

UNIVERSIDAD NACIONAL AUTONOMA

003628

FACULTAD DE CIENCIAS

DIVISION DE ESTUDIOS DE POSGRADO

ECUACIONES DE EINSTEIN COMO GEODESICAS FUNCIONALES

T E S I S

QUE PARA OBTENER EL GRADO ACADEMICO DE MAESTRIA EN CIENCIAS (FISICA) S E R E N т ALBERTO FIS. SANCHEZ MORENO DIRECTOR DE TESIS: DR. HERNANDO OUEVEDO CUBILLOS DR. DARIO NUREZ ZURIGA

1996

TESIS CON FALLA DE ORIGEN

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

eja

¢

i

1

A mis Papás y Hermanos

Que difícil es expresar con palabras todo la gratitud que uno siente por las personas y más cuando se trata de tus padres, quienes te han dado todo en la vida, creo que la palabra gracias es poco para ellos.

Con toda mi Admiración, cariño, respeto y eterna gratitud

A mi Papá Guadalupe Sánchez Jiménez A mi Mamá Abigail Moreno Martínez

Porque siempre me han apoyado, porque siempre me han comprendido, por todo el cariño que me han brindado y porque me han enseñado que lo más importante en esta vida es estudiar.

A mis hermanos Armando, Guillermina y Josué

Por su apoyo y comprensión

A mis asesores

A quienes debo toda mi formación académica y el gusto por estudiar relatividad

Mi admiración, respeto y gratitud por siempre

Al Dr. Dario Núñez Zúñiga

Por toda la paciencia que me ha tenido a lo largo de 5 años, por todo lo que me ha enseñado sobre la investigación y sobre todo por ser mi amigo.

Al Dr. Hernando Quevedo Cubillos

Quien me ha brindado su apoyo en los momentos más difíciles de mi vida académica, porque siempre me ha tenido confianza, por todo lo que me ha enseñado, no solo de física y matemáticas, sino también sobre la vida y sobre todo, por bridarme su amistad

v

A los amigos

A todos mis compañeros y amigos por la ayuda que me brindaron durante la elaboración de este trabajo y por todos los momentos de alegría que hemos pasado juntos.

MUCHAS GRACIAS

Omar Jaimes Gómes, Rubén Alfaro Molina, Rubén Arroyo Angeles, Gregorio Mota Porras, Juan Luis Martínez Ledezma.

Rubén Alfaro Quiza, Jorge Quiza Tomich, Roberto Serna Herrera, Luis Felipe Rivera Álvarez, José Guadalupe Guevara, Juan Carlos Morales, Javier Espinosa, Irma Domínguez, César Velez, Juan Manuel Gómez, Roman Linares, Victor Velásquez, Enrique Cruz, Jesús Flores

A mis sinodales

Quisiera Agradecer a mis sinodales

Dr. Shahen Hacyan Saleryan

Dr. Michel Patrick Ryan Allen

Dr. Roberto Allan Sussman Livovsky

Dr. Luis Octavio Pimentel Rico

Dr. Tonatiuh Matos Chassin

Los valiosos comentarios y sugerencias a este trabajo.

Un especial agradecimiento al Dr. Ismael Espinosa Espinosa por haberme permitido estar en el Laboratorio de Cibernética durante todo este tiempo y por todas la atenciones que ha tenido para conmigo.

Agradezco al Instituto de Ciencias Nucleares las facilidades otorgadas para la realización de este trabajo.

Contenido

¢.

1	Des	cripción del formalismo 5	
	1.1	Introducción	
	1.2	Enfoque general	J
		1.2.1 Transformaciones canónicas	
		1.2.2 Método de Routh	
	1.3	Reducción dimensional	
	1.4	Lagrangiano sin potencial	
	1.5	Lagrangiano con potencial	
	1.6	Ejemplo	
2	Sim	etría Axial 23	
	2.1	Introducción	
	2.2	Simetría axial en vacío 24	
	2.3	Geodésicas funcionales	
	2.4	Simetrías	
	2.5	Generación de Soluciones	
	2.6	Soluciones aproximadas	
		2.6.1 Campo exterior de un dyon	
		2.6.2 Campo de una masa rotando	
	2.7	Fluido perfecto	
	2.8	Campos Escalar y Electromagnético	ł
		2.8.1 Soluciones exactas	1
3	Sim	etría Esférica 45	
	3.1	Introducción	
	3.2	Lagrangiano	,
	3.3	Principio variacional	

xi

Introducción

Las teorías de la física moderna generalmente son modelos matemáticos definidos por un conjunto de ecuaciones diferenciales y un conjunto de reglas que trasladan los resultados matemáticos a conceptos del mundo físico. En el caso de teorías de gravitación, está completamente aceptado que la más exitosa es la teoría de la relatividad general de Einstein, donde las ecuaciones diferenciales consisten de requerimientos puramente geométricos impuestos por la idea que el espacio y el tiempo pueden ser representados por una variedad Riemmaniana, juntamente con la descripción de la interacción de materia y gravitación. Todo esto está contenido en las ecuaciones de campo

$$R_{ij} - \frac{1}{2}Rg_{ij} + \Lambda g_{ij} = \kappa_0 T_{ij} \qquad (0.1)$$

Desafortunadamente, las ecuaciones de Einstein constituyen un sistema de ecuaciones diferenciales parciales no lineales y acoplado. Por tanto, resulta muy difícil obtener soluciones exactas que representen sistemas físicamente realistas, de hecho, son pocas las soluciones exactas, en vacío, conocidas con esta propiedad. Como ejemplos podemos citar la solución encontrada por Schwarzschild en 1916 la cual presenta simetría esférica, la solución general estática con simetría axial encontrada por Weyl en 1917 y la encontrada por Kerr en 1963 que es la primera solución con simetría axial y estacionaria físicamente realista. Otra posibilidad de encontrar soluciones es utilizar métodos de generación de las mismas, los cuales involucran trasformaciones de grupos de Lie o transformaciones Bäcklund.

El propósito de este trabajo es presentar una reinterpretación de las ecuaciones de Einstein como geodésicas funcionales en un espacio abstracto de potenciales. Este resultado es importante, ya que se puede

Contenido

1	Des	cripción del formalismo 5	
	1.1	Introducción	
	1.2	Enfoque general	
		1.2.1 Transformaciones canónicas	
		1.2.2 Método de Routh	
	1.3	Reducción dimensional	
	1.4	Lagrangiano sin potencial	
	1.5	Lagrangiano con notencial	
	1.6	Ejemplo	
2	Sim	etría Axial 23	
-	2.1	Introducción	
	2.2	Simetría axial en vacío	
	2.3	Geodésicas funcionales	
	2.0	Simetrian 28	
	2.4 95	Ceneración de Solucioner 30	
	2.0 9.6	Soluciones aprovimadas	
	2.0	26.1 Course outerior do un duon	
		2.0.1 Campo exterior de un dyon	
		2.0.2 Campo de una masa rotando	
	2.7	Fluido perfecto	
	2.8	Campos Escalar y Electromagnético	
		2.8.1 Soluciones exactas	
3	Sim	etría Esférica 45	
	3.1	Introducción	
	3.2	Lagrangiano	
	3.3	Principio variacional	

xii	CONTENIDO
3.4 Simetrías	
4 Conclusiones	55
 A Ejemplos de Lagrangianos A.1 Ondas gravitacionales co A.2 Campos con simetría pla A.3 Ondas gravitacionales de 	cinéticos 61 n rotación 61 na 62 Beck-Einstein-Rosen 63
B Teorema de Noether	65
C Generación de Soluciones	69
D Principio de Maupertuis	73
E Nuevo parámetro	77
F Simetrías	79

 $(+)^{2} \in \mathbb{R}^{2}$

.

۱

COMPLETA

Introducción

Las teorías de la física moderna generalmente son modelos matemáticos definidos por un conjunto de ecuaciones diferenciales y un conjunto de reglas que trasladan los resultados matemáticos a conceptos del mundo físico. En el caso de teorías de gravitación, está completamente aceptado que la más exitosa es la teoría de la relatividad general de Einstein, donde las ecuaciones diferenciales consisten de requerimientos puramente geométricos impuestos por la idea que el espacio y el tiempo pueden ser representados por una variedad Riemmaniana, juntamente con la descripción de la interacción de materia y gravitación. Todo esto está contenido en las ecuaciones de campo

$$R_{ij} - \frac{1}{2}Rg_{ij} + \Lambda g_{ij} = \kappa_0 T_{ij} \tag{0.1}$$

Desafortunadamente, las ecuaciones de Einstein constituyen un sistema de ecuaciones diferenciales parciales no lineales y acoplado. Por tanto, resulta muy difícil obtener soluciones exactas que representen sistemas físicamente realistas, de hecho, son pocas las soluciones exactas, en vacío, conocidas con esta propiedad. Como ejemplos podemos citar la solución encontrada por Schwarzschild en 1916 la cual presenta simetría esférica, la solución general estática con simetría axial encontrada por Weyl en 1917 y la encontrada por Kerr en 1963 que es la primera solución con simetría axial y estacionaria físicamente realista. Otra posibilidad de encontrar soluciones es utilizar métodos de generación de las mismas, los cuales involucran trasformaciones de grupos de Lie o transformaciones Bäcklund.

El propósito de este trabajo es presentar una reinterpretación de las ecuaciones de Einstein como geodésicas funcionales en un espacio abstracto de potenciales. Este resultado es importante, ya que se puede hacer uso de todas las simetrías de las geodésicas para investigar soluciones de las ecuaciones de Einstein y tratar de generar nuevas soluciones.

Para lograr este objetivo, primeramente en el capítulo 1 se presenta un formalismo que permite reducir el problema de encontrar soluciones a las ecuaciones de Einstein en cuatro dimensiones a un problema de mecánica con una menor cantidad de grados de libertad, que se puede tratar mediante los formalismos de Lagrange y Hamilton, secciones [1.1-1.3]. En la secciones [1.4] y [1.5] se consideran Lagrangianos que se pueden llevar a la forma

$$\mathcal{L} = G_{ab} X^a_{,i} X^b_{,i} h^{ij} \tag{0.2}$$

donde G_{ab} es una métrica en el espacio abstracto de coordenadas X^a y x^i y se introduce una nueva métrica h^{ij} que se utiliza para definir un producto escalar interno entre las velocidades $X^a_{,i}$. Aplicando el principio de acción mínima a Lagrangianos de la forma (0.2) obtenemos las correspondientes geodésicas funcionales para el espacio de potenciales X^a y se estudian sus simetrías.

En los capítulos 2 y 3 se aplica el formalismo presentado para los casos particulares de la simetría axial y la simetría esférica y se muestra de manera explícita la equivalencia entre las geodésicas funcionales obtenidas para éstos casos y las ecuaciones de Einstein que se obtienen de forma usual.

Los resultados más importantes de este trabajo son:

1.- La reducción del problema de encontrar soluciones a las ecuaciones de Einstein en cuatro dimensiones a un problema de mecánica con una menor cantidad de grados de libertad.

2.- La interpretación de las ecuaciones de Einstein como geodésicas funcionales en un espacio abstracto de potenciales.

3.- La aplicación de este método a los casos de campos gravitacionales con simetría, axial, cilíndrica, esférica y plana¹; además de varias generalizaciones que incluyen un campo escalar, el campo electromagnético y un fluido perfecto.

En este trabajo se utiliza la siguiente notación: Los índices latinos $i, j, k, \ldots = 0, 1, 2, 3$ se refieren a un sistema de coordenadas x^i en el

¹Los casos con simetría plana y cilíndrica se analizan en el apéndice

CONTENIDO

espacio tiempo. La signatura de la métrica es (+ - - -). Se usan unidades tales que G = c = 1. Los símbolos de Christoffel Γ'_{ij} son definidos por medio del tensor métrico

$$\Gamma_{ij}^{l} = \frac{1}{2} g^{lk} (g_{ik,j} + g_{jk,i} - g_{ij,k})$$
(0.3)

donde $g_{ik,j} = \frac{\partial g_{ik}}{\partial x^j}$ y x^i son las coordenadas del espacio-tiempo. Los tensores de Riemman y Ricci están dados por

$$R_{ikj}^{l} = \Gamma_{ij,k}^{l} - \Gamma_{ik,j}^{l} + \Gamma_{mk}^{l} \Gamma_{ij}^{m} - \Gamma_{mj}^{l} \Gamma_{ik}^{m}$$
(0.4)

У

$$R_{ij} = R_{ilj}^l \tag{0.5}$$

Se definen nuevas coordenadas $X^a = (g_{ij}, \eta^A) \operatorname{con} a = 1, 2, ..., n, \eta^A$ son los potenciales de materia con A = 1, 2, ..., p y n puede tomar cualquier valor entre el intervalo $p + 1 \le n \le p + 6$. La matriz G_{ab} representa la métrica del espacio abstracto de potenciales y puede depender en general tanto de los potenciales X^a como de las coordenadas del espacio tiempo x^i . Cuando nos referimos a las magnitudes X^a utilizamos la terminología "potenciales" o "coordenadas" del espacio abstracto. La métrica h^{ij} se utiliza par definir el producto interno entre las "velocidades" X^a_{i} .

3

CONTENIDO

Capítulo 1

Descripción del formalismo

1.1 Introducción

En este capítulo se presenta un método que permite reducir el problema de encontrar soluciones a las ecuaciones de Einstein en cuatro dimensiones a un problema de mecánica con una menor cantidad de grados de libertad, que se puede tratar mediante los formalismos de Lagrange y Hamilton. Teniendo como punto de partida el Lagrangiano general de Einstein-Hilbert acoplado mínimamente con un Lagrangiano de materia, se argumenta que en muchos casos de interés el Lagrangiano total se puede representar como la suma de un término cinético y un término potencial. En la sección [1.2] y [1.3] se presentan los conceptos generales de este estudio, en las secciones siguientes se analizan los casos en los cuales el Lagrangiano presenta un término puramente cinético (sección [1.4]) y el caso en el cual el Lagrangiano presenta tanto término cinético como potencial(sección [1.5]], por último se presenta un ejemplo en el cual ilustramos el formalismo.

1.2 Enfoque general

Consideremos un Lagrangiano de la forma $\mathcal{L} = \mathcal{L}_{EH} + \mathcal{L}_M$ donde $\mathcal{L}_{EH} = \sqrt{-gR}$ es el Lagrangiano Einstein-Hilbert y \mathcal{L}_M representa el Lagrangiano de materia. Para calcular de manera explícita el La-

grangiano \mathcal{L}_{EH} utilizamos la expresión para el tensor de Riemann R_{ij}

$$R_{ij} = \frac{\partial \Gamma_{ij}^l}{\partial x^l} - \frac{\partial \Gamma_{il}^l}{\partial x^j} + \Gamma_{ij}^l \Gamma_{lk}^k - \Gamma_{il}^k \Gamma_{jk}^l$$
(1.1)

con lo que el Lagrangiano Einstein-Hilbert toma la forma

$$\mathcal{L}_{EH} = \sqrt{-g} g^{ij} R_{ij} \tag{1.2}$$

$$= \sqrt{-g} \left[g^{ij} \frac{\partial \Gamma_{ij}^{l}}{\partial x^{l}} - g^{ij} \frac{\partial \Gamma_{il}^{l}}{\partial x^{j}} + g^{ij} \Gamma_{ij}^{l} \Gamma_{lk}^{k} - g^{ij} \Gamma_{il}^{k} \Gamma_{jk}^{l} \right] \quad (1.3)$$

donde $i, j, ... = 0, 1, 2, 3, g_{ij}$ es la métrica del espacio tiempo con coordenadas x^i y Γ_{ij}^l son los símbolos de Christoffel asociados con g_{ij} . Ahora los dos primeros términos del lado derecho de la ccuación los podemos obtener a partir de una divergencia de la siguiente forma

$$\frac{\partial(\sqrt{-g}g^{ij}\Gamma^{l}_{ij})}{\partial x^{l}} = \sqrt{-g}g^{ij}\frac{\partial\Gamma^{l}_{ij}}{\partial x^{l}} + \Gamma^{l}_{ij}\frac{\partial(\sqrt{-g}g^{ij})}{\partial x^{l}}$$
$$\frac{\partial(\sqrt{-g}g^{ij}\Gamma^{l}_{il})}{\partial x^{j}} = \sqrt{-g}g^{ij}\frac{\partial\Gamma^{l}_{il}}{\partial x^{l}} + \Gamma^{l}_{il}\frac{\partial(\sqrt{-g}g^{ij})}{\partial x^{j}}$$

Si de estas ecuación despejamos el primer término del lado derecho y los sustituimos en la ecuación (1.3) tenemos

$$\mathcal{L}_{EH} = \frac{\partial(\sqrt{-g}g^{ij}\Gamma_{ij}^{l})}{\partial x^{l}} - \Gamma_{ij}^{l}\frac{\partial(\sqrt{-g}g^{ij})}{\partial x^{l}} - \frac{\partial(\sqrt{-g}g^{ij}\Gamma_{il}^{l})}{\partial x^{j}} + \Gamma_{il}^{l}\frac{\partial(\sqrt{-g}g^{ij})}{\partial x^{j}} + \sqrt{-g}g^{ij}[\Gamma_{ij}^{l}\Gamma_{lk}^{k} - \Gamma_{il}^{k}\Gamma_{jk}^{l}] \quad (1.4)$$

Ahora, dado que las ecuaciones de campo serán obtenidas a partir del principio variacional, es decir, de tomar la variación de la acción extendida a todo el espacio y a todos los valores de la coordenada temporal entre dos valores dados, podemos, sin afectar la deducción de las ecuaciones de campo, prescindir de los términos que dan lugar a una divergencia (primer y tercer términos de la ecuación (1.4)) ya que a las integrales

$$\int \frac{\partial(\sqrt{-g}g^{ij}\Gamma^{l}_{ij})}{\partial x^{l}}d\Omega$$

$$\int \frac{\partial(\sqrt{-g}g^{ij}\Gamma^{l}_{il})}{\partial x^{j}}d\Omega$$
(1.5)

1.2. ENFOQUE GENERAL

que corresponden a la acción, se les puede aplicar el teorema de Gauss

$$\oint A^i dS_i = \int \frac{\partial A^i}{\partial x^i} d\Omega, \quad d\Omega = dx^0 dx^1 dx^2 dx^3$$
(1.6)

y estas integrales se pueden transformar en una integral extendida a una hipersuperficie que rodea el cuadrivolumen en el que se efectúa la integración de las otras integrales. Cuándo se varía la acción estas integrales se anulan, ya que en el principio de acción mínima las variaciones del campo en los límites de la región de integración son iguales a cero. Con lo anterior el Lagrangiano toma la forma

$$\mathcal{L}_{EH} = \Gamma_{il}^{l} \frac{\partial(\sqrt{-g}g^{ij})}{\partial x^{j}} - \Gamma_{ij}^{l} \frac{\partial(\sqrt{-g}g^{ij})}{\partial x^{l}} + \sqrt{-g}g^{ij}[\Gamma_{ij}^{l}\Gamma_{lk}^{k} - \Gamma_{il}^{k}\Gamma_{jk}^{l}]$$
(1.7)

Utilizando las relaciones $g^{jl}\Gamma_{jl}^{i} = -\frac{1}{\sqrt{-g}} \frac{\partial(\sqrt{-gg^{ij}})}{\partial x^{j}}, g_{il}g_{,m}^{lk} = -g^{lk}g_{il,m},$ $g_{,l}^{ik} = -\Gamma_{ml}^{i}g^{mk} - \Gamma_{ml}^{k}g^{im}$ y la relación $\Gamma_{ji}^{i} = \frac{\partial(ln\sqrt{-g})}{\partial x^{j}}$ en la ecuación (1.7) obtenemos finalmente

$$\mathcal{L}_{EH} = \frac{1}{2} \sqrt{-g} g^{ij} (\Gamma^l_{ij} \Gamma^k_{lk} - \Gamma^k_{il} \Gamma^l_{jk})$$
(1.8)

por tanto, el Lagrangiano total toma la forma

$$\mathcal{L} = \frac{1}{2} \sqrt{-g} g^{ij} (\Gamma^k_{ij} \Gamma^l_{jk} - \Gamma^l_{ij} \Gamma^k_{lk}) + \mathcal{L}_M , \qquad (1.9)$$

El Lagrangiano Einstein-Hilbert es entonces una función de la métrica g_{ij} y de sus primeras derivadas $g_{ij,k}$. Ahora si consideramos un Lagrangiano \mathcal{L}_M que sea una función de los potenciales de materia η^A , A = 1, 2, ..., p, y sus derivadas $\eta^A_{,i}$, se pueden definir nuevas variables $X^a = \{g_{ij}, \eta^A\}$, donde a = 1, 2, ..., n. El número n puede tomar cualquier valor en el intervalo $p+1 \leq n \leq p+6$ dependiendo de las simetrías del espaciotiempo métrico¹. Por tanto el Lagrangiano (1.9) puede tener la dependencia funcional $\mathcal{L} = \mathcal{L}(X^a, X^a_{,i})$. Sin embargo, para mantener la generalidad de nuestro análisis, en este trabajo consideraremos Lagrangianos

7

¹Esto se debe a que g_{ij} tiene en general 10 componentes independientes, pero si aplicamos transformaciones de coordenadas $[x^i \rightarrow x'^i = x'^i(x^i)]$ que introducen cuatro grados de libertad podemos reducir a 6 el número de componentes independientes y si además el espacio-tiempo tiene simetrías adicionales, este número se puede reducir más.

que después de introducir los "potenciales" $X^{\alpha} = (g_{ij}, \eta^A)$ mantienen una dependencia explícita de las coordenadas del espacio tiempo x^i , y por tanto tendremos la dependencia funcional $\mathcal{L} = \mathcal{L}(X^{\alpha}, X^{\alpha}_{ij}, x^i)$.

En general, el Lagrangiano (1.9) puede contener términos tanto cuadráticos como lineales en las "velocidades" $X_{,i}^a$ y también componentes que dependan solamente de las nuevas "coordenadas" X^a . Para estudiar este tipo de Lagrangianos en una forma bastante general, en este trabajo vamos a considerar solamente aquellos que se pueden representar como

$$\mathcal{L} = G_{ab} X^a_{,i} X^b_{,i} h^{ij} + A^i_a X^a_{,i} + V , \qquad (1.10)$$

donde G_{ab} es una métrica en el espacio abstracto con coordenadas X^a y x^i . La "métrica" $h^{ij} = h^{ij}(x^i)$ se usa en (1.10) para definir un producto escalar interno entre las velocidades $X^a_{,i}$. La matriz $A^i_a = A^i_a(X^a, x^i)$ determina los términos lineales en las velocidades que requieren un tratamiento especial ya que en general conducen a Lagrangianos singulares, es decir para los cuales no es posible definir el Hamiltoniano correspondiente, el potencial V contiene todos los términos del Lagrangiano que dependen de las coordenadas X^a solamente. En este trabajo no consideramos los términos lineales en las velocidades, es decir, despreciamos el término $A^i_a X^a_{,i}$ en la ecuación (1.10). Bajo esta consideración podemos decir que el Lagrangiano contiene una parte "cinética" y una parte "potencial". Ahora podemos aplicar el principio de acción mínima a éste tipo de Lagrangianos para obtener las ecuaciones de Euler-Lagrange correspondientes. Esto se hará en las secciones [2.3] y [2.4] para casos particulares.

Antes de trabajar con las ecuaciones de Euler-Lagrange vamos a tratar de ver la forma de reducir los grados de libertad presentes en el Lagrangiano (1.10). Esto está directamente relacionado con las transformaciones canónicas, coordenadas cíclicas y el método de Routh que acontinuación se describen

1.2.1 Transformaciones canónicas

Un tipo de trasformaciones conocido es aquel que pasa de un sistema de coordenadas X^a a uno nuevo X'^a mediante ecuaciones de trasformación

ļ

1.2. ENFOQUE GENERAL

de la forma

$$X^{'a} = X^{'a}(X^a, t) \tag{1.11}$$

donde t es un parámetro que llamaremos tiempo. Las ecuaciones que pasan de coordenadas cartesianas a coordenadas polares serían un ejemplo de las trasformaciones (1.11). A estas trasformaciones se les da el nombre de trasformaciones puntuales. Ahora bien, en la formulación de Hamilton las cantidades de movimiento son también variables independientes del mismo nivel que las coordenadas generalizadas, por tanto, el concepto de trasformación de coordenadas debe ampliarse para que incluya la transformación simultánea de las coordenadas y de las cantidades de movimiento X^a , P_a a un nuevo sistema X'^a , P'_a con ecuaciones de transformación invertibles

$$X'^{a} = X'^{a}(X^{a}, P_{a}, t)$$

$$P'_{a} = P'_{a}(X^{a}, P_{a}, t)$$
(1.12)

Así, las nuevas coordenadas estarán definidas no sólo en función de las antiguas, sino que también en función de las cantidades de movimiento antiguas. Puede decirse que las ecuaciones (1.11) definen una trasformación del espacio de configuraciones y las ecuaciones (1.12) definen una transformación en el espacio fasc. Ahora bien cuando se trabaja con la teoría de Hamilton está uno interesado en las transformaciones (1.12) para las cuales las nuevas X'^a y P'_a sean coordenadas canónicas. Este requisito se cumplirá si existe una cierta función $\mathcal{H}'(X'^a, P'_a, t)$ tal que las ecuaciones de movimiento en el nuevo sistema estén en la forma de Hamilton

$$X_{,t}^{'a} = \frac{\partial \mathcal{H}'}{\partial P_a'}$$

$$P_{a,t}^{'} = -\frac{\partial \mathcal{H}'}{\partial X'^a}$$
(1.13)

es decir, \mathcal{H}' es el nuevo Hamiltoniano en el nuevo sistema de coordenadas. Además si X'^a y P'_a son coordenadas canónicas deben de

cumplir un principio de Hamilton modificado que se puede escribir de la siguiente forma

$$\delta \int_{t_1}^{t_2} (P'_a X'^a_{,t} - \mathcal{H}'(X'^a, P'_a, t)) dt = 0$$
 (1.14)

donde ,t indica derivada con respecto al tiempo y sabemos que las coordenadas canónicas antiguas satisfacen al mismo tiempo un principio análogo

$$\delta \int_{t_1}^{t_2} (P_a X_{,t}^a - \mathcal{H}(X^a, P_a, t)) dt = 0. \qquad (1.15)$$

Tomando en cuenta que la forma general del principio de Hamilton modificado tiene variación nula en los puntos extremos, tenemos que los integrandos de las ecuaciones (1.14) y (1.15) estan relacionados de la siguiente forma

$$P_a X^a_{,t} - \mathcal{H} = P'_a X^{\prime a}_{,t} - \mathcal{H}^{\prime} + \frac{dF}{dt} . \qquad (1.16)$$

Aquí F es una función cualquiera de las coordenadas del espacio de fase, con segundas derivadas continuas y contribuye a la variación de la integral de acción sólo en los puntos extremos y por tanto se anularía si F es función de (X^a, P_a, t) , de (X'^a, P'_a, t) o de cualquier combinación de coordenadas del espacio fase, ya que tiene variación nula en los puntos extremos. Otra manera de ver la ecuación (1.16) es utilizando la relación entre el Hamiltoniano y el Lagrangiano dada por $\mathcal{H} = P_a X^a_{,t} - \mathcal{L}$. Bajo esta consideración y despreciando F tenemos

$$\mathcal{H}' = P_a' X_{,t}'^a - \mathcal{L} \tag{1.17}$$

y además, también podemos tener un Lagrangiano $\mathcal{L}' = \mathcal{L}'(X'^a, X'^a, t)$, tal que, $P'_a = \frac{\partial \mathcal{L}'}{\partial X'^a_t}$ y con esto obtener la relación

$$\mathcal{H}' = \frac{\partial \mathcal{L}'}{\partial X_{t}'^{a}} X_{t}'^{a} - \mathcal{L}$$
(1.18)

En la siguiente sección veremos que estas transformaciones son muy útiles cuando algunas coordenadas son coordenadas cíclicas.

10

1.2. ENFOQUE GENERAL

1.2.2 Método de Routh

El método de Hamilton resulta especialmente útil en tratamiento de problemas en los que intervienen coordenadas cíclicas, donde una coordenada cíciclica X^a es la que no aparece explícitamente en el Lagrangiano. Ahora bien, si tenemos una de estas coordenadas, las ecuaciones de Lagrange nos dicen que la cantidad de movimiento asociada a esta coordenada P^a será constante. Además, sabemos también de las ecuaciones de Hamilton que

$$P_{a,t} = \frac{\partial \mathcal{L}}{\partial X^a} = -\frac{\partial \mathcal{H}}{\partial X^a} . \tag{1.19}$$

Esto nos dice que una coordenada cíclica, estará ausente tanto en el Lagrangiano como en el Hamiltoniano. Otra forma de ver esto es a partir de la ecuación $\mathcal{H} = P_a X^a_{,t} - \mathcal{L}$, ya que \mathcal{L} solo difiere de $-\mathcal{L}$ en $P_a X^a_{,t}$ que no contiene explícitamente a X^a .

Consideremos un Lagrangiano en el cual la coordenada X^b es cíclica.

$$\mathcal{L} = \mathcal{L}(X^1, ..., X^{b-1}, X^1_{,t}, ..., X^b_{,t}, t)$$
(1.20)

ahora bien, tenemos todavía que resolver un problema de b grados de libertad aun cuando uno de ellos corresponda a una coordenada cíclica. En cambio, en la formulación de Hamilton es diferente ya que en el mismo caso P_b es una cierta constante λ y \mathcal{H} tiene la forma

$$\mathcal{H} = \mathcal{H}(X^1, ..., X^{b-1}, P_1, ..., P_{b-1}, \lambda, t)$$
(1.21)

el Hamiltoniano describe ahora un problema que solo contiene b-1coordenadas, el cual se puede resolver por completo ignorando la coordenada cíclica. El comportamiento de la propia coordenada cíclica con el tiempo se encuentra integrando la ecuación de movimiento

$$X^{b}_{,t} = \frac{\partial \mathcal{H}}{\partial \lambda} \tag{1.22}$$

Las ventajas de la formulación de Hamilton en el manejo de coordenadas cíclicas se puede combinar con el procedimiento de Lagrange mediante un método ideado por Routh. Este método se basa principalmente en una transformación canónica que lleva de la base X^a , X^a_d a la base X^a , P_a tan sólo para las coordenadas que sean cíclicas, obteniendo sus ecuaciones de movimiento en la forma de Hamilton, mientras que las restantes coordenadas se estudian a partir de las ecuaciones de Lagrange. Si llamamos $X^{\mu+1}, ..., X^a$ a las coordenadas cíclicas, podemos introducir una nueva función \mathcal{R} , llamada Routhiano, definida de la siguiente forma

$$\mathcal{R}(X^{1},...,X^{a},X^{1}_{,t},...,X^{\mu}_{,t},P_{\mu+1},...,P_{a},t) = \sum_{\gamma=\mu+1}^{a} P_{\gamma}X^{\gamma}_{,t} - \mathcal{L} \qquad (1.23)$$

Sacando la diferencial a esta relación tenemos

$$d\mathcal{R} = \sum_{\gamma=\mu+1}^{a} X_{,t}^{\gamma} dP_{\gamma} - \sum_{\sigma=1}^{\mu} \frac{\partial \mathcal{L}}{\partial X_{,t}^{\sigma}} dX_{,t}^{\sigma} - \sum_{\kappa=1}^{a} \frac{\partial \mathcal{L}}{\partial X^{\kappa}} dX^{\kappa} - \frac{\partial \mathcal{L}}{\partial t} dt \quad (1.24)$$

de donde se deduce comparando con la diferencial de R considerandola solo como función, que

$$\frac{\partial \mathcal{R}}{\partial X^{\sigma}} = -\frac{\partial \mathcal{L}}{\partial X^{\sigma}}, \qquad , \frac{\partial \mathcal{R}}{\partial X^{\sigma}_{,t}} = -\frac{\partial \mathcal{L}}{\partial X^{\sigma}_{,t}}, \quad \sigma = 1, ..., \mu$$
(1.25)

$$\frac{\partial \mathcal{R}}{\partial X^{\gamma}} = -P_{\gamma,t}, \qquad , \frac{\partial \mathcal{R}}{\partial P_{\gamma}} = X^{\gamma}_{,t}, \qquad \gamma = \mu + 1, ..., a \qquad (1.26)$$

las ecuaciones (1.26) tienen la forma de las ecuaciones de movimiento de Hamilton en donde \mathcal{R} hace las veces del Hamiltoniano mientras que las ecuaciones (1.25) indican que las μ coordenadas no ignorables obedecen las ecuaciones de Lagrange

$$\frac{d}{dt}\left(\frac{\partial \mathcal{R}}{\partial X_{t}^{\sigma}}\right) - \frac{\partial \mathcal{R}}{\partial X^{\sigma}} = 0, \quad \sigma = 1, ..., \mu$$
(1.27)

en las que \mathcal{R} toma el papel de Lagrangiano. Hasta este momento no se ha hecho uso explícito de la naturaleza cíclica de las coordenadas $X^{\mu-1}$ a X^a . Una coordenada ausente de \mathcal{L} no aparece tampoco en el Routhiano. Las $a - \mu$ cantidades de movimiento $P_{\mu+1}$ a P_a relacionadas a las coordenadas cíclicas son constantes y pueden sustituirse en el Routhiano por un conjunto de constantes $\lambda^1, ..., \lambda^{\rho}$ ($\rho = a - \mu$) que se determinan a partir de las condiciones iniciales. Con estas modificaciones, las únicas variables del Routhiano son las μ coordenadas no cíclicas y sus velocidades generalizadas

$$\mathcal{R} = \mathcal{R}(X^1, ..., X^{\mu}, ..., X^1_{,t}, ..., X^{\mu}_{,t}, \lambda^1, ..., \lambda^{\rho}, t)$$
(1.28)

Podemos ahora considerar (1.27) como las ecuaciones de Euler-Lagrange para las coordenadas no cíclicas, exactamente como en la formulación Lagrangiana. De hecho el problema se ha reducido a un problema de Lagrange para un sistema de μ grados de libertad y salvo ρ parámetros constantes λ^{ρ} podemos ignorar los restantes grados de libertad, en otras palabras se logra reducir la dimensionalidad del problema.

1.3 Reducción dimensional

De acuerdo a las consideraciones hechas en la sección (1. 2), en este trabajo consideraremos los Lagrangianos que tienen dependencia funcional $\mathcal{L} = \mathcal{L}(X^a, X^b_{,i}, x^i)$. Aplicaremos lo aprendido en las secciones (1. 2. 1) y (1. 2. 2) a este tipo de Lagrangiano. Primero construyamos el correspondiente Hamiltoniano

$$\mathcal{H} = \mathcal{H}(P_a^i, X^a, x^i) = P_a^i X_{,i}^a - \mathcal{L} , \qquad (1.29)$$

donde $P_a^i = \partial \mathcal{L} / \partial X_i^a$ son los momentos conjugados. Si ahora consideramos una transformación canónica

$$P_a^i = P_a^i(P_a^{\prime i}, X^{\prime a}) , \ X^a = X^a(P_a^{\prime i}, X^{\prime a})$$
(1.30)

a \mathcal{H} de tal forma que una de las nuevas coordenadas se vuelva cíclica, entonces, como se vio en la sección (1. 2. 2), tendremos que, $\frac{\partial \mathcal{H}'}{\partial X'n} = 0$, donde \mathcal{H}' es el Hamiltoniano obtenido de \mathcal{H} aplicando la transformación canónica (1.30). Por consiguiente, la acción de (n-2) transformaciones canónicas de este tipo conducirán a un Hamiltoniano de la forma $\mathcal{H}^{(n-2)} = \mathcal{H}^{(n-2)}(P_{a(n-2)}^{i}, X_{(n-2)}^{1}, X_{(n-2)}^{2}, x^{i})$, ya que por cada una de las transformaciones canónicas se elimina una de las coordenadas X^{a} . El índice (n-2) indica que la coordenada respectiva ha sido el resultado de aplicar (n-2) transformaciones canónicas. Para eliminar el momento conjugado asociado con las coordenadas cíclicas, primero construimos el Lagrangiano $\mathcal{L}^{(n-2)} = \mathcal{L}^{(n-2)}(X^1_{(n-2)}, X^2_{(n-2)}, X^a_{,i(n-2)}, x^i)$ y aplicamos el método de Routh, el cual consiste (como se vio en la sección (1. 2. 2)) en aplicar una trasformación de Legendre solamente para las coordenadas cíclicas. Esto es

$$\mathcal{R} = \frac{\partial \mathcal{L}^{(n-2)}}{\partial X^{s}_{,i(n-2)}} X^{s}_{,i(n-2)} - \mathcal{L}^{(n-2)} , \qquad (1.31)$$

donde las coordenadas cíclicas son etiquetadas por $X_{(n-2)}^s$, s = 3, 4, ...n. El Routhiano resultante es una función de las coordenadas no cíclicas, de sus velocidades asociadas y de un conjunto de constantes λ^s , es decir $\mathcal{R} = \mathcal{R}(X_{(n-2)}^a, X_{,i(n-2)}^a, \lambda^s, x^i), a = 1, 2$. Finalmente podemos escribir el Routhiano en la siguiente forma

$$\mathcal{R} = G_{ab}(X^a, \lambda^s, x^i) X^a_{,i} X^b_{,j} h^{ij} - V(X^a, \lambda^s, x^i), \quad a, b = 1, 2; \ s = 3, 4, \dots n.$$
(1.32)

La variación de \mathcal{R} con respecto a X^a conduce a un conjunto de ecuaciones diferenciales de segundo orden, las cuales son las principales ecuaciones de campo (Ecuaciones de Euler-Lagrange). Cuando se resuelven éstas ecuaciones, se pueden ignorar las coordenadas cíclicas, y considerar el Routhiano como un Lagrangiano. También podemos encontrar las ecuaciones de campo para las coordenadas cíclicas realizando la variación con respecto a λ^s . Estas son ecuaciones diferenciales de primer orden que pueden ser integradas en cuanto las ecuaciones de Euler-Lagrange hallan sido resueltas.

Con esto podemos decir que para los casos que estamos estudiando, es decir, Lagrangianos del tipo $\mathcal{L} = G_{ab}X^a_{,i}X^b_{,j}h^{ij} - V$, podemos reducir los grados de libertad del problema para hacer más amable su tratamiento.

Es necesario anotar que con el método expuesto anteriormente, es decir, mediante el uso de trasformaciones canónicas y la introducción del Routhiano, hemos reducido al problema original de n grados de liberta a uno con tan solo 2 grados de libertad. Sin embargo, cuando se analizan casos concretos no siempre es facil encontrar la transformaciones canónicas que permitan reducir la dimensionalidad y podría resultar que es más sencillo analizar el problema con un mayor número de grados de libertad que encontrar la transformación canónica para eliminar a uno de estos grados. Por tanto, es necesario analizar cada caso en particular y elegir el método de solución más razonable en cada uno.

1.4 Lagrangiano sin potencial

Considerentos el caso de un Lagrangiano puramente cinético, es decir, tomemos el potencial igual a cero

$$\mathcal{L} = G_{ab}(X^a, x^i) X^a_{,i} X^b_{,i} h^{ij}$$
(1.33)

donde a, b = 1, 2, ...m, y i, j = 1, 2, ..., d. La dimensión m está contenida en el rango $2 \le m \le n$ y su valor explícito depende de la cantidad de trasformaciones canónicas (ver sección (1.3)) que se hayan usado en cada caso particular. El valor explícito deberá estar contenido en el rango $2 \le d \le 4$; el límite máximo d = 4 resulta del hecho de que los índices i, j provienen de las coordenadas x^i del espacio-tiempo y correspondería al caso en que los potenciales X^a dependen explícitamente de las coordenadas x^i . El valor explícito de d puede ser diferente en cada caso particular y depende de las simetrías contenidas en la métrica del espacio-tiempo original g_{ij} .

En las secciones anteriores consideramos G_{ab} y h_{ij} como "métricas" que pueden depender explícitamente de las coordenadas del espaciotiempo x^i . Sin embargo, en todos los ejemplos que analizaremos en el resto de este trabajo es posible agrupar toda la dependencia explícita de x^i solamente en la "métrica" G_{ab} . Esto permite simplificar los cálculos en cada caso particular. Por esta razón, consideraremos de ahora en adelante que h_{ij} es una métrica con elementos constantes.

Si aplicamos el principio variacional obtenemos las ecuaciones

$$h^{mj}[(X^a_{,j})_{,i} + \Gamma^a_{\ eb}X^e_{,m}X^b_{,j} + G^{ac}G_{cb,m}X^b_{,j}] = 0, \qquad (1.34)$$

donde Γ^a_{eb} son los símbolos de Christoffel asociados con G_{ab} . Como podemos observar la ecuación (1.34) corresponde a la ecuación geodésica en un espacio m-dimensional². El término $h^{mj}G^{ac}G_{cb,m}X^b_{,j}$ aparece debido a que la métrica G_{ab} depende explícitamente de las coordenadas

 $^{^{2}}$ En la literatura las ecuaciones del tipo (1.34) también se conocen como mapeos armónicos

 x^i del espacio-tiempo que ahora se usan para parametrizar las coordenadas X^a . Por tanto, una solución a la ecuación(1.34) es una geodésica m-dimensional.

Un conjunto X^a que satisfaga la ecuación (1.34) será una geodésica funcional. Además, estas ecuaciones son análogas a las ecuaciones de Einstein, esto es por construcción, ya que si se parte del Lagrangiano Einstein-Hilbert (ver sección 1.2) y aplicamos el principio variacional con respecto a los coeficientes métricos se obtienen las ecuaciones de Einstein y cuando se tiene el Lagrangiano de la forma (1.33) y se varía con respecto a las coordenadas se obtiene la ecuación geodésica, pero en nuestro caso hemos logrado una relación uno a uno entre los coeficientes métricos g_{ij} y las nuevas coordenadas X^a , es decir, los coeficientes métricos son ahora las nuevas coordenadas.

Esta reducción del problema es importante, ya que, ahora podemos hacer uso de todas las simetrías de las geodésicas m-dimensionales para investigar soluciones de las ecuaciones de Einstein. Por ejemplo, es posible introducir un parámetro afin en (1.34) de tal forma que los últimos términos desaparezcan. También se pueden llevar a cabo transformaciones de coordenadas que lleven a la ecuación (1.33)a una forma comformalmente plana³, es decir,

$$\mathcal{L} = \Sigma(X^1, X^2) [X_i^1 X_j^1 + X_i^2 X_j^2] h^{ij}.$$
(1.35)

donde Σ es un factor conforme. Además se pueden generar soluciones, es decir, si se conoce una solución X^a de la ecuación(2.26) podemos aplicar una transformación infinitesimal

$$X^a \to X^{\prime a} = X^a + \epsilon \eta^a \tag{1.36}$$

donde ϵ es un parámetro infinitesimal. Esta trasformación genera una nueva solución de la ecuación (1.34) a primer orden en ϵ , si η^a satisface la ecuación

$$\nabla^2 \eta^a + R^a_{\ bcd} h^{ij} X^b_{,i} X^c_{,j} \eta^d - h^{ij} (\Gamma^a_{\ bc})_{,i} X^b_{,j} \eta^c = 0 , \qquad (1.37)$$

³Estas trasformaciones son del tipo $X^{1'} = F(X^1, X^2), \quad X^{2'} = G(X^1, X^2)$ con $\frac{\partial F}{\partial X^T} = F_1, \quad \frac{\partial F}{\partial X^T} = F_2, \dots etc$ y utilizando $dX^1 = J^{-1}(G_2 dX^{1'} - F_2 dX^{2'}), \quad dX^2 = J^{-1}(-G_1 dX^{1'} - F_1 dX^{2'})$, donde J es el jacobiano de la trasformación $J = \frac{\partial(F,G)}{\partial(X^1,X^2)} = F_1 G_2 - F_2 G_1$

que es la ecuación que resulta de la sustitución de la trasformación (1.36) en la ecuación (1.34) y pedir invarianza geodésica, es decir, que tanto X^a como X'^a satiafagan la ecuación de geodésicas funcionales (1.34). En (1.37) R^a_{bcd} es el tensor de Riemann asociado con G_{ab} , y ∇ es la derivada total

$$\nabla = \partial_i + X^a_{,i} \frac{\partial}{\partial X^a} - [\Gamma^a_{\ eb} h^{mj} X^e_{,m} X^b_{,j} + h^{mj} G^{ac} G_{cb,m} X^b_{,j}] \frac{\partial}{\partial X^a_{,i}} . \quad (1.38)$$

Si la métrica G_{ab} no depende explícitamente de los parámetros x^i , la ecuación (1.37)se reduce a la ecuación de desviación geodésica para el vector de conección η^a . Por tanto, uno puede usar vectores de Killing o colineaciones afines de la métrica G_{ab} para generar soluciones

Es importante decir que en [20] se introduce el concepto de espacio de potencial para investigar las propiedades de simetría del Lagraugiano Einstein-Hilbert. Además se estudia un método de generación de soluciones, el cual funciona solamente si el espacio tiempo admite un vector Killing no nulo y se aplica el método a espacios-tiempo con dos vectores Killing. Esto tiene especial relevancia, ya que en el caso de campos axisimétricos estacionarios se puede analizar tanto por el camino [20], como por el descrito aquí esto es importante ya que nos permitirá verificar la validez de nuestros resultados y mostrar el funcionamiento del método.

En las secciones siguientes vamos a analizar las ecuaciones de campo de los casos de campos gravitacionales con simetría axial, planar y cilíndrica los cuales se pueden reducir al estudio de Lagrangianos sin potencial del tipo (1.33).

1.5 Lagrangiano con potencial

Ahora vamos a consideras el Lagrangiano con potencial

$$\mathcal{L} = G_{ab}(X^a) X^a_{,\tau} X^b_{,\tau} - V(X^a). \tag{1.39}$$

donde hemos considerado que las coordenadas X^a son parametrizadas por τ

En las secciones anteriores consideramos siempre el caso en que X^a está parametrizado por todas las coordenadas x^i del espacio-tiempo. Sin embargo, para aplicar el método que se explicará a continuación es necesario suponer que X^a depende de tan solo un parámetro τ . A este resultado también se puede llegar de forma más general suponiendo que todas las coordenadas x^i se pueden parametrizar con respecto τ , es decir, $x^i = x^i(\tau)$.

A partir del Lagrangiano (1.39) podemos construir de la manera estándar el Hamiltoniano correspondiente

$$\mathcal{H} = \frac{\partial \mathcal{L}}{\partial X^a_{,\tau}} X^a_{,\tau} - \mathcal{L}$$
(1.40)

y suponemos que es una cantidad conservada con respecto al parámetro τ , es decir,

$$\frac{d\mathcal{H}}{d\tau} = 0 \tag{1.41}$$

Usando las ecuaciones de Euler-Lagrange correspondientes al Lagrangiano (1.39) y suponiendo que \mathcal{L} no depende explícitamente de τ , es decir, $\frac{\partial \mathcal{L}}{\partial \tau} = 0$, es posible demostrar que la condición (1.41) siempre se cumple.

Si aplicamos el principio variacional al Hamiltoniano (1.40) tenenios que

$$\delta \int \mathcal{L}dr = \delta \int \frac{\partial \mathcal{L}}{\partial X^a_{,\tau}} X^a_{,\tau} - \delta \int \mathcal{H}dr \qquad (1.42)$$

Puesto que según (1.41), el Hamiltoniano \mathcal{H} es una cantidad conservada, el ultimo término de la ecuación (1.42) desaparece y podemos utilizar el principio de Maupertuis ⁴para derivar las ecuaciones de campo correspondientes.

De acuerdo a (1.40), el Hamiltoniano asociado con el Lagrangiano (1.42) resulta ser

$$\mathcal{H} = G_{ab} \frac{dX^a}{dr} \frac{dX^b}{dr} + V \tag{1.43}$$

de donde obtenemos

$$dr = \sqrt{\frac{G_{ab}dX^a dX^b}{\mathcal{H} - V}}.$$
 (1.44)

Introduciendo la ecuación (1.39) y (1.44) en la ecuación (1.42) obtenemos la expresión

$$\delta \int \mathcal{L} d\tau = 2\delta \int \sqrt{(\mathcal{H} - V)G_{ab}dX^a dX^b} . \qquad (1.45)$$

⁴Ver apéndice B

1.6. EJEMPLO

que se puede interpretar como la variación de un elemento de línea

$$ds^{2} = (\mathcal{H} - V)G_{ab}dX^{a}dX^{b}$$
(1.46)

Este resultado muestra que el caso de un Lagrangiano con potencial diferente de cero se puede reducir al caso de un Lagrangiano puramente cinético con una métrica conforme. Las ecuaciones de campo son obtenidas utilizando la ecuación (1.34) cambiando G_{ab} por $\tilde{G}_{ab} = (\mathcal{H} - V)G_{ab}$ y con $\tilde{G}_{cb,m} = 0$, es decir,

$$h^{mj}(X^{a}_{,j})_{,i} + \tilde{\Gamma}^{a}_{\ eb}h^{mj}X^{e}_{,m}X^{b}_{,j} = 0 , \qquad (1.47)$$

donde $\tilde{\Gamma}^a_{eb}$ son los símbolos de Christoffel asociados con \tilde{G}_{ab}

Entonces podemos concluir nuevamente que, soluciones de las ecuaciones de Einstein son equivalentes a geodésicas en un espacio m-dimensional descrito por la métrica⁵ \tilde{G}_{ab} .

En las secciones (2.7) y (3.2) veremos los casos de campos gravitatorios con fluido perfecto y campo escalar, en los cuales se puede aplicar este método.

1.6 Ejemplo

Apliquemos lo visto en la sección (1. 5) a un problema bidimensional de una partícula con potencial arbitrario, para este caso tenemos el Lagrangiano

$$\mathcal{L} = \frac{m}{2} [(x^1)^2 + (x^2)^2] - V(x^1, x^2)$$
(1.48)

donde m es una constante, la ecuación (1.48) puede tomar la forma

$$\mathcal{L} = g_{ab} \frac{dx^a}{d\tau} \frac{dx^b}{d\tau} - V(x^a)$$
(1.49)

con

$$g_{ab} = \frac{m}{2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{1.50}$$

donde hemos considerado a las x^a parametrizadas por τ . Es importante hacer notar que si consideramos una partícula puntual con potencial arbitrario, parametrizado con el parametro t, las ecuaciones de

⁵ver sección (1.4)

movimiento dadas por las ecuaciones de Euler-Lagrange $\frac{d}{dt} \left[\frac{\partial \mathcal{L}}{\partial \frac{dx^n}{dt}} \right] - \frac{\partial \mathcal{L}}{\partial x^a} = 0$ serán

$$\frac{\partial \mathcal{L}}{\partial \frac{dx^a}{dt}} = 2g_{ab}\frac{dx^a}{dt} \tag{1.51}$$

$$\frac{\partial \mathcal{L}}{\partial x^a} = -\frac{\partial V}{\partial x^a} \tag{1.52}$$

$$2g_{ab}\frac{d^2x^b}{dt^2} + V_{,a} = 0 \tag{1.53}$$

Regresando a la ecuación (1.49), si calculamos el correspondiente Hamiltoniano con la relación (1.29)

$$\mathcal{H} = g_{ab} \frac{dx^a}{d\tau} \frac{dx^b}{d\tau} + V(x^a), \qquad (1.54)$$

y en término de los momentos

$$\mathcal{H} = \frac{1}{2}g^{ab}P_aP_b + V(x^a) \tag{1.55}$$

donde $\mathcal H$ no depende explícitamente del parámetro au , por tanto

$$\frac{d\mathcal{H}}{d\tau} = 0, \quad \Rightarrow \quad \mathcal{H} = cte \tag{1.56}$$

Esto nos permite a partir de relación (1.54) obtener

$$\mathcal{H} - V = g_{ab} \frac{dx^a}{d\tau} \frac{dx^b}{d\tau}$$
(1.57)

$$d\tau = \sqrt{\frac{g_{ab}dx^a dx^b}{\mathcal{H} - V}} \tag{1.58}$$

Aplicando el principio variacional

$$\delta \int \mathcal{L} d\tau = 0 \tag{1.59}$$

tenemos

$$\delta \int \mathcal{L} d\tau = 2\delta \int \sqrt{(\mathcal{H} - V)g_{ab}dx^a dx^b}$$
(1.60)

1.6. EJEMPLO

ésto nos permite definir una nueva métrica $\tilde{g}_{ab} = (\mathcal{H} - V)g_{ab}$ y el principio variacional toma la forma

$$\delta \int \sqrt{\tilde{g}_{ab} dx^a dx^b} = 0 \tag{1.61}$$

lo que nos lleva a las ecuaciones

$$\frac{d^2x^a}{d\tau^2} + \tilde{\Gamma}^a{}_{bc}\frac{dx^b}{d\tau}\frac{dx^c}{d\tau} = 0, \qquad (1.62)$$

donde $\tilde{\Gamma}^a_{\ bc}$ son los símbolos de Christoffel asociados con \tilde{g}_{ab} . Esto nos lleva a las ecuaciones

$$\tilde{g}_{fa}\frac{d^2x^a}{d\tau^2} - \frac{(2\tilde{g}_{fb}V_{,c} - V_{,a}\tilde{g}_{fa}\tilde{g}_{bc})}{2(\mathcal{H} - V)}\frac{dx^b}{d\tau}\frac{dx^c}{d\tau} = 0, \qquad (1.63)$$

que son las ecuaciones de movimiento de una partícula puntual con potencial arbitrario. Para ver esto de forma explícita tenemos que pasar del parámetro τ al parámetro tiempo t utilizando la relación[28]

$$\frac{d}{d\tau} = \frac{1}{\sqrt{\mathcal{H} - V}} \frac{d}{dt} \tag{1.64}$$

con la cual obtenemos

$$2g_{fa}\frac{d^2x^a}{dt^2} + V_{f} = 0 \tag{1.65}$$

Que son análogas a las ecuaciones (1.53).

En los siguientes capítulos se mostrarán casos más complicados donde se puede aplicar este formalismo, como las ecuaciones de Einstein con simetría axial y esférica.

CAPÍTULO 1. DESCRIPCIÓN DEL FORMALISMO

Capítulo 2

Simetría Axial

2.1 Introducción

La simetría axial presenta mucho interés en el estudio de las ecuaciones de Einstein, ya que el estudio de esta simetría nos permite la mejor descripción gravitacional de objetos rotando[27]. Además la simetría axial y estacionaria a sido ampliamente estudiada por muchos autores, esto motiva para que la primera aplicación de lo visto en el capítulo 1 sea el caso de campos axisimétricos estacionarios, ya que podremos comparar los resultados obtenidos con los dados por otros autores ¹ y verificar la validéz del método. En éste capítulo se considera primero el caso axisimétrico en vacío (sección [2.2]), después el caso en presencia de un tensor de energia-impulso $T_{\mu\nu}$, (sección [2.7]), de fluido perfecto con ecuación de estado $\delta + \mathcal{P} = 0$, donde δ es la densidad y \mathcal{P} la presión, y aunque esta ecuación no es físicamente muy interesante nos permite mostrar el funcionamiento del método presentado en el capítulo 1, (sección[1.5]), cuando tenemos potencial. Finalmente en la sección [2.8] como caso más general se estudiará el caso axisimétrico acoplado a los campos escalar $\Phi_{\mu\nu}$ y electromagnético $F^{\mu\nu}$.

¹Principalmente con el trabajo hecho por D. Kramer, H. Stephani y E. Herlt[20]

CAPÍTULO 2. SIMETRÍA AXIAL

2.2 Simetría axial en vacío

Consideremos el elemento de línea con simetría axial en las coordenadas canónicas de Weyl[20]

$$ds^{2} = e^{2\psi}(dt - \omega d\phi)^{2} - e^{-2\psi}[e^{2\gamma}(d\rho^{2} + dz^{2}) + \rho^{2}d\phi^{2}], \qquad (2.1)$$

donde ψ , ω , y γ son funciones de ρ y z únicamente. Si ω =constante entonces tendriamos el caso estático.

El cálculo directo de las ecuaciones de Einstein en el vacío, $R_{ij} = 0$, para el elemento de línea (2.1) nos lleva a las ecuaciones[20]

$$f(f_{\rho\rho} + f_{zz} + \rho^{-1} f_{\rho}) - f_{\rho}^{2} - f_{z}^{2} + \rho^{-2} f^{4}(\omega_{\rho}^{2} + \omega_{z}^{2}) = 0$$

$$f(\omega_{\rho\rho} + \omega_{zz} - \rho^{-1}\omega_{\rho}) + 2f_{\rho}\omega_{\rho} + 2f_{z}\omega_{z} = 0$$

$$\gamma_{\rho} = \frac{1}{4}\rho f^{-2}(f_{\rho}^{2} - f_{z}^{2}) - \frac{1}{4}\rho^{-1} f^{2}(\omega_{\rho}^{2} - \omega_{z}^{2})$$
(2.2)

$$\gamma_{z} = \frac{1}{2}\rho f^{-2} f_{\rho} f_{z} - \frac{1}{2}\rho^{-1} f^{2} \omega_{\rho} \omega_{z} \qquad (2.3)$$

donde el subíndice indica derivada parcial². De aquí se puede ver que las principales ecuaciones de campo son las correspondientes a $f y \omega$, ya que las ecuaciones para γ son de primer grado y se pueden resolver por integración directa una vez obtenidas las soluciones para $f y \omega$.

A continuación vamos a derivar el sistema de ecuaciones de Einstein (2.2) usando el método que describimos en el capítulo 1 para Lagrangianos "cinéticos". Primero calculamos la densidad Lagrangiana $\mathcal{L}_{EH} = \sqrt{-gR}$ para el elemento de línea (2.1) lo cual nos conduce a

$$\mathcal{L} = \frac{e^{4\psi}}{2\rho} (\omega_{\rho}^{2} + \omega_{z}^{2}) + 2\rho(\psi_{\rho\rho} + \psi_{zz} - \gamma_{\rho\rho} - \gamma_{zz} - \psi_{\rho}^{2} - \psi_{z}^{2}) + 2\psi_{\rho} , \quad (2.4)$$

Si ahora aplicamos la relación $\rho B_{,ij} = (\rho B_{,i})_{,j} - \rho_{,j}B_{,j}$, donde B es una función arbitraria de x^i , y despreciamos las derivadas totales ³, obtenemos el Lagrangiano

$$\mathcal{L} = 2\gamma_{\rho} + \frac{e^{4\psi}}{2\rho} (\omega_{\rho}^{2} + \omega_{z}^{2}) - 2\rho(\psi_{\rho}^{2} + \psi_{z}^{2}).$$
(2.5)

24

²Por ejemplo: $f_{\rho} = \frac{\partial f}{\partial \rho}$. En lo sucesivo adoptaremos esta convención

³Esto es posible ya que un Lagrangiano que difiere de otro en una derivada total produce las mismas ecuaciones de campo al aplicar el principio variacional $\mathcal{L}' = \mathcal{L} + \frac{dt}{dt} \Rightarrow \delta s' = 0 = \delta s$
2.2. SIMETRÍA AXIAL EN VACÍO

que lo podernos también representar como un Lagrangiano cinético de la forma

$$\mathcal{L} = G_{ab} X^a_{,i} X^b_{,j} h^{ij}, \qquad (2.6)$$

donde $X^a = (\rho, \psi, \gamma, \omega)$ y $x^i = (\rho, z)$, además

$$G_{ab} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & -2\rho & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{e^{4\psi}}{2\rho} \end{pmatrix}$$
(2.7)

$$h_{ij} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{2.8}$$

Si ahora parametrizamos las coordenadas del espacio tiempo mediante un nuevo parámetro ξ el Lagrangiano(2.5) toma la forma

$$\mathcal{L} = 2\rho_{\xi}\gamma_{\xi} + \frac{e^{4\psi}}{2\rho}\omega_{\xi}^2 - 2\rho\psi_{\xi}^2$$
(2.9)

bajo la condición $x_{\xi}^{i} x_{\xi}^{j} = h^{ij}$. Ahora podemos interpretar la ecuación(2.9) como un Lagrangiano que describe un sistema cinemático definido en el espacio de los coeficientes métricos con "coodenadas generalizadas" ρ , ψ , ω , y γ que dependen de ξ . Dado que γ y ω son coordenadas cíclicas del Lagrangiano(2.5), es conveniente usar el Routhiano [19] \mathcal{R} el cual, como ya se mensionó en la sección (1.2.2), se obtiene utilizando el Lagrangiano \mathcal{L} y una trasformación de Legendre que actua sobre las coordenadas cíclicas solamente

$$\mathcal{R} = \frac{\partial \mathcal{L}}{\partial (\gamma_{\xi})} \gamma_{\xi} + \frac{\partial \mathcal{L}}{\partial (\omega_{\xi})} \omega_{\xi} - \mathcal{L} = \frac{1}{2\rho} e^{4\psi} (\omega_{\xi})^2 + 2\rho (\psi_{\xi})^2 . \qquad (2.10)$$

y las ecuaciones de movimiento para este Routhiano, que son obtenidas utilizando las relaciones (1.26) y (1.27) de la sección (1.2.2) son

$$P_{\omega,\xi} = -\frac{\partial \mathcal{R}}{\partial \omega} \to P_{\omega,\xi} = 0$$
 (2.11)

$$P_{\psi,\xi} = -\frac{\partial \mathcal{R}}{\partial \psi} \rightarrow P_{\psi,\xi} = -\frac{2}{\rho} e^{4\psi} (\omega_{\xi})^2$$
 (2.12)

CAPITULO 2. SIMETRÍA AXIAL

$$\left(\frac{\partial \mathcal{R}}{\partial \omega_{\xi}}\right)_{\xi} - \frac{\partial \mathcal{R}}{\partial \omega} = 0 \to \left(\frac{1}{\rho}e^{4\psi}\omega_{\xi}\right)_{\xi} = 0$$
(2.13)

$$\left(\frac{\partial \mathcal{R}}{\partial \psi_{\xi}}\right)_{\xi} - \frac{\partial \mathcal{R}}{\partial \psi} = 0 \to \rho_{\xi} \psi_{\xi} + \rho \psi_{\xi\xi} - \frac{1}{2\rho} e^{4\psi} (\omega_{\xi})^2 = 0 \qquad (2.14)$$

las ecuaciones (2.11) y (2.13) nos dicen que el momento asociado con la coordenada generalizada ω esta dado por

$$P_{\omega} = \frac{1}{\rho} e^{4\psi} \omega_{\xi} \tag{2.15}$$

La interpretación de esto es que P_{ω} es una "constante de movimiento" en el espacio de coeficientes métricos, ya que $P_{\omega,\xi} = 0$. Ahora bien, si introducimos una nueva función Ω de la siguiente forma

$$P_{\omega} = \rho^{-1} e^{4\psi} \omega_{\xi} = \Omega_{\xi} , \qquad (2.16)$$

con esto el el Routhiano(2.10) toma la forma

$$\mathcal{R} = \frac{1}{2}\rho f^{-2}[(f_{\xi})^2 + (\Omega_{\xi})^2] , \qquad (2.17)$$

que es la forma de un elemento de línea, donde $f = exp(2\psi)$. Resultado que podemos verificar con el trabajo⁴[20]. Si variamos \mathcal{R} con respecto a f y Ω conduce a las ecuaciones de Euler-Lagrange

$$f_{\xi\xi} - f^{-1}(f_{\xi}^{2} - \Omega_{\xi}^{2}) + \rho^{-1}\rho_{\xi}f_{\xi} = 0,$$

$$\Omega_{\xi\xi} - 2f^{-1}f_{\xi}\Omega_{\xi} + \rho^{-1}\rho_{\xi}\Omega_{\xi} = 0.$$
(2.18)

las cuales son equivalentes a las 2 primeras ecuaciones del sistema⁵(2.2).

Es importante hacer notar que ni el momento asociado a γ ni γ aparecen en el Routhiano(2.10), esto nos dice que la función métrica γ esta determinada por dos ecuaciones diferenciales de primer orden. en

26

⁴En el apéndice C recobramos éste resultado a partir de las ecuaciones dadas en

^[20] ⁵Para recuperar las ecuaciones (2.2) de forma explícita se tiene que utilizar las relaciones $x^i x^j = h^i j$, ver apéndice E

2.3. GEODÉSICAS FUNCIONALES

coordenadas de Weyl, estas ecuaciones se obtienen aplicando el teorema de Noether⁶ al Lagrangiano (2.5) y tienen la siguiente forma

$$4\gamma_{\rho} = \rho f^{-2} (f_{\rho}^{2} - f_{z}^{2}) - \rho^{-1} f^{2} (\omega_{\rho}^{2} - \omega_{z}^{2}),$$

$$2\gamma_{z} = \rho f^{-2} f_{\rho} f_{z} - \rho^{-1} f^{2} \omega_{\rho} \omega_{z}$$
(2.19)

con $f = \exp(2\psi)$ y serían las dos últimas ecuaciones del sistema (2.2) y éstas ecuaciones como se dijo anteriormente pueden ser integradas por cuadraturas si ψ y ω son conocidas.

Finalmente podemos observar que el Routhiano (2.17) puede ser interpretado formalmente como un elemento de línea de la forma

$$\mathcal{R} = \left(\frac{dS}{d\xi}\right)^2 = G_{ab} \frac{dX^a}{d\xi} \frac{dX^b}{d\xi} , \qquad (2.20)$$

$$\Rightarrow dS^2 = G_{ab} dX^a dX^b \tag{2.21}$$

donde G_{ab} (a,b=1,2) is una matriz simétrica de 2×2

$$G_{ab} = \frac{1}{2}\rho f^{-2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
 (2.22)

y $X^{\alpha} = (f, \Omega)$. Esta analogía es importante ya que nos permitirá relacionar las ecuaciones (2.18) con las que se derivan del principio de acción mínima aplicado al elemento de línea (2.21).

2.3 Geodésicas funcionales

Para poder aplicar el concepto geodésico al caso que estamos estudiando, cosideraremos un espacio dimensional infinito \mathcal{V} de las funciones $\{f(\rho, z), \Omega(\rho, z)\}$, donde es conveniente considerar a $f y \Omega$ cuadráticamente integrables, ésto nos permite definir un producto escalar en \mathcal{V} , de la forma $(f, \Omega) = \int w f \Omega d\rho dz \operatorname{con} w = w(\rho, z)$ una función arbitraria, definamos también un vector en \mathcal{V} como $X_{\xi}^{a} = X_{\xi}^{a}(\rho, z) =$

⁶Ver apéndice B

CAPÍTULO 2. SIMETRÍA AXIAL

 $\{f_{\xi}, \Omega_{\xi}\}$. Con esto podemos construir la función

$$s(X_{\xi}^{a}, X_{\xi}^{b}) = \int G_{ab} X_{\xi}^{a} X_{\xi}^{b} d\rho dz \qquad (2.23)$$

$$= \frac{1}{2} \int \rho f^{-2} (f_{\xi}^2 + \Omega_{\xi}^2) d\rho dz . \qquad (2.24)$$

en la que hemos remplazado la métrica (2.22). Esta expresión se puede interpretar como la energía de las curvas X^{α} [7]. La variación de la ecuación (2.24) con respecto a X^{α} nos conduce a las ecuaciones de Euler-Lagrange, que en este caso pueden ser escritas como

$$\frac{d^2 X^a}{d\xi^2} + \Gamma^a_{\ bc} \frac{dX^b}{d\xi} \frac{dX^c}{d\xi} = \lambda(\rho) \frac{dX^a}{d\xi} , \qquad (2.25)$$

donde Γ_{bc}^{a} son los símbolos de Christoffel asociados con G_{ab} , la función $\lambda(\rho) = -1/\rho$ aparece por la dependencia explícita de ρ en G_{ab} , con esto podemos estudiar puntos estacionarios de s y uno de estos puntos se llamará geodésica funcional si satisface la ecuación(2.25). Para encontrar uno de éstos puntos, definido en el espacio \mathcal{V} , tenemos que resolver el conjunto de ecuaciones diferenciales (2.25). Lo importante de todo esto, es que, la ecuación geodésica(2.25) es idéntica a las ecuaciones (2.18) y por lo tanto equivalentes a las ecuaciones de Einstein en vacío para el caso axisimétrico estacionario. Esto nos dice que una solución de las ecuaciones de Einstein (2.18) puede ser interpretada como una geodésicafuncional.

Consideremos el punto X_0^a y el vector tangente $\frac{dX_0^a}{d\xi}$ en dicho punto, entonces existe una única funcional geodésica máxima X^a tal que $X^a(0) = X_0^a$ y $\frac{dX^a(0)}{d\xi} = \frac{dX_0^a}{d\xi}$ [7], este resultado representa una demostración alternativa al hecho que una solución axisimétrica estacionaria es determinada de manera única por sus valores en el eje de simetría.

2.4 Simetrías

Consideremos dos geodésicas funcionales , X_1^a y X_2^a . Ahora vamos a encontrar transformaciones que relacionen X_1^a con X_2^a y que puedan ser usadas para generar nuevas soluciones a partir de una solución conocida. Esta transformación depende de las propiedades de simetría de las ecuaciones así como también de la forma explícita de X_1^a y X_2^a .

28

2.4. SIMETRÍAS

Consideremos la ecuación geodésica en forma general

$$h^{mj}(X^{a}_{,j})_{,i} + \Gamma^{a}_{\ eb}h^{mj}X^{e}_{,m}X^{b}_{,j} + h^{mj}G^{ac}G_{cb,m}X^{b}_{,j} = 0 ,, \qquad (2.26)$$

y hacemos la transformación infinitesimal

$$X^a \to X'^a = X^a + \epsilon \,\eta^a \,, \tag{2.27}$$

que es una transformación de simetría la cual mapea soluciones a orden ϵ si el vector de simetría η^a satisface la relación

$$\nabla^2 \eta^a + R^a_{\ bcd} h^{ij} X^b_{,i} X^c_{,j} \eta^d - h^{ij} (\Gamma^a_{\ bc})_{,i} X^b_{,j} \eta^c = 0 , \qquad (2.28)$$

donde R^{a}_{bcd} es el tensor de Riemman asociado con G_{ab} y ∇ es el operador derivada total que esta dado por

$$\nabla = \partial_s + X^a_{,i} \frac{\partial}{\partial X^a} - [\Gamma^a_{\ eb} h^{mj} X^e_{,m} X^b_{,j} + h^{mj} G^{ac} G_{cb,m} X^b_{,j}] \frac{\partial}{\partial X^a_{,i}}, \quad (2.29)$$

donde s es un paraámetro a lo largo de la geodésica funcional. Si la métrica Lagrangiana es independiente del parámetro s y de las "velocidades" X_{a}^{a} , la ecuación (2.28) se reduce a la ecuación de colineación afin [22] $\mathcal{L}\Gamma_{eb}^{a} = 0$, donde \mathcal{L} es la derivada de Lie a lo largo de la curva con vector tangente η^{a} , esto es equivalente a la ecuación de desviación geodésica para el vector de conexión η^{a} , por tanto una familia de soluciones de las ecuaciones de Einstein es equivalente a una congruencia de geodésicas funcionales en \mathcal{V} . Si η^{a} es un vector que une dos geodésicas funcionales cercanas en un punto, entonces la condición para que η^{a} continue siendo un vector de conexión en cualquier otro punto, en el cual las geodésicas funcionales estan bien definidas, es que, debe seguir satisfaciendo la ecuación de desviación geodésica .

Si el vector de simetría η^{α} es una función del parámetro s y de las coordenadas, entonces la ecuación(2.28)puede ser escrita de la signiente forma

$$\eta^{a}_{,ss} + 2(\eta^{a}_{,s})_{;b}X^{b}_{,i} + (\eta^{a}_{;bc} + R^{a}_{bcd} \eta^{d})X^{b}_{,i}X^{c}_{,j}h^{ij} = 0 , \qquad (2.30)$$

donde el punto y coma indica derivada covariante asosiada con la métrica G_{ab} dada en la ecuación (2.22). Nótece que si η^a es solo función de X^a , la ecuación de simetría se reduce al caso de colineación afin.

CAPÍTULO 2. SIMETRÍA AXIAL

Para ejemplificar lo vista en el parrafo anterior consideremos la métrica(2.22) con $\eta^a = \eta^a(X^b)$, podemos calcular la ecuación⁷

$$\pounds G_{ab} = 0 \tag{2.31}$$

donde \mathcal{L} es la derivada de Lie a lo largo del vector η^a , esto es equivalente a la relación

$$G_{ab,c}\eta^{c} + G_{ac}\eta^{c}_{,b} + G_{bc}\eta^{c}_{,a} = 0$$
 (2.32)

esta relación nos lleva a las ecuaciones

$$\eta_{,f}^{f} - f^{-1} \eta^{f} = 0 , \eta_{,\Omega}^{f} + \eta_{,f}^{\Omega} = 0 \eta_{,\Omega}^{\Omega} - f^{-1} \eta^{f} = 0$$
(2.33)

resolviendo el sistema de ecuaciones (2.33) obtenemos tres independientes soluciones

$$\begin{aligned} \eta_1^a &= (0,1) , \\ \eta_2^a &= (f,\Omega) , \\ \eta_3^a &= (f\Omega, \frac{\Omega^2 - f^2}{2}) \end{aligned}$$
 (2.34)

las cuales coinciden con las obtenidas en el trabajo de Kramer⁸. Las soluciones a las ecuaciones(2.34) coinciden con los vectores de Killing de la métrica(2.22). Para encontrar vectores de simetría mas generales tenemos que considerar $\eta^a = \eta^a(s, X^b, DX^b)$. Por ahora, ya que nuestro propósito es el de mostrar el metodo de generación de soluciones, pondremos nuestra atención en los vectores de simetría (2.34).

2.5 Generación de Soluciones

Consideremos el tipo de soluciones que pueden ser generadas por medio de los vectores (2.34). Introduscamos los parámetros ϵ_1 , ϵ_2 , y ϵ_3 para

30

⁷Ecuación de Killing para η^a , ver sección [1.4] o apéndice de simetrías

⁸Ver apéndice A

2.5. GENERACIÓN DE SOLUCIONES

los vectores de simetría η_1^a , η_2^a , y η_3^a , de acuerdo con la ecuación (2.27). Si ahora consideramos la solución senilla $\{f, \Omega\}$, el vector η_1^a conduce a una nueva funcional geodésica f' = f y $\Omega' = \Omega + \epsilon_1$ y de la ecuación (2.16), podemos observar que esto es equivalente a añadir una constante ω_0 a la función métrica ω . Sin embargo, esta transformación no representa mayor importancia, ya que una transformación de la forma $t' = t - \omega_0 \phi$ en el elemento de línea (2.1) absorve el nuevo término. Físicamente esto es equivalente a la introducción de un marco de referencia que esta rotando para el elemento de línea(2.1). Similarmente, se puede mostrar que para el parámetro ϵ_2 asociado con el vector de simetría η_2^a puede ser absorvido por un reescalamiento de coordenadas. Por tanto, para el caso que estamos analizando, el único vector de simetría no trivial es η_3^a el cual puede generar una nueva solución de la forma

$$f' = f(1 + \epsilon_3 \Omega)$$
, $\Omega' = \Omega + \frac{\epsilon_3}{2}(\Omega^2 - f^2)$. (2.35)

como vemos los vectores de simetría η_1^a y η_2^a son triviales, sin embargo, más adelante veremos que son muy utiles para generar soluciones no triviales, al ser combinado con el vector de simetría η_3^a . Hay que hacer notar también que los parámetros ϵ_1 y ϵ_2 pueden tomar el valor de cualquier número real porque ellos no entran en la ecuación de simetría, es decir, poniendo la transformación infinitesimal (2.27) con η_1^a y η_2^a uno observa que la ecuación resultante(2.28)se cumple, independientemente de los valores de los parámetros ϵ_1 y ϵ_2 consecuentemente, los vectores de simetría η_1^a y η_2^a definen transformaciones de simetría finitas del Routhiano (2.17). Para encontrar la transformación finita asociada η_3^a , nosotros consideramos el generador infinitesimal $\hat{\eta}_3$ definido como

$$\hat{\eta}_3 = f\Omega \frac{\partial}{\partial f} + \frac{1}{2}(\Omega^2 - f^2)\frac{\partial}{\partial\Omega} . \qquad (2.36)$$

si aplicamos repetidamente el generador $\hat{\eta}_3$ nos conduce a la transformación finita que corresponde a las curvas integrales de $\hat{\eta}_3$ y de acuerdo a la ecuación(2.27), satisface las ecuaciones diferenciales (ver [18])

$$\frac{\partial f'}{\partial \epsilon_3} = f'\Omega' , \qquad \frac{\partial \Omega'}{\partial \epsilon_3} = \frac{1}{2}({\Omega'}^2 - {f'}^2) , \qquad (2.37)$$

con valores iniciales $f'(\epsilon_3 = 0) = f$ y $\Omega'(\epsilon_3 = 0) = \Omega$. La integración de las ecuaciones(2.37) conduce a las leyes de transformación

$$f' = \frac{4f(f^2 + \Omega^2)}{[\epsilon_3(f^2 + \Omega^2) - 2\Omega]^2 + 4f^2}, \Omega' = \frac{-2(f^2 + \Omega^2)[\epsilon_3(f^2 + \Omega^2) - 2\Omega]}{[\epsilon_3(f^2 + \Omega^2) - 2\Omega]^2 + 4f^2}$$
(2.38)

Como podemos observar en la ecuación (2.38), no hay una obvia relación entre la transformación generada por $\hat{\eta}_3$ y otra transformación conocida que genere soluciones [9]. Sin embargo, la existencia de una relación no puede ser excluida porque es necesaria para usar una diferente representación de (2.38), llamada transformación de Bäcklund. Aunque la transformación $\hat{\eta}_3$ se puede expresar en términos de transformaciones conocidas, la interpretación de las ecuaciones de Einstein como geodésicas funcionales nos permite investigar simetrías más generales, como colineaciones afin, para la métrica G_{ab} .

La transformación de simetría finita(2.38) puede ser utilizada para generar soluciones *exactas* a partir de una solución conocida.

El método para generar sería el siguiente: Suponiendo que f y Ω son funciones conocidas, calculamos la nueva solución f', Ω' con la formula (2.38). El elemento de línea tendra la forma

$$ds^{2} = f'(dt - \omega' d\phi)^{2} - f'[e^{2\gamma'}(d\rho^{2} + dz^{2}) + \rho^{2}d\phi^{2}], \qquad (2.39)$$

Para calcular la función ω' a partir de Ω' usamos la ecuación (2.16), o de forma equivalente el sistema

$$\omega_{\rho}' = \rho f'^{-2} \Omega_z', \quad \omega_z' = \rho f'^{-2} \Omega_{\rho}' \tag{2.40}$$

que se puede integrar fácilmente para $f' y \Omega'$ dadas de forma explícita como funciones de $\rho y z$. Por último, es necesario calcular la función γ' mediante las ecuaciones

$$4\gamma'_{\rho} = \rho f'^{-2} (f'_{\rho}{}^{2} - f'_{z}{}^{2}) - \rho^{-1} f'^{2} (\omega'_{\rho}{}^{2} - \omega'_{z}{}^{2}),$$

$$(2.41)$$

$$2\gamma'_{z} = \rho f'^{-2} f'_{\rho} f'_{z} - \rho^{-1} f'^{2} \omega'_{\rho} \omega'_{z}$$

Sin embargo, también podemos utilizar el generador (2.36) para obtener soluciones aproximadas, como veremos en la siguientes secciones, en las cuales se presentan las soluciones que describen el campo exterior de un dyon gravitacional y el campo exterior de un objeto rotando.

2.6 Soluciones aproximadas

2.6.1 Campo exterior de un dyon

Un dvon gravitacional es un objeto hipotético, cuya existencia es debida al caracter relativista de la gravitación. En la teoría Newtoniana, la única fuente de gravitación es la masa. En contraste con esto, la relatividad general predice que tanto la masa como la rotación son fuentes de la interacción gravitacional. Esto nos conduce a la analogía entre gravedad relativista y electromagnetismo, es decir, el campo gravitacional generado por una distribución de masa, puede ser análogo al campo eléctrico y el campo de corriente del momento angular presenta caracteristicas similares a un campo magnético. Es por esto, que al campo generado por una corriente de momento angular es llamado campo gravitomagnético. Para completar ésta analogía, es necesario postular la existencia de un monopolo gravitomagnético como la contraparte del monopolo magnético de Dirac de la electrodinámica. Por tanto, un dyon gravitacional es una masa relacionada con un monopolo gravitomagnético. En esta sección, vamos a investigar una solución que puede ser generada a partir de una métrica semilla estática por medio de una combinación de transformaciones de simetría y que puede ser usada para describir el campo exterior de un dyon gravitacional.

Consideremos una solución estática asintoticamente plana $(f, \Omega = 0)$ como métrica semilla y apliquemos a ésta la transformación de simetría asociada con el vector η_3^a . Entonces obtenemos una solución estacionaria con f' = f y $\Omega' = -\epsilon_3 f^2/2$. Ahora bien, se puede mostrar que para cualquier f asintoticamente plana, la nueva solución no satisface la condición de asintoticidad plana dada por Geroch-Hansen[13], por tanto, no es posible interpretar de manera covariante las soluciones generadas por éste tipo de transformaciones. Para evitar ésta dificultad, se puede usar una combinación de las tres diferentes transformaciones de simetría (2.34). A la solución estática semilla f le aplicamos el vector de simetría η_1^a con parámetro ϵ_1 , la solución resultante es entonces usada como semilla solución para una transformación con el vector η_2^a y el parámetro ϵ_2 y finalmente aplicamos el vector de simetría η_3^a . La nueva solución se puede escribir como

$$f' = (1 + \epsilon_2) f[1 + \epsilon_1 \epsilon_3 (1 + \epsilon_2)], \qquad (2.42)$$

CAPÍTULO 2. SIMETRÍA AXIAL

у

$$\Omega' = (1+\epsilon_2) \left[\epsilon_1 - \frac{\epsilon_3}{2} (1+\epsilon_2) (f^2 - \epsilon_1^2) \right] . \qquad (2.43)$$

Ahora podemos elegir los parámetros introducidos por la transformación de simetría de tal manera que la nueva solución se comvierta en asintoticamente plana, ésta condición nos lleva a las relaciones

$$\epsilon_1^2 = -\frac{\epsilon_2}{2+\epsilon_2}$$
, $y \quad \epsilon_3 = -\frac{\epsilon_2}{\epsilon_1(1+\epsilon_2)^2}$, (2.44)

donde ϵ_2 es una constante negativa en un intervalo $\epsilon_2 \in (-2, 0) \setminus \{-1\}$.

Para analizar una solución concreta, tenemos que especificar la métrica semilla asintoticamente plana. Consideremos la métrica Chazy-Curzon [15]

$$f = \exp(-2m/r)$$
, $r^2 = \rho^2 + z^2$, (2.45)

donde m es una constante positiva. La nueva solución es entonces dada por la ecuaciones (2.42), (2.43) y (2.45). Eligiendo los nuevos parámetros de acuerdo con (2.44)calculamos los correspondientes momentos multipolares de Geroch-Hansen y se obtiene

$$M_0 = m$$
, $J_0 = -m\epsilon_3$. (2.46)

también existen términos de momentos multipolares de masa M_n que corresponden a la distribución de masa axisimétrica de la fuente, y momentos para la corriente de momento angular J_n de orden mayor, los cuales son despreciados puesto que son proporcionales a ϵ_3^2 . Las ecuaciones (2.46) muestran que esta solución representa el campo gravitacional de un cuerpo de masa m y monopolo gravitomagnético $-m\epsilon_3$. El nuevo parámetro ϵ_3 puede ser interpretado como la masa gravitomagnética , la cual puede ser positiva o negativa y la mas gravitoeléctrica de la semilla solución no ha sido afectada por la acción de la transformación de simetría. Las funciones métricas de la nueva solución son:

$$f' = \exp(-2m/r)$$
, $\omega' = -2m\epsilon_3(1+\epsilon_2)^2 z/r$, $\gamma' = -m^2 \rho^2/r^4$.
(2.47)

y se puede comprobar que es una solución exacta de las ecuaciones de Einstein en vacío.

2.6.2 Campo de una masa rotando

Para estudiar el campo gravitacional de objetos astrofísicos como estrellas y planetas es necesario investigar soluciones que posean un conjunto de momentos multipolares masa [27] así como también un conjunto de momentos gravitomagnéticos representando la rotación de la fuente.

Consideremos una solución semilla estacionaria (f, Ω) la cual es asintoticamente plana, nuevamente aplicamos de forma consecutiva tres transformaciones de simetría de acuerdo con (2.34), esto nos conduce a la nueva solución

$$f' = (1+\epsilon_2)f[1+\epsilon_3(1+\epsilon_2)(\Omega+\epsilon_1)] , \qquad (2.48)$$

$$\Omega' = (1+\epsilon_2) \left[\Omega + \epsilon_1 - \frac{\epsilon_3}{2} (1+\epsilon_2) (f^2 - \epsilon_1^2 - 2\epsilon_1 \Omega - \Omega^2) \right] (2.49)$$

En general, ésta nueva solución no es asintoticamente plana. Por tanto pedimos que los parámetros ϵ_1 y ϵ_2 satisfagan la relación (2.44) y la nueva solución puede ser escrita de a siguiente manera

$$f' = f[1 + \epsilon_3(1 + \epsilon_2)^2 \Omega],$$
 (2.50)

$$\Omega' = \Omega + \frac{\epsilon_3}{2} (1 + \epsilon_2)^2 (1 + \Omega^2 - f^2) . \qquad (2.51)$$

veamos ahora una solución que ilustra el método y puede ser interpretada físicamente sin dificultad. Consideremos la solución semilla [16]

$$f = \frac{x^2 - 1 + \alpha_1^2(y^2 - 1)}{(x+1)^2 + \alpha_1^2(y-1)^2}, \qquad \Omega = \frac{2\alpha_1(x+y)}{(x+1)^2 + \alpha_1^2(y-1)^2}, \quad (2.52)$$

con

$$x = \frac{1}{2m}(r_{+} + r_{-}), \qquad y = \frac{1}{2m}(r_{+} - r_{-}), \qquad r_{\pm}^{2} = \rho^{2} + (z \pm m)^{2},$$
(2.53)

donde m y α_1 son constantes. Para ilustrar el efecto de la transformación de simetría, primero analizamos la solución semilla (2.52). Una investigación de los multipolos muestra que hay momentos de monopolo y dipolo gravitoeléctrico asi como también gravitomagnético. Debido a la presencia de monopolo gravitomagnético y dipolo gravitoeléctrico, ésta solución no puede ser considerada para la descripción del campo gravitacional de algún objeto astrofísico, por tanto la solución (2.52)no es interesante desde el punto de vista físico, pero, si aplicamos tres diferentes trasformaciones de simetría a la solución (2.52) su significado puede ser totalmente cambiado. Poniendo la ecuación(2.52) en la ecuación (2.50) y en la ecuación(2.51) y calculando los momentos multipolares de la solución resultante se observa que todos los momentos multipolares no deseables desaparecen si α_1 toma el valor

$$\alpha_1 = -\epsilon_3 (1 + \epsilon_2)^2 . \tag{2.54}$$

y los unicos multipolos que sobreviven son

$$M_0 = m$$
, and $J_1 = \epsilon_3 (1 + \epsilon_2)^2 m$. (2.55)

ésto muestra que la masa total del cuerpo esta dada por m y que solamente el momento dipolar gravitomagnético es el que sobrevive en conformidad con el caracter dipolar de rotación. El momento angular por unidad de masa esta dado por $\epsilon_3(1 + \epsilon_2)^2$ y puede ser positivo o negativo que corresponden a dos posibles direcciones de rotación de la fuente con respecto al eje de simetría. Por tanto, la nueva solución puede ser interpretada como una solución que describe el campo exterior de una masa rotando lentamente. Usando las ecuaciones (2.50)-(2.54) y (2.16)obtenemos los componentes métricos

$$f' = \frac{x-1}{x+1}, \quad \omega' = 2m\epsilon_3(1+\epsilon_2)^2 \frac{1-y^2}{x-1}, \quad \gamma' = \frac{1}{2} \ln \frac{x^2-1}{x^2-y^2}. \quad (2.56)$$

esto es equivalente a la métrica Lense-Thirring [17]. El significado físico, coincide con el investigado utilizando otros métodos

2.7 Fluido perfecto

En ésta sección vamos a considerar el caso axisimétrico estacionario con potencial y se mostrará como un Lagrangiano con un potencial diferente de cero se puede reducir a una Lagrangiano con términos puramente cinéticos a partir de una transformación conforme de la métrica. Las ecuaciones de campo generadas coinciden con las ecuaciones de Einstein considerando un tensor de energía impulso de fluido perfecto, con ecuación de estado $P + \delta = 0$, donde P es la presión y δ la densidad

2.7. FLUIDO PERFECTO

Consideremos el elemento de línea general

$$ds^{2} = e^{2\psi}(dt - \omega d\phi)^{2} - e^{-2\psi}[e^{2\gamma}(d\rho^{2} + dz^{2}) + \mu^{2}d\phi^{2}], \qquad (2.57)$$

donde ψ , ω , γ y μ son funciones de ρ , y z únicamente. Además consideremos el tensor de energía impulso

$$T_{\mu\nu} = (P + \delta) U_{\mu} U_{\nu} - \mathcal{P} g_{\mu\nu} , \qquad (2.58)$$

la cuadrivelocidad está dada por

$$U^{\mu} = e^{-\psi} \delta^{\mu}_t , \qquad (2.59)$$

con todo esto las ecuaciones de Einstein $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$ toman la forma

$$\mu_{\rho}\psi_{\rho} + \mu_{z}\psi_{z} + \mu(\psi_{\rho\rho} - \psi_{zz}) - \frac{e^{4\psi}(\omega_{\rho}^{2} + \omega_{z}^{2})}{2\mu} = \frac{1}{2}\mu e^{2(\gamma - \psi)}(\delta + 3\mathcal{P}) , \quad (2.60)$$

$$\gamma_{\rho\rho} + \gamma_{zz} + \psi_{\rho}^{2} + \psi_{z}^{2} + -\frac{e^{4\psi}(\omega_{\rho}^{2} + \omega_{z}^{2})}{4\mu^{2}} = e^{2(\gamma - \psi)}\mathcal{P} , \qquad (2.61)$$

$$\mu_{\rho\rho} + \mu_{zz} = 2\mu e^{2(\gamma-\psi)} \mathcal{P} , \qquad (2.62)$$

$$\omega_{\rho\rho} + \omega_{zz} + 4(\omega_{\rho}\psi_{\rho} + \omega_{z}\psi_{z}) - \frac{1}{\mu}(\mu_{\rho}\omega_{\rho} + \mu_{z}\omega_{z}) = 0 , \qquad (2.63)$$

Considerando el elemento de línea (2.57) calculamos el lagrangiano $\mathcal{L}_{EH} = \sqrt{-g}R$

$$\mathcal{L}_{EH} = -2\mu [\gamma_{\rho\rho} + \gamma_{zz} + \psi_{\rho}^{2} + \psi_{z}^{2} - \psi_{\rho\rho} - \psi_{zz}] -2[\mu_{\rho\rho} + \mu_{zz} - \mu_{\rho}\psi_{\rho} - \mu_{z}\psi_{z}] + \frac{e^{4\psi}(\omega_{\rho}^{2} + \omega_{z}^{2})}{2\mu}$$
(2.64)

Eliminando nuevamente derivadas totales como en el caso vacío, el Lagrangiano toma la forma

$$\mathcal{L}_{EH} = 2(\mu_{\rho}\gamma_{\rho} + \mu_{z}\gamma_{z}) + \frac{e^{4\psi}}{2\mu}(\omega_{\rho}^{2} + \omega_{z}^{2}) - 2\mu(\psi_{\rho}^{2} + \psi_{z}^{2}) , \qquad (2.65)$$

Ahora consideremos el Lagrangiano de la forma $\mathcal{L} = \mathcal{L}_{EH} + \mathcal{L}_M$ donde \mathcal{L}_M es el Lagrangiano de materia como se vio en el capítulo 1. Considerando a \mathcal{L}_M de la forma

$$\mathcal{L}_M = 2\mu e^{2(\gamma - \psi)} \mathcal{P} , \qquad (2.66)$$

esto nos permite escribir el Lagrangiano en la forma

$$\mathcal{L} = G_{ab} X^{a}_{,i} X^{b}_{,j} h^{ij} - V(X^{a}) , \qquad (2.67)$$

con

$$G_{ab} = \begin{pmatrix} 2\mu & 0 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & 0 & \frac{e^{i\psi}}{2\mu} \end{pmatrix}$$
(2.68)

donde $X^a = (\psi, \mu, \gamma, \omega)$, G_{ab} es la métrica en el espacio coordenado X^a , $V = 2\mu e^{2(\gamma-\psi)}P$ y h^{ij} es la misma que para el caso vacío (2.8). Vemos que V contiene todos los términos del Lagrangiano que dependen de las coordenadas solamente⁹. Si ahora parametrizamos x^i con el parámetro ξ el Lagrangiano toma la forma

$$\mathcal{L} = 2\mu_{\xi}\gamma_{\xi} + \frac{e^{4\psi}}{2\mu}\omega_{\xi}^{2} - 2\mu\psi_{\xi}^{2} - 2\mu e^{2(\gamma-\psi)}\mathcal{P}$$
(2.69)

Los momentos estan dados por $P_a = \frac{\partial \mathcal{L}}{\partial X_k^a}$ y son

$$P_{\psi} = -4\mu\psi_{\xi}$$

$$P_{\gamma} = 2\mu_{\xi}$$

$$P_{\mu} = 2\gamma_{\xi}$$

$$P_{\omega} = \frac{e^{4\psi}}{\mu}\omega_{\xi}$$
(2.70)

Si ahora construimos el correspondiente Hamiltoniano utilizando la ecuación (2.70) obtenemos

$$\mathcal{H} = -\frac{1}{8}P_{\psi}^{2} + \frac{1}{2}P_{\mu}P_{\gamma} + \frac{1}{2}\mu e^{-4\psi}P_{\omega}^{2} + 2\mu e^{2(\gamma-\psi)}\mathcal{P} , \qquad (2.71)$$

⁹Esto se verá más claro cuando consideremos el caso esférico

2.7. FLUIDO PERFECTO

y si calculamos $\frac{d\mathcal{H}}{d\xi}$ el resultado es cero, por tanto podemos interpretar a H como una cantidad conservada y aplicar el principio de Maupertuis para derivar las ecuaciones de campo. Como $\mathcal{H} = costante = E$ tenemos

$$\mathcal{H} = E = P_a X^a_{\xi} - \mathcal{L} = T + V \tag{2.72}$$

esto nos lleva a la relación

$$d\xi = \sqrt{\frac{G_{ab}dX^a dX^b}{(E-V)}}$$
(2.73)

aplicando el principio variacional con la acción

$$s = \int P_a X_{\xi}^a d\xi = \int \sqrt{(E-V)G_{ab}dX^a dX^b}, \qquad (2.74)$$

por tanto podemos definir $\tilde{G}_{ab} = (\mathcal{H} - V)G_{ab}$ lo que nos lleva a las ecuaciones geodésicas

$$\frac{d^2 X^a}{d\xi^2} + \tilde{\Gamma}^a_{bc} \frac{dX^b}{d\xi} \frac{dX^c}{d\xi} = 0$$
 (2.75)

donde $\tilde{\Gamma}^a_{bc}$ son los símbolos de Christoffel asociados con \tilde{G}_{ab} . Las ecuaciones son

$$\gamma_{\xi\xi} + \psi_{\xi}^{2} + \frac{e^{4\psi}}{4\mu^{2}}\omega_{\xi}^{2} = -e^{2(\gamma-\psi)}\mathcal{P}$$

$$\mu\psi_{\xi\xi} + \mu_{\xi}\psi_{\xi} + \frac{2}{\mu}e^{4\psi}\omega_{\xi} = -\mu e^{2(\gamma-\psi)}\mathcal{P}$$

$$\mu_{\xi\xi} = -2\mu e^{2(\gamma-\psi)}\mathcal{P}$$

$$\omega_{\xi\xi} + 4\omega_{\xi}\psi_{\xi} - \frac{1}{\mu}\omega_{\xi}\mu_{\xi} = 0$$
(2.76)

y estas ecuaciones son análogas alas ecuaciones de Einstein (2.60-2.63) considerando la ecuación de estado $\mathcal{P} + \delta = 0$. La recuperación de las ecuaciones de Einstein en su forma usual se realiza utilizando la relación $x^i x^j = h^{ij}$, considerando los potenciales ψ, γ, μ y ω^{10} .

¹⁰Ver apéndice titulado nuevo parámetro

CAPÍTULO 2. SIMETRÍA AXIAL

2.8 Campos Escalar y Electromagnético

Consideremos nuevamente el caso axisimétrico estacionario pero ahora incluyendo campo escalar y campo electromagnético [29], este es un caso interesante, ya que el estudio de la interacción gravitacional acoplada al campo de Maxwell y al campo escalar ha sido estudiado recientemente, por ejemplo, campos Einstein-Maxwell de agujeros negros son probablemente los objetos más interesantes predichos por la relatividad general. El campo escalar aparece acoplado al campo Einstein-Maxwell de manera natural el el límite de baja energía de teoría de cuerdas y como un resultado de una reducción dimensional del Lagrangiano de Kaluza-Klein.

$$\mathcal{L} = \sqrt{-g} [-R + 2(\nabla \Phi)^2 + e^{-2\alpha \Phi} F^2] , \qquad (2.77)$$

donde $g = det(g_{\mu\nu})$, R es el escalar de curvatura, $F_{\mu\nu}$ es el campo de Maxwell y Φ es el campo escalar. Utilizando la métrica (2.1) en la ecuación (2.77), el lagrangiano resultante depende de las funciones métricas y de sus primeras derivadas ¹¹ y puede escribirse en la forma

$$\mathcal{L} = \frac{\rho}{2f^2} [f_{\rho}^2 + f_z^2 + \epsilon_{\rho}^2 + \epsilon_z^2 + 2\phi(\epsilon_{\rho}\chi_{\rho} + \epsilon_z\chi_z) + \phi^2(\chi_{\rho}^2 + \chi_z^2)] + \frac{\rho\kappa^2}{2f} (\phi_{\rho}^2 + \phi_z^2 + \kappa^4(\chi_{\rho}^2 + \chi_z^2) + \frac{2\rho}{\alpha^2\kappa^2} (\kappa_{\rho}^2 + \kappa_z^2) , \quad (2.78)$$

donde $f = e^{-2\phi}$ y

$$\phi = 2A_{t},$$

$$\kappa^{2} = e^{-2\alpha\Phi},$$

$$\chi_{z} = 2\frac{f\kappa^{2}}{\rho}(\omega A_{t,\rho} + A_{\phi,\rho}),$$

$$-\chi_{z} = 2\frac{f\kappa^{2}}{\rho}(\omega A_{t,z} + A_{\phi,z}),$$

$$\epsilon_{z} = \frac{f^{2}}{\rho}\omega_{\rho} + \phi\chi_{z},$$

$$-\epsilon_{\rho} = \frac{f^{2}}{\rho}\omega_{z} - \phi\chi_{\rho}$$
(2.79)

¹¹ver sección 2. 1

2.8. CAMPOS ESCALAR Y ELECTROMAGNÉTICO

donde $A_{\mu} = (A_t, 0, 0, A_{\phi})$, y el Lagrangiano puede ser interpretado como un elemento de línea en el espacio coordenado f, ϵ , ϕ , χ y κ . Estas "coordenadas" pueden ser interpretadas como el potencial gravitacional, rotacional, eléctrico, magnético y escalar respectivamente. Si parametrizamos x^i con el parámetro ξ el Lagrangiano toma la forma

$$\mathcal{L} = \frac{\rho}{2f^2} [f_{\xi}^2 + \epsilon_{\xi}^2 + 2\phi\epsilon_{\xi}\chi_{\xi} + \phi^2\chi_{\xi}^2] + \frac{\rho\kappa^2}{2f} (\phi_{\xi}^2 + \kappa^4(\chi_{\xi}^2 + \frac{2\rho}{\alpha^2\kappa^2}\kappa_{\xi}^2))$$
(2.80)

La variación de la ecuación (2.80) con respecto a los potenciales nos llevan a las ecuaciones

$$\kappa_{\xi\xi} + \frac{1}{\rho} \rho_{\xi} \kappa_{\xi} - \frac{1}{\kappa} \kappa_{\xi}^2 - \frac{\alpha^2}{4f} (\kappa^3 \phi_{\xi}^2 - \frac{1}{\kappa} \chi_{\xi}^2) = 0 , \qquad (2.81)$$

$$\phi_{\xi\xi} + \left(\frac{\rho_{\xi}}{\rho} + 2\frac{\kappa_{\xi}}{\kappa} - \frac{f_{\xi}}{f}\right)\phi_{\xi} - \frac{1}{\kappa^2 f}(\epsilon_{\xi} + \phi\chi_{\xi})\chi_{\xi} = 0$$
(2.82)

$$\chi_{\xi\xi} + \left(\frac{\rho_{\xi}}{\rho} + 2\frac{\kappa_{\xi}}{\kappa} - \frac{f_{\xi}}{f}\right)\chi_{\xi} + \frac{\kappa^2}{f}(\epsilon_{\xi} + \phi\chi_{\xi})\phi_{\xi} = 0$$
(2.83)

$$f_{\xi\xi} + \frac{1}{f} [(\epsilon_{\xi} + \phi_{\chi\xi})^2 - f_{\xi}^2] + \frac{1}{2\kappa^2} (\kappa^4 \phi_{\xi}^2 + \chi_{\xi}^2) = 0 , \qquad (2.84)$$

$$\epsilon_{\xi\xi} + \phi_{\xi}\chi_{\xi} + \phi_{\chi_{\xi\xi}} + (\epsilon_{\xi} + \phi_{\chi_{\xi}})(\frac{\rho_{\xi}}{\rho} - 2\frac{f_{\xi}}{f}) = 0 , \qquad (2.85)$$

La ecuación (2.81) es la ecuación de Klein-Gordon, las ecuaciones (2.82) y (2.83) son las ecuaciones de Maxwell y las ecuaciones (2.84) y (2.85) son las de Einstein.

Nótese que tanto en el Lagrangiano (2.78) como en las ecuaciones (2.81 - 2.85) no contienen la función γ explícitamente, esto es debido a que γ es una coordenada cíclica y utilizamos el método explicado en el capítulo 1 para eliminar todos los términos que contenían γ_{ξ} del lagrangiano (2.78). De la ecuaciones de campo originales se obtienen dos ecuaciones para γ que pueden ser escritas en la siguiente forma¹²

$$\gamma_{\rho} = \frac{\rho}{4f^2} [f_{\rho}^2 - f_z^2 + \epsilon_{\rho}^2 - \epsilon_z^2 + (\frac{f}{\kappa^2} + \phi^2)(\chi_{\rho}^2 + \chi_z^2) -2\phi(\epsilon_{\rho}\chi_{\rho} - \epsilon_z\chi_z) + \kappa^2 f(\phi_{\rho}^2 - \phi_z^2) + (\frac{2f}{\alpha\kappa})^2(\kappa_{\rho}^2 - \kappa_z^2)]$$
(2.86)

 12 Las ecuaciones (2.86) y (2.87) se pueden obtener a partir del teorema de Noether con el Lagrangiano (2.78), ver apéndice B

41

CAPÍTULO 2. SIMETRÍA AXIAL

$$y_{z} = \frac{\rho}{2f^{2}} [f_{\rho}f_{z} + \epsilon_{\rho}\epsilon_{z} + f\phi_{\rho}\phi_{z} - \phi(\epsilon_{\rho}\chi_{z} + \epsilon_{z}\chi_{\rho}) + (\frac{f}{\kappa^{2}} + \phi^{2})\chi_{\rho}\chi_{z} + (\frac{2f}{\alpha\kappa})^{2}\kappa_{\rho}\kappa_{z}], \qquad (2.87)$$

finalmente puesto que las ecuaciones (2.81 - 2.85) del formalismo Euler-Lagrange aplicado al Lagrangiano (2.80) y dado que esta puede ser considerada como un elemento de línea en el espacio de potenciales, es decir

$$\mathcal{L} = G_{ab} Z^a_{\xi} Z^b_{\xi} \tag{2.88}$$

con

$$G_{ab} = \begin{pmatrix} \frac{\rho}{2f^2} & 0 & 0 & 0 & 0\\ 0 & \frac{\rho}{2f^2} & 0 & \frac{\rho\phi}{2f^2} & 0\\ 0 & 0 & \frac{\rho\kappa^2}{2f} & 0 & 0\\ 0 & \frac{\rho\phi}{2f^2} & 0 & \frac{\rho}{2f\kappa^2} + \frac{\rho\phi^2}{2f^2} & 0\\ 0 & 0 & 0 & 0 & \frac{2\rho}{2^2\kappa^2} \end{pmatrix}$$
(2.89)

de estose puede concluir que cualquier solución a las ecuaciones de campo(2.81 - 2.85) puede ser interpretada como una geodésica en un espacio cinco dimensiones con coordenadas $f, \epsilon, \phi, \chi y \kappa$.

2.8.1 Soluciones exactas

Es difícil encontrar soluciones exactas al sistema de ecuaciones diferenciales presentado en la sección anterior[32] [33], sin embargo se puede tener algunas soluciones para valores paticulares de los parámetros $f, \kappa, \epsilon, \phi, y \chi$. Consideremos el caso en el cual los potenciales tienen los siguientes valores

$$f = e^{\sigma\lambda}, \ \kappa^2 = \kappa_0 e^{\beta\lambda}, \ \epsilon = \phi = \chi = 0$$
 (2.90)

donde κ_0 es una constante arbitraria, β y σ son constante con valor

$$\beta = \frac{2\alpha^2}{1+\alpha^2}, \quad \sigma = \frac{2}{1+\alpha^2}, \quad (2.91)$$

Utilizando esto en la ecuaciones (2.81 - 2.85) obtenemos que $\lambda = \lambda(\rho, z)$ debe ser una función armónica, es decir, que cumple con la ecuación

$$\lambda_{\rho\rho} + \frac{1}{\rho} \lambda_{\rho} + \lambda_{zz} = 0 \tag{2.92}$$

2.8. CAMPOS ESCALAR Y ELECTROMAGNÉTICO

y de las ecuaciones (2.86) y (2.87) obtenemos

$$\gamma_{\rho} = \frac{\sigma}{2} \rho (\lambda_{\rho}^2 - \lambda_z^2), \gamma_z = \sigma \rho \lambda_{\rho} \lambda_z$$
(2.93)

las relaciones (2.90) muestran que la función armónica λ determinan tanto el campo gravitacional como el campo escalar. Cuando $\beta = 0$ $(\Phi = 0)$, la solución se reduce a la solución estática en vacío de Weyl. Para un espacio asintóticamente plano, la función λ puede ser elegida como

$$\lambda = \sum_{n=0}^{\infty} q_n \frac{P_n(\cos\theta)}{(\rho^2 + z^2)^{\frac{n+1}{2}}}, \quad \cos\theta = \frac{z}{(\rho^2 + z^2)^{\frac{1}{2}}}, \quad (2.94)$$

donde q_n son constantes arbitrarias y $P_n(\cos\theta)$ son los polinomios de Legendre de orden n. Un caso especial de la solución general es un hoyo negro tipo Schwarzschild con $\lambda = \lambda_S = ln(1 - \frac{2m}{r})$ donde mes una constante y r es una coordenada radial determinada por $\rho = \sqrt{r^2 - 2mr \operatorname{sen}\theta}$ y $z = (r - m)\cos\theta$. Esta solución fue obtenida por Janis Newman y Winicour [23]. Ellos analizan el comportamiento de una esfera de Schwarzschild de radio r = 2m, muestra que esta se convierte en un punto singular y se conjetura que la solución truncada de Schwarszchild donde el espacio sorpresivamente se colapsa de un radio un poco más grande que r = 2m a cero es el estado final mas apropiado de un colapso genérico. Esta conjetura fue estudiada por Christodoulou [24] y recientemente soluciones dependientes de estas ecuaciones han sido encontradas (ver por ejemplo la referencia [25]).

De este modo también para el caso más general de campos axisimétricos con $F^{\mu\nu}$ y $\Phi_{\mu\nu}$ también es posible representar las ecuaciones de campo como geodésicas en un espacio de potenciales.

43

CAPÍTULO 2. SIMETRÍA AXIAL

Capítulo 3

Simetría Esférica

3.1 Introducción

En este capítulo tratamos el caso de las ecuaciones de Einstein tomando un elemento de línea con simetría esférica. Además, se considera un campo escalar sin masa con acople mínimo al campo gravitacional. Este problema es interesante físicamente, ya que tendremos la presencia de potencial y esto nos permitirá utilizar lo visto en la sección [1.5] y ejemplificar de forma más general las ecuaciones de Einstein como geodésicas funcionales.

3.2 Lagrangiano

Para un elemento de línea con simetría esférica y considerando que tenemos un campo escalar sin masa $\Phi = \Phi(r, t)$. Las ecuaciones de Einstein se reducen a

$$R_{\mu\nu} = \Phi_{,\mu} \Phi_{,\nu} \tag{3.1}$$

donde $R_{\mu\nu}$ es el tensor de Ricci y Φ el campo escalar. Considerando el elemento de línea

$$ds^{2} = -2\alpha^{2}(dt^{2} - dr^{2}) + \beta^{2}d\Omega^{2}$$
(3.2)

donde $\alpha = \alpha(r, t)$, $\beta = \beta(r, t)$ y $d\Omega^2 = d\theta^2 + sen^2\theta d\phi^2$. Si ahora cambiamos el elemento de línea (3.2) a coordenadas nulas definidas

CAPÍTULO 3. SIMETRÍA ESFÉRICA

como u = r + t y v = t - r, tenemos

$$ds^2 = -2\alpha^2 du dv + \beta^2 d\Omega^2 \tag{3.3}$$

con $\alpha = \alpha(u, v)$ y $\beta = \beta(u, v)$. Aplicando (3.3) a (3.1) y considerando el campo escalar $\Phi = \Phi(u, v)$, obtenemos las ecuaciones

$$\alpha\beta_{uu} - 2\alpha_u\beta_u + \frac{\alpha\beta}{2}\Phi_u^2 = 0 \tag{3.4}$$

$$\alpha\beta_{vv} - 2\alpha_v\beta_v + \frac{\alpha\beta}{2}\Phi_v^2 = 0 \qquad (3.5)$$

$$\alpha\beta_{uv} + \beta\alpha_{uv} - \frac{\beta}{\alpha}\alpha_u\alpha_v + \frac{\alpha\beta}{2}\Phi_u\Phi_v = 0$$
 (3.6)

$$\beta\beta_{uv} + \beta_u\beta_v + \frac{\alpha^2}{2} = 0 \tag{3.7}$$

$$\beta^2 \Phi_{uv} + \beta_u \Phi_v + \beta_v \Phi_u = 0 \tag{3.8}$$

donde los subíndices indican derivada. Ahora mostraremos como se recuperan estas ecuaciones después de haber llevado este problema a un problema mecánico, es decir a partir de considerar el Lagrangiano correspondiente y aplicar el principio variacional.

Vamos a construir el lagrangiano \mathcal{L}_{esf} utilizando la relación (1.9) con lo que obtenemos

$$\mathcal{L}_{csf} = 4 \mathrm{sen}\theta (\beta_u \beta_v + \frac{\beta}{\alpha} (\alpha_u \beta_v + \alpha_v \beta_u) - \beta^2 \Phi_u \Phi_v - \frac{\alpha^2}{2})$$
(3.9)

Utilizando h^{ij} ahora definido por

$$h^{ij} = \frac{1}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \tag{3.10}$$

donde $x^i = (u, v)$, el Lagrangiano(3.9) toma la forma

$$\mathcal{L} = \beta_{,i}\beta_{,j}h^{ij} + 2\frac{\beta}{\alpha}\alpha_{,i}\beta_{,j}h^{ij} - \frac{\beta^2}{2}\Phi_{,i}\Phi_{,j}h^{ij} - \frac{\alpha^2}{2} \qquad (3.11)$$

El Lagrangiano (3.11) también la podemos escribir como

$$\mathcal{L} = G_{ab} X^a_{,i} X^b_{,i} h^{ij} - V(X^a) \tag{3.12}$$

3.2. LAGRANGIANO

donde $V = \frac{\alpha^2}{2}$ lo consideramos como un potencial. Tener el lagrangiano en esta forma nos permite tratar de utilizar el método presentado en la sección [1.2] para poder absorver el potencial y tratar de tener el Lagrangiano total como un elemento de línea.

Realizando la variacion del Lagrangiano (3.11) con respecto a α , β y Φ obtenemos las ecuaciones

$$h^{ij}[(\beta_{,j})_{,i} - \frac{\beta}{\alpha^2}\alpha_{,i}\alpha_{,j} + \frac{\beta}{\alpha}(\alpha_{,j})_{,m} + \frac{\beta}{2}\Phi_{,i}\Phi_{,j}] = 0 \qquad (3.13)$$

$$\beta h^{ij}(\beta_{,j})_{,i} + \beta_{,j}\beta_{,i}h^{ij} + \frac{\alpha^2}{2} = 0$$
 (3.14)

$$h^{ij}[\beta^2(\Phi_{,j})_{,m} + 2\beta\beta_{,i}\Phi_{,j}] = 0$$
 (3.15)

que son equivalentes a las ecuaciones (3.6-3.8). Faltarían las ecuaciones (3.4) y (3.5), para obtener estas ecuaciones utilizaremos la relación que se obtiene de considerar la derivada total de \mathcal{L} con respecto a las coordenadas¹, y es

$$\frac{d}{dx^{i}}\left\{\frac{\partial \mathcal{L}}{\partial X^{a}_{,i}}X^{a}_{,j}-\delta_{ij}\mathcal{L}\right\}=\frac{\partial \mathcal{L}}{\partial x^{j}}$$
(3.16)

aplicando la relación (3.16) con $x^i = (u, v)$, $X^a = (\alpha, \beta, \Phi)$ y tomando en cuenta que \mathcal{L} no depende en forma explícita de las coordenadas u y v lo que permite considerar el lado derecho de la igualdad como cero se obtienen las relaciones

$$\left\{\frac{-\beta}{\alpha}\left[\alpha\beta_{vv}-2\beta_{v}\alpha_{v}+\frac{\alpha\beta}{2}\Phi_{v}^{2}\right]\right\}_{u}=0$$
(3.17)

$$\frac{-\beta}{\alpha} \left[\alpha \beta_{uu} - 2\beta_u \alpha_u + \frac{\alpha \beta}{2} \Phi_u^2 \right]_v = 0$$
 (3.18)

y finalmente

ł

$$\alpha\beta_{vv} - 2\beta_v\alpha_v + \frac{\alpha\beta}{2}\Phi_v^2 = -\frac{\alpha}{\beta}F(v)$$
(3.19)

$$\alpha\beta_{uu} - 2\beta_u\alpha_u + \frac{\alpha\beta}{2}\Phi_u^2 = -\frac{\alpha}{\beta}G(u)$$
(3.20)

si consideramos F = 0 = G recuperamos las ecuaciones (3.4) y (3.5).

¹Esto se relaciona con el teorema de Noether, ver apéndice B

3.3 Principio variacional

Sea \mathcal{E}^N el espacio de potenciales que estamos considerando, si queremos utilizar el principio de Maupertius, tenemos que considerar la inmersion de este espacio en un espacio mayor \mathcal{E}^{N+1} y estudiar la evolución de \mathcal{E}^N en \mathcal{E}^{N+1} . Aplicando el principio variacional, con la acción

$$S = \int (\mathcal{L}_{EH} + \mathcal{L}_M) d^4 x d\xi \qquad (3.21)$$

donde sabemos que $\mathcal{L}_{EH} + \mathcal{L}_M = T - V$, con V el potencial y T la parte cinética

$$T = G_{ab} X^a_{,i} X^b_{,j} h^{ij} \tag{3.22}$$

donde X^a son los coeficientes métricos, $G_{ab} = G_{ab}(X^a)$ y la coma indica derivada parcial. Pedimos ahora que

$$G_{ab}X^{a}_{,i}X^{b}_{,j}h^{ij} = G_{ab}X^{a}_{,\xi}X^{b}_{,\xi}$$
(3.23)

esto implica que $x^i = x^i(\xi)$, y $\frac{dX^a}{d\xi} = \frac{dX^a}{dx^i} \frac{dx^i}{d\xi}$ y por tanto

$$\frac{dx^i}{d\xi}\frac{dx^j}{d\xi} = h^{ij} \tag{3.24}$$

con

$$h^{ij} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \tag{3.25}$$

La ecuación(3.24) es la condición que debe satisfacer el parámetro ξ para que se cumpla la identificación (3.23).

Para el caso esférico que estamos analizando $x^i = (u, v, \theta, \phi), X^a = X^a(u, v)$ y la ecuación (3.24) nos dice

$$u_{\xi}^{2} = 0, \quad v_{\xi}^{2} = 0, \quad u_{\xi}v_{\xi} = \frac{1}{2}$$
 (3.26)

donde el subíndice ξ representa la derivada con respecto a ξ . Con esto podemos escribir $T = G_{ab} \frac{dX^a}{d\xi} \frac{dX^b}{d\xi}$ y $V = V(X^a, x^i)$ con lo que el nuevo Lagrangiano toma la forma

$$\mathcal{L} = G_{ab} \frac{dX^a}{d\xi} \frac{dX^b}{d\xi} - V \tag{3.27}$$

3.3. PRINCIPIO VARIACIONAL

aplicando el principio variacional

$$\delta S = \delta \int \mathcal{L} d\xi d^4 x = 0 \tag{3.28}$$

nos lleva a las ecuaciones de Euler-Lagrange

$$\frac{d}{d\xi}\left(\frac{\partial \mathcal{L}}{\partial X^a_{\ell}}\right) - \frac{\partial \mathcal{L}}{\partial X^a} = 0$$
(3.29)

Las ecuaciones (3.26) nos permiten escribir el Lagrangiano (3.9) como

$$\mathcal{L} = \beta_{\xi}^2 + \frac{2\beta}{\alpha}\beta_{\xi}\alpha_{\xi} - \frac{\beta^2}{2}\Phi_{\xi}^2 - \frac{\alpha^2}{2}$$
(3.30)

y la aplicación de (3.29) nos conduce a las ecuaciones

$$2\beta_{\xi\xi} + \frac{2\beta}{\alpha}\alpha_{\xi\xi} - \frac{2\beta}{\alpha^2}\alpha_{\xi}^2 + \beta\Phi_{\xi}^2 = 0 \qquad (3.31)$$
$$\beta\beta_{\xi\xi} + \beta_{\xi}^2 + \frac{\alpha^2}{2} = 0$$
$$\beta\Phi_{\xi\xi} + 2\beta_{\xi}\Phi_{\xi} = 0$$

que son equivalentes a las ecuaciones $(3.13-3.15)^2$.

Considerando los momentos definidos a partir de $P_a = \frac{\partial \mathcal{L}}{\partial X_a^a}$ se construye el Hamiltoniano como se mostró en el capítulo 1. El resultado obtenido es

$$\mathcal{H} = \frac{\alpha}{2\beta} P_{\alpha} P_{\beta} - \frac{\alpha^2}{4\beta^2} P_{\alpha}^2 - \frac{1}{2\beta^2} P_{\Phi}^2 + \frac{\alpha^2}{2}$$
(3.32)

con

$$P_{\beta} = 2(\beta_{\xi} + \frac{\beta}{\alpha}\alpha_{\xi})$$

$$P_{\alpha} = \frac{2\beta}{\alpha}\beta_{\xi}$$

$$P_{\Phi} = \beta^{2}\Phi_{\xi}$$
(3.33)

²Ver apéndice C

CAPÍTULO 3. SIMETRÍA ESFÉRICA

Si ahora calculamos la derivada total de \mathcal{H} con respecto a ξ tenemos

$$\frac{d\mathcal{H}}{d\xi} = \frac{\partial\mathcal{H}}{\partial\xi} + \frac{\partial\mathcal{H}}{\partial X^a} X^a_{,\xi} + \frac{\partial\mathcal{H}}{\partial P_a} P_{a,\xi} \qquad (3.34)$$

$$\Rightarrow$$

$$\frac{d\mathcal{H}}{d\xi} = 0$$

donde hemos utilizado las ecuaciones de Hamilton y el hecho de que el Hamiltoniano no de depende explícitamente del parámetro ξ . Esto nos permite interpretar a \mathcal{H} como una cantidad conservada y nos deja en posibilidad de utilizar el principio de Maupertuis, (ver sección 1.5) mediante el cual podemos obtener nuestras ecuaciones de campo a partir de la variación

$$\delta \int \sqrt{\tilde{G}_{ab} dX^a dX^b} = 0 \tag{3.35}$$

con $\tilde{G}_{ab} = (E - V)G_{ab}$, y $\mathcal{H} = cte = E$. Esto nos lleva a las ecuaciones

$$\frac{d^2 X^a}{d\xi^2} + \tilde{\Gamma}^a_{bc} \frac{dX^b}{d\xi} \frac{dX^c}{d\xi} = 0$$
(3.36)

que son equivalentes al sistema de ecuaciones (3.31).

De las ecuaciones de Hamilton $\frac{\partial \mathcal{H}}{\partial P_a} = X^a_{,\xi} y - \frac{\partial \mathcal{H}}{\partial X^a} = P_{a,\xi}$ obtenemos

$$\alpha_{\xi} = \frac{\alpha}{2\beta} (P_{\beta} - \frac{\alpha}{\beta} P_{\alpha})$$

$$\beta_{\xi} = \frac{\alpha}{2\beta} P_{\alpha}$$

$$\Phi_{\xi} = -\frac{1}{\beta^2} P_{\Phi}$$
(3.37)

у

 $P_{\alpha,\xi} = -\frac{1}{2\beta} P_{\alpha} P_{\beta} + \frac{\alpha}{2\beta^2} P_{\alpha}^2 - \alpha$ $P_{\beta,\xi} = \frac{\alpha}{2\beta^2} P_{\alpha} P_{\beta} - \frac{\alpha^2}{2\beta^3} P_{\alpha}^2 - \frac{1}{\beta} P_{\Phi}^2$ $P_{\Phi,\xi} = 0$ (3.38)

Estas son nuevamente equivalentes a las ecuaciones de campo mencionadas anteriormente para el elemento de línea (3.3). Una vez más este resultado muestra que las ecuaciones de Einstein se reducen a un problema de ecuaciones geodésicas que se pueden tratar con los formalismos estandar de mecánica clásica.

De las ecuaciones (3.38) y (3.39) podemos notar que existe una cantidad conservada $\beta^2 \Phi_{\xi} = cte$. Su interpretación, sin embargo, no es plausible ya que es una cantidad conservada en el espacio \mathcal{E}^{N+1} , es decir, con respecto al parámetro ξ , el cual lo hemos usado solamente como ayuda para aplicar el método de Moupertius.

3.4 Simetrías

Podemos ahora trabajar con la nueva métrica \overline{G}_{ab} para encontrar vectores de killing o movimientos homotéticos que nos permitan generar soluciones u obtener cantidades conservadas. Consideremos la acción

$$s = \int \sqrt{\tilde{G}_{ab} dX^a dX^b} d^4x \qquad (3.39)$$

que es análoga a la relación

$$s = \int \tilde{G}_{ab} X^{\prime a} X^{\prime b} d^4 x \qquad (3.40)$$

en el sentido de que al aplicar el principio variacional ambas relaciones nos generan las mismas ecuaciones de campo³ si $\frac{d\tilde{G}_{ab}}{d\xi} = 0$. Aquí primado indica derivación con respecto a un parámetro ξ . Con esto podemos construir un Hamiltoniano de la forma

$$\mathcal{H} = \tilde{G}_{ab} X^{\prime a} X^{\prime b} \tag{3.41}$$

que también es conservado con respecto al parámetro τ . Altora consideremos la métrica para el caso esférico

$$\tilde{G}_{ab} = \begin{pmatrix} 0 & \frac{1}{2}(2E - \alpha^2)\frac{\beta}{\alpha} & 0\\ \frac{1}{2}(2E - \alpha^2)\frac{\beta}{\alpha} & \frac{1}{2}(2E - \alpha^2) & 0\\ 0 & 0 & -\frac{\beta^2}{4}(2E - \alpha^2) \end{pmatrix}$$
(3.42)

³La ecuación (3.39) esta relacionada con la distancia y la ecuación(3.40) se relaciona con la energía

CAPÍTULO 3. SIMETRÍA ESFÉRICA

resolviendo la ecuación de killing para la métrica (3.42) se encuentra solo una solución, que es

$$\eta^a = (0, 0, 4A) \tag{3.43}$$

dode A es una constante. Esto nos permite generar una nueva solución X^{Na} por medio de la transformación $X^{Na} = X^a + \epsilon \eta^a$

$$\begin{array}{rcl}
\alpha^N &=& \alpha \\
\beta^N &=& \beta \\
\Phi^N &=& \Phi + 4\epsilon A,
\end{array}$$
(3.44)

donde ϵ es de orden infinitesimal. Como se puede observar no es ninguna solución interesante, ya que α y β quedan sin cambio y lo único es que $\Phi' = \Phi + 4A\epsilon$ que es trivial por que redifiniendo Φ queda inalterada la métrica. Sin embargo, este vector de killing nos permite construir la cantidad conservada⁴

$$J_0 = \eta_a P^a \tag{3.45}$$

utilizando $\eta_a = (0, 0, A\beta^2(2E - \alpha^2))$ se obtiene

$$J_0 = 2A\beta^2 \Phi_{\xi} \tag{3.46}$$

que es una cantidad conservada, es decir $(J_0)_{\xi} = 0$.

Si ahora resolvemos la ecuación para un movimiento homotético, es decir,

$$\eta_{(a;b)} = \sigma \bar{G}_{ab} \tag{3.47}$$

se encuentra la solución

$$\eta_a = \frac{\beta}{2} (2E - \alpha^2) (\frac{\sigma\beta}{\alpha}, \sigma, 2A\beta)$$
(3.48)

$$\eta^a = (0, \sigma\beta, 4A) \tag{3.49}$$

donde σ y A son constantes. Con esto nuevamente podemos generar una solución de la forma

$$\alpha^{N} = \alpha$$

$$\beta^{N} = (1 + \epsilon \sigma)\beta$$

$$\Phi^{N} = \Phi + 4\epsilon A$$
(3.50)

⁴ver apéndice D

3.4. SIMETRÍAS

que nuevamente no es una solución demasiado interesante ya que redefiniendo la nueva Φ^N y la nueva β^N obtenemos la solución original. Sin embargo, también aquí podemos construir una cantidad conservada de la siguiente forma[22]

$$J_1 = \eta_a P^a - \xi \eta_{(a;b)} P^a P^b \tag{3.51}$$

En forma explícita

$$J_1 = \frac{\sigma\beta}{\alpha} (\alpha\beta)_{\xi} + A\beta^2 \Phi_{\xi} - 4\sigma\xi \mathcal{H}$$
 (3.52)

En resumen tenemos 3 cantidades conservadas J_0 , J_1 y \mathcal{H} que serían primeras integrales de las ecuaciones de Einstein. Estas cantidades nos podrian ayudar a integrar las ecuaciones de Einstein, ya que con ellas se reduce el problema original de ecuaciones de segundo orden a uno de primer ordenque tendría mayor posibilidad de ser integrado, es decir, despejar Φ_{ξ}

$$\Phi_{\xi} = \frac{J_0}{2A\beta^2} \tag{3.53}$$

y sustituir en las ecuaciones (3.31) e intentar la integración, que es un problema interesante.

CAPITULO 3. SIMETRÍA ESFÉRICA

Capítulo 4

Conclusiones

Poder interpretar las ecuaciones de Einstein como geodésicas funcionales en un espacio abstracto de potenciales nos ha permitido tener la posibilidad, entre otras cosas, de investigar simetrías de las ecuaciones de Einstein, las cuales presentan gran relevancia dentro de la Relatividad General, así mismo, ofrece la posibilidad de generar nuevas soluciones a las ecuaciones de Einstein que sean físicamente realistas, lo cual presenta gran interés, ya que a lo largo del tiempo el encontrar soluciones a las ecuaciones de Einstein ha presentado gran dificultad.

En este trabajo se ha mostrado que partiendo del Lagrangiano general de Einstein-Hilbert acoplado mínimante a un Lagrangiano de materia es posible deducir, para algunos campos gravitacionales, Lagrangianos de la forma

$$\mathcal{L} = G_{ab} X^a_{,i} X^b_{,i} h^{ij} + V(X^a) \tag{4.1}$$

los cuales nos permiten generar a partir del principio de acción mínima ecuaciones geodésicas que son equivalentes a las ecuaciones de Einstein obtenidas de forma tradicional.

El estudio de las simetrías de las ecuaciones geodésicas encontradas para el caso de campos gravitacionales estacionarios con simetría axial nos llevó a encontrar las siguientes soluciones aproximadas (Ver sección 2.6)

$$f' = \exp(-2m/r)$$
, $\omega' = -2m\epsilon_3(1+\epsilon_2)^2 z/r$, $\gamma' = -m^2 \rho^2/r^4$.
(4.2)

CAPITULO 4. CONCLUSIONES

que representan el campo exterior de un dyon gravitacional y

$$f' = \frac{x-1}{x+1} , \quad \omega' = 2m\epsilon_3(1+\epsilon_2)^2 \frac{1-y^2}{x-1} , \quad \gamma' = \frac{1}{2}\ln\frac{x^2-1}{x^2-y^2} \quad (4.3)$$

que representan el campo de una masa rotando. Para el caso con simetría esférica se encontraron soluciones, que aunque, son triviales ejemplifican el análisis del problema, estas fueron

$$\alpha^N = \alpha , \quad \beta^N = \beta , \quad \Phi^N = \Phi + 4\epsilon A$$
 (4.4)

y la que resulta del análisis del movimiento homotético

$$\alpha^N = \alpha$$
, $\beta^N = (1 + \epsilon \sigma)\beta$, $\Phi^N = \Phi + 4\epsilon A$ (4.5)

para este mismo caso se encontraron las cantidades conservadas

$$\mathcal{H} = \frac{\alpha}{2\beta} P_{\alpha} P_{\beta} - \frac{\alpha^2}{4\beta^2} P_{\alpha}^2 - \frac{1}{2\beta^2} P_{\Phi}^2 + \frac{\alpha^2}{2}$$
(4.6)

$$J_0 = 2A\beta^2 \Phi_{\xi} \tag{4.7}$$

$$J_1 = \frac{\sigma\beta}{\alpha} (\alpha\beta)_{\xi} + A\beta^2 \Phi_{\xi} - 4\sigma\xi\mathcal{H}$$
(4.8)

que se pueden interpretar como primeras integrales de las ecuaciones de Einstein. Esto es de gran importancia ya que permite reducir el sistema de ecuaciones de Einstein de segundo orden a uno de primero con mayor posibilidad de ser integrado

Dentro del análisis de ecuaciones de Einstein como geodésicas funcionales se trabajaron primero casos de campos gravitacionales que se pueden representar con lagrangianos puramente cinéticos, es decir, de la forma

$$\mathcal{L} = G_{ab} X^a_{,i} X^b_{,i} h^{ij} \tag{4.9}$$

Las ecuaciones obtenidas en el caso particular del Lagrangiano $\mathcal{L}=e^{-2\gamma}\mu^3n\omega_{\xi}^2-\mu\psi_{\xi}^2$ son

$$\mu\omega_{\xi\xi} + 3\omega_{\xi}\mu_{\xi} - 2\mu\omega_{\xi}\gamma_{\xi} = 0 \tag{4.10}$$

$$\mu_{\xi}\psi_{\xi} + \mu\psi_{\xi\xi} = 0 \tag{4.11}$$

56

que describen la propagación de ondas gravitacionales con rotación (Ver apéndice A). En el caso del Lagrangiano $\mathcal{L} = Y_{\xi}^2 + 2YY_{\xi}\lambda_{\xi}$ se obtienen las ecuaciones

$$Y_{\ell}^2 + Y Y_{\ell \ell} = 0 \tag{4.12}$$

$$Y_{\xi\xi} + Y\lambda_{\xi\xi} = 0 \tag{4.13}$$

que describen campos con simetría plana; y del Lagrangiano $\mathcal{L} = e^{4\psi} \frac{1}{2\rho} \omega_{\xi}^2 - 2\rho \psi_{\xi}^2$ obtenemos

$$\omega_{\xi\xi} + \omega_{\xi}\psi_{\xi} - \omega_{\xi}\rho_{\xi}\frac{1}{\rho} = 0 \qquad (4.14)$$

$$\psi_{\xi\xi} + \frac{1}{2\rho^2} e^{4\psi} \omega_{\xi}^2 + \rho_{\xi} \psi_{\xi} \frac{1}{\rho} = 0 \qquad (4.15)$$

que describen la propagación de ondas gravitacionales de Beck-Einstein-Rosen con dos estados de polarización. Para el caso con simetría axial en vacío las ecuaciones que se encuentran son

$$f_{\xi\xi} - f^{-1}(f_{\xi}^2 - \Omega_{\xi}^2) + \rho^{-1}f_{\xi} = 0$$

$$\Omega_{\xi\xi} - 2f^{-1}f_{\xi}\Omega_{\xi} + \rho^{-1}\rho_{\xi}\Omega_{\xi} = 0$$

(4.16)

y en todos los caso se mostró la equivalencia con las ecuaciones de Einstein obtenidas de forma tradicional.

Para los casos de Lagrangianos con potencial se mostró que éstos se pueden reducir al caso de Lagrangianos puramente cinéticos a través del principio de Maupertius. Los casos estudiados bajo esta consideración fuerón:

i) Campo gravitacional con simetría axial con fluido perfecto donde se obtuvieron las siguientes ecuaciones(Ver sección 2.7)

$$\gamma_{\xi\xi} + \psi_{\xi}^{2} + \frac{e^{4\psi}}{4\mu^{2}}\omega_{\xi}^{2} = -e^{2(\gamma-\psi)}\mathcal{P}$$
$$\mu\psi_{\xi\xi} + \mu_{\xi}\psi_{\xi} + \frac{2}{\mu}e^{4\psi}\omega_{\xi} = -\mu e^{2(\gamma-\psi)}\mathcal{P}$$

CAPITULO 4. CONCLUSIONES

$$\mu_{\xi\xi} = -2\mu e^{2(\gamma-\psi)}\mathcal{P}$$
$$\omega_{\xi\xi} + 4\omega_{\xi}\psi_{\xi} - \frac{1}{\mu}\omega_{\xi}\mu_{\xi} = 0$$
(4.17)

ii) Campo gravitacional axisimétrico con campo escalar y campo electromagnético donde se obtuvieron las ecuaciones(Ver sección 2.8)

$$\kappa_{\xi\xi} + \frac{1}{\rho} \rho_{\xi} \kappa_{\xi} - \frac{1}{\kappa} \kappa_{\xi}^{2} - \frac{\alpha^{2}}{4f} (\kappa^{3} \phi_{\xi}^{2} - \frac{1}{\kappa} \chi_{\xi}^{2}) = 0$$
(4.18)

$$\phi_{\xi\xi} + \left(\frac{\rho_{\xi}}{\rho} + 2\frac{\kappa_{\xi}}{\kappa} - \frac{f_{\xi}}{f}\right)\phi_{\xi} - \frac{1}{\kappa^2 f}(\epsilon_{\xi} + \phi_{\chi_{\xi}})\chi_{\xi} = 0$$
(4.19)

$$\chi_{\xi\xi} + \left(\frac{\rho_{\xi}}{\rho} + 2\frac{\kappa_{\xi}}{\kappa} - \frac{f_{\xi}}{f}\right)\chi_{\xi} + \frac{\kappa^2}{f}(\epsilon_{\xi} + \phi\chi_{\xi})\phi_{\xi} = 0 \qquad (4.20)$$

$$f_{\xi\xi} + \frac{1}{f} [(\epsilon_{\xi} + \phi \chi_{\xi})^2 - f_{\xi}^2] + \frac{1}{2\kappa^2} (\kappa^4 \phi_{\xi}^2 + \chi_{\xi}^2) = 0$$
(4.21)

$$\epsilon_{\xi\xi} + \phi_{\xi}\chi_{\xi} + \phi_{\chi_{\xi\xi}} + (\epsilon_{\xi} + \phi_{\chi_{\xi}})(\frac{\rho_{\xi}}{\rho} - 2\frac{f_{\xi}}{f}) = 0 \qquad (4.22)$$

iii) Campo gravitacional con simetría esférica con campo escalar donde se encontraron las ecuaciones(Ver sección 3.3)

$$2\beta_{\xi\xi} + \frac{2\beta}{\alpha}\alpha_{\xi\xi} - \frac{2\beta}{\alpha^2}\alpha_{\xi}^2 + \beta\Phi_{\xi}^2 = 0$$

$$\beta\beta_{\xi\xi} + \beta_{\xi}^2 + \frac{\alpha^2}{2} = 0$$

$$\beta\Phi_{\xi\xi} + 2\beta_{\xi}\Phi_{\xi} = 0 \qquad (4.23)$$

En todos estos casos se mostró que las ecuaciones obtenidas son equivalentes a las ecuaciones de Einstein que se obtienen de forma tradicional.

Finalmente podemos decir que el estudio aquí presentado es una forma muy útil de atacar el problema de simetrías y generación de soluciones en Relatividad General, lo cual motiva a tratar de continuar esta línea de investigación ya que se podría estudiar con mayor detenimiento lo relacionado con las simetrías de las geodésicas, además de seguir tratando de generar nuevas soluciones. También se puede hacer un estudio más a fondo de la relacion entre las coordenadas del espacio tiempo y la métrica h^{ij} lo cual, a su vez, esta relacionado con los modelos sigma no lineales. Otra posibilidad de trabajo es la relación o comparación entre este formalismo de geodésicas funcionales y los formalismos ADM y la teoría de cuerdas, los cuales presentan caracteristicas, tanto conceptuales como matemáticas, similares al formalismo aquí presentado.

CAPITULO 4. CONCLUSIONES
Apéndice A

Ejemplos de Lagrangianos cinéticos

En este apéndice se darán algunos ejemplos explícitos de Lagrangianos que tiene únicamente parte cinética, es decir, Lagrangianos de la forma

$$\mathcal{L} = G_{ab}(X^a, x^i) X^a_{,i} X^b_{,i} h^{ij} \tag{A.1}$$

A.1 Ondas gravitacionales con rotación

Como primer ejemplo consideremos el caso para el cual $X^a = (\omega, \psi)$, $\omega = \omega(t, \rho), \psi = \psi(t, \rho)$ y la métricas G_{ab} y h^{ij} tienen la forma

$$G_{ab} = \begin{pmatrix} e^{-2\gamma}\mu^3 n & 0\\ 0 & -\mu \end{pmatrix}$$
(A.2)

$$h_{ij} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tag{A.3}$$

con esto la ecuación (A.1) toma la forma

$$\mathcal{L} = e^{-2\gamma} \mu^3 n[\omega_{,\rho}^2 - \omega_{,t}^2] - \mu[\psi_{,\rho}^2 - \psi_{,t}^2]$$
(A.4)

Introduciendo el parámetro afin ξ y la condición

$$x_{\ell}^{i} x_{\ell}^{j} = h^{ij} \tag{A.5}$$

62 APÉNDICE A. EJEMPLOS DE LAGRANGIANOS CINÉTICOS

La ecuación (A.4) toma la forma

$$\mathcal{L} = e^{-2\gamma} \mu^3 n \omega_{\xi}^2 - \mu \psi_{\xi}^2 \tag{A.6}$$

esta ecuación nos conduce a las ecuaciones geodésicas

$$\mu\omega_{\xi\xi} + 3\omega_{\xi}\mu_{\xi} - 2\mu\omega_{\xi}\gamma_{\xi} = 0 \tag{A.7}$$

$$\mu_{\xi}\psi_{\xi} + \mu\psi_{\xi\xi} = 0 \tag{A.8}$$

que utilizando nuevamente las relaciones (A.5) toman la forma

$$\mu(\omega_{\rho\rho} - \omega_{tt}) + 3(\omega_{\rho}\mu_{\rho} - \omega_{t}\mu_{t}) - 2\mu(\omega_{\rho}\gamma_{\rho} - \omega_{t}\gamma_{t}) = 0$$
(A.9)
$$\mu(\psi_{\rho\rho} - \psi_{tt}) + (\mu_{\rho}\psi_{\rho} - \mu_{t}\psi_{t}) = 0$$

Las ecuaciones (A.9) coinciden con las ecuaciones de Einstein en vacío para el elemento de línea

$$ds^{2} = e^{2(\gamma - \psi)}(dt^{2} - d\rho^{2}) - \mu^{2}e^{-2\psi}(\omega dt + d\phi)^{2} - e^{2\psi}dz^{2}$$
(A.10)

y describen la propagación de ondas gravitacionales rotando[30].

A.2 Campos con simetría plana

Como segundo ejemplo consideremos el caso para el cual $X^a = (Y, \lambda)$, $Y = Y(t, z), \lambda = \lambda(t, z)$ y la métricas G_{ab} y h^{ij} tienen la forma

$$G_{ab} = \begin{pmatrix} 1 & Y \\ Y & 0 \end{pmatrix} \tag{A.11}$$

$$h_{ij} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tag{A.12}$$

con esto la ecuación (A.1) toma la forma

$$\mathcal{L} = Y_{,t}^2 - Y_{,z}^2 + 2Y(Y_{,t}\lambda_{,t} - Y_{,z}\lambda_{,z})$$
(A.13)

Introduciendo el parámetro afin ξ y la condición

$$x^i_{\xi} x^j_{\xi} = h^{ij} \tag{A.14}$$

A.3. ONDAS GRAVITACIONALES DE BECK-EINSTEIN-ROSEN63

La ecuación (A.13) toma la forma

$$\mathcal{L} = Y_{\xi}^2 + 2YY_{\xi}\lambda_{\xi} \tag{A.15}$$

esta ecuación nos conduce a las ecuaciones geodésicas

$$Y_{\xi}^2 + YY_{\xi\xi} = 0 \tag{A.16}$$

$$Y_{\xi\xi} + Y\lambda_{\xi\xi} = 0 \tag{A.17}$$

que utilizando nuevamente las relaciones (A.14) toman la forma

$$Y_t^2 - Y_z^2 + Y(Y_{tt} - Y_{zz}) = 0$$

(Y_{tt} - Y_{zz}) + Y(\lambda_{tt} - \lambda_{zz}) = 0 (A.18)

Las ecuaciones (A.18) coinciden con las ecuaciones de Einstein en vacío para un caso especial de campos con simetría plana ¹descritos por el elemento de línea

$$ds^{2} = e^{2\lambda}(dt^{2} - dz^{2}) - Y^{2}(dx^{2} + dy^{2})$$
 (A.19)

donde Y y λ son funciones de t y z.

A.3 Ondas gravitacionales de Beck-Einstein-Rosen

Por último consideremos el caso para el cual $X^a = (\psi, \omega), \psi = \psi(t, \rho), \omega = \omega(t, \rho)$ y la métricas G_{ab} y h^{ij} tienen la forma

$$G_{ab} = \begin{pmatrix} 2\rho & 0\\ 0 & -(1/(2\rho))e^{4\psi} \end{pmatrix}$$
(A.20)

$$h_{ij} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tag{A.21}$$

con esto la ecuación (A.1) toma la forma

$$\mathcal{L} = e^{4\psi} \frac{1}{2\rho} (\omega_{,\rho}^2 - \omega_{,t}^2) - 2\rho(\psi_{,\rho}^2 - \psi_{,t}^2)$$
(A.22)

¹Ver [20] capítulo 13

64 APÉNDICE A. EJEMPLOS DE LAGRANGIANOS CINÉTICOS

Introduciendo el parámetro afin ξ y la condición

$$x_{\xi}^{i} x_{\xi}^{j} = h^{ij} \tag{A.23}$$

La ecuación (A.22) toma la forma

$$\mathcal{L} = e^{4\psi} \frac{1}{2\rho} \omega_{\xi}^2 - 2\rho \psi_{\xi}^2 \tag{A.24}$$

esta ecuación nos conduce a las ecuaciones geodésicas

$$\omega_{\xi\xi} + \omega_{\xi}\psi_{\xi} - \omega_{\xi}\rho_{\xi}\frac{1}{\rho} = 0 \tag{A.25}$$

$$\psi_{\xi\xi} + \frac{1}{2\rho^2} e^{4\psi} \omega_{\xi}^2 + \rho_{\xi} \psi_{\xi} \frac{1}{\rho} = 0 \tag{A.26}$$

que utilizando nuevamente las relaciones (A.23) toman la forma

$$(\omega_{\rho\rho} - \omega_{tt}) + (\psi_{\rho}\omega_{\rho} - \psi_{t}\omega_{t}) + \frac{1}{\rho}\omega_{\rho} = 0,$$
(A.27)

$$(\psi_{\rho\rho} - \psi_{tt}) + \frac{1}{2\rho^2} e^{4\psi} (\omega_{\rho}^2 - \omega_t^2) + \frac{1}{\rho} \psi_{\rho} = 0$$

Las ecuaciones (A.27) son equivalentes a las ecuaciones de Einstein en vacío para el elemento de línea

$$ds^{2} = e^{2(\gamma - \psi)}(dt^{2} - d\rho^{2}) - \rho^{2}e^{-2\psi}d^{2}\phi - e^{2\psi}(dz + \omega d\phi)^{2}$$
(A.28)

Las ecuaciones (A.27) describen la propagación de ondas gravitacionales de Beck-Einstein-Rosen con dos estados de polarización[31].

Apéndice B

Teorema de Noether

Las propiedades de simetría del Lagrangiano sugiere la exixtencia de cantidades conservadas, es decir, si el Lagrangiano no contiene explícitamente una coordenada particular, se conserva la correspondiente cantidad de movimiento canónica. La ausencia de la dependencia explícita de la coordenada significa que el Lagrangiano no es afectado por una trasformación que altere el valor de dicha coordenada. Cuando esto sucede se dice que el Lagrangiano es invariante, o que es simétrico ante la trasformación dada. El teorema de Noether contiene la descripción formal de la relación entre las cantidades de simetría o invarianza y las cantidades que se conservan.

Consideremos un Lagrangiano de la forma $\mathcal{L} = \mathcal{L}(\eta_{\rho}, x_{\mu})$, donde x_{μ} son las coordenadas de las cuales dependen las magnitudes η_{ρ} que describen los campos. La simetría ante una trasformación de coordenadas se refiere a los efectos de una trasformación infinitesimal de la forma

$$x_{\mu} \to x'_{\mu} = x_{\mu} + \delta x_{\mu} \tag{B.1}$$

donde la variación infinitesimal δx_{μ} puede ser función de las demás x_{ν} . El teorema de Noether considera también el efecto de una trasformación de las propias cantidades de campo, la cual podemos escribir de la forma

$$\eta_{\rho}(x_{\mu}) \to \eta'_{\rho}(x_{\mu}) = \eta_{\rho}(x_{\mu}) + \delta\eta_{\rho}(x_{\mu}) \tag{B.2}$$

Aquí $\delta \eta_{\rho}(x_{\mu})$ mide el efecto de las variaciones de x_{μ} y de η_{ρ} y puede ser función de las demás cantidades de campo η_{λ} .

APÉNDICE B. TEOREMA DE NOETHER

La principal conclusión del teorema de Noether es la ecuación

$$\frac{d}{dx_{\nu}}\left\{\left(\frac{\partial \mathcal{L}}{\partial \eta_{\rho,\nu}}\eta_{\rho,\sigma}-\mathcal{L}\delta_{\nu\sigma}\right)X_{r\sigma}-\frac{\partial \mathcal{L}}{\partial \eta_{\rho,\nu}}\Psi_{r\rho}\right\}=0$$
(B.3)

donde $X_{r\nu}$ y $\Psi_{r\rho}$ vienen de la forma de las trasformaciones infinitesimales las cuales se ponen en función de R parámetros infinitesimales ϵ_r , r = 1, 2, ..., R, tales que las variaciones de x_{ν} y η_{ρ} sean lineales en los ϵ_r

$$\delta x_{\nu} = \epsilon_r X_{r\nu}, \qquad \delta \eta_{\rho} = \epsilon_r \Psi_{r\rho} \tag{B.4}$$

Las funciones $X_{r\nu}$ y $\Psi_{r\rho}$ pueden depender de las otras coordenadas y de las variables de campo, respectivamente.

Esto nos dice que si un Lagrangiano tiene propiedades de simetría tales que cumplan con las condiciones:

(a)El Lagrangiano presenta la misma forma funcional para las cantidades trasformadas que para las cantidades originales

(b)La magnitud de la integral de acción es invariante ante trasformaciones del tipo indicado en las ecuaciones (B.4)

Existirán r cantidades conservadas.

Si la simetría de la trasformación se refiere solamente a las coordenadas y correspondiera a un desplazamiento de una coordenada x_{μ} , las ecuaciones (B.4) tomarían la forma

$$X_{r\sigma} = \delta_{\sigma\mu}, \quad \Psi_{r\rho} = 0 \tag{B.5}$$

y la ecuación (B.3) se reduce a

$$\frac{d}{dx_{\nu}}\left\{\left(\frac{\partial \mathcal{L}}{\partial \eta_{\rho,\nu}}\eta_{\rho,\sigma}-\mathcal{L}\delta_{\nu\sigma}\right)\delta_{\sigma\mu}\right\}=0$$
(B.6)

y finalmente tomará la forma

$$\frac{d}{dx_{\nu}}\left(\frac{\partial \mathcal{L}}{\partial \eta_{\rho,\nu}}\eta_{\rho,\mu}-\mathcal{L}\delta_{\mu\nu}\right)=0$$
(B.7)

Esto significa que \mathcal{L} representa un campo libre, es decir, que no contiene fuentes ni sumideros exteriores que interactúen con el campo en puntos explícitos del espacio ni con una dependencia temporal dada. De hecho,

esto significa que no hay interacción entre el campo y las partícula puntiformes que por él se mueven en el espacio y el tiempo.

Si definimos un nuevo tensor $T_{\mu\nu}$ de la siguiente manera

$$T_{\mu\nu} = \{ \frac{\partial \mathcal{L}}{\partial \eta_{\rho,\nu}} \eta_{\rho,\mu} - \mathcal{L}\delta_{\mu\nu} \}$$
(B.8)

La ecuación (B.7) toma la forma

$$\frac{dT_{\mu\nu}}{dx_{\nu}} = 0 \tag{B.9}$$

Al tensor $T_{\mu\nu}$ se le llama tensor de energía- esfuerzo y la ecuación (B.9) es la ley de corservación de energía-esfuerzo.

Apéndice C

Generación de Soluciones

Ahora presentamos un resumen del trabajo presentado en el capítulo 30 del libro Exact Solutions of Einstein's field equations de D. Kramer, H. Stephani, E. Herlt y M. MacCallum y recuperamos los resultados obtenidos en el capítulo 2 de éste trabajo.

Para comenzar debemos considerar que el espacio-tiempo admite un campo vectorial Killing no nulo

$$\xi_{(a;b)} = 0, \qquad F = \xi^a \xi_a \neq 0,$$
 (C.1)

posteriormente foleamos el espacio, es decir consideramos una métrica en tres dimensiones γ_{ab} dada por

$$\gamma_{ab} = |F| (g_{ab} - F^{-1}\xi_a\xi_b), \qquad \gamma = det\gamma_{ab}$$
(C.2)

donde g_{ab} es la métrica del espacio-tiempo. Para campos estacionarios F < 0, γ_{ab} es una métrica definida positiva y para vectores Killing espaciales F > 0, γ_{ab} tiene signatura(+, +, -). Ahora se introducen potenciales escalares ϕ^A , (A = 1...N) y se puede encontrar las ecuaciones de campo a partir de un principio variacional para un Lagrangiano de la forma

$$L = \sqrt{\gamma} [\hat{R} + G_{AB}(\phi^C) \gamma^{ab} \phi^A_{,a} \phi^B_{,b}]$$
(C.3)

con

$$\frac{\delta L}{\delta \gamma_{ab}} = 0 \qquad \frac{\delta L}{\delta \phi^A} = 0 \tag{C.4}$$

donde \hat{R} es el escalar de curvatura asociado con γ_{ab} . Las cantidades ϕ^A y γ_{ab} determinan completamente la métrica del espacio-tiempo g_{ab} y los campos no métricos determinan el tensor de energía impulso.

Si el Lagrangiano (C.3) es invariante bajo transformaciones de coordenadas del potencial ϕ^A

$$\phi^{A'} = \phi^{A'}(\phi^B), \qquad L' = L(\gamma'_{ab}, \phi^{A'}, ...)$$
 (C.5)

con la métrica γ_{ab} permaneciendo sin cambio, $\gamma'_{ab} = \gamma_{ab}$. La invarianza del Lagrangiano implica que las ccuaciones de campo (C.4) son también invariantes bajo (C.5). Por tanto, si el conjunto original (ϕ^A, γ_{ab}) satisface las ecuaciones de campo, el nuevo conjunto $(\phi^{A'}, \gamma_{ab})$ también lo hará, es decir, el conjunto $(\phi^{A'}, \gamma_{ab})$ dará una nueva solución.

Para encontrar las transformaciones de invarianza para un Lagrangiano dado, se asigna al segundo término del Lagrangiano (C.3) el elemento de línea

$$dS^2 = G_{AB}(\phi^C) d\phi^A d\phi^B \tag{C.6}$$

en un espacio Riemanniano abstracto N-dimensional de potenciales V_N con coordenadas ϕ^A . Los potenciales ϕ^A son funciones de las coordenadas del espacio-tiempo x^i . Esto nos permite investigar la invarianza del Lagrangiano aplicando métodos familiares de geometría Riemanniana, es decir, solo se tiene que resolver la ecuación de Killing

$$X_{(A;B)} = 0 \tag{C.7}$$

toda solución de (C.7) determina una transformación infinitesimal de los potenciales

$$\phi^A \to \phi^A + \epsilon X^A(\phi)$$
 (C.8)

que dejan dS^2 invariante. Los R independientes vectores de Killing forman el grupo de isometría G_R $(R \leq \frac{N(N+1)}{2})$ de la métrica (C.6). Las correspondientes transformaciones finitas son transformaciones invariantes de L y en general generarán nuevas soluciones.

Este método es aplicado a campos Einstein-Maxwell, considerando que estas ecuaciones pueden ser escritas en términos de los potenciales escalares complejos Φ y E y la 3-métrica γ_{ab} . Entonces el Lagrangiano considerado es

$$L = \sqrt{\gamma} \{ \hat{R} + \frac{1}{2} F^{-2} \gamma^{ab} (E_{,a} + 2\Phi^* \Phi_{,a}) (E_{,b}^* + 2\Phi \Phi_{,b}^*) + 2F^{-1} \gamma^{ab} \Phi_{,a} \Phi_{,b}^*) \}$$
(C.9)

y el espacio de potencial métrico toma la forma

$$dS^{2} = \frac{1}{2}F^{-2}|dE + 2\Phi^{*}d\Phi|^{2} + 2F^{-1}d\Phi^{*}d\Phi \qquad (C.10)$$

y para obtener la transformación de invarianza del Lagrangiano (C.9), se resuelve la ecuación de Killing (C.7) para la métrica (C.10). Como el espacio de potenciales V_4 con métrica (C.10) no es un espacio de curvatura constante, el orden del grupo de movimiento G_R es $R \leq 8$, por tanto hay 8 vectores Killing independientes los cuales asociados con las transformaciones de invariansa finita son

$$E' = \alpha \alpha^* E, \quad \Phi' = \alpha \Phi \quad (C.11)$$

$$E' = E + ib, \ \Phi' = \Phi \tag{C.12}$$

$$E' = E(1 + icE)^{-1}, \qquad \Phi' = \Phi(1 + icE)^{-1}$$
 (C.13)

$$E' = E - 2\beta^* \Phi - \beta\beta^*, \qquad \Phi' = \Phi + \beta \qquad (C.14)$$

$$E' = E(1-2\gamma^*\Phi - \gamma\gamma^*E)^{-1}, \Phi' = (\Phi + \gamma E)(1-2\gamma^*\Phi - \gamma\gamma^*E)^{-1} \quad (C.15)$$

por tanto si ponemos $\Phi = 0$ en las ecuaciones (C.10), (C.11), (C.12) y (C.13) tenemos

$$dS^2 = \frac{1}{2}F^{-2}|dE|^2$$
 (C.16)

$$E' = \alpha \alpha^* E, \qquad \Phi' = 0 \tag{C.17}$$

 $E' = E + ib, \qquad \Phi' = 0 \qquad (C.18)$

$$E' = E(1 + icE)^{-1}$$
 $\Phi' = 0$ (C.19)

si sustituimos el valor de E

$$E = f + i\Omega \tag{C.20}$$

en estas ecuaciones recuperamos las ecuaciones(a primer orden) presentadas en el capítulo 2 de este trabajo.

APÉNDICE C. GENERACIÓN DE SOLUCIONES

Apéndice D

Principio de Maupertuis

El movimiento de un sistema mecánico está completamente determinado por el principio de mínima acción. Resolviendo las ecuaciones de movimiento que se deducen de este principio, se puede hallar la forma de la trayectoria, asícomo la posición sobre la trayectoria en función del tiempo.

Si se restringe el problema a determinar únicamente la trayectoria, sin hacer referencia al tiempo, se puede emplear una forma simplificada del principio de mínima acción, suponiendo que el Lagrangiano \mathcal{L} y el hamiltoniano \mathcal{H} no dependen explícitamente del tiempo, de modo que \mathcal{H} se conserva, es decir, se conserva la energía

$$\mathcal{H}(p,q) = E = cte. \tag{D.1}$$

De acuerdo con el principio de mínima acción, la variación de la acción, para valores iniciales y finales dados de las coordenadas y del tiempo (t_0, t) es nula. Pero si se permite la variación del tiempo final t, permaneciendo fijas las coordenadas inicial y final, se tiene

$$\delta S = -\mathcal{H} \delta t \tag{D.2}$$

Comparemos ahora los desplazamientos virtuales que satisfacen la ley de conservación de le energía. Para tales trayectorias, podemos sustituir \mathcal{H} en (D.2) por la constante E

$$\delta S + E \delta t$$
 (D.3)

Escribiendo la acción y remplazando nuevamente $\mathcal H$ por E

$$S = \int (p^i dq_i - E dt) \tag{D.4}$$

El primer termino de esta expreción, se denomina acción abreviada

$$S_0 = \int p^i dq_i \tag{D.5}$$

Sustituyendo (D.4) en (D.3) se encuentra que

$$\delta S_0 = 0 \tag{D.6}$$

Por tanto la acción abreviada tiene un mínimo con respecto a todas las trayectorias que satisfacen la ley de construcción de la energía y pasan por el punto final en un instante arbitrario. Para aplicar este principio variacional, los momentos y todo el integrando de (D.3) deben expresarse en función de las coordenadas q y de sus diferenciales dq;para ello utilizamos la definición

$$p_i = \frac{\partial}{\partial \frac{dq_i}{dt}} \mathcal{L}(q, \frac{dq}{dt}) \tag{D.7}$$

y la ley de conservación de energía

$$E(q, \frac{dq}{dt}) = E = cte$$
 (D.8)

Despejando de (D.8) la diferencial dt en función de las coordenadas q y de sus diferenciales dq, y sustituyendo en la fórmula (D.7) expresamos los momentos en función de q y dq, con la energía E como un parámetro. El principio variacional así obtenido determina la trayectoria de sistema, y usualmente se le llama *Principio de Maupertius*.

Los cálculos anteriores pueden realizarse explícitamente cuando el Lagrangiano tiene la forma habitual

$$\mathcal{L} = \frac{1}{2} h_{ik} \frac{dq^{i}}{dt} \frac{dq^{k}}{dt} - U(q)$$
 (D.9)

los momentos son

$$p_i = h_{ik} \frac{dq^k}{dt} \tag{D.10}$$

Por tanto

$$p^{i}dq_{i} = h_{ik}\frac{dq^{\kappa}}{dt}dq^{i} = h_{ik}\frac{dq^{\kappa}}{dt}\frac{dq^{i}}{dt}dt \qquad (D.11)$$

y la energía

$$E = \frac{1}{2}h_{ik}\frac{dq^{i}}{dt}\frac{dq^{k}}{dt} + U(q)$$
 (D.12)

de esta ecuación se deduce

$$2(E-U) = h_{ik} \frac{dq^i}{dt} \frac{dq^k}{dt}$$
(D.13)

У

$$dt = \sqrt{\frac{h_{ik}dq^i dq^k}{E - U}} \tag{D.14}$$

sustituyendo (D.13) y (D.14) en (D.11) y poniendo éste resultado en (D.5), tenemos

$$S_0 = \int \sqrt{2(E-U)h_{ik}dq^i dq^k}$$
(D.15)

y aplicando el principio variacional a esta última ecuación obtenemos las ecuaciones de determinan el movimiento.

APÉNDICE D. PRINCIPIO DE MAUPERTUIS

Apéndice E

Nuevo parámetro

Como ya vimos en el capítulo 3 tenemos que utilizar un nuevo parámetro ξ que nos permite conocer la evolución geodésica en el espacio de potenciales, en este apartado se muestra como se recuperan las ecuaciones para el espacio tiempo a partir de las ecuaciones (3.31) para cualquier función A = A(u, v) tenemos

$$A_{\xi} = A_u u_{\xi} + A_v v_{\xi} \tag{E.1}$$

donde $u_{\xi} = \frac{du}{d\xi}, v_{\xi} = \frac{dv}{d\xi}$. Análogamente

$$A_{\xi\xi} = (A_u u_{\xi} + A_v v_{\xi})_u u_{\xi} + (A_u u_{\xi} + A_v v_{\xi})_v v_{\xi}$$
(E.2)

$$= (A_{uu}u_{\xi} + A_{vu}v_{\xi})u_{\xi} + (A_{uv}u_{\xi} + A_{vv}v_{\xi})v_{\xi}$$
(E.3)

de la ecuación E.1 tenemos

$$A_{\xi}^{2} = (A_{u}u_{\xi} + A_{v}v_{\xi})(A_{u}u_{\xi} + A_{v}v_{\xi})$$
(E.4)

si ahora utilizamos las relaciones (3.26) en las ecuaciones (E.3) y (E.4), obtenemos

$$A_{\xi\xi} = A_{uv} \tag{E.5}$$

$$A_{\xi}^2 = A_v A_u$$

utilizando las relaciones (E.6) para β , α y Φ obtenemos

$$\beta_{\xi\xi} = \beta_{uv} \tag{E.6}$$

APÉNDICE E. NUEVO PARÁMETRO

$$\begin{aligned}
\beta_{\xi}^{2} &= \beta_{u}\beta_{v} \\
\alpha_{\xi\xi} &= \alpha_{uv} \\
\alpha_{\xi}^{2} &= \alpha_{u}\alpha_{v} \\
\Phi_{\xi\xi} &= \Phi_{uv} \\
\Phi_{\xi\xi}^{2} &= \Phi_{u}\Phi_{v}
\end{aligned}$$
(E.7)

sustituyendo estas ecuaciones en las ecuaciones (3.31) nos lleva a las ecuaciones

$$\beta_{uv} + \frac{\beta}{\alpha} \alpha_{uv} - \frac{\beta}{\alpha^2} \alpha_u \alpha_v + \frac{\beta}{2} \Phi_u \Phi_v = 0$$

$$\beta \beta_{uv} + \beta_u \beta_v + \frac{\alpha^2}{2} = 0$$

$$\beta \Phi_{uv} + \beta_u \Phi_v + \beta_v \Phi_u = 0$$
(E.8)

que son las ecuaciones de campo para el espacio-tiempo, que se pueden poner en la forma (3.13- 3.15) con la ayuda del operador D_j y los productos definidos, utilizando la matríz h^{ij} .

esta	ЖЯS		eror.
SALIR	ØÈ	LA	LIUTELA

Apéndice F

Simetrías

Trabajar con sistemas simetricos no solo nos permite obtener cierta simplicidad o facilidad en la manipulación de los problemas físicos sino que también puede suceder que ocurran especiales efectos físicos. Uno puede por tanto esperar que cuando en relatividad general existe un alto grado de simetría en las ecuaciones de campo, estas se puedan resolver con mayor facilidad y presenten propiedades especiales.

Para entender esto, veamos primero que significa una simetría en un espacio tridimensional euclidiano. En este espacio la simetría viene del hecho que bajo traslación a lo largo de ciertas líneas o sobre ciertas superficies las variables físicas no cambian, si uno lleva esta idea intuitiva a espacios Riemannianos, tendremos una simetría si existe una variedad s-dimensional de puntos en ésta que son físicamente equivalentes, en otras palabras, bajo una operación de simetría la métrica no cambia.

Para precisar más esta idea consideremos un vector $\xi^i(x^a)$ en todo punto x^a del espacio y preguntémonos por la condición bajo la cual la métrica no cambia en una traslación en la dirección ξ^i . Puesto que todo movimiento finito puede ser construido a partir de movimientos infinitesimales, es suficiente considerar la invarianza de la métrica bajo un movimiento infinitesimal, de la forma

$$x'^{a} = x^{a} + \xi^{a}(x^{n})\alpha, \quad \alpha = cte, |\alpha| \ll 1$$
 (F.1)

para esta transformación

$$\delta g_{ab} = g_{ab,n} \xi^n \alpha \tag{F.2}$$

$$\delta(dx^a) = d(\delta x^a) = \xi^a_{,n} dx^n \alpha$$

así que el elemento de línea en el punto x^a y en el cercano punto x'^a son identicos si y solo si

$$\delta(ds^2) = \delta(g_{ab}dx^a dx^b) = 0$$

$$\Rightarrow$$

$$(g_{ab,n}\xi^n + g_{nb}\xi^n_{,a} + g_{an}\xi^n_{,b})dx^a dx^b \alpha = 0$$
(F.3)

Una simetría esta presente si y solo si (F.4) es satisfecha independientemente de la orientación de dx^a , es decir se tiene que cumplir que

$$g_{ab,n}\xi^{n} + g_{nb}\xi^{n}_{,a} + g_{an}\xi^{n}_{,b} = 0$$
 (F.4)

Para una métrica dada, la ecuación (F.4) es un sistema de ecuaciones diferenciales que determinan los vectores $\xi^i(x^n)$; si este sistema no tiene solución, entonces el espacio no tiene simetrías. Utilizando la formulación covariante la ecuación (F.4) puede escribir en la forma

$$\xi_{b;a} + \xi_{a;b} = \pounds_{\xi} g_{ab} = o \tag{F.5}$$

donde \pounds_{ξ} es la derivada de Lie a lo largo de ξ . Los vectores ξ^{i} que son solución a la ecuacion F.4 son llamados vectores Killing y estos vectores caracterízan las propiedades de simetría de los espacios Riemannianos. Si se elige un sistema coordenado, tal que, ξ^{n} tenga la forma

$$\xi^n = (0, 0, 0, 1) \tag{F.6}$$

la ecuación (F.4) se reduce a

$$\frac{\partial g_{ab}}{\partial x^4} = 0 \tag{F.7}$$

esto nos dice que la métrica no depende de x^4 , por tanto de aquí se ve claramente que una alternativa definición de simetría es la independencia de alguna coordenada.

Muchos de los estudios sobre simetría se refieren también a sistemas lagrangianos y estan basados principalmente en el teorema de Noether, donde las propiedades de simetría del Lagrangiano (o el Hamiltoniano) implican la exixtencia de cantidades conservadas. Así, si el Lagrangiano no contiene explícitamente una coordenada particular de desplazamiento, se conserva la correspondiente cantidad de movimiento canónica. La ausencia de la dependencia explícita de la coordenada significa que el Lagrangiano no queda afectado por una transformación que altere dicha coordenada;se dice que es invariante, o que es simétrica ante la transformación dada. Análogamente, la invarianza del Lagrangiano ante un desplazamiento temporal inplica conservación de la energía. El teorema de Noether contiene la descripción formal de la relación entre las propiedades de simetría o invarianza y las cantidades que se conservan.

Existen también transformaciones de simetría no Noetherianas para movimientos geodésicos en un espacio Riemanniano. Las simetrías no Noetherianas mapean el espacio de soluciones del sistema de ecuaciones diferenciales que se esta considerando en si mismo, sin preservar la estructura del Lagrangiano, en otras palabras las simetrías no-Noetherianas no son simetrías del Lagrangiano, pero son simetrías de las ecuaciones de movimiento. En el caso de movimientos geodésicos, se consideran colineacines afin que son que son transformaciones que no preservan la métrica pero dejan los símbolos de Christoffel inalterados. Veamos esto con más detalle.

Consideremos la ecuación geodésica

$$(\frac{D}{Ds})P^{\mu} + \Gamma^{\mu}_{\alpha\beta}P^{\alpha}P^{\beta} = 0$$
 (F.8)

donde $P^{\mu} = \frac{dq^{\mu}}{ds}$ y $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$. La perturbación de la ecuación (F.8) es

$$(\frac{\widetilde{D}}{Ds})(\frac{\widetilde{D}}{Ds})\xi^{\mu} + R^{\mu}_{\alpha\beta\lambda}P^{\alpha}P^{\beta}\xi^{\lambda} = 0$$
 (F.9)

la cual es una ecuación de desviación geodésica, definiendo un vector de simetría infinitesimal

$$\xi^{\mu} = \xi^{\mu}(q^{\nu}, P^{\rho}, s)$$
 (F.10)

el cual mapea el espacio de soluciones de la ecuación (F.8) en si mismo, $\frac{\tilde{D}}{Ds}$ es la derivada covariante proyectada en la geodésica tangente P^{μ} . El vector mas general $\xi^{\mu}(q^{\beta}) = m^{\mu}$ que satisface la ecuación (F.9) es una colineación afin definida por

$$m^{\mu}_{;\alpha\beta} + R^{\mu}_{\alpha\beta\lambda}m^{\lambda} = 0 \tag{F.11}$$

la cual se puede expresar como

$$m_{(\mu;\alpha);\beta} = 0 \tag{F.12}$$

o como

$$\mathcal{L}_m \Gamma^{\mu}_{\alpha\beta} = 0 \tag{F.13}$$

donde \mathcal{L} es la derivada de Lie a lo largo de m. La ecuación (F.12) que la propia colineación afin no preserva la métrica Riemanniana(o la geodésica lagrangiana $\mathcal{L} = \frac{1}{2}g_{\alpha\beta}\frac{dq^{\alpha}}{ds}\frac{dq^{\beta}}{ds}$), mientras que la ecuación (F.13) implica que la estructura de la ecuación geodésica F.8 permanece inalterada por tal transformación. Hay dos constantes de movimiento asociadas con una colineación afin y son

$$C_1 = m_{\alpha;\beta} P^{\alpha} P^{\beta} \tag{F.14}$$

у

$$C_2 = m_\alpha P^\alpha - sC_1 \tag{F.15}$$

como se puede ver con ayuda de (F.12) y de (F.8). Los vectores Killing son un caso especial de las colineaciones afin.

Bibliografía

- [1] B. Julia, in *Superspace and supergravity*, edited by S. W. Hawking and M. Rocek (Cambridge University Press, 1980).
- [2] B. S. de Witt, Phys. Rev. 160, 1113 (1967).
- [3] G. Neugebauer and D. Kramer, Ann. Phys. (Leipzig) 24 62 (1969).
- [4] D. Núñez and H. Quevedo, SILARG VIII. Proceedings of the 8th Latin American Symposium on Relativity and Gravitation, (Águas de Lindóia, Brazil, 1993), Eds. P. S. Letelier and W. A. Rodriguez, Jr, World Scientific, p. 162, 1994.
- [5] S. Hojman, S. Chayet, D. Núñez, and M. Roque, J. Math. Phys. 32, 1491 (1991).
- [6] F. J. Ernst, Phys. Rev. 167, 1175 (1968).
- [7] Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics, (North-Holland, Amsterdam, 1982).
- [8] G. Fodor, C. Hoenselares, and Z. Perjés, J. Math. Phys. 30, 2252 (1989).
- [9] Ver, Por ejemplo, Solutions of Einstein's equations: Techniques and Results, Editado por C. Hoenselaers y W. Dietz (Springer, Berlin, 1984). Para una revisión introductoria ver H. Quevedo, Fortschr. Phys. 38, 733 (1990).
- [10] P. A. Dirac, Proc. Roy. Soc. A, 133, 60 (1931); Phys. Rev. 74, 817 (1948).

- [11] G. t'Hooft, Nucl. Phys. B, 79, 276 (1974); A. M. Polyakov, JETP Letters, 20, 194 (1974).
- [12] W. A. Hiscock, Phys. Rev. Lett. 50, 1734 (1983).
- [13] R. Geroch, J. Math. Phys. 11, 1955 (1970); 11, 2580 (1970); R. O. Hansen, *ibid.* 15, 46 (1974). Para otra definición equivalente de momentos multipolares ver: K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980); R. Beig and W. Simon, Comm. Math. Phys. 78, 75 (1980); Proc. Roy. Soc. London, 376A, 333 (1981); Acta Phys. Austriaca 53, 249 (1981). Para una revisión introductoria ver H. Quevedo, Fortschr. Phys. 38, 73 (1990).
- [14] Se puede demostrar que una solución axisimétrica estacionaria es asintóticamente plana (ver Ref. [13]) si para $\rho = 0$ y $z \to \infty$ las funciones métricas $f \to 1 + O(z^{-1})$ y $\Omega \to O(z^{-1})$.
- [15] J. Chazy, Bull. Soc. Math. France, 52, 17 (1924); H. E. J. Curzon, Proc. Math. Soc. London, 23, 477 (1924).
- [16] Este es un caso especial de una solución más general presentada en: H. Quevedo, Phys. Rev. D 39, 2904 (1989).
- [17] H. Thirring and J. Lense, Phys. Z. 19, 156 (1918); see also B.
 Mashhoon, F. W. Hehl, and D. S. Theiss, Gen. Rel. Grav. 16, 711(1984).
- [18] H. Stephani, Differential Equations: Their solution using symmetries, (Cambridge University Press, Cambridge, 1989).
- [19] H. Goldstein, *Classical Mechanics*, (Addison-Wesley Publishing Company, Reading, 1980).
- [20] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact solutions of Einstein's Field Equations (Cambridge University Press, Cambridge, 1980).
- [21] R. Geroch, *j. Math. Phys.* **12**(1971)918;*ibid.* **13**(1972)394.
- [22] S. A. Hojman, D. Núñez, Affine collineations in Riemannian space , J. Math. Phys32(1), (1991)

- [23] A. J. Janis, E. T. Newman, and J. Winicour, Phys. Rev. Lett. 20, 878 (1968).
- [24] D. Chistodolou. commun. Math. Phys. 15, 337(1986); 106, 587(1986);109, 591(1987);109, 613(1987).
- [25] V. Husain, E. A. Martínez, and D. Núñez, Phys. Rev. D50, 3783(1994).
- [26] L. D. Landau, E. M. Lifshitz, Teoría Clásica de Campos pag. 373-374.
- [27] H.Quevedo, Multipole Moments in General Relativity, Fortschr. Phys. 38(1990)10, 733-840.
- [28] S. A. Hojman, D. núñez, An algorithm to relate general solutions of different bidimensional problems, J. Math. Phys. 32(6), (1991)
- [29] Tonatiuh Matos, Darío Núñez, Hernando Quevedo, Class of Einstein-Maxwell dilatons, Physical Review D (1995).
- [30] B.Mashhoon and H.Quevedo, Relativity and Gravitation: Classical and Quantum, Proceedings of the VII SILARG Conference, Mexico City, Phys. Lett. 151A, 464(1990).
- [31] G.Beck, Z. Phys. 33, 713 (1925); A. Einstein and N. Rosen, J. Franklin Inst. 223, 43(1937); A. S. Kompaneets, Sov. Phys. JETP, 7, 659(1958).
- [32] Tonatiuh Matos, J. Math. Phys. 35, 1302(1994).
- [33] Tonatiuh Matos, Phys. Rev. D 49, 4296(1994).