

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO<sup>2,C,7</sup> FACULTAD DE INGENIERIA

# ESTUDIO DEL EFECTO DE ALMACENAMIENTO VARIABLE En el analisis de pruebas de presion

T E S I S que para obtener el titulo de:

# **INGENIERO PETROLERO**

PRESENTA: CLAUDIA MARGARITA CASTRO ROMERO

DIRECTOR DE TESIS: M. en I. RAUL LEON VENTURA

México, D.F. 1996.



TESIS CON FALLA DE ORIGEN

TESIS CON FALLA DE ORIGEN



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

# DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.



VNIVERADAD NACI LAM. ANDADA DE MEXED

# SRITA. CLAUDIA MARGARITA CASTRO ROMERO

Presente

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso el profesor M. en I. Raúl León Ventura y que aprobó esta Dirección, para que lo desanolle usted como tesis de su examen profesional de Ingeniero Petrolero.

#### ESTUDIO DEL EFECTO DE ALMACENAMIENTO VARIABLE EN EL ANALISIS DE PRUEBAS DE PRESION

|     | RESUMEN                                      |
|-----|----------------------------------------------|
| 1   | INTRODUCCION                                 |
| 11  | ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE |
|     | ALMACENAMIENTO CONSTANTE                     |
| 111 | ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE |
|     | ALMACENAMIENTO VARIABLE                      |
| IV  | EJEMPLOS ILUSTRATIVOS                        |
| v   | CONCLUSIONES Y RECOMENDACIONES               |
|     | NOMENCLATURA                                 |

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escular en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el título de ésta.

REFERENCIAS

Asimismo le recuerdo que la Ley de Profesiones estipula que se deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar examen profesional.

A tentamen te "POR MI RAZA HABLARA EL ESPIRITU" Cludad Universitaria, a 16 de enero de 1996 EL DIRECTOR/2

Cullion

ING. JOSE MANUEL COVARRUBIAS SOLIS

JMCS'RER BIG

FACULTAD DE INGENIERIA DIRECCION 60-1-004



UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

DIVISION DE INGENIERIA EN CIENCIAS DE LA TIERRA

VNIVERADAD NACIONAL AVENIMA DE MEXICO

NOMBRE DE LA TESIS:

ESTUDIO DEL EFECTO DE ALMACENAMIENTO VARIABLE EN EL ANALISIS DE PRUEBAS DE PRESION.

TESIS QUE PRESENTA:

CASTRO ROMERO CLAUDIA MARGARITA

#### DIRIGIDA POR:

#### M. en I. RAUL LEON VENTURA

JURADO PARA EXAMEN PROFESIONAL:

# **AGRADECIMIENTOS**

A mí padre RAUL CASTRO, él cuál me ha brindado todo su amor y lo más importante su sabiduría y serenidad para llegar a esta miestra meta, dándome la mejor herencia que puede tener un hijo.

A mí madre *MARGARITA ROMERO*, quién en todo momento supo que este era mí camino y que lo culmiuaría tarde o temprano, contando siempre con su cariño, amor y comprensión.

> A mis abuelos *ALFONSO* y *MARGARITA*, quienes me dieron todo su tiempo cuando era tan solo una niña y rodeada de su amor crecí para ser lo que soy ahora. Les dedico esto por ser más que un ejemplo, por ser más que unos padres.

> > A mi abuela *EMA DUARTE*, que donde quiera que este espero se sienta orgullosa de lo que una vez inicie y ahora término, teniéndola siempre en mí mente y en mí corazón.

> > > Al *Dr. PIÑA*, por apoyarme en todo momento y brindar su cariño a toda mi familia en las buenas y en las malas, esperando que cuente con su ayuda y consejos siempre.

A *JASPER HAYTON*, por ser parte de mí vida y hacer las cosas más sencillas y maravillosas.

" La razón de amar... la encontramas viviendo;

el sentido de vivir... lo encontramos amando "

j ARFAERNAS !

A mi hermana *SANDRA*, esperando que se de cuenta de todo mí cariño y apoyo, así como yo se que cuento con el de ella. Y que sea este un inicio de todo lo que realizaremos en la vida.

A *ALEJANDRO*, ya que sin él esto hubiera sido más dificil, y por estar a mí lado hoy y siempre como un excelente amigo.

A mis *tlos* y *primos* por ser parte de una gran familia, estando unidos en todo momento. 7 Gracias por su apoyo, confianza y cariño ?

> Y a mis *profesores* de la Facultad de Ingeniería de la UNAM, quienes dan parte de su vida a la educación, siendo un ejemplo para todos.

> > Mil Gracias a DIOS por estar conmigo ...



Al *M. en I, RAÚL LEÓN VENTURA*, por su estuerzo y dedicación para la realización de este trabajo, esperando contar con sus consejos en nú vida profesional y con su contianza en mí desarrollo como persona.

> " Los ideales son como las estrellas: nunca los alcanzamos, pero, al igual que los marinos en alta mar, trazamos nuestro camino siguiendolos "

> > Claudia Margarita Castro Romero.



# INDICE

|     | RESUMEN                                                                                                                                                                                                                       | i                    |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| l   | INTRODUCCIÓN                                                                                                                                                                                                                  | 3                    |  |  |  |  |
| 11  | ANÁLISIS DE PRUEBAS DE PRESIÓN CON EFECTO DE<br>ALMACENAMIENTO-CONSTANTE                                                                                                                                                      |                      |  |  |  |  |
|     | <ul> <li>H.1. Concepto de almacenamiento constante</li> <li>H.2. Comportamiento de presión en un pozo<br/>con efecto de almacenamiento constante</li> <li>H.3. Análisis de pruebas de presión</li> </ul>                      | 6<br>16<br>25        |  |  |  |  |
| 111 | ANÁLISIS DE PRUEBAS DE PRESIÓN CON EFECTO DE<br>ALMACENAMIENTO-VARIABLE                                                                                                                                                       |                      |  |  |  |  |
|     | <ul> <li>III.1. Anomalías que se presentan en pruebas de presión</li> <li>III.2. Fenómeno de segregación de fases</li> <li>III.3. Efecto de almacenamiento variable</li> <li>III.4. Análisis de pruebas de presión</li> </ul> | 32<br>35<br>42<br>64 |  |  |  |  |
| IV  | EJEMPLOS ILUSTRATIVOS                                                                                                                                                                                                         |                      |  |  |  |  |
|     | <ul><li>IV.1. Ejemplo 1 (Pozo Taratunich 301)</li><li>IV.2. Ejemplo 2 (Pozo Taratunich 63D)</li></ul>                                                                                                                         | 67<br>76             |  |  |  |  |
| V   | CONCLUSIONES Y RECOMENDACIONES                                                                                                                                                                                                | 87                   |  |  |  |  |
|     | NOMENCLATURA                                                                                                                                                                                                                  | 89                   |  |  |  |  |
|     | REFERENCIAS                                                                                                                                                                                                                   | 94                   |  |  |  |  |

ACSEALS.

construction of the second state of the state of the state of the second second state of the structure of the s

# RESUMEN

El fenómeno de aluracenamiento es el efecto de pozo que tiene mayor relevancia sobre la respuesta de las pruebas de variación de presión durante los llamados tiempos cortos.

Durante muchos años se han estudiado los fenómenos y las anomalías que provocan los efectos de almacenamiento en pozos de aceite y gas en las pruebas de incremento o decremento de presión, principalmente. Se ha demostrado que uno de los fenómenos que tiene mayor impacto sobre los datos de presión de fondo es la redistribución de fases, que es el resultado de la velocidad más alta de la fase gaseosa dentro de la tubería de producción de un pozo después de cerrarlo en la superficie, ocasionando el efecto de almacenamiento variable.

El estudio de este tenómeno de segregación de fases y por tanto, del modelo de interpretación de pruebas de presión con efectos de almacenamiento variable es desarrollado con detalle en este trabajo.

También se desarrolla el efecto de almacenamiento constante como antecedente de investigación y se hace la comparación con el efecto de almacenamiento variable sobre el comportamiento de la presión en los pozos.

ţ

RESUMEN

MARTERIA DE TERRETERIS DE LE COMPANIE DE LE COMPANIE

Se describe la metodología de análisis de los datos de presión (convencional y con curvas tipo) cuando se tienen los efectos de almacenamiento: constante y variable.

Finalmente, se ilustra la aplicación de estos modelos en el análisis de dos casos prácticos de campo en los que es significativa la confiabilidad de la interpretación y de los resultados obtenidos.

CAPTULO 1

# CAPITULO I

# INTRODUCCION

Para analizar el comportamiento de los yacimientos petroleros y poder predecir la producción bajo diferentes alternativas de explotación<sup>1-12</sup>, el Ingeniero Petrolero puede utilizar como una buena herramienta, para obtener suficiente información, las pruebas de presión que se realizan a los pozos<sup>13-29</sup>.

La interpretación de pruebas de presión recae en el uso de modelos con características supuestas que representan el yacimiento real. Estas se desarrollan a partir de un cambio abrupto del gasto de producción y del registro continuo del cambio de presión de fondo respectivo.

Estas pruebas se han convertido en una de las herramientas más poderosas para la caracterización de yacimientos, con su uso se ha avanzado mucho en el área de yacimientos logrando establecer estrategias adecuadas de producción, con el propósito de alcanzar una mayor productividad de los pozos. CMHELO I

a. En 1919 d'alla ville de la defensione de la contra de la contra de la diversión de la contra de la contra de se

En las pruebas de presion ocurre, a tiempos contos, el efecto de almacenamiento que se presenta como una condición de frontera interna. La influencia de este fenómeno puede modificar significativamente la respuesta de presión<sup>20</sup>.

El almacenamiento se considera como un efecto que altera el comportamiento de la presión y puede originarse por compresión o expansión de los fluidos, así como por un cambio de nivel de líquido en el pozo. Se ha analizado este efecto por medio de curvas tipo, siendo este un ajuste de análisis por medio de una familia de curvas de decremento de presión<sup>7</sup>, las cuales representan la solución de ecuación de difusividad, considerando el almacenamiento constante. Mediante el uso de la derivada de la presión<sup>17</sup>, es posible identificar con precisión el periodo de flujo dominado por el efecto de almacenamiento, es decir, es una magnifica herramienta de diagnóstico.

Durante tiempos cortos ocurren fenómenos que afectan el comportamiento de la presión<sup>12</sup>, tales como : el efecto de almacenamiento, la segregación de fases, los fluidos dentro del pozo, lingas a través de tuberías, fracturas, penetración parcial, etc. Cuando se presenta alguno de estos fenómenos, ocurre una anomalía típica en la respuesta de presión.

El efecto de almacenamiento variable está asociado con el fenómeno de redistribución de fases<sup>14</sup>, siendo un efecto que dificulta la aplicación de las técnicas de análisis, tales como un ajuste con curvas tipo, el cuál está basado en una consideración de almacenamiento constante.

#### CAPITURO

а<mark>на би</mark>шка била слижано с до жала ал се узакато сило зикато у устаните како се одкатичано следота Марше

El uso de estas técnicas comúnmente resulta en un error sistemático del modelo para los datos medidos a tiempos cortos. Cuando una prueba se corre durante un tiempo suficientemente grande para desarrollar el flujo radial infinito en el yacimiento, los efectos más serios ocurren a tiempos cortos y ocasionan una reducción en la confiabilidad de la interpretación.

La necesidad de analizar datos de presión afectados por el almacenamiento variable, ha dado como resultado varios esfuerzos para explícar la variación anómala de la presión a través del fenómeno de redistribución de fases<sup>14,21</sup>.

Por tanto, dada la importancia que tiene el efecto de almacenamiento variable sobre la interpreación de pruebas de presión, este trabajo tiene como objetivo primordial estudiar el fenómeno de almacenamiento variable, tanto física como matemáticamente, tomando como base diversas investigaciones que durante varios años se han venido realizando<sup>18</sup>. Con la aplicación de estos modelos se pretende lograr un ajuste más preciso y por tauto, una mejor confiabilidad en los resultados obtenidos de las pruebas de presión.

Finalmente, con dos ejemplos prácticos de campo<sup>22</sup>, se ilustra la aplicación de los modelos de interpretación con efectos de almacenamiento constante y variable, demostrándose el beneficio logrado en la calidad de los análisis y la confiabilidad de los resultados.

CAPITULO II

# CAPITULO II

sta beneralista asta da a verte e la centralización de el esta de presidente, y organizador de sobre destructures de el el esta de sobre de sobre de sobre el esta de sobre d

# ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE ALMACENAMIENTO CONSTANTE

# **II.1** CONCEPTO DE ALMACENAMIENTO CONSTANTE

Siempre que se abre o cierra un pozo para registrar una prueba de presión se presentan los efectos de almacenamiento, los cuales modifican la respuesta de presión de los pozos durante los tiempos cortos.

Cuando un pozo se cierra en la superficie, el gasto de flujo en la cara de la formación no cesa inmediatamente, ya que el fluido continúa entrando en el agujero durante un cierto periodo de tiempo hasta que el yacimiento cesa de aportar fluido hacia el pozo, es decir, la cara de la formación queda completamente cerrada al flujo.

Si un pozo ha estado cerrado y se ha introducido en él una herramienta para medir la variación de la presión, al ser abierto el flujo a la superficie la cara de la formación productora continúa cerrada, de tal manera que el gasto en la superficie proviene únicamente del fluido almacenado en la columna del pozo. Después de un tiempo, durante el cual este gasto va dismínnyendo  $(q_n)$  y el gasto de la formación  $(q_{sf})$  va aumentando, termína el efecto de almacenamiento cuando el gasto total proviene del yacimiento, es decír que la cara de la formación queda completamente abierta :  $q_n = 0$  y  $q_{sf}=0$ . Este fenómeno del flujo que continúa entrando al pozo en la cara de la formación después del cierre, o cuando el flujo proviene de la columna del pozo al abrirlo en la superficie se conoce como *efecto de almacenamiento*.

。 《李治·杨秋秋·杨秋秋》:"你你见他们还是这个你的时候,这个你你们也能给你你这些人,你不是你,你们你们能能能是这些人,你不能你能够。

La figura 1 muestra esquemáticamente el efecto de almacenamiento que ocurre en un pozo cuando se abrel y cuando se cierra. Cuando se tiene un gasto constante en la superficie, ocurre la suma de dos gastos en sentidos opuestos, esto es, la descarga del pozo  $q_w$  que disminuye de q a *cero*, más el flujo de la formación que aumenta de *cero* a q; por tal motivo para tiempos cortos se presenta el período de almacenamiento durante una prueba de variación de presión como se puede observar en la figura 2.

El almacenamiento de los pozos se puede desarrollar por compresión o expansión de fluidos o bien por el movimiento de la interfase de fluidos dentro de la columna del pozo.

анамалары жалана жана актар тарар карары каралуу жарыл карыма караларда жана каралары. Каралар каралары жара ка



FIG. L- EFECTO DE ALMACENAMIENTO EN UN POZO: (a) se cierra, (b) se abre <sup>s</sup>.

en el part d'alter ser





Log r (hrs)

# FIG. 2.- EFECTO DE ALMACENAMIENTO DURANTE UNA PRUEBA DE VARIACION DE PRESION\*.

CAPIDIO II

стати виде врастивности трало с класки с стороковичности и сторок во состоя со состоя с

### a) Por compresión o expansión del fluido.

Sea un pozo que está completamente lleno de un líquido bajosaturado y que produce a un gasto *q* constante en la superfície, *figura 3*. Se tendrá el siguiente balance de masa :

 $\begin{bmatrix} \text{Gasto que entra} \\ (q_{\mathcal{J}} B) \end{bmatrix} = \begin{bmatrix} \text{Gasto que sale} \\ (q B) \end{bmatrix} = \begin{bmatrix} \text{Gasto almacenado} \\ \text{en el pozo} \end{bmatrix}$ 

Donde

$$(q_M - q) B = 24 F_W c_W \frac{dp_W}{dt}$$
(1)

despejando :

$$q_{\mathcal{F}} = q + 24 - \frac{V_w - \mathcal{C}_w}{B} - \frac{dp_w}{dt}$$
(2)

Definiendo  $C = V_{\rm II} c_{\rm w}$ , entonces q<sub>sf</sub> queda de la forma siguiente :

$$q_{sf} = q_{sf} + \frac{24C}{B} - \frac{dp_{s}}{dt}$$
(3)

Para comprender la solución a problemas de flujo que incluye almacenamiento del pozo, es necesario introducir variables adimensionales :

$$p_{\mu} = \frac{Kh(p_{i} - p_{w})}{141.2 \ g B_{\mu}} \quad , \quad p_{\mu} = p_{i} - \frac{141.2 \ g B_{\mu}}{Kh} \ p_{\nu} \tag{4}$$

$$h = \frac{0.0002637 \ K \ t}{\phi \,\mu \,Cr \ r_{\rm s}^{-2}} \quad , \quad t = \frac{\phi \,\mu \ Cr \ r_{\rm s}^{-2}}{0.0002637 \ K} \quad t_0 \tag{5}$$

CALLER 1

. Na katalahatan katalah kutan kutan kutan kutan katalah kutan kutan



### FIG. 3.- ESQUEMA DE UN POZO QUE PRODUCE UN SOLO FLUIDO BAJOSATURADO ".

CAPITURO IL

а<mark>намара и вакита рика и каленита и та</mark> се около и та се около и и колексти архиено сколо и тото е на каке се ок

De tal manera que :

$$rac{dp_{s}}{dt} = \left( -rac{1412}{K} rac{q}{h} rac{BW}{k} + \left( rac{0.0002637}{K} rac{q}{h} rac{q}{c} rac{c}{r_{0}r_{0}} 
ight) + rac{dp_{s}}{dt} 
ight)$$

$$\frac{d\rho_s}{dt} = \frac{0.0373}{\oplus \mathrm{tr} \, \mathrm{cr} \, h \, \mathrm{rs}^2} \frac{d\rho_t}{dt} \tag{6}$$

Por tanto, sustituyendo en la ecuación 3 :

$$q_{d} = q - \frac{0.894}{\Phi c_{t}} \frac{q}{h} \frac{c}{c_{t}} \frac{dp_{t}}{dh}$$
(7)

Definiendo el coeficiente de almacenamiento adimensional como :

$$C_D \approx \frac{0.894 \ C}{\phi \ C_L \ h \ r_s^2} \tag{8}$$

entonces

$$q_{e} = q \left( 1 - C_{D} \frac{dp_{e}}{dt_{D}} \right)$$
(9)

y finalmente

$$\frac{q_{bl}}{q} = 1 - C_b \frac{dp_b}{db} \tag{10}$$

Esta ecuación representa la condición de frontera interna en un pozo que produce a gasto constante un fluido ligeramente compresible con efecto de almacenamiento.

## b) Por movimiento de una interfase

Para considerar una intertase de fluidos dentro de la columna del pozo, como se muestra en la *figura 4*, se puede plantear el signiente balance de masa en el pozo :

Gasto que entra<br/>(g,r,B)Gasto que sale<br/>(g,B)Sasto almacenado<br/>en el pozo

De donde se obtiene lo siguiente :

$$\left(q_{st}-q\right)B = \frac{24}{5615} \frac{dz}{dt} \tag{11}$$

donde B se supone constante.

La presión en el fondo del pozo es :

$$p_{w} = p_{T} + \frac{p_{-T}}{144} - \frac{g}{g}.$$
(12)
$$p_{w} = p_{T} = \frac{p_{-T}}{144} - \frac{g}{g}.$$

Derivando con respecto al tiempo :

$$\frac{d(p_{*}-p_{t})}{dt} = \frac{p}{144} - \frac{g}{dt} - \frac{dz}{dt}$$

CAPITERE

na analysis any set in industry same of the structure structure in a system of a second structure in the second



FIG. 4.- ESQUEMA DE UN POZO QUE PRODUCE CON EL MOVIMIENTO DE UNA INTERFASE GAS-LIQUIDO <sup>8</sup>. CHERRER R

. No di Fild Folk ka na biyo kata yakabayina kokoyoka oliku kata na na kwata kyedi Masta kyangayina iliku na na kukabyyan

$$\frac{dr}{dt} = \frac{141}{9} \frac{g}{g} \cdot \frac{d\left(\frac{p_{t}}{p_{t}} - p_{t}\right)}{dt}$$
(13)

sustituyendo en la ecuación 11 :

$$(q_{2} - q) B = \frac{24}{5615} \frac{44}{p} \frac{g}{g} \frac{d(p_{0} - p_{1})}{dt}$$
(14)

Por tal motivo el coeficiente de almacenamiento C se puede llegar a escribir como :

$$C = \frac{144}{5.615} \frac{A_w}{\rho} \frac{g}{g}$$
 (15)

entonces de la ecuación 14 se tiene :

$$q_{ij} = q_{ij} + \frac{24}{B} \frac{C}{dt} \frac{d(p_{ij} - p_{ij})}{dt}$$
(16)

suponiendo que  $p_t = \text{constante}$  :

$$q_{y} = q + \frac{24}{B} \frac{C}{dt} \frac{dp_{w}}{dt}$$
(17)

Esta ecuación es idéntica a la ecuación 3, únicamente el coeficiente de almacenamiento tiene una definición diferente. Por tanto, las ecuaciones 9 y 10 también son válidas para pozos que tienen una interfase.

# 11.2 Comportamiento de presion en un pozo con Efecto de almacenamiento constante

La ecuación de difusividad para flujo radial, introduciendo el concepto del efecto de almacenamiento en el pozo como una condición de frontera interna (ecuación 10), ha sido resuelta y la solución se ha publicado en la literatura especializada<sup>13</sup>:

$$P_{\nu}(t_{\nu},s,C_{\nu}) = \frac{4}{\pi^{2}} \int_{0}^{\infty} \frac{e^{-\pi^{2} t_{\nu}} dn}{u^{2} \left\{ \left[ u C_{\nu,\nu}(u) - (1 - C_{L} s u^{2}) J_{0}(u) \right]^{2} + \left[ u C_{\nu} T_{\nu}(u) - (1 - C_{L} s u^{2}) Y_{\nu}(u) \right]^{2} \right\}}$$
(18)

La solución analítica se presenta gráficamente en la *figura 5*. A partir de esta solución es posible determinar valores de  $p_{\nu}$  ( y por consiguiente de  $p_{\nu}$  ) para valores dados de :  $q_{\nu}$ , s y  $c_{\nu}$ . Para tiempos cortos, cuando la formación aún no aporta fluidos, es decir, todo el gasto proviene del fluido almacenado en el pozo, entonces  $q_{\mu}/q = 0$ , y de la ecuación 10 se tiene :

$$0 \approx 1 - C_{\nu} \frac{dp_{\nu}}{dt_{\nu}} \tag{19}$$

Integrando desde  $t_0 = 0$  (donde  $p_0 = 0$ ) hasta  $t_0$ :

$$p_{\nu} = \frac{\hbar}{C_{\nu}} \tag{20}$$



FIG. 5.- COMPORTAMIENTO DE LA PRESION EN UN POZO CON EFECTOS DE DAÑO Y ALMACENAMIENTO".

ал<mark>лан</mark>а се темалициот стол, дако ила телак конската и колда Есла, раскод сталадели стораца и и истор на есло стал водот и

Y escribiendo la ecuación anterior en términos logarítmicos :

$$\log p_{\theta} \approx \log t_{\theta} \ll \log C_{\theta} \tag{21}$$

Entonces, cuando  $q_g > 0$ , al graficar Log  $p_0$  contra Log  $t_0$  se obtiene una línea recta de pendiente unitaria. Esto se observa en la primera porción a tiempos cortos de todas las curvas de la *figura 5*. Además, si la ecuación 20 se convierte a variables reales se obtiene :

$$\Delta p = \frac{q}{24} \frac{B}{C} \frac{I}{C} \tag{22}$$

que también representa una línea recta con pendiente unitaria en coordenadas *log-log*, como se muestra en la *figura 6*. De tal manera que cualquier punto sobre la línea recta satisface a la ecuación 22 y por tanto, a la ecuación 20.

Una vez construido el gráfico de la *figura 6*, eligiendo arbitrariamente un punto cualquiera (la única condición es que esté sobre la línea recta), con los datos de  $\Delta p$  y *t* correspondientes, se puede estimar el coeficiente de almacenamiento :

$$C = \frac{g}{24} \frac{B}{\Delta p}$$
(23)

así como el coeficiente adimensional con la ecuación 8.

#### CAPITULO II

LTT DESCRIPTION DECEMPENDED ADDRESS CONTRACTOR DE CONTRACTOR DE CONTRACTOR CONTRACTOR DE C



FIG. 6.- GRAFICA DE LOG  $\Delta p$  VS. t QUE DEFINE EL PERIODO DOMINADO POR EL EFECTO DE ALMACENAMIENTO<sup>12</sup>.

ериски мали вызвания совлета сили стали стороно с во всего в настоя се се стали состоя се состоя состоя состоя с с

El coeficiente de almacenamiento varía con respecto al tiempo, observándose en la *figura* " que a medida que c' es mayor,  $q_a/q$  tiende a uno, en un tiempo más grande. Cuando el coeficiente de almacenamiento c' es igual a cero, la relación de gastos  $q_a/q$  es igual a 1 para todo tiempo : sin embargo, si el coeficiente de almacenamiento es mayor que cero, la relación de gastos  $q_a/q$ cambia gradualmente de cero a uno. En un pozo que produce a gasto constante, una vez que el flujo proveniente de la formación es igual al gasto producido en la superficie, es decir :  $q_a = q - y - q_a = 0$ , cesa el efecto de almacenamiento y este tiempo que dura dicho efecto puede estimarse a partir de los tiempos adimensionales leidos en la intersección de las curvas de  $c_b$  con las de  $c_b = 0$  de la *figura 5*, para s = 0.5, 10 y 20 según se presenta en la *Tabla II.1*<sup>8</sup>.

| COEFICIENTE DE<br>Almacenamiento<br>Adimensional | VALORES             | DE TIEMPO              | ADIMENSIONAL ,        | t <sub>D</sub>        |
|--------------------------------------------------|---------------------|------------------------|-----------------------|-----------------------|
| C <sub>D</sub>                                   | s = 0               | s≈5                    | s = 10                | s = 20                |
| 10 <sup>2</sup>                                  | 6 x 10 <sup>3</sup> | 7.75 x 10 <sup>3</sup> | 9.5 x 10 <sup>3</sup> | 1.3 x 10 <sup>4</sup> |
| 103                                              | 6 x 10 <sup>4</sup> | 7.75 x 10 <sup>4</sup> | 9.5 x 10 <sup>4</sup> | 1.3 x 10 <sup>5</sup> |
| 104                                              | 6 x 10 <sup>5</sup> | 7.75 x 10 <sup>5</sup> | 9.5 x 10 <sup>5</sup> | 1.3 x 10 <sup>6</sup> |
| 105                                              | 6 x 10 <sup>6</sup> | 7.75 x 10 <sup>6</sup> | 9.5 x 10 <sup>6</sup> | 1.3 x 10 <sup>7</sup> |

TABLA 11.1 - VALORES DE 1<sub>D</sub> CORRESPONDIENTES AL FINAL DEL EFECTO-DE ALMACENAMIENTO<sup>8</sup>.

#### CAPITULO H

а дологияния поданных на надавающими в высодаться на складни и плута долгатоваться так или с на намения с на за Пологияния



TIEMPO (hrs)

### FIG. 7.- COMPORTAMIENTO DE LA VARIACION DEL COEFICIENTE DE ALMACENAMIENTO CON RESPECTO AL TIEMPO<sup>10</sup>.

RAND MELLER UNA DER MERLEN MELLER MELLER MELLER MELLER MELLER DER VORLER UM DER MELLER VOrlichten Vorlichten der Meller vorlichten vorlichten

En la *figura*  $\delta$  se muestran graficados los valores de la *Tabla II.1* y se obtienen las siguientes expresiones :

| log | $t_{\rho} = \log$ | 60 + <i>lo</i> g  | $C_p$   | para | S 101 0      |
|-----|-------------------|-------------------|---------|------|--------------|
| log | $t_p = \log$      | 77.5 ± log        | $C_p$   | para | <i>s</i> = 5 |
| log | $t_p = \log$      | 95 + <i>lo</i> g  | $C_D$   | para | s == 10      |
| log | $t_p = \log$      | 130 + <i>lo</i> g | $C_{p}$ | para | s = 20       |

y como se ha demostrado<sup>\*</sup>, la ecuación general que representa en forma aproximada la terminación de los efectos de almacenamiento está dada por :

$$t_{\rho} = (60 \pm 3.5 \ s) \ c_{\rho} \tag{24}$$

A partir de este tiempo, *figura 9*, una vez que cesan los efectos de almacenamiento, la formación está totalmente abierta al flujo, es decir que todo el flujo proviene de ella ( $q = q_{sf}$ ), entonces se alcanza el periodo de flujo radial transitorio (infinito) y los datos de presión representan la respuesta del comportamiento del yacimiento, sin los efectos de almacenamiento.

#### CAPITULO II

. Na na na manana any kaominina amin'ny fanana amin'ny faritr'o amin'ny tanàna amin'ny tanàna amin'ny tanàna mand



### FIG. 8.- REPRESENTACION GRAFICA DEL TIEMPO FINAL DE LOS EFECTOS DE ALMACENAMIENTO \*.

#### CAPITO II

анамаланын маналамын кинактын карталарын карталыкын кетектик кетектик кетектик кетектик маналарын кылымалык кете







#### 11.3 ANALISIS DE PRUEBAS DE PRESION

Como se ha demostrado<sup>15</sup>, la respuesta de presión de un pozo con efectos de almacenamiento y daño está dado por la ecuación 18, cuyas aproximaciones para tiempos cortos y largos están dadas por la ecuación 20 y por :

3

$$p_{\rm F} = \frac{1}{2} \left\{ \ln \left( t_{\rm e} \right) + 0.80907 + 2.8 \right\}$$
(25)

respectivamente. La ecuación 20 representa la respuesta de presión durante el periodo de flujo dominado por el almacenamiento (línea recta de pendiente unitaria) y la ecuación 25, será la respuesta de presión durante el periodo de flujo radial infinito (solución de línea fuente).

Obteniendo la derivadaº de la ecuación 20 :

$$p_{\mathcal{D}}' = \frac{d(p_{\mathcal{D}})}{d(t_{\mathcal{D}}/C_{\mathcal{D}})} = 1$$
(26)

Arreglando la ecuación 25 y obteniendo su derivada :

$$p_{\rm b} = \frac{1}{2} \left[ \ln \left( \frac{h_{\rm b}}{C_{\rm b}} \right) + \ln \left( C_{\rm B} \ e^{2S} \right) + 0.80907 \right]$$
(27)

$$p_{\theta}^{\prime} = rac{d\left(p_{\theta}^{\prime}
ight)}{d\left(t_{\theta}/C_{\theta}
ight)} = rac{0.5}{t_{\theta}^{2}C_{\theta}}$$
(2.8)

teniendo las siguientes expresiones para el cálculo de las ecuaciones anteriorem

$$\frac{t_0}{C_0} = \frac{0.000295 \ K \ h \ \Delta t}{\mu \ C} \tag{29}$$

$$C_{D} e^{2s} = \frac{0.894}{\phi} \frac{C}{h} \frac{c}{c_{F}} \frac{c^{2s}}{r_{w}^{2}}$$
(30)

Multiplicando las ecuaciones 26 y 28 por el término  $i_{\rho}/c_{\rho}$  se obtiene :

$$p_{\mathcal{D}'}\left(t_{\mathcal{D}}/C_{\mathcal{D}}\right) = -t_{\mathcal{D}}/C_{\mathcal{D}} \tag{31}$$

$$p_0'(t_0/C_0) = 0.5 \tag{32}$$

de tal manera, que para tiempos largos la derivada se vuelve totalmente independiente del término  $t_0/c_0$ , es decir, ya no existen efectos de almacenamiento. Esto dió lugar a la curva tipo conocida como "la derivada", la cual presenta una familia de curvas en coordenadas logarítmicas como se muestra en la *figura 10*, y que vino a revolucionar las técnicas de análisis de pruebas de presión en pozos<sup>9</sup>.





27

WILLO H

....

Con el uso de la derivada se logró gran confiabilidad en el análisis de pruebas de presión, ya que se eliminó el problema de no-unicidad de solución al permitir un ajuste único de los datos y además, aprovechar la presencia de los datos de tiempos cortos, aquellos influenciados por el almacenamiento del pozo.

PTER NERVER REPORTED AND ADDRESS FOR ADDR

Para efectuar el análisis de los datos de una prueba de presión es necesario, construir primero la "curva de datos" constituída por:  $\Delta p$  y  $\Delta p'\Delta t$  contra  $\Delta t$ , en coordenadas logarítmicas y a la misma escala de la curva tipo. Se usa  $\Delta t$  cuando se trata de una curva de incremento y t para decremento de presión.

Una vez realizado el ajuste de las curvas, como se muestra en la *figura 11*, se anotan los datos correspondientes al punto de ajuste :  $\Delta p$ ,  $\Delta p' \Delta t - y \Delta t$  de la curva de datos, y  $p_{\mu}$ ,  $p_{\mu'}'(t_{\mu}/C_{\mu})$ ,  $t_{\mu'}/C_{\mu} - y - C_{\mu'}e^{2t}$  de la curva tipo. Además, se identifica con exactitud donde terminan los efectos de almacenamiento, cuando la derivada alcanza una pendiente igual a cero, es decir, sobre la línea horizontal donde  $p_{\mu'}'(t_{\mu'}/C_{\mu}) = 0.5$  y que corresponde a la convergencia de todas las curvas de la derivada.

A partir de los datos del punto de ajuste se pueden obtener los parámetros característicos del sistema pozo-yacimiento, tales como la permeabilidad de la formación y el factor de daño con las siguientes expresiones :
concepted and a content of the second state of the second state of the second state of the second state of the

 $K = \frac{110.2}{K} \frac{q B \mu}{h} - \left(\frac{p_n^* \left(t_{\rm C} C_{\rm F}\right)}{\Delta \gamma^* \Delta t_{\rm C}}\right)_{\rm anyste}$ (33)

У

$$s = 0.5 \ln \left( \frac{(h/C_{\perp}) (C_{\perp} e^{2s})}{h} \right)_{ajuste}$$
 (34)

respectivamente. Además, con este análisis se identifica el final del efecto de almacenamiento, se hace el diagnóstico del modelo de yacimiento representativo del sistema en estudio y la determinación de las características de las fronteras, de fracturas, heterogeneidades, fallas, etc.

Muchas veces, por desconocimiento del objetivo de las pruebas de presión, por la falta de un diseño previo o por fallas operativas, no se registran los datos con una duración suficiente para alcanzar todos los periodos de flujo. Una gran cantidad de pruebas se han registrado en estas condiciones, las cuales no eran posible interpretarlas.

Sin embargo, después de la introducción de la derivada a través del ajuste de los datos, aunque fueran únicamente los de tiempos cortos, fue posible hacerlo. En la *figura 12* se ilustra cómo lograr el ajuste de los datos de tiempos cortos para analizar una prueba de presión cuya duración no fue suficiente para alcanzar el periodo de flujo transitorio.



FIG. 11.- ILUSTRACION DE LA TECNICA DE AJUSTE CON CURVAS TIPO DE UNA PRUEBA DE PRESION CON EFECTOS DE ALMACENAMIENTO CONSTANTE.

Ξ

# CAPITED I



FIG. 12.- ILUSTRACION DEL AJUSTE CON CURVAS TIPO DE UNA PRUEBA DE PRESION CUYOS DATOS ESTAN UNICAMENTE EN EL PERIODO DE ALMACENAMIENTO.

51

2011

ICENTRON FRANCE REAL AND REAL

## CAPITULO III

## ANALISIS DE PRUEBAS DE PRESION CON EFECTO DE ALMACENAMIENTO VARIABLE

## III.1 ANOMALIAS QUE SE PRESENTAN EN PRUEBAS DE PRESION

Puede considerarse que la respuesta de presión de un pozo presenta diferentes comportamientos en función del tiempo, definiéndose así la presencia de los distintos periodos de flujo, los cuales a su vez representan las características específicas del sístema pozo-yacimiento. De esta manera, es posible identificar datos de presión a tiempos cortos, intermedios y largos, correspondientes a los efectos del pozo, del yacimiento y de las fronteras, respectivamente. Esto se ilustra en la *figura 13*.



- 1

log.(tiempo)



CALIFORNIA STUDIES

5

orransee arra

.

| -(-) | P14 | uta i | iH |
|------|-----|-------|----|
|------|-----|-------|----|

Como se describio en el Capítulo II , uno de los efectos dominantes durante los tiempos cortos está dado por el fenômeno del almacenamiento; pero además, la respuesta de presión puede presentar otras anomalias causadas tipicamente por : los fluidos dentro del pozo, las fallas de empacadores, las fugas a través de tuberías (TP o TR), la penetración parcial, las fracturas, etc.

Las variaciones de gastos de producción, los efectos de anisotropia, interferencia de otros pozos, presencia de fronteras, las suspensiones del registro, así como fugas o represionamientos durante el desatrollo de las pruebas, deben ser tomados en cuenta y no tomarse como factores en forma aíslada<sup>20</sup>.

Para llegar a tener una interpretación real y confiable de la respuesta de presión se debe encontrar la influencia de todos estos factores y manejarlos integralmente<sup>a</sup>. Para tíempos cortos se tienen efectos variables del pozo como son: el almacenamiento, el daño, las fracturas, la penetración parcial y el espesor efectivo ; mientras que para tiempos largos se tienen efectos del yacimiento como: las interferencias, el gasto, la anisotropía y los efectos de frontera, entre otros. Por otro lado, se pueden presentar los problemas operativos en los cuales están las suspensiones en la adquisición del registro, las fugas en tuberías o empacadores, los represionamientos, así como anomalías que resultan de la segregación de las fases y los efectos de almacenamiento, este último analizado con curvas de incremento de presión para diferentes tipos de yacimientos<sup>a</sup>.

÷

## **111.2 FENOMENO DE SEGREGACIÓN DE FASES**

A set of a water water in a single site and the set of the set of

La mayoría de las pruebas de presión se realizan mediante el cierre del pozo en la superficie, más que en el fondo, para reducir costos. Sin embargo, el cierre en la superficie permite la entrada de fluido desde el yacimiento durante un período de tiempo después del cierre (periodo de almacenamiento). Además, en pozos que contienen las fases de líquido y gas, ocurre un levantamiento preferencial del gas, con respecto al líquido, en la tubería de producción, debido al fenómeno de segregación de fases.

a way and shere one and sharp a point as a second second

En la práctica existe la necesidad de analizar datos de presión afectados por la segregación de fases. Se ha demostrado<sup>4</sup> que a tiempos cortos el efecto de segregación de fases actúa similarmente a un pozo con alunacenamiento constante. A tiempos intermedios, una curva de incremento de presión se desvía del comportamiento de almacenamiento constante y aparece una forma característica de "joroba" debido al efecto de segregación de fases, *figura 14*. Por tanto, el análisis de los datos sin la identificación correcta del efecto de almacenamiento variable, puede conducir a la estimación incorrecta de los parámetros del yacimiento.

El fenómeno de redistribución de fases<sup>to</sup> se ha establecido desde dos puntos de vista : estático (columna del pozo) y dinámico (columna del pozo con entrada del yacimiento), por medio de experimentos de laboratorio.

### CAPIED O III



FIG. 14.- INCREMENTO DE PRESION CON EFECTO DE SEGREGACION DE FASES<sup>10</sup>.

CALIERO IE

e Marwald a chur a Chuanachainn a' mar annas mar anna a' sheir a anna anna bhriann car car can anna anna anna a

### 1) Aspecto estático

Para este estudio se considera un cilindro que contiene dos fluidos separados mediante un pistón sin fricción y sin peso, como se muestra en la *figura 15*. La fase fiquida se coloca arriba y la fase gaseosa abajo (CHLINDRO I). Para este experimento se supone que el gas no tiene peso y que el líquido es incompresible. Si se flama A a la presión que se tiene en la cima, se aprecia que el gas confinado abajo del pistón está a la presión A más la presión debida a la carga del líquido (P) ; mientras que si se invierte el cilindro se tendrá ahora a la fase gaseosa en la cima (CILINDRO 2), y por tanto, se tienen las siguientes observaciones :

a) Si el líquido es incompresible, el pistón no tiene movimiento, así que el gas ocupa el mismo volumen ; por tanto, el gas permanece a la misma presión inicial: A+P.

b) La presión de fondo es ahora la presión ejercida por el gas en la cima del pistón (A+P), más la carga del fluido P, resultando así una presión total ígual a (A+2P).

De acuerdo con lo analizado, si se cambia la posición de los fluidos, cambia la presión absoluta en la cima y en la base; mientras que la diferencia entre ambas permanece constante. Analíticamente se observa que en el CILINDRO 1 se tiene (A+P)-A=P , es decir que  $\Delta P=P$ , mientras que en el CILINDRO 2 se tiene (A+2P)-(A+P)=P, resultando que  $\Delta P=P$ . Por tanto, se demuestra que en los dos cilindros la diferencia final de sus presiones es igual y permanece constante.

### CAPITULO HI



## FIG. 15.- EXPERIMENTO DEL ASPECTO ESTATICO DEL FENOMENO DE SEGREGACION DE FASES<sup>10,21</sup>.

#### 

### 2) Aspecto dinámico

En este caso se tiene un cilindro (que representa la columna del pozo) fleno con glicerina y aire, *figura 16.* En la PRUEBA i se mantiene abierta la válvula *B*, mientras que la válvula C permanece cerrada ; después se inyecta aire a través de un núcleo ubicado en la base de la columna junto a la válvula *A* ; después de cierto tiempo las válvulas *A* (entrada de aire) y *B* (salida del aire) son cerradas simultáneamente, cuando las burbujas de aire se dispersen suficientemente a través de la columna, resultando un incremento de presión total entre la cima y el fondo siendo aproximadamente de 13 pg. de agua. Aquí se observa la liberación de burbujas de gas.

En este experimento se considera que las burbujas en el pozo son comprimidas por la carga del fluido a medida que el gas es comprimido, lo cuál afecta a la presión. Por otro lado, la liberación subsecuente de gas a través del líquido ocasiona que la presión en las burbujas disminuya debido a la carga del fluido ; sin embargo, el gas que no puede expandirse en un sistema cerrado, ejerce una presión sobre el líquido y la interfase gas-líquido. Esta presión se transmite al fondo del recipiente y si se agrega la presión hidrostática, dará una presión adicional asociada con la liberación de burbujas.

El aumento de la presión en la cima y en la base del recipiente, se debe básicamente al cambio de posición de las fases y a la elevación de las burbujas, siendo directamente proporcional al volumen total de burbujas en la columna.



на за заделение вода воделение довоживаето, со ток на како на поста обланата са тако на констана констана со констана на констана со констаната.

FIG. 16.- EXPERIMENTO QUE ILUSTRA EL FENOMENO DE SEGREGACION DE FASES<sup>11</sup>.

Mediante la PRUEBA 2 se simula el efecto de decremento de presión en un pozo, con un factor de daño alto y una cantidad considerable de burbuias atrapadas en el líquido del pozo durante el cierre. Usando el mismo cilindro con un recipiente que contiene glicerina y aire, el cuál representa a un vacimiento poroso alrededor del pozo, figura 16. Como en el caso anterior, se circula aire a través del núcleo y en el fondo de la columna (válvula A), se abre la válvula B de la cima, mientras que la válvula C es cerrada ligeramente, ocasionando que la presión del aire en el recipiente se ajuste a un valor ligeramente arriba de la presión de fondo fluyendo  $(p_{\mu})$ . Cuando se alcanza la dispersión estacionaria de burbujas en la columna, se suspende el suministro de aire y se cierra la válvula B. En este momento resulta un cambio o incremento de presión, siendo mucho mayor la presión de este que la presentada a la entrada del flujo, ocasionando que la presión de fondo fluvendo se incremente a un valor mayor que la presión del yacimiento. Esto se debe a que el líquido de la columna es incapaz de fluir hacia el yacimiento de forma rápida para evitar que la presión de fondo fuera anómala debido a la liberación de burbujas. Tomando la presión arriba de la del yacimiento, se observa que el líquido en la columna empieza a regresarse hasta que la presión de fondo fluyendo deelina hasta la presión de yacimiento.

Se concluye que el incremento de presión ( $\Delta P$ ) se debe a la elevación de burbujas y a la entrada del líquido proveniente del yacimiento. Además, la presión por la elevación de burbujas es mayor que la presión por la entrada de líquido, provocando que después de este efecto el líquido en la columna (pozo) empiece a fluir hacia el yacimiento, declinando la presión hasta el valor de la presión del yacimiento.

Este comportamiento de la presión de fondo se ilustra en la *figura 17*, representativo de un pozo afectado por el fenómeno de segregación de fases (tipo "joroba").

CONTRACTOR STRUCTURE AND A CONTRACTOR OF A STRUCTURE AND A CONTRACTOR AND A

## **III.3** EFECTO DE ALMACENAMIENTO VARIABLE

Los efectos de almacenamiento variable dificultan la aplicación de las técnicas de análisis de las pruebas de variación de presión, tales como las de ajuste con curvas tipo que están basadas en una suposición de almacenamiento constante. El uso de estas técnicas comúnmente resulta en un error de ajuste entre el modelo y los datos reales a tiempos cortos.

Por varios años se han estudiado los distintos factores que afectan la respuesta de presión, como por ejemplo los efectos de fronteras del yacimiento, heterogeneidades y fracturas, almacenamiento del pozo, efectos de daño, prácticas de terminación<sup>4</sup>, etc. Se ha demostrado también que el fenómeno de redistribución de fases es un efecto de almacenamiento<sup>14</sup>. Este fenómeno ocurre en un pozo que se cierra con flujo simultánco de líquido y gas en la tubería de producción ; cuando un pozo se cierra en la superficie<sup>16</sup>, los efectos gravitacionales hacen que el líquido caiga y el gas se levante hasta la superficie.





t

· •

and a state of the state of the

CAPITERO III

Debido a la incompresibilidad del líquido y a la inhabilitación del gas para expanderse en un sistema cerrado, ocurre un incremento neto en la presión del pozo causado por la redistribución de fases. Cuando sucede este fenómeno, la presión incrementada en el pozo es liberada hacia la formación y el equilibrio entre el pozo y el yacimiento será eventualmente alcanzada. Sin embargo, a tiempos cortos la presión puede incrementarse arriba de la presión de la formación, creando una "joroba" o anomalía en el incremento de la presión que no puede analizarse con las técnicos convencionales.

Si se considera un pozo donde ocurre el fenómeno de redistribución de fases, también deberá ocurrir el efecto de almacenamiento variable en el pozo. Como se demostró anteriormente, en un pozo con efectos de almacenamiento, este efecto puede ser representado por la ecuación to, y el efecto del gasto variable en la cara de la formación sobre la presión del pozo será :

$$\frac{dp_{xn}}{dt_{p}} = \frac{1}{C_{n}} \left( 1 - \frac{q_{y}}{q} \right)$$
(35)

En realidad no todos los cambios de presión en el pozo pueden atribuirse a los efectos de almacenamiento, sino que algo del cambio de la presión es causado por redistribución de fases. Por tanto, la ecuación 35 puede ser modificada agregando un término que describe el cambio de presión causado por la redistribución de fases<sup>44</sup>:

$$\frac{dp_{\star\nu}}{dt_{\nu}} = \frac{1}{C_{\nu}} \left( 1 - \frac{q_{s}}{q} + \frac{dp_{t\nu}}{dt_{\nu}} \right)$$
(36)

, en altrativativativa vola Electroni de calendaria en la companya de companya en la calencia en esta de compa

 $\operatorname{donde}$ :

$$p_{sb} = \frac{K h p_s}{1412 q B \mu}$$
(37)

La ecuación 36 puede ser arreglada en la forma de la ecuación 10 para demostrar la dependencia de  $q_{ij}$ :

$$\frac{q_{\nu}}{q} = 1 - C_{\nu} \left[ \frac{dp_{-\nu}}{dt_{\nu}} - \frac{dp_{\nu}}{dt_{\nu}} \right]$$
(38)

Definiendo el concepto de "coeficiente de pseudo-almacenamiento" de la siguiente manera":

$$C_{e_{P}} = C_{P} \left[ 1 - \frac{dp_{*P}}{dt_{P}} / \frac{dp_{*P}}{dt_{P}} \right]$$
(39)

Este coeficiente de pseudo-almacenamiento plantea el hecho de que la redistribución de fases constituye una forma de almacenamiento variable en el pozo. De esta manera, según la ecuación 39 :

Chando 
$$\frac{dp_{w}}{dt_{b}}$$
  $\geq 0$  ,  $C_{w} \leq C_{b}$   
 $> \frac{dp_{w}}{dt_{b}}$  ,  $C_{w} < 0$ 

くわいり日

El primer caso indica que el efecto de redistribución de fases siempre causará una disminución del coeficiente de pseudo-almacenamiento ; mientras que cuando el coeficiente de almacenamiento llega a ser negativo, indica una inversión en la dirección de flujo.

Considerando el proceso físico de la redistribución de fases, pueden inferirse ciertas propiedades de la función de presión de redistribución de fases  $(p_{\mu})$ , aunque no sea posible determinar la forma funcional<sup>44</sup>.

Si las fases líquido y gas, antes de cerrar el pozo, se comportan como un fluido homogéneo (que el pozo no cabecee), la función de presión debe tener un valor de cero al tiempo cero (en el momento del cierre), es decir :

$$\lim_{t\to=0} \rho_{tr} = 0 \tag{40}$$

A tíempos largos, cuando termine la redistribución de fases su derivada con respecto al tiempo debe ser cero :

$$\lim_{t_{n}\to\infty}\frac{dp_{\theta}}{dt_{\theta}}=0$$
(41)

Si además se especifica que no existe gas en solución en la fase líquida, entonces la función *pso* debe crecer monotónicamente a su máximo valor :

$$\lim_{v \to +\infty} p_{vv} = C_{vv} \qquad (\frac{J^2}{2})$$

donde  $C_{ab}$  es una constante que representa el máximo cambio de presión por redistribución de fases y está dada por :

$$C_{\rm eff} \approx -\frac{K/\hbar}{141/2} \frac{G}{q} \frac{B}{R}_{\rm H}^{\rm c}$$
 (43)

Considerando el efecto de baches o burbujas de gas que se levantan a través de una columna de líquido, cuando el primer bache o burbuja de gas alcanza la superficie después de cerrar el pozo, la presión debe incrementarse en alguna cantidad. Este incremento de presión provoca una disminución del volumen y un incremento de la densidad de todos los baches o burbujas de gas, lo cual a su vez ocasiona una reducción en la velocidad de levantamiento de todo el gas remanente, de tal manera que decrece la rapidez del cambio de la presión. Por tanto, es posible que al inicio la presióa de redistribución de fases ( $p_{in}$ ) se levante rápidamente y después alcance suavemente su máximo valor ( $C_i$ ).

Este razonamiento cumple con las condiciones de las ecuaciones 40 a 42 y permite establecer la siguiente representación funcional<sup>14</sup>:

$$p_{\rm str} = C_{\rm str} \left( 1 - e^{-t_{\rm str}^2/t_{\rm str}} \right)$$
(44)

La ecuación 44 es una función exponencial que permite modelar el fenómeno de la redistribución de fases como un efecto de almacenamiento variable.

CAPITULO III

El término  $\alpha_{\theta}$  es el tiempo adimensional que dura la redistribución de fases y está dado por :

$$\alpha_{iD} = \frac{0.000264 \ K \ \alpha}{\phi \ \mu \ cr \ r_{\rm h}^2} \tag{45}$$

donde  $\alpha$  dependerá principalmente de aquellos factores que controlan el tiempo de tevantamiento de un bache o de una burbuja de gas en el pozo.

Para conocer el comportamiento de la presión en pozos con la presencia de los efectos de almacenamiento variable, es necesario incorporar el fenómeno de redistribución de fases (o segregación) en la ecuación de difusividad. Si se tiene un flujo radial en un yacimiento infinito, homogéneo e isótropo de un fluido de compresibilidad pequeña, entonces la ecuación de difusividad es :

$$\frac{\partial^{2} p_{b}}{\partial p_{b}^{2}} + \frac{1}{F_{b}} \frac{\partial p_{b}}{\partial r_{b}} = \frac{\partial p_{b}}{\partial t_{b}}$$
(46)

Con las signientes condiciones de frontera :

۴

 $p_{\rm p}(r_{\rm p},0)=0 \tag{47}$ 

$$\lim_{t \to \infty} p_{D}\left(r_{0}, t_{0}\right) = 0 \tag{48}$$

$$\left(\frac{\partial p_{\nu}}{\partial r_{\nu}}\right)_{r_{\nu}=1} = 1 - C_{\nu} \left(\frac{d p_{\nu}}{d t_{\nu}} - \frac{d p_{\nu}}{d t_{\nu}}\right)$$
(49)

$$p_{-\nu} = \left[ p_{\nu} - s \left( \frac{\partial p_{\nu}}{\partial r_{\nu}} \right) \right]_{r_{\ell}=1}$$
(50)

C34140 III

а. Кио Сворий поволивана и иле вола арканали он в колокора и кола пределение и на слаги ула се со сосланите и на тексероиз

Varios autores<sup>15</sup> han demostrado que este problema también puede escribirse como una integral de convolución para explicar el efecto de almacenamiento. Por tanto,

$$p_{*\nu}(t_{\nu}) = \int_{0}^{L} \left\{ 1 - C_{\nu} \left| \frac{dp_{*\nu}(\mathbf{t})}{d\tau} - \frac{dp_{*\nu}(\mathbf{t})}{d\tau} \right| \right\} \cdot \frac{dp_{\nu}(t_{\nu} - \tau)}{dt_{\nu}} d\tau + s \left\{ 1 - C_{\nu} \left| \frac{dp_{*\nu}(t_{\nu})}{dt_{\nu}} - \frac{dp_{*\nu}(t_{\nu})}{dt_{\nu}} \right| \right\} (51)$$

por otro lado, si  $\mathcal{X}$  { $p_{P}$  – es la transformada de Laplace para un pozo en un yacimiento con s = 0 – y  $c_{P}$  (es decir, sin daño ni almacenamiento), se encontró<sup>17</sup> entonces :

$$\mathcal{L}\left\{p_{p}\right\} = \frac{K_{0}\left(\sqrt{z}\right)}{z^{\frac{3}{2}}K_{1}\left(\sqrt{z}\right)}$$
(52)

De esta manera se puede demostrar<sup>17</sup> que la transformada de Laplace de la caída de presión adimensional con efectos de daño y almacenamiento constante está dada por :

$$\mathcal{L}\left\{p_{*}\right\} = \frac{z \mathcal{L}\left\{p_{0}\right\} + s}{z \left[1 + C_{b} z \left(z \mathcal{L}\left\{p_{0}\right\} + s\right)\right]}$$
(53)

Por tanto, involucrando la función de presión de almacenamiento variable o de redistribución de fases, se obtiene la transformada de Laplace de la caída de presión adimensional con efecto de almacenamiento variable<sup>14</sup>:

$$\mathcal{J} \{ p_{*p} \} = \frac{\left[ z \mathcal{L} \{ p_p \} + s \right] \left[ 1 + C_p z^2 \mathcal{L} \{ p_p \} \right]}{z \left[ 1 + C_p z \left( z \mathcal{L} \{ p_n \} + s \right) \right]}$$
(54)

CAPH GLO HE

sur den dar sunder Bellumider under die Steine Steine Steiner Bergereiten werden der schreiten die Bergereiten schreiten die Steine Bergereiten der Steine Bergereiten der Berg

Esta es una solución general, ya que no se han puesto restricciones sobre  $p_{b}$  o  $p_{s0}$ , excepto que estas funciones son transformables en el plano de Laplace. Entonces, si  $p_{b}$  representa algún tipo especial de yacimiento, la solución de la presión para las condiciones de dicho yacimiento puede encontrarse previamente. Este planteamiento también es aplicable a la función de presión de almacenamiento variable (redistribución de fases). Encontrando la transformada de Laplace de la ecuación 44 se tiene :

$$\mathcal{J}\left\{p_{t^{\prime}}\right\} = \mathcal{L}\left\{C_{\theta^{\prime}}\left(1 - e^{-t_{0}/t_{0}}\right)\right\} = C_{\theta^{\prime}}\mathcal{L}\left\{\left(1 - e^{-t_{0}/t_{0}}\right)\right\} = C_{\theta^{\prime}}\left|\mathcal{L}\left\{1\right\} - \mathcal{L}\left\{e^{-t_{0}/t_{0}}\right\}\right|$$

$$\mathcal{L}\left\{p_{\omega}\right\} = \frac{C_{\omega}}{\varepsilon} - \frac{C_{\omega}}{s+1/\alpha_{\nu}} \quad ; \quad z \ge -\frac{1}{\alpha_{\nu}}$$
(55)

Por otro lado, también se ha demostrado que para tiempos largos, la ecuación 52 se simplifica a la solución de línea fuente, porque  $\sqrt{z} K_1(\sqrt{z}) \rightarrow 1$  cuando  $z \rightarrow 0$  o  $h_1 \rightarrow \infty$ , entonces :

$$\mathcal{L}\left\{p_{0}\right\} = \frac{1}{z} K_{0}\left(\sqrt{z}\right)$$
(56)

Una aproximación adicional para tiempos largos, puede obtenerse considerando que cuando  $t_D \rightarrow \infty$ ,  $s \rightarrow 0$  y  $K_{\nu}(\sqrt{z}) \rightarrow -\left[\ln\left(\frac{\sqrt{z}}{2}\right) + \gamma\right]$ , donde  $\gamma = 0.5772$  (constante de Euler). Por tanto, la ecuación 56 se convierte en : CARILLO HE

$$\mathcal{L}\left\{p_{\mathcal{C}}\right\} = -\frac{1}{z}\left\{\ln\left(\frac{\sqrt{z}}{2}\right) + \gamma\right\}$$
(57)

Para involucrar el efecto de almacenamiento variable en la respuesta de presión en un pazo cuyo comportamiento está dado por la solución de la ecuación de difusividad (ecuación 52), es necesario solamente combinar la ecuación 55 con las diferentes expresiones dadas por las ecuaciones 52, 56 y 57. De esta manera, sustituyendo las ecuaciones 52 y 55 en la ecuación 54 :

. The Manager and the state of the state of the state of the state state with the state of the state of the state state of the state of t

$$f_{z}\left\{p_{zo}\right\} = \frac{\left|\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z-K_{1}}\left(\sqrt{z}\right)^{2}+s}\right|\left|1+C_{0}-C_{s^{0}}|z^{2}\left(\frac{1}{|z|}-\frac{1}{|z+\frac{1}{|z|}}\right)\right|}{z\left\{1+C_{0}|z|\left[\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z-K_{1}}\left(\sqrt{z}\right)^{2}+s}\right]\right\}}$$
(58)

Esta ecuación representa la presión en un pozo considerando como "cilindro fuente". De igual forma si se supone una "línea fuente", sustituyendo las ecuaciones 55 y 56 en la ecuación 54 :

$$\mathcal{J}\left\{p_{z,p}\right\} = \frac{\left[K_{0}\left(\sqrt{z}\right) + s\right]\left[1 + C_{D}C_{sD}z^{2}\left(\frac{1}{z} - \frac{1}{z+1/\alpha_{D}}\right)\right]}{z\left\{1 + C_{D}z\left[K_{0}\left(\sqrt{z}\right) + s\right]\right\}}$$
(59)

Para tiempos largos, combinando las ecuaciones 54, 55 y 57 se obtiene la siguiente aproximación :

1

. . . . . . . . .

$$J^{0}\left\{p_{2,r}\right\} = \frac{\left|\left|\frac{s-\ln\left(\frac{\sqrt{z}}{2}\right)-\gamma\right|}{\left|\frac{1-C_{2,r}}{2}\left|\frac{c_{2,r}}{c_{2,r}}\left|\frac{1-\frac{1}{2}}{\frac{1-\frac{1}{2}}{2}\left|\frac{1-\frac{1}{2}}{\frac{1-\frac{1}{2}}{2}\left|\frac{1-\frac{1}{2}}{2}\right|}\right|\right|}\right|$$
(60)

CHARLENS P.

1. A. 1. A. 1. A. 1.

La aproximación para tiempos largos de la función  $p_{uv}$  puede obtenerse a partir de las ecuaciones 58, 59 y 60 -tontando en cuenta que :

$$z^2 \left[ \frac{1}{z} - \frac{1}{z + \frac{1/z}{2\pi b}} \right] \rightarrow 0$$
 cuando  $z \rightarrow 0$   $(t_0 \rightarrow \infty)$ 

Entonces estas ecuaciones se reducen a la solución de la ecuación de difusividad con efectos de afiniacenamiento y daño<sup>11</sup> :

$$p_{str} \approx p_{tr} + s \tag{61}$$

(62)

También, de la ecuación 58 puede obtenerse la aproximación para tiempos cortos, si el coeficiente de almacenamiento variable es  $C_{sb} \approx 0$ :

$$\mathcal{L}\left\{p_{*b}\right\} = \frac{\left[\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z-K_{1}}\left(\sqrt{z}\right)} + s\right]\left[1+0\right]}{z+C_{b}z^{2}} \approx \frac{\left[\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z-K_{1}}\left(\sqrt{z}\right)} + s\right]}{C_{b}z^{2}\left[\frac{K_{0}\left(\sqrt{z}\right)}{\sqrt{z-K_{1}}\left(\sqrt{z}\right)} + s\right]}$$
$$\mathcal{L}\left\{p_{*b}\right\} = \frac{1}{C_{b}z^{2}}$$

CAPITITIO III

а палиаты се видениясы. Конструкти и сулы разу сулы указык конструктана каларык каларык калары <mark>жана жала</mark>

Además, como  $z = \left\{ \frac{1}{z} = \left[ \frac{1}{z} + \frac{1}{\alpha_0} \right] \right\} \implies \frac{1}{\alpha_0}$  para z grandes, entonces de la ecuación 58 :

$$\mathcal{L}\left\{p_{+\nu}\right\} = \frac{\left|\frac{K_0\left(\sqrt{z}\right)}{\sqrt{z}-K_1}\left(\sqrt{z}\right)^*s\right|\left[1+C_FC_{\ell^0}\left(\frac{1}{c_{\ell^0}}\right)\right]}{z\left\{1+C_F\left[\frac{K_0\left(\sqrt{z}\right)}{\sqrt{z}-K_1}\left(\sqrt{z}\right)^*s\right]\right\}} = \frac{1}{C_F\left[z^2\right]}\left[1+C_F\left[C_{\ell^0}\left(\frac{1}{c_{\ell^0}}\right)\right]$$

$$l \left\{ p_{n,p} \right\} = \frac{1}{C_{P} \cdot z^{2}} + \frac{C_{sp}}{a_{P} \cdot z^{2}}$$
(63)

Y  $p_{sb}$  puede escribirse como :

$$p_{\alpha\beta} = \frac{\hbar}{C_{\beta}} + \frac{1}{C_{\alpha\beta}} \frac{\hbar}{\alpha_{\beta}}$$
(64)

$$p_{w0} = I_D \left( \frac{1}{C_D} + \frac{C_w}{\alpha_D} \right)$$

$$p_{\rm str} = \frac{h}{C_{\rm str}} \tag{65}$$

La ecuación 65 muestra que cuando existe un efecto de almacenamiento variable, puede tenerse una representación matemática muy similar al caso de almacenamiento constante, a tiempos cortos, donde el coefficiente de

almacenamiento estará dado por el término Con esto ocurrirá a tícmpos cortos, seguido por un período de transición dominado por el almacenamiento variable y después, a tícmpos posteriores el pozo presentará un almacenamiento constante, controlado por Conúnicamente<sup>3</sup>.

Para obtener valores de presión adimensional representativos del comportamiento de la presión en pozos con efectos de almacenamiento variable (redistribución de fases), es necesario realizar la inversión de las ecuaciones 58,59 ó 60. Como estas expresiones son demasiado complicadas para su inversión analítica, se obtuvo la transformada inversa de Laplace en forma numérica, tal como se consigna cín un trabajo previo<sup>14</sup>. En esta referencia se presentan los resultados obtenidos de la inversión y cálculos hechos con las ccuaciones 58,59 y 60 para diferentes valores de  $C_P$  y s. De esta manera se demostró la excelente concordancia con datos reportados previamente en la literatura<sup>15</sup>, y que la ecuación 60 es suficientemente exacta para obtener los valores de presión adimensional. Para facilitar el cálculo de  $p_P$  en las pruebas de variación de presión,  $C_{a0}$  de la ecuación 65 se usó como una variable, en lugar de  $\alpha_P$  (que es más dificil de obtener). Los resultados de la inversión<sup>14</sup> se muestra en la *Tabla III.1*<sup>14</sup>.

## TABLA IN 1 – PRESION ADIMENSIONAL DE UN POZO CON FELCTOS DE ALMACENAMENTO A ARIABLE<sup>TI</sup>

|                |                |                              |             |                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               | 11.00          | <br>Cas   | 20 C <sub>I</sub> . | 10000           |
|----------------|----------------|------------------------------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|---------------------|-----------------|
|                | $U_{ab}$       | $-20_{10} - C_{10} - c_{10}$ | 100         | C.                   | 20 Cp.                                                                                                                                                                                                                              | Con.           | - 45°     |                     | 1. 20           |
|                |                | <u>\ }0</u>                  | \$ 20       | y ff                 | s 10                                                                                                                                                                                                                                | $\chi \sim 20$ | 1. 0      | 1.70                |                 |
| <sup>1</sup> . |                |                              |             |                      | $C_{12} = I$                                                                                                                                                                                                                        |                |           | $C_{\bullet}$ : 1   |                 |
| 1              |                | 1 st: 1                      |             |                      | - Andreas -<br>Andreas - Andreas - An |                | 1.1.1     | 1100                | 14.3            |
| 340            | 1.495          | 1.451                        | 1.026       | 1.22                 | 1.63                                                                                                                                                                                                                                | - 122          | 1.011     | C415                | 1419            |
| 215            | 1.5            | 3,10                         | 100         | 1.52                 | 1.15                                                                                                                                                                                                                                |                | 2 (1 2 4  | 1.535               | 1.009           |
| N.99           | 100            | 164.                         | 8.151       | . 13                 | 1.14                                                                                                                                                                                                                                | 1.1.5          | 3.124     | 4.002               | 199             |
| 100.0          | 4.11.5         | 0.0                          | 1.7)        | 104                  | 2 24                                                                                                                                                                                                                                | 1.651          | 1.147     | 1.144               | 3.25            |
| Şu (a)         | 1-96.<br>1 1 1 | 11/20                        | 3171        | 126                  | k we r                                                                                                                                                                                                                              | 1.11           | 1.00      | 1.44                | 1.915           |
| 424            | 1.2            | 116                          | 24.27       | 4.151                | 7.74+                                                                                                                                                                                                                               | 557            | 1103      | 2.114               | 2.844           |
| 1 march        | • • •          | 45.27                        | 2517        | a 1955               | 11.32                                                                                                                                                                                                                               | 11.12          | 2.249     | 4.539               | 5.415           |
| 1.000          | 1.61           | \$5.76                       | 28.26       | 1454                 | 14 95                                                                                                                                                                                                                               | 11.61          | 155       | i sere              | 8.948           |
| 10000          | 61**           | 16.1.5                       | 10.13       | n + 2n               | 100                                                                                                                                                                                                                                 | 22.40          |           | 11.05               | 14.59           |
| 10000          | 1.565          | 10.20                        | 24.49       | 5415                 | :6 49                                                                                                                                                                                                                               | 267            | e stat    | 15.40               | 21-01           |
| Maxwe          | A. 954         | 12.75                        | 2456        | + 752                | 11.13                                                                                                                                                                                                                               | 1128           | 1217      | 12.04               | 26.12           |
| Loedroh        | 2317           | 17.9                         | 21.11       | 2.645                | 11.5                                                                                                                                                                                                                                | 2.6            | 7.621     | 17.57               | 27.47           |
| 20660118       | 149            | 1748                         | 174-        | 1625                 | 15.13                                                                                                                                                                                                                               | 28.21          | ×1-9      | ta en               | 28.04           |
| •(RS\$400      | N 127          | 1812                         | 2812        | 9112                 | 14-16                                                                                                                                                                                                                               | 74.55          | \$ 150    | 19.45               | 28.43           |
| 100004300      | 8 454          | 15 14                        | 25.16       |                      | 10 C.                                                                                                                                                                                                                               | 1000           | Cin       | × 10. Cp            | -10000          |
|                | Cab            | $\sim 2 \theta_c = C_D$      | <i>≈100</i> | Cali                 | ~ 29, [r<br>managementer                                                                                                                                                                                                            |                |           | <u></u>             | v- 20           |
| In I           | 1-0            | <u>s~10</u>                  | s = 20      | $y \neq D$           | s=10                                                                                                                                                                                                                                | s = 10         | 5.0       | 0 10                |                 |
|                |                | $C_{eff} \simeq 10$          | 1           |                      | $C_{\bullet D} \approx 10$                                                                                                                                                                                                          |                |           | C+0 - 10            |                 |
|                |                |                              | 4195        | 1431                 | 3 752                                                                                                                                                                                                                               | 1104           | 3 928     | 1911                | 1.00            |
| (60            | 4,01           | • • • • •                    | 2150        | 5 ( 49               | \$ 587                                                                                                                                                                                                                              | 5 14-4         | ց հիյն    | 6.325               | 4.116           |
| 200            | 4 968          | 10 SH                        | 11.52       | 8.592                | 3 3.87                                                                                                                                                                                                                              | A 140          | 9116      | 0,00                | 0.000           |
| 500            | 100            | 12.67                        | 1121        | N 595                | 10.33                                                                                                                                                                                                                               | 16.75          | 9.744     | 10.61               | 1613            |
| 1000           | 441            | 13.41                        | 1831        | - <b>8</b> 01        | 10 42                                                                                                                                                                                                                               | ft 19          | 9 721     | 1016                | 10,30           |
| 2000           | 1.656          | 14.35                        | 22.59       | 1311                 | 11.15                                                                                                                                                                                                                               | 15.02          | 8.971     | 1971                | 12.52           |
| 10000          | 103            | 1189                         | 24.31       | 5 622                | 0.51                                                                                                                                                                                                                                | 11.12          | 8 317     | 19.67               | 1116            |
| 20020          | 2.352          | 12.00                        | 25.23       | • HC                 | 1110                                                                                                                                                                                                                                | 38-1<br>1354   | 144       | 11.56               | (1.72           |
| 10080          | 3.612          | 17.18                        | 23.37       | t KOF                | 15.3*                                                                                                                                                                                                                               | 1. 1.          | 6724      | 17.74               | 15.95           |
| Tusana.        | p 359          | 14.13                        | 1614        | 6191                 | IN RE                                                                                                                                                                                                                               | 26.33          | 6367      | 14.54               | 18.53           |
| 200050         | 6.55**         | 1629                         | 26 20       | 8. Sec.              | 16.44                                                                                                                                                                                                                               | 20.75          | n 932     | 16.35               | 24 NB           |
| 18:000         | 6.961          | 18.99                        | 20.44       | 3 MO1<br>7 MIA       | 17.36                                                                                                                                                                                                                               | 27.29          | 1299      | 17.12               | 25.60           |
| 1.06000:0      | 7.47           | 47.31                        | 27.51       | 2.46                 | P 45                                                                                                                                                                                                                                | 23.62          | 1015      | 13.24               | 27.55           |
| 2000000        | 2.659          | \$7.64                       | 1140        | 8.11                 | 1811                                                                                                                                                                                                                                | 15.13          | 6111      | 1201                | 10.41           |
| 3000804        | 6110           | 18.12                        | 2810        | 4 163                | 18.46                                                                                                                                                                                                                               | 26.46          | 8460      | 1845.               | 2h-44           |
| 10000094       | 144            | 11 14                        | -100        | C.o                  | =20, C <sub>D</sub>                                                                                                                                                                                                                 | <i>1000</i>    | Culi      | $T_{\mu} = C_{\nu}$ | ~10000          |
|                | Cali           | -30, CD                      |             |                      | e=10                                                                                                                                                                                                                                | x- 20          | s= 0      | s= 10               | s= 20           |
| $I_D$          | s≈0            | s=0 $s=10$ $s=20$            |             | 140 140              |                                                                                                                                                                                                                                     |                | Can - 100 |                     |                 |
|                | 1              | C <sub>4D</sub> =100         |             | C <sub>46</sub> =100 |                                                                                                                                                                                                                                     |                | 3676 4876 |                     |                 |
| 100            | 1 195          | 4 729                        | 1 \$10      | 1.14                 | 4 861                                                                                                                                                                                                                               | 4.471          | 9.477     | 5.40                | 9 514           |
| 208            | 6 394          | 8.9.16                       | 9207        | 9137                 | y 453                                                                                                                                                                                                                               | 9.192          | 21.93     | 22.69               | 22.11           |
| 200            | 0.02           | 19.05                        | 20.71       | 2931                 | 21.76                                                                                                                                                                                                                               | 41 /P<br>36 57 | 31 72     | 39.22               | 32.29           |
| 1600           | 1,0,30         | 24 SK                        | H.M         | *119                 | .36.12<br>13:14                                                                                                                                                                                                                     | 61.10          | 41.49     | 62.60               | 63.03           |
| 20.00          | 12.17          | 36 BL                        | 46.60       | 410                  | 28.24<br>16.14                                                                                                                                                                                                                      | 8181           | 81.51     | 812-04              | 90 5            |
| 5900           | 833            | 28.43                        | .17 4 1     | 41.82                | 61 (5)                                                                                                                                                                                                                              | 19,5-1         | 91.01     | w( v)               | 41.6            |
| 160.06         | 6.119          | 18.04                        | NE GR       | 1001                 | (1.9)                                                                                                                                                                                                                               | 62.61          | 71.18     | 90.45               | 94,4            |
| 10000          | 3 846          | 15 66                        | 17.62       | est.                 | 218.58                                                                                                                                                                                                                              | 17.63          | 15.20     | 17.17               | 823             |
| 50649          | ્ર ભાર         | 19.90                        | 22.87       | 6.678                | 10.67                                                                                                                                                                                                                               | 28.24          | 20.64     | nt 24               | 76.6            |
| 166460         | 0.200          | 1679                         | 26.12       | 410                  | 1673                                                                                                                                                                                                                                | _16 ° 1        | 12.91     | 11 Sr               | 64 5            |
| 20005U         | 5.50           | 10 74                        | 26.97       | 1.015                | 12.04                                                                                                                                                                                                                               | 27.02          | \$ 225    | 21.89               | ,114 4<br>1 6 1 |
| 200001         | 6014           | 12.17                        | 27.71       | 1316                 | 17.35                                                                                                                                                                                                                               | \$1.54         | 1.820     | 18.05               | .9.             |
| 1000000        | 101            | 17.66                        | 2. 69       | 1,680                | 14 08                                                                                                                                                                                                                               | 2147           | 1,958     | 1/4                 | 29.0            |
| 10-066-9       | kits.          | 1832                         | 28.13       | 8125                 | 1917                                                                                                                                                                                                                                | 2417           | \$200     | 1515                | ;k              |
| Midaoote       |                | 18.10                        | 18 46       | 6469                 | 18.47                                                                                                                                                                                                                               | 28.42          | 6.905     | 10, 91              |                 |

## TABLA III.1 .- (CONTINUACION)

| ·              | <u> </u>                                          | -100 Co                 | 1000   | C.n              | -100, C <sub>D</sub> | -10000        | Cati              | 1000, C <sub>D</sub> | -10000        |
|----------------|---------------------------------------------------|-------------------------|--------|------------------|----------------------|---------------|-------------------|----------------------|---------------|
|                | t. <sub>af</sub> )                                | -100, 0.0               |        | - 017            |                      |               |                   | r 10                 | <u></u>       |
| t <sub>0</sub> | s U                                               | s 10                    | 5-211  | s -÷0            | x ~ 10               | \$~20         | 3.0               | 3.14                 |               |
|                |                                                   | Consel                  |        |                  | $C_{11} \sim 1$      |               |                   | $C_{1D} \circ I$     |               |
|                |                                                   | - 41                    |        |                  | 0.6181               | H0383         | Q 09583           | 0.0/603              | 6.025-05      |
| 100            | 06748                                             | 10440                   | 8 6917 | 04772            | 0.8869               | 0.6511        | 01839             | 01846                | 01846         |
| 200            | 8 9841                                            | 1024                    | 1.163  | 1 079            | 1.010                | 1.041         | D-4CRN            | 0 4115               | 04119         |
| 500            | 1.320                                             | 1 4 5 0                 | 1 941  | 1 072            | 1.091                | 1.000         | 0.6813            | a 6905               | R163.0        |
| Tuda           | 1 820                                             | 7.10                    | 2 841  | 1.142            | 1 1 4 1              | 1.191         | 9 2221            | 1 025                | 1 92 9        |
| 2000           | 2 143                                             | 4 91 1                  | 1.152  | 1.366            | 1 457                | 1437          | 1.559             | 1493                 | 1.158         |
| 3000           | 4 140                                             | 1.10                    | I BAR  | 1 699            | 1 500                | 1.940         | 1715              | 1.996                | 1.943         |
| 10000          | 4 147                                             | 11.21                   | 1416   | 1.299            | 2.244                | 2 844         | 2,312             | 2.750                | 2.515         |
| 10000          | 1 659                                             | 14.56                   | 21.93  | 3 623            | 4 980                | , 355         | 3 6 10            | 4.983                | 6.318         |
| 106000         | 6 100                                             | 13.93                   | 29 50  | 4 882            | 7.999                | N 749         | 4.881             | 7.904                | 8931          |
| 200000         | 2.47.8                                            | 16 41                   | 26.33  | 5 936            | 11 88                | 14.19         | \$ 957            | 83 M                 | 11.34         |
| 100000         | 6 923                                             | 16.93                   | 26.91  | 6 804            | 11.80                | 22 60         | 6 6 04            | 13 80                | :2.60         |
| 1000000        | 2.385                                             | 17.50                   | 27.28  | 7 2 3 7          | 17.64                | 26.32         | 1237              | 12.04                | 28.52         |
| 2000000        | 2 6 9 5                                           | \$765                   | 27.64  | 7 621            | 17.56                | 2747          | TAN               | 12.16                | 27.47         |
| 500000         | 0.215                                             | 1818                    | 28.63  | 8.102            | 4 A 6 S              | 28.05         | # 102             | 18.04                | 78.64         |
| 10000000       | 8.463                                             | 18.46                   | 28.46  | # 436            | 1845                 | 28.43         | E 416             | 16.43                |               |
|                | Can                                               | =100, Cp                | ~1000  | Cap              | ~100, Cp             | <i>∺1004D</i> | C <sub>aD</sub> ≈ | 1000, C <sub>D</sub> | #10000        |
|                |                                                   |                         | 1=20   | s=0              | s=10                 | s=20          | s≈θ               | s~10                 | s-20          |
| ID ID          | 1.0                                               | 1.10                    |        |                  | 13                   | 1             |                   | C                    |               |
|                |                                                   | $C_{\Psi I} = I \theta$ |        |                  | C <sup>4D</sup> = 10 |               |                   | C133 1-5             | A 00417       |
| 100            | 0 9310                                            | <b>4 9166</b>           | 0 8145 | 0 9302           | 0.7522               | 0 9524        | 0.04935           | 0.1081               | 01944         |
| 700            | 1.769                                             | 2 6 12                  | 1.1.59 | 1 6476           | 8 81.5               | 1 63          | 0 1978            | a 4961               | 0 4495        |
| 500            | 3 760                                             | 4039                    | 40%    | 3 917            | 6 946                | 3,450         | 0.44.             | 0 4170               | 0 97 85       |
| 1000           | 5 847                                             | 4 616                   | 8764   | \$ 276           | 6.5.6                | N. 100        | 1.764             | 180                  | 1 8 3 3       |
| 2000           | 7,474                                             | 9.857                   | 9 823  | B 303            | 3794                 | 10.26         | 1859              | 4.016                | 4.078         |
|                | 7,018                                             | 11.70                   | 17.92  | 4491             | 10.14                | 10.42         | 6 107             | 6                    | 6.776         |
| 20030          | 3 876                                             | 1266                    | 13.32  | 1 102            | 10.67                | 11.19         | 8.049             | 9 323                | 9 846         |
| 20000          | 3.314                                             | (380                    | 14.42  | 2 141            | 11.15                | 12.78         | 8.041             | 11.91                | 13.00         |
| 50000          | 3.611                                             | 13.54                   | 15.55  | 6 110            | 12 12                | 15 08         | 7 (16-1           | 13.07                | 25.52         |
| 1000(4)        | 6.152                                             | 16.41                   | 74.37  | 6 283            | 14.56                | 18 41         | 8 619             | ня                   | 14.74         |
| 700000         | 6100                                              | 10.94                   | 26.92  | \$ 933           | 16.85                | 24.05         | 6 9.18            | 8.8.74               | 24.99         |
| 20000          | 1110                                              | 17 10                   | 21 29  | 7 790            | 17.13                | 78 40         | 3 290             | \$7,18               | 74 81         |
| 700000         | 2418                                              | 1785                    | 27 63  | 5 846            | 17.59                | 27 50         | 7.618             | \$7.59               | 17.90         |
| 200000         | RUA                                               | 18.11                   | 28.53  | 8111             | 18.09                | 28.87         | - #111            | 12.09                | 26.07         |
| Laboato        | 8 463                                             | 18 #6                   | 26 40  | 8 460            | 18 45                | 78.44         | 8460              | 18 45                | 28.44         |
|                | C.p                                               | =100, Cn                | =1000  | CaD              | -100, Cp             | =10000        | C <sub>aB</sub> ∞ | 1000, Cn             | <i>~10000</i> |
|                | - 417                                             |                         | a 20   | •=0              | 1=10                 | s=20          | 5=0               | s≈10                 | s=20          |
| 4 <sub>D</sub> | s=U                                               | 3-40                    | 3-20   | 3220 320 320 320 |                      |               | C 100             |                      |               |
|                | $C_{\phi B} \approx 100$ $C_{\phi B} \approx 100$ |                         |        | C40-100          |                      |               |                   |                      |               |
| 100            | 0.9756                                            | 8 9914                  | 8 9931 | 0 9921           | 0.9388               | \$ \$950      | 0.09973           | 4.09998<br>8.1994    | 01997         |
| 200            | 1.902                                             | 1.968                   | 1.975  | 1 972            | 1 979                | 1.480         | 4 1989            | 6.17-W               | 0.698.5       |
| 304            | 4 488                                             | 4 601                   | 4 848  | 4 836            | 4.678                | 4314          | 6.96.77           | 9 9902               | 8 9938        |
| 1000           | \$ 221                                            | 9.745                   | 9.199  | 9.314            | ¥ 43¥                | 7.343         | 1 124             | 1.960                | 1 970         |
| 2000           | 14.93                                             | 12.13                   | 17.69  | 1 114            | 18/2                 | 1910          | 4 603             | 4 61 3               | 4,819         |
| 5000           | 22.14                                             | M 27                    | 36 9k  | 36.02            | AL 37                | ស.អ           | 0 162             | 92/4                 | \$ 409        |
| 10000          | 24.93                                             | 4784                    | 33.41  | 4147             | 80.27                | 82.64         | 14.95             | 1724                 | 17.72         |
| 20000          | 66.97                                             | 40.72                   | e1.00  |                  | 80 14                | 17.17         | 28.74             | 34.70                | 17.15         |
| 50000          | 4.912                                             | 73.81                   | 72 97  | 24.0             | 61.05                | 78 81         | 79.19             | 49 09                | ** **         |
| 10000          | 6.785                                             | 11.34                   | 24.77  | 10.12            | 42 Ju                | 62.40         | 22.55             | 51 13                | 45.94         |
| 206000         | 4.765                                             | 10/8                    | 27.03  | 8 243            | 22.14                | 34 (2)        | 991               | - 24.12              | 47.63         |
| 5400.00        | 114                                               | 17.12                   | 17.14  | 7.826            | 18.97                | 29.52         | 1928              | 18.57                | M 09          |
| 200000         | 1644                                              | 174                     | 27.67  | 3.669            | 17.63                | 22 48         | 7 914             | \$ 7.91              | 17 97         |
| Lucablan       | 8 17                                              | 10 12                   | 2812   | 8,704            | (N \$3               | 76 5 2        | 6 20 2            | 1814                 | 2011          |
|                |                                                   | 19.47                   | 28.87  | 8 106            | 16.20                | 28.49         | ¥ 306             | 18 20                | 74 19         |

En la *figura 18* se ilustra un ejemplo de las curvas de log  $p_{ab}$  vs. log  $t_b$ , aquí se nota que a tiempos largos las curvas con y sin almacenamiento variable coinciden ; mientras que a tiempos cortos, es notable el efecto de la redistribución de fases. A tiempos intermedios, las curvas con almacenamiento variable tienden a alejarse desde el comportamiento de almacenamiento aparente hasta el verdadero. Para valores grandes de  $C_{ab}$  es evidente el efecto de "joroba", mientras que para valores pequeños de  $C_{ab}$  el efecto es bastante reducido.

También se ha demostrado<sup>14</sup> que cuando  $C_D > C_{4D}$  y  $C_{4D} > 0$ , se genera un incremento exponencial en el almacenamiento del pozo, lo cual se ilustra en la *figura 19*. Y en la *figura 20* se muestra el caso de un efecto de almacenamiento que disminuye exponencialmente, cuando  $C_D < C_{4D}$  y  $C_{4D} < 0$ . La aplicación del modelo de almacenamiento variable creciente y/o decreciente a datos de campo, llevá a la conclusión de que en algunos casos se requería una función diferente a la exponencial para representar el comportamiento de la presión con un efecto más pronunciado de almacenamiento variable<sup>1</sup>.

Por tanto, se encontró que entre las funciones que cumplen con las condiciones establecidas por las ecuaciones 40 a 42 y que además, presentan características representativas de los datos de campo, está la siguiente :

$$p_{\psi D} = C_{\psi D} \operatorname{erf}\left(\frac{l_{D}}{d\omega}\right) \tag{66}$$



FIG. 18.- COMPARACION DE PRESIONES ADIMENSIONALES CON Y SIN ALMACENAMIENTO VARIABLE<sup>14</sup>. CAPITERO III

and REACHARD CONTRACTOR SHOULD BE



FIG. 19.- SISTEMA HOMOGENEO CON INCREMENTO EXPONENCIAL EN EL ALMACENAMIENTO'.

3

# WEAT OF THE

÷

JUD JOU'R Ξ Ē



2

FIG. 20.- SISTEMA HOMOGENEO CON DECREMENTO EXPONENCIAL EN EL ALMACENAMIENTO<sup>1</sup>.

-

# CAPITURED HI

A SUSPER

donde :

,

$$C_{str} erf\left(\frac{tr}{du}\right) = -\frac{2}{\sqrt{\pi}} - \int_{0}^{\frac{tr}{du}} e^{-\frac{tr}{u}} du$$
(67)

que representa a la función "error". La transformada de Laplace de esta función que representa a la presión con almacenamiento variable es:

$$\mathcal{L}\left\{p_{a\nu}\right\} = \frac{C_{a\nu}}{z} - e^{-\alpha z^2 z^2/4} - erfc\left(t_{\nu} - \frac{z}{2}\right)$$
(68)

definiéndose a erfc = 1 - erf, como la función "error complementaria". La respuesta de presión con efectos de almacenamiento decreciente, representado con la función error, se ilustra en la *figura 21*.

En la *figura 22* se muestra el comportamiento de la presión y la derivada euando ocurre un almacenamiento decreciente representado por ambas funciones: exponencial y error ; observándose una transición más abrupta de la función error y que a tiempos cortos la curva de la derivada comúnmente excede a la curva de  $\Delta p$ .



gan an ann an Arraigh an Arraigh

FIG. 21.- SISTEMA HOMOGENEO CON DECREMENTO EN EL ALMACENAMIENTO SEGUN LA FUNCION ERROR<sup>1</sup>.

# (APHELO W

CULTER A DECEMPEND



FIG. 22.- COMPORTAMIENTO DE LA PRESION Y LA DERIVADA CON DECREMENTO EN EL ALMACENAMIENTO PARA LA FUNCION EXPONENCIAL Y FUNCION ERROR'.

O FOLLAY.

Ξ

end tablears and the part of the second second second the second

## HI.4 ANALISIS DE PRUEBAS DE PRESION

Para entender completamente este fenómeno, se ilustra el análisis de datos de incremento de presión en la *figura 23*, en la cuál se presentan las gráficas loglog y de Horner<sup>1</sup> pertenecientes a una prueba DST<sup>2</sup>, cuyos datos se ajustaron a un modelo de almacenamiento constante y comportamiento de yacimiento homogéneo.

Los datos de tiempos cortos muestran evidencia de almacenamiento decreciente ya que la curva log-log excede a la línea recta de pendiente unitaria en algunas partes y la curva de derivada excede a la curva  $\Delta p$ . Sin embargo para este caso el ajuste resulta pobre con este modelo como se puede observar durante este periodo.

Por tanto, al reajustar los datos con el modelo de almacenamiento decreciente, usando la función error (ecuación 66), se encuentra un total ajuste de toda la curva, según se observa en la *figura 24*. Esto mejora totalmente la confiabilidad de la interpretación ; de esta manera se determina un valor más bajo para  $C_{12}e^{28}$  y entonces, el factor de daño calculado es más pequeño.
.

ris Environa, etcoleation da tarte actornego do el



to public and watering



 $Log [(1, +\Delta t)/\Delta t]$ 



### CAPITULO JII

#### er de la marchante de la companya de



 $Log [(t, *\Delta t)/\Delta t]$ 



# CAPITULO IV

## EJEMPLOS ILUSTRATIVOS

En este Capítulo se presentan dos ejemplos de campo que muestran el efecto de almacenamiento variable, sobre la respuesta de variación de presión y las diferencias encontradas con el análisis utilizando modelos de almacenamiento constante y almacenamiento variable.

# IV.1 Pozo Taratunich 301

Este pozo pertenece al campo Taratunich de la Región Marina Suroeste, con un intervalo productor correspondiente a la formación Cretácico medio. Se realizó su perforación hasta una profundidad de 3540 mv. En la *figura 25* se muestra el estado mecánico del pozo.

CAPITICIO IV

SERVICES AND CONTRACTORS OF A CONTRACT OF



FIG. 25.- ESTADO MECANICO DEL POZO TARATUNICH 301, TIPO EXPLORATORIO (MARZO, 1996)<sup>10</sup>.

. Na kaominina mpikambana mpikambana kaominina kaominina mpikambana mpikambana mpikambana mpikambana kaominina mp

Después de disparar el intervalo de 3035-3055 mybmr de la formación KM, y resultar ser productor de aceite ligero de 31º API, se efectuó una estimulación y limpieza, y se registró una prueba de presión-producción con herramientaPLT durante 53.57 hrs., consistente en varios periodos de flujo y de cierre, como se presenta en la *Tabla IV.1*.

| Periodo de | Duración | Tiempo acumulado | Gasto |
|------------|----------|------------------|-------|
| prueba     | (lirs)   | (hrs)            | (BPD) |
| 1          | 13.22    | 13.22            | ()    |
| 2          | 8.78     | 21.99            | 4300  |
| 3          | 11.73    | 33.72            | 0     |
| -i         | 6.37     | 40.09            | 2600  |
| 5          | 13.48    | 53.57            | 0     |

### TABLA IV. 1 .- TIEMPOS DE LA PRUEBA DE PRESION REGISTRADA EN EL POZO TARATUNICH 301.

En este caso se eligió el quinto periodo de prueba, es decir, el último cierre del pozo, cuyos datos se dan en la *Tabla IV.2* y se efectuó el análisis considerando los siguientes datos :

 $\phi = 12\%$ ,  $r_n = 0.25$  pies, h = 150 pies,  $B_o = 1.65$ ,  $c_i = 1.48$  E<sup>-5</sup> psi<sup>-1</sup>,  $\mu_o = 0.37$  cp y  $q_o = 2600$  BPD por estrangulador de <sup>3</sup>/<sub>4</sub> ".

### CAPILLO IV

. Realizabilitation product a calcadore de 14 de participar de la calcador de la calcador de la calcador de la c

| THEMPO         PRESION         THEMPO         PRESION         THEMPO         PRESION         THEMPO         PRESION           (brs)         (psi)         (brs)         (psi)         (brs)         (psi)         (brs)         (psi)           8.6161         4862.66         7.806.7         365462         1.52897         107.52         16.2119         16.6210           9.5406         4864.62         9.8111         3582.12         16.0008         112.431         16.2031         12.231           9.7124         486.02         9.8434         3441.11         16.0917         12.312         16.2041         2.2917.01           9.7222         1554.57         9.5797         2.710.7         16.0925         133.483         16.3467         3681.31           9.7233         1545.57         9.5797         2.710.7         16.0931         140.0131         16.3467         3681.31           9.7234         4840.74         9.9489         164774         16.0944         154.4551         10.5606         4572.87           9.7256         14.8276         10.0489         743.083         16.0939         142.046         16.4594         441.87           9.7256         4827.45         10.9908         539.212           |        |         | POZO TARA     | TUNICH 30. | l ( Septiemb | pre, 1991) <sup>22</sup> |         |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------------|------------|--------------|--------------------------|---------|------------|
| (hrs) $(psi)$ $(hes)$ $(psi)$ $(hes)$ $(psi)$ 8.61614462.667.806.73.654.621.5.9897107.75216.721916.61149.7144862.879.81823.290.1316.60903112.43116.24001850.929.7144863.99.84453.441.1416.091112.171816.62632.517.019.72144863.99.84453.821.7110.6092112.63216.29142.940.949.72144863.99.84773.810.7116.092712.632916.21477.151.549.721218.54.579.57972.714.7116.0925133.48316.34672.681.339.723418.45.319.92712.940.3716.0931140.03116.34672.681.339.725648.179.978312.89.8916.0939149.20616.45944.418.379.725648.274910.01449.9140316.0944154.42516.56061672.779.725648.274510.0908539.21216.6983166.88716.62144.752.079.72574801.7210.1863.92.55016.0975138.255216.76724.768.449.72774.811.4610.19222.98.15016.0975138.255216.76724.787.009.72564.827.4510.9088539.21216.6893191.84116.83414.757.669.72574.801.7210.52142.02.18116.0963191.84116.83414.757.669.72                                                                                                                                                                                                                                                                                                                                                                            | TIEMPO | PRESION | TIEMPO        | PRESION    | TIEMPO       | PRESION                  | TIEMPO  | PRESION    |
| 8.6161         4.862.06         9.8664         3.684.62         10.3897         117.752         16.2139         16.0914           9.781         4.862.87         9.8189         3.790.13         16.0903         112.4411         16.2306         1896.99           9.5406         4.864.62         2.8111         3582.19         16.0907         117.666         16.2481         2199.14           9.7214         4.863.9         9.8456         3.344.31         16.0911         121.718         16.2631         2517.01           9.7219         9.859.23         9.8777         3081.03         16.0917         126.329         16.2914         273.02           9.7222         158.157         9.8797         272.17         16.0925         133.483         16.4477         3681.43           9.7223         3.845.33         9.9231         2940.37         16.0930         140.206         16.4594         4413.57           9.7356         443.07         9.9389         16.0939         140.206         16.4594         4413.57           9.7256         482.145         10.0489         74.083         160.950         160.255         15.5606         4572.87           9.7256         482.145         10.0908         539.212     | (hrs)  | (psi)   | (hrs)         | (psi)      | (hrs)        | (psi)                    | (hrs)   | (psi)      |
| 2.0781 $4.862.87$ $9.8189$ $3.790.13$ $16.0908$ $112.411$ $16.2100$ $18.90.99$ $9.5400$ $48.6462$ $9.8114$ $3582.19$ $16.0908$ $117.086$ $16.2481$ $2194.34$ $9.7214$ $4863.9$ $9.835.6$ $3441.11$ $16.0911$ $121.718$ $16.2683$ $2237.04$ $9.7219$ $4859.23$ $9.8617$ $3081.03$ $16.0921$ $126.791$ $16.2914$ $372.45$ $9.7222$ $4854.57$ $9.8797$ $2781.07$ $16.0922$ $130.918$ $16.1175$ $372.56$ $9.7223$ $3845.33$ $9.9231$ $2040.37$ $16.0921$ $137.85$ $16.4167$ $372.576$ $9.7356$ $4840.74$ $9.9489$ $1647.74$ $16.6925$ $114.561$ $16.4172$ $4228.02$ $9.7257$ $881.42$ $10.0114$ $973.403$ $16.0929$ $149.266$ $16.4594$ $4413.57$ $9.7256$ $4827.49$ $10.0489$ $743.083$ $16.0926$ $164.284$ $441.57$ $9.7256$ $4827.45$ $10.0948$ $59.212$ $16.6887$ $166.234$ $475.97$ $9.7264$ $4827.45$ $10.9948$ $392.550$ $16.0967$ $174.287$ $166.897$ $476.84$ $9.7275$ $480.78$ $10.2511$ $237.800$ $16.0983$ $191.841$ $16.5344$ $475.76$ $9.7284$ $477.99$ $10.3848$ $157.29$ $16.1097$ $173.297$ $487.49$ $9.7275$ $480.78$ $10.2844$ $157.29$ $16.1097$ $173.877$ $16.6897$                                                                                                                                                            | 8.6161 | 4862.06 | 9.8067        | 3654.62    | 16.0897      | 107.752                  | 16.2139 | 103013     |
| 9.5400 $48h362$ $9.8314$ $3582.19$ $160908$ $117.086$ $16.2481$ $2190.34$ 9.7214 $486332$ $9.8356$ $3341.341$ $16.0911$ $121.718$ $16.2683$ $2547.01$ 9.7219 $485923$ $9.8617$ $3081.031$ $16.0917$ $126.129$ $16.2914$ $29^{10.94}$ 9.7222 $4853457$ $9.8797$ $2781.07$ $16.0922$ $110.918$ $16.3175$ $3123.53$ $9.7233$ $484991$ $9.9231$ $246.37$ $16.0925$ $133.485$ $16.4467$ $-681.43$ $9.7234$ $444074$ $9.9489$ $164774$ $16.0936$ $144561$ $16.4172$ $4728.02$ $9.7242$ $4836.17$ $9.9489$ $164774$ $16.0936$ $144551$ $16.5069$ $4578.10$ $9.7256$ $482709$ $10.0489$ $744.083$ $16.0950$ $160.285$ $16.5069$ $472.77$ $9.7256$ $482745$ $10.0489$ $744.083$ $16.0957$ $1182.552$ $16.6072$ $472.60$ $9.7256$ $482745$ $10.0908$ $539.212$ $16.0876$ $16.6275$ $16.5214$ $472.207$ $9.7256$ $4821.45$ $10.9231$ $237.800$ $16.0975$ $1182.522$ $16.6372$ $472.60$ $9.7257$ $481.46$ $10.1223$ $237.800$ $16.0975$ $1182.522$ $16.6372$ $472.60$ $9.7256$ $4821.45$ $10.9231$ $237.800$ $16.0975$ $1182.522$ $16.6373$ $480.427$ $9.7257$ $481.46$ $10.2531$ $237.800$ $16.0974$                                                                                                                                                       | 9.0781 | 4862.87 | <b>9</b> 8189 | 3290.13    | 16.0903      | 112.431                  | 16.2300 | 1896-39    |
| 972144863.99.845.63.341.3116.0911121.71816.26832547.01972194859.239.861.73081.0.316.0917126.32916.29142940.94972224854.519.87972781.0716.0922130.91816.31755523.559.7167484.9149.90302124.3316.0925133.48316.34776581.499.72334840.739.9231240.3716.093114.003316.31976977.699.73464840.749.94891647.7416.0936144.50116.41744228.029.72424336.179.97831289.8916.0919149.26616.45944431.879.72564827.0510.0489743.08316.0950160.28516.56661672.779.72564827.4510.0908539.21216.0858166.88716.5214478.429.72754801.7810.2531237.80016.09571182.55216.7612478.429.72754804.7810.2531237.80016.0944202.25816.9531480.489.72924789.0910.3989183.54616.108213.92217.0642481.879.7390477.93010.3544155.39416.1078278.0317.4914482.479.73914789.0910.3983157.29416.1086218.93417.4914482.479.72924789.0910.3983157.29416.1078278.0317.4914482.479.7293                                                                                                                                                                                                                                                                                                                                                                                                  | 9,5400 | 4853.62 | 2.8314        | 3582.19    | 16.0908      | 117.086                  | 16,2481 | 2190.31    |
| 97219 $488923$ 9.8617 $3081.03$ $16.0917$ $126.329$ $16.2914$ $2930.4$ 97222 $4354.57$ 9.8'97 $2781.07$ $16.0922$ $130.918$ $16.3175$ $3323.53$ 97167 $4849.94$ 9.9690 $2424.33$ $16.0925$ $133.483$ $16.3407$ $5881.41$ 9.7233 $4845.33$ 9.9214 $2040.37$ $16.0911$ $140.033$ $16.5497$ $0975.76$ 97736 $4940.74$ 9.9489 $1647.74$ $16.0913$ $149.206$ $16.4514$ $4441.92$ 9.7242 $4336.7$ 9.9783 $1289.89$ $16.0919$ $149.206$ $16.4514$ $4431.92$ 9.7256 $4837.09$ $10.0489$ $743.083$ $16.0941$ $154.425$ $15.0609$ $4572.42$ 9.7256 $4827.45$ $10.0489$ $743.083$ $16.0957$ $164.287$ $16.6214$ $4732.97$ 9.7261 $4917.22$ $10.1386$ $392.550$ $16.0967$ $174.287$ $16.6897$ $476.848$ 9.7257 $4804.78$ $10.2531$ $237.809$ $16.0943$ $191.841$ $16.8544$ $4795.76$ 9.7254 $4804.78$ $10.2531$ $237.809$ $16.0943$ $211.922$ $10.642.87$ 9.7300 $4779.809$ $10.3846$ $174.648$ $16.0021$ $272.069$ $17.897$ $481.42$ 9.7300 $4779.809$ $10.3846$ $175.29$ $16.1072$ $276.380$ $17.672$ $487.44$ 9.7314 $475.32$ $10.4688$ $16.1072$ $276.380$ $17.897$ $487.44$ <t< td=""><td>9 7214</td><td>4863.9</td><td>9 845a</td><td>.3341.31</td><td>16.0911</td><td>121 718</td><td>16.2683</td><td>2547.01</td></t<>                              | 9 7214 | 4863.9  | 9 845a        | .3341.31   | 16.0911      | 121 718                  | 16.2683 | 2547.01    |
| 9.7222 $4384.57$ 9.8797 $2781.07$ $16.0922$ $130.918$ $16.3175$ $3323.53$ 9.7167 $4849.91$ 9.9600 $2424.33$ $16.0925$ $133.483$ $16.3467$ $3681.41$ 9.7233 $4845.43$ 9.9231 $2040.37$ $16.0931$ $140.033$ $16.4777$ $027.76$ 9.736 $4940.74$ $9.9783$ $1229.89$ $16.0919$ $147.206$ $16.4541$ $4431.52$ 9.7267 $4831.67$ $9.9783$ $1229.89$ $16.0919$ $147.206$ $16.4541$ $4431.52$ 9.7256 $4827.09$ $10.0489$ $743.083$ $16.0941$ $154.425$ $15.5602$ $4578.10$ 9.7256 $4827.45$ $10.0908$ $539.212$ $16.0848$ $166.857$ $16.6214$ $4732.97$ 9.7261 $487.25$ $10.0908$ $539.212$ $16.0957$ $1182.552$ $16.7612$ $478.09$ 9.7275 $4804.78$ $10.2531$ $237.809$ $16.0941$ $191.427$ $16.6837$ $476.484$ 9.7264 $4811.36$ $191.922$ $298.150$ $16.0975$ $1182.552$ $16.7612$ $478.09$ 9.7275 $4804.78$ $10.2531$ $237.809$ $16.0924$ $202.258$ $16.9531$ $480.487$ 9.7284 $4777.39$ $10.3214$ $202.184$ $16.0924$ $202.258$ $16.9531$ $480.487$ 9.7300 $4779.89$ $10.4884$ $174.648$ $16.1022$ $227.000$ $17.8974$ $882.14$ 9.7311 $4769.38$ $10.4854$ $157.297$ $481.247.56$ $77.$                                                                                                                                                               | 97219  | 4859.23 | 9.8617        | 3081.03    | 16.0917      | 126.329                  | 16.2914 | 2930.94    |
| 9.716718.49.919.96.90 $2424.33$ 16.09251.33.48516.34673.681.419.72331845.439.92312040.3716.0931140.03316.37976977.769.72424.836.179.97831289.8916.0790144.56116.41724728.029.72471811.6210.0114993.40316.0930149.20616.45944441.579.72504827.05010.0489743.08316.0930160.28516.50604578.409.72504827.45510.0908539.21216.60858156.86716.62144732.979.72644817.2210.1886392.55016.0975118.255216.76724782.099.72754811.3610.122298.15016.0975118.255216.76724787.009.72924789.0910.3821237.80016.0975118.255216.76724881.879.73004779.8010.4861174.64816.1022227.00017.18974817.449.7333474.64410.8544165.39116.1078213.92217.06424812.879.73544757.2210.4863157.27916.156238.01417.414452.4769.7339474.64410.8214152.18516.1078213.92217.0642481.149.7353479.0910.9631148.58216.4109297.08117.8758483.169.7339474.6410.8214152.18516.1078276.38017.6719482.14                                                                                                                                                                                                                                                                                                                                                                                   | 9.7222 | 4854.57 | 9.8?97        | 2781-07    | 16.0922      | F30.918                  | 16.3175 | 3323.53    |
| 9,723.3         1845 3.3         9,923.1         2040.37         16.0931         140.033         16.3977         4927.76           9,773.6         -940 7.4         29.489         1647 7.4         16.0936         144 5.61         16.4172         4228.02           9,724.2         4836.17         9.978.3         1289.89         16.0799         149.206         16.4594         4431.57           9,7250         4827.09         10.0489         743.083         16.0950         166.285         16.5069         4578.40           9,7256         4822.45         10.0908         539.212         16.6858         166.897         16.6244         473.19.7           9,7264         4817.22         10.1886         192.559         16.0975         1382.552         16.7672         478.7.09           9,7275         4804.78         10.2531         237.809         16.0983         191.841         16.8544         4795.76           9,7291         4789.09         10.34861         174.648         16.1022         227.009         17.1897         481.87           9,7300         4779.80         10.34861         164.6383         191.841         18.4514         4795.76           9,7309         4746.64         10.821.4     | 9.7167 | 4849.94 | 9 9000        | 2424.33    | 16.0925      | 135 485                  | 16.3467 | 3681.13    |
| 97736 $4840.74$ 9.9489 $1647.74$ $16.0936$ $144.561$ $16.4172$ $4728.02$ 9.7242 $4836.17$ 9.9783 $1289.89$ $16.0939$ $149.206$ $16.4594$ $4441.87$ 9.7256 $4827.09$ $10.0489$ $743.083$ $16.0950$ $160.285$ $16.5069$ $4578.40$ 9.7256 $4827.09$ $10.0489$ $743.083$ $16.0950$ $160.285$ $16.5069$ $4578.40$ 9.7256 $4827.45$ $10.0908$ $539.212$ $16.0858$ $166.867$ $16.6214$ $4732.97$ 9.7261 $4817.22$ $10.1386$ $392.550$ $16.0975$ $1182.552$ $16.7672$ $4768.48$ 9.7275 $4804.75$ $10.2531$ $237.800$ $16.0981$ $191.841$ $16.8544$ $4795.76$ 9.7281 $4779.39$ $10.3214$ $202.181$ $16.0994$ $202.258$ $16.9331$ $4804.87$ 9.7300 $4779.80$ $10.4861$ $174.648$ $16.1008$ $213.922$ $12.0642$ $4812.87$ 9.7310 $4779.80$ $10.3854$ $165.391$ $16.1072$ $227.000$ $17.1897$ $487.48$ 9.7339 $474.464$ $10.8214$ $152.185$ $16.1078$ $276.380$ $17.8784$ $483.411$ 9.7392 $457.72$ $10.6958$ $157.29$ $16.1056$ $346.867$ $18.3656$ $483.706$ 9.7392 $479.464$ $10.8214$ $152.185$ $16.1078$ $276.380$ $17.6719$ $487.41$ 9.7392 $4592.55$ $11.3036$ $144.741$ $16.4125$ $3$                                                                                                                                                               | 9.7233 | 4845.33 | 9.9231        | 2040.37    | 16.0931      | 140.033                  | 16.3797 | 39.25,76   |
| 9.7242 $4836.17$ $9.9783$ $1289.89$ $16.0939$ $149.206$ $16.4594$ $4431.82$ $9.72567$ $4831.62$ $10.0114$ $993.403$ $160944$ $154.425$ $16.5069$ $4578.40$ $9.7256$ $4827.09$ $10.0489$ $743.083$ $16.0950$ $160.285$ $16.5667$ $16.214$ $473.297$ $9.7256$ $4822.45$ $10.0908$ $539.212$ $16.0858$ $166.867$ $16.6214$ $473.297$ $9.7261$ $4817.22$ $10.1386$ $392.550$ $16.0967$ $174.287$ $16.6897$ $4768.48$ $9.7267$ $4811.36$ $19.122$ $298.150$ $16.0975$ $1182.552$ $16.7672$ $4787.00$ $9.7278$ $4304.78$ $10.2531$ $237.800$ $16.0983$ $191.841$ $16.8544$ $4795.76$ $9.7292$ $4789.09$ $10.3929$ $183.546$ $16.1008$ $213.922$ $12.0642$ $4812.87$ $9.7300$ $4779.80$ $10.4861$ $174.648$ $16.1022$ $227.000$ $17.1897$ $4817.44$ $9.7314$ $470.938$ $10.5844$ $165.394$ $16.1039$ $241.632$ $17.314$ $1823.14$ $9.7325$ $475.722$ $10.6958$ $157.29$ $16.1056$ $258.034$ $17.4914$ $4824.76$ $9.7339$ $474.64$ $10.8214$ $152.185$ $16.1076$ $27.6380$ $17.6719$ $4872.11$ $9.7342$ $475.22$ $10.6958$ $157.29$ $16.1076$ $258.034$ $17.4914$ $4824.76$ $9.7339$ $474.64$ $10.8214$                                                                                                                                                 | 9.7236 | 4840 74 | 9.9489        | 1647 74    | 16.0936      | 144 561                  | 16.4172 | 4228.02    |
| 9.7267 $1231.62$ $10.0114$ 993.40.3 $16.0944$ $154.425$ $16.5062$ $4578.40$ 9.7250 $4827.05$ $10.0489$ $743.08.3$ $16.0950$ $160.285$ $16.5606$ $1672.7$ ;9.7256 $4822.45$ $10.0908$ $539.212$ $16.0858$ $166.867$ $16.6214$ $473.297$ 9.7261 $4817.22$ $10.1386$ $392.550$ $16.0967$ $174.287$ $16.6897$ $4768.48$ 9.7267 $4811.46$ $10.1922$ $298.150$ $16.0975$ $1182.552$ $16.7672$ $4787.00$ 9.7278 $4304.78$ $10.2531$ $237.800$ $16.0943$ $191.841$ $16.8544$ $4795.76$ 9.7292 $4789.09$ $10.3989$ $183.546$ $164008$ $213.922$ $12.0642$ $4812.87$ 9.7300 $4779.80$ $10.4861$ $174.648$ $164.022$ $227.000$ $17.1897$ $4817.14$ 9.7314 $4769.38$ $10.5844$ $165.391$ $16.1056$ $258.034$ $17.4914$ $4824.76$ 9.7339 $474.644$ $10.8214$ $152.185$ $16.1056$ $258.034$ $17.4914$ $4824.76$ 9.7372 $475.722$ $10.6958$ $157.229$ $16.1056$ $258.034$ $17.4914$ $4824.76$ 9.7349 $474.644$ $10.8214$ $152.185$ $16.1056$ $258.034$ $17.4914$ $4824.76$ 9.7353 $479.06$ $10.9643$ $148.582$ $16.1056$ $258.034$ $17.4914$ $4824.76$ 9.7354 $479.675$ $11.3036$ $144.721$ $16.156$ <td>9.7242</td> <td>4836.17</td> <td>9 9783</td> <td>1289.89</td> <td>46.0939</td> <td>149.206</td> <td>16,4594</td> <td>4431.82</td>                     | 9.7242 | 4836.17 | 9 9783        | 1289.89    | 46.0939      | 149.206                  | 16,4594 | 4431.82    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.7267 | 4831.62 | 10.0114       | 993.403    | 16.0944      | 154.425                  | 16,5069 | 4578.40    |
| 997256 $4 \times 22 \times 45$ 1090.908539212161616685816166857164732979.7261 $4 \times 17.22$ 1013.86392.55016169771741748716689747684784782109.7275 $4 \times 30.478$ 101023123780016161918411616.85444795.769.7275 $4 \times 30.478$ 105214202.18116160941202.258161695314 \times 01.879.7292 $4 \times 90.99$ 103.98918.3.54616161008213.92212.06424 \times 12.879.730047791010.4861174.6481616.1022227.00017.18974 \times 17.149.73104749105544165.39116.1039241.63217.331418.23.149.73254757.7210.6958157.2916.1056258.03417.49144 \times 24.769.73394744.6410<×714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.7250 | 4827.09 | 10.6489       | 743.083    | 16.0950      | 160.285                  | 16 5606 | 4672.77    |
| 9.72614.817.2210.1386392.55916.0967174.28716.6897 $4.468.48$ 9.72674.811.3610.19222.98.15916.097511.82.55216.7673 $4.787.09$ 9.72754.804.7810.25312.37.80916.0994202.25816.9531 $4.804.87$ 9.72814.797.3910.32142.02.18116.0994202.25816.9531 $4.804.87$ 9.72924.789.0910.398918.3.54616.1008213.92217.0642 $4.812.87$ 9.73004.779.8010.4861174.64816.1022227.00017.1897 $4.817.14$ 9.73114.769.3810.5844165.39116.1039241.63217.3314 $182.3.14$ 9.73254.757.7210.6958157.29116.1056258.03417.6719 $482.81.6$ 9.73534.719.0010.9631148.58216.1078276.38017.6719 $482.81.6$ 9.73724713.6011.1231144.74116.1125320.48918.4058 $483.11.6$ 9.73924695.2511.3036141.15616.1156346.86718.3656 $4837.06$ 9.74174624.7511.972137.84116.1125320.48918.4058 $4842.31$ 9.7533452.0712.828312.259316.1431495.109197853 $4842.31$ 9.75424561.0812.6214125.92316.1431495.109197853 $4847.09$ 9.7583452.0712.828312.259316.1431 <t< td=""><td>9 7256</td><td>4822.45</td><td>10.0908</td><td>539 212</td><td>16.0858</td><td>166.867</td><td>16.6214</td><td>4732.97</td></t<>                                                                                                                                                                                 | 9 7256 | 4822.45 | 10.0908       | 539 212    | 16.0858      | 166.867                  | 16.6214 | 4732.97    |
| 9.72674.811.3616.19222.98.45016.097511.82.55216.7672 $4^{7X7.00}$ 9.72754.804.7510.25312.37.80916.0983191.84116.8544 $4795.76$ 9.72814797.3910.3214202.18116.0994202.25816.9531 $4804.87$ 9.729247.89.0910.398918.354616.1008213.92212.0642 $4812.87$ 9.730047.79.8010.4861174.64816.1022227.00017.1897 $4817.14$ 9.73114769.3810.5844165.39116.1039241.63217.3314 $1823.14$ 9.73254757.7210.6958157.22916.1056258.03417.6719 $4822.476$ 9.73394744.6410.8214152.18516.1078276.38017.6719 $4822.476$ 9.73724713.6011.1211144.74116.4125320.48918.4058 $4831.16$ 9.73724713.6011.1231144.5616.1156346.86718.3656 $4837.06$ 9.74174692.5511.3036141.35616.1156346.86718.3656 $4837.06$ 9.74424651.1311.7375134.61116.1225410.52618.9897 $4842.31$ 9.7543452.0712.828312.2903128.25116.1314495.109197853 $4847.09$ 9.7543452.0712.8283122.59316.1431610.47020.7092 $4851.28$ 9.76314476.4813.4167119.79516.1497 </td <td>9.7261</td> <td>4817.22</td> <td>10.1386</td> <td>392.550</td> <td>46,0967</td> <td>174.287</td> <td>16.6897</td> <td>4768.48</td>                                                                                                                                                                                        | 9.7261 | 4817.22 | 10.1386       | 392.550    | 46,0967      | 174.287                  | 16.6897 | 4768.48    |
| 9.7275 $4304.75$ $10.2331$ $237.809$ $16.0983$ $191.841$ $16.8544$ $4795.76$ 9.7281 $4797.39$ $10.3214$ $202.181$ $16.0994$ $202.258$ $16.9531$ $4801.87$ 9.7292 $4789.09$ $10.3989$ $183.546$ $16.1008$ $211.922$ $12.0642$ $4812.87$ 9.7300 $4779.80$ $10.4861$ $174.648$ $16.1022$ $227.000$ $17.1897$ $4817.14$ 9.7311 $4769.38$ $10.5844$ $165.391$ $16.1039$ $241.632$ $17.314$ $182.3.14$ 9.7325 $4757.72$ $10.6958$ $157.229$ $16.1056$ $258.034$ $17.4914$ $482.4.76$ 9.7339 $4744.64$ $10.8214$ $152.185$ $16.1078$ $276.380$ $17.6719$ $4872.11$ 9.7372 $4713.60$ $11.1231$ $144.741$ $16.4125$ $320.489$ $18.4058$ $4831.16$ 9.7392 $4692.25$ $11.3036$ $141.456$ $16.1156$ $346.867$ $18.3656$ $4837.06$ 9.7417 $4674.54$ $11.5072$ $137.841$ $16.1255$ $410.526$ $18.8058$ $4832.16$ 9.7442 $4651.13$ $11.7375$ $134.611$ $16.1255$ $410.526$ $18.8087$ $4842.31$ 9.7542 $4561.08$ $12.6214$ $125.393$ $16.1369$ $548.596$ $20.2472$ $4842.31$ 9.7543 $4522.07$ $12.8283$ $122.593$ $16.1431$ $610.470$ $20.7092$ $4851.28$ 9.7631 $4476.48$ $13.4167$ $119.795$ $16.1457$                                                                                                                                                        | 9,7267 | 4811.36 | 10.1922       | 298 150    | 16.0975      | 1382.552                 | 16 7672 | 4787.00    |
| 9.72814.792.3910.3214202.18116.0994202.25816.9531 $4804.87$ 9.72924.789.0910.3989183.54616.1008213.92212.06424812.879.73004779.8010.4861174.64816.1022227.00017.18974817.149.73114.769.3810.5844165.39116.1039241.63217.33141823.149.73254.757.7210.6958157.22916.1056258.03417.4914482.4.769.73394.744.6410.8214152.18516.1078276.38017.67194828.119.73724713.6011.1211144.74116.4125320.48918.4058483.1169.73924695.2511.3036141.45616.1156346.86718.36564837.069.74174674.5411.5072137.84116.118917.662.318.65894839.829.74424651.1311.7375134.61116.1225410.52618.98974842.319.75834520.0712.828312.2903128.25116.1314495.1091978534847.099.75834522.0712.8283122.59316.1431610.47020.70924851.289.76864422.9813.8786117.10616.1575773.43321.63284854.599.77444361.0914.3406114.73316.1664883.28922.09471555.359.78144287.5614.8025112.64916.17511016.8911.555                                                                                                                                                                                                                                                                                                                                                                              | 9.7275 | 4304.78 | 10.2531       | 237 800    | 16,0983      | 191.841                  | 16.8544 | 4795.76    |
| 9.72924.789.0910.3989183.54616.4008213.92212.06424812.879.73004779.8010.4861174.64816.1022227.00017.18974817.149.73114769.3810.5844165.39116.1039241.63217.33141823.149.73254757.7210.6958157.22916.1056258.03417.4914482.4.769.73394744.6410.8214152.18516.6078276.38017.67194828.119.73534730.0010.9631148.58216.1100297.08117.85584831.169.73724713.6014.1211144.74116.4125320.48918.40584834.119.73924695.2511.3036141.45616.1156346.86718.36564837.069.74174674.5411.5072137.84116.1189J76.62318.65894839.829.74424651.1311.7375134.61116.1225410.52618.98974842.319.75534594.9812.2903128.25116.1314495.1091978534842.099.754424561.0812.6214125.39316.1431610.47020.70924851.289.76864422.9813.8786117.10616.1575773.48321.63284854.599.76864422.9813.8786117.10616.1575773.48321.63284854.599.77444361.0914.3406114.73316.1664883.28922.09471555.35                                                                                                                                                                                                                                                                                                                                                                                     | 9.7281 | 4797.39 | 10 3214       | 202.181    | 16.0994      | 202.258                  | 16.9531 | 4804.87    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7292 | 4789.09 | 10,3989       | 183.546    | 16,1008      | 213.922                  | 12.0642 | 4812.87    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7300 | 4779.80 | 10.4861       | 174.648    | 16.1022      | 227.000                  | 17.189? | 4817.14    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7311 | 4769,38 | 10.5844       | 165.391    | 16,1039      | 241.632                  | 17 3314 | 1823.14    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,7325 | 4757.72 | 10.6958       | 157.229    | 16,1056      | 258.034                  | 17.4914 | 4824.76    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7339 | 4744.64 | 10.8214       | 152.185    | 16.1078      | 276.380                  | 17.6719 | 4828.11    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7353 | 4730.00 | 10.9631       | 148.582    | 16,1100      | 297.081                  | 17.8758 | 4831.16    |
| 9         7392         4695 25         11.3036         141.456         16.1156         346.867         18.3656         4837 06           9.7417         4674.54         11.5072         137.841         16.1189         176.623         18.6589         4839.82           9.7417         4674.54         11.5072         137.841         16.1189         176.623         18.6589         4839.82           9.7442         4651.13         11.7375         134.614         16.1225         410.526         18.9897         4842.31           9.7472         4624.75         11.9972         131.345         16.1267         449.528         19.3633         4844.71           9.7503         4594.98         12.2903         128.251         16.1314         495.109         197853         4847.09           9.7542         4561.08         12.6214         125.93         16.4369         548.596         20.2472         4849.33           9.7631         4476.48         13.4167         119.795         16.1497         683.992         21.1708         4852.99           9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         < | 9.7372 | 4713.60 | 11.1231       | 144.741    | 16.1125      | 320,489                  | 18,1058 | - 483-4.11 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7392 | 4695.25 | 11.3036       | 141.156    | 16.1156      | 346.867                  | 18.3656 | 4837.06    |
| 9.7442         4651.13         11.7375         134.614         16.1225         410.526         18.9897         4842.31           9.7472         4624.75         11.9972         131.345         16.1267         449.528         19.3633         4844.71           9.7503         4594.98         12.2903         128.251         16.1314         495.109         197853         4847.09           9.7542         4561.08         12.6214         125.393         164369         548.596         20.2472         4849.33           9.7583         4522.07         12.8283         122.593         16.1431         610.470         20.7092         4851.28           9.7634         4476.48         13.4167         119.795         16.1497         683.992         21.1708         4852.99           9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         1555.35           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         49.55.35           9.7978         4088.24         15.7264         108.999  | 9.7417 | 4074.54 | 11.5072       | 137.841    | 16.1189      | 376.623                  | 18.6589 | 4839.82    |
| 9.7472         4624.75         11.9972         131.345         16.1267         449.528         19.3633         4844.71           9.7503         4594.98         12.2903         128.251         16.1314         495.109         197853         4847.09           9.7542         4561.08         12.6214         125.393         164369         548.596         20.2472         4849.33           9.7583         4522.07         12.8283         122.593         16.1431         610.470         20.7092         4851.28           9.7631         4476.48         13.4167         119.795         16.1497         683.992         21.1708         4852.99           9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         155.35           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         4195.53           9.7978         4088.24         15.7264         108.999         16.1977         1389.27         455.39                                                                                      | 9,7442 | 4651.13 | 11.7375       | 134.611    | 16.1225      | 410.526                  | 18.9897 | 4842.31    |
| 9.7503         4594.98         12.2903         128.251         16.1314         495.109         197853         4847.09           9.7542         4561.08         12.6214         125.393         164369         548.596         20.2472         4849.33           9.7583         4522.07         12.8283         122.593         16.1431         610.470         20.7092         4851.28           9.7631         4476.48         13.4167         119.795         16.1497         683.992         21.1708         4852.99           9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         1555.35           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         4854.59           9.7978         4088.24         15.7264         108.999         16.1977         1389.27         455.53                                                                                                                                                                                                                      | 9.7472 | 4624.75 | 11.9972       | 131.345    | 16.1267      | 449,528                  | 19.3633 | 4844.71    |
| 9.7542         4561.08         12.6214         125.393         164369         548.596         20.2472         484933           9.7583         4522.07         12.8283         122.593         16.1431         610470         20.7092         4851.28           9.7631         4476.48         13.4167         119.795         16.1431         610.470         20.7092         4851.28           9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         155.35           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         489.42           9.7978         -088.24         15.7264         108.999         16.1977         1389.27         489.33                                                                                                                                                                                                                                                                                                                                                          | 9.7503 | 4594.98 | 12.2903       | 128,251    | 16.1314      | 495.109                  | 197853  | 4847.09    |
| 9.7583         4522.07         12.8283         122.593         16.1431         610.470         20.7092         4851.28           9.7631         4476.48         13.4167         119.795         16.1497         683.992         21.1708         4852.99           9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         1555.35           9.7814         4287.56         14.8025         112.619         16.1751         1016.89         1           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         1           9.7978         -1088.24         15.7264         108.999         16.1977         1389.27         1                                                                                                                                                                                                                                                                                                                                                                                     | 9.7542 | 4561.08 | 12.6214       | 125.393    | 46.4369      | 548,596                  | 20.2472 | 4849.33    |
| 9.7631         4476.48         13.4167         119.795         16.1497         683.992         21.1708         4852.99           9.7686         4422.98         13.8786         117.106         16.1575         773.483         24.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         1555.35           9.7814         4287.56         14.8025         112.649         16.1751         1016.89         105.535           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         1181.36           9.7978         -1088.24         15.7264         108.999         16.1997         1389.27         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.7583 | 4522.07 | 12.8283       | 122.593    | 16.1431      | 610.470                  | 20.7092 | 4851.28    |
| 9.7686         4422.98         13.8786         117.106         16.1575         773.483         21.6328         4854.59           9.7744         4361.09         14.3406         114.733         16.1664         883.289         22.0947         1555.35           9.7814         4287.56         14.8025         112.649         16.1751         1016.89         105.535           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         1389.27           9.7978         -1088.24         15.7264         108.999         16.1957         1389.27         1389.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.7631 | 4476.48 | 13.4167       | 119,795    | 16.1497      | 683.992                  | 21.1708 | 4857.99    |
| 9.7744         4361.09         14.3406         114.733         16.4664         883.289         22.0947         15.55.35           9.7814         4287.56         14.8025         112.619         16.1751         1016.89         1         15.55.35           9.7892         4198.06         15.2644         110.721         16.1862         1181.36         1           9.7978         -1088.24         15.7264         108.999         16.1957         1389.27         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.7686 | 4422,98 | 13.8786       | 117.106    | 46.1575      | 773.483                  | 21.6328 | 4854,50    |
| 9.7814         4287.56         14.8025         112.619         16.1751         1016.89           9.7892         4198.06         15.2644         110.721         16.1862         1181.36           9.7978         -1088.24         15.7264         168.999         16.1957         1389.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.7744 | 4361.09 | 14.3406       | 114.733    | 16.1664      | 883 289                  | 22 0947 | 15.5.85    |
| 9.7892 4198.06 15.2644 110.721 16.1862 1181.36<br>9.7978 -1888.24 15.7264 168.999 16.1997 1389.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.7814 | 4287.56 | 14.8025       | 112.619    | 16.1751      | 1016.89                  |         | 1          |
| 9,7978 -1088,24 1,5.7264 1,08,999 16,1997 1,389,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7892 | 4198.06 | 15.2644       | 110721     | 16.1862      | 1181.36                  |         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.7978 | 4088.24 | 15.7263       | 108.999    | 16.1997      | 1389.27                  |         |            |

## TABLA IV 2 - DATOS DE LA TRUFRA DE PRESION REALIZADA AL

(1) A second matrix of a matrix second statistical departments of the first of the billing

En las figuras 26 y  $2^{-1}$  se tienen el análisis de la prueba de incremento de presión, considerando un modelo con almacenamiento constante. Se observa que el ajuste , tanto con las curvas tipo como con curvas semilogarítmica, deja mucho que desear durante los tiempos cortos, ya que el comportamiento de la presión no es representado a través del periodo afectado por el almacenamiento. Sin embargo, al realizar el análisis con el modelo de almacenamiento variable se logra un magnífico ajuste, ya que todos los datos caen sobre la curva de presión representativa de este sistema, figuras 28 y29.

and a second term terreter with

нолто накали на враме умали и высали и пола ник на Концерникания, арконалися скласта воковалься, кото от как Ко

A partir de este análisis se obtienen los siguientes resultados :

Modelo de yacimiento homogéneo Efecto de almacenamiento variable Frontera externa infinita kh = 4465.30 mD-pie k = 29.8 mD s = 87.6



÷

FIG. 26.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 391 MODELO DE ALMACENAMIENTO CONSTANTE".

72

•



FIG. 27.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 301. MODELO DE ALMACENAMIENTO CONSTANTE<sup>21</sup>.

75

27

N\_0 PHEND



FIG. 28.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESIÓN DEL POZO TARATUNICH 301. MODELO DE ALMACENAMIENTO VARIABLE<sup>21</sup>.

74

CAPITULO IV





CAPIEUS O IN

ente entratore

анарданарынынын калыктык кызыктарды. Каралыктык жүрөтөрдөк үзүкдөөн кектеректик калартар алартар алартарда алар

### IV.2 Pozo Taratunich 63D

Este pozo también está localizado en el campo Taratunich de la Región Marina Suroeste, con un intervalo productor de 3400-3430 mdbmr de la formación Brecha Paleoceno. La terminación se llevó a cabo en diciembre de 1994, produciendo un aceite de 31.6º API, mostrando un estado mecánico como el de la *figura 30.* 

Después se registró un gradiente por estaciones con pozo cerrado, el cual mostró una columna de 2723 mv de gas y solamente 347 mv de aceite y huego una prueba de presión-producción, en cuatro periodos de prueba durante 24.97 hrs., tal como se muestra en la *Tabla IV.3*.

| TABLA IV.3 TIEMPOS DE LA PRUEBA DE PRESION REGISTRADA |
|-------------------------------------------------------|
| EN EL POZO TARATUNICH 63D.                            |

| Periodo de | Duración | Tiempo acumulado | Gusto |
|------------|----------|------------------|-------|
| prueba     | (lirs)   | (hrs)            | (BPD) |
| 1          | 10,54    | 10.54            | 0     |
| 2          | 4.89     | 15.43            | 1200  |
| 3          | 4.96     | 20.39            | 3616  |
| 4          | 4.58     | 24.97            | ()    |

En este caso se eligió el cuarto periodo de prueba, siendo este el último cierre del pozo, y los datos se presentan en la *Tabla IV.4*.

# TABLA W 4 - DATOS DE LA PRUEBA DE PRESION REALIZADA AL POZO TARATUNICH 63D ( Diciembre, 1994.)<sup>12</sup>

. Салантыкандарындарындарындарындарын катыкатындарар ардарыртыларындыр алардар, рессилески түскер кылучулар катер

| THEMPO  | PRESION | TIFMPO  | PRESION | TIEMPO  | PRESION  | TIFMPO  | PRESION |
|---------|---------|---------|---------|---------|----------|---------|---------|
| (hrs)   | (psi)   | (hrs)   | (psi)   | (hrs)   | (psi)    | (lurs)  | (psi)   |
| 20.3842 | 3968.41 | 20.4272 | 3977.80 | 21.3842 | 4007.51  | 23.2842 | 3998,49 |
| 20,3853 | 3968,69 | 20.4368 | 3978.22 | 21 4508 | 4007.61  | 23 3508 | 3998.59 |
| 20,3864 | 3969.11 | 20:4342 | 4979.35 | 21.5175 | 4007.67  | 23.4175 | 3998.69 |
| 20.3875 | 3969,39 | 20.4375 | 3981.03 | 21.5842 | 4007.43  | 23.4842 | 3998.78 |
| 20,3853 | 3969.81 | 29-4408 | 3982.73 | 21.6508 | 4007.34  | 23,5508 | 3998.88 |
| 20,3892 | 3970.09 | 20.4442 | 3984.26 | 21.7175 | 4006.98  | 23.6175 | 1998.97 |
| 20,3908 | 3970.34 | 20.4475 | 1985.52 | 21.7842 | 4006.62  | 23.6842 | 3999.07 |
| 20.3919 | 1970,79 | 20.4508 | 3986.36 | 21.8508 | 4006.07  | 23.7508 | 3999.21 |
| 20,3931 | 3971.07 | 20.4542 | 3987.07 | 21.9175 | 4005.42  | 23.8175 | 3999.21 |
| 20,3947 | 3971.63 | 20.4575 | 3967.77 | 21.9842 | 4004.77  | 23.8842 | 3999.30 |
| 20,3964 | 3972.19 | 20.4608 | 3986.47 | 22.0508 | 4004.03  | 23 9508 | 3999.30 |
| 20.3972 | 3972.61 | 20:4642 | 3989.03 | 22 1175 | 4003,10  | 0.0175  | 3999,40 |
| 20,3983 | 3972.75 | 20.4675 | 3989,45 | 22.1842 | 4002,36  | 0.0842  | 3999,49 |
| 20.3997 | 3973.03 | 20,4717 | 3990,02 | 22.2508 | 4001.51  | 0.1675  | 3999,54 |
| 20.4008 | 3973.45 | 20.5175 | 3992.41 | 22.3175 | 4000.69  | 0.2342  | 3999.59 |
| 20,4019 | 3973.59 | 20.5847 | 3994.43 | 22.3842 | 3999.76  | 0.3008  | 3999,69 |
| 20.4031 | 3974.15 | 20.6508 | 3995.95 | 22,4508 | .1998.93 | 0.3675  | 3999.83 |
| 20.4042 | 3974.30 | 20.7175 | 3996.76 | 22.5175 | 3997.81  | 0.4342  | 3999.76 |
| 20:4053 | 3974.44 | 29.7175 | 3996.76 | 22.5842 | 3997.44  | 0.5008  | 3999.91 |
| 20.4064 | 3975.00 | 20,7842 | 3998.83 | 22.6508 | 3997.53  | 0.5675  | 3999.91 |
| 20.4072 | 3975.14 | 20.8508 | 4060.90 | 22.7175 | 3997,67  | 0.6342  | 3999,96 |
| 20.4083 | 3975.28 | 20.9175 | 4002.54 | 22.7917 | 3997.82  | 0.7008  | 4000.06 |
| 20.4097 | 3975.56 | 20.9842 | 4004.00 | 22.8508 | 3997.91  | 0.7675  | 4000,10 |
| 20.4408 | 3975.84 | 21.0508 | 4005.32 | 22.9175 | 3997,92  | 0.8342  | 4000.15 |
| 20.4142 | 3976.26 | 21.1175 | 4006.03 | 22,9842 | 3998.20  | 0.900\$ | 4000.21 |
| 20.4172 | 3976.96 | 21.1842 | 4006,46 | 23.0508 | 3998.20  | 0.9675  | 4000.26 |
| 20.4208 | 3977.24 | 21.2508 | 4006.89 | 23.1175 | 3998.25  |         |         |
| 20.4242 | 3977.66 | 21-3175 | 4007.22 | 23.2175 | 3998.40  |         |         |

e na britske bland skar bake av fra met av de met skal met av de met av kunn av britska koverelaka av manar av a



FIG. 30.- ESTADO MECANICO DEL POZO TARATUNICH 63D, DE DESARROLLO (DICIEMBRE, 1994)<sup>22</sup>.



Se efectua el análisis considerando los siguientes datos del pozo y del yacimiento:

 $\phi = 15\%$ ,  $r_w = 0.349$  pies , h = 328 pies ,  $B_a = 1.894$  ,  $c_i = 2.925 \text{ E}^{5}$  psi<sup>-1</sup> y  $\mu_c = 0.44$  cp ,  $q_0 = 3616$  BPD por estrangulador de  $\frac{3}{4}$ .

Se realizó el análisis de la última prueba de incremento constante y variable, tal como se muestra en las *figuras 31* a *36*. Los resultados obtenidos fueron :

Modelo de yacimiento de doble porosidad Efecto de almacenamiento variable  $kh \approx 41\,001 \text{ mD-pie}$   $k \approx 125 \text{ mD}$   $s \approx -3.75$   $\omega \approx 0.041$  $\lambda \approx 6.9227$ 

El comportamiento de la respuesta de presión indentifica que el yacimiento es un sistema de doble-porosidad con una variación importante durante el periodo de almacenamiento, ocasionada por la presencia de un alto RGA (570  $m^3/nt^3$ ) y de la columna de gas en la columna del pozo, provocando un marcado efecto de segregación de fases. Sin embargo, esta prueba alcanza el flujo radial infinito en los últimos datos registrados<sup>22</sup>.

### CAPITULO AV

載

### 

Este es una excelente ilustración de la presencia del fenómeno de segregación de fases, ocurriendo una respuesta de tipo "joroba", donde el incremento de presión llega a un valor máximo para después declinar hasta alcanzar el flujo radial y coincidir con la tendencia del modelo de almacenamiento variable, *figuras 34* a *36*.

A este pozo no se le hizo ninguna intervención posterior, hasta que por las condiciones de alta RGA fué necesario cerrarlo en marzo de 1996. A partir del análisis de las condiciones de producción<sup>22</sup>, en este caso, se propuso tomar información adicional, tal como un gradiente estático por estaciones y un registo TDT para conocer las columnas de fluidos, la saturación de gas en las vecindades del pozo y así, definir la procedencia del mismo. De esta manera se trataría de excluir el gas, hacer un cambio de intervalo disparado con pistolas de fase radial, optimizando las condiciones de flujo de la formación hacia el pozo.



CREAR CONTRACTOR CONTRACTOR CONTRACT

CONTRACTOR PROVINCE TO A SUBJECT OF SUBJECT AND A SUBJECT

4010 4000 3990 3980 3970 3616 0 tiempo (hrs)

¥.



ŝ



- 1

FIG. 32.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 63D. MODELO DE ALMACENAMIENTO CONSTANTE<sup>2</sup>.

35

APRELET IS



-

FIG. 33.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUMICH 63D. MODELO DE ALMACENAMIENTO CONSTANTE".

1111

1011-102







÷



绣

# VERIAN

LEN POLISI CONTROLS



FIG. 36.- ANALISIS DE LA CURVA DE INCREMENTO DE PRESION DEL POZO TARATUNICH 63D MODELO DE ALMACENAMIENTO VARIABLE<sup>42</sup>.

38

# SETTER 1

sf

# CAPITULO V

# CONCLUSIONES Y RECOMENDACIONES

Se debe tomar en cuenta que los datos de variación de presión son enmascarados por los efectos de almacenamiento del pozo durante los tiempos cortos, lo cuál crea una incertidumbre en la aplicación de las técnicas de análisis y resta confiabilidad a los parámetros resultantes del sistema pozo- yacimiento.

Este trabajo logra conjuntar los esfuerzos de investigaciones realizadas para explicar los efectos de almacenamiento variable que ocurren en los pozos, a través del estudio del fenómeno de redistribución de fases, llegando al planteamiento de un método general para el análisis de pruebas de presión con esta anomalía.

Se demuestra que el fenómeno de redistribución de fases en la columna del pozo puede ocasionar anomalías en el comportamiento de la presión en pozos de aceite y gas. La redistribución de fases es resultado de la mayor velocidad de la fase gas, principalmente cuando el pozo es cerrado en superficie.

śż.

יה האמניה היו היה היה היה היה המשפט שמינה היה היה היה היה היה היה היה המשמעה שהאמנה היה היה היה היה היה היה או

Se estudiaron y establecieron modelos de interpretación de pruebas de presión con efectos de almacenamiento variable, describiendo los efectos ereciente y decreciente del almacenamiento mediante las funciones : exponencial y error. De esta manera, datos de campo que presentan esta anomalía pueden ser interpretados apropiadamente.

Se concluye que mediante la función error se obtiene la mejor representación del efecto de almacenamiento variable. La incorporación de esta función logra establecer modelos de yacimientos homogéneos o de dobleporosidad, con diferentes fronteras externas (impermeable, presión contante, fallas paralelas, etc.).

La aplicación de las técnicas de análisis, se recomienda hacerla utilizando los modelos con efecto de almacenamiento variable, ya que se ha demostrado la excelente representación de la respuesta de datos reales de presión.

Los ejemplos de aplicación ilustran el análisis realizado con los modelos de almacenamiento constante y almacenamiento variable, y confirman la excelente representatividad de la respuesta de variación de presión con efectos de almacenamiento variable.

# NOMENCLATURA

NATIONAL PRODUCTION OF A CONTRACT MATRICE CONTRACTOR AND A CONTRACT AND A CONTRACT AND A CONTRACTOR AND A CONTRACT

| А           | Area de drene asociada al pozo                                                                  | pies <sup>2</sup>     |
|-------------|-------------------------------------------------------------------------------------------------|-----------------------|
| <i>A</i> ., | Area de la sección transversal del pozo                                                         | pies <sup>2</sup>     |
| В           | Factor de volumen del aceite                                                                    | bl a c.y. / bl a c.s. |
| BTP-KS      | Brecha del Terciario Paleoceno-Cretacico Superior                                               |                       |
| С           | Coefficiente de almacenamiento del pozo                                                         | bl / psi              |
| С"          | Compresibilidad del fluído en el pozo                                                           | 17 psi                |
| C,          | Compresibilidad total                                                                           | 17 psi                |
| C,          | Coeficiente de almacenamiento variable aparente                                                 | bl / psi              |
| $C_{ab}$    | Coeficiente de almacenamiento variable aparente<br>adimensional                                 | adimensional          |
| $C_{P}$     | Coeficiente de almacenamiento del pozo adimensional                                             | adimensional          |
| С.,,        | Coefficiente de almacenamiento efectivo adimensional<br>o Coefficiente de pseudo almacenamiento | adimensional          |
| С,          | Coeficiente de almacenamiento variable                                                          | bl / psi              |
| $C_{sd}$    | Coeficiente de almacenamiento variable adimensional                                             | adimensional          |
| C.S.        | Condiciones estándar                                                                            | and an a              |
| e.y.        | Condiciones de yacimiento                                                                       |                       |
| c           | Número de Euler = 2.718281828                                                                   |                       |
| erf         | Función error                                                                                   |                       |

### NOMENCLATURA

23

ъ.

| erfc           | Función error complementaria                                             |                                   |
|----------------|--------------------------------------------------------------------------|-----------------------------------|
| g              | Aceleración de la gravedad                                               | pre / seg <sup>2</sup>            |
| $g_{\epsilon}$ | Factor de conversión de unidades de aceleración<br>gravitacional = 32.17 | (lbm/pie)/(lbr-seg <sup>2</sup> ) |
| h              | Espesor de la formación                                                  | pies                              |
| $h_{L}$        | Altura del nivel de líquido dentro de la tubería de producción           | pies                              |
| $J_{\sigma}$   | Función Bessel de prímera clase                                          | with the                          |
| JSK            | Jurásico Superior Kimmerigdiano                                          | t and te                          |
| K              | Permeabilidad de la formación                                            | mD                                |
| К,             | Permeabilidad de la zona dañada                                          | nıD                               |
| КМ             | Cretácico Medio                                                          |                                   |
| £.             | Operador de transformada de Laplace                                      | a a ganar                         |
| m              | Pendiente de la linea recta semilogaritmica                              | psi / ciclo                       |
| md             | Metros desarrollados                                                     | m                                 |
| mv             | Metros verticales                                                        | 11}                               |
| ındbmr         | Metros desarrollados hajo mesa rotatoria                                 | m                                 |
| mvbmr          | Metros verticales bajo mesa rotatoria                                    | m                                 |
| р              | Presión                                                                  | psi                               |
| $p_{\nu}$      | Caída de presión adimensional                                            | adimensional                      |
| р,             | Presión inicial                                                          | psi                               |
| ₽ <sub>#</sub> | Presión del gas                                                          | psi                               |

MURPHARE.

j.

n geologie general in the department of the constant of the co

÷

•

| $P_{\gamma}$       | Presien del Inquido                                                                              | $p^{\pm 1}$  |
|--------------------|--------------------------------------------------------------------------------------------------|--------------|
| $P_{i}$            | Presion en la cabeza del pozo                                                                    | psi          |
| $P_{\pi}$          | Presión en el fondo del pozo                                                                     | p:a          |
| $p_{zb}$           | Caida de presión en el fondo del pozo adimensional                                               | adimensional |
| $p_{si}$           | Presión de fondo fluyendo                                                                        | p.si         |
| $P_{wh}$           | Presión del fluido en la cabeza del pozo                                                         | ps:          |
| $P_{m}$            | Presión de fondo estática                                                                        | psi          |
| $p_{\rm set}$      | Presión del fluido en el punto en el que entra el gas                                            | psi          |
| <i>P</i> ;         | Presión durante el cambio de atmacenamiento o<br>durante la redistribución de fases              | psi          |
| $p_{i\nu}$         | Presión adimensional durante el cambio de<br>almacenamiento o durante la redistribución de fases | adimensional |
| PLT                | Registro integral de producción                                                                  | -217 aV      |
| $\Delta p$         | Caída de presión                                                                                 | psi          |
| $\Delta p_x$       | Caída de presión debida al daño                                                                  | psi          |
| q                  | Gasto de producción en superficie                                                                | bl / dia     |
| $q_{\prime\prime}$ | Gasto de producción en la cara de la formación                                                   | bl / día     |
| $q_*$              | Gasta de producción praveniente del pozo                                                         | bl / dia     |
| r                  | Distancia radial                                                                                 | pies         |
| T <sub>D</sub>     | Radio adimensional                                                                               | adimensional |
| r,                 | Radio de drene                                                                                   | pies         |
| r,                 | Radio en zona dañada                                                                             | pies         |
|                    |                                                                                                  |              |

NOAH SCLATORA

pra

| $r_{u}$ )          | Radio efectivo del pozo                       | i 1.         |
|--------------------|-----------------------------------------------|--------------|
| RGA                | Relación gas-aceite                           |              |
| .5                 | Factor de daño                                | adimensional |
| $I_r$              | Tiempo de producción                          | horas        |
| $I_l$ .            | Tiempo adimensional                           | adimensional |
| 37                 | Tiempo de cierre                              | horas        |
| $\Delta t_{\rm b}$ | Tiempo de cierre adimensional                 | adimensional |
| TDT                | Registro de decaimiento termal                | ·· •·        |
| TP                 | Tubería de producción                         |              |
| TR                 | Tubería de revestimiento                      | •••          |
| и                  | Variable independiente                        |              |
| $\Delta v$         | Cambio de volumen del fluido en el pozo       | b)           |
| Γ.                 | Volumen total del fluido contenido en el pozo | ы / pic      |
| $Y_{ij}$           | Función Bessel de segunda clase               | A papato at  |
| 2                  | Variable en el espacio de Laplace             |              |

zakaza konteksi nova na kateksa a kata kateksi kateksi konteksi kata a sha shakasa ilikuna shaka kateksi katek

## Símbolos griegos

| CI.        | Tiempo de duración del elècto de almacenamiento<br>variable           | ho |
|------------|-----------------------------------------------------------------------|----|
| $\alpha_p$ | Tiempo de duración del efecto de almacenamiento variable adimensional | ad |
| γ          | Constante de Euler = 0.5772                                           |    |

horas

adimensional

### seath is choire bh Talean an staite a

х,

16m

| ţı.       | Visenadao del Iluido                 | vij                                      |
|-----------|--------------------------------------|------------------------------------------|
| t i       | Porosidad de la formación            | finceion                                 |
| ŗ         | Variable de integración              |                                          |
| $\zeta_P$ | Variable de integración adimensional | adimensional                             |
| p         | Densidad del fluido                  | gi/cm <sup>3</sup> o 1b/pic <sup>4</sup> |
| п         | Constante pi = 3,14159               | adimensional                             |
| a.<br>E   | Variable de derivada parcial         | e 1.1                                    |

120

## **Subindices**

| а        | Aparente                       |
|----------|--------------------------------|
| U.       | Anular                         |
| Ð        | Adimensional                   |
| i        | Inicial                        |
| \$       | Propiedad de la región de daño |
| $s_t$    | Cara de la formación           |
| <i>H</i> | Unitario                       |
| w        | Рого                           |
| wf       | Fondo fluyendo                 |
| ics      | Fondo estático                 |

# REFERENCIAS

- L.- Hegeman P.S., Hallford D.L. and Joseph J.A. "Well Test Analysis with Changing Wellbore Storage", Paper SPE 21829 (April , 1991).
- 2.- Hasan A.R. and Kabir C.S.: "Modeling Changing Storage During a Shui-In Test", Paper SPE 24717 (October, 1992).
- 3.- Fair W. B. Jr.; "Pressure Buildup Analysis with Wellhore Phase Redistribution"; SPEJ (April, 1981).
- 4.- Hasan A.R. and Kabiy C.S.: "Modeling Changing Storage During a Shut-In Test", SPE Formation Evaluation (December, 1994)
- 5.- Zhang Y, and Zhen F. : "Well Test Analysis in the Case of Changing Wellbore Storage"; Paper SPE 22422 (1985).
- 6.- León-Ventura R.: " Desarrollo de Nuevas Técnicas de Análisis de Pruebas de Presión "; Departamento de Registros y Pruebas en Pozos, Instituto Mexicano del Petróleo (Febrero, 1990).
- Ramey H. J. Jr. : "Short-Time Well Test Data Interpretation in the Pressure of Skin Effect and Wellbore Storage"; JPT (June, 1970).
- 8.- Hernández M. T.: "Análisis con Curvas Tipo de Pruebas de Presión en Yacimientos Homogéneos"; Tesis Profesional, Facultad de Ingeniería, U.N.A.M. (1985).

er han handen ver die die erende die die die die die heter de heter krywenden die de deele die heter werden die

- Bourdet D.P., Whittle T.M., et al. " A New Set of Type Curves Simplifies Well Test Analysis", World OB (May, 1983)
- 10. Stegenseier G L. and Matthews C S. " A Study of Anomatous Pressure Build-Up Itehavior", Petroleum Transaction of AIME, Vol. 213 (1958)
- 11.- Deruyck B., Ehlig-Economides C. and Joseph J. <sup>14</sup> Testing Design and Analysis, Oilfield Review (April, 1992).
- Bobadilla M. O. S. : "Estudio de las anomalias en Pruebas de Incremento de Presión"; Tesis Profesional, Facultad de Ingeniería, UNAM (Mayo, 1984).
- Agarwal L.G., Al-Hussainy R. and Ramey H.J. Jr. 29 An Investigation of Wellhore Storage and Skin Effect in Unsteady Liquid Flow: Analytical Treatment"; Soc.Pet. Eng.J. (September, 1970).
- [4] Fair W.B. & " Pressure Buildup Analysis with Wellbore Phase Redistribution": Soc.Pet.Eng.J. (April, 1981).
- 15.- Van Everdingen A.F. and Hurst W. . " The Aplication of the Laplace Transformation to flow Problems in Reservoirs"; Petroleum Transactions of AIME, Vol. 186 (1949).
- Murray R. Spiegel. : "Manual de Fórmulas y Tablas Matemàticas"; Serie Schaum's, Editorial McGraw-Hill (1983).
- Bourdet D. P., Ayoub J. A., Whittle T. M., Pirard Y. M. and Kniazeff V.: *"Interpreting Well Tests in Fractured Reservoirs"*; World Oil (October, 1983).
- 18 Earlougher, R. C. Ir.: "Advances in Well Test Analysis", SPE Monograph Series, Dallas, Vol 5 (October, 1957).

19 Van Everdingen A.F. " The Skin Effect and its Influence of the Productive Capacity of a Well" : Petroleum Transactions of AIME, Vol. 198 (1953).

AND THE APPENDED FOR THE FOR THE TRANSPORTED ADDRESS AND ADDRESS AND FOR THE TO THE PRODUCT OF THE THE PROPERTY AND THE TO THE TO THE THE TO THE THE TO THE TO THE TO THE THE TO THE TO

- 20 León-Ventura R.: "Análisis de Pruebas de Variación de Presión", División de Evaluación de Formaciones, Instituto Mexicano del Petróleo (1984)
- 21 Villamar V. M.: Commicación personal; Facultad de Ingeniería, UNAM. (1996).
- 22.- León V. R., Noyola O.A., Tinajero Z. J., García M.J.L. e Inda L. A. : " Audilisis de las Condiciones de Explotación del Campo Taratunieli"; Región Marina Suroeste Petróleos Mexicanos (1996).