

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO** FACULTAD DE INGENIERIA

ESTUDIO DEL EFECTO DE ALMACENAMIENTO VARIABLE EN EL ANALISIS DE PRUEBAS DE PRESION

INGENIERO PETROLERO

PRESENTA:
CLAUDIA MARGARITA
CASTRO ROMERO

DIRECTOR DE TESIS:
M. en I. RAUL LEON VENTURA

México, D.F. 1996.

TESIS CON FALLA DE ORIGEN

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIERIA DIRECCION 60-1-004

SRITA. CLAUDIA MARGARITA CASTRO ROMERO Presente

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso el profesor M. en I. Raúl León Ventura y que aprobó esta Dirección, para que lo desarrolle usted como tesis de su examen profesional de Ingeniero Petrolero

ESTUDIO DEL EFECTO DE ALMACENAMIENTO VARIABLE EN EL ANALISIS DE PRUEBAS DE PRESION

RESUMEN

INTRODUCCION

II ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE

ALMACENAMIENTO CONSTANTE

III ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE

ALMACENAMIENTO VARIABLE

IV EJEMPLOS ILUSTRATIVOS

V CONCLUSIONES Y RECOMENDACIONES

NOMENCLATURA

REFERENCIAS

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escular en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que se deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar examen profesional.

Atentamen te

"POR MI RAZA HABLARA EL ESPIRITU" Ciudad Universitaria, a 16 de enero de 1996

EL DIRECTOR

ING. JOSE MANUEL COVARRUBIAS SOLIS

JMCS*R(LR*gig

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA

DIVISION DE INGENIERIA EN CIENCIAS DE LA TIERRA

NOMBRE DE LA TESIS:

ESTUDIO DEL EFECTO DE ALMACENAMIENTO VARIABLE EN EL ANALISIS DE PRUEBAS DE PRESION.

TESIS QUE PRESENTA:

CASTRO ROMERO CLAUDIA MARGARITA

DIRIGIDA POR:

M. en I. RAUL LEON VENTURA

JURADO PARA EXAMEN PROFESIONAL:

Fresidense. - ING. MANUEL VILLAMAR VIGUERAS =

Vocal .- M. en I. RAUL LEON VENTURA

Secretario .- ING. NESTOR MARTINEZ ROMERO

Primer Suplente .- ING. SALVADOR MACIAS HERRERA

Segundo Suplente .- ING. HORACIO ZUÑIGA PUENTE

AGRADECIMIENTOS

A mí padre *RAÚL CASTRO*, él cuál me ha brindado todo su amor y lo más importante su sabiduría y serenidad para llegar a esta miestra meta, dándome la mejor herencia que puede tener un hijo.

A mí madre *MARGARITA ROMERO*, quién en todo momento supo que este era mí camino y que lo culminaría tarde o temprano, contando siempre con su cariño, amor y comprensión.

A mis abuelos *ALFONSO* y *MARGARITA*, quienes me dieron todo su tiempo cuando era tan solo una niña y rodeada de su amor crecí para ser lo que soy ahora. Les dedico esto por ser más que un ejemplo, por ser más que unos padres.

A mi abuela *EMA DUARTE*, que donde quiera que este espero se sienta orgallosa de lo que una vez inície y ahora término, teniéndola siempre en mí mente y en mí corazón.

Al *Dr. PIÑA*, por apoyarme en todo momento y brindar su cariño a toda mi familia en las buenas y en las malas, esperando que cuente con su ayuda y consejos siempre.

A *JASPER HAYTON*, por ser parte de mi vida y hacer las cosas más sencillas y maravillosas.

"La razón de amar... la encontramas viviendo;

el sentido de vivir... lo encontramos amando "

j ARFAERNAS!

A mi hermana *SANDRA*, esperando que se de cuenta de todo mi cariño y apoyo, así como yo se que cuento con el de ella. Y que sea este un inicio de todo lo que realizaremos en la vida.

A *ALEJANDRO*, ya que sin él esto hubiera sido más dificil, y por estar a mí lado hoy y siempre como un excelente amigo.

A mis *tlos* y *primos* por ser parte de una gran familia, estando unidos en todo momento.

¡ Gracias por su apoyo, confianza y cariño!

Y a mis *profesores* de la Facultad de Ingeniería de la UNAM, quienes dan parte de su vida a la educación, siendo un ejemplo para todos.

Mil Gracias a DIOS por estar conmigo...

Al *M. en I. RAÚL LEÓN FENTURA*, por su esfuerzo y dedicación para la realización de este trabajo, esperando contar con sus consejos en mi vida profesional y con su contianza en mi desarrollo como persona.

"Los ideales son como las estrellas:
nunca los alcanzamos,
pero, al igual que los marinos en alta mar,
trazamos nuestro camino siguiendolos"

Claudia Margarita Castro Romero.

INDICE

	RESUMEN	i				
l	INTRODUCCIÓN	3				
11	ANÁLISIS DE PRUEBAS DE PRESIÓN CON EFECTO DE ALMACENAMIENTO CONSTANTE					
	H.1. Concepto de almacenamiento constante	6				
	11.2. Comportamiento de presión en un pozo					
	con efecto de almacenamiento constante					
	II.3. Análisis de pruebas de presión	. 25				
III	ANÁLISIS DE PRUEBAS DE PRESIÓN CON EFECTO DE ALMACENAMIENTO VARIABLE					
	III.I. Anomalías que se presentan en pruebas de presión	32				
	III.2. Fenómeno de segregación de fases					
	III.3. Efecto de almacenamiento variable	42				
	III.4. Análisis de pruebas de presión	64				
IV	EJEMPLOS ILUSTRATIVOS					
	IV.1. Ejemplo 1 (Pozo Taratunich 301)	67				
	IV.2. Ejemplo 2 (Pozo Taratunich 63D)	76				
V	CONCLUSIONES Y RECOMENDACIONES	. 87				
	NOMENCLATURA	89				
	REFERENCIAS	94				

BASHANISA

RESUMEN

El fenómeno de almacenamiento es el efecto de pozo que tiene mayor relevancia sobre la respuesta de las pruebas de variación de presión durante los llamados tiempos cortos.

Durante muchos años se han estudiado los fenómenos y las anomalías que provocan los efectos de almacenamiento en pozos de aceite y gas en las pruebas de incremento o decremento de presión, principalmente. Se ha demostrado que uno de los fenómenos que tiene mayor impacto sobre los datos de presión de fondo es la redistribución de fases, que es el resultado de la velocidad más alta de la fase gaseosa dentro de la tubería de producción de un pozo después de cerrarlo en la superficie, ocasionando el efecto de almacenamiento variable.

El estudio de este fenómeno de segregación de fases y por tanto, del modelo de interpretación de pruebas de presión con efectos de almacenamiento variable es desarrollado con detalle en este trabajo.

También se desarrolla el efecto de almacenamiento constante como antecedente de investigación y se hace la comparación con el efecto de almacenamiento variable sobre el comportamiento de la presión en los pozos.

ţ

Se describe la metodología de análisis de los datos de presión (convencional y con curvas tipo) cuando se tienen los efectos de almacenamiento; constante y variable.

Finalmente, se ilustra la aplicación de estos modelos en el análisis de dos casos prácticos de campo en los que es significativa la confiabilidad de la interpretación y de los resultados obtenidos.

CAPITULO 1

INTRODUCCION

Para analizar el comportamiento de los yacimientos petroleros y poder predecir la producción bajo diferentes alternativas de explotación¹⁻¹², el Ingeniero Petrolero puede utilizar como una buena herramienta, para obtener suficiente información, las pruebas de presión que se realizan a los pozos¹³⁻²⁰.

La interpretación de pruebas de presión recae en el uso de modelos con características supuestas que representan el yacimiento real. Estas se desarrollan a partir de un cambio abrupto del gasto de producción y del registro continuo del cambio de presión de fondo respectivo.

Estas pruebas se han convertido en una de las herramientas más poderosas para la caracterización de yacimientos, con su uso se ha avanzado mucho en el área de yacimientos logrando establecer estrategias adecuadas de producción, con el propósito de alcanzar una mayor productividad de los pozos.

En las pruebas de presion ocurre, a tiempos cortos, el efecto de almacenamiento que se presenta como una condición de frontera interna. La influencia de este fenómeno puede modificar significativamente la respuesta de presión²⁰.

El almacenamiento se considera como un efecto que altera el comportamiento de la presión y puede originarse por compresión o expansión de los fluidos, así como por un cambio de nivel de líquido en el pozo. Se ha analizado este efecto por medio de curvas tipo, siendo este un ajuste de análisis por medio de una familia de curvas de decremento de presión⁷, las cuales representan la solución de ecuación de difusividad, considerando el almacenamiento constante. Mediante el uso de la derivada de la presión¹⁷, es posible identificar con precisión el periodo de flujo dominado por el efecto de almacenamiento, es decir, es una magnifica herramienta de diagnóstico.

Durante tiempos cortos ocurren fenómenos que afectan el comportamiento de la presión¹², tales como : el efecto de almacenamiento, la segregación de fases, los fluidos dentro del pozo, lugas a través de tuberías, fracturas, penetración parcial, etc. Cuando se presenta alguno de estos fenómenos, ocurre una anomalía típica en la respuesta de presión.

El efecto de almacenamiento variable está asociado con el fenómeno de redistribución de fases¹⁴, siendo un efecto que dificulta la aplicación de las técnicas de análisis, tales como un ajuste con curvas tipo, el cuál está basado en una consideración de almacenamiento constante.

El uso de estas técnicas comúnmente resulta en un error sistemático del modelo para los datos medidos a tiempos cortos. Cuando una prueba se corre durante un tiempo suficientemente grande para desarrollar el flujo radial infinito en el yacimiento, los efectos más serios ocurren a tiempos cortos y ocasionan una reducción en la confiabilidad de la interpretación.

La necesidad de analizar datos de presión afectados por el almacenamiento variable, ha dado como resultado varios esfuerzos para explícar la variación anómala de la presión a través del fenómeno de redistribución de fases^{14,21}.

Por tanto, dada la importancia que tiene el efecto de almacenamiento variable sobre la interpreación de pruebas de presión, este trabajo tiene como objetivo primordial estudiar el fenómeno de almacenamiento variable, tanto física como matemáticamente, tomando como base diversas investigaciones que durante varios años se han venido realizando¹⁸. Con la aplicación de estos modelos se pretende lograr un ajuste más preciso y por tanto, una mejor confiabilidad en los resultados obtenidos de las pruebas de presión.

Finalmente, con dos ejemplos prácticos de campo²², se ilustra la aplicación de los modelos de interpretación con efectos de almacenamiento constante y variable, demostrándose el beneficio logrado en la calidad de los análisis y la confiabilidad de los resultados.

CAPITULO II

ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE ALMACENAMIENTO CONSTANTE

11.1 CONCEPTO DE ALMACENAMIENTO CONSTANTE

Siempre que se abre o cierra un pozo para registrar una prueba de presión se presentan los efectos de almacenamiento, los cuales modifican la respuesta de presión de los pozos durante los tiempos cortos.

Cuando un pozo se cierra en la superficie, el gasto de flujo en la cara de la formación no cesa inmediatamente, ya que el fluido continúa entrando en el agujero durante un cierto periodo de tiempo hasta que el yacimiento cesa de aportar fluido hacia el pozo, es decir, la cara de la formación queda completamente cerrada al flujo.

Si un pozo ha estado cerrado y se ha introducido en él una herramienta para medir la variación de la presion, al ser abierto el flujo a la superficie la cara de la formación productora continúa cerrada, de tal manera que el gasto en la superficie proviene únicamente del fluido almacenado en la columna del pozo. Después de un tiempo, durante el cual este gasto va disminiyendo (q_s) y el gasto de la formación (q_{st}) va aumentando, termina el efecto de almacenamiento cuando el gasto total proviene del yacimiento, es decir que la cara de la formación queda completamente abierta : $q_s = 0$ y $q_{st} = 0$. Este fenómeno del flujo que continúa entrando al pozo en la cara de la formación después del cierre, o cuando el flujo proviene de la columna del pozo al abrirlo en la superficie se conoce como efecto de almacenamiento.

La figura I muestra esquemáticamente el efecto de almacenamiento que ocurre en un pozo cuando se abrel y cuando se cierra. Cuando se tiene un gasto constante en la superficie, ocurre la suma de dos gastos en sentidos opnestos, esto es, la descarga del pozo q_w que disminuye de q a cero, más el flujo de la formación que aumenta de cero a q; por tal motivo para tiempos cortos se presenta el periodo de almacenamiento durante una prueba de variación de presión como se puede observar en la figura 2.

El almacenamiento de los pozos se puede desarrollar por compresión o expansión de fluidos o bien por el movimiento de la interfase de fluidos dentro de la columna del pozo.

CONTRACTOR FOR STATE AND THE CONTRACTOR OF A C

FIG. 1.- EFECTO DE ALMACENAMIENTO EN UN POZO: (a) se cierra, (b) se abre *.

FIG. 2.- EFECTO DE ALMACENAMIENTO DURANTE UNA PRUEBA DE VARIACION DE PRESION *.

a) Por compresión o expansión del fluido.

Sea un pozo que está completamente lleno de un líquido bajosaturado y que produce a un gasto q constante en la superfície, $figura \beta$.

Se tendrá el siguiente balance de masa :

Gasto que entra
$$\left[\begin{array}{c} Gasto que sale \\ (q_3/B) \end{array} \right] = \left[\begin{array}{c} Gasto almacenado \\ en el pozo \end{array} \right]$$

Donde

$$(q_{\mathcal{S}} - q) B \approx 24 V_w c_w \frac{dp_w}{dt}$$
 (1)

despejando:

$$q_{\mathcal{F}} = q + 24 \frac{V_w C_w}{B} \frac{dp_w}{dt} \tag{2}$$

Definiendo $C = V_{ii} c_{ii}$, entonces q_{sf} queda de la forma signiente :

$$q_{sf} = q + \frac{24 C}{B} \frac{dp_{\theta}}{dt} \tag{3}$$

Para comprender la solución a problemas de flujo que incluye almacenamiento del pozo, es necesario introducir variables adimensionales:

$$p_0 = \frac{K h \left(p_i - p_w \right)}{1412 \ g B u} \quad , \quad p_w = p_i - \frac{1412 \ g B u}{K h} p_0 \tag{4}$$

$$I_0 = \frac{0.0002637 \ K \ I}{\phi \ \mu \ Cer^{\kappa^2}} , \qquad I = \frac{\phi \ \mu \ Cer^{\kappa^2}}{0.0002637 \ K} I_0$$
 (5)

FIG. 3,- ESQUEMA DE UN POZO QUE PRODUCE UN SOLO FLUIDO BAJOSATURADO ".

De tal manera que :

$$\frac{dp_{s}}{dt} = \left(-\frac{1412 \cdot q \cdot BW}{K \cdot h} \right) \cdot \left(\frac{\alpha \cos(\alpha \cos 37 \cdot K)}{A_{coll} \cdot G_{coll} \cdot R^{2}} \right) \cdot \frac{dp_{s}}{dt}$$

$$\frac{dp_s}{dt} = \frac{0.0373 \ q E}{\psi \mu C_t h r_b^{-1}} \frac{dp_t}{dL} \tag{6}$$

Por tanto, sustituyendo en la ecuación 3:

$$q_{\mathcal{F}} = q - \frac{0.894 \ q \ C}{\Phi \ C t \ h \ r_e^2} \frac{dp_D}{dt_D} \tag{7}$$

Definiendo el coeficiente de almacenamiento adimensional como :

$$C_D \approx \frac{0.894 \cdot \text{C}^2}{\phi \cdot C_L \cdot h \cdot r_s^2} \tag{8}$$

entonces

$$q_{V} \approx q \left(1 - C_{D} \frac{dp_{0}}{dt_{D}} \right) \tag{9}$$

y finalmente

$$\frac{q_d}{q} = 1 - C_b \frac{dp_b}{db} \tag{10}$$

Esta ecuación representa la condición de frontera interna en un pozo que produce a gasto constante un fluido figeramente compresible con efecto de almacenamiento.

b) Par movimiento de una interfase

Para considerar una intertase de fluidos dentro de la columna del pozo, como se muestra en la *figura 4*, se puede plantear el siguiente balance de masa en el pozo:

Gasto que entra
$$\left[\begin{array}{c|c} Gasto que sale \\ (g_{B}) \end{array}\right] = \left[\begin{array}{c|c} Gasto almacenado \\ en el pozo \end{array}\right]$$

De donde se obtiene lo siguiente :

$$(q_{st} - q)B = \frac{24 A_s}{5615} \frac{dz}{dt} \tag{11}$$

donde B se supone constante.

La presión en el fondo del pozo es :

$$p_w = p_x + \frac{p_x z}{144} - \frac{g}{g}$$
 (12)

$$p_w - p_I = \frac{\rho - z}{144} - \frac{g}{g_i}$$

Derivando con respecto al tiempo:

$$\frac{d(p - pr)}{dt} = \frac{\rho}{144} \frac{g}{g} \frac{dz}{dt}$$

FIG. 4.- ESQUEMA DE UN POZO QUE PRODUCE CON EL MOVIMIENTO DE UNA INTERFASE GAS-LIQUIDO * .

$$\frac{dr}{dt} = \frac{141}{6} \frac{g}{q} - \frac{d\left(p_{th} - p_{th}\right)}{dt} \tag{13}$$

sustituyendo en la ecuación 11:

$$(q : q) B = \frac{24 A_0}{5.615} \frac{144 \ g}{\rho \ g} \frac{d (p_0 - p_0)}{dt}$$
(14)

Por tal motivo el coeficiente de almacenamiento C se puede llegar a escribir como:

$$C = \frac{144 \ A \times g_s}{5.615 \ \rho \ g}$$
 (15)

entonces de la ecuación 14 se tiene :

$$q_{tt} = q_{t} + \frac{24 C}{B} \frac{d(p_{tt} + p_{t})}{dt}$$
 (16)

suponiendo que $p_t = \text{constante}$:

$$q_{st} = q + \frac{24 C}{B} \frac{dp_{w}}{dt} \tag{17}$$

Esta ecuación es idéntica a la ecuación 3, únicamente el coeficiente de almacenamiento tiene una definición diferente. Por tanto, las ecuaciones 9 y 10 también son válidas para pozos que tienen una interfase.

11.2 COMPORTAMIENTO DE PRESION EN UN POZO CON EFECTO DE ALMACENAMIENTO CONSTANTE

La ecuación de difusividad para flujo radial, introduciendo el concepto del efecto de almacenamiento en el pozo como una condición de frontera interna (ecuación 10), ha sido resuelta y la solución se ha publicado en la literatura especializada¹³:

$$Pv(t_{b}, s, C_{b}) = \frac{4}{\pi^{2}} \int_{0}^{\infty} \frac{e^{-\ln^{2}t_{b}} - dn}{u^{2} \left\{ \left[u | C_{0} \circ (u) - (1 - C_{t} | s | n^{2}) J_{0}(u) \right]^{2} + \left[n | C_{0} \Gamma_{0}(u) - (1 - C_{t} | s | n^{2}) Y_{0}(u) \right]^{2} \right\}}$$

$$(18)$$

La solución analítica se presenta gráficamente en la figura 5. A partir de esta solución es posible determinar valores de p_n (y por consiguiente de p_n) para valores dados de : q_n , s y q_n . Para tiempos cortos, cuando la formación aún no aporta fluidos, es decir, todo el gasto proviene del fluido almacenado en el pozo, entonces $q_n/q=0$, y de la ecuación 10 se tiene :

$$0 \approx 1 - C_B \frac{dp_B}{dt_B} \tag{19}$$

Integrando desde $t_0 = 0$ (donde $p_0 = 0$) hasta t_0 :

$$p_{b} = \frac{t_{b}}{C_{c}} \tag{20}$$

17

FIG. 5.- COMPORTAMIENTO DE LA PRESION EN UN POZO CON EFECTOS DE DAÑO Y ALMACENAMIENTO".

Y escribiendo la ecuación anterior en términos logarítmicos:

$$Log p_0 = Log t_0 + Log C_0 \tag{23}$$

Entonces, cuando $q_g > 0$, al graficar Log p_0 contra Log t_0 se obtiene una finea recta de pendiente unitaria. Esto se observa en la primera porción a tiempos cortos de todas las curvas de la *figura 5*. Además, si la ecuación 20 se convierte a variables reales se obtiene :

$$\Delta p = \frac{q B}{24} \frac{t}{C} \tag{22}$$

que también representa una línea recta con pendiente unitaria en coordenadas log-log, como se muestra en la figura 6. De tal manera que cualquier punto sobre la línea recta satisface a la ecuación 22 y por tanto, a la ecuación 20.

Una vez construido el gráfico de la figura 6, eligiendo arbitrariamente un punto cualquiera (la única condición es que esté sobre la línea recta), con los datos de $\Delta p - y - t$ correspondientes, se puede estimar el coeficiente de almacenamiento:

$$C = \frac{q B}{24} \frac{I}{\Delta p} \tag{23}$$

así como el coeficiente adimensional con la ecuación 8.

FIG. 6.- GRAFICA DE LOG Δp VS. t QUE DEFINE EL PERIODO DOMINADO POR EL EFECTO DE ALMACENAMIENTO 12.

El coeficiente de almacenamiento varía con respecto al tiempo, observándose en la figura " que a medida que ϵ ' es mayor, q_a/q tiende a uno, en un tiempo más grande. Cuando el coeficiente de almacenamiento ϵ ' es igual a cero, la relación de gastos q_a/q es igual a i para todo tiempo : sin embargo, si el coeficiente de almacenamiento es mayor que cero, la relación de gastos q_a/q cambia gradualmente de cero a uno. En un pozo que produce a gasto constante, una vez que el flujo proveniente de la formación es igual al gasto producido en la superficie, es decir : $q_a = q$ y $q_a = 0$, cesa el efecto de almacenamiento y este tiempo que dura dicho efecto puede estimarse a partir de los tiempos adimensionales leidos en la intersección de las curvas de c_b con las de $c_b = a$ de la figura 5, para s = a 3, 1a y 2a según se presenta en la Tabla II.18.

TABLA II.1 .- VALORES DE 1_D CORRESPONDIENTES AL FINAL DEL EFECTO DE ALMACENAMIENTO⁸.

COEFICIENTE DE ALMACENAMIENTO ADIMENSIONAL	VALORES	DE TIEMPO	ADIMENSIONAL ,	t _D
C_{D}	s = 0	S ≈ 5	s = 10	s = 20
102	6 x 10 ³	7.75 x 10 ³	9.5 x 10 ³	1.3 x 10 ⁴
103	6 x 10 ⁴	7.75 x 10 ⁴	9.5 x 10 ⁴	1.3 x 10 ⁵
104	6 x 10 ⁵	7.75 x 10 ⁵	9.5 x 10 ⁵	1.3 x 10 ⁶
105	6 x 10 ⁶	7.75 x 10 ⁶	9.5 x 10°	1.3×10^7

FIG. 7.- COMPORTAMIENTO DE LA VARIACION DEL COEFICIENTE DE ALMACENAMIENTO CON RESPECTO AL TIEMPO 12 .

rat program terroles al relegio della della artario della della della colla colla colla colla colla colla colla

En la *figura 8* se muestran graficados los valores de la *Tabla II.1* y se obtienen las siguientes expresiones :

y como se ha demostrado³, la ecuación general que representa en forma aproximada la terminación de los efectos de almacenamiento está dada por :

$$t_0 = (60 + 3.5 s) C_0 \tag{24}$$

A partir de este tiempo, figura 9, una vez que cesan los efectos de almacenamiento, la formación está totalmente abierta al flujo, es decir que todo el flujo proviene de ella $(q=q_{sf})$, entonces se alcanza el periodo de flujo radial transitorio (infinito) y los datos de presión representan la respuesta del comportamiento del yacimiento, sin los efectos de almacenamiento.

FIG. 8.- REPRESENTACION GRAFICA DEL TIEMPO FINAL DE LOS EFECTOS DE ALMACENAMIENTO *.

FIG.9.- IDENTIFICACION DE LOS PERIODOS DE FLUJO EN EL COMPORTAMIENTO DE LA PRESION DE UN POZO CON EFECTOS DE ALMACENAMIENTO CONSTANTE.

11.3 ANALISTS DE PRUEBAS DE PRESION

9

Como se ha demostrado¹³, la respuesta de presion de un pozo con efectos de almacenamiento y daño está dado por la ecuación 18, cuyas aproximaciones para tiempos cortos y largos están dadas por la ecuación 20 y por :

$$p_{\rm e} = \frac{1}{2} \left\{ \ln \left(t_{\rm h} \right) + 0.80907 + 2.8 \right\} \tag{25}$$

respectivamente. La ecuación 20 representa la respuesta de presión durante el periodo de flujo dominado por el almacenamiento (línea recta de pendiente unitaria) y la ecuación 25, será la respuesta de presión durante el periodo de flujo radial infinito (solución de línea fuente).

Obteniendo la derivadaº de la ecuación 20:

$$p_0' = \frac{d(p_0)}{d(t_0/C_0)} = 1 \tag{26}$$

Arreglando la ecuación 25 y obteniendo su derivada:

$$p_b = \frac{1}{2} \left[\ln \left(\frac{t_b}{C_D} \right) + \ln \left(C_b \ e^{2S} \right) + 080907 \right]$$
 (27)

wind part + gradient with a gradient ward the real particular and the first of th

$$pn' = \frac{\partial \left(p_0\right)}{\partial \left(t_0/C_0\right)} = \frac{05}{t_0/C_0} \tag{38}$$

teniendo las siguientes expresiones para el cálculo de las ecuaciones anteriorem

$$\frac{t_B}{C_B} = \frac{0.000295 \ K \ h \ \Delta t}{\mu \ C}$$
 (29)

$$C_b e^{2s} = \frac{0.894 \cdot C \cdot e^{2s}}{\phi \cdot h \cdot c_t \cdot r_w^2} \tag{30}$$

Multiplicando las ecuaciones 26 y 28 por el término t_0/c_0 se obtiene :

$$p_{\mathcal{D}}'\left(t_{\mathcal{D}}/C_{\mathcal{D}}\right) = t_{\mathcal{D}}/C_{\mathcal{D}} \tag{31}$$

$$p_{\theta}'\left(t_{\theta}/C_{\theta}\right) = 0.5 \tag{32}$$

de tal manera, que para tiempos largos la derivada se vuelve totalmente independiente del término t_0/C_0 , es decir, ya no existen efectos de almacenamiento. Esto dió lugar a la curva tipo conocida como "la derivada", la cual presenta una familia de curvas en coordenadas logarítmicas como se muestra en la *figura 10*, y que vino a revolucionar las técnicas de análisis de pruebas de presión en pozos⁹.

FIG. 10.- COMPORTAMIENTO DE PRESION EN UN POZO CON EFECTOS DE ALMACENAMIENTO Y DAÑO $^{\rm 17}$

BILLY BROWN CONTROLL CONTROLLED BY A DESCRIPTION OF A TRANSPORT OF A DESCRIPTION OF A DESCR

Con el uso de la derivada se logró gran confiabilidad en el análisis de pruebas de presión, ya que se eliminó el problema de no-unicidad de solución al permitir un ajuste único de los datos y además, aprovechar la presencia de los datos de tiempos cortos, aquellos influenciados por el almacenamiento del pozo.

Para efectuar el análisis de los datos de una prueba de presión es necesario, construir primero la "curva de datos" constituída por: Δp y $\Delta p'\Delta t$ contra Δt , en coordenadas logarítmicas y a la misma escala de la curva tipo. Se usa Δt cuando se trata de una curva de incremento y t para decremento de presión.

Una vez realizado el ajuste de las curvas, como se muestra en la figura 11, se anotan los datos correspondientes al punto de ajuste : Δp , $\Delta p'\Delta t$ y Δt de la curva de datos, y p_{ν} , $p_{\nu'}$ (t_{ν}/C_{ν}), t_{ν}/C_{ν} y C_{ν} $e^{2\tau}$ de la curva tipo. Además, se identifica con exactitud donde terminan los efectos de almacenamiento, cuando la derivada alcanza una pendiente igual a cero, es decir, sobre la línea horizontal donde $p_{\nu'}$ (t_{ν}/C_{ν}) = 0.5 y que corresponde a la convergencia de todas las curvas de la derivada.

A partir de los datos del punto de ajuste se pueden obtener los parámetros característicos del sistema pozo-yacimiento, tales como la permeabilidad de la formación y el factor de daño con las siguientes expresiones:

CREATED AND EAST OF A STATE OF A STATE OF THE CONTROL OF THE CONTR

$$K = \frac{143.2 \text{ } q \text{ } B \text{ } p}{K \text{ } h} = \left(\frac{p_{n'}\left(l_{n}/C_{n}\right)}{\Delta V^{2} \Delta U}\right)_{\text{ajuste}}$$
(33)

У

$$s = 0.5 \ln \left(\frac{\left(t_0/C_0 \right) \left(C_0 e^{2s} \right)}{t_0} \right)$$
ajusto

respectivamente. Además, con este análisis se identifica el final del efecto de almacenamiento, se hace el diagnóstico del modelo de yacimiento representativo del sistema en estudio y la determinación de las características de las fronteras, de fracturas, heterogeneidades, fallas, etc.

Muchas veces, por desconocimiento del objetivo de las pruebas de presión, por la falta de un diseño previo o por fallas operativas, no se registran los datos con una duración suficiente para alcanzar todos los periodos de flujo. Una gran cantidad de pruebas se han registrado en estas condiciones, las cuales no eran posible interpretarlas.

Sin embargo, después de la introducción de la derivada a través del ajuste de los datos, aunque fueran únicamente los de tiempos cortos, fue posible hacerlo. En la *figura 12* se ilustra cómo lograr el ajuste de los datos de tiempos cortos para analizar una prueba de presión cuya duración no fue suficiente para alcanzar el periodo de flujo transitorio.

FIG. 11.- ILUSTRACION DE LA TECNICA DE AJUSTE CON CURVAS TIPO DE UNA PRUEBA DE PRESION CON EFECTOS DE ALMACENAMIENTO CONSTANTE.

FIG. 12.- ILUSTRACION DEL AJUSTE CON CURVAS TIPO DE UNA PRUEBA DE PRESION CUYOS DATOS ESTAN UNICAMENTE EN EL PERIODO DE ALMACENAMIENTO.

CAPITULO III

ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE ALMACENAMIENTO VARIABLE

111.1 ANOMALIAS QUE SE PRESENTAN EN PRUEBAS DE PRESION

Puede considerarse que la respuesta de presión de un pozo presenta diferentes comportamientos en función del tiempo, definiéndose así la presencia de los distintos periodos de flujo, los cuales a su vez representan las características específicas del sístema pozo-yacimiento. De esta manera, es posible identificar datos de presión a tiempos cortos, intermedios y largos, correspondientes a los efectos del pozo, del yacimiento y de las fronteras, respectivamente. Esto se ilustra en la *figura 13*.

FIG. 13.- COMPORTAMIENTO TIPICO DE LA RESPUESTA DE PRESIGN EN LOS POZOS'.

Como se describro en el Capítulo II , uno de los efectos dominantes durante los tiempos cortos está dado por el fenómeno del almacenamiento; pero además, la respuesta de presión puede presentar otras anomalias causadas tipicamente por : los fluidos dentro del pozo, las fallas de empacadores, las fugas a través de tuberías (TP O TR). la penetración pareial, las fracturas, etc.

Las variaciones de gastos de producción, los efectos de anisotropia, interferencia de otros pozos, presencia de fronteras, las suspensiones del registro, así como fugas o represionamientos durante el desarrollo de las pruebas, deben ser tomados en cuenta y no tomarse como factores en forma aísladaⁿ.

Para llegar a tener una interpretación real y confiable de la respuesta de presión se debe encontrar la influencia de todos estos factores y manejarlos integralmente¹¹. Para tiempos cortos se tienen efectos variables del pozo como son: el almacenamiento, el daño, las fracturas, la penetración parcial y el espesor efectivo; mientras que para tiempos largos se tienen efectos del yacimiento como: las interferencias, el gasto, la anisotropía y los efectos de frontera, entre otros. Por otro lado, se pueden presentar los problemas operativos en los cuales están las suspensiones en la adquisición del registro, las fugas en tuberías o empacadores, los represionamientos, así como anomalías que resultan de la segregación de las fases y los efectos de almacenamiento, este último analizado con curvas de incremento de presión para diferentes tipos de vacimientos¹².

111.2 FENOMENO DE SEGREGACION DE FASES

La mayoría de las pruebas de presión se realizan mediante el cierre del pozo en la superficie, más que en el fondo, para reducir costos. Sin embargo, el cierre en la superficie permite la entrada de fluido desde el yacimiento durante un periodo de tiempo después del cierre (periodo de almacenamiento). Además, en pozos que contienen las fases de líquido y gas, ocurre un levantamiento preferencial del gas, con respecto al líquido, en la tubería de producción, debido al fenómeno de segregación de fases.

En la práctica existe la necesidad de analizar datos de presión afectados por la segregación de fases. Se ha demostrado que a tiempos cortos el efecto de segregación de fases actúa similarmente a un pozo con aluacenamiento constante. A tiempos intermedios, una curva de incremento de presión se desvía del comportamiento de almacenamiento constante y aparece una forma característica de "joroba" debido al efecto de segregación de fases, figura 14. Por tanto, el análisis de los datos sin la identificación correcta del efecto de almacenamiento variable, puede conducir a la estimación incorrecta de los parámetros del yacimiento.

El fenómeno de redistribución de fases^{to} se ha establecido desde dos puntos de vista : estático (columna del pozo) y dinámico (columna del pozo con entrada del yacimiento), por medio de experimentos de laboratorio.

FIG. 14.- INCREMENTO DE PRESION CON EFECTO DE SEGREGACION DE FASES¹⁰.

1) Aspecto estático

Para este estudio se considera un cilindro que contiene dos fluidos separados mediante un pistón sin fricción y sin peso, como se muestra en la figura 15. La fase fiquida se coloca arriba y la fase gaseosa abajo (CHINDRO 1). Para este experimento se supone que el gas no tiene peso y que el líquido es incompresible. Si se floma A a la presión que se tiene en la cima, se aprecia que el gas confinado abajo del pistón está a la presión A más la presión debida a la carga del líquido (P); mientras que si se invierte el cilindro se tendrá ahora a la fase gaseosa en la cima (CILINDRO 2), y por tanto, se tienen las siguientes observaciones:

- a) Si el líquido es incompresible, el pistón no tiene movimiento, así que el gas ocupa el mismo volumen ; por tanto, el gas permanece a la misma presión inicial: A+P.
- b) La presión de fondo es ahora la presión ejercida por el gas en la cima del pistón (A+P), más la carga del fluido P, resultando así una presión total igual a (A+2P).

De acuerdo con lo analizado, si se cambia la posición de los fluidos, cambia la presión absoluta en la cima y en la base; mientras que la diferencia entre ambas permanece constante. Analíticamente se observa que en el CILINDRO 1 se tiene (A+P)-A=P, es decir que $\Delta P=P$, mientras que en el CILINDRO 2 se tiene (A+2P)-(A+P)=P, resultando que $\Delta P=P$. Por tanto, se demuestra que en los dos cilindros la diferencia final de sus presiones es ignal y permanece constante.

FIG. 15.- EXPERIMENTO DEL ASPECTO ESTATICO DEL FENOMENO DE SEGREGACION DE FASES u,n .

2) Aspecto dinámico

En este caso se tiene un cilindro (que representa la columna del pozo) fleno con glicerina y aire, figura 16. En la PRUEBA i se mantiene abierta la válvula B, mientras que la válvula C permanece cerrada ; después se inyecta aire a través de un núcleo ubicado en la base de la columna junto a la válvula A ; después de cierto tiempo las válvulas A (entrada de aire) y B (salida del aire) son cerradas simultáneamente, cuando las burbujas de aire se dispersen suficientemente a través de la columna, resultando un incremento de presión total entre la cima y el fondo siendo aproximadamente de 13 pg. de agua. Aquí se observa la liberación de burbujas de gas.

En este experimento se considera que las burbujas en el pozo son comprimidas por la carga del fluido a medida que el gas es comprimido, lo cuál afecta a la presión. Por otro lado, la liberación subsecuente de gas a través del líquido ocasiona que la presión en las burbujas disminnya debido a la carga del fluido; sin embargo, el gas que no puede expandirse en un sistema cerrado, ejerce una presión sobre el líquido y la interfase gas-líquido. Esta presión se transmite al fondo del recipiente y si se agrega la presión hidrostática, dará una presión adicional asociada con la liberación de burbujas.

El aumento de la presión en la cima y en la base del recipiente, se debe básicamente al cambio de posición de las fases y a la elevación de las burbujas, siendo directamente proporcional al volumen total de burbujas en la columna.

FIG. 16.- EXPERIMENTO QUE ILUSTRA EL FENOMENO DE SEGREGACION DE FASES".

Mediante la PRUEBA 2 se simula el efecto de decremento de presión en un pozo, con un factor de daño alto y una cantidad considerable de burbuias atrapadas en el líquido del pozo durante el cierre. Usando el mismo cilindro con un recipiente que contiene glicerina y aire, el cuál representa a un yacimiento poroso alrededor del pozo, figura 16. Como en el caso anterior, se circula aire a través del núcleo y en el fondo de la columna (válvula A), se abre la válvula B de la citua, mientras que la válvula C es cerrada ligeramente, ocasionando que la presión del aire en el recipiente se ajuste a un valor ligeramente arriba de la presión de fondo fluyendo (p_{nl}) . Cuando se alcanza la dispersión estacionaria de burbujas en la columna, se suspende el suministro de aire y se cierra la válvula B. En este momento resulta un cambio o incremento de presión, siendo mucho mayor la presión de este que la presentada a la entrada del flujo, ocasionando que la presión de fondo fluvendo se incremente a un valor mayor que la presión del yacimiento. Esto se debe a que el líquido de la columna es incapaz de fluir hacia el yacimiento de forma rápida para evitar que la presión de fondo fuera anómala debido a la liberación de burbujas. Tomando la presión arriba de la del yacimiento, se observa que el líquido en la columna empieza a regresarse hasta que la presión de fondo fluyendo declina hasta la presión de yacimiento.

ON TRAINING AND REPORTED FOR METERS AND TO A REPORT OF THE STATE OF THE AREA O

Se concluye que el incremento de presión (ΔP) se debe a la elevación de burbujas y a la entrada del líquido proveniente del yacimiento. Además, la presión por la elevación de burbujas es mayor que la presión por la entrada de líquido, provocando que después de este efecto el líquido en la columna (pozo) empiece a fluir hacia el yacimiento, declinando la presión hasta el valor de la presión del yacimiento.

Este comportamiento de la presión de fondo se ilustra en la *figura 17*, representativo de un pozo afectado por el fenómeno de segregación de fases (tipo "joroba").

III.3 EFECTO DE ALMACENAMIENTO VARIABLE

Los efectos de almacenamiento variable dificultan la aplicación de las técnicas de análisis de las pruebas de variación de presión, tales como las de ajuste con curvas tipo que están basadas en una suposición de almacenamiento constante. El uso de estas técnicas comúnmente resulta en un error de ajuste entre el modelo y los datos reales a tiempos cortos.

Por varios años se han estudiado los distintos factores que afectan la respuesta de presión, como por ejemplo los efectos de fronteras del yacimiento, heterogeneidades y fracturas, almacenamiento del pozo, efectos de daño, prácticas de terminación⁶, etc. Se ha demostrado también que el fenómeno de redistribución de fases es un efecto de almacenamiento¹⁴. Este fenómeno ocurre en un pozo que se cierra con flujo simultáneo de líquido y gas en la tubería de producción ; cuando un pozo se cierra en la superficie¹⁰, los efectos gravitacionales hacen que el líquido caiga y el gas se levante hasta la superficie.

FIG. 17.- COMPORTAMIENTO DE LA PRESION DE FONDO AFECTADO POR EL FENOMENO DE SEGREGACION DE FASES".

Debido a la incompresibilidad del fiquido y a la inhabilitación del gas para expanderse en un sistema cerrado, ocurre un incremento neto en la presión del pozo causado por la redistribución de fases. Cuando sucede este fenómeno, la presión incrementada en el pozo es liberada hacia la formación y el equilibrio entre el pozo y el yacimiento será eventualmente alcanzada. Sin embargo, a tiempos cortos la presión puede incrementarse arriba de la presión de la formación, creando una "joroba" o anomalía en el incremento de la presión que no puede analizarse con las técnicas convencionales.

Si se considera un pozo donde ocurre el fenómeno de redistribución de fases, también deberá ocurrir el efecto de almacenamiento variable en el pozo. Como se demostró anteriormente, en un pozo con efectos de almacenamiento, este efecto puede ser representado por la ecuación 10, y el efecto del gasto variable en la cara de la formación sobre la presión del pozo será:

$$\frac{dp_{ab}}{dt_b} = \frac{1}{C_D} \left(1 - \frac{q_{ab}}{q} \right) \tag{35}$$

En realidad no todos los cambios de presión en el pozo pueden atribuirse a los efectos de almacenamiento, sino que algo del cambio de la presión es causado por redistribución de fases. Por tanto, la ecuación 35 puede ser modificada agregando un término que describe el cambio de presión causado par la redistribución de fases⁴⁴:

$$\frac{dp_{ab}}{dt_0} = \frac{1}{C_b} \left(1 - \frac{q_{st}}{q} + \frac{dp_{to}}{dt_0} \right) \tag{36}$$

donde :

$$p_{*p} = \frac{K h p_{*}}{1412 q B \mu} \tag{37}$$

La ecuación 36 puede ser arreglada en la forma de la ecuación 10 para demostrar la dependencia de q_{ij} :

$$\frac{q_F}{q} = 1 + C_F \left(\frac{dp_{-\nu}}{dt_0} - \frac{dp_{\nu\nu}}{dt_0} \right)$$
 (38)

Definiendo el concepto de "coeficiente de pseudo-almacenamiento" de la siguiente manera¹¹:

$$Ce_{\nu} = C_{\nu} \left[1 - \frac{dp_{\cdot \nu}}{dt_{\nu}} / \frac{dp_{\cdot \nu}}{dt_{\nu}} \right]$$
 (39)

Este coeficiente de pseudo-almacenamiento plantea el hecho de que la redistribución de fases constituye una forma de almacenamiento variable en el pozo. De esta manera, según la ecuación 39:

Cuando
$$\frac{dp_{w}}{dt_{b}} \geqslant 0 , C_{w} \leq C_{b}$$
$$> \frac{dp_{ev}}{dt_{b}} , C_{w} < 0$$

El primer caso indica que el efecto de redistribución de fases siempre causará una disminución del coeficiente de pseudo-almacenamiento; mientras que cuando el coeficiente de almacenamiento llega a ser negativo, indica una inversión en la dirección de flujo.

Considerando el proceso físico de la redistribución de fases, pueden inferirse ciertas propiedades de la función de presión de redistribución de fases (p_w) , aunque no sea posible determinar la forma funcional⁴.

Si las fases líquido y gas, antes de cerrar el pozo, se comportan como un fluido homogéneo (que el pozo no cabecee), la función de presión debe tener un valor de cero al tiempo cero (en el momento del cierre), es decir:

$$\lim_{n \to \infty} p_{n} = 0 \tag{40}$$

A tiempos largos, cuando termine la redistribución de fases su derivada con respecto al tiempo debe ser cero :

$$\lim_{t_n \to \infty} \frac{dp_{\theta}}{dt_n} = 0 \tag{41}$$

Si además se especifica que no existe gas en solución en la fase líquida, entonces la función pso debe crecer monotónicamente a su máximo valor:

$$\lim_{|h| \to 1} p_{\theta} = C_{\theta} \tag{32}$$

donde C_{φ} es una constante que representa el máximo cambio de presión por redistribución de fases y está dada por :

DE LABORATURA COMPLETA E EL PROPERTO EL PRESENTA DE PARTICIPA DE LA CONTRA DE PRESENTA DE LA CONTRA DE PRESENTA

$$C_{\text{eff}} = \frac{K h C_{\star}}{1412 \ g B \text{ tr}}. \tag{43}$$

Considerando el efecto de baches o burbujas de gas que se levantan a través de una columna de líquido, cuando el primer bache o burbuja de gas alcanza la superficie después de cerrar el pozo, la presión debe incrementarse en alguna cantidad. Este incremento de presión provoca una disminución del volumen y un incremento de la densidad de todos los baches o burbujas de gas, lo cual a su vez ocasiona una reducción en la velocidad de levantamiento de todo el gas remanente, de tal manera que decrece la rapidez del cambio de la presión. Por tanto, es posible que al inicio la presión de redistribución de fases (p_m) se levante rápidamente y después alcance suavemente su máximo valor (C_*) .

Este razonamiento cumple con las condiciones de las ecuaciones 40 a 42 y permite establecer la siguiente representación funcional¹⁴:

$$p_{\rm so} = C_{\rm so} \left(1 - e^{-t t/\tau_{\rm loc}} \right) \tag{44}$$

La ecuación 44 es una función exponencial que permite modelar el fenómeno de la redistribución de fases como un efecto de almacenamiento variable.

El término α_n es el tiempo adimensional que dura la redistribución de fases y está dado por :

$$\alpha_{D} = \frac{0.000264 \ K \ \alpha}{\phi \ \mu \ cr \ r_{b}^{-2}} \tag{45}$$

donde α dependerá principalmente de aquellos factores que controlan el tiempo de levantamiento de un bache o de una burbuja de gas en el pozo.

Para conocer el comportamiento de la presión en pozos con la presencia de los efectos de almacenamiento variable, es necesario incorporar el fenómeno de redistribución de fases (o segregación) en la ecuación de difusividad. Si se tiene un flujo radial en un yacimiento infinito, homogéneo e isótropo de un fluido de compresibilidad pequeña, entonces la ecuación de difusividad es:

$$\frac{|\hat{\sigma}|^2 p_b}{|\hat{\sigma}|^2 p_b^2} + \frac{1}{r_b} \frac{|\hat{\sigma}| p_b}{|\hat{\sigma}|^2 r_b} = \frac{|\hat{\sigma}| p_b}{|\hat{\sigma}| r_b}$$

$$(46)$$

Con las siguientes condiciones de frontera:

$$p_n(r_0,0) = 0$$
 (47)

$$\lim_{R\to\infty} p_{\theta}\left(r_{\theta}, t_{\theta}\right) = 0 \tag{48}$$

$$\left(\frac{\partial p_{\nu}}{\partial r_{\nu}}\right)_{r_{\nu}=1} = 1 - C_{\nu} \left(\frac{d p_{-\nu}}{d t_{\nu}} - \frac{d p_{\nu\nu}}{d t_{\nu}}\right) \tag{49}$$

$$p_{\tau\nu} = \left[p_{\nu} - s \left(\frac{\partial p_{\nu}}{\partial r_{\nu}} \right) \right]_{r_{\nu}=1} \tag{50}$$

Under Clada van Distrikuntede kom beden de komple de komplete og de

Varios autores¹¹ han demostrado que este problema también puede escribirse como una integral de convolución para explicar el efecto de almacenamiento. Por tanto,

$$p_{*b}(t_b) = \int_0^L \left\{ 1 - C_b \left| \frac{dp_{*b}(t)}{d\tau} - \frac{dp_{w}(t)}{d\tau} \right| \right\} \cdot \frac{dp_{w}(t_b - \tau)}{dt_b} d\tau + s \left\{ 1 - C_b \left| \frac{dp_{*b}(t_b)}{dt_b} - \frac{dp_{w}(t_b)}{dt_b} \right| \right\} (51)$$

por otro Iado, si ℓ { p_F es la transformada de Laplace para un pozo en un yacimiento con s=0 y C_D (es decir, sin daño ni almacenamiento), se encontrón entonces :

$$\mathcal{L}\left\{p_{\theta}\right\} = \frac{K_{\theta}\left(\sqrt{z}\right)}{z^{\frac{3}{2}}K_{1}\left(\sqrt{z}\right)} \tag{52}$$

De esta manera se puede demostrar¹⁷ que la transformada de Laplace de la caída de presión adimensional con efectos de daño y almacenamiento constante está dada por :

$$\mathcal{L}\{p_{n}\} = \frac{z \, \mathcal{L}\{p_{0}\} + s}{z \left[1 + C_{0} \, z \left(z \, \mathcal{L}\{p_{0}\} + s\right)\right]} \tag{53}$$

Por tanto, involuerando la función de presión de almacenamiento variable o de redistribución de fases, se obtiene la transformada de Laplace de la caída de presión adimensional con efecto de almacenamiento variable¹⁴:

$$\mathcal{L}\{p_{-p}\} = \frac{\left[z \, \mathcal{L}\{p_{p}\} + s\right] \left[1 + C_{p} \, z^{2} \, \mathcal{L}\{p_{p}\}\right]}{z \left[1 + C_{p} \, z\left(z \, \mathcal{L}\{p_{n}\} + s\right)\right]}$$
(54)

Esta es una solución general, ya que no se han puesto restricciones sobre p_0 o p_{s0} , excepto que estas funciones son transformables en el plano de Laplace. Entonces, si p_0 representa algún tipo especial de yacimiento, la solución de la presión para las condiciones de dicho yacimiento puede encontrarse previamente. Este planteamiento también es aplicable a la función de presión de almacenamiento variable (redistribución de fases). Encontrando la transformada de Laplace de la ecuación 44 se tiene :

$$\mathcal{L}\left\{p_{t^{\prime\prime}}\right\} = \mathcal{L}\left\{C_{\delta^{\prime\prime}}\left(1 - e^{-t_{\delta^{\prime}}/\alpha_{\delta}}\right)\right\} = C_{\delta^{\prime\prime}}\mathcal{L}\left\{\left(1 - e^{-t_{\delta^{\prime}}/\alpha_{\delta}}\right)\right\} = C_{\delta^{\prime\prime}}\mathcal{L}\left\{1\right\} - \mathcal{L}\left\{C_{\delta^{\prime\prime}}\left(1 - e^{-t_{\delta^{\prime}}/\alpha_{\delta}}\right)\right\} = C_{\delta^{\prime\prime}}\mathcal{L}\left\{1\right\} - \mathcal{L}\left\{C_{\delta^{\prime\prime}}\left(1 - e^{-t_{\delta^{\prime\prime}}/\alpha_{\delta}}\right)\right\} = C_{\delta^{\prime\prime}}\mathcal{L}\left\{C_{\delta^{\prime\prime}}\left(1 - e^{-t_{\delta^{\prime\prime}}/\alpha_{\delta}}\right\}$$

$$\mathcal{L}\left\{p_{\omega}\right\} = \frac{C_{\omega}}{\varepsilon} - \frac{C_{\omega}}{s + 1/\alpha_{D}} \quad ; \quad z > -\frac{1}{\alpha_{D}} \tag{55}$$

Por otro lado, también se ha demostrado que para tiempos largos, la ecuación 52 se simplifica a la solución de línea fuente, porque $\sqrt{z} |K(\sqrt{z}) \to 1|$ cuando $z \to 0$ o $t_0 \to \infty$, entonces :

$$\mathcal{L}\left\{p_{0}\right\} = \frac{1}{z} K_{0}\left(\sqrt{z}\right) \tag{50}$$

Una aproximación adicional para tiempos largos, puede obtenerse considerando que cuando $t_0 \to \infty$, $s \to 0$ y $K_{\nu}\left(\sqrt{s}\right) \to -\left[\ln\left(\frac{\sqrt{s}}{2}\right) + \gamma\right]$, donde $\gamma = 0.5772$ (constante de Euler). Por tanto, la ecuación 56 se convierte en :

 $\mathcal{L}\left\{p_{x}\right\} = -\frac{1}{z}\left\{\ln\left(\frac{\sqrt{z}}{2}\right) + \gamma\right\} \tag{57}$

Para involucrar el efecto de almacenamiento variable en la respuesta de presión en un pazo cuyo comportamiento está dado por la solución de la ecuación de difusividad (ecuación 52), es necesario solamente combinar la ecuación 55 con las diferentes expresiones dadas por las ecuaciones 52, 56 y 57. De esta manera, sustituyendo las ecuaciones 52 y 55 en la ecuación 54:

$$f_{\varepsilon}\left\{\rho_{\omega \varepsilon}\right\} = \frac{\left[\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z}-K_{1}\left(\sqrt{z}\right)} + S\right]}{z\left\{1 + C_{D}\left[z\left(\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z}-K_{1}\left(\sqrt{z}\right)} + S\right]\right\}}$$

$$(58)$$

Esta ecuación representa la presión en un pozo considerando como "cilindro fuente". De igual forma si se supone una "línea fuente", sustituyendo las ecuaciones 55 y 56 en la ecuación 54:

$$\mathcal{L}\left\{p_{-p}\right\} = \frac{\left[K_0\left(\sqrt{z}\right) + s\right] \left[1 + C_0 C_{s0} z^2 \left(\frac{1}{z} - \frac{1}{z + 1/\alpha_D}\right)\right]}{z\left\{1 + C_0 z\left[K_0\left(\sqrt{z}\right) + s\right]\right\}}$$
(59)

Para tiempos largos, combinando las ecuaciones 54, 55 y 57 se obtiene la siguiente aproximación :

CAPITIA O P

 $J^{2}\left\{p_{s+1}\right\} = \frac{\left[s + \ln\left(\frac{\sqrt{z}}{2}\right) - \gamma\right] \left[C_{t}, C_{s}, z^{2}\left(\frac{1}{z} - \frac{1}{z + \frac{1}{1+z}}\right)\right]}{z\left\{1 + C_{t}, z\right\} \left[s - \ln\left(\frac{\sqrt{z}}{2}\right) - \gamma\right]\right]}$ (60)

La aproximación para tiempos largos de la función p_{ac} puede obtenerse a partir de las ecuaciones 58, 59 y 60 tontando en cuenta que :

$$z^2 = \frac{1}{z} - \frac{1}{z + \frac{1}{\sqrt{\alpha p}}} \rightarrow 0$$
 cuando $z \rightarrow 0$ $(t_0 \rightarrow \infty)$

Entonces estas ecuaciones se reducen a la solución de la ccuación de difusividad con efectos de afmacenamiento y daño¹³:

$$p_{ntr} \approx p_{tr} + s \tag{61}$$

También, de la ecuación 58 puede obtenerse la aproximación para tiempos cortos, si el coeficiente de almacenamiento variable es $C_{str} = 0$:

$$\mathcal{L}\left\{p_{s,b}\right\} = \frac{\left[\frac{K_0\left(\sqrt{z}\right)}{\sqrt{z}\left(K_1\left(\sqrt{z}\right)} + s\right]\left[1 + 0\right]}{z + C_0 z^2 \left[\frac{K_0\left(\sqrt{z}\right)}{\sqrt{z}\left(K_1\left(\sqrt{z}\right)} + s\right]} = \frac{\left[\frac{K_0\left(\sqrt{z}\right)}{\sqrt{z}\left(K_1\left(\sqrt{z}\right)} + s\right]}{C_0 z^2 \left[\frac{K_0\left(\sqrt{z}\right)}{\sqrt{z}\left(K_1\left(\sqrt{z}\right)} + s\right]}\right]$$

$$\mathcal{L}\left\{p_{nn}\right\} = \frac{1}{C_0 z^2} \tag{62}$$

Además, como $\left| z - \left(\frac{1}{z} - \left(\frac{1}{z} + \frac{1}{\alpha_0} \right) \right) \right| \rightarrow \left| \frac{1}{\alpha_0} \right|$ para z grandes, entonces de la ecuación 58:

$$\mathcal{L}\left\{\rho_{+\nu}\right\} = \frac{\left[\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z} - K_{1}\left(\sqrt{z}\right)}, s\right]\left[1 + C_{D}C_{D}\left(\frac{1}{c_{D}}\right)\right]}{z\left\{1 + C_{D}z\right\}\left[\sqrt{z} - K_{1}\left(\sqrt{z}\right) + s\right]\right\}} = \frac{1}{C_{D}z^{2}}\left[1 + C_{D}C_{D}\left(\frac{1}{c_{D}}\right)\right]$$

$$\mathcal{L}\{p_{-n}\} = \frac{1}{C_{D} \cdot z^{2}} + \frac{C_{D}}{a_{D} \cdot z^{2}} \tag{63}$$

Y p_{sb} puede escribirse como :

$$p_{\omega p} = \frac{\hbar}{C_D} + C_{\omega p} \frac{\hbar p}{\alpha p} \tag{64}$$

$$p_{*n} = I_n \left(\frac{1}{C_L} + \frac{C_D}{\alpha_D} \right)$$

$$p_{wh} = \frac{h}{C_{dh}} \tag{65}$$

La ecuación 65 muestra que cuando existe un efecto de almacenamiento variable, puede tenerse una representación matemática muy similar al caso de almacenamiento constante, a tiempos cortos, donde el coeficiente de

almacenamiento estará dado por el término C_{x} esto ocurrirá a tícmpos cortos, seguido por un periodo de transición dominado por el almacenamiento variable y después, a tícmpos posteriores el pozo presentará un almacenamiento constante, controlado por C_{x} únicamente.

Para obtener valores de presión adimensional representativos del comportamiento de la presión en pozos con efectos de almacenamiento variable (redistribución de fases), es necesario realizar la inversión de las ecuaciones 58,59 ó 60. Como estas expresiones son demasiado complicadas para su inversión analítica, se obtuvo la transformada inversa de Laplace en forma numérica, tal como se consigna én un trabajo previo¹¹. En esta referencia se presentan los resultados obtenidos de la inversión y cálculos hechos con las ecuaciones 58,59 y 60 para diferentes valores de C_0 y x. De esta manera se demostró la excelente concordancia con datos reportados previamente en la literatura¹³, y que la ecuación 60 es suficientemente exacta para obtener los valores de presión adimensional. Para facilitar el cálculo de p_0 en las pruebas de variación de presión, C_{a0} de la ecuación 65 se usó como una variable, en lugar de α_0 (que es más dificil de obtener). Los resultados de la inversión en es muestra en la Tahla $III. P^{\mu}$.

TABLETT : PRESION ADIMENSIONAL DE UN POZO CON FELCTOS DE ALMACENAMIENTO A ARIABLE^T

	and the same	- 70, - C _D	-100	······································	in Cr	Tions [$C_{A^{f_1}}$	20 Cp.	10000	
1.	Cair.	7 Fit	1 20	V 11	x 10	V-10	1. 0	1.10	1 20	
t _L	\ H		,		C_{ij} , I	1		$C_{ullet i}$, I		
1		v_{si} , I			a a para a garage de la caractería de la c La caractería de la caractería				14.3	
759	160	1 451	Tar	77,43	1.64	- 120	1.014	(A)2	1439	
216	1 ** *	2.716	2534	1.177	145	11.1	144	1 1.80	7.019	
.	2 ****	160.	53(3)	1.0	2.05	,	3 (24)	4 - 4 - 2	1590	
\$ce.m	. 11.	55.0	8.751	1111	2.28	1451	1141	1.151	Lift	
24 (4)	k = 194 /	\$6.74	11.9)	2336	Anti-	5.425	100	1.45	3.4*3	
1909	4 (4)	14.50	21.21	4197	7.74*	8.87	1.09	1.375	194.	
\$100,000	1 -5	1161	2519	4.955	11.32	14.17	20%	0.148	2.844	
26660	5.54	1527	15.16	1.484	14.95	21.03	3.523	4.539	5.455	
\$1,000	V ,654	15.76	1011	6.170	14.41	25.46	13%	1500	8 9.18	
1014.00	61,,	1611	24.49	5415	16.43	76.27	. 5.1	Li ok	22 60	
здання	5.505	16.75	2616	6.933	\$6.43	24.89	g acet	17.40	26 (2	
Masketti	2.954	17.0	21.13	3 404	0.00	37.24	1237	1734	23 47	
Loedrob	130	17.65	11 /10	1651	12.65	100	7.621		28.04	
20060118	N 187	1912	28 12	8113	15.13	2871	3.191	19 (6 19 15	28 49	
4(806000	N 454	15 10	23.45	6.455	\$4.46	74 Sh	5 150			
\$169/04/403	C_{ab}	20, CD	~100	C_{ali}	- 20, C _I ,	1000	C_{2D}	× 10. C _D	-10000	
to.	V-0	<u> </u>	1/20	y = ()	s=10	8-20	5.10	s :10	v- 20	
I_{B}	C _{4D} =10			$C_{ullet B} \! = \! 10$			$C_{\bullet 0} \cdot 10$			
		1111	4.195	3501	3 755	177	3 729	1911	1911	
(60	1,01	63)7	2150	5 149	\$ 587	3.814	g, to t	6.325	9.110	
200	4.768	F-1284	11.52	8 592	3 387	0.100	9116	4 104	5.410	
500	1 628	12.67	1121	x 59%	10.33	18.35	d bre	9973	1613	
1049	1991	13.41	18.31	1.801	10.63	41.19	9 725	1981	10,30	
2000	1688	14.35	22.57	2.371	11.35	(5.07	6.128	1916	19 19	
5800	1013	11.89	2431	5 622	17.54	11.72	g 911 g 147	16.67	11.16	
10000	1 355	11 10	2523	: 16:	1119	16.25	1.544	11.56	14.72	
20000	3.613	15.19	25.37	* FGF	15.32	2 4 2 6	6726	17.7k	15.95	
100000	6.3702	14.15	2634	6151	IARL	21.12	6367	14.54	18.53	
200000	6.95	1629	26 20	6.500	10.44	26.33	n 933	16.35	14 93	
100000	6961	18 96	2 to 12 to	1 453	16-94	26 71 27 29	1299	17.12	28.50	
100000:0	7.412	17.31	27.51	7 90	17.36	27.42	1615	\$3.59	27.50	
2000000	7,649	+7.66	21.46	7 (-5%	D #2	35.14	6111	1507	28 07	
30000000	6117	18 12	24.12	8118	18 11 18 46	29.46	N 450	1845.	26.44	
10000004	9464	17 48	28.16	Cati	=20, C _D	::100a	C_{ab}	-20, C _D	-10000	
	Catt	=20, C _D		1=0	s=10	x- 20	s=0	s=10	s= 20	
I_D	s=0 s=10 s=20			C.p.=100			C+0 - 100			
	1	C _{4D} = 100			4.861	1371	4 863	3 676	4 676	
104	1 195	4 720	1810	9137	y 457	9.197	9477	5 1 \$0	9 514	
200	6 394	M.9.16	9207	2931	21.74	21 94	21.93	72 69	22 11	
560	11 03	19.05	20.71	31.29	38.15	3× 57	38.72	39.22	39.29	
1600	13.30	24 5A	54.51	4113	19 14	61.10	51.30	62.87	63.03	
2000	12.77	36 81	48.60	40.82	1616	8181	84 51	315 94	9051	
5000	K 534	28.49	31.54	25.87	61.9)	:y,5-4	9101	et at	4169	
10000	6 109	18.04	27.62	1141	61.91	62.65	71.19	90.45	94,92	
20000	3.646	15 66	25.89	1005	218.5%	27.63	45.70	/7 X**	A1 19	
50000	5917	15 90	2019	6.678	(6.67	28.24	25.08	nt 24	76 6.5 60 94	
166400	6 200	16 13	26.52	410	1673	26.74	12.91	11 56	35.42	
100050	4,550	16.91	3691	1,015	17.04	27.02	8.225	2) 49	36.42 29.44	
190091	6.014	17.32	21.51	7,316	17.95	27.74	1829	38.05	27.88	
1600000	: 31* 2 del	17.66	2746	7 680	17.68	21.57	1,948	1/4"	28.17	
10/109/29	1 1001			8125	19.17	2417	8700	1848		
MINAVOR	6115	1832	28.13	9 93-2		28.17	6.595	15.50	78 49	

TABLA III.1 .- (CONTINUACION)

 -	Cap	=100, C ₀	1000	C_{aD}	-100, C _D	-10000	Cati	$1000, C_{D}$	-10000
, -	s 0	3-10	5-211	5:0	s:10	s=20	150	s::10	v -20
ϵ_{0}	9 · O		, - "		$C_{M^*} \circ I$			$C_{1D} \circ I$	
		$C_{\Phi D} \circ I$	į				0.07583	0.0/403	6 69505
100	0 6748	0 6901	8 6917	esta u	0.6381	0 651 t	0.1939	0 1840	0.1846
200	0 9841	1 024	1 029	0 8 7 12 1 0 7 9	1.049	1 041	Q-4084	0 4115	0.0119
100	1.326	1 450 1 10:18	1 467	1.072	1 094	\$.090	0.6813	a 6903	0.6918
1 000 2010	1 690 2 143	2 730	2 #41	1149	1411	1.191	0.9997	1 025	1 92%
3000	3,723	4913	1399	1.366	1.457	4 437	1.559	1.413	1.158
19000	4 189	1.712	H BAK	1 699	1.400	1 940	1715	1.506	2.508
20000	4 968	11 23	14.16	1.249	2.284	2 8 1 1	2.317	2.750 4.985	5.519
30000	3.689	14 56	21.93	3 623	4 980	5 355 8 749	3.610 4.881	7901	1911
101400	6 109	13.93	29 50	4 882	7 999 11 88	14.19	1917	NA 15	1139
2000/0	2.478	1641 1693	26.53 26.91	6 804	11.80	22 60	6 604	13 89	12 60
100000	6 953 2,385	1130	27.28	7 237	17.64	76.32	1237	17.04	26.32
2000000	2.383	1765	27.64	7.621	17.56	23.47	1411	12.56	27.47
5000000	1,115	1844	28 (1)	8.102	4 A 03	28.06	1 102	18 04	28 96
10000000	E 463	12.46	28 46	# 456	18.45	28 (3	E 416	1843	78 11
	CaD	≈100, C _D	-1000	C_{ab}	=100, CD	:-100(lb	C _{aD} =	1000, C _D	#10000
t _D	1=0	s=10	s=20	s=0	s=10	s=20	x=0	s=10	s=20
	C ₄₀ = 10			$C_{\bullet D} = I\theta$			$C_{\phi S}$ $=10$		
	9330	9 9144	0 8545	0 9302	0.7522	0 9524	0 01935	0.09955	6 09917
100	1.769	2 6 12	1.159	1 606	8.015	1.605	91916	0 19 ki	0 1324
500	3.760	4039	4076	3917	1 946	3,930	6.4857	u 4Mv1	0 8495
1000	5 847	4 646	8.764	8.276	6356	A 368	0 9454	0 y578 1 8 33	4 9786 1 9 99
2000	7,474	9,837	9 823	B 505	a 734	6 370	1 754	4016	4 07N
5000	7.018	11.70	17.92	9.412	1014	10 24 10 67	6101	604	6.776
20000	3 876	12 66	15.13	9 107 6 931	10.56	18.19	8.049	9323	9 846
20000	5.514	13.84 15.54	(#.42 23.31	7 391	18.55	12.78	8.097	11.91	1300
90000	5.811 6.132	15.94 18.01	25.58	6 150	12 12	15 08	7 061	13.07	25.55
1000KB 200500	6 500	1646	78.37	6.783	14.56	18.61	6 619	H 9	18.75
30000	6 961	10 94	26.92	A 933	16.35	74.05	6 9,14	14.34	74 99
1000000	7,310	17.30	21 29	7 790	17.13	78 40	3 580	57,88	74 81 17.50
2000000	2,628	\$7.65	27 65	5 A t 6	17.59	27 10	7.646 #111	(1.59 (2.09	26.07
100000	E.116	18.11	29.11	# 141	18 09	2 U.S.) 2 N. 44	8460	18 45	2844
10000000	8 463	18 86	26 46	8 460	16 45			1000, Cn	== 10000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cap	=100, C _D	×1000	C_{al2}	=100, C _B	=10000	C _{al3} ^{rc}	•	s=20
t _D	s=()	s=10	s=20	s=0	s=10	s=20	s = 0	s=10	3=20
	C ₄₀ =100			C _{+B} =100			C _{4D} =100		
100	0.9756	0 9914	9 9931	0.9921	0,9949	1 5950	0.09973	0.09998 0.1996	0.1991
300	1.902	1.968	1.975	1 972	1 979	1.¥80 4 \$74	8 1946	0.4981	0.4945
)au	4 488	4 601	4 648	9 836 9 374	4.676 9.489	4814	8,9602	9 9902	2 0932
1000	\$221	9745 11.13	9.199 17.69	1744	18 02	1808	1 928	1.940	9 970
2000	14 85 22.96	3127	36.94	3697	18 79	39.10	4 601	4 813	4.819
1000	24.93	,9177 4784	33.41	3603	61.32	62.H	0 162	92/4	\$ 409
20000	16.97	40.72	61.66	£7 £1	NG 27	2164	14.95	1724	17.72
30000	4313	23.81	45 94	3154	NO 74	89.57	25.74	36.70	A7 13 55 95
100000	6.782	17.54	29.17	26 37	64 03	78 81	24 10	49 09	99.99 65.94
200000	4.763	10 %	26.77	13.32	42 78	62.40	22.55 9.931	31 13 24 17	42.03
500000	7016	17.04	27.03	H 243	22 1 4 18 47	34 69 29.32	1928	18 37	M 09
1000000	7.356	17.32	27.34	7,826 3,669	18 47 17 h7	29.57 22.98	7916	17.91	27 97
200000	7,649	174h	27.67 28.12	3.669 B 704	17 N 2 (N 27	75 5 2	6 202	1819	2016
1001000	8 172	50 62 18 47	28 12 28 97	8 3 116	18 20	28.49	k 306	18 30	78 19
\$490000	8.468	18 (7	2× 17	1					

CONSTRUCTORINA DE TRA CUERTO E POPULACIO EL PROPERTO EL PRESENTA DE PROPERTO DE CONTROL PROPERTO DE LA CONTROL DE LA CONTROL DE CONTROL DECENTROL DE CONTROL DE

En la figura 18 se ilustra un ejemplo de las curvas de $\log p_{ab}$ vs. $\log t_b$, aquí se nota que a tiempos largos las curvas con y sin almacenamiento variable coinciden ; mientras que a tiempos cortos, es notable el efecto de la redistribución de fases. A tiempos intermedios, las curvas con almacenamiento variable tienden a alejarse desde el comportamiento de almacenamiento aparente hasta el verdadero. Para valores grandes de C_{s0} es evidente el efecto de "joroba", mientras que para valores pequeños de C_{s0} el efecto es bastante reducido.

También se ha demostrado¹⁴ que cuando $C_D > C_{SD}$ y $C_{SD} > 0$, se genera un incremento exponencial en el almacenamiento del pozo, lo cual se ilustra en la *figura 19*. Y en la *figura 20* se muestra el caso de un efecto de almacenamiento que disminuye exponencialmente, cuando $C_D < C_{SD}$ y $C_{SD} < 0$. La aplicación del modelo de almacenamiento variable creciente y/o decreciente a datos de campo, llevá a la conclusión de que en algunos casos se requería una función diferente a la exponencial para representar el comportamiento de la presión con un efecto más pronunciado de almacenamiento variable¹.

Por tanto, se encontró que entre las funciones que cumplen con las condiciones establecidas por las ecuaciones 40 a 42 y que además, presentan características representativas de los datos de campo, está la siguiente :

$$p_{ND} = C_{ND} \ erf \left(\frac{h}{\Omega} \right) \tag{66}$$

FIG. 18.- COMPARACION DE PRESIONES ADIMENSIONALES CON Y SIN ALMACENAMIENTO VARIABLE".

FIG. 19.- SISTEMA HOMOGENEO CON INCREMENTO EXPONENCIAL EN EL ALMACENAMIENTO!.

FIG. 20.- SISTEMA HOMOGENEO CON DECREMENTO EXPONENCIAL EN EL ALMACENAMIENTO.

3

CREGORATION TO LOCATE FOR LEGISLATION SOCIAL PROPERTY SERVICE SERVICE AND A CONTROL OF A SERVICE SERVICE AND A SER

donde:

$$C_{\mathcal{F}} \operatorname{erf}\left(\frac{t\sigma}{\omega_0}\right) \approx \frac{2}{\sqrt{\pi}} \int_{0}^{t_{\text{eff}}} e^{-u^2} du$$
 (67)

que representa a la función "error". La transformada de Laplace de esta función que representa a la presión con almacenamiento variable es:

$$\mathcal{L}\left\{p_{\text{th}}\right\} = \frac{C_{\text{th}}}{z} e^{-\alpha z^2 z^2/4} \quad \text{erfc} \left(\frac{c_{\text{th}}}{z}\right) \tag{68}$$

definiéndose a erfc = 1 - erf, como la función "error complementaria". La respuesta de presión con efectos de almacenantiento decreciente, representado con la función error, se ilustra en la figura 2I.

En la figura 22 se muestra el comportamiento de la presión y la derivada euando ocurre un almacenamiento decreciente representado por ambas funciones: exponencial y error ; observándose una transición más abrupta de la función error y que a tiempos cortos la curva de la derivada comúnmente excede a la curva de Δp .

FIG. 21.- SISTEMA HOMOGENEO CON DECREMENTO EN EL ALMACENAMIENTO SEGUN LA FUNCION ERROR¹.

FIG. 22.- COMPORTAMIENTO DE LA PRESION Y LA DERIVADA CON DECREMENTO EN EL ALMACENAMIENTO PARA LA FUNCION EXPONENCIAL Y FUNCION ERROR'.

HI.4 ANALISIS DE PRUERAS DE PRESION

Para entender completamente este fenómeno, se ilustra el análisis de datos de incremento de presión en la *figura 23*, en la cuál se presentan las gráficas loglog y de Horner¹ pertenecientes a una prueba DST², cuyos datos se ajustaron a un modelo de almacenamiento constante y comportamiento de yacimiento homogéneo.

Los datos de tiempos cortos muestran evidencia de almacenamiento decreciente ya que la curva log-log excede a la linea recta de pendiente unitaria en algunas partes y la curva de derivada excede a la curva Δp . Sin embargo para este caso el ajuste resulta pobre con este modelo como se puede observar durante este periodo.

Por tanto, al reajustar los datos con el modelo de almacenamiento decreciente, usando la función error (ecuación 66), se encuentra un total ajuste de toda la curva, según se observa en la *figura 24*. Esto mejora totalmente la confiabilidad de la interpretación ; de esta manera se determina un valor más bajo para $G_{c}e^{2x}$ y entonces, el factor de daño calculado es más pequeño.

FIG. 23.- AJUSTE DE UNA PRUEBA DE INCREMENTO DE PRESION CON MODELO DE ALMACENAMIENTO CONSTANTE'.

FIG. 24.- AJUSTE DE UNA PRUEBA DE INCREMENTO DE PRESION CON MODELO DE ALMACENAMIENTO VARIABLE'.

ALO BERTROLL LA RECEBER PRESENTA DE CAMPARA PER LA PERSONA DE LA CONTRA LA PERSONA DE LA PERSONA DE LA PERSONA

CAPITULO IV

EJEMPLOS ILUSTRATIVOS

En este Capítulo se presentan dos ejemplos de campo que muestran el efecto de almacenamiento variable, sobre la respuesta de variación de presión y las diferencias encontradas con el análisis utilizando modelos de almacenamiento constante y almacenamiento variable.

IV.1 Pozo Taratunich 301

Este pozo pertenece al campo Taratunich de la Región Marina Suroeste, con un intervalo productor correspondiente a la formación Cretácico medio. Se realizó su perforación hasta una profundidad de 3540 mv. En la *figura 25* se muestra el estado mecánico del pozo.

FIG. 25.- ESTADO MECANICO DEL POZO TARATUNICH 301, TIPO EXPLORATORIO (MARZO, 1996)".

Después de disparar el intervalo de 3035-3055 mybmr de la formación KM, y resultar ser productor de aceite ligero de 31º API, se efectuó una estimulación y limpieza, y se registró una prueba de presión-producción con herramientaPLT durante 53.57 lirs., consistente en varios periodos de flujo y de cierre, como se presenta en la *Tabla IV.1*.

TABLA IV. 1. - TIEMPOS DE LA PRUEBA DE PRESION REGISTRADA EN EL POZO TARATUNICH 301.

Periodo de	Duración	Tiempo acumulado	Gasto
ргиева	(lirs)	(firs)	(BPD)
1	13,22	13.22	()
2	8.78	21.99	4300
3	11.73	33.72	0
4	6.37	40.09	2600
5	13.48	53.57	0

En este caso se eligió el quinto periodo de prueba, es decir, el último cierre del pozo, cuyos datos se dan en la *Tabla IV.2* y se efectuó el análisis considerando los siguientes datos :

 $\phi = 12\%$, $r_n = 0.25$ pies, h = 150 pies, $R_o = 1.65$, $c_t = 1.48$ E⁻⁵ psi ⁻¹, $\mu_o = 0.37$ cp y $q_o = 2600$ BPD por estrangulador de $\frac{3}{4}$ ".

TABLA IV 2 - DATOS DE LA TRUFKA DE PRESION REALIZADA AL POZO TARATUNICH 301 (Septiembre, 1991)²²

TIEMPO	PRESION	TEMPO	PRESION	THMPO	PRESION	ПЕМРО	PRESION
(hrs)	(psi)	(hrs)	(psi)	(hrs)	(psi)	(hrs)	(psi)
8.6161	4862.06	9,8067	3654 62	16.0897	107.752	16.2139	166) 11
9.0781	4862.87	9.8189	3790.13	16.0903	112.431	16.2300	1896-39
9.5406	4853.62	9.8314	3582.19	16.0908	117.086	16.2481	2190.31
9 7214	4863.9	9 8456	3341.31	16.0911	121 718	16.2683	2547.01
9 7219	4859.23	9.8617	3081.03	16.0917	126 329	16.2914	2930,94
9.7222	4854.57	9.8797	2781-07	16 0922	F30.918	16.3175	3323.53
9.7167	4849.94	9 9000	2424.33	16.0925	135 485	16.3467	3681.33
9.7233	3845.33	9.9231	2040.37	16.0931	140.033	16.3797	3975,76
9.7236	4840.74	9.9489	1647 74	16.0936	144561	16.4172	4228.02
9.7242	4836.17	9 9783	1289.89	16.0939	149.206	16,4594	4431.87
9.7267	4831.62	19 0114	993.403	16.0944	154.425	16,5069	4578.40
9.7250	4827.09	10.0489	743.083	16.0950	160.285	16 5606	1672.77
9 7256	4827.45	10 0908	539 212	16.0858	166.867	16.6214	4732.97
9.7261	4817.22	10.1386	392.550	16,0967	174.787	16.6897	4768 48
9,7267	4811.36	10.1922	298 150	16.0975	1382 552	16 7672	4787.00
9.7275	4304.78	10.2531	237 800	16,0983	191.841	16.8544	4795.76
9.7281	4797.39	10 3214	202.181	16.0994	202.258	16.9531	4804.87
9.7292	4789.09	10,3989	183.546	16,1008	213.922	12.0642	4812.87
9.7300	4779.80	10.4861	174.648	16.1022	227,000	17.189?	4817.14
9.7311	4769,38	10.5844	165.391	16,1039	241.632	17 3314	1823.14
9,7325	4757.72	10,6958	157.229	16,1056	258,034	17.4914	4824.76
9.7339	4744.64	10.8214	152.185	16.1078	276.380	17.6719	4828 11
9.7353	4730.00	10.9631	148.582	16,1100	297.081	17.8758	4831 16
9.7372	4713 60	14.1231	144.741	16.1125	320,489	18,1058	4834.11
9.7392	4695.25	11.3036	141.156	16.1156	346.867	18.3656	4837.06
9.7417	4674.54	11.5072	137.841	16.1189	376.623	18.6589	4839.82
9.7442	4651.13	11.7375	134.611	16.1225	410.526	18.9897	4842.31
9.7472	4624.75	11.9972	131,345	16.1267	449,528	19.3633	4844.71
9.7503	4594,98	12.2903	128,251	16.1314	495.109	197853	4847.09
9.7542	4561,08	12.6214	125.393	16.1369	548,596	20.2472	4849.33
9.7583	4522,07	12.8283	122,593	16.1431	610.470	20.7092	4851.28
9.7631	4476.48	13.4167	119,795	16.1497	683,992	21.1708	4857.99
9.7686	4422,98	13.8786	117.106	16.1375	773.483	21.6328	4854,59
9,7744	4361.09	14.3406	114.733	16,1664	883 289	22 0947	15.55.85
9.7814	4287.56	14.8025	112.619	16.1751	1016.89		
9.7892	4198.06	15.2644	110 721	16.1862	1181.36		
9.7978	-1088,24	15.7264	108.999	16,1997	1389.27		}

En las figuras 26 y 27 se tienen el análisis de la prueba de incremento de presión, considerando un modelo con almacenamiento constante. Se observa que el ajuste , tanto con las curvas tipo como con curvas semilogarítmica, deja mucho que desear durante los tiempos cortos, ya que el comportamiento de la presión no es representado a través del periodo afectado por el almacenamiento. Sin embargo, al realizar el análisis con el modelo de almacenamiento variable se logra un magnifico ajuste, ya que torlos los datos caen sobre la curva de presión

A partir de este análisis se obtienen los siguientes resultados :

Modelo de yacimiento homogéneo Efecto de almacenamiento variable Frontera externa infinita

kh = 4465.30 mD-pie

representativa de este sistema, figuras 28 y29.

k = 29.8 mD

s = 87.6

FIG. 26.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 391 MODELO DE ALMACENAMIENTO CONSTANTE".

73

FIG. 27.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 301. MODELO DE ALMACENAMIENTO CONSTANTE[®].

FIG. 28.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 301. MODELO DE ALMACENAMIENTO VARIABLE²¹.

FIG. 29.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 301. MODELO DE ALMACENAMIENTO VARIABLE[®].

IV.2 Pozo Taratunich 63D

Este pozo también está localizado en el campo Taratunich de la Región Marina Suroeste, con un intervalo productor de 3400-3430 mdbmr de la formación Brecha Paleoceno. La terminación se llevó a cabo en diciembre de 1994, produciendo un aceite de 31.6° API, mostrando un estado mecánico como el de la figura 30.

Después se registró un gradiente por estaciones con pozo cerrado, el cual mostró una columna de 2723 my de gas y solamente 347 my de aceite y luego una prueba de presión-producción, en cuatro periodos de prueba durante 24.97 hrs., tal como se muestra en la *Tabla IV.3*.

TABLA IV.3 .- TIEMPOS DE LA PRUEBA DE PRESION REGISTRADA EN EL POZO TARATUNICH 63D.

Periodo de	Duración	Tiempo acumulado	Gusto
prueba	(lirs)	(hrs)	(BPP)
1	10.54	10.54	0
2	4.89	15.43	1200
3	4.96	20.39	3616
4	4.58	24,97	()

En este caso se eligió el cuarto periodo de prueba, siendo este el último cierre del pozo, y los datos se presentan en la *Tabla IV.4* .

TABLA IV 4 - DATOS DE LA PRUEBA DE PRESION REALIZADA AL POZO-TARATUNICH 68D i Diciembre, 1994)¹³

THMPO	PRESION	THATE	PRESION	THAIPO	PRESION	ТІЕМРО	PRESION
(hrs)	(psi)	(hrs)	(fisi)	(hes)	(psi)	(lus)	(psi)
20.3842	3968.41	20.4272	3977.80	21.3842	4007.51	23.2842	3998,49
20,3853	3968,69	20.4368	3978.22	21 4508	4007.61	23 3508	3998.59
20,3864	3969.11	20 4342	1979.35	21 5173	4907.67	23.4175	3998.69
20.3875	3969,39	20.4375	3981.03	21,5842	4007.43	23.4842	3998.78
20,3883	3969.81	20 4408	3982.73	21.6508	4007.34	23,5508	3998.88
20,3897	3970.09	20.4442	1984.26	21.7175	4006.98	23.6175	1998.97
20,3908	3970.34	20.4475	1985.52	21.7842	4006.62	23.6842	3999,07
20.3919	1970.79	20.4508	3986.36	21.8508	4006.07	23.7508	3999.21
20,3931	3971.07	20.4542	3987 07	21.9175	4005.42	23.8175	3999.21
20.3947	397L63	20.4575	3967.77	21.9842	4004.77	23.8842	3999.30
20,3964	3972.19	20.4608	3986.47	22.0508	4004.03	23 9508	3999.30
20.3972	3972.61	20.4642	3989.03	32 1175	4003,10	0.0175	3999,40
20.3983	3972.75	20.4675	3989,45	22.1842	4002,36	0.0842	3999.49
20.3997	3973.03	20.4717	3990,02	22.2508	4001.51	0.1675	3999,54
20.4008	3973.45	20.5175	3992.41	22.3175	4000.69	0.2342	3999.59
20,4019	3973.59	20.5842	3994.43	22.3842	3999.76	0.3008	3999,69
20.4031	3974.15	20.6508	3995.95	22,4508	3998.93	0.3675	3999.83
20.4042	3974.30	20.7173	3996. 7 6	22.5f75	3997.81	0.4342	3999.76
20:4053	3974.44	20.7175	3996. 7 6	22.5842	3997.44	0.5008	3999.91
20.4064	3975.00	20.7842	3998.83	22.6508	3997.53	0.5675	3999.91
20.4072	3975.14	20.8508	4000.90	22.7175	3997,67	0.6342	3999,96
20.4083	3975.28	20.9175	4002.54	22.7917	3997. 82	0.7008	4000.06
2 0. 1 097	3975.56	20.9842	4004.00	22.8508	3997,91	0.7675	4000.10
20.4108	3975.84	21.0508	4005,32	22.9175	3997.92	0.8342	4000.15
20.4142	3976.26	21.1175	-1006,03	22.9842	3998.20	0.9008	4000.24
20.4172	3976,96	21.1842	4006,46	23.0508	3998.20	0.9675	4000.26
20.4208	3977.24	21.2508	4906.89	23.1175	3998.25		
20,4242	3977.66	21 3175	4007.22	23.2175	3998.40		

FIG. 30.- ESTADO MECANICO DEL POZO TARATUNICH 63D, DE DESARROLLO (DICIEMBRE, 1994)²⁷.

CAPITULO IN

VALUE ME LA AMPLIATECA

Se efectua el análisis considerando los siguientes datos del pozo y del yacimiento:

φ = 15%, $r_w = 0.349$ pies , h = 328 pies , $B_a = 1.894$, $c_i = 2.925$ E²⁸ psi³ y μ_c = 0.44 cp , $q_O = 3616$ BPD por estrangulador de $\frac{3}{4}$? .

Se realizó el análisis de la última prueba de incremento constante y variable, tal como se muestra en las *figuras 31* a *36*. Los resultados obtenidos fueron :

Modelo de yacimiento de doble poroxidad

Efecto de almacenamiento variable

 $kh = 41\,001 \text{ mD-pie}$

 $k = 125 \,\mathrm{mD}$

s == -3.75

 $\omega = 0.041$

 $\lambda = 6.9227$

El comportamiento de la respuesta de presión indentifica que el yacimiento es un sistema de doble-porosidad con una variación importante durante el periodo de almacenamiento, ocasionada por la presencia de un alto RGA (570 m³/m³) y de la columna de gas en la columna del pozo, provocando un marcado efecto de segregación de fases. Sin embargo, esta prueba alcanza el flujo radial infinito en los últimos datos registrados²².

Este es una excelente ilustración de la presencia del fenómeno de segregación de fases, ocurriendo una respuesta de tipo "joroba", donde el incremento de presión llega a un valor máximo para después declinar hasta alcanzar el flujo radial y eoincidir con la tendencia del modelo de almacenamiento variable, figuras 34 a 36.

A este pozo no se le hizo ninguna intervención posterior, hasta que por las condiciones de alta RGA fué necesario cerrarlo en marzo de 1996. A partir del análisis de las condiciones de producción²², en este caso, se propuso tomar infonnación adicional, tal como un gradiente estático por estaciones y un registo TDT para conocer las columnas de fluidos, la saturación de gas en las vecindades del pozo y así, definir la procedencia del mismo. De esta manera se trataría de excluir el gas, hacer un cambio de intervalo disparado con pistolas de fase radial, optimizando las condiciones de flujo de la formación hacia el pozo.

FIG. 31.- AJUSTE DE LA PRUEBA DE PRESION DEL POZO TARATUNICH 63D MODELO DE ALMACENAMIENTO CONSTANTE. (DICIEMBRE, 1994)²².

FIG. 32.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 63D. MODELO DE ALMACENAMIENTO CONSTANTE^E.

FIG. 33.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUDICH 63D. MODELO DE ALMACENAMIENTO CONSTANTE".

FIG. 34.- AJUSTE DE LA PRUEBA DE PRESION DEL POZO TARATUNICH 63D MODELO DE ALMACENAMIENTO VARIABLE. (DICIEMBRE, 1994) $^{\circ}$.

FIG. 35.- ANALISIS DE CURVA DE INCREMENTO DEL POZO TARATUNICH 63D. MODELO DE ALMACENAMIENTO VARIABLE²¹.

FIG. 36.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATICNICH 65D MODELO DE ALMACENAMIENTO VARIABLE⁴¹.

4 149 July X

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

Se debe tomar en cuenta que los datos de variación de presión son enmascarados por los efectos de almacenamiento del pozo durante los tiempos cortos, lo cuál crea una incertidumbre en la aplicación de las técnicas de análisis y resta confiabilidad a los parámetros resultantes del sistema pozo- yacimiento.

Este trabajo logra conjuntar los esfuerzos de investigaciones realizadas para explicar los efectos de almacenamiento variable que ocurren en los pozos, a través del estudio del fenómeno de redistribución de fases, llegando al planteamiento de un método general para el análisis de pruebas de presión con esta anomalía.

Se demuestra que el fenómeno de redistribución de fases en la columna del pozo puede ocasionar anomalías en el comportamiento de la presión en pozos de aceite y gas. La redistribución de fases es resultado de la mayor velocidad de la fase gas, principalmente cuando el pozo es cerrado en superficie.

TABLES, LIBERTURE TO APPET OF MIGLED SESSENGIALIZADES FOR THE TWO FIGURES TO EXCEPT APPEARS FOR THE PROPERTY OF THE PROPERTY O

Se estudiaron y establecieron modelos de interpretación de pruebas de presión con efectos de almacenamiento variable, describiendo los efectos ereciente y decreciente del almacenamiento mediante las funciones : exponencial y error. De esta manera, datos de campo que presentan esta anomalía pueden ser interpretados apropiadamente.

Se concluye que mediante la función error se obtiene la mejor representación del efecto de almacenamiento variable. La incorporación de esta función logra establecer modelos de yacimientos homogéneos o de doble-porosidad, con diferentes fronteras externas (impermeable, presión contante, fallas paralelas, etc.).

La aplicación de las técnicas de análisis, se recomienda hacerla utilizando los modelos con efecto de almacenamiento variable, ya que se ha demostrado la excelente representación de la respuesta de datos reales de presión.

Los ejemplos de aplicación ilustran el análisis realizado con los modelos de almacenamiento constante y almacenamiento variable, y confirman la excelente representatividad de la respuesta de variación de presión con efectos de almacenamiento variable.

NOMENCLATURA

A	Area de drene asociada al pozo	pies ²
A_n	Area de la sección transversal del pozo	pies ²
В	Factor de volumen del accite	blac.y. / blac.s.
BTP-KS	Brecha del Terciario Paleoceno-Cretacico Superior	
C	Coeficiente de almacenamiento del pozo	bl / psi
C	Compresibilidad del fluido en el pozo	1 / psi
C_{i}	Compresibilidad total	17 psi
$C_{\mathfrak{o}}$	Coeficiente de almacenamiento variable aparente	bl / psi
C_{ab}	Coeficiente de almacenamiento variable aparente adimensional	adimensional
$C_{\mathfrak{p}}$	Coeficiente de almacenamiento del pozo adimensional	adimensional
$C_{\epsilon b}$	Coeficiente de almacenamiento efectivo adimensional o Coeficiente de pseudo almacenamiento	adimensional
C_{\bullet}	Coeficiente de almacenamiento variable	bl / psi
$C_{\phi D}$	Coeficiente de almacenamiento variable adimensional	adimensional
C.S.	Condiciones estándar	rpringer til
e. y.	Condiciones de yacimiento	464 4014
e	Núntero de Euler = 2.718281828	**************************************
erf	Función error	**#\$\frac{1}{2} \text{\$\frac{1}{2} \text{\$\frac{1} \text{\$\frac{1} \text{\$\frac{1} \text{\$\frac{1} \text{\$\frac{1} \$\frac

erfe	Función error complementaria	
g	Aceleración de la gravedad	pre / seg²
g_{ϵ}	Factor de conversión de unidades de aceleración gravitacional = 32.17	(lbm/pie)/(lbr-seg ²)
h	Espesor de la formación	pies
$h_{\!\scriptscriptstyle L}$	Altura del nivel de líquido dentro de la tubería de producción	pies
J_{σ}	Función Bessel de primera clase	with the
JSK	Jurásico Superior Kimmerigdiano	Secret Sec
К	Permeabilidad de la formación	mD
К,	Permeabilidad de la zona dañada	mD
KM	Cretácico Medio	No. of Contraction
L.	Operador de transformada de Laplace	and the second s
m	Pendiente de la linea recta semilogaritmica	psi / ciclo
md	Metros desarrollados	m
mv	Metros verticales	m)
ındbırı	Metros desarrollados hajo mesa rotatoria	m
mvbmr	Metros verticales bajo mesa rotatoria	m
p	Presión	psi
$p_{\scriptscriptstyle D}$	Caída de presión adimensional	adimensional
p,	Presión inicial	psi
p_{κ}	Presión del gas	psi

<i>p.</i>	Presion del Inquido	$p_{i,j}$
p:	Presion en la cabeza del pozo	psi
p_v	Presión en el fondo del pozo	psi
p_{ω}	Caida de presión en el fondo del pozo adimensional	adimensional
p_{st}	Presión de fondo fluyendo	pai
p_{uh}	Presión del fluido en la cabeza del pozo	ps:
P_{id}	Presión de fondo estática	psi
$p_{\scriptscriptstyle ref}$	Presión del fluido en el punto en el que entra el gas	psi
p_{i}	Presión durante el cambio de almacenamiento o durante la redistribución de fases	psi
$p_{i\nu}$	Presión adimensional durante el cambio de almacenamiento o durante la redistribución de fases	adimensional
PLT	Registro integral de producción	adde see
Δp	Caída de presión	psi
Δp_s	Caída de presión debida al daño	psi
q	Gasto de producción en superficie	bl / dia
q_{*f}	Gasto de producción en la cara de la formación	bl / día
q_*	Gasta de producción praveniente del pozo	bl / dia
r	Distancia radial	pies
r_{D} .	Radio adimensional	adimensional
r,	Radio de drene	pies
r_{i}	Radio en zona dañada	pies
F_{ν}	Radio del pozo	pies

Γ_n	Radio efectivo del pozo	ju.
RGA	Relación gas-aceite	
5	Factor de daño	adimensional
t_r	Tiempo de producción	horas
I_t .	Tiempo adimensional	adimensional
ΔT	Tiempo de cierre	horas
Δt_{ν}	Tiempo de cierre adimensional	adimensional
TDT	Registro de decaimiento termal	
TP	Tubería de producción	
TR	Tubería de revestimiento	**
и	Variable independiente	
Δv	Cambio de volumen del fluido en el pozo	bl
1.	Volumen total del fluido contenido en el pozo	bl/pic
Y_{ij}	Función Bessel de segunda clase	Herotor
7	Variable en el espacio de Laplace	* (m. *
	Símbolos griegos	
CV.	Tiempo de duración del efecto de almacenamiento variable	horas
α_{b}	Tiempo de duración del efecto de almacenamiento variable adimensional	adimensional -
γ	Constante de Euler = 0.5772	w· • ·

3CS

Fondo estático

į:	Nacosidaa del Huido	• is
$\tau_1^{j_1}$	Porosidad de la formicion	finecion
Ĺ	Variable de integración	
ζ_P	Variable de integración adimensional	adimensional
,,	Densidad del fluido	gs/cm³ o lb/pic³
76	Constante pi ≈ 3,14159	adimensional
r.	Variable de derivada parcial	* 64

Subindices

\$	Aparente
i	Amılar
)	Adimensional
	Inicial
	Propiedad de la región de daño
	Cara de la formación
	Unitarjo
	Рого
ľ	Fondo fluyendo

REFERENCIAS

- 1.- Hegeman P.S., Hallford D.L. and Joseph J.A. "Well Test Analysis with Changing Welthore Storage", Paper SPE 21829 (April , 1991).
- 2.- Flasar A.R. and Kabir C.S.: "Modeling Changing Storage During a Shun-In Test", Paper SPE 24717 (October, 1992).
- 3.- Fair W. B. Jr.; "Pressure Buildup Analysis with Wellhore Phase Redistribution"; SPEJ (April, 1981).
- 4.- Hasan A.R. and Kabir C.S.: "Modeling Changing Storage During a Shut-In Test", SPE Formation Evaluation (December, 1994)
- 5.- Zhang Y, and Zhen F.: "Well Test Analysis in the Case of Changing Wellbore Storage"; Paper SPE 22422 (1985).
- 6.- León-Ventura R.: "Desarrollo de Nuevas Técnicas de Análisis de Pruebas de Presión"; Departamento de Registros y Pruebas en Pozas, Instituto Mexicano del Petróleo (Febrero, 1990).
- 7.- Ramey H. J. Ir.: "Short-Time Well Test Data Interpretation in the Pressure of Skin Effect and Wellbore Storage"; JPT (June, 1970).
- 8.- Hernández M. T.: "Análisis con Curvas Tipo de Pruebas de Presión en Yacimientos Homogéneos", Tesis Profesional, Facultad de Ingeniería, U.N.A.M. (1985).

- THE BOUNDARD FOR DECEMBER FOR A BURNEL OF THE BURNEL WAS DELICATED AND A CONTRACTOR OF THE BURNEL WAS DELICATED AND A STREET OF THE BURNEL WAS DELICATED AND A STREET AND A ST
- 9 Bourdet D.P., Whittle T.M., et. al. "A New Set of Type Curves Simplifies Well Test Analysis", World O.J. (May, 1983)
- Stegemeier G L. and Matthews C S. "A Study of Anomalous Pressure Build-Up-Behavior", Petroleum Transaction of AIME, Vol. 213 (1958)
- 11. Deruyck B., Ehlig-Economides C. and Joseph J. ** Testing Design and Analysis**. Oilfield Review. (April, 1992).
- 12.- Bobadilla M. O. S. : "Estudio de los anomalias en Pruebas de Incremento de Presión" ; Tesis Profesional , Facultad de Ingenieria , UNAM (Mayo. 1984).
- Agacwal L.G., Al-Hussainy R. and Ramey H.J. Jr. : "An Investigation of Wellhore Storage and Skin Effect in Unswady Liquid Flow: Analytical Treatment"; Soc.Pet. Eng.J. (September, 1970).
- 14. Fair W.B. It : "Pressure Buildup Analysis with Wellbore Phase Redistribution": Soc. Pet.Eng.J. (April, 1981).
- 15.- Van Everdingen A.F. and Hurst W. . " The Aplication of the Loplace Transformation to flow Problems in Reservoirs"; Petroleum Transactions of AIME, Vol. 186 (1949).
- 16.- Murray R. Spiegel.: "Manual de Fórmulas y Tablas Matemáticas", Serie Schaum's, Editorial McGraw-Hill (1983).
- 17. Bourdet D. P., Ayoub J. A., Whittle T. M., Pirard Y. M. and Kniazeff V.: "Interpreting Well Tests in Fractured Reservoirs"; World Oil (October, 1983).
- 18 Earlougher, R. C. Jr.: "Advances in Well Test Analysis", SPE Monograph Series, Dallas, Vol.5 (October, 1957).

REFERENCIAS

CARTESTANTA ALIGNATURA ELEMENTANDA PER REPUBLICA A CARTESTAN EL TORI DESENTENCIONES CON LA CORPORTA DE CONTRACES.

- 19 Van Everdingen A.F. " The Skin Effect and its Influence of the Productive Capacity of a Well": Petroleum Transactions of AIME, Vol. 193 (1953).
- 20 León-Ventura R.: "Análisis de Pruebas de Variación de Presión", División de Evaluación de Formaciones, Instituto Mexicano del Petróleo (1984)
- 21 Villamar V. M.: Comunicación personal; Facultad de Ingenieria, UNAM. (1996).
- 22.» León V. R., Noyola O.A., Tinajero Z. J., Garcia M.J.L. e Inda L. A. : "Audisis de las Condiciones de Explotación del Campo Taratunich"; Región Marina Suroeste Petróleos Mexicanos (1996).