

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

ESTUDIO HIDROLOGICO DE LAGUNAS COSTERAS, CON APLICACION A LAS LAGUNAS MAR MUERTO, OAX., Y LA JOYA - BUENAVISTA, CHIS.

T E S I S
Que para obtener el Título de
INGENIERO CIVIL
presenta

Gabriel Rojas Niño

México, D.F.

1996

TESIS CON FALLA DE ORIGEN

> TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIERIA DIRECCION 60-1-186/94

Señor GABRIEL ROJAS NIÑO Presente.

En atención a su solicitud me es grato hacer de su conocimiento el tema que propuso el profesor M.I. FRANCISCO ECHAVARRIA ALFARO, que aprobó esta Dirección, para que lo desarrolle usted como tesis de su examen profesional de INGENIERO CIVIL.

"ESTUDIO HIDROLOGICO DE LAGUNAS COSTERAS, CON APLICACION A LAS LAGUNAS MAR MUERTO, OAX., Y LA JOYA-BUENAVISTA, CHIS."

- I. INTRODUCCION
- II. INFORMACION RECABADA
- III. METODOLOGIA DE ANALISIS
- IV. LAGUNA MAR MUERTO, OAXACA
- V. LAGUNA LA JOYA-BUENAVISTA, CHIS.
- VI. CONCLUSIONES Y RECOMENDACIONES

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar Examen Profesional.

Atentamente

"POR MI RAZA HABLARA EL ESPIRITU" Cd. Universitaria, a 2 de diciembre de 1994.

EL DIRECTOR.

ING. JOSE MANUEL COVARRUBIAS SOLIS

JMCS/RCR*nll

U

En la ingeniería, el orgullo del hombre, su triunfo sobre la gravitación, su voluntad de poder, asumen una forma visible.

the light of the security field the light of the security

(F. Nietzsche)

Tener no es signo de malvado, y no tener tampoco es prueba de que acompañe la virtud, pero el que nace bien parado, en procurarse lo que anhela, no tiene que invertir salud.

(Silvio Rodriguez)

A mi papá, que aún sigue siendo un héroe para mí.

A mi mamá, por todos los sacrificios que ha hecho a lo largo de su vida.

A mi hermano, porque el convivir con el me ha hecho una persona más inteligente.

A mis amigos, que son buenos y muchos; la mayor riqueza con que cuento.

AGRADECIMIENTOS

A la Secretaría de Pesca y al Ing. Oscar Zerón Espinosa (Subdirector de Impacto Ambiental), por el permiso otorgado para la utilización de los "TRABAJOS HIDROLOGICOS EN DISTINTOS SISTEMAS LAGUNARIOS DE LOS ESTADOS DE CHIAPAS, OAXACA, SINALOA Y TAMAULIPAS", en la elaboración de la presente tesis.

A la Facultad de Ingeniería por todos los conocimientos que de ella recibí, y especialmente al M. en I. Francisco Echavarría Alfaro (a quién respeto mucho), por la oportunidad que me brindó para trabajar en este proyecto, por aceptar dirigirlo, y por todo el apovo que me ha dado.

A todos los compañeros de "EFE ASESORES" y muy especialmente a Tom (persona noble y excelente) y Carlos López (persona de una paciencia infinita), por su ayuda incondicional y desinteresada.

A Javier Echavarría (Chepe), por todas las facilidades otorgadas y porque sin él simplemente no hubiera sido posible la realización de este trabajo.

A Miguel López Guerrero, amigo de toda la vida y a quien admiro y debo mucho.

A Jorge Marmolejo por su solidaridad mostrada a lo largo de la carrera.

Y en general a todos mis compañeros y profesores de la facultad.

INDICE

pág.

III INFORMACION RECABADA. III METODOLOGIA DE ANALISIS. 3.1 Modelo de Simulación.	
3.2 Volúmenes de Escurrimiento. 13 3.3 Evaporación Neta en la Laguna. 14 3.4 Mareas Medias Diarias. 15	1
IV LAGUNA MAR MUERTO, OAXACA, 4.1 Obras que se proponen. 4.2 Análisis Hidrológico. 4.2.1 Estaciones Hidrométricas. 4.2.2 Estaciones Climatológicas. 4.2.3 Cálculo de Coeficientes de Escurrimiento. 4.2.4 Volúmenes de Escurrimiento Diarios. 4.2.5 Evaporación Neta Diaria en la Laguna. 4.3 Procesamiento de Mareas. 4.4 Características de la Cuenca. 4.5 Aplicación del Modelo de Simulación y sus Resultados.	9 9 9 0 0 2 2
V LAGUNA LA JOYA-BUENAVISTA, CHIS. 5.1 Obras que se proponen. 5.2 Análisis Hidrológico. 5.2.1 Estaciones Hidrométricas. 5.2.2 Estaciones Climatológicas. 5.2.3 Cálculo de Coeficientes de Escurrimiento. 5.2.4 Volúmenes de Escurrimiento Diarios. 5.2.5 Evaporación Neta Diaria en la Laguna. 5.3 Procesamiento de Mareas. 5.4 Características de la Cuenca. 5.5 Aplicación del Modelo de Símulación y sus Resultados.	9 0 0 1 3 3 3 3 3
VI CONCLUSIONES Y RECOMENDACIONES 6.1 Mar muerto. 6.2 La Joya-Buenavista. 33	7

INDICE DE TABLAS

GASTOS MEDIOS MENSUALES en m ³ /	ASTOS	S MEDIOS	MENSUALES	en	m^3/s
---	-------	----------	-----------	----	---------

- 4.1 Chicapa
- 4.2 Ixtepec

ALTURAS DE LLUVIAS MENSUALES en mm

- 4.3 Ixtepec
- 4.4 Chicapa

ALTURAS DE EVAPORACION MENSUAL en mm

- 4.5 Piloto No 1
- 4.6 KM 33+000
- 4.7 Mar Muerto Areas de Influencia

CALCULO DE COEFICIENTES DE ESCURRIMIENTO

- 4.8 Ixtepec
- 4.9 Chicapa

COEFICIENTES DE ESCURRIMIENTO MENSUALES

- 4.10 Ixtepec
- 4.11 Chicapa

GASTOS BASES MENSUALES en m3/s

- 4.12 Ixtepec
- 4.13 Ostuta
- 4.14 Volúmenes de Escurrimiento Laguna Mar Muerto
- 4.15 Evaporación Neta Diaria Laguna Mar Muerto
- 4.16 Mareas Medias Diarias Salina Cruz, Oax.
- 4.17 Resultados de la Simulación

GASTOS MEDIOS MENSUALES en m3/s

- 5.1 Tonalá
- 5.2 Jesús

ALTURA DE LLUVIA MENSUAL en mm

- 5.3 Tonalá
- 5.4 Horcones

ALTURA DE EVAPORACION MENSUAL en mm

- 5.5 Horcones
- 5.6 La Tigrera

CALCULO DE COEFICIENTES DE ESCURRIMIENTO

- 5.7 Estación Tonalá 1983
- 5.8 Estación Jesús 1983

COEFICIENTES DE ESCURRIMIENTO MENSUALES

- Tonalá
- 5.10 Jesús

GASTOS BASE MENSUALES en m3/s

- 5.11 Tonalá
- 5.12 Jesús
- 5.13 Volúmenes de Escurrimiento Diario La Joya Buenavista
- 5.14 Evaporación Neta Diaria La Joya Buenavista
- 5.15 Mareas Medias Diarias Puerto Madero
- 5.16 Resultados de la Simulación

INDICE DE FIGURAS

LAGUNA MAR MUERTO

- Volúmenes de Escurimiento
- Volúmenes de Evaporación Neta 4.2
- 4.3 Mareas Medias Diarias Salina Cruz, Oax.
- Elevaciones 4.4
- Gastos en las Bocas 4.5
- Gastos en las Comunicaciones 4.6
- Gastos en el Cuerpo 1 4.7
- 4.8 Gastos en el Cuerpo 2
- Gastos en el Cuerpo 3 4.9
- 4.9 Gastos en el Cuerpo 34.10 Gastos en el Cuerpo 4

LAGUNA LA JOYA BUENAVISTA

- 5.1 Volúmenes de Escurrimiento
- 5.2 Volúmenes de Evaporación Neta
- 5.3 Mareas Medias en Puerto Madero, Chis.
- Elevaciones Condición Actual 5.4
- 5.5 Gastos Condición Actual
- 5.6 Elevaciones Condición Futura
- 5.7 Gastos Condición Futura
- 5.8 Gastos Condición Actual Cuerpo 2
- Gastos Condición Futura Cuerpo 2 5.9

I.- INTRODUCCION.

El complejo proceso fundado en el equilibrio natural entre la evaporación, transpiración, precipitación y retorno al mar de los escurrimientos de agua superficiales y subterráneos, constituye el ciclo hidrológico. Sin conocer con precisión los volúmenes de agua que circulan durante este ciclo, que está basado en el principio simple de la conservación de la materia, se ha estimado que el balance anual entre la evaporación de las aguas marinas y continentales con respecto a la precipitación en el mar y en los continentes no es equilibrado, ya que en la masa continental se tiene un excedente de precipitación de aproximadamente 40 billones de metros cúbicos, que son restituidos al mar por los ríos completando así el ciclo hidrológico.

De todo el volumen de agua aportado a los continentes durante este ciclo, el hombre sólo puede disponer de una pequeña porción. Gran cantidad de agua se evapora y se aloja en la atmósfera formando las nubes; otra parte se infiltra produciendo los mantos freáticos (aguas subterráneas o reservorios), permitiendo la existencia de suelos orgánicos, que a su vez hacen posible la agricultura. Pero a todo esto hay que sumarle la participación de los bosques que, con

las vastas redes que forman sus raíces, retienen el agua de las lluvias y proporcionan la humedad que mantiene la tierra fresca y verde, asegurando el reciclaje de los nutrientes sin los cuales no sería posible la vida en la tierra.

El agua restante, como ya se dijo, retorna al mar por medio de los ríos, permitiendo en su recorrido la existencia de muchas comunidades arbustivas; desde las selvas tropicales, hasta las existentes en los desiertos, manteniendo una cubierta vegetal productora de oxigeno, materia orgánica para el suelo y biomasa verde bajo una diversidad de situaciones que permiten el desarrollo de una gran cantidad de comunidades y millones de especies de microorganismos, plantas y animales, determinando así que la vida y el agua sean inseparables.

Ahora bién, una laguna es una masa de agua dulce o salobre que ocupa una depresión de la superficie de la corteza terrestre y es de menor tamaño y profundidad que los lagos. Al igual que éstos últimos, las lagunas son alimentadas por ríos o glaciares denominados "inmisarios", mientras que los ríos que les sirven de desagüe se denominan "emisarios". El régimen hídrico de una laguna puede presentar variaciones estacionales muy notables, dependiendo del caudal de sus inmisarios, de la pluviosidad de la zona donde se asienta, de las filtraciones del terreno y de la evaporación. Ahora bién, los sistemas lagunarios costeros cuentan, como ya se dijo anteriormente, con la aportación adicional de las aguas marinas que les llegan a través de conductos conocidos como "bocas", y cuyo volumen depende del ciclo de las mareas. Todas estas condiciones hacen que la vida en estas zonas de transición sea de una gran riqueza.

En México se entrelazan dos grandes regiones biogeográficas: la desértica y la neotropical, donde podemos encontrar una mezcla de elementos faunísticos y florísticos del Norte y Sur de América, sobresaliendo la zona de contacto que tiene el mar con el continente constituida por los sistemas lagunares costeros, donde se encuentra una flora y una fauna endémica que únicamente sobrevive en ésta zona de transición.

A lo largo de las costas de la república existen lagunas o sistemas lagunarios susceptibles de ser aprovechados para la pesca extensiva, si son mejoradas sus condiciones de intercomunicación con el mar, y si son alimentadas además por los escurrimientos de las aquas continentales.

Se puede considerar que las lagunas costeras son ecosistemas de transición entre los sistemas terrestre-dulce, acuícola y marino, lo que, como ya se dijo, las hace sumamente ricas en cuanto a diversidad de seres vivos.

Las épocas de lluvia (verano-invierno o sólo verano) con sus huracanes y tormentas tropicales representan el aporte pluvial más importante de agua dulce a los sistemas lagunarios, y se manifiestan con mayor frecuencia en los meses de junio a noviembre; así mismo las mareas, que persisten durante todo el año, son el aporte importante de agua marina que reemplaza el agua que pierden los sistemas lagunarios por evaporación, principalmente durante los meses de enero a junio.

Cuando estas lagunas reciben, además de la aportación marina, el agua dulce de las corrientes superficiales que desembocan en ellas, se convierten en un criadero de vida de riqueza incalculable donde se reproducen, entre otras especies, algas comestibles, ostiones, almejas, camarones y peces. Toda esta riqueza puede ser explotada, pero su aprovechamiento depende de que las lagunas reciban el caudal de agua proveniente de los continentes y del mar para que las especies se desarrollen y proliferen.

Sin embargo, esta amplia biodiversidad está amenazada; por una parte existe un gran desequilibrio entre la demanda de agua y la disponibilidad local. Por otra parte dicha biodiversidad se está reduciendo a un gran ritmo, fundamentalmente debido al crecimiento demográfico y al consumo exagerado del agua, factores que han contribuido al deterioro ambiental de los sistemas lagunarios donde se reemplazan magnificas selvas de mangle por pastizales improductivos y se transforman lagunas de gran riqueza animal y vegetal en suelos semiociosos que son degradados por una tendencia al monocultivo. Así, en los últimos cuarenta años se ha observado la extinción de especies de peces y otros organismos de aguas dulces y salobres, que no toleran los cambios de acidez y turbiedad del agua. Asimismo, la rápida declinación o desaparición de especies de aves por la alteración o destrucción de sus hábitats.

Esta pérdida de flora y fauna, que no volveremos a ver, ha influido en los ciclos hidrológicos afectando a la biodiversidad en la que el pescador culturalmente ha tenido su lugar interactuando como otro elemento biótico del ecosistema.

Este deterioro ambiental de muy alto costo se transferirá a las generaciones futuras si no limitamos oportunamente su proceso mediante mecanismos que obliguen a la incorporación de criterios ecológicos en todos los programas de desarrollo del agua, desde el industrial, doméstico, agrícola y acuícola hasta el marítimo, que permitan su aprovechamiento racional y la adecuada reposición del agua dulce que han dejado de recibir los sistemas lagunarios costeros, de manera que se minimicen los daños sobre la riqueza ecológica que la naturaleza brinda en ambos litorales de nuestro país.

Sin embargo, se ha observado en muchas regiones que los ríos han modificado sus escurrimientos de una manera notable debido a la retención del agua en presas de almacenamiento, situación que ha provocado que muchas lagunas del país dejen de recibir los aportes de agua normales, afectándose de manera importante las características productivas de dichos sistemas.

Todo lo anteriormente expuesto es el motivo para la realización de esta Tesis, que enfoca su estudio en los sistemas lagunarios: La Joya-Buenavista, Chiapas, y el comprendido entre la Laguna Oriental y el Mar Muerto, Oaxaca; y que busca fundamentalmente dos cosas: La primera es determinar las bondades de la implementación de un modelo matemático de simulación, aplicado al comportamiento de los sistemas lagunarios, y la segunda es el conocer, través de un análisis hidrológico, la cantidad de escurrimientos que llegan o podrían llegar a dichas lagunas costeras, así como también su funcionamiento hidráulico, de tal forma que se puedan promover y fomentar los cultivos, crecimiento, explotación, procesamientos y conservación de las especies acuáticas, animales y vegetales de aquas dulces y salobres.

2.- INFORMACION RECABADA.

Con el objeto de poder disponer, para la realización de este trabajo de Tesis, de toda la información necesaria consistente en datos hidrográficos, hidrométricos, registros de precipitaciones, escurrimientos, mareas, etc., así como también de todos los datos topográficos y socioeconómicos de las zonas en estudio, se buscó y conjuntó la información que a continuación se describe.

Se recopilaron las cartas topográficas siguientes, escala 1:250,000 del Instituto Nacional de Estadística Geografía e Informática.

Juchitán E15-10 y D15-1, Hiuxtla D15-2 y Tuxtla Gutiérrez E15-11 para las Lagunas Oriental y Mar Muerto en los Estados de Oaxaca y Chiapas.

Huixtla D15-2 y Tuxtla Gutiérrez E15-11 para la Laguna La Joya-Buenavista del Estado de Chiapas.

De las estaciones climatológicas se obtuvo su registro de altura de lluvia diaria para todo el período histórico.

Para las Lagunas Oriental y Mar Muerto las estaciones de:

Ixtepec Chilapa
Ostuta Zanatepec
Km 33+000 Km 67+500
La Maleta Piloto No 1
San Miguel Chimalta Santiago Chivela
Unión Hidalgo

Para la Laguna La Joya Buenavista las estaciones de:
Horcones Jesús
La Tigrera Pijijiapan
Tonalá

Se recopilaron los datos de evaporación diaria para todo su período de registro histórico.

Para las Lagunas Oriental y Mar Muerto las estaciones de:
Piloto No 1 Km 33+000
Unión Hidalgo Ostuta
Zanatepec

Para la Laguna La Joya Buenavista las estaciones de:
Horcones Jesús
La Tigrera

De las estaciones hidrométricas se recopilaron los gastos diarios para todo su registro histórico.

Para las Lagunas Oriental y Mar Muerto las estaciones de:

Tonalá Zanatepec Ostuta Chicapa Ixtepec Miltepec

Para la Laguna La Joya Buenavista las estaciones de:
Jesús Pijijiapan
San Diego Tonalá

La Dirección de Estudios y Proyectos de la Dirección General de Infraestructura y Flota Pesqueras proporcionó información referente a impacto ambiental para las obras que se han realizado en las zonas de estudio.

Estudio de Manifestación de Impacto Ambiental, Modalidad General, para la obra de dragado de mantenimiento del canal de comunicación y canal secundario y reparación de escolleras en San Francisco, Oaxaca.

Manifestación de Impacto Ambiental, Modalidad General del Proyecto de Obras para la Rehabilitación del Sistema Lagunario La Joya Buenavista, Chiapas.

III.- METODOLOGIA DE ANALISIS.

En este capítulo se explican los pasos empleados para determinar los volúmenes diarios dentro de las lagunas, incluyendo la descripción de las expresiones matemáticas utilizadas.

Se implementó un modelo de simulación del funcionamiento hidráulico de las lagunas a nivel diario, basado en la Ecuación de Continuidad de la Hidrodinámica, tomando en cuenta tanto la evaporación neta como el efecto de las mareas por las bocas naturales o artificiales con que cuentan. En este capítulo se hace una descripción del modelo de simulación y de la forma de obtener los volúmenes que intervienen en el balance.

Para cuantificar los volúmenes de escurrimiento se procesaron datos de precipitación y escurrimiento de cuencas vecinas y de las cuencas que drenan hacia las lagunas en estudio.

Se procedió a determinar los volúmenes de escurrimiento hacia las lagunas, a partir de la información diaria de precipitaciones y de la determinación de coeficientes de escurrimiento, para medir el efecto de dichos volúmenes en las lagunas.

3.1.- Modelo de Simulación.

La Ecuación de Continuidad aplicada a un almacenamiento plantea que el gasto que entra es igual al gasto que sale mas el cambio en el volumen almacenado en el intervalo de tiempo del análisis. A partir de la ecuación anterior, el balance hidrológico e hidráulico de una laguna costera se puede estudiar conociendo el cambio en su almacenamiento por efecto de los volúmenes que entran y salen del cuerpo receptor.

La ecuación del balance se puede plantear para un día i cualquiera como:

$$V_1 = V_{1-1} + V_0 + V_0 + M_0 + M_B$$

donde:

 V_i volumen de la laguna al final del día en estudio i, en m^3

 V_{i-1} volumen de la laguna al inicio del dia i, en m^3

Ve volumen de escurrimiento de la cuenca, en m³

V_n volumen de evaporación neta, en m³

M_A volumen por marea alta (flujo), en m³

M_B volumen por marea baja (reflujo), en m³

Los volúmenes diarios de escurrimiento a la laguna se cuantifican en base a la precipitación diaria y a los coeficientes de escurrimiento, en tanto que los volúmenes de evaporación neta se obtienen multiplicando la altura diaria definida para la zona por el área de la superficie libre de la laguna.

Respecto a los volúmenes diarios por marea en las dos bocas que se toman en cuenta para el análisis, se obtienen como:

$$M = v A D$$

donde:

M	volumen por marea, en m³
v	velocidad media del flujo, en m/s
A	área hidráulica de 1a boca, en m^2
D	duración de la marea, en s

La diferencia de niveles entre el mar y la laguna está dada por:

$$\Delta h = Z - E$$

donde:

Δh desnivel, en m

Z nivel de marea, relacionado al nivel medio del mar, en m

elevación de la laguna referida al nivel medio del mar, en m

Aplicando la Ecuación de la Energía entre una sección en el mar y otra en la laguna, se obtiene que:

$$\Delta h = \frac{v^2}{2g} + h_m + h_f$$

donde:

g

aceleración de la gravedad, en m/s²

 h_m

pérdidas menores de carga. En este caso se valúan como:

 $h_m = k_e \frac{v^2}{2g}$

he

pérdidas de carga por fricción, igual a:

 $h_f = \left[\frac{nv}{\frac{2}{R_1^2}}\right]^1 L$

donde:

k_e coeficiente que toma en cuenta la entrada del mar hacia la laguna y viceversa. Se considera un valor de 0.5

n coeficiente de rugosidad de Manning. Se acepta un valor de 0.025

L longitud de la boca, en m

R radio hidráulico de la sección media de la boca, el cual se valúa en forma aproximada como:

 $R = h + \frac{Z \cdot E}{2}$

De acuerdo con lo anterior, la ecuación de pérdida se puede escribir como:

 $\Delta h = k \frac{v^2}{2g} + \left(\frac{nv}{R_1^2}\right)^2 L$

con lo cual

$$v = \left[\frac{\Delta h}{\frac{k}{2g} + \left(\frac{n}{R_3^2}\right)^2 L} \right]^{\frac{1}{2}}$$

en donde

k coeficiente de carga de velocidad, más las pérdidas menores = $1 + k_e$

La ecuación anterior permite calcular la velocidad media del flujo o reflujo a través de la boca, para la que se acepta un valor de k=1.5

De acuerdo con la metodología propuesta, se tiene que el balance hidrológico requiere hacerse por tanteos, ya que existe una relación entre los volúmenes por mareas y cambios de almacenaje en el cuerpo de agua, ambos función del desnivel existente entre la laguna y el mar.

Para el balance se elabora un programa para computadora en lenguaje BASIC. El programa considera en un primer tanteo, un volumen inicial y un incremento en el nivel de la laguna para el día en estudio. De esta manera, de la ecuación del balance, se deduce el volumen al final del día y con apoyo en la curva elevacionescapacidades de la laguna se obtiene la nueva elevación de la superficie del agua.

Si ésta elevación es igual a la supuesta se procede al análisis del segundo día intentando otro nivel y considerando que el volumen final del día anterior es ahora el inicial. Si el nivel es diferente, se supone otra elevación y se repite el proceso hasta hacerlos coincidentes.

con lo cual

$$v = \left[\frac{\Delta h}{\frac{k}{2g} + \left(\frac{n}{R_1^2}\right)^2 L}\right]^{\frac{1}{2}}$$

en donde

k coeficiente de carga de velocidad, más las pérdidas menores = $1 + k_e$

La ecuación anterior permite calcular la velocidad media del flujo o reflujo a través de la boca, para la que se acepta un valor de k=1.5

De acuerdo con la metodología propuesta, se tiene que el balance hidrológico requiere hacerse por tanteos, ya que existe una relación entre los volúmenes por mareas y cambios de almacenaje en el cuerpo de agua, ambos función del desnivel existente entre la laguna y el mar.

Para el balance se elabora un programa para computadora en lenguaje BASIC. El programa considera en un primer tanteo, un volumen inicial y un incremento en el nivel de la laguna para el día en estudio. De esta manera, de la ecuación del balance, se deduce el volumen al final del día y con apoyo en la curva elevacionescapacidades de la laguna se obtiene la nueva elevación de la superficie del aqua.

Si ésta elevación es igual a la supuesta se procede al análisis del segundo día intentando otro nivel y considerando que el volumen final del día anterior es ahora el inicial. Si el nivel es diferente, se supone otra elevación y se repite el proceso hasta hacerlos coincidentes.

Este proceso se aplica día a día hasta completar el ciclo anual, al final del cual se compara el volumen resultante y el supuesto al iniciar el balance, con las mismas consideraciones que en el proceso diario.

El signo positivo en los volúmenes por marea indica que el agua se mueve del mar hacia la laguna y el negativo indica que el agua se mueve de la laguna hacia el mar.

La simulación del funcionamiento hidráulico de las lagunas en estudio se efectuó para un año medio, es decir, tomando valores medios en el tiempo de los volúmenes que intervienen en el balance.

3.2. - Volúmenes de Escurrimiento.

Para conocer los gastos o volúmenes que escurren superficialmente hacia las lagunas costeras, es necesario recurrir al conocimiento de los coeficientes de escurrimiento y a la precipitación media en la cuenca donde se generan.

Se define el coeficiente de escurrimiento como la relación entre el volumen escurrido y el volumen llovido. Una vez que se conoce el coeficiente de escurrimiento es posible conocer el volumen escurrido al multiplicar dichos coeficientes por el volumen llovido en la cuenca.

Para calcular los coeficientes de escurrimiento se requiere de una cuenca instrumentada en donde se midan alturas de precipitación diarias y se aforen los gastos diarios en la corriente a la salida de la cuenca. Dichas cuencas pueden estar dentro de la zona que drena hacia las lagunas o en otras áreas cercanas a las de estudio, pero con las mismas características climatológicas.

El procedimiento se describe a continuación. Se marcan en planos topográficos las cuencas correspondientes a cada estación hidrométrica, se ubican las estaciones climatológicas y se trazan los polígonos de Thiessen para definir sus áreas de influencia. Con la altura de precipitación diaria de cada estación y su área de influencia, se calcula el volumen de lluvia diario. Por otro lado, al multiplicarse el gasto medio diario (en m³/s) de la estación hidrométrica por el tiempo de un dia (en segundos), se obtiene el volumen escurrido diario. Como se indicó anteriormente, al dividirse el volumen escurrido entre el volumen llovido, se obtiene el coeficiente de escurrimiento.

Los coeficientes se calculan a nivel diario y por tormenta, tomándose en cuenta que se trate de lluvias generalizadas en toda la cuenca y considerando también las lluvias del día anterior en los casos en los que no se tuviera escurrimiento, y tomando los escurrimientos del día siguiente aunque no hubieran lluvias en el caso de los coeficientes diarios.

Esta metodología se aplica para todos los años completos de registro tanto de las estaciones hidrométricas como de las climatológicas, obteniéndose coeficientes mensuales promedio para todos los años de registro.

Por otra parte, con el método de los polígonos de Thiessen se obtiene la lluvia media diaria en el área y en el tiempo, que multiplicada por el área de la cuenca de aportación a la laguna dá el volumen llovido, nuevamente al multiplicar por el coeficiente de escurrimiento se obtiene el volumen de escurrimiento a la laguna costera por cuenca propia.

Es importante en este análisis tomar en cuenta el gasto base de las corrientes aforadas; este gasto puede ser producto de manantiales que descargan hacia la corriente y se abastecen de agua subsuperficial o freática, la que se puede considerar independiente de las precipitaciones diarias aunque sí depende de la temporada de lluvias. El valor del gasto base se determina analizando los registros cuando no llueve, sobre todo en la época de estiaje.

Conocidos los gastos bases a nivel mensual, se obtienen sus valores medios en el período de registro y se dividen entre el área de la cuenca para definir un gasto base por unidad de área. El valor anterior, al multiplicarlo por el área de la cuenca de aportación a la laguna, permite conocer el gasto base correspondiente.

3.3.- Evaporación Neta en la Laguna.

La evaporación neta en una laguna se calcula como la diferencia entre la evaporación y la precipitación registradas en la zona y permite determinar el volumen que sale de la laguna por evaporación o que llega a ella por efecto de la lluvía; el volumen se calcula con el producto de la altura de evaporación neta diaria por el área de la laguna expuesta al efecto de los rayos solares.

Por una parte, se determinan valores medios en el tiempo de la evaporación neta diaria y por la otra, de determinan estos mismos valores pero en la superficie de las lagunas a través de las áreas de influencia definidas con los polígonos de Thiessen.

3.4.- Mareas Medias Diarias.

Para conocer el efecto de las mareas en el balance del agua en las lagunas, se requiere conocer los niveles medios de marea alta y baja en cada día, para lo cual se parte de las Tablas de Predicción de Mareas editadas por el Servicio Mareográfico del Instituto de Geofísica de la Universidad Nacional Autónoma de México, en donde se presentan para cada día de un año la hora y el valor de los niveles en marea alta y en baja. A partir del tiempo que dura cada marea y de sus valores extremos, se determina su valor medio que es igual a que la marea permanezca con un nivel constante el tiempo que dura la misma. Esto se obtiene dividiendo el área bajo la curva de las mareas entre el tiempo de duración de las altas o de las bajas.

IV. - LAGUNA MAR MUERTO, OAXACA.

El sistema lagunario se localiza en la costa del estado de Oaxaca casi en los límites con el estado de Chiapas, en la parte norte del Golfo de Tehuantepec. Está integrado por las lagunas Superior e Inferior, Mar Tileme Oriental y Occidental y el Mar Muerto. Tiene una extensión total de 99,150 ha, de las cuales 33,080 ha corresponden a la Laguna Superior, 24,120 a la Inferior, 5,060 al Mar Tileme, 4,690 a las lagunas Oriental y Occidental y 32,200 ha al Mar Muerto.

Se comunica con el Golfo de Tehuantepec mediante la Boca de San Francisco localizada en la Laguna Inferior de Oaxaca y con la Boca de Tonalá en Chiapas. Esta se cerraba completamente en algunas épocas por efecto del transporte litoral existente en la zona. La construcción de las obras de protección, así como el dragado de comunicación permanente en dicho sitio está corrigiendo el problema.

Alimentan a la Laguna Superior el río de los Perros, el arroyo Estacudo, el río Chicapa y el arroyo San José. En la Laguna Inferior descarga el río Niltepec y el río Ostuta alimenta al conjunto de las lagunas Oriental y Occidental. Al Mar Muerto descarga el río Novillero.

La región tiene un clima tropical, cálido y subhúmedo, con lluvias en verano, de tipo AWI (i)g, según la clasificación Koppen. El porcentaje de lluvia invernal es inferior al 5% de la precipitación anual. El promedio de precipitación total anual es de 1,087 mm, siendo los meses de junio a septiembre los que han registrado las mayores precipitaciones. La temperatura media anual es de 26.6°C, siendo los meses más calurosos de abril a agosto, con una media mensual de 29.0°C.

Los vientos dominantes son del norte con una intensidad promedio de 15 nudos (27.8 km/h). El viento máximo registrado hasta la fecha, fue en noviembre de 1957 con velocidades de 100 nudos (185.2 km/h). Los vientos del norte cobran mayor fuerza y frecuencia durante el período de noviembre a febrero, aunque pueden presentarse condiciones favorables para su desarrollo ya desde el mes de octubre, o mucho más tarde como por el mes de abril.

El área se ubica dentro de la provincia fisiográfica de la cordillera Centroamericana, en la discontinuidad denominada Llanura del Itsmo, en un sistema de topoformas de playas y barras asociadas con las llanuras con fases inundables y salinas.

Los principales elementos fisiográficos en esta zona son la Sierra de Niltepec o Sierra Atravesada y la Sierra Madre de Chiapas, que sirven de parteaguas a las cuencas que alimentan las aguas que ocupan las partes topográficamente mas bajas dentro de la planicie costera en dirección sureste extendiéndose hasta el meridiano 92°, y hasta el 94° al Oeste. La parte más elevada está en los límites con Guatemala, en donde alcanza 4,000 m de altura s.n.m.m. en el volcán de Tacaná.

La planicie costera es una franja alargada y angosta que se extiende al pie de la Sierra Madre de Chiapas, guardando la misma dirección. En ella están asentadas algunas de las poblaciones más importantes del estado de Chiapas, como Tapachula, Huixtla, Tonalá y Arriaga, y es un poco más amplia en la porción del estado de

Oaxaca colindante con este complejo lagunario, en donde se localizan poblaciones importantes de este estado como Santo Domingo, Tehuantepec, Salina Cruz y Juchitán de Zaragoza.

Algunas de las características físico-químicas del sistema lagunar se detallan a continuación.

Cuerpo	Temperaturas °C		Salinidad ppm		Oxigeno mg/1	
	Sup	Fondo	Sup	Fondo		
Laguna Superior	24.0	23.7	33.0	33.0	6.6	
Laguna Inferior	25.7	26.0	38.0	37.5	7.3	
Laguna Occidental	25.9	25.7	29.2	26.0	8.0	
Laguna Oriental	26.1	28.0	7.0			

La vegetación existente, principalmente en la faja litoral situada entre el mar y las lagunas puede ser clasificada como "monte bajo", y se constituye principalmente de arbustos y matorrales, entre los cuales destaca el quebracho, el malvarisco y el ishcanal.

En los bordes de las lagunas se tiene la presencia de mangle y bejuco de agua (Vitis tilifolia), aunque de manera escasa, siendo un poco más abundante en la porción poniente de la Laguna Oriental, y esparcidos en el "monte bajo", no excediendo del 10% del total de la superficie cubierta, se encuentran árboles grandes como "amate" (Ficus tecolutensis), "caoba" (Swietenia macróhylla King), "ceiba" Ceiba pentandra, "cupapé" Cordia dodecandra, "coyol" (Acrocomia mexicana) y "guanacaste" (Esterolobim cyclocarpum).

El sistema lagunario está caracterizado por ser somero, sin embargo los fondos son inestables debido principalmente a la acción de los nortes, las mareas y lluvias. El tipo de sedimento es arenoso, en el que abundan conchas de moluscos, Sobre este subestrato suele acumularse limo y arcilla con abundante materia orgánica arrastrada desde los terrenos circundantes. Este sedimento es común en la entrada de los esteros y en las inmediaciones de las desembocaduras de las corrientes intermitentes.

Las principales especies presentes en la zona son: Camarón blanco, café y azul, tortuga golfina, prieta, laud, y especies de escama como bagre, berrugata, boca de novia, corvina plateada, chata,

corvineta ratón, roncador, botete, burro, ronquito, cabaicucho, negrillo, chabelita, chapeta, horqueta, pámpano, pelona, lenguado, huachinango, pajarillo, mojarra blanca, charrita, plateada, sardina escamuda, machete, entre otras.

4.1.- Obras que se proponen.

El proyecto de rehabilitación para el canal de intercomunicación entre la laguna Mar Muerto y la Laguna Oriental consiste en el dragado con máquina a una cota de -2.0 m sobre el trazo del canal existente y una ampliación de 6,500 m sobre la Laguna Oriental. Dicho proyecto pretende que el canal presente un ancho de plantilla de 40 m aproximadamente, con taludes de 3:1, una profundidad de 2.0 m y una longitud total de 22.725 km, con un volumen de dragado del orden de 2.2 millones de m^3 .

El principal objetivo del proyecto es el devolver al sistema lagunar del Mar Muerto y Laguna Oriental las condiciones ecológicas y pesqueras que tuvo anteriormente y cuyas características se han restringido al disminuir su intercambio hidráulico con el mar, debido principalmente a la acumulación de sedimentos.

4.2.- Análisis Hidrológico.

Para el análisis de la cuenca propia de esta laguna de se estudiaron 6 cuencas que llegan a ella y tienen estaciones de aforo. Las cuencas que se analizaron fueron: Chicapa, Ixtepec, Niltepec, Ostuta, Zanatepec y Tonalá.

4.2.1.- Estaciones Hidrométricas.

Para la elaboración de esta Tesis se utilizaron los registros de gastos medios diarios de la Secretaria de Recursos Hidráulicos, Subsecretaría de Planeación, Dirección General de Estudios, Dirección de Hidrología; de las estaciones Chicapa (1948-1980), Ixtepec (1948-1985), Niltepec (1957-1983), Ostuta (1948-1985) y Zanatepec (1954-1985). En las tablas 4.1 y 4.2 se muestran los gastos medios mensuales y anuales para las estaciones Chicapa e Ixtepec, obtenidos a partir de los gastos medios diarios. También, para esta laguna se usaron los datos y resultados de la cuenca de la estación hidrométrica de Tonalá, los cuales se presentan en el capítulo V.

4.2.2.- Estaciones Climatológicas.

Se utilizó la altura de precipitación diaria de las estaciones Ixtepec (1949-1986), Chicapa (1950-1989), Ostuta (1965-1980), Zanatepec (1978-1988), Km 33+000 (1966-1981), Km 67+500 (1965-1979), La Maceta (1966-1986), Piloto No. 1 (1951-1984), San Miguel Chimalpa (1964-1989), Santiago Chivela (1962-1985), y Unión Hidalgo (1943-1982). En las tablas 4.3 y 4.4 se incluyen las alturas de lluvia mensuales y anuales para las estaciones Ixtepec y Chicapa, calculadas con la suma de las precipitaciones diarias.

También se utilizaron las alturas de evaporación diaria de las estaciones Piloto No.1 (1977-1984), Km 33+000 (1966-1981), las cuales se muestran en las tablas 4.5 y 4.6.

4.2.3.- Cálculo de Coeficientes de Escurrimiento.

Para la determinación de los coeficientes de escurrimiento, se utilizaron los datos de 6 cuencas instrumentadas que drenan hacia el sistema lagunario del Mar Muerto. A partir del análisis diario de la relación lluvia-escurrimiento, se obtuvieron coeficientes de escurrimiento que permiten conocer los volúmenes escurridos en la cuenca propia de la laguna, conocido el volumen llovido en ella. Lo anterior se efectuó para todo el período de análisis para cada cuenca. En forma semejante, se realizó el análisis para los gastos base.

En la tabla 4.7 se presentan, para cada estación hidrométrica, las estaciones climatológicas que se localizan en su cuenca o en las cercanías y que tiene área de influencia en la misma; se anotaron los valores de sus áreas en $\rm km^2$ y en porcentaje.

A manera de ejemplo para uno de los años de análisis, en las tablas 4.8 y 4.9 se muestra el cálculo de los coeficientes de escurrimiento para las cuencas de las estaciones Ixtepec y Chicapa, para los meses representativos del período de lluvias. Salvo el caso de Tonalá, que se analizó para el sistema La Joya - Buenavista, los números para identificar las estaciones climatológicas corresponden a los señalados en la tabla 4.7.

Con los resultados de las tablas anteriores para todo los años en que fue posible determinar los coeficientes de escurrimiento, se formaron, para las cuencas estudiadas, las tablas 4.10 y 4.11 con el resumen de los coeficientes mensuales obtenidos. Los coeficientes que se aceptaron fueron los siquientes:

MES	COEFICIENTE DE
	ESCURRIMIENTO
ENERO	0.057
FEBRERO	0.0475
MARZO	0.029
ABRIL	0.039
MAYO	0.074
JUNIO	0.132
JULIO	0.112
AGOSTO	0.123
SEPTIEMBRE	0.162
OCTUBRE	0.145
NOVIEMBRE	0.071
DICIEMBRE	0.050

Por otra parte, se efectuó el análisis de los gastos base, obteniéndose los valores que se presentan en las tablas 4.12 y 4.13 para las cuencas correspondientes a las estaciones Ixtepec y Chicapa, tomándose los resultados para la cuenca de la estación Tonalá obtenidos en el capítulo V. Se determinaron los valores de los gastos base por unidad de área, dándole más peso a las estaciones de mayor extensión; los gastos bases unitarios que se aceptaron fueron:

MES	GASTO BASE UNITARIO m3/s/km	1
ENERO	0.0018	
FEBRERO	0.00075	
MARZO	0.0004	
ABRIL	0.0002	
MAYO	0.0008	
JUNIO	0.0057	
JULIO	0.0077	
AGOSTO	0.0127	
SEPTIEMBRE	0.0393	
OCTUBRE	0.0120	
NOVIEMBRE	0.0049	
DICTEMBRE	0.0015	

4.2.4.- Volúmenes de Escurrimiento Diarios.

Tomando en cuenta la precipitación media en el área de aportación a la laguna, los coeficientes de escurrimiento y los gastos bases unitarios, en la tabla 4.14 se calcularon los volúmenes de escurrimiento diarios medios, mismos que se presentan graficados en la fig. 4.1.

4.2.5.- Evaporación Neta Diaria en la Laguna.

Las estaciones que tuvieron influencia en la laguna para la evaporación neta fueron: Piloto No 1, Km 33+000, Unión Hidalgo, Ostuta y Zanatepec, con las cuales se procedió a calcular la altura diaria tal como se muestra en la tabla 4.15. Tomando un área media de la laguna, en la fig. 4.2 se presentan los volúmenes que entran y salen de la laguna sobre su superficie.

4.3.- Procesamiento de Mareas.

Para el análisis de mareas se tomó, de las Tablas de Predicción para 1994, la correspondiente al Puerto Madero, Chis. Se procesó en la forma indicada en el capítulo III, teniéndoos los resultados que se presentan en la tabla 4.16 y que se grafican en la fig. 4.3.

4.4.- Características de la Cuenca.

El sistema lagunario se ubica en una zona plana en las proximidades del Océano Pacífico, encontrándose a una distancia de 13 km. los cerros El Cornelio, Piedra Cuache, San José y Guadalupe. A la distancia de aproximadamente 20 km. comienzan las primeras estribaciones de la Sierra de Oaxaca en la punta Este del Mar Muerto. La orientación del sistema lagunario es de 40° al Oeste (N40°W). La pendiente media en la zona de planicie es de 0.007 y en la de montaña es de 0.050 a 0.100. Se inundan las áreas que bordean al sistema lagunario en diversos puntos como: La Gloria, La Línea, Trejo Salinas, Rincón Juárez, y entre el canal de intercomunicación Cerritos y el Golfo de Tehuantepec.

4.5.- Aplicación del Modelo de Simulación y sus Resultados.

En este subcapítulo se presenta la implementación del modelo matemático, basado en la Ecuación de Continuidad de la Hidrodinámica, para determinar el comportamiento de los niveles diarios de agua en el sistema lagunario Mar Muerto, el análisis de

alternativas de funcionamiento hidráulico y la interpretación de los resultados.

El balance hidrológico se enfocó a determinar el intercambio de agua de la laguna con el mar, interviniendo los volúmenes de escurrimiento superficial de la lluvia, la evaporación y la variación de niveles en el mar por efecto de las mareas.

Para el análisis con este modelo matemático se dividió al sistema lagunario en cuatro cuerpos definidos y conectados como se indica a continuación.

Cuerpo 1.- Formado con la Laguna Mar Muerto; se comunica con la Laguna Oriental (cuerpo 2) a través del canal proyectado motivo de este estudio y al mar por medio de la boca que se localiza entre las poblaciones de Cochimbo e Ignacio Allende.

Cuerpo 2.- Para este cuerpo se consideró la Laguna Oriental; conectada al Mar Muerto y al Mar Muerto Inferior (cuerpo 3) por medio de la comunicación en Puerto Estero.

Cuerpo 3.- Corresponde a la Laguna Mar Muerto Inferior, unida a la Laguna Oriental y al Mar Muerto Superior (cuerpo 4) a través de la comunicación en Bocabarra. Tiene una boca con el mar en las cercanías de la Barra de San Francisco.

Cuerpo 4.- Lo definió la laguna Mar Muerto Superior, conectada con el cuerpo denominado Inferior.

De acuerdo con la información hidrológica, los escurrimientos generados y las mareas analizadas en los incisos anteriores, se procedió al balance hidrológico medio diario del sistema lagunario mediante la metodología expuesta en el capítulo III, aplicando la ecuación de balance en cada uno de los cuerpos.

La ecuación del balance se planteó para el cuerpo 1 como:

$$V1_i = V1_{i-1} + V1_e + V1_n + M1_A + M1_B + V12 - V_T$$

donde

V1: volumen del cuerpo 1 al final del dia en estudio i, en m³

V1 _{i-1}	volumen del cuerpo 1 al inicio del día i, en $\ensuremath{\mathfrak{m}}^3$
V1 _e	volumen de escurrimiento de la cuenca al cuerpo 1, en m^3
V1 _n	volumen de evaporación neta en el cuerpo 1 , en \mathbf{m}^3
M1 _A	volumen por marea alta (flujo) por la Boca de Cochimbo, en m³
M1 _B	volumen por marea baja (reflujo) por la Boca de Cochimbo, en m³
V12	volumen entre los cuerpos 1 y 2 en la zona del canal de provecto, en m³

Para el cuerpo 2 la ecuación de balance es:

$$V2_i = V2_{i-1} + V2_e + V2_n - V12 + V23$$

donde

 $V2_{i}$ volumen del cuerpo 2 al final del día en estudio i, en m^{3}

 $V2_{i-1}$ volumen del cuerpo 2 al inicio del día i, en m^3

V2. volumen de escurrimiento de la cuenca al cuerpo 2, en m³

 $V2_n$ volumen de evaporación neta en el cuerpo 2. en m^3

V23 volumen entre los cuerpos 2 y 3 por el Puerto Estero, en m³

La ecuación del balance se planteó para el cuerpo 3 como:

$$V3_i = V3_{i-1} + V3_e + V3_n + M3_A + M3_B - V23 + V34$$

40	•	٦	_
-00	n	п	е

V3 _i	volumen del cuerpo 3 al final del día en estudio i, en $\ensuremath{\mathrm{m}}^3$
V3 ₁₋₁	volumen del cuerpo 3 al inicio del día i, en $\ensuremath{\mathrm{m}}^3$
V3e	volumen de escurrimiento de la cuenca al cuerpo 3, en $\ensuremath{\text{m}}^3$
V3 _n	volumen de evaporación neta en el cuerpo 3 , en \mathbf{m}^3

volumen por marea alta (flujo) por la M3_A Boça de la Barra de San Francisco, en m³

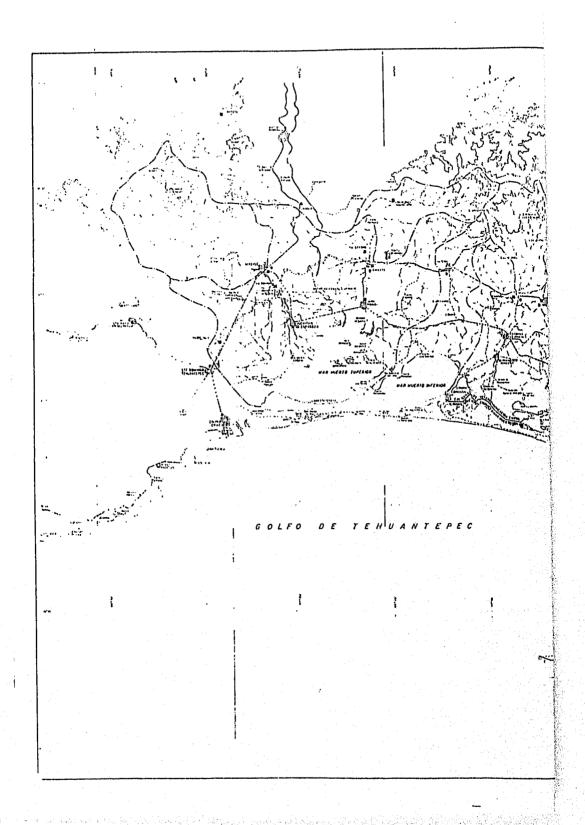
M3_R volumen por marea baja (reflujo) por la Boca de la Barra de San Francisco, en m³

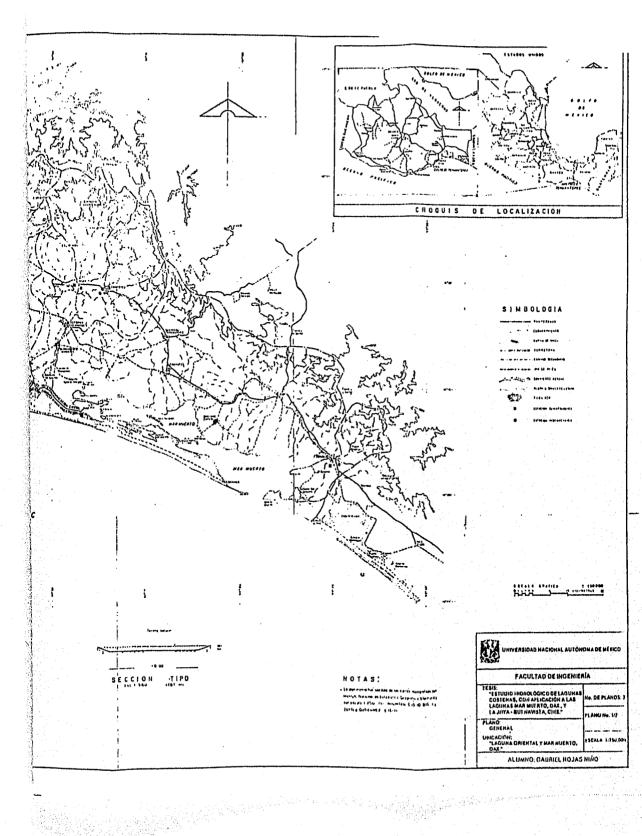
V34 volumen entre los cuerpos 3 y 4, en m³

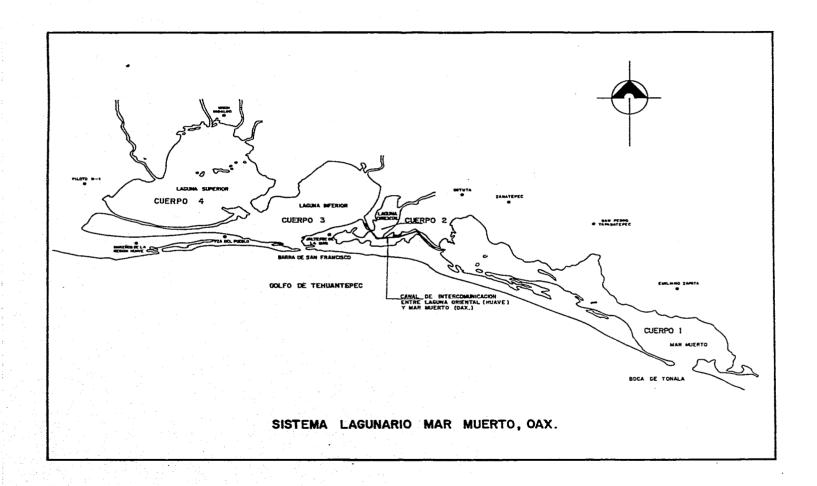
Y para el cuerpo 4:

$$V4_i = V4_{i-1} + V4_e + V4_n - V34$$

donde


V4. volumen del cuerpo 4 al final del día en estudio i, en m


V4₁₋₁ volumen del cuerpo 4 al inicio del día i, en m³


V4e volumen de escurrimiento de la cuenca al cuerpo 4, en m3

 $V4_n$ volumen de evaporación neta en el cuerpo 4, en m^3

En la fig. 4.4 se muestran las elevaciones medias diarias en los cuatro cuerpos analizados y la variación de la mareas alta y baja en el mar. En la fig. 4.5 se tienen los gastos que entran por las bocas con el mar a la laguna Mar Muerto y a la laguna Inferior y, fig. 4.6, los que transitan día a día por las intercomunicaciones entre los cuatro cuerpos de este sistema lagunario. Por otra parte, en las figs. 4.7 a 4.10 se presentan los gastos medios diarios que llegan a cada cuerpo, los de escurrimiento continental, evaporación neta y los de las intercomunicaciones. Los resultados de las simulaciones se presentan, para los meses de abril y agosto, en la tabla 4.17.

V .- LAGUNA LA JOYA-BUENAVISTA, CHIS.

El sistema lagunario La Joya-Buenavista se localiza en la zona noroeste de la franja costera del estado de Chiapas, al oriente del Golfo de Tehuantepec en la región del Itsmo, entre los meridianos 93° 40' y 93° 55' de longitud oeste y entre los paralelos 15° 45' y 16° 00' de latitud norte. Está separado del mar por un cordón litoral sobre el que se aloja el camino Cabeza de Toro- El Manguito. Entre dicho cordón y el mar existe un estero que comunica en forma natural al Océano Pacífico en el sitio conocido como Barra de San Marcos, localizado cerca del poblado Boca del Cielo.

El sistema se formó a partir del inundamiento de una depresión cuyos bordes están rodeados en sus márgenes internos por superficies terrigenas. El sistema es protegido del mar por una barrera arenosa formada por corrientes, oleaje y viento sobre aguas someras. Precisamente esta última es una característica primordial en lugares emergentes, ya que debido a la poca profundidad de las aguas y a los factores ambientales, se forman barras arenosas.

Al sistema lagunar La Joya-Buenavista le corresponde un clima "tropical lluvioso" con fuertes precipitaciones en verano. La precipitación media anual es de 1,600 mm La temporada de lluvias ocurre durante los meses de mayo a octubre; pero las mayores precipitaciones reportadas en esta región suceden durante los meses de mayo, junio y julio.

La temperatura varía de 10°C a 15°C como minimo y del orden de los 40°C como máximo. El sistema lagunario La Joya- Buenavista se comporta hidrológicamente como vaso comunicante, recibiendo un volumen de agua marina del orden de 98.7 x 10⁶ m³ en los meses de abril y mayo, con bajas velocidades que no alcanzan a mover el agua del fondo de la laguna sino de manera superficial.

La laguna tiene una extensión aproximada de 60 km y un área de aportación de 967 ${\rm km}^2$,

Los ríos "Agua Dulce" y "Los Horcones" son las principales aportaciones a la laguna. Ninguno de estos dos afluentes está instrumentado.

El elemento principal de este sistema es la laguna La Joya, a la cual están conectadas otras dos más pequeñas denominadas La Pampa y La Pampita; el otro cuerpo importante es la laguna Buenavista que está a continuación de La Joya, a la cual se le conectan las lagunas menores de Las Conchas, Santa Rosa y El Mosquito, unidas por los esteros El Tejón y el Pujeo; de ahí parte el estero El Esterón hasta donde se encuentra la boca El Cielo.

En general todo el sistema se caracteriza por ser somero, con una profundidad promedio de 1.2 m en época de estiaje y de 1.85 m en época de lluvias.

En cuanto a la vegetación podemos decir que, en forma muy general, está representada por sabanas, selva baja caducifolia, palmares y comunidades de mangles que se desarrollan en los márgenes de las laqunas costeras.

Por otra parte, el sistema lagunario poseé una gran riqueza faunistica que integran una gran cantidad de especies de Peces (Macabil, Sardinita, Bagre, Mojarra), Anfibios (Rana, Sapo, Salamandra), Reptiles (Culebra, Boa, Caimán), Mamiferos (Tepezquintle, Murciélago, Tigrillo), Aves (Espátula, Chupaflor,

Garza Blanca), Invertebrados (Jaiba, Langostino, Camarón) y organismos planctónicos (Diatomea, Cianofita, Alga verdeazul).

Para dotar de la infraestructura necesaría que permita mejorar las condiciones naturales y aprovechar el potencial pesquero del sistema lagunario La Joya-Buenavista, la Secretaría de Pesca ha considerado el desarrollo de obras dentro del sistema, consistentes en la realización de dragados para la apertura de canales de intercomunicación así como la rectificación de los ya existentes, de manera que se permita un mejor recambio de agua entre el sistema laqunario y el mar.

5.1.- Obras que se proponen.

Se propone la rectificación de los canales La Joya-Buenavista, Laguna Cabeza de Toro-Canal San Marcos y el Esterón en su parte norte, desde Boca del Cielo hasta Cabeza de Toro; así como la apertura del canal artificial La Joya-Esterón; obras que pretenden beneficiar directamente a las lagunas La Joya, Buenavista, La Pampa y Pampita (Cabeza de Toro).

El canal La Joya-Esterón tendrá una longitud de 4,489 m, con una sección transversal de 30 m de ancho de plantilla, taludes 5:1 y con un tirante promedio de 2.0 m.

El canal La Joya-Buenavista tiene, hacia el norte, una longitud de 7,926 m, que van desde el canal San Marcos hasta la laguna La Joya. La sección sur, con una longitud proyectada de 4,236 m, cuenta con un trazo que va desde el canal San Marcos hasta la laguna Buenavista. La sección transversal proyectada para este canal será de 50 m de ancho de plantilla, con un tirante de 2.5 m y taludes 5:1.

El canal El Esterón se proyecta con una longitud de 6,787 m, con una sección transversal de 30 m de ancho de plantilla, un tirante de 2.0 m y taludes 5:1.

El canal Cabeza de Toro - San Marcos tiene una longitud de proyecto de 13,116 m; su trazo inicia desde la laguna Cabeza de Toro, atraviesa por una zona de terrenos inundables siguiendo paralelo al canal El Esterón, cruza al canal también de proyecto, El Esterón - La Joya y continúa hasta alcanzar al canal San Marcos y comunicar a la laguna Buenavista. Tiene la mismas características geométricas e hidráulicas que los otros canales.

5.2.- Análisis Hidrológico

En la cuenca propia de la laguna La Joya-Buenavista solo existe una cuenca instrumentada con estaciones hidrométricas, por lo que fue necesario estudiar otras tres cuencas instrumentadas en medición de escurrimientos y de precipitación cercanas a la laguna en estudio.

Las cuencas analizadas fueron: Tonalá (167 km²), Jesús (61 km²), San Diego (131 km²) y Pijijiapan (202 km²), de las cuales solo la cuenca Jesús tiene influencia directa en la laguna pues descarga a ella.

La estación climatológica Jesús se encuentra a 40 m de la sección de aforos, sobre la margen izquierda del cauce y cuenta con termómetro, evaporímetro, pluviómetro, pluviógrafo y veleta. Inició sus observaciones con todos estos aparatos en octubre de 1964 continuando en operación normal hasta la fecha; controlada por la Comisión Nacional del Agua.

5.2.1.- Estaciones hidrométricas.

Se utilizaron los registros de gastos medios diarios de la Secretaría de Recursos Hidráulicos, Subsecretaría de Planeación, Dirección General de Estudios, Dirección de Hidrología; de las estaciones de Tonalá (1961-1985), Jesús (1964-1985), San Diego (1964-1985) y Pijijiapan (1961-1985). En las tablas 5.1 y 5.2 se presentan los gastos medios mensuales en las estaciones Tonalá y Jesús, obtenidos a partir de los gastos medios diarios recopilados.

5.2.2.- Estaciones climatológicas.

Se utilizaron la altura de precipitación diaria de las estaciones Tonalá (1961-1983), Horcones (1964-1980), La Tigrera (1963-1975), Jesús (1964-1983) y Pijijiapan (1959-1983); así como la altura de evaporación diaria de las estaciones Horcones (1964-1980) y La Tigrera (1963-1975). En las tablas 5.3, 5.4, 5.5 y 5.6 se incluyen los valores mensuales y anuales de los datos de las estaciones Tonalá, Horcones y La Tigrera, obtenidos a partir de los valores diarios de sus registros recopilados.

5.2.3.- Cálculo de Coeficientes de Escurrimiento.

Como se anotó anteriormente, en la cuenca propia de la laguna La Joya-Buenavista solo existe una cuenca con estación hidrométrica, por lo que fue necesario estudiar otras tres cuencas instrumentadas en medición de escurrimientos y de precipitación. A partir del análisis diario de la relación lluvia-escurrimiento, se obtuvieron coeficientes de escurrimiento que permitieron conocer los volúmenes escurridos en la cuenca propia de la laguna, conocido el volumen llovido en ella.

De acuerdo al criterio de los polígonos de Thiessen se le asignó a cada estación climatológica un porcentaje de influencia según la cuenca analizada, el cual se muestra en la siguiente tabla:

Estación	Estación	Area de	e Influencia
Hidrométrica	Climatológica	km²	8
Tonalá	Tonalá	167	100
Jesús	Jesús	61	100
San Diego	Jesús	20	15
	Pijijiapan	111	84
Pijijiapan	Pijijiapan	202	100

Considerando los días en que llovió, se tomaron las tormentas y sus escurrimientos, obteniéndose sus coeficientes de escurrimiento para todo el período de análisis de cada cuenca. Estos coefícientes se analizaron por día, por mes y por tormenta y de ahí se definieron valores medios para cada mes. De forma similar se efectuó el análisis de gastos bases mensuales.

En las tablas 5.7 y 5.8 se muestra el cálculo de los coeficientes de escurrimiento diarios y por tormenta a manera de ejemplo para el año de 1983, para las cuencas que abarcan las estaciones Tonalá y Jesús.

Con los resultados de las tablas anteriores para todo los años en que fue posible determinar los coeficientes de escurrimiento, se formaron, para las cuencas estudiadas, las tablas 5.9 y 5.10 con el resumen de los coeficientes mensuales obtenidos. Para definir los que se usarían paran obtener los volúmenes de escurrimiento en la

cuenca propia de la laguna, se le dio un mayor peso a la cuenca de Jesús que está dentro del área de aportación a la laguna; los coeficientes que se aceptaron fueron los siguientes:

MES	COEFICIENTE DE ESCURRIMIENTO
ENERO	0.105
FEBRERO	0.0555
MARZO	0.075
ABRIL	0.071
MAYO	0.092
JUNIO	0.155
JULIO	0.170
AGOSTO	0.169
SEPTIEMBRE	0.253
OCTUBRE	0.243
NOVIEMBRE	0.155
DICIEMBRE	0.116

Por otra parte, se efectuó el análisis de los gastos base, obteniéndose los valores que se presentan en las tablas 5.11 y 5.12 para las cuencas estudiadas. Se determinaron los valores de los gastos bases por unidad de área, dándole más peso a las estaciones de Tonalá y Jesús las cuales dieron valores más parecidos; los gastos bases unitarios que se aceptaron fueron:

MES	GASTO	BASE UNITARIO	(m³	/s/km)
ENERO		0.0039		
FEBRERO		0.00185		
MARZO		0.0012		
ABRIL		0.0008		
MAYO		0.0041		
JUNIO		0.0220		
JULIO		0.0238		
AGOSTO		0.0249		100
SEPTIEMBRE		0.0258		
OCTUBRE		0.0210	1.5	
NOVIEMBRE		0.0195		
DICIEMBRE		0.0082		

5.2.4.- Volúmenes de escurrimiento diarios.

Tomando en cuenta la precipitación media en el área de aportación a la laguna, los coeficientes de escurrimiento y los gastos bases unitarios, en la tabla 5.13 se calcularon los volúmenes de escurrimiento medio diario, mismos que se presentan graficados en la fig. 5.1.

5.2.5.- Evaporación neta diaria en la laguna.

Las estaciones que tuvieron influencia en la laguna para la evaporación neta fueron la de Horcones y La Tigrera, por lo cual se procedió a calcular la altura diaria tal como se muestra en la tabla 5.14. Tomando un área media de la laguna, en la fig. 5.2 se presentan los volúmenes que entran y salen de la laguna sobre su superficie.

5.3.- Procesamiento de mareas.

Para el análisis de mareas se tomó la correspondiente a Puerto Madero, Chis., de las "Tablas de Predicción" para 1994. Se procesó en la forma indicada en el capítulo III, teniéndose los resultados que se presentan en la tabla 5.15 y que se grafican en la fig. 5.3.

5.4.- Características de la cuenca.

El sistema lagunario se ubica en una zona plana en las proximidades del Océano Pacífico, encontrándose vecino al Cerro del Bernal de 1,050 m de altura. A una distancia de 5 km de la costa se localizan las primeras estribaciones del sistema orográfico del Estado de Chiapas. La orientación del sistema lagunario es de 45° al Oeste (N45°W). La pendiente media en la zona de planicie es de 0.035 y en la de montaña es de 0.120. No se presentan áreas de cultivo, pero sí zonas pantanosas inundadas rodeando a Belisario Domínguez, Pueblo Nuevo y El Mosquito.

5.5.- Aplicación del modelo de simulación y sus resultados.

En este subcapítulo se presenta la implementación del modelo matemático, basado en la Ecuación de Contínuidad de la Hidrodinámica, para determinar el comportamiento de los niveles

diarios en el sistema lagunario la Joya - Buenavista, el análisis de alternativas de funcionamiento hidráulico y la interpretación de los resultados.

El balance hidrológico se enfoca a determinar el intercambio de agua de la laguna con el mar, interviniendo los volúmenes de escurrimiento superficial de la lluvia, la evaporación y la variación de niveles en el mar por efecto de las mareas.

Para el análisis con este modelo matemático se dividió al sistema lagunario en dos cuerpos definidos y conectados como se indica a continuación:

Cuerpo 1.- Formado por las lagunas de El Esterón y El Mosquito; comunicado con el mar por medio de la Boca de El Cielo.

Cuerpo 2.- Dentro de este cuerpo se consideraron las lagunas La Joya-Buenavista, La Pampa y La Pampilla; se conecta al cuerpo 1 por medio de un estero donde se encuentran las lagunas Las Conchas y Santa Rosa. La segunda alternativa de funcionamiento se consideró con el canal propuesto entre La Joya y El Esterón hasta la Boca de El Cielo.

De acuerdo con la información hidrológica, los escurrimientos generados y las mareas analizadas en los incisos anteriores, se procedió al balance hidrológico medio diario del sistema lagunario mediante la metodología expuesta en el capítulo 3, aplicando la ecuación de balance en cada uno de los cuerpos, relacionándola con las uniones entre ellos.

La ecuación del balance se planteó para el cuerpo 1 como:

$$V1_i = V1_{i-1} + V1_e + V1_n + M1_A + M1_B + V12 - V_T$$

donde

Vl_i volumen del cuerpo 1 al final del día en estudio i, en m³

V1_{i-1} volumen del cuerpo 1 al inicio del día i, en m³

V1e volumen de escurrimiento de la cuenca al cuerpo 1, en m³

Vln volumen de evaporación neta en el cuerpo 1, en m³

Mla volumen por marea alta (flujo) por la Boca de El Cielo, en m³

Volumen por marea baja (reflujo) por la Boca de El Cielo, en m³

V12 volumen de intercambio entre los cuerpos 1 v 2, en m³

Para el cuerpo 2 la ecuación de balance es:

$$V2_i = V2_{i-1} + V2_e + V2_n - V12 + V23$$

donde

V2: volumen del cuerpo 2 al final del dia en estudio i, en m³

V2_{i-1} volumen del cuerpo 2 al inicio del dia i, en m³

V2_e volumen de escurrimiento de la cuenca al cuerpo 2, en m³

 $V2_n$ volumen de evaporación neta en el cuerpo 2, en m^3

En el caso de la segunda alternativa de funcionamiento, se le adicionaron los volúmenes por flujo y reflujo de mareas, en el canal La Joya - El Esterón.

En la tabla 5.16 se presentan los resultados para cada dia del año de análisis, para las dos alternativas de simulación; la primera en las condiciones actuales del sistema y la segunda considerando el canal Esterón-La Joya. En la tabla se muestran los niveles de la marea alta y baja en el mar, las elevaciones del agua en las lagunas El Esterón (cuerpo 1) y La Joya-Buenavista (cuerpo 2), posteriormente se tienen los gastos de entrada y salida en la Boca de El Cielo y en la comunicación de los dos cuerpos; en forma semejante se presentan los resultados de la segunda alternativa, en donde se incluyen los gastos de entrada y salida en el canal El Esterón-La Joya.

Vln	volumen de evaporación neta en el cuerpo 1, en m³
Mla	volumen por marea alta (flujo) por la Boca de El Cielo, en m³
M1 _B	volumen por marea baja (reflujo) por la Boca de El Cielo, en m³
V12	volumen de intercambio entre los cuerpos 1 y 2, en m³

Para el cuerpo 2 la ecuación de balance es:

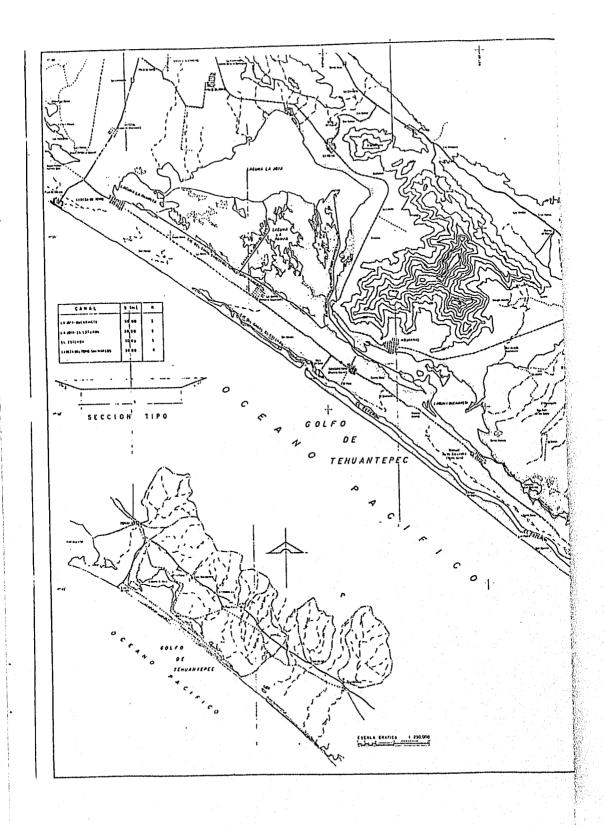
$$V2_i = V2_{i-1} + V2_n + V2_n - V12 + V23$$

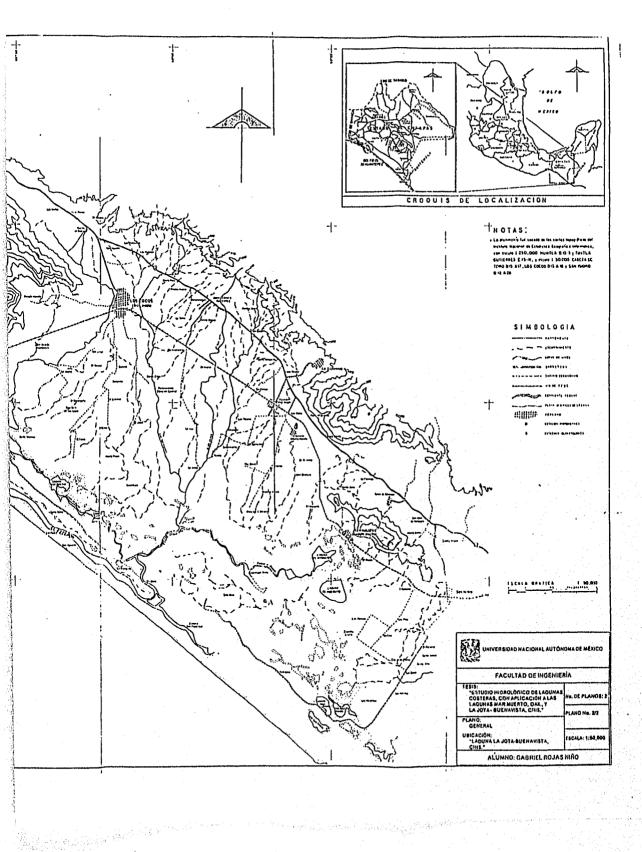
donde

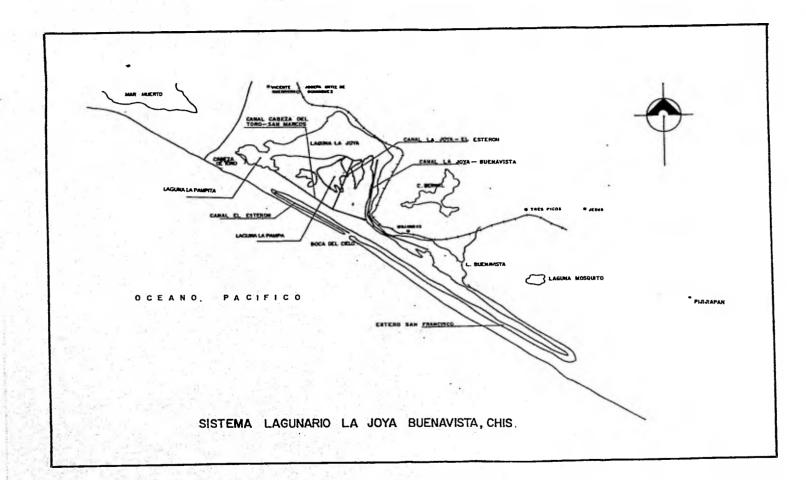
V2: volumen del cuerpo 2 al final del dia en estudio i, en m³

V2:-1 volumen del cuerpo 2 al inicio del dia i, en m³

V2:-2 volumen de escurrimiento de la


cuenca al cuerpo 2, en m³


 $V2_n$ volumen de evaporación neta en el cuerpo 2, en m^3


En el caso de la segunda alternativa de funcionamiento, se le adicionaron los volúmenes por flujo y reflujo de mareas, en el canal La Joya - El Esterón.

En la tabla 5.16 se presentan los resultados para cada día del año de análisis, para las dos alternativas de simulación; la primera en las condiciones actuales del sistema y la segunda considerando el canal Esterón-La Joya. En la tabla se muestran los niveles de la marea alta y baja en el mar, las elevaciones del agua en las lagunas El Esterón (cuerpo 1) y La Joya-Buenavista (cuerpo 2), posteriormente se tienen los gastos de entrada y salida en la Boca de El Cielo y en la comunicación de los dos cuerpos; en forma semejante se presentan los resultados de la segunda alternativa, en donde se incluyen los gastos de entrada y salida en el canal El Esterón-La Joya.

En la fig. 5.4 se muestran las elevaciones medias diarias en los dos cuerpos y la variación de la mareas alta y baja en el mar. En la fig. 5.5 se tienen los gastos entre los dos cuerpos y los que entran por la Boca de El Cielo a El Esterón. Por otra parte, en las figs 5.6 y 5.7 se presentan los resultados para la segunda alternativa. En la fig. 5.8 se muestran los gastos medios diarios que llegan a La Joya-Buenavista en las dos alternativas de solución, no se representa la de la evaporación neta por ser caudales muy pequeños en comparación a los demás. En la tabla 5.16 se incluyen día a día los resultados antes graficados.

VI. - CONCLUSIONES Y RECOMENDACIONES.

El principal enfoque de esta Tesis ha sido el de determinar las bondades que el modelo matemático de simulación proporciona en la determinación de los volúmenes de escurrimiento de las aguas continentales que llegan a los dos sistemas lagunarios en estudio, para posteriormente conocer el balance hidrológico de los cuerpos que forman los sistemas, tomando en cuenta el intercambio del agua de mar a través de bocas naturales y/o artificiales.

A continuación se presentan las conclusiones y recomendaciones para cada uno de los sistemas lagunarios analizados en este trabajo.

6.1.- Mar Muerto.

En general las elevaciones de las lagunas Oriental, Inferior y Superior son prácticamente iguales, con una amplitud de marea muy pequeña del orden de 3 cm; mientras que el Mar Muerto tiene una amplitud de aproximadamente 15 cm y tiene niveles diferentes a los otros tres cuerpos del sistema lagunario, además de que, por su tamaño, el Mar Muerto no se vé afectado en sus niveles por los escurrimientos superficiales. La amplitud de la marea en el mar es del orden de 50 cm, como se observa en la fig. 4.4.

Los gastos en la boca del Mar Muerto son del orden de 3,500 $\rm m^3/s$, mucho mayores que los de la Laguna Inferior que son de 400 $\rm m^3/s$. Ver fig. 4.5.

Por lo que se refiere a las intercomunicaciones entre los 4 cuerpos, de acuerdo a la fig. 4.6 son como sigue: el Mar Muerto abastece a la laguna Oriental en época de estiaje, sucediendo a la inversa en época de lluvias; entre la laguna Oriental y la Inferior hay intercambio todo el año; y por último, entre la Inferior y la Superior, la primera manda el agua a la segunda en la época de estiaje siendo al contrario en época de lluvias cuando existen escurrimientos continentales, lo anterior se muestra en la fig. 4.6.

Para el Mar Muerto, fig. 4.7, el gasto diario de evaporación neta es grande debido a la extensión de la laguna, siendo mucho menores los gastos intercambiados con la laguna Oriental y más pequeños aún son los caudales de los escurrimientos continentales en época de estiaje.

En la laguna Oriental los gastos mas importantes son los de flujo y reflujo de la comunicación con la laguna Inferior y luego los del canal con el Mar Muerto. Ver fig. 4.8.

Para la laguna Inferior, fig. 4.9, aparte de los gastos en la boca con el mar, el intercambio con la laguna Superior es lo que presenta los caudales más grandes, siendo las evaporaciones netas mayores que el intercambio con la laguna Oriental.

Hacia la laguna Superior, fig. 4.10, fluye agua de la Inferior en estiaje sucediendo lo contrario en época de lluvias; la evaporación neta es grande por el tamaño del cuerpo. Dentro de la cuenca de esta laguna se ubica la zona de riego del río Tehuantepec que no descarga a ella si no directamente al Océano Pacífico.

En la cuenca de este sistema lagunario no hay aprovechamientos hidráulicos sobre las corrientes que llegan a las lagunas.

Se recomienda la construcción del canal de intercomunicación entre el Mar Muerto y la laguna Oriental, dado que aumenta considerablemente el intercambio de agua entre ambos cuerpos.

6.2.- La Joya - Buenavista.

De las dos simulaciones efectuadas, tomando en cuenta las condiciones actuales y con los canales propuestos, se llegó a las conclusiones que se indican a continuación.

En época de estiaje los niveles del agua son prácticamente los mismos en La Joya - Buenavista que en El Esterón, con una amplitud de marea del orden de 10 cm cuando en el mar se tienen 60 cm, lo que da idea de una pobre comunicación con el mar; mientras que en la temporada de lluvias el sistema La Joya - Buenavista aumenta sus niveles entre 10 y 20 cm por encima de los de El Esterón debido a los escurrimientos continentales, como se aprecia en la fig. 5.4.

En lo que se refiere a los caudales analizados en el balance, de la fig. 5.5 se observa que, aunque el flujo y reflujo con el mar se tiene del orden de $650~\text{m}^3/\text{s}$, el intercambio de El Esterón con La Joya - Buenavista es solo del orden de $15~\text{m}^3/\text{s}$, un poco más del 2%, lo cual hace evidente la falta de agua del mar en el sistema laqunario.

Para el caso en que se construyeran los canales propuestos en el sistema, en La Joya - Buenavista bajarían los niveles del agua en la época de lluvias del orden de 10 cm, dado que los escurrimientos tendrían la facilidad de salir por el canal La Joya - El Esterón, sin embargo, dichos niveles continuarian estando por arriba de los correspondientes a El Esterón. Lo anterior se observa en la fig. 5.6.

En la fig. 5.7 se muestran los caudales que llegan a La Joya - Buenavista a través de la comunicación con El Esterón y por el canal La Joya - El Esterón; se ve que son menores al 10% de los que transitan por la Boca de El Cielo hacia El Esterón, los cuales, por la forma del sistema lagunario, no alcanzan a llegar a La Joya - Buenavista. Por la Boca de El Cielo siguen pasando en los dos sentidos del orden de $650~\text{m}^3/\text{s}$, mientras que en el canal La Joya - El Esterón transitan aproximadamente $10~\text{m}^3/\text{s}$ en estiaje, saliendo en la temporada de lluvias del orden de $45~\text{m}^3/\text{s}$.

Por otra parte, de la fig. 5.8 en donde se presentan los gastos que llegan a La Joya - Buenavista, se tiene que en estiaje el gasto escurrido está entre 2 y 5 $\rm m^3/s$ contra aproximadamente 25 $\rm m^3/s$ que entran y salen con agua de mar por el canal La Joya - Esterón y 10 $\rm m^3/s$ de intercambio por el canal actual de unión con El Esterón. En temporada de lluvias el gasto medio escurrido aumenta a 30 $\rm m^3/s$,

ESTA TESIS NO DEBE SALIR DE LA DIBLIOTECA aunque en el mes de septiembre llega hasta $60 \text{ m}^3/\text{s}$, los cuales son mayores que los que pueden entrar por marea alta por el canal propuesto; mientras que el estero de comunicación existente manda un gasto medio de $30 \text{ m}^3/\text{s}$ a El Esterón, con un máximo de $48 \text{ m}^3/\text{s}$.

En la cuenca del sistema lagunario no existen aprovechamientos hidráulicos, por lo cual prácticamente llega toda el agua que drena hacia él. El traer agua de otras cuencas sería muy costoso, porque se tendrían conducciones de gran longitud pero con muy poco caudal, ya que las cuencas vecinas son de área muy pequeña.

Se recomienda ampliar las comunicaciones con el mar para tener mejor y mayor intercambio de aqua salada.

Desde mi posición como pasante de Ingeniero Civil, quisiera, para finalizar este trabajo, hacer algunas observaciones en relación, no a los aspectos técnicos de la tesis cuyas conclusiones ya se han expuesto, sino más bien acerca de las condiciones en que ésta se desarrolló. Hablo de los medios con que se contó, el acceso a la información, la factibilidad del proyecto, etcétera.

En los últimos tiempos, la preocupación por el medio ambiente y la ecología ha cobrado una especial importancia y con sobrada razón. El hombre, en su insaciable necesidad de producir los satisfactores que demandan las modernas sociedades de consumo, ha puesto en grave peligro no solo el frágil equilibrio de la naturaleza sino su propio futuro como especie. Es por esto que en la actualidad es un requisito indispensable la presentación y aprobación de un estudio de Impacto Ambiental para cualquier proyecto que pretenda llevarse a cabo, al menos en el campo de la ingeniería civil.

Es en este sentido que la presente tesis justifica su elaboración ya que lleva, de manera inherente a su objetivo principal, una preocupación especial por proteger, a través de las obras propuestas, toda la riqueza que, tanto en flora como fauna, prolifera en estas regiones de transición que son las lagunas costeras.

Durante la realización de este trabajo pude darme cuenta de las dificultades que existen para conseguir, en organismos como la Comisión Nacional del Agua, la información hidrométrica y climatológica necesarias para el estudio, amén de la deficiencia en dicha información. En la mayoría de los casos esta fue proporcionada de manera incompleta, a veces en discos pero a veces

en impresiones de computadora que hubo que volver a capturar perdiendo un tiempo valioso.

También pude constatar que, en muchos casos, esa inconsistencia en la información es debida al estado de abandono en que se encuentran la mayoría de las estaciones hidrométricas y climatológicas.

Ahora bien, el procesamiento de dicha información no hubiera sido posible sin la ayuda de las computadoras y de los paquetes especialmente diseñados para manejar de manera más eficiente los volúmenes de datos con que se trabajó.

En cuanto al modelo matemático de simulación utilizado, pienso que es una herramienta sumamente útil, ya que nos permite conocer, en un lapso relativamente breve de tiempo, el comportamiento de cualquier fenómeno natural o artificial ante determinadas circunstancias y condiciones, con una certidumbre tan confiable como las leves físicas en que esté basado.

Por último quiero dicir que el proyecto, motivo de esta Tésis, es un trabajo que beneficia directamente a los habitantes de la costa en Oaxaca y Chiapas, e indirectamente a toda la nación, ya que, como revelan los resultados y concluciones, la realización de las obras propuestas, es decir, la construcción de canales de intercomunicación entre las lagunas y la apertura de bocas hacia el mar, producirán un aumento considerable en el intercambio de agua entre los cuerpos lagunarios, así como un mayor aporte del mar. Todo esto producirá a su vez la conservación y proliferación de las especies tanto animales como vegetales que constituyen la gran biodiversidad que es, finalmente, la riqueza con que contamos los mexicanos de cara al futuro.

TABLA 4.1

CHICAPA

GASTOS MEDIOS MENSUALES en m³/s

ANO/MES	ENE	FEB	MAR	ABR	MAY	JUN .	JUL	AGD	SEP	OCT	NOV	DIC	ANUAL
1948	2.58	1.91	0.54	0.30	0.14		7.83	4 70					
						1.31		4.38	18.92	7.03	4.72	2.52	4.35
1949	1.94	0.66	0.22	0.17	0.09	1.17	0.85	3.58	24.52	19.06	3.32	1.42	4.75
1950	2.61	0.77	0.33	0.21	0.17	3.58	7.02	3.16	5.8 5	28.67	3.94	1.97	4.87
1951	0.97	0.54	0.15	0.10	0.20	1.05	1.57	0.66	14.19	6.96	4.42	2.45	2.77
1952	1.83	1.18	0.44	0.23	0.15	4.36	7.70	6.90	37.23	19.91	4.32	3.52	7.31
1953	1.82	0.83	0.54	0.20	0.11	0.54	1.40	1.53	4.65	14.40	4.01	1.85	2.66
1954	1.69	1.07	0.87	0.27	0.17	8.74	15.84	4.83	16.15	29.13	5.05	2.68	7.21
1955	1.59	1.54	0.47	0.07	0.07	4.14	24.10	21.96	73.02	38.31	11.32	5.68	15.21
1956	3.57	1.80	0.86	0.24	1.33	3.76	4.67	2.55	13.59	6.60	3.08	3.34	3.78
1957	2.55	0.91	0.11	0.01	0.01	1.10	2.10	3.11	2.64	1.87	0.65	1.28	1.36
1958	0.74	0.16	0.01	0.00	0.00	1.65	6.25	8.34	10.21	11.90	4.23	5.54	4.09
1959	3.71	2.13	1.02	0.54	0.20	2.99	3.26	3.31	4.73	14.95	8.24	2.71	3.98
1960	1.95	1.22	0.59	0.24	0.08	0.85	10.60	13.36	18.36	7.79	10.30	3.08	5.70
1961	3.42	1.86	1.20	0.56	0.10	2.83	2.75	2.07	8.29	5.81	58.35	4.28	7.63
1962	2.47	1.63	0.73	0.26	0.10	3.07	4.25	1.82	6.31	8.37	1.93	0.48	2.62
1963	0.38	0.21	0.14	0.05	0.05	0.43	5.73	1.51	10.85	4.42	3.24	1.85	2.40
1964	1.63	- 0.98	0.23	0.08	0.05	2.76	7.28	4.91	13.16	10.73	2.48	2.58	3.90
1965	2.33	1.69	0.72	0.16	0.04	0.81	1.29	5.71	4.98	8.44	4.77	1.54	2,71
1966	1.03	1.00	0.67	0.13	0.18	2.35	5.38	7.26	12.23	12.14	5.13	2.41	4.16
1967	1.23	1.43	0.78	0.09	0.05	5.61	1.84	1.60	6.95	6.11	3.09	0.93	2.48
1968	1.88	1.21	0.27	0.04	0.72	1.46	4.39	1.27	10.08	7.22	2.33	1.54	2.70
1969	1.20	0.42	0.38	0.10	0.01	0.48	4.33	18.37	31.96	12.32	4.63	3.35	6.46
1970	1.64	0.98	0.43	0.10	0.03	1.10	3.74	12.59	49.42	15.20	6.63	2.97	7.90
1971	1.34	0.50	0.23	0.10	0.13	1.99	1.02	8.69	17.78	14.22	5.04	3.95	4.58
1972	3.26	1.49	0.33	0.09	0.06	4.46	2.57	2.45	2.31	2.55	0.94	1.55	1.87
1973	0.18	0.12	0.11	0.06	0.03	- 1.30	4.83	22.09	36.79	22.76	7.38	3.75	8.28
1974	1.65	1.05	0.54	0.28	0.41	6.36	7.42	2.73	35.02	16.78	4.54	1.99	6.57
1975	1.76	0.80	0.25	0.10	0.19	1.88	1.82	2.92	12.44	10.60	4.03	1.65	3.20
1976	1.91	1.11	0.40	0.16	0.09	1.66	3.46	0.54	1.38	1.91	1,24	1.84	1.31
1977	0.59	0.20	0.10	0.05	0.02	0.53	0.24	0.33	1.23	2,14	1.04	0.60	0.59
1978	0.25	0.01	0.00	0.00	1.18	3.36	6.64	3.95	28.66	10.25	4.08	3.22	5.13
1979	2.46	0.97	0.24	0.01	0.00	0.94	2.30	22.15	85.09	10.35	4.65	4.46	11.14
1980	1.80	1.11	0.50	0.10	0.01	1.37	1.84	5.05	30.76	7.42	3.27	3.02	4.65

TABLA 4.2

IXTEPEC

GASTOS MEDIOS MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	אטנ	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
1948	1.17	0.64	0.49	0.52	0.56	1.01	3.10	1.26	4.01	1.72	1.07	0.46	1.34
1949	0.31	0.21	0.21	0.24	0.21	0.27	0.19	0.19	0.40	0.44	0.36	0.37	0.28
1950	0.36	0.32	0.22	0.22	0.22	1.36	21.20	0.23	0.61	1.34	1.46	1.21	2,40
1951	1.14	0.38	0.23	0.20	0.77	4.22	4.66	2.44	2.59	1.45	1.46	1.22	1.76
1952	0.81	0.47	0.35	0.23	0.33	14.61	4.98	6.76	4.69	3.65	1.28	0.70	3,24
1953	0.37	0.26	0.27	0.24	0.22	0.24	0.78	1.19	1.34	2.95	1.27	0.32	0.79
1954	0.22	0.21	0.19	0.23	0.19	11.49	9.00	2.14	4.54	5.46	2.07	0.74	3.04
1955	0.50	0.45	0.42	0.38	0.27	0.82	16.74	5.35	71.55	13.20	5.16	3.17	9.83
1956	2.13	1.37	0.79	0.80	1.61	3.99	16.44	.4.74	8.00	2.98	1,90	1.90	3.88
1957	1.59	0.68	0.42	0.46	0.36	1.01	3.41	2.70	2.07	2.24	1.46	0.56	1.41
1958	0.48	0.35	0.29	0.19	0.19	1.40	4.27	3.32	4.23	3.04	1.29	1.14	1.67
1959	0.47	0.33	0.26	0.25	0.25	16.69	2.16	2.86	3.95	5.44	4.10	1.72	3.21
1960	0.64	0.31	0.18	0.13	0.46	0.60	14.26	13.03	5.44	4.67	4.06	1.77	3.80
1961	0.93	3.76	0.31	0.29	0.19	0.62	2.51	1.92	2.45	2.67	22.48	1.88	3.08
1962	0.70	0.38	0.23	0.20	0.19	3.42	5.35	1.39	6.93	8.80	1.69	0.70	2.50
1963	0.32	0.25	0.22	0.18	0.17	0.25	11.10	4.05	7.66	2.61	1.69	0.60	2.43
1964	0.33	0.23	0.19	0.13	0.09	2.06	11.30	5.30	6.62	2.56	1.07	1.45	2.61
1965	0.84	0.34	0.32	0.22	0.18	1.29	2.20	2.37	2.66	3.99	1.99	0.44	1.40
1966	0.24	0.21	0.18	0.15	0.14	0.72	2,69	3.15	2.90	4.87	2.10	0.60	1.50
1967	0.31	0.23	0.18	0.16	0.16	5.35	1.82	1.84	3.56	2.87	1.19	0.56	1.52
1968	0.27	0.21	0.22	0.19	0.59	7.56	4.74	5.18	12.85	4.91	1.53	0.94	3.27
1969	0.44	0.22	0.17	-0.14	0.12	4.20	12.77	53.98	95.93	15.37	4.73	3.05	15.93
1970	1.91	1.00	0.64	0.69	0.60	0.60	3.51	24.41	71.37	16.42	7.66	3.01	11.00
1971	1.84	1.22	0.68	.0.77	0.62	4.39	1.80	8.23	12.54	5.20	3.06	1.73	3.51
1972	0.97	0.56	0.39	0.35	0.46	2.76	1.56	2.53	2.15	2.47	1.01	0.45	1.31
1973	0.32	0.30	0.29	0.26	0.19	7.24	4.95	27.26	38.68	15.44	3.€8	2.41	8.75
1974	1.43	0.65	0.64	0.46	0.38	8.63	7.08	3.43	44.02	18.48	3.52	1.46	7.52
1975	0.63	0.49	0.41	0.30	0.43	0.85	1.80	3.82	28.93	6.44	1.69	1.12	3.91
1976	1.46	1.31	0.54	0.32	0.30	2.74	2.93	3.76	6.21	2.36	2.16	0.97	2.09
1977	0.42	0.29	0.34	0.20	0.18	0.57	0.28	2.43	0.95	2.09	3.20	0.51	0.95
1978	0.24	0.18	0.20	0.21	0.47	2.70	8.43	3.50	39.91	7.74	3.74	1.79	5.75
1979	1.14	0.67	0.30	0.34	0.21	1.72	4.63	19.66	74.04	8.11	3.64	3.00	9.79
1980	1.50	0.79	0.50	0.52	0.43	1.29	1.31	5.02	4.05	3.01	1.70	1.19	1.78
1981	1.60	0.74	0.61	0.47	0.38	9.94	14.19	39.02	16.52	4.45	3.34	1.79	7.75
1982	1.01	0.55	0.35	0.31	0.87	1.34	2.70	2.86	5.67	4.31	2.23	1.79	2.00
1983	- 0.39	0.30	0.16	0.02	0.00	0.00	1.78	1.96	5.17	2.80	1.38	0.47	1.54
1984	0.00	0.00	0,12	0.25	0.19	0.41	2.42	2.67	13.76	3.28	1.05	1.04	2.10
1985	0.82	0.88	0.48	0.00	0.00	0.00	0.00	5.52	2.72	7.40	1.08	0.44	1.61

TABLA 4.3 IXTEPEC

ALTURAS DE LLUVIAS MENSUALES en mm

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
1949	1.0	1.0	1.0	1.3	124.2	200.4	110.7	125.3	398.9	138.8	0.0	18.9	1122
1950	10.3	0.0	12.6	0.0	93.4	365.7	537.6	81.0	125.8	257.1	0.0	0.0	1484
1951	0.0	0.0	0.0	3.0	171.9	288.6	335.1	91.9	467.1	12.5	6.1	2.5	1379
1952	3.5	9.0	2.0	0.0	78.5	544.5	102.5	74.5	212.0	5.5	0.0	0.0	1032
1953	0.0	1.5	0.0	65.1	22.5	188.5	95.5	201.0	26.9	100.1	0.0	1.5	703
1954	0.0	0.3	0.0	0.0	32.0	322.3	155.0	171.8	288.4	133.8	0.0	0,0	1104
1955	2.5	0.0	1.3	2.6	5.0	121.0	283.2	309.3	595.4	40.3	7.5	0.0	1368
1956	2.7	0.0	7.1	0.9	161.5	152.4	187.3	93.5	65.5	2.7	0.0	0.0	674
1957	0.0	13.0	8.0	0.0	9.7	236.2	149.5	24.9	149.6	1.2	0.0	0,1	592
1958	80.8	4.8	0.2	30.8	22.5	218.8	212.2	202.4	180.0	33.5	2.6	0.0	989
1960	0.0	19.1	0.0	0.0	2.9	120.0	320.8	297.9	28.3	119.1	2-1	1.4	912
1961	0.0	46.0	4.0	0.0	39.3	236.5	98.5	34.9	84.8	0.7	375.6	0,7	921
1962	0.0	0.0	0.3	0.0	7.6	415.7	72.1	135.9	124.5	152.9	0.3	0.0	909
1963	0.8	28.1	0.0	0.0	0.1	886.3	181.8	26.7	182.1	0.0	35.1	0.0	1342
1964	0.0	0.1	7.0	0.0	0.0	188.5	185.9	86.0	108.6	14.5	3.6	6.1	€OC
1965	0.0	1.0	0.0	2.0	37.2	244.6	4.7	62.0	104.3	101.8	0.1	0.0	558
1966	0.0	0.0	0.0	19.5	11.1	137.8	114.9	262.8	185.6	162.3	0.0	2.1	896
1967	0.0	25.5	0.0	0.0	57.1	774.9	16.5	69.6	1106.6	34.1	0.5	0.4	2095
1968	0.0	14.1	0.0	0.0	56.9	146.7	78.6	98.5	98.3	57.2	7.6	0.0	558
1970	2.2	9.0	18.0	0.2	23.0	76.6	155.9	344.2	587.6	120.1	0.4	0.0	1337
1971	0.0	0.0	0.0	23.1	28.1	253.0	9.8	177.7	287.2	89.2	0.0	0.0	868
1972	0.0	0.0	0.0	0.0	50.0	213.7	0.0	71.4	82.5	2.9	50.2	34.5	505
1973	2.5	0.0	0.0	0.2	20.4	265.8	213.5	224.5	235.6	173.3	25.2	0.9	1162
1974	0.0	0.0	0.0	0.0	64.0	249.6	137.0	132.7	569.5	1.2	0.1	0.0	1154
1975	0.6	0.0	9.8	18.0	180.5	83.2	107.3	54.2	311.5	33.6	0.0	7.2	806
1976	7.0	1.5	- 0.0	2.0	4.5	197.0	30.9	283.1	51.4	40.1	0.0	0.0	628
1977	0.0	0.0	0.0	1.4	0.7	124.5	17.3	133.5	51.5	43.0	7.2	0.7	380
1978	2.2	3 - 0	5.9	47.5	156.9	103.0	200.6	123.9	321.4	6.4	1.0	7.5	979
1979	7.0	0.0	0.0	0.8	14.3	61.3	138.2	367.3	495.7	28.2	16.0	0.0	1129
1980	1.5	1.3	0.5	0.0	32.7	130.4	106.1	280.3	211.2	2.1	3.7	0.6	770
1981	0.0	0.0	0.0	11.8	2.5	321.3	205.1	417.3	132.8	52.2	0.4	0.0	1143
1983	0.0	47.1	8.8	0.0	45.5	53.9	24.0	68.8	192.7	7.3	8.8	49.6	507
1984	0.0	0.3	16.2	0.0	35.4	148.9	115.4	77.2	253.8	4.5	0.0	0.0	651
1985	5.2	0.0	0.0	0.0	20.0	91.0	97.8	237.3	135.0	97.5	1.0	0.0	685
1986	0.0	1.3	0.0	3.9	95.6	40.7	74.0	147.1	158.5	19.5	0.0	0.0	541

TABLA 4.4

CHICAPA

ALTURAS DE LLUVIAS MENSUALES en mm

			X				11 II	AGO	SEP	OCT	NOV	DIC	ANUAL
. C. a. a. a	ENE	FEB	MAR	ABR	MAY	JUN	JUL		182.5	65.0	0.0	0.8	969
AÑO/MES		-	0.0 1	20.0 1	73.6	397.2	201.9	27.7	468.7	145.6	7.4	7.0	1618
1954	0.0	0.0	53.0	0.0	69.5	275.5	391.1	194.9		1.9	4.4	1-0	694
1955	5.0 1	0.0	0.0	0.0	148.8	184.0	90.3	111.3	72.5	10.8	0.0	4.5	568
1956	9.5	0.0	0.8	2.3	71.0	290.5	93.0	22.2		44.6	11.0	0.0	1062
1957	0.0	0.4		0.0	0.01	223.9	216.2	149.4	401.7	300.9	6.7	0.0	1129
1958	11.9	3.4	0.0	0.0	9.7	434.6	90.4	114.7	162.7	235.8	15.1	0.0	1214
1959	0.0	5.5	4.0	0.0	10.8	80.4	296.5	362.4	210.2		381.2	4.1	1080
1960	0.3 1	1.5	1.0		11.3	355.9	120.4	13.0	159.2	21.7	0.2	0.0	935
1961	0.7	3.7	8.6	0.0	54.4	238.4	108.9	287.7	140.5	101.5	33.3	0.0	768
1962	0.0	0.0	0.0	2.9	12.9	111.4	248.8	94.9	255.7	1.0	1.0	4.2	759
1963	0.0	2.5	7.5	0.0	0.0	174.1	262.6	105.4	160.9	50.5	0.01	0.0	677
1964	0.0	0.0	0.0	0.0]		253.8	58.0	108.0	143.6	84.4		0.0	825
1965	1.9	0.0	0.0	0.5	26.3	149.8	69.6	245.3	178.1	87.6	2.0	2.0	783
1966	0.0	0.0	0.0	19.0	73.8	318.6	38.0	118.5	263.2	4.9	0.0	0.8	76
1967	0.0	7.0	0.0	18.1	12.5	158.9	87.8	64.0	229.7	76.2	7.6	0.0	112
1968	0.0	48.4	0.0	1.0	93.2	187.9	154.2	256.8	466.8	37.0	1.5	-	106
1970	12.0	1.6	2.4	0.0	5.3		70.5	240.7	305.4	124.8	0.7	20.5	66
1971	0.0	0.5	4.2	0.0	78.8	221.0	106.2	24.0	168.1	13.3	38.9	2.5	133
1972	0.0	0.0	0.2	16.0	31.4	263.8	203.4	416.5	290.5	113.1	23.2	3.4	117
	4.5	0.0	0.0	0.0	39.0	236.0	213.5	52.7	392.9	7.0	1.5	0.0	84
1973	0.5	0.0	1.5	2.3	200.6	305.0		47.4	343.8	42.4	17.5	12.7	54
1974	3.7	0.0	0.0	0.0	80.8	171.1	126.3	67.8	68.8	37.5	0.0	1.0	
1975	0.5	0.7	0.0	34.5	12.0	259.5	63.8	75.5	108.1	107.5	31.0	1.0	64
1976		0,0	0.0	0.0	57.0	252.0	8.0	78.1	160.5	28.0	3.5	4.0	8:
1977	1.0	6.0	2.5	0.0	108.5	192.0	240.0	245.5	410.0	62.5	7.5	0.5	10
1978	8.0	0.0	1.5	6.0	14.0	99.0	210.0			10.9	0.0	3.5	7:
1979	1 0.0		0.0	28.5	30.5	118.5	0.0	151.9	134.0	66.0	4.0	0.0	12
1980	1_0	2.0	0.0	1.0	16.5	447.5	204.5	416.0	192.5	79.5	1.5	1.0	7
1981	1.0	0.0	0.0	44.5	189.0	166.0	71.0	0.0	1	55.5	16.0	0.0	7
1982	1.0	1.0	14.5	0.0	83.0	184.0	74.0	118.0	4	38.5	1.5	2.0	10
1983	0.0	33.0	1	0.0	1 120.5	198.0	248.5	126.5	4	26.0	11.5	1.5	6
1984	0.0	0.0	+	1.0		206.0	103.5	269.0	4	52.0	8.5	0.0	1 7
1985	T 0.0	0.0	+	2.5		69.5	89.0	100.0	4	0.0	34.5	0.0	1 6
1986	0.0	0.0	-	0.0		264.5	130.0	68.5		3.5	1 10.0	1.5	13
1987	0.0	9.5		0.0		504.5	159.5	393.0			4	1.5	1
1988	1.5	0.0	-	+	-	-	151.5	191.0	330.0	1 4.3	1		
1989		0.0	0.0	1 0.0	1 33.3	4							

TABLA 4.5

PILOTO No 1 ALTURAS DE EVAPORACION MENSUALES en mm

AÑOMES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
				-1	8 11		×						
1977	70.9	91.2	152.4	149.9	196.0	171.7	160.6	141.0	132.5	84.3	55.5	50.2	1456
1978	41.3	52.0	79.6	139.7	165.5	74.2	83.0	94.3	114.5	61.2	45.7	43.7	995
1979	57.1	70.4	115.4	148.3	132.1	141.8	120.5	90.3	80.4	88.0	68.3	78.0	1191
1981	41.5	55.5	82.6	123.5	128.2	90.8	102.0	97.7	97.0	82.8	94.5	73.9	1070
1982	66.4	62.5	103.9	127.6	109.7	120.9	144.9	99.2	113.5	76.1	64.0	57.9	1147
1983	55.4	57.6	148.3	123.4				95.3	96.0	82.0	71.2	61.0	
1984	32.3	87.0	1 7 -	* 1 5	1	90.2	118.9	104.3	89.0	79.7	61.2	47.4	

KM 33+000
ALTURAS DE EVAPORACION MENSUALES en mm

TABLA 4.6

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
										1			
1966	223.8	205.8	325.5	263.5	250.0	205.8	291.0	262.8	0.0	244.0	286.6	269.8	2829
1967	293.6	266.4	324.2	301.3	286.6	203.1	321.4	321.2	141.0	264.4	244.7	236.0	3204
1969	227.8			282.5	295.0		224.2	152.4	155.3	196.3	284.4		
1970	256.2	268.8	259.8	262.2	310.4	261.9	236.2	198.1	193.1	243.7	259.5	255.5	3005
1971	248.6	250.8	262.2	245.6	249.6	217.6	324.2	212.4	135.0	236.4	301.2	259.8	2943
1972	258.8	264.6	300.5	280.1	237.9	182.5	284.3	295.0	289.6	292.7	244.6	269.1	3200
1973	258.7	268.5	251.7	259.8	243.4	170.0	191.7	178.3	160.4	201.5	227.3	209.4	2621
1974	211.7	285.3	216.8	250.9	193.2	176.2	220.9	228.2	145.0	234.2	226.7	217.7	2607
1975	246.9	227.2	257.3	237.8	165.1	197.3	211.3	221.4	196.6	234.2	264.5	222.2	2682
1976	209.6	230.5	237.6	207.0	233.5	188.4	208.9	191.3	189.5	198.9	225.3	212.5	2533
1977	222.9	208.1	228.2	238.1	233.5	223.6	254.2	236.6	195.3	233.4	193.6	190.4	2658
1978	223.0	210.3	263.9	230.2	254.2	238.6	199.5	217.0	148.2	239.5	219.8	199.0	2643
1981	241.1	200.8	213.9	239.4	225.9	159.0	175.4	186.8	147.5	204.0	194.3	197.6	2386

TABLA 4.7

	MAR MUERTO AREAS DE INFLUENCIA			
ESTACION HIDROMETRICA	ESTACION CLIMATOLOGICA		AREA (Km2)	AREA (%)
IXTEPEC	LA MACETA	1	357.7	35.0%
	PILOTO No 1	2	164.9	16.1%
•	IXTEPEC	3	487.4	47.7%
	SANTIAGO CHIVELA	4	11.5	1.1%
			1021.5	100,0%
CHICAPA	CHICAPA	1	42.6	13.2%
	SAN MIGUEL CHIMALPA	2	267.2	82.6%
	KM 67+500	3	13.7	4.2%
			323.5	100.0%
NILTEPEC	CHICAPA	1	21.6	23,4%
	OSTUTA	2	70.6	76,6%
			92.2	100.0%
OSTUTA	OSTUTA	1	318.8	73,3%
	ZANATEPEC	2	116.2	26,7%
			435.0	100.0%
ZANATEPEC	ZANATEPEC	1	255.7	100.0%
	****		255.7	100.0%
TONALA	TONALA	1	167.0	100.0%
				100.0%

TABLA 4.8

TABLA DE CALCULO DE COEFICIENTES DE ESCURRIMIENTO

ESTACION IXTEPEC 1984 AEA = 1021.5 Km2

		Qusc	Vesc	Vdir	LL1	LL2	LL3	LL4	VII	Co	Ce
-		(m ¹ /s)	{m³}	(m)	(mm)	(mm)	(mm)	(mm)	(m ³)	DIARIO	QB
	[1	- 1	357.7	164.9	487.4	11.5		[MENSUAL
					(Km²)	{Km ₃ }	{Km²}	(Km²)			
ABR		0.3	24192	2966	0.0	0.0	0.0	0.0			
ABR	2	0.3	25056	3830	0.0	0.0	0.0	0.0	0		
ABR	3	0,3	25056	3830	0.0	26.0	0.0	0.0	4287400	0.002	
ABR	4	0.3	24192	2966	0.0	0.0	0,0	1.0	11520	0.001	
ABR	5	0.3	23328	2102	0.0	0.0	0.0	0.0	. 0	0.290	1
ABR	6	0.3	22464	1238	0.0	2,0	0.0	0.0	329800	0,005	
ABR	7	0.3	21600	374	0.0	0.0	0.0	0.0	0	0,001	
ABR	8	0,2	20736	0	0.0	0.0	0.0	0.0	0		
ABR	9	0,2	20736	0	0.0	0.0	0.0	0.0	. 0		
ABR	10	0.2	20736	0	0.0	0.0	0.0	0,0	0		
ABR	11	0.2	20736	0	0.0	0.0	0.0	0.0	0	1.1	
ABR	12	0.2	20736	0	0.0	0.0	0.0	0.0	. 0		
ABR	13	0.2	19872	0	0.0	27.5	0.0	0.0	4534750		
ABR	14	0.2	20736	0	0.0	1.0	0.0	0.0	164900		
ABR	15	0.2	20736	0	0.0	0.0	0.0	1.0	11520	0.002	
ABR	16	0.3	21600	374	0.0	0.0	0.0	0.0	0	0.065	
ABR	17	0.3	21600	374	0.0	0.0	0.0	0.0	0		
ABR	18	0.3	21600	374	0.0	0.0	0.0	0.0	0		
ABR	19	0.3	21600	374	0.0	0.0	0.0	0.0	0		
ABR	20	0.3	21600	374	0.0	0.0	0.0	0.0	0		
ABR	21	0.3	21600	374	0,0	0,0	0.0	0.0	0		
ABR	22	0.2	19008	. 0	0.0	0.0	0.0	0.0	0		
ABR	23	0.2	19008	0	0.0	0.0	0.0	0.0	0		
ABR	24	0.2	19008	0	0.0	0.0	0.0	0.0	0	194	
ABR	25	0.2	19872	0	0.0	0.0	0.0	0.0	0		
ABR	26	0.2	20736	0	0,0	0.0	0.0	0.0	0		
ABR	27	0.2	19872	0	0.0	0.0	0.0	0.0	0		
ABR	28	0.2	19872	0	0.0	0.0	0.0	0.0	0	1	0.052
ABR	29	0.2	19872	0	0.0	0.0	0.0	0.0	0		Q BASE 04
ABR	30	0.2	19008	0	0.0	.0.0	0.0	0.0	0		0.25

TABLA 4.8

TABLA DE CALCULO DE COEFICIENTES DE ESCURRIMIENTO

ESTACION IXTEPEC 1984 AEA = 1021.5 Km2

		Qesc	Vesc	Vdir	LL1	LL2	LL3	LL4	VII	Co	Ce
		(m³/s)	(m³)	(m³)	(nun)	(nun)	(mm)	(mm)	{m³}	DIARIO	QB
	j	1			357,7	164.9	487.4	11.5	}	j	MENSUAL
					(Km²)	(Km²)	(Km²)	(Km²)	ļ]	
AGO	1	2.8	241056	10647	 	17,2	14.2	0.0	9708620	WIREFI	
AGO	2	3.0	. 255744	25335	 	148.5	2.2	0.0	25559930	0.002	
AGO	3	3.1	268704	38295	 	68.0	35.0	0.0	28272200	0.002	
AGO	4	3.4	294624	64215	·	26.3	7.5	5.3	8383226	0.005	
AGO	5	4.2	366336	135927		3.2	0.0	0.0	527680	0.028	
AG0	6	4.0	345600	115191		25,7	0.0	10.9	4363498	0.027	
AGO	7	2.9	247968	17559		12,2	0.0	0.0	2011760	0.008	
AGO	В	3.1	266112	35703		16.1	0.0	0.0	2654890	0.015	
AGO	9	3.1	263520	33111		1.0	0.0	7.0	245540	0.018	
AGO	10	2.9	246832	18423		7.6	0.0	17.2	1451384	0.011	
AG0	11	2.6	220320	0		0,0	0.0	0.0	0		
AGO	12	2.0	173664	0		0.0	0.0	23,2	267264		
AGO	13	1.8	157248	0		34.7	0.4	78.4	6820158		
AGO	14	1.9	159840	0		1.5	0.0	0.0	247350		
AGO	15	2.0	169344	0		39.0	0.0	0.0	6431100		
AGO	16	2.2	191808	0		19.5	0.0	0.0	3215550		7
AGO	17	2.1	184032	. 0		4.0	0,0	0.0	659600		
AGO	18	2.1	177120	0		5.7	0.0	0.0	939930		
AGO	19	1.6	136512	0		0.0	3.1	0.0	1510940		
AGO	20	1.5	130464	0		0.0	6.2	0.0	3021880		
AGO	21	2.3	196992	0		27.8	1,6	0.0	5364060		
AGO	22	2.5	216864	0		141.0	3.1	0.0	24761840		
AGO	23	2.4	209088	0		46.8	0.6	9.9	8123808		
AGO	24	2.0	173664	0		21.4	0.0	2.4	3556508		
AGO	25	2.5	219456	Đ		5,3	0.0	0.0	873970	0.004	
AGO	26	2.9	246240	15631		24.6	0.0	0.0	4656540	0.003	
AGO	27	2.1	183168	0		62.4	3.4	0.0	11946920		
AGO	28	2.3	196128	0		8.0	0.0	0.0	1319200	0.007	
AGO	29	3.8	329184	98775		3.2	0.0	2.0	550720	0.114	0,032
AGO	30	4.0	343872	113463		3.0	0.0	18.9	712428	0,168	Q BASE 08
AGO	31	3.8	329184	98775		0.6	0.0	20.0	329340		2.67

TABLA 4.8

TABLA DE CALCULO DE COEFICIENTES DE ESCURRIMIENTO

ESTACION IXTEPEC 1984 AEA = 1021.5 Km²

		Clesc	Vesc	Vdir	LL1	LL2	LL3	LL4	VII	Ce	Ce
		(m)/s)	(m³)	(m)	(mm)	(mm)	(mn)	(mm)	(m³)	DIARIO	ÇB
					357.7	164.9	487.4	11.5			MEHSUAL
					(Kw _s)	(Km³)	(Km²)	(Km²)			
ABR	1 2	8.3	24192 25056	2966 3830	0.8	0.0	0.8	0.0	0		
ABR ABR	-	8.3	25056	1830	8.8	26.0	0.0	0.0	4287400	0.082	
ABR	1	0,3	24192	2966	0.0	0.0	0.0	1.0	11520	0.881	
ABR	5	8.3	23328	2102	0.0	0.8	0.0	0.0	0	0.298	
ABR	6	0.3	22464	1238	8.8	2.0	0.0	0.0	329880	8.005	
ABR	?	8.3	21688	374	8.0	0.0	8.0	0.8		0.001	
ABR ABR	9	8.2	20736	0 8	8.8	0.8	8.8	0.8	<u>0</u>		
ABR	18	0.2	20736		0.8	0.0	0.0	0.0			
ABR	11	0.2	20736	0	B. 0	0.0	8.0	0.0	0		
ABR	12	0.2	20736	0	B.B	0.0	0.0	0.8	0		
ABR	11	0,2	19872	0	8.0	27.5	0.0	0.0	4534750		
ABR	14	0.2	20736	0	0.0	1.0	0.8	0.0	164980		
ABR	15	8.2	20736	8	8.0	0.8	0.8	1.0	11520	0.065	
ABR	16	8.3	216BD .	374	0.0	8.B 0.8	0.0	0.0	0	0.003	
ABR	18	8.3	21600	374	8.8	0.8	0.0	0.0			
ABR	19	0.3	216B8	374	0.8	0.8	8.B	0.0	0		
ABR	28	0.3	21688	374	0.0	0.0	0.0	0,0	0		
ABR	21	0.3	21600	374	0,8	0.0	0.8	0.0	0		
ABR	22	8.2	19808	8	0.0	0.0	0.8	0.0	8	 	
A8R	23	8,2	19808	٥	B, 0	0,8	0.0	8.8	0		
ABR ABR	35	0.2	19888	0	0.8 0.B	B.0 8.0	8.8	0.0			
ABR	26	0.2	20736		0.8	0.8	0.0	0.0			
ABR	27	8.2	19872	8	8.0	0.0	0.8	0.0	0		
ABR	28	8.2	19872	0	0.0	0.0	8.8	0.0	0		0.85
ABR	29	0.2	19872	0	8,8	8.0	. O. B	8,0	•		Q BASE O
ABR	30	8.2	19008	٥	0.8	0.8	8.0	8.0	0		0.2
AGO AGO	1	2.6	241856 235744	10647 25335		17,2	2.2	0.0	9708620 25559930	0.BO2	
AGO	3	3.0	268784	38295		68.0	35.0	0.0	28272200	0.002	
AGD	1	3.4	294624	64215		28.3	7.5	5.3	8183226	0.005	
AGO	3	4.2	366336	135927		3,2	0.8	0.0	527680	0.028	
AGO	6	4.B	345688	115191		25.7	0.0	10.9	4363498	0.027	
AGO	7	2.9	247968	17559		12.2	0.0	0.0	2011780	0.008	
AGG	8	3.1	266112	35703	<u> </u>	16.1	8.0	0.0	2654890	8,015	
AGO AGO	10	3.1	263528 248832	33111 18423	 	1.0	B.8	17.2	245540 1451384	0.018	<u> </u>
AGO	111	2.6	220320	10123		7.6	0.8	0.0	0	0.011	
AGO	12	2.0	173664		 	0.0	0.0	23.2	267264		
A00	13	1.8	157248	0		34.7	0.4	70.4	6820158		
NGO	14	1.9	15904B	8		1.5	0.0	8.0	. 247350		
AGO	15	2.0	169344	0		39.0	0.8	0.0	6431100		
AGO AGO	16	2.2	191808	0		19.5	8.0	0.0	3215550		ļ
AGO	18	2.1	184032 177128	- 1		5.7	0.0	0.0	939930		
AGO	19	1.6	136512		 	B,8	3.1	0.0	1510940		
AGO	70	1.5	130464	0		0.0	5.2	0.0	1821880		
AGO	21	2.3	196992	0		27.8	1.5	0.0	5364860		
\G0	22	2.5	216864	0	<u> </u>	141.8	3.1	0,0	24761840		
AG0	23	2.4	209088	8		46.8	0.6	9.9	8123808		
AGO	24	2.0	173664	0.		21,4	0.8	2.4	3556588		
AGO	25	2.5	219456	8	<u> </u>	5,3	0.0	0.0	873970	0.084	
AGO	26	2.9	246240	15831	ļ	24.6	0.0	0.0	4856540	8.803	ļ
AGO AGC	20	2.1	183168 196128	0		8.0	8.8	0.8	11946920 131920B	0.007	
AGO	29	3.8	329184	90775	 	3.2	0.B	2.0	558720	0.114	0.03
							0.0	10.9	712428	8.168	Q BASE 6
AGO	30	4.0	343072	113463	ı	3,0					

TABLA 4.9

TABLA DE CALCULO DE COEFICIENTES DE ESCURRIMIENTO

ESTACION CHICAPA AREA = 323.5 Km²

		Qesc	Vesc	Vdlr	LL1	LL2	LL3	VII	Ce	Ce
		(m'/s)	(m³)	(m³)	(กทา)	(mm)	(mm)	(m³)	DIARIO	QB
					42.6	267.2	13.7			mensual
					(Km²)	(Km²)	(Km²)			
\BR	1	0.0	1901	1043	0.0	0,0	0.0	0		
ABR	2	0.0	1037	179	0.0	0.0	0.0	0		
ABR	3	0.0	1123	265	0.0	0.0	0.0	0		
ABR	4	0.0	1037	179	0.0	0.0	0.0	0		
ABR	5	0.0	1296	438	0.0	0.0	0.0	0		
ABR	6	0.0	1469	611	0.0	0.0	0.0	0		
ABR	7	0.0	1469	611	0.0	0.0	0.0	0		
ABR	8	0.0	1382	524	0.0	0.0	0,0	0	14 14	
ABR	9	0.0	1210	351	0.0	0.0	0.0	0		
ABR	10	0.0	1210	351	0.0	0.0	0.0	0		,
ABR	11	0.0	1123	265	0.5	0.0	0.0	21300	0.025	
ABR	12	0.0	1123	265	0.0	0.0	0.0	0	0.025	
ABR	13	0.0	1123	265	0.0	0.0	0,0	0		
ABR	14	0.0	1037	179	0.0	0.0	0.0	0		
ABR	15	0.0	1037	179	0.0	0.0	0.0	0		
ABR	16	0.0	950	92	0.0	0.0	0.0	0		-
ABR	17	0.0	950	92	3.5	0.0	0.0	149100	0.002	
ABR	18	0.0	1037	179	0.0	0.0	0.0	0	0.002	<u> </u>
ABR	19	0.0	950	92	0.0	0.0	0.0	0		
ABR	20	0.0	950	92	2.0	0.0	3.0	126300	0.001	
ABR	21	0.0	691	. 0	0.0	6.0	0.0	1603200		
ABR	22	0.0	605	0	0.0	0.0	0.0	0		
ABR	23	0.0	510	0	0.0	0.0	0.0	0		
ABR	24	0.0	346	0	0.0	0.0	0.0	0		
ABR	25	0.0	173	0	0.0	0.0	0.0	0	 	
ABR	26	0.0	0	0	0.0	0.0	0.0	0		<u> </u>
ABR	27	0.0	0	0	0.0	0.0	0.0	0		
ABR	28	0.0	0	. 0	0.0	0,0	0.0	0	1	0.01
ABR	29	0.0	0	0	0.0	0.0	0.0	0		C BASE 04
ABR	30	0.0	0		0.0	0.0	0.0	0	 	0.0

TABLA 4.9

TABLA DE CALCULO DE COEFICIENTES DE ESCURRIMIENTO

ESTACION CHICAPA AREA = 323.5 Km2

		Qesc	Vesc	Vdlr	LL1	LL2	LL3	VII	Ce	Ce
		(m³/s)	(m³)	(m³)	(mm)	(mm)	(mm)	(m³)	DIARIO	QB
			·		42.6	267.2	13.7		'	MENSUAL
					(Km²)	(Km²)	(Km²)		ĺ	
AGO	1	1.6	136339	0	0.0	0.0	0.0	0		
AGO	2	1.4	117936	Ö	0.0	0.0	0.0	. 0		
AGO	3	1.2	102902	0	0.0	0.0	0.0	0		
AGO	4	1.1	94954	0	11.0	11.5	10.5	3685250		
AGO	5	1.2	105754	0	0.0	0.0	0.0	0		
AGO	6	1.3	108605	0	0.0	0.0	0.0	0		
AGO	7	1.0	90029	0	0.0	0.0	0.0	0		
AGO	8	0.9	78797	0	0.0	0.0	0.0	0		
AGO	9	0.8	71798	0	0.0	0.0	0.0	0		
AGO	10	0.8	68515	0	0.0	0.0	0.0	0		
AGO	11	0.7	58838	0	0.0	0.0	0.0	0		
AGO	12	0.5	46310	0	0.0	0.0	0.0	0		
AGO	13	0.5	42163	.0	0.0	0.0	0.0	0		-
AGO	14	0.4	37670	0.	0.0	0.0	0.0	0		100
AGO	15	0.7	61430	0	0.0	0.0	0.0	0		
AGO	16	0.9	80611	0	0.0	0.0	0.0	0		
AGO	17	0.6	54605	0	1.0	16.0	0.0	4317800		
AGO	18	0.6	52963	0	0.0	0.0	0.0	0		
AGO	19	0.7	63072	0	26.5	13.5	23.0	5051200		
AGO	20	3.4	296611	0	24.5	300.0	21.5	81498250	0.064	200
AGO	21	86.3	7458912	5545473	20.0	30.0	18.5	9121450	0.107	
AGO	22	70.1	6055776	4142337	0.0	0.0	0.0	0	0.517	
AGO	23	28.8	2484000	570561	3.0	0.0	3.5	175750		
AGO	24	31.B	2743200	829761	14.0	19.5	12.5	5978050	0.335	
AGO	25	36.4	3144096	1230657	66.0	200.0	67.5	57176350	0.321	
AGO	26	242.4	20943360	19029921	72.0	0.0	70.5	4033050	0.377	·
AGO	27	68.9	5952096	4038657	4.5	0.0	7.5	294450		
AGO	28	30.2	2608416	694977	0.0	0.0	0.0	0		1 1 1 1 B
AGO	29	21.5	1854144	0	1.0	0.0	2.0	70000	1	0.250
AGO	30	18.8	1623456	0	2.0	20.0	2.5	5463450	0.138	2 BASE 08
AGO	31	31.0	2679264	765825	0.0	0.0	0.0	0		22,15

TABLA 4.9

TABLA DE CALCULO DE COEFICIENTES DE ESCURRIMIENTO

ESTACION CHICAPA AREA = 323.6 Km2

		Qesc	Vesc	Vdlr	LL1	LL2	ш	VII	Ce	C.
		(m ¹ /s)	(m²)	(m²)	(mm)	(mm)	(aum)	(m ³)	DIARIO	QB
		İ		i	42.6	267.2	13.7		1	MENSUAL
	,				(Km²)	(Km³)	(Km³)		l	Ì
ABR	1	8.8	1901	1043	8.8	0.8	0.0	0		
ABR	2	0.0	1837	179	0.8	0.0	0.8	0		ļ
ABR ABR	-3	0.0	1123	265 179	0.0	8.0	0.0	0		
ABR	5	0.0	1296	438	0.0	0.0	0.0	0		
ABR	6	0.0	1469	611	0.0	0.0	0,0	8		
ABR	7 8	0.0	1469	631 524	0.0	0.0	0.0	0	 	
ABR	9	8.0	1210	351	0.0	8.8	8.0			
ABR	10	0.0	1218	351	0.0	0.0	8,0	8		
ABR ABR	11	8.0	1123	265 265	0.0	0.0	0.0	21380	8,825 0.025	
ABR	13	0.0	1123	265	0.0	0.0	0.0	- a		
ABR	14	0.0	1837	179	8.0	0.0	0.0	0		
ABR	15	0.0	1037 950	179	8.0	0.0	0.0	8	 	
ABR	17	0.0	958	92	3.5	0.0	0.8	149100	0.002	l
ABR	18	0.0	1037	179	0.0	0.0	0.8	0	0.002	
ABR ABR	19	0.0	950 950	92	2.0	0.0	3.8	126300	0.001	
ABR	21	0.8	691	- 32	0.8	6.0	8.8	1603200	4,002	
ABR	22	0.0	605	0	8,0	0.8	0.0	0		
ABR ABR	23	8.0	518 346	8	0.8	0.8	0.0	0		
ABR	25	0.8	173	 	0.0	0.0	0.0	0		
ABR	26	8.0	8	0	0,0	0.0	0.8	8		
ABR	27	0.0		0	0.0	0.0	0.8	. 8		
ABR ABR	28	8.0	8	0	8,8	8.0	0.0	0	 	8,011 Q BASE 84
ABR	30	0.0	0	0	8.0	8.0	0.0	8		0.01
AG 0	1	1.6	136339	8	8.0	8.0	0.0	8		
AGO	3	1.4	117936 102902	0	8.0	0.8	8.0	0		
AGO	•	1.1	94954	0	11.0	11.5	10.5	3685258		
AGO	5	1.2	105754	0	0,0	8,0	0.0	8		
AGO AGO	- 6	1.0	108605 98029	0	0.0	8.0	0.0	0		
AGO	8	0.9	78797	0	0.0	0.0	0.0	, ,		
AGO	9	0.8	71798	0	0.8	0,0	8.0	0		
AGO AGO	10	8.7	68515 58838	0	8.8	8.0	0.8	8	 	
AGO	12	0.5	46310	8	8.0	8.0	8.8	8		
AGO	13	0.5	42163	0	0.0	0.0	8.0	. 8		
AGO AGO	14	0.4	37670 61430	0	0.0	8.8	0.0	0	 	
AGO	16	8.9	80611	- 6	8.0	8.8	0.8			
AGO	17	0.6	54605	0	1.0	16.0	0.8	4317800		
AGO AGO	18	0.6	52963 63072	0	8.0 26.5	13.5	23.0	5051200	ļ	ļ
AGO	20	3.4	296611	- 0	24.5	308.0	21.5	81498250	8.064	
AGO	21	86.3	7458912	5545473	20.0	30.0	18.5	9121450	0.107	
AGO AGO	22	70.1	6855776 2484000	4142337 570561	8,0	0.0	3.5	175750	0.517	
AGO	24	31.8	2743280	829761	14.0	19.5	12.5	175750 5978050	0,335	
AGO	25	36.4	3144096	1230657	66.0	208.0	67.5	57176350	0.321	
AGO	26	242.4	20943360	19029921	72.0	0.8	70.5	4033058	8.377	
AGO AGO	27	68.9 30.2	5952096 2608416	4038657 694977	8.0	0.0	7.5	294450		
VGO	29	21.5	1054144	031317	1.0	0.0	2.8	70880		0.250
AGO	30	18.8	1623456	0	2.0	20.0	2.5	5463450	0.138	Q BASE 08
AGO	31	31.0	2679264	765825	8.0	8.0	0.0	0		22.15

TABLA 4.10

IXTEPEC
COEFICIENTES DE ESCURRIMIENTO MENSUALES

. See	FNC	FEB	MAR	ABR	MAY	JUN	JUL	AGO .	SEP	ост	NOV	DIC
NOMES	ENE	PEB		701				i				
						0.007	0.014	0.099	0.113	0.036	0.080	
1961	0.035	0.034	0.002	0.011		0.025	0.082	0.030	0.024	0.048		0.086
1966	0.054	0.602	0.114	0.002		0.025	0.026	0.057	0.034	0.014	0.093	0.063
1967	0.030	0.003	0.006				0.058	0.084	0.179	0.137		0.059
1970	0.071	0.010	0.007	0.010	0.018	0.007	0.004	0.061	0.188	0.082	0.024	
1971	0.480	0.106	0.042	0.179	0.062	0.055			0.061	0.059	0.055	0.004
1972	0.050	0.029	0.009	0.021	0.005	0.021	0.012	0.026	0.180	0.247	0.183	0.152
1973	0.007	0.008	0.002	0.004		0.154	0.087	0.388		0.216	0.107	
1974	0.067	0.020		0.013		0.105	0.026	0.055	0.176	0.216	0.10.	0.014
1975	0.044	0.017	0.058	0.013	0.009	0.052	0.014	0.022	0.136		0.069	0.059
1976	0.031	0.080	0.011	0.004	0.041	0.025	0.161	0.016	0.063	0.050	0.009	0.038
1977	0.002	0.088	0.006	0.001		0.007	0.026	0.013	0.006	0.014		0.057
1978	0.008	0.005	0.010	0.002	0.008	0.021	0.029	0.005	0.158	0.018	0.109	0.055
	0.042	0.021	0.003	0.004	0.004	0.268	0.079	0.168	0.171	0.057	0.018	
1979		0.020	0.081	0.555	0.013	0.010	0.016	0.026	0.019	0.060	0.040	0.015
1980	0.034		0.025	0.019	0.071	0.049	0.186	0.254	0.085	0.084	0.058	0.049
1981	0.064	0.037		0.002	0.204	0.007	0.038	0.039	0.090	0.103	0.051	
1982	0.021	0.026	0.001		0.204	3.001	0.049	0.032	0.032	0.040	0.186	0.005
1983	0.012	0.010	0.024	0.005	0 005	0.021	0.034	0.032	0.151	0.382	0.082	0.096
1984			0.019	0.052	0.005	0.021	3.034					
						0.053	0.052	0.078	0.104	0.096	0.082	0.054
PROM.	0.062	0.030	0.025	0.053	0.040	0.051	0.052	0.070				

TABLA 4.11

CHICAPA COEFICIENTES DE ESCURRIMIENTO MENSUALES

NO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL.	AGO	SEP	ост	NOV	DIC
	0.119		0.145		0.007	0.050	0.149	0.103	0.137	0.092		0.039
1965	0.119			0.010	0.015	0.056	0.122	0.199	0.152	0.217	0.211	
1966	0.000	0.026		0.034	0.084	0.249	0.027	0.311	0.267		0.030	0.042
1967	0.031		0.014	0.054	0.290	0.224	0.237		0.151	0.161	0.123	
1968	0.104	0.021	0.014		- 0.230	0.433		0.231				
1969			0 373		0.015	0.222	0.168	0.227		0.022	0.055	
1970	0.051	0.021	0.373	0.007	0.195	0.123	0.202	0.278		0.265	0.269	0.25
1971	0.173	0.054	0.038		0.007	0.152		0.099	0.203		0.119	0.25
1972	0.309	0.258	0.053	0.015	0.007	0.132	0.230	0.321	0.231		0.058	
1973	0.001				- 255	0.120	0.278	0.250			0.018	
1974			0.518	0.153	0.265		0.159	0.271	0.255		0.056	0.08
1975	0.006				0.081	0.210	0.133	0.039	0.230	0.220	0.036	0.24
1976	0.012	0.154		0.002	0.097	0.170	0.314	0.225	0.162	0.046	0.103	0.10
1977	0.003	0.004			0.007	0.040		0.120	0.182	0.275	0.100	0.05
1978	0.074	0.005			0.183	0.117	0.184		0.106	0.286	0.123	0.04
1979	0.020	0.002	0.003	0.011		0.192	0.154	0.250	0.106		0.015	0.04
1980	0.082	0.050	0.052	0.004		0.028	0.102					3,41,
										0.176	0.094	0.11
PROM.	0.076	0.060	0.149	0.030	0.104	0.174	0.179	0.209	0.189	0.1/6	0.034	3.220

TABLA 4.12

IXTEPEC
GASTOS BASE MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
1961	0.93	0.76	0.31	0.29	0.19	0.62	2.51	1.92	2.45	2.67	23.18	1.88
1966	0.24	0.21	0.18	0.15	0.14	0.72	2.69	3.15	2.90	4.87	2.06	0.60
1967	0.31	0.23	0.18	0.16	0.16	5.35	1.82	1.84	3.56	2.87	1.18	0.56
1970	1.91	1.00	0.84	0.69	0.60	0.60	3.51	24.41	71.37	16.42	7.40	3.01
1971	1.84	1.22	0.68	0.77	0.62	4.39	1.80	8.23	12.54	5.20	3.07	1.73
1972	0.97	0.56	0.39	0.35	0.46	2.76	1.56	2.53	2.15	2.47	1.00	0.45
1973	0.32	0.30	0.29	0.26	0.19	7.24	4.95	27.26	38.68	19.44	3.61	2.41
1974	1.43	0.65	0.64	0.46	0.38	8.63	7.08	3.43	44.02	18.48	3.46	1.46
1975	0.63	0.49	0.41	0.30	0.43	0.85	1.80	3.82	28.93	6.44	1.66	1.12
1976	1.46	1.31	0.54	0.32	. 0.30	2.74	2.93	3.76	6.21	2.36	2.18	0.97
1977	0.42	0.29	0.34	0.20	0.18	0.57	0.28	2.43	0.95	2.09	3.24	0.51
1978	0.24	0.18	0.20	0.21	0.47	2.70	8.43	3.50	39.91	7.74	3.67	1.79
1979	1.14	0.67	0.30	0.34	0.21	1.72	4.63	19.66	74.04	8.11	3.62	3.00
1980	1.50	0.79	0.50	0.52	0.43	1.29	1.31	5.02	4.05	3.01	1.69	1.19
1981	1.60	0.74	0.61	0.47	0.38	9.94	14.19	39.02	16.52	4.45	3.33	1.79
1982	1.01	0.55	0.35	0.31	0.87	1.34	2.70	2.86	5.67	4.31	2.20	1.79
1983	0.39	0.30	0.16	0.02		-	1.78	1.96	9.17	2.80	1.38	0.47
1984			0.12	0.25	0.19	0.41	2.42	2.67	13.76	3.28	1.04	1.04
PROM.	0.96	0.60	0.39	0.34	0.37	3.05	3.69	8.75	20.94	6.50	3.83	1.43

TABLA 4.13

OSTUTA GASTOS BASE MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
											. 1	
1970	3.72	5.77	2.40	1.65	2.88	16.42	21.70	49.21	89.39	26.43	13.18	4.63
1971	2.70	2.42	3.66	2.64	2.44	14.97	8.75	26.52	78.14	40.84	14.20	8.36
1972	6.42	2.97	1.46	1.26	1.35	51.96	11.16	7.87	11.42	8.75	35.46	8.43
1973	3.36	5.19	1.89	1.47	3.37	19.84	20.73	58.73	148.31	37.76	9.34	8.22
1974	3.47	5.72	2.61	4.85	3.61	56.53	22.49	8.85	67.47	25.09	8.47	4.77
1975	5.83	2.24	1.41	1.09	5.00	12.36	12.68	11.21	50.71	20.23	14.45	4.62
1977	2.99	3.49	2.66	2.49	1.73	4.23	5.08	6.16	13.12	13.70	9.27	6.21
1979	7.09	3.29	2.14	1.11	2.64	20.71	15.58	25.50	184.59	16.69	16.78	14.38
1980	3.12	4.76	3.23	2.62	3.70	10.50	11.01	27.75	170.08	35.40	15.42	9.60
1981	4.91	10.31	2.83	4.24	4.05	71.74	45.46	73.62	51.98	35.06	15.62	5.30
PROM.	4.36	4.62	2.43	2.34	3.08	27.93	17.46	29.54	86.52	26.00	15.22	7.45

TABLA 4.14

VOLUMENES DE ESCURRIMIENTO DIARIO en miles m³ LAGUNA MAR MUERTO

MES	DIA	END	N	IES	DIA	END
ABR	1	177	A	/GO	1	11723
ABR	2	225	A	/GO	2	12895
ABR	3	210	A	\GO	3	13910
ABR	4	228	A	/GO	4	14903
ABR	5	188	P	\GO	5	12318
ABR	6	177	F	GO	6	12537
ABR	7	152	A	/GO	7	13791
ABR	8	224	A	\GO	8	12402
ABR	9	185	, A	\GO	9	12614
ABR	10	347	А	(GO	10	13003
ABR	11	191	A	\GO	11	12750
ABR	12	195	A	\GO	12	13964
ABR	13	221	P	\GO	13	14741
ABR	14	148	А	\GO	14	16424
ABR	15	326	A	\GO	15	13741
ABR	16	313	A	\GO	16	11934
ABR	17	261	A	/GO	17	10316
ABR	18	152	А	(GO	18	13389
ABR	19	289	P	\GO	19	13889
ABR	20	222	A	\GO	20	16769
ABR	21	430	А	(GO	21	16004
ABR	22	427	7	\GO	22	13342
ABR	23	203	7	\GO	23	15485
ABR	24	198	7	AGO	24	13935
ABR	25	292	7	(GO	25	18967
ABR	26	157	Į,	NGO	26	20874
ABR	27	331	7	\GO	27	16252
ABR	28	246	į į	\GO	28	14584
ABR	29	252	, a	\GO	29	15716
ABR	30	451	1	\GO	30	18316
	T		7	\GO	31	22956

TABLA 4.14

VOLUMENES DE ESCURRIMIENTO DIARIO en miles m³ LAGUNA MAR MUERTO

MES	DIA	END		MES	DIA	END
ABR	1	177		AGO	1	11723
ABR	2	225		AGO	2	12895
ABR	3	210		AGO	3	13910
ABR	4	228		AGO	4	14903
ABR	5	188		AGO	5	12318
ABR	6	177		AGO	6	12537
ABR	7	152		AGO	7	13791
ABR	В	224		AGO	В	12402
ABR	9	185	,	AGO	9	12614
ABR	10	347		AGO	10	13003
ABR	11	191		AGO	11	12750
ABR	12	195		AGO	12	13964
ABR	13	221		AGO	1.3	14741
ABR	14	148		AGO	14	16424
ABR	15	326		AGO	15	13741
ABR	16	313		AGO	16	11934
ABR	17	261		AGO	17	10316
ABR	18	152		AGO	18	13389
ABR	19	289		AGO	19	13889
ABR	20	222		AGO	20	16769
ABR	21	430		AGO	21	16004
ABR	22	427		AGO.	22	13342
ABR	23	203		AGO	23	15485
ABR	24	198		AGO	24	13935
ABR	25	292		AGO	25	18967
ABR	26	157		AGO	26	20874
ABR	27	331		AGO	27	16252
ABR	28	246		AGO	28	14584
ABR	29	252		AGO	29	15716
ABR	30	451		AGO	30	18316
				AGO	31	22956

TABLA 4.15

EVAPORACION NETA DIARIA en mm (E N D) LAGUNA MAR MUERTO

MES	DIA	END		MES	DIA	END
ABR	1	8.09	1	AGO	1	1.72
ABR	2	8,02	l	AGO	2	-1.05
ABR	3	8,05		AGO	3	-0.53
ABR	4	7.85	[AGO	4	-2.14
ABR	5	8.66		AGO	5	1.91
ABR	6	8.30		AGO	6	0.44
ABR	. 7	8.20		AGO	7	2.22
ABR	8	7,73		AGO	θ	2.13
ABR	9	7.90		AGO	9	-1.19
ABR	10	6.66		AGO	10	2.42
ABR	11	7.75		AGO	11	2.20
ABR	12	7.99		AGO	12	-1.83
ABR	13	7.94		AGO	13	-2.34
ABR	14	8.30		AGO	14	-4.56
ABR	15	7.99		AGO	15	-0.65
ABR	16	7.25		AGO	16	1,45
ABR	17	7.56		AGO	17	3.78
ABR	18	7.79	46 S. 1. 14	AGO	18	-1.31
ABR	19	6.70		AGO	19	-2.01
ABR	20	7.29		AGO	20	-2.21
ABR	21	6.75		AGO	21	-3.94
ABR	22	6.59		AGO	22	0.67
ABR	23	7.26		AGO.	23	-4.05
ABR	24	7.69		AGO	24	-1.69
ABR	25	6.77		AGO	25	-8.23
ABR	26	7.86		AGO	26	-13.47
ABR	27	6.46		AGO	27	-4.46
ABR	28	7.82		AGO	28	-2.18
ABR	29	7.01		AGO	29	-3.20
ABR	30	6.15		AGO	30	-6.56
				AGO	31	-10.39

TABLA 4.16

SALINA CRUZ, OAXACA

MAREAS MEDIAS DIARIAS en metros sobre el nivel medio del mar

1. MAREA ALTA

2. MAREA BAJA

MES	DIA	1	2	MES	DIA	1	2
ABR	1	0.347	-0.358	AGO	1	0.289	-0.071
ABR	2	0.313	-0.354	AGO	2	0.279	-0.062
ABR	3	0.273	-0.339	AGO	3	0.256	-0.102
ABR	4	0.251	-0.297	AGO	4	0.285	-0.102
ABR	5	0.191	-0.279	AGO	5	0.323	-0.119
ABR	6	0.148	-0.273	AGO	6	0.360	-0.137
ABR	7	0.125	-0.270	AGO	7	0.389	-0.164
ABR	8	0.138	-0.270	AGO	8	0.423	-0.166
ABR	9	0.171	-0.251	AGO	9	0.436	-0.181
ABR	10	0.209	-0.253	AGO	10	0.439	-0.190
ABR	11	0.202	-0.255	AGO	11	0.425	-0.199
ABR	12	0.240	-0.228	AGO	12	0.401	-0.221
ABR	13	0.264	-0.215	AGO	13	0.362	-0.233
ABR	14	0.264	-0.210	AGO	14	0.351	-0.229
ABR	15	0.266	-0.199	AGO	15	0.356	-0.205
ABR	16	0.255	-0.211	AGO	16	0.328	-0.190
ABR	17	0.245	-0.213	AGO	17	0.308	-0.183
ABR	18	0,249	-0.208	AGO	18	0.314	-0.190
ABR	19	0.256	-0.201	AGO	19	0.332	-0.196
ABR	20	0.270	-0.170	AGO	20	0.356	-0.211
ABR	21	0.278	-0.165	AGO	21	0,354	-0.231
ABR	22	0.299	-0.166	AGO	22	0.354	-0.223
ABR	23	0.331	-0.173	AGO	23	0.354	-0.216
ABR	24	0.366	-0.206	AGO	24	0.349	-0.194
ABR	25	0.402	-0.247	AGO	25	0.347	-0.168
ABR	26	0.420	-0.300	AGO	26	0.332	-0.146
ABR	27	0.437	-0.297	AGO	27	0.316	-0.125
ABR	28	0.433	-0.288	AGO	28	0.276	-0.123
ABR	29	0.429	-0.280	AGO	29	0.250	-0,112
ABR	30	0.380	-0.310	AGO	30	0.245	-0,116
				AGO	31	0.225	-0.159

TABLA 4.17
RESULTADOS DE LAS SIMULACIONES
SISTEMA MAR MUERTO

MES	DIA	MALTA	MBAJA	E CPO1	E CPO2	E CPO3	E CPO4	Q MALC1	Q MBA C1	Q MAL C3	Q MBA C3	Q 1-2	Q 2-3	Q 3-4
ABR	1 1	0.347	-0.358	0.027	-0.065	-0.066	-0.068	8350.8	-9130.3	433.1	-341.9	14.37	10.20	40.04
ABR	2	0.313	-0.354	0.007	-0.066	-0.067	-0.069	8145.5	-8848.9	414.0	-339.5	12.86	9.24	33.91
ABR	3	0.273	-0.339	-0.008	-0.068	-0.069	-0.070	7799.2	-8470.5	391.1	-330.2	11.59	8.39	29.31
ABR	4	0.251	-0.297	-0.030	-0.072	-0.072	-0.073	7781.6	-7634.3	379.1	-303.0	9.73	7.42	22.36
ABR	5	0.191	-0.279	-0.058	-0.078	-0.079	-0.079	7307.7	-6951.6	343.4	-287.5	6.78	5.69	12.42
ABR	6	0.148	-0.273	-0.079	-0.086	-0.086	-0.086	6956.2	-6525.1	317.7	-278.6	4.09	3.58	6.15
ABR	7	0.125	-0.270	-0.091	-0.093	-0.093	-0.093	6784.3	-6264.3	305.5	-271.3	2.20	1.87	3.59
ABR	8	0.138	-0.270	-0.082	-0.099	-0.099	-0.099	6997.8	-6257.7	319.2	-266.3	4.13	2.89	9.22
ABR	9	0.171	-0.251	-0.060	-0.101	-0.101	-0.102	7180.3	-6310.4	344.5	~247.8	8.42	5.38	22.12
ABR	10	0.209	-0.253	-0.039	-0.100	-0.100	-0.102	7442.8	-6694.1	369.8	-248.9	10.75	6.74	30.51
ABR	11	0.202	-0.255	-0.016	-0.097	-0.098	-0.101	6991.3	-7085.3	364.5	-251.8	12.67	7.52	38.87
ABR	12	0.240	-0.228	0.012	-0.093	-0.094	-0.097	7162.6	-7104.2	386.1	-232.7	14.59	8.10	48.50
ABR	13	0.264	-0.215	0.033	-0.087	-0.C88	-0.093	7206.7	-7239.1	398.C	-225.7	15.81	8.72	54.84
ABR	14	0.264	-0.210	0.040	-0.083	-0.084	-0.088	7107.3	-7263.8	396.2	-224.5	16.04	9.22	55.98
ABR	15	0.266	-0.199	0.047	-0.077	-0.078	-0.083	7021.1	-7216.7	394.6	-219.4	16.23	9.30	57-42
ABR	16	0.255	-0.211	0.033	-0.073	-0.074	-0.078	6913.2	-7327.7	384.9	-235.2	15.56	9.95	53.13
ABR	17	0.245	-0.213	0.025	-0.070	-0.071	-0.074	6871.B	-7243.6	377.1	-239.6	14.82	9.36	48.62
ABR	18	0.249	-0.208	0.034	-0.067	-0.068	-0.071	6956.6	-7149.8	377.7	-238.4	14.49	8.65	47.19
ABR	19	0.256	-0.201	0.042	-0.062	-0.063	-0.067	6943.2	-7167.4	380.0	-235.6	14.84	8.91	49.05
ABR	20	0.270	-0.170	0.035	-0.059	-0.059	-0.063	7118.4	-6738.1	386.2	-211.6	14.76	9.12	49.17
ABR	21	0.278	-0.165	0.041	-0.054	-0.055	-0.058	7303.4	-6591.3	389.2	-210.3	14.21	8.64	47.54
ABR.	22	0.299	-0.166	0.049	-0.050	-0.051	-0.054	7509.7	-6729.4	399.2	-216.0	14.43	8.72	47.37
ABR	23	0.331	-0.173	0.057	-0.046	-0.047	-0.050	7850.3	-6978.6	415.5	-227.1	14.76	8.93	48.59
ABR	24	0.366	-0.206	0.053	-0.043	-0.045	-0.046	8269.0	-7539.1	434.0	-257.0	14.94	9.36	48.42
ABR	25	0.402	-0.247	0.049	-0.046	-0,040	-0.045	8797.9	-8038.7	452.8	-288.6	14.41	12.79	36.86
ABR	26	0.420	-0.300	-0.138	-0.064	-0.063	-0.062	11043.1	-5947.3	468.8	-313.2	13.67	8.67	41.40
ABR	27	0.437	-0,297	0.027	-0.054	-0.054	-0.057	9592.1	-8275.7	476.6	-313.0	12.92	4.54	45.93
ABR	28	0.433	-0.288	0.046	-0.052	-0.053	-0.055	9332.4	-8402.3	473.4	-309.0	14.17	8.88	43.24
	29	0.429	-0.280	0.088	-0.045	-0.046	0.050	8772.6	-8839.7	468.7	-307.9	16.84	9,51	54.24
_	30	0.380	-0,310	0.066	+0.041	-0.042	-0.045	8277.1	-9049.7	440.5	-328.8	15.75	16.91	46.59

TABLA 4.17
RESULTADOS DE LAS SIMULACIONES
SISTEMA MAR MUERTO

MES	DIA	MALTA	MBAJA	E CPO1	E CPO2	E CPO3	E CPO4	Q MAL C1	Q MBA C1	Q MAL C3	Q MBA C3	Q 1-2	Q 2-3	Q3-4
AGO	1	0.289	-0.071	0.101	0.207	0.207	0.210	6357.7	~6213.4	192.7	-353.0	-15.69	-5.43	-55.26
AGO	2	0.279	~0.062	0.103	0.207	0.205	0.209	6268.1	-5963.7	183.7	-345.6	-15.82	-6.26	-55.75
AGO	3	0.256	-0.102	0.075	0.200	0.200	0.205	6240.6	-6278.5	158.2	-366.3	-17.01	-3.46	-68.42
AGO	4	0.285	-0.102	0.086	0.201	0.202	0.205	6710.9	-6307.5	198.3	-365.5	-16.79	-5.80	-62.60
AGO	5	0.323	-0.119	0.094	0.198	0.198	0.201	7197.3	-6720.0	239.6	-375.1	-16.24	-6.93	-54.16
AGO	6	0.360	-0.137	0.106	0.198	0.199	0.200	7584.6	-7182.3	276.1	-383.6	-15.21	-6.67	-43.74
AGO	7	0.389	-0.164	0.131	0.201	0.201	0.202	7639.8	-7939.9	299.2	-398.7	-13.26	-6.12	-31.68
AGO	8	0.423	-0.166	0.150	0.204	0.204	0.205	7866.5	-8222.4	324.0	-401.2	-11.74	-5.64	-24.12
AGO	9	0.436	-0.181	0.158	0.210	0.211	0.211	7946.0	~8514.1	331.6	-410.5	~11.29	-5.07	~23.02
AGO	10	0.439	-0.190	0.151	0.213	0.213	0.214	7940.7	-8670.2	330.2	-417.8	-11.48	-4.83	~24.69
AGO	11	0.425	~0.199	0.141	0.214	0.214	0.215	7886.2	-8648.6	317.9	-423.4	-12.74	-5,47	-29.60
AGO	12	0.401	-0.221	0.124	0.218	0.218	0.220	7772.3	-8710.0	296.8	-435.2	-14.40	-5.67	-38.11
AGO	13	0.362	-0.233	0.101	0.220	0.220	0.223	7532.5	-8563.1	260.2	-442.3	-16.40	-5.81	-49.81
AGO	14	0.351	-0.229	0.091	0.225	0.225	0.228	7524.8	-8374.1	247.2	-442.0	-17.34	-5.73	-55.44
AGO	15	0.356	-0.205	0.067	0.221	0.221	0,225	7933.8	-7733.9	251.2	-431.4	-18.88	~6.86	-64.43
AGC	16	0.328	-0.190	0.054	0.213	0.213	0.218	7707.0	-7341.1	227.9	-421.6	-19.29	-7.46	-68.21
AGO	17	0.308	-0.183	0.048	0.201	0.202	0.206	7568.9	-7073.7	218.1	-412.0	-19.20	-8.03	-69.34
AGO	18	0.314	-0.190	0.050	0.200	0.199	0.203	7673.0	-7161.4	229.5	-412.7	-18.95	-8.10	-67.62
AGO.	119	0.332	-0.196	0.058	0.198	0.199	0.202	7851.4	-7336.2	250.3	-414.0	-18.43	-6.68	-62.94
AGO	20	0.356	-0.211	0.066	0.201	0.202	0.205	8088.4	-7656.0	271.9	~421.5	-18.01	-6.56	-58.39
AGO	21	0.354	-0.231	0.089	0.208	0.208	0.210	7740.7	-8241.8	265.2	-434.0	-16.92	-6.71	-50.92
AGO	22	0.354	-0.223	0.094	0.206	0.207	0.209	7662.4	-8211.7	262.9	-431.7	-16.74	-7.03	-50.52
AGO	23	0.354	-0.216	0.098	0.212	0,212	0.215	7581.8	-8195.8	262.9	-428.4	-16.35	-6.23	-48.09
AGO	24	0.349	0.194	0.105	0.214	0.214	0.217	7430.2	-7977.3	253.7	-420.8	-16.36	~6.69	-50.48
AGO	125	0.347	-0.168	0.114	0.226	0.226	0.229	7204.9	-7805.8	243.5	-413.0	-16.13	-4.63	-50.44
AGO	26	0.332	-0.146	0.120	0.243	0.243	0.247	6855.6	-7600.8	210.1	-411.7	-16.92	-3.72	-58.44
AGO	27	0.316	-0.125	0.114	0.246	0.246	0.251	6605.7	-7283.6	184.7	-404.0	-17.35	-4.73	-62.47
AGO	28	0.276	-0.123	0.097	0.241	0.241	0.247	6209.7	-6983.8	123.8	-402.7	-18.46	-4.41	-77.42
AGO	29	0.250	-0.112	0.086	0.235	0.235	0.243	5919.2	-6644.3	73.2	-394.1	-18.77	-2.82	-87.09
AGO	30	0.245	-0.116	0.064	0.233	0.233	0.242	6234.7	-6329.3	72.8	-393.3	-19.79	-2.24	-97.84
AGO	31	0.225	-0.159	0.036	0.228	0.228	0.244	6365.1	-6573.1	-43.7	-412.7	-21.04	3.38	-123.04

TABLA 5.1

TONALA

GASTOS MEDIOS MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
1961								2.72	10.85	4.06	6.41	2.15	5.24
1962	1.11	0.57	0.24	0.14	0.39	7,63	5.00	6.06	16.33	14.41	4.70	1.82	4.67
1963	1.23	0.62	0.42	0.12	0.32	1.80	4.68	2.48	50.49	13.84	8.57	4.73	7.44
1964	3.14	2.40	0.68	0.43	0.59	3.54	6.81	7.02	27.50	13.44	2.93	1.61	5.84
1965	0.82	0.40	0.12	0.14	0.95	3.01	2.36	4.79	9.53	13.17	4.73	2.51	3.54
1966	1.06	0.56	0.08	0.22	1.32	6.15	7.77	5.41	20.89	19.64	4.07	1.77	5.75
1967	0.94	0.81	0.28	0.25	0.28	4.71	2.84	2.75	24.29	18.87	4.39	3.23	5.30
1968	1.01	0.57	0.24	0.16	2.52	3.32	4.42	2.15	12.19	7.94	4.10	1.96	3.38
1969	0.88	0.25	0.11	0.02	0.04	1.64	5.82	24.48	32.36	18.11	7.11	2.35	7.76 6.53
1970	0.93	0.42	0.29	0.19	0.07	0.97	9.19	13.46	30.51		6.89	1.74	
1971	0.84	0.38	0.21	0.09	0.36	3.56	3.97	11.44	17.26	15.06	5.18	1.96	5.03
1972	0.87	0.48	0.28	0.32	0.77	8.24	3.16	2.91	3.10	1.80	1.40	0.53	1.99
1973	0.23	0.07			0.11	4.26	3.40	9.82	31.37	12.80	4.38	2.08	5.71
1974	1.22	0.73	0.51	0.32	0.41	4.75	5.03	3.93	13.47	6.45	2.39	1.25	3.37
1975	0.59	0.23	0.11	0.00	0.58	2.65	2.79	2.70	6.68	3.28	1.51	0.63	1.81
1976	0.26	0.12	0.01	0.15	0.14	1.52	2.07	0.78	1.28	1.89	0.51	0.10	0.74
1977	_				1.09	0.92	0.42	1.26	1.95	1.95	0.77	0.22	0.71
1978	0.02				0.51	2.73	3.64	4.80	9.76	6.43	2.53	1.15	2.63
1979	0.46	0.16	0.01	0.16	0.28	1.24	1.94	3.33	10.79	3.70	2.20	0.94	2.10
1980	0.45	0.11	0.00	0.02	0.67	1.26	2.28	6.02	16.35	9.80	2.90	1.23	3.43
1982	0.84	0.41	0.13	0.03	1.64	4.89	3.03	1.42	4.13	7.34	2.49	1.06	2.28
1983	0.47	0.28	0.08			0.94	1.02	2.33	8.79	2.59	1.24	0.46	1.52
1984	0.16	0.02			0.37	2.95	3.94	4.33	14.13	5.87	2.31	0.90	2.92
1985	0.43	0.16			0.36	3.79	3.80	7.65	8.07	5.70	4,62	1.57	3.01

TABLA 5.2

JESUS
GASTOS MEDIOS MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
1964							4.29	4.16	9.21	4.45	0.85	0.38	3.89
1965	0.11	0.04		0.01	0.28	1.53	1.10	1.86	4.19	5.73	0.99	0.41	1.35
1966	0.15	0.06			0.52	1.67	3.24	2.91	7.82	6.44	1.48	0.54	2.07
1967	0.27	0.13			0.02	1.06	0.81	2.15	5.44	4.40	0.70	0.34	1.26
1968	0.15	0.02			0.86	2.57	2.66	2.19	8.33	4.40	1.15	0.52	1.91
1969	0.29	0.20	0.03	0.01	0.03	1.87	3.65	13.49	11.34	6.44	1.58	0.61	3.29
1970	0.29	0.10	0.01		0.00	0.34	2.50	5.30	16.92	4.97	1.74	0.66	2.74
1971	0.33	0.13	0.01		0.29	1.93	1.75	6.86	11.65	10.14	2.49	0.89	3.04
1972	0.34	0.10	0.08	0.12	0.20	3.90	1.06	1.23	1.89	0.99	0.79	0.34	0.9
1973	0.12	0.01		- T-	0.13	1.62	1.79	6.54	16.99	7.08	2.75	0.69	3.14
1974	0.34	0.16	0.15	0.05	0.43	1.22	1.51	1.09	5.42	2.33	0.62	0.26	1.13
1975	0.11	0.03			0.12	0.48	1.15	1.96	5.02	1.95	0.87	0.31	1.00
1976	0.16	0.01		0.02	0.03	0.42	0.58	0.29	0.65	1.45	0.25	0.01	0.32
1977					0.55	0.37	0.23	0.60	1.35	1.44	0.63	0.28	0.45
1978	0.05				0.10	1.88	2.33	2.04	6.13	3.43	1.07	0.48	1.46
1979	0.20	0.10		0.04	0.05	0.39	0.87	1.98	6.65	1.36	0.53	0.19	1.03
1980	0.03				0.18	0.59	1.03	2,32	10.20	4.81	0.83	0.36	1.70
1981	0.12	0.01	0.00		0.54	3.57	5.12	7.10	10.21	9.31	1.86	0.91	3.3
1982	0.37	0.23	0.04	0.01	0.47	2.17	1.65	1.13	2.68	4.50	1.01	0.37	1.2
1983	0.13	0.12	0.14		0.03	0.96	1.03	1.06	3.76	1.24	0.47	0.20	0.76
1984	0.06				0.17	0.94	1.59	2.53	8,65	4.48	1.21	0.30	1.56
1985	0.15	0.08		0.09	0.35		2.12	4.70	6.14	3.39	5.06	0.98	2.3

TABLA 5.3

TONALA
ALTURA DE LLUVIA MENSUAL en mm

					T	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
AÑO/MES	ENE	FEB	MAR	ABR	MAY	3014	302					1	
									348.5	15.0	189.5	2.0	1520
1961	0.0	0.0	0.0	37.5	67.5	375.5	355.5	129.0	0.0	0.0	0.0	0.0	1188
1962	0.0	0.0	0.0	9.5	32.0	605.5	213.6	327.1		0.1	173.5	0.0	2191
	0.0	5.0	2.0	26.0	83.5	302.8	389.7	226.0	982.5	61.0	3.0	1.5	1646
1963	0.0	3.5	0.0	67.3	114.5	333.7	372.5	340.5	348.7		0.0	0.0	1599
1964		0.0	0.0	52.8	265.7	287.6	128.0	233.6	487.4	143.5	0.5	0.0	1597
1965	0.0	5.0	0.0	27.0	275.6	266.7	261.7	229.2	411.5	120.0		13.5	1699
1966	0.0		2.0	5.5	121.0	309.6	280.9	160.2	556.0	250.5	0.0	3.5	2132
1967	0.0	0.0		12.0	334.0	410.5	312.3	219.8	638.0	142.1	28.8	3.5	2132
1968	0.0	30.5	0.0		334.0	292.8		651.3	396.7	120.7	0.0		
1969	0.0	0.0	3.3	59.9	33.3	264.6	421.2	396.3	587.9	68.1	0.0	10.5	1782
1970	0.0	0.0	0.0	0.0			114.0	220.8	234.5	60.4	58.8	0.0	1433
1972	0.0	0.0	10.1	151.8	170.0	413.0	347.0	508.4	657.5	151.1	10.6	0.0	2207
1973	0.0	7.6	0.0	11.0	140-2	374.0	329.5	225.5	516.2	5.4	12.5	0.0	2063
1974	47.0	31.2	135.5	59.6	170.0	530.1		288.5	281.7	64.8	3.1	0.1	1145
1975	0.8	0.0	17.2	0.0	154.3	148.4	186.1		198.1	50.1	33.3	0.0	1209
1976	0.0	3.2	0.0	121.8	151.8	335.6	129.1	186.3		168.8	9.9	3.0	1171
	0.0	0.0	0.0	28.4	347.6	178.9	66.6	183.2	184.8	189.3	10.3	0.0	1921
1977	6.5	1.1	6.0	39.4	148.3	398.7	468.8	291.4	360.8		0.0	0.0	1500
1978		0.0	0.6	0.0	92.6	226.6	263.8	310.7	495.4	110.3	0.0	0.0	196
1979	0.0		0.0	24.4	274.4	122.9	559.1	296.0	658.9	14.9		0.0	2194
1980	12.3	0.2		30.4	239.2	580.7	358.9	547.1	320.5	113.6	0.1		1620
1981	0.0	0.0	3.0		422.5	319.6	160.5	98.1	418.8	106.0	19.1	0.0	
1982	0.0	58.5	1.3	16.0	19.4	234.9	242.9	296.3	0.0	208.7	0.0	0.0	1132
1983	0.0	37.3	92.3	0.0	19.4	234.9							

TABLA 5.4

HORCONES ALTURA DE LLUVIA MENSUAL en mm

			MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
AÑO/MES	ENE	FEB	HAR										
										47.0	29.9	14.2	
1964							222.7	292.4	558.9	340.2	0.2	0.0	2514
1965	22.4	0.0	8.1	39.1	477.7	552.5		408.3	534.1	291.5	0.0	0.0	2458
1966	0.0	0.0	0.0	161.1	329.7	415.8	317.4		488.5	212.6	0.3	1.8	2122
1967	0.0	25-1	17.7	25.3	211.6	522.8	359.2	257.4		296.8	1.8	59.7	2408
1968	0.0	0.2	0.0	6.1	368.0	455.1	356.4	245.1	618.9	230.0	0.7		
	0.0	0.0	0.0	18.4	172.5	416.6					0.0	10.5	227
1969		0.0	0.0	0.9	30.0	239.4	568.1	625.9	697.7	104.8		8.5	235
1970	0.0		90.6	191.8	199.6	632.5	173.5	335.9	455.6	197.9	72.7		248
1972	0.0	0.0		20.2	237.5	464.1	316.2	575.0	649.6	176.3	23.0	26.5	
1973	0.0	0.0	0.0		147.9	563.1	349.7	232.3	397.5	10.1	10.1	0.1	195
1974	49.0	32.0	87.8	71.0		295.0	357.0	294.3	445.0	165.6	57.0	0.1	186
1975	12.0	0.0	26.1	0.0	216.0		165.0	173.5	213.1	50.0	57.0	0.0	120
1976	0.0	0.0	0.1	0.0	141.7	403.3			568.1	241.8	45.2	20.3	204
1977	0.0	0.0	0.0	3.4	216.6	218.3	254.7	479.4		137.1	35.1	15.8	282
	0.0	0.0	0.0	60.0	269.5	408.4	605.1	574.5	714.1	137.9	0.0	0.0	239
1978	0.0	0.0	4.0	0.0	242.0	335.5	473.7	673.1	524.8		0.0	0.0	234
1979	33.4	0.0	0.0	8.5	386.4	356.5	434.5	539.5	484.4	98.5	0.0		

TABLA 5.5

HORCONES ALTURA DE EVAPORACION MENSUAL en mm

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
1964	1									131.7	126.5	110.9	
1965	147.9	165.6	197.4	128.5	145.7	91.6	128.1	126.1	120.5	121.3	126.8	133.0	1633
1966		167.6	235.7	174.2	139.5	114.0	125.5	124.0	104.1	133.5	135.3	134.3	
1967	160.2	162.9	203.9	188.5	176.8	124.0	141.6	0.0	98.0	120.9	101.0	84.9	1563
1968	119.9	161.2	202.9	176.0	153.9	104.0	101.9	125.9	153.0	110.4	106.2	117.9	1633
1969	125.9	134.6	180.9	188.5	171.1	117.7					136.6	134.1	
1970	142.9	178.7	194.9	173.9	201.0	145.6	115.6	176.6	0.0	105.4	117.2	121.5	1673
1972	135.1	173.7	173.3	165.5	133.3	115.5	134.4	131.5	128.6	117.2	98.7	130.8	1635
1973	152.6	175.7	157.3	194.8	178.6	131.5	159.7	142.2	129.4	110.2	121.7	141.3	1795
1974	139.2	154.4	160.1	169.9	166.5	124.9	128.3	122.9	123.4	127.1	131.3	156.6	1705
1975	166.4	151.3	172.4	185.1	151.7	154.3	132.5	130.6	113.2	116.2	122.6	133.6	1730
1976	181.6	157.5	180.6	100.3	157.6	121.0	141.2	135.9	108.4	138.3	136.3	172.5	1731
1977	168.7	176.7	211.2	193.0	153.4	143.2	132.3	141.9	139.9	157.8	117.1	123.1	1858
1978	114.7	118.1	194.5	194.0	152.6	136.7	153.5	134.5	102.6	112.7	115.8	160.2	1690
1979	147.0	112.2	152.2		166.3	130.8	136.2	115.3	110.9	136.7	108.1	152.2	
1980	126.2	136.4	142.9	147.6	138.0	100.5	108.2	109.0	92.4	71.5	82.4	73.1	1328

TABLA 5.6

LA TIGRERA ALTURA DE EVAPORACION MENSUAL en mm

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
1963	153.3	156.8			120.9	165.7	183.8	137.4				260.2	
1964	166.0	130.8			120.3	55.4	129.6	121.2	140.8	153.6	160.2	169.1	
1965	139.3	158.9	203.2	170.1	130.3	114.7	151,1	127.2	126.7	115.3	156.5	152.7	1746
1966	173.2	202.5	244.0	173.3	133.6	139.7	149.2	145.7	151.8	183.0	196.7	221.2	2114
1967	205.2	175.5	177.2	148.4	142.5	148.4	131.0	141.6	132.2	163.6	163.2	127.7	1857
1968	148.9	147.9	205.0	198.5	130.9	124.4	125.8	136.3	135.1	163.1	129.2	120.5	1766
1969	126.4		161.6	156.9	135.9	138.8	200.4	207.9		120.7	135.7	109.9	
1970			91.8	120.3	128.5						112.4	117.9	
1972		165.1	154.8	170.9			130.9	139.9	125.0	164.7	119.7	139.7	
1973		109.3	168.6	157.4	161.7	98.0	111.5	112.5	102.0	177.2			
1974		135.8	133.4	128.3	119.8	108.1	115.1	122.4				92.1	
1975		116.8	137.9	123.3	148.4								

TABLA 5.7

CALCULO DE COEFICIENTES DE ESCURRIMIENTO LAGUNA LA JOYA SAN BUENAVENTURA ESTACION TONALA AÑO 1983

AREA =

MES	DIA	Qesc	LL1	Vesc	. VII	Qdir	Vdir	COEF	COEF
		(m³/s)	(mm)	(m³)	(m³)	(m³/s)	(m³)	E&C	ESC
		Į.						DIARIO	MENSUAL
ABR	1	0.0	0	0	0	0.0	0		
ABR	2	0.0	0	0	0	0.0	0		
ABR	3	0.0	0	0	0	0.0	. 0		
ABR	4	0.0	0	0	0	0.0	0		
ABR	5	0.0	0	0	0	0.0	. 0		
ABR	6	0.0	0	0	0	0.0	0		<u> </u>
ABR	7	0.0	0	0	0	0.0	0		
ABR	8	0.0	0	0	0	0.0	0		i
ABR	9	0.0	0	0	0	0.0	0		
ABR	10	0.0	0	0	0	0.0	0		
ABR	11	0.0	0	0	0	0.0	0		
ABR	12	0.0	0	0	0	0.0	0		
ABR	11	0.0	0	0	0	0.0	0		
ABR	14	0.0	0	0	0	0.0	0		
ABR	15	0.0	0	0	0	8.0	0		
ABR	16	0.0	0	0	0	0.0	0		<u> </u>
ABR	17	0.0	0	0	0	0.0	0		
ABR	18	0.0	0	0	0	0.0	0	Last State of	
ABR	19	0.0	0	0	0	0.0	0		
ABR	20	0.0	0	0	0	0.0	0		
ABR	21	0.0	0	0	0	0.0	0		
ABR	22	0.0	0	0	0	0.0	0	7	
ABR	23	0.0	0	0	0	0.0	0		
ABR	24	0.0	0	0.	0	0.0	0		
ABR	25	0.0	0	0	0	0.0	0		
ABR	26	0.0	0	0	0	0.0	0		
ABR	27	0.0	0	0	0	0.0	0	7	
ABR	28	0.0	- 6	0	- 0	0.0	0		
ABR	29	0.0	- i		· o	0.0	0		O BASE 04
ABR	30	0.0		0		0.0	0		0.0

CALCULO DE COEFICIENTES DE ESCURRIMIENTO LAGUNA LA JOYA SAN BUENAVENTURA ESTACION TONALA AÑO 1983

AREA =

MES	DIA	Qosc	LL1	Vesc	VII	Qdir	Vdir	COEF	COEF
	1 1	(m³/s)	(mm)	(m³)	(m³)	(m³/s)	(m³)	ESC	ESC
			,,			1		DIARIO	MENSUAL
AGO	┝┰┼	0.5	. 0	43200	0	0.0	0		
AGO	2	0.6	21.7	51840	3623900	0.0	0		
AGO	3	1.1	16.1	95040	2688700	0.0	0	0.015	
AGO	4	3.4	29.2	· 293768	4876400	1.1	92810	0.060	
AGO	5	6.5	0	561608	0	4.2	368650	0.089	
AGO	6	3.2	19.4	276480	3239880	8.9	75538	0.860	
AGO	7	3.7	0	319680	0	1.4	118730	0.837	
AGO	8	2.3	16	198720	2672000	0.0	0		
AGO	9	2.1	0.4	181440	66800	8.0	8		
NGO	10	1.7	2.6	146880	434200	0.0	0		
AGO	11	2.1	4.5	181440	751580	0.0	0	0.005	
AGO	12	2.4	0	207368	. 0	0.1	6418	0.144	
AGO	13	3.5	20.6	382400	3440200	1.2	181450	0.872	
AGO	14	4.8	0	345600	. 0	1.7	144658	0.042	
AGO	15	2.2	0	190880	. 0	8.0	8	Tarina sa katal	
ODA	16	1.5	0	129600	0	8.0	0		
AGO	17	1.1	0.6	95040	108200	0.0	0	0.323	1
AGO	18	2.7	16.9	233288	2822308	8.4	32338	8,811	
AGO	19	1.6	3.7	138240	617908	0.0	0		
AGO	20	2.0	5.7	172800	951900	0.8	0	0.109	1
AGO	21	4.3	0.5	371528	83508	2.0	178578	0.196	1
AGO	22	2.7	17.4	233280	2905808	8.4	32330	0.011	
AGO	23	2.0	0	172880	0	0.8	0	0,082	
AGO	24	2.4	30.1	207360	5026780	0.1	6410	0.801	
AGO	25	1.7	0	146880	0	0.8	8	3 a 3 a 3 a 3 a 3	
AGO	26	1.2	0	103680	0	0.0	8		1
AGO	127	1.1	11.6	95040	1937288	8.0	0		
AGO	28	1.6	13	138240	2171000	0.0	8		1
AGO	29	2.3	21	198720	3507080	0.0			
AĞO	30	2.2	25.7	190080	4291988	8.8	0	0.001	Q BASE 08
AGO	111	2.4	19.6	207360	3273200	0.1	6410		2.

TABLA 5.7

CALCULO DE COEFICIENTES DE ESCURRIMIENTO LAGUNA LA JOYA SAN BUENAVENTURA ESTACION TONALA AÑO 1983

AREA =

167 Km

MES	DIA	Qeac	LL1	Veac	VII	Odk	Vdir	COEF	COEF
		(m³/s)	(mm)	(m³)	(m³)	(m³/e)	jm³)	ESC	ESC
		,,		,	, ,	,		DIARIO	MENSUAL
ABR	1	0.0	0	0	0	0.0	0		**************************************
ABR	2	9.0	9	0	0	0.0	0		
ABR	1	0.0	0	0	0	0.0	0		
ABR	1	0.0	0	0	0	0.0	0		
ABA	6	0.0			0	8.8	9		
ABR	1	0.0	- 0	0	9	0.0	9		
ABR	8	B.0	0	0	. 0	0.0	0		
ABR	9	0.0	0	9	0	0.0	<u>B</u>		
ABR	10	9.0	0	0	0	0.0	O B	[
ABR	12	9.0				0.0			
ABR	13	0.0	0	0	0	9.0	0		
ABR	14	0.0	0	0	q	9.0	9		
ABR	15	0.0	0	0	9	0.0	0		
ABR	16	0.0		9	0	0.0	0		
ABR ABR	17	0.0	0	9	0	0.0	0		
ABR	19	9.0				8.0	8		
ABR	20	0.0	9	0	0	8.0	9		
ABR	21	0.0	8	0	0	0.0	0		
ABR	22	0.0	9	9	<u>B</u>	0.0	0		
ABR ABR	23	0.0	9	0	0	0.0	- 8		
ABR	25	0.0			0	0.0	0		
ABR	26	0.0	0	0	0	0.0	0		
ABR	27	0.0	0	0	9	0.0	0		
ABR	20	8.0	0	0	0	0.0	9		
ABR ABR	29 30	0.0	0	0	0	0.0	8 0		Q BASE 04
AGO	1	0.5		43280		0.0	- 0		
MOO	1	0.6	21.7	51840	3623980	0.8	0		
MOO.	-	1.1	16.1	95040	2688788	8.8	8	0.015	
AGO	-	3.4	29.2	393760	4876408	1.1	92810	0.060	
MOO	5	6.5	8	561600 276480	0	0.9	368650 75538	0.069	
AGO	-	3.7	19.4	319600	3239808	1.4	118738	0.000	
AGG	-	2.3	16	198728	2672880	0.8	0		
AGO	9	2.1	0.4	181440	66088	8.8	0		
AGG	18	1.7	2.6	146880	434288	0.0	8		
AGO	11	2.1	4.5	101440	751588	0.0		0.085	
AGO AGO	12	3.5	28.6	382400	3440280	1,2	181450	0.144	
AGO	14	4.0		345600	0	1.7	144658	0.042	
AGO	15	2.2	8	190088	Ö	0.0	0		
AGO	16	1.5	8	129680	8	0.0	0		
MOO	17	1.1	0.6	95040	180200	8.0	8	G.323	
AGO AGO	18	2.7	16.9	233280 138240	2022388 617900	0.4	32330	0.011	
100	20	2.0	5.7	172000	951988	0.0	0	0,109	ļ
AGO	21	4.3	0.5	371520	83500	2.0	170578	0.196	
AGO	22	2.7	17.4	233208	2905000	8.4	32338	8,811	<u> </u>
AGO	2)	2.0	0	172800	0	0.0	0	0.002	
AGO AGO	24	2.4	30.1	207360	5026700	0.1	6410	0,001	
AGO AGO	25	1.7	0	146880	0	0.8	0 G		
AGO	27	1.1	11.6	95040	1937200	0.0			
AGO	28	1.6	11	138240	2171000	0.0		· · · · · · · · · · · · · · · · · · ·	
AGO	29	2.3	21	198720	3507800	0.0	0		
	30	2.2	25.7	190080	4291900	0.0	0	0,801	Q BASE 08
AGO AGO	33	2.4	19.6	207360	3273200	0.1	6410		2.1

CALCULO DE COEFICIENTES DE ESCURRIMIENTO LAGUNA LA JOYA SAN BUENAVENTURA ESTACION

ESTACION JESUS AÑO 1983

AREA =

		Qesc (m³/s)	LL1 (mm)	Vesc (m³)	VII (m³)	Qdir (m³/s)	Vdir (m³)	COEF ESC DIARIO	COEF ESC MENSUAL
ABR	1	0.0	0	0	0	0.0	0		
ABR	2	0.0	0	0	Ö	0.0	0		
ABR	3	0.0	0	0	0	0.0	0		
ABR	4	0.0	0	, 0	0	0.0	0		
ABR	5	0.0	0	0	0	0,0	0		
ABR	6	0.0	0	0	0	0.0	0		·
ABR	7	0.0	0	0	0	0.0	0		
ABR	8	0.0	0	0	0	0.0	0		
ABR	9	0.0	0	0	. 0	0.0	. 0		
ABR	10	0.0	0	0	0	0.0	0		1
ABR	11	0.0	0	0	Ö	0.0	0		·
ABR	12	0.0	0	0	0	0.0	0		
ABR	13	0.0	0	0	0	0.0	Ö		1
ABR	14	0.0	0	0	0	0.0	0		
ABR	15	0.0	0	0	0	0.0	Ö		1
ABR	16	0.0	Ö	0	0	0.0	0		
ABR	17	0.0	0	0	0	0.0	O		
ABR	18	0.0	0	0	0	0.0	0		1
ABR	19	0.0	0	0	. 0	0.0	0.		-
ABR	20	0.0	0	0	0	0.0	0		
ABR	21	0.0	0	0	0	0.0	0		
ABR	22	0.0	0	0	0	0.0	0		1
ABR	23	0.0	0	0	0	0.0	0		1
ABR	24	0.0	0	0	0	0.0	0		
ABR	25	0.0	0	0	0	0.0	0		1
ABR	26	0.0	0	0	0	0.0	0		1
ABR	27	0.0	0	0	0	0.0	70		
ABR	26	0.0	0	0	0	0.0	0		
ABR	29	0.0	0	0	0	0.0	0		Q BASE 04
ABR	30	0.0	0	0		0.0	0		0.0

CALCULO DE COEFICIENTES DE ESCURRIMIENTO LAGUNA LA JOYA SAN BUENAVENTURA ESTACION JESUS AÑO 1983

AREA =

		Qesc (m³/s)	LL1 (mm)	Vesc (m³)	VII (m³)	Qdir (m³/s)	Vdlr (m³)	COEF ESC	COEF ESC
j	[i		DIARIO	MENSUAL
AGO	1	0.5	0	43200	0	0.0	0		
AGO	2	0.5	35	43200	2135000	0.0	0		1
AGO	3	0.9	65.3	77760	3983300	0.0	0	0.034	1
AGO	1	3.5	41.2	302400	2513200	2.4	210705	0.070	
AGO	5	3.9	0	336960	0	2.8	245265	0.109	\
AGO	6	1.4	0	120960	0	0.3	29265		7
AGO	7	1.3	0	112320	0	0.2	20625		
AGO	В	1,2	0	103680	0	0.1	11985		
AGO	9	1.2	0	103680	0	0.1	11985		
AOQ	10	1.0	2.6	86400	158600	0.0	0		
ODA	11	0.9	8.1	77760	494100	0.0	0		
AGO	12	1,0	8	86480	8	0.0	0		}
AG0	13	0.9	14.6	77760	890608	0.0	0		3
AGO	14	0.9	. 0	77760	8	8.8	0)		
AGO	15	0.8	0	69120	0	0.0	0	2 1	
AGO	16	0.7	0	60480	0	0.0	0		1
AGO	17	0.6	1.5	51840	91500	0.0	0		
AGO	18	0.6	8.1	51840	494100	0.0	0		
AGO	19	0.6	5.9	51840	359900	0.0	0		
AGO	20	0.8	3.8	69120	231800	0,0	0	0,020	
AGO	21	1.2	26.2	103680	1598200	0.1	11905	0.007	1
AGO	22	1.0	7.1	86400	433100	0.0	0		
AGO	23	0.7	. 0	60480	8	0.8	0	0.888	
AGO	24	1.5	73.3	129600	4471380	0.4	37985	0.008	
AGO	25	1.0	8	86400	8	0.0	0	~	
AGO	26	0.8	8	69120	8	0.0	0	· · · · · · · · · · · · · · · · · · ·]
AGO	27	0,7	20.6	68480	1256680	0.0	0		
AGO	28	8.7	2.5	60480	152588	0.0	0		
AGO	29	8.7	4,1	60480	250100	0.8	0		0.048
AGO	30	8.6	0.4	51840	24400	0.0	8	*********	Q BASE 88
AGO	31	0.8	5	69120	305000	0.0	0		1.1

CALCULO DE COEFICIENTES DE ESCURRIMIENTO LAGUNA LA JOYA SAN BUENAVENTURA ESTACION JESUS AÑO 1983

AREA =

		Qesc (m³/s)	LL.1 (mm)	Vesc (m³)	VII (m²)	Qdir (m³/s)	Vdir (m³)	COEF ESC DIARIO	COEF ESC MENSUAL
ABR		0.0				0.0			
ABR	- 2	0.0	0			0.0	0		
ADR.		0.0	0	0	0	0.0	0		
ABR	4	0.0	0	0	0	0.0	0		
UR.	5	0.0	0	0	0	0.0	0		
ABR	6	0.0	0	0	0	0.0	0		
ABR	7	0.0	0	0	- 0	0.0			
	-	0.0	0			0.0			
UBR	10	0.0				0.0	0		
WR.	11	0.0				0.0			
ABR	12	0.0	0	0		0.0	0		
ABR	13	0.0	0	Ö	0	0.0	0		
ABR	14	0.0	0	0	0	0.0	0		
ABR	15	0.0	0	0	0	0.0	0		
ABR	16	0.0	0	0	0	0.0	0		
ABR	17	0.0	. 0	0	0	0.8			
ADR	18	0.0	0	0	8	0.0	8		ļ
ABR	19	0.0	0			0.0	8		
MR	20	0.8	0	0		0.0			
ABR	21	0.0				0.0			
ABR	22	0.0	 	- 0		0.8			
	24	0.0				0.0	-	· · · · · · · · · · · · · · · · · · ·	
ABR	25	0.0				0.0	8		
AR	26	0.0	0	0	0	0.0	8		i
ADR	27	0.8	-	0	- 0	0.0	٥		
ABR	28	0.0	0	0	0	0.0	0		
ABR	29	0.0	0	0	0	0.0	0		Q BASE 04
ASR	30	0.0	0	8	0	0.8	0		0.0
AGO_	1	0.5	0	43200	0	0.0	0		<u> </u>
AGO	٦	0.5	35	43100	2135000	0.0	0		
00	-	0.9	65.3	77760	3983300	0.0	310000	0.014	
AGO	•	3.5	41,2	302400	2513200	2,4	210705 245265	0.109	
AGO AGO	3	3.9	0	136960 120968	- 0	8,3	29265	V. 143	
AGO	-	1.4		112330		0.2	20625		
AGO	-	1.3		103680		8,1	11985		·
NGO	-	1.2		183680	- 0	0,1	11985		1
AGO	10	1.0	2.6	86400	158608	0.0	0		1
AGO	11	0.9	8.1	77760	494100	0.0	8		1
AGO	12	1.0	0	86400	0	0.0	0		
AGO	2	0.9	14.6	77760	890600	8.8	٥		
AGO .	14	0.9	0	77760	0	0.0	0		ļ
AGO	15	0.6	. 0	69128	0	0.0	0		ļ
AGO	16	6.7		60480	0	0.0	- 0		 -
100	17	0.6	1.5	51840	91500	8.0			
AGO AGO	19	0.6	5.9	51840 51848	494108 359900	0.0		ļ	
AGO	20	8.8	3.7	69120	231800	0.0		0.020	
AGO	21	1.2	26.2	103600	1594200	0.1	11985	0.807	
AGO	22	1,0	7.1	96480	433100	0.0			-
AGO	23	0.7		60480	.0	0.0	0	0.888	1
AGO	24	1.5	73.3	129600	4471300	0.4	37905	0.000	1
AGO	25	1.0	0	86408	8	0.0	. 0		
	26	0.8	0	69120	0	0.0	0		
					100000		0		7
AGO	27	0.7	20.6	60480	1256600	0.0	<u> </u>		
AGO AGO		0.7	20.6	60480	152500	0.0	0		
AGO AGO AGO	27 20 29	0.7 0.7	2.5 4.1	60480 60460	152500 250100	0.0 8.0	0		
AGO AGO AGO AGO	27	0.7	2.5	60480	152500	0.0	0		0 BV8R 04

TABLA 5.9

TONALA
COEFICIENTES DE ESCURRIMIENTO MENSUALES

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
1961							·	0.185	0.156	0.207	0.135	0.004
1962				0.001	0.312	0.129	0.211	0.178				
1963		0.109		0.001	0.069	0.030	0.065	0.083			0.173	
1964		0.058		0.013	0.046	0.341	0.071	0.155	0.078			
1965				0.037	0.065	0.157	0.174	0.192	0.247	0.218		
1966		0.004		0.103	0.037	0.380	0.215	0.109	0.222	0.359		
1967			0.112	0.049	0.020	0.168	0.043	0.089	0.315	0.273		0.023
1968	2.2	0.008		0.012	0.113	0.086	0.125	0.022	0.192	0.224	0.052	
1969			0.043	0.005		0.091		0.180	0.207	0.266		
1970					0.022	0.093	0.167	0.085	0.239	0.208		0.024
1972				0.172	0.143	0.198	0.083	0.099	0.014	0.348	0.032	
1973		0.004			0.249	0.071	0.058	0.096	0.419	0.238		
1974	0.010	0.027	0.021	0.335	0.079	0.134	0.065	0.106	0.274		0.130	
1975			0.086		0.081	0.621	0.168	0.024	0.076	0.206		
1976				0.037	0.203	0.040	0.118	0.153	0.036	0.212	0.026	
1977				46.00	0.098	0.070	0.035	0.030	0.069	0.113	0.124	0.048
1978	0.037	:			0.072	0.027	0.032	0.119	0.117	0.098	0.174	
1979			7.7		0.118	0.052	0.105	0.190	0.044	0.107	0.085	
1980	0.003			0.016	0.050	0.072	0.073	0.113	0.326			
1982		0.001	0.027	0.083	0.048	0.129	0.072	0.049	0.138	0.398	0.050	
1983		0.014	0.002			0.108	0.079	0.065	0.206	0.052		
		1 1										
PROM.	0.017	0.028	0.049	0.066	0.101	0.150	0.103	0.111	0.178	0.220	0.098	0.025

TABLA 5.10

JESUS COEFICIENTES DE ESCURRIMIENTO MENSUALES

					2007	JUN	JUL	AGO	SEP	OCT	NOV	DIC
NO/MES	ENE	FEB	MAR	ABR	MAY	JUN						
1										0.244		0.031
1964								0.224	0.213	0.145		
1965	0.274			0.007	0.044	0.202	0.116	0.127	0.238	0.273		
1966					0.126	0.081	0.201	0.206	0.373	0.379	0.131	0.157
1967					0.010	0.037	0.111	0.082	0.230	0.309		0.123
1968					0.145	0.202	0.141	0.082		0.167		
1969						0.108		0.210	0.210	0.154	0.082	
1970					0.006	0.072	0.251	0.162	0.201	0.120	0.079	0.034
1972		0.051	0.020	0.055	0.028	0.156	0.113	0.190	0.511	0.418	0.031	0.04
1972					0.096	0.136	0.113	0.153	0.319	0.021	0.035	
1974	0.013	0.068	0.049	0.177	0.010	0.066		0.074	0.136	0.136	0.125	0.06
1975	- 0.025				0.024	0.053	0.044	0.071	0.045	0.251	0.065	
1976				0.007	0.046	0.055	0.172	0.101	0.231	0.155	0.057	0.19
1977					0.114	0.038		0.115	0.442	0.362	0.145	0.51
1978					0.071	0.057	0.293	0.113	0.237	0.103	0.476	0.01
1979					0.185	0.037		0.063	0.335	0.216		Γ
	0.008				0.021	0.050	0.097	0.311	0.119	0.282	0.254	
1980 1981	0.000				0.056	0.152	0.176	0.095	0.272	0.252	0.051	
1981		0.049		0.037	0.047	0.131	0.332	0.048	 	0.040		0.0
1982	 	0.034	0.161		0.259	0.175	0.184	0.048	 	—		
1983	-			4.5	L	1	0.146	0.136	0.257	0.212	0.128	0.1
PROM.	0.098	0.051	0.077	0.057	0.076	0.100	0.146	1 0.150		1		

TABLA 5.11

TONALA
GASTOS BASE MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
1961								2.72	10.85	4.06	6.55	2.15
1962	1.11	0.57	0.24	0.14	0.39	7.63	5.00	6.06	16.33	14.41	4.60	1.82
1963	1.23	0.62	0.42	0.12	0.32	1.80	4.68	2.48	50.49	13.84	8.62	4.73
1964			0.68	0.43	0.59	3.54	6.81	7.02	27.50	13.44	2.90	1.61
1965	0.82	0.40	0.12	0.14	0.95	3.01	2.36	4.79	9.53	13.17	4.67	2.51
1966	1.06	0.56	0.08	0.22	1.32	6.15	7.77	5.41	20.89	19.64	3.98	1.77
1967	0.94	0.81	0.28	0.25	0.28	4.71	2.84	2.75	24.29	18.87	4.31	3.23
1968	1.01	0.57	0.24	0.16	2.52	3.32	4.42	2.15	12.19	7.94	4.10	1.96
1969	0.88	0.25	0.11	0.02	0.04	1.64	5.82	24.48	32.36	18.11	6.98	2.35
1970	0.93	0.42	0.29	0.19	0.07	0.97	9.19	13.46	30.51	13.73	6.74	1.74
1972	0.87	0.48	0.28	0.32	0.77	8.24	3.16	2.91	3.10	1.80	1.36	0.53
1973	0.23	0.07			0.11	4.26	3.40	9.82	31.37	12.80	4.29	2.08
1974	1.22	0.73	0.51	0.32	0.41	4.75	5.03	3.93	13.47	6.45	2.37	1.25
1975	0.59	0.23	0.11	0.00	0.58	2.65	2.79	2.70	6.68	3.28	1.46	0.63
1976	0.26	0.12	0.01	0.15	0.14	1.52	2.07	0.78	1.28	1.89	0.50	0.10
1977					1.09	0.92	0.42	1.26	1.95	1.95	0.72	0.22
1978	0.02				0.51	2.73	3.64	4.80	9.76	6.43	2.50	1.15
1979	0.46	0.16	0.01	0.16	0.28	1.24	1.94	3.33	10.79	3.70	2.13	0.94
1980	0.45	0.11	0.00	0.02	0.67	1.26	2.28	6.02	16.35	9.80	2.87	1.23
1982	0.84	0.41	0.13	0.03	1.64	4.89	3.03	1.42	4.13	7.34	2.48	1.06
1983	0.47	0.28	0.08			0.94	1.02	2.33	8.79	2.59	1.22	0.46
PROM.	0.74	0.40	0.21	0.17	0.67	3.31	3.88	5.27	16.32	9.30	3.59	1.60

TABLA 5.12

JESUS
GASTOS BASE MENSUALES en m³/s

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC
										4.45	0.85	0.38
1964				0.01	0.28	1.53	1.10	1.86	4.19	5.73	0.99	0.41
1965	0.11	0.04		0.01	0.52	1.67	3.24	2.91	7.82	6.44	1.48	0.54
1966	0.15	0.06				1.06	0.81	2.15	5.44	4.40	0.70	0.34
1967	0.27	0.13			0.02			2.19	8.33	4.40	1.15	0.52
1968	0.15	0.02			0.86	2.57	2.66		11.34	6.44	1.58	0.61
1969	0.29	0.20	0.03	0.01	0.03	1.87	3.65	13.49		4.97	1.74	0.66
1970	0.29	0.10	0.01		0.00	0.34	2.50	5.30	16.92	0.99	0.79	0.34
1972	0.34	0.10	0.08	0.12	0.20	3.90	1.06	1.23	1.89		2.75	0.69
1973	0.12	0.01			0.13	1.62	1.79	6.54	16.99	7.08		0.26
1974	0.34	0.16	0.15	0.05	0.43	1.22	1.51	1.09	5.42	2.33	0.62	
1975	0.11	0.03			0.12	0.48	1.15	1.96	5.02	1.95	0.87	0.31
1976	0.16	0.01		0.02	0.03	0.42	0.58	0.29	0.65	1.45	0.25	0.01
	0.10	0.00			0.55	0.37	0.23	0.60	1.35	1.44	0.63	0.28
1977					0.10	1.88	2.33	2.04	6.13	3.43	1.07	0.48
1978	0.05	0.00		0.04	0.05	0.39	0.87	1.98	6.65	1.36	0.53	0.19
1979	0.20	0.10		0.04		0.59	1.03	2.32	10.20	4.81	0.83	0.36
1980	0.03	0.00			0.18		6.12	7.10	10.21	9.31	1.86	0.91
1981	0.12	0.01	0.00		0.54	3.57			2.68	4.50	1.01	0.37
1982	0.37	0.23	0.04	0.01	0.47	2.17	1.65	1.13	3.76	1.24	0.47	0.20
1983	0.13	0.12	0.14		0.03	0.96	1.03	1.06	3.76	1.24	0.47	3.20
				7 - FF V							1 0=	- 2 42
PROM.	0.19	0.07	0.06	0.04	0.25	1.48	1.85	3.07	6.95	4.04	1.06	0.41

TABLA 5.13

VOLUMENES DE ESCURRIMIENTO DIARIO

CUENCA LA JOYA BUENAVISTA AREA = 967.0 Km²

AREA INF= 267.04 402.67 165.67 111.62 (Km²) (Km²) (Km²)

		HORCONES	JESUS	TIGRERA	TONALA	HORCONES	JESUS	TIGRERA	TONALA	VOLUMEN	VOLUMEN	QB
	_	(ALTURA DI	LLUVIA DIAI	RIA)		(AOF NIES	VES FOR EST	(CION)		LTONDO.	ESCURRIDO	CE
MES	DIA	(mm)	(mm)	(mm)	(mm)	(Volumen	es en miles de	metros cubicos)			MENSUAL
ABR	1	0.0	0.9	8.8	8.3		360	- 0	36	396	29	
ABR	1	0.8	2.6	0.8	0.8	208	1066		2	1268	91	
ABR	3	8,2	8.2	8.8	2.0	55	83	0	225	363	27	
ADR		8,0	0.8	8.0	1.1	7	332	0	119	457	33	
ABR	5	8.0	8.8	0.0	0.8	0	В	В	92	92	7	
ABR	6	1.2	5.0	3.2	1.4	322	2811	596	151	3080	219	
ABR	7	8.6	1.8	8.0	8.1	165	722	0	15	903	65	
ABR	В	2.2	0.5	0.0	1.5	503	216	0	170	968	78	
ABR	9	2.5	0.2	8.0	1.4	675	62	٥	157	894	64	
ABR	10	1.8	4.1	1.7	8.4	471	1663	389	42	2485	177	
ABR	11	0.1	0.8	0.0	0.4	14	303	0	40	358	26	
ABR	12	0.0	0.0	0.0	0.6	0	8	, 0	70	70	6	
ABR	13	8.1	0.0	0.0	8.0	39	8	6	0	39	4	7.7
ABR	14	1.4	8.5	0.0	0.8	369	211	0	0	580	42	
ABR	15	0.7	2.6	0.8	8.0	188	1064	8	2	1254	90	
ABR	16	1.5	8.6	0.0	8.0	397	232	0	8	630	45	
ABR	17	0.2	1.5	2.5	0.0	57	602	464	8	1122	80	
ABR	18	1.6	1.5	8.8	0.9	438	592	0	97	1125	81	
ABR	19	1.5	1.4	8.0	2.8	399	566	. 0	310	1275	91	
ABR	20	0.1	0.7	8.8	0.1	16	263	. 0	14	292	22	
ABR	21	0.4	3.1	0.8	3.6	182	1253	8	405	1760	126	
ABR	55	5.8	3.0	9.6	2.4	1535	1196	1779	263	4774	340	5
ABR	23	0.8	0.4	0.8	1.2	207	173	147	137	664	46	
ABR	*	3.0	4.1	0.0	5.6	789	1646	0	620	3056	218	-
NBR.	25	2.3	3.8	5.5	8.4	618	1537	1029	48	3232	230	
ABR	26	2.3	3.0	8.3	1.7	613	1199	54	194	2059	147	ABR
ABR	27	0.1	0,4	8,7	2.5	13	147	132	274	565	41	QB
ABR	28	0.0	2.8	0,8	0.5	12	1130	0	60	1201	86	0.0000
ABR	29	2.6	0.4	8.0	2.8	681	152	0	316	1149	82	CB
ABR	30	5.3	5.4	0.2	2.6	1417	2189	31	289	3925	279	0.071

TABLA 5.13

VOLUMENES DE ESCURRIMIENTO DIARIO

CUENCA LA JOYA BUENAVISTA AREA = 967.0 Km²

AREA INF= 287.04 402.87 185.67 111.62 !Km²⁾ !Km²! (Km²) (Km²)

		HORCONES	JESUS	TIGHERA	TONALA	HORCONES			TONALA	VOLUMEN	VOLUMEN	CB
			E ELUVIA DIA	RIA)		(VOLUMEN	ES POR ESY	ACION)		CLOVIDO	ESCURRIDO	CE
IES	DIA	(mm)	(mm)	(IIIVII)	(mm)	(Volumene	a en milea de	metros cubicos)		1	MENSUA
										1	·	
(GO	1	11.9	4.5	5.2	8.3	3104	1819	959	926	6889	1204	
GQ.	2	0.5	16.5	4.5	8.5	2260	6642	836	944	10681	1645	
/GO	3	14.3	14.7	8.7	15,1	3805	5912	1609	1683	13010	2238	
\G0	-	11.0	15.8	11.1	4.9	2927	6369	2058	545	11899	2051	
GO	5	3.4	2.8	2.8	4.2	983	1127	526	166	3022	550	
00	6	15.5	11.2	18.3	6,3	4151	4526	1903	699	11288	1946	
\G0	7	9.0	13.0	6.2	2.8	2393	5239	1145	312	9090	1576	
GO	8	9.2	5.0	6.2	7.8	2465	2025	1153	868	6511	1140	
GO	9	14.5	8.6	6.9	9.3	3867	3472	1099	1043	9481	1642	
(GO	18	10.4	9.4	1.6	9.9	2786	3776	302	1108	7971	1287	
(GQ	11	6.8	6.7	5.1	6.1	1824	2710	944	677	6155	1080	
CO	12	12.2	9.6	4.0	6.0	3255	3859	735	669	8517	1479	
GQ	13	17.5	11.5	12.9	7.7	4678	4633	2391	861	12562	2163	
CO	14	11.0	12.1	0.7	8.6	2930	4882	1617	955	10384	1794	
GO	15	9.9	6.8	7.1	6.0	2653	2757	1315	665	7390	1200	
/GO	16	7.5	3.0	5.5	8.7	2001	1194	1013	970	5178	\$15	
GO	17	6.4	3.2	4.5	4.8	1720	1281	829	541	4372	778	
GO	18	13.3	13.8	11.5	7.1	3548	5540	2127	794	12010	2069	
(GO	19	15.3	23.1	9.0	12.5	4884	9299	1671	1395	16450	2£20	
5	3.0	0.6	8.7	2.1	10.1	2292	3499	387	1125	7302	1274	
GO	21	15.3	19.2	6.5	11.3	4009	7731	1207	1265	14292	2455	
GO	22	8.5	6.2	7.1	6.2	2260	2516	1311	692	6778	1185	
GO	23	17.1	9.9	5.1	10.0	4554	3982	944	1114	10593	1630	
GO	24	19.9	23.5	6.5	17.7	5323	9453	1204	1971	17952	30.73	
go	25	25.6	13.7	5.3	15.0	6839	5533	990	1669	15031	2580	
GO	26	19.5	16.8	9.0	14.5	5212	6765	1665	1623	15264	2619	
GO	27	11.7	9.1	3.0	11.2	3126	3676	555	1250	8607	1494	AGO
GO	28	14.6	17.7	10.0	9.6	3902	7123	1860	1076	13960	2199	OB
GO	29	:7.7	17.0	7.9	12.4	4727	6864	1471	1386	14448	2101	8.040
GO.	30	16.4	6.1	13.4	11.1	4390	2444	2403	3240	10558	1824	CE
go.	11	25.4	13.5	9.8	15.0	6780	5436	1677	1765	15658	2686	0.16

TABLA 5.13

VOLUMENES DE ESCURRIMIENTO DIARIO

CUENCA LA JOYA BUENAVISTA AREA = 967.0 Km²

AREA INF= 267.04 402.67 165.67 111.62

(Km²) (Km²) (Km²) (Km²) ORCONES JESUS TIGRERA TONALA IVOLUMEN IVOLUMEN TONALA UNREPRIER HORCONES I JESUS I ESCURRIDO CALTURA DE LLUVIA DIARIAT LI OVIDO CE MENSUAL (Volumenes en miles de metrus cubica MES DIA 360 16 196 29 0.9 $\overline{}$ 6 Alir 91 200 126B ABR 2 0.8 2.6 0.0 0.0 1066 $\overline{}$ Ť 225 363 27 5.6 ABR 3 0.2 0.2 0.0 2 0 81 457 33 112 7 119 ABR 4 0.0 0.8 0 0 1 1 ÷ ō 95 7 0.8 92 ARR 5 A A 0.0 0 0 7 322 2011 596 151 1080 219 1.4 ARR 6 1.2 5.0 1.2 0.1 165 722 7 16 903 65 ABR 7 0.0 0.6 1.8 70 ABR 8 2.2 0.5 0.0 1.5 581 216 'n 120 968 894 64 ABR 9 2.5 0.2 0.0 1.4 675 53 Ä 157 2485 177 4.1 1661 ABR 10 1.8 1 2 0.4 471 189 42 40 26 ABR 11 ABR 12 0.1 A . Λ 8 101 ñ 0.4 14 70 6 0.6 0 R 0 70 0.0 0 0 8.0 19 ō 6 10 ABR 13 0.6 6 0.1 0.0 ABR 14 0.0 0.0 369 211 ÷ ā 500 42 0.5 1.4 2.6 0.0 0.0 188 1064 7 2 1254 90 ABR 15 0.7 ABR 16 1.5 0.6 8.0 0.0 107 212 0 Ā 618 45 1122 88 ABR 17 0.2 1.5 2.5 7.0 67 682 464 • 97 1125 Ai ABR 18 1.6 0 0 1.5 7 6 415 592 n 0 0 2 8 199 566 ō 316 1275 91 1.4 292 33 ABD | 20 0.7 B.A 0.1 16 263 Ť 14 0.1 7 ABR 21 182 1253 485 1760 126 8.4 3.1 0.0 3.6 ABR 22 5.4 3.0 9.6 2.4 1535 1196 1779 261 4774 140 ABR 23 0.8 0.4 0.8 1.2 287 111 147 137 664 48 218 1056 ABR 24 3.0 4.1 0.0 5.6 769 1646 ┰ 620 ABR 25 ABR 26 1629 48 3232 230 0.4 2.1 3.8 5.5 618 1517 2.3 613 54 194 2859 147 1 0 0.3 1199 ABR 27 8.7 147 132 274 565 41 QB 0.1 0.4 2.5 13 ABR 28 12 1130 60 1201 ---A. OADA 8.0 2.0 0.0 0.5 0.4 0.0 681 167 ÷ 116 1149 82 CE ABR 29 2.6 2.6 0.071 ABR 30 5.3 5.4 8.2 2.6 1417 2189 77 289 1925 279 6889 AGO I 11.9 4.5 5.2 8.3 3184 1819 959 926 1204 AGO 2 8.5 16.5 4.5 8.5 2260 5547 116 944 10681 1645 2230 1885 1609 1681 11010 AGO 3 14.3 14.7 8.7 15.1 E912 2051 15.8 2927 6169 2058 11899 AGO 4 11.0 77 1 7 6 545 526 466 3822 £58 100 5 903 1127 3 4 2 1 2.8 4.2 699 11200 1946 AGO 6 11.2 4151 4526 1903 15.5 10.3 6.3 2393 5239 1145 112 9090 1576 AGO 7 9.0 13.0 6.2 2.8 AGO 8 9.2 5.0 7.8 2465 2825 1153 868 6511 1148 AGO 9 14.5 0.6 5,9 9.3 3867 1472 1099 1041 9481 1642 AGO 10 10.4 9.4 1.6 9.9 2786 3776 782 1109 7971 1387 6.8 2718 1680 AGO 11 6.7 6 1 6.1 1824 944 677 6155 669 1479 735 8517 AGO 12 9 6 6.0 1255 1859 4.0 AGO 11 2391 861 12562 2163 11.5 7.7 4678 4633 17.5 12.9 4002 1617 955 16384 1794 AGO 14 11.0 12.1 8.7 8.6 2930 2653 2757 1315 665 7390 1288 AGO 15 9.9 6.8 6.0 AGO 16 7.5 5.5 8.7 2001 1194 1013 970 5178 615 77A AGO 11 6.4 3.2 4.5 4.8 1728 1281 870 541 4172 AGO 18 13.3 13.8 11.5 7.1 3548 5548 2127 794 12010 2169 2626 15.3 1671 16450 AGO 19 21.1 9 0 12 5 ARRA 9299 1395 1274 100 20 8 6 2292 387 7302 A 7 2.1 10.1 1499 1125 AGO 21 4089 7731 1287 1265 14292 2455 19.2 15.3 6.5 11.3 692 6778 1185 6.2 2268 2516 1311 AGO 22 8.5 6.2 7.1 AGO 23 17.1 9.9 5.1 10.8 4554 3982 944 1114 18593 1638 AGO 24 19.9 23.5 6.5 17.7 5123 9453 1284 1971 17952 1777 AGO 25 25.6 13.7 5.3 15.0 6839 5533 990 1669 15031 2580 AGO 26 19.5 16.0 9.8 14.5 5212 6765 1665 1623 15264 2619 9.1 1494 AGO AGO 27 11.7 3.8 11.2 1126 1676 555 1250 4607 1076 13960 2199 14.6 3902 7123 1860 QB AGO 28 10.0 9.6 2481 5864 1386 14449 AGO 29 17.7 17.0 7.9 12.4 4727 1471 1624 16.4 11.1 4390 2444 2483 1240 18558 CE AGO 30 13.4 6.1 25.4 13.5 15.8 4700 5436 1765 15650 2f 06 0.169 AGO | 31

TABLA 5.14

EVAPORACION NETA DIARIA en mm (E N D) LAGUNA LA JOYA BUENAVISTA

1. E N D, Horcones 2. E N D, Tigrera

3. E N D, Horoones por 71.67%

4. E N D, Tigrera por 28.33% 5. E N D, LA JOYA BUENAVISTA

MES	DIA	1	2	3	4	5	MES	DIA	1	2	3	4	5
ABR	1	5.40	5.37	3.87	1.52	5.39	AGO	1	-7.60	-1.28	-5.45	-0.36	-5.81
ABR	2	5.19	5.26	3.72	1.49	5.21	AGO	2	-4.31	0.05	-3.09	0.01	-3.07
ABR	3	4.74	5.72	3.40	1.62	5.02	AGO	3	-10.26	-4.60	-7.35	-1.30	-8.€5
ABR	4	5.53	5.36	3.96	1.52	5.48	AGO	4	-6.B3	-8.11	-4.90	-2.30	-7.19
ABR	5	5.94	4.94	4.26	1.40	5.65	AGO	5	0.67	1.37	0.62	0.39	1.01
ABR	6	4.49	1.65	3.22	- 0.47	3.69	AGO	6	-11.46	=7.80	-8.22	-2.21	-10.42
ABR	7	4.68	5.71	3.35	1.62	4.97	AGO	7	-4.03	-2.25	-2.89	-0.64	-3.53
ABR	8	3.39	5.98	2,43	1,69	4.13	AGO	8	-5.24	-2.85	-3.76	-0.81	-4.56
ABR	9	3.05	6,7B	2.18	1.92	4.10	AGO	. 9	-9.88	-2.56	-7.08	-0.73	-7.80
ABR	10	3.65	3.26	2.62	0.92	3.54	AGO	10	-6.23	2.08	-4.46	0.59	=3.87
ABR	111	5,83	5.39	4.18	1.53	5.70	AGO	11	-2.66	-1.29	-1.91	-0.37	-2.27
ABR	12	5.94	5.42	4.26	1.54	5.79	AGO	12	-8.49	0.25	-6.09	0.07	-6.02
ABR	13	5.70	5.56	4.09	1.58	5,66	AGO	13	-13.80	-10.73	-9.89	-3.64	-12.53
ABR	14	4.59	5.30	3.29	1.50	4.79	AGO	14	-7.19	-5.51	-5.16	-1.56	-6.72
ABR	15	5.12	5.44	3.67	1.54	5.21	AGO	15	-6.30	-4.14	-4.52	-1.17	-5.69
ABR	16	4.49	5.30	3.22	1.50	4.72	AGO	16	-3.42	-2.27	-2.45	-0.64	-3.09
ABR	17	6.05	3.03	4.33	0.86	5.19	AGO	17	-2.58	-1.27	-1.85	-0-36	-2.21
ABR	18	3.45	5.06	2.47	1.43	3.90	AGO	18	-9.63	-9.64	-6.90	-2.73	-9.63
ABR	19	3.72	4.89	2.67	1.39	4.05	AGO	19	-11.22	-6.21	-8.04	-1.76	-9.BD
ABR	20	5.74	4.33	4.11	1.23	5.34	AGO	20	-5,13	1.88	-3.68	0.53	+3.14
ABR	21	5.54	4.75	3.57	1.35	5.31	AGO	21	-11.8B	-3.54	-8.51	-1.00	-9.51
ABR	22	-0.21	-7.53	-0.15	-2.13	-2.29	AGO	22	-4.45	-2.83	+3.19	-0.86	-3.99
ABR	23	4.71	4.04	3.38	1.14	4.52	AGO	23	-13.71	-1.57	-9.83	~0.45	-10.27
ABR	24	2.30	4.22	1.65	1.20	2.84	AGO	24	-15.32	-2.64	-10.98	-0.75	-11.73
ABR	125	3.03	-2.77	2.17	-0.7B	1.38	AGO	25	-22.25	-1.12	-15.95	-0.32	-16.27
ABR	26	2.80	3.68	2.01	1.04	3.05	AGO	26	-15.52	4.82	-11.13	-1.36	-12.49
ABR	27	5.69	3.11	4.08	0.88	4.96	AGO	27	-8.32	0.19	-5.57	0.05	-5.51
ABR	28	5.77	4.71	4.13	1.33	5.47	AGO	28	-10.32	-6.61	-7.39	-1.87	-9.27
ABR	29	3.64	4,24	2.61	1.20	3.81	AGO	29	-13.54	-4.80	=9.70	-1.36	-11.06
ABR	30	2.86	5.11	2,62	1.45	2,07	AGC	30	-12,84	-0.58	-9.20	*2.71	+11.91
							AGO	31	-20.84	-6.21	-14.93	-1.76	-16.69

PUERTO MADERO

MAREAS MEDIAS DIARIAS en metros sobre el nivel medio del mar

1. MAREA ALTA

2. MAREA BAJA

						,	
MES	AID	1	2	ME	SDIA	1 1	2
ABR	1	0.973	0.159	AG	0 1	0.980	0.515
ABR	2	0,926	0.174	AG	0 2	0,961	0.541
ABR	3	0.869	0.196	AG	0 3	0.950	0.543
ABR	4	0.846	0.257	AG	0 4	0.964	0.536
ABR	5	0.816	0.294	AG	0 5	0.999	0.503
ABR	6	0.796	0.310	AG	0 6	1.041	0,477
ABR	7	0.805	0.323	AG	0 7	1,082	0.449
ABR	8	0.837	0.320	AG	ОВ	1.107	0.412
ABR	9	0.861	0.294	AG	0 9	1.148	0.392
ABR	##	0.889	0.291	AG	0 ##	1.194	0.385
ABR	##	0.901	0.269	AG	0 ##	1.205	0,398
ABR	##	0.909	0.270	AG	0 ##	1.194	0,403
ABR	##	0.917	0.271	PA	0 ##	1.167	0.396
ABR	##	0.917	0.283	AG	0 ##	1.124	0.400
ABR	##	0.901	0.297	AG	0 ##	1.080	0.411
ABR	##	0.894	0.304	AG	0 ##	1.057	0.430
ABR	##	0.867	0.307	AG	0 ##	1.036	0.452
ABR	##	0.844	0.321	AG	0 ##	1.003	0.448
ABR	##	0.850	0.333	AG	0 ##	1.027	0.445
ABR	##	0.841	0.346	AG	O ##	1.065	0.435
ABR	##	0.852	0.342	. AG	0 ##	1.106	0.422
ABR	##	0.886	0.337	AG	0 ##	1.123	0.405
ABR	##	0.924	0.313	AG) ##	1.132	0.415
ABR	##	0.995	0.272	AG	0 ##	1,133	0.423
ABR	##	1.063	0,229	AG	0 ##	1,114	0,436
ABR	##	1.100	0.193	AG	0 ##	1.102	0.459
ABR	##	1,103	0.167	AG	0 ##	1,056	0.462
ABR	##	1.096	0.181	AG	0 ##	1,032	0.472
ABR	##	1.081	0.210	AG	0 ##	0.990	0,483
ABR	##	1.034	0,233	AQ	0 ##	0.970	0.496
				AG	0 ##	0.973	0,533

TABLA 5.16 LAGUNA LA JOYA BUENAVISTA

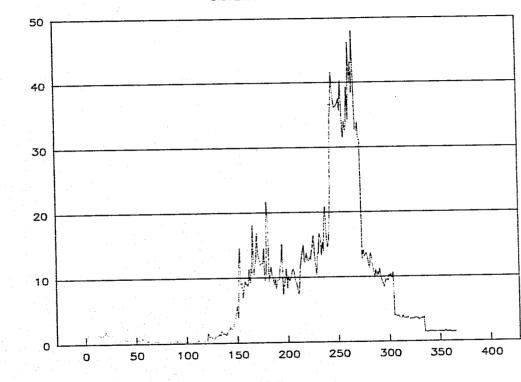
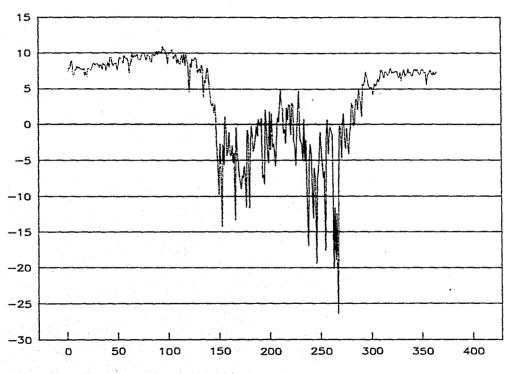
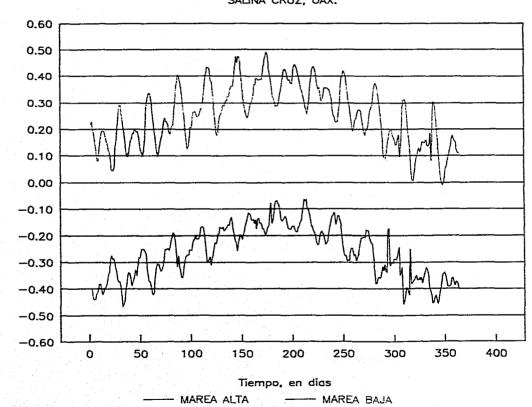

				CONDICI	DN ACTUAÌ				CONDICION CON CANAL SAN MARCOS							
MES	DIA	MALTA	MBAJA	EC1	EC2	QNACI	QMBC1	Q1-2	EC1	EC2	QMAC1	QMBC1	QMAC2	QMBC2	Q1-2	
ABR	11	0.27	-8.54	-0.070	-0.872	784.2	-778.8	6.)	-0.070	-0.873	449.5	-493.9	35.7	+38.5	•5.6	
A8R	1	8.23	+8.51	-0.087	-0.088	676.1	.747.3	-7.8	-0.087	-0.887	438.4	-480.5	34,1	-37.5	-5.9	
ABR	1	8.17	-0.50	-8.188	-0.187	627.5	-704.2	-8.3	-0.106	-8.186	399.1	-453.3	31.4	-35.5	•7.3	
ABR	11	0.15	-8.44	-8.133	-0.110	631.8	-625.9	-10.1	+0.111	-0.128	481.0	-483.8	31.4	-31.8	-8.9	
ABR	5	0.12	.0.41	-8,149	-0.149	513.2	.578.5	-8.0	+0.148	-0.148	309.7	-373.0	30.6	-29.3	-7.2	
ABR	6	0.10	.0.39	-8.160	-0.155	594.2	-551.5	-3.3	-0.159	-0.154	378.4	-354.7	29.8	-27.7	-3.2	
ABR	7	0.10	-0.38	-0.143	-0.149	596.5	-538.0	5.0	-0.143	-0.151	381.7	-344.1	30.2	-26.8	2.8	
ABR	13	8.14	-0.38	-8.131	-0.114	625.2	-560.2	9.8	-0.134	-0.135	483.2	-355.1	32.2	-27.3	8.4	
ABR	9	0.16	-8.41	-8.121	-0.127	645.3	-595.2	5.4	-0.125	-0.129	413.9	-379.6	32.9	-29.4	4.4	
ABR	18	8.19	-0.41	*8.111	-0.111	663.0	-613.7	8.5	-0.113	-0.114	426.1	-390.2	34.1	-30.1	7.1	
ABR	11	0.20	-0.43	.0.098	-0.095	652.1	+655.4	11.4	-0.894	-0.098	420.3	-416.2	33.9	-31.9	9.6	
ABR	12	8.21	-8.43	-0.678	-0.863	654.2	-665.1	9.7	-0.081	+0.085	421.1	-422.8	33.8	+32.6	8.2	
ABR	111	0.22	.0.43	-0.066	-0.074	657.9	-672.9	7.8	-0.071	.0.076	423.0	-428.3	33.9	-33.2	6.6	
ABR	14	8.21	+8.42	-0.076	-0.865	649.6	-672.3	6.0	-0.882	.0.066	417.0	-428.5	33.4	-13.2	4.2	
ABR	15	0.28	-0.48	-8.057	-0.071	623.6	-656.3	-1.5	-0.059	-0.071	399.5	-419.0	31.4	+12.7	-1,1	
ABR	16	8.19	.0.40	-8.079	+0.075	614.8	-652.9	+0.3	-8.880	.0.871	393.0	-417.0	31.3	- 32.6	8.3	
ABR	17	2.17	-0.19	-0.067	-0.084	597.3	-636.5	+3.1	-0.066	+0.083	301.2	~407.8	30.2	-31.9	-3.4	
ABR	16	8.14	.0.38	-8.094	-0.091	567.3	-618.9	-2.8	-0.093	-0.869	361.5	-397.1	20.7	-31.0	-2.0	
ABR	19	0.15	-0.37	-8.076	-0.051	503.1	-686.3	6.3	-0.074	-0.082	373.4	-387.3	29.7	-30.2	4.1	
ABR	20	0.14	-0.35	-0.100	-0.100	582.3	-574.8	-8.0	-0.099	-0.100	370.1	-369.3	29.1	-29.1	-6.5	
ABR	21	0.15	-0.16	-0.113	.0.114	608.5	-570.3	-6.1	-0.113	-0.113	387.2	-366.7	30.6	-26.8	-5.4	
ABR	22	0.19	.0.36	-0.096	-0.095	648.2	-579.6	6.6	+0.096	-0.095	415.2	-363.7	33.1	-28.7	5.1	
ABR	23	0.22	-8.39	-0.085	-8.095	676.7	-616.7	1.7	-0.086	-0.096	433.5	- 194.6	34.4	-30.8	0.4	
ABR	24	0.30	-0.43	-0.874	-0.074	747.9	-671.6	9.6	-0.077	-0.078	480.1	-427.4	30,6	-13.8	0.1	
ABR	25	0.36	.0.47	.0.054	-0.059	796.1	+720.2	0.2	-0.061	-0.061	510.8	-458.8	41.0	•35.5	6.7	
ABR	26	0.40	.0.51	-0.030	-0.037	811.4	-777.4	12.1	-0.035	-0.040	521.8	-494.3	42.2	-30,1	9,9	
ABR	27	0.40	.0.53	-0.006	-0.016	788.3	-013.7	13.7	-0.012	-0.015	580.6	·517.0	41.3	-39.7	11.4	
ABR	28	8.40	-8.52	0.084	0.000	781.4	-814.5	10,6	-0.001	-0.003	582.5	-518.4	40,6	-48.1	8.7	
ABR	29	Q.3B	-0.49	0.083	0.018	756.7	-796.9	6.6	0.004	0.887	445.7	-508.0	19.1	-39.5	5.4	
ABR	138	0.11	-0.47	.0.083	-8.801	704.7	-779.8	-8.4	-0.087	-0.083	448.5	-500.6	35.8	-39.2	-6.2	

TABLA 5.16 LAGUNA LA JOYA BUENAVISTA

				CONDICI	ON ACTUA	L			CONDICION CON CANAL SAN MARCOS							
MES	DIA	MALTA	ALAGM	EC1	EC2	QMACT	QMBCt	Q1-2	ECT	EC2	QMAC1	QMBC1	QMAC2	QMDC2	Q1-2	
AGO	1	0.28	-0.18	0.083	0.105	544.3	-688.3	-16.8	0.098	0.164	334.2	-408.1	20.7	-15.9	-10.2	
AGO	2	8.26	-0.16	8.871	8.177	520.5	-580.9	-35.6	0.055	8,151	119.1	-182.5	19.8	34.3	-20.0	
AGO	1	8.25	-0.16	0.083	8.179	516.5	-571.1	-35.6	0.097	0.154	117.1	-375.8	19.7	-11.8	-25.4	
AGO	4	0.26	.0.16	0.872	0.188	518.4	-582.8	-34.5	0.086	0.155	310.7	-382.8	20.7	-11.8	-26,7	
AGO	5	0.10	-8.28	0.077	0.155	580.6	-622.0	-32.6	5.887	8.132	361.9	-405.5	25.3	-15.1	-25.4	
AGQ	6	0.34	-5,22	0.098	8.178	611.1	-661.4	-20.1	0.189	0.151	383.2	-430.2	28.5	-35.9	-28.8	
AGO	7	5.)8	-8.25	0.116	0.172	649.1	-783.4	-27.7	0.120	8.158	456.7	-456.8	38.6	-17.9	-20.6	
AGO		8.41	-0.29	8.143	8.188	657.6	-764.1	-22.5	5.158	0.171	413.6	-491.7	32.1	-40.0	-16.2	
AGO	9	0.45	-8.31	0.154	0.199	685.1	+798.5	-21.6	0.167	8.195	629.7	-516.9	33,4	·41.8	-16.7	
AGO	18	0.49	-8.31	8.176	0.213	711.4	-816.0	-20.1	8.187	8,212	446.6	-520.6	35.1	-42.7	-15.8	
AGO	11	0.58	-8.18	0.192	0.221	711.7	-839.0	-25.6	0.204	6.223	446.5	-530.8	35.8	-42.8	-16.3	
AGO	12	0.49	-8.30	0.104	0.235	696.5	- 021.9	-22.5	5,200	8.237	434.7	-533.6	33.6	-43.4	-10.6	
AGO	13	0.47	.0.10	0.184	8.254	676.1	-010.0	-25.3	8,153	0.254	410.5	-533.9	31.1	-44.3	+21.9	
AGO	14	0.42	-0.30	0.151	0.251	638.2	-790.7	-14.6	8.172	0.245	390.9	-523.3	26.7	-44.6	-30.1	
AGO	15	8.38	-0.29	0.130	0.236	610.8	-771.1	-16.6	5.157	8,225	374.0	-554.5	24.7	-43.5	-31.2	
AGO	16	0.16	-0.27	8.887	0.207	646.6	-701.3	-40.0	0.107	0.191	387.4	-462.8	25.7	-41.1	-31.8	
AGO	17	0.14	-8.25	8.877	0.150	633.4	-671.7	•37.1	0.092	0.162	391.9	-440.8	26.3	-10.0	-18.5	
AGO	18	0.30	-0.25	0.052	8.178	680.4	-654.6	-37.0	0.571	5, 155	360.6	-433.4	23.8	-38.3	-31.1	
AGO	19	0.33	-0.26	8.082	5.180	627.7	+674.7	-36.3	0.089	0.166	300.8	-442.8	26.5	-10.5	-29.1	
AGQ	20	0.17	-0.27	0.888	0.174	659.5	-700.8	+34.5	0.155	0.153	410.8	-457.3	29.2	-39.2	-27.4	
AGO	21	8.41	-0.28	0.117	0.193	677.5	-737.9	-29.0	0.132	0.176	433.2	-480.1	31.9	-39.8	-21.7	
AGO	22	0.42	-0.20	0.148	0.194	664.1	•777.3	-26.1	0.158	4.183	417.0	-502.8	31.9	-41.1	-19.1	
AGO	23	0.43	-0.28	0.157	0.213	657.8	-776.9	-24.6	0,170	0.255	411.0	-504.0	31.5	-41.2	-15.9	
AGO	24	0.43	-0.20	0.165	0.241	647.6	-785.5	-25,4	0.104	0.234	450.5	-512.4	29.5	-42.6	-23.6	
AGO	25	0.41	-0.26	0.163	0.260	623.7	-767.6	-33.7	0,103	0.251	303.2	-552.3	26.0	-42.6	-37.8	
AGO	26	0.40	-0.24	8.166	0.272	607.7	-752.9	-35.6	0.188	0.260	372.7	-493.0	35.1	-42.4	-29.6	
AGO	27	0.16	-0.24	0.141	0.255	580.6	-731.1	-35.6	0.160	0.237	354.3	-479.7	21.6	-42.2	-33.0	
AGO	28	0.33	-0.23	0.171	0.253	554.5	-789.8	-39.7	0.140	0.230	336.5	-466.4	19.8	-41.2	-33.0	
AGO	29	0.29	-0.22	8.185	0.251	517.8	-682.9	-41.0	8,123	0.220	312.7	-449.3	16.0	-40.5	-34.5	
AGO	20	0.27	.0.20	0.103	0.238	502.2	-651.7	-62.6	0.118	0.201	305.3	-427.8	15.1	-30.9	-31.1	
AGO	31	0.27	-0.17	0.082	0.242	519.8	-605.9	-41.9	0.899	0.202	315.5	-450.5	16.5	-37.0	-74.1	


TABLA 5.16 LAGUNA LA JOYA BUENAVISTA

									CONDICIO	N CON CAN	AL SAN M	ARCOS	OHAC2	QMBC2	Q1-2
				CONDICION	ACTUAL	OUAC4	QMBC1	Q1-2	EC1	EC2	QMAC1	QMBC1	DMVC3	China.	
MES	DIA	MALTA	MEAJA	EC1	EC3	QMAC1	Chipot								
m									-0.070	-0.873	449.5	-493.9	35.7	-18.5	-5.6
		0.27	-0.54	-0.070	-0.072	706.2	-770.0	-6,3		-0.087	430.4	-480.5	34.1	-37.5	-5.9
ABK	1-1-1		0.53	-0.087	-0.060	676.1	-747.3	-1.0	-0.087	0.106	199.1	-453.3	11.4	-35.5	-7.3
ABR	2	0.23		8.308	.0.307	627.9	-704.2	-8.3	-0.106		401.0	-403.8	33.4	-31.8	- 8 , 9
ABA	1	0.17	-0.50	-0.133	.0.110	631.8	-625.9	-10.1	-0.131	-0.328	389.7	-373.0	30.6	-29.3	.7.2
ABR	1_4_1	8.15	-0.44	-0.149	-0.149	633.2	-578.5	- 6 . 0	-0.148	-0.348	378.4	-354.7	29.9	-27.7	-3.2
ABR	5	0.12	-0.41		-0.155	594.2	-551.5	-1.1	-8.159	-8.154		344.1	10.2	-26.8	2.8
ABA	6	0.10	-0.19	-0.160	-0.149	596.5	-538.0	5.0	-0.143	-0.151	181.7		12.2	-27.3	8.4
ABR	7	0.10	-8.38	-0.143	-0.334	625.2	-560.2	9.8	.0.134	-0.135	402.2	-355.6	32.9	29.4	4.4
ABR	1	8.14	-0.38	-8.131		645.3	-595.2	5.4	-0.125	-0.129	613.9	-379.6	34.1	-10.1	7.1
ABR	9	0.16	-0.41	-0.121	-0.327		-613.7	8.5	-8.313	-0.114	426.1	-190.2		-31.9	9.6
ABR	18	C 19	-0.41	.0.111	-0.111	663.0	-655.6	11.4	-0.094	-0.098	620.3	-416.2	33.9	-12.6	8.2
ABR	111	0.20	-8.41	-6.890	-0.095	652.1	-665.1	9,1	-0.861	-0.865	421.1	-422.8	33.6		6.6
ABR	12	0.21	-0.43	-0.878	-0.043	654.2		7.6	-0.071	-0.076	423.0	-428.3	11.9	-33.2	
ABR	1;;	0.22	-8 41	-0.066	-0.874	657.9	-672.9	6.8	+0.082	-0.046	417.0	-420.5	33.4	-33.2	6.2
ABR	111	L 22	-8.42	-8.078	0.865	649.6	-672.3		-B.C59	-0.071	299.5	-419.0	31.6	-32.7	-1.1
		0.2	-0.40	+0.057	-8.071	623.6	-656.3	-1.5		-6.874	391.0	-417.6	31.3	- 32.6	0.3
ABR	135	6 19	0.40	-0.079	-8.075	614.8	-652.9	-0.3	-0.088	-0.663	381.2	-407.8	30.2	- 33.9	-3.4
ABR	16	0.17	8 39	-0.067	-0.664	597.3	-636.5	-1.1	-0.066	-0.889	361.5	-397.1	28.7	-31.0	-2.0
ABR	1:7		0.38	0.094	.0.891	567.3	-618.9	-2.8	-0.093		373.4	-387.3	29.7	-30.2	4.1
ABR	18	8 14		-0.076	-0.081	503.1	-686.3	6.3	-6.076	-0.062		-169.3	29.3	-29.1	-6.5
ABR	19	0.15	-8.17	-0.300	-8.108	502.1	-574.0	-8.6	-0.899	-0.180	370.1	-365.7	30.6		-5.4
ABR		8.14			-0.134	608.5	-370.3	-6.3	-0.313	-0.112	367.2		33.1		5.1
ABR		6.15		-0.113	-0.095	648.2	-579.6	6.6	-0.096	-0.895	415.2	-169.7	34.4		0.4
ABR	22	0.19		-0.896	-8.095	676.7	-616.7	1.7	-0.886	-0.096	432.5	.394.6			1.1
ABR	33	0.22		-8.045		767.9	-671.6	9.6	.0.077	-0.078	480.1	-427.4	30.6		6.7
ABR	21	0.30	-8.43	-8.874	-8.076		-720.2	6.2	-0.061	-0.861	518.6	-458.8	41.0		9.9
ABF		8.16	-0.47	-0.658	-0.059	796.3	-777.6	12.1	-0.035	-0.840	523.4	-494.3			31.1
AOF		0.40	-8.51	-0.030	-0.037	611.6		13.7	-0.012	-0.019	508.6	.517.0			
ABI		0.40	-0.53	-0.606	-0.016	789.3	-613.7		.0.803	-0.083	582.5	-518.4	44.6		6.7
ABI	_			8.084	0.006	781.4	-814.5	10.6	8.064	8,007	485.7	-500.0	39,1		
ABI		0.10		8.802	0.010	756.7	-796.9	6.6		-0.003	448.5	-500.6		-19,2	
				-0.B03	-8.003	704.7	-779.8	-6.4	-0.807	0.164	334.2	-488.1		-35.9	-38.2
ABI				0.063	0.385	\$44.3	-608.3	-36.8	0.898		319.1	-382.5		-36.3	-26.6
AG				0.071	8.177	528.5	-588.9	-35.6	0.085			-375.8			-28.4
AG					0.179	516.5	-571.1	-35.6	0.097			-392.5			-26.7
AG					8.180	514.4	-582.8	-24.5	0.886			-605.5			
AG					0.155		-622.0	-32.6	0.887						
AG					0.170		-661.4	-28.1	0.309		383.2	-430.2			
ĀĢ					8.172		-703.6		0.126	8.159		-456.6			
ĀG							-764 · L		8.150	0.173		-493.			
AC	0 0						799.5		0.16	0.199	429.7	-516.			
AG	0	0.1					016.0		8.18		446.6	-528.1			
AG		8 0.4							0.20		466.8	·530.			
AG			0 -0.10		0.221				0.20						
Ā			9 -8 3	8.184					0.20				9 31.		
TÃ.									8.17				2 26.		
<u> </u>				0.151					0.15				5 24.		
<u> </u>					0.23									7 -41.	
	10 1					646.6			0.10						-30.6
		7 6.													
							-654.								
								0 -34.5							
		0 6.						9 -29.6							
		1 0.													
			42 -6.3												
Į.			41 -8.2							4 0.23					
			41 -0.7												
ĪĀ	CO		61 · C .:											1 -42.	
		26 3.	10									-479		.6 -42.	
			16 -0.										4 19	.8 -41.	
			33 -0.	0.12										.0 -40	
			.23 -0.	22 C.10										.3 -38	
			.21 -6	26 0.16	3 0.2									.5 - 17	.0 -34.1
			-7 -0			12 519.	8 -665	.9 -42.	9 0.0	22 1 4.2					
	1 VU							-							


VOLUMEN, en

Tiempo, en dias

Tiempo, en dias

FIG 4.3 MAREAS MEDIAS DIARIAS SALINA CRUZ, DAX.

Elevaciones,en m.s.n.m.m.

FIG 4.4 SISTEMA MAR MUERTO

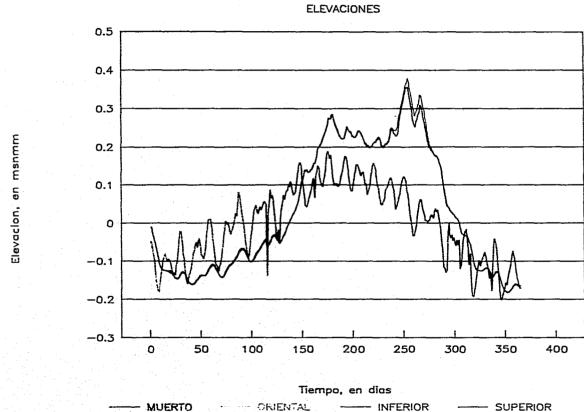


FIG 4.5 SISTEMA MAR MUERTO GASTOS EN LAS BOCAS

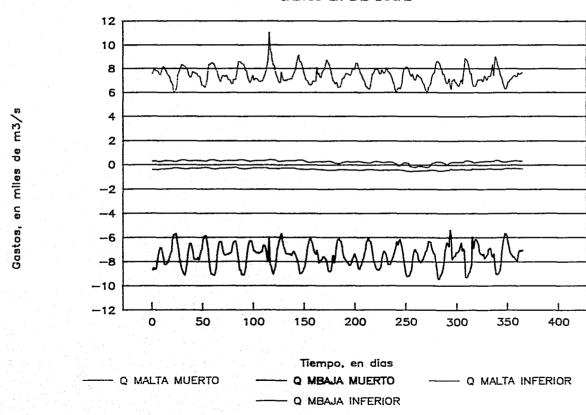


FIG 4.6 SISTEMA MAR MUERTO

GASTOS EN LAS COMUNICACIONES

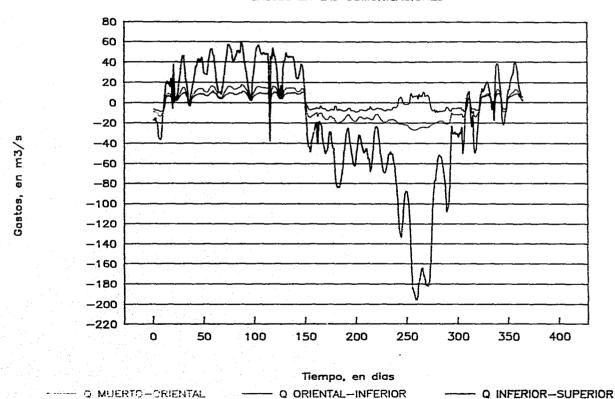
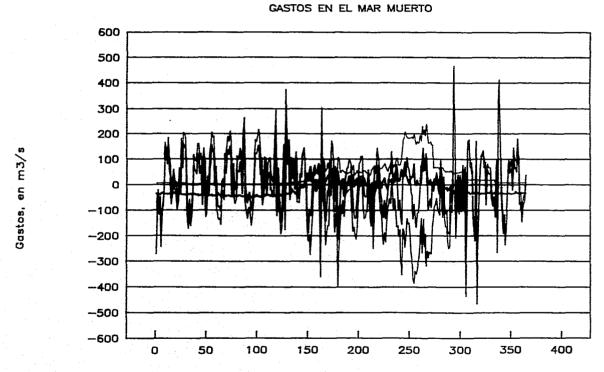



FIG 4.7 SISTEMA MAR MUERTO

Tiempo, en dias —— Q DIF MAREA —— Q TOTAL

FIG 4.8 SISTEMA MAR MUERTO

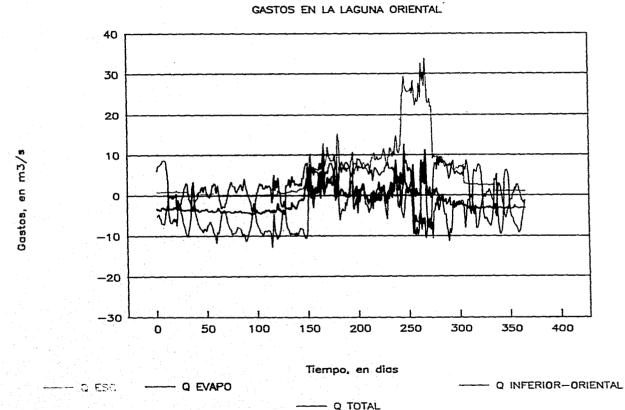


FIG 4.9 SISTEMA MAR MUERTO GASTOS EN LA LAGUNA INFERIOR

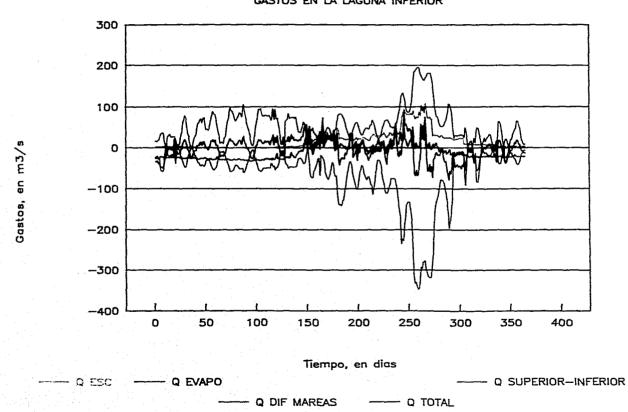


FIG 4.10 SISTEMA MAR MUERTO

GASTOS EN LA LAGUNA SUPERIOR

Q INFERIOR-SUPERIOR

Q TOTAL

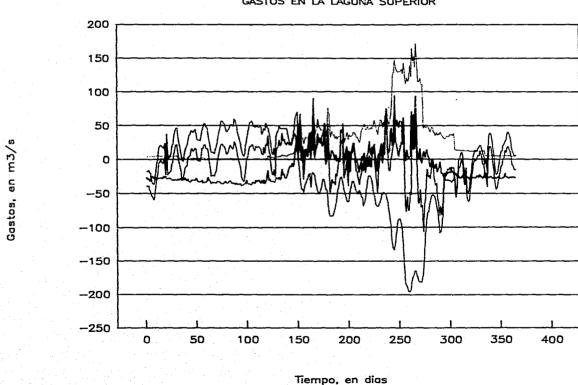
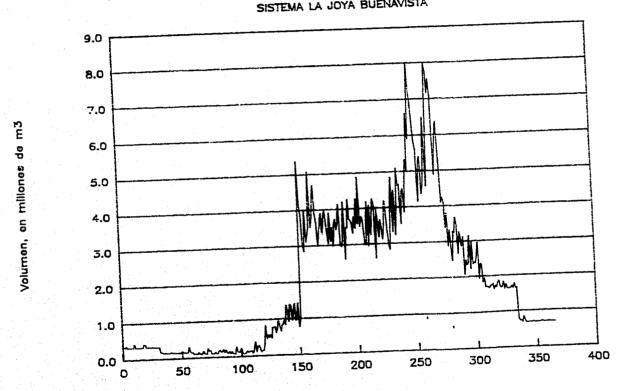
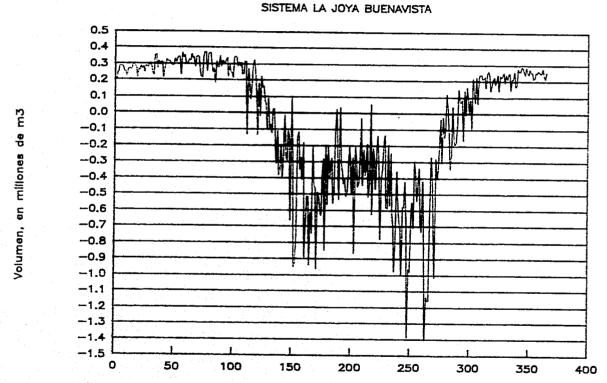




FIG 5.1 VOLUMENES DE ESCURRIMIENTO SISTEMA LA JOYA BUENAVISTA

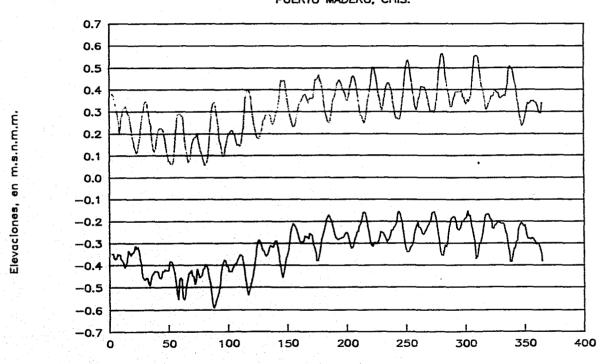
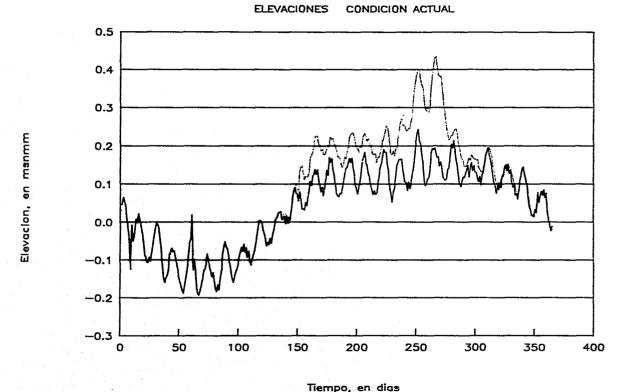

Tiempo, en dios

FIG 5.2 VOLUMENES DE EVAPORACION NETA

Tiempo, en dias


FIG 5.3 MAREAS MEDIAS DIARIAS PUERTO MADERO, CHIS.

Tiempo, en dias

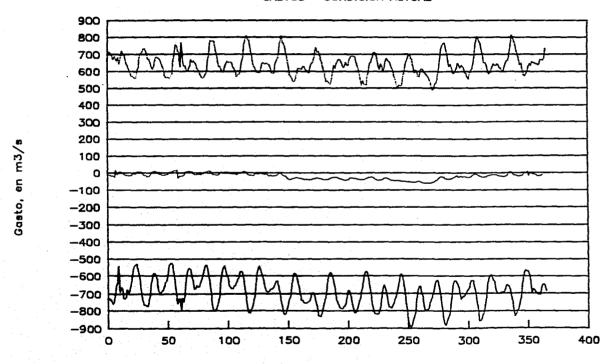

— Marea alta — Marea baja

FIG 5.4 SISTEMA LA JOYA BUENAVISTA

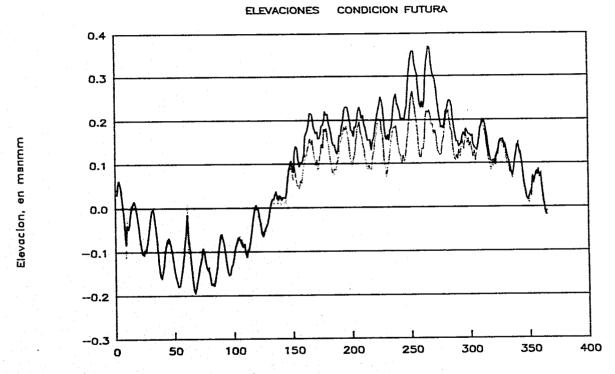

Esteron

FIG 5.5 SISTEMA LA JOYA BUENAVISTA GASTOS CONDICION ACTUAL

Tiempo, en dias
---- Q MALTA Esteron ---- Q MBAJA Esteron ---- Q Esteron-Joya

FIG 5.6 SISTEMA LA JOYA BUENAVISTA

Tiempo, en dios

FIG 5.7 SISTEMA LA JOYA BUENAVISTA

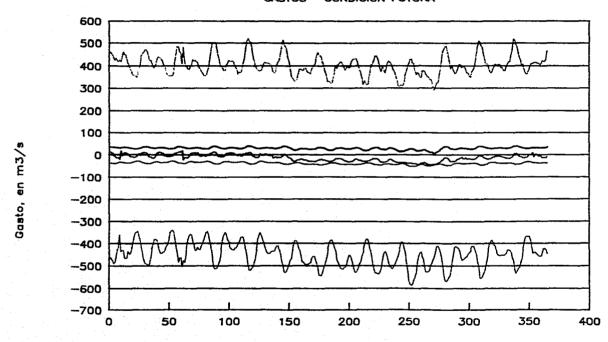


FIG 5.8 SISTEMA LA JOYA BUENAVISTA GASTOS CONDICION ACTUAL LA JOYA

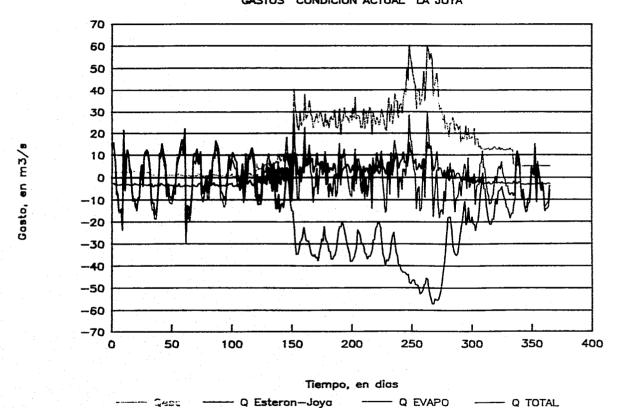
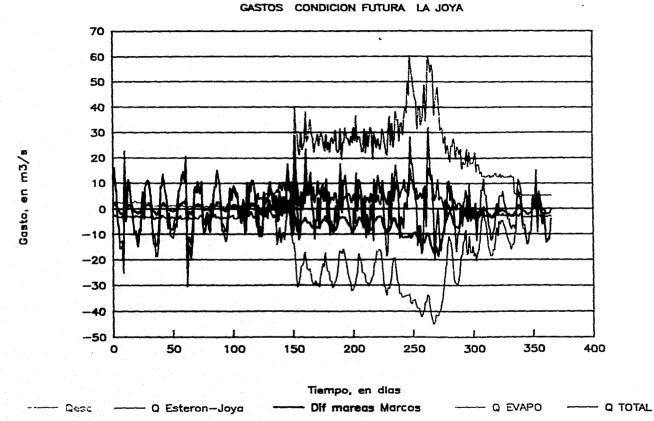



FIG 5.9 SISTEMA LA JOYA BUENAVISTA

