0//62

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA DIVISIÓN DE ESTUDIOS DE POSGRADO

SIMULACIÓN DE FLUJO LAMINAR Y CRÍTICO EN REDES DE DISTRIBUCIÓN : APLICACIÓN AL MODELO INTEGRAL DE REDES DE AGUA POTABLE

MARTHA PATRICIA HANSEN RODRÍGUEZ

TESIS

COMO REQUISITO PARA OBTENER EL GRADO DE

MAESTRA EN INGENIERÍA (HIDRÁULICA)

MÉXICO, D.F. TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Dedicada especialmente a mi mamá: Martha Luz, y mis hermanos: Ivette Reneé y José Antonio.

AGRADECIMIENTOS

A mis sinodales, por el tiempo dedicado para la revisión de este trabajo.

Dr. Felipe I. Arreguín Cortés Dr. Velitchko G. Tzatchkov Dra. Alejandra Martín Domínguez M.I. José Oscar Guerrero Angulo M.I. Arturo González Herrera

Y a todos los que me ayudaron en la realización de la misma, en especial a Gabby.

A mis amigos y familiares, por su apoyo incondicional.

RESUMEN

Se presenta el análisis de la red de agua potable del fraccionamiento "El Paraje" ubicado en Jiutepec. Morelos, en donde se encontró que el número de Reynolds calculado en varios tramos pertenecía a un flujo de tipo laminar (Re < 4000), hecho que regularmente se desprecia.

Mediante un experimento realizado in situ se verificó que los resultados obtenidos con el sistema que se propone son congruentes con los reales. Se incluyen fotografías tomadas en el lugar, donde se observa que el flujo presente en el tramo analizado es de tipo laminar.

El comprobar en campo la existencia del flujo laminar dio origen a la simulación de éste en un sistema de modelación hidráulica de redes, a través de un propuesta que evita problemas de convergencia.

Se presentan los distintos ensayos efectuados para resolver la discontinuidad existente entre las ecuaciones de Colebrook-White y Poiseuille, las ventajas y desventajas de cada una de las tentativas. Finalmente se presenta una propuesta que resuelve adecuadamente el problema.

Se propuso una ecuación que permite encontrar el factor de pérdida f para cualquier tipo de flujo. Ésta es continua y explícita, de tal forma que puede integrarse en cualquier sistema de cómputo que necesite de dicho valor en sus análisis. El factor de pérdida se obtiene de una forma fácil y rápida, sin la necesidad de aplicar un método numérico para su cálculo.

Se realiza el análisis de la influencia del flujo laminar y crítico en las redes de agua potable y se dan los resultados obtenidos al modelar una red de tamaño mediano considerando, por un lado, flujo laminar, crítico y turbulento y por otro, solamente flujo turbulento. Para comprobar si los resultados tienen un comportamiento parecido a la realidad, se compararon los obtenidos con la ecuación propuesta y los medidos en campo en la red de agua potable de la población de Chalco, en el Estado de México.

INTRODUCCIÓN	01
CAPÍTULO I. "ANTECEDENTES"	03
I. 1 Simulación de la red de agua potable del fraccionamiento "El Paraje", Jiutepec, Morelos	0∆ ∩∆
I. 1. 1 Red primaria.	04
I. 1. 2 Red secundaria número 1	
I. 1. 3 Red secundaria número 2	
I. 1. 4 Red secundaria número 3	
I. 1. 5 Red secundaria número 4	
I. 1. 6 Red secundaria número 5	
I. 1. 7 Red secundaria número 6	
I. 1. 8 Red secundaria número 7	
I. 1. 9 Red secundaria número 8.	
I. 2 Tipo de flujo existente en todo el sistema.	
I. 3 Comprobación de campo	
CAPÍTULO II. "CONCEPTOS FUNDAMENTALES". II. 1 Tipos de flujo. II. 1. 1 Flujo laminar y turbulento. II. 1. 2 Flujo crítico.	19 20 20
II. 2 Fórmula de Darcy-Weisbach.	21
II. 3 Cálculo del factor de pérdida (/)	21
II. 3. 1 Ecuación de Poiseuille	
II. 3. 2 Ecuación de Colebrook-White	22
II. 3. 3 Diagrama de Moody	23
II. 4 Ecuaciones para el cálculo de la pérdida de energia	24
II. 4. 1 Pérdida de energía en flujos laminares	25
II. 4. 2 Pérdida de energía en flujos turbulentos	25
CAPÍTULO III. "PROPUESTAS DE SOLUCIÓN"	26
III. 1 Ecuación modificada de Colebrook-White.	26
III. 2 Cálculo sin etapas y sin interlape previo	
III. 3 Cálculo por etapas y sin interlape previo	
III. 4 Cálculo sin etapas y con interlape previo	
III. 5 Cálculo por etapas y con interlape previo	
III. 6 Unión de las ecuaciones de Poiseuille y de Colebrook-White por medio de una recta	
III. 6. 1 Ecuación que permite la unión.	
III. 6. 1. 1 Ejemplo de aplicación	
III. 7 Propuesta final	

CAPÍTULO IV. "INFLUENCIA DE FLUJO LAMINAR Y CRÍTICO	
EN REDES DE AGUA POTABLE"	40
IV. 1 Metodología general	40
IV. 2 Ejemplos de redes ficticias	
IV. 2. 1 Red de agua potable integrada de una red primaria y ocho redes secundarias	41
IV. 2. 1. 1 Resultados de las cuerdas de la red primaria	
IV. 2. 1. 2 Resultados de los tramos de la red secundaria número 1	42
IV. 2. 1. 3 Resultados de los tramos de la red secundaria número 2	42
IV. 2. 1. 4 Resultados de los tramos de la red secundaria número 3	43
IV. 2. 1. 5 Resultados de los tramos de la red secundaria número 4	43
IV. 2. 1. 6 Resultados de los tramos de la red secundaria número 5	43
IV. 2. 1. 7 Resultados de los tramos de la red secundaria número 6	44
IV. 2. 1. 8 Resultados de los tramos de la red secundaria número 7	
IV. 2. 1. 9 Resultados de los tramos de la red secundaria número 8.	
IV. 2. 2 Red de agua potable integrada únicamente de la red primaria	45
IV. 2. 2. 1 Resultados de las cuerdas de la red primaria	
IV. 2. 3 Red de agua potable con tomas domiciliarias y extremos	
alejados a los puntos donde ingresa el agua	46
IV. 2. 3. 1 Resultados de las cuerdas de la red primaria	
IV. 2. 4 Red de agua potable sin tomas domiciliarias y extremos	
alejados a los puntos donde ingresa el agua	47
IV. 2. 4. 1 Resultados de las cuerdas de la red primaria	
IV. 2. 5 Red de tubos con una sola cuerda en la red primaria, con nodo	
principal y con redes secundarias	48
IV. 2. 5. 1 Resultados de la cuerda de la red primaria y de los	
tramos de la red secundaria	48
IV. 2. 6 Red de tubos con una sola cuerda en la red primaria, sin nodo	
principal y con una red secundaria desconectada	49
IV. 2. 6. 1 Resultados de la cuerda de la red primaria y de los	
tramos de la red secundaria	49
IV. 2. 7 Red en donde existe un tanque hidroneumático o una	
descarga libre con dos tipos de frontera diferentes	50
IV. 2. 7. 1 Resultados de la cuerdas de la red primaria y de los	
tramos de la red secundaria	50
IV. 2. 8 Red primaria de agua potable de tamaño mediano con 100 redes	
IV. 2. 8. 1 Gastos obtenidos en las cuerdas de la red primaria no. 1	53
IV. 2. 8. 2 Gastos obtenidos en las cuerdas de la red primaria no. 25	54
IV. 2. 8. 3 Gastos obtenidos en las cuerdas de la red primaria no. 100	54
IV. 2. 8. 4 Gastos obtenidos en los tramos de la red primaria no. 1	54
IV. 2. 8. 5 Gastos obtenidos en los tramos de la red primaria no. 25	55
IV. 2. 8. 6 Gastos obtenidos en los tramos de la red primaria no. 100	55
IV. 3 Ejemplos de redes reales.	56
IV. 3. 1 Fraccionamiento "El Paraje", Jiutepec, Morelos	56
IV. 3. 1. 1 Gastos obtenidos en la red primaria	57
Tital Tital Control of the teachers and the processing the control of the control	

IV. 3. 1. 2 Gastos obtenidos en la red secundaria no. 6	58
IV. 3. 2 Red de agua potable de Chalco, Estado de México	59
IV. 3. 2. 1 Presiones medidas y calculadas con ambos modelos en	
distintos puntos de la red de Chalco	60
·	
CAPÍTULO V. "CONCLUSIONES Y RECOMENDACIONES"	62
BIBLIOGRAFÍA	64
ANEXOS	
A. MODELACIÓN INTEGRAL DE REDES DE AGUA POTABLE	
A. 1 Conceptos hidráulicos	
A. 2 Ecuación de las tomas domiciliarias	
A. 3 Cuerda de distribución	
A. 4 Procedimiento de simulación	
A. 5 Cuerda con válvulas de control	
	73
A. 6 Solución del modelo	
A. 7 Procedimiento para valuar los términos del modelo en las	
A. 7 Procedimiento para valuar los términos del modelo en las	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución	73
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE"	73
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción.	73
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria.	737575
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1.	73757575
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2.	7375757578
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5. B. 8 Red secundaria no. 6.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5. B. 8 Red secundaria no. 6. B. 9 Red secundaria no. 7.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5. B. 8 Red secundaria no. 6.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5. B. 8 Red secundaria no. 6. B. 9 Red secundaria no. 7. B. 10 Red secundaria no. 8.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5. B. 8 Red secundaria no. 6. B. 9 Red secundaria no. 7. B. 10 Red secundaria no. 8.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1. B. 4 Red secundaria no. 2. B. 5 Red secundaria no. 3. B. 6 Red secundaria no. 4. B. 7 Red secundaria no. 5. B. 8 Red secundaria no. 6. B. 9 Red secundaria no. 7. B. 10 Red secundaria no. 8. C. SUBRUTINAS DE SOLUCIÓN NUMÉRICA. C. 1 Cálculo sin etapas y sin interlape previo.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1 B. 4 Red secundaria no. 2 B. 5 Red secundaria no. 3 B. 6 Red secundaria no. 4 B. 7 Red secundaria no. 5 B. 8 Red secundaria no. 6 B. 9 Red secundaria no. 7 B. 10 Red secundaria no. 8 C. SUBRUTINAS DE SOLUCIÓN NUMÉRICA. C. 1 Cálculo sin etapas y sin interlape previo. C. 2 Cálculo con etapas y sin interlape previo.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE". B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1 B. 4 Red secundaria no. 2 B. 5 Red secundaria no. 3 B. 6 Red secundaria no. 4 B. 7 Red secundaria no. 5 B. 8 Red secundaria no. 6 B. 9 Red secundaria no. 7 B. 10 Red secundaria no. 8. C. SUBRUTINAS DE SOLUCIÓN NUMÉRICA. C. 1 Cálculo sin etapas y sin interlape previo. C. 2 Cálculo con etapas y sin interlape previo. C. 3 Cálculo sin etapas y con interlape previo. C. 4 Cálculo por etapas y con interlape previo.	
A. 7 Procedimiento para valuar los términos del modelo en las cuerdas de distribución. B. RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE" B. 1 Introducción. B. 2 Red primaria. B. 3 Red secundaria no. 1 B. 4 Red secundaria no. 2 B. 5 Red secundaria no. 3 B. 6 Red secundaria no. 4 B. 7 Red secundaria no. 5 B. 8 Red secundaria no. 6 B. 9 Red secundaria no. 7 B. 10 Red secundaria no. 8 C. SUBRUTINAS DE SOLUCIÓN NUMÉRICA. C. 1 Cálculo sin etapas y sin interlape previo. C. 2 Cálculo con etapas y sin interlape previo.	

D. RESULTADOS PARA DETERMINAR LA INFLUENCIA DEL	-
FLUJO LAMINAR Y CRÍTICO EN REDES DE AGUA POTABL	
D. 1 Resultados del ejemplo no. 1	
D. 1. 1 Resultados de las cuerdas de la red primaria. D. 1. 2 Resultados de las cuerdas de la red secundaria no l	
D. 1. 3 Resultados de las cuerdas de la red secundaria no 2 D. 1. 3 Resultados de las cuerdas de la red secundaria no 2	
D. 1. 4 Resultados de las cuerdas de la red secundaria no 3	
D. 1. 5 Resultados de las cuerdas de la red secundaria no 4	
D. 1. 6 Resultados de las cuerdas de la red secundaria no 5	
D. 1. 7 Resultados de las cuerdas de la red secundaria no 6	
D. 1. 8 Resultados de las cuerdas de la red secundaria no 7	
D. 1. 9 Resultados de las cuerdas de la red secundaria no 8	
D. 2 Resultados del ejemplo no. 2	
D. 2. 1 Resultados de las cuerdas de la red primaria	
D. 3 Resultados del ejemplo no. 3	
D. 3. 1 Resultados de las cuerdas de la red primaria.	
D. 4 Resultados del ejemplo no. 4	
D. 4. 1 Resultados de las cuerdas de la red primaria	
D. 5 Resultados del ejemplo no. 5	
D. 5. 1 Resultados de la cuerda de la red primaria y de los tramos	
de la red secundaria	105
D. 6 Resultados del ejemplo no. 6	
D. 6. 1 Resultados de la cuerda de la red primaria y de los tramos	
de la red secundaria	105
D. 7 Resultados del ejemplo no. 7	
D. 7. 1 Resultados de la cuerda de la red primaria y de los tramos	
de la red secundaria	106
D. 8 Resultados del ejemplo no. 8	107
D. 8. 1 Energías obtenidas en los nodos de la red primaria no. 1	
D. 8. 2 Energías obtenidas en los nodos de la red primaria no 25	108
D. 8. 3 Energías obtenidas en los nodos de la red primaria no. 100	108
D. 8. 4 Gastos obtenidos en las cuerdas de la red primaria no. 1	108
D. 8. 5 Gastos obtenidos en las cuerdas de la red primaria no.25	109
D. 8. 6 Gastos obtenidos en las cuerdas de la red primaria no 100	109
D. 8. 7 Gastos obtenidos en los tramos de la red primaria no l	109
D. 8. 8 Gastos obtenidos en los tramos de la red primaria no 25	110
D. 8. 9 Gastos obtenidos en los tramos de la red primaria no 100	110
D. 9 Resultados de la modelación de la red de agua potable del	
fraccionamiento "El Paraje", en Jiutepec, Morelos	111
D. 9. 1 Gastos obtenidos en la red secundaria no 6	
D. 9. 2 Gastos obtenidos en la red secundaria no 6	

ILUSTRACIONES

1.1 Red de agua potable del fraccionamiento El Paraje, Jiutepec, Morelos	04
1.2 Red Primaria del fraccionamiento El Paraje y características principales.	05
1.3 Representación gráfica de los números de Reynolds obtenidos	06
1.4 Red Secundaria No. 1 del fraccionamiento El Paraje y características principales	
1.5 Representación gráfica de los números de Reynolds obtenidos	
1.6 Red Secundaria No. 2 del fraccionamiento El Paraje y características principales	07
1.7 Representación gráfica de los números de Reynolds obtenidos	
1.8 Red Secundaria No. 3 del fraccionamiento El Paraje y características principales	08
1.9 Representación gráfica de los números de Reynolds obtenidos	09
1.10 Red Secundaria No. 4 del fraccionamiento El Paraje y características principales	09
1.11 Representación gráfica de los números de Reynolds obtenidos	10
1.12 Red Secundaria No. 5 del fraccionamiento El Paraje y características principales	10
1.13 Representación gráfica de los números de Reynolds obtenidos	11
1.14 Red Secundaria No. 6 del fraccionamiento El Paraje y características principales	11
1.15 Representación gráfica de los números de Reynolds obtenidos	12
1.16 Red Secundaria No. 7 del fraccionamiento El Paraje y características principales	12
1.17 Representación gráfica de los números de Reynolds obtenidos	13
1.18 Red Secundaria No. 8 del fraccionamiento El Paraje y características principales	sentación gráfica de los números de Reynolds obtenidos
1.19 Representación gráfica de los números de Reynolds obtenidos	14
1.20 Representación gráfica de los números de Reynolds obtenidos	
1.21 Flujo laminar y turbulento en la red de agua potable del fraccionamiento"El Paraje"	15
1.22 Modelo utilizado por Reynolds para visualizar el comportamiento de un flujo	
en tramo de tubo	
1.23 Comportamiento del colorante en el experimento	
1.24 Comportamiento de las burbujas de aceite coloreado	
1.25 Frente de avance del colorante.	18
2.4 Ph. in Janeiro and the lands on the first	20
2.1 Flujos laminar y turbulento en un tubo	20
2.2 Diagrama de Moody	24
3.1 Cálculo sin etapas y sin traslape previo	28
3.2 Cálculo con etapas y sin traslape previo.	29
3.3 Procedimiento del cálculo sin etapas y con interlape previo	30
3.4 Cálculo por etapas con interlape previo	31
3.5 Diagrama de Moody, (Poiseuille es válida para Re≤2000 yColebrook-White para Re ≥ 4000)	32
3.6 Unión de las ecuaciones, utilizando para esto una recta en escala logarítmica	33
3.7 Unión de las ecuaciones utilizando una línea recta	37
3.8 Propuesta final para salvar la discontinuidad.	39
4. 1 Red de agua potable del ejemplo número IV. 2. 1	+1
4. 2 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al	.4.7
modelar la red utilizando la ecuación de Colebrook-White y la propuesta	4∠

4. 3 Resultados de las cuerdas de la red secundaria número 1, obtenidos en los nodos	
l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	42
4. 4 Resultados de las cuerdas de la red secundaria número 2, obtenidos en los nodos	
l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	42
4. 5 Resultados de las cuerdas de la red secundaria número 3, obtenidos en los nodos	
l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	43
4. 6 Resultados de las cuerdas de la red secundaria número 4, obtenidos en los nodos	
l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	43
4. 7 Resultados de las cuerdas de la red secundaria número 5, obtenidos en los nodos	
	43
4. 8 Resultados de las cuerdas de la red secundaria número 6, obtenidos en los nodos	
l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	44
4. 9 Resultados de las cuerdas de la red secundaria número 7, obtenidos en los nodos	
1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	44
4. 10 Resultados de las cuerdas de la red secundaria número 8, obtenidos en los nodos	
l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta	44
4. 11 Red de agua potable del ejemplo número IV. 2. 2	
4. 12 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al	
modelar la red utilizando la ecuación de Colebrook-White y la propuesta	44
4. 13 Red de agua potable del ejemplo número IV. 2. 3	
4. 14 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al	
modelar la red utilizando la ecuación de Colebrook-White y la propuesta	46
4. 15 Red de agua potable del ejemplo número IV. 2. 4	
4. 16 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al	
modelar la red utilizando la ecuación de Colebrook-White y la propuesta	47
4. 17 Red de agua potable del ejemplo número IV. 2. 6	
4. 18 Resultados de las cuerdas de la red primaria y en los tramos de la red secundaria,	
obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de	
Colebrook-White y la propuesta	48
4. 19 Red de agua potable del ejemplo número IV. 2. 6	
4. 20 Resultados de las cuerdas de la red primaria y en los tramos de la red secundaria,	
obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de	
Colebrook-White y la propuesta	49
4. 21 Red primaria de agua potable del ejemplo número IV. 2. 7	50
4. 22 Resultados de las cuerdas de la red primaria y en los tramos de la red secundaria,	
obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de	
Colebrook-White y la propuesta	50
4. 23 Red primaria de agua potable del ejemplo número IV. 2. 8	51
4. 24 Geometría de cada una de las redes secundarias del ejemplo número IV. 2. 8	52
4. 25 Comparación de las energías calculadas con la ecuación de Colebrook-White y	
la propuesta en los nodos de la red	52
4. 26 Comparación de las energías calculadas con la ecuación de Colebrook-White y	
la propuesta en los nodos de la red	52
4. 27 Comparación de las energías calculadas con la ecuación de Colebrook-White y	
la propuesta en los nodos de la red	53

4. 28 Comparación de los gastos calculados con la ecuación de Colebrook-White y la	
propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de las	
	53
4. 29 Comparación de los gastos calculados con la ecuación de Colebrook-White y la	
propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de las	
	54
4. 30 Comparación de los gastos calculados con la ecuación de Colebrook-White y la	
propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de las	
	54
4. 31 Comparación de los gastos calculados con la ecuación de Colebrook-White y la	
propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de los	
tramos de la red	54
4. 32 Comparación de los gastos calculados con la ecuación de Colebrook-White y la	
propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de los	
tramos de la red.	55
4. 33 Comparación de los gastos calculados con la ecuación de Colebrook-White y la	
propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de los	
tramos de la red.	55
4. 34 Croquis del Fraccionamiento "El Paraje", Jiutepec, Morelos	
4. 35 Comparación de gastos calculados con la ecuación de Colebrook-White y	
la propuesta en los nodos aguas arriba de varias cuerdas	57
4. 36 Comparación de gastos calculados con la ecuación de Colebrook-White y	57
la propuesta en los nodos aguas abajo de varias cuerdas	57
4. 37 Comparación de gastos calculados con la ecuación de Colebrook-White y	
la propuesta en los nodos aguas arriba de los tramos de la red	58
4. 38 Comparación de gastos calculados con la ecuación de Colebrook-White y	
la propuesta en los nodos aguas abajo de los tramos de la red	
4. 39 Croquis de la red de agua potable de Chalco, Edo. de México	59
4. 40 Comparación de las presiones medidas y calculadas con el método tradicional	
(Colebrook-White) y el propuesto, en distintos puntos de la red de agua	
potable de Chalco	61
A. 1 Cuerdas y nodos principales en una red de agua potable	68
A. 2 Cuerda de distribución donde el gasto es espacialmente variado	
A. 3 Cuerda de distribución donde el gasto es constante	
A. 4 Nodos en los cuales no es necesario aplicar la ecuación de continuidad para	60
resolver el sistema de ecuaciones de la red	
A. 5 Sistema de tuberías cerrado en el cual es necesario definir un elemento frontera	
A. 6 Toma domiciliaria	
A. 7 Curva característica de la bomba	72
B. 1 Números de Reynolds calculados en la red primaria, en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo aguas	
arriba (Nodo 1) y la de la derecha en el nodo agua abajo (Nodo 2)	77
B. 2 Números de Reynolds calculados en la red secundaria 1 en distintos intervalos	

de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	5 0
y la de la derecha en el nodo 2.	7 9
B. 3 Números de Reynolds calculados en la red secundaria 2 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	
y la de la derecha en el nodo 2	81
B. 4 Números de Reynolds calculados en la red secundaria 3 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	
y la de la derecha en el nodo 2	82
B. 5 Números de Reynolds calculados en la red secundaria 4 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	
	83
·	ره
B. 6 Números de Reynolds calculados en la red secundaria 5 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1	
y la de la derecha en el nodo 2	85
B. 7 Números de Reynolds calculados en la red secundaria 6 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	
y la de la derecha en el nodo 2	87
B. 8 Números de Reynolds calculados en la red secundaria 7 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	
y la de la derecha en el nodo 2	89
B. 9 Números de Reynolds calculados en la red secundaria 8 en distintos intervalos	
de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo l	
	00
y la de la derecha en el nodo 2	90

CUADROS

1. 1 Números de Reynolds en la red primaria.	
1. 2 Números de Reynolds en la red secundaria 1	
1. 3 Números de Reynolds en la red secundaria 2	
1. 4 Números de Reynolds en la red secundaria 3	
1. 5 Números de Reynolds en la red secundaria 4	
1. 6 Números de Reynolds en la red secundaria 5	
1. 7 Números de Reynolds en la red secundaria 6	
1. 8 Números de Reynolds en la red secundaria 7	13
1. 9 Números de Reynolds en la red secundaria 8	14
1. 10 Números de Reynolds en todo el sistema.	14
4. 1 Presiones medidas en campo (1) y presiones obtenidas con el programa se cómputo MIRAP, utilizando la ecuación propuesta (2) y la ecuación de Colebrook-White (3)	60
Coleorook-Winte (3).	00
B. 1 Resultados de la Red primaria del fraccionamiento el Paraje, en un periodo	76
de siete horas (11:00 A.M. a 6:00 P.M)	
B. 2 Números de Reynolds obtenidos en la Red primaria del fraccionamiento el Parajo	
en un periodo de siete horas (11:00 A.M. a 6:00 P.M).	
B. 3 Resultados de la Red secundaria 1 del fraccionamiento el Paraje, en un periodo	
de siete horas (11:00 A.M. a 6:00 P.M).	
B. 4 Números de Reynolds obtenidos en la Red secundaria 1 del fraccionamiento el P	
en un periodo de siete horas (11:00 A.M. a 6:00 P.M).	/0
B. 5 Resultados de la Red secundaria 2 del fraccionamiento el Paraje, en un periodo	00
de siete horas (11:00 A.M. a 6:00 P.M).	
B. 6 Números de Reynolds obtenidos en la Red secundaria 2 del fraccionamiento el P	
en un periodo de siete horas (11:00 A.M. a 6:00 P.M)	80
B. 7 Resultados de la Red secundaria 3 del fraccionamiento el Paraje, en un periodo	0.1
de siete horas (11:00 A.M. a 6:00 P.M)	
B. 8 Números de Reynolds obtenidos en la Red secundaria 3 del fraccionamiento el P	
en un periodo de siete horas (11:00 A.M. a 6:00 P.M)	82
B. 9 Resultados de la Red secundaria 4 del fraccionamiento el Paraje, en un periodo	
de siete horas (11:00 A.M. a 6:00 P.M)	82
B. 10 Números de Reynolds obtenidos en la Red secundaria 4 del fraccionamiento el	
en un periodo de siete horas (11:00 A.M. a 6:00 P.M)	
B. 11 Resultados de la Red secundaria 5 del fraccionamiento el Paraje, en un periodo	
de siete horas (11:00 A.M. a 6:00 P.M)	84
B. 12 Números de Reynolds obtenidos en la Red secundaria 5 del fraccionamiento el	Paraje,
en un periodo de siete horas (11:00 A.M. a 6:00 P.M)	85

В.	13 Resultados de la Red secundaria 6 del fraccionamiento el Paraje, en un periodo	
	de siete horas (11:00 A.M. a 6:00 P.M)	86
B,	14 Números de Reynolds obtenidos en la Red secundaria 6 del fraccionamiento el Paraje,	0.7
R	en un periodo de siete horas (11:00 A.M. a 6:00 P.M)	87
υ,	de siete horas (11:00 A.M. a 6:00 P.M)	88
B.	16 Números de Reynolds obtenidos en la Red secundaria 7 del fraccionamiento el Paraje,	00
	en un periodo de siete horas (11:00 A.M. a 6:00 P.M).	88
В.	17 Resultados de la Red secundaria 8 del fraccionamiento el Paraje, en un periodo	
	de siete horas (11:00 A.M. a 6:00 P.M).	89
В.	18 Números de Reynolds obtenidos en la Red secundaria 8 del fraccionamiento el Paraje,	
	en un periodo de siete horas (11:00 A.M. a 6:00 P.M)	90
_		
D.	1 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al	0.0
n	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	99
D.	2 Resultados de los tramos de la red secundaria 1, obtenidos en los nodos 1 y 2 al	100
n	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	100
ν.	3 Resultados de los tramos de la red secundaria 2, obtenidos en los nodos 1 y 2 al	100
n	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	100
υ.	4 Resultados de los tramos de la red secundaria 3, obtenidos en los nodos 1 y 2 al	100
_	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	100
ν.	5 Resultados de los tramos de la red secundaria 4, obtenidos en los nodos 1 y 2 al	101
n	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	[U I
ν.	6 Resultados de los tramos de la red secundaria 5, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	101
n		[0 1
v.	7 Resultados de los tramos de la red secundaria 6, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	101
n	8 Resultados de los tramos de la red secundaria 7, obtenidos en los nodos 1 y 2 al	101
υ.	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	102
n	9 Resultados de los tramos de la red secundaria 8, obtenidos en los nodos 1 y 2 al	[02
v.	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	102
n	10 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al	[02
ν.	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	103
n	11 Resultados de las cuerdas de la red primaria, obtenidos en los nodos l y 2 al	103
υ.	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	104
n	12 Resultados de las cuerdas de la red primaria, obtenidos en los nodos l y 2 al	
υ.	modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta	104
n	. 13 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria,	
v.	obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de	
	Colebrook-White y la ecuación propuesta	105
n	. 14 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria,	
υ.	obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de	
	Colebrook-White y la ecuación propuesta	105
	Colourous 4 mile y la conacton propuesta	

D. 15 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de	
Colebrook-White y la ecuación propuesta	106
D. 16 Comparación de energías en los nodos de la red primaria número 1	107
D. 17 Energías en los nodos de la red primaria número 25	108
D. 18 Energías en los nodos de la red primaria número 100	108
D. 19 Comparación de gastos obtenidos en las cuerdas de la red primaria número 1	108
D. 20 Comparación de gastos obtenidos en las cuerdas de la red primaria número 25	109
D. 21 Comparación de gastos obtenidos en las cuerdas de la red primaria número 100	109
D. 22 Comparación de gastos en los tramos de la red primaria número 1	109
D. 23 Comparación de gastos en los tramos de la red primaria número 25	110
D. 24 Comparación de gastos en los tramos de la red primaria número 100	110
D. 25 Comparación de gastos en las cuerdas de la red primaria del fracc. El Paraje	111
D. 26 Comparación de gastos en los tramos de la red secundaria 6 de El Paraje	

INTRODUCCIÓN

Los modelos convencionales de simulación hidráulica de redes de tubos consideran únicamente la existencia de flujos turbulentos. Algunos autores (Binder^[5], Roberson^[27], Crowne^[27]) afirman que este tipo de flujo es poco frecuente en redes de agua potable y por lo tanto despreciable. Sin embargo, al utilizar un sistema de modelación para el análisis de la red de agua potable del fraccionamiento "El Paraje" ubicado en Jiutepec, Morelos, se encontró que el número de Reynolds calculado en varios tramos pertenecía a un flujo de tipo laminar.

OBJETIVOS

Lo antes mencionado motivó el interés de modelar la existencia de flujos laminares en redes de distribución y resolver los problemas de convergencia que pudieran presentarse.

Los objetivos particulares que permitieron llevar a cabo este trabajo son los siguientes :

- Comprobar la existencia de este tipo de flujo en una red real;
- Conocer la influencia en las redes de flujos de tipo laminar y crítico;
- Obtener una ecuación que permita calcular los factores de pérdida por cortante y que reúna las siguientes características :
 - * De fácil solución,
 - * Continua, para utilizarse en sistemas de cómputo,
 - * Congruente con los resultados obtenidos en el uso de las ecuaciones de Colebrook-White y Poiseuille.

Es importante que esta ecuación reúna las características señaladas anteriormente, lo que permitirá conocer el valor del factor de pérdida por cortante f de cualquier tipo de flujo, dicha relación funcional podrá aplicarse tanto en redes de agua potable como también en las diferentes ramas de la ingeniería en las que se trabaje con redes de distribución, donde se presenten flujos de tipo laminar, crítico y turbulento.

Para cumplir con el objetivo planteado, en este trabajo de tesis se propuso una ecuación que permite encontrar el factor de pérdida f para cualquier tipo de flujo. Ésta es continua y explícita, de tal forma que puede integrarse en cualquier sistema de cómputo que necesite de dicho valor en sus análisis. El factor de pérdida se obtiene de una forma fácil y rápida, sin aplicar un método numérico para su cálculo.

El trabajo se encuentra dividido en cuatro capítulos. En el primero se muestra el estudio efectuado en el fraccionamiento "El Paraje". En dicho estudio se obtiene un porcentaje de tramos con un flujo laminar y turbulento que se presentaron al simular su sistema de agua potable con el programa de cómputo $MIRAP^{[13]}$ (Modelación Integral de Redes de Agua Potable), considerando el cálculo del coeficiente de pérdidas por cortante f, con la ecuación de Colebrook-White que modela únicamente flujos turbulentos, como normalmente se realiza en los sistemas de cálculo convencionales. En esta red se encontró que un 66.58% de los tubos tienen un Re < 4000 (flujo laminar y crítico) y un 33.42% con $Re \ge 4000$ (flujo turbulento) en un lapso de siete horas (11:00 A.M. a 6:00 P.M.).

En el primer capítulo también se muestra el experimento realizado en el lugar para verificar si los resultados obtenidos con el sistema son congruentes con los reales. Para ello se incluyen fotografías tomadas *in situ*, donde se observa que el flujo presente en el tramo analizado es de tipo laminar.

Para modelar a los flujos laminar, crítico y turbulento en redes de tubos, es necesario obtener una ecuación que permita encontrar el valor de coeficiente de pérdidas f de forma fácil, simulando una continuidad en la zona crítica. Para ello es importante conocer las características de estos tres tipos de flujos. Así, en el capítulo II se explica la diferencia entre ellos, se muestran las ecuaciones y métodos utilizados actualmente para el cálculo del factor de pérdida por cortante f (Colebrook-White, Poiseuille y el diagrama de Moody), de pérdida de carga h_f , así como sus ventajas y desventajas.

En el capítulo III se presentan los distintos ensayos efectuados para resolver la discontinuidad existente entre las ecuaciones de Colebrook-White y Poiseuille, las ventajas y desventajas de cada una de las tentativas. Finalmente se presenta una propuesta que resuelve adecuadamente el problema.

En el capítulo IV se muestra la influencia del flujo laminar y crítico en las redes de agua potable y se dan los resultados obtenidos al modelar una red de tamaño mediano considerando, por un lado, flujo laminar, crítico y turbulento y por otro, solamente flujo turbulento. Para comprobar si los resultados tienen un comportamiento parecido a la realidad, se compararon los obtenidos con la ecuación propuesta y los medidos en campo en la red de agua potable de la población de Chalco, en el Estado de México.

Al final del trabajo se presentan las conclusiones y recomendaciones que se creen pertinentes para enriquecer y mejorar el contenido del mismo.

CAPÍTULO I

ANTECEDENTES

El sistema de cómputo **MIRAP**, en proceso de desarrollo en el Instituto Mexicano de Tecnología del Agua, realiza la modelación hidráulica de redes de agua potable empleando un procedimiento diferente a los convencionales, ya que incorpora en su análisis elementos importantes como las tomas domiciliarias, la red secundaria y los tubos de distribución con un gasto espacialmente variado, sin la necesidad de aumentar el número de ecuaciones que sería necesario resolver en un modelo convencional. En este sistema el cálculo del coeficiente de pérdida, f, se efectúa utilizando la ecuación de Colebrook-White, es decir, se considera que en la red existe únicamente flujo de tipo turbulento.

En un principio, con el fin de evaluar la convergencia de solución del modelo hidráulico usado en el sistema de cómputo MIRAP y de comparar los resultados con el funcionamiento real, se propuso modelar el sistema de agua potable del fraccionamiento "El Paraje". Al analizar los datos obtenidos se observó que en algunos tramos de tubo el número de Reynolds correspondía a un flujo laminar o crítico (Re < 4000), con lo cual nació la inquietud de estudiar este tipo de flujos en las redes de distribución.

CAPÍTULO I ANTECEDENTES

I. 1 SIMULACIÓN DE LA RED DE AGUA POTABLE DEL FRACCIONAMIENTO "EL PARAJE", JIUTEPEC, MORELOS

El sistema de agua potable del fraccionamiento "El Paraje" (ilustración 1.1) se compone de una red primaria¹ y ocho redes secundarias¹. Con el fin de analizar cada una de éstas se realizó un estudio detallado de los datos obtenidos por el programa MIRAP, considerando que se presentaban únicamente flujos de tipo turbulento. De esta manera, el valor del factor de pérdida por cortante f, se calculó utilizando la ecuación modificada de Colebrook-White[12]. Al analizar los resultados se encontró que los números de Reynolds calculados en la red primaria así como en las redes secundarias pertenecían a flujos de tipo laminar y crítico, lo cual fue la base para iniciar una investigación más detallada con la finalidad de encontrar la forma de simular este tipo de flujo en las redes de distribución.

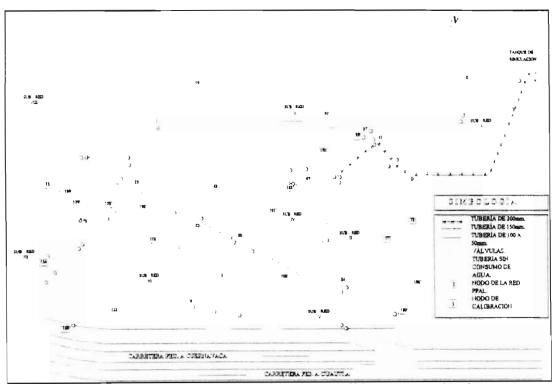
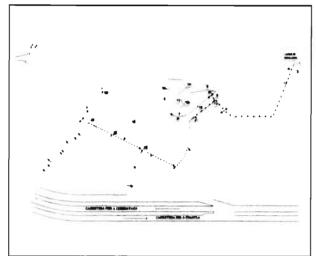


Ilustración 1.1 Red de agua potable del fraccionamiento El Paraje, Jiutepec. Morelos.


En los siguientes subcapítulos se muestran los estudios realizados en la red primaria y en las redes secundarias que integran el sistema de agua potable del fraccionamiento, se presentan gráficas que permiten distinguir el porcentaje de flujos de tipo laminar (Re < 4000) y turbulento $(Re \ge 4000)$ que se tienen en cada una de éstas, así como en todo el sistema.

¹ En un sistema de agua potable los tubos de distribución pueden ser de dos tipos: primarios y secundarios. Los secundarios tienen conectados únicamente a las tomas y en los primarios se conectan los tubos de distribución secundarios, pudiendo además existir tomas conectadas, (Referencia 13).

Los datos con los que se realizaron las gráficas se encuentran el anexo B, en el cual se presentan los resultados obtenidos por el programa *MIRAP*, el análisis de los mismos para obtener el número de Reynolds, en los *nodos*² de cada tramo o *cuerdas*³ de la red.

I. 1. 1 Red primaria

La Red primaria del Paraje (ilustración 1.2) se encuentra constituida por 12 cuerdas de diferentes diámetros interiores: cinco cuerdas de 0.0785m, tres de 0.1009m, dos de 0.1485m y dos de 0.1933m.

RED P	DIAM.		
CUERDA	NODO		(m)
	I	2	E case
1	11	1	0.1933
2	11	87	0.0785
3	20	11	0.1933
4	22	20	0.1485
5	23	22	0.1485
6	45	23	0.1009
7	23	20	0.0785
8	87	91	0.0785
9	97	91	0.0785
10	97	87	0.0785
11	97	91	0.0785
12	42	22	0.1009

Ilustración 1.2 Red primaria del fraccionamiento El Paraje y características principales.


En el análisis de los resultados obtenidos por el programa *MIRAP*, se observó que en la red primaria se obtuvo un promedio de 16.67% de flujos de tipo laminar y de un 83.33% de tipo turbulento, como se muestra en la ilustración 1.2 y en el cuadro 1.1. Este estudio se realizó durante un periodo de siete horas (11h. a 18 h.).

En los próximos subcapítulos se muestran los resultados del análisis sobre cada uno de los tramos de tubo de la red secundaria. En este caso, la presencia de flujo laminar es mayor lo cual constituye una justificación de mayor peso para contemplar este tipo de flujo en redes.

² Nodo.- Es un punto de la red donde se conectan dos o más elementos, o solamente un elemento si es un punto extremo de la red, Anexo A, pag. 68.

³ Cuerda.- Es un conjunto de elementos internos conectados en serie, donde se puede transportar, derivar y controlar el flujo. Anexo A, pag. 68.

RE	D PRIMAR	IA	REYNOLDS
CUERDA	N	ODO	PROMEDIO
1231	or for Sec. 4	About 150	(11-18 H.)
1	11	ı	54908
2	11	87	15675
3	20	11	35405
1 4	22	20	20898
5	23	22	19168
6	45	23	6505
7	23	20	19998
8	87	91	6844
9	97	91	5488
10	97	87	7077
11	97	91	961
12	42	22	10

FLUJOS LAMINARES Y TURBULENTOS

FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

83.33 Cuadro 1.1 Números de Reynolds en la red primaria.

Ilustración 1.3 Representación gráfica de los números de Revnolds obtenidos

I. 1. 2 Red Secundaria No. 1

La Red Secundaria No. 1 (ilustración 1.4) consta de 18 tramos de los cuales 6 tramos tienen un diámetro interior de 0.0531m y los otros 12 restantes de 0.0785m.

16.67

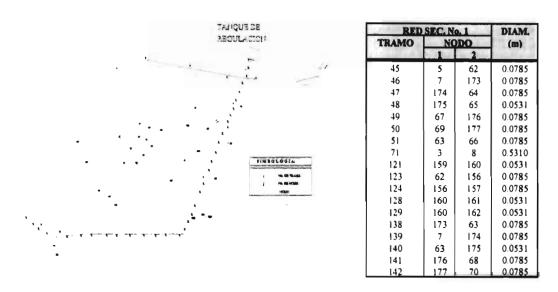


Ilustración 1.4 Red Secundaria No. 1 del fraccionamiento El Paraje y características principales.

En esta red se realizó el análisis de cada uno de los tramos, encontrándose que el promedio de flujos de tipo laminar y turbulento era de 88.89% y 11.11% respectivamente (cuadro 1.2), lo cual se muestra en la ilustración 1.5.

RED SEC. No. 1			REYNOLDS
TRAMO	NO	DO	PROMEDIO
	1	2	(11-15 R.)
45	•	02	6158
10	•	173	5500
in .	174	94	290
48	!"5	5.5	387
10	6"	176	1950
50	69	1**	754
51	63	00	3349
11	3	8	*54
121	159	160	1340
123	62	150	1593
124	156	157	1199
128	160	101	3405
:29	160	102	382
138	1*3	οJ	1593
139		174	1199
140	13	1-4	3405
141	176	98	382
142	7"	~0	389

FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

Cuadro 1.2 Números de Reynolds en la red secundaria 1.

FLUJOS LAMINARES Y TURBULENTOS EN LA RED SECUNDARIA No. 1

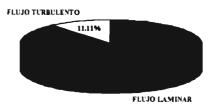
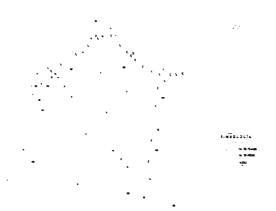
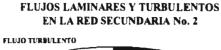



Ilustración 1.5 Representación gráfica de los números de Reynolds obtenidos.

I. 1. 3 Red Secundaria No. 2

La Red Secundaria No.2 (ilustración 1.6) se encuentra constituida por 15 tramos de los cuales seis tienen un diámetro interior de 0.0531m y los otros nueve de 0.0785m. En la ilustración 1.6 se muestra un croquis de la misma y las características principales de cada tramo.



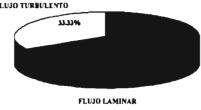

RED SEC. No. 2			DIAM.
TRAMO	NO	DO	(m)
CO-UP-25	1	2	\$1000
52	72	178	0.0785
5 3	72	179	0.0785
54	74	75	0.0785
55	75	76	0.0785
56	76	77	0.0785
57	76	77	0.0785
58	77	78	0.0785
72	72	10	0.0531
~3	200	12	0.0531
74	103	186	0.0531
75	105	187	0.0531
143	178	71	0.0785
144	179	73	0 0785
153	186	104	0.0531
154	187	106	0.0531

Ilustración 1.6 Red Secundaria No. 2 del fraccionamiento El Paraje y características principales

En el cuadro 1.3 y en la ilustración 1.7, se muestran los promedios obtenidos al estudiar la presencia de flujos de tipo laminar (66.67%) y turbulento (33.33%).

() - () - () () () () ()	BED SEC. No	12 Lands W. F.	REYNOLDS
TRAMO	INC	DO	PROMEDIO
and Activities	THE WAR	86.19.27 (10年7月)	CONTRACTOR IN
52	72	178	5391
53	72	179	1507
54	74	75	9470
55	75	76	7844
56	76	77	2047
57	76	77	2708
58	77	78	7844
72	72	10	2047
73	200	12	2708
74	103	186	158
75	105	187	3127
143	178	71	1639
144	179	73	2353
153	186	104	3245
154	187	106	6448

FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

Cuadro 1.3 Números de Reynolds en la red secundaria 2.

Ilustración 1.7 Representación gráfica de los números de Reynolds obtenidos.

I. 1. 4 Red Secundaria No. 3

La Red Secundaria No. 3 (ilustración 1.8) es la más pequeña de todas ya que sólo consta de un tramo, al cual también se le realizó el análisis de los resultados, como puede apreciarse en el cuadro 1.4 y la ilustración 1.9. En este tramo se encontró la presencia única de flujo de tipo laminar.

66.67

33.33

-	BIMBOLOGIA		
	No. 108 TRANSI		
X	Ph 08 H000		
- 4	HORD		

Ilustración 1.8 Red Secundaria No. 3 del fraccionamiento El Paraje y características principales.

FLUJO TURBULENTO

 RED SEC. No. 3
 REYNOLDS

 TRAMO
 NODO
 PROMEDIO

 1
 2
 (11-18 H.)

 64
 94
 93
 1099

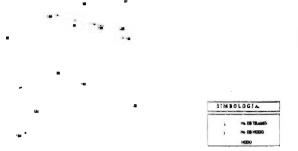
FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

Ilustración 1.9 Representación gráfica de los números de

Reynolds obtenidos.

FLUJOS LAMINARES Y TURBULENTOS EN LA RED SECUNDARIA No. 3

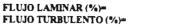
FLUJO LAMINAR


Cuadro 1.4 Números de Reynolds en la red secundaria 3.

I. 1. 5 Red Secundaria No. 4

En la ilustración 1.10 se presenta el croquis de la Red Secundaria No. 4 y los diámetros de cada tramo. Ésta consta de seis tramos, de los cuales uno tiene un diámetro interior de 0.0531m y los cinco restantes de 0.0785m. En el cuadro 1.5 se muestran los números de Reynolds promedios obtenidos en el análisis de cada uno de los tramos. Así, se tiene una presencia de flujo laminar del 83.33% y 16.67% de turbulento. Su representación se encuentra en la ilustración 1.11.

100


0

RED	RED SEC. No. 4				
TRAMO	NODO		(m)		
116 2 18 16	15-10	2			
68	99	96	0.0785		
69	101	163	0.0785		
70	184	185	0.0785		
82	102	101	0.0531		
151	101	184	0.0785		
152	185	100	0.0785		

Ilustración 1.10 Red Secundaria No. 4 del fraccionamiento El Paraje y características principales.

RED SEC. No. 4		REYNOLDS	
TRAMO	NODO		PROMEDIO"
一人門公理問	NEW COLUMN	2	(11518H.)
68	99	96	4912
69	101	163	2260
70	184	185	1448
82	102	101	115
151	101	184	1008
152	185	100	2491

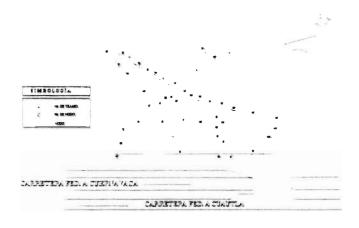
14,67%

FLUJO TURBULENTO

FLUJOS LAMINARES Y TURBULENTOS EN LA RED SECUNDARIA No. 4

Cuadro 1.5 Números de Reynolds en la red secundaria 4.

Ilustración 1.11 Representación gráfica de los números de Reynolds obtenidos.


FLUJO LAMINAR

I. 1. 6 Red Secundaria No. 5

La Red Secundaria No.5 (ilustración 1.12) consta de 15 tramos, de los cuales ocho tienen un diámetro interior de 0.0531m y los siete restantes de 0.0785m. Al hacer el análisis de los resultados obtenidos por el programa *MIRAP*, se encontró la presencia de un 46.67% de flujo laminar y 53.33% de flujo turbulento, como se observa en la ilustración 1.13. Estos porcentajes fueron calculados a partir de los datos mostrados en el cuadro 1.6.

83.33

16.67

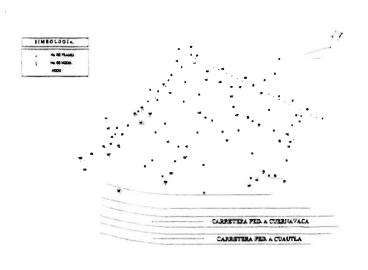
RED	SEC. N	0.5	DIAM.
TRAMO	NO.	DC)	(m)
An widow to the life		+ 2 - 1	3VB3V
59	79	198	0.0785
60	81	180	0.0785
61	84	199	0.0785
76	108	107	0.0531
77	108	109	0.0531
78	110	108	0.0531
79	110	111	0.0531
80	112	110	0.0531
81	80	188	0.0531
120	155	18	0.0531
145	198	82	0.0785
146	180	181	0.0785
147	83	181	0.0785
148	199	16	0.0785
155	188	112	0.0531

Ilustración 1.12 Red Secundaria No. 5 del fraccionamiento El Paraje y características principales.

- 100	REDSEC NAS			
TRAMO	Will Street	DO	PROMEDIO	
and held have shall	Star Seller	water 2 . march	(11-18 H.)	
59	79	198	5110	
60	81	180	2265	
61	84	199	12998	
76	108	107	10194	
77	108	109	836	
78	110	108	8522	
79	110	111	1355	
80	112	110	836	
81	80	188	8522	
120	155	18	1355	
145	198	82	4253	
146	180	181	4088	
147	83	181	3061	
148	199	16	6294	
155	188	L12	3785	

FLUJO LAMINAR (%)-FLUJO TURBULENTO (%)-

Cuadro 1.6 Números de Reynolds en la red secundaria 5.

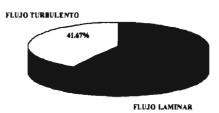

Ilustración 1.13 Representación gráfica de los números de Reynolds obtenidos.

I. 1. 7 Red Secundaria No. 6

Esta red (ilustración 1.14) es la más grande de todas y se encuentra integrada por 24 tramos, de los cuales 18 tienen un diámetro interior de 0.0531m y los seis restantes de 0.0785m. Al hacer el análisis de los resultados se encontró que en un 58.33% los números de Reynolds pertenecían a flujos de tipo laminar y el 41.67% restante estaba en el rango de turbulento (cuadro 1.7). Estos porcentajes se encuentra representados en la ilustración 1.15.

46.67

53.33



		DIAM.
	DO.	(m)
26	26	0.0706
		0.0785 0.0785
		0.0785
		0.0785
		0.0785
	40	0.0785
165	113	0.0531
115	116	0.0531
117	116	0.0531
		0.0531
		0.0531
		0.0531
		0.0531
		0.0531 0.0531
		0.0531
		0.0531
		0.0531
		0.0531
125	128	0.0531
167	165	0.0531
196	165	0.0531
		0.0531
	35 37 38 39 85 39 165 117 116 118 119 120 122 121 197 123 126 128 125 167	35 36 37 36 38 37 39 38 85 39 39 40 165 113 115 116 117 116 118 118 118 37 119 118 120 121 122 121 121 123 197 123 125 126 125 126 125 128 127 125 128 167 165 196 165

Ilustración 1.14 Red Secundaria No. 6 del fraccionamiento El Paraje y características principales.

RED SEC. No. 6			REYHOLDS
TRAMO	NO	0.0	PROMEDIO
	6-THE R. THE	ARTON AND S	(Mail RA)
2.4	35	36	3744
2 5	37	36	2074
26	3.8	37	6965
2 7	39	38	8202
2.8	8.5	39	2594
2 9	39	40	8351
8 3	165	113	995
84	115	116	2145
8.5	117	116	1346
86	110	118	937
87	118	37	4321
8.8	119	118	1600
89	120	121	2074
90	1 2 2	121	6965
91	121	123	8202
92	197	123	2594
93	123	125	8351
94	126	125	8351
95	128	127	991
96	1 2 5	128	2143
131	167	165	1346
132	196	165	957
163	114	196	4321
164	124	197	1600

FLUJOS LAMINARES Y TURBULENTOS EN LA RED SECUNDARIA No. 6

FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

Cuadro 1.7 Números de Reynolds en la red secundaria 6.

llustración 1.15

Representación gráfica de los números de Reynolds obtenidos.

I. 1.8 Red Secundaria No. 7

Como se observa en la ilustración 1.16, esta red consta de 12 tramos con un diámetro interior de 0.0531m. El análisis de los resultados se muestra en el cuadro 1.8, arrojando un porcentaje de flujo laminar y turbulento de 75% y 25%, respectivamente (ilustración 1.17).

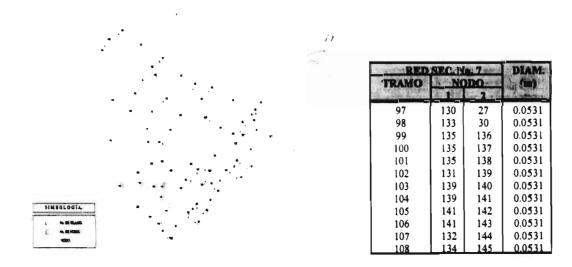
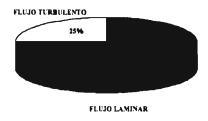
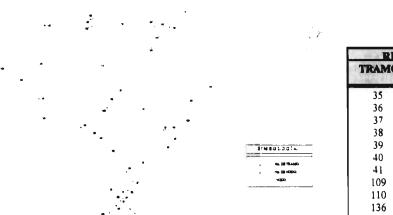



Ilustración 1.16 Red Secundaria No. 7 del fraccionamiento El Paraje y características principales.

100000000000000000000000000000000000000	RED SEC. No. 7		REYNOLDS
TRAMO	NODO	DO	PROMEDIO
100000000000000000000000000000000000000	Water - Har	2	(11-18 H.)
97	130	27	8547
98	133	30	8988
99	135	136	543
100	135	137	5236
101	135	138	1899
102	131	139	3967
103	139	140	1594
104	139	141	572
105	141	142	233
106	141	143	72
107	132	144	418
108	134	145	1645

FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

Cuadro 1.8 Números de Reynolds en la red secundaria 7.


Ilustración 1.17 Representación gráfica de los números de Reynolds obtenidos.

I. 1. 9 Red Secundaria No. 8

La última red del fraccionamiento El Paraje consta de 11 tramos (ilustración 1.18), de los cuales dos tienen un diámetro interior de 0.0531m y los nueve restantes de 0.0731m. Los números de Reynolds proporcionados por el programa, arrojan un porcentaje de 63.64% de flujo de tipo laminar y 36.36% de tipo turbulento (cuadro 1.9 e ilustración 1.19).

75.00

25.00

RED	DIAM.		
TRAMO	NODO		(m)
	671	2	
35	46	45	0.0785
36	48	49	0.0785
37	50	171	0.0785
38	51	164	0.0785
39	52	51	0.0785
40	49	53	0.0785
41	55	172	0.0785
109	146	51	0.0531
110	53	54	0.0531
136	171	47	0.0785
127	172	40	0.0706

Ilustración 1.18 Red Secundaria No. 8 del fraccionamiento El Paraje y características principales.

W. C.	RED SEC. No. 8				
TRAMO	NO 1	00	PROMEDIO (1518 H.)		
35	46	45	6540		
36	48	49	63		
37	50	171	5694		
38	51	164	5081		
39	52	51	712		
40	49	53	112		
41	55	172	74		
109	146	51	2412		
110	53	54	52		
136	171	47	6166		
137	172	49	112		

FLUJOS LAMINARES Y TURBULENTOS

FLUJO LAMINAR (%)= FLUJO TURBULENTO (%)=

Cuadro 1.9 Números de Reynolds en la red secundaria 8.

36.36

63.64

Ilustración 1.19 Representación gráfica de los números de Reynolds obtenidos.

I. 2 TIPO DE FLUJO EXISTENTE EN TODO EL SISTEMA

En el subcapítulo anterior se estudió la presencia de flujo de tipo laminar y turbulento en la red primaria y las redes secundarias que a la red.

Con base en estos datos se observa que en toda la red se tiene un promedio de 66.58% de flujo laminar y 33.42% de flujo turbulento (cuadro 1.10 e ilustración 1.20). Esto prueba la necesidad de encontrar un procedimiento que permita simular cualquier tipo de flujo en una red de distribución, ya que en los casos como el que fue analizado la presencia de flujo laminar es muy notable y por lo tanto es importante identificar su influencia en la red.

TIPO DE RED	PLUSO EARCHAR	TURBULENTO
RED PRIMARIA	16.67	83.33
RED SECUNDARIA No I	88.89	11.1
RED SECUNDARIA No. 2	66.67	33 33
RED SECUNDARIA No.3	100,00	0 00
RED SECUNDARIA No 4	83.33	16.67
RED SECUNDARIA No.5	46 67	53.33
RED SECUNDARIA No.6	58.33	41 67
RED SECUNDARIA No 7	75 00	25.00
RED SECUNDARIA NO 8	61.64	16.36

Cuadro 1.10 Números de Reynolds en la todo el sistema.

PROMEDIO TOTAL (%)

TIPO DE FLUJO PROMEDIO EN LA RED

Ilustración 1.20 Representación gráfica de los números de Reynolds obtenidos en el sistema.

A continuación se presenta la red de agua potable del fraccionamiento El Paraje, donde se indican los tramos en los que el número de Reynolds calculado corresponde al de un flujo de tipo laminar o turbulento.

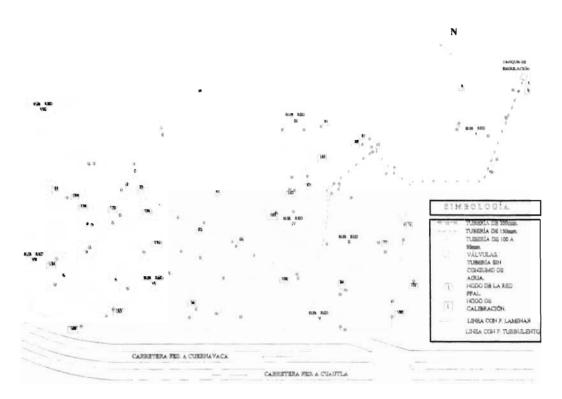


Ilustración 1.21 Flujo laminar y turbulento en la red de agua potable del fraccionamiento "El Paraje

Cabe hacer notar que para obtener una ecuación o procedimiento para el cálculo del coeficiente de pérdidas por cortante es necesario salvar la discontinuidad existente entre las ecuaciones de Poiseuille y de Colebrook-White en la zona conocida como crítica.

En este subcapítulo se proporcionaron los resultados obtenidos en la modelación hidráulica de una red existente, en la cual se encontró que en varios tramos los números de Reynolds calculados pertenecían a flujos de tipo laminar y turbulento. Con el propósito de complementar éste estudio y comprobar que este tipo de flujo existe en la red, se desarrolló un experimento de campo el cual se describe en el siguiente subcapítulo.

1. 3 COMPROBACIÓN DE CAMPO

En 1883 Osborne Reynolds^[17], presentó un extenso trabajo titulado "An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistence in parallel channels" en donde afirmaba que "Aunque las ecuaciones de la hidrodinámica sean aplicables al movimiento directo, o sea sin remolinos, mostrando que entonces la resistencia es proporcional a la velocidad, no ha arrojado hasta ahora ninguna luz sobre las circunstancias de las cuales dicho movimiento depende...".

CAPÍTULO I ANTECEDENTES

Para ello aclara que: "Las circunstancias que determinan si el movimiento de tropas será una marcha o confusión se parece mucho a aquellas que determinan si el movimiento del agua será directo o sinuoso. En ambos casos existe cierta influencia necesaria para el orden: con las tropas es la disciplina, con el agua su viscosidad o aglutinación......."

Así, se propuso determinar bajo qué condiciones se producen el escurrimiento "directo" y el "sinuoso". La primera idea que se le ocurrió fue inyectar un colorante en el agua para visualizar el movimiento del fluido. Para ello construyó un modelo⁴, el cual se esquematiza en la ilustración 1.22.

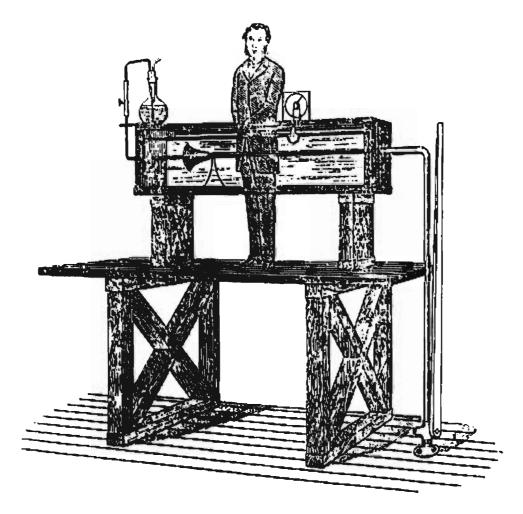


Ilustración 1.22 Modelo utilizado por Reynolds para visualizar el comportamiento de un flujo en tramo de tubo.

⁴ Este aparato se encuentra en los Simon Engineering Laboratories of Manchester, utilizándose para demostraciones estudiantiles.

El primer ensayo lo realizó con ayuda de Foster^[17] el 22 de febrero de 1880. "....Se permitió al tinte fluir muy despacio, y se abrió un poco la válvula para aumentar la velocidad del agua en el sifón. El filamento coloreado se estableció como un hilo (ilustración 1.23-a-) y permaneció muy estable al crecer la velocidad; hasta que de repente, con una leve apertura ulterior de la válvula, en un punto situado poco más o menos dos pies antes del tubo de hierro, el filamento se expandió y se mezcló con el agua, (ilustración 1.23 -b-). Sin embargo, un examen más cuidadoso reveló la naturaleza de esa nube, apareció una secuencia de remolinos aislados y perfectamente claros (ilustración 1.23-c-)....."

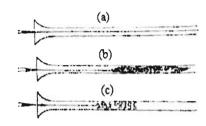


Ilustración 1.23 Comportamiento del colorante en el experimento.

Así pudo producir en un mismo tubo, con solo variar la velocidad, tanto el régimen "directo" como el "sinuoso", llamados actualmente "laminar" y "turbulento" respectivamente.

Los principios de este experimento se llevaron a cabo en dos tramos de la red del fraccionamiento "El Paraje", con la finalidad de hacer una observación *in situ* y verificar de esta manera que el régimen de flujo que se había calculado correspondía al que se presentaba en la realidad. Para ello se cambiaron dos tramos de la red por tubos de acrílico transparente.

Primeramente, se inyectó en el tramo una mezcla de aceite comestible y colorante vegetal (ilustración 1.24). Al realizar esto, se observó que las gotas de colorante corrían unas atrás de las otras siguiendo la misma trayectoria, lo cual indicó que no existía turbulencia, es decir, que las líneas de corriente eran paralelas, siendo ésta una característica de los flujos de tipo laminar.

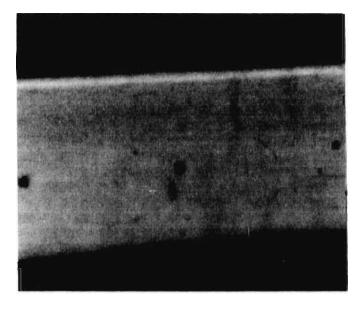
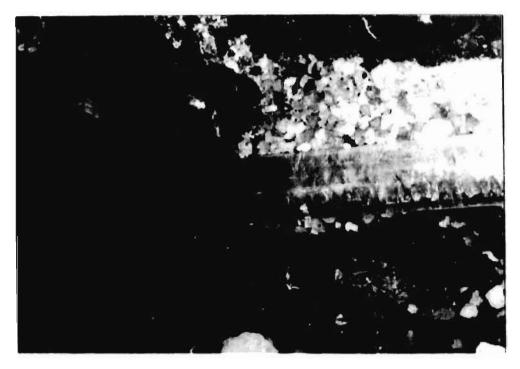



Ilustración 1.24 Comportamiento de las burbujas de aceite coloreado.

CAPÍTULO I ANTECEDENTES

Posteriormente se inyectó a la tubería extracto de betabel. Se observó que el frente de avance se encontraba muy bien definido, es decir, no se presentaban torbellinos además, de conservar ésta forma en todo su recorrido a lo largo del tubo, siendo ésta una de las características que definen a un flujo laminar. Dicha prueba puede ser verse en la ilustración 1.25.

Hustración 1.25 Frente de avance del colorante

CAPÍTULO II

CONCEPTOS FUNDAMENTALES

Para comprender y resolver el problema planteado en el capítulo anterior, es importante recordar los conceptos establecidos por la hidráulica.

En el presente capítulo se describen los tipos de flujo existentes en las redes de tubos y las diferencias entre uno y otro, se muestra la ecuación para obtener la pérdida de carga, el factor de pérdida por cortante en flujos laminares y turbulentos.

II. 1 TIPOS DE FLUJO

Osborne Reynolds^[29] (1883), con base en sus experimentos, fue el primero en proponer un criterio para distinguir los tipos de flujo al evaluar la preponderancia de las fuerzas viscosas sobre las de inercia.

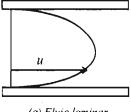
En el caso de un conducto cilíndrico a presión, el número de Reynolds se define como :

$$Re = \frac{VD}{V} \tag{2.1}$$

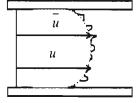
donde.

Re número de Reynolds.

V velocidad media.


D diámetro interno del conducto.

v viscosidad cinemática del fluido.


II. 1. 1 FLUJO LAMINAR Y TURBULENTO

De acuerdo con la referencia 21, el *flujo turbulento* se caracteriza por la acción de mezclado de las partículas. Este mezclado se debe a los remolinos o torbellinos de tamaño variable que se forman en el fluido. Por otro lado, el *flujo laminar* carece del intenso fenómeno de mezclado y de los torbellinos que caracterizan al flujo turbulento y tiene una apariencia muy suave.

La ilustración 2.1 presenta las diferencias que existen entre un flujo laminar (a) y un flujo turbulento (b).

(a) Flujo laminar

(b) Flujo turbulento

Ilustración 2.1 Flujos laminar y turbulento en un tubo.

Reynolds establece que el flujo laminar se presenta si $Re \le 2000$ y el turbulento cuando $Re \ge 4000$. También encontró que en un tubo el flujo laminar se vuelve inestable cuando Re ha rebasado un valor critico, para tornarse después en turbulento.

II. 1. 2 Flujo Crítico

Se observa la existencia de una zona (2000 < Re < 4000), conocida como Zona Critica, a la que no se le ha asignado un tipo de flujo en especial. A los flujos que se encuentran en esta se les denomina flujos críticos y se dice que en ésta no se puede predecir el tipo de flujo existente, ya que presentan constantemente cambios de laminar a turbulento y viceversa, por lo cual no se tiene una ecuación que modele el comportamiento de factor de pérdida por cortante (f) en ella.

II. 2 FÓRMULA DE DARCY-WEISBACH

Muchos investigadores han tratado de determinar las leyes que rigen el flujo o la circulación de los fluidos en las tuberías. Una de las primeras expresiones de la pérdida de energía en una tubería fue desarrollada por Chezy en 1775. Se han desarrollado muchas otras fórmulas empíricas a partir de datos obtenidos en ensayos y en la mayoría de ellas parten de la hipótesis de que la pérdida de energía sólo depende de la velocidad, las dimensiones del conducto y la rugosidad de la pared. Los trabajos de Hagen (1839), Poiseuille (1840) y Reynolds (1883) demostraron que la densidad y la viscosidad del fluido influyen en la pérdida de energía. Más tarde, principalmente como deducción del trabajo de Nikuradse (1933), se reconoció que el efecto de la rugosidad no depende del valor absoluto de ésta sino de su relación al diámetro del tubo.

Para un flujo permanente en un tubo de diámetro constante, la línea de carga piezométrica es paralela a la línea de energía e inclinada en la dirección del movimiento. En 1850, Darcy, Weisbach y colaboradores, dedujeron experimentalmente una fórmula (ecuación 2.2) para calcular en un tubo la pérdida por fricción:

$$hf = f \frac{L}{D} \frac{V^2}{2g} \tag{2.2}$$

donde

hf pérdida por cortante, en m;

f tactor de pérdida, adimensional;

g aceleración de la gravedad, en m/seg²;

D diámetro del tubo, en m;

L longitud del tubo, en m;

V velocidad media, en m/seg.

El factor de pérdida f es función de la rugosidad absoluta ε y del número de Revnolds Re en el tubo.

11. 3 CÁLCULO DEL FACTOR DE PÉRDIDA (/)

Como se vio anteriormente, el flujo o corriente en las tuberías se divide en dos tipos generales : laminar y turbulento. Cuando la corriente es laminar, las capas adyacentes del fluido se desplazan paralelas entre sí y no hay velocidades transversales de la corriente. La corriente turbulenta se caracteriza por la presencia de velocidades transversales que originan remolinos (ilustración 2.1). Si se inyecta una pequeña cantidad de colorante en una corriente laminar, el colorante se extenderá aguas abajo como un hilo bien marcado de color, mientras que en la corriente turbulenta, se mezclará rápidamente por toda la sección transversal de la tubería. Se tiene corriente laminar cuando Re < 2000 y turbulenta cuando Re > 4000.

II. 3. 1 Ecuación de Poiseuille

Las leyes de la corriente laminar en tuberías rectas se determinaron experimentalmente, en forma independiente, por Hagen y Poiseuille. En 1846 obtuvieron una ecuación para obtener el factor de pérdida f. Esta expresión matemática está dada por:

$$f = \frac{64}{R_P} \tag{2.3}$$

El trabajo experimental de Hagen y Poiseuille y los ensayos efectuados por muchos investigadores posteriores han establecido la exactitud de esta relación dejándola fuera de duda.

La ley de Hagen - Poiseuille (ecuación 2.3) se aplica cuando Re < 2000. En el intervalo de números de Reynolds de 2000 a 4000, la corriente pasa de laminar a turbulenta. Los valores de f son inciertos en este periodo. Según la referencia 17, para el cálculo de una tubería que trabaje en esta zona, el único procedimiento seguro es suponer que la corriente es turbulenta y elegir f prolongando las curvas ilustradas en la ilustración 2.2.

II. 3. 2 Ecuación de Colebrook-White

Colebrook y White presentaron la siguiente fórmula empírica para la zona de transición de flujo laminar a turbulento en tubos comerciales:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D}{3.71} + \frac{2.51}{Re\sqrt{f}}\right)$$
 (2.4)

donde ε/D es la rugosidad relativa del material.

Algunas ventajas de esta ecuación es que permite el estudio del comportamiento de la corriente en la zona con flujo turbulento totalmente desarrollado, por lo que es válida para $Re \ge 4000$, además de que es aplicable en tubos comerciales lisos y rugosos.

La desventaja que presenta el uso de esta relación funcional, es que el valor de pérdida f se encuentra en forma *implícita*. Esta dificultad ha impedido aprovechar las ventajas de la ecuación de Darcy-Weisbach (para el cálculo de las pérdidas de energía hf), principalmente en redes de tubos y ha motivado el uso generalizado de fórmulas empíricas menos precisas pero más fáciles de aplicar. No obstante, a menudo se abusa de éstas, inclusive en los sistemas sencillos donde puede aplicarse la de Colebrook-White.

En el caso de cálculos manuales en tubos sencillos, para estimar el valor de f generalmente se emplea el diagrama de Moody (ilustración 2.2).

II. 3. 3 Diagrama de Moody

L. F. Moody^[21], con base a los resultados de Colebrook y White, preparó el diagrama universal para determinar el coeficiente de pérdida f en tuberías de rugosidad comercial que transportan cualquier líquido (ilustración 2.2).

Cuando la corriente se presenta en números de Reynolds mayores de 4000, los valores de f en la ecuación 2.2, varían con la rugosidad, la viscosidad y la densidad. La corriente turbulenta se divide en tres categorías: en tubos lisos, en tubos relativamente rugosos a velocidades grandes y en la zona de transición comprendida entre las dos primeras categorías.

En la corriente en tubos muy lisos, los valores de f varían con Re. como lo muestra la curva inferior de la ilustración 2.2. Puede observarse que nunca llega a convertirse en una recta horizontal, lo cual demuestra que las propiedades de los líquidos influyen sobre la corriente en todo el intervalo de números de Reynolds. Los tubos de vidrio y los de metal estirado con superficie muy lisa se encuentran en esta categoría.

En la ilustración 2.2, se ilustra la corriente en tuberías rugosas a valores grandes de Re por medio de la zona situada arriba y a la derecha de la línea de trazos, llamada zona de turbulencia completamente establecida o plena. En esta zona, las curvas f se vuelven horizontales, demostrando así que la corriente es completamente independiente de las propiedades de los líquidos. Nikuradse demostró que los valores de f situados en dicha zona sólo dependen de la rugosidad relativa (ε/D) siendo ε la rugosidad absoluta y D el diámetro del tubo. La rugosidad fue producida artificialmente con arena de tamaño uniforme.

La tercera categoría de corriente turbulenta se presenta cuando los valores de f se encuentran en la zona comprendida entre la curva para tuberías lisas y la línea de trazos de la ilustración 2.2. El flujo en los tubos comerciales se produce generalmente dentro de esta categoría. En esta zona, las curvas de f para diversos valores de la rugosidad relativa se separan en puntos sucesivos de aquellas para tuberías lisas y se vuelven horizontales cuando entran en la zona de turbulencia plena. Al principio fue difícil aplicar el concepto de la rugosidad relativa al tubo comercial porque sólo un número pequeño de puntos experimentales se extendían hasta la zona de turbulencia plena. Esta dificultad fue vencida por Colebrook y White, quienes establecieron la relación entre f y Re, por medio de la ecuación 2.4, la cual se aplica con buena aproximación a todas las curvas de transición.

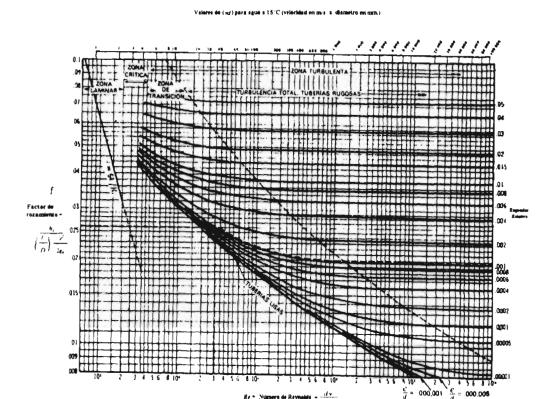


Ilustración 2.2 Diagrama de Moody.

II. 4 ECUACIONES PARA EL CÁLCULO DE LA PÉRDIDA DE ENERGÍA

Con la ecuación de Darcy-Weisbach y las vistas anteriormente para encontrar el valor del factor de pérdida *f*, se puede efectuar el cálculo de las pérdidas de energía para flujos laminares, turbulentos y de transición.

La ecuación de Darcy-Weisbach para el cálculo de energía por conducción hf en función del gasto es la siguiente:

$$hf = f \frac{0.81 L}{g D^{5}} Q^{2}$$
 (2.5)

II. 4. 1 Pérdida de Energía en Flujos Laminares

Sustituyendo la ecuación de Poiseuille (2.3) en la ecuación de pérdidas de Darcy-Weisbach (2.5) se tiene que :

$$hf = \frac{51.84 L}{Re g D^5} Q^2 \tag{2.6}$$

la cual es válida para el cálculo de pérdidas de energía en flujos laminares, es decir, con $Re \le 2000$.

II. 4. 2 Pérdida de Energía en Flujos Turbulentos

Conociendo el valor del coeficiente de pérdida f en la ecuación de Colebrook-White (2.4), se puede obtener la pérdida de energía sustituyendo éste en la fórmula de Darcy-Weisbach (2.5).

Para ello es necesario utilizar un método numérico ya que el coeficiente de pérdida de la ecuación (2.4) es implícito.

CAPÍTULO III

PROPUESTAS DE SOLUCIÓN

Como se vio en el capítulo anterior, la obtención del coeficiente f es de suma importancia en el cálculo de la pérdida de carga o del gasto (ecuación 2.5). Si se considera la existencia de flujos de tipo laminar, crítico y turbulento en redes de tubos es muy probable que se presenten problemas de convergencia, provocados por la discontinuidad existente entre las ecuaciones de Poiseuille y de Colebrook-White. Para resolver esto, se propusieron diferentes métodos, los cuales fueron mejorando la convergencia en la solución de la red de tubos. En el capítulo II se dieron a conocer las relaciones funcionales para el cálculo del coeficiente de pérdida f, señalando que para flujos turbulentos, la ecuación a utilizar es la de Colebrook-White (2.4) pero ésta presenta el problema de ser implícita.

En este capítulo se muestra el desarrollo de los métodos de solución propuestos. Cada uno de ellos fue mejorando la convergencia hasta llegar a la propuesta final, la cual obtiene el valor del coeficiente de pérdidas por cortante f, en cualquier régimen de flujo debido a que simula una unión entre las ecuaciones de Poiseuille y de Colebrook-White, además de que presenta la particularidad de ser explícita.

III.1 ECUACIÓN MODIFICADA DE COLEBROOK-WHITE

Guerrero^[12] en 1995, propone la ecuación modificada de Colebrook-White (3.1), para el cálculo del coeficiente de pérdidas en flujos turbulentos. Ésta presenta la particularidad de ser explícita y los resultados obtenidos por ella se ajustan suficientemente bien a los calculados con fórmula implícita de Colebrook-White.

$$f = \frac{0.25}{\left(\log\left(\frac{\varepsilon/D}{3.7l} + \frac{G}{Re^T}\right)\right)^2}$$
(3.1)

donde

 ε/D rugosidad relativa del tubo G y T parámetros de ajuste

G = 4.555	T = 0.8764	para $4000 \le Re \le 10^5$
G = 6.732	T = 0.9104	para $10^5 \le Re \le 3 \times 10^6$
G = 8.982	T = 0.93	para 3 x $10^6 \le Re \le 10^8$

Sustituyendo la ecuación modificada de Colebrook-White (3.1) en la de Darcy-Weisbach (2.2), se tiene:

$$hf = \frac{0.203 L}{g D^{5} \left[log \left(\frac{\varepsilon / D}{3.7l} + \frac{G}{Re^{T}} \right) \right]^{2}} Q^{2}$$
(3.2)

con la cual se puede obtener la pérdida de energía que existente en un flujo turbulento, es decir cuando Re > 4000.

III. 2 CÁLCULO SIN ETAPAS Y SIN INTERLAPE PREVIO

Se considera que una etapa consiste en completar un ciclo de cálculo del coeficiente pérdida f para flujo laminar o turbulento, es decir, si éste inicia utilizando la ecuación para flujo laminar habrá terminado cuando dentro de este intervalo se encuentre la raíz. Al final del procedimiento se verificará si el Reynolds encontrado está dentro del rango de validez de la fórmula elegida. De lo contrario, la siguiente etapa comenzará utilizando la relación funcional que sea válida en el intervalo correspondiente.

En este trabajo se considera que un *interlape* consiste en aumentar la validez de las ecuaciones del flujo laminar y turbulento en un cierto intervalo.

En la propuesta de solución sin etapas y sin *interlape* previo, se modeló a los tubos considerando flujo laminar en $Re \le 2000$ y flujo turbulento con Re > 2000, como se muestra en la ilustración 3.1. Esto es, cuando $Re \le 2000$, la fórmula a utilizar para el cálculo de pérdidas f es la 1.3 y si Re > 2000 se utiliza la ecuación modificada de Colebrook-White (3.1).

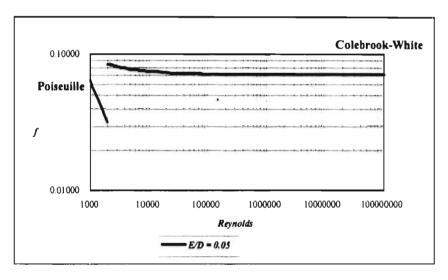


Ilustración 3.1 Cálculo sin etapas y sin traslape previo.

Para probar esta propuesta de solución, se utilizó el programa de cómputo *MIRAP* y el procedimiento de simulación queda modificado en parte comprendida por el anexo A.7, de la siguiente forma :

1. En la ecuación A.23, se tiene que:

$$M = f \, \frac{0.81 \, L}{g \, D^5} \tag{3.3}$$

Si el número de Reynolds nos indica que el flujo es laminar (Re ≤ 2000), en la ecuación 3.3 el coeficiente de pérdidas f será calculado con la fórmula 2.3 de Poiseuille.

$$f = \frac{64}{Re}$$

3. Si el flujo es turbulento (*Re* > 2000), el coeficiente de pérdida *f* en la fórmula 3.3 será calculado con la ecuación modificada de Colebrook-White propuesta por Guerrero (3.1).

$$f = \frac{0.25}{\left(\log\left(\frac{\varepsilon/D}{3.71} + \frac{G}{Re^{T}}\right)\right)^{2}}$$

donde

$$G = 4.555$$
 $T = 0.8764$ para $4000 \le Re \le 10^5$
 $G = 6.732$ $T = 0.9104$ para $10^5 \le Re \le 3 \times 10^6$
 $G = 8.982$ $T = 0.93$ para $3 \times 10^6 \le Re \le 10^8$

4. Si no se ha encontrado la solución al término del procedimiento descrito en el Anexo A.7, se repetirá el proceso hasta llegar a ella.

En el anexo C.1 se muestra la subrutina utilizada para el cálculo del gasto en el tramo. Al emplear esta alternativa en el programa, se encontró que los valores del número de Reynolds empezaban a fluctuar cuando estaban muy próximos a Re = 2000. Esto impedía darle solución al problema, por lo que se aplicó en esa zona, para ambas ecuaciones, el método numérico de la falsa posición, pero no se logró salvar la discontinuidad presentada.

III. 3 CÁLCULO CON ETAPAS Y SIN INTERLAPE PREVIO

El siguiente procedimiento surge de la necesidad de resolver el problema de convergencia del método descrito anteriormente y consiste en que para cada una de las etapas, las relaciones funcionales de Poiseuille y de Colebrook-White para el cálculo del factor de pérdida f, se consideran válidas en todos los números de Reynolds, es decir, que la ecuación se utilizará hasta completar una etapa y sólo al final de ésta se observará si es la adecuada para el cálculo del factor de pérdida f.

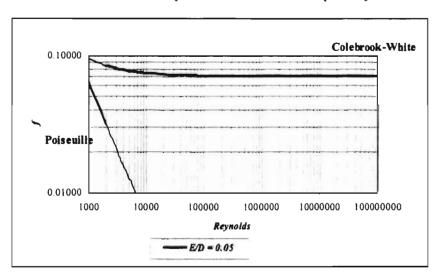


Ilustración 3.2 Cálculo con etapas y sin traslape previo.

Al igual que la propuesta anterior, está fue probada (anexo A.7), de la siguiente forma:

- El procedimiento comienza con el cálculo del valor del número de Reynolds en el tubo; si Re≤2000 la ecuación a utilizar es la 2.3. En caso contrario, es decir, cuando Re > 2000 se empleará la 3.1.
- 2. Elegida la ecuación se continua el procedimiento con la misma para cualquier número de Reynolds que se obtenga, sin importar si en éste la fórmula utilizada es la válida. Se prosigue el cálculo hasta encontrar la solución correspondiente en esa etapa.
- 3. Encontrado el valor final de esa etapa se verifica si $Re \le 2000$ o Re > 2000.

- Si Re ≤2000, la próxima etapa de cálculo se realizará utilizando la ecuación 2.3 y en caso contrario se empleará la 3.1.
- 5. El cálculo se detiene cuando en los tubos no existe un cambio de régimen, es decir, la solución se encuentra al no cumplirse el paso 4.

Estas nuevas modificaciones se integraron al programa y la subrutina que las incluye se presenta en el anexo C.2.

Con este método se encontraron soluciones en los casos en que el régimen del flujo era turbulento. Sin embargo, se observó que en unos nodos no existía convergencia debido a la presencia de flujo laminar o crítico en algunos tramos de la cuerda.

III. 4 CÁLCULO SIN ETAPAS Y CON INTERLAPE PREVIO

Con base en el método de calculo sin etapas y sin *interlape* previo, se pensó que si las ecuaciones de Poiseuille y de Colebrook-White se interlapaban en un rango (en este caso, se propuso $2000 \le Re \le 4000$), se podría salvar el problema de la convergencia que se presentaba (ilustración 3.3).

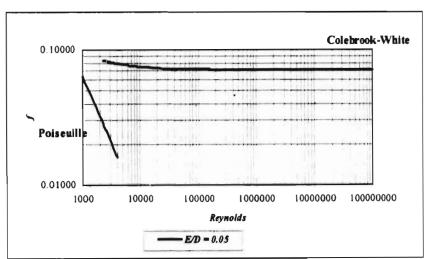


Ilustración 3.3 Procedimiento del cálculo sin etapas y con interlape previo.

El procedimiento a seguir en esta propuesta es el siguiente :

 Dependiendo del valor del número de Reynolds se determina la ecuación que se va a utilizar para el cálculo del coeficiente de pérdida f (ecuación 3.3). Si Re ≤ 2000, la fórmula a emplear es la 2.3 y si Re > 2000 será la 3.1. 2. Una vez iniciado el cálculo, el rango de validez de la ecuación 2.3 será hasta Re≤4000 y el de la 3.1 comenzará desde Re ≥ 2000, es decir, existe una zona donde ambas fórmulas se interlapan, de 2000 a 4000. Esto se propone con la intención de encontrar el valor del coeficiente de pérdida cuando se localice muy próximo a los puntos críticos (Re = 2000 o R e= 4000), tratando así de salvar los problemas provocados por la discontinuidad.

Este método logró mejorar el anterior, debido a que en algunos casos se encontró la solución de algunos nodos principales. Sin embargo, no en todos fue posible calcular el valor del gasto. El algoritmo de solución que contiene estos pasos se encuentra en el anexo C.3.

III. 5 CÁLCULO POR ETAPAS Y CON INTERLAPE PREVIO

La propuesta de solución es muy semejante a la anterior, con la diferencia de que se obtiene por etapas, es decir, en cada una de éstas las ecuaciones de Poiseuille y de Colebrook-White se consideran válidas para todos los números de Reynolds. Además, en este procedimiento se incluye una zona interlapada en Re = 2000 y Re = 4000, como se muestra en la ilustración 3.4.

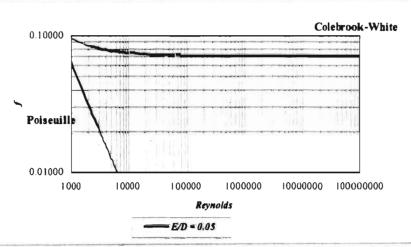


Ilustración 3.4 Cálculo por etapas con interlape previo.

El procedimiento de cálculo propuesto para la solución del problema es el siguiente:

- Dependiendo del valor del número de Reynolds se determina la ecuación que se va a utilizar para el cálculo del coeficiente de pérdidas de la 3.3. Si Re ≤ 2000, la fórmula a emplear es la 2.3 y si Re>2000 será la número 3.1.
- 2. Se sigue calculando el gasto con la misma ecuación hasta encontrar el valor final.
- 3. Cuando se cumple el paso anterior, se revisa el valor del número de Reynolds.

- 4. En la siguiente etapa los flujos que al inicio son laminares, se considera que seguirán siendo del mismo tipo hasta un $Re \le 4000$. Así mismo, los flujos que al inicio son turbulentos permanecerán en este régimen hasta un $Re \ge 2000$.
- 5. El procedimiento termina cuando el tipo de flujo calculado es igual al obtenido en el ciclo anterior.

En el anexo C.4 se presentan las modificaciones hechas a la subrutina del programa, donde se incluyen estos pasos de modelación. Este procedimiento se comportó de igual forma que el anterior, por lo que se determinó que era de suma importancia simular una unión entre las ecuaciones de Poiseuille y de Colebrook-White para superar los problemas que se presentan por la discontinuidad existente entre ellas.

III. 6 UNIÓN DE LAS ECUACIONES DE POISEUILLE Y DE COLEBROOK-WHITE POR MEDIO DE UNA RECTA.

A continuación se propone un método que pretende mejorar la convergencia, en el cálculo de las pérdidas de energía en la tubería. En el Diagrama de Moody (ilustración 2.2), se puede apreciar que las ecuaciones de Poiseuille y de Colebrook-White para un valor de $\varepsilon/D=0.05$ tienen el comportamiento que se muestra en la ilustración 3.5.

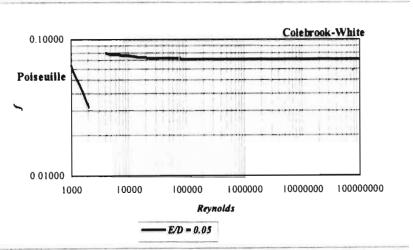


Ilustración 3.5. Diagrama de Moody, (Poiseuille es válida para Re ≤2000 y Colebrook-White para Re ≥ 4000).

Esta propuesta consiste en unir la discontinuidad existente entre las ecuaciones de Poiseuille y de Colebrook-White utilizando una recta en escala logarítmica, según se muestra en la ilustración 3.6.

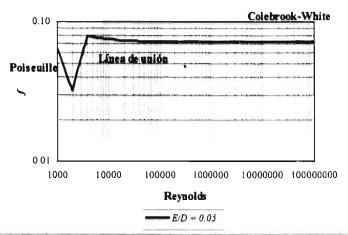


Ilustración 3.6. Unión de las ecuaciones, utilizando para esto una recta en escala logarítmica.

III. 6. 1 ECUACIÓN QUE PERMITE LA UNIÓN

Como se puede observar en la ilustración 3.6, la nueva propuesta consiste en la unión de la ecuación de Poiseuille (2.3) y la modificada de Colebrook-White (3.1) utilizando una recta en escala logarítmica. A continuación se presenta el procedimiento que se utilizó para lograr lo antes mencionado.

La recta que nos permite dicha unión, está dada por:

$$f_{zc} = \frac{B}{Re^{c}}$$
 (3.4)

donde

 f_{CZ} f en la zona crítica

Re Número de Reynolds ($Re_1 \approx 2000 \le Re \le Re_2 \approx 4000$)

B y C Parámetros de ajuste que dependen del factor de ε/D de la tubería y de las ecuaciones de Poiseuille y Colebrook-White

Se aplican logaritmos a la fórmula 3.4 para obtener la ecuación de una recta en escala logarítmica.

$$\log f = \log B - C \log Re \tag{3.5}$$

La finalidad de la ecuación 3.5, es unir la de Poiseuille (2.3) cuando $Re=Re_1$ con la modificada de Colebrook-White (3.1) cuando $Re=Re_2$, como se aprecia en la ilustración 3.6.

Definiendo como

$$a = log f$$

$$b = log B$$

$$c = log Re$$

La ecuación 3.5 puede ser expresada como

$$a = b - Cc \tag{3.6}$$

Para obtener los parámetros de b y C se formará un sistema de dos ecuaciones aplicando la 3.5 en los puntos 1 y 2 (ilustración 3.6), es decir:

$$log[f_1(Re_1)] = b - C log(Re_1)$$
(3.7)

$$log [f_2(Re_2)] = b - C log (Re_2)$$
(3.8)

Las funciones f_1 y f_2 se obtienen de las ecuaciones 2.3 y 3.1 respectivamente. Re_1 es el número de Reynolds donde termina la validez de la relación de Poiseuille y en Re_2 da principio la ecuación modificada de Colebrook-White.

$$\log\left(\frac{64}{\mathrm{Re}_1}\right) = b - C\log\left(\mathrm{Re}_1\right) \tag{3.9}$$

$$\log \left\{ \frac{0.25}{\left[\log \left(\frac{\varepsilon/D}{3.7l} + \frac{G}{\operatorname{Re}_{2}^{T}}\right)\right]^{2}} \right\} = b - C \log (\operatorname{Re}_{2})$$
 (3.10)

Sea

$$K = \log \left\{ \frac{0.25}{\left[\log \left(\frac{\varepsilon / D}{3.71} + \frac{G}{\operatorname{Re}_{2}^{T}} \right) \right]^{2}} \right\}$$

Las relaciones funcionales 3.9 y 3.10, pueden ser expresadas como:

$$log (64/Re_1) = b - C log (Re_1)$$
(3.11)

$$K = b - C \log (Re_2) \tag{3.12}$$

Para encontrar los valores de b y C en 3.11 y 3.12 se utiliza el método de Cramer^[1], que para un sistema de dos ecuaciones con dos incógnitas queda:

$$b = \frac{\log \left[\left(\frac{64}{Re_1} \right) \left(\log Re_2 \right) - \left(K \right) \left(\log Re_1 \right) \right]}{\log Re_2 - \log Re_1}$$
(3.13)

$$C = \frac{K - \log(64 / Re_1)}{\log Re_1 - \log Re_1}$$
(3.14)

Sustituyendo los valores de $Re_1 = 2000$ y $Re_2 = 4000$ en las ecuaciones 3.13 y 3.14

$$b = \frac{\left[(-1.49485) (-3.60206) \right] - \left[(K) (-3.30103) \right]}{\left[(1) (-3.60206) \right] - \left[(-3.30103) (1) \right]}$$

$$C = \frac{[(K)(1)] - [(-1.49485)(1)]}{[(1)(-3.60206)] - [(-3.30103)(1)]}$$

$$b = \frac{[5.384539391 - (-3.30103K)]}{-0.30103}$$
 (3.15)

$$C = \frac{(K + 1.49485)}{-0.30103} \tag{3.16}$$

K está en función de la rugosidad relativa ε/D de la tubería a analizar, por lo que b y C pueden obtenerse de una forma fácil. Estos valores permitirán realizar la unión de las ecuaciones de Poiseuille (2.3) y de la modificada de Colebrook-White (3.1).

III. 6. 1. 1 Ejemplo de Aplicación

Si se tiene una tubería con una rugosidad relativa $\epsilon/D = 0.05$, se puede calcular el coeficiente de pérdida por cortante f con la ecuación de ajuste en la zona crítica (número 3.4) cuando se hayan obtenido los valores de b y C. Esto se logra a través del siguiente procedimiento:

1. Cálculo de la variable K

$$K = \log \left\{ \frac{0.25}{\left[\log \left(\frac{0.05}{3.71} + 0.003174263 \right) \right]^2} \right\} = -1.1021943$$

2. Se sustituye este valor en las ecuaciones 3.15 y 3.16 para obtener b y C, quedando finalmente:

$$b = -5.800627648$$

 $C = -1.304373983$

El valor necesario para encontrar el factor de pérdida en la zona crítica es B y como b = log B, se obtiene :

$$B = 10^{b} = 10^{-5.800627648} = 1.5826 \times 10^{-6}$$

- 3. Con los valores de B y C se puede encontrar el coeficiente de pérdida por cortante f. Para ejemplificar se calcularán a continuación diferentes valores de f en una tubería con $\varepsilon/D = 0.05$:
 - Para $Re = 2000 \text{ y } \epsilon/D = 0.05$, utilizando la ecuación de Poiseuille (2.3) f = 0.032. Esto se comprueba sustituyendo los datos en la fórmula propuesta para el análisis de la zona crítica (3.4)

$$f = \frac{B}{Re^{C}} = \frac{1.5826 * 10^{-6}}{2000^{\cdot 1.304374}} = 0.032$$

• Para Re = 3000 y $\epsilon/D = 0.05$, sobre la recta que se forma en el Diagrama de Moody, para los puntos 1 y 2 correspondientes, se estima que $f \approx 0.053$, usando la ecuación (3.4), se obtiene:

$$f = \frac{B}{Re^{C}} = \frac{1.5826 * 10^{-6}}{3000^{-1.304374}} = 0.0543047$$

• Para Re = 4000 y $\varepsilon/D = 0.05$, con la ecuación modificada de Colebrook-White (3.1), f = 0.079. Por otro lado con la ecuación (3.4) resulta:

$$f = \frac{B}{Re^{C}} = \frac{1.5826 * 10^{-6}}{4000^{-1.304374}} = 0.079$$

Como se puede apreciar, la fórmula 3.4 propuesta para la unión de las ecuaciones de Poiseuille y de Colebrook-White da los resultados esperados.

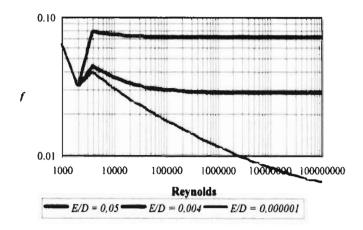


Ilustración 3.7. Unión de las ecuaciones utilizando una línea recta.

En la ilustración 3.7 se presentan los resultados obtenidos por el método propuesto de unión en la zona crítica, en ésta se puede observar que los resultados son congruentes a los calculados con el uso de las ecuaciones de Colebrook-White y de Poiseuille, para tres casos particulares de &D.

El procedimiento anterior se integró al programa de cómputo *MIRAP* (anexo C.5), reflejando una gran mejoría en la convergencia de los *nodos principales*. Sin embargo, el cálculo de toda la red presentaba problemas de convergencia. Se pensó que esto se debía al cambio tan fuerte de pendiente en los puntos de unión y se propuso encontrar la forma de suavizarla.

III. 7 PROPUESTA FINAL

S. H. Chue^[7]en 1984, con base en los estudios de Barr^[3], propone una nueva opción para el cálculo del coeficiente de pérdidas f, la cual es aplicable para ambos regímenes de flujo, así como para el paso por la zona de transición o flujo crítico. Todo esto basado en un factor de intermitencia para establecer la "unión" entre el flujo laminar y turbulento. Esta unión facilita la evaluación del factor de pérdidas del flujo en tuberías usando solamente una ecuación para cubrir completamente todos los números de Reynolds. La propuesta de Chue tiene la desventaja de ser de tipo.

$$\frac{1}{\sqrt{f}} = -4 \log \left[\phi_1 \, 10^{\left(\sqrt{Re}/16\right)} + \phi_2 \left(\, \frac{1.256}{\text{Re} \, \sqrt{f}} + \frac{k}{3.7 \, d} \right) \, \right]$$

Este problema puede ser resuelto debido a que se cuenta con la ecuación modificada de Colebrook-White propuesta por Guerrero (3.1) la cual es explícita. Si se sigue el procedimiento expuesto por Chue, se obtendrá la siguiente relación funcional que permitirá conocer el valor del coeficiente de pérdidas por cortante de la siguiente manera:

$$f = \left\{ \phi_{\perp} \frac{64}{\text{Re}} + \phi_{2} \frac{0.25}{\left[\log \left(\frac{\varepsilon / D}{3.71} + \frac{G}{\text{Re}^{\top}} \right) \right]^{2}} \right\}$$
(3.17)

donde: $\phi_1 = 1 - \gamma$ y $\phi_2 = \gamma$, siendo

$$\gamma = \frac{1}{1 + exp\left(-\frac{Re - A}{B}\right)}$$
 (3.18)

La fórmula 3.17, representa una combinación convexa de los regímenes laminar y turbulento. De acuerdo con Chue el factor de peso (γ) depende del número de Reynolds, cuya representación empírica está dada por la ecuación 3.18, en donde aparecen dos constantes A y B. El autor propone los valores numéricos de A = 3057.2516 y B = 227.52765.

Sin embargo, en el análisis de los sitemas de redes de distribución, la conservación de la energía conduce, después de realizar simulaciones por aproximaciones sucesivas para diferentes tamaños de redes, a los siguientes valores A = 3335.87744 y B = 341.29148.

Nótese que los valores no difieren significativamente de los propuestos por Chue, pero los aquí obtenidos aseguran la convergencia del modelo *MIRAP*.

La ilustración 3.8 muestra la unión de las ecuaciones que rigen el flujo laminar y turbulento .En ésta se presentan los valores de f calculados con la fórmula 3.17 para diferentes rugosidades relativas.

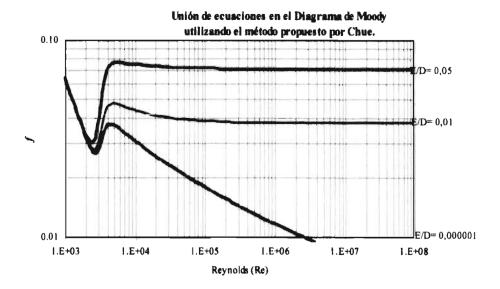


Ilustración 3.8 Propuesta final para salvar la discontinuidad.

De esta manera, el gasto de la cuerda se calcula utilizando la ecuación A.23 (Anexo A), donde el valor del factor de pérdida f se obtiene con la relación funcional 3.17.

Para integrar la propuesta de solución antes mencionada al procedimiento de solución, se siguieron los siguientes pasos:

1. Se calcula el número de Reynolds de cada uno de los tramos y dependiendo de éste se elige el valor de G y T.

G = 4.555	,	T = 0.8640	para	$4000 \le \text{Re} \le 10^5$
G = 6.732	,	T = 0.9104	para	$10^5 \le \text{Re} \le 3 \times 10^6$
G = 8.982		T = 0.9300	para	$3 \times 10^6 \le Re \le 10^8$

- 2. Se obtiene el valor de γ con la ecuación 3.18 utilizando las constantes de A=3335.87744 y B=341.29148.
- 3. Se calcula el factor de pérdida f, con la relación funcional 3.17.
- 4. Se integra el valor obtenido en la fórmula A.23.
- 5. Se sigue con el proceso descrito en el anexo A.7 para obtener el gasto en el tramo.

El desarrollo anterior se integró al programa de cómputo *MIRAP* (anexo C.6), encontrándose que el sistema convergía en todos los casos que se probaron.

CAPÍTULO IV

INFLUENCIA DE FLUJO LAMINAR Y CRÍTICO EN REDES DE AGUA POTABLE

Es importante comparar los resultados obtenidos al modelar una red de agua potable considerando, por un lado, solamente la presencia de flujo turbulento y por otro la influencia con flujo laminar y turbulento. Esto con el fin de observar si resultados se aproximan aún más a los medidos en la realidad, así como encontrar las ventajas y desventajas que se pudieran tener al considerar la presencia de estos flujos en ella.

Para analizar las diferencias que pudieran presentarse en los valores de los gastos y las presiones en un sistema de distribución, se resolvieron varios ejemplos con el programa de cómputo *MIRAP*. Esto se llevo a cabo en dos etapas: en la primera se consideró, que el flujo en todo el sistema era de tipo turbulento, es decir, se empleó la ecuación modificada de Colebrook-White (3.1), para el cálculo del factor de pérdidas f. En la segunda se tomó en cuenta la presencia de cualquiera de los tres tipos de flujo existentes, utilizándose para ello la ecuación propuesta en este trabajo (3.17).

IV. 1 METODOLOGÍA GENERAL

Con el propósito de analizar las diferencias al calcular una red de agua potable, considerando la existencia de flujos laminares y turbulentos. Se resolvieron ocho ejemplos teóricos y dos reales : la red de agua potable del fraccionamiento "El Paraje" en Jiutepec, Morelos y la del municipio de Chalco en el Estado de México.

Una vez que es integrada la ecuación propuesta (3.17) a un sistema de modelación de redes, es de suma importancia verificar que los resultados obtenidos por el programa, sean congruentes con las mediciones realizadas en campo, ya que esto nos permitirá decidir si es importante integrar en la simulación cualquier tipo de flujo que se presente. Para ello se hizo una comparación de los datos obtenidos por el modelo y los medidos en campo en la red de agua potable de la población de Chalco, Estado de México.

IV. 2 EJEMPLOS DE REDES FICTICIAS

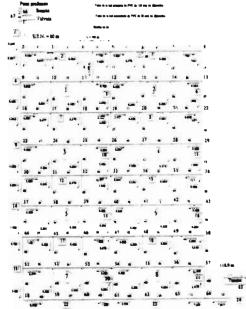
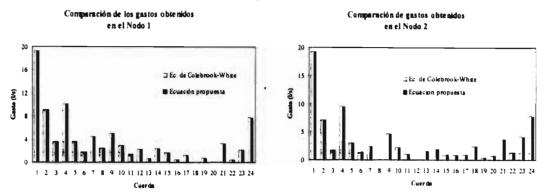
A continuación se da una breve explicación sobre cada uno de los ejemplos resueltos. Se presentan ilustraciones que permiten comparar los resultados, considerando: 1) la existencia de flujo turbulento y 2) la de flujo laminar, crítico y turbulento.

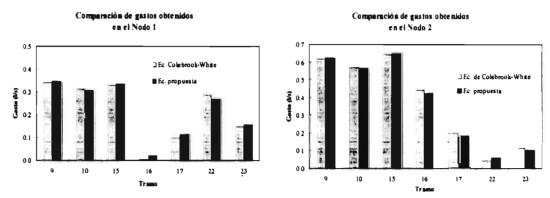
Los datos obtenidos de cada uno de los ejemplos se tienen en el anexo D. En este capítulo se presentan ilustraciones, basadas en esos datos, para hacer más fácil la comprensión.

IV. 2. 1 Red de agua potable integrada de una red primaria y ocho redes secundarias

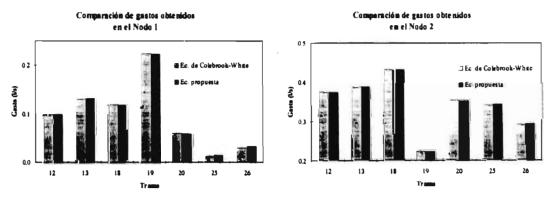
La red de agua potable que se muestra en la ilustración 4.1 consta de 8 redes secundarias cuyos diámetros son de 2 pulgadas y cada tramo tiene 20 tomas conectadas. Los tubos de la red primaria son de 6 pulgadas de diámetro con tomas domiciliarias conectadas en algunos de los tramos. El material de los tubos es polietileno de alta densidad en toda la red.

Los resultados que se obtuvieron al modelar la red anterior se encuentran en el anexo D.1. Para hacer más fácil la interpretación de los mismos se presentan la ilustración 4.2, en la izquierda se tienen los del nodo aguas arriba (1) y en la derecha los del nodo aguas abajo (2), para cada uno de los tramos de la ocho redes.

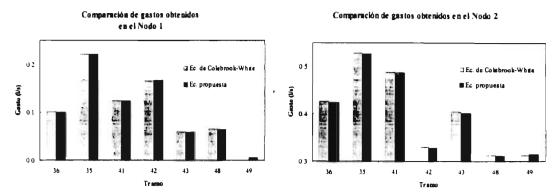




Ilustración 4.1 Red de agua potable del ejemplo IV. 2.1.

IV. 2. 1. 1. Resultados de las cuerdas de la red primaria


Ilustración 4. 2 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV 2. 1. 2. Resultados de los tramos de la red secundaria número 1


Ilustración 4. 3 Resultados de los tramos de la red secundaria número 1, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 1. 3. Resultados de los tramos de la red secundaria número 2

Ilustración 4. 4 Resultados de los tramos de la red secundaria número 2, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 1. 4. Resultados de los tramos de la red secundaria número 3

Ilustración 4. 5 Resultados de los tramos de la red secundaria número 3, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 1. 5. Resultados de los tramos de la red secundaria número 4

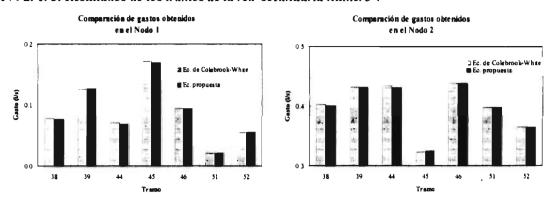


Ilustración 4. 6 Resultados de los tramos de la red secundaria número 4, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 1. 6. Resultados de los tramos de la red secundaria número 5

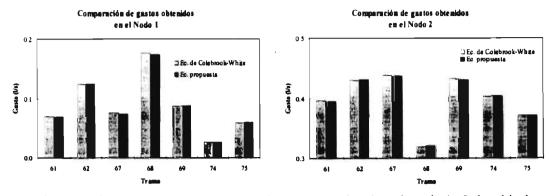
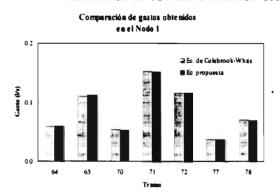
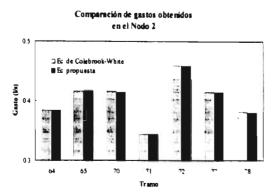
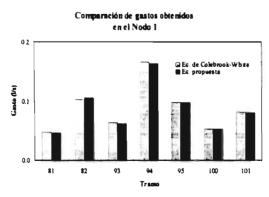




Ilustración 4. 7 Resultados de los tramos de la red secundaria número 5, obtenidos en los nodos 1 y 2 al modeiar la red utilizando la ecuación de Colebrook-White y la propuesta.


IV. 2. 1. 7. Resultados de los tramos de la red secundaria número 6

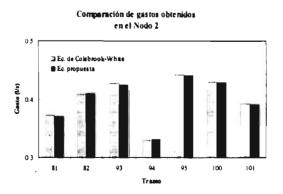
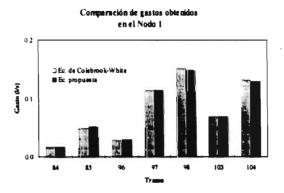


Ilustración 4. 8 Resultados de los tramos de la red secundaria número 6, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.


IV. 2. 1. 8. Resultados de los tramos de la red secundaria número 7

liustración 4. 9 Resultados de los tramos de la red secundaria número 7, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 1. 9. Resultados de los tramos de la red secundaria número 8

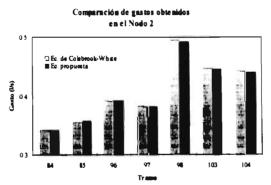


Ilustración 4. 10 Resultados de los tramos de la red secundaria múmero 8, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 2 Red de agua potable integrada únicamente de la red primaria

La red de agua potable que se muestra en la ilustración 4.11 es una variante del ejemplo IV.2.1 eliminando en la simulación a las tomas y a la red secundaria, tal como se haría con el procedimiento empleado en los modelos actuales. Con el propósito de poder comparar los dos procedimientos, se tomó un consumo total de 27.17 l/s igual al que se tiene en el ejemplo número 1.

Al igual que en el ejemplo anterior se realizó el estudio y se presentan las ilustraciones que muestran los resultados obtenidos utilizando para el cálculo la ecuación de Colebrook-White y la propuesta. Los datos se encuentran en el anexo D.2.

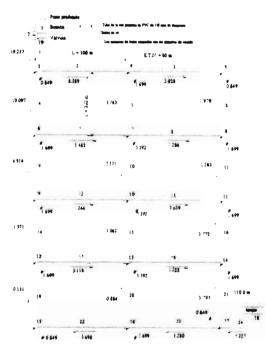
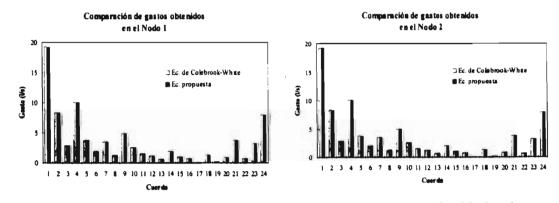



Ilustración 4.11 Red de agua potable del ejemplo IV. 2. 2.

IV. 2. 2. 1. Resultados de las cuerdas de la red primaria

Rustración 4. 12 Resultados de las cuerdas de la red primaria, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 3 Red de agua potable con tomas domiciliarias y extremos alejados a los puntos donde ingresa el agua

La red de agua potable cuyas características geométricas se muestran en la ilustración 4.13 representa el caso cuando existen extremos de la red relativamente alejados de los puntos por donde ingresa el agua a la red. En cada uno de los tramos 2 y 4, existen 70 tomas domiciliarias y un mismo número de habitantes.

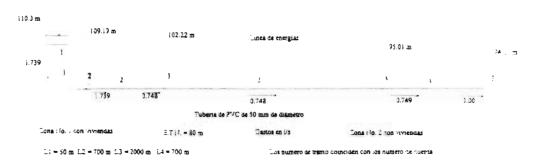


Ilustración 4.13 Red de agua potable del ejemplo IV. 2. 3.

Los resultados se encuentran en el anexo D.3. A continuación se presentarán las ilustraciones que contienen esos valores.

IV. 2. 3. 1. Resultados de las cuerdas de la red primaria

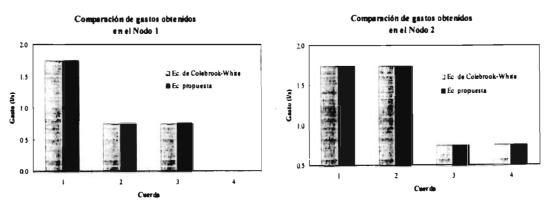


Ilustración 4. 14 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 4 Red de agua potable sin tomas domiciliarias y extremos alejados a los puntos donde ingresa el agua

La ilustración 4.15 es una variante de la red del ejemplo número IV. 2. 3 eliminando en la simulación las tomas domiciliarias, tal como se procede en los modelos actuales. Asimismo, en los tramos 2 y 4 se tomó un mismo consumo ya que en los dos existe un mismo número de habitantes. El consumo total de 1.74 l/s es igual al que se obtiene en el ejemplo anterior.

Ilustración 4.15 Red de agua potable del ejemplo IV. 2. 4.

Los resultados obtenidos se encuentran en el anexo D.4. A continuación se presenta la representación ilustración de los mismos.

IV. 2. 4. 1. Resultados de las cuerdas de la red primaria

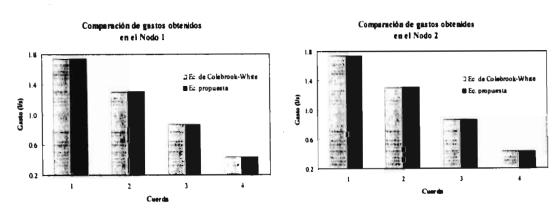


Ilustración 4 16 Resultados de las cuerdas de la red primaria, obtenidos en los nodos I y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2. 5 Red de tubos con una sola cuerda en la red primaria, con un nodo principal⁵ y con redes secundarias

La red de tubos de la ilustración 4.17 es un caso especial. En ella sólo existe una cuerda en la red primaria en la cual hay un punto extremo de la red, por lo que en ella no hay nodo principal. Los tubos 4 y 6 pertenecen a la red secundaria número 1. Los dos extremos del tubo número 4 se conectan a la cuerda de la red primaria. Debido a esto, el nodo número 6 es el único nodo principal de la red secundaria.

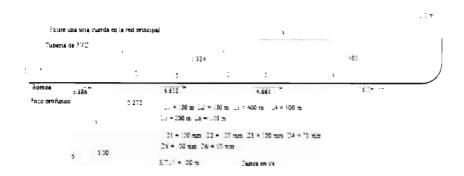


Ilustración 4.17 Red de agua potable del ejemplo IV. 2. 5.

Los datos obtenidos al modelar esta red se encuentran en el anexo D.5. A continuación se presentan ilustraciones que contienen estos resultados.

IV. 2. 5. 1. Resultados de la cuerda de la red primaria y de los tramos de la red secundaria

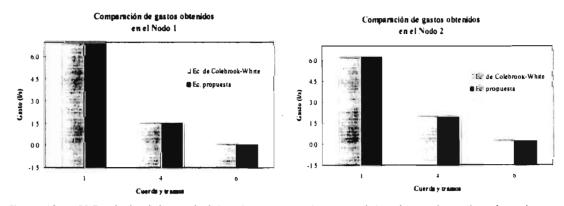


Ilustración 4. 18 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

⁵ Nodo Principal.- Es el punto de unión de tres o más cuerdas o solamente una cuerda si es un punto extremo de la red, Anexo A, pag. 68.

IV. 2. 6 Red de tubos con una sola cuerda en la red primaria, sin nodo principal y con una red secundaria desconectada

En la ilustración 4.19 se muestra una variante del ejemplo número IV. 2. 5. Los tubos número 4 y 5 pertenecen a la red secundaria número 1 y forman una red desconectada.

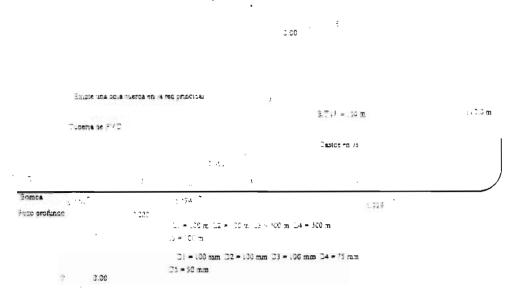


Ilustración 4.19 Red de agua potable del ejemplo IV. 2. 6.

Los resultados obtenidos al realizar la modelación de esta red se encuentran en el anexo D.6. A continuación se presentan ilustraciones en las que se incluyen los valores dados por la simulación.

IV. 2. 6. 1. Resultados de la cuerda de la red primaria y de los tramos de la red secundaria

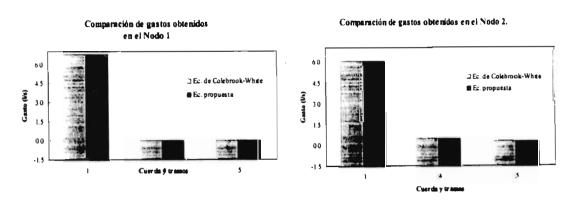


Ilustración 4. 20 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

IV. 2.7 Red en donde existe un tanque hidroneumático o una descarga libre con dos tipos de frontera diferentes

La red que se muestra en la ilustración 4.21 tiene el propósito de mostrar la aplicación del modelo en caso de que haya un tanque hidroneumático o una descarga libre, ya que se trata de dos tipos de elementos de frontera diferentes a los pozos profundos y tanques atmosféricos existentes en los ejemplos anteriores (IV. 2. 1 a IV. 2. 6).

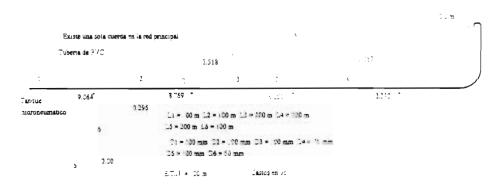


Ilustración 4.21 Red de agua potable del ejemplo IV. 2. 7.

Al modelar la red con las ecuaciones de Colebrook-White y la propuesta se encontraron los resultados que se muestran en el anexo D.7. A continuación se presenta una representación ilustración de los mismos.

IV. 2.7.1. Resultados de la cuerda de la red primaria y de los tramos de la red secundaria

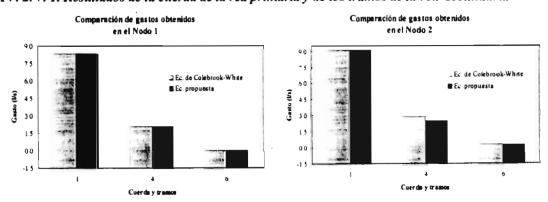


Ilustración 4. 22 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la propuesta.

Los ejemplos anteriores fueron modelados considerando flujos laminares y críticos, utilizando para ello la ecuación propuesta. Como las diferencias presentadas son relativamente pequeñas, se decidió buscar una red de tamaño mediano que pudiera presentar diferencias significativas en los resultados. Esto propició la propuesta del ejemplo que se presenta a continuación.

IV. 2. 8 Red primaria de agua potable de tamaño mediano con 100 redes

En la ilustración 4.23 se muestra el esquema de una red primaria de agua potable que consta de 100 redes secundarias, con un total de 2,470 tramos, 25,500 tomas y 1,271 nodos.

Con el propósito de simplificar la captura de datos, se consideró que cada una de las redes secundarias tiene la misma geometría (ilustración 4.24) con tramos de tubo de 76 mm de diámetro en los cuales se conectan 15 tomas domiciliarias.

En la red primaria se consideró que en el circuito externo los tramos de tubo son de 400 mm de diámetro y de 200 mm en el resto.

Т									
1	2	3	4	17	31	43	57	73	91
5	6	7	8	22	32	44	58	74	92
9	10	11	12	23	33	45	59	75	93
13	14	15	16	24	34	46	60	76	94
18	19	20	21	25	35	47	61	77	95
26	27	28	29	30	36	48	62	78	96
37	38	39	40	41	42	49	63	79	97
50	51	52	53	54	55	56	64	80	98
65	66	67	68	69	70	71	72	81	99
82	83	84	85	86	87	88	89	90	100

Ilustración 4.23 Red primaria de agua potable del ejemplo IV. 2.8.

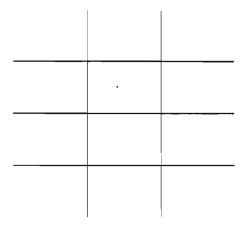


Ilustración 4.24 Geometria de cada una de las redes secundarias del ejemplo número IV. 2.8.

El ejemplo de la red del inciso IV. 2. 8 se resolvió con el método propuesto. Para comparar las diferencias que pudieran existir entre simular la red con flujo turbulento y con flujo laminar, crítico y turbulento, se hizo un estudio de las diferencias de las energías en los nodos y de los gastos de los tramos y cuerdas de tres redes (1, 25 y 100).

En las ilustraciones 4.25, 4.26 y 4.27, se muestran las diferencias de energías en los nodos. Éstas son una clara muestra de la importancia de considerar la existencia de flujos laminares y críticos en las redes de agua potable, pues los resultados presentan diferencias considerables que deben de tomarse en cuenta para lograr una mayor precisión en la simulación del sistema.

Los resultados de la simulación se presentan en el anexo D.8.

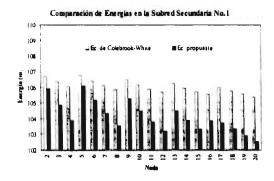


Ilustración 4.25. Comparación de las energías calculadas con la ecuación de Colebrook-White y la propuesta en los nodos de la red.

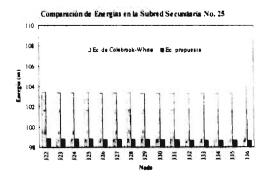


Ilustración 4.26. Comparación de las energias calculadas con la ecuación de Colebrook-White y la propuesta en los nodos de la red

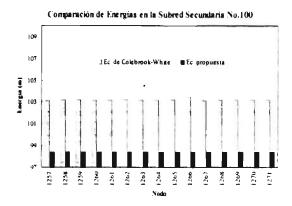


Ilustración 4.27. Comparación de las energias calculadas con la ecuación de Colebrook-White y la propuesta en los nodos de la red.

Lo anteriormente visto indica que en una red de tamaño mediano en la que se considere la existencia de flujos laminares y turbulentos se pueden presentar pérdidas mayores (ilustraciones 4.25, 4.26 y 4.27), debido a que se considera el efecto de las fuerzas viscosas.

También se realizó un estudio de los gastos en las cuerdas de la red primaria y se presentaron diferencias considerables de ellos. Éstas se muestran en las ilustraciones 4.28, 4.29 y 4.30.

Las mayores diferencias se presentan en las cuerdas de la red secundaria número 1 debido a que en éstas se inicia la circulación de agua al sistema.

IV. 2. 8. 1. Gastos obtenidos en las cuerdas de la red primaria número 1

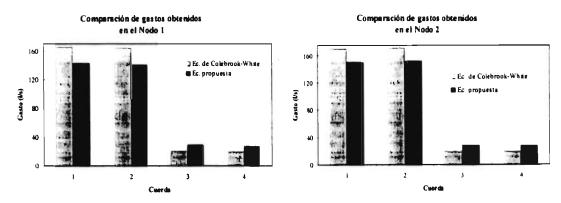
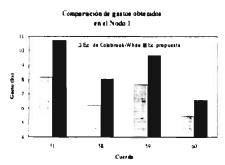
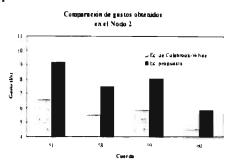




Ilustración 4.28. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de las cuerdas de la red

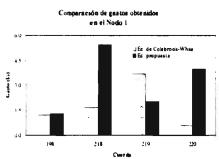

IV. 2. 8. 2. Gastos obtenidos en las cuerdas de la red primaria número 25

Ilustración 4.29. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de las cuerdas de la red

IV. 2. 8. 3. Gastos obtenidos en las cuerdas de la red primaria número 100

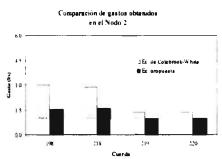
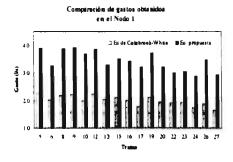



Ilustración 4.30. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de las cuerdas de la red

Así mismo, se realizó un estudio con los gastos obtenidos en los tramos de las tres redes secundarias escogidas. En éstos también se presentaron diferencias importantes (ilustraciones 4.31, 4.32 y 4.33).

IV. 2. 8. 4. Gastos obtenidos en los tramos de la red primaria número 1

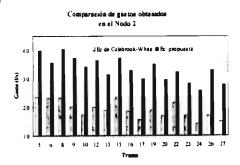


Ilustración 4.31. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de los tramos de la red

IV. 2. 8. 5. Gastos obtenidos en los tramos de la red primaria número 25

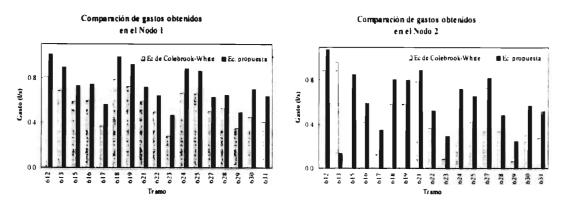


Ilustración 4.32. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de los tramos de la red.

IV. 2. 8. 6. Gastos obtenidos en los tramos de la red primaria número 100

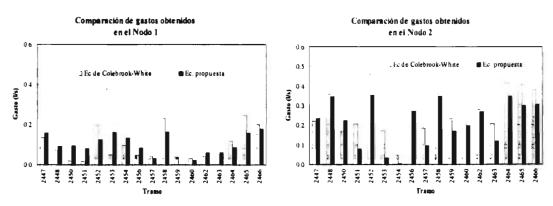


Ilustración 4.33. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba (Nodo 1) y aguas abajo (Nodo 2) de los tramos de la red

Estos resultados permiten confirmar la importancia de considerar la existencia de flujos laminares y turbulentos en redes de agua potable de tamaño mediano. Las diferencias se deben a que en ésta, las pérdidas de energía son mayores y al sumarse todas, hacen que la pérdida total en el sistema sea importante. Debido a esto, es necesario considerar cualquier tipo de flujo existente en redes de agua potable y aún más si se trata de redes de este tipo.

IV. 3 EJEMPLOS DE REDES REALES

IV. 3. 1 Fraccionamiento "El Paraje", Jiutepec, Morelos

En el capítulo I se presentó el estudio de la red de agua potable del fraccionamiento "El Paraje" (ilustración 4.34). Este estudio considera que el flujo es totalmente turbulento, por lo que para el cálculo del factor de pérdidas f se empleó la ecuación de Colebrook-White.

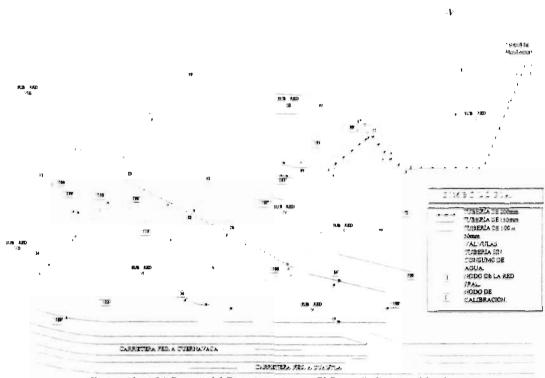


Ilustración 4.34 Croquis del Fraccionamiento "El Paraje", Jiutepec, Morelos

Debido a que los resultados observados indican la existencia de flujo de tipo laminar, en este subcapítulo se presentarán los obtenidos tomando en cuenta la ecuación propuesta en este trabajo a fin de compararlos.

Se presentan los resultados de las cuerdas de la red primaria y de la red secundaria número seis. Se tomó esta red debido a que las diferencias presentadas en cada una de las redes analizadas no fueron significativas, por lo que se eligió una sola red para ejemplificarlos. Los datos obtenidos en la simulación de este problema se encuentran en el anexo D.9.

IV. 3. 1. 1. Gastos obtenidos en la red primaria

Comparación de gastos obtenidos en el Nodo 1

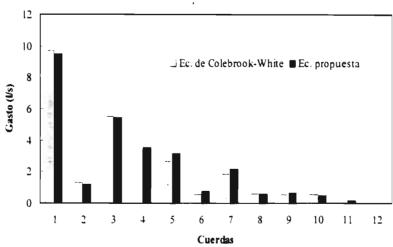


Ilustración 4.35. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba de varias cuerdas.

Comparación de gastos obtenidos en el Nodo 2

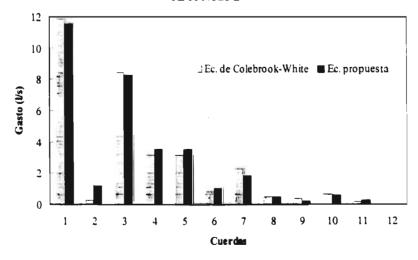


Ilustración 4.36. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas abajo de varias cuerdas.

IV. 3. 1. 2. Gastos obtenidos en la red secundaria número seis

Comparación de gastos obtenidos en el Nodo 1

Ilustración 4.37. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas arriba de los tramos de la red.

Comparación de gastos obtenidos en el Nodo 2

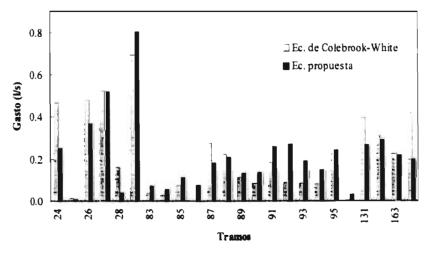


Ilustración 4.38. Comparación de gastos calculados con la ecuación de Colebrook-White y la propuesta en los nodos aguas abajo de los tramos de la red.

IV. 3. 2 Red de agua potable de Chalco, Edo. de México.

Utilizando la propuesta final de solución presentada en el capítulo anterior, se simuló la red de agua potable de Chalco (ilustración 4.39). El propósito de aplicar esta propuesta en la red fue evaluar la convergencia en un sistema de mediana dimensión, además de comparar los valores calculados por el programa utilizando la ecuación propuesta y los medidos en campo y así verificar si estos resultados son semejantes.

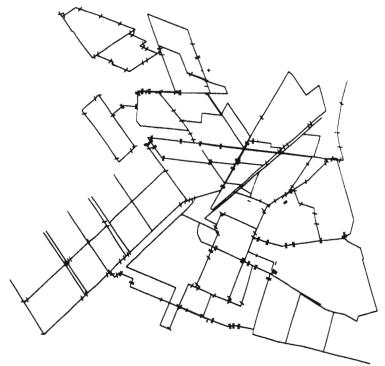


Ilustración 4.39 Croquis de la red de agua potable de Chalco, Edo. de México.

El organismo operador de la red de Chalco y la empresa EPSCOM, S.C. proporcionaron información sobre la población actual, la geometría y el tendido de la red primaria y parte de la red secundaria, la ubicación, las alturas y las capacidades de los tanques de regulación, los gastos en las fuentes de abastecimiento y las horas de operación de los equipos de bombeos.

Se estima que la población de Chalco (1996) es de 150,000 habitantes. La red de tubos se conforma con diámetros nominales que van de 76 a 350 mm en materiales de cloruro de polivinilo (PVC), fibrocemento y fierro fundido (Fo Fo).

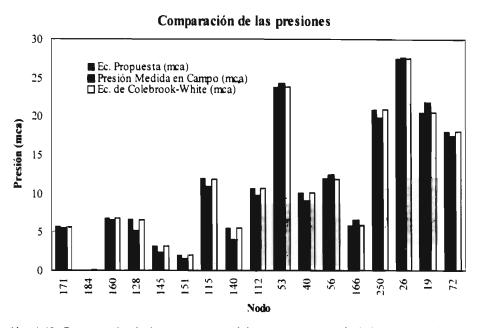
El suministro de agua proviene de 6 pozos profundos que se encuentran distribuidos dentro de la misma área del poblado. También hay un pozo que hasta el momento del estudio (1996) se encontraba fuera de servicio.

Existen 3 tanques elevados de regulación metálicos, cada uno con capacidad de 250 m³ y 15 m de altura, ubicados a unos 20 m de distancia de un determinado pozo. Es decir, en tres de los pozos existentes hay un tanque a un lado del pozo y en los otros tres pozos no existe ningún tanque, con su descarga directa a la red de distribución. Los tanques se localizan en los pozos número 1, 2 y 5.

El Pozo número 1 tiene su descarga de agua a la red y al tanque por la parte superior del mismo. De la parte inferior del tanque se conecta un tubo para la bajada del agua que se utiliza únicamente para el llenado de camiones transportadores de agua.

El pozo número 2 tiene su descarga de agua a la red y al tanque por la parte inferior del mismo. A este tanque llega una descarga, por la parte superior de éste, proveniente del pozo número 4.

El pozo número 5 tiene su descarga de agua al tanque por la parte superior de éste. De la parte inferior del tanque se conecta un tubo para la bajada del agua hacia la red de distribución.


La red de Chalco se encuentra desconectada por medio de una válvula de seccionamiento formando dos sectores, cada uno con una operación independiente. En uno de ellos se localiza el pozo numero 7, donde no existe tanque de regulación. En el otro sector se localiza el resto de pozos y es la zona donde se encuentran los tres tanques de regulación.

IV. 3. 2. 1. Presiones medidas y calculadas con ambos modelos en distintos puntos de la red de Chalco.

NODO	PRESIÓN MEDIDA	PRESION CALC:	PRESIÓN CALC.	DIFERENCIA DE PRESIÓN
	-1-	- 2 -	-3-	(2 - 1)
	(mca)	(mca)	(mca)	(mca)
	Se	ctor de los pozos nu	mero 2, 5 y 6	
17!	5.50	5 72	5 68	0 22
184	0.00	0.11	0.07	0 11
160	6 60	6 79	6 76	0.19
128	5 17	6 64	661	1.47
145	2 3 3	3 19	3 14	0.86
151	1 50	2 02	1.96	0.52
115	10 90	1191	1188	1.01
140	3 94	5 56	5 52	1 62
112	977	10 67	10 64	0 90
53	24 30	23.75	23 75	-0 55
40	9 00	10 07	10.04	1 07
56	12 43	11 90	11.87	-0 53
166	6.61	5 91	5.87	-0 70
250	19 78	20.90	20.89	1 12
		Sector del pozo n	iunero 7	•
26	27 63	27 57	27 38	-0 06
19	21.83	20.47	20 47	-1 36
?2	17 48	18.05	18 05	0 57

Cuadro 4.1 Presiones medidas en campo(1) y presiones obtenidas con el programa de cómputo MIRAP, utilizando la ecuación propuesta (2) y la ecuación de Colebrook-White (3).

- 3 - Presion calculada utilizando la ecuación de Colebrook-White

Ilustración 4.40 Comparación de las presiones medidas en campo y calculadas con el método tradicional (Colebrook-White) y el propuesto, en distintos puntos de la red de agua potable de Chalco.

En la ilustración 4.40 se muestran las presiones medidas y calculadas, tanto con un modelo convencional (Colebrook-White), así como con el propuesto. Se observa que los resultados obtenidos por la simulación proporcionan resultados muy aproximados a los medidos en la realidad, ya que las diferencias de alturas promedio son relativamente pequeñas.

Esto refleja que la ecuación propuesta es confiable y que puede ser utilizada en la simulación de redes y muy posiblemente en diferentes problemas de ingeniería en donde sea necesario conocer el valor del coeficiente de pérdidas por cortante f.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

Hasta hoy, los modelos de simulación hidráulica de redes de tubos han considerado únicamente la existencia de flujos turbulentos. Sin embargo, el análisis realizado mostró la presencia de flujo de tipo laminar en redes de distribución, lo cual dio lugar a la formulación de las siguientes conclusiones:

- 1. Se analizaron los resultados obtenidos al modelar de manera convencional la red de agua potable del fraccionamiento "El Paraje". Se consideró únicamente la presencia de flujo de tipo turbulento, y se encontró que aproximadamente el 65% de los flujos en la red tenían un Re≤4000, mientras que el resto presentaba Re>4000. De esta manera se comprobó matemáticamente que sí es posible la presencia de flujos laminares en redes de distribución, contrariamente a lo que afirman algunos autores (Binder, Roberson, Crowne), con respecto a que ésta es muy poco probable o casi nula.
- 2. Se logró identificar el régimen del flujo de un tramo mediante un experimento en campo: se observaron líneas de corriente paralelas, lo cual, indica que el flujo se encontraba en régimen laminar, es decir, no presentó mezcla entre las partículas suspendidas y el frente de velocidades del colorante no mostró torbellinos.

- 3. Se llegó a una ecuación que permite establecer la correspondencia entre el fenómeno real y la simulación numérica.
- 4. La ecuación propuesta tiene la particularidad de ser explícita y de simular una unión suavizada entre las ecuaciones de Poiseuille y de Colebrook-White, lo que permite utilizarla eficientemente en sistemas de simulación numérica ya que no existe discontinuidad. Esta ecuación calcula el valor del coeficiente de pérdidas por cortante, f, para cualquier número de Reynolds.
- 5. Las constantes propuestas por Chue fueron modificadas. Los nuevos valores fueron obtenidos mediante simulaciones de aproximaciones sucesivas y no presentaron problemas de convergencia en el modelo de simulación *MIRAP*.
- 6. Se demostró que los resultados obtenidos con el uso de la ecuación propuesta se asemejan mucho a los medidos en campo en un sistema de distribución de agua potable (Chalco).

El campo de aplicación de la ecuación propuesta no se limita al estudio de redes de distribución de agua potable: puede ser utilizada en otras áreas de la ingeniería en las que se necesite el valor del coeficiente de pérdidas.

BIBLIOGRAFÍA

- 1. Academia Hütte de Berlín, "Manual del Ingeniero", Editorial Gustavo Gili, S.A., 1965.
- 2. Barr, D. I. H., "Explicit Working for Turbulent Pipe Flow Problems", Journal of the Hydraulics Division, ASCE, vol. 102, No. HY5, May 1976, págs. 667-673.
- 3. Barr, D. I. H., "The Transition from Laminar to Turbulent Flow", Proc. Instn. Civil Engrs., Part 2, december 1975, 59.
- Barr, D. I. H., "Two Additional Methods of Direct Solution of the Colebrook-White Function", Proc. Instn. Civil Engrs., Part 2, 1980, 69, June, pp. 555-562, Nota técnica número 260.
- 5. Binder, R. C., "Mecánica de Fluidos", Editorial Trillas, Primera Edición, México, 1978.
- 6. Chen, J. J., "A Simple Explicit Formula for the Estimation of Pipe Friction Factor", Proc. Instn. Civil Engrs., Part 2, 1984, 77, Mar., pp. 49-55, Nota técnica número 400.

- Chue, S. H., "A Pipe Skin Friction Factor Law of Universal Applicability", Proc. Instn. Civil Engrs., Part 2, 1984, 77, Mar., pp. 43-48, Nota técnica número 339.
- 8. División de Ingeniería de CRANE, "Flujo de Fluidos en Válvulas, Accesorios y tuberías". Editorial Mc Graw Hill, Primera Edición, 1992.
- 9. Fox, R. W., McDonald, A. T., "Introduction to Fluid Mechanics", John Wiley and Sons, U.S.A., 1978.
- 10. Fuentes Mariles, O. A., Martínez Austria, P. F., "Métodos Numéricos Aplicados a la Hidráulica", SARH-IMTA, Septiembre 1988.
- 11. Giles V., Ranald, B. S., "Mecánica de Fluidos e Hidráulica", Editorial Mc Graw Hill, Serie Shaum, Segunda Edición.
- 12. Guerrero Angulo, J. O., "Ecuación Modificada de Colebrook-White", Revista de Ingeniería Hidráulica de México, Vol. X, págs. 43-48, Enero-Abril 1995.
- Guerrero Angulo, J. O., "Modelación Integral de Sistemas de Agua Potable". Informe Técnico. Proyecto TC-9513, IMTA, México, 1995.
- 14. Guerrero Angulo, J. O., "Sistemas de Conducción de Agua en Tuberías". Editorial U.A.S., febrero de 1985.
- 15. Guerrero Angulo, J. O., "Una Ecuación General para Pérdidas de Energía por Conducción en Tubos", Onceavo Congreso Nacional de Hidráulica, Asociación Mexicana de Hidráulica, Zacatecas, Zac., octubre de 1990.
- 16. Hansen R., M. P., Arreguín C, F. I. y Guerrero A., J. O, "Evaluación del Modelo Integral de Redes de Agua Potable", Resumen de los Trabajos Presentados en el Congreso del V Verano de la Investigación Científica, Cd. del Carmen, Campeche, 1996, en prensa.
- 17. Levi, E., "*El Agua Según la Ciencia*", CONACyT, Ediciones Castell Mexicana, S.A., México, 1989.
- 18. Lipschutz Seymour, "Algebra Lineal", Editorial Mc Graw Hill, Serie Schaum, 1994.
- 19. Lunt, W. T., "Matemáticas Básicas", Centro Regional de Ayuda Tecnológica, México-Buenos Aires, Editorial Mc Graw Hill, Primera Edición, 1973.
- 20. Massey, B. S., "Mecánica de Fluidos", Compañía Editorial Continental, S. A., México, 1979.
- 21. Moody, L. F., "Friction Factors for Pipe Flow", Transactions, American Society of Mechanical Engineers, Vol. 66, 1944, pág. 671.

- 22. Morrough P., O'Brien, H. Hickox, George, "Applied Fluid Mechanics", Editorial Mc Graw Hill, Primera Edición, 1937.
- 23. Murray R. Spiegel, "Manual de Fórmulas y Tablas Matemáticas", Editorial Mc Graw Hill, Serie Schaum, Primera Edición, 1985.
- 24.Ochoa A., L. H. y Arreguín C., F. I, "Método para Evaluar Pérdidas de Agua en Redes de Distribución de Agua Potable", Memorias del Primer Seminario Internacional Sobre Uso Eficiente de Agua, octubre de 1991, pág., 612-619.
- 25. Ochoa A., L. H. y Arreguín C., F. I, "Evaluación de Pérdidas en Redes de Distribución de Agua Potable", IMTA, CNA, marzo de 1993.
- 26. Organización Panamericana para la Salud, "Apuntes del Curso Intensivo de Bombas para Agua Potable", Washington, D. C., USA, 1966.
- 27. Roberson, J. A., Crowe, C. T., "Mecánica de Fluidos", Editorial Mc Graw Hill, Segunda Edición, 1991.
- 28. Silvestre Paschoal, "Fundamentos de Hidráulica General". Editorial Limusa, México, 1983.
- 29. Sotelo Ávila ,G., "Hidráulica General, Volumen I, Fundamentos". Limusa Noriega Editores, 1995, Décimo Sexta Reimpresión.
- 30. Streeter, Victor L., "Mecánica de Fluidos", Editorial Mc Graw Hill, Tercera Edición.
- 31. Thompson, J. M. T., Steward, H. B., "Non Lineal Dynamics an Chaos", Editorial John Willey and Sons, Gran bretaña, 1978.
- 32. Trautwine, John C., "Manual del Ingeniero", Imprimerie Paul Dupont, Segunda Edición, París, 1921.
- 33. Williams, Horace, "Manual de Hidráulica", Limusa Noriega Editores, Tercera Reimpresión, 1995.

ANEXO A

MODELACIÓN INTEGRAL DE REDES DE AGUA POTABLE

Con el fin de apoyar este trabajo se utilizó el sistema de cómputo MIRAP, el cual fue elaborado por el M.I. Oscar Guerrero Angulo.

El propósito principal es de contar con una herramienta confiable para validar las hipótesis formuladas de manera sencilla y práctica.

El sistema de cómputo MIRAP (Modelación Integral de Redes de Agua Potable) efectúa la simulación hidráulica de las redes de agua potable empleando un procedimiento diferente al usado en los modelos convencionales, incorporando la modelación de elementos importantes como las tomas domiciliarias, la red secundaria y los tubos de distribución con el gasto espacialmente variado, sin la necesidad de aumentar el número de ecuaciones que sería necesario resolver en un modelo convencional. En las tomas domiciliarias se considera que pueden o no existir tinacos o cisternas, y su funcionamiento depende de las presiones y la forma como los usuarios operan las llaves de las mismas.

Este planteamiento permite conocer mejor el funcionamiento de las redes de abastecimiento de agua potable, con un impacto directo sobre los problemas que requieren de simulación hidráulica más precisa, como los aspectos de calidad del agua en las redes. Este programa de cómputo se compone de tres módulos principales: captura de datos, cálculo, e impresión de datos y resultados.

El módulo de cálculo establece primeramente la conectividad y la información ordenada de cada elemento interno de la red con el propósito de agilizar y optimizar el cálculo hidráulico. Posteriormente, simula el funcionamiento hidráulico de todos los elementos mediante la solución de sistemas de ecuaciones implícitas no lineales.

En la red pueden existir diferentes elementos de frontera como son pozos profundos, tanques atmosféricos (norias y tanques en contacto con la atmósfera), tanques hidroneumaticos y descargas libres. Pueden existir también diferentes elementos internos, como los tramos de tubo, tomas domiciliarias, bombas y válvulas.

Se pueden resolver varios casos como redes con o sin nodos principales, redes conectadas y no conectadas, tramos de tubo con o sin tomas domiclliarias y sistemas de agua potable con o sin red secundaria de tal suerte que también se puede modelar de la manera convencional asignando las demandas en los nodos, tomando en cuenta ya sea únicamente a la red primaria o incluyendo a la red secundaria pero con la ventaja de que no se incrementa el número de ecuaciones que se forman en los modelos actuales de simulación hidráulica.

A. 1 CONCEPTOS HIDRÁULICOS

En la red de tubos existen elementos internos y de frontera. Los elementos internos son: tramos de tubos, bombas y válvulas de diferente tipo (seccionamiento, de no retorno, reductoras y sostenedoras de presión, etc.). Los elementos de frontera son: tanques en contacto con la atmósfera, norias (ambos identificables como tanques atmosféricos), tanques hidroneumáticos, pozos profundos, y descargas libres.

Los elementos internos quedan localizados en medio de dos nodos, y los elementos de frontera conectados en un solo nodo.

En los tramos de tubo, pueden o no existir tomas domiciliarias conectadas y fugas de agua. Si es que existen, el tubo se llama tubo de distribución y si no existen el tubo se llama tubo sin distribución.

El elemento de frontera proporciona entrada o salida de agua al sistema. La energía en el punto donde se conecta un elemento de frontera debe obtenerse aplicando su ley particular que describe su funcionamiento.

Un *nodo* es un punto de la red donde se conectan dos o más elementos o solamente un elemento si es un punto extremo de la red.

Con el propósito de evitar el mayor número posible de ecuaciones de nodo, sin la necesidad de eliminar las variables, se propone enseguida los conceptos de: cuerda y nodo principal.

Cuerda. Es un conjunto de elementos internos conectados en serie, donde se puede transportar, derivar y controlar diferentes flujos y modelarse con una sola ecuación. En las uniones de los elementos internos pueden o no existir conexiones de tubos secundarios (ilustración A.1).

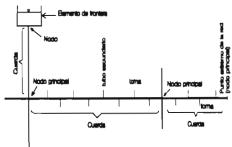


Ilustración A.1 Cuerdas y nodos principales en una red de agua potable.

Las conexiones de tubos secundarios pueden efectuarse únicamente en las cuerdas de la red primaria.

Si en la cuerda se conectan tubos de distribución o tubos secundarios, la cuerda se llama *cuerda de distribución*, en el caso de que no suceda esto la cuerda se llama *cuerda sin distribución* (figuras A.2 y A.3).

Nodo principal. Es el punto donde se unen tres o más cuerdas o solamente una cuerda si es un punto extremo de la red. No se considera un nodo principal el punto donde se une un elemento de frontera (ilustración A.1).

Con el propósito de eliminar al máximo el número de nodos principales en una red de agua potable es conveniente definir a las cuerdas de tal manera que sus nodos principales, que no sean puntos extremos de la red, unan a tres o más cuerdas.

En los extremos de una cuerda puede existir ya sea un nodo principal o un elemento de frontera. Puede suceder que una cuerda no se conecte a ningún nodo principal si sus dos extremos son elementos de frontera.

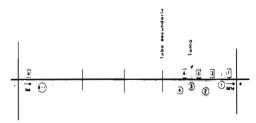


Ilustración A.2 Cuerda de distribución donde el gasto es espacialmente variado.



Ilustración A.3 Cuerda sin distribución donde el gasto es constante.

La cuerda puede ser *común* o *no común*. Es común si los dos extremos son nodos principales y es no común si en alguno de sus extremos se conecta un elemento de frontera.

El nodo principal puede ser interior o exterior. Es interior si cada una de las cuerdas que se conecta al nodo principal es una cuerda común. Si esto no se cumple el nodo principal es exterior.

El sistema de ecuaciones que se forma con la ecuación de continuidad, no necesita incluir a los nodos donde se conecta un elemento frontera. El gasto de este elemento se obtiene aplicando la ecuación de continuidad, una vez resuelto el sistema. En la ilustración A.4 se muestran varios casos de nodos donde se une un elemento de frontera y que no es necesario plantear la ecuación de continuidad.

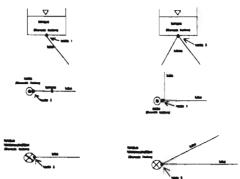


Ilustración A.4 Nodos en los cuales no es necesario aplicar la ecuación de continuidad para resolver el sistema de ecuaciones de la red.

En toda red de tubos debe existir al menos un elemento de frontera que proporcione ingreso de agua al sistema, tal como sucede con los tanques y pozos. Asimismo, debe existir algún elemento o punto por donde sale el agua del sistema. Por ejemplo, en el sistema de la ilustración A.5 existan 6 nodos, sin embargo, en el nodo 1 debe existir un elemento de frontera por donde entra el agua al sistema, por lo que la ecuación en ese nodo no es necesario, teniéndose en este caso 5 ecuaciones de nodo.

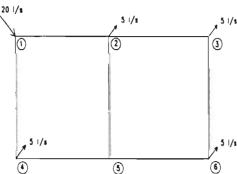


Ilustración A.5 Sistema de tuberias cerrado en el cual es necesario definir un elemento de frontera.

El modelo de simulación hidráulica para redes de agua potable que a continuación se plantea, es válido tanto para la red secundaria como para la red primaria. Se considera que las tomas domiciliarias son calibradas previamente en forma directa y que las fugas de agua pueden calibrarse también en forma directa o emplear este mismo modelo para calibrarlas en forma indirecta. En este último caso se considera que la fuga de agua se concentra en los nodos principales.

Se tiene la ecuación de continuidad para todo nodo principal *i* existente en la red de tubos.

$$\sum_{i=1}^{k} Q_{ii} + \sum_{i=1}^{k} Q_{ii} + Q_{ii} = -Qc_{ii}$$
 (A.1)

donde Q_{id} son los gastos de las cuerdas de distribución conectadas al nodo principal i. Q_{ii} son los gastos de las cuerdas sin distribución, Q_{i} es el gasto de las fugas de agua concentradas en los nodos principales, y Q_{i} es un gasto conocido en el nodo principal i. La letra g es el número de cuerdas de distribución que confluyen en el nodo principal i, y h es el número de cuerdas sin distribución que se conectan en el nodo principal i.

El tercer término de la ecuación A.1 corresponde al caso cuando la fuga se va a calibrar en forma indirecta, mediante la medición de las energías de los nodos principales. Si se dispone de una calibración directa de fugas de agua, las fugas se calculan dentro de las cuerdas de distribución y desaparece el tercer término de la ecuación A.1.

Los gastos Q_{id} son función del valor de la energía H_i en el nodo principal i, del valor de la energía H_d en el extremo de la cuerda (ilustración A.2) y de los valores de la rugosidad relativa ε/D de cada uno de los tramos de la cuerda. Es decir,

$$Q_d = F_t \left(H_t, H_d, (\epsilon, D)_{dt}^t, (\epsilon, D)_{dt}^t, \dots (\epsilon, D)_{dt}^t \right)$$
 (A.2)

Los gastos Q_u son función de la diferencia de energías en los extremos de la cuerda (ilustración A.3) y de los valores de rugosidad relativa ε/D de cada uno de los tramos

$$Q_{\alpha} = F_{\epsilon} \left\{ (H_{\epsilon} - H_{\epsilon}), (\epsilon, D)_{\alpha}^{j}, (\epsilon, D)_{\alpha}^{j}, \dots (\epsilon, D)_{\beta}^{j} \right\}$$
 (A.3)

Resulta evidente que los gastos en una cuerda de distribución son espacialmente variados, mientras que en una cuerda sin distribución el gasto es constante.

El problema de revisión consiste en encontrar todos los valores de energía para una geometría conocida del sistema de agua potable, y el problema de calibración básicamente es encontrar condiciones geométricas para algunos valores de energía tomadas en los nodos, con el sistema en operación. La medición de las energías dificilmente se puede lograr en cada uno de los nodos, es por ello que dentro del modelo de calibración también es necesario obtener los valores de energía que no fueron medidos.

Cuando el problema es de revisión, con el sistema de ecuaciones A.1 se pueden obtener todos los valores de energía en cada uno de los nodos. Si el problema es de calibración de las fugas y rugosidades relativas ε/D se debe tomar en cuenta que la suma de variables que pueden obtenerse debe ser igual al número de nodos principales de la red de tubos. En este caso es necesario tomar un determinado número de mediciones de energías en los nodos principales. Este número de mediciones debe ser igual o mayor al número de fugas y rugosidades relativas por calibrar.

Los gastos de las fugas de agua son función de la altura de presión $(H_i - z_i)$ existente en el nodo principal y de la geometría del orificio de la fuga (K_i) .

$$Q_{\perp} = F_{\perp} \left((H_{\perp} - z_{\perp}), K_{\perp} \right) \tag{A.4}$$

donde z_i es la altura de posición del nodo principal i. La ecuación de un orificio es igual a

$$Q = K \cdot (H \cdot - z \cdot I)^{1/2} \tag{A.5}$$

Sustituyendo la ecuación A.5 en la A.1 se tiene

$$\sum_{i=1}^{n} Q_{i} = \sum_{i=1}^{n} Q_{i} = K_{i}(E_{i} - E_{i})^{i} = Q_{i}$$
(A.6)

A.2 EC. DE LAS TOMAS DOMICILIARIAS

Para modelar el funcionamiento hidráulico de las tomas domiciliarias considerando la existencia del tubo alimentador se aplica la ecuación de la energía (ilustración A.6), del punto donde se conecta la toma domiciliaria al punto donde se ubica el orificio de descarga.

$$H_{I} = h f_{allmentador} + \frac{p_{ovvenda}}{\gamma} + \frac{1}{2gA^{2}}Q^{2}$$
 (A.7)

donde Q y A son el gasto y el área del tubo alimentador de la toma respectivamente, g es la constante gravitacional terrestre.

Si en la toma existe descarga directa a una cisterna o un tinaco, H_f es igual a la energía hidráulica total que existe en el nodo de conexión de la toma menos la elevación de la válvula de flotador y $hf_{alimentador}$ es la suma de pérdidas de energía que se generan desde el punto de conexión de la toma hasta un punto inmediatamente antes de la válvula de flotador.

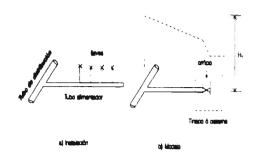


Ilustración A.6 Toma domiciliaria

Si en la toma no existe tinaco o cisterna, o si este existe pero la descarga no es directa. H_f es igual a la energía hidráulica total existente en el nodo de conexión de la toma menos la elevación promedio de las llaves de servicio de la vivienda y $hf_{alimenador}$ es la suma de pérdidas de energía que se presentan desde el punto de conexión de la toma hasta un punto inmediatamente antes de las llaves referidas.

El valor de $p_{voranda}$ se refiere a la presión manometrica en el punto donde se ubica el orificio de descarga el cual se obtiene

$$\frac{p_{circleda}}{v} = \left(\frac{l}{K}\right)^2 Q^2 \tag{A.8}$$

Definiendo a

$$K = \left(\frac{1}{K}\right)^2 \qquad (A.9)$$

la ecuación A.8 es igual a

$$\frac{p_{\text{invenda}}}{\gamma} = K_{\sigma} Q^{\gamma} \tag{A.10}$$

El valor de $p_{vovanded}$ /, puede interpretarse como una pérdida local de energía y la variable K_o servirá para medir la operación y condiciones geométricas dentro de la vivienda, cuyo valor varía de acuerdo al grado de abertura del orificio. Este término también incluye las fugas internas de agua en la vivienda.

Las pérdidas totales de energía en el tubo alimentador, considerando las pérdidas menores por accesorios, son:

$$hf_{alimnusador} = hf_{conducto} + \frac{\sum k}{2 g A^{2}} Q^{2}$$
 (A.11)

donde k es un factor de pérdida local el cual se obtiene

experimentalmente y se puede tomar de cualquier referencia de hidráulica general.

Con las ecuaciones A.10, A.11 y A.5 en la A.7 se tiene

$$H_{T} = \left(f \frac{0.81 L}{g D^{2}} + \frac{I + \sum k}{2 g A^{2}} + K_{0} \right) Q^{2}$$
 (A.12)

La ecuación A.12 modela el funcionamiento de la toma domiciliaria a partir del punto de conexión con la red para valores de H_f positivos. Si H_f es negativo, entonces el gasto es igual a cero, pues no debe existir suministro de agua de la toma hacia la red de distribución.

El gasto de la ecuación A.12 no puede despejarse en forma directa; para obtenerse, será necesario emplear un método numérico disponible o implementar uno que ofrezca buenos resultados.

En el caso de efectuar calibraciones indirectas de las tomas empleando un modelo hidráulico, se recomienda obtener el valor de K_o de la ecuación A.12. Si se obtiene el valor de K_o , la calibración directa tiene mayor generalidad, (estos resultados pueden utilizarse para propósitos de diseño en ciudades sin estudios con características que se consideren similares) ya que las características geométricas del tubo alimentador pueden cambiar de una toma a otra y esta también puede ser calibrada en forma directa.

A. 3 CUERDA DE DISTRIBUCION

Para obtener la ecuación que modela a una cuerda de distribución (ilustración A.2), se aplica la ecuación de la energía del nodo principal *i* al nodo principal *d*,

$$H_{i} = H_{d} - \sum_{i}^{k} (ht_{d} - hb_{d} + hl_{d})^{i}$$
 (A.13)

donde hl_{id} es la pérdida de energía distribuida en un subtramo de tubo, hb_{id} la carga de la bomba si es que esta existe en el subtramo de tubo, y hl_{id} la suma de pérdidas locales de energía en un subtramo de tubo de la cuerda, producidas por cualquier tipo de válvula o conexión. La letra k es el número de subtramos de tubo de la cuerda, j inicia con el número l en el subtramo de tubo conectado al nodo principal d y termina con el número k en el subtramo de tubo conectado al nodo principal i.

El flujo en cada subtramo de tubo de una cuerda de distribución puede tener cualquier sentido; si este es

hacia el nodo d, los valores del segundo término del lado derecho de la ecuación A.13 correspondiente al subtramo de tubo, toman un signo positivo, de lo contrario el signo es negativo.

En las cuerdas de distribución puede presentarse el caso en que los dos gastos de los tramos extremos tengan un sentido hacia adentro de la cuerda, para abastecer únicamente a los consumos de las tomas domiciliarias o tubos secundarios que se conectan.

Cabe señalar que este caso no puede modelarse con los métodos actuales de simulación ya que suponen concentradas las demandas en los nodos extremos.

Las cargas de las bombas se obtienen de los datos que proporciona el fabricante (ilustración A.7).

La suma de pérdidas locales de energia se calculan, como es normal, con la ecuación

$$hl_{sd} = \frac{\sum k}{2g_{sd} A^2} Q^2 \tag{A.14}$$

donde k es un factor de perdida local que depende del tipo de accesorio, mismo que puede obtenerse de cualquier libro de hidráulica general.

La ecuación 2.5 puede expresarse en forma general como

$$h = M Q^{2} \tag{A.15}$$

donde

$$M = f \frac{0.81 L}{g D'} \tag{A.16}$$

Sustituyendo las ecuaciones A.14 y A.15 en la A.13 se obtiene

$$H_i = H_d - \sum_{i=1}^{l} \left(M Q_{ui} Q_{ui} + hb_{ui} - \frac{\sum k}{2g_{ui}} Q_{ui} Q_{ui} \right) (A.17)$$

donde M toma el valor de la ecuación A.16.

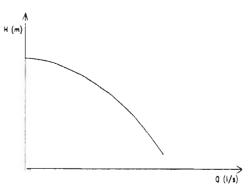


Ilustración A.7 Curva característica de la bomba.

A. 4 PROCEDIMIENTO DE SIMULACIÓN

El orden de enumeración de los subtramos de tubo. indicado en la ilustración A.2, es importante en la evaluación del segundo término del lado derecho de la ecuación A.17 puesto que los cálculos para el subtramo de tubo j permiten conocer la energia en el punto donde se conecta el subtramo de tubo j + 1. Con este valor de la energia, se calcula el gasto de la toma domiciliaria, el gasto del tubo secundario o el gasto de la fuga de agua, y enseguida, aplicando la ecuación de continuidad se conoce el gasto del subtramo de tubo j + 1. Las pérdidas o ganancias de energía en el subtramo de tubo son función del gasto calculado en ese subtramo de tubo, no obstante, este gasto depende del gasto QE_{id} del subtramo de tubo conectado al nodo principal d. Se procede de esta manera hasta llegar al subtramo de tubo k que le corresponde el gasto Q_{id} .

Para valuar con la ecuación A.17 a la energía H_i en el nodo principal i, el procedimiento es el siguiente:

- Se calcula el término derecho de la ecuación A.17 para j = 1. Este valor corresponde a la energía en el nodo j.
- Si en el nodo j se conecta una toma domiciliaria, se calcula el gasto en la en forma iterativa, empleando la ecuación:

$$Q = \left(\frac{H_{I}}{f \frac{0.81 L}{g D^{I}} + \frac{I + \sum k}{2 g A^{2}} + K_{0}}\right)^{1/2} (A.18)$$

que se obtiene de la ecuación A.12, y en donde f, es el factor de pérdida y en los próximos capítulos se verá como se solucionó el problema de la discontinuidad existente entre las ecuaciones que rigen al flujo laminar

y al turbulento.

- Si en el nodo j se conecta un tubo secundario, su gasto se obtiene de los datos obtenidos de la simulación de la subred correspondiente.
- 4. Si en el nodo *j* existe una fuga de agua, en las conexiones de las tomas domiciliarias y en cualquier punto de la red de distribución, su gasto se puede obtener aplicando la ecuación del orificio:

$$Q = \beta (H - z)$$
 (A.19)

donde (H - z) es la presión en el orificio y b es un factor que depende de las condiciones geométricas del orificio. H es la altura de presión y z la altura de posición del orificio.

- Se aplica la ecuación de continuidad en el nodo / y se calcula el gasto en el tramo / + 1.
- Se repite el proceso desde el paso 2 al paso número 5, hasta llegar al nodo principal i.

A.5 CUERDA CON VALVULAS DE CONTROL

Si en las cuerdas de distribución o cuerdas sin distribución, existe algún tipo de válvula como pueden ser: reductoras de presión, sostenedoras de presión, de no retorno, de altitud, etcétera, se debe tomar en cuenta que estos elementos son diseñados para lograr un determinado funcionamiento de la red estableciendo ciertos valores de energías, presiones y sentidos del flujo.

Normalmente este tipo de válvulas no son abundantes en la red, permitiendo así que se pueda realizar la revisión hidráulica en dos etapas. En la primera, se realiza la revisión sin considerar que la válvula esta operando para su función principal y sólo se consideran las pérdidas locales que provoca. Si en la primera etapa se encuentran condiciones de funcionamiento que provoquen el trabajo de las válvulas, en una segunda etapa se corrigen los valores de energía y gastos encontrados en la primer etapa, considerando ahora las energías y gastos que generan dichos elementos.

Para las válvulas que implican presiones y energias establecidas de funcionamiento, para no provocar cambios de flujo, se recomienda modificar estos valores en forma gradual hasta llegar al valor establecido. Este procedimiento permite observar si es o no posible obtener al valor de energía establecido. Si

no es posible, el flujo se invierte y es otro el funcionamiento de la válvula.

A. 6 SOLUCION DEL MODELO

El sistema de ecuaciones A.6 no es lineal y para encontrar la solución se utiliza la serie de Taylor con derivadas hasta de primer orden para transformar a un sistema de ecuaciones lineales.

Se tiene asi:

$$\frac{1}{\sum_{i=1}^{n}Q_{i,i}} = \frac{1}{\sum_{i=1}^{n}\frac{\partial Q_{i,i}}{\partial H_{i}}} \Delta H_{i,i} = \frac{1}{\sum_{i=1}^{n}\frac{\partial Q_{i,i}}{\partial H_{i,i}}} \Delta H_{$$

Arreglando, la ecuación A.20 queda

$$\frac{1}{\sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial H_{i}} \Delta H_{i}} + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta H_{i} + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots$$

$$- \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i}} \Delta I_{i} = D I_{i}^{2} + \dots + \sum_{i=1}^{n} \frac{\partial Q_{i}}{\partial I_{i$$

A. 7 PROCEDIMIENTO PARA VALUAR LOS TERMINOS DEL MODELO EN LAS CUERDAS DE DISTRIBUCIÓN.

Para valuar los términos de la ecuación A.21 correspondientes a las cuerdas de distribución, se propone el siguiente procedimiento:

 De la ecuación A.16 se obtienen los valores del gasto QE_{id} y Q'_{id}, donde el segundo es función del primero.

No es posible obtener en forma directa el valor de Qe_{id} , sin embargo, se puede utilizar el método de Newton-Raphson.

$$QE_{id} = QE_{i'd} - \frac{F(QE_{i'd})}{\frac{\partial F(QE_{i'd})}{\partial QE_{id}}}$$
(A.22)

Para ello se transforma a la ecuación A.16 de la siguiente manera

$$F(QE_{ab}) = H_d - H_c - \sum_{i=1}^{k} \left(MQ_{ai}Q_{ai} - hb_{ai} - \frac{\sum k}{2gA^{i}}Q_{ai}Q_{ai} \right)^{-1} (A.23)$$

En la ecuación A.22, el valor

$$\frac{\partial F(QE_J)}{\partial QE_J} = \frac{F_2(QE_{IJ} + \Delta QE_J) - F_1(QE_{IJ} - \Delta QE_J)}{2\Delta QE_J}$$
(A.24)

se obtiene en este caso con la ecuación A.16 evaluando las funciones $F_1(QE'_{id} - DQE_{id})$ y $F_2(QE'_{id} + DQE_{id})$. De esta forma se tiene

Se repite el proceso hasta que QE_{id} sea aproximadamente igual al valor anterior o cuya diferencia sea menor o igual a una tolerancia permitida.

Una vez que se ha calculado QE'_{id} , el valor de Q'_{id} correspondiente es el que se tiene en el elemento que esta conectado al nodo principal i.

2. En la ecuación A.21, el valor de

$$\frac{\partial Q_{ul}}{\partial H}$$

correspondiente al nodo principal i, se obtiene de la ecuación A.16 calculando dos valores de H_i alrededor de H_i' , uno para $(QE'_{id} + DQE_{id}, H'_d)$ y el otro para $(QE'_{id} - DQE_{id}, H'_d)$

$$\frac{\partial Q_{u}}{\partial H_{i}} = \frac{Q_{u}(QE_{i,u} + \Delta QE_{u} \cdot H_{e}) - Q_{u}(QE_{i,u} + \Delta QE_{u} \cdot H_{e})}{H_{i}(QE_{i,u} + \Delta QE_{u} \cdot H_{e}) - H_{i}(QE_{i,d} + \Delta QE_{u} \cdot H_{e})}$$
(A.25)

Los resultados de aplicar la ecuación A.16 del nodo principal i al nodo principal d, se pueden aprovechar para obtener el valor

$$\frac{\partial Q_{J}}{\partial H_{i}}$$

para cuando se aplica la ecuación A.21 en el nodo principal d. Se tiene entonces

$$\frac{\partial Q_u}{\partial H_u} = -\frac{2\Delta Q E_u}{H_v(Q E_{vu} + \Delta Q E_u + H_u) - H_v(Q E_{vu} - \Delta Q E_u + H_u)} (A.26)$$

donde el signo menos del lado derecho de debe al signo contrario de los gastos.

3. Para obtener el valor

$$\frac{\partial}{\partial} \frac{Q_{id}}{H_{ib}}$$

y aplicar la ecuación A.21 en el nodo principal i, la ecuación A.16 se aplica en sentido contrario, asignando nodo principal i al que fue nodo principal d, y nodo principal d al que fue nodo principal i; por consiguiente, también gasto QE_{id} al que fue gasto Q_{id} y gasto Q_{id} al que fue gasto QE_{id} . De esta manera se puede utilizar la misma ecuación A.26.

Los resultados de aplicar la ecuación en este sentido contrario, se aprovechan para calcular también el valor

$$\frac{\partial Q_{\omega}}{\partial H}$$

con la ecuación A.25, para cuando se aplica la ecuación A.21 en el nuevo nodo principal i.

4. Para obtener el valor

$$\frac{\partial Q_{s}}{\partial (\varepsilon - D)_{s}}$$

y aplicar la ecuación A.21 en el nodo principal i, se obtiene de la ecuación A.16 calculando dos valores de Q_{id} alrededor de Q_{id} , uno para $(H_i' \ H_{d}' \ e/D_{id}' + D$ $e/D_{id})$ y el otro para $(H_i' \ H_{d}' \ e/D_{id}' - D$ $e/D_{id})$. Ambos casos utilizando el procedimiento del paso número 1.

Una vez que se encuentran estos valores, entonces

$$\frac{\partial Q_{a}}{\partial (\epsilon - D)_{a}} = \frac{Q_{a}(H - H_{a} + (\epsilon - D)_{a} - \Delta(\epsilon - D)_{a})}{2 \Delta(\epsilon - D)_{a}} \cdot \frac{(A.27)}{(A.27)}$$

$$= \frac{Q_d(H_{c}, H_{d}, \ell \epsilon | D)_d + \Delta (\epsilon | D)_d}{2 \Delta (\epsilon | D)_d}$$

Cuando se aplica la ecuación A.21 en el nodo principal d, con los resultados de aplicar la ecuación A.16 del nodo principal i al nodo principal d se obtiene

$$\frac{\partial Q_{d}}{\partial (\epsilon - D)_{d}} = \frac{QE_{d}(H_{e}, H_{d}, \epsilon \epsilon - D)_{d} - \Delta(\epsilon - D)_{d}}{2\Delta(\epsilon - D)_{d}} = \frac{(A.28)}{(A.28)}$$

$$=\frac{QE_{d}(H_{c}+H_{d})\cdot (\epsilon - D)\epsilon_{d} + \Delta(\epsilon - D)\epsilon_{d}}{2\Delta(\epsilon - D)\epsilon_{d}}$$

ANEXO B

RESULTADOS DEL FRACCIONAMIENTO "EL PARAJE"

B. 1 INTRODUCCIÓN

Como se vio en el capítulo I, se determinó la presencia de flujos de tipo laminar, tomando en consideración para ello el valor del número de Reynolds, en este anexo se presentarán todos los resultados obtenidos al modelar la red de agua potable del fraccionamiento "El Paraje", con el programa de cómputo *MIRAP*, es importante recordar que para el cálculo del factor de pérdida f, se utilizó la ecuación de modificada de Colebrook-White, es decir, se consideró que en la red solamente existían flujos de tipo turbulento.

A continuación se verán un gran número de cuadros e ilustraciones donde se exponen los resultados obtenidos de una simulación desde las 11 A.M. hasta las 6 P.M. de un mismo día. En los cuadros se presentan los números de Reynolds calculados, en estos se observa con letras cursivas los números de Reynolds encontrados por debajo del valor crítico de 4000, es decir que según este calculo el tipo de flujo que se presenta es laminar o crítico.

Primero se observará el comportamiento de cada uno de los nodos de la red primaria, y después de las ocho redes secundarias restantes, también se mostrarán gráficas de cada nodo, donde se aprecia a través de un periodo de tiempo el comportamiento de cada uno de los tramos de la red o red que en ese momento se está estudiando. Para apreciar más claramente el comportamiento del flujo en cada una de las cuerdas o tramos se mostrarán figuras en las cuales las líneas de color rojo representan que el flujo en ese tramo o cuerda fue de tipo laminar durante las siete horas de análisis, mientras que las de color verde indican que el flujo es de tipo turbulento.

B. 2 RED PRIMARIA

A continuación se mostrarán ocho cuadros, en los primeros siete, cuadro B.1, se da a conocer los resultados obtenidos en la red primaria de "El Paraje", esta red consta de 12 cuerdas; y en la octava, cuadro B.2, se presentan los números de Reynolds obtenidos en el periodo de tiempo en que se realizó el cálculo.

Para mostrar más claramente los resultados obtenidos se dibujaron dos gráficas, figura B.1, en las que se observa que en esta red el tipo de flujo que se presentó fue generalmente de tipo turbulento, con excepción de dos tramos.

0000	LTABOS	081674	BOS:		HAI	2 HRM.			DAI) Head.			13 A 1	4 Milks.			144	5 HELL			25 A I	4 PERM			10 A S	7 H898.			17 A I	0 POSSA.	
10.0				22	-	VOM	-		opq.	VCM	-	Cul	-	VCM	-	0.00	-	VCM	-	OAS	10 (14	VCM	-	cá	1000	V.CA	C (min)	Gast	10 (10)	VEN	10
T.	4.1		2-9	13	10001	-		-	1	-	1000 2	-	MINOI	HINDL	10002			FEED 1	HORO 2	1000	FEEO 2	Meso I	M000 1	PRINCI	fmio 1	/4000 I	10001	1 0000	10003	M000 (mac
T	11	٠.	0 1933	.9 723	-11 107	410	-	8.823	-10'613	49 3002	434	-7 724	-9 070	434)	4 D4	-7 Hm	-6.867	4245	سرد	3 max	.7 13tr	4 301	424	4294	-7 643	4213	4364	4871	4 397	4 D4	410
2	"	87	0.0785	1 300	1200	0.344	0 3nc	1 1442	1142	u 346	12.34W	1 600	1 (60)	0.307	u 2 07	0 70-2	⇔a⊾ 2	น 17ช	0 t 7%	0 744	u 344	0134	u 154	0.607	0 867	U 84)	0147	0 900	U 9900	w 188	018
3	30		6 1933	,-	4431	6 Hg?	4231	4 577	-7	4176	40 30-2	-4 3 60	+725	4100	4: 224	4 MS	-6 136	49140	0.216	3314	5 142	4111	4 175	-3 424	-3 🖚	4117	40187	- 3 7mgs	3 971	4129	430
•	22	20	D 1465	3 100	-3 190	4 1E)	6 784	2 10%	2 80%	40 taas	42 16,7	-1511	-2 547	414	4147	2 137	-1 594	4135	4) NI	1707	1 1/25	4) lo	4111	-1 973	-1 780 3	4/114	æ113	-2 1402	-1 197	ú 13a	612
3	В	p	61463	2671	1 10*	a 54	42 (8.3	2 1007	2 1677	4139	4 FR4	2 122 .	2 231	4 (21	4/146	-1 7/6	2377	4113	0.125	139	1 409	TM) II	4119	160	.) w?3	4073	4114	-1 402	-2 182	43 160.7	913
•	0	В	6 NAS	633	e ent	0 065	400	0'4 0 0	4744	41940	4(9)	444	U ten	61072	40 (06.)	4) 1994	*****	4000	qui	@ NA	***	4099	A GAZ	4114	4 XM	w@Pr	440-1	40 331	4 500	41 1004	40
,	В	30	<i>ធ ប</i> ក្សា	1 176	2 276	u Rec	U 474	1 647	2 479	er \$460	4436	1 458	-1 802	0361	415	1 7	1799	0.302	one	1 2002	1 800	0774	# 287	1 247	1 480	G 237	470	1,271	1 363	u le1	618
•	87	۱.	9 47 8 5	6627	• ~	a 130	er ters	0 346	U 443	9117	G 092	u = 7	0.003	0 (0)	u 1174	6 423	(0.565	West .	3007	4 362	11 284	0075	17 (279)	0 941	0 144	0.087	ն տր 1	0417	4 13a	u awa	uu*
•	97	91	sones	u 527	6 962	G IUD	4475	V 40	473	9 (00	4167	0.009	0 200	mars.	91%s	6 139	014	0000	4003	0110	434	U163	41043	U 334	40 22 1	wa*1	ar Limites	ù Pes	41 Jac	0 18	4711
en.	f •	no l	9 07 1 13	4 334	44 666 1	4111	4/197	610	4 997	409*	4121	-	4514	47 (864	4 146	4 (6)	441	apain	4011	6 NR	41 962	44	dilly	# HI	4) 4) 4	A GUO	43 Ulgo	41 181	447	-0 COD	44.34
11	**	"	e 9783	6 004	6144	6401	99k	4914	4127	400)	6427	0 (02)	48 1000	6 001	4101	û wy	avn	u euzq	g nga	4193	er 1887	640	4447	0.016	400	4401	aega	4 ags	4 tu:	40.1	042
12	42	22	0 1000	6,000	0 000	4 DM	LL STEAL	U 4600	ii diin	u auto	4 OND	4 100,00	***	gaun	-	U 1601)	CHO	6123)	u que	U COM	OTAN	Gutten	G-CALEY	0.000	4 (100)	- unu	0.00	o ann	6 GHz	0.000	0.000

Cuadro B.1 Resultados de la Red primaria del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED DE LAS 11:00 A.M. A LAS 6:00

	· British	<u> </u>	11-12	185	12-13	HES	13-16	HITS.	14-15	HIRZ.	15-16	HES	16-17	HRS.	17-11	HEES.
NTERV. DE			100	17 10 11 13		2				4	1.00	5		6		7
CUERRA	344	000	REYN	OLB6	REYP	OLDS	REY	HOLDS	REY	HOLDS	REY	IOLD6	REYN	OLDS	REVI	OLBS
		1.1	1000	HOROZ	100001	NODOZ	NOBO1	NODOZ	NOB01	MODOL	HOHOL	NOBOZ	NODOL	NODO2	N0801	NODOZ
1	- 11	1	64044	78035	58307	71224	50890	62562	47346	58610	38770	47149	41471	50343	4525B	55297
2	11	87	20907	20907	18847	18847	16236	16236	13981	13981	12067	12067	13089	13069	14548	14598
3	20	- 11	36135	55560	12796	50653	28857	44297	27059	41008	21829	33870	22555	36102	24898	39330
4	22	20	27171	27351	24767	24847	21701	21878	20037	20526	10 los	10505	16917	17019	18706	18830
5	23	22	22901	27171	20483	24007	18194	21701	17131	20380	13701	10368	14150	16917	15879	15706
6	45	23	6690	16108	6057	9414	5275	8404	4972	7988	3.550	0259	Jun 2	6 kpri	4454	7319
7	23	26	21547	28973	20758	26235	18298	23118	17256	21016	13906	17528	14474	18158	10004	20001
	87	91	10170	8094	9180	7218	7899	6196	0828	5434	5871	4666	0318	5(99)	7088	5774
9	97	91	8548	5871	7818	5271	6634	4541	549E	4120	5125	3541	5742	1395	6423	4114
10	97	87	8742	10721	7753	9683	0018	8317	SEEK	7153	4996	0190	550	6715	3245	7491
11	97	91	6)	2350	227	2092	19	1022	140	1501	143	1554	.50	1179	373	1004
12	42	22	10	10	10	111	fu	10	10	10	147	10	10	100	110	10

Cuadro B.2 Números de Reynolds obtenidos en la Red primaria del fraccionamiento "El Paraje", en un periódo de siete horas (11.00 A M. a 6:00 P.M).

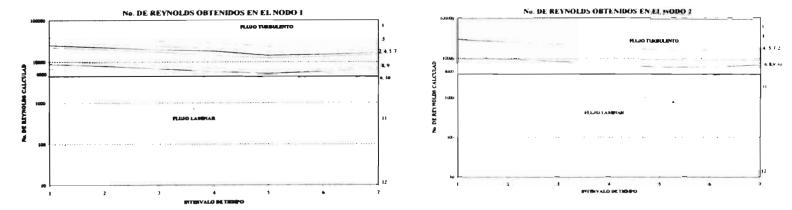


Ilustración B.1 Números de Reynolds calculados en la red primaria, en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo aguas arriba (Nodo 1) y la de la derecha en el nodo agua abajo (Nodo 2).

B. 3 RED SECUNDARIA No. 1

La Red Secundaria No.1 consta de 18 tramos, al igual que con la red primaria se realizó el análisis de cada uno de los tramos encontrándose la presencia de flujos de tipo laminar y turbulento.

Los resultados obtenidos en esta red se presentarán de igual forma que en el estudio de ña red primaria, la cual observamos en el subcapítulo anterior y así de hará con todas las redes restantes.

-	LTADOS	OFFE S	DOR		HAI	2155			IZA	D HING			BAI	4166			на	5 HBS			15 A i	4150			MAI	71665			17 A I	29H B	
100	20 100	0	nabe.	CHE	D(0)	VON	CON	Cul	D(N)	V/CN	Cert)	GAR	D(N)	V.CN	C(-4)	CAS	ID (%)	V.CAL	C()	CAS	TO(th)	V.CN	c	CAS	PD(N)	V.CN	(C (m)	GAS	ED(#4)	V.CN	LC
	319		1	HERDS	PERO2	16201	NODO2	HORDI	MEMOS.	MOROL	MEMO2	HODOL	NEEDO1	HODOL	MOROZ	NODO1	MIDO2	PCB01	NGB02	HODOS	NODO1	MODO	NEEDO2	MOROI	NODO2	NUBOI	NCBO1	HOBOI	MEMOZ	M0801	MODO
45	,	62	D.O'RES	6,490	0.476	0 (0)	оря	641	D 467	0094	GOME	U.MC	0374	oesi	to March	0 175	0365	6077	11697	0.20	11,207	testal	ting#	6310	L-259	U164°	0 m2	0.154	υщ	0071	0:071
€6	7	ıπ	6u7as	0425	0.422	000	()+(0)?	0401	D-1984	u683	9(8)	1137%	ti \$74	oun	0077	0111	0.128	CHIRAS	mes	62%	0.36	MAN.	ums	0.22	0.20	Otter	unte	0417	0.343	aug.s	0:45
47	ıμ	64	007ks	0413	ounu	טוניי	uuto	5 का	411912	44121	GOND	01999	const.	196121	126.00	tut res	11684	10000	until	one,i	qual	Palit	o chej	110799	west	eus	mast	411865	101857	ных	ante:
	175	ಟ	បផ្សេង	(/G41	uuu	uniy	reserve	0499	runs	ពលន	(1(8+)	outs	4023	121932	wate	traf9	ont/	12(8.9)	414344	ones	-mas	11(19)	11.11]	16034	(mijo	clou	nun	nigh	DIAM	1.1157	089)
49	67	136	เเครีย	n 152	U 148	1660	anti	0117	1111	u (A	un a x	uiH	919	mile	MHZ7	0.412	ntia	01034	mgs	or ≥ .	0.0003	1648	1410)		ulkt	1463	onei	o He	negati	20074	mei
% 1	69	177	n GMCO nt	17 K/5	01/12	mez	628.412	UIRM	DEAR	eag.	untQ	(41795)	4168	0001	ring	tes(T)	50004	min.	mas	1114.4	ands	-69.5	tualit.	111206	Antigal	nan?	Intal?		testif	. 141	1024
51	63	66	(ruito	v 257	u 257	umt	9005	(126)	1/2/9	(may	emes)	u 213	ngn	nuse.	rice	nus.	81.178	uses	102-43	17.141	to bill	ivedS	11127	to lon	11168	dram's	posts.	11.849	11497	11643	+1141
71	,		oytja	0.095	(Alle)	GINT	OCHD	0157	Otto	ooti)	USERI	(r Te	(1948.81)	1968/1	10,141	0.122	nate	Date	one	io kes	deg##1	102,641	11816	n ko	out	sutto	intelle	17 E-8K	institution in	uth	(1848)
121	159	leu	negit	wes	O FEE	nusi	6081	unn	UII79	ou <u>c</u> 7	0027	00255	nazz	ungs	ine)	f3K13F5	(1631)	sagt	angs	044	meli	(44)	(isify	1441	1661	eals	(right)	sects.	ticeir.	Other	tiselts
123	n2	t'x,	110 3 60	0.1%	0033	G CPAL	(44)	11.867	иаВ	unifit.	8015	u 17 %	(1141)	0024	111185	er k as	11541	emb	41)11	41367	20129	last/d	arte.	0.81	tuni)	un.	mail	ощ.	Sent2	क्षम्	110017
124	130	157	(cc) 36 5	11077	10064	creife	oold	uu24	0001	uots	(IIII)	lices.	4004	untd	*11817	costs	804	1941/	42.00	moji	4016	.004	outd	ngt	S1080	SHEE	and 2	mas;	3946	-2-612	5144.97
126	lcs.	ю	140531	4443	0140	116(3)	000	nun	andt	0192	uato	euto	4HEE.	soult	tent	(1112)6-	om.	10062	60.96	111(2)	6119	111577	45.40	*****	****	11(17)	17716	ves21	frette	11198	
127	jen-	Hs.2	010594	0024	ound	tenki	otto	ж	URF	.041	9414	casts	411414	1118-2		101013	0.40	jujider	MAG	NIGH	000	18085		h:1029	144.67	(Siet)	s.mi	2014		-1144	····
110	173	ø,	DH (MD)	0.422	o kry	υφ 6 7	11413	1) P9K	ואכיי	10.82	0(094	ıs \$74	11367	out.	mu.	., 198	0.344	948	1114 0 8	636	n#12	9603	nuse.	0.56	sein	05442	11(4)	140	0/221	0/65	coreig.
149	7	14	us/Aco	9214	10 1 1 1	0144	(HQ1	u 1986	0 (10	4141	(대단)	17 (48)	Q1 97	auto		ti pla	west	ou in	urqş	0150	11108	ougs	9997	11342	ers####	0.050	41943.8	n (a-7	114.065	udi	ONLEA
14-	63	112	110031	rend2	0041	U122	00(9	9645	(141)	e-cops	0017	cants	116238	Stok.	uajt	mits	test/X	tister.	heds	angl	88921	0024	mil	neril	0844	um14	10001	act.		-1492	1111112
141	136	·#	ಲಚಿ ತಿದ	0148	nap	0031	tratt	offi	one	sug)	0(43)	0131	fichs)	mg?	uan,	s-117	outs?	100 0	San 6		oce,	neq?	0210	11 8/9	411875	angs	5010	ons	2020	.1.524	1.40
142	ın	30	1111785	enti	ama	0.002	(1710)	uigy	un17	Diffe,	DOM	0029	10017	OHE.	111114	411134	and?	uce	495817	GUA	47eLd	and	man	11(8)	11162)	mad	10401	*10,27	411143	11-125	41416

Cuadro B.3 Resultados de la red secundaria 1 del fraccionamiento "El Paraje", en un periodo de siete horas (11 00 A M. a 6:00 P.M.)

30 (190, 12) (2) (40, 142

SALIR DE LA BIBLIOTEGA

NÚMEROS DE REYNOLDS CALCULADOS EN LA SUBRED SECUNDARIA DE LAS 11:00 A.M. A LAS 6:00

SALES	D SDC I		UI-12	MRS.	12-11	1	13-14	HE'S.	14-15		15-14	HES.	16-17	2304	17-10	1885
OTTORY, M		1500	1000		1.00	1	200	3	7 7 7			1				7
TRAMO	MQ	# 0	REYN	OLDS	100	IOLDS	REYN	OLD6	REYN	QL05	REYN	HOLDS	REYN	OLDS	REYN	OLDS
	1	2	NORO I	HOROZ	State at	MOROZ	NOBOL	100002	10001	NOPO2	NOBOL	NODO2	NODO1	NODOZ	NODOL	NODO:
45	. 5	62	7948	7721	7802	7575	6158	6131	6082	5920	4812	4655	5028	4850	1742	5580
46	7	173	6893	6845	6504	6455	6131	6066	5 169	5320	4179	4314	4730	4687	5142	5077
47	174	64	1833	10	1638	32	1606	10	1500	6,3	1022	22	1606	211	1379	10
48	175	05	983	10	935	AK .	120	351	436	216	784	72	813	210	130	10
49	67	176	2465	3401	2222	2173	2173	2425	1817	1730	1345	1340	1833	1384	1881	1533
50	69	177	1703	195	1000	146	1511	130	1249	227	Way	245	WENT	16.2	1110	118
51	63	66	4168	4168	3876	3876	1770	3779	3211	3211	2287	118	2725	2723	1195	3143
71	3	1	4076	10	3743	10	3300	10	2925	10	2518	10	2518	10	2390	10
121	159	160	1631	1631	1415	1015	1313	1319	1199	1100	Was i	983	983	AYS	863	863
123	62	156	7721	1184	7575	1184	6131	660	5920	66)	4055	310	4600	555	5580	3/4
124	156	157	1239	63	1200	10	97	551	368	97	311	110	373	162	519	10
128	(40)	161	1079	16	623	26-7	210	133	623	100	180	168	336	192	351	10
129	160	162	331	24	399	72	3011	96	337	120	575	264	MAI	168	312	10
138	173	63	6845	4947	6455	4006	0000	4331	5120	1779	4114	3790	4687	3228	5077	1631
139	7	174	3471	1833	3211	210v	3649	1173	29444	1 >tsr	1784	211	2 juj	1123	2709	1179
140	63	175	1151	5413	1079	911	K39	671	839	0.1	743	375	743	373	647	480
141	176	68	2401	10	2157	10	2125	lu	INSK	32	1546	tu	1 '68	16	1833	10
142	177	70	17#	10	170	276	120	276	70?	3/9	65	65	49	9"	JIN	503

Cuadro B.4 Presenta los números de Revnolds obtenidos en la subred secundaria 1 del fraccionamiento el Paraie, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

Hustración B.2 Números de Reynolds calculados en la red secundaria 1 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 4 RED SECUNDARIA No. 2

La Red Secundaria No.2 se encuentra constituida por 15 tramos y el análisis que se realizó en ésta presentó los siguientes resultados.

BESUL		ODTEK!	101		11 4 1				32 A				13.4.1	* 11 #3			10 4 1	-			10.4	0 H H 0			20 A	****		1920	17 a 4		
PRABO	Birth	728	Bolin.	-	-	V.CAL	£ ===	GAR	PO (PO)	VICAL	C. puis	OAST	-	YEAR	C. 1004)	GAST	· (m)	VEAL	C. pulsy	GAST	10 (04)	A'C PI	IC (m/s)	GAR	10 (0)	VEA	C. p. 4)	040	TO (Do)	YÆAL	.C. (m/4)
1734	1	100	Mr.	1900	-	1000	-	P020 1	##003	1000	P000 1	Hape 1	1100-0 5	10001	M000 1	MQ201	P000 1	2000 t	P000 1	9000 I	N000 1	2000 I	P000 1	2000 I	P000 1	P900 I	20001	20001	m0.0-0 1	P020 1	2000
12	12	418	0.0105	0.160	4 101	+0°4	4.1500	U 344	6.438	200	C 000	0.60	E 34	1.64.0	0140	0.294	v 541	y 64.)		W-114	5 (4)	- DAY	in many	9.00	w 200	o uto	·w;	4.00	* 11	-0 437	
**	- :	2.79		6146	0.921		N MIT	0.196	w902	× 619	6 (94)	0.016		*****	9100	-01	9-015	o nye	9.661	-110	W-1881	1000		0.00	eut.	tron-		0744	941	0.415	5 441
10	٠.	- 9	4.6784	0.141	u 191		4.110	470	3000	Visit	100	4427	WAS:	9 1 20	9134	0.56	0.001	may!	70	= 654		0.005	C min						1104	0.00	3.10
**	- 5	٠.	100.85	0.46	1.6.2		0.629	1790	4700	****	9.622	0.501	e No	4103	5364	14.361	694	4-0-	+196	0.09	9.491	19940	+100	0.00	0.00	·· -01		6-629	3 4,1	N 148	0.0
	١.		6 4 85	a : 13	2.000	1.000	2.00	0.34		nue:	0.043	-0.201	1,000	0.00	H468)	11041	~ 143		0.00	-114		1013	Death	99.61	400						
	74	,	0.0795	6 2AB	+100		to serv	- 190		were:	1111		w tree	G 148.3		100	10.00		9.00	wire:	0.000	1.00	0.000	0.11		so press		- 6.24	. 16.60	4.000	- 1119
ч		- 24	o otes	0 00/1	****			10.00	200	***	0.00		elec	v (m. 1	1000	e sepa	0.904			ther		1.00	100		a set	s sec	******				
	12		6940	ween.	200	B 1490	9.65	-110	9144	1300	0.045	0.030	0.744		-	Walte.	9.135	400		- 941	-10-	0.000	0.00		0.00	***	0.046	w103	2000	- sh;	
24	2600	13	month:		0.302	0	0.040	0.000			w/000	0.000	0.070	-	0.078	1000	100			-	9100				20.0	1000	wine	10-900			W-s
٠.	261	194	0.115 PE	0.12v	n (2)	9 031	7976	441		4.977	*-51	4417	44.8	-	1979	- 4119				0.00	****		>-14	0.0<1	0.00	0.003	100		****	+ ++2	200
**	197	18.			0.000		****	n 244	= mex	6.08	-	0.235		= ***		+20		0.002		-100		25.1	0.01.2			- 1000		0.700			****
146	100	- 11		-	- >+				4 400		+ 100	6 M	895	***		n 147	4.44		***	* 28*	- 10			5.00	* 111	~ **	***		34.	***	= 50
***		- 14	0 4101	****	12 1997	6 to 4	5-Amil	nest!	4441		******	947	-	+	•	+ 960	mark.		e-mail:			0.001			ent					4.001	4.000
11)	184		w 65.51	0.125	***	Ø 034		***		e-sh:	U	6402	1000	well.		6-199	Series .	100	+ 100	100		100	10.00	0.00	0.000	- 1000		0.000		4000	
134	Lac	100	6 85 54	G Dey	Q (No.)	• • • : :	9-4	0.441	to send	6419	G 1905	is only	u (rc.)	4 018	o test	11 6450	64.5	U .if 4	u 600	007		. 05 ,	9 040	0.011	9.00	0.003	11.0004	6.902	3 (50)	0.011	0.000

Cuadro B.5 Rresultados de la red secundaria 2 del fraccionamiento "El Paraje", en un periodo de siete horas (11 00 A.M. a 6:00 P.M.)

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.2 DE LAS 11:00 A.M. A LAS 6:00 P.M.

	ED 2FC 1		11-12	nacs.	13-13	TIPES.	13-14	HICZ.	14-15	HIRS.	15-16	TIRS.	16-(/	HIJCS.	17-18	HICS.
	. DE ITE.		T			z		3		-		5				,
TRAMO	NO	90	102.17	ULDS	RET	TULDS	REYN	OLUS	ROLY	IULUS	ROE WIT	NATAS	TOTAL PARTY	ULUS	REY	OLDS
	1	7	1 000%	NUDUZ	NUDUI	NODUZ	NODOL	NURRIZ	NUDUI	NODUZ	NODOL	NODO2	NUDUI	90002	NODUI	NUDUZ
32			3969	7347	3380	5942	2044	6277	4769	3833	5872	46/1	1909	48.20	497.3	3678
53	72	179	36492	373	3481.	35"	288	ינפיב	2822	243	227	Jean	2238	22	2 25	243
54	74	75	12181	₹21 8 1	11532	11532	10/172	1UI)72	9197	9197	7445	7445	7493	7491	R 46.9	#369
55	75	76	10083	16089	9570	9570	#175	E175	7526	7526	6442	6342	614:	6.342	6864	6861
56	76	77	1101	82	3844	A.3	1260	1038	398.1	989	: 36.3	925	23.86	SKIM	369.7	1006
57	76	77	59n9	3/9	5726	663	4914	y	4525	-93	9 V)	300	3 72	14.	446-8	811
5¥	77	7K	6.)	389	190	2/2	22	3.2	9-	9.	6.3	130	746	19	9-	^و
72	72	10	4244	41+76.	30.45	3433	311	35 5	38.39	321		2494	2146	2422	. 3	329.1
73	2500	12	10	4364	39	4268	23	2542	24	2334	20	2254	24	3325	24	3301
74	103	156	1093	.'99	2907	2805	2800	2 40	23 0	23 4	leas"	1511	1 0.5	100	2230	2/34
75	105	1147	7649	1199	6406	943	6114	361	5395	9//	3 450	61"	dne4	6	5011	.9.
143	17k	71	7542	MASO	6'142	B207	6277	7412	5855	06:50	46.71	5401	4850	1120	1628	6-807
144	179	73	392	81	276	114	50	1.46	32	22"	360	10	6.	195	392	32
153	186	104	.'09	to	2"#1	24	2686	10	23 4	24	100	2	1 car	24	2110	39
154	187	106	115	24	1031	AH.	935	-,	935	18	0.4	10	8/3	ax.	.6.	10

Cuadro B.6 Números de Reynolds obtenidos en la red secundaria 2 del fraccionamiento "El Paraje", en un periodo de siete horas (11:00 A M a 6:00 P.M)

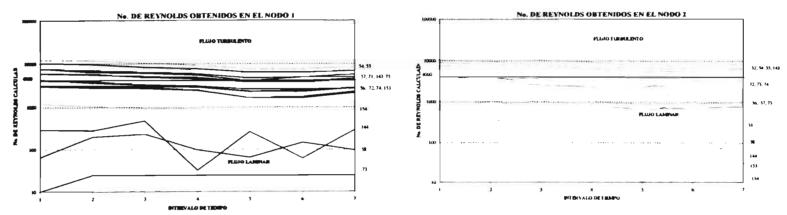


Ilustración B.3 Números de Reynolds calculados en la red secundaria 2 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 5 RED SECUNDARIA No. 3

La Red Secundaria No. 3 es la más pequeña de todas ya que solo consta de un tramo, al cual también se le realizó un análisis de resultados obteniéndose lo siguiente:

360	LTABOS	COTTO	-	Ĭ		97	0.00			LZ A	J 1005.			DA	4 MIS.			HAI	S HARS.			BAI	. ZIIII 64			16.4	17 168 5.			1741	105.	
						200		ACID-10	Gas	-	100	-	S	-	VOL	COM	200	10(0)	V.C.N.	-	Cult	10(0)	VCM	Cody :	2	-	- VEN	-	200	Sept.	to	LÉ PA
					E.C.				1000				-	10001	-	MM02	1	10002	HEROI	A001	2001	PM02	NUMBER 1	Repos	10001	1000	PRIPO1	MEMO1	A PERSON	PROPE	Period I	1000
	*	120	T	16765	0.007	0.679	0.007	4000	0.072	009	0015	8013	@ Ob.5	0.032	0013	801	0041	0 032	0.008	0 007	0.09/2	6.007	0019	0017	0.084	0.673	0017	0.017	-0.057	496	4012	4014

Cuadro B. 7 Resultados de la red secundaria 3 del fraccionamiento "El Paraje", en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.3 DE LAS 11:00 A.M. A LAS 6:00 P.M.

SUBB	ED SEC.	Ne.3	11-12	105.	12-13	HERS.	13-14	MILS.	14-15	MDES.	15-16	MILS.	16-17	HIRS.	17-18	HRS.
7 112	ROTTEN DE THEMPO			1						DM777	17000	5	1000			7
TRAME	TRANSO MODO			OLDE		IOLDS	REYN		BEYN		REY			IOLDS	REYN	IOLDS
11/200	1 2		N090 I	NODO2	NOB01	NODO2	MODOI	NOBO2	HODOS	NOBO2	NOD01	NODO2	MODOI	NODO2	NODO1	NODOZ
64	94 93	1492	1281	1168	957	1054	843	665	519	1492	1346	1362	1216	925	1070	

Cuadro B. 8 Números de Reynolds obtenidos en la red secundaria 3 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

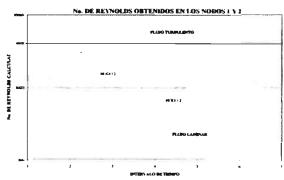
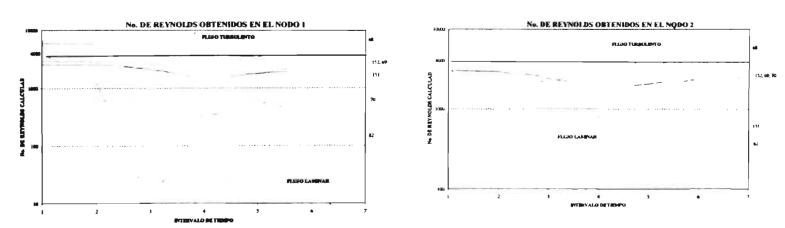


Ilustración B.4 Números de Reynolds calculados en la red secundaria 3 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 6 RED SECUNDARIA No. 4

La Red Secundaria No. 4 consta de seis tramos, a continuación se presentan los resultados obtenidos y el análisis de cada uno de ellos, así como la representación gráfica de los mismos.


Ī	LT 48-00				HAI	2 100%			13 A E	3 hours			15 A I	4 HBCL			14 A I	5 HIRS			15 A 1	a 100%			10 4 1	7 4600.			17 A (n andre	
	1,00	-13	2	2	-00	E Van	-		-	- VCM	-	CAS	70 (mg	ACM		Call	10 (14	VER	C page	-		-	C post	-	10 pg .	vek	IG pass	12	o B	TEN	C page
		12	野省		F-5	- 11	PERSON 1		1	mao,		-		10001	PROBE 1	PERSON	12	-	PR001	-		-		-	10003	-	1000	10000		-	-
•	-		0 0785	4-	-0	40%	-20%	-e 160	0.390	404	6074	47	۰=	4.060	41000	4 223	42=	40047	4000	4214	6334	-0.044	4044	-0 287	4 367	400	4079	4 M7	4 147	4072	-0 0772
	Mi		0 1785	-0 1440	-0 IE)	4003	40 GB7	44 L57	Ø 178	41 051	-6437	ФІН	4153	411/28	4003	49 OB4	-o Jus	6 U 7	4 022	40 Mar	4134	41423	44 (12)	6 134	4 145	49 13706	43 10390	4111	49 15th	8421	4032
70	iSm	183	4 1/7ES	41039	4 (8)	44	-0.03mg	4053	4179	4 m27	40137	400)	49 12 K	-01111	4200	4019	4/350	**(364	40 (42.)	வரு?	0 148	40 90%	4431	-outi	49 131	4) (304	40 U) i	60 17 Jan	-0.139	6 மே?	4003
	102	101	0.0531	-0-0004	49 033	490	4 602.5	to usig	4000	o go i	4013	4 (ID)	4037	e ruu	4017	4401	4033	u auc	4011	67009	o salm	12 (MIP)	40 OF 4	0 454	4000	o our	4013	U dias	4017	u eus	47434
151	101	1894	0 07ES	0112	-00%	0.023	49 6807	0.077	45072	0.018	4013	0.000	40 150	9 0000	40031	4 (42.)	4000	E MUS	4000	une	41 1996	G 483	4) EZGG	u 0142	40 UB 2	w 049	4 604	u 113	4034	11 1024	4 (83)
192	165	1688	0.0783	4019	40 3007	4.004	4,043	4177	4 177	-6487	40 (94)	4138	-0 147	400a	auto	40 NU2	40 120	45421	9625	-0 147	U 12e	-0433	4 425	41 159	-0 1649	4031	क क्षी 5	40 (59	4 173	4031	oute

Cuadro B. 9 Resultados de la red secundaria 4 del fraccionamiento "El Paraje", en un periodo de siete horas (11:00 A M. a 6:00 P.M.).

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.4 DE LAS 11:00 A.M. A LAS 6:00 P.M.

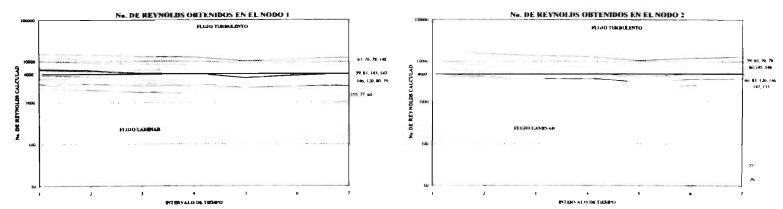
SUBBL	ED SEC.	Na.4	11-42	100	12-13	MILE.	13-14	HRS.	14-15	MAS.	15-16	Wills.	16-17	PIRS.	17-10	HERS.
BOTT STATE	V. DE TH	200				2		3		4		5		6		7
TRAMO	MC	900	REVINEUM		MEYN	IOLDS	REY	HOLDE	MEXI	DEAG	REYP	IDLAG	REY	IOLDS	REYN	IOLIN6
A LANGE	1	2	MOBO I	M0002	10001	NOB02	M0901	N0902	MOSOI	M0907	10001	NODO2	M0001	NOBO2	NO901	N0902
68	99	96	5936	5936	5839	5839	4671	4671	3698	4671	3471	3471	4655	4655	5628	5628
69	101	163	2595	2936	25-46	2887	2173	25/4	1362	1703	1732	2892	2011	2352	2190	2530
70	184	185	633	300/	368	2903	860	2076	308	1622	600	1732	341	2449	584	2579
82	102	101	144	1319	48	935	24	887	24	791	24	7/9	96	671	144	408
153	101	184	1817	38 <i>4</i>	1249	1168	10	2433	373	795	260	1590	1092	341	1865	551
152	185	100	3001	3357	2871	3228	2076	2384	1654	1946	1735	2044	2449	2741	2579	2806

Cuadro B.10 Números de Reynolds obtenidos en la red secundaria 4 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

Illustración B.5 Números de Reynolds calculados en la red secundaria 4 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 7 RED SECUNDARIA No. 5

La Red Secundaria No.5 consta de 15 tramos, a continuación se presentan los resultados obtenidos por el programa de cómputo *MIRAP*, así como un análisis de los mismos y su representación gráfica.


ann.	LT ABOR	08TD 4	OCIN.		ПАЦ	484			12 4 1) Hillor			DA.	14 MEA			14 A I	\$ IHE			IS A I	io Hilica.			16 A	7 MBA			17.4.1	11110-	
1		1	paine	-	-	V.Cal	-	CAS	10 (44)	V.CAL	C	CAS	10 (4)	V.CAL	C (m)	GAS	10 (44) 07	V.CAL	Comp	GAST	10 (14)	V.CAL	c 🛶	GAS	10 (14)	V.CN	C	CAR	1000	V.CAL	C-4
到	2	15		Total I	10003	-	TOPO 1	MORP I	Monto 1	H0001	Property 2	1000	M0001	HORSO I	MINO 1	Name I	10001	10001	M0801	PERSONAL PROPERTY.	H0803	10001	M002	POPO 1	M0003	PROPERTY 1	M0801	30801	M0801	1000 I	MDBO 2
"	7	i m	0.6780	4 175	4 392	-0.877	401	416	434	41.071	8 073	4 101	4 319	-0 66.2	486	4)07	41 122	8 00-1	u cas ?	4 Zh	4252	-0 049	40 US2	421	4 JH	46%	-0(8)	-0 NO	-0 516	461	451
-		100	0.0783	0 UBJ	-0 272	e ata	4 654	0 8994	40 2561	a ut 9	41 10 74	5 44 6 5	45 219		4007	0.010	40 Jee	u 0 01	0 1544	0 00.1	4134	0 9815	-0 u te	u eur	6 218	0 0007	~w,	0 48.4	473	6 UI)	v etc.
•	-		0 078 3	4144	1 027	-0197	4312	0 104	e mi	44 HB3	4 (4)	4 764	0 K28	u 164	0 171	474	43 May 7	610	U 56.7	4617	440	D 127	W110	U 4971	a 141	Ø 144	9151	o 746	470	@137	4 14.1
١.	166	107	n 64.31	0 tos	-0704	4 T20	4 220	0 864		«)	0 245	-0 434	444	0176	4176	0 421	# 42x	918	0.190	400	9 171	0103	D left	445	U 147	4177	9173	-0 600		• isi	* (4)
"		-	is 00534	***		B 941	0 800	4 m2	6 van	041/	a teno	4874	A 2007	-0 (t0 D-			U (MAR)	yul)	u	12 5000	0 Umr	4427	-	eum	n Aem	6927	« == =	9194	4000	⊕ 0224	·
-	114	ю	6 09 31	-0 416	414	4/183	-0 1888	4179	0179	er 171	• 171	40 (64.1)	-0 NL1	u 16.7	4163	6 134	et 574	4 100	n 1440	ψЯΙ	441	40 1400	0147	W 121	4323	6100	-016m	• ••	4 341	Q 111	40 131
~	118	""	6 0531	0 147	0 1664	# G53	3 000	6111	0 940	0 623	com	0 1/6	ti wei	U U52	17 000%	8) 10	la udu	0.0%	Jago	0114	-4 91	କଥମା	ii daar	9 119	0 600	8 1756	u auc i	u 104	0 600 0	9947	100
-	112	110	U 0531	-01%	-0 299	4630	42.135	4317	42 00	4631	6417	4 164	-0 24h	-0 947	-0112	-0 194	u 244	0 347	4110	-0.004	-0 (9)	4043	4 087	-0 10^	0 2113	u (se?		-0 104	4300		49 1348
	-		•∞31	0.277	9 146	6137	-0 403 2	₩ Z3 ?	4 963	0116	0 v38	0.26.5	-0 474	8 117	40)1	۰	0 (30)	400)	-0 UM.	9343	4673	Q 140	9071	# <u>13</u> ?	484	ימן פ	-0.038	÷ 237	-0 477	g 306	•6J1
134	133	ia.	4 95 31	4 IAJ	41h	-0 874	-0 U ²)	414	4121	del.	deli	413	4130	P(0.0)	401	4136	U129	0.050	4115	10075	***	:090	-947	400	4 107	41144	400	4 112	4117	4651	4077
145	196	60	6 878 3	4702	u 94a	0.001	4111	u 364	d 514	n 975	0 104	0318	400	4200	0 094	• 111	641	45 48: /	6092	et.:	0 171	4413	6977	u 200	e etu	CE-7	045	40 336	u 4)t	e (ap.)	
) 	10=	181	9 6783	429	475	0 056	140	-0 3 ×1	41 272	6 054	4 954	e 221	• 233	Ø 946	484	420	4221	(1044)	404	4181	0 191	U-934	6.615	4 216	-ola	4 94 3	-0 test 7	4111	0 230	***	0 SME
147	8	161	9 878 3	۰	0 2ms	0 68 3	C 000 /	o 170	e in	σε 3 6	8 854	a 127	6233	4 868	6 04th	• 167	េធរ	U 1865	404	0 245	w 171	4631	9000	G 281	0 IJ4	8 47.9	6 64 7	0 11 8	0 234	•==	6049
144	/mi	-	u 8781	-3 35 00	-1 012	-0 250	420	414.4	w ¥3 1	o 1900	e 191	4 216	40 1120	4 167	-0 147	4 768	a 74	Q be I	4164	-0 611	wa+3	-0 t ma	1(10	0 714	u 71#	a 146	4 146	41770	0774	# 1 M	4 les
133	100	112	g (C) } i	40 116	-0 1%	4632	4070	-0 084	611)	ं व्युक्त	-e 053	4072	a ten	4 053	-0 M3	4 080	o 103	6 Ø14	49 1487	4971	0 1994	4813	eutz	4497	4 105	6 038	-4 (pq 7	-8417	-0 101	4911	

Cuadro B.11 Resultados de la red secundaria 5 del fraccionamiento "El Paraje", en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.5 DE LAS 11:00 A.M. A LAS 6:00 P.M.

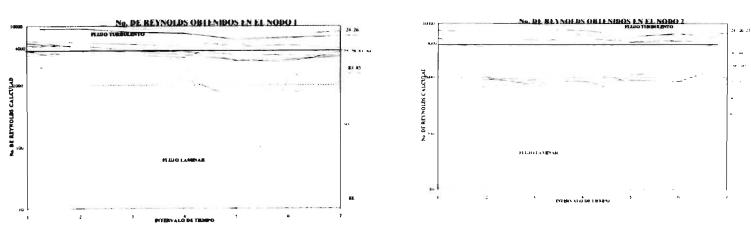
SURPL	DEC.	16.5	11-13	HIPS.	12-13	MILS.	13-14	HIIICS.	14-15	HUS.	15-16	HEIS.	16-17	HIRS.	17-18	HERS.
MALE OF STREET	. DE TIE	MPO		1		2		3		4		5		6	D-2019	7
PANO	100	80	REYN	OLDS	REYR	OLDS	REYN	OLDS	REYN	IOLDS	REYN	IOLDS	REYN	IOLDS	REYN	IOLDS
444	1	2	NODO I	NO902	HOBOI	HODOZ	NODIO1	NODO2	NOBOL	NODO2	HODDS	NOBO2	HODOS	NODO2	NODOI	NODO2
59	79	198	6082	6358	5612	5904	4882	5174	5012	5223	3860	4087	4558	4769	4898	5125
60	81	180	1379	4412	1460	4233	649	3552	260	3958	89	2855	730	3536	1038	3001
61	84	199	15511	16658	14338	15279	12716	13592	12392	13122	10008	10527	11273	11840	12132	12781
76	108	107	12133	12133	11030	11030	10407	10407	10143	10143	8896	8896	9160	9160	9591	9591
77	106	109	2136	10	1966	10	1778	24	1613	10	1159	10	1415	10	1295	24
78	110	106	9975	9975	9068	9088	8656	8656	848±	8488	7457	7457	7745	7745	8248	8248
79	110	111	2805	10	2829	10	2781	24	2638	10	2734	24	2638	10	2393	10
80	112	110	3741	7169	2805	6234	2191	5947	2501	2821	2254	4724	231K	5107	2446	5755
81	80	1108	7169	2781	6162	2038	6306	1774	6234	IVIS	5827	1750	3683	2014	5731	1846
120	155	18	3908	4100	3549	3765	3069	3309	2A77	3093	2278	2494	2350	2566	2686	2805
145	198	#2	6358	8856	5904	8337	515B	7396	5223	7250	4067	0034	4769	6650	5125	6974
146	180	110	4541	4801	4233	4412	3585	3779	1422	161?	2968	3098	3536	3666	3601	3731
147	13	151	6455	4801	6001	4412	5304	3779	5142	37-4	3974	3098	4623	3666	5158	3731
148	199	16	10674	16739	14906	14971	13235	13306	12781	12846	10235	10299	11581	11646	12489	12554
155	188	112	2781	3741	2014	2805	1726	2398	IWI	2518	1750	2230	2038	2518	1846	2422

Cuadro B. 12 Números de Reynolds obtenidos en la red secundaria 5 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

Hustración B.6 Números de Reynolds calculados en la red secundaria 5 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 8 RED SECUNDARIA No. 6

Esta Red es la más grande de todas y se encuentra integrada por 24 tramos, a continuación se presentan los resultados obtenidos, así como el análisis de los mismos y su representación gráfica.


MAX.	TADON	OUTDIN	DIA.		HAI	12 Miles.			12 1	73 MB/C7			UAI	11100			10 41	5 100A			15.4	la Figs.			le a I	7 LDES			47 A I	13 1865	
-	100	-	miles	CH	TO(N)	VACM	C	GAST	10 (Pa)	VEN	E(m)	ÇAB	10.04	V.CM	C(=4)	GAR	TO ON	VA	C (mg	QAS	(O(0))	V.CN	C=4)	GAS	10(%)	VAN	C	QA4E	ro pro	V.CAI	IC pas
	-	•	-	1000	MIND 2	10001	20003	1000	MOROS	POROI	900001	HOROI	MOSCO	10801	MINOS	lecomo i	H401	1000	M0801	NOME (MERC 2	MORDE	10001	W3801	10801	мавоз	20802	MURO	MDBO1	MOSO1	NOBO 1
24	17	*	ω 078 5	44%		6097	000		ts 882	0 0004	u 083	0 ha	0 lo2	0 t/h	047	0 132	0	407	aut	0 PO	arm	gura	604	11 294	U 2963	u con l	-	a 1 <u>22</u>	u Ha	a um. 7	151000
23	3.7	-	6 07k)	0 2m		u 942	y and	u 254		u 046	4013	0.300	4=0	4 Call 1	0.100	U 194,	u (158	u il Pr	0 (1848)	01%	U 1129	···ua	000	0011	P1096	11 41 40.	G (344)	e 14.	u uma	0.436	+44
	ж	177	64783	o : 7~	u 477	u 114	ts (PP)	0.7%	u 474	0111	0.098	u err	-	" NU)	oran -	U 471	U 794	07 4	0.001	U 161	15 284	01111	60%	0 167	0 143			G 441	4130	U 40 4)	eren -
27	"	-	60AS	U 1098	u 522	6144	G (48)	qel	00	6141	0 104	u 101	0 06.7	0120	u ma	17 3*7	0 417	014	C report	ees	0.675	4194	6 677	1996	0 00	6.397	uapo.	U ##4	0 451	n het	1150
2	15	-	UOMO	0.534	0 867	11072	9311	v 770	U 1884	0.000	2011	0 250	0 200	(100	Guis	o De	JUN	0040	COEs	0 215	4401	****	uan	U 199	W1074	u ont	19 49 7	017*	w U//	9 040	1787
ъ	-	•	u u itas	4 537	4190,9	4111	4014	454	6184	etu	0 (4)	447	42 66)	* 107	a 174		400	aus:	0.05	01%	4.453	gride	17794	10 TeV 7	il 900	o rest	407	440	0.10	W 885 /	2.260
10	16.7	173	water	9 ag7	0.00	0 W7	4016	uun	CUD	out.	Dorts	u 1175	outs	пум	aut,	GONI	core	91724	G(N)	ant.	GHE	9.000	(1986)	1116	440	0 QL	440	19186	uus	u v2r	C914
44	w	114	0441	6 257	4 603	0.000	anti	u 177	0.00	u can.	4017	are	dides.	80%	0.042	UTM	gus;	Polis	si que	G PW	anti	G (47)	n-mi	+ 617	Ad.	4162	9312	¥117	0.00	1-65%	41173
10	137	"	90511	0 teu	0 972	6077	000	0 240	auts	U CHPY	0.020	a (944	6 UTK	0.040	U 15.00	COA	ann	TOPNG	171006	0.00	97948	4427	0.00	FSV	-0.00)	9.657	77 X1	0'u71	aur.	0 =31	11/10
•	·	***	umu	000	0	6645	GOM	000	o ma	ump	QUI7	u 151	40 (640)	9925	wuix	921	onta	445	4447	TUN	guz.	191493	177649	886	wate	9914	6 mm?	9647	61/29	V 421	9 101 8
8 7	150	17	80131	4 12 I	420	w tea.	413	4 lbs	6.10	er enter	Q IUS	4174	0.115	U 67v	a (re)	(C)act	U gas	ent/4	47/092	0115	014	granks	- CE	ST POT	U 117	47:347	400	M 74 0	4.01	U 1807	G 4864
-	134		Am. H	vae	421	() Share	w tibe	4.50	Q 134	6.00	quip	or carry	HIG	U 1941	4√ OB-1	41 (30)	0.11;	0.993	e and	TON	(11.79)	77.000	47.042	19766	1100	v 320	ינפט	(I val)	9114	u 00	894
•	130	121	0.0751	0 251	G 312	G PAGE	344	0 443	Gues	W-891	gen	034	0.054	n GA3	uwe	0.141	Crista		L Oya	014	U 184	0.004	mage	414	rish.	उक्ता	o una	0.185	2 mgs.	U URL	
~	'22	(""	00311	0.141		0 0007	P.12.54	u 300	Le:yNe	U DAG	0.093	17 164	a dyl	6 1774	0.037	614	40.074	4.18-4	11 1112	U 142	0740	(Arther)	gap	9314	U GAME	to the same	0.003	4140	90%	J'm'	may
WT.	421	123	64031	017	U 184	12 0000-	41 1361	10 1448		see	annu	U pas	dist	171974	0.184	m 142	6.645	dates	nar,	8117	esse	4444	an agen	GIF	w #92	11554	al ories	are	41E	G GTNG	17000
92	ren	121	9031	٠٠٠	~=	G 18	-17 (1)40(5	u to f	GUL	0)#4	4 012	11.00	4630	eres	-fi Gi ?	u 5467	Sect	41.0	A GOV	0 20	*****	0.13	maga:	G Zm	0.111	Ø134	OWY		4145	2144	0014
**	1.0	123	9 0533	2094	-	6 642	****	6126	400	0018	0.013	4111	0661	401	~ 973s	6 134	0.000	U 104.	47 61 2	e cher	4,057	17(00)	arter?	0.00	ATTENNA	our	our	in the	0001	0 (47	d 12h
-	136	125	4 9534	Q (61	0 651	4 075	u ot?	0.115	# D4	-	6 4/28	qen	8311	0.000	6 000	0126	0 42	gues	020	U abe.	17/455 W 7/89	411000	Armer.	n car	irus	G 417	0.016	gire	007	0.601	4493
*		127	60531	440	anı	n and	serger.	-0.004	Wind 4	11600	0 446	11.013	a 1017	485	4 000	0 021	a the	77	0.00	(i wo)	270	-	1941	eries	4170	3 OH	an.	0 w	0 to ?	0.000	UNIX
*	121	125	94231	4 ant	- mm3	0176	G178:		0.54	0.25	9171	910	9 931	0147	ulian.	4315	0.312	e i et	17142	0 N	u 262	6 110	6-100	4175	40 mi:		540	0(87)	G (A)	0 apa	ditte
131	, m	, m,	94333		u 340	4120	417	19421	4 80	999	01B	0.00	624	499	9116	0315	6 112		200	430	929	gon	4 14.1	0 200	6171	010	2 (D)	0.384	0 294	4125	0126
	,	"	u e531	1	423	3 880	0 100	0.00	· L		w No.	ene	4211	900	u ovs	UME	0.110	GAN	4/199	ayo,		U188	1000	0 940	u 200		010	1)B		-/ USA	000
16.3	"	1	84631		1	9212	0 (=	u 44.2		u ##	u 183	u as?	9180	-							074						1000	g tear	6182	u @sc	011
344	124	P97	84031	***	V-486	9213	0 (_ · _ ·		U 377	0.183	9.407	418	6 134	U 16.7	u 5	41 780	u 174	11.136	0.94	0.263	417	0.126	u 134	or Page	U 145	DIM	U 904		4 (44.)	0

Cuadro B. 13 Resultados de la red secundaria 6 del fraccionamiento "El Paraje", en un periodo de siete horas (11.00 4 M a 6:00 P.M.).

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.6 DE LAS 11:00 A.M. A LAS 6:00 P.M.

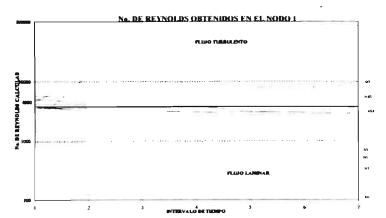
SURM	ED SEC.	Ne.6	11-12	HINGS.	12-13	HIRS.	13-14	HIRS.	14-15	HERS.	15-14	HORS.	16-17	FEES.	17-11	HIRS.
X11.7.5	V. DE THE	W-0		1		2		3		4		5		6		7
TRABO	NC	100	REYN	101.85	REY	OLDS	REY	IOLBS	REY	OLDS	REY	IOLDS	REY	HOLDS	REYP	OLDS
	1	1	NOBO I	1909-02	110801	NOBOZ	N0001	NOMO2	NODO1	NOBO2	NODOI	NODO2	NODOS	MODO2	NOB01	NODO2
24	35	36	7623	7558	6585	6520	5936	5871	5709	5644	4590	4525	4769	4704	5223	5158
25	37	36	3260	178	3795	973	3341	730	30M2	6/6	5506	170	2896	303	1001	עלו
26	38	37	9067	7737	9018	7688	8094	6828	7672	0191	SERR	4006	6277	Subi	7185	6001
27	39	38	11321	8467	10981	8564	9424	7575	9034	7412	7347	6082	7623	6293	8045	0000
28	85	19	5677	2411	4379	1444	3860	IIIV	3731	1115	3325	892	3228	560	3/03	892
29	39	40	£710	11256	9115	11094	7899	9748	7477	9034	6099	7147	0439	7607	6812	8272
83	165	113	2006	803	1891	471	17W	7/	1271	384	399	3/.	363	48	1239	797
14	115	116	5203	671	4244	VII	Jovi	191	1309	103	25 88	2'1	2002	047	3/4/	64)
85	117	116	3m3 /	1726	2390	351	2254	432	1894	4485	1415	500	1.430	12	1750	108
86	110	118	2374	10	1487	911	1223	939	1271	911	6.3	380	19	384	1127	¥35
87	118	3.7	5299	8100	4556	5755	4172	5155	SAM	4892	3080	1140	2470	3533	3000	4430
u	119	118	10	5323	946	3693	24	>213	24	200	10	2.1W.	10	.186	10	2 '34
29	120	321	5035	2686	5347	3374	4919	2234	4580	2014	3211	1555	3267	1702	4164	"INC."
90	122	121	4724	Jone 7	4796	16:8	3992	1678	3403	1702	2656	1103	27.64	1151	3557	In in
91	121	123	4748	4412	4028	3717	3932	\$621	3717	1477	36.18	2390	2003	2035	3741	3501
92	197	123	9975	2110	9615	623	8872	911	E36E	504	6780	1079	70592	1310	£105	1007
93	123	125	2254	206.2	3069	1175	2718	1465	29/3	939	10	Mar?	1314	Soi	2518	1511
94	126	125	4866	1942	3257	1311	3189	E102	10:1	1487	2002	291	1990	KEY	2734	1726
95	128	127	120	5323	3 140	4652	216	4550	304	Ual-6	22	2780	24	2784	210	4004
96	125	128	72	22	330	336	288	288	504	504	77	72	24	24	216	216
131	167	165	9471	9471	9208	9208	7917	7017	7513	7513	6282	0283	6145	0340	6810	6810
132	196	165	6178	7385	5347	7313	5015	6138	5479	6282	4916	5707	4790	5546	4 10-4	5251
163	114	196	24	5395	10	5347	20	5054	10	5179	24	4930	100	47-10	111	4104
104	124	197	1111	~//	1708	962	W16	887	V_0	811	119	4. 9	6	10	W 180	810

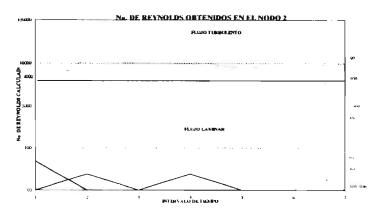
Cuadro B. 13 Números de Reynolds obtenidos en la red secundaria 6 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.)

Hustración B.7 Números de Reynolds calculados en la red secundaria 6 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 9 RED SECUNDARIA No. 7

Consta de 12 tramos, en este subcapítulo se presentarán los resultados obtenidos por el programa MIRAP, así como su análisis y representación gráfica.


86,43	TABON (OUTLN	8 0%.		MAI	2 MACS.			UZ A I) NEALS.			ВАІ	4 MMD.			14 4 1	5 168A			15.4.1	a HIRA			16 A I	7 Miles			17 A S	4 168L=	
TRANS	8		maine.	GAPT	0.00	W.CAL	C ()	GAR	TO give	V.CAL	C (m)	CAF	10 (M)	V.CAL	C (m)	GAST	(O (M)	V.CAL	C (-4)	GAS	TO (M)	V.CA	C. (m/s)	GAFT	(U (M)	V.CAL	C 99/4	GAR	to des	V.CAI	LC ests
				1400001	M0803	FEEO 1	140903	110001	1	1000	MD002	iman t	MINO 1	1000 I	N0901	M0801	N0903	10801	POBO 2	NOROI	10003	N0801	H0002	MORO 1	H0803	F-00001	1080 I	H080 I	7000 1	M0801	MORE
97	130	n	0 67 11	-0 19%	41 198	-1 000	42 0007	4 64	4 64	4 210	40 Z10	-0 411	-0 411	.0 194	-U ING	46 4 0.]	-44 60.3	0 183	49 (3)(7	-0 127	-0 127	@ ies	614	-U 3 to	-0314	-0/132	-0.122	4333	al 335	4 160	-u jgo
•	133	36	4633 1	D 179-2	a a+1	9 643	U 042	6 529	637*	4 1)7	41 2139	440	-0 47E	-0 3 u7	7:ئۇرىد	4 414	u e14	0 1%	o pw	0 MP	47 497	9114	0114	U Nud	4) 644	U 16-9	0 164	u ME	-U 379E	4) 1957	o 180
-	135	136	W 0531	n Get	u acuci	0 628	o guo	443)	4.001	0.033	0 000	u 448	u east	0.023	V 0000	L 043	11 6664	uutv	0.000	g q M	w 1990)	ues?	V 1800	u orna		υ ψ 7	n dist	4 4 5 7	0 400	8 017	444
100	133	137	6 05 31	4 734	.0 17%	-0 IU7	40 124	u 228	<u>سند</u> به	4 143	44 120	4131	-0 248	44 6797	0112	4 710	41 259		40 I(A	0 16.7	4 186	U 471	-2184	4 167	40 101	-0 U75	0 D\$4	٠٠١٧٠	-e 11 ¹	0 (99)	4 10 t
101	135	138	@ 65 ti	u 176	e ons)	0 079	(1 Mar)	0.176	0 (MIL)	0 979	0 000	u 467	0.000	0.075	0.400	0 144	0.0001	U 12 AL	G 400	a 124	d'trus	2 03E	0 644 3	u 129	U UANG	0.038	0 004	0 161	11 4000	a u7)	(a unbu
103	131	170	0 02 31	4 213	D IWO	0 07%	() UDu	B 187	6 163	U 004	G U74	u 174	a 155	o 07y	D 1076	0 1 74	u 155	0.079	(LO)O	0 149	G 140	6 47 2	u u.,	4154	U 145	ψu72	6 m .	614	U 144	U 071	0.003
101	137	140	u u1 31	0 14.3	G Mari	g ú7)	(s MEX.	0 153	6 (Mb)	il m ei	iù unuti	0 113	a uu 2	19 06-0	0 601	0114	4 944	0.017	17 DOG	W 117	6 000	00"1	U (401)	W 121	U 4810	u 033	G dem	u 127	ti (402)	0 417	u can s
104	139	141	00334	n 028	0 028	0 Ui 3	ψ 0) τ	0.028	o ota	4011	5 wi h	6423	w 024	n 610	0.044	7 W.)	4431	woto	0 414	U (72.)	0 421	eatn	a usa	N 1923	**121	U 610		0.014	u ery	0.000	
143	141	142	0.0531	0.023	0.400	0 010	4 USA	u um)	g usa	u 642	-0 vitre	UVIY	0 000	0 4809	U MINU	d uly	a gare	8 009	U 800	uulv	0 406	D onto	n den	U 1974	d-am.r	6 QIS 7	(வரை)	0.014	© MINCO	0 00-	17 LMM0
100	141	143	44271	D 985	ų udau	6 00/3	u pur	u ««»)	U MAPET	n an t	0 000	0 601	0.000	0 (902	0.000	6 004	U GUT	U 401	u 400	U 4916	0.001	0 00-4	0 0001	U IAI I	4 841	U 1804	-6-600.7	ÜISM	N GEN	v av 1	u aus
107	133	144	u 0331	0 (96)	0 000	0.018	6 04.79	u fetu	al MENO	6411	U 400	u ut s	0 4880	D ++16	O TRAFF	0 441	1/ BMD	6-615	0 800	6423	0 000	Quit.	0 000	U 041	11 Marii	W 414	() (maxi	0 425	41 gRaps	11011	O DRIV
166	134	145	0.0214	U 134	u dest	e.u7u	U 400	0 (11	u amay	1	0 U/002	W 14Z	U (AAC	61 May-4	() elaita	G 128	C GUA	4.558	u aus	811)	41 CASH	6 074	6190	G 127	O MEN	6 057	U MINO	u 121	u au (u 0%	0.000


Cuadro B. 15 Resultados de la red secundaria 7 del fraccionamiento "El Paraje", en un periodo de siete horas (11.00 A.M. a 6:00 P.M.).

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.7 DE LAS 11:00 A.M. A LAS 6:00 P.M.

SUBIL	ED 26C	4. 7	11-12	HIGS.	12-13	HAS.	13-14	HIKS.	14-15	HIKS.	15-16	HIKS.	16-17	HIRS.	17-11	MICS.
17 1 2 R V	DE TRE	MPU				2		3				5		•		,
IRAMO	NU	DU	ROLL IN	OLUS	TETT	OLDS	KLYK	OLUS	LCA15	ULDS	ROLT A	IOLDS	MIL Y	SOLD2	REY	TO L.D.S
	1	2	MUDUI	NODUZ	MUDUI	MODOZ	NODOI	NODUZ	NODUI	NODOZ	KODOL	NODUZ	NODUI	NODOZ	NODUI	NODOZ
97	130	27	4748	4/41	11174	11174	9855	9855	9639	9639	7841	7841	1057	1057	\$51Z	2317
98	133	30	2306	2,206	12684	12684	10982	109%2	10407	10407	836E	8368	8728	¥728	9543	9543
99	135	136	1462	10	1223	24	1151	10	14131	111	9//	10	9//	10	MB.	10
100	135	117	5659	6666	1467	6378	5155	5947	54155	1731	4004	4460	1004	4580	4772	5443
101	135	150	4220	48	4220	IU	4004	10	4028	24	3093	10	1023	10	1460	IU
102	131	139	5107	1550	4484	3908	4172	37	4172	17	5813	315	3813	34"	1 89	3453
103	139	140	5884	34	323	10	1/89	48	3141	141	380)	10	2907	10	3145	4M
104	139	141	6 1	67	0-1	^ ⁻/	351	351	33/	331	331	551	>>1	33/	156	450
105	141	142	551	10	120	432	436	10	436	10	436	10	38.3	1.79	130	10
106	141	143	1.0	10	120	10	120	10	144	24	192	-2	*2	48	946	10
107	132	144	454	10	yjy	10	*37	10	100	10	*13	10	.13	111	599	10
10%	134	145	3693	10	3651	10	3405	10	ince	10	3/89	10	31145	10	2949	24

Cuadro B. 16 Números de Reynolds obtenidos en la red secundaria 7 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.)

Ilustración B.8 Números de Reynolds calculados en la red secundaria 7 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

B. 10 RED SECUNDARIA No. 8

Esta red consta de 11 tramos, se muestran a continuación los resultados obtenidos así como los números de Reynolds y su representación gráfica.

	TARON C	OF LIVE	106		HAI	2 1005.			12 A E) HIEL			13 4 1	4 MILE.			MAI	5 IBIS.			19 A I	in period			16 A I	7 MINS.			17 A 2	S MINES.	
! *	w.	114	mist	CAST	10 (m)	V.Cat	Conty	GAF	TO (M)	V.CAL	-	CAT	10 (m)	ViCat	E ents	GAST	D (m)	V.CAL	C	CAS	TO (014)	V.CAL	c	CAN	70 (ha)	V.CAL	-	CAPT	10 (44)	V.CA	IC ()
	とを	图图	4	PROPRIE 1	PRINC 2	-	2	man	P000 1	HIB01	PRINCE 1	1000	F0801	7108O 1	10000 A	HORO I	PROMED 2	1000 I	P0300 2	M080 I	MODE I	NOSO I	M0803	ROSO I	N080 2	M000 S	PER-03	FIDEO 1	MORD 2	P080 1	70000
v	-	ø	6 0783	41 77,3	4323	49 148	-0 Hell	•	44 680	41 1999	4000	4) 4) 5	-0 48N	-61 LUB C	U 17679	4 344	4 774	41:41	OLEI	40 July	e 10%	4 (9-4	-छ पहल	un.	wite	ei (m.5	6064	em	0 151	au2)	41073
34	-		u u7 a 3	14 CM E3	0 0110	e und	u 9842	G EMPL	agus	40 (948)	u uno	a gan	() Chap	14 (3) (11)	91889	13 (334)	TUN	(160)	*******	trous	15-7401	ra Ultima	11160	u (a)2	604	of their	(1 tas,	uu.	U IMPA	0.18-2	0.00(2
13)	171	u 0725	4453	4 476	0.071	U SAI	0 413	0 437	-uumt	471790	-0 355	41 17K	ar 157 \$	11 O/K	41 796	41555	421897	Arci7 s	0 340	w 279	4000	полк	G 264	41783	21625	0.052	1 634	0 121	o wet	vota.
-	>1	144	0 0720	4 17)	~ 432	4677	4 691	41,347	441)	4:07]	6 ms	40 29%	4 355	41 (86.2	40003	0 Zh 5	-o tte	41958	41.00	6 222	W Start	(rute	0.04	u 222	0 264	() Codes	umi	0.25	U 944	0001	0.063
>>	33	34	o ohg	0.001	4 IR3	U MARI	44421	4444	41 107	40 (87)	#1022	ատոլ	-0 (94	G-100007	Unity	guy.	4.1007	0411,	11.470	46 6912	41 UTY	14 (8 4)	0.013	115,641	41037	(rian)	0143	14 (50)	41 CHEFF	U CAR.	46 (1)
	**	,,	0 07 8 3	u GERO	D LIE	440	0150	COLUMN	o atti	0.0131	u Mau	0.000	19 (8.8)	N (BBF	67340	0011	anti	0.000	second.	000	17 UM		(FIRE	41:554	-5014	41 CE ()	1110,5	47.42)	UMI	0.000	11 Qua
41	33	173	u st)ten	O (MIN)	() (pref)	(COLD)	+14000	6943	ur cans	coart	U 484)	e) class	0 6846	(r43)	O COLO	17 (426)	e Quar		(/4884	-111665	u caus	1000	101014	Ottal	Gamo	o una		4410[3	out:	aur)	o qu
107	146	31	u a531	es (ML)	4277	0.074	4 123	40 (ME)	40 344	60 (B) (B)	4110	Gas	40 ZNZ	(cum)	(W)	0.001	40.187	uun	11184	(X CHIP)	er la S	(COM	sames	15 (b.8.5	er 165	O PARA	4001	11.00	41 704	a CLUB	++ 076
(10)	33	ы	u 4334	40 004	-p cont	U (M)2	49 1892	0 000 1	ti (ar)	0.001	unut	o esta	o anno	U chies	o œa	*******	uusi	4400	W/8/1	over.	41 (815	6-482	01842	12 (0.2)	\$1 (84)	U-Es	case	1-124-	D ULD	6100	o can
136	179	47	u u783	-474	-U 323	11 (948)	er HOM	41 437	40 480	-0.090	4/099	-u 178	4410	41078	41.00	4 155	G 394	41-073	uret	0270	G Nov	o una	V (En)	44 294 5	atte	o usa	e=4a	11 121	481	urs?	0.07
137	172	•	0 0785	40 CQ4	**05*	4 (81)	-0 (40)5	GUMB	to ution	անա	u (RIG	41080	41116	444	0003	u caras.	поры	6 (84)	is usa	0.000	(4.0880)	04441	() SE()()	6000	u anu	Dr (Allan)	111490	€) 18,91	000	0740)	17 (2.51

Cuadro B. 16 Resultados de la red secundaria 8 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.)

NÚMEROS DE REYNOLDS CALCULADOS EN LA RED SECUNDARIA No.8 DE LAS 11:00 A.M. A LAS 6:00 P.M.

SUMME	D SEC.	No.8	11-12	HRS.	12-13	HRS.	13-14	HRS.	14-15	HRS.	15-16	HIRS.	16-17	FIRS.	17-18	HERS.
DITER	. DE TIE	MPO			20.00	2		3		4		5		6		7
TRANSO	N	000	REYN	OLDS	REYN	IOLDS	REYN	IOLDS	REYN	HOLDS	REYN	101.D6	REY	OLDS	REYR	IOLDS
	1	2	NOBO 1	NOBO2	NOBO1	NOW02	NOBOI	NOBOZ	NODOI	NODO2	HODOL	NODOZ	NOBOL	NODO2	NODOI	NOD02
35	46	45	8483	8483	7785	7785	6780	7902	6391	6391	5012	5012	5093	5093	5726	5726
36	48	49	162	162	10	10	10	10	65	65	16	16	32	32	146	146
37	50	171	7331	7721	6699	7068	5758	6131	5450	>758	4217	4525	4282	4590	4931	5239
38	51	164	6050	7331	5628	6699	4833	5758	4590	5450	3601	4217	3601	4282	4168	4931
39	52	51	16	1654	65	1735	16	1525	32	1573	32	957	10	y25	10	144
40	49	53	10	10	10	10	10	10	178	178	10	10	551	551	16	16
41	55	172	10	10	49	19	y 7	97	10	10	y/7	y 7	10	10	243	243
109	146	51	48	6522	10	5827	24	4844	24	4484	10	3436	10	3426	24	4052
110	53	54	946	946	72	72	10	10	JK	48	120	120	10	10	10	10
136	171	47	7721	8483	7068	7785	1619	6780	5758	6391	4525	5012	4590	5093	5239	5726
137	172	49	389	389	fυ	10	260	260	y 7	97	10	10	to	10	10	10

Cuadro B. 17 Números de Reynolds obtenidos en la red secundaria 8 del fraccionamiento el Paraje, en un periodo de siete horas (11:00 A.M. a 6:00 P.M.).

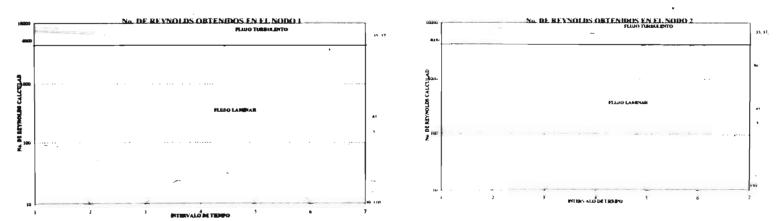


Ilustración B.9 Números de Reynolds calculados en la red secundaria 8 en distintos intervalos de tiempo, la gráfica de la izquierda muestra los datos obtenidos en el nodo 1 y la de la derecha en el nodo 2.

ANEXO C

SUBRUTINAS DE SOLUCIÓN NUMÉRICA

```
SUB TRAMOS (T%, AK%, AZ%, AP%, QJ#, QJJ#, QJ2#, FQJ#,
                                                                                                                                IF AK% = 0 THEN
                                                                                                                                            HF# = 255 37 • K4 • QJ# • ABS(QJ#) / RE#
FOJ1#, FOJ2#, TIPOTOMA%(), KOR(), AT%)
NUMTOTO=NUMTOMAS(TRAMO%(T%)) +
                                                                                                                                                  FQJ# = FQJ# + HF#
NUMTISDL(TRAMO%(T%)) +
                                                                                                                                 END IF
NUMTICDL(TRAMO%(T%))
                                                                                                                                               HF1# = 255.37 * K4 * QJ1# * ABS(QJ1#) / RE1#
                                                                                                                                               HF2# = 255.37 • K4 • QJ2# • ABS(QJ2#) / RE2#
REE#=1273239.5#/D(TRAMO%(T%))
RET# =1273239.5# / DIATOMAS(TRAMO%(T%))
                                                                                                                                    SELECT CASE AK%
K1 = C(TRAMO\%(T\%)) / 3.71
                                                                                                                                           CASE 0
                                                                                                                                                 FQJI# = FQJI# + HFI#
                                                                                                                                                 FQJ2# = FQJ2# + HF2#
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
K2 = RUGTOMAS(TRAMO%(T%)) / 3.71
                                                                                                                                            CASE I
                                                                                                                                                 FQJI# = FQJI# - HFI#
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                                 FQJ2# = FQJ2# - HF2#
K22 = RUGTOMA2(TRAMO%(T%)) / 3.71
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                       END SELECT
K23 = RUGTOMA3(TRAMO%(T%)) / 3.71
                                                                                                                          END IF
K4 = K1(TRAMO\%(T\%)) / (NUMTOTO + 1)
                                                                                                                          REM Cálculo de pérdidas con la ecuación modificada de
NTT1 = NUMTOMAS(TRAMO%(T%))
                                                                                                                                       Colebrook-White
NTT2 = NTT1 + NUMTISDL(TRAMO%(T%))
DIFE = (TN(IR\%(TRAMO\%(T\%), 1)) - TN(IR\%(TRAMO\%(T\%), 1)) - TN(TRAMO\%(TRAMO\%(T\%), 1)) - TN(TRAMO\%(TRAMO\%(TW), 1)) - TN(TRAMO\%(TRAMO\%(TW), 1)) - TN(TRAMO\%(TW), 1) - TN(TRAM
                                                                                                                          IF RE# >= 4000 THEN
                                                                                                                                SELECT CASE RE#
                2)))
DIFE = DIFE / (NUMTOTO + 1)
                                                                                                                                       CASE IS < (10 ^ 5)
                                                                                                                                       G = 4.555: GT = .8764
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
   SUMA = NUMACCES(TRAMO\%(T\%))
                                                                                                                                       CASE (10 ^ 5) TO (3 * (10 ^ 6))
                                                                                                                                       G = 6.732: GT = .9104
                        • 5 + 1
   SUMA = SUMA / (12.103 \cdot DIATOMAS (TRAMO%(T%)) ^2)
END IF
                                                                                                                                       CASE IS > (3 \cdot (10^6))
                                                                                                                                       G = 8.982: GT = .93
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                 END SELECT
  SUMA22 = NUMACCE2(TRAMO%(T%))
                                                                                                                                 IF AK% = 0 THEN
                           * .5 + 1
                                                                                                                                       K3# = K1 + G / (RE# ^ GT)
  SUMA22 = SUMA22 / (12.103 * DIATOMA2 (TRAMO%(T%))
                                                                                                                                        K3# = (.4342944# \cdot LOG(K3#))^2
                            ^ 2)
                                                                                                                                        HF# = K4 \cdot QJ# \cdot ABS(QJ#) / K3#
END IF
                                                                                                                                       FQJ\# = FQJ\# + HF\#
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                 END IF
  SUMA23 = NUMACCE3(TRAMO%(T%))
                                                                                                                                 K31# = K1 + G/(RE1# ^GT)
                           • .5 + 1
                                                                                                                                 K31# = (.4342944# * LOG(K31#))^2
  SUMA23 = SUMA23 / (12.103 * DIATOMA3 (TRAMO%(T%))
                                                                                                                                 HF1# = K4 * QJ1# * ABS(QJ1#) / K31#
END IF
                                                                                                                                 K32# = K1 + G / (RE2# ^GT)
                                                                                                                                 K32# = (.4342944# \cdot LOG(K32#))^2
S1 = 0: S2 = 0: S3 = 0
FOR L = I TO NUMTOTO + 1
                                                                                                                                 HF2# = K4 * QJ2# * ABS(QJ2#) / K32#
                                                                                                                                 SELECT CASE AK%
REM Se obtiene el número de Reynolds
    REl# = REE# * ABS(QJI#)
                                                                                                                                        CASE 0
    RE2# = REE# \cdot ABS(OJ2#)
                                                                                                                                        FQJI# = FQJI# + HFI#
                                                                                                                                        FQJ2# = FQJ2# + HF2#
                 IF AK% = 0 THEN
                      RE# = REE# * ABS(QJ#)
                                                                                                                                        CASE 1
                                                                                                                                        FQJI# = FQJI# - HFI#
                  ELSE
                                                                                                                                        FQJ2# = FQJ2# \cdot HF2#
                      RE# = (RE1# + RE2#) / 2
                                                                                                                                 END SELECT
                  END IF
                                                                                                                           END IF
REM Cálculo de pérdidas con la ecuación de Poiseuille
IF RE# < 4000 THEN
```

```
SUB TRAMOS (To, AK%, AZ%, AP%, 11 =, QJ#, QJ|#, QJ2#.
FQJ#, FQJ1#, FQJ2#, TIPOTOMA%(), KOR(), AT%, IDRE
                                                               REM Identifica el tipo de flujo
IDR Part (TVa)
                                                               IF RE# $ 2300 THEN
                                                                  11) RE3 at Tan = -1
NUMTOTO = NUMTOMAS(TRAMO%(T%)) -
              NUMTISDL(TRAMO%(T%)) +
                                                                      IF 17% = 0 THEN IDR 196/CT 11 = -1
              NUMTICDL(TRAMO%(T%))
REE# = 1273239.54 / D(TRAMO%(T%))
                                                                         IDRE of CT%, = !
RET# =1273239 5# / DIATOMAS(TRAMO%(T%))
                                                                      IF 17% = 0 THEN IDRAMCTO at = 1
K1 = C(TRAMO\%(T\%)) / 3.71
                                                               END IF
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                               REM Cálculo de pérdidas con Poiseuille
K2 = RUGTOMAS(TRAMO%(T%))/3.71
                                                               IF IDR 19 a CT%) = -1 THEN
                                                                  IF AK% = 0 THEN
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                      HF# = 255.37 • K4 • QJ# • ABS(QJ#) / RE#
K22 = RUGTOMA2(TRAMO%(T%)) / 3.71
IF NUMTICOL(TRAMO%(T%)) > 0 THEN
                                                                      FQJ# = FQJ# + HF#
K23 = RUGTOMA3(TRAMO%(T%)) / 3.71
K4 = K1(TRAMO\%(T\%)) / (NUMTOTO + 1)
                                                                      HFI# = 255.37 * K4 * QJI# * ABS(QJI#) / REI#
                                                                      HF2# = 255.37 * K4 * QJ2# * ABS(QJ2#) / RE2#
NTT1 = NUMTOMAS(TRAMO%(T%))
NTT2 = NTT1 + NUMTISDL(TRAMO%(T%))
                                                                     SELECT CASE AK%
CASE 0
                                                                           FQJI# = FQJI# + HFI#
         2)))
DIFE = DIFE / (NUMTOTO + 1)
                                                                           FQJ2# = FQJ2# + HF2#
                                                                        CASE I
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                                           FQJ1# = FQJ1# - HF1#
                                                                           FQJ2# = FQJ2# - HF2#
 SUMA = NUMACCES(TRAMO%(T%))
                                                                      END SELECT
 SUMA = SUMA ((12.103 • DIATOMAS (TRAMO%(T%)) \ 2)
                                                               END IF
END IF
                                                               REM Cálculo de pérdidas con la ecuación modificada de
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                      Colebrook-White
                                                               IF IDR 1" at This = I THEY
 SUMA22 = NUMACCE2(TRAMO%(T%))
                                                                  SELECT CASE RE#
                                                                      CASE IS < (10 ^ 5)
 SUMA22 = SUMA22 / (12.103 * DIATOMA2 (TRAMO%(T%))
                                                                      G = 4.555: GT = .8764
              ^ 2)
END IF
                                                                      CASE (10 ^ 5) TO (3 * (10 * 6))
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                      G = 6.732: GT = .9104
 SUMA23 = NUMACCE3(TRAMO%(T%))
                                                                      CASE IS > (3 \cdot (10^6))
 SUMA23 = SUMA23 / (12.103 • DIATOMA3 (TRAMO%(T%))
                                                                      G = 8.982: GT = .93
                                                                  END SELECT
              ^ 2)
END IF
                                                                  IF AK% = 0 THEN
                                                                      K3# = K1 + G / (RE# ^ GT)
S1 = 0: S2 = 0: S3 = 0
FOR L = 1 TO NUMTOTO + 1
                                                                      K3\# = (.4342944\# * LOG(K3\#)) ^ 2
                                                                      HF# = K4 * QJ# * ABS(QJ#) / K3#
                                                                      FQJ# = FQJ# + HF#
REM Identifica el número de tramo
SELECT CASE AK?»
                                                                  END IF
   CASE\theta
                                                                  K31# = K1 + G / (RE1# ^ GT)
   CT% ~ CT% ~ /
                                                                  K31# = (.4342944# \cdot LOG(K31#))^2
   CASL
       11.11.% = 1 THEN
                                                                  HF1# = K4 * QJ1# * ABS(QJ1#) / K31#
          (7% = C7% - 1
                                                                  K32# = K1 + G / (RE2# ^ GT)
          ELSE
                                                                  K32# = (.4342944# \cdot LOG(K32#))^2
           11 % - 1
                                                                  HF2# = K4 • QJ2# • ABS(QJ2#) / K32#
       EMD IF
                                                                  SELECT CASE AK%
END SELECT
                                                                      CASE 0
REM Se obtiene el número de Reynolds
                                                                      FQJ1# = FQJ1# + HF1#
  RE1# = REE# • ABS(QJI#)
                                                                      FQJ2# = FQJ2# + HF2#
  RE2# = REE# \cdot ABS(QJ2#)
                                                                      CASE 1
                                                                      FQJ1# = FQJ1# - HF1#
         IF AK% = 0 THEN
           RE# = REE# * ABS(QJ#)
                                                                      FQJ2# = FQJ2# - HF2#
                                                                  END SELECT
         ELSE
                                                               END IF
           RE# = (RE1# + RE2#)/2
         END IF
```

```
SUB TRAMOS (T%, AK%, AZ%, AP%, AU#, QJ#, QJI#, QJ2#,
                                                                 LNDIF
FQJ#, FQJ1#, FQJ2#, TIPOTOMA%(), KOR(), AT%, IDRE%().
                                                                 SELECT CASE IDRA SCCTS
IDRA%(), IDR 1484), CT%)
                                                                    CASE -
NUMTOTO = NUMTOMAS(TRAMO%(T%)) +
                                                                        IF RI. = - 3000 THEN
NUMTISDL(TRAMO%(T%)) + NUMTICDL(TRAMO%(T%))
                                                                         IDRE SICT W = -,
REE# = 1273239.5# / D(TRAMO%(T%))
                                                                          ELST
RET# =1273239.5# / DIATOMAS(TRAMO%(T%))
                                                                          IDREMICT of = 1
K1 = C(TRAMO\%(T\%)) / 3.71
                                                                        EVDIE
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                                    CASEI
K2 = RUGTOMAS(TRAMO\%(T\%)) / 3.71
                                                                        IF RE# -- 2300 11/EN
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                          IDRE%(CT%) = /
K22 = RUGTOMA2(TRAMO%(T%)) / 3.71
                                                                          ELSE.
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                          IDRESSICT IN = -1
K23 = RUGTOMA3(TRAMO%(T%)) / 3.71
                                                                         IF IDRAA GCTS (>0) THEN IDRES (CT at = 1
K4 = K1(TRAMO\%(T\%)) / (NUMTOTO + 1)
                                                                        ENDIF
NTTI = NUMTOMAS(TRAMO%(T%))
                                                                 t. ND SELECT
NTT2 = NTT1 + NUMTISDL(TRAMO%(T%))
                                                                  REM Cálculo de perdidas con Poiseuille
DIFE = (TN(1R\%(TRAMO\%(T\%), 1)) - TN(1R\%(TRAMO\%(T\%)))
                                                                 II- IDRES aCTSW - - 1 THEN
                                                                    IF AK% = 0 THEN
         2)))
DIFE = DIFE / (NUMTOTO + 1)
                                                                        HF# = 255.37 * K4 * QJ# * ABS(QJ#) RE#
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                                        FQJ# = FQJ# + HF#
                                                                    ND IF
  SUMA = NUMACCES(TRAMO%(T%))
            5 = 1
                                                                        HF1# = 255 37 * K4 * QJI# * ABS(QJI#) RE1#
  SUMA = SUMA / (12.103 • DIATOMAS (TRAMO%(T%)) \ 2)
                                                                        HF2# = 255 3" * K4 * QJ2# * ABS(QJ2#) RE2#
END IF
                                                                      SELECT CASE AK%
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                          CASE
 SUMA22 = NUMACCE2(TRAMO%(T%))
                                                                             FQJI# = FQJI# - HFI=
              • .5 + 1
                                                                             FQJ2# = FQJ2# + HF2#
 SUMA22 = SUMA22 / (12.103 * DIATOMA2 (TRAMO%(T%))
                                                                          CASEL
                                                                             FQJI# = FQJI# - HF1=
                                                                             FQJ2= = FQJ2= - HF2=
END IF
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                       END SELECT
 SUMA23 = NUMACCE3(TRAMO%(T%))
                                                                 END IF
              * .5 + 1
                                                                 REM Cálculo de pérdidas con la ecuación modificada de
 SUMA23 = SUMA23 / (12.103 • DIATOMA3 (TRAMO%(T%))
                                                                        Colebrook-White
                                                                 TE IDRE CEMI = I THEN
                                                                    SELECT CASE RE#
END IF
                                                                        CASE IS < (10 ^ 5)
S1 = 0: S2 = 0: S3 = 0
                                                                        G = 4.555: GT = .8764
FOR L = 1 TO NUMTOTO + 1
                                                                       CASE (10 15) TO (3 1 (10 16))
REM Identifica el número de tramo
                                                                        G = 6.732: GT = .9104
SELECT CASE AK%
                                                                        CASE IS > (3 ° (10 ° 6))
   CASE 0
   CT\% = CT\% + 1
                                                                        G = 8.982: GT = 93
                                                                    END SELECT
   CASE I
       IF AU% = 1 THEN
                                                                    IF AK% = 0 THEN
                                                                        K3# = K1 + G / (RE# ^ GT)
           CT% - CT% - I
                                                                        K3# = (.4342944# * LOG(K3#)) 2
HF# = K4 * QJ# * ABS(QJ#)/ K3#
           ELSE
           AU% = 1
                                                                        FOJ# = FOJ# + HF#
       END IF
END SELECT
                                                                    ENDIF
                                                                    K31# = K1 + G/(RE1# "GT)
REM Se obtiene el número de Revnolds
                                                                    K31# = (.4342944# " LOG(K3(#))) " 2
  REI# = REE# * ABS(QJI#)
                                                                    HF1# = K4 * QJ1# * ABS(QJ1#) / K31#
  RE2# = REE# \cdot ABS(QJ2#)
         IF AK% = 0 THEN
                                                                    K32# = K1 + G / (RE2# ^ GT)
                                                                    K32# = (.4342944# \cdot LOG(K32#))^2
            RE# = REE# \cdot ABS(QJ#)
                                                                    HF2# = K4 • QJ2# • ABS(QJ2#) / K32#
         ELSE
            RE# = (RE1# + RE2#) / 2
                                                                    SELECT CASE AK%
                                                                        CASE 0
         END IF
                                                                        FQJI# = FQJI# + HFI#
REM Identifica el tipo de flujo
1F 17% = 0 THEN
                                                                        FQJ2# = FQJ2# + HF2#
                                                                        CASE 1
    IF RE# < 2300 THEN
                                                                        FOJI# = FOJI# · HFI#
       1DR1%(C700) = -1
                                                                        FQJ2# = FQJ2# - HF2#
       ELSE
                                                                    END SELECT
       IDRA%(CTO) = 1
                                                                 END IF
    END IF
```

```
SUB TRAMOS (T%, AK%, AZ%, AP%, AU#, QJ#, QJI#, QJ2#.
                                                                END IF
FQJ#, FQJ1#, FQJ2#, TIPOTOMA%(), KOR(), AT%, IDRE%().
                                                                SELECT CASE IDRA%(CT%)
IDRA%(), CT%)
                                                                   CASE -1
NUMTOTO = NUMTOMAS(TRAMO%(T%)) +
                                                                       IF RE# < 3000 THEN
                                                                         IDRE%(CT%) = -1
              NUMTISDL(TRAMO%(T%)) +
              NUMTICDL(TRAMO%(T%))
                                                                         ELSE
REE# = 1273239.5# / D(TRAMO%(T%))
                                                                         IDRE\%(CT\%) = 1
RET# = 1273239.5# / DIATOMAS(TRAMO%(T%))
                                                                       END IF
KI = C(TRAMO\%(T\%)) / 3.71
                                                                   CASE 1
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                                       IF RE# >< 2300 THEN
                                                                         IDRE%(CT%) = !
K2 = RUGTOMAS(TRAMO%(T%)) / 3.71
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                         FL SE
K22 = RUGTOMA2(TRAMO%(T%))/3.71
                                                                         IDRE\%(CT\%) = -1
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                       END IF
                                                                END SELECT
K23 = RUGTOMA3(TRAMO%(T%)) / 3.71
K4 = K1(TRAMO\%(T\%)) / (NUMTOTO + 1)
NTT1 = NUMTOMAS(TRAMO%(T%))
                                                                REM Cálculo de pérdidas con Poiseuille
NTT2 = NTT1 + NUMTISDL(TRAMO%(T%))
                                                                IF IDR 1º JCT% = - LITTEN
                                                                   IF AK% = 0 THEN
DIFE = (TN(IR\%(TRAMO\%(T\%), 1)) - TN(IR\%(TRAMO\%(T\%)).
                                                                       HF# = 255.37 * K4 * QJ# * ABS(QJ#) / RE#
        2)))
DIFE = DIFE / (NUMTOTO + 1)
                                                                       FOJ# = FOJ# + HF#
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                                   END IF
 SUMA = NUMACCES(TRAMO%(T%))
                                                                       HF1# = 255.37 \cdot K4 \cdot QJ1# \cdot ABS(QJ1#) / RE1#
                                                                       HF2# = 255.37 * K4 * QJ2# * ABS(QJ2#) / RE2#
             . 5+1
                                                                     SELECT CASE AK%
  SUMA = SUMA / (12.103 \circ DIATOMAS (TRAMO%(T%)) ^2)
                                                                         CASE 0
END IF
                                                                             FOJJ# = FOJJ# - HFJ#
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                             FQJ2# = FQJ2# + HF2#
 SUMA22 = NUMACCE2(TRAMO%(T%))
              • .5 + 1
                                                                         CASE I
                                                                             FQJI# = FQJI# - HFI#
 SUMA22 = SUMA22 / (12.103 * DIATOMA2 (TRAMO%(T%))
                                                                             FQJ2# = FQJ2# - HF2#
               ^ 2)
                                                                       END SELECT
END IF
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                END IF
 SUMA23 = NUMACCE3(TRAMO%(T%))
                                                                REM Cálculo de pérdidas con la ecuación modificada de
                                                                       Colebrook-White
              . 5+1
 SUMA23 = SUMA23 / (12.103 * DIATOMA3 (TRAMO%(T%))
                                                                IFIDRA^{o}_{o}(CT\%) = IITIEN
                                                                   SELECT CASE RE#
                                                                       CASE IS < (10 ^ 5)
END IF
                                                                       G = 4.555: GT = .8764
S1 = 0: S2 = 0: S3 = 0
FOR L = 1 TO NUMTOTO + 1
                                                                        CASE (10 ^ 5) TO (3 * (10 ^ 6))
                                                                       G = 6.732: GT = .9104
REM Identifica el número de tramo
                                                                       CASE IS > (3 • (10 ^ 6))
SELECT CASE AK%
                                                                       G = 8.982: GT = .93
   CASE 0
                                                                   END SELECT
    CT% = CT% + 1
                                                                   IF AK% = 0 THEN
   CASE I
                                                                       K3# = K1 + G/(RE# ^GT)
       IF AU% = I THEN
                                                                       K3# = (.4342944# \cdot LOG(K3#)) \cdot 2
           CT% = CT% - 1
                                                                       HF# = K4 . QJ# . ABS(QJ#) / K3#
           ELSE
                                                                       FQJ# = FQJ# + HF#
           AU% = 1
                                                                    END IF
       END IF
                                                                    K31# = K1 + G/(RE1# ^GT)
END SELECT
                                                                    K31# = (.4342944# * LOG(K31#))^2
REM Se obtiene el número de Reynolds
                                                                    HF1# = K4 • QJ1# • ABS(QJ1#) / K31#
  REI# = REE# • ABS(OJI#)
  RE2# = REE# • ABS(QJ2#)
                                                                   K32# = K1 + G/(RE2# ^GT)
         IF AK% = 0 THEN
                                                                    K32# = (.4342944# \cdot LOG(K32#))^2
                                                                    HF2# = K4 • QJ2# • ABS(QJ2#) / K32#
            RE# = REE# • ABS(QJ#)
                                                                   SELECT CASE AK%
          ELSE
                                                                       CASE 0
            RE# = (RE1# + RE2#)/2
                                                                        FOJ1# = FOJ1# + HF1#
          END IF
                                                                        FQJ2# = FQJ2# + HF2#
REM Identifica el tipo de flujo
                                                                        CASE
IF AT% = 0 THEN
                                                                        FOJ1# = FOJ1# - HF1#
    IF RE# < 2300 THEN
                                                                       FQJ2# = FQJ2# - HF2#
       IDRA%(CT%) = -1
                                                                    END SELECT
        FLSE
                                                                END IF
        IDRA\%(CT\%) = I
    END IF
```

UNIÓN DE LAS ECUACIONES DE POISEUILLE Y DECOLEBROOK-WHITE POR MEDIO DE UNA RECTA

```
SUB TRAMOS (T%, AK%, AZ%, AP%, QJ#, QJJ#, QJ2#, FQJ#.
                                                                         END SELECT
FQJ1#, FQJ2#, TIPOTOMA%(), KOR(), AT%)
                                                                   END IF
NUMTOTO = NUMTOMAS(TRAMO%(T%)) +
                                                                   REM Cálculo de pérdidas empleando la unión de las ecuaciones
               NUMTISDI.(TRAMO%(T%)) +
                                                                          de C-Wy P
               NUMTIC DL(TRAMO%(T%))
                                                                   IF RE# > 2000 AND RE# < 4000 THEN
                                                                    IF IK% - 0 THEN
REE# = 1273239.5# / D(TRAMO%(T%))
                                                                      K3# = K1 + 000003/~4263~/~4
RET# =1273239.5# / DIATOMAS(TRAMO%(T%))
                                                                      K3# = 1 4342944# * LO(irK3≈11 3
K1 = C(TRAMO\%(T\%)) / 3.71
                                                                      K3# = 1 4342944# * LOG1 25 "K3#11
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
K2 = RUGTOMAS(TRAMO%(T%)) / 3.71
                                                                      B# = 45.3845393914 - 43.30103 * K3=11 - 30103.
                                                                      B# = 10 . B#
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
K22 = RUGTOMA2(TRAMO\%(T\%)) / 3.71
                                                                      C# = iK3# + 1.49485) / -30103
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                       K3# = B# . RE# '('#
                                                                      HF# = K3# * 3 99014"8# * K4 * O./# * 1BS, O.fa,
K23 = RUGTOMA3(TRAMO%(T%)) / 3.71
                                                                      FQJ# = FQJ# + //F#
K4 = KI(TRAMO\%(T\%)) / (NUMTOTO + 1)
NTT1 = NUMTOMAS(TRAMO%(T%))
                                                                     ENDIF
                                                                     K3/# = B# RE/# C#
NTT2 = NTT1 + NUMTISDL(TRAMO%(T%))
                                                                     11F1# = K31# * 3 99014*8# * K4 * Q/# * ABS(Q)#)
\mathsf{DIFE} = (\mathsf{TN}(\mathsf{IR\%}(\mathsf{TRAMO\%}(\mathsf{T\%}), 1)) - \mathsf{TN}(\mathsf{IR\%}(\mathsf{TRAMO\%}(\mathsf{T\%}).
         2)))
                                                                     K32# = B# RE2# '('#
DIFE = DIFE / (NUMTOTO + 1)
                                                                     //F2# = K32# * 3 990/4"8# * K4 * QJ# * 1BS(QJ#)
                                                                       SELECT CASE 18%
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
  SUMA = NUMACCES(TRAMO%(T%))
                                                                          CASEO
             • .5 + 1
                                                                          FOJI = FOJI = - 111-1=
                                                                          FO.124 = FO.12n - HI-2:
  SUMA = SUMA / (12.103 * DIATOMAS (TRAMO%(T%)) * 4)
END IF
                                                                          CASE
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                          1-QJ14 = FQJ1=-11F1=
                                                                          FOJ2# = FOJ2# - 111-2#
 SUMA22 = NUMACCE2(TRAMO%(T%))
                                                                      END SELECT
               • .5 + 1
 SUMA22 = SUMA22 / (12.103 * DIATOMA2 (TRAMO%(T%)) *
                                                                   END IF
                                                                   REM Cálculo de pérdidas con la ecuación modificada de
               4)
                                                                   Colebrook-White
END IF
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                   IF RE# >= 4000 / THEN
 SUMA23 = NUMACCE3(TRAMO%(T%))
                                                                      SELECT CASE RE#
                                                                          CASE IS < (10 ^ 5)
               . 5+1
                                                                          G = 4.555; GT = .8764
 SUMA23 = SUMA23 / (12.103 * DIATOMA3 (TRAMO%(T%)) *
                                                                          CASE (10 ^ 5) TO (3 * (10 ^ 6))
                                                                          G = 6.732: GT = .9104
END IF
                                                                          CASE IS > (3 \cdot (10^6))
S1 = 0: S2 = 0: S3 = 0
                                                                          G = 8.982: GT = .93
FOR L = 1 TO NUMTOTO + 1
                                                                       END SELECT
REM Se obtiene el número de Reynolds
                                                                       IF AK% = 0 THEN
  RE1# = REE# * ABS(QJI#)
  RE2# = REE# * ABS(OJ2#)
                                                                           K3# = K1 + G / (RE# ^ GT)
                                                                           K3# = (.4342944# * LOG(K3#)) ^ 2
         IF AK% = 0 THEN
                                                                          HF# = K4 * OJ# * ABS(OJ#) / K3#
            RE# = REE# * ABS(QJ#)
                                                                          FQJ# = FQJ# + HF#
          ELSE
                                                                       END IF
            RE# = (RE1# + RE2#)/2
                                                                       K31# = K1 + G/(RE1# ^ GT)
          END IF
                                                                       K31# = (4342944# * LOG(K31#))^2
REM Cálculo de perdidas con Poiseuille
                                                                       HF1# = K4 • QJ1# • ABS(QJ1#) / K31#
IF RE# <= 2000 THEN
                                                                      K32# = K1 + G/(RE2# ^ GT)
  IF AK% = 0 THEN
                                                                       K32# = (.4342944# * LOG(K32#))^2
    HF# = 255.37 • K4 • QJ# • ABS(QJ#) / RE#
                                                                       HF2# = K4 • QJ2# • ABS(QJ2#) / K32#
   FQJ# = FQJ# + HF#
                                                                      SELECT CASE AK%
  FND IF
                                                                           CASE 0
  HFI# = 255.37 \cdot K4 \cdot QJI# \cdot ABS(QJI#) / REI#
                                                                           FOJI# = FQJI# + HFI#
  HF2# = 255.37 • K4 • QJ2# • ABS(QJ2#) / RE2#
                                                                           FQJ2# = FQJ2# + HF2#
     SELECT CASE AK%
                                                                           CASE I
          CASE 0
                                                                           FQJI# = FQJI# - HFI#
              FOJI# = FOJI# + HFI#
                                                                          FQJ2# = FQJ2# \cdot HF2#
              FQJ2# = FQJ2# + HF2#
                                                                       END SELECT
           CASE I
                                                                   END IF
              FOJI# = FQJI# - HFI#
              FQJ2# = FQJ2# - HF2#
```

RE2# = REE# * ABS(QJ2#)

```
SUB TRAMOS (T%, AK%, AZ%, AP%, QJ#, QJ1#, QJ2#, FQJ#,
                                                                                                                                                              IF AK% = 0 THEN
FQJ1#, FQJ2#, TIPOTOMA%(), KOR(), AT%)
                                                                                                                                                                   RE# = REE# * ABS(QJ#)
                                                                                                                                                               ELSE
NUMTOTO = NUMTOMAS(TRAMO%(T%)) +
                                                                                                                                                                    REm = (RE1# + RE2#) \cdot 2
                                NUMTISDL(TRAMO%(T%)) +
                                                                                                                                                              END IF
                                NUMTICDL(TRAMO%(T%))
REE\# = 1273239.5\# / D(TRAMO\%(T\%))
RET# = 1273239.5# / DIATOMAS(TRAMO%(T%))
                                                                                                                                           REM Cálculo de pérdidas empleando la unión de las ecuaciones
KI = C(TRAMO\%(T\%)) / 3.71
                                                                                                                                                          de C-Wy P, utilizando el metodo propuesto por Chue.
                                                                                                                                           SELECTICASE RE#
                                                                                                                                                  CASEAS\sim (10.53)
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
K2 = RUGTOMAS(TRAMO\%(T\%)) / 3.71
                                                                                                                                                  G = 4.555 GT = 8.764
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                                  CASE (10 : 5) TO (3 * (10 : 6))
K22 = RUGTOMA2(TRAMO%(T%)) / 3.71
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                                  G = 6 32 GT - 9104
K23 - RUGTOMA3(TRAMO%(T%)) / 3.71
                                                                                                                                                  CASE IS > (3 * (10 ' 6))
K4 = K1(TRAMO\%(T\%)) / (NUMTOTO + 1)
NTT1 = NUMTOMAS(TRAMO%(T%))
                                                                                                                                                  G = 5.982 GT - 93
NTT2 = NTT1 + NUMTISDL(TRAMO%(T%))
                                                                                                                                           END SELECT
DIFE = (TN(IR\%(TRAMO\%(T\%), 1)) \cdot TN(IR\%(TRAMO\%(T\%), 1)) \cdot TN(IR\%(TRAMO\%(TRAM\%), 1)) \cdot TN(IR\%(TRAMO\%(TRAM\%), 1)) \cdot TN(IR\%(TRAM\%), 1) \cdot TN(IR\%(TRAM\%), 
                   2)))
                                                                                                                                              IF 1K% = 0 THEN
DIFE = DIFE / (NUMTOTO + 1)
                                                                                                                                                   1LPH.1# = 1 111 + EXP 1-(RE# - 3335 8744) 311 291 1811
                                                                                                                                                   DK3\pi = i(1 - 11.P11.1\pi) * (6.1 - RE\pi) = -11.P111\pi * -40.25
                                                                                                                                                                     0.4342944 * LOG ( DK1 = G | RF# GTap 2)
IF NUMTOMAS(TRAMO%(T%)) > 0 THEN
                                                                                                                                                   IIF# = DK3# * DK4 *QJ# *.1BS(QJ#)
    SUMA = NUMACCES(TRAMO%(T%))
                                                                                                                                                   1-0.1# = FQ.1# - 111 #
                           · 5 - 1
    SUMA = SUMA / (12.103 * DIATOMAS (TRAMO%(T%)) * 2)
                                                                                                                                           ENDIF
END IF
                                                                                                                                                   1LPHA[# = f | rf = EXP (=(RE) # = 3335 x744, 34f 29148).
                                                                                                                                                   K31# = 11 | - 1LP1L11#1 * (64 | RE1#1) = 1 (1LP1L11#, * .10) 25
IF NUMTISDL(TRAMO%(T%)) > 0 THEN
                                                                                                                                                                       0.4342944 * LOG - DK1 - (G - RE1# : GT)m 2/
  SUMA22 = NUMACCE2(TRAMO%(T%))
                                                                                                                                                   11F1# = K31# * DK4 *QJ1# *4BS(QJ1#)
                                * .5 + |
  SUMA22 = SUMA22 / (12.103 * DIATOMA2 (TRAMO%(T%)) `
                                                                                                                                                    4LPII.12# \sim I : (I = EXP) (-iRE2# + 3335.8744) : 341.29148))
                                2)
                                                                                                                                                   K32\# \times (CI + 4LPIL42\#) * (64 \times RE2\#) = CALPILA2\#, * ((0.25)
END IF
                                                                                                                                                                      +0.1342944 * LOG / DK1 = (G | RE2# * GTD)n | 2)
                                                                                                                                                   ///-2# - K32# * DK4 *Q/2# *4BSiQ/2#i
IF NUMTICDL(TRAMO%(T%)) > 0 THEN
  SUMA23 = NUMACCE3(TRAMO%(T%))
                                                                                                                                                   SELECT CASE AK%
                                . 4 - 1
  SUMA23 = SUMA23 / (12.103 * DIATOMA3 (TRAMO%(T%)) *
                                                                                                                                                          CASE 0
                                                                                                                                                          FQJ/\# = FQJ/\# = J/F/\#
                                2)
                                                                                                                                                           FOJ2# = FOJ2# = IJF2#
END IF
                                                                                                                                                          C 157. i
                                                                                                                                                          FQJ[# = FQJ[# - [[F]#
S1 = 0: S2 = 0: S3 = 0
                                                                                                                                                          FOJ2# = FOJ2# - 1/F2#
FOR L = 1 TO NUMTOTO + 1
                                                                                                                                                   END SELECT
REM Se obtiene el número de Reynolds
    RE1# = REE# * ABS(OJ1#)
                                                                                                                                           END IF
```

ANEXO D

RESULTADOS PARA DETERMINAR LA INFLUENCIA DEL FLUJO LAMINAR Y CRÍTICO EN REDES DE AGUA POTABLE

En el presente anexo se muestran los resultados obtenidos al modelar diferentes redes de tubos utilizando para ello la ecuación modificada de Colebrook-White, ecuación 3.1, y la ecuación propuesta, ecuación 3.17. Los resultados se obtuvieron al incluir estas ecuaciones en el programa de cómputo *MIRAP*.

D.1 RESULTADOS DEL EJEMPLO No. 1

Ejemplo No. 1 Red de agua potable integrada de una red primaria y ocho redes secundarias.

D.1.1. Resultados de las cuerdas de la red primaria :

CUERDAS DE LA RED PRIMARIA

CUERDA	NO	DO	GAST	O (l/s)*	GASTO	O (1/s)**	DIF. DE C	ASTO (I/s)
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
1	2	66	19.246	19.246	19.246	19.246	0.000	0.000
2	2	5	9.178	7.161	9.179	7.164	-0.001	-0.004
3	5	8	3.562	1.754	3.565	1.748	-0.002	0.007
4	2	16	10.068	9.429	10.067	9.430	0.002	-0.001
5	5	19	3.598	2.988	3.599	2.976	0.000	0.012
6	8	22	1.755	1.404	1.747	1.396	0.007	0.007
7	16	19	4.398	2.447	4.400	2,447	-0.002	0.000
8	19	22	2.485	0.055	2.478	0.048	0.007	0.006
9	16	30	5.031	4.598	5.029	4.595	0.001	0.002
10	19	33	2.950	2.220	2.943	2.209	0.007	0.011
11	22	36	1.459	1.074	1.447	1.061	0.013	0.013
12	30	33	2.227	0.076	2.229	0.077	-0.002	-0.001
13	33	36	0.631	1.522	0.633	1.520	-0.002	0.002
14	30	44	2.365	1.981	2.361	1.975	0.004	0.006
15	33	47	1.664	0.922	1.656	0.913	0.008	0.009
16	36	50	0.442	0.847	0.458	0.863	-0.016	-0.016
17	11	47	1.183	1.008	1.185	1.006	-0.002	0.002
18	47	50	0.028	2.400	0.030	2.403	-0.002	-0.002
19	44	58	0.798	0.426	0.790	0.416	0.008	0.010
20	47	61	0.063	0.793	0.067	0.797	-0.004	-0.004
21	50	64	3.242	3.677	3.263	3.701	-0.021	-0.024
22	58	61	0.433	1.348	0.429	1.355	0.004	-0.007
23	61	64	2.148	4.092	2.165	4.114	-0.017	-0.022
24	64	65	7.769	7.769	7.815	7.815	-0.046	-0.046

[•] Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 1 Resultados de las cuerdas de la red primaria, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.1.2.	Resultados	de los	tramos	de la	red	secun	daria	número	1:
				R	ED S	SECUN	DARIA	No.1	

TRAMO	NODO		GASTO (I/s)*		GAST	GASTO (/s)**		ASTO (I/s)
	1	2	NODO I	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
9	10	68	0.347	0.622	0.341	0.617	0.005	0.005
10	11	1	0.307	0.563	• 0.311	0.567	-0.004	-0.004
15	10	9	0.335	0.648	0.328	0.642	0.006	0.006
16	11	10	0.022	0.423	0.005	0.441	0.017	-0.018
17	П	12	0.114	0.180	0.097	0.197	0.017	-0.018
22	10	17	0.270	0.058	0.287	0.042	-0.017	0.016
23	Ш	18	0.158	0.102	0.147	0.114	0.011	-0.012

[·] Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 2 Resultados de los tramos de la red secundaria número 1, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.1.3. Resultados de los tramos de la red secundaria número 2:

RED SECUNDARIA No.2

TRAMO	NODO		GAST	GASTO (l/s)*		GASTO (l/s)**		ASTO (I/s)
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
12	13	69	0.098	0.373	0.098	0.373	0.000	0.000
13	14	7	0.131	0.386	0.131	0.387	0.000	0.000
18	13	12	0.118	0.430	0.119	0.432	-0.001	-0.001
19	14	13	0.221	0.224	0.222	0.223	-0.001	0.000
20	14	15	0.059	0.353	0.060	0.354	0.000	-0.001
25	13	20	0.014	0.341	0.013	0.340	0.002	0.001
26	14	21	0.033	0.293	0.029	0.290	0.003	0.003

^{*} Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 3 Resultados de los tramos de la red secundaria número 2, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.1.5. Resultados de los tramos de la red secundaria número 3:

RED SECUNDARIA No.3

TRAMO	NODO		GASTO (l/s)*		GASTO (l/s)**		DIF. DE GASTO (1/s	
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
36	25	18	0.100	0.374	0.101	0.377	-0.002	-0.002
35	24	17	0.221	0.477	0.222	0.479	-0.00 l	-0.001
41	24	23	0.124	0.436	0.124	0.437	0.000	-0.001
42	25	24	0.167	0.278	0.165	0.280	0.001	-0.002
43	25	26	0.058	0.352	0.059	0.354	-0.001	-0.002
48	24	31	0.065	0.262	0.064	0.263	0.001	-0.001
49	25	32	0.005	0.265	0.001	0.262	0.004	0.003

^{*} Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 4 Resultados de los tramos de la red secundaria número 3, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

^{**} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

^{**} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.1.6. Resultados de los tramos de la red secundaria número 4:

RED SECUNDARIA No.4

TRAMO	NODO		GASTO (I/s)*		GASTO (l/s)**		DIF. DE GASTO (1/s)	
	I	2	NODO 1	NODO 2	NODO I	NODO 2	NODO 1	NODO 2
38	27	20	0.076	0.351	0.078	0.353	-0.001	-0.002
39	28	21	0.127	0.382	0.126	0.382	0.001	0.000
44	27	26	0.069	0.381	0.071	0.384	-0.002	-0.002
45	27	28	0.170	0.274	0.173	0.273	-0.002	0.002
46	28	29	0.095	0.388	0.095	0.389	0.000	0.000
51	27	34	0.022	0.348	0.021	0.348	0.001	0.000
52	28	35	0.055	0.315	0.054	0.315	0.001	0.000

Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 5 Resultados de los tramos de la red secundaria número 4, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.1.7. Resultados de los tramos de la red secundaria número 5:

RED SECUNDARIA No.5

TRAMO	NODO		GASTO (l/s)*		GASTO (Vs)**		DIF. DE GASTO (1/s)	
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO I	NODO 2
61	38	31	0.070	0.344	0.071	0.346	-100.0-	-0.002
62	39	32	0.125	0.380	0.124	0.380	0.001	0.000
67	38	37	0.074	0.386	0.076	0.389	-0.002	-0.002
68	38	39	0.174	0.271	0.176	0.269	-0.003	0.002
69	39	40	0.088	0.381	0.088	0.382	0.000	0.000
74	38	45	0.027	0.353	0.026	0.354	0.000	-0.001
75	39	46	0.060	0.320	0.060	0.320	0.001	0.000

Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 6 Resultados de los tramos de la red secundaria número 5, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.1.8. Resultados de los tramos de la red secundaria número 6:

RED SECUNDARIA No.6

TRAMO	RAMO NODO		GASTO (I/s)*		GASTO (1/s)**		DIF. DE GASTO (1/s)	
	1	2	NODO I	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
64	41	34	0.059	0.333	0.059	0.334	0.000	-0.001
65	42	35	0.111	0.367	0.109	0.365	0.002	0.001
70	41	40	0.052	0.364	0.053	0.366	-0.001	-0.002
71	41	42	0.151	0.293	0.152	0.294	-0.001	0.000
72	42	43	0.115	0.408	0.115	0.409	0.000	-0.001
77	41	48	0.037	0.364	0.037	0.364	0.000	-0.001
78	42	49	0.069	0.330	0.070	0.331	-0.001	-0.002

Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 7 Resultados de los tramos de la red secundaria número 6, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

^{**} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.1.9. Resultados de los tramos de la red secundaria número 7:

RED SECUNDARIA No.7

TRAMO	NODO		GASTO (l/s)*		GASTO (1/s)**		DIF. DE GASTO (I/s)	
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
81	52	45	0.046	0.320	0.047	0.322	-0.001	-0.001
82	53	46	0.105	0.360	0.102	0.358	0.002	0.002
93	52	51	0.062	0.374	0.064	0.376	-0.001	-0.002
94	52	53	0.164	0.281	0.166	0.279	-0.002	100.0
95	53	54	0.097	0.391	0.097	0.391	0.000	-0.001
100	52	59	0.052	0.379	0.052	0.379	0.000	-0.001
101	53	60	0.081	0.341	0.081	0.342	-0.001	-0.001

Cuadro D. 8 Resultados de los tramos de la red secundaria número 7, obtenidos en los nodos I y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.1.10. Resultados de los tramos de la red secundaria número 8:

RED SECUNDARIA No.8

TRAMO	NODO		GASTO (l/s)*		GASTO (I/s)**		DIF. DE GASTO (l/s)	
	1	2	NODO I	NODO 2	NODO I	NODO 2	NODO 1	NODO 2
84	55	48	0.017	0.291	0.017	0.292	0.000	0.000
85	56	49	0.051	0.307	0.048	0.305	0.003	0.002
96	55	54	0.029	0.341	0.028	0.341	0.000	0.000
97	55	56	0.113	0.331	0.114	0.332	-0.001	0.000
98	56	57	0.148	0.442	0.151	0.445	-0.002	-0.003
103	55	62	0.069	0.396	0.069	0.396	0.000	-0.001
104	56	63	0.129	0.389	0.132	0.392	-0.002	-0.003

[•] Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 9 Resultados de los tramos de la red secundaria número 8, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

Gasto obtenido de una modelación utilizando la ecuación propuesta.
 Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.2 RESULTADOS DEL EJEMPLO No. 2.

Ejemplo No. 2 Red de agua potable integrada únicamente de la red primaria.

D.2.1. Resultados de las cuerdas de la red primaria:

CUERDAS DE LA RED PRIMARIA

CUERDA	NO	DO	GAST	O (l/s)*	GASTO) (l/s)**	DIF. DE G	ASTO (l/s)
		2	NODO I	NODO 2	NODO I	NODO 2	NODO I	NODO 2
1	3	1	19.200	19.200	19.237	19.237	-0.037	-0.037
2	3	4	8.290	8.290	8.289	8.290	0.001	0.000
3	4	5	2.830	2.830	2.828	2.828	0.002	0.002
1	3	6	10.100	10.100	10.097	10.098	0.003	0.002
5	4	7	3.760	3.760	3.763	3.764	-0.003	-0.004
6	5	8	1.980	1.980	1.979	1.979	0.001	0.001
7	6	7	3.490	3,490	3.485	3.485	0.005	0.005
8	7	8	1.290	1.290	1.286	1.286	0.004	0.004
9	6	9	4.910	4.910	4.914	4.914	-0.004	-0.004
10	7	10	2.570	2.570	2.571	2.571	-0.001	-0.001
11	8	11	1.570	1.570	1.565	1.566	0.005	0.004
12	9	10	1.240	1.240	1.244	1.244	-0.004	-0.004
13	10	11	0.639	0.639	0.639	0.638	0.000	0.001
14	9	12	1.970	1.970	1.971	1.971	-0.001	-0.001
15	10	13	1.060	1.060	1.062	1.062	-0.002	-0.002
16	11	14	0.772	0.772	0.772	0.772	0.000	0.000
17	12	13	0.120	0.119	0.119	0.120	0.001	-0.001
18	13	14	1.330	1.330	1.325	1.325	0.005	0.005
19	12	15	0.153	0.153	0.151	0.151	0.002	0.002
20	13	16	0.885	0.885	0.884	0.884	0.001	0.001
21	14	17	3.800	3.800	3.797	3.796	0.003	0.004
22	15	16	0.696	0.696	0.698	0.697	-0.002	-0.001
23	16	17	3.280	3.280	3.280	3.280	0.000	0.000
24	17	18	7.930	7.930	7.926	7.926	0.004	0.004

[·] Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D. 10 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

[•] Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.3 RESULTADOS DEL EJEMPLO No. 3

Ejemplo No. 3 Red de agua potable con tomas domiciliarias, con extremos alejados a los puntos donde ingresa el agua.

D.3.1. Resultados de las cuerdas de la red primaria:

CUERDAS DE LA RED PRIMARIA

CUERDA	NODO		GASTO (Vs)*		GASTO (1/s)**		DIF. DE GASTO (l/s)	
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
I	2	ı	1.740	1.740	1.739	1.739	0.001	0.001
2	3	2	0.748	1.738	0.748	1.739	0.000	-0.002
3	4	3	0.748	0.748	0.748	0.748	0.000	0.000
4	5	4	0.002	0.749	0.002	0.749	0.000	0.000
Gasto obten	ido de una	modelació	n utilizando	la ecuación p	ropuesta.	-	_	
· Gasto obte	nido de un	a modelac	ión utilizando	la ecuación	de Colebrook	-White		

Cuadro D. 11 Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.4 RESULTADOS DEL EJEMPLO No. 4

Ejemplo No. 4 Red de agua potable sin tomas domiciliarias, con extremos alejados a los puntos donde ingresa el agua.

D.4.1. Resultados de las cuerdas de la red primaria:

•• Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

CUERDAS DE LA RED PRIMARIA

CUERDA	NODO		GASTO (l/s)*		GASTO (l/s)**		DIF. DE GASTO (Vs)	
	1	2	NODO 1	NODO 2	NODO I	NODO 2	NODO 1	NODO 2
1	2	1	1.740	1.740	1.739	1.739	0.001	0.001
2	3	2	1.310	1.310	1.305	1.305	0.005	0.005
3	4	3	0.870	0.870	0.870	0.870	0.000	0.000
4	5	4	0.435	0.435	0.435	0.435	0.000	0.000

Cuadro D. Resultados de las cuerdas de la red primaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.5 RESULTADOS DEL EJEMPLO No. 5

Ejemplo No. 5 Red de tubos con una sola cuerda en la red primaria, sin nodo principal y con redes secundarias.

D.1.5. Resultados de la cuerda de la red primaria y de los tramos de la red secundaria:

CUERDA DE LA RED PRIMARIA

CUERDA	NODO		GASTO (l/s)*		GASTO (l/s)**		DIF. DE GASTO (1/s)	
	i	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
l	1 _	5	6.880	6.180	6.883	6.171	-0.003	0.009
 Gasto obten 	ido de una	modelacio	on utilizando	la ecuación p	ropuesta.			
** Gasto obte	nido de un	a modelac	ión utilizando	la ecuación	de Colebrook	-White		

TRAMOS DE LA RED SECUNDARIA

TRAMO	NODO		GASTO (l/s)*		GASTO (l/s)**		DIF. DE GASTO (1/s)	
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
4	4	3	1.500	1.930	1.492	1.931	0.008	-0.001
6	6	2	0.044	0.228	0.041	0.235	0.003	-0.007

Gasto obtenido de una modelación utilizando la ecuación propuesta.

** Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

Cuadro D. 13 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos 1 y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

D.6 RESULTADOS DEL EJEMPLO No. 6

Ejemplo No. 6 Red de tubos con una sola cuerda en la red primaria, sin nodo principal y con una red secundaria desconectada.

D.6.1. Resultados de la cuerda de la red primaria y de los tramos de la red secundaria:

CUERDA DE LA RED PRIMARIA

			CUL	NDA DE LA	KED I KIN			
CUERDA	NODO		GASTO (l/s)*		GASTO (1/s)**		DIF. DE GASTO (l/s)	
	1	2	NODO I	NODO 2	NODO 1	NODO 2	NODO I	NODO 2
1	1	5	6.770	6.050	6.773	6.039	-0.003	0.011
 Gasto obten 	ido de una	modelacio	ón utilizando	la ecuación p	ropuesta.			
** Gasto obter	nido de un	a modelac	ión utilizando	la ecuación	de Colebrook	-White		

TRAMOS DE LA RED SECUNDARIA

TRAMO	NO	NODO		GASTO (1/s)*		GASTO (Vs)**		ASTO (I/s)
	1	2	NODO I	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
4	6	4	0.000	0.449	0.000	0.455	0.000	-0.006
5	7	3	0.000	0.275	0.000	0.279	0.000	-0.004
* Gasto obten	ido de una	modelacio	n utilizando	la ecuación p	ropuesta.			

Cuadro D. 14 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

[•] Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.7 RESULTADOS DEL EJEMPLO No. 7

Ejemplo No. 7 Red en donde existe un tanque hidroneumático o una descarga libre con dos tipos de frontera diferentes.

D.7.1. Resultados de la cuerda de la red primaria y de los tramos de la red secundaria:

CUERDA DE LA RED PRIMARIA

CUERDA	NODO		GASTO (I/s)*		GASTO (l/s)**		DIF. DE GASTO (I/s)	
	1 🗆	2	NODO 1	NODO 2	NODO I	NODO 2	NODO I	NODO 2
1	5	1	8.330	9.070	8.312	9.063	0.018	0.007
 Gasto obteni Gasto obteri 				TO 3 TO 2 TO 3 TO 3 TO 3 TO 3 TO 3 TO 3		-White		

TRAMOS DE LA RED SECUNDARIA

TRAMO	NO	NODO		GASTO (I/s)*) (l/s)**	DIF. DE GASTO (l/s)			
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2		
4	4	3	2.067	2.519	2.061	2.925	0.006	-0.406		
6	6	2	0.001	0.288	0.001	0.292	0.000	-0.004		
* Gasto obten	Gasto obtenido de una modelación utilizando la ecuación propuesta.									

Cuadro D. 15 Resultados de la cuerda de la red primaria y en los tramos de la red secundaria, obtenidos en los nodos l y 2 al modelar la red utilizando la ecuación de Colebrook-White y la ecuación propuesta.

^{**} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.8 RESULTADOS DEL EJEMPLO No. 8

Ejemplo No. 8 Red de agua potable de tamaño mediano con 100 redes.

D.8.1. Energías obtenidas en los nodos de la red primaria número 1:

RED	PRI	IMA	RIA	No.1

NODO	ENERGIA	ENERGIA	DIF.
	-1-	- 2 -	ENERG.
	(m)	(m)	(2 - 1)
2	105.919	106.673	0.754
3	104.890	106.355	1.465
4	103.908	106.044	2.136
5	106.122	106.735	0.613
6	105.180	106.392	1.212
7	104.328	106,106	l.778
8	103.559	105.868	2.309
9	105.288	106.476	1.188
10	104.503	106.150	1.647
11	103.817	105.898	2.081
12	103.214	105.700	2.487
13	104.492	106.224	1.732
14	103.886	105.944	2.058
15	103.341	105.714	2.373
16	103.871	105.539	1.668
17	103.730	105.978	2.248
18	103.331	105.773	2.443
19	102.929	105.574	2.645
20	102.536	105.387	2.851

⁻¹⁻ Obtenida utilizando la ecuación propuesta.

-2- Obtenida utilizando la ecuación de Colebrook-White

Cuadro D.16. Comparación de energías en los nodos de la red primaria número 1

D.8.2. Energias obtenidas en los nodos de la red primaria número 25:

-2- Obtenida utilizando la ecuación de Colebrook-White

D.8.3. Energías obtenidas en los nodos de la red primaria número 100:

-2- Obtenida utilizando la ecuación de Colebrook-White

	RED PRI	MARIA No.25		•	RED PRI	MARIA No.100	
NODO	ENERĞIA - 1 - (m)	ENERGIA - 2 - (m)	DIF, ENERG. (2 - 1)	NODO	ENERGIA - 1 - (m)	ENERGIA - 2 - (m)	DIF. ENERG (2 - 1)
322	98.885	103.399	4.514	1257	98.409	103.147	4.738
323	98.845	103.374	4.529	1258	98.410	103.151	4,741
324	98.809	103.353	4.544	1259	98.413	103.158	4.745
325	98.815	103.347	4.532	1260	98.403	103.139	4.736
326	98.780	103.326	4.546	1261	98.404	103.142	4.738
327	98.762	103.322	4.560	1262	98.412	103.158	4.746
328	98.763	103.314	4.551	1263	98.403	103.139	4.736
329	98.762	103.296	4.534	1264	98.403	103.142	4.739
330	98.719	103.296	4.577	1265	98.412	103.158	4.746
331	98.723	103.293	4.570	1266	98.404	103.413	5.009
332	98.693	103.274	4.581	1267	98.404	103.144	4.740
333	98.682	103.273	4.591	1268	98.412	103.158	4.746
334	98.699	103.269	4.570	1269	98.412	103.158	4.746
335	98.672	103.254	4.582	1270	98.412	103.158	4.746
336	98.648	103.883	5.235	1271	98.412	103.158	4.746

Cuadro D.17. Energias en los nodos de la red Cuadro D.18. Energias en los nodos de la red primaria número 25. primaria número 100.

D.8.4. Gastos obtenidos en las cuerdas de la red primaria número 1:

CUERDAS DE LA RED PRIMARIA No.1 CUERDA NODO GASTO (I/s)** DIF. DE GASTO (1/s) GASTO (I/s)* NODO I NODO 2 NODO I NODO 2 NODO I NODO 2 -22.217 -19.397 142.725 164.942 150.128 169.525 140.450 164.124 170.822 -23.674 -19.537 17 151.285 2 -1 3 4 20 28.930 28.319 19.961 18.422 8.969 9.897 9.110 17 27.585 27.368 19.204 18.258 8.381 Gasto obtenido de una modelación utilizando la ecuación propuesta.

** Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White Cuadro D.19. Comparación de gastos obtenidos en las cuerdas de la red primaria número 1.

D.8.5. Gastos obtenidos en las cuerdas de la red primaria número 25:

CUERDAS DE LA RED PRIMARIA No.25

CUERDA	NODO		GASTO (I/s)*		GASTO (1/s)**		DIF. DE GASTO (1/s)	
[1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
51	221	273	10.715	9.172	8.160	6.559	2.555	2.613
58	221	324	8.039	7.480	6.220	5.494	1.819	1.986
59	324	336	9.663	8.013	7.631	5.819	2.032	2.194
60	273	336	6.568	5.833	5.449	4.516	1 119	1.317

Cuadro D.20. Comparación de gastos obtenidos en las cuerdas de la red primaria número 25.

D.8.6. Gastos obtenidos en las cuerdas de la red primaria número 100:

CUERDAS DE LA RED PRIMARIA No.100

CUERDA	NODO		GASTO (l/s)*		GASTO (I/s)**		DIF. DE GASTO (I/s)	
	1	2	NODO 1	NODO 2	NODO I	NODO 2	NODO 1	NODO 2
198	1036	1148	1.289	1.545	1.216	3.007	0.073	-1.462
218	1036	1259	5.439	1.599	1.673	2.876	3.766	-1.277
219	1259	1271	2.046	1.002	3.698	1.370	-1.652	-0.368
220	1148	1271	3.994	1.002	0.581	1.370	3.413	-0.368

[•] Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White Cuadro D.21. Comparación de gastos obtenidos en las cuerdas de la red primaria número 100.

D.8.7. Gastos obtenidos en los tramos de la red primaria número 1:

RED PRIMARIA No.1

TRAMO	NODO		GASTO (l/s)*		GASTO (l/s)**		DIF. DE GASTO (1/s)	
		2	NODO I	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
5	6	2	3.891	3.980	2.266	2.356	1.626	1.624
6	7	3	3.264	3.558	2.023	2.329	1.241	1.229
8	6	5	3.888	4.041	2.185	2.342	1.703	1.700
9	6	7	3.916	3.722	2.213	2.012	1.703	1.710
10	7	8	3.689	3.423	1.997	1.718	1.692	1.705
12	6	10	3.867	3.639	2.237	2.001	1.630	1.638
13	7	11	3.300	3.151	2.038	1.882	1.262	1.269
15	10	9	3.502	3.722	2.108	2.336	1.394	1.387
16	10	11	3.429	3.284	2.009	1.857	1.420	1.427
17	11	12	3.216	3.007	1.788	1.566	1.429	1.440
19	10	14	3.715	3.515	2.100	1.891	1.615	1.624
20	11	15	3.219	2.968	1.952	1.687	1.267	1.281
22	14	13	3.006	3.247	1.907	2.159	1.099	1.089
23	14	15	3.048	2.843	1.926	1.709	1.122	1.133
24	15	16	2.874	2.577	1.738	1.422	1.135	1.154
26	14	18	3.476	3.314	1.872	1.703	1.603	1.611
27	15	19	2.937	2.794	1.658	1.507	1.279	1.287

Gasto obtenido de una modelación utilizando la ecuación propuesta.

• Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

Cuadro D.22. Comparación de gastos en los tramos de la red primaria número 1

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D.8.8. Gastos obtenidos en los tramos de la red primaria número 25:

RED	DD:	IMA	DIA	No	75
RE.IJ	r ĸ	LVIA	KIA	140	. 4.7

TRAMO	NO	DO	GAST	O (l/s)*	GAST	O (1/s)**	DIF. DE C	GASTO (I/s)
	1	2	NODO 1	NODO 2		NODO 2	NODO 1	NODO 2
612	325	322	1.008	1.080	0.806	0.887	-0.806	-0.887
613	326	323	0.895	0.134	0.689	0.963	-0.689	-0.963
615	325	264	0.729	0.850	0.586	0.724	-0.586	-0.724
616	325	326	0.745	0.590	0.597	0.419	0.597	0.419
617	326	327	0.563	0.346	0.374	0.126	0.374	0.126
618	325	328	0.992	0.809	0.787	0.578	0.787	0.578
619	326	329	0.921	0.801	0.725	0.586	0.725	0.586
621	328	267	0.717	0.892	0.587	0.787	-0.587	-0.787
622	328	329	0.642	0.524	0.497	0.362	0.497	0.362
623	329	330	0.466	0.294	0.282	0.085	0.282	0.085
624	328	331	0.884	0.723	0 663	0.477	0.663	0.477
625	329	332	0.860	0.654	0.656	0.420	0.656	0.420
62~	331	270	0.627	0.822	0.501	0.724	-0.501	-0.724
628	331	332	0.650	0.482	0.528	0.335	0.528	0.335
629	332	333	0.494	0.249	0.350	0.068	0.350	0.068
630	331	334	0.700	0.569	0.448	0.297	0.448	0.297
631	332	335	0.638	0.521	0.406	0.271	0.406	0.271

Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D.23. Comparación de gastos en los tramos de la red primaria número 25.

D.8.9. Gastos obtenidos en los tramos de la red primaria número 100:

RED PRIMARIA No.100

TRAMO	NO	DO	GAST	O (l/s)*	GAST) (l/s)**	DIF. DE G	ASTO (I/s)
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
2447	1260	1257	0.160	0.235	0.134	0.220	-0.134	-0.220
2448	1261	1258	0.093	0.346	0.072	0.359	-0.072	-0.359
2450	1260	1139	0.095	0.224	0.021	0.167	-0.021	-0.167
2451	1260	1261	0.081	0.078	0.017	0.205	-0.017	-0.205
2452	1261	1262	0.124	0.355	0.198	0.460	-0.198	-0.460
2453	1260	1263	0.162	0.033	0.051	0.170	0.051	-0.170
2454	1261	1264	0.135	0.006	0.098	0.049	0.098	-0.049
2456	1263	1142	0.084	0.271	0.048	0.261	-0.048	-0.261
2457	1263	1264	0.030	0.096	-0.042	0.185	-0.042	-0.185
2458	1264	1265	0.165	0.349	0.232	0.441	-0.232	-0.441
2459	1263	1266	0.004	0.169	0.038	0.234	-0.038	-0.234
2460	1264	1267	0.022	0.198	0.031	0.281	-0.031	-0.281
2462	1266	1145	0.060	0.269	0.042	0.279	-0.042	-0.279
2463	1266	1267	0.061	0.119	0.002	0.207	-0.002	-0.207
2464	1267	1268	0.086	0.348	0.118	0.417	-0.118	-0.417
2465	1266	1269	0.158	0.299	0.246	0.405	-0.246	-0.405
2466	1267	1270	0.179	0.305	0.200	0.379	-0.200	-0.379

[·] Gasto obtenido de una modelación utilizando la ecuación propuesta.

Cuadro D.24. Comparación de gastos en los tramos de la red primaria numero 100.

^{**} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

^{••} Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

D. 9 RESULTADOS DE LA MODELACIÓN DE LA RED DE AGUA POTABLE DEL FRACCIONAMIENTO "EL PARAJE", EN JIUTEPEC, MORELOS.

D.9.1. Gastos obtenidos en la red primaria.

CUERDAS DE LA RED PRIMARIA

CUERDA	NODO		GASTO (1/s)*		GASTO (1/s)**		DIF. DE GASTO (1/s)	
		2	NODO 1	NODO 2	NODO I	NODO 2	NODO I	NODO 2
1	11	1	9.509	11 581	9.723	11.847	-0.214	-0.266
2	П	87	1.223	1.223	1.289	0.289	-0.066	1) 934
3	20	11	5.428	8 287	5.486	8.435	-0 058	-0.148
4	22	20	3.541	3.561	3.169	3.190	0 372	0.371
5	23	22	3.177	3.541	2.671	3 169	0.506	0.372
6	45	23	0.748	1.009	0.523	0.801	0.225	0.208
7	23	20	2.168	1.867	1.870	2 296	0.298	-0 429
8	87	91	0.607	0.484	0.627	0 499	-0.020	-0.015
y	97	91	0.639	0.201	0.527	0.362	0.112	-0.161
10	97	87	0.498	0.616	0.539	0.661	-0.041	-0.045
11	97	91	0.141	0.283	0.004	0 144	0.137	0.139
. 12	42	22	0.000	0.000	0.000	0 000	0.000	0.000

Gasto obtenido de una modelación utilizando la ecuación propuesta.

Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White
 Cuadro D.25. Comparación de gastos en las cuerdas de la red primaria del fraccionamiento El Puraje.

D.9.2. Gastos obtenidos en la red secundaria número seis.

RED SECUNDARIA No.6	RED	SECU	NDAR	IA	No.6
---------------------	-----	------	------	----	------

TRAMO	NO.	DO	GAST	O (I/s)*	GAST	O (l/s)**	DIF, DE	GASTO (I/s)
	1	2	NODO 1	NODO 2	NODO 1	NODO 2	NODO 1	NODO 2
24	35	36	0.253	0.249	0.470	0.466	-0.217	-0.217
25	37	36	0.185	0.008	0.201	0.011	-0 016	-0.003
26	38	37	0.446	0.369	0.559	0.477	-0.113	-0.108
27	39	38	0.685	0.518	0.698	0.522	-0.013	-0.004
28	85	39	0.220	0.040	0.350	0.161	-0.130	-0.121
29	39	40	0.652	0.801	0.537	0.694	0.115	0.107
83	165	113	0.024	0.072	0.087	0.036	-0.063	0.036
84	115	116	0 209	0.059	0.217	0.028	-0.008	0.031
85	117	116	0.199	0.114	0.160	0.072	0 039	0.042
86	116	118	0.173	0.078	0.099	0.000	0.074	0.078
87	118	37	0.133	0.184	•0.221	0.276	0.354	-0 092
88	119	118	0.000	0.211	0.000	0.222	0.000	-0.011
89	120	121	0.252	0.134	0.235	0.112	0.017	0.022
90	122	121	0.243	0.137	0.197	0.086	0.046	0.051
91	121	123	0.271	0.258	0.198	0.184	0.073	0.074
92	197	123	0.200	0.272	0.416	0.088	-0 216	0.184
93	123	125	0.019	0.190	0 094	0.086	-0 075	0.104
94	126	125	0.228	0.151	0.161	0.081	0.067	0.070
95	128	127	0.035	0.242	0.005	0.222	0.030	0.020
96	125	128	0.034	0.034	0.003	0.003	0 031	0.031
131	167	165	0.266	0.266	0.395	0.395	-0 129	-0.129
132	196	165	0.213	0.290	0.266	0.308	-0.053	-0.018
163	114	196	0.000	0.213	0.001	0.225	-0.001	-0 012
164	124	197	0.257	0.200	0.477	0.416	-0.220	-0.216

• Gasto obtenido de una modelación utilizando la ecuación propuesta.
• Gasto obtenido de una modelación utilizando la ecuación de Colebrook-White

Cuadro D.26 Comparación de gastos en los tramos de la red secundaria número 6 de El Paraje.