENT3L15	5.11	1.312	0.061	
ENT3L18	4.175	0.807	0.228	

ENT3L21	4.96	1.411	0.121	
ENT3L24	4.39	1.376	0.491	

Variable	Promedio	Desviación	Valor de p	Significancia
		estándar	(una cola)	
IAT3LI	1.575	2.885	0.073	
IAT3L2	5.533	2.434	0.252	
IAT3L4	4.725	0.532	0.154	
IAT3L6	5.025	0.888	0.127	
IAT3L8	4.48	1.117	0.44	
IAT3L10	5.067	1.258	0.228	
IAT3L12	4.62	0.665	0.25	
IAT3L15	5.25	0.695	0.046	
IAT3L18	3.833	0.764	0.164	
IAT3L21	3.146	1.989	0.116	
IAT3L24	6.067	1.168	0.066	

Variable	Promedio	Desviación	Valor de p	Significancia
İ		estándar	(una cola)	
INT3LI	1.66	1.678	0.005167	
INT3L2	3.575	1.96	0.231	
INT3L4	3.656	1.572	0.097	
INT3L6	4.625	1.652	0.356	
INT3L8	4.743	1.725	0.309	
INT3L10	4.089	1.086	0.207	
INT3L12	4.64	1.833	0.344	
INT3L15	4.04	1.64	0.293	
INT3L18	4.4	0.778	0.5	
INT3L21	4.94	1.511	0.234	
INT3L24	4.725	1.46	0.274	

Para determinar el grado de maduración ósea obtenido con los niveles hormonales alcanzados, se graficó la diferencia del promedio de edad ósea esperado para la edad cronológica y se designaron ± 2 DS, los rangos esperados para una edad ósea acorde con la edad cronológica lo cuál corespondió a ± 3 meses para el primer año y ± 6 meses a partir de esta edad cronológica. No se observó modificación significativa (ni adelanto ni atraso) de la EO en los 4 grupos, en el lapso de 2 años con respecto a la población normal. Sin embargo el número de pacientes que contó con EO a los 6, 12 y 24 meses en cada grupo analizado fue muy pequeño 11, 23, 7 y 15 pacientes en los grupos I, II, III y IV respectivamente.

Cuadro 16
COMPARACIÓN DE LA DIFERENCIA ENTRE EL PROMEDIO DE EDAD ÓSEA DE CADA GRUPO
RESPECTO AL PROMEDIO DE EDAD CRONOLÓGICA (6 .12 Y 24 MESES DE EDAD
CRONOLÓGICA) CON LA POBLACIÓN GENERAL.

	6 meses	12 meses	24 meses
EA	-0.8	-0,875	-3.6
EN	1,266667	1,461538	1,545455
IA	0,333333	-2,8	6,666667
IN	-2,222222	-2,125	3

Al comparar estos valores con los valores poblacionales de referencia no se encontraron diferencias estadisticamente significativas como puede apreciarse en el siguiente gráfico

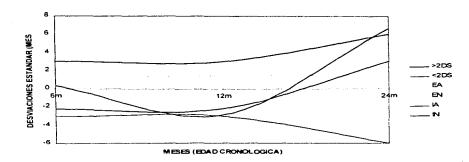


Figura 14: Comparación de las diferencias de la edad ósea respecto a la cronológica (6,12 y 24 meses) con los valores esperados en la población general (+/- 2 DS).

Respecto a la frecuencia de determinaciones en rango suprafisiológico en cada grupo y a cada edad no se encontraron diferencias estadísticamente significativas. Dichas comparaciones se hicieron mediante Chi cuadrada y prueba exacta de Fisher cuando correspondiera. Dado el número reducido de pacientes en cada grupo, la presencia de una o mas celdas con menos de 5 elementos o incluso valor 0 no fue posible establecer el valor estadístico de la diferencia en la frecuencia de determinaciones por arriba del valor máximo de referencia para T4 y T4L que es evidente en las gráficas siguientes:

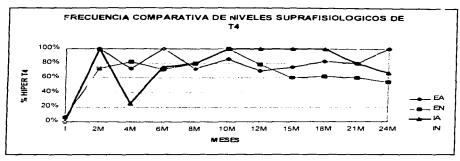


Figura 15: Frecuencia comparativa de niveles suprafisiológico de T4. Note el patrón diferencial de los pacientes del grupo IA de los 10 a los 18 meses (diferencias sin significancia estadística)

Figura 16: Frecuencia comparativa de niveles suprafisiológico de T4L. Note el patrón diferencial de los pacientes del grupo IA de los 10 a los 21 meses (diferencias sin significancia estadística).

Como se puede apreciar, al parecer hay un comportamiento diferenciado en el grupo de pacientes con hipotiroidismo congénito intrauterino con atirosis (IA) en quienes tiende a haber un aumento en la frecuencia de determinaciones en rango suprafisiológico entre los 10 y 18 meses de tratamiento cuando los pacientes en los demás grupos esta frecuencia tiende a disminuir. La importancia de esta diferencia aparente requiere de un seguimiento mas largo y de la inclusión de un mayor número de pacientes que permitan encontrar diferencias estadísticamente significativas.

Este patrón no fue observable para el caso de T3 y T3L.

DISCUSIÓN:

No hay consenso respecto a la dosis óptima de levotiroxina para tratar el hipotiroidismo congénito. La dosis de levotiroxina de 10-15 µg/kg/día para el tratamiento del hipotiroidismo congénito ha sido cuestionada por el aparente riesgo de ocasionar hipertiroidismo iatrogénico (8.15.28.14.25.36). Aunque la literatura contiene mucha información sobre la utilidad de dosis de reemplazo elevadas en el desarrollo intelectual de estos pacientes existen algunos reportes divergentes(8,23,29). Schwartz y cols reportaron trastornos visuales, motores y dificultad para llevar a cabo cálculos aritméticos en pacientes con HC que estaban recibiendo dosis altas de levotiroxina (30), Rovet y Ehrlich demostraron que aunque aquellos pacientes que iniciaron su tratamiento con dosis elevadas de levotiroxina (promedio de 9 ± 1.1 µg/kg/d) mostraron mejores Indices de inteligencia, desempeño verbal y memoria también tenían una frecuencia significativamente mayor de trastornos de conducta manifestados por ansiedad, conducta antisocial y déficit de atención (29). Otros efectos, motivo de preocupación, relacionados con la administración rutinaria de dosis altas de levotiroxina son cardiarritmias, trastornos de la conducta, elevación de enzimas hepáticas y osteopenia (8, 23, 31,18,19,20). La tirotoxicosis neonatal está asociada con cierre prematuro de fontanela que puede alterar el desarrollo intelectual por interrupción prematura de la proliferación neuronal (1). Algunos autores señalan que una dosis elevada de levotiroxina puede estar asociada a un mayor riesgo de osteoporosis en etapa adulta (28). Estos efectos parecen estar mas en relación con niveles suprafisiológicos de hormonas tiroideas circulantes que con la dosis de sustitición propiamente dicha (8)...

De acuerdo con datos de Fisher y Foley, los niños que reciben dosis de levotiroxina entre 10 y 15 µg/kg/d mantienen niveles suprafisiológicos de hormonas tiroideas. Este hallazgo coincide con lo observado en nuestros pacientes para T4 y T4L. Es de esperarse que los niveles de T3 y T3L no muestren este mismo patrón quizás porque que el proceso de conversión tisular de T4 a T3, aún inmaduro, oculta este fenómeno. En ese mismo trabajo 7 de 19 pacientes tratados a esas dosis mantuvieron niveles séricos de T4 > de 15 µg/dl (rango de 15 2 a 20.4 µg/dl). (A) En nuestro trabajo este fenómeno se observó en forma constante durante los 2 años de seguimiento aun cuando se llevó a cabo un porcentaje de reducción de la dosis promedio de 56.2 % en todos los pacientes. El promedio total de T4 durante el seguimiento fue de 15.882 µg/dl comparado con el valor de referencia máximo de 11 µg/dl. Lo mismo sucede con T4L. De un total de 374 determinaciones de T4, 257 (68.7%) estuvieron por arriba del nivel fisiológico aceptado. En el caso de T4L, de 342 determinaciones, 268 (78.3%) estuvieron en rango suprafisiológico.

Por otro lado, existen variantes clínicas que han evidenciado diferente comportamiento en la maduración biológica y tal vez diferente pronóstico, de acuerdo al momento de inicio del padecimiento. Cada día hay mayor evidencia de que existen diferentes subgrupos de pacientes con hipotiroidismo primario tal vez debidas diferencias substanciales en la fisiopatología y en la evolución previa al nacimiento de su enfermedad (1,3,5). En primer lugar, se sabe que hasta un 25 % de pacientes cursan con agenesia de la glándula tiroides mientras que hasta 50 % cursan con tejido glandular tiroideo ectopico , insuficiente para cubrir los requerimientos normales de hormonas tiroideas independientemente de otras causas mas raras de hipotiroidismo congénito como la dishormonogénesis (2). Proporcionalmente, la relación nódulo ectópico:agenesia varía de 2:1 pero hay reportes de una relación 1:1 (32,2). En nuestro estudio el porcentaje de pacientes con nódulo ectópico fue de 60% y de atirosis del 40%. Esto nos da una relación

aproximada de 1.54:1 que es cercana a lo mencionado antes. Por otro lado. Dussault reporta una frecuencia de hipotiroidismo severo del 15% de acuerdo a la radiografía de rodilla y los niveles de T4 basales (2) En este estudio la frecuencia de pacientes con hipotiroidismo congénito intrauterino (equiparables al hipotiroidismo severo) fue de 47%. Es posible que la adición de otros criterios disminuya la proporción de pacientes considerados bajo este término que "como ya mencionamos antes, aún está pendiente demostrar que realmente cursan con una forma de hipotiroidismo mas grave con un pronóstico más sombrío (7). Parece que aunque hay reportes sobre deterioro más severo y temprano en los pacientes con evidencia de hipotiroidismo de inicio intrauterino, nuestros resultados no permitieron encontrar una relación significativa entre esta característica con el perfil hormonal ni antes ni después de iniciado el tratamiento. Tampoco fue posible encontrarla en la maduración ósea pero es indudable que se requiere de un seguimiento de por lo menos 6 años para apreciar diferencias sutiles. En otros trabajos se han encontrado patrones diferenciales de maduración ósea después de 12 años de seguimiento. (32,33,37). El impacto a largo plazo depende del seguimiento por más tiempo y el uso de instrumentos para medir el desarrollo y desarrollo en forma integral.

Las únicas diferencias estadísticamente significativas obtenidas al comparar los perfiles hormonales de los pacientes incluidos en los 4 grupos de estudio fueron observadas antes de iniciar el tratamiento y no después del mismo. Las diferencias fueron mas importantes entre los pacientes con nódulo ectópico y atirosis. Este fenómeno ya ha sido descrito previamente (2.34) Como se mencionó antes, la mejor correlación entre una determinación hormonal y la modificación de la dosis se observó con T4. Esto coincide con lo reportado por otros autores.(3 Sin embargo debe tomarse en cuenta que el número reducido de pacientes incluidos no permite establecer un algoritmo que pueda tomarse como referencia para calcular un valor ideal de hormona cuando se modifica la dosis de levotiroxina. Tampoco podemos descartar un sesgo debido a que el clínico le diera un peso preferencial a este parámetro, por encima de las otras determinaciones hormonales, para ajustar la dosis del medicamento en cada visita de

seguimiento. Para descartar esta posibilidad se requiere un estudio especialmente diseñado para ello del tipo de la encuesta. A pesar de lo anterior, este hallazgo apoya la idea de que los niveles suprafisiológicos observados en nuestros pacientes se deben primordialmente (si no exclusivamente) a la administración exógena de levotiroxina.

El hecho de que el nivel de TSH se haya logrado suprimir en todos los casos antes de 8 semanas refuerza la idea de otros autores sobre la necesidad de vigilar a intervalos mas cortos la respuesta al tratamiento durante los primeros dos meses después de iniciado. Para ello lo ideal será utilizar determinaciones mas precisas de TSH y evidentemente poner particular atención en el perfil hormonal (sobre todo T4). Es interesante destacar que el tiempo aparente de inhibición de TSH fue de sólo 14 días si comparamos el promedio de edad de inicio del tratamiento y el momento en que todos los pacientes mostraron una disminución significativa de TSH (56 semanas).

Existen al menos dos variantes en la terapia con levotiroxina: de reemplazo y de supresión. En la primera se busca recuperar los niveles normales de TSH mientras que en el segundo caso se busca suprimir los niveles de dicha hormona. Es de suponerse, por lo niveles de hormonas tiroideas tan elevados y los niveles de TSH que se haya estado manejando a los pacientes con un esquema de supresión más que de reemplazo pero esto sólo podría ser confirmado plenamente con determinaciones ultrasensibles de TSH (35). Se requieren más estudios para conocer la respuesta al tratamiento en función de TSH.

CONCLUSIONES:

No se encontraron diferencias estadísticamente significativas entre los perfiles hormonales de los subgrupos de estudio una vez iniciado el tratamiento.

Hubo diferencias estadísticamente significativas en el perfil hormonal basal de los pacientes con nódulo ectópico y atirosis. El Hipotiroidismo congénito secundario a nódulo ectópico inicia con níveles más altos de hormonas que los atiróticos, antes de iniciar el tratamiento. Esto quizás se deba a la actividad de como efecto del tejido tiroideo residual. Una vez iniciado el tratamiento con levotiroxina, esta diferencia bioquímica, se anula.

Se corroboró, que los niveles séricos de hormonas tiroideas se mantienen en rangos suprafisiológicos a lo largo de 2 años de seguimiento a pesar de que hubo una reducción de la dosis de 52%.

Existió una correlación directamente proporcional entre el porcentaje de modificación de la dosis con el porcentaje de modificación T4.

La maduración ósea no se modifica antes de 2 años a pesar de que los pacientes cursaron con niveles significativamente por arriba del límite de referencia máximo (suprafisiológicos).

La importancia clínica de estos hallazgos deberá determinarse en estudios comparativos y prospectivos que establezcan con certeza el impacto de diferentes dosis (por ejemplo : dosis alta de 10 a 15 µcg/kg/día vs dosis moderada de 7 a 10 µg/kg/día o baja < de 7 µg/kg/día) en la calidad de vida, pronóstico final, desarrollo intelectual y estado clínico de los pacientes con hipotiroidismo congénito. Otro requerimiento es continuar el seguimiento de los pacientes por un tiempo mayor, para poder detectar modificaciones sutiles o de largo plazo en la edad ósea y otros parámetros del crecimiento y desarrollo de estos pacientes.

La TSH se normaliza antes de 8 semanas de vida y en menos de 4 semanas después de iniciado el tratamiento.

También, deben hacerse estudios en los que se busquen intencionadamente las manifestaciones de tirotoxicosis en los pacientes que están recibiendo dosis elevadas de levotiroxina como: trastornos de la conducta, alteraciones en el estado de ánimo, modificaciones en la contractilidad ventricular y electrocardiográficas, función hepatocelular y metabolismo óseo.

Cabe destacar que aunque las diferencias en el perfil hormonal inicial entre los pacientes con nódulo ectópico y atirosis se anulan después de iniciado el tratamiento, esto fenómeno exclusivamente bioquímico no descarta que pueda influir en el desarrollo neurológico final de los pacientes por lo que son necesarios mas estudios al respecto.

BIBLIOGRAFÍA:

- Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev. 1993; 14 (1): p94-106. 222.-
- Dussault JH Neonatal screening for congenital hypothyroidism. Clin Lab Med 1993; 13 (3): 645-52.
- Grant DB, Fuggle PW. Smith I.Increased plasma thyroid stimulating hormone in treated congenital hypothyroidism: relation to severity of hypothyroidism, plasma thyroid hormone status, and daily dose of thyroxine. Arch Dis Child 1993, 69 (5): p555-8.
- Vulsma T, Margareth HG, Vijlder JJ Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. 1989: 321(1): 13-6.
- Glorieux J, Desjardins M, Letarte J, Morisette J, Dussault JH. Useful parameters to predict the eventual mentual outcome of hypothyroid children. Pediatr res 1988, 24 (1): 6-8.
- Frost GJ, Parkin JM. Management of patients with congenital hypothyroidism. Br Med J 1985; 290:1485-9.
- Dubuis-JM; Glorieux-J; Richer-F; Deal-CL; Dussault-JH; Van-Vliet-G. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. J Clin Endocrinol-Metab. 1996 Jan; 81(1): 222-7.
- Campos-SP, Sandberg-DE; Barrick-C; Voorhess-ML; MacGillivray-MH. Outcome of lower Lthyroxine dose for treatment of congenital hypothyroidism. Clin-Pediatr-Phila. 1995 Oct; 34(10): 514-20.
- Penfold JL, Simpson DA. Premature craniosynostosis- a complication of thyroid repleacement therapy, J Pediatr 1975; 86:360-3.
- Abusrewil SSA, Tyfield L, Savage DCL. Serum thyroxine and thyroid stimulating hormone concentration after treatment of congenital hypothyroidism. Arch Dis Child 1988; 63:1368-71.
- 11. New England Congenital Hypothyroidism Collaborative Group .Effects of neonatal screening for hypothyroidism: prevention of mental retardation by treatment before clinical manifestations. New England congenital hypothyroidism collaborative. Lancet 1981;2:539-44.
- American Academy of Pediatrics, American Thyroid Association: Newborn screening for congenital hypothyroidism: recommended guidelines. Pediatrics 1987; 80 (5): 745-9.
- 13. Fisher DA, Foley BL, early treatment of congenital hypotyroidism. Pediatrics 1989; 83:785-9.
- Stall GM, Harris S, Sokoll LJ, Huges BD. Accelerated bone loss in hypothyroid patients overtreated with L-thyroxine. Ann Intern Med 1990; 113(4):265-9.
- 15. Brook CGD. The consequences of congenital hypothyroidism. Clinical Endocrinol 1995;42:431-2.

- 16. Nuovo J. Excesive thyroid hormone replacement therapy. 1995; 8(6):435-9
- 17.Grant DB. Monitoring TSH concentrations during treatment for congenital hypothyroidism. Arch. Dis Child 1991.66.669-71.
- 18 Rezvani Y, DiGeorger AM, Reassessment of the daily dose of oral thyroxine for replacement therapy in hypothyroid children, J Pediatr 1977, 90(2):291-7.
- 19.Abbassi V, Aldige C. Evaluation of sodium L-thyroxine (T4) requirement in replacement therapy of hypothyroidism. J Pediatr 1977; 90(2): 298-301.
- Desai M, Iran AJ, Raikan RS et. al. Therapy of childhood hypothyroidism. A reappraisal. Indian. Pediatr 1982;19:927-36.
- 21.Sato T, Suzuki Y, Taketani , Ishiguro K, Nakajima H. Age related change in pituitary threshold for TSH release during thyroxine replacement therapy for cretinism. J Clin Endocrinol Metab 1977,44(3):553-9.
- 22.Schultz RM, Glassman MS, Mac Gillivary MH. Elevated threshold for thyrotropin supression in congenital hypothyroidism. Am J Dis Child 1980,134:19-20
- 23. Chiovato L, Giusti L, Tonacchera M, Ciampi M et al. Evaluation of L-thyroxine replacement therapy in children with congenital hypothyroidism. 1991;14(11):957-64.
- Hodges S, O'Malley BP, Northover BN, Woods PG, Swift PGF. Reappraisal of thyroixine treatment en primary hypothyroidism. Arch Dis Child 1990; 65: 1129-32.
- Nicoloff JT, Spencer CA. The use and misuse of sensitive thyrotropine assays. J Clin Endocrin Metab 1990; 71,553-8.
- 26.Pyle SI, Hoerr NL. A radiographic standar of reference for the growing knee. Springfield. II,: CC. Thomas Book, 1969;35-9.
- Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. New York. Stanford University Press. 1956.
- 28. Blum M.Why do clinicians continue to debate the use of levothyroxine in the diagnosis and management of thyroid nodules?, 1995; 122(1) 63-4.
- Rovet JF, Ehrlich RM. Long term effects of L-thyroxine therapy for congenital hypothyroidism.
 J Pediatr 1995;126(3):380-6.
- 30.Schwartz ID, Turner K, Kruger T et. al. Neuropsychological outcome in children with congenital hypothyroidism treated with varying amounts of levothyroxine during the first two years of life.Int Pediatr 1994;9:254-9.
- 31.Roti E, Minelli R, Gardini E, Braverman LE. The use and misuse of thyroid hormones. Endocr Rev 1993;14 (4):401-23.
- Casado de Frías E, Ruibal JL, Reverte F, Bueno G.Evolution of height and bone age in primary congenital hypothyroidism. 1993; Julio:426-32.

Þ

- Virtanen M, Perheentupa J. Bone age at birth; method and effect of hypothyroidism. 1989;
 78:412-18.
- Grant DB. Congenital hypothyroidism:optimal management in light of 15 years' experience of screening. Arch Dis Child 1995; 72:85-9.
- 35. Klee GG, Hay ID. Role of thyrotropin measurements in the diagnosis and management of thyroid disease. Clin Lab Med 1993;13(3):673-82.
- Rovet J. A prospective investigation of children with congenital hypothyroidism identified by neonatal thyroid thyroid screening in Ontario. Can J Public Health 1986;77:164-77.
- 37. Heyerdahl S. Kase BF, Stake G. Skeletal maturation during thyroxine treatment in children with congenital hypothyroidism. Acta Paediatr 1994,83.618-22.
- 38. Chester T. Excel 5.0 para windows, 1a edición, México 1995.
- Dawson-Sunders B, Trapp RG.Basic and Clinical Biostatistics. Lange Medical Press, 1990 USA.

ANEXO 1

ANEXO 1 BASE DE DATOS CRUDOS

		EAEI	EADI	EATSH	EARX	GAMA	EAT4 I	EAT4LI	EAT31	EAT3L
367944	4	66	136	51	Eυ	A	0.09		33	
358896	12	69	138	51	Ēυ	· A				
336237	21	33	15	51	EU	A	a		36	
359070	25	100	13	51	· ĒŪ	A	0.02	•	139	
364199	29	32	136	51	ĒŬ	Ā			, 133	
360014	33	30	12	51	ΕŪ		031			
	. 34	43	12.5	51	ΕŬ	· 2	1		43.7	
361482	38	45	11 54	51	Ēυ	· 🛱		. 0	11 3	0.1
358770								, 0	102	. 00
362029	47	25	15	101	EU	A	0 31		198	
340332	. 49	60	19	51	Ėυ	A	0.49		15.3	
360236	53	24	14	51	EU		10 14		42	
358521	59	60	12.8	51	EU	A	0 49	О	108	O 1:
294438	60	90	11 5	51	Ēυ	A	5 5		0.2	
376352	· 70	21	129	51	EU	· A		•	•	
373800	73	55	15	51	Eυ	. A				
		ENEI	END	ENTSH	ENFX	GAMA	ENT4 I	ENT4L!	ENT31	ENT3L
371806	1	49	14 28	51	Eυ	N	2 4	0 46	160	3.7
371542	2	45	12 91	51	Ēυ	. N	0.05	0.04	107	0.7
355417	10	4	138	51	ĒŬ			,		,
359221	13	30	11.5	51	EU	.7	1.5	. 00	. 86	. 0.44
342428	16	30 25	20	51	. EU		. 12	, 00	. 69	1.2
				51	ΕU		18			1.2
344387	17	24	15.15			N			66	
327231	. 27	41	11 53	29	ΕU	N	1.7		. 151	
365969	35	22	14 5	51	EU	N				
371404	36	23	113	51	EU	. N				
340777	37	24	19	50	EU	N	4.4		68	
355200	39	75	116	51	EU	N	5.6	0.21	174	2.6
355204	41	69	10.7	51	ΈU	· N	0.54	· o	116	0.34
357904	45	60	14	51	Eυ	· N		•		
361236	54	60	10.4	51	ĒŪ	N			•	
341863	55	29	14	51	· ĒŪ	· N		•		
361483	56	1	12.5	51	EU		•			
360690	58	44	14.4	51	· EU	· N	. 2		190	5.1
335664	63	60		. 51						. 3.1
363019	. 66	33	9.5		. EU	N	4.2		182	
			133	51		N	6.7	0 64	104	3.4
371404	69	23	113	51	Eυ	N	16.6	39	326	4.1
342957	77	43	119	130	EU	N	2.7	0.7	125	2.6
357567	. 78	23	. 12	51	EU	N	1 04	0.07	132	0.6
363019	82	32	13.3	51	EU	N	6.7	.64	104	3.4
	Ł	AE:	IADI	MISH	LAPOC	GAMA	IAT4 I	IATAL I	IAT31	LATEL
62017	9 :	27	. 11	51	, IU	. A	12	0.0	31 8	0.26
60437	14	43	13.5	51	į iu		0.55	0.0	21.2	0.01
42105	18	42	14.28	51	: 10	. А	. 0	. 0	19.3	
71499	57	35	10.9	51	· iũ	· A	•			
62735	61	38	12.5	17	: iŭ	· 🚡	10.2	0.95	213	5.9
61427	64	60	12.5	` 50	· iŭ	· 🚡	13	. 0.30	26.5	13
88537	66	44	10	51	. 10	· 🚡	0.37	, •	. 20.5	
,		WEI T	INDI	INTSH	INFOC	GAMA	INIT4 I	INT4L1	INTE	INTEL I
								441 AF 1		
63423	6 .	32	13.15	. 51	. 10	. N	4.3		. 77.3	
63199		57	12.7	51	. 10	N	5.2	0.52	146	. 3
62935	8	96	14	50	. 10	N	0.44		0.18	
55304	15	60	10	48.1	IU	N	10		180	
58527	23	71	12.9	51	10	, N				
58496	26	43	12.5	· 51	iU	, N	0.65	0.02	. 27	0.3
61502	32 .	37	12.5	51	i lu	N	10.6	0.47	156	2.5
59902	40	30	13	51	, IÚ	· N	0.54	0.0	41.4	0.26
82628	46	35	12.5	50	· iū	N	9.3	0.98	146	3.9
41943	48	17	14	51	: 10		0.3	. 0.35	49	. 3.3
59682	80	79	14.7	51	·-·· iŭ		0.5		59.3	

ANEXO 1 BASE DE DATOS CRUDOS

EAT42	EAT4L2	EAT32	EAT3L 2	EATSH 2	EAD 2	EAEO	EAT4 4	EATAL 4	EAT34	EAT3L 4
i							21.3	2.8	168	6 9
							18	2.3	168	2.7
		•	-	*			•	•	•	÷
20	4.1	219	5 5	0.06	98		139	2.7	231	8.2
		_				0	20	3.6	178	5.1
19.8	2 3	296	3.8	0 69	11 69		166	3.8	285	5.5
	•				•		9	2.8	210	4.3
20	2	132	5 8	0.6	12.1		77	29	133	3.8
21	2.5	124	4 2	0.3	106	•	12	. 28	155	. 2.8
					:	1	16.9	2.9	202	4.1
21	. 59	. 157	. 5.7	. 0	9 1		. 10	. 2.4	. 157	. 5
	. 33	. 157	37	, ,			20	24	178	. 6
ENT4 2	ENT4L2	ENT3 2	ENTSL 2	ENTSH 2	END 2	ENEO	ENT44	ENT4L4	ENT3 4	ENT3L 4
ENISE	E1414C 2	EMIJE	EMIGH. 2	CIVISH 2	ENU 2	ENEC	14 1		194	
	•							2.4		3.8
							16	. 36	257	8.1
15.3	4.6	560	26 6	0.0	. 13		12.7	1.3	316	2.6
							11.4	2.5	114	3.2
			,				108	3.8	164	2.3
			•				11.9	. 45	192	4.1
14.7	•	164	•	2.5	12.2	•	17.8	3 9	182	6.7
	:	:	:	:		2	16.6	3.9	326	4.1
									202	. з
17.5	4 6	315	6.5	. 2.4	11.6		192	3.3		
	•				•		21	4.6	160	1.6
10	1.9	. 118	2.4	0.13	10 98			•		•
	•	•	•	•	•		10.4	3.2	177	3.3
18.9	32	218	4.3	0.26	11.66	,	16.3	2.6	206	6.8
9.6	. 2	190	. 5	0.12	12.8		20	3.9	233	. 6
						•	. 8		160	
16.3	1.4	132	5.3	. 0	12.5		17	3.2	190	4.1
0.45	10.1			. •				٠.٠		
130	11.9	•		•	•					
21	4.2	194	3.7	0 49	. 7		15	. 4	154	4.1
16.3	2.6	125	5.3	. 5	13.3		. 17	3.2	190	4.1
AT4 2	ATAL 2	SETAL	IATEL 2	IATSH 2	IAD 2	IAEO	IAT4 4	IATAL 4	IATS 4	IATSL 4
17.2	2	179	6.0	0 52	5.8					
21	2.6	171	7.7	0.3	10.41	:	20	0.38	218	5
	•						10.9	2.1	255	5.3
	•	•	•		•	•	7	1.8	167	4.1
15.5	. з	208	2.9	0.9	9.1	•	9.3	2.8	180	4.5
										MATTER C
VT4 2	NT4L2	INT32	INT3L 2	INTSH 2	IND 2	INEO	INT4 4	INTAL 4	INT3 4	INT3L 4
13	2.7	. 103	4.6	0.13	, 7.9		13.7	5.2	. 174	3.4
-	• •	•		•			18.7	2.1	130	4
	•	•	•	•		•	12	4.1	286	3.4
	•	•	:	•	•	•	14.3	4.6	263	4.3
	•	• • •	•	:		•	10.4	1.6	130	1.4
20	3.9	163	5	1.15	9.5	2	:			
	1					, 0	20	4.1	150	5
19.1	3	192	4	.11	10.8		19.7	3.5	184	6.1
7	2.4	122	0.7	0.3	12.83	•	17.7	3.5	191	4.1
	• .			7			14.7	2.9	118.3	1.2

ANEXO 1 BASE DE DATOS CRUDOS

EATSH 4	EAD 4	EAT46	EAT4L6	EAT36	EAT3L 6	EATSH 6	EAD 6	EAEO 6	EAT48	EAT4L 8
0.0	9 52	18	3 2	287	66	0.13	6 94		9.7	2.3
0.5	13.8	21	3.7	210	5.4	02	12		12.7	2.4
				. 210	. 5.4	. 02				
	•	. 50	. 45	216	5.2	0.5	11 36	. 2	17 B	. з
0.4	8.1	18.4	3.6	182	7	0.9	78	. 0	17.5	3.6
0.2	11.5	19.4	. 28	223	3.5	0.01	102	1	14.9	32
0.08	9.8	135	3.2	261	76		7	2		
0.22	10.86	21	4.6	175		93	115	2	18.4	3.5
					4 6					
2.9	9	138	2.7	96	2.7	0.38	9.7	0	15.4	3.6
								. 1	8.8	1.3
0.4	9 2	15.4	39	162	5 4	0.06	79	0	11.4	2
0.11	96	14	. 37	207	. 33	0 12	92	. 1	15 9	3.7
0.5	. 7.2									
		17		194						
0 03	9 09		3 2		5.3	0.16	7.8		15 8	4
ENTSH 4	END 4	ENT4 8	ENT4L6	ENT36	ENT3L 6	ENTSH 6	END 6	ENEO 8	ENT48	ENT4L8
0.4	116	15 Z	3 3	161	3 4	0.1	13			
0.5	10	148	5.4	248	74	0.0	8.8	0	20	38
02	9 49	1	•	•					13	2.7
0.16	102	12.3		158	•	0.3	. A 4	. 0	6.1	2.5
0.31	13	25	4.1	223	9.1	. 00	12 47	. 2		
0.0	12.8					. 00				
0.0	. 12.0	. 5	. 13	97	3.1	0.4			15.1	
								2		
0.8	9.14	12.5	3.7	257	6.1	, 0	76	, 0	12.5	3.7
0.45	10.1	12.4	3.3	190	4.8	0 10	7 38	2		,
0.09		17.5	4 6	315	6.5	2.4	100	•	10.8	3.2
2.3	9.1				, 0.5		. 100			
2.3		•						. 5		
		8.2	. з	226	5.1	0.18	8.9	. 0		
0.3	9.89							0		
0.12	10.27	12.9	2.3	214	5.4	0.05	9	0	14	36
0.36	10.7	8.9	2.2	183	4.4	0.19	9.2	. 0		
2.1	15.87	. 8	•	245	•	2.1	9.2	. 0		
0.05	6	13.2	2.3	145	3 9	0.4	6		16.3	29
0.00		12	3.3	190	4.8	0 10	7.38			
	•	13.2	3 1	252	. 6	0.2	6		•	
								. 0		
0.01	5	16.9	3.4	122	4.2	0.13	3.5	. 0	13.4	1.7
0.05	12.5	13.2	2.3	145	3.9	0.4	6		16.3	2.9
ATSH 4	IAD 4	IAT4 6	IAT4L 6	MT3 6	IAT3L 6	IATSH 6	IAD 6	MEO 6	IAT4 8	IAT4L 8
								. 0	9.8	2.2
0.39	7.4	. 20	0.51	206	6.2	0.51	6.4	. 0	15.8	4.3
	•	10.8	2.4	194	4.2	2.8	7.14		•	
0.6	10.2	16.2	3.3	283	4.5	0.3	7 69	. 0	13.1	. 2
3.8	11.3	15.6	4.8	176	5.2	. 0.5	10.1	· ŏ	11.9	1.9
	8.4		, •	. 173	. 5.2		. 10.1	. 0	15.6	
1.5	. 8.4	•	•				•		. 15.6	. 3.9
JTSH 4	IND 4	INT4 6	INTAL 6	INT3 6	INTSL 6	INTSH 6	IND 6	INEO 6	INT4 8	INT4L 8
0.8	7.9	14	3.1	160	5.5	0	6.7	0	11.4	3.1
0.13	9.5	17.9	4.4	100	4.3	0.18	10.7	· 1	10.4	3
					,			1	20	5.2
0.0	. 7	13.9	1.4	. 252	1.5	1.7	10.27			
				232				. 2		2.3
2.3	12.9	17.2	2.9		6.6	0.0	6_		16.4	
0.11	9.7	11.3	1.7	174	4.3	0.22	7.05	<u> </u>	9.4	. 4
	:	1 .							12.7	2
0.06	11.7	18.9	2.8	139	4	0.3	11.71	0	20	4.3
	9.8	11.7	3.6	128	4.2	0.05	9.06	. 0	•	•
0.2										
0.2 0.1	12.04		•	•	•	-	•	1	-	

ANEXO 1 BASE DE DATOS CRUDOS

EAT38	EAT3L B	EATSH 8	EAD 8	EAT 4 10	EATAL IO	EATS 10	EAT3L 10	EATSH 10	EAD 10	EAT4 12
262	7.5	0.14	5.6	11.5	2.3	194	5.4	0.13	7.45	8.5
179	4.1	0.08	9.06	13.8	3.4	124	3.8	0.20	9.06	18.4
	*							. 0.20		8.7
153	3	. 00	11.9				*		•	11.6
172	6	. 00	10.2							16.5
127	3	0 03	8.4	14.7	_			0 11	84	
127	3	. 000	. 0.4	14.7	, 2	131	5	. 011	8 4	12.7
187	5	0 21	8 4	7.5	1.9	135	4.7	0 25	7.74	11.5
206	4.8	0.5	8.31	16	3.7	185	2.9	0.1	8.3	8.6
165	5 4	0.5				,				
194	5 9	0.08	9 1	147	2.6	186	5	0.13	8.15	12.1
216	9.7	0.08	89			,				14.3
2.0	. 3.7	. 000	. 03							. 14.3
		•				:		:	*	
138	5	0.5	7.4	16	5.3	284	33	0 18	7	
ENT3 8	ENT3L 8	ENTSH 8	END 8	ENT4 10	ENT4L 10	ENT3 10	ENT3L 10	ENTSH 10	END 10	ENT4 12
174	6.4	. 00	7.3	14.8		146	5.1	. 00		. 11
243	3.8	0.19	9.6	11.4	. 3				6.27 8.05	
					16	. 119	4 2	0.2		. 11.5
138	3.4	0.08	9.9	13.60	5.3	124	2.9	0.85	9.43	11.8
									8.5	112
										. 8
183		, 0.1	9.3							
257	6.1	, o	76							
										13
186	5.3	0.05	65							. 7
	,			13.6	. 2.7	284	3.6	0.95	8.4	16.4
			•	20	4.5	190	5.9	0.04	11.1	15
		•		11.6	3.9	221	2.1	0.3	8.9	13.3
	•			. 11.0	, 3.5	, 221	. 2.1	. 0.3	. 0.3	21
173	3.5		. в			•				
1/3	. 3.5	. 0		•						. 17
										11.4
										5.6
141	3.8	. 1	7.7						:	14.9
										13
										12.2
114	4.4	2.2	3.2	13.6	2.1	144	3.7	0.6	3.2	12.2
141	3.8	1	7.7	:	•	•	•	•	•	14.9
8 ETA	IAT3L #	IATSH 8	IAD 8	IAT4 10	IATAL 10	IAT3 10	IATSL 10	IATSH 10	IAD 10	IAT4 12
187	4.5	3.2	5.8							
185	· 6	0.21	7.7	•	•	•	•	•	•	19.4
	•		•	•	•	•		•	•	25
177	4.8	0.04	6.36	13.4	3.3	154	4.9	0.14	7.35	13.6
78.3	4.2		8.6	16.6	4.7	202	3.9	0.4	8.72	11.6
89	2.9	0.27	6.8	13	3.3	180	6.4	0.91	. 9	11.9
	•	•		•	•	•	•	•	•	•
NT3 8	INT3L B	INTSH 8	IND 8	INT4 10	INT4L 10	INT3 10	INT3L 10	INTSH 10	IND 10	NT4 12
124	5.8		6.15	, 7	0.99	116	3.7	0.42	6.25	8.9
125	5.1	2.4	8.67	15		144	5.3	0.05	9.06	6
139	4	0.0	8.5	17.3	4.7	160	6.2	0.13	8_	
				12	; з	244	. 2.6	0.36	9.7	16.2
161	5	0.3	. 6							. 6
171	1.7	3	6.45	7.2	1.6	128	3.5	2.4	7.2	11.7
123	4.3	0	8.1	9.5	1.8	122	3.9	.59	6.9	8.6
277	7.3	0.84	10.7	18.3	5.2	149	3.3	0.4	10.6	15.7
		•	1	17.3	3.4	187	39		. 9	10.7
	:	4	:		:	•	•	:	•	11.7
178		0.11	9.03	18	3.1	152	4.4		9.22	13.3

ANEXO 1 BASE DE DATOS CRUDOS

EAT4L 12		EAT3L 12			EAEO 12		EAT4L 15		EAT3L 15	
	232	. 6	0	71	0	113	2	144	43	03
3.2	137	3.7	0.0	7 68	1	15	3	157	57	0.04
14	148	37	1	9.5	0					
1.8	234	4.7	0.07	116		89	2.5	184	6	0 45
3	137	4	0.2	83	2	15.1	3 4	165	4.4	0 94
2.6	190	6 1	02		~					
~ 0	150	0,	02	8 9		123	2 2	115	3 9	. 00
32	130	5 3	0.05	8 9						
2.7	272	4 9	0	7 89	. 0	15	3 1	272	4.8	0 45
38	173	6 1	0.15	8 15	1					
26	185	4			o	15 1	2.5	194	5 3	0 15
26	185	. •	0 29	82	. 0	75	. 21	186	4 9	12.6
ENT4L 12	ENT3 12	ENT3L 12	51.555×40							
ENTAL 12	EN1312	EN13L12	ENTSH 12	END 12	ENEO 12	ENT4 15	ENT4L 15	ENT3 15	ENT3L 15	ENTSH 1
2.4	178	3	0.4	5 54	0					
19	136	3.1	٥	72	1					
2.6	216	5 5	04	8 92	2	13	2.5	159	4.2	1
11.5	203	1.5	5.8	77						
2.6	201		0.0	12	2	_				
2.7	144	4 5	0 44	74			•		•	
25	137	4.4	0.05	6 1	. 0	•		•		•
2.6	187	3.4	0.89	7.5	. 0	10	2.3	206	4	. 0
3.2	191	· 3	0.02	11.1	. 0	17.7	4.1	215	6.5	0.08
4.5	180	3.5	0.76	8 9	· ō	17.5	2.9	187	4.5	0.2
56	232	6.3	. 0	10 43	· 1				. 4.3	. 0.2
3.9	350	10								
			0.6	6.6		14.1	2.1	241	6.6	0.21
2.5	168	5.4	1.9	7	. 2	9.5	2.7	142	4.5	0.06
2.2	151	4 5	15	11.1	1	13.7	3 1	130	2.7	0
2.3	236	6.1	0.16	6.49	` 1	· 9	1.8	235	6.2	0.90
2.7	144	4.5	0.4	74						,
3.4	137	4.8	0 03	10.1		•				
1.4		39								
	128		0.32	. 3	. 0	21	4.3	261	5.7	0
2.3	236	6.1	0.16	6.49	1	9	18	235	6.2	0.9
T4L 12	IAT3 12	IAT31, 12	IATSH 12	IAD 12	IAEO 12	IAT4 15	IATAL 15	IAT3 15	IAT3L 15	IATSH 15
4.4	239	4.3	0.4	6 27	1	13.8	2.3	149	4.4	0.4
6.1	161	4	0 64	9.14	· 1	18.5	3.1	173	5.2	0.0
2.6	142	5.6		7 07						
2.8	153	4.2	0.2	8.1	. ,	13.4	. з	184	6.1	٠ ۵
3	190	5		8	. 6	16	. 3	221	5.3	0.31
T4L 12	INT3 12	INT3L 12		NID 12	INEO 12	INT4 15	INTAL 15	INT3 15	INTSL 15	INTSH 15
1.8	217	5.1	0.16	7.8	1	8.2	1.8	69	1.2	0.76
1.5	108	3.3	3.6	8.4	, 1	13.9	3.2	202	3.8	. 1
2	173	4.1	0.0	8.5	1 1	6.3	2.1	147	4	0.08
1.6	153	3	0.5	7.9		10.3	3.6	225	4.3	0.4
1.8	117	3	1.7	6.5	. 0			•		
2.4	154	3.7	1	7						
2.3	164	5.4		8.5		17.4	3.2	185	3.2	0.3
				9						
2.3	216	5.6	0		0	14.8	3.7	280	6.3	0.37
3.2	186	9.1	2.4	9.1	1					
3.2	129	4.1	ο :	9.12	1	14.7	· 3	164	5.5	1.7

ANEXO 1 BASE DE DATOS CRUDOS

EAD 15	EAT4 18	EAT4L 18	EAT3 18	EATSL 18	EATSH 18	EAD 18	EAT4 21	EAT4L 21	EAT3 21	EAT3L 2
5.57	13.3	11.7	164	37	01	5.1				
7.2							134	4 1	227	7.2
8.4	144	3 2	171	8.8	. 00	8 4	12.3	2.4	250	58
55	132	35	186	5	0.9	5.5				
6 55	149	3	330	7.1	. 0	. 6				
7.57							18 4	4 6	151	4.7
										_
7 28	12.4	27	160	5.4	0.2	5.73	15.5	3.8	182	5
8 2	8	15	113	3.8	0.03	79	. 11	. 1.4	185	. 4
END 15	ENT4 18	ENT4L 18	ENTS 18	ENT31, 18	ENTSH 18	ENID 18	ENT4 21	ENT4L 21	ENT3 21	ENT3L 21
	2.0.0									
	10.7	2	111		0.21	67	106	2.5	263	6 9
7.9	115	2.1	166	4.5	0.19	7.2				
	•						÷	•		
			:			•	•			•
								•		:
6.3		•		•	•	•	12.8	13.2	161	. 56
10.4	16 6	32	198	5.2	02	8.4	10.5	1.6	126	4.6
8.9	149	. 32	177	5.1	0.2	5.5	13.1	4.6	181	3.1
8.9	, 1-3		. 1//	, 3.1	, 02	. 55	16	3.3	213	. 5
							16.7	28	174	. 5
6.3					,					
10	12.6	2.8	218	4.3	0.55	7.9	14.7	37	175	3.8
7.5	9.2	3.5	80.8	3 4	2.8	79				
9.49	-		•	•		•	13	2.7	186	6 4
4.6	. 11	2.7	138	. 2.8	0.5	781	8.7	5.3	172	. 2.8
9.49	14.9	2.3	153	4.1	. 0.5	649	13.8	2.7	186	6.4
9.49 VD 15	IAT4 18	IAT4L 18	IAT3 18	IAT3L 18	IATSH 18	AD 18	IAT4 21	IAT4L 21	IATS 21	IATSL 21
W 15	M(4 10	Pet 1-40" 1-9	W13 10	D-11-3E-18	MISH IS	~D 10		169	4.8	0.13
			:				11.9			
10.75	20	4.5	306	4.5	0.3		13.6	4.1	193	5.4
7.2				:	•	:	14.5	2.2	218	2.5
7.8	. 12	3.4	152	. 3	0.26	7.5	14.7	3	131	4.2
7.42	12.3	2.1	148	4	0.43	6	10.4	3.2	125	3.5
ID 15	INT4 18	INT4L 18	INT3 18	INTSL 18	INTSH 18	IND 18	INT4 21	INT4L 21	INT9 21	NT3L 21
10.86	12.6	1.7	166	5.3	0.4	9.26	. 14	2.5	133	3.1
9.8	14.1	4.1	178	4.6	0.2	8.17	11.1	2.5	121	3.5
6.8		1	:	÷		•		•	•	•
7.2	14	2.7	196	4.2	0.01	7.2	13.3	1.6	296	5.8
				i			12	2.2	242	6.2
8.2	16.4	1.9	196	4.7	3.9	10.7	•		•	
8.5	. 10.4	. 1.5	, 130		3.5	10.7	16.9	2.9	172	6.1
0.0										

ANEXO 1 BASE DE DATOS CRUDOS

EATSH 21	EAD 21	EAT4 24	EAT4L 24	EAT3 24	EAT3L 24	EATSH 24	EAD 24	EAEO 24
		1	4					. 0
0.69	6.3	21	3 9	327	5 8	0 12	6.3	1
~ ~~	7.8	113	2.3	165	4.2	0.18	6.8	2
0.06		. 11.3	. 2.3	, 165	• 2	0 18	. 0.5	. 2
		12.6	2.1	150	43	0 39	5.59	. 2
	•		-			. 033	. 3.35	
	+	•	•					1
0.11	5.8	16.7	3.2	161	58	0.01	5 5	•
	•			•			-	
0.05	6.7	17.8	4.1	169	2.8	0.5	5.38	. 0
4	6.9	14.4	3 6	220	4 9	0.3	5.4	1
	:		ENT4L 24	ENT3 24	ENT3L 24	ENTSH 24	END 24	ENEO 24
ENTSH 21	END 21	ENT4 24	EN : 4L 24	EN13 24	ENIGE 24	ENISH 24	- EIND 24	ENEC 24
0.7	7	,					•	
		9.3	2.8	150	3.5	. 08	6 75	
		:	•			•		*
	:	:					:	
		11.8	2	154	5.8	3.5	5.3	2
0.52	6.4	10	3.1	175	4.	0.03	5.5 7.14	2
1.2	7	15.1	2.9	192	4.4	0.19	6.5	. 0
0.16	6.8	2.1	135	121	3.9	0.3	. 0.5	. •
1.3 0.47	9.8 5.8	. 9	1.2	121	6.1	0.45	5.7	. 0
0.6	7.8	16.3	3.4	128	4.2	0.1	8	. ŏ
0.0		,	•	,				2
0.11	7.8	12.4	2.3	249	6.6	, 0	6.7	1
	1	13.8	. 28	253	3.1	25	8.8	
0.5	7.3	12.3	4.6	224	2.3	0.89	11.79	. 0
0.11	7.8	-	•			•		•
ATSH 21	IAD 21	IAT4 24	IATEL 24	AT3 24	IATSL 24	IATSH 24	IAD 24	IAEO 24
5.7	:	8.4	, 1.5	173	6.3	, 0.2	6.81	
0.0	7.1							, 0
0.2	6.8	:	i	1		-		
	7.1	18.9	3.8	. 224	. 7.1	: o	6.69	
0.9	6.31	14.3	2.6	144	4.8	: 0.0e	5.9	*
	:			•		•	•	•
NT3H 21	IND 21	INT4 24	INT4L 24	INT3 24	INTSL 24	INTSH 24	IND 24	INEO 24
. 1	10.8	13	1.9 5.4	185 155	. 4 2.9	0.2	9.7 7.6	. 0
0.3	8	13.9	5.4	156	2.9	. 5.07	. 7.5	
	•	7.2	3	199	6.5	. 0.0	6.17	. 0
0.4	6.4	16.7	2.2	234	4.6	0.0	5.76	. 2
0.97	7.59	11.7	3.5	182	4.7	0.02	7	
			į	:	Ī	:		
0.5	7	15.2	4.2	194	6.4		7.1	•
0.5		14.6	3.9	250	2.8	.75	8.8	•
1.5	7.6	14.8	2.6	247	5.9	0.10	6.57	, ,

ANEXO 2

ANEXO 2 ESTADISTICAS DESCRIPTIVAS

VARIABLE	NUMERO	PROMEDIO	MEDIANA	VARIANZA	DESV EST
EAEI	15	50,2	45	583.6	24,158
EADI	15	13,68	13.6	3,516	1.875
EATSH	15	54,333	51	166,67	12,91
EAT41	11	1,668	0.31	10,414	3,227
EAT4LI	3	O	0	0	0
EAT3I	11	50,027	36	2067.2	45.466
EAT3LI	3	0,1	0,11	0.0031	0,056
EAT42	5	20,36	20	0,348	0,59
EAT4L2	5	3,36	2,5	2,678	1,636
EAT32	5	185,6	157	5197,3	72,092
EAT3L2	5	5	5,5	0,865	0,93
EATSH2	5	0,33	0,3	0,096	0,31
EAD2	5	10,64	10.6	1,533	1,238
EAT44	11	15,036	16,6	22,935	4,789
EAT4L4	11	2,855	2,8	0.221	0.47
EAT34	11	187,73	178	1801,2	42,441
EAT3L4	11	4,945	5	2,795	1,672
EATSH4	11	0,44	0,2	0.696	0.834
EAD4	11	9,783	9,52	3,116	1,765
EAT46	11	17,409	18	8,193	2,862
EAT4L6	11	3,555	3.6	0,383	0,619
EAT36	11	200,27	207	2764.8	52.582
EAT3L6	11	5,145	5,3	2,413	1,553
EATSH6	11	1.068	0.16	7,524	2,743
EAD6	11	9,213	9.2	3,435	1,853
EAT48	11	14,391	15,4	10,797	3,286
EAT4L8	11	2,964	3.2	0,723	0.85
EAT38	11	181,64	178	1450,7	38,087
EAT3L8	11	5,4	5	3.74	1,934
EATSH8	11	0,193	0.08	0,043	0,206
EAD8	10	8,727	8,65	2,716	1,648
EAT410	7	13,457	14,7	9.243	3,04
EAT4L10	7	3,029	2.6	1,466	1,211
EAT310	7	177	185	3095,3	55,636
EAT3L10	7	4,3	4,7	0,927	0.963
EATSH10	7	0,157	0,13	0.003	0,055
EAD10	7	8,014	8,15	0.461	0,679
EAT412	10	12,29	11,85	11,252	3,354
EAT4L12	10	2.82	2,85	0,624	0,79
EAT312	10	183,8	179	2370.6	48,689
EAT3L12	10	4,85	4.8	0,974	0.987
EATSH12	10	0,196	0.11	0,09	0,3
EAD12	9	8.703	8.3	1,68	1,296
EAT415	8	12,525	13,65	9,351	3,058
EAT4L15	8	2,6	2,5	0,263	0,513

VARIABLE	NUMERO	PROMEDIO	MEDIANA	VARIANZA	DESV EST
EAT315	, 8	177,13	174,5	2131.6	46,169
EAT3L15	. 8	4.912	4.85	0.518	0,72
EATSH15	. 8	1.866	0,375	18,9	4,347
EAD15	. 8	7.284	7.425	1,414	1,189
EAT418	. 6	12,7	13,25	6,104	2.471
EAT4L18	, 6	4.267	3,1	13,739	3,707
EAT318	. 6	187,33	167.5	5487.9	74.08
EAT3L18	. 6	5,3	5,2	2,08	1,442
EATSH18	. 6	0,205	0.065	0,122	0,349
EAD18	. 6	6.438	5,865	1.87	1,367
EAT421	5	14,12	13,4	8.447	2,906
EAT4L21	. 5	3,26	3.8	1,748	1,322
EAT321	5	199	185	1543,5	39,287
EAT3L21	5	5,3	5	1.46	1.208
EATSH21	. 5	0.98	0.11	2,923	1,71
EAD21	5	6,7	6,7	0,555	0.745
EAT424	. 6	15,633	15,55	12,827	3,581
EAT4L24	. 6	3,2	3.4	0,696	0,834
EAT324	6	198,67	167	4545,1	67,417
EAT3L24	6	4,633	4,6	1,291	1,136
EATSH24	6	0,25	0,24	0,033	0,181
EAD24	6	5.828	5,545	0,343	
EAT436	2	9.1	9,1	4.5	0,586 2,121
EAT4L36	2	2,1	2,1	0	2,121
EAT336	2	160	160	2048	45,255
EAT3L36	2	4.15	4,15	5.445	
EATSH36	2	1,34	1,34	3,175	2,333 1,782
EAD36	2	6.1	6.1	1,28	
ENEI	23	36,478	32	372,35	1,131
ENDI	23	13,161	12,9	6,195	19,296
ENTSH	23	53,435	51	299,53	2,489
ENT4I	16	3.696	2,2	16,228	17,307
ENT4L	10	0.666	0,335	1,372	4,028
ENT3I	16	135	120,5		1,171
ENT3LI	12	2,348	2.6	4220 2,688	64,962
ENT42	11	24,55	16,3		1,64
ENT4L2	10	4.65	3.7	1254,9	35,424
ENT32	9	224	190	12,658	3,558
ENT3L2	8	7,387	5,15	19546	139,81
ENTSH2	9	0.711	0,26	61,761	7,859
END2	9	11,656	12,2	1,006	1,003
ENT44	17	15,012	16	3,635	1,907
ENT4L4	16	3,369	3,45	13,512	3,676
ENT34	17	201	190	0,729	0.854
ENT3L4	16	4,244	4,1	3053.4	55,257
			<u> 4, 1</u>	3,188	1,785

Página 59

ESTA TEXTS NO DEBE SALIR DE LA DIBLIOTECA

5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	NII IMPERIO	000115010	0.055010.010	1/00/01/05/70	DESVEST
VARIABLE	NUMERO	PROMEDIO	MEDIANA	VARIANZA	0.68
ENTSH4	. 17	0.482	0,3	0,463	
END4	16	10,345	10,15	6,719	2,592
ENT46	18	12,344	12,7	26,758	5,173
ENT4L6	15	3,173	3,3	1,072	1,035
ENT36	17	198,29	190	3211	56,665
ENT3L6	15	5,207	4,8	2,588	1,609
ENTSH6	. 17	0,415	0,18	0.498	0,706
END6	16	8,298	8,6	5,708	2,389
ENT48	10	13,75	13,7	13,714	3,703
ENT4L8	9	3 .	2,9	0,448	0,669
ENT38	10	175	173,5	2104,4	45,874
ENT3L8	9	4,5	3,8	1,313	1,146
ENTSH8	10	0,462	0,09	0,529	0,727
END8	10	7,68	7,7	3,662	1,914
ENT410	7	14,086	13,6	8,265	2,875
ENT4L10	7	3,3	3	1,763	1,328
ENT310	7	175,43	146	3626,6	60,221
ENT3L10	7	3,929	3,7	1,649	1,284
ENTSH10	7	0,42	0,3	0,147	0,383
END10	8	7,981	8,45	5,558	2,358
ENT412	19	12,653	12,2	12,839	3,583
ENT4L12	19	3,305	2,6	4,856	2,204
ENT312	19	187,11	180	2848,4	53,371
ENT3L12	18	4,639	4,5	3,424	1.85
ENTSH12	19	0.728	0.4	1,777	1,333
END12	19	7,946	7.4	5,057	2,249
ENT415	10	13,45	13,35	17,696	4,207
ENT4L15	10	2,76	2.6	0.763	0,873
ENT315	10	201.1	210,5	2023.9	44,988
ENT3L15	10	5,11	5,1	1.721	1.312
ENTSH15	10	0,335	0,14	0,177	0,421
END15	10	8,088	8.4	3,615	1,901
ENT418	8	12,675	12,05	6,496	2,549
ENT4L18	. 8	2,7	2,75	0,286	0,535
ENT318		155,23	159.5	2022.5	44,972
ENT3L18	. <u> </u>	4,175	4.2	0.651	0,807
ENTSH18	8	0,559	0,205	0,859	0.927
		7,238	7,505	0,918	0,958
END18		12,99	13,05	6.308	2,512
ENT421	10	4.24	3.05	11,058	3,325
ENT4L21		183.7	178	1257.3	35,459
ENT321	10	4,96	. 1/0	1,992	1,411
ENT3L21	10			0,173	0,416
ENTSH21	10	0,567	0,51	1,236	1,112
END21	10	7,33	7,15		
ENT424	11	10,282	11,8	23,846	4,883

ESTADISTICAS DESCRIPTIVAS							
		PROMEDIO	MEDIANA	VARIANZA	DESV EST		
VARIABLE	NUMERO	16.01	2,85	1748,8	41,818		
ENT4L24	10	176,7	164.5	2592	50,912		
ENT324	10		4,1	1,894	1,376		
ENT3L24	10	4,39	0.275	1,094	1,046		
ENTSH24	10	0,651	6,725	3,773	1,943		
END24	10	7,218	13,2	4,536	2,13		
ENT436	8	13,225	3,1	1.44	1,2		
ENT4L36	8	2.637	162,5	2387.9	48,866		
ENT336	8	179,75	5,35	3.48	1.865		
ENT3L36	8	4,938		1,542	1,242		
ENTSH36	8	0,841	0,405	6.07	2.464		
END36	8	6,726	6,675	0,209	0.457		
ENT448	4	10,625	10,45	0.623	0.79		
ENT4L48	4	1,95	1.7	2154.3	46,414		
	4	123,75	117,5		0.472		
ENT348	4	2,81	2,7	0.223	6,975		
ENT3L48	. 4	8,375	6,85	48,656	1,594		
ENTSH48	4	5,683	6,115	2,54	10,128		
END48	7	41,286	42 .	102,57	1,514		
IAEI	. ,	12,086	12,5	2,291	12,793		
IADI .	7	46	51	163,67			
IATSH	. 6	2,075	0,46	16,021	4,003		
IAT4I	. 5	0,19	0	0,18	0.425		
IAT4LI		51,967	23,85	6340,2	79,626		
IAT3I	6	1,575	0,195	8.324	2.885		
IAT3LI	4	17,9	17.2	7,93	2,816		
IAT42	3	2.533	2,6	0,253	0,503		
AT4L2	3	186	179	379	19,468		
IAT32	3	5.533	6	5,923	2,434		
IAT3L2	3		0.52	0,092	0.304		
IATSH2	3	0,573	9,1	5,623	2,371		
AD2	3	8,433	10.1	32,447	5,696		
AT44	4	11.8	1.95	1,034	1,017		
AT4L4	4	1,77	199	1579,3	39,741		
AT34	4	205	4,75	0,283	0,532		
AT3L4	4	4,725		2.445	1,564		
ATSH4	4	1,57	1,05	3,076	1,754		
AD4	4	9,325	9,3	14,25	3,775		
AT46	4	15,65	15,9	3,215	1,793		
AT4L6	4	2,752	2,85	2222,3	47,141		
	4	214,75	200		0,888		
AT36	4	5,025	4,85	0,789	1,282		
AT3L6	4	0,902	0,405	1.644	1,599		
ATSH6		7,883	7,515	2,555	2,538		
AD6		13,24	13,1	6,443	1,146		
AT48	5	2,86	2,2	1,313	54,676		
AT4L8	5	143,26	177	2989.4	54,676		

VARIABLE	NUMERO	PROMEDIO	MEDIANA	VARIANZA	DESV EST
IAT3L8	5	4,48	4,5	1,247	1,117
IATSH8	5	0.744	0,21	1,898	1,378
IAD8	5	7.052	6,8	1,232	1,11
IAT410	3	14,333	13,4	3,893	1,973
IAT4L10	3	3,767	3,3	0,653	0,808
The second secon	3	178,67	180	577,33	24,028
IAT310	3	5,067	4,9	1,583	1,258
IATSH10	. 3	0.483	0,4	0,153	0,392
IAD10		8,357	8,72	0,78	0.883
IAT412	5	16,3	13.6	33,51	5,789
	5	3,78	3	2,182	1,477
IAT4L12	. 5	177	161	1517,5	38,955
IAT312	5	4,62	4,3	0,442	0,665
IAT3L12	. 5	0,448	0.4	0.152	0,389
IATSH12	, 5 5	7,716	В.	1,191	1,091
IAD12	4	15,425	14.9	5,509	2,347
IAT415	4	2,85	3	0,137	0,37
IAT4L15		181.75	178,5	898,25	29,971
IAT315	4	5,25	5,25	0,483	0,695
IAT3L15	4	0,177	0,155	0.043	0,208
IATSH15	4	8,293	7,61	2.746	1,657
IAD15	. 4	14,767	12,3	20,563	4,535
IAT418	3	3,333	3,4	1,443	1,201
IAT4L18	, <u>3</u>	202	152	8116	90,089
IAT318	. 3 3	3,833	4	0,583	0.764
IAT3L18		0,33	0.3	0.0079	0.089
IATSH18	3 2	6,75	6,75	1,125	1,061
IAD18	5	13,02	13,6	3,367	1.835
IAT421	. 5	36.3	3,2	5503.4	74,185
IAT4L21		134,36	131	6829,7	82,642
IAT321		3,146	3.5	3.958	1,989
IAT3L21	<u>></u>	1,36	0,2	6,023	2,454
IATSH21		6,827	6,95	0,139	0,373
IAD21		13,867	14,3	27,703	5,263
IAT424		2,633	2,6	1,323	1,15
IAT4L24		2,633 180,33	173	1640.3	40,501
IAT324	3		6.3	1,363	1,168
IAT3L24		6,067 0,093	0,08	0.01	0.101
IATSH24	3	6,467	6.69	0.244	0,494
IAD24			0	0,2	· · · · · · · · · · · · · · · · · · ·
IAT436		0	13.1	·	0
IAT448		13,1	5,6		
IAT4L48	<u> </u>	5,6	242	0	Ö
IAT348	1	242	6,8	0	ō
IAT3L48	,	6.8	0	0	0
IATSH48	1	0			

VARIABLE	NUMERO	PROMEDIO	MEDIANA	VARIANZA	DESVEST
IAD48	1	5	5	9	o l
INEI	11	50,636	43	579,85	24,08
INDI	11	12,9	12,9	1,464	1,21
INTSH	11	50,555	51	0,823	0,907
INT4I	10	4,183	2,475	18,961	4 354
INT4LI	6	0,332	0,245	0,158	0,398
INT3I	10	88,218	68,3	3986,6	63,14
INT3LI	6	1,66	1,4	2,817	1,678
INT42	4	14,775	16,05	36,536	6,044
INT4L2	4	3	2,85	0.42	0,648
INT32	4	145	142,5	1608,7	40,108
INT3L2	4	3.575	4,3	3,843	1,96
INTSH2	4	0,422	0,215	0.242	0,492
IND2	4	10,25	10,15	4,297	2,073
INT44	. 9	15,689	14.7	12,029	3,468
INT4L4	9	3,511	3,5	1,344	1,159
INT34	. 9	180,7	174	3500,1	59,161
INT3L4	9	3.656	4	2,47	1,572
INTSH4	9	0.432	0,13	0,546	0,739
IND4	9	10,422	9,8	4,797	2,19
INT46	8	15,612	15,6	11,036	3,322
INT4L6	8	3,05	3	1,266	1,125
INT36	8	169,5	162	2751,4	52,454
INT3L6	. 8	4,625	4,3	2,731	1,652
INTSH6	8	0,324	0,16	0,321	0,566
IND6	8	8,864	9,13	4,671	2,161
INT48	8	15,162	14,55	22,646	4,759
INT4L8	7	3,414	3,1	1,305	1,142
INT38	8	162	150	2623,7	51,222
INT3L8	7	4,743	5	2,976	1,725
INTSH8	8	0,956	0,57	1,322	1,15
IND8	8	7,95	8,3	2,€95	1,642
INT410	9	13,511	15	21,826	4,672
INT4L10	9	2,977	3	1,917	1,385
INT310	9	155,78	149	1558,7	39,48
INT3L10	9	4,089	3,9	1,179	1,086
INTSH10	9	0,594	0.4	0,552	0,743
IND10	9	8,437	9	2,057	1,434
INT412	10	10,88	11,2	12,835	3,583
INT4L12	10	2,21	2,3	0,363	0,603
INT312	10	161,7	159	1424	37,736
INT3L12	10	4,64	4,1	3,36	1,833
INTSH12	10	0,93	0,33	1,569	1,253
IND12	10	8,18	8,45	0,788	0,888
INT415	7	12,22	13,9	16,226	4,028

VARIABLE	NUMERO	PROMEDIO	MEDIANA	VARIANZA	DESVEST
INT4L15	7	2,94	3,2	0,526	0,725
INT315	7	181,7	185	4363,2	66,055
INT3L15	7	4,04	4	2,69	1,64
INTSH15	6	0,6	0,385	0,338	0,581
IND15	7	8,43	8,2	2,173	1.474
INT418	5	13,02	14	9,732	3,12
INT4L18	5	2,6	2,6	0,89	0,943
INT318	5	177	178	204	14,283
INT3L18	5	4,4	4,6	0,605	0,778
INTSH18	5	0,91	0.2	2,813	1,677
IND18	5	8,63	8,17	1,887	1,374
INT421	6	13,2	12,65	4,376	2,092
INT4L21	5	2,34	2,5	0,233	0,483
INT321	6	198,3	204	4390.7	66,262
INT3L21	5	4,94	5,8	2,283	1,511
INTSH21	. 6	0,778	0,735	0,211	0,46
INT424	8	13,387	14,25	8,467	2,91
INT4L24	8	3,337	3,25	1,337	1,156
INT324	8	205,75	196,5	1173,1	34,25
INT3L24	8	4,725	4,65	2,131	1,46
INTSH24	88	0,143	0.045	0,065	0,255
IND24	8	7,337	7,05	1,771	1,331
INT436	3	14,167	14,6	1,043	1,021
INT4L36	3	2,867	2,7	0,223	0,473
INT336	3	139	128	397	19,925
INT3L36	33	4,8	5	0,28	0,529
INTSH36	3	_0.4	0,18	0,276	0,526
IND36	3	6,57	6,6	0,022	0,147
INT448	1	18,2	18,2	0	
INT4L48	11	3	3	0	
INT348	1	175	175	0	0
INT3L48	1	5,8	5,8	0	0
INTSH48	11	0,03	0,03	0	0
IND48	1	5,95	5,95	0	0
IND21	6	7,898	7,595	2,333	1,527

ANEXO 3

ANEXO 3

RELACIÓN DESCRIPTIVA DE LOS PROMEDIOS DE LA DOSIS DE LEVOTIROXINA Y DE LAS DETERMINACIONES HORMONALES A CADA EDAD (EN TODA LA MUESTRA ESTUDIADA) EMPLEADOS PARA CALCULAR EL COEFICIENTE DE CORRELACIÓN DE PEARSON (r)

Edad	Dosis de LT4	T4 (x)	T4L (x)	T3 (x)	T3L (x)
i	12.557	2.806	0.422	27.098	1.720
2m	10.273	20.500	3.665	199.18	5.543
4m	9.511	14.337	3.176	196.58	4.322
6m	8.521	14.278	3.170	195.49	4.870
8m	7.514	14.244	3.100	170.67	4.953
10m	8.085	13.716	3.147	179.19	4.406
12m	8.183	12.915	2.972	179.66	4.727
15m	7.988	13.109	2.835	181.94	4.850
18m	7.261	13.172	3.244	173.07	4.548
21m	7.178	13.261	9.515	183.06	4.609
24m	6.987	12.494	7.050	193.97	4.869
36m	6.868	12.953	2.863	172.89	4.563
48m	5.420	13.290	2.690	174.00	4.394