

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

EACHLIAD DE INGENIERIA

"ARLICACION ACTUAL DEL METODO DE LOS COFFICIENTES DE ESCUBBIMIENTO PARA LA GENERACION DE DATOS DE DRENAJE"

E QUE PARA OBTENER EL TITULO INGENIERO S E N FERNANDO HUMBERTO, BARRERA ALONSO

ASESOR: M. I. FRANCISCO ECHAVARRIA ALFARO

MEXICO, D. F.

TESIS CON

FALLA DE ORIGEN

1997

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIÈRIA DIRECCION 60-1-094/96.

Señor

FERNANDO HUMBERTO BARRERA ALONSO Presente.

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso el profesor M. I. FRANCISCO ECHAVARRIA ALFARO, que aprobó esta Dirección, para que lo desarrolle usted como tesis de su examen profesional de INGENIERO CIVIL.

"APLICACION ACTUAL DEL METODO DE LOS COEFICIENTES DE ESCURRIMIENTO PARA LA GENERACION DE DATOS DE DRENAJE"

INTRODUCCION.

- T. COEFICIENTES DE ESCURRIMIENTO URBANOS
- II. COEFICIENTES DE ESCURRIMIENTO PARA LA CIUDAD DE MEXICO HI. GENERACION DE ESCURRIMIENTOS EN CUENCAS NATURALES NO
- AFORADAS
- IV. ESCURRIMIENTOS DRENADOS A LA LAGUNA DE CUYUTLAN v
 - CONCLUSIONES Y RECOMENDACIONES.

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ciemplar de la tesis el título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar Examen Profesional.

Atentamente.

"POR MI RAZA HABLARA EL ESPIRITU".

Cd. Universitaria. 27. F., a 5 de acosto de 1996

EL DIRECTOR

MANUEL COVARRUBIAS SOLIS.

AGRADECIMIENTOS

A Dios

Por haberme brindado la grandiosa experiencia de vivir.

A mi padre

Ing. Fernando H. Barrera López

Por ser el único ejemplo que quiero seguir como ser humano y como profesional.

Tú siempre has creido en mí.

A mi madre

Sra. María Teresa Alonso de Barrera

Porque sin tus preocupaciones y tu cariñó hacia mí, ésto no hubiera sido posible.

Tù siempre has estado ahí.

A mis hermanos Juan Manuel y Tere

Por todos estos años de fructifera convivencia y de sincero intercambio de afectos.

A mis abuelas Malena y Tere

Por su desinteresado cariño y perenne presencia.

A la memoria de mis abuelos Fernando y Constantino

Como me hubiera gustado compartir con ustedes éste y otros momentos de mi vida.

A mis tios y tías

Jorge, Isolina, Alfredo, Martha, Melis, David y Carolina

Porque realmente el estar junto a ustedes me ha significado siempre una gran alegría

A mis primos

Angélica, David, Mauricio, Adriana, Alfredo, Jorge y Paulina

Por los buenos ratos que hemos pasado y por compartir un futuro común

A mi director de tesis

M. en I. Francisco Javier Echavarría Alfaro

Por todas sus atenciones hacia mi persona, y por su dedicación y apoyo en la elaboración de este trabajo

A mis amigos

Andrés, Oscar, Carla, Gaby y Arturo

Por haber formado entre todos un gran equipo

A mi Facultad y profesores

Por haberme dado desinteresadamente lo mejor de sí, y haberme formado en los más altos principios de la ética profesional

A la Dirección General de Construcción y Operación Hidráulica Por haberme dado todas las facilidades para la realización de este trabajo

A EFE Asesores S.A. de C.V.

Por haberme dado mis primeros días dentro de la práctica profesional

RECONOCIMIENTOS

Α

M. en I. Carlos Franco Domínguez

M. en C. Bernardo Echavarria Soto

Ing. Rafael Echavarría Alfaro

Ing. Tomás Christian Peña Pedroza

Por la invaluable aportación de su experiencia profesional, y por su sincera amistad

APLICACION ACTUAL DEL METODO DE LOS COEFICIENTES DE ESCURRIMIENTO PARA LA GENERACION DE DATOS DE DRENAJE.

P	agina
INTRODUCCION	1
CAPITULO 1 COEFICIENTES DE ESCURRIMIENTO URBANOS.	
1.1 FORMULA RACIONAL. 1.2 INTEGRACION DE GASTOS PARA EL DISEÑO DE OBRAS DE DRENAJE. 1.3 NUEVA METODOLOGIA PARA EL CALCULO DE COEFICIENTES DE DRENAJE.	4 6
CAPITULO 2 COEFICIENTES DE ESCURRIMIENTO PARA LA CIUDAD DE MEXICO.	
2.1 CALCULO PROPUESTO. 2.2 ANALISIS DEL VALOR MAXIMO. 2.3 ACTUALIZACION DE LOS INDICES DE URBANIZACION.	31 39 44
CAPITULO 3 GENERACION DE ESCURRIMIENTOS EN CUENCAS NATURALES NO AFORADAS.	
3.1 METODOLOGIA DE CALCULO. 3.2 ANALISIS DIARIO.	46 50
CAPITULO 4 ESCURRIMIENTOS DRENADOS A LA LAGUNA DE CUYUTLAN	٧.
4.1 ANALISIS DE LLUVIAS. 4.2 ESCURRIMIENTOS REGISTRADOS. 4.3 DETERMINACION DE COEFICIENTES, 4.4 GENERACION DE ESCURRIMIENTOS.	54 55 56 56
CAPITULO 5 - CONCLUSIONES Y RECOMENDACIONES	62

INTRODUCCION.

Antecedentes.

Uno de los principales problemas que se han planteado los hidrólogos en todo el mundo a través del tiempo es el de establecer mecanismos que permitan obtener una relación entre las lluvias que ocurren dentro del área de una cuenca y los volúmenes o gastos de escurrimiento que ésta es capaz de drenar en forma superficial.

Evidentemente esta capacidad de que hablamos no es la misma en todas las cuencas, pues entre otras variables influyen el área de la misma, la duración de las tormentas y la intensidad de éstas, la forma de la cuenca, la pendiente y longitud de las corrientes que la drenan, la granulometría de los suelos, el uso que de éstos se tenga, la cobertura vegetal, el nível de aguas freáticas y la temperatura, entre muchos otros factores.

Los métodos que se han venído utilizando durante todo este tiempo para la obtención de volúmenes de escurrimiento en cuencas han evolucionado enormemente, sin embargo, todos ellos sustentan sus hipótesis en la información histórica de registros tanto pluviométricos como hidrométricos que de las diferentes zonas se tenga. Así surgieron en un principio fórmulas eminentemente empíricas como la del "método racional" que estima el volumen que escurre en la cuenca como un porcentaje del total de la lluvia; posteriormente en 1932, Sherman introdujo el concepto de hidrograma unitario que hasta la fecha ha revolucionado el estudio de la relación lluvía-escurrimiento en todo el mundo. Se ha aplicado el algoritmo de la regresión y correlación lineal, logaritmica y exponencial a las mediciones registradas con la finalidad de obtener una "ley" que se aproxime a los registros históricos y que permita predecir el comportamiento en el futuro. Finalmente podemos mencionar que algunas dependencias gubernamentales en los Estados Unidos, han llevado a

ı

cabo muestreos y clasificaciones de regiones a lo largo de toda la Unión Americana, para depurar las técnicas desarrolladas con anterioridad; tal es el caso del Soil Conservation Service y el U.S. Bureau of Reclamation.

Objetivo.

El objetivo fundamental del presente trabajo es el de aportar elementos para la generación de volúmenes de escurrimiento, en el caso en el que por alguna circunstancia no haya sido posible aforar los escurrimientos en estaciones hidrométricas de la cuenca durante algún cierto período de estudio, a partir de los registros históricos con que se cuente de estaciones próximas a la estación en cuestión. De igual forma se introducen nuevos conceptos para el cálculo de escurrimientos a partir de una metodología alterna que auxiliará al ingeniero proyectista en la obtención de caudales para el diseño de obras de drenaje tanto en cuencas urbanas como en aquéllas que no lo son, de tal forma que una vez que ésta se haya aplicado a alguna cierta región bajo características muy específicas, se pueda tomar una decisión fundamentada en base a los resultados obtenidos, mediante la comparación y el riguroso análisis, además del criterio y la experiencia de cada proyectista.

Por tal motivo, al final se procura sintetizar los resultados que se han obtenido para un problema en particular, analizando mediante esta metodología los escurrimientos obtenidos.

Alcances.

Se pretende que después de haber leído este documento, el ingeniero proyectista que lo haga se encuentre familiarizado con la metodología que establece la relación Iluvia-escurrimiento de los coeficientes de escurrimiento; ya que en la actualidad y en muchos casos se simplifica su análisis mediante el uso de hojas de cálculo que condicionan y

calculan, a la vez que permiten adaptar los cálculos para cada cuenca en particular en muy breve tiempo,

Se pone especial interés en los siguientes métodos:

- Método Racional o de los Coeficientes de Escurrimiento.
- Método del Soil Conservation Service.

El Método de los Coeficientes de Escurrimiento se estudia en dos vertientes; por una parte se tiene el concepto del método racional el cual permite obtener el gasto de pico para una tormenta específica (Capitulos I v 2).

Por otra parte se tiene el concepto de coeficiente de escurrimiento como la relación que existe entre el volumen escurrido en una cuenca con respecto al volumen llovido en la misma, pero en períodos más largos de análisis, a niveles diario, mensual y anual.

Conocido el valor de tal relación es posible generar *a posteriori* volúmenes de escurrimiento (Capítulos 3 y 4).

Los dos enfoques mencionados anteriormente tienen la finalidad de obtener gastos de drenaje a partir de información de lluvia existente, aunque para diferentes periodos y también bajo dos puntos de vista diferentes.

CAPÍTULO 1.- COEFICIENTES DE ESCURRIMIENTO URBANOS.

Las ciudades cubiertas en su mayor parte con superficies impermeables, han cambiado el ciclo hidrológico antes existente; han alterado los cauces naturales para el drenaje de las aguas pluviales, las condiciones de infiltración, evapotranspiración y recarga de los mantos acuíferos. Sin mecanismos y técnicas que permitan al hombre convivir con su entorno, se corre el riesgo de poner en peligro el binomio que existe entre el hombre y su habitat. El diseño y construcción de drenes artificiales, así como la buena o mala planeación a futuro en el crecimiento de la mancha urbana, son factores que redundarán en evitar catástrofes meteorológicas y ambientales.

El presente capítulo pretende explicar dos metodologías para la obtención de gastos de diseño en obras de desagüe urbano.

1.1 Fórmula racional.

La formula racional data del año de 1850 y tuvo su origen en Irlanda. Es una de las más simples, mejor conocidas y aplicada rutinariamente por los ingenieros que intervienen en estudios de hidrología urbana, prediciendo gastos pico mediante la siguiente expresión:

$$O_D = kCiA$$
 (1.1)

donde:

C

A

Qp gasto pico en ft³/s o m³/s

coeficiente de escurrimiento

i intensidad de lluvia en in/h o mm/h

área de la cuenca en acres, ha o km²

k factor de conversión.

Considerando el supuesto de que la homogeneidad de lluvia y las condiciones de equilibrio en el tiempo no se presentan siempre para el gasto pico dentro de la cuenca; la fórmula racional no debería emplearse en áreas mayores a 2.5 km² (1 mi²) sin subdividir toda la cuenca en subcuencas e incluyendo el efecto de los recorridos de los canales de drenaie.

La diferencia entre el volumen de agua que llueve en una cuenca y el que escurre por su salida recibe el nombre genérico de pérdidas. Dentro de estas pérdidas, la infiltración juega un papel importante en la relación lluvia-escurrimiento. Todas las pérdidas que ocurren se incluyen en el coeficiente C, el cual por lo general está dado en función del uso del suelo. En general, el volumen de infiltración es varias veces mayor que el de escurrimiento durante una tormenta dada, y esto se refleja en los coeficientes de escurrimiento.

Existen varios factores que afectan la capacidad de infiltración, los cuales varian de un sitio a otro haciendose así necesario para el estudio de una cuenca específica, la obtención de un parámetro que sea representativo de las características de la misma. De esta necesidad surge el uso de los coeficientes de escurrimiento como un instrumento muy útil en la determinación de caudales.

Sin embargo, el considerar tan sólo el uso del suelo como un factor que determine el porcentaje total de agua escurrida con respecto al del volumen llovido, limita la efectividad del método, por lo que se puede obtener una mejor predicción mediante la obtención de datos hidrológicos asumiendo (aunque no necesariamente ésto ocurra) que:

$$C = \frac{\text{Volumen de escurrimiento}}{\text{Volumen lloyido}}$$
 (1.2)

La intensidad i de la expresión 1.1 se obtiene de una curva intensidad-duración-período de retorno, para un período de retorno específico y considerando que la duración (t) es igual al tiempo de concentración te. Así para t<te no se alcanza el equilibrio y no

podemos emplear el área total A. Si t>te entoces se habrá alcanzado el equilibrio rápidamente y se podrá utilizar una intensidad mayor.

En la tabla 1.1 se muestran algunos valores mínimos y máximos de C, de acuerdo al uso de suelo que se tenga.

Es asombroso el que algunas técnicas tan simples en el estudio de la hidrología, sean tan persistentes a la fecha. Este capítulo pone especial énfasis en el uso de la fórmula racional y del hidrograma unitario simple para la estimación de gastos pico escurridos, ambos conceptos son relativamente sencillos de aplicar ya que por lo regular se aplican en cuencas pequeñas para las cuales se puede asumir que la distribución de la lluvia es uniforme a lo largo de toda el área de cantación de la cuenca.

En lotes pequeños se considera a la precipitación constante tanto en el tiempo como en espacio, mientras que en una cuenca pequeña se considera la precipitación constante en el espacio, pero no en el tiempo. Los límites en cuanto al tamaño de la cuenca y la metodología de cálculo recomendada para la misma se resume en la tabla 1.2.

El ejemplo claro de que establecer un modelo muy exacto es complejo, es la cantidad de trabajos de investigación que se han venido realizando en los últimos años y que han demostrado que mientras más exactitud se deseé lograr, el algoritmo de solución al problema resulta mucho más complejo. Es por ésto que los centros de investigación en todo el mundo han trabajado para que sus modelos trabajen con un rango de error apreciable que no redunde en la gran carga económica que representaría la medición de datos que influveran en la determinación de parámetros que intervienen en este proceso.

1.2.Integración de gastos para el diseño de obras de drenaje.

Cuando se analiza el hidrograma de una tormenta en particular en una sección de aforo, es necesario identificar en él dos partes importantes y cuyo origen inmediato es diferente. Por una parte se tiene el escurrimiento base que es aquél que se presenta perennemente en los cauces, por la otra se tiene el escurrimiento directo que es el que se produce por la precipitación en exceso dentro de la cuenca, es decir, por aquella agua de lluvía que no se infiltra, ni se evapotranspira, ni se retiene en alguna depresión.

El tiempo que transcurre desde que comienza a registrarse un caudal mayor al base hasta el máximo registrado durante la tormenta se denomina tiempo de pico.

El tiempo de concentración es el que transcurre entre el inicio de la tormenta y el establecimiento del gasto de equilibrio en el cauce, o bien, es el tiempo que tarda el agua en pasar del punto más alejado hasta la salida de la cuenca. Es evidente entonces que este parámetro dependerá tanto de la longitud de la corriente principal en la cuenca y de la velocidad media que el agua registre en el cauce. Esta velocidad está en función tanto de la pendientes del terreno y de los cauces, así como de la rugosidad de la superficie en los mismos.

En cuencas urbanas el gasto base es el gasto sanitario o caudal de aguas negras, éste se integra a partir del área de drenaje, la población servida, la dotación de agua potable en la zona, y el coeficiente de retorno que es la relación de aguas negras contra agua potable de consumo en la zona. Así tenemos la siguiente expresión para el cálculo del gasto sanitario:

$$Qs = \frac{Dot \times Pob \times CRAN}{8.64 \times 10^7}$$

donde

Qs gasto sanitario en m³/s
Dot dotación en l/hab/día

Pob población en habitantes

CRAN coeficiente de retorno de aguas negras

De acuerdo al cálculo de los gastos medios de aguas residuales registrados en época de estiaje en las estaciones hidrométricas, se van modificando los coeficientes de retorno de aguas negras. Se considera conveniente que por lo general el coeficiente de retorno de aguas negras (CRAN) no exceda el valor de 0.85.

En lo que respecta a los gastos pluviales para el tránsito de avenidas en redes primarias de drenaje, el Instituto de Ingeniería de la U.N.A.M. en los estudios que realizó para el Plan Maestro de Drenaje de la Ciudad de México 1994-2000, propone dos tipos de hidrogramas: uno trapecial y otro triangular. Los hidrogramas definidos por el Instituto de Ingeniería, se presentan a continuación:

Hidrograma trapecial.

El hidrograma trapecial se forma de los siguientes puntos (ver fig. 1.1):

- 1. Tiempo t₁= 0 h y gasto q₁= gasto sanitario
- 2. Tiempo t₂= t_p y gasto q₂= gasto tal que el volúmen del hidrograma sea el correspondiente a una lluvia de una hora de duración.

t_p≕ t_{e individual} q₂≕ q_{ei}

así

V≃ hp_{in} C A

donde:

V volumen del hidrograma de una tormenta de una hora de duración

t_p tiempo pico del hidrograma

q_p gasto pico del hidrograma

t_{e individual} tiempo de concentración del colector

hp_{1h} altura de lluvia para una tormenta de una hora de duración

C coeficiente de escurrimiento

- 3. Tiempo $t_3 = 1 h y gasto q_3 = q_2$
- 4. Tiempo t₄= t₃ + 1.4 t_p y q₄= gasto sanitario

Hidrograma triangular.

El hidrograma triangular se forma de los siguientes puntos (ver fig. 1.2):

- 1. Tiempo t₁= 0 h y gasto q₁= gasto sanitario
- 2. Tiempo $t_2 = t_p$ y gasto $q_2 = q_p = q_{max}$ $t_p = t_{c \text{ individual}}$ $q_{max} = CiA$

donde:

q_{max} gasto máximo del hidrograma triangular

i intensidad de lluvia para una tormenta de una hora de duración

3. t₃= t₂+t_r y gasto q₃= gasto sanitario.

donde:

tr tiempo de recesión, que se obtiene al cumplirse que el volumen del hidrograma triangular sea igual a:

$$V = hp_{1h} C A$$

El tiempo de concentración individual (de cada colector) se calcula según el tipo de urbanización de cada cuenca, para ambos tipos de hidrogramas.

a) En Cuencas urbanas.

$$t_c = L/0.6 + 1.5$$

siendo:

donde:

- longitud máxima de recorrido del agua, en m
- b) En Cuenças Mixtas (con áreas urbanas y no urbanas).

El tiempo de concentración en la parte no urbana se calculará con la fórmula de Kirpich (t, nu):

$$t_{e \text{ nu}} = (0.000325 \text{ L}^{0.77})/(S^{0.385})$$

donde:

L longitud del cauce principal, en m

s pendiente del cauce principal

El tiempo de concentración de la cuenca se define como:

$$t_c = L/0.6 + t_{c nu}$$
 si $t_{c nu} \ge 15 min$

en ambos casos t_e≥ t_{e min}: t_{e min}= 20 min

1.3 Nueva metodología para el cálculo de coeficientes de escurrimiento.

A continuación se aplica el método de los números de curva del Soil Conservation Service con la variante de que más adelante se establece la relación que existe entre este número con el coeficiente de escurrimiento empleado en la fórmula racional, aportando elementos adicionales de juicio para el provectista en la obtención de gastos de drenaje.

El método formulado por el Soil Conservation Service, SCS (1957) está basudo en un hidrograma adimensional, desarrollado con un gran número de hidrogramas unitarios clasificados por tamaño y localización geográfica. El hidrograma está representado como un simple triángulo (Fig. 1.3), con una duración de lluvia D (h), un tiempo de ascenso t_R (h), un tiempo de descenso B (h), y un gasto pico Q_p (cfs) (escurrimiento pico). El volumen del escurrimiento directo es

$$Vol = \frac{Q_r t_B}{2} + \frac{Q_r B}{2} \cdot \delta$$

$$Q_r - \frac{2Vol}{t_r + R}$$
(1.3)

Revisando una gran cantidad de hidrogramas, se encontró que

$$B = 1.67t_R \tag{1.4}$$

por lo tanto, la ecuación 1.3 se expresa, para 1 pulgada de lluvia en exceso,

$$Q_{r} = \frac{0.75Vol}{t_{R}}$$

$$= \frac{(0.75)(640)A(1.008)}{t_{R}}$$

$$Q_{p} = \frac{484A}{t_{c}}$$
(1.5)

donde :

A área de la cuenca en millas cuadradas

t_R tiempo de ascenso en horas

1.008 factor para convertir ac-in/hr a pies cúbicos sobre segundo

Capece et al. encontró que se puede usar un factor de 10 a 50 para cuencas planas con un nivel freático alto, en lugar del valor 484 presentado aquí.

De la figura 1.3 se puede ver que

$$t_R = \frac{D}{2} + t_C \tag{1.6}$$

donde:

D duración de la tormenta, en h

t_p tiempo de retraso del centroide de la tormenta al Qp, en h

El tiempo de retraso t_p se puede estimar con alguna de las ecuaciones empíricas utilizadas por el SCS, tal como

$$t_{P} = \frac{L^{0.8} (S+1)^{0.7}}{1900 y^{0.5}} \tag{1.7}$$

donde:

L longitud del cauce en ft

pendiente promedio de la cuenca en %

S = 1000/ CN -10, (Pérdida potencial)

CN Número de Curva de diversos suelos/ Uso de la tierra (Ver tabla 1.3)

El hidrograma unitario adimensional del SCS puede ser empleado para desarrollar un hidrograma curvo, usando los mismos $t_p\,$ y $Q_p\,$ como en el hidrograma triángular de la figura 1.3.

El Soil Conservation Service, SCS (1964), para el cálculo del escurrimiento adopta una relación entre la tormenta acumulada total P, el escurrimiento Q, y la infiltración más la pérdida inicial ($F + I_*$). Es decir

$$F_S = Q_{P_v} \tag{1.8}$$

donde:

F infiltración que ocurre despues de que el escurrimiento comienza, en pulgadas

Q escurrimiento directo, en pulgadas

Pe escurrimiento efectivo producido por la tormenta (P-Ia).

Con $F = (P_e - Q)$ y $P_e = (P - I_a) = (P - 0.2S)$ basado en datos de cuencas pequeñas.

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S} \tag{1.9}$$

El método SCS emplea el número de curva CN, relacionado a la pérdida potencial como CN = 1000/ (S+10), o S (in) = (1000)/ CN-10. La figura 1.4 nos presenta la ecuación (1.9) en forma gráfica para un rango de valores CN y de lluvia. Los números de curva para usos de tierra definidos se presentan en la tabla 1.3, en donde el grupo de suelo hidrológico A son arenas con poco limo y arcilla; muy permeables, el grupo B son arenas finas y limos, el grupo C son arenas muy finas, limos, suelos con alto contenido de arcilla, y el grupo D son arcillas en grandes cantidades; suelos poco profundos con subhorizontes de roca sana; muy impermeables.

Los valores de CN en la tabla 1.3 suponen antecedentes normales de humedad para condición II, otros antecedentes de condiciones de humedad y efectos de urbanización pueden ser tomados utilizando el informe del SCS sobre Hidrología Urbana para Cuencas pequeñas. SCS (1986). Para una cuenca formada de varios tipos de suelo y

usos de tierra, un valor compuesto de CN se puede calcular como se muestra en el siguiente ejemplo.

Ejemplo 1

Determine el volumen de escurrimiento de una lluvia de 7 in (177.8 mm), en una cuenca arbolada en un 40 % (en buenas condiciones) y 60 % de zona residencial (con lotes de 1/4 de acre o 1012 m²). La cuenca posee un 50% del suelo Grupo B y un 50% del suelo Grupo C. Suponga los antecedentes para condiciones de humedad número II.

USO DEL SUELO	GRUPO	AREA	CN
BOSQUE	В	0.4(0.5) = 0.2	55
	С	0.4(0.5) = 0.2	70
ZONA RESIDENCIAL	В	0.6(0.5) = 0.3	75
	С	0.6(0.5) = 0.3	83

El valor promedio de CN es

$$CN = 0.2 (55) + 0.2 (70) + 0.3 (75) + 0.3 (83)$$

 $CN = 11 + 14 + 23.5 + 24.9 = 73.4$

usando CN = 73, el volumen de escurrimiento es 4.0 in. para la lluvia dada. (Fig 1.4)

Dado que $F = P_e - Q$, donde $P_e = P - I_a$ de la ecuación (1.9).

$$F = P_e - P_e^2 / (P_e + S) = P_e S / (P_e + S). P \ge I_e$$
 (1.10)

Note que I_{s.} y S son constantes, la ecuación 1.10 puede diferenciarse para encontrar el porcentaje de infiltración instantánea mediante la expresión.

$$f = dF/dt = S^2i / (P_e + S)^2$$
 (1.11)

En donde $i = dP_c/dt = dP/dt =$ intensidad de lluvia. Se conoce que la dependencia del porcentaje de infiltración sobre la intensidad de lluvia no es fisicamente real a menos que toda la lluvia se infiltre (sin encharcarse) con lo cual f = i. Esta es una deficiencia del método SCS cuando es usado con el propósito de obtener el escurrimiento directo y la infiltración durante una tormenta. No obstante, el método SCS es con frecuencia utilizado para obtener un hietograma de escurrimiento directo usando la ecuación (1.9) determinando incrementos de escurrimiento directo como la diferencia entre el escurrimiento acumulado Q en cada intervalo de tiempo. Esto se ilustra en el ejemplo 2. Se puede usar una hoja de cálculo fácilmente para mostrar los cálculos requeridos en el ejemplo 2.

Ejemplo 2.

Incremento de escurrimiento empleando la ec. 1.9

Se conoce el escurrimiento producido por una tormenta en una cuenca con CN=75 (fig. 1.4). Calcular las pérdidas acumuladas y el hietograma de lluvia en exceso para cada hora, aplicando la ecuación 1.10 para F como una función del tiempo.

```
SOLUCION:

Para CN = 75,

S = (1000/75)-10 = 3.33 in.;

l<sub>a</sub> = 0.2 S = 0.67 in.
```

La pérdida inicial absorbe toda la lluvia hasta P = 0.67 in., incluyendo 0.3 en la primera hora y 0.37 en la segunda hora. Para P > 0.67 in., la pérdida F se calcula de la ecuación 1.10: F = 3.33 (P-0.67)/(P+2.67) para cada hora.

La lluvia en exceso es aquella cantidad que queda despues de las pérdidas iniciales y siguientes. $P_e = P - I_a - F_a$

TIEMPO	ACUM	PERDIDAS ACUM		ACUM	HIETOGRAMA DE EXCESO
(h)	P (in)	(in)	P _e (in)	
		I.	F		
0	0.0	0.00	0.00	0.00	
1	0.3	0.30	0.00	0.00	0.00
2	0.7	0.67	0.03	0.00	0.00
3	1.4	0.67	0.60	0.13	0.13
4	2.8	0.67	1.29	0.83	0.70
5	4.0	0.67	1.66	1.67	0.84
6	4.5	0.67	1.77	2.06	0.39

A pesar de que el método SCS es usado ampliamente en la ingeniería práctica, y se dispone de una versión de PC para cuencas urbanas TR55. SCS (1986), el método tiene algunas debilidades como lo señala Capece (1984). Es dificil igualar hidrogramas medidos en cuencas con niveles piezométricos altos, además de que las distintas condiciones (I, II y III) no representan la realidad con precisión. Sin embargo la fortaleza del método SCS es la enorme base de datos sobre información de suelos, mapas de suelos, y relaciones lluvia-escurrimiento de sitios específicos. El ejemplo 3 ilustra el método del hidrograma unitario en el SCS, basado en el uso de la ecuación 1.7 para el cálculo del tiempo de retraso.

Ejemplo 3.

Hidrograma Unitario SCS

Para una cuenca de 100 mi² (25,900 ha), desarrollar un hidrograma unitario empleando el método SCS. La cuenca se forma de prados en buenas condiciones con suelo del Grupo D. La pendiente promedio en la cuenca es de 100 fl/mi (0.00019). La duración de lluvia es de 1.6 h. Dibuje el hidrograma triangular resultante.

SOLUCION

La ecuación 1.7 proporciona la siguiente relación para t_p:

$$t_{o} = \frac{L^{0.8} (S+1)^{0.7}}{1900 y^{0.5}}$$

De la tabla 1.3, se determinó el número de curva como 78. Por lo tanto,

Como, L = 18 mi, entonces

$$L = (18 \text{ mi})(5280 \text{ ft/mi}) = 95,040 \text{ ft.}$$

La pendiente es 100 ft/mi, entonces

$$y = (100 \text{ ft / mi}) (1 \text{ mi / 5280 ft}) (100\%)$$

= 1.9 %,

3

$$t_{r} = \left[\frac{(95,040)^{0.9} (2.82 + 1)^{0.7}}{1900\sqrt{1.9}} \right]$$

De la ecuación 1.6 y con D = 1.6 h

$$t_R = \frac{D}{2} + t_P$$

= (1.6/2) + 9.4 hr
= 10.2 h

con la ecuación 1.5 podemos calcular

$$Q_r = \frac{0.75Vol}{t\kappa}$$

$$= \frac{(0.75)(640)A(1.008)}{t\kappa}$$

$$= \frac{484A}{t\kappa}$$

$$= (484)(100) / 10.2$$

$$Q_0 = 4.745 \text{ cfs o } 134.28 \text{ m}^3/\text{s}$$

Para completar la gráfica, es necesario tambien conocer el tiempo de descenso B. Se sabe que el volumen debe de ser 1 pulgada de escurrimiento directo sobre la cuenca, entonces

$$Vol = (100mi^2) \left(\frac{5,280fi}{mi}\right)^2 \left(\frac{ac}{43,560fi^2}\right) (1in.) = 64,000ac - in.$$

De la ecuación 1.3.

$$Vol = \frac{Q_r L_R}{2} + \frac{Q_r B}{2} = 64,000 \text{ ac-in} = 64,000 \text{ cfs-hr.} = 947.32 \times 10^6 \text{ m}^3$$

$$64,000 \text{cfs} - hr = \frac{(4,745 \text{cfs} \times 10.2 hr)}{2} + \frac{(4,745 \text{cfs})(Bhr)}{2}$$

Entonces

El hidrograma unitario triangular se muestra en la fig. 1.3.

1.3.2 Relación entre los Métodos de la Fórmula Racional y del Soil Conservation Service (SCS) para la obtención de coeficientes de escurrimiento.

Los tipos de problemas actuales ha originado que sea realmente útil el poder relacionar los valores de Número de Curva (CN) con los coeficientes de escurrimiento del Método Racional tradicional y viceversa. Uno de los propósitos de este trabajo es presentar métodos lógicos que puedan ser utilizados para llevar a cabo conversiones entre los valores de C en el Método Racional v los de CN en el Método del SCS.

La comparación entre los valores acostumbrados de C con los valores de C obtenidos a partir de los de CN, nos dan una perspectiva interesante acerca de la precisión de los valores de C supuestos comunmente para diferentes circunstancias.

Un propósito adicional del trabajo es dar alguna perspectiva acerca de esta relación, mediante una crítica constructiva de las diversas características entre ambos métodos.

El Método Racional, favorecido por los ingenieros durante varios años para el análisis y diseño de sistemas de drenaje, en años recientes ha venido a ser desplazado de un modo

significativo en países como los Estados Unidos, por los más recientes métodos de Número de Curvas del SCS (Soil Conservation Service). Una de las principales razones que han dado popularidad a los métodos del SCS por purte de los proyectistas y revisores de propuestas, es la extensa base de datos para escurrimientos estimados dada una superficie previa. Esta base de datos consiste en el reconocimiento de suelos SCS disponibles en varias partes de los Estados Unidos, y estudios infiltrométricos (por gran tiempo sin publicarse) que permiten asociar los valores CN (Número de Curva) con los tipos de suelo.

Originalmente el SCS desarrolló tres métodos básicos TR-55, SCS (1975), para determinar el gasto pico de una cuenca: (1) Método Gráfico, (2) Método de Cartas, y (3) Método Tabular. Una revisión posterior del SCS al método TR-55 solamente han avalado a los Métodos Gráfico y Tabular (SCS, 1986).

Además de las referencias que hemos citado, se dan pormenores de estos métodos en otras publicaciones como SCS (1972), SCS (1975) y en la sucinta revisión de McCuen, (1982).

Los métodos Gráfico y Tabular del SCS, como el Método Racional, cuenta con entradas de datos explícitas del tiempo de concentración. El tiempo de concentración puede ser determinado explícitamente por el analista mediante el uso del procedimiento descado. En contraste, con el Método de Cartas del SCS el procedimiento para determinar el tiempo de concentración se incorpora al método, eliminando la flexibilidad de tomar una resolución independiente de ese parámetro.

Dado que los gastos obtenidos con los Métodos Gráfico y Tabular pueden ser aproximadamente iguales, aquéllos que se determinen mediante el Método de las Cartas pueden aproximarse a esos valores sólo si la lectura del tiempo de concentración de los Métodos Gráfico y Tabular se aproxima a la que se maneja en el Método de las Cartas. Como ejemplo se conoce que en la Cuenca Bower Brook, en el estado americano de Maryland, el gasto pico para un período de 100 años calculado por una agencia revisora empleando el Método de las Cartas fue aproximadamente un 30% más alto que la

propuesta de proyecto usando el Método Gráfico (o Tabular) con base en una determinación detallada del tiempo de concentración. La diferencia se debió en la mayor parte de los casos a diferencias en la incorporación y entradas de los tiempos de concentración, y eventualmente ésta se resolvió en favor del Método Gráfico.

El Método de las Cartas proveé además de capacidades adicionales que no se han encontrado en los originales SCS, Métodos Gráficos (1972), una de las cuales es una muy aproximada significación del informe para atenuar los estancamientos. Con este propósito, se obtiene un factor de ajuste basado en el porcentaje de estancamiento y área pantanosa dentro del área de drenaje y la selección de una de las tres características de ubicación de tales áreas dentro de la cuenca de drenaje. El ajuste no toma en cuenta factores como la profundidad de almacenamiento (curva elevaciones-capacidades), características para el control de las salidas (curva elevaciones-gastos), o tiempo de dependencia del área de estançamiento. De común acuerdo éste debe ser considerado como un método general y empírico que sólo proveé de una estimación cruda de los efectos de la disminución del almacenamiento. En muchos y probablemente en la mayoría de los casos requeriría la determinación de un hidrograma y su ruta. En un proyecto revisado por Graber (Topsfield, MA), se utilizó el Método de las Cartas para calcular un 25 por ciento de la reducción en el gasto pico debida a la disminución de zonas húmedas. Un análisis subsecuente de recorrido arrojó que la disminución era sólo del 6 porciento.

El Método Gráfico revisado SCS, (1986) ahora incluye un factor de ajuste para pantanos y estancamientos, parecido pero más simple a aquél empleado por el anterior Método de Cartas SCS, (1972). Como en el Método de las Cartas, si tal disminución es sienificativa mediante métodos más precisos será fácilmente advertible.

Una capacidad adicional del Método de las Cartas se encuentra en los dos ajustes que pretenden contabilizar los efectos del desarrollo dentro de la cuenca. El primero de éstos es un futuro ajuste al porcentaje de impermeabilidad, pam el cual se tiene una gráfica en la cual se utilizan el porcentaje de impermeabilidad de proyecto y un CN futuro para obtener un factor de ajuste para área impermeable. Esto nos proporciona un

ajuste implícito por efecto del desarrollo urbano en el tiempo de concentración. El segundo ajuste es para modificaciones en los canales de drenaje. Para ese factor, se lee una gráfica que utiliza la longitud hidráulica modificada y un CN futuro para obtener un factor de longitud hidráulica modificada. Esto nos proporciona también un ajuste implícito por efectos de las modificaciones en el canal en el tiempo de concentración. Aunque objetivamente la selección de coeficientes de escurrimiento es una razón convincente para utilizar en general los métodos del SCS, las generalizaciones implícitas del Método de las Cartas alcanzan esa "objetividad" con muy altos costos en términos de la precisión potencial. La propia determinación independiente de tales factores como el tiempo de concentración son importantes para el uso preciso de los métodos SCS, y se permiten junto con los Métodos Tabular y Gráfico. En esencia, las características más importantes y sobresalientes se pueden encarnar en el Método Esas características son la capacidad para determinar volúmenes de Gráfico. escurrimiento y porcentajes de gasto pico basados en los rasgos de suelo disponibles. Para las razones establecidas, este trabajo se enfocará al Método Gráfico y su relación con el Método Racional. El documento complementa a uno similar Graber, (1989) para incluir los nuevos métodos del TR-55.

1.3.2.1 Método Gráfico

Los tres métodos del TR55 emplean un procedimiento común para determinar el volumen de escurrimiento, basado en el Número de Curva (CN) y una precipitación de 24 h. Se da una grática con esas características que se basa en la ecuación 1.9 y el valor de S = (1000/CN)-10, del SCS. La S se da como una variable empírica. La base teórica para estas relaciones es cuestionable y la falta de publicaciones con información libre de escrutinio. Una deficiencia obvia es que el volumen de escurrimiento debería estar en función tanto de la pendiente como del uso del suelo (CN) y la precipitación. El Método Racional considera el escurrimiento del coefficiente C como función de la pendiente ASCE, (1979). Aunque los métodos del SCS puedan implícitamente compensar ésto mediante el uso de la pendiente para determinar el gasto pico a partir del volumen de escurrimiento (tiempo de concentración), la obtención del

volumen solo puede en ocasiones ser importante (por ejemplo, para establecer territorios aislados sujetos a inundaciones en las regulaciones bajas de zonas húmedas).

El Método Gráfico se llama así porque proporciona una o más gráficas que dan el gasto pico unitario (pies cúbicos por milla cuadrada y por pulgada de escurrimiento). El Método Gráfico tradicional, que es el que se ha estudiado, proporciona una curva simple para tormentas del tipo II, en las cuales se grafica el gasto pico unitario contra el tiempo de concentración. Esa gráfica puede ajustarse mediante ecuaciones para fines de cómputo. La revisión más reciente SCS, (1986) proporciona gráficas separadas para tormentas del tipo I, tipo IA, tipo II y tipo III, y añade también Ia/P como una segunda variable independiente (adicional al tiempo de concentración). La clasificación anteriormente descrita para las lluvias ubica a la mayor parte del territorio estadunidense en la zona I, IA y II; en tanto que la región III comprende al estado de California y parte del estado de Nevada. Se presentan ecuaciones de regresión así como una tabla de coeficientes para la elaboración de la gráfica para cada tipo de tormenta así como para el valor de Ia/P.

Habiendo leído un valor de escurrimiento en pies cúbicos por milla cuadrada y por pulgada de una de las gráficas o ecuaciones asociadas se multiplican los tiempos y áreas de drenaje y el volúmen de escurrimiento (V) para obtener el gasto pico. Estas relaciones se expresan de la siguiente manera:

$$qu = f(tr,la/P, tipo de lluvia)$$
 (1.12)

$$qp = Q qu (1.13)$$

en donde que sel gasto pico unitario en pies cúbicos por milla cuadrada por pulgada de escurrimiento; te es el tiempo de concentración en horas; Ia/P es el porcentaje de filtración inicial para una lluvia de 24 horas; y qp es el porcentaje de escurrimiento pico por unidad de área en pies cúbicos por milla cuadrada.

Eliminando O entre las ecuaciones 1.9 y 1.13, la ecuación queda como:

$$qn = ((P - 0.2S)^2/(P + 0.8S)) qu$$
 (1.14)

1.3.3. Interrelación gráfico/racional

El Método Racional se basa simplemente en la siguiente relación:

$$qp/640 = O/A = Ci$$
 (1.15)

en la que Q es el gasto pico en pies cúbicos por segundo; A es el área de la cuenca en acres. C es el coeficiente de escurrimiento para el Método Racional, i es el promedio de intensidad de lluvia en pulgadas por hora, y el valor de 640 es sólo un factor de conversión.

Eliminando que entre las ecuaciones 1.14 y 1.15, y repitiendo la ecuación 1.12 y S, añadiendo la ecuación para la/P; se establece la siguiente relación entre CN y C;

$$Ci = ((P - 0.2S)^2 / (P + 0.8S)) (qu/640)$$
 (1.16.a)

$$S = 1000/CN - 10$$
 (1.16.b)

$$qu = f(tr, Ia/P, tipo de tormenta)$$
 (1.16.e)

Del valor de S e Ia=0.2S, el valor de la parece estar solo relacionado de acuerdo con 0.2(1000CN-10). En ésto se basa la tabla de valores la dados por el SCS. Incluídos los limites de Ia/P especificados por el SCS, resulta la siguiente ecuación:

$$Ia/P = (0.2/P) (1000/CN-10), 0.1 < Ia < 0.5$$
 (1.16.d)

Eliminando qu y S de las ecuaciones 1.16, se tendrá una relación simple entre el valor de C racional, el Número de Curva CN, y las variables i, P y tr.

Cálculo de C a partir de CN

Dado CN, el valor de S se determina de la ecuación 1.16.b. Así, dados tr, P y el tipo de tormenta (una vez dado CN), el valor de qu puede determinarse de la ecuación 1.16.c. la cual expresa funcionalmente la relación del Método Gráfico con qu. Cuando se convierta del Método Gráfico antiguo del SCS, el procedimiento de cálculo es ligeramente más simple porque no se involucran el tipo de tormenta, Ia/P, y la ecuación 1.16 d.

Los valores de S y qu obtenidos, se sustituyen junto con los valores de P e i en el siguiente arreglo de la ecuación 1.16.a, para calcular C:

$$C = ((P - 0.2S)^{2}/(P + 0.8S))(qu/640)/i$$
 (1.17)

Es importante reconocer que ciertas combinaciones de las variables en sentido adecuado de la ecuación anterior dan lugar a situaciones fisicamente imposibles. La primera de estas situaciones corresponde al caso de que (P- 0.2S) < 0. Dado que ese término está al cuadrado cuando esta ecuación se satisface, los valores de C pueden ser calculados aparentemente en un rango real. De cualquier forma, ésta no es una situación real porque la pérdida inicial (almacenamiento en depresión, etc.) entonces excede a la precipitación total. La segunda situación es cuando los valores calculados de C exceden de la unidad. Tales situaciones fisicamente imposibles deben ser excluídas de los procedimientos de cálculo.

El valor de CN que hasta el momento se ha obtenido de la tabla 1.3, es el que se utilizaria bajo la condición de humedad antecedente del suelo, es decir, se asume que el suelo retiene un cierto volumen de agua en su masa: sin embargo, se considera el resto de los casos en dos grupos que se corrigen a partir del valor que se ha determinado

previamente de CN y que son: condición seca (I) y condición de saturación (III), y sus números de curva equivalentes pueden calcularse mediante las siguientes expresiones:

$$CN(I) = \frac{4.2 \, CN(II)}{10 - 0.058 \, CN(II)} \tag{1.18.a}$$

У

$$CN(III) = \frac{23CN(II)}{10 + 0.13CN(II)}$$
 (1.18.b)

La determinación para una cuenca de su condición antecedente de humedad al momento en que se presenta la tormenta de diseño, se calcula a partir del análisis de cantidad de lluvia durante los cinco días previos a que esta se presente. La tabla 1.4 nos da una idea de los rangos de precipitación previa a considerar para la condición antecedente de humedad del suelo.

1.3.4. Metodología y sugerencias en la instrumentación de cuencas, para facilitar la obtención de C a partir de CN.

Se proponen a continuación ciertos puntos a considerar en la instrumentación futura de cuencas en México, que coadyuven en el futuro a ampliar la base de información de suelos en las cuencas instrumentadas, con el objeto de aplicar alternativamente la metodología propuesta por el Soil Conservation Service como un parámetro de comparación con los aforos y métodos de generación empleados actualmente.

Se enuncia a continuación la secuencia de pasos que se proponen en la aplicación descrita anteriormente:

 Se mide la precipitación total en las estaciones climatológicas de la cuenca, además se obtiene en una carta topográfica la longitud de la corriente principal de la cuenca así como la pendiente de la misma. Se obtiene el hictograma de intensidad para una duración de Iluvia D.

- Requiere conocerse a criterio del proyectista el uso del suelo así como el tipo del mismo; este último se obtiene mediante una prueba granulométrica en laboratorio que permita clasificar el tipo de suelo de acuerdo al Sistema Unificado de Clasificación de Suelos, SUCS, y que nos identifique la muestra dentro de los parámetros que indica el TR55 del SCS para Hidrología Urbana en Cuencas Pequeñas. Una vez conociendo el uso y el tipo de suelo, así como la condición antecedente de humedad, se obtienen los valores de CN dentro de la cuenca. (Tablas 1.3 y 1.4.)
- Se obtiene un valor ponderado de CN en función de los porcentajes de terreno con un determinado uso de suelo así como de los porcentajes que se tengan de tipo de suelo dentro de la cuenca.
- Con este valor ponderado de CN y la precipitación total P, se lee de la figura 1.4 el valor del escurrimiento O.
- Se obtiene el valor de S sustituyendo CN en la expresión 1.16.b
- Finalmente para obtener el valor de C se sustituyen la precipitación P, S, el gasto pico unitario qu y la intensidad i en la expresión 1.17.

A continuación se ejemplifica esta metodología para el calculo del coeficiente C para tres tipos de cuencas, no urbana, suburbana y urbana.

Ejemplo 1.1 Cuença No urbana

Datos:

Area≖	100 mi^2	Uso de suelo:	100.0%
Pend.=	1.9 %	Arbolada en buenas condiciones	
Long, corr.=	26.00 mi	Tipo de suelo:	40.0%
Cond.de hum.=	II	Arenas permeables	
intensidad=	0 13 in/hr	Arenas finas con limos	60 0%

1. CALCULO DE CN

Arenas permeables pertenecen al grupo A Arenas finas con timos pertenecen al grupo B

Uso del suelo	Grupo	Area	CN	Area*CN
Bosque	A B	0.4 0.6	25 55	10.00 33.00
		CN II panderado=		43 00

S= 13.26 ta= 2.65 S-ta= 10.60

2. CALCULO DE LA LLUVIA EN EXCESO

tiempo (hr)		P (in)	P acum. (in)	in (in)	F (in)	Pe acum. (in)	Hieto Pe (in)
	٥	0 00	0.00	0.00	0.0000	0.0000	0 0000
	3	0 12	0.12	0.12	0.0000	0.0000	0.0000
	6	0.15	0.27	0.27	0.0000	0.0000	0.0000
	9	0.27	0.55	0.55	0.0000	0 0000	0.0000
	12	0.69	1.24	1.24	0.0000	0.0000	0.0000
	15	1.18	2.41	2.41	0.0000	0.0000	0.0000
	18	0.38	2.79	2 65	0 1403	0.0027	0.0027
	21	0.18	2.97	2 65	0.3114	0 0087	0 0060
	24	0.14	3.11	2.65	0.4437	0.0165	0 0079

3. CALCULO DEL HIDROGRAMA UNITARIO POR EL METODO SCS

tp=	31 60	hr	
D torm. exceso.	6.00	hr	A partir del cálculo de lluvia en exceso
Tr=	34.60	hr	
Qp=	1,398 66	cfs	
Vol∗	64,000.00	ac-in	Es el volúmen producido por una pulgada de lluvia en toda el área
B#	56.91		·
qu=	846.18	cfs/mi*2/in	Qp/Area/Pe acum

c= 0.157

Ejemplo 1.2 Cuenca Suburbana

Datos:

Ares-	100 m/2	Uso de sueto:	
Pend.=	1.9 %	Arbolada en buenas condiciones	40.0%
		Zona residencial con lotes de 1/4 ac	60 0%
Long. corr.=	26 00 ms	Tipo de suelo:	
Cond.ds hum.=	ts	Arenas con limos	50.0%
intensidad=	0 13 In/hr	Atenas finas con alto contenido	
		de arcites	50.0%

1. CALCULO DE CN

Arenes con limos pertenecen al grupo B

,							
Uso del svelo	Gru	90	Ame	CN	Area*CN		
Bosque	В		0.2	55	11 00		
	c		0 2	70	14.00		
Z.Residencial	В		93	75	22 50		
	c		0.3	83	24.90		
			CN II ponderado		72 40		
	5-	3 81					
	la-	0.76					

2. CALCULO DE LA LLUVIA EN EXCESO

tiempo (hr)		P (In)	P scum, (in)	ta (in)	F (in)	Pe acum. (in)	Histo Pe (in)
	0	0.00	0 00	0.00	0 0000	0 0000	0 0000
	3	0 12	D 12	0.12	0 0000	0 0000	0.0000
	6	D 15	0.27	0 27	0.0000	0 0000	0.0000
	•	0 27	0 55	0.55	0 0000	0 0000	0 0000
	12	0.69	1.24	0.75	0.4227	0 0527	0.0527
	15	1 18	2 41	0.76	1.1520	0 4989	0.4462
	18	0.38	2 79	0.76	1 3248	0 7057	0.2067
	21	0 18	2.97	0.76	1 3980	0 8096	0 1040
	24	0 14	3.11	0.75	1 4530	0 8948	0 0852

3. CALCULO DEL HIDROGRAMA UNITARIO POR EL METODO SCS

tp=	14 78	hr	
D term. exceso,-	12.00	hr	Ver cálculo de lluvis en exceso
Tree	20.76	hr	
Op-	2,329 47	cfs	
Vot=	64,000 00	ac+n	Es el volúmen en toda el área de una pulgada de precipitación
B=	34 17		
qu=	26.03	c/s/mr^2/m	Gp/Area/Pe scum
C=	0.281		

Ejemplo 1.3 Cuenca Urbana

Datos:

Area=	100	me*2	Uso de suelo:	
Pend.*	5	*	Industria	
Long. corr.=	26 00	rTNe	Residencial con techos impermeables	75.0%
Cond.de hum.=	- 11		Comercio	
Intensidade	0 13	1050s	Calles pavimentadas	25.0%
			Parques en buenas condiciones	
			Tipo de suelo:	
			Arenas con sito contenido de arcitas	20.0%
			Suelo arcilloso muy	
			impermeable	80.0%

1. CALCULO DE CN

Arenas finas con aito contenido de arcillas pettenecen al grupo C Suelo arcilloso muy impermeable pettenece al grupo D

Uso del suelo	Grupo	Area	CN	Area*CN
Industra	c	0 00	91.00	0 00
	D	9.00	93 00	0 00
Z.Residencial	С	0.15	98 00	14 70
	0	0.60	98.00	58 80
Comercio	c	0.00	94.00	0.00
	Ō	0.00	95.00	0.00
Calles	ċ	0.05	98 50	4,90
	Ď	0.20	98 00	19.60
Parques	c	0.00	74 00	0 00
	ō	a 00	80 00	0 00

CN II ponderados 95

ta= 0.04

Z. CALCULO DE LA LLUVIA EN EXCESO

tiempo (hr)	p (in)	P acum. (in)	ta (In)	F (in)	Pe acum. (in)	Hieto Pe (H1)
۰	0.00	0.00	0.00	0 0000	0 0000	0 0000
à	D 12	0.12	0.04	0.0593	D 0243	0 0243
ē	0.15	0 27	0.04	0 1087	0 1241	0.0998
	0 27	0.55	0.04	0 1455	0 3610	5 2369
12	0.69	1 24	0.04	0 1744	1 0226	0 5617
15	1 18	2 41	0.04	0 1879	2 1847	1,1620
16	0.38	2 79	0.04	0.1900	2.5621	0 3775
21	G 18	2 97	0.04	0.1908	2 7385	0.1764
24	0.14	3.11	0.04	0.1914	2.8781	0.1396

3. CALCULO DEL HIDROGRAMA UNITARIO POR EL METODO SCS

tpm D term, excess m Trm	3 45 21 00 13 95	hr	Ver cálculo de lluvia on exceso
Qp= Vol= 6=	3,465 57 64,000,00 22,95		Ea el volúmen en loda el áres de una pulgada de precipitación
Qu=	12 05	C/s/mr*2/v1	Qp/Area/Pe acum
c=	0.417		

CAPÍTULO 2.- COEFICIENTES DE ESCURRIMIENTO PARA LA CIUDAD DE MEXICO.

El presente capítulo tiene por objeto verificar la actualidad y validez de los elementos que intervienen en el cálculo de coeficientes de escurrimiento en la Ciudad de México, ya que debido al marcado dinamismo en el crecimiento de la mancha urbana, algunos de los elementos considerados en el cálculo de los mismos pudieran haber variado. Así, se concluye y propone alguna posible modificación en el cálculo de coeficientes para diversas cuencas del Valle de México.

2.1 Cálculo propuesto.

El cálculo se enfoca a partir de la ecuación propuesta por el Instituto de Ingeniería en el estudio " Diseño Hidrológico y Tránsito de Avenidas en Red Primaria y Sistema General de Desagüe", de la Dirección General de Construcción y Operación Hidráulica (DGCOH) de noviembre de 1986, y que es la siguiente:

$$Ce = Cn \frac{An}{At} + 0.45 \frac{Au}{At} Iu \qquad ...(2.1)$$

donde:

Ce coeficiente de escurrimiento

An área no urbana

Au área urbana

At área total

Cn coeficiente de escurrimiento del área no urbanizada

lu índice de urbanización

0.45 coeficiente de escurrimiento urbano base.

2.1.1 Coeficiente de escurrimiento no urbano.

En el informe del estudio previamente mencionado, se propusieron coeficientes de escurrimiento no urbanos en regiones definidas de la cuenca del Valle de México.

Las regiones propuestas fueron: la A1 y A2 correspondientes a los Ríos del Oriente del Lago de Texcoco, B formada por las zonas Sur y Sureste del Valle, y las C y D que toman en cuenta a las corrientes de la Zona Poniente del Valle, la zona plana dentro del Area Metropolitana de la Ciudad de México dentro del Distrito Federal y la Sierra de Guadalupe al Norte del D.F.

En la región A1 se tiene la información de la estación hidrométrica Tepexpan; en la A2 la de las estaciones El Tejocote. San Mateo, Chapingo, Texcoco, San Andrés, Atenco y La Grande; en la región B se encuentran dentro de las estaciones que cuentan con registros Río Magdalena, Vertedor Tecómitl, Vertedor Milpa Alta, San Luis II, San Lucas y San Marcos; en la región C se tienen datos para las estaciones El Molinito, Río Hondo, Río Becerra y Río Mixeoac; en la región D cuentan con registros las estaciones San Lorenzo, Las

Arboledas, El Salitre, Echegaray, Totolica y El Conde; en tanto que en la Zona Plana del Valle y la Sierra de Guadalune no se cuenta con estaciones hidrométricas.

Los coeficientes para áreas no urbanas propuestos en ese estudio, se presentan en la tabla 2.1.

Para el cálculo de los coeficientes de escurrimiento, en planos se marcaron las cuencas correspondientes a cada estación hidrométrica, se ubicaron las estaciones climatológicas y se trazaron Polígonos de Thiessen para definir sus áreas de influencia. Con la altura de precipitación de cada estación y su área de influencia, se calculó el volumen de lluvia diario. Por otra parte, al multiplicar el gasto medio diario en m³/s medido en la estación hidrométrica por el tiempo en segundos que tiene un día, se obtiene el volumen escurrido diario. (ver fig. 2.1). El coeficiente de escurrimiento como ya se ha visto, es la relación del volumen escurrido entre el volumen llovido.

Dado que para las cuencas se carecía de información pluviográfica a nivel horario; los coeficientes se calcularon a nivel diario pero tomando en cuenta que fueran lluvias generalizadas en toda la cuenca, se consideraron para la obtención de los mismos, las lluvias del día anterior aún cuando no se tuvieran escurrimientos y los escurrimientos del día siguiente aunque no se hubiera presentado lluvía.

Para el caso donde se tienen pequeñas áreas urbanas dentro de la cuenca no urbana, el coeficiente que se obtuvo fue uno ponderado, de acuerdo a la cantidad de áreas urbana y no

urbana, y a los coeficientes de escurrimiento urbano y no urbano. La expresión empleada en la obtención del coeficiente ponderado fue:

$$Cp = \frac{Cnu \times Anu}{At} + \frac{Cu \times Au}{At} \qquad(2.2)$$

donde

Cp coeficiente de escurrimiento ponderado

Cnu coeficiente de escurrimiento no urbano

Anu area no urbana

Cu coeficiente de escurrimiento urbano

Au área urbana

At área total

Al conocerse este coeficiente de escurrimiento ponderado, se asignó un valor al índice de urbanización del área urbana de acuerdo a lo que se indica en el inciso 2.2 de este mismo capitulo, de tal forma que el valor del coeficiente de escurrimiento no urbano se obtuvo despejándolo de la fórmula anterior.

2.1.1.a Zona Oriente

En la Zona Oriente se analizaron coeficientes de escurrimiento no urbanos para la región A2; se contó con 8 estaciones hidrométricas de la Gerencia de Aguas del Valle de México (Comisión Nacional del Agua), utilizándose los gastos medios diarios para los años de 1983 a 1988. Estas estaciones fueron: Garcés, El Tejocote, San Mateo, Chapingo, Texcoco, San Andrés, Atenco y La Grande. En lo referente a estaciones climatológicas, se usaron lluvias diarias de 13 de ellas dependientes del Departamento de Hidrometría de la CNA, éstas fueron: Atenco, Coatepec de los Olivos, Colonia Avila Camacho, La Grande, San Andrés, San Miguel Tlaixpan, Tepetlaoxtoc, Tepexpan, Xochihuacán, El Tejocote, Chapingo, San Juan Totolapan y Acolmán.

En la figura 2.2 se muestra la ubicación de las estaciones y sus áreas de influencia, mientras que en la tabla 2.2 se presentan los valores de las áreas de las cuencas hasta la estación hidrométrica y las de las estaciones climatológicas.

En las tablas 2.3 y 2.4 se resumen los coeficientes de escurrimiento comparados con la media y con el valor propuesto en el Manual de Hidráulica Urbana (DDF 1982), y se integra un coeficiente para la región, proponiéndose el valor de 0.06 en lugar de 0.12 propuesto por el Manual.

2.1.1.b Zona Sur.

La zona Sur está comprendida en la región B de los coeficientes de escurrimiento no urbanos. Para esta zona se emplearon los datos hidrométricos de gastos medios diarios de la estación Santa Teresa, operada por la CNA, en el período de 1983 a 1989. Para el período anterior se tomaron las precipitaciones diarias de las estaciones: Desierto de los Leones, Magdalena y Monte Alegre.

En la figura 2.3 se muestra la ubicación de las estaciones y sus áreas de influencia.

En la tabla 2.5 se presenta para la cuenca en estudio en esta zona, el valor de su área total y las áreas de influencia de las estaciones climatológicas. En la tabla 2.6 se anotan los coeficientes medios para cada año y se obtiene el medio en el período. Todos los coeficientes anteriores son ponderados. Para obtener el coeficiente de escurrimiento no urbano, se determinaron las áreas urbanas y no urbanas y con la total, de la ecuación se despejó, llegándose al valor de 0.125 como se muestra en la tabla 2.9.

Dado que la zona Sur comprende un área del Valle muy grande y la cuenca de la estación en comparación es muy pequeña, además que el valor del coeficiente es muy diferente al propuesto, para esta zona no se planteó ningún cambio hasta que no se estudien otras cuencas, quedando los valores obtenidos en este estudio como contribución a trabajos posteriores.

2.1.1.c Zona Poniente.

En la zona Poniente están comprendidas las regiones C y D, para la determinación de los coeficientes de escurrimiento no urbanos.

· Región C.

Para la región C se utilizaron los datos de gastos medios diarios de las estaciones hidrométricas de San Bartolito y El Molinito, para los años de 1983 a 1989, mientras que para las estaciones climatológicas se tomaron para el mismo periodo las lluvias diarias en San Bartolito, Cuajimalpa, La Venta, Desierto de los Leones, Huixquilucan y Totolica.

En la figura 2.3 se muestra la ubicación de las estaciones y sus áreas de influencia.

En la tabla 2.7 se anotan para las dos cuencas de esta región, los valores de sus áreas totales y las de influencia de cada estación climatológica.

En la tabla 2.8 se presentan los coeficientes de escurrimiento ponderados y el calculado para todo el período de análisis. Tomando en cuenta las características urbanas se obtuvieron coeficientes de escurrimiento no urbanos de 0.046 y 0.057, para las cuencas de San Bartolito y El Molinito, respectivamente.

En vista de los resultados anteriores, se propone modificar el coeficiente de escurrimiento no urbano de esta zona a 0.05 en lugar de 0.08 propuesto por el Manual.

· Región D.

En la región D se emplearon los datos de gastos medios diarios en las estaciones Totolica de 1983 a 1989, El Conde de 1983 a 1984 y de 1986 a 1989, Echegaray de 1983 a 1984 y de 1986 a 1989. Santa Cruz de 1986 a 1989, El Salitre de 1986 a 1989 y Las Arboledas de 1986 a 1989.

En la figura 2.3 se muestra la ubicación de las estaciones y sus áreas de influencia.

Para los períodos anteriores se tomaron las lluvias diarias registradas en las estaciones climatológicas de San Bartolito, Totolica, San Luis Ayucan. El Salitre, Calacoaya, Las Ruinas y Las Arboledas.

En la tabla 2.7 se muestran las áreas totales y de influencia de estaciones climatológicas, para las seis cuencas de las estaciones hidrométricas estudiadas para esta región.

Los coeficientes ponderados medios por año se tienen en la tabla 2.8, en donde se obtuvo uno para toda la región: sin embargo, tomando en cuenta la urbanización de las cuencas en la tabla 2.9, se calcula por cuenca el coeficiente no urbano, proponiéndose para la región un coeficiente de escurrimiento no urbano de 0.07 en lugar de 0.10 propuesto en el Manual

2.1.1.d Gastos Base.

Para calcular los coeficientes de escurrimiento no urbanos en la zona Sur y Poniente, para cada año y para cada estación, se analizó el gasto base, es decir el caudal que se presenta en el área no urbana cuando no se presentan precipitaciones. Este valor aproximado es constante en el año, y se dividió entre el área de la cuenca para tener el gasto base por

unidad de área en las diferentes regiones. Dicho valor multiplicado por el área no urbana de cada cuenca dió el casto base de la misma.

En la tabla 2.10 se muestran los indicadores calculados para cada cuenca y cada año, se tiene uno promedio por cuenca y para las regiones B.C y D. con un valor de 0.011 m²s/km.

En la tabla 2.11 se presenta la comparación de los coeficientes originales y los que aquí se proponen.

2.2 Actualización de los índices de urbanización.

Para precisar el concepto de índice de urbanización lu, que forma parte de la expresión en cuestión, se procedió a realizar una evaluación de la composición urbana en diferentes zonas del área urbana, por medio de fotografías aéreas.

El procedimiento se basó en suponer que a las áreas con urbanización muy densa (el Centro de la Ciudad por ejemplo) les corresponde un Iu= 1.00 y a aquéllas con poca densidad (sin incluir casos extremos) Iu= 0.6. Para correlacionar esta suposición con aspectos más objetivos se estudiaron fotografías detalladas de 55 zonas.

Cada fotografía cubre un área aproximada de 0.25 km² y para cada una se calculó un coeficiente de escurrimiento "virtual" siguiendo la metodología descrita en el Manual de Hidráulica Urbana del DDF, la cual se plantea como ejemplo en la tabla 2.12 de acuerdo con los valores de la tabla 1.1.

Para ligar las fotografías con una carta de la Zona Metropolitana de la Ciudad de México, se consideraron sólo zonas urbanas (en las que se incluyen todas las áreas verdes no naturales no mayores al tamaño de los viveros de Coyoacán cuya área aproximada es de 42 hectáreas), de acuerdo a lo siguiente:

Tomando en cuenta la información disponible en el Valle de México (la estrictamente correspondiente a Ciudad Universitaria, en donde se utilizó únicamente el área "impermeable"; Ciudad Satélite y Texcalatlaco se calcularon índices de urbanización globales únicamente para la parte urbana) no es fácil llegar a algo muy detallado, por lo que se propone lo siguiente:

Los valores de lu se tomarán en un rango que varía entre 0.6 y 1.00, en intervalos de 0.1.

Para su determinación se cuenta con las siguientes recomendaciones:

- a) El anexo que se presenta al final cuenta con fotos representativas que muestran la zona metropolitana además de contar con los porcentajes de las áreas analizadas en la determinación del índice. Así por ejemplo para Iu= 1.0, se muestra la foto de la zona centro y se indica que hay un 77.25% de vecindades, un 0.13% de cementerios y parques, y un 22.62% de calles asfaltadas; un procedimiento similar se sigue para las otras zonas.
- b) En el mapa de la zona urbana de todo el Valle, se aceptaría la zona de influencia de cada foto incluyendo todas aquéllas zonas que se consideren parecidas a las mostradas en las . fotos, o bien.

b') En el plano de índices de urbanización del Valle se delimitan las zonas consideradas como no urbanas y a las restantes se les asigna un valor de lu por comparación con las fotos.

Vale la pena aclarar los criterios empleados en el análisis de las fotos para las cuales se tuvo duda con respecto a la urbanización, en la aplicación de la tabla 1.1, para la obtención de los fudices de urbanización.

Zonas Comerciales: se subdividió en dos grupos como sigue:

Zona Comercial: la que se ha construido *exprofeso*, tales como las cadenas de tiendas departamentales.

Vecindarios: la que se establece en antiguos barrios o colonias originalmente dedicadas a la habitación.

Zonas residenciales: se subdivide en cinco grupos:

Unifamiliares: en este grupo se consideró a los predios con edificaciones parcialmente construidas, con áreas valdías para ampliaciones futuras y servicios de drenaje escasos, también se pueden considerar dentro de este grupo las residencias con grandes jardines.

Multifamiliares Espaciados: en este grupo se encuentran las unidades habitacionales que cuentan con áreas verdes entre las edificaciones.

Multifamiliares Compactos: en este grupo, las áreas verdes se ven reducidas al mínimo.

Semiurbanas: predios con áreas destinadas a pequeños huertos y granjas familiares.

Casas Habitación: fraccionamientos tipo clase media con urbanización planificada y áreas verdes mínimas.

Zonas Suburbanas: en este grupo se consideran los grandes valdíos así como las calles sin pavimentar.

Ahora bien, en el desarrollo de los estudios para el Plan Maestro de Drenaje 1994-2000, se presentan dos planos de regionalización de la cuenca del Valle de México, uno de indices de urbanización fu, para la aplicación con el valor de 0.45 en la determinación del coeficiente de escurrimiento urbano, y otro de coeficientes de escurrimiento para áreas no urbanizadas, Cn.

Dentro del área urbana del plano de índices de urbanización se incluyen zonas en blanco consideradas como no urbanizadas, a las que se les deberán aplicar los coeficientes correspondientes a las regiones indicadas en el segundo plano mencionadas previamente.

En el resto de la mancha urbana los valores del índice de urbanización engloban las áreas verdes existentes como jurdines, cementerios, baldios, etc.

Como complemento del plano de indices de urbanización, se presenta un anexo con fotografías típicas para los valores de los indices que aparecen en el plano.

La aplicación de estas herramientas se sugiere de la siguiente manera:

- 1.- Para los estudios de grandes drenes, los valores de los índices de urbanización y de los coeficientes de escurrimiento se tomarán los anotados en los planos respectivos.
- 2.- Para los estudios de red primaria se partirá de los valores dados en el plano de índices de urbanización, luego donde se presente duda sobre algún tramo de colector en particular, se recurrirá a las fotografías de las cuales se aplicará el índice que comparativamente más se parezea al sitio en estudio, pudiendo variar del valor de la zona obtenido del plano en más o menos 0.1.

Los valores así obtenidos para el índice de urbanización no deberán ser mayores a la unidad, ni menores que 0.6.

3.- En los estudios para el año 2010, por ejemplo, los valores del índice de urbanización del plano deberán incrementarse en 0.1, sin rebasar la unidad

2.3 Análisis del valor máximo.

Continuando con la segunda parte de la ecuación 2.1, se describe en este subcapitulo como se llevó a cabo la revisión del valor propuesto como 0.451u.

Para la obtención de los escurrimientos hacia las presas Anzaldo y Texcalatlaco, pertenecientes al Sistema de Interpresas del Poniente, se procedió a relacionar los registros diarios de variación en los niveles de la presa, con la ley de descargas de las obras de toma y de excedencias, una vez transitados los escurrimientos que hubieran llegado al vaso. Con la variación de los niveles en el tiempo se obtiene el gasto escurrido durante una cierta tormenta, el cual multiplicado por el tiempo arroja el volumen total de escurrimiento. Las estaciones pluviográficas empleadas en la obtención de la Iluvia para las cuencas tanto de la presa Anzaldo como la presa Texcalatlaco fueron: Centro-Universidad, Tanque El Lienzo, San Francisco, Magdalena, Monte Alegre y Ajusco; teniendo como tormentas representativas las correspondientes a los días 14, 16, 18 y 19 de agosto de 1993. La relación del volumen escurrido hacia la presa en las fechas anteriormente citadas y el volumen llovido dentro de la propia cuenca de la presa, proporcionan los valores del coeficiente de escurrimiento. Del análisis realizado para las presas Anzaldo y Texcalatlaco se encontraron valores de 0.410 y de 0.408 de coeficiente de escurrimiento urbano, respectivamente, lo que equivale a tener un índice de urbanización de 0.91 para ambos casos, si se mantiene la relación 0.45Iu.

Analizando los resultados, se puede concluir que se presentaron discrepancias entre los coeficientes obtenidos a partir de ambos procedimientos, por lo que por el momento no se puede proponer una modificación al valor máximo del coeficiente urbano de escurrimiento, en tanto, no se instrumenten las estaciones que intervengan en el análisis Iluvia-escurrimiento, y se cuente con mayor información hidrológica de la zona en estudio.

CAPÍTULO 3.- GENERACION DE ESCURRIMIENTOS EN CUENCAS NATURALES NO AFORADAS

Con cierta frecuencia, al momento en que se presenta la necesidad de obtener los caudales de diseño para el proyecto de algún aprovechamiento hidráulico, tal como una presa de almacenamiento para proveer de agua potable a una población; el ingeniero proyectista se enfrenta con que los registros de las estaciones hidrométricas próximas a la región en estudio no existen, o en el mejor de los casos la información disponible es incompleta, esto principalmente por el abandono y falta de mantenimiento de las estaciones por parte de las dependencias que en algún momento las instrumentaron.

De esta manera surge la necesidad de generar los escurrimientos que se pudieron haber presentado en alguna estación próxima al sitio en estudio, con la finalidad de obtener los registros para proyectar, y así contar con la información que permita conocer de un modo aproximado los caudales de aportación de las corrientes.

3.1 Metodología de cálculo.

La metodología aquí propuesta para la generación de datos faltantes es la de los coeficientes de escurrimiento, que interrelaciona la precipitación en la cuenca en estudio con los escurrimientos drenados por la misma.

Este análisis requiere necesariamente que para un cierto período de tiempo existan datos pluviométricos e hidrométricos simultáneos, de forma tal que permita obtener un coefficiente promedio por día. Así, conociendo las lluvias en el período en que se desean generar los escurrimientos, la generación de éstos últimos es muy simple.

La metodología se describe a continuación.

Lo primero que se hace es ubicar a la estación hidrométrica en una carta topográfica, trazando la corriente principal a ésta y dibujando todos sus tributarios para posteriormente dibujar el parteaguas que limita a la cuenca. Una vez que se ha trazado el límite de la cuenca, mediante un planímetro o una cuadrícula, se obtiene con la escala del plano, el área de la cuenca.

Una vez conocida el área, en el plano se localizan las estaciones elimatológicas que estén dentro de la cuenca, o que aún estando fuera de la misma, pudieran tener cierta influencia en el análisis. Esta influencia se determina mediante el método de los polígonos de Thiessen. Este método consiste en que una vez que se ubicaron todas las estaciones elimatológicas que se van a analizar, se unen entre si mediante líneas rectas hasta lograr una triangulación exhaustiva. A cada línea de cada triángulo se le traza su mediatriz, es decir, una línea perpendicular, justo al centro de cada uno de los lados. Por propiedades geométricas se intersectan para cada triángulo tres líneas en un punto. Tanto éstos puntos de intersección como las mediatrices y el parteaguas, son los

elementos que ayudan a delimitar las áreas de influencia de las estaciones sobre la cuenca. (Ver Aparicio M.J., 1993).

La lluvia media en la cuenca se calcula entonces mediante la siguiente expresión:

$$hp_{in} = (hp_1A_1 + hp_2A_2 + + hp_iA_i)A_i$$
 (3.1)

donde

A, área de influencia de la estación climatológica i

hpi precipitación en la estación climatológica i

A, área total de la cuenca.

hpm precipitación media en la cuenca en mm

El volumen llovido en toda la cuenca se obtiene de la siguiente forma:

$$V_{\text{flevido}} = 1000 \text{ hp}_{\text{m}} A_{\text{t}}$$
 (3.2)

donde

Vilovido en la cuenca en m3

En el capítulo 1 se comentó que el coeficiente de escurrimiento es la razón que existe entre el volumen de escurrimiento directo y el volumen llovido; es decir, que a cada Iluvia se le asocia un cierto escurrimiento en exceso. Conceptualizar ésto es de primordial interés en la futura generación de escurrimientos, dado que los aforos registrados en las estaciones hidrométricas conducen en su cauce tanto los caudales perennes como aquellos derivados de alguna tormenta específica. Es labor pues del ingeniero hidrólogo el poder identificar y separar tales volúmenes.

Obtención de gastos base.

Por simplicidad en el cálculo, se obtiene un gasto base constante para cada mes del año, ya que el análisis a nivel diario se torna sumamente laborioso y las aproximaciones obtenidas haciendo el cálculo con un gasto base mensual son satisfactorias en la obtención de resultados. El procedimiento que se sigue para obtener los gastos base de una estación en particular, es como sigue:

- Se seleccionan los meses de estiaje para calcular el gasto base (generalmente noviembre a abril).
- Se obtiene el volumen llovido acumulado para cada mes.
- Se procede a hacer lo mismo con los volúmenes escurridos del período.
- Se depura la información de tal forma que nunca se utilice en la obtención del escurrimiento base un mes en el que el volumen escurrido sea mayor que el lloyido.
- Con los meses restantes, se hace un promedio de todos los años para cada mes, y se
 obtiene el volumen base que se va a utilizar en la obtención de los coeficientes de
 escurrimiento, para los meses de estiaie.

- Para obtener los volúmenes base en los meses de lluvia, se interpola linealmente entre el primero y el último mes de estiaje (abril y noviembre).
- Una vez obtenidos los volúmenes, éstos se pueden expresar como gastos.

Obtenidos los gastos base mensuales se procede a obtener el coeficiente de escurrimiento diario para cada año en que se disponga de información histórica, tanto de la hidrométrica como de las climatológicas que muestran influencia en la cuenca.

3.2 Análisis diario.

Los datos hidrométricos y pluviométricos se obtienen de los registros históricos que se tengan en la región estudiada, y con los datos de lluvia se calcula por polígonos de Thiessen la lluvia media en la cuenca. El volumen escurrido, que es un volumen diario se calcula multiplicando el gasto aforado en la estación por 86,400 segundos que tiene un día. El volumen llovido se obtiene multiplicando el área de la cuenca por la altura de precipitación registrada en ella; al final este producto multiplicado por un factor de conversión de unidades nos da el volumen llovido en la cuenca durante el día. Con los gastos base obtenidos para cada mes en la estación hidrométrica conforme al procedimiento descrito anteriormente, y conocidos los gastos aforados, se obtiene la diferencia de gastos que arroja el gasto directo; ésto siempre y cuando tal diferencia no sea menor que cero, si no es así, tal valor se rechaza. El volumen directo de escurrimiento en el día se obtiene de multiplicar el valor del gasto directo por 86,400 segundos que tiene un día. El valor de los coeficientes de escurrimiento diarios se calcula como la suma del volumen directo escurrido durante el día del análisis más el del día posterior a éste, dividido entre la suma del volumen llovido durante el día del análisis más el del día previo a éste. Este mecanismo se lleva a cabo, ya que se toma como tolerancia un cierto tiempo tanto para que la lluvia establezca un escurrimiento directo en la corriente principal, así como para que la misma pueda desalojar tal volumen. En otras palabras, no todo lo que llueve, instantáneamente escurre en la salida de la cuenca, sino que existe un cierto tiempo de retraso.

Finalmente, el valor del coeficiente mensual de escurrimiento se calcula como un promedio de los coeficientes diarios del mes, en tanto que la obtención del coeficiente de escurrimiento anual se expresa como un promedio de todos los meses del año en estudio. En los días en los que no haya información para ninguno de los años de análisis, el coeficiente empleado para la generación de escurrimientos se puede tomar como el coeficiente promedio mensual.

Generación de escurrimientos.

Con la lluvia promedio en milimetros obtenida a partir de poligonos de Thiessen, multiplicada por el área de la cuença en kilómetros cuadrados se obtiene el volumen llovido total en miles de metros cúbicos. Este volumen multiplicado por el coeficiente promedio obtenido para cada día del año nos da el volumen directo después de aplicar la siguiente ecuación:

donde:

V escurrimiento volumen generado por día en m'

Ce* coeficiente promedio obtenido a nivel diario en la cuenca
V llovido volumen llovido durante el día en la cuenca estudiada en m³

El volumen base diario se obtiene a partir del gasto base mensual multiplicado por un factor de 86.4. Finalmente, el volumen total conducido por el río o arroyo hasta la estación o punto donde se desea conocer el gasto, es la suma del volumen base y el volumen directo durante ese día.

La generación de escurrimientos, guarda la tendencia histórica en la relación lluviaescurrimiento que se presenta en las cuencas y la cual se expresa ciertamente en los coeficientes promedio obtenidos. Comparación de los gastos históricos contra los gastos generados.

Una manera de ver que tan buena es la generación es graficando los pares de valores de escurrimientos (históricos y generados) en un plano cartesiano, y hacer una regresión lineal entre ambos valores. La recta ideal es una que cruza por el origen y a 45 grados del eje de las abscisas.

Comparando los resultados obtenidos en un período para el que existan registros, con los valores de estos últimos, se pueden calibrar los valores de los coeficientes para generar escurrimientos en el período para el cual no haya registros históricos con una mejor aproximación.

CAPÍTULO 4.- ESCURRIMIENTOS DRENADOS A LA LAGUNA DE CUYUTLAN.

Los huracanes y las tormentas tropicales representan el aporte pluvial más importante de agua dulce a los sistemas lagunarios; siendo la ocurrencia de estos meteoros frecuente en los meses de junio a noviembre. Las marcas también constituyen una importante aportación de agua marina que reemplaza a las aguas continentales cuyo volumen disminuye en los meses de estiaje debido a la evaporación.

En algunas lagunas del mundo se ha percibido que los escurrimientos que drenan hacia las lagunas han disminuido notablemente debido principalmente a la existencia de presas de almacenamiento aguas arriba de la zona de descarga, lo cual provoca que en la temporada de estiaje, todo este volumen quede retenido por la cortina. Esto afecta indudablemente el equilibiro ecológico de la laguna redundando en una disminución de la producción pesquera y acuícola de estos ricos habitats.

El objetivo de este capítulo es estimar mediante coeficientes de escurrimiento, el volumen de escurrimientos diarios que llegan o podrían llegar a la Laguna de Cuyutlán, Colima; con el objeto de utilizarlos en un balance hidrológico de la laguna, tomando también en cuenta el efecto de las mareas como aportación de agua marina al biosistema. Sin embargo, este último balance no es objeto de este trabajo.

En la Laguna de Cuyutlán se han venido realizando diferentes estudios. Desde la construcción de la Boca de Ventanas, cambiaron notablemente las condiciones de vida acuática. Originalmente la boca fue construida con el fin de abastecer de agua para enfriamiento a la Planta Termoeléctrica de Manzanillo; ésto provocó que disminuyera el nivel del agua en la laguna y muchas especies animales quedaran atrapadas en el

canal de llamada de la termoeléctrica provocando una disminución de consideración en la actividad pesquera.

La Laguna de Cuyutlán se encuentra en el litoral del Oceáno Pacífico, al Sur del Puerto de Manzanillo en el Estado de Colima, México; se desarrolla aproximadamente 36 Km hacia el Este. Las coordenadas entre las que se encuentra son: 103º 57º y 104º 19¹ longitud Oeste y los 18º 57º y 19º 05º de latitud Norte como se observa en el plano general.

La Laguna está dividida de la siguiente forma: la Laguna Chica, que se encuentra al Norte de las instalaciones de la Comisión Federal de Electricidad (CFE) y se extiende hasta el bordo del ferrocarril; la Laguna Grande que abarca desde el bordo del ferrocarril y hasta el bordo que la divide de la zona de explotación de salinas, al centro aproximadamente se encuentra el canal de El Malecón.

La información climatológica e hidrométrica empleada en el análisis se obtuvo del Servicio Meteorológico Nacional (SMN) de la Comisión Nacional del Agua.

4.1.-Análisis de lluvias.

En un plano con la ubicación de las estaciones hidrométricas y elimatológicas con que cuenta el SMN se seleccionaron las de influencia en la Laguna de Cuyutlán. En el plano se incluye una figura con la ubicación de todas las estaciones.

Dentro de la cuenca que drena a la laguna existen cuatro estaciones climatológicas de las cuales dos cuentan con información en el SMN, otra está suspendida y no se tiene información y la cuarta pertenece a la CFE.

Las estaciones climatológicas en que se obtuvo información para la laguna fueron Manzanillo y Venustiano Carranza. Para la primera se recopiló la información de lluvia diaria en el período de 1978 a 1992. Para la segunda se recopiló la misma información de lluvia en el período de 1971 a 1990. Como se observa, se contó con información en ambas estaciones entre 1978 y 1990 para lluvia diaria.

Para presentar la información hidrológica recopilable se tomó el mes de abril como el representativo de la época de estiaje y agosto para la de lluvia. En las tablas 4.1 y 4.2 se presenta la información referente a la lluvia diaria para los dos meses indicados de la estación de Manzanillo. En forma semejante, se recopiló la misma información para la estación Venustiano Carranza.

4.2 Escurrimientos registrados.

Debido a que dentro de la cuenca de la laguna no se tienen ríos con estación hidrométrica se determinaron tres corrientes que sí cuentan con estación, ubicadas en la cercanía de la laguna: el Río Cuixmala, el Río Cihuatlán o Marabasca y el Río Armería. En el plano general se encuentra la ubicación de dichos ríos.

En estas tres corrientes se identificaron cuatro estaciones hidrométricas: Cuixmala, Cihuatlán, Paso del Río Colimán y Las Peñitas II. Se recopiló la información de gasto medio diario, volumen mensual escurrido y área de las cuencas de las dos primeras. Los períodos de información obtenidos fueron de 1970 a 1985.

Para los meses de abril y agosto, en las tablas 4.3 a 4.6 se incluyen los gastos medies diarios para las estaciones hidrométricas de Cuixmala y Cihuatlan.

4.3 Determinación de coeficientes.

De las dos estaciones que fueron seleccionadas para la recopilación de información se analizaron las estaciones climatológicas que se podían asociar a la cuenca determinándose cinco para la primera y ocho para la segunda.

Las cinco estaciones climatológicas cercanas de las que se obtuvo la información referente a lluvia diaria para los años de 1970 a 1985 en la cuenca del Río Cuixmala son: Cuixmala, Apasulco, La Cofradía, El Chiflón y Alcihuatl.

En las tablas 4.7 y 4.8 se presentan las lluvias diarias para las estaciones antes mencionadas para los años de 1976 y 1977 y para el mes de agosto respectivamente. dado que para abril prácticamente todos los años carecen de precipitación.

En la cuenca del Río Cihuatlán se identificaron ocho estaciones con influencia en el área que son: Cihuatlán, Los Otates, Seguaya, Camotlán de Miraflores, Cuautitlán, Manantlán, Ayotitlán y Minatitlán. De ellas se obtuvo, al igual que en la cuenca anterior, la información de lluvia diaria en los años 1970 a 1985.

En las tablas 4.9 y 4.10 se muestran las Iluvias diarias para las estaciones climatológicas de la cuenca de Río Cihuatlán para los años de 1974 y 1975 y para el mes agosto, ya que no presenta Iluvia en abril.

4.4.- Cálculo de los escurrimientos.

Para cuantificar los volúmenes de escurrimiento se procesaron datos de precipitación y escurrimiento de dos cuencas vecinas a la cuenca que drena hacia la zona en estudio. En el Servicio Metereológico Nacional, de la Comisión Nacional del Agua, se recabó la información diaria de precipitación en quince estaciones, dos dentro de la cuenca de la Laguna, las cuales se utilizaron para el cálculo de la precipitación media; las otras trece estaciones se localizan en cuencas cercanas a la de la Laguna de Cuyutlán, con las cuales se calcularon los coeficientes de escurimiento y los gastos base aplicables a la cuerca en estudio.

Las estaciones elimatológicas con influencia sobre la superficie del agua en la Laguna de Cuyutlán son Manzanillo y Venustiano Carranza, con los datos de las cuales se obtuvieron para cada día del año, una altura de lluvia media, en el periodo en que se contó con información. Para ilustrar lo realizado, se tomaron los meses de abril y agosto como representativos de las épocas de estiaje y lluvias, respectivamente. En esta tesis se presentan únicamente los resultados para esos dos meses, aún cuando el análisis se efectuó para todos los meses, y por considerar que se ha abundado lo suficiente sobre este tema en el capítulo anterior, siendo que el objetivo original de este capítulo es presentar los resultados obtenidos mediante la aplicación de esta metodología a un sistema lagunario.

Para calcular la lluvia media que se presentó dentro del área de la cuenca de la laguna, se utilizaron Polígonos de Thiessen, tal como se describió en el capítulo anterior.

Las áreas de influencia para cada cuerpo, en que se dividió la Laguna de Cuyutlán, son como sigue:

		ESTACION		
CUERPO	AREA KM²	MANZANILLO (EST. 1)	V.CARRANZA (EST.2) %	
Cuerpo 1	1.00	100	0	
Cuerpo 2	2.75	100	0	
Cuerpo 3	162.38		67	
Cuerpo 4	130.50	2	98	

Como se comenta anteriormente, en la cuenca propia de la Laguna Cuyutlán no existen estaciones hidrométricas, por lo que fue necesario estudiar dos cuencas instrumentadas en medición de escurrimientos y de precipitación. A partir del análisis diario de la relación lluvia-escurrimiento, se obtuvieron coeficientes de escurrimiento que permitieron conocer los volúmenes escurridos en la cuenca propia de la laguna, conocido el volumen llovido en ella.

Las dos cuencas instrumentadas con estaciones hidrométricas son las de Cuixmala con un área de 1,080 km² y la de Cihuatlán con un área de 2,028 km². Con los gastos registrados en estas dos estaciones hidrométricas y con las trece estaciones climatológicas de las cueles se tiene información, se procedió a encontrar una lluvia media diaria en cada cuenca. Las áreas de influencia para los polígonos de Thiessen son las situientes:

CUENCA	ESTACION	AREA	%
		km²	
CUIXMALA	Cuixmala	167.40	15.5
	Apasulco	257.04	23.8
	La Cofradía	303.48	28.1
	El Chiflón	321.84	29.8
	Alcihuatl	30.24	2.8

CUENCA

ESTACION AREA %

km²

CIHUATLAN

Cihuatlán

144.00 7.1

Los Otates Seguava 208.88 10.3 322.45 15.9

Camotlán

290.00 14.3

Cuautitlán

354.90 17.5

Manantlán

113.57 5.6

Ayotitlán

273.78 13.5

Minatitlán

320.42 15.8

En las tablas 4.11 a 4.14 se presentan los valores donde se calcularon las lluvias medias para las dos cuencas, para el año de 1970, y para los dos meses representativos.

Tomando los días en que llovió, se aislaron las tormentas y sus escurrimientos, obteniéndose sus coeficientes de escurrimiento, con la expresión:

$$Ce = \frac{Vesc}{Vllov}$$

...(4.1)

SALA TESS NA DEBE

donde:

Ce

coeficiente de escurrimiento para una tormenta

Vilov

volumen llovido en una tormenta, (m.)

Vesc

volumen escurrido de la tormenta, (m.)

Cabe aclarar que el volumen de escurrimiento es el correspondiente al gasto aforado en la estación hidrométrica menos el gasto base.

Este cálculo se efectuó para el período de análisis 1970-1985. En la tabla 4.15 se presenta un ejemplo de cálculo para la época de lluvias en la cuenca Cuixmata y en la tabla 4.16 se presenta para la cuenca de Cihuatlán. La tabla 4.17 se formó con todos los coeficientes de escurrimiento calculados, situándolos por año, por mes y por cuenca; se analizaron por mes los valores mínimo, medio y máximo por cuenca y luego en conjunto para definir valores medios para cada mes.

En forma semejante, se realizó el análisis para los gastos base, tal como se presenta en la tabla 4.18. Para este caso, se trabajó con gastos base por unidad de área, pasando a los que escurren a los cuerpos de la Laguna de Cuyuttán multiplicando por su área correspondiente.

Tanto los coeficientes de escurrimiento como los gastos base por unidad de área obtenidos del análisis anteriormente descrito, son propios de cuencas vecinas a la de Cuyutlán que es de la cual deseamos generar sus escurrimientos; sin embargo, el uso de estos parámetros en la obtención de caudales para la cuenca en estudio es valido, dado la cercanía de las cuencas, lo cual hace muy similares condiciones tales como el tipo de suelo, vegetación, intensidad de lluvia, etc.

Así, con los valores de los coeficientes de escurrimiento y gastos base mensuales, determinados en las tablas anteriores, se procedió a calcular los volúmenes de escurrimiento diarios para la cuenca de Cuyutlán. Tomando las precipitaciones medias calculadas para la cuenca y con las áreas terrestres de los cuatro cuerpos que son:

Cuerpo 1 100Ha
Cuerpo 2 275Ha
Cuerpo 3 16238Ha
Cuerpo 4 13050Ha

se procedió a determinar el volumen de escurrimiento diario para la Laguna multiplicando la lluvia media diaria por el coefficiente de escurrimiento mensual y sumando el volumen correspondiente al gasto base. Para ilustrar este cálculo se presentan las tablas 4.19 para el mes de Abril, representativo de la época de estuje y la tabla 4.20 para el mes de Agosto que es el representativo de la época de lluvias.

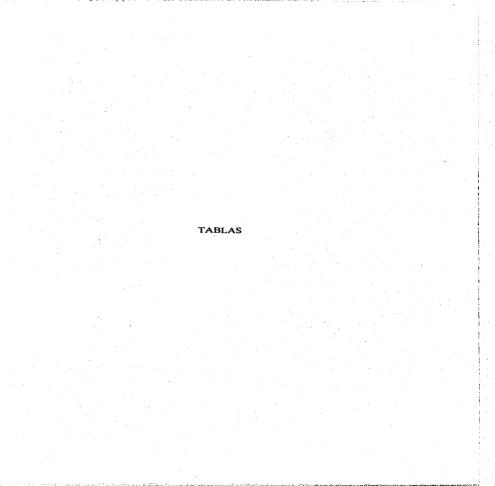
CONCLUSIONES Y RECOMENDACIONES.

Se puede concluir del presente trabajo, que el uso de los coeficientes de escurrimiento, son una valiosa herramienta en la obtención de gastos de escurrimiento, tanto para cuencas en donde bien por falta de infraestructura, o por el deterioro de la misma, no se cuenta con registros históricos. Es conveniente, sin embargo, verificar que los coeficientes empleados en la generación de volúmenes de escurrimiento, se calibren de acuerdo con los registros históricos que se tengan de aquella cuenca que esté sujeta a análisis.

De los coeficientes obtenidos a partir de la metodología propuesta en el capítulo 1, para tres diferentes cuencas, podemos concluir que los resultados de tales valores en los tres casos analizados, son mayores con respecto a los que se han aforado para cuencas similares dentro de la Zona Metropolitana de la Ciudad de México. Esta variación pudo haberse presentado, entre otros factores, por las suposiciones que al respecto se hicieron en cuanto al tipo y uso de suelo para los ejemplos estudiados, pues la información referente a éstos parámetros no existe actualizada, y la información empleada en los mismos, data de cartas elaboradas a gran escala por el Instituto de Geografía de la U.N.A.M. para el Atlas Nacional de México, hace más de veinte años. En la actualidad, las condiciones geomorfológicas por efecto de la erosión y la urbanización en las cuencas, seguramente han modificado las condiciones originales plasmadas en dichas cartas.

Para la obtención de coeficientes de escurrimiento urbanos, podemos concluir que debido a la falta de información necesaria que vincule la relación lluvia-escurrimiento en la Zona Metropolitana de la Ciudad de México, no se puede llegar por el momento a una conclusión tendiente a modificar el valor máximo actual del coeficiente de escurrimiento urbano, cuvo valor es de 0.45.

Por tal motivo, considero de gran importancia, el implementar en México paulatinamente, sistemas de información hidrológica y urbana que proporcionen en el futuro un banco de datos actualizado con las principales variables que intervienen en los procedimientos de cálculo de los escurrimientos, ya que actualmente la información con que se cuenta es muy limitada tanto en cantidad como en calidad para un proceso tan riguroso en su aplicación como el de estas estimaciones. La meta sería pues contar con un importante apoyo para el análisis con el objeto de obtener mayor certidumbre en los resultados de la provección de avenidas y por lo tanto en el diseño de obras hidráulicas.


Para lograr tal objetivo debería emprenderse un ambicioso programa de mantenimiento y conservación de las estructuras de aforo existentes, así como también instrumentar nuevas estaciones en donde la información disponible sea escasa o que en definitiva ni siquiera exista. De igual forma habría que ir reemplazando paulatinamente la infraestructura en lo que a estaciones elimatológicas se refiere, transformando tales puntos en estaciones pluviográficas con registros horarios, en vez de los pluviómetros que en ellas operan actualmente. Así, los escurrimientos se podrá describir gráficamente mediante hidrogramas que relacionen las tormentas con los escurrimientos que éstas mismas producen, en vez de proporcionarlo como un volumen promedio diario.

Considero que con los recursos disponibles hasta la fecha, uno de los métodos que pretenden vincular de alguna forma la relación lluvia-escurrimiento que puede arrojar resultados más precisos, es el de la obtención de coeficientes de escurrimiento para cuencas específicas, dado que éstos a diferencia de métodos estadísticos como la correlación y regresión entre lluvias y escurrimientos, guardan cierta tendencia histórica de los volúmenes escurridos en el lugar con respecto a las lluvias que los ocasionan, aún y cuando en las zonas urbanizadas no habría que perder de vista la evolución en el desarrollo tanto del uso como del tipo de suelo del sitio, y su influencia con el paso del tiempo en la posible variación de los coeficientes.

En el proceso de análisis tanto de la información de lluvia como de la de escurrimientos, se ha venido haciendo imprescindible el uso de las computadoras. Dada la gran cantidad de datos que se tienen que procesar, simple y sencillamente, llevaria al analista demasiado tiempo efectuar actividades meramente mecánicas y repetitivas, imposibilitándole en cuanto al tiempo de análisis científico que pueda realmente dedicar a la esencia de un problema específico.

Es innegable que en la actualidad, el uso de las computadoras es una herramienta imprescindible en el estudio de la Hidrologia, al igual que lo es para muchas otras ciencias de la ingenieria y actividades del quehacer científico.

Así, en el futuro más próximo veremos como las estaciones de monitoreo pluviográfico estarán conectadas mediante una red de cómputo con las centrales de los organismos operadores de drenaje en las zonas urbanas, recibiendo en tiempo real la información de lluvia que se esté registrando dentro de su zona de influencia, con la cual se generarán con algún algoritmo similar a los descritos en este trabajo, los hidrogramas que hayan de transitarse por sus sistemas de drenaje, proporcionando así al personal encargado de la operación elementos de calidad en la toma de decisiones adecuadas en lo que a políticas de operación se refiere, en el momento mismo en que se esté presentando una tormenta.

TABLA 1.1	VALORES TIPICOS DEL COEFICIEN	TE DE ESCUR	RIMIENTO, C.
Tipo de áre	a drenada	Coeficiente de	escurrimiento
Zonas com	ércioles	Minimo	Máximo
	Zona comercial	0.75	0.95
	Vecindarios	0.50	
Zonas resi	denciales		
	unifamiliares	0.30	0.50
	muttifamiliares especiados	0.40	
	multifamiliares compactos	0.60	
	semiurbanas	0.25	
	casa habitación	0.50	
Zonas indu	athales		
	espaciado	0.50	0.80
	compacto	0.60	
		0.00	0.90
Cementerio	os y parques	0 10	0.25
Campos de	juegos	0.20	0.35
Patios de f	errocarriles	0.20	0.40
Zonas subi	urbanas	0.10	0.30
Calles			•
	asfaltagas		
	de concreto hidráulico	0.70	
	adoquinadas	0.80	
	adoquinadas	0.70	0.85
Estacionar	nientos	0.75	0.85
Techados	<u> </u>	0.75	0.95
Praderas			
	· ·		
	suelos arenosos planos (pendientes < 0.02)	0.05	0.10
	suelos arenosos (pendientes medias entre 0.02 y 0.07	0.10	0.15
		,	19
	suelos arenosos escarpados (pendientes > 0 07)	0.15	0.20
	suelos arcillosos planos (pendientes < 0 02)	0.13	0.17
	suelos arcillosos (pendientes medias entre 0.02 y 0.07	0.18	0.22
	suelos arcillosos escarpados	0.25	0.35
		0.23	0.35

TABLA 1.2 METODOLOGIAS Y LIMITES EN LA DETERMINACION DE GASTOS PICO

Tamaño de la cuenc	Metodología empleada	Tamaño máximo original	Tamaño máximo actua
Lote pequeño	Fórmula racional	Hasta 13 km²	Hasta 0.65 km²
Cuencas pequeñas	Hidrograma unitario	Hasta 5000 km²	Hasta 250 km²
Cuencas medianas	Tránsito de avenidas	Aplicación de sistema distribuidos	
Cuencas grandes	Gastos observados	Aplicación de la curva de frecuencia de inundación	

EN ZONA AGRICOLA, SUBURBANA Y URBAI	IA (CHA=II	; la= 0.2S)		
GRUPO HIDROLOGICO DEL SUELO	 	 		
Descripción del uso del suelo	A	В	С	0
Suelo cultivado1		i		
Sin tratamiento de conservación	72	81	68	9
Con tratamiento pera conservación	62	71	78	В
Pastizal				
Maias condiciones	68	79	86	8:
Buenas condiciones	39	61	74	
Predera				
Buenas Condiciones	30	58	71	71
Bosque natural		<u> </u>	<u> </u>	
Descuberto	45		77	83
Con una buena cubierta2	25	55	70	7
Espacios abiertos, pasto, parques, campos de golf, cementerios,et	1.	<u> </u>		
Buenza condiciones; el pesto cubre un 75% o más del área		51	74	. B
Condiciones regulares: el pasto abarca entre un 50-75% del áres.		69		B-
Areas comerciales y de negocios. (impermeable en un 85%)	89	92		9:
Zones industriales (impermeable en un 72%)	81	88	91	9
Zone Residencial3	ļ			
Temaño de lote prom. Imperm. promedio %4				
1/8 ac o menos 65	77	85	90	9:
1/4 ac 38	61	75	83	8
1/3 ac 30	57	72	81	84
1/2 ac 25	54		80	8:
1 ac (aprox. 0.40 ha) 20	51		79	
Lotes para estacionamiento pavimentados, techos, entradas, etc.5	98	96	98	94
Calles y carreteras				·
Paymentadas con bordillos y alcantarillas, 5	98	96	98	94
Grava	76		89	9
Terracerias	72	62	87	Bs
1. Para una descripción más detallada del uso del número de curva	en suelo aprico	ia, vesse of Na	tional Engineers	ng Handbook,
Sección 4, "Hidrología", Capitulo 9, Agosto, 1973	L	i	<u> </u>	
Este tipo de suelo esta protegido contra el pastoreo, disposición				
Estos números de curva están calculados suponiendo que el esc			es directo hecu	la calle con
un mínimo de agua directa del techo al césped, donde puede habe	r infiltración adio	ional.		
4. Las áreas permeables restantes son consideradas en buenas co				

TABLA 1.4 CLASIFICACION DE LA CONDICION ANTECEDENTE DE HUMEDAD									
PARA EL I	METODO DE LAS	FILTRACIONES DE	L SOIL CONSERVATION SERVICE						
	Condición natocados	do I livita acavia tatal	do E dias an autordas						
	de humedad	a process and become the contract	de 5 días en pulgadas Epoca de avenidas						
	de numedad	choca de estraje	Epoca de avenidas						
		Menor que 0.5	Menor que 1.4						
		De 0.5 a 1.1	De 1.4 a 2.1						
		Mayor que 1.1	Mayor que 2.1						

Tabla 2.1 Coeficientes de escurrimiento no urbano propuestos por la DGCOH

COEFICIENTE
0.020
0.120
0.025
0.080
0.100
0.150
0.150

TABLA 2.2 CUENCAS DEL ORIENTE

CUENCA	AREA	ESTACION	AREA DE INFLUENCIA		
-	km²		km²	%	
LA GRANDE	195.09	ACOLMAN	0.49	0.25%	
		ATENCO	0.98	0.50%	
		COL. MANUEL AVILA CAMACHO	0.64	0 33%	
		LA GRANDE	17.19	8.81%	
		SAN JUAN TOTOLAPAN	108.92	55.83%	
		SAN MIGUEL TLAIXPAN	4.51	2.31%	
		TEPETLAOXTOC	59.81	30.66%	
		TEPEXPAN	1.67	0.86%	
		XOCHILHUACAN	0.88	0.45%	
ATENCO	56.52	ATENCO	8.51	15 06%	
		SAN ANDRES	2.65	4.69%	
		SAN JUAN TOTOLAPAN	6.91	12 23%	
		SAN MIGUEL TLAIXPAN	33.82	59.84%	
		TEPETLAOXTOC	4.63	8.19%	
SAN ANDRES	56.70	COL MANUEL AVILA CAMACHO	4.22	7.44%	
		CHAPINGO	1.93	3 40%	
•		SAN ANDRES	7.06	12.45%	
		SAN JUAN TOTOLAPAN	22.84	40.28%	
		SAN MIGUEL TLAIXPAN	20.65	36 42%	
TEXCOCO	37.74	COL. MANUEL AVILA CAMACHO	10 39	27.53%	
		CHAPINGO	8 23	21.81%	
		SAN JUAN TOTOLAPAN	3.31	8.77%	
		SAN MIGUEL TLAIXPAN	15.81	41.89%	
CHAPINGO	17.67	COL. MANUEL AVILA CAMACHO	2.99	16.92%	
		CHAPINGO	4.06	22 98%	
		SAN MIGUEL TLAIXPAN	10.62	60.10%	
SAN MATEO	16.92	COATEPEC DE LOS OLIVOS	1.52	8.98%	
		COL. MANUEL AVILA CAMACHO	0.10	0.59%	
		CHAPINGO	9.32	55.08%	
		SAN MIGUEL TLAIXPAN	5.98	35.34%	
EL TEJOCOTE	52.07	COATEPEC DE LOS OLIVOS	15.69	30.13%	
		COL MANUEL AVILA CAMACHO	25 98	49.89%	
		CHAPINGO	2.65	5.09%	
		EL TEJOCOTE	7.75	14.88%	
GARCES	49.03	COATEPEC DE LOS OLIVOS	31.13	63.49%	
		COL MANUEL AVILA CAMACHO	5.69	11,61%	
		EL TEJOCOTE	12.21	24.90%	

	TAI	BLA 2.3 OEFICIE	ZONA ORII NTES DE E	NTE (RE	GION A2) IIENTO		
CUENCA	1983	1984	1985	1986	1987	1988 PR	OMEDIO
TEJOCOTE	0.059	0 105	0.174	0.000			
ANDRES	0.076	0.061	0.174	0.062	0.040	0 043	0.081
MATEO	0.033	0.083	0.051	0.097	0.061	0.065	0.073
ATENCO	0.073	0.056	0.094	0.093	0 011	0 056	0.055
CHAPINGO	0.065	0.080	0.034	0.074	0.052	0.026	0.058
TEXCOCO	0.030	0.059	0.025		0 086	0.102	0 072
GRANDE	0.034	0.057	0.036	0.021	0.074	0.050	0.054
GARCES	0.044	0.032	0.036	0 069	0.060	0.045	0.050
	0.011	0.032		0 030	0.045	0.036	0.036
5.4			CC	EFICIENTE	DE LA RE	GION	0.060
***	TAI	DIADA:	ZONÁ ODU	711mm			
	IAI	DLA 2.4	ZONA ORII	INTE (RE	GION A2)		
	C	OFFICIE	NTES DE E	SCURRIA	MENTO		
CUENCA	1983	1984	1985	1986	1987	1988 PR	OMEDIO
TEJOCOTE	0.061	0 093	0 175	0.024	0.022	0 019	0.000
ANDRES	0.046	0.060	0.096	0.057	0.053	0 078	0.066
	0 022	0.086	0.011	0.120	0.013	0.056	0.065
MATEO	0 022					0.000	0.051
ATENCO	0 043	0.053	0.094	0.029	0.076	0.000	0.05
ATENCO CHAPINGO	0.043 0.045	-	0.094 0.014	0.029 0.051	0.076	0.026	
ATENCO CHAPINGO TEXCOCO	0 043	0.053		0.051	0.059	0 087	0.055
ATENCO CHAPINGO TEXCOCO GRANDE	0.043 0.045	0.053 0.076	0.014	0.051 0.015	0.059 0.043	0.087 0.061	0.055 0.040
ATENCO CHAPINGO TEXCOCO	0 043 0.045 0 039	0.053 0.076 0.043	0.014 N.E.	0.051 0.015 0.052	0.059 0.043 0.061	0 087 0 061 0 038	0.055 0.040 0.047
ATENCO CHAPINGO FEXCOCO GRANDE	0 043 0.045 0 039 0.040	0.053 0.076 0.043 0.049	0.014 N.E. 0.043 0.026	0.051 0.015	0.059 0.043 0.061 0.030	0.061 0.061 0.038 0.016	0.054 0.055 0.040 0.047 0.027 0.051

TABLA 2.5 CUENCAS DEL SUR								
CUENCA	AREA km²	ESTACION	AREA DE INFI	LUENCIA %				
SANTA TERESA	30.00	DESIERTO DE LOS LEONES MAGDALENA MONTEALEGRE	1.17 11.81 17.02	3.90 39.37 58.73				

1....

TABLA 2.6 ZONA SUR COEFICIENTES DE ESCURRIMIENTO PONDERADOS									
CUENCA	1983	1984	1985	1986	1987	1988	1989 PR	OMEDIO	
SANTA TERESA	0.148	0 098	0.139	0.155 C(0.116 DEFICIENTE	0.156 DE LA RE	0.148 GION	0.137 0.137	

	TΑ	BLA	2.7	
CUENC	45	DEL	PONIENTI	E

CUENCA	AREA	ESTACION	AREA DE INFLUENCIA		
	km²		km²	%	
SAN BARTOLITO	35.00	SAN BARTOLITO	3.08	8.80	
		CUAJIMALPA LA VENTA	7.88 9.57	22.51 27.34	
EL MOLINITO	108.00	DESIERTO DE LOS LEONES HUIXQUILUCAN	14.47 59.11	41.34 54.73	
		SAN BARTOLITO TOTOLICA	35.36 7.79	32.74 7.21	
		SAN LUIS AYUCAN	5.74	5,31	
TOTOLICA	23.50	SAN BARTOLITO TOTOLICA	7.21 10.26	30.68 43.66	
EL CONDE	36.50	SAN LUIS AYUCAN SAN BARTOLITO	6.03 25.95	25.66 71.10	
		TOTOLICA SAN LUIS AYUCAN	8.29 2.26	22.71 6.19	
ECHEGARAY	36.40	TOTOLICA EL SALITRE	14.16 19.51	38.90 53.60	
		CALACOAYA	2.73	7.50	
SANTA CRUZ EL SALITRE	4.20 17.00	CALACOAYA EL SALITRE	4.20 3.22	100.00 18.94	
LAS ARBOLEDAS	48.50	SAN LUIS AYUCAN LAS RUINAS	13.78 35.17	81.06 72.52	
		LAS ARBOLEDAS	13.33	27.48	

TABLA 2.8 ZONA PONIENTE COEFICIENTES DE ESCURRIMIENTO PONDERADOS								
REGION C		:			,		•	
CUENCA	1983	1984 ¹	1985	1986	1987	1988	1989 [ROMEDIO
SAN BARTOLITO	0.117	0.166		0.140	0.153	0.136	0.128	0.140
EL MOLINITO	0.114	0.125	0.110	0.136	0.107	0.119	0.120	0.119
				CC	DEFICIENTE	DE LA RE	GION	0.129
1			1				:	
REGION D	;					:	:	
CUENCA	1983	1984	1985	1986	1987	1988	1989 1	PROMEDIO
TOTOLICA	0.075	0.126	0.036	0.132	0.143	0.115	0.098	0.104
EL CONDE	0.138	0.131	,	0.12	0.168	0.155	0.116	0.138
ECHEGARAY	0.085	0.094	1	0.096	0.096	0.105		0.095
SANTA CRUZ*				0.148	0.108	0.114	0.053	0.106
EL SALITRE			,	0.095	0.088	0.159		0.114
LAS ARBOLEDAS				0.104	0.072	0.118	0.093	0.097
				C	DEFICIENT	E DE LA RE	GION	0.109
4	:	4					:	
* Coeficientes urbanos					:			

Simple the stage ρ_{AB} , then given a part ρ_{AB} .

......

TABLA 2.9 DETERMINACION DE COEFICIENTES DE ESCURRIMIENTO NO URBANOS Áreas en km²

CUENCA	AREA TOTAL	AREA URBANA	AREA NO URBANA	COEF.URBANO	COEF. NO URBANO
SANTA TERESA	. 30	1.9	28.1	0.315	0.125
SAN BARTOLITO	35	12.2	22.8	0.315	0.046
EL MOLINITO	108	26	82	0.315	. 0.057
TOTOLICA	23.5	32	20.3	0.27	0.078
EL CONDE	36.5	8	28 5	0.27	0.101
ECHEGARAY	36.4	8.3	28.1	0 27	0.043
SANTA CRUZ	4.2	4.2	1		
EL SALITRE	17	1.57	15.43	0 27	0.098
LAS ARBOLEDAS	48.5	11.5	37	0 27	0.043

TABI	_A 2.10	GAST	OS BA	SE PC	R UNI	DAD D	E ARI	EA
			m³/	s/km²				
CUENCA	1989	1988	1987	1986	1985	1984	1983	PROMEDIO
SANTA TERESA	0,01	800.0	0.008	0.011	0.008	0.006	0.006	0.008
SAN BARTOLITO	0.014	0.013	0.014	0.02		0.021	0.012	0.016
EL MOLINITO	900.0	0.008	0.008	0.008	0.009	0.008	0.007	0.008
TOTOLICA	0.018	0.022	0.015	0.008	0.006	0.007	0.005	0.012
EL CONDE	0.033	0.041	0.044	0.042		0.037	0.032	0.038
ECHEGARAY		0 009	0.009	0.008		0.009	0.007	0.008
EL SALITRE		0.005	0.004	0.004				0.004
LAS ARBOLEDAS		0.001						0.001
GASTO BASE M	EDIO PO	R UNIDA	D DE AF	EA PAR	A CADA	REGIO	N	0.012

Tabla 2.11 Comparación de coeficientes no urbanos del Manual contra los propuestos

REGION	COEFICIENTE	COEFICIENTE
	MANUAL	PROPUESTO
Al	0.020	0.020
A2	0.120	0.060
В	0.025	0.025
C D	0.080	0.050
D	0.100	0.070
ZONA PLANA	0.150	0.150
SIERRA DE GUADALUPE	0.150	0.150

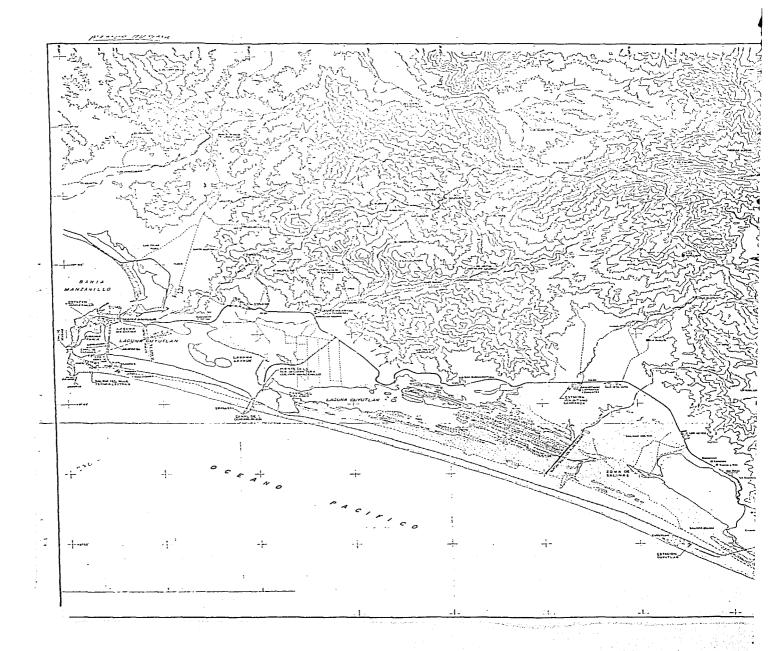
Tipo de área drenada	Coeficiente de	escurrimiento			
	Minimo	Máximo	Porcentaje	Mínimo	Máximo
onas comerciales					
Zona comercial	0.75	0.95			
Vecindarios	0.50	0.70			
onas residenciales					
unifamiliares	0.30	0.50	51.11%	0.15	0 26
multifamiliares espaciados	0.30	0.60	31.1176		0.26
multifamiliares compactos	0 60	0.75			
semiurbanas	0.25	0.40			
casa habitación	0.50	0 70			
onas industriales					
espaciado	0.50	0.80	i i		
compacto	0.60	0.90			
	1				
ementerios y parques	0.10	0.25	33 06%	0 03	0.08
	0 20				
Campos de juegos	10 20	0.35	·		
Patios de ferrocarniles	0 20	0.40			
	1				
Zonas suburbanas	0.10	D.30	7 67%	0.01	0 0:
			·		
Calles			·		
asfaltadas	0.70	0.95	B. 16%	0.06	0.08
de concreto hidráulico	0.80	0.95	1		
adoquinadas	0.70	0.85	i		
Estacionamientos	0.75	0.85			
Techados	0.75	0.95			
rechados	0.75		`{		
Praderas			1		
suelos arenosos planos	0 05	D. 10)		
(pendientes < 0.02)	-}				
suelos arenosos	0.10	0.19			
(pendientes medias entre 0,02 y 0 07)			1		
	1		-		
suelos arenosos escarpados	0.15	0.20	D		
(pendientes > 0.07)					
suelos arcillosos planos		0.1			
(pendientes < 0.02)	0.13		<u> </u>		
(penalentes < 0.02)		l			
suelos arcillosos	0.18	0.2	2		
(pendientes medias entre 0 02 y 0.07		1	·		l
suelos arcillosos escarpados	0.25	0.3	5		
		 	100.00%	0.25	0.4
		.]	Cu=	0 23 0 51	l-,

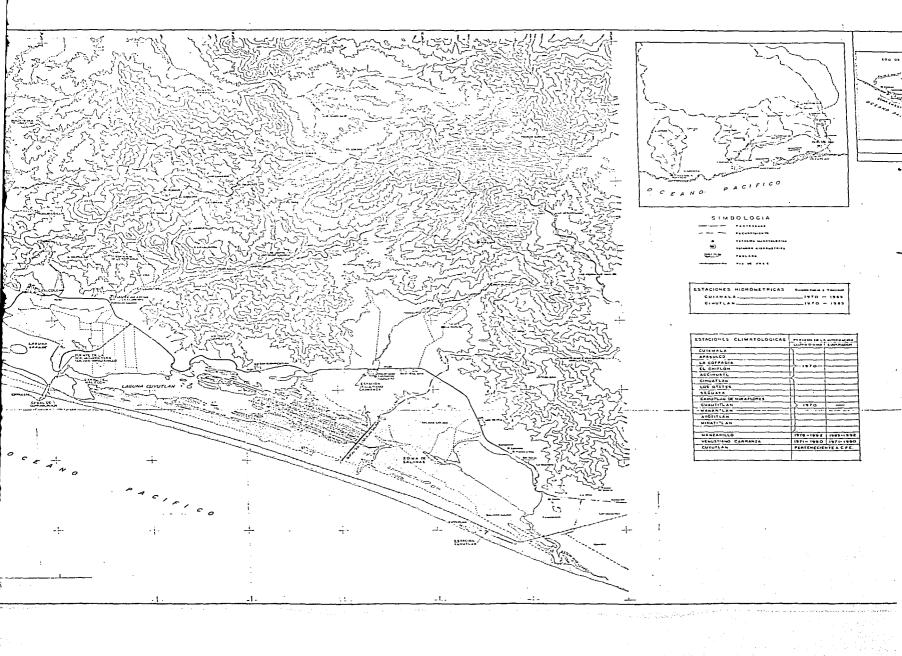
TABLA 4.1
ESTACION CLIMATOLOGICA MANZANILLO
LLUVIAS DIARIAS
ABRIL

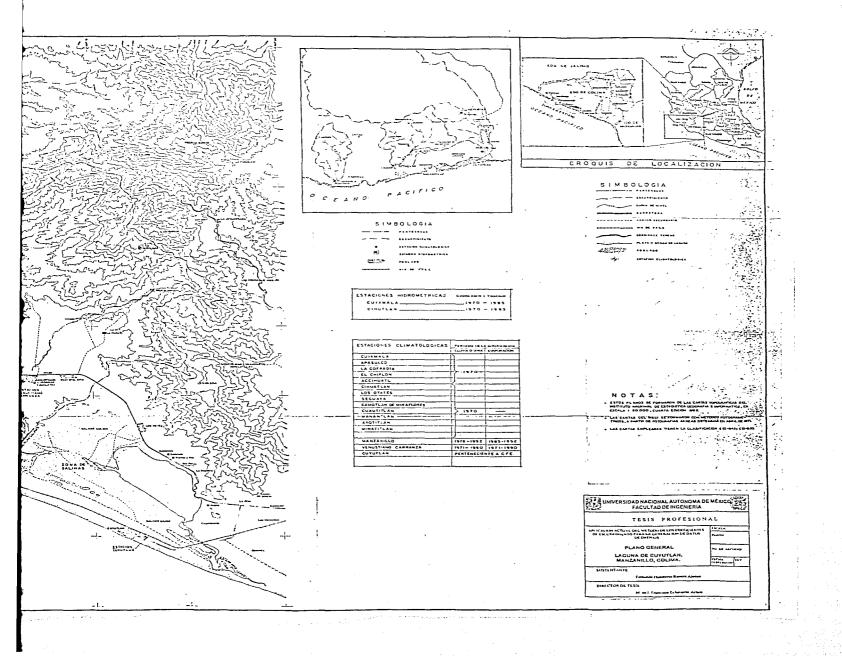
ANO	1978	1979	1980	1981	1982	1983	1984	1985	1985	1987	1988	1989	1990	1991	1892
DIA															
1	0.0	0.0	00	00	00	0.0	0	0.0	0.0	0.0	0.0	0.0	00	00	0.0
2	00	0	0.0	00	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
3	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
4	0	0.0	0.0	0.0	00	0.0	0.0	0	0.0	00	0.0	0.0	0.0	0.0	0.3
5	0.0	0.0	0.0	0.0	_00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	00	0.0	0.0	0.0	00
7	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
9	0.0	0.0	00	00	0.0	0.0	00	0.0	0.0	00	0.0	00	0.0	00	0.0
10	0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0
1	0.0	0.0	0.0	0.0	. 00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
12	0.0	_00	0.0	0.0	00	00	00	00	00	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	00	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0
14	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	.00	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0
16	0.0	00	00	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	00
17	0.0	00	0.0	0.0	00	00	0.0	00	0.0	00	0.0	00	0.0	0.0	0.0
18	0.0	0.0	_ 00	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00	0.0	_00
19	0.0	0	00	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	_00	0.0	0.0	0.0	0.0	0.0
21	0.0	٥	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	0.0	a	0.0	0.0	00	0.0	0.0	0.0	00	0.0	0.0	0.0	_00	0.0	_00
23	0.0	0.0	0.0	0.0	00	0.0	00	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
24	00	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0
25	0.0	0.0	_00	00	0.0	. 00	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	_00
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0	0.0	0.0	0.0
28	00	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	00	00
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
30	0.0	0.0	00	0.0	. 00	00	00	0.0	0.0	0.0	. 00	0.0	0.0	0.0	0.0

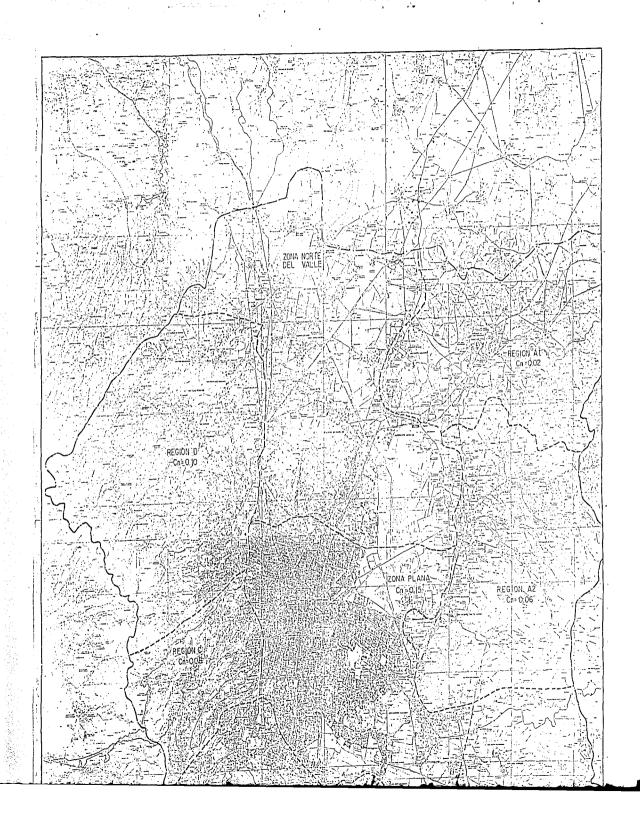
TABLA 4.2
ESTACION CLIMATOLOGICA MANZANILLO
LLUVIAS DIARIAS
AGOSTO

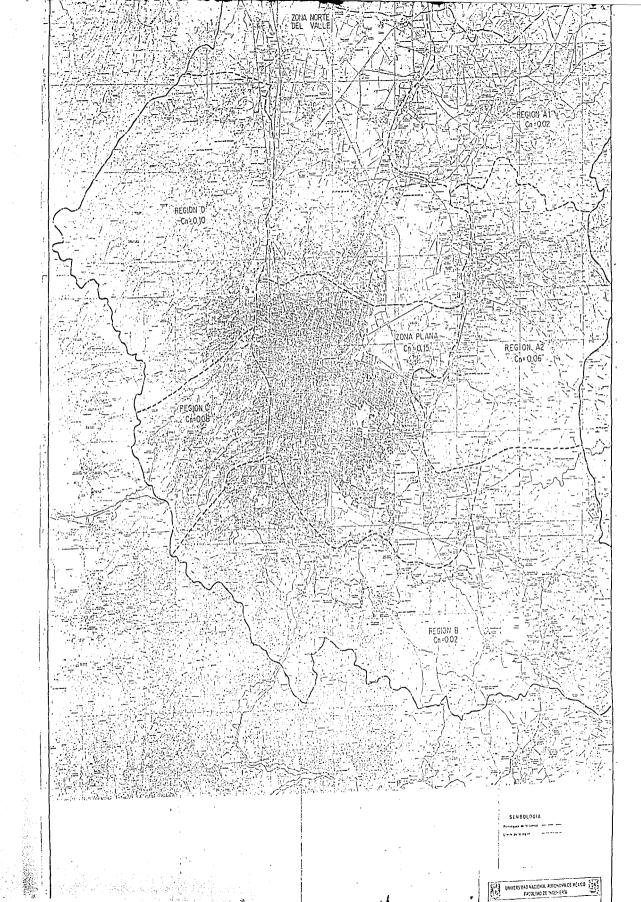
ANO	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
OIA															
1	0.0	0.0	7 6	0.0	190	0.0	20	0.0	0.0	0.6	0.0	6.7	0.0	32.8	0.0
7	04	0.0	0.5	0.0	00	112	00	0.0	0.0	0.5	0.0	2.9	00	2.6	0.0
	00	0	31 6	0.0	0.0	0.0	0.0	0.1	10	7 2	11	1 1	00	0.0	0.0
4	0.0	0.0	21.0	18	0.0	0.2	74.3	0.0	10.4	0.0	_ 0 1	0.0	. 00	10.3	.00
. 6	4.5	0.8	290	0.0	0.0	12.6	11.3	0.3	18 9	2 2	00	0.0	00	25	0.1
6	2.3	0.4	1.2	0.0	0.6	00	0.0	14	5.4	0.0	1.7	0.0	0.0	1.2	0.0
7	0.0	00	48	0.0	00	0.0	00	0.0	6.6	0.3	6.5	0.0	4.4	138	0.0
8	0.0	0.0	01	12.5	0 0	1.1	0.0	1 7	0.0	0.0	5 3	0.0	2 7	0.0	0.8
9	53	0.0	0.0	00	0.0	00	0.0	0.0	0.0	0.0	0.0	1.0	1.5	0.0	2 1
10	0.0	0.0	0.0	00	0.0	0.0	_00	0.0	0.0	0.0	38.1	0.0	0.0	0.0	29
11	0.0	0.0	5 6	0.2	0.0	7.7	3 9	21	0.0	1.5	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	31.2	0.4	. 00	06	0	0.2	00	0.0	3 1	0.0	0.0	2.6	0.0
13	0.5	37.9	26	02	QΩ	5	0.0	00	_00	0.0	10.4	1.0	6.1	0.0	0.0
14	0.3	37.0	0.0	23 2	0.0	0.0	2.5	0.0	7 3	0.0	2.2	0.2	0.0	00	27
15	0.0	0.0	0.0	8.7	0.0	0	56.7	0.7	04	0.0	2.2	1.2	0.0	20.8	67.8
16	00	00	00	68	0.0	00	0.0	16	0.0	0.0	203 5	0.0	00	0.0	0.8
17	0.0	0.0	11.6	0.0	0.0	0.0	7.7	0.2	00	0.0	85.8	0	5.7	25.1	0.2
18	20	00	1.3	30	7.8	0.0	_0.0	0.0	82.1	0.0	67.9	0.0	140	00	00
19	6.6	0	20.7	2.1	1.5	0.0	0	149	0.2	00	175	0.0	0.4	0.0	0.0
20	0.2	88	0	2 6	1.0	0	48	0.0	11.0	0.0	6G.5	0.0	0.0	23	5.6
21	43	01	0	00	0.0	09	6.3	0.0	27.7	a	0.4	0.4	0.0	00	8.6
22	0.0	0.3	0.5	0.2	00	0.0	0.0	50	00	00	00	0.4	0.0	0.0	0.3
23	00	29.4	48	0.2	00	00	00	33.3	0	24 0	00	00	1.1	00	0.0
24	00	10	290	0.0	0.0	0.4	6.8	3.4	1.0	0	0	190	403	0.0	24
25	13 4	4.1	0	33	00	36 0	26 4	0.0	41.7	00	0.0	178	0.6	1.9	00
26	1.7	15.0	0.0	245	0.0	2.8	00	2.3	92	0.4	02	5.5	20.7	0.0	0.0
27	0.0	123.1	0.0	49.5	16	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	0.0	3.2	0.0	00	0.0	0.0	1.5	4.5	0	18	23 5	1,1	0.2	0.9	0.0
29	0.0	2.7	0.0	35 0	0.3	0	0.0	0	31.3	0.0	63	0.3	18.1	9.8	0.0
30	0.0	47.9	7.6	0.0	0.0	0.0	0.0	0.0	97.3	0	34.3	1.2	21.9	7.7	0.0
31	15 7	1.3	42 0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	25.3	15.2	0.0	0.3

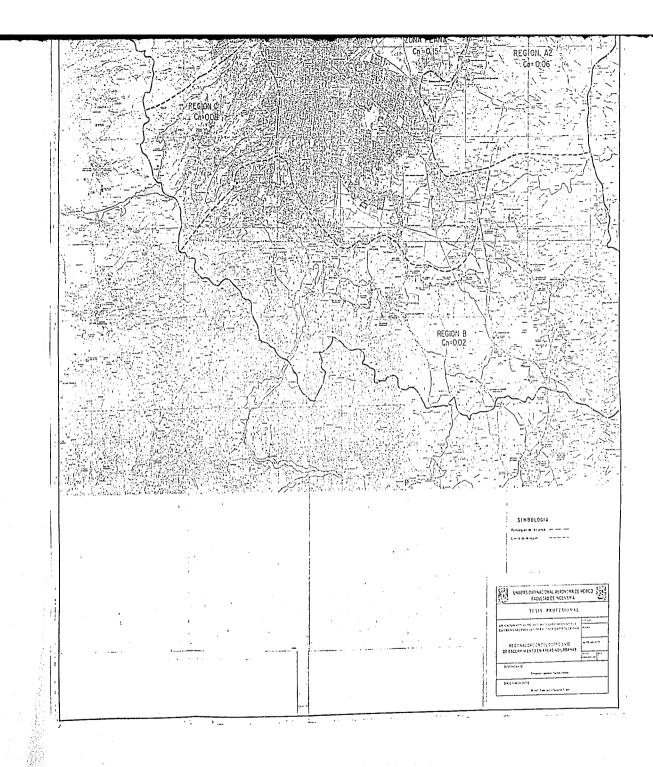

TABLA 4.3 ESTACION HIDROMETRICA DEL RIO CUXMALA REGISTRO DIARIO DE GASTO EN M3/S ABRIL

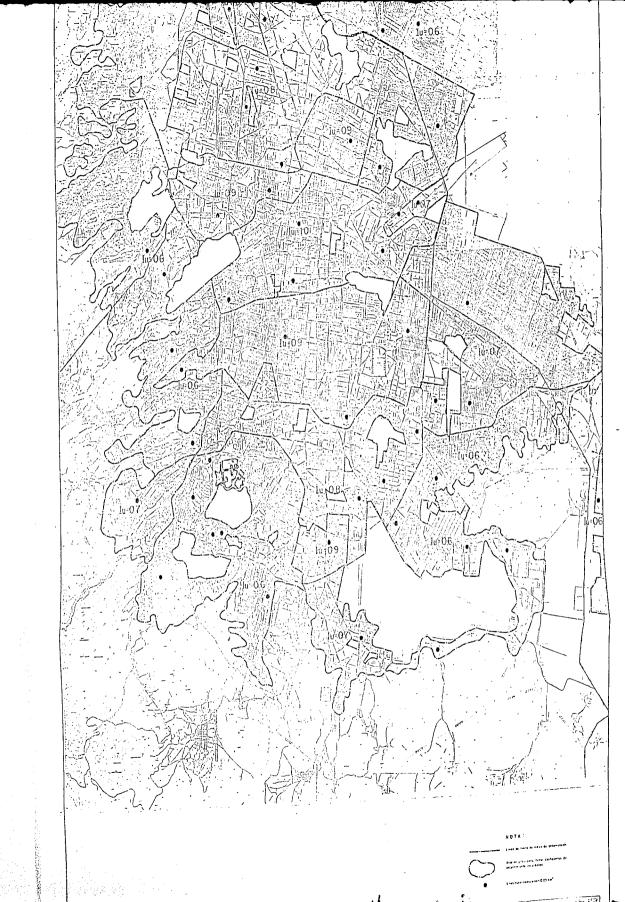

940	1971	1972	1973	1874	1975	1976	1977	1978	1979	1960	1981	1942	1983	1884	1145
DIA														_	
	SH	26	0.5	0.2	02	00	0.3	0.1	0.5	_00	01	SR	0.1	SR	0
2	SR	26	0.6	0.2	0.2	0.0	0.3	31	0.2	0.0	01	88	0.1	5R	0.0
v	SR	26	oa_	.02	0.2	_ 00	0.3	01	01	0.0		SP	. 01	SP	0.0
4	_58	2.2	0.0	0.2	0.2	00	0.4	_ 01	01	0.0	0	58	0.0	SR	00
	54	1.5	07	0.5	0.2	00	0.4	01	01	0.0	- 0 1	SR	00.	567	
	SPR	07	97	0.3	. 02	0.0	04	01	a)	0.0	01	58	0.0	\$8	0.0
7	SA	0.7	07	01	0.2	0.0	0.5	01	0.1	0.0	0	5.3	0.0	SR	0.0
•	54	0.7	0.7	0.1	0.5	0.0	0.5	01	01	0.0	1	S.R	0.0	SP	0.0
•	SH	0.6	07	01	0.1		9	0.1		0.0	01	SR	0.0	SR	0.0
10	SP	0.6	0.7	9	0 1	00	0.6	01	-	0.0	0.1	3	0.0	SA	0.0
71	SP	9.6	07			0	0.6	0 1	0.1	0.0	. 01	541	0.0	25	c
12	544	0.5	07	_ 01	-	0.0	0.6	0		00	00	25	0.0	SR	0.0
13	219	0.5	0.7	01	0.1		07	0.0	01	0.0	0.0	SR	0.0	SH	00
14	SAR	_05	06	01	01	00	0.7	0.0	01	0.0	00	58	υņ	543	0.0
15	SR	.05	0.6	01	01	DO	07	00	911	00	0.0	314	00	SR	00
16	SR	0.5	0.6	01	01	0.0	0.8	0.0	01	0.0	0.0	SH.	0.0	SH	0.0
97	86	0.5	0.6		0.1	0.0	O a	0.0	011	00	0.0	SA	00	34	. 00
18	SR	0.5	0.6	- 01	0.1	0.0	9.0	0.0	01	0.0	00	SR	00	SFI	-00
19	SH	2.5	0.6		01	00	0.8	00	-01	0.0	0.0	544	- 00	SR	5
20	SE	_ 0 *	0.6	0,1	-01	0.0	0.9	0.0	01	_ 6 0	00	58		5.0	2) ()
21	5	0.5	0.6	0.1	- 01	0.0	09	20	01	0.0	00	_ 5R	. 50	- 6A	00
22	54	7	0.4	01	10	0.0	0.0	0.0	01	0.0	_00	SR	00	SR	00
23	SR	0.5	0.6	01	01	0.0	10	. 00	01	0.0	0.0	SFR	D a	.5P	٥٥
24	514	0.5	0.5	01	01	0.0	10	0.0	0.0	0.0	0.0	84	_00	SS4	0.0
25	SR	0.5	0.5	01	01	0.0	10	0.0	0.0	_00	0.0	8.64	_00	SIR	0.0
36	54	0.5	3.5	01	01	0.0	11	0.0	00	-00	0.0	SR	00	SR	0.0
27	SH	0.5	0.5	. 01	0.1	0.0	11	0.0	_00	0.0	0.0	534	00	SH	CO
28	544	0.5	0.5	01	0.1	0.0	12	_00	0.0	0.0	0.0	. 5R	00]	3-	90
3.0	52	9.5	.05	00	- 61	_ 00 [7.47	_00	0.0	0.0	0.0	54	0.0	65	-00
30	SR	051	0.5	0.0	-01	00	74	- 00	00	001	0.0	38	0.0	58	20


TABLA 4.4


ESTACION HIDROMETRICA DEL RIO CUIXMALA
REGISTRO DIARIO DE GASTO EN M3/6
AGOSTO


ANO	1971	1972	1973	1974	1975	1970	1277	1978	1979	1980	1981	1962	1987	1984	1985
DIA															
-1	SR	0.5	0.5	00	01	0.0	10	0.0	00	00	0.0	SH	0.0	54	0.0
. 2	SH	0.5	04	0.0	01	00	0.4	00	00	0.0	0.0	CH	0.0	551	00
3	SH	0.5	24		0	0.0	. 02	0.0	0.0	0.0	0.0	88	00	SR	0.0
4	SH	05	0.4	00	0.1	0.0	01	2.0	D D	0.0	O D	. 84	00	SFe	.00
6.]	214	0.5	0.4	. 00	10	0.0	01	0.0	. 00	0.0	0.0	SR	0.0	544	00
	SR	0.5	. 04	0.0	_00	- 20	01	0.0	0.0	90	_ 00	54	0.0	244	00
77	54	_0.5	0.4	0.0	00	00	01	00	0.0	9.0	00	8.0	0.0	SR	0.0
	54	0.5	0.3	O D	0.0	0.0	01	0.0	0.0	0.0	0.0	562	_ 0 0	38	0.0
•	SR	25		00	0.0	0.0	5	0.0	0.0	0.0	0.0	SP	00	94	0
10	5	0.5	0.3	0	00	0.0		00	0.0	0	0.0	ğ	0.0	517	0.0
777	5	0.5	23	00	0	9	0.0	0.0	0.0	00	. 00	50	00	SP	00
12	844	0.5	0.3	00	20	00	0.0	00	00	00	0.0	89/4	0.0	SR	0.0
13	SR	0.0	_ 63		0.0	00	0.0	00	_00	0.0	0.0	. SR	00	38	0.0
14	SR	0	93	0.0	0.0	. 00	0.0	0.0	. 0	0.0	0.0	SAS	0.0	SP	0.0
12	SR	04	0.3	0.0	0.0	0.0	_00	0.0	00	0.0		SR	0.0	5.8	0.0
_16	542	0.4	0.2	00	00	0.0	. 00	0.0	0.0	0.0	0.0	54	0	SR	0.0
17	SR	0.4	02	20	0.0	00	00	0.0	0.0	0.0	0.0	SR	00	35	000
18	54	04	0.2	0.0	0.0	00	00	00	0.0	. 00	0.0		0.0	5	. 00
73	811	0	0.2	0.0	0.0	0	0.0	00	0	0.0	00	39	20	25	-00
20	SR	0.4	07		00	0.0	00	- 00	000	0.0	0	5A .	0.0	24	. 00
. 71	SR	0.4	0.2	0.0	0.0	0.0	0.0	00	00	0.0	90	SR	. 00	1547	0.0
22	SR	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.5	. 00	0	'SR	0.0	213	0.0
23	54	0.4	0.5	0.0	00	0.0	00	0.0	_00	00	0.0	24	50		0.0
34	38	04	0.7	00	0.0	0.0	00	00	. 00	0.0	0.0	7	9.5	75	0.0
24	5.0	0.4	. 02	0.0	0.0	_00	0.0	0.0	20	0.0	0.0	5R	0.0	SiR	. 00
26	SH	04	0.2	00	.00	00	0.0	0.0	0.0	00	00	SR	0.0	\$10	0.0
27	SH	04	0.2	00	0.0	00	00	00	00	9.0	00	5	0.0	-5R	0 0
28	5.0	04	02	01	0.0	00	00	00	00	00	00	55	46	30	0.0
29	54	04	_02	. 06	00	0.0	00	_00	0.0	0.0	0.0	SR	3.0	3.9	00
30	SP	.04	02	09	.00	00	00	00	0.0	00	0.0	357	23	SR	
31	543	30	0.2	10	0.0	00	0.63	0.0	0.0	G D	-00	5.44	14	3.69	0.0





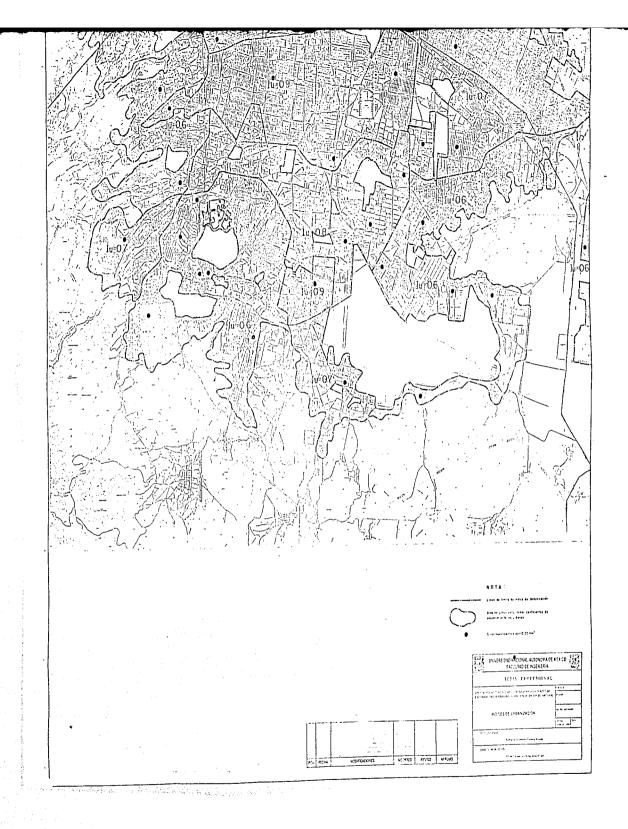


TABLA 4.5 ESTACION HIDROMETRICA DEL RIO CIHUATLAN REGISTRO DIARIO DE GASTO EN M3/S ABRIL

ARO!	1970	1971	1972	1873	1974	1975	1976	1977	1878	1979	1980	1981	1982	1983	1984	1986
DIA																
•	14	06	78	13	29	24	12	24	14	17	0.2	0.0	00	0.2	0.0	0.0
77	11	0.5	76	19	27	74	12	2.2	14	18	0.2	0.0	0.0	0.3	0.0	00
	0.5	0.5	2.6	10	74	2 3	12	22	7.4	20	0.7	0.0	0.0	01	0.0	0.0
-41	95	0.5	2 2	18	22	. 22	12	2.4	13	1.8	0.2	0.0	0.0	01	0.0	0.0
· • 1		0.5	15	1 6	5.3	2.2	14		12	16	0.2	0.0	0.0	0 1	0.0	0.0
•	0.4	0.5	0.7	1 6	3.0	2.2	1.6	2.3		1.5	0.2	0.0	6	0.1	0.0	. 0.0
77	0.4	0.5	0.7		21	7.2	. ,,	23	1.1	14	02	0.0	_00	0.1	0.0	00
	0.4	05	0.7	10	2.2	21	15	2.2	11	15	0.2	0.0	0.0	9	0.0	0.0
- 1	0.4	0.5	0.6	16	31	20	14	24	11	15	0.2	0.0	0.0	0.1	90	0.0
10	0.4	0.5	0.6	1.4	21	2.0	14	21	-	16	0.2	0.0	6	01	0.0	0.0
	04	60	0.6	17	2.4	2.0	14	22		15	02	0.0	0.0	01	0.0	0.0
.42	0.4	0.5	0.5	1.2	24	2.0	15	23	11	15	0.5	0.0	0.0	01	0.0	0.0
73	0.4	0.5	0.5		2.3	20	18	_7.3	11	12	0.7	0.0	0.0	0.0	000	. 00
14	5 4	03	0.5	10	25	17	14	5.3	10	1 ()	0.2	0.0		00	0.0	00.
13]	04	6.4	0.5	10	24	14	16	30	10	10	_ 01	0.0	_00	0.0	0.0	00
16	0.4	0.4	0.5	0.9	22	18	1.6	15	10	10	0.1	0.0	0.0	0.0	0.0	0.0
17	0.4	04	0.5	39	2 1	1.6	16	17	0.0	10	D t	0.0	00	0.0	0.0	0.0
18	0.4	0.4	0.5	10	10	1.6	16	23	0.9	10	01	0.0	0.0	0.0	00	0.0
19	0.4	0.4	0.5	14	18	17	1.6	23	0.9	1 1	01	00	0.0	0.0	00	0.0
20	0.4	0.4	0.5	10	17	1.8	1 6	73	0.9	- 1.1	0 1	0.0	0.0	0.0	0	0.0
	0.3	04	0.5	20	1.0	17	1.5	23	0 19		0.2	0.0	0.0	0.0	0.0	0.0
777		04	0.5	. , 7	2.	1.6		22	0.9	- 1	0.2	0.0	0.0	0.0	0.0	10
23	_04	_ 04	0.5	13	2.0	16	1 15	20	0.9	1.1	01	0.0	00	0.0	0.0	10
24	.04	_ 34	95		2,5	17	1.5	2 1	0.9	1.2	01	0.0	0.0	0.0	0.0	10
25	0.4	0.4	5	10	21	17	15	1.6	0 9	1.5	0.1	0.0	0.0	0.0	00	0.0
36	0.4	D 4	2.5	10	2.1	17	15	1.3	DB	1.1.	0.0	0.0	0.0	0.0	0.0	10
27	0.4	04	0.5	10	19	18	13	1.2	0.9	12	0.0	0.0	0.0	20	0.0	10
70	04	04	0.5	10	21	16	1.5	1.5	09	11	0.0	0.0	0.0	0.0	00	10
79	0.4	0.4	0.5	10	20	1.6	15	12	0.9	3.1	0.0	0.0	0.0	CO	0.0	10
30	04	04	0.5	0.9	1.5	18	13	12	0.9	77	0.6	00	0.0	0.0	0.0	00

TABLA 4.6 ESTACION HIDROMETRICA DEL RIO CIHUATLAN REGISTRO DIARIO DE DASTO EN M3/S AGOSTO

MA	1970	1974	1972	1973	1974	1876	1976	4877	1978	1979	1940	1981	1947	1923	1984	1985
DIA																
11	46 0	27 A	67.9	29.7	440	180	3 1	247	37.4	560	138	53.4	37 6	41.5	77.5	118 4
7	679	25.9	60.3	64 2	35.7	142	78.5	193	270	211	10.6	617)5 D	35.7	64 1	173.0
-31	49.5	22 4	48 1	1427	34.3	32.5	19.5	197	21.9	30.9	15.5	34.3	46 1	54.4	78.1	1121
	70 6	20 4	44 8	. 52 6	315	27.6	33.9	30 1	18.0	72.1	370	25.3	22 6	24 R	104 9	74.1
	51.2	36.6	517	49 4	73.7	36.3	70 5	36 0	18.6	230	19.2	24 0	19.5	32 6	66.0	61 1
-	973	433	29.4	20.4	23.6	72 1	53.7	65.7	15 1	31 6	17.5	25.5	45.4	32 1	127 4	-
7	79 2	393	433	71.2	29.2	125.5	1712	36.9	49 2	101	100	21.8	26.3	32	67.5	9-2
	6A B	_30 1	37.4	42.7	54.3	69.3	104 1	35.7	44; 3	144	76	183	38 0	28.2	54 0	62.4
	699	27.1	26.3	31.4	45 1	913	82.3	624	57 2	140	73	17.3	418	44 6	53.9	70 2
10	314	31.5	293	335	33.2	36 (37.6	61.7	52.9	11.0	7.6	15.6	31 0	41 7	549	473
111	625	30 0	4.9 1	44 9	64 2	66.2	27.6	59.4	16.5	3 4	17.9	16.0	40 B	77.2	75 6	37.2
12	783	28 2	24.1	66.5	32.9	61 6	25.7	48 3	21.4	115	267 3	21.5	470	51.8	63.5	58.3
13	594	25.2	31 2	921	75.4	55.3	26 7	42.6	103	76.4	end 7	24.9	7	410	37.4	740
14	618	250	72.9	46.7	945	54 2	24 6	238 0	23 6	36.3	106.0	46.5	35.6	33 4	46 9	883
15	1115	43 6	31.4	67 A	950	57 3	36 0	116	33.0	267	92 1	437	33.4	35.7	76 P	55 1
16	1113	6.3 8	50.6	1515	A-6 -6	67.0	29 1	60 8	195	86 9	127 6	53.0	37 %	32 3	78 6	1029
17	1192	46.7	38.6	128 7	106 ?	620	360	52.6	17.2	50.8	164 B	52.2	22.7	27.4	597	90.7
18	1453	27.6	40.3	496	48 1	34.9	93 1	56.0	25.7	25.4	156 Q	73.5	10.5	24.6	52 6	23.3
19	1107	45 8	310	66 2	45.3	76.3	1547	100 5	33.2	217	139 4	47 4	643	20.4	44 6	919
20	90 6	63.2	40.7	44.5	720	67.6	54.9	78.4	512	18.6	917	44.4	396	457	53 6	73 9
21	86.6	412	39 5	39 9	29.5	90 4	63.0	57.5	29.4	105.5	46 3	ŝ	198	49.5	51.1	614
72	62.4	60.4	25.4	29 2	1336	59.7	107 2	81 6	39.5	31.8	33 5	3A 1	32 7	31 8	57 B	642
23	83.5	61.1	63.6	30 0	1118	2	742	50 5	18.2	73 7	26.7	48.4	67 0	27 6	53 7	723
24	96 1	_ 55 3	57.9	291	130.0	68.0	77.3	47.1	18 5	196	26 P	414	5	343	63.5	44.1
75	80 2	58.5	37.7	45 6	104 3	63.4	66.6	26.5	20.0	21 4	25.5	5	_39 1	41 2	44 B	87.4
24	70 1	49 1	24.4	24 5	776	144 1	795	47.5	21 6	31 0	43 9	8	314	50 3	64 7	72.2
27	551	104	39 4	409	100 4	105 3	60.2	425	104	103 1	30.2	40 6	259	34.5	62.3	60 1
22	54.2	524	613	643	717	1131	47 2	73.2	30 2	55 4	66.3	116 7	23 0	31.9	74 5	923
29	79.3	414	70.7	69.5	104 6	90 4	50.9	62.9	44 4	79 5	33.2	904 3	23.6	32 6	600	643
30	83.1	37 9	79.5	1520	126.2	156.1	66 0	33.9	37.7	96 1	27 9	3713	24 8	36 D	60.2	87 T
39	613	625.3	134 7	96.2	1147	102 0	92.3	46 0	619	37.3	19.7	201 1	29.7	92.8	84 2	57.0

TABLA 4.7 CUENÇA CUIXMALA LLUVIA DIARIA AGOSTO (1976)

	ALCIHUATL	APASULCO	CHIPLON	COFRADIA	CUIXMALA
DIA					
•	00	0.0	24	0.0	00
2	100	100	44.5	140	33
-3	105	105	00	0.0	0.0
4	0.0	0.0	145	51 0	00
	20 0	20.0	41	00	5.6
•	0.0	0.0	30 1	00	48
_77	40.0	40 0	4.5	40.0	45
1	43.5	43.5	41	40	
	10 5	105		. 00	00
10	4.5	6.5		0.0	0.0
111	. 00	0.0	0.0	00	- 00
12	_ 27 0	27 0	5.2	0.0	0.0
72	10	10	0.0	0.0	26
14	0.0		132	24 0	6.0
15	10.5	105	00	0.0	211
16	2.0	2.0	3.6	0.0	1 8
17	49.5	49 5	25.9	80.0	168
18 [29 5	29.5	41	8.0	1136
12.1	0.0	0.0	0.5	10.0	12.2
20 [12.5	125	16	0.0	22.2
21	00	0.0	152	0.0	0.0
22	18.0	16.0	27	0.0	0.0
23	_ 00	3.0	0.0	50	32
74	9.5	9.5	0.6	38.5	7 6
26	00	00	187	360	0.0
26	2.0	20	0.0	0.0	0.0
77	26.5	28 5	0.01	0.0	0.0
201	0.6	3.0	0.0	0.0	3.0
79.1	35	0.0	161	0.0	0.0
30	70	10	37.7	560	20.6
31]	_ 00	0.0	20.0	0.0	0.0

TABLA 4.8 GUENCA CUIXMALA LLUVIA DIARIA

			TO (1977)		
CST	ALCIHUATL	APASULCO	CHIFLON	COFRADIA	CUIXMALA
DIA					
٦,	0.0			0.0	- 02
2	95	9.1	g p	8.0	0.0
-31	0.0	0.0	30	0.0	00
	15.0	150	21.5	30	33
	5.0	50	70	20	39
	0.0	00	9.0	100	
-,1	16.5	16.5	11	0.0	0.0
-	85	4.5	312	20 0	0.4
	35	3 3	20	7 0	00
10 (20.0	20.0	0.2	70.0	0.9
77	0.0	9.0	5.7	200	4.4
12 7	2 5	. 25	. 05	0.6	45 C
13	0.0	COI	49.7	21.5	131 4
14	20.0	20.0	113	126	27.2
15	330	33.0	0.0	0.0	0.0
76		201	0.0	170	0.0
17	20 5	20.5	632	125	ù O
18	60	0.0	4.7	21.5	00
19	0.0	0.0	17.4	60 D	11.6
20	47.5	475		0.0	0.1
21	00	0.0	87	00	0.0
25	0.0	0.0	0.0	420	0.0
23	40 5	40 5	0.0	001	0.0
24	001	۵۵	54 3	190	21.5
28	150	150	0.7	0.0	16
26	0.0	0.0	00	90	00
27	. 00	0.0	169	400	
28	40.0	400	49	750	
201	05	8.5	0.3	0.0	0.0
10	4.5	45	151	00	0.0
317	0.0	0.0	5.0	90	

TABLA 4.9 CUENCA CIHUATLAN LLUVIA DIARIA AGOSTO (1974)

EST	AYOTITLAN	CAMOTLAN	CINUATLAN	CUAUTI	MANAN	MINA	OTATES	SEGUAY
DIA								
1	0.0	0.0	90	105	6.5	35.0	0.0	0.0
2	0.0	0.0	. 00	35.0	3 2	15.0	0.0	
-	20 0	0.0	0.4	3.5	19	90	2.0	0.7
	80	6.0	0.0	90	2.5	. 00	0.0	
-	90	0.0	0.0	60	90	100	00	140
•	40	20	30	38 5	0.0	26.0	0	0 1
7	100	10	18	38 5	0.0	0.0	0.0	2 6
-,	70	20	9.0	7.0	60	100	0.0	00
-,	0.0	5.0	0.0	0.0	1 3	140	20	0.0
70	7.0	0.0	5.0	160	0.0	5.0	0.0	39.0
11	- 00	90	36	0.0	0.0	10 0	20 0	0.0
12	5.0	0.0	0.6	44.0	4	- 5	0.0	4.0
13	150	50	0.3	24 0	6.8	150	0.0	.13 9
14	150	00	00	3.0	15.7	550	0.3	- 00
15	2.0	3.0	01	35	20.7	10 0	0.0	22 4
16	30 0	- 60	17	88 0	0.0	35.0	0.0	69 6
17	0.0	50.0	0.0	40	7.4	39.0	60.0	01
12	6.0	3.5	0.0	10	9.3	3.0	50	2.0
19	27.0	20	3.3	22.5	00	100	0.0	45
20	0.0	6.0	00	0.0	2.5	_ 30	62.0	0.0
21	38 0	0.0	41	102.0	1 17	300	0.0	320
. 22	0.0	13 0			34 7	50		0.0
53	40		747	50	00	12.0	0.0	1102
74	73	24.0	0.0	0.5	17	40	100	
23	90	0.0	01	Ö O	15	. 60	0.0	15
26	140	0.0	0.0	15.5	7.5	. 00	0.0	. 00
27	110	0.0	23 7	7.5	92	5.0	20.0	21
21	110		85 3	16.0		7.0	0.0	34
29	3:10	51 ()	34.7	20		30.0	6.0	181
30	6.0	13 0	33 0	5.0		29 0	0.0	9
31	70	27.0	20 3	3.0	2.5	110	0.0	6

TABLA 4,10 CUENCA CIHUATLAN LLUVIA DIARIA AGOSTO (1975)

EST	AVOTITLAN	CAMOTLAN	CHUATLAN	CUAUTI	MANAN	MINA	OTATES	SEGUAY
DIA								
	0.0	10	0.0	0.0	0.0	740	100	0.0
-2	15.0	. 00	5.1	150	0.0	50.0	0.0	41
3	140	00	00	60	18.3	290	0.0	0.0
4	130	0.0	20	0.5	546	_ 140	00	2 1
-	60	510	0.0	310	122	67.0	2.2	234
	750	0.0	0.0	95	7.8	78 D	110	0.0
7	61 0	5.0	0.0	175	126	16.0	00	- 0
-	220	30	0.0	140	41	795	0.0	00
•	22 0	3.0	0.0	46.0	44	54.0	140	0 (
70	10	0.6	0.0	0.5	155	100	36.0	- 00
	63.0	100	9.5	415	34	0.0	0.0	2.0
17	9.0	190	04	Cgo	80	50.0	100	31
13	30	40	00	75	47	33 0	0.0	21
14	2.0	10	90	0.0	66	5.0	110	0
15	50	20	0.8	27.0	00	65.0	20	01
76	100	30	51	165	20	50	6.0	
77	150	10	0.0	0.0	DO	0.0	0.0	01
10	24.0	6.0	95	32.5	0.0	510	2G C	13
19	0.0	20	00	0.0	50	105	0.0	0
26	300	0.0	195	10.5	15	100	35.0	49
21	50	140	0.7	90	96	00	5.0	. 0
72	90	0.0	0.0	00	150	29.0	0.0	0
75	250	6.0	11.5	193	00	55.0	18.0	
7.4	25.0	15.0	0.4	27.0	9.2	14.0	35.5	10
33	7.0	28 0	16.5	29.5	16.5	0.0	0.0	54
24	56.0	69.0	743	190	120	32.5	19.0	16
27	3.0	310	120	25	20.0	00	30	0
218	50	0.0	5.2	13	0.0	210	90	
729	100	100	15	130	160	160	50	17
30	90	40	7.0	220	3.4	00	50	3
37	3.0	120	16.3	13	0.0	49.7	10.0	0

TABLA 4.11 GUENCA GUIXMALA LLUVIA MEDIA DIARIA EN mm ABRIL (1970)

DIA	CUIRMALA	APASULCO	COFRADIA	ALCIMUATE	CHIFLON	MEDIA
	15.5%	23 8%	28 1%	29%	29 8%	
- 4		0.0	0.0	0.0	50	- 00
2	0.0	00	0.0	00	CO	0.0
	0.0	0.0	0.0	9.0	00	(1)
4	. 00	0.0	0.0	0.0	0.0	
5	0.0	0.0	0.0	0.0	00	0
•	00	0.0	0.0	.00	0.0	. 01
7	0.0	0.0	0.0	0.0	0.0	- 0
8	0.0	0.0	23	0.0	201	C
_ 9	0.0	00	0.0	00	20	0
10		0.0	0.0	0.0	0.0	0.1
7,1	00	0.0	0.0	0.0	טס	9
12	0.0	0.0	0.0	აი	00	0
13	0.0	0.0	0.0	0.0	0.0	D
14	_ 0,			0.0	0.0	0
15	0.0	0.0	0.0	0.0	0.0	. 0
16	0.0		0.0	0.0	0.0	
77	_ 00	00	0.0	0.0	0.0	0
16	0.0	0.0	0.0	0.0	0.0	0
19	00	0.0	00	0.0	0.0	- 5
20	. 00	0.0	0.0	0.0	0.0	. 0
21	0.0	6.0	0.0	.00	0.0	0
22	_ 00	0.0	0.0	0.0	0.0	0
23	0.0	0.0	0.0	0.0	0.0	0
24	0.0	0.0	0.0	0.0	5.0	_ 0
25	_ 00	20	0.0	0.0	0.0	
26	0.0	6.0	0.0	0.0	0.0	0
27	0.0	0.0	90	20	0.0	0
28	0.0	0.0	0.0	0.0	9.0	3
29	0.0	30	0.0	0.0	3.0	- 0
30	_ 00	3.0	0.0	0.0	0.0	0

TABLA 4,12 CUENCA CUIXMALA LLUVIA MEDIA DIARIA EN mini AGOSTO (1970)

AK	CUIKMALA	APABULCO	COFRADIA	ALCIHUATL	CHIFLON	MEDIA
	24	15	00	91	SH	3 -
2	25.2	30	0.0	63	5R	6
- 3	43 1	0.0	25.0	114	SH	18 1
- 4	7.6	1.0	12.4	0.0	3R	4 1
5	50.3	51.5	38 0	118	512	34
	. 320	32 0	180	11.8	54	21
7	2.5	10	160	16	SR	*
		0.0	32.0	26.3	58	17
9	0.0	0.0	40 0	11	SR	11
10	0.0	10	0.0	12.4	84	3
11	0.0	0.0	280	5.5	582	9
-12°	0.0	0.0	180	17	SH	
-13	0.0	- 00	0.0	0.0	SR	0
74	9.0	0.0	0.0	37.4	SH	11
15	_ 00	0.0	15.0	41.1	SF4	16
16	12	0.0	150	11	58	4
17	33.4	32 0	120	26 4	544	24
10	0.0	0.0	15.0	1.6	544	4
19	_ 00	0.0	. 00	0.0	SER	0
20	0.0	0.0	0.0	0.0	544	0
21	0.0	0.0	0.0	5.8	SH	. 1
22	0.0	0.0	0.0	0.0	5R	
23	27.0	50	0.0	22 9	SR	1.5
24	4.5	10	120	9.6	SR	4
.25	0.0	0.0	16.0	0.0	SR	
76	0.0	00	0.0	0.3	SR	0
27	0.0	- 00	35.0	0.0	54	9
78	0.0	20	0.0	0.9	SH	- CI
79	4.6	6.0	0.0	24 8	SA	
30	0.0	2.0	0.0	0.7	SR	0
31	20 2	29.0	150	18 5	5R	21

TABLA 4,13 CUÈNCA CIHUATLAN LLUVIA MEDIA DIARIA EN mm ABRIL (1970)

-	ATOTITLA	CROWTLAN	CHANTIAN .	CURUTITLAN	MANAWILA	Mana Till Am	DIATES	SPOUATA	Media
_1	13 5%	14 3%	71%	17 5%	30%	15.6%	10 34	15 9%	
7	0.0	0.0	00	00	00	0.0	D 0	00	00
-21	_00	0.0	0.0	.00	00	0.0	00	_ 30	00
-37	0.0	0.0	0.0	9.0	0.0	00	90	0.0	00
~1	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0
-	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0
-87	20	0.0	0.0	0.0	00	0.0	0.0	00	0.0
7	0.0	00	0.0	0.0	00	00	0.0	00	00
•	0.0	0.0	0.0	0.0	00	ψa	00	00	0.0
-	0.0	0.0	0.0	00	00	0.0	0.0	00	00
10	00	0.0	0.0	90	0.0	0.0	0.0	0.0	0.0
111	0.0	00	0.0	0.0	0.0	0.0	00	00	0.0
12	20	0.0	0.0	0.0	0.0	0.0	0.0	60	0.0
13	00	Ó C	0.0	0.0	0.0	0.0	60	00	00
10	0.0	0.0	0.0	0.0	0.0	0.0	00	60	0.0
15	23	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
16	0.6	0.0	00	0.0	0.0	00	00	00	0.0
17		00	00	0.0	00	0.0	0.0	00	00
18	0.0	00	0.0	0.0	00	0.0	0.0	00	0.0
10	00	00	00	0.0	0.0	0.0	00	0.0	00
50	00	00.	0.0	00	0.0	20	0.0	00	0.0
21	0.0	00	0.0	0.0	00	00	0.0	20	0.0
22	92		00	8.0	0.0	0.0	00	20	0.0
23	20	0.0	0.0	30	20	0.0	20	0.0	0.0
24	20	00	0.0	0.0	0.0	0.0	0.0	00	3.0
25	00	00	. 00	0.0	0.0	00	00	00	0.0
26	0.0	00	0.0	0.3	0.0	00	00	00	D (
27	0.0	. 00	0.0	0.0	00	0.0	00	0.0	00
24	- 00	0.0	0.0	0.0	0.0	0.0	00	00	00
70	30	00			0.0	00	0.0	00	0.0
10	20	0.0	0.0	0.0	0.0	00	0.0	00	0.0

TABLA 4.14 CUENCA CIHUATLAN LLUVIA MEDIA DIARIA EN mm

=	AMOTITLA	CAMOTLAN	CHARLAR	CUAUTILAN	-	****	DTATES	9400A+4	-
7	26.0	- 00	00	95	10	9.5	0.6	5 0	7.
- 2	250	50	0.5	67.5	60.5	28.5	40	16.2	34
-	150	0.0	1 6	23.5	140	15.5	90	16	10
4	0.0	0.0	4.5	00	00	145	1.5	2.6	3
	3020	290	40.0	52.5	00	296	47 7	40.0	26
•	260	0.0	54.0	10	100	10	2.5	22	
7	15.0	00	0.0	1 00	15	4.5	0.0	0.7	- 3
	300	4.0	6.7	00	113	0.0	41	20.5	
•	300	0.0	0.5	0.0	21.6	160	0.0	20	,
10	27 0	6.5	04	180	21 5	38.5	00	19	15
11		00	00	55.5	27 ▲	50	1.5	0.0	16
12	00	90	20	3.5	90	0.0	20	00	,
13	G D	0.0	0.0	9.5	30	- 00	0.0	00	_
14	240	0.0	0.3	131.5	00	490	00	0.0	34
7.	175	0.0	10	1115	7.0	195	3.6	57	. 9
14	180	210	0.0	05	3.0	120	1.5	23	
17	27.0	330	67 4	160	00	57.5	23.4	33.9	45
18	300	0.0	00	4.5	37 0	0.0	0.0	00	- 6
19	0.0	0.6	0.5	0.0	5 2	00	30	30	U
30	0.0	00	00	20	00	0.0	0.0	00	0
21	140	00	0.0	00	52	0.0	00	6.0	7
22	190	00	0.3	00	25.5	3.5	79.0	0.0	7,2
23	29.6	0.0	7.5	33.5	43	1.0	0.0	2 5	11
24	30	40	0.2	0.0	106	70	30	10	2
24	90	0.0	0.0	0.0	0.5	00	00	9.3	-
20	00	0.5	0.0	17.5	00	130	0.0	9.0	- 5
27	50	00	0.0	00	0 0	00	00	00	
28	00	10	340	3.0	90	10	137	4.2	- 3
29	150	90	5.7	100.5	0.0	245	57	39	25
30	00		14	150	00	15	34	35	- 6
31	03	140	16.5	10	60	29.0	30 0	143	72

TABLA 4.15
DETERMINACION DE COEFICIENTES DE ESCURRIMIENTO
CUENCA RIO CUIXMALA, AÑO 1971
EPOCA DE LLUVIAS
AREA- 1080 KM'

465	DIA	MEDIA	LLUVIA	LLUVIA	OB.	QESC	VOL	A BOO WEHOR	
	j	mm	mi	mile	m3/e	m3/e	mi	m3	
KUL.	- -	17	1065419	0.2	0.70	00	17280	-	BUMA LLOV
	2	10	1061359	0.2	0 +0	-02	13674	0	849081276
	3	6.3	6754104	0.2	0.60	-04	13824	0	SUMMA ESC
	4	20	2122718	0.7	0.60	-07	12900	0	385594276
	- 5	1.6	1897562	31	1.00	-0.9	12000	- 0	c.
	6	0.0	0	31	1 20	19	254/04	164883	0444
	7	0.0	0	0.6	1 40	-08	46384	o o	
		0.0	- 0	03	1 50	-13	29376	0	
	9	- 1	1227593	0.2	1 80	-10	20131		
	10	0.3	353796	0.2	2 00	-18	14650	0	
	71	1.0	1902334	9.2	2 20	-20	13024	0	
	172	0.6	675410	0.2	2 40	-2.2	19144	0	
	13	27	2926778	- 21	2 60	-05	183168	- 0	
	1	8.5	9218491	17	2 80	.,,	149472	0	1
		7.0	6430190	ZC 7	3.00	17.7	1785752	1527156	
	10	0.0	0	27.6	3 20	196	1907378	1690475	
	17	0.0	7333027	157	3 41	117	1306960	1014749	
	18	7.1	77161632	8.9	361	53	768960	457441	i .
	13	72 1	23910636	22.8	3 01	190	1070784	1641057	
	30	8.5	697V241	427	401	38 7	3689280	3343145	i
	71	1.6	1941906	16.2	4 21	340	3299816	2936173	
	22	0.0	0	16.5	441	12.7	1435104	1054352	
	23	45	485/-522	72	4.61	2.6	618624	220564	
	24	0.9	10677917	5.4	4 61	0.5	452586	47218	
	25	34	5885710	45	5.01	-0.5	391392		
	20	49	5306796	3.0	5 21	-12	338088		ł
	27	62	6714/36	30	5 41	-16	336940		i
	28	27	2895923	18 1	361	125	1200304	1075783	i
	20	60	6	117	5.61	39	1009152	507243	ł
	30	9.0	- 0	7.4	6.01	14	539360	120143	
	33	67	771120	45	0 21	-19	354450	0	i
AGO	1	10	2047324	2.0	641	.38	225000	0	l .
	7	0.0	- 0	2.5	501	-41	217728	9	l
	3	0.5	578973	23	6.61	45	199584		ł.
	1	100	10752790	2.7	7 01	40	187458	6	1
	5	151	10206875	22	7.21	-51	180524		1
		00	647206	31	741	-43	205248	-	1
	-	1.0	1951388	61	7.01		525317	0	1
	-	121	13048733	67	781	10	636000	10,3799	1
		24.4	26376646	109	8.01	29	943480	251169	1
	10	129	13673980	135	8 21	5.7	1162080	4524 13	
	11	90	0	136	0.41	5.2	11/4176	447261	1
	12	0,	64725	7.6	8 91	400	669600		1
	13	0.6	675410	51	6.01	37	440643	0	1
	74	3.5	3793153	45	9.01	-42	410449	· · ·	1
	75	3.5	3627326	33	921	-3 9	421645		1
	110	00	9	9.7	2 42	93	638060	24624	1
	17	10.5	11/0/114	75	9.02	-22	644544	- 0	1
	10	2.6	2572992	6.5	9 02	-43	470928		1
	10	17	1801094	87	10.02	-13	757544	e	1
	70	00		134	10 22	36	1109728	307039	1
	21	25	2733404	135	10.42	31	1165536	203530	1
	22	01	64325	106	10.62	0.0	915842	3	1
	23	7.3	7847107	80	10.82	-10	831904	0	1
	24	07	10437750	94	11 02	-16	813016		1
	1 24	01	96467		11 22	-73	771982		1
	26	0.6	011000	0.0	11.42	-20	759456	0	1
	27	0.5	611000	107	11 62	- 40	923618		1
	29	00	0.77000	40 T	11 02	28.9	3514762	2493460	1
	70	0.3	321024	193	12 02	7.2	1664064	675602	1
	30	17 9	19207681	433	12 22	111	3914784	2059014	1
	31	82.3	R7531345	3/40	12 42	353 6	31622400	30549321	1
SEP	+-*;	49	3286367	1100 5	12 62	11679	101995200	100904813	1
36.0	1	07	796550	256 5	12 82	742 7	72334400	21729705	1
	1-3	13.3	14406755	7191	13.02	106 1	10230240	9165237	1
	1	100	18400733	770	13 72	MID	8396000	7255709	1
		1 00	1	1 4/2	1 .372	, RAD		1255760	

TABLA 4.15
DETERMINACION DE COEFICIENTES DE ESCURRIMIENTO
CUENCA RIO CUIXMALA. AÑO 1971
EPOCA DE LLUVIAS
AREA- 1050 KM'

ME S	DIA	LLUVIA	VOL	GASTO	96	DESC	VOL	VERG MENO
-	1	WEDIA	LLUVIA	LLUVE	d i	1	BAC	Y BASE
	1	mm	mt	m2-12	m¥=	m3/e	m3	m3
	3	421	45427305	75.6	13 42	62	2 053184	3377222
	-	30 G	41034190	63.3			7 547171	429478
	7	5.5	5917882	104 4	13.62	140	6 902016	787592
	-	127	13669020	014	14 02	47	4 530582	40942M
		01	128650	40 7	14 22	32	403485	ZRKINGZ
	70	3.7	3977953	40.5	14.42	20	3492.0	225304
	117	5.4	5792116	40.2	14 52	25		220981
	12	12.3	13319618	40.6	14 52	25	3507644	222794
	13	75.9	27997546	34 0	15 02	30 (4564600	3,507515
	14	47.1	NOMA#PA4	100 2	15 22	85	0057280	734168
	15	10	2091057	2300	15 42	2144	19872000	18539294
	76	00	0	105 4	10 63	89 8	9100366	7756551
	17	0.3	0	55.1	15 63	49	3024040	4257322
	3.0	00	0	547	16.03	40	5590C-60	
	10	17	1895419	810	16 23	34 6	44093400	3004466
	20	0.0	511086	45.9	16 43	200		
- 1	21	0.0	011059	40 P	18 53	24 3		2067210
- 1	22	711	7922488	315	19 83	14 /		1267742
- 1	23	03	284029	40.1	17 03	23 1	3404540	1993473
- 1	24	77	7892451	34 4	17 23	17.7	2972100	1483063
	25	0.2	200491	30 5	17 43	13 2	2635200	1129417
1	20	0.0	0	20.0	17.03	90	2290240	775149
ł	271	0.5	346761	23.1	17.63	7.3	2100040	626241
- 1	24	13.7	14762342	24.5	18 03	0.5	7110400	\$49093
ł	201	021	739715	327	10.23	14.3	2525250	1256 264
Ť	301	100	1820530n	307	18 43	123	2652480	10041156
er t		0.0	611090	38 7	18 63	20 1	1343090	1774049
ັ`∤		40	5325102	52.7	10 03	334	4570080	2683140
ጉ	-31	7.0	8515363	48.2	19.03	29.2	4104480	2520252
ŀ		- 61	6591292	70 6	19 23	314	807/9940	4430293
٠.	- 51	00	0	#3 O	10 43	636	7171200	5492135
- 1	- 61	10	1125684	591	19 63	19.5	5100240	3410737
- 1-	73	141	10-26 129	436	19 83	238	3767040	2053559
- 1		001	100110	46.5	20 03	20.5	4017600	22(W)a11
- 1-	-51	-114	17305790	330	20 23	13.0	2851200	1103103
· }-	101	30	0290195	32.5	20 43	121	2666000	1042594
r	111	3131	33654302	607	20 63	45 1	1/62950	3980100
- t-	12	221	23849634	1746	20 63	153 B	15005440	13285419
-	13	00	942600	110 3	21 03	60.3	9529420	7712590
ŀ	731	331	3574303	603	21 23	19.1	6209920	3375282
- 1-	75+	20.3	PO836497	39 3	21 43	37 0	2122520	3271574
-	10	100	11777800	242 9	21 63	2213	20956560	19117305
-	17	-100	11/// 1000	110 0	21 84	96 8	10247040	8300427
-	-	- 66		73.5	22 04	51.5	5350400	4440 129
r	10	60		37 7 1	22 24	34 9	4933440	3012251
-	201	04	450274	45.0	22 44	73 5	3995799	2027273
-	釬	-::	8748173	39.7	72 64		3430000	1474280
-	22	- 66		34.9	72 04	11.5	2972160	999000
⊢	55 +	34	3788323	200	23 04	30	2419200	628788
	% -	- 001	3.001/31	79 8	23 74	- 60	7174720	567000
	25	- 00		204		79 4	2540180	2540160
	?}	00	81	243	-+	24.3	2099320	2340180
	?} +	- 66		19.0		10.01	1719360	1719360
	27	- 661-		20 1		201	1730040	1730s-40
	-	- 66		203	-+	203	1753920	1753920
				443		-203	1733920	1/53920

TABLA 4.16
DETERMINACION DE COEFICIENTES DE ESCURRIMIENTO
CUENCA RÍO CIMILATIAN ANO 1871
EPOCA DE LLUVIAS
AREAN 2015 KM*

444	10.2	FLOOR	VOLUME.	63470	-64	0414	WOLUMEN.	ACT BEY REMOR	
	1		rrowse	HOVE			********	****	
20	٠.			***		- 31	24434		
	-					- 61	Here	H-H	
	F:-	:	- LINE	-:-		-37	17200		12910030
	-:-	-::	13403.00		-137		-		3 am g 4.
			March 1997	-61		- 0.7	****		41545
	$\overline{}$	7.	14446	-::	-:;;	- 31	:		
	Ε.				* 11				
	1		- nan	- 11		- 41	172mb		
	1		Ti dini	- 83		- 3			
	F: 1		Tratate)					7/6567	
	127		******	101	- 7.77	13	13674-6	119200	
		;;	1919		12 41	-31		-	410
			4407914		75.61	-44	Biat ma		
	100		124 5- 24		1921		676344		an area
		-37	5112545	-::	- 111		- 00.00		
	-	-37	THEFT	347	12.61	- 117		10000	
	22		1,5765	-16.2	12.61	-47	14651746	•	
	32	-::	The Control	-::	17.01	-	93754		
	-	::		307	12 41		1961393		
	70	70	Philips 16	- 47	73.86		Preside.	23444	
	1	:	142734	-77	19 47	-:	161000	125 34 24	
	-		*****				9111000		
	1 54	- 10			77.0		601.24		
X	1	- ;;	161141		15 15	- 23	11,410,00	- teb21	Transaction .
	-		100074	155	12 17		112/200		
	-	14	4417134	14.5	11.11		1447824	160707	PR 1 484 7 **
	-	-::	- MARINE	- 13	-11:		1770000	0.054	
	⊢÷		100		16 30		661764		
	1		1617335	7.	1676		es plus		
	-	-::	117767	-:	1736		70000	·i	
	-:-		117767				- iliani	:	
				- 677	72.22	123	200 360	14447	
		-::	113476	313	- 17 14	127	1011440	19499 45	
			2 FG4 734	-		- 117	6141314		
	110		1147/6	-44	34 42	- В-		3190 101	
		-::	1646737	::	77.66		1410011		
			12621669		11 40	763	- 3134154	1845641	
	150	2.1	4707546	*31	- 116	7.03	34 44 44	SALETE	
	31	-73	1022703	-:::	- 331	-::	7755480	SVICES !	
	22		+17767	20.71	7.5		7417000	1,10,100	
	74	::	1116411	-33	- 11 -		1474646		
	P.		4447	177	-36.05				
	1		Contradit	- 63	H-D	-175	75 Cash		
		:	3114434	-33	1/16	- 46 (43-413-	Vite II	
	-3-		311011		19.75		- 1.774 K	1174.6	
	. ,,	14	3275101	494	14.11	12.7	(Tagfes	· Bassa	
100	F;		212116	77.5	19.34		150000		
	-	-::		774	14 74	-77	764550		
	-	10.1			11.31	-194	1147440	31111	
	H		91484166 5346967	- 5	37.4	::	- 1143 Fee	- 437	
	H		1193637	101	37.20	- 69	1 1011110	- initial	
		- 17	124400	-57	13 64		THE STATE OF		i
			4737535	- 37	33.43		2771445		
	÷			34.5	1111	- 44	2547400		i
	100		614435	143	- H	- 44	2743600		i
	1	;;	1212366	-32	14.44			:	
	1		111153.20	400		75	Marile	4,460	
i .		· · ·	3614111	13.5	37.04	- 34 8		D-D-S	1
	111		1175010	- 11	114	- ::	PA (44)	177574	Ì
	1	- 11	7979020	- 410	774	-:;;	+ BATTLE	6,79476	ſ
			1001000	***	307	341	Lilling	3444334	
	100	• 1	Team Fra	***	-11	-41	LI HOLD	19310	
	111	;;	1261610	- 11			177012	1764743	
	1 30		Passage	411	44.5	141	******	TESTEE !	Į.
	h-1	77	3516161	51.5	4171	17.6	514444	1834471	

TABLA 4.16
DETERMINACION DE COEFICIENTES DE ESCURRIMIENTO
CUENCA RIO CINIJATLAN. AÑO 1971
SPOCA DE LLUVALA
AREA- 2005 KM*

	1 '	MANDEA !	LLOVES	44176		0 86Z	Pecumpo	POL SEL HOM/4	
	ŧ ı			-					
_	· •	7.5	1414414						
	10		11444361	400	-171		231334	683234	
	75		1101944		::::		ditacts"	64 34 34	
	-	-::	8181134				2627540	164634	
					4111	- 11	\$474440		
	-			374	77.16		Von 1144	1111166	
TY.			51130365	639 7		444.5	Venetice.	Tee Frank	
•	⊢ ÷		17457414	1130 0	-1 24	1614 4	44 14 46-10	97049921	
	H			2166		3156	16186370	57220114	
			1204466	1011	14.34	254.5	347M.14	26262426	
	10	7.	· Late 7 47	123 6	44.71	1165	16416400	1600)100	
	D.		74276474	1963	47.22	120 0	1646116	11361416	
	-		14104507	457	47.65	1847	1557-146	9134446	
	Η.	- **	70 50 544 (144 1	24 47	***	15-21-55	8379671	
	۲÷		7714127	1983	44 67	** 7	1150-100	7631345	
		- 11	11000100	1217		47	116 10440	1566333	
	- 2		14441411	7347	40.01			7116472	
			French	162.5	- 20 14	1117	10194726	11394194	
	E.	13.0	Pareter	2012	21.07	1947	3007 (630	The Property	
	CT.	•••	(Tees tag	3421		370 6	3144444	1019000	
	Œ	34.6	Lastinis	111	62 11	204.7	21544326	7 100 20 75	
	25		1415694			444.5	47424143	erelina.	
	10		******	_ BLC	37.11	777	30714166	741,3000	
			>>0.004	1455	43 67	1007	Territor.	144171	
		3.5	4121941	144 4	-11		1507114	7196357	
		-	107 150 1	120		100	***	4444	
			Taretait	1316	34 33	10.5		4000000	
	T-0		******	1170	15 14		10111100	2114176	
	12	194	Tell trans	127.5	-6.0	472	10076406	11000 10	
				A.M.A.	- 64 16		7114 1645	H11784	
	E	7.6	4777415	17.76			10111115	1200161	
	79	44	1776745	1111	47.05	4.7	1011200	4167901	
	_ Te			194.7			5441520	4447215	
	111		143747	917	15.57		-	Tiedles.	
	735	13.0	71671777		676	-	- Siling	35315	
	14.		643416	THE			TELLILIE.	4414744	
	100	444	f(1204 111	94.1	40 41	AT	#14 Pers	142114	
ÆΤ.	T-1	-11	4011176	1.61	44.95	1677	100 7500	13344736	
	7		75627610	716.0	41.67	-	10001170	Peerle	
	-		4674774	150.0			12712125	234414	
	-	33	44-4-61	114.0	110	140	15.575.500	64 (G.1)	
	—		13103	724	10.00		174 164 160	1001	
		26		116.0	11.0	81.3			
	LY.	71	Parter	115 2	- an	1 1 1 1	P16.1746	2210004	
	-		611434	411		150	125	3471314	
		-67	144774		- 66 18		8441794	1915294	
	100	1.0	3004714		44.43	47)	4411734	7071103	
	1	11.5	4144 1447	-	10 14	311	7174246	- Ballilli	
	12	7.1	10001070	10/2		101	16122200	19474	
	_:·		Potition	7142		-55	459656	1/1940	
	17.2	**		137.6	6775	3.5	STILLER.	10/44	
	1	14 4	*****		40		manin	1041416	
		-53	6416727	17.5	- 47	74.5	411111	2112164	
	100	24	2796476	-333	46.74	144	121717	34100114	
	, T.		22100.20	211.6	4176	- 101	230,000	1710110	
	1.5		-	167 6	10.54	Gir	11017043	1000000	
	-		1241171	-	14.00		17110100	Tailes	
	7.	4.5	1919154	132.3	713			1244717	
	11	- 35	1716/		77.50			1970407	
	77		12031610	176.6			1110000	Alcarka	
	12			120	7.1	-::-	118,79419	GHTG	
	74			110	7547	372	11878124	12744	
	1.25	-3.5		1977	10.00	376	672 456	741114	
	35					-::	- 1 5434	71411-6	
	34			-11	7. 16		107900	1000	
	/35			- 177	- 112		1102000		
	10		1134623	74.6	1 25		1103000	BY MARKS	
	bĩ−	131	51305740		- 10.01			Histo	
NOV	++		6194443	77			444444	49915	PM 10 40
	۲÷			77.	74.07	- (1		151932	
	H	-::			74.05	- 11	history	21217	430-14
	H	-::		- 2:			0011000		i.e
			·		2170	277	£544 194		r 410

TABLA 4.17

ANALISIS DE COEFICIENTES DE ESCURRIMIENTO PARA LA LAGUNA DE CUYUTLAN

ANO	ENERO	,	FEBRE	RO	MARZ	0	ABRIL		MAYO	-	JUNIO	
ľ	CHUATLAN	CULIMALA	CINUATLAN	CUPRALA	CINUATLAN		CHUATLAN	CUIXMALA	CIHUATLAN	CULUMALA	CIHUATLAN	CUNNALA
1970		SR	6171	59	0.171	SR	-	SR		SR	0.011	SR
						ļ	ļ		ŀ		0.274	
3971		5R		5.9		SR.		SR		5R	0.037	SR
				ŀ			ł	•		l	0.055	
1972									0139	0 087	0.139	0 087
1973	0 007					 					0011	0.151
			i I			Ì	1	Ì	l		0247	
1574			0012		0012				0 025	0 001	0.025	0.250
				ŀ				i	İ		0 273	i I
1976	0.001										0.236	0.100
1976	0 009								014		0144	0 108
1977											0.152	0.163
1978			0 601								0 284	0 161
1978		0 000	0 005		ļ					-	0012	
1935	0.020	0 0004	0 020								0 005	0 137
1991	0018	0 003										
1392			ļ		<u> </u>						0145	
1983	0 006	0 001	0 001						0 005		0.001	0 104
	1					1	i	İ	1	Ì	0 332	
1584	0.001	डव		SR		SR		SR		SR	0.041	SR
1535	0014										0 248	0.089
- MON	0001	600	0 001	0.000	0012	0.000	00%	0.000	0005	6000	0001	0.000
MED	0 010	0.001	0.009	0,000	0.012	0.000	0 000	0.000	0.078	0 018	0 134	0 104
MAX	0 020	0 000	0171	0.000	0171	3000	0,000	0 000	0144	0.087	0.332	0 250
Man	0.000		0,000		0.000	ł	0 000		0.000		0 000	
MED	0 005	ŀ	0.009		0012		0.005		0.048		0.119	1
MAX	0 020		0 171	1	0 171		0 000		0 144		0 332	

TABLA 4.17 (cont.)

ANALISIS DE COEFICIENTES DE ESCURRIMIENTO PARA LÁ LAGUNA DE CUYUTLAN

AFIO	JULIO		AGOS	ro .	SEPTIE	IBRE	OCTUB	RE	NOVE	BRE	DICIEM	RE
	CHUATLAN	CULKWALA	CHUATLAN	CNIMALA	CIHUATLAN		CHUATLAN		CIHUATLAN		CHUATLAN	
1970	0274	ŠR	0 274	SR	0 274	SR	0 274 0 154	SR	0 035	SR		\$R
1971	C 699	0 459	0 699	0.459	0 699	0 459	0.699	0 459	0018		-	
1211	, C23	0403	""	1	1		0.018		1	}		
1972	0 139	5 687	0 133	0.087	0 139	0.087	0 139	0 087	0 139			
	1	1	}			1	0 034		0.069			
1973	0 247	0 151	9247	0151	0 247	0 151	0 247	0 151	0.247		<u> </u>	
		1	1				ļ	0 056		i		
1974	0.273	0 250	0 273	C 250	0 273	0 250	0 273	0 250	0 273		0.008	0011
				ļ	Ì		0 024	0 025		<u> </u>	1	
1975	0 236	0 100	0 235	0 100	0 235	0 100	0.236	0 035			1	
	[0 035	L	0 007			0.056	
1976	0.144	0 108	0 144	0 108	0 144	0 108	0 144	0 108	0 022	0.001	0.056	
		l	i						0.064	0.018		
1977	0.152	0 163	0 152	0 163	0 152	0 (63	0.152	0 163	0.001	0 006	l	ŀ
1578	0.284	5161	0254	0.161	0.284	0161	0284	0.161	0 284			
15/8	0.284	0 161	0254	0.101	0.254	V 101	1 020	1	0204		ļ	
1979				0 G82	 		0015	0 002			-	
					i	ŀ				ļ	1 1	
7556	0 005	0 137	0 275	0 137	0 275	0.137	0 042	0 003	0.642		0.003	
	0.275	1				İ			l		i	
1981	0 333	0 163	0 333	0 153	0 333	0 163	0.333	0.163	0 333			
		1						0 005				
1982	0.145	0.095	0 145	00%	0 145	0.095	0.145	0 995	0 046	0 003	0 001	
	<u></u>	l				L		0 045		2012	0 005	
1983	0 332	8 104	0 322	0104	0 332	0 104	0 332	0 104	0 332	0.012		
1984		इत	0.614	SR	0614	SR	0614	SR.		SR	0011	5R
1985	0.248	0.069	0245	0.059	0 245	0.089	0245		0.086	-	 	
	l	}				l	0.085	L	1	L	L	
	0 005	0 600	0 135	000	0.133	0000	0.000	0 000	1330	0 000		000
MED	0 221	0 138	0 264	0138	0.264	0 131	0 185	0.095	0.111	0 006	0.014	0.00
MAX	0 699	0 459	0 699	0 459	0.699	0 459	0 699	0 459	0 333	0.018	0.056	0.01
MIN	0.000		0.000		0 000		0 000		0 000	ļ	0.000	
MED			0 201		G 198		0 141	1	0.058	ĺ	0.009	1
MAX	0 699	(0 693	1	0 699	1	0 699	ĺ	0 333	1	0.056	1

TABLA 4.18

ANALISIS DE GASTOS BASES MEDIDS PARA LA LAGUNA DE CUYUTLAN

	alifo i	MATE			LE DE CO				MARZO				TIME.				8710				AME)		сим	
	EMERO CMUATI		CHINAL		CHLATLAN		CENTRA		CHESTLAN		CHAMILE		CHUATLAN		(1EXTAL)		CHUAIL		CURREL	<u> </u>	CHUATU	4 3371	77	ŕ
17:17		779		9	725			-36-	114	75	-9-		2.64	74	5.8	24-	(6)	7.		:4	130	***	-	"
1571	711	7 16	- 12	77		-33	- 3	-34-	7-1	1 315	5	77.	245	E 45	5.	- इक		~5 N	9.	38	6 15 0 27	140	SA	3
							75		152		:37	: :55			6.5	1.55	- er	इस्	-107	7.0	1297			H
1512	735	76	149	-3	111	1"	133			,,														L
1973	1135	175	75	-	15	15	·**1A			324.		113	133	737	:65	⊤रस् ∣	, ,	743	CP	657	0 14 2 06 0 30	217	-679	
								1	-36	17			711	:9	517	211		7.95	cue	0.1	319	13 18		t٠
1614	741	149	Te	7	199		'n	,	117	, 							511		(2) 067		1538			
1273	1504	14	-10	-,	 	-14			312	31	:55	12		16	តា	-679		143	6.03	0.53		_	647	r
	10t			-																				
161	12	384		-	111	716	- 6%	37,	74		- 53	- 33	14	16	T:a	650	14	185	: ut	- 8X				Γ
	523 471		-]]			1		-						L
(g)	130	714	71	-,	6 13	15	139		795	-74	651		131	701	278	313	3.0	716	80	997				
					19	-10	- 670		175	7.7	- 637		154	164	हुन	939	-297	c 17	- 00:	0.30	-			ŀ
1974	380	116	131		35 194 4 1 2 9			"													+10		130	-
()/r	427	43)	12		10	150	7.54		115	111	:	5%	2	- X	534	€76	, '×'	138	č M	6.00	621	``'		ļ
1,40	625	114	- 631 CN		179	-571	0 34	<u>-</u> 11	- 613			-38	- स्प	74	-88	E to	122	7.38	130	955	000	630	£ 36	T
,,,,,,,	1947		133	4	24)			ĺ															600	L
1661	13 64 3 69 19 84	14				74	7.14	3#	5 200	4	C 24	9.9	7.50	750	366	2.5	65	300	Ć 3U	3.36	o at	T:00	000	
90	727	70	- 15		r	-20				- 76	537	:31	120		- 18	-34	€ 55	-5%	- SE	-34	0.00	600	34	T
		"																				ĺ		ĺ
130		10			y 70	177	0 90	74		- i			9	- 29	307	ė e:	206 436	74	CAC	767	2.0	130	70.15	Γ
	+14	ļ	12	·l ·	(11		Ĺ			- : 17		_,,	20	-14	-	: : 33	1977	·	-9-	- <u>G</u> -	500	7.7	sa	+-
1/44	117	431	u	2.8	7.51	12	14	u	7.59	. 15		Ů			1		į i				17 75	- 1		L
1991		14	15	+-	54	115	- 256		e 15		73 14		72	635	13;	÷x.	₹.	9.3	(70	(au)	6 (2	0.01	511	Г
	371	L		L				- 315								Ç13		311	-	: 04	1	227	_	۲
KIN.	J .	15		13		127		2 61		114	1	174		24	'	07e		245		840		1991		l
	! '	761	1	1 0		161		620	<i>i</i>	-01		6:00	<u> </u>	2.0	_	1 4.05	لــــــــــــــــــــــــــــــــــــــ	000					_	_

TABLA 4.18 (cont.)
ANALISIS DE GASTOS BASES MEDIOS PARA LA TABUNA DE CURUTLAK

480	JULIO CHIUATI		CULINA		AGOSTI CSIUAT		CUITAN		SEPTIES		CUDEA	u u	OCTUBS CONUATI		COURT	ua	CHUATI	JN.	CULUM	A	DKÆWS CHUATI	AR.	CUMMA	
16.3		~	53	-برت	-	_	12	95	_		32	122	प्रश	31.15	35	135	il a	100;	2	झ	1985	1615	ŞK	52
["]	()							ſ	[ĺ	[ĺ	27.72			[14 (2)			ĺ	1			
							ļ	-				 -			2537	22.1	76.52	7777	- 34	· 38 ·	13 12	1517	59	-3F
1371			·		l				1		İ		! .	İ			3711							
					1			١.		!	<u>L.</u>		<u> </u>				25(1	7721	737	117	82	18.50	710	715
1572			-	_	1							ļ	324	.ii.·t		ĺ	17 60	17.9	114	• ,,	17.		'''	
		1			ļ	l		1	i	ŀ	,	1	ne		ļ		6.12							
1975	-					_			-						37 2	11:12	nu	1117	90	41	1161	1181	135	12
			ļ	i	İ				1		į	1			21 21	1								
L					<u></u>	L		Ļ	-				-113	3:47		10 ज	1670	14 ()	602	-10	-इस	1525	275	314
1976			ĺ		Í		-	f	:)		22.64		13.53	1	1643	'		i	20		740	
	1			ĺ					1		ì		27 80		1049	İ					19 67		613	
ŀ	I _		i	l				L	ļ	L	-w-r	-are	15.70		1877		7551	788	- 77	-77	76	714	745	743
1515							(ſ	i	i	10.17	""			12.0									
1			'	i	ĺ	1			1	1					997						1			
					ļ		L	<u> </u>	!		Ĺ.,		L.,	-17.57	374		21.60	-271.	- 55	- 651	1476	5131	845	-18
1376			_		Ī						i	Ì	2.4	2.7	3/4	1"	17 15	3/1	€ 36		20 25			
i									i	l	ĺ	į				1	233		x?	i	1318		'	
l	1	i '	1		ł	i		ĺ	i				i		Ц.	L.	76.50		\$71		324	- 634	155	15
'477	-			_	_				_		1		25.4	7.0	35 1	\$ 51	12 %	112	753	* 11	1 22	•••	153	1"
			i		1		,	1		1	!	i	31.99			1	1045		541				i	
					!				1		İ	1			i		975							757
-177	-	-					_	-		-		i			379	12	68	92	7.0	112	ग	ध्य	73	753
•			!					1		1		1				1					l i			
-15:5	702	-1135	15.55	-05	- V 74	-02	-m	1112	100	THE S	128	20	14.1	747	445	i tie	12.	10	14	74	173	115	(37	9.57
19.7	""	17.89	1.3		1 ~"	7.0	11.75						50		10]	1 .					١.,		
					L					ļ	L	L	272	1:35	577	- 515	19.04	731	733	-58	-34	7.55	132	152
1991	129	12					i	Ì	1	İ	l	!	15.74	2:45	545		1 12				127			
1 .	E 04					i	l	1	i	1		1	1		1114	1	1			L	293	Ì		
191	-					_		_		_	1	1			1723		1612	स १	1,14	130	3.4	1:8	2.0	712
					l			1	ì	l	1	1			143		ĺ							
			L					-				 -	गान	TIG.			327	His.	70	79	पुत्र	112	. 251	734
:112	1 1								1		i	}		-	5 %		137.50		193		12 22			
	1 1							1		i		i			179		29.10		1575		945 730	} :		
1.))		<u> </u>		<u>L_</u>			1	1				ļ		16.9	77.0	1 27	18:0	1218	737		722	75	332
1763]	i		1		i	14 78	1 4 4	3	1 62	18	1.4				
	l i				1						1	ĺ	1		1		į		i			l		
1954	1705	11.7	- SA-	- 34			52	-32°	_		39	1 55.	1333	25.57	7	L CI	16.34	115	5.0	34.	98	134	32	-54
	1								1		1	ĺ	ì			İ		ĺ			i se			
						L			ļ				-17.0	31.5	-71	-un	े ग्रह	75.5	70	-15	***	14	139	73
1775			i		i		1)	1	į		į	34 \$7		"		17.96				!		SR	
1	1	1						L.	L		L					1					-			746
CC 3X		18.87		12	_	3:35				200	!	11.2		224	! _	1012		10		15.11		2131	1	845
uut ut		5159		1271 8 X		38 35 38 12	1	1127		812	1	100		11 55	l	000		140		0.00		13		0.00
COHEN	1	0.04	<u>. </u>	6.30		142		L.,	ــــــــــــــــــــــــــــــــــــــ		L		٠		۰ـــــــــــــــــــــــــــــــــــــ					-	_			

TABLA 4.18.a

ANALISIS DE GASTOS BASES MEDIOS PARA LÁ LAGUNA DE CUYUTLAN

		PEND	HEPERO	MATO.	ИM	MATC	NH3	110	F00250	SELIEMBE	DETTER	HAMENETE	DOCEMBAS
AREA CHUATLAN KW	,	000291	000.164	0.00076	0.00041	0.00018	0.00112	0.01325	0.01891	0.04365	0.01254	0.006%	0.00505
2028	•	200447	903132	0.00133	0 90107	0.00172	0.00540	0 031 55	0.01831	0.04365	001539	0.01830	0 01544
1.10		0.00139	0 00001	0.0000	0.00000	9 (0) (00	0.0000	9 90002	0.01291	0.04365	0.00591	0 00217	0 00065
AREA CUXWALA, KW2		600143	0 00065	0 00025	0.00012	0.0005	0 00005	0.00377	0.90346	0.01206	00:00	0 30477	0 00267
1960		6 0:31A	0.00177	0.00129	0.0000	0.00037	0.00034	0 01 132	9 61039	0.67559	0.02730	0 01432	0 00782
		0.00000	0.0000	0.00000	00000	6,00,000	0.00000	0.0000	0.00000	00000	0.00900	0 00000	0 00000
MEDA		0 00212	0.00116	0.00051	0.00027	0.00072	0.00058	0.50851	001119	0 02616	0.01160	0.00647	0 00386
MAXAM?		0 00447	0 00333	0.00193	0.00107	0.00122	0.00540	0 03165	2 0:591	0.64365	0.02790	0.01850	0 01544
NAMA		0.0000	0.00000	6 3030	6 30000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.003/0	0,00000
AREA CUTUTLAN	348 36 34												
KEDA		024	645	015	0.09	0.06	0.20	297	390	9.81	4 04	2 25	134
MATIMO		156	1 15	067	0.37	6.43	143	11 12	5.59	15.21	9.72	6 37	538
MANO		0.00	0.60	0.00	0.00	6 DB	0.00	600	0.00	0.00	6.00	0.00	0.00
AREA CUERPO 1	1 000												
VEDIA		0.00	0.00	0.00	600	6 OC	6.03	106	0.91	00)	9.01	001	0.00
CHEXAN		0.00	0.00	0.00	9.20	0.00	Dút	6.03	0.02	3.04	0.03	0.02	0.02
MP RING		0.00	0.00	0.00	0.59	0.00	6.00	9 00	0.00	0.00	0.00	9.00	0.00
AREA CLERPO 2,	2 750												
MEDIA		001	0.39	0.00	0.00	9.00	0.00	6 92	0.03	0.03	0.03	0.02	0.01
WAXAN)		100	0.01	0.01	0.00	0.00	0.01	0.09	0.05	0.12	0.06	8 65	0.04
MENNA)		0.00	0.00	0.00	9.00	0.00	0.00	5 00	0.00	0.00	0.00	0:00	0.00
AREA CLERPO 3. 15	2 350												
MEIXA		eъ	019	0.08	0.04	024	0.09	138	1 82	457	188	105	88
CARLAN		973	694	0 31	017	0.22	0.58	5 t7	3 97	769	453	297	251
MINTAN		0.00	9 33	2 90	0.00	0.00	0.00	0.09	0.00	000	0.00	0.00	0.00
AREA CUERPO 4 13	C 500												
VEDIA		0.28	Ç 15	0.07	0.03	0.03	g ca	1 11	145	3.57	151	0.84	0.50
CMUASE		6.58	0.43	025	0 14	5.16	0.79	4 15	2 47	573	354	239	201
WPEMO		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.00
CUER		0.003	1 (01	9 001	0 (O)	0.000	0.001	0.009	3011	G 326	0.012	0 006	0 004
CUER		0.006	0 203	0.00	0.001	0.001	0.002	0.023	0.031	0.07	0.037	6.016	0011
CLER		034	0168	0.083	0043	C 015	0.095	1 332	1816	4572	1 884	1650	0 627
CUER	PQ 4	0.275	Q t51	1600	0.005	e C16	9.00	1 111	1499	3675	1514	0 844	0504

TABLA 4.19
CALCULO DE VOLUMENES DE ESCURRIMIENTO Y GASTOS BASES
LAGUNA DE CUYUTLAN
ABRIL

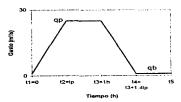

									GASTO	BASE			VOL DIARI	O DE ESC	URRIMIENT	0
										m3/s_			nules de ni3			
DIA	LLUVIA	(EDIA	С	UE		₹ P	0	Ce	С	UE	R P	0	C	U E	R P	0
	EST 1	EST 2	1	2		1	4	l	1	2	3	4	1	2	3	4
1	0.00	0.00	0.00	0.0	0	0.00	0 00	0 005	0 00	0.00	0.04	0.03	0 02	0.06	3.72	2 99
2	0.00	0.00	0.00	0.0	0	0.00	0.00	0 005	0.00	0.00	0.04	0.03	0.02	0.06	3.72	2 99
1	0.02	0.00	0.02	0.0	2	0.01	0.00	0 005	0.00	0.00	0.04	0.03	0.02	0.06	3.73	2 99
4	0 02	0.00	0 02	0.0	2	0.01	0.00	0 005	0.00	0.00	0.04	0.03	0.02	0.06	373	299
5	0.00	0.00	0.00	0.0	0	0.00	0.00	0.005	0.00	0.00	0.64	0.03	0.02	0.06	3.72	2 99
6	0.00	0 00	0.00	0.0	0	0.00	0 00	0 005	0 00	0.00	0.04	0.03	0 02	0.06	3.72	2 99
7	0 00	0.00	0.00	0.0	01	0 00	0.00	0.005	0.00	0.00	0.04	0 03	0 02	0.06	372	2 99
8	0 00	0.00	0.00	0.0	0	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	372	2.99
9	0.00	0.00	0.00	0.0	0	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	3.72	2.99
10	0.00	0.00	0.00	0.0	0	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	3 72	299
11	0.00	0.00	0.00	00	0	0.00	0.00	0 005	0.00	0.00	0.04	0.03	0.02	0.06	372	2 99
12	0.00	0.00	0.00	0.0	0 1	0.00	0.00	0 005	0.00	0.00	0.04	0.03	0 02	0.06	3.72	2.99
13	0.00	0.00	0.00	0.0	٥Ì	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0.02	0.06	372	2.99
14	0.00	0 00 1	0.00	0.0	0	0.00	0.00	0.005	0 00	0.00	0.04	0.03	0 02	0.06	372	2.99
15	0 00	0.00	0.00	0.0	0	0.00	0.00	0 005	0.00	0.00	0.04	0.03	0.02	0.06	3 72	299
16	0.00	0.00	0.00	0.0	ō l	0.00	0.00	0 005	0.00	0.00	000	0.03	0.02	0.06	3 72	299
17	0 00	0.00	0.00	0.0	of	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	3.72	2.99
18	0.00	0.00	0.00	0.0	0	0.00	0.00	0.005	0.00	0.00	0.04	0 03	0 02	0.05	372	2.99
19	0.00	0.00	0.00	0.0	οl	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	372	2 99
20	0.00	0.01	0.00	0.0	0	0.00	0.01	0.005	0 00	0.00	0.04	0.03	0.02	0.06	372	2 99
21	0 60	0.00	0.00	0.0	01	0 00	0.00	0.005	0.00	0.00	0 C4	0.03	0.02	0.06	372	2.99
22	0.00	0.00	0.00	0.0	σĺ	0.00	0.00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	372	2 99
23	0.00	0.00	0.00	0.0	٥Ť	0 00	0.00	0 005	0.09	0.00	0.04	0.03	0.02	0.06	372	2.99
24	0.00	0 00	0.00	0.0	σŤ	0.00	0.00	0 005	0.00	0.00	0.04	0.03	0 02	0.06	3.72	2 99
25	0.00	0.00	0.00	0.0	-	0.00	0.00	0.005	0.00	0.00		0.03	0 02	0.06	372	2 99
26	0.00	0.00	0.00	0.0		0.00	0 00	0.005	0 00	0.00	0.04	0.03	0.02	0.06	372	2 9
27	0 00	0.00	0.00	0 0	0	0.00	0 00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	3.72	2.99
28	0.00	0.00	0 00	0.0	ō	0.00	0.00	0.005	0.00	0.00	0.04	0 03	0.02	0.06	372	2 9
29	0.00	0.00	0.00	0.0	0	0.00	0 00	0.005	0.00	0.00	0.04	0.03	0 02	0.06	3.72	2 99
30	0.00	C 00 i	0.00	0.0	51	0.00	0.00	0.005	0.00	0.00		0.03	0.02	0.06	372	2.99

TABLA 4.20
CALCULO DE VOLUMENES DE ESCURRIMIENTO Y GASTOS BASES
LAGUNA DE CUYUTLAN
AGOSTO

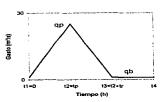

								GASTO BASE m3/s				VOL DIARIO DE ESCURRIMIENTO miles de m3				
DIA	LLUVIA	UFDIA	C	U E	R P	0	Ce	C		R P	0	c	U E	R P	Ô	
		EST 2	1	2	3	4	1	1	2	3	1	1	2	3	4	
	4 58	2 52	4.58	4 58	3 20	2 57	0 201	0.01	0 03	1 82	1 46	1 89	5 19	251.45	193 4	
2	1 23	10 01	1 23	123	7.11	9 84	0 201	0.01	0.03	1 82	1 46	1.21	3 34	369 08	384.1	
3	241	4 44	2.41	241	377	4 40	0 201	0.01	0.03	182	1 46	1.45	3 99	280 03	241.6	
4	7.87	3 37	7.87	7 87	4 86	3 45	0 201	0.01	0.03	1 82	1 46	2 5 5	7 01	315 44	216.9	
5	5.48	3 37	5 48	5 48	4.07	341	0 201	0.01	0.03	1 82	1 45	2 07	568	289 67	215 6	
6	0.95	4 54	0.95	0 95	3.55	4 76	0 201	0.01	0.03	1 82	1 46	1 16	3.18	272 87	250 9	
7	2.45	3 01	2.45	2 45	2.83	3 00	0 201	0.01	0.03	1 82	1 45	1 46	4 0 1	249.15	204 83	
8	161	6 30	161	1.61	4 75	6 21	0.201	0.01	0.03	1 82	1 46	1 29	3 55	312 08	288 92	
9	0 66	4 50	0.66	0.65	3 23	4 42	0 201	0.01	0.03	1 82	1 46	1 10	3 02	262 45	242 15	
10	2 73	4 12	273	273	366	4 09	0.201	0.01	0.03	1 82	1 45	1 52	4 16	275 42	233.41	
11	1 40	8.17	1.40	1 40	5.94	8 04	0 201	0.01	0 03	1 82	1 46	1 25	3 43	350 68	336 89	
12	254	191	2 54	2 54	2 12	1 92	0 201	0.01	0 03	1.82	1 46	1 48	4 06	226 10	176 60	
13	4 25	201	4.25	4 25	2.75	206	0 201	0.01	0.03	1 82	1 46	1 82	5 00	246 74	180 07	
14	5.03	1 56	5 03	5 03	270	1 63	0 201	0.01	0.03	1 62	1 45	198	5 43	245 17	168 83	
15	10.57	311	10 57	10 57	5 57	3 26	0.201	0.01	0 03	1.52	1 45	3 09	8 49	338 66	211.51	
16	14.19	4 94	14.19	14 19	7.99	5 13	0 201	0.01	0.03	1 82	1 46	3 62	10 50	417 78	260.59	
17	9.15	6 45	9.15	9 15	8 68	8 47	0 201	0.01	0 03	1.82	1 46	281	771	440 36	348 22	
18	11 87	5 92	11 87	11 87	7.88	6 04	0 201	0.01	0 03	1 82	1 46	3 35	9 22	414 22	284 47	
19	4 26	3 32	4 26	4 26	3.63	3 34	0.201	0.01	0 03	1 82	1.46	1 82	5 01	275.50	213 80	
20	6 85	4 21	6.85	6 85	5 08	4 26	0 201	0.01	0.03	182	1 46	2 34	5 44	322 72	237.84	
21	3 25	5 68	3 25	3 25	4.88	5 63	0 201	0.01	0.03	1 82	1 46	1 62	4 45	316 16	273 90	
22	045	3 90	0.45	0 45	276	3 83	0 201	0.01	0 03	182	146	1 06	2 90	247 03	226.61	
23	6.19	6 99	6 19	6 19	672	6 97	0 201	0.01	0 03	1 52	1 46	2 21	6 07	376 38	309 01	
24	6 89	2.53	6 69	6 89	3 97	2 62	0 201	0.01	0 03	1 82	1 46	2 35	6 46	355.42	194 76	
25	968	9.16	9.68	9 68	9 34	9 18	0 201	0.01	0 03	1 82	1 46	2 91	8 00	461.60	366.79	
26	4.89	2 34	4 89	4 89	3 18	2 39	0 201	001	0 03	1 82	1 46	195	5 35	260 64	188 72	
27	11 61	576	1161	11 61	7.69	5 8 5	0 201	0.01	0 03	182	1 45	3 30	9.07	407 95	280 25	
28	2.45	6 38	2 45	2 45	5 08	6.30	0 201	0.01	0.03	1 82	146	1 45	4 01	322 85	291 47	
29	6.92	13 64	6 92	6 92	11 42	13 50	0 201	001	0 03	182	1.46	2 36	6 48	529 63	480 26	
30	14.54	10 68	14.54	14 54	11.95	10 76	0 201	0.01	0 03	1 82	1 46	3 89	10 69	547 13	408 35	
31	6 67	9 53	6 67	6 67	8 59	9 47	0 201	001	0 03	1 82 /	1 46	2 04	6 34	437 12	374 59	

FIGURA 1.1 HIDROGRAMA TRAPECIAL

FIGURA 1.2 HIDROGRAMA TRIANGULAR

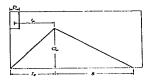


FIGURA 1.3 Hidrograma triangular propuesto por el S.C.S.

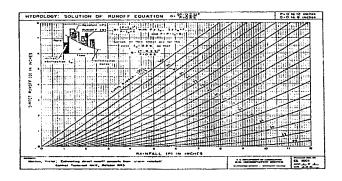
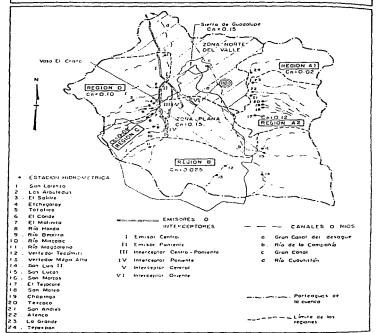



Figura 1.4 Solución gráfica a la ecuación de escurrimiento del S.C.S.

FIGURA 2.1 Regionalización del coeficiente de escurrimiento en áreas no urbanizadas

SIMBOLOGIA

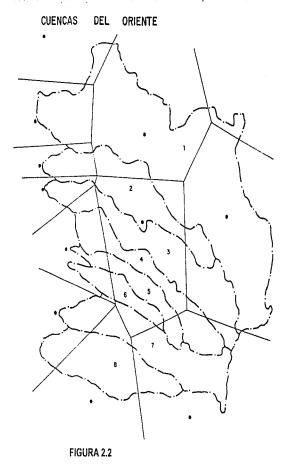
PARTEAGUAS___

ESTACION PLUVIOMETRICA

1.- LA GRANDE 2.- ATENCO

E. -- AICHCO

3.- SAN ANDRES


4 - TEXCOCO

5. - CHAPINGO

6. - SAN MATEO

7. - EL TEJOLOTE

8. - GARCES

CUENCAS DEL PONIENTE

SIMBOLOGIA
PARTEAGUAS______

ESTACION PLUVIOMETRICA____

- 1. LAS ARBOLEDAS
- 2 SANTA CRUZ
- 3.- ECHEGARAY
- 4.- EL SALITRE
- 5.- TOTOLICA
- 6.- EL CONDE
- 7.- EL MOLINITO 8.- SAN BARTOLITO
- 9.- SANTA TERESA

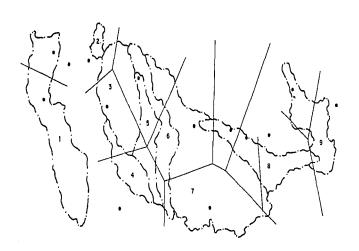
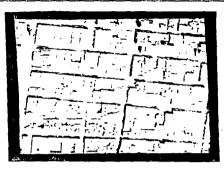
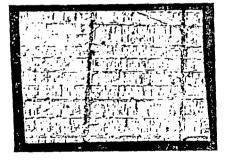



FIGURA 2.3


ANEXO

INDICE DE URBANIZACION lu = 1.0

liger de mes divents	1
	10.00
Conta contra conta	110.000
	1 1
Total constitue	11
V=	27 25,54
Accept complete patrick	1
	1
	1
and the second s	1 1
1-11-Market	
	1
******	1
r tig vita y market	1
F-100-pt-20-F-1	1
	0.170
many the purpose	
	1
Charles before based	l .
	1
	27.875
tiller i annual partire blacks destruite. At	1
we appropriate the	l l

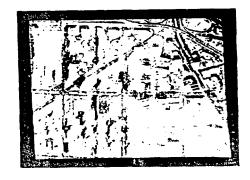
ZONA CENTRO

"mar 44 Bren h: 1121	1
	100 7 10
Timber - Carry 1 Timber - Carry 1	
from contract of	ł.
V	
According to the control of the cont	1
restanding or	54.40
Magazinarahan haran dari	
PROPERTY OF TAXABLE PARTY.	I
tempherus	1
t man harry as you.	!
/	1
	l
Aures In	1
-	1
	}
,	1
	1
a-141-1-1-	

COL. OBRERA

INDICE DE URBANIZACION lu = 0.9

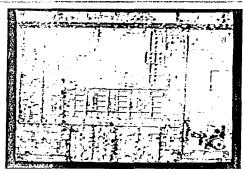
1	7
	the receipt
/ensy cremercers	
/ nort + manage + call	1 1
Version ment	
/mag 1744-4-18-1	Į į
untersters	1
maritarehares especiation	1 1
	1
serve haves	
case hadern of o	****
Januar colorester	
*****	l i
	i
I medant species	/ //*
	1
France on facine accord	1
frances decimalization	
f, allege	1
and distance	22 78%
de la certa terbalan a	1 1
eren anades	

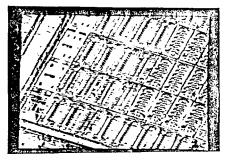

NARVARTE

Topas de desa desenda	1
	d
(COLUMN)	
Communicati	ľ
Vinateleori	į.
Vi-unalization of	
	i
	i
	i
eradici serakappa kerrepari rep	;
a common business	
rane factioners	
forme returnment	
repainte	l
	ŀ
suprement & bestever	173.
arrane de purpus	
report the harrow spinner	
/	
******	74.10
de paragona a bada bada a	
patragen patrage	

RIO CONSULADO

INDICE DE URBANIZACION Iu = 0.9

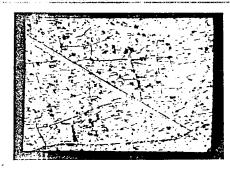

Tour de Area deservets	
1	
/www.romenadra	
Comp command	
/ Vaundame	1 1
	1
7	
untendare	
and the cape select	412
1944 على يستور ۽ 194 المطونون 154 _{4 ع} ور	411%
100000000000000000000000000000000000000	! 1
Lana hebit birdir	1 1
1	1 1
Commission of the Commission o	1
especial.	
	ſ
	1
- Hartenburg & Hall Parts	1 ,-
!	
at arms, the property	
1	1
I want out tour manage	J .
1	1
T. It subsequen	1
1	l .
l	i
1	1
augus an	1 10-
*******	(
administration .	1
	1

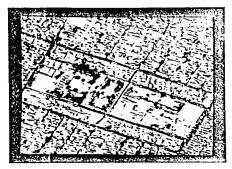


CHAPULTEPEC MORALES

INDICE DE URBANIZACION lu = 0.8

layer, do do a degrada	7
Į.	100.00000
Zongan a servet. californ	
/ mus a parties a say	
Attinished	
/mon crades wes	1
	20%
******************	1
	1
to come at annual	
, ma tradel as artin	
Audian continuous	
1101111	1
companies	1
**********	1000
Canada in the	1
Category of the Contracting	1
former house, former	
· 	
*** *****	21.47%
In account to the factor of	1
41-14-04-144	1


LOMAS ESTRELLA


14 . 6	~1
7-12-12-12-12-12-12-12-12-12-12-12-12-12-	
form or more of	1
VP. melanes	
week the section of	1
***************************************	1
	i
********	1
	1
*	Í
****	į.
1 Milata III	1
Course de Louis and P	
/m-me xures: 6:-ms	
	1
4414014444	***
de : : : :	1
meta-revolue	

U. II. ARAGON

INDICE DE URBANIZACION 1u = 0.7

Type of Britishenste	3
1	
	The see age
Zerode e comme antern	1
Zeros communité	1 1
Vermine	1
fann spetressers	
unata-shart	***
magnificant ere cape onfor	1 1
	1 1
Editor a 3 - 44-44	1 1
CALA TAINIM JOS	1 !
/anet materate de é	1
	1 1
	/~
	i
/	
	1
	175
the same of the bade burns or	1 1
B4	
1	1 1

CERRO DEL JUDIO

tiges to dead described.	i
	1184 574 74
Z.,	
Acres a transmission	1
W	1
	1
A comment and a second comment	
consideration and control of	1
area of the street of a constant of	ļ
series haves	1
	1
/www.e.monies	
110000	
	ļ
Campus de pregns	
Parama da Teproperapiana	ł
7-mas subsubsumas	
	[
	بر م
me a construction from the design.	•
mit opposited	I .

CD. NEZAHUALCOYOTL

INDICE DE URBANIZACION lu = 0.7

Tipo de dras manada	1
	72000
Januar and Carried Str.	
Torus comment	1
V	1
Zurus roudernuuss	1
uniordio se	
server harten	
tana habitanan	****
Zonos miduenimes	1
*******	!
	1
	11.12%
Canque, de parges	
	1
/	1
·	Ì
	10 /5%
no services Marketers	1
	1
1	1

JARDINES DEL PEDREGAL

INDICE DE URBANIZACION 1u = 0.6

lique de dire distante	f
	Francisco Co.
	7.2.244
/	1
**************************************	1
Vernetares	i
form repairs over	
wroterators	7. ***
***************************************	1
CONTRACTOR OF THE PARTY AND ADDRESS.	1
to a resident to the second	P0 100 100
r pa e variat profes	
fraunt cap, promore	
****	1
· · · · · · · · · · · · · · · · · · ·	1
Carrier Till grant of Control of	1
Chargest the paragray]
	ļ
Franch Bulletin barries	10.000
and all the same	11.07
the rich arts fellows to	•
Andrews and Annie	i

CANAL DEL DESAGÜE

r — regress same or m	•

	1
	ı
anger a set in the se	
	ł
seems the setum of any and a tra-	1
	,
\$10 (\$10 ft of 100)	
	1
Carana material services	1
*****	l .
	i .
·	2113
	1
Francis de lacción de de c	
Count distantions	4,14
	i
	!
after 1 and in 1 and 22 diguille displace as	
adversion to a	ł

SUBURBIO CHALCO

INDICE DE DRBANIZACION In = 0.6

late de tra directé	
	No. prespe
Carried Company of the S	1
Toma corrected	1
*****	ı
/mmt regions i ##1	
entare er	1
magnifacial as reported in	1
madel broken and with company and	1
pertural hornes	1
and the same of the same	17.1
Comment or administration of the	
- unersale	l .
-2019-01-70	
	50.00
Francis gentral horses	İ
	7.00
the community had before	1

SAN ANGEL

Andread and the secon	140 1 900 000 000	1
Toward Control of the	l	
Control Contro	Contract of the contract of th	·
A many of the first many Local desiration Loca	/	1
Control of the Contro	S. 141-14-14	į.
- OF MERCHAN PLANT AND AND AND AND AND AND AND AND AND AND	/ m.m	1
secretarion and secretarion is a secretarion and secretarion a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Control Contro		1
Control Contro	4 - 4 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	I.
Foreign conduction and against and against a command command to the command against a		1
espacioni contact to c	r made I solved do pulsa.	1
American Street	Zirosa rodosti ara	
Company of orders Company of or	*****	İ
Famoura, and medicing Demoid, der Service, Mouras, Anders medicine, Mouras, Famoura, Barton Mouras, Barto	Contrapas (h	1
Committee Commit		***
Andrew State States Sta		1
and the rest of the section of the s		1
automotive 100 m	Codestina strategia de la constitución de la consti	
also contracting hypothesis in		1
	***	****
B-0-19-1-1-1-1-1	and a series of the banks do the ser	
	****	1

COL, LOPEZ PORTILLO

PLANOS

BIBLIOGRAFIA

Bedient, P.B.; Huber, W.C., Hydrology and Flood Plain Analysis.

Second Edition. June 1992. Addison-Wesley Publishing Co.

Yen, B.C.; Catchment Runoff and Rational Formula.

100th Anniversary of Rational Formula, 1991. Water Resources Publications

United States Department of Agriculture, Soil Conservation Service.

Technical Release No. 55 "Urban Hidrology for Small Watersheds". First Edition. 1996.

United States Bureau of Reclamation. Design of Small Dams.

Chapter 2: Flow routing.

Aparicio, M. F.; Fundamentos de Hidrología de Superficie.

Editorial Limusa. 1993. Segunda reimpresión.

Manual de Hidráulica Urbana. Tomo l

Dirección General de Construcción y Operación Hidráulica. 1982.

Spiegel, M., Probabilidad y Estadística,

Serie Schaum, 1989. Editorial Mc.Graw Hill