01162

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

DIVISIÓN DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA

Influencia de la modelación de la precipitación en el proceso lluvia-escurrimiento

JOSÉ ANTONIO LUNA VERA

TESIS

Presentada a la

División de Estudios de Posgrado de la Facultad de Ingeniería de la

Universidad Nacional Autónoma de México como requisito para obtener el grado de

MAESTRO EN INGENIERÍA HIDRÁULICA

Dirigida por: Dr. Carlos A. Escalante Sandoval

Ciudad Universitaria

México, D.F.

junio de 1997

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA

A DIOS, por su grandeza y el amor que vierte en nosotros al darnos vida...

Con el amor de siempre, a Mis Lindos Viejitos

Don Antonio Luna Villarroel y Doña Arminda Vera C. de Luna, en su cuarenta aniversario...

A KHARUSITA Y TOÑO, mil gracias por todo que han hecho por mi y, que DIOS los bendiga.

A Mis Hermanas: Elvira y Zulema,

con amor y admiración,

gracias por su cariño y apoyo

de todos estos años.

A mi familia: Con especial cariño, a todos mis tíos y tías, primos y primas, amigos de mi la familia, por su apoyo y comprensión, los amo y deseo lo mejor para todos uds.

A mis amigas y amigos...

DEDICATORIA

A DIOS, por su grandeza y el amor que vierte en nosotros al darnos vida...

Con el amor de siempre, a Mis Lindos Viejitos

Don Antonio Luna Villarroel y Doña Arminda Vera C. de Luna, en su cuarenta aniversario...

A KHARUSITA Y TOÑO, mil gracias por todo que han hecho por mi y, que DIOS los bendiga.

A Mis Hermanas: Elvira y Zulema,

con amor y admiración,

gracias por su cariño y apoyo

de todos estos años.

A mi familia: Con especial cariño, a todos mis tíos y tías, primos y primas, amigos de mi la familia, por su apoyo y comprensión, los amo y deseo lo mejor para todos uds.

A mis amigas y amigos...

Agradecimientos

Mi más sincero agradecimiento, sin lugar a duda, a los señores: Dr. Oscar A Fuentes Mariles, Dr. Ramón Domínguez y M. en 1. Victor Franco; por el apoyo que me otorgaron en la culminación de mis estudios al haberme admitido en el Plan de Becas del Instituto de Ingeniería. A ellos y a las personas de la institución, mil gracias.

Al Dr. Carlos A Escalante Sandoval por la dirección tan acertada de esta tesis, sus enseñanzas, y la hospitalidad que me brindó en la DEPFI, gracias por todo...; amigo !.

A los sinodales: Dr. Ramón Domínguez Mora, Dr. Jesús Gracia Sánchez, Dr. Oscar A Fuentes Mariles, Dr. Rolando Springall y Dr. Carlos A Escalante Sandoval, un agradecimiento muy especial por sus apreciables observaciones.

A Los Amigos: compañeros y personal de la Coordinación de Hidráulica de quienes siempre recibí su apoyo entusiasmado, a todo el personal del Instituto de Ingeniería, de la División de Estudios de Posgrado de la Facultad de Ingeniería; los camaradas del Instituto: Lalo, Eliseo, Rafael, Israel, Pascual, Toño, Raymundo, Polo, Armando, Abel, Héctor. A mis cuatas de la Coordinación de Ambiental y Bioprocesos, Lucila y Adriana, amigas inseparables; especialmente con cariño, a Doña Jero y a toda la familia Mendoza Sánchez, mil gracias por su amistad. A mis compañeros y profesores del Colegio Don Bosco, La Paz, Bolivia (Azul-Oro de corazón). A los cuates, profesores y técnicos de la carrera de Ingeniería Civíl de la Universidad Autónoma Metropolitana-Azcapotzalco, D.F., México: Ings. Darío E. Guaycohea G., Dante Alcántara, Rafael Nieva, Abel Gutiérrez, Ruben Véliz; a los Técnicos Barry, Chava, Toño y Polo..., a todos los amigos y amigas ¡ gracias...!, por su fraternidad y los momentos inolvidables, principalmente, por haber forjado una amistad para siempre.

Con mucha estima a la Nación Mexicana, por haberme cobijado en los más de diéz años, nunca te olvidaré "Mi México".

ÍNDICE

CAI	CAPÍTULO		PÁGINA	
	RESU	UMEN		1
	INTE	RODUCCI	IÓN	2
1			E ANÁLISIS DE LAS CURVAS I-d-T	6
			ICAS DE ANÁLISIS	8
	1.2		ISIS DE FRECUENCIA	10
			Parámetros estadísticos	11
			Distribuciones de probabilidad univariada	13
			Distribuciones de probabilidad bivariada	16
	1.3		IULAS EMPÍRICAS	23
			Fórmulas de Bell	23
			Fórmula de Chen	25
			Fórmula de Kothyari y Garde	31
	1.4	METO	DOO DE CORRELACIÓN LINEAL MÚLTIPLE	32
2		_	E INTERPOLACIÓN DE LLUVIAS	34
	2.1		DDO DE THIESSEN	36
	2.2		DO DE INTERPOLACIÓN POLINOMIAL	37
			Aproximación por mínimos cuadrados	37
			Aproximación de Lagrange	42
			DO DE INTERPOLACIÓN INVERSA	43
			DO DE INTERPOLACIÓN MULTICUADRÁTICA	44
	2.5		DO DE INTERPOLACIÓN ÓPTIMA	46
			AACIÓN DE LA FUNCIÓN DE CORRELACIÓN ESPACIAL	50
	2.6		DO DE INTERPOLACIÓN KRIGING	52
			kriging ordinario y restringido	53
			kriging universal	56
			ACIÓN DEL VARIOGRAMA	59
	EJE	MPLO DE	E APLICACIÓN DE LAS TÉCNICAS DE INTERPOLACIÓN	61
3			LUVIA-ESCURRIMIENTO	75
	3.1 N		S EMPÍRICOS	76
			Método de Creager	76
			Método de Lowry	76
		3.1.3	Método empírico del U.S. Soil Conservation Service	77
		3.1.4	Método Racional	77
	3.2		DOS HIDROLÓGICOS	79
			Método del hidrograma unitario (HU)	80
			Método de la curva S	81
			Método del hidrograma unitario instantáneo (HUI)	82
			Método discreto para la determinación del HUI	83
		3.2.5	Hidrogramas Unitarios Sintéticos	85
			3.2.5.1 Hidrograma Unitario Triangular	85
		_	3.2.5.2 Hidrograma Adimensional del SCS	85
	3.3	MÉTO	DOS HIDRÁULICOS	86

4	CAR	ACTERÍSTICAS DE LA CUENCA DEL RÍO PAPALOAPAN	87	
	4.1	CARACTERÍSTICAS TOPOGRÁFICAS	87	
	4.2	CARACTERÍSTICAS CLIMATOLÓGICAS	88	
	4.3	CARACTERÍSTICAS HIDROLÓGICAS	88	
	4.4	ANÁLISIS DE DATOS	91	
		4.4.1 Deducción de datos faltantes	91	
		4.4.2 Regionalización de lluvias	93	
		4.4.3 Análisis de curvas 1-d-T	103	
		4.4.3.1 Parámetros obtenidos por análisis de frecuencia	103	
		4.4.3.2 Parámetros obtenidos para fórmulas empíricas	105	
		4.4.3.3 Parámetros del método de correlación múltiple	109	
		4.4.4 Aplicación de las técnicas de interpolación	111	
5	MOL	DELO PROPUESTO	112	
	i)	RECOPILACIÓN DE DATOS	112	
	ii)	REGIONALIZACIÓN DE LA CUENCA	113	
	iii)		114	
	iv)	CÁLCULO DE LA RELACIÓN INTENSIDAD-DURACIÓN-		
		PERÍODO DE RETORNO	114	
	v)		116	
	vi)	APLICACIÓN DE LAS TÉCNICAS DE INTERPOLACIÓN	116	
6	APL	ICACIONES	118	
	6.1	DESCRIPCIÓN DE LAS SUBCUENCAS	118	
	6.2	CÁLCULOS Y RESULTADOS	122	
7	CON	CLUSIONES Y RECOMENDACIONES	141	
	7.1	RESUMEN DEL TRABAJO	141	
	7.2	ACERCA DE LOS RESULTADOS Y ALCANCES LOGRADOS	143	
	7.3	ACERCA DE LOS PROGRAMAS	145	
	7.4	APORTACIONES	145	
	7.5	ESTUDIOS POSTERIORES	146	
	REF	REFERENCIAS BIBLIOGRÁFICAS		
	ANE.	ANEXO A		
	ANE.	XO B	170	
	ANE.	XO C	182	
	ANE.	XO D	194	

.

RESUMEN

Un estudio hidrológico, como una parte del diseño de estructuras hidráulicas, inicia en el análisis de los registros históricos en una zona. El cálculo de los gastos de diseño mediante el análisis de lluvias es el enfoque que se desarrolla en este trabajo.

En una parte de éste se exponen las técnicas para la modelación de la relación intensidad de lluvia con la duración y el período de retorno, estas son: análisis de frecuencia empleando modelos con distribución de probabilidad univariada y bivariada, fórmulas empíricas de Bell. Chen y Kothyari-Garde y, el método de correlación múltiple.

También se plantean varios métodos para la interpolación espacial de lluvias, se desarrollaron algoritmos en lenguaje de programación Q-Basic y, además, se presenta un ejemplo didáctico.

El objetivo de la tesis es determinar como influye la modelación de la precipitación regionalizada a través de modelos bivariados en la relación lluvia-escurrimiento. Para ello, la aplicación de estudio se realiza en la Cuenca del Río Papaloapan. Se emplean registros de intensidad de lluvia máximas anuales de 39 estaciones para 11 duraciones, se modelan estas con las técnicas intensidad de lluvia-duración-período de retorno.

Con el proceso de regionalización propuesto para la Cuenca del Papaloapan se encontró que existen, realmente, dos tendencias. Para la confirmación de lo anterior se hace un par de aplicaciones, aplicando el procedimiento del capítulo 5, en las regiones meteorológicamente homogéneas delimitadas como zonas A y B.

Se estiman los eventos de diseño "intensidades de lluvias asociadas a períodos de retorno" en un sitio y, se determinan los gastos de diseño empleando el modelo lluvia-escurrimiento "hidrograma unitario triangular" en aquellos sitios con información disponible y; cuando se requiere el evento de diseño en lugares sin datos, entonces, se propone emplear las técnicas de interpolación espacial de lluvias.

De la comparación entre modelos de lluvia, se sugiere emplear el análisis de frecuencia bivariada tanto para la modelación de la precipitación como en la determinación de eventos extremos, aún en sitios con información escasa o nula, aplicándose las técnicas de interpolación. Los eventos de diseño estimados con modelos bivariados para períodos de retorno grandes resultan ser razonablemente buenos comparados con los otros métodos.

INTRODUCCIÓN

El agua es la sustancia más abundante en la tierra, pero la abundancia o escasez de agua dulce es uno de los principales factores que determinan las formas de vida; es el principal constituyente de todos los seres vivos y es una fuerza importante que cambia la forma de la superficie de la tierra de modo constante. El hombre se esfuerza para distribuir el agua en forma homogénea en la superficie terrestre por lo que ha dado origen a grandes núcleos de población en sitios que de otra manera estarían escasamente poblados. Cerca del 96.5% del volumen total de agua del planeta están en la tierra, del resto, el 1.7% en manantiales subterráneos y sólo el 0.1% en sistemas de agua superficial y atmosférica. El agua dulce apenas alcanza el 2.5% y, de ésta, dos terceras partes son hielo polar y la mayoría de la restante es agua subterránea.

Como todo ciclo, el hidrológico (FIGURA 1) no tiene ni principio ni fin. El agua que se encuentra sobre la superficie terrestre o muy cerca de ella se evapora bajo el efecto de la radiación solar y el viento. El vapor de agua, que así se forma, se eleva y se transporta por la atmósfera en forma de nubes hasta que se condensa y cae a la tierra en forma de precipitación. El agua interceptada por la vegetación o construcciones, y una parte de la infiltrada y de la que corre por la superficie se evapora nuevamente. De la precipitación que llega a las corrientes, una parte se infiltra y otra llega hasta los océanos y otros grandes cuerpos de agua, tales como presas y lagos. Del agua infiltrada, cierta parte la absorben las plantas y posteriormente es transpirada, casi en su totalidad, hacia la atmósfera y otra parte fluye bajo la superficie de la

tierra hacia las corrientes, el mar u otros cuerpos de agua, o bien hacia zonas profundas del suelo, para ser almacenadas como agua subterránea y después aflorar en manantiales, ríos o el mar.

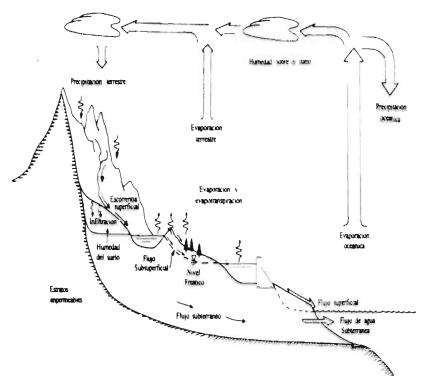


FIG 1. Esquema del Ciclo Hidrológico.

Como resultado de la dependencia en el suministro de agua, el hombre ha encarado dos extremos, las avenidas y sequías.

Debido al inevitable incremento de los daños causados por estos extremos a la población y a sus bienes, cualquier medio que mejore la predicción de estos eventos en hidrología será muy valioso.

La mayoría de los estudios sobre avenidas y sequías se han llevado a cabo mediante distribuciones univariadas y se han realizado grandes esfuerzos para proveer bases físicas y estadísticas para seleccionar el tipo de distribución de probabilidad que mejor ajusta a la muestra de datos analizada, pero estas han causado más controversia que acuerdo entre los hidrologistas.

En el análisis de frecuencias de eventos extremos máximos si el período de retorno T es grande comparado con la longitud del registro N, entonces el error en la estimación de un evento para ese período de retorno puede ser muy grande e ineficiente para propósitos de diseño. La gran variabilidad de estos estimados ha propiciado que se exploren modelos de estimación conjunta que usan la información de cuencas vecinas pertenecientes a una misma región meteorológicamente homogénea.

En los trabajos de Escalante y Raynal (1994), Raynal y Salas (1987) y Rueda (1981) se ha establecido que existe una mejora significativa en las fases de estimación de parámetros y de eventos de diseño cuando se usan distribuciones bivariadas y trivariadas de valores extremos en el análisis de avenidas y sequías.

En este trabajo se analizará la influencia de la modelación bivariada de la precipitación en el proceso lluvia-escurrimiento, tanto para zonas con información o en aquellas (vía técnicas de interpolación) donde no existe.

El principal objetivo del presente trabajo es: determinar en que medida la modelación regional de la precipitación mediante el uso de distribuciones bivariadas de valores extremos incide en la estimación del escurrimiento en sitios con o sin información.

En el capítulo 1 se tratan las diferentes técnicas de análisis de las curvas *I-d-T*, mismas que han sido estudiadas en diferentes zonas del territorio mexicano (Franco y Domínguez, 1982; Barrios y Domínguez, 1986; Campos, 1990; Domínguez y Ríos, 1991; Lafragua, 1996). Se estudia la relación *I-d-T* por técnicas como el análisis de frecuencia univariado y bivariado, también por métodos empíricos propuestos por Bell (1969), Chen (1983) y Kothyari-Garde (1992); y finalmente método de correlación múltiple.

El capítulo 3 refiere a las técnicas de interpolación espacial. En este caso se aplican exclusivamente a interpolar eventos extremos de precipitación (*I-d-T*), aunque su aplicación puede ser explotada aplicándola a otros problemas donde ocurren fenómenos hidrológicos. Los

estudios a cerca de la aplicación de las técnicas de interpolación en México son pocos y, se han aplicado al diseño y revisión de redes de medición (Collado, 1988; Toledo y Collado, 1990). En el presente trabajo se desarrollan los métodos de interpolación puntual aplicando técnicas matemáticas como los mínimos cuadrados y de Lagrange, la conocida técnica de interpolación inversa; la multicuadrática, los métodos de interpolación óptima y kriging. Al final del capítulo se presenta un ejemplo didáctico con la aplicación de estas técnicas.

A manera de complementar, en el capítulo 3 se resume algunas técnicas de la relación lluvia-escurrimiento. Para la aplicación del procedimiento que se presenta en un capítulo más adelante se emplea un método sintético así como el método del hidrograma unitario triangular. También se detallan algunos aspectos relevantes acerca de los cálculos y datos necesarios para su aplicación.

La descripción y las características de la zona estudiada (Cuenca del río Papaloapan) son abordadas en el capítulo 4. Se presentan las estaciones consideradas y el análisis de los datos, así como el criterio que se utilizó para subdividir la cuenca en dos zonas; también se dan algunos valores característicos encontrados del análisis de este trabajo para la cuenca y; en general, contiene resultados del análisis de la modelación de intensidades de lluvia como relaciones *I-d-T*.

En el capítulo 5 se propone un modelo para la obtención del evento de diseño a partir de eventos extremos de precipitación, para sitios con o sin registros históricos.

Con el modelo propuesto, en el capítulo 6, se aplica el análisis a dos subcuencas, La Estrella y Quiotepec, propias de la Cuenca del Río Papaloapan. El cálculo se realiza para dos períodos de retorno, 20 y 50 años.

Finalmente, en el capítulo 7, se hacen los comentarios y conclusiones a cerca de lo temas abordados en ésta tesis y de su aplicabilidad en el campo de la ingeniería.

CAPÍTULO 1. TÉCNICAS DE ANÁLISIS DE LAS CURVAS I-d-T

La precipitación es la fuente primaria de abastecimiento de agua, sus mediciones son fundamentales en la gran mayoría de los estudios relacionados con su uso y control (Raudkivi, 1979); y se define como el agua, en estado sólido o líquido, que proviene de lo alto de la atmósfera y que alcanza la superficie de la tierra (Fuentes, 1990).

La precipitación varía en el espacio y tiempo de acuerdo con el patrón general de circulación atmosférica y con factores locales. Esta precipitación, en forma de lluvia, se explica por medio de tres variables: magnitud, duración y frecuencia. La magnitud de la lluvia es la altura de la precipitación, expresada generalmente en mm, ocurrida en un intervalo de tiempo, cuya duración puede ser en minutos, horas, días, etc. La frecuencia se expresa en función del período de retorno, T, y este se define como el intervalo de tiempo para el cual el evento de precipitación puede ser igualado o excedido en promedio cada T años (Chow et al., 1994). El período de retorno con el cual debe diseñarse una estructura se elige de acuerdo con el tipo de obra, su ubicación y el riesgo que se considere aceptable para el caso de falla de esta.

Por otra parte, la probabilidad p de que un evento con un período de retorno T ocurra en cualquier año es igual a

$$p = \frac{1}{T} \tag{1.1}$$

En un conjunto de eventos máximos anuales, el período de retorno que se asocia a cada uno de ellos puede ser estimado con la fórmula de Weibull

$$T = \frac{n+1}{m} \tag{1.2}$$

donde n es el número de años de registro y m es la clasificación del evento de acuerdo con su ordenamiento de mayor a menor magnitud.

Para cada tormenta la altura de lluvia promedio máxima varía con la duración, existiendo una relación entre la lluvia puntual y su respectiva duración; llamándose a esta relación como altura-duración. Por otro lado, cuando la duración considerada aumenta, la intensidad de lluvia disminuye, independientemente del valor del período de retorno; y cuando ésta última decrece, la intensidad de lluvia aumenta para cualquier duración; en consecuencia, también se relaciona la intensidad de lluvia con el período de retorno. A la combinación de éstas relaciones, intensidad-duración con intensidad-período de retorno, se le conoce como relación intensidad-duración-período de retorno.

En este trabajo se usará la notación I-d-T, para expresar una relación intensidadduración-período de retorno, siendo I la intensidad de lluvia, en mm/h; d la duración, en min; y T el período de retorno, en años.

La forma tradicional de representar las tres variables es como se muestra en la FIGURA 1.1 cada curva representa la probabilidad de que cierta intensidad de lluvia máxima sea excedida para un duración dada. También, si se establece el período de retorno, la curva seleccionada puede transformarse en un hietograma, mismo que puede usarse como tormenta de diseño para alimentar algún modelo de la relación lluvia-escurrimiento (Aparicio, 1996).

El empleo de estas curvas son importantes para la elaboración de los proyectos que el ingeniero desarrolla, por ejemplo, para el diseño de puentes, presas, alcantarillas, estructuras para el control de avenidas; sistemas de drenaje para poblaciones, carreteras, aeropistas, incluyendo el drenaje agrícola y en sistemas de abastecimiento de agua.

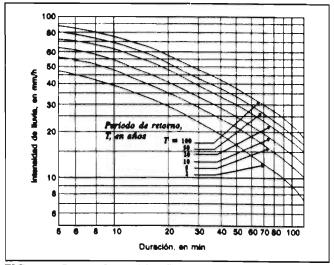


FIG 1.1 Curvas Intensidad-Duración-Período de retorno.

1.1 TÉCNICAS DE ANÁLISIS

Básicamente, existen dos formas de análisis de la relación entre las variables I, d y T. La primera, que consiste en hacer un análisis de frecuencia, tales como el empleo de funciones de distribución de probabilidad univariada, pero también este mismo análisis se puede lograr con funciones de distribución de probabilidad multivariada. Otra forma de analizar estas variables es haciendo uso de fórmulas empíricas.

Según Froehlich (1995), las cuatro formas básicas de ecuación para describir la relación intensidad de lluvia-duración son las que se muestran en la TABLA 1.1. Todas ellas son ecuaciones empíricas y describen el decrecimiento de la intensidad de lluvia con la duración para un período de retorno dado. Los parámetros pueden ser obtenidos aplicando el método de los mínimos cuadrados.

En el pasado se han empleado muchas ecuaciones para representar la intensidad como una función de la duración; Lafragua (1996), en su tesis "Curvas Intensidad-Duración-Período de Retorno para la Vertiente del Golfo de México", hace un estudio en detalle acerca de las

diferentes técnicas empleadas en México para el análisis de curvas *I-d-T*. El objetivo fue proponer una metodología empírica y compararla con técnicas que dieran buenos resultados y, además, verificar la aplicabilidad de las fórmulas de Bell y Chen en México.

TABLA 1.1 Tipos de ecuaciones de la relación intensidad de lluvia-duración

TIPO	ECUACIÓN	PARÁMETROS DE LA ECUACIÓN
I	$i = a_1/(d + b_1)$	a_1, b_1
II	$i = a_2/d^{c_2}$	a_2, c_2
III	$i = a_3/(d+b_3)^{c_3}$	a_3, b_3, c_3
IV	$i = a_4/(d^{c_4} + b_4)$	a_4, b_4, c_4

En general, las fórmulas de la TABLA 1.1 son sólo aplicables al área de estudio, y rara vez se transfieren a otras zonas. Las lluvias de corto período, no obstante, parecen ser casi independientes de la geografía. Los valores extremos de lluvias de corta duración están asociados con la lluvia convectiva local, la cual tiene propiedades físicas similares en una gran parte del mundo. En lluvias de corta de duración, la frecuencia de ocurrencia de lluvias de alta intensidad forman una parte importante de la información requerida para muchos proyectos, pero los registros de lluvia de corta duración son generalmente escasos, porque su colección requiere del registro continuo en las estaciones de medición. El requisito general es ya sea estimar la altura de lluvia, cuando se tienen como datos a la duración y al período de retorno, o para estimar el período de retorno, cuando los datos son la duración y la altura de lluvia.

Campos (1990) recomienda el uso de la fórmula de Bell para aplicarla en los Estados Unidos Mexicanos, su empleo se limita a duraciones cortas y períodos de retorno entre 2 y 10 años y, para períodos de retorno mayores o iguales a 10 años la fórmula de Chen, empleando series de excedentes anuales.

1,2 ANÁLISIS DE FRECUENCIA

Cuando se cuenta con información de lluvia puntual se pueden construir las curvas *I-d-T* utilizando el análisis de frecuencia, donde se puede emplear distribuciones de probabilidad como la Normal, Log-normal, Gamma, Exponencial, Gumbel, etc.

Un análisis de frecuencia consiste en desarrollar el siguiente procedimiento:

- Seleccionar el tiempo de duración de la Iluvia. Para cuencas pequeñas (menores de 250 km²), la duración correspondiente al gasto máximo debe igualarse con el tiempo de concentración.
- 2. Para cada año del registro se escoge la máxima altura de precipitación correspondiendo a la duración seleccionada.
- 3. Probar la independencia de la muestra en el tiempo. Esto se logra calculando el correlograma de la serie y se verifica que éste no exceda los límites de confianza (Salas et al., 1980). Si resultan más del 10% de los coeficientes de correlación fuera de los límites entonces la muestra es dependiente y no se aplica el análisis de frecuencia.
- 4. Se ajusta una distribución de frecuencia apropiada que proporciona el mínimo valor del error estándar de ajuste (Kite, 1988).
- Del ajuste realizado en el paso anterior se obtiene la intensidad o altura de lluvia para diferentes períodos de retorno, estos dependen, como ya se mencionó, del riesgo esperado durante su vida útil.
- 6. Se repiten los pasos 2 a 5 para diferentes duraciones.

La elección de una distribución de probabilidad para el análisis de frecuencia es fundamental en el proceso de diseño. En la práctica es común el empleo de funciones de distribuciones de probabilidad univariada y, en la actualidad estas tienden a ser sustituidas o mejoradas por otras funciones o por una combinación de las mismas; un ejemplo de estas son las funciones de distribución de probabilidad multivariadas. La diferencia está en que las distribuciones univariadas no toman en cuenta el suceso en otros sitios, ya que están basadas en

los registros de una estación; en cambio las multivariadas consideran la información que otra u otras estaciones pudieran proporcionar con lo cual es posible mejorar la estimación de los eventos de diseño.

1.2.1 Parámetros estadísticos

Para emplear los modelos con distribuciones de probabilidad es requisito calcular los parámetros estadísticos. A continuación se presentan los seis parámetros más importantes en un análisis estadístico

1) Media aritmética

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{1.3}$$

2) Varianza

a) Sesgada:

$$S_s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 (1.4)

b) Insesgada:

$$S_{i}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$O$$

$$S_{i}^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - 2\bar{X} \sum_{i=1}^{n} X_{i} + n\bar{X}^{2} \right]$$
(1.5)

3) Desviación estándar Éste parámetro es función de la varianza y, será sesgado si se calcula S con la ec 1.4 e insesgado con la ec 1.5

$$S = \sqrt{S^2} \tag{1.6}$$

4) Coeficiente de variación

$$CV = \frac{S}{\overline{x}} \tag{1.7}$$

5) Coeficiente de asimetría

a) Sesgada:

$$g_s = \frac{\left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^3\right]}{\left(S_s^2\right)^{3/2}}$$

o (1.8)

$$g_s = \frac{1}{n} \frac{\left[\sum_{i=1}^{n} X_i^3 - 3 \bar{X} \sum_{i=1}^{n} X_i^2 + 3 \bar{X}^2 \sum_{i=1}^{n} X_i - n \bar{X}^3 \right]}{\left(S_s^2 \right)^{3/2}}$$

b) Insesgada:

$$g_i = \frac{n^2}{(n-1)(n-2)} g_s \tag{1.9}$$

.

6) Curtósis

a) Sesgada:

$$k_{s} = \frac{\left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{4}\right]}{\left(S_{s}^{2}\right)^{2}}$$

0

$$k_{s} = \frac{1}{n} \cdot \frac{\left[\sum_{i=1}^{n} X_{i}^{4} - 4\bar{X} \sum_{i=1}^{n} X_{i}^{3} + 6\bar{X}^{2} \sum_{i=1}^{n} X_{i}^{2} - 4\bar{X}^{3} \sum_{i=1}^{n} X_{i} + n\bar{X}^{4} \right]}{\left(S_{s}^{2} \right)^{2}}$$

b) Insesgada:

$$k_i = \frac{n^3}{(n-1)(n-2)(n-3)} \quad k_s \tag{1.11}$$

(1.10)

1.2.2 Distribuciones de probabilidad univariadas

El análisis de la relación intensidad de lluvia-duración-período de retorno, aplicando funciones de distribución univariada, es conocido también como método intensidad de lluvia-período de retorno. Este método relaciona la intensidad de lluvia con el período de retorno para cada una de las duraciones consideradas; se hace un ajuste de los valores máximos anuales, mediante alguna de las funciones de distribución de probabilidad empleadas en hidrología.

A continuación se presentan las funciones de distribución de probabilidad univariadas de mayor empleo en hidrología.

a) Distribución normal

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$
 (1.12)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \quad ; \quad -\infty < x < \infty$$
 (1.13)

donde

 μ = media (parámetro de ubicación), σ = desviación estándar (parámetro de escala); coeficiente de asimetría (g = 0) y curtósis (k = 3).

b) Distribución exponencial

$$F(x) = 1 - \beta e^{-\beta x} \tag{1.14}$$

$$f(x) = \beta e^{-\beta x}$$
 ; $x > 0$ (1.15)

$$f(x) = 0 ; x < 0 (1.16)$$

donde \(\beta \) es el par\(\alpha \) metro de escala

c) Distribución lognormal

De 2 parámetros

$$f(x) = \frac{1}{\sqrt{2\pi} x \sigma_{v}} e^{-\frac{1}{2} \left(\frac{Ln(x) - \mu_{y}}{\sigma_{y}} \right)^{2}} ; x > 0$$
 (1.17)

donde

 μ_y , σ_y parámetros de ubicación y escala, respectivamente; el coeficiente de asimetría g > 0.

De 3 parámetros

$$f(x) = \frac{1}{\sqrt{2\pi} (x - x_0) \sigma_y} e^{-\frac{1}{2} \left(\frac{Ln(x - x_0) - \mu_y}{\sigma_y} \right)^2} ; x > x_0$$
 (1.18)

donde

 x_0 , μ_y y σ_y son parámetros de ubicación, de forma y de escala, respectivamente; el coeficiente de asimetría g > 0.

d) Distribución gamma

De 2 parámetros

$$F(x) = \int_{0}^{x} \frac{x^{\beta-1} e^{-x/\alpha}}{\alpha^{\beta} \Gamma(\beta)} dx \qquad ; \alpha > 0, \hat{\gamma} > 0$$
 (1.19)

$$f(x) = \frac{x^{\beta-1} e^{-x/\alpha}}{\alpha^{\beta} \Gamma(\beta)}$$
 (1.20)

donde

 α = parámetro de escala ($\alpha > 0$); β = parámetro de forma; \mathbf{g} = coeficiente de asimetría muestral ($0 < \mathbf{g} < 2$) y $\hat{\mathbf{y}}$ es el coeficiente de asimetría poblacional.

De 3 parámetros

$$f(x) = \frac{1}{\alpha^{\beta} \Gamma(\beta)} \left(\frac{x - x_0}{\alpha} \right)^{\beta - 1} e^{-\left(\frac{x - x_0}{\alpha} \right)} \quad ; \quad \alpha > 0, \quad \dot{\gamma} > 0, \quad x_0 \le x < -\infty$$
 (1.21)

donde

 x_0 , α y β parámetros de ubicación, de escala y de forma

e) Distribución de valores extremos TIPO I (GUMBEL) "VE-I"

$$F(x) = e^{-e^{-(x-\alpha)/\alpha}}$$
; $\alpha > 0$, $x > 0$ (1.22)

$$f(x) = \frac{1}{\alpha} \left[-e^{-(x-u)/\alpha} \right] e^{-e^{(x-u)/\alpha}} \quad ; \quad -\infty < x < \infty \tag{1.23}$$

donde

u y α parámetros de ubicación y de escala

f) Distribución general de valores extremos "GVE"

$$F(x) = e^{-(1-[(x-u)/\alpha]\beta)^{1/\beta}} ; \alpha > 0, x > 0$$
 (1.24)

$$f(x) = \frac{1}{\alpha} \left[1 - \left(\frac{x - u}{\alpha} \right) \beta \right] e^{-\left(1 - \left[\frac{x - u}{\alpha} \right] \beta \right)^{1/\beta}} \quad ; \quad \alpha > 0, \quad x > 0$$
 (1.25)

donde

u , α y β parámetros de ubicación, de escala y de forma

TIPO I Gumbel: $\beta \rightarrow 0$, $-\infty < x < \infty$ y coeficiente de asimetría $\gamma_x = 1.14$

TIPO II Frechet: $\beta < 0$, $u + \alpha/\beta < x < \infty$ y coeficiente de asimetría $\gamma_x > 1.14$

TIPO III Weibull: $\beta > 0$, $-\infty < x < u + \alpha/\beta$ y coeficiente de asimetría $\gamma_x < 1.14$

g) Distribución Gumbel Mixta

$$F(x) = p e^{-e^{-\left(\frac{x-x_1}{a_1}\right)}} + (1-p) e^{-e^{-\left(\frac{x-x_2}{a_2}\right)}}$$
 (1.26)

$$f(x) = \frac{p}{\alpha_1} e^{-e^{-\left(\frac{x-u_1}{\alpha_1}\right)}} e^{-\left(\frac{x-u_1}{\alpha_1}\right)} + \left(\frac{1-p}{\alpha_2}\right) e^{-e^{-\left(\frac{x-u_2}{\alpha_2}\right)}} e^{-\left(\frac{x-u_2}{\alpha_2}\right)}$$
(1.27)

para
$$\alpha_1 > 0$$
, $x > 0$, 0

donde

u₁ parámetro de ubicación de la primera población

α₁ parámetro de escala de la primera población

u₂ parámetro de ubicación de la segunda población

α₂ parámetro de escala de la segunda población

parámetro de asociación. Relaciona el tamaño de la primera población con el total de la muestra ($p = \frac{N_1}{N}$)

1.2.3 Distribuciones de probabilidad bivariada

En el apartado anterior se introdujo las principales funciones de distribución univariada que se emplean en hidrología, pero sus aplicaciones están restringidas a una variable, como el análisis de distribución de frecuencia puntual.

En particular, las bases y fundamentos teóricos de las distribuciones bivariadas de valores extremos fueron estudiadas en principio por Finkelstein en 1953, Gumbel en 1958 y Tiago de Oliveira en 1958.

Según Escalante (1991), una distribución asintótica bivariada se caracteriza por las cuatro propiedades siguientes:

- a) Las distribuciones marginales son asintóticas extremas.
- b) Siguen el postulado de estabilidad.
- c) Posee una función de densidad explicita, y
- d) Se elimina el caso trivial donde la distribución multivariada es el producto de las distribuciones marginales extremas.

Si X e Y son dos variables aleatorias definidas conjuntamente, esto es, X e Y pueden tener un distribución de probabilidad conjunta con la función de distribución acumulada conjunta

$$F^{n}(X,Y) = P\{X \le x, Y \le y\} \tag{1.28}$$

puesto que X es una variable aleatoria continua e independiente, es posible hallar transformaciones lineales de la forma

$$X_n = a_n \quad X_{max} + b_n \tag{1.29}$$

tal que X_n tenga una distribución límite (para $n \to \infty$) que sea algún tipo de distribución de probabilidad, por ejemplo la general de valores extremos. De igual forma, habrá una transformación con propiedades similares

$$Y_n = c_n Y_{max} + d_n \tag{1.30}$$

por lo tanto, la función de distribución conjunta para los máximos valores $X_{máx}$ y $Y_{máx}$ es

$$F^{n}(x,y) \equiv P_{r} \{MAX \mid X_{i} \leq x, MAX \mid Y_{i} \leq y\}$$
 (1.31)

la función de distribución acumulada bivariada será cuando $n \to \infty$, esto es

$$F^{n}(x,y) = \lim_{n \to \infty} \{a_{n}x + b_{n}; c_{n}y + d_{n}\}$$
 (1.32)

Existen dos tipos de distribución de probabilidad bivariada, unos son aquellos que cuentan con una función de densidad que son llamados modelos diferenciables y, los segundos son los modelos no diferenciables. Dentro de los modelos del segundo tipo se pueden citar: el modelo biextremo, el modelo Gumbel y el modelo natural.

En tanto, los modelos diferenciables tales como el logístico y el mezclado, en los que en el primero, la diferencia de las variables reducidas (con marginales Gumbel) tiene una distribución logística estándar y, en el modelo mezclado, éste tiene una función de dependencia que parte de una mezcla de las marginales, cuando se trata de distribuciones Gumbel.

En el presente trabajo la aplicación será con modelos logísticos y, además su empleo en hidrología, dentro del análisis de frecuencias, tiene gran aplicación ya que se aceptan rangos amplios de coeficientes de correlación (Escalante, 1991).

El modelo logístico tiene la siguiente forma general

$$F(x,y,z,...,\underline{\theta}) = \exp\left\{-\left[(-\ln F(x))^m + (-\ln F(y))^m + (-\ln F(z))^m + ...\right]^{1/m}\right\}$$

$$m \ge 1, \qquad 0 \le \rho \le 1$$
(1.33)

donde F(x), F(y) y F(z) son las funciones de distribución marginal de x, y y z, respectivamente; y m es el parámetro de asociación. Si m = 1, entonces la distribución bivariada es

$$F(x,y,\underline{\theta}) = F(x) F(y) \tag{1.34}$$

es decir, que es igual al producto de sus marginales, y significa que hay independencia entre x e y.

Las restricciones de un modelo logístico se satisfacen con las desigualdades siguientes:

$$F(x_1)\cdots F(x_n) \le F(x_1,...,x_n) \le MIN [F(x_1),...,F(x_n)]$$
 (1.35)

$$\left\{ \prod_{i \neq j} F(x_i, x_j) \right\}^{\frac{1}{2(n-1)}} \leq F(x_1, ..., x_n) \leq \frac{\left\{ \prod_{i \neq j} F(x_i, x_j) \right\}^{1/2}}{\left\{ \prod_{i \neq j} F(x_i) \right\}^{n-2}}$$
(1.36)

Las marginales en la ec 1.33 pueden ser

- Gumbel

$$F(x) = e^{-e^{-\left(\frac{x-x}{a}\right)}} \tag{1.37}$$

- General de Valores Extremos (GVE)

$$F(x) = e^{-\left[1-\left(\frac{x-u}{\alpha}\right)\beta\right]^{1/\beta}}$$
 (1.38)

- Gumbel Mixta

$$F(x) = p e^{-e^{-\left(\frac{1-a_1}{a_1}\right)}} + (1-p) e^{-e^{-\left(\frac{1-b_2}{a_2}\right)}}$$
 (1.39)

Si el número 1 es utilizado para identificar a la distribución Gumbel, el 2 a la GVE y el 3 a la Gumbel Mixta, entonces se pueden plantear los siguientes modelos bivariados dependiendo de las distribuciones marginales VEB11, VEB12, VEB22, VEB33

- Distribución VEB11

$$F(x,y,u_1,\alpha_1,u_2,\alpha_2,m) = e^{-\left[e^{-m(y-u_1)x_1} \cdot e^{-m(y-u_2)x_2}\right]^{1/m}}$$
(1.40)

cuya función de densidad es

$$f(x,y,u_{1},\alpha_{1},u_{2},\alpha_{2},m) = \frac{1}{\alpha_{1}\alpha_{2}} e^{-m(x-u_{1})/\alpha_{1}} e^{-m(y-u_{2})/\alpha_{2}} \cdot e^$$

- Distribución VEB12

$$F(x,y,u_1,\alpha_1,u_2,\alpha_2,\beta_2,m) = e^{-\left[e^{-m(x-u_1)\alpha_1}\cdot(1-\beta_2(y-u_2)/\alpha_2)^{m/\beta_2}\right]^{1/m}}$$
(1.42)

la función de densidad para esta distribución es la siguiente:

$$f(x,y,u_{1},\alpha_{1},u_{2},\alpha_{2},\beta_{2},m) = \frac{1}{\alpha_{1}\alpha_{2}} e^{-m(x-u_{1})/\alpha_{1}} + (1-\beta_{2}(y-u_{2})/\alpha_{2})^{m/\beta_{2}-1} \cdot e^{-[e^{-m(x-u_{1})/\alpha_{1}} + (1-\beta_{2}(y-u_{2})/\alpha_{2})^{m/\beta_{2}}]^{1/m}} \cdot e^{-[e^{-m(x-u_{1})/\alpha_{1}} + (1-\beta_{2}(y-u_{2})/\alpha_{2})^{m/\beta_{2}}]^{1/m-2}} \cdot (1.43)$$

$$\cdot \{(m-1) + [e^{m(x-u_{1})/\alpha_{1}} + (1-\beta_{2}(y-u_{2})/\alpha_{2})^{m/\beta_{2}}]^{1/m}\}$$

- Distribución VEB22

$$F(x, y, u_1, \alpha_1, \beta_1, u_2, \alpha_2, \beta_2, m) = e^{-\left[\left(1 - \beta_1(x - u_1)/\alpha_1\right)^{m/\beta_1} + \left(1 - \beta_2(y - u_2)/\alpha_2\right)^{m/\beta_2}\right]^{\frac{1}{m}}}$$
(1.44)

la función de densidad correspondiente para esta distribución es

$$f(x,y,u_{1},\alpha_{1},\beta_{1},u_{2},\alpha_{2},\beta_{2},m) = \frac{1}{\alpha_{1}\alpha_{2}} \left(1 - \beta_{1}(x - u_{1})/\alpha_{1}\right)^{m/\beta_{1}-1} \cdot \left(1 - \beta_{2}(y - u_{2})/\alpha_{2}\right)^{m/\beta_{1}-1} \cdot \left(1 - \beta_{2}(y - u_{2})/\alpha_{2}\right)^{m/\beta_{1}-1} \cdot \left(1 - \beta_{2}(y - u_{2})/\alpha_{2}\right)^{m/\beta_{2}-1} \cdot \left[\left(1 - \beta_{1}(x - u_{1})/\alpha_{1}\right)^{m/\beta_{1}} + \left(1 - \beta_{2}(y - u_{2})/\alpha_{2}\right)^{m/\beta_{2}}\right]^{1/m-2} \cdot \left\{ (m-1) + \left[\left(1 - \beta_{1}(x - u_{1})/\alpha_{1}\right)^{m/\beta_{1}} + \left(1 - \beta_{2}(y - u_{2})/\alpha_{2}\right)^{m/\beta_{2}}\right]^{1/m} \right\}$$

- Distribución VEB33

$$F(x, y, u_{1x}, \alpha_{1x}, u_{2x}, \alpha_{2x}, p_x, u_{1y}, \alpha_{1y}, u_{2y}, \alpha_{2y}, p_y, m) =$$

$$\exp\left\{-\left[\left(-Ln\left\{p_{x}e^{-e^{\frac{1-u_{1x}}{a_{1x}}}}+(1-p_{x})e^{-e^{\frac{1-u_{2x}}{a_{2x}}}}\right\}\right)^{m}+\left(-Ln\left\{p_{y}e^{-e^{\frac{1-u_{1y}}{a_{1y}}}}+(1+p_{x})e^{-e^{\frac{y-u_{2y}}{a_{2y}}}}\right\}\right)^{m}\right]^{1/m}\right\}$$
(1.46)

la función de densidad correspondiente para esta distribución es

$$f(x,y,\underline{\theta}) = \frac{\partial^2 F(x,y,\underline{\theta})}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} F(x,y,u_{1x},\alpha_{1x},u_{2x},\alpha_{2x},p_x,u_{1y},\alpha_{1y},u_{2y},\alpha_{2y},p_y,m)$$
(1.47)

Estimación de parámetros

La estimación de parámetros de las funciones de distribución se estiman a partir de datos muestrales, que según Escalante (1991) los parámetros deben tener las cuatro propiedades que son: sesgo nulo, consistencia, eficiencia y suficiencia.

Existen varios métodos para la estimación de estos parámetros, el más eficiente es el Método de Máxima Verosimilitud. La función de verosimilitud de *n* variables aleatorias está definida como la densidad conjunta de esas *n* variables y, es una función de sus parámetros.

Si $(x_1, y_1),...,(x_n, y_n)$ es una muestra aleatoria de una densidad bivariada, la correspondiente función de verosimilitud es

$$L(x, y, \underline{\theta}) = \prod_{i=1}^{N} f(x_i, y_i, \underline{\theta})$$
 (1.48)

donde

 $f(\cdot)$ es la función de densidad bivariada

θ es el conjunto de parámetros

El desarrollo de la función de verosimilitud, ec 1.48, es

$$L(x, y, \underline{\theta}) = \begin{bmatrix} \prod_{i=1}^{n_1} f(p_i, \underline{\theta}_1) \end{bmatrix}^{l_1} \cdot \begin{bmatrix} \prod_{i=1}^{n_2} f(p_i, q_i, \underline{\theta}_2) \end{bmatrix}^{l_2} \cdot \begin{bmatrix} \prod_{i=1}^{n_3} f(x, y, \underline{\theta}_3) \end{bmatrix}^{l_3} \cdot \begin{bmatrix} \prod_{i=1}^{n_4} f(r_i, s_i, \underline{\theta}_4) \end{bmatrix}^{l_4} \cdot \begin{bmatrix} \prod_{i=1}^{n_5} f(r_i, \underline{\theta}_5) \end{bmatrix}^{l_5}$$
(1.49)

donde

 $L(\cdot)$ es la función de verosimilitud de (\cdot)

 n_1 es la longitud del registro univariado antes del período común n_2

 n_2 es la longitud del registro con relación bivariada antes del período común n_1

n₃ es la longitud del registro durante el período común en las dos estaciones

 n_4 es la longitud del registro con relación bivariada después del período común n_1

 n_5 longitud del registro univariado después del período común n_3

p es la variable del registro univariado antes del registro común

(p,q) son las variables relacionadas en forma bivariada antes del registro común

(x,y) variables relacionadas en forma bivariada durante el período común de registro

r es la variable del registro univariado después del registro común

(r,s) variables relacionadas en forma vibariada después del registro común

 I_i es un número indicador con valor ($I_i = 1$ si $n_i > 0$ ó $I_i = 0$ si $n_i = 0$)

θ vector de parámetros

Se empleará la versión logaritmica de la función de verosimilitud. Aplicándolo a la ec 1.49 se obtiene la siguiente

$$LL(x, y, \underline{\theta}) = I_{1} \begin{bmatrix} \sum_{i=1}^{n_{1}} Lf(p_{i}, \underline{\theta}_{1}) \end{bmatrix} + I_{2} \begin{bmatrix} \sum_{i=1}^{n_{2}} Lf(p_{i}, q_{i}, \underline{\theta}_{2}) \end{bmatrix} + I_{3} \begin{bmatrix} \sum_{i=1}^{n_{3}} Lf(x, y, \underline{\theta}_{3}) \end{bmatrix} + I_{4} \begin{bmatrix} \sum_{i=1}^{n_{4}} Lf(r_{i}, s_{i}, \underline{\theta}_{4}) \end{bmatrix} + I_{5} \begin{bmatrix} \sum_{i=1}^{n_{5}} Lf(r_{i}, \underline{\theta}_{5}) \end{bmatrix}$$

$$(1.50)$$

Los estimadores de máxima verosimilitud de los parámetros de distribuciones bivariadas de valores extremos son aquellos para los cuales la ec 1.50 es maximizada. Para obtener dichos estimadores se emplea un procedimiento de optimización tal como el algoritmo de optimización no lineal multivariado restringido de Rosenbrock (Kuester, 1973).

1.3 FÓRMULAS EMPÍRICAS

1.3.1 Fórmulas de Bell

Bell (1969) estudió los datos de lluvia de series excedentes anuales de Estados Unidos, Hawaii, Alaska y Puerto Rico; la comparó con los de Australia, sur y norte de Africa. Las duraciones de las lluvias analizadas fueron menores o iguales a 2 horas y confirmó que estas lluvias de corta duración, se asocian con lluvias de tipo convectivo local. El U.S. Weather Bureau (USWB) recomienda una relación empírica derivada de lluvias de corta duración, de acuerdo con la cual la altura de lluvia con duración de d minutos tiene una relación constante a la altura de lluvia de duración igual a 60 minutos para el mismo período de retorno (P_d^T/P_{60}^T) . Estas relaciones son 0.29, 0.45, 0.57 y 0.79, para duraciones de 5, 10, 15 y 30 minutos, respectivamente.

Bell (1969) propuso una relación empírica basada en relaciones altura de lluvia-duración, en la que utilizó datos de 157 estaciones en los Estados Unidos y 7 estaciones en Australia. Los valores que Bell emplea para describir la relación se transcriben en la TABLA 1.2.

TABLA 1.2 Relaciones altura de lluvia-duración medias, (P_d^T/P_{60}^T) .

ÁREA DE ESTUDIO	DURACIÓN, en min			
AREA DE ESTUDIO	5	15	30	120
EUA: (Promedio)	0.29	0.57	0.79	1.25
AUSTRALIA: T = 2 años T = 10 años T = 25 años	0.30 0.31 0.30	0.57 0.58 0.58	0.77 0.78 0.79	1.24 1.25 1.23
(Promedio)	0.30	0.57	0.78	1.24

Estas relaciones P_d^T/P_{60}^T tienden a ajustarse a una línea recta en papel Gumbel y, la

ecuación que la describe es

$$\frac{P_d^T}{P_{60}^T} = 0.54 \ d^{0.25} - 0.50 \tag{1.51}$$

$$5 \le d \le 120 \min$$

de igual forma, Bell obtuvo relaciones altura de lluvia-período de retorno. En estas relaciones utiliza la altura de lluvia con duración de 60 minutos para un período de retorno T cualquiera y, las alturas de lluvia con duración de 60 minutos para un período de retorno básico de 2 ó 10 años. Los valores de las relaciones P_d^T/P_{60}^{10} son las que aparecen en la TABLA 1.3 y la ecuación propuesta por Bell es

$$\frac{P_d^T}{P_d^{10}} = 0.21 \ln T + 0.52 \quad ,$$

$$2 \le T \le 100 \ a\tilde{n}os$$
(1.52)

de la combinación de las ecuaciones 1.51 y 1.52 resulta

$$P_d^T = (0.21 \ln T + 0.52) (0.54 d^{0.25} - 0.50) P_{60}^{10}$$
 (1.53)

TABLA 1.3 Relaciones altura de lluvia-período de retorno, $\left(P_d^T/P_{60}^{10}\right)$

T (años)	ESTADOS UNIDOS DE AMÉRICA	AUSTRALIA
1	0.54	0.52
2	0.63	0.65
. 5	0.85	0.85
25	1.17	1.18
5 0	1.31	1.33
100	1.46	1.50

si la ec 1.52 se plantea para una altura de lluvia correspondiente a un período de retorno igual a 2 años (P_{60}^2) , y luego combinandola con la ec 1.51 se obtiene

$$P_d^T = (0.35 \ln T + 0.76) (0.54 d^{0.25} - 0.50) P_{60}^2$$
 (1.54)

dado que las ecs 1.53 y 1.54 son combinaciones de las ecuaciones básicas 1.51 y 1.52, éstas también son válidas para $5 \le d \le 120$ min y $2 \le T \le 100$ años.

1.3.2 Fórmula de Chen

Como ya se ha mencionado, las ecuaciones mostradas en la TABLA 1.1 son del tipo empíricas y, su empleo está limitado a la zona de estudio. Por otro lado, Chen (1983) utiliza una ecuación empírica Tipo III, inicialmente propuesta por Sherman (1931). En sus estudios plantea el uso de tres alturas de lluvias, con las que desarrolló una fórmula con base en el promedio de la relación altura de lluvia-período de retorno de 1.48. La fórmula requiere las alturas de lluvia con duración de 60 min (1 h) y 10 años de período de retorno (P_{60}^{10}) , 1440 min (24 h) y 10 años (P_{1440}^{10}) , y 60 min (1 h) y 100 años (P_{60}^{100}) con el objeto de conocer la variación de la lluvia, de acuerdo con la geografía de la zona, en términos de las relaciones "altura de lluvia-duración" y "altura de lluvia-período de retorno", para cualquier período de retorno y duración, respectivamente.

Estas relaciones son clave en la construcción de la fórmula para determinar las curvas intensidad de lluvia-duración-período de retorno. Al igual que Bell (1969), la forma de relación propuesta por Chen (1983), son similares con las diferencias en la consideración hecha para las relaciones altura de lluvia-duración y altura de lluvia-período de retorno. Aparte de que resultó otra diferencia mayor en la variación de la lluvia con la geografía, Chen (1983) consideró exclusivamente este efecto por medio de las tres alturas de lluvia $(P_{60}^{10}, P_{1440}^{10}, P_{60}^{100})$ en vez de una altura (P_{60}^{10}) considerada por Bell.

En la TABLA 1.4 se presentan las relaciones (P_{60}^T/P_{1440}^T) y (P_d^{100}/P_d^{10}) encontradas en diferentes estudios.

TABLA 1.4 Relaciones altura de lluvia-duración (P_{60}^T/P_{1440}^T) y altura de lluvia-período de retorno (P_d^{100}/P_d^{10})

ÁREA DE ESTUDIO	P_{60}^{T}/P_{1440}^{T}		P_d^{100}/P_d^{10}	
THE EST COLO	RANGO	PROMEDIO	RANGO	PROMEDIO
EUA: CHEN, 1983	0.10 - 0.6	0.40	1.33 - 163	1.48
MÉXICO: CAMPOS, 1990 LAFRAGUA, 1996	0.20 - 0.72 0.24 - 0.72	0.479 0.493	1.28 - 157	1.43
ZONA DE ESTUDIO ¹ ZONA A ZONA B	0.206-0.721 0.206-0.721 0.236-0.616	0.462 0.478 0.438	1.292-1.608 1.466-1.608 1.292-1.604	1.492 1.527 1.442

Ecuación intensidad de lluvia-duración

Chen (1983) aplicó la siguiente ecuación empírica para relacionar la intensidad de lluvia con la duración

$$I = \frac{a}{(d+b)^c} \tag{1.55}$$

donde

I es la intensidad de lluvia, en mm/h

d es el tiempo de duración de la lluvia, en min; y

a, b y c son los parámetros de la tormenta que varían con las condiciones meteorológicas de la zona en estudio

¹ Relaciones calculadas para la Cuenca del Río Papaloapan

Según Chen (1983), la relación intensidad de Iluvia-duración, la cual es independiente del período de retorno, se puede expresar como

$$\frac{I_d^T}{I_{60}^T} = \frac{a_1}{(d+b_1)^{c_1}} \tag{1.56}$$

donde

 I_d^T es la intensidad de lluvia para un período de retorno de T años y una duración de d minutos, en mm/h

 I_{60}^T es la intensidad de lluvia para T años y 60 min (1 h), en mm/h; y

 a_1 , b_1 y c_1 son los parámetros de tormenta estándar

despejando I_d^T de la anterior ecuación, se tiene

$$I_d^T = \frac{a_1 I_{60}^T}{(d + b_1)^{c_1}} \tag{1.57}$$

comparando la ec 1.55 con la ec 1.57, se deduce que

$$a = a_1 I_{60}^T$$
; $b = b_1$; $c = c_1$

expresando la ec 1.55 en forma logarítmica

$$\log I = \log a - c \log (d + b) \tag{1.58}$$

esta ecuación es básica para poder determinar los parámetros estándar. Su determinación puede ser efectuada de una manera sistemática por medio del método de los mínimos cuadrados y una técnica de optimización. Dado los valores de los datos de lluvia medidos (I_i , d_i) para i = 1, ..., n. La formulación del problema de optimización es análogo a encontrar los valores a, b y c por minimización de

$$F(a, b, c) = \sum_{i=1}^{n} \left[\log I_i - \log a + c \log (d_i + b) \right]^2$$
 (1.59)

Ecuación intensidad de lluvia-período de retorno

Según Chen (1983), la ecuación empírica desarrollada por Chow en 1953, es de la forma

$$P_d^T = \alpha \log T_p + \beta \tag{1.60}$$

donde

 P_d^T es la altura de lluvia para d min y T años, en mm

es el período de retorno para las series de duración parcial, en años

α y β son parámetros que se determinan con los datos de lluvia

Si se seleccionan arbitrariamente dos períodos de retorno, 10 y 100 años, y se obtienen las alturas correspondientes de lluvia con la ec 1.60; la sustitución de los valores $P_d^{10} \text{ y } P_d^{100}$ junto con los dos valores de T en la ec 1.60, dan como resultado el sistema de ecuaciones siguiente

$$P_d^{10} = \alpha \log 10 + \beta$$

$$P_d^{100} = \alpha \log 100 + \beta$$
(1.61)

cuya solución es

$$\alpha = P_d^{10} \left(\frac{P_d^{100}}{P_d^{10}} - 1 \right)$$
 (1.62)

у

$$\beta = P_d^{10} \left(2 - \frac{P_d^{100}}{P_d^{10}} \right) \tag{1.63}$$

si $x = P_d^{100} / P_d^{10}$, entonces las ecs 1.62 y 1.63 expresadas en términos de esta sustitución serán

$$\alpha = P_d^{10} (x - 1) \tag{1.64}$$

$$\beta = P_d^{10} (2 - x) \tag{1.65}$$

Los parámetros encontrados se sustituyen en la ec 1.60 dando como resultado

$$\frac{P_d^T}{P_d^{10}} = \log \left[10^{2-x} T_P^{x-1} \right] \tag{1.66}$$

Las igualdades $P_d^{100}/P_d^{10} = I_d^{100}/I_d^{10}$ y $P_d^T/P_d^{10} = I_d^T/I_d^{10}$ son válidas para una misma duración d, entonces es cierto que

$$\frac{I_d^T}{I_d^{10}} = \log \left(10^{2-x} T_P^{x-1} \right) \tag{1.67}$$

Chow et al. (1988) presentan una relación teórica entre el período de retorno de una altura de lluvia obtenida de una serie de duración parcial y el período de retorno de una lluvia de la misma magnitud basada en un análisis de series de excedentes anuales, esta es

$$\frac{1}{T_P} = \ln \left[\frac{T_a}{T_a - 1} \right] \tag{1.68}$$

donde

T_p es el período de retorno para las series de duración parcial; y

T_a es el período de retorno para las series de excedentes anuales.

Por consiguiente, la identidad 1.67 expresada en función de T_a es la fórmula generalizada de intensidad de lluvia-duración-período de retorno siguiente:

$$\frac{I_d^T}{I_d^{10}} = \log \left[10^{2-x} \ln^{1-x} \left(\frac{T_a}{T_a - 1} \right) \right]$$
 (1.69)

Para asociar las dos igualdades deducidas, ecs 1.57 y 1.69, se establece en la última para una duración de 60 min (1 h)

$$\frac{I_{60}^{T}}{I_{60}^{10}} = \log \left[10^{2-x} \ln^{1-x} \left(\frac{T_a}{T_a - 1} \right) \right]$$
 (1.70)

que sustituida en la ec 1.57 da

$$I_d^T = \frac{a_1 I_{60}^{10} \log \left[10^{2-x} \ln^{(1-x)} \left(\frac{T_a}{T_a - 1} \right) \right]}{\left(d + b_1 \right)^{c_1}}$$
(1.71)

 $T_p > 1 \ a\tilde{n}o$; $T_a > 1.582 \ a\tilde{n}os$; $5 \ min \le d \le 1440 \ min$

Esta es la expresión general de la relación intensidad de lluvia-duración-período de retorno propuesta por Chen. Su empleo sólo requiere los datos de altura de lluvia P_{60}^{10} , P_{1440}^{10} y P_{60}^{100} los cuales son dos más que la propuesta por la P_{60}^{10} de Bell.

La ec 1.71 puede ser expresada alternativamente en términos de la altura de lluvia; multiplicando el lado derecho de dicha ecuación por d/60, esto es

$$P_d^T = \frac{a_1 I_{60}^{10} \log \left[10^{2-x} \ln^{(1-x)} \left(\frac{T_a}{T_a - 1} \right) \right]}{\left(d + b_1 \right)^{c_1}} \left(\frac{d}{60} \right)$$
 (1.72)

donde

$$x = \frac{P_{60}^{100}}{P_{60}^{10}} \qquad \text{adimensional}$$

 P_d^T altura de precipitación de duración d min y T años de período de retorno, en mm

d duración, en min

 T_a período de retorno, en años

Los rangos de validez son idénticos a los de la ec 1.71; además, deben determinarse los parámetros estándar de tormenta a_1 , b_1 y c_1 a partir de la ec 1.57 con la relación P_{60}^T/P_{1440}^T .

1.3.3 Fórmula de Kothyari y Garde

En el año de 1992, Kothyari y Garde estudiaron la aplicación de diferentes fórmulas de las relaciones *I-d-T* en la India. Emplearon la ecuación propuesta por Bernard en 1932

$$I_d^T = \frac{a_0 T^{a_1}}{d^{a_2}} \tag{1.73}$$

Después de haber realizado un estudio comparativo de relaciones *I-d-T*, para tormentas de corta duración, afirman que los exponentes de *T* y *d* no varían mucho de un sitio a otro, para los valores de *T* están entre 0.18 y 0.26 y para *d* entre 0.70 y 0.85. En el estudio se emplearon intensidades de lluvia con duración no mayores de 24 horas. Se analizaron datos de 80 estaciones en 5 regiones geográficas de la India.

La principal característica del estudio es que los autores verificaron la fórmula de Chen, para lo cual emplearon 20 estaciones con registros de períodos amplios. Las intensidades pronosticadas con dicha ecuación comparadas con las intensidades observadas, dieron hasta un 50% de error. Este es un claro ejemplo de que para aplicar fórmulas empíricas es necesario realizar un estudio en la zona donde se la requiera.

Según Kothyari y Garde, la lluvia observada durante las diferentes duraciones no son eventos independientes, puesto que la observación por consecutivas horas están altamente correlacionadas. Para considerar el efecto de las intensidades de lluvia de corta duración se analizaron cuatro propiedades de estas (la lluvia media anual P, la media de la máxima lluvia mensual P_{max} , la relación (P / P_{max}) y la lluvia con duración de 1440 min (24 h) y 2 años de período de retorno P_{1440}^2). La fórmula propuesta por estos autores es de tipo semi-empírica, con esta se obtuvo una correlación alta, la ecuación es

$$I_d^T = k \frac{T^a}{d^c} \left(P_{1440}^2 \right)^b \tag{1.74}$$

donde

 I_d^T intensidad de lluvia para una duración d y un período de retorno T, en mm/h

P₁₄₄₀ precipitación con duración de 1440 min y 2 años de período de retorno, en mm

T período de retorno, en años

d duración (0 < d < 24), en h

k constante que depende del sitio geográfico

a, b, c constantes que se determina por un análisis de regresión múltiple

El empleo de diferentes valores de k en la ec 1.74, esto es, para diferentes regiones geográficas de la zona considerada, producen menores errores en la estimación de intensidades de lluvia para el diseño.

1.4 MÉTODO DE CORRELACIÓN LINEAL MÚLTIPLE

El empleo de éste método en los Estados Unidos Mexicanos, se ha convertido en un procedimiento tradicional para la determinación de las curvas *I-d-T*. El método relaciona simultáneamente, en un ajuste por regresión múltiple, a las tres variables de interés (intensidad, duración y período de retorno). La familia de curvas, como el de la FIGURA 1.1, pueden ser descritas por una ecuación como la siguiente.

$$I = \frac{k T^m}{(d+c)^n} \tag{1.75}$$

donde

I es la intensidad de la lluvia, en mm/h

T es el período de retorno, en años

d es la duración de la intensidad, en min; y

k, m, n y c son parámetros que se calculan al hacer la correlación lineal múltiple.

A pesar de la simplicidad y del gran uso que se le ha dado en el medio, su aplicación en la actualidad esta más limitada. El principal motivo de ello está en que con los eventos máximos

modelados empleando la ec 1.75, para períodos de retorno largos (T > 10 años), las variaciones son considerables. Lafragua (1996), verificó que los errores fueron de hasta un 40% en el rango de las muestras históricas.

Al expresar la ec 1.75 en términos de logaritmos, esto es, las variables son normalizadas al emplear los valores de sus respectivos logaritmos, se obtiene

$$\ln I = \ln k + m \ln T - n \ln (d + c)$$
 (1.76)

esta ecuación es semejante a la ecuación de la forma

$$y = a_0 + a_1 x_1 + a_2 x_2 \tag{1.77}$$

donde

$$y = \ln I$$
 $x_1 = \ln T$ $x_2 = \ln (d + c)$
 $a_0 = \ln k$ $a_1 = m$ $a_2 = -n$

La ec 1.77 es una familia de líneas rectas de pendiente a_2 , ordenada al origen a_0 y espaciamiento a_1 . A veces, las líneas rectas resultan ligeramente curvas, lo que se corrige sumando una constante c a las duraciones. Al contrario, si los datos tienden a agruparse en torno a líneas rectas, se puede considerar c = 0, (Aparicio, 1996).

Los parámetros a_0 , a_1 y a_2 se calculan mediante un ajuste de correlación lineal múltiple, usando el método de los mínimos cuadrados.

Estos parámetros se obtienen al resolver el siguiente sistema de ecuaciones

$$a_0 N + a_1 \sum x_1 + a_2 \sum x_2 = \sum y$$

$$a_0 \sum x_1 + a_1 \sum x_1^2 + a_2 \sum x_1 x_2 = \sum x_1 y$$

$$a_0 \sum x_2 + a_1 \sum x_1 x_2 + a_2 \sum x_2^2 = \sum x_2 y$$

$$(1.78)$$

donde N es el número total de tercias de datos (I, d, T).

CAPÍTULO 2. TÉCNICAS DE INTERPOLACIÓN DE LLUVIAS

La estimación de la precipitación media en un cierto punto o área de interés es útil para un sinnúmero de aplicaciones. Así pues, el diseño de las obras hidráulicas siempre requiere información hidrológica.

En ocasiones el hidrólogo puede contar con registros de lluvia u otra variable, sin embargo, en la mayoría de los proyectos esta información no se encuentra disponible. Por esta razón el diseñador de obras hidráulicas debe hacer uso de modelos matemáticos que ayuden a pronosticar el fenómeno requerido (Escalante-Raynal, 1990).

Se han desarrollado varias técnicas de interpolación de lluvia puntual (modelos matemáticos) y, también los métodos de interpolación espacial. Son muchos los factores que afectan la distribución espacial de la precipitación sobre un área. Por lo tanto, su estimación adecuada depende del número y distribución de las estaciones de medición en el área, así como el método que se emplee para la estimación (Collado, 1988; Toledo-Collado, 1990).

En este capítulo se detallan las técnicas de interpolación espacial, se incluyen el comúnmente usado método de Thiessen, la clásica interpolación polinomial por mínimos cuadrados o empleando la técnica de Lagrange, el método de la distancia inversa, el de

interpolación multicuadrática; el método de interpolación óptima y la técnica kriging.

Las técnicas mencionadas tienen aplicaciones tales en los estudios hidrológicos como deducción de datos faltantes, pronóstico de avenidas vía relación del proceso lluvia-escurrimiento, diseño de estaciones hidrometeorológicas y, en general, es aplicable a problemas geofísicos. Pero, algunos de ellos tienen ciertas limitaciones por el error significativo de su estimación. Los métodos que han dado muy buenos resultados son: la interpolación óptima y el método kriging; y el método de interpolación multicuadrática es tan bueno como los dos anteriores. El lector puede obtener mayor información en la bibliografía del presente trabajo, fundamentalmente en los artículos acerca de las técnicas de interpolación espacial.

Ahora, para iniciar la descripción y desglose de cada una de las técnicas se harán algunas definiciones.

Sean X_j y Y_j las coordenadas de un punto j en un espacio bidimensional y, P_j , una función de las coordenadas X_j y Y_j , la que denota el proceso observado en n estaciones de medición, j es el subíndice e indica el sitio al cual refiere el proceso medido, j = 1, 2, ..., n. P_e es una estimación del proceso en un punto con coordenadas X_e , Y_e . La estimación puntual se hace de datos medidos en las n estaciones y, esta puede ser representada por una combinación lineal pesada de aquellos valores medidos, es decir

$$\boldsymbol{P}_{e} = \sum_{j=1}^{n} W_{j} \boldsymbol{P}_{j} \tag{2.1}$$

donde W_i = peso o factor de peso del punto de muestreo j.

Esta ecuación es una forma general de la función de interpolación llamada Condición de Linealidad. La condición de sesgo nulo implica que $E(P_e) = E(P)$.

El factor de peso se empleará para las diferentes técnicas de interpolación, con la única diferencia de la forma de evaluación de los valores W_i .

2.1 MÉTODO DE THIESSEN

En Hidrología ha sido tradición calcular la precipitación media en un área con base en los polígonos de Thiessen, que en otras áreas del conocimiento se denominan Mosaicos de Dirichlet, Dominios de Voronoi o Regiones de Wigner-Seitz. De acuerdo con este método, a cada estación hidrológica de una cuenca se le asocia un polígono de Thiessen, que define un área donde cada uno de sus puntos está más cerca de esa estación que de cualquier otra. El cociente que resulta de dividir el área de cada polígono entre el área total define un conjunto de pesos, y, conforme a los cuales la precipitación media puede ser calculada como un promedio pesado (Collado, 1988). El error de estimación con el método de Thiessen, es proporcional a la distancia del punto de estimación respecto a la estación más cercana. En una cuenca con una densa red de medición y, por lo cual, el cálculo con este método mejoran los resultados.

La estimación del proceso P_{ϵ} en el punto de interés e, es igual al valor observado de la estación de muestreo más cercana en el área. Esta estimación puede representarse como $P_{\epsilon} = P_{j}$; para j cuya distancia sea la menor de las n estaciones, es decir, si d_{ej} es la distancia entre el punto de interés e y la estación j

$$d_{ej} = \sqrt{(X_e - X_j)^2 + (Y_e - Y_j)^2} \qquad ; \quad j = 1, ..., n$$
 (2.2)

donde

 $d_{ei} = Min (d_{e1}, ..., d_{en})$ es la mínima distancia entre el punto e y alguna estación; el subíndice i es el que ubica el sitio de dicha estación, por lo que el factor de peso será

$$W_j = 0$$
 para $j \neq i$
·y
 $W_j = 1$ para $j = i$

2.2 MÉTODO DE INTERPOLACIÓN POLINOMIAL

Este método consiste en ajustar una ecuación global para el área de interés de estudio; esta es función de las coordenadas del sitio a interpolar, empleando una función algebraica o una polinomial, siendo la forma general de la función polinomial la siguiente

$$P_e = \sum_{k=1}^{m} a_k \, \phi_k \, (X_e, Y_e) \tag{2.3}$$

donde P_{ϵ} es el valor interpolado en cualquier punto $(X_{\epsilon}, Y_{\epsilon})$

a_k es el k-ésimo coeficiente polinomial

 ϕ_k (X_e, Y_e) es el k-ésimo monomio en términos de las coordenadas X_e y Y_e

m es el número total de monomios, este se determina del grado de la función polinomial ajustada en la ec 2.3

Los monomios algebraicos en términos de las coordenadas X y Y se encuentran en la TABLA 2.1. Como la función de interpolación, ec 2.1, está en términos de los pesos es conveniente expresar la ecuación polinomial 2.3 en forma de la ec 2.1. Para lograr lo anterior se disponen de dos métodos aproximados, uno es el de mínimos cuadrados y el otro es la aproximación de Lagrange.

2.2.1 Aproximación por Mínimos Cuadrados

Este método provee una estimación de P_e teniendo una tendencia superficial característica. El requerimiento primordial de esta aproximación es que el número de estaciones de medición n sea mayor al número de monomios m.

Si P_j es la medición del proceso analizado, en este caso la precipitación u otro cualesquiera, medido en las estaciones j = 1, 2, ..., n y \hat{P}_j es el valor estimado del mismo proceso basado en un modelo como la ec 2.3, entonces

$$\hat{P}_{j} = \sum_{k=1}^{m} a_{k} \, \phi_{k} \, (X_{j}, Y_{j}) \qquad ; \qquad j = 1, 2, ..., n$$
 (2.4)

donde a_k es el k-ésimo coeficiente polinomial

 $\Phi_k(X_j, Y_j)$ es el k-ésimo monomio en términos de las coordenadas X_j y Y_j de la estación j.

TABLA 2.1 Monomios algebraicos en términos de las coordenadas X e Y para una función polinomial hasta de grado 6.

Grado	k	$\phi_k(X,Y)$						
0	1	1						
1	2-3	X Y						
2	4-6	X^2 XY Y^2						
3	7-10	X^3 $X^2 Y$ $X Y^2$ Y^3						
4	11-15	X^4 X^3 Y X^2 Y^2 X Y^3 Y^4	15					
5	16-21	X ⁵ X ⁴ Y X ³ Y ² X ² Y ³ X Y ⁴ Y ⁵	21					
6	22-28	X ⁶ X ⁵ Y X ⁴ Y ² X ³ Y ³ X ² Y ⁴ X Y ⁵ Y ⁶	28					

Se desea estimar el arreglo de parámetros a_k , k=1, ..., m por medio de la minimización de la suma del cuadrado de los errores, el cual está dado por

$$f = \sum_{j=1}^{n} \left[P_{j} - \hat{P}_{j} \right]^{2} \tag{2.5}$$

Derivando la función f con respecto a los coeficientes a_k , k=1,...,m e igualando la ecuación a cero y ordenando se obtiene

$$\sum_{i=1}^{m} a_{i} \sum_{j=1}^{n} \Phi_{k}(X_{j}, Y_{j}) \Phi_{i}(X_{j}, Y_{j}) = \sum_{j=1}^{n} P_{j} \Phi_{k}(X_{j}, Y_{j}) ;$$

$$k = 1, 2, ..., m$$
(2.6)

Note que el segundo término sumatorio del lado izquierdo de la ec 2.6 es únicamente función de las coordenadas de los puntos de las estaciones, los cuales están en forma de función polinomial en la ec 2.3, por lo tanto, los coeficientes polinomiales, a_k se obtienen como sigue

$$a_k = \sum_{j=1}^{n} \alpha_{kj} P_j$$
 ; $k = 1, ..., m$ (2.7)

donde

$$\alpha_{kj} = \sum_{i=1}^{m} \psi_{ki} \, \phi_i \, (X_j, Y_j)$$
 ; $k = 1, ..., m$; $i = 1, ..., m$

 ψ_{ki} elemento del renglón k-ésimo y de la i-ésima columna de la matriz inversa de $[m \times m]$ cuyos elementos son

$$\theta_{ki} = \sum_{j=1}^{n} \Phi_k(X_j, Y_j) \Phi_i(X_j, Y_j) k = 1, ..., m$$
 renglones, $e i = 1, ..., m$ columnas

sustituyendo la ec 2.7 en la ec 2.4 se obtiene

$$P_{e} = \sum_{j=1}^{n} \left[\sum_{k=1}^{m} \alpha_{kj} \, \phi_{k} \left(X_{e}, Y_{e} \right) \right] P_{j} \tag{2.8}$$

si se comparan las ecs 2.8 y 2.1 es claro que el factor de peso queda expresado como

$$W_{j} = \sum_{k=1}^{m} \alpha_{kj} \, \phi_{k} \left(X_{e}, Y_{e} \right)$$

Por consiguiente, en la interpolación sobre un área, la matriz con coeficientes α_{kj} se evalúa sólo una vez, puesto que éste es solamente función de las coordenadas de los puntos de las estaciones. Los factores de pesos son determinados a partir de los monomios $\phi_k(X_e, Y_e)$ en término de las coordenadas del sitio a ser interpolado, (X_e, Y_e) .

Para un conjunto de valores P observados, pertenecientes a la estación de medición j con coordenadas (X_j, Y_j) , puede expresarse un polinomio de 2° grado, por ejemplo, éste tiene 6 coeficientes y 6 monomios algebraicos y se representa como sigue

$$P = a_1 + a_2 X + a_3 Y + a_4 X^2 + a_5 X Y + a_6 Y^2$$
 (2.9)

Polinomio en el cual los coeficientes a_k se obtuvieron con un mínimo error a partir de la ec 2.7. Una vez calculados dichos coeficientes, la ecuación resultante se emplea para calcular la precipitación en cualquier punto X_t , Y_t .

$$P_{e} = a_{1} + a_{2} X_{e} + a_{3} Y_{e} + a_{4} X_{e}^{2} + a_{5} X_{e} Y_{e} + a_{6} Y_{e}^{2}$$

Por ejemplo, sean 4 estaciones con coordenadas (X_j, Y_j) , las precipitaciones correspondientes (P_j) y un punto de interés (X_k, Y_k) . En forma matricial se plantean las siguientes

$$[XY]_{ij} = \begin{bmatrix} X_1 , Y_1 \\ X_2 , Y_2 \\ X_3 , Y_3 \\ X_4 , Y_4 \end{bmatrix} ; [XY]_e = [X_e , Y_e] ; [P_j] = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

para un polinomio de 2º grado, de la ec 2.7, se tiene que

$$a_k = \sum_{j=1}^n P_j \left[\sum_{i=1}^m \psi_{ki} \phi_i (X_j, Y_j) \right]$$
; y además, los términos θ_{ki} , obtenidos al evaluar la función

polinomial dada en la TABLA 2.1, se calculan de la siguiente manera

$$\theta_{11} = \left[\phi_{1} \left(X_{1} , Y_{1} \right) \phi_{1} \left(X_{1} , Y_{1} \right) + \phi_{1} \left(X_{2} , Y_{2} \right) \phi_{1} \left(X_{2} , Y_{2} \right) + \phi_{1} \left(X_{3} , Y_{3} \right) \phi_{1} \left(X_{3} , Y_{3} \right) + \phi_{1} \left(X_{4} , Y_{4} \right) \cdot \phi_{1} \left(X_{4} , Y_{4} \right) \right]$$

$$\theta_{12} = \left[\phi_{1} \left(X_{1} , Y_{1} \right) \phi_{2} \left(X_{1} , Y_{1} \right) + \phi_{1} \left(X_{2} , Y_{2} \right) \phi_{2} \left(X_{2} , Y_{2} \right) + \phi_{1} \left(X_{3} , Y_{3} \right) \phi_{2} \left(X_{3} , Y_{3} \right) + \phi_{1} \left(X_{4} , Y_{4} \right) \cdot \phi_{1} \left(X_{4} , Y_{4} \right) \right]$$

de igual forma se calculan los demás términos θ_{13} , θ_{14} , θ_{15} , θ_{16} , θ_{21} , θ_{31} , θ_{41} ,..., θ_{66} ; obteniéndose así las matrices de coeficientes

donde los términos ψ_{ki} representan los elementos de la matriz inversa del cuadro anterior, matricialmente se tiene $[\theta_{ki}]^{-1} = [\psi_{ki}]$. Luego, los elementos α_{kj} de la ec 2.7 resultan de multiplicar las matrices cuyos elementos son ψ_{ki} y $\phi_i(X_j, Y_j)$; a continuación se obtienen algunos de estos

$$\alpha_{11} = [\psi_{11} \ \phi_1 \ (X_1 \ , \ Y_1) + \psi_{12} \ \phi_2 \ (X_1 \ , \ Y_1) + \cdots + \psi_{16} \ \phi_6 \ (X_1 \ , \ Y_1)]$$

$$\alpha_{21} = [\psi_{21} \ \phi_1 \ (X_1 \ , \ Y_1) + \psi_{22} \ \phi_2 \ (X_1 \ , \ Y_1) + \cdots + \psi_{26} \ \phi_6 \ (X_1 \ , \ Y_1)]$$

$$\alpha_{31} \ \cdots \ \alpha_{41} \ \cdots \ \alpha_{51} \ \cdots \cdots$$

$$\alpha_{61} = [\psi_{61} \ \phi_1 \ (X_1 \ , \ Y_1) + \psi_{62} \ \phi_2 \ (X_1 \ , \ Y_1) + \cdots + \psi_{66} \ \phi_6 \ (X_1 \ , \ Y_1)]$$

$$\alpha_{12} \ \cdots \ \alpha_{13} \ \cdots \ \alpha_{14} \ \cdots \cdots \ \alpha_{1n}$$
para $n = 4$, el último elemento es
$$\alpha_{1n} = \alpha_{14} = [\psi_{11} \ \phi_1 \ (X_4 \ , \ Y_4) + \cdots + \psi_{16} \ \phi_6 \ (X_4 \ , \ Y_4)]$$

por consiguiente, los elementos calculados forman la siguiente matriz

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} & \cdots & \alpha_{2n} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} & \cdots & \alpha_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{61} & \alpha_{62} & \alpha_{63} & \alpha_{64} & \cdots & \alpha_{6n} \end{bmatrix}$$

$$\begin{bmatrix} m & x & n \end{bmatrix}$$

finalmente, el valor interpolado en el punto e se obtiene aplicando la ec 2.8. También se puede calcular los coeficientes polinomiales a_k a partir de la ec 2.7 y por último emplear la ec 2.9.

2.2.2 Aproximación de Lagrange

Esta aproximación es referida algunas veces como "Interpolación de Lagrange" y, es una técnica de interpolación confiable (Brodlie, 1980); fue descubierto por el gran matemático francés Joseph Lagrange (1736-1813). Para la aplicación de esta técnica, los coeficientes a_k son evaluados de modo que el proceso P pudiera pasar a través de los valores observados en las estaciones. Por lo tanto, esta aproximación requiere que el número de monomios sea igual al número de estaciones, es decir que m = n. La ec 2.4 puede reescribirse como

$$P_{j} = \sum_{k=1}^{n} a_{k} \Phi_{k}(X_{j}, Y_{j}) \qquad ; \qquad j = 1, ..., n$$

y los coeficientes a_k se estiman como sigue

$$a_k = \sum_{j=1}^{n} \beta_{kj} P_j$$
 ; $k = 1, ..., n$

donde β_{kj} elementos de la matriz inversa, de $n \times n$, con elementos $\phi_k(X_j, Y_j)$ para k = 1, ..., n monomios (filas) y j = 1, ..., n estaciones (columnas).

así, sustituyendo los valores obtenidos de a_k , la expresión resultante para estimar P_{ϵ} es

$$P_{e} = \sum_{j=1}^{n} \left[\sum_{k=1}^{n} \beta_{kj} \phi_{k} (X_{e}, Y_{e}) \right] P_{j}$$
 (2.10)

y la expresión entre corchetes son los factores de peso

$$W_{j} = \sum_{k=1}^{n} \beta_{kj} \, \phi_{k} \, (X_{e}, Y_{e})$$

2.3 MÉTODO DE LA INTERPOLACIÓN INVERSA

La técnica de Interpolación Inversa es un esquema que pertenece a una familia de métodos de distancias pesadas (Tabios y Salas, 1985). La influencia de la lluvia en una estación para el cálculo de la misma en cualquier otro punto es inversamente proporcional a la distancia entre los dos puntos. El método da mayor peso a la estación más cercana y se reduce conforme la distancia es mayor, dependiendo del exponente β , (Abtew et al., 1993). Los pesos de la función de interpolación, ec 2.1, son solamente una función de la distancia entre el punto de interés (X_t, Y_t) y los puntos de medición (X_j, Y_j) para j = 1, ..., n.

Considerando la distancia d_{ij} como se expresó en la ec 2.2, el peso correspondiente al punto (X_i, Y_i) está dado en general por

$$W_{j} = \frac{F\left(d_{ej}\right)}{\sum_{i=1}^{n} F\left(d_{ei}\right)}$$
(2.11)

donde $F(d_{ij})$ representa una función dada de la distancia d_{ij} .

Una forma comúnmente usada de la función F(*) es $F(d_{ej}) = \left[\frac{1}{d_{ej}}\right]^{\beta}$

donde β es una constante apropiada. De acuerdo con lo anterior, sustituyendo la función F(*) en la ec 2.11 se obtiene

$$W_{j} = \frac{\left[\frac{1}{d_{ej}}\right]^{\beta}}{\sum_{j=1}^{n} \left[\frac{1}{d_{ej}}\right]^{\beta}}$$
(2.12)

Es importante notar que el factor de peso W_j tiende a cero cuando hay incremento en la distancia d_{ij} y/o el parámetro β . Cuando la potencia β toma valores de 1 δ 2, la técnica es

llamada como interpolación de la distancia inversa o interpolación del cuadrado de la distancia inversa, respectivamente. Según Abtew, et al., (1993), este método es mejor que los métodos de Thiessen y el de Interpolación Polinomial de primer grado.

2.4 MÉTODO DE INTERPOLACIÓN MULTICUADRÁTICA

En la Interpolación Multicuadrática, la influencia de cada estación de medición es representada por superficies cuadradas de conos como función de sus coordenadas (Hardy, 1971) (FIGURA 2.1). La estimación para un punto dado (X_t, Y_t) se obtiene por la suma de las contribuciones de todas las superficies. Esto se expresa matemáticamente como

$$P_e = \sum_{i=1}^{n} C_i d_{ei} \tag{2.13}$$

donde

 C_i es el coeficiente multicuadrático del punto (X_i, Y_i)

 d_{ei} distancia entre los puntos (X_e, Y_e) y (X_i, Y_i) .

Para estimar los coeficientes C_i y expresar la ec 2.13 en términos de los factores de pesos, se usará esta ecuación para cada punto (X_i, Y_i) como

$$P_j = \sum_{i=1}^n C_i d_{ij}$$
 ; $j = 1, 2, ..., n$

y los coeficientes C_i se determinan como sigue

$$C_i = \sum_{j=1}^{n} \delta_{ij} P_j$$
 ; $i = 1, 2, ..., n$ (2.14)

donde δ_{ij} es un elemento de la matriz inversa de $n \times n$, cuyos elementos son las distancias d_{ij} entre las n estaciones. Sustituyendo la ec 2.14 en la ec 2.13 tenemos

$$P_{e} = \sum_{i=1}^{n} d_{ei} \sum_{j=1}^{n} \delta_{ij} P_{j}$$

0

$$P_{e} = \sum_{j=1}^{n} \left[\sum_{i=1}^{n} \delta_{ij} d_{ei} \right] P_{j}$$
 (2.15)

y nuevamente los factores de peso para cada estación son

$$W_j = \sum_{i=1}^n \delta_{ij} d_{ei}$$
 ; $j = 1, 2, ..., n$

Por ejemplo, para 4 estaciones i = 1, 2, ..., 4 y j = 1, 2, ..., 4, la matriz de distancias para las estaciones $[d_a]$ es

$$\begin{bmatrix} d_{ij} \end{bmatrix} = \begin{bmatrix} 0 & d_{12} & d_{13} & d_{14} \\ d_{21} & 0 & d_{23} & d_{24} \\ d_{31} & d_{32} & 0 & d_{34} \\ d_{41} & d_{42} & d_{43} & 0 \end{bmatrix}$$
$$\begin{bmatrix} n \times n \end{bmatrix} = \begin{bmatrix} 4 \times 4 \end{bmatrix}$$

$$\begin{bmatrix} \delta_{ij} \end{bmatrix} = \begin{bmatrix} D_{ij} \end{bmatrix}^{-1} = \begin{bmatrix} \delta_{11} & \delta_{12} & \delta_{13} & \delta_{14} \\ \delta_{21} & \delta_{22} & \delta_{23} & \delta_{24} \\ \delta_{31} & \delta_{32} & \delta_{33} & \delta_{34} \\ \delta_{41} & \delta_{42} & \delta_{43} & \delta_{44} \end{bmatrix}$$

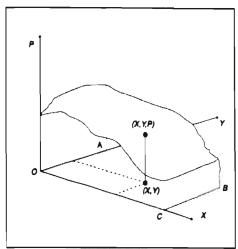


FIG 2.1 Esquema de superficie en la interpolación multicuadrática.

y empleando la ec 2.14 se obtienen los coeficientes multicuadráticos, es decir

$$C_{i} = \sum_{j=1}^{n} \delta_{ij} P_{j} = \begin{bmatrix} \delta_{11} P_{1} + \delta_{12} P_{2} + \delta_{13} P_{3} + \delta_{14} P_{4} \\ \delta_{21} P_{1} + \delta_{22} P_{2} + \delta_{23} P_{3} + \delta_{24} P_{4} \\ \delta_{31} P_{1} + \delta_{32} P_{2} + \delta_{33} P_{3} + \delta_{34} P_{4} \\ \delta_{41} P_{1} + \delta_{42} P_{2} + \delta_{43} P_{3} + \delta_{44} P_{4} \end{bmatrix}$$

$$W_{j} = \sum_{i=1}^{n} \delta_{ij} d_{ei} = \begin{bmatrix} \delta_{11} d_{e1} + \delta_{12} d_{e2} + \delta_{13} d_{e3} + \delta_{14} d_{e4} \\ \delta_{21} d_{e1} + \delta_{22} d_{e2} + \delta_{23} d_{e3} + \delta_{24} d_{e4} \\ \delta_{31} d_{e1} + \delta_{32} d_{e2} + \delta_{33} d_{e3} + \delta_{34} d_{e4} \\ \delta_{41} d_{e1} + \delta_{42} d_{e2} + \delta_{43} d_{e3} + \delta_{44} d_{e4} \end{bmatrix}$$

$$P_{e} = \sum_{j=1}^{n} W_{j} P_{j} = \begin{bmatrix} \left(\delta_{11} d_{e1} + \delta_{12} d_{e2} + \delta_{13} d_{e3} + \delta_{14} d_{e4}\right) P_{1} \\ \left(\delta_{21} d_{e1} + \delta_{22} d_{e2} + \delta_{23} d_{e3} + \delta_{24} d_{e4}\right) P_{2} \\ \left(\delta_{31} d_{e1} + \delta_{32} d_{e2} + \delta_{33} d_{e3} + \delta_{34} d_{e4}\right) P_{3} \\ \left(\delta_{41} d_{e1} + \delta_{42} d_{e2} + \delta_{43} d_{e3} + \delta_{44} d_{e4}\right) P_{4} \end{bmatrix}$$

2.5 MÉTODO DE INTERPOLACIÓN ÓPTIMA

Este método consiste en minimizar la varianza del error medio de interpolación, para así entonces determinar los factores de peso de cada estación. La varianza del error medio está expresada en términos de los pesos W_j y de la correlación espacial.

Considere que P_{ϵ} es el proceso a determinarse y, además se emplee la ec 2.1 para estimar P_{ϵ} . Sea \hat{P}_{ϵ} el valor estimado de P_{ϵ} , por medio de dicha ecuación, entonces la minimización de la varianza del error de interpolación σ_{ϵ}^2 , la cual está dada por

$$\sigma_{e}^{2} = VAR \left[P_{e} - \hat{P}_{e} \right] = VAR \left[P_{e} - \sum_{j=1}^{n} W_{j} P_{j} \right]$$
 (2.16)

donde VAR [*] se entiende por varianza del error

expandiendo la ec 2.16 se obtiene

$$\sigma_{e}^{2} = \sigma^{2} - 2 \sum_{j=1}^{n} W_{j} COV \left(P_{e} P_{j}\right) + \sum_{j=1}^{n} \sum_{i=1}^{n} W_{i} W_{j} COV \left(P_{i} P_{j}\right)$$
(2.17)

donde σ^2 es la varianza del proceso P_e , y $COV(P_i, P_j)$ representa la covarianza entre P_i y P_j

minimizando la ecuación precedente con respecto a los pesos W_j ; para j = 1,...,n estaciones e igualando cada una de ellas a cero, el resultado es

$$\sum_{i=1}^{n} W_i COV(P_i P_j) = COV(P_e P_j) \qquad ; \qquad j = 1, ..., n \qquad (2.18)$$

si consideramos que la varianza es homogénea los términos de la covarianza de la ec 2.18 pueden ser reemplazados por

$$COV(P_i|P_i) = \sigma_i \sigma_i \rho(P_i|P_i) = \sigma^2 \rho(P_i|P_i)$$
 (2.19)

y

$$COV(P_{e}P_{j}) = \sigma^{2} \rho (P_{e}P_{j})$$
 (2.20)

donde $\rho (P_i P_j)$ y $\rho (P_e P_j)$ son los coeficientes de correlación espacial.

Para estimar estos coeficientes de correlación es necesario definir una función de correlación espacial. Esta expresa continuidad espacial, puesto que se trata de una variable aleatoria **P**. Para ello, se considera que la estructura de correlación espacial es homogénea e isotrópica.

Así ρ $(P_i P_j)$ puede escribirse como una función de la distancia, por lo tanto, ρ $(P_i P_j)$ viene a ser ρ (d_{ij}) en la que d_{ij} es la distancia entre los puntos (X_i, Y_i) y (X_j, Y_j) .

En consecuencia, la ec 2.18 se reescribe como

$$\sum_{i=1}^{n} W_{i} \rho (d_{ij}) = \rho (d_{ej}) \qquad ; \qquad j = 1, ..., n$$
 (2.21)

y los factores de peso se obtienen por resolución del sistema de ecuaciones lineales, ec 2.21.

En la anterior, los valores de la función de correlación espacial para los puntos ij y para el punto e, los factores de peso expresados en forma matricial son

$$[\rho (d_{ij})] = \begin{bmatrix} \rho (d_{11}) & \rho (d_{12}) & \cdots & \rho (d_{1n}) \\ \rho (d_{21}) & \rho (d_{22}) & \cdots & \rho (d_{2n}) \\ \vdots & \vdots & \ddots & \vdots \\ \rho (d_{nl}) & \rho (d_{n2}) & \cdots & \rho (d_{nn}) \end{bmatrix} [\rho (d_{ej})] = \begin{bmatrix} \rho (d_{e1}) \\ \rho (d_{e2}) \\ \vdots \\ \rho (d_{en}) \end{bmatrix} [W] = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_n \end{bmatrix}$$

$$[n \times n]$$

$$[n \times 1]$$

por lo tanto la solución es

$$[W] = [\rho(d_{ij})]^{-1} [\rho(d_{ej})] = \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} & \cdots & \mathbf{R}_{1A} \\ \mathbf{R}_{21} & \mathbf{R}_{22} & \cdots & \mathbf{R}_{2A} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{R}_{nI} & \mathbf{R}_{n2} & \cdots & \mathbf{R}_{nn} \end{bmatrix} \begin{bmatrix} \rho(d_{e1}) \\ \rho(d_{e2}) \\ \vdots \\ \rho(d_{en}) \end{bmatrix}$$

$$[n \times n]$$

$$[n \times 1]$$

donde \mathbf{R}_{ij} son los elementos de la matriz inversa de la matriz $[\rho(d_{ij})]$

La varianza del error para la interpolación óptima en el punto (X_e, Y_e) puede obtenerse por sustitución de las ecs 2.18 a la 2.21 en la ec 2.17, es decir

$$\hat{\sigma}_{e}^{2} = \sigma^{2} - 2 \sum_{j=1}^{n} W_{j} \sigma^{2} \rho \left(P_{e} P_{j} \right) + \sum_{j=1}^{n} \sum_{i=1}^{n} W_{i} W_{j} \sigma^{2} \rho \left(P_{i} P_{j} \right)$$

$$\hat{\sigma}_{e}^{2} = \sigma^{2} - 2 \sigma^{2} \sum_{j=1}^{n} W_{j} \rho \left(d_{ej} \right) + \sigma^{2} \sum_{j=1}^{n} W_{j} \rho \left(d_{ej} \right)$$

$$\hat{\sigma}_{e}^{2} = \sigma^{2} - \sigma^{2} \sum_{j=1}^{n} W_{j} \rho \left(d_{ej} \right)$$

$$\hat{\sigma}_{e}^{2} = \sigma^{2} \left[1 - \sum_{j=1}^{n} W_{j} \rho \left(d_{ej} \right) \right]$$

Para que el estimador \hat{P}_e sea insesgado debe satisfacerse que la suma de los factores de

peso sea igual a la unidad, esto es

$$\sum_{j=1}^{n} W_{j} = 1 \tag{2.22}$$

Combinando las ecs 2.17 y 2.22, se añade un término a la expresión con la que es posible hallar una nueva serie de valores de los pesos W_j , y se obtienen al minimizar la expresión resultante

$$\sigma_{e}^{2} = \sigma^{2} - 2 \sum_{j=1}^{n} W_{j} COV(P_{e} P_{j}) + \sum_{j=1}^{n} \sum_{i=1}^{n} W_{i} W_{j} COV(P_{i} P_{j}) + 2 \lambda \left[\sum_{j=1}^{n} W_{j} - 1 \right]$$
 (2.23)

donde λ es un multiplicador de Lagrange

minimizando esta función con respecto a los factores de peso se obtiene que

$$\sum_{i=1}^{n} W_{i} COV(P_{i} P_{j}) + \lambda = COV(P_{e} P_{j}) \qquad ; \qquad j = 1, ..., n$$
(2.24)

esta expresión puede escribirse en términos de la correlación isotrópica

$$\sum_{i=1}^{n} W_i \rho \left(d_{ij}\right) + \lambda = \rho \left(d_{ej}\right) \qquad ; \qquad j = 1, ..., n$$
 (2.25a)

y la condición

$$\sum_{i=1}^{n} W_i = 1 \tag{2.25b}$$

El sistema lineal de ecuaciones 2.25 puede resolverse simultáneamente para obtener los factores de peso W_i , donde los términos matriciales son

$$\begin{bmatrix} \mathbf{W}_{i} \\ \mathbf{W}_{2} \\ \vdots \\ \mathbf{W}_{n} \\ \lambda \end{bmatrix} = \begin{bmatrix} \rho(d_{e1}) \\ \rho(d_{e2}) \\ \vdots \\ \rho(d_{en}) \\ 1 \end{bmatrix} ; [\rho(d_{ij})] = \begin{bmatrix} \rho(d_{11}) \rho(d_{12}) \cdots \rho(d_{1n}) & 1 \\ \rho(d_{21}) \rho(d_{22}) \cdots \rho(d_{2n}) & 1 \\ \vdots & \ddots & \vdots & 1 \\ \rho(d_{nl}) \rho(d_{n2}) \cdots \rho(d_{nn}) & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix}$$

con los cuales se forma el sistema de ecuaciones siguiente

igualmente, la varianza del error de la interpolación óptima real se obtiene con la siguiente expresión

$$\hat{\sigma}_{e}^{2} = \sigma^{2} \left[1 - \sum_{j=1}^{n} W_{j} \rho \left(d_{ej} \right) \right] - \lambda$$

ESTIMACIÓN DE LA FUNCIÓN DE CORRELACIÓN ESPACIAL

La función de correlación espacial, ρ (d_{ij}), se obtiene de observaciones entre n (n-1)/2 pares de estaciones y la distancia entre ellas. Asumiendo que en el área de estudio (Cuenca del Río Papaloapan) el comportamiento de la variable aleatoria P es homogéneo e isotrópico, la función de correlación puede ser representada por alguno de los siguientes modelos propuestos por Yevjevich y Karplus en 1973, (**Tabios y Salas, 1985**).

a) Modelo inverso:
$$\rho (d_{ij}) = \frac{1}{1 + d_{ij}/c}$$

b) Modelo de potencia inversa:
$$\rho(d_{ij}) = \frac{1}{(1 + d_{ij}/c)^a}$$

c) Modelo exponencial:
$$\rho(d_{ij}) = e^{-d_{ij}/c}$$

donde d_{ij} es la distancia entre el par de estaciones a y c son coeficientes (c es conocido como radio característico)

La estimación de la función de correlación puede efectuarse, por ejemplo, mediante regresión con mínimos cuadrados, por el criterio de máxima verosimilitud o por métodos iterativos.

Para hacer el ajuste de las funciones de correlación, en primer lugar, se estiman las correlaciones entre estaciones, así para las estaciones i y j, el coeficiente de correlación muestral está dado por

$$\hat{\rho}\left(d_{ij}\right) = \frac{1}{N-1} \frac{\sum_{t=1}^{N} \left[P_i^t - \hat{m}_i\right] \left[P_j^t - \hat{m}_j\right]}{\hat{S}_i \hat{S}_j}$$
(2.26)

donde

 P_i^t son las observaciones de las series de tiempo del proceso P en la estación i

 P_i^t son las observaciones de las series de tiempo del proceso P en la estación j

 \hat{m}_i es la media de las observaciones en la estación i

 \hat{m}_i es la media de las observaciones en la estación j

 \hat{S}_i es la desviación estándar insesgada de las observaciones en la estación i

 \hat{S}_{j} es la desviación estándar insesgada de las observaciones en la estación j

N es el número total de datos históricos en común entre el par de estaciones

La distancia d_{ij} entre las estaciones se calcula con la ec 2.2. Entonces, para n estaciones, hay n (n-1)/2 pares de estaciones las cuales son usadas en el ajuste de las funciones de correlación espacial (TABLA 4.4).

2.6 MÉTODO DE INTERPOLACIÓN KRIGING

La palabra kriging procede del nombre de un geólogo sudafricano, D.G. Krige y se le ha considerado el precursor del método. Puesto que tuvo mayor difusión en la Escuela de Minas de París, se emplea el término francés "krigeage" y, debido a la gran difusión de la literatura anglosajona es de uso común la palabra "kriging"; también se ha optado por el término "krigeado" (Samper y Carrera, 1990).

En cuanto a la técnica, se han propuesto y desarrollado varias formas y se han aplicado a estudios hidrológicos. Este método es similar a la interpolación óptima, excepto que la función de correlación espacial se reemplaza por el semivariograma. Como en la interpolación óptima, la interpolación kriging requiere que el proceso observado sea estacionario de segundo orden. Esencialmente, este supone homogeneidad en las medias, varianzas y covarianzas. Como consecuencia de lo anterior se asume una estructura de covarianza espacial isotrópica. Por consiguiente: la varianza en un punto se representa por $VAR(P_i) = \sigma^2$; i = 1, ..., n estaciones y; la covarianza entre las estaciones i y j, se representa por $COV(P_i, P_j) = COV(d_{ij})$, (Tabios y Salas, 1985).

El semivariograma isotrópico y homogéneo esta definido como

$$\gamma(d_{ij}) = \frac{1}{2} VAR[P_i - P_j]$$

0

$$\gamma (d_{ij}) = \sigma^2 - COV(d_{ij})$$
 ; $i, j = 1,..., n$ (2.27)

donde $\gamma(d_{ij})$ es el semivariograma como una función de la distancia d_{ij} entre los puntos $i \ y \ j$. Es una aproximación del semivariograma y representa una función de dependencia espacial e indica qué tan parecidas son las muestras que están separadas una distancia d_{ij} (Pérez Brito, 1992).

sustituyendo la ec 2.27 por $COV(P_i|P_j) = COV(d_{ij})$, la ec 2.17 se reescribe como

$$\sigma_{e}^{2} = \sigma^{2} - 2 \sum_{j=1}^{n} W_{j} \left[\sigma^{2} - \gamma \left(d_{ej} \right) \right] + \sum_{j=1}^{n} \sum_{i=1}^{n} W_{i} W_{j} \left[\sigma^{2} - \gamma \left(d_{ij} \right) \right]$$
 (2.28)

2.6.1 Kriging ordinario y restringido

Minimizando la ec 2.28 respecto a los factores de peso, esto es igualar a cero la derivada de dicha ecuación, da como resultado

$$\sum_{i=1}^{n} W_i \left[\gamma \left(d_{ij} \right) - \sigma^2 \right] = \gamma \left(d_{ej} \right) - \sigma^2 \quad ; \quad j = 1,..., n$$
 (2.29)

este sistema es lineal y siempre tiene solución única ya que el determinante de la matriz del sistema es no nulo, por ser dicha matriz de coeficientes definida positiva y puede resolverse simultáneamente para estimar los factores de peso W_i . Note que esta matriz no depende de d_{ej} por lo que es fácil calcular los coeficientes W_i para distintos valores d_{ej} , simplemente cambiando el término independiente.

Como en el método de interpolación óptima, la varianza del error de interpolación $\hat{\sigma}_e^2$ puede ser obtenido combinando las ecs 2.28 y 2.29, de modo que

$$\hat{\sigma}_{e}^{2} = \sigma^{2} \left[1 - \sum_{j=1}^{n} W_{j} \right] + \sum_{j=1}^{n} W_{j} \gamma (d_{ej})$$

además, el valor estimado \vec{P}_e será insesgado si se adiciona al sistema la ec 2.22. Por lo tanto, en este caso, la ecuación también puede resolverse a partir de

$$\sum_{i=1}^{n} W_i \gamma(d_{ij}) + \lambda = \gamma(d_{ej}) \quad ; \quad j = 1,..., n$$
 (2.30a)

y

$$\sum_{i=1}^{n} W_i = 1 \tag{2.30b}$$

sistema lineal de n+1 ecuaciones con n+1 incógnitas, el cual puede ser resuelto simultáneamente para obtener los factores de peso. En este caso, la varianza del error de interpolación es

$$\hat{\sigma}_{e}^{2} = \sum_{j=1}^{n} W_{j} \gamma (d_{ej}) + \lambda$$

La solución en forma matricial se puede representar con los términos siguientes

$$\begin{bmatrix} \boldsymbol{W} \end{bmatrix} = \begin{bmatrix} \boldsymbol{W}_{1} \\ \boldsymbol{W}_{2} \\ \vdots \\ \boldsymbol{W}_{n} \end{bmatrix} ; \quad \begin{bmatrix} \boldsymbol{\gamma} \left(\boldsymbol{d}_{ij} \right) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_{11} & \boldsymbol{\gamma}_{12} & \cdots & \boldsymbol{\gamma}_{1n} \\ \boldsymbol{\gamma}_{21} & \boldsymbol{\gamma}_{22} & \cdots & \boldsymbol{\gamma}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\gamma}_{nl} & \boldsymbol{\gamma}_{n2} & \cdots & \boldsymbol{\gamma}_{nn} \end{bmatrix} ; \quad \begin{bmatrix} \boldsymbol{\gamma} \left(\boldsymbol{d}_{ej} \right) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_{e1} \\ \boldsymbol{\gamma}_{e2} \\ \boldsymbol{\gamma}_{e3} \\ \boldsymbol{\gamma}_{e4} \end{bmatrix}$$

para la ec 2.29 el sistema de ecuaciones lineales a resolver es

$$j = 1 ; \quad W_{1} \left[\gamma_{11} - \sigma^{2} \right] + W_{2} \left[\gamma_{21} - \sigma^{2} \right] + \dots + W_{n} \left[\gamma_{nl} - \sigma^{2} \right] = \gamma_{e1} - \sigma^{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$j = n ; \quad W_{1} \left[\gamma_{1n} - \sigma^{2} \right] + W_{2} \left[\gamma_{2n} - \sigma^{2} \right] + \dots + W_{n} \left[\gamma_{nn} - \sigma^{2} \right] = \gamma_{en} - \sigma^{2}$$

y que su solución esta dada por

$$[\Upsilon(d_{ij})] [W_i] = [\Upsilon(d_{ej})]$$

$$[W_i] = [\Upsilon(d_{ij})]^{-1} [\Upsilon(d_{ej})]$$

para las ecs (2.30a) y (2.30b)

$$\begin{bmatrix} \boldsymbol{W}_1 \\ \boldsymbol{W}_2 \\ \vdots \\ \boldsymbol{W}_n \\ \lambda \end{bmatrix} ; \begin{bmatrix} \boldsymbol{\gamma}(\boldsymbol{d}_{ij}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_{11} & \boldsymbol{\gamma}_{12} & \cdots & \boldsymbol{\gamma}_{1n} & 1 \\ \boldsymbol{\gamma}_{21} & \boldsymbol{\gamma}_{22} & \cdots & \boldsymbol{\gamma}_{2n} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \boldsymbol{\gamma}_{nl} & \boldsymbol{\gamma}_{n2} & \cdots & \boldsymbol{\gamma}_{nn} & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix} ; \begin{bmatrix} \boldsymbol{\gamma}(\boldsymbol{d}_{ej}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_{e1} \\ \boldsymbol{\gamma}_{e2} \\ \vdots \\ \boldsymbol{\gamma}_{en} \\ 1 \end{bmatrix}$$

matricialmente, se tiene que el esquema kriging ordinario restringido es

$$\begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{21} & \cdots & \mathbf{Y}_{nl} & \mathbf{1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{Y}_{1n} & \mathbf{Y}_{2n} & \cdots & \mathbf{Y}_{nn} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{1} \\ \vdots \\ \vdots \\ \mathbf{W}_{n} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_{e1} \\ \vdots \\ \mathbf{W}_{n} \\ \lambda \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{G} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{W} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{F} \end{bmatrix}$$

2.6.2 Kriging universal

Otro esquema de la interpolación kriging fue propuesta por **Delfiner y Delhome** (1975), éste intenta incluir la no homogeneidad en la media del proceso, la técnica propuesta se llamó **kriking universal**. En este método la media m_e en el punto (X_e, Y_e) se representa por una combinación lineal de las medias de las estaciones m_i , como en la ec 2.1, tal como

$$m_e = \sum_{j=1}^n W_j m_j \tag{2.31}$$

donde

 W_i es el factor de peso de la estación j para j = 1,..., n

como quiera que las medias son desconocidas, estas pueden ser representadas por una tendencia polinomial como la ec 2.3. Reescribiendo la ec 2.31 en términos de la tendencia polinomial resulta (Tabios y Salas, 1985)

$$\sum_{k=1}^{m} a_k \, \varphi_k \left(X_e, Y_e \right) = \sum_{j=1}^{n} W_j \left[\sum_{k=1}^{m} a_k \, \varphi_k \left(X_j, Y_j \right) \right]$$

o como alternativa

$$\sum_{k=1}^{m} a_k \, \varphi_k \left(X_e, Y_e \right) = \sum_{k=1}^{m} a_k \left[\sum_{j=1}^{m} W_j \, \varphi_k \left(X_j, Y_j \right) \right]$$

por consiguiente, el k-ésimo monomio en el punto (X_i, Y_i) es

$$\phi_k(X_e, Y_e) = \sum_{j=1}^n W_j \phi_k(X_j, Y_j) \qquad ; \qquad k = 1,..., m$$
 (2.32)

imponiendo la anterior ecuación a que satisfaga la ec 2.28, la función resultante es

$$\sigma_{e}^{2} = \sigma^{2} - 2 \sum_{j=1}^{n} W_{j} \left[\sigma^{2} - \gamma \left(d_{ej} \right) \right] + \sum_{j=1}^{n} \sum_{i=1}^{n} W_{i} W_{j} \left[\sigma^{2} - \gamma \left(d_{ij} \right) \right]$$

$$- 2 \sum_{k=1}^{m} \lambda_{k} \left[\sum_{j=1}^{n} W_{j} \Phi_{k} \left(X_{j}, Y_{j} \right) - \Phi_{k} \left(X_{e}, Y_{e} \right) \right]$$
(2.33)

la cual es una ecuación a ser minimizada, por tanto, derivándola con respecto a los factores de peso y a los multiplicadores de Lagrange, los pesos y los multiplicadores se calculan por la resolución de las siguientes ecuaciones:

$$\sum_{i=1}^{n} W_{i} Y (d_{ij}) + \sum_{k=1}^{m} \lambda_{k} \Phi_{k} (X_{j}, Y_{j}) = Y (d_{ej}) ; j = 1,..., n$$

$$\sum_{j=1}^{n} W_{j} = 1$$

$$\sum_{i=1}^{n} W_{i} \Phi_{k} (X_{i}, Y_{i}) = \Phi_{k} (X_{e}, Y_{e}) ; k = 1,..., m$$
(2.34)

donde

n es el número de estaciones en estudio, y m es el número de monomios.

Además, la varianza del error de interpolación se obtiene con la siguiente ecuación

$$\hat{\sigma}_{e}^{2} = \sum_{j=1}^{n} W_{j} \left[\gamma \left(d_{ej} \right) + \sum_{k=1}^{m} \lambda_{k} \Phi_{k} \left(X_{j}, Y_{j} \right) \right]$$

Las investigaciones realizadas acerca del grado polinomial de la función que representa la media (Volpi-Gambolati, 1978 y Gambolati-Volpi, 1979), al seleccionar un grado polinomial arbitrario, pueden inducir a una evaluación inapropiada del semivariograma. De hecho, al incrementar el grado polinomial se comete un error en la interpolación. En cambio, ellos proponen la asignación a priori de la media m_j , j = 0, 1, ..., n ajeno al marco de la técnica kriging. Algunas veces es recomendable una media constante.

Entonces, considerando la ec 2.31 como restricción en la ec 2.28, además de obligar que la suma de los factores de pesos debe sea igual a uno, el sistema lineal de ecuaciones resultantes a resolver es

$$\sum_{i=1}^{n} W_{i} \gamma \left(d_{ij}\right) + \lambda_{0} + \lambda_{1} m_{j} = \gamma \left(d_{ej}\right) \qquad ; \qquad j = 1,...,n$$

$$\sum_{i=1}^{n} W_{i} = 1$$

$$\sum_{i=1}^{n} W_{i} m_{i} = m_{0}$$

$$(2.35)$$

La varianza del error de interpolación está dada correspondientemente por

$$\hat{\sigma}_{e}^{2} = \sum_{j=1}^{n} W_{j} \left[\gamma \left(d_{ej} \right) + \lambda_{1} m_{j} \right] + \lambda_{0}$$

En notación matricial la ec 2.34 que se deberá resolver, "esquema kriging universal", es la siguiente:

$$\begin{bmatrix} 0 & \gamma_{12} & \gamma_{13} \cdots \gamma_{1n} & \varphi_{11} & \varphi_{21} \cdots \varphi_{m1} \\ \gamma_{21} & 0 & \gamma_{23} \cdots \gamma_{2n} & \varphi_{12} & \varphi_{22} \cdots \varphi_{m2} \\ \gamma_{31} & \gamma_{32} & 0 \cdots \gamma_{3n} & \varphi_{13} & \varphi_{23} \cdots \varphi_{m3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \gamma_{n3} \cdots 0 & \varphi_{1n} & \varphi_{2n} \cdots \varphi_{mn} \\ \varphi_{11} & \varphi_{12} & \varphi_{13} \cdots \varphi_{1n} & 0 & 0 & \cdots 0 \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \cdots \varphi_{2n} & 0 & 0 & \cdots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi_{m1} & \varphi_{m2} & \varphi_{m3} \cdots \varphi_{mn} & 0 & 0 & \cdots 0 \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ \vdots \\ W_n \\ \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{bmatrix} = \begin{bmatrix} \gamma_{e1} \\ \gamma_{e2} \\ Y_{e3} \\ \vdots \\ Y_{en} \\ \varphi_{1e} \\ \varphi_{2e} \\ \vdots \\ \varphi_{me} \end{bmatrix}$$

Dada la complejidad de la evaluación de la función que representa la media m_i , en el presente trabajo se desarrollan únicamente los esquemas de la técnica kriging ordinario restringido y universal, con polinomios de primer y segundo grado; ya que con estos se obtienen resultados confiables.

ESTIMACIÓN DEL VARIOGRAMA

Suponiendo que para cualquier punto, en un campo de lluvia, el proceso de precipitación es homogéneo e isotrópico, de igual forma se obtendrán características a cerca de dicho proceso para la intensidad de lluvia registrada en estaciones dentro la Cuenca del Río Papaloapan (TABLA 4.4). Tal es el caso del variograma que se considera en este trabajo. Siendo que en la literatura se han propuesto modelos de variogramas llamados semivariogramas, algunos de estos modelos son:

a) Modelo lineal: Este es el modelo más simple y se escribe como sigue

$$\gamma(d_{ij}) = a d_{ij}$$

b) Modelo monómico: Estos modelos se usan para representar fenómenos no estacionarios, son de la forma siguiente

$$\gamma(d_{ij}) = a d_{ij}^b$$

donde b ha de pertenecer al intervalo (0, 2) sin tomar sus valores extremos.

c) Modelo exponencial: viene dado por

$$\gamma(d_{ij}) = a \left[1 - \exp\left(-c d_{ij}\right)\right]$$
; $c > 0$

esta función alcanza el valor asintótico

$$\lim_{d_{ij}\to\infty} \left\{ a \left[1 - \exp\left(-c \ d_{ij}\right) \right] \right\} = a$$

se considera a' como alcance efectivo y para fines prácticos $\gamma(d_{ij}) = 0.95 \ a$, que es aproximadamente igual a identidad $a' = 3 \ c$

d) Modelo gaussiano: la expresión representativa de este modelo es

$$\gamma(d_{ij}) = a \left[1 - \exp\left(-c \ d_{ij}^2\right) \right] \quad ; \quad c > 0$$

y también alcanza el valor asintótico

$$\lim_{d_{ij}\to\infty} \gamma(d_{ij}) = \lim_{d_{ij}\to\infty} a\left[1 - \exp\left(-c d_{ij}^2\right)\right] = a$$

para efectos prácticos se emplea el alcance $a' = \sqrt{3c}$, valor para el cual el variograma es igual a 0.95 a

e) Modelo esférico: su ecuación viene dada por

$$\gamma(d_{ij}) = \frac{1}{2} a \left[3 \frac{d_{ij}}{c} - \left(\frac{d_{ij}}{c} \right)^3 \right] , \quad d_{ij} \leq c$$

$$\gamma(d_{ij}) = a , \quad d_{ij} > c$$

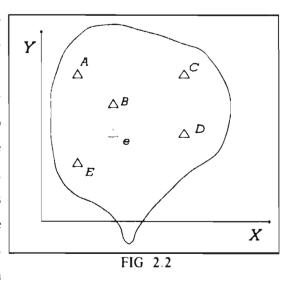
sus características son el alcance c y el valor asintótico a. En general, a y c son constantes apropiadas del modelo específico y d_{ij} es la distancia entre dos puntos.

El semivariograma entre las estaciones i y j se calcula como

$$\hat{\mathbf{Y}}\left(d_{ij}\right) = \frac{1}{2N} \sum_{t=1}^{N} \left\{ \left[P_i^t - \hat{\mathbf{m}}_i \right] - \left[P_j^t - \hat{\mathbf{m}}_j \right] \right\}^2 \tag{2.36}$$

donde

 P_k^t representa las observaciones de la serie de tiempo en la estación k


 \hat{m}_k es la estación k

N es el número total de observaciones en común entre el par de estaciones

La distancia d_{ij} , como ya se ha mencionado antes, se calcula con la ec 2.2. Por consiguiente, para un total de n estaciones hay n (n-1)/2 pares de puntos, con los que se ajustarán los modelos del variograma.

EJEMPLO DE APLICACIÓN DE LAS TÉCNICAS DE INTERPOLACIÓN

En esta parte se ejemplifica el uso de las técnicas de interpolación, la obtención de parámetros de ajuste de la función de correlación espacial y el variograma. Para este ejemplo, se propone una distribución de cinco estaciones dentro de una cuenca como la que se muestra en la FIGURA 2.2. En la TABLA 2.2 se presenta los valores históricos para las cinco estaciones (eventos extremos de intensidad de lluvia), las coordenadas respectivas de dichas estaciones están en la

TABLA 2.3. En este caso, se prefirió interpolar el evento máximo correspondiente al último año de los registros en el punto e cuyas coordenadas son (4,6), en km.

TABLA 2.2 Registro histórico y sus estadísticos para el ejemplo de interpolación.

1	Intensidad de lluvia, I_j , en mm/h					
años	I,	I ₂	I_{j}	I,	I ₅	
1960	52	36	21	95	45	
1961	45	12	10	13	85	
1962	69	3	63	91	25	
1963	80	67	92	65	71	
1964	32	32	68	43	43	
1965	80	43	5	56	34	
1966	47	36	76	3	26	
1967	84	11	30	76	40	
1968	60	80	110	130	90	
Media	61.000	35.550	52.770	63.550	51.000	
Desv. Est.	18.337	25.618	37.632	40.336	24.718	

Para conocer el evento en un punto e, mismo sitio donde se pretende ubicar una estructura, normalmente suele recurrirse a métodos como el de la precipitación media por

promedio aritmético, polígonos de Thiessen o el trazo de isoyetas; en este último el evento que corresponde al punto de interés se calcula interpolando linealmente entre dos isolíneas consecutivas.

En una mayoría de los casos, con las metodologias anteriores resultan ser una estimación aproximada, ya que con el primer y segundo métodos tiende a sobreestimarse los eventos de diseño; con el tercero no se tiene precisión al hacer una interpolación lineal. Por ejemplo, si se quiere calcular un gasto de diseño Q_d , para cierta estructura en determinado lugar e dentro de una cuenca, con el Método Racional, una diferencia en la intensidad de lluvia I_d^T de tan solo 10 mm (1 cm) se transforma en un error importante en la estimación del gasto al multiplicar dicha intensidad por el área de la cuenca.

TABLA 2.3 Datos para el ejemplo de interpolación.

Estación <i>j</i>		Coordenad	Intensidad I en mm/h	
		X_j Y_j		
1	Α	2.0	10.0	60
2	В	4.0	8.0	80
3	С	8.0	10.0	110
4	D	8.0	6.0	130
5	Ε	2.0	4.0	90
Sitio e		4.0	6.0	?

A continuación se realizan los cálculos de interpolación de intensidad de lluvia para el punto e haciendo uso de los métodos vistos en este capítulo.

Método de Thiessen

Según este método el proceso estimado en el punto e es igual al valor observado en la estación más próxima dentro la cuenca. Las distancias entre las estaciones y este sitio se calcularon con la ec 2.2, estas son:

Estación, j	1	2	3	4	5
Distancia, d_{ej} , en km	4.472	2.000	5.657	4.000	2.828

por lo tanto, la estación más cercana es $d_{e2} = 2$ km, y la Intensidad de Iluvia correspondiente a la estación 2 es $I_e = 80$ mm/h.

Método de Interpolación Polinomial

a) Aproximación por mínimos cuadrados

Para un polinomio de 1er. grado, m = 3, los monomios $\phi_k(X_j, Y_j)$ $y \phi_k(X_e, Y_e)$ (TABLA 2.1) son los que aparecen en seguida

\ Estación	1	2	3	4	5	Punto e
k	$\Phi_{k}(X_{1}, Y_{1})$	$\Phi_{k}(X_{2},Y_{2})$	$\Phi_k(X_3, Y_3)$	$\Phi_k(X_4,Y_4)$	$\Phi_k(X_5, Y_5)$	$\Phi_k(X_e,Y_e)$
1 2	1 2	1 4	1 8	1 8	1 2	1 4
3	10	8	10	6	4	6

los términos $\phi_k(X_j, Y_j)$ forman una matriz de m renglones y columnas igual al número de estaciones n; y los términos $\phi_k(X_e, Y_e)$ forman un vector con m renglones.

Se obtiene la matriz con elementos están dados por $\theta_{ki} = \sum_{j=1}^{n} \Phi_{k}(X_{j}, Y_{j}) \Phi_{i}(X_{j}, Y_{j})$,

que no es mas que la multiplicación de la matriz $[\theta_{ki}]$ por su transpuesta $[\theta_{ki}]^t$, obteniéndose una matriz cuadrada de m filas por m columnas; la inversa de esta matriz es

Luego se precede a calcular los factores W_j a partir de la ecuación

$$\begin{bmatrix} \psi_{ki} \end{bmatrix} = \begin{bmatrix} \theta_{ki} \end{bmatrix}^{-1} = \begin{bmatrix} 5 & 24 & 38 \\ 24 & 152 & 188 \\ 38 & 188 & 316 \end{bmatrix}^{-1} = \begin{bmatrix} 2.617 & -0.091 & -0.261 \\ -0.091 & 0.028 & -0.006 \\ -0.261 & -0.006 & 0.038 \end{bmatrix}$$

$$W_{j} = \sum_{k=1}^{m} \alpha_{kj} \phi_{k} (X_{e}, Y_{e})$$

donde α_{kj} , que esta involucrada en la ec 2.7 o en la anterior, se calcula en forma matricial de la siguiente forma

$$\left[\alpha_{kj}\right] = \left[\psi_{ki}\right]\left[\phi_{kj}\right]$$

$$\begin{bmatrix} \alpha_{kj} \end{bmatrix} = \begin{bmatrix} 2.617 & -0.091 & -0.261 \\ -0.091 & 0.028 & -0.006 \\ -0.261 & -0.006 & 0.038 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 8 & 2 \\ 10 & 8 & 10 & 6 & 4 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_{kj} \end{bmatrix} = \begin{bmatrix} -0.172 & 0.168 & -0.716 & 0.327 & 1.393 \\ -0.092 & -0.025 & 0.076 & 0.099 & -0.058 \\ 0.107 & 0.020 & 0.073 & -0.079 & -0.120 \end{bmatrix}$$

por lo tanto, los factores de peso serán

$$[W_j] = \begin{bmatrix} \alpha_{kj} \end{bmatrix}^* \begin{bmatrix} \Phi_k(X_e, Y_e) \end{bmatrix}$$

$$\begin{bmatrix} W_j \end{bmatrix} = \begin{bmatrix} -0.172 & -0.092 & 0.107 \\ 0.168 & -0.025 & 0.020 \\ -0.716 & 0.076 & 0.073 \\ 0.0327 & 0.099 & -0.079 \\ 1.393 & -0.058 & -0.120 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 0.1023 \\ 0.1881 \\ 0.0231 \\ 0.2475 \\ 0.4389 \end{bmatrix} ; \quad \sum_{j=1}^{n} W_j = 1$$

por último, empleando la ec 2.1 se calcula el valor de la intensidad de lluvia en el punto e, esto es en términos de I se tiene que

$$I_e = \sum_{j=1}^{n} W_j I_j = 0.1023(60) + 0.1881(80) + 0.0231(110) + 0.2475(130) + 0.4389(90)$$

$$I_e = 95.42 \frac{mm}{h}$$

Note que pudo emplearse la ec 2.3 calculando los coeficientes a_k del polinomio, ec 2.9, con los que se obtiene el mismo resultado.

Al emplear los factores de peso, W_j , se verifica que la suma de estos sea igual a la unidad, con lo que se comprueba el cálculo y aun más importante el hecho de que el ajuste con un polinomio de primer grado (m = 3) se logre mejores resultados.

Si el polinomio elegido fuera de segundo grado (m = 6) el procedimiento a seguir es similar, sólo que el cálculo se hace más laborioso. Para este ejemplo se obtiene un valor de la intensidad de lluvia muy diferente al anterior, además que la suma de los factores de peso no es igual a uno como se comprueba en el caso del polinomio de primer grado. Esto se debe a que el ajuste del último es mejor que un polinomio de segundo o de mayor grado.

b) Aproximación de Lagrange

En este método se emplea la ec (2.10). La diferencia con la aproximación con mínimos cuadrados es que la técnica Lagrange requiere que el número de monomios sea igual al número de estaciones (m = n), por lo cual deben calcularse los cinco primeros monomios. De la TABLA 2.1 se obtiene la matriz siguiente

$$\left[\Phi_{k}(X_{j}, Y_{j}) \right] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 8 & 2 \\ 10 & 8 & 10 & 6 & 4 \\ 4 & 16 & 64 & 64 & 4 \\ 20 & 32 & 80 & 48 & 8 \end{bmatrix}$$

según la ec 2.10 la matriz $\left[\beta_{kj}\right]$ resulta ser la inversa de $\left[\phi_{k}(X_{j},Y_{j})\right]$, esta es

$$\begin{bmatrix} \beta_{k_I} \end{bmatrix} = \begin{bmatrix} 6.40 \times 10^{-12} & -0.444 & 0.222 & 5.555 \times 10^{-2} & -2.777 \times 10^{-2} \\ -2.00 & 1.250 & 1.437 \times 10^{-12} & -0.1250 & 7.09 \times 10^{-14} \\ 0.8333 & -0.4583 & -8.333 \times 10^{-2} & 2.0833 \times 10^{-2} & 4.167 \times 10^{-2} \\ -0.500 & 0.2083 & 8.333 \times 10^{-2} & 2.0833 \times 10^{-2} & -4.167 \times 10^{-2} \\ 2.667 & -0.5555 & -0.2222 & 2.7777 \times 10^{-2} & 2.777 \times 10^{-2} \end{bmatrix}$$

$$[W_j] = [\beta_{kj}] [\Phi_k(X_e, Y_e)] = \begin{bmatrix} -0.2222 \\ 1.0000 \\ -0.1667 \\ 0.1667 \\ 0.2222 \end{bmatrix} ; \sum_{j=1}^{n} W_j = 1$$

finalmente, empleando la ec 2.1 se calcula el valor de la intensidad de lluvia en el punto e

$$I_e = \sum_{j=1}^{n} W_j I_j = -0.2222(60) + 1.0(80) - 0.1667(110) + 0.1667(130) + 0.2222(90)$$

$$I_e = 90.00 \frac{mm}{h}$$

Interpolación Inversa

La solución por medio de esta técnica se muestra en forma tabular. En primer lugar se emplea un exponente β igual a la unidad (TABLA 2.4) y luego con β = 2 (TABLA 2.5)

TABLA 2.4 Método de Interpolación Inversa. Solución con $\beta = 1$.

Est.	j	d _{ej}	1/d _{ej}	W_j	I_j	$W_j I_j$
A	1	4.472	0.2236	0.149	60	8.922
В	2	2.000	0.5000	0.333	80	26.600
C	3	5.657	0.1767	0.117	110	12.925
D	4	4.000	0.2500	0.166	130	21.606
E	5	2.828	0.3536	0.235	90	21.159
Suma			1.5039	1.000		91.212

como podrá observase, en este método la suma de los factores de peso siempre será igual a uno, independientemente del exponente. Para este caso, la intensidad vale

$$I_e = 91.212 \frac{mn}{h}$$

TABLA 2.5 Método de Interpolación Inversa. Solución con $\beta = 2$.

Est.	j	d_{ϵ_j}	$(1/d_{ej})^2$	W_j	I_{j}	$W_j I_j$
A	1	4.472	0.0500	0.0965	60	5.790
В	2	2.000	0.2500	0.4819	80	38.552
C	3	5.657	0.0312	0.0601	110	6.611
D	4	4.000	0.0625	0.1205	130	15.665
E	5	2.828	0.1250	0.2410	90	21.690
Suma			0.5188	1.000		88.308

entonces, la intensidad es

$$I_e = 88.308 \frac{mm}{h}$$

Interpolación Multicuadrática

Este método es fácil de aplicar, pues sólo requiere contar con una matriz de distancias entre las estaciones como la que sigue

$$\begin{bmatrix} D_{ij} \end{bmatrix} = \begin{bmatrix} 0.000 & 2.828 & 6.000 & 7.211 & 6.000 \\ 2.828 & 0.000 & 4.472 & 4.472 & 4.472 \\ 6.000 & 4.472 & 0.000 & 4.000 & 8.485 \\ 7.211 & 4.472 & 4.000 & 0.000 & 6.324 \\ 6.000 & 4.472 & 8.485 & 6.324 & 0.000 \end{bmatrix} ; \quad \begin{bmatrix} D_{ej} \end{bmatrix} = \begin{bmatrix} 4.472 \\ 2.000 \\ 5.657 \\ 4.000 \\ 2.828 \end{bmatrix}$$

se calcula la matriz inversa de la anterior

$$\begin{bmatrix} \boldsymbol{\delta}_{ij} \end{bmatrix} = \begin{bmatrix} \boldsymbol{D}_{ij} \end{bmatrix}^{-1} = \begin{bmatrix} -0.1717 & 0.1312 & 0.0662 & -0.0187 & 0.0611 \\ 0.1312 & -0.3197 & 0.0384 & 0.0500 & 0.0521 \\ 0.0662 & 0.0384 & -0.1548 & 0.1177 & -0.0047 \\ -0.0187 & 0.0500 & 0.1177 & -0.1755 & 0.0696 \\ 0.0611 & 0.0521 & -0.0047 & 0.0696 & -0.1035 \end{bmatrix}$$

y luego se obtienen los factores de peso según lo visto en el Apartado 2.4

$$W_{j} = \sum_{i=1}^{n} \delta_{ij} d_{ei} ; \quad [W_{j}] = [\delta_{ij}] [d_{ei}] = \begin{bmatrix} -0.0329 \\ 0.5124 \\ -0.0454 \\ 0.1771 \\ 0.3364 \end{bmatrix} ; \quad \sum_{j=1}^{n} W_{j} = 0.9475$$

finalmente se calcula la intensidad en el sitio e

$$I_{e} = \sum_{j=1}^{R} W_{j} I_{j} = -0.0329(60) + 0.5124(80) - 0.0454(110) + 0.1771(130) + 0.3364(90)$$

$$I_{e} = 87.32 \frac{mm}{h}$$

Interpolación óptima

En la aplicación de esta técnica es necesario contar con registros históricos de la variable que se va a modelar (TABLA 2.2). A partir de estos valores se estima la matriz de correlación espacial, ec 2.26, entre las n(n-1)/2 parejas de estaciones. Ajustar el modelo de correlación que proporcione menor error y además seleccionar la función representativa de los datos, es decir que tenga una tendencia marcada.

Aplicando la ec 2.26 se calculan los valores $\rho\left(d_{ij}\right)$, mismos que se dan a continuación

$$\left[\hat{\rho} \left(d_{ij} \right) \right] = \begin{bmatrix} 1.0000 & 0.0902 & -0.0830 & 0.3875 & -0.0968 \\ 0.0902 & 1.0000 & 0.5961 & 0.3621 & 0.5065 \\ -0.0830 & 0.5961 & 1.0000 & 0.3015 & 0.2482 \\ 0.3875 & 0.3621 & 0.3015 & 1.0000 & 0.2092 \\ -0.0968 & 0.5065 & 0.2482 & 0.2092 & 1.0000 \end{bmatrix}$$

de estos valores se consideran las diferentes combinaciones entre estaciones, sin repetirlas, y se forma el par $\{d_{ij}, |\rho(d_{ij})|\}$ que se quiere ajustar. En la TABLA 2.6 se dan los valores que se utilizaron para hacer el ajuste de los modelos vistos en el Apartado 2.5

TABLA 2.6 Valores para ajustar un modelo de correlación.

k	d _{ij} (km)	(km)	$ \rho (d_{ij}) $
1	d 11	0.000	1.0000
2	d ₂₁	2.828	0.0902
3	d ₄₃	4.000	0.3015
4	d ₄₂	4.472	0.3621
5	d ₅₂	4.472	0.5065
6	d ₃₂	4.472	0.5961
7	d_{3i}	6.000	0.0830
8	d ₅₁	6.000	0.0968
9	dsa	6.324	0.2092
10	d ₄₁	7.211	0.3875
11	d ₅₃	8.485	0.2482

De los tres modelos propuestos, el de menor error estándar de ajuste y con una tendencia representativa resulto ser el modelo inverso

$$\rho(d_{ij}) = \frac{1}{(1 + d_{ij}/1.3538)}$$

por consiguiente, la matriz de correlación espacial para la zona se halla evaluando los coeficientes dados por la ecuación anterior, esto es

$$\left[\hat{\rho} \left(d_{ij} \right) \right] = \begin{bmatrix} 1.0000 & 0.3237 & 0.1841 & 0.1581 & 0.1841 \\ 0.3237 & 1.0000 & 0.2324 & 0.2324 & 0.2324 \\ 0.1841 & 0.2324 & 1.0000 & 0.2529 & 0.1376 \\ 0.1581 & 0.2324 & 0.2529 & 1.0000 & 0.1763 \\ 0.1841 & 0.2324 & 0.1376 & 0.1763 & 1.0000 \end{bmatrix}$$

puesto que el sitio de interés se encuentra dentro la zona, de igual forma, se tendrá para este

$$\begin{bmatrix} \hat{\rho} (d_{aj}) \end{bmatrix} = \begin{bmatrix} 0.2324 \\ 0.4037 \\ 0.1931 \\ 0.2529 \\ 0.3237 \end{bmatrix}$$

Los factores de peso se obtienen resolviendo el sistema de ecuaciones 2.21, es decir

$$[W_j] = [\hat{\rho}(d_{ij})]^{-1} [\hat{\rho}(d_{ej})] = \begin{bmatrix} 1.1501 & -0.3057 & -0.1090 & -0.0630 & -0.1146 \\ -0.3057 & 1.2148 & -0.1609 & -0.1624 & -0.1753 \\ -0.1090 & -0.1609 & 1.1207 & -0.2186 & -0.0582 \\ -0.0630 & -0.1624 & -0.2186 & 1.1239 & -0.1187 \\ -0.1146 & -0.1753 & -0.0582 & -0.1187 & 1.0908 \end{bmatrix} \begin{bmatrix} 0.2324 \\ 0.4037 \\ 0.1931 \\ 0.2529 \\ 0.3237 \end{bmatrix}$$

$$\begin{bmatrix} W_j \end{bmatrix} = \begin{bmatrix} 0.0698 \\ 0.2905 \\ 0.0520 \\ 0.1234 \\ 0.2144 \end{bmatrix} ; \qquad \sum_{j=1}^{n} W_j = 0.7501 \neq 1$$

y la intensidad calculada empleando este método es

$$I_e = \sum_{j=1}^{n} W_j I_j = +0.0698(60) + 0.2905(80) + 0.0520(110) + 0.1234(130) + 0.2144(90)$$

$$I_e = 68.486 \frac{mm}{h}$$

como la suma de los factores W_j es diferente de lo esperado es necesario considerar esta condición y replantear las ecuaciones. A continuación se tiene la matriz de coeficientes de correlación espacial usando multiplicadores de Lagrange, ecs 2.25.

$$\left[\hat{\rho} \left(d_{ij} \right) \right] = \begin{bmatrix} 1.0000 & 0.3237 & 0.1841 & 0.1581 & 0.1841 & 1 \\ 0.3237 & 1.0000 & 0.2324 & 0.2324 & 0.2324 & 1 \\ 0.1841 & 0.2324 & 1.0000 & 0.2529 & 0.1376 & 1 \\ 0.1581 & 0.2324 & 0.2529 & 1.0000 & 0.1763 & 1 \\ 0.1841 & 0.2324 & 0.1376 & 0.1763 & 1.0000 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

el vector solución será

$$[W_j] = [\hat{\rho}(d_{ij})]^{-1} [\hat{\rho}(d_{ej})]$$

$$\begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ W_4 \\ W_5 \\ \lambda \end{bmatrix} = \begin{bmatrix} 1.0360 & -0.3896 & -0.2264 & -0.1788 & -0.2422 & 0.2045 \\ -0.3896 & 1.1530 & -0.2473 & -0.2469 & -0.2692 & 0.1505 \\ -0.2264 & -0.2473 & 0.9999 & -0.3367 & -0.1896 & 0.2105 \\ -0.1788 & -0.2469 & -0.3367 & 1.0084 & -0.2471 & 0.2057 \\ -0.2422 & -0.2692 & -0.1896 & -0.2471 & 0.9480 & 0.2288 \\ 0.2045 & 0.1505 & 0.2105 & 0.2057 & 0.2288 & -0.3666 \end{bmatrix} \begin{bmatrix} 0.2324 \\ 0.2437 \\ 0.1931 \\ 0.2529 \\ 0.3237 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} W_j \end{bmatrix} = \begin{bmatrix} 0.1209 \\ 0.3281 \\ 0.1046 \\ 0.1748 \\ 0.2716 \\ -0.0916 \end{bmatrix} ; \quad \sum_{j=1}^{n} W_j = 1 ; \quad \lambda = -0.0916$$

en tanto que la intensidad calculada empleando multiplicadores de Lagrange es

$$I_{e} = \sum_{j=1}^{n} W_{j} I_{j} = 0.1209(60) + 0.3281(80) + 0.1046(110) + 0.1748(130) + 0.2716(90)$$

$$I_{e} = 92.176 \frac{mm}{h}$$

Interpolación kriging

Esta técnica tiene muchas formas de poder resolver un problema de interpolación, en el presente trabajo se analizan específicamente las que tienen que ver con la estimación del proceso en forma puntual. Las formas de la técnica kriging que se presentan en el Apartado 2.6 son el clásico kriging ordinario ec 2.29 y restringido ecs 2.30 (empleando multiplicadores de Lagrange) y kriging universal ecs 2.34 (con ajustes de tipo polinomial). Para este ejemplo se emplea la última forma de las mencionadas y se ajusta un polinomio de primer grado.

Al igual que el método de Interpolación óptima, en este se requiere calcular el variograma empleando la ec 2.36 y, de los cinco modelos de variograma presentados en el Apartado 2.6 el que se ajustó con el menor error fue el modelo exponencial

$$\hat{\gamma}(d_{ij}) = 755.5512 [1 - \exp(-0.2875 d_{ij})]$$

los valores de la matriz del variograma estimados con esta ecuación son

$$\begin{bmatrix} \hat{\mathbf{\gamma}} (d_{ij}) \end{bmatrix} = \begin{bmatrix} 0 & 420.50 & 620.93 & 660.52 & 620.93 \\ 420.50 & 0 & 546.68 & 546.68 & 546.68 \\ 620.93 & 546.68 & 0 & 516.32 & 689.66 \\ 660.52 & 546.68 & 516.32 & 0 & 632.93 \\ 620.93 & 546.68 & 689.66 & 632.93 & 0 \end{bmatrix}$$

aplicando las ecs 2.34, se tiene el siguiente sistema de ecuaciones lineales

$$\begin{bmatrix} 0.0 & 420.50 & 620.93 & 660.52 & 620.93 & 1 & 2 & 10 \\ 420.50 & 0.0 & 546.68 & 546.68 & 546.68 & 1 & 4 & 8 \\ 620.93 & 546.68 & 0.0 & 516.32 & 689.66 & 1 & 8 & 10 \\ 660.52 & 546.68 & 516.32 & 0.0 & 632.93 & 1 & 8 & 6 \\ 620.93 & 546.68 & 689.66 & 632.93 & 0.0 & 1 & 2 & 4 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 4 & 8 & 8 & 2 & 0 & 0 & 0 \\ 10 & 8 & 10 & 6 & 4 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ W_4 \\ W_5 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 546.68 \\ 330.40 \\ 606.97 \\ 516.32 \\ 420.50 \\ 1 \\ 4 \\ 6 \end{bmatrix}$$
colución es

cuya solución es

$$\begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ W_4 \\ W_5 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} -0.0109 \\ 0.4415 \\ -0.0182 \\ 0.2044 \\ 0.3832 \\ 114.5447 \\ 0.5246 \\ -11.6205 \end{bmatrix} ; \sum_{j=1}^{n} W_j = 1$$

y por último la intensidad de lluvia justo en el punto e resulta ser

$$I_e = \sum_{j=1}^{n} W_j I_j = -0.0109(60) + 0.4415(80) - 0.0182(110) + 0.2044(130) + 0.3832(90)$$

$$I_e = 93.72 \frac{mm}{h}$$

Aplicando la técnica de interpolación kriging restringido, esto es, usando multiplicadores de Lagrange, se obtiene un valor de 91.754 mm/h; mientras que si se plantean las ecuaciones de kriging universal, tomando en cuenta un polinomio de segundo grado, el sistema de ecuaciones a resolver se vuelve mal condicionado y no hay solución. En algunos casos el total de la suma de los factores de peso no resulta ser igual a la unidad, esto quiere decir que el método no es aplicable al tipo de datos que se está analizando.

En la TABLA 2.7 se presentan los valores calculados con todas las técnicas aplicadas en el ejemplo. Se puede apreciar que el promedio de todos es 87.84 mm/h, pero aquí se tomaron en cuenta los resultados en los que la suma de factores de peso no es igual a la unidad. Una aproximación confiable del valor interpolado pudiera ser el promedio de aquellos donde se haya cumplido dicha condición, resultando finalmente, $I_{\rm c} = 91.80$ mm/h.

TABLA 2.7 Resumen de valores calculados aplicando las técnicas de interpolación.

	Método de interpolación	<i>l</i> , (mm/h)	Condición $\sum W_j = 1$
1	Thiessen	80.00	no
2	Polinomial por mínimos cuadrados (ler grado)	95.42	si
3	Polinomial por Lagrange	90.00	si
4	Inversa ($\beta = 1$)	91.21	si
5	Inversa ($\mathbf{B} = 2$)	88.30	si
6	Multicuadrática	87.32	no
7	Óptima	68.48	no
8	Óptima restringida	92.17	si
9	Kriging ordinario restringido	93.72	si
10	Kriging universal (polinomio de ler grado)	91.75	si
	Promedio	87.84	

CAPÍTULO 3. MODELOS LLUVIA-ESCURRIMIENTO

Para conocer el gasto de diseño de operación de las obras hidráulicas se requieren datos de escurrimiento en el lugar donde ellas estén localizadas. En ocasiones no se cuenta con esta información o bien por cambios en las condiciones de drenaje de la cuenca como es por ejemplo, la desforestación, la urbanización, etc., pueden hacer que los datos de gastos registrados antes de estos cambios no sean útiles. Por otra parte debido a que es más complicado obtener en campo los datos para los gastos de las corrientes que los de la precipitación, se cuenta con mayor cantidad de información de esta última. Por estas razones se han propuesto procedimientos para determinar escurrimientos a partir de la precipitación que los origina. A estos procedimientos se les conoce como modelos de Lluvia-Escurrimiento (Fuentes, 1990).

Según la información que se disponga, los modelos serán empíricos cuando se incluyan las características fisiográficas de la cuenca y las precipitaciones ocurridas en ella y, podrá contarse con un hidrograma unitario sintético cuando se cuente con registros simultáneos del escurrimiento y de la lluvia que lo produce. Por último, los modelos que simulan el escurrimiento en toda la cuenca requieren conocer las características detalladas y los registros hidrológicos simultáneos en toda ella.

Los modelos lluvia-escurrimiento aplicados a una cuenca se clasifican en (Domínguez, 1981): Empíricos, Hidrológicos e Hidráulicos.

3.1 MÉTODOS EMPÍRICOS

Los métodos empíricos emplean fórmulas del mismo tipo con características típicas de las tormentas, de las cuencas y de los hidrogramas. La aplicación de la fórmulas empíricas permite conocer de una manera rápida la magnitud de una avenida, sin tener que recurrir a los registros históricos. Aunque en la actualidad su uso tiende a ser sustituido por otros procedimientos que utilizan mayor información. No debe omitirse su aplicación, pues los resultados obtenidos con estos modelos sirven para acotar los eventos de diseño y cuando no se dispone de información hidrológica.

Los métodos más utilizados en el medio son: Los métodos de fórmulas empíricas (envolventes de Creager y Lowry); el método del U.S. Soil Conservation Service, y el método de la Fórmula Racional.

3.1.1 Método de Creager

Este método fue desarrollado por Creager, quien asoció los gastos más grandes observados en el mundo respecto al área de la cuenca donde se presentaron. La envolvente de gastos máximos es representada por la expresión siguiente

$$Q = 1.303 C_C (0.386 A)^{0.936/A^{0.048}}$$
 (3.1)

donde: Q es el gasto máximo, en m³/s; A área de la cuenca, en km²; C_C constante empírica y son los valores de la envolvente. El valor mundial de C_C es igual a 100.

3.1.2 Método de Lowry

La fórmula propuesta por Lowry es

$$Q = \frac{C_L A}{(A + 259)^{0.85}} \tag{3.2}$$

donde: Q es el gasto máximo, en m³/s; A es el área de la cuenca, en km², y C_L es una constante empírica. El valor mundial del coeficiente C_L se considera igual a 3500.

La SARH ha evaluado los coeficientes C_C y C_L para cada una de las regiones hidrológicas en que está dividido el territorio mexicano (Fuentes, 1990).

3.1.3 Método empírico del U.S. Soil Conservation Service

El Soil Conservation Service (USSCS) de los E.U.A. propone calcular la lluvia en exceso con base en el número de la curva de escurrimiento, N. La parte esencial del método es el emplear valores propuestos por el USSCS, como un resultado de los estudios llevados a cabo en el norte de Africa. El lector puede consultar con mayor detalle los valores de N en SARH, 1982; Fuentes, 1990; Aparicio, 1996, así como sus limitaciones y el procedimiento de la aplicación de este método. En los Estados Unidos Mexicanos es común calcular la altura de la precipitación efectiva con la siguiente expresión

$$P_{t} = \frac{\left[P_{t} - \frac{508}{N} + 5.08\right]^{2}}{P_{t} + \frac{2032}{N} - 20.32}$$
(3.3)

donde P_e = altura de la precipitación efectiva, en cm, y P_t = altura de precipitación total, en cm.

3.1.4 Método Racional

El concepto básico del método asume que el máximo porcentaje del escurrimiento en una cuenca pequeña ocurre cuando toda esta contribuye a dicho escurrimiento, y que el citado porcentaje de escurrimiento es igual a otro de la intensidad promedio de lluvia. Esto se expresa con la ecuación siguiente:

$$Q_{p} = 0.278 \ C \ i \ A_{c} \tag{3.4}$$

donde Q_p es el gasto pico, en m³/s

coeficiente de escurrimiento, adimensional

i intensidad de lluvia para una duración d, en mm/h

A. área de la cuenca, en km²

El valor del coeficiente de escurrimiento C, representa la fracción de la lluvia que escurre en forma directa, depende del tipo de área de drenaje, el uso de suelo, etc., y se obtienen de tablas, (Aparicio, 1996, p182; Fuentes, 1990, p26). Según la experiencia, se considera que la fórmula racional es válida su aplicación en cuencas hasta de 100 km^2 .

La intensidad de Iluvia se obtiene de alguna relación de las expuestas en el capitulo 1 (curvas Intensidad de Iluvia-duración-período de retorno). Su selección es función del período de retorno y de la duración la cual es igual, generalmente, al tiempo de concentración, t_c . El tiempo de concentración se define como el tiempo que transcurre entre el inicio de la Iluvia y el establecimiento del gasto de equilibrio y equivale al tiempo que tarda el agua en pasar del punto más alejado hasta la salida de la cuenca. El tiempo de concentración depende de la longitud máxima que debe recorrer el agua hasta la salida de la cuenca y de la velocidad que adquiere la misma. Existen varias expresiones para calcular t_c , la más empleada en el medio es la fórmula de Kirpich, esta es

$$t_a = 0.0003245 \times L^{0.770} \times S^{-0.385}$$
 (3.5)

donde t_c esta en h; L es la longitud del cauce principal, en m; S es la pendiente del cauce principal, esta se debe calcular con alguno de los siguientes métodos:

- S = H/L, donde H es el desnivel entre la parte más alta de la cuenca y el punto de salida.
- S calculada por compensación de áreas.
- S como la pendiente de la ecuación de una recta calculada por mínimos cuadrados
- S calculada según Taylor-Schwarz

$$S = \left(\frac{L}{\frac{L_1}{\sqrt{S_1}} + \frac{L_2}{\sqrt{S_2}} + \dots + \frac{L_n}{\sqrt{S_n}}}\right)^2$$
 (3.6)

donde n es el número de tramos en que se divide el cauce principal (para n > 5); L es la longitud total del cauce principal, en m o km; L_i es la longitud del tramo i, m o km, y S_i es la pendiente de cada tramo, adimensional.

El motivo por el cual debe elegirse alguna de las pendientes anteriores es para considerar las variaciones del perfil del cauce, por ejemplo, si se tiene un cauce con dos pendientes o más, no es lo mismo considerar la pendiente promedio calculada con la expresión de Taylor-Schuarz que con la relación H/L, por lo que es recomendable asumir una pendiente que compense ese efecto.

3.2 MÉTODOS HIDROLÓGICOS

Los métodos hidrológicos pretenden de alguna manera reproducir matemáticamente el fenómeno de la avenida. A diferencia de los métodos empíricos, estos requieren de registros pluviométricos (lluvias) e hidrométricos (gastos) en forma simultánea.

Dentro de estos modelos se tienen a los del concepto de hidrograma unitario y aquellos que consideran el fenómeno físico empleando simplificaciones importantes en las leyes de conservación de la masa y de la energía que gobiernan dicho fenómeno (Domínguez, 1981).

Aunque en los Estados Unidos Mexicanos la mayoría de los registros aún faltan procesarse, es requisito fundamental disponer de la mayor cantidad de información posible y calibrarlos para predecir los escurrimientos y aplicarlos en estudios importantes.

Definición de Hidrograma Unitario

Un hidrograma unitario es el hidrograma de escurrimiento directo el cual es producido por una lluvia efectiva o en exceso cuyo espesor de lámina es igual a 1 mm, considerando que dicha lluvia se precipita uniformemente en la cuenca durante un tiempo conocido como duración en exceso.

Las hipótesis en las que se basa este método son (Aparicio, 1996):

a) Tiempo base constante: La duración total del escurrimiento directo o tiempo base es igual para cualquier tormenta con una misma duración de lluvia efectiva.

- b) **Proporcionalidad:** Las ordenadas del hidrograma son proporcionales al volumen de escurrimiento directo (FIGURA 3.1).
- c) Superposición causa-efecto: El hidrograma para una lluvia dada puede superponerse a otros hidrogramas resultantes de períodos lluviosos precedentes.

Existen varios tipos de hidrograma unitario, la diferencia entre estos es la forma de aplicación y los datos con los que se hace el análisis.

El método del hidrograma unitario se ha aplicado, entre otras, a las cuencas del río Papaloapan y del

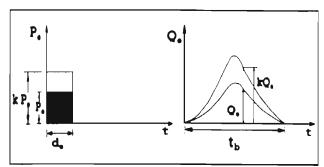


FIG 3.1 Esquema de proporcionalidad.

Papagayo (**Domínguez**, 1981), haciendo calibraciones para varias tormentas. Se observa que el método proporciona resultados confiables cuando se tiene buena información pluviográfica e hidrométrica.

3.2.1 Método del hidrograma unitario (HU)

De acuerdo con las hipótesis arriba mencionadas, este método supone que las precipitaciones con una misma duración y distribución espacial producen hidrogramas unitarios semejantes, así las ordenadas del hidrograma son proporcionales al volumen de escurrimiento directo. Por lo tanto, el área bajo la curva del HU es su volumen de escurrimiento, el cual es igual al área de la cuenca por 1 mm de lluvia efectiva.

Las principales desventajas de este método son: que no toma en cuenta la variación de la intensidad de lluvia con respecto al tiempo, para lo cual es recomendable el uso de intervalos cortos de duración. Otra desventaja es que sólo es aplicable a hietogramas de lluvia efectiva con igual duración en exceso, en este caso se recurre al método de la curva S.

Procedimiento para calcular el HU

- i) Obtener el hidrograma de escurrimiento directo y calcular su volumen. \forall_{ED} .
- ii) Calcular la lluvia efectiva $P_e = \forall_{ED}/A_c$ y determinar su duración.
- Las ordenadas del HU se obtienen dividiendo las del hidrograma de escurrimiento directo entre la precipitación efectiva, P_e .

3.2.2 Método de la curva S

Por medio de este método es posible obtener el HU con duración en exceso d_r partiendo de un HU con duración d_e .

La curva S es un hidrograma de escurrimiento directo formado por la superposición de un número de hidrogramas unitarios suficiente como para llegar al gasto de equilibrio.

Procedimiento para obtener la curva S

- i) Desplazar el HU d, horas repetidas veces.
- ii) Sumar las ordenadas de los HU desplazados hasta obtener el gasto de equilibrio, Q_{ϵ} .

$$Q_e = i A_c = \left(\frac{1 \ mm}{d_e}\right) A_c \tag{3.7}$$

el tiempo en el que se alcanza este gasto es

$$t_c = t_b - d_c \tag{3.8}$$

el hidrograma obtenido se conoce como curva S (FIGURA 3.2).

iii) Cuando la curva S presenta oscilaciones antes de alcanzar el gasto de equilibrio, conviene fijar el gasto Q_i , ec 3.7.

Una vez que se tiene la curva S puede determinarse el HU para una duración d_s como se indica a continuación:

Desplazar la curva S una duración d_i (FIGURA 3.2).

- Restar las ordenadas de las dos curvas S.
- Obtener ordenadas del HU con duración d_r multiplicando los valores del paso anterior por el cociente d_r/d_r .

Es importante recordar que el HU obtenido por cualquiera de los métodos presentados y su aplicación a problemas de diseño, pueden ser desarrollados en cuencas pequeñas o grandes. La gran diferencia radica en la estimación de las curvas *1-d-T*, y en este trabajo se pretende exponer esa diferencia, como propósito primordial, así pues con los

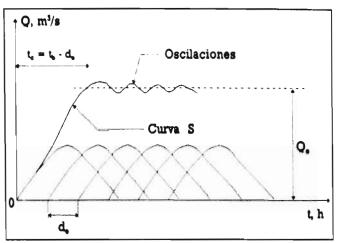


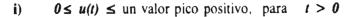
FIG 3.2 Método de la curva S.

métodos presentados en el capítulo 2 puede calcularse la precipitación, vía técnicas de interpolación, en cualquier punto dentro de una cuenca.

3.2.3 Método del hidrograma unitario instantáneo (HUI)

Este método toma en cuenta la distribución del tiempo. Se basa en el hecho de que si la lluvia en exceso es una cantidad unitaria y su duración es infinitesimal, considerando al volumen de agua constante, el hidrograma resultante es una función de pulso. Por lo anterior, este hidrograma es independiente de la duración de la lluvia en exceso.

Un modelo empleado para la deducción del HUI pudiera ser el que considera a una cuenca de drenaje a la que está formada por una serie de almacenamientos lineales idénticos (Fuentes, 1990).


El Sistema Q(t) e I(t) (funciones salida y entrada, respectivamente) puede tratarse con

una función respuesta u(t); considerando la entrada como una sucesión de entradas instantáneas infinitesimales cuyo volumen es $I(\tau)d\tau$, siendo cada una de éstas su contribución $I(\tau)u(t-\tau)d\tau$ a la razón de salida Q(t) en el tiempo t. La respuesta para la función completa de entrada $I(\tau)$ pueden obtenerse integrando la respuesta a los pulsos, teniéndose que

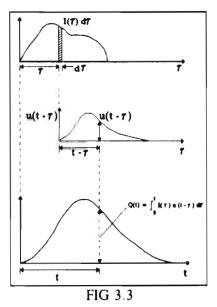
$$Q(t) = \int_{t_0}^{t} I(\tau) u(t - \tau) d\tau \qquad ; \quad t \le t_0$$
 (3.9)

esta ecuación, conocida como integral de convolución, es fundamental para la solución de sistemas lineales en una escala continua de tiempo (FIGURA 3.3). En este caso la ordenada Q(t) representa al hidrograma de escurrimiento en el tiempo t, es decir, cada lluvia efectiva $I(\tau)$ de duración t_0 se multiplicará por el hidrograma unitario instantáneo $u(t-\tau)$ para después sumar todos los hidrogramas así producidos y obtener el hidrograma de escurrimiento resultado de la precipitación $I(\tau)$.

Propiedades del Hidrograma Unitario Instantáneo

ii)
$$u(t) = 0$$

para $t \leq 0$


iii)
$$u(t) \rightarrow 0$$

cuando $t \rightarrow \infty$

$$iv) \qquad \int_0^{\infty} u(t) \ dt = 1$$

$$\mathbf{v}) \qquad \int_0^{\infty} u(t) \ t \ dt = t_r$$

donde t_r es el tiempo de retraso del hidrograma unitario instantáneo.

3.2.4 Método discreto para la determinación del HUI

Para un hidrograma unitario de duración en exceso pequeña (HUP), de 10 min a 4 h, el escurrimiento directo es (FIGURA 3.4)

$$Q_i = P_1 u_i + P_2 u_{i+1} + P_3 u_{i+2} + \dots + P_i u_i$$
 (3.10)

sujeta a

$$P_i = 0$$
 , para $i > NP$

$$u_i = 0$$
 , para $i > NU$

$$i = 1, 2, ..., NQ$$

donde

- Q ordenada del hidrograma de escurrimiento directo, en m³/s
- u_i ordenada del hidrograma unitario de duración en exceso Δt , en m³/s/mm
- P_i Altura de precipitación efectiva o en exceso, en mm
- NU número de ordenadas del HU de duración en exceso Δt
- NQ número de ordenadas del hidrograma de escurrimiento directo
- NP número de precipitaciones efectivas;
 corresponde al número de barras del hietograma de lluvia efectiva. Siendo
 NU = NQ NP + 1

La solución del sistema 3.10 produce algunas ordenadas negativas del HU. Para resolver este problema es necesario emplear

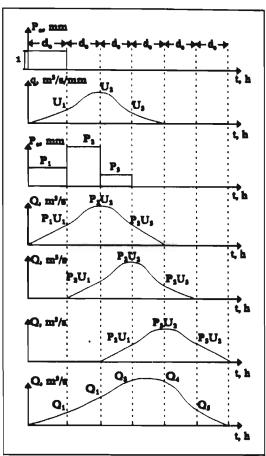


FIG 3.4 Método del HU instantáneo.

alguna técnica de optimización (Aparicio, 1996) o en su caso resolver dicho sistema usando un procedimiento propuesto por Raudkivi (1979) el cual esta basado en aceptar un error pequeño en cada ecuación del sistema (Fuentes, 1990).

3.2.5 Hidrogramas Unitarios Sintéticos

3.2.5.1 Hidrograma Unitario Triangular

Este tipo de hidrogramas son útiles cuando no se tienen registros simultáneos de precipitación y escurrimiento. Para su obtención se requieren conocer las características fisiográficas de la cuenca. En cuencas pequeñas (25 a 250 km²) tiene forma triangular (Springall, 1970) y su gasto pico (FIGURA 3.5) se calcula con la siguiente ecuación

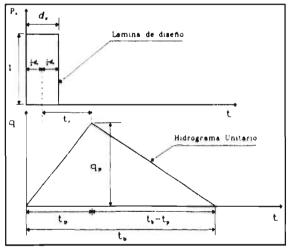


FIG 3.5 Hidrograma Unitario Triangular.

$$q_p = 0.208 \frac{A_c}{t_p}$$
 (3.11)

donde

A_c área de la cuenca, en km²

 t_p tiempo pico, en h

 q_p gasto pico, en m²/s/mm

$$t_r = 1.67 \ t_p \tag{3.12}$$

$$t_p = \sqrt{t_c} + 0.60 \ t_c$$
 (3.13)

El hidrograma de escurrimiento directo se calcula multiplicando cada una de

las ordenadas del HU triangular por la lluvia efectiva, hp, expresada en mm.

3.2.5.2 Hidrograma Adimensional del SCS

En este método se emplea un hidrograma adimensional promedio. El gasto se expresa por la relación del gasto unitario q con respecto al gasto pico q_p y el tiempo por la relación del tiempo t con respecto al tiempo de ocurrencia del pico en el hidrograma unitario t_p . Conocidos el gasto y el tiempo pico para la duración de exceso de la precipitación el hidrograma unitario puede estimarse a partir del hidrograma sintético adimensional para la cuenca. Fuentes (1990) presenta una figura y una tabla con valores representativos del hidrograma adimensional. El

procedimiento a seguir es: multiplicar cada uno de los valores (t/t_p) y (q/q_p) por los valores conocidos t_p y q_p , respectivamente; los resultados son la forma del hidrograma unitario, t vs q, que al multiplicar los valores de las ordenadas q por la altura de precipitación efectiva se obtiene las ordenadas del hidrograma de diseño Q.

Los diferentes métodos encontrados en la bibliografía (SARH, 1982; Fuentes, 1990; Aparicio, 1996) pueden aplicarse para determinar la relación lluvia-escurrimiento, así tenemos por ejemplo el método de las isócronas, el de Chow y el método de I-Pai Wu. Otro método que también es considerado como hidrológico, y es muy empleado en Hidrología, es el de Muskingum, el que en realidad es una forma simplificada de resolver las ecuaciones planteadas en los métodos hidráulicos.

3.3 MÉTODOS HIDRÁULICOS

En muchas ocasiones es posible emplear métodos hidráulicos para conocer el orden de magnitud de algunos eventos. Por medio de estos métodos es posible conocer con suficiente precisión el gasto máximo instantáneo, esto, a partir de datos como la forma de un número suficiente de secciones transversales y los niveles alcanzados por el agua en tiempos pasados (algunas veces algo remotos).

La forma de resolver el problema es: dividir el tramo del río donde se requiere transitar la avenida, resolver numéricamente para cada tramo las ecuaciones de conservación de masa y cantidad de movimiento con flujo no permanente (Ecuaciones de Saint-Venant). También se requieren como datos, el hidrograma aguas arriba del tramo estudiado y la relación gasto-tirante o velocidad-tirante en el extremo aguas abajo.

Chaudhry (1979) presenta las bases teóricas para la aplicación y resolución de las ecuaciones de Saint-Venant y, en el Manual de diseño de Obras Civiles de la CFE, Berezowsky et al (1983) presentan un estudio detallado de los métodos hidráulicos así como sus respectivos algoritmos de cómputo.

CAPÍTULO 4. CARACTERÍSTICAS DE LA CUENCA DEL RÍO PAPALOAPAN

La Cuenca del Río Papaloapan es una zona hidrográfica de los Estados Unidos Mexicanos que geográficamente esta localizada entre los 17° y 19° de latitud norte y entre los meridianos 95° y 97° 40' de longitud oeste (FIGURA 4.1). Esta zona forma parte de la vertiente del Golfo de México. La cuenca se ubica en los estados de Veracruz, Oaxaca y Puebla. Abarca una superficie de 46,500 km², de los cuales el 51% pertenece al estado de Oaxaca, el 37% a Veracruz y el 12% al de Puebla (FIGURA 4.2).

De la superficie total, el 45% corresponde a la planicie costera y el resto a las zonas montañosas.

4.1 CARACTERÍSTICAS TOPOGRÁFICAS

Desde el punto de vista topográfico, la Cuenca del Río Papaloapan se clasifica como

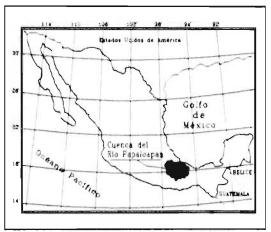


FIG 4.1 Localización geográfica de la cuenca del Río Papaloapan en los Estados Unidos Mexicanos.

a)	Lagunas, ríos y pantanos	2300 km ²
b)	Planicies con pendientes menores del 10%	18300 km ²
c)	Laderas con pendientes menores del 25%	10600 km ²
d)	Montañas con pendientes mayores del 25%	15300 km ²

4.2 CARACTERÍSTICAS CLIMATOLÓGICAS

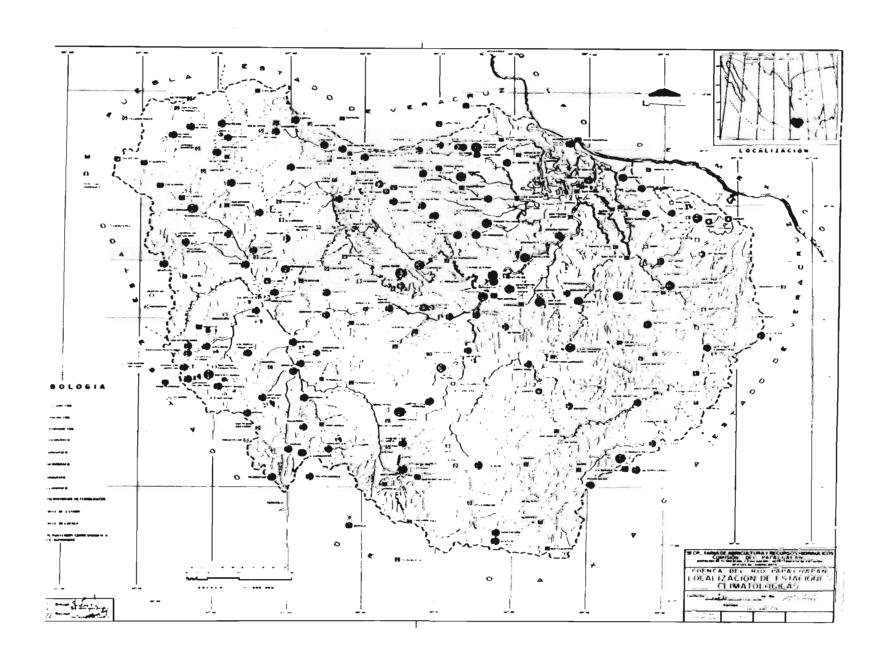
De acuerdo al clima, la Cuenca del Río Papaloapan se subdivide en tres grandes regiones:

a) Planicie Costera, b) Sierra Madre de Oaxaca, vertiente del noreste y c) Depresión Poblano-Oaxaqueño.

- a) Planicie Costera: Esta región tiene clima tropical lluvioso, la temperatura media anual es superior a los 18 °C. La precipitación media anual varía entre 1,000 y 2,000 mm.
- b) Sierra Madre de Oaxaca, vertiente noreste: Clima Tropical Iluvioso de bosque y selva. La precipitación media anual fluctúa entre 2,000 y 8,200 mm; llueve durante casi todos los meses del año.
- c) Depresión Poblano-Oaxaqueño: En general tiene clima de estepa. Llueve durante el verano, la vegetación predominante es xerófila. La precipitación anual varia entre 220 y 800 mm. Debido a su orografía, la parte encañonada es muy cálida (hasta de 46 °C), en tanto la parte alta tiene una rica cobertura de coníferas y además es muy fría, especialmente en Cuajimoloyas y Ayutla; en tanto la zona adyacente a Tepelmeme esta totalmente desforestada.

Durante los meses de noviembre a febrero la cuenca se ve afectada por masas de aire polar (nortes), originando lluvias que aunque no son muy intensas si son persistentes, proporcionando algún beneficio a la agricultura.

4.3 CARACTERÍSTICAS HIDROLÓGICAS


El sistema hidrográfico del río Papaloapan es el de mayor importancia en los Estados

Unidos Mexicanos después del sistema Grijalva-Usumacinta. Su escurrimiento medio anual es aproximadamente de 47,000 millones de m³, con mínimos y máximos de 25,000 y 67,000 millones de m³, respectivamente.

El río Papaloapan nace en las inmediaciones de Coajimaloyas, en la Sierra de Juárez, y sigue su curso hacia el noroeste, recibe por su margen izquierda el río Tomellín. La corriente gemela se genera en el Valle de Tehuacan y con el nombre de río Salado viene en dirección opuesta, y después de recibir por su margen derecha el río Xiquila se encuentra con el río Tomellín en Quiotepec; a una altitud de 500 msnm cambian de dirección y atraviesan la Sierra Madre de Oaxaca en un estrecho cañón por el que circula el río Santo Domingo.

Al salir del cañón estrecho y profundo recibe por la margen derecha el río Usila y 50 km al este se inserta el río del Valle Nacional, y desde ese momento la corriente toma el nombre de río Papaloapan para continuar con dirección hacia el noroeste. Desde ese punto hacia la desembocadura, el río cruza la planicie costera y recorre 240 km hasta la laguna de Alvarado. Recibe por su margen izquierda el río Tonto, el cual esta regulado por la presa Miguel Alemán y al cruzar la vía del Ferrocarril del Istmo se le une por la derecha el río Obispo que nace en las inmediaciones de Loma Bonita. El río Papaloapan pasa por Cosamaloapan, Tlacotalpan y se le anexa en las cercanías de esta población el río de Playa Vicente que tiene su origen en la Sierra Madre de Oaxaca en el distrito de Villa Alta, pero que al unirse al Papaloapan recibe el nombre de Tesechoacan. Finalmente, ya casi al descargar en la laguna de Alvarado, se le une el río San Juan Evangelista que nace también en Villa Alta y después de un largo recorrido recibe en su curso inferior la descarga de la laguna de Catemaco por medio del río Tuxtla.

A la laguna de Alvarado concurren también los caudales del río Blanco y otras corrientes menores. El río blanco nace en las cumbres de Acultzingo, en las cercanías de la ciudad de Orizaba. Esta corriente pasa por los poblados de Nogales, Río Blanco, Santa Rosa, Cocolapan, posteriormente recibe la afluencia del río Orizaba y el de Tilapan. A unos cuantos kilómetros abajo de Orizaba recibe el río Escamela. Finalmente y después de un recorrido de 150 km descarga en la laguna de Alvarado.

4.4 ANÁLISIS DE DATOS

Se obtuvieron datos pluviográficos de intensidad de lluvia máxima anual (con duraciones de 5, 10, 15, 20, 30, 40, 60, 80, 100 y 120 minutos) publicados en los boletines (1948 a 1977) de la desaparecida Comisión del Papaloapan (SARH). Se consideraron las estaciones con 5 o más años de registro. Los datos de intensidad máxima de lluvia diaria se obtuvieron del Informe RH/03/96 del Centro Nacional de Prevención de Desastres (Cisneros y Domínguez, 1996).

En la TABLA 4.1 se presentan las características más importantes de las 39 estaciones consideradas en este trabajo, además se proporcionan las coordenadas cartesianas de cada una de ellas, referidas a la latitud y longitud.

4.4.1 Deducción de datos faltantes

Algunas estaciones (Calapilla, Salinas de Barranca y Xiquila) sólo cuentan con datos de intensidades de lluvia para duraciones de 30, 60, 90, 120, 240 y 1440 min. Las demás estaciones disponen de la mayor cantidad de datos (duraciones de 5, 10, 20, 30, 40, 60, 80, 100, 120 min) exceptuando las estaciones Cantón, Cuatotolapan, Cuichapa y Temascal, las que tienen mediciones de intensidades de lluvia con duración de 45 min; en el análisis se consideraron a éstos datos como lluvias con duración de 40 min. Para la lluvia diaria (duración igual a 1440 min) se obtuvo datos para 34 estaciones, excepto para las estaciones Alotepec, Coixtlahuaca, Cuesta Blanca, Palmar de Bravo y San Juan Evangelista.

En las estaciones: Ayutla, Azueta, Cantón, El Carmen, Jayacatlan, La Estrella, San Miguel Tulancingo, San Pedro Nolasco, Temascal y Villa Alta se encontró uno o más datos faltantes, por lo que hubo necesidad de determinarlos. En el ANEXO A se presentan tablas con los valores de intensidad de lluvia que se estudiaron y, en las mismas, también se presentan los valores correlacionados faltantes (en negrita). Estos fueron obtenidos de acuerdo al criterio siguiente: si faltaron valores sólo en un año, entonces este espacio se ocupó con la media muestral (con esta modificación se preserva la media); y en el caso de registros con más de un

TABLA 4.1 Estaciones reperesentativas propias de la Cuenca del Río Papaloapan y algunas de sus características.

	Estación	Edo.	Altitud (msnm)	Latitud	Longitud	Coorde en l		Periodo de registro
						X	Y	
1	Acayucan	Ver.	101	17°56'	94°54'	331 3	111.2	1948-1977
2	Alotepec .	Oax.	1200	17°06'	95°52'	225.1	21.7	1957-1961
3	Apazco	Oax.	2000	17°38'	97 - 07.	100.0	81.2	1957-1965
4	Astatla	Oax.	2200	17°58'	97°24'	63.7	117.1	1968-1977
5	Ayutla	Oax.	2060	17°01'	96°04'	208.7	12.0	1957-1977
6	Azueta	Ver.	20	18°05'	95°43'	241.3	131.3	1948-1977
7	Calapilla	Oax.	751	18°06'	97°08'	91.2	135.0	1955-1969
8	Caltepec	Pue.	1800	18°11'	97°28'	57.3	144.3	1957-1977
9	Cantón	Oax.	42	18°01'	96°16'	181.3	121.0	1948-1977
10	Cd. Aleman	Ver.	29	18°11'	96°05'	202.8	146.0	1956-1977
11	Coixtlahuaca	Oax.	2080	17°42'	97°19'	76.0	87.3	1968-1977
12	Cuatotolapan	Ver.	14	18°09'	95°18'	290.0	138.7	1948-1977
13	Cuesta Blanca	Pue.	2275	18°51'	97°27'	58.8	215.9	1971-1977
14	Cuichapa	Ver.	648	18°46'	96°51'	119.3	208.3	1949-1970
15	El Carmen	Pue.	1700	18°32'	97°29'	54.3	181.7	1962-1977
16	Fortin	Ver.	1006	18°53'	96°59'	108.3	220.7	1969-1977
17	Huautla	Oax.	1714	18°07'	96°50'	123.3	135.1	1957-1977
18	Jacatepec	Oax.	42	17°52'	96°12'	193.4	107.7	1959-1977
19	Jayacatlan	Oax.	1150	17°25'	96°49'	127.3	56.7	1957-1977
20	La Estrella	Oax.	120	17°55'	96°26'	170.0	114.3	1957-1977
21	Magdalena Jicotlan	Oax.	2210	17°47'	97°28'	55.3	100.7	1968-1977
22	Monte Rosa	Oax.	51	17°48'	95°56'	220.7	102.3	1956-1973
23	Palmar de Bravo	Pue.	2235	18°49'	97°32'	50.2	211.8	1971-1977
24	Papaloapan	Oax.	22	18°10'	96°05'	204.0	138.0	1948-1977
25	Quiotepec	Oax.	545	17°54'	96°59'	109.7	108.7	1948-1977
26	Salinas de Barranca	Pue.	1460	18°21'	97°28'	56.7	156.7	1955-1966
27	Sn Juan Evangelista	Ver.	29	17°53'	95°08'	305.7	111.3	1971-1977
28	Sn Lorenzo Teopilco	Pue.	1650	18°29'	97°26'	60.6	174.7	1967-1977
29	Sn Miguel Tulancingo	Oax.	2180	17°44'	97°27'	59.7	92.3	1968-1977
30	San Pedro Nolasco	Oax.	1800	17°18'	96°25'	169.3	40.7	1958-1977
31	Santiago Apoala	Оах.	1900	17°39'	97°07'	107.3	97.0	1967-1977
32	Santiago Teotongo	Oax.	2000	17°43'	97°33'	48.2	90.0	1968-1977
33	Suchixtlahuaca	Oax.	1875	17°44'	97°21'	70.0	93.5	1968-1977
34	Telpatlan	Pue.	2460	18°30'	97°09'	91.7	172.7	1956-1970
35	Temascal	Oax.	80	18°14'	96°25'	169.7	152.3	1953-1977
36	Tepelmeme	Oax.	2060	17°53'	97°22'	64.7	108.3	1956-1977
37	Tepeuxila	Oax.	1650	17°44'	96°51'	121.3	93.7	1957-1977
38	Villa Alta	Oax.	1140	17°21'	96°09'	198.0	46.0	1957-1977
39	Xiquila	Oax.	730	18°02'	97°09'	93.3	126.0	1955-1976

Coordenadas X y Y medidas a partir de la Longitud 98° hacia el este y, de la Latitud 16°56' hacia el norte, respectivamente.

valor faltante se correlacionó las muestras de las estaciones cercanas (dentro de un radio de 80 km) y, se completaron los espacios por regresión lineal entre las parejas con el mayor coeficiente de correlación. En las **TABLAS 4.2** y **4.3** se presentan los coeficientes de correlación entre muestras de estaciones próximas para la intensidad de lluvia con duración de 60 y 1440 min, respectivamente. Debe aclararse que la correlación entre registros de estaciones de igual duración es aceptable cuando estas conforman una región meteorológicamente homogénea. Para la zona estudiada sólo se consideró las dos duraciones mencionadas, pero, rigurosamente la correlación se debe hacer para todas las duraciones en cuestión. Los resultados de completar los datos faltantes en todos los registros de las estaciones mencionadas fueron considerados buenos ya que se preservaron las características estadísticas de las muestras.

4.4.2 Regionalización de lluvias

Es posible generalizar los eventos extremos de diseño siempre y cuando se traten fenómenos hidrometeorológicos similares y tengan relación con las características fisiográficas de la zona donde ellos ocurran. Resulta razonable ejecutar el análisis de eventos máximos históricos en forma puntual y por algún medio llegar a modelos que nos permitan conocer el evento de diseño, pero, éstos fenómenos no ocurren en un sitio a la vez, sino que tienen relación uno con otro, por lo tanto, aquellos lugares donde la ocurrencia de lluvia tengan características similares requerirán alguna consideración para tratarlas como un conjunto.

La cuenca del río Papaloapan ha sido estudiada en varias ocasiones, un reciente estudio a cerca de la regionalización de lluvias en esa zona fue desarrollado por Cisneros y Domínguez (1996). Ellos proponen una regionalización de la Cuenca del Río Papaloapan en tres zonas: alta, media y baja. La zona baja consta de toda la planicie y la región costera hacia el Golfo de México, la zona alta consiste en toda la región montañosa de una parte de la Sierra Madre del Sur y el resto de la región hacia el Pacífico. Desde Luego, la zona media es en realidad una zona de transición, y está formada por una parte de la zona montañosa y otra por la planicie, es decir, que está comprendida entre las dos anteriores (FIGURA 4.3).

TABLA 4.2 Coeficientes de correlación entre los registros intensidades de lluvia de las estaciones cercanas (dentro de un radio de 80 km), para una duración de 60 minutos (1 h).

								•		_				'			,	, P											`-	••,•										
	Estach	δn.	_																																					
	Auzyu	1 1	<u> </u>	_																																				
2	Alote		2																																					
3	Apaze			3																																				
10	ASIM	1	-		-4																																			
5	Ayurl		-0 32			5	1																																	
	Azuci		$\overline{}$				•	1																									-							
7	Calapi			0 19				7	1																															
	Calte		 		(i 49			0 19	• 8	1																														
	Camton	1								,	1																													
10	('dAk	-					-0 16			40 24	10																													
	Corst				0 66				0 10			11	ı																											
12	Cusso	oat	1							-0 1		\Box	12																											
13	Cuest	1-											\Box	13	1																									
14	Cunh		 												14																									
15	EICM:							0.00	0 27					0 49		15																								
16	Fonta	1												0 27			10																							
17	Husut			0.28	-0.05			0 27		40 12								17																						
10	Jacate		1_3				0 10			0.02	0.07								18																					
19	Jaya:			0.15			431		1			0 01	\Box							19																				
20	l al sr	T						8		461	0.05							0.36	0 47		20																			
21	Magda				0 46				0 17			0 62					-					21																		
	Monte						0 17		71	0.09	0 33								41.26		0.07		m	1																
23	Palma		1											-0.21		010	0.51							23																
24	Papal						0 21			0.03	0 52							3	0 20		0.05		0.05		24	1														
25	Quiote			0 34				0 28				0 48								0 02		0.17			0.40	25														
20	Safin	100						0 61	0.60							0.60	10.00										26													
	SnJuar	4 4 55											6 17															27												
28	Snl or				0 27				0.21					-0 11		0.34					1			0 64					28											
29	Snl or SnMig		1		0.56				-011			0 63										6 65				40 06			\dashv	29										
30	SnPed					0.29														0.05											30									
31	Smal				0 10				0.36			0 10						4) 26		4 10		0.06				437				6 25		31								
	SatiaT				0.58				0.36								ger ew		-			9 32				0.41				17 36		6 14	37							
33	Suchi	1			0.23				0.67			0 29								0 40		0.42	1			a 18				8 07		8 50	648	- 33	1					
	Icipa	1						0.29	-						0.28	41.74		0 21					1			0 46	0.62		_						34	1				
35	Temas	1									0 26								0.45		6 00	1														35	1			
30	Tepet			4) 19	0.07			0.64	0 34	-		0.11										0.11				0 12	0.74		0.67	0.26		0.17	4) 54	0 44	0 20		36	1		
	Tepeu			0.11	0 01			0.33				0.99						0 30		0.52	f	0.21	1			9 11	1			0 23	0 16	6 10		6 15			0.12	37	1	
30	Villa	1	0 17		-	0.03		1													1	1	0.15		-						0 10					19.00			30	1
	Xiqui			0 18	0 85			0.65	0 09							0 01		0 11	0 (1			0.28				0 09	0 12		0.14	0 49		0.80	6 15	0.31	0.05		(1.54	0.21		39

TABLA 4.3 Coeficientes de correlación entre los registros intensidades de lluvia de las estaciones cercanas (dentro de un radio de 80 km), para una duración de 1440 minutos (24 h).

1 Ac 2 Ak 3 Ap		1																																					
2 Ai		, I																																					
		•																																					
3 Ap			2																																				
				3																																			
4 As	gm M				4	_																																	
5 Ay	yuti					5																																	
	Duci						6	1																								-							
7 Ca	alapı			0 46				7																															
a Ca	ajec				0 17			0 11	- 8																														
• C.										•		_																											
10 Cd							40 17			-0 24	10		_																										
11 Co	DIXI											п																											
12 Cu	UMO	O On								O (m			12																										
13 Cu	uesi													13																									
14 Cu	uich														14																								
15 EIG								0.38	0.27							15																							
16 Fo	alm																16																						
17 Hu				0.00	0.15			0 48		0 25							\Box	17																					
is lac	CMC	1					0 07			0 17	403			T					18																				
19 Jay				4) (H								[]								19																			
20 La	d-si					Ι				0.15	0.00							0 11	0.43	- 1	26																		
21 Mz	agda				0 64			[]	0 16								0 67					21	100																
22 Mc	one						0 51			40 16	0 09								0 38		0.07		22																
23 Pa																	$\neg \neg$							23															
24 Pa	spai						6 33			0 10	0 54								0 31		0.30		0.00		24														
25 Qu	uioic			0.32	0.55			0.58												0.27		U 55				25													
26 Sa	die							0 18	0 14							0.25											26												
27 Sn	dum																											27	_										
28 Sn					0.71				8 14							0 56					1							29		_									
29 Sn	Mig		1		0.30				-0 06													0 10				0 37			19		_								
30 Sn	rPed					0 62												Ĭ		0 12								<u> </u>		99		_							
31 Sn	Asu		1		0 38				0 45									£1.58		0.27		9.45				0 49			0.23		31		_						
32 Sn	Tane		1		0.29				029									1				44 499				0 59			9.85		9.10	32		_					
33 Su	achi .				0.83				Ü 1#									1		0.42		0 79				0 76			0.35		0 46	0.25	W	L					
30 Te	ripa]	-		0.52	I		0.61							0.58	0 71		0.63		1		_1				0 52	0.10							м		2.0			
35 Te	CETTABS									-0 04	0.12								0 34		0.80				0.26										35	1			
10 To	rpel			0 26	0.68			0.42	0 13								T					0 50					0 00	0.6	0.04		0.56	0.03	0.77	0.44		34		_	
37 Te	epeu			0.01	0.60			0 56										0 47		0 44		0.60				0 52			0 17	0.68	0.54		0.63			0.5	37		_
36 V:	illa					0 34								$ \Box$					0 53				0 48						1	0 70)			I =	0.93	L			1
39 Xn	rqui			D 33	0 67			0 50	6 29							0.31		0.15				0 42				0 42	·0 12	0.6	0 35		0.11	4: 17	0.49	0 45		9.4	0.31		39

En este análisis se tomó como primera aproximación la delimitación de estas tres zonas. Para considerarlas en el estudio se examinaron las características estadísticas y fisiográficas de las mismas y se llegó a la conclusión de emplear dos zonas, la alta y la baja. Ya que el número de estaciones dentro la zona media no es representativo en un análisis espacial, se prefirió reubicarlas de acuerdo con la similitud en la

FIG 4.3 Límites de la regionalización de la Cuenca del Río Papaloapan propuesta por Cisneros y Domínguez (1996).

función de correlación espacial y esencialmente en el variograma (capítulo 2), ambas aplicadas al conjunto de estaciones de cada zona.

Para cada zona y para todas las duraciones de intensidad de lluvia se calcularon los coeficientes de correlación espacial y los variogramas (apartados 2.5 y 2.6). Se hicieron los ajustes respectivos con los modelos presentados en el mismo capítulo y en la TABLA 4.4 se presentan el tipo de modelo y sus parámetros. En esta se observa que, para casi todas las duraciones, los modelos ajustados para cada zona resultaron semejantes (mismos tipos de ecuación y tendencia).

Se ajustaron los parámetros de los modelos de correlación y variograma para las dos regiones, las ecuaciones de ajuste se nuestran en la TABLA 4.4 y están en función de la duración, en min. Observe que, para la zona A, los parámetros ajustados casi no cambian con la duración, por lo tanto, en estos se consideró un promedio.

TABLA 4.4 Parámetros de los modelos de correlación y semivariograma ajustados para diferentes duraciones analizadas en las zonas A y B dentro la Cuenca del Río Papaloapan.

ZONA	Duración d , en	Modelo de Correlación Espacial en función de la	Parámetro duraci	- 1	Modelo de Semivariograma en función de la distancia	1	os para la ción d
	min	distancia d_{ij} , en km	c	а	d_{ij} , en km	а	c
	5 10	POTENCIA INVERSA	11.1220 11.1220	0.7321 0.7152	EXPONENCIAL	687.800 350.450	-0.3000 -0.1000
	15 20	$\rho(d_{ij}) = 1/(1+d_{ij}/c)^a$	11.1220 11.1220	0.7045 0.7040	$\gamma(d_{ij}) = a[1 - \exp(-c d_{ij})]$	258.660 221.540	-0.1125 -0.1031
A	30 40	Parámetros ajustados:	11.1220 11.1220	0.7408 0.7174	Parámetros ajustados:	158.880 103.880	-0.0750 -0.1082
	60 80	c = 11.123	11.1220 11.1329	0.7165 0.7580	$a = 8492.2 \ d^{-1.2578}$	66.730 38.120	-0.0750 -0.0750
	100 120 1440	a = 0.710	11.1220 11.1220 11.1220	0.6851 0.7346 0.5989	$c = -0.337 d^{-0.3557}$	34.260 21.150 0.545	-0.3000 -0.0750 -0.0232
	5 10 15	POTENCIA INVERSA	11.1220 11.1329 11.1329	0.6306 0.7063 0.7318	EXPONENCIAL $\gamma(d_{ij}) = a[1 - \exp(-c d_{ij})]$	1102.046 619.847 482.244	-0.1500 -0.0750 -0.0750
В	20 30 40	$ρ(d_{ij}) = 1/(1 + d_{ij}/c)^a$ Parámetros ajustados:	11.1329 11.1329 11.1329	0.6912 0.7828 0.7843	Parámetros ajustados:	432.211 382.192 303.077	-0.1458 -0.1974 -0.1500
ī	60 80 100	c = 0.0000165 d + 11.131	11.1329 11.1329 11.1329	0.8036 0.7701 0.7542	$a = 9574.2 d^{-1.0177}$	229.262 162.211 124.178	-0.3000 -0.3000 -0.3000
	120 1444	$a = 0.0341 \ln d + 0.6194$	11.1329 11.1547	0.7139 0.8700	$c = -0.0249 \ln d - 0.1001$	100.556 2.575	-0.3000 -0.1500

Las estaciones que intervinieron en el cálculo de la función de correlación espacial y el variograma, resultado de seleccionar las **Zonas A y B**, se dan en la **TABLA 4.5**, y en la **FIGURA 4.4** la ubicación de las estaciones y la delimitación de estas zonas. En las **FIGURAS 4.5 a 4.7** se presentan los coeficientes de correlación espacial y el variograma de estas, para las intensidades de lluvia con duraciones de 30, 60 y 1440 min, también se observa la curva del ajuste con el tipo de modelo representativo y los respectivos intervalos de confianza al 95%.

TABLA 4.5 Estaciones representativas para las Zonas A y B, dentro la Cuenca del Río Papaloapan.

N°	ZONA A	Nº	ZONA B
3	Apazco	1	Acayucan
4	Astatla	2	Alotepec
5	Ayutla	6	Azueta
7	Calapilla	9	Cantón
8	Caltepec	10	Cd. Alemán
11	Coixtlahuaca	12	Cuatotolapan
13	Cuesta Blanca	14	Cuichapa
15	El Carmen	16	Fortín
19	Jayacatlan	17	Huautla
21	Magadalena Jicotlan	18	Jacatepec
23	Palmar de Bravo	20	La Estrella
25	Quiotepec	22	Monte Rosa
26	Salinas de Barranca	24	Papaloapan
28	San Lorenzo Teopilco	27	San Juan Evangelista
29	San Miguel Tulancingo	35	Temascal
30	San Pedro Nolasco	38	Villa Alta
31	Santiago Apoala		
32	Santiago Teotongo		
33	Suchixtlahuaca		
34	Telpatlan		
36	Tepelmeme		
37	Tepeuxila		
39	Xiquila		
Total	Zona A: 23 estaciones	Total	Zona B: 16 estaciones

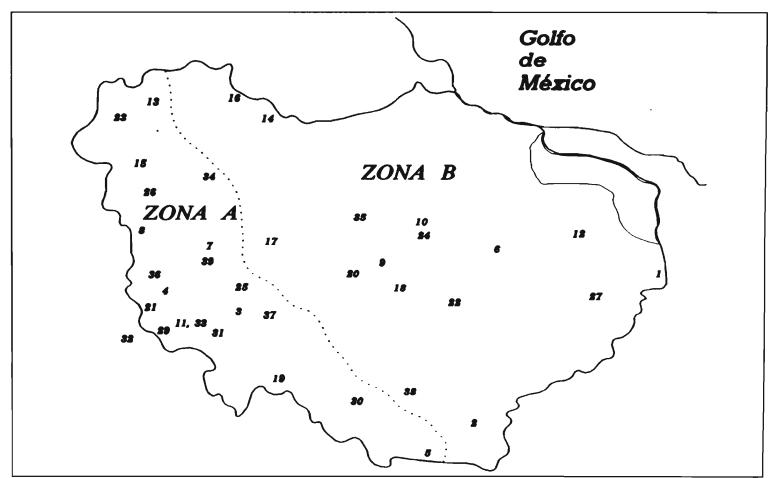


FIG 4.4 Límites de la regionalización propuesta (Zonas A y B) para la Cuenca del Río Papaloapan.

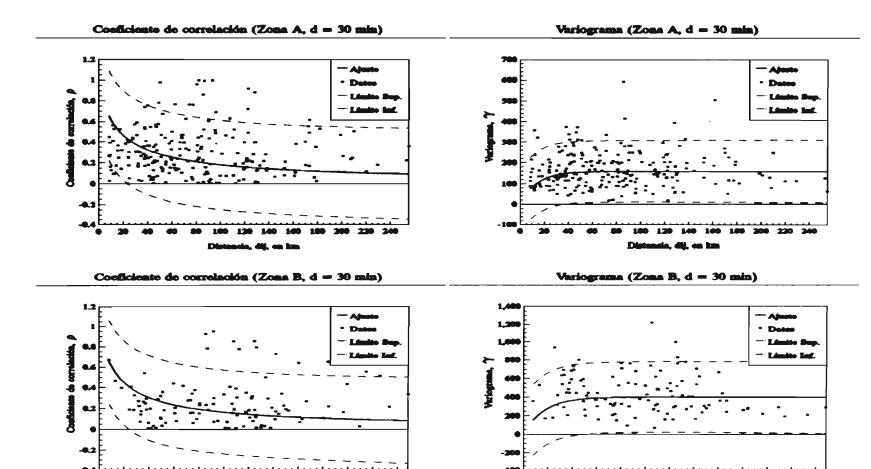
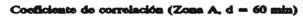



FIG 4.5 Coeficiente de correlación y variograma de las intensidades de lluvia, duración de 30 min (0.5 h). Zonas A y B.

Variograma (Zona A, d = 60 min)

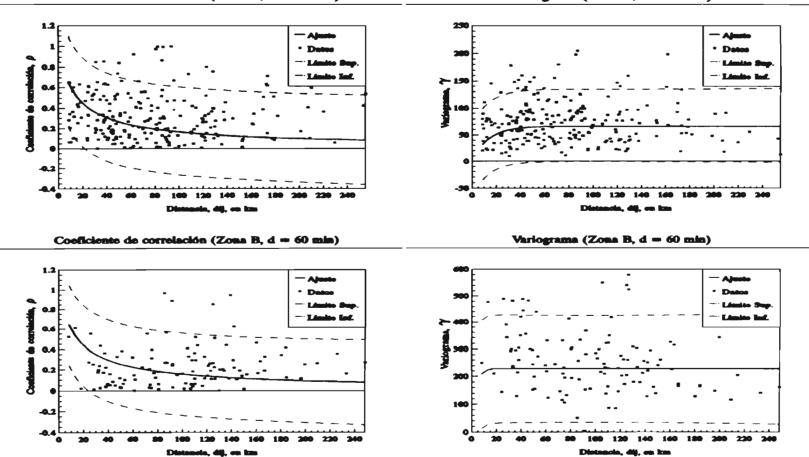


FIG 4.6 Coeficiente de correlación y variograma de las intensidades de lluvia, duración de 60 min. Zonas A y B.

Variograma (Zona A, d = 1440 min)

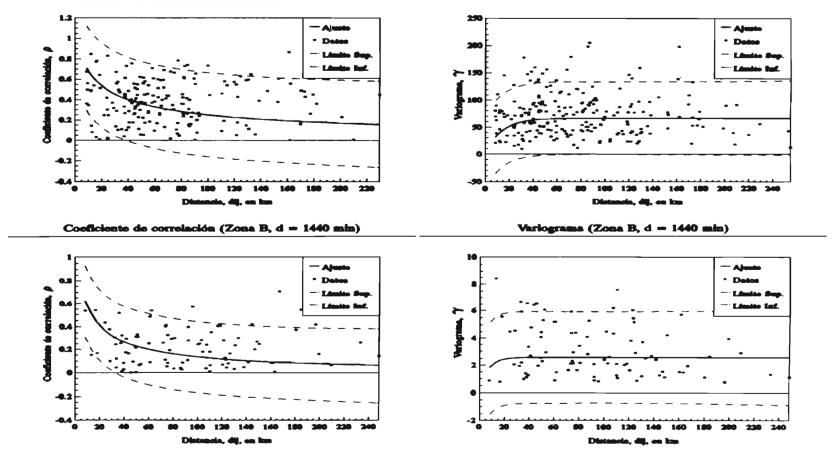


FIG 4.7 Coeficiente de correlación y variograma de las intensidades de lluvia, duración de 24 h. Zonas A y B.

4.4.3 Análisis de curvas I-d-T

El proceso para la obtención del las curvas *I-d-T* para una zona (cuenca) fue presentado en el **capítulo 1**, esta labor es básica en casi todos los análisis hidrológicos y tiene como finalidad, estimar las avenidas máximas en una cuenca. Las técnicas de construcción de estas curvas tienen diferentes parámetros a estimar; y desde luego se presentan los resultados de la aplicación de dichas técnicas.

4.4.3.1 Parámetros obtenidos por análisis de frecuencia

a) Distribución de probabilidad univariada

Para la aplicación de éste método se usó la función de distribución de probabilidad de valores extremos tipo I Gumbel "VE-I" (ec 1.22), que para ello se siguieron los pasos del procedimiento de un análisis de frecuencia (Apartado 1.2). Finalmente, en el ANEXO B de este trabajo, se presentan los parámetros ajustados para dicho modelo de frecuencia, se dan los errores de estimación y los eventos de diseño para períodos de retorno asignados.

b) Distribución de probabilidad bivariada

La aplicación de modelos de distribución de probabilidad bivariada (apartado 1.2.3) a las intensidades de lluvia en la Cuenca del Río Papaloapan presentaron, en general, buenos resultados. La base fundamental para lograr buenos ajustes con modelos bivariados es regionalizar la zona que se quiera estudiar, así en la Cuenca del Papaloapan se aplicaron los modelos de ajuste a los dos grupos de estaciones en que se dividió esta (Zonas A y B). Los errores de estimación en forma bivariada disminuyeron respecto a los univariados, pero en algunos casos los últimos si resultaron ser mejor que los primeros; esta diferencia se dio en aquellas estaciones con longitud de registro pequeña.

Debido a que la mayoría de los registros de intensidades de lluvia, en la Cuenca

del Río Papaloapan, se ajustan mejor a distribuciones univariadas Gumbel, se empleó la combinación de marginales Gumbel "VEB11" bivariada (ec 1.40).

Una de las características notables de estos modelos es que su comportamiento a períodos de retorno grandes son considerados buenos, ya que estos no tienden a sobreestimar los eventos así como lo harían otros modelos.

Los resultados del análisis con estos modelos se presentan en el ANEXO C. Del mismo modo que los univariados, el procedimiento de análisis de frecuencia fue el mismo, con la única diferencia de que ahora se emplearon los registros de dos estaciones y siguiendo los pasos del método (Apartado 1.2.3).

c) Distribución de la lluvia en el tiempo

Cuando se requiera estimar la cantidad de lluvia para duraciones distintas a las consideradas en el análisis, esencialmente en el rango de 60 a 1440 min (1 a 24 h), el Soil Conservation Service de los Estados Unidos de América sugiere dibujar una recta en papel logarítmico uniendo dos puntos con los siguientes valores: duración de 60 min en el eje de las abscisas y su respectiva intensidad de lluvia, para cierto período de retorno, en el eje de las ordenadas, en mm/h; y el otro punto correspondiente a la duración de 1440 min en el eje horizontal y su correspondiente intensidad de lluvia en el eje vertical, en mm/h, de igual manera para un período de retorno asignado. La recta trazada en el papel logarítmico permite leer valores de intensidad de lluvia para diferentes duraciones dentro del rango de duraciones establecido interpolando entre los dos puntos trazados o extrapolando (máximo hasta 7 días). En lugar de dibujar la recta se puede determinar una ecuación del tipo $I = a d^b$; donde d = I son la intensidad de lluvia y la duración, respectivamente; a y b son constantes que se determinan a partir de las intensidades de lluvia y sus duraciones.

4.4.3.2 Parámetros obtenidos para fórmulas empíricas

a) Fórmula de Bell

Bell (1969) propone usar la ec 1.53, o su variante la ec 1.54, mismas que requieren únicamente de un dato para la obtención de la relación l-d-T. La altura de lluvia P_{60}^{10} , implica un análisis de frecuencia ya que se debe estimar el evento para un período de retorno de 10 años y duración de 60 min. En este método se emplea la ec 1.53 y la altura de lluvia, para las estaciones de las Zonas A y B, se obtiene de los datos del análisis bivariado asentados en las tablas del ANEXO C. En la siguiente tabla se presentan las alturas de lluvia para las relaciones l-d-T pospuestas por Bell.

TABLA 4.6 Intensidades de lluvia, en mm/h, para la aplicación de la fórmula que relaciona la intensidad-duración-período de retorno propuestas por Bell.

Nº	ZONA A	I ₆₀ ²	I ₆₀ ¹⁰	N°	ZONA B	I ₆₀ ²	I 60
3	Apazco	17.86	31.38	1	Acayucan	38.96	63.08
4	Astatla	26.51	43.93	2	Alotepec	44.77	70.50
5	Ayutla	19.88	34.73	6	Azueta	41.94	71.74
7	Calapilla	25.94	50.59	9	Cantón	72.85	100.92
8	Caltepec	20.77	34.95	10	Cd. Alemán	60.48	99.49
11	Coixtlahuaca	18.63	29.75	12	Cuatotolapan	39.47	68.13
13	Cuesta Blanca	18.64	33.99	14	Cuichapa	59.73	83.65
15	El Carmen	22.94	36.98	16	Fortín	38.56	62.31
19	Jayacatlan	26.74	44.04	17	Huautla	34.15	53.95
21	Magadalena Jic.	15.81	25.54	18	Jacatepec	74.24	96.94
23	Palmar de Bravo	15.56	26.24	20	La Estrella	73.61	105.96
25	Quiotepec	22.63	41.79	22	Monte Rosa	56.52	92.27
26	Salinas de Bar.	30.74	56.01	24	Papaloapan	55.05	92.07
28	Sn Lorenzo Teo.	18.14	31.22	27	Sn Juan Ev.	41.57	80.63
29	Sn Miguel Tula.	16.01	27.52	35	Temascal	69.71	93.45
30	Sn Pedro Nolas.	16.45	29.22	38	Villa Alta	28.35	41.45
31	Santiago Apoala	11.44	20.61				
32	Santiago Teoto.	12.31	21.85]		\	
33	Suchixtlahuaca	19.06	35.05				
34	Telpatlan	19.93	35.23			l	
36	Tepelmeme	21.81	38.99				
37	Tepeuxila	22.70	36.31				
39	Xiquila	19.86	34.21				
	Total Zona A:	23 estacion	es		Total Zona B:	16 estacion	nes

b) Fórmula de Chen

La fórmula que propone Chen (1983), ec 1.71, requiere de tres datos (alturas de precipitación) que se obtienen de un análisis de frecuencia y de tres parámetros que dependen de la relación intensidad de lluvia-duración. Las alturas de precipitación, P_{60}^{10} , P_{1440}^{10} y P_{60}^{100} , se obtuvo del análisis de frecuencia bivariado (ANEXO C) y; los parámetros de tormenta a_1 , b_1 y c_1 , se calcularon de acuerdo al procedimiento explicado en el análisis de la relación intensidad de lluvia-duración (Apartado 1.3.2) condicionado al problema de minimización del la ec 1.59.

Las relaciones I_d^T / I_{60}^T encontradas en este análisis fueron agrupadas en 5 intervalos, de 0.23 a 0.70. Los valores promedio de cada intervalo asociados a la duración (5, 10, 15, 20, 30, 40, 60, 80, 100, 120 y 1440 min) son los que se muestran en la **TABLA 4.7**.

TABLA 4.7 Relaciones altura de precipitación-duración promedio para diferentes duraciones. Cuenca del Río Papaloapan.

Relación altura de precipitación-duración									
Duración		$P_{60}^{10} / P_{1440}^{10}$							
en (min)	0.282	0.359	0.449	0.522	0.621				
5	4.174	3.284	3.220	3.207	3.024				
10	3.014	2.314	2.283	2.385	2.302				
15	2.475	1.947	1.918	2.026	2.007				
20	2.102	1.739	1.756	1.837	1.794				
30	1.668	1.509	1.457	1.496	1.435				
40	-1.374	1.261	1.250	1.263	1.231				
60	1.000	1.000	1.000	1.000	1.000				
80	0.808	0.817	0.806	0.818	0.817				
100	0.721	0.702	0.730	0.685	0.703				
120	0.628	0.619	0.623	0.586	0.587				
1440	0.150	0.116	0.091	0.076	0.065				

Los parámetros de tormenta calculados para los datos de la TABLA 4.7 se muestran en la TABLA 4.8. Las ecs 4.1 representan los parámetros hallados y el menor coeficiente de determinación resulto ser para b_1 ($R^2 = 0.9886$).

$$a_1 = 274.38 x^2 - 112.82 x + 23.416$$

$$b_1 = -46.67 x^2 - 98.727 x - 22.482$$

$$c_1 = -0.2128 x^2 + 1.1151 x + 0.3255$$
(4.1)

donde $x = P_{60}^{10} / P_{1440}^{10}$ = relación altura-duración, válida para 0.26 < x < 0.66.

TABLA 4.8 Parámetros de tormenta para la relación *I-d-T* de la fórmula de Chen, aplicables en la Cuenca del Río Papaloapan.

Parámetro		Relación altu	ra de precipitad P ¹⁰ ₆₀ / P ¹⁰ ₁₄₄₀	ción-duración	
	0.282	0.359	0.449	0.522	0.621
a_1	13.633	17.688	28.585	39.176	59.233
b ₁	1.223	7.571	12.985	15.126	21.293
c 1	0.627	0.690	0.784	0.855	0.934

Lafragua (1996) presenta un gráfico en el que pueden obtenerse los valores de las constantes a_1 , b_1 y c_1 , los comparó con valores de Chen (1983), y obtuvo valores diferentes, al igual que sucedió con los calculados en este trabajo. Por tanto, dichos parámetros difieren con la relación intensidad de lluvia-duración, y es necesario obtener esta relación para la zona que se desee analizar.

En la **TABLA 4.9** se proporcionan los datos obtenidos del análisis de frecuencia bivariada para el empleo de la fórmula de Chen.

TABLA 4.9 Alturas de precipitación para aplicar la fórmula de Chen en la Cuenca del Río Papaloapan, en mm.

Ν°	ZONA A	P ₆₀ ¹⁰	P 60	P ₁₄₄₀	Nº	ZONA B	P 60	P 60	P ₁₄₄₀
3 4 5 7 8 11 13 15 19 21 23 25 26 28 29 30 31		31.38 43.93 34.73 50.59 34.95 29.75 33.99 36.98 44.04 25.54 26.24 41.79 56.01 31.22 27.52 29.22 20.61	P ₆₀ 48.25 65.65 53.26 81.34 52.65 43.63 53.14 54.49 65.63 37.68 39.55 65.69 87.53 47.54 41.88 45.15 32.05	P ₁₄₄₀ 61.06 63.86 108.56 75.78 65.77 78.73 77.21 69.70 78.65 71.71 80.94 79.17 81.23 64.95 73.89 95.47 97.05	1 2 6 9 10 12 14 16 17 18 20 22 24 27 35 38	ı	63.08 70.50 71.74 100.92 99.49 68.13 83.65 62.31 53.95 96.94 105.96 92.27 92.07 80.63 93.45 41.45	93.17 102.60 108.91 135.93 148.16 103.88 113.48 91.93 78.65 125.24 146.30 136.86 138.25 129.36 123.06 57.78	P ₁₄₄₀ 150.58 191.23 147.01 261.69 183.53 169.75 171.67 123.33 233.60 268.21 314.33 179.28 163.71 190.41 204.85 132.25
32 33 34 36 37 39	SntiT Suchi Telpa Tepel Tepeu Xiqui	21.85 35.05 35.23 38.99 36.31 34.21	33.75 55.00 54.31 60.42 53.27 52.11	69.38 84.06 111.83 69.59 96.26 66.58					

c) Fórmula de Kothyari y Garde

La aplicación de éste método no difiere de la técnica de correlación múltiple. Así también para períodos de retorno mayores al tamaño de la muestra se tienen eventos más grandes que los que se obtienen con las otras técnicas. En la **TABLA 4.10** se exponen los parámetros para la aplicación de la fórmula. De esta tabla se observa que los valores de los parámetros de ajuste, para cada zona, tienden a agruparse en un determinado rango de valores. Por ejemplo, en la **Zona A** el parámetro k está entre 1 y 6, descartando los extremos y, para la **Zona B** varía de 5 a 10; lo que confirma la regionalización hecha por los autores en la India.

TABLA 4.10 Parámetros de ajuste en el método de Kothyari y Garde aplicados a las estaciones representativas de la Cuenca del Río Papaloapan.

		representativa			
ESTACIÓN	P 1440 en mm	k	а	ь	c
Apazco	39.84	4.5162	0.5773	0.1931	0.6953
Astatla	44.38	5.7759	0.4089	0.2501	0.7230
Ayutla	72.04	4.1178	0.4616	0.2464	0.5743
Calapilla .	46.92	4.1588	0.6161	0.2733	0.7517
Caltepec	43.15	2.6162	0.4280	0.4250	0.7234
Coixt	50.50	2.3509	0.4678	0.4258	0.6540
Cuesta	53.77	1.5758	0.7203	0.4388	0.6273
ElCarmen	47.09	1.6718	0.3888	0.5512	0.6829
Jayac	49.05	2.0362	0.4207	0.5126	0.6724
Magdalena J	45.60	2.5030	0.4210	0.3827	0.6776
Palmar de B	52.82	1.9052	0.5271	0.4077	0.6536
Quiotepec	50.91	2.35()9	0.5433	0.4072	0.6498
Salinas de B	51.04	3.3029	0.5836	0.4041	0.8009
Sn Lorenzo	46.14	4.9675	0.4783	0.1937	0.6497
Sn Miguel	48.88	2.1133	0.5068	0.3881	0.6405
Sn Pedro N	60.98	1.2694	0.5415	0.4968	0.6170
Santiago A	47.04	2.1881	0.6760	0.2765	0.5996
Snatiago T	47.17	1.6854	0.5880	0.3772	0.6268
Suchixtla	54.29	10.9662	0.6030	-0.037	0.6204
Teplatlan	65.14	7.2554	0.5516	0.1132	0.6344
Tepelmeme	44.22	1.2180	0.4716	0.6266	0.7214
Tepeuxila	63.99	1.2513	0.4320	0.5877	0.6490
Xiquila	42.72	3.1234	0.4348	0.3645	0.7284
Acayucan	102.84	6.6184	0.3569	0.2859	0.6057
Alotepec	131.50	4.0829	0.4725	0.3962	0.5462
Azueta	99.17	7.6106	0.4099	0.2652	0.6343
Cantón	181.39	9.7512	0.2420	0.3148	0.5425
Cd. Aleman	126.59	8.0760	0.3756	0.3061	0.6143
Cuatotolapan	99.95	9.4084	0.4250	0.1974	0.6244
Cuichapa	122.33	11.6186	0.2629	0.2509	0.5986
Fortín	85.74	5.1730	0.3932	0.3291	0.6419
Huautla	156.62	5.5510	0.3180	0.2982	0.5034
Jacatepec	187.93	6.0924	0.1942	0.4109	0.5604
La Estrella	219.49	0.6252	0.2712	0.8067	0.5102
Monte Rosa	128.49	2.5076	0.3311	0.5416	0.6066
Papaloapan	126.53	7.0569	0.3519	0.3237	0.5890
Sn Juan Evan.	130.78	2.8726	0.6822	0.3907	0.5902
Temascal	140.57	10.4156	0.2236	0.3103	0.5991
Villa Alta	86.99	5.1043	0.3040	0.3141	0.6105

4.4.3.2 Parámetros para el método de correlación múltiple

El método de correlación múltiple es uno de los más empleados para la obtención de las curvas *I-d-T*, pero a la vez se ha demostrado que es el que proporciona mayor

error en la estimación de eventos con períodos de retorno grandes. Los parámetros calculados para la región del papaloapan son los que aparecen en la siguiente tabla:

TABLA 4.11 Parámetros de ajuste en el método de correlación lineal múltiple para las estaciones representativas de la Cuenca del Papaloapan.

	ias estaciones representati		i i apaiva	
	Estación	k	m	n
l	Acayucan	296.60	0.3569	0.6051
2	Alotepec	264.16	0.4725	0.5462
3	Apazco	159.12	0.5773	0 6962
4	Astatla	293.59	0.4089	0.7278
5	Ayutla	123.94	0.4616	0.5741
6	Azueta	344.90	0.4099	0.6337
7	Calapilla	262.22	0.6161	0.7545
8	Caltepec	250.83	0.4280	0.7236
9	Cantón	461.16	0.2420	0.5419
10	Cd. Aleman	440.93	0.3756	0.6150
H	Coixtlahuaca	181.70	0.4678	0.6540
12	Cuatotolapan	300.47	0.4250	0.6239
13	Cuesta Blanca	118.11	0.7203	0.6273
14	Cuichapa	451.67	0.2629	0.5995
15	El Carmen	231.05	0.3888	0.6853
16	Fortin	319.44	0.3932	0.6489
17	Huautla	197 48	0.3180	0.5043
18	Jacatepec	523.00	0.1942	0.5621
19	Jayacatlan	235 .10	0.4207	0.6727
20	La Estrella	392.25	0.2712	0.5109
21	Magdalena Jicotlan	176.65	0.4210	0.6825
22	Monte Rosa	418.46	0.3311	0.6077
23	Palmar de Bravo	139.51	0.5271	0.6536
24	Papaloapan	376.12	0.3519	0.5884
25	Quiotepec	166.37	0.5433	0.6495
26	Salinas de Barranca	438.86	0.5836	0.8048
27	Sn Juan Evangelista	216.08	0.6822	0.5902
28	Sn Lorenzo Teopilco	150.78	0.4783	0.6525
29	Sn Miguel Tulancingo	134.07	0.5068	0.6447
30	San Pedro Nolasco	122.21	0.5415	0.6168
31	Santiago Apoala	73.89	0.6760	0.5996
32	Santiago Teotongo	93.75	0.5880	0.6264
33	· Suchixtlahuaca	118.73	0.6105	0.6193
34	Telpatlan	157.11	0.5516	0.6357
35	Temascal	562.36	0.2236	0.5993
36	Tepelmeme	251.29	0.4716	0.7220
37	Tepeuxila	205.85	0.4320	0.6492
38	Villa Alta	253.68	0.3040	0.6116
39	Xiquila	242.22	0.4348	0.7284

4.4.4 Aplicación de las técnicas de Interpolación

Se aplicaron las técnicas de interpolación, presentadas en el capítulo 2, para calcular los eventos de las intensidades de lluvia diaria (d = 24 h = 1440 min) en estaciones donde no se tienen mediciones (Las estaciones son: Para la Zona A, Coixtlahuaca, Cuesta Blanca y Palmar de Bravo; para la Zona B, Alotepec y San Juan Evangelista). Los períodos de retorno T considerados son: 2, 5, 10, 20, 50, 100, 500, 1000, 5000 y 10000 años; todos estimados a partir de datos calculados por análisis de frecuencia bivariada en las estaciones vecinas (ANEXO C). El método de interpolación empleado fue el kriging. Los valores interpolados se emplearon en el análisis de las relaciones altura de precipitación-duración, altura de precipitación-período de retorno, en el cálculo de parámetros de ajuste de las fórmulas empíricas y finalmente en la parte de aplicación del presente trabajo.

Para propósitos de comparación, también se interpolaron eventos con los mismos períodos de retorno, lluvia diaria y en las estaciones mencionadas, pero con información del análisis univariado. Estos resultados pueden ser detectados en las hojas de reporte correspondientes a la duración de 24 horas (ANEXO B).

CAPÍTULO 5. MODELO PROPUESTO

En este capítulo se presenta el procedimiento para el cálculo de la avenida de diseño de obras hidráulicas a partir de registros de lluvia. Se exponen alternativas de análisis de lluvias: registros de lluvia de 24 horas (1440 min) y los correspondientes a duraciones menores o igual que 2 horas (120 min). El análisis de lluvia consiste en modelar esta variable, curvas *I-d-T*, tal y como se desarrolló en el capítulo 1.

Se propone un modelo de lluvia-escurrimiento simple (Hidrograma Unitario Triangular), con la opción del uso de otro modelo adecuado para este análisis (capítulo 3). Por último, se propone emplear las técnicas de interpolación espacial presentadas en el capítulo 2, para la determinación de los eventos de diseño en sitios donde no se tienen mediciones.

A continuación se desarrollan los pasos a seguir en el cálculo de la avenida de diseño en cuencas donde se tengan registros de lluvias:

i) RECOPILACIÓN DE DATOS

Antes del procesamiento de los datos es recomendable un análisis crítico de todos los registros existentes en las estaciones involucradas en el estudio. Se deben identifica los datos

faltantes así como el número de años de registro, desechando aquellas estaciones que contengan menos de 5 años. Detectar datos dudosos o erróneos consiste en verificar si los valores, muy grandes o muy pequeños, son los que se registraron realmente en estaciones cercanas donde ocurrieron fenómenos similares. Con ello se harán las correcciones necesarias, es decir, confirmarlas o descartarlas.

Determinar el coeficiente de correlación y el variograma entre todos los registros en común de las estaciones.

Dibujar para cada pareja el coeficiente de correlación en el eje de las ordenadas y, su distancia entre ellas en el eje de las abscisas. Los valores de los coeficientes de correlación más altos son las parejas que deben correlacionarse para completar los registros faltantes. No deben completarse más de 5 registros faltantes, y en caso de requerirlo se debe recurrir a las técnicas para la Extensión de Registros (Kite, 1988).

ii) REGIONALIZACIÓN DE LA CUENCA

La regionalización del fenómeno de la lluvia en una zona ha sido estudiada en pocas ocasiones. Su empleo en los estudios hidrológicos debe ser parte del análisis general, por ello es recomendable llevar a cabo un proceso de regionalización de lluvias empleando los métodos que se encuentren disponibles y, además, que puedan aplicarse a la zona de estudio.

Aquí se propone un método de regionalización semi-empírico por aproximaciones, en el siguiente párrafo se explica de manera breve este procedimiento.

El semivariograma (capítulo 2) indica la variación de los datos de una estación respecto a los de otra con la distancia entre ellas. Los valores más bajos forman un grupo de estaciones las que pueden considerarse en el espacio como meteorológicamente homogéneas. Si se distinguen dos o más tendencias marcadas implicarán dos zonas y, luego se subdivide la cuenca, esto es, se regionaliza según los procesos de homogeneidad de la cuenca; se traza una línea

imaginaria que incluya a las estaciones dentro la cuenca, por lo general suele ser un parteaguas o una frontera que denote físicamente el cambio del fenómeno meteorológico, y luego se calculan nuevamente los coeficientes de correlación y variograma para cada región; en el caso de presentar una sola tendencia se considera a toda la zona como una región homogénea y se continúa en el siguiente paso.

iii) ANÁLISIS DE FRECUENCIA

El análisis de frecuencia es fundamental para la estimación de eventos hidrológicos asociados a un período de retorno. Esto se logra ajustando un modelo con distribución de probabilidad como los que se presentan en el capítulo 1. Se elige la distribución que proporcione el mínimo valor del error estándar de ajuste.

Cuando se emplee la modelación multivariada debe tomarse en cuenta la regionalización hecha en el paso anterior, esto significa que el análisis bivariado o trivariado se harán entre los registros de estaciones dentro de cada región. Un detalle típico de la regionalización es que los parámetros de los modelos ajustados tienden a variar en un rango característico y en consecuencia, también de esta forma, puede validarse la regionalización propuesta.

Es aconsejable usar modelos multivariados ya que con estos se logra disminuir el error de estimación de un evento, así por ejemplo, para un período de retorno grande, comparado con el tamaño de la muestra, la extrapolación de eventos extraordinarios resultan ser buenos y suficientes como para los propósitos de diseño y, aún más cuando en el sitio no se disponen de registros históricos para su análisis.

iv) CÁLCULO DE LA RELACIÓN INTENSIDAD-DURACIÓN-PERÍODO DE RETORNO

Cuando si se disponen de registros de lluvia con duraciones de 24, 2 y 1 h, e inclusive duraciones menores que esta última, se propone usar las relaciones *I-d-T* siguientes:

a) Para duraciones efectivas de lluvia menores o igual que 2 h (120 min)

Emplear las fórmulas de Chen y Bell. Para estimar los parámetros que requieren las fórmulas que proponen estos autores debe hacerse el análisis de frecuencia multivariada con los datos de lluvia, con todas las duraciones disponibles menores e igual que 2 horas.

b) Para duraciones efectivas de lluvia entre 1 y 24 h (60 y 1440 min)

Emplear la fórmula de Chen o el Análisis de Frecuencia. Los parámetros de la fórmula de Chen se deben estimar con datos del análisis de frecuencia multivariada. En el método de Análisis de Frecuencia, cuando se requieran estimar eventos con duraciones de lluvia menores que 24 h, pero mayores que 1 h, se empleará el método del U.S. Conservation Service (Apartado 4.4.3.1c).

c) Para duraciones efectivas de lluvia mayores que 24 h (1440 min)

Emplear el Análisis de Frecuencia usando Modelos Multivariados. En este método, cuando se requieran estimar eventos con duraciones de lluvia mayores que 24 h se empleará el método del U.S. Conservation Service (apartado 4.4.3.1c). Aplicando éste procedimiento es posible extrapolar los eventos de diseño con una duración hasta de 7 días.

d) Para duraciones efectivas de lluvia mayores que 1 h (60 min)

Cuando no se disponen de registros de lluvia con duraciones de 1 h , pero si de 24 h, entonces se propone usar las relaciones empíricas propuestas por Campos (1984). Este autor propone usar una relación media de la precipitación de 60 min a la de 1440 min, P_{60}^2 / P_{1440}^2 , igual a 0.47 y luego aplicar la fórmula de Chen. Para otra zona deberá realizarse un estudio y determinar el valor de esta relación empírica.

Las curvas 1-d-T se obtendrán para cualquier duración empleando el método del U.S.

Conservation Service, como ya se indicó en apartado iv) inciso b).

v) CÁLCULO DEL GASTO DE DISEÑO

En esta parte del cálculo se implican a los modelos lluvia-escurrimiento. Una vez que se han calculado las intensidades de lluvia (o precipitaciones) de diseño, para tomar en cuenta la influencia de estaciones cercanas, se calcula la precipitación promedio en el área por el método de los polígonos de Thiessen. Para obtener el gasto de diseño se recomienda usar el método del Hidrograma Unitario Triangular (capítulo 3), ya que por su simplicidad y amplio margen de aplicabilidad proporciona resultados razonables. Se recuerda que para aplicar este método debe determinarse el número de la curva de escurrimiento N de la cuenca en estudio y luego calcularse la precipitación efectiva usando la ec 3.9.

vi) APLICACIÓN DE LAS TÉCNICAS DE INTERPOLACIÓN

Cuando se quiere diseñar una estructura en un sitio donde no se disponen de registros de lluvia, además de ejecutar los pasos *i) a iv)* antes mencionados, se propone lo siguiente:

a) Cálculo de intensidades de lluvia en estaciones vecinas

- a1) Determinar la duración efectiva para la cual se va a diseñar la estructura en todas las estaciones de la región.
- A partir de los resultados del análisis previo, calcular el evento de diseño en todas las estaciones, para la duración y período de retorno elegidos.
- a3) Interpolar el evento de diseño en el sitio de interés a partir de los eventos estimados en todas las estaciones de la región, para una misma duración y período de retorno. Se aplicarán las técnicas de interpolación expuestas en el capítulo 2 de esta tesis. En la aplicación de los métodos de interpolación óptima y kriging deben calcularse, para los puntos que intervienen en el proceso de interpolación, los coeficientes de correlación y variograma, respectivamente.

- a4) Cuando exista influencia de estaciones vecinas, trazar los polígonos de Thiessen para tomar en cuenta la influencia de estas.
- a5) Calcular la precipitación promedio en el área por el método de Thiessen. En el caso de que no exista influencia por parte de otras estaciones se asume el 100% a los eventos de la estación inferida.

b) Cálculo de los gastos de diseño

- b1) Determinar el número de la curva de escurrimiento de la cuenca N.
- Calcular la precipitación efectiva. Antes de proseguir con el siguiente paso se recomienda hacer una calibración del número de escurrimiento, esto es, suprimir los datos de la estación más cercana e inferirlos por medio de las técnicas de interpolación, calcular nuevamente la precipitación efectiva; modificar N cuantas veces sea necesario hasta obtener un resultado similar con los datos reales de la estación suprimida. Puesto que el cálculo de la precipitación efectiva depende en gran parte del número N, se ha comprobado que un ligero incremento de esta variable refleja una gran variación en la estimación del gasto.
- **b3)** Calcular el gasto de diseño.

El siguiente capítulo completa las ideas expuestas del modelo propuesto, pues se hace una aplicación real a dos Subcuencas dentro la Cuenca del Papaloapan, donde cada una de ellas está ubicada dentro las dos regiones consideradas como meteorológicamente homogéneas.

CAPÍTULO 6. APLICACIONES

En éste capítulo se resuelve un problema aplicando el procedimiento propuesto en el capítulo anterior. Para validar la estimación de los eventos se usará el método del punto ficticio. Éste, consiste en suprimir la información de una estación e inferirla empleando las técnicas de interpolación con base en la información proporcionada por estaciones vecinas. Para ello se estimarán los gastos de diseño en el sitio de interés por medio de la relación lluvia-escurrimiento establecida y se hará la comparación con los gastos de diseño obtenidos de un análisis de frecuencia univariada, a partir de los gastos registrados en esa estación.

A continuación se hace una breve descripción de las estaciones que se van a suprimir y los respectivos datos de las subcuencas.

6.1. DESCRIPCIÓN DE LAS SUBCUENCAS

Las subcuencas analizadas son las estaciones Quiotepec y La Estrella (FIGURA 6.1). La primera forma parte de las estaciones que están en la Zona A, está situada a 2 km del poblado de Quiotepec, Oax. El recorrido total desde Cd. Alemán hasta la estación es de 349 km, para el aforo se utiliza la estructura del Puente del Ferrocarril México-Oaxaca, mismo que tiene una longitud de 106.2 m. En esta estación se empezaron a registrar los gastos máximos desde junio de 1948 y, se tiene registros hasta el año de 1977. El área de la subcuenca hasta el

sitio de medición es de 4831.8 km². La segunda estación forma parte de la **Zona B**, está próxima al poblado de Santa Rosa, Oax. Se tienen registros de la misma variable desde marzo de 1953 hasta el año de 1977, estos se exponen en la **TABLA 6.1**. El área de la subcuenca para esta estación, hasta el sitio de medición, es de 773.7 km².

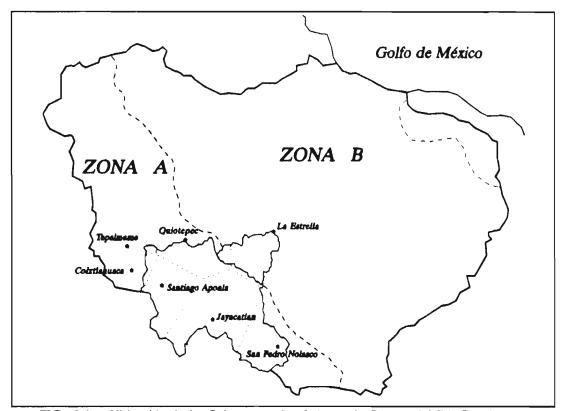


FIG 6.1 Ubicación de las Subcuencas 1 y 2 dentro la Cuenca del Río Papaloapan.

El ajuste de los gastos registrados en las dos estaciones se hizo con funciones de distribución de probabilidad univariada. Para los registros de La Estrella se ajustó con un menor error la distribución Gumbel y para los de la estación Quiotepec resultó la distribución Doble Gumbel (FIGURAS 6.2 Y 6.3). Los parámetros de ajuste de estas distribuciones son:

Estación

La Estrella Parámetro de ubicación = 1194.6407 Parámetro de escala = 416.67

Quiotepec Parámetro de ubicación 1 = 310.5685 Parámetro de escala 1 = 144.93

Parámetro de ubicación 2 = 1034.6981 Parámetro de escala 2 = 208.33 Parámetro de asociación = 0.8090

TABLA 6.1 Gastos máximos históricos registrados en las estaciones La Estrella y Quiotepec.

1810	Gasto máxii	mo, en m³/s
AÑO	Estación: La Estrella	Estación: Quiotepec
1949		208
1950		611
1951		390
1952	i	637
1953	1620	657
1954	1402	492
1955	1679	765
1956	1113	328
1957	889	103
1958	2305	1415
1959	1370	260
1960	1652	739
1961	1418	491
1962	1366	221
1963	1075	410
1964	999	152
1965	1673	338
1966	815	357
1967	1234	320
1968	1194	305
1969	1707	815
1970	1262	457
1971	920	339
1972	1910	362
1973	2000	1008
1974	1572	1430
1975	3050	1104
1976	1071	431
1977	534	93.5

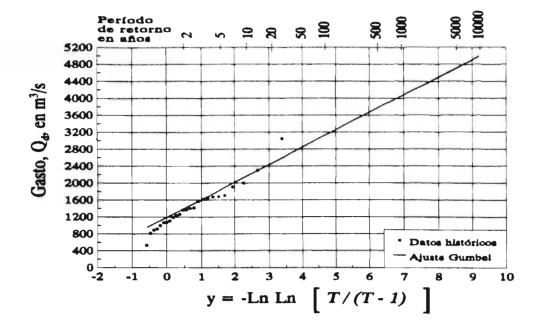


FIG 6.2 Ajuste de los gastos registrados en la estación La Estrella con la distribución Gumbel.

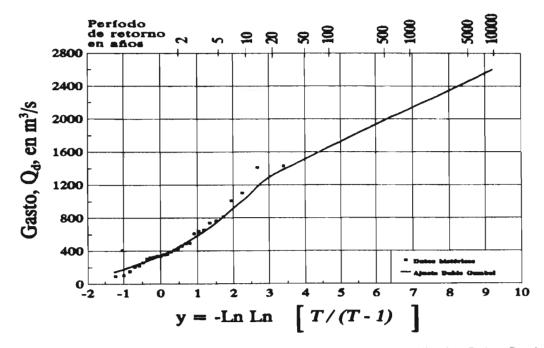


FIG 6.3 Ajuste de gastos registrados en la estación Quiotepec con la distribución Doble Gumbel.

6.2 CÁLCULOS Y RESULTADOS

Con la regionalización de la Cuenca del Río Papaloapan, presentada en el capítulo 4, se llegó a la conclusión de dividirla en dos zonas, las que se consideran meteorológicamente homogéneas. Esta regionalización propuesta fue verificada por el rango de valores de los parámetros ajustados en las distribuciones de probabilidad univariadas y bivariadas (ANEXOS B y C).

La regionalización del fenómeno de la lluvia debe ser parte del análisis general, por ello es recomendable llevar a cabo un proceso de regionalización de lluvias empleando los métodos que se encuentren disponibles para tal fin.

a) ANÁLISIS DE FRECUENCIA

En el capítulo 4 se presentaron los resultados del análisis de frecuencia para todas las estaciones involucradas dentro las Zonas A y B. En éste se tienen disponibles los parámetros para aplicar alguno de los métodos que relacione las curvas *I-d-T* expuestos en el capítulo 1. En esta aplicación sólo se refieren a los parámetros de las distribuciones bivariadas y en la parte de interpolación se hacen las comparaciones con las distribuciones univariadas y los otros métodos.

b) CÁLCULO DE LA RELACIÓN INTENSIDAD-DURACIÓN-PERÍODO DE RETORNO

Como primer paso se requiere conocer el tiempo de duración efectiva de la tormenta, para ello se considera ésta duración igual al tiempo de concentración t_c . En el capítulo 3 se presenta la fórmula de Kirpich, ec 3.5, así como las diferentes formas de calcular la pendiente promedio de la cuenca. En la TABLA 6.2 se proporcionan los valores de pendiente calculadas para las subcuencas 1 y 2, aplicando dicha ecuación se calculan los tiempos de concentración. Los diferentes valores calculados de tiempos de concentración en esta tabla hace que la elección del valor más adecuado sea de mucho cuidado. Si se dibujan el perfil del cauce y las pendientes

calculadas se aprecia que la mejor opción será la que compense en gran parte los cambios abruptos del perfil del cauce. De lo anterior se deduce que las pendientes para las subcuencas 1 y 2 serán 0.015019 y 0.011050; con tiempos de concentración 7.27 h y 18.33 h, Zonas B y A, respectivamente. Puesto que la duración efectiva o en exceso es igual al tiempo de concentración, y éste tiene los valores citados, entonces la secuencia de cálculo será la que se expone en el apartado iv), inciso b) del capítulo 5, es decir, para duraciones efectivas entre 1 y 24 h (60 y 1440 min).

TABLA 6.2 Cálculo del tiempo de concentración en las subcuencas 1 y 2 para diferentes pendientes.

Subcuenca	S	Método de cálculo de la pendiente	Tiempo de concentración ec 3.5 t _c , en h		
	0.006215	Taylor-Schuarz	10.21		
	0.042394	Desnivel/Longitud	4.88		
1	0.030936	Mínimos cuadrados	5.51		
	0.015019	Áreas compensadas	7.27		
	0.004474	Taylor-Schuarz	25.97		
	0.016699	Desnivel/Longitud	15.64		
2	0.011050	Mínimos cuadrados	18.33		
	0.007126	Áreas compensadas	21.71		

Se asume un período de retorno para luego estimar las intensidades de lluvia, empleando la fórmula de Chen o el Análisis de Frecuencia Bivariada. Los parámetros de la fórmula de Chen (TABLA 4.9) se estimaron con resultados del análisis de frecuencia bivariada (ANEXO B). Además, con el propósito de comparar los métodos de estimación de intensidades de lluvia se hacen los cálculos con los métodos de Bell, Kothyari y Garde, Correlación múltiple y Análisis de Frecuencia Univariada. Recuérdese que en el método de Análisis de Frecuencia, según el modelo propuesto, si se requieren estimar eventos con duraciones de lluvia menores que 24 h, pero mayores que 1 h, se empleará el método del U.S. Soil Conservation Service (Apartado 4.4.3.1c).

Se eligieron los períodos de retorno, T, igual 20 y 50 años; el primero con la intención de verificar las técnicas de interpolación en el rango de la longitud de las muestras y el segundo para enfatizar el evento extrapolado con las relaciones I-d-T. Así, para la subcuenca 1, los eventos estimados para el período de retorno de 50 años, según el método de análisis de frecuencia bivariada son los que se presentan en la siguiente tabla:

TABLA 6.3 Intensidades de lluvia obtenidas del análisis de frecuencia bivariada, para las estaciones de la Zona B, con duraciones de 60 y 1440 min (ANEXOS C.7 y C.11); y su respectivo cálculo para la duración efectiva (tc), por el método del U.S. Soil Conservation Service.

		- 20		Parámetros de la ec. $l = a d^b$		
ESTACIÓN (Zona B)	1 60	I 20 1440	а	ь	I 20 (mm/h)	
Acquison	72.300	7.034	72.300	-0.733	(mm/h)	
Acayucan Alotepec	80.335	8.919	80.335	-0.692	20.369	
Azueta	83.124	6.887	83.124	-0.784	17.556	
Cantón	111.646	12.182	111.646	-0.697	28.003	
Cd. Alemán	114.401	8.553	114.401	-0.816	22.662	
Cuatotolapan	79.084	8.184	79.084	-0.714	19.191	
Cuichapa	92.786	7.938	92.786	-0.774	19.994	
Fortín	71.384	5.737	71.384	-0.793	14.794	
Huautla	61.518	10.959	61.518	-0.543	20.954	
Jacatepec	105.607	12.453	105.607	-0.673	27.804	
La Estrella	118.317	14.607	118.317	-0.658	32.055	
Monte Rosa	105.930	8.279	105.930	-0.802	21.572	
Papaloapan	106.218	7.413	106.218	-0.838	20.156	
San Juan Evangelista	95.560	8.883	95.560	-0.748	21.686	
Temascal	102.521	9.559	102.521	-0.747	23.310	
Villa Alta	46.450	6.231	46.450	-0.632	13.254	
Quiotepec (Zona A)	49.111	3.749	49.111	-0.810	9.855	

El trazo de los polígonos de Thiessen en las subcuencas 1 y 2 involucran, en la primera a dos estaciones (Quiotepec y La Estrella); en la segunda a siete (San Pedro Nolasco, Jayacatlan, Santiago Apoala, Coixtlahuaca, Tepelmeme, Quiotepec y La Estrella). En la FIGURA 6.4 se ilustran los polígonos trazados en estas dos zonas. Notase que estas subcuencas fueron elegidas exactamente en la frontera de las Zonas A y B.

Una vez obtenidas las intensidades de lluvia se procede a calcular la intensidad promedio, y para ello se emplea el Método de los polígonos de Thiessen. El porcentaje de influencia de las estaciones La Estrella y Quiotepec son 92.7 y 7.3%, respectivamente. Por consiguiente, la intensidad promedio es

$$I_{d*7.27h}^{T*20ahos} = \frac{92.7 \times 32.055 + 7.3 \times 9.855}{100} = 30.434 \frac{mm}{h}$$

y la precipitación total debida a esta intensidad es

$$P_{d=7.27h}^{T=20\,ahos} = 30.434 \, \frac{mm}{h} \times 7.27h = 221.26 \, mm$$

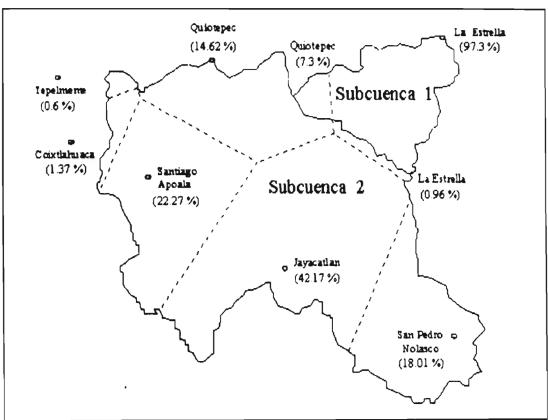


FIG 6.4 Polígonos de Thiessen trazados para las Subcuencas 1 y 2 (Zonas B y A), propias de la Cuenca del Río Papaloapan.

c) CÁLCULO DEL GASTO DE DISEÑO

Como se mencionó antes, aquí se empleará el modelo lluvia-escurrimiento del Hidrograma Unitario Triangular. Por lo que el cálculo del número de la curva de escurrimiento de las subcuencas es de acuerdo al tipo y uso de suelo que se tenga en estas zonas. Con la ayuda de las cartas de cobertura vegetal y edafológicas de la zona estudiada, publicadas por el INEGI (Carta E15-14, escala 1:250,000), se determinó el valor de N, como un promedio ponderado, para cada una de las subcuencas (TABLA 6.4). Los valores de esta variable se extrajeron de la TABLA A-14 del Manual para la estimación de avenidas máximas en cuencas y presas pequeñas, editado por la extinta SARH. Según la clasificación de suelos y cobertura vegetal de esta tabla, el símbolo P significa una condición hidrología pobre de la vegetación: los símbolos BA corresponden a grupo intermedio entre los tipos de suelo hidrológico A y B, respectivamente, y BC a los grupos hidrológicos B y C.

TABLA 6.4 Cálculo del número de la curva de escurrimiento para las subcuencas 1 y 2, Zonas A y B, respectivamente.

SUBCUENCA 1 ESTACIÓN SUPRIM		,	SUBCUENCA 2 (ZONA B) ESTACIÓN SUPRIMIDA: LA ESTRELLA				
TIPO DE SUELO PORCENTAJE DE ÁREA N		TIPO DE SUELO	PORCENTAJE DE ÁREA	N			
I Bosque, BC II Bosque, B III Pastizal, BC IV Bosque, P y B V Bosque, P, BC	65 5 8 12 10	68 60 75 65 75	VI Pradera, P, AB VII Pradera, B VIII Bosque, P, AB IX Pastizal, P, AB X Bosque, P y B	15 4 44 20 17	55 58 56 54 65		
Suma = 100 %			Suma :	= 100 %			
Promedio ponderado = 68.50			Promedio ponderado = 57.00				

aplicando la ec 3.3 se calcula la precipitación efectiva, esto es, con N = 68.5 y sustituyendo este valor en esa, se tiene

$$P_e = \frac{\left(22.126 - \frac{508}{68.5} + 5.08\right)^2}{22.126 + \frac{2032}{68.5} - 20.32} = 12.445 \, cm = 124.45 \, mm$$

El tiempo pico se calcula con la ec (3.13), obteniéndose

$$t_p = \sqrt{t_c} + 0.6 t_c = \sqrt{7.27} + 0.6 \times 7.27 = 7.06 h$$

La expresión para calcular el gasto pico es la ec (3.11), y este resulta ser

$$q_p = 0.208 \frac{A_c}{t_p} = 0.208 \times \frac{773.7}{7.06} = 22.795 \frac{m^3}{s \times mm}$$

este valor debe multiplicarse por la precipitación efectiva para obtener el Gasto pico de diseño correspondiente al período de retorno empleado, 50 años.

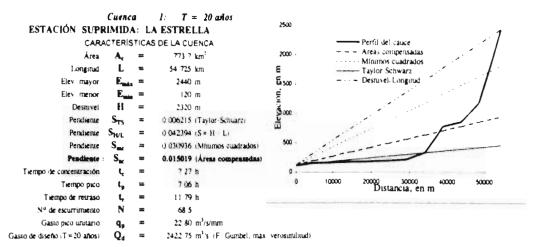
$$Q_p = q_p P_e = 22.795 \times 124.45 = 2836.7 \frac{m^3}{5}$$

d) APLICACIÓN DE LAS TÉCNICAS DE INTERPOLACIÓN

En el capítulo 5 se propuso el procedimiento del apartado vi), incisos a) y b) para diseñar una estructura en un sitio donde no se disponen de registros de lluvia. El procedimiento es similar al que se empleó en el anterior ejemplo, pues se determinan las intensidades de lluvia para todas las estaciones, dentro de la zona regionalizada, y luego se aplican las técnicas de interpolación.

Hasta aquí sólo se estimó el evento de diseño debido a la modelación de lluvias. A continuación se expondrán los eventos obtenidos a través de métodos de interpolación de lluvias.

Las estaciones suprimidas serán La Estrella en la Zona B y Quiotepec en la Zona A. Por lo tanto, se verifica el evento interpolado por dos caminos: el primero será comparar con el valor real (suprimido) y segundo, suponiendo que éste sitio no tiene registro histórico de lluvias, pero sí de gastos; entonces se procederá a determinar el gasto pico de diseño por medio de la relación lluvia-escurrimiento propuesta y se compara con el interpolado.


El procedimiento es algo tedioso ya que deben obtenerse datos como las coordenadas de los sitios (estaciones), los eventos a interpolar y las coordenadas de los sitios donde se desean interpolar dichos eventos y además de emplear los métodos matriciales del capítulo 2. En esta parte del ejemplo se emplean los programas asentados en el ANEXO D de este trabajo, al igual que el formato de archivo de datos utilizado en cada uno de esos algoritmos.

En las TABLAS 6.5 a 6.8 se presenta un resumen de los cálculos desarrollados como resultado del proceso de obtención del gasto de diseño en un sitio donde no se cuenta con registros.

Las TABLAS 6.5 y 6.6 presentan los gastos de diseño con un período de retorno de 20 años para las subcuencas 1 y 2, respectivamente.

Las TABLAS 6.7 y 6.8 presentan los gastos de diseño con un período de retorno de 50 años para las subcuencas 1 y 2, respectivamente.

TABLA 6.5 Cálculos para la subcuenca 1 (Zona B). Período de retorno de 20 años.

-		Método de	Thiessen		N=	68.5		
% Area de influencia		7.3	92 7	ا _د ۲	P₁ [™]	P,	$Q_{\mathbf{p}}$	Q_p / Q_4
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva	,	-
Método calc. rel. I-d-T	Valor real	Valor real	Interpolado	(mayb)	(mm)	(៣៣)	(m³/s)	
Bivartada	32 05	9 86	28 003	26 68	194 00	101 30	2309 2	0 953
Univariada	32 08	9 76	27 956	26 63	193 63	100 99	2302 1	0.950
Beti	32 95	13 00	31 384	30 04	218 46	122 04	2781 9	1 148
Chen	32 37	10 83	28 647	27 35	198 86	105 37	2401.9	0 991
Kothyan	39 63	16 34	35 275	33 89	246 47	146 44	3338	1 378
мсм	39.60	16.34	35 334	33 95	246 87	146 79	3346 2	1 381

		Método poli	nomial (grad	ol)		-		
Area de influencia		7 3	92.7	f., *	P_{a}^{T}	P,	Q,	Q_0 / Q_4
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método calc. rel. 1-d-T	Valor real	Valor real	interpolado	(dum/h)	(mm)	(រាហា)	(m³/s)	
Bivariada	32 05	9 86	20 886	20 08	146.03	62 84	1432 3	0 591
Umvarrada	32.08	9 76	20 705	19 91	144 75	61 86	1410 2	0.582
Bel!	32 95	13 00	23 732	22 95	166 88	79 12	1803 6	0 744
Chen	32.37	10 83	22 057	21 24	154 44	69 31	1580 0	0 652
Kothyan	39 63	16 34	27 872	27 03	196 56	103 44	2358 0	0 973
MCM	39 60	16 34	27 825	26 99	196 25	103 18	2352 0	0 971

		Método poli	nomial (grad	o 2)				
€ Área de influencia		7 3	92 7	t₃ [™]	P_a^{T}	P,	Q _p	Q_p / Q_d
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva	•	•
Método calc. rel. I-d-T	Valor real	Valor real	Interpolado	(nunvħ)	(mm)	(mm)	(m³/s)	
Bivariada	32.05	9 86	23 181	22 21	161 50	74 85	1706 2	0 704
Univariada	32 08	9 76	23 089	22 12	160 82	74 32	1694 0	0.699
Bell	32 95	13 00	24 894	24 03	174 71	85 43	1947 3	0.804
Chen	32 37	10 83	24 570	23 57	171 38	82 73	1885 9	0.778
Kothy art	39 63	16 34	27 667	26 84	195 18	102 28	2331 5	0 962
MCM	39 60	16 34	27 644	26 82	195 03	102 16	2328 7	0 961

		Método de l	a Distancia I	nversa				
Área de influencia Estación	LAEST	7 3 QUIOT	92 7 L aest	Li ^T promedio	P _a ^T promedio	P. efectiva	$Q_{\mathfrak{p}}$	Q_p / Q_d
Método calc. rel. 1-d-T	Valor real	Valor real	Interpolado	((17471/Tr)	(mm)	(mm)	(m³/s)	
Bivariada	32 05	9 86	23 125	22 16	161 12	74 55	1699 4	0.701
Univariada	32 08	9 76	22 948	21 99	159 88	73 57	1677 0	0 692
Bell	32 95	13 00	26 980	25.96	188 77	96 95	2210 0	0.912
Chen	32 37	10 83	24 281	23 30	169 43	81 16	1850 1	0.764
Kothyari	39 63	16 34	30 093	29 09	211 53	116 10	2646 6	1 092
мсм	39 60	16 34	30 076	29 07	211 42	11601	2644 5	1 092

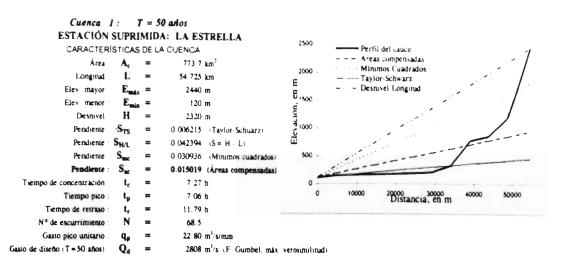
TABLA 6.5 Continuación...

		Maria da l	nterpolación	Marteianadad	lai a a			
						_	_	
Área de influencia		7.3	92 7	l, T	P_4^{7}	Ρ,	Q,	$Q_{\bullet} / Q_{\bullet}$
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método caic: rei. I-d-T	Valor real	Valor real	Interprilado	(mm/h)	(സ്ഥാ)	(mm)	(m³-s)	
Bivariada	32 05	9 86	26 508	25 29	183 93	92 95	2118 8	0 875
L'nivanada	32 08	9 76	26 494	25 27	183 78	92 83	21161)	0 873
Beil	32 95	13 00	27 925	26 83	195 14	102 25	2330 9	0 962
Chen	32 37	10 83	27 122	25 93	: 88 58	96 79	2206.3	0 911
Kothyari	39 63	16 34	31 586	30 4?	221 60	124 74	2843 5	: 174
MCM	39 60	16 34	31 596	30 48	221.67	124 80	2844 8	1 174
			nterpolación					
Area de influencia		7 3	92 7	l_a^{\prime}	P, T	P,	Q,	Q_{p}, Q_{a}
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método calc. rel. 1-d-T	Valor real	Valor real	Interpolado	(mm/h)	(mm)	(mm)	(m³/s)	
Bivariada	32 05	9 86	24 102	23 06	167 70	79 78	1818 6	0.751
Univanada	32 08	9 76	23 982	22 94	i 66 85	79 10	1803 0	0 744
Beil	32 95	13 00	27 015	25 99	189 01	97 5	2214 5	0 914
Chen	32 37	10 83	25 055	24 02	174 65	85 37	1946 1	0 803
Kothyari	39 63	16 34	30 509	29 47	214 34	118 50	2701 3	1 115
MCM	39 60	16 34	30 501	29 47	214 28	118 45	2700 2	1 115
		Método krig	ing Ordinari	o				
% Área de influencia		7 3	92 7	l _a r	P _a [†]	P,	Q,	Q. / Q.
Estación	LAEST	OUIOT	LAEST	promedio	promedio	efectiva	-,	.,
Método calc. rel. I-d-T	Valor real	Valor real	Interpolado	(mm/h)	(mm)	(mm)	(m ³ /s)	
Bivariada	32 05	9.86	20.813	20 01	145 54	62 46	1423 8	0.588
Univariada	32 08	9 76	20 603	19 81	144 06	61 34	1398 3	0 377
Bell	32 95	13 00	24 448	23 61	171 71	83 00	1891 9	0.781
Chen	32.37	10 83	22 069	21 25	154 52	69 17	1581 4	0 653
Kothyan	39 63	16 34	28 719	27 82	202 27	108 24	2467 4	1 018
MCM	39 60	16 34	28 693	27 79	202 10	108 10	2464	1 017
		Métado kais	ing Universa	l not les es	ado			
% Area de utilluencia		7 3	92.7	u pot. ier gr	P, '	P,	Q,	0.0
Estación	LAEST	OUIOT	LAEST	•	-	efectiva	Q,	$Q_{\mathfrak{p}} / Q_{\mathfrak{q}}$
	Valor real	•		promedio	promedio	(mm)	(m³/s)	
Método calc. rel. I-d-T		Valor real	Interpolado	(mm/h)	(mm)		(-17 - 27	0.00
Bivariada	32 05	9 86 9 76	21 142	20 32 20 15	147 75	64 15	1462 4	0 604
Univariada	32 08		20 969		146 53	63 22	[44] [0 595
	11.00					80.7	1000	
Bell	32 95	13.00	23 939	23 14	168 28	80 24	1829 1	0 755
Chen	32 37	13.00 10.83	23 939 22 282	23 14 21 45	168 28 155 95	70 49	1606 9	0 663
Chen Kothyari	32 37 39 63	13.00 10.83 16.34	23 939 22 282 28 093	23 14 21 45 27 23	168 28 155 95 198 05	70 49 104 69	1606 9 2386 4	0 663 0 985
Chen	32 37	13.00 10.83	23 939 22 282	23 14 21 45	168 28 155 95	70 49	1606 9	0 663
Chen Kothyan MCM	32 37 39 63 39 60	13.00 10.83 16.34 16.34 Método krig	23 939 22 282 28 093 28 049	23 14 21 45 27 23 27 19	168 28 155 95 198 05 197 76	70 49 104 69 104 44	1606 9 2386 4 2380 8	0 663 0 985 0 983
Chen Kothyari MCM & Área de influencia	32 37 39 63 39 60	13.00 10.83 16.34 16.34 Método krig	23 939 22 282 28 093 28 049 ing Universa 92 7	23 14 21 45 27 23 27 19 21 pol. 20 gri	168 28 155 95 198 05 197 76	70 49 104 69 104 44	1606 9 2386 4	0 663 0 985
Chen Kothyari MCNI * Área de influencia Estación	32 37 39 63 39 60	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT	23 939 22 282 28 093 28 049 28 029 28 029 28 029 28 029 28 029	23 14 21 45 27 23 27 19 21 pol. 20 gro L _a ^T promedio	168 28 155 95 198 05 197 76 ado P _a ^T promedio	70 49 104 69 104 44 P _e efectiva	1606 9 2386 4 2380 8	0 663 0 985 0 983
Chen Kothyari MCM * Área de influencia Estación Método calc. rel. I-d-T	32 37 39 63 39 60 LAEST Valor real	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT Valor real	23 939 22 282 28 093 28 049 28 049 27 1.AEST Interpolado	23 14 21 45 27 23 27 19 21 pol. 20 gra L ₃ ^T promedio (mm/h)	168 28 155 95 198 05 197 76 ado P ₄ ^T promedio (mm)	70 49 104 69 104 44 P _e efectiva (mm)	1606 9 2386 4 2380 8 Q _p	0 663 0 985 0 983 Q_p / Q_d
Chen Kothyari MCM * Área de influencia Estación Método calc. rel. 1-d-T	32 37 39 63 39 60 LAEST Valor real 32 05	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT Valor real 9.86	23 939 22 282 28 093 28 049 28 049 27 1.AEST Interpolado 23 339	23 14 21 45 27 23 27 19 20 gro L ₃ ^T promedio (mm/h) 22 35	168 28 155 95 198 05 197 76 ado P _a ^T promedio	70 49 104 69 104 44 P _e efectiva (mm) 75 69	1606 9 2386 4 2380 8 Q _p (m ³ ·s) 1725 3	0 663 0 985 0 983 Q_p / Q₄
Chen Kothyari MCM * Área de influencia Estación Método calc. rel. I-d-T	32 37 39 63 39 60 LAEST Valor real 32 05 32 08	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT Valor real 9.86 9.76	23 939 22 282 28 093 28 049 28 049 27 LAEST Interpolado 23 339 23 254	23 14 21 45 27 23 27 19 21 pol. 20 gra L ₃ ^T promedio (mm/h)	168 28 155 95 198 05 197 76 ado P ₄ ^T promedio (nun) 162 56 161 94	70 49 104 69 104 44 P _e efectiva (mm) 75 69 75 20	1606 9 2386 4 2380 8 Q _p	0 663 0 985 0 983 Q _g / Q _d
Chen Kothyari MCM * Área de influencia Estación Método calc. rel. 1-d-T	32 37 39 63 39 60 LAEST Valor real 32 05	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT Valor real 9.86	23 939 22 282 28 093 28 049 28 049 27 1.AEST Interpolado 23 339	23 14 21 45 27 23 27 19 20 gro L ₃ ^T promedio (mm/h) 22 35	168 28 155 95 198 05 197 76 ado P _A ^T promedio (mm) 162 56	70 49 104 69 104 44 P _e efectiva (mm) 75 69	1606 9 2386 4 2380 8 Q _p (m ³ ·s) 1725 3	0 663 0 985 0 983 Q_p / Q₄
Chen Kothyari MCM Área de influencia Estación Método calc. rel. I-d-T Bivariada Univariada	32 37 39 63 39 60 LAEST Valor real 32 05 32 08	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT Valor real 9.86 9.76	23 939 22 282 28 093 28 049 28 049 27 LAEST Interpolado 23 339 23 254	23 14 21 45 27 23 27 19 21 pol. 20 gra L ₄ ^T promedio (mnvh) 22 35 22 27	168 28 155 95 198 05 197 76 ado P ₄ ^T promedio (nun) 162 56 161 94	70 49 104 69 104 44 P _e efectiva (mm) 75 69 75 20	1606 9 2386 4 2380 8 Q _p (m ³ /5) 1725 3 1714 1	0 663 0 985 0 983 Q_g / Q₄ 0 712 0 707
Chen Kothyari MCM S Área de influencia Estación Método calc: rel. 1-d-T Bivariada Univariada Bell	32 37 39 63 39 60 LAEST Valor real 32 05 32 08 32 95	13.00 10.83 16.34 16.34 Método krig 7.3 QUIOT Valor real 9.86 9.76 13.00	23 939 22 282 28 093 28 049 27 LAEST Interpolado 23 339 23 254 25 007	23 14 21 45 27 23 27 19 21 pol. 20 gri L ₄ ^T promedio (mnt/h) 22 35 22 27 24 13	168 28 155 95 198 05 197 76 Pa [†] promedio (mm) 162 56 161 94 175 47	70 49 104 69 104 44 P _e efectiva vmm: 75 69 75 20 86 04	Q _p (m ³ /s) 1725 3 1714 1 1961 4	0 663 0 985 0 983 Q_g / Q₄ 0 712 0 707 0 810

TABLA 6.6 Cálculos para la subcuenca 2 (Zona A). Período de retorno de 20 años.

TABLA 6.6 Continuación...

				Método de	Interpola	ción Mult	cuadránce	1					
4 Area de influencia		18 01	42 17	22 27	1 37	0 6	14 62	0.96	l _a [†]	$P_a^{\ t}$	P,	Q.	$Q_{\rho} \cdot Q_{d}$
Estación	QUIOT	SNPED	JAYAC	SNTIA	COIXT	TEPEL	QUIOT	LAEST	prom	rdio	efectiva		
Método calc. 1-d-T	V. Real	V Real	V Real	V Real	V Real	V Real	interpol	V Real	(mnvh)	(mm)	(mm)	im' si	
Bivariada	4 66	5 37	4 67	5 55	4 50	4 13	5 27	17 44	5 20	95 30	13 06	858 89	0 67
Univariada	4 65	5 37	4 67	5 65	4 48	4 14	5 33	17 44	5 23	95 85	13 28	873 56	0.58
Beil	6.84	4 78	7 20	3 37	4 87	6 38	4 55	17 33	5 59	102 41	16 06	1056.29	0.82
Chen	5 01	5 45	4 85	6 00	4 57	4 36	5 60	17 39	5 44	99 71	14 90	979 54	0.76
Kothyari	8 96	8 23	7 47	8 41	7 57	6 59	7 76	24 73	8 02	147.01	39 34	2586 97	2.01
MCM	. 8 96	8 24	7.46	8 40	7 57	6 57	7 76	24 69	8 01	146 94	39 30)	2584 27	2.01


				Método de	Interpola	сьом Орал	14						
4 Área de influencia		18 01	42 17	22 27	1 37	06	14 62	0 96	la ^T	P_4^T	Ρ,	Q _a	Q_o/Q_d
Estación	QUIOT	SNPED	JAYAC	SNT1A	COIXT	TEPEL	QUIOT	LAEST	prom	edio	efectiva.	•	.,
Método caic. 1-d-T	V Real	V Real	V Real	V Real	V Real	V Real	interpol	V Real	(mm/h)	(mm)	(mm)	(m ³ /s)	
Bivariada	4 66	5 37	4 67	5 55	4 50	4 13	5 01	17 44	5 16	94 59	12 77	840 01	0 65
Univariada	4 65	5 37	4 67	5 65	4 48	4 14	5 04	17 44	5 19	95 10	12.98	853 36	0 66
Bell	6 84	4 78	7 20	3 37	4 87	6.38	5 00	17 33	5 65	103 63	16 60	1091 81	0.85
Chen	5 01	5 45	4 85	6 00	4 57	4 36	5 26	17 39	5 39	98 82	14.52	954 66	0 74
Kothyari	8 96	8 23	7 47	8 41	7 57	6 59	7 72	24 73	8 01	146 92	39 28	2583 36	2 01
MCM	8 96	8 24	7 46	8 40	7 57	6 57	7 72	24 69	8 01	146 83	39 23	2579 94	2.01

				Método kr	iging Ord	nario							
% Área de influencia		18 01	42 17	22 27	1 37	06	14 62	0 96	la ^T	P _d ^T	Ρ,	Q.	Q_p/Q_d
Estación	QUIOT	SNPED	JAYAC	SNTLA	COIXT	TEPEL	QUIOT	LAEST	prom	edio	efecusa		,
Método calc. I-d-T	V. Real	V. Real	V Real	V Real	V Real	V Real	interpol	V Real	(mm/h)	(num)	(mm)	(mis)	
Віуагтада	4 66	5 37	4 67	5 55	4 50	4 13	5 17	17.44	5 18	95 03	12 95	851 64	0 66
Univariada	4 65	5 37	4 67	5 65	4 48	4 14	5 22	17 44	5.21	95 57	13.17	866 00	0 67
Bell	6.84	4 78	7 20	3 37	4 87	6 38	4 60	17 33	5 59	102 55	16 12	1000 31	0.82
Chen	5 01	5 45	4 85	6 00	4 57	4 36	5 48	17 39	5.42	99 41	14 77	970 98	U 75
Kothyazi	8 96	8 23	7 47	8 41	7 57	6 59	7.71	24 73	8 01	146 88	39 20	2581 70	2 01
MCM	8 96	8.24	7 46	8 40	7 57	6 57	7.71	24 69	8 01	146 80	39 21	2578 83	2 00

				Método ki	iging Unit	rersal (poli	inomio de	ler grado)					
≰ Área de influencia		18 01	42 17	22 27	1 37	0.6	14 62	0 %	1ª T	P_4^T	P,	Q,	$Q_{\mathbf{p}}:Q_{\mathbf{d}}$
Estación	QUIOT	SNPED	JAYAC	SNTLA	COIXT	TEPEL	QUIOT	LAEST	prom	ed 10	efectiva		
Método calc. 1-d-T	V Real	V Real	V Real	V Real	V Real	V Real	interpol	V Real	(mmp)	(mm)	(mm)	(m¹ s)	
Bivanada	4 66	5 37	4 67	5 55	4 50	4 13	5 28	17 44	5 20	95 33	13 07	859 65	0 67
Univariada	4 65	5.37	4 67	5 65	4 48	4 14	5 33	17 44	5 23	95 87	13 29	874 12	0.68
Bell	6 84	4 78	7 20	3 37	4 87	6 38	4 65	17 33	5 60	102 68	16 18	1064 00	0 83
Chen	5 01	5 45	4 85	6 00	4 57	4 36	5 59	17 39	5 44	99 69	14 89	979 09	0 76
Kothyart	8 96	8 23	7 47	8 4 1	7 57	6.59	7 93	24 73	8 ()4	147 48	39 61	2605 11	2 02
MCM	8.96	8 24	7 46	8 40	7 57	6 57	7 93	24 69	8 04	147 40	39 57	2602.27	2 02

				Método la	iging l'air	rersal (pol	inomio de	2do grado,)				
Area de influencia		18 01	42 17	22 27	1 37	0.6	14 62	0.96	la [†]	$P_a^{\ T}$	Р,	Q.	Q_{a}/Q_{a}
Estación	QUIOT	SNPED	JAYAC	SNTIA	COIXT	TEPEL	QUIOT	LAEST	brow	edio	efectiva	•	
Método calc. I-d-T	V. Real	V Real	V Real	V Real	V Real	V Real	interpol	V Real	(mmh)	(mm)	(mm)	$(m^3 - 5)$	
Bivariada	4.66	5 37	4 67	5 55	4 50	4 13	5 40	17 44	5 22	95 65	13 20	868 11	0 67
Univariada	4 65	5 37	4.67	5 65	4 48	4.14	5 45	17 44	5 25	96 19	13 42	882 70	0 69
Beil	6 84	4 78	7 20	3 37	4 87	6.38	4.67	17 33	5 60	102 73	16.20	1065 63	0.83
Chen	5 01	5.45	4 85	6 00	4 57	4 36	5 70	17 39	5 45	99 99	15 02	987 52	0 77
Kothyan	8.96	8 23	7 47	8 41	7 57	6 59	7 90	24 73	8 04	147 38	39 55	2601.18	2 02
MCM	8.96	8.24	7 46	8 40	7 57	6.57	7.89	24 69	8 03	147 30	39 51	2598 08	2 02

TABLA 6.7 Cálculos para la subcuenca 1 (Zona B). Período de retorno de 50 años.

		Método de	Thiessen		N =	68 5		
4 Área de influencia Estación	LAEST	7.3 QUIOT	92 7 L AEST	l, [†] promedio	P _a ^T promedio	P, efectiva	$Q_{\mathfrak{p}}$	$Q_p \not = Q_d$
Método cak. rel. I-d-T	Valor real	Valor real	Interpolado	(mm/h)	(mm,	(mm)	(m³/s)	
Bivariada	36.36	11.52	31 685	30 21	219 71	123.11	2806 4	0 999
Univariada	38 71	11 43	40.511	38 39	279 16	175 61	4003 0	1 426
Bell	38 47	15 17	36 640	35 07	255 05	154 03	3511 2	1 250
Chen	36 86	12 98	32 300	30 89	224 63	127 36	2903 1	1 034
Kothyari	50.81	26 88	44 033	42 78	311 10	204 66	460.5 3	1.661
мсм	50 77	26 89	44 106	42 85	311 60	205 12	4675 6	1 665

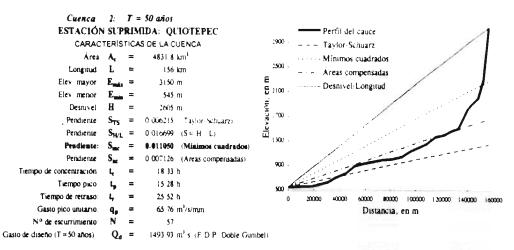
	ě	Método polin	omial (gra	dol)				
Área de influencia Estación	LAEST	7.3 OUIOT	92 7 LAEST	l ₄ [†] promedio	P ₄ * pro med io	P, efectiva	Q,	Q, Q,
Método caic. rei. I-d-T	Valor real	QUIOT	CAESI	(mm/b)	(mm)	(mm)	(m³/s)	
Bivariada	36.36	11 52	23 "48	22.86	166 21	78 59	1791 4	0 638
L'orvariada	38.71	11 43	28 279	27 05	196 70	103.56	2360.6	0 841
Bell	38.47	15 17	27 706	26.79	194.82	101 99	2324 8	0 828
Chen	36.86	12.98	25 271	24.37	177 24	87 48	1994 1	0 710
Kothyari	50.81	26 88	37 354	36.59	266 08	163 86	3735 2	1 330
MCM	50 77	26 89	37 291	36 53	265 66	163 49	3726 7	1 327

	A	détodo polin	omial (grad	do 2)				
Area de influencia		7 3	92 7	!₄ [™]	$P_a^{}$	Ρ,	Q,	Q. / Q.
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método calc. rel. I-d-T	Valor real			(mm/h)	(mm)	(mm)	(m³/s)	
Bivariada	36.36	11 52	26 322	25 24	183 56	92 64	2111 8	0 752
Umvariada	38.71	11 43	31 305	29 85	217 10	120 87	2755 2	0 981
Betl	38 47	15 17	29 063	28 05	203 97	109 68	2500 2	0.890
Chen	36.86	12 98	28 042	26 94	195 92	102 91	2345 8	0 835
Kothyan	50.81	26 88	35 055	34 46	250 58	150 07	3420 9	1 218
MCM	50.77	26 89	35 028	34 43	250 40	149 92	3417 4	1.217

		Método de la	Distancia	Inversa				
Area de influencia		7 3	92 7	l₄*	P4 T	P,	Q,	Q_p / Q_d
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método calc. rel. I-d-T	Valor real			(mm/h)	(mm)	(mm)	(m³/s)	
Bivariada	36.36	11.52	26 277	25 20	183 26	92.40	2106.2	0.750
Univariada	38.71	11.43	32.009	30 51	221.84	124 95	2848 3	1 014
Bel)	38.47	15 17	31 498	30 31	220 39	123.69	2819.6	1 004
Chen	36 86	12 98	27 767	26.69	194.07	101 35	2310.4	0 823
Kothyari	50.81	26.88	39 971	39 02	283 72	179 72	4096 9	1 459
MCM	50 77	26 89	39 949	39 00	283 58	179 60	4094 0	1 458

TABLA 6.7 Continuación...

			Método de In	terpolació	Multicua	drática			
E Area de influencia			7 3	92 7	la [†]	P4 τ	Р,	$Q_{\mathfrak{p}}$	$Q_{\bullet} \cdot Q_{\bullet}$
Esi	ación LA	EST	QUIOT	LAEST	promedio	promedio	efectiva		
Método caic, rel. I-d-T	Valo	r real			(mm/b)	(mm)	(mm)	(m¹-s)	
Bivariada		36.36	11 52	29 998	28 65	208 34	113 38	2584 6	0 920
Univariada		38 71	11 43	37 266	35 38	257 28	156 02	3556 4	1 267
Bell		38 47	. 15 17	32 601	31 33	227 82	130 13	2966 2	1 056
Chen		36 86	12 98	30 478	29 20	212 34	116 80	2662.4	0 948
Kothvari		50 81	26 88	18 878	38 00	270 35	173 08	1945 3	1 405
MCM		50 27	26 89	38 889	18 01	276 43	173 15	3947 0	1 400


	l	Método de Ir	nerpolaciói	в Орсіта				
% Area de influencia		7 3	92 -	L, T	$P_a^{\ t}$	Ρ,	Q,	Q, Q4
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método caic. rel. I-d-T	Valor real			(mm /b)	(mm)	(mm)	(m ³ /s)	
Bivariada	36 36	11 52	27 349	26.19	190 48	98 37	2242 3	0 799
Univariada	38 71	11 43	33 554	31 94	232 26	133.98	3054 2	1 088
Bett	38 47	15 17	31 539	30 34	220 66	123 93	2825 1	1 006
Chen	36 86	12.98	28 463	27 33	198 76	105 29	2400 1	0 855
Kothyari	50 81	26 88	39 572	38 65	281 03	177 30	4041.5	1 439
MCM	50 77	26 89	39 560	38 64	280 95	177 23	4040 0	1 439

	ż	Método krigi	ng Ordinas	io				
% Area de influencia		7 3	92 7	l, ^r	P., T	P,	$Q_{\mathfrak{p}}$	$Q_{\mathfrak{p}} / Q_{\mathfrak{q}}$
Estación	LAEST	QU IOT	LAEST	browegro	promedio	efectiva		
Método calc. rel. I-d-T	Valor real			(mm/h)	(mm)	(mm)	(m³/s)	
Bivariada	36 36	11 52	23 779	22 88	166 41	78.75	(795)	0 639
Univariada	38 71	11 43	28 756	27 49	199 91	106 26	2422 1	0 863
Bell	38.47	15 17	28 542	27 57	200 46	106.72	2432 6	0 866
Chen	36 86	12 98	25 510	24 00	178 86	88 80	2024 1	0.721
Kothyan	50.81	26 88	40 446	39 46	286 92	182 62	4162 9	1.483
MCM	50 77	26 89	40 411	39 42	286 68	182 41	4158 1	1 481

	l	Método krigi	ng Univers	al pol. lei	grado			
€ Area de influencia		7 3	92 7	l, T	P ₄ [†]	Ρ,	Q,	$Q_{p} \cdot Q_{d}$
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método caic. rel. 1-d-T	Valor real			(mm/h)	·mm)	(mm)	(m³/s)	
Bivariada	36.36	11 52	24 033	23 12	168 13	80 12	1826 4	0 650
Umvartada	38.71	11 43	28 718	27 46	199 66	106 04	2417 2	0 86t
Bell .	38.47	15 17	27 948	27 02	196 45	103 35	2355 9	0 839
Chen	36 86	12 98	25 500	24.59	178.79	88 74	2022.8	0 720
Kothyari	50.81	26 88	37 505	36.73	267 09	164.77	3756 0	1 338
мсм	50 77	26 89	37 446	36 68	266 70	164 42	3748 0	1 335

		Método krig	ing Univers	al pol. 20	grado			
4 Área de influencia		7 3	92 7	L, [†]	$P_{\mathfrak{s}}^{T}$	Ρ,	$Q_{\mathfrak{p}}$	$Q_{\bullet} / Q_{\bullet}$
Estación	LAEST	QUIOT	LAEST	promedio	promedio	efectiva		
Método calc. rel. 1-d-T	Valor real	Valor real	Interpolado	(mm/h)	(mm)	(mm)	(m³/s)	
Bivariada	36.36	11 52	26 497	25 40	184 74	93 62	2134 0	0 760
Umvariada	38 71	11 43	31 622	30 15	219 24	122 70	2797 1	0 996
Bell	38.47	15 17	29 195	28.17	204.86	110 43	2517 3	0 896
Chen	36.86	12 98	28 148	27.04	196 64	103.51	2359 5	0 840
Kothyari	50 81	26.88	35 136	34.53	251.12	150 55	34319	1 222
MCM	50.77	26 89	35 113	34.51	250 97	150 42	3428.8	1 221

TABLA 6.8 Cálculos para la subcuenca 2 (Zona A). Período de retorno de 50 años.

				Método de	Thiessen		N =	57.00					
% Área de influencia		18 01	42 17	22 27	1 37	0.6	14 62	0.96	L, T	P.	P,	Q.	Q. Q.
Estación	QUIOT	SNPED	JAYAC	SNTIA	COLXT	TEPEL	QUIOT	LAEST	proir	edio	efectiva		-, -,
Método calc. rel. I-d-T	Vaior real	Valor real	Valor real	Vaior real	Valor real	Valor real	interpoi	Valor real	(mmh)	(mm)	(mm)	(m³/s)	
Bivariada	5 40	6.23	5 44	6.71	5 20	4 79	7 27	19 78	5 26	114 81	21 82	1435 06	0 96
Univariada	5.41	6 43	5 66	6.03	5 01	4 92	6 65	21 65	6 16	113 03	20 96	1378 19	0 92
Bel!	7 98	5 58	8 41	3 94	5 68	7 45	2 44	20 23	6 10	111 88	20 40	1341 76	0.90
Chen	6 00	6 49	5 70	7 16	5 33	5 20	7.82	19 81	6 60	121 06	24 95	1641 01	1:0
Kothyari	14 74	13 52	10 98	15 62	11.62	10 16	17.18	31.70	13 58	248 96	110.30	7253 44	4 86
MCM	14 75	13 53	10 97	15 61	11.62	10 13	17.17	31 66	13 57	248 82	110-19	7246 34	4 85

				Método pol	inomial (gr	adol)				-5.7			
% Área de influencia		18 01	42.17	22 27	1 37	0.6	14 62	0 %	L, T	P,	P,	Q,	Q, /Q,
Esta	ción QUIOT	SNPED	JAYAC	SNTIA	COLXT	TEPEL	QUIOT	LAEST	prom	edio	efectiva		-
Método calc. rel. I-d-T	Valor rea	Vaior real	Valor real	Valor real	Valor real	Valor real	interpol	Valor real	(חעתעה)	(mm)	(mm)	(m ³ /5)	
Bivariada	5.40	6.23	5 44	6 71	5 20	4 79	6 42	19 78	6 14	112.53	20.72	1362 27	0.91
Univariada	5 4	6 43	5 66	6 03	5 01	4 92	6 47	21 65	6 14	112 55	20 73	1362 94	0.91
Bell	7.90	5 58	8 41	3 94	5 68	7 45	4 31	20 23	6 38	116 89	22.85	1502-53	101
Chen	6.00	6 49	5 70	7 16	5 33	5 20	6 78	1981	6 45	118 26	23 53	1547 63	1 04
Kothyari	14.7	13 52	10 98	15 62	11 62	10 16	14 58	31.70	13 20	241 99	104 94	6901-19	4 62
MCM	14 7:	13 53	10 97	15 61	11 62	10 13	14 56	31.66	13 19	241 83	104 82	6893 18	4 61

					Método pol	inomial (gr	ado 2)							
% Área de influenc	212		18 01	42.17	22 27	1 37	0.6	14 62	0.96	L, r	P ₄ T	P.	0.	Q. /Q.
Estación		QUIOT	SNPED	JAYAC	SNTIA	COLXT	TEPEL	QUIOT	LAEST	prom	ve dio	efectiva		
Método calc. rel.	1-d-T	Valor real	Valor real	interpoi	Valor real	(mm/h)	(m(n)	(mm)	(m³/s)					
Bivariada		5 40	6 23	5 44	6.71	5 20	4 79	6 76	19 78	5 19	113 46	21 16	1391 66	0 93
Univariada		5 41	6 43	5 66	6 03	5 01	4 92	6 58	21 65	6 15	112 84	20 86	1372 08	0.92
Bell		7 98	5 58	8 41	3 94	5 68	7 45	4 61	20 23	6.42	117.68	23 24	1528 39	1 02
Chen		6 00	6 49	5 70	7 16	5 33	5 20	7 07	19.81	6 49	119 06	23 93	1574 00	1.05
Kothyari		14 74	13 52	10 98	15 62	11 62	10 16	14 00	31 70	13 11	240 44	103 75	6823 11	4 57
MCM		14 75	13 53	10 97	15 61	11 62	10 13	13 97	31.66	13 10	240 23	103 59	6812 52	4 56

					Método de	la Distancia	Inversa							
% Área de influenci	2		18 01	42 17	22 27	1 37	06	14 62	0.96	ų"	P.	P,	Q,	Q_{\bullet}/Q_{\bullet}
Estación	QUIOT	SNPED	JAYAC	SNTIA	COLXT	TEPEL	QUIOT	LAEST	prom	edio	efectiva	•	•	
Método calc. rel. I	I-d-T	Valor real	Valor real	interpol	Valor real	(mm/h)	(mm)	(nun)	(m³/s)					
Bivariada		5 40	6 23	5 44	6 71	5 20	4 79	6 08	19 78	6 09	111 62	20 28	1333 67	0 89
Univariada		5 41	6 43	5 66	6 03	5 01	4 92	5 96	21 65	6 06	111 17	20 07	1319 54	0 88
Bell		7 98	5 58	8 4 1	3 94	5 68	7 45	4 10	20 23	6 34	116 32	22.56	1483 79	0 99
Chen		6 00	6 49	5 70	7 16	5 33	5 20	6 45	19 81	6 40	117 39	23 10	1518 99	1 02
Kothyari		14 74	13 52	10 98	15 62	11 62	10 16	13 76	31.70	13 08	239 78	103 25	6789 99	4 55
MCM		14 75	13 53	10 97	15 61	11 62	10 13	13 75	31.66	13 07	239 64	103 15	6783 10	4 54

TABLA 6.8 Continuación...

					Método de	Interpolació	n Multicuae	trática						
% Área de influenç	12		18.01	42 17	22 27	1.37	0.6	14 62	0.96	L,	P4'	P,	Q,	Q. Q.
	Estación	TOTJQ	SNPED	JAYAC	SNTIA	COLXT	TEPEL	QUIOT	LAEST	prorr	edio	efectiva		-
Método calc: rel.	1-d-T	Valor real	Valor real	interpoi	Valor real	(በ/መነ፤)	(mm)	(mm)	(m'-s)					
Bivariada		5 40	6.23	5 44	6.71	5 20	4 79	6 89	19 78	6.21	113.78	21 32	1402 02	0.94
Univariada		5 41	6 43	5 66	6 03	5 01	4 92	6 53	21 65	6 15	112.71	20 80	1367 87	0.92
Bell		7 98	5 58	8 41	3 94	5 68	7 45	3 43	20 23	6 25	114 53	21 68	1426 00	0.95
Chen		6.00	6 49	5 70	7 16	5 33	5 20	7 35	1981	6 53	119 80	24 31	1598 57	1 (37
Kothyan		14 74	13.52	10.98	15 62	11.62	10.16	14 68	31 70	13.21	242 26	105 15	6914 81	4 63
MCM		14 75	13 53	10 97	15 51	11.62	:0 13	14 69	31 00	13.21	242 16	105 07	6909 61	4 63

					Mésodo de i	nterpolació	п Орсіта							
& Area de influenc	ıa		18 01	42 17	22 27	1 37	06	14 62	0.96	Ϲ	P_4^{T}	P,	Q.	Q. /Q.
	Estación		SNPED	JAYAC	SNTIA	COIXT	TEPEL	QUIOT	LAEST	prom	edio	efectiva		,
Método calc. rel.	I- 4 -T	Valor real	Valor real	Value real	Valor real	Valor real	Valor real	interpol	Valor real	(mm/h)	(min)	(mm)	(m³/s)	
Bivariada		5 40	6 23	5 44	6 71	5 20	4 79	0.54	19 78	6 15	112 85	20 87	1372 36	0 92
Univariada		5 41	6 43	5 66	6 03	5 01	4 92	6 29	21 65	6 11	112 07	20.50	1347 86	0.90
Beli		7 98	5 58	8 41	3 94	5 68	7 45	3 77	20 23	6 30	115 44	22 13	1455 37	0 97
Chen		6 00	6 49	5 70	7 16	5 33	5 20	6 96	19 81	6 48	118 75	23 78	1563 76	1.05
Kothyan		14 74	13 52	10 98	15 62	11 62	10 16	14 41	31 70	13 17	241 53	104 58	6877 70	4.60
MCM		14 75	13 53	10 97	15 61	11 62	10 13	14 40	31.66	13.17	241 40	104 49	6871 21	4 60

					Método kri	ging Ordina	rio							
% Área de influencia	ı		18 01	42 17	22 27	1 37	0.6	14 62	0.96	L,*	P, T	P.	Q.	Q. /Q.
	Estación		SNPED	JAYAC	SNTIA	COLXT	TEPEL	QUIOT	LAEST	prom	edio	efectiva		
Método calc. rel. I-	-d-T	Valor real	Valor real	interpol	Valor real	(marh)	(mm)	(mm)	(m^3/s)					
Bivariada		5 40	6 23	5 44	6 71	5 20	4 79	6 75	19 78	6 19	113 42	21 14	1390 45	0 93
Univariada		5.41	6 43	5 66	6 03	5 01	4 92	6 42	21 65	6 13	112 43	20 67	1359 06	0 91
Beil		7.98	5 58	8 41	3 94	5 68	7 45	3 48	20 23	6 25	114 65	21 74	1429 75	0 96
Chen		6 00	6 49	5 70	7 16	5 33	5 20	7 21	19 81	6 51	119 42	24 12	1586 00	1.06
Kothyan		14 74	13.52	10 98	15 62	11 62	10 16	(4 54	31.70	13 19	241 89	104 86	6895 86	4 62
MCM		14 75	13 53	10 97	15.61	11.62	10 13	14 54	31.66	13 19	241 78	104 78	6890 33	4.61

		Método kriging Universal (polinomio de les grado)													
% Área de influencia Estación QUIOT		18 01	42 17	22 27	1 37	0.6	14 62	0.96	L,T	$P_4^{\ T}$	P. efectiva	Q,	Q_p/Q_a		
		QUIOT	SNPED	JAYAC	SNTIA	COIXT	TEPEL	QUIOT	LAEST	promedio					
Método calc. rel.	1- 4 -T	Valor real	Vaior real	Valor real	Valor real	Valor real	Valor real	unuerpoi	Valor real	(m/m/h)	(mm)	(mm)	(m ¹ -5)		
Bivariada		5 40	6 23	5 44	6 71	5 20	4 79	6 89	19 78	6 21	113 79	21 32	1402 19	0 94	
Univariada		5.41	6.43	5 66	6 03	5 01	4 92	6.58	21 65	6 15	112 83	20 86	1371 88	0 92	
Bell		7 98	5 58	8 41	3 94	5 68	7 45	3 50	20 23	6 26	114.71	21 77	1431 75	0 96	
Chen		6 00	6 49	5 70	7 16	5 33	5 20	7 35	19.81	6 53	119 80	24 31	1598 68	1 07	
Kothyan		14 74	13 52	10 98	15 62	11 62	10 16	15 03	31 70	13 26	243 19	105 86	6961 58	4 66	
мсм		14 75	13 53	10.97	15 61	11 62	10 13	15 03	31 66	13 26	243 08	105 78	6956 09	4 66	

Para el período de retorno T = 20 años; en la TABLA 6.5 puede analizarse lo siguiente: primeramente se dan las características de la subcuenca 1 (La Estrella); se proporcionan los datos básicos como el área, longitud del cauce principal, elevaciones máxima y mínima, desnivel entre esas dos elevaciones, valores de pendiente calculados por cuatro métodos, el tiempo de concentración elegido, los tiempos pico y de retraso, el número de la curva de escurrimiento, el gasto pico por el método del hidrograma unitario triangular y el gasto de diseño obtenido de un análisis de frecuencia a partir de un registro de gastos máximos medidos en la estación La Estrella. Los resultados del cálculo de las intensidades de lluvia (columnas 2 y 3), con base en los métodos presentados en el primer capítulo (Relaciones *I-d-T*), estos son los eventos reales estimados para las estaciones que influyen en la subcuenca 1 y 2, respectivamente. La columna 4 es el evento inferido a través de las técnicas de interpolación y, en cada cuadro se dan los resultados de aplicar estos métodos. El promedio de la intensidad de lluvia en la subcuença (aplicando el método de los polígonos de Thiessen y el valor interpolado), son los asentados en la columna 5, I_d^T . En seguida, columna 6, la precipitación I_d^T con duración efectiva t_c , luego, en la columna 7 se dan los valores de la precipitación efectiva P_e y a continuación se tiene el gasto de diseño Q_n obtenido de la relación lluvia-escurrimiento (Hidrograma Unitario Triangular). Finalmente, la columna 9 contiene valores del cociente entre el gasto de diseño Q_p . calculado en la columna 8, y el gasto de diseño Q_d , obtenido de un análisis de frecuencia univariada con base en los registros históricos de gastos máximos en la estación en cuestión (La Estrella) para el período de retorno asignado ($Q_{d(20 \text{ años})} = 2422.75 \text{ m}^3/\text{s}$).

De igual manera se pueden analizar los resultados para la subcuenca 1 y un período de retorno de **50 años** en la **TABLA 6.7**. Para la subcuenca 2, **TABLAS 6.6** y **6.8**, se tiene el caso de la influencia de 7 estaciones; se suprime la estación Quiotepec. Las variables son las mismas que se expusieron en el párrafo anterior y el procedimiento de cálculo es el mismo.

Con la información de éstos cálculos es posible hacer una comparación de valores estimados de intensidad de lluvia. A continuación se tiene una relación de porcentajes de error de los valores calculados con los métodos de análisis de curvas *I-d-T* y las técnicas de interpolación empleadas en esta aplicación.

TABLA 6.9 Porcentajes de error en la estimación de intensidad de lluvia por análisis de curvas IdT y por interpolación.

	Error e	n la estima	ción de la in	tensidad de ll	uvia, en 9	6			Error respec	to a Q		
	La Estre	elia: (T=2	0 años)		Quiotepo	ec: (T = 20	años)		La Estrella(T=20años) $Q_s = 2422.75 \text{ m}^3/\text{s}$		Quiotepec (T=20años) $Q_d = 1286.7 \text{ m}^3/\text{s}$	
Método de cálculo I-d-T	(1) I real mm/h	(2) I Interp. mm/h	(3) Error de Interpol	(4) Error relación IdT respecto Bivariada (A1)	(5) I real mm/h	(6) I Interp. mm/h	(7) Error de Interpol	(8) Error relación IdT respecto Bivariada (A5)	(9) Q, Calculado col 8 de la Tabla 6.5	(10). Error respecto Q	(11) Q, Calc. col 13 de Tabla 6.6	(12) Error respecto
- THIESEN -												
A) D.P. Bivariada	32.05	28.003	12.6	0.0	4.66	5.55	19.1	0.00	2309.2	4.68	878.34	31.7
B) D.P. Univariada	32.08	27.956	12.8	0.1	4.65	5.65	21.5	0.21	2302.1	4.98	896.73	30.3
C) Chen	32.37	28.647	11.5	1.0	5.01	6.00	19.7	7.51	2401.9	0.86	1010.19	21.5
D) Bell	32.95	31.384	4.75	2.8	6.84	3.37	50.7	46.8	2781.9	14.8	966.91	24.8
E) Kothyari-Garde	39.63	35.275	10.9	23.6	8.95	8.41	6.03	92.1	3338.1	37.8	2654.71	106.3
F) Correlación M.	39.60	35.334	10.7	23.5	8.96	8.40	6,25	92.2	3346.2	38.1	2651.51	106.0
- ÓPTIMA -												
A) D.P. Bivariada	32.05	24.102	24.8	0.0	4.66	5.01	7.51	0.00	1818.6	24.9	840.01	34.7
B) D.P. Univariada	32.08	23 982	25.2	0.1	4.65	5 04	8.38	0.21	1803.0	25.6	853.36	33.6
C) Chen	32.37	25.055	22.6	1.0	5.01	5.26	4.99	7.51	1946.1	19.7	954.66	25.8
D) Bell	32.95	27.015	18.0	2.8	6.84	5 00	26.9	46.8	2214.5	8.59	1091.81	15.1
E) Kothyari-Garde	39.63	30.509	23.0	23.6	8.95	7.72	13.7	92.1	2701.3	11.5	2583.36	100.8
F) Correlación M.	39.60	30.501	23.0	23.5	8.96	7.72	13.8	92.2	2700.2	11.4	2579.94	100.5
- KRIGING I° g -												
A) D.P. Bivariada	32.05	21.142	34.0	0.0	4.66	5.28	13.3	0.00	1462.4	39.6	859.65	33.2
B) D.P. Univariada	32.08	20.969	34.6	0.1	4.65	5.33	14.6	0.21	1441.1	40.5	874.12	32.1
C) Chen	32.37	22.282	31.2	1.0	5.01	5.59	11.6	7.51	1606.9	33.7	979.09	23.9
D) Bell	32.95	23.939	27.3	2.8	6.84	4.65	32.0	46.8	1829.1	24.5	1064.00	17.3
E) Kothyari-Garde	39.63	28.093	29.1	23.6	8.95	7.93	11.4	92.1	2386.4	1.50	2605.11	102.4
F) Correlación M.	39.60	28.049	29.2	23.5	8.96	7.93	11.5	92.2	2380.8	1.73	2602.27	102.2

TABLA 6.10 Porcentajes de error en la estimación de intensidad de lluvia por análisis de curvas IdT y por interpolación.

	Error e	la estimac	ción de la in	tensidad de ll	uvia, en 9	Ь			Error respec	to a Q		
	La Estre	ella: (T=5	0 años)		Quiotepo	ec: (T= 50	años)		La Estrella(T = 50años) $Q_d = 2808 \text{ m}^3/\text{s}$		Quiotepec (T = 50años) $Q_d = 1494 \text{ m}^3/\text{s}$	
Método de cálculo I-d-T	(1) I real mm/h	(2) I Interp. mm/h	(3) Error de Interpol	(4) Error relación IdT respecto Bivariada (A1)	(5) I real mm/h	(6) I Interp. mm/h	(7) Error de Interpol	(8) Error relación IdT respecto Bivariada (A5)	(9) Q, Calculado col 8 de la Tabla 6.7	(10). Error respecto Q	(11) Q, Calc. col 13 de Tabla 6.8	(12) Error respecto Q
- THIESEN -				-								
A) D.P. Bivariada	36.36	31.685	12.8	0.00	5.40	7.27	34.6	0.00	2771.5	1.10	1435.06	3.94
B) D.P. Univariada	38.71	40.511	4.65	6.46	5.41	6.65	22.9	0.18	3962.8	41.1	1378.19	7.74
C) Chen	36.86	32.300	12.4	1.37	6.00	7.28	21.3	11.1	2867.7	2.12	1641.01	9.84
D) Bell	38.47	36.640	4.75	5.80	7.98	2.44	69.4	47.7	3473.0	23.7	1341.76	10.2
E) Kothyari-Garde	50.81	44.033	13.3	39.7	14.74	17.2	16.7	172.9	4622.7	64.6	7253.44	385.5
F) Correlación M.	50.77	44.106	13.1	39.6	14.75	17.1	15.9	173.1	4633.0	65.0	7246.34	385.0
- ÓPTIMA -												
A) D.P. Bivariada	36.36	27.349	24.8	0.00	5.40	6.54	21.1	0.00	2210.7	21.3	1372.36	8.13
B) D.P. Univariada	38.71	33.554	13.3	6.46	5.41	6.29	16.3	0.18	3018.1	7.48	1347.86	9.77
C) Chen	36.86	28.463	22.8	1.37	6.00	6.96	16.0	11.1	2367.5	15.7	1563.76	4.67
D) Bell	38.47	31.539	18.0	5.80	7.98	3.77	52.7	47.7	2790.1	0.64	1455.37	2.58
E) Kothyari-Garde	50.81	39.572	22.1	39.7	14.74	14.41	2.23	172.9	4001.1	42.5	6877.70	360.4
F) Correlación M.	50.77	39.560	22.0	39.6	14.75	14.40	2.37	173.1	3999.6	42.4	6871.21	359.9
- KRIGING 1° g -												
A) D.P. Bivariada	36.36	24.033	33.9	0.00	5.40	6.89	27.6	0.00	1797.6	35.9	1402.19	6.14
B) D.P. Univariada	38.71	28.718	25.8	6.46	5.41	6.58	21.6	0.18	2384.6	15.1	1371.88	8.17
C) Chen	36.86	25.500	30.8	1.37	6.00	7 35	22.5	11.1	1992.7	29.0	1598.68	7.01
D) Bell	38.47	27.948	27.3	5.80	7.98	3.50	56.1	47.7	2323.6	17.2	1431.75	4.16
E) Kothyari-Garde	50.81	37.505	26.2	39.7	14.74	15.03	1.96	172.9	3716.7	32.4	6961.58	365.9
F) Correlación M.	50.77	37.446	26.2	39.6	14.75	15.03	1.89	173.1	3708.8	32.0	6956.09	365.6

El objetivo de la tesis es demostrar que la modelación de la precipitación, o intensidad de lluvia, a través de modelos con distribución de probabilidad multivariada son bastante buenos al analizar eventos extremos; y que al conjuntar la relación intensidad-duración-período de retorno con algún modelo de lluvia-escurrimiento, entonces, se logra la estimación de eventos de diseño razonablemente buenos, sobre todo para períodos de retorno grandes.

En principio, se considera que las intensidades de lluvia de diseño estimados con períodos de retorno asignados en todas las estaciones, son las obtenidas con el análisis de frecuencia bivariada (ANEXO C); de ahí que los errores de estimación con los otros métodos de cálculo se comparen con éste, obteniéndose los errores indicados en las columnas 4 y 8 de las TABLAS 6.9 y 6.10. Como era de esperarse, la diferencia con el método de análisis de frecuencia univariada es que éstos son mayores para períodos de retorno grandes. También se obtuvieron porcentajes aceptables con los métodos de Chen y Bell, mas no así con los de Kothyari y Garde y el de Correlación Múltiple. Respecto a los demás porcentajes obtenidos en las mismas tablas, se observa en general que: los errores de interpolación de la intensidad de lluvia con período de retorno de 20 años (columnas 3 y 7) son aceptables para la subcuenca 2 (Quiotepec); siendo mejor las estimaciones cuando se emplean las técnicas de interpolación óptima y kriging. Estos porcentajes de error mejoran en la estación Quiotepec para el período de retorno de 50 años, mientras que para la estación La Estrella (Subcuenca 1) se obtuvieron errores muy similares a los obtenidos con el período de retorno de 20 años, pero un poco menores.

Al comparar los gastos inferidos Q_p a partir de la lluvia interpolada en las estaciones suprimidas con los gastos de diseño, Q_d , obtenidos con una función de distribución de probabilidad se tiene que: para períodos de retorno dentro del rango del tamaño de las muestras, se obtuvo valores bajos, esto es, entre un 20 a 30% menores que Q_d y; para períodos de retorno grandes, en general, los gastos Q_p se parecen más al de diseño, ya que la mayoría de los errores varían entre 1 y 10%, teniendo algunos extremos de 20 a 30%. Es importante notar que los menores errores se presentaron para la subcuenca 2 (Estación Quiotepec), lo que no ocurrió con los otros resultados, quizá pudiera ser por la influencia de las demás estaciones o por la ocurrencia de fenómenos locales extremos en la estación La Estrella.

CAPÍTULO 7. CONCLUSIONES Y RECOMENDACIONES

El diseño de estructuras hidráulicas siempre requiere de datos hidrológicos. Los más empleados en los Estados Unidos Mexicanos según su importancia, son: a) Los registros de gastos y la lluvia que los originó, para una tormenta específica; b) Registros históricos de gastos máximos (aunque en algunos proyectos de gran importancia se han realizado estudios con base en los gastos mínimos, lo que implicaría un análisis de sequías); y c) Análisis de lluvias cuando no se tienen registros de gastos.

El cálculo del gasto de diseño por medio del análisis de lluvias es el enfoque que se ha presentado en este trabajo.

7.1. RESUMEN DEL TRABAJO

En el capítulo 1 se desarrollaron las diferentes técnicas para el modelado de la relación intensidad-duración-período de retorno (curvas *I-d-T*). Mediante estas técnicas es posible obtener un evento extraordinário en el lugar donde se presentó el fenómeno. Se verificaron en la Cuenca del Papaloapan la independencia de las relaciones *I-d* e *I-T*, con el período de retorno y la duración, respectivamente. Luego, mediante alguno de los modelos lluvia-escurrimiento, presentados en el capítulo 3, se calculó el gasto de diseño para ese evento.

La respuesta de la cuenca a un evento como el calculado, es ese gasto de diseño. Una

parte importante en el proceso de cálculo está en la deducción de las pérdidas ya que

Escurrimiento superficial
$$(Q)$$
 = Precipitación (P) - Pérdidas (L) (7.1)

Se han estudiado, por separado, los procesos de la precipitación y de las pérdidas (infiltración, evaporación,...) y se tienen muchos métodos para la estimación de ambos procesos. Con el propósito de comparar los resultados obtenidos con los métodos que se proponen se optó por emplear el criterio del U.S. Soil Conservation Service para estimar las pérdidas, esto es, a partir de tablas de usos y características de suelos se obtiene el número de escurrimiento N y en consecuencia la altura de precipitación efectiva.

En ciertos proyectos es común encontrarse con registros incompletos o datos faltantes. En este trabajo se hace gran énfasis a la parte del análisis datos y, se debe proceder a completarlos correlacionándolos con información de estaciones vecinas.

Cuando se tiene necesidad de proyectar una estructura en algún sitio de la región donde las mediciones existentes son escasas o definitivamente no se dispone de datos, normalmente se recurre al trazo de isoyetas de diseño con información de estaciones vecinas, y luego se obtienen los eventos con una simple interpolación lineal en un trazo hecho prácticamente a mano. Aquí, en capítulo 2, se presentan varias técnicas de interpolación espacial de lluvias. Estas son de gran utilidad en la estimación de un evento como el caso mencionado, además proporcionan valores con bastante precisión, ya que se calculan en forma matemática.

En el capítulo 4 se encontraron las relaciones *l-d-T* para las estaciones de la Cuenca del Río Papaloapan, se utilizó el concepto de regionalización para un mejor manejo de los resultados. Se confirmó la división de la cuenca en dos zonas con los parámetros de las relaciones intensidad-duración-período de retorno, observándose dos tendencias muy marcadas; valores bajos en la **Zona** A y altos en la B. Con base en los resultados obtenidos se propuso un procedimiento de diseño para el cálculo de eventos extraordinarios de lluvia (capítulo 5); y de manera opcional se sugiere usar el modelo del Hidrograma Unitario Triangular (capítulo 3) teniendo mucho cuidado en seleccionar el número N y la pendiente más adecuada.

Finalmente, a manera de ejemplificar el procedimiento propuesto, en el capítulo 6 se aplican las técnicas de análisis de curvas *I-d-T*, la interpolación de lluvias y el cálculo del gasto de diseño para el sitio de interés. Pueden compararse los valores estimados con relaciones *I-d-T*, además de conocer los errores de interpolación debido a la aplicación de las técnicas expuestas y, por último, confirmar la relación precipitación-escurrimiento comparando el gasto inferido con el registrado.

7.2. ACERCA DE LOS RESULTADOS Y ALCANCES LOGRADOS

Sobre la regionalización propuesta, es importante mencionar que el hecho de haber limitado la Cuenca en dos regiones homogéneas orientó a definir dos extremos de sucesos presentes en esa zona, pero, entre ellas se tienen algunas estaciones con tendencias diferentes. Como podrá observarse en las estaciones La Estrella, o en Villa Alta y Cuichapa se obtuvieron valores: más altos en el primer sitio y bajos en los segundos comparados con la tendencia de las otras estaciones. Para la situación de la estación La Estrella se debe exclusivamente a la ocurrencia de fenómenos locales y, en las segundas por encontrarse próximas a la frontera de la delimitación de las dos zonas. Podría pensarse que existen estaciones donde ocurre un fenómeno intermedio entre las **Zonas A y B**, pero como se dijo en un principio, no vale la pena delimitar otra región de gran superficie para incluir a sólo cuatro estaciones.

Con respecto a los valores inferidos por medio de las técnicas de interpolación, es interesante notar que: al dibujarlos contra sus respectivos valores de la variable estándar, misma que está en función del período de retorno, éstos tienden a alinearse en una recta. Por lo anterior, se concluye que es posible interpolar los parámetros de ajuste de la función utilizada con base en los obtenidos en las demás estaciones, siempre y cuando en todas ellas se haya empleado la misma fúnción. Si ya se dispone de parámetros para aplicar las fórmulas empíricas en una región, es posible inferir los parámetros de un sitio entre estos a través de los métodos de interpolación.

Los porcentajes de error en la estimación de la precipitación se compararon con los obtenidos mediante el análisis de frecuencia bivariada, suponiendo que los resultados obtenidos

con éste método son los que mejor representan a los datos históricos, de igual forma que los resultados extrapolados. De acuerdo con éstos, se resume lo siguiente:

- i) Es posible emplear el análisis de frecuencia multivariada en la modelación de variables como la precipitación, pues los errores de ajuste disminuyen, comparados con los obtenidos mediante un análisis de frecuencia univariada.
- ii) Los valores de intensidad de lluvia extrapolados (eventos para períodos de retorno grandes) son más razonables que los obtenidos con métodos empíricos, sin embargo, cuando éstos se sirven de datos del análisis de frecuencia bivariada, dichos eventos son aún mejores que los últimos. Así se incluyen en este caso a las fórmulas de Bell y Chen.
- se limita el uso de las fórmulas de Bell a períodos de retorno y duraciones pequeñas. Para períodos de retorno grandes y duraciones no mayores de 24 horas es recomendable el uso de la fórmula de Chen o el análisis de frecuencia multivariada y, definitivamente, cuando los períodos de retorno son muy grandes y duraciones mayores o iguales que 24 horas se recomienda el uso del análisis de frecuencia multivariada, apoyada del método del U.S. Conservation Service.
- iv) Se debe evitar el uso del método de Correlación Múltiple. Se ha demostrado que los errores de estimación con esta técnica son muy altos, sobre todo cuando el período de retorno es del orden o mayor que el tamaño de la muestra.

Para finalizar esta parte, respecto a los gastos de diseño, se han obtenido resultados satisfactorios con eventos estimados a través de las técnicas de interpolación. Debe aclararse que un buen análisis de datos, incluyendo la regionalización, proporcionarían buenos resultados en sitios donde no se tienen mediciones. Se esperarían errores alrededor del 10% empleando las técnicas de interpolación kriging, óptima, multicuadrática, distancia inversa y polinomial, siempre y cuando se haga lo siguiente: una calibración del número de escurrimiento N para el sitio, se emplee la pendiente más adecuada para calcular el tiempo de concentración con la fórmula de Kirpich y en forma primordial se trabaje en una región meteorológicamente homogénea.

En cuanto a los alcances obtenidos en este trabajo, se resumen en dos conceptos: primero, que el modelar las precipitaciones mediante el análisis de frecuencia bivariada no es común en nuestro medio, pero, debido a las mejoras mostradas al analizar la intensidades máximas de lluvia en la Cuenca del Río Papaloapan, para diferentes duraciones, nos proporcionan nuevas alternativas de diseño al conjuntarla con un modelo lluvia-escurrimiento. Lo anterior se refleja en el simple hecho de que en los procedimientos más usuales de diseño, con base en datos de lluvia, se limitan a períodos de retorno pequeños. Segundo, los métodos de interpolación se han empleado para estimar un evento de intensidad de lluvia en el sitio de interés, aunque puede estimarse otro tipo de variable aleatoria dentro una zona que tenga una distribución meteorológicamente homogénea.

7.3. ACERCA DE LOS PROGRAMAS

Para el cálculo, análisis y obtención de resultados en la aplicación de las técnicas de interpolación se desarrollaron programas en lenguaje Q-Basic (ANEXO D). Éstos tienen suficiente capacidad como para aplicarse a una zona con un gran número de estaciones, y también interpolar varios puntos a la vez en la misma zona y diferentes series de eventos. Los archivos de datos se generan una sola vez y el formato de lectura de datos es igual en todos los programas.

En este trabajo se proporcionan los programas independientes, pero existe la posibilidad de conjuntarlos ya que todos emplean las mismas variables de lectura de datos y de resultados. Así es posible desarrollar un programa principal que administre la función de cada uno de ellos y se registren los resultados en un archivo común.

7.4. APORTACIONES

Las principales aportaciones de este trabajo son: el análisis de frecuencia multivariada aplicada a las intensidades de lluvia máximas dentro la Cuenca del Río Papaloapan, la comparación con el mismo análisis pero en forma univariada, la determinación de los parámetros de tormenta para la aplicación de la fórmula de Chen con base en datos calculados en forma

bivariada. Se propone un procedimiento de regionalización de lluvias apoyándose en herramientas estadísticas y tomando en cuenta los fenómenos meteorológicos de la zona. También, se desarrolló algoritmos de cálculo de las técnicas de interpolación en lenguaje Q-Basic y, además, se logró la aplicación a la estimación de eventos extremos de lluvia en un determinado sitio.

Quizá otra de las contribuciones del presente trabajo sea el procedimiento propuesto para la obtención de eventos de diseño a partir de registros de lluvias, aún disponiendo solamente de datos de lluvia diaria. Una variante de este procedimiento se enfoca a la obtención de los eventos en sitios donde no se tienen registros históricos (vía técnicas de interpolación).

Los resultados obtenidos al modelar la intensidad de lluvia por medio del análisis de frecuencia multivariada, y a la vez el cálculo de la precipitación promedio mediante polígonos de Thiessen para obtener el gasto de diseño, implican a la única relación existente en este fenómeno, la cual es un modelo lluvia-escurrimiento. Se empleó el método del Hidrograma Unitario Triangular y, pese a su gran simplicidad, los resultados no solamente dependieron de los datos de lluvia, sino que también tuvieron que ver otros factores como son: la pendiente del cauce principal y el valor del número de la curva de escurrimiento. Si se deseara obtener un evento de diseño conservador, se tiene la opción de asumir una pendiente pequeña o menor a la adoptada; o en su caso incrementar o disminuir ligeramente el valor de N, sólo si se trata de una cuenca grande, con lo cual se obtienen cambios fuertes en el gasto.

7.5. ESTUDIOS POSTERIORES

La disponibilidad de datos pluviográficos en los Estados Unidos Mexicanos no es tan abundante. Son pocas las Regiones Hidrológicas que cuentan con información suficiente como para poder desarrollar las relaciones intensidad-duración-período de retorno propuestas en este trabajo. En la actualidad se ha dedicado mucho esfuerzo para obtener una relación I-d-T a partir de pocos datos, tal es el caso del estudio realizado por Campos en 1984 propone, para la Cuenca del Papaloapan, utilizar un valor constante de la relación de precipitación (T = 2 años) de 60 min a la de 1440 min igual a 0.47. Con esta, al disponer de registros de lluvia diaria es

posible calcular la precipitación correspondiente a 60 minutos y 2 años de período de retorno y, este autor recomienda el uso de la fórmula de Bell. Respecto a éste punto, la principal desventaja del método es que el empleo de ésta fórmula está restringida a duraciones entre 5 y 120 minutos y períodos de retorno hasta de 100 años. Vale la pena hacer un estudio en diferentes regiones del territorio Mexicano para estimar relaciones similares como las que propone y no sólo empleando la fórmula de Bell, sino también la de Chen que es aún mejor.

Acerca de la modelación con distribuciones multivariadas, aún es posible mejorar las estimaciones logradas en este trabajo, esto es, disminuir los errores empleando el análisis de frecuencia con distribuciones bivariadas e inclusive trivariadas, y usar marginales un poco más complejas como la General de Valores Extremos y la Gumbel Mixta.

Mediante las técnicas de interpolación se expuso que su aplicación podría diversificarse en estudios hidrológicos. Es recomendable usarlas en zonas con fenómenos meteorológicamente homogéneos, aunque faltan considerarse las situaciones en que se analicen variables aleatorias estandarizadas. En la aplicación de este trabajo se comprobaron que los eventos interpolados siguen la misma ley que los datos de estaciones vecinas, se concluyó también que pueden interpolarse los parámetros de las funciones, siempre y cuando en todas ellas se hayan utilizado la misma función; pues así como sucede para las lluvias es conveniente hacer un estudio con gastos, es decir, con los parámetros de la función ajustada a los gastos históricos registrados en cada estación.

Finalmente, es importante recordar que las técnicas de interpolación también son empleadas en el diseño y revisión de redes de medición, deducción de datos faltantes, e interpolación de lluvias, principalmente.

REFERENCIAS BIBLIOGRÁFICAS

- * Abtew, W, Obeysekera, J y Shih, G (1993), "Spatial Analysis for Monthly Rainfall in South Florida", Water Resources Bulletin, AWRA, vol 29, Num. 2, abril, 179-188.
- * Aparicio Mijares, F J (1996), <u>Fundamentos de Hidrología de Superficie</u>, Ed. Limusa, México.
- * Bastin, G et al, "Optimal Estimation of The Average Areal Rainfall and Optimal Selection of Rain Gauge Locations", Water Resources Research, vol 20, Num. 4, (abril, 1984), 463-470).
- * Bell, F Ch (1969), Generalized Rainfall-Duration-Frequency Relationships", <u>Journal of The Hydraulics Division</u>, ASCE, vol 95, Núm. HY 1, enero, 311-327.
- Berezowsky, V M et al (1983) Manual de Diseño de Obras Civiles. Cap A.1.11, Cap.
 A.2.16.4, Comisión Federal de Electricidad, México, D.F.
- * Bras, R L y Rodríguez-Iturbe, I, Random Functions and Hydrology, Ed. Adison-Wesley, USA (1985).
- * Bronson, R, Matrix Methods. An Introduction, College of Science and Engineering, Farleigh Dickinson University, Ed. Academic Press, Inc., 2d ed., USA, NJ (1991).
- Chaudhry, M H, <u>Applied Hydraulic Transients</u>, Van Nostrand Reinhold Company, USA, NY (1979).
- * Cisneros Iturbe, H L y Domínguez Mora, R (1996), Factores de la Regionalización de Lluvias en la Cuenca del Río Papaloapan, (Coordinación de Investigación. Área de Riesgos Hidrometeorológicos), Centro Nacional de Prevención de Desastres, CVE RH/03/96, México (enero, 1996).
- Collado, J (1988), "Estimación Óptima de la Precipitación Media con el Método Kriging", Ingeniería Hidráulica en México, México, sept.-dic., 34-45.
- * Chen, C L (1983), "Rainfall Intensity-Duration-Frequency Formulas", <u>Journal of Hydraulic Engineering</u>, ASCE, vol 109, Núm. 12, diciembre, 1603-1621.
- * Chow, V T, Maidment, D R y Mays, L W (1988), Applied Hydrology, Ed. McGraw-Hill, USA, NY.
- * Deming, H G, El Agua. Un Recurso Insustituible. Ed. Nuevo Mar, México (1979).

- * Domínguez Mora, R (1981), "Análisis Estadístico", Manual de Diseño de Obras Civiles. Cap A.1.6, Comisión Federal de Electricidad, México.
- * Escalante Sandoval, C A y Raynal Villaseñor, J A, "Un Modelo de Análisis Regional Hidrológico", Memorias del Congreso Nacional de Hidráulica, México (1990).
- * Escalante Sandoval, C A (1991), Funciones de distribución de probabilidad Trivariadas de Valores Extremos y sus Aplicaciones en Hidrología, Tesis Doctoral en Ingeniería de Aprovechamientos Hidráulicos, DEPFI, UNAM, México.
- * Escalante Sandoval, C A y Raynal Villaseñor, J A (1994), "A Trivariate Extreme Value Distribution Applied to Flood Frequency Analisis", <u>Journal of Research of the National Institute of Standars and Technology</u>, 99: 369-375.
- * Franco, V y Domínguez Mora, R, Manual de Hidráulica Urbana, Dirección General de Construcción de Obras Hidráulicas del DDF, t 1, México, DF (septiembre, 1982).
- * Froelich C, D (1995), "Intermediate-Duration-Rainfall Intensity Equations", <u>Journal of</u>
 Hydraulic Engineering, ASCE, vol 121, Núm. 10, Octubre, 751-756.
- * Fuentes Mariles, O A y Martínez Austria, P, Introducción a los Métodos Numéricos Aplicados a la Hidráulica, IMTA, México (1988).
- * Fuentes Mariles, O A y Franco, V (1990), "Estudio Hidrológico Para Obras de Protección", Manual de Ingeniería de Ríos. Cap 3, Comisión Nacional del Agua, México.
- Gutiérrez López, M A (1995), Modelos de Transferencia de Información Hidrológica,
 Tesis de Maestría en Ingeniería Hidráulica, DEPFI, UNAM, México.
- * Haan, Ch T (1977), Statistical Methods in Hydrology, Iowa State University, USA.
- * Holder, L R, Multiple Regression in Hydrology, Institute of Hydrology, Great Britain, Wallingford, Oxfordshire ((1985).
- * Jiménez, E M, Manual de Operación del programa "AX.EXE" (Ajuste de funciones con distribuciones de probabilidad, (Coordinación de Investigación. Área de Riesgos Hidrometeorológicos), Centro Nacional de Prevención de Desastres, CVE RH/05/92, México, D.F. (1992).
- * Kite, W G (1988), Frequency and Risk Analysis in Hydrology, Water Resources Pub., USA.
- * Lafragua Contreras, J (1996), Curvas Intensidad-Duración-Período de Retorno Para la

- <u>Vertiente del Golfo de México</u>, Tesis de Maestría en Ingeniería Hidráulica, DEPFI, UNAM, México.
- * Levi, E, El Agua Según la Ciencia, CONACYT, México, DF (1989).
- * Miller, I R, Freund, J E y Johnson, R, Probabilidad y Estadística Para Ingenieros, Ed. Prentice-Hall, 4a Ed., México (1992).
- * McCuen, R, Statistical Hydrology, (Microcomputer Aplications in), Ed. Prentice-Hall, USA, NJ (1993).
- * Pérez Brito, J, <u>Predicción Espacial a Través del Método Kriging Ordinario</u>, Tesis de Licenciatura en Actuaría, Facultad de Ciencias, UNAM, México (1992).
- * Raynal, J and Salas, J (1987), "Multivariate Extreme Value Distribution in Hydrological Analysis", I.A.H.S Publications, 164: 111-119.
- * Rueda, E (1981), <u>Transfer of Information for Flood Related Variables</u>, M.Sc. Thesis, Colorado State University, p.112.
- * Samper Calvete, F J y Carrera Ramírez, J, Geoestadística. Aplicaciones a la Hidrogeología Subterránea, Centro Internacional de Métodos Numéricos en Ingeniería, Universitat Politécnica de Catalunya, Barcelona (1990).
- * Sherman, C V, Frequency and Intensity of Excessive Rainfalls at Boston, Massachusetts", Transactions of the ASCE, vol 95, (1931), 951-960.
- * Singh, V P, Elementary Hydrology, Departament of Civil Engineering of Louisiana State University, Ed. Prentice-Hall, USA, NJ (1992).
- * Springall, G R, Hidrología, (primera parte), Series del Instituto de Ingeniería, UNAM, México (1970).
- * Tabios III Q, G y Salas D, J (1985), "A Comparative Analysis of Techniques For Spatial Interpolation of Precipitation", Water Resources Bulletin, AWRA, vol 21, Núm. 3, junio, 365-380.
- * Toledo Reyes, V y Collado, J (1990), "Mejoramiento de la Configuración de Redes Pluviométricas Utilizando el Método Kriging", Memorias del Congreso Nacional de Hidráulica, México, 28-39.
- * Viessman, W, Lewis, G y Knapp, J, Introduction to Hydrology, Ed. Harper and Row, USA, NY (1989).

ANEXO A " REGISTROS DE INTENSIDADES DE LLUVIA " REGISTROS HISTÓRICOS DE LAS 39 ESTACIONES PROPIAS DE LA CUENCA DEL RÍO PAPALOAPAN

Intensidades Máximas de Lluvia, en mm/h

Levi-				Estac	ión: Acayl	ican, Ver.		阿里斯		规则如	aller 1857
5.73.8600		13.44	200	Dec	ración, en	minutas			(外)的		10.00
446	1	50		20	30	-0	60	80	100	120	1440
THE STATE OF	86.40	60.00	43 60	32 70	34.00	27 90	22 50	16.90	13 50	11 30	
1900	120 00	120 00	90.00	87 00	62.40	46 70	39.00	30.70	27.00	27.00	
1950	120 00	70 80	69 60	58 50	42 00	37 60	30 40	22 80	18 30	15 90	
1931	115.20	102 00	78.00	66 00	48 20	34 30	26 20	21 40	17 60	15 20	2 88
E_{ij}	129.60	102.60	82 00	74 40	66 80	65 30	57.80	43 70	36 30	30 30	3 25
	136 80	104.40	88.40	71 70	50 20	33 80	28 60	22 40	20 00	18 00	3 04
(SE)	132.00	108.00	96.80	83.10	74.00	72.40	71.30	50.60	42.40	35 70	5 32
200	120.00	83.40	72.00	60 00	48.00	36.70	28.60	24.20	20.20	17.30	4 17
	192.00	132.00	116.00	99.00	71.00	52 40	40 90	31.20	25 40	21.30	3.67
40	130 39	100.72	86.80	77 11	62 37	51 26	41 28	33 20	28 00	24 24	5 63
建	180.00	150.00	108.00	102 00	85 00	63.80	53.30	40 70	32 60	27.20	4 10
dan.	206 40	134.40	106 40	84 90	72.60	67.20	59 50	48 80	40 60	34 50	3 58
1960	135.60	120.00	108 00	82 50	72 00	68.50	63.00	54 40	51 20	50.00	4 50
1961	216.00	153.00	141 60	132 60	101 00	73 20	58.40	54.80	49 70	41.50	3 50
1962	151.20	123.60	88.80	72.60	51 80	37.50	29.80	25.50	22 70	19.80	2.40
100	120.00	81.00	65.60	64.50	62.00	46.60	36.50	30 90	28 10	25.00	4 70
国现代主	141.60	114.60	84.40	75 00	63 00	47 20	41.50	38 30	32 80	28.20	6 94
建建设	114.00	102.00	90.00	82 50	62.80	47.30	39.20	32 30	24 20	20 50	3 60
2011年	138.00	94.80	80 40	64.80	54.80	44 00	43.50	35.20	28 80	25 50	3 96
建 的系	108.00	99.00	98.00	88.00	79 00	61.20	54.50	48 40	42 00	37 30	5 21
建筑位于	116.40	87.00	86.40	69.90	57.40	47.40	33.70	26 40	22 30	18 90	7.00
100 C	72 00	63.00	56.00	49.50	41.00	34 50	24 30	22.70	22 70	18 90	5 18
107	48.00	30.00	30.00	30 00	28.60	24 00	19.30	15.50	12.50	10 60	6.00
量用的层	124.80	123.00	122.00	121.50	96.80	77 40	54.70	41.90	33.50	28.00	4.82
が教える。	168.00	120.00	120.00	114.30	81.60	65 00	44 80	33 60	26.90	22 40	3 71
digital in	129.60	100.20	88.00	78.00	72 60	68 70	49.60	37 40	30.20	25 30	5 06
Brand -	120.00	120.00	114.00	112.50	88.00	87.80	61.00	47 60	38.60	33.80	6.42
7137	123 60	90.00	80.00	79 80	70 00	62 30	47 30	35 50	28.40	23.70	2 81
22.14	96.00	60.00	46.00	42.00	33.00	26.30	18 40	14 30	11 70	10.00	4 47
2014	120.00	72.00	67 2 0	57 00	39 20	29.40	19 60	14.70	11 80	9.80	
AND THE REAL PROPERTY.	130.386	100.717	86 800	77.114	62.372	51 255	41 283	33.200	28 000	24.238	4 458
D	35.576	27.878	24.720	24.169	18.615	17.181	14.726	11.965	10.587	9.564	1 258
C	0.471	-0.381	-0 169	0.265	0.101	0.204	0 146	0 172	0 425	0.648	0 461
1.26 mg	0 273	0.277	0 285	0.313	0.298	0.335	0.357	0 360	0 378	0.395	0 282

			2.0	1		pite Vac.			int.		
10.7		63	0 k)			100	ω	80	100	120	
200 C	240.00	129.00	120.00	102.00	100.40	88.50	69.40	52.10	41.70	34.80	
35115	240.00	135.00	120.00	120.00	96.40	83.90	58.30	44.50	35 70	29.90	
3.13	108.00	90.00	72.00	60.00	54.00	46.50	32 50	24.40	19.50	16.40	
新	120.00	96.00	70.40	64.80	46.20	40.50	29.00	30 10	25 00	22 00	
温制しい。	126.00	84.00	64.00	63 00	59.00	50.30	42 00	37 30	33.30	28 50	
*C.	166.80	106.80	89.28	81.96	71.20	61.94	46.24	37.68	31 04	26 32	
97	67.14	23.49	28.20	27.32	25.29	22.48	17 22	11.05	8 80	7 19	
16	0.57	0.50	0.56	0.83	0.47	0.52	0.52	0 17	-0 26	-0.44	
	0.40	0.22	0.32	0.33	0.36	0 36	0.37	0 29	0 28	0.27	

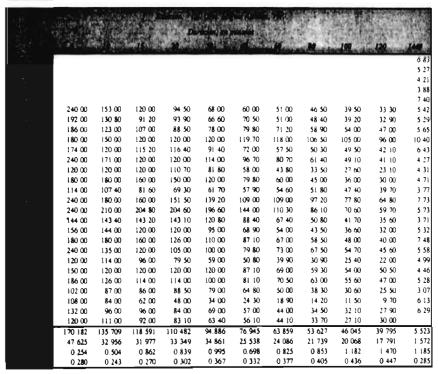
Intensidades Máximas de Lluvia, en mm/h

	ALC: N	0.3223	and the second	Sing	61.00	Tool len	Alarrida				B - 18
	10.00		Lance of	n	roción, en			1			
ASertes	Cha W	1.701	15000	20		1074	74.1	10	100	120	1440
MENT TOTAL	ATT THE PERSON	STATE TO	THE PARTY	MINTER IN	Acceptance	THE PARTY AND	Aud 5000m	DE LANGE TOWN	and the state of t		1 9
爱的事											2
1957	90.00	54.00	42.00	33 60	22 60	17 30	14 90	11 30	9 10	8 5 0	Ł
1958	96 00	64.20	66 00	60 00	49 00	45 00	40 00	30.10	24 10	20 20	1
1959	84 00	54 00	48 00	45.00	37 60	30 00	22.00	17.90	16 10	14 60	1
11.02	150.00	110.40	75.20	57.60	38 80	29.40	20.60	16 20	13 10	10 90	1
11.18	72.00	51.00	36.80	30.60	24.40	21.30	21.00	16.80	13 60	11.30	1.
產在 差。	46.80	33.00	27.60	21 30	14.60	11.70	10 50	8.70	7 70	6.50	1
1	50.40	25.20	20.00	15.90	11.00	8.70	6.70	5.10	4.30	3.60	1
17.	48.00	42.00	40.00	32.10	23.20	17.60	11.70	8.80	7.00	5.90	1
	84.00	54.60	46.80	45.60	36.40	28.70	20.30	16.60	13.60	11.40	2
E	80.13	54.27	44.71	37.97	28.62	23.30	18.63	14.61	12.07	10.32	1
	32.32	24.26	17.30	15 21	12.50	11.19	9.69	7 35	5.92	5 01	0
200	1.19	1.60	0.54	0.14	0.17	0.67	1.27	1.00	0 86	0.76	0
10.11	0.40	0.45	0.39	0.40	0.44	0.48	0.52	0.50	0 49	0 49	0

A STATE OF THE STA	San tarak	ar Alexander	自 在成功	Jessiae.	ión: Ast	atla Dav		Trans VA			
70294 (314)		是能力多		医不足 医海绵	为企业	()建于第六层()。	M Inches				
THE RESERVE		***		to the late	reción, en	minaios	A Jan	12		1000	
41.0 505	量于大大学的	与一个人			No.	40	A PASSED	80	100	120	1440
											1.92
14											1 50
- T											2.50
學的學											1 58
Y											1.13
											1.79
Address !											1.58
											1.98
5.20											1.79
100											1.96
1115 S.											2 21
	120.00	114.00	84.00	78.00	60.00	45.00	44.00	33 00	26.50	22 10	2 13
100	60.00	48.00	46.00	43.50	37.80	31.50	23.50	19.00	15 20	12.70	1.23
100000	102.00	81.00	66.00	60.00	45.00	36.00	25.00	18.90	15.10	12.60	4 04
	84.00	58.20	48.00	42.60	37.40	31.10	22.40	17 90	14.70	12.40	1 61
1000	120.00	96.00	93.20	87.00	77.00	58.50	39.00	29.30	23.40	19.50	1.89
Title Co.	85.20	61.20	50.00	49.50	41.80	33 60	31.00	23.30	18.60	15.50	1.42
	120.00	84.00	69.20	69 00	49.00	41.30	32.00	25 90	20.70	17 30	2 00
134.62	120.00	78.00	68.00	60.00	41.00	30.90	20.60	15.50	12.40	10.30	2 66
3 M	72.00	60.00	45.20	42.00	41.40	40.50	30.00	22.70	18.60	15.60	1 67
	49.20	31.20	24.40	20.40	15.00	12.00	10.00	9.60	8.00	7.00	1.03
	93.24	71.16	59.40	55.20	44.54	36.04	27.75	21.51	17.32	14.50	1 92
	27.05	24.23	20.51	19.67	16.03	11.96	9.69	6.84	5.41 0.07	4 45 0.11	0 61
Constitution of	-0.39 0.29	0.16 0.34	0.08 0.35	~0.03 0.36	0.39 0.36	-0.16 0.33	-0.06 0.35	0.04 0.32	0.07	0.11	2.15 0.32
and the	0.29	0.34	0.33	U. 30	0.30	0.33	V.33	0.34	0.31	0.31	V. 32

Intensidades Máximas de Lluvia, en mm/h

1000	第二条	The same	超越 的。	DIES.	A CONTRACTOR	mercal fill	開始的個	53,551			2.33
Assessed	Par Maria	and and	15	29	Buch		A Company	20	100	120	1440
10121 TO											2.8
											3 1
											2.3
R											2.5
Appropriate a											2.6
200 BL											2.8
	104 40	70 20	65 20	54 90	45 60	37 10	15 00	24 26	19 30	16 10	1.8
19 Con.	55 20	44 40	70 00	28 20	21 80	17:00	13 50	14 30	11.70	12.00	2.4
	96 00	72 00	68 00	68 40	64 00	64 30	60 10	48 40	41 60	35 60	3.6
M. J. J.	84 00	75 00	66 00	58 50	45 60	35 30	27.00	20 40	18 60	17.00	6.2
Marin I	42 00	27 000	22.40	17 40	16 00	13 70	10.90	8 50	7 20	6 40	3 5
B11	90 00	57 60	43 20	37 80	31 40	31.20	23 80	19 00	15 40	12 80	2.8
A .	90 00	60 00	48 00	47.70	39 80	35 30	24 70	19 40	15 70	13.90	2.8
	48 00	36 00	34 00	27 00	20 40	17 00	15 60	11 80	10 50	10 10	1.8
	102 00	51 00	34 00	25 50	18 8O	14 70	12 00	9 50	8 10	7 60	2 2
	108 00	69 00	65 20	55 50	42 00	37 50	28 20	22 20	18 90	16 20	3 6
	60 00	58 80	48 80	41 40	39 60	32 90	25 50	19.70	15 90	13 30	2 1
de	54 00	45 00	37 60	34 20	30 00	23 10	15 60	11.70	9 50	8 00	3.5
Pet 1	90 00	75 00	73 20	69 90	65 40	51 30	37 00	28 10	22 50	18 90	3 1
DIAN.	72 00	57 00	46 00	42 00	30 40	30 80	25 00	23 00	19 40	17 00	6.3
1177	67 10	46 50	34 50	31 00	24 70	19 30	14 20	11 90	10 50	9 70	
1118	65.40	46.50	35.30	30 70	25 00	19 50	14.40	11 90	10.50	9 60	
Oil .	65.40	46 00	34 80	29 40	23.40	17 80	13.50	11.40	10.40	9 60	
ELLAN.	66. 30	45.80	32 80	27.40	23 50	16.40	12 80	11 60	10.30	9 40	
M_{i}	67 10	46.90	34 80	29 20	23 70	18.90	13 80	11 40	10 00	9 20	
	32 40	27 00	26 40	26 10	18 20	13 70	9 10	0.80	5 50	4 60	
11111	62 40	39 00	30 00	27 90	21 40	16 50	1110	8 SG	7.10	6 30	
E	72 462	52 176	43 629	38 576	32 224	26 819	20 943	16 843	14 219	12 538	3 13
	21 198	14 470	15 150	14 984	14 212	13 415	11 945	9 389	7 9005	6 625	12
239/	0 065	0.054	0 766	0 881	1 135	1 334	1 926	2 014	2 181	2 177	1 8
A	0 293	0 277	0 347	0 388	0 441	0 500	0 570	0 557	0 556	0 528	50 38


3222/0.070	a to the same	5. 20 miles	NO CONTRACTOR	Mark Wa	NS Const	049 Cala	STATE OF THE	CARTORISM	MAN PORTS		E832C1017
建设规		A CONTRACTOR			1990000	海岭区	經濟程	第 次定律	1447.599	1110	200
	教教 种种	and the	理を	artist of	rade, es		15.01.700	Zona da	Product	DE DESCRIPTION	46 373
	于中国	0.016	-	100	25. 16.5		1000		-100	120	1440
* 12	138 00	138 00	106 00	81 40	59 00	39 30	367 000	22.50	22 20	20 00	
	120 00	84 00	69 60	60 00	60 00	41 30	36 50	34 00	29 10	24 30	
	120 00	65 40	54 40	43 80	35 00	25 40	28 20	23 60	19 90	16 80	
	240 00	180 00	160 00	147 00	124 40	86 50	89.00	74 30	63 90	54 50	
	716 00	165 60	147.60	140 40	117 60	110 00	87.00	65 90	53 20	44 40	3 94
	121 20	120 00	108 00	90 00	80 00	66 90	60 20	60 00	50 40	43 70	6 00
16.75	126 00	99 60	82 00	69 90	54 60	41.20	38 40	31 20	25 80	22 10	2.54
	120 00	120 00	80 40	60 30	42 40	30 50	29 10	24 50	22 10	19 30	3 71
1 m	128 40	120 00	88 00	85 50	67 00	59 90	60 00	54 40	44 80	37 50	2 75
	219 60	120 00	80 00	72 00	60 00	46 20	35 40	26 60	30 00	26 80	3 99
	229 20	144 00	118 00	9150	64 60	58 70	40 00	347 00	28 60	25 00	4.76
	114 00	84 00	60 00	45 60	31 40	21 40	16 10	12 50	10 00	9 10	3.50
90.	174 00	120 00	120 00	98 10	69 60	47 60	36 00	30 00	28 80	25 40	5 05
	168 00	99 00	79 20	63 00	52 20	41.60	31 30	24 50	20 60	12 30	3 59
•	216 00	156 00	134 00	130 50	119 60	99 60	76 30	58 40	47 60	40-20-	4 08
a Karaja	132 00	120 00	98 00	91.50	82 00	66 50	50 70	41 70	33 70	28 40	3 15
	120 00	81 00	68 00	60 00	45 00	37.90	33 00	30 00	26 70	25 (0)	3 42
1 1	140 40	122 40	102 80	97 80	86 60	65 00	50.50	37 90	30 30	25 30	2 62
· ·	168.00	138 00	120 00	111 00	90 00	70 20	56 00	43 10	36 00	303 000	3 79
	153.72	118.92	98.90	84 98	69.96	55.58	45.08	37.04	31 56	27 01	3 98
	254 40	190 80	155 20	127 20	120 00	99 90	77 70	64 40	54 00	46 50	6 66
	240 00	180 00	146 80	121 50	112 60	88 40	64 10	48 20	38 60	32 20	6 91
	120 00	114 00	80 00	70 20	55 40	41 90	30 80	23 50	18-90	16.30	5 29
	120 00	60 60	58 00	50 10	40 00	32 00	22 50	19 20	16 00	4 (30)	4 02
1 .	120 00	96 00	82 00	61.50	42 80	33 80	23 00	17 50	14 00	11 70	3 78
**.	144 00	120 00	108 00	90 00	78 00	68 30	49 50	44 30	35 80	30 MD	0 10
1 -	86 40	48 00	40 00	X) W	26 20	21 20	15.00	16 00	14 10	13:340	(8 87
· .	122 40	122 40	114 00	900 000	78 00	58 50	51.00	42 20	33 90	28 400	4 18
11.77. j	120 00	120 00	96 00	88 50	62 80	48 20	32 90	26 30	24 84)	1 40	3 20
11	120 00	120 00	112 00	900 000	72 00	63 80	56 00	47.60	41.30	34 (0)	
	153 724	118 924	98 897	84 976	69 959	55 576	45 076	37 045	31 555	27 007	4 395
	47 132	34 274	30 671	29 375	27 474	23 643	19 784	16 274	13 183	11.058	1 514
	0 947	0 123	0 25 I	0 428	0 584	0 666	0 693	0 633	0 615	0 634	1 353
1.7	0 307	0 288	0 310	0 346	0 393	0 425	0 439	0 439	0.418	0 409	û 345

Intensidades Máximas de Lluvia, en mm/h

Maria sine struck	and the same of	The state of	U.S. Company		THE REAL PROPERTY.	
。 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	学院的 经基础证据证据		MEN TO STATE			
	Duración, en minus		Ab-Mills Ha	(# H		
Ale		direction of	90	130	249	1440
被 犯行动"						2 1
						1.5
Selection of the select						1.9
	57 00	54 00	37 20	28 00	14 00	2 :
A DESTRUCTION OF THE PARTY OF T	30 OO	16 00	12 10	9 90	7 30	1.9
	24 40	20 00	14 40	10 90	5 50	13
10 A	39.80	20 20	14 10	10 60	6 90	1.8
IMP 1	62.00	61.50	44 60	33 80	17.60	3 3
	28 80	14.80	10 70	8.40	4 50	2 :
-PE-1	22.20	13 10	10 40	9 40	5 40	1.5
11.	38.00	24 30	17 20	13 50	7 10	1
Mari	15.40	9.90	7.70	6.30	3 60	1
	23.00	14.40	10 10	7.80	4 90	1.7
(i)	19.00	12 00	10.40	8.80	6 30	2 (
	30.00	22 00	19 10	14 50	7 40	1 :
Mark Line (Line)	80.00	56.00	38 90	29 10	15 30	2
智性	60 00	42 20	38 20	29.10	15 50	2
1968	20 00	12 20	8 20	6 10	3 50	1.0
121						3
2011						1
100						ì
1100						3
7						3.
MODIFIE .						3
2417						ì
W. C. C.	36.640	26 173	19 553	15.080	8.320	2 0
COM CO	19.325	17.862	13 047	9.654	4 754	0.7
	1.038	1.149	1 039	1 045	1 011	0.4
2720270	0.527	0 682	0 667	0.640	0.571	0.3

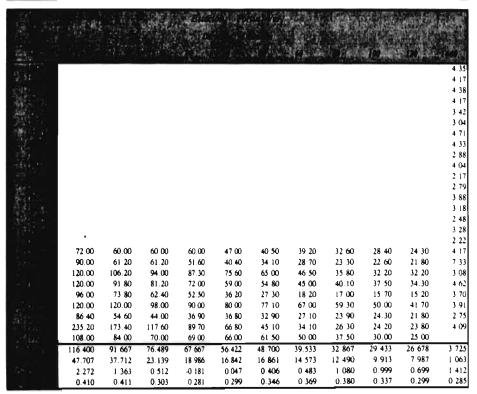
福力	在1.15	1000	7 Palo	e a	at the	or Vine	1				
		20 975		1,							
	100	400	51.J.	45 194	1		元 法基		10.18	17	15.00
10.17										CE 10 (10)	2.71
ato.											1.53
	96.00	75.00	66 00	57.00	45 00	34 80	25 00	19 50	16 10	13 50	1 13
超	126.00	75 00	50.00	37.50	28 40	21 80	15 00	11 70	10.80	9 30	2 33
19 A 19 1	180 00	109 20	90 80	69.60	48.80	40 50	28 20	21.90	18 20	15 50	1 54
9000	120 00	84.00	68.00	55 50	40 00	30 90	23.00	18 00	15 00	13 50	2 29
	74.40	54.00	39.60	30.60	21.80	16 50	11.90	9 80	8 20	7 70	1 04
800 mm	60.00	36 00	26.00	21.00	19 40	15 50	11 00	10.80	10.20	9 00	1 71
Ag.	144.00	114.00	82.00	64.50	44.00	33 00	22.30	17 30	14 30	12.50	1 30
	120.00	120.00	104.00	87 00	73.00	68 60	46.70	37 60	30.30	26 30	2 95
100	96.00	69.00	56.40	46 80	35.20	28.20	19.30	14 90	12.70	10 70	1 91
4.00	110.40	66 00	64.00	57.00	44.40	35 10	23.40	17 60	14.00	11.70	1 98
W1	111.60	87 00	78.00	60.00	46.00	37 50	29 90	23 40	18 80	15 70	1.56
	102.00	72.00	64.00	52.50	39.00	30 90	21 50	17.30	15.00	13 60	1.36
F-1	98.40	69.00	62.00	55.50	41.40	32.00	23 20	18.80	15.50	13.10	2 08
16	66.00	49.20	46 80	38.10	27 00	20 90	15 20	11.90	9.70	8 20	2.67
W 8	72.00	48.00	40.00	33 00	27.20	22 50	18.30	14 00	11 20	9 40	1 25
	108.00	78.00	62.00	51.00	39.00	31.10	21 60	16 40	13.20	11 00	2.3
	78.00	72.00	60.00	52.50	52.00	45.00	32.30	30.00	24.00	20 00	2.32
	96.00	81.60	78.40	69.30	58 00	52.10	39.30	32.00	26.20	22 20	1 88
, A	60.00	42.00	37.20	28.50	24.60	23 00	17.30	13.40	10.70	8 90	1.16
3. 9	100.80	50.40	40.00	30.00	20.00	17.30	15 20	11 40	9 10	7.60	1 61
8	61.20	49.20	36 80	27.60	18.40	13.80	9.20	6.90	5 50	4 60	
31	99 086	71.457	59.619	48.786	37.743	31.000	22.324	17 838	14.700	12.571	1.846
NA.	29.951	23.040	19.856	16.964	14.102	13.207	9 218	7 694	6.115	5 209	0.555
	0.839	0.598	0.392	0.249	0.579	1 180	1.048	1 158	1 115	1.152	0.358
	0.302	0.322	0.333	0.348	0.374	0.426	0 413	0 431	0.416	0 414	0 301

harme			11/2	Con Miles	ENCED CO	ta line			分别型		
	聖堂	A COLUMN	開島河	2	Plantes, es	MAN MAKE	開始於			REAL PROPERTY.	
Allo Mis		200	B	20		45			100	120	1440
1	159 60	120 00	92 00	85 50	71 00	56 30	48 60	41 50	35 00	29 30	Union
210	132 00	111 00	100 00	99 00	92 00	76 00	60 60	52 50	48 00	44 30	
	240 00	180 00	134 40	123 60	95 80	81 40	80 90	69 50	56 90	55.00	
000	247 20	166 20	160 00	138 00	114 00	87 20	76 50	60 00	57 30	\$3 00	6.0
Miller I.	244 40	160 80	142 40	139 50	132 20	106 00	91 60	75 20	04 10	56 10	0.1
1.07	102 00	88 90	72 40	69 60	65 60	n5 20	51 70	42.80	35 30	30 00	6.3
A. 15	180 00	144 60	124 00	114 00	95 00	72 50	54 80	39 80	34 20	30 50	6.3
1507	200 40	132 00	124 00	123 00	109 00	110 40	107 50	97.50	90.50	76 80	7.7
150	240 00	159 00	138 00	128 00	121 00	81 50	77 00	71 30	70.00	67 00	178
11	216 00	150 00	144 00	120 00	100 00	75 80	65 50	50 20	45 50	39 50	4.5
	228 00	177 00	160 00	144 00	105 60	80 30	63 50	51.20	48 50	41.70	5 5
1	138 00	105 00	98 00	87 00	71 00	57 30	52 50	39 60	33 70	32 70	8.0
-11	132 00	122 40	122 40	118 50	101 40	74 50	62 00	48 80	41 50	35 50	7.5
44 1	264 00	183 00	140 00	120 00	120 00	97 10	83 00	~5 80	66 50	60.50	7.6
	156 00	135 00	128 00	123 00	102 00	69 80	56 50	49 70	42 30	38 30	6.7
	189 09	146.11	129 12	119.83	104.50	86.70	75 64	63 56	55.74	50 50	8.2
	192 00	138 00	120 00	120 00	96 80	79.80	76 40	68 50	57 20	55 90	13 i
10.5	141 60	141 00	118 00	109 50	93 00	67 30	52 50	43 90	43 70	39 50	61
	232 80	174 60	155 20	137 40	117 60	95 00	87 30	75 80	63 70	58 20	8 3
POY	156 00	138 00	136 00	128 10	101 00	93 10	84 50	75 4()	70 20	63 50	8 (
H(#T	228 00	180 00	160 00	150 00	142.00	118 40	100 00	79 70	64 20	53 50	6.6
111	156 00	153 00	148 00	132 00	100 00	79 00	66 00	63 +0	59 40	57 10	5.3
200	240 00	180 00	160 00	150 00	144 00	115 00	90 50	68 60	55 80	48 30	7 5
THE ST	144 00	132 00	132 00	132 00	132 00	115 70	96 50	77 30	65 80	56 00	8 1
1	176 40	120 00	120 00	120 00	99 00	79 80	68 60	52 50	42 60	35 00	6 1
Mary.	198 00	171 00	134 00	124 80	120 00	113 70	104 50	85 50	70 50	68 80	12 4
	240 00	180 00	140 00	138 00	120 00	111 10	104 00	95 30	90 00	90 00	139
DOM: N	122 40	114 (0)	100 00	85 50	81 00	79 00	69 70	54 20	44 60	41 60	6.6
100	136 80	118 80	108 80	98 10	88 80	87 10	81 50	70.10	58 (00)	53 80	7 2
- 4- 1 -	240 00	162 00	132 80	117 00	99 60	89 10	79 50	6760	61 40	53 10	
1.25	189 090	146 110	129 117	119 831	104 497	86 703	75 645	63 559	55 738	50 500	8 04
	46 782	26 282	21 772	19 710	19 440	17 554	17 142	15 972	14 775	14 405	3 1/1
1000	-0 098	0 244	-0 620	-0 795	0 093	0 346	0 209	0 258	0.513	0 619	1 97
0.00	0 247	0.180	0 169	0 164	0 186	0 202	0 227	0.251	0 265	0 285	0 37

Intensidades Máximas de Lluvia, en mm/h

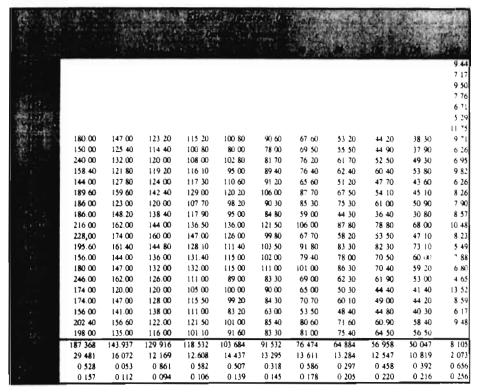
PARTITION OF		が、自然	1	Estación.	Counta	huaca, O	4,	有效性	7	77-047 \$89374996
4 200		To a second	er komba kiji	Dat	ración, en s	ninules	400	4		er op objects
MA MANAGES	MANUEL MA	WI VESTE	的人是国际	MET WHILE	A CHISM			4	100	120
The state of	114.00	90.00	78.80	77.40	60.00	48.50	33 70	25 50	20 50	17.10
200	72 00	60.00	54.00	46.50	36 60	28.70	20.10	15 40	123 30	10.30
智慧 (人)	66.00	51.00	42 00	36.00	28.40	24.00	16.50	12 40	9 90	8.30
	84.00	65.40	64 00	60 00	44.00	33.50	22.80	17 40	14.00	11.70
The state of	96.00	60.00	45.60	39.00	27.40	21.50	14 80	11 20	8.90	7 50
	126.00	75.00	63 20	52.50	41.20	33.30	22.60	17.10	16.20	13.80
30	102.00	57.00	60.00	57.00	39.00	30.80	24.00	19 50	16 70	14 80
Market Sign	75.60	47.40	32.80	25.20	18.00	13.50	10.00	15.73	6.70	6.30
通過 以下的	78.00	51.10	40.00	34.20	29.20	22.50	16.70	12.70	10.40	9.60
强歌.	60	46.2	36	29.4	21.20	16.4	11 60	10 40	8.50	7.70
fill.	87.36	60.31	51.64	45.72	34.500	27.27	19.280	15 733	23.510	10.710
ALC: 1	21.524	13.628	14.772	16.128	12.360	10.082	6.943	4 517	35.333	3 561
60.00	0.613	1.256	0.468	0.686	0.755	0 792	0.748	1 028	3 073	0 610
Contract of the second	0.246	0.226	0.286	0.353	0.358	0.370	0.360	0 287	1.503	0 332

生现种种	* E. A. M		DECEMBER 1	Estación	Cuatol	olanan. V		建 巨化系	Marie 1	92°-35°-31	1 H 249
						2000					A CHARLE
一种的是	No. of the	一种多	1000	Du	ración, en p	minutos		No. 1 LET	14.5		15 15 78
ARE TO			15	20	30	15	60	80	100	120	1440
建設 [21]	150.00	100.20	82.00	66.60	48.00	33.60	30.00	22 50	18.00	15.10	
原题	158.40	120.00	94.00	76.20	55.20	41.20	36.40	30.10	26.10	21.80	
38 L	158.40	132.60	110.00	92.10	65.60	59 50	48.90	42.80	40.90	34.30	
Aller -	168.00	120.00	92.00	84.00	66.00	47.70	39 70	32 00	26.70	22.80	3 70
1000	240.00	182.80	106.40	89.10	75.60	64.60	60.50	55 40	55.10	48.90	15.60
建設 公子	120.00	103.20	84.80	82.80	56.60	37.80	29.00	23 20	19.60	17.40	2.22
MS.	123.60	90.60	80.00	62.40	53.00	49.20	41.00	37.70	38.60	36.20	3.50
	220.80	156.00	146.40	126.30	111.40	81.60	61 40	46.10	36.90	30.80	7.92
	132.00	102.00	89.60	75.00	61 80	43.00	32.70	24 60	19.70	16.60	2.89
	162.00	138.00	136.40	129.90	107.40	79.80	71.00	56 00	44.90	37.50	3.13
	171.60	123.00	102 00	94.50	95.40	69.20	53.50	40 40	32 30	27.00	4.17
	120.00	102.00	100.00	99.00	99.00	93.10	70.30	52.90	42.50	35.50	2.92
	126.00	102.00	106.00	82.80	80.00	66.50	56.20	48 50	39.90	35.00	5.63
	150.00	83.40	62.00	49.50	40.00	26.60	20.10	15.10	12.10	10.10	3.54
147	126.00	124.20	119 20	102.00	101.00	83.10	77.00	72 80	60.50	52 80	5 00
	96.00	78.00	64.00	59.10	42.80	40.60	32.00	25 90	22.50	19.50	4.50
	96.00	78.00	72.00	61.80	59.80	45.60	36.80	28.00	23.30	21.80	3.48
	132.00	114.00	92.00	75.00	56.40	39.10	29.50	24 20	19.30	16 10	4 08
	116.40	109.20	82.80	67.80	52.20	42.20	33 80	31.90	28 30	25.10	3 52
	108.00	96.00	86.00	85.50	78.00	57.60	46.80	36 00	28 80	24 00	4 22
	120.00	102.00	80.00	79.80	66.00	46.20	36.00	28 10	23.00	19 30	3 06
	120.00	120.00	116.00	115.80	97.40	78.50	63.80	48 10	38.10	32.10	3.95
	120.00	114.00	92.00	84.00	71.00	58.10	47.00	36 40	30.60	26.20	5.33
	57.60	36.60	30.00	22.50	15.00	13.30	10.00	7.50	6.00	5.90	3.92
	120.00	100.20	100.00	91.50	90.00	65.80	49.50	37 10	29.70	24.80	2.18
	134.40	111.00	110.40	106.50	100.00	77.10	60.60	46.50	37.20	31.00	5.82
	132.00	114.00	78.00	66.00	52.00	38.60	29.30	22 30	17.80	14.90	8.95
	121.20	60.60	40.40	30.30	20.80	13.80	10 40	8 30	7.50	6 90	2 36
	84.00	49.20	48.00	42.30	39.20	33.20	22.90	17 20	13.70	11 90	2.17
	114.00	87.00	72.00	62.70	48.00	40.70	32.20	24.20	19.30	16.10	
	133.280	104.993	89.147	78.760	66.820	52.230	42.277	34.060	28 630	24.580	4.529
	36.203	29.098	25.589	25.024	25.080	20.435	17.458	14.967	13.037	11.302	2.785
	1.048	0.069	-0.152	-0.112	0.039	0.129	0.172	0.439	0.488	0.603	2 847
	0.272	0.277	0.287	0.318	0.375	0.391	0.413	0.439	0.455	0.460	0 615


Intensidades Máximas de Lluvia, en mm/h

10000	Singara.	1030	10 - No. (12-2)	- Dieser	ración, en s	MINISTER	S 5 5	1200	5444 113	The state of the
AN ALL		程行。国	45	20	30	49	60	80	100	120
Til Ka	25.20	18.00	14 00	13 50	10.40	8.10	5 50	4 20	3.40	2.90
11 15	60.00	52.20	40 80	31 20	22 20	17.70	12 80	9 70	7 80	6 50
1923	78.00	59.40	47 60	45 00	37 00	29.30	23 00	18 80	15 80	13.40
100	165.60	121.80	98 00	87 00	64.00	50 40	34 30	25 70	20 60	17 20
17.	66.00	48.00	40.00	33.60	27 60	23 60	16.30	12 70	11.40	10.60
	84 00	54.00	50 00	45.90	34.80	30.60	22 50	17 00	14.40	12 20
	75 60	48.00	44.00	39 00	30.40	25 50	21.30	20 80	18.30	17 70
	79.200	57.343	47.771	42 171	32.343	26 457	19 386	15 557	13.100	11.500
10.00	42.742	31.409	25.138	22.574	16.536	13.046	9 079	7 239	6.019	5.398
	1.429	1.545	1.283	1.311	1 038	0.729	0 128	-0.286	-0.516	-0.491
	0.540	0.548	0.526	0.535	0.511	0.493	0.468	0.465	0.459	0.469

Mar Line				Estació	n: Cutch	iapa, Ver		TE IN		1	豐製館
- 一带像				Du	ración, en n	unutos	2000	lie il	5		
		J/0-, -	15	20	30	45	60	80	100	120	1440
建筑区 2	258.00	168.00	128.00	126.00	102.00	80.00	70.00	54 40	44.00	36.90	
	181 20	123.00	118.00	120.00	98.40	97.60	84.90	70 10	62.50	53.80	- 1
湿 .	276.00	160.80	107.20	89.10	89.20	76.60	72.20	61.40	49.10	41.00	4 71
All an	234.00	174.00	155 20	136.20	106 20	71.50	64.00	56 30	50.20	42 00	6.82
100	180.00	121.20	100.00	83.40	67.00	54.90	47 00	37 80	32.30	27 20	3 42
銀七 0	140.40	117.60	96.40	85.50	75.00	64.80	53 80	44 60	41.20	35 80	6.49
翻 []」	98.40	90.60	88.00	78.00	78.40	58.50	47.00	53.30	46.40	46 90	6.90
200	144.00	102.00	84.00	81.00	62.00	62 00	62 00	49 50	40.10	33.70	5 34
\$P (:	240.00	150.00	124.00	109.50	99.00	77.80	66.00	56.60	44.90	37.50	3.71
	240.00	180.00	120 00	120.00	114 00	84.20	65.10	50 10	42.20	35.60	4.68
	222.00	162.00	144.00	117.00	95.80	89.80	79.00	64.50	53 80	45.00	4.42
	198.00	150.00	136.00	120.00	100.00	87 80	75 00	58 10	48.70	41.10	4.89
1	240.00	149.40	122.40	120.00	100.00	83.10	70.00	57 40	50.10	42.50	7.04
	108.00	75 60	60 80	60.00	60 40	56.40	51.70	40.50	32 50	27.10	4 99
·	54.00	49.80	44.00	43.80	37.20	34.40	31 90	27 20	23.00	19 70	3.80
1.1	138.00	116.40	116.40	94 80	76.20	53.60	47 80	39.50	32.00	29.40	4 21
1-1	146.40	128.40	108 40	91.80	83.40	77.00	65.20	58.10	50.60	42 30	3.93
	120.00	120.00	91.60	90.60	88.40	73.70	65.40	54.50	48.00	40.20	4.48
	126.00	119.40	107.20	107.10	78.40	53.90	50.40	43 00	38.80	32 70	4 13
	144.00	141.00	117.00	111.00	92.00	71.20	71.00	63.20	52.80	52 40	4 65
	120.00	120.00	92.80	84.60	80.00	73.80	61.70	55 90	55.80	53.90	6 67
	120.00	111.00	98.00	89.10	89.00	75.10	60.00	56.30	55.50	52.00	8 21
											5 58
											5.64
•											6 19
											9.01
											3.85
											4.39
	169.473	128.645	107.245	98.114	85.091	70.805	61.868	52.377	45 205	39.486	5.313
*	60.614	32.351	25.499	22.684	17.796	14.756	12.375	10.085	9.393	9.172	1.455
	0.169	-0.517	-0.557	-0. 488	-0.872	-0.505	-0.462	-0.719	-0.562	-0.168	0.929
	0.358	0.251	0.238	0.231	0.209	0 208	0 200	0 193_	0.208	0.232	0 274


Intensidades Máximas de Lluvia, en mm/h

66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64.16 54.21 4 120 00 102.00 80.00 6 108 00 78 00 64 00 6 108 00 78 00 68 00 5 120 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 00 137.20 30 00 28.00 2 90 00 72 00 56 00 4 144 00 79.20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26.80 2 74.40 68 40 68.00 4 88 720 64.160 54 213 47 27 628 20 165 17 035 15	Duración, en	minutes.	阿尔拉	the Many	步初即		
66 00 39 00 32 00 2 96 00 78 00 70 00 9 86 72 64 16 54 11 4 120 00 102 00 80 00 64 00 6 108 00 78 00 64 00 6 108 00 78 00 68 00 5 102 00 87 00 68 00 7 102 00 87 00 68 00 7 102 00 78 00 7	2 38		4	10	100	130	1400
66 00 39 00 32 00 2 96 00 78 00 70 00 9 86 72 64 16 54 21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 79 17 20 30 00 28 00 79 17 20 30 00 28 00 79 18 40 79 20 56 40 4 18 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 48 86 720 64 160 54 213 47 27 628 20 165 17 035 15							2 5
66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 79 17.20 30 00 28 00 79 17.20 30 00 28 00 79 18.00 79 00 56 00 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 40 4 18.00 79 20 56 50 50 50 50 50 50 50 50 50 50 50 50 50							2 :
66 00 39 00 32 00 2 96 00 78 00 70 00 9 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							ţ
66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							2
66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							1
66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							l
66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							1
66 00 39 00 32 00 2 96 00 78 00 70 00 3 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							2.
66 00 39 00 32 00 2 96 00 78 00 70 00 9 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							Į.
66 00 39 00 32 00 2 96 00 78 00 70 00 9 86.72 64 16 54.21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 120 00 78 00 78 00 78 00 78 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15							- 1
96 00 78 00 70 00 5 86 72 64 16 54 21 4 120 00 102 00 80 00 6 108 00 78 00 64 00 5 18 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 78 00 7 37 20 30 00 28 00 2 90 00 72 00 56 00 4 144 00 79 20 56 40 4 151 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	42 60 33 00	29 40	22 10	16 70	14 60	12 40	1
86.72 64.16 54.21 4 120.00 102.00 80.00 6 108.00 78.00 64.00 6 78.00 60.00 52.00 6 102.00 87.00 68.00 5 102.00 78.	28 20 28 80	28 70	26 80	26 10	21 80	19 00	2
120 00 102 00 80 00 6 108 00 78 00 64 00 6 78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 0 28 00 2 120 00 78 00 0 28 00 2 90 00 72 00 56 00 4 144 00 79 20 56 40 4 15 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	59.10 53.00	47 30	38 10	29 30	23 70	20 00	2
108 00 78 00 64 00 6 78 00 60.00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 7 37.20 30 00 28 00 4 104 00 72 00 56.00 4 144 00 79.20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26.80 2 74.40 68 40 68 40 68 00 6 72 00 60 00 48 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	17.38 38.16	32.05	23.94	19.27	16.11	13.81	1
78 00 60 00 52 00 4 102 00 87 00 68 00 5 120 00 78 00 78 00 7 37 .20 30 00 28 .00 2 90 .00 72 .00 56 .00 4 144 00 79 .20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 .80 2 74 .40 68 40 68 .00 6 72 .00 60 00 48 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	67.50 55.80	43 20	30 00	27 50	22.50	18 80	- 1
102 00 87 00 68 00 5 120 00 78 00 78 00 7 37.20 30 00 28 00 2 90.00 72 00 56 00 2 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 68 00 6 72 00 60 00 48 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	61 50 54 00	43 40	29 90	22 70	18.60	16 00	1
120 00 78.00 78 00	48 00 37 00	30 60	21 50	16 10	13 90	12 30	1
37.20 30 00 28.00 2 90.00 72 00 56.00 4 144 00 79 20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26.80 2 74.40 68 40 68.00 4 72 00 60 00 48 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	57 60 39 20	29 70	20 30	15 20	12 40	10 40	2
90.00 72.00 56.00 4 144.00 79.20 56.40 4 63.60 44.40 34.00 3 51.60 34.20 26.80 2 74.40 68.40 68.00 4 72.00 60.00 48.00 4 86.720 64.160 54.213 47 27.628 20.165 17.035 15	70 50 49 00	39 00	27 00	20 50	17 10	14 30	3
144 00 79.20 56 40 4 63 60 44 40 34 00 3 51 60 34 20 26.80 2 74.40 68 40 68.00 6 72.00 60.00 48.00 4 86 720 64.160 54 213 47 27 628 20 165 17 035 15	24.00 20.40	15 80	10.50	8.00	6.50	5 50	1
63 60 44 40 34 00 3 51 60 34 20 26 80 2 74 40 68 40 88 00 6 72 00 60 00 48 00 6 86 720 64 160 54 213 47 27 628 20 165 17 035 15	42 60 29 20	22 20	14 80	11 10	8 90	7.40	2
51 60 34 20 26.80 2 74.40 68 40 68.00 6 72 00 60 00 48 00 4 86 720 64.160 54 213 47 27 628 20 165 17 035 15	47 40 36 00	33 00	23 70	19 70	16.80	15 10	2
74.40 68.40 68.00 6 72.00 60.00 48.00 4 86.720 64.160 54.213 47 27.628 20.165 17.035 15	33.90 29.00	27 00	19 50	16.50	13 40	11 40	2
72 00 60 00 48 00 4 86 720 64 160 54 213 47 27 628 20 165 17 035 15	21 60 16 00	15 90	11 00	8 30	6 70	6.10	2
86 720 64 160 54 213 47 27 628 20 165 17 035 15	54.20 52.00	45 30	39 90	31 50	27 60	23 60	2.
27 628 20 165 17 035 15	42 00 40 00	30 30	24 00	19 90	17 10	14 90	
Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 380 38 160	32 053	23 940	19 273	16 107	13 813	2 0
	3 274 12 074	9 615	8 242	6 992	5 959	5 067	0.5
Call State and Call S	0 193 -0 099 0 322 0 316	-0 053 0 300	0 255 0 344	0.070 0.363	0 087	0 055 0 367	0 3

Intensidades Máximas de Lluvia, en mm/h

THE PERSON NAMED IN		100.27	Principle of the last of the l	STATE OF THE OWNER, WHEN	THE REAL PROPERTY.	The second second	STATE STREET, STREET	EAGINERS FROM	CATCOL STREET	COLUMN TO SALES	ALC: UNITED BY
											10 7
54.5											4.0
											4.6
20-5E											7.2
學學學	108 00	96.00	80 00	78 00		41.00	43.00	** **		12.00	5 3
15 x 3"	138 00	120 00	90 40	89 70	62 40	51 00	43 90	33 20	27 10	22.70	4.2
32.50	138 00	105 00	94 40	87 10	73 00 76 80	61 50 74 30	47 20	41 30	35 70	32 70	69
	120 00	96 00	92 00	19 50	65 00	54 60	58 80 51 50	51 50	47 30	41 80	2.00
	182 40	94 80	63 20	47 40	31 90	23 70	15 80	42 80 15 00	36 60 13 60	32 00	10 6
	120 00	60 00	41 20	30 90	20 60	20 30	15 10	13 90	12 40	11 50 10 60	1 1
	114.00	93 00	80 00	67 50	63 00	60 00	43 60	40 00	35 80		7 8 6 9
	133.20	127 20	86 80	66 60	53 00	45 00	36 00	28 20	24 90	36 80 22 90	69
	72.00	58 80	45.20	39 00	35 00	33 00	28 50	25 50	22 10	19 50	8 5
	72 00	63.00	60 00	51 00	44 00	41 30	37 50	36 50	34 90	30 70	59
Brien 1	84 00	69.00	58 00	57 00	46 00	39 30	38 10	35 90	32 20	27 60	59
	90 00	69 00	58 80	51 00	47 00	39 80	31 70	30 00	27 00	23 80	5 4
	114 00	84 00	70 00	67 50	57 00	48 00	43 00	36 30	31.40	28 60	6.7
1070	84 00	66 00	52 00	48 00	45 00	36 00	24 70	22 90	21 50	19 60	7.8
1971	84 00	57 00	52 00	45 00	37 00	30.80	22 50	21 80	20 70	18 00	49
表的表现	120.00	72 00	68 00	63 00	50 00	39 80	30 30	27 80	26 40	24 30	51
5011	120 00	90 00	81 20	81 00	63 00	56 00	43 10	35 50	34.10	30.70	11 0
都25年	120 00	90 60	64 00	50 70	36 40	30 30	28 00	25 10	23 10	19 30	11.3
企 (7) 法。	114 00	79 20	68 00	67 80	67 20	59 00	45 80	38.60	31 80	28 00	7 2
第 1 元	126.00	90 00	70 00	67 50	54 00	47 60	35 70	29 80	27 90	27 10	4 4
61	120.00	72.00	72 00	72 00	49 80	39 80	30 00	26 30	22 70	21 00	
The Party	113 029	83.457	68 914	62 543	51 290	44 338	35 752	31 329	28 052	25 200	6 82
40.1	25.864	19 576	15 223	16 583	14 415	13 493	11 333	9 262	8 180	7 698	2 20
127	0 490	0.591	0.023	0.046	-0 173	0 261	-0 046	0 029	0 122	0 068	0 82
113	0 229	0.235	0 221	0 265	0 281	0 304	0.317	0 296	0 292	0 305	0 32

Intensidades Máximas de Lluvia, en mm/h

A 40 8	Like the		Estate	D. Cale	Money.		SES.	2000年	編集	No.
1		STATE OF THE	THE		alamar.		September 1		484	1
1000		100,000	34.8	数广运旅		130	1600	1	Mark T	17.00
Se Activity	CAC SWARE	SAN SALE		ra sidal	A Allenda		A STATE OF	100	125	1440
										- 1
	-									1
										1
										2 8
										2 (
									6.80	1 4
							6 80	6 30	5 80	1
			22 20	17.60	15 50	12 20	10.00	8 10	6 90	1.6
96 00	49 20	40 80	33.90	24.80	19 50	16 00	13 40	11 10	9.80	1.9
108.00	60 00	52 00	51 00	44 00	34.70	27 00	25 60	20 80	17 40	1.0
69.60	48 00	35 60	27 60	19.60	16.20	12 60	10 10	9 40	8.90	1
108.00	60.00	48 00	40 20	40 00	35 30	33.00	32 30	26.90	24.50	3 :
108 00	97.20	76.00	63 30	44.40	35 40	31.20	27 50	26 50	23 50	2 9
102.00	98.40	77 60	71 40	55.60	43.20	28 80	21 60	17 30	14 40	1.0
105.60	92.40	72.80	58 20	55.40	46 70	34.90	27 00	22 30	19.40	1
116.40	76.20	70 80	58 20	55 00	48.90	36 80	28 70	23 50	19.80	3.
110.40	91 20	73.60	67 20	66.20	64.80	55.70	45 20	37 80	31 70	2
120.00	78 00	60.00	57.00	48.00	42 00	31.00	23 60	19 50	16 90	1
120.00	90.00	64 00	48 30	41.00	34 40	25 10	21.50	19 00	16 30	4
126.00	80 40	74 80	61 50	44.60	36 00	29 70	24 50	21 40	18 50	4
91.20	69 00	59 20	54 90	49.80	44.00	33 00	25 20	20 20	16 80	1
108.00	72 00	58 40	54 00	46 00	39 50	31 60	25 40	21 10	18 10	2
120.00	72 00	56 00	45 60	40.00	33 00	30.00				
99.143	70.057	56 376	48.905							2 1
										09
										1 2
								_	0 420	0.4
	69.60 108.00 108.00 102.00 105.60 116.40 110.40 120.00 120.00 91.20 108.00 120.00	72 00 52 20 116 40 96 00 172 00 45 00 54 00 30 00 54 00 39 60 96 00 49 20 108 00 60 00 108 00 97 20 102 00 98 40 105 60 92 40 116 40 91 20 120 00 78 00 120 00 90 00 120 00 90 00 126 00 80 40 91 20 69 00 108 00 72 00 120 00 72 00 120 00 72 00 120 09 143 70 057 21 949 20 488 -0.987 -0 290	72 00 52 20 40 00 116 40 96 00 78 00 72 00 45 00 34 00 54 00 30 00 19 50 54 00 39 60 28 00 96 00 40 80 30 00 108 00 60 00 52 00 69 60 48 00 35 60 108 00 60 00 48 00 108 00 97 20 76 00 102 00 98 40 77 60 105 60 92 40 72 80 116 40 76 20 73 60 120 00 78 00 60 00 120 00 78 00 60 00 120 00 78 00 60 00 120 00 78 00 60 00 120 00 90 00 59 20 126 00 80 40 74 80 91 20 56 00 72 00 120 00 72 00 58 40 120 00 72 00 58 00 120 00 72 00 58 00	72 00 52 20 44 00 3° 20 116 40 96 00 78 00 78 40 72.00 45 00 34 00 28 80 54 00 30 00 19 50 14 80 54 00 39 60 28 00 22 20 96 00 49 20 40 80 33 90 108 00 60 00 52 00 51 00 69 60 48 00 35 60 27 60 108 00 60 00 48 00 40 20 108 00 97 20 76 00 63 30 102 00 98 40 77 60 71 40 105 60 92 40 72 80 58 20 116 40 76 20 70 80 58 20 110 40 91 20 73 60 67 20 120 00 78 00 60 00 57 00 120 00 78 00 60 00 57 00 120 00 90 00 64 00 48 30 126 00 80 40 74 80 61 50 91 20	104 40 74 40 64 80 53 70 38 00 72 00 52 20 44 00 37 20 34 80 116 40 96 00 78 00 78 00 68 00 72 00 45 00 34 00 28 80 22 00 54 00 30 00 19 50 14 80 11 70 54 00 39 60 28 00 22 20 17 60 96 00 49 20 40 80 33 90 24 80 108 00 60 00 52 00 51 00 44 00 69 60 48 00 35 60 27 60 19 60 108 00 97 20 76 00 63 30 44 40 102 00 98 40 77 60 71 40 55 60 105 60 92 40 72 80 58 20 55 40 116 40 76 20 70 80 58 20 55 00 110 40 91 20 73 60 67 20 66 20 110 40 91 20 73 60 67 20 66 20 110 40 91 20 73 60 67 20 68 20 110 40 91 20 73 60 67 20 66 20 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 60 00 57 00 48 00 120 00 78 00 56 00 45 60 40 00 120 00 72 00 56 00 45 60 40 00 120 00 72 00 56 00 45 60 40 00 120 00 72 00 56 00 45 60 40 00 121 1949 20 488 17 704 16 680 15 331 0 987 0 20 0 -0.546 0.387 00 261	72.00 52.20 44.00 37.20 34.80 28.50 116.40 96.00 78.00 78.00 68.00 58.50 72.00 45.00 34.00 28.80 22.00 17.30 54.00 30.00 19.50 14.80 11.70 8.70 54.00 39.60 28.00 22.20 17.60 15.50 96.00 49.20 40.80 33.90 24.80 19.50 108.00 60.00 52.00 51.00 44.00 34.70 69.60 48.00 35.60 27.60 19.60 16.20 108.00 60.00 48.00 40.20 40.00 35.30 108.00 97.20 76.00 63.30 44.40 35.40 102.00 98.40 77.80 58.20 55.40 46.70 116.40 76.20 70.80 58.20 55.40 46.70 110.40 91.20 73.60 67.20 66.20 64.80 <td>104 40</td> <td>104 40</td> <td>104 40</td> <td>104 40</td>	104 40	104 40	104 40	104 40

The second	165 300	12 May 1		Estición	Arry	a lie co		图6.7.是			(75E)
	19. 中央主	144			00 当员	194			200	To a cal	NO CLEAN
							第		700	建设	100
		一种关系	127 的资	A Artis	A REPORT	创入,各主义	少的病	A P F F		Lie Co	J (4.7)
16.7											6
											8
	Į.										9
											10
	214 80	150.00	144.40	139 50	130.60	116 40	85 70	65 90	52 70	43 90	5.
	240.00	216.00	174.80	164.70	150.00	133.00	129 00	109 70	100.30	91 50	21
	169.00	132 60	132.00	121.20	118.40	112 70	93 30	72 60	59.80	51 90	6
	174.00	138.00	122 40	118 50	98.00	96.00	88 00	68 70	55 80	47.60	7
	216.00	152 40	120 00	104 40	98.00	85 50	66 50	59.30	54 90	52 50	7.
	180.00	147.00	119 20	108 00	99.20	99.20	91.40	85 80	82 10	71 90	9
	235.20	176.40	147 60	120 30	106.00	91.50	77 10	59 00	47 30	39 40	8
	120.00	120 00	106.00	105 00	105.00	96.60	71.90	59 60	53 20	45 20	14
	156.00	125.40	96 40	90 00	90.00	87.60	63.90	51 60	43 10	42 70	11
	122.40	105.60	102 40	99.00	98 40	89 00	68.80	61 40	55 30	52 10	8
	240.00	198 00	176 00	153.00	123.00	109.50	96 00	77 60	62 70	53 10	7
	120.00	120.00	120 00	95.40	70.00	63.00	58 00	48 40	40 20	35 00	8
	156.00	141.00	124 00	118 50	108 00	94.50	84.00	75.80	65 40	55 80	12
	132.00	120 00	110 00	99 00	84.00	67.50	50.50	48 00	41.70	39.80	8
	120.00	114.00	102.00	94.50	88.60	88.50	76.50	60 30	49.20	41.50	9
	156.00	127.20	96 00	90 00	90.00	75.80	70 70	66 60	58 50	49 60	7
	108.00	142.68	72 00	61 50	58.00	49.50	38 30	40 50	35 40	30 30	13
	132.00	120 00	108 00	105 90	83.80	74.10	57 40	45 50	37.00	31 20	9
	150.00	150.00	132 00	111 00	87.00	80.40	80 40	73 5 0	66 30	59 30	10
	240.00	180 00	160 00	147.00	113.00	96 80	87 00	78 8c)	69 60	61 00	9
Who is	180.00	120 00	120.00	99 00	87.00	82.50	70.00	57 40	50.00	45 00	
	169.590	142.680	123.105	111.686	99.333	89.981	76.400	65 048	56 214	49 538	9 (
	45.152	28.827	26.187	23.920	20.555	18.950	19.101	15 746	15 284	13.896	3 3
	0.419	1.183	0.494	0.501	0.475	0.108	0.600	0.983	1 248	1.407	2.1
	0.266	0.202	0.213	0.214	0.207	0.211	0 250	0 242	0 272	0 281	0.3

Intensidades Máximas de Lluvia, en mm/h

With the Co	100	SENTA S	A STATE	carsh.	1018 11.5	RI's ind	Carrier 1		113,140		络数理
			NOT THE	D	ración, es s		機能的	THE CO.		THE PARTY	1000000 (3.25.125)
Alle	100	10	13	4	30	STEEL ST	60	80	100	120	1440
	NAME OF TAXABLE PARTY.	HOM TOWN TO MA	AND HOUSE	27% 7200	13. 31.	2.6.5	THE THE MINE AND	and the contract of	CHIEF CONTRACT	AND PROPERTY.	2.6
100											3.1
Asset 1											1.4
1959											28
1959											2 8
110	,										0.9
图 (10)											1.9
3521											1.6
保服 1											2.3
建											1.4
100											1 1
56											1 8
2.78						** **					2 12
Market .	115.20	109 20	75 60	62 70	46.00	39 00	30 60	23 10	18 50	15 70	14
W 20 - 1	60 00	51 60	36 00	29 10	26 00	21 90	15 10	11 30	10 00	8 50	1.1
1344	108.00	54 60	43 20	33 60	23 80	18 30	13.30	10 00	8 00	6 70	4.2
Day	78.00	48.00	38 00	33 00	29.00	23 60	17 00	13.90	11 50	9 60	1.6
F-1	74.40 68.40	48.60 39.60	33 60 26 80	26 40	17. 8 0 16.20	14 10 12 50	10.10	7 70	6 20 8 90	5.20	1.83
365-55	72.00	48.00	40 00	21 00 31 50	28 00	25 50	11 20 21 00	11 00 18 80	15 60	7 60 13 50	1.8.
Wilder .	120 00	60.00	60 00	57 00	40.00	30 30	21 20	16.80	13 80	12 30	1.9
	69 60	42 00	36 00	28 50	22 60	19 80	18 40	13 80	11 20	9 70	19
80.5	96.00	59 40	39 60	29 70	19 80	14 90	10 00	9 00	8 20	7.50	1 3
Sugar	86 16	56 1	42 88	35 25	26 920	21 99	16 790	13 540	11 190	9 630	2 01
E-17	21 709	19 795	14.322	13 515	9.537	8 126	6 392	4 814	3 807	3 285	0 76
PETER .	0.564	2 524	1.620	1.497	1 078	0 978	1 045	0 858	0.747	0 663	1 310
	0.252	0 353	0 334	0 383	0.354	0.370	0 381	0 356	0 340	0 341	0 378

1											
100000	过油						4			100	1440
国籍王								7223			5 98
7 70	216.00	146.40	102 80	90.00	71.00	5 9 9 0	46 00	34 70	27 80	23 20	3 29
	192.00	114 00	89 60	79.20	71 20	59 60	42.60	36 40	34.50	31 00	3 81
4.	168.00	126.00	123 20	120.00	117.60	96 5 0	70 00	68 3 0	55 10	48.80	6.68
10.00	202 80	156.60	131 60	128 10	99.40	83 00	61.60	47 20	43.50	37 00	5 72
4404	150.00	132.00	104 00	90 00	68 00	60 00	44 00	34 10	28 10	23 80	6 33
41 115	180 00	138.00	136 00	121 20	94 00	81 00	66 40	51 40	42 60	36.00	5.58
No.	123.60	109 80	95.60	82.50	78.00	59 00	41.80	31.70	25 60	23 50	4 17
227	146 40	139 80	108 00	103 80	83 20	72 00	62 30	51.00	43 60	40.90	4 60
1.11.	144 00	122 40	105 60	97.50	92 00	79 8 0	57 2 0	43.20	34 70	28 90	4 0
40.5	120 00	111 00	100 00	91 50	91.00	84 00	78 00	70.00	58 80	54 10	6 5
H 24	180.00	138.00	120.00	103 50	99.80	85 50	63 40	48 80	40 70	39 50	5.50
1.1	126.00	123.60	102 80	91 80	81.60	75 50	55 50	42 90	35 20	29.60	5 5
78.12	180.00	162.00	148 00	147 00	146.00	137 00	108 00	91 10	73.40	61 40	9.5
(4.71	164.40	117.60	116.00	108 00	92 00	75 00	64 00	53 10	43 10	36.40	4 60
11	168.00	162.00	122 00	100.50	80 00	76 50	70 00	52 70	42 10	35 10	5.6
	84.00	72.00	64 00	52 80	44.60	33 60	22 40	17 00	14 10	12 40	5 10
	120.00	120 00	120 00	105 00	105 00	105.00	89.50	76 10	61 30	51 10	4.69
	120.00	105.00	82 00	66 30	44 80	33 80	26 60	23 00	18 40	15 40	6 28
1307											7 28
200											4 0
90.41											6.1
	154.733	127.567	109.511	98.817	86.622	75 372	59.406	48.483	40 144	34 894	5.532
	34 673	22.398	20.180	22 211	23.998	24 116	20.880	18 809	15.172	13 167	1 35
	-0.141	-0 473	-0.273	0.079	0.422	0 526	0.356	0 559	0 400	0 270	1 00
	0.224	0.176	0.184	0.225	0.277	0 320	0.351	0 388	0 378	0 377	0 24

Intensidades Máximas de Lluvia, en mm/h

	部計算		- J.	Haleton	Polyar d	Brave,	rue.	問題		
A44 19		10	.15	Dui 20	oción, en s	- 40 SEA	60	80	100	120
23 (d)	84 00	51.00	38.00	30.00	23.00	22 20	16.30	12 40	9.90	8.30
11/1/2	102 00	66.00	66.00	55.20	40 80	32 40	23.00	17.70	14.60	12.70
Lieb .	120.00	82 20	76 00	69.00	50 00	38 00	26.80	20.60	16.80	14 00
1974	51 60	30.60	24 00	21.00	18 00	16 50	13.00	9 90	8.00	7 00
1975	42 00	30.00	30 00	30.00	23.40	19 40	13 80	1:- 70	8.60	7 40
200	54.00	42.00	35.20	26 70	22.00	17 70	13.30	10.70	9.00	8 20
	78.00	40.80	28.40	22 20	16.40	12 30	8.70	9 20	8.00	7 00
6	75.943	48.943	42.514	36.300	27.657	22.643	16 414	13.029	10.700	9.229
	28.622	19.196	20.188	18.398	12.674	9.228	6.311	4 375	3 534	2.887
	0.395	0.921	1.103	1.272	1.231	0.908	0.797	1.181	1.228	1.167
	0.377	0.392	0.475	0.507	0.458	0 408	0 384	0.336	0.330	0.313

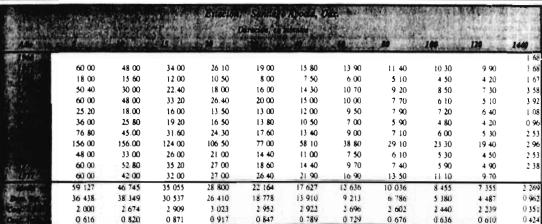
				Estación.	计划的	yapan, Oa	E.				
Alle	31	.10°	IS C	20	90 (19)	0 = 1	60	80	100	120	1440
MINTERS I	168.00	126.00	110 80	90.00	67.40	53 90	53.40	45.50	36.70	30.70	
17.1	240.00	180.00	160.00	141.00	110.80	89 40	75.00	62.60	52.70	44.30	
	120.00	94.80	80.00	63.30	56.00	41 10	31.40	27.40	28.10	25.00	
601	216.00	132.00	136.00	120.00	104.00	75.40	60.00	47.30	44.30	38.50	4.6
E-14-1	174.00	133.20	121.60	109.20	94.40	79 50	64.70	53 20	47.70	43.50	5.1
Mil Live	138.00	108.00	84.00	78.00	61.00	54 10	53.50	48 80	47.00	41 30	17
第 5名	150 00	124.00	108.00	92.70	73.80	56.10	43 70	34 30	32.40	28.80	4.2
NOTE 174	258.00	183.00	170.00	147.00	116 00	95 00	73 60	57.00	48.40	41 30	5.7
W17.74	216.00	165.00	136.00	112.50	94.00	82 50	74 70	62 60	54.10	45 50	5.4
2	198.00	144.00	120.00	111.00	87.80	73 80	57.80	43.50	34.80	29.00	5.2
	144.00	108.00	98.00	88.50	72 00	65 20	54 00	58.90	54.00	47.00	5.9
第 7	132.00	109.20	94.00	81.00	68.00	58.10	53 50	47.60	45.60	42.00	7 1
Sec.	214.80	127.80	94.40	90.00	80.00	71 60	63.50	59.60	51.40	44.90	5.8
	204.00	119.00	93.90	85.50	77.00	63.20	62 50	58.50	56.70	50.00	4.5
橋。	140.40	108.00	90.00	92.10	79.00	72.00	56.80	43.70	35.70	30.30	5 7
	138.00	120.00	98.00	90.00	80.40	63 20	56.50	48.40	45.30	40 30	4.3
	168.00	121.80	104.00	96.00	89.40	75 90	68.10	67.40	55.40	46.30	4.9
10.7	162.00	161.40	146.00	145 50	120.60	90.60	70.10	54.00	43.40	36.20	4.5
10000	180.00	180.00	178.40	177.00	166.00	138 30	107.00	80.80	64.60	53.90	5 (
	102.00	93.00	87.20	87.00	83.00	66 50	53.70	46.90	40.00	33.30	3.7
于, 产.	156.00	120.00	106.00	105.60	89.00	68 50	58.00	43.50	34.80	30.30	5 :
36	180.00	177.00	172.00	171.00	144 00	124 40	107 50	89.30	77.80	66.40	7
7	114.00	111.00	96.00	85 50	72 00	65 20	55.00	47.60	44.50	44.50	6
237.	156.00	150.00	140.00	136.50	114.00	80.50	69.50	52.10	41.70	34.80	5
i.	147.60	147.00	120.00	114.00	90.00	74.50	57.50	45.90	37.60	32.30	4
	126.00	120.00	116.00	93.00	84.00	70.50	63.00	59.30	55.80	50 30	7.9
	120.00	120.00	104.00	81.60	57.60	38 60	29.00	21.80	17.50	14.60	4 (
35 L	108.00	51.00	34.00	25.50	19.80	14.90	12.50	9.90	8.10	6.80	5
Maria	105.60	89.40	76.00	64.50	46.80	35.00	23.70	18.00	14.50	12.10	6
	90.00	72.60	70.40	63.00	45.60	37 10	27 10	20 60	16.70	14 00	
2001	158.88	126.54	111.49	101 25	84 780	69 15333	57.877	48.533	42 243	36.607	5.4
	42 680	31.868	32.592	32.757	29.372	24 674	20.537	17 322	15.122	13 194	0.9
516	0.544	0.002	0.267	0.454	0 596	0.606	0 218	-0 146	-0.304	-0.404	()
	0.344	0.002	0.292	0.324	0.346	0.357	0.355	0 357	0.358	0.360	6.1

Intensidades Máximas de Lluvia, en mm/h

		of the same	Addition	Estació	h ie i	S. Dec	海	No.			4000
第 年1年3月	2.14		E la C	Du	ración, da	Intrates			4-4-5-2		
Also	t be	c 10	13	30	30	40.	.60	.00	200	120	1660
THE SECTION	176 40	118 20	78 80	64 50	55.80	39.50	32 00	24 80	21 40	18 30	
- 曜日 部	240 00	156 00	132 00	112 50	86 40	62 20	47 70	36 50	30 00	25 80	
10.15	94 80	60 00	57 60	58 80	51 20	38 20	29 20	23 90	20 30	18 00	
孽皮缺.	96 00	78 00	68 00	63 30	60 80	59 90	35 50	28 30	23 50	20.70	2.6
100	78 00	48 00	40 80	40.50	35 40	24 10	21.80	17.80	14 90	12.90	1.8
1933	90 00	75 00	66 00	66:10	61.20	44 20	33 20	25 10	20 30	16 90	1.50
1854	102 00	73 20	58 80	51 30	36 00	24.70	19 10	15 70	13 30	11.30	1.59
1953	96 00	60 00	67 20	54 00	45 80	32 40	24 50	18 40	15 80	14.20	1.83
At Looks	117 60	81 40	78 40	73 80	67 80	55 50	49 20	37.90	30 60	26 00	2.59
但是)。如	135 60	81 00	66 00	52 20	52.40	45 90	37.40	29 60	24 80	22 00	2.5
	120 00	78 00	70 00	60 00	53 00	45 00	40 00	31.90	26 10	22 50	3.89
	121 20	120.00	96 00	77 40	60 00	59 30	51 90	40 50	32.60	27 30	2.6.
683	40 80	27 00	24 00	21 00	18 00	17.70	14.50	14 20	12 00	10.30	1.7
100	18.00	13 20	10.80	8 70	7.40	6.90	6 50	6 50	5 70	5 60	2 7
	72.00	48.00	36 00	30 00	24 40	20 70	16 00	12 80	10 20	8 50	1 2
Ser -	26 40	24.00	18 80	16 50	12.60	9 80	6 70	5 30	4 70	4 10	2.2
300	123 60	61 80	39 20	37 50	25 80	19 50	13 00	9 80	7 80	6 60	0.8
	126 00	93 00	78 00	70 50	59 00	47 00	32 90	25 70	21 80	19 30	2.1
温酸化生	114.00	66 00	48 00	39 00	31 00	24 80	17 00	14 40	13 70	12.70	2.6
18 1 100	116.40	58 20	52 00	42 30	30 40	25 70	20 40	15.80	12.90	10 80	2 7
Links	67 20	60 00	60 00	46 50	31 40	23 60	15 70	11.80	9 40	7 90	2.3
360	90 00	60 00	54 00	51 00	40.00	31 20	21.50	16 30	13 20	11 00	1.8
選出るた	39.60	30 00	24 80	21 60	17 60	16 50	14 00	11.50	10.20	8 70	3 8
78.113	44.40	30 00	24 80	21 60	17 60	14 30	11 90	9 60	9 00	8 80	16
10.00	66.00	45 00	32 00	25.80	19.00	15 60	12 00	10 10	7 70	7 20	1.4
-51	114.00	60.00	48 00	44 10	36 00	29.60	20 50	15 60	12 90	10 80	2 4
- September 1	26.40	16.80	12 80	11 10	8.60	8 00	7 80	7 10	6 20	5 50	2 4
12217-	84.00	60 00	60 00	60.00	44 20	34 20	24 00	19 50	16 40	14.50	3.8
- Island	102.00	69 00	56 80	58 20	47 80	37 80	25 70	19 30	15 40	12 90	16
Willes .	120 00	106 80	80 00	75 00	54.60	41 00	27 30	20 50	16 40	13 70	
W. 102	95 28	65.25333	54 65333	48 48	39 707	31 82667	24 297	19 207	15 973	13 827	2 22
Patent Sell	45 981	31 883	26.270	23 093	19 531	15.791	12 486	9 473	7 664	6 514	0 71
120	0.804	0.773	0 592	0 365	0 199	0.331	0 647	0 675	0 608	0 583	0 42
100	0.483	0 489	0 481	0.476	0.492	0.496	0 514	0 493	0 480	0.471	0 320

中国 中山村		1. XX (2) #	Sales of			***
1.	KAT AND S				,,,,	
機能は大きさ	22 00	55 30	40.10	30.40	15.50	3 48
3.07.50	57 60	32 00	22 10	16.80	9 30	1 54
1000000	77 40	41 50	31.50	24 90	13 10	2 19
P. M. C. G. S.	27 40	17 70	16 90	13 50	7 30	1 63
(2017年)	100 00	62 00	48 60	37 60	20 70	3 60
100 Co. 65	26.00	00 81	13 40	11 30	7 00	2 33
2004	39 00	25 40	18 00	15 50	10 40	2 16
46	27 40	17 10	12.90	10 50	5 50	1.17
- ASS 1	46 00	41 40	36 30	28 80	18 60	3 90
5.	66 60	47 50	34 20	26.80	15 30	2 98
	28.00	19 60	18 30	14 40	9 90	1 73
0.60	17 00	10 70	7 70	5.80	2 90	2 90
						2 00
						1 81
- W						1 31
25.0						2 00
(A) (A)						1 67
Maria I						1 29
10 PM						2 50
Marie 1						2 38
CONTRACTOR OF THE PROPERTY OF						1 67
						1 46
	44 533	32.350	25 000	19 692	11 292	2 166
	25.791	16 879	12 748	9 705	5 427	0 778
(65	1.054	0 475	0.494	0 441	0 293	0 884
T	0 579	0.522	0.510	0.493	0 481	0 359

Intensidades Máximas de Lluvia, en mm/h


E STATE		17	Est	sción: S	C.	120 200	3W 2 -	W. F. S.		
是主题及注	2 44	AND PROPERTY.	A COUNTY	Du	ración, en	minutes	MACHINE TO THE PARTY		STATE OF	
1.00			15	29	122	40	4	80	100	120
黎町刀部 矿	90 00	51 00	40 00	34 50	26 00	21 30	14 60	11 20	10 20	9 70
新产业	156 00	126 00	126 00	118 50	111 00	97 20	70 60	56 70	47 00	40 30
Luci	114 00	78 00	76 00	69.60	58 80	44 70	32 30	24 80	19 90	16 60
建设工具 定	90 00	66 60	50 00	39 90	34 20	27 80	18.50	14 00	11 20	9 40
192	120 00	120 00	108 00	96 00	96 00	79 10	55 00	42 10	33 70	28 10
排 其(1)	223 20	164 40	137.60	111 00	85 40	69 80	62 20	48 70	38 90	32.50
1250	138 00	117.00	96 00	85 50	66 60	55 50	41.80	32.70	26 80	22 90
16	133 029	103 286	90 514	79 286	68 286	56 486	42 143	32 886	26 814	22 786
224	46.400	39 660	37 004	32 945	31 433	27 529	21 572	17 294	13 956	11 077
	1.348	0.145	-0 202	0 357	-0 089	0 141	-0 042	0 035	0 137	0 229
	0 349	0 384	0 409	0 416	0 460	0 487	0 512	0.526	0 520	0 512

Sec.		14	orke d		phi an Distrib					* #	
ZU	時持續	7,44	111	20	NO X	19714	60	80	Ores	$T^{(a)}$	10.
							39 00				
THE TAX STATE					44 00		34 00			18 10	2 08
No. of the last					41.00		22 20			17.40	1.71
Ter Backet					23 00		19 70	14 70		11 30	1.96
18 17 1 1 1 T					33 40		22 50	13 50		10 10	2 96
Sept in sec	66 00	58.80	39 20	31.20	27 00	21 80	16.10	12.80	11.10	9 70	1 33
超 的扩张	48.00	38 40	29 60	22 20	14 80	11 10	7 90	6 10	4 90	4 20	1.44
	48 00	42 00	32 80	27 00	18.80	14 40	9.80	7 70	6 30	5 30	1 69
Salt of	90.00	45 60	30 80	23 40	15 80	12 20	12 00	10 00	8 10	7 00	1 72
Market San	108.00	60 00	56 00	47 10	39 00	35 00	25 80	19 90	16 10	13.50	2 63
国新工作	108 00	57 60	38 80	36 00	30 20	25 50	21 80	21 50	18.50	17.50	2 46
2427	72.00	60) 000	44 4 0	35 40	24 00	22 50	17 30	15 00	16.50	14.50	
Sep 10-1101	77 143	51 771	38 800	31 757	28 273	20 357	20 675	13 467	11 643	11 691	1.998
3	25 557	9 409	9 238	8 668	10 143	8 517	9 227	5 121	5 437	4 942	0.532
130 11 260	0 138	-0 532	1 112	0 778	0 218	0 657	0 626	0 188	0.032	-0 125	0.638
337	0 331	0 182	0 238	0 273	0 359	0 418	0 446	0 380	0 467	0 423	0 266

100 miles	Dr. Mile		nic.	of the N	in survey to	Trong 1	mai i	村里的		级技术	机设置
AL		12:43				1		建设组		6 64 6	
			A 5 5 5			Cities				Total Service	
9341-71		1800	S. Paris	1.00		Pulkin	提出如此	550000000	ALL ALLEY	黑山市经济	Line All
(Statut											3 52 2 83
											1 34
301											1 75
											3 33
1											2 02
324											1 95
Arras a											1 48
HEN.											1 56
											1 37
-045											2 08
151a											2 13
- T4.	120 00	103.80	82 40	69 30	65 80	57 60	39 90	29 90	23 90	20 10	2 75
10-27	49 20	24.60	16 40	12 30	8.20	7 40	6 40	6 00	5 30	4 50	04
1,4	36.00	33.00	28 00	22 50	18 00	18 00	13 30	10 00	8 00	6 70	2 08
3.27	71.47	51.47	40.40	33.87	28.27	23.98	16.98	13.37	11.04	9.52	1 85
	72.00	54.00	44 00	39 00	30 20	23 00	15 30	11 50	9 20	7 70	2 29
10.1	78.00	54.00	40 00	30 60	24 80	20 10	15 20	11.90 10.00	9 70 8 4 0	8 10 7 20	2 01
1000	42.00 84.00	33.60 49.20	29 60 33 60	25 50 25 80	18 00 20 40	17. 3 0 17. 00	13 00 11 70	9.50	8 30	8 20	3 80
	84.00	57.00	44 00	42 00	35.00	30.00	21 00	16.50	13 70	11 80	1 79
1.00	78.00	54.00	45 60	37 80	34 00	25 40	17 00	15 00	12 90	11 40	
	71.467	51 467	40 400	33 867	28 267	23 978	16.978	13 367	11 044	9 522	2 121
Y	24.443	21.540	17 352	15 288	15 557	13 286	8.924	6 527	5 140	4 298	0 717
. ii . ii	0.357	1 558	1 516	1 266	1 572	1.940	2.083	2 004	1 927	1 800	1 006
E	0.342	0 419	0 429	0.451	0 550	0.554	0.526_	0 488	0 465	0.451	0 338

Intensidades Máximas de Lluvia, en mm/h

		910 1515							A-127	计表写	707
40		10-11	le i		A STATE OF	40	a		100	LX0	1400
WPIZ 3	98 40	61 20	54 00	43 80	30 40	27 30	19 60	15.30	14 20	13.30	- 7
	124 80	87 00	78 00	61 50	46 80	35 30	23 60	17 70	14 60	12.70	1
387	93 60	57 00	52 00	45 00	33 00	30 00	21 20	16 10	13 00	10 90	3
100	123 60	97 80	73 20	57 90	39 60	29 70	20 00	16 10	15 60	14 10	2
The second	84 00	58 20	40 40	35 70	26 00	20.60	17 00	17 00	15 20	13 20	2 (
1965	66 00	54 00	40 80	39 60	30 00	26 10	21 00	17 20	14 30	10.65	1.0
1964	60 00 -	45 00	32 00	26 40	18 20	10 80	15 20	13 20	12 60	11.80	13
THE STATE	48 00	36 00	28 00	22 50	20 20	17 40	14 00	12.80	11 20	10.20	1.3
	144 00	123 60	104 40	96 30	79 20	62 60	42 90	33 50	27 70	23 50	1
AND THE	114 00	64 20	52 80	48 30	40 60	3" 10	27 00	20 90	19 00	16 70	5 5
100	84 00	54.00	46.00	42 00	41 40	36 00	25 20	20 70	16 80	14 20	2.0
33.	60 00	54 00	49 20	48 90	42 20	35 60	25 30	20 30	16 40	14 40	2.0
200	81.60	54 66	44.17	37.66	29.41	24.18	17.57	14.28	12 29	10.65	5 (
	48.00	29 40	22 00	21 60	15 80	12 60	9 00	7 50	6 50	5 50	2 :
Acres 100	36.00	29.40	24 00	21 00	16.40	12 90	9 30	7 50	6 50	5 40	2 (
186	36 00	27 00	22 80	18 00	13 40	10 20	8 10	6 80	6 30	5 40	4
Miles of the second	42 00	25 80	17 60	13 50	13 50	8 00	7 10	7 10	6 00	5 00	2
Barrow B.	48 00	31 20	22 80	17 40	14 00	12 00	8 50	6 80	5 50	4 60	2 -
17/1	180 00	60 00	43 60	32.70	21 80	16 40	10 90	8 20	6 50	5 50	1 9
1977	60 00	43 80	29 60	23 40	16 20	12 80	8 90	6 70	5 60	5 30	-
י פר ייון	81 600	54 663	44 168	37 658	29 405	24 179	17 568	14 284	12 289	10 650	2 6
Dan toll	39 371	24.948	21 809	19 568	16 039	13 148	8 831	6 802	5 716	4 947	1 6
September 1997	0.950	1 296	1 226	1.406	1 610	1 269	1 137	1 015	0 799	0 681	1.4
940.5	0 482	0 456	0 494	0 520	0 545	0.544	0.503	0 476	0 465	0 404	0.44

the e	11.000	14 66 6		111	Sec. 14	C. S. S. S.	TO SHE	2000	医玻璃盐	Till 1	Days.
6 2	1000	40 1-8	100				The second	Actor as All	建 工作。		
	1.4	7.73	THE OWNER	100 mg		护层等		100	100	120	144
	66.00	54.00	54.00	47 10	35 60	27 80	19 80	15 90	13 30	11 70	16
	54.00	.37.20	30.40	23 10	15 80	12 00	8.10	6 10	5 00	4 40	1.2
	24 00	18.00	13 60	10 20	6 80	5 30	4 00	3 10	2 50	2 10	1.9
	114 00	63 00	48 00	37.50	26 80	20 10	14 80	11 30	9 60	8 40	1.8
	54.00	42 60	38.40	37 80	34.60	28 10	18 70	14 00	11 30	1.0 50	2.11
	42 00	27 00	21 60	19 50	15 20	13 70	11 70	9 70	8 20	7 (10)	2.44
	72 00	60 00	56 80	46 80	34 20	28 50	19 20	14 70	11.80	9 80	1.75
	25 20	16 80	14.40	13 20	10 00	8 30	6 50	5 90	5 30	4 50	3.7
	120.00	63.00	46 00	36 00	35 00	18 90	14 20	10 90	8 70	7 30	1.68
	55 20	42 60	33 60	27 60	19 80	17 10	13 30	10 70	9 00	7 60	
	62.64	42 42	35.68	29 88	23 380	17 98	13 030	10 230	8 470	7 330	2 (13)
	32 579	17 664	15.699	13 189	11 206	8 328	5 486	4.151	3 364	2 991	07:
	0.821	-0.271	-0.172	-0 157	-0 184	-0 019	-0.338	-0.364	0.411	-0 308	1 94
	0 520	0 416	0.440	0 441	0 479	0.463	0 421	0 406	0.397	0 408	0 35

Intensidades Máximas de Lluna, en mm/h

				7.444.074	12 BF 1.28 F	10, [7 46,7					
25.00											les)
新	90 00 108 00 36 00	56 00 66 00 30 00	58 00 47 20 30 00	56 10 18 10 30 00	41 40 28 20 20 40	37 80 21 20 13 30	16 00 14 10 10 20	0° 91 0° 01 0° 1	(5 10 8 50 6 10	13 20 * 10 \$ 10	2 85 2 28 1 80 1 76 4 17
, G ZI	24 00 72 00 36 40 126 00 45 60	21 00 66 00 42 00 81 00 42 00	18 00 52 00 37 20 72 00 38 00	15 00 43 50 35 10 68 10 37 50	11 00 30 00 30 00 62 30 29 00	9 90 22 50 22 50 60 00 29 00	8 20 15 50 16 30 55 70 22 00	0 40 11 60 12 30 46 40 16 90	5 20 9 90 10 20 35 20 13 60	4 40 8 10 8 80 32 70 11 30	2 19 1 77 1 45 3 98 3 03
	48 (X) 82 80 68 880 32 781 0 429	34 80 51 40 50 220 19 265 0 058	30 00 40 00 42 240 15 597 0 483	24 30 39 00 38 730 15 090 0 550	22 00 30 80 30 760 14 030 1 2 77	18 30 24 30 26 140 14 0*7 1 702	15 80 26 00 20 180 13 567 2 317	(1 M) 15 80 15 900 11 455 2 464	10 00 12 80 13 020 9 416 2 496	9 90 10 80 11 140 8 053 2 498	2 282 0 839 1 061
	0 476	0 384	0 369	0 190	0 456	0 539	0 672	0 720	0 723	0 723	not 0
	120 00 84 00 116 40 240 00	81 50 51 00 58 20 162 00	54 80 36 00 40 40 128 00	41 70 28 80 30 30 111 00	36 00 20 40 23 40 84 00	34 80 16 10 20 70 67 50	25 °0 12 70 16 50 48 10	21 50 12 30 11 70 18 00	16 20 10 90 11 60 32 20	16 80 9 50 10 10 27 60	1 55 3 71 3 19
	122 40 48 00 120 00 116 40 36 00	69 00 30 00 120 00 58 20 27 00	52 00 25 60 84 00 51 60 26 00	42 60 21 90 82 50 44 70 24 00	31 40 18 20 60 00 36 40 16 60	30 00 15 80 48 90 29 00 12 80	21 00 13 90 32 70 19 10 9 50	18 00 11 80 24 50 14 50 8 10	17 30 11 70 19 60 11 60 7 10	15 50 10 30 16 40 10 10 6 30	3 80 2 19 1 52 2 66 1 65
	78 00 78 00 54 00 84 00 54 00	55 20 60 00 45 00 48 00 54 00	48 00 52 00 34 00 32 00 45 20	48 00 47 40 28 50 24 00 41 70	41 80 46 00 23 40 16 00 31 80	34 20 40 50 18 80 12 00 25 10	29 50 29 20 14 00 8 00 17 80	22 90 22 90 11 60 6 00 13 40	18 70 18 90 11 60 5 30 12 00	15 90 16 30 10 60 4 70 10 00	2 28 2 33 1 98 1 26 2 95
	120 00	84 QT	72 00	57 60	41 00	31 10	22 50	;*00	13 70	12 00	6 23 1 69 2 21 4 78 5 33 4 17
Mary	98 080 49 495 1 603 0 505	66 873 34 764 1 724 0 520	52 107 26 400 1 885 0 507	45 000 24 131 1 764 0 536	35 093 18 360 1 460 0 523	29 153 15 015 1 219 0 515	21 493 10 483 1 101 0 488	17 080 8 003 1 195 0 469	14 693 6 489 1 274 0 442	12-807 5-542 1-213 0-433	3 25 2 890 1 357 1 039 0 469
					vi.			1 47	原料	12	
	162 00	120 00	120 00	106 50	82 00	61 00	48 00	47 80	41 70)5 V0	8 00 1 60
	189 60 235 20 204 00	135 50 174 (8) 144 00	107 60 128 00 126 00	102 00 118 80 120 00	\$3 40 99 00 96 00	76 90 96 30 77 10	68 60 84 70 60 80	73 50 69 50 49 50	66 90 61 50 40 30	56 90 56 50 34 70	6 45 6 21 6 23
	204 00 310 00	138 00 136 20	120 00	117 00	100 00 85 00	78.50 71.20	65 00 70 00	63 80	63 00	57 80 45 00	6 02 6 46
-ii. (240 00 240 00	159 00 231 00	146 00 160 00	144 00 133 50	128 00 108 00	103 10 87 80	91 00 90 00	90 80 81 00	73 50 60 00	65 10 57 80	7 63 9 04
30	240 00 240 00	240 00 180 00	166 80 160 00	150 00 150 00	133 00 140 00	101 30 95 10	80 50 71 70	60 90 67 50	49 20 47 60	43 30 49 70	5 04 10 14
	191.30 192.00	151 40 144 00	127 90 132 00	9J. 20 112-50	100 20 95 40	86.20 70.10	71 70 52 80	62 90 39 60	33 90 31 70	47 90 21 70	3 16 6 52
安装。	156 00 150 00	131 40 120 00	116 00 100 80	113 70 100 20	100 00	97 8 0 88 40	89 00 73 50	90 25 90 26	68 20 46 40	57 20 38 80	5 35 5 02
	168 00 252 00	132 00 192 00	124 00 192 00	111 00 1 68 00	96 00 146 00	87 10 123 00	74 50 102 00	58 10 80 60	48 10 54 70	40 90 57 80	6 63 9 04
	132 00	120 00	120 00 84 00	84 00	113 00 70 00	102 40 12 30	90 50 41 00	83 60 48 00	13 20 46 20	62 50 40 80	5 43 6 63
	138 00 216 00	138 00	148 00	138 00	111 80	96 80	74 60 96 20	56 00 13 10	44 80 59 60	37 60 49 80	3 94 5 01
	139 20 157 20	117 60	112 00	107 10 102 60	98 40 91 00	77 80 65 20	67 00 67 50	53 80 59 80	50 20 49 60	43 70 41 90	6 04 5 22
197	240 00	154.30	120 00	103 50	95 00 86 00	84 00 74 60	59 70 57 50	66 80 65 90 53 90	58 20 57 40 44 20	34 80 38 50	4 80 5 60
	193.052	151 106	126 00	106 00	103 528	74 60 50 196	57 50 71 812 14 404	63 156 11 438	54 496 10 611	46 348 10 184	6 063
	40 469 40 220	32 803 1 367 0 217	0 873	0 469 0 194	18 601 0 702 0 180	16 135 0 119 0 187	0 327	0 054	0 008	0 214	0 679
War Co	0 210	0 217	0 180	0.174	ULBU	0 10/	0 201	4 101	2 1 1 2		3 2 2

Intensidades Máximas de Lluvia, en mm h

49C 19C 17C			SECTION SECTIONS	DOM: NOTICE OF	\$50.00 AND \$500.00	60° 10.000	OF THE VIOLEN	Commission of the Commission o	Company of the last	IS A CONTRACTOR	124400
1671 - 179 - 1		A. 1 S. S. S.	ALC: N	Contra	12 64 14	Distance of the last	1000	CT. STEE	M. S. A. C. Company	Bu distri	5-1-0
指行业的											26
196											1.5
1954											1.7
1953											1.3
1954 2.4	, 134 40	94 20	93 60	76 80	59 20	43 10	36 20	29 30	24 fai	20.60	19
100	120 00	80 40	64 00	53 70	35 00	26.90	18 90	14 20	12.10	10.60	2 3
臺	102 00	88 80	67 20	53 70	35 00	26.90	18 50	15 00	13.60	11.80	18
1213	249 60	184 🕉	164 40	125 70	85 00	69 (X)	51 00	39 60	32 90	28 20	2.5
3.1.	92 40	71 40	48 00	44 10	30 80	25 50	17 70	13 60	10 90	9 20	2 4
2/2 1	90 00	49 80	36 40	27 30	26 60	20 60	13 80	10 40	8 30	6 90	09
33.5	116 40	72 00	65 20	50 10	44 40	41 40	28 60	23 10	21 00	17.90	2 3
	96.00	57 60	39 20	34 20	34 00	29 00	21.80	20.50	18.10	15 70	1.3
1.1	118.80	89 40	79 60	63 00	61.60	53.70	40 90	30 80	26 30	22 90	2.5
dis.	96 00	57 60	39 20	30 00	22 00	18 00	13 00	11 00	9 00	8 00	1.2
Miles	102.00	55 80	40 00	34 50	28 00	22 50	17.00	13.50	13 20	13 00	2.0
AND THE	120 00	119 40	103 60	88 80	70 80	63 60	56 30	50 70	41.20	34 40	3 1
を記され	54 00	45 00	34 00	28 50	24 00	23 60	19 70	15 70	13 30	11.80	10
	108 00	78 00	60 00	51 60	41 40	38 00	36 30	30 00	27 00	23 80	1.5
SELECTION OF	114 00	58 20	45 60	34.80	27.00	27 00	23 00	17 90	14 30	12 20	4.4
建	115 20	63 00	48 00	39 60	30 40	25 50	19 30	16 10	13.50	11 40	1 1
急	114 00	81 00	62 00	49 50	38 40	30 80	24 30	19 40	16 30	14 00	1.1
100	84.00	51 00	42 00	31 50	21 00	15 80	10 50	7 90	6 30	5 80	1.5
10	96.00	64 80	44 00	34 50	23 00	17 30	11 50	8 60	6 90	5 80	2 3
all trees	86 40	54 00	47 20	42 00	33.20	26 30	18 50	17 30	18 40	16.10	1.7
露 し、35	120 00	69 00	50 00	37 50	25 40	23 30	17 20	12.90	10 30	9 90	
mel di	102 00	54 00	40 40	40 20	32 20	25 20	17.10	12.90	10 40	8 70	
Carlo Day	110 509	74 482	59 709	48 709	37 655	31 500	24 141	9 564	16 723	14 486	194
Days San Ch	35 468	30 305	29 787	23 153	16 927	14 429	12 455	10 631	8 906	7 480	0 76
Carlot A	2 899	2 507	2 377	2 118	1 578	1 502	1 407	1 572	1 284	1.196	1 48
	0.321	0 407	0 499	0 475	0 450	0 458	0 516	0 543	0 533	0 516	0 39

					t. 04	11 C					
# 10 m		PARTA NO				17		中 的前	W-0-2		
THE PARTY OF	- 1	- 10 May	7.50	Autority, 10		H + 1 #		. TOTAL	Editor P.		A COL
											1 56 3 27
100	120 00	120 00	88 00	75 00	53 60	40 20	27 10	20 30	17 40	15 30	1 36
	138 00	114 00	86 00	72 00	57 00	45 30	32 30	25 50	20 70	17.80	3 83
A86.15 1	216 00	138 00	112 00	102 00	73 20	55 20	37 20	28 50	23 10	20.90	3 38
afficient .	120 00	67 80	56 00	44 40	31 00	23 60	16 10	13 50	11 30	10 80	2 83
	48 00	39 00	32 00	25 50	20 00	19 50	15 80	14 30	12 70	10 80	2 75
350	102 00	55 80	37 20	31 80	30 40	26.60	19 90	16 90	13 90	12 60	3 0
9.0	105 60	100 80	70 40	54 90	37 20	29.70	25 60	22 10	20 50	17 60	2.67
	102.00	54 60	38 00	28 80	22 00	17 00	13 50	12 40	11 10	10 20	2.57
44.4	36 00	24 00	20 00	15 90	11 00	10 50	9 00	8 30	7 50	6 70	2 2
-0.0	60 00	45 00	38 40	33 00	29 40	20 10	19 00	15 50	12 70	10 80	2 58
194	84 00	60 00	54 00	48 00	34.00	30 00	20 50	18 30	17 00	14 70	2 1
130	120 00	73 20	50 80	38 40	29 00	23 90	16 10	12 10	9 70	8 50	2.5
- 1	123 60	107 40	94 00	78 30	59 00	46 10	31 20	23 70	19 00	15 80	18
	96.00	54 00	38 80	37 50	29 00	24 00	18 00	14 00	11 60	10 20	4.8
	156.00	99 00	74 00	66 00	64.80	51 60	41 40	31 50	25 80	21 80	2 1
	75 60	54 00	49 20	49 20	36 40	30 30	25 30	20 00	16 80	14 60	2 3
	73 00 84.00	60 00	60 00	53 40	51 00	44 30	31 00	25 30	21 50	18 20	4 1
A SANK	96 00	60 00	46 00	38.10	34 00	30 20	23 60	17 70	15 30	13 40	3 4
		69 00	46 80	36.10	25 00	20 30	18 10	14 40	12 50	11 50	3 2
4.60	115.20 120.00	120 00	100 00	92 40	68 00	53 30	37 50	30 00	25 40	22 50	2 2
*/	76 80	60 00	46 40	40 80	29 00	24 00	18 00	14 30	12 00	10 10	2 2
			_		7 1 - 7 -					14 038	2 77
	104.514	75 029	58 952	50.557	39 238	31 700	23 629	18 981	16 071	4 463	0.84
	38.803	31 053	24 813	22 661	17 286	13 037	8 742	6 4 3 8	5 255		
	0 878	0 555	0 680	0 804	0 580	0 484	0 506	0 488	0 398	0 444	0 65
SEC.	0.371	0 414	0 421	0 448	0.441	0 411	0 370	0 339	0 327	0 318	0.30

Intensidades Máximas de Lluvia, en mm/h

la de la	es a de								學學的	443	
用的	7.1		and and	De				OFF CAME	400.02	S. Sept.	337
107	40.00	10	MALO	\$ 技術		THE REAL PROPERTY.	50	Manage	100	146.24	1440
											2.8
127											3 7
March .											4.5
Market S.											3.0
1. 1											3 :
321											2 7
新压力	102 00	57 00	48 00	50 70	39 60	29 70	20 00	15 60	12 80	10 70	2 0
	120 00	92 40	76 00	62.40	46.80	41 90	41 60	40 90	38 50	35 10	6.5
	102 00	64 80	58 80	50 40	39 40	33 80	28 50	24 40	21 30	18 20	2 7
100	132 00	81 00	64 00	54 00	39.00	30 00	22 00	19 00	17 60	16 40	4 0
101	118 00	60 00	44 00	36 00	31 00	26.30	20 60	15.80	13 20	12 10	3 3
444	122.40	73 20	55 60	43 50	37.20	33 00	31 20	31 20	28 10	25 60	2 3
3 . A	90 00	90 00	73 20	66 90	53.60	43.20	31 80	30 10	25 80	21 80	2.5
All and	84 00	54 00	42 00	39.60	29 20	43 20	31 80	30 10	25 80	21 80	3 4
100	96 00	70 20	54 00	42 60	30 00	23 00	25 60	21 80	17 60	14 70	2.2
11.76	147 60	123 60	98 40	90 30	67 40	51 00	34 40	25 80	23 40	21 10	4.5
1957	120 00	84 00	76 00	63 00	56 60	45 00	35 90	29 00	26 70	23 30	46
	120 00	66 00	64 00	60 00	48 00	37 10	26 50	23 50	22 50	20 50	3.7
10.14	93.60	64 20	61 20	53 10	46.00	39 00	27 20	21 60	18 70	16 90	3 (
160	120.00	108 00	80 00	73 50	66.00	62 30	47 00	36 80	08 18	28 00	5 7
281716	110.40	63 00	62 80	50 10	34 40	26 10	17 40	13 90	12.10	11 00	2 6
1110	120.00	87 00	72 00	60 00	47 00	36.60	24 50	21 80	23.40	21.10	3 4
N	112.80	75.00	68 00	60.00	46.00	44 30	34.50	30 00	36 00	34 20	6.0
N. T.	156.00	96.00	84.80	70.50	59 00	48.00	34 50	26 80	21 80	19 20	6 1
1.7	113.54	78.87	65.52	57.18	45.19	38.47	29.37	24.97	22.57	20.08	3 9
211	84.00	60.00	47 60	37.50	27 60	22 50	16 60	14 40	12 70	11.90	4
2.34	120 00	108 00	80 00	79 50	60 00	53 30	35 80	26 90	21 50	17 90	
MAN, 1, 101	113 540	78 870	65 520	57 180	45 190	38 465	29 370	24 970	22 565	20 075	3 76
La v	18.620	18 917	14 405	14 014	11 902	10.417	7 793	7 107	7 236	6 706	1 24
	0.374	0 786	0 274	0.527	0 318	0 360	0 279	0 303	0 496	0 741	0 83
	0.164	0 240	0 220	0.245	0 263	0 271	0 265	0 285	0 321	0 334	0 33

M. 176	The second second second	TO THE REAL PROPERTY.				
			140	建度	100	
			1	2012	2,2148	PATE I
The second second	18.40	35 20	26 50	20 10	10.90	2 04
318/03/5	20 00	10 00	10 70	8 00	6.30	1 53
3000	42.00	21 60	14 40	10 80	5 60	1 11
A CONTRACTOR OF THE PARTY OF TH	37 00		14 70	11 20	6 50	1 73
		21 50				1.78
	48 00	26 00	20 40	15 70	8 00	
	40 00	28 00	19 20	14 70	8.00	2 15
X-75	16.00	13 00	10 50	8 80	5 80	1 56
	55 00	38 00	26 10	20 00	10 30	1 79
	35 00	20 60	15 70	12.20	6 50	1 36
	26 00	18 50	14 40	10 80	5 40	1 15
100	22 60	12 50	9 60	8 00	4 80	1 94
100000	35.00	23 30	17 60	14 20	8 70	2.32
	. 40.00	33 00	27 40	20 50	10 20	2.76
1.0	43.00	33 60	23 30	17 80	9.80	1 73
100	20 00	19 10	13 40	10 10	5.80	1 08
100	21.00	13 00	10 70	8 90	5 90	3 29
100	12 40	6.50	5 70	4 50	3 60	0 80
193	30.00	30 00	22 80	19.50	12 30	2 77
1 7 -	33.20	16 70	11 70	8 90	6 40	1 76
100	34 20	19 60	13 50	10 40	6 20	1 74
3.7	20 00	13 00	10 10	7 80	5.40	2 45
	18.40	9 70	7 40	5 90	3 60	2 15
	30.327	21 018	15 718	12 218	7.091	1.863
1.00	11 574	9 018	6.373	4 874	2 371	0 608
1.00	0.331	0.324	0 492	0 484	0 657	0 483
	0.382	0 429	0 405	0 399	0 334	0 326

ANEXO B " ANÁLISIS DE FRECUENCIA " DISTRIBUCIÓN DE PROBABILIDAD UNIVARIADA PARÁMETROS AJUSTADOS Y **EVENTOS CALCULADOS**

TABLA B.1 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 5 min.

ZONA A	DURACIÓ	N = 5 ====	MÉTODO DE	ERROR	INTENSID	ADES DE	LLUVIA P	ARA DIFI	RENTES	PERIODO	S DE RET	ORNO, I,	ca ns /h	
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR				PERÍODO	DE RETO	RNO, T,	EN AÑOS			
	•	α			2	5	10	20	50	100	500	1000	5000	10000
APAZC	65 5914	25 2059	MOMENTOS	12 39	74 83	103 40	122 31	140 46	163 94	181 54	222 21	239 70	280 27	297 75
ASTAT	80 0833	24 7333	MÁX VER	11 85	89 15	117 18	135 74	153.55	176 59	193 86	233 77	250 92	290 74	307 88
AYUTL	62 2223	19 1325	MÁX VER	5.18	69 94	90 92	105.28	119 05	136 88	150.24	181.10	194 38	225 18	238 44
CALAP	x .	x	x	x	x	Х	X	X	X	X	X	X	X	X
CALTE	85 4916	23 7249	MÁX VER	7 14	94 19	121 08	138 88	155.96	178 07	194 63	232 91	249 37	287 56	304 01
COIXT	77.6741	16 7890	MOMENTOS	5 66	83.83	102 86	115 46	127.54	143 18	154 91	181 99	193 64	220 67	232 31
CUEST	59 9661	33 3388	MOMENTOS	20 53	72 19	109 97	134 99	158 99	190 05	213 33	267 12	290 25	343 92	367 03
ELCAR	73 697 0	24 2492	MÁX VER	4 32	82 59	110 07	128 27	145 72	168 32	185 25	224 37	241 19	280 23	297 04
JAYAC	89 2659	17 1200	MOMENTOS	11-04	95 54	114 95	127 79	140 12	156 07	168 02	195.64	207 52	235 08	246 95
MAGDA	76 3908	16 9333	MOMENTOS	7 48	82 60	101.79	114 50	126 69	142 46	154 29	181 61	193 35	220 61	232 35
PALMA	63 0629	22 3252	MOMENTOS	9 59	71.25	96 55	113 30	129 37	150 18	165 76	201 78	217 27	253 21	268 69
QUIOT	73 9440	39 3855	MÁX VER	13 13	88 38	133 02	162 58	190 93	227 62	255 12	318.67	345 99	409 39	436 70
SALIN	x	x	x	x	x	x	x	x	х	x	х	x	х	х
SNLOR	65 5252	20 2460	MÁX VER	10 12	72 95	95 89	111 09	125 66	144 52	158 66	191 33	205 37	237.96	252 00
SNMIG	60 1609	20 6618	MÁX VER	8 46	67 73	91 15	106.66	121 53	140 78	155 21	188 55	202 88	236 14	250 46
SNPED	63 8832	30 7091	MOMENTOS	8 27	75 14	109 95	132 99	155 10	183 71	205 15	254 70	276 00	325 44	34n 72
SNTIA	42 7303	28 4214	MOMENTOS	17 20	53 15	85 36	106 69	127 15	153 33	173 47	219 33	239 04	284 80	304 50
SNTIT	47 9796	25 4114	MOMENTOS	11.04	57 29	86 10	105 17	123 46	147 13	164 88	205 88	223 50	264 41	282 03
SUCHI	53 9745	25 8821	MÁX VER	8 18	63 46	92 80	112 22	130 85	154 97	173 04	214 80	232 75	274 42	292 36
TELPA	75 8073	38 6060	MOMENTOS	20 38	89 96	133 71	162 69	190 48	226 45	253 40	315 69	342 47	404-62	431 38
TEPEL	94 5484	27 6653	MOMENTOS	19 79	104 69	136 05	156 81	176 72	202 50	221 81	266.45	285 64	330 18	349 35
TEPEU	86 7891	32 9736	MÁX VER	10 51	98.87	136 25	160 99	184 73	215 45	238 47	291 67	314 55	367 63	390 49
XIQUI	Х	X	X	х	х	х	х	х	х	X	х	Х	x	х
ZONA B	DURACIÓ	N = 5 min	MÉTODO DE	ERROR	INTE	NSIDADES	DE LLUV	IA PARA	DIFEREN	TES PERÍ	ODOS DE	RETORNO), /, EN m	um/h
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR				PERÍODO	DE RETO	RNO, T ,	en años			
		α			2	5	10	20	50	100	500	1000	5000	10000
ACAYU	114 3777	27 7488	MOMENTOS	10.56	124 55	156 00	176 82	196 80	222 65	242 03	286 80	306 05	350 72	369 95
ALOTE	136 5889	52 3658	MOMENTOS	38 22	155 78	215 14	254 43	292 13	340 92	377 48	461 97	498 29	582 59	618 89
AZUFT	132 5147	36 7628	MOMENTOS	15 41	145 99	187 66	215 25	241 71	275 96	301 63	360 94	386 45	445 63	471 11
CANTO	168 0380	36 4896	MOMENTOS	16 31	181 41	222 T7	250 15	276 42	310.42	335 90	394 77	420 08	478 82	504-12
CDALE	147 5942	39 4796	MÁX VER	14 81	162 06	206 81	236 44	264 86	301 64	329 21	392 91	420 29	483 85	511.21
CUATO	116 9938	30 9920	MÁX VER	9 94	128 35	163 48	186 74	209 05	237 92	259 56	309 57	331-06	380.96	402 44
CUICH	140 5118	53 1863	MÁX VER	15 88	160.01	220.29	260.20	298 49	348 ()4	385 18	470 99	507.88	593 51	630 37
FORTI	94 9320	37 2111	MOMENTOS	25 29	108 57	150.75	178 67	205 46	240 13	266 11	326 15	351.96	411 86	437.66
HUAUT	100 8084	22 6623	MÁX VER	8 61	109 11	134 80	151 81	168 12	189 24	205 06	241 62	257 34	291 83	309 54
JACAT	173 7545	23 7911	MÁX VER	5 54	182 47	209 44	227 29	244 42	266.59	283 20	321 58	338 09	376 39	392-39
LAEST	148 5989	35 6276	MÁX VER	13 21	161.66	202 04	228 T7	254 42	287 62	312 49	369 98	394 69	452 04	476 74
MONTE:	137 7266	32 9137	MÁX VER	9 22	149 79	187 10	211.79	235 49	266-15	289 13	342 24	365 07	418 On	440 87
PAPA1.	139 0264	34 7481	MÁX VER	5 4n	151-76	191-15	217 22	242 24	274 61	298 87	354 94	379 (14	434 98	459 07
SNJUA	112 1484	36 1924	MOMENTOS	17 99	125 41	166 44	193 60	219 65	253 37	278 64	337 03	362 14	420 40	445 49
TEMAS	174 8410	31 5657	MOMENTOS	14 28	186 00	222 19	245 88	268 60	298 01	320 05	370 98	392 87	443 64)	465 57
VILLA	104 7162	16 2511	MÁX VI:R	4 99	110 67	129 09	141 29	152 99	168-13	i79 47	205 69	216 97	243 13	254 39

TABLA B.2 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 10 min.

ZONA A	DURACIÓN = 10 min PARÁMETROS		MÉTODO DE SOLUCIÓN	ERROR ESTÁNDAR	INTENSIDADES DE LLUVIA PARA DIFERENTES PERÍODOS DE RETORNO, /, en mam/h										
ESTACIÓN					PERÍODO DE RETORNO, 7 , EN AÑOS										
	u	α			2	5	10	20	50	100	500	1000	5000	10000	
APAZC	43 3499	18.9223	MOMENTOS	10 62	50 29	71.73	85 93	99 55	117 18	130 40	160 93	174 05	204 51	217 63	
ASTAT	59 8266	21.1361	MÁX VER	5 41	67 57	91 53	107 39	122.61	142 30	157 06	191 16	205 82	239 85	254 50	
AYUTI.	45 1720	13 1349	MÁX VER	3 89	49 99	64 87	74.73	84 19	96 42	105 59	126 79	135 90	157 04	166 15	
CALAP	х .	x	x	x	X	X	X	X	X	X	X	X	X	X	
CALTE	60 8464	18.6089	MÁX VER	4 98	67 67	88.76	102 72	116 12	133 46	146 45	176 48	189 38	219 34	232 24	
COIXT	54 1772	10 6302	MOMENTOS	4 35	58.07	70 12	78.10	85 75	95 66	103.08	120.23	127 60	144 72	152 08	
CUEST	43 2090	24 4987	MOMENTOS	16.47	52 19	79.96	98 34	115 98	138 80	155.91	195.44	212 43	251 87	268 85	
ELCAR	54 2914	18 5919	MÁX VER	5 42	61 11	82 18	96.13	109 51	126 84	139.82	169 81	182 71	212 64	225 53	
JAYAC	59 8496	19 5141	MÁX VER	6 85	67 00	89 12	103 76	117 81	135 99	149 61	181.10	194 64	224 05	239 58	
MAGDA	47 1920	15 4405	MOMENTOS	10 86	52.85	70.35	81 94	93 05	107 44	118.22	143.13	153 84	178 70	189 40	
PALMA	40 3045	14 9732	MOMENTOS	6 72	45 79	62 76	74 00	84 78	98 73	109 18	133 34	143 73	167 83	178 21	
QUIOT	50 5885	26 4143	MÁX VER	6 15	60 27	90 21	110.03	129 04	153 66	172.10	214 72	233.04	275 56	293 87	
SALIN	x	x	x	x	x	X	X	х	X	X	X	X	X	X	
SNLOR	47 2785	8 2928	MÁX VER	4.90	50.32	59 72	65 94	71 91	79 64	85 43	98 81	104 56	117 91	123 66	
SNMIG	41 7739	16 8014	MOMENTOS	10 14	47 93	66 98	79 58	91.68	107 33	119 06	146 17	157 83	184 87	196 52	
SNPED	43 4366	19 4591	MOMENTOS.	7 21	50 57	72 62	87 23	101 23	119 37	132 95	164 35	177 85	209 17	222 66	
SNTIA	29 4885	29 9121	MOMENTOS	21.90	40 45	74 36	96 80	118 33	146 20	167 09	215 35	236 10	284 25	304 99	
SNITT	33.9011	15 7618	MÁX VER	6 25	39 68	57 54	69 37	80 72	95.40	106.41	131 84	142 77	168 15	179 07	
SUCHE	41 1699	16 3830	MÁX VER	5.61	47 17	65 74	78 08	89 83	105 10	116 53	142.97	154 33	180.71	192 06	
TELPA	51 2297	27.1156	MOMENTOS	12.57	61 17	91 90	112 25	131 77	157 03	175 97	219.72	238 52	282 18	300 97	
TEPEL.	60 8446	23 6378	MOMENTOS	12 83	69 51	96 30	114 04	131-05	153 08	169 58	207 72	224 12	262 17	278 56	
TEPEU	60 7830	24 6748	MÁX VER	8 20	69 83	97 79	116.31	134 07	157 06	174 29	214 10	231 22	270 94	288 US	
XIQUI	X	X	X	x	х	x	х	х	X	х	х	х	Х	х	
ZONA B	DURACIÓN = 10 min MÉTODO		MÉTODO DE	ERROR	INTENSIDADES DE LLUVIA PARA DIFERENTES PERÍODOS DE RETORNO, /, EN mm/b									nm/b	
ESTACIÓN	PARÁMETROS		SOLUCIÓN	ESTÁNDAR	PERÍODO DE RETORNO, 7 , EN AÑOS										
		α			2	5	10	20	50	100	500	1000	5000	10000	
ACAYU	88 1723	21 7447	MOMENTOS	8 69	96 14	120 79	137 11	152 76	173 02	188 20	223 29	238 37	273 37	288 45	
ALOTE:	96 2303	18 3209	MOMENTOS	11:43	102 95	123 71	137.46	150-65	167 72	180.51	210 07	222 78	252 27	264 97	
AZUET	103 5009	26 7334	MOMENTOS	9 85	113 30	143 60	163 66	182 90	207.81	226 48	269 61	288 16	331.19	349 72	
CANTO	134 2832	20 5003	MOMENTOS	8 91	141 80	165 03	180.42	195 17	214 27	228 59	261 66	275 88	308.89	323 10	
CDALE	120 3882	27 2284	MÁX VER	5 75	130 37	161 23	181 66	201 26	226 63	245 64	289.58	308 46	352.30	371 17	
CUATO	91 8991	22 6967	MOMENTOS	8.91	100 22	125 94	142 98	159 98	180.46	196 31	232 93	248 67	285 21	300 94	
CUICH	114 0875	25 2339	MOMENTOS	11 38	123 34	151 94	170 87	189 04	212.55	230 17	270 88	288 38	329 (1)	346 50	
HORTI	74 6965	29 4150	MOMENTOS	12 90	85 48	118 82	140 89	162 07	189 47	210.01	257.47	277 87	325-23	345 62	
HUAUT	74 4384	15 5215	MÁX VER	4.19	80.13	97 72	109 37	120 54	135.00	145 84	170 88	181 65	206-64	217 40	
JACAT	136 1774	14 0048	MÁX VIR	4 04	141 31	157 18	167.69	177 77	190 82	200 60	223 20	232 91	255 46	265 17	
LAEST	129 7077	22 4852	MOMENTOS	7 10	137 95	163 43	180 31	196 49	217 44	233 14	269 42	285 02	321 22	336 80	
MONTE	117 4875	17 4705	MOMENTOS	7 85	123 89	143 69	156 80	169 38	185 66	197 86	226 04	238 16	266-29	278 40	
PAPAL	112 1993	24 8572	MOMINTOS	8 97	121 31	149 48	168 14	186 03	209 19	226 55	266 65	283 89	323-91	341 14	
SNIUA	85 1941	32 226b	MAX VIR	13 81	97.01	133.53	157 72	180 91	210 94	233 44	285 44	307.79	359 67	382 01	
TIMAS	136 3465	25 5867	MOMENTOS	8 29	145 72	174 73	193 93	212 14	236 18	254-05	295 33	313 08	354 27	172 01	

TABLA B.3 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 15 min.

ZONA A	DURACIÓN ≈ 15 min PARÁMETROS		MÉTODO DE SOLUCIÓN	ERROR ESTÁNDAR	INTENSIDADES DE LLUVIA PARA DIFERENTES PERÍODOS DE RETORNO, I, es mm/s PERÍODO DE RETORNO, T, EN AÑOS									
ESTACIÓN														
	a	α			2	5	10	20	50	100	500	1000	5000	10000
APAZC	36 9394	13.8235	MÁX VER	5 03	42 01	57 67	68 05	78.00	90.88	100 53	122.83	132.42	154 68	164 26
ASTAT	49 7554	18.1744	MÁX VER	5 35	56 42	77 02	90 66	103 74	120 67	133.36	162.68	175 29	204 55	217 15
AYUTL	36 8112	11 8167	MOMENTOS	5.57	41 14	54 54	63.40	71 91	82 92	91 17	110 24	118 43	137 46	145 65
CALAP	х.	x	x	x	x	X	X	X	X	x	X	x	X	X
CALTE	50 2754	16 8113	MÁX VER	3.40	56.44	75 49	88 11	100 21	115 87	127 61	154.73	166 40	193 46	205 11
COIXT	44 9925	11 5224	MOMENTOS	4 25	49 22	62 28	70 92	79 22	89 95	98 00	116 59	124 58	143 13	151 12
CUEST	36 5491	19 6079	MOMENTOS	12 64	43 65	65.87	80 58	94 70	112.97	126 66	158 30	171 90	203 46	217 05
ELCAR	45 7982	15 8608	MAX VER	5 25	51 61	69 59	81 49	92 91	107 69	118 76	144.35	155 35	180 89	191 88
JAYAC	48 4092	13 8095	MOMENTOS	7 05	53 47	69 12	79 49	89 43	102 29	111 94	134 22	143 80	166 03	175 60
MAGDA	36 4352	11.1710	MOMENTOS	5 98	40 53	53 19	61 57	69 62	80 02	87 82	105 85	113 60	131.58	139 32
PALMA	33 7467	15 7467	MOMENTOS	8 65	39.20	57 05	68 87	80 20	94 87	105 87	131 27	142 20	167.55	178 46
QUIOT	42 2970	22 6503	MÁX. VER	5 82	50 60	76 27	93.27	109 57	130 68	146 49	183.04	198 75	235 21	250 91
SALIN	x	X	×	x	x	X	X	X	X	X	X	X	X	X
SNLOR	34 6431	7 2053	MOMENTOS	3 37	37 28	45 45	50 86	56 04	62 76	67 79	79.41	84 41	96 01	101 01
SNMIG	32.5917	13 5344	MOMENTOS	7 61	37 55	52 89	63 05	72 79	85 40	94 85	116 69	126 08	147 87	157 25
SNPED	34 3545	17 0109	MOMENTOS	5 66	40 59	59 87	72 64	84 88	100 73	112 61	140.05	151 85	179 24	191 03
SNTIA	21 3128	23.9190	MOMENTOS	19 34	30 04	57.04	74.91	92 06	114 25	130 88	169 32	185 84	224 18	240 69
SN'IIT	28 1658	13 7609	MÁX VER	4 61	33 21	48 81	59 13	69 04	81 86	91 47	113.67	123 22	145 64	154 91
SUCHI	35.1441	12 8671	MÁX VER	3 62	39 86	54 44	64 10	73 36	85 35	94 34	115 10	124 02	144 73	153 65
TELPA	40 2266	20 5922	MOMENTOS	9 79	47 77	71 11	86 57	101 39	120 58	134.95	168.18	182 46	215 61	229 89
TT.PEL	46 3051	23 2335	MOMENTOS	12 37	54.82	81 15	98 59	115 31	136 96	153 18	190 67	206 79	244 19	260-29
TEPEU	47 7867	19 3539	MOMENTOS	5 39	54 88	76 82	91 34	105 27	123 30	136 82	168 04	181 47	212 63	226 04
xiQui	х	X	X	x	х	x	x	х	х	х	x	х	х	X
ZONA B	DURACIÓN = 15 min M		MÉTODO DE	ERROR	INTENSIDADES DE LLUVIA PARA DIFERENTES PERÍODOS DE RETORNO, I, EN mm/b									ncn/b
ESTACIÓN	PARÁMETROS		SOLUCIÓN	ESTÁNDAR	PERÍODO DE RETORNO, 7 , EN AÑOS									
	u	α	SACTIVE BOX.		2	5	10	20	50	100	500	1000	5000	10000
ACAYU	75 6759	19 2818	MOMENTOS	6 84	82 74	104 60	119 07	132 95	150.91	164 38	195 49	208 86	239 90	253 27
ALOTE.	76 5888	21 9981	MOMENTOS	15 99	84 65	109 59	126 09	141 93	162 42	177 78	213 28	228 54	263 95	279 20
AZUET	84 1901	27 1860	MÁX VIR	5 31	94 15	124 97	145 37	164 94	190 27	209 25	253 11	271 97	315 74	134 58
CANTO	119 3200	16 9820	MOMENTOS	8 13	125 54	144 79	157.54	169 76	185.58	197 44	224 84	236 62	263.96	275 73
CDALE	104 1280	26 1091	MÁX VIR	x 31	113.70	143 29	162 X8	181 68	206 00	224.23	266 36	284 47	326.50	344 60
CUATO	77 6316	19 9594	MOMENTOS	7 11	84 95	107 57	122 55	136 92	155 51	169 45	201 65	215 50	247 65	201 46
CUICH	95 7709	19 8891	MOMENTOS	8 75	103 06	125 60	140 53	154 85	173 38	187 26	219 35	233 15	265 17	278 96
HORTI	66 0969	18 1547	MÁX VIR	6 77	72 75	93 33	106 95	120 02	136 94	149 61	178 90	191 50	220 72	233 31
HUAUT	61 5243	13 8175	MAX VER	3 35	66 59	82 25	92 62	102 57	115 44	125 09	147 38	156 97	179 21	188 79
JACAT	124 4398	9 4917	MOMINTOS	2.85	127 92	138 68	145 80	152 63	161 48	168 10	183 42	190 00	205 28	211 86
LAEST	110 9068	22 8033	MÁX VER	5 UR	119 26	145 11	162 22	178 64	199 88	215 81	252 60	268 42	305 13	320 93
MONTE	99 4643	20 4660	MÁX VER	6 10	106 97	130 16	145.52	160 25	179 32	193 61	226 63	240 83	273 78	287 96
PAPAL.	96 8234	25 4221	MOMENTOS	7 73	106.14	134 96	154 03	172 33	196 02	213 77	254 79	272 42	313 35	330 97
SNJUA	73 2140	31 5836	MÁX VER	11-83	84 79	120 59	144 29	167 02	190.45	218 50	267 46	291 37	342 22	104 11
TIMAS	118 3237	19 2931	MÁX VER	4 77	125 40	147 26	161 74	175 63	191 60	207 08	238 20	251 59	282 64	296 02
	58 6502	12 5870	MAX VER	2 46	63 26	77 53	80 98	96 04	107.76	116 55	136 86			174 58

TABLA B.4 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 20 min.

ZONA A	DURACIÓ	N = 20 min	MÉTODO DE	ERROR	INTENSID	ADES DE	LLUVIA P	PARA DIF	ERENTES	PERÍODO	OS DE RET	rorno, /	, co mro/k	
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR			,	PERÍODO	DE RETO	RNO, T,	en años			
		α			2	5	10	20	50	100	500	1000	5000	10000
APAZC	30.9103	12.7180	MÁX VER.	4.34	35 57	49 98	59.52	68.67	80 52	89.39	109 90	118.72	139 19	148 00
ASTAT	45.8676	17.8894	MÁX VER	4 77	52.42	72 70	86.13	99 00	115.67	128.16	157.03	169 44	198-23	210 63
AYUTL	31.8334	11 6875	MOMENTOS	3.94	36 12	49 36	58 14	66.55	77 44	85 60	104.46	112.56	131 38	139.48
CALAP	х -	X	x	x	x	X	X	X	X	X	X	X	X	х
CALTE	40 6880	14.6271	MÁX VER.	3.77	46.05	62 63	73.60	84 13	97.76	107 98	131.58	141 72	165.27	175 41
COIXT	38.4622	12.5801	MOMENTOS	4.32	43.07	57 33	66 77	75 83	87 55	96.33	116.63	125.36	145.61	154 33
CUEST	32 0132	17 6076	MOMENTOS	10.04	38.47	58 42	71.64	84 31	100.72	113 01	141 42	153.63	181 98	194 18
ELCAR	39 8874	14.1035	MÁX VER	4 26	45 06	61 04	71 63	81 78	94 92	104 77	127 52	137 30	160 01	169 79
JAYAC	41.3988	13 0103	MOMENTOS	5.36	46.17	60.91	70.68	80 04	92 16	101 25	122.24	131 26	152.21	161 23
MAGDA	29 1681	10 5420	MOMENTOS	6 13	33.03	44 98	52 89	60.48	70 30	77 66	94 67	101 98	118 96	126 26
PALMA	28 0209	14 3505	MOMENTOS	8 22	33 28	49 55	60.32	70.65	84 02	94 04	117 19	127 14	150-25	160 19
QUIOT	37 4189	20 4526	MÁX VLR	5 28	44 92	68.10	83 45	98 17	117 22	131.50	164 50	178 69	211 62	225 79
SALIN	x	x	x	x	x	x	x	x	x	x	x	x	X	X
SNLOR	27 8566	6 7610	MOMENTOS	3 00	30.34	38 00	43 07	47 94	54 24	58 96	69 87	74 56	85 44	90.13
SNMIG	26 9873	11 9248	MOMENTOS	5 62	31 36	44 87	53 82	62 41	73.52	81 84	101 08	109 36	128 55	136 82
SNPED	28.8526	15 2627	MOMENTOS	5 47	34.45	51 75	63 20	74 19	88 41	99 06	123 69	134 28	158 85	169 43
SNTTA	16 9156	20 5997	MOMENTOS	17 58	24.47	47 81	63 27	78.10	97 29	111 68	144 91	159.20	192 37	206 65
SNTIT	23 5754	11 5671	MÁX VER	4 09	27 82	40 93	49 61	57 93	68.71	76 79	95.45	103 47	122 09	130 11
SUCHI	31.8885	12.5325	MÁX VER	4 10	36 48	50 69	60 09	69 11	80 79	89 54	109.76	118 45	138 63	147 32
TELPA	34 1410	18 8223	MOMENTOS	8 90	41 04	62.37	76.50	90.05	107 58	120.73	151.10	164.15	194 45	207 50
TEPEL	38.2904	18 0591	MOMENTOS	8.60	44 91	65 38	78 93	91 93	108 76	121 37	150.50	163 03	192 10	204.62
TEPEU	40 3598	17.6754	MOMENTOS	4.50	40 84	66 87	80 14	92 86	109 33	121 67	150.19	162.45	190 90	203 16
XIQUI	Х	Х	X	Х	х	Х	Х	X	х	X	X	X	Х	X
ZONA B	DURACIÓ	N = 20 min	MÉTODO DE	ERROR	INTEN	SIDADES	DE LLUV	IA PARA	DIFEREN	tes perí	ODOS DE	RETORN	O, I, EN n	nm/h
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR			F	ERÍODO	DE RETO	RNO, T,	en años			
1	u	Œ.			2	5	10	20	50	100	500	1000	5000	10000
ACAYU	65 4767	22 2618	MÁX VER	4 79	73 64	98 87	115 57	131.60	152 34	167 88	203 80	219 25	255 08	270 52
ALOTE:	69 6674	21 3071	MOMENTOS	13 66	77 48	101 63	117 62	132 95	152.81	167.68	202 06	216 84	251 14	265 91
AZUET	71 1112	25 3508	MÁX VER	5 27	80 40	109 14	128 16	146 41	170 03	187 73	228.63	246 22	287 03	304.60
CANTO	110 9617	15 3735	MOMENTOS	8 07	116 60	134 02	145 56	156-62	170 95	181-68	206 49	217-15	241.90	252 56
CDALE	95 2615	28 2261	MÁX VER	7 76	105 61	137.60	158 78	179 10	205.40	225 11	270.65	290.23	335 67	355 23
CUATO	67 4992	19 5188	MOMENTOS	6.56	74 65	96.78	111 42	125 47	143 66	157 29	188 78	202 32	233 74	247 27
сиси	87 9060	17 6932	MOMENTOS	8 26	94 39	114 45	127 72	140 46	156 94	169 30	197 85	210 12	238 60	250 87
FORT1	58 6375	16 8601	MÁX VLR	6 49	64 82	83 93	96.58	108.72	124 42	136 20	163 40	175 09	202.24	213 92
HUAUT	54 5026	15 1008	MÁX VER	3 61	60 04	77.15	88 49	99 36	113 43	123.97	148 33	158.81	183 12	193 59
JACAT	112 7373	10 0598	MÁX VER	2 37	116 42	127 83	135.38	142 62	151 99	159.01	175 25	182 22	198 42	205 39
LAEST	100 5236	21 5571	MÁX VER	5 40	108 42	132 86	149 04	164.55	184 64	199 69	234 47	249 42	284 13	299.07
MONTL	88 0477	21 2691	MÁX VER	5 29	95 84	119 95	135 91	151 22	171 04	185 89	220 21	234.96	269 20	283 94
PAPAL	85 7793	30 4069	MÁX VER	7 70	96 92	131 39	154 21	176 09	204 43	225 66	274 72	295 81	344 76	365 84
SNJUA	63 7092	28 7631	MAX VER	11-68	74 25	106.85	128 44	149 14	175 94	196 02	242 43	262 38	308 69	328 63
TEMAS	105 4331	19 3620	MÁX VER	3 72	112 53	134 48	149 01	162 94	180 98	194 50	225 74	239 17	270 34	283 76
VILLA	50 6571	11 6332	MÁX VER	2 08	54 92	68 11	76 84	85.21	96 05	104 17	122 94	131.01	149 74	157.80

TABLA B.5 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 30 min.

ZONA A	DURACIÓN	i = 30 min	MÉTODO DE	ERROR	INTENSID	ADES DE	LLUVIA P	ARA DIFI	ERENTES	PERÍODO	S DE RET	rorno, 1	, co mas/b	,
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR			F	eriodo	DE RETO	RNO, T ,	EN AÑOS			
	•	α			2	5	10	20	50	100	580	1000	5000	10000
APAZC	22.8332	10 3589	MÁX. VER	3 74	26.63	38.37	46.15	53 60	63.25	70 49	87.20	94.39	111.06	118 24
ASTAT	37 1099	14.6487	MÁX. VER	5.75	42 48	59 08	70.08	80.62	94 27	104.50	128.13	138 29	161787	172 03
AYUTL	25 8283	11.0856	MOMENTOS	3 79	29.89	42.46	50.78	58 76	69 08	76.82	94.71	102 40	120 25	127 93
CALAP	27.9437 •	15.0737	MOMENTOS	5.59	33.47	50 55	61.87	72 72	86 76	97.29	121 61	132 06	156 33	166 78
CALTE	31.2013	11 4772	MÁX VER.	3.01	35 41	48 42	57.03	65 29	75 99	84 00	102 52	110.48	128 95	136.91
COIXT	28 9381	9.6407	MOMENTOS	3.61	32.47	43.40	50 63	57 57	66 56	73.29	88 84	95 53	111 05	117 73
CUEST	24.9019	12 8977	MOMENTOS	6 67	29 63	44 25	53 93	63.21	75 23	84 23	105 04	113 99	134 74	143 69
ELCAR	32 2868	11 1430	MÁX VER	3.51	36 37	49 00	57 36	65 38	75 77	83 55	101 53	109 25	127 19	134 92
DAYAC	33 6115	14 7999	MÁX VER	4 77	39 04	55 81	66 92	77 57	91 36	101.69	125 57	135 84	159 66	169 92
MAGDA	22 6282	7.4392	MOMENTOS	2 98	25 36	33.79	39 37	44 72	51.66	56 85	68 85	74.01	85 99	91 15
PALMA	21 9240	9 8855	MOMENTOS	5 57	25.58	36.78	44 20	51 32	60.53	67 43	83 38	90 24	106 15	113 00
OUIOT	30 2792	17 1550	MÁX VER	4 08	36 57	56 01	68.88	81 23	97 22	109 20	136 87	148 77	176 39	188 2K
SALIN	32 9273	20 1171	MOMENTOS	7 61	40 30	63 10	78 20	92 68	111 42	125 47	157 93	171 88	204 27	218 21
SNLOR	23 5563	8.2766	MÁX VER	2 59	26.59	35 97	42.18	48 14	55 85	61 63	74 98	80 73	94 05	99 79
SNMIG	21.2665	12 1342	MOMENTOS	6 22	25 71	39 47	48.57	57 31	68 61	77 09	96.66	105 08	124 61	133 03
SNPED	22.1878	12.5108	MOMENTOS	5 18	26 77	40.95	50 34	59.35	71.00	79 74	99 93	108 60	128.74	137 42
SNTIA	13.7137	14 6465	MOMENTOS	11 93	19 08	35.68	46.67	57 22	70.86	81 09	104 72	114 88	138 46	148 61
SNTIT	18.0235	9 7152	MÁX VER	4 56	21 58	32 60	39 89	46 88	55 93	62 72	78.39	85 13	100 77	107 50
SUCHI	24 4463	10.9437	MOMENTOS	5 55	28 46	40.86	49 07	56 95	67 15	74 79	92 45	100.04	117.66	125 24
TELPA	26.8313	14.3209	MOMENTOS	5 55	32.08	48 31	59.06	69.37	82.71	92 71	115 82	125 75	148 80	158.73
TEPEL	30.0372	13 2034	MOMENTOS	5.32	34 88	49 84	59.75	69 25	81 56	90.78	112.08	121 24	142 49	151 64
TEPEU	31.3299	13 6590	MÁX VER	4 38	36 34	51 82	62 07	71 90	84 63	94 16	116 20	125 68	147 67	157 13
XIQUI	24 8645	9 5589	MÁX VER	2 43	28.37	39 20	46.38	53 26	62 16	68 84	84 26	90 89	106.28	112 90
ZONA B	DURACIÓ	N = 30 m/m	MÉTODO DE	ERROR	INTEN	STDADES	DE LLUV	IA PARA	DIFEREN	TES PERÍ	ODOS DE	RETORN	O. 1, EN n	nan/h
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR			P	ERÍODO	DE RETO	RNO. T.	en años			
	u	α			2	5	10	20	50	100	500	1000	5000	10000
ACAYU	53 3062	16 8741	MÁX VER	3 58	59 49	78 62	91.28	103 43	119.15	130 93	158 16	169 86	197 03	208 72
ALOTE	59 8217	19 7224	MOMENTOS	12 74	67 05	89 40	104 20	118 40	136.78	150.55	182 37	196-05	227 80	241 47
AZUET.	57 2514	22 1981	MÁX VER	5.57	65 39	90.55	107.21	123 18	143.87	159.37	195 18	210.58	246.32	261-70
CANTO	95 0034	18 3202	MÁX VER	4 79	101 72	122 48	136 23	149 42	166 49	179 28	208 84	221 55	251.04	263.74
CDALI:	79 2329	28 1196	MÁX VER	8 97	89.54	121.41	142 51	162 75	188 95	208 59	253 96	273 46	318.73	338-22
CUATO	54 5734	23 4590	MÁX VER	6 62	63 17	89 76	107.37	124 25	146 11	162 49	200.34	216 61	254 38	270 64
сшси	77 0826	13 8810	MOMENTOS	7.15	82 17	97 90	108-32	118.31	131.25	140.94	163 33	172 96	1 95 31	204-93
I-ORTI	48 5659	13 7479	MÁX VER	5 62	53 61	69 19	79 50	89 40	102 21	111-81	133 99	143 53	165-66	175 19
HUAUT	44 1654	13 9422	MÁX VER	3 77	49 28	65 08	75 54	85 58	98 57	108 30	130.80	140.47	162 91	172 58
JACAT	96 9818	12 0726	MÁX VER	2 26	101 41	115 09	124 15	132 84	144 09	152 52	172 00	180 37	199 81	208-17
LAEST	89 6700	18.5502	MÁX VER	3 89	96 47	117 49	131 42	144 77	162 05	175.00	204 93	217 80	247 66	260 52
MONTE	75 2698	21 8199	MÁX VER	6 21	83 27	108 00	124 37	140 08	160 41	175 65	210 85	225 99	261 11	276 24
PAPAI.	70 9987	26 7946	MÁX VER	5 91	80 82	111-19	131-30	150.58	175 55	194 26	237 49	256 08	299 21	317 78
SNJUA	53 7070	26 4399	MÁX VER	9 60	63.40	93.37	113 21	132 24	156.87	175 33	217 99	236.33	278 90	297 23
TEMAS	95 0305	15 2067	MÁX VER	3.28	100.60	117 84	129 25	140 20	154-37	164 98	189 52	200 07	224 55	235.09
VII.I.A	39 5711	9 9530	MÁX VER	2 26	43 22	54 50	61 97	69 13	78 41	85-36	101 42	108.32	124 34	131 24

TABLA B.6 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 40 min.

ZONA A	DURACIÓN	40 min	MÉTODO DE	ERROR	INTENSIDA	ADES DE I	LLUVIA P	ARA DIFE	RENTES	PERÍODO:	S DE RET	ORNO, I,	ca ma/h	
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR				PERÍODO	DE RETO	RNO, 7 , I	EN AÑOS			
	•	α			2	5	10	20	59	100	500	1000	5000	10000
APAZC	18 2629	8 7309	MOMENTOS	6.60	21 46	31 36	37 91	44 20	52 33	58 43	72 51	78 57	92 63	98 68
ASTAT	30 2521	11 8689	MÁX VER	4 39	34 60	48 06	56 96	65 51	76 56	84 85	104 00	112 23	131 34	139 57
AYUTL	20 7823	1 4637	MOMENTOS	4 01	24 62	36 48	44 33	51 86	61 61	68 92	85 80	93 06	109 90	117 16
CALAP	х.	x	X	x	x	X	X	X	X	X	X	X	X	X
CALTE	25 0568	10 3015	MOMENTOS	3 17	28.83	40 51	48 24	55 65	65 25	72 45	89 07	96 21	112.80	119 94
COIXT	22 7329	7 8643	MOMENTOS	3 11	25 62	34 53	40 43	46 09	53 42	58 91	71 60	77 05	89 71	95 17
CUEST	20 7394	10 3577	MÁX VER	4 92	24 54	36 28	44 05	51 50	61 15	68 39	85 10	92 28	108 96	116 14
ELCAR	27 3863	8 8597	MÁX VER	2 77	30.63	40 68	47 32	53 70	61 96	68 14	82 44	88 58	102 85	108 99
JAYAC	27 9523	12 9892	MÁX VER	3 17	32 71	47 44	57 18	66 53	78 64	87 71	108 66	117 67	138 58	147 59
MAGDA	18 3332	6 3384	MOMENTOS	2 25	20 66	27 84	32 58	37 16	43 07	47 49	57 72	62 11	72 32	76 71
PALMA	18 4904	7 1976	MOMENTOS	3 39	21 13	29 29	34 69	39 87	46 58	51 60	63 21	68 21	79 79	84 78
OUIOT		13 2996	MÁX VER	2 68	29 21	44 28	54 26	63 84	76 23	85 51	106 97	116 20	137 61	146 83
SALIN	x	x	x	x	x	X	X	X	x	X	X	X	X	X
SNLOR	43 9382	22 2684	MÁX VER	8 23	52 10	77 34	94 05	110 08	130 83	146 38	182.31	197.75	233.60	249 ()4
SNMIG	17 9995	10 3628	MOMENTOS	6 18	21 80	33 54	41 32	48 78	58 43	65 67	82 39	89 58	106 26	113 44
SNPED	18 2621	10 2558	MOMENTOS	3 78	22 02	33 65	41 34	48 72	58 28	65 44	81 99	89 10	105 61	112 72
SNTIA	11 3678	10 8497	MOMENTOS	8 74	15 34	27 64	35 78	43 59	53 70	61 28	78 78	86 31	103 78	111.30
SNTIT	14 0448	7 1783	MÁX VER	2 65	16 68	24 81	30 20	35 37	42 07	47 07	58 65	63 63	75 18	80 16
SUCHI	19 8054	10 9800	MOMENTOS	5 58	23 83	36 28	44 51	52 42	62 65	70 32	88 03	95 65	113 32	120 94
TELPA	22 3964	11 7120	MOMENTOS	3 99	26 69	39 96	48 75	57 18	68 10	76 27	95 17	103 29	122 15	130 27
TEPEL	25 0069	11 2547	MOMENTOS	4 60	29 13	41 89	50 33	58 44	68 92	76 78	94 94	102 75	120 86	128 67
TEPEU	25 6780	10 4276	MÁX VER	3 30	29 50	41 32	49 14	56 65	66 37	73 65	90 47	97.70	114 49	121 92
XIQUI	Z3 6780	X	X	x	X X	X X	X X	X	X	73 03 X	X X	X X	X	X X
											**			
ZONA B	DURACIÓ		MÉTODO DE	ERROR	INTER	KSIDAD#S		IA PARA				RETORNO	D, I, EN =	
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR				PERÍODO I		RNO, T , E	N AÑOS			
	•	α			2	5	10	20	59	100	590	1999	5990	10000
ACAYU	43 0011	14 6950	MAX VER	3 70	48 39	65 04	76 07	86 65	100 34	110.60	134 31	144 50	168 16	178 35
ALOTE	51 8244	17 5337	MOMENTOS	11 38	58 25	78 12	91.28	103 90	120 24	132 48	160 77	172 93	201 16	213 32
AZUET	44 7220	18 7117	MAX VIR	3 98	51 58	72 79	86 83	100 30	117 73	130 80	160 99	173 97	204 09	217 On
CANTO	78 3941	15 0146	MÁX VER	3 97	83 90	100 92	112 18	122.99	136 98	147 46	171 69	182 10	206 28	216.68
CDALE	65 1627	22 6143	MÁX VER	5 43	73 45	99 08	116 05	132 33	153 40	109 19	205 68	221 37	257 77	273 45
CUATO	42 3308	18 6685	MÁX VER	4 69	49 17	70 33	84 34	97 78	115 17	128 21	158 33	171 28	201 33	214 27
CUICH	64 1642	11 5099	MOMENTOS	5 02	68 38	81 43	90 07	98 35	109 08	117 11	135 68	143 67	162 20	170 17
FORTI	41 1127	13 1513	MOMENTOS	4 85	45 93	60 84	70 71	80 18	92 43	101 61	122 83	131 95	153 12	162 24
HUAUT	57 9053	11 9180	MÁX VER	2 24	42 27	55 78	64 73	73 30	84 41	92 73	11.96	120 23	139 41	147 67
JACAT	85 2213	12 4506	MÁX VER	3 19	89 79	103 90	113 24	122 20	133 80	142 50	162.58	171 22	191-26	199 90
LAEST	80 7776	18 1607	MÁX VI:R	4 44	87 43	108 02	121 65	134 72	151 64	164 32	193 62	206.22	235.45	248 04
MONTE.	64 0501	21 6900	MÁX VER	6 98	72 00	96.58	112.86	128 47	148 68	163.83	198 82	213 87	248 79	263 82
PAPAI.	57 5271	22 7488	MÁX VER	6 80	65 87	91 65	108.72	125 10	146 29	162 18	198 88	214 66	251.28	267.05
I ALAL		22 2684	MÁX VER	8 23	52 10	77 34	94 05	110 08	130 83	146 38	182 31	197 75	233 60	249 04
SNJUA		Z2 Z084	MAA VIIA	0 23										
	78 3596	22 2084 15 1508	MÁX VER	3 33	83 91	101 09	112 46	123 36	137 48	148 (16	172 50	183 01	207 40	217.90

TABLA B.7 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 60 min.

ZONA A	DURACIÓ	N = 40 ===	MÉTODO DE	ERROR	INTENSIDA	ADES DE I	LUVIA P	ARA DIFI	ERENTES	PERIODO	S DE RET	ORNO, I.	es mas/h	
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR			1	PERÍODO	DE RETO	RNO, T.	EN AÑOS			
	•	α			2	5	10	26	50	100	500	1000	5000	10000
APAZC	14 2743	7 5557	MOMENTOS	3 88	17 ()4	25 61	31 28	36 72	43 76	49 03	61 22	66 46	78 63	83 87
ASTAT	23 1309	9 0177	MÁX VER	2 39	26 44	36 66	43 42	49 92	58 32	64 61	79 16	85 42	99 94	106 19
AYUTL	15 5676	9 3172	MOMENTOS	4 36	18 98	29 54	36 54	43 24	51 92	58 43	73 46	79 92	94 92	101 38
CALAP	18 1353	13 9325	MOMENTOS	6 79	23 24	39 03	49 49	59 52	72 50	82 23	104 71	114 37	136 80	146 46
CALTE	18 1757	7 1900	MOMENTOS	1 97	20 81	28 96	34 36	39 53	46 23	51 25	62 85	67 84	79 41	84 40
COIXT	16 1556	5 4156	MOMENTOS	2 11	18 14	24 28	28 34	32 24	37 29	41 07	49 81	53 56	62 28	66 04
CUEST	15 2170	7 8380	MÁX VER	2 96	18 09	26 97	32.86	38 50	45 80	51 27	63 92	69 36	81 97	87 41
FLCAR	20 0298	7 3059	MÁX VER	1 83	22 71	30 99	36 47	41 73	48 54	53 64	65 43	70 49	82 25	87 32
JAYAC	23 3444	9 2117	MÁX VER	2 95	26 72	37 16	44 ()7	50.71	59 29	65 72	80 58	86 97	101.80	108 19
MAGDA	13 9138	4 9854	MOMENTOS	1 99	15 74	21 39	25 13	28 72	33 37	36 85	44 89	48 35	56 38	59 83
PALMA	13 5745	4 9223	MOMENTOS	2 37	15 38	20 96	24 65	28 20	32 78	36 22	44 16	47 57	55 50	58 91
OUIOT	18 5589	9 8439	MÁX VER	1.94	22 17	33 32	40.71	47 80	56 97	63 84	79 73	86 55	102 40	109 22
SALIN	24 7546	13 1654	MOMENTOS	4 74	29 58	44 50	54 38	63 86	76 13	85.32	106.56	115 69	136 89	146 01
SNLOR	15 5091	6 3455	MÁX VER	1 88	17 84	25 03	29 79	34 36	40 27	44 70	54 94	59 34	69 56	73 95
SNMIG	12 9624	6 9604	MOMENTOS	4 34	15 51	23 40	28 63	33 64	40 12	44 98	56 21	61.04	72 25	77 07
SNPLD	13 5948	6 8878	MOMENTOS	2 49	16 12	23 93	29 10	34 05	40 47	45.28	56 39	61 17	72 26	77 03
SNTIA	8 4903	7 1865	MOMENTOS	5 23	11 12	19 27	24 66	29 84	36.53	41.55	53 15	58 13	69 70	74 68
SNTIT	10 3684	5 0283	MÁX VI-R	1.80	12 21	17.91	21.68	25 30	29 99	33.50	41 61	45 10	53.20	50 68
SUCHI	14 0747	10 5825	MÁX VER	6 72	17 95	29 95	37 89	45 51	55 37	62.76	79 83	87 17	104.21	111 54
TELPA	16 7761	8 1765	MOMENTOS	2 66	19 <i>7</i> 7	29 04	35 18	41.06	48.68	54.39	67 58	73 25	86 42	92 08
TEPFI.	18 5360	9 7152	MOMENTOS	3 74	22 10	33 11	40 40	47 39	56 44	63 23	78 90	85 64	101.28	108 02
TEPFU	19.5866	7 0927	MÁX VER	1 68	22 19	30 23	35 55	40 65	47.26	52.21	63 66	68.58	80.00	84 91
XIQUI	16 7650	7 5223	MÁX VER	1 67	19 52	28 05	33 69	39 11	46 12	51.37	63.51	68 72	80.83	86 (15
ZONA B	DURACIÓ	N = 40	MÉTODO DE	ERROR	INTEN	STDADES	DE LLUV	IA PARA	DIFFREN	TFS PERI	ODOS DE	RETORNO). J. EN m	m/h
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR				P.RÍODO	DE RETO	RNO. 7 . I	en años			
		α	- 54		2	5	10	20	50	100	500	1000	5000	10000
ACAYU	34 1671	12 7894	MÁX VER	3.03	38 86	53 35	62 95	72 15	84 ()7	93.00	113 64	122 51	143 10	151.96
ALOTE	38 4920	13 4299	MOMENTOS	7 09	43 41	58 64	68 71	78 38	90.90	100 27	121 94	131.26	152 88	162 19
AZUET	36 0303	15 5012	MAX VER	3 44	41 71	59.28	70.91	82 (37	96 52	107.34	132 35	143 10	168 06	178 80
CANTO	67 4098	14 7284	MÁX VI:R	3 27	72 81	89.50	100.55	111-16	124 88	135-16	158 93	169 14	192.85	203-06
CDALE	52 9942	19 8163	MÁX VER	6.05	60 26	82 72	97 59	111 85	130 32	144 15	176 13	189 87	221 77	235 51
CUATO	33 8538	15 7172	MÁX VER	3 49	39.61	57 43	69 22	80 54	95 18	106.16	131 51	142 42	167 72	178 61
CUICH	56 2993	9 6527	MOMENTOS	4 16	59 84	70 78	78 O2	84 97	93 96	100.70	116 28	122 97	138.51	145-20
FORTI	32 9332	11 8520	MÁX VIR	3 88	37 28	50.71	59.61	68 14	79 18	87 45	106.58	114.80	133 88	142 09
BUAUT	30 1990	10.6096	MÁX VIR	2 63	34 09	46 11	54 07	61 71	71.60	79.01	96 12	103 48	120.56	127 92
JACAT	70 2099	11 2225	MÁX VER	2 22	74 32	87 04	95 47	103.54	114 00	121.84	139 94	147 73	165 79	173 57
LAUST	67 4551	17 2045	MÁX VIR	4 93	73 76	93.26	106-17	118 56	134.59	146.60	174 36	186 29	213 99	225 91
MONTE	49 5156	18 0682	MÁX VIR	4 (4)	56 36	77.52	91.51	104.96	122 36	135 39	165.51	178 46	208.51	221.46
PAPAL.	48 635?	16 0186	MOMENTOS	7 14	54 51	72.66	84 68	96.21	111-14	122,32	148 17	159.28	185-07	196 17
NNILIA	32 1849	1 / 7847	MAX VIR	7.06	3K 70	38.86	12.21	85 O1	101.56	(14.00)	142 69	155 03	183-70	195 99
TIMAS	64 9767	12 4823	MAX VIR	2.36	69.55	R3 70	91 07	102 05	113.68	122,40	142 54	151-20	171.29	179 94
VILLA	25 6538	6 8227	MÁX VIR	1.45	28 15	35.89	41 (1)	45 92	52.28	57.04	68 05	72 7K	83 76	KN 49

TABLA B.8 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 80 min.

ZONA A	DURACIÓ	N = 80 mile	MÉTODO DE	ERROR	INTENSID	ADES DE	LLUVIA F	PARA DIF	ERENTES	PERÍODO	OS DE RE	TORNO, I	, es mm/s	
ESTACIÓN	PARÁN	IETROS	SOLUCIÓN	ESTÁNDAR				PERÍODO	DE RET	ORNO, T	, EN AÑO	ıs		
		α			2	5	10	20	50	100	500	1000	5000	10000
APAZC	11.3038	5.7327	MOMENTOS	2 76	13 41	19.90	24 20	28 33	33 67	37 68	46 92	50 90	60 13	64.10
ASTAT	18 2803	6 1604	MÁX VER	1 46	20 54	27 52	32 14	36 58	42 32	46.62	56 56	60 83	70 75	75 02
AYUTL	12 6176	7 3238	MOMENTOS	3.51	15 30	23 60	29 10	34 37	41.20	46.31	58 13	63 21	75 00	80 07
CALAP	х .	X	x	x	x	X	X	x	X	x	x	X	x	х
CALTE	14 3756	6 0017	MOMENTOS	1.82	16.58	23 38	27 88	32.20	37 79	41 98	51 67	55 83	65 49	69 65
COIXT	13 7003	3 5234	MOMENTOS	1.38	14 99	18 99	21 63	24 17	27 45	29 91	35 59	38 04	43 71	46 15
CUEST	12 1447	6 4820	MÁX VER	2 02	14.52	21 87	26 73	31 40	37.44	41.96	52 42	56 92	67.35	71 85
ELCAR	15 9141	6 2520	MÁX VER	1.48	18 2 ł	25 29	29 98	34.48	40 31	44 67	54 76	59 10	69 16	73.50
JAYAC	18 1021	8 5089	MÁX VER	2.52	21 22	30 87	37 25	43.38	51.30	57 24	70 97	76 88	90 57	96 47
MAGDA	11 3735	3 7552	MOMENTOS	1.30	12 75	17 01	19 82	22.53	26 03	28 65	34 71	37.31	43 36	45 96
PALMA	11 0599	3 4124	MOMENTOS	1 87	12 31	16 18	18 74	21 20	24 38	26.76	32 26	34 63	40 12	42 49
QUIOT	14 8692	7 4114	MÁX VER	1.50	17.59	25 99	31 55	36 88	43 79	48 96	60 92	66 06	77 99	83 13
SALIN	x	x	x	x	x	X	X	X	X	X	X	X	X	X
SNLOR	11 0962	4 2870	MÁX VER	1 38	12 67	17 53	20 74	23 83	27 82	30.82	37 73	40 71	47 61	50.58
SNMIG	10 4301	5 0907	MOMENTOS	2 93	12 30	18 07	21.89	25 55	30 29	33 85	42 06	45 59	53.79	57 32
SNPED	11 2230	5 3058	MOMENTOS	2 12	13.17	19 18	23 16	26 98	31 93	35 63	44 19	47 87	56 41	60 09
SNTIA	6 9825	5 2934	MOMENTOS	3 69	8 92	14 92	18 89	22 71	27 64	31 33	39 87	43 55	52 07	55 74
SNTIT	8 2107	3 8629	MÁX VÉR	1.30	9 63	14 01	16 90	19.68	23 28	25 98	32 21	34 89	41 11	43 79
SUCHI	10 7451	8 9352	MOMENTOS	6.08	14.02	24 15	30 85	37 28	45 61	51 85	66 27	72 46	86 85	93 04
TELPA	13 4787	6 2422	MOMENTOS	2 33	15 77	22.84	27 53	32 02	37 84	42 19	52 27	56 60	66 64	70 97
TEPEL.	14 7797	8 2922	MOMENTOS	3 08	17 82	27 22	33 44	39 41	47 14	52 93	66 30	72 06	85 41	91 15
TEPEU	16 0010	5 2093	MÁX VER	1 24	17 91	23 82	27 72	31.47	36.33	39.96	48 37	51.98	60 37	63 9R
XIQUI	X	Х	X	x	х	Х	Х	х	Х	X	х	х	х	х
ZONA B	DURACIÓ	N = 80 min	MÉTODO DE	ERROR	INTEN	SIDADES	DE LLUVI	IA PARA	DIFEREN	TES PERÍ	ODOS DE	RETORN	O, /, EN a	nun/b
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR			P	ERÍODO	DE RETO	RNO, T,	EN AÑOS			
	u	α			2	5	10	20	50	100	500	1999	5000	10000
ACAYU	27 4325	10 4166	MÁX VIR	2 39	31 25	43 06	50 87	58 37	68 08	75 15	92 [6	99.38	116 15	123 37
ALOTE:	32 7075	8 6190	MOMENTOS	4 26	35 87	45 64	52 10	58 31	66 14	72 36	86 26	92 24	106 12	112 09
AZUET	29 7214	12 6936	MOMENTOS	2 69	34 37	48 76	58 29	67 42	79 25	88 11	108 60	117.40	137.83	146 63
CANTO	55 9027	13 6868	MÁX VIR	3 26	60 92	76 43	86 70	96 56	109 31	118 86	140.95	150 44	172 47	181 96
CDALE	43 8212	17 7707	MÁX VER	4 70	50 33	70 48	83 81	96 60	113 16	125 57	154 24	166 57	195-18	207.50
CUATO	26 9833	13 0053	MÁX VER	2 20	31 75	46 49	56 25	65.61	77 73	86 81	107.79	116.81	137 75	146 77
CUICH	47 8389	7 8665	MOMENTOS:	3 97	50 72	59 64	65 54	71 20	78 53	84 03	96.72	102 18	114 84	120 29
FORT	27 2462	9 7421	MOMENTOS	4 20	30 82	41 86	49 17	56 18	65 26	72 06	87 78	94 54	110 22	116 97
HUAUT	26 8117	8 6845	MÁX VI-R	2 11	30 00	39 84	46 36	52 61	60 70	66 76	80 77	86 80	100 78	THE NO
JACAT	58 6310	10 9982	MÁX VER	2 73	62 66	75 13	83 38	91 30	101.55	109 22	126 97	134 60	152 30	159 93
LAEST	57 9860	12 4571	MÁX VER	3 65	62 55	76 67	86 02	94 99	106 59	115 29	135 39	144 03	164 09	172 72
MONTE	39 7947	15 7323	MAX VIR	3 43	45 56	63 39	75.20	86.52	101 18	112 17	137 55	148 46	173 79	184 69
PAPAL	40 7386	13 5109	MOMENTOS	5 62	45 69	61.00	71 14	80 87	93 46	102 89	124 69	134 06	155 81	165 18
SNJUA	24 9472	14 0965	MÁX VER	5 49	30 11	46 (19	56 67	66 82	79 95	89 79	112 54	122 32	145 01	154 78
TEMAS	57 5915	10 6216	MAX VIR	2 54	61.48	73.52	81 49	89 14	99 04	106.45	123 59	130 96	148 06	155 42
11:MA3														

TABLA B.9 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 100 min.

ZONA A	DURACIÓN	= 100 min	MÉTODO DE	ERROR	INTENSIDA	DES DE I	LLUVIA P	ARA DIFI	ERENTES	PERÍODO	OS DE RET	ORNO, I	, es csm/b	
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR			P	eríodo	DE RETO	RNO, T ,	EN AÑOS			
	0	α			2	5	10	20	50	100	500	1000	5000	10000
APAZC	9 4011	4 6203	MOMENTOS	1.96	11.10	16.33	19.80	23 12	27 43	30 66	38 11	41.32	48 75	51 96
ASTAT	14 7700	4 8426	MÁX VER	1 20	16 55	22 03	25 67	29.15	33 67	37 05	44.86	48.22	56 '02	59 37
AYUTL	10 6619	6 1658	MOMENTOS	3 15	12 92	19 91	24 54	28.98	34 72	39 03	48.97	53.25	63 18	67.45
CALAP	х -	x	x	x	x	X	X	X	X	X	х	х	X	X
CALTE	11 9484	4 7695	MOMENTOS	1.41	13 70	19 10	22 68	26 12	30 56	33 89	41 58	44.89	52 57	55 88
COIXT	7 6101	27 5597	MOMENTOS	25 46	x	Х	X	X	X	X	X	X	Х	X
CUEST	10 2199	5 5437	MÁX VER	1.88	12 25	18 54	22 70	26.69	31 85	35 72	44 67	48 51	57 44	61 28
ELCAR	13 2430	5 3549	MÁX VER	1 21	15.21	21 28	25 29	29.15	34 14	37.88	46 52	50.23	58 85	62.56
JAYAC	15 3794	7 1208	MÁX. VER	1.66	17.99	26 06	31 40	36.53	43 16	48 14	59 63	64 57	76 03	80 96
MAGDA	9.4767	2.9698	MOMENTOS	1 00	10 57	13 93	16 16	18.30	21 07	23 14	27 93	29.99	34 77	36 83
PALMA	9 1096	2 7566	MOMENTOS	1.61	10 12	13 24	15 31	17 30	19 87	21 79	26 24	28 15	32 59	34 50
QUIOT	12 4410	6 0556	MAX VER.	1 25	14.66	21 52	26.07	30.43	36 07	40.30	50 07	54 27	64 02	68.22
SALIN	x	X	x	x	x	X	X	X	X	X	X	Х	X	X
SNLOR	9 1526	4.3520	MÁX VER	2 10	10 75	15.68	18.95	22 08	26.13	29 17	36 19	39 21	46 22	49 24
SNMIG	8.7311	4.0091	MOMENTOS	2 23	10 20	14,74	17 75	20.64	24 37	27 17	33.64	36 42	42 88	45 66
SNPED	9 6862	4 4846	MÁX VER	1 77	11.33	16 41	19 78	23 01	27 19	30.32	37 55	40 66	47 88	50 99
SNTIA	6 0337	4.1961	MOMENTOS	2 75	7 57	12.33	15 48	18.50	22 41	25 34	32 11	35.02	41 77	44.68
SNITT	6 8268	3 1821	MAX VER	1 01	7 99	11.60	13 99	16.28	19.24	21 47	26.60	28.81	33 43	36 14
SUCHI	8.7830	7 3441	MOMENTOS	5 08	11 48	19 80	25 31	30 60	37 44	42 57	54 42	59.51	71 33	76 43
TELPA	11 7731	5 0618	MOMENTOS	2 28	13 63	19 37	23 16	26 81	31 52	35 06	43 23	46.74	54.89	58 39
TEPEL.	12 7149	6 9469	MOMENTOS	2 10	15 26	23 14	28 35	33.35	39 82	44 67	55.88	60.70	71 88	76 70
TEPEU	13 6165	4 3009	MÁX VER	1 04	15 19	20 07	23 30	26 39	30 40	33.40	40.34	43 32	50 25	53 23
XIQUI	х	Х	х	х	х	Х	Х	X	Х	X	Х	х	Х	X
ZONA B	DURACIÓN	i = 100 min	MÉTODO DE	ERROR	INTEN	SIDADES	DE LLUVI	IA PARA	DIFEREN	TES PERÍ	ODOS DE	RETORN	0, /, EN s	nm/h
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN	ESTÁNDAR			P	ERÍODO	DE RETO	RNO, T.	EN AÑOS			
	ų	α			2	5	10	20	50	100	500	1000	5000	10000
ACAYU	23 0034	8 9725	MÁX VER	1 44	26.29	36 46	43 20	49 65	58 01	64 28	78 76	84 98	99 42	105 64
ALOTE	27 0537	7 3152	MÁX VER	3 39	29 74	38 03	43 52	48 78	55 60	60.71	72 51	77 58	89.36	94 43
AZUET	25 4586	10 7118	MÁX VER	1.61	29 39	41 53	49.56	57 28	67 26	74 73	92 02	99.45	116 69	124 12
CANTO	48 7965	12 3922	MÁX VER	3 07	53.34	67 38	76 68	85 60	97 15	105 80	125 80	134 39	154-34	162 93
CDALEMA	37 2202	15 7574	MOMENTOS	5 19	43 00	60.86	72 68	84 02	98 70	109.71	135 13	146 06	171 43	182 35
CUATO	22 5026	11 1068	MAX VER	1.76	26 58	39 16	47 50	55.49	65.84	73 60	91 52	99.22	117 10	124 80
CUICH	40 9779	7 3262	MOMENTOS	3 33	43.66	51.97	57.47	62.74	69.56	74 68	86 50	91.58	103.38	108 46
FORTI	24 9725	7 7321	MOMENTOS	3 21	27 81	36 57	42 37	47.94	55.14	60 54	73.02	78.38	90 83	96 19
HUAUT	24 0851	7 6688	MÁX VER	2 12	26.90	35 59	41.34	46 86	54.01	59 36	71.74	77 06	89 40	94 72
JACAT	51 1269	10 3055	MÁX VER	2 32	54 90	66 59	74 32	81 74	91 34	98 53	115 16	122.31	138 90	146 04
LAEST	49 3365	11 9215	MOMENTOS	3 72	53 71	67 22	76 16	84 75	95 85	104 18	123 41	131 68	150 87	159 14
MONTE	33 0236	13 1094	MÁX VER	2 90	37.83	52 69	62.53	71.96	84 18	93 33	114 48	123 57	144 68	153.77
PAPAI.	35 4383	11 7954	MOMENTOS	4 99	39 76	53 13	61.98	70 47	81 46	89 70	108 73	116 91	135.90	144 08
SNJUA	20 4565	11 1818	MÁX VER	4 49	24 56	37 23	45 62	53 67	64 09	71 89	89 94	97 69	115 69	123 44
TEMAS	49 3078	10 0135	MÁX VER	2 42	52 98	64 33	71 84	79 05	88 38	95 37	H1 53	118 47	134 59	141 54
VILLA	19 1879	6 0493	MÁX VER	1 37	21 41	28 26	32.80	37.16	42 79	47 02	56 78	60 97	70.71	74 90

TABLA B.10 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 120 min.

ZONA A	DURACIÓN	= 120 min	MÉTODO DE	ERROR	INTENSIDA	DES DE	LUVIA P	ARA DIFE	ERENTES	PERÍODO	S DE RE	rorno, <i>i</i>	, en mm/b	
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR			P	eríodo i	DE RETO	RNO, T,	en años			
111111111		α			2	5	10	26	50	100	500	1000	5000	10000
APAZC	8.0666	3.9097	MOMENTOS	1.54	9.50	13 93	16 87	19 68	23 32	26 05	32.36	35 07	41 37	44 08
ASTAT	12 4122	3.9293	MÁX. VER.	0.98	13.85	18.31	21.26	24.08	27.74	30 49	36.83	39 55	45.88	48.60
AYUTL	9.5567	5.1677	MOMENTOS	2.59	11.45	17 31	21.19	24.91	29 72	33.33	41.67	45 25	53 57	57 15
CALAP	10 7358 .	7.5300	MOMENTOS	3.79	13.50	22 03	27 68	33.10	40.12	45 38	57.52	62 75	74 87	80 09
CALTE	10.2275	4 0628	MOMENTOS	1.24	11 72	16 32	19 37	22 30	26.08	28.92	35.47	38 29	44 83	47 65
COIXT	9 1077	2.7774	MOMENTOS	0.96	10 13	13.27	15 36	17.36	19.95	21.88	26 37	28 29	32 76	34 69
CUEST	8.9216	4 9450	MÁX. VER.	1 87	10.73	16 34	20.05	23.61	28 22	31 67	39.65	43 08	51 04	54 47
ELCAR	11 3710	4.5685	MÁX VER	1 04	13.05	18 22	21 65	24.94	29 20	32 39	39 76	42 93	50 28	53 45
JAYAC	13 4242	6 1059	MÁX VER	1 21	15 66	22 58	27 17	31 56	37 25	41.51	51 36	55 60	65 43	69 66
MAGDA	8.1519	2 5620	MOMENTOS	0.90	9.09	12 00	13.92	15 76	18 15	19 94	24.07	25.85	29 97	31 75
PALMA	7 9293	2 2520	MOMENTOS	1 36	8 76	11 31	13 00	14.62	16 72	18.29	21 92	23 48	27 11	28 67
QUIOT	10 8207	5 1336	MÁX VER	1 16	12 70	18 52	22 37	26 07	30 85	34 44	42 72	46 28	54 54	58 (0
SALINA	15 2541	7 6612	MÁX VER.	2 63	18 06	26 75	32 50	38.01	45 15	50.50	62.86	68 17	80.51	85 82
SNLOR	9 3230	4 3421	MÁX. VER	1 49	10.91	15 84	19 09	22 22	26 27	29 30	36 30	39 32	46 31	49 32
SNMIG	7 5878	3.3526	MOMENTOS	1 79	8 82	12 62	15 13	17.55	20 67	23 01	28.42	30 75	36 14	38 47
SNPED	8 3755	3 9328	MÁX VER	1.49	9.82	14 27	17 23	20 06	23 72	26 47	32 81	35 54	41 87	44 60
SNTIA	5 3352	3.5002	MOMENTOS	2.17	6 62	10 59	13 21	15 73	18 99	21 44	27.08	29 51	35 15	37 57
SNTIT	5 8802	2 7857	MÁX VER	0 82	6.90	10.06	12 15	14 15	16 75	18 70	23.19	25 12	29 61	31 54
SUCHI	7 5160	6.2816	MOMENTOS	4.35	9 82	16 94	21 65	26 17	32 03	36 41	46.55	50 91	61 02	65 37
TELPA	10 3126	4 3230	MOMENTOS	1.95	11 90	16 80	20 04	23.15	27 18	30 20	37.17	40 17	47 13	50 13
TEPEL.	11 1203	5 8345	MOMENTOS	1.63	13 26	19 87	24 25	28.45	33 89	37 96	47.37	51 42	60.81	64 86
TEPEU	11 9609	3 6489	MÁX VER	0 87	13.30	17.43	20 17	22 80	26.20	28 75	34 63	37 17	43 ()4	45.57
XIQUI	9 9641	3.8959	MÁX VER	1 25	11.39	15 81	18 73	21 54	25 17	27 89	34.17	36 87	43 15	45 85
ZONA B	DURACIÓN	= 120 cmin	MÉTODO DE	ERROR	INTEN	SIDADES	DE LLUV	IA PARA I	DIFERENT	TES PERÍ	ODOS DE	RETORN	O, I, EN 1	nm/b
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN	ESTÁNDAR			P	ERÍODO I	DE RETO	RNO, T ,	EN AÑOS			
	u	α			2	5	10	20	50	100	500	1096	5000	10000
ACAYU	19 8033	7 9048	MÁX VER	1 22	22.70	31.66	37 59	43 28	50 65	56 17	68 92	74 40	87 13	92 61
ALOTE	23 0297	6 1676	MÁX VER	2 77	25.29	32 28	36 91	41 35	47.10	51 40	61.35	65 63	75.56	79 84
AZUET	21 8972	9 0057	MÁX VER	1 45	25 20	35.41	42.16	48 65	57 04	63 33	77 86	84 10	98.60	104-84
CANTO	43 8798	11 8864	MOMENTOS	2.59	48 15	61 62	70 54	79 10	90.17	9K 47	117.65	125 89	145 03	153 27
CDALE	31 7897	13 8766	MOMENTOS	5.23	36.88	52 60	63 02	73.01	85 94	95 62	118 01	127 64	149 98	159 M
CUATO	19 3262	9 3887	MÁX VER	1 59	22 77	33 41	40 45	47 21	55.96	62 52	77 66	84 18	99 29	105 80
CUICH	34 9467	8 9280	MÁX VER	2.72	38 22	48 34	55 04	61 47	69 78	76 02	90 42	96 62	110 99	117 18
FORT3	23 0836	6 2298	MOMENTOS	2.63	25 37	32 43	37.10	41 59	47 39	51 74	61.79	66 12	76 14	80 40
HUAUT	21 4570	7 2191	MÁX VER	1.65	24 10	32 29	37 70	42 90	49 63	54 67	66.31	71 32	82 94	87 95
JACAT	44.9721	9 2626	MÁX VER	1.55	48 37	58 87	65 82	72 48	81 11	87 58	102 53	108 95	123 86	130 28
LAEST	43 2849	10.8390	MOMENTOS	3 82	47 26	59 54	67 68	75.48	85.58	93 15	110.63	118 15	135 60	143 12
MONTE	28 6543	11 4985	MÁX VER	2.18	32 87	45 90	54 53	62 81	73 52	81.55	100.10	108 08	126.59	134 56
PAPAL.	30 6695	10 2910	MOMENTOS	4 57	34 44	46 11	53 83	61 24	70 82	78 ()]	94 61	101-75	118 32	125 45
SNJUA	17 5039	9 2122	MÁX. VER	3 84	20 88	31 32	3× 24	44 87	53 45	59 88	74 75	81 14	95 97	102 35
TEMAS	41 4895	8 7537	MÁX VER.	2.51	44 70	54 62	61 19	67 49	75 65	81.76	95 88	101 95	116 05	122 11
VILLA	17 0210	5 3563	MÁX VER	1 46	18 98	25.06	29 08	32.93	37 92	41 66	50 30	54 02	62 64	66.35

TABLA B.11 Parámetros de la función de distribución de probabilidad univariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 1440 min.

			W1111111111111111111111111111111111111							_			
ESTACIÓN	PARÁM	ETROS	SOLUCIÓN			P	ERIODO I	DE RETOR	RNO, T, E	N AÑOS			
	•	α		2	5	10	20	50	100	500	1000	5000	10000
APAZC	1.4038	0 4298	MOMENTOS	1.56	2 05	2 37	2.68	3 08	3 38	4.08	4.37	5 07	5.30
ASTAT	1 6475	0 4772	MOMENTOS	1.82	2 36	2 72	3 07	3 51	3 84	4 61	4.94	5 71	6.0
AYUIL	2 5881	0 9445	MOMENTOS	2.93	4 01	4.71	5 39	6.27	6 93	8.46	911	10 63	11 29
CALAP	L 6971	0.6188	MAX VER	1 92	2 63	3 09	3.54	4 11	4 54	5.54	5 97	6 97	7 4
CALTE	1 5855	0 4548	MAX VER	1 75	2 27	2 61	2.94	3.36	3 68	4 41	4 73	5 46	5 7
COIXT	X	X	INTERPOLADO	2.01	2.70	3.16	3.59	4.16	4.59	5.57	5.99	6.97	7.3
CUEST	x	X	INTERPOLADO	2.21	2.98	3.48	3.96	4.59	5.06	6.15	6.61	7.69	8.1
FLCAR	1 7780	0 4964	MÁX VER	1 96	2 52	2 90	3 25	3 72	4.06	4 86	5 21	6.01	6 3
JAYAC	1 7706	0 7133	MOMENTOS	2.03	2 84	3 18	3.89	4 55	5 05	6 20	6 70	7 85	N 34
MAGDA	1 6728	0 5930	MOMENTOS	1 89	2 56	3 01	3 43	3.99	4 40	5 36	5 77	6 72	7 1
PALMA	x	x	INTERPOLADO	2.18	2.91	3.39	3.86	4.46	4.91	5.95	6.40	7.44	7.89
QUIOT	1 8911	0 6295	MAX VER	2 12	2 84	3 31	3 76	4 35	4 79	5 80	6.24	7 25	7.69
SALIN	1 8181	0.6068	MOMENTOS	2 04	2 73	3 18	3 62	4 19	4 61	5 59	6 01	6 99	7 4
SNLOR	1 7580	0 4159	MOMENTOS	1 91	2 38	2 69	2 99	3 38	3 67	4 34	4 63	5 30	5 50
SNMIG	1 7981	0.5589	MOMENTOS	2 00	2 64	3 06	3 46	3 98	4 37	5 27	5 66	6 56	6 9
SNPED	2.1705	0 8330	MOMENTOS	2.48	3 42	4 05	4 65	5 42	6.00	7 35	7 92	9 27	9 84
SNTIA	1 8664	0 8290	MÁX VER	2.17	3 11	3 73	4 33	5 10	5.68	7 02	7 59	8.93	9 50
SNTIT	1 7170	0.5580	MOMENTOS	1 92	2 55	2 97	3.37	3 89	4 28	5 18	5 57	6 47	6 86
SUCHI	1 9031	0 6562	MOMENTOS	2.14	2 89	3 38	3 85	4 46	4 92	5 98	6 44	7 49	7 95
TELPA	2.2806	1.0588	MOMENTOS	2 67	3.87	4 66	5.43	6 41	7 15	8 86	9.59	11 30	12 03
TEPEL.	1 6050	0.5940	MOMENTOS	1 82	2 50	2 94	3 37	3 92	4 34	5 30	5 71	6 66	7 08
TEPEU	2 3899	0 6991	MAX VER	2.65	3.44	3 96	4.47	5 12	5.61	6.73	7 22	8 34	8.83
XIQUI	1.5784	0 5197	MAX. VER	1.77	2 36	2.75	3 12	3.61	3 97	4 81	5.17	6.01	6 37
ZONA B	DURACIÓN	= 1440 min	MÉTODO DE	INTEN	STDADES	DE LLUVI	A PARA I	DIFERENT	TES PERÍO	DOS DE	RETORN	D, /, EN m	em/h
ESTACIÓN	PARÁM	IETROS	SOLUCIÓN			P	ERÍODO I	DE RETOI	RNO, 7 , E	N AÑOS			
		α		2	5	10	20	50	100	500	1000	5000	10000
ACAYU	3 8699	1 0384	MÁX VER	4 25	5 43	6 21	6 95	7 92	8 65	10 32	11 04	12 71	13 43
ALOTE	X	X	INTERPOLADO	5.24	7.07	8.16	9.21	10.57	11.59	13.94	14.95	17.61	18.31
AZUET	3 7141	1 1812	MOMENTOS	4 15	5 49	6.37	7 22	8 32	9 15	11.05	11 87	13 7H	14 50
CANTO	6 6901	2 3539	MOMENTOS	7 55	10 22	11 99	13 68	15 88	17.52	21 32	22 95	26 74	28 17
CDALE	4 8165	1 2254	MOMENTOS	5 27	6 66	7 57	8 46	9 (4)	10 45	12 43	13 28	15 25	16 10
CUATO	3 2762	2 1719	MOMENTOS	4 07	6.53	8 16	9 73	11 75	13 27	16 77	18 28	21 78	23 28
CUICH	4 6586	1 1352	MOMENTOS	5 08	6.36	7 21	8 03	9 ()9	9 88	11 71	12.50	14 31	15 11
FORTI	3 2476	0 8286	MOMENTOS	3 55	4 49	5.11	5 71	6 48	7.06	8 40	8 97	10 31	10.88
HUAUT	5 8352	1 7173	MOMENTOS	6 47	8 41	9 70	10 94	12.54	13 74	16.51	17 70	20 46	21 65
JACAT	6 3300	2 0113	MOMENTOS	7 37	9 65	11.16	12 61	14 48	15 89	19 13	20 53	23 77	25 10
LAEST	8 1622	2 5940	MOMENTOS	9 11	12 05	14 00	15 87	18 28	20 09	24 28	26 08	30 25	32 0
MONTE	4 9184	1 0970	MÁX VER	5 32	6 56	7.39	8.18	9 20	9 96	11 74	12 50	14 26	15 03
PAPAL.	4 9555	0 8079	MAX VER	5 25	6 17	6 77	7 36	8 11	8 67	9 98	10 54	H 84	12 4
SNJUA	x	x	INTERPOLADO	5.22	7.04	8.13	9.18	10.54	11.55	13.90	14.91	17.56	18.27
TEMAS	5 3202	1 3868	MÁX VER	5.83	7 40	8 44	9 44	10 73	11.70	13 94	14 90	17 13	18 05
VILLA	3 2021	0 9744	MOMENTOS	3.56	4 66	5 40	6.10	7.00	7.68	9 26	9 93	11.50	12 12

ANEXO C " ANÁLISIS DE FRECUENCIA " DISTRIBUCIÓN DE PROBABILIDAD BIVARIADA PARÁMETROS AJUSTADOS Y EVENTOS CALCULADOS

TABLA C.1 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d=5 min.

Z	ONA A	1	DUR	ACIÓN = :	5 min		ERR	OR EN	INTENSIDAD	ES DE LI	JUVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RI	ETORNO,	/, en me	1/h	
ES	TACIÓN		PA	RÁMETR	os		EST	ACIÓN	ESTACIÓN			1	PERÍODO	DE RET	ORNO, 1	, EN AÑ	os		
(1)	(2)	ų l	α1	u 2	αZ	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	ELCAR	65 0558	23 7945	76.5803	25 2892	1.6176	13.55	5.06	APAZC	73 78	100 75	118 60	135 73	157.90	174 51	212 91	229 41	267 72	284 21
ASTAT	AYUTL	80 3730	24.9079	62 2065	19 1357	1 0153	11.82	5 18	ASTAT	89.50	117 73	136.42	154 35	177.56	194 95	235 14	252 42	292 52	309 78
AYUTL	COIXT	62.5086	19 0071	77.6713	16.4806	1 0040	5.17	5.99	AYUTL	69 47	91 02	105 28	118 96	136 67	149 94	180 61	193 80	224 39	237 57
CALAP		X	x	X	X	х	X	X	CALAP	X	X	X	X	X	Х	Х	Х	X	Х
CALTE	QUIOT	87 0249	24 9076	73.9737	39 4098	1.1997	6.58	13 13	CALTE	96.15	124 38	143 08	161 01	184.21	201.60	241 79	259 07	299 17	316 43
COIXT	ASTAT	78 1538	16 5368	80.0334	24.4511	1.6232	5.80	11.87	COIXT	84.21	102 96	115 37	127 27	142.68	154 23	180 91	192 38	219 00	230 46
CUEST	SNPED	62 8162	33.5579	65 3347	27 8443	1 0464	20.06	10.73	CUEST	75.12	113.15	138 33	162.49	193.76	217 19	271 33	294.61	348 63	371 89
ELCAR	JAYAC	73 0118	25 2616	87.2266	23.5315	1.2833	4.07	12.93	ELCAR	82.27	110.90	129.86	148.04	171.58	189 22	229 98	247 50	288 17	305 68
JAYAC	PALMA	87 5913	23.3486	43 6994	34 0424	2 6700	12.84	19 98	JAYAC	96.15	122 61	140 13	156.94	178 70	195.00	232 67	248 87	286 45	302 64
MAGDA	PALMA	77 9580	19 4134	72.8965	29 3357	1 0338	6.36	13 84	MAGDA	85.07	107 08	121 65	135 62	153 71	167 26	198 59	212 05	243 30	256 76
PALMA	CUEST	64 5419	26.0983	57 4367	31 3213	1 0365	6 35	22 61	PALMA	74.11	103 69	123 27	142.06	166 38	184 60	226 71	244.81	286 82	304 92
QUIOT	SNTIA	74 0654	39.4106	45 1417	23 3084	1.0352	13.13	19 33	QUIOT	88.51	133 18	162 75	191 12	227.84	255 36	318 95	346 28	409 73	437 05
SALIN		x	x	x	x	X	х	x	SALIN	X	X	X	X	X	X	X	X	х	X
SNLOR	TEPEU	67 3516	24 2505	86 3737	32 6324	1 6487	8 36	10.61	SNLOR	76.24	103 73	121 92	139 38	161 98	178 91	218 03	234 86	273 90	290 71
SNMIG	TEPEU	60.3068	21 3820	86.7387	33.0575	1 1596	8 18	10 50	SNMIG	68 14	92 38	108.42	123.82	143 74	158 67	193 17	208 00	242 42	257 24
SNPED	SUCHI	67 0606	29 8438	51.9913	26 0103	1 0554	8 87	8 92	SNPED	78 00	111 82	134 22	155 70	183 51	204 35	252 50	273 20	321 24	341 93
SNTIA	SUCHI	45 6949	24 1879	52.1235	23 4683	1 2569	18.75	11 73	SNTIA	54 56	81 98	100 13	117.54	140 07	156.96	195 99	212 77	251 71	268 47
SNTIT	TEPEU	47 6040	28.4963	86 2686	32.5154	1.7546	9 27	10 65	SNTIT	58 05	90 35	111 73	132 24	158 79	178 69	224 67	244 44	290 31	310.00
SUCHI	AYUTI.	57 6062	2H 7177	62 0633	19 1012	1 2617	6.20	5 19	SUCHI	68 13	100.68	122 23	142 90	169 66	189 71	236 05	255 97	302 20	322 10
TELPA	TEPEU	78 1775	35 8156	86.2627	31 9926	1 6858	21 26	10.81	TELPA	91 30	131 90	158.78	184 56	217 93	242 93	300 72	325 56	383 22	408 05
TEPEL	TEPEU	97 7463	25 1278	86 2823	31 7259	1 3882	19 85	10 90	TEPEL	106 96	135 44	154 29	172 38	195 79	213 34	253 88	271 31	311.76	329 18
TEPEU	COIXT	86 6891	34 1126	77 5774	16 1369	1 0008	10 41	6 40	TEPFU	99 19	137.86	163 45	188.01	219 79	243 61	298 65	322 31	377 23	400 88
XIQUI		X	X	Х	X	X	x	Х	XIQUI	<u> </u>	х	x	x	X	X	X	х	х	х
z	ONA B		DUR	ación = :	5 min		ERR	OR EN	INTENSIDAD	ES DE LI	.UVIA PA	RA DIFE	RENTES	PERIOD	OS DE RE	TORNO.	/, EN m	n/h	
ES	TACIÓN	i		PARÁMET	ros		EST	ACIÓN	ESTACION				PERÍODO	DE RET	ORNO, 7	, EN AÑ	os		
(1)	(2)	wl	αl	u2	a2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	JACAT	113 2570	33 6130	174 3635	24 2237	1 2094	10.89	5 10	ACAYU	125 58	163 67	188 90	213 09	244 41	267 88	322 11	345 43	399 54	422 84
ALOTE.	CANTO	143 1201	48 9002	165 3407	41 5114	1 6184	39 08	16 33	ALOTE	161 04	216 47	253 16	288.36	333 93	368 07	446 97	480 89	559 61	593 51
	DADAY	134 1306	33 7221	138 4413	33 9367	1 2076	16 51	6.36	AZUET	146 49	184 71	210 02	234.29	265 71	289 26	343 67	367.06	421 35	444 72
AZUET	PAPAI.	1.34 1300	33 /221						H							471.34	463.16	519.00	547 78
CANTO	PAPAL ALOTE	165 3201	41 5256	143 1562	48 9507	1 6197	16 33	39 05	CANTO	180.54	227 61	258 77	288 66	327 35	356 34	423 34	452 15		547.0
CANTO	ALOTE	165 3201						39 05 16 38			227 61 208 98	258 77 239 54	288 66 268 85	327 35 306 80	356 34 335 23	423 14	429 19	494 75	522 98
CANTO CDALE	CANTO	165 3201 147 8931	41 5256	143 1562	48 9507	1 6197	16 33		CANTO	180.54								494 75 379 69	
CANTO CDALE CUATO	ALOTE CANTO ALOTE	165 3201 147 8931 116 8788	41 5256 40 7244 30 8568	143 1562 164 8563	48 9507 41 4939	1 61 97 1 48 11	16 33 14.59	16 38	CANTO CDALE	180.54 162.82	208 98	239 54	268 85	306 80	335 23	400 94	429 19		522 98
CANTO CDALE CUATO CUICH	ALOTE CANTO ALOTE VILLA	165 3201 147 8931 116 8788 141 6299	41 5256 40 7244	143 1562 164 8563 94.3716	48 9507 41 4939 83 9941	1 6197 1 4811 5.9291	16 33 14.59 9.94	16 38 57 52	CANTO CDALE CUATO	180.54 162.82 128.19	208 98 163 16	239 54 186 32	268 85 208 53	306 80 237 28	335 23 258 82	400 94 308 61	429 19 330 01	379 69	522 98 401 08
CANTO CDALE CUATO CUICH FORTI	ALOTE CANTO ALOTE VILLA LAEST	165 3201 147 8931 116 8788 141 6299 107 5960	41 5256 40 7244 30 8568 53 9820 34.9911	143 1562 164 8563 94.3716 105 1322	48 9507 41 4939 83 9941 16 4657	1 6197 1 4811 5.9291 1 1504	16-33 14.59 9.94 15.88	16 38 57 52 4 99	CANTO CDALE CUATO CUICH	180.54 162.82 128.19 161.41	208 98 163 16 222 60	239 54 186 32 263 11	268 85 208 53 301 97	306 80 237 28 352 26	335 23 258 82 389 96	400 94 308 61 477 05	429 19 330 01 514 50	379 69 601 40	522 98 401 08 638 82
CANTO CDALE CUATO CUICH FORTI HUAUT	ALOTE CANTO ALOTE VILLA LAEST VILLA	165 3201 147 8931 116 8788 141 6299 107 5960 101 0673	41 5256 40 7244 30 8568 53 9820	143 1562 164 8563 94.3716 105 1322 147 7270	48 9507 41 4939 83 9941 16 4657 34 0023 16 4501	1 6197 1 4811 5.9291 1 1504 1 7457	16.33 14.59 9.94 15.88 27.34	16 38 57 52 4 99 14 38	CANTO CDALE CUATO CUICH FORTI	180.54 162.82 128.19 161.41 120.42	208 98 163 16 222 60 160.08	239 54 186 32 263 11 186 34	268 85 208 53 301 97 211.53	306 80 237 28 352 26 244 13	335 23 258 82 389 96 268.56	400 94 308 61 477 05 325 02	429 19 330 01 514 50 349 29	379 69 601 40 405 62	522 98 401 08 638 82 429 87
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT	ALOTE CANTO ALOTE VILLA LAEST VILLA CANTO	165 3201 147 8931 116 8788 141 6299 107 5960 101 0673 174 9294	41 5256 40 7244 30 8568 53 9820 34,9911 22,6619 24 7179	143 1562 164 8563 94.3716 105 1322 147 7270 104 7290 165 8082	48 9507 41 4939 83 9941 16 4657 34 0023 16 4501 42 1370	1 6197 1 4811 5.9291 1 1504 1 7457 1 0019 1 2478	16 33 14.59 9.94 15.88 27.34 8 60	16 38 57 52 4 99 14 38 4 98	CANTO CDALE CUATO CUICH FORTI HUAUT	180.54 162.82 128.19 161.41 120.42 109.37	208 98 163 16 222 60 160.08 135 06	239 54 186 32 263 11 186 34 152 06	268 85 208 53 301 97 211.53 168 38	306 80 237 28 352 26 244 13 189 49	335 23 258 82 389 96 268.56 205 32	400 94 308 61 477 05 325 02 241 88	429 19 330 01 514 50 349 29 257 60	379 69 601 40 405 62 294 08	522 98 401 08 638 82 429 87 309 79
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST	ALOTE CANTO ALOTE VILLA LAEST VILLA CANTO TEMAS	165 3291 147 8931 116 8788 141 6299 107 5960 101 0673 174 9294 150 0517	41 5256 40 7244 30 8568 53 9820 34.9911 22.6619 24 7179 36 9370	143 1562 164 8563 94.3716 105 1322 147 7270 104 7290	48 9507 41 4939 83 9941 16 4657 34 0023 16 4501	1 6197 1 4811 5.9291 1 1504 1 7457 1 0019	16-33 14-59 9.94 15.88 27.34 8-60 4-80	16 38 57 52 4 99 14 38 4 98 16 42	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT	180.54 162.82 128.19 161.41 120.42 109.37 183.99	208 98 163 16 222 60 160.08 135 06 212 00	239 54 186 32 263 11 186 34 152 06 230 55	268 85 208 53 301 97 211.53 168 38 248 35	306 80 237 28 352 26 244 13 189 49 271 38	335 23 258 82 389 96 268.56 205 32 288 64	400 94 308 61 477 05 325 02 241 88 328 52	429 19 330 01 514 50 349 29 257 60 345 66	379 69 601 40 405 62 294 08 385 45	522 98 401 08 638 82 429 87 309 79 402 59
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE	ALOTE CANTO ALOTE VILLA LAEST VILLA CANTO TEMAS ALOTE	165 3201 147 8931 116 8788 141 6299 107 5960 101 0673 174 9294 150 0517 137 5368	41 5256 40 7244 30 8568 53 9820 34.9911 22.6619 24 7179 36 9370 32 7854	143 1562 164 8563 94.3716 105 1322 147 7270 104 7290 165 8082 172 8637 136 7722	48 9507 41 4939 83 9941 16 4657 34 0023 16 4501 42 1370 37 3068 44 9432	1 6197 1 4811 5.9291 1 1504 1 7457 1 0019 1 2478 1 4778 1 0698	16 33 14.59 9.94 15.88 27.34 8 60 4 80 12 54 9 19	16 38 57 52 4 99 14 38 4 98 16 42 14 32	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAIST MONTH	180.54 162.82 128.19 161.41 120.42 109.37 183.99 163.59	208 98 163 16 222 60 160.08 135 06 212 00 205 46	239 54 186 32 263 11 186 34 152 06 230 55 233 17	268 85 208 53 301 97 211.53 168 38 248 35 259.76	306 80 237 28 352 26 244 13 189 49 271 38 294 18	335 23 258 82 389 96 268.56 205 32 288 64 319 97	400 94 308 61 477 05 325 02 241 88 328 52 379 56	429 19 330 01 514 50 349 29 257 60 345 66 405 19	379 69 601 40 405 62 294 08 385 45 464 65	522 98 401 08 638 82 429 87 309 79 402 59 490 25
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE PAPAL	ALOTE CANTO ALOTE VILLA LAEST VILLA CANTO TEMAS ALOTE CUATO	165 3201 147 8931 116 8788 141 6299 107 5960 101 0673 174 9294 150 0517 137 5368 139 6722	41 5256 40 7244 30 8568 53 9820 34.9911 22.6619 24 7179 36 9370 32 7854 36 4709	143 1562 164 8563 94.3716 105 1322 147 7270 104 7290 165 8082 172 8637 136 7722 116 6291	48 9507 41 4939 83 9941 16 4657 34 0023 16 4501 42 1370 37 3068 44 9432 30 7654	1 6197 1 4811 5.9291 1 1504 1 7457 1 0019 1 2478 1 4778 1 0698 1 4695	16 33 14.59 9.94 15.88 27.34 8 60 4 80 12 54 9 19 4 42	16 38 57 52 4 99 14 38 4 98 16 42 14 32 43 00	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST	180.54 162.82 128.19 161.41 120.42 109.37 183.99 163.59 149.55	208 98 163 16 222 60 160.08 135 06 212 00 205 46 186 71	239 54 186 32 263 11 186 34 152 06 230 55 233 17 211 32	268 85 208 53 301 97 211.53 168 38 248 35 259.76 234 92	306 80 237 28 352 26 244 13 189 49 271 38 294 18 265 46	335 23 258 82 389 96 268.56 205 32 288 64 319 97 288 35	400 94 308 61 477 05 325 02 241 88 328 52 379 56 341 25	429 19 330 01 514 50 349 29 257 60 345 66 405 19 363 99	379 69 601 40 405 62 294 08 385 45 464 65 416 77	522 98 401 08 638 82 429 87 309 79 402 59 490 25 439 50
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE	ALOTE CANTO ALOTE VILLA LAEST VILLA CANTO TEMAS ALOTE	165 3201 147 8931 116 8788 141 6299 107 5960 101 0673 174 9294 150 0517 137 5368	41 5256 40 7244 30 8568 53 9820 34.9911 22.6619 24 7179 36 9370 32 7854	143 1562 164 8563 94.3716 105 1322 147 7270 104 7290 165 8082 172 8637 136 7722	48 9507 41 4939 83 9941 16 4657 34 0023 16 4501 42 1370 37 3068 44 9432	1 6197 1 4811 5.9291 1 1504 1 7457 1 0019 1 2478 1 4778 1 0698	16 33 14.59 9.94 15.88 27.34 8 60 4 80 12 54 9 19	16 38 57 52 4 99 14 38 4 98 16 42 14 32 43 00 9 94	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAIST MONH PAPAL	180.54 162.82 128.19 161.41 120.42 109.37 183.99 163.59 149.55 153.04	208 98 163 16 222 60 160.08 135 06 212 00 205 46 186 71 194 38	239 54 186 32 263 11 186 34 152 06 230 55 233 17 211 32 221 75	268 85 208 53 301 97 211.53 168 38 248 35 259.76 234 92 248 00	306 80 237 28 352 26 244 13 189 49 271 38 294 18 265 46 281 98	335 23 258 82 389 96 268.56 205 32 288 64 319 97 288 35 307 44	400 94 308 61 477 05 325 02 241 88 328 52 379 56 341 25 366 29	429 19 330 01 514 50 349 29 257 60 345 66 405 19 363 99 191 59	379 69 601 40 405 62 294 08 385 45 464 65 416 77 450 30	522 98 401 08 638 82 429 87 309 79 402 59 490 25 439 50 475 58

TABLA C.2 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 10 min.

Z	ONA A		DURA	ACIÓN = 1	0 min		ERR	OR EN	INTENSIDAD	DES DE LL	.UVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RI	TORNO.	/, en ma	/h	
ES	TACIÓN		PA	RÁMETRO	os		EST	ACIÓN	ESTACIÓN			1	PERIODO	DE RET	ORNO. 7	, EN AÑ	os		
(1)	(2)	ul	α1	=2	0.2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	TEPEU	44.6285	17.5598	62.7279	24 9533	1 0030	11 17	8 01	APAZC	51.06	70 97	84 14	96 78	113.15	125.41	153 74	165.92	194-19	206 36
ASTAT	TELPA	60.2705	21.8373	53.0154	21.7123	1 0427	4.96	15.83	ASTAT	68 27	93.03	109.41	125.13	145.48	160 73	195 96	211 11	246 26	261 40
AYUTL	TELPA	45.4461	12 9794	51 5781	22 7193	1 3140	3.88	15.36	AYUTL	50 20	64 91	74 65	84 00	96 09	105.15	126 09	135 10	155 99	164 99
CALAP		x	K	×	X	X	X	x	CALAP	X	X	X	X	x	x	x	x	X	X
CALTE	SNLOR	60.2520	20.1470	46 2819	7.6215	1 0099	4 41	5.44	CALTE	67.64	90.47	105.59	120.09	138 86	152 93	185 44	199 41	231 85	245 81
COIXT	SNLOR	55.7120	12 3949	49 2342	8 4357	1 0123	3 73	5.16	COIXT	60.25	74 30	83 61	92 53	104 08	112 73	132 73	141 33	161 28	169.87
CUEST	SUCHI	47 5686	24 0648	40.9920	15 4766	2 4807	16 50	6 25	CUEST	56 39	83 66	101 72	119 05	141.47	158 27	197 10	213 79	25 2 53	269 21
ELCAR	MAGDA	54 3944	18 4819	49 OR53	10.0640	1 0004	5 41	13-16	ELCAR	61 17	82 12	95 99	109 29	126 51	139 41	169-23	182 05	211.81	224 62
JAYAC	TEPEL	59 5153	19 0468	63 6434	17 5024	1.1193	6 74	15.41	JAYAC	66 50	88 08	102 38	116 09	133.83	147 13	177.86	191 (18	221 74	234.94
MAGDA	ASTAT	49 2910	10.9801	58 7026	19 3210	1 2214	12 53	7 32	MAGDA	53 32	65 76	74 (0)	81.90	92 13	99 80	117.52	125 13	142.81	150 42
PALMA	SNMIG	40 3632	17 2330	42 6844	14 7430	1 7716	4 86	10.98	PALMA	46 68	66 21	79 14	91 55	107 61	119 64	147 44	159.40	187 14	199 ()(
QUIOT	SNTIA	50 7613	26 9569	36 0930	23 6268	1 1039	6 01	23 43	QUIOT	60 64	91.20	111 42	130 83	155 95	174 77	218.26	236.96	280.36	299 (14
SALIN		x	x	×	x	x	x	x	SALIN	X	x	x	x	x	X	X	X	x	X
SNLOR	ELCAR	47 8663	8.3001	54 9276	20 1494	1 1310	4 86	5 90	SNLOR	50.91	60 32	66 54	72 52	80 25	86 05	99 44	105 20	118.56	124 31
SNMIG	OUIOT	44.7739	16 3927	50 7158	26 5368	1 3007	10 28	611	SNMIG	50.78	69 36	81.66	93 46	108 74	120 18	146 63	158 00	184 39	195.76
SNPED	COIXT	44 6298	19.3394	54 3078	9 2678	1 0221	7.19	5.54	SNPED	51 72	73 64	88 15	102 07	120 09	133 59	164 80	178 21	209.35	222 75
SNTIA	CUEST	32 7835	23 5004	42 1863	16 5649	3 0073	23.57	22 22	SNTIA	41 40	68 03	85 67	102 58	124 48	140.89	178.81	195 11	232 94	249 23
SNTIT	AYUTI.	34 0376	16.1918	44 7757	13 2100	1 0022	6 15	3.93	SNTIT	39 97	58 32	70 48	82 13	97.22	108 52	134 65	145 88	171 94	183 17
SUCHI	AYUTI.	42.5741	17 2665	45 1949	13 2265	1 1954	5.26	3 91	SUCHI	48.90	68 47	81 43	93 86	109 95	122 00	149 86	161 84	189 63	201.60
TELPA	QUIOT	54.2949	23.7980	50 2762	25 7956	1.2257	14.15	6.45	TELPA	63 02	89 99	107 85	124.98	147 15	163 77	202 17	218 67	256 98	273 48
TEPEL	QUIOT	65 1795	18.7391	49.7770	25.3684	1.2578	14.58	6.81	TEPEL	72 05	93.29	107 35	120 84	138 30	151-38	181 62	194 61	224 78	237 77
TEPEU	SNMIG	61 5685	26 7742	43 7569	15 2161	1 0245	7 49	10 63	TEPEU	71.38	101 73	121 82	141 09	166 04	184 73	227 93	246 50	289 61	308 17
XIOUI	3	X	X	X	X	X	x	X	XIQUI	X	X	X	X	X	X	X	X	X	X
7	ONA B	Ť · · · ·	DX DR	ACIÓN = 1	0 min		FRR	OR EN	INTENSIDAD	DES DE LI	LIVIA PA	RA DIFF	RENTES	PERÍOD	OS DE RE	TORNO	/. FN me	n/h	
_			000																
E.	STACIÓN			PARÁMET	IROS		EST	ACIÓN	ESTACIÓN						ORNO, T				
(1)	(2)	o)	αl	u2	α.2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	SNJUA	82 8691	26 6811	92 7881	37 8624	1 0045	9 85	13 82	ACAYU	92 65	122 89	142 91	162 12	186 98	205 61	248.00	267 16	310 11	128 01
ALOTE	AZUET	97 4799	28 1586	102 2127	32 2136	3 7025	10 28	10 02	ALOTE	107 80	139 72	160 85	181 12	207 35	227 01	272 45	291 98	337 31	356 83
AZUET	FORTI	101 5802	31 4906	83 1388	27 9687	1 0045	9 75	14 83	AZUFT	113 12	148 81	172 45	195 11	224 45	246 44	297 25	319 09	369.79	191 62
CANTO	VILLA	132 2574	24 8509	70 4778	15 0676	1 3335	9 33	3 20	CANTO	141 37	169 53	188 18	206 07	229 22	246 58	286 67	303.91	343 91	361-14
CDALE	MONTE	121 2376	28 9210	113 2118	23 7843	4674	5 11	8 94	CDALE.	131 84	164 62	186 32	207 14	234 09	254 28	300 94	321 00	367 56	387 61
CUATO	TEMAS	89 4381	29 3741	138 5564	22 3582	1 0212	10.18	10 36	CUATO	100-20	133 50	155.54	176 69	204 05	224 56	271 96	292 33	339 62	359 98
CUICH	HUAUT	110 7964	32 9093	74 7327	16 4450	1 4417	12 41	3 59	CUICH	122 86	160 16	184 85	208 54	239.21	262 18	315.28	338 11	391 (19	413 90
FORTI	TEMAS	81 4131	28 2319	137 0176	22 7340	1 3173	14 02	10 26	FORTI	91.76	123 76	144 95	165 27	191 57	211 28	256.83	276 42	321 87	141 44
HUAUT	CDALE	73 8811	18 4841	116 8601	29 6120	1 0392	3 48	6.04	HUAUT	80 66	101 61	115 48	128 78	146 00	158 91	188 73	201 56	231 31	244 12
JACAT	MONTE	136 3732	14 4105	116.4021	24 0090	1 1813	4 00	8 93	JACAT	141 65	157 99	168 80	179 18	192 60	202 66	225 91	235 91	259 []	269 10
LAEST	AZUET	131 2032	20 7514	102 0106	32.1706	1 1356	8 22	9 99	LAEST	138 81	162 33	177 90	192 84	212.17	226.66	260-14	274 54	307 94	322 13
MONTE	SNJUA	115.2319	23 5731	105 3819	34 5576	4 4694	8 56	25 05	MONTE	123 87	150 59	168-28	185 25	207.21	223 67	261.71	278 06	316 01	332 15
PAPAL.	HUAUT	110 1988	30 2038	76 0674	17 1674	1 0321	9 19	3 79	PAPAI.	121 27	155.50	178 17	199 91	228 05	249 14	297 87	318.82	367.45	88 48F
SNJUA	TEMAS	86 3890	42 0823	137 1594	22.8774	2 4691	10.82	10 11	SNJUA	101.81	149 51	181 09	211 38	250 59	279 97	347 87	377 06	444 81	473 98
TEMAS	ACAYU	137.7183	24 0894	86 5654	28 7086	1 2486	9 09	10 37	TEMAS	146 55	173 85	191 93	209 27	231 71	248 53	287 40	304 11	342.89	159 59
VILLA	TEMAS	69.7514	15 8125	139 0979	26 9548	1 1960	2 74	8 01	VILLA	75 55	93 47	105 34	116 72	131 45	142 49	168 00	178 97	204 43	215 39

TABLA C.3 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 15 min.

2	ONA A		DUR	ACIÓN = 1	5 min		ERRO	OR EN	INTENSIDAL	DES DE LA	JIVIA PA	ARA DIFE	RENTES	PERÍOD	OS DE RI	ETORNO,	/, en ma	ı/b	
ES	STACIÓN		P	NRÁMETR	os		EST/	ACIÓN	ESTACIÓN				PERÍODO	DE RET	ORNO, I	, en añ	os		
(1)	(2)	u1	αl	u2	a.2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	JAYAC	37 8037	14 2229	47 4475	17 7599	1 0711	4 60	7 59	APAZC	43 02	59 14	69 81	80 05	93 30	103 23	126 18	136 04	158 94	168 80
ASTAT	AYUTI.	49.7570	18 7400	36 9887	10 8491	1 0252	5.14	5 13	ASTAT	56.63	77.87	91.93	105.42	122 88	135 96	166-20	179 20	209 37	222 36
AYUTL	CALTE	37.2248	11 6457	50.0544	16.4269	1.3444	4 61	3 67	AYUTL	41 49	54 69	63.43	71.81	82 67	90.80	109 59	117.66	136 41	144 48
CALAP		x	- X	x	X	X	X	X	CALAP	X	X	x	X	x	X	X	X	x	x
CALTE	JAYAC	50 4851	17 3108	47.5779	17.8680	1 3632	3 19	7.66	CALTE	56 83	76.45	89 44	101 90	118.03	130 12	158 05	170 06	197 92	209 92
COIXT	ASTAT	45 4575	11 9622	49.1921	17 8307	1 2307	3 78	5 66	COIXT	49 84	63 40	72 38	80 99	92 13	100 49	119 79	128 08	147 34	155 63
CUEST	ELCAR	39 3785	19 4252	46 1710	15 9870	1 2387	12.55	5 26	CUEST	46.50	68 52	83 09	97 08	115 17	128.74	160 08	173 55	204 82	218 29
ELCAR	SNTTT	46 4157	15 7244	27 2822	13 8540	1 0151	5 23	4 83	ELCAR	52.18	70 00	81 80	93 12	107 77	118 75	144 12	155 03	180 34	191 24
JAYAC	SNTIA	47.1326	17 3821	25 5356	13 5228	1 0029	7 42	22 53	JAYAC	53 50	73 20	86 25	98 76	114 96	127 09	155 14	167 20	195 18	207-23
MAGDA	CUEST	37 8449	10 0704	39 6451	21 7490	1 0153	6 44	12 07	MAGDA	41 54	52 95	60.51	67 76	77 14	84 17	100 42	107 40	123 62	130 60
PALMA	QUIOT	34 9367	14 6719	41 3086	22 3402	1 0743	9 13	6.00	PALMA	40 31	56 94	67.95	78 52	92 19	102 43	126 10	136 28	159 90	170 07
QUIOT	SNLOR	42 4259	22 6068	36 4387	7 2391	1 7691	5.82	3 49	QUIOT	50.71	76 33	93 30	109 57	130 64	146 42	182 90	198 58	234 97	250 64
SALIN		×	X	X	X	X	X	x	SALIN	X	X	X	X	X	X	X	X	X	x
SNLOR	PALMA	35 3502	7 9571	36.4127	16 3801	1 0606	2 77	8 35	SNLOR	38 27	47 29	53 26	58 98	66 40	71 95	84 79	90 31	103 12	108 64
SNMIG	QUIOT.	34 9329	13 7029	42 25H6	22 7048	1 2800	7.59	5 H2	SNMIG	39 96	55 49	65 77	75 63	88 40	97 97	120 08	129 58	151 64	161 14
SNPED	JAYAC	37 4856	17 2245	48 2877	18 6192	1 1123	5 99	8 23	SNPED	43 80	63 32	76 25	88 65	104 69	116 72	144 51	156.46	184 19	196-13
SNTIA	CUEST	23 9851	18 7155	35 5096	13 9368	2 5615	20 17	16 98	SNTIA	30 84	52 06	66 10	79 57	97 01	140.08	140 28	153-26	183 39	196.36
SNTIT	AYUTE	28 3045	14 6712	36 3379	10 8569	1 0278	4 33	5 30	SNTIT	33 68	50 31	61 32	71 88	85 55	95 79	119 47	129 64	153-26	163.43
SUCHI	PALMA	33 8781	14 4215	34 7164	13 7099	1 0019	2 83	9.88	SUCHI	39 16	55 51	66 33	76 71	90 15	100-22	123 49	133 49	156.71	100 70
TELPA	APAZC	41 7183	19 1175	36.6495	13 8363	1 0662	10 36	5 10	TELPA	48.73	70 39	84 74	98.50	116 31	129 66	160.51	173 77	204 54	217.80
TEPEL.	QUIOT	50 6114	17 9582	41 6271	21.7532	1 2618	14.43	6 08	TEPFI	57.19	77.55	91 02	103.95	120 68	133 22	162 20	174 65	203.56	216 01
TEPEU	JAYAC	48 4145	20 5042	47 3715	17 4613	1 3902	4 58	7 45	TEPEU	55.93	79.17	94 56	109 32	128 42	142 74	175 82	190 04	223 05	237 26
XIQUI		X	x	X	X	х	Х	Х	XIQUI	Х	X	<u> </u>	X	X	x	X	X	Х	X
2	CONA B		DUR	ACIÓN = 1	5 min		ERRO	OR EN	INTENSIDAL	DES DE LI	JUVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	ETORNO,	/, EN ma	an∕h	
E	STACIÓN		P	RÁMETR	os		ESTA	ICIÓN	ESTACIÓN			1	PERÍODO	DE RET	ORNO, 7	EN AN	os	- variety-si-	
(1)	(2)	ul	αΙ	u2	a.2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	ALOTI.	74 3962	24 3037	75 3519	18 1810	1.0005	7.45	19.12	ACAYU	83.30	110 85	129 09	146 58	169 23	186-20	225.41	242 27	281 19	298-24
ALOTE	CANTO	77 2053	22.6721	117 5937	23.3106	1 9787	15 50	10.19	ALOTE	85 51	111-21	128 23	144.55	165 67	181 50	218 08	233 81	270 11	286 02
AZUET	ALOTE	84 0881	27 0987	79 3487	20 8351	1 2289	5 30	16.20	AZUET	94 02	124 73	145 07	164 58	189 83	208 75	252 47	271 27	314 89	333 67
CANTO	JACAT	117 6611	23 1925	124 4339	10 1325	1 4674	10.10	2 42	CANTO	126 16	152 45	169 85	186 55	208 16	224 35	261 77	277 86	315 19	331 27
CDALE	CANTO	103 3114	28 0102	118 1144	23 5647	1 3889	7 96	10 45	CDALE	113.58	145_33	166 34	186 51	212 61	232 16	277 36	296 78	341 KK	361 29
CUATO	TEMAS	74 7787	25 7669	117 9635	19 5704	1 0121	8.11	4 72	CUATO	84 22	113.43	132 76	151 31	175 32	193 31	234 88	252 76	294 24	312 10
CUICH	CDALI:	93 1491	26 3057	103 5246	25 8478	1 0002	9 71	8 50	CUICH	102 79	132 61	152.35	171 28	195 79	214 16	256 60	274 85	317.20	335 43
FORTT	TEMAS	68 2848	19 6105	118 3808	19 3684	1 2532	5.62	4 75	FORTI	75.47	97 70	112 42	126.53	144 80	158.50	190 14	203 74	235 31	248 90
HUAUT	SNJUA	61 5143	13 7446	74 0334	41 0828	2 0924	3.35	10 52	HUAUT	66.55	82 13	92 44	102 34	115.15	124 74	146 92	156 45	178 58	188 11
JACAT	CANTO	124 4359	10 1377	117 6699	23 1998	1 4682	2 42	10 11	JACAT	128 15	139 64	147 25	154 55	163 99	171 07	187 43	194 46	210 78	217 81
LAEST	MONTE:	111 2679	23 3025	100 2706	20 8151	1 2020	5 04	6 47	LAEST	119.81	146 22	163 71	180.48	202 19	218 46	256-06	272 22	309 74	325 89
MONTE	JACAT	98 3580	19 6268	124 7036	9 4295	1.2317	5.80	2.85	MONTE	105.55	127 80	142.53	156.65	174 94	188 64	220 31	233 93	265 52	279 13
PAPAL.	CDALE	95 5746	30 6048	107 2867	27 7405	1 9586	7 53	8 68	PAPAL	106 79	141 48	164 45	186 48	214 99	236.36	285 74	30h 97	356 24	377 45
SNJUA	TEMAS	76 0810	35 6640	118 1580	19 3046	1 4859	10 16	4 78	SNJUA	89 15	129 57	156 34	182 01	215 24	240 14	297 68	322 42	179 83	404 56
TEMAS	MONTE	118 6268	19 8858	97 6519	19 4213	1 2400	4 66	5 95	TEMAS	125 92	148 45	163-38	177 69	196 22	210 10	242 19	255 98	288 (N)	301.78
VILLA	MONTE	58 8426	12.8366	99 5522	20 6046	1 1333	2 41	6 18	VILLA	63 55	78 10	87.73	96 97	108 93	117 89	138 60	147 51	168 17	177 07

TABLA C.4 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 20 min.

Z	ONA A		DURA	CIÓN = 2) andm		ERR	OR EN	INTENSIDAI	DES DE LI	JIVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RI	ETORNO.	, /, ca ma	n/h	
E.S	STACIÓN		PA	RÁMETRO	os		EST	ACIÓN	ESTACIÓN			-	PERÍODO	DE RET	ORNO, 7	, EN AÑ	ios		
(1)	(2)	ul	αl	u2	œ2	-	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	CALTE	31 2278	14 5338	40 7865	15 1188	1 0089	3 49	3.70	APAZC	36.55	53 03	63 93	74 40	87 94	98 09	121 53	131 62	155 01	165.09
ASTAT	SUCHI	46 1118	18 0802	31 6106	13 2594	1 6029	4 69	3 69	ASTAT	52 74	73 23	86 80	99 81	116 66	129 28	158 46	171 00	200 10	212 64
AYUTL	CALTE	32.4962	11.5368	40 0726	13 9462	1 3761	3 97	4 19	AYUTI.	36 72	49 80	58 46	66.76	77.51	85 57	104 18	112 18	130 76	138.75
CALAP		X	X	X	X	X	х	х	CALAP	X	X	X	X	X	x	х	X	X	х
CALTE	JAYAC	40 9579	15.0658	40 5758	16 6330	1.3807	3 70	5 56	CALTE	46 48	63 56	74 86	85 71	99.74	110.26	134 57	145 02	169 27	179 72
COIXT	CALTE	40 4615	13.6543	41.0679	14 6675	1.9256	3.63	3 74	COIXT	45 47	60 94	71 19	81 02	93 74	103.27	125 30	134 78	156 76	166 22
CUEST	PALMA	32 7231	18 4036	28 9116	10 5656	1.0173	9 47	10 94	CUEST	39 47	60 33	74 14	87 39	104.53	117 38	147 08	159 84	189 47	202 23
ELCAR	PALMA	40 1368	14.1308	29 0319	11 3031	1 0001	4.26	10 26	ELCAR	45 32	61 33	71 94	82 11	95 27	105 14	127 94	137 74	160 49	170 29
JAYAC	TEPEL	40 3202	15.8614	40 3763	14 2017	1 2311	5 24	10 43	JAYAC	46 13	64 11	76 01	87 43	102 21	113 28	138 88	149 88	175 41	186 41
MAGDA	CALTE	30.3420	8.9506	40 4582	14 9196	1.0131	6 81	3.75	MAGDA	33.62	43 77	50 48	56 92	65 27	71 52	85 96	92 17	106 57	112 78
PALMA	CALTE	31 6674	13 1012	40 3699	14 4064	1 2834	8.98	3 89	PALMA	36 47	51 32	61 15	70 58	82.79	91 93	113 07	122 16	143 25	152 33
QUIOT	COIXT	37 4845	20 0650	40 5572	12 7013	1 0218	5 25	4 24	QUIOT	44 84	67 58	82 64	97 08	115 78	129.79	162 16	176 08	208 38	222 29
SALIN		X	X	X	X	X	X	X	SALIN	X	X	X	X	X	X	X	X	X	X
SNLOR	PALMA	28 6771	9 0275	25 9394	13 5720	1 1002	2 23	9 64	SNI.OR	31 99	42 22	48 99	55 49	63 90	70 21	84 77	91 03	105.57	111-82
SNMIG	SNTIT	27 8683	12 1928	23 1087	11 2198	1 6730	5 37	4 37	SNMIG	32 34	46 16	55 31	64 08	75 44	83 96	103 63	112 09	131 72	140 17
SNPED	ELCAR	29 4877	14 5005	41 5857	14 4456	1.5330	5 87	4 65	SNPED	34 80	51 24	62 12	72 56	86 07	96 19	119.59	129 65	152 99	163 04
SNTIA	CUEST	20 0359	14 4824	30 8639	11 6150	2 1785	18 62	15 61	SNTIA	25 34	41.76	52 63	63 05	76 55	86 66	110 02	120 07	143 36	153 42
SNTIT	ASTAT	23 5655	11 7912	45 4655	18 0137	1 2780	4 01	4 79	SNTIT	27 89	41.25	50 10	58 59	69 57	77 81	96.83	105 01	123 99	132 17
SUCHI	ASTAT	31 6108	13 2577	46 1082	18 0787	1 6031	3 69	4 69	SUCHI	36 47	51.50	61 45	70 99	83 34	92 60	113 99	123 18	144 53	153 72
TELPA	SNTIA	37 1575	16 1978	20 2307	10 8508	2 2499	10 17	20 47	TLLPA	43 09	61.45	73 61	85 27	100.36	111 67	137.80	149 04	175 12	186 34
TEPEL	QUIOT	41 4197	14.5493	37 0017	19 8619	1 2632	10 17	5 31	TEPUL.	46.75	63 24	74 16	84 63	98 19	108 35	131 82	141 92	165 34	175 42
TEPLU	JAYAC	41 1768	18 5842	40 3447	16 0452	1 4848	3 75	5 30 X	TEPEU	47 99 X	69 05 X	83 00 X	96 38 X	113 69	126 67	156 65	169 54	199.46	212 34
XIQUI		×	х	X	<u> </u>	<u> </u>	X		XIQUI					X	X	X	X	Х	X
Z	CONA B		DURA	CIÓN = 20	min		ERRO	OR EN	INTENSIDAL	DES DE LL	UVIA PA	RA DIFE	RENTES	PERIOD	OS DE RE	TORNO,	/, EN mu	m/h	
ES	STACIÓN		:	PARÁMET	ROS		ESTA	ACIÓN	ESTACIÓN				PERÍODO	DE RET	ORNO, T	, EN AÑO	os		
(1)	(2)	w1	αl	u2	a 2	m m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	MONTE	65 3153	22 1553	88 0500	20 8835	1 0035	4 74	5 20	ACAYU	73 44	98.55	115 17	131 12	151.76	167 23	202 98	218 35	254 01	269 37
ALOTE	CANTO	73.4800	23 9807	109 3514	21 4372	2 2681	12 29	10 24	ALOTE	82 27	109 45	127 45	144 71	167 05	183 79	222 49	239 12	277 73	294-35
AZUET	CDALE	71 1282	25 6155	95 9035	29 4583	1 3205	5 25	7 68	AZUET	80 52	109.55	128 77	147 21	171 08	188 96	230 29	248 06	289 30	307 05
CANTO	JACAT	109 1466	21 4014	112 5977	11 3283	1 5732	10 20	1 62	CANTO	116 99	141 25	157 31	172 71	192 65	207 60	242 13	256 97	291 42	306 26
CDALE	CANTO	94 8048	29 6401	109 8599	21 7857	1 3279	7 61	10 59	CDALE	105 67	139 26	161 51	182 84	210 46	231 15	278 98	299 54	347 25	367 80
CUATO	ALOTE	66 2458	24 8594	67 8678	17 2265	1 4362	7 29	17.97	CUATO	75 36	103 53	122 19	140.08	163 25	180 60	220 71	237 96	277 98	295 21
CUICH	HUAUT	86 6856	23 1776	54 8357	16 0586	1.5341	9 12	3 93	CERCH	95 18	121 45	138 84	155.53	177 12	193 31	230 70	246 78	284 09	300 16
FORTI	CANTO	58 7037	17 6774	109 5394	21 6270	1.4204	6 28	10 41	FORTI	65 18	85 22	98 48	F11 21	127 68	140 02	168 54	180 81	209 26	221 52
HUAUT	SNJUA	54 5522	15 0203	60 6430	34 4272	2 2940	3 60	10.81	HUAUT	60 06	77 08	88.35	99 17	113-16	123 65	147 88	158 30	182 48	192 89
JACAT	CANTO	112.5891	11 3254	109 1236	21 3813	1 5705	1.63	10 18	JACAT	116 74	129 58	138 08	146 23	156 78	164 69	182 96	190 82	209 05	216.90
LAEST	ACAYU	100 5848	21 4520	65 6958	22 3213	1.0005	5 40	4 83	LAEST	108 45	132 76	148 86	164 30	184 29	199 27	23.1 8K	248 76	283 29	298-16
MONTE	JACAT	87 1748	20 6529	112 7698	10 2587	1 2094	5 25	2 19	MONTE	94 74	118 15	133.65	148 52	167 76	182 18	215 50	229 83	263 08	277 19
PAPAL.	CDALE:	K5 5642	30 0687	97 9404	29 1932	1 8901	7.55	8 18	PAPAL	96.58	130 67	153.23	174 H7	202 89	223 KB	272 40	293 26	341 06	362 51
SNJUA	VILLA	63 2907	31 1514	50 7225	12 5817	1 0063	10 77	1 65	SNJUA	74 71	110 02	133.39	155 82	184 84	206 59	256 85	278 46	328 61	350 20
TIMAS	CUATO	105 8066	19 7821	66 7284	25 1596	1 2202	3 67	7 59	TEMAN	113 06	135.48	150-32	164-56	183 00	196 81	228 72	242 45	274 29	288 O1
VILLA	CANTO	49 9300	12 6928	109 5973	21 7003	E 5921	1 75	10.48	VILLA	54.58	68 97	78 49	87 63	99 46	108.32	128 RO	137 60	158 04	FR OOL

TABLA C.5 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 30 min.

Z	DNA A		DURA	ACIÓN = 3	جنور 10	,	ERR	OR EN	INTENSIDAI	DES DE LL	JUVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	TORNO.	/, es com	/h	
EST	FACIÓN		PA	RÁMETR	os		ESTA	ACIÓN	ESTACIÓN				PERÍODO	DE RET	ORNO, T	, EN AÑ	os		
(1)	(2)	ul	αl	u2	a2	m	(1)	(2)	(1)	2	5	10	20	50	901	500	1000	5000	10000
APAZC	TEPEL	22 8341	10.7245	30 8445	10.7077	1 0078	3 50	6 85	APAZC	26.76	38.92	46.97	54.69	64 68	72 17	89 47	96 91	114-18	121 61
ASTAT	TITMS	36.9124	14 9537	18 0053	10 0533	1.4647	5.74	4.50	ASTAT	42 39	59.34	70.56	81 33	95.26	105 70	129.83	140 20	164 27	174 64
AYUTL	CALTE	26.6465	10.2193	30 8145	11 0748	1 2417	4 29	3 39	AYUTI.	30 39	41.97	49 64	57 00	66.52	73.66	90 15	97 23	113 69	120 77
CALAP	SNTIT	29.0100	18.9686	20.2062	8 9796	18 1752	4 93	4.92	CALAP	35.63	56.11	69.67	82 68	99.51	112 13	141 28	153 B1	182 90	195 42
CALTE	JAYAC	31 4865	11 7674	33 6478	14.9053	1 1641	2.83	4 82	CALTE	35.80	49.14	57 97	66 44	77 40	85 62	104 60	112 77	131 71	139 87
COIXT	ASTAT	29.7633	10 2681	36 5885	14 3039	1 3378	3.05	5.87	COIXT	33 5 3	45.16	52.87	60 26	69 83	77 00	93 57	100.69	117 22	124 34
CUEST	CALTE	26.6685	13 0024	31 1213	11 4134	1 4746	6 46	3.06	CUEST	31 43	46.17	55 93	65 29	77 40	86.48	107 46	116 48	137 41	146 42
ELCAR	SUCHI	32 3260	11 0886	24 8946	10.3348	1.0001	3 50	5 84	ELCAR	36 39	48.96	57 28	65 26	75 59	83 34	101 23	108 92	126 77	134 46
JAYAC	SNTIA	34.1243	13 9334	16 29 32	8.7183	1.0021	4 55	13 64	JAYAC	39 23	55.02	65 48	75 51	88 49	98 22	120 70	130 37	152 80	162 46
MAGDA	SNLOR	23.6002	7 6782	23 4155	7.7131	2 1321	2.78	3.15	MAGDA	26.41	35 12	40 88	46 41	53.56	58 92	71 31	76.64	89 00	94 32
PALMA	MAGDA	20 7207	10.4554	22.7934	6 4638	1 0269	5 65	3.83	PALMA	24 55	36.40	44 25	51 78	61 52	68 82	85 69	92.94	109 77	117 02
QUIOT	SUCHI	30 4183	17 1894	25 5515	10.9824	1 0394	4.08	5.45	QUIOT	36.72	56 20	69 10	81 47	97 49	109 49	137 23	149 15	176 82	188 74
SALIN	TEPLU	35 1051	18.1430	30.7650	13.0188	1.4514	8 96	4.99	SALIN	41.75	62 32	75.93	88.99	105 90	118 57	147 84	160 42	189 63	202 21
SNLOR	AYUTL	23.8889	8.4945	26.0602	9 6424	1 0875	2.37	4.86	SNLOR	27 00	36.63	43.00	49 12	57 03	62 96	76 67	82 56	96 24	102 13
SNMIG	XIQUI	23.8874	12 4620	24 8100	9.3333	1.4434	6.30	2.57	SNMIG	28.45	42.58	51.93	60 90	72 51	81 21	101 32	109.97	130 03	138 67
SNPED	ELCAR	23.1247	11 3070	32.7942	10.9179	1.3855	5 75	3.51	SNPED	27.27	40.08	48 57	56 71	67 24	75 14	93.38	101 23	119 43	127 27
SNTIA	CUEST	16.2332	9.8486	23.1513	9 0121	L 6630	13 04	11.15	SNTIA	19.84	31.01	38 40	45 49	54.66	61 54	77.43	84 26	11 001	106 94
SNTIT	TOIUO	18 2556	10.0216	30.3884	17 1197	1.0092	4 49	4.08	SNTIT	21.93	33 29	40.81	48 02	57 36	64 36	80 53	87 48	103 61	110 56
SUCHI	AYUTL	24 7593	11 2101	26 2265	9 6474	1 0094	5.36	4.81	SUCHI	28.87	41 57	49 99	58 06	68 50	76 33	94 41	102 19	120 24	128 01
TELPA	SNTTA	29.0953	13.6888	16 0587	7.8682	3 7368	5 94	14 20	TELPA	34 11	49 63	59.90	69 75	82 51	92 07	114 15	123 65	145 68	155 17
TEPEI.	OUIOT	31 4996	10.8499	30 0629	16.8722	1 1438	6 65	4 11	TEPEL	35 48	47 77	55 92	63 73	73 84	81 41	98 92	106 44	123 91	131 43
TEPEU	SNMIG	32 1457	15 0723	22 7933	10.9557	1 1455	3 95	6 76	TEPEU	37 67	54 75	66 06	76 91	90 96	101 48	125 80	136-25	160.52	170 9?
XIQUI	ASTAT	24 2383	10 1 59 7	41 2506	16 0913	1 9521	2 36	7.83	ΧΙQUI	27 96	39 48	47 10	54 41	63 KB	70 97	87.37	94 41	110 77	117 81
Z	ONA B		DURA	ACIÓN = 3	90 codm		ERRO	OR EN	INTENSIDAL	DES DE LI	.UVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RI	TORNO,	/, EN ma	m/b	
ES	TACIÓN		PA	RÁMETR	os		EST	ACIÓN	ESTACIÓN				PERÍODO	DE RET	ORNO, 7	, EN AÑ	os		
(1)	(2)	ul	αΙ	u2	a2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10800
ACAYU	MONTE	53 2293	16 6826	75 0588	22.1547	1 0196	3 54	6 24	ACAYU	59 34	78 25	90 77	102 78	118 32	129 97	156 89	168 46	195 32	206.88
ALOTE	PAPAL.	63 0215	21 4549	70 9344	26.7154	1.3701	11 63	5.88	ALOTE	70.89	95 20	111.30	126 75	146 74	161 72	196 33	211 22	245.76	260 63
AZUET	CANTO	57 6932	22.7743	94 6656	18 1167	1 1857	5 31	4 70	AZUET	66 04	91 85	108 94	125 34	146 56	162 46	199.20	215.00	251.66	267-45
CANTO	AZUET	94 6673	18 1169	57 6910	22 7738	1 1855	4 70	5 31	CANTO	101 31	121.84	135 44	148 48	165.36	178 01	207 24	219.81	248 97	26t 53
CDALE	MONTE	80 4654	29.4933	73 1782	21.3118	1 3485	8 61	6 69	CDALE:	91 28	124 70	146 84	168 07	195 55	216 14	263 73	284 18	331.66	352 11
CUATO	ALOTE	54.1917	23 1384	56.8934	16 9565	1 4403	6 50	16 53	CUATO	62 67	88 90	106 26	122 92	144 48	160 63	197 96	214 01	251 26	267 30
CUICH	LAEST	74 1816	19 6082	90 1852	19.3677	1 2927	8.81	4.17	CUICH	81 37	103 59	118 31	132 42	150 69	164.38	196-02	209 62	241 19	254 78
FORTI	TEMAS	49.8458	14 5510	95 0509	15 2421	1 2363	5 12	3.26	FORTS	55 18	71 67	82 59	93 07	106 62	116 78	140-26	150 35	173.78	183 87
HUAUT	CDALE	43 7231	13.4611	77 6002	27 0908	1 0643	3.64	9 90	HUAUT	48 66	63 91	74 02	83 71	96.25	105-65	127 37	136 70	158 37	167 70
JACAT	LAEST	97 6797	12 8394	89 5942	18 4770	1 2300	2 00	3 89	JACAT	102 39	116 94	126 57	135 82	147 78	156.74	177 46	186 36	207 03	215 93
LAEST	JACAT	89 5983	18 4843	97 6802	12.8437	E 2305	3 89	2 00	LALST	96 37	117 32	131 19	144.50	161 72	174 63	204 45	217 27	247 03	259 84
MONTE	PAPAL	75 2382	21 6736	71 0940	26 5433	1 0003	6 20	5 84	MONTE:	83 18	107 75	124 01	139 61	159 81	174 94	209-91	224 94	259 83	274 80
PAPAL	CDALE	70 3258	26 2331	81 7349	28.9120	1 8734	5 76	8 94	PAPAI.	79 94	109 67	129 36	148 24	172 69	191 00	233 33	251 52	293.76	311 94
II .	HUAUT	52 4048	31.4765	44 2894	13.9438	2 5368	6.95	3 78	SNIUA	63.94	99 62	123 24	145.90	175 22	197 20	247.99	269 82	320 49	342 31
IINNIII A																			
SNJUA TEMAS	PAPAL.	95 3019	15 5555	71 5534	27 2438	1 2074	3 09	6 20	TEMAS	101.00	118 63	130 31	141 50	156.00	166.86	191.96	202 75	227 79	238 57

TABLA C.6 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d=40 min.

Z	ONA A		DUR	ACIÓN ≈ 4	eim 00		ERR	OR EN	INTENSIDAD	ES DE LI	LUVIA PA	ARA DIFI	ERENTES	PERÍOD	OS DE RI	ETORNO	, /, en mr	n/b	
ES	TACIÓN		P	RÁMETR	os		est.	ACIÓN	ESTACIÓN				PERÍODO	DE RET	ORNO, I	, en añ	os		
(1)	(2)	=1	αl	u2	σ.2		(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	JAYAC	19.3760	9.1071	28.0663	13 0712	1.1592	3 29	3.19	APAZC	22 71	33.04	39.87	46 43	54.91	61 27	75 96	82 28	96 94	103.26
ASTAT	COIXT	30.0250	11 7302	23 4014	8 4683	1 3476	4.38	2.65	ASTAT	34.32	47.62	56.42	64 87	75.80	83.99	102.91	111 05	129 93	138 06
AYUTL	QUIOT	21.8181	9 3729	23.9658	12.9299	1.1300	4.57	2 93	AYUTL	25 25	35.88	42.91	49 66	58 39	64 93	80 06	86 56	101 65	108 15
CALAP	11.00	×	x	x	x	X	х	X	CALAP	X	X	x	х	X	х	X	X	X	х
CALTE	ELCAR	25 4715	10 0860	26 9815	8 5439	1 1891	3.27	2 85	CALTE	29.17	40 60	48.17	55 43	64.83	71 87	88 14	95 14	111 37	118 37
COIXT	ASTAT	23.4021	8 4698	30 0283	11.7306	1.3479	2.64	4.38	COIXT	26 51	36 11	42 46	48 56	56.45	62 36	76 03	81 91	95 54	101 41
CUEST	PALMA	20.9920	12.3005	18.7932	6.1891	1.0177	3.91	4 24	CUEST	25 50	39 44	48.67	57 53	68.99	77 58	97 42	105 95	125 76	134 28
ELCAR	MAGDA	27 5760	8 6705	18 6147	5.7017	1 0112	2 76	2 83	ELCAR	30 75	40.58	47 09	53 33	61 41	67 46	81 45	87 47	101 42	107 43
JAYAC	SNMIG	27 8706	12 8308	18 5420	8 5659	1 0001	3 17	7 05	JAYAC	32 57	47 12	56 74	65.98	77 94	86 89	107.60	116.50	137 15	146 05
MAGDA	AYUTL	18 4027	6 4281	21 3778	9 1350	1.1095	2.15	4 79	MAGDA	20.76	28 04	32 87	37 50	43 48	47 97	58.34	62 80	73 15	77.61
PALMA	COIXT	19.6973	7 1583	22 7358	7 6924	1.3680	3 36	3.26	PALMA	22 32	30 43	35 81	40.96	47 63	52 63	64 18	69 14	80 67	85-63
QUIOT	MAGDA	24.2528	13 7508	18 9687	6.4588	1 0639	2 60	2 08	QUIOT	29 29	44 88	55.20	65 10	77 91	87.51	109.70	119 23	141 37	150 90
SALIN		x	X	x	×	x	x	x	SALIN	X	X	X	X	x	X	X	X	X	X
SNLOR	XIQUI	43.0298	21 9255	43.8741	14 9398	1 0323	8.94	3.74	SNLOR	51 07	75 92	92 37	108 15	128 58	143 89	179 27	194 47	229 77	244 97
SNMIG	SNTTA	18 8671	10 2897	12 5201	6 0494	1 0240	6.13	10 45	SNMIG	22 64	34 30	42 02	49.43	59 02	66 20	82 80	89 94	106.51	113 64
SNPED	ELCAR	18 8713	9 8704	27 6642	8 7287	1 3178	3 95	2 76	SNPED	22 49	33 68	41.08	48 19	57 39	64 28	80.20	87 05	102 94	109.78
SNTIA	CUEST	13 3059	7 0560	18 9019	7 7925	1 4289	9 72	8 21	SNTIA	15 89	23.89	29.18	34 26	40 84	45 76	57 15	62 04	73.40	78 29
SNTIT	JAYAC	14.0842	8 0956	28 2487	13.6523	1.0081	2 48	3 40	SNTIT	17.05	26 23	32 30	38 13	45 67	51 33	64 39	70 00	83 04	88 65
SUCHI	CALTE	21 7863	10 3283	25 0501	9 3703	1 5869	5 89	3.95	SUCHI	25 57	37.28	45.03	52.46	62 09	69.30	85.96	93 13	109.75	116 91
TELPA	SNTIA	23.4390	11 5166	13 6697	6.0147	3 8218	4 05	10 27	TELPA	27 66	40.71	49.36	57 65	68 38	76 42	95 00	102 99	121 53	129 51
TEPEL	SNPED	25.8993	9 3131	18 2832	8 9755	1.1466	5.70	4.71	TLPEL	29 31	39.87	46.86	53 56	62 24	68 74	83 77	90 23	105 22	111 68
TEPEU	JAYAC	25 9039	10 8142	27 7566	12 8425	1 5167	3 10	3 18	TEPEU	29 87	42 12	50 24	58 02	68.10	75 65	93 10	100 60	118 01	125 51
XIQUI		x	x	_X	Х	х	x	х	XIQUI	Х	х	Х	X	х	х	x	х	Х	х
Z	ONA B		DURA	ACIÓN = 4	oim O		ERR	OR EN	INTENSIDAD	ES DE LI	JUVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	TORNO,	/, EN m	nn/b	
ES	TACIÓN		PA	RÁMETR	os		ESTA	ESTACIÓN ESTACIÓN PERÍODO DE RETORNO, 7 , E							. EN AÑ	os			
(1)	(2)	u1	αΙ	u2	α2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	TEMAS	43 3370	14 9773	78 0413	15 0619	1 2102	3 68	3 30	ACAYU	48 83	65 80	77 04	87 82	101.78	112 23	136.40	146 79	170.90	181 28
ALOTE	PAPAI.	53 8413	18 7736	57 4366	22 6529	1 3854	10 40	6 76	ALOTI	60 72	82 00	96 09	109 60	127 09	140 20	170.49	183.52	213 74	226 75
AZULT	PAPAL	44 8942	19 1402	17 7083	22 9313	1 2091	3 64	6 90	AZUEJ	51 91	73 60	87 97	101 74	119.58	132 94	163-82	177 10	267-91	221 18
CANTO	PAPAL.	78 4844	15 1244	57 5724	22 8137	1 0396	3 96	6.83	CANTO	84 03	101 17	112.52	123 41	137 50	148 06	172 46	182 95	207 30	217 78
CDALE	ALOTE.	65 0350	22 7220	52 0066	15 4302	F 0040	5 43	12 97	CDALE	73 36	99 12	116 17	132.52	153 70	169.56	206-22	221 98	25K 56	274 31
CUATO	ALOTI-	42 1038	18 5138	51 0922	14 9058	1 1825	4 65	13.81	CUATO	48 89	69 87	83 77	97.09	114 34	127 27	157 14	169.98	199.79	212 62
CUICH	HUAUT	63 0545	15 3901	37 9250	12 1993	1 2455	5 68	2 21	CUICH	6K 70	86 14	97 69	108 77	123 11	133.85	158 68	169.36	194-13	204 80
FORTI	JACAT	41 3786	13 2477	85 2321	12 4687	1 0750	4 69	3.20	FORIT	46 23	61.25	71 19	80.73	93 07	102 32	123.69	132.88	154 21	163 39
HUAUT	MONTE	37 9598	12 1312	64 3915	21 7491	1 0048	2 21	6 99	HUAUT	42 41	56 16	65 26	73 99	85 30	93 77	113 34	121.75	141 28	149 69
JACAT	TEMAS	84 9479	12 1846	78 0050	14 7929	1 0167	3 15	3 24	JACAT	89 41	103 22	112 37	121 14	132 49	141 00	160.66	169 11	188 73	197 17
lhuz va r	VILLA	80 6488	17 9166	33 7910	8 7793	1 0014	4 34	1 63	LAEST	87 22	107 52	120.97	133.86	150 56	163 07	191 9K	204 40	233 25	245 67
LAEST			21 6332	52 3569	16 0314	1 1594	6.98	12 36	MONTI	71 98	96 49	112 73	128 30	148 46	163 56	198 47	213 47	248 30	263 29
LAEST	ALOTE	04 ()404									00.04	107 78	124 03	1 46 44	140 61	107.22		the second second	264 84
MONTE	ALOTE	56 9998	22 5660	38 0124	11 8205	1 0001	6 72	2 25	PAPA1.	65 27	90-85	10/ /8	124 03	145 05	160 81	197 22	212 87	249 20	204 64
MONTE PAPAL	HUAUT	56 9998		38 0124 43 7664	11 8205	1 0001	6 72 5 44	2 25 3 75	SNJUA	65 27 56 31	90 85 87 31	107 84	127 54	153 03	172 13	216 27	212 87 235 24	249 20 279 28	298 25
MONTE			22 5660								,								

TABLA C.7 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 60 min.

2	CONA A		DURACIÓ	N = 60 min			ERR	OR EN	INTENSIDAD	ES DE LL	UVIA PA	RA DIFE	RENTES	PERÍODO	OS DE RE	TORNO,	/, en mer	√h.	
E	STACIÓN		PARÁN	ETROS			EST/	ACIÓN	ESTACIÓN			1	PERÍODO	DE RET	ORNO, T	, EN AÑ	os		
(1)	(2)	əl	αì	w2	ac2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	JAYAC	15 2307	7.1779	23.4194	9.2450	1 1260	4.02	2.95	APAZC	17 86	26 00	31 38	36 55	43 24	48 25	59 83	64 81	76 37	81 34
ASTAT	SNTIT	23.1257	9.2450	10.0702	5 2504	1.8554	2.36	1.83	ASTAT	26.51	36.99	43 93	50.59	59.20	65 65	80.57	86.98	101 87	108 27
AYUTL	QUIOT	16.9848	7.8866	18.1340	9 3232	1 1970	4.97	2.63	AYUTL	19.88	28 81	34 73	40.41	47 76	53.26	65 99	71 46	84 16	89 62
CALAP	JAYAC	21.1411	13 9872	23 1556	8 8772	1 5203	7.29	3 00	CALAP	25.94	40.77	50 59	60 01	72.21	81 34	102 46	111 54	132 61	141 68
CALTE	APAZC	18.0084	7 5305	15.2765	7.5917	1 0001	1 75	3.81	CALTE	20.77	29.30	34 95	40.38	47.39	52 65	64 80	70 02	82 15	87 37
COIXT	ASTAT	16.4652	5.9041	22.7209	8 6299	1.9603	1.73	2.63	COIXT	18.63	25.32	29.75	34.00	39.50	43 63	53 15	57 25	66 75	70 84
CUEST	MAGDA	15.6538	8 1493	13.9739	4.5440	1 1905	2.77	2.37	CUEST	18.64	27 88	33.99	39 86	47.45	53 14	66 29	71 94	85 06	90 71
ELCAR	CUEST	20.2068	7 4534	17.2128	8.1527	1 5847	1 80	3 43	ELCAR	22.94	31 39	36 98	42.34	49 29	54 49	66.52	71 69	83 69	88 85
JAYAC	TEPEU	23 3702	9.1859	19.5746	7 1944	1 4531	2.95	1.62	JAYAC	26 74	37 15	44 04	50 65	59 21	65 63	80 45	86 82	101 61	107 98
MAGDA	AYUTL	13.9146	5.1656	16 3452	7 2388	1 0410	1.84	5.46	MAGDA	15 81	21 66	25 54	29 26	34.07	37 68	46 01	49 59	57 91	61 49
PALMA	ELCAR	13 4868	5 6654	19 8858	7 7364	1.0158	1.86	181	PA1.MA	15.56	21 98	26 24	30 31	35 59	39 55	48 69	52 62	61 74	65 67
QUIOT	XIQUI	18 9063	10 1693	16 6942	7 7313	1 0145	1 65	1.58	QUIOT	22 63	34.16	41 79	49 11	58 59	65 69	82 09	89 15	105 52	112 57
SALIN	TEPEU	25 8253	13 4142	19 6588	7 0529	1 4657	4 44	1.70	SALIN	30.74	45.95	56.01	65 67	78 17	87 53	109 18	118 48	140.08	149 37
SNLOR	TELPA	15 5975	6.9438	16.5867	7.5192	1 0013	1 59	3 33	SNLOR	18.14	26 01	31 22	36 22	42 69	47 54	58 74	63.56	74 74	79 55
SNMIG	SNTIT	13 7711	6 1101	10 3227	4 8181	1 4887	4 62	1 87	SNMIG	16 01	22 94	27 52	31 92	37 61	41 88	51 74	55 98	65.81	70.05
SNPED	ELCAR	13.9618	6 7809	20.2069	7 2469	1 2513	2.51	1.83	SNPED	16 45	24 13	29 22	34 10	40 42	45.15	56 10	60 80	71 72	76 42
SNTIA	CUEST	9.6500	4.8704	14 0188	6.2894	1 3394	6.01	4.87	SNTIA	11 44	16.96	20 61	24 12	28 65	32.05	39 91	43 29	51 13	54 51
SNIIT	CALTE	10 4490	5 0647	18 3388	7 0879	1 2460	1 79	2 03	SNTTT	12 31	18 05	21 85	25 49	30.21	33 75	41 92	45 43	53 59	57 10
SUCHI	CALTE	15 9445	8.4910	18 0629	6 5408	1 4161	7 51	2 62	SUCHI	19 06	28 68	35 05	41 16	49 08	55 00	68 70	74 59	88 26	94 15
TELPA	SUCHI	16.9538	8 1207	15.6805	7 4611	1 0069	2.67	8.17	TELPA	19.93	29 13	35.23	41.07	48 64	54 31	67 41	73 05	86.12	91 75
TEPEL.	SNTIA	18 4717	9 1191	9 7570	4 1943	1.0161	4 10	6 43	TEPEI.	21 81	32 15	38 99	45 56	54.05	60.42	75 13	81.46	96 14	102 46
TEPEU	QUIOT	20 0577	7.2209	18.5825	9 9727	1 2577	1.60	1.82	TEPEU	22 70	30 89	36 31	41 51	48.23	53.27	64 93	69 93	81 56	86 56
XIQUI	TELPA	17 0662	7.6184	17 1930	8 1545	£ 1050	1 60	2 62	XIQUI	19.86	28.49	34 21	39 69	46 79	52 11	64 40	69 69	81 95	87 23
2	CONA B		DUR	ACIÓN = 6	0 min		ERR	OR EN	INTENSIDAD	ES DE LL	UVIA PA	RA DIFE	RENTES	PERIODO	OS DE RE	TORNO,	/, EN me	n/h	
E:	STACIÓN		P.	RÁMETR	os		EST/	STACIÓN ESTACIÓN PERÍODO						ODO DE RETORNO, T , EN AÑOS					
(1)	(2)	ul	αl	m2	a2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	SNJUA	34 2719	12 8031	31 4425	17 5462	1 0042	3 02	7 53	ACAYU	38 96	53 48	63 08	72 30	84.23	93 17	113.83	122 71	143 32	152 19
ALOTE	HUAUT	39 7611	13 6603	30 4782	10 7201	1 0224	6.60	2.69	ALOTE	44.77	60 25	70.50	80 33	93 06	102 60	124 64	134.12	156 11	165 58
AZUET	PAPAI.	36 1434	15 8175	48 0868	20 1487	1 1539	3 18	7 89	AZUET	41 94	59 87	71 74	83 12	97 86	108 91	134 43	145 40	170 86	181 83
AZ UES										41 74						140.07	. 70. 21	194 29	204 62
		67 3915	14 8995	47 5783	19 9293	1 0069	3 26	7 72	CANIO	72 85	89 74	100-92	111 65	125 53	135 93	159 97	170 31		
CANTO	PAPAL.	67 3915 52 8866		47 5783 64 9439	19 9293 12 4153	1 0069	3 26 5 84					100 92 99 49	111 65 114 40	125 53 133.70	135 93 148 16	181 57	195 94	229 28	243 64
CANTO CDALE	PAPAL. TRMAS	52 8866	20 7105	64 9439	12 4153	1.4492	5 84	2 38	CANTO CDALE	72 85 60 48	89 74 83 95	99 49						229 28 163 47	243 64 174 02
CANTO CDALE CUATO	PAPAL TRMAS MONTE	52 8866 33 8971	20 7105 15 2135	64 9439 48 4745	12 4153 18 1409	1.4492 1.0410	5 84 3 43	2 38 4 93	CANTO CDALE CUATO	72 85 60 48 39 47	89 74 83 95 56 72	99 49 68 13	114 40 79 08	133.70 93.26	148 16 103 88	181 57 128 43	195 94 138 98	163 47	174 ()2
CANTO CDALE CUATO CUICH	PAPAL TRMAS MONTE TEMAS	52 8866 33 8971 55 0813	20 7105	64 9439	12 4153	1.4492	5 84	2 38	CANTO CDALE	72 85 60 48	89 74 83 95	99 49	114 40	133.70	148 16	181 57 128 43 133 96	195 94		
CANTO CDALE CUATO CUICH FORTI	PAPAL TRMAS MONTE TEMAS SNJUA	52 8866 33 8971 55 0813 33 9352	20 7105 15 2135 12 6943 12 6082	64 9439 48 4745 65 8275 30 5763	12 4153 18 1409 13 4165 16 2164	1,4492 1,0410 1,4282 1,0068	5 84 3 43 4 57	2 38 4 93 2 72	CANTO CDALE CUATO CUICH	72 85 60 48 39 47 59 73	89 74 83 95 56 72 74 12	99 49 68 13 83 65	114 40 79 08 92 79	133.70 93.26 104.61	148 16 103 88 113 48	181 57 128 43	195 94 138 98 142 76	163 47 163 20	174 02 172 00
CANTO CDALE CUATO CUICH FORTI HUAUT	PAPAL TRMAS MONTE TEMAS SNJUA CUATO	52 8866 33 8971 55 0813 33 9352 30 2927	20 7105 15 2135 12 6943 12 6082 10 5128	64 9439 48 4745 65 8275	12 4153 18 1409 13 4165	1.4492 1.0410 1.4282	5 84 3 43 4 57 3 27	2 38 4 93 2 72 9 23	CANTO CDALE CUATO CUICH FORTI	72 85 60 48 39 47 59 73 38 56	89 74 83 95 56 72 74 12 52 85	99 49 68 13 83 65 62 31	114 40 79 08 92 79 71 38	133.70 93.26 104.61 83.13	148 16 103 88 113 48 91 93	181 57 128 43 133 96 112 28	195 94 138 98 142 76 121 02	163 47 163 20 141 32	174 02 172 00 150 06
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT	PAPAL TRMAS MONTE TEMAS SNJUA CUATO HUAUT	52 8866 33 8971 55 0813 33 9352 30 2927 69 8266	20 7105 15 2135 12 6943 12 6082 10 5128 12 0466	64 9439 48 4745 65 8275 30 5763 33 6169 31 6138	12 4153 18 1409 13 4165 16 2164 15 8558 11 3697	1.4492 1.0410 1.4282 1.0068 1.5137 1.0734	5 84 3 43 4 57 3 27 2 61	2 38 4 93 2 72 9 23 3 52	CANTO CDALE CUATO CUICH FORTI HUAUT	72 85 60 48 39 47 59 73 38 56 34 15	89 74 83 95 56 72 74 12 52 85 46 96	99 49 68 13 83 65 62 31 53 95	114 40 79 08 92 79 71 38 61 52	133.70 93.26 104.61 83.13 71.31	148 16 103 88 113 48 91 93 78 65	181 57 128 43 133 96 112 28 95 61	195 94 138 98 142 76 121 02 102 91	163 47 163 20 141 32 119 83	174 02 172 00 150 06 127 12
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST	PAPAL TRMAS MONTE TEMAS SNJUA CUATO HUAUT MONTE	52 8866 33 8971 55 0813 33 9352 30 2927	20 7105 15 2135 12 6943 12 6082 10 5128	64 9439 48 4745 65 8275 30 5763 33 6169	12 4153 18 1409 13 4165 16 2164 15 8558	1.4492 1.0410 1.4282 1.0068 1.5137	5 84 3 43 4 57 3 27 2 61 1 79	2 38 4 93 2 72 9 23 3 52 3 52	CANTO CDALE CUATO CUICH FORTI HUAUF JACAT	72 85 60 48 39 47 59 73 38 56 34 15 74 24	89 74 83 95 56 72 74 12 52 85 46 96 87 90	99 49 68 13 83 65 62 31 53 95 96 94	114 40 79 08 92 79 71 38 61 52 105 61	133.70 93.26 104.61 83.13 71.31 116.83	148 16 103 88 113 48 91 93 78 65 125 24	181 57 128 43 133 96 112 28 95 61 144 68	195 94 138 98 142 76 121 02 102 91 153 04	163 47 163 20 141 32 119 83 172 43	174 02 172 00 150 06 127 12 180 78
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE	PAPAL TRMAS MONTE TEMAS SNJUA CUATO HUAUT MONTE JACAT	52 8866 33 8971 55 0813 33 9352 30 2927 69 8266 67.3211 49 5611	20 7105 15 2135 12 6943 12 6082 10 5128 12 0466 17 1692 18 9780	64 9439 48 4745 65 8275 30 5763 33 6169 31 6138 49 3797 70 2703	12 4153 18 1409 13 4165 16 2164 15 8558 11 3697 18 6364	1.4492 1.0410 1.4282 1.0068 1.5137 1.0734 1.0013 1.0263	5 84 3 43 4 57 3 27 2 61 1 79 4 93	2 38 4 93 2 72 9 23 3 52 3 52 4 61	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST	72 85 60 48 39 47 59 73 38 56 34 15 74 24 73 61	89 74 83 95 56 72 74 12 52 85 46 06 87 90 93 07	99 49 68 13 83 65 62 31 53 95 96 94 105 96	114 40 79 08 92 79 71 38 61 52 105 61 118 32	133.70 93.26 104.61 83.13 71.31 116.83 134.31	148 16 103 88 113 48 91 93 78 65 125 24 146 30	181 57 128 43 133 96 112 28 95 61 144 68 174 00	195 94 138 98 142 76 121 02 102 91 153 04 185 91	163 47 163 20 141 32 119 83 172 43 213 55	174 02 172 00 150 06 127 12 180 78 225 45
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE PAPAL	PAPAL TRMAS MONTI: TEMAS SNJUA CUATO HUAUT MONTE JACAT FORTI	52 8866 33 8971 55 0813 33 9352 30 2927 69 8266 67.3211	20 7105 15 2135 12 6943 12 6082 10 5128 12 0466 17 1692	64 9439 48 4745 65 8275 30 5763 33 6169 31 6138 49 3797	12 4153 18 1409 13 4165 16 2164 15 8558 11 3697 18 6364 11 5259	1.4492 1.0410 1.4282 1.0068 1.5137 1.0734 1.0013	5 84 3 43 4 57 3 27 2 61 1 79 4 93 4 59	2 38 4 93 2 72 9 23 3 52 3 52 4 61 1 99	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE	72 85 60 48 39 47 59 73 38 56 34 15 74 24 73 61 56 52	89 74 83 95 56 72 74 12 52 85 46 06 87 90 93 07 78 03	99 49 68 13 83 65 62 31 53 95 96 94 105 96 92 27	114 40 79 08 92 79 71 38 61 52 105 61 118 32 105 93	133.70 93.26 104.61 83.13 71.31 116.83 134.31 123.61	148 16 103 88 113 48 91 93 78 65 125 24 146 30 136 86	181 57 128 43 133 96 112 28 95 61 144 68 174 00 167 48	195 94 138 98 142 76 121 02 102 91 153 04 185 91 180 65	163 47 163 20 141 32 119 83 172 43 213 55 211 20	174 02 172 00 150 00 127 12 180 78 225 45 224 35
CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE	PAPAL TRMAS MONTE TEMAS SNJUA CUATO HUAUT MONTE JACAT	52 8866 33 8971 55 0813 33 9352 30 2927 69 8266 67 3211 49 5611 47 8506	20 7105 15 2135 12 6943 12 6082 10 5128 12 0466 17 1692 18 9780 19 6511	64 9439 48 4745 65 8275 30 5763 33 6169 31 6138 49 3797 70 2703 32 8815	12 4153 18 1409 13 4165 16 2164 15 8558 11 3697 18 6364 11 5259 12 0491	1.4492 1.0410 1.4282 1.0068 1.5137 1.0734 1.0013 1.0263	5 84 3 43 4 57 3 27 2 61 1 79 4 93 4 59 7 60	2 38 4 93 2 72 9 23 3 52 3 52 4 61 1 99 3 71	CANTO CDALE CUATO CUICH FORTI HUAUT JACAT LAEST MONTE PAPAL	72 85 60 48 39 47 59 73 38 56 34 15 74 24 73 61 56 52 55 05	89 74 83 95 56 72 74 12 52 85 46 06 87 90 93 07 78 03 77 33	99 49 68 13 83 65 62 31 53 95 96 94 105 96 92 27 92 07	114 40 79 08 92 79 71 38 61 52 105 61 118 32 105 93 106 22	133.70 93.26 104.61 83.13 71.31 116.83 134.31 123.61 124.53	148 16 103 88 113 48 91 93 78 65 125 24 146 30 136 86 138 25	181 57 128 43 133 96 112 28 95 61 144 68 174 00 167 48 169 95	195 94 138 98 142 76 121 02 102 91 153 04 185 91 180 65 183 59	163 47 163 20 141 32 119 83 172 43 213 55 211 20 215 22	174 02 172 00 150 00 127 12 180 78 225 45 224 35 228 84

TABLA C.8 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 80 min.

z	ONA A		DURACIÓ	N = 80 sml			ERR	OR EN	INTENSIDAD	ES DE LL	JUVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	TORNO,	/, en ma	1/1	
ES	STACIÓN		PARÁN	TETROS			EST	ACIÓN	ESTACIÓN				ERÍODO	DE RET	ORNO, T	, EN AN	os		
(1)	(2)	ul	α1	u2	α2	m	(1)	(2)	(1)	2	5	10	20	50	190	500	1000	5000	10000
APAZC	CALTE	10 7347	6 1870	14 8033	5 6060	1 0441	2 65	2 08	APAZC	13.00	20 01	24 66	29 11	34 88	39 20	49 18	53 47	63 43	67 72
ASTAT	TEPEL	18 3431	6 5216	15 2905	6 8654	1 0129	1 34	4 02	ASTAT	20 73	28 13	33 02	37 7 1	43.79	48 34	58 87	63 39	73 89	78 41
AYUTL	QUIOT	13 7932	6 3148	14 5873	7 0412	1 2261	3 91	1 99	AYUTI.	16 11	23 26	28 00	32 55	38 43	42 84	53 03	57 41	67.58	71 95
CALAP		x	×	x	X	X	X	x	CALAP	X	X	X	X	X	X	X	X	x	X
CALTE	ASTAT	14.6976	5 7253	18 5417	6 0217	1 4607	1 99	1.51	CALTE	16.80	23 29	27 58	31 70	37 04	41 03	50 27	54 24	63 46	67 43
COIXT	TEPEL.	13 8478	3 6059	15.7956	7 1402	1 0144	1.28	3.75	COIXT	15.17	19 26	21.96	24.56	27.92	30 44	36 25	38 75	44 56	47 06
CUEST	SNMIG	12.2952	6 7198	10 8581	4 0224	1 1673	i 87	3 49	CUEST	14.76	22 37	27 42	32 25	38 52	43 21	54 05	58 71	69 53	74 19
ELCAR	COIXT	16 0504	6 4205	13 7224	3.3650	1 0191	1.46	1 51	ELCAR	18 40	25.68	30 50	35 12	41 10	45 59	55 94	60 40	70 73	75 19
JAYAC	PALMA	18 1580	8 4696	11.2083	2 7433	1 0010	2 51	2 36	JAYAC	21 26	30 86	37 22	43 31	51.21	57 12	70 78	76 66	90 29	96 17
MAGDA	TELPA	11 6482	3 9704	13 0188	5.6258	1 0185	1 07	2.99	MAGDA	13.10	17 60	20.58	23 44	27 14	29 91	36.32	39 07	45 46	48 22
PALMA	SNMIG	11 3738	3 3048	9 8469	3 8086	1 0381	1.90	4 02	PALMA	12.59	16 33	18 81	21.19	24 27	26 58	31 91	34 20	39 52	41 81
QUIOT	SNMIG	14 9367	7 5394	10.8567	4 0640	1.0278	1 37	3 46	QUIOT	17.70	26.25	31.90	37 33	44 35	49 62	61 78	67 01	79 15	84 38
SALIN		X	X	x	X	X	X	X	SALIN	X	X	X	X	X	X	X	X	X	X
SNLOR	SNTIT	11 1882	4 6670	8.6053	4 2400	1 0228	1 14	1.43	SNLOR	12 90	18 19	21.69	25 05	29.40	32 66	40 19	43 42	50 94	54 17
SNMIG	SNTIT	11 0485	4 5091	8 1236	3 6290	1 5659	3 16	1 38	SNMIG	12 70	17.81	21 20	24 44	28 64	31 79	39 07	42 19	49 45	52 58
SNPED	ELCAR	11 4572	5 3796	15 9581	6 1187	1 2740	2 07	1.51	SNPED	13 43	19 53	23 56	27 44	32 45	36 20	44 88	48 62	57 28	61 00
SNTIA	CUEST	7 7656	3 5782	11 3736	5 4524	1 3167	4 35	3.28	SNTIA	9 08	13 13	15 82	18 39	21 73	24 23	30.00	32 48	38 24	40.72
SNTIT	SNLOR	8 2729	3 8792	11 1018	4 2224	1 0005	1 30	1 43	SNITT	9.69	14 09	17.00	19 79	23 41	26 12	32 38	35 07	41 31	44 00
SUCHI	SNMIG	11 7927	6 7272	11 0070	5 0921	1 1889	6.91	2 90	SUCHI	14 26	21 88	26 93	31 77	38 04	42 74	53.59	58 26	69 09	71 75
TELPA	TEPEU	13 9820	6 2132	15 9717	5 1000	1 1963	2 30	1 33	TELPA	16 26	23 30	27 96	32 44	38 23	42.56	52 59	56 90	66.90	71.21
TEPEL.	SNPED	15 4823	7 0657	11 1297	4 9302	1 2267	3 82	2 37	TEPEL.	18 07	26 08	31 38	36 47	43.05	47 99	59 19	64 29	75 66	80 56
TLPEU	ASTAT	16 2444	5 4723	18 3525	6 3937	1 0664	1 09	1 37	TEREU	18 25	24 45	28 56	32.50	37 60	41 42	50 25	54 04	62 85	00 05
XIQUI		Х	Х	Х	Х	Х	X	Х	XIQUI	Х	Х	Х	х	Х	X	х	Х	x	X
Z	CONA B		DUR	ACIÓN = 8	olm Ol		ERR	OR EN	INTENSIDAD	ES DE LL	UVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	TORNO.	1. EN mi	m/b	
ES	STACIÓN		P	ARÁMETR	os		EST	ACIÓN	ESTACION				PERÍODO	DE RET	ORNO, T	, EN AN	os		
(1)	(2)	ul	αl	u.2	α2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5006	10000
ACAYU	SNJUA	27 5561	10 4273	25 7219	14 6463	1 0030	2 39	4 89	ACAYU	31 38	43 20	51.02	58 53	68 24	75 52	92.35	99.58	116 37	123 59
ALOTE	TEMAS	33 4472	10 3940	57 5416	11 2385	1 0364	2 47	2 83	ALOTE	37 26	49 04	56 84	64 32	74 00	81.26	98 03	105 24	121 97	129 18
AZUET	JACAT	29 3995	13 1967	59 3291	11 7536	1.0411	2 35	2 49	AZUET	34.24	49 19	59 10	68 60	80 89	90.11	111 40	120.55	141 80	150 94
CANTO	CUICH	56 0817	13 9577	47 3490	11 0639	1 1541	3 24	4 92	CANTO	61 20	77 02	87 49	97 54	110 54	120 29	142.81	152 49	174 96	184 64
CDALE	ALOTE	43 4843	18 8599	29 4984	9 3591	1 0781	4.35	6 02	CDALE	50 40	71 77	K5 93	99 50	117 07	130:24	160 67	173 75	204 12	217 19
CUATO	ACAYU	27 0202	13 0432	27 4550	10.4908	1 0899	2 20	2 39	CUATO	31 80	46 58	56 37	65 76	77 91	87 02	108 07	117 11	138 11	147 15
CUICH	TEMAS	46 7478	10 6121	58 3754	11 5575	1 5654	4 56	3.31	CUICH	50.64	62 67	70 63	78 27	88 16	95 57	112 69	120 05	137 13	144 49
FORT1	ACAYU	28 9141	9 8759	27 2511	10 3085	1.2981	4 12	2 43	FORTI	32 53	43 73	51 14	58 25	67 45	74 34	90-28	97 13	113 03	119 87
HUAUT	CDALL	26 7260	8 6050	43 8745	18 1505	1 2805	2 09	4 53	HUAUL	29 88	39.63	46 09	52 28	60.30	66.31	80 19	86 16	100 02	105.98
JACAT	LAEST	59 0213	11 3210	57 9155	12 4462	1 1195	2 53	3 67	JACAT	63.17	76 00	84 50	92 65	103 20	111 10	129.37	137 22	155 44	163 29
LAEST	HUAUT	57 9585	12 8401	26 8666	8 7294	1 2781	3 43	2 12	LAEST	62 66	77 22	86 85	96 10	108 06	117 02	137 74	146 65	167 32	176 22
MONTE	CUICH	40 4977	17 0121	46 64 19	10 9405	1.5135	3 09	4 77	MONTE	46 73	66 01	78 78	91 03	106 88	118 76	146-20	158 00	185 39	197 18
PAPAI.	PAMIT	39 8422	17 4413	57 5923	10 6288	1 0140	6.43	2 54	PAPAI	46 23	66 00	79 09	91 65	107 90	120 07	148 22	160 31	18K 89	2(N) 4K
SNJUA	HUAUT	26 6319	17 177H	26 8893	N 7033	1 7620	4 23	2 11	SNIDA	32 93	52 40	65 29	77 65	93.66	105 65	134 37	145 28	172 94	1 H4 H4
TEMAS	CDALI:	57 4262	10 5104	43 9853	18 2411	1 1926	2.51	4 50	IIMAS	61.28	73.19	81.08	88 64	98 44	105.78	122 74	130 02	146 94	154 21
VILLA	HUAUI	21 6573	6 3170	2n 8MM	8 7313	1 1808	1 35	2 12	VILLA	23 97	31-13	35 87	40 42	46 31	50 72	001 91	65 29	75 46	79 84

TABLA C.9 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 100 min.

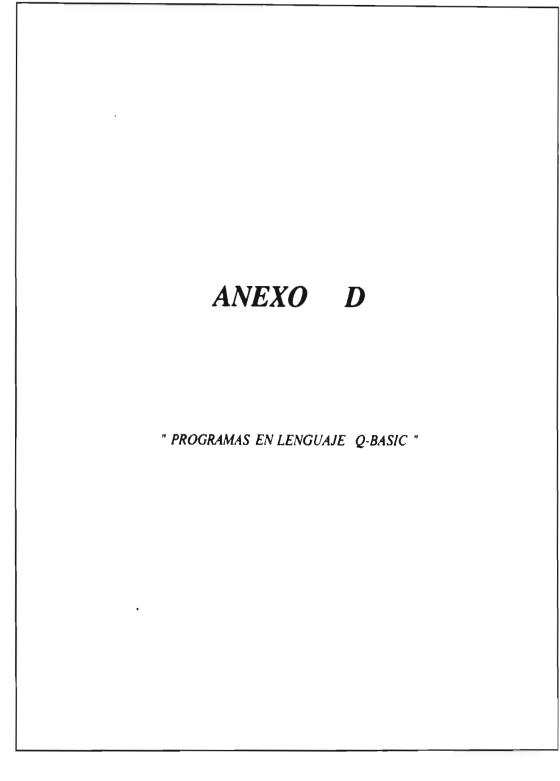

Z	CONA A		DURA	CIÓN = 1	aim 00		ERR	OR EN	INTENSIDAD	ES DE LL	UVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	TORNO.	/, es ma	/h	
ES	STACIÓN		P/	RÁMETR	os		EST	ACIÓN	ESTACIÓN				PERÍODO	DE RET	ORNO, T	, EN AÑ	os		
(1)	(2)	e l	αì	u2	α.2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APA7.C	CALTE	9 8399	4 7611	12 0826	4 2966	1 0746	181	1 79	APAZC	11 58	16 98	20 55	23 98	28 42	31 74	39 42	42 73	50.39	53 69
ASTAT	SNTIT	14 7594	5.0615	6 5872	3 2546	2 0281	1.12	1.06	ASTAT	16 61	22.35	26.15	29 79	34.51	38 04	46 21	49.72	57 X7	61.38
AYUTL	OUIOT	11 7137	5.2885	12 2171	5.7689	1.2218	3.46	1.60	AYUTL	13.65	19.65	23 61	27.42	32 35	36 04	44 57	48 24	56 76	60 42
CALAP		x	x	x	X	X	x	X	CALAP	X	X	X	X	X	X	X	X	X	x
CALTE	COIXT	12 5988	5 0212	11.9152	14 1909	1 1309	1 37	28.71	CALTE	14 44	20.13	23 90	27.51	32.19	35 70	43 80	47.28	55 37	58 85
COIXT		x	x	x	x	X	l x	X	COIXT	X	X	X	X	X	X	X	X	X	X
CUEST	SNMIG	10.3449	5.8517	9 0475	3 1948	1 2889	t 78	2.68	CUEST	12 49	19.12	23 51	27.73	33.18	37 26	46 71	50 76	60 18	64.24
ELCAR	CUEST	13.3042	5 4331	11.8441	5 8551	1 7115	1 20	2 55	ELCAR	15.30	21 45	25 53	29 44	34.50	38 30	47 ()6	50 83	59.58	63 34
JAYAC	COIXT	15.4432	7.2070	12.9167	12 3331	1 0007	1 65	29 61	JAYAC	18.08	26 25	31 66	36.85	43.56	48 60	60 22	65 22	76.83	81 82
MAGDA	SNPED	10 0161	3.1310	9.6484	4 4463	1 2000	0.92	1 79	MAGDA	11 16	14 71	17 06	19 32	22 23	24 42	29 47	31 64	36 68	38 85
PALMA	SNTIA	8.9335	3.3029	6 8862	2.7932	1 0058	1.41	3 35	PALMA	10 14	13 89	16 37	18 74	21 82	24 13	29 46	31.75	37.06	39 35
	TEPEU	12.4791	6 1179	13 7737	4 3477	1 1419	1 20	1 00	OUIOT	14.72	21 66	26 25	30 65	36.35	40 62	50 49	54.74	64 59	68 83
QUIOT	IEPEU															30 49 X			
SALIN		X	X	Х	X	X	X	X	SALIN	X	X	X	X	Х	X		X	X	X
SNI.OR	SNMIG	8 4885	6 4004	9.1030	3 1374	2 9175	1 87	2 71	SNLOR	10 83	18 09	22 89	27 50	33 46	37 93	48 26	52 70	63 00	67 44
SNMIG	TEPEL	8 7277	3 8136	13.3203	6 8587	1 0100	2 33	2 13	SNMIG	10 13	14 45	17 31	20 06	23 61	26 27	32 42	35 07	41 21	43 85
SNPED	ELCAR	9 8886	4 6933	13 3029	5 2609	1 3120	1.68	1 23	SNPED	11.61	16 93	20 45	23 83	28.20	31 48	39 05	42 31	49 86	53 11
SNTIA	TEPEU	6.0817	4 0582	14 1021	4.9475	1 0848	2.78	1 14	SNTIA	7.57	12 17	15 21	18 14	21.92	24 75	31 30	34 11	40 65	43 46
TITINZ	CALTE	6 8658	3 1760	12 0949	4 5820	1 1658	1 01	1 54	SNIIT	8.03	11 63	14 01	16 30	19 26	21 48	26 60	28 60	33 92	36 12
SUCHI	AYUTI.	10.7183	6.9414	12 0326	5 7392	1 1248	5 29	3 37	SUCHI	13.26	21 13	26 34	31 34	37 80	42 65	53 85	58 66	69 84	74 65
TELPA	TEPEU	12 1672	5 0895	13 5982	4.2329	1 1612	2 24	1 09	TELPA	14.03	19 80	23 62	27 28	32.03	35 58	43 79	47 32	55 51	59 ()4
TILPEL	SNMIG	13 3203	6.8587	8 7277	3 8136	1 0100	2.13	2 33	TEPLL	15.83	23 61	28 75	33 69	40.08	44 87	55 94	60 70	71 74	76 49
TEPEU	SNTIA	13 5930	4 4222	6 4028	2 6045	1 0020	0.98	3.57	TLPEU	15.21	20 23	23 54	26 73	30.85	33 94	41 07	44 14	51 26	54 32
XIQUI		х	х	х	х	х	х	X	XIQUI	X	X	X	Х	Х	X	Х	Х	X	х
2	CONA B		DURA	CIÓN = 1	80 min		ERR	OR EN	INTENSIDAD	ES DE LL	UVIA PA	RA DIFE	RENTES	PERÍOD	OS DE RE	TORNO,	1. EN ma	n/b	
ES	STACIÓN		PA	RÁMETR	os		EST/	ACIÓN	ESTACIÓN			F	ERÍODO	DE RET	ORNO, T	, EN AÑ	os		
(1)	(2)	ul	αl	u2	α2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	VILLA	23 1256	9 1493	19 2425	6 1297	1 0021	1.39	1 32	ACAYU	26 48	36 85	43 71	50 30	58 83	65 21	79 98	86.32	101 05	107 39
ALOTE:	CUATO	27 5540	8 1378	22 9143	10 9575	1 0295	2 74	1.80	ALOTE	30 54	39 76	45 87	51 72	59 31	64 99	78 12	83 76	96 86	102 51
AZUET	PAPAL	25 5477	10 8815	34 7058	15 6319	1 (1943	1 46	5.99	AZUET	29 54	41 87	50 04	57.87	68.01	75 60	93 16	100 71	118 23	125 77
CANTO	CUICH	48 9078	12 6115	40 6150	10.0199	1 1629	3.03	3 97	CANIO	53 53	67 82	77 29	86 37	98.12	106 92	127 27	136 02	156 32	165 06
CDALE	HUAUT	37 2311	16 4380	23.9532	7 4923	1 4349	4 87	2 09	CDALE	43.26	61 89	74 22	86 06	101.37	112 85	139 37	150 77	177 23	188 63
CUATO	TLMAS	22 6096	11 4044	49 5410	10 3050	1 4641	1.71	2.60	CUATO	26.79	39 72	48 27	56 48	67 11	75 07	93 47	101 38	119 74	127 65
		39.8254	9 4249	50 0411	10 9285	1 6718	3 59	3 25	CUICH	43 28	53 96	61 03	67.82	76.60	83 18	98 39	104 93	120 10	126 63
CUICH	TEMAS					1 0066	3 07	1 48	FORTI	28 53	37 37	43 22	48 84	56 10	61 55	74 13	79 54	92 09	97 49
FORTI	VILLA	25 6767	7 7976	18 8634	6 0123				HUAUT	26 70	35 19	40 82	46 21	53 19	58 43	70 52	75 72	87 79	92 98
HUAUT	CDALE	23 9498	7 4950	37 2321	16 4406	1 4353	2.09	4.87				75 47	83 13	93 (14	100 47	117 63	125 01	142 14	149 51
JACAT	LAEST	51 5266	10 6388	49 5089	11 3342	1 1352	2 09	4 13	JACAT	55 43	67 48	73 47	86 68	98 21	106 84	126 81	135 39	155.31	163 88
LAEST	CUICH	49 9293	12 3723	41 4341	10 3280	1 0903	3 43	4 47	MONTE	54 46	68 49	64 04	73 86	86 57			127.58	149 54	159 (8)
MONTI.	TEMAS	13 1347	13 6438	49 2871	10 0982	1 3815	2 79	2 46		38 34	53 80				96 10	118 11			
PAPAI.	SNJUA	34 4623	15 2295	21 0770	11 1365	1 0095	5 69	4 40	PAPAL	40 04	57 31	68 73	79 70	93 89	104 52	129 09	139.66	164 17	174 73
SNJUA	HUAUT	21 7345	13 8176	24 0958	7 6527	1 7002	3 21	2 12	SNJUA	26 80	42 46	52 83	62 78	75 65	85 30	107 59	117 18	139 42	149 (8)
TLMAS	VILLA	49 1817	9 8000	19 3158	6 1410	1 (3)34	2 35	1 32	11:MAS	52 77	63 88	71 24	78 29	87 42	94 26	110 08	116 87	132 65	139 44
VII I.A	HUAUT	19 31 39	6 2734	24 1055	7 6710	1 2422	1 28	2 13	VILLA	21 61	28 72	33 43	37 95	43 79	48 17	58 29	62 65	72 74	77 09

TABLA C.10 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 120 min.

Z	ONA A		DURA	CIÓN = 1	20 min		ERR	or en	INTENSIDAD	ES DE LL	JUVIA PA	RA DIFE	RENTES	PERÍODO	OS DE RE	TORNO,	l, es mm	/h	
es	TACIÓN		PA	RÁMETR	os		EST/	ACIÓN	ESTACIÓN				ERÍODO	DE RET	ORNO, T	, EN AÑ	os		
(1)	(2)	w1	αι	m2	oz2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
APAZC	JAYAC	8 8881	4 2459	13 4167	6 1173	1.2108	1.44	1 21	APAZC	10.44	15.26	18.44	21 50	25.46	28.42	35.27	38.22	45 05	47 99
ASTAT	SNTTT	12 3862	4.0936	5.6592	2.8454	2.1240	0 90	0.86	ASTAT	13.89	18 53	21.60	24.54	28.36	31.22	37 82	40.66	47 25	50 09
AYUTL	QUIOT	10.4135	4.5491	10.6624	4 9283	1 2254	2.81	1.39	AYUTL	12.08	17.24	20.65	23.93	28.16	31.34	38 68	41 84	49 16	52 31
CALAP	SUCHI	11 4516	7.1889	7.8792	3 3813	2.2913	3.88	5.98	CALAP	14.09	22.23	27 63	32 80	39.50	44.52	56 12	61.11	72 68	77 66
CALTE	ASTAT	10 4194	3 9414	12.7556	3.8723	1 5078	1.30	1 01	CALTE	11.86	16 33	19.29	22 13	25.80	28.55	34 91	37 64	43 99	46 72
COIXT	JAYAC	8 9287	2 9814	13 2308	5 8451	1 0166	0.82	1 39	COIXT	10.02	13 40	15 64	17.78	20.56	22 64	27 45	29 52	34 32	36 39
CUEST	SNMIG	8.9965	5 3344	7.8077	2 7683	1.3956	1 78	2.13	CUEST	10.95	17.00	21.00	24.84	29 81	33.54	42 14	45 84	54 43	58 13
ELCAR	AYUTL	11 4555	4 6278	9.9416	4 1961	1 0555	1.03	3 02	ELCAR	13.15	18 40	21 87	25 20	29 51	32 74	40.21	43.42	50 87	54 08
JAYAC	TORIO	13 5915	6 1836	10 8390	5.1589	1.0543	1.18	1 13	JAYAC	15.86	22 87	27 51	31 96	37.72	42 04	52 01	56 30	66 26	70 54
MAGDA	SNLOR	8 3811	2 6880	9.3298	4 2316	1.5619	0 76	1 54	MAGDA	9.37	12.41	14 43	16 36	18.87	20.75	25 08	26 95	31 27	33 14
PALMA	ASTAT	8 2897	1 9814	12.2771	3.7555	1 5419	1 48	1.14	PALMA	9.02	11.26	12 75	14 17	16.02	17 40	20.60	21.98	25 17	26 54
OUIOT	COIXT	10 7845	5.3027	9 5583	2.7232	1.0369	1 05	1.00	QUIOT	12.73	18.74	22 72	26 53	31 48	35.18	43 73	47 41	55 95	59 62
SALIN	TEPEU	15 7178	8.0724	11.9893	3 6097	1 6628	2 27	0.89	SALIN	18.68	27 83	33 88	39.69	47.22	52.85	65 88	71 48	84 47	90.07
SNLOR	AYUTL	9 6554	4.5246	9.9622	4.2203	1.0095	1.46	3 00	SNLOR	11.31	16 44	19.84	23.09	27 31	30.47	37.77	40 91	48 19	51.33
SNMIG	SNTTT	7 9875	3 0832	5.7813	2.6109	1 5356	1 90	0 91	SNMIG	9.12	12 61	14.93	17.15	20.02	22.17	27 15	29.28	34 25	36 39
SNPED	SALIN	8 6261	4.2011	16 1891	8 3057	1 0116	1.42	2 26	SNPED	10.17	14 93	18.08	21.10	25.02	27 95	34 73	37 64	44 41	47 32
SNTIA	SNMIG	5.8403	2 7040	8.3551	3 1751	1 0073	2 50	1.90	SNTIA	6.83	9 90	11 93	13.87	16 39	18 28	22 64	24 52	28 87	30 74
SNTIT	SNTIA	5 8764	2.8482	5.7788	2 4273	1.0001	0.81	2.69	SNTIT	6.92	10.15	12 29	14.34	16.99	18.98	23 57	25 55	30 14	32 11
SUCHI	CALTE	8 7508	4.6795	10 1796	3 5997	1.3218	4 90	1 65	SUCHI	10.47	15 77	19 28	22.65	27.01	30 28	37 83	41 07	48 61	51 85
TELPA	CALTE:	10 1644	4.8575	10.5320	4 0178	1 0398	1 80	1.25	TELPA	11.94	17.45	21 10	24 59	29 12	32 51	40 35	43 72	51.54	54 90
TEPEL	SNPED	11 4934	5 4678	8.2522	3 7353	1.3022	1 89	1 63	TEPEL	13 50	19 69	23.80	27.73	32 83	36.65	45 47	49.26	58 06	61 85
TEPEU	SNTIA	12 0241	4 0389	5 5437	2 0870	1 0090	0.76	3.02	TEPI:U	13 50	18 08	21 11	24.02	27.78	30.60	37 12	39 92	46 42	49.22
XIQUI	QUIOT	10 1569	4 1429	10 7139	5 3956	1 0009	1 16	1 01	XIQUI	11 68	16.37	19 48	22 46	26.32	29 21	35 90	38 77	45 44	48 31
z	ONA B		DURA	CIÓN = 1	20 min		ERR	OR EN	INTENSIDAD	ES DE LL	.UVIA PA	RA DIFE	RENTES	PERÍODO	OS DE RE	TORNO.	I, EN ma	u/h	
ES	TACIÓN			PARÁME	TROS		EST.	ACIÓN	ESTACIÓN			ř	eriodo	DE RET	ORNO, T	, EN AÑ	os		
(1)	(2)	ul	αΙ	w2	α2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	10000
ACAYU	PAPAL.	20 0050	8 2882	30.0162	13 6818	1 3062	1.09	5 50	ACAYU	23 04	32 44	38 66	44 62	52 34	58 13	71.50	77 25	90 60	96.34
ALOTE	CDALE	22 4301	7 1983	30 7693	13 2474	1.0396	2 32	5 89	ALOTE	25 07	33 23	38 63	43.81	50 52	55 54	67.16	72 15	83 74	88 73
AZUET	FORTI	21 7480	9 8218	25 5695	7 8678	1 0398	1.16	3 62	AZUET	25 35	36 48	43.85	50.92	60 07	66 93	82.78	89 59	105 40	112 21
CANTO	CUATO	43 9431	12 4805	19 2523	9 8869	1 0060	2.45	1 46	CANTO	48 52	62 66	72 03	81 01	92 64	101 36	121 49	130-15	150 24	158 89
CDALE	HUAUT	32 3989	14 2304	21 2774	7 0113	1 3857	5.05	1 63	CDALE	37 61	53 74	64 42	74 67	87 93	97.86	120 82	130 69	153 60	163 47
CUATO	PAPAL.	19 5863	9 7071	30 2019	13 9108	1 3731	1.49	5 70	CUATO	23 14	34 15	41 43	48 42	57 46	64.24	79 90	86 64	102 26	108 99
CUICH	CUATO	34 5416	8 8577	19 4077	9 5075	1 1477	2 70	1 53	CAICH	37.79	47 83	54 47	60 85	69 10	75 29	89 58	95 72	109 98	116 12
FORTI	CUATO	22 4014	6 8174	18 7038	8 9358	1 0027	2.41	2.16	FORTE	24.90	32 63	37,74	42.65	49 00	53 76	64 76	69 49	80 47	85 19
HUAUT	CANTO	21.4713	6 8563	43 5693	12 0209	1 0014	1.61	2.57	HUAUT	23.98	31.76	36 90	41 84	48 22	53.01	64 07	68.83	79 87	84 62
JACAT	VILLA	45 1167	9 5353	16 8192	5 2592	1 0013	1.41	1 59	JACAT	48 61	59.42	66 57	73.44	82 32	88 98	104 37	110 98	126 33	132 94
LAEST	ACAYU	43 6995	10.7064	19 6181	7 6823	1 0062	3 85	1 44	LAEST	47 62	59 76	67 79	75.50	85 48	92 95	110 23	117 65	134 89	142 31
MONTE	CUICH	28 9809	12 0005	34.5480	9 0032	1 5094	2 09	2 75	MONTE	33 38	46 98	55 99	64.62	75.81	84 19	103 55	111 87	131 19	139 51
PAPAL	SNJUA	29 0813	13 2445	18 4482	9 5982	1 0093	5 19	3 38	PAPAL.	33 94	48 95	58 89	68.42	80 76	90 01	111.38	120.56	141 89	151 07
SNJUA	HUAUT	18 4484	12 3986	21 4724	7 1734	2 1090	2.76	1 64	SNJUA	22 99	37 05	46 35	55 27	66 83	75 48	95 49	104-09	124 05	132 64
TEMAS	HUAUT	41 4836	8 8723	21 4204	7 2541	1 2047	2 50	1 66	TEMAS	44 74	54 79	61 45	67.84	76 10	82 30	96.61	102 77	117 05	123-20
VILLA	PAPAL.	17 2666	5 5952	29 7109	13 5930	1 1847	1 33	5 40	VILLA	19.32	25 66	29.86	33 89	39 10	43 01	52 03	55.91	64 92	68 80

TABLA C.11 Parámetros de la Función de Distribución de Probabilidad Bivariada y eventos para períodos de retorno asignados en las estaciones de la Cuenca del Río Papaloapan (Zonas A y B). Duración, d = 1440 min.

2	CONA A	1	DURACIÓN	i = 1440 m	in .		ERR	OR EN	INTENSIDAD	DES DE LI	LUVIA PA	ARA DIFE	ERENTES	PERÍOD	OS DE RI	ETORNO,	. /, en ma	m/h	
ES	STACIÓN		PARÁN	METROS			EST	ACIÓN	ESTACIÓN			1	PERÍODO	DE RET	ORNO, 7	, en añ	os		
(1)	(2)	o1	αl	u 2	α.2	•	(1)	(2)	(1)	2	5	10	26	50	190	500	1000	5000	10000
APAZC	XIQUI	1.4882	0.4693	1 5752	0 5159	1 4209	0 162	0 097	APA7.C	1.660	2 192	2 544	2 882	3.319	3 647	4 4(M	4 730	5 485	5.811
ASTAT	XIQUI	1.6912	0.4308	1.5772	0 4991	1.5700	0 250	0.107	ASTAT	1.849	2 337	2 661	2.971	3.372	3 673	4 368	4.667	5 360	5 659
AYUTL	XIQUI	2 7056	0.8077	1 5445	0 4764	1 3984	0.528	0.139	AYUTL	3.002	3 917	4 523	5 105	5.857	6 421	7 724	8 285	9 585	10 144
CALAP	QUIOT	1 7208	0 6385	1.8812	0 6301	1 5361	0 173	0 161	CALAP	1 955	2 678	3 158	3 617	4.212	4.658	5 688	6 131	7 (59	7 601
CALTE	SNTIT	1 6146	0 5003	1.7520	0 4737	1 0344	0 096	0 370	CALTE	1.798	2 365	2 740	3.101	3.567	3 916	4 723	5.070	5 876	6 222
COIXT		x	X	X	X	X	l x	x	COIXT	2.104	2.811	3.280	3.730	4.311	4.747	5.754	6.187	7.192	7.624
CUEST	SNLOR	l x	X	X	X	X	l x	X	CUEST	2.241	2.972	3.456	3.920	4.521	4.972	6.013	6.460	7.499	7.944
ELCAR	CALTE	1 7788	0 5001	1 5885	0 4582	1 1786	0 091	0 102	ELCAR	1.962	2 529	2.904	3.264	3.730	4 079	4 886	5 233	6 038	6 385
JAYAC	SNTTT	1 8040	0 6545	1 7573	0 4312	1 0097	0.300	0 400	JAYAC	2 044	2 786	3 277	3 748	4 358	4 815	5 871	6 325	7 379	7 832
MAGDA	QUIOT	1 6884	0 5775	1 8750	0 6077	1 4132	0 197	0 163	MAGDA	1.900	2 555	2 988	3 404	3 942	4 345	5 277	5 678	6 607	7 008
PALMA		x	x	X	X	X	l x	x	PALMA	2.201	2.906	3.372	3.820	4.400	4.834	5.837	6.269	7.270	7.701
QUIOT	CALTE	1 8924	0.6250	1.5823	0 4606	1 0005	0.160	0 101	QUIOT	2.121	2 830	3 299	3 749	4 331	4 707	5 776	6 209	7 216	7 649
SALIN	XIQUI	1.8821	0 6677	1 4781	0 6003	1 1169	0.140	0 130	SALIN	2.127	2 884	3 385	3 865	4 487	4 954	6 031	6 494	7 569	8 032
SNLOR	JAYAC	1 7700	0 4160	1 7363	0.5688	1 0363	0 147	0 392	SNLOR	1 922	2 394	2 706	3.006	3.393	3.684	4 355	4 643	5 313	5 601
SNMIG	ELCAR	1 8337	0.5532	1 7750	0 4948	1 1534	0 177	0 092	SNMIG	2 036	2 663	3 079	3.477	3 992	4 379	5 271	5 655	6 545	6 929
SNPED	SNTIA	2.2615	0.7627	1 6161	1.1489	1 0497	0 367	0 314	SNPED	2.541	3 406	3 978	4 527	5.238	5 770	7 001	7 530	8 758	9 287
SNTIA	CALTE	1 5546	1 1061	1 5873	0 4580	1 1561	0 349	0 102	SNTIA	1.960	3 214	4 044	4.840	5.871	6 643	8 427	9 195	10 975	11 742
SNTIT	AYUTL	1 7855	0 4913	2 6483	0 6962	1 0086	0 355	0.611	SNTIT	1 966	2 522	2 891	3.245	3.702	4 045	4 838	5 179	5 970	6 310
SUCHI	SALIN	2 0207	0 6585	1 8206	0 5643	1 3694	0.255	0.199	SUCHI	2 262	3 008	3.503	3 977	4 590	5 050	6 112	6 569	7 629	8 085
TELPA	ELCAR	2.3358	1 0325	1.7701	0 4716	1 9642	0.297	0.104	TELPA	2.714	3 885	4 659	5.403	6.365	7.086	8 752	9 468	11 130	11 846
TEPEL	SNLOR	1 6368	0.5611	1.7363	0 3287	1 4389	0.218	0.252	TEPEL	1 842	2 478	2.899	3 303	3.826	4 218	5 123	5 512	6 415	6 804
TEPEU	CALTE	2 4147	0.7137	1 5726	0 4448	1.1992	0 114	0 115	TEPEU	2 666	3 475	4 011	4.525	5 190	5 688	6 840	7 335	8 484	8 978
XIQUI	CALTE	1 5867	0.5276	1 5812	0 4523	1 3118	0.092	0 107	XIQUI	1.780	2 378	2 774	3 154	3 646	4 014	4 865	5 231	6 081	0 440
	ONA B		DURACIÓN	i = 1440 =			FRR	OR EN	INTENSIDAD	PS DF LL	IIVIA PA	RA DIFE	RENTES	PERIOD	OS DE RE	TORNO	/ FN m	m/h	
		'	ORACIO				7.59	751754		LO DE LE									
	STACIÓN			PARÁME				ACIÓN	ESTACIÓN				PERIODO					-	
(1)	(2)	υl	αΙ	u 2	o.2	m	(1)	(2)	(1)	2	5	10	20	50	100	500	1000	5000	16000
ACAYU	JACAT	3 8978	1 0559	7 2080	1 7195	1 0165	0 167	0 306	ACAYU	4 285	5 482	6 274	7 034	8.018	8 755	10 459	11 191	12 891	13 623
ALOTE		X	X	X	X	x	х	X	ALOTE	5.479	6.977	7.968	8.919	10.151	11.073	13.205	14.121	16.249	17.165
AZUET	ACAYU	3 7443	1 0581	3 8354	0 9976	1 2456	0 463	0 226	AZULT	4 132	5 331	6 125	6 887	7 873	8 612	10/319	11 053	12 756	13 489
CANTO	ACAYU	6 9069	1 7760	3 8352	0 9942	1 1631	1 444	0 229	CANTO	7 558	9 571	10 904	12 182	13 837	15 077	17 942	19 174	22 633	23 264
CDALE	VILLA	4 8132	1 2592	3 2219	0 9794	1 0320	0 335	0 250	CDALE	5 275	6 702	7 647	8 553	9 727	10 606	12 638	13 511	15 538	19 411
CUATO	CDALE	3 5986	1.5438	4 7833	1 2169	1 0091	1 512	0 368	CUATO	4.164	5.914	7 073	8 184	9 622	10 700	13 191	14 262	16 747	17 818
сисн	ACAYU	4 6974	0911	3 8290	0 9965	1 1844	0 314	0 230	CUICH	5 097	6 334	7 153	7 938	8 955	9 717	11 477	12 234	13 990	14 747
FORTI	ACAYU	3 2678	0 8315	3 8655	1 0335	1 0859	0 369	0.185	HORTI	3 573	4.515	5 139	5 737	6 512	7 093	8 414	9 011	10 350	10 926
HUAUT	MONTE	5 9015	1 7027	4 8683	1 0638	i 2686	0 532	0 371	HUAUT	6 526	8 456	9 733	10 959	12 546	13 734	16 482	17 663	20 404	21 184
JACAT	ACAYU	7 1794	1 7757	3 8008	1 ()399	1 0042	0 282	0 207	JACAT	7 830	9 843	11.175	12 453	14 108	15 348	18 213	19 444	22 303	23 534
LAEST	JACAT	8 3765	2 0977	7 1284	1 6660	1 2157	1 421	0 353	LAIST	9.145	11 523	13 097	14 (4)7	16 562	18 026	21 411	22 866	26 243	27 697
MONTE	TEMAS	4 9422	1 1233	5 2864	1 3673	1 1990	0 331	0 320	MONTE	5 354	6 627	7 470	8 279	9 325	10 109	11 922	12 701	14 509	15 288
PAPAL	TEMAS	4 9706	0 8224	5 3359	1 4106	1 1902	0 155	0 298	PAPAI.	5 272	6 204	6 821	7 413	8 180	8 754	10 081	10 651	11 975	12 545
SNJUA		X	X	X	X	X	X	X	SNJUA	5.449	6.944	7.934	8.883	10.112	11.033	13 161	14.076	16.199	17.113
TEMAS	JACAT	5 3359	1 4218	7 1665	1 7363	1.3062	0 296	0 298	TEMAS	5 857	7 468	8 535	9 559	10 884	11 876	14 170	15 156	17 445	18 431
VILLA	MONTE.	3 2575	1 0011	4 8000	1 0250	1 4971	0 237	0 400	VILLA	3.624	4 759	5 510	6 231	7 164	7 863	9 478	10 172	11 784	12 478

METODO DE TRUESSEN

TECNICA EMPLEADA EN LA ESTIMACION DE ILLUVIA PUNTUAL Y EN UN AREA DETERMINADA

```
VARIABLES DE ENTRADA
          ARCHS - NOMBRE DEL ARCHIVO DE DATOS (EXT " DAT")
   P(IJ) = PRECIPITACION EN LA ESTACION J PARA EN EL AÑO L
   CO(J.2) = COORDENADAS (X.Y) DE C'ESTACION (PARA NE ESTACIONES)
  COE(K,2) = COORDENADAS DE LOS PUNTOS DE ESTIMACION, (Xc,Yc)
      NE = No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
      NA = No DE AÑOS DEL REGISTRO PARA LAS NE ESTACIONES
      NP = No DE PUNTOS (Xe, Ye) A ESTIMAR
      1 = 1 HASTA NA
      J = LHASTA NE
      K = I HASTA NP
'VARIABLES DE SALIDA
 DMI(NA) - DISTANCIA MINIMA A LA QUE SE ENCUENTRA UNA ESTACION DEL PUNTO "c"
  SMI(NE) = ESTACION MAS CERCANA
PE(NP) = PRECIPITACION CORRESPONDIENTE A SMI Y ESTACION "I"
ENTRADA DE DATOS INICIALES
                 METODO DE THIESSEN"
PRINT "
PRINT " TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL" PRINT "
PRINT "
                NUMERO DE ESTACIONES *, INPUT **, NE
         NUMERO MAXIMO DE AÑOS DE REGISTRO ". INPUT "". NA
           NUMERO PINTOS A INTERPOLAR ". INPUT ". NT
NUMERO DE SERIES A INTERPOLAR ". INPUT ", NI
NOMBRE DEL ARCHIVO DE DATOS ". INPUT ", ARCHS
PRINT "
PRINT "
PRINT "
PRINT "
                  UNIDAD DE TRABAJO ". INPUT "", DRIVS
LECTURA DEL ARCHIVO DE DATOS
ARCHIS = DRIVS + " \" + ARCHS + " DAT" OPEN "I" #1. ARCHIS
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
DIM P(NA,NE),DI(NT,NE),COXNE.2),COE(NT.2),DMI(NT*NI),SMI(NT),PE(NI,NT)
DIM TAIF(NE), AI(NE), AF(NE), NOES(NE), PT(NI, NE)
FOR J = 1 TO NE
 INPUT #1, NOES(J) PRINT USING "&", NOES(J).
  INPUT #1, TAIF(J) PRINT USING " ### ", TAIF(J),
  INPUT #1, AID) PRINT USING " #### ", AID).
  INPUT #1, AF(I) PRINT USING " ### ", AF(I)
  PRINT " INTENSIDAD DE LA PRECIPITACION, EN mm/h " PRINT " i,1"
 FOR 1 = 1 TO TAIF(I)
   INPUT #1, P(I, I). PRINT USING "### ## ", P(I, I).
  NEXT I PRINT ""
NEXT J PRINT "
PRINT * COORDENADAS DE LAS ESTACIONES CO(L.j) *
PRINT ESTACION X Y
PRINT -
                (km)
FOR J = 1 TO NE
 INPUT #1, CO(J. Ti, CO(J. 2)
 PRINT " J, PRINT USING " ### ## ", CO(J, 1), CO(J, 2)
LECTURA DE COORDENADAS CARTESIANAS DE "NE" ESTACIONES
Y LAS COORDENADAS (Xe, Ye) DE LOS PUNTOS A ESTIMAR
PRINT " COORDENADAS DE LAS ESTACIONES COEquia A INTERPOLAR"
FOR J = 1 TO NT
 INPUT #1, COEd, 1), COEd. 2)
 PRINT ". J. PRINT USING " #### # ". COEd. 1), COEd. 2)
```

PRINT " INTENSIDADES DE LLUVIA, EN mm/h, PARA LA INTERPOLACION"

```
FOR 1 - 1 TO NI
 PRINT "INTENSIDAD DE LLUVIA, EN mm/h "
 PRINT * SERIE + , ESTACION |*
 FOR L = 1 TO NE
   INPUT #1, PT(I, I) PRINT USING "### ## T, PT(I, I).
 NEXT J PRINT "
NEXT L PRINT " CLOSE #1
'CALCULO DE LAS DISTANCIAS 4 [ e.s ]
FOR K = 1 TO NT
 XI = COE(K, 1) YI = COE(K, 2) MIN = 10000000
 FOR 1 = 1 TO NE
  X2 = CO(1, 1) Y2 = CO(1, 2)
  DI(K, J) = ((X2 - X1)^2 + (Y2 - Y1)^2)^5.5
  IF DKK, I) < MIN THEN
   MIN = DRK, J) \cdot JE = J
  END IF
 NEXT J
 DMI(K) = MIN SMI(K) = JE
NEXT K
'DETERMINACION DE LA PRECIPITACION EN EL SITIO "c"
FOR K = 1 TO NT
 FOR I = 1 TO NI PE(I, K) = PT(I, SMI(K)) NEXT I
NEXT K
FOR L - L TO NE
 FOR K = 1 TO NT PE(I, K) = PT(I, SMI(K)) NEXT K
NEXT I
IMPRESION DE RESULTADOS. SE GRABA EN UN ARCHIVO CON EXTENSION." THIS
ARCH2S = DRIVS + " (" + ARCHS + " RES" OPEN "A", #2, ARCH2S
PRINT #2, "
                     METODO DE THIESSEN*
PRINT 12. TECNICA PARA LA ESTIMACION DE LLI VIA PUNTI AL PRINT 12. "
PRINT #2.
               PRECIPITACION ESTIMADA EN EL PUNTO ". PRINT 12, "
PRINT 12, " PRINT 12, SPC(10), "COORDENADAS DE LOS PUNTOS À ESTIMAR"
PRINT 12. " Nº". SPC(8). " X ", SPC(8). " Y ", SPC(5), "die, ", SPC(3). "EST", SPC(4). " Pe-
PRINT #2, " ", SPC(8), "(km) ", SPC(8), "(km)", SPC(5), "(km) ", SPC(5), " ", SPC(5), " (mm)"
FOR I = 1 TO NI
 PRINT #2, "I,K "
 FOR N - 1 TO NT
   PRINT #2. USING " ##", 1, K, SPC(2).
   PRINT #2, USING "#### ###", COE(K, 1), SPC(4), COE(K, 2), SPC(4), DMI(K),
   PRINT #2, SPC(3), SMI(K), SPC(2).
   PRINT #2. USING "### PEU. K). PRINT #2. ""
 NEXT K
NEXT 1 CLOSE #2
END
MÉTODO DE INTERPOLACION POLINOMIAL
```

POR MINIMOS CUADRADOS TECNICA EMPLEADA EN LA ESTIMACION DE LLIVIA PUNTUAL Y EN UN AREA DETERMINADA

DECLARE SUB GAUSSJORDAN (M, NT, AO, BO, DET) DECLARE SUB CORRIGEINVERSA (M. NITER)

VARIABLES DE ENTRADA

```
ARCHS = NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
  P(I,J) = PRECIPITACION EN LA ESTACION J PARA EN EL ANO I
CO(L2) = COORDENADAS (X.Y) DE CADA ESTACION (PARA NE ESTACIONES)
COE(K.2) = COORDENADAS DE LOS PLINTOS DE ESTIMACION, (Xe, Ye)
     NE - No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
     NA = No DE ANOS DEL REGISTRO PARA LAS NE ESTACIONES
     NT - No DE PUNTOS (Xe, Ye) A INTERPOLAR
     L = LHASTA NA
    J = 1 HASTA NE
    K = 1 HASTA NT, 1 HASTA M
    NPA - No DE PAREJAS DE ESTACIONES, NPA - NE(NE 1)/2
VARIABLES DE SALIDA
TE(M.M) - MATRIZ DE COEFICIENTES Ú(XI,Y)) - | PI(XJ,YJ) PJ(XJ,YJ) |
TEI(M,M) = INVERSA DE LA MATRIZ DE COEFICIENTES Ú(XI,Y))
  PEINP) = ESTIMACION DE LA PRECIPITACION EN EL PUNTO e
WS(NP.NE) - FACTOR DE PESO EN LA ESTACION ; PARA EL PUNTO e
ENTRADA DE DATOS INICIALES
PRINT "
                METODO DE INTERPOLACION POLINÓMIAL*
PRINT "
                   POR MINIMOS CUADRADOS"
PRINT -
             TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL.º PRINT "
                NUMERO DE ESTACIONES ", INPUT ", NE
PRINT "
PRINT " NUMERO MAXIMO DE ANOS DE REGISTRO ", INPUT "", NA
           NUMERO PUNTOS A INTERPOLAR ". INPUT ", NT
NUMERO DE SERIES A INTERPOLAR "; INPUT ", NI
PRINT .
PRINT "
PRINT -
            NOMBRE DEL ARCHIVO DE DATOS ", INPUT ", ARCHS
                  UNIDAD DE TRABAJO ". INPUT ", DRIVS
PRINT "
PRINT "
            GRADO DEL POLINOMIO (1 6 2) ". INPUT ", G CLS
LECTURA DEL ARCHIVO DE DATOS
ARCHIS = DRIVS + "\" + ARCHS + " DAT" OPEN "I", #1, ARCHIS
IF G = 1 THEN
 M - 3
ELSEIF G = 2 THEN
 M = 6
ELSE STOP
END IF
MM = M * 2 + 1 ISIS = M + 1 IINV = M + 2
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
DIM P(NA, NE), FIE/NT, M), CO(NE, 2), COE/NT, 2), WS(NT, NE), PE(NI, NT)
DIM FI(M NE), ALFA(M, NE), TE(M, M), PT(NI, NE), TAIF(NL), AI(NE), AF(NE), NOES(NE)
DIM A(M, M). B(M, NT)
FOR I = 1 TO NE
 INPUT #1, NOES(I) PRINT USING "&", NOES(I),
 INPUT #1, TAIF(J) PRINT USING " ### ", TAIF(J),
  INPUT #1, Ald) PRINT USING " ### ", Ald).
  INPUT #1 AP(J) PRINT USING " ### ", AF(J)
  PRINT * INTENSIDAD DE LA PRECIPITACION, EN mm/h *
 PRINT " 1.1"
 FOR I = 1 TO TAIF(J)
   INPUT #1 P(I, I) PRINT USING "### ## ". Pil, J).
 NEXT I PRINT "
NEXT I PRINT "
PRINT * COORDENADAS DE LAS ESTACIONES COND *
PRINT FSTACION X
PRINT "
              (km) (km)
FOR 1 = 1 10 NE
 INPUT #1, COO, 15, COO, 25
 PRINT " ... PRINT USING " #### ", COU, 1), COU, 2)
```

```
PRINT " COORDENADAS DE LAS ESTACIONES COE(I,j) A INTERPOLAR"
FOR J = 1 TO NT
 INPUT #1, COEd. 1), COEd. 2)
  PRINT " ... J. PRINT I/SING " #### ## ". COE(J. 1). COE(J. 2)
PRINT " INTENSIDADES DE LLI VIA, EN mm/h, PARA LA INTERPOLACION"
FOR I = I TO NI
  PRINT " INTENSIDAD DE LLI VIA, EN mm/h "
  PRINT " SERIE + , ESTACION |"
 FOR J = 1 TO NE
   INPUT #1, PT(I, J) PRINT USING "### ## ", PT(I, J).
  NEXT I PRINT "
NEXT I PRINT " CLOSE #1
ERASE TAIF, AI, AF, NOES
CALCULO DE LOS COEFICIENTES DE LA MATRIZ. | P(X1,Yp)
1 - 1
DO
 FOR J = 1 TO NE
   IF L = 1 THEN
     FI(L., 1) = 1#
   ELSHIF L = 2 THEN
     Fig. b = cod, b
   ELSEIF L = 3 THEN
     FI(L, J) = CO(J, 2)
   ELSEIF L = 4 THEN
     Fig. 3) = COd 1) 12
   FLSEIF L - 5 THEN
     Fitt., 1) = CO(1, 1) * CO(1, 2)
   ELSEIF L = 6 THEN
     Fith, 1) = CO(1, 2) 1 2
   END IF
  NEXT J
CALCULO DE LOS COEFICIENTES DE LA MATRIZ. | PIXe.Yei |
 FOR K = 1 TO NT
   IF I - 1 THEN
    FIE(K. L) - 10
   ELSEIF L = 2 THEN
     FIE(K, L) = COE(K, b)
   FLSEIF L = 3 THEN
     FIE(K, 1) = COE(K, 2)
   ELSEIF L = 4 THEN
   FIE(K, L) = COE(K, 1)^2
   ELSEIF L - 5 THES
    FIE(K, L) = COE(K, 1) * COE(K, 2)
   ELSEIF L = 6 THEN
    FIE(K, 1) = COE(K, 2) * 2
   END IF
 NEXT K
 1. = 1. + 1
LOOP WHILE L < * M
CALCULO DE LA MATRIZ | Ukr | = | Pi(Xj, Yj) Pj(Xj, Yj) | = TE ( NE.NE )
HOR K = 1 TO M
 FOR I - I TO M
   TE(K, b) = 0
   FOR J = 1 10 NF | TE(K, f) = TE(K, f) + F(K, J) * F(d, f) NEX L J
```

NEXT I

NEXT I

```
NEXT K
CALCULO DE LA INVERSA DE LA MATRIZ TE(M,M)
GOSUB INVERSA
"CALCULO DE LA MATRIZ ( Ok) ( = ALFA(k,)) = & TEI(k,i) Pi(X), Yi) , i=1, ...M
FOR K = 1 TO M
 FOR I = 1 TO NE
   ALFA(K, J) = 0
   FOR I = 1 TO M ALFA(K, J) = ALFA(K, J) + A(K, I) * FI(J, J) NEXT I
NEXT K
"CALCULO DEL FACTOR DE PESO: Ws(NP,NE) = sum alta kj Pk(Xe,Ye) .k=1, ,M
FOR L = 1 TO NT
 SO = 0
 FOR J = 1 TO NE
   S1 = 0
   FOR K = 1 TO M SI = SI + ALFA(K, J) * FIE(L, K) NEXT K
   WS(L, J) = S1 S0 = S0 + WS(L, J)
 PRINT 'Ws (", L; ",", J, ") = ", 'PRINT USING "### ### W$(L, J) NEXT J PRINT USING " Sum Ws = ### ### S0 PRINT "
'DETERMINACION DE LA PRECIPITACION EN EL SITIO "e"
FOR I = 1 TO NI
 FOR K = 1 TO NT
   FOR J = 1 TO NE S1 = S1 + WS(K, J) * PT(I, J) NEXT J
   PE(I, K) = SI \cdot IF PE(I, K) < 0 THEN PE(I, K) = 0
 NEYTK
NEXT I
"IMPRESION DE RESULTADOS GRABA UN ARCHIVO CON EXTENSION " POL" « > POLINOMIAI
ARCH2S - DRIVS + " \" + ARCHS + " RES" OPEN "A", #2 ARCH2S
PRINT #2.
                METODO DE INTERPOLACION POLINOMIAL*
PRINT 12. TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL. PRINT 12. "
PRINT #2. " GRADO POLINOMIAL EMPLEADO EN EL CALCULO ", PRINT #2, G
                PRECIPITACION ESTIMADA EN EL PUNTO ", PRINT /2, "
PRINT #2, " N"", SPC(3), "COORD X(km)", SPC(3), "COORD Y(km)", SPC(3), "Pe (min)"
FOR I = 1 TO NI
 PRINT #2, "1,K "
 FOR K = 1 TO NT
   PRINT #2, USING " ##", I, K, SPC(2).
   PRINT #2, USING " #### ### ", COE(K, 1), SPC(4), COE(K, 2), SPC(4),
   PRINT #2, USING " ### ###". PE(I, K), PRINT #2, ""
 NEXT K
NEXT I
END
FOR L = 1 TO M
 FOR J = 1 TO M. A(I, J) = TE(I, J) NEXT J
 B(l,\,l) = H(l,\,l)
NEXT I
CALL GAUSSIORDAN(M, NT. AO, BO, DET)
PRINT DETERMINANTE = ", DET
PRINT " MATRIZ INVERSA."
FOR I = 1 TO M
 FOR J = 1 TO M PRINT USING "#### ####", A(I, I), NEXT J PRINT "
NEXT I PRINT "
NITER - 100
```

```
CALL CORRIGEINVERSA(M, NITER)
PRINT " MATRIZ INVERSA CORREGIDA "
FOR I - I TO M
 FOR J = 1 TO M PRINT USING "BOOKS BOOK", A(I, J), NEXT J PRINT "
NEXT I
RETURN
SUB CORRIGEINVERSA (M. NITER)
DIM B(M, M), INV(M, M), R(M, M), CB(M)
SHARED TEO, AO
DEFDBI. P
  FOR 1 = 1 TO M
   FOR J = 1 TO M B(I, J) = A(I, J) A(I, J) = TE(I, J) NEXT J
  NEXT 1
  FOR 1 = 1 TO M
   FOR J = 1 TO M
     INV(I, J) = B(I, J) P = 0
     FOR K = I TO M P = P + (B(I, K) * A(K, J)) NEXT <math>K
     R(I, J) = -P
    NEXT J
   R(1, 1) = R(1, 1) + 1
  NEXT I
  FOR S = 1 TO NITER
   UK = 0
   FOR 1 = 1 TO M
     FOR I = 1 TO M CB(I) = B(I, J) NEXT I
     FOR L = 1 TO M
       P = 0
       FOR K = 1 TO M P = P + R(I, K) * CB(K) NEXT K
      B(I, J) = P INV(I, J) = INV(I, J) + P
     NEXT I
     IF ABS(P) > .000001 THEN UK = 1
   NEXT J
   IF UK = 0 THEN EXIT FOR
   IF S = NITER AND ABS(P) > 000001 THEN
     PRINT " LA SOLUCION DEL SISTEMA NO CONVERGE"
PRINT " POR LO TANTO ES CONVENIENTE AJUSTAR"
     PRINT " UN POLINOMIO DE PRIMER GRADO"
     DO LOOP WHILE INKEYS = "
     FOR I . I TO M
      FOR J = 1 TO M A(I, I) = R(I, I) NEXT I
     NEXT I
    EXIT SUB
  END (E
 NEXT S
 FOR I = 1 TO M
  FOR J = LTO M A(I, J) = INV(I, J) NEXT J
 NEXTI
END SUB
SUB GAUSSJORDAN (M. NT. AO. BO. DET)
DIM IPHM) AS DOUBLE, IND(M, 2) AS DOUBLE
DEFIDALE
 DEF = 1
 IORJ = ITOM IPI(J) = 0 NEXT J
 FOR IREN . L TO M
```

AMAX - 0

```
FOR 1 ≈ 1 TO M
  IF IPIO < > 1 THI-N
    FOR 1 = 1 TO M
      (F IPIO) < > 1 THEN
        IF ABSIAMAX) < ABSIA(L.1)) THEN
         REN = 1 COL = 1 AMAX = A(I, J)
        END IF
      END IF
    NEXT J
  END IF
 NEXT I
 PIVO - A(REN. COL)
 IF ABS(PIVO) < 0000000001# THEN
  NO - 1 EXIT FOR
 END IF
 DET - DET . PIVO
 IND(IREN, I) - REN IND(IREN, 2) - COL.
 IPI(COL) - 1
 IF (REN < > COL) THEN
  DET - DET
  FOR 1 = 1 TO M
    TEMP - AIREN, J) AIREN, J) - AICOL, J) AICOL, J) - TEMP
   NEXT J
   IF NT < > 0 THEN
    FOR J = 1 TO NT
      TEMP - BIREN, J. BIREN, J. - BICOL, J. BICOL, J. - TEMP
  END IF
 END IF
 A(COL. COL) = 1
 FOR J = 1 TO M A(COL. J) = A(COL. J) / PIVO NEXT J
 IF NT <> 0 THEN
  FOR J = 1 TO NT BICOL, I) = B(COL, I) / PIVO NEXT J
 END IF
 FOR 1 = 1 TO M
   IF I <> COL THEN
    CERO - All. COL) All. COL) - 0
    FOR I = 1 TO M. A(I. I) = A(I. I) - CERO * A(COL., I) NEXT I
    IF NT < > 0 THEN
      FOR J = 1 TO NT Bd. D = Bd. D - CERO * B(COL, D NEXT J
  END IF
 NEXTI
NEXT IREN
IF NO < > 1 THEN
 FOR IREN - I TO M
  I - M IREN . 1
   IF IND(I, I) < > IND(I, 2) THEN
    REN - INDIL 1) COI - IND(1, 2)
      TEMP - Att. REN) Att. REN) - Att. COL) Att. COL) - TEMP
     NEXT I
  END IF
 NEXT IREN
FLSEIF NO = 1 THEN
 PRINT 'NO HAY DATOS PARA RESOLVER EL SISTEMA"
 STOP
```

END SUB

METODO DE LA DISTANCIA INVERSA TECNICA EMPLEADA EN LA ESTIMACION DE LLUVIA PUNTUAL Y EN UN AREA DETERMINADA

```
VARIABLES DE ENTRADA
   ARCHS - NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
  P(L) - PRECIPITACION EN LA ESTACION ; PARA EN EL ANO I
  COU.2) - COORDENADAS (X.Y) DE CADA ESTACION (PARA NE ESTACIONES)
 COE(K,2) . COORDENADAS DE LOS PUNTOS DE ESTIMACION. (Xc, Ye)
     NE - No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
     NA - No DE ANOS DEL REGISTRO PARA LAS NE ESTACIONES
    NT - No DE PUNTOS (Xc, Ye) A ESTIMAR
     I = I HASTA NA
     J = I HASTA NE
     K - I HASTA NT
VARIABLES DE SALIDA
 DI(N1.NA) - DISTANCIA ENTRE LA ESTACION ; Y EL PUNTO e
  PENT) = PRECIPITACION CORRESPONDIENTE A SMI Y ESTACION ;
 WS(NE NT) = FACTOR DE PESO QUE LE CORRESPONDE A LA ESTACION J EN EL PUNTO c
'ENTRADA DE DATOS INICIALES
PRINT "
               METODO DE DISTANCIA INVERSA"
PRINT -
         TECNICA PARA LA ESTIMACION DE LI UVIA PUNTUAL" PRINT
                NUMERO DI ESTACIONES ". INPUT "". NE
PRINT " NUMERO MAXIMO DE AÑOS DE REGISTRO ", INPET " NA
          NUMERO PUNTOS A INTERPOLAR ". INPUT ". NT
NUMERO DE SERIES A INTERPOLAR ". INPUT ". NI
NOMBRE DEL ARCHIVO DE DATOS ". INPUT ". ARCHS
PRINT "
PRINT "
PRINT "
                  UNIDAD DE TRABAJO ", INPUT ", DRIVS
LECTURA DEL ARCHIVO DE DATOS
ARCHIS - DRIVS + " " + ARCHS + " DAT" OPEN "I", #1, ARCHIS
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
DIM PINA, NE), DIINT, NE), COINE, 2), COEINT, 2), WSINT, NE), PEINI, NT)
DIM TAIFINE). AI(NE). AF(NE). NOES(NE). PT(NI. NE)
FOR I - I TO NE
 INPUT #1, NOISO: PRINT USING "&", NOISO:
 INPUT #1. TAILED PRINT USING " ### ". TAILED.
 INPUT #1. AID) PRINT (ISING " ### ", AID).
 INPUT #1. AF(I) PRINT USING " ### ". AF(I)
 PRINT " INTENSIDAD DE LA PRECIPITACION, EN min/h " PRINT " 1.3"
 FOR I - I TO TAIL ()
  INPUT #1. Pd. I) PRINT USING "### # ". Pd. I).
 NEXT I PRINT "
NEXT J PRINT --
PRINT * COORDENADAS DE LAS ESTACIONES COMP. *
PRINT STACION X
PRINT "
           (km) (km)
FOR LA LTO NE
INPUT #1, CO(J. 1), CO(J. 2)
PRINT * 1 PRINT HSING * ### *, COU. B. COU. 25
PRINT COORDENADAS DE LAS ESTACIONES COLOJO A INTERPOLAR
FOR J = 1 TO NT
 INPLY #1 COLD. ID. COEd. 2)
 PRINT ". I. PRINT USING " . COEd. I) COEd. 2
```

```
* CO(J.2) = COORDENADAS (X.Y) DE CADA ESTACION (NE ESTACIONES)
PRINT " INTENSIDADES DE LLUVIA, EN mm/h, PARA LA INTERPOLACION"
                                                                                                                COE(K,2) = COORDENADAS DE LOS PUNTOS DE ESTIMACION. (Xe, Ye)
                                                                                                                     NE - No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
FOR I = 1 TO NI
 PRINT " INTENSIDAD DE LLUVIA, EN mm/h "
                                                                                                                    NA - No DE ANOS DEL REGISTRO PARA LAS NE ESTACIONES
  PRINT " SERIE 1. ESTACION J"
                                                                                                                     NP = No DE PUNTOS (Xe, Ye) A ESTIMAR
 FOR J = 1 TO NE
                                                                                                                     I = I HASTA NA
  INPUT #1, PT(I, J) PRINT USING "### ", PT(I, J).
                                                                                                                    I . I HASTA NE
 NEXT I PRINT "
                                                                                                                     K = I HASTA NP
NEXT I PRINT " CLOSE #1
                                                                                                                    NPA - No DE PAREJAS DE ESTACIONES, NPA - NEINE 13/2
CALCULO DE LAS DISTANCIAS & | c.s |
                                                                                                                VARIABLES DE SALIDA
                                                                                                                DINE, NE) - MATRIZ DE DISTANCIAS ENTRE LAS ESTACIONES I Y L
FOR K = 1 TO NT
 X1 = COE(K, 1) Y1 = COE(K, 2)
                                                                                                                'DI(NE,NE) - MATRIZ INVERSA DE DISTANCIAS DINA,NA)
                                                                                                                 PEINP) - ESTIMACION DE LA PRECIPITACION EN EL PUNTO e
 FOR J - I TO NE
  x_2 = cod, by y_2 = cod, 2) d(x, t) = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (y_2 - y_1)^2
                                                                                                                'WSINP.NE) = FACTOR DE PESO EN LA ESTACION I PARA EL PUNTO E
  IF ABS(DI(K, J)) < 001 THEN DI(K, J) = 001
                                                                                                                'ENTRADA DE DATOS INICIAI ES
                                                                                                                PRINT .
                                                                                                                              METODO DE INTERPOLACION MUI TICUADRATICA"
 NEXT J
                                                                                                                PRINT "
                                                                                                                             TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL. PRINT
NEXT K
"CALCULO DEL FACTOR DE PESO Ws ( NT. NE.)
                                                                                                               PRINT "
                                                                                                                                NUMERO DE ESTACIONES 1, INPUT 11, NE
                                                                                                                PRINT ' NUMERO MAXIMO DE ANOS DE REGISTRO '. INPUT ", NA
EXPONENTE BETA " 8 = 8 = 1 " IN EL METODO DE LA DISTANCIA INVERSA
                                                                                                                           NUMERO PUNTOS A INTERPOLAR ". INPUT ", NT
NUMERO DE SERIES A INTERPOLAR ". INPUT ". NI
B - 1
                                                                                                               PRINT -
FOR K = I TO NT
                                                                                                               PRINT .
 51 = 0
                                                                                                                PRINT "
                                                                                                                            NOMBRE DEL ARCHIVO DE DATOS ". INPUT ". ARCHS
 FOR 1 = 1 TO NE. S1 = S1 + (1 / DI(K, J)) * B NEXT J
                                                                                                                PRINT .
                                                                                                                                 UNIDAD DE TRABAJO ", INPUT "", DRIVS
 FOR L = 1 TO NE WS(K, L) = (1 / DKK, L) * 8 / SI NEXT L
                                                                                                                LECTURA DEL ARCHIVO DE DATOS
                                                                                                                ARCHIS - DRIVS + " " + ARCHS + " DAT" OPEN "I", #1, ARCHIS
NEXTK
DETERMINACION DE LA PRECIPITACION EN EL SITIO "e"
                                                                                                                NPA - NE . (NE - 1) / 2
FOR I = 1 TO NI
                                                                                                                DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
 FORK - 1 TO NT
                                                                                                                DIM P(NA, NE), DINE, NE), DRNE, NE), CO(NE, 2), COEINT, 2), WSINT, NE), PEINI, NT)
                                                                                                                DIM DEJINT, NE). DISTINPA). TAIHINE). AKNE), AFINE), NOESINE). PTINI. NE)
   St = 0
   FOR J = 1 TO NE SI = SI + WS(K, J) * PT(I, J) NEXT J
                                                                                                                FOR J = 1 TO NE
                                                                                                                 INPUT #1. NOES(I) PRINT USING "&". NOES(I).
   PE(I, K) = S1
                                                                                                                 (NPLIT #1, TAIFIJ) PRINT USING " ### ", TAIFIJ).
  NEXT K
                                                                                                                 INPUT #1. AILD PRINT USING " ### ". AICD.
NEXTI
"IMPRESION DE RESULTADOS GRABA ARCHIVO EXTENSION " DIN" * > DIST INVERSA
                                                                                                                 INPUT #1, AF(I) PRINT USING " ### ", AF(I)
ARCH2S - DRIVS + " \" + ARCHS + " RES" OPEN "A". M2. ARCH2S
                                                                                                                 PRINT " INTENSIDAD DE LA PRECIPITACION. EN mm/h " PRINT " i.)"
                                                                                                                 FOR 1 = 1 TO TAILU)
PRINT #2,
                 METODO DE LA DISTANCIA INVERSA"
PRINT 12, TECNICA PARA LA ESTIMACIÓN DE LLUVIA PUNTUAL. PRINT 12, "
                                                                                                                  INPUT #1. Pil. I) PRINT USING "### ## ", Pil. I).
               PRECIPITACION ESTIMADA EN EL PUNTO . PRINT 12, "
PRINT 12.
                                                                                                                 NEXT I PRINT "
PRINT #2, " No", SPC(4), "COORD X(km)", SPC(4), "COORD Y(km)", SPC(4), "Pe (U)"
                                                                                                                NEXT J PRINT "
FOR 1 = 1 TO NE
                                                                                                                PRINT * COORDI-NADAS DE LAS ESTACIONES COU, ) *
  PRINT #2. 1.K
                                                                                                                PRINT : ESTACION X Y
                                                                                                               PRINT -
  FORK = LTO NT
                                                                                                                             (km) (km)
                                                                                                               FOR 1 = 1 TO NE
   PRINT #2 USING " # 1, K, SPC (2).
    PRINT #2, USING " #### ### " COE(K. 1), SPC(4), COE(K. 2), SPC(4)
                                                                                                                 INPUT #1, CO(J. f), CO(J. 2)
   PRINT #2. USING " #### ###". PEd. K). PRINT #2. "
                                                                                                                 PRINT T. J. PRINT USING T. AND DE T. COO. D. COO. 21
                                                                                                                NEXTI
  NEXT K
                                                                                                                PRINT * COORDENADAS DE LAS ESTACIONES COEU, DA INTERPOLAR*
NEXTI
                                                                                                                FOR I = 1 TO NT
END
                                                                                                                 INPUT #1, COEd. 1), COEd. 2)
                                                                                                                 PRINT -
                                                                                                                          * J. PRINT USING * ### ## *, COEd. D. COEd. 21
                             METODO DE INTERPOLACION MULTICUADRATICA
                                                                                                                NEXTI
                            TECNICA EMPLEADA EN LA ESTIMACION DE LLUVIA
                                                                                                                PRINT " INTENSIDADES DE LLUVIA. EN mm/h. PARA LA INTERPOLACION"
                                 PUNTUAL Y EN UN AREA DETERMINADA
                                                                                                                FOR I = L TO NI
DECLARE SUB GAUSSJORDAN (N. DO. BO)
                                                                                                                 PRINT " INTENSIDAD DE LLUVIA EN nimiti "
                                                                                                                 PRINT " SERIE . . ESTACION ;"
VARIABLES DE ENTRADA
    ARCHS = NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
                                                                                                                 FOR J = 1 TO NE
                                                                                                                   INPUT #1, PTd. I) PRINT USING "### # ", PTd. I)
   PO 5 = PRECIPITACION EN LA ESTACION I PARA EN EL ANO I
```

```
NEXT I PRINT **
NEXT I PRINT " CLOSE #
ERASE TAU AL AF, NOES
CALCULO DE LA DISTANCIA ENTRE EL PAR DE ISTACIONES LI
NI - 2 K - 1 J - 1
no
 FOR I - NI TO NE
  X1 = CO(1, 1) Y1 = CO(1, 2) X2 = CO(1, 1) Y2 = CO(1, 2)
  DIST(K) = SOR((X2 - X1)^2 + (Y2 - Y1)^2)
  K = K + 1
 NEXT I
 NI = NI + IJ = J + I
LOOP WHILE K < = NPA
'ASIGMACION DE VALORES A LA MATRIZ DE DISTANCIAS D(NE.NE)
N1 = 1 K = 1 J = 1
               'D(NE,NE) DIAGONAL INFERIOR
DO
 FOR I = NI TO NE
  IF I - J THEN
   D(1, 1) = 0
  ELSEIF K < = NPA THEN
   D(l, l) = D(ST(K) | K = K + l)
  END IF
 NEXT I
 NI - NI + 1 J - J + 1
LOOP WHILE (J < = NE)
NI - I K - 1 I - 1
DO
               'DINE, NE) DIAGONAL SUPERIOR
 FOR J = NI TO NE
  IF J = I THEN
   D(1, 1) = 0
  ELSEIF K < - NPA THEN
   D(1, 1) = DIST(K) K = K + 1
  END IF
 NEXT J
 NI = NI + 1 1 = 1 + 1
LOOP WHILE (I < = NE)
CALCULO DE LAS DISTANCIAS d | e.j |
FOR K = 1 TO NT
 XI = COE(K, I) YI = COE(K, 2)
 FOR I = 1 TO NE
  X2 = CO(1, 1) Y2 = CO(1, 2) DEJ(K, I) = ((X2 | X1)^2 2 + (Y2 | Y1)^2 2)^3 5
 NEXT I
NEXT K
"CALCULO DEL FACTOR DE PESO WI (NT ; NE )
N = NE DIM B(N)
FORK # 1 TO NT
 FOR J = 1 TO Nf: B(J) = DEJ(K, J) NEXT J
  CALL GAUSSIORDANIN, DO. BOX
  PRINT "SOLUCION DEL SISTEMA" SI = 0
  FOR 3 = 1 10 NE
   WS(K, D) = B(D) SI + SI + WS(K, D)
   PRINT "Ws ( " K "." J. " ) = ". PRINT USING "### ### WS(K, I)
  NEXT I PRINT I SING " n Ws = ### ###", SI
NEXT K
'DETERMINACION DE LA PRECIPITACION EN EL SITIO 'c'
FOR I = 1 10 NI
  FORK = 1 TO NT
```

```
FOR J = 1 TO NE SI = SI + WMK, b * PT(J, J) NEXT J
   Pfal. K) = SI
  NEXT K
NEXT I
IMPRESION DE RESULTADOS GRABA ARCHIVO CON EXTENSION " MCD" -> MILL LICLADRATICA
ARCHES - DRIVS + THT + ARCHS + " RES" OPEN "A", #2, ARCHES
PRINT 12. METODO DE INTERPOLACION MULTICUADRATICA*
PRINT (2. * TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAI * PRINT (2. **
               PRECIPITACION ESTIMADA EN EL PUNTO 'PRINT O."
PRINT #2, " Na", SPC(4), "COORD X(km)", SPC(4), "COORD Y (km)", SPC(4), "Pe (11)"
FOR I - I TO NE
  PRINT #2, "1,K "
  FOR K = 1 TO NT
   PRINT #2, USING " ##", I. K. SPC(2).
   PRINT #2, USING " ### ### ", COE(K, 1), SPC(4), COE(K, 2), SPC(4).
   PRINT #2, USING " ### ###", PE(I, K); PRINT #2, "
  NEXT K
NEXT 1
END
SUB GAUSSIORDAN (N. DO. BO)
 DIM INDIN, 2), IPI(N), A(N, N)
 FOR I = 1 TO N FOR J = 1 TO N All. I) = Dd. I) NEXT J NEXT I
  DET = 1 FOR J = 1 TO N IPI(J) = 0 NEXT J
  HORI - ITON
   MAX - 0
   FOR K = 1 TO N
     IF IPI(K) <> 1 THEN
       FOR 1 = 1 TO N
        IF IPI(J) < > | THEN
          IF ABS(MAX) <= ABS(A(K, J)) THEN
            R = K C = J MAX = A(K. J)
          END IF
        END IF
       NEXT J
     END IF
   NEXT K
   P1 . A(R. C)
   IF ABS(PI) < 1E-08 THEN YA = 1
   IF YA = I THEN EXIT FOR
   DET = DET • PI IND(I, I) = R IND(I, 2) = C IPI(C) = I
   IF R C > C THEN
     DET = DET
     FOR J = 1 TON CA = A(R, J) A(R, J) = A(C, J) A(C, D) = CA NEXT J
     CA = B(R) B(R) = B(C) B(C) = CA
   END IF
   AIC. () = 1
   FOR J = I TO N AIC, D = AIC, D PI NEXT J
   B(C) = B(C) / P1
   FORK # 1 TO N
     II K < P CTHEN
      CO = A(K. C) A(K. C) = 0
      FOR J = 1 TO N A(K, J) = A(K, J) CO * A(C, J) NEXT J
      B(K) = B(K) + CO \cdot B(C)
     END IF
```

NEXT K

```
NEXT I
 SF YA <> 1 THEN
  FOR 1 - I TO N
    K - N 1 + 1
    IF IND(K, 1) < > IND(K, 2) THEN
      R = IND(K, 1) C = IND(K, 2)
      FOR K = 1 TO N CA = A(K, R) A(K, R) = A(K, C) A(K, C) = CA NEXT K
    END IF
   NEXT I
 ELSE PRINT "
                 LA MATRIZ ES SINGULAR, por lo tanto no hay solución"
 END IF
FND SUR
************************
                                METODO DE INTERPOLACION OPTIMA
                            EMPLEANDO MULTIPLICADORES DE LAGRANGE
                          TECNICA EMPLEADA EN LA ESTIMACION DE LLUVIA
                               PUNTUAL Y EN UN AREA DETERMINADA
DECLARE SUB CORRIGEINVERSA (M. NITER)
DECLARE SUB GAUSSJORDAN (M, NT, AO, BO, DET)
VARIABLES DE ENTRADA
   ARCHS - NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
  P(L) = PRECIPITACION EN LA ESTACION J PARA EN EL ANO I
  CO(1,2) - COORDENADAS (X,Y) DE CADA ESTACION (PARA NE ESTACIONES)
 COE(K.2) - COORDENADAS DE LOS PUNTOS DE ESTIMACION. (Xe.Ye)
    NE - No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
    NA = No DE ANOS DEL REGISTRO PARA LAS NE ESTACIONES
    NP - No DE PUNTOS (Xe. Ye) A ESTIMAR
    I = I HASTA NA
    J - I HASTA NE
    K = 1 HASTA NT
    NPA - No DE PAREJAS DE ESTACIONES, NPA - NE(NE-1)/2
VARIABLES DE SALIDA
PEINT, NE) - ESTIMACION DE LA PRECIPITACION EN EL PUNTO e
WS(NP,NE) = FACTOR DE PESO EN LA ESTACION ; PARA EL PUNTO e
'ENTRADA DE DATOS INICIALES
PRINT .
                METODO DE INTERPOLACION OPTIMA"
PRINT .
            TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL" PRINT "
PRINT "
                NUMBERO DE ESTACIONES ". INPUT ". NE
PRINT " NUMERO MAXIMO DE AÑOS DE REGISTRO ", INPUT "", NA
PRINT *
            NUMERO PUNTOS A INTERPOLAR ". INPUT ". NT
PRINT .
          NUMERO DE SERIES A INTERPOLAR ". INPUT "", NE
            NOMBRE DEL ARCHIVO DE DATOS *, INPUL **, ARCHS
PRINT .
PRINT .
                 UNIDAD DE TRABAJO ". INPUT ".. DRIVS
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
M = NE + I
DIM P(NA. NE). CO(NE. 2). COE(NT. 2). WS(NT. M), PENI, NT). PT(NI, NE)
DIM ROIM, M), ROEINT, M), TAIF(NII.), AI(NE), AF(NE), NOI SINE), A(M, M), B(M, NT)
LECTURA DEL ARCHIVOS DI DATOS
ARCHIS - DRIVS + " \" + ARCHS + " DAT" OPEN "L", #L ARCHIS
ARCH25 = DRIVS + " " + ARCH5 + "ROA" OPEN "I". #2, ARCH25
FOR 1 = 1 TO NE
 INPUT #1, NOF$J) PRINT USING "&", NOF$U).
```

INPUT #3. TAIF() PRINT USING " #### ", TAIF().

PRINT "INTENSIDAD DE LA PRECIPITACION, EN mm/h." PRINT "1,3"

INPUT #1, AI(I) PRINT USING " ### ", AI(I),

INPUT #1. AF(J) PRINT HISING " ### ", AF(J)

```
INPUT #1. Pd. J) PRINT USING "MI M ", Pd. J).
 NEXT I PRINT "
NEXT J PRINT "
PRINT * COORDI-NADAS DE LAS ESTACIONES CO(L.j) *
PRINT ESTACION X
PRINT " (km) (km)"
FOR J = 1 TO NE
INPUT #1, CO(J. 1), CO(J. 2)
 PRINT " ", J, ' PRINT USING " ### ", CO(J, 1), CO(J, 2)
NEXT J
PRINT * COORDENADAS DE LAS ESTACIONES COFULD A INTERPOLAR*
FOR 1 = 1 TO NT
 INPUT #1, COEd. 1), COEd. 2)
 PRINT * *, J. PRINT LISING * 6000.80 *, COE(J. I). COE(J. 2)
NEXT I
PRINT " INTENSIDADES DE LLUVIA, EN mm/h. PAKA LA INTERPOLACION"
FOR 1 = 1 TO NI
 PRINT ' INTENSIDAD DE LLIEVIA, EN mm/b '
 PRINT " SERIE : . ESTACION ;"
 FOR J = 1 TO NE
   INPUT #1, PT(I, J) PRINT USING "### # . PT(I J).
 NEXT J PRINT "
NEXT I PRINT " CLOSE #I ERASE TAIF, AI, AF, NOES
M OT 1 = 1 ROH
 FOR 1 = 1 TO M RO(1, 1) = 0 NEXT J
NEXT I
FOR J = 1 TO (M - 1) RO(M, J) = 1 NEXT J
FOR I = 1 TO (M - I) RO(I, M) = 1 NEXT I
FOR I . I TO M I
FOR J = 1 TO (M - 1) INPUT #2, RO(1, J) NEXT J
NEXT
FOR I = 1 TO M
 FOR J = 1 TO M PRINT USING "GOOD ROO", RO(I, J). NEXT J PRINT "
NEXT I PRINT "
HUR K = 1 TO NT ROE(K. M) = 1 NEXT K
FOR K = 1 TO NT
 FOR J = 1 TO NE INPUT 12. ROE(K. J) NEXT J
NEXT K CLOSE 12
FOR K = 1 TO NT
 FOR J = 1 TO M PRINT USING "### ###", ROE(K, J). NEXT J PRINT "
CALCULO DE LA INVERSA DE LA MATRIZ TE(M.M)
GOSL'B INVERSA
"CALCULO DEL FACTOR DE PESO WKINP, NE) # Sum ALLA kj Pk(Xe, Ye) . k # 1 . M
FOR I = I TO NT
 50 = 0
 FOR I = 1 TO M
  51 - 0
   HOR J = 1 TO M S1 = S1 + A(I, I) * ROE(L. I) NEX1 I
   WS(1. 1) = S1
   IF I < M THEN
    50 = 50 + WS(L. 1)
   END IF
   II-1 < M THEN
    PRINT "Ws (", L. ",", L. " ) = ". PRINT USING "### ###", WSd | D
```

FOR L = 1 TO TAIF(b)

```
PRINT ' L = ", PRINT USING " HOPE BEEF", WS(I., I)
   END IF
 NEXT I PRINT USING " Sum Ws = ### ###". SO
NEXT L
DETERMINACION DE LA PRECIPITACION EN EL SITIO "c"
FOR I = 1 TO NI
 FOR K = 1 TO NT
   FOR J = 1 TO NE. S1 = S1 + WS(K, J) * PT(I, J) NEXT J
   PE(1, K) - SI
 NEXT K
NEXT I
'IMPRESION DE RESULTADOS GRABA UN ARCHIVO CON EXTENSION " OPT" -> OPTIMA
ARCH25 = DRIVS + "1" + ARCH5 + " RES" OPEN "A", 1/2, ARCH25
PRINT #2.
                 METODO DE INTERPOLACION ÓPTIMA"
PRINT 12. TECNICA PARA LA ESTIMACIÓN DE LLUVIA PUNTUAL" PRINT 12.
PRINT #2.
                PRECIPITACIÓN ESTIMADA EN EL PUNTO ", PRINT 12,"
PRINT #2, " No", SPC(4), "COORD X(km)", SPC(4), "COORD Y(km)", SPC(4), "Pe (U)"
FOR I - I TO NE
 PRINT #2, "I,K "
 FORK - LTO NT
   PRINT #2, USING " ##", 1, K. SPC(2),
   PRINT #2, USING " ### ## ", COE(K, 1), SPC(4), COE(K, 2), SPC(4),
   PRINT #2, USING " ### ###", PE(I, K). PRINT #2, ""
 NEXT K
NEXT I
END
INVERSA:
 FOR J = 1 TO M A(I, J) = RO(I, J) NEXT J
NEXT
FOR I = 1 TO NT
 FOR J = 1 TO M B(J, I) = ROE(I, J) NEXT J
NEXT I
CALL GAUSSIORDAN(M, NT. A(), B(), DET)
NITER = 50
CALL CORRIGEINVERSAIM, NITER)
SUB CORRIGEINVERSA (M. NITER)
DIM BA(M, M), INV(M, M), R(M, M), CB(M)
SHARED RON. AO
DEFORE P
 HORI-170M
   1-ORJ = 1 TO M BA(1, J) = A(1, J) A(1, I) = RO(1, J) NEXT J
  NEXT I
 FOR 1 = 1 TO M
   FOR J = 1 TO M
     INV(I, I) = BA(I, J) P = 0
     FOR K = 1 TO M P = P + (BA(I, K) * A(K, J)) NEXT K
     R(I, J) = -P
   NEXT J
   R(1, 1) = R(1, 1) + 1
  NEXTI
  FOR S = 1 TO NITER
```

HK = 0

```
FOR 1 = 1 10 M
    FOR I = 1 TO M (B(I) = BA(I. J) NEXT I
    FOR I = 1 TO M
     P = 0
      FOR K = 1 TO M P = P + R(I, K) * CB(K) NEXT K
     BA(I, J) = P INV(I, J) = INV(I, J) + P
    NEXT I
    IF ABS(P) > 000000001# THEN UK = 1
   NEXT J
   IF UK = 0 THEN EXIT FOR
   IF S = NITER AND ABSIP: > 1E-08 THEN
    PRINT . LA SOI UCION DEL SISTEMA NO CONVERGE.
    PRINT * POR LO TANTO ES CONVENIENTE AJUSTAR*
    PRINT . UN POLINOMIO DE LA GRADO" DO LOOP WHILE INKEYS - "
    FOR I = 1 TO M
     FOR J = 1 TO M A(I, J) = R(I, J) NEXT J
    NEXT I
    EXIT SUB
   END IF
 NEXT S
 FOR I = I TO M
  FOR J = 1 TO M A(I, J) = INV(I, J) NEXT J
 NEXT I
END SUB
SUB GAUSSJORDAN (M, NT, A(), B(), DET)
DIM IPI(M), IND(M, 2)
DEFUBL P
DET = 1
 FOR J = 1 TO M IP(J) = 0 NEXT J
 FOR IREN = 1 TO M
   AMAX - 0
   FOR 1 = 1 TO M
    IF IPI(1) <> 1 THEN
      FOR J = 1 TO M
        IF IPI(J) < > | THEN
         IF ABS(AMAX) < ABS(A(1, 1)) THEN
           REN = 1 COL = 1 AMAX = A(I, I)
         END IF
        END IF
     NEXT J
    END IF
   NEXT I
   PIVO = A(REN. COL)
  IF ABS(PIVO) < 1E-012 THEN
    NO - I EXTLEOR
  END IF
  DET = DET * PIVO IND(IREN, I) = REN IND(IREN 2) = (OI IPI(COL) = I
   IF (REN < > COL) THEN
    DET - DET
    FOR T = 1 TO M
     TEMP = A(REN. 1) A(REN. 1) = A(COL. 1) A(COL. 1) - TEMP
    NEXT I
    IF ME < > 0 THEN
     FOR 1 - 1 TO NT
       TEMP = B(REN, I) B(REN, J) = B(COL, J) B(COL, J) = II MP
      NEXT I
```

```
END IF
  FND IF
   A(COL. COL) = 1
   FOR J = 1 TO M A(COL, J) = A(COL, J) / PIVO NEXT J
   IF NT < > O THEN
    FOR J = 1 TO NT B(COL. J) = B(COL. J) / PIVO NEXT J
   END IF
   FOR I = 1 TO M
    IF I < > COL THEN
     CERO - A(I, COL) A(I, COL) - 0
      FOR J = 1 TO M A(I, J) = A(I, J) · CERO * A(COL. J) NEXT J
      IF NE < > 0 THEN
       FOR J = 1 TO NT B(I, J) = B(I, J) - CERO * B(COL. J) NEXT J
     END IF
    END IF
  NEXT I
  NEXT IREN
 IF NO < > 1 THEN
   FOR IREN - 1 TO M
    1 - M IREN + 1
    IF IND(I, 1) < > IND(I, 2) THEN
      REN - IND(I, 1) COL - IND(I, 2)
       TEMP - A(I, REN) A(I, REN) - A(I, COL) A(I, COL) - TEMP
      NEXT I
    END IF
   NEXT IREN
 ELSEIF NO = 1 THEN
  PRINT "NO HAY DATOS PARA RESOLVER EL SISTEMA" STOP
 END IF
END SUB
METODO DE KRIGE RESTRINGIDO
                           SE EMPLEAN MULTIPLICADORES DE LAGRANGE
                         TECNICA EMPLEADA EN LA ESTIMACION DE ILLUVIA
                              PUNTUAL Y EN UN AREA DETERMINADA
DECLARE SUB CORRIGEINVERSA (M. NITER)
DECLARE SUB GAUSSJORDAN (M, NP. AO. BO. DET)
VARIABLES DE ENTRADA
  ARCHS = NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
PILD = PRECIPITACION EN LA ESTACION I PARA EN EL ANO 1
 CO(J.2) = COORDENADAS (X.Y) DE CADA ESTACION (PARA NE ESTACIONES)
 COE(K,2) = COORDENADAS DE LOS PUNTOS DE ESTIMACION. (Xe. Ye)
    NE = No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
    NA - No DE ANOS DEL REGISTRO PARA LAS NE ESTACIONES
    NP . No DE PUNTOS (Xc, Yc) A ESTIMAR
    I = I HASTA NA
    J = 1 HASTA NE
    K = 1 HASTA NP
    NPA = No DE PAREJAS DE ESTACIONES, NPA = NE(NE 1)/2
VARIABLES DE SALIDA
 PEINP) = ESTIMACION DE LA PRECIPITACION EN EL PUNTO e
WS(NP,NE) = FACTOR DE PESO EN LA ESTACION J PARA EL PUNTO e
TATRADA DE DATOS INICIALES
PRINT "
                METODO KRIGING ORDINARIO"
            TECNICA PARA LA ESTIMACION DE LEUVIA PUNTUAL. PRINT
```

```
PRINT ' NUMERO MAXIMO DE ANOS DE REGISTRO '. INPUT ". NA
PRINT -
            NUMERO PUNTOS A INTERPOLAR.". INPUT.". NT
PRINT "
           NUMERO DE SERIES A INTERPOLAR ... INPUT ... NE
            NOMBRE DEL ARCHIVO DE DATOS " INPUT ". ARCHS
PRINT "
PRINT "
                 UNIDAD DE TRABAJO *, INPUT **, DRIVS
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
DIM PINA, NE), COINE, 2), COEINT, 2), WSINT, M), PEINI, NE), VAIM, M), VAEINT, M)
DIM A(M, M), B(M, NT), PT(NI, NE), TAIF(NE), AI(NE), AF(NE), NOES(NE)
TECTURA DEL ARCHIVOS DE DATOS
ARCHIS - DRIVS + " " + ARCHS + " DAT" OPEN "I", #I, ARCHIS
ARCH25 - DRIVS + " " + ARCH5 + " SVA" OPEN "I", #2, ARCH25
FOR 1 = 1 TO NE
 INPUT #1, NOESO) PRINT USING "A", NOESO).
  INPUT #1. TAIF(I) PRINT USING " ### ", TAIF(I).
  INPUT #1, AIG) PRINT USING " ### ", AIG).
  INPUT #1, AF(I) PRINT USING " ### ", AF(I)
  PRINT " INTENSIDAD DE LA PRECIPITACION, EN mm/h " PRINT " 1,3"
 FOR I - I TO TAIF()
   INPUT #1, P(I. I) PRINT USING "### ## ", P(I. I).
 NEXT I PRINT "
PRINT * COORDENADAS DE LAS ESTACIONES CO(1,1) *
PRINT - ESTACION X Y
PRINT (km) (km)
FOR J = 1 TO NE
INPUT #1, COd. D. COd. 2)
 PRINT " . J. PRINT USING " #### ## ". CO(J. 1). CO(J. 2)
PRINT " COORDENADAS DE LAS ESTACIONES COE(1,1) A INTERPOLAR"
FOR J = 1 TO NT
 INPUT #1, COE(J. D. COE(J. 2)
 PRINT " ... J. PRINT USING " #### ", COEU, 1), COEU, 2)
PRINT * INTENSIDADES DE LLUVIA, EN mm/h, PARA LA INTERPOLACION*
FOR I = 1 TO NI
 PRINT " INTENSIDAD DE LLUVIA, EN mm/h "
 PRINT " SERIE 1 . ESTACION J"
 FOR J = 1 TO NE.
  INPUT #1, Pf(I. J) PRINT USING "### #0 ", PT(I )).
 NEXT I PRINT "
NEXT I PRINT " CLOSE #1 LERASE TAIF, AL AF, NOES
FOR 1 = 1 TO M
 FOR J = 1 TO M VAIL JI = 0 NEXT I
NEXTI
FOR J = 1 TO (M D VA(M, J) = 1 NEXT J
FOR I = 1 TO (M I) VA(I. M) = I NEXT I
HORT - L TO M L
 FOR J = 1 TO (M I) INPUT #2, VA(I, I) NEXT J
NEXII
FOR I = 1 TO M
 FOR J = 1 TO M
  PRINT USING "#### ###". VA(), I).
 NEXT I PRINT
NEXT I PRINT "
FOR K = 1 TO NT VAE(K, M) = 1 NEXT K
```

NUMERO DE ESTACIONES " INPUT " NE

203

PRINT "

```
FOR K = 1 TO NT
 FOR J = 1 TO NE INPUT #2, VAE(K, J) NEXT J
NEXT K CLOSE #2 PRINT
FOR K = 1 TO NT
 FOR J = 1 TO M PRINT USING "MAN MAN", VAE(K, J), NEXT J PRINT "
NEXT K
'CALCULO DEL SISTEMA DE ECUACIONES DE LA MATRIZ VA(M.M)
'CALCULO DEL FACTOR DE PESO: Wx(NP,NE)
FOR L = 1 TO NT
 S0 = 0
 FOR I = 1 TO M
   S1 = 0
   FOR J = 1 TO M SI = SI + A(I, J) * VAE(L, J) NEXT J
   WS(L, I) = SI
   IF I < M THEN
     S0 = S0 + WS(L, 1)
   END IF
   IF I < M THEN
     PRINT TWs ( ^{\circ}, L, ^{\circ}, ^{\circ}, L, ^{\circ}) = ^{\circ}, PRINT USING THEM SHOPT, WS(L, I)
     PRINT L = ", PRINT USING "FREE SEES", WS(L, I)
  NEXT 1 PRINT USING " Sum Ws - PER PERF", SO
NEXT L
'DETERMINACION DE LA PRECIPITACION EN EL SITIO "e"
  FOR K = 1 TO NT
   S1 = 0
   FOR I = I TO NE SI = SI + WS(K, J) * PT(I, J) NEXT J
   PE(I, K) = SI
 NEXT K
NEXT I: DO: LOOP WHILE INKEYS = " CLS
'IMPRESION DE RESULTADOS GRABA ARCHIVO EXTENSION " KOR" = > KRIGE ORDINARIO
ARCH2S = DRIVS + " \" + ARCH5 + " RES" OPEN "A", #2, ARCH2S
PRINT #2, "METODO DE INTERPOLACION KRIGING ORDINARIO RESTRINGIDO"
PRINT 12, " TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL" PRINT 12, ""
PRINT 12. PRECIPITACION ESTIMADA EN EL PUNTO ". PRINT 12. "
PRINT 12, " No", SPC(4), "COORD X(km)", SPC(4), "COORD Y(km)", SPC(4), "Pe (U)"
FOR 1 = 1 TO NI
 PRINT #2. T.K
 FORK & LTO NT
   PRINT #2, USING " ##", I, K. SPC(2).
   PRINT #2, USING " #### ### ", COE(K, 1), SPC(4), COE(K, 2), SPC(4),
   PRINT #2, USING " #### ####". PEd. K), PRINT #2, ""
 NEXT K
NEXT 1
END
INVERSA:
FOR I = 1 TO M
 FOR J = 1 TO M. A(I, J) = VA(I, J) NEXT J.
NEXT 1
FOR I = 1 TO M
 FOR K = NP TO NT Bil. K) = VAE(K, I) NEXT K
NEXT I
CALL GAUSSIORDAN(M, NT, AO, BO, DET)
```

```
CALL CORRIGEINVERSA(M. NITER)
RETURN
SUB CORRIGEINVERSA (M. NITER)
DIM B(M, M) AS DOUBLE, INV(M, M) AS DOUBLE, R(M, M) AS DOUBLE, CB(M) AS DOUBLE
SHARED VAO. AO
DEFORL P
 FOR I = I TO M
   FOR J = I TO M. B(I, J) = A(I, J) A(I, J) = VA(I, J) NEXT J
  NEXT I
  FOR I = 1 TO M
   FOR L = 1 TO M
     INV(I, J) = B(I, J) P = 0
     FOR K = 1 TO M P = P + (B(1, K) * A(K, J)) NEXT K
     R(1, 1) = -P
   NEXT J
   R(1, 1) = R(1, 1) + 1
  NEXT I
  FOR S = 1 TO NITER
   UK = 0
   FOR J = 1 TO M
     FOR I = 1 TO M CB(I) = B(I, J) NEXT I
     FOR ! = I TO M
      P = 0
       FOR K = 1 TO M: P = P + R(1, K) * CB(K): NEXT K
       B(I, J) = P INV(I, J) = INV(I, J) + P
     IF ABS(P) > 1D-12 THEN UK = 1
   NEXT I
   IF UK = 0 THEN EXIT FOR
   IF S = NITER AND ABS(P) > 1D-12 THEN
     PRINT . LA SOLUCION DEL SISTEMA NO CONVERGE
     PRINT * POR LO TANTO ES CONVENIENTE AJUSTAR*
     PRINT " UN POLINOMIO DE PRIMER GRADO"
     DO LOOP WHILE INKEYS = "
     FOR I = 1 TO M
      FOR J = 1 TO M. A(I, J) = R(I, J) NEXT J
     NEXT I
     EXIT SUB
  END IF
 MEXTS
 FOR 1 = 1 TO M
  FOR J = 1 TO M. A(i, J) = INV(I, J) NEXT J
END SUB
SUB GAUSSIORDAN (M, NP, A0, B0, DET)
DIM IPI(M) AS DOUBLE, IND(M, 2) AS DOUBLE
DEEDBL P
 DET - 1
 FOR J = 1 TO M IPID = 0 NEXT 1
 FOR IRI-N = 1 TO M
   AMAX = 0
   FOR I = 1 TO M
    IF IPI(I) < > 1 THEN
```

FOR J = 1 TO M

NITER = 50

```
IF IPI(J) < > 1 THEN
         IF ABS(AMAX) < ABS(A(I. I)) THEN
           REN = I COL = J AMAX = A(I, J)
         END IF
        END IF
      NEXT J
    END IF
   NEXT L
   PIVO = A(REN. COL)
   IF ABS(PIVO) < 1D-12 THEN
    NO - I EXIT FOR
   END IF
   DET - DET . PIVO IND(IREN, 1) - REN. IND(IREN, 2) - COL IPI(COL) - 1
   IF REN < > COL THEN
    DET - DET
    FOR J = 1 TO M TEMP = A(REN, J) A(REN, J) = A(COL, J) A(COL, J) = TEMP NEXT J
    IF NE < > 0 THEN
     FOR J = 1 TO NP TEMP = B(REN, J) B(REN, J) = B(COL, J) B(COL, J) = TEMP NEXT J
    END IF
   END IF
   A(COL. COL) = 1
   FOR J = 1 TO M A(COL, J) = A(COL, J) / PIVO NEXT J
   IF NP < > 0 THEN
    FOR J = 1 TO NP B(COL, J) = B(COL, J) / PIVO NEXT J
   END IF
   FOR 1 = 1 TO M
    IF I < > COL THEN
     CFRO = A(I, COL) A(I, COL) = 0
      FOR J = 1 TO M A(I, J) = A(I, J) · CERO * A(COL. J) NEXT J
      IF NP < > 0 THEN
       FOR 1 = 1 TO NP B(I, J) = B(I, J) - CERO * B(COL, J) NEXT J
      END IF
    END IF
  NEXTI
 NEXT IREN
 IF NO < > I THEN
   FOR IREN - 1 TO M
    1 - M IREN + 1
    IF INDII. 1) <> INDII, 2) THEN
      RIN - IND(I, I) COL - IND(I, 2)
      FOR I = 1 TO M
       TEMP = A(I, REN) A(I, RIN) = A(I, COL) A(I, COL) = TEMP
      NEXT I
    END IF
   NEXT IREN
 ELSEIF NO - L'THEN
   PRINT "NO HAY DATOS PARA RI SOLVER EL SISTEMA"
  STOP
 END IF
END SUB
```

METODO KRIGING UNIVERSAL EMPLEANDO MULTIPLICADORES DE LAGRANGE Y UN POLINOMIO DE 121 6 240 GRADO TECNICA EMPLEADA EN LA ESTIMACION DE LLUVIA

```
PUNTUAL Y EN UN AREA DETERMINADA
DECLARE SUB CORRIGEINVERSA (M. NITER)
DECLARE SUB GAUSSJORDAN (M, NT, AO, BO, DET)
VARIABLES DE ENTRADA
   ARCHS - NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
   P(L) - PRICIPITACION IN LA ESTACION I PARA EN EL ANO I.
  CO(J.2) - COORDENADAS (X,Y) DE CADA ESTACION (PARA NE ESTACIONES)
* COE(K,2) = COORDENADAS DE LOS PUNTOS DE ESTIMACION, (Xe.Ye)
     NE - No DE ESTACIONES DE REGISTRO PLUVIOMETRICO
     NA = No DE AÑOS DEL REGISTRO PARA LAS NE ESTACIONES
     NP = No DE PLINTOS (Xe. Ye) A ESTIMAR
     I = I HASTA NA
     J = 1 HASTA NE
     K = I HASTA NT
    NPA = No DE PAREJAS DE ESTACIONES NPA = NE/NE 1/2
VARIABLES DE SALIDA
PEIPEINP) - ESTIMACION DE LA PRECIPI TACION EN EL PINTO e
WSINT NE) = FACTOR DE PESO EN LA ESTACION ; PARA EL PUNTO e
'ENTRADA DE DATOS INICIAI ES
PRINT -
                  METODO KRIGING UNIVERSAL*
PRINT .
             TECNICA PARA LA ESTIMACION DE LLUVIA PUNTUAL. PRINT
PRINT "
                NUMERO DE ESTACIONES "; INPUT "". NE
PRINT " NUMERO MAXIMO DE ANOS DE REGISTRO ". INPUT "", NA
           NUMERO PUNTOS A INTERPOLAR ". INPUT ". NT
NUMERO DE SERIES A INTERPOLAR ". INPUT ". NI
NOMBRE DEL ARCHIVO DE DATOS ". INPUT ". ARCHS
PRINT .
PRINT -
PRINT "
                 UNIDAD DE TRABAJO ", INPUT ", DRIVS
PRINT .
            GRADO DEL POLINOMIO (1 6 2) ", INPUT ", G
IF G = 1 THEN
 MK - 1
ELSEIF G - 2 THEN
 MK - 6
ELSE STOP
END IF
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
DIM PINA, NEJ. CO(NE. 2), COEINT, 2), WS(NT, M), PE(NI, NT), VA(M, M), VAE(NT, M)
DIM FI(MK+ NE), FIE(NT, MK), A(M, M), B(M, NT), PT(NI, NE)
DIM TAIFINE, AKNEL AFINEL NOESINEL
LECTURA DEL ARCHIVOS DE DATOS
ARCHIS . DRIVS + "1" + ARCHS + " DAT" OPEN "I", #1. ARCHIS
ARCH25 = DRIVS + " \" + ARCH5 + " SVA" OPEN "I". #2. ARCH25
FOR J = 1 TO NE
 INPUT #1. NOESO) PRINT USING "&", NOESO),
 INPUT #1. TAIF(I) PRINT (ISING " ### ", TAIF(I).
 INPUT OF ALOS PRINT USING " 6000 ", ALOS.
 INPUT #1. AF(I) PRINT USING " ### ". AF(I)
 PRINT "INTENNIDAD OF LA PRECIPITACION, EN movb " PRINT " (1"
 FOR La LTO TAIL(J)
  INPUT #1, Pd. J) PRINT I SING "### ## T, Pd. J).
 NEXT I PRINT "
NEXT J PRINT **
PRINT * COORDENADAS DE LAS ESTACIONES COO p. *
PRINT : ESTACION X Y
```

205

PRINT (km) (km)

INPUT #E, COOL, D, COOL 2)

FOR I = 1 TO NE

```
PRINT " J. PRINT USING " BOOK BO ", COU. I). CO(J. 2)
NEXT I
PRINT " COORDENADAS DE LAS ESTACIONES COEILJI A INTERPOLAR"
FOR I = 1 TO NT
 INPUT #1, COE(J. 1). COE(J. 2)
 PRINT ", J. PRINT USING " MIN M ", COE(J. 1). COE(J. 2)
NEXT I
PRINT " INTENSIDADES DE LLUVIA, EN mm/h, PARA LA INTERPOLACION"
FOR I - I TO NI
 PRINT " INTENSIDAD DE LLUVIA, EN mm/h "
 PRINT " SERIF I , ESTACION J"
 FOR J = 1 TO NE
   INPUT #1. PT(I, J) PRINT USING "### ". PT(I, J).
  NEXT I PRINT "
NEXT ! PRINT " CLOSE #1 ERASE TAIF, AL AF, NOES
FOR I = I TO M
 FOR J = 1 TO M VA(I, J) = 0 NEXT J
NEXT I
FOR I = 1 TO (M MK)
 FOR J = 1 TO (M - MK) INPUT #2, VA(I, J) NEXT J
NEXT I
FOR K = 1 TO NT
 FOR J = 1 TO NE INPUT #2, VAE(K, J) NEXT J
NEXT K CLOSE #2
CALCULO DE LOS COEFICIENTES DE LA MATRIZ | P(Xi,Yi) |
DO
 FOR J = 1 TO NE
   IF L = 1 THEN
     Fig. 1) = 1
   ELSEIF L = 2 THEN
    FIG. D = COOL D
   ELSEIF I. - 3 THEN
     Fitt. 1) = CO(1, 2);
   ELSEIF L = 4 THEN
    FI(L, J) = CO(J, 1) * 2
   ELSEIF L = 5 THEN
     Figl. 1) = CO(J. 1) * CO(J. 2)
   ELSEIF L = 6 THEN
    Fid., J) = CO(J, 2) * 2
   END IF
  NEXT J
CALCULO DE LOS COEFICIENTES DE LA MATRIZ | P(Xe, Ye) (
  FOR K = 1 10 NT
   IF L . I THEN
    FIE(K. L) = I
   ELSEIF L = 2 THEN
     HER, D = COER, D
   ELSEUF L = 3 THEN
     FIER, In = COER, 2)
   FLSEIF L = 4 THEN
     EIE(K, \delta, c) = COE(K, 1) ^ 2
   ELSEDFIL - 5 THEN
     FIE(K, L) \approx COE(K, I) * COE(K, 2)
   SESSIEL - 6 THEN
```

```
FIE(K, L) = COE(K, 2) \cdot 2
    END IF
  NEXT K
  L = L + 1
 LOOP WHILE L < = MK
 'CALCULO DE LA MATRIZ | VAUD
 INE . NE . 1
FOR I = 1 TO M
  IF I < = NE THEN
    FOR J = INE TO M L = J NE VA(1, J) = F(L, I) NEXT J
  ELSHE I > NE THEN
  FOR J = 1 TO NE. L = J. NE. VA(I. J) = FI(L, J) NEXT J
  END IF
NEXT
FOR K = 1 TO NT
  FOR J = INE TO M L = J - NE VAE(K, J) = FIE(K, L) NEXT J
 NEXT K
FOR I - I TO M
  FOR J = 1 TO M PRINT USING "BOOK POOF". VA(I, J), NEXT J PRINT "
NEXT I PRINT "
FOR K = 1 TO NT
 FOR J = 1 TO M PRINT USING "### ###, VAE(K, J). NEXT J PRINT "
NEXT K
"CALCULO DE LA INVERSA DE LA MATRIZ TE(M,M)
GOSUB INVERSA
"CALCULO DEL FACTOR DE PESO WWINT, NE)
FOR L = 1 TO NT
  50 = 0
  FOR I = 1 TO M
   Sieu
    FOR J = 1 TO M SI = SI + A(I, J) * VAE(L, J) NEXT J
    WS(L, I) - SI
    IF I < - NE THEN
     SO = SO + WS(1, 1)
    END IF
    If I < = NL THEN
     PRINT "Ws ( ", 1, ",", 1, " ) - ". PRINT USING "BOOK BEEN", WS(I , I)
    PRINT SPC(8), " L = ", PRINT USING "### ###", WS(L, D)
   END IF
  NEXT I PRINT USING " Sum Ws = 888 8888", SO
NEXT L
DETERMINACION DE LA PRECIPITACION EN EL SITIO "c"
FOR 1 = 1 TO NI
 FOR K = 1 TO NT
   SI = 0
   FOR J = 1 TO NF SI = SI + WS(K, J) * PT(I, J) NEXT J
   PE(1, K) = S1
 NEXT K
NEXT
IMPRESION DE RESULTADOS GRABA ARCHIVO: EXTENSION " KUN" - > KRIGE UNIVERSAL
ARCH25 = DRIVS + " " + ARCH5 + " RES" OPEN "A", #2, ARCH25
PRINT #2. * METODO DE INTERPOLACION KRIGING UNIVERSAL *
PRINT #2. * TECNICA PARA LA ESTIMACION DE LEUVIA PENTEAL PRINT #2. **
PRINT #2.
               EVENTO ESTIMADO EN EL PUNTO ", PRINTO "
PRINT 12. " No" SPC4), "COURD X(km)", SPC4), "COURD Y(km)", SPC4) "Petts"
FOR L = 1 TO NE
```

```
PRINT #2, "I.K "
 FOR K = 1 TO NT
   PRINT #2, USING " MF. I. K. SPC(2).
   PRINT #2, USING " #### ### COE/K, 1), SPC(4), COE/K, 2), SPC(4), PRINT #2, USING " #### #### PE(I, K), PRINT #2, ""
  NEXT K
NEXTI
END
INVERSA:
FOR 1 - 1 TO M
 FOR J = 1 TO M A(I, J) = VA(I, J) NEXT J
NEXT 1
FOR I = I TO M
 FOR K = 1 TO NT B(I, K) = VAE(K, I) NEXT K
NEXT I PRINT "
CALL GAUSSIORDAN(M, NT, AO, BO, DET)
NITTER = 50
CALL CORRIGEINVERSA(M. NITER)
PRINT " MATRIZ INVERSA CORREGIDA "
SUB CORRIGEINVERSA (M. NITER)
D(M B(M, M), INV(M, M), R(M, M), CB(M)
SHARED VAO. AO
 FOR 1 = 1 TO M
   FOR 1 = 1 TO M B(I, I) = A(I, I) A(I, I) = VA(I, I) NEXT I
  NEXT I
 FOR 1 = 1 TO M
   FOR 1 = 1 TO M
     INV(I, J) = B(I, J) P = 0
     FOR K = 1 TO M P = P + (B(I, K) * A(K, J)) NEXT K
     R(I, J) = P
   NEXTI
   R(1, 1) = R(1, 1) + 1
  NEXT
  FOR S = 1 TO NITER
   UK = 0
   FOR 1 = 1 TO M
     FOR I = I TO M (Bil) = Bil. J) NEXT I
     FOR I = 1 TO M
      P = 0
       FOR K = 1 TO M P = P + R(I, K) * CB(K) NEXT K
       B(I, I) = P (NV(I, I) = (NV(I, I) + P
     NEXTI
     IF ABS(P) > 9 9999999999999 16 THEN UA - 1
   NEXT
   II- UK = 0 THEN EXIT FOR
   IF S = NITER AND ABN(P) > 000000000W THEN
     PRINT * LA SOLUCION DEL SISTEMA NO CONVERGE*
     PRINT * ES CONVENIENTE*
     PRINT " AJUSTAR UN POLINOMIO DE PRIMER GRADO, O'
     PRINT - REVISELOS DATOS DE SU ARCHIVO"
     FOR ( = 1 TO M
      FOR I = I TO M Ad. D = RH. D NEXT J
     NEXT I EXIT SUB
```

```
NEXT S
  FOR I = 1 TO M
   FOR I = 1 TO M. A(I, J) = INV(I, J) NEXT J
  NEXT I
END SUB
SUB GAUSSJORDAN (M, NP, AQ, BQ, DET)
DIM IPI(M), IND(M, 2)
DEFDBL D, P DET = 1 FOR J = 1 TO M IPIU) = 0 NEXT J
 FOR IREN = 1 TO M
   AMAX = 0
   FOR I . I TO M
     IF JPI(I) <> 1 THEN
      FOR J = 1 TO M
         IF IPI(I) <> 1 THEN
          IF ABS(AMAX) < ABS(A(I, J)) THEN
            REN = I. COL = J AMAX = A(I, J)
          END IF
         END IF
       NEXT J
     END IF
   NEXT I
   PIVO - A(REN, COL)
   IF ABS(PIVO) < 000001 THEN
     NO - 1 EXIT FOR
   END IF
   DET = DET * PIVO IND(IREN, 1) = REN IND(IREN, 2) = COL IPI(COL) = 1
   IF (REN < > COL) THEN
     DET - DET
     FOR J = 1 TO M TEMP = A(REN. J) A(REN. J) = A(COL, J) A(COL, J) = TEMP NEXT J
     IF NE < > 0 THEN
      FOR J = 1 TO NP TEMP = B(REN, J) B(REN, J) = B(COL, J) B(COL, J) = TEMP NEXT J
     END IF
   END IF
   A(COL, COL) = 1
   FOR J = 1 TO M A(COL. J) = A(COL. J) / PIVO NEXT J
   IF NP < > 0 THEN
    FOR J = 1 TO NP B(COL, J) = B(COL, J) / PIVO NEXT J
   END IF
   FOR I = 1 TO M
    IF I < > COL THEN
      CERO - Atl. COL) Atl. COL) = 6
      FOR J = 1 TO M A(I, J) = A(I, J) CERO • A(COL. I) NEXT J
      IF NP c > 0 THEN
       FOR J = 1 TO NP B(I, I) = B(I, I) CERO * B(COL, I) NEXT J
      END IF
    END IF
   NEXTI
 NEXT IREN
 IF NO < > 1 THEN
   FOR IREN = 1 TO M
    1 = M - IREN + 1
    IF IND(I, I) < > IND(I, 2) THEN
      REN = IND(I, I) COL = IND(I, 2)
      FOR 1 = 1 TO M
       TEMP = Ad, REN) Ad, REN) = Ad, COL) Ad, COL) - TEMP
```

END IF

```
NEXT I
END IF
NEXT IREN
LISHIF NO = I THEN
PRINT "NO HAY DATOS PARA RESOLVER EL SISTEMA" STOP
END IF
END SUB
```

CALCULO Y AJUSTE DE LA FUNCION DE CORRELACION ESPACIAL: RO Y ROA

```
DECLARE SUB FUNCION (DIO, ROAO, M. A1, NP, F)
DECLARE SUB ERRORESTANDAR (ROAQ, YEQ, PA, NP. SE2)
VARIABLES DE ENTRADA
   NE - No DE ESTACIONES DE REGISTRO
   NA - No MAXIMO DE AÑOS DE REGISTRO
 PILI) - PRECIPITACION (ESTACION - L AÑO - D
  N(J) = No DE REGISTROS DISPONIBLES EN LA ESTACION J
ARCHS - NOMBRE DEL ARCHIVO DE DATOS
CO(NE,2) - COORDENADAS (X,Y) DE LA ESTACION I (PARA NE ESTACIONES)
DI(NP) = DISTANCIA ENTRE EL PAR DE ESTACIONES 1 Y 2 (NP=NE(NE-1)/2)
VARIABLES DE SALIDA
 ME(NE) = MEDIA DE LOS VALORES PARA LA ESTACION J
 DEINE) - DESVIACION ESTANDAR PARA LA ESTACION I
 NC(NE) = NUMERO DE REGISTROS DISPONIBLES EN LAS ESTACIONES J
ROINE, NE) = FUNCION DE CORRELACION ESPACIAL.
ROA(NP) = FUNCION DE CORRELACION ESPACIAL PARA AJUSTE
   NP - NUMERO DE PAREJAS DE ESTACIONES
   PA - NUMERO DE PARAMETROS DE LA FUNCION
'ENTRADA DE DATOS INICIALES
PRINT INTERPOLACION ESPACIAL DE LLUVIAS
PRINT . METODO DE INTERPOLACION OPTINA.
PRINT .
           CALCULO Y AJUSTE DE LA FUNCION DE CORRELACION
PRINT **
             NUMERO DE ESTACIONES *, INPUT **, NE
PRINT "NUMERO MAXIMO DE AÑOS DE REGISTRO ", INPUT ", NA
PRINT " NOMBRE DEL ARCHIVO DE DATOS ", INPUT ", ARCHS
PRINT -
              UNIDAD DE TRABAJO ". INPUT ". DRIVS
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
NP = NE * (NE - 1) / 2
DIM PINA, NE), MEINE), DEINE), NCINP), ROINE, NE), ROAINP)
DIM YE(NP), CO(NF, 2), DI(NP), NOES(NE), TAIF(NE), AI(NE), AF(NE)
LECTURA DE DATOS CONTENIENDO COORDENADAS DE LAS ESTACIONES
ARCHIS = DRIVS + " + ARCHS + " DAT" OPEN "F, #1, ARCHIS
FOR J = 1 TO NE
 INPUT #1, NOES(J) PRINT USING "&", NOES(J).
 INPUT #1, TAIF(J) PRINT USING " ### ", TAIF(J).
 INPUT #1, AI(J) PRINT USING " ### ", AI(J).
 INPUT #1. AECH PRINT USING " ### " AECH
 PRINT " INTENSIDAD DE LA PRECIPITACION, EN mm/h " PRINT " i.j"
 FOR I = 1 TO TAIF(J)
   INPUT #1, P(I, J) PRINT USING "### ## ", P(I, J),
  WEXT I PRINT "
NEXT I PRINT "
```

PRINT * COORDENADAS DE LAS ESTACIONES COLLE *

PRINT * LSTACION X

```
PRINT "
                (km)
FOR J = 1 TO NE
 INPUT #1, CO(J, 1), CO(J, 2)
 PRINT " ... J. PRINT USING " #### ## ", CO(J. 1), CO(J. 2)
 NEXT J. CLOSE #1" DO LOOP WHILE INKEYS . "
CALCULO DE LA MEDIA
FOR I = 1 TO NE
 ME(J) = 0
 FOR I = 1 TO TAIF(I) ME(I) = ME(I) + P(I, I) NEXT I
 ME(J) = ME(J) / TAIF(J)
NEXTI
 CALCULO DE LA DESVIACION ESTANDAR
FOR J = 1 TO NE
 $1 - 0
 FOR I = 1 TO TAIF(I) S1 = S1 + (P(I, I) - ME(I)) * 2 NEXT I
 DE(J) = (S1 / (TAIF(J) - 1)) ^ 5
NEXT J
'IMPRESION DE RESULTADOS
ARCH3$ = DRIV$ + "\" + ARCH$ + " EST" OPEN "O", 3, ARCH3$
IMPRESION DE RESULTADOS (SE GRABA EN UN ARCHIVO CUN EXTENSION " EST")
PRINT 13, " PRINT 13, " PRECIPITACION PILI)"
PRINT #3, "1,1"
FOR I = 1 TO NA
 FOR ! = I TO NE
  PRINT #3, USING "### # ", P(I, J),
 NEXT J PRINT 13. "
NEXT I
PRINT 13, " ESTADISTICOS DE LAS PRECIPITACIONES. EN mm/h"
PRINT #3, " MEDIA ME(I)"
FOR J - 1 TO NE
 PRINT 13, USING "100 00", ME(I).
NEXT I
PRINT 13, " PRINT 13. " DESVIACION ESTANDAR DE(I)"
FOR J = 1 TO NE
 PRINT #3, USING "### # DE(J).
NEXT J PRINT #3, "
PRINT #3. * NUMERO DE AÑOS DISPONIBLES PARA LA ESTACION NO 1) *
FOR L = 1 TO NE
 PRINT #3, USING "### 1, TAIF(b).
NEXT J PRINT #3. **
CALCULO DE LA FUNCION DE CORREI ACION ESPACIAL
PRINT " PRINT 13, " FUNCION DE CORRELACION ESPACIAL ROLLY" PRINT 15 "
PRINT * FUNCION DE CORRELACION ESPACIAL ROILJ)*
FOR I = 1 TO NE
 FOR J = 1 TO NE
  11 = 0.12 = 0
   IF AI(1) < - AI(1) 110-N
     NI = All) II = All) All)
   ELSEJE AND > AND DIEN
    NI = Al(1) 12 = Al(1) Al(1)
   END IF
   IF AF(I) <= AF(I) THEN
    NF = AF(I)
   FLSEIF AF(I) > AF(J) THEN
    NE # AE(J)
   END IF
```

NT = NE NI + I

```
IF NT > 2 THEN
     SX = 0 SY = 0 MX = 0 MY = 0
     FOR T = 1 TO NT SX = SX + P(T + 11, 1) SY = SY + P(T + 12, 1) NEXT T
     MX = SX / NT MY = SY / NT SSX = 0 SSY = 0
     FOR T = 1 TO NT SSX = SSX + (P(T + 11, 1) - MX)^2 SSY = SSY + (P(T + 12, 1) - MY)^2 NEXT T
     SSX = (SSX / (NT - 1))^{-5} SSY = (SSY / (NT - 1))^{-5} SUM = 0
     FOR T = 1 TO NT SUM = SUM + (P(T + 11, 1) MX) * (P(T + 12, J) MY) NEXT T
     RO(I, J) = SUM / ((NT - I) * SSX * SSY)
   END IF
   PRINT USING "600 MON", RO(I, J),
   PRINT #3, USING "## ### ", RO(I, J),
  NEXT J PRINT " PRINT #3, "
NEXT 1
PRINT #3. " PRINT " VALORES DE ROGJI PARA EL AJUSTE"
DETERMINACION DE VALORES RO(IJ) PARA EL AJUSTE Y
CALCULO DE LA DISTANCIA ENTRE EL PAR DE ESTACIONES IJ
PRINT "ESTACION I ESTACION J DISTANCIA DIJ ROA(K)"
PRINT #3, " k EST i EST j DIST Dij ROA(K) "
N1 = 2. K1 = 1. K = 1: J = 1
 FOR I = NI TO NE
   IF ABS(RO(I, I)) > 001 THEN
     XI = CO(1, 1) YI = CO(1, 2) X2 = CO(1, 1) Y2 = CO(1, 2)
     DI(KI) = SQR((X2 - X1) ^2 + (Y2 - Y1) ^2) ROA(KI) = ABS(RO(I, J))
     PRINT KI, I, J, PRINT USING " ## #", DI(KI), SPC(3).
     PRINT USING "## ### ". ROA(KD)
     PRINT 03, KI, I, J. PRINT 03, USING "000 00", DI(KI), SPC(3).
     PRINT B, USING "## ## ", ROA(K1)
     KI = KI + I
   ELSEIF ABS(RO(I, J)) < = 001 THEN
     PRINT "
   END IF
   K = K + 1
 NEXT I
 N1 + N1 + 1 J = J + I
LOOP WHILE K < = NP
NP = Kt - 1
'AJUSTE DE LA FUNCION DE CORRELACION ESPACIAL ROA(K)
'MODELO INVERSO: RO(d) = 1/(1 + 4/c)
S1 = 0 S2 = 0 S3 = 0 PA = 1
FOR K = 1 TO NP
 S1 = S1 + DI(K) S2 = S2 + (DI(K)) * 2 S3 = S3 + DI(K) / ROA(K)
NEXT K
M = (S) Sb / S2 C = 1 / M
FOR K = 1 FO NP YE(K) = 1 / (1 + D(K) / C) NEXT K
"CALCULO DEL ERROR ESTANDAR DE ESTIMACION Set = 6 (Y) Ye)" / (n i)
CALL ERRORESTANDAR(ROA(), YE(), PA, NP. SE2)
PRINT " MODELO INVERSO ", PRINT LISING "RO(d) = 1 / (1 + d / AND ANDO", C, PRINT ")"
PRINT " ERROR ESTANDAR DE ESTIMACION Set = ", PRINT USING "000 0000", SE2 BEEP
PRINT #3, "MODELO INVERSO". PRINT #3, USING "RO(d) =1/(1+d/### ###", C, PRINT #3, ")"
PRINT #3, "ERROR ESTANDAR DE ESTIMACION Set a ... PRINT #3, USING "### COM", SE2
MODELO DE POTENCIA INVERSA: ROM # 1//1 + d/c1' #
M0 = 0.5 = .001 \text{ MF} = INT(LOG(1 + 50 / 5) / LOG(2)) PA = 2
DO
 FOR L = 1 TO 4
   MI = MO + 5 * 2 * (L. 1)
```

```
CALL FUNCION(DIO, ROAO, MT, AL NP. FI)
   M2 = M1 + S * 2 ^ (1)
   CALL FUNCION(DIO. ROA(), M2, A1, NP, F2)
    M3 - M2 + 5 * 2 * (L + 1)
   CALL FUNCION(DIO, ROAO, M3, A1, NP, F3)
   IF F1 < F3 AND F2 < = F1 AND F2 < = F3 THEN
     MO = MO
   ELSEIF F2 < = F3 AND F2 > = F1 AND F1 < F3 THEN
     M0 - M0
   ELSEIF F2 < = F1 AND F2 > - F3 AND F1 > F3 THEN
     M0 = M2
   END IF
  NEXT L
 S = S / 2
LOOP WHILE ABS(F1 · F2) > 000001 OR ABS(F2 · F3) > 000001
LOCATE 23, 40 PRINT C = 1 / M2
FOR K = 1 TO NP YE(K) = 1/(1 + Dk(K)/C) * (A1) NEXT K
CALL ERRORESTANDAR(ROA(), YE(), PA, NP, SE2)
PRINT * MODELO DE POTENCIA INVERSA**, PRINT *RO(d) = 1 / ( 1 + d / T, C , T)*[T, A1 , T]*
PRINT " ERROR ESTANDAR DE ESTIMACION Se' = ".
PRINT USING "AND AND", SE2 BEEP BEEP BEEP
PRINT #3. "MODELO DE POTENCIA INVERSA".
PRINT #3, "RO(d)=1/(1+d/", C. ")", A1, "]"
PRINT #3, "ERROR ESTANDAR DE ESTIMACION. Se" = ".
PRINT #3, USING "### ###", SE2
MODELO EXPONENCIAL: RO(d) = EXP( - A d )
SI - 0 S2 - 0 PA - 1
FOR K = 1 TO NP SI = SI + (DI(K)) * 2 S2 = S2 + DI(K) * LOG(ROA(K)) NEXT K
A - SZ / SI FOR K - I TO NP YEIK) - EXP(-A * DI(K)) NEXT K
CALL ERRORESTANDAR(ROA(), YEO, PA. NP. SE2)
PRINT " MODELO EXPONENCIAL ". PRINT "ROID = EXP ( ", A. " d )"
PRINT " ERROR ESTANDAR DE ESTIMACION Se' = ".
PRINT USING "AND ADDA". SEZ BEEP BEEP BEEP
PRINT #3, "MODELO EXPONENCIAL.", PRINT #3, "RO(d) = EXP(-", A,"d)"
PRINT #3, "ERROR ESTANDAR DE ESTIMACION Se" # ".
PRINT 13, USING "MI MIN", SE2 CLOSE 13
SUB ERRORESTANDAR (ROAD, YEO, PA. NP. SEZ)
 SI = 0
 FOR K = 1 TO NP St = St + (ROA(K) - YE(K)) * 2 NEXT K
 SE2 = S1 / (NP - PA)
END SUB
SUB FUNCION (DIO, ROAO, M. AL, NP, E)
 S1 = 0 S2 = 0
 FOR K = 1 TO NP
  B = LOG(1 + M + DI(K)) S1 = S1 + B + 2 S2 = S2 + B + LOG(ROA(K))
 NEXT K
 AI = S2 / SI F = 0
 FOR K = 1 TO NP
   ROF = 1/(1 + M * DIKO * AL
   F = F + (ROA(K) ROE) 2
 NEXTK
```

END SUB

CALCULO Y AJUSTE DEL SEMIVARIOGRAMA V Y VA DECLARE SUB ERRORESTANDAR (VAO, YEO, PA, NP. SE2) DECLARE SUB FUNCIONI (DIO, VAO, C, AI, NP, F) DECLARE SUB FUNCION2 (DIO, VAO, C, A2, NP, F) DECLARE SUB FUNCIONS (DIO, VAO, C, A3, NP, F) **VARIABLES DE ENTRADA** NE = No DE ESTACIONES DE REGISTRO NA = No DE AÑOS DE REGISTRO MAXIMO P(LJ) = PRECIPITACION (ESTACION = J, AÑO = I) NU) - No DE REGISTROS DISPONIBLES EN LA ESTACION J ARCHS = NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION) CO(NE,2) = COORDENADAS (X,Y) DE LA ESTACION J (PARA NE ESTACIONES) DINP) - DISTANCIA ENTRE EL PAR DE ESTACIONES I Y 2 (NP-NE(NE-1)/2) VARIABLES DE SALIDA ME(NE) = MEDIA DE LOS VALORES PARA LA ESTACION J DE(NE) - DESVIACION ESTANDAR PARA LA ESTACION I NC(NE) - NUMERO DE REGISTROS DISPONIBLES EN LAS ESTACIONES J 'V(NE,NE) = SEMIVARIOGRAMA VA(NP) = SEMIVARIOGRAMA DE AJUSTE NP = NUMERO DE PAREJAS DE ESTACIONES PA = NUMERO DE PARAMETROS DE LA FUNCION DE AJUSTE 'ENTRADA DE DATOS INICIALES PRINT INTERPOLACION ESPACIAL DE LLUVIAS" METODO KRIGING PRINT " PRINT . CALCULO Y AJUSTE DEL SEMIVARIOGRAMA" PRINT " NUMERO DE ESTACIONES *: INPUT **, NE PRINT " NUMERO MAXIMO DE AÑOS DE REGISTRO ", INPUT ", NA NOMBRE DEL ARCHIVO DE DATOS *, INPUT **, ARCHS DRIVE DE LECTURA ". INPUT ", DRIVS PRINT -DECLARACION Y DIMENSIONAMIENTO DE VARIABLES NP - NE * (NE - 1) / 2 DIM PINA. NE). MEINE: DEINE), NCINP), VINE, NE), VAINP) DIM YE(NP), CO(NE, 2), DI(NP), NOES(NE), TAIF(NE), AI(NE), AI(NE) LECTURA DE DATOS (REGISTROS Y COORDENADAS DE LAS ESTACIONES). ARCHIS - DRIVS + " " + ARCHS + " DAT" OPEN "I", #L ARCHIS FOR J = 1 TO NE INPUT #1, NOES(J) PRINT USING "&", NOES(J) INPUT #1, TAIF(J) PRINT USING " ###", TAIF(J) INPUT #1. AI(J) PRINT USING " #### ", AI(J) INPUT #1, AF(I) PRINT USING " ### ", AF(I) PRINT "INTENSIDAD DE PRECIPITACION, EN mm/h " PRINT "i,j" FOR I = 1 TO TAIF(I) INPUT #1, P(I, I) PRINT USING "### # ", P(I, I), NEXT L PRINT NEXT J PRINT " PRINT " COORDENADAS DE LAS ESTACIONES COOLD " PRINT ESTACION X Y PRINT -(km) (km) FOR J = 1 TO NE INPUTE #1, COOL D. COOL 2) PRINT T. T. J. PRINT USING T. BROKERS T. CO.J. D. CO.J. 25 NEXT) CLOSE #1 CALCULO DE LA MEDIA FOR J = 1 TO NE

M(ab = 0)

FOR L = 1 TO TAILOD MILD = MED + Pd, Jr NEXT I

```
ME(I) = ME(I) / TAIF(I)
NEXT I
CALCULO DE LA DESVIACION ESTANDAR
FOR J = 1 TO NE
  51 - 0
   HOR L = 1 TO TAIFU) St = St + (P(L, I) - ME(I)) 12 NEXT I
   DE(1) = ($1 / (TAIF(1) - 1)) * 5
NEXT I
IMPRESION DE RESULTADOS
ARCH35 - DRIVS + "\" + ARCH5 + " EST" OPEN "A", 3, ARCH35
CALCULO DEL SEMIVARIOGRAMA
PRINT 13, " PRINT 13, " SEMIVARIOGRAMA VILLI" PRINT 13, "
PRINT PRINT " SEMIVARIOGRAMA VILD"
FOR I = 1 TO NE
   FOR J = 1 TO NE
       11 - 0 12 - 0
       IF AI(I) < - AI(I) THEN
          NI = AI(I) II = AI(I) - AI(I)
       ELSEIF Alth > AKI) THEN
          NI - AI(1) 12 - AI(1) AI(1)
       END IF
       IF AF(I) < = AF(I) THEN
           NE - AF(I)
       ELSEIF AF(I) > AF(J) THEN
          NF = AF(I)
       END IF
       NT - NF - NI + 1
       IF NT > 2 THEN
           SX - 0 SY - 0 MX - 0 MY - 0 SI - 0
           FOR T = 1 TO NT SX = SX + P(T + 11, 1) SY = SY + P(1 + 12, 1) MEXT 1
           MY - SY / NT MY - SY / NT
           FOR T = 1 TO NT SI = SI + ((P(T + 1), I) MXHP(T + 12, I) MY)(2 NEXE I
           Vd. J) = St / (2 * NT)
       END IF
       PRINT USING "DOC DOC", Vol. 1), PRINT #3, USING "### DOC", Vol. 1),
   NEXT J PRINT " PRINT #3, "
NEVTI
PRINT #3, " PRINT " VALORES DE VILI) PARA EL AJUSTE"
DETERMINACION DE VALORES VILL) PARA EL AJUSTE Y
CALCULO DE LA DISTANCIA ENTRE EL PAR DE ESTACIONES IJ
PRINT "ESTACION: ESTACION; DISTANCIA DI, VA(K)
PRINT #3, " EST | EST | DIST DI VA(K) "
NI = 2 Kl = 1 K = 1 J = 1
   FOR I = NI TO NE
      IF ABS(V(I, J)) > 1 THEN
           X1 = CO(1, 1) Y3 = CO(1, 2) X2 = CO(1, 4) Y2 = CO(1, 2)
           D(KI) = SQR((X2 - XI) + (Y2 - Y1) + (Y2 - Y1) + (Y2 - Y1) + (Y2 - Y1) + (Y3 
          PRINT KI, I, J. PRINT DI(KI), SPC(3),
           PRINT USING "MIND DE", VAIKI)
           PRINT #3, KI, I, J. PRINT #3, USING "#### ##" DI(KI), SPC(3)
          PRINT #3, USING "#### ##", VA(KI)
          KI = KI + I
       ELSEIF ABS(V(L. I)) < = 1 THEN
          PRINT -
      END III
```

210

 $K \sim K + 1$

```
NEXT I
 N1 = N1 + 1 J = J + 1
LOOP WHILE K < = NP NP = KI - 1
AJUSTE DEL SEMIVARIOGRAMA VA(K)
PRIMER MODELO : " LINEAL " : V(d) = A d
S1 = 0 S2 = 0
FOR K = 1 TO NP: SI = SI + DI(K)*2 S2 = S2 + VA(K)*DI(K) NEXT K
A = $2 / $1 FOR K = 1 TO NP YE/K) = A + DI(K) NEXT K PA = 1
"CALCULO DEL ERROR ESTANDAR DE ESTIMACION Se'=0(Y) Ye)"(n 1)
CALL ERRORESTANDAR(VAI), YEO, PA. NP. SE2)
PRINT " MODELO LINEAL ". PRINT USING "Vid) = 8888 898880 d". A
PRINT " ERROR ESTANDAR DE ESTIMACION Se' = ";
PRINT USING "FREED SOF"; SE2
PRINT 13, "MODELO LINEAL ", PRINT 13, USING "Y(d) - 8888 888884", A
PRINT #3, "ERROR ESTANDAR DE ESTIMACION Se" = ".
PRINT #3. USING "##### SE2. BEEP
'MODELO MONOMICO: V(d) = Al d ' Bl ; 0 < B < 2
SI = 0 S2 = 0 S1 = 0 S4 = 0
FORK - I TO NP
 S1 = S1 + LOG(VA(K)) S2 = S2 + LOG(DI(K))
 S3 = S3 + LOG(DI(K)) * LOG(VA(K)) S4 = S4 + (LOG(DI(K))) * 2
NEXT K
BI = (SZ*SI - NP*S3) / (SZ*Z - NP*S4) AI = EXP((SI - BI * S2) / NP)
FOR K = 1 TO NP YE(K) = A1 * DI(K) * B1 NEXT K PA = 2
CALL ERRORESTANDAR(VAO. YE(), PA. NP. SE2)
PRINT " MODELO MONOMICO ".
PRINT "V(d) = ", A1, " d " (", B1, ") , 0 < B1 < 2"
PRINT - ERROR ESTANDAR DE ESTIMACION Set - 1
PRINT USING "REGERS BOY", SE2
PRINT #3, "MODELO MONOMICO "
PRINT #3, "V(d) = ", A1, "d"(", B1, ") , 0 < B1 < 2"
PRINT 13, "ERROR ESTANDAR DE ESTIMACION Se' = ".
PRINT #3, USING "##### SE2 BEEP
MODELO EXPONENCIAL: V(d) = A2 [1 - EXP(-Cd)]; C > 0
CO = 0 S = 05 CF = INT(LOG(1 + 50 / S) / LOG(2)) + 10
DO
 FOR 1. - 1 TO 2
   C1 = C0 + 5 * 2 * (L - b)
   CALL FUNCIONI(DIO, VAO. CI, AI, NP, FI)
    C2 = C1 + S \cdot 2 \cdot (L)
    CALL FUNCIONI(DIO, VAO. C2, A1, NP, F2)
    C3 - C2 + 5 * 2 * (1 + 1)
    CALL FUNCIONI(DIO, VAO, C3, A1, NP, F3)
    IF FT < F3 AND F2 < # F1 AND F2 < # F3 THEN
     CO = CI EXIT FOR
    FLSEIF F2 <= F3 AND F2 > F1 AND F1 < F3 THEN
     CO = CO EXIT FOR
    FLSEIF F2 <= F1 AND F2 >= F3 AND F1 > F3 THEN
     C0 = C1
    END II:
  NEXT L
  5 = 5/2
LOOP WHILE ABS(F1 F2) > 00001 OR ABS(F2 F3) > 00001
FOR K = 1 TO NP YEAR = A1 * () EXPCC2 * DICKIN NEXT K PA = 2
CALL ERRORESTANDAR(VAO. YLO, PA. NP. SE2)
```

```
PRINT " MODELO EXPONENCIAL ".PRINT "V(d) = ".A1, "[1 EXP( T,C1, "d)]"
PRINT " ERROR ESTANDAR DE ESTIMACION Set = "
PRINT USING "***** SE2 BEEP BEEP BEEP
PRINT #3, "MODELO EXPONENCIAL ".
PRINT #3, "V(d) = ", A1, "(1 | XP( ', C1, "d))"
PRINT 13. "ERROR ESTANDAR DE ESTIMACION Set . ".
PRINT #3. USING "###### FEE SE2
'MODELO GAUSSIANO: V(d) = A2 [1 - EXP ( - C2 d' )]
C0 = 0 S = 5 CF = INT(LOG(1 + 50 / S) / LOG(2)) + 10
 FOR L = 1 TO 6
   C1 - C0 + S * 2 * (L - B)
   CALL FUNCION2(DIO, VAO. CI, A2, NP. FI)
   C2 = C1 + S \cdot 2 \cdot (1)
   CALL FUNCION2/DIQ, VAQ. C2, A2, NP. F2)
   C3 = C2 + 5 * 2 * (L + 1)
   CALL FUNCION2(DIO, VAO, C3, A2, NP, F3)
   IF (F1 < F3) AND (F2 < F1) AND (F2 < F3) THEN
     CO = CO EXIT FOR
   ELSEIF F2 < F3 AND F2 > F1 AND F1 < F3 THEN
     CO - CO EXIT FOR
   ELSEIF F2 < F1 AND F2 > F3 AND F1 > F3 THEN
     ന - ന
   END IF
 NEXT L
 5 - 5/15
LOOP WHILE ABS(F1 - F2) > 001 OR ABS(F2 - F3) + 001
FOR K = 1 TO NP YE(K) = A2 * (1 - EXP(-C2 * DI(K) * 2)) NEXT K PA=2
CALL ERRORESTANDAR(VAO, YEO, PA. NP. SE2)
PRINT " MODELO GAUSIANO ". PRINT "V(d) = ", A2. "[1-EXP( " C2. d*)]"
PRINT " ERROR ESTANDAR DE ESTIMACION. Se' = "
PRINT USING "FORTH ON". SIZ BEEP BEEP BEEP
SUB ERRORESTANDAR (VAO. YEO. PA. NP. SEZ)
 S1 - 0
 FOR K = 1 TO NP S1 = S1 + (VA(K) - Yb(K))^2 NEXT K
 SE2 = SI / (NP PA)
END SUB
SRB FUNCTIONS (DIO, VAO, C. AL, NP, F)
 S1 = 0 S2 = 0
 FOR K = 1 TO NP SI = S1 + LOG(1 - EXP(-C * DI(K))) S2 = S2 + LOG(VA(K)) - NEXT K
 A1 = EXP(S2 - S1) / NP: F = 0
 FOR K = 1 TO NP VAE = A1 * (1 EXP(-C * DI(K))) F = F + (VA(K) VAE)*2 NEXT K
END SUB
SUB FUNCIONZ (DIO, VAO, C. A2, NP, F)
 S1 = 0 S2 = 0
 FOR K = 1 TO NP SI = SI + LOG(1 EXP(C * DI(K)*2)) S2 = S2 + LOG(VA(K)) NEXT K
 A2 = EXP(S2 SD | NP) F = 0
 FORK # 1 TO NP VAL = A2*() EXP(-C * DHK)*2); F=F+ (VA(K) VAE)*2 NEXLK
I-ND SUR
```

DETERMINACION DE LA FUNCION

```
DE CORRELACION. ROAM Y
                                     DEL SEMIVARIOGRAMA VAID
PRINT SPC(10).
                 INTERPOLACION ESPACIAL DE LLUVIAS"
PRINT SPC(10).
                     METODOS DE INTERPOLACION"
PRINT SPC(10), *
                      OPTIMA Y KRIGING"
PRINT SPC(ID). * CALCULO DE LA MATRIZ DE LA FUNCION DE CORRELACION*
PRINT SPC(10). " AJUSTES REALIZADOS EN PROGRAMA CORRESPA BAS"
VARIABLES DE ENTRADA
    NE = No DE ESTACIONES DE REGISTRO
    NA = No MAXIMO DE AÑOS DE REGISTRO
  P(IJ) - PRECIPITACION (ESTACION=J.ANQ=D
  N(I) = No DE REGISTROS DISPONIBLES EN LA ESTACION J
  ARCHS - NOMBRE DEL ARCHIVO DE DATOS (CON EXTENSION " DAT" POR OMISION)
 CO(NE,2) = COORDENADAS (X,Y) DE LA ESTACION J (PARA NE ESTACIONES)
 DI(NP) - DISTANCIA ENTRE EL PAR DE ESTACIONES 1 Y 2 (NP-NE/NF 1)/2)
VARIABLES DE SALIDA
 NCINE) - NUMERO DE REGISTROS DISPONIBLES EN LAS ESTACIONES J
ROA(NE,NE) - FUNCION DE CORRELACION ESPACIAL
VA(NE,NE) - SEMIVARIOGRAMA
    NP - NUMERO DE PARIJAS DE ESTACIONES
ENTRADA DE DATOS INICIALES
              NUMERO DE ESTACIONES ", INPUT ", NE
PRINT "
PRINT " NUMERO MAXIMO DE ANOS DE REGISTRO ", INPUT ", NA
          NUMERO PUNTOS A INTERPOLAR "INPUT "NT NOMBRE DEL ARCHIVO DE DATOS "INPUT "ARCHS
PRINT .
                UNIDAD DE TRABAJO ". INPUT ", DRIVS
PRINT "
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
NP - NE - (NE 1) / 2
DIM P(NA. NE). RO(NE. NE), ROA(NP), VA(NE, NE), SVA(NP), CO(NE. 2)
DIM DI(NP), DE(NT, NE), ROE(NT, NE), VAEINT, NE), COE(NT, 2), PT(NI, NE)
DIM NOES(NE), TAIH(NE), AI(NE), AH(NE)
LECTURA DE DATOS CONTENIENDO COORDENADAS DE LAS ESTACIONES
ARCHIS = DRIVS + "\" + ARCHS + " DAT" OPEN "I", #1, ARCHIS
FOR J = 1 TO NE
 INPUT #1, NOES()) PRINT USING "A", NOES()).
 INPUT #1, TAIF(J) PRINT USING " ### ", TAIF(J).
 INPUT #1. AID) PRINT USING " ### " AID)
 INPUT #1. AECD PRINT USING " ### " AECD
 PRINT " INTENSIDAD DE LA PRECIPITACION, EN numb " PRINT " 1,1"
 FOR I = 1 TO TAIF()
   INPLIT #1, Ptl. 1) PRINT USING "### ## ", Ptl. 1)
 NEXT I PRINT "
NEXT I PRINT "
PRINT * COORDENADAS DE LAS ESTACIONES COOP *
PRINT " ENTACION X Y "
PRINT -
               (km)
                      (km)
FOR J = 1 TO NE
 INPUT #1, COIL b. COd. 25
 PRINT ". J. PRINT USING " MON NO ", COU, I), COU, 2)
NEXTI
FOR 1 = 1 10 NT
 INPUT #L COEd, D. COEd, 2)
NEXT J PRINT " CLOSE #1 FRASE NOIS, TAIP, AL AL
CALCULO DE LA DISTANCIA ENTRE EL PAR DE ESTACIONES IJ
PRINT "ESTACION ( ESTACION) DISTANCIA DIST
NI = 2 K = 1 J = 1
```

```
X1 = CO(1, 1) Y1 = CO(1, 2) X2 = CO(1, 1) Y2 = CO(1, 2)
    DI(K) = SQR((X2 X1) * 2 + (Y2 Y1) * 2)
    PRINT I, I, PRINT USING " ### TOUR ## T. DI(K) K = K + I
  NEXTI
  NI 4 NI + 1 1 e 1 + 1
LOOP WHILE K - - NP PRINT " K - 1
  XI = COE(K, 1) YI = COE(K, 2)
  FOR J = 1 TO NE
    X2 = CO(J, J) Y2 = CO(J, 2) DE(K, J) = SOR((X2 - XJ)^2 + (Y2 - YJ)^2)
   PRINT USING "FORM FOR", DE(K, J).
  NEXT J K - K + I
LOOP WHILE K < = NT PRINT "
'CALCULO DE FUNCION DE CORRELACION ESPACIAL (DEPENDIENDO DEL TIPO DE ECUACION)
         MODELO DE LA FUNCION DE CORRELACION ESPACIAL. PRINT "
PRINT "
PRINT .
             METODO DE INTERPOLACION OPTIMA"
PRINT 1) MODELO INVERSO LINEAL ROOM = 17(1+d/C)
PRINT '2) MODELO INVERSO POTENCIAL RO(d) = 17(1 + d/C) 'A'
PRINT "3) MODELO EXPONENCIAL RO(d) = EXP( - A d )"
                ELUA UNA OPCION ". INPUT ". OP
PRINT "
SELECT CASE OF
CASE 1 MODELO INVERSO LINEAL RO(d) = 1/(1 + d/C)
PRINT MODELO ', OP
  PRINT MODELO OP
PRINT CONSTANTE C = NPUT C
  FOR K = 1 TO NP ROA(K) = 1 ((1 + DHK) / C) NEXT K
 CASE 2 MODELO INVERSO POTENCIAL ROID = 17(1 + d /C) A
PRINT MODELO OP
  PRINT "
            CONSTANTE C . . INPUT ... C
  PRINT .
            CONSTANTE A - ". INPUT ". A
  FOR K = 1 TO NP ROA(K) = 1 / (1 + D(K) / C) * A NEXT K
 CASE 3 MODELO EXPONENCIAL RO(d) = EXP( A d.)
PRINT MODELO * OP
  PRINT - CONSTANTE A = -, INPUT --, A
  FOR K = 1 TO NP ROA(K) = EXP( A * DI(K)) NEXT K
END SELECT
ARCH25 - DRIVS + " (" + ARCH5 + " ROA" OPEN "O" 2. ART H25
NI = 1 K = 1 J = 1
no
 FOR I = NI TO NE
  IF I - J THEN
   ROUL IN COL
  ELSEIF K < - NP THEN
   ROU, J_1 = ROA(K) | K = K + 1
  END IF
 NIXII NI - NI + I J - J + 1
LOOP WHILE () < = NO
NI . FK . I fel
FOR J - NI TO NE
  HILL THEN
   ROH 5 - 1
  ELSLIF K < - NP THEN
  ROM, JI - ROAKY K = K + 1
  END IF
 NEXT I NI = NI + 1 I = I + I
```

LOOP WHILE IT < = NED

HOR I - NI TO NE

```
PRINT - GRABANDO ARCHIVO DE MATRIZ DE CORRELACION -
HOR 1 - 1 TO NE
HOR 1 - 1 TO NE.
  PRINT #2 ROOL IS
 IF I . > NE THEN
  PRINT #2. ".".
  END IF
  PRINT USING "FOR FORF", RO(I. J),
 NEXT I PRINT #2, ". PRINT "
NEXT I
CALCULO DE LA CORRELACION ESPACIAL ENTRE LAS ESTACIONES ; Y EL PUNTO e
SELECT CASE OF
 CASE 1 'MODELO INVERSO LINEAL RO(d) = 1/(1+d/C)
   FOR K - I TO NT
    FOR J = 1 TO NE ROE(K, J) = 1/(1 + DE(K, J)/C) NEXT J
   NEXT K
 CASE 2 'MODELO INVERSO POTENCIAL RO(d) = 1/(1+d/C) A
   FORK - I TO NT
    FOR J = 1 TO NE ROE(K, J) = 1 / (1 + DE(K, J) / C) A NEXT J
   NEXT K
 CASE 3 'MODELO EXPONENCIAL RO(d) = EXP( - A d )
   FOR K - 1 TO NT
    FOR J = 1 TO NE ROEK, J) = EXP(-A * DE(K, J)) NEXT J
   NEXT K
END SELECT
FOR K - I TO NT
 FOR J = 1 TO NE
   PRINT #2. ROE(K, J).
   IF I < > NE THEN
    PRINT #2. ...
   END IF
   PRINT USING "### ####". ROE(K, J):
 NEXT J PRINT " PRINT #2, "
NEXT K CLOSE #2
"CALCULO DEL SEMIVARIOGRAMA (DEPENDIENDO DE LA ECUACION SELECCIONADA)
              MODELO DEL SEMIVARIOGRAMA" PRINT "
PRINT .
PRINT .
                  METODO KRIGING*
PRINT 'D MODELO LINEAL VAID - A d'
PRINT "2) MODELO MONOMICO VAID = A d " B"
PRINT '3) MODELO EXPONENCIAL VA(d) = A 1 1 EXP( C d) ]
PRINT 4 MODELO GAUSSIANO VAID - A | | EXPC C d') |
PRINT '5) MODELO ESPERICO VA(d) = 0 5A | 3 4 / C ( 4 / C ) 3 [
              ELUA UNA OPCION ", INPUT ", OP
SELECT CASE OP
 CASE 1 MODELO LINEAL VA(d) = A d*
PRINT MODELO , OP
  PRINT " CONSTANTE A = ", INPUT ". A
  FOR K = 1 TO NP SVA(K) = A * DHK) NEXT K
 CASE 2 'MODELO MONOMICO VAID - A d B'
  PRINT " MODELO ", OP
            CONSTANTE A = ", INPUT ". A
  PRINT .
  PRINT CONSTANTE B = ", INPUT ", B
  FOR K = 1 TO NP SVA(K) = A * (DI(K)) * B NEXT K
 CASE 3 MODELO EXPONENCIAL VAID = A | 1 EXP( ( d ) ]
  PRINT MODELO , OP
```

PRINT CONSTANTE A = " INPUT ". A

```
PRINT " CONSTANTE ( = " INPUT ", C
 FOR K - I TO NP SVA(K) - A . (I EXP(-C . DI(K))) NEXT K
 CASE 4 MODELO GAUSSIANO VAID = A LL EXPL Cd ) [
            MODELO . OP
 PRINT "
           CONSTANTE A = ". INPUT ". A
 PRINT "
  PRINT " CONSTANTE C . ". INPUT ", C
 FOR K = 1 TO NP SVA(K) = A * (1 EXP(-C * DKK) * 2) NEXT K
 CASE 5 MODELO ESFERICO VAID = 0.5A | 3 d / C - ( d / C ) 3 |
 PRINT "
           MODELO . OF
  PRINT "
           CONSTANTE A = ", INPUT "", A
  PRINT " CONSTANTE C . . INPUT ", C
 FOR K = 1 TO NP SVA(K) = 5 * A * (3 * Dk(K) / C - (Dk(K) / C) * 3) NEXT K
END SELECT
ARCH3$ = DRIV$ + ".\" + ARCH5 + " SVA" OPEN "O", #3, ARCH3$ NI = 1 K = 1 J = 1
FOR I - NI TO NE
 IF I - 3 THEN
   VA(I, J) = 0
  FLSEIF K < = NP THEN
   VA(1, 1) - SVA(K) K - K + 1
 END (F
 NEXT | NI = NI + 1 1 = 1 + 1
LOOP WHILE (I < - NE) N1 - 1 K - 1 I - 1
FOR I - NI TO NE
 IF J = I THEN
   VA(I, J) - 0
  FLSEIF K < = NP THEN
   VA(1, J) = SVA(K) K = K + 1
 END IF
 NEXT J NI = NI + 1 I = I + 1
LOOP WHILE (I < = NE)
PRINT GRABANDO ARCHIVO MATRIZ DEL SEMIVARIXGRAMA
FOR I . I TO NE.
FOR J = 1 TO NE
 PRINT #3, VAIL. J).
 IF J < > NE THEN
  PRINT #3. "
 END IF PRINT USING "### ##", VA(I, J).
 NEXT J PRINT #3, " PRINT "
CALCULO DEL SEMIVARIOGRAMA ENTRE LAS ESTACIONES; Y EL PUNTO e
SELECT CASE OF
 CASE I 'MODELO LINEAL VA(d) = A d"
  FORK = 1 TO NT
    FOR ) = 1 TO NE VAEK, J) = A * DE(K. I) NEXT I
   NEXT K
 CASE 2 'MODELO MONOMICO VA(d) = A d " B"
  FOR K = 1 TO NT
   FOR J = 1 TO NE VAE(K, J) = A * (DE(K, J)) * B NEX1 J
  NEXT K
 CASE 3 MODELO EXPONENCIAL VAID = A [ ] EXPL C d i [
  FORK = I TO NT
    FOR J = 1 TO NE VAE(K. J) = A * (1 - EXP(-C * DE(K. J))) NEXT J
   NEXT K
 CASE 4 MODELO GALSSIANO VAID - A 1 1 EXPL C d' 1 1
  FOR K = 1 10 NT
```

```
FOR J = 1 TO NE VAE(K, J) = A * (1 - EXPLC * DE(K, J) * 2)) NEXT J
   NEXT K
 CASE 5 MODELO ESPERICO VAID = 05A [3d/C (d/C)'3]
   FOR K = 1 TO NT
    FOR J = 1 TO NE
      VAE(K, J) = 5 * A * (3 * DE(K, J) / C (DE(K, J) / C) ^ 3)
    NEXT J
   NEXT K
END SELECT
FOR K = 1 TO NT
 FOR J = 1 TO NE
   PRINT #3, VAE(K, J),
   IF J < > NE THEN
    PRINT #3. ".".
   END IF PRINT USING "NOW PON", VAE(K, J).
 NEXT J PRINT " PRINT #3. "
NEXT K. CLOSE #3
END
PORMATO DEL ARCHIVO DE DATOS PARA LAS TÉCNICAS DE INTERPOLACIÓN
                         DATOS DEL EJEMPLO DE APLICACIÓN DE LAS TÉCNICAS
estación, nº años de registro, año mucio, año final, registros
          EST1.9.1961.1969.52.45.69.80.32.80.47.84.60
          EST2.9,1961.1969,36,12,3,67,32,43,36,11,80
          EST 3, 9, 1961, 1969, 21, 10, 63, 92, 68, 5, 76, 30, 110
          EST4.9,1961,1969,95,13,91,65,43,56,3,76,130
          EST5,9,1961,1969,45,85,25,71,43,34,26,40,90
coordenadas de cada estación (X1,Y1)
         2.10
          4.8
          8,10
          8.6
          74
        las del punto a interpolar (Xe,Ye)
          4,6
 serre de valores de cada estación para enterpolar
          60,80,110,130,90
                                      AJUSTE DE CURVAS I-D-T
                                 METODO DE CORRELACION MULTIPLE
DECLARE SUB ERRORESTANDAR (PO. TO. DO. N. NDO. AK, AM. AN, C. M. EE)
DEEDBLAZ DEEDT LM
VARIABLES DE ENTRADA
   ARCHS - NOMBRE DEL ARCHIVO DE DATOS
  PO.D = INTENSIDAD LEN LA ESTACION PARA UNA DURACION ; EN EL ANO I
   N = No DE DURACIONES PARA EL REGISTRO DE LA ESTACION ANALIZADA
   Dip = DURACION
   ND(j) = No DE REGISTROS PARA LA DURACION J
   i = I HASTA NDO
     I = I HASTA N
VARIABLES DE SALIDA
Lmvn = PARAMETROS DE AJUSTI-
TENTRADA DE DATOS INICIALES
```

```
PRINT "
            METODO DE CORRELACION MULTIPLE". PRINT
PRINT -
            NOMBRE DEL ARCHIVO DE DATOS 1, INPUL 11, ARCHS
PRINT "
                  UNIDAD DI LECTURA ". INPUT ", DRIVS
 LECTURA DEL ARCHIVOS DE DATOS
ARCHIS - DRIVS + " \" + ARCHS + "IDT DAT" OPEN "I", #1, ARCHIS
DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
PRINT LEVENDO DATOS
INPUT #1. NOMESS, N. NA
DIM P(NA. N). D(N), ND(N), T(NA. N)
FOR I = 1 TO N INPUT #1, D(I) D(I) = D(I) / 1 NEXT I
FOR I = 1 TO N INPUT #1, ND(J) NEXT I
FOR J = 170 N
 FOR I = 1 TO ND(J). INPUT #1, P(I, J) NEXT I
NEXT J PRINT "
M = 0 FOR J = 1 TO N M = M + ND(I) NEXT )
CALCULO DEL PERIODO DE RETORNO
FOR I - I TO N
 FOR I = 1 TO ND(J) T(I, J) = (ND(J) + 1) / I NEXT I
NEXTI
'ORDENAMIENTO DE LOS DATOS (DE MAYOR A MENOR)
PRINT "ORDENANDO DATOS "
FOR J = 1 TO N
 I = ND(J)
 DO
   CAMBIO - FALSE
   FORT = 1 TO (L ) D
     IF PIL D < PIL + 1, D THEN
      SWAP POL. JL. Pol. + 1, J)
      CAMBIO - I
     END IF
   NEXTI
   1 - CAMBIO
 LOOP WHILE CAMBIO
NEXT I
PRINT "CALCULANDO "
TRANSFORMACION DE LAS VARIABLES
DIM Y(M), X1(M), X2(M)
FOR J = 1 TO N
 FOR L = 1 TO ND(I)
   Y(L) = LOG(P(I, J)) SY = SY + Y(L)
   X1(L) = LOG(T(L, J)) SX1 = SX1 + X1(L)
   X2(L) = LOG(D(I) + C) SX2 = SX2 + X2(L)
   SX12 = SX12 + (X1(L)) ^2 SX22 = SX22 + (X2(L)) ^2
   SX1X2 = SX1X2 + X1(1) * X2(1)
   SX1Y = SX1Y + X1(L) \cdot Y(L) \cdot SX2Y = SX2Y \cdot X2(L) \cdot Y(L)
   L = L + 1
 NEXT I
NEXT
DI = $X2Y SY * $X2 | M D2 = $X22 ($X2) * 2 / M D3 = $X1X2 | $X1 * $X2 | M
F1 = SX1Y - SY * SX1 / M F2 = SX1X2 - SX1 * SX2 / M F3 = SX12 - (SX1) * 2 / M
AA = (D1 D3) D2 B8 = (D1 *12 F1 * D2) / (D3 *12 D2 *15)
(C = (SY AA * SX2 BB * SXI) M AK = EXP(C) AM ~ BB AN ~ AA
CALL ERRORESTANDAR(PO. To. DO, N. NDO, AK, AM, AN, C. M. LE)
IMPRESION DE RESULTADOS
```

DETERMINACION DE LAS CURVAS ED T'

214

PRINT .

PRINT 1

AJUSTE DE CURVAS I-D-T*

```
METODO DE CORRELACION MULTIPLE" PRINT "
PRINT . ECUACION TIPO .
PRINT .
                  k T
PRINT "
PRINT "
PRINT "
                (d + c)* PRINT
PRINT *
PRINT SPC(20) NOMESS PRINT "
PRINT SPC(14), USING " k = 88888 8888", AK
PRINT SPC(14), USING " m - #8888 #888", AM
PRINT SPC(14), USING " n = #### ### AN
PRINT SPC(14), USING " c = BOOSE SEES", C
PRINT SPC(14), USING "EE - POOR STOP", EE
END
SUB ERRORESTANDAR (PO. TO, DO. N. NDO, AK, AM, AN, C. M. EE)
 DIM PE(30, N)
 SI = 0 FE = 0
 FOR J = 1 TO N
   FOR I = 1 TO ND(J)
    PE(I, J) = (AK * T(I, J)^AM) / (D(I) + C)^AN SI = SI + (PE(I, J) - P(I, J))^2
   NEXT I
 NEXT J EE = S1 / (M - 3)
END SUB
AJUSTE DE CURVAS I-D-T
                                  METODO DE KOTHYARI Y GARDE
CLS: CLEAR: DEFDBL A-Z: DEFINT I-N
VARIABLES DE ENTRADA
   ARCHS - NOMBRI: DEL ARCHIVO DE DATOS
   POJ) - INTENSIDAD I EN LA ESTACION PARA UNA DURACION J EN EL AÑO I
   P242 - PRECIPITACIÓN CON d-24h Y T-2 años. PARA LA ESTACIÓN
    N - No DE DURACIONES PARA EL REGISTRO DE LA ESTACION ANALIZADA
    Dro - DURACION
   ND(j) = No DE REGISTROS PARA LA DURACION ;
    = 1 HASTA ND(j)
     = I HASTA N
VARIABLES DE SALIDA
  a0 = LOG k , LOG X3 = -LOG d , a1 = a , a2 = b , a3 = c
ENTRADA DE DATOS INICIALES
              AJUSTI. DE CURVAS I D.T.
PRINT "
             METODO DE KOTHYARI Y GARDE" PRINT
PRINT .
             NOMBRE DEL ARCHIVO DE DATOS ", INPUT ", ARCHS
PRINT .
PRINT "
               UNIDAD DE LECTURA
                                     ". INPUT ". DRIVS
LI-CTURA DEL ARCHIVOS DE DATOS
ARCHIS = DRIVS + " " + ARCHS + "IDT DAT" OPEN "F. #1. ARCHIS
ARCH2S = DRIVS + " \" + "FIN" + "IDT RES" OPEN "A", IZ, ARCH2S
 DECLARACION Y DIMENSIONAMIENTO DE VARIABLES
PRINT "LEVENDO DATOS "
INPUT #L. NOMESS, N. NA
DIM PINA, N), INN), NIXN), T(NA, N)
HOR J = 1 TO N INPUT #1, Dab Dab = Dab / 60# NEXT J
FOR J = 1 TO N INPUT WI, NOW NEXT J
FOR J = I TO N
 FOR 1 = 1 TO NOOD INPUT #1, POLD NEXT 1
```

```
INPUT #1. P242# M = 0
FOR J = 1 TO N M = M + NDO) NEXT J
CALCULO DEL PERIODO DE RETORNO
FOR Ja I TO N
 FOR I = 1 TO NO(B) T(I, I) = (ND(I) + 1) / I NEXT I
NEXT
ORDENAMIENTO DE LOS DATOS (DE MAYOR A MENOR)
PRINT "ORDENANDO DATOS "
FOR J = 1 TO N
 L - ND(J)
 DO
   ICAMBIO = FALSE
   FOR 1 = 1 TO (L 1)
     IF P(L. I) < P(I + 1. I) THEN
      SWAP P(I, J), P(I + I, J)
       ICAMBIO = I
     END IF
   NEXT I
   L = ICAMBIO
 LOOP WHILE ICAMBIO
NEXT J
FOR J = 1 TO N
 FOR I = 1 TO ND() PRINT USING "#### #", P(I, I), NEXT | PRINT ""
NEXT J PRINT "CALCULANDO "
TRANSFORMACION DE LAS VARIABLES
DIM Y(M), X1(M), X2(M), X3(M)
L - 1 SY - 0 SXI - 0 SX2 - 0 SX3 - 0 SX12 - 0 SX22 - 0 SX32 - 0
SXIX2 = 0 SXIX3 = 0 SX2X3 = 0 SXIY = 0 SX2Y = 0 SX3Y = 0
FOR ! - I TO N
 FOR I = 1 TO ND(I)
   Y(L) - LOG(P(L. J))
                            SY - SY + Y(L)
                            SX1 = SX1 + X1(1)
   XI(t) = LOG(1(t, 1))
   X2(1.) = 1.0G(P242)
                            SX2 = SX2 + X2(1)
   X3(L) = -1.0G(D(L))
                            SX3 = SX3 + X3(1)
   SX12 - SX12 + XI(L) * 2
                              SX22 = SX22 + X2(L) ^ 2
   SX32 = SX32 + X3(L) * 2
   SX1X2 - SX1X2 + X1(L) * X2(L)
   SXIX3 - SXIX3 + XI(L) * XX(L)
   SX2X3 = SX2X3 + X2(L) * X3(L)
   SXIY = SXIY + XI(L) \cdot Y(I)
   SX2Y - SX2Y + X2(L) * Y(L)
   SX3Y = SX3Y + X3(L) * Y(L) L = L + 1
 NEXT I
NEXT
CLS NN = 4 MM = NN + 1 DIM A(NN, MM)
A(1, 1) = M A(1, 2) = SXI A(1, 3) = SX2 A(1, 4) = SX3 A(1, 5) = SY
A(2, 1) = SX1 \quad A(2, 2) = SX12 \quad A(2, 3) = SX1X2 \quad A(2, 4) = SX1X3 \quad A(2, 5) = SX1Y
A(3. 1) = SX2 A(3. 2) - SX1X2 A(3. 3) - SX22 A(3. 4) = SX2X3 A(3. 5) = SX2Y
A(4, 1) - SX3 A(4, 2) - SX1X3 A(4, 3) - SX2X3 A(4, 4) - SX32 A(4, 5) - SX3Y
FOR I = I TO NN
 FOR J = 1 TO MM PRINT USING "######## A(I, D). NEXT J PRINT "
NEXTI
FOR I - I TO NN
 PI = A(L D
 FOR J = 1 TO MM A(t. I) = A(I, I) / PL NEXT J
```

FORK - I TO NN

NEXT J PRINT

```
IFK <> 1 THEN
    C0 = A(K, 1)
    FOR J = 1 TO MM A(K, J) = A(K, J) CO * A(I, J) NEXT J
   END IF
 NEXT K
NEXT I
PRINT "MATRIZ IDENTIDAD DEL SISTEMA"
FOR 1 - I TO NN
FOR J = 1 TO NN PRINT USING "NOW NOW", A(I. J). NEXT J PRINT "
NEXT
PRINT "SOLUCION DEL SISTEMA"
FOR I = 1 TO NN PRINT "X(", I, ") = ", A(I, MM) NEXT I
IMPRESION DE RESULTADOS
PRINT DETERMINACION DE LAS CURVAS I D.T.
PRINT METODO DE KOTHYARI Y GARDE; PRI
              METODO DE KOTHYARI Y GARDE; PRINT " PRINT "
PRINT . ECUACION TIPO .
PRINT .
              T k T (2 7 b)
PRINT .
PRINT .
PRINT "
PRINT .
PRINT SPC(20), NOMESS PRINT
PRINT SPC(14). USING " k = #### ###, EXP(A(1, MM))
PRINT SPC(14), USING " . - BEREF BERF", AQ. MM)
PRINT SPC(14): USING " b - BERRE BERF", A(3, MM)
PRINT SPC(14), USING " c = FFEET FOOT", A(4, MM) PRINT "
PRINT #2, SPC(20), NOMESS PRINT "
PRINT #2, SP(214), " k.a.b.c = ".
PRINT #2, SPC(14), USING "#### ###", EXP(A(1, MMI), A(2, MM), A(3, MM), A(4, MM)
END
DEFDBL I-N
SUB ERRORESTANDAR (PO. TO. DO. N. NDO. AK. AM. AN. C. M. EE)
 DIM PE(30, N)
 SI - 0 FE - 0
 FOR J = 1 TO N
  FOR 1 - 1 TO NOOD
    PEd. 1) = (AK * Td, 1) * AM) / (Dd) + C) * AN St = St + (PEd. 1) Pd. 1) * 2
   NEXT I
 NEXT I
 EE = $1 / (M - 3)
END SUB
```