

DIVISION DE ESTUDIOS DE POSGRADO

Facultad de Ingeniería

CURVAS INTENSIDAD-DURACION-PERIODO DE RETORNO PARA LA VERTIENTE DEL GOLFO DE MEXICO

JAQUELINE LAFRAGUA CONTRERAS

TESIS

PRESENTADA A LA DIVISION DE ESTUDIOS DE POSGRADO DE LA FACULTAD DE INGENIERIA

DE LA
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

COMO REQUISITO PARA OBTENER EL GRADO DE

MAESTRO EN INGENIERIA (HIDRAULICA)

CIUDAD UNIVERSITARIA 1996

TESIS CON FALLA DE ORIGEN

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

El presente trabajo se imprimió con el apoyo del Instituto Mexicano de Tecnología del Agua

A mis padres y familiares

A mis compañeros y amigos

Agradecimientos

Al Dr. Francisco Javier Aparicio Mijares por su dirección y apoyo en la elaboración de este trabajo. IMTA

Al Dr. Ramón Domínguez Mora por sus acertados consejos durante la revisión. II-UNAM

Al Ing. Jésus Fernando Romero Magaña por facilitarme la información pluviográfica de las estaciones analizadas. SCT

A mis sinodales Dr. Ramón Domínguez Mora, Dr. Carlos Escalante Sandoval, Dr. Alvaro Muñoz Mendoza y M.I. Jorge Sánchez Sesma.

A mis profesores de la División de Estudios de Posgrado de la Facultad de Ingeniería Campus Morelos, por la formación recibida.

CURVAS INTENSIDAD-DURACION-PERIODO DE RETORNO PARA LA VERTIENTE DEL GOLFO DE MEXICO

		Pág.
1	INTRODUCCION	1
2	CURVAS INTENSIDAD-DURACION-PERIODO DE RETORNO (IDT)	3
	2.1 Métodos de obtención	3
	2.2 Estudio previos	6
3	CARACTERISTICAS DE LA ZONA EN ESTUDIO	15
	3.1 Características climatológicas	15
	3.2 Características hidrológicas	17
	3.3 Información disponible	24
	3.4 Análisis estadístico	24
	3.5 Planos de isoyetas	37
	3.6 Relación altura-duración y altura-periodo de retorno	37
	3.6.1 Comparación de relaciones	41
	3.6.2 Verificación de hipótesis	41
4	FORMULAS EMPIRICAS PARA DETERMINAR CURVAS IDT	53
	4.1 Fórmula de Chen Cheng-Lung	53
	4.2 Fórmula de F.C. Bell	57
	4.3 Verificación de las fórmulas	59

CURVAS INTENSIDAD-DURACION-PERIODO DE RETORNO PARA LA VERTIENTE DEL GOLFO DE MEXICO

_	DADAMETROO V DELACIONES EMPIRIO AS PROPUESTAS DADA	Pág
5	PARAMETROS Y RELACIONES EMPIRICAS PROPUESTAS PARA LA ZONA EN ESTUDIO	69
	5.1 Parámetros de tormenta estándar	69
	5.1.1 Verificación de los parámetros obtenidos	72
	5.2 Relaciones altura-periodo de retorno	80
6	PROCEDIMIENTO PROPUESTO PARA LA OBTENCION DE CURVAS IDT	84
	6.1 Aplicación del procedimiento	85
	6.2 Comparación de resultados	87
	6.3 Aplicación de las curvas IDT	106
7	CONCLUSIONES Y RECOMENDACIONES	113
	ANEXO A	118
8	REFERENCIAS	131

1. INTRODUCCION

Una ecuación de intensidad de lluvia-duración-periodo de retorno (IDT) es necesaria para la planeación y diseño de proyectos de recursos hidráulicos. La estimación de intensidades de lluvia de diferentes duraciones y periodos de retorno son también útiles en la estimación de escurrimientos (Kothyari y Garde, 1992).

El daño y destrucción de proyectos hidráulicos por lluvias extremas y los costos ocasionados por estructuras sobrediseñadas pueden reducirse a través de una adecuada estimación de relaciones IDT.

Una ecuación IDT integra las relaciones intensidad de lluvia-duración e intensidad de lluvia-periodo de retorno. Bell (1969) demostró que la primera relación es independiente del periodo de retorno y la segunda, independiente de la duración.

En estudios previos, Bell (1969), Chen (1983), Kothyari y Garde (1983), cada autor elige a su criterio las alturas de lluvia que mejor describen el patrón geográfico de la lluvia. Tal es el caso de la relación propuesta por Bell (1969) que utiliza una altura de lluvia, correspondiente a 10 años y 1 h (R_1^{10}); o como la relación de Chen (1983) que utiliza tres alturas de lluvia (R_1^{10} , R_{24}^{10} y R_1^{100}). La diferencia entre ambas fórmulas son las consideraciones hechas en las relaciones altura-duración y altura-periodo de retorno.

En México se obtienen curvas IDT con dos métodos: método intensidad-periodo de retorno y el método de correlación lineal múltiple (Aparicio, 1992). Ambos métodos requieren información de pluviógrafo; sin embargo, la red pluviográfica es escasa y hay regiones del país en donde prácticamente no existe. Mientras mayor sea la cantidad de información de que se disponga para el diseño de las obras hidráulicas, la precisión de las estimaciones será mayor. Cuando no se dispone de información pluviográfica se usa la fórmula de Bell.

Se seleccionó la zona en estudio dentro de la vertiente del Golfo de México con la finalidad de considerar cuencas en donde se presentan grandes avenidas, que producen inundaciones que se traducen en graves pérdidas económicas y en ocasiones en pérdidas humanas, como es el caso de la cuenca del Papaloapan, Coatzacoalcos y Grijalva. Se espera que los resultados del trabajo permitan representar las características de la precipitación a través de curvas IDT, para posteriormente ser utilizadas en el diseño de obras hidráulicas, incluyendo las de control de avenidas.

Los objetivos del trabajo son: a) verificar la aplicabilidad de las fórmulas de Bell y Chen, y determinar si las características de las lluvias de corta duración son realmente independientes de factores geográficos en la zona en estudio y b) proponer un método empírico que permita estimar curvas IDT, en la vertiente del Golfo de México que luego pueda extenderse a otras regiones del país, con los datos disponibles habitualmente y con un error de estimación pequeño.

El trabajo se desarrolla de la siguiente manera: en el capítulo 2 se definen las curvas IDT, señalando lo que representan y su utilidad. Se describen, en términos generales, ecuaciones empíricas propuestas por algunos autores, así como las obtenidas en estudios previos. En el mismo capítulo se presentan los métodos de obtención en México.

En el capítulo 3 se define la zona en estudio caracterizándola climatológica e hidrológicamente; se explica la procedencia de la información recopilada y se presenta la distribución de probabilidad elegida para el análisis de la información. También se presentan valores comparativos de relaciones altura-duración y altura-periodo de retorno de la zona en estudio con otros países y con estudios realizados en México. Asimismo se comprueban algunas hipótesis de las relaciones anteriores.

En el capítulo 4 se describen ampliamente dos fórmulas con las que se pueden obtener curvas IDT: la de Bell y la de Chen y se verifica su aplicabilidad en la zona en estudio. En el Capítulo 5 se aplica la metodología de Chen para obtener parámetros de tormenta representativos de la zona en estudio y se aplica la metodología de Bell para obtener una relación altura-periodo de retorno que determine la altura de lluvia de duración igual a una hora y periodo de retorno 10 años.

En el capítulo 6 se propone un procedimiento empírico para obtener relaciones IDT con un mínimo de datos y se ejemplifica el procedimiento aplicándolo a 27 estaciones pluviográficas. Se elaboran gráficas de curvas IDT para tres estaciones ubicadas en regiones hidrológicas diferentes. Se comparan los resultados obtenidos con los estimados con Gumbel, con el método de correlación lineal múltiple y con estudios previos. También se ejemplifica la utilidad de las curvas IDT en la estimación de gastos de diseño.

Finalmente se presentan las conclusiones y recomendaciones del trabajo en el capítulo 7.

2. CURVAS INTENSIDAD-DURACION-PERIODO DE RETORNO (IDT)

La lluvia se define mediante tres variables: magnitud, duración y frecuencia. La magnitud de lluvia es la altura total ocurrida (en milímetros) en la duración de la tormenta (min, horas, etc.). La duración es el periodo en el cual el evento de lluvia ocurre y la frecuencia usualmente se expresa por su periodo de retorno o su intervalo de recurrencia (Campos, 1990). El periodo de retorno se define como el tiempo promedio en años en el cual el evento de lluvia puede ser igualado o excedido cuando menos una vez (Aparicio, 1992).

En cada tormenta en particular la altura de lluvia promedio máxima varía con la duración; por lo tanto, al analizar la altura de lluvia en un punto debe tomarse en cuenta tanto la cantidad de lluvia que cae como la duración correspondiente. A este análisis se le conoce como alturaduración. Si en lugar de la altura de lluvia usamos la intensidad (altura de lluvia por unidad de tiempo, mm/h) se obtiene la relación intensidad-duración. Por otro lado, cuando la duración considerada crece, la intensidad de lluvia decrece para cualquier frecuencia de ocurrencia dada y cuando la frecuencia de ocurrencia decrece, la intensidad de lluvia crece para cualquier duración dada; por lo tanto también es importante relacionar la intensidad de la lluvia con su frecuencia de ocurrencia. A esta relación se le conoce como intensidad-frecuencia.

Al combinar las relaciones anteriores intensidad-duración e intensidad-frecuencia se obtienen relaciones intensidad-duración-frecuencia.

Al concentrar las tres variables mencionadas en una gráfica; la duración d en el eje horizontal; la intensidad de la lluvia I en el eje vertical; y la frecuencia o periodo de retorno T como parámetro de la curva, obtenemos curvas intensidad-duración-periodo de retorno (IDT). Estas curvas representan gráficamente la probabilidad de que una cierta intensidad de lluvia promedio sea superada, dada una duración (Bedient y Huber, 1988).

Las curvas IDT se utilizan en el diseño de sistemas de drenaje, incluyendo drenaje agrícola, y en el diseño de estructuras hidráulicas como presas, alcantarillas, puentes, etc.

2.1 Métodos de obtención

Generalmente existen dos maneras para obtener curvas o relaciones IDT; la primera por medio de un análisis de frecuencia, siempre y cuando existan registros de lluvia local disponibles, y la segunda utilizando ecuaciones empíricas.

Análisis de frecuencia

Un análisis de frecuencia consiste básicamente en (Vijay, 1992):

- Seleccionar la duración de la lluvia (5,10,20,30,... 120 min). Para cuencas pequeñas, la duración que produce el gasto máximo debe igualarse con el valor del tiempo de concentración.
- Para la duración seleccionada, se extraen de los registros históricos la altura de lluvia o la intensidad máxima para cada uno de los años de registro. Si hay 30 años de datos, entonces habrá 30 alturas de lluvia máximas anuales asociadas con la duración seleccionada.
- Ajustar una distribución de frecuencia apropiada (Gumbel, Exponencial, Gamma, etc.)
 a estos valores, con lo cual se logra relacionar la magnitud de lluvia con el periodo de
 retorno correspondiente.
- 4. Obtener del ajuste los valores de intensidad o altura de lluvia para los periodos de retorno seleccionados. El periodo de retorno depende tanto del riesgo que se acepte de que la estructura falle hidráulicamente, como de su vida útil.
- 5. Repetir pasos 2 y 3 para diferentes duraciones.
- 6. Reagrupar los datos como intensidad o altura de Iluvia contra duración para varios periodos de retorno.

Ecuaciones empíricas

En general, las fórmulas para determinar relaciones IDT se basan en ecuaciones empíricas intensidad de lluvia-duración. Existen cuatro formas básicas, conocidas como ecuaciones tipo I, II, III y IV. Sin embargo, no hay bases teóricas para estas ecuaciones; lo que se sabe es que la intensidad de la lluvia es una función decreciente de la duración (Froehlich, 1993). Las ecuaciones son:

$$I = \frac{a_1}{d+b_1} \qquad a_1, \ b_1 \tag{2.1}$$

$$II I = \frac{a_2}{d^{c_2}} a_2, c_2 (2.2)$$

III
$$I = \frac{a_3}{(d+b_3)^{c_3}}$$
 a_3, b_3, c_3 (2.3)

$$IV I = \frac{a_4}{d^{c_4} + b_4} a_4, b_4, c_4 (2.4)$$

donde I es la intensidad de la lluvia en mm/h, d es la duración en min o h y a_i , b_i y c_i son coeficientes que se obtienen gráficamente o por mínimos cuadrados. Estos coeficientes varían con la zona o región.

Wisler y Brater (1949) proponen la ecuación intensidad-duración tipo III. Chow (1964), Viessman (1977) y Bedient y Huber (1988) proponen la ecuación tipo I para estimar la intensidad en función de la duración. Hargreaves (1981) y, Kothyari y Garde (1992) utilizan en su estudio una ecuación tipo II. Chow (1988) y Vijay (1992) usan relaciones intensidad-duración tipo IV.

Para plantear fórmulas IDT, a las ecuaciones anteriores (tipo I, II, III y IV) se les incluye el periodo de retorno T. En la ecuación tipo I, Viessman (1977) incluye el periodo de retorno en los coeficientes a y b. Raudkivi (1979) lo incluye en la ecuación intensidad-duración de la siguiente manera

$$I = \frac{a \ T^m}{(d+b)^c} \tag{2.5}$$

donde I es la intensidad de la lluvia en mm/h, d es la duración de lluvia en min o h, T es el periodo de retorno en años; y a, b, c y m son constantes.

Hall (1984), incluye el periodo de retorno de la misma manera que Raudkivi. Chow (1988) y Vijay (1992) lo incluyen en la ecuación intensidad-duración

$$Y = \frac{a T^m}{d^c + b} \tag{2.6}$$

donde los símbolos son los mismos de la ecuación 2.5.

Relaciones regionalizadas IDT

El desarrollo de éstas relaciones se inicia con los estudios de Hershfield y Wilson, y son continuados por Reich y Bell (Hall, 1984). Estos estudios consideran que los eventos de lluvia extrema con duración menor o igual a 2 h (120 min) provienen de tormentas similares, generalmente de lluvias convectivas, las cuales tienen propiedades físicas similares en muchas partes del mundo.

Métodos de obtención en México

En México las curvas IDT se obtienen por dos métodos: a) método de intensidad de lluviaperiodo de retorno; en donde el análisis se realiza para valores correspondientes a una sola duración, y b) método de correlación lineal múltiple; en donde se hace un ajuste simultáneo de los valores de las tres variables (Franco y Domínguez, 1981).

En el *método de intensidad de lluvia-periodo de retorno* el análisis se realiza para cada duración, ajustando alos valores máximos anuales una función de distribución de probabilidad, generalmente una función del tipo Gumbel. El proceso de cálculo es similar al descrito en el análisis de frecuencia.

En el *método de correlación lineal múltiple* la curva IDT se obtiene ajustando una función a los valores de intensidades máximas anuales correspondientes a todas las duraciones de interés.

La ecuación que generalmente se usa es la siguiente

$$I = \frac{k T^m}{d^n} \tag{2.7}$$

donde I es la intensidad de la lluvia, en mm/h; T el periodo de retorno, en años; d la duración de la intensidad, en h; k, m y n son parámetros que se obtienen al hacer el ajuste de la ecuación.

2.2 Estudios previos

Bell (1969) analizó lluvias con duraciones menores o iguales a 2 h e indicó que los valores extremos de estas lluvias están asociadas con lluvias de tipo convectivo local. En el estudio de Bell se menciona que el United States Weather Bureau (USWB) recomienda valores constantes de la relación altura de lluvia de duración d min a la lluvia de duración 60 min (1 h), para el mismo periodo de retorno (R_d^T/R_1^T). Esto es, lluvias de 5, 10, 15 y 30 min tienen

relaciones de 0.29, 0.45, 0.57 y 0.79, respectivamente, a la lluvia de 60 min. Bell demostró que las relaciones altura-duración y altura-frecuencia encontradas en Estados Unidos de América (EUA) pueden aplicarse en otras partes del mundo, por lo que propone relaciones constantes. Por el momento, únicamente se presenta la ecuación altura-duración, válida para 5≤d,min≤120, y los valores de las relaciones mencionadas para una duración de 1 h y periodo de retorno 2 años se presentan en las tablas 2.1 y 2.2. Posteriormente en el capítulo 4, inciso 4.2, se describe ampliamente esta fórmula.

La ecuación altura-duración propuesta por Bell es

$$\frac{R_d^T}{R_1^T} = 0.54 \ d^{0.25} - 0.50 \tag{2.8}$$

donde R_d^T es la altura de lluvia de T años y d min, y R_1^T es la altura de lluvia de T años y 1 h de lluvia.

Tabla 2.1 Relaciones altura-duración

d, min	5	10	15	30	60	120
Relación	0.29	0.45	0.57	0.79	1.00	1.25

* valor encontrado por Bell

Tabla 2.2 Relaciones altura-periodo de retorno

T, años	2	5	10	25	50	100
Relación	1.0	1.35	1.60	1.87	2.10	2.32

Hargreaves (1981) indica que la altura de lluvia varía aproximadamente con la potencia ¼ de la duración, d, y con la potencia 1/6 del periodo de retorno, T. La altura de lluvia de 24 h y 10 años de periodo de retorno fue utilizada para encontrar estos valores. Finalmente, la ecuación que propone para estimar otras duraciones y otros periodos de retorno es la siguiente

$$R = K T^{\frac{1}{6}} d^{\frac{1}{4}} \tag{2.9}$$

donde R es la altura de lluvia en mm, T el periodo de retorno en años, d la duración en min y K es una constante para cada región o localidad. La ecuación es válida para $5 \le T \le 100$ años y 30 min $\le d \le 4$ días.

Chen (1983) ajusta una transformación logarítmica de la ecuación tipo III a datos de lluvia para duraciones entre 5 min y 24 h y presenta una relación gráfica entre los parámetros de la ecuación y la relación de la altura de lluvia de 1 h a la altura de lluvia de 24 h. Chen propone la siguiente ecuación para obtener relaciones IDT, utilizando series máximas anuales

$$I_d^T = \frac{a_1 \ I_1^{10} \log \left\{ 10^{2-X} \left[\ln \left(\frac{T}{T-1} \right) \right]^{-(X-1)} \right\}}{(d+b_1)^{c_1}}$$
 (2.10)

donde I_d^T es la intensidad de lluvia para T años y d min, en mm/h; I_1^{10} la intensidad de lluvia para 10 años y 1 h; X es la relación R_1^{100}/R_1^{10} (altura de lluvia para 100 años y 1 h entre altura de lluvia para 10 años y 1 h); a_1 , b_1 y c_1 son parámetros de tormenta estándar obtenidos por mínimos cuadrados. La ecuación es válida para T > 1 año y para 5 min $\leq d \leq 24$ h. En el capítulo 4, inciso 4.1, se describe ampliamente ésta fórmula.

Froehlich (1992) analizó cada uno de los cuatro tipos de ecuaciones empíricas intensidadduración, mencionadas anteriormente. Utilizó alturas de Iluvia con duración menor a una hora, obtenidas de los mapas isopluviales publicados por el National Weather Service para cuatro regiones de EUA incluyendo Alaska y Hawaii. En su estudio trabajó cada ecuación en forma adimensional, dividiendo entre la intensidad de Iluvia de duración 1 h, I_1 . Por ejemplo, la forma adimensional de la ecuación tipo I es

$$I^* = \frac{a_1^*}{d + b_1} \tag{2.11}$$

donde $I^* = I / I_1$ y $a_1^* = a_1 / I_1$

Los parámetros para cada una de las relaciones adimensionales se determinan minimizando el error cuadrático. Froehlich propuso, para cada región analizada, la ecuación que resultara con el mínimo error de la suma de los cuadrados, estimado como

$$E = \sum_{j=1}^{N} (\hat{I}_{j}^{*} - I_{j}^{*})^{2}$$
 (2.12)

donde \hat{I}_{j}^{*} es el valor estimado de la intensidad de lluvia adimensional con las ecuaciones 2.1 a 2.4, I_{j}^{*} es la intensidad de lluvia adimensional obtenida utilizando los mapas del National Weather Service de los EUA y N es el número de observaciones.

Por ejemplo, para la región oeste de los EUA y Alaska obtuvo los siguientes valores:

Ecuación	Parámetros	Error cuadrático
	$a_1^* = 71.2, b_1 = 15.8$	0.0120
H :	$a_2^* = 7.41, c_2 = 0.45$	0.0536
III	$a_3^* = 23.1$, $b_3 = 7.90$, $c_3 = 0.74$	0.0013
, IV	$a_4^* = 36.4, b_4 = 6.72, c_4 = 0.83$	0.0008

Por lo tanto para encontrar alturas de lluvia con periodo de retorno hasta 100 años para las regiones mencionadas, se aplicaría la ecuación tipo IV con sus respectivos parámetros

$$I = \frac{36.4 \ I_1}{d^{0.83} + 6.72} \tag{2.13}$$

Kothyari y Garde (1992) además de incluir el periodo de retorno en la ecuación intensidadduración tipo II, incluyen la altura de lluvia con periodo de retorno 2 años y duración 24 h, R_{24}^2 , y la ecuación que proponen es

$$I_d^T = C \frac{T^b}{d^a} (R_{24}^2)^a (2.14)$$

donde I_d^T es la intensidad de lluvia de T años y d min, C, b, a y e son constantes obtenidas por un análisis de correlación lineal múltiple.

Ferreri y Ferro (1990) analizan lluvias de corta duración, menores a 1 h, para verificar la aplicabilidad de la relación altura-duración sugerida por Bell, ecuación 2.8, y para determinar si las características de lluvias de corta duración son realmente independientes de factores geográficos.

Para tal efecto, con información de 191 estaciones localizadas en Sicilia, Italia, calculan los valores de la relación R_d/R_1 para cada una de las estaciones, donde R_d es la altura de lluvia con duración d min, y R_1 es la altura de lluvia con duración 1 h. Se ha comprobado que esta relación es independiente del periodo de retorno (Bell, 1969). Los autores proponen una relación altura-duración del tipo

$$\mathbf{v} = a \ d^b \tag{2.15}$$

donde y es la relación media R_d/R_1 , a y b son constantes obtenidas con un ajuste de mínimos cuadrados. Al obtener las constantes a = 0.208 y b = 0.386, comparan sus resultados con la ecuación sugerida por Bell y encuentran valores similares en el rango $30 \le d \le 60$ min. Con estos resultados confirman la independencia de las lluvias de corta duración de factores geográficos en Sicilia, Italia.

Goswami (1972) elaboró mapas de curvas altura-duración-periodo de retorno para la India, basándose en relaciones propuestas para EUA. Su análisis trata con datos de lluvia puntual y duraciones menores o iguales a 2 h (120 min).

Con el valor de la relación R_1^2/R_{24}^2 igual a 0.435 y conocida la altura de lluvia de duración 24 h y periodo de retorno 2 años, estima la altura de lluvia de duración 1 h y periodo de retorno 2 años; con este valor y las relaciones propuestas en el estudio de Bell, mencionadas

anteriormente, elabora planos de isoyetas para periodos de retorno de 2, 5, 10, 25, 30, 50 y 100 años y duraciones de 5, 10, 15, 30, 60 y 120 min.

Estudios realizados en México

Franco y Domínguez (1982) proponen un método de regionalización para determinar la lluvia de diseño empleando factores de ajuste por duración, periodo de retorno y área. La regionalización se aplicó a la cuenca del Valle de México.

Para la regionalización sugieren elaborar dos planos de isoyetas; uno para d = 30 min y el otro para d = 24 h, ambos planos con un periodo de retorno de 5 años. Elegir la primer duración es para tomar en cuenta el hecho de que en las zonas urbanas las lluvias que provocan los gastos máximos generalmente tienen una duración menor de 2 h, y la segunda para utilizar la información de los pluviómetros ubicados en la región.

Para elaborar el primer plano proponen ajustar a los datos de cada estación una ecuación tipo I (ec.2.1). Para el segundo, ajustar diferentes funciones de distribución de probabilidad (Gumbel, exponencial, gamma, etc.) y escoger la función que mejor se ajuste a los datos. Posteriormente calcular la precipitación correspondiente al periodo de retorno de 5 años, utilizando la función de distribución seleccionada.

Para utilizar los planos de isoyetas anteriores en análisis con periodos de retorno y duraciones diferentes a las que se usaron para construirlos, determinaron factores de ajuste por duración, periodo de retorno y área. De tal manera que conocida la altura de lluvia con periodo de retorno 5 años y 30 min y con los factores indicados en las tablas 2.3 y 2.4, se puede obtener la lluvia de diseño para las duraciones y los periodos de retorno deseados.

Tabla 2.3 Factores de ajuste por duración para la cuenca del Valle de México

d,min	5	10	15	20	30	60	80	100	120
Factor	0.34	0.60	0.75	0.87	1.00	1.20	1.27	1.30	1.33

Tabla 2.4 Factores de ajuste por periodo de retorno para la cuenca del Valle de México

T,años	1	2	5	10	50	100	200
Factor	0.60	0.74	1.00	1.18	1.60	1.78	1.94

Campos (1984) sugiere utilizar la fórmula generalizada de Bell, ver ecuación 4.22, que toma como base la altura de lluvia de 2 años y 1 h (R_1^2) para obtener curvas IDT. Propone determinar la altura de lluvia R_1^2 con la relación $R_1^2/R_{24}^2 = 0.47$ (con valores extremos de 0.28 y 0.60). Posteriormente, en 1990, analiza información de 33 estaciones pluviográficas distribuidas en el territorio nacional, y encuentra valores de la relación $K = R_1^2/R_{24}^2$ para cada estación. También presenta y aplica las fórmulas de Bell y Chen utilizando series de excedentes anuales. Finalmente recomienda un valor promedio de K de 0.479, con valores extremos de 0.204 y 0.646. Para periodos de retorno entre 2 y 10 años y duraciones pequeñas, sobre todo 5 min, recomienda la fórmula de Bell (ec.4.22), y para periodos de retorno mayores o iguales a 10 años la fórmula de Chen (ecuación para series de excedentes anuales).

Barrios y Domínguez (1986) proponen una regionalización de precipitaciones máximas en cuencas donde predominan las tormentas de tipo convectivo. La regionalización la aplicaron a 17 estaciones con información pluviográfica y pluviométrica de la cuenca alta del río Lerma.

El análisis estadístico consistió en ajustar a cada una de las 17 estaciones pluviográficas y para duraciones de 15, 20, 30, 60, 80, 100, 120, 180 y 240 min, las funciones Gumbel, Normal, Lognormal, Gamma y Exponencial. La distribución adoptada como representativa de todas las estaciones de la cuenca fue Gumbel.

Estos autores elaboraron un plano base de alturas de lluvia de 30 min y periodo de retorno 10 años, para pasar a otra precipitación y a otro periodo de retorno multiplicando solo por un factor. Los factores encontrados para la cuenca alta del río Lerma son los mostrados en las tablas 2.5 y 2.6.

Tabla 2.5 Factores de ajuste por duración para la cuenca alta del río Lerma

d,min	15	20	30	60	80	100	120	180	240
Factor	0.73	0.84	1.00	1.23	1.30	1.35	1.38	1.45	1.52

Tabla 2.6 Factores de ajuste por periodo de retorno para la cuenca alta del río Lerma

T,años	1	2	5	10	50	100	200
Factor	0.60	0.66	0.85	1.00	1.34	1.48	1.65

La Secretaría de Comunicaciones y Transportes (SCT) en 1990 publicó isoyetas de Intensidad-Duración-Frecuencia para toda la República Mexicana para duraciones de 10, 30, 60, 120 y 240 min y periodos de retorno 10, 25 y 50 años. En este trabajo, con información pluviográfica de 382 estaciones con registros mayores o iguales a ocho años, se realiza un análisis estadístico y probabilístico utilizando 10 distribuciones de probabilidad; Gumbel, Log Gumbel, Gumbel 1, Log Gumbel 1, Pearson, Normal, Log Normal, Log Normal tres parámetros, Doble Normal y Gamma. Según la SCT; 235 estaciones se ajustaron mejor a la distribución Gumbel, 67 a la distribución Normal y el resto a las diferentes distribuciones.

Con lo anterior se presentan las isoyetas con valores de intensidades máximas calculadas con las distribuciones de probabilidad que presentaron el error mínimo para cada una de las estaciones. Las isoyetas se presentan por estado.

Domínguez y Ríos (1991) proponen una metodología para pronosticar intensidades máximas, en función de la precipitación media anual y de la intensidad de precipitación con duración 120 min y un periodo de retorno de 10 años, en la cuenca del río Papaloapan.

Estos autores obtienen un plano de isoyetas medias anuales, utilizando 167 estaciones pluviométricas distribuidas en la región con registros mayores de 10 años. Con información de 35 estaciones pluviográficas calcular intensidades máximas que se pueden presentar en cada una de las estaciones, para diferentes duraciones y periodos de retorno, ajustando las funciones de distribución de probabilidad más comunmente utilizadas: Normal, Log Normal, Gumbel y Exponencial. Para probar la bondad del ajuste en cada una de estas funciones, estimaron la suma del error cuadrático como

$$E = \sum_{i=1}^{N} (\hat{T}_i - T_i)^2$$
 (2.16)

donde \hat{T}_j es el periodo de retorno obtenido con las funciones de distribución de probabilidad y T_j son los periodos de retorno de los N valores medidos. La función exponencial presentó la suma del error cuadrático más pequeño y con ella se calcularon las intensidades máximas.

Posteriormente encontraron la relación entre la lluvia media anual en cada estación y las intensidades máximas anuales que se pueden presentar para un periodo de retorno de 10 años y duración 120 min (P_{anual} / I_{120}^{10}). Al graficar I_{120}^{10} contra P_{anual} , observaron que los puntos se alineaban en torno a dos curvas, al analizar este comportamiento identificaron dos zonas en la cuenca:

Zona I Zona de alta pendiente, expuesta a la entrada de humedad proveniente del Golfo de México. Se presentan Iluvias que sin ser muy intensas incrementan el total de la precipitación anual.

Zona II Zona plana o protegida por los vientos. En esta zona la lluvia tiene menor influencia en el total anual.

Al ajustar con mínimos cuadrados los puntos de la gráfica mencionada anteriormente, obtuvieron dos curvas que se aproximan a los datos de la región estudiada, resultando

Curva I I= 0.213
$$(\ln(0.4 P_{anna}))^3 \sim 22.92$$
 (2.17)

Curva II
$$I = 0.200 \left(\ln(0.4 P_{anna}) \right)^3 - 6.97$$
 (2.18)

Con estas ecuaciones se obtiene la intensidad máxima con una duración de 120 min y periodo de retorno 10 años en función de la P_{anual} y para calcular las intensidades asociadas a duraciones y periodos de retorno diferentes, los autores determinaron factores de ajuste por duración y periodo de retorno.

Los factores por periodo de retorno se obtuvieron dividiendo, para cada estación, la intensidad máxima pronosticada para cada uno de los periodos de retorno (2, 5, 10, 20, 50 y 100 años) entre la intensidad máxima pronosticada para el periodo de retorno de 10 años. Se excluyeron diez estaciones por alejarse de la media y porque presentaron la suma del error cuadrático más grande. Los factores encontrados son los mostrados en la tabla 2.7.

Tabla 2.7 Factores por periodo de retorno para la cuenca del Papaloapan

T, años	2	5	10	20	50	100
Factor	0.65	0.86	1.00	1.14	1.33	1.48

Los factores por duración se obtuvieron dividiendo las intensidades máximas pronosticadas para las distintas duraciones (10, 15, 20, 30, 45, 60, 80, 100 y 120 min) entre la intensidad máxima pronosticada para la duración de 120 min. También se excluyeron algunas estaciones, cuyo factor se encontraba alejado de la media. Los factores son los mostrados en la tabla 2.8.

Tabla 2.8 Factores por duración para la cuenca del Papaloapan

d,min	10	15	20	30	45	60	80	100	120
Factor	3.93	3.45	3,06	2.48	2.09	1.67	1.36	1.15	1.00

Finalmente la metodología propuesta se resume en los siguientes pasos:

- Localizar el punto de interés en el plano de isoyetas medias anuales, en donde se delimitan las zonas correspondientes a las curvas I y II.
- . Obtener la P_{anual} del plano de isoyetas medias anuales.
- . Conocida la zona y la precipitación media anual, se calcula la intensidad máxima que se puede presentar para una duración de tormenta de 120 min y un periodo de retorno de 10 años, con las ecuaciones 2.17 y 2.18.
- Para conocer la intensidad que se puede presentar con una duración d (diferente a 120 min) y periodo de retorno T (diferente a 10 años) se multiplica la intensidad determinada en el paso anterior por los factores de las tablas 2.7 y 2.8.

Los estudios previos realizados tanto en México como en otros países, exploran la utilidad de algunas relaciones universales y/o proponen metodologías para estimar intensidades de lluvia con un mínimo de datos.

En general, para las propuestas metodológicas cada autor elige una altura de lluvia estándar con periodo de retorno T y duración d, pero no existen bases teóricas para esta elección. Dado que es dificil obtener registros de alturas o intensidades de lluvia para periodos de tiempo cortos, se trabaja con periodos de retorno de 2,5 ó 10 años y duraciones de 24 h, 1 h ó 30 min. Posteriormente usan la altura de lluvia estándar para desarrollar una ecuación o encontrar relaciones que permitan estimar intensidades de lluvia con otras duraciones y periodos de retorno.

En zonas en desarrollo, donde los datos de intensidad de lluvia son inadecuados o no existen, con las metodologías descritas anteriormente se pueden estimar valores que puedan ser útiles para la planeación y diseño de proyectos hidráulicos.

En el capítulo 3, inciso 3.6.1, se presenta la comparación de relaciones altura-duración y altura-periodo de retorno presentadas en los estudios descritos anteriormente; así como los valores encontrados en la zona en estudio.

3. CARACTERISTICAS DE LA ZONA EN ESTUDIO

La zona en estudio se encuentra entre los 15° 20′ γ los 19° 00′ de latitud norte y entre los 92° 00′ γ los 97° 45′ de longitud oeste. Comprende las cuencas de los ríos Jamapa, Papaloapan, Coatzacoalcos y parte de la cuenca del río Grijalva. Estas cuencas descargan al Golfo de México. El área de estudio es aproximadamente de 106 000 km² γ abarca parte de los estados de Puebla, Veracruz, Oaxaca γ Chiapas (figura 3.1).

Geomorfológicamente, la zona abarca tanto las planicies costeras de Veracruz y de Tabasco-Campeche, como las montañas de la Sierra Madre del Sur y de Chiapas.

3.1 Características climatológicas

De acuerdo con la regionalización climática del Instituto de Geografía, UNAM (1993), la zona en estudio queda comprendida en tres regiones: a) la del Golfo de México, b) Balsas-Valle Oaxaca y c) Sureste. En esta clasificación se consideran fenómenos meteorológicos dominantes, régimen pluviométrico y la distribución anual de la temperatura.

Las principales características climatológicas de las regiones son:

a) Golfo de México. Alisios, ondas del este y ciclones tropicales en verano y otoño, nortes en invierno, régimen intermedio, dos máximos de temperatura.

b) Balsas-Valles Oaxaca. Aislada de vientos húmedos, alisios y monzón descendentes, lluvia de verano, dos máximos de temperatura.

c) Sureste. Zona intertropical de convergencia, alisios del sureste, ciclones, régimen de verano, muy escasa lluvia invernal, dos máximos de temperatura.

La mayor parte de la zona en estudio es cálida con temperaturas medias anuales entre 22°C y 26°C. Sin embargo, hay algunas localidades muy cálidas con temperaturas mayores a 26°C como es el caso de Piedras Negras y Minatitlán, Veracruz. De acuerdo con su humedad, el clima se considera húmedo y subhúmedo.

La mayor parte de la región presenta valores entre 1000 y 2500 mm de precipitación media anual; sin embargo algunas localidades alcanzan valores superiores a los 3000 mm como es el caso de Pichucalco, Chiapas. Los valores de la precipitación media anual en cada una de las estaciones consideradas en el estudio se presentan en la tabla 3.1.

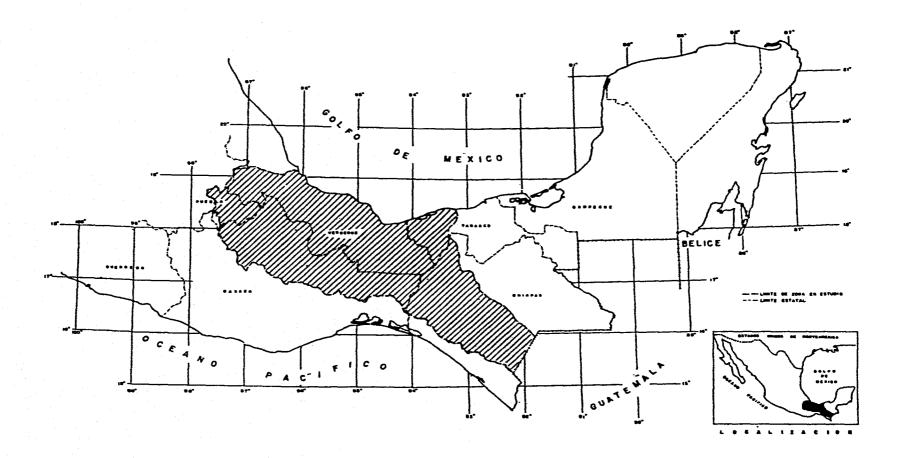


Fig.3.1 Localización de la zona en estudio

En relación con la precipitación máxima en 24 h, valor máximo registrado en el periodo 1941-1980, la mayor parte de la región presenta valores entre 200 y 400 mm, y algunas localidades como Catemaco y Alvarado, Veracruz, registraron valores mayores a los 400 mm. También se encuentran localidades como Tehuacán, Puebla, en donde la precipitación máxima en 24 h es menor de 100 mm.

3.2 Características hidrológicas

A continuación se describen los principales ríos que forman cada una de las cuencas mencionadas, así como su área de captación. En la figura 3.2 se presenta la red hidrográfica correspondiente.

Cuenca Jamapa.

El Río Jamapa nace en las faldas del Pico de Orizaba y después de recibir numerosos afluentes por su margen derecha, entre los que se encuentran el río Cotaxtla y el Huatusco, descarga al lugar Boca del Río. El área de la cuenca es de 3 627 km².

Cuenca del Papaloapan.

El río Papaloapan nace en las inmediaciones de Coajimaloyas en la Sierra Juárez y sigue una dirección general hacia el noroeste, recibe por su margen izquierda el río Tomellín. La corriente gemela se genera en el Valle de Tehuacán y con el nombre de río Salado viene en dirección colineal opuesta, y después de recibir por su derecha el río Xiquila se encuentra con el río Tomellín en Quiotepec; unidos a 500 m de altitud cambian de dirección y atraviesan la Sierra Madre de Oaxaca en un estrecho cañón por el que circula la corriente con el nombre de río Santo Domingo.

Al salir del cañón estrecho y profundo recibe por la derecha el río Usila y 50 km al oriente se inserta el río del Valle Nacional, y desde ese momento la corriente toma el nombre de río Papaloapan para continuar con dirección general hacia el noroeste. Desde ese punto hacia la desembocadura, el río cruza la planicie costera y recorre 240 km hasta la laguna de Alvarado. Recibe todavía por la izquierda el importante río veracruzano llamado Tonto, límite entre Oaxaca y Veracruz; este río es regulado por la presa Miguel Alemán y al cruzar la vía del Ferrocarril del Istmo se le une por la derecha el río Obispo que nace en las inmediaciones de Loma Bonita. El río Papaloapan pasa por Cosamaloapan, Tlacotalpan y se le inserta en las cercanías de esta población el río de Playa Vicente que tiene su origen en la Sierra Madre de

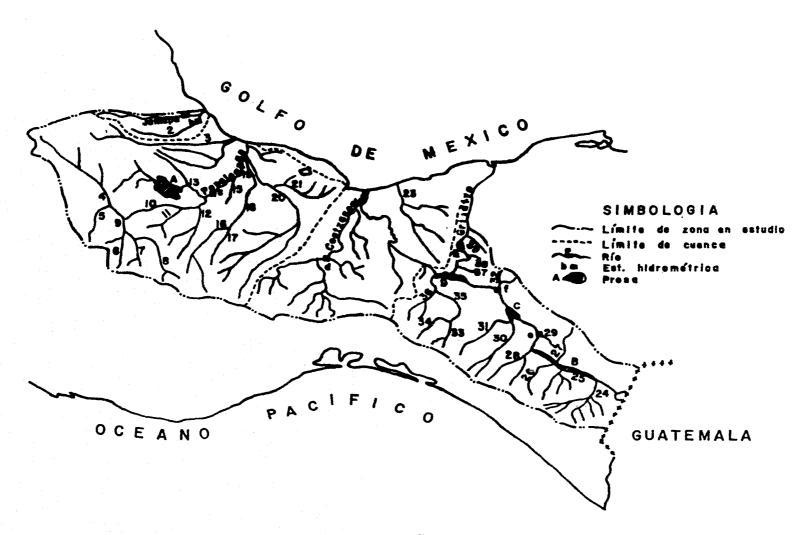


Fig.3.2 Red hidrográfica

Río

21 Lauchapan 1 Jamapa 2 Cotaxtia 22 Coatzacoalcos 23 Tonalá 3 Blanco 24 San Miguel 4 Salado 5 Xiquila 25 San Gregorio 26 La Concordia 6 Parián 27 Blanco 7 Jayacatlán 8 Río Grande 28 El Dorado 29 La Angostura 9 Tomellín 30 Sto. Domingo 10 Sto. Domingo 11 Usila 31 Suchiapa 32 Chicoasén 12 Valle Nacional 13 Tonto 33 Soyatenco 34 Cintalapa 14 Papaloapan 15 Obispo 35 De la Venta 36 Encajonado 16 Cajonos 37 Tzinbacnho 17 Manso 18 Playa Vicente 38 Sayula 39 Platanar 19 Tesechoacán 20 San Juan 40 Grijalva

Est. hidrómetrica

a El Tejarb Paso del Toroc Papaloapand Las Perlase La Angosturaf Grijalva

Presas .

A Miguel Alemán
B La Angostura
C Chicoasén
D Netzahualcóyotl
E Las Peñitas

Oaxaca en el distrito de Villa Alta, pero que al unirse al Papaloapan recibe el nombre de Tesechoacan. Finalmente, ya casi al descargar en la laguna de Alvarado, se le une el río San Juan Evangelista que nace también en Villa Alta y después de un largo recorrido recibe en su curso inferior la descarga de la laguna de Catemaco por medio del río Tuxtla. Esta cuenca con 36 524 km² se extiende en los estados de Oaxaca, Puebla y Veracruz.

A la laguna de Alvarado concurren también los caudales del río Blanco y otras corrientes menores. El río Blanco nace en las cumbres de Acultzingo, en las cercanías de la ciudad de Orizaba. Esta corriente pasa por los poblados de Nogales, Río Blanco, Santa Rosa, Cocolapan, posteriormente recibe la afluencia del río Orizaba y el de Tilapan. A unos cuantos kilómetros abajo de Orizaba recibe el río Escamela. Finalmente y después de 150 km de recorrido descarga en la laguna de Alvarado. La cuenca de captación tiene una extensión de 3 800 km².

Cuenca Coatzacoalcos.

Esta cuenca esta formada por los ríos Coatzacoalcos y el Tonalá con un área total de captación de 24 541 km². El río Coatzacoalcos nace en la vertiente norte de la Sierra Atravesada, sigue una dirección hacia el oeste y recibe por su margen izquierda los ríos Chichihua y Chivela unidos. Cambia de dirección hacia el norte y se le une por la izquierda el río Jaltepec. Ya dentro de la planicie costera recibe por la derecha los importantes afluentes de Coachapa y Uxpanapa, pasa a la orilla de Minatitlán para finalmente desembocar en el Golfo de México en las inmediaciones del puerto de Coatzacoalcos. El área de la cuenca es de 18 561 km².

El río Tonalá nace en la Sierra Madre de Chiapas al unirse los ríos Tancochapa y el de Poza Crispín. Recibe por la izquierda el río Xucuapa y por la derecha el río Zanapa. El río Tancochapan constituye el límite entre los estados de Veracruz y Tabasco. El río Tonalá desemboca en la barra del mismo nombre en las inmediaciones del poblado de Tonalá. Su cuenca de captación es de 5 980 km².

Parte de la Cuenca del Grijalva.

El área de cuenca total considerada es igual a 37 700 km². El río Grijalva tienen su origen en territorio guatemalteco, cercano al volcán de Tacaná y llega a territorio mexicano con el nombre de río San Gregorio.

Rio San Gregorio. Se origina por tres corrientes importantes que desarrollan sus cuencas, cada una de ellas, tanto en Guatemala como en México. La primera, de recorrido norte-sur, se llama

río Lagartero. La segunda de dirección este-oeste, es el río Dolores y la tercera, de dirección sureste-noroeste, es el río Salegua.

Estas tres corrientes se unen aproximadamente 3 km al oeste de la línea divisoria entre México y Guatemala y ya unidas, continúan con dirección noroeste, con el nombre de río San Gregorio, hasta que se unen con el río San Miguel a la altura del poblado de San Gregorio, municipio de Frontera Comalapa, Chis. El área de cuenca hasta la estación hidrométrica Argelia, situada 1.5 km aguas arriba de la confluencia del río San Miguel con el río San Gregorio es de 5008 km².

Por la margen derecha se unen los ríos Blanco, Chicoasén, Yamonho, Tzinbacnho, Sayula, Platanar y Paredón. Por la margen izquierda se unen los ríos Salinas, La Concordia, El Dorado, Sto. Domingo, Sabinal y De la Venta.

Río Salinas o Grande. El río Paso Padre tiene su origen en el cerro de San Antonio, de la Sierra Madre de Chiapas, casi a 2000 m de altitud, que fluye en dirección noreste con el nombre de río Salinas. El área de la cuenca hasta la estación Los Vados, situada 8 km aguas arriba de la confluencia con el río Grijalva es de 1 346 km².

Río La Concordia. Se une al río Grijalva por la margen izquierda 12 km aguas abajo de la confluencia con el rió Salinas. El río Concordia tiene sus orígenes en la Sierra Madre de Chiapas y está formado por cuatro subafluentes que se unen, en forma de abanico, después de 25 km de recorridos independientes para formar el río Custepeques que fluye hacia el noreste. Hacia la parte media del recorrido del Custepeques hay un afluente derecho llamado arroyo La Concepción. En la confluencia hay un cambio de dirección hacia el este, tramo en el cual la corriente se llama ya río de La Concordia. El área de cuenca hasta la estación La Concordia, situada 5 km aguas arriba de la confluencia con el río Grijalva es de 1268 km² y hasta su confluencia con el Grijalva el área es de 1503 km².

Río Blanco. Inmediatamente a un kilómetro aguas abajo de la confluencia del río de La Concordia con el alto río Grijalva, el colector principal recibe la aportación por la margen derecha del río Blanco. Su cuenca tiene la forma de un triángulo rectángulo cuyos catetos están orientados de sur a norte y de oeste a este y cuya hipotenusa, de dirección surestenoroeste, está constituida por el parteaguas entre la cuenca del Grijalva y las primeras corrientes formadoras del Usumacinta.

Río El Dorado. Se une al Grijalva por la margen izquierda 26 km aguas abajo de la estación Arco de Piedra. Se origina sobre el parteaguas de la Sierra Madre de Chiapas, a 3000 m de altitud. Hacia la parte alta se llama río San Pedro. El área de la cuenca hasta la estación hidrométrica Santa Isabel, situada 7 km aguas arriba de la confluencia del río El Dorado con

el Grijalva es de 1926 km².

Río La Angostura. Se une al Grijalva 20 km aguas abajo después de recibir al río El Dorado. El área de la cuenca del Grijalva hasta la estación La Angostura, ubicada en el colector principal, es de 17 587 km².

Río Santo Domingo. 56 km aguas abajo de la estación hidrométrica La Angostura entra como afluente izquierdo del río Grande de Chiapa (nuevo nombre del Grijalva en esta zona) el río Santo Domingo.

La corriente formadora situada más al noroeste es el *rlo Suchiapa*, este río nace en el parteaguas de la Sierra Madre de Chiapas (Cerro de tres picos) a unos 2600 m de altitud. La cuenca total del río Santo Domingo, junto con el Suchiapa hasta la desembocadura en el río Grande de Chiapa es de 4180 km². En este punto se localiza la presa Chicoasén destinada a la generación de energía hidroeléctrica y control de avenidas.

Río Sabinal. Abajo de la estación Puente Colgante II el río de Chiapa recibe por su margen izquierda otro afluente, llamado río Sabinal que pasa por la ciudad de Tuxtla Gutiérrez, con una dirección oeste-este. La cuenca total del río Sabinal hasta su confluencia con el río de Chiapa es de 375 km².

Río Chicoasén. 3 km aguas abajo de la estación Chicoasén, el colector general recibe como afluente derecho al río Chicoasén, que se origina a 20 km al noroeste de Simojovel, Chis., a unos 2000 m de altitud.

Río Yamonho. Es un afluente derecho con 40 km de longitud a lo largo del cauce principal, con trayectoria hacia el suroeste.

Río De la Venta. Se trata de un afluente izquierdo que actualmente ya no llega al cauce en forma directa sino a través del embalse de la presa Netzahualcóyotl. El formador principal es el río Cintalapa, que nace en los linderos de los estados de Oaxaca y Chiapas, a 25 km al noreste de Tapanatepec, recibe por la margen derecha un afluente importante llamado Zoyatenco y ya juntos continúan hacia el noroeste. La cuenca hasta la estación hidrométrica Las Flores, situada 11 km aguas abajo de la confluencia del río Cintalapa y Zoyatenco es de 2 579 km².

De la estación hidrométrica de Las Flores el río continúa con dirección general norte. En este tramo el río ya se conoce con el nombre de río De La Venta. 50 km aguas abajo de la estación Las Flores recibe un afluente por su margen izquierda muy importante llamado río Encajonado, que propiamente tiene su origen en un punto común del parteaguas con el Cintalapa, en el

cerro Pecho Blanco. La mayor parte de su cuenca se desarrolla dentro del estado de Oaxaca, por su margen derecha recibe el río de Tierra cuya cuenca se desarrolla en el estado de Chiapas. El Encajonado y el río de Tierra se unen muy cerca del límite entre los estados de Oaxaca y Chiapas, a partir de esa confluencia desagua hacia el río de La Venta en forma directa siguiendo un rumbo noreste. Sobre el río Encajonado, 9 km aguas arriba de la confluencia con el río De la Venta se localiza la estación hidrométrica Santa María.

Los datos más importantes de áreas de cuenca son: Cuenca total del río Encajonado hasta la estación Santa María 1 958 km² y cuenca del Encajonado hasta su confluencia con el río De la Venta 1 973 km².

Río Tzinbacnho. Río aportador derecho del Mezcalapa, nombre con el que se conoce al río Grijalva en esta zona, que se encuentra aguas abajo de la cortina de la presa Netzahualcóyotl. 4 km aguas arriba de la confluencia con el Mezcalapa se localiza la estación hidrométrica Tzimbac. El área de la cuenca hasta dicha estación es de 200 km² y hasta el colector general 248 km².

Río Sayula. Es otro aportador derecho cuya entrada al Mezcalapa está 40 km aguas abajo de la confluencia con el Tzinbacnho. La dirección general de su escurrimiento es hacia el noreste y la longitud de su cauce es de 48 km hasta la desembocadura en la corriente principal, 4 km aguas arriba de la corriente principal se ubica la estación hidrométrica Sayula. El área de cuenca hasta dicha estación es de 410 km² y hasta el colector principal 438 km².

2 km aguas abajo de la confluencia con el río Sayula se localiza sobre el cauce principal la presa Peñitas, hasta la cual la cuenca total del Grijalva es de 34 631 km². A esta altura el río ya se presenta en forma muy sinuosa y corre con pendiente relativamente escasa.

Río Platanar. Este es otro afluente derecho del río Grijalva. El cauce principal tiene una dirección noreste y muy cerca de su desembocadura en la corriente principal cuenta con un subafluente de cierta importancia que corre de sur a norte. Existe una estación hidrométrica situada a 10 km aguas arriba de la confluencia con el Grijalva. La cuenca mide 216 km² hasta la estación Platanar y 481 km² hasta la desembocadura en el Grijalva.

Río Paredón o Camoapa. Después de la entrada del Platanar existe otro afluente derecho, llamado río Paredón, que nace a 6 km al suroeste de Pichucalco. La dirección general de su escurrimiento es hacia el noroeste a lo largo de un cauce que tiene 47 km de desarrollo total hasta la desembocadura, correspondiéndole una cuenca de 330 km² que prácticamente queda por completo dentro del estado de Chiapas. 2 km aguas arriba de la desembocadura se encuentra la estación hidrométrica Paredón a la cual le corresponde una área de 335 km².

3.3 Información disponible

Se recopiló información pluviográfica de intensidades máximas de lluvia con duración igual a 5, 10, 15, 30, 60, 80, 100 y 120 min e información pluviométrica, correspondiente a la lluvia máxima anual registrada en 24 h (1440 min). Se seleccionaron 32 estaciones con registros mayores o iguales a 12 años (figura 3.3). El periodo de registro en la mayoría de las estaciones es de 1962 a 1977. Para la cuenca del río Coatzacoalcos no se consiguió información. La ubicación, altitud, precipitación media anual, así como el periodo de registro de cada una de las estaciones se presenta en la tabla 3.1. El número de años de registro incluye información tanto de intensidades de lluvia con duraciones entre 5 y 120 min como altura de lluvia en 24 h.

Las intensidades máximas de lluvia para duraciones entre 5 y 120 minutos se obtuvieron en la Dirección General de Proyectos de la Secretaría de Comunicaciones y Transportes (SCT) y del Boletín hidrológico No. 24 de la Cuenca del Papaloapan; y la lluvia máxima en 24 h, en la Comisión Nacional del Agua.

3.4 Análisis estadístico de la información

Con la información recopilada se formaron series anuales correspondientes a cada duración; es decir, de cada año se seleccionó el valor de la intensidad más grande para una duración dada.

Kothyari y Garde (1992) estimarón intensidades de lluvia de duración d para diferentes periodos de retorno T, usando la Distribución de Valores Extremos Tipo I (Gumbel) con el método de máxima verosimilitud (MMV), por ser el que mejor describe la variación de las series máximas anuales. Oyebande (1982) justifica el uso del MMV, por ser una distribución sesgada; y Dennis (1982) recomienda usar para muestras pequeñas, periodos de retorno grandes y en sitios individuales el MMV en la estimación de los parámetros de la distribución Gumbel.

Por lo tanto, para obtener relaciones de intensidad de lluvia-duración-periodo de retorno (IDT) se usará la distribución Gumbel con el método de máxima verosimilitud para estimar sus parámetros.

Tabla 3.1 Características de las estaciones utilizadas en el estudio

7		,	,	,		_	,
]	Alt.	Precip.media	Periodo de	j
No	Estación	Lat	Long	msnm	anual, mm	registro	años
 							
	CHIAPAS:			}			
1	Arco de piedra	16° 12′	92° 40′	450	1281.7	1962-1973	12
2	Argelia	15° 54′	92° 09′	500	1097.0	1962-1974	13
3	Finca Sta.Isabel	16º 16'	92° 53′	100	1461.0	1962-1973	11
4	La Escalera	16° 28′	92º 57′	0	1012.7	1964-1983	16
5	Las Peñitas	17° 25′	93° 27′	50	3172.0	1962-1983	22
6	Presa Malpaso	17º 10'	93° 35′	98	2200.0	1959-1982	21
7	Pte. Colgante	16º 45'	93° 02′	418	948.0	1962-1982	19
8	Sta. María	16° 56′	93° 50′	220	1847.0	1962-1980	19
9	Tuxtla Gutiérrez	16º 45'	93° 01′	579	936.5	1951-1976	18
10	Villa Flores	16º 12'	93° 16′	857	1211.0	1954-1983	25
							}
	OAXACA:			ł			1
11	Ayutla	17° 01′	96° 04′	2000	1458.0	1957-1977	16
12	Cantón	18º 01'	96° 16′	42	3584.0	1948-1977	30
13	Huahutla	18º 07'	96° 50′	1714	2728.0	1957-1977	21
14	Jacatepec	17º 52'	96º 12'	42	3790.0	1959-1977	19
15	Jayacatlán 	17° 25′	96° 49′	1150	584.0	1957-1977	21
16	La Estrella	17º 58'	96° 27′	120	4557.0	1957-1977	21
17	Monte Rosa	17º 48'	95° 56′	51	2310.0	1956-1973	18
18	Papaloapan	18º 10'	96° 05′	22	2200.0	1948-1977	30
19	Quiotepec	17º 54'	96° 59′	545	506.0	1948-1977	30
20	Sn Pedro Nolasco	17º 18'	96° 25′	1800	1013.0	1958-1977	20
21	Temascal	18º 14'	96° 25′	80	2800.0	1957-1977	19
22	Tepelmeme	17º 53'	97° 22′	2180	524.0	1957-1977	21
23	Tepeuxila	17° 44′	96° 51′	1650	952.0	1957-1977	21
24	Villa Alta	17° 21′	96° 09′	1140	1561.0	1957-1977	20
			•			a jedan	
[-[PUEBLA:						[
25	Caltepec	18º 12'	97° 27′	1800	400.0	1957-1978	22
26	El Carmen	18° 32'	97° 29′	1700	450.0	1962-1977	15
			*	[,	,
	TABASCO:	,					
27	Cárdenas	18º 01'	93° 22′	21	1962.0	1959-1977	25
28	Paredón	17° 46′	93° 21′	,	2359.5	1965-1982	13
		'				_	
	VERACRUZ:				[]		
29	Acayucan	17º 56'	94° 54′	100	1794.0	1949-1977	28
30	Azueta	18º 05'	95° 43′	14	1563.0	1948-1977	29
31	Cuatotolapan	18º 09'	95° 18′	14	1370.0	1948-1977	30
32	Orizaba	18º 51'	97° 05′	924	2101.0	1930-1964	25

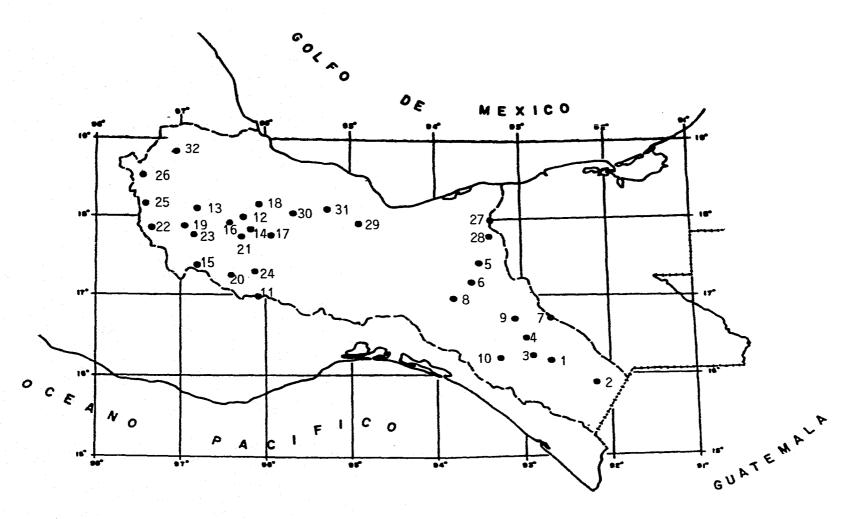


Fig.3.3 Localización de estaciones climatológicas

Distribución Gumbel

La distribución Gumbel se expresa como:

$$p(X) = \exp[-\exp(-\alpha(X-\beta))]$$
 (3.1)

donde p(X) es la función de distribución de probabilidad de X; α y β son parámetros de escala y ubicación, respectivamente.

La ecuación 3.1 puede escribirse en términos de una variable reducida

$$y = \alpha(X - \beta) \tag{3.2}$$

para obtener

$$p(X) = \exp[-\exp(-y)] \tag{3.3}$$

Si la ecuación anterior se expresa en términos del periodo de retorno T (el recíproco de la probabilidad de excedencia anual) resulta

$$y = -\ln [\ln(T/(T-1))]$$
 (3.4)

Por lo tanto la ecuación con la que se obtendrán relaciones IDT será

$$X = -\frac{1}{\alpha} \ln [\ln (T/(T-1)] + \beta$$
 (3.5)

Estimación de parámetros

El método adoptado para determinar los parámetros por máxima verosimilitud es el descrito por Kite (1988). Este método es iterativo y requiere valores iniciales de α y β para comenzar los cálculos. Las estimaciones iniciales se calculan con el método de momentos:

$$\alpha = 1.2825/\sigma$$
 (3.6)

$$\beta = \mu - 0.45\sigma \tag{3.7}$$

donde µ es la media y a es la desviación estándar de los datos.

Las ecuaciones simultáneas no lineales para estimar α y β por el método de máxima verosimilitud son:

$$\beta = \frac{1}{\alpha} \ln \left[n / \sum_{i=1}^{n} e^{-\alpha x_i} \right]$$
 (3.8)

$$F(\alpha) = \sum_{i=1}^{n} x_{i} e^{-\alpha x_{i}} - \left(\mu - \frac{1}{\alpha}\right) \sum_{i=1}^{n} e^{-\alpha x_{i}} = 0$$
 (3.9)

Para resolver analíticamente la ecuación 3.9 se usa una expansión de Taylor

(3.10)
$$F(\alpha_{j+1}) = F(\alpha_j + h_j)$$

 $F(\alpha_{j+1}) = F(\alpha_j) + h_j F'(\alpha_j)$ (3.11)

donde $F'(\alpha_i)$ es la derivada de primer orden de $F(\alpha)$ con respecto a α .

$$F'(\alpha) = -\sum_{i=1}^{n} X_{i}^{2} e^{-\alpha X_{i}} + \left(\mu - \frac{1}{\alpha}\right) \sum_{i=1}^{n} X_{i} e^{-\alpha X_{i}} - \frac{1}{\alpha^{2}} \sum_{i=1}^{n} e^{-\alpha X_{i}}$$
(3.12)

y α_j y α_{j+1} son aproximaciones sucesivas de α . Se inicia con el valor de α estimado con el método de momentos (ec.3.6) y se calcula $F(\alpha_1)$ y $F'(\alpha_1)$ con las ecuaciones 3.9 y 3.12, y se obtiene

$$h_1 = -F(\alpha_1) / F'(\alpha_1)$$
 (3.13)

y

$$\alpha_2 = \alpha_1 + h_1 \tag{3.14}$$

Este procedimiento se repite hasta que la diferencia entre α_1 y α_2 es muy pequeña (normalmente se requieren cuatro iteraciones). Posteriormente se obtiene β con la ecuación 3.8.

La intensidad de lluvia de duración d para diferentes periodos de retorno T se obtuvo, para cada estación, aplicando las ecuaciones 3.5, 3.8 y 3.9. El error estándar de los valores estimados se calcula con la expresión utilizada por Oyebande (1982)

$$SE[X(T)] = [(\alpha^2/n) (1.1 + 0.52y + 0.61y^2)]^{1/2}$$
 (3.15)

donde X(T) es el valor estimado con periodo de retorno T y y es la variable reducida correspondiente a T.

Para probar la bondad del ajuste se utilizó la prueba χ^2 dada por

$$\chi^2 = \sum_{i=1}^k (O_i - E_i)^2 / E_i$$
 (3.16)

donde k es el número de intervalos de clase, O_i es la frecuencia observada y E_i es la frecuencia esperada en el intervalo de clase i. La hipótesis de que los datos son de una distribución específica se rechaza si

$$\chi^2 > \chi^2_{1-\alpha + b-1} \tag{3.17}$$

donde α es el nivel de significancia y h es el número de parámetros de la función de probabilidad Gumbel. El valor $\chi^2_{1-\alpha,k-h-1}$ se obtiene de tablas (véase por ejemplo la tabla A.4 de Aparicio, 1992) para k-h-1 grados de libertad.

No hay reglas teóricas para escoger k, Baghirathan y Shaw (1978) sugieren que para tamaños de muestras entre 20 y 29 años se pueden usar cinco intervalos uniformes. Esta recomendación fue adoptada para nuestro análisis.

Por lo tanto, en el presente estudio con un nivel de significancia del 5%, la hipótesis se rechaza si $\chi^2 > 5.99$.

Para analizar las 32 estaciones de manera individual, se modificó el programa GUMBEL de la referencia 24, el cual tiene las siguientes funciones:

- Ajusta una distribución Gumbel a series anuales usando el método de máxima verosimilitud (ecs. 3.8 y 3.9).
- 2. Mide la bondad del ajuste con la prueba χ^2 usando cinco intervalos de clase (ec.3.16).
- Calcula intensidades de lluvia, para diferentes duraciones, con periodo de retorno de 2, 5, 10, 25, 50, 100 y 200 años (ec. 3.5).
- 4. Obtiene el error estándar para los valores estimados del punto 3 (ec. 3.15).

Para duraciones entre 60 y 120 min, el 90% de los valores estimados se ajustaron con un nivel de significancia del 5%, implicando un ajuste satisfactorio; para duraciones menores a 30 min y 24 h el 70% de los valores estimados se ajustaron con el nivel de significancia mencionado.

En la siguiente tabla se muestra el número de estaciones con cuyos datos se rechazó la hipótesis, tanto para un nivel de significancia del 5% como del 10%.

Tabla 3.2. Resumen de la prueba Ji-Cuadrada

	5%	10%
d (min)	Número de estaciones que rechazaron la hipótesis	
5	13	15
10	16	18
15	7	9
30	7	12
60	5	7
80	3	6
100	3	10
120	3	5
1440	10	13

Un resumen de las relaciones IDT se da en la tabla 3.3 y en la tabla 3.4 se presentan valores estimados para 0.5, 1, 2 y 24 h con periodos de retorno de 50, 100, 200, 500 y 1000 años.

En la tabla 3.5 se presenta un resumen comparativo de los resultados que produce el ajuste con Gumbel con respecto a los datos observados. De las 32 estaciones resultaron

Para l₃₀¹⁰: 2 valores con diferencia mayor de 10% 1 valor con diferencia mayor de 15% y

2 valores con diferencias de 32 y 35%

Para l₆₀¹⁰: 5 valores con diferencia mayor de 10% 2 valores con diferencia mayor de 15% y

2 valores con diferencias de 32 y 36%

Finalmente, con estos resultados y con los de la prueba χ^2 se comprueba que los datos se ajustan adecuadamente a la distribución de probabilidad Gumbel con el método de máxima verosimilitud.

Tabla 3.3. Ajuste de relaciones IDT para las estaciones individuales

				
Estación	d= .5 h	d= 1 h	d= 2 h	d= 24 h
(1) Acayucan	X = -1/.064 y + 57.25	X = -1/.078 y + 36.58	X = -1/.126 y + 21.08	X = -1/.975 y + 3.80
(2) Arco de Piedra	X = -1/.060 y + 70.41	X = -1/.085 v + 44.99	X = -1/.125 y + 27.20	X = -1/1.699 y + 2.95
(3) Argelia	X = -1/.087 y + 68.32	X = -1/.116 y + 43.89	X = -1/.191 y + 24.86	X = -1/1.196 y + 2.97
(4) Ayutla	X = -1/.085 y + 27.78	X = -1/.115 y + 17.80	X = -1/.199 y + 10.45	X = -1/1.328 y + 2.54
(5) Azueta	X = -1/.045 y + 57.03	X = -1/.064 y + 35.87	X = -1/.109 v + 21.80	X = -1/.968 y + 3.85
(6) Caltepec	X = -1/.090 y + 30.96	X = -1/.148 y + 18.22	X = -1/.090 y + 30.96	X = -1/2.528 y + 1.52
(7) Cantón	X = -1/.060 y + 96.11	X = -1/.061 y + 68.60	X = -1/.083 y + 43.70	X = -1/.482 y + 7.09
(8) Cuatotolapan	X = -1/.048 y + 57.31	X = -1/.068 y + 35.45	X = -1/.113 y + 20.19	X = -1/.770 v + 3.41
(9) Cárdenas	X = -1/.069 y + 71.42	X = -1/.075 y + 48.87	X = -1/.099 y + 30.56	X = -1/.589 y + 4.96
(10) El Carmen	X = -1/.088 y + 32.10	X = -1/.134 y + 19.90	X = -1/.214 y + 11.29	X = -1/2.257 y + 1.89
(11) F. Sta. Isabel	X = -1/.087 y + 77.96	X = -1/.084 y + 52.26	X = -1/.138 y + 29.68	X = -1/1.092 y + 3.27
(12) Huautia	X = -1/.072 y + 44.17	X = -1/.094 y + 30.20	X = -1/.139 y + 21.46	X = -1/.665 y + 6.08
(13) Jacatepec	X = -1/.083 y + 96.99	X = -1/.089 y + 70.21	X = -1/.108 y + 44.97	X = -1/.566 y + 7.07
(14) Jayacatlán	X = -1/.070 y + 33.95	X = -1/.103 y + 21.52	X = -1/.164 y + 13.42	X = -1/1.494 y + 1.89
(15) La Escalera	X = -1/.042 y + 57.79	X = -1/.065 y + 38.76	X = -1/.114 y + 21.71	X = -1/1.540 y + 2.90
(16) La Estrella	X = -1/.054 y + 89.31	X = -1/.058 y + 66.64	X = -1/.095 y + 42.43	X = -1/.425 y + 8.73
(17) Monte Rosa	X = -1/.050 y + 78.81	X = -1/.060 y + 52.66	X = -1/.097 y + 30.50	X = -1/.875 y + 4.83
(18) Orizaba	X = -1/.075 y + 68.60	X = -1/.104 y + 47.32	X = -1/.146 y + 29.59	X = -1/.977 y + 3.48
(19) Papaloapan	X = -1/.037 y + 70.99	X = -1/.050 y + 47.85	X = -1/.073 y + 29.87	X = -1/1.169 y + 4.98
(20) Paredón	X = -1/.053 y + 69.97	X = -1/.074 y + 44.28	X = -1/.099 y + 25.69	X = -1/1.148 y + 4.49
(21) Peñitas	X = -1/.058 y + 88.06	X = -1/.063 y + 60.64	X = -1/.084 y + 37.65	$X = -1/.708 y \div 5.56$
(22) Presa Malpaso	X = -1/.048 y + 68.66	X = -1/.074 y + 44.55	X = -1/.113 y + 25.08	X = -1/1.052 y + 4.08
(23) Puente Colgante	X = -1/.066 y + 65.57	X = -1/.082 y + 43.46	X = -1/.131 y + 23.66	X = -1/1.403 y + 2.52
(24) Quiotepec	X = -1/.058 y + 30.28	X = -1/.102 y + 18.56	X = -1/.195 y + 10.82	X = -1/1.762 y + 1.89
(25) Sn. P. Nolasco	X = -1/.087 y + 21.22	X = -1/.147 y + 12.86	X = -1/.233 y + 07.89	X = -1/1.327 y + 2.21
(26) Santa María	X = -1/.056 y + 63.75	X = -1/.072 y + 45.48	X = -1/.098 y + 28.56	X = -1/1.612 y + 4.09
(27) Temascal	X = -1/.057 y + 98.66	X = -1/.076 y + 67.44	X = -1/.109 y + 42.68	X = -1/.787 y + 5.50
(28) Tepelmeme	X = -1/.105 y + 30.14	X = -1/.133 y + 18.54	X = -1/.199 y + 11.02	X = -1/1.997 y + 1.56
(29) Tepeuxila	X = -1/.071 y + 31.62	X = -1/.137 y + 19.72	X = -1/.266 y + 12.08	X = -1/1.552 y + 2.23
(30) Tuxtla Gtrrez.	X = -1/.064 y + 61.72	X = -1/.085 y + 39.81	X = -1/.159 y + 22.26	X = -1/1.774 y + 2.62
(31) Villa Alta	X = -1/.099 y + 39.43	X = -1/.143 y + 24.74	X = -1/.099 y + 39.43	X = -1/.969 y + 2.92
(32) Villa Flores	X = -1/.069 y + 55.75	X = -1/.095 y + 36.46	X = -1/.151 y + 20.28	X = -1/1.328 y + 2.73

 $X = -1/\alpha y + \beta$ $y = \ln[\ln(T/(T-1))]$

Tabla 3.4 Relaciones intensidad-duración-periodo de retorno.

			d= .5 h					d= 1 h		
Estación	T=50	T = 100	T=200	T=500	T = 1000	T=50	T = 100	T = 200	T = 500	T = 1000
1) Acayucan	117.97	128.83	139.66	153.94	164.73	86.67	95.64	104.57	116.35	125.26
:.I	.07	.09	.10	.12	.13	.09	.10	.12	.14	.16
2) Arco de Piedra	135.55	147.21	158.82	174.14	185.72	91.09	99.33	107.55	118.39	126.59
:.l	.10	.12	.14	.16	.18	.14	.17	.19	.23	.25
3) Argelia	113.14	121.16	129.15	139.69	147.65	77.49	83.50	89.49	97.39	103.36
:.l	.15	.18	.21	.24	.27	.20	.24	.28	.32	.36
4) Ayutla	73.51	81.69	89.84	100.60	108.73	51.81	57.90	63.96	71.96	78.00
:.l	.12	.15	.17	.20	.22	.17	.20	.23	.27	.30
5) Azueta	144.68	160.36	175.98	196.60	212.18	97.09	108.00	118.95	133.35	144.23
:J	.05	.06	.07	.08	.09	.07	.08	.09	.11	.12
(6) Caltepec	74.40	82.17	89.92	100.14	107.86	44.61	49.33	54.00	60.25	64.94
c.l	.11	.13	.15	.18	.20	.18	.21	.25	.29	.33
7) Cantón	161.60	173.32	184.99	200.40	212.04	132.37	143.79	155.16	170.16	181.50
:.l	.07	.08	.09	.11	.12	.07	.08	.09	.11	.12
(8) Cuatotolapan	138.82	153.40	167.94	187.11	201.60	92.58	102.80	112.98	126.42	136.58
c.l	.05	.06	.07	.08	.09	.07	.09	.10	.12	.13
(9) Cárdenas	127.94	138.05	148.13	161,42	171.47	100.68	109.95	119.19	131.37	140.58
c.i	.08	.09	.11	.13	.14	,09	.10	.12	.14	.16
(10) El Carmen	76.52	84.46	92.38	102.83	110.73	49.00	54.24	59.43	66.28	71.46
c.l	.13	.15	.18	.21	.23	.20	.24	.27	.32	.36
(11) F.Sta.Isabel	123.08	131.15	139.20	149.81	157.83	98.53	106.81	115.00	125.94	134.16
c.i	.15	.18	.21	.24	.27	.15	.17	.20	.24	.26
12) Huautia	98.57	108.30	118.00	130.80	140.47	71.60	79.00	86.39	96.12	103.48
c.l	.09	.11	.12	.14	.16	.12	.14	.16	.19	.21
13) Jacatepec	144,17	152.61	161.02	172.12	180.51	114.00	121.84	129.64	139.94	147.73
J	.11	.13	.15	.18	.20	.12	.14	.16	.19	.21
14) Jayacatlan	89.46	99.40	109.30	122.36	132.23	59.47	66.26	73.00	81.95	88.71
.i	.09	.10	.12	.14	.16	.13	.15	.18	.21	.23
15) La Escalera	151.60	168.38	185.11	207.17	223.84	99.13	109.94	120.70	134.90	145.63
l	.06	.07	.08	.10	.11	.09	.11	.13	.15	.17
16) La Estrella	161.56	174.48	187.37	204.36	217.20	133.74	145.75	157.71	173.49	185.42
.i	.07	.08	.09	.11	.12	.07	.09	.10	.12	.13

c.I = 2 x Error Estandar (95% del limite de confianza) = estimación de la lluvia ±c.I

Tabla 3.4 - Continuación -

			d= 2 h					d= 24 h		
Estación	T=50	T=100	T=200	T=500	T=1000	T=50	T = 100	T=200	T=500	T=1000
(1) Acayucan	52.00	57.62	63.15	70.44	75.95	7.80	8.52	9.23	10.17	10.88
c.l	.14	.17	.19	.23	.25	1.11	1.30	1.50	1.77	1.97
(2) Arco de Piedra	58.41	64.00	69.56	76.90	82.45	5.25	5.66	6.07	6.61	7.02
c.i	.21	.25	.28	.33	.37	2.84	3.35	3.86	4.54	2.53
(3) Argelia	45.30	48.96	52.61	57.41	61.00	6.23	6.82	7.40	8.17	8.74
c.1	.33	.39	.45	.53	.59	2.09	2.46	2.84	3.34	3.72
(4) Ayutla	30.00	33.55	37.00	41.66	45.14	5.47	6.00	6.52	7.21	7.74
c.i	.29	.34	.39	.46	.51	1.92	2.26	2.61	3.07	3.43
(5) Azueta	57.36	63.73	70.00	78.43	84.75	7.89	8.61	9.33	10.27	10.99
c.)	.12	.14	.16	.19	.21	1.04	1.23	1.41	1.66	1.85
(6) Caltepec	26.16	29.00	31.94	. 35.75	38.63	3.07	3.34	3.62	3.98	4.26
c.l	.30	.35	.40	.48	.53	3.12	3.68	4.24	4.99	5.56
(7) Cantón	90.86	99.29	107.70	118.79	127.17	15.18	16.63	18.07	19.97	21.41
c.l	.09	.11	.13	.15	.16	.54	.63	.73	.86	.96
(8) Cuatotolapan	54.81	61.00	67.18	75.32	81.47	3.48	9.38	10.29	11.48	12.38
c.l	.12	.14	.16	.19	.22	.33	.97	1.12	1.32	1.47
(9) Cárdenas	70.16	77.24	84.30	93.62	100.66	11.59	12.78	13.96	15.52	16.69
c.l	.11	.13	.15	.18	.20	.68	.80	.93	1.09	1.21
(10) El Carmen	29.51	32.77	36.00	40.30	43.54	3.62	3.93	4.24	4.65	4.95
c.l	.32	.38	.43	.51	.57	3.37	3.97	4.58	5.40	6.01
(11) F.Sta.Isabel	57.91	62.96	68.00	74.64	79.66	6.84	7.48	8.12	8. 96	9.60
c.I	.24	.28	.33	.39	.43	1.90	2.25	2.59	3.05	3.40
(12) Huautla	49.63	54.67	59.69	66.31	71.32	11.94	12.99	14.04	15.42	16.4 6
c.l	.17	.21	.24	.28	.31	.84	.99	1.14	1.34	1.50
(13) Jacatepec	81.11	87.58	94.00	102.53	108.95	13.96	15. 2 0	16.43	18.05	19.27
c.l	.14	.17	.19	.23	. 26	. 75	.89	1.02	1.20	1.34
(14) Jayacatlán	37.25	41.51	45.76	51.36	55.60	4.51	4.97	5.44	6.05	6.52
c.l	.21	.24	.28	.33	.37	1.89	2.22	2.56	3.02	.36
(15) La Escalera	56.73	63.00	69.24	77.48	83.71	5.44	5.89	6.34	6.94	7.39
c.l	.16	.19	.22	.26	.29	2.23	2.62	3.00	3.56	3.97
(16) La Estrella	83.52	90.87	98.19	107.86	115.16	17.91	19.55	21.19	23.35	24.98
	.12	.14	.16	.19	.21	.54	.63	.73	.86	.96

c.l = 2 x Error Estandar (95% del limite de confianza) = estimación de la lluvia ±c.l

Tabla 3.4 - Continuación -

			d≈ .5 h					d= 1 h		
Estación	T=50	T=100	T = 200	T = 500	T=1000	T=50	T = 100	T = 200	T = 500	T≈1000
(17) Monte Rosa	156.74	170.69	184.58	202.91	216.77	117.55	129.16	140.73	155.99	167.53
c.l	.07	.08	.10	.11	.13	.08	.10	.11	.14	.15
(18) Orizaba	120.35	129.61	138.84	151.00	160.21	84.97	91.70	98.42	107.27	113.96
c.l	.08	.10	.11	.13	.15	.12	.14	.16	.18	.21
(19) Papaloapan	175.55	194.26	212.90	237.49	256.00	125.76	139.70	153.59	171.91	185.76
c.i	.04	.05	.05	.06	.07	.05	.06	.07	.08	.09
(20) Paredón	143.56	156.73	169.84	187.15	200.23	97.13	106.58	116.00	128.44	137.83
c.l	.09	.10	.12	.14	.15	.12	.14	.16	.19	.21
(21) Peñitas	155.28	167.31	179.29	195.10	207.00	122.26	133.28	144.27	158.76	169.72
c.l	.08	.09	.10	.12	.13	.08	.10	,11	.13	.15
(22) Presa Malpaso	149.91	164.45	178.93	198.00	212.49	97.50	106.97	116.41	128.86	138.27
c.i	.06	.07	.08	.10	.11	.09	.11	.13	.15	.17
(23) Puente Colgante	124.48	135.00	145.53	159.39	169.86	91.00	99.51	107.99	119.17	127.62
c.l	.09	.11	.13	.15	.17	,12	.14	.16	.18	.21
(24) Quiotepec	97.22	109,19	121.13	136.87	148.77	56.97	63.84	70.69	79.72	86.55
c.l	.06	.07	.08	.10	.11	.11	.13	.15	.17	.19
(25) Sn.P.Nolasco	65.89	73.88	81.84	92.35	100.29	39.47	44.23	48.97	55.23	59.96
c.l	.11	.13	.15	.18	.20	.19	.22	.26	.30	.34
(26) Santa María	134.00	146.59	159.12	175.65	188.14	100.00	109.81	119.54	132.37	142.00
c.l	.08	.09	.11	.12	.14	.10	.12	.14	.16	.18
(27) Temascal	167.13	179.38	191.59	207.70	219.87	119.00	128.32	137.52	149.67	158.85
	.08	.09	.11	.12	.14	.10	.12	.14	.16	,18
(28) Tepelmeme	67.41	74.00	80.72	89.49	96.11	47.93	53.19	58.43	65.34	70.56
c.I	.13	.16	.18	.21	.24	.17	.20	.23	.27	.30
(29) Tepeuxila	86.63	96.47	106.28	119.21	128.99	48.25	53.36	58.45	65.16	70.23
c.l	.09	.11	.12	.15	.16	.18	.21	.24	.28	.32
(30) Tuxtla Gtrrez.	122.34	133.19	144.00	158.26	169.00	85.51	93.69	101.84	112.59	120.72
c.l	.09	.10	.12	.14	.16	.12	.14	.16	.19	.21
(31) Villa Alta	78.94	86.00	93.00	102.35	109.37	51.96	56.83	61.68	68.00	72.93
c.l	.13	.15	.17	.20	.23	.19	.22	.25	.30	.33
(32) Villa Flores	112.28	122.39	132.47	145.77	155.82	77.62	84.99	92.33	102.00	109.33
	.08	.09	.11	.13	.14	.11	.13	.15	.18	.20

c.l = 2 x Error Estandar (95% del limite de confianza) = estimación de la lluvia ±c.l

Tabla 3.4 - Continuación -

			d= 2 h					d= 24 h	ı	
Estación	T=50	T=100	T = 200	T = 500	T = 1000	T=50	T=100	T = 200	T = 500	T = 1000
(17) Monte Rosa	70.82	78.00	85.22	94.70	101.87	9.29	10.00	10.88	11.93	12.72
c.l	.14	.16	.18	.22	.24	1.23	1.45	1.67	1.96	2.19
(18) Orizaba	56.35	61.14	65.91	72.20	76.96	7.48	8.19	8.90	9.84	10.55
c.i	.16	.19	.22	.26	.29	1.00	1.28	1.48	1.74	1.94
(19) Papaloapan	83.18	92.72	102.22	114.76	124.24	8.32	8.91	9.51	10.29	10.89
c.i	,08	.09	.11	.12	.14	1.23	1.46	1.68	1.98	2.20
(20) Paredón	64.82	71.82	78.80	88.00	94.96	7.90	8.51	9.11	9.91	10.52
c.1	.16	.19	.22	.26	.29	1.84	2.17	2.50	2.95	3.28
(21) Peñitas	83.89	92.17	100.41	111.29	119.51	11.00	12.00	13.00	14.34	15.32
c.l	.11	.13	.15	.17	.19	.92	1.08	1.24	1.47	1.63
(22) Presa Malpaso	59.66	65.85	72.00	80.15	86.29	7. 7 9	8.45	9.12	9.99	10.65
	.14	.17	.19	.23	.25	1.33	1.56	1.80	2.12	2.37
(23) Puente Colgante	53.45	58.78	64.00	71.00	76.39	5.30	5.80	6.30	6.95	7.45
c.i	.17	.20	.24	.28	.31	1.97	2.32	2.68	3.15	3.51
(24) Quiotepec	30.85	34.44	38.00	42.72	46.28	4.10	4.50	4.89	5.41	5.81
c.l	.21	.24	.28	.33	.37	1.86	2.19	2.53	2.98	3.32
(25) Sn.P.Nolasco	24.61	27.60	30.58	34.51	37.48	5.15	5.67	6.20	6.89	7.41
c.I	.30	.36	.41	.48	.54	1.72	2.00	2.33	2.75	3.00
(26) Santa María	68.25	75.35	82.42	91.76	98.81	6.52	6.95	7.38	7.95	8.38
c.l	.14	.16	.19	.22	.25	2.26	2.67	3.00	3.62	4.00
(27) Temascal c.l	78.48	84.89	91.27	99.69	106.00	10.46	11.35	12.23	13.40	14.28
	.15	.18	.20	.24	.27	1.00	1.27	1.46	1.72	1.91
(28) Tepelmeme	30.59	34.00	37.58	42.19	45.67	3.51	3.86	4.21	4.67	5.00
c.l	.25	.30	.34	.40	.45	2.52	2.97	3.43	4.00	4.50
(29) Tepeuxila	26.77	29.39	32.00	35.47	38.00	4.74	5.19	5.64	6.23	6.68
c.l	.34	.41	.47	.55	.61	2.00	2.37	2.73	3.21	3.58
(30) Tuxtla Gtrrez.	46.68	51.00	55.41	61.15	65.49	4.82	5.21	5.60	6.12	6.51
c.l	.22	.26	.30	.35	.39	2.42	2.85	3.29	3.87	4.31
(31) Villa Alta	37.51	41.22	44.92	49.80	53.49	6.94	7.66	8.38	9.33	10.00
c.i	.24	.29	.33	.39	.43	1.25	1.48	1.70	2.00	2.24
(32) Villa Flores	46.18	50.81	55.43	61.52	66.12	5.67	6.19	6.72	7.41	7.93
c.l	.17	.21	.24	.28	.31	1.54	1.81	2.09	2.46	2.74

c.l = 2 x Error Estandar (95% del limite de confianza) = estimación de la lluvia ±c.l

Tabla 3.5 Comparación de relaciones IDT

Estación	l ₃₀ 10 obs	I ₃₀ 10 GUMB	Comparación	I ₆₀ 10 OBS	l ₆₀ 10 OBS	Comparación
(1)	(2)	(3)	(2) / (3)	(5)	(6)	(5) / (6)
(1) Arco de piedra	111,41	107.98	1.03	82.32	71.57	1.15
(2) Argelia	97.67	94.17	1.04	60.10	63.27	0.95
(3) F.Sta.Isabel	104.50	103.98	1.00	85.50	78.94	1.09
(4) La Escalera	150.59	111.89	1.35	84.85	73.58	1.15
(5) Las Peñitas	126.60	126.82	0.99	98.00	96.18	1.02
(6) Presa Malpaso	113.13	115.52	0.98	72.18	75.00	0.96
(7) Pte.Colgante	100.28	99.54	1.00	78.13	70.88	1.10
(8) Santa María	123.37	124.63	0.99	71.87	76.95	0.93
(9) Tuxtla Gtrrez.	100.42	96.68	1.04	79.62	66.17	1.20
(10) Villa Flores	85.52	88.35	0.97	51.75	60.20	0.86
(11) Ayutla	64.25	54.15	1.19	41.00	37.41	1.09
(12) Cantón	160.00	157.20	1.02	104.93	105.38	0.99
(13) Huahutla	71.42	75.54	0.95	71.42	54.00	1.32
(14) Jacatepec	126.50	124.20	1.02	101.00	95.46	1.06
(15) Jayacatlán	63.31	65.97	0.96	40.87	43.41	0.94
(16) La Estrella	128.53	130.98	0.98	95.26	105.34	0.90
(17) Monte Rosa	120.76	123.75	0.98	91.56	90.00	1.02
(18) Papaloapan	120.00	131.30	0.91	75.00	92.78	0.81
(19) Quiotepec	61.15	68.88	0.89	46.70	40.71	1.15
(20) Sn.P.Nolasco	46.14	46.98	0.98	26.76	28.20	0.95
(21) Temascal	140.32	138.15	1.02	96.51	97.22	0.99
(22) Tepelmeme	68.29	51.63	1.32	48.25	35.49	1.36
(23) Tepeuxila	67.54	63.35	1.07	37.46	36.17	1.04
(24) Villa Alta	65.14	62.22	1.05	40.79	40.44	1.00
(25) Caltepec	55.65	56.00	0.99	36.56	33.44	1.09
(26) El Carmen	54.45	57.72	0.94	38.55	36.70	1.06
(27) Cárdenas	113.23	104.00	1.09	81.98	78.75	1.04
(28) Paredón	112.06	112.41	1.00	84.00	74.76	1.12
(29) Acayucan	89.96	92.27	0.97	61.44	65.47	0.94
(30) Azueta	119.60	107.58	1.11	77.70	71.18	1.09
(31) Cuatotolapan	101.00	104.32	0.97	70.30	68.40	1.03
(32) Orizaba	100.00	98.44	1.02	67.31	69.00	0.98

3.5 Planos de isoyetas

Se construyeron dos planos de isoyetas que son básicos en la aplicación de la metodología propuesta; uno para d = 1 h (60 min) y el otro para d = 24 h, ambos planos con un periodo de retorno de 10 años. La razón por la que se utilizaron intensidades de lluvia de periodo de retorno de 10 años, es que debido al reducido número de años de registro que se tienen, la confiabilidad de extrapolación disminuye considerablemente para periodos de retorno mayores (González, 1972).

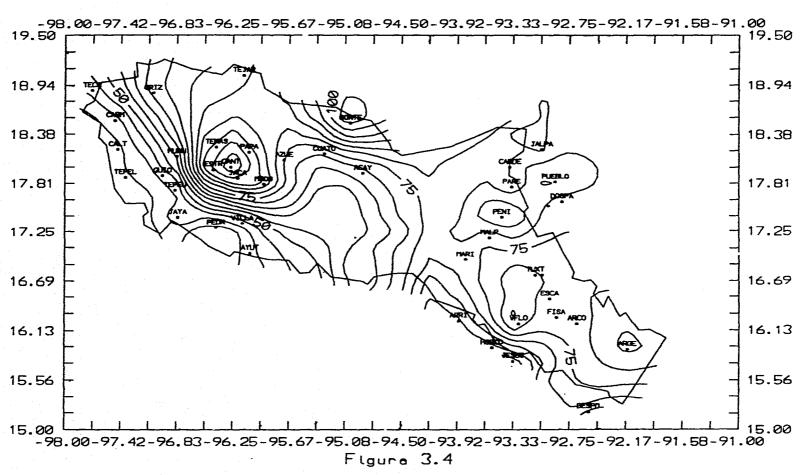
Con las ecuaciones presentadas en la tabla 3.3 obtenidas para cada estación, se calculó la intensidad de lluvia correspondiente a una duración de 1 h y periodo de retorno 10 años, y con estos valores se construyó el plano de isoyetas de la figura 3.4. De la misma manera se determinaron intensidades de lluvia de 24 h y periodo de retorno 10 años para construir el plano de isoyetas de la figura 3.5.

3.6 Relaciones altura-duración y altura-periodo de retorno

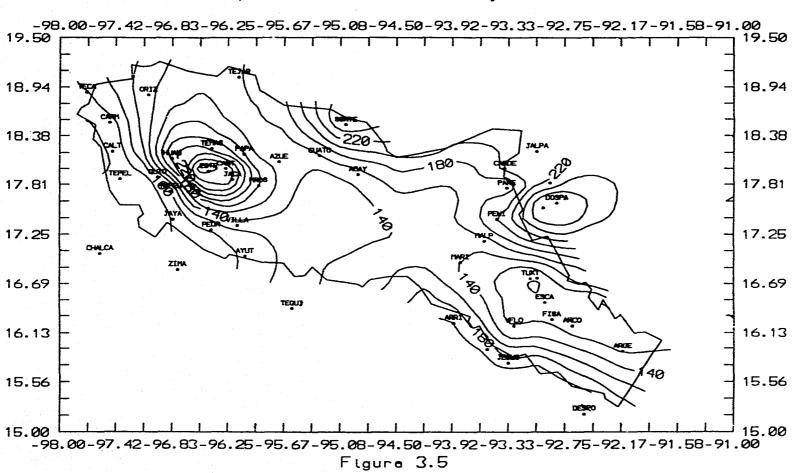
Con la finalidad de comparar las relaciones encontradas en México y en otros países, y al mismo tiempo confirmar la universalidad de las relaciones propuestas por Bell, se determinar on relaciones altura-duración y altura-periodo de retorno representativas de la zona en estudio.

Relaciones altura-duración

En este caso, primero se encontraron relaciones intensidad-duración, ya que en el capítulo 5 estos valores son de utilidad, y posteriormente se convirtieron a relaciones altura-duración.


Para las relaciones intensidad-duración, se dividieron los valores de las intensidades con duración 5, 10, 15, 30, 60, 80, 100, 120 min y 24 h, entre las correspondientes a 1 h (60 min) para cada estación y periodo de retorno, tabla 3.6. Los valores promedio resultaron

d,min	5	10	15	30	60	80	100	120	1440
Relación: intensidad-duración	2.94	2.22	1.89	1.45	1.00	0.81	0.71	0.62	0.09
Relación: altura-duración	0.25	0.37	0.47	0.73	1.00	1.08	1.18	1.24	2.16


Tabla 3.6 Relación media entre intensidades de lluvia con duración d e intensidades de lluvia con duración 1 h (l_d^T/l₁^T)

					Relacio	nes promedic)		
Estación	K(%)	5 min	10 min	15 min	30 min	80 min	100 min	120 min	1440 min
Pte. Colgante	71.6	2.53	1.90	1.51	1.38	0.82	0.69	0.58	0.058
Tuxtla Grrez.	70.9	2.58	1.98	1.68	1.44	0.78	0.64	0.55	0.057
La Escalera	70.2	3.35	2.61	2.16	1.53	0.79	0.66	0.57	0.057
Arco de Piedra	69.7	3.13	2.35	1.97	1.49	0.85	0.64	0.64	0.058
F. Sta. Isabel	61.7	2.03	1.71	1.51	1.27	0.84	0.69	0.59	0.069
Sta. María	58.4	2.32	1.81	1.58	1.34	0.88	0.76	0.68	0.067
Caltepec	57.7	4.10	2.98	2.56	1.67	0.79	0.65	0.58	0.070
Villa Flores	56.7	3.82	2.69	2.16	1.45	0.81	0.67	0.59	0.073
Papaloapan	56.0	2.25	1.89	1.75	1.40	0.86	0.75	0.66	0.069
Tepelmeme	55.0	4.03	2.69	2.24	1.42	0.83	0.73	0.63	0.074
Argelia	54.3	2.72	2.29	2.04	1.47	0.83	0.64	0.58	0.079
Quiotepec	53.6	3.99	2.70	2.29	1.70	0.81	0.64	0.55	0.075
Javacatlán	53.2	2.70	2.33	1.94	1.51	0.86	0.72	0.63	0.077
El Carmen	52.9	4.14	2.62	2.22	1.56	0.83	0.70	0.60	0.076
Monte Rosa	50.7	2.14	1.59	1.43	1.35	0.82	0.68	0.60	0.080
Presa Malpaso	50.3	2.70	2.31	2.01	1.54	0.82	0.70	0.61	0.081
Orizaba	49.7	2.40	1.95	1.72	1.42	0.84	0.75	0.66	0.087
Temascal	48.5	2.68	1.97	1.74	1.41	0.85	0.75	0.66	0.088
Paredón	48.2	3.26	2.43	2.07	1.49	0.85	0.75	0.66	0.083
Azueta	48.0	2.78	2.41	2.00	1.50	0.82	0.70	0.59	0.084
Las Peñitas	45.8	1.99	1.68	1.58	1.28	0.86	0.76	0.68	0.091
Cuatotolapan	45.0	2.43	2.14	1.85	1.51	0.82	0.69	0.59	0.092
Acayucan	44.6	2.42	2.14	1.86	1.38	0.81	0.69	0.60	0.091
Tepeuxila	41.0	4.55	3.32	2.59	1.78	0.77	0.65	0.56	0.099
Cárdenas	37.4	2.54	1.99	1.72	1.29	0.89	0.78	0.69	0.114
Cantón	37.3	2.40	1.68	1.37	1.23	0.83	0.73	0.68	0.114
Ayutla	36.9	2.92	2.08	1.79	1.43	0.80	0.67	0.58	0.109
Jacatepec	36.0	2.35	1.68	1.42	1.27	0.89	0.80	0.71	0.121
Villa Alta	32.2	3.33	2.54	2.11	1.53	1.01	0.84	0.72	0.133
La Estrella	31.3	2.17	1.57	1.51	1.22	0.79	0.70	0.63	0.134
Sn. P.Nolasco	30.1	4.70	3.08	2.53	1.67	0.81	0.70	0.62	0.134
Huahutia	23.8	2.70	1.93	1.65	1.38	0.85	0.76	0.69	0.170
MED	49.3	2.94	2.22	1.89	1.45	0.81	0.71	0.62	0.090
DESV.EST.	12.3	0.76	0.45	0.34	0.14	0.04	0.05	0.05	0.027

R, mm para T=10 años y d=1 h

R, mm para T=10 años y d=24 h

Relaciones altura-periodo de retorno

Se dividieron los valores de las alturas de lluvia con duración 1 h y distintos periodos de retorno entre la altura de lluvia correspondiente a 10 años y 1 h, para cada estación y periodo de retorno, tabla 3.7. Los valores promedio fueron

T,años	2	5	10	25	50	100	200
Factor	0.65	0.86	1,00	1.18	1.31	1.44	1.56

3.6.1 Comparación de relaciones

En las tablas 3.8 y 3.9 se presenta la comparación de las relaciones altura-duración y altura-periodo de retorno, respectivamente, encontradas en México y en otros países. En las figuras 3.6 y 3.7 se grafican las relaciones altura-duración y altura-periodo de retorno, respectivamente, encontradas en México con las reportadas por Bell. Estos valores muestran que a pesar de la lluvia base que se utiliza para obtener las relaciones, estas son similares en las cuencas, sobre todo en las de altura-periodo de retorno.

Con respecto a los valores de la relación altura-duración, se observan variaciones considerables, sobre todo en duraciones menores de 60 min, lo que confirma que esta relación no es independiente de la geografía. En la relación altura-periodo de retorno no existe diferencia significativa entre los valores presentados, excepto para un periodo de retorno de 200 años.

En la figura 3.6 se observa que la cuenca del Valle de México y la del Lerma (cuenca alta) presentan valores cercanos entre sí y también se observa que la zona en estudio presenta valores similares a los del Papaloapan y a los de Bell, sobre todo en un intervalo de 30≤d, min≤120.

En la figura 3.7 se observa que para un intervalo de 2≤T,años≤25 las cuatro cuencas presentan valores similares a los de Bell, y en un intervalo de 25≤T,años≤100 la zona en estudio presenta valores más cercanos a los de Bell. Con respecto a un periodo de retorno de 200 años existe diferencia significativa entre las cuencas de México, pero entre los valores de la cuenca alta del Lerma, Valle de México y la zona en estudio, la diferencia es pequeña.

3.6.2 Verificación de hipótesis

Bell y Chen afirman que la relación altura-duración es independiente del periodo de retorno

Tabla 3.7 Relaciones altura-periodo de retorno (R₁^T/R₁¹⁰)

Estación	Altur	as de lluvia	, en mm, pa	ra diferentes	periodos de	retorno y dura	ción 1 h.		Factores d	le ajuste pa	ra diferent	es periodos	de retorno)
T, años	2	5	10	25	50	100	200	2	5	10	25	50	100	200
(1) Arco de piedra	49.32	62.71	71.57	82.78	91.00	99.33	107.55	0.69	0.88	1.00	1.16	1.27	1.39	1.50
(2) Argelia	47.00	56.81	63.27	71.43	77.49	83.50	89.49	0.74	0.90	1.00	1.13	1.22	1.32	1.41
(3) F.Sta.Isabel	56.60	70.00	78.94	90.19	98.53	106.81	115.00	0.72	0.89	1.00	1.14	1.25	1.35	1.46
(4) La Escalera	44.43	61.97	73.58	88.25	99.13	109.94	120.70	0.60	0.84	1.00	1.20	1.35	1.49	1.64
(5) Las Peñitas	66.43	84.33	96.18	111.15	122.26	133.28	144.27	0.69	0.88	1.00	1.16	1.27	1.39	1.50
(6) Presa Malpaso	49.52	64.90	75.00	87.95	97.50	106.97	116.41	0.66	0.87	1.00	1.17	1.30	1.43	1.55
(7) Pte.Colgante	47.92	61.73	70.88	82.43	91.00	99.51	107.99	0.68	0.87	1.00	1.16	1.28	1.40	1.52
(8) Santa María	50.61	66.46	76.95	90.21	100.00	109.81	119.54	0.66	0.86	1.00	1.17	1.30	1.43	1.55
(9) Tuxtla Gtrrez.	44.10	57.38	66.17	77.27	85.51	93.69	101.84	0.67	0.87	1.00	1.17	1,29	1.42	1.54
(10) Villa Flores	40.33	52.29	60.20	70.20	77.62	84.99	92.33	0.67	0.87	1.00	1.17	1.29	1.41	1.53
(11) Ayutla	20.99	30.87	37.41	45.68	51.81	57.90	63.96	0.56	0.83	1.00	1.22	1.38	1.55	1.71
(12) Cantón	74.59	93.12	105.38	120.88	132.37	143.79	155.16	0.71	0.88	1.00	1.15	1.26	1.36	1.47
(13) Huahutla	34.00	46.11	54.00	64.13	71.60	79.00	86.39	0.63	0.85	1.00	1.19	1.33	1.46	1.60
(14) Jacatepec	74.32	87.00	95.46	106.11	114.00	121.84	129.64	0.78	0.91	1.00	1.11	1.19	1.28	1.36
(15) Jayacatlán	25.00	36.11	43.41	52.63	59.47	66.26	73.00	0.58	0.83	1.00	1.21	1.37	1.53	1.68
(16) La Estrella	72.94	92,44	105.34	121.64	133.74	145.75	157.71	0.69	0.88	1,00	1.15	1.27	1.38	1.50
(17) Monte Rosa	58.75	77.60	90.00	105.85	117.55	129,16	140.73	0.65	0.86	1.00	1.18	1.31	1.44	1.56
(18) Papaloapan	55.17	77.80	92.78	111.71	125.76	139.70	153.59	0.59	0.84	1.00	1.20	1.36	1.51	1.66
(19) Quiotepec	22.17	33.32	40.71	50.00	56.97	63.84	70.69	0.54	0.82	1.00	1.23	1.40	1.57	1.74
(20) Sn.P.Nolasco	15.36	23.00	28.20	34,67	39.47	44.23	48.97	0.54	0.82	1.00	1.23	1.40	1.57	1.74
(21) Temascal	72.29	87.29	97.22	109.77	119.00	128.32	137.52	0.74	0.90	1.00	1.13	1.22	1.32	1.41
(22) Tepelmeme	21.30	29.84	35.49	42.63	47.93	53.19	58.43	0.60	9.84	1.00	1.20	1.35	1.50	1.65
(23) Tepeuxila	22.40	30.69	36.17	43.11	48.25	53.36	58.45	0.62	0.85	1.00	1.19	1.33	1.48	1.62
(24) Villa Alta	27.30	35.21	40.44	47.00	51.96	56.83	61.68	0.68	0.87	1.00	1.16	1.28	1.41	1.53
(25) Caltepec	20.70	28.36	33.44	39.85	44.61	49.33	54.00	0.62	0.85	1.00	1.19	1.33	1.48	1.61
(26) El Carmen	22.64	31.10	36.70	43.78	49.00	54.24	59.43	0.62	0.85	1.00	1.19	1.34	1.48	1.62
(27) Cárdenas	53.74	68.79	78.75	91.34	100.68	109.95	119.19	0.68	0.87	1.00	1.16	1.28	1.40	1.51
(28) Paredón	49.24	64.59	74.76	87.60	97.13	106.58	116.00	0.66	0.86	1.00	1.17	1.30	1.43	1.55
(29) Acayucán	41.28	55.83	65.47	77.64	86.67	95.64	104.57	0.63	0.85	1.00	1.19	1.32	1.46	1.60
(30) Azueta	41.62	59.40	71.18	86.00	97.00	108.00	118.95	0.58	0.83	1.00	1.21	1.36	1.52	1.67
(31) Cuatotolapan	40.82	57.41	68.40	82.28	92.58	102.80	112.98	0.60	0.84	1.00	1.20	1.35	1.50	1.65
(32) Orizaba	50.86	61.79	69.00	78.18	84.97	91.70	98.42	0.74	0.90	1.00	1.13	1.23	1.33	1.43
MEDIA								0.65	0.86	1,00	1.18	1.31	1.44	1.56
DESV.EST.	''	. 1	1		1			0.06	0.02	0.00	0.03	0.05	0.07	0.09

Tabla 3.8 Comparación de relaciones altura-duración (R_d^T/R_1^T)

		М	éxico			Países		Autores		
d,min	Zona en estudio	Valle de México	Cuenca alta Lerma	Papaloapan	Canada (Vancouver)	Italia (Sicilia)	Australia	WSWB	Bell (Ec.2.8)	
5	C.25	0.28			0.30		0.30	0.29	0.31	
10	0.37	0.50	0.45	0.39	0.42	0.62		0.45	0.46	
15	0.47	0.63	0.59	0.52	0.51	0.64	0.57	0.57	0.56	
30	0.73	0.83	0.81	0.74	0.72	0.77	0.78	0.79	0.76	
60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
80	1.08	1.06	1.06	1.08				I	1.11	
100	1.18	1.08	1.10	1.15		}		1	1.21	
120	1.23	1.11	1.12	1.19	1.39		1.24		1.29	

Tabla 3.9 Comparación de relaciones altura-periodo de retorno (R_d^T/R_d¹⁰)

		М				
T,años	Zona en estudio	Valle de México	Cuenca alta Lerma	Papaloapan	Australia	Bell
1		0.51	0.60		0.52	0.54
2	0.65	0.63	0.65	0.65	0.65	0.63
5	0.86	0.85	0.85	0.86	0.85	0.85
10	1.00	1.00	1.00	1.00	1.00	1.00
25	1.18	1.19	1.19		1.18	1.17
50	1.31	1.36	1.34	1.33	1.33	1.31
100	1.44	1.51	1.48	1.48	1.50	1.46
200	1.56	1.86	1.64			

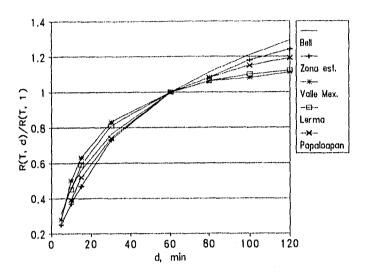


Fig. 3.6 Relaciones altura-duración

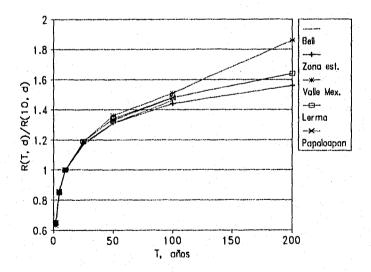


Fig. 3.7 Relaciones altura-frecuencia

y que la relación altura-periodo de retorno es independiente de la duración. Bell utiliza para la primera relación R_d^T/R_1^{10} , analizando d en un rango de 5 y 120 min, y para la segunda R_1^T/R_1^{10} , analizando en ambas relaciones T en un rango de 2 a 100 años. Chen utiliza K = R_1^T/R_2^{10} y $F = R_d^{100}/R_d^{10}$ para las relaciones altura-duración y altura-periodo de retorno, respectivamente.

Independencia del periodo de retorno

La hipótesis de la independencia del periodo de retorno, se verifica con la relación alturaduración sugerida por Chen. Para esto se obtiene la relación para cada estación con siete periodos de retorno (5, 10, 25, 50, 100, 200 y 500 años). En la tabla 3.10 se presentan los valores y se observa que no existen diferencias significativas entre los siete valores de cada estación, lo que confirma la independencia del periodo de retorno en la relación alturaduración.

Independencia de la duración

La hipótesis de la independencia de la duración en la relación altura-periodo de retorno también se verificó con la relación de Chen; R_d^{T}/R_d^{10} , pero utilizando cuatro periodos de retorno 5, 50, 100 y 200 años. En las tablas 3.11, 3.12, 3.13 y 3.14 se presentan los valores para el periodo de retorno indicado, y se observa que tampoco existen diferencias significativas entre los ocho valores lo que comprueba la validez de la hipótesis.

Se elaboró un plano de isoyetas con los valores de K = R_1^T/R_{24}^T para T igual a 10 años, figura 3.8, descartando los valores extremos (0.24 y 0.72). Esto con el fin de encontrar algunos parámetros que explicaran si el comportamiento de K determinaba las características de la precipitación. Lo que se observó fue una cierta tendencia de que los puntos con valores menores de 0.50 están ubicadas en las zonas de mayor precipitación media anual (1000 a 4600 mm), por lo tanto en climas húmedos; y los valores de K mayores a 0.50 se presentaron en zonas de clima subhúmedo con precipitaciones anuales entre 400 y 2350 mm.

Al graficar los valores de K con su altitud correspondiente, se observó que la altura sobre el nivel del mar no determina las características de la precipitación, ya que se observan puntos con igual precipitación anual y altitud totalmente diferente. Esto último también lo afirmaron Domínguez y Ríos (1991). Campos (1990) afirma que a mayor altitud K es más grande y viceversa; en el presente estudio esta afirmación no se cumple como se puede ver en la figura 3.9.

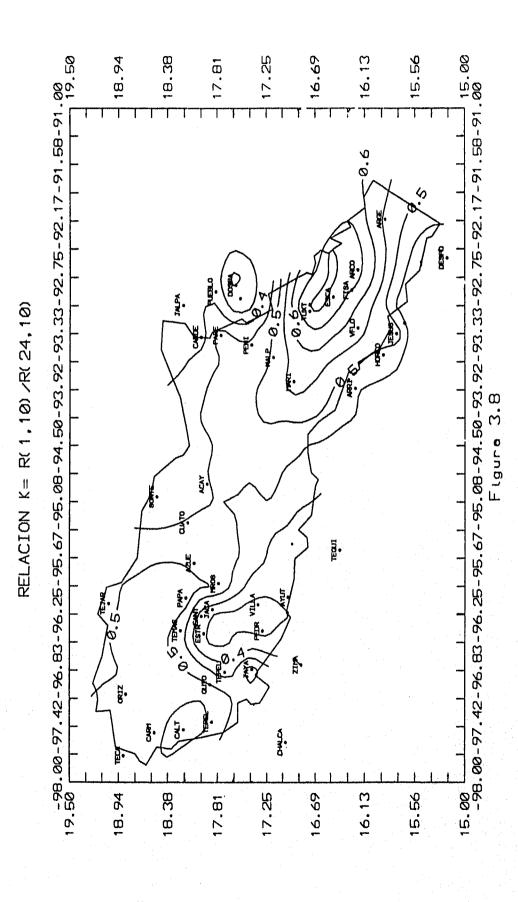
Tabla 3.10 Relaciones altura-duración (K = R_1^T/R_{24}^T)

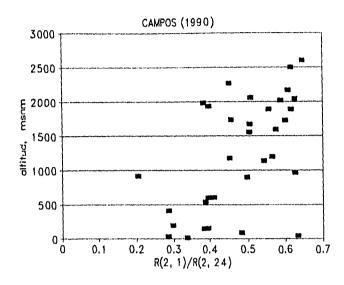
							
			Periodo (de retorno	T, en año	os	
Estación	5	10	25	50	100	200	500
(1) Arco de piedra	0.68	0.70	0.71	0.72	0.73	0.74	0.75
(2) Argelia	0.56	0.54	0.53	0.52	0.51	0.50	0.50
(3) F.Sta.Isabel	0.63	0.62	0.61	0.60	0.59	0.59	0.59
(4) La Escalera	0.66	0.70	0.74	0.76	0.78	0.79	0.81
(5) Las Peñitas	0.46	0.46	0.46	0.46	0.46	0.46	0.46
(6) Presa Malpaso	0.49	0.50	0.51	0.52	0.53	0.53	0.54
(7) Pte.Colgante	0.72	0.72	0.72	0.72	0.71	0.71	0.71
(8) Santa María	0.55	0.58	0.62	0,64	0.66	0.67	0.69
(9) Tuxtla Gtrrez.	0.69	0.71	0.73	0.74	0.75	0.76	0.77
(10) Villa Flores	0.56	0.57	0.57	0.57	0.57	0.57	0.57
(11) Ayutla	0.35	0.37	0.39	0.39	0.40	0.41	0.41
(12) Cantón	0.38	0.37	0.37	0.36	0.36	0.36	0.36
(13) Huahutla	0.23	0.24	0.25	0.25	0.25	0.26	0.26
(14) Jacatepec	0.37	0.36	0.35	0.34	0.33	0.33	0.32
(15) Jayacatlán	0.52	0.53	0.54	0.55	0.55	0.56	0.56
(16) La Estrella	0.31	0.31	0.31	0.31	0.31	0.31	0.34
(17) Monte Rosa	0.49	0.51	0.52	0.53	0.54	0.54	0.54
(18) Papaloapan	0.52	0.56	0.60	0.63	0.65	0.67	0.70
(19) Quiotepec	0.51	0.54	0.56	0.58	0.59	0.60	0.61
(20) Sn.P.Nolasco	0.29	0.30	0.31	0.32	0.33	0.33	0.33
(21) Temascal	0.49	0.49	0.48	0.47	0.47	0.47	0.47
(22) Tepelmeme	0.54	0.55	0.56	0.57	0.57	0.57	0.58
(23) Tepeuxila	0.40	0.41	0.42	0.42	0.43	0,43	0.43
(24) Villa Alta	0.33	0.31	0.32	0.31	0.31	0.31	0.30
(25) Caltepec	0.56	0.58	0.60	0.62	0.62	0.62	0.63
(26) El Carmen	0.51	0.53	0.55	0.56	0.57	0.58	0.59
(27) Cárdenas	0.38	0.37	0.37	0.36	0.36	0.36	0.35
(28) Paredón	0.46	0.48	0.50	0.51	0.52	0.53	0.54
(29) Acayucan	0.44	0.45	0.46	0.46	0.47	0.47	0.48
(30) Azueta	0.46	0.48	0.50	0.51	0.52	0.53	0.54
(31) Cuatotolapan	0.45	0.45	0.45	0.45	0.46	0.46	0.46
(32) Orizaba	0.51	0.50	0.48	0.47	0.47	0.46	0.45
MEDIA	0.48	0.49	0.50	0.51	0.51	0.52	0.52
DESV.EST.	0.12	0.12	0.13	0.14	0.14	0.14	0.15

Tabla 3.11 Relaciones altura-periodo de retorno ($R_d^{\ T}/R_d^{\ 10}$, T=5 años)

		Duración d, en min						
Estación	5	10	15	30	60	80	100	120
(1) Arco de piedra	0.86	0.87	0.88	0.88	0.88	0.87	0.87	0.87
(2) Argelia	0.92	0.91	0.90	•0.91	0.90	0.89	0.91	0.89
(3) F.Sta.Isabel	0.93	0.93	0.93	0.92	0.89	0.88	0.88	0.88
(4) La Escalera		0.83	0.83	0.84	0.84	0.84	0.84	0.84
(5) Las Peñitas	0.93	0.92	0.91	0.90	0.88	0.87	0.87	0.86
(6) Presa Malpaso		0.86	0.86	0.86	0.87	0.86	0.86	0.85
(7) Pte.Colgante	0.90	0.91	0.93	0.89	0.87	0.87	0.87	0.86
(8) Santa María	0.88	0.88	0.88	0.87	0.86	0.86	0.85	0.86
(9) Tuxtia Gtrrez.	0.87	0.89	0.90	0.88	0.87	0.87	0.87	0.87
(10) Villa Flores		0.84	0.86	0.88	0.87	0.86	0.86	0.86
(11) Ayutla	0.85	0.86	0.85	0.84	0.83	0.82	0.82	0.83
(12) Cantón	0.89	0.91	0.95	0.91	0.88	0.88	0.88	0.87
(13) Huahutia	0.89	0.89	0.89	0.86	0.85	0.86	0.86	0.86
(14) Jacatepec	0.92	0.96	0.95	0.93	0.91	0.90	0.90	0.89
(15) Jayacatlán		0.86	0.85	0.84	0.83	0.83	0.83	0.83
(16) La Estrella	0.88	0.92	0.90	0.89	0.88	0.89	0.88	0.88
(17) Monte Rosa	0.90	0.93	0.92	0.88	0.86	0.89	0.86	0.86
(18) Papaloapan	0.88	0.87	0.86	0.85	0.84		0.83	0.83
(19) Quiotepec			0.82	0.81	0,82	0.82	0.83	0.83
(20) Sn.P.Nolasco	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
(21) Temascal	0.89	0.90	0.90	0.90	0.90	0.90	0.89	0.89
(22) Tepelmeme	0.88	0.88	0.86	0.86	0.84	0.84	0.83	0.83
(23) Tepeuxila	0.85	0.84	0.84	0.83	0.85	0.86	0.86	0.86
(24) Villa Alta	0.91	0.89	0.89	0.88	0.87	0.86	0.86	0.86
(25) Caltepec	0.87	0.87	0.86	0.85	0.85	0.85	0.85	0.84
(26) El Carmen	0,86	0.85	0.85	0.85	0.85	0.84	0.84	0.84
(27) Cárdenas	0.87	0.88	0.89	0.90	0.87	0.86	0.86	0.86
(28) Paredón	0.87	0.88	0.88	0.87	0.86	0.86	0.85	0.84
(29) Acayucan	0.91	0.89	0.88	0.87	0.85	0.85	0.85	0.85
(30) Azueta	0.88	0.86	0.86	0.84	0.83	0.83	0.84	0.84
(31) Cuatotolapan	0.90	0.88	0.87	0.85	0.84	0.84	0.83	0.83
(32) Orizaba	0.89	0.90	0.90	0.90	0.90	0.89	0.89	0.89
MEDIA	0.89	0.88	0.88	0.87	0.86	0.86	0.86	0.86
DESV.EST.	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02

Tabla 3.12 Relaciones altura-periodo de retorno (R_d^T/R_d^{10} , T = 50 años)


				Duración	d, en m	nin		
Estación	5	10	15	30	60	80	100	120
(1) Arco de piedra	1.32	1.28	1.26	1.26	1.27	1.28	1.29	1.29
(2) Argelia	1.27	1.20	1.21	1.20	1.22	1.23	1.20	1.24
(3) F.Sta.Isabel	1.15	1.15	1.16	1.18	1.25	1.26	1.26	1.26
(4) La Escalera		1.38	1.37	1.35	1.35	1.35	1.35	1.35
(5) Las Peñitas	1.16	1.18	1.20	1.22	1.27	1.28	1.29	1.30
(6) Presa Malpaso		1.31	1.30	1.30	1.30	1.31	1.32	1.33
(7) Pte.Colgante	1.21	1.19	1.16	1.25	1.28	1.29	1.29	1.31
(8) Santa María	1.27	1.26	1.26	1.29	1.30	1.32	1.32	1.33
(9) Tuxtla Gtrrez.	1,29	1.24	1.22	1.27	1.29	1.29	1.29	1.28
(10) Villa Flores		1.34	1,32	1.27	1.29	1.30	1.31	1.31
(11) Ayutla	1.32	1.31	1.32	1.36	1.38	1.39	1.39	1.38
(12) Cantón	1.25	1.20	1.12	1.21	1.26	1.26	1.27	1.28
(13) Huahutla	1.25	1.23	1.25	1.30	1.33	1.31	1.31	1.32
(14) Jacatepec	1.17	1.09	1.10	1.16	1.19	1.22	1.23	1.23
(15) Jayacatlán		1.31	1.33	1.36	1.37	1.38	1.37	1.37
(16) La Estrella	1.26	1.19	1.23	1.23	1.27	1.24	1.26	1.26
(17) Monte Rosa	1.21	1,15	1.18	1.27	1.31	1.31	1.31	1.32
(18) Papaloapan	1.26	1.29	1.31	1.34	1,36		1.37	1.37
(19) Quiotepec		İ	1.40	1.41	1.40	1.39	1.38	1.38
(20) Sn.P.Nolasco	1.41	1.39	1.40	1.40	1.40	1.40	1.40	1,40
(21) Temascal	1.25	1.22	1.22	1.21	1.22	1.22	1.24	1.24
(22) Tepelmeme	1.26	1.27	1.30	1.31	1.35	1.36	1.37	1.37
(23) Tepeuxila	1.34	1.35	1.35	1.37	1.33	1.31	1.31	1.30
(24) Villa Alta	1.19	1.23	1.24	1.27	1.28	1.31	1.30	1.31
(25) Caltepec	1.28	1.29	1.31	1.33	1.33	1.33	1.33	1.35
(26) El Carmen	1.32	1.32	1.33	1.33	1.34	1.35	1.35	1.35
(27) Cárdenas	1.30	1.26	1.25	1.23	1.28	1,30	1.31	1.31
(28) Paredón	1.28	1.27	1.26	1.28	1.30	1.32	1.33	1.34
(29) Acayucan	1.19	1.25	1.26	1.28	1,32	1.33	1.33	1.34
(30) Azueta	1.26	1.32	1.31	1.34	1.36	1,36	1.36	1.36
(31) Cuatotolapan	1.23	1.27	1.29	1.33	1.35	1.36	1.36	1.36
(32) Orizaba	1.25	1.23	1.22	1.22	1.23	1.24	1.25	1.25
MEDIA	1.26	1.26	1.26	1.29	1.31	1.31	1.31	1.32
DESV.EST.	0.06	0.07	0.07	0.06	0.05	0.05	0.05	0.05


Tabla 3.13 Relaciones altura-periodo de retorno $(R_d^{\ T}/R_d^{\ 10},\ T=\ 100\ años)$

				Duraciór	d, en n	nin		
Estación	5	10	15	30	60	80	100	120
(1) Arco de piedra	1.45	1.40	1.37	1.36	1.39	1.40	1,41	1.42
(2) Argeiia	1.24	1.29	1.30	1.29	1.32	1.33	1.28	1.34
(3) F.Sta.Isabel	1.21	1.21	1.22	1.26	1.35	1.37	1.37	1.37
(4) La Escalera		1.55	1.53	1.50	1.49	1.50	1.50	1.50
(5) Las Peñitas	1.23	1.25	1.29	1.32	1.38	1.40	1.42	1.43
(6) Presa Malpaso		1.44	1.43	1.42	1.42	1.44	1.45	1.46
(7) Pte.Colgante	1.30	1.27	1.22	1.36	1.40	1.42	1,42	1.44
(8) Santa María	1.39	1.37	1.36	1.40	1.43	1.45	1.46	1.46
(9) Tuxtla Gtrrez.	1.41	1.35	1.32	1.38	1.42	1.41	1.41	1.40
(10) Villa Flores		1.49	1.45	1.39	1.41	1.43	1.43	1.44
(11) Ayutla	1.46	1.45	1.46	1.51	1.55	1.55	1.55	1.54
(12) Cantón	1.35	1.28	1.17	1.29	1.36	1,37	1.38	1.40
(13) Huahutla	1.35	1.33	1.35	1.43	1.46	1.44	1.44	1.45
(14) Jacatepec	1.25	1.12	1.15	1.23	1.28	1.31	1,33	1.33
(15) Jayacatlán		1.44	1.46	1.51	1.53	1.54	1.53	1.53
(16) La Estrella	1.37	1.27	1.33	1.33	1.38	1.35	1.36	1.37
(17) Monte Rosa	1.30	1.22	1.25	1.38	1.44	1.44	1.45	1.45
(18) Papaloapan	1.38	1,41	1.44	1.48	1.50		1.52	1.53
(19) Quiotepec			1.57	1.58	1.57	1.55	1.55	1.54
(20) Sn.P.Nolasco	1.58	1.56	1.57	1.57	1.57	1,56	1.57	1.57
(21) Temascal	1,36	1.31	1.31	1.30	1.32	1.32	1.34	1.34
(22) Tepelmeme	1.37	1.39	1.43	1.43	1.50	1.52	1.53	1.52
(23) Tepeuxila	1,48	1.50	1.50	1.52	1.48	1,45	1.44	1.43
(24) Villa Alta	1.27	1.33	1.34	1.38	1.41	1.43	1.43	1.43
(25) Caltepec	1.40	1.42	1.44	1.47	1.47	1.47	1.47	1.50
(26) El Carmen	1.45	1.46	1.46	1.46	1,48	1.50	1.50	1.50
(27) Cárdenas	1.42	1.37	1.36	1.33	1.40	1.42	1.44	1.45
(28) Paredón	1.39	1.38	1.37	1.39	1.43	1.46	1.47	1.49
(29) Acayucán	1.27	1.35	1.37	1.40	1.46	1.47	1.47	1.48
(30) Azueta	1.37	1.44	1,44	1.49	1.52	1.52	1.51	1.51
(31) Cuatotolapan	1.32	1.39	1.40	1.47	1.50	1.51	1.52	1.52
(32) Orizaba	1.35	1.32	1.31	1.32	1.33	1.33	1,35	1,36
MEDIA:	1.36	1.37	1.37	1.40	1.43	1.44	1.45	1.45
DESV.EST,	0.08	0.10	0.11	0.09	0.09	0.07	0.07	0.07

Tabla 3.14 Relaciones altura-periodo de retorno (R_d^T/R_d^{10} , T=200 años)

				Duraciór	n d, en n	nin		
Estación	5	10	15	30	60	80	100	120
(1) Arco de piedra	1.58	1.52	1.48	1.47	1.50	1.52	1.53	1.54
(2) Argelia	1.31	1.38	1.39	1.37	1.41	1.43	1.36	1.43
(3) F.Sta.isabel	1.27	1.28	1.29	1.34	1.46	1.48	1.48	1.48
(4) La Escalera		1.71	1.69	1.65	1.64	1.64	1.65	1.65
(5) Las Peñitas	1.30	1.33	1.37	1.41	1.50	1.51	1.54	1.56
(6) Presa Malpaso		1.57	1.55	1.55	1.55	1.57	1.59	1.60
(7) Pte.Colgante	1.39	1.35	1.29	1.46	1.52	1.54	1.54	1.57
(8) Santa María	1.51	1.48	1.47	1.53	1.55	1.58	1.59	1.60
(9) Tuxtia Gtrrez.	1.53	1.45	1.41	1.49	1.54	1.53	1.53	1.52
(10) Villa Flores		1.63	1.59	1.50	1.53	1.55	1.56	1.57
(11) Ayutla	1.60	1.58	1.59	1.66	1.71	1.71	1.71	1.70
(12) Cantón	1.46	1.36	1.22	1.38	1.47	1.48	1.49	1.52
(13) Huahutla	1.45	1.43	1.45	1.56	1.60	1.57	1.57	1.58
(14) Jacatepec	1.32	1.16	1,19	1.30	1,36	1.40	1.42	1.43
(15) Jayacatlán		1.57	1.60	1.66	1.68	1.70	1.69	1.68
(16) La Estrella	1.48	1.34	1.42	1.43	1.50	1.45	1.47	1.48
(17) Monte Rosa	1.39	1.28	1,33	1.49	1.56	1.57	1.58	1.59
(18) Papaloapan	1.49	1.53	1.57	1.62	1.66		1.68	1.69
(19) Quiotepec			1.74	1.76	1.74	1.72	1.71	1.70
(20) Sn.P.Nolasco	1.75	1.72	1.74	1.74	1.74	1.73	1.74	1.74
(21) Temascal	1.47	1.40	1.40	1.39	1.41	1.41	1.43	1.44
(22) Tepelmeme	1.37	1.50	1.56	1.56	1.65	1.67	1.69	1.68
(23) Tepeuxila	1.62	1.65	1.65	1.68	1.62	1.58	1.57	1.56
(24) Vilia Alta	1.36	1.43	1.45	1.49	1.53	1.57	1.56	1.56
(25) Caltepec	1.52	1.54	1.57	1.61	1.61	1.62	1.61	1.65
(26) El Carmen	1.58	1.60	1.60	1.60	1.62	1.64	1.65	1.65
(27) Cárdenas	1.55	1.49	1.46	1.42	1.51	1.55	1.57	1.58
(28) Paredón	1.51	1.50	1.48	1.51	1.55	1.59	1.61	1.63
(29) Acayucán	1.36	1.46	1.47	1.51	1.60	1.60	1.61	1.62
(30) Azueta	1.48	1.57	1.57	1.64	1.67	1.67	1.66	1.65
(31) Cuatotolapan	1.42	1.51	1.53	1.61	1.65	1.66	1.67	1.67
(32) Orizaba	1.46	1.42	1.40	1.41	1.43	1.44	1,46	1.46
MEDIA	1.46	1.47	1.49	1.53	1.56	1.57	1.58	1.59
DESV.EST.	0.11	0.13	0.14	0.12	0.09	0.09	.09	.08

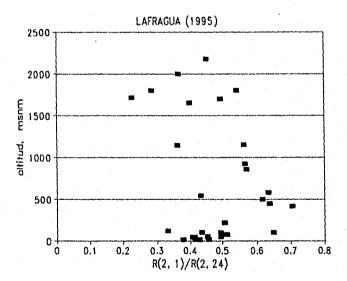


Fig. 3.9 Variación de la relación altura-duración con la altitud.

4. FORMULAS EMPIRICAS PARA DETERMINAR CURVAS IDT

4.1 Fórmula de Chen Cheng-Lung

Chen (1983) utiliza tres alturas de lluvia: 10 años 1h (R_1^{10}), 10 años 24h (R_{24}^{10}) y 100 años 1h (R_1^{100}) para describir la variación geográfica de la lluvia, en términos de la relación alturaduración (R_1^{T}/R_{24}^{T}) para cualquier periodo de retorno T y de la relación altura-periodo de retorno (R_d^{100}/R_d^{10}) para cualquier duración d.

Chen indica que, en los Estados Unidos de América (EUA), la relación altura-duración varía aproximadamente del 10 al 60%, con un valor medio de 40%, y la relación altura-periodo de retorno varía entre 1.33 y 1.63 con un valor medio de 1.48.

Para conocer el comportamiento de las relaciones anteriores de la zona en estudio, se determinó para cada estación la relación altura-duración K como R_1^{10}/R_{24}^{10} y la relación altura-periodo de retorno F como R_1^{100}/R_1^{10} . Los rangos encontrados fueron: para K de 24 a 72% con un valor medio de 49%; y para F de 1.28 a 1.57 con un valor medio de 1.43 (tabla 4.1).

A continuación se presenta un cuadro comparativo de las relaciones anteriores:

	Altura-durad	ión (K)	Altura-frecue	encia (F)
Area	Rango	Media	Rango	Media
EUA:				
Chen, 1983	0.10 a 0.60	0.40	1.33 a 1.63	1.48
MEXICO:				
Campos, 1990	0.20 a 0.72	0.479	••	
Zona en estudio	0.24 a 0.72	0.493	1.28 a 1.57	1.43

En lo que respecta a la relación altura-duración, en la tabla 4.1 se observa que para cada rango de valores de K, es decir, de 30 a 40%, 40 a 50% y 50 a 60% se identifican dos grupos de estaciones, uno con altitudes altas y precipitaciones bajas y otro con altitudes bajas y precipitaciones altas.

Tabla 4.1 Relaciones altura-duración y altura-periodo de retorno

Estación	Altitud	P, mm	К	F
Puente Colgante	418	948	0.716	1.40
Tuxtla Gtrrez.	579	936.5	0.709	1.42
La Escalera		1012.7	0.702	1.49
Arco de Piedra	450	1281.7	0.697	1.39
F.Sta. Isabel	100	1461	0.617	1.35
Sta. María	220	1847	0.584	1.43
Caltepec	1800	400	0.577	1.47
Villa Flores		1211	0.567	1.41
Papaloapan	22	2200	0.560	1.50
Tepelmeme	2060	524	0.550	1.50
Argelia	500	1097	0.543	1,32
Quiotepec	545	506	0.536	1.57
Jayacatlán	1150	584	0.532	1.53
El Carmen	1700	400	0.529	1.48
Monte Rosa	51	2310	0.507	1.44
Presa Malpaso	98	2200	0,503	1.42
Orizaba	924	2101	0.497	1.33
Temascal	80	2800	0.485	1.32
Paredón		2359.5	0.482	1,43
Azueta	14	1563	0.480	1.52
Las Peñitas	50	3172	0.458	1.38
Cuatotolapan	14	1370	0.450	1.50
Acayucan	100	1794	0.446	1.46
Tepeuxila	1650	952	0.410	1.48
Cárdenas	21	1962	0.374	1.40
Cantón	42	3584	0.373	1.36
Ayutla	2000	1458	0.369	1.55
Jacatepec	42	3790	0.360	1.28
Villa Alta	1140	1561	0.322	1,41
La Estrella	120	4557	0.313	1.38
Sn. P. Nolasco	1800	1013	0.301	1.57
Huahutia	1714	2728	0.238	1.46
MEDIA			0.493	1.43
DESV.EST.			0.123	0.07

Relación altura-duración K = R_1^{10}/R_{24}^{10} Relación altura-periodo de retorno F = R_1^{100}/R_1^{10} Fórmula empírica intensidad-duración

Chen (1983) usó la siguiente fórmula empírica intensidad-duración:

$$I = \frac{a}{(d+b)^c} \tag{4.1}$$

donde I es la intensidad de lluvia, en mm/h; d la duración de la lluvia en min; y a, b y c los parámetros de tormenta. Estos parámetros varían con las condiciones meteorológicas.

La relación intensidad-duración independiente del periodo de retorno se puede expresar como

$$\frac{I_d^T}{I_1^T} = \frac{a_1}{(d+b_1)^{c_1}} \tag{4.2}$$

donde I_d^T es la intensidad de lluvia para T años y d minutos, en mm/h; I_1^T la intensidad de lluvia para T años y 1 h de lluvia; y a_1 , b_1 y c_1 los parámetros de tormenta estándar.

La ecuación 4.2 se puede expresar como

$$I_d^T = \frac{I_1^T a_1}{(d+b_1)^{c_1}} \tag{4.3}$$

Las ecuaciones 4.1 y 4.3 son idénticas, comparando los parámetros de ambas ecuaciones:

$$a=a_1 I_1^T$$
 $b=b_1$ $c=c_1$

Para evaluar los parámetros a, b y c , la ecuación 4.1 se expresa en forma logarítmica

$$\log I = \log a - c \log (d+b) \tag{4.4}$$

Con el método de mínimos cuadrados y una técnica de optimización, similar al método de máximo descenso para optimizar un problema sin restricciones, se determinan los parámetros. El problema de optimización equivale a encontrar los valores de a, b y c minimizando

$$F(a,b,c) = \sum_{j=1}^{n} [\log I_j - \log a + c \log(d_j + b)]^2$$
 (4.5)

Fórmula emplrica intensidad-periodo de retorno

Chen (1983) parte de la relación desarrollada por Chow, 1953:

$$R_d^T = \alpha \log T_0 + \beta \tag{4.6}$$

donde R_d^T es la altura de lluvia para T años y d minutos, en mm; α y β son parámetros desconocidos que se determinan con los datos de lluvia; y T_p el periodo de retorno para series de excedentes anuales.

Para determinar $_{\alpha}$ y $_{\beta}$ selecciona alturas de lluvia para dos periodos de retorno $_{T=}$ 10 y 100 años para la misma duración y los sustituye en la ecuación 4.6

$$R_d^{10} = \alpha \log 10 + \beta$$
 (4.7)

$$R_d^{100} = \alpha \log 100 + \beta$$
 (4.8)

Resolviendo el sistema de ecuaciones (ecs. 4.7 y 4.8 para $_{\alpha}$ y $_{\beta}$) se encuentra que

$$\alpha = R_d^{100} - R_d^{10} = R_d^{10}(X - 1) \tag{4.9}$$

$$\beta = 2 R_d^{10} - R_d^{100} = R_d^{10} (2 - X)$$
 (4.10)

donde

$$X = R_d^{100} / R_d^{10} (4.11)$$

Sustituyendo las ecuaciones 4.9 y 4.10 en la ecuación 4.6 resulta

$$\frac{R_d^T}{R_d^{10}} = \log (10^{2-\chi} T_p^{\chi-1}) \tag{4.12}$$

Como $R_d^T/R_d^{10} = I_d^T/I_d^{10}$ y $R_d^{100}/R_d^{10} = I_d^{100}/I_d^{10}$ para la misma duración, la ecuación 4.12 resulta

$$\frac{I_d^T}{I_d^{10}} = \log \left(10^{2-\chi} T_p^{\chi-1}\right) \tag{4.13}$$

Con la siguiente relación teórica se puede expresar la ecuación anterior utilizando periodos de retorno para series máximas anuales T_a (Chen, 1983)

$$\frac{1}{T_p} = \ln\left(\frac{T_a}{T_a - 1}\right) \tag{4.14}$$

Por lo tanto la ecuación 4.13 resulta

$$\frac{I_d^T}{I_d^{10}} = \log \left[10^{2-X} \ln \left(\frac{T_a}{T_a - 1} \right)^{-(X-1)} \right]$$
 (4.15)

Fórmula generalizada intensidad de lluvia-duración-periodo de retorno

Para incorporar la ecuación 4.15 con la ecuación 4.3 la fórmula intensidad-periodo de retorno se debe expresar en términos de d igual a 1 h.

$$\frac{I_d^T}{I_1^{10}} = \log \left[10^{2-X} \ln \left(\frac{T_a}{T_a - 1} \right)^{-(X - 1)} \right]$$
 (4.16)

donde

$$X = R_1^{100}/R_1^{10} (4.17)$$

Sustituyendo la ecuación 4.16 en la ecuación 4.3 resulta

$$I_d^T = \frac{a_1 \ I_1^{10} \log \left\{ 10^{2-\chi} \left[\ln \left(\frac{T_a}{T_a - 1} \right) \right]^{-(\chi - 1)} \right\}}{(d + b_1)^{c_1}}$$
(4.18)

Con la ecuación 4.18 se obtienen relaciones IDT usando series máximas anuales, válida para T>1 año y para 5 min $\leq d \leq$ 24 h. Para aplicarla se requieren tres valores de lluvia R_1^{10} , R_{24}^{10} y R_1^{10} ; así como el valor de los parámetros de tormenta a_1 , b_1 y c_1 .

4.2 Fórmula de F.C. Bell

Relaciones altura-duración

Bell (1969) utilizó 157 estaciones de los EUA con más de 40 años de información y encontró el valor medio de la altura de lluvia de 2 h entre la altura de lluvia de 1 h (R_2/R_1) . Este valor resultó igual a 1.25.

Para demostrar la hipótesis de que las relaciones altura-duración pueden ser válidas a través del mundo, utilizó información de Hawaii, Alaska y Puerto Rico; así como de Australia, y sur

y norte de Africa. Para Australia utilizó 7 estaciones distribuidas en el este y sur del país con más de 30 años de información. Estimó relaciones medias R_t^T/R_t^T con tres periodos de retorno diferentes (2, 10 y 25 años) y los comparó con las relaciones de los EUA, los valores fueron similares. En la siguiente tabla se muestra la comparación.

Tabla 4.2 Relaciones altura-duración

Area	5 min	15 min	30 min	2 h
EUA: Media	0.29	0.57	0.79	1.25
AUSTRALIA T= 2 años T= 10 años T= 25 años Media	0.30 0.31 0.30 0.30	0.57 0.58 0.58 0.57	0.77 0.78 0.79 0.78	1.24 1.25 1.23 1.24

Relaciones altura-frecuencia

Bell utiliza los registros de las 157 estaciones de los EUA para obtener relaciones altura-frecuencia, graficando en las ordenadas, alturas de lluvia de duración 1 h para un periodo de retorno T y en las abscisas, alturas de lluvia de duración 1 h para un periodo de retorno básico que puede ser 2 o 10 años.

También graficó datos correspondientes a Australia usando todas las estaciones disponibles con más de 20 años de registro y los valores resultaron similares. En la siguiente tabla se muestran las relaciones correspondientes a EUA y Australia tomando como valor básico 10 años.

Tabla 4.3 Relaciones altura-frecuencia

T, años	EUA	Australia
1	0,54	0.52
2	0.63	0.65
5	0,85	0.85
25	1.17	1.18
50	1.31	1.33
100	1.46	1.50

Al graficar en papel Gumbel las relaciones altura-frecuencia estas tienden a ajustarse a una línea recta. Bell indica que estas relaciones pueden ser descritas por la siguiente ecuación

$$\frac{R_d^T}{R_d^{10}} = 0.21 \text{ in } T + 0.52$$
 (4.19)

donde R_d^T/R_d^{10} es la relación de la altura de lluvia de T años y d min a la altura de lluvia de 10 años y d min, y ln T es el logaritmo natural del periodo de retorno en años, considerando series de excedentes anuales.

Para la relación altura-duración propone

$$\frac{R_d^T}{R_1^T} = 0.54 \ d^{0.25} - 0.50 \tag{4.20}$$

donde R_d^T es la altura de lluvia de T años y d min, y R_1^T es la altura de lluvia de T años y 1 h de lluvia.

Combinando las ecuaciones 4.19 y 4.20 resulta

$$R_d^T = (0.21 \text{ in } T + 0.52)(0.54 \ d^{0.25} - 0.5) \ R_1^{10}$$
 (4.21)

Si en lugar de la altura de lluvia correspondiente a 10 años y una hora de duración (R_1^{10}) se utiliza la altura de lluvia de 2 años y duración una hora (R_1^2) , la función generalizada altura-duración-periodo de retorno resulta

$$R_d^T = (0.35 \text{ in } T + 0.76)(0.54 \ d^{0.25} - 0.5) \ R_1^2$$
 (4.22)

Las ecuaciones 4.21 y 4.22 son válidas para $2 \le T \le 100$ años y $5 \le d \le 120$ min

Para obtener intensidades de lluvia las ecuaciones 4.21 y 4.22 se deben multiplicar por el factor d/60.

Es importante reconocer que para aplicar la fórmula de Chen (ec.4.18) se requieren tres alturas de lluvia, y para aplicar la de Bell (ec. 4.21 ó 4.22) se necesita solamente una.

4.3 Verificación de las fórmulas de F.C. Bell y C.L. Chen.

La eficiencia de las ecuaciones descritas anteriormente se evalúa con un análisis de correlación lineal simple. Se grafican los valores observados (variable independiente) contra los valores

calculados con la ecuación interesada (variable dependiente) para visualizar la dispersión de los puntos alrededor de una línea de ajuste perfecto, ver figuras 4.1 a 4.5; y para medir númericamente la correlación entre los valores observados ($I_d^T OBS$) y los calculados ($I_d^T CALC$) se determina el coeficiente de correlación r expresado como (Raudkivi, 1979)

$$r = \frac{n\sum XY - \sum x\sum y}{\left\{ \left[n\sum X^2 - (\sum X)^2 \right] \left[n\sum Y^2 - (\sum Y)^2 \right] \right\}^{\frac{1}{2}}}$$
(4.23)

donde n es el número de datos; X la variable independiente y Y la variable dependiente.

Al mismo tiempo se estima un error E entre ambos valores (observados y calculados) representado como

$$E(\%) = \left| 100 \left[\frac{(I_d^T)OBS - (I_d^T)CALC}{(I_d^T)OBS} \right] \right|$$
 (4.24)

En resumen, el análisis para evaluar la eficiencia de las ecuaciones consiste en lo siguiente:

- Elaborar la gráfica mencionada anteriormente (valores observados contra valores calculados).
- Calcular el coeficiente de correlación r con la ecuación 4.23.
- Calcular el error E con la ecuación 4.24

Se realizaron dos análisis: uno para T≤30 años, utilizando tres periodos de retorno (ver tabla 4.4) y el otro para periodos de retorno de 50, 100 y 200 años. Ambos análisis se llevaron a cabo por duración y para cada una de las estaciones.

Dado que el segundo análisis trata con periodos de retorno mayores al número de años disponibles de información, el término I_d^T OBS de la ecuación 4.24 se sustituyó por I_d^T GUMB, que corresponde al valor estimado con Gumbel. En este caso se grafican valores estimados con Gumbel contra valores calculados con la ecuación interesada.

Para aplicar la fórmula propuesta por Chen, ecuación 4.18, se requieren las siguientes alturas de lluvia: R_1^{10} , R_1^{100} y R_{24}^{10} ; y en la de Bell, se requiere R_1^2 para la ecuación 4.22 y R_1^{10} para la ecuación 4.21, estos datos se tomaron de las relaciones IDT obtenidas en el Inciso 3.4. En la tabla 4.4 se presentan los datos requeridos en las fórmulas; así como los periodos de retorno seleccionados para el primer análisis de cada una de las estaciones.

Tabla 4.4 Datos para la aplicación de las fórmulas de F.C. Bell y Chen Cheng-Lung

Estación	T, años	R,²	R, 10	R, 100	R ₂₄ 10	K (%)	Parámetros
	T, T ₂ T ₃	mm	mm	mm	mm		a b c
Argelia	12 6.0 2	47.00	63.27	83.50	116.40	54.3	34.8 10.7 .84
Peñitas	21 10.5 2	66.43	96.18	133.28	209.76	45.8	27.6 9.0.79
Presa Malpaso	22 11.0 2	49.52	75.00	106.97	149.28	50.0	31.2 9.8.82
Santa María	18 9.0 2	50.61	76.95	109.81	131.76	58.4	38.5 11.3.87
Villa Flores	26 13.0 2	40.33	60.20	84.99	106.00	56.7	37.0 11.0 .86
Ayutla	17 8.5 2	20.99	37.41	57.90	101.52	36.9	20.0 6.5 .71
Cantón	28 14.0 2	74.59	105.38	143.79	282.24	37.3	20.0 6.5.71
Huahutla	22 11.0 2	34.00	54.00	79.00	227.00	23.8	10.2 2.1.55
Jacatepec	20 10.0 2	74.32	95.46	121.84	264.00	36.0	18.6 6.2.70
Jayacatlán	22 11.0 2	25.00	43.41	66.26	81.60	53.2	33.6 10.5 .83
La Estrella	22 11.0 2	72.94	105.34	145.75	336.00	31.3	15.0 4.5 .64
Monte Rosa	18 9.0 2	58.75	90.00	129.16	177.60	50.7	32.0 10.2 .83
Papaloapan	31 15.5 2	55.17	92.78	139.70	165.60	56.0	36.2 11.0 .85
Quiotepec	31 15.5 2	22.17	40.71	63.84	75.84	53.6	34.2 10.5 .84
Sn.P. Nolasco	21 10.5 2	15.36	28.20	39.47	93.60	30.0	14.4 4.1 .63
Temascal	19 9.5 2	72.29	97.22	128.32	200.64	48.5	30.0 9.5 .81
Tepelmeme	22 11.0 2	21.30	35.49	53.19	64.56	55.0	35.4 10.9 .85
Tepeuxila	21 10.5 2	22.40	36.17	53.36	88.32	41.0	23.2 7.6.75
Villa alta	21 10.5 2	27.30	40.44	56.83	125.76	32.2	15.6 4.8.66
Caitepec	23 11.5 2	20.70	33.44	49.33	57.84	57.7	38.0 11.2 .86
El Carmen	16 8.0 2	22.64	36.70	54.24	69.36	52.9	33.6 10.5 .83
Cárdenas	26 13.0 2	53.74	78.75	109.95	210.72	37.4	20.0 6.5 .71
Paredón	14 7.0 2	49.24	74.76	106.58	155.00	48.2	29.2 9.5 .81
Acayucan	27 13.5 2	41.28	65.47	95.64	146.64	44.6	26.2 8.6.78
Azueta	30 15.0 2	41.62	71.18	108.00	148.32	48.0	29.2 9.5.81
Cuatotolapan	30 15.0 2	40.82	68.40	102.80	151.92	45.0	26.6 8.8 .78
Orizaba	28 14.0 2	50.86	00.69	91.70	138.96	49.7	31.2 9.8.82

Nota. Las estaciones F.Sta.Isabel, Puente Colgante, La Escalera, Tuxtla Gtrréz. y Arco de Piedra no se incluyeron por tener un valor de K mayor al 60%.

En las figuras 4.1 a 4.5 se muestra la correlación de las ecuaciones 4.18 (Chen) y 4.21 (Bell). Los resultados de ambos análisis para cada una de las duraciones se presentan en la tabla 4.5. De esta tabla se concluye que:

- Los errores más grandes se presentaron en duraciones de 5, 10 y 15 min con coeficientes de correlación menores al 85%
- Los errores más pequeños se presentaron en duraciones entre 30 y 120 min; dos fórmulas presentaron errores cercanos entre sí, ecuación 4.18 y 4.21. Con estas ecuaciones los errores resultaron menores del 15% con un coeficiente de correlación mayor al 90%
- Para d = 60 min con las tres ecuaciones analizadas el error fue menor al 10% con un coeficiente de correlación mayor al 95%; excepto para la ecuación 4.22 en 50≤T≤200 años, ya que se obtuvo un error del 14% con coeficiente de correlación de 93.7%.
- Para una duración de 24 h la ecuación de Chen resultó mejor con un error menor al 13% en T≤30 años y 5% en 50≤T≤200 años con coeficientes de correlación mayores al 90%.
- La ecuación que más sobreestimó los valores fue la de Bell, la que utiliza la altura de lluvia de 2 años y 60 min, ecuación 4.22.

En general con la ecuación de Chen, ecuación 4.18, se obtuvo el error más pequeño y consecuentemente un coeficiente de correlación mayor. Posteriormente le siguió la ecuación 4.21.

Es conveniente resaltar que para aplicar la ecuación 4.18 se requiere más información que con la de Bell (ec.4.21). Sin embargo, hay que tener cuidado de aplicar esta última ecuación fuera de sus límites; es decir en duraciones mayores de 120 min y periodos de retorno mayores a 100.años. En el presente estudio al aplicarla en duraciones de 24 h los errores estimados fueron mayores al 30% con coeficientes de correlación menores al 80%.

Tabla 4.5 Errores promedio y coeficientes de correlación al aplicar las fórmulas de Bell y Chen

	C.L. Chen	(ec.4.18)	F.C. Bell	(ec.4.21)	F.C. Bell	(ec.4.22)
d, min	E,%	r	E,%	r .	E,%	r
		2	≤T≤30 año)S		
5	28.82	0.822	35.97	0.821	40.85	0.785
10	25.93	0.846	28.96	0.842	33.19	0.818
15	20.95	0.877	23.32	0.856	26.51	0.834
30	12.90	0.881	11.45	0.916	15.00	0.881
60	10.24	0.937	8.14	0.967	9.09	0.955
80	10.37	0.953	8.63	0.971	9.71	0.960
100	10.15	0.970	8.90	0.977	8.49	0.974
120	9.60	0.973	10.00	0.973	9.00	0.966
1440	13.18	0.938	33.00	0.712	32.69	0.814
		50	≤T≤200 ai	า้อร		
5	36.12	0.790	49.76	0.789	59.12	0.750
10	33.75	0.777	42.63	0.747	51.14	0.681
15	24.25	0.869	30.45	0,848	37.81	0.782
30	10.76	0.952	13.84	0.942	27.27	0.877
60	3.55	0.994	5.13	0.988	13.83	0.937
80	6.70	0.978	5.74	0.987	12.85	0.951
100	7.94	0.970	6.64	0.983	12.59	0.950
120	8.23	0.969	11.80	0.977	15.96	0.969
1440	5.28	0.973	47.00	0.804	42.00	0.814

$5 \le d \le 30 \text{ min}$ y $5 \le T \le 30 \text{ años}$

a) Ecuación 4.18 (Chen)

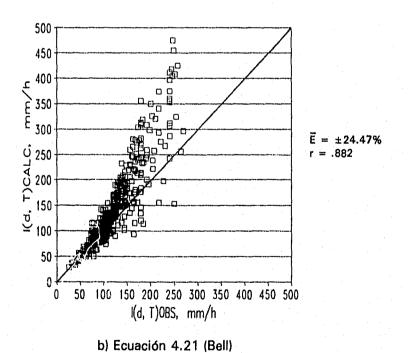
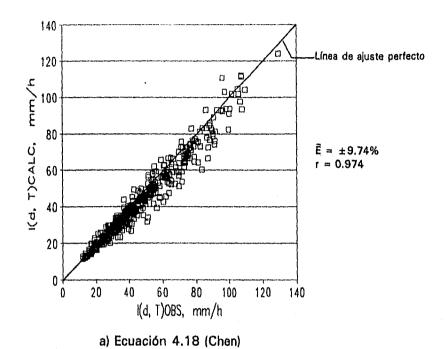



Fig. 4.1 Valores observados y valores calculados de I_d^{T} con la ecuación indicada.

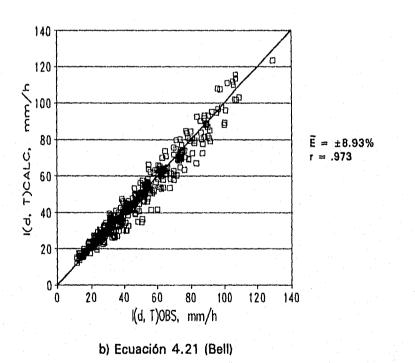
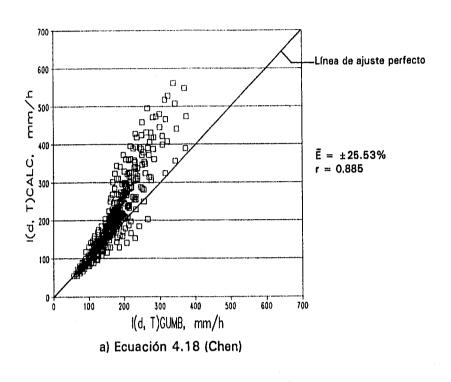



Fig. 4.2 Valores observados y valores calculados de $l_d^{\,\text{\scriptsize T}}$ con la ecuación indicada.

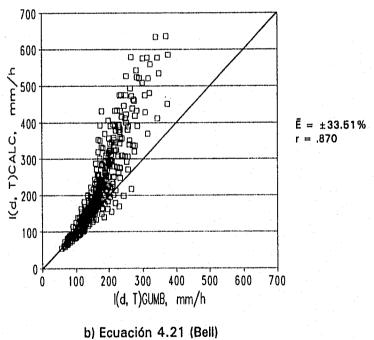


Fig. 4.3 Valores estimados con Gumbel y valores calculados de I_d^T con la ecuación indicada.

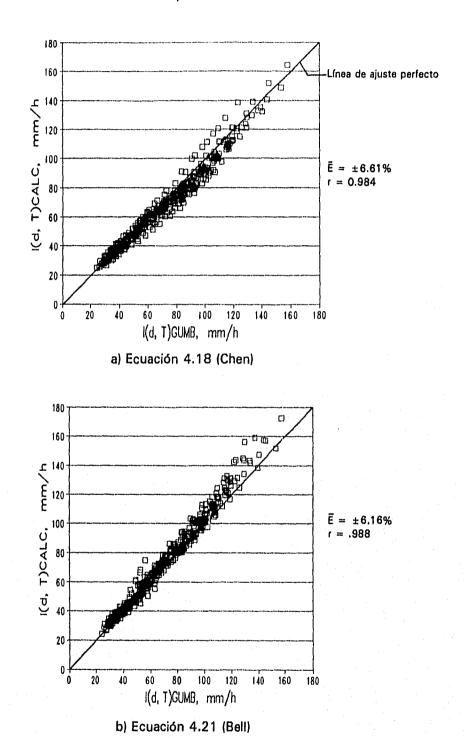
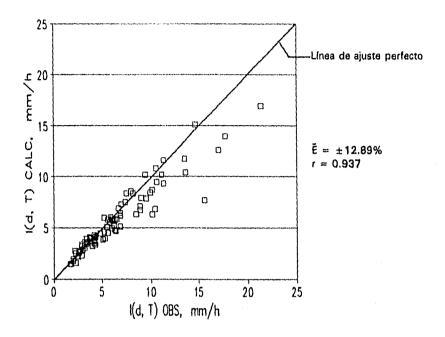



Fig. 4.4 Valores estimados con Gumbel y valores calculados de $I_d^{\ T}$ con la ecuación indicada.

d= 24 h y 50≤T≤200 años

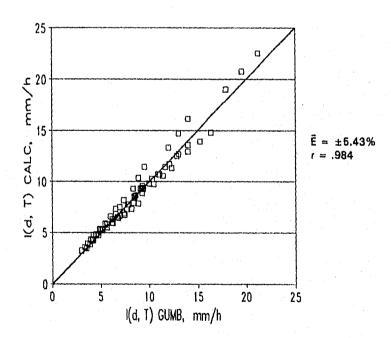


Fig. 4.5 Valores observados y valores calculados de $\mathbf{I_d}^\mathsf{T}$ con la ecuación de Chen.

5. PARAMETROS Y RELACIONES EMPIRICAS PROPUESTAS PARA LA ZONA EN ESTUDIO

Chen (1983), presenta un diagrama para obtener valores de los parámetros de tormenta para un rango de $10 \le K \le 60\%$, donde $K = R_1^T/R_{24}^T$ (fig. 5.1). Sin embargo, dentro de la zona de estudio cinco estaciones presentaron valores de K mayores al 60%, razón por la cual se determinaron parámetros de tormenta estándar con los datos de lluvia observados en la zona.

5.1 Parámetros de tormenta estándar

Siguiendo la metodología de Chen se determinaron relaciones promedio entre intensidades de lluvia de 60 min y lluvia de duración d (I_d^T/I_{60}^T) para el mismo periodo de retorno (ver tabla 3.6).

Se agruparon estaciones con valores de K (R_1^{10}/R_{24}^{10}) entre 30, 40, 50 y 60%; y se promedió tanto el valor de K como el de las relaciones promedio, excepto las estaciones con valores extremos de K por ser estaciones únicas, resultando los valores señalados en la tabla 5.1.

Tabla 5.1 Relaciones promedio de intensidades de lluvia de duración d entre intensidades de 1h

d	K (%)							
(min)	23.80	34.50	46.40	54.40	67.20	71.60		
5	2.70	2.92	2.81	3.17	2.83	2.53		
10	1.93	2.07	2.26	2.35	2.22	1.90		
15	1.65	1.78	1.93	2.01	1.88	1.51		
30	1.38	1.38	1.47	1.49	1.43	1.38		
60	1.00	1.00	1.00	1.00	1.00	1.00		
80	0.85	0.86	0.83	0.83	0.83	0.82		
100	0.76	0.75	0.72	0.69	0.66	0.69		
120	0.69	0.66	0.63	0.61	0.60	0.58		
1440	0.170	0.123	0.089	0.075	0.060	0.058		

Aplicando el método de mínimos cuadrados y la ecuación 4.5 a cada uno de los seis conjuntos de la tabla anterior para las relaciones de K dadas, se obtuvieron los valores de los parámetros a₁, b₁ y c₁, mostrados en la tabla 5.2.

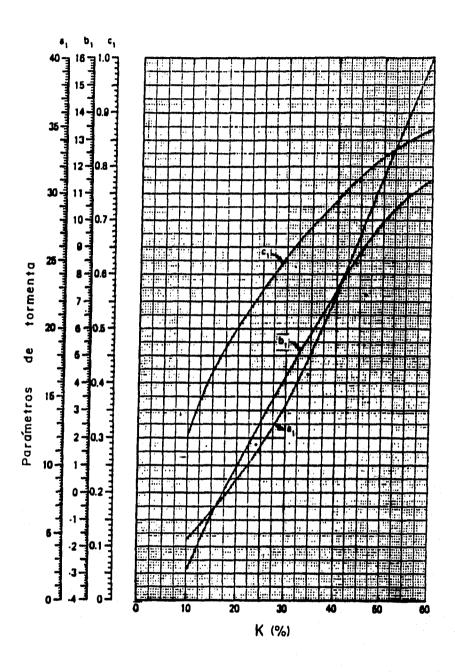


Fig.5.1 Relación entre parámetros de tormenta y la relación altura-duración $K = R_1^{\ T}/R_{24}^{\ T}$ Fuente: Chen C.L.,1983

Tabla 5.2 Parámetros de tormenta estándar para la zona estudiada.

			K (%)		
Parámetros de tormenta	23.80	34.50	46.40	54.40	67.20
a, b, c,	10.31 7.50 0.561	19.27 12.50 0.694	36.00 18.50 0.822	51.96 19.00 0.906	70.67 22.50 0.962

Los valores de a₁, b₁ y c₁ se graficaron junto con los valores de K; es decir en el eje horizontal se grafica K, y en el eje vertical se localizan tres escalas diferentes que corresponden a cada uno de los parámetros. Finalmente se obtuvo un diagrama, figura 5.2, que presenta forma similar al diagrama de Chen (1983).

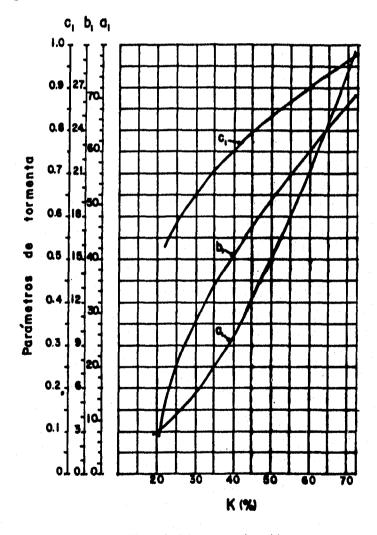


Fig.5.2. Diagrama obtenido

5.1.1 Verificación de los parámetros obtenidos

La verificación se realizó de la misma manera que en el inciso 4.3. Para periodos de retorno menores a 30 años se graficaron intensidades de lluvia observadas contra intensidades calculadas con la ecuación 4.18, pero utilizando los parámetros obtenidos. Para periodos de retorno entre 50 y 200 años las intensidades de lluvia observadas se sustituyeron por las estimadas con Gumbel. Se calculó r, con la ecuación 4.23 y, E con la 4.24.

Los datos requeridos en la ecuación mencionada, también se obtuvieron de los valores estimados en el inciso 3.4. La verificación se realizó con las 27 estaciones indicadas en la tabla 4.4. En la tabla 5.3 se presentan los parámetros de tormenta, tanto de Chen como los obtenidos de la figura 5.2, en ésta tabla se observa que el valor obtenido de b se duplica con respecto al de Chen.

En las figuras 5.3 a 5.7 se presentan las gráficas. En la tabla 5.4 se muestran los resultados al aplicar la fórmula de Chen utilizando los parámetros obtenidos y se comparan con los resultados de la tabla 4.5.

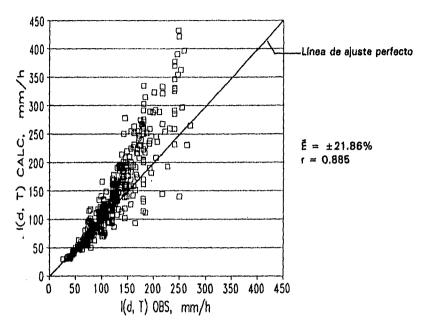

En la tabla 5.4 se observa que con los parámetros obtenidos se reduce el error promedio, sobre todo en duraciones menores o iguales a 15 min.

Tabla 5.3 Parámetros de tormenta para la aplicación de la fórmula de C.L. Chen.

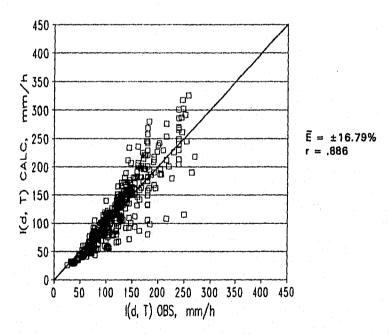
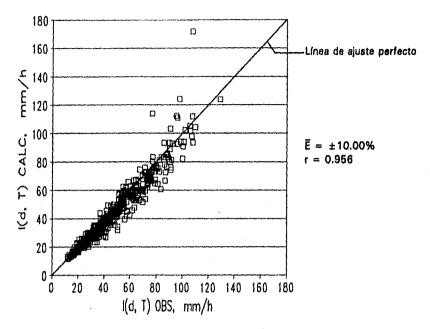

Estación	K,%	Parámetros de C.L. Chen	Parámetros obtenidos	
		a b c	a b c	
(1) Argelia	54.3	34.8 10.7 .84	47.3 20.75 .88	
(2) Peñitas	45.8	27.6 9.0 79	34.0 17.75 .80	
(3) Presa Malpaso	50.0	31.2 9.8 .82	40.7 19.25 .84	
(4) Santa María	58.4	38.5 11.3 .87	54.0 22.00 .91	
(5) Villa Flores	56.7	37.0 11.0 .86	51.3 21.50 .89	
(6) Ayutla	36.9	20.0 6.5 .71	22.3 14.00 .73	
(7) Cantón	37.3	20.0 6.5 .71	22.3 14.00 .73	
(8) Huahutla	23.8	10.2 2.1 .55	10.7 7.00 .57	
(9) Jacatepec	36.0	18.6 6.2 .70	20.7 13.50 .72	
(10) Jayacatlán	53.2	33.6 10.5 .83	45.3 20.25 .87	
(11) La Estrella	31.3	15.0 4.5 .64	16.0 11.25 .66	
(12) Monte Rosa	50.7	32.0 10.2 .83	42.0 19.50 .85	
(13) Papaloapan	56.0	36.2 11.0 .85	50.0 21.25 .88	
(14) Quiotepec	53.6	34.2 10.5 .84	47.3 20.75 .88	
(15) Sn Pedro Nolasco	30.0	14.4 4.1 .63	15.3 11.00 .65	
(16) Temascal	48.5	30.0 9.5 .81	38.0 18.50 .83	
(17) Tepelmeme	55.O	35.4 10.9 .85	48.7 21.00 .88	
(18) Tepeuxila	41.0	23.2 7.6 .75	26.7 15.75 .77	
(19) Villa Alta	32.2	15.6 4.8 .66	16.7 11.75 .68	
(20) Caltepec	57.7	38.0 11.2 .86	54.0 22.00 .91	
(21) El Carmen	52.9	33.6 10.5 .83	45.3 20.25 .87	
(22) Cárdenas	37.4	20,0 6.5 ,71	22.3 14.00 .73	
(23) Paredón	48.2	29.2 9.5 .81	38.0 18.50 .83	
(24) Acayucan	44.6	26.2 8.6 .78	32.7 17.50 .80	
(25) Azueta	48.0	29.2 9.5 .81	38.0 18.50 .83	
(26) Cuatotolapan	45.0	26.6 8.8 .78	32.7 17.50 .80	
(27) Orizaba	49.7	31.2 9.8 .82	40.7 19.25 .84	

Tabla 5.4 Errores estimados al aplicar la fórmula de C.L. Chen

	Parámetros	de Chen	Parámetro:	s obtenidos			
d, min	E(%)	r	E(%)	ŗ			
2≤T≤30 años							
5	28.82	0.822	19.71	0.831			
10	25.93	0.846	18.87	0.856			
15	20.95	0.877	17.21	0.883			
30	12.90	0.881	11.92	0.919			
60	10.24	0.937	9.19	0.959			
80	10.37	0.953	8.76	0.966			
100	10.15	0.970	8.30	0.970			
120	9.60	0.973	8.20	0.968			
1440	13.18	0.938	13.11	0.914			
	2≤T≤200 años						
5	36.12	0.790	19.85	0.781			
10	33.75	0.777	21.35	0.780			
15	24.25	0.869	17.44	0.878			
30	10.76	0.952	9.53	0.964			
60	3.55	0.994	3.17	0.994			
80	6.70	0.978	4.28	0.984			
100	7.94	0.970	6.11	0.979			
120	8.23	0.969	6.49	0.976			
1440	5.28	0.973	8.21	0.987			


a) Ecuación 4.18 (Con parámetros de Chen)

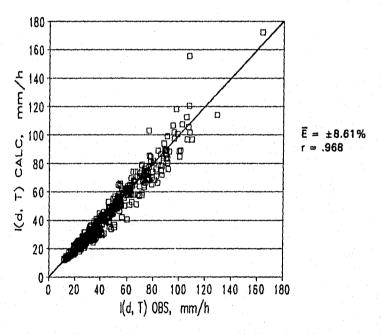
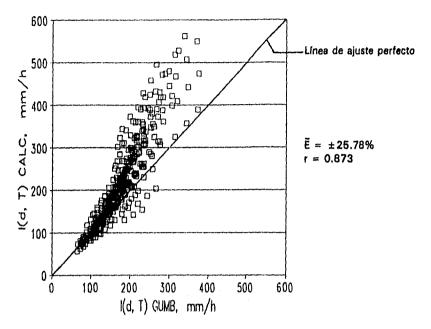
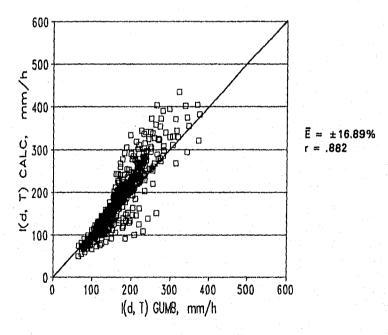

b) Ecuación 4.18 (Con parámetros obtenidos)

Fig. 5.3 Valores observados y valores calculados de $\mathbf{I_d}^{\mathsf{T}}$ con la ecuación indicada.

$60 \le d \le 120 \text{ min}$ y $5 \le T \le 30 \text{ años}$

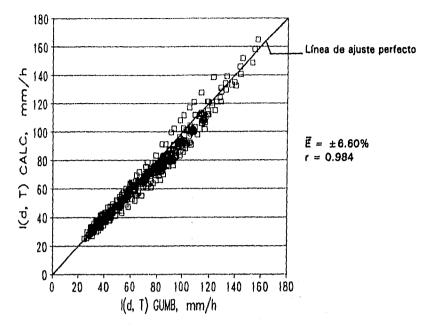


a) Ecuación 4.18 (Con parámetros de Chen)

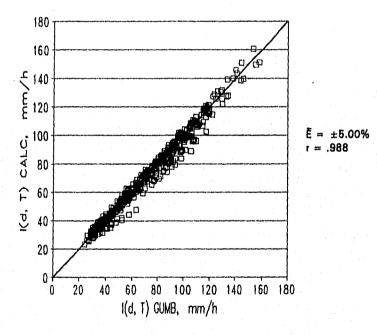


b) Ecuación 4.18 (Con parámetros obtenidos)

Fig. 5.4 Valores observados y valores calculados de $\mathbf{I_d}^\mathsf{T}$ con la ecuación indicada.

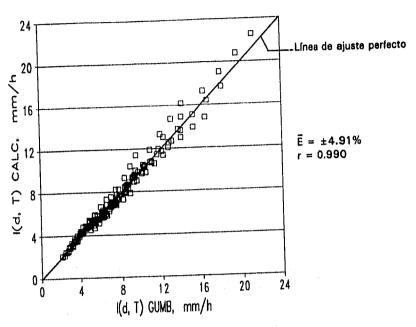


a) Ecuación 4.18 (Con parámetros de Chen)



b) Ecuación 4.18 (Con parámetros de Chen)

Fig. 5.5 Valores estimados con Gumbel y valores calculados de $\mathfrak{l_d}^{\mathsf{T}}$ con la ecuación indicada.



a) Ecuación 4.18 (Con parámetros de Chen)

b) Ecuación 4.18 (Con parámetros obtenidos)

Fig. 5.6 Valores estimados con Gumbel y valores calculados de l_d^T con la ecuación indicada.

a) Ecuación 4.18 (Con parámetros de Chen)

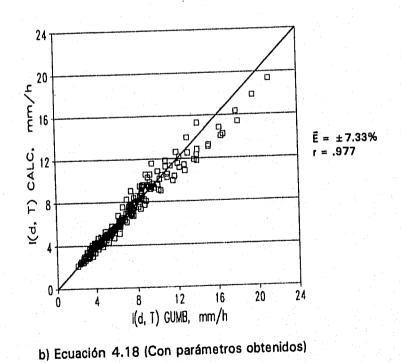


Fig. 5.7 Valores estimados con Gumbel y valores calculados de l_d^T con la ecuación indicada.

5.2 Relaciones altura-periodo de retorno

En el Inciso 4.3 se demostró que con la fórmula de Chen las intensidades máximas estimadas son mejores en comparación con las de Bell, y en el Inciso 5.1.1 se demostró que las estimaciones mejoran si se utilizan en la fórmula de Chen parámetros representativos de la zona. Sin embargo los datos requeridos en la ecuación 4.18 (R_1^{10} , R_1^{100} y R_{24}^{10}) no siempre están disponibles, por lo que es necesario desarrollar relaciones empíricas que permitan obtener los datos faltantes para su aplicación.

Suponiendo conocida la altura de lluvia R_1^{10} , ya que ésta se puede obtener de las isoyetas publicadas por SCT (1990), y la altura de lluvia R_{24}^{10} obtenida de los pluviómetros, solo faltaría conocer la altura de lluvia R_1^{100} .

Se consideró importante comparar la altura de lluvia R₁¹⁰ publicada por SCT con la obtenida en el Inciso 3.4. Se encontraron dos valores con diferencias mayores del 10% (Cantón y Acayucan); tres valores con diferencias mayores del 20% (Sn.P.Nolasco, Villa Alta), y un valor mayor del 25% (La Escalera). En la tabla 5.5 se muestra esta comparación.

Siguiendo la metodología de Bell, se graficaron alturas de lluvia de duración 1 h y periodo de retorno de 10 años en las absisas, y alturas de lluvia de duración 1 h y periodo de retorno T, en las ordenadas, figura 5.8. Se graficaron los datos de las 32 estaciones y se determinaron relaciones altura-periodo de retorno R_1^T/R_1^{10} para periodos de retorno de 100 y 2 años, resultando

$$R_1^{100} = 1.408 R_1^{10} ag{5.1}$$

$$R_1^2 = 0.672 R_1^{10} ag{5.2}$$

Las relaciones promedio propuestas por Bell para periodos de retorno de 100 y 2 años son 1.46 y 0.63, respectivamente, utilizando como denominador la misma altura de lluvia R₁¹⁰.

En la tabla 5.6 se presenta un resumen comparativo de datos obtenidos en el Inciso 3.4 contra datos calculados usando las relaciones anteriores. Para la altura de lluvia R₁¹⁰⁰, las diferencias fueron menores del 10%; y para R₁², 10 valores presentaron diferencias mayores del 10% pero menores del 20%.

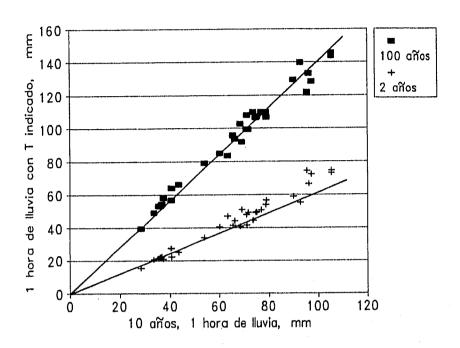


Fig. 5.8. Relaciones altura-periodo de retorno para 2 y 100 años

Tabla 5.5 Comparación de la altura de lluvia R₁10, mm

	R ₁ ¹⁰ ,	mm	
Estación (1)	Gumbel (2)	SCT (3)	Comparación (2)/(3)
CHIAPAS:		13/	
(1) Arco de Piedra	71.57	77.00	0,93
(2) Argelia	63.27	60,00	1.05
(3) F.Sta.Isabel	78.94	77.00	1.03
(4) La Escalera	73.58	99.00	0.74
(5) Las Peñitas	96.18	91.00	1.06
(6) Presa Malpaso	75.00	77.00	0.97 1.03
(7) Puente Colgante (8) Santa María	70.88 76.95	69.00 70.00	1.03
(9) Tuxtla Gtrrez.	66.17	65.00	1.02
(10) Villa Flores	60.20	60.00	1.00
1107 VIIII FIOTES	00.20	30.00	1,00
OAXACA:	•		
(11) Ayutla	37.41	34.90	1.07
(12) Cantón	105.38	93.00	1.13
(13) Huahutla	54.00	49.50	1.09
(14) Jacatepec	95.46	93.00	1.03
(15) Jayacatlán	43.41	41.50	1.05 1.05
(16) La Estrella (17) Monte Rosa	105.34	100.00 90.00	1.00
(18) Papaloapan	92.78	85.00	1.09
(19) Quiotepec	40.71	41.80	0.97
(20) Sn. P. Nolasco	28.20	34.50	0.82
(21) Temascal	97.22		
(22) Tepelmeme	35.49		
(23) Tepeuxila	36.17		
(24) Villa Alta	40.44	49.00	0.83
PUEBLA:			
(25) Caltepec	33.44	42.00	0.80
(26) El Carmen	36.70		
TABASCO:			
(27) Cárdenas	78.75	82.00	0.96
(28) Paredón	74.76	81.10	0.92
VERACRUZ:			
(29) Acayucan	65.47	59.00	1.11
(30) Azueta	71.18	77.00	0.92
(31) Cuatotolapan (32) Orizeba	68.40 69.00	67.00 66.40	1.02 1.04
1021 Olizana	T 03.00	1 00.40	1.04

Gumbel = valor estimado con la distribución Gumbel (Inciso 3.4) SCT = valor publicado por la Secretaría de Comunicaciones y Transportes, 1990

Tabla 5.6. Comparación de las alturas de lluvia $\rm R_1^{100} \, y \, R_1^{\, 2}, \, mm$

	R ₁ 10, mm		R ₁ ¹⁰⁰ , mm			R ₁ ² , mm	
Estación (1)	Gumb (2)	Gumb (3)	Calc (4)	Comp (3)/(4)	Gumb (6)	Calc (7)	Comp (6)/(7)
CHIAPAS: (1) Arco de Piedra (2) Argelia (3) F.Sta.Isabel (4) La Escalera (5) Las Peñitas (6) Presa Malpaso (7) Pte. Colgante (8) Santa María (9) Tuxtla Gtrrez. (10) Villa Flores	71.57 63.27 78.94 73.58 96.18 75.00 70.88 76.95 66.17 60.20	99.33 83.50 106.81 109.94 133.28 106.97 99.51 109.81 93.69 84.99	100.77 89.00 111.15 103.60 135.42 105.60 99.80 108.35 93.17 84.76	0.98 0.94 0.96 1.06 0.98 1.00 1.00 1.00	49.32 47.00 56.60 44.43 49.52 47.92 50.61 44.10 40.33	48.10 42.52 53.00 49.45 64.63 50.40 47.63 51.71 44.47 40.45	1.02 1.10 1.07 0.90 1.03 0.98 1.00 0.98 0.99
OAXACA: (11) Ayutla (12) Cantón (13) Huahutla (14) Jacatepec (15) Jayacatlán (16) La Estrella (17) Monte Rosa (18) Papaloapan (19) Quiotepec (20) Sn.P.Nolasco (21) Temascal (22) Tepelmeme (23) Tepeuxila (24) Villa Alta	37.41 105.38 54.00 95.46 43.41 105.34 90.00 92.78 40.71 28.20 97.22 36.49 36.17 40.44	57.90 143.79 79.00 121.84 66.26 145.75 129.16 139.70 63.84 39.47 128.32 53.19 53.36 56.83	52.67 148.38 76.00 134.41 61.12 148.32 126.72 130.63 57.32 39.71 136.89 49.97 50.93 56.94	1.09 0.97 1.04 0.91 1.08 0.98 1.02 1.07 1.11 0.99 0.94 1.06 1.05 0.99	20.99 74.59 34.00 74.32 25.00 72.94 58.75 55.17 22.17 15.36 72.29 21.30 22.40 27.30	25.14 70.81 36.29 64.15 29.17 70.79 60.48 62.35 27.36 18.96 65.33 23.85 24.31 27.18	0.83 1.05 0.94 1.16 0.86 1.03 0.97 0.88 0.81 1.11 0.89 0.92 1.00
PUEBLA: (25) Caltepec (26) El Carmen	33.44 36.70	49.33 54.24	47.00 51.67	1.05 1.05	20.70 22.64	22.47 24.66	0.92 0.92
TABASCO: (27) Cárdenas (28) Paredón	78.75 74.76	109.95 106.58	110.88 105.26	0.99 1.00	53.74 49.24	52.96 50.24	1.01 0.98
VERACRUZ: (29) Acayucan (30) Azueta (31) Cuatotolapan (32) Orizaba	65.47 71.18 68.40 69.00	95.64 108.00 102.80 91.70	92.18 100.22 96.31 97.15	1.04 1.08 1.07 0.94	41.28 41.62 40.82 50.86	44.00 47.83 45.96 43.37	0.94 0.87 0.89 1.17

Gumb = valor estimado con la distribución Gumbel (Inciso 3.4).

Comp = comparación entre valores estimados con Gumbel y valores calculados.

col.(4) calculada con la ec. 5.1.

col.(7) calculada con la ec. 5.2.

6. PROCEDIMIENTO PROPUESTO PARA LA OBTENCION DE RELACIONES IDT

Para cualquier sitio dentro de la zona de estudio.

1. Método de intensidad de lluvia-periodo de retorno.

Si se cuenta con información pluviográfica

a) Ajustar a los datos una distribución Gumbel con el método de máxima verosimilitud (ecs. 3.5, 3.8 y 3.9). El análisis se realiza para cada duración, tal como se indica en el Inciso 2.1

2. Método empírico.

Si se cuenta sólo con lluvia máxima en 24h

- 2.1 Obtener:
- a) La altura de lluvia R₁¹⁰ de las isoyetas de la figura 3.4.
- b) La altura de lluvia R_{24}^{10} ajustando a los datos de lluvia máxima en 24 h una distribución Gumbel con el método de máxima verosimilitud para un T=10 años.
- c) La altura de lluvia R₁¹⁰⁰ con la ecuación

$$R_1^{100} = 1.408 R_1^{10}$$

- d) Los parámetros de tormenta a_1 , b_1 , y c_1 con la figura 5.2, entrando con $K = R_1^{10}/R_{24}^{10}$.
- 2.2 Aplicar la fórmula de Chen Cheng-Lung, ecuación 4.18, válida para

6.1 Aplicación del método empírico propuesto

Se aplicó el método empírico a 27 estaciones ubicadas dentro de la zona en estudio; tres de las cuales no fueron utilizadas en la obtención de la figura 5.2; F.Sta. Isabel, Coixtlahuaca y El Tejar. En la siguiente tabla se presentan las estaciones y su correspondiente región hidrológica.

Tabla 6.1. Estaciones a las que se les aplicará el procedimiento.

Estación	Periodo de	No.	Región
	registro	años	hidrológica
Argelia, Chis	1962-1974	13	30 (Grijalva)
Las Peñitas, Chis	1962-1983	22	30 (Grijalva)
Santa Maria, Chis	1962-1980	19	30 (Grijalva)
Tuxtla Gtrréz., Chis	1951-1976	18	30 (Grijalva)
Presa Malpaso, Chis	1959-1982	21	30 (Grijalva)
Villa Flores, Chis	1954-1983	25	30 (Grijalva)
Ayutia, Oax	1957-1977	16	28 (Papaloapan)
Cantón, Oax	1948-1977	30	28 (Papaloapan)
Huahutla, Oax	1957-1977	21	28 (Papaloapan)
Jacatepec, Oax	1959-1977	19	28 (Papaloapan)
Jayacatlán, Oax	1957-1977	21	28 (Papaloapan)
La Estrella, Oax	1957-1977	21	28 (Papaloapan)
Monte Rosa, Oax	1956-1973	18	28 (Papaloapan)
Papaloapan, Oax	1948-1977	30	28 (Papaloapan)
Quiotepec, Oax	1948-1977	30	28 (Papaloapan)
Sn.P.Nolasco, Oax	1958-1977	20	28 (Papaloapan)
Villa Alta, Oax	1957-1977	20	28 (Papaloapan)
Caltepec, Pue	1957-1978	22	28 (Papaloapan)
Cárdenas, Tab	1959-1977	25	30 (Grijalva)
Paredón, Tab	1965-1982	13	30 (Grijalva)
Acayucan, Ver	1949-1977	28	28 (Papaloapan)
Azueta, Ver	1948-1977	29	28 (Papaloapan)
Cuatotolapan, Ver	1948-1977	30	28 (Papaloapan)
Orizaba, Ver	1930-1964	25	28 (Papaloapan)
F.Sta. Isabel, Chis	1962-1973	12	30 (Grijalva)
Coixtlahuaca, Oax	1968-1977	10	28 (Papaloapan)
El Tejar, Ver	1962-1982	18	28A (Jamapa)
a	.002 .002		

Tabla 6.2. Datos para la aplicación del método empírico

C		The state of the s				
	Estación	R ₂₄ 10,mm	R ₁ 10, mm	R, 100, mm	(%)	Parámetros
		GUMB	Fig.3.4	Ec.5.1		a b c
	Argelia, Chis	116.40	63.27	89.00	54.0	47.3 20.75 .88
	Las Peñitas, Chis	209.76	96.18	135.42	46.0	34.0 17.75 .80
===	Santa Maria, Chis	131.76	76.95	108.35	58.0	54.0 22.00 .91
	Presa Malpaso, Chis	149.28	75.00	105.60	50.0	40.7 19.25 .84
	Tuxtla Gtérrez., Chis	93.36	66.17	93.17	71.0	76.0 26.00 .96
7335	Villa Flores, Chis	106.00	60.20	84.76	57.0	51.3 21.50 .89
	Ayutla, Oax	101.52	37.41	52.67	37.0	22.3 14.00 .73
	Cantón, Oax	282.24	105.38	148.38	37.0	22.3 14.00 .73
	Huahutla, Oax	227.00	54.00	76.00	24.0	10.7 7.00 .57
	Jacatepec, Oax	264.00	95.46	134.41	36.0	20.7 13.50 .72
	Jayacatlán, Oax	81.60	43.41	61.12	53.0	45.3 20.25 .87
	La Estrella, Oax	336.00	105.34	148.32	31.0	16.0 11.25 .66
	Monte Rosa, Oax	177.60	90.00	126.72	51.0	42.0 19.50 .85
	Papaloapan, Oax	165.60	92.78	130.63	56.0	50.0 21.25 .88
-	Quiotepec, Oax	75.84	40.71	57.32	54.0	47.3 20.75 .88
-	Sn.P.Nolasco, Oax	93.60	28.20	39.71	30.0	15.3 11.00 .65
	Villa Alta, Oax	125.76	40.44	56.94	32.0	16.7 11.75 .68
	Caltepec, Pue	98.69	33.44	47.08	48.0	38.0 18.50 .83
	Cárdenas, Tab	210.72	78.75	110.88	37.0	22.3 14.00 .73
	Paredón, Tab	155.00	74.76	105.26	48.0	38.0 18.50 .83
	Acayucan, Ver	146.64	65.47	92.18	45.0	32.7 17.50 .80
_	Azueta, Ver	148.32	71.18	100.22	48.0	38.0 18.50 .83
	Cuatotolapan, Ver	151.92	68.40	96.31	45.0	32.7 17.50 .80
	Orizaba, Ver	138.92	00.69	97.15	50.0	40.7 19.25 .84
-	F.Sta. Isabel, Chis	127.92	78.94	111.15	62.0	60.0 23.25 .93
===	Coixtlahuaca, Oax	59.76	28.00	39.42	47.0	36.0 18.00 .81
	El Tejar, Ver	157.92	72.79	102.49	46.0	34.0 17.75 .80
á						

 $K=R_1^{10}/R_2^{4.0}$; $R_1^{100}=1.408~R_1^{10}$ Nota: Las tres últimas estaciones no fueron utilizadas en la obtención de la fig. 5.2 Siguiendo el procedimiento, se obtuvo la altura de lluvia R_1^{10} de la figura 3.4; los datos de precipitación máxima en 24 h se ajustaron a una distribución Gumbel con el método de máxima verosimilitud, para obtener la altura de iluvia R_{24}^{10} (Inciso 3.4); se calculó la altura de lluvia R_1^{100} , ecuación 5.1; se determinó la relación K (R_1^{10}/R_{24}^{10}) para encontrar los parámetros de tormenta y finalmente se aplicó la fórmula de Chen, ecuación 4.18. En la tabla 6.2 se presentan los datos requeridos en la aplicación de la fórmula, y en las figuras 6.1a a 6.3d se muestran las curvas IDT para las estaciones Monte Rosa, Oax., Argelia, Chis. y Paredón, Tab., utilizando los valores calculados con el método empírico propuesto, así como los valores estimados con Gumbel. En estas figuras se observa una diferencia grande entre valores en d \leq 30 min, y una diferencia pequeña en el rango $60 \leq$ d \leq 1 20 min y en d = 24 h la diferencia también es pequeña.

6.2 Comparación de resultados

Gumbel Vs Método empírico propuesto

Para medir la precisión del método empírico, se construyeron gráficas de intensidades de lluvia estimadas con Gumbel contra los valores calculados con el método empírico propuesto, figuras 6.4 y 6.5, y se determinó el error promedio \vec{E} y el coeficiente de correlación r (ver inciso 4.3). Se analizó un rango de $5 \le T \le 200$ años y $5 \le d \le 120$ min y d = 24 h.

Se elaboró una gráfica de duraciones d contra el error promedio \overline{E} , fig.6.6, y se observó lo siguiente:

- El error mínimo se presentó en d=60 min y fue menor del 7%.
- En el rango 60≤d≤120 min el error promedio resultó menor del 7%.
- Apartir de d = 10 min a d = 120 min, \vec{E} disminuye considerablemente.
- Para periodos de retorno menores o iguales a 25 años el error máximo promedio se presentó en d=5 min resultando menor del 20%.
- Para periodos de retorno mayores de 25 años y menores o iguales a 200 años el error máximo promedio se presentó en d = 10 min resultando menor del 25%.

Gumbel Vs método tradicional

Se consideró importante calcular los errores promedio que se obtienen al aplicar la ecuación 2.7 comúnmente usada en el país. Utilizando el programa I-Tr-D de la referencia 24, se obtuvieron para 22 estaciones los parámetros de la ecuación mencionada, en la tabla 6.3 se presentan los parámetros correspondientes a cada una de las estaciones.

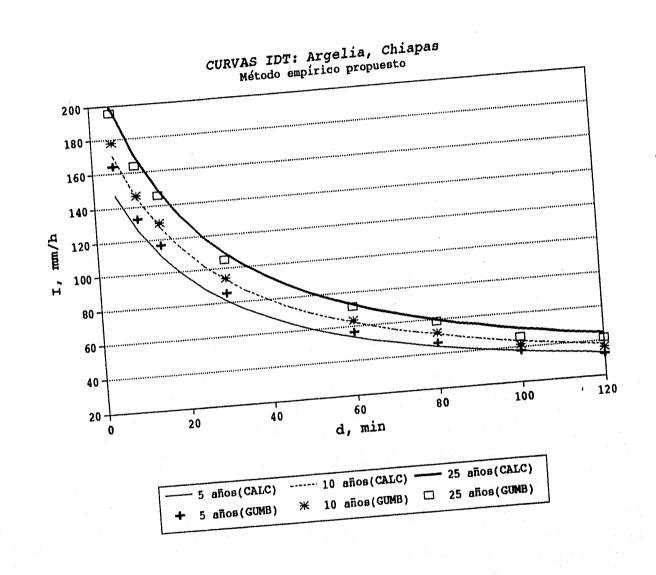


Fig.6.1a. Curvas IDT para 5≤d,min≤120 y T = 5, 10 y 25 años

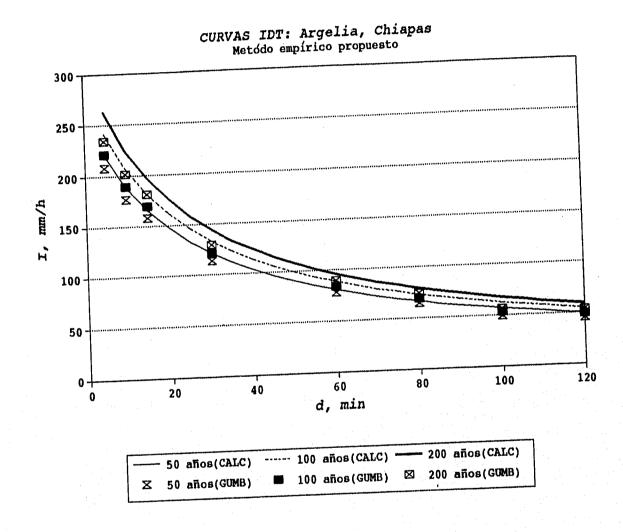


Fig.6.1b. Curvas IDT para 5≤d,min≤120 y T=50, 100 y 200 años

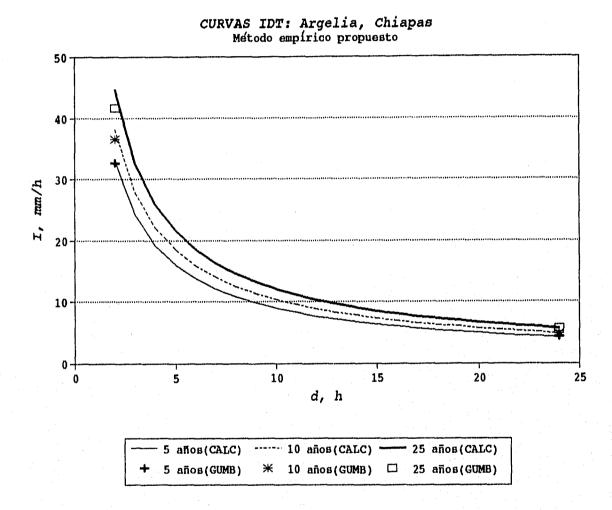


Fig.6.1c. Curvas IDT para $2 \le d,h \le 24$ y T = 5, 10 y 25 años

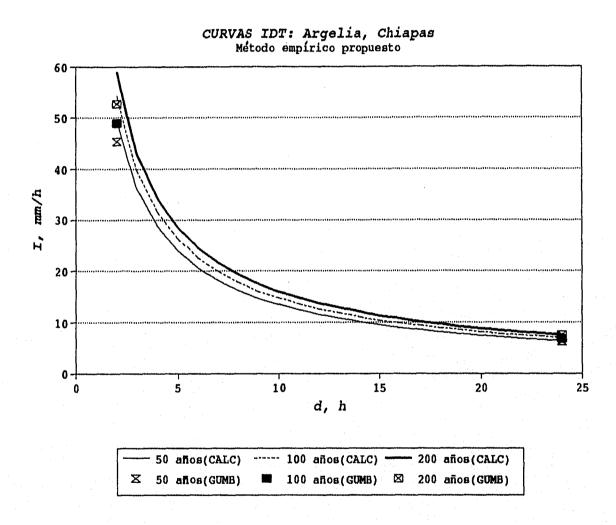


Fig.6.1d. Curvas IDT para $2 \le d,h \le 24$ y T = 50, 100 y 200 años

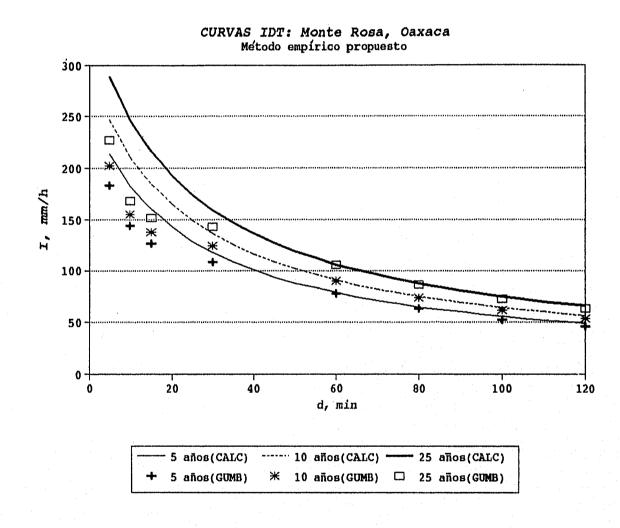


Fig.6.2a. Curvas IDT para $5 \le d$,min ≤ 120 y T= 5, 10 y 25 años

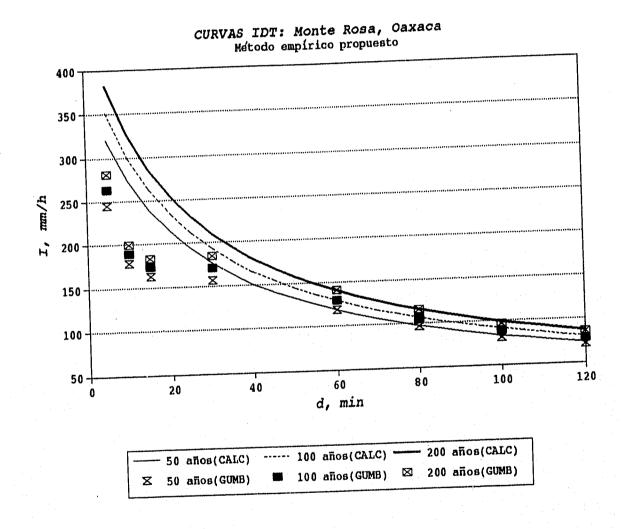


Fig.6.2b. Curvas IDT para 5≤d,min≤120 y T=50, 100 y 200 años

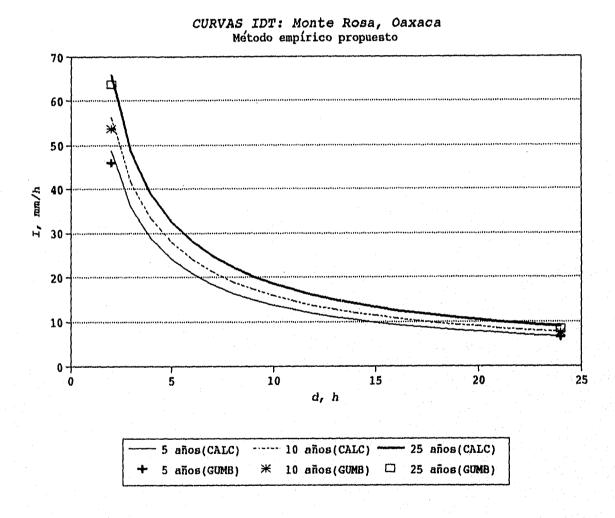


Fig.6.2c. Curvas IDT para $2 \le d, h \le 24$ y T = 5, 10 y 25 años

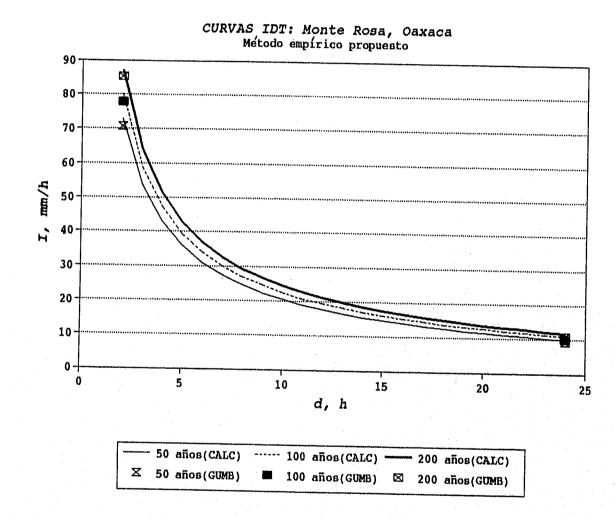


Fig.6.2d. Curvas IDT para $2 \le d,h \le 24$ y T = 50, 100 y 200 años

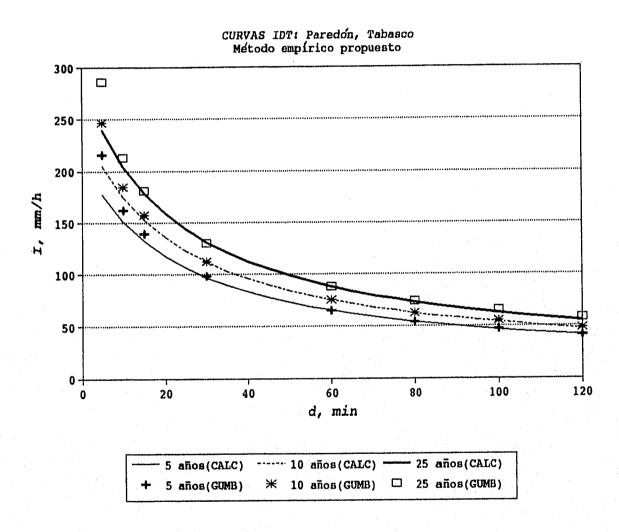


Fig.6.3a. Curvas IDT para 5≤d,min≤120 y T = 5, 10 y 25 años

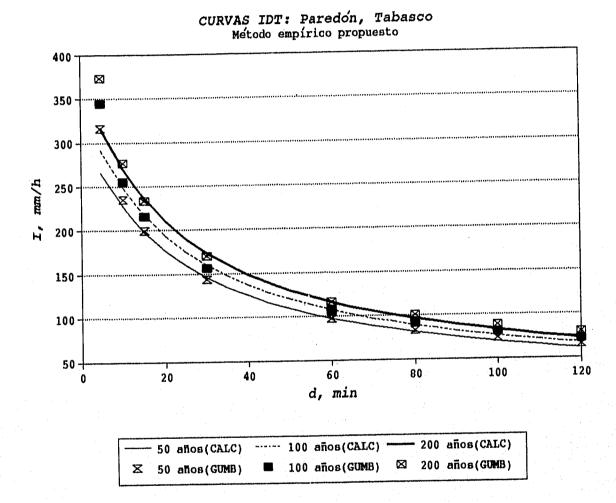


Fig.6.3b. Curvas IDT para $5 \le d$, min ≤ 120 y T = 50, 100 y 200 años

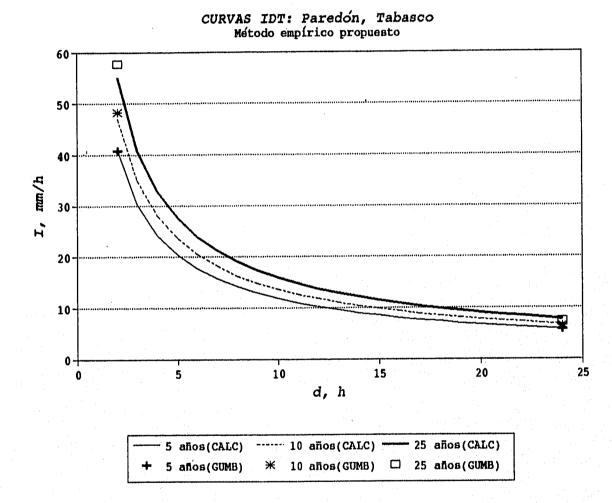


Fig.6.3c. Curvas IDT para $2 \le d,h \le 24$ y T = 5, 10 y 25 años

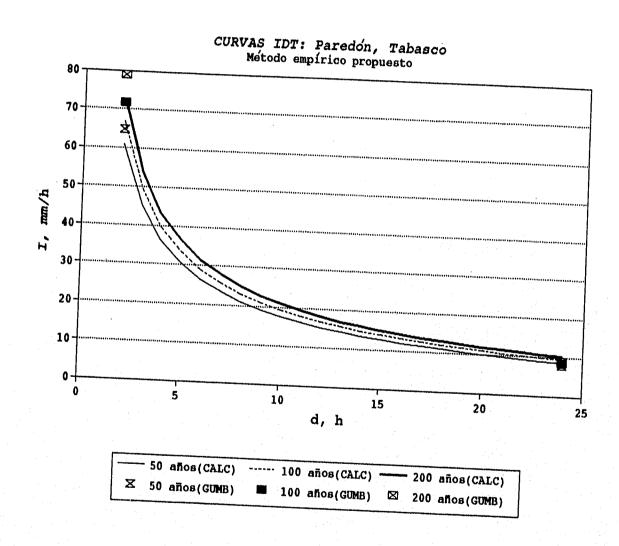
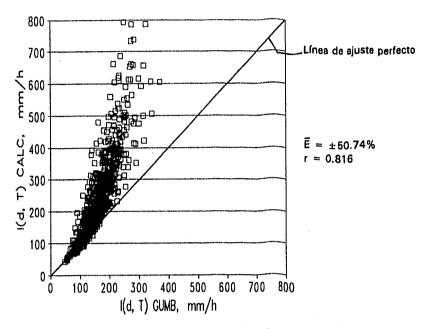



Fig.6.3d. Curvas IDT para $2 \le d,h \le 24$ y T=50, 100 y 200 años

$5 \le d \le 30 \text{ min}$ y $5 \le T \le 200 \text{ años}$

a) Método de correlación lineal múltiple

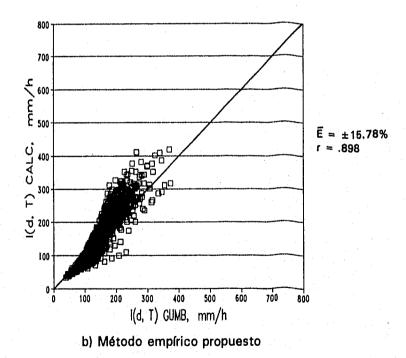
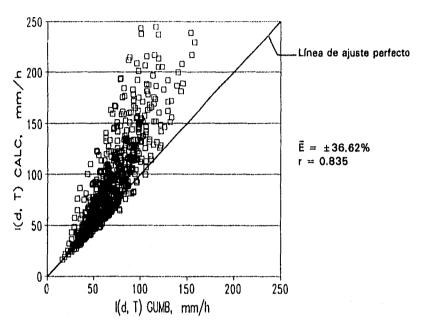



Fig. 6.4 Valores estimados con Gumbel y valores calculados de l_d^T con el método indicado.

$60 \le d \le 120 \text{ min}$ y $5 \le T \le 200 \text{ años}$

a) Método de correlación lineal múltiple

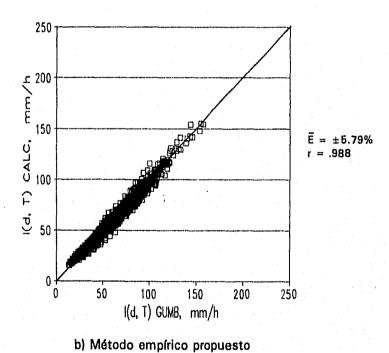


Fig. 6.5 Valores estimados con Gumbel y valores calculados de $I_d^{\ T}$ con el método indicado.

Tabla 6.3 Parámetros de la ecuación 2.7

Estación	k	m	n
Argelia, Chis	35.557	0.249	0.523
F.Sta.Isabel, Chis	54.671	0.260	0.413
Las Peñitas,Chis	49.099	0.272	0.436
Santa Maria, Chis	34.600	0.343	0.425
Presa Malpaso, Chis	32.277	0.382	0.549
Villa Flores, Chis	26.257	0.361	0.578
Cantón, Oax	54.671	0.260	0.413
Huahutla, Oax	25.586	0.311	0.481
Jacatepec, Oax	58.906	0.201	0.412
Jayacatlán, Oax	15.817	0.444	0.591
La Estrella, Oax	52.542	0.278	0.391
Monte Rosa, Oax	40.700	0.300	0.480
Papaloapan, Oax	36.736	0.353	0.480
Villa Alta, Oax	21.718	0.312	0.554
Caltepec, Pue	13.453	0.416	0.681
Jaipa Mdez., Tab	30.489	0.415	0.511
Cárdenas, Tab	38.024	0.318	0.427
Paredón, Tab	32.584	0.410	0.563
Acayucan, Ver	28.363	0.323	0.552
Azueta, Ver	26.681	0.412	0.572
Cuatotolapan, Ver	26.263	0.380	0.561
Orizaba, Ver	38.201	0.247	0.414

Se elaboraron gráficas de intensidades estimadas con Gumbel contra los valores calculados con el método de correlación lineal múltiple, figuras 6.4 y 6.5, y se calculó \vec{E} y r. También se construyó una grafica de duraciones contra errores promedio (figura 6.7).

De la figura 6.7 se concluye lo siguiente:

- El error promedio máximo en el intervalo de 5≤T≤25 años se presentó en d=5 min alcanzando un valor del 50%, y el error mínimo en d=60 min fue menor del 20%.
- Para 50≤T≤200 años también el error máximo se presentó en d = 5 min, pero alcanzó valores superiores al 100%; el error mínimo en d = 60 min presentó valores superiores al 30%.

En el Anexo A se presentan los errores estimados por duración y periodo de retorno para cada una de las estaciones, tanto para el método empírico propuesto como para el método de correlación lineal múltiple.

En la tabla 6.4 se presenta la comparación de errores promedio y coeficientes de correlación entre ambos métodos. En la tabla 6.5 se muestran los errores promedio máximos y mínimos. En ambas tablas se observa que con el método empírico propuesto se obtienen mejores resultados.

Tabla 6.4 Errores promedio E y coeficientes de correlación r

	5 ≤ T	≤200 años		
d, min		empírico to (MEP)		correlación tiple (MCL)
	E, %	· r	E, %	r
5	18.64	0.838	69.98	0.725
10	18.87	0.850	54.88	0.786
15	16.07	0.895	45.76	0.785
30	9.87	0.960	34.74	0.788
60	4.23	0.991	32.18	0.812
80	5.67	0.984	34.00	0.830
100	6.42	0.981	37.94	0.834
120	6.83	0.980	42.14	0.836

Tabla 6.5 Errores máximos y mínimos promedio, indicando la duración en donde se presentaron.

	Error má	iximo, %	Error m	ínimo, %
T, años	MEP	MCL	MEP	MCL
5≤T≤25	20	50	5	20
	(5 min)	(5 min)	(60 min)	(60 min)
50≤T≤200	25	70	7	60
	(10 min)	(5 min)	(60 min)	(60 min)

Método empírico propuesto Vs valores publicados por SCT

Al comparar intensidades de lluvia para una duración de 240 minutos (4 h) y periodos de retorno de 10, 25 y 50 años con las publicadas por SCT, tabla 6.6, se encontraron:

- 2 valores con diferencias mayores del 10%
- 5 valores con diferencias mayores del 15%
- 3 valores con diferencias mayores del 20%
- 2 valores con diferencias mayores del 30% y
- 1 valor con diferencia mayor del 35%.

Tabla 6.6. Comparación de relaciones IDT para d = 240 minutos

				Perio	do de ret	orno T, años			
Estación	T≃ SCT (Comp. SCT/CALC	T= SCT		Comp. SCT/CALC		≈ 50 CALC	Comp. SCT/CALC
Argelia, Chis	19.0	22.2	0.86	21.0	25.9	0.81	22.5	28.7	0.78
Las Peñitas, Chis	41.0	38.2	1.07	45.0	44.6	1.00	48.0	49.4	0.97
Santa Maria, Chis	25.0	25.9	0.97	28.0	30.3	0.92	30.0	33.6	0.89
Presa Malpaso, Chis	25.0	28.4	0.88	30.1	33.2	0.91	33.5	36.8	0.91
Villa Flores, Chis	20.5	21.6	0.95	25.0	25.2	0.99	27.5	27.9	0.92
Ayutla, Oax	8.6	14.5	0.59	10.6	16.9	0.63	12.9	18.8	1.31
Cantón, Oax	46.0	40.9	1.12	50.3	47.8	1.05	53.0	53.0	1.00
Huahutla, Oax	20.0	24.8	0.81	22.2	29.0	0.77	24.0	32.0	0.75
Jacatepec, Oax	45.0	36.4	1.24	50.3	42.6	1.18	54.5	47.2	1.15
Jayacatlan. Oax	15.0	15.4	0.97	16.5	18.0	0.92	17.8	20.0	0.89
La Estrella, Oax	45.5	43.5	1.05	53.3	50.9	1.05	58.7	56.4	1.04
Monte Rosa, Oax	34.2	33.2	1.03	41.1	38.9	1.06	46.0	43.0	1.07
Papaloapan, Oax	27.8	34.3	0.81	30.9	40.0	0.77	32.8	44.4	0.74
Quiotepec, Oax	12.2	14.3	0.85	15.0	16.7	0.90	16.8	18.5	0.91
Sn.Pedro Nolasco, Oax	12.1	11.8	1.03	13.3	13.8	0.96	15.1	15.3	0.99
Villa Alta, Oax	16.8	15.6	1.08	18.0	18.2	0.99	20.0	20.2	0.99
Caltepec, Pue	10.2	12.5	0.82	12.6	14.5	0.87	14.6	16.2	0.90
Cárdenas, Tab	29.0	30.5	0.95	32.8	35.7	0.92	35.6	39.6	0.90
Paredón, Tab	30.5	28.0	1.09	38.0	32.7	1.16	42.5	36.3	1.17
Acayucan, Ver	21.6	25.0	0.86	24.8	29.2	0.85	27.0	32.4	0.83
Azueta, Ver	22.6	26.7	0.85	27.2	31.2	0.87	30.8	34.5	0.89
Cuatotolapan, Ver	20.0	26.1	0.77	22.4	30.5	0.73	24.0	33.8	0.71
Orizaba, Ver	28.0	26.1	1.07	32.0	30.5	1.05	36.0	33.8	1.07
F.Sta. Isabel, Chis	25.5	26.3	0.97	30.0	30.8	0.97	33.5	34.0	0.98
Coixtlahuaca, Oax	7.2	11.1	0.65	8.5	13.0	0.65	9.5	14.4	0.66
El Tejar, Ver	24.0	28.9	68.0	26.5	33.8	0.78	29.1	37.4	0.78

Comp. = Comparación entre valores de SCT y CALC



Fig.6.6 Errores promedio al aplicar el método empírico propuesto

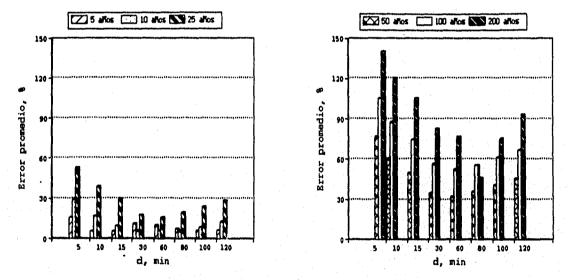


Fig.6.7 Errores promedio al aplicar el método de correlación lineal múltiple

Método empírico propuesto Vs estudios publicados

Se consideró importante comparar los resultados del método empírico propuesto con resultados de estudios previos.

Pineda y Reyes (1985) realizaron un estudio en la planicie costera del Golfo de México, en el estado de Veracruz, con el fin de definir la infraestructura de drenaje más adecuada para eliminar o reducir los problemas de inundaciones en la cuenca del arroyo lxcualco, evacuando los excesos de agua en lapsos que no afecten el desarrollo de los cultivos. Para cumplir su objetivo calcularon, entre otras cosas, intensidades de Iluvia máximas y determinaron el hidrograma representativo del arroyo mencionado, mediante registros históricos de las estaciones hidrométricas Paso del Toro y El Tejar.

Para estimar las intensidades máximas correspondientes a diferentes periodos de retorno y tiempos de duración, aplicaron Gumbel a la información pluviográfica de la estación El Tejar. Los resultados de esta aplicación es lo que nos interesa comparar.

En la tabla 6.7 se presentan los valores calculados por Pineda y Reyes y los obtenidos con el método empírico propuesto. Se observó lo siguiente:

- En duraciones igual a 10 y 15 min la diferencia entre los valores presentados en la referencia 29 y los obtenidos con el método propuesto, fue mayor del 18% pero menor del 30%.
- Para 30 min≤d≤24 h y 10≤T≤100 años la diferencia fue menor o igual al 10%
- Para T = 2 y 5 años las diferencias fueron mayores al 15% en todas las duraciones.

6.3 Aplicación de las curvas IDT

Para ilustrar la utilidad de las curvas IDT se estimará el gasto máximo que se puede esperar para un periodo de retorno de 50 años en la cuenca del río Tecoloapa, hasta la estación hidrométrica Angel R. Cabadas.

La cuenca se ubica dentro de la región hidrológica No.28 correspondiente a la cuenca del río Papaloapan, en el estado de Veracruz. El sitio de análisis se situa a orillas de la población Angel R. Cabadas a 18°23'latitud norte y 95°26'longitud oeste (fig.6.8).

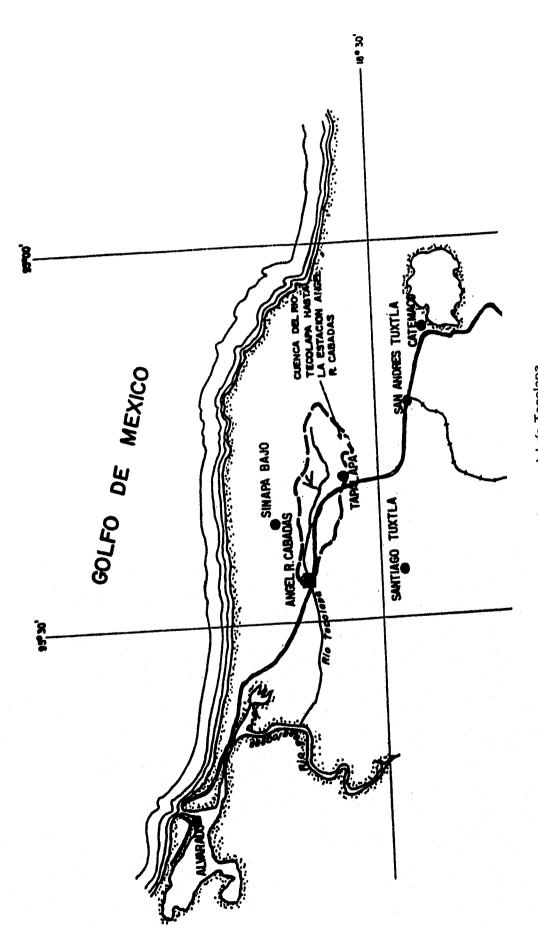


Fig. 6.8 Cuenca del río Tecolapa Fuente: Consultores, S.A, 1978

Tabla 6.7 Comparación de relaciones IDT

		10 min			15 min			30 min			45 min			60 min	
Т, аñоs	∢	æ	Comp. A/B	٧	B	Comp. A/B	∀	æ	Comp. A/B	∢	œ	Comp. A/B	∢	æ	Comp. A/B
2	83.41	113.88	0.73	76.25	99.75	92'0	60.64	73.77	0.82	50.84	59.29	0.86	43.02	49.95	0.86
S)	115.24	148.70	0.77	102.13	130.24	0.78	99.08	96.33	0.84	67.57	77.42	0.87	59.30	65.22	0.91
01	134.75	171.75	0.78	120.94	150.43	08.0	27.77	111.26	0.88	81.96	89.42	0.92	72.10	75.33	96.0
15	152.35	184.76	0.82	139.32	161.83	0.86	110.80	119.68	0.93	91.99	96.19	96.0	78.64	81.00	0.97
20	155.24	193.86	0.82	141.12	169.80	0.83	116.36	125.58	0.93	98.11	100.93	0.97	82.32	85.00	0.97
25	159.40	200.88	0.79	144.70	175.94	0.82	119.39	130.13	0.92	100.14	104.58	96.0	88.28	88.10	1.00
20	177.69	222.49	08.0	162.33	194.87	0.83	135.43	144.12	0.94	113.63	115.83	96.0	100.28	97.58	1.03
75	184.11	235.05	0.78	169.96	205.87	0.83	147.81	152.26	0.97	121.94	122.37	0.99	107.14	103.00	1.04
100	195.85	243.94	0.80	179.83	213.66	0.84	151.82	158.00	96.0	127.02	127.00	1.00	112.19	106.99	1.05
		120 min			240 min			360 min			720 min			1440 min	
T, años	∢	æ	Comp. A/B	4	æ	Comp. A/B	∢	æ	Comp. A/B	4	8	Comp. A/B	٧	83	Comp. A/B
2	27.21	31.61	0.86	15.69	19.15	0.82	11.02	14.10	0.78	5.82	8.26	0.70	4.71	4.79	96.0
2	38.64	41.27	0.94	25.51	25.00	1.02	19.66	18.41	1.07	11.15	10.78	1.03	6.13	6.25	96.0
10	46.56	47.67	86'0	29.96	28.88	1.04	23.10	21.27	1.09	13.00	12.45	1.04	7.03	7.22	0.97
15	49.75	51.28	0.97	32.04	31.00	1.03	24.16	22.88	1.05	13.90	13.39	1.9	7.52	7.77	0.97
20	51.34	53.81	0.95	33.85	32.59	1.04	25.76	24.00	1.07	14.62	14.05	1.04	7.97	8.15	96.0
25	56.57	55.75	1.01	35.60	33.77	1.06	27.44	24.88	1.10	15.34	14.56	1.05	8.27	8.44	96.0
20	63.99	61.75	4.	39.78	37.41	1.06	30.66	27.55	1.11	17.08	16.13	1.06	9.48	9.35	1.0.1
75	68.64	65.24	1.05	41.40	39.52	1.05	31.27	29.11	1.07	17.61	17.04	1.03	9.58	9.88	0.97
100	71.37	67.70	1.05	43.92	41.00	1.07	33.86	30.21	1.12	18.80	17.68	1.06	10.04	10.26	96.0

A= Valores calculados con el método empírico propuesto B= Valores publicados por Pineda y Reyes (1985) Comp.= Comparación entre A y B.

Las características de la cuenca son (Consultores, S.A, 1978):

Area 124.7 km²
Pendiente media 8.9%
Longitud del cauce principal 32 km
Pendiente media del cauce principal 1.62%

Solución:

Se utilizará el método empírico del hidrograma unitario triangular (sintético) y el resultado se comparará con el gasto de diseño calculado en la referencia 12.

Procedimiento:

- 1. Cálculo de la intensidad de lluvia de diseño con el método empírico propuesto, para T = 50 años y $d = t_c$.
 - 1.1. Determinación del tiempo de concentración con la fórmula de Kirpich *

$$t_c = 0.000325 \frac{L^{0.77}}{S^{0.385}} \tag{6.1}$$

donde

- te tiempo de concentración, en h
- L longitud del cauce principal, en m
- S pendiente media del cauce principal, en porcentaje
- 2. Cálculo del gasto pico con la fórmula *

$$q_p = 0.208 \frac{A_c}{t_p} ag{6.2}$$

donde

- q_p gasto pico, en m³/s/mm
- A_c área de la cuenca, en km²
- t_p tiempo pico, en h
- 2.1 Cálculo del tiempo pico con la fórmula *

$$t_p = \sqrt{t_c} + 0.6 t_c \tag{6.3}$$

^{*} Fórmulas tomadas de la ref.1

3. Cálculo de la precipitación efectiva con la fórmula

$$P_{e} = \frac{(P_{T} - \frac{508}{N} + 5.08)^{2}}{P_{T} + \frac{2032}{N} - 20.32}$$
(6.4)

donde

 P_e precipitación efectiva, en cm

 P_T precipitación total, en cm

N número de escurrimiento

3.1 Cálculo del número de escurrimiento *N*, que depende del tipo y uso del suelo. Si existen diferentes tipos de suelo en la cuenca, el valor de *N* se determina con un promedio pesado con la ecuación siguiente.

$$N = \frac{N_1 A_1 + N_2 A_2 + \dots + N_n A_n}{A_c} \tag{6.5}$$

4. Cálculo del gasto de diseño

$$Q_{d\bar{r}} q_p P_e \tag{6.6}$$

donde

 Q_d gasto de diseño, en m 3 /s

Pe precipitación efectiva, en mm

Sustituyendo los datos de la cuenca del río Tecolapa se obtiene:

De la ecuación 6.1

$$t_c = 4.67 \, \text{h}$$

Aplicando el método empírico propuesto:

De la figura 3.4

 $R_1^{10} = 87 \text{ mm}$

De la figura 3.5

 $R_{24}^{10} = 210 \text{ mm}$

De la figura 5.2 para K = 41.0: a = 26.7, b = 15.75, c = 0.77

De la ecuación 5.1

 $R_1^{100} = 122.50 \text{ mm}$

De la ecuación 4.18

para d = 4.67 h (280 min) y T = 50 años; l = 37.31 mm/h ($P_T = 174$ mm)

$$t_p = 5 \text{ h}$$

$$q_n = 5 \text{ m}^3/\text{s/mm}$$

Determinación de N: El tipo y uso de suelo se determinaron con las cartas edafólogica y uso del suelo y vegetación de INEGI, clasificadas como E15-1-4 a escala 1: 250 000.

Tipo de suelo: El suelo es de origen volcánico, compuesto por material orgánico y minerales. Es un suelo bastante arcilloso, pero tambíen existen mezclas de arenas muy finas y limos orgánicos. Por lo tanto el tipo de suelo se encuentra entre B y C, según la tabla 3.10 de la referencia 24.

Uso del suelo:	Area		
	%	Km²	N
Agricultura	70	87.29	84
Pastizal cultivado	20	24.94	82
Bosque	10	12.47	66

De la ecuación 6.5

N = 82

De la ecuación 6.4

$$P_{e} = 12.13 \text{ cm} = 121.3 \text{ mm}$$

Finalmente, de la ecuación 6.6

$$Q_d = 607 \text{ m}^3/\text{s}$$

El gasto de diseño anterior se obtiene con dos métodos empíricos: uno es el método del hidrograma unitario triangular, que considera características fisiográficas y topográficas de la cuenca y el otro, el procedimiento empírico propuesto para estimar la lluvia de diseño. Consultores, S.A. (1978), estimó un gasto de diseño igual a 581 m³/s determinado con información hidrómetrica. Al comparar este gasto con el obtenido con la metodología descrita anteriormente existe una diferencia del 4%.

En la tabla 6.8 se muestra el cálculo de gastos máximos para otros periodos de retorno y se observa una diferencia menor del 10%. Por lo tanto la aplicación de los dos métodos empíricos se considera aceptable para la cuenca del río Tecolapa.

Tabla 6.8 Estimación de gastos máximos para diferentes periodos de retorno, en la cuenca del río Tecolapa.

						Comparación
T,años	Q _{māx} , m³/s	ł, mm/h	P, mm	Pe, mm	Q _{máx} , m³/s	(2)/(6)
(1)	(2)	(3)	(4)	(5)	(6)	(8)
2	194	19.00	88.70	45.10	225	0.86
5	318	24.92	116.40	68.80	344	0.92
10	400	28.78	134.40	84.80	424	0.94
50	581	37.31	174.20	121.30	808	0.96
100	657	40.88	190.90	137.20	688	0.96
200	733	44.46	207.63	153.00	765	0.96
300	777	46.55	217.39	162.36	812	0.96
400	809	48.00	224.18	168.86	844	0.96
500	833	49.19	229.70	174.10	870	0,96
1000	909	52.76	246.4	190.00	950	0.96
5000	1085	61.00	284.90	227.40	1137	0.95
10000	1161	64.61	301.70	243.80	1219	0.95

Col.2 = Gasto máximo estimado con la distribución Gumbel (Consultores, S.A., 1978).

Col.3 = Intensidad de lluvia de diseño calculada con el método empírico propuesto.

Col.6 = Gasto máximo estimado con el procedimiento presentado en el Inciso 6.3.

7. CONCLUSIONES Y RECOMENDACIONES

En general, la información básica para estimar curvas IDT es de tipo pluviográfica. Si se cuenta con esta información se pueden utilizar los métodos mencionados en el capítulo 2; el método de intensidad de lluvia-periodo de retorno y el método de correlación lineal múltiple. Sin embargo, se ha demostrado, en el presente trabajo, que éste último sobrestima más del 30% los valores de intensidades máximas de lluvia, inclusive alcanzando valores superiores del 50% en duraciones de 5 y 10 min (ver tabla 6.4).

Cuando en México no se cuenta con suficiente información pluviográfica se estiman curvas IDT utilizando la fórmula de Bell, ecuación 4.22. Sin embargo se ha demostrado que ésta ecuación es la que más sobrestima los valores de intensidades de lluvia con relación a la de Chen.

Al revisar estudios previos tanto en México como en otros países, la mayoría de los autores exploran la utilidad de algunas relaciones universales y/o proponen metodologías para estimar intensidades de lluvia con un mínimo de datos. En lugares, donde los datos de intensidades de lluvia máximas son indadecuados o no existen, con las metodologías descritas en el capítulo 2 se pueden estimar valores que puedan ser útiles para la planeación y diseño de proyectos hidráulicos.

En México se ha trabajado en metodologías basadas en la regionalización y en la aplicación del análisis de frecuencia a la información pluviográfica disponible. Las cuencas que se han estudiado son: Cuenca del Valle de México, Lerma (cuenca alta) y Papaloapan. Para estas cuencas se dispone de factores por duración y periodo de retorno, con los cuales se determinan valores de alturas o intensidades máximas de lluvia a partir de una altura o intensidad de lluvia conocida.

Con la información disponible de las 32 estaciones pluviógraficas distribuidas en la zona de estudio, se realizó un análisis de frecuencia utilizando la distribución de valores extremos Gumbel con el método de máxima verosimilitud para duraciones de 5 a 120 min, incluyendo la duración de 24 h. La bondad del ajuste se verificó con la prueba Ji-cuadrada resultando satisfactorio, con un 90% de límite de confianza en los resultados.

Se obtuvieron relaciones promedio altura-duración (R_t^T/R₁^T) para 5, 10, 15, 30, 60, 80, 100 y 120 min con seis periodos de retorno, las relaciones fueron 0.25, 0.37, 0.47, 0.73, 1.08, 1.18 y 1.28, respectivamente. Al comparar estos valores con los encontrados en México y en otros países, se observaron diferencias considerables, sobre todo en duraciones menores de 60 min, lo que parece confirmar que lluvias de corta duración no son independientes de factores geográficos.

La variación de los valores altura-duración ($K = R_1^{10}/R_{24}^{10}$) en la zona en estudio se debe principalmente a las características climáticas, influenciadas principalmente por el régimen pluviométrico. En la figura 3.8 se observa que los puntos con valores menores de 0.50 están ubicadas en las zonas de mayor precipitación media anual (1000 a 4600 mm) por lo tanto en climas húmedos y los valores mayores a 0.50 se presentaron en zonas con precipitación media anual entre 400 y 2350 mm, ubicados en clima subhúmedo. La altura sobre el nivel del mar no es un factor que determine las características de la precipitación (fig.3.9).

Se obtuvieron relaciones promedio altura-frecuencia ($F = R_1^T/R_1^{10}$) para T = 2, 5, 10, 25, 50, 100 y 200 años resultando igual a 0.65, 0.86, 1.00, 1.18, 1.31, 1.44 y 1.56, respectivamente. Estos valores fueron similares a los reportados tanto en México como en otros países, lo que confirma la universalidad de los valores encontrados por Bell.

Se confirmó la independencia tanto del periodo de retorno como de la duración en las relaciones altura-duración y altura-periodo de retorno, respectivamente. Es decir cualquier periodo de retorno se puede utilizar para la primera relación y cualquier duración para la segunda. Sin embargo, se sugiere utilizar un periodo de retorno de 10 años para la relación altura-duración; y 60 min (1 h) para la relación altura-periodo de retorno, ya que con esto se disminuye tanto la confiabilidad de extrapolación como los errores de estimación.

Al verificar con la información de las 32 estaciones las fórmulas de Bell y Chen se encontraron los siguientes errores promedio (en %):

	C.L.Chen	F.C	.Bell	C.L.Chen	F.C	.Bell
d, min	Ec.4.18	Ec.4.21	Ec.4.22	Ec.4.18	Ec.4.21	Ec.4.22
	5 ≤	: T≤ 30 año	os	50	≤ T≤ 200 a	ños
5	29	36	41	36	50	59
10	. 26	29	33	34	43	51
15	21	23	26	24	30	38
30	13	11	15	11	14	27
60	10	8	9	3	5	14
80	10	9	10	7	6	13
100	10	9	8	8	7	12
120	10	10	9	8	12	16
1440	13	33	33	5	47	42

Los errores promedio más grandes se presentarón en duraciones de 5, 10 y 15 min. Esto probablemente se deba a errores de precisión a la hora de extraer la información de la banda pluviográfica.

La fórmula de Chen (ec.4.18) es la que presentó el error promedio más pequeño y la fórmula de Bell (ec. 4.22), la que utiliza la altura de lluvia de 2 años y duración 1 h (R₁²) es la que más sobrestima los valores. Por lo tanto si se pretende seguir utilizando la fórmula de Bell en la estimación de curvas IDT se recomienda utilizar la ecuación 4.21.

Con los resultados anteriores se acepta lo que Campos sugirió en su estudio, la utilización de la fórmula de Chen para obtener curvas IDT, ya que se obtienen mejores estimaciones. Sin embargo, se requiere más información que con la de Bell.

Al obtener los parámetros de tormenta con información propia de la zona en estudio los errores promedio disminuyeron considerablemente, sobre todo en duraciones de 5, 10 y 15 min.

Considerando que la información pluviográfica no siempre está disponible en el sitio de proyecto, se propone aplicar el método empírico descrito en el capítulo 6. Con la aplicación del método empírico se obtendran relaciones IDT con errores promedio menores del 20% en duraciones de 5, 10 y 15 min y menores del 10% en duraciones entre 60 y 120 min. El error promedio en duraciones igual a 24 h también sería menor del 10% en la zona en estudio.

Al aplicar el método de correlación lineal múltiple a 22 estaciones ubicadas en la zona de estudio, se encontraron errores superiores al 30%.

Los errores máximos obtenidos al aplicar tanto el método empírico propuesto (MEP) como el de correlación lineal múltiple (MCL) fueron:

d, min	5 a	ños	10	años	25	años	50	años	100	años	200	años
	MEP	MCL	MEP	MCL	MEP	MCL	MEP	MCL	MEP	MCL	MEP	MCL
5	43	46	47	63	39	90	51	120	52	162	55	219
10	28	30	36	46	46	70	56	93	65	135	64	194
15	26	26	34	40	42	63	47	84	52	121	56	174
30	15	19	19	27	23	46	25	80	26	122	29	176
60	12	19	7	26	10	40	12	67	14	102	16	141
80	21	27	22	35	22	49	22	66	22	100	23	122
100	17	40	18	48	18	63	18	78	18	100	20	142
120	22	54	22	63	22	80	23	96	23	116	23	148
1440	22	•	23	*	25	*	26	*	26	*	27	*

La correlación entre valores estimados con Gumbel (inciso 3.4) y valores calculados con el procedimiento empírico propuesto resultó mayor del 90% para duraciones entre 30 y 120 min, incluyendo d = 24 h. Para duraciones menores o iguales a 15 min el coeficiente de correlación resultó mayor del 80%. En el caso de valores calculados con el método de correlación lineal múltiple para duraciones entre 60 y 120 min resultó aproximadamente igual al 80% y para duraciones menores o iguales a 30 min mayor al 70%, pero menor al 80%.

Al observar la representación gráfica de los errores promedio para cada periodo de retorno se concluye que el método de correlación lineal múltiple es válido para periodos de retorno menores o iguales a 10 años.

Uno de los principales resultados del trabajo es la obtención del diagrama de la figura 5.2, que representa la variación de los parámetros a, b y c con la relación altura-duración R_1^T/R_{24}^T . Otro resultado fue la relación empírica altura-periodo de retorno para obtener la altura de lluvia R_1^{100} . Los resultados obtenidos en los capítulos anteriores son aplicables a cualquier sitio de la zona estudiada.

^{*} No se aplicó el MCL a la duración de 24 h.

En conclusión, se ha propuesto una metodología para obtener curvas IDT de una manera sencilla. Esta metodología consiste básicamente en aplicar la fórmula de Chen. Sin embargo esta fórmula requiere para su aplicación tres alturas de lluvia: R_1^{10} , R_1^{100} y R_{24}^{10} . En la metodología se da por hecho que se conocen las alturas de lluvia R_1^{10} y R_{24}^{10} . Esta última se obtiene de la información pluviométrica disponible y cercana al sitio de interés. Solamente faltaría la altura de lluvia R_1^{100} la cual se determina con la ecuación 5.1, obtenida al seguir la metodología de Bell.

Para aplicar la metodología, presentada en el capítulo 6, a otras regiones diferentes a la estudiada se propone lo siguiente: obtener a nivel regional y posteriormente por cuencas la relación altura-duración K como R_1^{10}/R_{24}^{10} y la relación altura-periodo de retorno F como R_1^{100}/R_1^{10} . Con esta información se aplicaría la ecuación de Chen (Ec.4.18) en la estimación de curvas IDT con mayor confiabilidad. Los parámetros de tormenta se obtendrían de la figura 5.1, mientras se determina un diagrama propio de cada región hidrológica. Sin embargo, se recomienda no utilizar esta figura fuera de sus límites; es decir, para K menor de 0.10 y mayor de 0.60.

También se propone obtener patrones de lluvia por región hidrológica para conocer el origen de las lluvias presentadas en cada región.

En cuanto a recomendaciones respecto a la escasez de información, es necesario elaborar un programa permanente destinado al rescate de pluviógrafos; que incluya operación y mantenimiento de los existentes y rehabilitación de los que están fuera de servicio, así como un programa para la difusión y accesibilidad a la información registrada en la banda pluviográfica.

ANEXO A

Errores promedio obtenidos con el método empírico propuesto y con el método de correlación lineal múltiple.

ERRORES ESTIMADOS EN % AL APLICAR EL METODO EMPIRICO PROPUESTO PARA T= 5 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	24 h
Argelia	10.4100	5.2689	5.7609	5.2809	5.2115	4.6057	0.5932	0.9261	0.2938
Las Penitas	21.7600	25.6153	19.9944	11.7503	2.1908	0.0865	1.5057	1.6073	7.5334
sta. María	12.3435	21.3191	21.0153	7.7762	2.7542	8.2786	9.3103	10.5196	6.5113
P.Malpaso		3.8714	3.2889	0.7145	2.4706	4.6990	6.1738	7.9459	4.5582
Tuxtla Gtérrez	3.7284	11.6296	13.4552	2.2284	0.0794	6.8015	8.4118	9.5859	
Villa Flores		7.4009	1.6756	2.4177	0.8732	3.7244	6.5293	6.7528	4.7678
Ayutla	11.4017	3.8445	5.8966	1.5091	2.3080	7.6035	12.0924	14.1978	0.5127
Cantón	5.8339	20.1508		6.9406	4.4513	2.6164	3.7106	6.4385	0.6858
Huahutla	10.8077	0.9346	3.4754	2.7603	2.1708	2.4269	2.9260	2.9531	6.0538
Jacatepec	0.9754	17.8554	9.8186	2.6637	11.7518	14.0230	15.6285	15.0899	7.8232
Jayacatlán		2.5329	3.8141	1.0290	2.9347	0.7677	0.3256	1.2704	2.7911
La Estrella	13.2975	21.2835	14.7667	6.0257	6.3706	2.7310	1.5958	0.6809	3.4195
Monte Rosa	16.8575	26.7535	26.3727	8.1345	1.3176	2.8991	5.6733	5.9827	1.2994
Papaloapan	17.3814	21.8733	18.6230	11.9972	6.7024		0.8597	1.3219	4.2804
Quiotepec			6.9548	6.9145	3.9662	4.4339	12.9670	14.7212	1.0013
Sn.P.Nolasco	43.4082	28.5404	23.5490	13.7374	0.3829	5.0954	6.6395	8.7048	2.2624
Villa Alta	33.1421	23.2604	18.8758	14.5721	8.0386	21.1621	17.5422	13.1305	4.7467
Caltepec	35.2202	23.1476	20.5338	8.7728	2.7852	7.1438	11.3114	12.3625	21.8543
Cárdenas	3.9023	8.3120	7.3943	4.0551	3.3458	6.6184	6.1906	5.5710	2.2078
Paredón	17.8209	6.7146	5.0167	1.0782	0.9005	0.1239	0.4880	0.1201	0.7169
Acayucan	1.6258	1.4919	2.0747	3.8268	1.3039	4.4809	6.8174	8.3647	1.3638
Azueta	7.2647	4.6850	0.5042	2.0073	4.4613	5.4199	5.9573	9.1963	1.5826
Cuatotolapan	0.7414	2.1051	4.3043	1.3765	2.9325	5.7771	8.2096	11.5084	5.4957
Orizaba	13.5001	17.0585	14.3957	3.1102	0.9836	1.5611	4.3841	4.4281	5.5384
F.Sta.Isabel	14.1961	17.0619	16.9217	5.7424	5.0501	5.9230	3.8939	0.9475	0.4282
Coixtlahuaca	33.1662	14.7481	18.1061	13.2085	5.0735	14.1413	17.5187	21.8983	7.2254
El Tejar	27.1103	7.2557	4.6556		1.3486	1.5192	0.6102	0.7601	4.9951
ERROR MEDIO:	15.4737	13.2583	11.2017	5.7550	3.4133	5.5640	6.5876	7.2958	4.0722

ERRORES ESTIMADOS EN % AL APLICAR EL PROCEDIMIENTO EMPIRICO PROPUESTO PARA T= 10 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	24 h
Argelia	4.5140	0.7639	1.7546	0.6114	1.6987	1.5113	5.8181	4.0663	0.2782
Las Peñitas	30.2264	33.2768	25.8243	15.9162	3.4889	0.7753	1.4218	2.0687	9.1406
Sta. María	13.5517	23.5811	23.5593	8.3491	2.9976	9.2943	10.5651	11.9791	1.1765
P.Malpaso		3.0852	3.0509	0.8362	2.3054	4.0225	4.9302	6.2639	6.9085
Tuxtla Gtérrez	4.1872	14.6649	17.7921	3.8358	0.0768	6.5268	7.3298	9.0348	12.8070
Villa Flores		9.7143	2.8505	3.7391	1.1901	3.4560	5.9866	5.8644	5.5414
Ayutla	12.7294	2.8404	4.5401	1.7959	2.4937	2.4946	6.7634	9.0444	0.4399
Cantón	8.4522	26.4758		11.8973	2.4847	0.8620	2.2417	5.7577	0.9009
Huahutla	8.5222	4.1745	6.1356	3.2424	3.6425	3.1458	3.4852	4.0153	4.4279
Jacatepec	5.3910	30.7431	20.8243	4.2121	7.0638	10.5247	12.6903	12.2849	6.3167
Jayacatlán		3.3115	2.1192	2.1979	1.0976	5.0320	3.8400	2.7608	1.1810
La Estrella	15.4960	28.1862	18.7065	9.4706	5.1044	0.0911	0.4579	1.0081	2.4895
Monte Rosa	22.0519	36.1878	34.0765	9.7702	0.8105	2.0787	4.7061	4.7535	3.4360
Papaloapan	19.3023	22.5097	17.7524	9.5479	3.3420		3.0340	2.7655	9.2457
Quiotepec			12.1165	12.5779	1.7065	0.7407	7.7334	9.6891	1.0422
Sn.P.Nolasco	46.6774	32.1878	27.8832	18.5859	5.0948	0.4468	0.8150	2.5314	3.4745
Villa Alta	29.5352	20.7351	16.6098	13.3790	7.5318	21.6245	17.8711	13.6088	6.2452
Caltepec	34.7730	23.1249	21.1954	10.3473	0.6965	4.9667	9.2507	8.8549	23.4295
Cárdenas	3.8385	10.1306	9.8512	7.6265	2.4872	6.7594	6.7582	6.4891	0.9193
Paredón	17.0328	5.4308	3.2084	0.1284	0.6968	1.1403	2.4736	2.6273	3.0667
Acayucan	3.6213	3.9423	4.1508	4.7457	0.2122	2,6642	4.6870	6.0104	2.3107
Azueta	5.6792	5.2947	0.3415	0.6400	0.6984	1.6195	2.3727	5.7389	2.6053
Cuatotolapan	4.3867	3.2429	4.8586	3.2057	0.2090	2.1513	4.2556	7.4407	3.0832
Orizaba	16.3917	21.2465	19.1583	7.0528	2.3720	1.4618	2.1065	2.2326	5.7120
F.Sta.Isabel	23.0082	26.0057	25.4657	11.9410	2.6931	4.1583	2.1047	0.8909	0.1831
Coixtlahuaca	31.0222	10.4718	16.9291	13.9643	4.4480	14.1515	16.8775	22.2037	9.7702
El Tejar	23.1253	0.9958	1.2371		3.4856	2.6640	3.1912	4.7062	9.6745
ERROR MEDIO:	16.6746	15.4740	13.1535	7.2929	2.5974	4.3986	5.6951	6.4700	5.0299

ERRORES ESTIMADOS EN % AL APLICAR EL METODO EMPIRICO PROPUESTO PARA T= 25 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	24 h
ESCACION	3 MIII	10 min	15 Mill	JO MEM	OO MIII	80 min	100 11111	120 11111	24 11
Argelia	1.7444	3.8557	2.3136	4.1929	1.8311	1.5704	11.2214	7.1855	0.8192
Las Peñitas	39.2849	41.3396	31.8144	20.1038	4.7333	1.5949	1.3431	2.4963	10.6879
Sta. María	14.7054	25.7745	26.0376	8.8905	3.2241	10.2241	11.7077	13.3018	4.3953
P.Malpaso		2.3607	2.8293	0.9496	2.1513	3.3977	3.7932	4.7374	9.2045
Tuxtla Gtérrez	4.6199	17.6569	22.1596	5.3857	0.2233	6.9506	7.8287	9.6241	15.9937
Villa Flores		11.7760	3.9243	5.0064	1.4884	3.2062	5.4839	5.0466	6.2754
Ayutla	13.9357	1.9186	3.3024	4.6982	6.5941	1.8634	2.2183	4.6283	0.3716
Cantón	11.0212	33.0255		16.9681	0.5706	0.8372	0.8267	5.1119	1.1030
Huahutla	6.2760	7.3988	8.7506	3.6889	4.9795	3.8086	4.0024	4.9879	2.8554
Jacatepec	12.1340	45.6389	33.3211	11.5845	2.2045	6.9848	9.7506	9.4882	4.8624
Jayacatlán		4.0286	0.5832	5.0348	4.5932	8.7015	7.4347	6.2512	0.2800
La Estrella	17.6310	35.3934	22.6444	12.9016	3.8887	2.5110	2.4579	2.6407	1.6033
Monte Rosa	27.3464	46.3781	42.1835	11.3456	0.3408	1.3231	3.8173	3.6294	5.5177
Papaloapan	21.1569	23.1110	16.9496	7.3522	0.3849		6.4132	6.3009	14.3378
Quiotepec			16.4516	17.2848	6.4791	5.1371	3.2590	5.3663	1.0805
Sn.P.Nolasco	49.4109	35.2776	31.5147	22.6521	9.7034	5.1263	4.0848	2.6400	4.5813
Villa Alta	25.7906	18.2180	14.3728	12.2325	7.0528	22.0522	18.1764	14.0514	7.6047
Caltepec	34.3491	23.1037	21.8043	11.7716	1.1817	3.0090	7.3912	5.7669	24.9402
Cárdenas	3.7789	11.8877	12.2531	11.1960	1.6702	6.8908	7.2829	7.3317	0.2568
Paredón	16.2818	4.1978	1.4535	0.7768	0.5070	2.2941	4.2603	4.8610	6.8762
Acayucan	9.0622	6.3439	6.1706	5.6201	1.5898	1.0213	2.7699	3.8991	3.2125
Azueta	4.1464	5.8580	1.1198	2.9946	2.5837	1.6953	0.7672	2.6976	3.5807
Cuatotolapan	8.0434	4.3303	5.3824	4.8563	2.9785	1.0221	0.8101	3.8960	0.9245
Orizaba	19.2328	25.4441	23.9864	11.0233	5.7232	4.4623	0.1242	0.0857	5.8749
F.Sta.Isabel	32.5769	35.7031	34.6700	18.4345	0.3801	2.4467	0.3698	2.6733	0.7616
Coixtlahuaca	28.8884	6.0648	15.7972	14.6594	3.8697	14.1610	16.2841	22.4908	12.2622
El Tejar	18.9825	5.6754	7.4485		8.4565	6.9115	7.0196	8.6874	14.4450
ERROR MEDIO:	18.2782	18.5292	15.7399	9.6771	3.3105	4.9694	5.5888	6.2918	6.1003

ERRORES ESTIMADOS EN % AL APLICAR EL METODO EMPIRICO PROPUESTO PARA T= 50 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	24 h
Argelia	5.7124	6.7001	4.7988	7.1595	3.9691	3.4237	14.5718	9.0575	1.1316
Las Peñitas	45.0638	46.4123	35.5089	22.6413	5.4595	2.0703	1.2980	2.7396	11.5940
Sta.María	15.3768	27.0660	27.5021	9.2030	3.3534	10.7481	12.3490	14.0416	7.8786
P.Malpaso		1.9503	2.7028	1.0145	2.0633	3.0432	3.1530	3.8828	10.5644
Tuxtla Gtérrez	4.8694	19.4420	24.8098	6.2944	0.3074	7.1972	8.1165	9.9644	17.9023
Villa Flores		12.9148	4.5287	5.7461	1.6600	3.0637	5.1982	4.5840	6.7004
Ayutla	14.6117	1.3980	2.6067	6.2843	8.7907	4.1963	0.2146	2.2567	0.3325
Cantón	12.5481	37.0914		20.0847	0.5598	1.8368	0.0022	4.7381	1.2191
Huahutla	4.9392	9.3369	10.3070	3.9428	5.7286	4.1842	4.2961	5.5361	1.9314
Jacatepec	16.3990	55.8049	41.7154	16.2963	0.8142	4.8284	7.9761	7.8048	4.0090
Jayacatlán		4.4345	0.2757	6.5867	6.4861	10.6781	9.3749	8.1396	1.0978
La Estrella	18.8896	39.8981	25.0195	14.9652	3.1784	4.0632	3.6395	3.5997	1.0885
Monte Rosa	30.5907	52.9314	47.2836	12.2683	0.0738	0.8954	3.3150	2.9964	6.7480
Papaloapan	22.2452	23.4580	16.4947	6.1338	1.2335		8.2445	8.2122	17.4736
Quiotepec			18.7469	19.7591	9.0093	7.4838	0.8600	3.0407	1.1024
Sn.P.Nolasco	50.8537	36.9236	33.4344	24.8029	12.1467	7.6133	6.6823	5.3734	5.2039
Villa Alta	23.4613	16.7032	13.0368	11.5621	6.7762	22.2950	18.3502	14.3028	8.3656
Caltepec	34.1039	23.0914	22.1488	12.5671	2.2262	1.9204	6.3544	4.0760	25.8221
Cárdenas	3.7448	12.9194	13.6765	13.3491	1.1961	6.9659	7.5807	7.8075	0.9181
Paredón	15.8456	3.4770	0.4196	1.3026	0.3986	2.9429	5.2544	6.0946	9.1874
Acayucan	12.4435	7.7699	7.3630	6.1273	2.3617	0.1039	1.7032	2.7274	3.7361
Azueta	3.2459	6.1776	1.5600	4.2935	4.3688	3.4980	2.4802	1.0334	4.1477
Cuatotolapan	10.2552	4.9635	5.6847	5.7764	4.4964	2.7522	1.0624	1.9693	0.2716
Orizaba	20.9232	27.9817	26.9317	13.4328	7.7430	6.2619	1.4481	1.1867	5.9685
F.Sta.Isabel	38.7585	41.9598	40.5762	22.5042	0.9947	1.4386	0.6518	3.7227	1.0959
Coixtlahuaca	27.6060	3.3398	15.1349	15.0524	3.5413	14.1664	15.9470	22.6557	13.7411
El Tejar	16.4024	9.9172	11.3614		11.5245	9.5061	9.3429	11.1068	17.3688
ERROR MEDIO:	19.5169	20.5409	17.4473	11.1212	4.0912	5.6607	5.9062	6.3945	6.9111

ERRORES ESTIMADOS EN % AL APLICAR EL METODO EMPIRICO PROPUESTO PARA T= 100 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	24 h
Argelia	9.1933	9.1438	6.9218	9.7128	5.7847	4.9896	17.4642	10.6370	1.3885
Las Peñitas	50.1563	50.8375	38.6863	24.7964	6.0606	2.4622	1.2611	2.9375	12.3458
Sta. María	15.9315	28.1417	28.7248	9.4598	3.4588	11.1719	12.8664	14.6370	10.9034
P.Malpaso		1.6173	2.5997	1.0675	1.9914	2.7553	2.6356	3.1945	11.7014
Tuxtla Gtérrez	5.0742	20.9418	27.0632	7.0488	0.3762	7.3912	8.3529	10.2442	19.5085
Villa Flores		13.8241	5.0170	6.3585	1.8007	2.9475	4.9658	4.2088	7.0503
Ayutla	15.1563	0.9765	2.0449	7.5421	10.5109	6.0224	2.1188	0.3965	0.3005
Cantón	13.8277	40.6042		22.7582	1.5031	2.6687	0.6902	4.4303	1.3143
Huahutla	3.8178	10.9738	11.6127	4.1494	6.3323	4.4890	4.5349	5.9795	1.1628
Jacatepec	20.1340	65.2327	49.4049	20.4538	3.4238	2.9900	6.4730	6.3815	3.2999
Jayacatlán		4.7637	0.9670	7.8180	7.9785	12.2314	10.9014	9.6276	1.7565
La Estrella	19.9386	43.8092	27.0305	16.7088	2.5899	5.3674	4.6259	4.3969	0.6637
Monte Rosa	33.3681	58.7408	51.7326	13.0340	0.1434	0.5485	2.9081	2.4847	7.7752
Papaloapan	23.1494	23.7430	16.1255	5.1583	2.5182		9.6890	9.7176	20.1676
Quiotepec			20.5316	21.6742	10.9781	9.3175	1.0197	1.2146	1.1202
Sn.P.Nolasco	51.9734	38.2080	34.9254	26.4742	14-0477	9.5514	8.7033	7.4962	5.7067
Villa Alta	21.4457	15.4226	11.9133	11.0065	6.5489	22.4923	18.4917	14.5073	8.9784
Caltepec	33.9020	23.0815	22.4282	13.2068	3.0636	1.0475	5.5217	2.7335	26.5523
Cárdenas	3.7169	13.7770	14.8671	15.1719	0.8052	7.0272	7.8228	8.1928	1.4521
Paredón	15.4856	2.8797	0.4418	1.7364	0.3102	3.4668	6.0518	7.0795	11.1523
Acayucan	15.3672	8.9642	8.3578	6.5457	2.9838	0.6337	0.8477	1.7891	4.1681
Azueta	2.4972	6.4372	1.9170	5.3297	5.7800	4.9232	3.8371	0.2875	4.6158
Cuatotolapan	12.1317	5.4868	5.9332	6.5154	5.7024	4.1222	2.5421	0.4467	1.2284
orizaba	22.3410	30.1334	29.4453	15.4814	9.4524	7.7797	2.5566	2.2512	6.0450
F.Sta.Isabel	44.2566	47.5196	45.8031	26.0447	2.1471	0.5990	1.5025	4.5966	1.3709
Coixtlahuaca	26.5228	0.9921	14.5858	15.3710	3.2745	14.1709	15.6729	22.7909	14.9791
El Tejar	14.1680	13.6460	14.7781	•	14.1643	11.7225	11.3182	13.1659	19.8721
ERROR MEDIO:	20.5894	22.3038	18.9946	12.3317	4.9530	6.2650	6.4954	6.5121	7.6511

ERRORES ESTIMADOS EN % AL APLICAR EL METODO EMPIRICO PROPUESTO PARA T= 200 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	24 h
Argelia	12.2826	11.2730	8.7628	11.9415	7.3510	6.3348	19.9954	11.9923	1.6041
Las Peñitas	54.6937	54.7453	41.4577	26.6561	6.5682	2.7921	1.2302	3.1022	12.9817
sta.María	16.3990	29.0544	29.7646	9.6752	3.5467	11.5230	13.2940	15.1281	13.5640
P.Malpaso		1.3406	2.5136	1.1117	1.9315	2.5159	2.2072	2.6264	12.6695
Tuxtla Gtérrez	5.2460	22.2242	29.0094	7.6875	0.4338	7.5697	8.5513	10.4790	20.8859
Villa Flores		14.5694	5.4213	6.8758	1.9186	2.8506	4.7724	3.8974	5.7913
Ayutla	15.6061	0.6270	1.5802	8.5675	11.8993	7.4957	3.6551	1.1067	0.2738
Cantón	14.9194	43.6804		25.0852	2.3049	3.3743	1.2723	4.1716	1.3938
Huahutla	2.8603	12.3797	12.7277	4.3213	6.8307	4.7422	4.7335	6.3469	0.5114
Jacatepec	23.4437	74.0318	56.5001	24.1627	5.7102	1.3987	5.1788	5.1581	2.6994
Jayacatlán		5.0371	1.5374	8.8222	9.1893	13.4884	12.1381	10.8345	2.3001
La Estrella	20.8294	47.2489	28.7610	18.2068	2.0926	6.4823	5.4645	5.0726	0.3059
Monte Rosa	35.7809	63.9444	55.6614	13.6819	0.3242	0.2604	2.5705	2.0611	8.6487
Papaloapan	23.9153	23.9823	15.8188	4.3569	3.5663		10.8615	10.9380	22.5152
Quiotepec			21.9638	23.2057	12.5589	10.7948	2.5374	0.2623	1.1352
Sn.P.Nolasco	52.8705	39.2419	36.1209	27.8147	15.5742	11.1095	10.3260	9.1982	6.1228
Villa Alta	19.6784	14.3220	10.9521	10.5368	6.3581	22.6565	18.6096	14.6774	9.4842
Caltepec	33.7324	23.0732	22.6601	13.7342	3.7525	0.3295	4.8360	1.6380	27.1690
Cárdenas	3.6936	14.5036	15.8813	16.7405	0.4762	7.0784	8.0241	8.5123	1.8940
Paredón	15.1825	2.3750	1.1731	2.1018	0.2364	3.9003	6.7078	7.8868	12.8491
Acayucan	17.9292	9.9826	9.2032	6.897 7	3.4975	1.2417	0.1438	1.0181	4.5318
Azueta	1.8626	6.6530	2.2133	6.1785	6.9277	6.0821	4.9423	1.3649	5.0101
Cuatotolapan	13.7492	5.9280	6.1417	7.1241	6.6869	5.2376	3.7450	0.7911	2.0139
Orizaba	23.5514	31.9876	31.6232	17.2507	10.9227	9.0815	3.5016	3.1579	6.1091
F.Sta.Isabel	49.1960	52.5104	50.4779	29.1637	3.1302	0.1135	2.2245	5.3381	1.6018
Coixtlahuaca	25.5925	1.0588	14.1215	15.6354	3.0526	14.1746	15.4448	22.9041	16.0344
El Tejar	12.2075	16.9613	17.7979		16.4677	13.6444	13.0243	14.9459	22.0470
ERROR MEDIO:	21.5314	23.9514	20.3787	13.3668	5.6781	6.7797	7.0367	6.8374	8.2277

ERRORES ESTIMADOS EN % AL APLICAR EL METODO DE CORRELACION LINEAL MULTIPLE PARA T= 5 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min
Argelia	18.4975	1.9305	6.3460	10.8349	6.5507	1.6962	8.1776	12.9105
F.Sta.Isabel	45.7024	30.5343	25.6202	16.0695	18.6091	27.4875	40.0313	53.9480
Las Penitas	18.8138	6.2138	2.9306	9.6495	9.7959	6.5674	3.0143	1.4475
Santa María	9.2916	2.6067	1.6838	11.1066	9.5753	7.9458	2.5671	2.1453
Presa Malpaso		7.9235	1.9226	12.5737	8.0338	3.0665	1.4651	6.3158
Villa Flores		0.3771	4.5936	9.5594	10.2177	4.9601	0.6928	4.0020
Cantón	2.9140	3.9460		8.7942	10.7786	3.9593	0.3993	0.9193
Huahutla	3.4610	2.3096	0.0371	9.4801	8.4705	7.7449	7.2375	6.3335
Jacatepec	8.1970	14.9748	4.1595	5.9200	6.4770	3.7551	0.9449	3.9364
Jayacatlán		4.5636	0.1166	11.9463	10.4979	11.6591	8.2984	4.9869
La Estrella	7.1706	4.4355	3.0430	7.9496	11.0835	2.8127	2.6978	7.6485
Monte Rosa	18.8156	8.2032	1.4396	15.4153	15.0006	9.0067	1.9021	2.8129
Papaloapan	11.8070	2.9673	11.4114	18.6680	16.6610		12.3202	7.6944
Villa Alta	9.9576	2.5408	0.4294	3.5484	1.9252	12.0422	7.1267	1.1618
Caltepec	16.5506	1.2198	9.1890	11.5989	7.3514	4.1478	0.2729	1.2020
Jalpa de Mdez.	25.2884	6.4820	0.8914	4.4961	7.5291	5.8582	2.0343	1.0652
Cárdenas	6.8888	1.8251	6.0927	8.4399	7.7824	6.2805	1.5597	3.0663
Paredón	18.3264	6.7060	1.1109	5.2254	2.4135	0.5731	1.6050	4.7505
Acayucan	21.5878	0.4596	7.6756	13.2264	14.5677	9.6706	5.2091	1.3911
Azueta	17.8107	4.4025	8.5863	15.1508	12.8316	9.9111	7.0860	1.8063
Cuatotolapan	23.6941	0.2229	7.2019	19.4274	15.6727	11.3907	7.1433	2.0406
Orizaba	9.1032	1.1435	6.7434	14.4044	8.0040	1.9161	1.3472	7.0025
ERROR MEDIO:	15.4673	5.2722	5.2964	11.0675	9.9922	7.2596	5.5969	6.2994

ERRORES ESTIMADOS EN % AL APLICAR EL METODO DE CORRELACION LINEAL MULTIPLE PARA T= 10 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min
Argelia	29.9388	9.8626	0.4560	3.7364	0.2879	4.4245	17.0838	19.7868
F.Sta.Isabel	62.7154	45.6728	39.7554	27.3907	26.0221	34.6537	47.8822	62.5700
Las Peñitas	32.8475	17.8107	6.4089	2.0244	4.5007	1.4810	1.4775	5.5582
Santa María	21.3102	14.7793	10.2364	1.8621	0.9478	0.0293	5.5163	10.3421
Presa Malpaso		20.8431	10.4008	1.4822	3.5935	8.6586	13.1371	18.0817
Villa Flores		8-0077	4.8191	1.8626	0.1467	5.4057	11.3944	14.6822
Cantón	9.3371	13.4404		1.0583	5.5946	1.3653	4.8376	5.3907
Huahutla	13.9717	13.4148	10.1272	3.2574	3.1700	1.6417	0.9407	0.4969
Jacatepec	14.6027	26.9377	14.0502	0.2443	1.9795	0.3178	2.0147	6.8566
Jayacatlán		22.1705	15.9916	0.3965	1.2855	0.4239	3.5212	7.4512
La Estrella	14.6887	15.8739	5.2775	0.2276	5.3949	4.7941	10.0600	14.9289
Monte Rosa	32.2765	23.9194	14.7169	8.4764	9.8517	3.7826	3.6065	8.3184
Papaloapan	25.6592	7.8588	2.7580	12.0302	10.7464		6.7870	2.0464
Villa Alta	24.5598	13.8389	10.0092	5.1154	10.1543	6.0163	0.5767	5.6477
Caltepec	35.5634	16.9591	4.0275	0.3544	4.8486	8.4742	13.0675	13.2547
Jalpa de Mdez.	45.1776	24.5929	16.5809	13.8828	6.9617	7.4934	11.4933	14.6548
Cárdenas	15.2935	7.7386	3.6722	2.2119	0.4139	0.9982	5.6031	10.1572
Paredón	37.4234	24.4396	15.9240	10.0718	12.0330	12.9326	14.5503	17.4760
Acayucan	38.7082	11.4287	2.0248	5.1890	8.8581	3.8707	0.6147	4.4771
Azueta	38.0331	9.4197	4.4185	4.7940	3.2030	0.0372	3.4119	9.5334
Cuatotolapan	44.4074	13.6703	5.1100	10.9036	7.8892	3.5873	0.7975	6.3435
Orizaba	14.9553	5.2054	0.1931	8.6909	2.2743	3.8724	6.6109	12.4667
ERROR MEDIO:	29.0247	16.7220	9.3789	5.6938	5.9162	5.4410	8.4084	12.2964

PROPES ESTIMATOS EN	4 AT 2	ADT TO AD	ET.	MERTANA	ישת	CODDETACTOR	TTMEST	MITTOTOTE	DADA	TH- 25 NNA	c

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min	
Argelia	48.7195	23.5004	12.3712	8.3982	10.9500	15.6755	32.1854	32.5236	
F.Sta.Isabel	90.2822	70.2213	62.7610	46.2387	39.9861	48.7104	63.2980	79.5070	
Las Peñitas	55.8724	37.0583	22.2889	11.3632	6.0235	8.9554	11.4108	15.2928	
santa María	43.4671	36.7630	31.6481	15.4692	15.6946	15.8410	21.9551	27.2419	
Presa Malpaso		45.5937	33.6662	19.3993	25.5054	31.0485	35.7868	41.2158	
Villa Flores		25.6176	23.3789	22.7200	19.5481	25.1532	31.9552	35.4428	
Cantón	21.4426	29.4587		12.2181	4.4418	11.8679	15.3968	15.1341	
Huahutla	32.7587	32.9347	28.2909	9.4811	8.5607	11.0604	12.0192	11.9809	
Jacatepec	25.3388	45.3472	29.3594	10.3322	6.0248	6.5186	8.3931	13.3416	
Jayacatlán		55.7364	46.7240	25.1962	25.4805	22.9413	27.9792	33.0430	
La Estrella	28.8468	35.0021	19.9796	13.5041	5.6918	18.6047	23.8196	28.8224	
Monte Rosa	55.3381	49.9099	36.9233	4.4900	0.9910	7.4931	15.6213	20.6062	
Papaloapan	50.7779	28.0637	14.1109	1.8555	2.4382		6.2957	11.5268	
Villa Alta	49.2771	33.6584	28.5447	21.2008	26.0010	6.3665	12.7196	19.6073	
Caltepec	70.7930	46.4430	29.2093	23.6220	28.7952	33.2492	39.1222	37.7438	
Jalpa de Mdez.	82.2068	57.8267	48.4339	46.9561	34.0210	33.0795	37.6188	41.1123	
Cárdenas	31.8473	25.2453	21.2194	20.8336	15.8600	15.4030	20.1551	24.9102	
Paredón	72.6237	56.9319	46.9276	38.2679	39.2045	38.9464	39.9886	42.8885	
Acayucan	67.8160	31.0458	19.5510	9.8943	3.3205	8.7315	13.5378	17.7038	
Azueta	74.9470	35.6524	29.2097	15.9233	16.7868	20.6929	25.0155	32.6766	
Cuatotolapan	81.0218	39.1187	27.9371	6.0666	8.4614	13.1403	18.0438	24.5458	
Orizaba	26.2598	16.7028	11.3455	1.5296	8.2082	14.6619	16.9094	23.2309	
ERROR MEDIO:	53.1388	38.9924	29.7086	17.4982	15.9998	19.4353	24.0558	28.6408	

ERRORES ESTIMADOS EN % AL APLICAR EL METODO DE CORRELACION LINEAL MULTIPLE PARA T= 50 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min
Argelia	65.7951	36.1419	23.4999	19.6198	21.5458	26.3813	46.1038	44.6776
F.Sta.Isabel	115.3226	92.5260	83.6923	63.5441	53.4395	62.4448	78.3656	96.0639
Las Peñitas	76.9850	54.7858	37.0579	23.9749	16.3899	19.3407	21.5173	25.3804
Santa María	65.2618	58.2308	52.5166	32.6161	32.3177	31.8880	38.6498	44.4754
Presa Malpaso		70.6175	57.0770	40.3921	47.5412	53.6619	58.7802	64.7975
Villa Flores		43.7845	42.1687	43.3071	38.8610	44.9258	52.5993	56.3662
Cantón	33.1076	44.2468		24.5612	14.2047	22.1488	25.8081	24.9716
Huahutla	50.8224	51.5857	45.7537	22.3053	20.6389	23.9118	25.0875	24.7049
Jacatepec	35.0320	61.3799	42.7102	19.3448	13.4356	13.1144	14.7088	19.8206
Jayacatlán		90.4754	78.6759	51.2604	51.0646	47.7344	53.8966	60.1195
La Estrella	42.5654	52.7120	33.8924	26.5308	16.5622	31.8097	37.1159	42.3471
Monte Rosa	77.0698	74.0973	57.6607	17.1116	11.9609	18.9829	27.9007	33.2447
Papaloapan	75.4353	48.0962	31.0781	16.1243	16.2247		20.1791	25.9866
Villa Alta	72.5714	52.5880	46.3294	36.8874	41.6504	18.8511	26.0751	33.6715
Caltepec	106.5142	76.4404	54.9661	47.5784	53.5132	58.8221	65.9755	63.2802
Jalpa de Mdez.	119.7928	91.4092	80.5583	80.1940	61.5130	59.2862	64.4422	68.3439
Cárdenas	48.3502	42.2681	38.1669	38.6361	31.0335	29.7855	34.8045	39.8691
Paredón	108.1670	89.6797	78.1109	66.7383	66.8165	65.5803	66.1935	69.1934
Acayucan	95.4151	49.9936	36.5426	24.7155	15.7794	21.6910	26.9037	31.4406
Azueta	112.1407	62.4078	54.5302	37.3956	37.7267	42.3312	47.5904	56.8034
Cuatotolapan	117.0477	64.4511	50.7524	23.4190	25.4441	30.6117	36.1206	43.6227
Orizaba	37.2037	27.5749	22.1392	11.1485	18.1587	24.9752	26.9232	33.7218
ERROR MEDIO:	76.55787	60.70421	49.89903	34.88205	32.08283	37.41393	40.71552	45.58648

ERRORES ESTIMADOS EN % AL APLICAR EL METODO DE CORRELACION LINEAL MULTIPLE PARA T=100 AÑOS

								_
Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min
Argelia	85.6222	50.9432	36.5729	32.7449	34.0436	39.0583	62.3594	59.0868
F.Sta.Isabel	144.4922	118.5108	108.0871	83.7841	69.4977	78.9325	96.4561	115.9437
Las Peñitas	101.7588	75.6202	54.4833	38.9347	28.9126	31.9364	33.8788	37.8024
Santa María	92.1056	84.6021	78.1341	53.7804	52.9076	51.8529	59.4531	65.9816
Presa Malpaso		102.1285	86.5096	66.7766	75.2397	82.1276	87.7748	94.5757
Villa Flores		66.6698	65.6838	68.8415	62.8862	69.5739	78.3591	82.5095
Cantón	47.0320	61.5822		39.0737	25.9036	34.4999	38.3520	36.9341
Huahutla	72.6676	74.0860	66.8715	38.0900	35.6280	39.7593	41.1825	40.4403
Jacatepec	46.1141	79.4332	57.7398	29.5976	22.0077	20.8831	22.2284	27.5626
Jayacatlán		135.5206	120.1576	85.2044	84.4441	80.1158	87.7328	95.4522
La Estrella	59.0549	73.6065	50.4540	42.0533	29.6902	47.5958	53.0803	58.6338
Monte Rosa	103.0601	102.9197	82.3847	32.4014	25.4479	33.1463	43.0538	48.8769
Papaloapan	105.8792	72.9182	52.2113	34.0319	33.6310		37.7947	44.3570
Villa Alta	100.5444	75.4282	67.8259	55.9682	60.7787	34.2306	42.5046	50.9921
Caltepec	152.0799	114.7407	87.9037	78.2764	85.2123	91.6175	100.3966	96.1349
Jalpa de Mdez.	167.7321	134.1930	121.4678	122.5070	96.5872	92.8014	98.7717	103.2227
Cárdenas	68.6283	62.9868	58.7407	60.1636	49.5740	47.4684	52.8707	58.3660
Paredón	153.3491	131.2883	117.7133	102.9295	101.9809	99.5775	99.7089	102.8889
Acayucan	128.7548	73.0308	57.2309	42.8543	31.2562	37.8195	43.5720	48.5966
Azueta	159.4344	96.5439	86.8493	64.9305	64.6710	70.1744	76.6154	87.8002
Cuatotolapan	162.0036	96.1640	79.3522	45.3399	47.0125	52.8423	59.1484	67.9238
orizaba	50.2498	40.4082	34.8209	22.4793	29.9235	37.2047	38.8821	46.2625
ERROR MEDIO:	105.2928	87.4239	74.8188	56.3983	52.1471	55.8675	61.5535	66.8338

ERRORES ESTIMADOS EN % AL APLICAR EL METODO DE CORRELACION LINEAL MULTIPLE PARA T= 200 AÑOS

Estación	5 min	10 min	15 min	30 min	60 min	80 min	100 min	120 min
Argelia -	108.5608	68.1477	51.7976	47.9919	48.6332	26.3813	81.2270	75.9577
F.Sta.Isabel	178.4098	148.7255	136.4553	107.3582	88.4177	62.4448	117.8418	139.4453
Las Peñitas	130.7660	100.0289	74.9382	56.5469	43.8066	19.3407	48.6817	52.7316
Santa María	124.9423	116.8215	109.4228	79.6958	78.1626	31.8880	85.0459	92.4585
Presa Malpaso		141.5278	123.2853	99.7397	109.8459	117.7139	58.7802	131.8538
Villa Flores		95.1130	94.8182	100.3493	92.5700	100.0561	52.5993	114.8758
Cantón	63.4387	81.7987		56.0264	39.7183	49.1057	25.8081	51.1762
Huahutla	98.9129	101.0858	92.2424	57.2291	53.8800	23.9118	60.7040	59.5666
Jacatepec	58.6836	99.7433	74.6338	41.1901	31.8014	13.1144	30.9716	36.5837
Jayacatlán		193.7430	173.7867	129.1298	127.6665	122.0620	53.8966	141.2065
La Estrella	78.6393	98.1743	70.0187	60.4008	45.3232	31.8097	72.0295	77.9974
Monte Rosa	134.0185	137.2308	111.8016	50.7348	41.7474	18.9829	61.4029	67.8290
Papaloapan	143.2756	103.4572	78.2756	56.1992	55.2409		20.1791	67.2324
Villa Alta	134.0584	102.8456	93.6528	78.9671	83.8931	18.8511	62.4245	72.0048
Caltepec	210.0341	163.4629	129.8230	117.3729	125.5958	58.8221	144.2401	138.0442
Jalpa de Mdez.	228.6755	188.5759	173.4718	176.3326	141.1780	59.2862	142.4581	147.6207
Cárdenas	93.2370	88.0073	83.5538	86.0785	72.0092	29.7855	74.8367	80.8862
Paredón	210.6179	184.0253	167.9092	148.8023	146.5715	65.5803	142.2737	145.7090
Acayucan	168.9503	100.8752	82.2535	64.8498	50.1677	21.6910	63.9797	69.6170
Azueta	219.4471	139.8893	127.8934	99.9604	98.9981	42.3312	113.5811	127.2648
Cuatotolapan	218.0159	135.6967	115.0215	72.7704	74.0675	30.6117	88.0746	98.4488
orizaba	65.5670	55.3893	49.5849	35.6909	43.6704	24.9752	52.9375	61.0095
ERROR MEDIO:	140.4342	120.1984	105.4591	82.8826	76.9529	46.1307	75.1806	93.1600

8. REFERENCIAS

- 1. Aparicio, M.F.J., Fundamentos de hidrología de superficie, LIMUSA, 1992.
- 2. Baghirathan, V.R., y Shaw, E.M., Rainfall depth-duration-frequency studies for Sri Lanka, Journal of Hydrology No.37, 1978.
- 3. Barrios, D.J., y Domínguez, M.R., Regionalización de precipitaciones máximas en cuencas donde predominan las tormentas de tipo convectivo, IX Congreso Nacional de Hidráulica, Querétaro, Qro., 1986.
- 4. Bedient, P.B., Huber, W.C., Hydrology and flood plain analysis, 1988
- 5. Bell, F.C., *Generalized rainfall-duration-frequency relationships*. J.Hydr. Engrg., ASCE, Vol.95, No. HY1, january, 1969.
- Campos, A.D.F., Manual para la estimación de avenidas de diseño en cuencas menores de 15 km², Subdirección Regional Noreste de Obras Hidráulicas e Ingeniería Agrícola para el Desarrollo Rural, SARH, San Luis Potosí, SLP, México, 1984.
- 7. Campos, A.D.F., *Procedimiento para obtener curvas I-D-Tr a partir de registros pluviométricos*, Ingeniería Hidráulica en México, mayo-agosto, 1990.
- 8. Chow, V.T., Handbook of hydrology, Secc. 9-I, McGraw-Hill, 1964
- 9. Chow, V.T., Maidment D.R., Mays L.W., Applied hydrology, McGraw-Hill, 1988.
- 10. Chen, C.L., *Rainfall intensity-duration-frequency formulas*, J. Hydr. Engrg., ASCE, Vol.109, No. 12, december, 1983.
- 11. Comisión del Papaloapan, Boletín hidrométrico núm. 22: Cuenca del Papaloapan, 1977.
- 12. Consultores, S.A., Recomendaciones para el diseño y revisión de estructuras para el control de avenidas, México, 1978.
- 13. Dennis, P.L. y Stephen, J.B., *Gumbel's extreme value I distribution: a new look*, Journal of the Hydraulics Division, ASCE, Vol. 108, No HY4, april, 1982.
- 14. Domínguez, M.R., Ríos C.A., Regionalización de las características hidrometeorológicas de la cuenca del río Papaloapan, Centro Nacional de Prevención de Desastres,

- Coordinación de Investigación Riesgos Hidrometeorológicos, México, 1991.
- 15. Ferreri, G.B., and Ferro, V., Short-Duration Rainfalls in Sicily, J. Hydr. Engrg., ASCE, Vol. 116, No. 3, march, 1990.
- 16. Franco, V., Domínguez, M.R., *Precipitación*, capítulo A1.2 del Manual de Diseño de Obras Cíviles, Comisión Federal de Electricidad, México, 1981.
- Franco, V., Domínguez, M.R., Manual de hidráulica urbana, tomo 1, Dirección General de Construcción y Operación Hidráulica del Departamento del Distrito Federal (DGCOH-DDF), septiembre, 1982.
- 18. Froehlich D.C., Short-duration-rainfall intensity equations for drainage design, Journal of Irrigation and Drainage Engineering, ASCE, Vol. 119, No. 5, september/october, 1993.
- González, V.F.J., Estudio de regionalización y predicción de tormentas y avenidas de diseño, Secretaría de Recursos Hidráulicos-Instituto de Ingeniería, UNAM, México, 1972.
- Goswami, A.C., Short Duration Rainfall Depth-Duration-Frequency Map of India, Proc. of the Second International Symposium in Hydrology, theme: Decisions with Inadequate Hydrologic Data, Fort Collins, Colorado, USA, sept. 1972.
- 21. Haan, C.T., Statistical methods in hydrology, Iowa State Univ. Press, Iowa. 1977
- 22. Hall M.J., Urban hydrology, N.Y., USA, 1984.
- 23. Hargreaves G.H., Simplified method for rainfall intensities, Journal of Irrigation and Drainage Engineering, ASCE, Vol. 107, No. IR3, september, 1981.
- 24. Instituto de Ingeniería, U.N.A.M., *Manual de Ingeniería de Rios: Estudio hidrológico para obras de protección*, Capítulo 3, Comisión Nacional del Agua, 1993.
- 25. Instituto de Geografía, U.N.A.M., *Atlas Nacional de México*, Vol. II: Naturaleza y sus recursos, México, 1990.
- 26. Kothyari, U.C., and Garde, R.J., *Rainfall intensity-duration-frequency formulas for India*, J. Hydr.Engrg., ASCE, Vol. 118, No. 2, february, 1992.

- 27. Kite, G.W., Frequency and risk analyses in hidrology, Water Resources Publications, Colorado, USA, 1988.
- 28. Oyebande, L., Deriving rainfall intensity-duration-frequency relationships and estimates for regions with inadequate data, Hydrological Sciences Journal, No. 27, 1982.
- 29. Pineda, B.V., Reyes R. B., Manejo del agua mediante inundaciones controladas como una solución a los problemas de exceso de húmedad en áreas agrícolas de topografía plana. Estudio de caso: Proyecto Ixcualco. VIII Congreso Nacional de Hidráulica, Toluca, México, 1985.
- 30. Raudkivi A.J., Hydrology. Pergamon Press, 1979.
- 31. Secretaría de Recursos Hidráulicos (SRH), Boletín hidrológico núm. 43, Región Hidrológica núm. 28 (Parcial) Ríos Actopan, La Antigua y Jamapa. Jefatura de Irrigación y Control de Ríos, México, D.F. 1981.
- Secretaría de Recursos Hidráulicos (SRH), Boletín hidrológico núm. 37, Región Hidrológica núm. 29 Río Coatzacoalcos. Jefatura de Irrigación y Control de Ríos, México, D.F. 1970.
- Secretaría de Recursos Hidráulicos (SRH), Boletín hidrológico núm. 38, Región Hidrológica núm. 30 Ríos Grijalva-Usumacinta. Jefatura de Irrigación y Control de Ríos, México, D.F. 1971.
- Secretaría de Agricultura y Recursos Hidráulicos (SARH), Boletín climatológico núm.
 Región Hidrológica núm. 27 y 28: Actopan-Jamapa-Antigua. Subdirección de Hidrología de la Subsecretaría de Planeación, México, D.F. 1980.
- 35. Secretaría de Comunicaciones y Transportes (SCT), *Isoyetas de intensidad-duración-frecuencia de la República Mexicana*, México D.F., 1990.
- 36. Viessman W., Lewis G.L., Knapp J.W., Introduction to hydrology, N.Y., 1977.
- 37. Vijay P. Singh, *Elementary hydrology*. Department of Civil Engineering Louisiana State University, 1992.
- 38. Wisler C.O., y Brater E.F., Hidrology, New York, 1949.