16 24

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES
C U A U T I T L A N

"Propuesta de Introducción de Trigo Cristalino en la Región III, Texcoco, México (Localidad de San Francisco Acuautla, Municipio de Ixtapaluca)"

TRABAJO DE SEMINARIO Que para Obtener el Título de INGENIERO AGRICOLA Pre e e e n ta WILFRIDO HUERTA LUCARIO

Asesora: M. C. Adelina Albanil Encarnación

PALLA DE ORIGEN

Cuautitlán Izcalli, Edo. de México

1996

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DR. JAIME KELLER TORRES
DIRECTOR DE LA FES-CUAUTITLAN
PRESENTE.

AT'N: ING, RAFAEL RODRIGUEZ CEBALLOS

Jefe del Departamento de Exámenes

Profesionales de la FES-C.

	Reglamento de Exámenes Profesionales de sted que revisamos el Trabajo de Seminar	
	e la Producción Agrícola Ac	
	ntroducción de trigo crista	
	xcoco. México (localidad de	
Acuautla, Munic	cipio de Ixtapaluca).	
	: Wilfrido Huerta Lucario.	
con número de cuenta:	7517204-4 para obtener el Titu	lo de:
Ingeniero Agrico		
	rabajo reúne los requisitos necesarios part AL currespondiente, otorgamos nuestro VI	
ATENTAMENTE.		
"POR MI RAZA HABLA	RA EL ESPIRITU"	
	Mérica, s 21 de Agosto	de 19 96
		ر المناطقية المناطقية
MODULO:	PROFESOR:	
		12 Establish
Segundo	M.C. Adelina Albanil E.	11.907
Segundo	Ing. Francisco Cruz P.	I VI JA V
Cuarto	Ing. Guillermo Basante B	1/(3/1

DEP/VOBOSEN

Con respeto y agradecimiento

a mis padres Guadalupe y Roberto,

por su esfuerzo y apoyo en alcanzar esta meta.

A mis hermanos. A mis sobrinos.

Con cariño a Mireya, Ángelo Daniel y Jacqueline.

CO	NTENIDO	pág.
I.	RESUMEN	5
11.	INTRODUCCIÓN	7
	2.1 Objetivos	9
III.	REVISIÓN BIBLIOGRÁFICA	10
	3.1. Origen	10
	3.2. Situación de los trigos cristalinos	12
	3.3. Uso de los trigos cristalinos	13
	3.4. Requerimientos edáficos y climáticos	13
	3.5. Fenología del cultivo	15
	3.6. Paquete tecnológico	17
	3.7. Obtención de ETP (evapotranspiración potencial)	19
	3.8. Índice de acumulación de calor	19
	3.9. Periodo libre de heladas	21
	3, 10. Estación de crecimiento	23
IV	MATERIALES Y MÉTODOS	25
	4.1. Localización del área	25
	4,1.1. Suelo	25
	4.1.2. Clima	26
	4.2. Manejo de información climática	26
	4.2.1. Selección de estación	27
	4.2.2. Análisis de la información	27

	4.2.3. Obtención de ETP (evapotranspiración potencial)	28
	4.2.4. Obtención de unidades calor por el método residual	29
	4.2.5. Obtención del periodo libre de heladas por el método de Arteaga	29
	4.2.6. Estación de crecimiento	30
	4.2.7. Fenología	31
v. R	ESULTADOS Y DISCUSIÓN	33
VI. (CONCLUSIONES	35
VII.	BIBLIOGRAFÍA	37
VIII	. ANEXOS Y GRÁFICAS	39

I. RESUMEN

El trigo es un alimento básico para la humanidad, no es gratuito entonces que a su cultivo se dediquen casi 240 millones de hectáreas en todo el mundo. Esta superficie es mayor a la dedicada a cualquier otro cereal. En consecuencia, ningún producto supera al trigo en su aporte de energía y proteínas a la dieta humana.

Eu nuestro país, el trigo se cultiva en casi todos los estados de la República, pues se adapta con facilidad tanto a tierras ricas como pobres.

En los últimos años, la demanda de trigo cristalino o macarronero por parte de la industria ha ido en aumento debido a la mejor calidad de esta variedad y, en consecuencia, de las pastas producidas con ella.

Algunas zonas del Estado de México presentan un potencial adecuado para el cultivo de trigo cristalino; por ello se recomienda impulsar su cultivo.

En éste se aplicaría la agrometeorología, con el fin de aprovechar los datos generales de las estaciones meteorológicas. Si a esto se suma un programa de cómputo, ya se estaría en posibilidad de efectuar la evaluación de una posible adaptación del cultivo del trigo cristalino en la localidad de San Francisco Acuautla, municipio de Ixtapaluca.

Cabe decir que la capacidad productora de esta población está dada por la siembra de alrededor de 2500 hectáreas, de un total de 4000 posibles.

Así pues, en este trabajo se seleccionó la estación meteorológica de Coatenec de los Olivos, localizada aproximadamente a cuatro kilómetros de San Francisco Acuautta.

Se recopilaron los datos de temperaturas medias mensuales, normales, los promedios

de las mínimas y las máximas; la precipitación media mensual y días con heladas. Con esta información se construyó una gráfica para establecer la estación de crecimiento y su periodo libre de heladas.

De esta manera se pudo establecer un periodo ideal que va de mayo a octubre, en el cual se cubren perfectamente las necesidades de unidades de calor del trigo.

Con base en estos resultados se propone que en la localidad de San Francisco Acuautla se impulse el cultivo de trigo cristalino. Se sugiere tras las primeras cosechas de prueba de rendimiento, se realicen análisis de laboraturio para se cubran las normas exigidas por la industria harinera.

II. INTRODUCCIÓN

El cultivo de trigo presenta algunas características muy peculiares.

Primero. Se cultiva en 240 millones de hectáreas en el orbe; una superficie mayor que la que se destina a cualquier otro cultivo.

Segundo. Proporciona más energía y proteínas a la dieta mundial que ningún otro alimento.

Tercero. En el mundo su comercialización excede a la de todos los demás granos en su conjunto.

Cuarto. El gluten del trigo es una forma elástica de proteína. Cuando se fermenta la masa con levadura, el gluten atrapa pequeñas burbujas de bióxido de carbono, lo cual permite que se levante la masa.

Quinto. Los trigos de invierno poseen una combinación de genes que posibilitan la siembra y germinación de estas semillas en climas templados durante el otoño. Ello les ayuda a soportar temperaturas muy bajas (de hasta -30 °C). Por lo general, este tipo de trigos crecen, florecen y maduran rápidamente bajo una cubierta de nieve, antes de que se presenten los vientos callentes y secos del verano. A su vez, los trigos de primavera -el segundo grupo más importante de este cereal-, pueden sembrarse en cualquier estación si la temperatura y la humedad son apropladas, pero no sobreviven a los inviernos frios (Hanson, 1985).

Bajo estas condiciones, el trigo es uno de los ingredientes principales de la dieta humana; su valor nutritivo, asimismo, le confiere la calidad de producto básico en la

alimentación de grandes sectores de la población mundial.

En México la mayor parte de la producción proviene de áreas de riego, en las cuales se utilizan fertilizantes y atraen grandes recursos dedicados a la investigación. Sólo el 8% de la superficie triguera es de temporal y sus rendimientos unitarios son tan bajos que contribuyen con un raquítico 10% de la producción total.

El productor enfrenta en la actualidad un grave problema en el cultivo de este cereal: mientras que el costo de producción aumenta en forma constante y rápida, el incremento en el precio es mínimo y lento. Esta situación contrasta con el cultivo del cártamo, del algodón, etcétera, los cuales son muy rentables.

De esta manera, la superficie triguera y su producción disminuyen -tanto de riego como de temporal-, dada su baja rentabilidad. En este sentido, es necesario buscar zonas de temporal en las cuales se adapten algunas variedades de riego (Robles, 1975).

En casi todos los estados de la República Mexicana el trigo se cultiva tanto en tierras pobrea como ricas en nutrimentos, en zonas húmedas, semisecas y secas. En la actualidad, las instituciones de investigación dedicadas a la selección de nuevas variedades no consideran únicamente el criterio de rendimiento, sino también toman en cuenta el rango de adaptación, es decir, las variedades recomendadas deben de ser las que mejor se adapten a la región desde una doble perspectiva: la tecnología disponible y los factores ambientales (climáticos). Sabemos que estos últimos pueden favorecer o perjudicar el cultivo. Por ello es útil saber cuándo es el momento oportuno para la preparación del terreno, la siembra, el control de maleza, el control de plagas y enfermedades y la cosecha.

Asi pues, la conjunción de los factores agronómicos y ambientales, en las

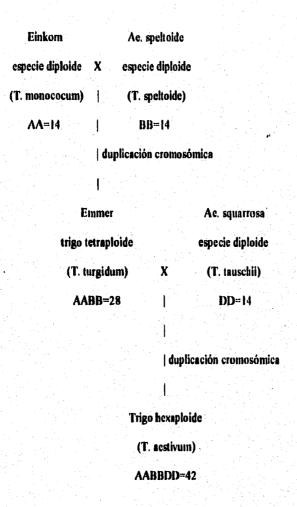
condiciones particulares de cada ciclo, permitirán el rendimiento máximo del producto.

En los últimos años, la demanda de trigos cristalinos o macarroneros por parte de la industria se ha incrementado, pues las pastas producidas con éstos son de mayor calidad. Ello ha motivado a los molineros a promover el cultivo de este cereal en diferentes partes del país. Por ejemplo, en el Estado de México un grupo de industriales propuso su cultivo en algunas zonas productoras de trigo importantes de esa entidad.

2.1. Objetivos

- 1. Análisis del potencial agroclimático de la localidad de San Francisco Acuautla, município de Ixtapaluca, Estado de México.
- 2. Propuesta del manejo del cultivo de trigo cristalino en la localidad de San Francisco Acuautla, municipio de Ixtapaluca, Estado de México.

III. REVISIÓN BIBLIOGRÁFICA


3.1. Origen

El trigo ha formado parte de la dieta humana desde tiempos prehistóricos. Su origen se ubica entre los años 10 000 a 15 000 antes de nuestra era. En el Medio Oriente se han encontrado granos carbonizados de este cereal que datan del año 6 750 antes de nuestra era.

Vale decir que fue uno de los primeros cultivos que aprendió el hombre. Los chinos lo conocieron 2 800 años antes de nuestra era; en Egipto ya se cultivaba por el año 4 000. Se dice que de las tierras altas del este de Irak el trigo pasó a Europa en la era de piedra (Puckridge, 1967).

A México, como es de suponer, los españoles trajeron el cultivo del trigo. Esto sucedió alrededor de 1520, poco después de su llegada (Díaz del Pino, 1953).

El origen del trigo se puede dividir en geográfico y botánico. El origen geográfico se localiza en Persia, Irak e Israel. El origen botánico esta dado por el cruzamiento de trigos o pastos silvestres, como se indica a continuación.

Se conocen varias especies de trigo pero el grueso de la producción de este cereal está formada por variedades del tipo harinero o hexaploide (Triticum aestivum L. em Thell). Éstas representan el 95% de la producción total. Le sigue en importancia el trigo cristalino o tetraploide (Triticum durum Desf.). Éste aporta el 5% de la producción total (Hernández, 1987).

Los principales cereales que el hombre consume -trigo, maíz, cebada, mijo, centeno, y avena- son semillas de plantas que pertenecen a la familia de los pastos, graminae. Dentro del género Triticum se reconocen 16 especies de trigo, pero sólo dos de ellas (Triticum aestivum y Triticum durum) se cultivan en gran escala (Hanson, 1985).

3.2. Situación de los trigos cristalinos

Los trigos cristatinos o macarroneros constituyen uno de los principales alimentos básicos en el norte y este de África y el Cercano y Medio Oriente. Éstos también son importante en el continente asiático y en la región andina. Asimismo, se ubican como uno de los mejores cultivos en Canadá, Estados Unidos, Argentina, Chile y algunos países del sur y este de Europa. Aproximadamente se siembran 30 millones de hectáreas de trigos cristalinos en todo el mundo (Brajerch y J.M. Prescostt, 1981).

Los trigos duros o cristalinos también se "enanizaron". Los fitomejoradores cruzaron trigos harineros que portaban genes de NORIN 10 con trigos duros, lo cual dio como resultado variedades de trigo duro altamente rendidoras. Los trigos duros semienanos fueron liberados en México y ahora se cultivan extensamente en las áreas productoras de trigos duros en todo el orbe. Las mejores variedades de estos trigos no se acaman ni se caen bajo condiciones de alta fertilidad y sus rendimientos igualan o sobrepasan los mejores trigos harineros (Hanson, 1985).

En México las principales áreas trigueras de riego del país se encuentran localizadas en la región noroeste, con 488,427 hectáreas que producen 2'043,052 toneladas; en la región del Bajío, con 103,336 hectáreas, las cuales aportan 533,418 toneladas; y en la región

del Norte, en donde 61,572 hectáreas producen 166,175 toneladas.

En tanto, en tierras de temporal se siembran alrededor de 124,849 hectáreas, las cuales significan 214,277 toneladas de trigo. Los principales estados donde se siembra el trigo de temporal o secano son: Guanajuato, Jalisco, Michoacán, Querétaro, Puebla, Tlaxcala, Oaxaca, Chihuahua y Estado de México (CIMMYT, 1972).

Los trigos cristalinos se producen en el noroeste del país; es decir, en Sinaloa y Sonora, en condiciones de riego y en el ciclo otofio-invierno.

3.3. Uso de los trigos cristalinos

Los granos de trigo cristalino son típicamente más grandes, pesados y duros que los granos de trigo harinero. La masa de trigo cristalino es menos elástica que la producida con trigos harineros y por tanto de inferior calidad para la producción de panes con levadura. Empero, el trigo cristalino se utiliza con frecuencia para la elaboración de fideos y otros productos de pastas como: espaguetis, macarrones y ravioles.

Los productos de pasta hechos con trigo cristalino tienen una mayor estabilidad en la cocción, pues no se desintegran, no se ponen pegajosos cuando hierven ni se hacen pastosos si se dejan en agua después de cocidos. En el comercio internacional, los trigos cristalinos de buena calidad tienen en general mejores precios que los mejores trigos harineros (Hanson, 1985).

3.4. Requerimientos edáficos y climáticos

El trigo se produce en regiones templadas y frías, entre unos 15 a 60 grados de

latitud norte y 27 a 40 grados de latitud sur.

De acuerdo a las condiciones de ambiente (clima), determinada variedad de trigo tiene diferentes posibilidades de producción (Aguado y Bisnies, 1978).

En el Programa Mexicano de Fitomejoramiento de Trigo se ha observado que los genotipos tienen un comportamiento diferencial cuando cambian las condiciones ecológicas consideradas en la evaluación (Martínez, 1977).

El clima se define como el factor del medio natural sobre el cual el hombre no puede influir en forma directa. Las causas que hacen variar los elementos del clima de cierto lugar y de determinada estación, son los llamados factores climáticos. Éstos son: a) latitud; b) akitud; c) relieve; d) distribución de tierras y aguas; y e) corrientes marinas (García, 1967).

Se considera que las variedades de trigo cristalino están mejor adaptadas a regiones con precipitación pluvial escasa, en comparación con las variedades de trigo harinero. El rendimiento promedio de estas últimas es más bajo que el de las de los trigos cristalinos en clima semiárido. Sin embargo, en condiciones de riego, las variedades modernas de trigo cristalino tienen rendimientos tan altos como los de las mejores variedades de trigo harinero (Hanson, 1985).

Ortiz (1978) indica que las necesidades de agua para el trigo son de 450 a 650 mm durante todo el periodo vegetativo de este último.

Se ha observado que el trigo se cultiva en altitudes que van desde el nivel del mar hasta los 3,300 metros sobre el nivel del mar -como en Kenya-, y a 5,000 metros de altura -en el caso del Tíbet.

El cultivo de trigo se efectúa en grandes zonas a lo largo ancho del mundo, tanto por

ser una especie con un amplio rango de adaptación como por su gran consumo en muchos países. De tal manera, en la actualidad el trigo ocupa el primer lugar entre los cuatro cereales de mayor producción mundial. Los otros tres cereales principales son el arroz, el maíz y la cebada. Sin embargo, dado que el trigo es un cultivo tolerante a bajas temperaturas en sus primeras fases de desarrollo, su mayor producción tiende a concentrarse en ciertas áreas, principalmente en aquellos países de clima templado y frío.

3.5. Fenología del cultivo

La fenología es definida en forma similar por varios autores. Algunos de ellos la consideran como una rama de la agrometeorología, la cual estudia las relaciones entre las condiciones climáticas y los fenómenos periódicos que los cultivos experimentan en su desarrollo (Villalpando y Ruiz, 1995 citado por Cruz, 1995).

Uno de los elementos que se ha estimado influye en la fenología del cultivo es la temperatura. Otros parámetros climáticos como el fotoperiodo, la radiación solar y la humedad del suelo son también importantes, en función de la especie o cultivo del cual se trate.

Es necesario distinguir tres estados en la fenología de los cultivos: el inicio, la plenitud y el fin de las fases y etapas, lo cual sirve como un indicador para juzgar la rapidez del desarrollo de las plantas. Ello también depende de las signientes variables: fecha de siembra, duración del día, temperatura, suministro del agua o humedad, componentes genéticos de las plantas y manejo del cultivo (Villalpando y Ruiz, 1995 citado por Cruz, 1995).

En el cultivo del trigo se pueden distinguir tres fases generales de desarrollo, las cuales se indican en el cuadro 1. Éstas son: la fase vegetativa, que va desde la germinación hasta la iniciación de la espiga; la fase reproductiva, la cual abarca desde la iniciación de la espiga hasta la floración; y la fase del llenado de grano, que comprende desde la antesis hasta la madurez fisiológica. Para su mejor estudio, estas fases han sido subdivididas por algunos autores en 11 etapas de desarrollo. Es importante conocer las diferentes etapas fenológicas del cultivo para su adecuado manejo y conducción. La aplicación óptima del agua de riego, fertilización, aplicación de herbicidas, dependen del conocimiento de la etapa fenológica (Hernández, 1991).

Cuadro 1. Fases y etapas de desarrollo del cultivo de trigo, Hernández, (1991)

Fases	Etapas de desarrollo	Definición e intervalo de tiempo promedio
V E	!. Germinación	Fenómeno biológico que da origen al primer brote que sale de una semilla. El intervalo de siembra a germinación es de 5 a 7 días.
G E T	2. Plántula	Es una planta joven, desarrollada y alimentada de la semilla hasta que se alimenta por sí misma (antes del amacollo). El intervalo de germinación al estado plántula es de 5 días.
A T I	3. Amacollo	Proliferación de hijos (secundarios y terciarios), originados en la corona. El intervalo que va de la plántula al amacollo es de 15 días.
V A	4. Encafie	Empieza con la formación del primer nudo en las porciones más bajas del tallo, en donde se empieza a diferenciar una espiga poco prominente. El intervalo del amacollo al encaño es de 15 días.

R E 5. E P	imbuche	La espiga es prominente dentro de la hoja superior que la envuelve y la hoja bandera se empieza a desarrollar. El intervalo del encañe al embuche es de 25 días.
R O D 6, E U C T	Espigamiento	En esta ctapa el 50% de la espiga o panícula ya emergió, pero, por el contrario, menos del 10% de la espiga se encuentra en polinización. Una excepción es la cebada, la cual poliniza antes de que emerja la espiga. El intervalo del embuche al espigamiento es de 10 días.
I V A	Antesis	Cuando menos el 50% de todas las espigas emergidas muestran dehiscencia en sus estambres. El intervalo que va del espigamiento a la antesis es de cuatro días.

L L E N	8. Grano lechoso	Cuando los granos en la porción central de la espiga contienen una sustancia liquida de apariencia lechosa. El intervalo de antesis a grano lechoso es de afrededor de 15 días.
A D O	9. Grano masoso	Cuando los granos de la porción central de la espiga contienen una sustancia granular sólida. El intervalo de grano lechoso a masoso es de aproximadamente 15 días.
D E G	10. Madurez fisiológica	La madurez ya ha sido definida; la hoja bandera y el cuello de la espiga se toman amarillentos, el contenido de lumedad del grano es del 35%. El intervalo de grano masoso a la madurez fisiológica es de 39 días.
R A N	11. Madurez comercial	La madurez comercial se determina cuando el grano se quiebra y el contenido de humedad es del 13%. El intervalo que lleva de la madurez fisiológica a la madurez comercial es de aproximadamente 15 días.

3,6. Paquete tecnológico

El Servicio Cooperativo y la Extensión de Agricultura de la Universidad de Arizona estudió la densidad de siembra en el trigo y encontró que la cantidad de semilla para obtener los mejores rendimientos depende de la fecha de siembra, variedad, método de siembra, textura de suelo, y tipo de riego y clima (Universidad de Arizona, 1978).

Con base en algunos estudios se ha permitido definir que las enfermedades y las deficiencias en ciertas prácticas de cultivo como el combate de malezas, excesiva cantidad

de semilla, el uso inadecuado de fertilizantes y manejo de agua son las causas limitantes en el aumento de la producción de trigo. A esto hay que sumar los factores del medio ambiente como las heladas, el granizo, y la escasez y mala distribución de las lluvias, así como otros de tipo social (Sixto, 1981).

Por lo que toca a los centros de investigación como el Instituto de Investigación y Capacitación Agropecuaria Acuícola y Forestal del Estado de México (ICAMEX), se puede decir, por ejemplo, que éste ha generado un paquete tecnológico que recomienda para esta región, en condiciones de temporal o secano para el cultivo de trigo. Ahí se recomienda lo siguiente:

Durante los meses de marzo-abril se barbecha el terreno. Se siembra entre el 15 de mayo y el 15 de junio (al inicio del temporal), con una densidad aproximada de 120 kg/ha de semilla y una dosis de fertilizante de 80-40-00 (N-P-K). En caso de que se presenten plagas, se debe emplear carbofuran 5%-20 kg/ha. Éste se aplica mezclado con el fertilizante. En el caso de los insectos chupadores se recomienda usar Dimetoato 48% CE 1 lt/ha; y para insectos masticadores, Paratión metílico 50% CE o malation 80% CE lt/ha. Estos productos se aplican asperjándolos con una mezcla del producto en 200 litros de agua. Para la cosecha se recomienda, de preferencia, el empleo de una máquina combinada cuando el grano presente alrededor del 15 al 13% de liumedad (que se quiebre en lugar de amasarse al presionarlo) (ICAMEX, 1991).

La selección de las variedades de trigo para una región se debe basar en aspectos tales como: periodo vegetativo, resistencia a enfermedades, resistencia al desgrane, al acame, y adaptabilidad a suelos pobres (Bourlong, 1965 citado por Cantú, 1971).

3.7. Obtención de ETP (evapotransuiración potencial)

Aguilera y Martínez (1980) -citados por Albanil (1995)- mencionan que con frecuencia se encuentra una estrecha proporción entre la evaporación medida, por ejemplo, en un experimento estándar y la evaporación de un cultivo provisto adecuadamente de agua. Esto se debe a que los fenómenos de la evaporación y la evapotraspiración son originados por las mismas causas.

Cabe decir, sin embargo, que aunque la evaporación y la evapotranspiración son procesos cualitativamente semejantes, se comportan de manera diferente en el aspecto cuantitativo. Los efectos del clima en la vegetación son cuantitativamente diferentes a los que se presentan en un evaporómetro, y el factor de proporcionalidad entre ambos fenómenos depende del tipo de evaporómetro usado.

En este aspecto, en México se utilizan de manera fundamental dos métodos: Thomthwaite y Tanque tipo A. En este proyecto se utilizará el segundo.

3.8. Índice de acumulación de calor

Existen dos índices a considerar en la acumulación de temperatura: el de acumulación de calor y el de acumulación de frio. Dadas las características del cultivo que manejamos, al que nos referiremos en este trabajo es al índice de acumulación de calor, ya que es el que influye en el crecímiento activo de los cultivos durante la fase en la que se involucran los procesos de crecimiento y desarrollo.

La temperatura es uno de los factores climáticos más importantes en la adaptación y desarrollo de cultivos. De manera tradicional se han utilizado valores de temperatura media,

máxima y mínima, sin embargo para fines agrícolas estos valores no son suficientes debido a que no están en finición del desarrollo del cultivo, por lo que la temperatura hay que expresarla en forma de índices agrotérmicos. Conocidos éstos, es posible considerar las fechas de siembra, las de corte de cultivos en verde, de cosechas, etcétera.

Los principales índices agrotérmicos son: a) unidades térmicas; b) unidades fototérmicas; y c) amplitud térmica.

Unidades térmicas. La temperatura afecta el desarrollo de las plantas a través de la influencia sobre la velocidad de los procesos metabólicos. Así, las temperaturas bajas retardan el desarrollo, en tanto que las altas (hasta cierto límite) aceleran y acortan el ciclo vegetativo de las plantas. Para describir la influencia de la temperatura sobre la fenologia de las plantas se ha usado -desde el siglo XVIII- el concepto de sumas de temperaturas, conocido como unidades térmicas, grados día, o unidades térmicas de crecimiento.

En este concepto se establece que el crecimiento y desarrollo de un cultivo nicanzará una determinada etapa fenológica cuando haya recibido una cierta cantidad de calor, independientemente del tiempo requerido para ello.

El concepto de unidades térmicas ha sido usado ampliamente con propósitos de planeación y operación agrícola, ya que es de fácil cálculo y aplicación. Este concepto depende de la estrecha relación que existe entre temperatura y fotoperiodo, y la adaptación o fotoperiodos locales. Para el cálculo de unidades térmicas existen varios métodos. En el presente trabajo se aplicará el método residual. Éste es el más usado y el de más fácil aplicación.

En la agricultura la aplicación de las unidades térmicas se presenta en los signientes

aspectos:

- 1. Zonificación de variedades de cultivos, de acuerdo a las unidades térmicas disponibles en una región.
 - 2. Pronósticos de las fases fenológicas de los cultivos.
- 3. Programación de actividades agricolas, tales como fechas de siembra, aplicación de insecticidas para el control de plagas y enfermedades.

Unidades Fototérmicas. El fotoperiodo es la duración astronómica del día, o sea, la duración de la luminosidad del día sin tomar en cuenta la intensidad de la radiación. En diversos estudios científicos se ha comprobado que para los cultivos agrícolas la intensidad de la radiación solar es menos importante que la duración de la misma. En función del fotoperiodo vegetal, o sea, la respuesta de las plantas a diferentes duraciones diarias de luz solar, podemos clasificar a los vegetales en tres grandes grupos: plantas de fotoperiodo corto, las cuales requieren una duración del día igual o menor de 12 horas; plantas indiferentes, aquéllas que florecen y fructifican normalmente tanto en épocas de día corto como de día largo; y plantas de fotoperiodo largo, las cuales requieren un día con duración de más de 12 horas, como en el caso del cultivo del trigo. Este grupo comprende cultivos de zouas templadas dentro del ciclo agrícola de verano (Torres, 1995).

3.9. Período libre de heladas

Desde el punto de vista meteorológico, una helada se produce cuando la temperatura desciende a los 0 °C o menos. En el criterio agrometeorológico, la helada ocurre cuando la temperatura del aire desciende a temperaturas tan bajas, que provocan la muerte de los

tejidos vegetales.

De los diferentes métodos que se utilizan para conocer la probabilidad de ocurrencia de heladas (0 °C o menos), después de una determinada fecha de la primavera o antes de una determinada fecha en el otoño, se utilizará el método de Arteaga. Éste se utiliza cuando no se tienen datos de por lo menos 20 años de información, o fechas de ocurrencia de la primera y la última helada.

Las heladas tardías y tempranas que se presentan en la primavera y en el otoño, respectivamente, son las que más estragos causan en la agricultura, ya que se llegan a presentar en época de intensa actividad vegetativa. El periodo comprendido entre la última y la primer helada recibe el nombre de periodo libre de heladas, el cual se define como el número de días comprendidos entre la fecha después de la cual es esperada una última helada, con una probabilidad máxima aceptada para un cultivo y la fecha antes de la cual es esperada una primer helada, con una probabilidad máxima aceptada para el mismo cultivo (Romo y Arteaga, 1989, citados por Albanil, 1995).

En el caso del trigo, las temperaturas letales (°C) en sus diferentes etapas fenológicas son:

ETAPAS °C

Germinación -9,0

Floración -1.0

Fructificación -2.0

3.10. Estación de crecimiento

La estación de crecimiento (E.C.) o periodo de crecimiento (P.C.) se considera, dentro de la metodología de zonas agroecológicas, como el lapso del año en el cual existen condiciones favorables de humedad y temperatura para el desarrollo de cultivos.

En las regiones templadas, además de la disponibilidad de humedad, la estación de crecimiento se encuentra definida por la disponibilidad de temperaturas favorables o ausencia de heladas (Ruiz y Villalpando, 1985 citados por Albanil, 1995).

Existen cuatro tipos de E.C., según la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), 1978, a saber:

1) Estación de crecimiento Normal.

Durante este periodo el crecimiento se inicia cuando la precipitación (P) es igual al 0.5 de la evapotranspiración potencial (ETP). Esto coincide con el inicio de lluvias. Cuando la P es mayor a la ETP se tiene un periodo húmedo; en esta etapa al existir un exceso de agua se supone que hay un almacenamiento en el perfit del suelo. Cuando la P = 0.5 de ETP se considera como la terminación de la temporada de lluvias, después de la cual la planta puede seguir viviendo con el agua almacenada en el suelo.

2) Estación de crecimiento Intermedio.

Es aquélla en la cual la precipitación a lo largo del año no excede a la ETP pero si a la mitad de la ETP, por lo que no existen excesos de agua o no hay reservas de humedad en el suelo. El inicio y la terminación de la temporada de lluvias coincide con el inicio y terminación del periodo de crecimiento.

3) Estación de crecimiento húmedo todo el año.

La precipitación excede a la ETP, todo el año.

4) Estación de crecimiento seco todo el año.

La precipitación es menor al 0.5 de ETP durante todo el año. El número de días con condiciones de humedad es cero (Ojeda, Pájaro, 1987. citados por Albanil, 1995).

IV. MATERIALES Y MÉTODOS

4.1. Localización del área

En el Estado de México el 99.4% del cultivo del trigo se siembra en el ciclo de primavera-verano y el restante, es decir, el 0.6%, en el de otoño-invierno. Se ha observado que la superficie sembrada con trigo en la entidad se ha incrementado en los últimos ciclos.

Dada la capacidad productora de San Francisco Acuautla, esta localidad fue elegida para realizar en ella el experimento. Cabe decir que en ella se siembran alrededor de 2,500 hectáreas, de un total de 4,000 hectáreas con potencial para este cultivo.

San Francisco Acuautia, municipio de l'xtapaluca, se localiza a los 98° 52' de latitud Norte y 19° 21' de longitud Oeste.

4.1.1. Suclos.

El suelo de San Francisco Acuautla. es, en algunos sitios, del tipo Feozem haplico. Éste tiene una capa superficial oscura, suave y rica en materia orgánica y nutrimentos. Se pueden ver terrenos que van desde lo plano hasta lo montañoso; sus limitantes son la profundidad, la pendiente y el riesgo de erosión.

Otro tipo de suelo que predomina en esta localidad es el Regosol eutrico de textura media. Los regosoles se caracterizan por no presentar capas distintas; son claros y se parecen a la roca que les dio origen. Se pueden presentar en muy diferentes climas y con diversos tipos de vegetación; su fertilidad es variable, de textura gruesa, baja capacidad de retención de humedad y de permeabilidad rápida.

4.1.2. Clima

San Francisco Acuautla tiene un clima C(w2)big. Éste es uno de los climas templados (el menos húmedo), con lluvias en verano; abarca zonas montafiosas y mesetas del país y con un porcentaje de lluvias invernales menores del 5% anual. En esta zona se presenta una precipitación media anual de 650 mm (García, 1973).

C(w2)big

C = es un clima templado, con una temperatura media del mes más frío entre -3 y 18 °C y la del mes más calienten > de 6.5 °C

(W2) = con un cociente P/T de 55.3 y un porcentaje de lluvia invernal entre 5 y 10.2

b = verano fresco largo, con temperatura media del mes más caliente entre 6.5 y 22 °C

i = isotermal, con una oscilación anual de las temperaturas

g = con media de la temperatura tipo Ganges (Castro y Arteaga 1993)

4.2. Manejo de información climática

Los datos meteorológicos y climáticos son utilizados en la planificación de diversas actividades humanas, entre las cuales una de las más importante es la agricultura.

Todorov, (1985) citado por Albanii (1995), menciona que desde que el hombre comenzó a cultivar la tierra in observado los condiciones atmosféricas. Las primeras observaciones meteorológicas fueron utilizadas, primordialmente para esta actividad, en aspectos tales como la introducción de nuevos cultivos o en la evaluación de las condiciones atmosféricas más propicias para aumentar la cosecha.

No se emitian entonces pronósticos meteorológicos regulares y muchas aplicaciones

ahora conocidas no existían; eventualmente se hizo evidente que para que los agricultores pudiesen aprovechar las condiciones meteorológicas favorables y evitar o reducir los efectos de aquéllas que son adversas, se debían observar y registrar las condiciones atmosféricas.

4.2.1. Selección de la estación

La estación meteorológica que se seleccionó para obtener los datos climáticos necesarios fue la de Coatepec de los Olivos, ubicada en el municiplo de Ixtapaluca, y se hizo por las siguientes razones:

- a) La cercanía a la zona de influencia de San Francisco Acuautla, (es de aproximadamente 4 km).
- b) La estación se localiza en la latitud Norte de 19° 19' y a una longitud Oeste de 98° 51', a una altitud de 2410 m.s.n.m.

4.2.2. Análisis de la información

Se utilizaron para el análisis de la información las temperaturas medias mensuales, normales, los promedios de las mínimas y las máximas, la precipitación media mensual y días con heladas. Éstas se presentan en el anexo 9. Tomando como base estos datos se obtuvieron los siguientes cuadros: temperaturas promedio diarias estimadas (anexo 8); grados días acumulados (GDD) diariamente con una temperatura base de 5° C para el caso del cultivo del trigo (anexo 6); precipitación acumulada diaria, en mm, (anexo 2), valores acumulados de evapotranspiración al 1.0, en mm, (anexo 3). Éstas fueron producto de la diferencia diaria de precipitación menos la evapotranspiración 1.0 mm (anexo 5). En tanto,

en el anexo 7 se anota la duración diaria del día (horas luz). Estos datos se manejarán para poder establecer el periodo o estación de crecimiento para el cultivo del trigo en la localidad de San Francisco Acuautia.

4.2.3. Obtención de ETP (evapotranspiración potencial)

El método de Thornthwaite y el de Tanque tipo A son los dos métodos más usados en México.

Sin embargo, el método de Thomthwaite es probablemente el mas usado a nivel no sólo nacional sino mundial, debido principalmente a que exige sólo el uso de una variable meteorológica (la temperatura), para la obtención de la ETP. Ésta es definida como la cantidad de agua que se perderá por evapotranspiración si el suelo está saturado.

Para el caso de la estación elegida -Coatepec de los Olivos-, sí se cuenta con el dato de evaporación, por lo que se utiliza el método de Tanque tipo A. Hay que recordar que este método se basa en correlacionar la evapotraspiración con la evaporación, en función de las lecturas de evaporómetros.

La fórmula que se usa para la estimación de la evatranspiración requiere de un coeficiente de ajuste, el cual depende de factores como el tamaño, la forma, el color y el estado de conservación del tanque, así como de la turbiedad y profundidad del agua. Esta fórmula se presenta a continuación: ETP = C(EV). Donde:

ETP = Evapotranspiración potencial.

EV = Evaporación media en el tanque.

C = Coeficiente de ajuste, adimensional.

Uno de los problemas en la estimación de C es la ubicación del tanque y el medio que lo rodea. Por lo tanto, los valores de este coeficiente -el cual varía de 0.35 a 0.85-dependen de las condiciones de humedad, viento y ubicación del tanque. Ver coeficiente de ajuste (C), en el anexo 10.

4.2.4. Obtención de unidades calor por el método residual

En el Método Residual, para el cálculo de las unidades de calor, los parámetros que se requieren son: temperaturas máximas y mínimas, y una temperatura base que depende de cada especie vegetal, pues por debajo de aquélla el crecimiento y desarrollo se inhiben. En el caso del trigo la temperatura base es de 5 °C.

La acumulación de unidades térmicas se supone que ocurre en forma lineal, lo que no siempre es cierto, aunque ha dado buenos resultados prácticos. Para el cálculo de unidades térmicas por este método se emplea la siguiente fórmula básica.

UT = temp máx. + temp mín / 2 - temp base.

4,2.5. Obtención del periodo libre de heladas por el método de Arteaga

Teniendo la información sobre las temperaturas mínimas se puede aplicar el método propuesta por Arteaga en 1988, para calcular con un 20% de probabilidad de que se presente una última helada después de una fecha dada, y 20% de probabilidad de que se presente una primera helada antes de una fecha dada. Este método es válido para valles altos. Para construir la gráfica es necesario contar con la temperatura mínima promedio mensual, la cual se ubica en un sistema de coordenadas donde en el eje de las X se ubica el día o mes fenológico y en el eje de las Y la temperatura mínima promedio. Se traza una línea

horizontal que pase por 7°C de temperatura mínima y al aceptar la gráfica construida las ordenadas de las intercepciones corresponden a las fechas de ocurrencia de heladas, lo que para el primer semestre del año corresponde a la fecha de la última helada con 20% de probabilidad y la otra fecha corresponde a la fecha de la primer helada con 20% de probabilidad de ocurrencia (figura 1).

4.2.6. Estación de crecimiento

En el procedimiento original, para el cálculo de la estación de crecinuento (EC), se considera un balance de humedad en el que intervienen la precipitación y la evatranspiración potencial (ETP). Dicho procedimiento no considera el periodo libre de heladas en forma directa, lo cual significa una desventaja de este método.

Cuando se cuenta con la información básica para calcular el establecimiento de la EC, se efectúa lo siguiente:

- a) Se grafican los valores mensuales (se recomienda que sea decenal), de precipitación y evapotranspiración potencial estimada a partir de 0.8 E.V. y la mitad de la evapotranspiración potencial, estableciendo una curva para cada dato (P, ETP al 0.5 y ETP al 1.0).
- b) Se establece el inicio y terminación de los periodos de crecimiento y se define el tipo de periodo (normal, intermedio, seco todo el año o húmedo todo el año). En regiones con clima templado, la EC usualmente se determina en base al periodo libre de heladas. Los limites determinados por este criterio es de acuerdo a la susceptibilidad a las bajas temperaturas.

En las zonas templadas, además del periodo con humedad disponible para el desarrollo del cultivo, se evalúa el periodo con temperaturas favorables que permitan el desarrollo del cultivo. El límite mínimo de temperaturas media diaria para que se dé el desarrollo es aproximadamente de 4.4 ° C como temperatura base de desarrollo.

4.2.7. Fenología

Como ya se mencionó, la fenología se considera como una rama de la agrometeorología para establecer la relación entre las condiciones climáticas y los fenómenos periódicos que los cultivos experimentan en su desarrollo.

En este caso se evaluaron las siguientes cuatro fases:

- I. Vegetativa.
- 2. Reproductiva.
- 3. Llenado de grano.
- 4. Madurez comercial (cosecha).

Considerando estas fases, en ellas se agrupan las siguientes etapas:

FASES	ETAPAS	DIAS PROMEDIO	U.C.
1. Vegetativa	Germinación	7	
	Plántula	. 5	
	Amacollo	15	
	Encafie	15	489

2. Reproductiva	Embuche	25	
	Espigamiento	10	
	Antesis	4	415
3. Llenado de grano	Grano lechoso	15	
	Grano masoso	15	
	Madurez fisiológica	39	735
4. Madurez comercial	Cosecha	15	139
	TOTAL	165	1778

Tomando como base la estación de crecimiento y el periodo libre de heladas se planteará junto con las etapas fenológicas la fecha óptima de la siembra.

V. RESULTADOS Y DISCUSIÓN

Para el presente estudio se tomaron como base las normales climatológicas 1951-1980, de la estación de Coatepec de los Olivos, Extapaluca, con una altitud de 2410 m.s.n.m. y latitud de 19° 19' y una longitud de 98° 51' (ver anexos). De ahí se utilizaron los datos de temperatura media, temperatura máxima, temperatura mínima (el periodo libre de heladas) y precipitación. Estos datos se trabajaron dentro del programa AGROCLIM. De esta manera se obtuvieron datos para elaborar una serie de gráficas y así poder establecer el periodo de crecimiento del cultivo del trigo en San Francisco. Acuautla.

Relación mensual del ETP 1.0 (mm), el ETP 0.5 (mm) y la precipitación (mm); para la formación de la gráfica de la Estación de Crecimiento.

Meses	ETP 1.0 (mm)	ETP 0.5 (mm)	Precipitación (mm)
Enero	97.28	48.64	9.4
Febrero	111.68	55.84	7,3
Marzo	163.84	81.92	14.8
Abril	164.4	82.2	27.0
Mayo	149.44	74.72	76.9
Junio	80,801	54.04	106.1
Julio	89.84	44.92	123.4
Agosto	85,68	42.84	107.9
Septiembre	78.48	39,24	104,8
Octubre	87.2	43.6	57.4
Noviembre	79.76	39.88	13.6
Diciembre	78,96	39.48	10,0
Total	1, 294.64	647.32	658,6

La estación de crecimiento queda dentro del periodo del mes de mayo al mes de octubre; la fecha de siembra coincide con la obtenida por los institutos de investigación y recomendada en su paquete tecnológico. Por lo que se recomienda sembrar del 20 de mayo

al 20 de junio, o bien, en el inicio del temporal.

Tomando los datos de la temperatura mínima mensual, se elaboró una gráfica usando el método de Arteaga (figura 1). En ésta se presenta el periodo libre de heladas a partir del mes de abril al mes de octubre, lo cual coincide con la estación de crecimiento.

Con los resultados obtenidos se puede observar que la región de San Francisco Acuautla reúne las condiciones óptimas para la producción de trigo cristalino. Cabe decir que en las condiciones de la estación de crecimiento y el periodo libre de heladas el trigo cubre bien su ciclo de cultivo. Asimismo, lo mismo se puede sefialar para el caso de las unidades fototérmicas, las cuales para el trigo -planta de fotoperiodo largo-, son de más de 12 hrs al día (ver anexos). En tanto, las unidades calor las cubre dentro del ciclo normal del cultivo que es de aproximadamente de 5 a 6 meses.

VI. CONCLUSIONES

De acuerdo a los datos que se manejaron para la localidad de San Francisco

Acuautla se obtiene lo siguiente:

La localidad de San Francisco Acuautla presenta un buen potencial para el cultivo

del trigo, ya que se obtuvo que la estación de crecimiento coincide con el periodo libre de

heladas, además que el trigo cristalino es un cultivo que no demanda gran cantidad de agua y

las condiciones de precipitación en San Francisco Acuautla cubre sus requerimientos (bien

distribuido el temporal).

El cultivo del trigo cristalino responde bien aun en condiciones de suelo de poca

profundidad; en tanto, si demanda de la aplicación de fertilizante que se puede

complementar con aplicación de abono orgánico, lo cual aparte de mejorar el suelo, bajaría

la demanda de fertilizante.

Se recomienda que el trigo cristalino se maneje en siembras de surcos, lo cual es

propuesto por los institutos de investigación como el Instituto Nacional de Investigación

Forestal, Agricola y Pecuaria (INIFAP) y el Instituto de Investigación y Capacitación

Agropecuaria, Aculcola y Forestal del Estado de México (ICAMEX).

Paquete tecnológico propuesto:

Densidad de siembra 120 kg/ha (en surcos de 60 cm de separación y en doble

hilera).

Dosis de fertilización: 80-40-30 (N-P-K).

Control de malezas: Brominal 1.5 lts/ha en 200 litros de agua.

La aplicación de herbicidas se puede reducir con base en que se dé una cultivada al ser la siembra en surcos.

En el caso de que se presenten plagas, se recomienda, para el caso de los: insectos chupadores, aplicar Dimetoato 48%C.E. 1 lt/ha, Y para insectos masticadores, Paratión Metilico 50%C.E. o Malatión 80% C.E. 1lt/ha. En mezcla de 200 litros de agua,

Se recomienda que la cosecha se realice con una máquina combinada por tener una menor pérdida de grano y se facilita la cosecha.

Los métodos empleados obviamente no son los más precisos y adecuados para ser utilizados en los estudios agrometeorológicos, sin embargo, aun cuando no se cuenta con metodología más precisa, los resultados obtenidos en esta ocasión si coinciden con los obtenidos por los institutos de investigación.

Hay que añadir que en estudios de este tipo es necesario contar con los datos de más de una estación. Por otro lado, un paso a seguir después de este trabajo, es analizar la información climática en periodos decenales y de por lo menos 20 años. Además, faltaría analizar el factor suelo.

VII. BIBLIOGRAFÍA

- Aguado Mercedes, Manuel A. y Fernando Bisnies (1978). Diez Temas sobre los Cereales. 3a. ed. Ministerio de Agricultura. Madrid, España.
- Albanil Encarnación, Adelina (1995). Apuntes del Seminario de Titulación. Tópicos selectos de la producción agrícola. Módulo de fenología 1995. FESC. Cuautitlán. UNAM.
- Cantú Martínez, O.H. (1977). Prueba comparativa de adaptación y rendimiento de
 variedades de trigo (Triticum vulgare L.) U.A.N.L. Facultad de Agronomía, Tesis.
- Castro, Z. R. y Artesga, R. R. (1993). Introducción a la meteorología. UACH.
 Departamento de Irrigación. Chapingo, México, pp. 242-246.
- 5. Cruz Pizarro, Francisco (1995). Apuntes del Seminario de Titulación. Tópicos selectos de la producción agrícola. Módulo de fenología. FESC. Cuautitlán. UNAM
- 6. Diaz del Pino, Alfonso (1953). Cereales de Primavera. Ed. Salvat. Madrid, España.
- 7. García, Enriqueta (1967). Apuntes de climatología. Instituto de Geografía. UNAM México .
- García, Enriqueta (1973). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. UNAM México.
- Ilemández Sierra, Arturo (1987). Introducción al mejoramiento genético de cereales de grano pequeño. S.A.R.H. I.N.I.F.A.P., Tema didáctico No. 3. México.
- 10. Informe Anual del CIMMYT 1978 sabre mejoramiento de maiz y trigo.
- Martínez E., Iruega (1977). Ensayo competitivo de adaptación y rendimiento de 20 variedades de trigo (Triticum vulgare L). Apodaca, Nuevo León. i.T.E.S.M.

- 12. Mendoza Yocupicio, Nohe. (1981) Ensayo sobre respuesta a la fertilización con N y P de cuatro variedades de trigo (Triticum vulgare L.) Chalco y Tlaxcatecpan, Chapingo, México.
- Mercado Mancera, Gustavo (1995). Apuntes del seminario de titulación. Tópicos selectos de la producción agrícola. Módulo de fenología. 1995. FESC. Cuantilán. UNAM.
- Ortiz, S. C. A. (1987) Elementos de agrometeorología cuantitativa. UACH,
 Departamento de suelos. Chapingo, México. pp. 200
- Pucridge, EW. and Domald, C.M. (1967) Competition among whwat plants sownat a wide ranges of demties Aust. S Agric, Rev., 18: 193-211.
- 16. Roblea Sánchez, Raúl (1975). Producción de granos y forrajes. LiMUSA, México.
- Romo, G. L. y Arteaga, R. R. (1989). Meteorología agrícola. UACH. Departamento de irrigación Chapingo, México. pp. 246-288, 299.
- 18. Sixto Martínez, José María (1981). Los logros alcanzados por la investigación en el cultivo del trigo y su contribución a la autosuficiencia nacional de este cereal.
 Resumen de las ponencias del Simposio Nacional de la Investigación Agricola. S.A.R.H.
 I.N.I.A. No. 80, publicación especial.
- 19. Universidad de Arizona (1967). Growin wheat in Arizona cooperative extension service and agricultural experiment station teh University of Arizona. Bulletin A-32 pp. 13-14, U.S.A.
- 20. Torres, R. E. (1995). Agrometeorología. México. Editorial Trillas, p.48.

VIII. ANEXOS Y GRÁFICAS

	Pág.
Anexo I. Días del calendario juliano	
Anexo 2. Precipitación acumulada diaria (mm) para la estación de Coatepec de	los Olivos,
mpio. de Ixtapaluca, Méx.	ıı.
Anexo 3. Valores acumulados de 1.00° PET (mm) para la estación de Coat	epec de los
Olivos, mpio. de Ixtapaluca, Méx.	tu
Anexo 4. Valores acumulados diarios de 0.50* PET (mm) para la estación de 0	Coatepec de
los Olivos, mpio. de Ixtapaluca, Méx.	IV
Anexo 5. Diferencias diarias de precipitación -1.00° PET (mm) para la estación o	le Contepec
de los Olivos, mpio. de Extapaluca, Méx.	V
Anexo 6. Grados-día (GDD) acumulados diariamente (base 5°C) para la	estación de
Coatepec de los Olivos, mplo. de Ixtapaluca, Méx.	VI
Anexo 7. Duración del día para la estación de Coatepec de los Olivos, mpio, de	lxtapaluca,
Méx, 19 (19) 10 (19) 11 (19) 12 (19) 13 (19) 14 (19) 15 (19) 15 (19) 15 (19) 16 (19) 1	VII
Anexo 8. Temperaturas promedio diarias estimadas en °C para la estación de	Coatepec de
los Olivos, mpio. de lxtapaluca, Méx.	VIII
Anexo 9. Normales climatológicas de la estación de Coatepec de los Olivo	s, mpio. de
Ixtapaluca, Méx.	IX
Anexo 10. Coeficientes de ajuste C para estimar la evapotranspiración potentiales estimas de contra de la contra del contra de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la contra del la contra de la contra del	encial como
función de la evaporación medida en tanque tipo A	X
Figura I. Periodo libre de heladas según el método de Arteaga para Coatepec d	e los Olivos,
mpio. de Ixtapaluca, Méx.	ΧI
Figura 2. Estación de crecimiento del tipo normal de la estación de Coatepec d	e los Olivos,
mpio, de Ixtapaluca, Méx.	XII

AMENO 1

COATEPEC DE LOS OLIVOS, MPIO. DE EXTAPALUCA ANÁLISIS CLIMÁTICOS

DIAS DEL CALENDARIO JULIANO

plas	ENE	FEB	MAR	ABR	MAY	JUN	JUI.	Veo	SED	OCT	NOA	DIC
1	1	32	60	91	121	152	182	213	244	2/4	305	395
2	2	33	61	92	122	153	183	214	245	276	306	33G
3	- 3	34	62	93	123	154	184	215	246	276	307	337
4	4	35	63	94	124	155	185	216	247	277	308	338
5	5	36	64	95	125	156	186	217	248	278	309	339
6	6	37	65	96	126	167	187	218	249	279	310	340
7	7	38	66	97	127	158	188	219	250	280	311	341
8	. 8	39	67	98	128	159	189	220	251	281	312	342
9	9	40	68	99	129	160	190	221	252	202	313	343
10	10	41	69	100	130	161	191	222	253	283	314	344
- 11° c	11	12	70	101	131	162	192	223	264	284	315	346
12	12	43	. 71	102	132	163	103	224	255	265	316	346
13	13	14	72	103	133	164	194	225	256	280	317	347
14	14	45	73	104	134	105	195	226	257	287	318	348
15	15	46	. 74	105	135	166	196	227	258	280	319	349
16	16	47	75	106	130	167	197	228	269	289	320	350
. 4 17	17	48	76	107	137	168	198	229	560	200	321	351
- 18	18	49	. 77	108	138	169	199	230	201	291	322	357
19	19	50	78	109	139	170	200	231	262	202	323	353
20	20	51	79	110	140	171	201	232	263	203	324	354
21	21	52	80	111	141	172	202	233	264	294	325	300
22	22	53	81	112	142	173	203	234	265	295	326	366
23	23	54	82	113	143	174	204	235	266	296	327	357
24	24	55	83	114 :-	144	175	205	236	267	297	328	(4.9)
25	25	56	64	115	145	176	206	237	268	298	329	359
26	26	57	85	116	146	177	207	238	269	299	330	360
27	27	58	86	117	147	178	208	239	270	300	331	361
28	28	59	87	118	148	179	209	240	271	301	332	362
29	29	****	88	119	149	180	210	241	272	302	333	363
30	30	****	89	120	150	183	211	242	2/3	303	334	364
31	31		90	****	151	****	212	243	****	304		205

[&]quot;INTSORMIL UNIVERSIDAD DE NEBRASKA-LINCOLN "

ABEXO 2

PRECIPITACION ACUMULADA DIARIAMENTE (MM) PARA LA ESTACIÓN DE COATI-PEC DE LOS OLIVOS,
MPIO. DE IXTAPALUCA, MÉX.

LATITUD 19º 19' LONGITUD 98º 51' ALTURA 2410 MSNM

DIAS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	OBD.	OCT	NOV	blc
1	0	9	19	35	73	147	250	367	477	r 568	626	646
2	1	10	- 19	36	.74	150	253	370	480	571	627	640
3	. 1	- 10	19	37	76	153	257	374	484	574	628	649
- 1	. 1	10	20	37	76	156	261	378	487	576	629	649
5	2	- 11	20	38	80	159	265	381	491	579	630	650
6	2	11	21	39	81	162	269	385	494	582	631	650
7	2	11	21	39	83	165	272	389	498	585	633	650
8.	3	11	21	40	85	168	276	393	501	507	634	651
9	3	12	22	41	86	171	280	396	505	590	635	664
10	3	12	22	42	88	174	284	400	508	593	636	652
11	3	12	22	42	90	177	288	404	511	595	637	959
12	4.	12	23	43	92	179	292	408	- 515, °	598	638	652
13	4	13	23	44	93	182	295	411	648	601	639	053
- 14	4	13	24	44	- 95	185	299	415	622	603	641	(653
15	5	13	24	45	97	188	303	419	626	606	642	65.5
16	- 5	14	25	47	100	192	307	122	(528)	607	642	G!+1
17	5	14	25	48	103	196	311	426	530	608	642	654
18	6	. 14	26	50	108	200	314	429	539	610	643	654
19	6	15	27	52	109	204	318	432	530	611	643	655
. 20	O	15	27	54	112	207	322	436	530	612	644	655
21	G	16	28	55	115	211	325	439	641	G13	644	665
22	7.	16	29	57	118	215	320	443	1544	614	644	666
23	7	16	29	59	120	219	333	446	547	615	645	656
24	7	17	30	60	123	223	337	450	649	616	645	G5G
25	7	17	31	62	126	227	340	453	647	618	646	657
28	8	18	31	34	129	230	344	456	(abb)	019	646	607
27	- 13	18	32	66	132	234	340	460	568	620	646	657
20	В	18	33	67	135	230	352	463	560	621	647	658
29	9	****	33	69	130	242	355	167	563	622	647	658
30	9	****	34	71	141	246	359	470	566	623	648	658
31	Ð	****	35	4011	144	2113	363	474	KILL	625	, ign '	G! J

[&]quot; INTSORMIL : UNIVERSIDAD DE NEBRASKA : LINCOLN "

Anexo 3

VALORES ACUMULADOS DIARIOS DE 1.00 PET (MM) PARA LA ESTACIÓN DE COATE PEO DE LOS OFIVOS, MPIO. DE IXTAPALUCA, MÉX
MPIO. DE IXTAPALUCA, MÉX
10 TUDO 18º 19º LONGITUD 90º 51º ALTURA 2410 MSNM

		100										
DIVS	ENE	FEB	MVIS	ABR	MAY	JUN	JUL.	VCO	8EP	OCT	NOV	DJC:
1, 1	1	45	93	162	240	324	399	469	535	597	- 656	70%
2	3	47	95	164	243	326	401	471	537	599	658	70G
3	4	48	97	166	245	329	404	473	539	604	699	708
1	5	50	99	169	248	332	406	476	542	603	611	709
5	7	51	101	171	251	304	408	478	544	605	663	711
6	8	53	103	174	254	337	411	480	546	607	605	. 712
7	10	55	105	176	256	339	413	402	546	509	EGG	713
8	11	56	107	179	259	342	415	484	550	811	668	715
9	12	58	109	182	262	345	418	486	552	613	670	718
10	14	. 60	111	184	264	347	420	489	554	615	971	7 (8
- 11	15	61	5 114	187	207	350	422	491	556	617	673	749
12	16	63	116	189	270	352	425	493	558	819	975	721
13	18	65	118	192	273	355	427	465	560	621	676	177
14	19	66	120	194	275	357	429	497	502	623	670	723
15	21	68	122	197	278	360	431	499	604	625	680	725
16	22	70	124	200	281	362	434	501	507	627	681	720
17	23	71	127	202	284	365	436	504	569	620	683	728
18	25	73	129	205	206	387	430	506	5/1	630	685	729
19	26	75	131	208	289	370	440	508	573	632	686	730
20	28	.77	133	210	202	372	443	5 (0	5/5	634	608	/32
21	29	78	136	213	294	375	445	512	5/7	636	689	733
22	30	80	1381	216	297	377	443	514	579	838	694	(35)
23	32	82	140	218	300	360	449	516	561	640	693	7:16
24	33	84	142	221	302	302	452	518	583	642	694	737
25	35	86	145	224	305	385	454	520	585	643	696	739
26	36	88	147	226	308	387	456	523	587	645	697	740
27	38	90	149	229	310	389	458	525	569	647	699	741
28	39	91	152	232	313	392	460	527	591	849	700	743
29	41	****	154	235	316	394	463	529	593	651	702	744
30	42	10110	157	237	318	397	465	531	595	652	703	145
31	44	****	159	****	321	****	487	533	****	654	****	747
200							4.5				and the second of the second	

UCUADRADA (PARA TEMPERATUR) = 97.49

[&]quot;INTSORMIL - UNIVERSIDAD DE NEBRASKA - LINCOLN "

						100						IV .
								CCT	4 -	2010	Ma =	
								ESI	А. П	ESIS	NO D	EBE
Anexe 4								Will	DE	1.5		
VALORIE	S ACUMU	LADOOL	NADIME I	se o corb	ICT ARRAY	110110 00	SAN ET MEZ	76466 2001 2011	I WE	LA	BIBILIC	ILGA
WOLOUGE WOLOUGE	HAAVLXE	LICA ME	MARIOS I	ar, wow r	ter (IMIM)	PARA GC	WITTEL	i Dit LCG	OLIVOS			
	19" 19' 1.0			ASHEE IA	2/10 MSN	MA						
				, 1621 131 171	r., 10 ()(G)	****						
DIAS	ENE	FEB	MAR	ABR	MAY	JUN	JUI.	VGO	SEP	100	NOV	DIC
1	ŧ	23	47	81	120	162	199	235	268	290	328	352
2	1 1	23	48	82	121	163	201	236	269	r 300	329	363
3	2	24	49	83	123	164	202	237	270	301	330	3(4)
4	3	25	50	84	124	166	203	238	271	302	33]	355
5	3	26	51	86	125	167	204	239	272	303	331	35.6
6	1	27	52	87	127	160	205	240	273	304	332	War.
7	5	27	53	88	128	170	207	241	274	305	333	31.7
8	5	28	54	90	130	171	200	242	275	. 306	334	357
9	6	29	65	91	131	172	209	243	- 2/0	306	3325	39.83
10	7	30	56	92	132	174	210	244	211	307	336	366
- 11	Ð	31	57	93	134	175	211	245	278	308	337	360
15	i ti	31	58	95	135	176	212	246	279	309	337	360
13	Ð	32	59	96	136	177	213	247	200	340	338	361
.14	10	33	60	97	138	179	215	249	201	311	939	362
15	10	34	61	99	139	180	216	250	202	312	340	367
16	. 11	35	62	100	140	181	217	251	283	313	341	363
17	12	36	63	101	142	182	218	252	284	314	342	364
18	12	37	64	102	143	104	210	253	285	315	342	364
19	13	37	66	104	144	105	220	254	200	316	343	365
20	14	38	67	105	146	186	221	255	287	317	344	360
21	15	39	68	106	147	187	222	256	288	318	345	367
22	15	40	G9	108	149	189	224	257	209	319	345	367
23	16	41	70	109	150	190	225	258	200	320	340	368
21	17	12	71	111	151	191	226	259	291	321	347	309
25	17	43	72	112	153	192	227	260	202	322	348	269
26	1B	44	74 %	113	154	193	228	201	294	323	349	3710
27	19	45	75	115	155	195	229	262	205	324	349	371
28	20	46	76	116	57	190	230	263	296	324	350	371
29	20	****, .	77	117	158	197	231	204	297	325	351	372
30	21	***	78	119	159	198	232	266	200	396	352	373
31	22	****	80	****	161	****	233	267	1111	327	1414	373

R-CUADRADA (PARA TEMPERATUR) = 97.49

[&]quot; INTGORMIL - UNIVERSIDAD DE NEBRASKA-LINCOLN "

Anexo 6

DIFERENCIAS DIARIAS DE PRECIPITACIÓN -1.00° ETP (MM) PARA LA ESTACIÓN DE COATEPEC DE LOS OFIVOS.
MPIO, DE IXTAPALUCA, MÉX.
LATITUD 19° 18' LONGITUD 98° 51' ALTURA 2410 MSNM

				1.1					S. W. S.	·		
DIAS	ENE	FEB.	MAR	ABR	MAY	JHN	JOL.	AGO	SED	oct	NOV	DIG
1	-1-	-1.2	-1.5	1.0	-1	0.3	1.4	1.6	1.3	0.7	0.6	1.1
2	-1	-1.3	1.6	-1.8	-1	0.3	1.5	1,6	1.3	0.7	0.0	i ili
3	-1:	-1.3	-1.6	-1.8	- 1	0.3	1.5	1.6	1.3	0.7	0.6	1.1
4: .	-1	-1.3	1.6	1.8	-1	0.3	1.5	1.6	1.3	0.7	0.6	1.1
5	•1	-1.3	-1.6	-1.8	-1	0.3	1.5	1.6	1.3	0.7	0.6	1.1
6	-1.	-1.3	1.6	-1.8	-1	0.4	1.5	1.0	1.3	0.7	0.6	1.1
7	-1.1	-1.3	1.6	-1.8	-1	0.4	1.5	1.6	1.3	0.7	0.6	
8	-1.1	-1.3	-1.7	-1.9	-1	0.4	1.5	1.6	1.3	0.7	0.0	1.1
9	1.1	1,3	-1.7	-1.9	-1.	8.4	1.5	1.6	1.3	0.7	0.6	1
10	-1.1	-1.4	-1,7	1.9	-1	0.4	1.5	1.6	1.3	0.7	0.5	
. 11	-1.1	1.4	-1.7	1.9	-1	0.4	1.5	1.6	1.3	0.8	0.5	
12	-1.1	-1.4	-1.7	1.9	-1	0.4	1.5	1.6	1.4	0.8	0.5	
13	-1.1	-14	-1.8	-1.9	-1	0.4	1.5	1.6	1.4	0.6	0.5	
14	-1.1	-1.4	-1.8	-1.9	-1.	0.4	1.5	1.6	1.4	0.8	0.5	
15	-1.1	-1.4	-1.8	- 1.9	- 1	0.4	1.0	1,8	1.4	0.0	0.5	
16	-1.1	-1.3	1.5	0.9	0.2	1.3	1.5	1.3	0.6	0.8	1.2	1.1
17	-1.1	-1.4	-1.5	-0,9	0.2	1.3	1.5	1.3	0.6	0.8	-1.2	
18	:1.1	-1.4	1.5	0.0	0.2	1.3	1.5	1.3	0.6	0.8	-1.2	1.1
19	-1.1	-1.4	-1.6	-0,9	0.2	1.3	1.5	1.3	0.6	0.7	1.2	
20	-1.1	1.4	1.6	-0.9	0.2	1.3	1.5	1.3	0.6	0.7	1.2	1.1
21	-1.1	-1.4	-1.6	0.9	0.2	1.1	1.5	1.3	0.7	-0.7		1.1
22	-1.2	-1.4	-1.6	-0.9	0.3	1.4	1.5	1.3	0.7	0.7	1.2	1.1
23	-1.2	-1.4	-1.6	0.9	0.3	1.4	1.6	1.3	0.7	0.7	1.2	1.1
24	-1.2	-1.5	1.6	-1	0.3	1.4	1.5	1.3	0.7	0.7		1.1
25	-1.2	-1.5	-1.7	-1	0.3	1.4	1.6	1.3	0.7	0.7	-1.2	1.1
26	-1.2	-1.5	-1.7	1	0.3	1.4	1.5	1.3	0.7	0.7	1.1	1.4
27	-1.2	-1.5	-1.7	-1	0.3	1.4	1.5	1.3	0.7	0.7	1.1	1.1
28	-1.2	-1.5	1.7	-1	0.3	1.4	1.5	1.3	0.7		1.1	
29	-1.2	7974	-1.7	-1	0.3	1.4	1.5	1.3	0.7	0.7	3.1	a saidh a
30	-1.2		-1.7	i	0.3	1.4	1.5	1.3	0.7	-0.7 -0.6	1.1	
31	-1.2		-1.8 **	18	0.3 **		1.5	1.3		0.6	1.1	
										7.0	1.5	

Amoxo 6

GRADOS-DÍA (GDD) ACUMULADOS DIARIAMENTE (DASE 5 C) PARA EN ESTACIÓN DE COATEPEC DE LOS OFIVOS. MPIO, DE IXTAPALUCA, MÉX. LATHUD 19º 19º LONGITUD 90º 51º ALTITUD 2410 MSNM

A STATE OF THE STATE OF													
DIVB	LNF	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	VOV	Dic	
30 Lag	8	260	(530	903	1290	1707	2071	2417	2753	3081	3409	3692	
2	16	275	650	916	1312	1720	2083	2427	2704	3092	3419	3701	
3	24	284	56D.	929	1320	1733	2094	2438	2775	3103	3120	3710	
. 4	32	203	671	042	1339	1745	2106	2440	2786	3114	3439	3718	
ti	40	302	502	955	1353	1758	2117	2460	2797	3125	3449	3727	
6	48	311	593	967	1366	1776	2128	2471	2808	3136	3450	3730	
7	57	321	604	980	1379	1783	2140	2482	2819	3146	3460	3744	
- 8	65	330	616	093	1300	1795	2151	2493	2830	3157	3478	3763	
()	73	339	627	1006	1406	1000	2163	2503	2841	3460	3400	3761	
10	81	349	638	1019	1428	1820	2174	2514	2852	3179	3498	3770	
11	613	358	649	1033	1433	1833	2185	2525	2862	3189	3507	3778	
12	. 07	367	661	1046	1448	1845	2106	2636	2073	3200	3517	3787	
13	105	377	672	1059	1459	1057	2208	3547	2804	3211	3527	3705	
14	114	387	684	1072	1473	1860	2210	2650	2095	3221	3530	3803	
16	122	300	696	1005	1466	1082	2230	2660	2009	3232	3546	3812	
10	130	406	707	1098	1499	1884	2241	2578	2917	3243	3655	3820	
17	138	410	719	.1112	1513	1906	2252	2590	2028	3253	3565	3028	
18	147	126	731	1125	1628	1818	2263	2601	2939	3264	3574	3837	
19	155	430	743	1130	1539	1030	2274	2612	2950	3274	3503	3846	
20	163	446	755	1152	1552	1942	2285	2923	2961	3285	3503	3853	
21	172	456	767	1165	1565	1054	2293	2033	2072	3295	3602	3861	
22	190	466	779	1170	1570	1966	2307	2644	2983	3306	3611	3869	
23	100	478	791	1192	1501	1978	2318	2605	2004	3316	3620	3070	
24	107	486	803	1205	1601	1889	2320	2666	3005	3327	3020	GUNG	
25	206	497	816	1210	1617	2001	2340	2677	3016.	3337	3620	3094	ź
26	214	507	028	1232	1630	2013	2351	2688	3027	3347	3847	3902	
27	223	540	841	1245	1643	2025	2362	2099	3030	2350	3056	3010	
.28	231	520	853	1259	1550	2030	2373	2710	3049	3308	3665	3910	
29	240		966	1272	1660	2040	2384	2720	3059	3370	3674	3026	
30	248	****	879	1286	1682	2060	2305	2731	3070	3388	3683	3934	
31	258	****	- 001	****	1695	*41*	2408	2742	****	3398	****	3942	

R-CUMDADA = 97-49

[&]quot; INTRORMII - UNIVERBIDAD DE NEDRARKA - LINCOLN "

ADEXO 7

DURACION DEL DÍA PARA LA ESTACIÓN DE COATEPEC DE LOS OLIVOS, MPIO. DE IXTAPALUCA, MÉX.
LATITUD 19º 19º LONGITUD 98º 51º ALTURA 2410 MSNM

UNIDADES: HORAS Y CENTÉSIMAS

(MULTIPLICAR LAFRACCIÓN DECIMAL POR 60 PARA OBTENER MINUTOS)

DIAS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	BI P	oot	NOA	Dic
1	11.1	11.4	11.9	12.4	12.9	13.3	13.4	13.1	12.6	12.1	11.5	117
2	11.1	. 11.4	11.9	12.4	13	13.3	13.4	13.1	12.6	12.1	11.5	11.2
3	11.1	11.4	11.9	12.5	13	13.3	13.4	13.1	12.6	12	11.5	11.2
4	11.1	11.4	11.9	12.5	13	13.3	13.4	13.1	12.6	12	11.5	11.1
5	11.1	11.5	11.9	12.5	13	13.4	13.4	13.1	12.6	12	11.5	11.1
6	11.1	11.5	11.9	12.5	13	13.4	13.4	13	12.5	12	11.5	41.1
7	11.1	11.5	12	12.5	13	13.4	13.4	. 13	12.5	12	11.5	11 i
- 8	11.1	11.5	12	12.5	13	13.4	13.4	13	12.5	12	11.4	11.1
Ð	11.1	11.5	12	12.6	13.1	13.4	13.3	13	12.5	11.9	11.4	11.1
10	11.1	11,5	12	12.6	13.1	13.4	13.3	13	12.5	11.9	11.4	11.1
11	11.2	11.5	12	12.6	13.1	13.4	13.3	13	12.4	11.9	11.4	11.1
12	11.2	11.6	12.1	12.6	13.1	13.4	13.3	13	12.4	11.9	11,4	11.1
13	11.2	11.6	12.1	12.6	13.1	13.4	13.3	12.0	12.4	11,9	11.4	11.1
14	11.2	11.6	12.1	12.7	13.1	13.4	13.3	12.9	12.4	11.8	11.4	11.1
15	11.2	11.6	12.1	12.7	13.1	13.4	13.3	12.9	12.4	11.8	11.3	11.1
16	11.2	11.6	12.1	12.7	13.2	13.4	13.3	12.9	12.4	11.8	11.3	11.1
17	11.2.	11.6	12.1	12.7	13.2	13.4	13.3	12.9	12.3	118	11.3	11.1
18	11.2	11.7	12.2	12.7	13.2	13.4	13.3	12.9	12.3	11.8	11.3	11.1
19	11.2	11.7	12.2	12.7	13.2	13.4	13.3	12 (12.3	118	11.3	11.1
20	11.2	11.7	12.2	12.8	13.2	13.4	13.3	12.8	12.3	11.7	11.3	11.1
21	11.3	11.7	12.2	12.8	13.2	13.4	13,2	12.8	12.3	117	11.3	111
22	11.3	- 11.7	12.2	12.8	13.2	13.4	13.2	12.0	12.2	117	11.3	ii i
23	11.3	11.7	12.3	12.8	13.2	13.4	13,2	12.6	12.2	117	11.2	11.1
24	11.3	11.B	12.3	12.8	13,2	13.4	13.2	12.8	12.2	11.7	11.2	11.1
25	11.3	11.8	12.3	12.8	13.3	13.4	13.2	12.7	12.2	11.7	11.2	111
26	11.3	11.8	12.3	12.9	13.3	13.4	13.2	12.7	12.2	11.6	11.2	0.1
27	11.3	- 11:8	12.3	12.9	13.3	13.4	13.2	12.7	12.2	116	11.9	111
28	-11:3	11.8	12.3	12.9	13.3	13.4	13.2	12.7	12.1	11.6	11.2	11.1
29	11.4		12.4	12.9	13.3	13.4	13.2	12.7	12. (11.6	11.2	iri
30	11.4	****	12.4	12.9	13.3	13,4	13.1	12.7	12.1	11.6	11.2	11.1
31	11.4	****	12.4	4141	13.3		13,1	12.6	1111	11.6	1111	11.1

^{***} INTSORMIL - UNIVERSIDAD DE NEBRASKA - LINCOLN ***

Anexo 8

TEMPERATURAS PROMEDIO DIARIAS ESTIMADAS EN "C PARA LA ESTACIÓN DE COATEPEC DE LOS OFIVOS, MPIO, DE IXTAPALUCA, MÉX
LATITUD 19' 19' LONGITUD 98' 51' ALTURA 2410 MINM

DIAS	ENE	FEB	MAR	ABR	MAY	JUN	JUL:	VGO	SEP	oct	NOV	DIG
1	13.1	13.8	15.7	17.7	18.4	17.7	16.6	15.9	15.9	16.9	15.1	13.6
2	13.1	13.9	15.7	17.7	18.4	·· 17,7	16,3	15.9	15,9	15.9	15.1	13.0
3	13.1	13.9	15.8	17.8	18.4	17.7	16.5	15,9	15.9	15.9	15	13.7
4	13.1	14	15.9	17.8	18.4	17.6	16.5	15.9	15,9	15.9	10	13.7
5	13.1	14.1	15.9	17.9	18.4	17.6	16.4	15.9	15.9	16.8	14,9	13.7
6	13.1	14.1	16	17.9	18.4	17.6	16.4	15.8	15.9	15.0	14.9	13.6
. 7	13,1	14.2	16.1	17.9	18.4	17.5	16.4	15.8	15.9	15.0	14.9	13.6
8	13.1	14.2	16.2	18	18.4	17.5	16.3	15.8	. [5.9]	15 8	14.8	13.6
9	13,1	14.3	16.2	18	18.4	17.4	16.3	15,8	15.9	15.0	14.8	13,5
10	13.1	14.4	16,3	18.1	18.4	. 17,4	16.3	16.8	15.9	15.8	14.7	13.5
11	13.1	14.4	16.4	18,1	18.3	17.4	16.3	15.8	10	15.7	14.7	13.5
12	13.2	14.5	16.4	18.1	18.3	17.3	16.2	15.8	16	15.7	14.6	13.4
13	13.2	14.5	16,5	18.2	18.3	17.3	16.2	15.8	16	15.7	14.6	13.4
14	13.2	14.6	16.6	18.2	18.3	17.2	16.2	15.8	16	15.7	14.6	13.4
15	13.2	14.7	16.7	18.2	18.3	17.2	16.2	15.8	16	15.6	14.5	13.3
16	13.2	14.7	16.7	18.2	18.2	17.1	16.1	15.8	.10	15.6	. 14.5	43.3
17	13.3	14.8	16.8	18.3	18.2	17.1	18.1	15.8	16	15.6	14.4	13.3
18	13.3	14.9	16.9	18.3	16.2	17.1	16,1	15.8	16	15.6	14.4	13.3
19	13.3	14.9	16.9	18.3	18.2	17	18.1	15.8	16	15.5	14.3	15.2
20	13.4	. 15	17	18.3	18.1	17	16	15.8	16	15.5	14.3	13.2
21	13.4	15.1	17	18.3	18.1	16.9	. 16	15.8	16	15.5	14.3	13.2
22	13.4	15.2	17.1	18.4	18.1	16.9	16	15.9	15.9	15.5	14.2	13.2
23	13.5	15.2	17.2	18.4	18.1	18.9	16	15.0	15.9	15.4	14.2	13.2
24	13.5	15.3	17.2	18.4	18	16.8	16	15,9	15.9	15.7	14.1	13.1
25	13.5	15.4	17.3	18.4	18	16.8	16	15.9	15.9	15.4	14.1	13 L
26	13.6	15.4	17.3	18.4	18	18.8	15.9	- 15.9	15.9	15.3	. 14	13.1
27	13.6	15.5	17.4	18.4	17.9	16.7	15.8	15.9	15,9	15.3	14	13.1
28	13.7	15.6	17.5	18.4	17.9	16.7	15.0	15.9	15.9	15.3	13.9	13.1
29	13.7	****	17.5	18.4	17.9	16.6	15.9	16,0	16.9	15.2	13.9	13.1
30	13.7		17.6	18.4	17.8	16.6	15.D	15.9	15.9	15.2	13.9	
31	13.8	48.98	17.6	****	17.8	****	15,9	15.9	44.54	15 [1111	

R-CUADRADA = 97.49
*** INTSORMIL - UNIVERSIDAD DE NEBRASKA-LINCOLN ***

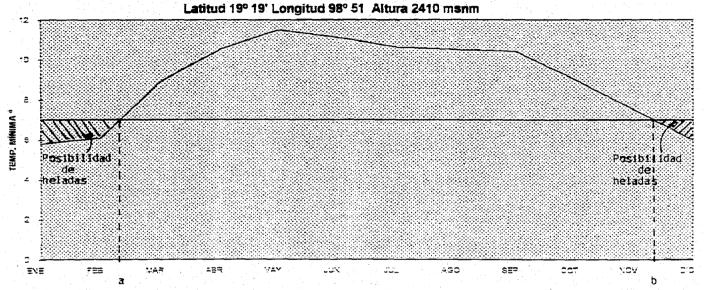
LONGITUD 98º 51'

NORMALES CLIMATOLÓGICAS 1961 - 1980 COATEPEC DE LOS OLIVOS, EXTAPALUCA, MÉX

ALTITUD 2410 MISHM

EST. CLIMATOLÓGICA ORG. SMN-SARH

PARÂMETROS	AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL	
TEMPERATURAS										- 1, -1					
MÁXIMA EXTREMA	10	27	27	30.5	31.5	31.5	29	28.5	28	26	28	26	26.5	31.	.5
-FECHA (DÍA/AÑO)		27/73	VS/VS	VS/VS	27/71	19/71	VS/VS	C8/71	14/71	VS/VS	VS/VS	VS/VS	08/71	VS/VS/71	
PROMEDIO DE MÁXIMA	10	21.3	22.2	25.1	25.7	25.5	22.7	21.7	21.7	21.5	22.1	21.6	20.9	22.	.7
MEDIA	10	13.5	14.1	17	18.1	18.5	16.9	15.1	15.1	15.9	15.5	14.5	13.4	15.	.8
PROMEDIO DE MÍNIMA	10	5.8	5.1	8.9	10.5	11.5	11.1	10.5	10.5	10.4	9	7.5	6	100	9
MINIMA EXTREMA	10	-1	-5	2	1.5	- 6	5	ô	2	2	3	0	-5	-	5.
-FECHA (DÍA/AÑO)		08/70	11/71	08/77	11/71	VS/70	14/79	14/74	17/71	26/79	VS/79	27/74	31/60	VSVSVS	
OSCILACIÓN	. 10	15.5	16.1	15.2	15.2	14	11.6	11.1	11.2	11.1	13.1	14.1	14.9	13.	.7
HUMEDAD			a de la											100	
EVAPORACIÓN	10	121.6	139.6	204.8	206	186.8	135.1	112.3	107	98.1	109	99.7	98.7	1518.	3
PRECIPITACIÓN															
MEDIA	10	9.4	7.3	14.8	27	75.9	106.1	123.4	108	104.8	57.4	13.6	10	658.	6
MÁXIMA	10	65.2	24	52.9	£9	159.1	151.9	200	180	228.9	140.9	38.1	49.6	228.	9
-FECHA (AÑO)		80	79	78	74	75	75	75	50	79	76	80	76	03/79	
MÁXIMA DEL MES EN 24 HRS.	10	23	16	34.5	30.1	42.2	50	37.9	43.7	53	34	24.3	39.9		3
-FECHA (DÍA/AÑO)		25/80	1279	18/78	15/72	24/75	27/50	29/75	10/80	10/79	07/76	01/77	02/76	10/09/79	
MINIMA	10	0.5	3.5	3.8	3	22.7	44.5	74.1	57.1	49.3	1.6	2.9	3	0.	5
-FECHA (AÑO)		77	74.	20	75	7:	78	. 73	77	75	79	71	78	VS/VS	
VISIBILIDAD															
DOMINANTE	10	4	4	4	4	7 7	7	4	4	4	4	4	٠. ه		4.
FRECUENCIA DE ELEMENTOS Y FENÓMENOS ESPECIALES				**											
NÚM. DÍAS CON LLUVIA APREC.	10	1.18	2.3€	2.53	7.27	11.7	15.09	19.3	18.7	17	5.8	2.8	1.4	108.2	3
NÚM, DÍAS CON LLUVIA INAP.	10	0.36	5.72	•	1.45	2.2	2.09	3.7	4.2	2.5	2.2	1	0.4	21.8	2
NÚM. DÍAS DÉSPEJADOS	10	15.72	13.38	15.45	2.35	7	4.72	0.8	1.1	2.5	5	7.1	9.5	94.7	1
NÚM. DÍAS MEDIO NUBLADOS	10	12.9	13.09	13.27	18.8	20	17.54	21.5	22	19.6	20.3	20.6	12.9	219.5	1
NÚM. DÍAS NUBLADO/CERRADO	10	1.35	7.51	1.27	1.81	4	7.72	6.7	7.2	7.8	4.7	2.3	- 5	50.9	7
NÚM. DÍAS CON ROCÍO	10	3		3 7	3	5	C	9	0	S	. e	С	. 0		٥.
NÚM. DÍAS CON GRANIZO	10	. 0	=	2	2.59		0.09	0.5	0.3	2.1	o	0.1	a.1	1.28	5
NÚM. DÍAS CON HELADA	10	1.9	2.54	0.09	C.C9	3	0	5	В	0.1	. 0	0.1	2.4	7.22	2
NÚM. DÍAS CON TORM. ELÉC.	10	2	٠ .	3	5 °2 °	: 3	0	0.2	0	5	5	٥	0	0.2	Z
NUM, DIAS CON NIEBLA	10	0.81	S. 18	5.45	5	3	0.27	5,1	0.7	5	2.6	1.3		3.01	
NÚM. DÍAS CON NEVADA	10 1	9	2	S		2	2	Ω	0	5	. 2	O .1	5		3


LINIDADES TEMPERATURA (FC), HUMEDAD RELATIVA (%), EVAPORACIÓN, PRECIPITACIÓN (min) Y PRESIÓN (min)

ABOSO TO

COLLIGIENTES DE AJUSTE CEPARA ESTIMARTA EVAPOTRANSPIRACIÓN POTENCIAL
COMO EURCIÓN DE LA EVAPORACIÓN MEDIDA EN TANQUE TIPO A

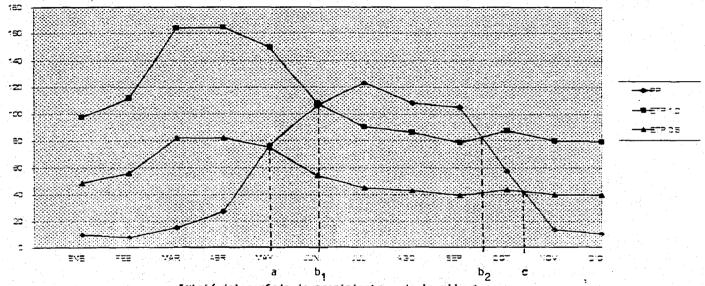

(ANOU) HPO A		TWOOL B	OULADO DE L	III RIW 81 (CA		IVNODET	FOOKTOO	n tirkiy	VOLCV
TIUMM, RET PROMEDIO	%	< 40 < 40	MI DIA 40 70	> \0 \\ \\ \\ \\	۲		AO NAAN	MEDIA JO 7	4 4 4 4 4	Λ • (0
VII NTO km/dia	VIENTO SUP DISTANCIA A LA VEGLTA CIÓN III				 	JENTO SUI DISTANCIA : A DERRA SECA III				
F 11 12 1	0				0.76	- 1			0.00	, D.65
LIGITRO	10		86, 0.7		80.0			GO	0.70	0.00
< 175	100				0.05	100) (a.	56	0.65	(, D.76).
	1000	U.	7 5 i 0.0	lla (0.05	1000	0,	50	0.60	0.70
	0	0.	5 0 0,0	i()	0.66	1) (),	Gb C	9.75	0.80
MODERADO) 10	Ö,	0.7	()	0.76			56	0.65	0.70
175-425	100		8ti 0.7	te i	0.60	100		(10)	0.60	0.65
	1000	O,	70 0.8	lu .	0.00	100		4b	0.55	0.60
	. 0	Α.	15 d.4	D.	0.50) ().	GO	0.65	0.70
LUIRH	10		56 0.1		0.60	10		50	0.65	0.65
425 700	100		50 U.C		0.65	100		45	0.50	0.60
11 11 11 11 11	1000		66 0.t		0.05	1000		40		
	נשונון	17.1	141 U.A	n,	17,163	11.00).	300	11.45	0.55
	0	d.	40 (17	(6	0.50		o o	50	0.60	0.65
MOYTODRIT	10	0.	46 0.1	5	0.GO -	JI JI		46	0.50	0.95
> 700	1110	O.	50 0.0	il I	0.05	100) D	40	0.45	0.50
	(000)	0.	5.0		0.66	1000		ith.	0.40	0.85

FIG. 1 PERIODO LIBRE DE HELADAS SEGÚN EL MÉTODO DE ARTEAGA (1987) PARA LA ESTACIÓN DE COATEPEC DE LOS OLIVOS, MPIO. DE IXTAPALUCA, MÉX.

a-b: Período libre de heladas.

FIG. 2 ESTACIÓN DE CRÉCIMIENTO DEL TIPO NORMAL DE LA ESTACIÓN DE COATEPEC DE LOS CLIVOS, MPIO. DE IXTAPALUCA, MÉX. Latitud 19° 19' Longitud 98° 51' Altura 2410 msnm

a: Inició del período de crecimiento y de las lluvias b.: Inició del período húmedo. b.: Fin del período húmedo. c: Termino de las lluvias y de la estación de crecimiento.