

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES ACATLAN

'97 NGC 28 PM 1 15

"ESTUDIO HIDROLOGICO PARA EL ANTEPROYECTO DE DOS PRESAS PARA EL CONTROL Y APROVECHA-MIENTO DE LAS CORRIENTES MANSO Y PUXMETACAN. QUE CONFLUYEN EN EL RIO PAPALOAPAN, EDO. VERACRUZ Y DAXACA"

T E S I S
PARA OBTENER EL TITULO DE
INGENIERO CIVIL
PRESENTO CABALLERO HERNANDEZ
ANTONIO RAMOS MALDONADO

STA. CRUZ ACATLAN, NAUCALPAN EDO. DE MEXICO

1986

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES "ACATLAN"
PROGRAMA DE INGENIERIA CIVIL

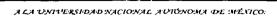
VNIVIBIER NACIONAL AVENDIA EL MIXICO

> ERES. ROBERTO CABALLERO HDEZ. ANTONIO RAMOS MALDONADO ALUMNOS DE LA CAFREIA DE INGENIERIA CIVIL

De acuerdo a su solicitud presentada con fecha 30 de junio de 1994, me complace notificarle que esta Jefatura de Programa tuvo a bien asignarles el siquiente tema de tesin titulado "Estudio Ridrologico pare el anterroyecto de dis presas para el control y aprovechamiento de las Torrientes Manso y Fuxmetadan, que confluyen en el rio Papalcapan, Edo, de Veratruz y Oaxaca", el cual se dessirudiara romo bigue:

- I. E. tudios basisos.
- II. Estudiw Hidrolog.co. III. Localización y tipo: de las presas.
- IV. Discusion de Niveles.
 - Conclusiones y recomendaciones Anexo

Asi mismo fue designado como asestr de tesis el Sr. Ing. Hermeneglido Arnos Serrano, professor de esta estuela. Buego a usted, tomar nota en cumplimiento de lo específicado en la Ley de profesionet, debera prietar Servicio focial durante un tiempo minimo de seis mesel, comi requisito basico para sustentar examen profesional, así como de la disposición de la Dirección General de Servicios Escolares en el sentido de que se imprima en lugar visible de los elemfiares de la teris, el titulo del trabajo realizado. Esta comunicación debera imprimirse en el interior de la testis.


A TENTANEN TE.
" POR MI RAJA HABLARA EL ESFIRITU"
Acatlan Edo. de Mexico a 8 de enero de 1996

ENEP-ACATLAN

AFFATURA DEL

FRANCAMA DE MISCHIFRIA

Ing. Corlos Rosales Aguilar. Jefe del Programa de Ingenieria Civil

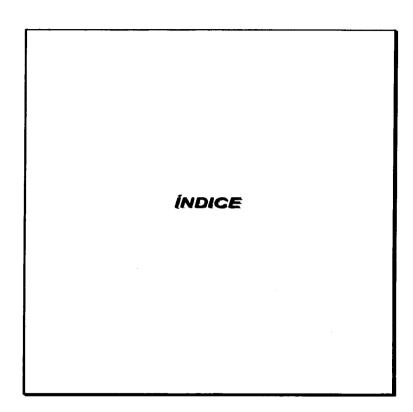
FOR APRIR LAS PUERLAS HACIA EL CONOCIMIENTO

A LA ESCUELA NACIONAL DE ESTUDIOS PROPESIONALES ACATLÁN:

FOR OFFICER TODOS LOS MEDIOS, MARA OFFICIER UNA FORMACIÓN PROFESIONAL Y A TODOS SUS PROPESORES, FOR SUS ENSIENANZAS

Marketine services to the contract of the cont

A TT MARINA: (ON TODO MI r = 1 - un 0 , NOR TU CANIÑO QUE HA REPRESENTADO PARA SHE UN MALIOSO ESTIMULO EN SHOMENTOS DE FLAQUEZA. GRACIAS A DIOS FOR PERMITTRINE LLEGAR A LA META PROPUESTA ROBERTOCARACLEROHERNÁMDEZ



AGRADICIMIEMIOS:

- A LACNA ANK LAS FACILIDADES OFORGADAS EN LA REALIZAÇION.

 JOLESTE TRABAN
- AL ING ALEJANDRO PEÑA RONIGLA FOR, SU APRECIARCE AYUDA Y RUENA DININGGON
- AG ING PERMUNIGIODO ARGOS SERRANO INK. ACUPIAR DIRIGIR ESTE TRABAN
- ALING ONLAR A REPORTER R 5° ALING LUIS M RALMONIS H FOR PLEMITERIO 554R LL PROJEKAMA JUDROSUP ELABORADO DOR ELLOS
- A LIIGENIA Y A ROBERTO RAMOS MALDONADO FOR SU APRECIABLE APUDA OTORGADA EN TODO MOMENTO.
- AC SE JOSE CICALICO ANE SC AYODA EN LA EMPRESION DE ÆSTE TRABAJO
- AL ING JOSE MARTIN LOPEZ BLUTRRAPOR SU AROTO.
- FINALMENT: A TODAS AQUILLAS PLESONAS QUE PARTICIPARON DIRECTA O ENDIRECTAMENTE EN LA REACIZACIÓN DE ASTE TRABADO

ÍNDICE

"ESTUDIO HIDROLÓGICO PARA EL ANTEPROYECTO DE DOS PRESAS PARA EL CONTROL Y APROVECHAMIENTO DE LAS CORRIENTES MANSO Y PUXMETACAN, QUE CONFLUYEN EN EL RÍO PAPALOAPAN, EDO, DE VERACRUZ Y OAXACA."

			TEMA	PAG.				
A	NÁLISIS	DEL PI	ROBLEMA Y GENERACIÓN DE ALTERNATIVAS	1				
JL	JSTIFIC	ACIÓN		7				
ı	ESTU	DIÖS B	ASICOS	10				
	1.1	ESTU	DIOS TOPOGRÁFICOS	10				
	1.2	ESTU	DIOS GEOLÓGICOS	11				
		1.2.1	PLANEACIÓN DE LA INVESTIGACIÓN	11				
		1.2.2	RECONOCIMIENTO	11				
		1.2.3	FOTOINTERPRETACIÓN	13				
		1.2.4	INVESTIGACIONES EXPLORATORIAS					
		1.2.5	SONDEOS Y TOMA DE MUESTRAS	14				
	1.3	ESTU	DIOS AGROLÓGICOS	15				
		1.3.1	SUELOS	15				
			I.3.1.1 Descripción General	15				
			1.3.1.2 Grandes Grupos de Suelos	16				
			I.3.1.2.1 Fluvisoles éutricos (Je) y Fluvisoles gléyicos (Jg)	16				
			1.3.1.2.2 Andosoles mólicos (Tm)	17				
			1.3.1.2.3 Cambisoles éutricos (Be)	18				
			1.3.1.2.4 Vertisoles péllicos (Vp)	19				
			I.3,1.2.5 Acrisoles órticos (Ao)	20				
			1.3.1.2.6 Gleisoles éutricos (Ge)	21				
			I.3.1.3 Uso del Suelo	21				
	1.4	ESTU	DIOS SOCIOECONÓMICOS	23				
		1.4.1	POBLACIÓN TOTAL Y TENDENCIAS DE CRECIMIENTO	23				
		1.4.2	DISTRIBUCIÓN GEOGRÁFICA	24				
		1.4.3	CRECIMIENTO DE POBLACIÓN	24				
		1.4.4	COMPOSICIÓN POR EDAD Y SEXO	28				
		1.4.5	MIGRACIÓN	31				
		1.4.6	NIVEL DE INSTRUCCIÓN	36				
		147	CONDICIÓN DE ACTIVIDAD ECONÓMICA	78				

	1.4.8	PARTICIPACIÓN ECONÓMICA	4
	1.4.9	OCUPACIÓN PRINCIPAL	4
	1.4.1	0 SECTORES DE ACTIVIDAD	4
	1.4.1	1 INGRESOS .	4
	1.4.1	2 SERVICIOS DE LA VIVIENDA	4
	1.4.1	3 COMUNICACIONES Y TRANSPORTES	40
II EST	тиріо н	IDROLÓGICO	52
H.1	PRE	CIPITACIÓN	52
	11.1.1	TIPOS DE PRECIPITACIÓN	52
		II.1.1.1 Precipitación Convectiva	52
		II.1.1.2 Precipitación Ciclónica	52
		II.1.1.3 Precipitación Orografica	52
	11.1.2	APARATOS DE MEDICIÓN	55
		II.1.2.1 Pluviómetro	55
		II.1.2.2 Pluviógrafo	56
	11.1.3	TIPOS DE REGISTRO	57
	11.1.4	FUENTES DE INFORMACIÓN	57
	11.1.5	PRESENTACIÓN DE LA INFORMACIÓN	58
	11.1.6	TÉCNICAS DE ANÁLISIS DE LA PRECIPITACIÓN	59
		II.1.6.1 Análisis de la Precipitación Registrada en una Estación ó Precipit	tació
		Puntual	59
		II.1.6.1.1 Curva Masa	59
		II.1.6.1.2 Hietograma	60
		II.1.6.1.3 Curva Intensidad de la Lluvia-Duración-Período de Retorno	63
11.2	ESCU	RRIMIENTO	64
	11.2.1	AFORO DE CORRIENTES	64
		II.2.1,1 Sección de control	65
		II.2.1.2 Relación Sección-Pendiente	65
		II.2.1.3 Relación Sección-Velocidad	66
	11.2.2	HIDROGRAMA	69
		II.2,2.1 Análisis del Hidrograma de una Avenida	69
11.3	PÉRDIC	DAS	75
	11.3.1	DETERMINACIÓN DE LAS PÉRDIDAS	75
		II.3,1.1 Capacidad de Infiltración Media	77
		II.3.1.2 Coeficiente de Escurrimiento	50
	11.3.2		81
		II.3.2.1 Criterios para Diseño	81

11.4	RÉLACIÓN ENTRE PRECIPITACIÓN Y ESCURRIMIENTO							83	
		11.4,1	PRINCI	PALES	CARAC	TERÍSTICAS DI	E UNA CI	JENCA	83
		11.4.2	MÉTOD	os	PARA	CALCULAR	LAS	RELACIONES	PRECIPITACIÓN
			ESCUR	RIMIEN	TO				86
			11.4.2.1	Fórmu	las Emp	oiricas			86
			11.4.2.2	Métode	os Emp	iricos			87
			11.4.2.2	.1 Rac	ional Americani	9		87	
			11.4.2.2	2 India	e Área			88	
					Soil Conservat	ion Servi	CO	58	
				II.4.2.2.4 Método de Chow				89	
			11.4.2.3	Método	s Hidro	iógicos			89
				II.4.2.3.1 H.U. Sintético del U.S.S.C.S.				90	
						_		au of Reclamation	
						Adimensional c	tet S.C.S		91
						do de I Pai Wu			92
	11.5	ANÁLISIS ESTADÍSTICO II.S.1 PARÁMETROS ESTADÍSTICOS						97	
		11.5.1							98
		11.5.2				DAD DE PROBA	BILIDAD)	99
			11.5.2.1						99 100
			11.5.2.2						100
						g Normal g Pearson III			101
						ng reamon III mos Cuadradoi			101
	11.6	AVENI	DA DE DIS		JOF MINI	mos Cuadradoi	•		103
		II.6.1 EXPOSICIÓN DE MÉTODOS					103		
		10.0.1	#.6.1.1			-			104
						ción Lluvia - Es	currimia	nto	105
		11.6.2	SELECC					.,,,,	106
			522200						
411	LOCALIZACIÓN Y TIPO DE LAS PRESAS								110
	111.1	DETER	MINACIÓN	DE LA	CUENC	A DE DRENAJI	Ē		110
		111.1.1	.1.1 ASPECTOS GENERALES						110
		HI.1.2	ÁREA DE	LA CU	ENCA				111
		111.1.3	PENDIEN	TE MED	IA DE L	A CUENCA			117
			III.1.3.1 C	riterio	de Horto	on			117
		III.1.4	RED DE C	RENAL	E				118
			III.1.4.1 C	orden de	las Co	rrientes			121

			III.1.4.2 Longitud de Tributarios	121			
			III.1.4.3 Densidad de Corrientes	122			
			III.1.4.4 Densidad de Drenaje	123			
		111.1.5	PENDIENTE DEL CAUCE	124			
			III.1.5.1 Tiempo de Concentración	127			
	111.2	UBICA	CIÓN DE LA BOQUILLA	132			
	111.3	ELABO	RACIÓN DE LAS CURVAS ELEVACIONES-ÁREAS-CAPACIDADES	135			
	111.4	DETER	RMINACIÓN DEL TIPO DE PRESAS				
		111,4,1	CLASIFICACIÓN	138			
		111.4.2	TIPOS DE PRESAS SEGÚN EL TIPO DE CONSTRUCCIÓN Y LOS MATERIALES	QUE			
			LA CONSTITUYEN	139			
			III.4.2,1 Presa Tipo Gravedad	139			
			III.4.2.2 Presa de Materiales Graduados	139			
		111.4.3	FACTORES QUE AFECTAN LA DETERMINACIÓN DEL TIPO DE PRESA	141			
			III.4.3.1 Condiciones del Sitio	141			
			III.4.3.1.1 Condiciones de la Cimentación	141			
			III.4.3.1.2 Topografia	142			
			III.4.3.1.3 Materiales de Construcción	144			
			III.4.3.1.4 Accesos al Sitio	144			
			III.4.3.2 Factores Hidráulicos	144			
			III.4.3.2.1 Obra de Excedencias	144			
			III.4.3.2.2 Obra de Desvio	145			
			III.4.3.2.3 Obra de Toma	146			
			III.4.3.3 Efectos de Clima	146			
			III.4.3.4 Transito	147			
IV	DISCL	JSIÓN E	DE NIVELES	149			
	IV.1		RALIDADES	149			
		IV.1.1	CAPACIDAD DE AZOLVES	150			
		IV.1.2		153			
		IV 1 3	CAPACIDAD ÚTU	154			

IV.2	SIMUL	ACIÓN DEL FUNCIONAMIENTO DEL VASO	159
	IV.2.1	PLANTEAMIENTO DEL PROBLEMA	161
	IV.2.2	APORTACIONES	162
		IV.2.2.1 Escurrimiento por Cuenca Propia (ICP)	162
		IV.2.2.2 Ingresos por Transferencia (IT)	165
		IV.2.2.3 Volumen de Lluvia en el Vaso (VLL)	165
	IV.2.3	VOLUMEN EXTRAIDO (VDEM)	165
	IV.2.4	PÉRDIDAS	166
		IV.2.4.1 Evaporación (VEVA)	166
		IV.2.4.2 Infiltración (INF)	167
		IV.2.4.3 Derrames (DERR)	167
	IV.2.5	PROCEDIMIENTO DE CÁLCULO	168
IV.3	TRÁNS	SITO DE AVENIDAS EN EL VASO	173
	IV.3.1	FUNDAMENTOS	173
		IV.3.1.1 Ecuación de continuidad	173
		IV.3.1.2 Relación entre Almacenamiento y Gasto de Salida	175
	IV.3.2	MÉTODOS PARA EL TRÂNSITO DE AVENIDAS EN VASOS	175
		IV.3.2.1 Método Numérico	176
		IV.3.2.2 Método de Euler	177
IV.4	DETER	RMINACIÓN DEL FETCH	191
	IV.4.1	MAREA DE VIENTO	191
	IV.4.2	OLEAJE DE VIENTO	193
	IV.4.3	PENDIENTE Y CARACTERÍSTICAS DEL PARAMENTO MOJADO	194
	IV.4.4	FACTOR DE SEGURIDAD	196
	IV.4.5	BORDO LIBRE	196
CONCLU	SIONES	Y RECOMENDACIONES	197
BIBLIOGI	RAFIA		201
ANEXO			204

OBJETIVO GENERAL: DETERMINAR LA FACTIBILIDAD DE LA CONSTRUCCIÓN DE DOS PRESAS, PARA EL CONTROL Y APROVECHAMIENTO DE LAS CORRIENTES MANSO Y PUXMETACAN, AFLUENTES DEL RIO PAPALOAPAN, EDO DE VERACRUZ

ANALIZAR EN QUE MEDIDA, LA CONSTRUCCIÓN DE ESTAS PRESAS AYUDARÍA A CONTROLAR LAS AVENIDAS MÁXIMAS QUE PROVOCAN UN AUMENTO CONSIDERABLE EN EL CAUDAL DE LOS RÍOS QUE CRUZAN Y DIREMAN LA ZONA DENOMINADA BAJO PAPALOAPAN, OCASIONANDO DESBORDAMIENTOS E INUNDACIONES QUE AFECTAN EXTENSAS AREAS DE CULTIVO.

CAPÍTULO I.- ESTUDIOS BÁSICOS

OBJETIVO: INVESTIGAR Y RECABAR LA INFORMACIÓN DE LOS ESTUDIOS BÁSICOS EFECTUADOS EN ESTA ZONA QUE PERMITIRA LLEGAR A LA TOMA DE DECISIÓN ÓPTIMA

CAPÍTULO II.- ESTUDIO HIDROLÓGICO

OBJETIVO: DETERMINAR LOS EVENTOS QUE SE PRESENTAN EN LA ZONA DE ESTUDIO, ANÁLOGOS A LAS CARGAS DE DISEÑO ESTRUCTURAL

CAPÍTULO III. - LOCALIZACIÓN Y TIPO DE LAS PRESAS

OBJETIVO: EN BASE A LA INFORMACIÓN RECABADA DE LOS ESTUDIOS BÁSICOS EFECTUADOS EN LA ZONA DE ESTUDIO, PROPONER LA UBICACIÓN ÓPTIMA DE LAS PRESAS Y EL TIPO DE ESTAS.

CAPÍTULO IV.- DISCUSIÓN DE NIVELES

OBJETIVO: DIMENSIONAMIENTO DE LAS PRESAS Y SU POLÍTICA DE OPERACIÓN.

ANÁLISIS DEL PROBLEMA Y GENERACIÓN DE ALTERNATIVAS

El principal problema que afecta el desarrollo de la cuenca del Papaloapan es la ocurrencia de inundaciones periòdicas provocadas por las crecientes de los rios. Las causas mas importantes de estas inundaciones son en primer lugar, el proceso de deforestación de la Alta Mixteca, que provoca el arrastre de grandes volumenes de azolve procedentes de las zonas erosionadas, conducidos fundamentalmente por el río Santo Domingo. A causa de estos azolves, se ha visto reducida substancialmente la capacidad del cauce del río Papaloapan. Otra causa de inundaciones, que está ligada a las anteriores, es la falta de obras de control de avenidas en los ríos afluentes del Papaloapan y de regulación en la parte baja.

Las áreas inundadas se extienden en las margenes del río Papaloapan desde Tuxtepec hasta. Alvarado y las crecientes provocan también el desbordamiento de los ríos Obispo, Tesechoacan y San Juan Evangelista.

De los afluentes del río Papaloapan, el río Santo Domingo es el que transporta más sólidos en suspensión, con un amplio margen respecto a los demás, ya que suministra el 67 % del total, el río Tesechoacan aporta el 17 % y el San Juan Evangelista el 13 %. El origen del azolve es la erosión pluvial sobre los suelos con escasa cubierta vegetal que los proteja, cuyo origen es el desmonte irracional en las zonas altas.

Una de las principales inundaciones fue la de 1944, que se estima abarcó una superficie total de 470 000 ha.

E.N.E.P. ACATLAN TESIS COLECTIVA

Dos conclusiones acerca de las inundaciones que se presentan en la zona de estudio son

- 1°." Los desbordamientos e inundaciones causados por el Papaloapan han ocasionado muy grandes perdidas a los habitantes del Valle de ese río. Los daños se estiman año tras año, en varios miles de millones de pesos, habiendo ocurrido perdidas de vidas y sufrimientos por la ansiedad ante el peligro y perdidas indirectas por las enfermedades, por el hambre y por los trastornos e interrupciones en las comunicaciones. Además de todo esto, se resienten perdidas intangibles por la desmoralización y desaliento que se traduce en menores actividades subsecuentes. La situación se considera tan sería que amerita un gran esfuerzo nacional para remediada."
- 2". No hay razones para creer que la intensidad de las avenidas del Papaloapan sea mayor actualmente que en tiempos anteriores, pero sí existen dos motivos para que los daños sean superiores a medida que avanza el tiempo".
- a) "Los desbordamientos son de mayores proporciones para avenidas de igual intensidad a las anteriores porque, debido a los azolyamientos, se ha reducido el cauce mayor del Papaloapan y.
- b) La población y las inversiones han venido aumentando

particular and the second seco

Estas conclusiones, muestran lo transcendental del problema y la necesidad impenosa de solucionarlo satisfactoriamente a fin de permitir un desarrollo más racional de la cuenca.

En resumen, podemos señalar que uno de los principales problemas que afectan el desarrollo de la cuenca del Papaloapan en su parte baja, es la frecuencia y dimensión de las inundaciones, así como las características de éstas en cuanto a los sedimentos que dejan en los lugares afectados

OBRAS DE PROTECCIÓN EXISTENTES.

En la margen izquierda del colector general de la cuenca del Papaloapan, sobre el río Tonto, entre los años de 1949 a 1955, fue construida la presa Presidente Alemán (Temascal) con una capacidad de almacenamiento total de 8 119 millones de m², su principal objetivo es el control de las avenidas del río Tonto. Otros objetivos de esta presa son la generación de energía eléctrica, el desarrollo de la piscicultura, el riego y la navegación.

Por otro lado, sobre el río Santo Domingo se encuentra la presa Miguel de la Madrid Hurtado(Cerro de Oro), concluida en 1989 y cuyo vaso se intercomunica con el de la presa Presidente Alemán a través del "Tajo de Pescaditos", para formar un almacenamiento común de 13 380 millones de mª, que requino la sobreelevación en aproximadamente 1.50 m de la presa Presidente Alemán y de su dique principal, con estas acciones se ha conseguido dar protección à 600,000 habitantes y 200,000 hectareas.

Los objetivos principales de la presa Cerro de Oro son el control de avenidas de los ríos. Santo Domingo y Tonto, la retención de los azolves que aporta el río Santo Domingo al río. Papaloapan, el incremento de la generación de energía eléctrica, mediante la ampliación de la capacidad instalada en la planta hidroeléctrica de la presa Presidente Alemán, y, ademas, el aprovechamiento del agua para regar terrenos tanto de la margen derecha como de la margen izquierda del río Santo Domingo.

Además de estas dos grandes obras desarrolladas sobre cornentes que alimentan al río Papaloapan en su margen izquierda, se han llevado a cabo otras obras complementarias, con el propósito de aminorar los efectos devastadores que las inundaciones provocan en la zona de estudio, algunas de las más importantes son las siguientes

E.H.E.P. ACATLAN

TESIS COLECTIVA

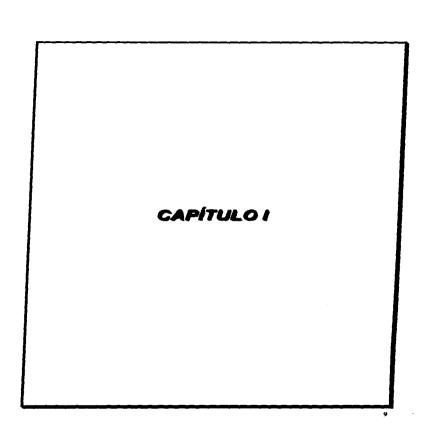
- Cortes de rectificación del río Papaloapan denominados Zopelican, Novillero, Tlacojalpan,
 Otatillán y Cosamaloapan, así como también los del río Tecolapan y San Agustín
- Bordos Camino, se han construido los de Tuxtepec Buenavista y Pueblo Nuevo Chacathanguis, en las márgenes del Papaloapan, con longitudes de 120 y 50 km
 respectivamente Estos Bordos Camino están dotados con algunas estructuras de compuertas
 entre las que se mencionan. La Peñita, El Pedregal, Oyozontie y Moyota.
- Además se han construido bordos perimetrales para protección de algunos poblados que no recibieron los beneficios de los bordos longitudinales del Papaloapan, entre los que se mencionan Santa Teresa, Santa Cruz, Cerro Colorado, Otatitan, Tlacojalpan, Novillero, Tuxtilla, Moyota - Torno Largo, Chacaltianguis, Carlos A Carrillo, Amatitian, Salta Barranca y otros
- Por otro lado, sobre el río Papaloapan se han construido numerosos enrocamientos marginales
 de protección en aquellos sitios en los que la corriente ha amenazado con divagar o erosionar,
 poniendo en peligro poblaciones, bordos camino, y otras instalaciones. Entre los lugares
 protegidos con enrocamientos pueden mencionarse los siguientes. Tuxtepec, San Rosendo, San
 Bartolo, Toro Bravo, La Isleta, Playa de Vaca, Otatittan, El pedregal, Tlacojalpan, Saladero,
 Novillero, La Lima, El Boqueron, Chacaltianguis, Oyozontte, Dos Bocas, Amatitlan, km 88 y
 otros.

Por lo que respecta a las obras de drenaje, son pocas las que se han realizado, existe un dren de 6.7 km en la unidad de riego de Piedras Negras, del distrito de Río Blanco. Para drenar tierras de cultivo aledañas a la ciudad de Río Blanco, se han construido drenes en Chacaltianguis, Boca de Coruña y Las Peñas con longitudes de 600, 530 y 200 mts respectivamente. Existen otras obras de drenaje en la Laguna de La Candelaria, en las inmediaciones de la población de Tiacotalpan, estas obras incluyen un bordo de confinamiento en la laguna de Los Amates para fines de experimentación piscícola.

Las obras anteriormente mencionadas, actualmente se encuentran operando y representan una alternativa que contribuye al esfuerzo por evitar los constantes desbordamientos de los ríos localizados en la parte baja de la cuenca del Papaloapan, pero cabe mencionar que su alcance es limitado, debido a que como ya se menciono anteriormente en el analisis del problema, la gran cantidad de sedimentos que son acarreados por las corrientes desde la Zonas altas hasta la zona baja de la cuenca del Papaloapan, reducen significativamente el Cauce de las corrientes que direnan esta zona, esto aunado a la baja pendiente del terreno y al regimen pluviométrico , ocasiona que en epocas de lluvias las corrientes se desborden produciendo grandes daños en la región.

Por otra parte. la Secretaria de Agricultura y Recursos Hidraulicos a traves de la extinta Comisión del Papaloapan, realizó estudios, entre los que destacan, el relativo a un modelo hidraulico físico de la zona en el que se reprodujeron las condiciones del cauce del rio Papaloapan desde la confluericia de los rios Tonto y Santo Domingo hasta su descarga at mar, la planicie de la margen derecha y la laguna de Alvarado. Los resultados obtenidos en los ensayos, llevados a cabo considerando la construcción de cauces de alivio en la margen izquierda del rio Papaloapan y el rompimiento de la barra de Alvarado, demostraron baja efectividad en el control de las injundaciones.

A traves de la C. N. A se llevara a cabo los estudios para la actualización del modelo hidráulico en los que se consideren la presa Cerro de Oro y la construcción de un gran canal que recoja los escurrimientos de los ríos San Juan. Tesechoacan y obispo con descarga directa al mar, y/o desazolve periodico del río Papaloapan y sus afluentes, soluciones estas de elevados costos, y cuya viabilidad debe analizarse además de económica y financieramente, en el contexto ecológico de la zona para que los posibles beneficios no sean minimizados por deterioro del delicado medio ambiente de la zona.


E.N.E.P. AGATLAN

JUSTIFICACIÓN

En el desarrollo de este trabajo se propone la construcción de dos presas, cuyos propósitos son: el control de avenidas, el beneficio de extensas áreas de cultivo por medio de riego, y la generación de energía eléctrica en una de ellas

Esta propuesta surge a raiz del interés que ha despertado, la problemática que afrontan los habitantes del Valle del Papaloapan, ocasionada por los constantes desbordamientos de las principales corrientes de la zona. Teniéndose información de que la infraestructura existente es insuficiente para controlar adecuadamente estos desbordamientos y por otro lado, alternativas que se han presentado como el desazolve constante del río Papaloapan y de sus principales afluentes, representa una solución incosteable y que podría alterar el entorno ecológico. Por tal razón se analizara la factibilidad de la construcción de dos presas, considerando que los nesgos que se corren en esta zona han ido en aumento en los ultimos años debido al incremento de la población.

L ESTUDIOS BÁSICOS

I.1 ESTUDIOS TOPOGRÁFICOS

La llanura aluvial costera con cotas inferiores a 10 m s n m les una zona de emergencia con relieve plano y pendientes menores de 1% casi uniforme, interrumpida por depresiones y lagunas de extensión y profundidad variable que permanecen inundadas casi todo el año. Estas partes reciben constantes aportes de sedimentos sobre todo en las grandes avenidas cuando se desbordan los rios e inundan grandes superficies.

Desde la cota 10 m hasta la cota 100 m que en la parte sureste representa el limite de la zona de estudio, se tiene una topografia con relieve que varia de muy ligeras hasta muy fuertes ondulaciones, con pendientes de 1% hasta más de 20%.

La topografia dominante en estas latitudes es la resultante de efectos erosivos, levantamientos y emergencias y se caracteriza por innumerables fomerios y lomas de escasa altura, muy ligeramente a moderadamente inclinadas con figuras alargadas de poca anchura para los tomerios y de redondeadas y encadenadas las tomas. Hay algunas areas contiguas o intercatadas con fomerios o fomas de mayor altura, muy inclinadas y separadas por una especie de pequeñas cañadas. Por ultimo, en las riveras de los rios hay pequeñas superfícies con diferente topografía como vegas y terrazas planas, albardones con figura de lomerio y relievé ondulado, meandros en forma de herradura, islas y lechos azolvados.

Fuentes de información topográfica. El INEGI (Instituto Nacional de Estadística Geográfica e Informática) ha efectuado estudios topográficos en toda la Republica Mexicana, presentados en cartas topográficas a diferentes escalas, eligiendo para este estudio la escala 1:50.000

A CHARLES AND A

1.2 ESTUDIOS GEOLÓGICOS

I.2.1 PLANEAMIENTO DE LA INVESTIGACIÓN

Información que se requiere. Una información completa de las condiciones del subsuelo deben incluir los siguientes puntos

- a) Naturaleza del lugar (geología, historia de los rellenos recientes, excavaciones e inundaciones).
- b) Profundidad, espesor y composición de los estratos del suelo y de la roca
- c) Situación del agua subterránea y variaciones de la misma
- d) Propiedades, desde el punto de vista de la ingeniería, de los estratos del suelo y de roca que afecten al comportamiento de la estructura.

Costo. El costo de una investigación adecuada (incluyendo ensayos de laboratorio) varía entre el 0.5 al 1.0 por ciento del costo total de toda la estructura.

1.2.2 RECONOCIMIENTO

Estudio Geológico. Un estudio geológico, no importa lo breve que sea, es muy útil para el planeamiento e interpretación de una investigación completa del suelo. El proposito principal de los estudios geológicos es determinar la naturaleza de los depósitos subyacentes en el lugar de la investigación. Con este estudio se pueden determinar los tipos de suelo y roca que probablemente se encontrarán y seleccionar los mejores métodos para las exploraciones del subsuelo, antes de comenzar las perforaciones, la toma de muestras o los ensayos en obra. La historia geológica puede revelar alteraciones que se han producido, como fallas, inundaciones o erosión que han cambiado el caracter original del suelo o de la roca. También puede indicar la posibilidad de defectos en la roca, como grietas, fisuras, diques, capas intrusivas, simas y cavernas.

Actividad sísmica potencial. La actividad sísmica potencial es uno de los factores más importantes en el proyecto de estructuras en muchas regiones del mundo. Los terremotos son generalmente el resultado de deformaciones acumuladas en puntos profundos de la corteza terrestre que llegan a su climax al liberarse por las grietas o fallas. Los daños que causan los terremotos en las cimentaciones son de dos formas el desgarramiento directo de las estructuras que yacen sobre la falla y la aceleración de la estructura situada dentro de la zona de movimientos más intenso. Sin embargo, en las áreas más activas y para las estructuras más críticas, es necesaria una evaluación con dos metas. La primera es un estudio geológico de la región para conocer todas las fallas. La segunda meta es un examen de la historia de los terremotos antenores en la región.

Fuentes de información geológica. Se han hecho estudios geológicos de toda la república mexicana, por el I N E G I (instituto Nacional de Estadística Geográfica e Informática) que cuenta con planos a escala 1.250,000, por compañías petroleras, por intereses mineros y por empresas industriales.

inspección del lugar. El examen del lugar y sus áreas adyacentes ofrecerá una información de mucho valor. La topografía, la forma de drenaje y de la erosión, la vegetación y el uso que se le da a la tierra, revelan las condiciones subterráneas, especialmente la estructura y textura del suelo y de la roca.

Reconocimiento aéreo. El exámen del lugar desde el aire, puede revelar las características topográficas en general y la forma del terreno, el drenaje y la erosión, mas eficazmente que la inspección directa en la superficie del terreno. Con un reconocimiento se puede establecer las condiciones probables del suelo en el lugar. Si el lugar resulta inapropiado para la estructura, puede abandonarse sin estudios posteriores.

E.N.E.P. ACATLAN

1.2.3 FOTOINTERPRETACIÓN

La interpretación de las fotografías aéreas es la apreciación de las condiciones del subsuelo a través de lo que dichas condiciones ponen de manifiesto en las fotografías aéreas. En muchos casos se puede deducir la secuencia de los estratos del suelo y de roca y algunas veces hasta se pueden estimar ciertas propiedades ingenieriles del suelo por los detalles que se hayan observado.

Guias para el análisis. El análisis consiste en la identificación de los rasgos característicos naturales y artificiales y su agrupamiento por relaciones geológicas. Estos rasgos incluyen lo siguiente.

- a) Topografia
- b) Distribución de las comentes
- c) Detalles de la erosion y de los barrancos
- d) Tonos arises o color
- e) Vegetación
- f) Detailes minimos topográficos
- g) Cultivos y obras artificiales
- h) Limites naturales y artificiales

1.2.4 INVESTIGACIONES EXPLORATORIAS

Planeamiento del trabajo de exploración. El propósito de esta investigación es obtener una información exacta de las condiciones del suelo y de la roca en el lugar que se investiga. La profundidad, espesor, extensión y composicion de cada uno de los estratos, la profundidad de la roca y la profundidad del agua subterránea, además se obtienen datos preliminares de la resistencia y compresibilidad de los estratos para hacer los estimados preliminares de la seguridad y de los asentamientos de la estructura

1.2.5 SONDEOS Y TOMA DE MUESTRAS

Se han desarrollado muchas técnicas de exploración diferentes, pero para nuestro caso se tienen las siguientes.

Prueba de penetración estándar. La prueba de penetración estándar (ATM D-1586) es el método mas ampliamente usado para las exploraciones de suelos. Consiste en dos etapas, perforación para abrir un aquiero en el suelo y tomar muestras en seco.

Sondeos rotatorios. Cuando al sondear un suelo se encuentra un material tan duro que la resistencia a penetración excede de 100 golpes en la prueba estándar, es difficil o imposible continuar. A esta resistencia se le llama rechazo y es indicación de suelo muy compacto, boleo o roca.

El sondeo rotatorio se usa para perforar esos materiales duros y determinar si lo que indica el rechazo era una lente dura, un boleo asentado sobre material blando o una roca sana

1.3 ESTUDIOS AGROLÓGICOS

1.3.1 SUELOS

I.3.1.1 Descripción General

Se selecciono el área que tiene mayores posibilidades de ser beneficiada con las obras que se estan proponiendo en el desarrollo de este trabajo, esta área se encuentra ubicada en las partes bajas de la cuenca, con cotas inferiores a 50 m s n m, por esta razón las principales geoformas encontradas son en las partes planas, grandes llanuras aluviales con pocas o grandes aportaciones de sedimentos y que corresponden a las zonas de inundación, terrazas aluviales contiguas a los cauces de los grandes ríos, pequeños y grandes albardones formados por acumulación y movimientos de tierra de grandes avenidas con relieve de lomerios más o menos continuos, meandros y brazos de río en forma de herradura y lechos recientes azolvados

En las partes casi planas o ligeramente enduladas localizadas en un plano un poco más alto que la zona anterior y que reciben menos sedimentos, pues se inundan solo cuando se forman ciclones que azotan la cuenca se identifican dos tipos de geoformas, por un tado, tomas o tomertos de pequeña altura continuos o aislados, ubicados en la mayor parte del límite sur y margen derecha del río San Juan, por otro lado, una zona de innumerables pequeños ondulamientos con gran cantidad de pequeñas depresiones cerradas y aisladas, generalmente con superficie menor a una hectarea, aunque las hay de mayor superficie, ubicada entre las margenes de los ríos. Tesechoacan y San Juan, al norte de Villa Isla., Veracruz. Estas depresiones se formaron posiblemente por asentamientos de las masas gravosas del subsuelo.

Por último, existeri áreas de relieve ondulado y muy ondulado, el primero con drenaje dendrítico o subdendrítico, se encuentra en el limite este, en las estribaciones de la sierra de los Tuxtias y el segundo en el área de Loma Bonita. Ver , con drenaje lagunado y con gran número de cerritos o lomitas aisladas y concatenadas, formadas como consecuencia de un antiguo estado erosional de grado avanzado.

E.N.E.P. ACATLAN

TESIS COLECTIVA

15

1.3.1.2 Grandes Grupos de Suelos

Para definir en forma general el origen, modo de formación y algunas características de los suelos, se utilizó el sistema de clasificación de Grandes Grupos de FAO/UNESCO. A continuación se registra la descripción de cada uno de los grandes grupos de suclos identificados en la zona

f.3.1.2.1 Fluvisoles éutricos (Je) y Fluvisoles glévicos (Jg)

Suelos recientes, originados de depositos de materiales diversos que fueron acarreados por las corrientes. La profundidad es mayor de 200 cm, de color cafe (10 YR 5/3) en seco y cafe grisaceo obscuro (10 YR 4/2) en humedo, de textura superficial franca, franco limosa, franco arcillo-limosa y arcilla limosa, en el subsuelo varian de gruesas a finas pero casi siempre con importante contenido de limo, de buena permeabilidad, pero el relieve plano con pendientes menores de 1% provoca que se inunden por periodos breves como consecuencia de avenidas extraordinarias de los ríos, falta de control de avenidas y salidas insuficientes hacia el mar. El nivel friático se observa a diferentes niveles en los primeros 3 m de suelo, segun la epoca del año y la proximidad a los ríos, áreas inundables y lagunetas, la reacción varia de ligeramente alcalina a ligeramente acida y no tienen problemas de sales. En las inmediaciones de los cauces de los ríos Tesechoacán y San Juan, existen áreas de relieve ligeramente ondulado y ondulado formados por erosión, deposición y movimientos de tierras al desbordarse los ríos. De acuerdo al sistema FAO se clasifican como Fluvisoles éutricos los que no muestran ningun horizonte de diagnóstico y como Fluvisoles gléyicos los que muestran señales marcadas de hidromorfismo en alguna parte del perfil

El uso actual es agricola y ganadero, aprovechandose gran parte de estos suelos en estas actividades, los cultivos principales son pastos inducidos como Guinea, Pangola, Estrella de África, Pará y Alemán, caña de azúcar, mango, plátano, maiz y frijol. El resto de la superficie lo ocupan lagunas y acahuales de diferentes edades así como pequeños manchones de selva mediana perennifolia.

E.N.E.P. ACATLAN

TESIS COLECTIVA

Los factores que limitan el uso de estos suelos son inundación, drenaje superficial, permeabilidad y relievo y se clasifican de primera, segunda y tercera clases para fines de agricultura de riego.

I.3.1.2.2. Andosoles mólicos (Tm)

Estos son suelos recientes de formación mixta (insitu y aluviales) originados por materiales vitricos y cenizas de la formación geológica localmente conocida como "Tierra Colorada" que son aluviones compuestos por arenas, limos y arcillas, de color rojizo con intrusiones de grava mezclada o en capas de uno o varios metros de espesor, locales o muy extendidas, compuestas principalmente de cuarzo y gneiss. En general los primeros horizontes del perfil presentan baja densidad aparente y no sobrepasan el valor de 1.0 gr/cm² considerando que el material arenoso es vítrico, por lo tanto, se clasifican dentro del Gran Grupo de los Andosoles. Se localizan en la margen derecha del rio San Juan, y tienen geoforma de partes planas, de lomas pequeñas muy extendidas, lomerios continuos alargados de poca altura y algunas afloraciones de areniscas formando pequeñas mesetas, el relieve es casi plano, ligeramente ondulado y ondulado con pendientes menores de 8%. En algunas aflora la formación Tierra Colorada pero, en general, este material subyace a los demás materiales identificados.

Los suelos son profundos aunque la mencionada masa gravosa en ocasiones se presenta a partir de los 75 cm de profundidad, pero como la grava se encuentra empacada en suelo, las raíces pueden penetrar, las texturas en el perfil son gruesas, y medias con buena o moderadamente ràpida permeabilidad y drenaje natural de ligeramente a fuertemente excesivo por las pendientes. El riesgo de erosion es bajo y adquiere importancia sólo en caso de que el terreno se deje descubierto durante las fluvias lo cual no sucede por el ràpido desarrollo de la maleza al inicio de las aquas.

E.N.E.P. ACATLAN

TESIS COLECTIVA

El uso actual es agricola de temporal, pecuario y algunas partes con selva. El cultivo principal en la zona es la caña de azucar ya que el área corresponde en parte a las zonas de abastecimiento de los ingenios San Francisco Naranjal y San Pedro en la población de Lerdo y el ingenio Cuatotolapan en San Juan Diaz Covarrubias, en pequeña escala se cultiva maíz y frijo! Se explota ganado bovino en su modalidad principal de cria y engorda el cual se mantiene con pastos nativos y mejorados como Guinea, Pangola y Estrella de Africa que se pastorean directamente.

Las propiedades que limitan el uso de estos suelos son relieve, pendiente, textura gruesa superficial y permeabilidad ligeramente rápida. Se clasifican como de primera, segunda, tercera y sexta clases para fines de riego.

I.3.1.2.3 Cambisoles éutricos (Be)

Los suelos de este gran grupo se originaron del aluvión del Cuaternario conocido como formación "Tierra Colorada" mencionada en la discusión del Gran Grupo anterior, su modo de formación se considera insitu con algunas aportaciones aluviales en las partes bajas de las lomas, lómenos y en las pequeñas depresiones. Se localizan entre los rios San Juan y Tesechoacan colindando con los Fluvisoles de las margenes de estos rios así como en las partes altas contiguas a la margen izquierda del rio Tesechoacan, ambas zonas muestran dos diferentes tipos de drenaje, uno dentritico formado por lomerios alargados y continuos de poca altura y anchura y el otro donde el drenaje es lagunado con geoformas de ligeras depresiones y lomas extendidas de poca altura en la zona de Isla y de Cerritos y lomas concatenadas de mayor altura, conformado posiblemente por un antiguo estado erosional avanzado, en tanto que el lagunado ocurrió por asentamientos de la masa gravosa.

Los suelos son profundos a moderadamente profundos pues la masa gravosa se encuentra, en ocasiones, a partir de los 60 cm de profundidad, predominan en el perfil las texturas media con algún estrato de gruesas, con buena o moderadamente rápida permeabilidad, drenaje

E.N.E.P. ACATLAN TESIS COLECTIVA 18

superficial de ligeramente a fuertemente excesivo por la topografia. El riesgo de erosión es alto cuando se establecen cultivos de escarda, principalmente en las áreas de relieve ondulado o muy ondulado. El relieve es ligeramente ondulado a muy ondulado con pendiente de 2 a 15%.

El uso actual es principalmente a base de pastizales nativos y mejorados como Guinea, Estrella de África y Pangola, en menor escata se cultiva piña y maiz. La ganadería se practica de manera semi-intensiva en ranchos medianos grandes donde han sabido utilizar el terreno con un satisfactorio manejo del pasto y el suelo, aunque los terrenos ligeramente ondulados podrían tener una mayor rentabilidad estableciendo cultivos como la piña.

Las características que demeritan el suelo en orden de importancia son pendiente, relieve, espesor del suelo, rocosidad e inundación, se clasificaron por lo mismo, como de segunda, tercera y sexta clases para fines de riego. Debido a la topografía ondulada y a la predominancia de texturas medias seria aconsejable el establecimiento del riego por aspersión particularmente para cultivos de alta densidad económica como la piña.

1.3.1.2.4 Vertisoles péllicos (Vp)

Suelos originados de rocas sedimentarias de desarrollo insitu y algunas aportaciones aluviales, muestran una geoforma casi plana y con ligeros ondulamientos y pendientes menores de 3%, con drenaje superficial de ligera a moderadamente deficiente, se localizan dentro y en los alrededores de la zona de abastecimiento de caña de azúcar del Ingenio Cuatotolapan en San Juan Díaz Covarrubias

Son profundos a medianamente profundos, de texturas finas en todo el perfil, de color negro cafesáceo y permeabilidad moderadamente lenta. Las características que restringen su uso son textura fina superficial, permeabilidad moderadamente lenta, relieve ligeramente ondulado, espesor del suelo moderadamente profundo y pocos afloramientos rocosos.

E.N.E.P. ACATLAN

TESIS COLECTIVA

19

A CONTRACT OF THE PARTY OF THE

El principal uso actual es agricola de temporal con caña de azúcar y algunas áreas con selva que se están desmontando para establecer más caña y pastizales

I.3.1.2.5 Acrisoles órticos (Ao)

Los suelos se han clasificado como Acrisoles considerando que el horizonte B argitúvico se formó por alteraciones del material de origen subyacente, además de que el porciento de saturación de bases es menor de 50 cm en todos los horizontes. Se originaron de la formación geológica "Tierra Colorada" con texturas finas en el subsuelo, medias superficiales y estratos gravosos abajo de 150 cm. Ocupan partes altas que no sufren inundaciones, con geoformas de ligeros ondulamientos hasta tomas y tomeríos con drenaje subdentrítico.

El relieve es ligeramente ondulado y ondulado y se localizan en las áreas de Loma Bonita y Dobladero

Son profundos con más de 150 cm de espesor, de colores rojizos en el perfil, con drenaje ligeramente y moderadamente excesivo y reacción ligeramente ácida y ligeramente alcalina

Las limitantes de estos suelos para la actividad agrícola son, en orden de importancia relieve, pendiente, riesgo de erosión y permeabilidad moderadamente lenta. Se clasificaron de segunda y tercera clases por relieve, pendientes menores de 6% y riesgo de erosión. La baja fertilidad que pudieran presentar se puede subsanar con fertilizaciones y de hecho se sabe que en la región se obtienen buenos rendimientos de los cultivos desarrollados en estos suelos.

Actualmente se encuentran ocupados por pastizales, agricultura de temporal y pequeñas áreas de selva. Los cultivos son piña, mando y pastizales.

E.N.E.P. ACATLAN TESIS COLECTIVA 20

I.3.1.2.6 Gleisotes éutricos (Ge)

Los suelos de esta unidad permanecen inundados o saturados durante la mayor parte del año, se localizan cerca de las confluencias de los ríos Obispo. Tesechoacan y San Juan con el Papaloapan que son las partes más bajas de la zona de estudio y están en proyecto de recuperarse encauzando los ríos por medio de bordos. Se originaron de diversos materiales depositados por los ríos, de edad reciento.

Los terrenos son planos con ligero microrrelieve y pendientes menores de 1%. La profundidad es mayor de 2 m, de texturas finas y medias con drenaje muy deficiente por la escasa pendiente y cercanía a los causes que se traducen en encharcamientos, el problema se agudiza por los grandes volúmenes escurridos que se concentran en esta zona debido al deficiente escurrimiento de las aguas hacia el Golfo.

Las propiedades que demeritan el suelo son las inundaciones y muy deficiente drenaje superficial resultado de la conjunción de varios factores como excesos de lluvias en ciertos períodos, escasa pendiente hacia el mar y posiblemente la presencia de un estrato impermeable abajo de los 2 m. Se detecta en los suelos por manchas grises y rojuas opacas, o solo gris, cuando hay permanentemente manto friatico elevado.

I.3.1.3 Uso del Suelo

El uso actual del suelo permite conocer la superficie que ocupa cada uno de los cultivos que se explotan en el área, áreas inaprovechadas o que no se pueden aprovechar y se relaciona con las actividades específicas económicas y sociales de la población. Se describirán los usos del suelo en forma general. La mayor parte del área estudiada se encuentra desmontada y se aprovecha actualmente con actividades agropecuarias excepto algunas areas, por efectos de inundaciones, encharcamientos, áreas muy onduladas, afloramientos rocosos y otras causas, principalmente en la margen derecha del río San Juan. Las zonas más bajas que permanecen inundadas casi todo el año tienen vegetación hidrofila de estrato herbáceo. En los otros casos los vestigios de vegetación primaria son de selva alta y mediana perennifolia. Los desmontes para sembrar caña de azucar se localizan en la zona de abasto del Ingenio Cuatotologian.

Las explotaciones que ocupan la mayor superficie corresponde a pastizales inducidos y nativos, éstos en pequeña escala, entre los pastos inducidos están el Guinea, Pangola, Estrella de Africa, Elefante, Jaragua, Pará y Alemán. Como es lógico se utilizan para la alimentación del ganado bovino bajo el sistema de cria y engorda de libre pastoreo y grado de intensidad variable, con un índice estimado de una o dos cabezas por hectárea. Este indice es más bajo cuando tienen pastos nativos como gramas (Paspalum Sp.). grama amarga (Axonopus compresus), zacate llanero (Soporpholus indicus) y otros.

La caña de azucar se encuentra establecida dentro del estudio y cubre áreas de abasto de 4 ingenios, a saber 10 000Ha para San Cristobal, 6 600Ha para San Francisco Naranjal, 17 500Ha para San Pedro y 12 500 ha para Cuatotolapan

I.4. ESTUDIOS SOCIOECONÓMICOS

I.4.1 POBLACIÓN TOTAL Y TENDENCIAS DE CRECIMIENTO

El Censo General de Población y Vivienda de 1990 registro en el Estado de Veracruz un total de 6'228,239 habitantes, de los cuales 3.077.427 son hombres y 3'150,812 mujeres. Para el Estado de Oaxaca un total de 3.019.560 habitantes, 1'477,438 son hombres y 1.542,122 mujeres.

El crecimiento en el Estado de Veracruz ha sido considerable, si tomamos en cuenta que de 1930 a 1990 el monto de la población aumento 4.5 veces y durante el período 1970-1990 se experimento un crecimiento anual promedio de 2.4. Esta situación ha colocado al Estado en tercer lugar nacional en lo tocante a volumen de población. El crecimiento en el Estado de Oaxaca indica una tasa de crecimiento media anual de 2.5% lo cual el ritmo de crecimiento de la población es relativamente lento hasta 1980, en tanto que para 1990 se aprecia un mayor dinamismo. (Ver Cuadro 14.1.)

CUADRO 1.4.1

EVOLUCIÓN DE LA POBLACIÓN DE 1930 A 1990							
ESTADO	1930	1940	1950	1960	1970	1980	1990
VERACRUZ	1,377,293	1,619,338	2.040,231	2,727,899	3.815.422	5,387,680	6,228.239
OAXAGA	1.084,549	1,192,794	1,421,313	1,727,266	2,015,424	2,369,076	3,019,560
OAXACA	1.084,549	1,192,794	1,421,313	1,727,266	2,015.424	2,369,076	3,019

FUENTE: CENSOS GENERALES DE POBLACIÓN Y VIVIENDA, 1930 A 1990 I N.E. G.I.

1.4.2 DISTRIBUCIÓN GEOGRÁFICA

Los resultados muestran que los municipios con mayor población son San Juan Bautista. Tuxteped en Oaxaca y Cosamaloapan en Veracruz donde reside 3.7% y 1.2% respectivamente de la población estatal. No se registra así el fenómeno de alta concentración demográfica, lo cual se verifica también considerando que las ocho localidades más pobladas participan en conjunto con 12.4% del total de la población de la zona de estudio. (Ver Cuadro I.4.2.1.)

Se observa por otra parte una considerable dispersión de población en localidades con menos de mil habitantes, que conforman 95 9% y 93 1% del total de localidades y donde reside 32.7% y 41 25% de la población del Estado de Veracruz y Oaxaca respectivamente. Con un total de 17,390 y 7,210 localidades, de las cuales 98 6% y 98 1% son rurales (de 1 a 2,499 habitantes) y sólo 1.4% y 1.9% son localidades urbanas (de 2,500 habitantes o más) en el Estado de Veracruz y Oaxaca.

Por otro lado, se observo también que en localidades de 15,000 habitantes o más, que representa 0.2% del total para Veracruz y Oaxaca, reside casi el 39.2% y 20% de la población total, mientras que el 41.3% y 56.8% de éstas habita en localidades menores de 2,000 habitantes respectivamente (Ver Cuadro I.4.2.2.)

1.4.3 CRECIMIENTO DE LA POBLACIÓN

El crecimiento de la población en el Estado de Veracruz y Oaxaca es similar al registrado a nivel nacional, pero por municipio el crecimiento es muy heterogêneo. San Juan Bautista Tuxtepec en Oaxaca y Acayucán e Isla en Veracruz presentan las tasas de crecimiento más altas, 4.4, 3.5 y 3.4 respectivamente. Por otro lado tenemos el municipio de Tuxtilla en Veracruz donde la población decreció respecto a la de 1970 con 0.1% (Ver Cuadro I.4.3.)

E.N.E.P. ACATLAN

TESIS COLECTIVA

24

CUADRO LA.2 1

L	AÑOS					
MUNICIPIO	1970		1990			
	ABS.	REL.	ABS.	REL		
VERACRUZ	3,815,422	100.00	6,228,239	100.00		
ACAYUCAN	34.843	091	70.059	1 12		
ACULA	4,479	0 12	4,934	0.08		
ALVARADO	32,857	0.86	49,040	0 79		
AMATITLÁN .	5,589	0 15	7,287	0 12		
ANGEL R CABADA	19,562	0.51	33,731	0 54		
COSAMALOAPAN]	72,653	190	76,755	1 23		
CHACALTIANGUIS	9.844	0 26	12,029	0 19		
HUEYAPAN DE OCAMPO	24,638	0 65	38,272	061		
ISLA	15,790	041	31,298	0.50		
IXMATLAHUACAN	5.105	0 13	6,158	0 10		
JUAN RODRÍGUEZ CLARA	17.522	0 46	33,378	0.54		
LERDO DE TEJADA	13.324	0.35	20.512	0 33		
OTATITLÂN	4.836	0 13	5.415	0 09		
PLAYA VICENTE	34,873	0.91	49,579	0 80		
SALTABARRANCA	4.312	0 11	6,192	0 10		
SAN JUAN EVANGELISTA	24.514	0 64	33,117	0 53		
TLACOJALPAN	4,119	0 11	4.573	0 07		
TLACOTALPAN	13,528	0.35	15,896	0 26		
TUXTILLA	2.266	0.00	2,235	0 04		
OAXAGA	2,015,424	100.00	3,016,560	100.00		
LOMA BONITA	23.088	1 15	41,926	1 39		
SAN JOSÉ CHILTEPEC	5,488	0 27	9.190	0 30		
SAN JUAN BAUTISTA TUXTEPEC	46,509		110,136	3 65		
SAN JUAN COTZOCÓN	13.826		21,192	0 70		
SAN JUAN LALANA	9,421	0.47	13,838	0.46		
SANTA MARÍA JACATEPEC	4,941	0 25	8,111	0 27		
SANTIAGO JOCOTEPEC	5.787		10.618			
SANTIAGO YAVEO	6.051	0 30	6.952	0 23		

FUENTE: CENSOS GENERALES DE POBLACIÓN Y VIVIENDA, 1970-1990 I N.E. G.I.

CUADRO 1.4.2.2

TAMAÑO DE LA		NUME		POBLACIÓN	
ŁC	CALIDAD	ABS.	REL.	ABS.	REL.
V	RACRUZ	17,390	100.00	6,228,239	100.00
1 -	99 HABITANTES	11.191	64 35	236.001	3.79
	99 HABITANTES	4.440	25 53	1,078,342	17.31
	99 HABITANTES	1,052	6 05	722.179	11.60
1000 - 19		398	2 29	534.780	8.59
2000 - 24	99 HABITANTES	69	0.40	155.211	2.49
2500 - 49	99 HABITANTES	120	0.69	411,794	6.61
5 000 - 9 9		57	0.33	396.824	6.37
10 000 - 14 9	99 HABITANTES	21	0 12	254.437	4.09
15 000 - 19 9	99 HABITANTES	e l	0.05	147.586	2.37
20 000 - 49 9	99 HABITANTES	25	0 14	766.062	12.30
50 000 - 99 9	9 HABITANTES	1 1	0.00	69 224	1.11
100 000 - 499 9	99 HABITANTES	8	0 05	1,455,799	23.37
o	AXACA	7,210	100.00	3.019,560	100.00
t - 9	9 HABITANTES	3,416	47 38	112,346	3 72
100 - 49	9 HABITANTES	2,539	35 21	620,364	20 54
500 - 99		728	10 10	510 712	16 91
1 000 - 1 99		342	4 74	471,780	15 62
2000 - 249		51	0.71	113,055	3 74
2 500 - 4 99		80	1 11	274,021	9 07
5 000 - 9 99		38	0 53	2,703,180	89 52
10 000 - 14 99		4	0 06	44,986	1 49
15 000 - 19 99		2	0 03	39,510	131
20 000 - 49 99		6	80 0	171,540	5 68
50 000 - 99 99		3	0 04	178,110	5 90
00 000 - 499 99	9 HABITANTES	1 1	0.01	212,818	7 0 5

FUENTE: XI CENSO GENERAL DE POBLACION Y VIVIENDA, 1990 I N E G I

CUADRO L4.3

MUNICIPIO	TASAS
VERACRUZ	2.40
ACAYUCAN	3 50
ACULA	0.50
ALVARADO	2 00
AMATITLAN	1 30
ÁNGEL R CABADA	2 70
COSAMALOAPAN	0 30
CHACALTIANGUIS	1 00
HUEYAPAN DE OCAMPO	2 20
ISLA	3 40
IXMATLAHUACAN	0.90
JUAN RODRÍGUEZ CLARA	3 20
LERDO DE TEJADA	2 10
OTATITLÂN	0.50
PLAYA VICENTE	[170
SALTABARRANCA	[170
SAN JUAN EVANGELISTA	1 50
TLACOJALPAN	0.50
TLACOTALPAN	080
TUXTILLA	-0 10
OAXACA	2.04
LOMA BONITA	3 03
SAN JOSÉ CHILTEPEC	261
SAN JUAN BAUTISTA TUXTEPEC	441
SAN JUAN COTZOCÓN	2 16
SAN JUAN LALANA	1.94
SANTA MARÍA JACATEPEC	2 5 1
SANTIAGO JOCOTEPEC	3 08
SANTIAGO YAVEO	0 70

FUENTE.CENSOS GENERALES DE POBLACIÓN Y VIVIENDA, 1970 - 1990 I.N.E.G.I.

1.4.4 COMPOSICIÓN POR EDAD Y SEXO

La estructura por edad de la población del Estado de Veracruz y Oaxaca puede considerarse de "joven", de acuerdo a los volumenes registrados en los grupos de 0 a 14 años que representan 38.5% y 42.6% y en 65 años y mas 4.2% y 4.7% respectivamente

No obstante lo anterior, el primer grupo de edad, de 0 a 4 años, tiene un porcentaje menor que los dos grupos quinquenales siguientes, lo que muestra el inicio de una tendencia de enveiecimiento de la estructura demográfica de la zona de estudio. (Ver Cuadro I.4.4.1.)

Se confirma que la población es joven con la edad mediana de 19 y 18 años en el Estado de Veracruz y Oaxaca respectivamente. La mayor edad mediana registrada es de 24 años en el municipio de Tuxtilla, Veracruz y la menor de 14 años en Santiago Jocotepec, Oaxaca. (Ver Cuadro I.4.4.2.)

En cuanto a la composición por sexo, 50.6% y 51.1% corresponde a la población femenina de Veracruz y Oaxaca, superior ligeramente a la masculina de 49.4% y 48.9% respectivamente. (
Ver Cuadro I.4.4.1.)

CUADRO 1.4.4.1

ESTRUCTURA DE	ESTRUCTURA DE LA POBLACIÓN POR GRUPOS DE EDAD Y SEXO, 1990					
GRUPO	TOTA		SEXO			
DE		f	HOMBRES		MUJEF	ES
EDAD	ABS.	REL.	ABS. REL.		ABS.	REL.
VERACRUZ	6,228,239	100.00	3,077,427	49,41	3,150,812	50.59
0 4 ANOS	777.420	12 48	393,484	6 32	383,936	6 16
5 9 ANOS	621 633	13 19	416 819	6 6 9	404 814	6 50
10 · 14 ANOS	795 938	12.78	401 438	6.45	394,500	6 33
15 - 19 ANOS	715,415	1149	356,386	5.72	359 029	5 76
20 - 24 ANOS	589 326	9.46	284 723	4 57	364 603	4 89
25 - 29 ANOS	485 425	7.79	233 676	3.75	251.749	4 04
30 - 34 ANOS	405 322	651	195.773	3 14	209 549	3 36
35 - 39 ANOS	361 668	5.81	174 334	2 80	187.334	3 0 1
40 - 44 ANOS	276.466	4 44	135 545	2 18	140 921	2 26
45 - 49 ANOS	240 187	3.86	118,069	1.90	122,118	1 96
50 54 ANOS	194 181	3 12	95 161	1 53	99.020	1 59
55 - 59 ANOS	152 200	244	74 293	1 19	77.907	1 25
60 - 64 ANOS	127 548	2 05	61 852	0 99	65.696	1 05
65 - 69 ANOS	90 139	1.45	43,691	0.70	46.448	0.75
70 74 ANOS	63 720	1 02	30 885	0.50	32.835	0.53
75 - 79 ANOS	44 526	0.71	21 258	0.34	23 268	0 37
80 84 ANOS	29 753	0.48	13 525	0.22	16 228	0.26
85 - 89 ANOS	16 879	0.27	7 679	0.12	9 200	0 15
90 - 94 ANOS	7 843	0.13	3 421	0.05	4,422	0.07
95 - 99 ANOS	3 6 1 4	0.05	1 521	0.02	2 093	0.03
100 Y MAS	2 389	0.04	925	0.01	1 464	0 02
NO ESPECIFICADO	26 647	0.43	12,969	0 2 1	13.678	0 22
OAXACA	3.019.560	100.00	1,477,438	48.93	1.542,122	51.07
0 - 4 AÑOS	410 741	13 60	207.210	6 86	203.531	6 74
5 9 AÑOS	452,387	14 98	228,078	7 55	224.309	7 43
10 - 14 AÑOS	422 710	14 00	214 416	7 10	208,294	6 90
15 - 19 AÑOS	324,057	10 73	159 459	5 28	164 598	5 45
20 - 24 AÑOS	245 537	8 13	115 625	3 83	129 912	4 30
25 - 29 AÑOS	205 136	6.79	95,952	3 18	109.174	3 62
30 - 34 ANOS	174 609	5 78	82.811	2.74	91,798	3 04
35 - 39 ANOS	158.367	5.24	74.828	2 48	83 539	2 77
40 44 ANOS	122,750	4 07	58,580	1 94	64,170	2 13
45 - 49 ANOS	114,456	3.79	54 594	181	59,862	1 98
50 54 ANOS	93,382	3 09	44.627	1.48	48.755	161
55 - 59 ANOS	77,251	2 56	37.054	1 23	40,187	1 33
60 - 64 ANOS	68 702	2 28	33,329	1 10	35,373	1 17
65 - 69 ANOS	48,631	161	23 567	0.78	25 064	0.83
70 - 74 ANOS	35,881	1 19	17,231	0.57	18.650	0 62
75 - 79 AÑOS	24,056	0.80	11.640	0.39	12 416	041
80 - 84 ANOS	17,595	0.58	7,929	0.26	9 666	0.32
85 - 89 AÑOS	9,700	0.32	4 452	0.15	5 248	0 17
90 - 94 ANOS	4 323	0 14	1,849	0.06	2.474	0.08
95 - 99 AÑOS	1,879	0.06	732	0 02	1,147	0.64
100 Y MAS	1.070	0 04	433	0 01	637	
NO ESPECIFICADO	6,340	0.21	3,022	0 10	3.318	0 11

FUENTE: XI CENSO GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N.E. G.I.

CUADRO 1.4.4.2

ESTRUCTURA PORCENTUAL DE LA POBL ACIÓN BEGUN GRANDES GRUPOS DE EDAD, Y EDAD MEDIANA, POR MUNICIPIO, 1990					
MUNICIPIO	GRUPOS DE EDAD				
MONICIPIO	0 - 14	15 - 64	65 Y MAS	EDAD MEDIANA	
VERACRUZ	38.50	57.10	4.20	19	
ACAYUCAN	40 40	56 50	3 20	18	
ACULA	35 10	58 80	5 90	20	
ALVARADO	33 70	61 50	4 70	21	
AMATITLAN	33 60	60 40	5 90	22	
ANGEL R CABADA	36 60	58 80	4 60	20	
COSAMALOAPAN	34 20	61 00	4 70	22	
CHACALTIANGUIS	36 60	57 50	5 80	20	
HUEYAPAN DE OCAMPO	40 90	55 00	4 00	18	
ISLA	40 30	55 80	3 70	18	
IXMATLAHUACAN	35 20	60 50	4 20	20	
JUAN RODRIGUEZ CLARA	40 20	55 80	3 90	18	
LERDO DE TEJADA	32 50	62 70	4 60	22	
OTATITLÁN	34 99	59 00	6 00	[21	
PLAYA VICENTE	44 10	52 40	3 40	17	
SALTABARRANCA	34 90	60 50	4 60	21	
SAN JUAN EVANGELISTA	42 90	53 00	3 90	17	
TLACOJALPAN	36 40	56 90	6 50	21	
TLACOTALPAN	32 40	61 50	6 00	22	
TUXTILLA	31 70	60 10	8 10	24	
OAXACA	42.60	52.50	4.70	18	
LOMA BONITA	40 60	54 80	3 80	18	
SAN JOSÉ CHILTEPEC	43 20	53 20	3 70	17	
SAN JUAN BAUTISTA TUXTEPEC	39 40	56 70	3 30	19	
SAN JUAN COTZOCÓN	46 80	49 80	3 30	16	
SAN JUAN LALANA	46 90	49 90	3 10	16	
SANTA MARÍA JACATEPEC	46 10	50 30	3 60	16	
SANTIAGO JOCOTEPEC	50 30	48 10	2 80	14	
SANTIAGO YAVEO	46 50	50 10	3 30	16	

FUENTE: XI CENSO GENERAL DE POBLACIÓN Y VIVIENDA, 1910 I N E G I

NOTA, LA SUMA DE LOS PORCENTAJES NO DA EL 100% DEBIDO A QUE NO SE INCLUYE EL NO ESPECIFICADO.

1.4.5 MIGRACIÓN

Los resultados permiten conocer, del total de residentes, tanto a los que nacieron fuera del Estado como a los que no vivian en él cinco años antes. De esta forma se tiene que 9.4% y 5.6% de la población no era nativa de Veracruz y Oaxaca respectivamente (Ver Cuadro I.4.5.1), mientras que en 1985, 3.1% y 2.9% de la población de 5 años y más de Veracruz y Oaxaca no residía en ella (Ver Cuadro I.4.5.3)

De la población no nativa, las principales entidades de procedencia son en Veracruz de Oaxaca, Puebla y Distrito Federal y en Oaxaca de Veracruz. Distrito Federal y Chiapas (Ver Cuadro I.4.5.1) Por otro lado, para la población que residla fuera de la entidad en 1985, en Veracruz se tiene que procedian principalmente del Distrito Federal, Oaxaca y Puebla y para Oaxaca del Distrito Federal, Veracruz y Estado de México (Ver Cuadro I.4.5.3)

A nivel municipal, los mayores porcentajes de no nativos se observan en San Juan Bautista.

Tuxtepec con 12.9% y Loma Bonita con 6.5% ambos de Oaxaca (Ver Cuadro 1.4.5.2.) De la misma manera los municipios con mayor participación de residentes fuera de la entidad en 1985 son los mismos anteriormente con 9.5% y 3.4% respectivamente. (Ver Cuadro 1.4.5.4.)

CUADRO 1.4.5.1

DISTRIBUCIÓN DE LA POBLACIÓN NO NATIVA EN LA ENTIDAD SEGUN LUGAR DE NACIMIENTO, 1990 ENTIDAD DE POBLACIÓN					
NACIMIENTO	POBLACIÓN ABS. REL.				
VERACRUZ					
TOTAL	587,684	100.00			
DAXACA	118,319	20 13			
PUEBLA	104,524	17 79			
DISTRITO FEDERAL	68,051	11 58			
TAMAULIPAS	52.269	8 89			
TABASCO	44,361	7 55			
CHIAPAS	38,022	6 47			
OTROS ESTADOS	158,119	26 91			
OTRO PAÍS	4.019	0 68			
OAXACA					
TOTAL	169,452	100.00			
VERACRUZ	62,599	36 94			
DISTRITO FEDERAL	29,515	17 42			
CHIAPAS	14,873	8 78			
PUEBLA	12,617	7 45			
ESTADO DE MÉXICO	11,496	6 78			
OTROS ESTADOS	36,949	21 80			
OTRO PAÍS	1,403	0.83			

FUENTE: XI CENSO: GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N. E. G. I.

CUADRO 1.4.5.2

MUNICIPIO	POBLACIÓN NO NATIVA		
	ABS.	REL.	
VERACRUZ			
TOTAL	587,684	100.00	
ACAYUCAN	5,431	0 92	
ACULA	54	0 00	
ALVARADO	2.789	0.47	
AMATITLAN	176	0 03	
ANGEL R CABADA	846	0 14	
COSAMALOAPAN	7,297	1 24	
CHACALTIANGUIS	661	0 11	
HUEYAPAN DE OCAMPO	919	0 16	
SLA	2,558	0 44	
XMATLAHUACAN	212	0 04	
JUAN RODRIGUEZ CLARA	3,224	0.55	
LERDO DE TEJADA	997	0 17	
DTATITLÁN	567	0 10	
PLAYA VICENTE	6,198	1 05	
SALTABARRANCA	74	0.01	
SAN JUAN EVANGELISTA	1,966	0 33	
TLACOJALPAN	397	0 07	
TLACOTALPAN	457	u 08	
TUXTILLA	101	0 02	
OAXACA]		
TOTAL	169,452	100.00	
OMA BONITA	11.025	6 5 1	
SAN JOSÉ CHILTEPEC	422	0 25	
SAN JUAN BAUTISTA TUXTEPEC	21,813	12 87	
SAN JUAN COTZOCON	2.673	1 58	
AN JUAN LALANA	240	0 14	
SANTA MARÍA JACATEPEC	356	0 2 1	
SANTIAGO JOCOTEPEC	128	0 08	
SANTIAGO YAVEO	1,394	0.82	

FUENTE: XI CENSO. GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I H.E.G.I.

CUADRO 1.4.5.3

DISTRIBUCIÓN DE LA POBLACIÓN DE 5 AÑOS Y MÁS QUE EN 1985 RESIDÍA FUERA DE LA ENTIDAD, SEGÚN LUGAR DE RESIDENCIA, 1990					
ENTIDAD DE	POBLACIÓN				
PROCEDENCIA	ABS.	REL.			
VERACRUZ					
TOTAL	165,767	100.00			
DISTRITO FEDERAL	34,876	21 04			
OAXACA	25,962	15 66			
PUEBLA	20.759	12 52			
ESTADO DE MÉXICO	13,988	8 44			
TAMAULIPAS	12,295	7 42			
TABASCO	11,544	6 96			
OTROS ESTADOS	44,500	26 84			
OTRO PAÍS	1.843	1 11			
OAXACA					
TOTAL	75,683	100.00			
DISTRITO FEDERAL	20,393	26 95			
VERACRUZ	18,649	24 64			
ESTADO DE MÉXICO	9,863	13.03			
CHIAPAS	5,577	7 37			
PUEBLA	4,386	5 80			
OTROS ESTADOS	15,215	20.10			
OTRO PAÍS	1.555	2.05			

FUENTE: XI CENSO. GENERAL DE POBLACIÓN Y VIVIENDA,1990 I N.E. G.I.

CUADRO 1.4.5.4

POBLACIÓN DE 5 AÑOS Y MÁS QUE EN 1985 RESIDÍA FUERA DE LA ENTIDAD, POR MUNICIPIO, 1990				
	POBLACIÓN NO RESIDENTE			
MUNICIPIO	ABS.	REL.		
VERACRUZ	ABS.	REL.		
TOTAL	165,767	100.00		
10172	1 ,03,,07	100.00		
ACAYUCAN	1 432	0.86		
ACULA	1 351	0.02		
ALVARADO	104	0.06		
AMATITLAN	1,887	1 14		
ANGEL R CABADA	350	0.21		
COSAMALOAPAN	2,360	1 42		
CHACALTIANGUIS	248	0 15		
HUEYAPAN DE OCAMPO	287	0 17		
ISLA	1,483	0.89		
IXMATLAHUAGAN	115	0 07		
JUAN RODRÍGUEZ CLARA	1,999	1 2 1		
LERDO DE TEJADA	306	0 18		
OTATITLAN	164	0 10		
PLAYA VICENTE	1,521	0.92		
SALTABARRANCA	24]	0.01		
SAN JUAN EVANGELISTA	656	0.40		
TLACOJALPAN	169	0 10		
TLACOTALPAN	244	0 15		
TUXTILLA	72	0 04		
CAXACA] [
TOTAL	75,638	100.00		
	1			
LOMA BONITA	2 542	3 36		
SAN JOSÉ CHILTEPEC	141	0 19		
SAN JUAN BAUTISTA TUXTEPEC	7,160	9 47		
SAN JUAN COTZOCÓN	717	0 95		
SAN JUAN LALANA	144	0 19		
SANTA MARÍA JACATEPEC	119	0 16		
SANTIAGO JOCOTEPEC	89	0 12		
SANTIAGO YAVEO	455	0 60		

FUENTE: XI CENSO GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N E G I.

Applicate of setting party diseases as an experience of the control of the contro

1.4.6 NIVEL DE INSTRUCCIÓN

Los indicadores acerca del nivel de instrucción de los habitantes del Estado de Veracruz muestran un ascenso apreciable en dicho rubro. En 1970, 38.6% en Veracruz y 51.2% en Oaxaca de la población de 15 años y más no tenía instrucción, en 1990 ésta proporción disminuyo a 18.6% y 26% respectivamente. Asimismo, el grupo de personas con primaria completa aumentó de 13.1% y 6.9% a 18% y 18.7% en Veracruz y Oaxaca y la población con instrucción postprimaria pasó de 8.3% y 4.8% a 33.4% y 23.5% respectivamente. (Ver Cuadro I.4.6.1.)

En relación al nivel de instrucción por municipio, se dan también marcadas diferencias. Así, 7 de los 27 municipios tienen un nivel de instrucción más alto que el promedio estatal. Y 9 de los 27 municipios con un nivel sin instrucción más bajo que el estatal. (Ver Cuadro I.4.6.2.)

CUADRO 14.6.1

DISTRIBUCIÓN PORCENTUAL DE LA POBLACIÓN DE 15 AÑOS Y MÁS POR NIVEL DE INSTRUCCIÓN, 1970 - 1980				
NIVEL DE INSTRUCCIÓN	AÑO			
	1970	1990		
VERACRUZ	100.00	100.00		
SIN INSTRUCCIÓN	38 60	18 60		
PRIMARIA INCOMPLETA	40 00	28 00		
PRIMARIA COMPLETA	13 10	18 00		
INSTRUCCIÓN POSTPRIMARIA	8 30	33.40		
NO ESPECIFICADO	0 00	2 10		
OAXACA	100.00	100.00		
SIN INSTRUCCIÓN	51 20	26 00		
CON PRIMARIA INCOMPLETA	37 10	29.30		
CON PRIMARIA COMPLETA	690	18 70		
CON INSTRUCCIÓN POSTPRIMARIA	4 80	23 50		
NO ESPECIFICADO	0 00	2 50		

FUENTE; CENSOS GENERALES DE POBLACION Y VIVIENDA, 1970 - 1990 I N.E.G.I.

ENEP, ACATLAN TESIS COLECTIVA 36

CUADRO 1.4.6.2

DISTRIBUCIÓN PORCENTUAL DE LA POBLACIÓN DE 15 AÑOS Y MÁS POR MUNICIPIO SEGÚN NIVEL DE INSTRUCCIÓN, 1990					
	NIVEL DE INSTRUCCIÓN				
MUNICIPIO	SIN INSTRUCCION O CON PRIMARIA INCOMPLETA	CON PRIMARIA COMPLETA O CON INSTRUCCIÓN POSTPRIMARIA			
VERACRUZ	46.60	51.30			
ACAYUCÁN	43 50	51 60			
ACULA	63.60	35 30			
ALVARADO	45 30	52 90			
AMATITLAN	54 70	44 50			
ANGEL R CABADA	60 40	36 90			
COSAMALOAPAN	44 60	54 80			
CHACALTIANGUIS	57 40	40 70			
HUEYAPAN DE OCAMPO	57 90	37 40			
ISLA	55 60	39 60			
IXMATLAHUACAN	65 90	33 50			
JUAN RODRIGUEZ CLARA	6160	36 60			
LERDO DE TEJADA	37 60	60 40			
OTATITLAN	49 20	50 60			
PLAYA VICENTE	63 00	34 40			
SALTABARRANCA	59 30	40 30			
SAN JUAN EVANGELISTA	6190	34 50			
TLACOJALPAN	56 20	43 20			
TLACOTALPAN	49 50	48 40			
TUXTILLA	55 40	44 10			
OAXACA	26.00	23.50			
LOMA BONITA	25 20	24 80			
SAN JOSÉ CHILTEPEC	26 80	26 70			
SAN JUAN BAUTISTA TUXTEPEC	15 80	36 90			
SAN JUAN COTZOCÓN	24 60	14 00			
SAN JUAN LALANA	19 40	5 50			
SANTA MARÍA JACATEPEC	28 90	17 50			
SANTIAGO JOCOTEPEC	25 20	5 80			
SANTIAGO YAVEO	32 00	10 50			

FUENTE, XI CENSO, GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N E G.I.

NOTA: LA SUMA DE LOS PORCENTAJES NO DA EL 100% DEBIDO A QUE NO SE INCLUYE EL NO ESPECIFICADO.

1.4.7 CONDICIÓN DE ACTIVIDAD ECONÓMICA

Las cifras indican que en la entidad de Veracruz 41.8% y en Oaxaca 39.2% de las personas de 12 años y más pertenecen a la población económicamente activa. Comparada con la de 1970 (42.3% y 42.2% respectivamente), esta cifra resulta menor, debido al efecto de la mayor incorporación de los grupos jovenes a la educación. En lo que respecta a la composición por soxo puede observarse que 70.4% y 68.3% de los hombres y 14.5% y 12.3% de las mujeres pertenecen al grupo de activos de Veracruz y Oaxaca. (Ver Cuadro I.4.7.1.)

En lo tocante a la población económicamente inactiva, que en total representa para Veracruz 57 1% y para Oaxada 59 8% de la población de 12 años y más, el comportamiento por sexo es muy distinto. La mayor parte de los hombres inactivos son estudiantes, es decir 59 1% y 54 5% para Veracruz y Oaxada, en cambio solo 17 5% y 15 1% de las mujeres se declararon como estudiantes respectivamente y la gran mayoria, 79 2% y 81 5%, como personas dedicadas a los quehaceres domesticos (Ver Guadro I.4.7.2)

Por lo que respecta a las tasas de ocupación, la cifra de 1990 es de 97.2%, ligeramente menor a la de 1970 para ambos Estados. Según sexo, la tasa de ocupación de las mujeres en 1990 es de 97.4% para Veracruz y 97.6% para Oaxaca, en tanto que en los hombres es de 97.2% y 97.1% respectivamente. (Ver Cuadro I.4.7.3.)

CUADRO 1.4.7.1

CONDICIÓN	TOTAL	SE	xo
DE ACTIVIDAD		HOMBRES	MUJERES
VERACRUZ	100.00	100.00	100.00
ACTIVOS	4180	70 40	14 50
INACTIVOS	57 10	2860	84 40
NO ESPECIFICADO	1 10	100	1 10
OAXACA	100.00	100.00	100.00
ACTIVOS	39 20	68 30	12 30
INACTIVOS	59 80	30.70	86 70
NO ESPECIFICADO	1.00	1 00	1 00

gage francisco and service and a service of

CUADRO 1.4.7.2

DISTRIBUCIÓN PORCENTUAL DE LA POBLACIÓN ECONÓMICAMENTE INACTIVA POR SEXO, SEGÚN TIPO DE INACTIVIDAD, 1990						
TIPO DE	TOTAL		SEXO			
INACTIVIDAD	1	HOMBRES	MUJERES			
VERACRUZ	100.00	100.00	100.00			
ESTUDIANTES	27 60	59 10	17 50			
PERSONAS DEDICADAS AL QUE HACER DE SU HOGAR	60 50	2 70	79.20			
JUBILADOS Y PENSIONADOS	2 20	5 50	0.60			
INCAPACITADOS PERMANENTEMENTE PARA TRABAJAR	1 50	4 30	0 50			
OTRO TIPO DE INACTIVOS	8 20	27 60	2 20			
OAXACA	100.00	100.00	100.00			
ESTUDIANTES	24 80	54 50	15 10			
PERSONAS DEDICADAS AL QUE HACER DE SU HOGAR	62 50	4 60	8150			
JUBILADOS Y PENSIONADOS	0.90	2 70	0 30			
INCAPACITADOS PERMANENTEMENTE PARA TRABAJAR	1 50	4 10	0 60			
OTRO TIPO DE INACTIVOS	10 30	34 10	2 50			

FUENTE, XI CENSO GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N.E. G.I.

CUADRO 1.4.7.3

	TASAS DE	OCUPACIÓN	TASAS DE	
SEXO	CEI	NSO	CEN	VSO
	1970	1990	1970	1990
VERACRUZ	97.50	97.20	2.50	2.80
HOMBRES	98 40	97.20	160	2 80
MUJERES	92 60	97 40	7 40	2 60
OAXACA	97.40	97.20	2.60	2.80
HOMBRES	98 80	97 10	1 20	2 90
MUJERES	91 50	97 60	8 50	2 40

FUENTE CENSOS GENERALES DE POBLACIÓN Y VIVIENDA, 1970 - 1990 I N.E. G.E.

ghalaman en en en en en

I.4.8 PARTICIPACIÓN ECONÓMICA

En Veracruz el comportamiento observado de las tasas de participación económica por grupos de edad y sexo es el siguiente mas de 90 hembres de cada 100, entre los 25 y 44 años, pertenecen a la población económicamente activa y entre los 45 y 59 años este grupo representa más de 80% y para Oaxaca de los 25 y 59 años representa más de 80% de la población económicamente activa. Entre los 20 y 24 años y los 60 y 64 la tasa de participación decrece en Veracruz a 79 7 y 72 6 respectivamente, caso contrario a Oaxaca que crece de 77 9 a 79. La distribución para el sexo femenino es distinta. Los grupos de edad con tasa de participación más alta están entre los 20 y 24 años, en donde aproximadamente 20 de cada 100 mujeres para Veracruz y 17 de cada 100 en Oaxaca tienen una participación económica (Ver Cuadro I.4.8.1.)

Entre los municipios con tasas de participación generales más altas se encuentran Isla, San Juan Bautista Tuxtepec y Tiacotalpan con 44.9, 44.8 y 44. Entre los más bajos tenemos a San Juan Lalana, Saltabarranca y Acula con 37.5, 37.4 y 37. (Ver Cuadro I.4.8.2.)

1.4.9 OCUPACIÓN PRINCIPAL

Entre la población ocupada, el mayor grupo corresponde a los trabajadores agropecuanos con 38 8% y 53% para Veracruz y Oaxaca. Le siguen el de artesanos y obreros con 14 3% y 13 1% y el de comerciantes y dependientes con 7 4% y 5 4% respectivamente.

Existen ocupaciones, como las de técnicos, trabajadores de la educación y oficinistas, en donde ambos sexos tienen una participación similar. En cambio, casi la totalidad de los trabajadores agropecuarios, inspectores y supervisores, artesanos y obreros, operadores de maquinaria fija, ayudantes y similares, operadores de transporte y protección y vigilancia son hombres. El caso contrano solo se presenta en el grupo de trabajadores domésticos en ambos Estados (Ver Cuadro I.4.9.)

E.N.E.P. ACATLAN

TESIS COLECTIVA

CUADRO 1.4.8.1

TASAS DE PARTICIPACIÓN ECONÓMICA POR MUNICIPIO SEGÚN SEXO, 1990					
MUNICIPIO	MUNICIPIO TOTAL		SEXO		
	L	HOMBRES	MUJERES		
VERACRUZ	41.80	70.40	14.50		
ACAYUCAN	4160	68 90	15 50		
ACULA	37 OC	69 20	3 90		
ALVARADO	4130	66 90	15 20		
AMATITLÁN	40 80	73 30	7 90		
ANGEL R CABADA	37 80	68 70	7 90		
COSAMALOAPAN	40 90	69 OC	14 30		
CHACALTIANGUIS	38 70	70 00	7 40		
HUEYAPAN DE OCAMPO	39 10	70 60	7 20		
ISLA	44 90	77 20	13 10		
IXMATLAHUACAN	43 90	78 60	5 30		
JUAN RODRÍGUEZ CLARA	40 00	78 00	7 90		
LERDO DE TEJADA	39 70	66 30	15 90		
OTATITLAN	43 00	74 90	11 50		
PLAYA VICENTE	40 00	71 80	8 00		
SALTABARRANCA	37 40	67 60	7 50		
SAN JUAN EVANGELISTA	40 80	74 00	7 00		
TLACOJALPAN	4190	76 90	5 10		
TLACOTALPAN	44 60	74 00	16 10		
TUXTILLA	38 40	71 70	6 00		
OAXACA	39.20	68.30	12.30		
LOMA BONITA	42 70	73 60	14 00		
SAN JOSÉ CHILTEPEC	3980	71 90	6.20		
SAN JUAN BAUTISTA TUXTEPEC	44 80	73 10	17 50		
SAN JUAN COTZOCÓN	43 70	76 60	10 40		
SAN JUAN LALANA	3750	73 60	2 80		
SANTA MARÍA JACATEPEC	3930	72 50	4 90		
SANTIAGO JOCOTEPEC	38 50	75 40	2 20		
SANTIAGO YAVEO	40 20	74 90	4 20		

FUENTE: XI CENSO, GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N E G I

CUADRO 1.4.8.2

DE EL	AS DE PARTICIPAC DAD SEGÚN SEXO,	1990	
GRUPOS		1	
QUINQUENALES	TOTAL	SE	xo
DE EDAD	ļ	HOMBRES	MUJERES
VERACRUZ	41.80	70.40	14.50
10 11 1000	0.50		2.50
12 - 14 AÑOS	8 50	14 40	2 50 11 00
15 - 19 AÑOS	30 50	50 10	
20 - 24 AÑOS	48 90	79 70	20 10
25 - 29 ANOS	54 50	90 10	2140
30 - 34 AÑOS	55 40	92 30	21 00
35 - 39 ANOS	54 60	92 30	19 50
40 - 44 AÑOS	53 90	91 50	17 80
45 - 49 AÑOS	5180	89 80	15 00
50 - 54 AÑOS	48 80	86 30	12 80
55 - 59 AÑOS	45 00	81 20	10 60
60 - 64 ANOS	39 50	72 60	8 40
65 Y MAS	27 60	52 70	4 90
OAXACA	39.20	68.30	12.30
12 - 14 AÑOS	8 30	13 60	3 00
15 - 19 ANOS	30 10	50 40	10 40
20 - 24 ANOS	45 90	77 90	17 40
25 - 29 ANOS	50 80	87 30	18 80
30 - 34 ANOS	51 90	89 40	18 10
35 - 39 AÑOS	50 70	89 70	15 80
40 - 44 ANOS	49 80	88 90	14 10
45 - 49 ANOS	48 30	88 20	11 80
50 - 54 ANOS	46 70	86 10	10 50
55 - 59 ANOS	45 10	83 60	9 60
60 - 64 AÑOS	42 80	79 00	8 80
65 Y MAS	31 80	60 30	6 20

FUENTE: XI CENSO: GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N.E. G.I.

CUADRO 1.4.9

DISTRIBUCIÓN DE LA POBLACIÓN OCUPADA POR								
OCUPACIÓN PRINCIPAL SEGÚN SEXO, 1990								
	7		T	SE	SEXO			
OCUPACIÓN PRINCIPAL	TOT	AL	HOME	RES	MUJI	RES		
\$	ABS.	REL.	ABS.	REL.	ABS.	REL.		
VERACRUZ	1,742,129	100.00	1,432,828	82.25	309,301	17.75		
PROFESIONALES	35 156	100 00	25 881	73 62	9 2 7 5	26 38		
TECNICOS	43 290							
TRABAJADORES DE LA EDUCACIÓN	58.903		24 068					
TRABAJADORES DEL ARTE	9.733		8.452	86 84				
FUNCIONARIOS Y DIRECTIVOS	24,738				5.181			
TRABAJADORES AGROPECUARIOS	675,405	100 00	662,434	98 08	12 971	1 1 92		
INSPECTORES, SUPERVISORES	18,945	100 00	17,991	94.96	954	5 04		
ARTESANOS Y OBREROS	249 351	100 00	228,673	91 71	20 678	8 29		
OPERADORES DE MAQUINARIA FIJA	33 789	100 00	30,873	91 37	2 9 16	8 6 3		
AYUDANTES Y SIMILARES	67,974	100 00	64 213	94 47	3 761	5.53		
OPERADORES DE TRANSPORTE	78,711	100 00	78 014	99 11.	697	0.89		
OFICINISTAS	110 395	100 00	51 762	46 89	58 533	53 11		
COMERCIANTES Y DEPENDIENTES	128 811	100 00	82 531	64 07	46 280	35 93		
TRABAJADORES AMBULANTES	35 077	100 00	25 002	71.28	10 075	28 72		
TRABAJADORES EN SERVICIOS	68 303	100 00	43 336	63 45	24 957	36 55		
PÚBLICOS	Ì	1 1		1 1				
TRABAJADORES DOMESTICOS	48,119		1.295	2 69	46,824	97.31		
PROTECCIÓN Y VIGILANCIA	26,425		25 805		620	2 35		
NO ESPECIFICADO	29 004	100 00	18,425	63.53	10 579	36 47		
DAXAGA	754,305	100.00	630,826	83.63	123,479	16.37		
PROFESIONALES	9 988	100 00	7 621	76 30	2,367	23.70		
TECNICOS	13,216		7.085	53 61	6.131	46 39		
TRABAJADORES DE LA EDUCACIÓN	30,195		14.228	47 12	15 967	52 88		
TRABAJADORES DEL ARTE	2,715	100 00	2 460	90.61	255	9 39		
FUNCIONARIOS Y DIRECTIVOS	7,552	100 00	6,052	80 14	1 500	19 86		
TRABAJADORES AGROPECUARIOS	400,131	100 00	388,544	97 10	11,587	2 90		
INSPECTORES, SUPERVISORES	3,201	100 00	3,067	95 81	134	4 19		
ARTESANOS Y OBREROS	98,881	100 00	77,952	78 83	20 929	21 17		
OPERADORES DE MAQUINARIA FIJA	6,030	100 00	5,495	91 13	535	8 87		
AYUDANTES Y SIMILARES	21,437	100 00	20,379	95 06	1,058	4 94		
OPERADORES DE TRANSPORTE	22,499	100 00	22,308	99 15	191	0.85		
OFICINISTAS	35.679		17,915	50 21	17.764	49 79		
COMERCIANTES Y DEPENDIENTES	40,442	100 00	23 056	57 01	17 386	42 99		
TRABAJADORES AMBULANTES	8 809	100 00	5,776	65 57	3.033	34 43		
TRABAJADORES EN SERVICIOS PUBLICOS	18 042	100 00	11,839	65 62	6,203	34 38		
TRABAJADORES DOMESTICOS	13.340	100 00	553	4 15	12,787	95 85		
PROTECCIÓN Y VIGILANCIA		100 00	8,585	98 02	173	1 98		
NO ESPECIFICADO		100 00	7,911	59 08	5,479	40 92		
	.5,555			~~~)	0,47.0			

FUENTE: XI CENSO GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N E.G.I

1.4.10 SECTORES DE ACTIVIDAD

Los trabajadores del Estado de Veracruz se emplean casi en las mismas proporciones tanto en el sector primario como en el terciario, 39.4 y 36.8 respectivamente. 21.2 se ubican en el sector secundario. Caso diferente a los trabajadores de Oaxaca que en el sector primario con 52.9, secundario con 16.4 y terciario con 28.4. La disminución del sector agropecuario es el cambio más importante detectado en relación al de 1970, hace veinte años este agrupaba en Veracruz a 53.1% y en Oaxaca a 71.5% de la población ocupada.

Al revisar la información por sexo se observan distribuciones distintas. Los hombres trabajan principalmente en el sector primario, con 46.9% y 61.4% en Veracruz y Oaxaca y las mujeres, en el sector terciario con 78.1% y 66.6% respectivamente. (Ver Cuadro 14.10.)

CUADRO 1.4.10

POBLACIÓN OCUPADA POR SECTOR DE ACTIVIDAD SEGÚN SEXO, 1990						
				SE	XO	
SECTOR DE ACTIVIDAD	TOT	TOTAL ABS. REL.		RES	MUJE	ERES
	ABS.			REL.	ABS.	REL.
VERACRUZ	1,742,129	100.00	1,432,828	100.00	309,301	100.00
PRIMARIO (1)	685,647	39 36	671,910	46 89	13.737	4 44
SECUNDARIO (2)	368,639	21 16	331,631	23 15	37,008	11.97
TERCIARIO (3)	641,828	36 84	400,149	27 93	241,679	78 14
NO ESPECIFICADO	46.015	264	29,138	2 03	16.877	5 46
DAXACA	754,305	100.00	630,826	100.00	123,479	100.00
PRIMARIO (1)	398,848	52 88	387,327	61 40	11,521	9 33
SECUNDARIO (2)	123.805	16 41	102.384		21,421	17 35
TERCIARIO (3)	213 819		131,605		82.214	66 58
NO ESPECIFICADO	17,833	2 36	9.510	151	8.323	674

(1) SECTOR PRIMARIO: Agricultura, Ganaderia, Silvicultura, Caza y Peaca

(2) SECTOR SECUNDARIO. Mineria, Estracción de Petroleo y Gas, Manufacturera, Generación de Energia Eléctrica y Construcción (3) SECTOR TERCIARIO. Comercio y Servicios

FUENTE: XI CENSO GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N E.G.1.

1.4.11 INGRESOS

La información referente a los ingresos por trabajo de la población ocupada se relaciono con el monto del salano minimo vigente en Diciembre 13 de 1993.

De acuerdo a lo indicado, en Veracruz y Oaxada respectivamente, 10 3% y 24 8% de la población declaro no recibir ingresos. 26 1% y 28 2% recibe menos de un salario mínimo y 35 4% y 25.7% de 1 a 2 satarios mínimos. Sólo 4.8% y 3.2% declaró recibir más de 5 satarios mínimos.

En cuanto a las diferencias más notorias respecto al sexo, se tiene lo siguiente, en tanto que un porcentaje menor de mujeres declaro no recibir ingresos. 3 9% en Veracruz y 10 5% en Oaxada contra 11.7% y 27.6%, una proporción mayor dectaró recibir menos de un salario minimo, 32% contra 24 9% en Veracruz y 27 5% en Oaxaca (Ver Cuadro I.4.11)

CUADRO 1.4.11

POBLACIÓN OCUPADA POR SEXO SEGÚN INGRESO, 1990						
				SE	OX	
INGRESO MENSUAL	TOTAL		HOMBE	HOMBRES		ES
	ABS.	REL.	ABS.	REL.	ABS.	REL.
VERACRUZ	1,742,129	100.00	1,432,828	100.00	309,301	100.00
NO RECIBE INGRESOS	179 073	10.28	166.895	1165	12,178	3 94
MENOS DE UN S M	455,257	26 13	356,389	24.87	98,868	
DE 1 A 2 S M	617 337	35 44	509 727	35 57	107,610	34 79
MAS DE 2 Y MENOS DE 3 S M	213 683		171 265		42.418	
DE 3 A 5 S M	132 008		107,562		24 446	
MAS DE 5 S M	84.182	4 83	73 242	5 1 1	10,940	3 54
NO ESPECIFICADO	60,589	3 48	47 748	3 33	12,841	4 15
OAXACA	754,305	100.00	630,826	100.00	123,479	100.00
			,		1	
NO RECIBE INGRESOS	187,020	24 79	174,112	27 60	12,908	10 45
MENOS DE UN S M	213,011	28 24	173.330	27.48	39 68 1	32 14
DE 1 A 2 S M	193.855	25 70	152,549	24 18	41,306	
MAS DE 2 Y MENOS DE 3 S M	66,995	888	53,626	8 50	13,369	
DE 3 A 5 S M	37,806		31.513		6.293	
MAS DE 5 S M	24,132		20.503		3 629	
NO ESPECIFICADO	31.486		25,193		6,293	5 10

NOTA. 8 M - BALARIO MINIMO, EN DICIEMBRE 13 DE 1993 EQUIVALE. ZONA A - NS 15 27 PESOS POR DÍA

ZONA B - NS 14 19 PESOS POR DIA.

FUENTE: XI CENSO, GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N.E. G.I.

1.4.12 SERVICIOS DE LA VIVIENDA

En los ultimos 20 años se observan incrementos porcentuales significativos en el número de viviendas con energía eléctrica y drenaje en Veracruz y en Oaxada con energía eléctrica y agua entubada. (Ver Cuadro I.4.12.1.)

En cuanto a los municipios con respecto al agua entubada, 10 municipios superan en porcentaje al estatal donde sobresale Lerdo de Tejada con 84.9%. En el drenaje también sobresale Lerdo de Tejada con 83.2% y en el mismo numero de 10 municipios superan al estatal. Y por último la energía eléctrica con 15 municipios superando al porcentaje estatal, donde también Lerdo de Tejada sobresale con 94.3%. (Ver Cuadro I.4.12.2.)

CUADROS I.4.12.1

VIVIENDAS PARTICULARES SEGÚN DISPONIBILIDAD DE SERVICIOS, 1970 - 1990					
DISPONIBILIDAD DE	Af	10			
SERVICIOS	1970	1990			
VERACRUZ	*	**			
AGUA ENTUBADA	51 00	59 80			
CON DRENAJE	35 40	53 20			
CON ENERGÍA ELÉCTRICA	49 40	74 40			
OAXACA	•%	%			
AGUA ENTUBADA	34.70	58 10			
CON DRENAJE	16 50	29 90			
CON ENERGÍA ELÉCTRICA	27 80	76 10			

FUENTE. CENSOS GENERALES DE POBLACIÓN Y VIVIENDA, 1970 - 1990 I N.E.G.E.

CUADRO 1.4.12.2

PORCENTAJE DE VIVIENDAS PARTICULARES POR MUNICIPIO SEGÚN DISPONIBILIDAD DE SERVICIOS, 1990						
		VIBILIDAD DE SE	RVICIOS			
MUNICIPIO	AGUA ENTUBADA	DRENAJE	ENERGÍA ELÉCTRICA			
VERACRUZ	59.80	53.20	74.40			
ACAYUCAN	60 60	64 20	75 40			
ACULA	8 60	2130	59 50			
ALVARADO	55 70	56 60	75 70			
AMATITLAN	49.70	42 10	75 80			
ANGEL R CABADA	56 90	48 40	74 50			
COSAMALOAPAN	75 10	70.00	88 10			
CHACALTIANGUIS	45 70	42 10	71 20			
HUEYAPAN DE OCAMPO	49 30	32 80	59 90			
ISLA	59 40	47 80	71 90			
IXMATLAHUAGAN	40.70	22 70	53 80			
JUAN RODRIGUEZ CLARA	47 60	36 30	68 10			
LERDO DE TEJADA	84 90	83 20	94 30			
OTATITLAN	65 90	53 70	76 90			
PLAYA VICENTE	25 30	22 86	64 30			
SALTABARRANCA	69 50	60 10	78 40			
SAN JUAN EVANGELISTA	3190	35 90	65 90			
TLACOJALPAN	65 20	52 40	79 40			
TLACOTALPAN	62 40	56 60	6780			
TUXTILLA	66 50	55 30	78 40			
OAXACA	58.10	29.90	76.10			
LOMA BONITA	63 20	60 20	87 20			
SAN JOSÉ CHILTEPEC	54.40	9 50	7870			
SAN JUAN BAUTISTA TUXTEPEC	7170	63 00	8760			
SAN JUAN COTZOCÓN	40 50	20 90	70 80			
SAN JUAN LALANA	7 60	1 70	16 20			
SANTA MARÍA JACATEPEC	42 20	6 20	78 10			
SANTIAGO JOCOTEPEC	620	1 00	59 70			
SANTIAGO YAVEO	560 (5 30	18 40			

FUENTE, XI CENSO, GENERAL DE POBLACIÓN Y VIVIENDA, 1990 I N.E. G.I.

1.4.13 COMUNICACIONES Y TRANSPORTES

En cuanto a carreteras se tiene que Veracruz cuenta con 10,266 8 Km y Oaxaca con 13,685 9 Km de redes carreteras (pavimentadas, rurales o revestidas y terracerias)

Los municipios sobresalientes son. San Juan Bautista Tuxtepec, Oaxaca con 275 6 Km., de los cuales 76 Km. de carretera pavimentada, 120 1 Km. de caminos rurales o revestidas y 79.5 Km. de terraceria, siguiendole Alvarado, Veracruz con 147.3 Km., donde 88 Km. son pavimentadas, 4.8 Km. rurales o revestidas y 54.5 Km. son terraceria.

Un dato importante es que en los municipios de Acula, Chacalitanguis, Isla, Sattabarranca, Tlacojalpan y Tuxtilla en Veracruz no cuentan con éste tipo de redes carreteras (Ver Cuadro I.4.13.1)

En lo que se refiere a Red Ferroviaria, Veracruz cuenta con 1190 37 Km de las cuales son troncales y rurales y particulares. En Oaxaca con 767 7 Km de red abarcando troncales y ramales, auxiliares y particulares. (Ver Cuadro I.4.13.2.)

Y por ultimo Veracruz cuenta con 3 aeropuertos y 64 aeródromos, y Oaxaca con 6 aeropuertos y 103 aeródromos

Los municipios de la zona de estudio ninguno cuenta con aeropuertos pero 12 de ellos si cuentan con aeródromos. (Ver Cuadro I.4.13.3)

CUADRO 1.4.13.1

LONGITUD DE LA RED C DE RODAMIENTO SEG				
	1		CAMINOS	RURALES
MUNICIPIO	TOTAL	PRINCIPAL	O VEC	NALES
	1	PAVIMENTA	REVESTIDA	TERRACERIA
VERACRUZ	10,266.80		61.30	3,390.90
ACAYUCAN	49 20		0.00	0 10
ACULA	0 00		0 00	
ALVARADO	147 30		4 80	
AMATITLAN	17 00		0.00	0.00
ANGEL R CABADA	13 50		ე 00	0 00
COSAMALOAPAN	85 70	60 00	0.00	25 70
CHACALTIANGUIS	0 00		0 00	0 00
HUEYAPAN DE OCAMPO	65 60	40 90	0 00	24 70
ISLA	25 40	16 60	0.00	8 80
IXMATLAHUACAN	0 00	0.00	0.00	0 00
JUAN RODRIGUEZ CLARA	65 00	32 00	0.00	33 00
LERDO DE TEJADA	17 50	17 50	0.00	0 00
OTATITLAN	0 00	0 00	0 00	0 00
PLAYA VICENTE	105 20	47 00	0 00	58 20
SALTABARRANCA	0 00	0 00	0 00	0.00
SAN JUAN EVANGELISTA	73 70	37 80	0.00	35 90
TLACOJALPAN	0 00	0 00	C 00	0 00
TLACOTALPAN	19 00	19 00	0 00	0 00
TUXTILLA	0.00	000	0.00	0 00
i	1	1	}	i
DAXACA	13,685.90	2,664.40	7,026.80	3,994.70
LOMA BONITA	87 80	0.00	19 30	68 50
SAN JOSÉ CHILTEPEC	29 40	11 00	11 40	7 00
SAN JUAN BAUTISTA TUXTEPEC	275 60	76 00	120 10	79 50
SAN JUAN COTZOCÓN	124 70	0 00	101 20	23 50
SAN JUAN LALANA	48 50	0 00	18 20	30 30
SANTA MARÍA JACATEPEC	48 40	14 60	2180	12 00
SANTIAGO JOCOTEPEC	9 60	0 00	9 60	0 00
SANTIAGO YAVEO	77.70	0 00	36 70	41 00

FUENTE, B.C.T., DELEGACIÓN EN EL ESTADO UNIDAD DE PROGRAMACIÓN Y EVALUACIÓN

CUADRO 1.4.13.2

TIPO DE VIA	LONGITUD
VERACRUZ	1,190.3
TRONCALES Y RAMALES	1,144.4
AUXILIARES	0.00
PARTICULARES	45 9
OAXACA	767.7
TRONCALES Y RAMALES	634 60
AUXILIARES	106 50
PARTICULARES	26 60

FUENTE: S.C.T., DELEGACION EN EL ESTADO DEPARTAMENTO DE TRANSPORTE FERROVIARIO

50

CUADRO I.4.13.3

AEROPUERTOS, AER DE LA A	ÓDRÓMOS Y LÓNG VIACIÓN CIVIL SEG			AJE
MUNICIPIO	AEROPUERTOS	DE PISTA (METROS)	AERÓDROMOS	DE PISTA (METROS)
VERACRUZ	3	NA	64	NA
ACAYUCAN	0	0	3	ND
ACULA	1 6	l ő	l ő	l
ALVARADO] 6	l ŏ	l ŏ	1 6
AMATITLAN	l ŏ	lŏ	ŏ	l ň
ANGEL R CABADA	lŏ	l ŏ	l ŏ	i
COSAMALOAPAN	1 ŏ	ìŏ	1 4	l nă
CHACALTIANGUIS	l ő	l õ	l ń	0
HUEYAPAN DE OCAMPO	1 5	i	1 -	1,200
ISLA	l ŏ	l ŏ	l ó	
IXMATLAHUAÇAN	l õ	lō	l ă	ا م
JUAN RODRIGUEZ CLARA) ō	l ō	1 1	700
LERDO DE TEJADA	l ō	Ó	1 1	ND
OTATITLAN		0	0	0
PLAYA VICENTE	o	0	1	700
SALTABARRANCA		0	0	o'
SAN JUAN EVANGELISTA	l 0	0	2	ND
TLACOJALPAN	0	٥	0	0
TLACOTALPAN	. 0	0	О	ol
TUXTILLA	0	0	0	0
OAXACA	6	NA	103	NA
LOMA BONITA	6	0	, 1	1.200
SAN JOSÉ CHILTEPEC	\	Ö	ò	0
SAN JUAN BAUTISTA	l ō l	ō	ō	ō.
TUXTEPEC	1 - 1			_
SAN JUAN COTZOCÓN	1 0 1	0	4	1,610
SAN JUAN LALANA	1 0 1	0	2	300
SANTA MARÍA JACATEPEC	1 0 1	0	0	0
SANTIAGO JOCOTEPEC	1 0	0	0	0
SANTIAGO YAVEO	1 0	0	3	2,110

FUENTE: S.C.T., DELEGACIÓN EN EL ESTADO BUBDIRECCIÓN DE OPERACIÓN

	GAF	PÍTULO II	,	

II.ESTUDIO HIDROLÓGICO

II.1 PRECIPITACIÓN

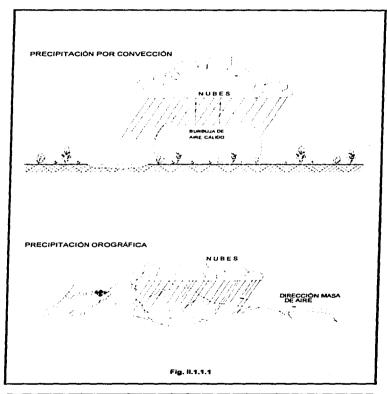
Se denomina precipitación al agua que llega a la superficie terrestre proveniente de la atmósfera. La precipitación es una componente fundamental del ciclo hidrológico.

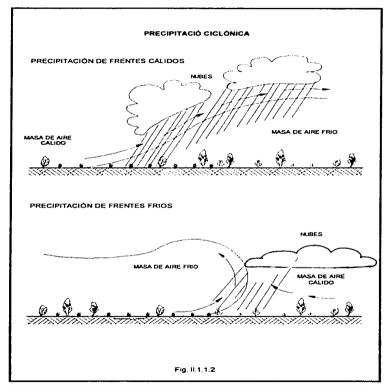
II.1.1 TIPOS DE PRECIPITACIÓN

Los mecanismos que causan el levantamiento del aire humedo provocan que la atmósfera se enfrie. De acuerdo con el mecanismo que provoca dicho levantamiento del aire, la precipitación puede ser convectiva, ciclónica u orográfica.

II.1.1.1 Precipitación Convectiva

Se origina por el calentamiento del suelo, que provoca corrientes ascendentes de aire húmedo. La precipitación asociada a este tipo de fenómeno afecta áreas reducidas, del orden de 25 a 50 kilómetros cuadrados (Ver figura II.1.1.1)


II.1.1.2 Precipitación Ciclónica


Esta asociada al paso de ciclones, resulta del levantamiento del aire por la convergencia de una masa de aire en una zona de baja presión. En general afecta zonas muy extensas (Ver figura II.1.1.2.)

II.1.1.3 Precipitación Orográfica

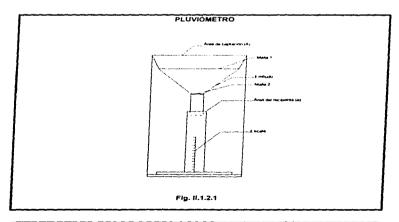
Es consecuencia del ascenso del aire producido por las barreras montañosas; su distribución en el espacio esta relacionada con las pendientes del terreno (Ver figura II.1.1.1.1)

E.N.E.P. ACATLAN TESIS COLECTIVA 52

E.M.E.P. ACATLAN

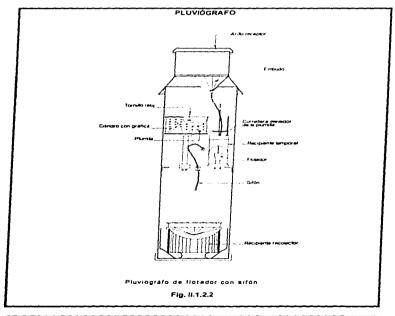
The public will have been been been as the second of the s

TESIS COLECTIVA


54

II.1.2 APARATOS DE MEDICIÓN

La precipitación se mide en altura de lamina de agua y se expresa comúnmente en millmetros. Los aparatos mas usuales para medir la precipitación son el pluviómetro y el pluviógrafo


II.1.2.1 Pluviómetro

Es un recipiente expuesto a la intemperie y abierto en su parte superior. Consta fundamentalmente de tres partes. Un area de captación, en la parte superior, que se comunica a un recipiente cilíndrico de area menor, mediante un embudo. La relación entre las áreas (mayor y menor) es generalmente igual a 10, de tal manera que al introducir una escala graduada en centimetros en el recipiente menor, se lee la precipitación real en milímetros (Ver floura II.1.2.1)

II.1.2.2 Pluviógrafo

Es similar al pluviómetro, solo que adicionalmente tiene un mecanismo para registrar la variación de la precipitación en el tiempo. El equipo adicional consta de un mecanismo de relojerta y un detector de volumen de aqua dentro del recipiente (Ver figura II.1.2.2.)

E.N.E.P. ACATLAN

TESIS COLECTIVA

56

II.1.3 TIPOS DE REGISTRO

El tipo de registro que se utiliza para recabar información de la precipitación depende de tres condiciones localización, tipo de aparato y acceso al sitio donde se encuentre ubicado.

En nuestro medio, el registro dibujado en papel es el mas usual, y en caso de sitios no habitados o poco accesibles, se puede grabar la información en cinta magnética.

En algunas ocasiones la selección del tipo de registro se hace en función de como se va a utilizar la información, por ejemplo si se utiliza para predicción de avenidas, los registros de precipitación deben ser procesados lo más rápidamente posible, para lo cual conviene manejar los datos en la estación central, empleando registros en cinta magnetica.

II.1.4 FUENTES DE INFORMACIÓN

Para conocer la precipitación en alguna region del país se dispone de aproximadamente 3,000 pluviometros y 400 pluviografos, los cuales son operados principalmente por la Comisión Federal de Electricidad. Secretaria de Agricultura y Recursos Hidráulicos y la Comisión Internacional de Llimites y Aguas Cada una de ellas publica boletines hidrológicos en los que se resume la información recabada.

Para el desarrollo del presente trabajo la información hidrométrica, se recopilo de las dos siguientes estaciones :

PUXMETACÁN, OAX. Latitud N 17º 16' Longitud W 95º 39' Altitud. 440 m con altímetro

DESCRIPCIÓN.- Consta de pluviómetro, termómetro, evaporómetro, pluviógrafo, higrotermógrafo, anemógrafo y veleta

ANTECEDENTES.- Fue instalada por la Comisión del Papaloapan en Diciembre de 1955 y en abril de 1976 se completo con evaporómetro, pluviógrafo, higrotermógrafo, anemógrafo y veleta.

E.N.E.P. ACATLAN

Space with the second second second

TESIS COLECTIVA

67

ZAPOTE, OAX. ..

Latitud N. 17° 41' Longitud W 95° 53'

Altitud 60 m

DESCRIPCIÓN.- Consta de pluviómetro, termometro, evaporómetro y veleta

ANTECEDENTES.- Fue instalada por la Comisión del Papaloapan en Abril de 1955

II.1.5 PRESENTACIÓN DE LA INFORMACIÓN

Para realizar cualquier tipo de análisis de precipitación, la información se presenta en formas auxiliares, las quales varían según la dependencia que las elabore y el uso que se les va a dar. En las tablas II.1.5.a y II.1.5.b se presentan los resúmenes de Precipitación mensual de las estaciones hidrométricas Puxmetacán y Zapote, publicados por la Secretaria de Agricultura y Recursos Hidráulicos, correspondientes a la Región Hidrológica No. 28 (Papaloapan)

Table II.1.5.a

			PREC	IPITACI FACIÓN	ON ME	NSUAL	EN mm	METAC	URA			
ANO	FENERO	FEMRERO	MARZO	ABRIL.	MAYO	CHINIC	JULIO	AGOSTO	ser.	OCT.	NOV.	DIC.
1955						1						117 20
1956	46 60	56 80	30 50	36 70	351 70	358 70	901 20	566 10	354 80	69.90	166 50	93 90
1957	58 30	101 70	51 60			169 00	567 40	597 70	248 00	189 50	73 20	4 90
1958	79 80	19 60	50 60		98 30	481 30	1283 40		548 50	287 30	352 70	120 00
1959	27 80	144 40	35 20	125 40	34 90	311 80	438 40	684 60	225 70	409 DO		30 90
1960	62 90	8 70	46 60	74 50	42 00	292 70	561 60	806 40	548 70	151 20	123 00	67 60
1961	49 80	53 20	77 40		42 90	380 20	965 90	400 50	31750	130 90	400 40	69 40
1962	32 30	0 00	2160	172 80	100 10	227 20	468 40	407 70	464 00	215 20	69 30	52 80
1963	30 30	5 70	19 00	0.50	131 00	319 90	537 50	490 20	386 20	101 20	28 60	70 10
1964	13 50	10 00	1180	8 80	96 60	639 20	532 30	345 10	467 40	97 70	152 80	90 10
1965	68 60	27 40	28 90	64 90	49 70	404 70	691 90	372 30	336 90	319 50	70 10	57 30
1966	24 00	34 30	66 20	7 20	182 70	790 40	603 70	294 50	515 70	608 20	46 90	47 90
1967	49 50	47 70	9 60	52 50	54 20	442 30	719 50	493 70	269 00	146 50	70 40	114 70
1948	120 70	95 10	18 50	69 30	119 50	538 00	858 00	735 00	384 60	243 60	160 00	137 90
1969	34 20	32 70	56 70	27 50	54 40	279 50	767 20	628 90	676 80	211 10	57 80	79 00
1970	39 40	77 30	31 70	6 80	28 50	241 30	512 70	568 00	382 60	244 00	86 80	17 50
1971	15 70	8 00	15 00	31 10	30 70	290 90	719 70	666 20	270 10	372 60	184 30	108 40
1972	61 80	42 60	14 50	49 10	131 00	422 60	565 30	698 70	289 80	107 40	154 40	28 80
1973	24 60	69 80	0 00	49 10	113 50	262 10	552 60	850 50	287 70	114 80	80 80	84 50
1974	53 00	71 60	36 00	7 00	175 30	499 00	500 70	257 70	486 80	146 60	53 80	18 00
1975	33 40	48 80	43 90	19 60	258 90	283 20	454 80	851 70	620 30	353 50	35 80	118 00
1976	105 70	44 50	12 80	66 40	74 20	745 60	356 50	337 10	437 30	265 70	110 10	93 40
1977	36 80.	43 60	25 30	95 90	61 80	393 70	768 80	385 00	415 00	228 10	235 70	66 90
1978	25 30	82 30	50 00	4 00	166 90	552 50	706 50	497 20	590 00			99 90
1979	39 80	73 20	26 80	85 60	156 20	247 10	373 40	730 80	461 70	88 40	138 70	172 40
1960	119 20	34 00	11 60	68 90	25 10	443 60	736 80	338 90	607 60	139 90	112 60	132 30
1981	100 30	80 70	22 40	55 40	124 50	608 00	703 50	578 30	340 70	325 40	131 40	215 00
2.=	1383.3	1313.7	824.4	1247.1	2732.3	10625	16888	14159.0	10934	5567.2	3168.3	2308.8
Prom	52.05	50.53	31.71	47.97	105.09	408.64	649.54	544.61	420.52	222.69	126.73	85.51

FUENTE: BOLETINES HIDROMETRICOS REGIÓN HIDROLÓGICA No. 28 (PAPALOAPAN), 1955 A 1981 S.A.R.H.

Tabla II.1.5.b

	PRECIPITACIÓN MENSUAL EN mm. DE ALTURA ESTACIÓN HIDROMÉTRICA ZAPOTE											
ANO	ENERO	FEBRERO	MARZO	ABRIL	MAYO	DINUL	JULIO	AGOSTO	SEP.	OCT.	NOV.	DIC.
1955				42 40	15 30	6. 50	933 80	177 6G	773 40	219 20	145 00	155 60
1956	51 60	32 BO	60 60	23 50	362 90	740 40	587.70	516 60	448 30	119 80	170 80	133 00
1957	59.20	95 30	111 30	34 20	116 30	131 50	534 20	464 50	371 90	23100	49.70	4380
1958	48 90	25 30	79.90	200	155 80	471 00	1002 30	740 90	E06 10	424 10	224 00	107 50
1959	64 30	95 50	85.70	89.20	47.30	631 50	646 50	26190	128 20	534 00	81 10	45 00
1960	75 60	26 50	31 50	54 20	26.70	181 70	477.00	679 50	412 40		149 70	83.70
1961	152 70	30 30	99 60	9.20	99.70		599.90	370 70	378 90	148 70	295 60	108 10
1962	32 30	2 30	107.40	134 30	18 60	261.70	429 50	238 70	515 60		65 20	79 50
1963	67 20	24 70	50 50	200	129.20	431 20	373.90	300 60	561 70	95.00	48 20	151 70
1964	53 70	38 70	77 20	4 30	208 50	438 30	370 30	240 00	432 90	172 70	64 20	194 50
1965	78 90	85 40	48 40	55.70	42 10	594 00	575 60	392 70	331 00	403 20	114 10	93 30
1966	59 40	168 00	102.60	47.60	131.90	633 30	472.70	165 90	422 20	363 10	112 20	21 80
1967	55 00	66.50	49 10	92 90	9570	399 90	540 50	508 00	535 80	314 80	104 20	50 40
1968	100 90	106 40	53 30	75 30	86.90	498 60	867 BO	494 60	527 50	314 40	157 20	247 30
1969	25 30	67 30	107 20	9.90	69 40	318 80	758 50	1165 70	779 50	110 40	85 50	75 30
1970	51 70	122 20	87 10	5 90	42 60	277 30	602 60	647 00	298 10	78 70	99 30	31 20
1971	64 60	30 80	63 40	134 40	67.00	323 40	762 20	440 00	283 40	321 30	199 40	97.20
1972	45 10	57 90	21 90	120 00	228 20	392 80	835 80	445 50	491 00	177 40	185 40	16 90
1973	41 10	87 00	4 90	38 10	227 30	490 30	509 30	761 70	425 80	277 20	81 40	87 90
1974	135 70	#2 70	13 90	60 00	121 30	655 00	468 40	191 20	680 10	197 80	41.70	17 10
1975	77 10	114 60	18 10	8.20	279 00	249 70	455 30	498 20	603 10	218 60	73 60	167 60
1976	129 70	15 30	29 00	191 20	109 40	428 50	495 DG	580 40	664 60	341 DO	170 40	69 40
1977	81 30	56 30	41 40	18 90	60 80	325 10	484 DO	413 10	625 70	199 90	147 20	44 00
1978	53 90	100 80	105 00	4 40	178 90	772 00	629 90	578 80	415 70	363 10	55 40	129 80
1979	77 80	95 70	34 90	139 90	224 20	302.20	280 20	655 90	296 20	111 50	115 70	149 30
1980	111 10	43.30	32 00	93 50	52 30	482 30	533 20	471 70	691 90	122 60	169 70	98 20
1981	123 30	151 70	33.80	56.70	213.40	539 50	61970	706 90	382 50	375 20	116.00	168 20
Σ-	1927 4	1825.3	1549.9	1548 1	3411.7	11718	15842 8	13108.5	13084	6624.3	3322.1	2667.3
Prom	74.13	70 20	59.61	57.34	126.36	433 99	586 77	485 50	484 61	245.34	123.04	98.79

FUENTE BOLETINES HIDROMETRICOS REGION HIDROLÓGICA NO 28 (PAPALOAPAN), 1955 A 1981 S.A.R.H.

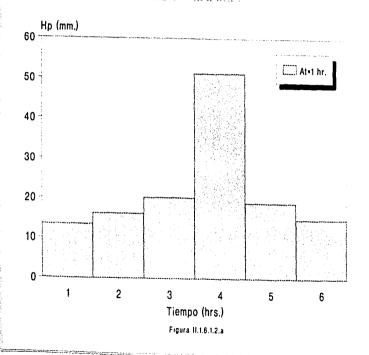
II.1.6 TÉCNICAS DE ANÁLISIS DE LA PRECIPITACIÓN

II.1.6.1 Análisis de la Precipitación Registrada en una Estación ó Precipitación Puntual.

El análisis se realiza con los datos registrados en cada estación, a continuación se describen los pasos de que consta

II.1.6.1.1 Curva Masa

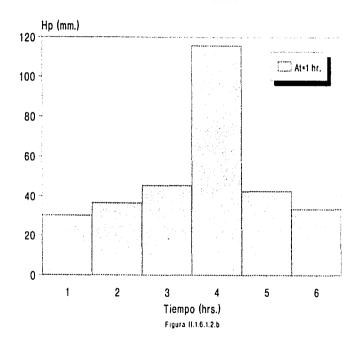
La curva masa es la representación de la altura de precipitación acumulada a través del tiempo, desde el inicio de la tormenta hasta su terminación, se obtiene directamente del registro del pluviógrafo.


II.1.6.1.2 Hietograma

Es una representación mediante barras verticales de la variación de la altura de precipitación con respecto a intervalos de tiempo constantes. Utilizando la curva masa se obtiene el hietograma a través del siguiente procedimiento.

- 1. Se divide la curva masa en intervalos de tiempo constantes,
- 2. Se obtiene la altura de precipitación hasta el final de cada intervalo de tiempo
- 3. Se calculan las diferencias de precipitación entre cada intervalo
- 4. Se gráfican los valores obtenidos en 3

Nota: El procedimiento arriba descrito no se efectuo, debido a que no se dispone de los registros del pluviógrafo en ambas estaciones, únicamente se dispone de registros de pluviómetro, por lo cual para obtener los hietogramas de seis horas que se observan el las figuras II.1.6.1.2.a y II.1.6.1.2.b, se trabajo de la siguiente manera. Se aplicaron los siguientes porcentajes a la precipitación registrada en la estación Puxmetacán Hp = 135 mm correspondiente al día 14 de septiembre de 1975 y a la registrada en la estación Zapote, el día 21 de septiembre de 1974 igual a 305 mm. Se aplica el 10% para obtener la precipitación en la primera hora, el 12% para la segunda, el 15% para la tercera, el 38% para la cuarta, el 14% para la quinta y el 11% para la sexta hora.


ESTACION PUXMETACAN

2

ESTACION ZAPOTE

II.1.6.1.3 Curva intensidad de la Lluvia-Duración-Período de Retorno.

La obtención de esta curva permite tener un conocimiento de la variación de las características de la intensidad o de la precipitación con respecto a su frecuencia de incidencia (periodo de retorno). Se utilizan en modelos de relación Lluvia - Escurrimiento

Nota: No se dispone de información del pluviografo para la estación Puxmetacán y en la estación Zapote no se cuenta con este aparato de medición, esta información es indispensable para la elaboración de la Curva Masa y de la Curva Intensidad de la Lluvia - Duración - Periodo de Retorno Debido a esto únicamente se elaboró el Hietograma para seis horas deducido mediante la aplicación de porcentajes a la precipitación registrada en la estación Puxmetacán el 14 de Septiembre de 1975 y a la registrada en la estación Zapote el 21 de Septiembre de 1974. Tal y como se describe en la nota hecha en el subcapitulo II 1 6 1 2 Hietograma.

II.2 ESCURRIMIENTO

Cuando la lluvia es de tal magnitud que excede la capacidad de infiltración o retención del terreno y la vegetación, el excedente da origen al proceso del escurrimiento, esto es, se desplaza por efecto de la gravedad hacia las partes bajas de la cuenca, reconociendo los arroyos más cercanos hasta llegar a los rios.

El agua de lluvia llega primero a los objetos que se encuentran sobre la superficie del terreno, como árboles, pasto, etc. En estos lugares parte de la fluvia es interceptada y parte flega al suelo, en donde se infiltra, flena las depresiones topográficas y se va acumulando en el terreno hasta romper la tensión superficial y fluir por la superficie de las faderas hacia los cauces.

II.2.1 AFORO DE CORRIENTES

Aforar una corriente en una sección es determinar el volumen que pasa por ella en la unidad de tiempo, es decir el gasto, con el objeto de determinar la magnitud y distribución del escurirmiento en el tiempo.

Los procedimiento más comunes para aforar las corrientes son

- a) Sección de control
- b) Relación sección pendiente
- c) Relación sección velocidad

Para el desarrollo del presente trabajo la información hidrométrica, se recopilo de las siguientes estaciones :

ESTACIÓN PUXMETACÁN SOBRE EL RÍO PUXMETACÁN

DESCRIPCIÓN.- Esta situada a 5 kilómetros de la población de Puxmetacán, Oaxaca, se afora en una estructura de cable y canastilla, con claro libre entre los apoyos de 70 m.

II. ESTUDIO HIDROLÒGICO

II.2 ESCURRIMIENTO

DATOS.- Se empezaron a tomar registros a partir de julio de 1957.

ÁREA DE LA CUENÇA.- Hasta el sitio de la estación es de 820 8 km²

ESTACION ZAPOTE SOBRE EL RÍO MANSO.

DESCRIPCIÓN.- Esta situada en el poblado de San José rio Manso, Oaxaca, a 135 kilómetros de Cd. Aleman, Veracruz, se afora en una estructura de cable canastilla apoyada en una torre de concreto de 4 m de altura en la margen izquierda y una base de 1 m en la margen derecha, habiendo un claro entre los apoyos de 130 m.

DATOS.- Se empezaron a tomar registros a partir de marzo de 1955

ÁREA DE LA CUENCA.- Hasta el sitio de la estación es de 632 8 km²

II.2.1.1 Sección de Control

En Hidráulica una sección de control en una corriente es aquella en donde existe una relación única entre el tirante del agua y el gasto. Para una sección de control, solo se requiere conocer el nivel del agua y la forma de la sección para determinar el gasto.

II.2.1.2 Relación Sección - Pendiente

Este procedimiento consiste en la determinación del gasto a partir de la fórmula de Manning

$$V = \frac{1}{n} R^{2_n} S^{3_2}$$

donde

V = Velocidad media de la corriente, en m/s

12 = Coeficiente de rugosidad de Manning

R = Radio hidráulico medio, en m

S = Pendiente hidraulica

Si se conoce el área media de la sección, Al el gasto es

II.2.1.3 Relación Sección - Velocidad

Es et criterio más comunmente utilizado para aforar ríos. Se basa en el principio de continuidad, este criterio es utilizado en las Estaciones Hidrométricas Puxmetacán y Zapote.

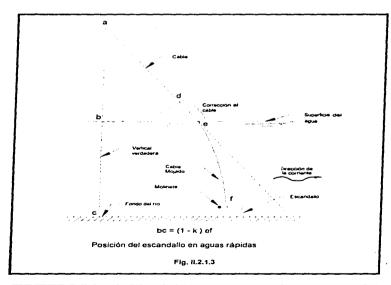
$$Q = V A$$

donde

O = Gasto en la sección, en m³/s

V = Velocidad media de la corriente, en m/s

A = Area de la sección transversal hasta el nivel del agua, en m²


Lo anterior implica que para conocer el gasto de un rio, en una cierta sección de este, se requiere valuar su velocidad y su área.

Si se determina el perfil de la sección de aforos, al conocer el tirante del agua se obtiene el area hidráulica. Entonces, el problema se reduce a medir en una sección de aforos las elevaciones y velocidades medias del agua, para calcular el gasto que pasa en el momento de efectuar dichas mediciones.

Para medir la velocidad de la corriente de un rio se utiliza un molinete que se liga al escandallo, colocandolo a una distancia conveniente arriba del peso del plomo. Cuando las mediciones se efectuan utilizando un sistema de cable - canastilla, en aguas rápidas y profundas, se tienen que hacer correcciones, con el objeto de determinar la altura vertical de la corriente y la posición relativa del molinete (Ver figura II.2.1.3.)

Valores de K y ()

			, , , , , , , , , , , , , , , , , , ,
	0 0006	22	0 0248
6	0 0006	24	0 0296
a	0 0032	26	0 0350
10	0 0050	28	0 0408
12	0 0072	30	0 0472
14	0 0098	32	0 0544
16	0 0128	34	0 0620
18	0 0164	36	0 0698
20	0.0204		

En las tablas II.2.1.3.a y II.2.1.3.b se presentan los resúmenes de Gastos máximos mensuales por año de las estaciones hidrométricas Puxmetacan y Zapote respectivamente, publicados por la Secretaria de Agricultura y Recursos Hidraulicos, correspondientes a la Región Hidrológica No 28 (Papaloapan)

Tabla II.2.1.3,a

			GAS ES1	TOS M	HIDRO	MENS	UALES	EN m'/s	eg. N			
AÑO	ENERO	FEBRERO	MARZO	ABRIL	MAYÖ	JUNIO	JULIO	AGOSTO	SEP.	OCT.	NOV.	DIC.
1957			i				314 00	201 00	91 30	133 00	53 90	19 10
1958	18 90	10 20	801	12 70	23 80	517 00	547 00	534 00	389 00	380.00	177 00	98 40
1959	27 00	22 50		16 30	18 00	117 00	256 00	300 00	667 00	188 00	121 00	43 70
1960	25 40	14 20		32.50	9 70	89 00	622 00	1360 DO	446 00	223 00	126 00	61 50
1961	34 20	28 70	27 00	14 90	17 40	85 20	382 00	326 00	246 00	82 50	200.00	41 60
1962	23 00	15 60		21 20	15 40	64 80	209 00	242 00	215 00	304 00	59 40	27 90
1963	1840	12 40	13 20	9 13	21 40	59 50	245 00	252 00	551 00	98 50	33 60	38 70
1964	16 00	12 60	12 10	12 10	43.50	482 00	323 00	218 00	140 00	115 00	95 30	73 00
1965	33 50	19 10	12 90	13 30	13 70	218 00	400 00	208 00	272 00	310 00	82 30	42 60
1966	21 00	28 20	17 50	17 40	25 30	515.00	638.00	176 00	303 00		67 00	26 20
1967	19 60	17 70	18 60	15 80	20 50	154 00	371 00	180 00	119 00	104 90	34 80	71 70
1968	24 80	34 80	16 30	30 50	23 40	429 00	357 00			74 60	72 70	40 80
1969	51.60	108.00	17 70	14 80	27 70				510 00	281 00	31 90	26 90
1970	17 70	20 50	12 90	14 40	9 20	34 80					78 40	22 40
1971	16 30	12 90	10 40	14 80	15 80	93 40		374 00	135 00	153 00	53 70	3 00
1972	35 00	23 00	11 00	8 73	8 73	83 00	129 00		149 00	80 30	79 60	30 ∞
1973	16 00	11 90	16 40	7 72	6 39		i					
1974	17 40	18 40		3 15	8 00	144 00	218 00	247 00	380 00	194 00	34 90	19 90
1975	12 90	13 10	12 80	8 70	13 90	176 00	190 00	377 00	681.60	165 00	37 60	116 00
1976	36 10	27 50	13 30	17 80	19 10	496 00	190 00	227 00	258 DO	156 00	68 9C	27 BO
1977	17 60	12 80	10 50	8 13	7 06	63 50	173 00	319 00	107 00	148 00	174 00	29 90
1978	16 80	12 60	11 20	9 11	17 13	1			476 00	120 00	35 60	39 00
1979	23 10	16 70	18 00	10 60	14 30	60 60	99 60	435 00	361 00	58 90	46 20	37 40
1980	29 30	19 80	11 70	14 30	7 36	106 00	234 00	236 00	255 00	177 00	77 30	28 50
1981	23 40	26 10	15 40	12 70	18 40	165 00	452 00	626 00	596 00	243 00	54 90	121.00
						'		1				
Max.	51.60	108.00	28.40	32.50	43.50	518.00	638.00	1360.00	681.60	300.00	200.00	121.00

FUENTE: BOLETINES HIDROMÉTRICOS REGIÓN HIDROLÓGICA No. 28 (PAPALOAPAN), 1957 A 1981 S.A.R.H.

Tabla II.2.1.3.b

	GASTOS MÁXIMOS MENSUALES EN 117/1909, ESTACIÓN HIDROMÉTRICA ZAPOTE											
AÑO	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEP.	OCT.	NOV.	DIC.
1955				25 50	21 70	66 40	371 00	272 00	496 00	326 00	171 00	178 00
1956	63 40	46 40	76 70	145 DQ	203 00	224 00	472 00		577.00	178 00	209 00	186 00
1957	49 10	68 10	53 80	39 00	44 50	279 DO	518 00	334 00:	208 00	332 00	120 00	56 50
1958	33 ∞	18 80	28 DO	25 20	38 00	140 00	554 00	955 00	482 00	785 00	252 00	212 00
1959	51 00	52 50	131 00	56 00	56 00	374 00	320 00	256 00	142 00	380 00	380 00	52 10
1960	60 00	22 00	26 30	40 00	22 80	176 00	477.00	654 00	470 00	732 00	274 00	130 00
1961	81 00	32 70	224 00	22 50	24 00	296 DO	555 OC	432 00	361 00	253 00	469 00	124 00
1962	67 10	28 80	39 60	135 00	46 40	147 00	449 OC	116 00	265 00	245 00	29 60	46 90
1963	28 10	11 50	45 90	8 5 3	26 60	88 90	352 00	241 00	317 00	105 00	89 80	84 00
1964	45 10	2190	36 60	38 50	65 60	336 00	278 00	293.00	196 00	332 00	223 00	304 00
1965	94 80	38 50	33.70	110 00	131 00	270 00	408 OO	236 00	519 00	880.00	160 00	92 30
1966	120 00	100 00	51 10	33 70	42 00	497.00	375 00	207.00	430 00	347 00	107 00	44 40
1967	75 00	26 00	19 20	33 60	48 50	311 00	433 00	197 00	338 00	248 00	11100	139 00
1968	76 30	88 20	41 70	134 00	106 00	248 00	695 OO	370 00	467 00	182 00	195 00	179 00
1969	311.00	26 80	88 90	41 50	52 50	487 00	858.00	808 00	1203 00	225 00	54 00	120 00
1970	26 10	72 30	21 80	24 50	41 30	255.00	578 00	565 00	422 00	196 00	251 00	27 80
1971	92 50	25 40	59 00	151 00	34 50	144 00	498 00	293 00	192 00	302 00	403 00	160 00
1972	118 00	73 00	25 50	61 10	464.00	303 00	422 00	418 00	274 00	208 00	447.00	11000
1973	25 00	43 80	32 60	46 60	118 00	507 00	509 00	720 00	808 00	182 00	64 90	171 00
1974	88 30	99 80	37 40	24 00	60 50	629 00	255 00	145 00	1570 00	399 00	191 00	133 00
1975	90 50	142.00	17.80	28 20	99.70	281 00	247 00	708 00	1177 00	407 00	56 00	302 00
1976	197 00	56 00	56 26	33 50	155 00	356 DO	254 00	318 00	674 60	264 00	180 00	92 60
1977	37 40	34 10	27 90	13 40	56 90	188 00	463 00	258 00	330 00	173 00	353 00	16100
1978	60 00	85 70	43.70	14 20	42 60	518 00	597 00	412 00	586 00	198 00	119 00	142 00
1979	45 30	61 70	30 50	22 30	40 00	194 60	126 00	63100	319 00	63 00	102 00	89 20
1980	56 80	59 60	51 10	233.00	32 60	191 00	203 00	500 00	431 00	233 00	302 00	95 70
1981	120 00	125 00	72 60	21 00	48 60	275 00	682 00	1121 00	848 00	647 00	179 00	194 DO
Max.	311.00	142.00	224 OC	233.00	464 00	629 00	858 00	1121 00	1570 00	880 00	469 00	304 00

FUENTE: BOLETINES HIDROMÉTRICOS REGION HIDROLÓGICA NO. 28 (PAPALOAPAN), 1955 A 1981 S.A.R.H.

II.2.2 HIDROGRAMA

Un hidrograma es una gráfica en la que se representa el gasto que pasa por una sección particular de un río, como función del tiempo

II.2.2.1 Análisis del Hidrograma de una Avenida

Se le denomina análisis del hidrograma de una avenida a la división de este en sus componentes (escurrimiento directo y escurrimiento base), lo cual permite establecer relaciones más sencillas con las características de la lluvia

La separación del escurrimiento base del directo, depende del comportamiento del escurrimiento subterráneo, el cual es prácticamente imposible de conocer. Esto a dado lugar a que

existan diferentes métodos de separación, todos ellos aproximados, cuya selección depende de consideraciones subjetivas y de la experiencia de quien realiza el análisis.

Los métodos más utilizados para trazar la frontera entre el escurrimiento directo y el base son:

- La frontera se define trazando una recta horizontal que parte del punto de inflexión A que muestra el punto de inicio del escurrimiento directo y llega hasta donde corta al hidrograma (Ver flo. II.2.2.1.1)
- II. La frontera se define trazando una recta entre los puntos A y E (Ver fig. II.2.2.1.2) Para encontrar el punto E se obtiene la curva de vaciado del escurrimiento base, analizando primero una serie de hidrogramas y seleccionando tramos en los que solo existe escurrimiento base, los tramos seleccionados se dibujan en papel semilogarítmico, representando en el eje aritmético el tiempo y en el logarítmico el gasto, y se desplazan horizontalmente tratando de definir una sola curva. La curva de vaciado definida se superpone al hidrograma por analizar haciendola coincidir en el extremo derecho y se determina el punto E como aquel en que la curva se separa del hidrograma
- III. La frontera se traza mediante una horizontal a partir del punto de inflexión A , hasta la proyección del punto C que corresponde al gasto maximo (punto C). Se calcula:

$$N = 0.827 A^{0.2}$$

donde:

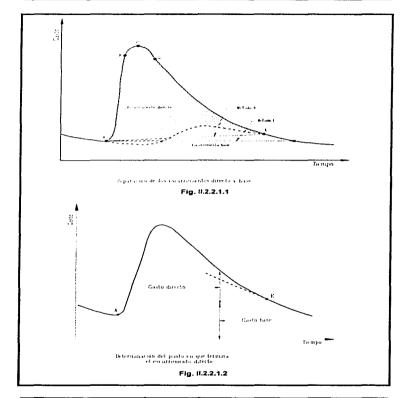
A Area de la cuenca, en km².

 $oldsymbol{N}$ Tiempo de vaciado del escurrimiento directo, en días

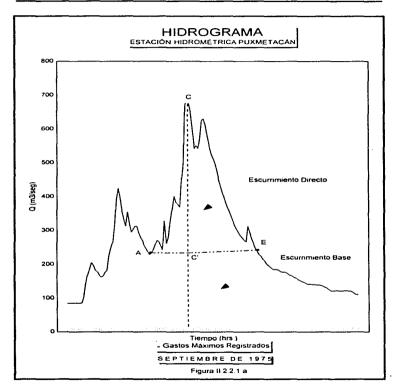
A partir del punto C se toma una distancia horizontal igual a N -para definir el punto E . Se traza una recta entre C y E .

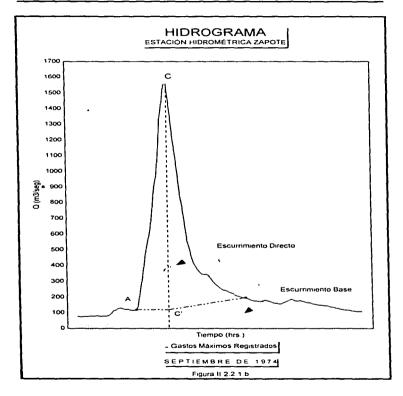
En el análisis de los hidrogramas de las estaciones Puxmetacán y Zapote (figuras II.2.2.1.a y II.2.2.1.b respectivamente), se adoptó el Método III, anteriormente descrito

Hidrograma de la Estación Puxmetacán


 $A = 820.8 \text{ km}^2$.

 $N = 0.827 (820.8 \, \text{km}^2)^{0.2} = 3.2 \, \text{dias}.$


Hidrograma de la Estación Zapote


 $A = 632.8 \text{ km}^2$.

 $N = 0.827 (632.8 \text{ km}^2)^{0.2} = 3.0 \text{ dias.}$

ENEP. ACATLAN TESIS COLECTIVA 7

II 3 PÉRDIDAS

II.3 PÉRDIDAS

De la Iluvia que cae en una cuenca al producirse una tormenta, una parte escurre superficialmente para alimentar los cauces por los que transità hasta llegar a la salida de la cuenca, otra parte es interceptada por la vegetación retenida en depresiones del terreno en los que se forman charcos, o se infiltra para satisfacer primero la capacidad del terreno para humedecerse y alimentar después a los aculferos. A la segunda parte, formada por la intercepción, la retención en depresiones y la infiltración, se denomina "pérdida".

Los componentes de las perdidas, es decir la intercepción la retención y la infiltración, son dificiles de separar, por lo que en general, se acostumbra calcularlas conjuntamente y considerarlas como infiltración, ya que esta componente es la más importante.

11.3.1 DETERMINACIÓN DE LAS PÉRDIDAS

Cuando durante una tormenta se ha medido simultáneamente la lluvia y el escurrimiento, la determinación de las pérdidas se hace a partir de su definición, es decir, se calculan como la diferencia entre el volumen que llovió y el que se convirtió en escurrimiento directo.

$$\mathbf{P}_{x} = \mathbf{P}_{xx} = \mathbf{P}_{xx}$$

donde

= Volumen de pérdidas

✓ ... = Votumen llovido

V , , = Volumen de escurrimiento directo

El volumen llovido se calcula multiplicando la precipitación registrada en la cuenca por su área y se acostumbra expresarlo como hietograma (Ver Subcapitulo II.1 PRECIPITACIÓN) Para calcular el volumen de escurrimiento directo, es necesario analizar primero el hidrograma para separar el escurrimiento directo del base, de esta forma, el volumen de escurrimiento directo será igual al área del hidrograma de escurrimiento directo (Ver Subcapitulo II.2 ESCURRIMIENTO) Esta área se obtuvo en ambos casos empleando un planimetro modelo KENT, Tipo Zero Set Device and Optical Tracer (made in Zwitzerland)

Para Puxmetacán se tiene:

V ... = 7 152417E+07 m3

 $V_{ij} = H_i \times A$

H .. = 135 mm = 0 135 m

A = 820 8 km² = 8 208E+08 m²

 $V_{\rm col} = (0.135 \, \text{m}) \times (8.208 \, \text{E} + 0.8 \, \text{m}^2) = 1.10808 \, \text{E} + 0.8 \, \text{m}^3$

 $V_{\rm m} = (1.10808E+08 \, {\rm m}^3) - (7.152417E+07 \, {\rm m}^3) = 3.928383E+07 \, {\rm m}^3$

Para Zapote se tiene:

V ... = 1 57484E+08 m3

 $V_{\mu} = H_r \times A$

H = 305 mm = 0 305 m

A = 632 8 km² = 6 328E+08 m²

 $V_{ij} = (0.305 \text{ m}) \times (6.328 \text{E} + 08 \text{ m}^2) = 1.93004 \text{E} + 08 \text{ m}^3$

 $V_{ii} = (1.93004E+08 \text{ m}^3) + (1.57484E+08 \text{ m}^3) = 3.552E+07 \text{ m}^3$

Los criterios más comunes para calcular la distribución de las pérdidas en el tiempo son:

- a) Capacidad de infiltración media
- b) Coeficiente de escurrimiento

II.3.1.1 Capacidad de Infiltración Media

En este criterio se parte de la suposición de que el suelo tiene una capacidad de infiltración constante durante toda la tormenta, de tal manera que, siempre que llueve con una intensidad menor que dicha capacidad, se infiltra todo lo que llueve, y cuando llueve con una intensidad mayor que la capacidad de infiltración, la diferencia escurre.

Para calcular la capacidad de infiltración correspondiente a una tormenta dada, se utilizan los siguientes pasos

- 1º. Del hidrograma de la avenida se separa el gasto base y se calcula el volumen de escurrimiento directo.
- 2º. Se calcula la "altura de la l\u00e4mina de lluvia en exceso" como el cociente entre el volumen de escurrimiento directo y el \u00e4rea de la cuenca
- 3º. Se supone un valor de o (indice de infiltración) constante en el hietograma de la tormenta y se determina la "altura de la lámina de lluvia en exceso" en ese hietograma. Si esta altura es igual a la calculada en el paso 2º, el valor de o es el correcto, si no, se propone otro y se repite el cálculo hasta obtener el valor correcto.

En las tablas II.3.1.1.a y II.3.1.1.b se presentan los resultados del cálculo del Indice de infiltración para los dos casos, empleando el programa HIDROSUP (Elaborado por Ing. Oscar A. Kampfner R. y el Ing. Luis M. Salmones H. de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México. Laboratorio de Hidráulica)

Tabla II.3.1.1.a

ESTACION PUXMETAÇÃN

ÍNDICE DE INFILTRACIÓN MEDIA

VOLUMEN DE ESCURRIMIENTO DIRECTO: 7.152417E+07 m3 PRECIPITACIÓN EN EXCESO : 87.13959 mm ÍNDICE DE INFILTRACIÓN MEDIA : 7.976604 mm/hr

HIDROGRAMA DE ESCURRIMIENTO

HIETOGRAMA

Tiempo (hr)	Gasto (m3/s)	Tiempo (hr)	Gasto (m3/s)	Tiempo (hr)	Precipitación (mm)
	0 00	60	380 36	0	0 00
2 4 6 8	4 67	62	347 44	1	13 50
4	14 00	64	319 18	2 3	16 20
6	28 01	66	295 58	3	20 20
	42.01	68	281 34	4 5	51 30
10	37 35	70	267 08	5	18 90
12	28 01	72	243 50	6	14.90
14	14 00	74	215 24		
16	99 34	76	196 33		
. 18	32.68	78	177 40		
20	51.35	80	163.15		
22	98 04	82	144 23		
24	135 39	84	129 98		
26	172 73	86	120 40		
28	154 06	88	106 14		
30	149.39	90	91 90		
32	140 05	92	77 64		
34	219.42	94	68 05		
36	270 77	96	58 48		
38	443 51	98	48 89		
40	452 85	100	42 11		
42	443 26	102	34 39		
44	415 01	104	29 48		
46	363.40	106	75 92		
48	311.81	108	57 00		
50	320.90	110	38 08		1
52	311.32	112	23 83		Ş
54	343.75	114	9 58		1
56	394.85	116	0 00		ı
58	399 28				

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA

II. ESTUDIO HIDROLÓGICO

11.3 PÉRDIDAS

Tabla II.3.1.1.b

ESTACIÓN ZAPOTE

ÍNDICE DE INFILTRACIÓN MEDIA

VOLUMEN DE ESCURRIMIENTO DIRECTO: 1.57484E+08 m3
PRECIPITACIÓN EN EXCESO : 248.8685 mm

ÍNDICE DE INFILTRACIÓN MEDIA

: 9.35515 mm/hr

HIDROGRAMA DE ESCURRIMIENTO

HIETOGRAMA

Tiempo (hr)	Gasto (m3/s)	Tiempo (hr)	Gasto (m3/s)	Tiempo (hr)	Precipitación (mm)
0	0 00	54	314 95	0	0 00
2 4 6	0 98	56	273 53	1	30 50
4	20 58	58	246 81	2 3 4	36.60
6	108 82	60	225 00	3	45.70
8	181 37	62	208 08	4	115 90
10	275 49	64	193 14	5	42.70
12	383 33	66	188 97	6	33 60
14	442 15	68	189 71		
16	510.78	70	181 62		
18	628 43	72	164 70		
20	780 39	74	141 91		
22	845 09	76	124 02		
24	991 17	78	109 07		
26	1,226 47	80	95 10		
28	1,315 68	82	83 08		
30	1,432 35	84	72 06		
32	1,453 33	86	66 91		
34	1,341.90	88	57.84		
36	1,222.06	90	47 79		
38	1,075.77	92	42 65		
40	982.35	94	30 64		
42	860 54	96	22.54		
44	724.02	98	16.42		
46	639 46	100	9 31		
48	529.41	102	2.21		
50	421.72	104	0 00		
52	371 07				

II.3.1.2 Coeficiente de Escurrimiento

En este caso se supone que las pérdidas son proporcionales a la intensidad de la precipitación, de tal manera que el volumen escurrido, V_{ij} , es igual al producto del volumen llovido, V_{ij} , por un coeficiente C_i , ilamado coeficiente de escurrimiento. Por lo tanto el coeficiente de escurrimiento se determina con

$$C_i = \frac{V_{in}}{V_{in}}$$

Para Puxmetacán se tiene:

V ... = 7 152417E+07 m3

$$V_{ii} = H_i \times A$$

$$V_{ij} = (0.135 \text{ m}) \times (8.208 \text{E} + 08 \text{ m}^2) = 1.10808 \text{E} + 08 \text{ m}^3$$

$$C_{\star} = (7.152417E+07 \text{ m}^3)/(1.10808E+08) = 0.6454783951$$

Para Zapote se tiene:

$$V_{iii} = 1.57484E+08 \, \text{m}^3$$

$$V_{ii} = H_i x_A$$

$$H_{p} = 305 \text{ mm} = 0.305 \text{ m}$$

$$V_{ij} = (0.305 \text{ m}) \times (6.328E+08 \text{ m}^2) = 1.93004E+08 \text{ m}^3$$

$$C_{\star} = (1.57484E+08 \text{ m}^3) / (1.93004E+08) = 0.8159623635$$

11.3.2 CRITERIOS PARA DISEÑO Y PREDICCIÓN EN CUENCAS AFORADAS

Las pérdidas varian con la magnitud de la tormenta y con el estado de humedad inicial del suelo, de tal manera que ni la capacidad de infiltración media ni el coeficiente de escurrimiento pueden considerarse constantes para una cuenca dada

II.3.2.1 Criterios para Diseño

En los problemas de diseño la principal variable es la magnitud de la lluvia, por lo que, en ese caso, es necesario establecer la relación entre dicha magnitud y las pérdidas. Consiste en calcular el coeficiente de escurrimiento y la precipitación total, para las tormentas registradas en el pasado, y ajustar una función que relacione ambas variables.

Se recomienda utilizar como función de ajuste a alguna de las siguientes

 a) Criterio del USSCS.- Según este criterio la relación entre el coeficiente de escurrimiento y la altura de precipitación total de una formenta es de la forma

$$C_t = \frac{(P - 0.2S)^2}{(P^2 + .08SP)}$$

donde:

C. = coeficiente de escurrimiento

P = altura de precipitación, en mm

S = parametro dado en las mismas unidades que P (mm)

b) Criterio utilizado en la Gran Bretaña.- Según este criterio, la relación es de la forma:

$$C_t = a_0 + a_1(\overline{P} - P)$$

donde:

P ≈ promedio de las alturas de lluvia máximas anuales registradas con una duración igual a la de la termenta de diseño

 $Q_0 \cdot Q_1$ = parametros que deben ajustarse utilizando los métodos estadísticos

II.3.2.2 Criterios para Predicción

En los problemas de predicción la variable más importante es generalmente el estado de humedad en la cuenca en el momento en que se presenta la tormenta. El estado de humedad en la cuenca se puede caracterizar con el Índice de Precipitación Antecedente (IPA), el cual se define con la ecuación recursiva.

$$IPA_{i+1} = K \times IPA_i + P$$
.

donde

IPA, = Indice de precipitación antecedente al inicio del día j

K = constante que toma en cuenta la disminución de la humedad con el tiempo, puede tomarse 0.85

P. = precipitación media en la cuenca durante el día j

II.4. RELACIÓN ENTRE PRECIPITACIÓN Y ESCURRIMIENTO.

La información acerca de escurrimientos en una sección de interés sobre una corriente es necesaria para diseñar obras de aprovechamiento o de protección. En muchas ocasiones, el diseñador se encuentra con poca o ninguna información de mediciones directas que le permitan conocer la historia de los escurrimientos en el sitio de interés, por lo que tiene que recurrir a estimarlos a partir de los datos de precipitación. Además, ha estado o estará sujeta a cambios de importancia (por ejemplo, por la construcción de obras de almacenamiento, urbanización y desforestación en partes de la cuenca, etc.), estos cambios modifican el régimen del escurrimiento, por lo que su registro histórico no representa correctamente el comportamiento futuro de la corriente.

En esos casos, y evidentemente en los problemas de predicción de avenidas a corto plazo, es necesario contar con un modelo que permita estimar los escurrimientos a partir de las características de la lluvia, tomando en cuenta las condiciones de la cuenca

La relación entre la precipitación y el escurrimiento es compleja, depende por una parte de las características de la cuenca y por otra de la distribución de la lluvia en la cuenca y en el tiempo.

Debido a lo complejo del fenómeno y a que la cantidad y calidad de la información disponible varia de un problema a otro, se ha desarrollado una gran cantidad de métodos para relacionar la fluvia con el escurrimiento. Dichos métodos van desde simples fórmulas empfricas, hasta modelos extremadamente detallados basados en principios de la Física.

II.4.1 PRINCIPALES CARACTERÍSTICAS DE UNA CUENCA.

La cuenca de drenaje asociada a una sección dada de una corriente, es el área que puede aportar escurrimiento hacia la sección. Esta limitada por el parteaguas, que es una línea imaginaria tal que la lluvia que cae dentro de él puede escurrir superficialmente hasta la sección considerada. Desde el punto de vista de las relaciones lluvia - escurrimiento, las características de la cuenca interesan principalmente en dos aspectos:

- El volumen de escurrimiento producido por una tormenta dada
- La forma del hidrograma, la cual depende de la velocidad de respuesta de la cuenca al presentarse una tormenta

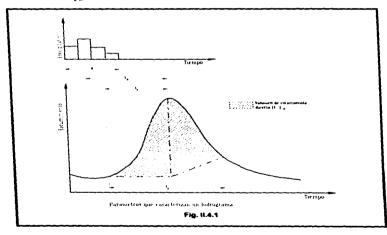
Estas características son

- a) Área de la cuenca. Es el área de la proyección horizontal de la superficie encerrada por el parteaguas. Para una misma lamina de lluvia efectiva, el volumen de escurrimiento directo es proporcional al área de la cuenca.
- b) Longitud del cauce. Se acostumbra medir como la longitud del cauce principal en sentido horizontal.
- c) Pendiente del cauce. A diferencia de los conceptos anteriores, la pendiente del cauce no tiene un valor único, sino que varia de tramo en tramo, por lo que se representa con un valor medio que sirve de índice. De las fórmulas propuestas la de Taylor y Schwartz se recomienda, debido a que la pendiente calculada tiene una relación mas directa con el tiempo de trasiado del agua por el cauce. La ecuación correspondiente es:

$$S = \begin{bmatrix} L \\ \frac{L_1}{\sqrt{S_1}} + \frac{L_2}{\sqrt{S_2}} + \ldots + \frac{L_t}{\sqrt{S_t}} \end{bmatrix}^2$$

donde:

22 × Número de tramos de pendiente uniforme sobre el cauce principal


L = Longitud total

L, = Longitud del tramo i

S. ≃ Pendiente del tramo i

Los principales parámetros que definen la forma del hidrograma son

- a). El volumen de escurrimiento directo, $oldsymbol{V}_{in}$ (lárea sombreada, figura II.4.1.)
- El tiempo de concentración, f₁, que se define como el tiempo que tarda el agua en trastadarse desde el punto mas aleiado de la cuenca hasta la salida de la misma
- c) Tiempo de pico, †, Es el tiempo que transcurre entre el momento en que se inicia el escurrimiento directo y el momento en que alcanza su valor máximo.
- d) Tiempo de retraso, f_x. Es el que transcurre entre el centroide del hietograma de precipitación efectiva y el gasto máximo o de pico
- e) Tiempo base, fin. Es el tiempo que dura el escurrimiento directo

11.4.2 MÉTODOS PARA CALCULAR LAS RELACIONES PRECIPITACIÓN-ESCURRIMIENTO

Como existe una gran variedad de modelos precipilación - escurrimiento, se agrupan en diferentes categorías a efecto de escoger el más adecuado para cada caso en particular

- a) Fórmulas Empiricas
- b) Métodos Empiricos
- c) Métodos hidrológicos

II.4.2.1 Formulas Empiricas

Como es de esperarse, las fórmulas empiricas dan valores poco confiables pero en ocasiones dan una idea del orden de los gastos que se pueden presentar. A continuación se presentan tres fórmulas empiricas que toman en cuenta una probabilidad de ocurrencia, las demás fórmulas que existen no se consideraron debido a que únicamente toman en cuenta el área de la cuenca sin darle importancia a la lluvia y a su distribución.

a) Gete
$$Q_{\mu\nu} = (4 + 16 \ Log \ T_{\mu}) x \ A^{\circ}$$

b) Morgan
$$Q_{ii} = 52.787 \times C \times A^{ii}$$

c) Fuller
$$\frac{Q_{i^{N}}}{Q} = a + b Log T_{N}$$

donde:

a yh = Parametros que se obtienen de la muestra

II.4.2.2 Métodos Empiricos

La mayoria de los métodos emplricos que se han desarrollado para relacionar la precipitación y el escurrimiento se basan en los datos particulares de alguna región por lo que su aplicación muchas veces se restringe a ella, sin embargo son de utilidad cuando no se tiene información de gastos y solo se conocen características físicas promedio de la cuenca y registros de precipitación.

II.4.2.2.1 Racional Americano

El método racional americano es uno de los mas utilizados para la obtención de gastos máximos debido a que toma en cuenta el área de la cuenca, un coeficiente de escurrimiento y la intensidad de lluvia. El método supone una intensidad de lluvia constante que cae uniforme en toda la cuenca, dicha intensidad se obtiene de dividir la lluvia entre la suma del tiempo de concentración más el de lluvia sin escurrimiento. El coeficiente de escurrimiento lo podemos estimar como la relación que existe entre la lluvia en exceso f_{L_i} y la lluvia total f_{L_i} . Este coeficiente toma valores entre 0 y 1. La expresión que permite valuar el gasto máximo es

$$Q_{i,j} \sim 0.278 \times C \times i \times A$$

$$C = \frac{h_r}{h_r} \qquad i = \frac{h_r}{t_r + t_{so}}$$

donde

Q = Gasto máximo en m³/seg

f. = Tiempo de concentración en hr

= Tiempo de lluvia sin escurrimiento en hr.

C = Coeficiente de escurrimiento

= Intensidad de iluvia en mm/hr.

A = area de la cuenca en km².

II.4.2.2.2 Indice Área

El método indice área es similar al racional americano, la diferencia es que no toma en cuenta el coeficiente de escurrimiento, en cambio al estimar la intensidad de lluvia toma en cuenta la precipitación en exceso su formula es la siguiente.

$$Q_{in} = 0.278 \times h_{i} \times \frac{A}{t_{i} + t_{se}}$$

donde

O .. Gasto máximo en m³/seg

f. = Tiempo de concentración en hr

 t_{vir} = Tiempo de Iluvia sin escurrimiento en hr.

11.4.2.2.3 U.S. Soil Conservation Service

En este método se calcula las lluvias con duración de 6 horas para cada periodo de retorno considerado y con el valor N de la curva de escurrimiento se obtienen las precipitaciones en exceso (Ver figura 9 del Anexo). Posteriormente, en función del tiempo de concentración y de la tabla 1 del Anexo se obtiene un gasto unitario y únicamente se aplica la siguiente expresión para conocer el gasto:

$$Q_n = q \times h \times A$$

donde:

 $q = \text{Gasto unitario en m}^3/\text{seg/mm/km}^2$.

A = Area de la cuenca en km.

h. = Lluvia en exceso en mm.

II.4.2.2.4 Método de Chow

El método fue propuesto por VEN TE CHOW y plantea que el escurrimiento superficial de una cuenca por efecto de una tormenta se obtiene del producto de la lluvia en exceso por el gasto pico de un hidrograma unitario

$$Q_r = q_r x h,$$

$$q_r = 2.78 \times A \times \frac{Z}{d}$$

$$t_r = 0.00506 \times \left(\frac{L}{S^{0.5}}\right)^{0.66}$$

donde:

Or * Gasto pico en m³/seg

Qr = Gasto unitario pico en m³/seg/mm/km².

= Tiempo pico en hr.

Z = Factor de reducción del pico

d = Duración de la Iluvia en hr

A = Area de la cuenca en km².

S = Pendiente media del cauce en %.

11.4.2.3 Métodos Hidrológicos

Los tres métodos (Hidrograma Unitario Sintético, Hidrograma Unitario Triangular y Método de I Pai Wu) proponen al hidrograma de la avenida de forma triangular y por lo tanto el volumen de escurrimiento calculado de esta forma es mayor al volumen real de una avenida de la magnitud estimada. Solo el método del Hidrograma Adimensional corrige el problema anterior debido a que el hidrograma triangular se le puede dar forma de un hidrograma normal con la gráfica 2 del Anexo.

II.4.2.3.1 H.U. Sintético del U.S.S.C.S.

Considera que la lluvia es uniforme en el tiempo y en toda la cuenca. Su expresión para valuar el gasto pico del hidrograma es

$$Q_r = 0.556 \times \frac{h_r \times A}{n t_r}$$

$$t_r = 0.5 \ t_c + \frac{\Delta_t}{2} = 1.1 \ t_c$$

donde:

Or = Gasto pico en m³/seg

/1. = Lluvia en exceso en mm.

A = Area de la cuenca en km².

t. = Tiempo de concentración en hr.

Δ, = Intervalo de tiempo de análisis en hr

f = Tiempo pico del hidrograma en hr.

f = Tiempo base del hidrograma en hr.

n = Parametro

para

$$A \leq 250 \text{ km}^2$$

$$n = 2$$

$$250 < A < 5000 \ km^2$$

$$n = \frac{3(A-250)}{4750} + 2$$

II.4.2.3.2 H.U. Triangular del U.S. Bureau of Reclamation

El método considera que el tiempo pico del hidrograma ocurre una vez que transcurre un intervalo de tiempo igual al tiempo de retraso mas la mitad de la duración de la tormenta. Para valuar este gasto pico se presenta a continuación la formula.

$$Q_r = 0.208 \times \frac{A h_r}{I_r}$$

$$t_r = \frac{D}{2} + t_r = 1.1 t_c$$

$$t_{c} = 0.6 t_{c}$$

$$t_{r} = 2.67 t_{r}$$

donde:

Duración de la lluvia en exceso en hr.

Tiempo de retraso en hr.

II.4.2.3.3 H.U. Adimensional del S.C.S.

Este método considera que el tiempo base del hidrograma es igual a cinco veces el tiempo pico y a través de un hidrograma unitario suaviza el hidrograma triangular dándole una forma mas real. A continuación se presenta como evaluar el gasto pico:

$$Q_r = \frac{A}{5.511 \, t_r} x h.$$

$$t_r = 1.1 t_c$$

II.4.2.3.4 Método de I Pai Wu

Se basa en el modelo lineal propuesto por Nash para generar hidrogramas unitarios instantáneos. El gasto máximo se obtiene de la siguiente manera.

$$Q_{r} = \frac{A \times h}{3.6 \times t_{r}} \times f(n, t_{r})$$

$$f(n,t_r) = \frac{(n-1)^n \exp(n-1)}{(n-1)}$$

$$n = \frac{4 x_{t_r}}{K}$$

donde:

$$K = 0.73 \times A^{0.917} \times L^{-1.474} \times S^{-1.471}$$

$$t_{\rm e} = 0.93 \times A^{1.015} \times L^{-1.233} \times S^{-0.668}$$

donde

[= Longitud del cauce principal

S = Pendiente del cauce principal

Para la obtención de los gastos máximos por el método de precipitación - escurrimiento se utilizo el paquete HIDROSUP (Elaborado por Ing. Oscar A. Kampfner R. y el Ing. Luis M. Salmones H. de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México, Laboratorio de Hidráulica). Obteniéndose para Puxmetacán y Zapote los resultados que aparecen en los siguientes listados II.4.a y II.4.b respectivamente.

Listado II 4.a

CÁLCULO DE AVENIDAS MÁXIMAS

Provecto : PUXMETACAN

Municipio : SANTIAGO YAVEO

Estado : OAXACA

: PUXMETACAN Estación base

Años de registro : 26

PRECIPITACIONES SELECCIONADAS EN mm.				
Tr (años)	LLUVIA TOTAL (mm.)	LLUVIA EN EXCESO (mm.)		
1.01	417 97	317.44		
2 00	744 43	635 84		
10 00	1,005.82	894 27		
20 00	1,098 09	985 80		
50 00	1,222 09	1,108 98		
100 00	1,311 82	1,198.21		
1,000 00	1,633 78	1,518 80		
10,000 00	1,974 60	1,858 64		

CARACTERÍSTICAS FISIOGRÁFICAS DE LA CUENCA

ÁREA DE LA CUENCA : 958 19 km²

PENDIENTE MEDIA DEL CAUCE : 0.54%

LONGITUD DEL CAUCE PRINCIPAL : 100 km

ELEVACIÓN INICIAL DEL CAUCE : 130 m s n m.

ELEVACIÓN FINAL DEL CAUCE : 2520 m.s.n.m.

TIEMPO DE CONCENTRACIÓN DEL CAUCE : 9 70 hr. TIEMPO DE LLUVIA SIN ESCURRIMIENTO : 0 64 hr

NÚMERO 'N' DE LA CURVA DE ESCURRIMIENTO: 71.60

GASTOS MÁXIMOS

FORMULAS EMPIRICAS				
Tr (años)	GETE (m3/seg)	MORGAN (m3/seg)	FULLER (m3/seg)	
1 01	125 96	353 33	1,753 54	
2 00	272 91	360 65	1,826 63	
10 00	619 09	419 07	1 998 79	
20 00	768 19	490 35	2,072 94	
50 00	935-27	692 17	2,170.96	
100 00	1,114.37	990 85	2,245 11	
1,000.00	1,609 64	1,634 00	2,491.42	
10,000 00	2,104 92	1.634 00	2,737.74	

· .		ETODOS EMPÍRICO:		
Tr (años)	RACIONAL (m³/seg)	(m³/seg)	U.S. SOIL (m³/seg)	(m³/seg)
1.01	8,177 24	8,717.41	19,162.27	5,817 79
2.00	16,379 36	17,46134	38,382 84	11,653 28
10 00	23,036 69	24,55844	53,983.41	16,389 71
20.00	25,394 66	27,072 17	59,509 00	18,067 32
50 00	28,567 69	30,454.81	66,944 59	20,324 82
100.00	30.866 35	32.905 31	72.331.18	21.960.22
1,000.00	39,124 82	41,709 32	91,683 82	27.835.81
10,000.00	47,879.17	51,04196	112,198 47	34.064.19

Tr (años)	H.U. SINTÉTICO (m³/seg)	H.U. TRIANGULAR (m³/seg)	H.U. ADIMENSIONAL (m³/seg)	(m³/seg)
1.01	6,075.20	5,562.02	4,852.20	17,236 60
2.00	12,168 89	11,140 96	9,719 16	34,525 66
10.00	17,114 89	15,669 17	13,669 48	48,558 48
20.00	18,866 72	17,273 02	15,068.65	53,528 79
50.00	21,224 10	19,431.26	16,951.47	60,217.16
100.00	22,931 86	20,994 67	18,315.44	65,062 45
1,000.00	29,067.42	26,612.04	23,215.85	82,470 29
10,000.00	35,571,38	32,566,60	28.410.49	100.923.38

Listado II.4.b

CÁLCULO DE AVENIDAS MÁXIMAS

Provecto : ZAPOTE

Municipio : SAN JUAN LALANA

Estado : OAXACA

Estación base : ZAPOTE

Años de registro : 27

PRECIPI	PRECIPITACIONES SELECCIONADAS EN mm.				
Tr (años)	LLUVIA TOTAL (mm.)	LLUVIA EN EXCESO (mm.)			
1.01	396 57	235 28			
2.00	701.67	517.14			
10 00	953 20	759 17			
20 00	1,043 28	846 83			
50.00	1,166 05	966 83			
100 00	1,254 83	1,053 90			
1,000 00	1,576 25	1,370 62			
10,000 00	1,923 84	1,714 75			

CARACTERÍSTICAS FISIOGRÁFICAS DE LA CUENCA

ÁREA DE LA CUENCA : 739 25 km²

PENDIENTE MEDIA DEL CAUCE : 0 82%

LONGITUD DEL CAUCE PRINCIPAL : 53 8 km

ELEVACIÓN INICIAL DEL CAUCE : 20 m s n.m.

ELEVACIÓN FINAL DEL CAUCE : 2080 m.s.n m.

TIEMPO DE CONCENTRACION DEL CAUCE : 5.16 hr.

TIEMPO DE LLUVIA SIN ESCURRIMIENTO : 0.50 hr.

NÚMERO 'N' DE LA CURVA DE ESCURRIMIENTO: 57.40

GASTOS MÁXIMOS

	FORMULAS	EMPÍRICAS	
Tr (años)	GETE (m3/seg)	MORGAN (m3/seg)	FULLER (m3/seg)
1 01	110 64	310 35	1,640 95
2 00	239 71	316.78	1,707.19
10 00	543.78	368 09	1.863.24
20 00	674 74	430.70	1,930 45
50 00	847 85	608 32	2 019 29
100 00	978 81	870 32	2,086.50
1,000 00	1,413 84	1,435 24	2,309.75
10,000 00	1,848.87	1,435 24	2,533.01

Tr (años)	RACIONAL (m³/seg)	INDICE AREA (m³/seg)	U.S. SOIL (m³/sag)	(m³/seg)
1.01	8,550 01	9,370 28	10.957 48	5,812 25
2.00	18,793 20	20,596 17	24,084 91	12,775 52
10 00	27,588 64	30 235 42	35,356 92	18,754 62
20 00	30,774 01	33,726,39	39,439.21	20,920.02
50.00	35,134 89	38,505 63	45,028 00	23,884 52
100 00	38,299 14	41,973 46	49.083 24	26,035 57
1,000 00	49,808 70	54,587 21	63.833 60	33,859 70
10.000.00	62.314.74	68.293 05	79.861 03	42,361.25

Tr (años)	H.U. SINTÉTICO (m3/seg)	H.U. TRIANGULAR (m3/seg)	H.U. ADIMENSIONAL (m3/sog)	I PAI WU (m3/seg)
1.01	6.732 55	5,815.57	5,073.40	12,712 55
2.00	14,798 37	12,782.82	11,151 49	27,942 59
10 00	21,724 18	18,765 33	16,370 52	41,020 05
20 00	24,232 44	20,931 96	18,260 65	45,756 20
50 00	27,666.34	23,898 16	20.848 30	52,240 15
100 00	30,157 98	26,057 43	22,725 91	56,944 92
1,000.00	39,220 96	33,879,04	29,555 43	74,057.84
10.000.00	49,068.63	42.385.43	36.976.25	92,652,40

gayagan a tanah a sanah a sanah

II.5 ANÁLISIS ESTADÍSTICO

El análisis hidrológico se realizara básicamente sobre los métodos estadístico o probabilístico. Estos métodos consisten en estimar la magnitud de la avenida máxima a partir de una serie de gastos o precipitaciones máximos anuales instantaneos conocidos por su extrapolación, mediante su probable distribución de probabilidades a diversos períodos de retorno

Para poderlos aplicar deben conocerse los gastos máximos anuales o precipitaciones.

Cuanto más amplio sea el número de datos que se tenga, mayor será su aproximación. Estos métodos únicamente permiten conocer el gasto máximo o precipitaciones máximas segun sea el caso.

Como inicio del análisis se tiene que la magnitud de la avenida es función directa del período de retorno que se le asigne. El período de retorno de una avenida es el intervalo de recurrencia promedio de que esa avenida sea igualada o superada en un determinado lapso de tiempo.

Para escoger el período de retorno que se le debe asignar a una tormenta, se aplica la siguiente formula:

$$Tr = \frac{n+1}{m}$$

en donde:

Tr = Período de retorno para el dato registrado

= Número de registros en la estación Hidrométrica

= Número de orden en forma decreciente de los datos registrados.

II.5.1 PARÁMETROS ESTADÍSTICOS

Los datos de una muestra pueden caracterizarse numéricamente mediante los siguientes grupos de parámetros estadísticos

a) Medidas de tendencia central

Media

$$\frac{1}{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

donde:

Y Media de la muestra

 χ_i Valores de la muestra

27 Número total de valores

b) Medidas de dispersión:

Variancia

$$S_{x}^{2} = \frac{\sum_{i=1}^{n} \left\{ \left(x_{i} - \frac{1}{x} \right) \right\}}{n-1} = \frac{\left\{ \sum_{i=1}^{n} \left(x_{i}^{2} \right) \right\} - n \overline{x}^{2}}{n-1}$$

donde S_{ν}^{2} es la variancia de la muestra.

Desviación estándar

$$S_{x} = \sqrt{S_{x}^{2}}$$

donde \mathcal{S}_{x} es la desviación estàndar de la muestra.

Coeficiente de variación

$$C_r = \frac{S_r}{x}$$

donde $C_{i\cdot}$ es el coeficiente de variación

IL5.2 FUNCIONES DE DENSIDAD DE PROBABILIDAD

Generalmente el registro analizado no es tan extenso, como consecuencia los períodos de retorno calculados no cubren a los que se necesitan. Por lo anterior es que se deben aplicar distribuciones de valores extremos que permitan conocer las precipitaciones para los períodos de retorno considerados. Los períodos antes mencionados están en función del grado de riesgo de la obra en caso de falla. Las distribuciones de probabilidad para valores extremos más empleadas son:

- Distribución de Gumbel
- Distribución Nash.
- Distribución Log Normal.
- Distribución Log Pearson III
- Ajuste por Mininos Cuadrados.

II.5.2.1 Distribución Gumbel

Gumbel propone una función de distribución de probabilidad para estimar un evento extremo asociado a una probabilidad de ocurrencia en función del período de retorno.

$$p(x)=1-\frac{1}{Tr}$$

$$F(q) = e^{-e^{-\alpha}}$$

Y la ecuación que nos permite conocer la precipitación ó gasto máximo asociados a un período de retorno en cuestión es:

$$h_r = \overline{h}_r - \frac{S_r}{\sigma_n} Y_n + Ln Ln \left(\frac{Tr}{Tr - 1} \right)$$

en donde

Tr = Periodo de retorno

It. = Precipitación o gasto máximo relacionada con Ti-

7. = Media de las precipitaciones ó gastos máximos registrados

S. = Desviación estándar de la muestra

σ_n, Y_n= Parametros según el tamaño de la muestra, se obtiene de la tabla 6 del Anexo

II.5.2.2 Distribución de Nash

Esta distribución se considera un ajuste de la Distribución Gumbel por el método de mínimos cuadrados. Nash considera que al aplicar una ecuación lineal se puede determinar el valor del evento para un período de retorno, dicha ecuación es del tipo.

$$h_r = a + b \ Log \ Log \left(\frac{Tr}{Tr - 1}\right)$$
 II.1

o bien

$$Y = a + b x$$

Los valores de a y b se ajustan con las ecuaciones $a = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - \left(\sum x\right)^2}$

$$b = \frac{n\sum xy - \sum x \sum y}{n\sum x^2 - (\sum x)^2}$$

en donde:

n = Número de datos del registro

v = Precipitaciones ó gastos máximos del registro histórico

$$x = Log \ Log \left(\frac{Tr}{Tr-1}\right)$$

Se sustituyen los valores de a y b en la ecuación II.1 y al aplicar los períodos de retorno considerados se obtendrán precipitaciones ó gastos máximos asociados a esos períodos.

II.5.2.3 Distribución Log Normal

Esta distribución arroja resultados aceptables cuando los logaritmos de la muestra tienen una distribución normal. Para conocer la precipitación ó gasto máximo asociados a un período de

retorno se aplica la siguiente ecuación

h. em zem

en donde

IIII = Es la media de los logaritmos de los datos

771 = Desviación estándar de los logaritmos de los datos

= Factor de frecuencia en función de Tr

Tr	Z
1 01	-4 42
2 00	0 00
10 00	1 285
20 00	1 650
50 00	2 060
100 00	2 330
1000 00	3 080
10000 00	3 620

II.5.2.4 Distribución Log Pearson III

Para aplicar la distribución Log Pearson III es necesario obtener los logaritmos de la muestra y determinar la media y desviación estandar. En la distribución incide un factor de frecuencia que está en función del coeficiente de sesgo de la distribución de la muestra, que se observa en la tabla 7 del Anexo. La ecuación para estimar la precipitación o gasto máximo.

h. = eun ·kon

en donde.

LII1 = Media del logaritmo de los datos

asociados a un período de retorno es-

m1 = Desviación estándar de los datos

k = Factor de frecuencia en función de C_s

Los valores de la muestra y los obtenidos al aplicar las distribuciones de probabilidades se llevan a una gráfica en papel probabilidad para poder comparar y seleccionar la distribución que se ajuste mejor a la muestra. Una vez seleccionada la distribución, se harán dos correcciones a las precipitaciones o gastos, una por magnitud de cuenca segun la fig. 8 del Anexo y la otra por longitud de registro para lo cual L. L. Weiss propone un valor del factor de corrección igual a 1 13. Con el valor corregido de las precipitaciones se podrá obtener la lluvia en exceso aplicando el critério de la U.S. que esta en función del numero N de la curva de escurrimiento (fig. 9 del Anexo.)

$$he = \left(h_p - \frac{5080}{N} + 50.8\right)^2$$

$$h_p + \frac{20320}{N} - 203.2$$

II.5.2.5 Ajuste por Minimos Cuadrados

El método de ajuste por mínimos cuadrados se utiliza como auxiliar en el ajuste de curvas que consiste en estimar los parámetros de la función de distribución seleccionada, que hagan

minima la expresión

$$Z = \sum_{i=1}^{n} \left\{ P(x_i) - F(x_i) \right\}^2$$

donde

 $F\left(\chi
ight)$ Función de distribución en estudio, valuada en χ

 $P\left(\chi_{i}
ight)$ Probabilidad "observadas" de la muestra, que se estima mediante la formula de Weibull

$$P(x_i) = \frac{n+1-m}{n+1}$$

donde.

n = Número de datos

m = Número de orden que ocupa X, en la serie de los datos, si estos se ordenan de mayor a menor

II.6 AVENIDA DE DISEÑO

Las avenidas son escurrimientos causados por tormentas ocasionales que provocan gastos por encima de los normales. De los volúmenes tiovidos, calculados como el producto de las alturas de lluvia por el área de la cuenca, solamente escurre una parte, pues la otra queda retenida momentáneamente, se evapora o se infiltra en el terreno. Los volúmenes no escurridos constituyen las pérdidas, cuya predicción es muy dificil porque estos fenómenos obedecen a leyes complejas todavía no bien comprendidas. Por esta razón es necesario contar con datos recientes de escurrimientos y precipitaciones producidas por tormentas ocurridas en el pasado, para predecir posibles fenómenos que pudieran presentarse en el futuro y que constituyen la base para los estudios destinados a estimar las avenidas de diseño.

Para determinar tales avenidas se requiere, en primer termino definir las ávenidas que pueden ocurrir en el río, independientemente de la posible presa que regule su comportamiento.

Una vez determinadas las avenidas en el río, en particular la de diseño, se procede a calcular el efecto regulador que la presa ejerce sobre ellas, para obtener así el gasto máximo que descargará la obra de excedencias

II.6.1 EXPOSICIÓN DE METODOS

Existen fundamentalmente dos tipos de métodos para la determinación de avenidas de diseño, uno es el estadístico y proporciona información solamente sobre el pico de la avenida, de manera que el volumen se tiene que estimar multiplicando cada una de las ordenadas de la mayor de las avenidas registradas en el pasado, por una constante igual a la relación entre el valor del pico obtenido estadísticamente y el de dicha avenida, el otro es el de relación lluvia - escurrimiento, según el cual se fija un hidrograma modelo que puede modificarse según las lluvias que puedan llegar a ocurrir.

II.6.1.1 Métodos Estadísticos

Los métodos estadísticos permiteri ajustar una función de distribución de probabilidades a los gastos máximos registrados en el pasado, para, extrapolando dicha función, determinar el gasto que corresponde a una probabilidad deseada.

Dentro de estos métodos el de Gumbel es el de uso más frecuente en México, en el se parte de la hipótesis de que los valores de los gastos máximos aniuales pueden representarse estadísticamente con una función de distribución de probabilidades.

Con estos métodos estadísticos se aplicáron a los gastos máximos anuales registrados en ambas estaciones, utilizando el programa de la S.A..R.H. (Secretaria de Agricultura y Recursos Hidráulicos), obteniendo gastos de diseño para diferentes periodos de retorno de las Estaciones Puxmetacán y Zapote que se muestran en las tablas II.6.1.1.a y II.6.1.1.b respectivamente

Tabla II.6.1,1.a

GASTOS DE DISEÑO PARA DIFERENTES PERIODOS DE RETORNO

VASO PUXMETACÁN					
Tr (años)	GUMBEL (m³/seg)	NASH (m²/seg)	LEVEDIEV (m³/seg)	LOG PEARSON (m³/seg)	
2	487.20	413 97	415.85	432.98	
5	701 95	656 66	686 19	731.55	
10	864 40	817.34	882.32	881.31	
20	1,026.85	971 47	1,082 79	989 45	
50	1,241.61	1,170 98	1,341.45	1,088.74	
100	1,404 06	1,320 48	1,533 60	1,138 44	
500	1,781.26	1.665.96		1	
1000	1,943 72	1,814 50	2,173.38	l ——	
10000	2.483.38	2.307.75	2.814.75	1	

Tabla II.6.1.1.b

GASTOS DE DISEÑO PARA DIFERENTES PERIODOS DE RETORNO

VASO ZAPOTE					
Tr (años)	GUMBEL (m³/seg)	NASH (m³/seg)	LEVEDIEV (m³/seg)	LOG PEARSON (m³/seg)	
2	714 26	677 02	642 44	583 70	
5	965 25	922 30	954 67	838 19	
10	1.155 13	1.11781	1,168 73	1,048 96	
20	1,345 00	1,305 34	1,382 51	1,286.70	
50	1,595 96	1.548 08	1,650 51	1,654 05	
100	1,785 87	1,729 98	1,847 49	1,980 63	
500	2,226 74	2.150 33	<u> </u>	1	
1000	2,416.61	2.331 05	2,491.16	, —	
10000	3,047 35	2,931 19	3,128 62		

II.6.1.2 Método de Relación Liuvia - Escurrimiento

En la elaboración de proyectos de obras hidráulicas se aplican tecnicas para obtener avenidas máximas asociadas a una probabilidad de ocurrencia que sirvan de apoyo en los estudios correspondientes. Generalmente para obtener esos valores se realizan estudios hidrológicos en donde se aplican metodologías apropiadas al problema analizado.

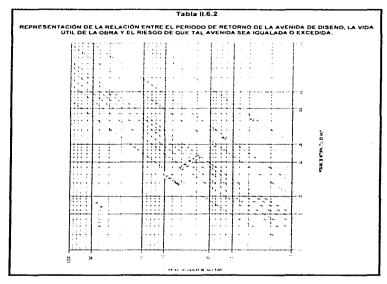
Si contamos con registros históricos de gastos en el lugar del proyecto, el problema se resume a aplicar una distribución de valores extremos y obtener los gastos adecuados. Generalmente lo anterior no se puede llevar a cabo debido a que existen en el país muy pocas estaciones hidrométricas, que son las que nos proporcionan registros de gastos, la información de la que se dispone en la mayoría de los casos es de laminas de precipitación. Por esta razón es que los modelos lluvia-escurrimiento siguen siendo muy utilizados en la obtención de avenidas máximas a partir de precipitaciones. Este procedimiento se efectúo en Subcapítulo II.4. Retación de Precipitación y Escurrimiento para los vasos Puxmetacán y Zapote (Ver listados II.4.a y II.4.b respectivamente.)

En cuencas aloradas resulta facil estimar los parámetros que inciden en los modelos lluvia - escurrimiento y calibrar la cuenca, pero en la mayor parte de las ocasiones se realizan estudios en cuencas no aforadas. Para solucionar este problema, al hacer un estudio hidrológico será necesario tomar en cuenta las principales características de la cuenca en estudio para tratar de conocer como responde ante una precipitación. En el arialisis hidrológico de una cuenca es importante poder determinar la fracción de la precipitación total que provoca escurrimiento superficial y que está en función del uso del suelo en el lugar analizado. Para hacer la estimación de la lluvia en exceso se recurre a estimar un coeficiente de escurrimiento ó a obtener el valor. Nide la curva de escurrimiento (Ver figura 9 del Anexo), el primero está en función del uso del suelo de la cuenca y el segundo aparte de considerar lo anterior, toma en cuenta la edafología de la cuenca, es decir, la textura del suelo. Los parametros anteriores se pueden obtener de las tablas 3, 4 y 5 del Anexo.

Por lo anterior expuesto, en la realización de estudios hidrológicos se recurre a métodos indirectos y simplificaciones para obtener los parametros que sirven de apoyo para el análisis. A continuación se presentan los métodos a utilizar:

II.6.2 SELECCIÓN DEL MÉTODO

Los principales factores que influyen en la selección del método o los métodos más apropiados para calcular la avenida de diseño son la información disponible, las características de la obra y la magnitud de los daños que podrían causarse en caso de que se presentara una avenida mayor que la de diseño


Para determinar el periodo de retorno (Tr) se selecciona según sea el caso, en la tabla II.6.2 determinando para Puxmetacán un Tr = 1,000 años (Presa de Materiales Graduados) y para Zapote un Tr = 500 (Presa tipo Gravedad).

E.N.E.P. ACATLAN TESIS COLECTIVA 106

Una vez determinado este período de retorno se comparan los resultados de la avenida de diseño que se obtuvieron al aplicar los métodos estadísticos y de precipitación - escurrimiento observando que existe una diferencia marcada en éstos resultados, por lo cual se decidió tornar los resultados obtenidos aplicando los métodos estadísticos a partir de gastos máximos registrados, ya que si contamos con estaciones hidrométricas cerca de los viasos (estación hidrométrica. Puxmetacán y Zapote sobre los ríos Puxmetacán y Manso respectivamente).

En la aplicación de los métodos estadísticos se observó que el método de Gumbel es el que mejor se ajusta a los gatos máximos anuales registrados, como se puede ver en las tablas II.6.2.8 para Puxmetacan y II.6.2.b para Zapote que se encuentran en el Anexo, estas tablas se obtuvieron del programa Swater utilizado por la Comisión Federal de Electricidad. Obteniêndose en Puxmetacán una avenida de diseño de 1,943.72 m³/seg para un periodo de retorno Tr = 1,000 años. Y en Zapote una avenida de diseño de 2,226.74 m³/seg para un peniodo de retorno Tr = 500 años. Estas avenidas de diseño son las que se obtuvieron en las estaciones hidrométricas las cuales se trasladan a los sitios, tal y como se describe en el Subcapítulo IV.3 Trânsito de Avenidas en Vesos.

E.N.E.P. AGATLAN TESIS COLECTIVA 107

IEC Schaackenhere 1949)

(E.C. Sch naci	kenberg, 1949)
TIPO DE EMBALSE :	MINIMO PERÍODO DE RETORNO EN AÑOS
GRANDES EMBALSES CUYA FALLA CAUSARIA CAUSARIA PÉRDIDAS DE VIDAS HUMANAS	
1 Cortinas de Tierra	1,000
2 Cortinas de Concreto o Mamposteria EMBALSES QUE AL FALLAR NO CAUSARIAN PÉRDIDAS DE VIDAS HUMANAS	500
1 Embalses Costosos	500
2 Embalses Moderadamente Costosos	100
3 Embalses Pequeños	20

المراجع والمتعلق والم

JII. LOCALIZACIÓN Y TIPO DE LAS PRESAS

III.1 DETERMINACIÓN DE LA CUENCA DE DRENAJE

III.1.1 ASPECTOS GENERALES.

La zona en estudio forma parte de la region hidrológical No. 28 (Papaloapan), colindando al norte con la No. 27 (Tuxpan-Nautla), al sur con la No. 20 (Costa Chica-Río Verde y Alto Rio Verde) y la No. 22 (Tehuantepec), al este con la No. 29 (Coatzacoalcos) y al oeste con la No. 18 (Balsas Alto, Medio y Bajo). La cual abarca parte de los estados de Oaxaca, Puebla y Veracruz. Ubicada geográficamente entre las latitudes. 17º 00° a. 19º 00° y entre las longitudes. 95º 00° a. 97º 40° (Verfiguras III.1.1.a. y III.1.1.b). La corriente principal de esta region es el rio Papaloapan que junto con sus diversos afluentes da origen al Bajo Papaloapan. (Verfigura III.1.1.1)

La localización de las cuencas de los dos vasos propuestos en este estudio es la siguiente.

Cuenca del vaso Puxmetacán sobre el río Puxmetacan, se encuentra en el Estado de Oaxaca, ubicada geográficamente entre las latitudes 16º 54' a 17º 21' y entre las longitudes 95º 37' a 96º 03', el río Puxmetacán se origina a partir de la unión de los ríos Trapiche y Agua Fria, esta confluencia tiene lugar a aproximadamente 8.5 km del poblado de Sta. María Alotepec y a aproximadamente 6.5 km del poblado Chuxnaban. La dirección que sigue esta corriente es hacia el noreste, hasta la unión con el río del Chisme, dando origen al río La Trinidad, que a su vez se une con el río Lalana formando el río San Juan Evangelista el cual es afluente derecho del río Papaloapan.

La longitud del río Cangrejo, desde sus origenes hasta su unión con el río Trapiche es de 26 km. a partir de este punto y hasta la unión con el río Agua Fria(origen del río Puxmetacán), se tiene una longitud de 9 km, desde el origen del Río Puxmetacán hasta la boquilla del vaso que lleva el mismo nombre tenemos una longitud de 65 km Cuenca del vaso Zapote sobre el rio Manso, se encuentra la mayor parte en el Estado de Oaxaca y una parte menor en el Estado de Veracruz, ubicada geográficamente entre las latitudes 17° 21° a 17° 41° y entre las longitudes 95° 43 a 96° 09°, el río Manso se origina a partir de la unión de los ríos Chiquito y Montenegro a 1.5 km del poblado de San José Río Manso. La dirección que sigue esta corriente es hacia el norte, hasta la unión con el río Cajonos, dando origen al río Playa Vicente, que a su vez se une con el río Tecomate Mixitan formando el río Tesechoacan el cual es afluente derecho del río Papaloapan.

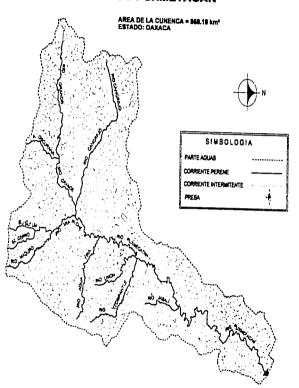
La longitud del río Montenegro, desde sus origenes hasta su unión con el río Chiquito es de 53 km. a partir de este punto y hasta la boquilla del vaso, el río manso tiene una longitud de 0.8 km.

III 1 2 ÁRFA DE LA CUENCA

El área drenada de una cuenca es el área en proyección horizontal encerrada por el parteaguas. Generalmente esta área se determina con un planimetro y se expresa en kilómetros cuadrados.

El área de captación de las cuencas de este estudio, se calculó con un planimetro marca KENT, Tipo Zero Set Device and Oplical Tracer (made in Zwitzerland), obteniendo para el sitio Puxmetacán una superficie de 958.19 km², y para el sitio Zapote de 739.25 km², (Ver figuras III.1.2.a y III.1.2.b respectivamente)

En la tabla III.1.2 aparece la clasificación de las cuencas según su tamaño, empleada por la C.F.E.; en base a esta tabla se clasificaron ambas cuencas en Intermedia - Grando


Tabla III.1.2				
CLASIFICACIÓN PROPUESTA PARA LAS CUENCAS				
Tamaño de la Cuenca (km²)	Descripción			
< 25	Muy Pequeña			
25 a 250	Pequeña			
250 a 500	Intermedia - Pequeña			
500 a 2,500	Intermedia - Grande			
2,500 a 5,000	Grande			
> 5.000	Muy Grande			

E.N.E.P. ACATLAN

GOLFO DE MEXICO

VASO PUXMETACAN

:

III.1.3 PENDIENTE MEDIA DE LA CUENCA

Existen diversos criterios para determinar la pendiente de una cuenca, eligiêndose en este estudio el método de Horton que a continuación se describe

III.1.3.1 Criterio de Horton

Este método se basa en que la distribución de la pendiente del terreno puede determinarse estableciendo una cuadrícula o un conjunto de puntos localizados al azar sobre el plano del área de la cuenca en estudio, la cual conviene orientar en el sentido de la corriente principal. Si la cuenca es de 250 km² o menor, se requiere por lo menos una malla de cuatro cuadros por lado, si la cuenca es mayor de 250 km², deberá incrementarse el número de cuadros de la malla, que la aproximación del calculo depende del tamaño de esta (Ver figuras III.1.2.a y III.1.2.b.)

Una vez hecho lo anterior, se mide la longitud de cada linea de la malla comprendida dentro de la cuenca y se cuentan las intersecciones y tangencias de cada linea con las curvas de nivel. La pendiente de la cuenca en cada dirección de la malía se valua como.

$$S_1 = \frac{N_1 D}{L_1}$$
 $S_2 = \frac{N_1 D}{L_2}$

donde:

- Desnivel constante entre curvas de nivel
- Longitud total de las lineas de la malla en la dirección "x", comprendidas dentro de la cuenca
- I_{**} Longitud total de las líneas de la malla en la dirección "y",comprendidas dentro de la cuenca
- N_{x} Número total de intersecciones y tangencias de las lineas de la malla en la dirección "x", con las curvas de nivel
- Número total de intersecciones y tangencias de las lineas de la malla en la dirección "y",con las curvas de nivel
- S_x Pendiente de la cuenca en la dirección "x"
- S. Pendiente de la cuenca en la dirección "y"

les tendes reservables removes a construction of

Finalmente, Horton considera que la pendiente media de la cuenca puede determinarse como:

$$S_i = \frac{N D \sec 0}{L}$$

siendo:

$$L = L_1 + L_2$$

$$N = N + N$$

Angulo entre las tineas de la malta y las curvas de nivel

Como resulta demasiado taborioso determinar la $_{SCC}(0)$ de cada intersección. Horton sugiere usar un valor promedio de 1.57. En la practica, y para propósitos de comparación, es igualmente eficaz ignorar el termino $_{SCC}(0)$, o bien considerar el promedio aritmético o geométrico de las pendientes $_{SC}(0)$, como pendiente de la cuenca (Ver tablas III.1.3.1.a y III.1.3.1.b.)

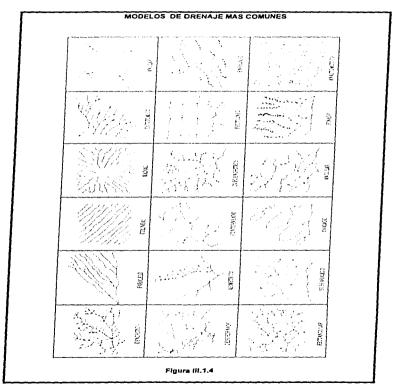
III.1.4 RED DE DRENAJE

Otras características importantes de cualquier cuenca son las trayectorias o el arreglo de los cauces de las corrientes naturales dentro de ella. La razon de su importancia se manifiesta en la eficiencia del sistema de drenaje en el escurrimiento resultante. Por otra parte, la forma de drenaje proporciona indicios de las condiciones del suelo y de la superficie de la cuenca. Los Modelos de Drenaje más comunes aparecen en la figura III.1.4, determinando en ambas cuencas (Puxmetacán y Zapote) un Drenaje Subdendrítico.

Tabla III.1.3.1.a

PENDIENTE MEDIA DE LA CUENCA DEL VASO PUXMETAÇÃN						
NÚMERO DE LA	E LA INTERSECCIONES		LONGITUDES (km.)			
LÍNEA DE LA MALLA	Nx	Ny	Lx	Ly		
0	0	0	0.00	0 00		
1 1	46	20	10 90	6 95		
2	104	69	31 25	17 55		
3	107	59	39 60	18 30		
4	96	51	34 70	18 45		
5	129	69	36 55	18 95		
6	79	61	25 05	2150		
7 1	39	65	1180	24 55		
8 (35	98	1105	33 65		
9	27	89	10 35	33 35		
10	21	68	10 25	30 25		
11	11	16	980	9 05		
12	19	0	7 35	0 00		
13	0	0	0 00	0 00		
SUMA	713	665	238.65	232.55		
S. TOTAL	1378		471.20			

Sx = (Nx D) / Lx = (713 x 0.1) / 238.65 = 0.30 = 29.88 % Sy = (Ny D) / Ly = (665 x 0.1) / 232.55 = 0.29 = 28.60 % Sc = (N D sec...) / L = (1378 x 0.1) / 471.2 = 0.29 = 29.24 %


Tabla (II.1.3,1.b

PENDIENTE MEDIA DE LA CUENCA DEL VASO ZAPOTE						
NUMERO DE LA	INTERSECCIONES		LONGITUDES (km.)			
LÍNEA DE LA MALLA	Nx	Ny	Lx	Ly		
0	0	0	0 00	0 00		
1 1	23	46	7 15	13 45		
2	50	96	11 17	27 45		
3 Ì	63	88	17 05	26 00		
4	84	61	22 60	2165		
5 1	93	62	42.95	20 30		
6 1	75	54	37.95	17 70		
7	51	32	35 87	15 10		
8	49	31	14 09	15 97		
9	0	13	0.00	12 20		
10	0	21	0.00	10 55		
11	0	2	0.00	12.12		
12	0	0	0 00	0.00		
SUMA	488	506	188.83	192.49		
S. TOTAL	994		381	.32		

Sx = (Nx D) / Lx = (488 * 0.1) / 188.83 = 0.26 = 25.84 %

Sy = (Ny D) / Ly = (506 ° 0.1) / 192.49 = 0.26 = 26.29 %

Sc = (N D sec a) / L = (994 * 0.1) / 381.32 = 0.26 = 26.07 %

E.N.E.P. AGATLAN

TESIS COLECTIVA

III.1.4.1 Orden de las Corrientes

El orden de las corrientes es una clasificación que proporciona el grado de bifurcación dentro de la cuenca. El procedimiento más comun para esta clasificación es considerar como corriente de orden uno, aquellas que no tienen ningun tributario, de orden dos a las que solo tienen tributarios de orden uno, de orden tres aquellas corrientes con dos o más tributarios de orden dos, etc. Así, el orden de la corriente principal indicara la extensión de la red de corrientes dentro de la cuenca.

Considerando lo anterior tenemos que el orden de la cormente principal para en vaso.

Puxmetacán es de cínico y para el vaso Zapote de seis.

III.1.4.2 Longitud de Tributarios

La longitud de tributarios es una indicación de la pendiente de la cuenca, así como el grado de drenaje. Las áreas escarpadas y bien drenadas usualmente tienen numerosos tributarios pequeños, mientras que en regiones planas, donde los suelos son profundos y permeables, se tienen tributarios largos, que generalmente son corrientes perennes

La longitud de las corrientes, en general, se mide a lo largo del eje del valle y no se toman en cuenta sus meandros. Además, la longitud que se mide consiste en una serie de segmentos lineales trazados lo más próximo posible a las trayectorias de los cauces de las corrientes.

Así mediante la ayuda de un Rodometro (Mod. 123/16-20, Made in Switzerland) que sirve para medir perímetros se tiene que la longitud de las corrientes en el sitio Puxmetacán es de 1540.8 km y en el sitio de Zapote es de 1258.6 km.

III.1.4.3 Densidad de Corrientes

Se expresa como la relación entre el número de corrientes y el área drenada. Así:

$$D_s = \frac{N_s}{A}$$

donde:

A Area total de la cuenca, en km².

D. Densidad de corriente

Número de corrientes de la cuenca

Para determinar el número de corrientes solo se consideran las corrientes perennes e intermitentes. La corriente principal se cuenta como una desde su nacimiento hasta su desembocadura. Después se tendran todos los tributarios de orden infenor, desde su nacimiento hasta la unión con la corriente principal, y así sucesivamente hasta llegar a los tributarios de orden uno.

Se tiene que existen para el vaso Puxmetacán 7 corrientes de orden cinco, 21 de orden cuatro, 68 de orden tres, 179 de orden dos y 141 de orden uno. Y para el vaso Zapote 2 corrientes de orden seis, 2 de orden cinco, 18 de orden cuatro, 53 de orden tres, 148 de orden dos y 606 de orden uno, de donde:

En el Vaso Puxmetacán se tiene:

 $A = 958.19 \text{ km}^2$

N = 7+21+68+179+767 = 1042

 D_s = (1042) / (958.19 km²) = 1.087466995

En el Vaso Zapote se tiene:

$$A = 739.25 \text{ km}^2$$

III.1.4.4 Densidad de Drenaje

Esta característica proporciona una información más real que la anterior, ya que se expresa como la longitud de las corrientes por unidad de área, o sea que

$$D_{a} = \frac{L}{A}$$

A Area total de la cuenca, en km²

Longitud total de las corrientes perennes e intermitentes en la cuenca, en km.

D. Densidad de drenaje por km

Hasta el Vaso Puxmetacán se tiene:

 $A = 958.19 \text{ km}^2$

/ = 1540.8 km

 $D_{s} = (1540.8 \text{ km}) / (958.19 \text{ km}^2) = 1.60803181 \text{ por km}.$

Hasta el Vaso Zapote se tiene:

$$A = 739.25 \text{ km}^2$$

$$D_{\rm r} = (1258.6 \text{ km}) / (739.25 \text{ km}^2) = 1.702536354 \text{ por km}.$$

III.1.5 PENDIENTE DEL CAUCE

Uno de los indicadores más importante del grado de respuesta de una cuenca a una tormenta, es la pendiente del cauce principal. Dado que esta pendiente varia a lo largo del cauce, es necesario definir una pendiente media. La forma más fácil de obtener la pendiente del cauce es trazar, sobre el perfil del río (Ver figuras II.1.5.a y III.1.5.b), una línea de tal manera que las áreas que se forman arriba y abajo del perfil del cauce con la línea trazada sean iguales.

Una aproximación más real de la pendiente del cauce, se obtiene al disminuir la longitud del tramo por analizar. Una forma de valuar la pendiente, y que trata de ajustarse a la pendiente real, es usando la ecuación que propone Taylor y Schwarz, la cual se basa en considerar que el río esta formado por una serie de canales con pendiente uniforme, cuyo tiempo de recorrido es igual al del río.

$$S = \begin{bmatrix} L \\ \frac{L_1}{\sqrt{S_1}} + \frac{L_2}{\sqrt{S_2}} + \dots + \frac{L_m}{\sqrt{S_m}} \end{bmatrix}^2$$

donde:

m = Número de tramos de pendiente uniforme sobre el cauce principal

_ = Longitud total

S... = Pendiente del tramo m

/_ = Longitud del tramo m

Esta ecuación tiende a una mayor aproximación cuanto más grande sea el numero de segmentos en los cuales se subdivide el tramo del río por analizar. (Ver tables III.1.5.e y III.1.5.b)

PERFIL DEL CAUCE PRINCIPAL **VASO ZAPOTE**

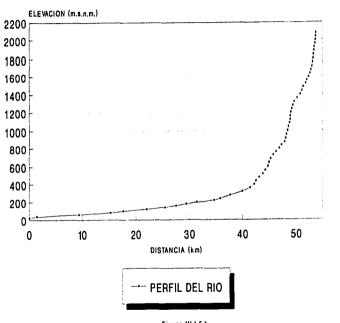


Figura III.1.5.b

III.1.5.1 Tiempo de Concentración

Es el tiempo que demora el agua en su viaje desde el punto hidráulico más distante de una cuenca hasta el sitio en consideración. Para valuar este tiempo de concentración existen varias expresiones propuestas por diferentes autores, de las cuales se adoptará el valor promedio, eliminando el valor máximo y el mínimo de los tiempos obtenidos. Con el valor de "S" (pendiente media del cauce) y con el desnivel del cauce principal se puede estimar este tiempo. Las expresiones más comunes para valuar el tiempo de concentración del cauce principal son.

Kirpich a)
$$t_c = 0.39 \left(\frac{L^2}{S}\right)^{0.385}$$
 b) $t_c = 32.5 \left(\sqrt{\frac{L^3}{H}}\right)^{0.7}$

Fao $t_c = \frac{L^{11}}{15 H^{0.1}}$

Row $t_c = \left(\frac{0.87 L^3}{H}\right)^{0.385}$

E. Basso a) $t_c = 0.067 \left(\frac{L}{\sqrt{S}}\right)^{0.77}$ b) $t_c = 0.067 \left(\frac{L^{113}}{H^{0.141}}\right)$

Chow $t_c = 0.00506 \left(\frac{L}{\sqrt{S}}\right)^{0.64}$

en donde:

.S = Pendiente media del cauce

I-I = Desnivel del cauce

// = Longitud del cauce

Los resultados se presentan en en las tablas III.1.5.a y III.1.5.b.

Tabla III.1.5.a

PENDIENTE	PENDIENTE DEL CAUCE PRINCIPAL EN EL VASO PUXMETAC				I/vs
TRAMO	LONGITUD	ALTURA	,	5*h/l	
	(km)	(m.s.n.m.)	(m)		
0	1	130	1		55,907
0 - 1	3 15	140	10	3 17E-03	263.268
	11 15	160	20	1 79E-03	49.309
1 - 2	3 65	180	20	5 48E-03	
2 - 3	11 15	200	20	1 79E-03	263,268
3 - 4	11 65	240	40	3 43E-03	198,819 95,594
4 - 5	7 15	280	40	5 59E-03	
5 - 6	7 15	320	40	5 59E-03	95 594
6 - 7	7 25	360	40	5 52E-03	97,606
7 - 8	5 65	400	40	7 08E-03	67.149
8 - 9	3 15	440	40	1 27E-02	27.953
9 - 10	2 15	480	40	1.86E-02	15,763
10 - 11	2 65	520	40	1 51E-02	21,569
11 - 12	2 15	560	40	1 86E-02	15,763
12 - 13	1 65	600	40	2 42E-02	10,597
13 - 14	1 95	640	40	2 05E-02	13 615
14 - 15	1 15	680	40	3 48E-02	6,166
15 - 16	1 15	720	l 40	3 48E-02	6.166
16 - 17	1 25	760	40	3 20E-02	6.988
17 - 18	1 25	800	40	3 20E-02	6.988
18 - 19	1 05	840	40	3 81E-02	5.380
19 - 20	1 15	880	40	3 48E-02	6.166
20 - 21	0.75	920	40	5 33E-02	3,248
21 - 22	0.80	960	40	5 00E-02	3,578
22 - 23	0.50	1,000	40	8 00E-02	1,768
23 - 24	0.50	1.040	40	8 00E-02	1,768
24 - 25		1.080	40	8 00E-02	1,768
25 - 26	0 50 0 20	1,120	40	2 00E-01	447
26 - 27	0 20	1.160	40	2 00E-01	447
27 - 28	0 40	1,200	40	1 00E-01	1,265
28 - 29		1,240	40	8 00E-02	1,768
29 - 30	0 50	1,280	40	2 00E-01	447
30 - 31	0 20	1,320	40	2 00E-01	447
31 - 32	0 20	1,360	40	8 00E-02	1,768
32 - 33	0.50	1,400	40	2 00E-01	447
33 - 34	0 20	1,420	20	5 00E-02	1,789
34 - 35		1,440	20	5 71E-02	1,464
35 - 36	0 35	1.460	20	6 67E-02	1,162
36 - 37	0 30	1.480	20	5 71E-02	1,464
37 - 38	0 35 0 35	1,500	20	5 71E-02	1,464
38 - 39		1,520	20	6 67E-02	1,162
39 - 40	0.30	1.540	20	6 67E-02	1,162
40 - 41	0.30	1,540	20	5.71E-02	1,464
41 - 42	0 35	1.580	20	8 00E-02	884
42 - 43	0 25	1,600	20	1 00E-01	632
43 - 44	0 20	1,640	40	1 60E-01	625
44 - 45	0.25	1,680	40	2.00E-01	447
45 - 46	0 20 0 25	1,720	40	1 60E-01	625

Tabla III.1.5.a (Continuación)

TRAMO	LONGITUD (km)	ALTURA (m.s.n.m.)	\(m)	s=h/l	U√s
47 - 48	0.20	1.760	40	2 00E-01	447
48 - 49	0 20	1.800	40	2 00E-01	447
49 - 50	0 20	1 840	40	2 00E-01	447
50 - 51	0 15	1,880	40	2 67E-01	290
51 - 52	0 15	1.920	40	2 67E-01	290
52 - 53	0 15	1,960	40	2 67E-01	290
53 - 54	0 10	2,000	40	4 00E-01	158
54 - 55	0 10	2.040	40	4 00E-01	158
55 - 56	0 10	2.080	40	4 00E-01	158
56 - 57	0 10	2,120	40	4 DOE-01	158
57 - 58	0 10	2 160	40	4 00E-01	158
58 - 59	0 10	2,200	40	4 00E-01	158
59 - 60	0.05	2.240	40	8 00E-01	56
60 - 61	0.05	2.280	40	8 00E-01	56
61 - 62	0.05	2,320	40	8 00E-01	56
62 - 63	0.05	2,360	40	8 00E-01	56
63 - 64	0 05	2,400	40	8 00E-01	56
64 - 65	0.05	2,440	40	8 00E-01	56
65 - 66	0.05	2,480	40	8 00E-01	56
66 - 67	0.05	2,520	40	8 00E-01	56
SUMA =	100.00	2,390			1,366,74

 $S = (L/(I/\sqrt{s}))^2 = 0.005353333 = 0.54 \%$

TIEMPO DE CONCENTRACIÓN DEL CAUCE PRINCIPAL EN EL VASO PUXMETACÁN

Kirpich a) $tc = 0.39 (L^2 / S)^{0.385} = 17.20 hrs.$

b) $tc = 32.5 (\sqrt{(L^3/H)})^{0.77} = 9.69 \text{ hrs.}$

Fao $tc = L^{1.15} / (15 H^{0.38}) = 9.55 hrs.$

Row $tc = (0.87 L^3/H)^{0.365} = 9.68 hrs.$

E. Basso a) $tc = 0.067 (L / \sqrt{S})^{0.77} = 9.78 \text{ hrs.}$

b) tc = 0.067 (L1 115 / H0 365) = 8.14 hrs.

Chow tc = 0.00506 (L / \sqrt{s}) 0 44 = 9.79 hrs.

Tpo. Promedio = (9.69+9.55+9.68+9.78+9.79) / 5 = 9.70 hrs.

Tabla III.1.5.b

PENDIEN	ITE DEL CAUCE	PRINCIPAL EN	L VASO ZAPOT	E SOBRE EL RIC	MANSO
TRAMO	LONGITUD	ALTURA	Ah	s=h/l	Uve
	(km)	(m.s.n.m.)	(m)		
0	j	20			
0 - 1	1 40	40	20	1 43E-02	11,713
1 - 2	7 90	60	20	2 53E-03	157,009
2 - 3	5 90	Во	20	3 39E-03	101.336
3 - 4	2 40	100	20	8 33E-03	26,291
4 - 5	4 40	120	20	4 55E-03	65.263
5 - 6	3 40	140	20	5 88E-03	44,331
6 - 7	2 10	160	20	9 52E-03	
7 - 8	1 90	180	20	1 05E-02	21,519
8 - 9	2 00	200	20	1 00E-02	18,519
9 - 10	3 30	220	20	6 06E-03	20,000
10 - 11	1 10	240	20		42,389
11 - 12	1 90	280	40	1 82E-02	8,158
12 - 13	2 30	320		2 11E-02	13,095
13 - 14	1 40	360	40	1 74E-02	17,441
14 - 15	0 80		40	2 86E-02	8,283
15 - 16	0 30	400	40	5 00E-02	3,578
16 - 17	0 60	440	40	1 33E-01	822
17 - 18		480	40	6 67E-02	2,324
18 - 19	0 70	520	40	5 71E-02	2,928
	0 50	560	40	6 OOE-02	1,768
19 - 20	0 50	600	40	8 00E-02	1,768
20 - 21	0 20	640	40	2 00E-01	447
21 - 22	0 30	680	40	1 33E-01	822
22 - 23	0.50	720	40	8 00E-02	1,768
23 - 24	0.50	760	40	8 OOE-02	1,768
24 - 25	0 60	800	40	6 67E-02	2,324
25 - 26	0 40	840	40	1 00E-01	1.265
26 - 27	0 60	880	40	6 67E-02	2.324
27 - 28	0 20	920	40	2 00E-01	447
28 - 29	0 15	960	40	2 67E-01	290
29 - 30	0 20	1,000	40	2 00E-01	447
30 - 31	0 20	1,040	40	2.00E-01	447
31 - 32	0 20	1,080	40	2 00E-01	447
32 - 33	0 10	1,120	40	4 00E-01	158
33 - 34	0.05	1,160	40	8 00E-01	56
34 - 35	0 10	1,200	40	4 00E-01	158
35 - 36	0 15	1,240	40	2 67E-01	290
36 - 37	0 20	1,280	40	2 00E-01	447
37 - 38	0 25	1.320	40	1 60E-01	625
38 - 39	0.50	1,360	40	8 00E-02	1.768
39 - 40	0 60	1,400	40	6 67E-02	2,324
40 - 41	0 30	1,440	40	1.33E-01	822
41 - 42	0 25	1,480	40		
42 - 43	0 50	1,520	40	1 60E-01 8 00E-02	625
43 - 44	0 20	1,560	40		1,768
44 - 45	0 35	1,600	40	2 00E-01	447
45 - 46	0 30	1,640		1 14E-01	1,035
46 - 47	0.10	1,680	40 40	1 33E-01 4 00E-01	822 158

Burlinger State Co. Co.

Tabla III.1.5.b (Continuación)

TRAMO	LONGITUD (km)	ALTURA (m.s.n.m.)	Δh (m)	==h/I	U√a
47 - 48	0.20	1,720	40	2 00E-01	447
48 - 49	0 15	1,760	40	2 67E-01	290
49 - 50	0 10	1,800	40	4 00E-01	158
50 - 51	1 005	1.840	40	8 00E-01	56
51 - 52	0 10	1,880	40	4 00E-01	158
52 - 53	0.05	1,920	40	8 00E-01	56
53 - 54	0 15	1,960	40	2 67E-01	290
54 - 55	0 10	2,000	40	4 00E-01	158
55 - 56	0 05	2,040	40	8 00E-01	56
56 - 57	0 05	2,080	40	8 00E-01	56
SUMA =	53.80	2,060		 	594,557

 $S=(L/(I/\sqrt{s}))^2 = 0.008187996 = 0.82 \%$

TIEMPO DE CONCENTRACIÓN DEL CAUCE PRINCIPAL EN EL VASO ZAPOTE

a) $tc = 0.39 (L^2/S)^{0.345} = 9.06 \text{ hrs.}$ Kirpich b) $tc = 32.5 \left(\sqrt{(L^3/H)}\right)^{0.77} = 5.01 \text{ hrs.}$ tc = L118 / (15 H0 38) = 4.95 hrs. Fao tc = (0.87 L1/H) 0 398 = 5.01 hrs. Row E. Basso a) $tc = 0.067 (L / \sqrt{S})^{0.77} = 5.06 \text{ hrs.}$ b) tc = 0.067 (L1115 / H0385) = 4.32 hrs. tc = 0.00506 (L / \sqrt{s}) = 5.75 hrs.

Tpo. Promedio = (5.01+4.95+5.01+5.06+5.75) / 5 = 5.16 hrs.

Chow

III.2 UBICACIÓN DE LA BOQUILLA

En base a la información recabada en cartas topográficas y geológicas, elaboradas por el INEGI y a los estudios Agrológicos y Socioeconómicos de la zona de estudio, se determino la ubicación de las boquillas, obteniendo las siquientes coordenadas

Vaso Puxmetacan Latitud 17" 20' 18" y Longitud 95" 37' 15" (carta topografica E15C32 " San Felipe Cihualtepec", ESC 1.50 000), Vaso Zapote Latitud 17° 39' 41" y Longitud 95" 52' 53" (carta topografica E15C21 " Xochiapa", ESC 1.50 000)

El perfit de los dos sitios arriba mencionados se muestran en las figuras III.2.a y III.2.b.

200

PERFIL DE LA BOQUILLA VASO ZAPOTE

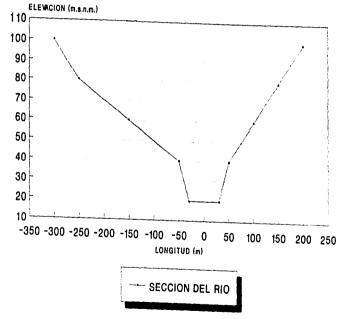


Figura III.2.b

III.3 ELABORACIÓN DE LAS CURVAS ELEVACIONES-ÁREAS-CAPACIDADES

Para cada curva de nivel comprendida dentro de la boquilla, se calculó el área, empleando un planimetro modelo KENT. Tipo Zero Set Device and Optical Tracer (made in Zwitzerland). Para obtener la capacidad entre dos curvas de nivel equidistantes a cada 20 m. se promedio el área de estas y se multiplico por el desnivel. Estos resultados se muestran en las tablas III.3.a y III.3.b.

Tabla III.3.a

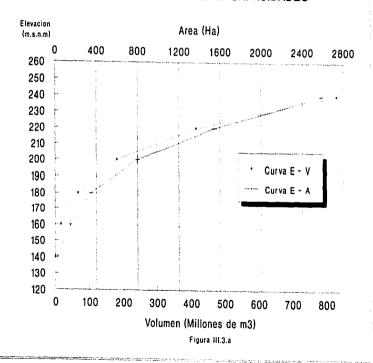

	CURVA ELEVACIONES - ÁREAS - CAPACIDADES VASO PUXMETACÁN						
CURVA DE NIVEL	ÁREA (km²)	ÁREA (Ha)	ÁREA (m²)	DESNIVEL (m)	VOLUMEN (m³)	VOLUMEN ACUMULADO (m³)	
140	0.21	21 40	213.980.03	O	0.00	0.00	
160	1 50	149 79	1.497.860.20	20	17.118.402.29	17.118.402.29	
180	3 47	347 12	3 471.231 57	20	49 690 917 74	66 809 320 03	
200	7 96	796 48	7.964.812.17	20	114,360,437,47	181 169 757 50	
220	15 45	1545 41	15,454,113,17	20	234,189,253 43	415,359,010 93	
240	25 94	2593 91	25,939,134 57	20	413 932,477 40	829,291 488 33	

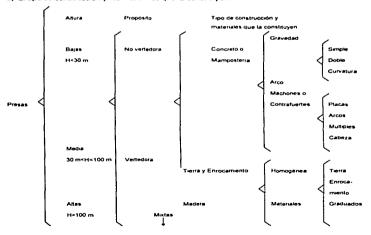
Tabla III.3.b


	CURVA ELEVACIONES - ÁREAS - CAPACIDADES VASO ZAPOTE						
CURVA DE NIVEL	ÁREA (km²)	ÁREA (Ha)	ÁREA (m²)	DESNIVEL (m)	VOLUMEN (m³)	VOLUMEN ACUMULADO (m³)	
	0.40	44.00	440.077.70				
20 40	0 12 1 00	11 89 99 86	118,877 79 998,573 47	20	0 00 11.174 512 60	0 00 11.174.512 60	
60	12 20	1219 69	12,196,861 63	20	131.954.350 97	143.128.863.57	
80	43 30	4329 53	43.295 292 44	20	554 921 540 70	698.050.404.27	
100	76 20	7620 07	76.200.665 72	20	1.194 959 581 60	1 893 009 985 87	

Las curvas Elevaciones-Areas-Capacidades, se obtienen gráficando los valores de las áreas y capacidades de cada curva de nivel comprendida dentro de la boquilla, gráficando del lado de las ordenadas (Eje Y), las elevaciones y del lado de las abscisas (Eje X), las áreas y capacidades, como se muestra en las figuras III.3.a y III.3.b

VASO PUXMETACAN CURVA ELEVACIONES-AREAS-CAPACIDADES

VASO ZAPOTE CURVA ELEVACIONES-AREAS-CAPACIDADES


III.4 DETERMINACIÓN DEL TIPO DE PRESAS

Se entiende por presa una estructura que se coloca atravesada en el lecho de un río, como obstáculo al flujo mismo,con el objeto de formar un almacenamiento o una derivación. Tal estructura debe satisfacer las condiciones normales de estabilidad y ser relativamente impermeable.

III.4.1 CLASIFICACIÓN

Las presas se pueden clasificar con referencia a

- a) Su altura
- b) Su propósito
- c) El tipo de construcción y los materiales que la constituyen

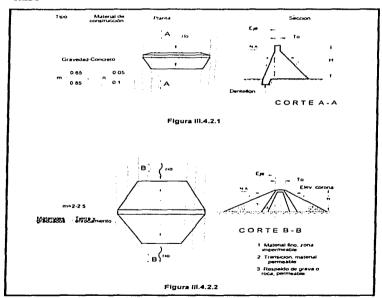
The second of th

III.4.2 TIPOS DE PRESAS SEGÚN EL TIPO DE CONSTRUCCIÓN Y LOS MATERIALES QUE LA CONSTITUYEN

III.4.2.1 Presa Tipo Gravedad

Es costumbre limitar el termino presa tipo gravedad a las presas masivas de concreto o mamposteria, las cuales resisten al sistema de fuerzas que le son impuestas, principalmente por el peso propio de ellas mismas. Sin embargo si la presa es ligeramente convexa en planta, hacia aguas arriba, en toda su longitud, un pequeña proporción de las cargas impuestas se transmitirá por acción de arco.

Las presas tipo gravedad tienen una sección recta casi triangular con mucha frecuencia se construyen en planta recta aun cuando pueden tener desviaciones que permitan aprovechar con ventaia las características topográficas del sitio (Ver figura III.4.2.1)


III 4 2.2 Presa de Materiales Graduados

Este tipo de presas consisten en una zona central o corazón impermeable, con zonas semi permeables y permeables colocadas progresivamente hacia aguas abajo y aguas arriba desde dicho corazón.

Dependiendo de los materiales disponibles en la región los respaidos de material permeable se pueden construir con gravas o enrocamiento de buena calidad

Las cantidades que de los diferentes materiales se colocan en el cuerpo de la presa dependen en gran parte de su disponibilidad en la zona, económicamente y de las características mecánicas de los mismos. La estabilidad de estas estructuras es una función de la estabilidad de sus taludes, en las diversas condiciones de trabajo, en donde el flujo de agua a través del cuerpo de las mismas desempeña un papel sumamente importante (Ver figura III.4.2.2)

Nota: Cabe mencionar que existen otros tipos de presas las cuales no se ajustan al presente estudio

Edward Agency Contact and Contact Cont

III.4.3 FACTORES QUE AFECTAN LA DETERMINACIÓN DEL TIPO DE PRESA

La determinación del tipo de presa más conveniente para un sitio determinado, involucra la consideración de muchos factores, aun cuando con frecuencia, para estudios preliminares se requiera la elaboración de diseños de más de un tipo, con el objeto de estimar costos y determinar el que se usará en el diseño final.

Los factores que generalmente tienen importancia en la determinación del tipo de presa son

III.4.3.1 Condiciones del Sitio

CONTRACTOR CONTRACTOR

En este rengión se incluyen aquellas condiciones que pueden influir en el tipo de estructura que se vaya a construir, como son las condiciones de la cimentación, topografía, materiales de construcción y accesibilidad al sitio

III.4.3.1.1 Condiciones de la Cimentación

En el diseño de presas son de gran importancia las condiciones de la cimentación, ya que por la naturaleza própia del problema, que trata con masas de roca con fracturas, fallas y juntas, o con cimentaciones en formaciones en diferente grado de intemperismo, con gran heterogeneidad en relación en sus propiedades físicas, es dificil determinar características de conjunto de los materiales que forman la cimentación. Por consiguiente se deben efectuar investigaciones amplias, tanto de campo como de laboratorio, con la guía de técnicos experimentados y calificados en este tipo de problemas.

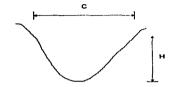
Los datos de la cimentación que se pueden considerar indispensables y que influyen en el tipo de presas son: Esfuerzos permisibles, características elásticas, coeficientes de permeabilidad, profundidades de excavaciones y valuación de la efectividad, tanto de consolidación como de impermeabilidad de un tratamiento de la cimentación. Se puede decir que en general una formación.

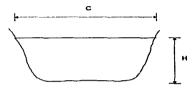
E.N.E.P. ACATLAN TESIS COLECTIVA 141

rocosa, densa y resistente, si no existen accidentes geológicos desfavorables, como fallas activas o contactos inestables, o que de existir se puedan tratar efectivamente, proporciona una cimentación adecuada para cualquier tipo de presa y de teóricamente cualesquier alturas. Sin embargo, desde el punto de vista económico existen limitaciones para cierto tipo de presas, lo que ha influido para que se conserven dentro de valoros relativamente modestos.

Presas de tierra y materiales graduados se pueden construir en forma segura y económica en cimentaciones rocosas de buena calidad, así como en aquellas de calidad relativamente pobre desde el punto de vista de resistencia, para las presas de concreto se requieren consideraciones especiales, pues cuando se trate de cimentaciones pobres, cualitativamente hablando, la construcción de las de tipo arco se debe tomar con reserva.

Por otra parte, cuando la cimentación es muy permeable y el gasto de infiltración es un punto que se deba considerar, las presas de tierra pueden dar una solución apropiada, debido a que provocan una mayor longitud de filtración y menor gasto para una carga dada, que en el caso de presas de concreto


III.4.3.1.2 Topografia


Si las condiciones geológicas son adecuadas, los cañones angostos son favorables para construir presas de arco, y se puede decir que desde el punto de vista económico la relación cuerda-altura, se debe limitar a valores próximos a cinco, para valores mayores de esta relación se cae en el caso de presas tipo gravedad. Se puede decir también que la presa tipo gravedad resulta favorable cuando se tenga una localización en planta en línea quebrada.

Si el costo de las obras accesorias, como las obras de excedencias y de torna, no es un factor decisivo en la elección del tipo de cortina y hay disponibilidad de los materiales de construcción necesarios, en general y desde el punto de vista económico las presas de tierra y

materiales graduados compiten favorablemente con otros tipos posibles de presas. Un caso de excepción se podría presentar en cañones sumamente angostos, para presas muy altas.

Las relaciones siguientes ilustran, en forma general lo dicho anteriormente

Relación cuerda-altura

Tipo

$$\frac{C}{H} < 4$$

Arco bóveda

Arco delgado

$$4 < \frac{C}{H} < 7$$

Arco grueso

Arco gravedad

$$\frac{C}{H} > 7$$

Tipo gravedad

Contrafuertes

Las presas tipo de tierra, enrocamiento y materiales graduados por lo general se pueden construir en cualquier forma de boquilla y con cualesquiera relación C/H.

III.4.3.1.3 Materiales de Construcción

La influencia de la disponibilidad de materiales de construcción adecuados en la determinación del tipo de cortina depende del costo relativo de los materiales, puesto a pie de obra tanto para concreto como de tierra y enrocamiento.

III.4.3.1.4 Accesos al Sitio

El efecto de este factor en la determinación del tipo de presa tiene una estrecha relación con la disponibilidad de materiales de construcción. El costo de los materiales puesto en obra será mayor si es necesario construir los caminos de acceso.

En algunos casos se han construido con éxito transportadores de banda tanto para agregados del concreto como para tierra

III.4.3.2 Factores Hidráulicos

Con mucha frecuencia y desde el punto de vista económico, es la obra de excedencias la estructura más importante que influye en la determinación del tipo de presa, siguiendolo en su orden la obra de desvío y la obra de toma.

III.4.3.2.1 Obra de Excedencias

En las presas tipo gravedad y de machones con placas con facilidad se pueden adaptar vertedores de demasias que viertan por encima de ellas, incluso para gastos de gran consideración; en cambio las cortinas tipo arco, vertedoras se limitan a pequeños gastos y con calidas reducidas.

Las presas de machones y placas no se adaptan bien para vertedores controlados con compuertas radiales de grandes dimensiones, aun cuando pueden serlo para compuertas relativamente pequeñas. Las presas de machones con arcos multiples no son muy favorables para ser vertedoras debido a la dificultad de acondicionar el cimacio del vertedor.

Los veriedores con canal lateral y descarga en túnel en la ladera son adaptables a cualquier tipo de presa. Cuando se requieren vertedores de gran capacidad y donde el agua adquiere altas velocidades es recomendable que la descarga sea en canal abierto, razón por la cual resulta favorable la solución de presas tipo gravedad y de machones y placas, vertedoras. Las presas de tierra, enrocamiento y materiales graduados no son aplas para vertedoras debido a que los elementos del vertedor quedarían cimentados sobre materiales sometidos a asentamientos diferenciales durante el proceso de consolidación residual que casi siempre se presenta. En estas condiciones el canal de descarga no sería estable y se presentaria la falla de la estructura.

III.4.3.2.2 Obra de Desvio

El método para desviar el escurrimiento del río durante la construcción de la presa depende del tipo de la misma, del tipo de obra de excedencias y de toma, del flujo probable propiamente dicho y del espacio disponible en la zona de construcción

Cuando se trate de presas de concreto, de grazedad y arco ya sean vertedoras o no vertedoras y haya suficiente espacio para el equipo de construcción, con frecuencia es conveniente hacer colados por bloques y dejar pasar el flujo entre ellos sin que tenga gran influencia el gasto máximo que brinque sobre la estructura. En otras ocasiones es probable que el flujo pueda pasar a través de un hueco que se deje en la estructura, al igual que en presas de machones el desvio se puede hace: entre ellos, y posteriormente a través de un hueco en la cubierta

El desv. por medio de túncies construidos en las laderas de los cañones y que libren la zona de construcción pueden tener alguna ventaja en presas de concreto y su uso es casi obligado en presas de tierra y materiales graduados. Para presas de tierra y materiales graduados con mucha frecuencia hay necesidad de hacer el desvio en dos etapas. La primera en tajo o canal y la segunda en tuneles. Los túneles de desviación se pueden usar con ventaja en la descarga de vertedores con canal lateral y en obras de toma y de control, por lo que en la planeación general se debe tener en cuenta esa posibilidad.

El costo del desvio por lo general es mayor para presas de tierra y materiales graduados que para presas de concreto debido a la gran amplitud de la base en las primeras presas mencionadas. Sin embargo las diferencias en costo de diferentes desvios de ordinario no son de gran importancia en la selección del tipo de presa, salvo en el caso de que se tenga un río permanente y muy caudaloso.

III.4.3.2.3 Obra de Toma

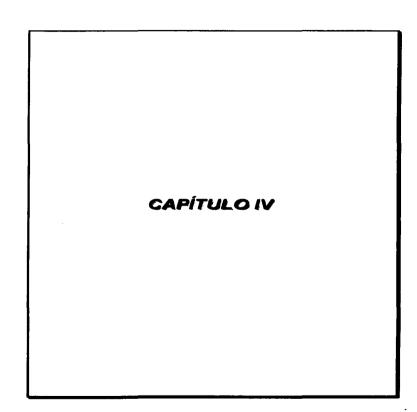
El costo de la obra de toma rara vez influye en la determinación del tipo de presa, ya sea esta por gravedad, machones, tierra o materiales graduados. Sin embargo, las presas de arco, sobre todo de arco delgado, no son ventajosas para tomas de gran tamaño o para varios huecos de toma, especialmente en zonas de grandes esfuerzos en el concreto.

Si se requiere una obra de toma de gran capacidad, al mismo tiempo que una presa en arco, es preferible la solución a base de túnel o túneles a través de la masa de roca en las laderas.

III.4.3.3 Efectos de Clima

El clima, cuando es muy extremoso puede tener efectos perjudiciales en estructuras muy delgadas como arcos y machones, en donde es conveniente proteger las superficies expuestas a grandes cambios de temperatura para evitar que se "descascare" el concreto y se reduzca la sección útil.

III.4.3.4 Tránsito


Con mucha frecuencia las presas inundan tramos de carreteras y caminos que quedan localizados dentro del vaso de almacenamiento y es indispensable su relocalización, en esos casos la presa puede representar una buena solución para cruzar el río de que se trate, por un camino federal o estatal, por lo que dicha posibilidad se debe tener en cuenta en el diseño.

Las presas tipo gravedad, arcos grueso, tierra y materiales graduados se adaptan bien para la construcción de un camino en su corona, no así los tipos de arcos delgados y machones, en donde se deben hacer consideraciones especiales al respecto, muchas veces de un costo elevado.

En el caso de navegación fluvial, en donde hubiere necesidad de prever la construcción de exclusas, solamente la presa en arco podría presentar algunas dificultades en la localización de las mismas, pero por lo general no es un factor determinante en la selección de las presas

De acuerdo a lo antes descrito, se propuso para el Vaso Puxmetacan una Presa de Materiales Graduados con vertedor libre debido a la geología, topografia y requerimientos de demandas de agua y Para el Vaso Zapote una Presa Tipo Gravedad con vertedor libre

Debe tomarse en cuenta, que no se tienen estudios geológicos de pruebas directas en ninguno de los dos sitios

IV. DISCUSIÓN DE NIVELES

IV.1 GENERALIDADES

Antes del planteamiento del funcionamiento de un vaso conviene destacar las estructuras hidraulicas que constituyen una presa, las cuales se pueden dividir en básicas y especiales. Las primeras se refieren a aquellas que siempre existen en un almacenamiento.

- 1. Cortina y vaso
- 2. Obra de toma
- 3. Obra de excelencias

Por lo que concierne a las obras especiales, son aquellas con las que cuentan propiamente cada almacenamiento en función de sus objetivos de diseño y se pueden mencionar.

- 1. Obra de control de avenidas
- 2. Desarenadores
- 3. Diques para cerrar puertas

Sin duda la cortina es el elemento fundamental de una presa, ya que permite cambiar el régimen al escurrimiento por aprovechar, cuyo objetivo principal involucra el aprovechamiento y el control físico del agua. Al construirse una presa, la cortina cierra una parte de la cuenca que permite almacenar el agua dando origen al vaso.

La obra de toma es la estructura que permite la salida del agua almacenada en función de las demandas preestablecidas aguas abajo de la presa, de las necesidades de evacuación ante la avenida de gran magnitud, ó de la combinación de necesidades múltiples. Las obras de toma se pueden clasificar de acuerdo a sus objetivos, a su distribución física y estructura ó por su operación hidráulica.

E.M.E.P. ACATLAN

TESIS COLECTIVA

La obra de excedencias es una estructura que en las presas de almacenamiento y regulación permiten el desalojo de aguas excedentes i, dicha obra de excedencia es proyectado para que tenga la capacidad suficiente de desalojo de una avenida de diseño asociada a un periodo de retorno adecuado. En el caso de presas derivadoras, su función consiste en dejar pasar el agua excedente del sistema de derivación. Ordinariamente, la obra de excedencias entrega al rio el agua que no se puede almacenar, con regimen subcrítico, esto se logra con cubetas deflectoras o salto de ski, así como con tanques amortiguadores con el objeto de no provocar socavaciones al cauce del río.

Dentro de un vaso podemos distinguir las siguientes capacidades

- Capacidad de azolves
- Capacidad mínima de operación
- Capacidad útil
- · Capacidad de control de avenidas
- Capacidad total

De las capacidades arriba mencionadas, a continuación se describen las tres primeras, ya que para el cálculo de la Capacidad de control de avenidas, se necesita efectuar el Tránsito de avenidas en el vaso, tema que será tratado en el Subcapítulo IV.3 TRÁNSITO DE AVENIDAS EN EL VASO y la Capacidad total se obtiene en el Subcapítulo IV.4 DETERMINACIÓN DEL FETCH

IV.1.1 Capacidad de Azolves

Es el volumen de sedimentos que se acumulan en la cortina, por el acarreo de materiales en suspensión en el río y este se cuantifica de la siguiente manera.

E.N.E.P. ACATLAN

The state of the s

TESIS COLECTIVA

- 1) Criterio Emplirico. Se utiliza cuando no hay registros de azolves en la corriente de estudio, y se puede considerar en forma conservadora como volumen medio anual de azolves igual a 0.1 % del escurrimiento medio anual o el 10 % de la capacidad total de la presa.
- 2) Registros de Azolves. Este método utiliza los registros de volumenes acarreados por la vida útil de la obra, en las tablas IV.1.1.a y IV.1.1.b aparecen los resultados que se obtuvieron para el vaso Puxmetacán y Zapote, respectivamente.

Tabla IV.1.1.a

ACARREO DE MATERIAL EN SUSPENSIÓN ESTACIÓN HIDROMETRICA PUXMETAÇÃN				
ARO	VOLUMEN DE ESCURRIMIENTO MILES DE m³	VOLUMEN DE ACARREO MILES DE m³		
1958	1.562 643	392 782		
1959	1,134,577	331 988		
1960	1,434,582	978 659		
1961	1,336,845	329 076		
1962	1.029.599	113 108		
1963	1,214,366	382 872		
1964	1,152,948	160 908		
1965	1,188.908	140 619		
Nota: A partir del 1º estación	de Enero DE 1966 se suspend	ieron las observaciones de esta		
SUMA	10,054,468	2830.012		
PROMEDIO	1,256,809	353.75		

FUENTE: BOLETINES HIDROMÉTRICOS REGIÓN HIDROLÓGICA No. 28 (PAPALOAPAN), 1958 A1965 S.A.R.H.

CAPACIDAD DE AZOLVES EN EL SITIO PUXMETACÁN

C.A. = Vol. Med. Anual de Azolves X vida Útil = 353.75 x 50 = 17,687.58 103 m3

Conocida la capacidad de azolves (C.A.), se entra a la curva elevaciones - áreas - capacidades (figura III.3.a) del vaso Puxmetacán, determinando el NAMIN = 20 m.(160 m.s.n.m.).

E.N.E.P. ACATLAN

TESIS COLECTIVA

Tabla IV1.1.b

	ACARREO DE MATERIAL EN SUSPENSIÓN ESTACIÓN HIDROMETRICA ZAPOTE				
AÑO	VOLUMEN DE ESCURRIMIENTO MILES DE m²	VOLUMEN DE ACARREO MILES DE m³			
1957	1,580,052	139 921			
1958	2,574,070	323 648			
1959	1 806 321	132 124			
1960	1.924,078	179 868			
1961	2.322,573	1356 598			
1962	1,367,772	73 094			
1963	1.381 091	96 101			
1964	1,716,737	113 505			
1965	2,192,008	219 034			
1966	1,985,690	314 097			
1967	1,436,981	140 184			
1968	1,990,361	239 394			
1969	2,489,719	383 993			
1970	1,665,493	240 073			
1971	1,696,044	171 475			
1972	1,825,563	258 518			
1973	1,751,117	152 876			
1974	1.999.107	168 489			
1975	1,821,548	384 884			
1976	2,115,139	277 415			
1977	1,470,880	119 829			
1978	2.167,594	259 588			
1979	1,462,766	122 77			
1980	1,794,462	207 92			
1981	2,531,728	364 68			
SUMA	47,068,894	6440.078			
PROMEDIO	1,882,756	257.60			

FUENTE: BOLETINES HIDROMÉTRICOS REGIÓN HIDROLÓGICA NO. 28 (PAPALOAPAN), 1957 A1981 S.A.R.H.

CAPACIDAD DE AZOLVES EN EL SITIO ZAPOTE

C.A. = Vol. Med. Anual de Azolves X Vida Útil = 257.60 x 50 = 12,880.16 10³ m³

Conocida la capacidad de azolves (C.A.), se entra a la curva elevaciones - áreas - capacidades (figura III.3.b.) del vaso Zapote, determinando el NAMINO = 22 m. (42 m.s.n.m.).

About ment and a second or second or second

IV.1.2 Capacidad Mínima de Operación

Es el volumen requerido en una planta hidroelèctrica, para que las turbinas operen en buenas condiciones. El gasto que se requiere esta en función de la potencia y la carga y se expresa de la siguiente manera.

$$H = \frac{P_c}{82Q}$$

donde

P = Potencia efectiva en Kw, de una planta hidroeléctrica

O = Gasto de flujo en m³/seg

H = Carga bruta de trabajo en m

Esta formula se aplica unicamente para el vaso Puxmetacán, el cual es propuesto para generación de energía eléctrica, riego y control de avenidas; los datos valores de potencia y gasto fueron propuestos considerando la demanda de electricidad en la región, obteniendo el siguiente resultado

P = 5,000 KW

 $Q = 20 \,\mathrm{m}^3/\mathrm{seg}$

H = 5,000 / (8 2 * 20) = 30 49 m

Conocida la carga H = 30.49 m (170.49 m.s.n.m.), se entra a la curva elevaciones-áreas-capacidades (figura III.3.a.) y se determina la capacidad mínima de operación = 37°374,885m³. Se calculó el NAMINO = 50.49 m. (190.49 m.s.n.m.), mediante la suma del NAMIN = 20 m. (160 m.s.n.m.) y la carga H = 30.49 m. (170.49 m.s.n.m.).

IV.1.3 Capacidad Útil

Cuando se desea hacer una primera estimación del volumen util se pueden usar dos métodos. El primero, llamado de curva masa o diagrama de Rippl, desarrollado en 1883, es útil cuando las demandas son constantes, y el segundo, conocido como algoritmo del pico accuente, es conveniente cuando las demandas varian en el tiempo.

- 1) Curva masa. Es una representación gráfica de los volumenes acumulados contra el tiempo
- 2) Algoritmo del Pico Secuente. Cuando la demanda no es constante, si bien es posible aplicar el método anterior, es más conveniente hacer el análisis numéricamente en lugar de hacerlo en forma gráfica. Este método se basa en la misma idea de Rippl, pero tiene la ventaja de que es mas fácil de usar, especialmente para demandas variables, aplicandolo en nuestro caso para ambos vasos.

Dada una serie de volumenes de entrada al vaso. Λ^* y de salida $D \circ D \circ E \circ V$

- (D es la demanda para nego y/o para generación de energia electrica. E es la evaporación y V volumen de lluvia) para satisfacer la demanda durante un lapso de T semanas meses, años, etc. El algoritmo del pico secuente consiste en
- a) Calcular la entrada neta al vaso (X_i-D_i) para $i=1\,,2\,,\ldots\,,2\,T$ y la entrada neta acumulada $\sum_i (X_i-D_i)$ para $i=1\,,2\,,\ldots\,,2\,T$
- b) Encontrar el primer pico (valor máximo) de las entradas netas acumuladas. P_i
- c) Localizar el pico secuente. P_z , esto es, el siguiente pico mayor que P_z
- d) Entre el primer par de picos. P_i y P_j hallar el valor más bajo de la diferencia de $\left(X_i-D_i\right)_\omega$ y, por lo tanto la diferencia de T_i-P_i equivale a la capacidad útil
- e) Buscar el pico secuente P_i mayor que P_i
- η Encontrar el valor mínimo T_z que se encuentre entre P_z y P_x y calcular P_z = T_z .

E.N.E.P. ACATLAN

TESIS COLECTIVA

g) Repetir los pasos e y fipara todos los picos secuentes de los $2 \, T$ intervalos de tiempo

Los pasos e, f y gino es necesario realizarios, cuando solo se tienen dos picos, como se ve en las tablas IV.1.3.a y IV.1.3.b. No obstante, pueden aparecer más picos en un registro más jargo.

Para obtener la Demanda mensual para riego en ambos sitios, es necesario considerar que el uso consuntivo (evapotranspiración) varia con la temperatura, la duración del día y la humedad disponible. Multiplicando la temperatura media mensual (t) por el posible porcentaje de horas del día con relación a los del año (p), se obtiene un factor mensual de uso consuntivo (f)

Se considera que cuando se dispone de suficiente agua, el uso consuntivo de los cultivos varia directamente con este factor. La expresión matemática, en sistema métrico es

$$u = k f$$

$$f = \frac{45.7 t + 813}{100} p$$

donde:

1/ = Uso consuntivo mensual en mm.

f = Factor mensual de uso consuntivo, en sistema métrico

f = Temperatura media mensual en °C

 \mathcal{D} = Porcentaje mensual de horas del día en relación con las del año.(Ver tabla 8 en el Anexo).

k = Coeficiente empírico del uso consuntivo correspondiente a un determinado cultivo (Ver tabla 9 en el Anexo).

Consideraciones:

Vaso Puxmetaçan

Del estudio efectuado por la C.N.A. en 1992 para el desarrollo de zonas de cultivo en el Bajo Papaloapan, se determinaron 135,000 Ha para riego durante un período de 6 meses (Agosto a Enero) y un coeficiente de uso corisuntivo promedio para los tipos de cultivos de la zona (pastos, caña de azucar, mango, plátano, maiz y frijol) de k = 0.8, donde

Mos	•	Р
Agosto	24 6 °C	8 8 1
Septiembro	24 7 °C	8 29
Octubre	23 6 °C	8 24
Noviembre	21 3 °C	7 67
Diclembre	21 1 °C	7 89
Enero	20 7 °C	7 88

Vaso Zapote

Del estudio efectuado por la C N A en 1992 para el desarrollo de zonas de cultivo en el Bajo Papaloapan, se determinaron 280.000 Ha para nego durante un período de 6 meses (Agosto a Enero) y un coeficiente de uso consuntivo promedio para los tipos de cultivos de la zona (pastos, caña de azúcar, mango, plátano, maiz y frijol) de k = 0.8, donde

Mes	t	Р
Agosto	28 0 °C	8 81
Septiembre	27 2 °C	8 29
Octubre	26 6 °C	8 24
Noviembre	238°C	7 67
Diclembre	21.6 °C	7 89
Enero	228℃	7 88

En las tablas IV.1.3.a y IV.1.3.b, que a continuación se muestran, se observan los resultados obtenidos con el procedimiento del algoritmo del pico secuente, para los vasos Puxmetacán y Zapote.

E.N.E.P. ACATLAN TESIS COLECTIVA 15

Tabla IV.1.3.a

	CALCULO DEL VOLUMEN UTIL DEL VASO PUXMETACAN									
Mes	XI.	0	E	V	DI-D-E-V		(XI-DI)ac		Derrame	Estado
i	10° m3	10³ m³	10' m'	10'm'	10'm'	10, m,	10'm'	10'm'	10°m	Veso
Enero	54,049.84	149 697 08	485 00	473 14	149 709 90	95 000 00	- P3 000 DB	198,119.61		
Febrero	38,257 61	46 364 00	459 14	454 33	46 473 87	10 166 21	105 820 27	187 953 41	ľ	
Merzo	33 432 52	53 568 00	805 48	288.25	54 085 23	20 652 71	-126 478 98	167,300 70	ı	ł
Abril	27,122 52	51 840 00	885 66	436.00	52 289 60	25 167 58	-151 646 Do	142,133 62	l	ł
Mayo	24 500 88	53 568 00	1.038 01	955.79	53 650 72	-28 683 84	-180 629 90	113 149 78	ı	1
Junto	79 500 59	51 840 00	862 45	3 /14 01	48 987 86	30 512 73	150 117 17	143 662 50	1	ì
Julio	210 296 63	53 568 00	969 29	5 604 44	46 632 65	161 063 78	11 540 61	293 779 68	11.546.01	Lieno
Agosto	259 007 36	184 322 61	770 39	4 950 61	180 142 39	78 864 97	90 411 58	293 779 68	78 864 97	Lieno
Septiembre	285 590 26	173 852 34	755 03	3 822 61	170 784 77	114 805 49	205.217.07	293 779 68	114 805 49	t seuto
Octubre	189 633 40	166 330 15	671 04	2 024 29	100 976 89	22 656 51	227,673 58	293 779 68	22 656 51	Lieno
Noviembre	109 705 13	147 979 06	554 87	1 152 00	147 381 92	-37 576 79	190,195.78	256 102 68	ſ	ľ
Dictembre	77,221 45	153 002 41	469 33	777 30	152 694 43	-75 472 98	114,723 80	180 629 90		٠
Enero	54 049 84	149 697 08	485 96	473 14	149 709 90	95 660 06	19 063 74	84 909 84		1 1
Febrero	38.257.61	48 384 00	449 14	456 33	48 423 82	-10 166 21	8 897 54	74 803 63		
Marzo	33 432 52	53 568 00	HO5 45	268 25	%4 085 23	20 652 71	11,755 18	54 150 92		
Abrii	27 122 52	51 640 00	885 66	436 06	52 289 60	25 167 08	-36 922 26	28 963 84		
Mayo	74 000 00	53 568 00	1 036 01	W55 20	53 650 72	28 983 84	-45,904.10	0.00		Vacio
Junio	79.500.59	51 840 00	862 48	3 714 61	48 987 86	30 512 73	-35 393 37	30 512 73		
Julio	210,298 63	53 568 00	909.79	5 904 44	48 632 85	101 063 78	126.270 41	192,176 51		
Agosto	259 007 36	184,322 61	770 39	4 950 61	180 142 39	78 864 97	205 135 38	271 041 48		
Septiembre	285.590.28	173 852 34	755 03	3 822 61	170 784 77	114 805 49	319 940 87	293 779 68	114.805.49	Lieno
Octubre	189,633 40	168 330 15	671 04	2 024 29	166 976 89	22 656 51	342,597 38	293 779 68	22,656 51	Liena (
Havlembre .	109,705 13	147,979.06	554 87	1 152 00	147,381 92	-37 876 79	304 920 59	256,102 88	1	i
erdmeiae	77,221 45	153 002 41	409 33	777 30	152 594 43	75 472 98	229 447 61	180 629 90	ĺ	Į

CAPACIDAD ÚTIL = P1-T1 = $(227.873.58 \ 10^2 \ m^3) - (-65,906.1 \ 10^3 \ m^3) = 293,779.68 \ 10^3 \ m^3$

Conocida la capacidad útil (C.U. = 293,779 68 10³ m³) más la capacidad de azolves (C.A. = 17,687.58 10³ m³), se entra a la curva elevaciones - áreas - capacidades (**figura III.3.a**) del vaso Puxmetaçan, determinando el **NAMO = 72.5 m.** (212.5 m.e.n.m.).

Tabla IV.1.3.b

		CALC	ULO D	EL VOL	IMEN UT	IL DEL V	ASO ZAP	OTE		
Mos	10 ³ m ³	10 ³ m ³	10, W,	10, w,	103 m3	XI-DI 10 ³ m ³	(XI-DI)ac 10 ³ m ³	Vol. 10³ m³	Derrame 103 m3	Estado Vaso
Enero	85 883 16	327 422 70	1 096 22	1 96 9 05	3.00 54V B7	240 000 09	.40 000 64	477 159 20		
Febrero	58 263 41	0.00	1369 81	1 904 66	494 85	58 758 26	181 906 43	535 917 45		
Marzo	51 553 85	0 00	2 143 29	1 583 36	559 43	50 993 92	130 914 51	585 911 39		l
Abril	44 745 05	5 00	271252	1 523 67	1 189 45	43 055 60	87 858 91	620 506 50	1	1
Mayo	43 993 23	C 040	276352	3 356 36	592 87	44 586 10	43 272 61	674 553 06	1	1
Junto	145 487 36	2 00	2 346 49	71 527 67	9 161 17	155 648 50	112 395 75	717 925 89	112 395 75	t leno
Julto	363 132 54	၁၀၀	2 123 90	15 585 82	13 461 91	376 594 45	488,990 21	717 H25 BV	376 194 45	Lieno
Agosto	342 623 55	412 952 05	2 213 42	12 895 88	402 279 59	SUMMO DA	429 334 16	F58 169 84	1	
Septiembre	394 545 38	361 799 40	187269	12 872 24	370 796 26	23 747 12	453 081 78	681 916 96	1	
Octubre	269 816 21	374 434 57	1 609 39	6 516 73	369 527 23	99 711 62	353 370 27	582 265 95	ļ	ł
Noviembre	171 422 95	326 548 59	1 226 10	3 204 3	224 506 50	153 (63 55	200 286 72	429 122 19		i
Diciembre	128 106 94	316 148 61	1 040 70	2 624 07	316 5/2 64	186 455 70	11 531 01	240 766 69		
Enero	85 683 16	327 422 70	1 096 22	1 95 9 05	320 549 87	240 666 69	228.835 68	0.00	!	Vacio
Febrero	58 263 41	p 0u	1 369 81	1 864 66	494.85	58 758 29	-170 077 42	56 /56 26	1	1
Marzo	51 553 65	0 00	2 143 29	1 583 36	559 63	50 963 92	119 083 50	109 752 18	i	l
Abril	44 245 05	0.00	2 712 52	152307	1 189 45	43 055 60	76 027 89	152 807 78	ľ	ľ
Mayo	43 993 23	0.00	2 763 52	3 356 38	692 87	44 586 10	31,441 80	197.393.66		}
Juneo	146 487 39	0.00	2 346 49	11 527 67	-9 181 17	155 666 56	124 220 76	353 967 44	ŧ	ì
Julio	363 132 54	p ∞ 0	2 123 90	15 585 82	13 461 91	376 594 45	500 821 22	717 825 89	17 831 01	Lauro
Agosto	342 623 55	412 962 05	2 210 42	12 895 88	402 279 59	59 656 04	441 165 18	658 169 84	l	l .
Septiembre	394 545 38	381 798 40	1 872 09	12 872 24	970 7ya 26	23 747 12	464 912 30	CB 1 916 90	ł	i
Octubre	269 616 21	374 434 57	1 509 39	0 510 73	369 527 23	99 711 02	365 201 28	582 205 95	i	l
Noviembre	171 422 95	320 548 59	1 226 10	3 208 20	324 509 50	153 063 55			l	l
Diciembre	128 106 94	316 146 01	1 040 70	2,624.07	318 562 64	188 455 70		240 666 6V	1	

CAPACIDAD ÚTIL = P1-T1 = $(488,990.21\ 10^3\ m^3) - (-228,835.68\ 10^3\ m^3) = 717,825.89\ 10^3\ m^3$

Conocida la capacidad útil (C.U. = 717.825.89.10³ m³) más la capacidad de azolves (C.A. = 12,880.16.10³ m³), se entra a la curva elevaciones - areas - capacidades (figura III.3.b.) del vaso Zapote, determinando el NAMO = 61 m. (81 m.s.n.m.)

E.N.E.P. ACATLAN TESIS COLECTIVA 158

IV.2 SIMULACIÓN DEL FUNCIONAMIENTO DEL VASO

Un vaso de almacenamiento cumple una función de regulación, esto es, permite almacenar los volúmenes que escurren en exceso para que puedan aprovecharse cuando los escurrimientos sean escasos. Y puede tener uno o varios de los siguientes propósitos.

- a) Irrigación
- b) Generación de energía eléctrica
- c) Control de avenidas
- d) Abastecimiento de agua potable
- e) Navegación
- f) Acuacultura
- g) Recreación
- h) Retención de sedimentos

El funcionamiento de un vaso nos sirve como pronóstico a largo plazo que nos ayuda a obtener los lineamientos generales de la operación de vasos para determinar los niveles del embalse a alcanzar en la vida útil del vaso de acuerdo a una extracción de funcionamiento de vaso.

La simulación de funcionamiento de vaso es una herramienta hidrológica que nos permite simular, con un programa de extracciones propuesto, la evolución que hubiera tomado el embalse con las condiciones de escurrimiento, evaporaciones, infiltraciones y lluvias que se han presentado durante los años que se tenga registro, en el sitio analizado.

Al final de la simulación se hará un resumen de los derrames, deficiencias (en volumen y en porcentaje), número de meses con derrames, que son una medida de la política propuesta de extracción. Si existen altas y frecuentes deficiencias deberá probarse una política de extracción de menor volumen; en caso contrario, si ocurren derrames fuertes puede incrementarse el volumen demandado.

La simulación de la evolución de los niveles en el vaso, se realiza durante el proceso de diseño. Se utiliza fundamentalmente para seleccionar los niveles característicos de la presa. El NAMINO (nivel de aquas mínimas de operación) es el nivel más baio con el que buede operar la presa. Cuando esta es para impación y otros usos, el NAMINO (también llamado en este caso NAMIN o nivel de aguas mínimas) coincide con el nivel al que se enquentra la entrada de la obra de toma. En el caso de las presas para deperación de eperació electrica, el NAMINO, se tia de acuerdo con la carga minima necesaria para que las turbinas operen en buenas condiciones. El volumen muerto es el que queda abajo del NAMINO o NAMIN, es un volumen del que no se puede disponer El volumen de azolves es el que gueda abaio del nivel de la toma y se reserva para recibir el acarreo de sólidos por el rio durante la vida util de la presa. La operación de la presa se lleva a cabo entre el NAMINO o NAMIN y el NAMO (nivel de aguas maximas ordinarias o de operación). El NAMO es el maximo nivel con que puede operar la presa para satisfacer las demandas, cuando el vertedor de excedencias no es controlado por compuertas, el NAMO coincide con su cresta o punto más alto del vertedor. En el caso de que la descarga por el vertedor este controlada, el NAMO puede estar por arriba de la cresta e incluso puede cambiar a lo largo del año. El volumen que se almacena entre el NAMO y el NAMIN o NAMINO se llama volumen o capacidad util y es con el que satisfacen las demandas de aqua

El NAME (nivel de aguas máximas extraordinarias) es el nivel mas alto que debe alcanzar el agua en el vaso bajo cualquier condición. El volumen que queda entre este nivel y el NAMO, llamado superalmacenamiento, sirve para controlar las avenidas que se presentan cuando el nivel en el vaso esta cercano al NAMO. El espacio que queda entre el NAME y la máxima elevación de la cortina(corona) se denomina bordo libre y está destinado a contener el oleaje y la marea producidos por el viento, así como a compensar las reducciones en la altura de la cortina provocadas por sus asentamientos.

IV.2.1 PLANTEAMIENTO DEL PROBLEMA

Para simular el funcionamiento de un vaso se utiliza la ecuación de continuidad, para un intervalo de tiempo At se expresa

$$E - S = \Delta V \tag{I.1}$$

donde

Volumen de aguas que entra al vaso durante el intervalo considerado

S Volumen que sale del vaso durante el mismo intervalo.

∧ V Variación del volumen almacenado

En la simulación se utilizan, intervalos de un mes, pero si los vasos son muy grandes, con capacidad de regulación interanual pueden utilizarse intervalos mayores, hasta de un año, en cambio en vasos de muy poca capacidad de regulación, el intervalo se reduce a una semana o un día

Cada uno de los términos del primer miembro de la ec. I.1 incluye varios factores. Las entradas provienen del escurrimiento generado en la propia cuenca, de las descargas de las presas situadas aguas arriba, de los escurrimientos que provienen de otras cuencas, cuando hay intercomunicación, y de la precipitación pluvial directa sobre el vaso. Las salidas están formadas por los volúmenes que se extraen para satisfacer la demanda, por las pérdidas debidas a evaporación e infiltración y por los derrames a través de la obra de excedencias.

Tomando en cuenta esos factores, la ecuación de continuidad toma la forma.

$$ICP + IT + VLL - VDEM - VEVA - VINF - DERR = \Delta V$$
 (1.2)

donde

ICP Escurrimientos generados por la cuenca propia

IT Entradas por transferencia desde otras cuencas

VI.I. Volumen de Iluvia en el vaso

IDFM Volumen extraido para satisfacer la demanda

VEVA Volumen evaporado

MNF Volumen infiltrado

DERR Volumen derramado

IV.2.2 APORTACIONES

IV.2.2.1 Escurrimiento por Cuenca Propia (ICP)

Son los volumenes de escurrimiento superficial generados dentro de la cuenca. La cuenca propia queda determinada por el sitio de la boquilla, donde se localiza la cortina de la presa, y por la ubicación de las presas construidas aguas arriba ya sea en el cauce principal o en los afluentes. Se cuantifican a partir de mediciones realizadas en las estaciones hidromètricas de la zona.

Cuando el sitio de las estaciones hidrométricas no coincide exactamente con el de la boquilla, es necesario extrapolar la información. Para ello se multiplica el volumen de escurrimiento superficial, medido en la estación hidrométrica más cercana, por un factor f, que puede calcularse en dos formas.

a) Si se tiene información pluviométrica suficiente, se calcula

$$F = \frac{VC}{VE}$$

donde.

VC Volumen de precipitación pluvial en la superficie de la cuenca propia,durante el intervalo \(\lambda \)

 ${\it VE}$ Volumen de precipitación pluvial en la superficie asociada a la estación hidrométrica, durante el mismo intervalo

Si no existe información pluviométrica suficiente, el factor estará determinado por la relación de

areas, es decir

$$F = \frac{AC}{AE}$$

donde

AC Area de la cuenca propia

AE Area asociada a la estación

Para Puxmetacán se tiene:

$$AC' = 958 \ 19 \ km^2$$

$$F = (958.19 \text{ km}^2) / (820.8 \text{ km}^2) = 1.67384858$$

Para Zapote se tiene:

$$AC = 739.25 \, \text{km}^2$$

$$F = (739.25 \, \text{km}^2) / (632.8 \, \text{km}^2) = 1.168224176$$

En el presente estudio debido a que los sitios de las estaciones no coinciden con el de las boquillas, se utilizó el factor F determinado por la relación de areas, para obtener los volúmenes de escurrimiento que se presentan en los sitios de interes (Ver tablas IV.2.2.1.a y IV.2.2.1.b)

Tabla IV.2.2.1.a

		VOLUME	NES EN	MILES D	Em ³ EN	LA ESTA	CIÓN HID	ROMETRI	CA PUXMI	TACAN		
AÑO	ENERO	FEB	MAR.	ABRIL	MAYO	DINUL	JULIO	AGO.	SEP.	OCT.	NOV	DIC
1957							15 13 1 1	139847	139537	108839	70431	37572
1958	33729	21684	19010	14602	14179	64411	324534	268270	244137	317441	125945	111501
1959	55378	374,46	37691	28620	25046	82489	97044	187210	215541	161352	135511	6,547,599
1960	45278	30724	29543	27019	17418	48019	15/03/26	357633	351535	138669	128023	814735
1961	62194	41443	35,080	26489	22254	42913	23573"	233330	201745	133861	4025th	78237
1962	45665	30757	25439	24581e	21152	42340	142113	1289,20	240349	192359	727527	24510
1963	39339	26706	25092	19026	19279	3.7549	207788	180275	412382	1.2.7.18.1	+ 0931	57216
1964	37675	28374	23492	19168	18991	79294	239919	182255	196536	159113	72667	95334
1965	5/5573	32235	256511	22045	11919191	R0184	195909	176449	205491	200525	111478	63420
1966	44847	39133	39543	39101	40480	218583	269096	158465	199765	1	154341	57261
1967	42409	31448	29454	23902	22495	45933	1.7544217	152667	137073	144981	72354	F,4844
1968	51288	44187	34556	27800	28494	74693	254774	ļ		117126	90,40,60	62697
1969	57652	37482	34676	27/36	24561		l	1	398095	158984	66878	57395
1970	41246	33020	30581	24633	22325	30597	i	i			96590	45843
1971	38800	27972	25392	25781	20402	31837	l	249142	153451	131152	75035	56008
1972	53550	36017	25830	20438	20/513	38523	71051	5	151724	110432	74795	63995
1973	36675	25841	22693	19319	15855	ı	l	1	ĺ	(i	i .
1974	39427	32961	28087	17300	17188	72302	157150	113864	182264	208455	63735	43468
1975	33121	24924	20583	16748	17706	57814	119147	272760	435272	197695	70020	70845
1976	66583	36419	30468	26650	22779	107565	1999657	145539	241141	134147	97934	62659
1977	40702	28434	25264	19769	17267	42399	121339	218338	110148	144895	122583	61878
1978	35604	30085	27711	21478	18804	(i	(340482	202582	75552	71614
1979	45909	31690	28742	22782	22704	53761	71626	394987	353120	99656	65612	71829
1980	50175	35563	25464	19898	16363	43683	123092	227888	221779	147780	67975	58833
1981	53480	41785	32990	22813	19860	133242	279938	45200E	238659	226420	106552	53604
VP	46300	32772	28639	23234	21130	68101	180143	221870	244641	162443	93975	66149
VP.F	54.050	38,258	33,433	27.123	24.667	79,501	210.297	259.007	285,590	189.633	109.705	77.221

FUENTE BOLETINES HIDROMÉTRICOS REGION HIDROLÓGICA No. 28 (PAPALOAPAN), 1957 A 1981 S.A.R.H.

Tabla IV.2.2.1.b

		VO	UMENES	EN MILE	S DE m	ENLAES	TACION	HIDROME	TRICA ZA	POTE		
ANO	ENERO	FEB	MARZO	ABRIL	MAYO	DINUL	JULIO	AGO.	SEP.	OCT.	NOV.	DIC
1955				25069	20616	28616	358014	194688	431848	297683	124463	172632
1956	82477	45125	51032	54927	124309	238715	414293	268233	381528	185083	169126	141745
1957	86579	57871	54636	39217	37554	101338	310470	2250NG	276317	100467	120809	71268
1958	56878	33894	35317	27442	78454	104581	543076	423830	476376	451304	222500	220468
1959	89323	67255	73186	74832	56 109	114586	264753	746455	170167	244760	225742	97157
1960	70092	41990	40256	29395	24880	59581	298173	360049	479837	166477	212934	139814
1961	87056	55739	60163	32732	24401	137675	585203	261125	300998	230312	326071	117498
1962	94923	50414	42923	77496	438.4	76986	257988	160933	304022	165154	40625	46436
1963	34131	22495	22269	14991	17172	39358	305€62	245673	355633	144887	74917	95963
1964	69578	44096	36987	34013	29070	150955	299429	199738	255715	234502	126179	237375
1965	111796	58179	51654	38467	53302	135460	395955	297230	364703	424030	159199	101023
1966	87874	61921	71373	51099	52316	233909	345903	201913	316578	350058	131646	61100
1967	54035	37993	36464	30408	26878	115635	263073	217188	254055	204561	106026	89665
1968	65642	67564	54692	52949	56889	131868	396773	368240	312525	191943	142322	148954
1969	134429	42525	58315	46035	34285	75298	404228	649168	713679	170785	82076	78695
1970	47611	52749	43549	29877	26687	71973	293624	344086	353670	186179	160006	55482
1971	51054	31074	34291	84004	26821	51964	288690	269306	206814	304427	245880	101717
1972	92700	60795	31700	27090	55950	150819	300598	375838	251600	188590	177438	108436
1973	48058	44154	43443	27296	51983	152241	284184	420848	317065	174963	75554	111328
1974	70386	62012	51183	31560	32147	215860	321717	166759	413956	376328	160656	96533
1975	63492	57031	33493	23690	22131	112790	188748	342973	454097	324726	84593	113484
1976	150936	75310	46300	36791	41354	152936	273338	296099	485143	285091	175754	96084
1977	57224	43633	34940	21241	2,3505	104088	249882	728234	203853	174283	222789	107408
1978	57624	56290	41079	25966	29129	329997	442340	331144	356175	258830	115576	123444
1979	66050	45008	46863	28553	38943	132550	138691	385425	296404	83028	83647	116604
1980	81469	60594	51566	55952	33912	80845	151968	316886	437819	215904	167051	110495
1981	106977	98917	62100	37145	31761	251604	433874	554918	317219	347701	172449	117063
V.P.	73516	49874	44130	37874	37658	125393	310842	293286	337731	230963	146738	109650
V.P.*	85,883	58.263	51,554	44,245	43,993	146.487	363,133	342,624	394,545	269 816	171.423	128.107

FUENTE: BOLETINES HIDROMETRICOS REGION HIDROLÓGICA NO 28 (PAPALOAPAN), 1955 A 1981 S A R H.

IV.2.2.2 Ingresos por Transferencia (IT)

Son volumenes de escurrimiento superficial transferidos à la cuenca en estudio desde otras cuencas. Provienen de las descargas de presas situadas aguas arriba o de la transferencia de volumenes generados en otras cuencas.

IV.2.2.3 Volumen de Liuvia en el Vaso (VLL)

Se calcula multiplicando la altura de lluvia Mp, registrada en el intervalo M, por el valor del area media M que ocupe la superficie libre del agua durante el mismo intervalo, esto es

$$VLL \sim hp(\overline{A})$$

Los datos de precipitación mensual registrados para Puxmetacán y Zapote aparecen en las tablas II.1.5.a y II.1.5.b

IV.2.3 VOLUMEN EXTRAIDO (VDEM)

Se destina para satisfacer la demanda y se contabiliza a partir de mediciones directas cuando la presa está operando, o se supone de acuerdo con la ley de demandas correspondiente a cada alternativa que se simule, cuando se estudia el diseño de la presa. La demanda requenda para Puxmetacán y Zapote se determinó en el Subcapítulo IV.1.2 Capacidad mínima de operación y IV.1.3 Capacidad útili.

IV.2 4 PÉRDIDAS

IV.2.4.1 Evaporación (VEVA)

El volumen que se pierde por evaporación se calcula multiplicando la famina evaporada (EVAP), en el intervalo M, por el área media de la superficie libre del agua en el mismo intervalo esto es

La famina evaporada se calcula multiplicando los valores medidos en un evaporimetro, por un factor de corrección que depende de las características del aparato que en nuestro caso es un aparato clase A, con un factor de corrección de (0.7), tal y como se muestra en la tabla 10 del anexo. Los registros de evaporación en Purmetacan y Zapote aparecen en las tablas IV:2.4.1.a y IV:2.4.1.b respectivamente.

Tabla IV.2.4.1.a

	EVAPORACIÓN MENSUAL EN mm. DE ALTURA ESTACIÓN HIDROMÉTRICA PUXMETACÁN											
ANO	ENERO	FEB.	MAR	ABRIL	MAYO	JUNIO	JULIO	AGO.	SEP.	OCT.	NOV.	DIC.
				ESTA	CIÓN D	E NUE	VA CRE	ACIÓN				
1976 1977 1978 1979 1980 1981	1976 1977 75 01 75 42 117 62 130 66 153 98 166 19 164 10 77 72 75 98 75 19 75 19 75 10 75 40 75 10 75 40 75 10 75											
SUMA EV.P.	381.87 76.37	392.19 78 44	632.96 126.59	695.90 139.18	978.79 163.13	813 26 135 54	914.00 152.33	726.46 121.08	711.97 118 66	632.72 105.45	523 18 87.20	442.52 73.75
EV.P.*1	53.46	54.91	88.61	97 43	114 19	94 88	106 63	84 75	83 06	73 82	61.04	51 63

FUENTE: BOLETINES HIDROMÉTRICOS REGION HIDROLÓGICA No. 28 (PAPALOAPAN), 1976 A 1981 S A R H.

Tabla IV.2.4.1.b

		***************************************	EVA	PORAC								
AÑO	ENERO	FEB.	MAR.	ABRIL	MAYO	DINUL	JULIO	AGO.	SEP.	OCT.	NOV.	DIC.
1955		i	1				84 28	119.56	69 93	79.64	80.26	68 65
1956	77.61	96.54	121.74	156.39	128.83	119.77	125 07	148 93	113 12	98.94	74 26	56.85
1957	90.21	99.30	117 04	173.34	194 02	174 60	195.06	207 10	170 13	190.40	159.54	122 93
1958	61 30	86 05	109.87	161.65	187.58	130 t 7	98.39	142 97	116 63	89.87	57.12	57.39
1959		•			158 77	127 11	107.78	129 12	118 87	83 18	55 41	46 03
1960	73 C2	105.61	117.31	161 88	167.31	174 52	109 49	113.58	97.05	11461	*.0 83	40 45
1961	38 38	77.85	136 81	160 23	180.05	117.60	92.74	143.83	111 13	79.23	57 02	46 25
1962	44 52	109.47	110 46	103.77	166 94	142 49	118 81	130 00	102.52	101 78	54 52	33.35
1963	43.00	70 27	129.48	150 75	11351	138.57	103.93	112.56	64 92	67.18	46 75	19.40
1964	26 57	48 96	120 10	155.79	139 12	8388	63.99	89 88	82.71	61.70	43 02	37.56
1965	45 92	66 69	11107	160 82	130 53	113 14	65 34	75 65	89 47	7120	48.79	52 66
1966	48.07	58 79	92.17	125 06	124 21	108.67	120 08	104 07	113 40	8164	60.23	59 10
1967	64 03	71 04	150 21	155.92	156 39	137.13	128 80	106 99	77.87	60 60	59.38	43 /2
1968	49 84	62 20	83.05	120 62	115 71	112.36	78.27	86.71	75.25	64.29	42.50	37.77
1969	45 69	53 40	70 92	120 57	124 63	122 46	86 04	71.93	77.08	77.74	37.95	37.05
1970	40 70	52 30	28 65	127 68 .	120 23	87.37	FO RO	69.58	49.77	44 10	31.45	30 20
1971	34 75	35 40	77 85	110 41	117.90	111 88	102 68	128 93	128 07	110 41	8765	79 57
1972	82 43	91.75	163 35	186 45	140 60	134 52	134 33	112.49	125.78	108 92	75 32	7395
1973	79 40	64 00	148 02	141 98	150 30	148 05	143 81	115 57	120 30	86 50	102.92	73 24
1974	85 07	80.90	137.70	165.75	159 91	127 40	127 02	137.38	88 54	69.53	75.68	72 65
1975	72 54	92.90	149.75	167.41	153 90	134 60	126 98	124 95	99 80	84 65	78 65	55 21
1976	53.40	93.00	135.45	145.35	131 60	12194	132 08	122 80	116 80	83.85	42 10	49 80
1977	63 00	66 90	126 90	131 44	173.85	147 35	130 80	132 40	122 20	85.70	79.70	65 60
1978	66 00	55 55	87.35	133.70	165.90	121.40	137 60	135 30	102.70	71 45	64.70	70.20
1979	64 80	74 00	118 40	155 20	129 00	117.60	134 20	112 50	95.20	100 70	58 10	55 80
1980	64 60	70.00	12810	124.00	14,1 (4)	134.60	143 40	124 70	91.70	88.50	57.50	53.50
1981	59 20	58 50	115 10	150 60	151.29	91.70	132.20	114 50	97.00	DA OB	79.20	71 20
SUMA	1474 02	1841.6	2881.9	3647 0	3864 3	32810	3084 1	3214 0	2718 64	2337 11	1780 58	1511 08
EV.P.	58 96	73'67	115 28	145 88	148 63	126 20	114 23	119 04	100 69	86 56	65 95	55 97
EV.P.*	41.27	51 57	80 69	102 12	104 04	88 34	79 96	83 33	70 48	60 59	46 16	39 18

FUENTE: BOLETINES HIDROMÉTRICOS REGIÓN HIDHOLÓGICA NO. 28 (PAPALOAPAN), 1955 A 1981 S.A.R.H.

IV.2.4.2 Infiltración (INF)

Es un valor que no puede medirse directamente sin embargo, como generalmente es el termino de menor valor en la ec.l.2, suele calcularse como residuo en dicha ecuación.

IV.2.4.3 Derrames (DERR)

Cuando el volumen de las avenidas que ingresan al vaso alcanza tal magnitud que pone en peligro a la presa, es necesario descargar parte del agua por la obra de excedencias. Si el vaso esta funcionando, la contabilidad de los derrames se hacen mediante mediciones directas, en la fase de diseño, el volumen derramado es un resultado de la simulación, dependerá de los niveles característicos y de la política de operación que se defina para las alternativas que se simule.

IV.2.5 PROCEDIMIENTO DE CÁLCULO

Durante el proceso de diseño de una presa: que comprende la selección del sitio, definición de los niveles característicos (NAMIN, NAMINO, NAMO y NAME) y determinación de las políticas de operación, es necesario simular la evolución de los volumenes almacenados en el vaso a fin de conocer las consecuencias que produciria la adopción de cada una de las alternativas de diseño.

En este caso, algunos terminos de la ec. 1.2 se obtendrán como resultado de la simulación, y dependerán en ultima instancia de la alternativa simulada. Para realizar el cálculo de manera más eficiente, conviene expresar la ec. 1.2 en forma diferente, esto es

$$V_m \circ V \hookrightarrow X \cap S \circ P$$
.

sujeto a

$$V_{-} \leq V_{-} \leq V_{+}$$

donde

- $V_{\rm ext}, V_{\rm e}$ Volúmenes almacenados al final y al principio del intervalo, generalmente es de un mes respectivamente.
- X. Volumen que ingreso al vaso durante el intervalo considerado. Puede ser tomado del registro historico o del sintético.
- S_n . Salidas destinadas a satisfacer la demanda. Dependen de la demanda por satisfacer, estarán restringidas por la disponibilidad de agua (V_{int} debe ser mayor que un valor mínimo V_{int}) y, en particular, cuando la demanda es para generar energía eléctrica, son función de los niveles en el vaso, los cuales se desea que tengan el mayor valor posible.
- P_c Terminos que dependen del nivel medio en el vaso en el intervalo Δt (VLL, VEVA y VINF)
- Volumen minimo aceptable en el vaso
- V Volumen correspondiente al NAMO

and the second s

El cálculo se desarrolla de la siguiente manera.

- De la topografia del visso se obtienen las relaciones elevación del nivel del agua volumen almacenado y elevación del nivel del agua - area de la superficie libre.
- 2. Se inicia el cálculo a partir de un nivel inicial /₁ y de los valores correspondientes del volumen almacenado. L'₁, y el area de la superficie libre 1.1. Es conveniente empezar el cálculo al final de la temporada de lluvias (el mes de noviembre generalmente), con el nivel de aguas máximas como nivel inicial. Sin embargo, conviche simular el funcionamiento del vaso con otras condiciones iniciales y verificar en cuanto tiempo sus funcionamientos son similares.
- Con las entradas y salidas que no dependen del nivel en el vaso, se calcula, en una primera aproximación, el volumen al final del intervalo lo sea

$$V_{\text{od}}^1 = V_* + ICP + IT = VDEM$$

(el superindice indica que se trata de la primera aproximación)

 Con el volumen obtenido en el paso anterior, se determinan los valores correspondientes de h., y A., y se calcular los valores medios

$$\bar{h} = 0.5 (h + h_{co})$$

$$\overline{A} = 0.5 (A + A ...)$$

5. Se obtiene una nueva aproximación del volumen correspondiente al final del intervalo

$$V_{\text{tot}}^{\prime} = V_{\text{tot}} + \overline{ICP + IT} + \overline{VDEM} + \overline{hp}\left(\overline{A}\right) + EVAP\left(\overline{A}\right) - VINF\left(\overline{h}\right)$$

6. Si el nuevo volumen calculado $V_{(a)}^{*}$, es "semejante" al anterior $V_{(a)}^{*}$, se continua con el paso 7, si no, se repite el proceso a partir del paso 4, hasta que $V_{(a)}^{*+1} \circ V_{(a)}^{*}$. Se recomienda utilizar como criterio de semejanza que

$$|V_{...}^{...}-V_{...}| \leq \frac{V_{*}}{100}$$

- 7. Cuando del resultado del calculo se obtiene un volumen $V_{...}$ mayor que V_{*} , se registra un volumen derramado igual a la diferencia y se considera que $V_{...} \circ V_{*}$, cuando $V_{...}$ es menor que V_{*} , se consigna un volumen de déficit igual a la diferencia y se considera que $V_{...} \circ V_{*}$.
- 8. Se calcula las condiciones para el nuevo intervalo de tiempo At, a partir del paso 3

El funcionamiento se llevo acabo mediante el programa HIDROSUP (Elaborado por Ing. Oscar A Kampfner R y el Ing. Luis M Salmones H de la Facultad de Ingeniería de la Universidad Nacional Autonoma de México, Laboratorio de Hidraulica). Y los resultados del funcionamiento de los vasos Puxmetacán y Zapote se presentan en las tablas IV.2.5.a y IV.2.5.b respectivamente.

Tabla IV.2.5.a

FUNCIONAMIENTO DE VASOS

PRESA : PUXMETACÁN

LOCALIDAD : SANTIAGO YAVEO

ESTADO : OAXACA

VOLUMEN INICIAL ALMACENADO: 293 7797 Mm3

CAPACIDAD DE AZOLVES : 17 68758 Mm³

CAPACIDAD ÚTIL

: 293 7797 Mm³

MESES DE REGISTRO

: 12

MES	EN,	EVA m	Vi Mm³	hi m.a.n.m	Ai Mm²	Vi+1 Mm³	hi+1 m.s.n.m	Al+1 Mm²	OBSERVACIONES
NOVIEMBRE	109.70	0 06	293 80	199 41	11.52	256 20	199 24	10.33	
DICIEMBRE	77 20 54 00	0 05	256 20 180 70	199 24 198 82	10 32 7.81	180 70 85 10	198 82 197 92	7 81 4 27	
FEBRERO MARZO	38 30 33 40	0 05 0 09	74 90	197 92 197 76	4 27 3 86	74 90 54 60	197.76 197.38	3 86 3 00	}
ABRIL MAYO JUNIO	27 10 24 70	0 10	54 60 29 80	197 39 196 66	1.85	29 80 17.70	196 66	184	V def= 16 82
JULIO AGOSTO	79.50 210.30 259.00	0 09 0 11 0 08	17.70 45.90 205.70	196 04 197 18 198 98	1 22 2 61 8 66	45 90 205 70 285 00	197.17 198.97 199.37	2 60 8 6 1 1 1 2 2	
SEPTIEMBRE I	285 60 189 60	0 08	285 00 293 80	199 37	11 24 11 52	293 80 293 80			V derr=107 32 V.derr=23.07
						í,	[]		Ī

differential and process are all of the end of the end of the

Tabla (V.2.5.b

FUNCIONAMIENTO DE VASOS

PRESA : ZAPOTE

LOCALIDAD : SAN JUAN LALANA

ESTADO : OAXACA

VOLUMEN INICIAL ALMACENADO: 717 8259 Mm3

CAPACIDAD ÚTIL : 717 8259 Mm³

CAPACIDAD DE AZOLVES : 12 88016 Mm3

MESES DE REGISTRO : 12

MES	Mm, EN	EVA m	Vi Mm²	hi m.s.n.m	Ai Mm²	Vi+1 Mm³	hl+1 m.s.n.m	Al+1 Mm²	OBSERVACIONES
NOVIEMBRE	171 40	0 05	717 80	68 52	40 23	565 50	68 18	33 91	
DICIEMBRE ENERO	128 10 85.90	0 04	565 50 377 30	68 18 67 62	33 90 25 35	377 30 136 40	67 62 66 22	25 36 12 23	ĺ
FEBRERO MARZO	58 30 51 60	0.05	136 40 194 90	66 22 66 71	12 2 1 15 78	194 90 246 10	66 71 67 03	15 78 18 66	ì
ABRIL	44 20	0 10	246 10	67 03	18 65	289 40	67 25	20 96	ĺ
JUNIO	44 00 146 50	0 10 0 09	289 40 333 90	67 25 67 45	20 96 23 22	333 90 489 70	67 45 67 98	23 22 30 51	ł
JULIO AGOSTO	363 10 342 60	0 08 0 08	489 70 717 80	67 98 68 52	30 57 40 23	717 80 663 20	68 41	38 02	∨ derr=154 43
SEPTIEMBRE OCTUBRE	394 50 269 80	0 07	663 20 691 90	68 41 68 46	38 0 1 39 18	691 90 594 20	68 46 68 25	39 17 35 14	
OCTOBRE	209 80	0 00	691 90	00.40	39 16	594.20	60 25	35 14	

Englishmen action was a con-

IV.3 TRANSITO DE AVENIDAS EN EL VASO

El transito de una avenida en un vaso es una técnica que nos permite conocer el hidrograma de salida de una presa dadas las características de la obra de excedencias a partir del hidrograma de entradas. Normalmente esta técnica se empleo para

- Conocer la evolución de los niveles a partir de uno inicial para confirmar si la regla de operación seleccionada (política de satidas por la obra de excedencias y la obra de toma) es adecuada, de manera que al presentarse la avenida no se pongan en peligro la presa, bienes materiales o vidas humanas agua abajo.
- · Dimensionar la obra de excedencias durante la etapa de estudios y proyecto
- Filar altura de cortina, y dimensionar las obras de desvio y altura de ataquias.

De manera general el transito de avenidas es una técnica que se emplea para conocer el cambio de forma y el desplazamiento en el tiempo del hidrograma de entradas al vaso de una presa.

IV.3.1 FUNDAMENTOS

IV.3.1.1 Ecuación de Continuidad

La ecuación de continuidad para cierto volumen es

$$I = O = \frac{dv}{dt} \tag{1.3}$$

donde:

Gasto de entrada al vaso

Gasto de salida del vaso

 $\frac{dv}{dt}$ Variación del almacenamiento V en el tiempo t

Para resolver la ec. 1.3 se puede utilizar el siguiente esquema de diferencias finitas

$$\frac{L + L_{\text{in}}}{2} = \frac{O + O_{\text{in}}}{2} \frac{V_{\text{in}} - V_{\text{in}}}{\Delta t}$$
(1.4)

donde

Af Intervalo de tiempo seleccionado para efectuar los cálculos del tránsito

i , i+1 Subindice que representan los valores de las variables al inicio y al final del intervalo de tiempo Δt , respectivamente

La equación I.4 se pude escribir
$$I_{c}+I_{col}+\left(\frac{2V}{\Delta t}+O_{c}\right)\approx\frac{2V...}{\Delta t}+O_{col}$$
 (I.5)

A diferencia del funcionamiento de un vaso, en el tránsito de una avenida no se consideran variables como la evaporación y la infiltración, ya que su magnitud es varias veces infenor al volumen de las entradas o salidas por escurrimiento.

Respecto all Δt , para no afectar la precision de los calculos conviene utilizar un intervalo pequeño (se sugiere $\Delta t \leq 0.1~t_F$, donde t_F es el tiempo de pico del hidrograma de entrada, figura IV.3.1.1.)

E.N.E.P. ACATLAN

TESIS COLECTIVA

IV.3.1.2 Relación entre Almacenamiento y Gastos de Salida

Para establecer esta relacion es necesario manejar dos lipos de curvas. la de elevaciones volumenes de almacenamiento del vaso, y la de elevaciones - gastos de salida por la obra de excedencias. La primera curva se obtiene a partir de los planos topográficos del vaso, la segunda, si se trata de un vertedor de cresta libre, es simplemente la curva de descarga de esa obra de excedencias, que está dada por la ecuación $Q = C \cdot L \left(h - H \right)^{1/2}$, donde $H \cdot L \cdot y \cdot C \cdot son$, respectivamente, la elevación de la cresta del vertedor, longitud y coeficiente de descarga del vertedor, $y \cdot f_1$ la elevación del espejo del agua en el vaso $\left(f_1 > H \right) \cdot M$ Mediante estas dos curvas se puede conocer, para cada volumen almacenado en la presa. La elevación del agua y con esta el gasto de salida, y de ahi la refación volumen de almacenamiento - gasto de salida.

Cuando el vertedor es de cresta controlada, la relación elevación - gasto de salida estará dada por las reglas de operación de compuertas utilizadas. Por otro lado, habrá que incluir dentro de los gastos de salida las extracciones que se hagan por la obra de toma.

IV.3.2 MÉTODOS PARA EL TRÁNSITO DE AVENIDAS EN VASOS

Para la solución al tránsito de avenidas en vasos mencionaremos dos métodos Método Numérico y Método de Euler, para ambos se requiere:

- a) Hidrograma de entradas
- Elevación del nivel de água en el vaso en el instante en que empieza a llegar a la presa la avenida correspondiente al hidrograma de entradas
- c) Gasto de salida por el vertedor en el instante en que empieza el hidrograma de entradas.
- d) Gasto de salida por la obra de toma
- e) Curva elevaciones volumenes de almacenamiento
- f) Curva elevaciones gastos de salida de la obra de excedencias (o su ecuación)

IV.3.2.1 Método Numérico

Se resuelve la ec. 1.5 utilizando un procedimiento de aproximación mediante una calculadora programable o computadora digital

El procedimiento consiste, previa selección del ${f \Lambda}_I$, en

- 1. Se conocen V_{ij} , I_{ij} , I_{ij} , I_{ij} , O_{ij} , I_{ij} , O_{ij} (para i = 1) son los datos iniciales) y se toma $O_{ij} = O_{ij} + O_{ij}$ y k = 0
- II. Se calcuta [/], de la ec. I.5
- III. Con $V_{i,j}$ se obtiene de la curva elevaciones-volumenes de almacenamiento la elevación $I_{i,j}$
- IV. Con h_{i+1} utilizando la curva elevaciones gasto de salida de la obra de excedencias, se obtiene O_{i+1} se calcula $O_{i+1} = O_{i+1} + O_{i+1}$
- V. Se hace k=k+1 , y si k , es menor que 3 se regresa al paso II, de otro modo, se continua con el paso VI.
- VI. El valor de O corresponde al gasto de salida del intervalo de tiempo en cuestión
- VII. Se toma j=j+1 y se regresa al paso I tantas veces como se requiera para definir el hidrograma de salida

donde

- / Gasto de entrada al vaso, en m³/seg
- Gasto de salida del vaso, en m³/seq.
- Gasto de salida por la obra de excedencias, en m³/seg
- Gasto de salida por la obra de toma, en m³/seg
- Volumen de almacenamiento, en millones de m³
- In Elevación en el vaso, en m s n m
- Af Intervalo de tiempo, en seg
- i , i + 1 Subindices que representan los valores de las variables al inicio y al final del intervalo de tiempo, respectivamente

IV.3.2.2 Método de Euler

El método parte de representar la curva elevaciones - capacidades y la curva elevaciones gasto descargado mediante las siguientes ecuaciones respectivamente

$$V = k h^2 \tag{1.6}$$

$$O = C L \left(h - H \right)^{1/2} \tag{6.7}$$

en donde

I/ = Volumen almacenado

k - N = Constantes obtenidas de una regresión logaritmica

H = Elevación del vertedor

= Coeficiente de descarga del vertedor

I = Longitud de cresta del vertedor

= Gasto descargado

Apoyado en la ecuación de continuidad (ec. l.3) y sustituyendo las ecuaciones 1.6 y 1.7 se

tiene

$$\frac{d(k h)}{dt} = I - C L(h - H)^{2}$$

derivando y despejando

$$\frac{dh}{dt} = \frac{I - C L (h - H)^{1/2}}{N h^{1/2}}$$

aplicando el criterio de Euler se tiene

$$\frac{dy}{dx} = f\left(x, y\right)$$

$$dy = f(x, y)dx$$

integrando

$$\int_{y_{-}}^{y_{-}} \int_{y_{-}}^{x_{-}} dy = \int_{x_{-}}^{x_{-}} f\left(x, y\right) dx$$

$$Y_{--} = Y_{-} = \int_{x_{-}}^{x_{-}} f\left(x, y\right) dx$$

$$Y_{--} = Y_{-} + \int_{x_{-}}^{x_{-}} \Delta x$$

v para nuestro caso se tiene

$$f(x,y) = f(h,t)$$

es decir el gasto descargado está en función del tiempo y de la elevación del embalse, que a su vez depende del hidrograma de entrada

$$\frac{dh}{dt} = f(h,t) = \frac{I - CL(h-H)^{v_2}}{kNh^{v_1}}$$

y finalmente queda

$$h_{i+1} = h_i + \frac{I - CL(h_i - H_i)^{1/2}}{kNh^{2/3}}\Delta t$$
 (1.8)

La ecuación anterior nos proporciona la elevación siguiente al intervalo analizado y con este valor es posible estimar el valor del gasto descargado apoyados en la ecuación de la ley de descarga del vertedor de demaslas. Por lo anterior se requiere iterar la ecuación 1.8 tantas veces hasta llegar a desalojar en su totalidad la avenida que se presento. Esto generalmente no es práctico porque se tendrán que hacer un número exagerado de iteraciones debido a que el hidrograma de salida es varias veces mayor al hidrograma de entradas, por lo que es recomendable iterar la ecuación hasta un intervalo de tiempo igual a 3 veces el tiempo base del hidrograma de entradas.

Para ambos métodos se hacen representativos los gastos máximos registrados del hidrograma seleccionado al igual que el gasto de diseño obtenido de la avenida máxima, trasladandolos de la estación hidrométrica al sitio del Vaso en estudio empleando la ecuación general de Lowry que a continuación se describe

$$Q_1 = A_1 \left[\frac{Q_1}{A_1} (A_1 + 250)^{n} \right] (A_2 + 250)^{n}$$

donde

Q, = Gasto trasladado al sitio

A, = Area de la cuenca del vaso

A. = Area de la cuenca de la estación hidrométrica

O = Gasto en la estación hidrométrica

Vaso Puxmetacán

A. = 958.18 km2 (Area del Vaso)

4 = 820.80 km² (Área de la Estación Hidrométrica)

Orm = 681.61 m³/seg (Gasto Pico Registrado).

Orr = 718.10 m³/seg (Gasto Pico Trasladado)

 O_D = 1,943.72 m³/seg (Gasto de Diseño de Gumbel para un Tr = 1,000 años).

Our = 2,047.79 m³/seg.(Gasto de Diseño Trasladado)

Vaso Zapote

 $A_{ir} = 739.25 \text{ km}^2 \text{ (Årea del Vaso)}$

A. = 632.80 km² (Área de la Estación Hidrométrica)

 $O_{r_R} = 1,570.00 \text{ m}^3/\text{seg.}$ (Gasto Pico Registrado).

 $O_{rr} = 1,664.94 \text{ m}^3/\text{seg.}$ (Gasto Pico Trasladado).

 O_{tr} = 2,226.74 m³/seg (Gasto de Diseño de Gumbel para un Tr = 1,000 años).

Opr ≈ 2,361.39 m³/seg.(Gasto de Diseño Trasladado).

Se calcula el factor para mayorar los dastos trasladados de los diferentes vasos utilizando

la siguiente expresión

$$f = \frac{Q_m}{Q_m}$$

donde

 Q_m = Gasto de diseño máximo probable para el período de retorno considerado y trasladado al sitio

On a Gasto pico máximo registrado del hidrograma seleccionado y trasladado al sitio

Para Puxmetacán

f = 2.85166

Para Zapote

f = 1.418

Nota: El gasto de diseño seleccionado es el que se obtuvo al aplicar los Métodos Estadísticos (Subcapitulo II.6.1.1) y en específico el valor que arrojo el método de Gumbel, por ser el que más se ajusta a los gastos máximos registrados

Estos gastos trasladados mayorados son los gastos de entrada que se utilizaron para el tránsito de avenidas en ambos vasos que se utilizaron para tal efecto

El transito de avenidas por el método numérico de la C.F.E. y por el método de Euler se realizo con el programa HIDROSUP (Elaborado por Ing. Oscar A. Kampfner R. y el Ing. Luis M. Salmones H. de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México. Laboratorio de Hidráulica). Obteniendose los resultados del tránsito para el Vaso Puxmetacán (tabla IV.3.2.a, figuras IV.3.2.1.a y IV.3.2.2.a.) y para el Vaso Zapote (tabla IV.3.2.b.) figuras IV.3.2.1.b y IV.3.2.2.b.) que se presentan a continuación.

Tabla IV.3.2.a

TRÁNSITO DE AVENIDAS EN VASOS

PROYECTO : PUXMETACAN

LOCALIDAD : SANTIAGO YAVEO

ESTADO : OAXACA

ELEVACIÓN DEL VERTEDOR : 229 5 m s n m

LONGITUD DE CRESTA : 70 00 m

COEFICIENTE DE DESCARGA : 2 05

GASTO EN OBRA DE TOMA : 67 073 m³/seg

	TRÂNSITO DE LA AVENIDA										
		(METODO	DE C.F.E.)	(MÉTODO	DE EULER)						
tiempo	1	H vertedor	0	H vertedor	0						
(firs.)	(m³/seg)	(m.s.n.m.)	(m³/seg)	(m.s.n.m.)	(m³/seg)						
0 00	252 45	212 50	0 00	212 50	0 00						
8 00	258 07	213 00	51 20	213 07	6199						
16 00	258 07	213 38	117 73	213 50	142 60						
24 00	561 03	213 87	230 74	214 39	371 72						
32 00	532 97	214 38	370 29	214 72	473 80						
40 00	532 97	214 64	448 01	214 84	512 75						
48 00	799 48	214 97	555 71	215 42	714 42						
56 00	1,192.21	215 60	783 79	216 36	1,087.27						
64 00	1,065 97	216 09	974 52	216 32	1,070 21						
72 00	939 73	216 14	994 62	216 07	967 52						
80 00	81349	215 98	930 36	215 77	849 70						
88 00	687 27	215 73	831 46	215 46	729 75						
96 00	813 49	215 61	786 24	215 62	791 61						
104 00	985.72	215 76	845 92	216 00	940 29						
112 00	1,094 03	216 03	952 25	216 30	1,062.08						
120.00	1,108 03	216.24	1,036 61	216 39	1.098 99						
128 00	2,047 79	216 94	1,343 48	218,19	1,945.52						
136.00	1,627 00	217 57	1,639.52	217 62	1,663 72						
144 00	1,879 46	217 73	1,712 63	218 01	1,857.28						
152 00	1,655 06	217.80	1,749.94	217 65	1,678 34						
160 00	1,430 64	217 55	1,629 05	217 21	1,464 64						
168 00	1,192 21	217 15	1,439.06	216 71	1.237 25						
176 00	1,023 88	216 72	1,242 50	216 31	1,065 04						
184.00	883 74	216 33	1.074 01	215 96	923 39						
192 00	799 48	216 00	941 30	215 72	829 33						
200 00	78545	215 79	857 43	215 64	796 53						
208.00	673 24	215 61	787 11	215 39	706 47						
216 00	589 09	215 39	703 63	215 16	623 38						
224.00	555 41	215 19	634 30	215 03	576 45						
232.00	532 97	215 06	587 42	214 94	546 92						
240 00	502 12	214 95	55163	214 85	516 94						

and the second of the second o

Tabla IV.3.2.a (Continuación)

		RANSITO DE	LA AVENIC	DA .	
			DF. C.F.E.)	(METODO	DE EULER)
tiempo		Hvertedor	0	H vertedor	Ö
(hrs.)	(m³/seg)	(m.s.n.m.)	(m³/seg)	(m.s.n.m.)	(m³/seg)
248 00	405.67	214.85	517.58	214.75	483 21
256 00	434 79	214.75	484 11	214 65	451 93
264 00	420 79	214 6/5	456 47	214 59	432 11
272 00	415.17	214 69	437 74	214.55	42143
280 00	378 70	214.54	41816	214 45	394 84 378 07
288 00	367 49	214 47	396.74	214.41	
296 00	364 67	214 42	382 25	214 38	369 93
304 00	364 67	214 39	373 97	214 37	366 74 347 01
312 00	333.81	214 36	362.51	214 30	162 52
320 00	0.00	214 04	274.97	213 59	91.71
328 00	0.00	213 58	161.77	213.24	57.71
336 00	0.00	213 30	102 68	213 05	39 03
344 00	0.00	213 12	69 16	212 92 212 84	27 80
352 00	0.00	212 99	48 76		20 59
360 00	0.00	212 90	35 63	212 77	15 72
368 00	0.00	212 H3	26.81	212 73	12 31
376 00	0.00	212.78	20 67	21269 21267	9.83
384 00	0 00	212 73	16 28		7 99
392.00	0.00	212 70	13 04	21265 21263	6 59
400 00	0.00	212 68	10 60		5 50
408 00	0.00	212 66	8 75	212 61 212 60	4 65
416 00	0.00	212 64	7.29	212 59	3.96
424 00	0.00	212 62	6.15	212 58	3.41
432 00	0.00	212 61	5 23	212 58	2 95
440 00	0.00	212 60	4 48	212 57	2 58
448 00	0.00	212 59	3 87	212 56	2 26
456 00	0 00	212 58		21256	2 00
464 00	0.00	212 58	2 95 2 60	212 55	1 77
472 60	000	212 57	2 29	212 55	1.58
480 00	0 00	212 56	2 04	212 55	1 42
488 00	0.00	212 56	1.83	212 54	1 28
496 00	0.00	212 56	163	212 54	1 75
504 00	0.00	212 55	1 47	212 54	1 04
512 00	0.00	212 55 212 54	1 33	212 54	0.95
520 00	0.00	212 54	1 20	212 53	0.87
528 00	0.00	212 54	1 09	212 53	0.79
536 00	0 00	212 54	1 00	212 53	0.73
544 00	0.00	212 54	0 92	212 53	0.67
552 00	0 00	212 53	0.83	212 53	0.61
560.00		212 53	0 77	212 53	0.57
568 00	0 00	212 53	0.71	212 52	0.53
576 00	0.00	212 53	0.65	212 52	0.49
584 00	0.00	212 53	061	212 52	0.45
592 00	000	212 53	0.56	212 52	0.42
600 00	0.00	212 52	0.52	212 52	0.39
608 00 616 00	0.00	212 52	0.48	212 52	0 37
624 00	0.00	212 52	0.45	212 52	0 34
624 00	0 00	212 52	0.42	212 52	0.32
640 00	0 00	212 52	0.40	212 52	0.30
648 00	0 00	212 52	0.37	212 52	0.28

managemental experience of the contract of the

Tabla IV.3.2.a (Continuación)

TRANSITO DE LA AVENIDA						
	(MÉTODO DE C.F.E.)			(MÉTODO DE EULER)		
tiempo		H vertedor	0	H vertedor	0	
(hrs.)	(m³/seg)	(m.s.n.m.)	(m³/sog)	(m.s.n.m.)	(m³/seg)	
656 00	0 00	212 52	0.34	212.52	0.27	
664 00	0 00	212 52	0.32	212.52	0.25	
672 00	0.00	212 52	0.31	212 51	0.24	
680 00	0 00	212 52	0.28	212 51	0.22	
688 00	0.00	212.52	0.27	212 51	021	
696 OO	0 00	212 52	0.25	212.51	0.20	
704 00	0.00	212.51	0.24	212 51	0.19	
712 00	0 00	212.51	0.23	212.51	0.18	
720 00	0.00	212.51	0.21	21251	0 17	
728 00	0.00	212.51	0.20	21251	0.16	
736 00	0.00	212.51	0.19	212 51	0.15	
744 00	0.00	212.51	0.19	212 51	0.15	
752 00	0.00	212 51	0.18	212 51	G 14	
760 00	0 00	212.51	0.16	212 51	0 13	
768 00	0.00	212 51	0.16	212 51	0 13	
776 00	0.00	212 51	0.15	212.51	0 12	
784 00	0 00	212 51	0 14	212 51	012	
792 00	0 00	212 51	0 14	212.51	011	
800 00 808 00	0 00	21251 21251	013	21251 21251	011	
	000	21251	012	21251	0 10	
816 00 824 00	000	21251	0 12	212 51	0 09	
832 00	0 00	21251	012	21251	0.09	
840 00	000	21251	011	21251	0.09	
848 00	0 00	21251	0 10	212 51	0.08	
856 00	000	21251	0 10	212 51	0.08	
864 00	000	21251	0 09	212 51	0.00	
872 00	000	21251	0.09	21251	0 07	
880 00	0.00	21251	0 08	212 51	0 07	
888 00	0.00	21251	0.08	212 51	0 07	
896 00	0 00	21251	0 00	212 51	0.06	
904 00	000	21251	0 08	212 51	0.06	
912 00	0 00	21251	0.07	212 51	0.06	
920 00	0 00	212 51	0.07	212 51	0.06	
928 00	0 00	212 51	0 07	212 51	0.06	
936 00	. 000 l	212 51	0 07	212 51	0.05	
1 1	- 50			0 .		
	I					

Conocido el gasto pico de salida Q_p = 1,749.94 m³/seg (Método de la C.F.E.), se obtiene el NAME = 77.8 m. (217.8 m.s.n.m.), y se entra a la curva elevaciones - áreas - capacidades (figura III.3.a.) del Vaso Puxmetacán, determinando la capacidad de superalmacenamiento = 381'978.932.4 m³, y una capacidad de regulación = 70'511.672.4 m³

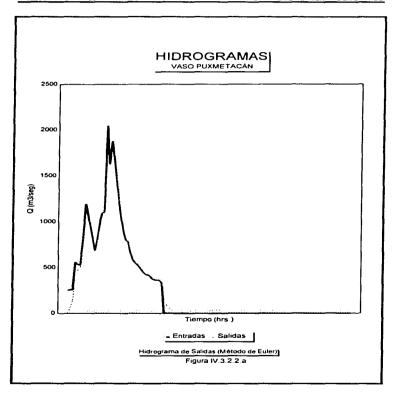


Tabla IV.3.2.b
TRÁNSITO DE AVENIDAS EN VASOS

PROYECTO : ZAPOTE

LOCALIDAD : SAN JUAN LALANA

ESTADO : OAXACA

ELEVACIÓN DEL VERTEDOR : 81 00 m s n m

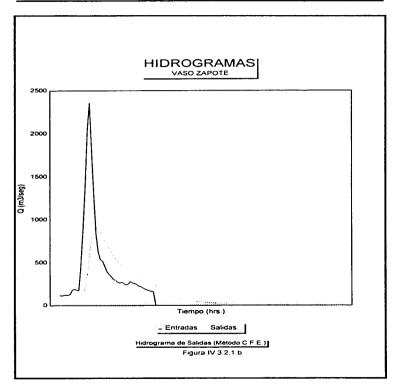
LONGITUD DE CRESTA : 70 00 m

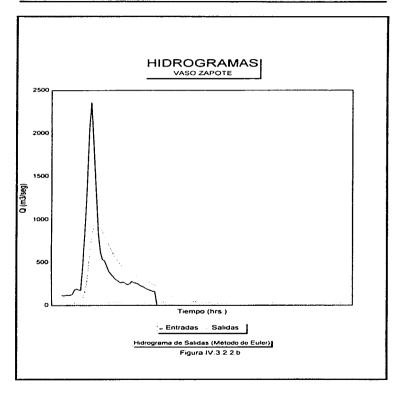
COEFICIENTE DE DESCARGA : 2 05

GASTO EN OBRA DE TOMA : 147 30 m³/seg

	TRÂNSITO DE LA AVENIDA					
		(MÉTODO	DE C.F.E.)	METODO	(METODO DE EULER)	
tiempo	1	H vertedor	0	H vertedor		
(hrs.)	(m³/seg)	(m.s.n.m.)	(m³/seg)	(m.s.n.m.)	(m³/seg)	
0 00	117 96	81 00	0 00	81 00	0.00	
6 00	113 54	81 05	1 75	81 05	1 73	
12.00	119 44	81 11	4 90	81 11	5 0 1	
18 00	120 91	81 16	8 94	81 16	9 20	
24 00	119 44	8121	13.52	81.21	1388	
30 00	129 76	81 26	18 66	81 26	19 43	
36 00	179 90	81 32	25 62	8134	28 05	
42 00	191 69	81 39	34 63	8141	37 82	
48.00	181 38	8145	43 92	8148	47 12	
54 00	176 95	8151	52.73	81 53	56 06	
60 00	448 27	8163	70 96	8171	85 93	
66 00	840 50	81 87	116 35	82 05	153 44	
72 00	1,349 24	82 28	206 77	82 57	28148	
78 00	2,020 18	82 87	366 21	83 30	50151	
84 00	2,361 39	83 57	589 99	84 06	767 54	
90.00	1.803 47	84 12	789 14	84 46	924 35	
96 00	1.284 36	84 39	894 17	84.60	979.82	
102 00	839 63	84.45	917.86	84 55	958 25	
108 00	626 70	84 38	891 81	84 42	907 75	
114 00	538 22	84 27	848 46	84 28	852 16	
120 00	520 53	84 16	804 21	84 15	802 90	
126 00	458 59	84 04	761.06	84 02	752 46	
132 00	398 14	83 92	715 96	83 88	701 33	
138 00	365 70	83 80	671 28	83 75	653 66	
144 00	339 15	83 68	629 25	83 62	609 69	
150.00	309 66	83 57	589 60	83 50	568 43	
156 00	294 92	83 46	552 76	83 39	531 43	
162.00	275 74	83 36	518 97	83 29	497 39	
168.00	262 48	83 26	487 84	83 20	466 61	
174.00	274 27	83 18	460 90	83 12	441 77	
180 00	256 58	B3 10	437 20	83 04	418 18	
186 00	24182	83 03	414 71	82 97	396 03	
192.00	250 68	82 96	394 78	82 91	378 01	
198.00	280 16	82 91	379 65	82 87	365 99	
204 00	265 42	82 87	367 27	82 83	353 75	
210.00	258 05	82 83	355 13	82.79	342 20	
216 00	249 21	82 79	343 56	82 75	331 08	

Tabla IV.3.2.b (Continuación)


TRANSITO DE LA AVENIDA						
	(MÉTODO DE C.F.E.)			(MÉTODO DE EULER)		
tiempo	1	H vertedor	0	Hyertedor	0	
(hrs.)	(m³/seg)	(m.s.n.m.)	(m³/seg)	(m.s.n.m.)	(m³/seg)	
222 00	228 56	82.75	331 72	82 70	31894	
228 00	221 19	82 71	319 74	82 66	307.47	
234 00	209 40	82 67	308 17	82 62	296 09	
240 00	194 64	82 62	296 50	82 58	284 43	
246 00	162 85	82.58	284 77	82 54	272 89	
252 00	175 48	82 54	273 40	82 49	261 95	
258 00	165 15	82 50	262 42	82 45	251 20	
264 00	162 20	82 46	252 01	82 42	24143	
270 00	0.00	82 39	234 28	82 31	215 53	
276 00	0 00	82 29	210 52	82 22	193 12	
282 00	0.00	82 21	189 78	82 14	173 65	
288 00	0 00	82 13	171 60	82 06	156 66	
294 00	0.00	82 06	155 61	81 99	141 78	
300 00	0.00	81 99	141 49	81 93	128 70	
306 00	0 00	8193	128 99	81 87	117.16	
312 00	0.00	8188	117.89	81 82	106 94	
318 00	0.00	8183	107 99	81 78	97.86	
324 00	0 00	81 78	99 16	81 73	89 77	
330 00	0 00	81 74	91 24	81 69	82 53	
336 00	0 00	81 70	84 14	81 66	76 05	
342 00	0 00	8166	77 72	81 62	70 22	
348 00	0 00	9163	71 94	81 59	64 97	
354 00 360 00	0 00	8160	66 72	81 56	60 23	
366 00	0 00	81 57	61 97	81 53	55 93	
372 00	0 00	81 55	57 66	81 51	52 03	
378 00	0 00	81 52 81 50	53 74	81 49	48 48	
384 00	1 886	81 47	50 16 46 88	81 46 81 44	45 25 42 29	
390 00	1 800	8145	43 88	81 42		
396 00	0 00	81 44	41 12	81 42	39 59 37 11	
402 00	0 00	8142	38 60	81 39	34 83	
408.00	0 00	8140	36 28	81 37	32 74	
414 00	0 000	81 38	34 13	81 36	30 81	
420 00	0 00	8137	32 15	81 35	29 03	
426 00	0 00	8136	30 32	81 33	27 38	
432 00	0 00	81 34	28 62	81 32	25 85	
438 00	0 00	81 33	27 05	81 31	24 44	
444 00	0 00	81 32	25 58	81 30	23 12	
450 00	0.00	8131	24 22	81 29	2190	
456 00	0.00	8130	22 96	81 28	20 77	
462 00	0 00	8129	21 78	81 27	1971	
468 00	0.00	8128	20 68	81 26	18 72	
474 00	0 00	81 27	19 65	81 25	17.79	
480 00	0.00	81 26	18 69	81 24	16 93	
486.00	0.00	8125	17 79	81 23	16 12	
492 00	0 00	8124	16 95	81 23	15 36	
498 00	0.00	8123	16 16	81 22	14 65	
504 00	0 00	81 23	15 41	8121	13 98	
510 00	0.00	81.22	14 71	81.21	13 35	
516 00	0.00	8121	14 05	81.20	12 76	
522.00	0 00	8121	13 43	81.19	12.20	
528.00	0 00	81 20	12 85	81.19	1168	


Tabla IV.3.2.b (Continuación)

	TRÂNSITO DE LA AVENIDA						
	(MÉTODO DE C.F.E.) (MÉTODO DE EULER)						
AT- 22-2		H vertedo					
tiempo (hrs.)	(m³/seg)	(m.s.n.m.)		H vertedo (m.s.n.m.			
	0.00	81 19	12.30	81 18	11 18		
534 00 540 00	0 00	81 19	11 78	81 18	10 72		
546.00		81 19	11 29	81 18	10 72		
552 00	0 00	81 18	1083	81 17	9.86		
558 00	0 00	81 17	10 39	81 16	9 46		
564 00	0 00	81 17	9 97	81 16	9 09		
570 00	0.00	81 17	9.58	81 16	8 73		
576 00	0 00	81 16	9 21	81 15	8 39		
582 00	0 00	81 16	8 85	81 15	8 07		
588 00	0 00	81 15	8 51	81 14	7 77		
594 00	0 00	81 15	8 19	81 14	7 48		
600 00	0 00	81 15	7 89	81 14	721		
606 00	0 00	81 14	7 60	81 13	695		
612 00	0.00	81 14	7.33	81 13	670		
618 00	0 00	81 13	7 66	81 13	6 46		
624 00	0.00	81 13	6 82	81 12	6 23		
630 00	0.00	81 13	6.58	81 12	6 02		
636 00	0.00	81 13	6 35	81 12	5.81		
642 00	0.00	81 12	6 13	81 12	5 62		
648 00	0 00	81 12	5 93	8111	5 43		
654 00	0 00	81 12	5 73	81 11	5 2 5		
660 00	0 00	81 11	5 54	81 11	5 08		
666 00	0.00	81 11	5 36	81 11	4.91		
672 00	0.00	81 11	5 18	81 10	4 76		
678 00	0.00	81 11	5 02	81 10	4 61		
684 00	0 00	81 11	4 86	81 10	4 46		
690 00	0.00	81 10	4.71	81 10	4 32 4 19		
696 00	0 00	81 10	4 56 4 42	81 10	4 19		
702 00 708 00	0 00	81 10 81 10	4 28	81 09	3 94		
714 00	000	81 09	4 15	8109	3 82		
720 00	000	81 09	4 03	81 09	3 71		
726 00	0 00	81 09	391	8109	360		
732 00	0 00	81 09	3 80	81 08	3 50		
738 00	0 00	81 09	3 69	81 08	3 40		
744 00	0 00	81 09	3 58	81 08	3 30		
750 00	0 00	81 08	3 48	81 08	3 21		
756 00	000	81 08	3 38	81 08	3 12		
762 00	000	81 08	3 29	81 08	3 03		
768 00	000	81 08	3 20	8108	2 95		
774 00	0.00	81 08	3 11	81 07	2 87		
780 00	0 00	81 08	3 02	81 07	2 79		
786 00	0 00	81 08	2 94	81 07	2 72		
792 00	0.00	81 07	2 87	81 07	2 65		

Conocido el gasto pico de salida $Q_0 = 917.86 \text{ m}^3/\text{seg}$ (Método de la C F E), se obtiene el NAME = 64.45 m. (84.45 m.s.n.m.), y se entra a la curva elevaciones-areas-capacidades (figura III.3.b.) del Vaso Zapote, determinando la capacidad de superalmacenamiento = 898'328,283.4 m^3 y la capacidad de regulación = 167'622,233.4 m^3

Biscalibration and acceptable for the comment of the

IV.4 DETERMINACIÓN DEL FETCH

Para conocer el posible oleaje que se presenta en una zona se necesita determinar el area de generación y posteriormente, como el viento es el que genera el oleaje, se calcula su velocidad. El area de generación se obtiene con la ayuda de los mapas de superficie en los cuales se presentan las isobaras y las condiciones de la atmósfera, que permiten observar la posición y desarrollo de los fenómenos meteorológicos que ocurren en una determinada zona.

La zona de generación está acotada por una variable flamada fetch, el cual se define como la longitud donde sopla el viento, en dirección hacia el punto bajo estudio.

El bordo libre es una magnitud, en metros, que mide el desnivel entre el NAME y la corona de una cortina. Es una funcion de

- Marea de Viento
- Oleaie de Viento
- Pendiente y Características del Paramento Moiado
- Factor de seguridad

IV.4.1 MAREA DE VIENTO

La marea de viento es la sobreelevación del agua, arriba del nivel de aguas tranquilas, debido al arrastre provocado por el viento, en el sentido del mismo. De acuerdo con las figuras IV.4.1.a y IV.4.1.b se considera

F = Fetch efectivo en km

V = Velocidad del viento en km por hora (a 7 5 metros de altura sobre el nivel del agua)

Profundidad del vaso en m

S = Marea de Viento en m.

$$S = \frac{V'F}{62816D}$$

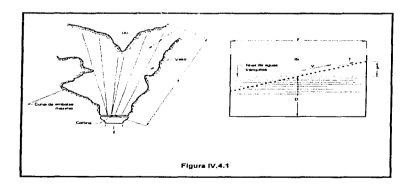
Vaso Puxmetacán

F = 10 km

[/ = 8 89 m/seg = 32 km/hr (boletin hidrométrico no 28 "Papaloapan")

D = 77 80 m (NAME)

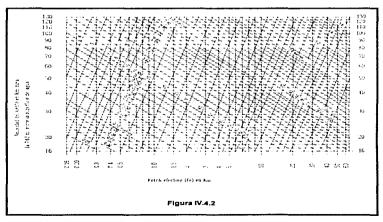
 $S = (32 \text{ km/hr})^2 \times (10 \text{ km}) / (62816 \times 77.80 \text{ m}) = 0.0021 \text{ m}$


Vaso Zapote

F = 98 km

// = 7 22 m/seg = 26 km/hr (boletin hidrométrico no 28 "Papaloapan")

/) = 64 45 m (NAME)


 $S = (26 \text{ km/hr})^2 \times (9.8 \text{ km}) / (62816 \times 64.45 \text{ m}) = 0.0016 \text{ m}$

IV.4.2 OLEAJE DE VIENTO

El efecto del olegie de viento es una función de la altura de la ola H_o y de la altura que dicha ola pueda remontar el paramento mojado de la cortina. En la figura IV.4.2 aparece el diagrama propuesto por Saville para determinar la altura de la ola significativa $h_{\rm A}$, que para efectos de calculo se puede considerar como H_0 .

Vaso Puxmetacán	Vaso Zapote
H_0 = 0.6 m	<i>]{</i>
f _J = 100 min.	<i>t</i> _J = 120 min.

IV.4.3 PENDIENTE Y CARACTERÍSTICAS DEL PARAMENTO MOJADO

En la figura IV.4.3.a aparece la relación propuesta por Saville, entre el Fetch en kilómetros, la velocidad del viento en kilómetros por hora y el período T de la ola en segundos. Con el valor

T obtenido se puede encontrar la longitud aproximada de la ola $I_{
m o}$, medida de cresta a cresta

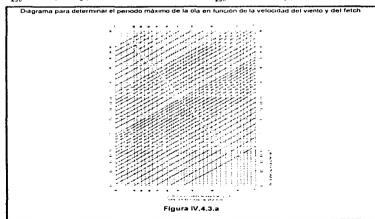
$$L_{\rm o} = 1.57 T^2$$

en donde

T está dado en segundos, y

La en metros

Vaso Puxmetacán


T = 3.1 seg

 $I_{co} = 1.57 \times (3.1 \text{ seg})^2 = 15.09 \text{ m}$

Vaso Zapote

T = 2.8 seg

 $L_{\rm m}$ = 1.57 x (2.8 seg)² = 12.31 m

En la figura IV.4.3.b se pueden obtener los valores relativos de remontaje de la ola, en función de sus características $\frac{H_o}{L_o}$ la pendiente del paramento mojado y el acabado de dicho paramento. Se puede observar que para taludes 1.2, que son los más frecuentes en cortinas de enrocamiento, ya sea con placa de concreto o de materiales graduados, los valores de $\frac{R}{H_o}$ resultan aproximadamente de 2 y 1, respectivamente. Y R = Remontaje de la ola, en m

Vaso Purmetacán Vaso Zapote (Talud de Enrocamiento 1:2) (Talud Liso 1:0.1) $\frac{H_0}{L_0}$ = (0.6 m.) / (15.09 m.) = 0.04 $\frac{H_0}{L_0}$ = (0.5 m) / (12.31 m) = 0.06 $\frac{R}{H_0}$ =09 $R = (0.9 \times 0.6 \,\mathrm{m}) = 0.54 \,\mathrm{m}$ $R = (24 \times 0.5 \,\text{m}) = 1.2 \,\text{m}$ 2.2 Meeting of the B. 1.2 U n Figura IV.4.3.b

IV.4.4 FACTOR DE SEGURIDAD

El factor de seguridad (f^* ,) es una cantidad en mi que debe estimar el proyectista y que puede variar entre 0.5 y 1.0 m.

Para ambos vasos se adopto el factor de seguridad de 1€ a 1 0 m

IV.4.5 BORDO LIBRE

Bordo Libre. Para obtener esta elevación se suman los valores obtenidos de marea de viento, oleaje de viento remontaje de la ola y factor de seguridad como se indica a continuación

$$B_t = S + H_0 + R + F_\infty$$

Vaso Puxmetacán

B, = 00021 m + 06 m + 054 m + 10 m = 214 m

La elevación de la Corona es la suma del NAME = 77.8 m (217.8 m.s.n.m.) y el Bordo Libre = 2.14 m.

Elevación de la Corona = 79.9 m (219.9 m.s.n.m.)

Vaso Zapote

B, = 00016 m + 05 m + 12 m + 10 m = 270 m

La elevación de la Corona es la suma del NAME = 64,46 m (84,46 m.s.n.m.) y el Bordo Libre = 2.7 m.

Elevación de la Corona = 67.2 m (87,2 m,s.n.m.)

CONCLUSIONES Y RECOMENDACIONES	
-----------------------------------	--

CONCLUSIONES Y RECOMENDACIONES

La zona del Bajo Papaloapan que cuenta con agua en abundancia, en exceso a veces, con planicies suavizadas, clima humedo y cálido, con una infraestructura comparativamente mejor, es potencialmente apropiada para integrarse a la economía de mercado. Esta zona tiene muchos recursos agropecuarios, subaprovechados hasta la fecha.

Dadas las características del régimen pluviómetrico, el principal problema que se presenta en la zona es de las inundaciones, por lo cual las actividades deben encaminarse primordialmente a la resolución de dicho problema, considerando esto se propuso en el presente estudio dos presas, ubicada una de ellas en el río Puxmetacan (Presa Puxmetacan) con fines múltiples y la otra ubicada en el río Manso (Presa Zapote) para el control de avenidas y riego. Presentando las características principales de dichas Presas que se obtuvieron a lo largo del desarrollo de este trabajo, en la tabla C.1

De acuerdo a las características topográficas, hidrológicas y agrológicas de los sitios en estudio, y al análisis efectuado, se ilego a la conclusión de que es factible la construcción de dichas presas, previendo que se tenga una respuesta positiva del campesino para la ejecución de estas obras, ya que se beneficiarian con el Vaso Puxmetacán un total de 135,000 Ha para riego durante un periodo de seis meses (Agosto - Enero) y se generarian 60,000 kw al año, y con el Vaso Zapote un total de 280,000 Ha para riego durante un periodo de seis meses (Agosto - Enero)

El sitio denominado Puxmetacán sobre el río del mismo nombre, que aguas abaja de la confluencia del río el Chisme toma el nombre del río La Trinidad, el área de cuenca hasta el sitio es de 958.19 km² con una capacidad total de almacenamiento de 381.9789324 Mm³, es posible regular las avenidas considerando un Tr = 1.000 años de 2.047.79 m³/seg a 292.85 m³/seg.

198


El sitio denominado Zapote se ubica sobre el río Manso, afluente derecho del río Tesechoacan, con cuenca de captación de 739,25 km² hasta el sitio del proyecto, con una capacidad total de almacenamiento de 898.3282834 Mm², se regularian las avenidas con un Tr = 500 años de 2,361,39 m²/seg a 1,443,53 m²/seg.

Se recomienda realizar estudios Geológicos directos en los sitios propuestos, ya que no se cuenta con información detallada de la Geológia existente en los sitios. Así como un estudio de impacto ambiental en la zona y un programa de cultivo que permita aprovechar al máximo los recursos existentes.

Respecto a las cuotas de agua, deben imponerse a medida que se observen resultados positivos cuantificables y que se tome conciencia de la bondad del plan.

Tabla C.1

CONCEPTO	UNIDAD	VASO PUXMETACAN	VASO ZAPOTE
CAPACIDAD DE AZOLVES	Mm²	17 68758	12 88016
CAPACIDAD MÍNIMA DE OPERACIÓN	Mm³	37 374885	
CAPACIDAD ÚTIL	Mm³	293 77968	717 82529
CAPACIDAD SUPERALMACENAMIENTO	Mm³	381 9789324	898 328283
CAPACIDAD DE REGULACIÓN	Mm³	70 5116724	167 6222334
NAMINO	m	50 49	22 00
	msnm	190 49	42 00
NAMIN	m	20 00	
	msnm	160 00	
NAMO	m	72 50	61 00
	msnm	212 50	81 00
NAME	m	77 80	64 45
	msnm	217 80	84 45
ELEVACIÓN DE LA CORONA	m	79 90	67 20
	msnm	219 90	87.20
ELEVACIÓN LECHO DEL RÍO	msnm	140 00	20 00
GASTO MÁXIMO PROBABLE	m³/seg	2,047.79	2,361 39
į		Por Gumbel	Por Gumbel
1		(Tr = 1,000 años)	(Tr = 500 años)
GASTO MÁXIMO DE DESCARGA	m³/seg	1,749 94	917 86
TIPO DEL VERTEDOR		Libre (Creager)	Libre (Creager)
LONGITUD DEL VERTEDOR	m.	70 00	70.00
TIPO DE CORTINA		Materiales Graduados	Tipo Gravedad
ALTURA DE LA CORTINA	m.	79 20	67.20
ANCHO DE LA CORTINA	m	350	500

BIBLIOGRAFÍA

- FRANCISCO J. APARICIO MIJARES. FUNDAMENTOS DE HIDROLOGÍA DE SUPERFICIE
- + D.F. CAMPOS ARANDA, PROCESOS DEL CICLO HIDROLÓGICO VOL. 1,TOMOS 1 Y 2
- + D.F. CAMPOS ARANDA PROCESOS DEL CICLO HIDROLÓGICO. VOL. 2
- D.F. CAMPOS ARANDA PROCESOS DEL CICLO HIDROLÓGICO. VOL. 3
- IV CONGRESO NACIONAL DE LA HIDRAULICA DEL 15 AL 19 DE NOVIEMBRE DE 1980,
 MÉRIDA YUCATÁN MEMORIA VOLUMEN III
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS_CIVILES:
 HIDROTÉCNIA A 12 PRECIPITACIÓN
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS...CIVILES HIDROTÉCNIA A 1 3 ESCURRIMIENTO
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS...GIYILES:
 HIDROTECNIA A 1 4 PERDIDAS
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO, DE OBRAS_CIVILES:
 HIDROTÉGNIA A 15 RELACIÓN ENTRE PRECIPITACIÓN Y ESCURRIMIENTO
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS. CIVILES: HIDROTÉCNIA A 16 ANALISIS ESTADÍSTICO
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS CIVILES:
 HIDROTÉCNIA A 18 TRANSITO DE AVENIDAS EN VASOS
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS. CIVILES:
 HIDROTECNIA A 19 SIMULACIÓN DEL FUNCIONAMIENTO DE UN VASO
- COMISIÓN FEDERAL DE ELECTRICIDAD MANUAL DE DISEÑO DE OBRAS CIVILES:
 HIDROTÉCNIA A 1 10 AVENIDA DE DISEÑO
- DR. ROLANDO SPRINGALL ANÁLISIS ESTADÍSTICO Y PROBABILÍSTICO DE DATOS
 HIDROLÓGICOS (HIDROLOGÍA SUPERFICIAL, CAPITULO 8), UNAM

- DR. ROLANDO SPRINGALL HIDROLOGÍA PRIMERA PARTE, UNAM
- SECRETARIA DE AGRICULTURA Y RECURSOS HIDRÁULICOS. NORMAS_TECNICAS HIDROLOGICAS
- SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS BOLETINES
 HIDROMÉTRICOS REGION HIDROLOGICA No. 28 (PAPALOAPAN), 1952 1982
- SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICO ESTIMACION DE LAS AVENIDAS DE PROYECTO
- GILBERTO SOTELO ÁVILA APUNTES DE HIDRÁULICA II UNAM.
- FRANCISCO TORRES HERRERA OBRAS HIDRÁULICAS 2º EDICIÓN

	ANEXO	
		·

TABLA 1

GASTO UNITARIO EN FUNCIÓN	DEL TIEMPO DE CONCENTRACIÓN
TIEMPO DE CONCENTRACION	GASTO UNITARIO
hr.	m²/seg/mm/km²
0 10 o menor	0 337
0 20	0 300
0 30	0 271
0 04	0 246
0 05	0 226
0 06	0 208
0 07	0 195
0 08	0 180
0 09	0 168
1.00	0.158
1 50	0 120
2.00	0 100
2.50	0 086
3 00	0 076
4 00	0 063
5.00	0 054
6 00	0 048
7.00	0 043
8 00	0.039
10.00	0 034
12.00	0.030
14.00	0 027
16 00	0 025
18.00	0.023
20.00	0.021
22.00	0.020
24.00	0.019

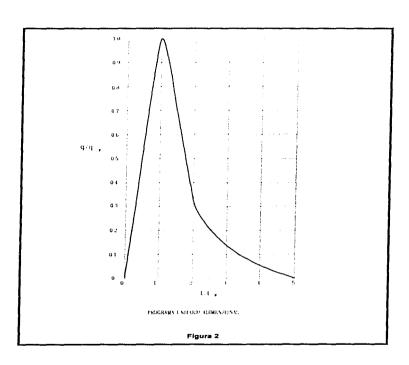


TABLA 3

	VALORES DEL COEFICIENTE DE ESCURRIMIENTO										
TIPO DEL ÁREA DRENADA		ESCURRIMENTO									
ZONAS COMERCIALES	MINIMO	MÁXIMO									
	1										
Zona comercial	0 70	0 95									
Vecindarios	0 50	0 70									
ZONAS RESIDENCIALES	1	ļ									
Unifamiliares	0 30	0 50									
Multifamiliares, espaciados	0 40	0 60									
Multifamiliares, compactos	0 60	0 75									
Semiurbanas	0.25	0.40									
Casa habitación	0.50	0 70									
ZONAS INDUSTRIALES											
Espaciado	0 50	0 80									
Compacto	0 60	0 90									
CEMENTERIOS, PARQUES	0.10	0 25									
CAMPOS DE JUEGO	0 20	0 35									
PATIOS DE FERROCARRIL	0.20	0 40									
ZONAS URBANAS	0 10	0 30									
CALLES											
Asfaltadas	0 70	0 95									
De concreto hidráulico	0.80	0 95									
Adoquinadas	0.70	0 85									
ESTACIONAMIENTOS	0 75	0.85									
TECHADOS	0.75	0 95									
PRADERAS:											
Suelos arenosos planos (pendientes 0.02)	0.05	0.10									
Suelos arenosos con pendientes medias (0.02-0.07)	0 10	0.15									
Suelos arenosos escarpados (0.07 ó más)	0.15	0.20									
Suelos arcillosos planos (0 02 ó menos)	0.13	0 17									
Suelos arcillosos c/pendientes medias (0 02-0 07)	0.18	1 22									
Suelos arcillosos escarpados (0 07 ó más)	0 25	0 35									

TABLA 4

SELECCIÓN D	EL NUMERO DE ESCUR	RIMIENT	O "N"		
USO DE LA TIERRA O	CONDICIÓN DE LA	·	TIPO DE	SUELO	
COBERTURA	SUPERFICIE	A	8	C	٥
Bosques (sembrados o cultivados)	Esparcido ó baja	[
Bosques (Serriorbus & Carrier	transpiración	45	66	77	86
	Normal	36	60	73	79
	Denso o alta	í)	i	ľ
	transpiracion	25	55	70	77
Caminos	De tierra	72	82	87	89
Caminos	Superficie dura	74	84	90	92
Bosques naturales	Muy esparcido ó	j			
Bosques Hattitus	baja transpiración	56	75	86	91
	Esparcido o baja	i	1 .		_
	transpiración	46	68	78	84
	Normal	36	60	70	76
	Denso ó alta	Į	ł	}	
	transpiración	26	52	62	69
	Muy denso o alta	J			
	transpiración	15	44	54	61
m (authum)	Surcos rectos	77	86	91	94
Descanso (sin cultivo) Cultivos de surco	Surcos recto	70	80	87	90
Campas de saico	Surcos en curvas	į.	·		87
	de nivel	67	77 .	83	
	Terrazas	64	73	79	82
Cereales	Surcos recto	64	76	84	88
Cereares	Surcos en curvas	1		ا مما	85
	de nivel	62	74	82	82
	Terrazas	60	71	79	87
Luminosas (sembradas con	Surcos recto	62	75 .	83	87
maguinaria o al voleo) o	Surcos en curvas		l ~~ '	81	84
potrero de rotación	de nivel	60 57	72	78	82
	Terrazas	68	79	86	89
Pastizal	Pobre	49	69	79	84
	Normal	39	61	74	80
	Bueno	1 35	ļ	, ''	
	Curvas de	47	67	81	88
	nivel, pobre] "'	l °′	1 "	[
	Curvas de	25	59	75	83
	nivel, normal	25	j 39	٠, ١	1
	Curvas de		35	70	79
	nivel, bueno	6	58 58	71	78
Potrero (permanente)	Normal	30 100	100	100	100
Superficie impermeable	1	יטיי ן	, ,,,,	1 .50	1
	l	l	i		

TABLA 5

			TABI	A 5			
		CLAVE DE	LAS UN	DADES D	EL SUELO		
Las	unidades de s	uelo estan refe	ridas a lo	s horizon	tes y caracter	risticas diagnósi	rca=
	enfocadas	al aspecto de	bouncapi	idad y no	a uso actual	o potencia.	TIPO
CLAVE	UNI	DAD	TIPO	CLAVE		IIDAD	
Ao	Acrisoles	Órticos		Ox	Histosoles Listosoles	gelicos	ă
Af	1 .	terricos.	D C	10	Luvisoles	orticos	C - D
Ah		humicos	l ë	ič	1 0003000	cromicas	C·D
Ap		plinticos	1 6	i ii		calcicos	C - D
Ag		gleicos	A B	l iv	-	verticos	C · D
To	Andoseles	OCTICOS	AB	Li	i -	ferricos	C · D
Im	1 :	molicos humicos	ÂB	i ii		alticos	C · D
Th	1 :	vitricos	A . B	t p	-	plinticos	C D
Tr Of	Arenosoles	terralicus	A B	Lg	} .	gleicos	C D
Q)	Arenosonis	luvicos	A B	tie	Naosales	eutricos	Č
Oc.		cambicos	- 63	Nd		districos	č
Qa		albicos	A - B	1411		humicos	A B
Bd	Cambisoles	districos	Ð	Po	Podroles	orticos humicos	A B
Be		eutricos	С	₽n		placicos	A B
48	-	humicos	С	₽₽		placicos	A B
Ba		gleicos	G (PG	Planosoins	eutricos	ີວິ
8×	•	gelicos	(0	we	Planosoms	districos	ā
Bk		calcicos	С	₩₫	l .	molicos	ō
Bc		crámicos	c	Wm	i .	humicos	D
Đν		VOITICOS	ū	Wh		soloticos	D
Bf	i •	ferralicos	_C_	Ws Wa		gelicos	D
Kb	Kastanozemus	haplicos	C - D	Da	Podzoluvisol	gleico	B
Kk		cálcicos		Da	, Guitoria	districo	В
KJ	•	luvicos	G · D	De		eutrica	Ð
C1	Chermozen	luvico	H	i ii	Ranker		С
•	ł ·	calcico	8	Re.	Regosoles	eutrico	8
Ch		haplico	e e	Re		calcareos	8
Hh	Phaeozems	haplicos	č	Ra		districos	В
HC	(:	calcareos lúvicos	č	R		gelicos	D
F#I		gleicos	Ď.	E	Rendzinas	-	C
119	l_	orticos	6 .	Zo	Siolochaks	orticos	D
Fo	Ferrasoles	vanticos	ä	2m		molicos	D
F×	1 :	rodicos	Ď	Zt		taquiricos ,	D
Fr		humicos	Ď.	Za	Solochaks	gleicos	0
Fh Fa	١.	acricos	D	Ső	Solonetz	orticos	۵
	Ferrasoles	plinficos	D	Sm		molicos	ă
Fp Je	Fluvisoles	euriticos	В	Sg		gléicos	, B
ne ne	7.00.00	calcartos	8	Sa		albicos	C-D
JC 101		districos	B	Vp	Vertisoles	pelicos	C-D
٦t	1 -	tiónicos	В	Vc	l.,	cromicos	B - C
Ja	i ·	gléyicos	С	Xh	Xerosoles	haplicos	B-C
Ge	Gleysoles	eutricos	D .	Xk		calcicos	
	J. Jyson s	calcáreos	D.	×ο		gipsicos	B · C
Gc	i -		D	ΧI	1 -	luvicos	D
Gd	1 .	districos		Ϋ́n	Yermosoles	haplicos	c
Gm		mólicos	D		l emosoies	calcicos	C
Gh		húmicos	D '	Yk			c
Gp.	1 -	plinticos	D	Υg		gipsicos	
		eutricos	0	ΥÏ		luvicos	D
Oe	Histosoles		n :	Yı		taquincos	۵
Od	I	districos		<u> </u>	L		

TABLA 6

	PARAMETR	OS DE LA D	ISTRIBUCIÓ	N GUMBEL	
<u> </u>	Yn	ı)n	- 7	Yn	on
	0.4843	0 9043	49	0 5481	1 1590
) 8	0 4902	0.9288	50	0 5485	1.1607
10	0 4952	0 9497	51	0 5489	1 1623
111	0 4996	0.9676	52	0 5493	1 1638
12	0 5035	0.9833	53	0 5497	1 1653
13	0 5070	0 9972	54	0 5501	1 1667
14	0.5100	1 0095	55	0 5504	1.1681
15	0.5128	1 0206	56	0 5508	1 1696
16	0.5157	1 0316	57	0 5511	1 1709
17	05181	1 0411	58	0 5515	1 1721
18	0 5202	1 0493	59	0 5518	1 1734
19	0.5220	1 0566	60	0 5521	1 1747
20	0 5235	1.0628	62	0 5527	1 1770
21	0 5252	1 0696	64	0 5533	1 1793
22	0.5268	1 0754	66	0 5538	1 1814
23	0.5283	1 0811	68	0 5543	1 1834
23	0 5296	1 0864	70	0 5548	1 1854
25	0 5309	1 0914	72	0 5552	1 1873
26	0 5320	1 0961	74	0 5557	1 1890
27	0 5332	1 1004	76	0 5561	1 9060
28	0 5343	1 1047	78	0 5565	1 1923
29	0 5353	1 1086	80	0 5569	1 1938
30	0 5362	1 1124	82	0 5572	1 1953
31	0 5371	1 1159	84	0 5576	1 1967
32	0.5380	1 1193	86	0 5580	1 1980
33	0.5388	1 1226	88	0 5583	1 1994
33	0.5396	1 1255	90	0 5586	1 2007
35	0.5403	1 1285	92	0 5589	1 2020
36	0 54 10	1 1313	94	0 5592	1 2032
37	0.5418	1 1339	96	0 5595	1 2044
38	0.5424	1 1363	98	0 5598	1 2055
39	0 5430	1 1388	100	0 5600	1 2065
40	0 5436	1 1413	150	0 5646	1 2253
41	0 5442	1 1436	200	0 5671	1 2360
42	0.5448	1 1458	250	0 5688	1 2429
43	0.5453	1 1480	300	0.5699	1 2479
44	0 5458	1 1499	400	0 5714	1 2545
45	0.5463	1 1518	500	0 5724	1.2588
46	0 5468	1.1538	750	0 5738	1.2651
47	0.5473	1.1557	1000	0 5745	1.2685
48	0.5477	1 1574	infinito	0 5772	1 2825

TABLA 7

VALORES DEL COEFICIENTE DE OBLICUIDAD K, EN LA DISTRIBUCIÓN LOG - PEARSON III PERIODOS DE RETORNO EN AÑOS											
	VALORES D	EL COEFICIE	PERIODOS	DE RETORN		1000	10000	COEF.SES.			
		10	20	50	100	6 900	9/4/	3 0			
1.01	·0 396	1 180	1 912	3 152	4 013	6 890	5 606	2.9			
.0 667	0 390	1 195	1 9 16	3 134	3 9/3	6.718	9.462	2.6			
-0.714	0 384	1 210	1 920	1093	1 9 12	6 670	9.316	2.7			
.0 740	0.376	1 224	1 923	3 003	3 887	6 527	9 165	2.5			
0 769	0.358	1 238	1924	3 048	3 845	6 430	9 014	1 22			
0 799	.0 360	1.250	1 925	3 023	3 800	6 329	8 85 8	1 33			
-0 832	0.351	1.262	1975	2 997	3.753	6 227	8.700	1 22			
Q 867	0.341	1.274	1921	2.970	3.705	6 122	8 939	2;			
0 905	.0330	1 284	1916	2 (442	3 656	6.016	A 211	20			
.0 946	0319	1 294	1913	2.912	3 605	5 904	8 641	1 19			
0.990	-0 307	1 302	1308	2 881	3 553	5 797 5 685	7870	1 18			
-1 037	-0.794	1 316	1901	2 848	3 499	5 570	7 696	1 17			
-1 087	0.282	1 324	1.894	2 815	3 444	5 512	7.609	1 16			
-1 140	-0 268	1 329	1 885	2 780	3 388	5 337	7 343	1 15			
-1 197	-0.254	1 333	1875	2 743	3 330	5216	7.162	1.4			
.1 256	-0.240	1 337	1 864	2 706	3.271	5 095	6 980	1.3			
-1 318 .	0.225	1 339	1.852	2 666	3 211	4 972	6.795	1.2			
-1 383	-0 210	1 340	1 632	2 626	3 149	4 847	6 609	(11			
-1 449 .	0 195	1 341	1.824	2 585	3 087	4 721	6.420	10			
1 518	-0 164	1 340	1 809	2 542	2 957	4 593	6 230	0.9			
1 588	.0 146	1 339	1 792	2 498	2 891	4 464	6 038	0.6			
.1 660	-0 137	1 336	1 774	2 453	2 824	4 334	5.847	0.7			
-1 733	.0 116	1 333	1756	2 407	2 755	4 202	5 6 5 1	0.6			
-1 806	0 099	1 328	1.735	2 359	2 686	4 071	5 457	0.5			
-1 880	0 083	1 323	1714	2 311	2615	3 937	5 250	0.4			
.1955	.0 065	1 317	1 692	2.261	2 544	3 803	5 045 3	0.3			
.2 029	-0.050	1 309	1 669	2 211 2 159	2 477	3 039	4 037	0.2			
.2 178	.0 033	1 301	1 646	2 107	2 400	3 463	4 664	000			
.2 252	0.017	1 292	1 62 1	2 054	2 326	3 398	4 471	1 01			
-2 376	0.000	1 282	1 595	2 000	2 252	3 476	4 661	1 02			
2 400	0.017	1 270	1 567	1 545	2 178	3 346	4 474	0.3			
2 472	0 033	1 258	1 539	1 890	2 104	3 216	4 287	1 .04			
.2 544	0.050	1 245	1510	1 634	2 029	3 086	4 102 3 916	-0.5			
2615	0.066	1 231	1450	1 777	1.955	2 956	3 731	06			
.2 686	0.083	1 216	1 4 1 9	1 /20	1.880	2 827	3 548	-07			
.2 755	0 099	1 200	1 380	1 663	1 806	2 699	3 309	l ŏs			
.2 824	0 1 16	1 163	1 354	1 606	1 733	2 573	3 190	90			
.2 891	0 132	1 166	1 320	1 549	1 660	2 448	3 016	.10			
.2 957	0 148	1147	: 287	1 492	1 588	2 325	2 845	1 11			
-3 022	0 164	1 128	1 252	1 435	1 518	2 404 2 087	2 680	-12			
-3 087	0 180	1.085	1 217	1 379	1449	1 974	2 521	-13			
.3 149	0 195	1 064	1 181	1 324	1 383	1 865	2 367	-14			
.3 211	0 2 1 0	1041	1 146	1 270	1318	1 760	2 220	-15			
-3 271	0 225	1 018	1 111	1 217	1 256 1 197	1 661	2 080	-16			
-3 330	0.254	0.994	1 075	1 166	1 140	1 566	1 948	-17			
.3 338	0.254	0 970	1 040	1 116	1087	1 476	1 672	-18			
-3 444	0 282	0 945	1 005	1 069	1037	1 393	1 707	-19			
.3 499	0 294	0 920	0 971	1 023	0 990	1 314	1 599	-20			
.3 553 .3 605	0 307	D 895	0 938	0 980	0.945	1 241	1 498	-21			
-3 656	0319	0 869	0 905	0 900	0.905	1 173	1 505	22			
-3 629	0 330	0.844	0 803	0.864	0 867	1 111	1 320	23			
-3 753	0 341	0.819	0.843	0.830	0 832	1 053	1 241	.25			
.3 800	0 351	0.795	0.814	0.798	0 799	0 999	1 168	.26			
.3 845	0 360	0 771	0.786	0 768	0.769	0 950	1 102	27			
.3 889	0.368	0.747	0.758	0 740	0.740	0.904	1 040	28			
-3 932	0 376	0.724	0 733	0714	0714	0.861	0 983	.29			
-3 973	0.384	0 702	0 682	0 689	0 690	0.821	0 931 0 884	3 6			
4 013	0.390	0.681	0 664	0 666	0.667	0.785	0.604				

TABLA 8

	Por	centaje	ment	uales d	e las ho	ras del	dia col	n relaci	ón a la: dor.	del an	o,	
Latitud	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.
Norte			L	9.92	12 65	14 12	13 00	1125	8 55	6 60	4 12	2 64
65°	3 45	5 14	7 90 7 93	9.87	12 42	13 60	13 31	11 15	8 58	6.70	4 35	3 04
64°	4 01	5 40	7.95	9.83	12 22	13 22	13 02	11 04	8 6,0	6.79	4.55	3 37
63°	4 25	5 52	7 99	9.75	12 03	12 91	12 79	10 92	8 50	6.86	4 72	367
62°	4 46	5 61	801	9.71	11 88	12 63	12.55	10 84	8 55	6.94	4.89	3 93
60°	4 67	5 70	8 05	9 66	11 72	12 39	12 33	10.72	8 57	7 00	5 04	4 15
	481	5 78	8 05	9 60	1161	12 23	12.21	10 60	8.56	7 07	5 09	4 3 1
59° 58°	4 99	5 85	8 06	9.55	11 44	12 00	12 00	10.56	8 56	7 13	5 13	4 55
570	5 14	5 95	8 07	9.51	11.32	11 77	11 87	10 47	8 5-4	7 19	5 2 7	4 69
	5 29	6 00	8 10	945	11 20	11 67	11 69	10.40	8 52	7 25	5 54	4 89
56° 55°	5 39	606	8 12	941	11 11	11 53	11.59	10 32	8.51	Z 30	5 62	5.01
	5 5 5	6 12	B 15	9.36	11 00	1140	11.43	10 27	8 50	7.33	5 74	5 17
54° 53°	564	6 19	8 16	9 32	10.88	11 31	11 34	10 19	8 52	7.38	5 83	5 31
	5 75	6 23	8 17	9 28	1081	11 13	11 22	10 15	8 49	7.40	5 94	5 4 3
52°	5 87	6 25	8.21	9 26	10.76	11 07	11 13	10 05	8 48	7.41	5 97	5 46
51°	598	6 32	8 25	925	10.69	10.93	10 99	10 00	8 44	7.43	6 07	5 65
50°	6 13	642	8 22	915	10.50	10 72	10.83	9 92	8 45	7.56	6 24	5.86
48° 46°	6 30	6 50	8 24	9 09	10 37	10.54	10 66	9.82	8 44	7.61	6.38	65 05
	6 45	6 59	8 25	9 04	10 22	10 38	10.50	9.75	8 4 3	7 67	6.51	6 2 3
440	6 60	666	8 28	897	10 10	10.21	10 37	9.64	8 42	7.73	6 63	6 39
42°	6 75	6 73	8 30	8 92	9 99	10 08	10 34	9.56	8 4 1	7.78	6 73	6 53
40*	687	6 79	8 34	890	9 92	9 95	10 10	9 47	8.38	7.80	6.82	5 66
38°	699	686	8 35	8 85	9 3 1	983	9 99	9.40	8 36	7.85	6 92	6 79
36°	7 10	691	8 36	880	9.72	9.70	988	9 33	8 36	7 90	7 02	6 92
34°	7 20	697	8 37	8 72	9 63	9 60	9.77	9 28	8 34	7 93	7 11	7.05
32° 30°	7 30	7 03	8 38	8 72	9 53	9 49	967	9 22	8 34	7.99	7 19	7 14
	7 40	7 02	8 39	8 68	9.46	9.38	9.58	9 16	6.32	8 02	7.27	7 2 7
28° 26°	7 49	7 12	840	8 64	9 37	9 30	949	9 10	8 32	8.06	7.36	7 35
26°	7 58	7 17	840	8 60	9 30	9 19	941	9 05	B 31	8 10	7 43	7 46
220	7.76	7 22	841	8 57	9 22	9 12	931	9 00	8 30	8 13	7.50	7.56
200	7.73	7 26	8.40	8 52	9 14	9 02	9 25	8 95	B 30	8 19	7 58	7 88
189	7 88	7 26	8 40	8 46	9.06	8 99	9 20	8.81	8 29	8 24	7 67	7 89
16°	7 94	7 30	8 42	8 45	8 98	8.98	9 07	8 80	8 28	8 24	7 72	7 90
	7.08	7 39	8 43	8 4 4	8 90	8 73	8 99	8 79	8 28	8 28	7 85	8 04
14° 12°	8 08	740	844	8 43	8 84	8 64	8 90	8 78	8.27	8 28	7 85	8.05
100	8 11	7 40	8 44	843	8 81	8 57	8 84	8 74	8 26	8 29	7 89	8 08
10°	8 13	741	8 45	8 39	8 75	8 51	8 77	870	8 25	8 31	7 89	8 1 1
6°	8 19	7 49	8 45	8 39	8 75	8 48	8 75	8 69	8 25	841	7 95	8 19
6°	8 20	7 58	8 46	8 33	8 65	8 40	8 67	8 63	8.21	8 43	7 95	8 20
20	8 43	7 62	8 47	8 22	8 51	8 25	8 52	8 50	8 20	8 45	8 16	8 42
00	8 49	767	8 49	8 22	8 49	8 22	8 49	8 4 9	8 19	8 49	8 22	8 4 9

(Continuación) TABLA 8

Latitud					Porcentajes mensuales de las horas del día con relación a las del año,												
Latitud	para latitudes de 0º a 50º al sur del ecuador.																
	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.					
Sur																	
C°	8 49	7 67	8 49	8 22	8 49	8 22	8 49	8 49	8 19	8 49	8 22	8 49					
20	8 55	771	8 49	8 19	844	8 17	8 43	8 44	8 19	8 52	8 27	8 55					
4"	8 64	7 76	8 50	8 17	8 39	8 08	0.20	8 41	8 19	8 56	8 33	8 65					
60	8 71	781	8 50	8 12	8.30	8 00	8 19	8 37	8 18	8 59	8 38	8 74					
8.	8 79	7 84	8 51	8 1 1	8 24	7 91	8 13	8 32	8 18	8 62	8 47	884					
10°	8 85	7 86	8 52	8 09	8 18	784	811	8.28	8 18	8 65	8 52	8 90					
120	8 91	791	8 53	8 06	815	7 79	8 08	8.26	817	8 67	8 58	8 95					
140	8 97	7 97	8 54	6 03	8 07	7 70	7 01	8 19	B 16	8 69	8 65	901					
16"	9 09	8 02	8 56	7 98	7.96	7 57	7 94	8 14	H 14	8.76	8 72	9 17					
180	9 18	8 06	8 57	7 93	7 99	7 50	7 88	8 09	8 14	8 80	880	9 2 4					
20°	9 25	8 09	8 58	7 92	7.83	741	7.73	8 05	8 13	8 63	8.85	9 32					
220	9 36	8 12	8 58	7 89	7 74	7 30	7 76	8 03	8 13	8 86	85-0	9 38					
24°	9 44	B 17	8 59	787	7 60	7 24	7.58	7 99	8 12	8 89	8 96	9 4 7					
26°	9 52	8 28	8 60	781	7.56	7 07	7 49	787	8 1 1	8 94	9 10	961					
28°	961	8 31	861	7.79	7.49	6 99	7 40	7 85	8 10	8 97	9 19	974					
30*	9 69	8 33	8 63	7 75	7.43	6 94	7 30	7 80	8 09	9 00	9 24	9 80					
32°	9 76	8 36	864	7 70	7.39	6.85	7.20	7 73	808	9 04	931	987					
34°	988	8 4 1	8 65	7 68	7 30	673	7 10	7 69	8 06	9.07	9-38	9 99					
36°	10 06	8 53	8 67	761	7 10	6 59	6 99	7 59	806	9 15	9.51	10 21					
38°	10 14	8 61	8 68	7 59	7 03	6 46	6 87	7.51	8 05	9 19	9 60	10 34					
40°	10 24	8 65	8 70	7 54	6 96	6 33	673	7 46	8 04	9 23	9 69	10 42					
420	10 39	8 72	8 71	7 4 9	6.85	6 20	6 60	7 39	8 0 1	9 27	9 79	10 57					
440	10 52	8 8 1	8 72	7 44	6 73	6 04	6 45	7 30	8 00	9 34	9 9 1	10 72					
46°	10 68	8 8 8	873	7 39	661	5 87	6 30	7.21	798	9 4 1	10 03	10 90					
48°	10.85	8 98	8 76	7 32	6 45	5 69	6 13	7 12	7 96	9 47	10 17	11 09					
50°	11 03	9 06	8 77	7 2 5	6 3 1	5 48	5 98	7 03	7 95	9 53	10 32	11.30					

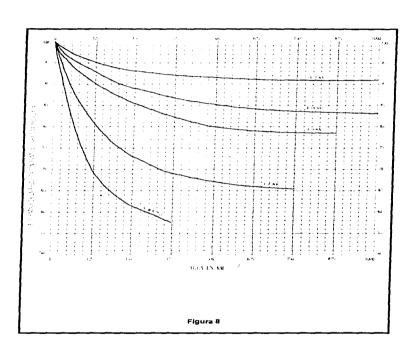


TABLA 9

Cultivo	Duración normal del periodo de desarrollo de los cultivos ¹	Coeficiente (K) de uso consuntivo ² 0 80 a 0 90	
Alfalfa	Entre heladas		
Plátanos	Año completo	080a100	
Habas, frijoles, etc	3 meses	060a070	
Cacao	Año completo	070a080	
Café	Año completo	0 70 a 0 80	
Maiz	4 meses	075a085	
Algodón	7 meses	0 60 a 0.70	
Dátiles	Año completo	0 65 a 0 85	
Linaza	7 a 8 meses	0.70 a 0.80	
Cereales pequeños	3 meses	0.75 a 0 85	
Sorgo	4 a 5 meses	0 70 a 0.80	
Semilias oleaginosas	4 a 5 meses	0 65 a 0 85	
Frutales:			
Aguacate	Año completo	0 50 a 0 55	
Toronja	Año completo	0 55 a 0 65	
Naranja y limón	Año completo	0 45 a 0 55	
Nuez de nogal	Entre heladas	0 60 a 0 70	
De hojas; caedizas Pasturas:	Entre heladas	0 60 a 0.70	
Pastos	Entre heladas	0.75 a 0.85	
Trébol blanco	Entre heladas	080a085	
Papas	3 a 5 meses	0 65 a 0 75	
Arroz	3 a 5 meses	1.00 a 1.10	
Henequén	Año completo	0 65 a 0 70	
Remolacha de azucar	6 meses	0.65 a 0.75	
Caña de azúcar	Año completo	0 80 a 0 90	
Tabaco	4 meses	0.70 a 0.80	
Jitomates	4 meses	0.65 a 0.70	
Hortalizas	2 a 4 meses	0.60 a 0.70	
Viñedos	5 a 5 meses	0.50 a 0.60	

Notas: 1 La duración del periodo de desarrollo depende básicamente de la vanedad del cultivo y de la estación en la cual se produce el mismo Los cultivos anuales plantados durante el invierno normalmente necesitan mucho más tiempo que el requendo durante el verano.

2 Los valores bajos de K para la formula de Blaney-Criddle (U=KF) son para las zonas más húmedas, mientras que los altos son para climas áridos

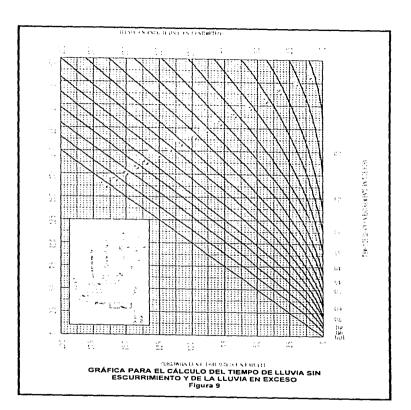


TABLA 10

NOMBRE	diámetro profundida		CARACTERISTICAS	FACTOR DE
	(m)	(m)	1	CORRECCIÓN
Clase A	1.219	0 254	Base del bote 0 152 m sobre el suelo Nivel de operación 0 051 m bajo el labio	07(06a082)
Sunken Screened (young)	061	0 914	El labio sobresale 0 051 m del suelo Rejilla de 0 006 m	0 91 (variable)
Colorado Sunkek	0 528	0 457	Cuadrado de 0 528 m de lado Labio 0 051 m sobre el suelo	0 83 (0 75 a 0 86)
BPI Sunken	1 829	0 61		0 91 (variable)
Australiano	exterior 1 219 interior 0.914	exterior 0 864 interior 0.914		09(07a09)
Pishe			Basado en evaporación a través de papel filtro	0 8 (variable)