DO 347-

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS DIVISION DE ESTUDIOS DE POSGRADO

PELICULAS DELGADAS DE OXIDOS CERAMICOS SUPERCONDUCTORES

TESIS

QUE PARA OBTENER EL GRADO ACADEMICO DE MAESTRO CIENCIAS EN (CIENCIA MATERIALES) DE р R F s F τ OSCAR BLANCO ALONSO

DIRECTOR DE TESIS: DR. JESUS L. HEIRAS AGUIRRE

MEXICO, D. F.

1995

FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS.

A Alma, por su amor, paciencia y constante apoyo.

A Cristi, por ser un motivo para dar siempre un esfuerzo extra.

Al Dr. Jesús L. Heiras A., por la dirección de este trabajo y por su amistad de estos años.

	_			
A lo	s D	octa	res: -	- 13

Alipio G. Calles M.

José G. Pérez R.

Luis Enrique Sansores C.

Pablo de la Mora y Palomar A .--

- Pedro Prieto Pulido

y de forma particular al Dr. Stephen Muhl S. y al Dr. Tatsuo Akachi M. A todos ellos por sus valiosos comentarios y fructiferas discusiones que contribuyeron al enriquecimiento de este trabajo.

Al Instituto de Investigaciones en Materiales de la UNAM. A todo el personal que colaboró en la realización de esta tesis; especialmente a Leti Baños, Ismael y Antonio Caballero.

A Condumex, por su apoyo para realizar los estudios de maestria.

A la Dirección General de Intercambio Académico y a la Dirección General de Asuntos del Personal Académico de la UNAM, por su apoyo para la realización de esta tesis.

A la Universidad de Guadalajara, en especial al Depto. de Ing. de Proyectos, al Centro de Inv. en Materiales y al CEDYMPE, por su apoyo para realizar los estudios de maestría y para la elaboración del documento de tesis.

A mis amigos y compañeros de estudios; en especial a Martin Flores M.

A todos aquellos que de alguna forma u otra me ayudaron a la realización de los estudios de maestría y a la elaboración de este trabajo.

DEDICATORIAS.

A Aquel de quien proviene todo conocimiento.

A Alma y Cristi.

A mis Padres y Hermanos.

ÍNDICE

à -

> CAPÍTULO 1. INTRODUCCIÓN. INTRODUCIO

> > 1.5

,

NITH O 1 BELICH AS DELCAR	C DE SUN	CDCOND	UCTOR	C DE AI	TA T-	
PITULO 2. FELICULAS DELGADA	IS DE SUP	ERCOND	UCIORE	S DE AL	14 10	
					gestar i	
2.1. Composición y Estructura.						
					1.31	
2.2. Rutas para el Depósito de C	erámicas	Supercon	ductors	IS.	e par p	5 1. st
2.2.1 Control Estegniométri	CO.				1.1	
2.2.2. Epitaxia y Sustratos.						Ч. с.
2.2.3. Oxígeno.						
2.3. Propiedades y Aplicaciones.	- Alexandra († 1923) Alexandra († 1935)			anga ng		n in ag
		de production				
					1.1	
~~ 문 통사 백년 동네 모두 되		1918 - M				
pítulo 3. Depósito Físico de	VAPORES	: PROCE	ESOS DE	ESPURI	EO.	
그 같은 말 같은 것은 것이다.						
3.1. Descarga Gaseosa DC.						
311 Plarmas						
3.1.2. Procesos de Colision.						
	and the second			e 11 1		
3.2. Espurreo.	t dan segar				(1,1,1,1)	
3.2.1. Interacciones Ión-Sun	erficie.					
3.2.2. Tasas de Fenueras				1.1		
JALLA, LANAS HE ENHIFTED.	[4] S.M. 1998, ApJ, 1997.					

1

I

3.3. Espurreo a Altas Presiones de Ox	igeno.		37
3.3.1. Equipo de Depósito.			38
5.5.2. Funcionamiento del Equipo	de Deposito.		42
CAPÍTULO 4. MEDICIÓN DE RESISTIVIDA	AD EN PELÍCULAS DE	LGADAS.	44
		na airte	
4.1. Medición de Mediante el Método	de 4 Terminales.		44
4.2. Regla de Matthiessen.			47
CARÍTULO SE RESULTADOS Y DISCUSIÓN			51
CATTOLO S. RESULTADOS I DISCOSION			51
5.1. Análisis de las Propiedades Super	rconductoras.		52
	第八 1993년 1월 1973년 1월 1975년 1월 1973년 1월		
5.2. Análisis Estructural.			61
5.3. Análisis de Superficie.			69
CADITULO 6 CONCLUSIONES		nal (n. 1997) 1997 - Stan Stan Stan	74
CAFITULO U. CONCLUSIONES.			/ -
APÉNDICE A. Cálculo del Parámetro de F	Red c, en Películas de	YBCO.	79
지 않는 것을 벗었다. 승규는 것을 알았는	상에 가격한 동안에 가격했다. 같은 것이 모양한 것은 것이 같은 것이 모양한 것은 것이 같이 있다.		
APENDICE B. Determinación del Espesor	de las Películas.		81
ABÉND TE C Abradiaturas			97
AFENDICE C. ADIEVIAIUTAS.			65
이는 것 같은 이지를 위한 것을 하는 것이다. 이 같은 것은 것을 가장한 것을 가지 않는다. 	가 방문 공유하는 11월 11월 11일 - 11일		
REFERENCIAS.			85
· 1946년 월월, 방법은 11월 - 21일 수 있는 것은 이 이 일상 같은 북파이는 이 사람들이는 것은 것을 주셨다.			
ERENCIAS.			85

Capítulo 1. INTRODUCCIÓN

Apartir del descubrimiento de los superconductores cerámicos de alta temperatura crítica (SCAT_c) con estructura del tipo de perovskita [1,2,3], grandes logros se han realizado en la fabricación de películas delgadas de estos materiales. De manera especial se ha estudiado en detalle la preparación y caracterización de películas epitaxiales de YBa₂Cu₃O_{7-X} (YBCO) sobre sustratos monocristalinos de SrTiO₃ (STO) [4] y MgO (MGO) [5], a fin de obtener este material con las mejores propiedades cristalinas para su estudio en ciencia básica, así como para emplearlo en posibles aplicaciones, tales como: en la fabricación de lineas de interconexión en diversos componentes electrónicos o en la elaboración de dispositivos activos (con base en juntas del tipo túnel o Josephson).

Dentro de las técnicas para prepara peliculas delgadas de materiales superconductores de alta T_e , se cuentan: el espurreo dc/rf (*Sputtering*), la evaporación por haz de electrones, el depósito químico en forma de vapor, la ablación láser y el depósito por haces moleculares. Sin embargo, la mayoria de estos métodos presentan fundamentalmente dos desventajas, una es el alto costo y la complejidad de los equipos utilizados y otra que las peliculas así crecidas solo son superconductoras después de un tratamiento térmico posterior a su fabricación, con lo que se destruye la epitaxia, aumenta las reacciones sustrato-película y se genera una alta rugosidad en la superficie. Esta última desventaja se traduce en serios problemas para las posibles aplicaciones en el área de electrónica, ya que la fabricación reproducible de capas y multicapas de material superconductor de alta T_e de excelente epitaxia e interfaces abruptas constituyen los

Películas Delgadas de Óxidos Cerámicos Superconductores.

1. Introducción

2

prerrequisitos más importantes para la fabricación de dispositivos tales como juntas del tipo SIS, diodos túnel, juntas Josephson y SQUIDs.

El desarrollo de la técnica de Espurreo Catódico a Altas Presiones de Oxigeno (ECAPO) logró eliminar estos obstáculos permitiendo obtener películas *in situ* de excelente calidad, constituyéndose un importante recurso para el estudio de las propiedades de los óxidos superconductores, así como para el desarrollo de dispositivos a base de dichos materiales. Sin embargo, aún son necesarios estudios sobre la importancia e influencia de los parámetros de depósito (presión, temperatura y tiempo de depósito, oxigenación *in situ*, etc.) en las propiedades superconductoras de los sistemas cerámicos depositados mediante este proceso.

A su vez, un estudio de la relación que guardan entre si las condiciones de depósito y el tipo de sustrato con las propiedades cristalinas y superficiales de los sistemas cerámicos de alta T_e en forma de películas delgadas, permitiría obtener una visión general del proceso, así como de las propiedades físicas finales de las películas.

Por lo anterior, los objetivos de la presente tesis se pueden resumir en los siguientes puntos:

- Estudio de la importancia de los parámetros de depósito en las propiedades superconductoras del sistema YBa₂Cu₃O_{7-X} en forma de película delgada. Determinación de las condiciones óptimas de depósito.
- Análisis de las propiedades cristalinas y estructurales del sistema YBa₂Cu₃O_{7.x} en forma de película delgada depositado sobre diversos sustratos.
- Estudio de las características superficiales del sistema $YBa_2Cu_3O_{TA}$ en forma de película delgada; su relación con las condiciones de depósito y con el tipo de sustrato.

Películas Delgadas de Óxidos Cerámicos Superconductores.

1. Introducción

A fin de alcanzar estos objetivos, la organización de este trabajo es la siguiente: En el capítulo 2 presentamos una visión del estado del arte del desarrollo, en forma de películas delgadas, de los materiales superconductores de alta temperatura crítica. Se consideran los aspectos principales del estudio de la composición y la estructura del sistema YBa₂Cu₃O_{7-x}; haciendo énfasis en las rutas para el depósito, tanto aquellas con oxigenación *in situ* como *ex situ*, de películas delgadas de cerámicas superconductoras, así como en las propiedades y aplicaciones de estos materiales.

En el capítulo 3 se realiza una revisión de algunos de los procesos de espurreo, dando las bases para el entendimiento de los procesos denominados descarga gaseosa y espurreo; las cuales, servirán para comprender mejor la variación que emplea altas presiones de oxígeno. Además, se presenta una revisión del ECAPO, el sistema empleado para la elaboración de las películas y las condiciones de operación del mismo.

En el capitulo 4 consideramos los aspectos principales de la medición de resistividad en películas delgadas mediante el método de 4 terminales, analizando el origen del cociente de resistividad residual RRR, por sus siglas en inglés Residual Resistivity Ratio, (Regla de Matthiessen) y la aplicabilidad de este en la caracterización de películas delgadas de cerámicas superconductoras.

Los resultados de los experimentos y la discusión de los mismos son presentados en el capítulo 5; se analizan y discuten las propiedades superconductoras, cristalinas y superficiales, así como la composición de las películas obtenidas, estableciendo las relaciones de estas propiedades con las condiciones de depósito.

Finalmente, en el capitulo 6 presentamos las conclusiones del trabajo y las proyecciones futuras.

Capítulo 2. PELÍCULAS DELGADAS DE SUPERCONDUCTORES DE ALTA T_c.

El inesperado descubrimiento de los superconductores cerámicos de alta T_e (SCAT_e), amplió la visión previa que de este fenómeno se tenía. La superconductividad de alta T_e, con sus nuevos materiales, obligó a la búsqueda y formulación de nuevas teorías para explicarla. Sin embargo, la mayoria de las teorías anteriores al descubrimiento de la superconductividad de alta T_e han tratado de explicar la superconductividad de los SCAT_e. Sin restar importancia al problema de la explicación teórica de la superconductividad de alta temperatura crítica, en el cual más de un investigador sigue empeñado, este trabajo se enfocará al análisis de la estructura y composición de estos materiales en forma de película delgada; estudiaremos aspectos relacionados con el control estequiométrico, con el crecimiento epitaxial, con la oxigenación, con las relaciones que guardan entre si el sustrato y la película, etc. Además, del estudio de los parámetros y fenómenos involucrados en el proceso de espurreo, los cuales influyen de manera fundamental en las características finales de las películas.

2.1. Composición y Estructura.

Tres de los óxidos superconductores de alta T_c más estudiados son el YBa₂Cu₃O_{7X} (YBCO), el Bi₂Sr₂Ca₂Cu₃O₁₀ (BSCCO) y el Tl₂Ba₂Ca₂Cu₂O₁₀ (TBCCO). El primero en descubrirse, el YBCO, ha sido el más extensamente estudiado. La celda unidad del YBCO se

muestra en la figura 2.1. La estructura es una variación de una clase de perovskitas con deficiencia de oxígeno, triplicada a lo largo del eje e y una secuencia de planos cobre-oxígeno. La fase aislante, con un contenido de oxígeno en la celda unitaria de 6, presenta una estructura tetragonal con parámetros de red a=b=3.84 Å y c=11.7 Å; mientras que la fase superconductora, con un contenido de oxígeno de 7, presenta una estructura ortorrómbica con dimensiones de la celda unidad a=3.8227 Å, b=3.8872 Å y c=11.6302 Å.

FIGURA 2.1. Diagramas esquemàticos del YBa2Cu3O6, alsiante y del YBa2Cu3O7, superconductor.

El YBCO posee la propiedad de reversibilidad en la absorción y perdida de oxigeno, por lo tanto es de estequiometría variable respecto a este elemento. Gran cantidad de estudios se han realizado a fin de correlacionar la estructura cristalina y el contenido de oxigeno de este

2. Películas Delgadas de Superconductores de Alta To

1

6

material con su T_e. Así, mientras que el contenido de oxigeno se incrementa de poco más de 6.4 a 7 átomos por celda, la T_e observada se incrementa de 30 K a -90 K. Al mismo tiempo, los parámetros de red a y e decrecen y el parámetro b se incrementa pasando, para un contenido de oxigeno de aproximadamente 6.5, de una estructura tetragonal a una ortorrómbica.

FIGURA 2.2. Anisotropia de la resistividad del YBa2Cu3O7, (p; (i=a,b,c) resistividad en las diferentes direcciones, Friedmann et al. 1990]

Una característica fundamental en estos materiales es su alta anisotropia en la resistividad, la cual es producto de la estructura de capas de los óxidos de alta T_e . La anisotropia de los SCAT_e se ilustra en la figura 2.2, donde se muestra la dependencia de la resistividad eléctrica a lo largo de los ejes a, b y c del compuesto "123" respecto de la temperatura. La resistividad eléctrica en el plano ab decrece con la temperatura y es

2. Películas Delgadas de Superconductores de Alta Tc

7

ligeramente anisotrópica: la resistividad eléctrica es ~50% más baja en la dirección b que en la dirección a. Este hecho ha permitido suponer que el transporte de corriente ocurre a lo largo de las cadenas de Cu-O (en el eje b). La resistividad en el eje b a una temperatura aproximada a los 100 K es de aproximadamente $25\mu\Omega$ cm, siendo proporcional a la temperatura para T>T_e. La alta anisotropia en el valor de p_e dificulta su determinación, aunque varios resultados indican que es aproximadamente 100 veces mayor que la resistividad del eje b a esta temperatura. Es necesario mencionar que la resistividad en el plano ab, extrapolada a T=0, pasa por cero en los mejores monocristales y muestras en forma de películas delgadas, además de que la dependencia respecto a la temperatura es extraordinariamente lineal en un intervalo de cientos de Kelvins; esto constituye un criterio ampliamente utilizado para verificar la calidad de las muestras.

2.2. Rutas para el Depósito de Cerámicas Superconductoras.

Desde el descubrimiento de la superconductividad de alta T_e en los óxidos cerámicos, grandes esfuerzos se han hecho para lograr la preparación de películas delgadas de buena calidad mediante muy diversos métodos. Estos esfuerzos se han dirigido principalmente a dos objetivos:

Primero, a las aplicaciones de los óxidos de alta T, en la fabricación de líneas de conexión de baja disipación y excelente velocidad de transferencia de la señal entre componentes pasivos de alta frecuencia o interconectores entre chips y tarjetas en computadoras rápidas, y en la elaboración de algunos dispositivos activos lineales como SQUID's [6] y estructuras de tres capas como diodos SNS [7,8], SIS [9,10] y juntas Josephson [11,12]).

2. Películas Delgadas de Superconductores de Alta Tc

Segundo, en la fabricación de materiales con las mejores propiedades cristalinas para su estudio en ciencia básica. Ya que los materiales de alta temperatura crítica exhiben alta anisotropía y una longitud de coherencia extremadamente pequeña, sus propiedades de transporte se encuentran dominadas por su cristalinidad y por las uniones débiles producidas por las fronteras de grano. Esto ha conducido a los investigadores de estos materiales ha realizar las medidas básicas en muestras con las mejores propiedades cristalinas; propiedades que se alcanzan al menos parcialmente en películas delgadas.

Los métodos para alcanzar uno u otro objetivo se pueden agrupar, por el proceso básico de cada uno, en dos grandes líneas generales: La asi llamada ruta I, que tiene como base algunos de los primeros reportes de películas delgadas de YBCO los cuales fueron realizados mediante un método que depositaba el material sobre un sustrato caliente [13]; el principio de este método [14] consistia en producir una película monocristalina mediante el depósito de un material amorfo o microcristalino sobre un sustrato como MgO ó SrTiO₃ (a 300-400°C) seguido por un tratamiento térmico, tanto in situ como ex situ, en atmósfera de oxígeno: un primer paso usualmente a 850-950°C por unos minutos y un segundo a 350-550°C en atmósfera de oxigeno por varias horas. Finalmente se enfriaba también en atmósfera de oxígeno. El tratamiento térmico induce el crecimiento epitaxial en el cual el cristal de YBCO nuclea y crece a partir de la superficie de separación entre el sustrato y la película. Se ha visto que un calentamiento lento produce la aparición de fases metaestables las cuales al alcanzarse la temperatura de 850°C pueden nuclear o transformarse completamente en la fase 123. Si por el contrario, el calentamiento es rápido un gran número de fases nuclean compitiendo con la fase 123. Durante el tratamiento térmico la mayoría de los átomos que no son requeridos para el crecimiento del YBCO son segregados a la superficie de la película, de igual forma que las impurezas son segregadas a los espacios entre las fronteras de grano en el proceso de sinterización en bulto [15].

Sin embargo, el método presenta claras desventajas: el tratamiento térmico a altas temperaturas favorece la interacción química entre el sustrato y la polícula, limitando la

2. Películas Delgadas de Superconductores de Alta Tc

aplicación de la técnica en la electrónica integrada; además, si se desea una estructura de capas estable para juntas túnel superconductoras, es claro que el tratamiento térmico alterará por difusión cualquier capa lo suficientemente delgada (1-2 nm) que sirva como barrera de tunelaje. Por otra parte, se ha visto que la baja velocidad de calentamiento origina el fenómeno de segregación cerca de la superficie, el cual se ha asociado con la aparición de precipitados de CuO.

Una alternativa apropiada para la producción de películas de alta calidad, que denominaremos ruta II, involucra el depósito de estos materiales a temperaturas del orden de 570-750°C sobre sustratos monocristalinos de buena calidad, logrando producir películas con crecimiento altamente orientado y fase tetragonal. A este proceso le sigue un tratamiento térmico *in situ* en atmósfera de oxígeno (7.6-760 Torr) en el intervalo de 370°C a 550°C, a fin de conseguir la fase ortorrómbica [16, 17, 18]. La figura 2.3 muestra, de manera esquemática, los aspectos fundamentales de las dos rutas de depósito de películas delgadas discutidas anteriormente.

Aspectos claves de las técnicas, tales cómo el asegurarse de una oxidación completa, cómo elegir el mejor sustrato y cómo lograr el crecimiento epitaxial o altamente orientado, se discutirán a continuación.

2.2.1. Control Estequiométrico

En la ruta 1 el control estequiométrico no es muy crítico, ya que durante los procesos de tratamiento térmico la fase correcta puede crecer desde el sustrato segregando las fases no deseadas a la superficie de la película. Sin embargo, es consenso general que las mejores películas son aquellas con el mejor control estequiométrico. De esta forma, el problema se centra en el control de la cantidad de segunda fase que puede crecer para dar una desviación en la estequiometria. La tabla 2.1 presenta algunos resultados de algunas muestras en la que las fases que compiten son óxidos o compuestos cercanos a las fase 123,

FIGURA 2.3. Diagrama esquemático de las dos rutas para el depósito de películas [19].

Composición de la Película Y:Ba:Cu(*)		FASE(*)								
	123	010	100	001	211	248	132	035	011	
16 32 52	96			-4						
	72					28	_			
15 30 55	90			10						
	36	1.00	1.5	1	1.1.1	63				
20 32 48	96	t de	4						t er i	
	84	1995			16	ALC: N	1, 2,5			
16 36 48	97	3			\$1355 \$1					
	84	1992) (1992)	्रिप्रिय				12	2111 - 15 1991 - 1994	4	
15 40 45	90	10			2018S		$\frac{1}{2}$	$M^{(1)} \mathcal{T}_{\mathcal{R}}^{(1)}$	10.5 (<u>a.</u>). 19 (<u>a.</u>).	
	60						30		10	
14 34 52	84							16		

TABLA 2.1. Ilustración de la cantidad de segunda fase, dependiendo de la formación de los óxidos elementales o de su correcta mezcla [(*) en porcentaje sobre el 100% del material [19].

Ahora bien, si se elige la ruta II para el crecimiento, es de esperarse que si las condiciones de depósito son correctas entonces se obtendrá un buen crecimiento de la película. Si bien, aún cuando la fase correcta se presente, el proceso no es del todo claro; el punto fundamental del proceso consiste en reducir al mínimo la facilidad de nucleación de la segunda fase, así como reducir al mínimo el número de átomos que arriban sin que tengan un sitio obvio para ocupar.

Se han hecho esfuerzos por controlar dentro del 1% la proporción de cada uno de los elementos que forman la película; sin embargo, el control de materiales evaporados es

2. Películas Delgadas de Superconductores de Alta Tc

12

sumamente dificil. Es común que en el depósito por espurreo la calibración y control de la potencia, dentro del 0.1%, mantenga constante la tasa de depósito: entonces el depósito constante de un blanco cerámico depende de la precisión en el control de la presión.

El espurreo constituye el método más claro para el depósito de aleaciones o compuestos de muchos elementos. Sin embargo, en el depósito de óxidos multicomponentes el fenómeno de reespurreo (que consiste tanto en el ataque al sustrato, como a la película que se deposita sobre este por átomos e iones energéticos que provienen del blanco y del plasma) [20,21] da lugar a variaciones en la estequiometría final de la película. Por otro lado, el fenómeno de termalización durante el proceso de espurreo, reduce la energía de los átomos espurreados y los iones a medida que viajan del blanco al sustrato, reduciendo el reespurreo.

A fin de controlar el reespurreo se requiere encontrar una combinación adecuada entre factores como: presión de trabajo, temperatura de depósito, distancia entre el blanco y el sustrato y la posición del sustrato por debajo de la fuente de espurreo (figura 2.4). La figura 2.5 muestra, para el caso del YBCO, la variación en los porcentajes atómicos de los elementos que componen las películas; el reespurreo de cobre aumenta con una reducción en el valor de la presión del gas de espurreo, mientras que para el itrio el reespurreo es mayor con el incremento de la presión del gas. El reespurreo del bario, a partir de los 100mT, se presenta tanto con un incremento como con una reducción en la presión del gas de espurreo.

El reespurreo de los elementos constituyentes de las películas de YBCO, también se ve modificado por un cambio en el valor de la temperatura de depósito (fig. 2.6); se ha encontrado un incremento en el reespurreo de cobre ha temperaturas por arriba de los 850°C, mientras que para el itrio y el bario éste se reduce con el incremento de la temperatura de depósito. Una combinación de estos procesos; aumento o reducción de la presión de espurreo y aumento o reducción de la temperatura de depósito, permite lograr cierto control del fenómeno de reespurreo y, en consecuencia, de las variaciones en los porcentajes de los elementos constituyentes de las películas. Por ejemplo, como se ha visto para el cobre, este elemento incrementa su porcentaje atómico con las altas presiones del gas de trabajo, mientras que lo

13

reduce con un incremento en la temperatura de depósito; por tanto, una combinación de alta presión de trabajo y alta temperatura de depósito, permitiría ajustar su porcentaje a un valor óptimo.

2. Películas Delgadas de Superconductores de Alta Tc

Presión (10⁻³ Torr) FIGURA 2.5. Composición de las películas como función de las presión del gas de espurreo; se observan las variaciones en la proporción de los elementos constituyentes de la película [23]. El cobre presenta mayor respurreo por debajo de los 150mT; mientras que el bario por arriba de este valor de presión. Si bien el recspurreo de lirió se incrementa con la presión del gas, este fenómeno permite obtener el porcentaje atómico adecuado para dicho elemento.

FIGURA 2.6. Composición de las peliculas como función de la temperatura de depósito[23]; el reespurreo de cobre se incrementa con la temperatura, mientras que disminuye para el barlo y el irio.

2.7).

Por otra parte, algunos autores han logrado cierto control sobre el reespurreo mediante el cambio en la composición del blanco [24], mediante el empleo del proceso de espurreo a altas presiones de oxigeno [25], como se discutirá en la sección 3.3., o con el uso de campos magnéticos [26].

La variación de la tasa de depósito, que de cierto modo se relaciona con la presencia del reespurreo, respecto a la presión de trabajo se puede caracterizar por el producto presióndistancia (PD), el cual varia más ó menos linealmente con la masa del ion espurreado [27]. Para átomos con una masa promedio de las especies que emergen de un blanco de YBCO, el producto puede dar aproximadamente 4.5 Torr mm: la tasa de depósito puede ser reducida aproximadamente en un tercio para un producto presión-distancia de 11.25 Torr mm (figura

2. Películas Delgadas de Superconductores de Alta Tc

2.2.2. Epitaxia y Sustratos

El termino crecimiento epitaxial se define como "el crecimiento de un cristal sobre un sustrato cristalino, el cual determina su orientación" [28]. Debido a que la forma mediante el cual crece la pelicula epitaxial influye de manera determinante en la microestructura final de esta y en la formación de diversos tipos y cantidad de defectos, es necesario realizar al menos una revisión somera de los mecanismo del crecimiento epitaxial (para mayores detalles ver Matthews [28]).

En la figura 2.8 se muestran tres formas de crecimiento epitaxial, estas son: a) crecimiento capa por capa (Frank-van der Merwe),

b) formación y crecimiento por nucleación discreta (Volmer-Weber) y

FIGURA 2.8. Tres formas de crecimiento epitaxial (Redibujado de [30]). Frank-van der Merwe: el material que arriba al sustrato se deposita en forma de una monocapa plana continua, con la estructura cristalina orientada de acuerdo con la estructura cristalina del sustrato; el material depositado posteriormente repite este tipo de crecimiento. Volmer-Weher: el material depositado nuclea en forma de cúmulos o islas que, en estadios posteriores se unen para formar una película continua; sin embargo, la superficie no es completamente plana y presenta cierta porosidad. Stranski-Krastanow: combinación de los dos procesos anteriores, crecimiento en capas y en islas.

2. Películas Delgadas de Superconductores de Alta Te

 c) formación inicial de una capa o capas bien adheridas seguida por la nucleación y el crecimiento (Stranski-Krastanow).

El crecimiento capa por capa solo ocurre cuando la interacción entre los átomos de la pelicula y del sustrato es extremadamente fuerte. En todo caso, para sistemas con diferencias estructurales y con fuerte interacción entre los átomos de la interfases, el crecimiento capa por capa es solo efectivo para peliculas con espesores muy pequeños.

La diferencia en el parâmetro de red entre la pelicula y el sustrato genera una energia de esfuerzo que sirve, en la mayoria de los casos, para generar la nucleación de cúmulos [29]. Por lo tanto, para sistemas con diferencias estructurales, los modos de crecimiento más usuales son la formación de estos cúmulos que se unen para formar la película (Volmer-Weber) ó la de pequeñas capas uniformes que forman la película (Stranski-Krastanow).

En todos los casos es posible que, durante el depósito inicial de la película; se presente un esfuerzo que deforme clásticamente la interfases película-sustrato; este fenómeno se refiere como crecimiento pseudomórfico. La condición dominante para que dicho crecimiento se genere, es que el esfuerzo necesario para asegurar la coherencia en la superficie de separación entre el sustrato y la película deberá ser pequeño.

Un ejemplo de la deformación elástica en el depósito inicial se presentan esquemáticamente en la figura 2.9a; sin embargo, la energía de deformación puede favorecer la generación de dislocaciones que originan una perdida en la coherencia de la interfaz [31]. Esta situación se muestra esquemáticamente en la figura 2.9b.

2. Películas Delgadas de Superconductores de Alta Tc

18

FIGURA 2.9(a). Interfaz coherente con un pequeño esfuerzo de deformación.

FIGURA 2.9(b). Interfaz semicoherente, los planos cristalográficos se acomodan paralelamente gracias a la presencia de dislocaciones.

Como se ha mencionado, la aplicación de los óxidos cerámicos superconductores de alta Tc en forma de películas delgadas depende del grado de la epitaxia con que estos materiales pueden ser crecidos. Por otra parte, se espera que las cerámicas superconductoras sean empleadas en gran cantidad de aplicaciones, similares a la de la industria de semiconductores. Por ello, el sustrato se elegirá por dos criterios básicos:

2. Películas Delgadas de Superconductores de Alta Te

- El sustrato deberá favorecer el crecimiento epitaxial de la película durante su depósito; de tal forma que, la película presente una temperatura de transición alta (además de una alta corriente critica),
- El sustrato deberá ser el adecuado para la fabricación de dispositivos ó aplicaciones tecnológicas.

Además, se propone que el sustrato exhiba baja reactividad química a la temperatura de depósito, que posea la más baja constante dieléctrica posible y que esté disponible a un costo razonable [32]. En la actualidad dos de los sustratos más empleados para el depósito de YBCO son el SrTiO₃ (STO) con una diferencia entre parámetros de red, respecto al parámetro de red a o b de YBCO, de aprox. 2% y el MgO (MGO) con una diferencia, respecto a esos mismos parámetros, de aprox. 2%; adicionalmente, el STO posee una constante dieléctrica alta, comparada con la del silicio, con lo que queda fuera de la mayoría de las aplicaciones debido a que la velocidad de transferencia de la señal puede ser bastante baja. El MGO, a diferencia del STO, tiene una constante dieléctrica baja y posee la ventaja, sobre la mayoría de los materiales reportados como sustratos, de que no forma compuestos separados con el YBCO, mostrando sólo una solución sólida a los 850-950°C; que, sin embargo, lo limita para el depósito de peliculas de YBCO a temperaturas altas. Por otra parte, este material tiende a ser atacado por el vapor de agua.

En la búsqueda de otros sustratos, económicamente más accesibles y de constante dieléctrica baja, se ha encontrado que el itrio estabilizado con circonio (YSZ) posee buenas características para ser empleado como un buen sustrato (ya que es un buen conductor de iones para el oxigeno); sin embargo, no se han producido películas con las densidades de corriente critica como las obtenidas en películas depositadas sobre STO y MGO. Una opción para el depósito de películas sobre sustratos de bajo costo y baja constante dieléctrica, es el crecimiento de capas finas y epitaxiales ("*buffer layer*") intermedias entre el sustrato y la película. Existe un buen número de reportes sobre este tipo de capas, por ejemplo ZrO₂, SiO₂, MgO y Ag se han depositado sobre diferentes sustratos [33, 34, 35], siendo sólo algunas de

2. Películas Delgadas de Superconductores de Alta Tc.

ellas epitaxiales. Son necesarios más trabajos para obtener películas de YBCO de alta calidad. Otros sustratos que han sido investigados con cierta amplitud y que reportan resultados alentadores son Si [36], LiNbO₃ [37], LaGaO₃ [38] y LaAlO₃ [39], estos tres últimos con estructura de perovskita. La tabla 2.2 muestra un resumen de las principales propiedades de los sustratos más utilizados y los resultados para películas de YBCO crecidas sobre éstos.

TABLA 2.2. Los sustratos más empleados y las características de las películas de YBCC
depositadas sobre éstos: parámetros de red (a,b,c) en Å, coeficiente de expansión térmica (α
en 10 ⁻⁶ K ⁻¹ y constante dieléctrica (c). So orientación del sustrato, Td temperatura de depósito
(A>850°C, B<750°C) y Po orientación preferencial de la película [Adaptada de 40].

Sustrato	8	b		.α.	8	.S.		P.
		لایت ور مرکز از ا مرکز می از از از مرکز می او از از ا	and the			(£,k,)*		
SrTiO3	3.905	_	-	8.6	300	001	А	Eje c
						001	В	Eje a
MgO	4.203	-	-	13.8	27	001	Α	Eje c
		}	}			001	В	Eje c + otras
			·	1				orientaciones
LaAlO ₃	3.788	-	_	10	23	001	Α	Eje c
	1461 077					001	в	Eje a
LaGaO3	5.519	5.494	7.77	10.6	25	001	A	Eje c
Si	5.43		13.8%	2.6	12			

La medición de la temperatura del sustrato es otro problema, y algunos autores refieren la temperatura de sus calentadores y no la de los sustratos; sin embargo, estas temperaturas pueden ser significativamente diferentes (del orden de 120-150°C [41]).

2. Películas Delgadas de Superconductores de Alta Tc

2.2.3. Oxígeno.

El crecimiento directo de un óxido complejo, como el YBa₂Cu₃O₇, en forma de una película delgada es particularmente desafiante debido a la diferencia en las reactividades químicas y a la diferente tasa de espurreo de cada uno de los compuestos involucrados.

FIGURA 2.10. Diagrama de fases para el sistema CuO.

Un análisis de la estabilidad de los óxidos en el diagrama de Ellingham [42] (figura 2.10) muestra que aproximadamente a los 500°C, el CuO se forma a presiones parciales de oxígeno por arriba de 0.76 x 10⁻⁵ Torr, mientras que el Cu₂O se forma a presiones parciales por

abajo de este valor; a los 800°C la presión parcial de formación del CuO está por arriba de l Torr, mientras que la presión parcial para la formación del Cu₂O va desde los 10⁻⁵ Torr hasta aproximadamente l Torr.

En el crecimiento de la fase tetragonal YBa₂Cu₃O_{6.5}, cada átomo de Cu en la superficie deberá formar uniones Cu-O suponiendo que el Ba está presente en forma de BaO y el Y en forma de Y₂O₃; sin embargo, para una pequeña movilidad del oxigeno disociado durante el depósito la presión parcial de oxigeno en la superficie puede caer por debajo del valor para el cual se forma el CuO. Algunos trabajos muestran que es necesario obtener una monocapa de actividad y el oxígeno, atómico de preferencia, deberá arribar por cada capa de película que sea crecida [43]. Es de notar que para el depósito completo de la fase YBa₂Cu₃O₇, mediante la ruta II, la mayoría de los grupos de investigación han introducido oxígeno activo mediante plasma [44] ó mediante ionización durante la evaporación por haz de electrones [45, 46, 47].

Para cada proceso de depósito se ha desarrollado un método de incorporación de oxigeno. Mientras que el depósito por ablación láser, en una atmósfera de oxigeno, genera la mayoria de las especies de óxidos, Y_2O_3 , BaO y CuO [48] reduciendo al mínimo la necesidad de añadir oxígeno para alcanzar el valor de O_7 en el compuesto, el espurreo genera pocos óxidos desde el blanco, dándose la oxidación a través del plasma el cual puede tener una gran concentración de oxígeno activo [49]. Las técnicas de evaporación térmica no generan óxidos desde el blanco, por lo que oxígeno activo debe ser introducido; éstos procesos se conocen como técnicas de evaporación reactiva activada [50].

Por otra parte, es importante asegurarse en las técnicas de depósito con oxigenación *in situ* que las muestras sean enfriadas, desde la temperatura de depósito, a una cierta presión de oxígeno (~latm). La experiencia muestra que para obtener películas con la composición, estructura y propiedades superconductoras deseadas, dicho proceso es fundamental.

2.3. Propiedades y Aplicaciones.

Existen varios criterios prácticos para determinar si una película presenta propiedades superconductoras óptimas. Entre los más empleados se encuentran:

1) La curva característica de resistencia (o resistividad)-temperatura. El aspecto principal de esta curva es que presenta una parte extraordinariamente lincal, que va desde temperatura ambiente hasta algunos grados por encima de T_e. La extrapolación de la parte lineal a un valor de T=0 interceptará, en el caso ideal, al eje de la resistividad en ρ =0; se ha establecido que mientras más se acerque a cero mejores son las características superconductoras de la películas (esta afirmación está relacionada con la definición y el valor del cociente de resistencia residual [ver secc. 4.2]).

 El valor de su T_e. Se ha visto que las mejores películas son aquellas con temperaturas de transición por arriba de los 90K, y

3) La anchura de la transición. Medidas de △T_e en las mejores películas de YBCO presentan valores del orden de 2K que, en comparación con la de los superconductores tradicionales que son de algunos mK, es bastante ancha.

La caracteristica tipica de resistividad-temperatura para una película de YBCO, depositada por el proceso ECAPO, se muestra en la figura 2.11 [51]. La extrapolación cae bastante cerca de cero, su T_e se encuentra alrededor de los 90 K y la anchura de la transición es de poco menos de 2 K. Sin embargo, no hay que olvidar que las características cristalinas, de composición y superficiales permiten determinar de manera completa la calidad de estos materiales en forma de película delgada.

2. Películas Delgadas de Superconductores de Alta Tc

24

FIGURA 2.11. Pelleula delgada de excelente calidad obtenida por depósito in situ [51].

Una de las aplicaciones más extendida de las películas delgadas involucra el fenómeno de tunelaje. La rugosidad y los precipitados, comúnmente encontrados en películas de estos materiales, representan un problema para esta aplicación. Otro problema, que puede estar o no relacionado con el anterior, es el de requerirse una muy buena calidad en las interfaz.

Otra de las aplicaciones que ha comenzado a sobresalir es la utilización de estos materiales en forma de películas delgadas como recubrimientos que sirvan como guía de microondas de baja pérdida y baja dispersión. Una baja resistencia eléctrica superficial a altas frecuencias es el requerimiento esencial para tal aplicación y los óxidos de alta T_e, en forma de películas delgadas, poseen una resistencia superficial considerablemente baja. Problemas relacionados con el depósito a altas temperaturas y presiones, con el procesamiento de las películas, con técnicas de litografía (para estructuración a pequeña escala), así como con la

2. Películas Delgadas de Superconductores de Alta Te

1.20

25

compatibilidad con otros materiales (sustratos) y dispositivos, se están estudiando a fin de permitir un desarrollo a corto plazo de una tecnología de estos materiales que se refleje en posibles aplicaciones en el área de la microelectrónica.

Parte de este trabajo fue enfocado al estudio de los problemas involucrados en el proceso de depósito a altas temperaturas y presiones, así como a la compatibilidad con diversos sustratos. Así mismo, con base en los resultados obtenidos, se plantean las posibles aplicaciones.

CAPÍTULO 3. DEPÓSITO FÍSICO DE VAPORES; PROCESOS DE ESPURREO.

La figura 3.1 presenta la imagen simplificada de un sistema de espurreo. El blanco es una pieza del material a ser depositado o del cual se sintetizará la película. Debido a que éste se conecta a la terminal negativa de una fuente de (o rf), el blanco es conocido como cátodo. Para producir la descarga tipicamente es necesario aplicar varios cientos de volts. El sustrato, colocado sobre el ánodo, puede estar aterrizado, eléctricamente aislado o polarizado positiva o negativamente; así como calentado, enfriado o en alguna combinación de las formas anteriores.

FIGURA 3.1. Disgrama de un sistema de espurreo, en los modos de descarga de o rf.

3. Depósito Físico de Vapores; Procesos de Espurreo.

to many starting and the starting of the starting of

Después de evacuar la cámara, un gas -comúnmente argón- es introducido a fin de que sirva de medio por el cual se inicia y sostiene la descarga; la presión del gas, llamada presión de trabajo o descarga, es usualmente del orden de 10⁻³ Torr a 10⁻¹ Torr. Una vez que la descarga gaseosa se inicia y mantiene entre los electrodos una corriente fluye entre éstos, iniciándose el depósito del material sobre el sustrato para formar la película.

La visión microscópica del proceso de espurreo es la siguiente: iones positivos del gas, acelerados por la diferencia de potencial entre los electrodos, golpean el blanco removiendo material del mismo (átomos y moléculas neutros) mediante la transferencia de momento. El material removido pasa a través de la descarga y, eventualmente, se condensa sobre la superficie del sustrato. Adicionalmente otras particulas como: electrones secundarios, iones negativos y gases atrapados en el blanco; así como también radiación (rayos X y fotones), son emitidos desde el blanco. Debido al campo eléctrico los electrones, así como los iones negativos, son acelerados hacia el sustrato bombardeando la película durante su crecimiento. Este fenómeno es parte de lo en ocasiones se nombra como "reespurreo".

La descripción anterior de la descarga gaseosa es bastante simple, siendo en realidad más complicada ya que su comportamiento no es facilmente modelable; sin embargo, no importando el tipo de proceso de espurreo, en éstos están involucrados procesos similares de descarga, configuración de electrodos y de interacción gas-sólido. Por ello, se discutirán preguntas comunes a todas las descargas gaseosas ("Glow Discharge") a fin de analizar posteriormente procesos de espurreo específicos.

3.1. Descargas Gaseosas DC.

La forma en que una descarga gaseosa evoluciona a una presión baja del gas de trabajo es la siguiente [52, 53, 54]: Una vez que se ha evacuado la cámara, he introducido el gas de

3. Depósito Físico de Vapores; Procesos de Espurreo.

trabajo a una presión del orden de 10³ Torr, se aplica un voltaje entre electrodos de aproximadamente 150V; inicialmente, una pequeña corriente fluye debido a la baja concentración de portadores de carga (iones y electrones). A medida que se incrementa el voltaje, se imparte la energía suficiente a los portadores para crear más portadores; esto sucede mediante la colisión de los iones con los átomos del cátodo y con los átomos neutros del gas, generando electrones secundarios así como más iones. Con esta multiplicación de carga hay un rápido incremento de la corriente; sin embargo, el voltaje limitado por el valor de salida de la fuente, permanece constante (este régimen es conocido como descarga-Townsend "*Townsend Discharge*"). A partir de este momento, un gran número de electrones e iones son creados a través de colisiones en avalancha y cuando cierto número de electrones producen suficientes iones para regenerar el mismo número de electrones la descarga se vuelve auto-sostenida. El gas comienza a brillar, el voltaje cae y la corriente se sigue incrementando; se alcanza el estado de descarga normal ("*Normal Glow*"); estos dos estados de la descarga se observan en la fig. 3.2.

FIGURA 3.2. Condiciones de voltaje y corriente de trabajo durante la formación y evolución de una descarga gaseosa de [52] (ver descripción en el texto).

3. Depósito Físico de Vapores; Procesos de Espurreo.

Al inicio, el bombardeo del cátodo por los iones es inhomogéneo concentrándose en los bordes o en otras irregularidades de la superficie. A mayor potencia aplicada el bombardeo se incrementa extendiéndose sobre toda la superficie hasta alcanzar una densidad de corriente casi uniforme. Con un posterior incremento en la potencia, que resulta en altos voltajes y altas densidades de corriente, el régimen anormal ("Abnormal Discharge") se alcanza, siendo éste el dominio operativo para el espurreo y otros procesos de descarga

3.1.1. Plasmas.

Una descarga gascosa es esencialmente un plasma; es decir, un gas parcialmente ionizado compuesto por iones, electrones y partículas neutras, el cual es, en promedio, eléctricamente neutro. Por otro lado, la densidad de partículas cargadas debe ser lo suficientemente grande para que ocurra una interacción coulombiana significante. Esta interacción, a la vez que hace que las partículas cargadas se comporten como un fluido, determina la mayoria de las propiedades del plasma.

En los plasmas empleados en el espurreo, llamados descargas gaseosas o descargas luminosas, la densidad de particulas es bastante baja y el campo eléctrico lo suficientemente fuerte para que las particulas neutras no estén en equilibrio, tanto en número como térmicamente, con los iones. Tipicamente el grado de ionización, o cociente de ionización, entre el número de iones y particulas neutras es del orden de 10⁴. Medidas realizadas en descargas gaseosas han encontrado que los electrones poseen temperaturas del orden de 23,000 K (a energías de ~ 2eV), mientras que la temperatura de los iones y particulas neutras es del orden de 460 K y 290 K, respectivamente.

3. Depósito Físico de Vapores; Procesos de Espurreo.

3.1.2. Procesos de Colisión.

Las colisiones entre electrones y las demás partículas dentro de un plasma influyen de manera fundamental en las propiedades de la descarga. Dichas colisiones pueden ser elásticas o inelásticas. En una colisión elástica entre dos partículas, la energía cinética total del sistema y el momento se conservan; si la energía potencial reside básicamente en la estructura electrónica de las partículas que colisionan, un incremento en la energía potencial se manifestará mediante la ionización u otros procesos de excitación. Ya que en una colisión elástica no ocurren excitaciones atómicas, por tanto, también se conserva la energía potencial.

Del resultado para colisiones elásticas binarias,

$$\frac{E_2}{E_1} = \frac{4M_1M_2}{(M_1+M_2)^2}\cos^2\theta, \qquad 3.1$$

donde 1 y 2 refieren a las dos particulas de masa M_i y energía E_i . Se supone que M_2 se encuentra en reposo y M_1 colisiona con un ángulo θ , definido por la trayectoria inicial de la particula incidente y la linea que une los centros de la particulas al contacto; la cantidad $4M_1M_2/(M_1+M_2)^2$ es llamada función de transferencia de energía. Para el caso de $M_1=M_2$ y un choque frontal, $\cos\theta = 1$, el valor de la función de transferencia es 1; la energía cinética de la primer particula es transferida completamente a la segunda particula. Sin embargo, cuando $M_1 << M_2$ -por ejemplo una colisión entre un electrón y una molécula de nitrógeno- el valor de la función de transferencia es de $-4M_1/M_2$ (del orden de 10^{-4}). Sólo una pequeña cantidad de la energía cinética es transferida.

Ahora bien, en una colisión inelástica la máxima fracción de energía cinética que puede ser transferida es [55]:
Películas Delgadas de Óxidos ...

es:

3. Depósito Físico de Vapores; Procesos de Espurreo.

3.2

$$\frac{\Delta U}{(V_2)M_1v_1^2} = \frac{M_2}{M_1 + M_2} \cos\theta,$$

donde v_1 es la velocidad inicial de la partícula incidente y ΔU el cambio en la energía potencial de la partícula golpeada. Para el caso de $M_1 << M_2$, y suponiendo que cos $\theta = 1$, entonces $\Delta U/(\chi) M_1 v_1^2 \approx 1$; prácticamente toda la energía cinética del electrón puede ser transferida a una partícula pesada en una colisión inelástica.

Diversos tipos de colisiones inclásticas se suceden dentro de una descarga, algunas de las principales son:

 Ionización. Es el proceso más importante en el sostenimiento de una descarga y se origina por el impacto de un electrón con un átomo neutro del gas ionizandolo. La reacción típica

$$e^- + Ar^0 \rightarrow Ar^+ + 2e^-,$$
 3.3

los dos electrones pueden ionizar más átomos de argón y así sucesivamente. La reacción inversa, recombinación, también puede ocurrir.

 Excitación. En este caso la energía del electrón induce una transición entre estados electrónicos, vibracionales o rotacionales, dejando la molécula en un estado excitado (denotada por un asterisco). Un ejemplo es:

$$e^- + O_2 \rightarrow O_2^{\bullet} + e^-$$
.

3.4

 Disociación. La molécula es rota en atomos o fragmentos moleculares. Los productos (radicales) son generalmente mucho más activos químicamente y sirven para acelerar las Películas Delgadas de Óxidos ...

reacciones. La disociación del CF4, por ejemplo, se emplea en la estructuración mediante plasma o en el proceso de remoción de la película del sustrato,

$$e^{-} + CF_4 \rightarrow e^{-} + CF_3^{\prime} + F^{\prime}, \qquad 3.5.$$

dos variaciones de este proceso son: la ionización disociativa, en la que una de las especies excitada se ioniza,

$$e^- + CF_4 \rightarrow 2e^- + CF_3^+ + F^*$$
, 3.6

y la disociación molecular, en la que ambas especies se ionizan,

$$e^- + O_2^0 \to O^+ + O^- + e^-$$
. 3.7

 Captura Electrónica. La molécula neutra se vuelve negativa mediante la captura de un electrón:

$$e^- + SF_6 \rightarrow SF_6^-$$
 3.8

3.2. Espurreo.

3.2.1. Interacciones Ion-Superficie.

Un aspecto básico para el análisis de los procesos de espurreo, es entender lo que sucede cuando un ion colisiona con una superficie [56]. Algunas de las principales interacciones se muestran en la figura 3.2. Cada interacción depende del tipo de ion (masa, carga, etc.), de la

Películos Delgadas de Óxidos ...

3. Depósito Físico de Vapores; Procesos de Espurreo.

naturaleza de los átomos de la superficie y, de manera importante, de la energía del ion incidente. Muchas de estas interacciones han sido empleadas en los procesos de depósito y caracterización de películas delgadas (por ejemplo: implantación de iones, espectroscopia de dispersión de iones, espectroscopia de electrones secundarios, etc.):

FIGURA 3.2. Disgrama del efecto del bombardeo de particulas energèticas sobre una superficie y en el crecimiento de una pelicula. Cada fenómeno depende del tipo de ion (mass y carga), de la naturaleza de los átomos superficiales iavolucrados y, de manera importante, de la energia del ion incidente (i) particulas energètica; O átomo de la superficie, O especies absorbidas). [56].

3.2.2. Tasas de Espurreo.

Cuando un ion impacta un blanco puede establecer un régimen de colisiones, ocasionando la expulsión de un cierto número de átomos. En general, el espurreo se relaciona con la transferencia de momento que ocurre debido al choque de particulas energéticas con los átomos de la superficie de un material. La tasa de espurreo (S), definida como el número de átomos o moléculas expulsadas desde la superficie de un blanco por ion incidente, es una

FALLA DE ORIGEN

Pellculas Delgadas de Óxidos ...

medida de la eficiencia de espurreo. Se espera que S sea, al menos, proporcional a los siguientes factores:

1.- Al número de átomos desplazados hacia la superficie por las colisiones primarias: Este factor estará dado por E/2E₁, donde E es la energía promedio del átomo golpeado y E_i la energía requerida para desplazar dicho átomo [ref. 55, pag. 112]. La cantidad E se puede tomar como un promedio entre la energía E₂, la energía cinética transferida al átomo del blanco, y E_i; es decir:

$$\overline{E} = \frac{E_2 + E_1}{2}$$
, con $E_2 = \frac{4M_1M_2}{(M_1 + M_2)^2}E_1$. 3.9

(recordemos la expresión de la función de transferencia dada en la secc. 3.1.2)

2.- Al número de capas atómicas que contienen los átomos desplazados a la superficie y que contribuyen al espurreo. Estadisticamente se sabe que el número de colisiones necesarias para reducir la energia de un átomo de E a E, la energia de amarre superficial, es:

$$N = \frac{\ln \overline{E}/E_s}{\ln 2}, \qquad 3.10$$

Mediante un método estadístico de pasos aleatorios [57], el promedio de capas atómicas que contribuyen al espurreo es 1+N^{1/2}.

3.- Al número de átomos del blanco por unidad de superficie, nA.

4.- A la sección eficaz σ₀ = πa²; donde a está relacionada con el radio del átomo de Bohr, a_b,
 y con los números atómicos Z₁, del ion incidente, y Z₂, del átomo espurreado, de la manera siguiente:

combinado todos los términos anteriores, la tasa de espurreo se puede expresar como:

 $a = \frac{a_{b}}{\sqrt{Z_{1}^{2/3} + Z_{2}^{2/3}}}$

$$S = \frac{\overline{E}}{2E_i} \left\{ 1 + \left(\frac{\ln \overline{E}_{E_i}}{\ln 2} \right)^{V_i} \right\} \sigma_0 n_A \qquad 3.12$$

3.11

35

De acuerdo con la ecuación 3.12, S depende de parámetros del blanco (E₁, E_b, M₂, n_A y Z_1) como de parámetros del ion incidente (E₁, M₁, Z₁); sin embargo, en la práctica se ha observado que S, para algunos metales, depende fuertemente de la masa y de la energía de los iones del gas de espurreo [ver ref. 55, pag. 113].

3.2.3. Espurreo DC.

Por conveniencia, los procesos de espurreo los dividiremos en cuatro categorias: (1) dc, (2) rf, (3) magnetrón y (4) reactivo. Aunque son posibles variantes y combinaciones de cada uno de éstos. Para los objetivos de presente trabajo se dará solo una visión general de la primera categoría.

Espurreo dc.

Todo lo mencionado en este capítulo está estrechamente relacionado con el espurreo de, también conocido como espurreo catódico. La discusión de la configuración del sistema (Fig. 3.1) se realizó en la introducción de este capítulo, el ambiente de la descarga en la sección 3.1 y las tasas de espurreo en la sección anterior; sin embargo, es necesario notar que la velocidad relativa de depósito depende de las condiciones de presión y corriente durante la descarga. Películas Delgadas de Óxidos ...

3. Depósito Físico de Vapores; Procesos de Espurreo.

En procesos de espurreo a presiones de trabajo bajas, los iones son generados lejos del cátodo por lo que tienen poca oportunidad de llegar al blanco; ademas, el camino libre de los electrones entre colisiones es grande. De esta forma, los electrones colectados por el ánodo no son restituidos por impactos de los iones con el cátodo que induzcan una emisión secundaria. La eficiencia de ionización es baja y una descarga auto sostenida no puede ser mantenida por debajo de los 10 mTorr. En la medida que la presión se incrementa, a cierto valor del voltaje, el camino libre medio de los electrones se reduce aumentando la ionización e incrementándose la corriente. Si la presión es demasiado alta, los átomos espurreados son dispersados mayormente con lo que disminuye la eficiencia del depósito. La figura 3.3 resume lo expresado anteriormente y muestra las condiciones óptimas de operación.

En general, la velocidad de depósito depende de la potencia empleada, o el cuadrado de la densidad de corriente, y de la distancia entre electrodos.

3.3. Espurreo a Altas Presiones de Oxígeno.

El método de espurreo a altas presiones de oxigeno (ECAPO) fue desarrollado por el grupo de Dr. Poppe, KLF Julich [ver ref. 48], constituyéndose como una variación del proceso de espurreo de; por lo tanto, la mayoría de los conceptos de la sección 3.2 son aplicables a este método. Los aspectos fundamentales de la técnica son:

- Se respeta la geometria plano paralela, común en los procesos de espurreo de, entre los electrodos; sin embargo, por la relación existente entre la presión de trabajo y la distancia entre electrodos (producto PD), la distancia entre electrodos es del orden de 20 mm (en procesos de espurreo convencionales esta distancia es de aproximadamente 10 cm).
- El gas de trabajo empleado es oxigeno puro, a presiones entre 1-4 Torr; como se mencionó a lo largo de la sección 2.2., la presión de trabajo influye de manera importante en el control del fenómeno de reespurreo (fig. 2.5), en la variación de la tasa relativa de depósito (fig. 2.3.) y, para el caso de un gas como el oxigeno, en la oxidación durante el proceso de depósito de los elementos que componen la película.
- Temperaturas de depósito relativamente altas, del orden de 800°C a 860°C; estas temperaturas, además de modificar el reespurreo (fig. 2.6), permiten la formación y la reacción de los óxidos elementales que dan origen al YBCO (sección 2.2.3)

Adicionalmente, se requiere un flujo de gas de oxígeno entre los electrodos a fin de que sirva como medio de transporte de los átomos y particulas neutras que se han de condensar en la superficie del sustrato. Así mismo, al final del depósito, se añade un proceso de enfriado rápido de la película en un ambiente de O₂ a una presión de 1 atm, con objeto de completar y asegurar la oxidación. Películas Delgadas de Óxidos ...

3. Depósito Físico de Vapores; Procesos de Espurreo.

Como se menciono al final de la sección anterior, la velocidad de depósito depende del cuadrado de la densidad de corriente (que puede relacionarse con la presión del gas de trabajo) y de la separación entre los electrodos. Una cantidad experimental que refleja el valor óptimo de estos parámetros es el llamado producto presión-distancia (PD). Se ha encontrado que en los mejores depósitos, para el proceso ECAPO, el valor del factor PD se encuentra entre 3 y 4 Torr-cm.

Estudios de la caracterización del plasma para este proceso, muestran que si bien las densidades de iones positivos decrecen con el aumento de la presión, los iones negativos de oxígeno que son acelerados hacia el ánodo, produciendo el fenómeno de reespurreo que altera la estequiometría de la película durante su crecimiento, se termalizan antes de alcanzar al sustrato. Estos mismos estudios muestran que, para las temperaturas de depósito empleadas, la densidad de iones negativos es mínima. Cálculos de las densidades máximas de iones positivos y electrones arrojan valores del orden de 1.3x10¹¹cm.⁻³ y 1.3x10¹²cm.⁻³, respectivamente [59].

3.3.1. Equipo de Depósito.

En esta sección se presenta una descripción del equipo de espurreo empleado para depositar las películas delgadas de YBCO, mediante el proceso de ECAPO, utilizadas para la realización de este trabajo. El equipo se encuentra en el Laboratorio de Películas Delgadas del Departamento de Estado Sólido y Criogenia de Instituto de Investigaciones en Materiales de la Universidad Nacional Autónoma de México.

La figura 3.4 es una fotografia de la cámara de depósito (CD) de acero inoxidable, de seis vias adquirida comercialmente. A través de la ventana de pyrex (V), se observa el calentador de sustratos (H) y el cátodo (M); el cátodo es un magnetrón enfriado por agua al cual se le han retirado los imanes y se le han hecho modificaciones con objeto de introducir un flujo de gas de oxigeno directamente en la descarga. Ya que se emplean presiones de oxígeno relativamente altas, el calentador de sustratos deberá ser capaz de trabajar a temperaturas del Películas Delgadas de Óxidos ...

3. Depósito Físico de Vapores; Procesos de Espurreo.

orden de 900°C a esas condiciones de presión; el manejo del calentador de sustratos se realiza mediante un controlador de temperatura programable (ET) y un control de potencia, a través de un termopar tipo S (TC), que es introducido en una ranura del calentador. Como fuente de alimentación del calentador se emplea un transformador variable. Como se observa, la geometria empleada entre el cátodo y el calentador de sustratos es la plano paralela, con una distancia aproximada entre ellos de 2.5 cm. La "sombrilla" (S), hecha de una placa de invar, y la zona de plasma (P), también son visibles en la figura.

Un diagrama general del sistema de depósito se muestra en la 3.5. El sistema incluye, además de la cámara de depósito, el sistema de vacio, el sistema de medición y control de la presión de trabajo, el sistema de enfriamiento del cátodo y las fuentes de alimentación de éste. El sistema de vacio (B) se constituye por: una bomba de difusión con trampa de nitrógeno, una bomba mecánica y un sistema de válvulas. El sistema de medición y control de la presión de trabajo consta de un medidor de presión tipo termovac (TP), un sistema de válvulas (VA) y un controlador de flujo (CF). Las fuentes de alimentación del magnetrón son:, del tipo Advance Energy 1000V/1A (FDC), para el modo de trabajo en de y del tipo Advance Energy RFX 600 Generator (FRF), para el modo de trabajo en rf; ambas fuentes se conectan al cañón mediante la línea de alimentación M1. Para el modo de trabajo en rf se incluye, además de la fuente, un sintonizador automático (ATX) y un dispositivo de ajuste de impedancias (MN). El sistema de enfriamiento del cátodo (SC), así como las líneas de introducción de los gases (GI y GII) y el sistema de válvulas (VA) se diseñaron en el laboratorio.

3. Depósito Físico de Vapores; Procesos de Espurreo.

FIGURA 3.4. Fotografía de la cámura de depósito (ver descripción en el texto). Se observa la cámura de decearga (CD), el calentador de sustratos (H), el termopar (TC), el cátodo (M) y el controlador de temperatura (ET). Además, se indican la zona de plasma (P) y la línea de evacuación de la cámara.

FIGURA 3.5. Diagrama del sistema de depósito por ECAPO; el recuadro muestra una fotografia del sistema de depósito completo.

<u>*</u>

Películas Delgadas de Óxidos ...

3.3.2. Funcionamiento del Equipo de Depósito.

El proceso de fabricación de una película delgada consta de los siguientes pasos generales:

Preparación de los sustratos: el sustrato a utilizar, por ejemplo SrTiO₃ (titanato de estroncio) o MgO (óxido de magnesio), deberá elegirse en razón de asegurar el crecimiento altamente orientado o epitaxial de la película de YBCO; tomando en cuenta la diferencia entre sus parámetros de red y el parámetro a o b del YBCO. Antes de colocar el sustrato sobre el calentador, dentro de la cámara de depósito, se limpia por unos segundos con una solución de bromo en metanol (al 5%), enjuagándose con alcohol metilico; posteriormente a este proceso, se introduce por varios minutos en un baño limpiador de ultrasonido en agua destilada. Este proceso de limpieza, tiene como objetivo el de eliminar todo tipo de impureza o suciedad sobre la superficie del sustrato, así como cualquier resto de película de depósitos anterior (a fin de reutilizar los sustratos). Ya limpio el sustrato, éste se coloca sobre el calentador y se ajusta la sombrilla entre el blanco y el sustrato, de manera que lo cubra totalmente.

Evacuación y purga de la cámara de depósito: Mediante la bomba mecánica, la cámara es evacuada hasta alcanzar una presión del orden de 10^2 Torr, a continuación se introduce oxígeno hasta una presión de aproximadamente 10^2 Torr y se vuelve a evacuar la cámara a una presión de 10^2 Torr. Este proceso tiene como fin el desplazar el gas que contenga la cámara con el oxígeno. Ahora, se introduce un flujo del gas regulado con objeto de estabilizar la presión a un valor de aprox. 0,7 a 0.8 Torr, a la cual se puede encender el plasma.

Calentamiento del sustrato y pre-espurreo: Bajo las condiciones anteriores se encienden el controlador de temperatura y los sistemas auxiliares de funcionamiento del calentador, para iniciar el calentamiento del sustrato. El tiempo requerido para alcanzar las temperaturas de depósito, 850°C-860°C, es de aproximadamente 20 min. Durante este tiempo, y una vez alcanzada la presión de 0.7-0.8 Torrs, se inicia la descarga mediante la aplicación de un voltaje Películas Delgadas de Óxidos ...

3. Depósito Físico de Vapores; Procesos de Espurreo.

de 300Vdc entre electrodos (aprox. 25 watts de potencia); se inicia el proceso de pre-espurreo del blanco (recordemos que la sombrilla se encuentra entre el blanco y el sustrato, por lo que no hay depósito de material sobre este último). Se ha encontrado que el proceso de pre-espurreo, que tiene como fin la limpleza y homogeneización de la superficie del blanco, tiene gran importancia en la características finales de las películas obtenidas; en blanco nuevos, sin espurrear, el proceso de preespurreo puede tomar hasta 20 Hrs. En blancos ya espurreados, 20 min. de preespurreo son suficientes antes del depósito.

Depósito de la película: Cuando el horno alcanza la temperatura de depósito y el blanco ha sido preespurreado, se incrementa gradualmente la presión del gas hasta la presión de trabajo (1.6 a 2.0 Torr) y se incrementa la potencia de espurreo a 30 W.; en estas condiciones se retira la sombrilla iniciándose el proceso de depósito. Con objeto de minimizar el reespurreo, se debe procurar que la parte visible del plasma no toque el sustrato (condición que no es fácil de juzgar, ya que el plasma no está perfectamente confinado); sin embargo, como se ha discutido en secciones anteriores de este trabajo, el control del fenómeno de reespurreo no es sencillo y se requiere la combinación de éste y otros diversos factores (distancia cátodo-ánodo, presión de trabajo, temperatura de depósito, etc) para tener cierto control.

Enfriamiento del sustrato y la película: cuando se ha obtenido el espesor deseado en la película (que puede tomar de 3 a 4 horas), se apaga el plasma y se aumenta la presión de oxigeno hasta 1 atm.; al alcanzar este valor de presión, se apaga el calentador y se deja enfriar en esta atmósfera hasta temperatura ambiente. Esta oxigenación posterior al depósito, como se ha discutido en la sección 2.2, es fundamental en las propiedades superconductoras y estructurales de las películas YBaCuO depositadas.

4. MEDICIÓN DE RESISTIVIDAD EN PELÍCULAS DELGADAS.

La medición de la resistividad (ρ) en función de la temperatura en películas delgadas de materiales superconductores, al igual que en bulto, sirve para determinar sus temperaturas criticas. Mediante el cociente de resistividad residual, calculado de la curva característica de resistividad-temperatura, se tiene una idea cualitativa de la calidad estructural y de la pureza del material en forma de película delgada. Por otra parte, como se verá en la sección 5.1, se ha encontrado que la resistividad de las películas y su variación con respecto a la temperatura, dependen del espesor de éstas; por ello, un análisis de esta dependencia puede ayudar en la formulación de una explicación de este fenómeno y también permitiría el estudio de la estabilidad en el crecimiento de las películas.

4.1. Medición de p Mediante el Método de 4 Terminales.

Un cierto número de técnicas han sido empleadas para medir las propiedades eléctricas de películas delgadas. Algunas de ellas son adaptaciones de los métodos utilizados para los materiales en bulto. Para la mayoria de las películas, metálicas y semiconductoras, es común colocar todos los electrodos en la superficie de las mismas. Tales medidas emplean un arreglo de cuatro terminales, conocido como arreglo o conexión Kelvin; a través de dos de ellas circula una corriente y las otras dos miden el voltaje (por las dos últimas no circula corriente ya que la

4. Medición de Resistividad en Películas Delgadas.

impedancia del voltimetro es muy grande). Diversas configuraciones en la disposición de los contactos se muestran en la figura 4.1.

FIGURA 4.1. Diferentes arreglos de contactos para mediciones de resistencia a bajas temperaturas. a) películas estructuradas, b) películas con geometria regular y c) películas con geometria irregular.

Para el caso de película de longitud *l*, anchura w, espesor *d* (figura 4.2) y resistividad ρ , la resistencia de la película estará expresada por:

 $R = \rho l/wd$.

4.1

4. Medición de Resistividad en Películas Delgadas.

La forma común de reportar los valores de la resistividad es en términos de la resistencia "de hoja". R. ("Sheet Resistance"), definida como R.=p/d ; la ecuación 4.1 toma la forma;

$$R = \frac{R_{i}l}{w}$$
,

que para el caso especial de l = w;

$$R = R_s = \rho/d$$
,

4.3

4.2

donde Rs es independiente de las dimensiones (l y w) de la película y solo del espesor.

FIGURA 4.2. Dimensiones de una película para el cálculo de la resistencia.

Una manera conveniente de medir la resistencia "de hoja" de una película es mediante la colocación de un arreglo de cuatro puntas en la superficie como lo muestra la figura 4.1b. Las puntas externas son conectadas a la fuente de corriente y las internas detectan el voltaje. Esta

4. Medición de Resistívidad en Películas Delgadas.

configuración ha sido estudiada con detalle por Valdés [60], quien mostró mediante un análisis electrostático del potencial y campo eléctrico dentro de los límites de la película que:

$$R_{s} = \frac{\kappa \frac{v}{l}}{l}, \qquad 4.4.$$

donde K es una constante dependiente de la configuración y espaciado de los contactos, 1 la corriente aplicada y V el voltaje medido. Si la película es grande en extensión comparada con el arreglo de las puntas de prueba y el espaciado entre estas es equidistante y mayor comparado con el espesor de la película, entonces $K = \pi/ln2 = 4.53$. De esta forma:

$$\frac{\rho}{d} = R_s = 4.53 \frac{V}{1}$$
 4.5

El equipo de caracterización empleado en este trabajo, para la medición de la resistencia en películas delgadas, posec un arregio entre electrodos idéntico al de la figura 4.1.b. En un porta sustratos, cuatro puntas metàlicas contactan directamente la superficie de la película; ya que el arregio cumple con las condiciones dadas en esta sección para una medida de resistencia a cuatro terminales, la ecuación 4.5 será empleada en la sección 5.1 para el cálculo de los valores de la resistividad.

4.2. Regla de Matthiessen.

La regla de Matthiessen se sugirió para caracterizar la conducción eléctrica de metales en bulto; sin embargo, se ha extendido a otros materiales y a películas delgadas. La regla establece lo siguiente: Suponiendo que, en la manera más simple, varios procesos de dispersión

4. Medición de Resistividad en Películas Delgadas.

4.6

48

de electrones contribuyen de manera independiente y aditiva a la resistividad total, $\rho_{T},$ de un metal, entonces

$$\rho_{\rm T} = \rho_{\rm Th} + \rho_{\rm I} + \rho_{\rm D},$$

donde ρ_m , $\rho_1 y \rho_D$ son las resistividades debidas a las vibraciones de la red por la temperatura, a las impurezas y a los defectos, respectivamente. Las colisiones de los electrones con las vibraciones de la red, fonones, son la fuente de la contribución térmica o fonónica, la cual se incrementa linealmente con la temperatura (figura 4.3). Átomos de impurezas, defectos -como vacancias- y fronteras de grano alteran localmente la periodicidad del potencial eléctrico de la red; debido a la valencia atómica y tamaño de estas singularidades, los electrones son dispersados. Sin embargo, las contribuciones de $\rho_1 y \rho_D$ son independientes de la temperatura si la concentración de impurezas y defectos es baja. En peliculas delgadas, es necesario considerar además la influencia del espesor en el valor y comportamiento de la resistencia.

FIGURA 4.3. La resistencia total de un metal puede verse como la suma de las

resistencias debidas a la temperatura, los defectos de la red y a las impurezas.

4. Medición de Resistividad en Películas Delgadas.

4.7

4.9

Una aplicación de la regla de Matthiessen es considerar el problema de evaluar la pureza y defectos contenidos en una película de un metal "puro". Una medida de esas propiedades es a través del coeficiente de resistividad residual RRR ("*Residual Resistivity Ratio*"), el cual se define como:

$$RRR = \frac{\rho_T(300K)}{\rho_T(4.2K)},$$

y es determinado experimentalmente mediante la medida de la resistividad a las dos temperaturas indicadas. A 300 K $\rho_{Th} >> \rho_I + \rho_D$, para una película metálica relativamente pura. A 4.2 K $\rho_I + \rho_D > \rho_{Th}$. Por lo tanto, una buena aproximación es:

$$RRR \approx \frac{\rho_{\rm T}(300K)}{\rho_{\rm I} + \rho_{\rm D}(4.2K)}$$
4.8

Es claro que mientras la pelicula sea más pura o más libre de defectos, el coeficiente será más alto. La determinación del coeficiente para películas espurreadas, así como para el blanco de espurreo, ha sido un método para evaluar su calidad. Los valores medidos de RRR caen dentro de un amplio intervalo, desde 10 hasta varios miles.

Para el caso de películas de YBCO, el coeficiente se ha definido como:

$$\mathbf{RRR} \approx \frac{\rho_{\mathrm{T}}(300\mathrm{K})}{\rho_{\mathrm{T}}(100\mathrm{K})},$$

a fin de considerar la parte de la resistividad con comportamiento lineal. El consenso general es que las mejores películas en pureza y libres de defectos, deberán poseer un coeficiente muy cercano de 3. Un cálculo sencillo, nos permite ver el porqué de este valor para RRR: suponiendo que el comportamiento de la resistividad respecto a la temperatura para una película de YBCO sea lineal en el intervalo de 100K a 300K (en caso contrario se realiza un

4. Medición de Resistividad en Películas Delgadas.

4.13

50

ajuste lineal a la parte de la curva que cumple con esa condición y se toman los valores de dicho ajuste) y se cumpla que 100K<300K, entonces, la ecuación de la recta que pasa por los dos puntos dados es:

$$\rho_{100K} = \frac{\rho_{300K} - \rho_{100K}}{300K - 100K} 100K + b, \qquad 4.10$$

Realizando las operaciones y despejes necesarios, 4.10 toma la forma

$$\frac{\rho_{300k}}{\rho_{100k}} = 3 - \frac{2b}{\rho_{100k}},$$
4.11

que en el caso ideal, para una película perfecta y libre de impurezas, la extrapolación de la recta deberá cortar el eje de la resistividad en cero; es decir, en b=0. Por lo tanto, 4.11 queda como

	2 2 4 1	- 16 Generalia		- Gya - 19								
1	n								1.1	10 C 10 C 10 C		1 - D - D - D
,	~ 300K	_ 2	1997 11		1.1.1	e 1		22 C 121		1		2
-				8 W C							4.1	. 4 . 1
	a		10 A. A.					 	- 140 -			17 A.
1	Ummi	a a se de la sel a facta de	5.2640		1270° - 1270	(2) Solution						
,	100 K		- 24 AV									
	1 Mart 19 Mart 19	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					20 A.S.					

y en general,

 $RRR = \frac{\rho_{300K}}{\rho_{100K}} \le 3.$

Capítulo 5. RESULTADOS Y DISCUSIÓN.

Para este estudio se realizaron alrededor de 100 depósitos, variando las condiciones de presión desde los 250 mTorr hasta los 2.6 Torr. Las temperaturas de depósito empleadas variaron entre los 750°C y los 860°C. Los blancos utilizados son pastillas de YBCO, 50 mmø, sinterizadas por el método de reacción en estado sólido; para la síntesis de los blancos se utilizaron polvos con purezas cercanas a los 99.99%. Los gases de trabajo empleados fueron: oxígeno, marca Linde, grado extraseco y con 99.9% de pureza y argón, marca Linde, grado alta pureza. Los sustratos utilizados fueron: titanato de estroncio (SrTiO₃), éxido de magnesio (MgO), aluminato de lantano (LaAlO₃) y silicio (Si); todos monocristales con orientación (001). El proceso de depósito fue resumido en la sección 3.3. Las condiciones generales de depósito, empleadas en este trabajo, se resumen en la tabla 5.1.

La caracterización de las propiedades superconductoras de las películas de YBCO obtenidas sobre los diferentes sustratos, se realizó mediante mediciones de la resistencia eléctrica vs temperatura (RvsT). El método empleado para las mediciones de RvsT se describe en el capitulo 4. Medidas adicionales de susceptibilidad magnética ac, permitieron corroborar los valores de las temperaturas críticas para un buen número de películas. La caracterización estructural, de composición y superficial se realizaron mediante las técnicas de Rayos X, Retrodispersión de Rutherford (RBS) y Microscopia Electrónica de Barrido (SEM).

5. Resultados y Discusión.

Blancos (sinterizados 50mm \$)	YBCO Y ₂ O ₃
Gas	O ₂ Grado Seco Ar Alta Pureza
Presión de Trabajo	1.6 a 2.0 Torr 250 a 350 mTorr
Corriente de Espurreo	150 a 200 mA
Voltaje de Espurreo	150 a 200 Vdc 300 Vrf
Temperatura de Depósito	850°C-860°C 750°C-800°C
Tiempo de Depósito	3 a 4 Hrs l a 2 Hrs
Sustratos	STO, MGO, LAO y Si
Parámetro P-D	3.6 Torr-cm (aprox.),2 Torr-cm (aprox)

TABLA 5.1. Condiciones de depósito para películas delgadas de YBa₂Cu₂O_{7.3} e Y₂O₃ depositadas por el proceso ECAPO (dc y rf).

5.1. Análisis de las Propiedades Superconductoras.

El proceso experimental para determinar las condiciones óptimas de depósito arrojó resultados interesantes sobre la variación de las propiedades superconductoras respecto a las condiciones de depósito. Queda claro que la temperatura, la presión y el tiempo de depósito constituyen los principales parámetros de la técnica, además de lo mencionado para el proceso de enfriado.

La temperatura de depósito se correlaciona con la energía necesaria para que los diferentes elementos que forman la película se acomoden en una estructura cristalina adecuada; la presión se relaciona con la necesidad de que exista la cantidad suficiente de moléculas de oxígeno para que se produzca la ionización que permita que la descarga sea auto-sostenida; además se logra tener la presión de oxígeno necesaria en la superficie del sustrato a fin de completar la oxidación de los elementos constituyentes de la película durante el depósito.

5. Resultados y Discusión.

La influencia de la temperatura de depósito y la presión de trabajo, queda de manifiesto en las figuras 5.1 y 5.2. La primera muestra el comportamiento de la Te para películas de YBCO depositadas sobre STO (3 hrs, 1.6 Torr), a temperaturas en el intervalo de 845°C a 860 °C. Se señalan los puntos de inicio de la transición, a la mitad de la misma y cuando la transición es completa; estos puntos se midieron apartir de la gráfica de do/dT vs T (la gráfica presenta un pico característico, cuyo máxino señala la mitad de la transición y el inicio y final del mismo señalan el inicio y el fin de la transición respectivamente). Conforme se incrementa la temperatura de depósito, se observa un aumento de la temperatura crítica y una disminución en la anchura de la transición superconductora; los datos de la fig. 5.1 se tomaron dentro de las limitaciones del equipo, ya que temperaturas mayores implican un serio riesgo de daño al calentador. En la figura 5.2 se muestran las medidas de la transición superconductora para películas delgadas de YBCO depositadas sobre STO a diferentes presiones (3 hrs, 860°C); como puede observarse, se presenta un claro mejoramiento de las características superconductoras de las películas con el incremento de la presión de trabajo.

Los resultados anteriores, variación de las propiedades superconductoras con el aumento o la disminución de la presión de trabajo y la temperatura de depósito, si bien son conocidos en los procesos de espurreo convencionales (capítulo 2 de esta tesis), no han sido completamente estudiados en el espurreo catódico a altas presiones de oxigeno; las figuras 5.1 y 5.2 permiten tener una idea de la relación que existe entre la presión de trabajo y la temperatura de depósito con las características superconductoras para las películas de YBCO depositadas mediante el proceso de ECAPO. Las ideas anteriores, apoyan las consideraciones hechas en trabajos recientes de caracterización del plasma en el proceso ECAPO [ver ref. 51]; estos trabajos afirman que para presiones de trabajo por arriba de 1 Torr y temperaturas de depósito de más 850°C, se obtienen la mayor concentración de iones positivos (mayor eficiencia de ionización) y la menor concentración de iones negativos (reducción del reespurreo), con lo que se pueden alcanzar tasas de depósito del orden de 15 a 20 Å/min.

5. Resultados y Discusión.

FIGURA 5.1. Variación de la T. con la temperatura de denósito; se señalan los puntos de inicio de la transición, a la mitad de la misma y cuando ésta es completa (R=0). Es claro el mejoramiento de las características superconductoras con el incremento de la temperatura de depósito (los 860°C marcan el límite de operación del equipo de depósito).

FIGURA 5.2. Vatiación de la T_e con la presión de trabajo; se señalan los puntos de inicio de la transición, a la mitad de la misma y cuando ésta es completa (R=0).

5. Resultados y Discusión.

55

FIGURA 5.3. Curvas de resistividad vs temperatura para peliculas depositadas a diferentes dempos. Existe un aumento de la resistividad a temperatura ambiente y una disminución en la temperatura actilica.

Los valores de las condiciones de depósito empleadas en este trabajo están, en promedio, por arriba de los valores para la presión de trabajo y la temperatura de depósito mencionados, con lo que se han alncanzado tasas de depósito de orden de los 23±4.5 Å/min.

Otro parámetro que influye de manera importante en las características superconductoras de las películas de YBCO depositadas mediante el ECAPO, además de la presión de trabajo y la temperatura de depósito, es el tiempo de depósito. El tiempo de depósito, a ciertas condiciones más o menos constantes de potencia de descarga, presión de trabajo y temperatura de depósito, determina el espesor de la película, el cual juega un papel fundamental en las características eléctricas de las mismas. Hemos encontrado que las películas presentan un aumento en su resistividad, medida a temperatura ambiente, conforme

5. Resultados y Discusión.

incrementamos su espesor (figura 5.3); a temperaturas del orden de la temperatura del nitrógeno líquido, las películas crecidas con espesores de alrededor de los 7000Å no han alcanzado el final de la transición, por lo que se espera que sus temperaturas críticas se encuentren por debajo de los 50K, y en algunos casos parecen perder la transición superconductora.

FIGURA 5.4. Comportamiento de la resistividad con la variación del espesor, a diferentes temperaturas, para películas deigadas de VBCO. En películas con espesores menores de 500Å el valor de la resistividad se reduce con la disminución de la temperatura; la resitividad de las películas que posen espesores mayores a los 6500Å aumenta con la disminución de la temperatura. Un espesor crítico se presenta alrededor de los 6000Å, apartir del cual las propiedades eléctricas de las películas se modifican sustancialmente (la línea es una guía para el ojo).

Analizando el comportamiento de la resistividad de las películas conforme varia su espesor, se deduce la existencia de un valor crítico para este último (figura 5.4). El valor de este espesor se encuentra entre los 5000Å y los 6000Å; las capas que crecen por arriba de este

5. Resultados y Discusión.

57

espesor crítico lo hacen de tal manera que presentan propiedades eléctricas y, muy probablemente, estructurales bastante diferentes a las capas crecidas por debajo de este espesor. Tal comportamiento puede deberse tanto a cambios en las condiciones en que se realiza el proceso de espurreo, que pueden reflejarse en la modificación de la tasa de depósito que altera el proceso de crecimiento de la película, como a alteraciones propias del mismo proceso de crecimiento, como por ejemplo: pérdida en la orientación preferencial, crecimiento de material amorfo, generación de defectos, etc.

Observando la figura 5.5 se establece que, en el intervalo de tiempos de depósito empleados en este trabajo, la tasa de depósito se mantiene constante; es decir, las condiciones

5. Resultados y Discusión.

del proceso de espurreo no varian en este intervalo por lo que, en principio, se espera que el material que arriba al sustrato para formar la película lo haga de manera homogénea. Dicha consideración, permite suponer que las alteraciones observadas en la resistividad de la películas con el cambio del valor del espesor tienen su origen el proceso de crecimiento de la película. Una posible explicación de este comportamiento, planteada por Vasseden et al [41], se basa en la perdida de la orientación observada en películas de YBCO depósitadas sobre sustratos monocristalinos de STO y MGO con orientación (001); Vasseden ha encontrado que, sus películas, al alcanzar un valor del espesor del orden de los 5500Å pierden la alta orientación en el eje c y aumenta la orientación en el eje a. Sin embargo, es necesario un estudio cuidadoso del cambio en las características estructurales de las películas respecto de la variación del espesor, a fin de establecer obtener más información sobre si el origen del aumento observado en la resistividad es debido a la perdida en la orientación de las capas superiores de la película o, si bien, despues del espesor crítico se crece material sin ninguna orientación y con alta resistividad; por el momento, estos estudios se dejaran para trabajos posteriores.

En películas delgadas de YBCO con espesores por debajo de los 5000Å y depositas, a las condiciones determinadas en este trabajo, sobre sustratos de STO se han obtenidos resistividades a temperatura ambiente del orden de 200 $\mu\Omega$.cm. y una dependencia lineal respecto a la temperatura en el estado normal. Así mismo, las anchuras promedio medidas para las transiciones al estado superconductor, para estas películas, son del orden $\Delta T \sim 1.5$ K; recordemos que este valor está por abajo del máximo requerido para afirmar que una película es de buena calidad (figuras 5.6 y 5.7).

5. Resultados y Discusión.

FIGURA 5.7. Resistividad vs Temperatura para una película depositada sobre STO. Nótese el valor del cociente RRR muy cercano a 3

5. Resultados y Discusión.

Los cocientes de resistencia residual (RRR), definidos como la razón entre la resistividad a 300K entre la resistividad a 100K, en las películas depositadas sobre tres de los sustratos empleados, STO, MGO y LAO, presentan valores cercanos a 3 (figura 5.8); con base en lo expuesto en la sección 4.2 de esta tesis, se puede afirmar que las mejores películas obtenidas en este trabajo presentan bajas concentraciones de impurezas y pocos defectos estructurales.

FIGURA 5.8. Valores del cociente de resistencia residual para un grupo representativo de películas de YBCO depositadas sobre los diversos sustratos empleados en este trabajo. El valor promedio de RRR es de 2.684.

Las peliculas de YBCO depositadas sobre sustratos de MGO y LAO, presentan comportamientos similares en las propiedades superconductoras al presentado por la peliculas de YBCO depositadas sobre STO; temperaturas críticas del orden de 87 K, ΔT de aproximadamente 5 K y los cocientes RRR están dentro del intervalo 2 a 2.5 (estas características permiten compararlas con algunas películas disponibles comercialmente [61]).

5. Resultados y Discusión

Películas Delgadas de Óxidos Cerómicos Sc.

5.2. Análisis Estructural.

Los estudios de las estructuras cristalinas de las películas se realizaron mediante análisis de difracción de rayos X (RX), empleando radiación CuK α (λ = 1.54051 Å). Estudios de la composición y determinación del espesor de las películas se hicieron mediante la técnica de RBS "*Rutherford Back Scattering*" (usando partículas alfa con E=3.776 MeV).

Los espectros de RX de las películas, crecidas a las condiciones óptimas para cada tipo de sustrato, muestran la presencia de la fase superconductora 123, así como un crecimiento altamente orientado de las misma con sus ejes c perpendiculares al plano de la superficie del sustrato (figuras 5.9, 5.10, 5.11, 5.12); la indexación de los picos del patrón de difracción de cada sustrato (orientaciones 00/), así como la indexación para el sistema YBa₂Cu₃O₇ para la misma orientación, se muestran en la tabla 5.2.

2.0irentición a				20mor-
Construction of the second second	Sugar 1 1 1 1 1 1 1 2 1 2 1	Real Property in the second	· · · · · · · · · · · · · · · · · · ·	And States and the second s
001	7.5494	22.752	21.06	6.7364
002	15.1319	46.469	42.8958	13.4964
003	22.7817	72.5618	66.526	20.3038
004	30.5360	104.183	93.993	27.1846
005	38.4366			34.167
006	46.5322			41.2828
007	54.8821			48.5695
008	63.5614			56.0718
009	72.6697			63.8458

TABLA 5.2. Indexación de los picos de las orientaciones (00/) para los diferentes sustratos. 20 en grados y referidos a los espectros de RX.

5. Resultados y Discusión

FIGURA 5.9. Espectro de RX de la película de la figura 5.7, notese la orientación en los picos. Los picos (001) y (002) del sustrato se superponen a los picos (003) y (006) de la película.

5: Resultados y Discusión

FIGURA 5.11. Espectro de RX de una película depositada sobre MGO. También se presenta la orientación (900), y fases de CuO e Y10,

FIGURA 5.12. Espectro de RX de una película depositada sobre LAO. Nótese la presencia de la orientación (007), así como de la fase de ¥103.

5. Resultados y Discusión

Hay que notar que en películas depositadas sobre STO (figuras 5.9 y 5.10), los picos (001) y (002) del sustrato se superponen a los picos de las orientaciones (003) y (006) de la película de YBCO; en el caso del MGO (figura 5.11), el pico (001) de este sustrato se superpone con el pico de la orientación (003) de la película de YBCO. Para el LAO no se presenta superposición de picos (figura 5.12). Así mismo, en estos espectros se observan picos de algunas segundas fases, como el CuO, en películas depositadas sobre sustratos de STO y MGO (figuras 5.10 y 5.11), y el Y₂O₃, en películas depositadas sobre tres de los sustratos empleados (figuras 5.9, 5.10, 5.11 y 5.12), si bien, existe un gran número de reportes previos a este trabajo que permiten afirmar que la presencia de óxido de cobre es común en películas delgadas de YBCO (depositadas tanto mediante espurreo como por otras técnicas), para el caso del Y₂O₃ no se puede afirmar lo mismo. Como lo muestra la tabla 2.1, la aparición del óxido de itrio como segunda fase del YBCO es pósible; sin embargo, la aparición de esta fase no había sido observada en películas delgadas de este superconductor. Otra característica de esta fase, Y₂O₃, es que presenta la misma orientación ristalográfica del sustrato.

Un cálculo aproximado del parámetro de red c (apéndice A) para las peliculas depositadas sobre STO, dan un valor promedio de 11.6313 ±0005 Å; el análisis de este espectro permite asegurar que se ha logrado realizar un crecimiento altamente orientado de la película sobre el sustrato. En el caso de películas depositadas sobre MGO y LAO el valor promedio calculado de los ejes es de 11.6801 ±0006 Å y 11.6473 ±0007 Å, respectivamente. Estos valores para el eje c están en concordancia con los datos de algunos autores que obtienen muestras de YBCO mediante diversos procesos de refinamiento [ver ref. 71]. Además, cálculos del tamaño de los granos que forman las películas (empleando los espectros de rayos x), arrojan tamaños promedio del orden de los 180nm.

Por otra parte, con objeto de elaborar las primeras estructuras de varias capas, se lograron crecer algunas bicapas muy delgadas orientadas de óxido de itrio e YBCO sobre sustratos de STO, que arrojan resultados prometedores (figura 5.13a); sin embargo, en estructuras de Si/ Y₂O₃/YBCO los resultados no son satisfactorios, ya que los espectros de RX

5. Resultados y Discusión

muestran la ausencia de la fase superconductora y un crecimiento desordenado (figura 5.13b); posiblemente, el problema y la solución se encuentren en la capa intermedia de Y_2O_3 por lo que es necesario trabajar más para determinar las condiciones óptimas de depósito y crecimiento de las capas de este óxido, así como de las películas de YBCO sobre estas capas.

Los espectros de RBS de algunas de las películas crecidas, se muestran en las figuras 5.14, 5.15 y 5.16. Los espectros experimentales de las películas de YBCO depositadas sobre sustratos de STO (fig. 5.14), presentan buen ajuste con los espectros teóricos, se observa la ausencia de interdifusión en la superficie de separación entre el sustrato y la pelicula (las anchuras de los picos experimentales se ajustan a la de los teóricos), así como una pequeña inhomogeneidad en la distribución de los elementos en la pelicula (las alturas de los picos teóricos y experimentales no coinciden del todo). En los espectros de las peliculas crecidas sobre sustratos de MGO (fig. 5.15), se observa el fenómeno de interdifusión entre el sustrato y la pelicula (las anchuras de las bases de los picos experimentales, principalmente del Mg, Cu, Y

5. Resultados y Discusión

Ba, no coinciden con las anchuras de los picos teóricos); probablemente este fenómeno se deba al hecho de que, como se menciono en la sección 2.2.2, el YBCO y el MGO forman una solución sólida entre los 800°C y los 900°C, intervalo en el que se encuentra la temperatura de depósito. Así mismo, se presenta una gran inhomogeneidad en la distribución de los elementos que componen la película, fundamentalmente el Cu. Los espectros de las películas de YBCO depositadas sobre sustratos de LAO (fig. 5.16), al igual que las depositadas sobre STO, presentan un ajuste aceptable entre los espectros teórico y experimental; sin embargo, puede verse cierta inhomogeneidad en la distribución de los elementos de la película (principalmente Y y Ba).

Los resultados del número promedio de átomos por cm², obtenidos también del análisis de RBS, se presentan en la tabla 5.3. Los porcentajes atómicos, calculados desde la tabla 5.3, entre los elementos que componen las películas depositadas sobre cada sustrato son (Y:Ba:Cu): para STO 17.51:29.24:53.23, para MGO 16.69:26.26:57.04 y para LAO 20:30:50.

LE SULLANDER		Service Parts at LET 10	han a the street -	Aler State
	Y	Ba	Cu	0
STO	100±20	167±5	304±10	700±200
MGO	96±3	151±5	328±10	600±200
LAO	40±4	_60±12	100±10	280±100

Tabla 5.3. Átomos por cm² para los elementos componentes de YBCO. Las proporciones atómicas aproximadas entre estos (Y:Ba:Cu) para cada sustrato son las siguientes: (STO)17.51:29.24:53.23, (MGO) 16.69:26.26:57.04, (LAO) 20:30:50.

Estos datos representan que, de acuerdo con la tabla 2.1 y dentro del margen de precisión de la técnica, para películas de YBCO depositadas sobre sustratos de titanato de estroncio (STO) aproximadamente al 90% del material es de la fase 123 y el 10% restante es de
5. Resultados y Discusión

otras fases (CuO o Y₂O₃); en el caso de películas de YBCO depositadas sobre sustratos de óxido de magnesio (MGO) la proporción entre la fase 123 y las otras fases es muy próxima al 90%-10%. Para películas de YBCO depositadas sobre sustratos de aluminato de lantano (LAO) el porcentaje entre fases es de aproximadamente 96% para el 123 y 4% para el Y₂O₃.

Cálculos del espesor de las películas (apéndice B), empleando los resultados del análisis de RBS, arrojan valores del orden de 3000Å-4000Å; con tasas de depósito de alrededor de 23±4.5 Å/min.

FIGURA 5.15. Espectro de RBS para una película de YBCO depositada sobre MGO. La línea continua es el espectro calculado para una proporción stómica de 1:2:3:7.

FIGURA 5.16. Espectro de RBS para una película de YBCO depositada sobre LAO. La línea continua es el espectro calculado para una proporción atómica de 1:2:3:7.

68

5. Resultados y Discusión.

5.3. Análisis de Superficie.

Los estudios de las propiedades de superficie son fundamentales para establecer las características morfológicas de las películas crecidas a fin de determinar su aplicabilidad en la fabricación de multicapas, tales como juntas túnel y juntas Josephson; ya que superficies homogéneas que generen interfases abruptas y limpias son prerrequisitos para la elaboración de tales sistemas.

Mediante la técnica de microscopia electrónica de barrido (SEM), se obtuvieron inágenes de la topografia de la superficie de las películas de YBCO depositadas sobre los diferentes sustratos empleados en este trabajo. En fotografias de la superficie de algunas películas de YBCO depositadas sobre sustratos de STO, se pueden observar algunas estructuras en la superficie de 0.1 a 0.5 µm de diámetro (fig. 5.17a y 5.17b). Reportes previos a este trabajo, asocian estas estructuras a precipitados superficiales de óxidos de Cu y Ba [62, 63]. Varias explicaciones se han dado para la aparición de estos precipitados; una de ellas plantea que, los precipitados de CuO, son el resultado del uso de blancos enriquecidos de cobre, mientras que otra señala que la diferente tasa de espurreo de los elementos que forman el blanco tiene como consecuencia un exceso en los elementos con mayor tasa. Esto origina que, durante el depósito y enfriado de la película, se segreguen estos excedentes; sin embargo, del análisis realizado en la sección 2.2, se deduce que el fenómeno de reespurreo puede ser el factor principal para estas variaciones en la estequiometria de la película, que origina cantidades excedentes de ciertos elementos.

El análisis de los espectros de RX, hechos en la sección anterior, muestran que los espectros de las películas depositadas sobre sustratos de STO que presentan picos de CuO e Y₂O₃ (fig. 5.10), corresponden a las películas en cuya imagen de SEM se pueden apreciar

5. Resultados y Discusión.

precipitados en la superficie; mientras que los espectros de las películas que sólo presentan picos de Y_2O_3 (fig. 5.9) corresponden a aquellas películas en cuya imagen de SEM no se pueden apreciar este tipo de estructuras (fig. 5.17c). Por lo anterior, se puede suponer que las segregaciones de CuO son expulsadas a la superficie de las películas; en tanto que, la fase de Y_2O_3 se presenta como parte del volumen del material que forma la película (este hecho, si se acepta que el óxido forma parte de la película y por tanto pudo haber crecido desde el sustrato tomando la orientación de éste, permitiría dar una explicación a la presencia de la alta orientación de este óxido en los espectros de RX). Estudios de microanálisis y de microscopía de alta resolución en las películas de YBCO obtenidas permitirían, primero, obtener más información de la composición de los precipitados superficiales y, segundo, realizar un mapeo de la superficie de la película en busca de los segregados de Y_2O_3 .

Por otra parte, en ciertas películas que aparentemente no presentan precipitados se observa una estructura en la superficie en forma de pequeñisimos poros con diámetros menores a 0.1 µm (figura 5.17c). Algunos autores sugieren que el crecimiento en forma de terrazas, observado en imágenes, de microscopia de tunelaje (STEM) [64], se refleja en forma macroscópica en dicha estructura de poros; otros autores han sugerido que esta textura de la superficie es producto del fenómeno de reespurreo [65], el cual consiste en el bombardeo de la película, durante el proceso de depósito, por electrones y iones negativos provenientes de la descarga gaseosa. Sin embargo, si se acepta que el modo de crecimiento común para películas depositadas bajo las condiciones de este trabajo es una combinación de los llamados modos Volmer-Weber y Stranski-Krastanow (como se discutió en la sección 2.2.2) esta morfología superficial podria asociar al modo de nucleación y crecimiento, que depende de la relación estructural entre el sustrato y la película, que presente la película.

5. Resultados y Discusión.

71

FIGURA 5.17a. Fotografía de una imagen de SEM para una película de YBCO depositada sobre STO. En la superficie aparecen precipitados (estructura: clara indicada entre flechas) de aproz. 0.3 µm de diámetro en promedio.

FIGURA 5.17b. Fotografía de una imagen de SEM, en vista transversal, para una película de YBCO depositada sobre STO. Las estructuras que aparecen en la figura 5.17 se encuentran en la superficie.

FIGURA 5.17c. Fotografía de una imagen de SEM para una película de YBCO depositada sobre STO. La película no presenta precipitados sino una alta porosidad (zona obscura indicada entre flechas).

FIGURA 5.17d. Fotografía de una imagen de SEM para una película de YBCO depositada sobre MGO. En este caso se presentan ambus fenômenos, precipitados (zonas claras) y porosidad (pequeñas zonas obscuras).

FIGURA 5.17c, Detalle de la imagen de SEM para una película de YBCO depositada sobre MGO. A diferencia de las películas depositadas sobre STO la porosidad es menor, aunque los precipitados son un poco mayores (0.5 µm a 1.0 µm).

FIGURA 5.176. Fotografía de una imagen de SEM para una película de YBCO depositada sobre LAO, presentando una aparente ausencia de precipitados en la superficie, así como de porosidad.

1.3µm iev. 81. p. 43 de a

the second s

5. Resultados y Discusión.

5. Resultados y Discusión.

73

Películas crecidas sobre MgO presentan ambos fenómenos: precipitados superficiales del orden de 0.5 a 1.0 µm de diámetro y poros de aproximadamente 1.0 µm de diámetro (figuras 5.17d y 5.17e). En este caso los poros son de dimensiones mayores y más espaciados que los presentados en películas crecidas sobre SrTiO₃. Las películas de YBCO, depositadas sobre LaAlO₃, presentan ausencia de precipitados superficiales y una porosidad baja (figura 5.17f). Este hecho tal vez tenga su origen en la relación estructural que guardan sustrato-película, así como en el comportamiento mecánico entre ambos al calentarse o enfriarse (expansión térmica) que favorece o no la aparición de poros y precipitados. De esta forma se establece que las características morfológicas de las películas, además de las originadas por el propio proceso de depósito, dependen fuertemente de tipo de sustrato empleado. De ahí que es fundamental que la selección del sustrato se base en la relación estructural que guarden con el sistema a depositar.

En resumen, se han obtenido películas con propiedades que permiten su posible aplicación en la fabricación de estructuras y dispositivos cuyos requisitos principales sean las mejores propiedades superconductoras, así como las mejores características superficiales.

Capítulo 6. CONCLUSIONES.

v

Este trabajo ha mostrado que los principales parámetros del proceso de espurreo catódico a altas presiones de oxígeno (ECAPO) son: la presión de depósito, la temperatura del sustrato y el tiempo de depósito; además de que, para valores dados de presión, temperatura y tiempo, la potencia de descarga y la separación entre electrodos son los factores que determinan la tasa de depósito. Los valores encontrados para estos factores, se resumen en la tabla 6.1.

de i bazouzor.z depositadas por el proceso	LOAFO.
Blancos (sinterizados 50mm ø)	YBCO
Gas	O ₂ Grado Seco
Presión de Trabajo	1.6 a 2.0 Torr
Corriente de Espurreo	150 a 200 mA
Voltaje de Espurreo	150 a 200 Vdc
Temperatura de Depósito	850°C-860°C
Tiempo de Depósito	3 a 4 Hrs
Sustratos	STO, MGO, LAO y Si
Parámetro P-D	3.6 Torr-cm (aprox.)
Tasa de depósito	23±4.5 Å/min.

TABLA 6.1. Condiciones y parámetros de depósito para películas delgadas de YBa-Cu-O-y depositadas por el proceso ECAPO.

74

6. Conclusiones.

75

El estudio sobre la influencia de los parámetros de depósito, realizado en esta tesis, arroja las siguientes conclusiones:

La temperatura de depósito y la presión del gas de espurreo, o presión de trabajo, influyen de manera fundamental en el comportamiento de la temperatura critica de las películas de YBCO depositadas, mediante la técnica de ECAPO, sobre sustratos de titanato de estroncio (STO), óxido de magnesio (MGO) y aluminato de lantano (LAO) (fig. 5.1 y 5.2); para variaciones en la temperatura de depósito del algunos grados centígrados (845C a 860C), las T_e se incrementan de aproximadamente 78K a 86K. Un comportamiento similar se presenta con el aumento de la presión de trabajo, de 1.6Torr a 2.6Torr, ya que las T_e observadas se incrementan desde los 86K hasta arriba de los 90K. La influencia de estos factores, presión y temperatura, no habían sido analizados de manera clara para el proceso de espurreo a altas presiones de oxígeno; los resultados mostrados en este trabajo dan información sobre la dependencia de las propiedades superconductoras de las películas, obtenidas mediante dicho proceso, respecto de estos factores.

Otro factor importante en las características superconductoras de las películas de YBCO depositadas mediante el ECAPO, además de la presión de trabajo y la temperatura de depósito, es el tiempo de depósito. El tiempo de depósito, a ciertas condiciones de potencia de descarga, presión de trabajo y temperatura de depósito, determina el espesor de la película, el cual juega un papel fundamental en sus proiedades eléctricas. A medida que el espesor de las películas se incrementa, las resistividades a temperatura ambiente se incrementan de 300 $\mu\Omegacm$ hasta más de 1500 $\mu\Omegacm$, las temperaturas críticas se reducen y, en algunos casos, se pierde la transición.

Analizando el comportamiento de la resistividad de las películas con la variación del espesor (fig. 5.4), se establece la existencia de valor crítico para éste; las capas que crecen por arriba de dicho espesor lo hacen de tal forma que sus propiedades eléctricas son sustancialmente diferentes a las cpas crecidas por debajo de ése valor. Este espesor crítico es del orden de los 6000Å, que está cerca del valor determinado en otros trabajos que observan un

6. Conclusiones.

comportamiento similar [41]. Por ora parte, ya que las tasas de depósito a las condiciones empleadas en este trabajo permanecen constantes, se concluye que las alteraciones observadas en la resistividad de las películas tienen su origen en el proceso de crecimiento de las mismas. Una extensión que se plantea a la presente tesis, se enfocaria al estudio cristalográfico de las películas en diferentes estados del erecimiento; dicho estudio ayudaría, primero, a modelar la evolución estructural de la película a medida que las diferentes capas se van depositando y, segundo, a reafirmar los resultados aquí expuestos.

Por otra parte, las mejores películas obtenidas durante este trabajo presentaron resistividades a temperatura ambiente del orden de 200 μ Ωcm, T_e de aproximadamente 90K, anchuras de la transición menores de 2K y coeficientes RRR cercanos a 3; se puede afirmar que se han obtenido películas con excelentes características generales (electricas, superconductoras y estructurales). Esta afirmación se apoya en los resultados de los análisis de RX, que muestran un alta orientación en los espectros así como la presencia de cantidades muy pequeñas de algunas segregaciones. En dichos espectros se observan picos de algunas segundas fases, como el CuO, en películas depositadas sobre sustratos de STO y MGO (figuras 5.10 y 5.11), y el Y₂O₃, en películas depositadas sobre tres de los sustratos empleados (figuras 5.9, 5.10, 5.11 y 5.12); si bien, existe un gran número de reportes previos a este trabajo que permiten afirmar que la presencia de óxido de cobre es común en películas delgadas de YBCO (depositadas tanto mediante espurreo como por otras técnicas), no sucede lo mismo para para el caso del Y2O3. Como se mostró en la tabla 2.1, es posible la aparición del óxido de itrio como segunda fase del YBCO; sin embargo, la aparición de esta fase no había sido observada en películas delgadas de este superconductor depositadas mediante la técnica de ECAPO. Este es un resultado nuevo para películas de YBCO depositadas por este proceso. Otra característica de esta fase, el Y2O3, es que presenta la misma orientación cristalográfica del sustrato.

De los estudios de RBS realizados en las películas elaboradas se puede concluir que en películas de YBCO depositadas sobre sustratos de STO se observa la ausencia de interdifusión en la superficie de separación entre el sustrato y la película, así como alteraciones en la

76

6. Conclusiones.

distribución de los elementos en la película. En las películas crecidas sobre sustratos de MGO, se observa el fenómeno de interdifusión entre el sustrato y la película; probablemente, este fenómeno se deba al hecho de que el YBCO y el MGO forman una solución sólida entre los 800°C y los 900°C, intervalo en el que se encuentra la temperatura de depósito; así mismo, se presenta una gran inhomogeneidad en la distribución de los elementos que componen la película, fundamentalmente del Cu. Las películas de YBCO depositadas sobre sustratos de LAO, al igual que las depositadas sobre STO, aparentemente no presentan difusión con el sustrato; sin embargo, puede verse cierta inhomogeneidad en la distribución de los elementos de la película (principalmente Y y Ba). Los resultados del porcentaje atómico, obtenidos también del análisis de RBS, existente entre los elementos que componen las películas depositadas sobre cada sustrato son (Y:Ba:Cu): para STO 17.51:29.24:53.23, para MGO 16.69:26.26:57.04 y para LAO 20:30:50.

En fotografias de la superficie de algunas películas de YBCO depositadas sobre sustratos de STO, se pueden observar algunas estructuras en la superficie de 0.1 a 0.5 µm de diámetro (fig. 5.17a); las cuales, son segregaciones de algunos elementos o compuestos excedentes en la película y que, como se discutio en este trabajo, tienen como causa fundamental el proceso de reespurreo.

El análisis de los espectros de RX, muestran que los espectros de las películas depositadas sobre sustratos de STO que presentan picos de CuO e Y_2O_3 (fig. 5.10), corresponden a las películas en cuya imagen de SEM se pueden apreciar precipitados en la superficie; mientras que los espectros de las películas que sólo presentan picos de Y_2O_3 corresponden a aquellas películas en cuya imagen de SEM no se pueden apreciar este tipo de estructuras (fig. 5.17b). Por lo anterior, se puede concluir que las segregaciones de CuO son expulsadas a la superficie de las películas; en tanto que, la fase de Y_2O_3 se presenta como parte del volumen del material que forma la película. Estudios de microanálisis y de microscopia de alta resolución en las películas de YBCO obtenidas permitirian, primero, determinar con certeza

6. Conclusiones.

la composición de los precipitados superficiales y, segundo, el realizar un mapeo de la superficie de la película en busca de los segregados de Y_2O_3 .

Por otra parte, en ciertas películas que aparentemente no presentan precipitados se observa una estructura en la superficie en forma de pequeñísimos poros con diámetros menores a 0.1 µm (figura 5.17c). Algunos autores sugieren que esta textura de la superficie es producto del fenómeno de reespurreo [65]; esta idea apoya la conclusión que sugiere que la alteración en la cantidades de los elementos presenten en las películas se deben al proceso de reespurreo. Sin embargo, si se acepta que el modo de crecimiento común para películas depositadas bajo las condiciones de este trabajo es una combinación de los llamados modos. Volmer-Weber y Stranski-Krastanow, esta morfología superficial estaria asociada al modo de nucleación y crecimiento que presente la película; la que, a su vez, depende de la relación estructural que guarden entre si el sustrato y la película.

Finalmente, podemos decir que este trabajo presenta otras dos posibles extensiones: primera, en el estado actual del equipo de depósito, en el grado de conocimiento y manejo del proceso de ECAPO y, fundamentalmente, con base en los resultados experimentales, se puede intentar el depósito de otros sistemas cerámicos superconductores de interés y realizar los mismos estudios que se presentan en este trabajo; segunda (en al que ya se reportan algunos resultados en esta tesis), elaborar multicapas de materiales cerámicos superconductores de alta Tc y aislantes del tipo superconductor(cerámico) - aislante - superconductor(metal) y superconductor(cerámico) - aislante - superconductor (metal) y

Apéndice A.

a.1

APÉNDICE A.

Cálculo del parámetro de red c, en películas de YBCO.

Sea la condición de Bragg para una difracción, por una red periódica de átomos, de una onda de longitud λ,

$$2 d \sin \theta = \lambda$$
,

donde d es la separación entre los átomos de la red y θ el ángulo con que incide la onda. Considerando que la distancia d se define como

$$d = \frac{c}{\sqrt{h^2 \cdot h^2}}, \qquad a.2$$

y suponiendo una orientación del cristal del tipo (00/), entonces, combinando (a.1) y (a.2) se tiene que;

$$c = \frac{l\lambda}{2 \, \text{sen} \, \theta}$$
 a.3

Ahora bien, para el caso de radiación CuK α con $\lambda = 1.54051$ Å y valores de los ángulos (Tabla A.1) dados por los patrones de difracción de las figuras 5.9, 5.10, 5.11 y 5.12, los valores calculados para el parámetro de red c se listan en la tabla A.2.

Apéndice A.

Orientación		Ångulo 20 ±	.002 (Grados)	
(00/)	YBCO/STO	YBCO/STO	YBCO/MGO	YBCO/LAO
(001)	7.756	7.776	7.586	7.666
(002)	15.366	15.356	15,166	15.246
(003)	22.906	22.786	22,806	22.906
(004)	30.787	30.837	30,547	30.697
(005)	38.686	38.746	38,506	38.626
(006)	46.624	46.634	46.614	46.714
(007)	55.213	55.263	54,993	55.113
(008)	64.601	63.951	64.481	63.781

Tabla A.1. Orientación de los picos de los patrones de difracción mostrados en las figuras 5.9, 5.10, 5.11 y 5.12, así como los ángulos correspondientes al máximo de cada reflexión.

Tabla A.2. Cálculo	del parámetro	de red c, de	e acuerdo con	los datos	de la tabla	A.1 y la
ecuación (a.3).						

Orientación .		Parámetro	de red c (A)	
(00/)	YBCO/STO	YBCO/STO	YBCO/MGO	YBCO/LAO
(001)	11.3888	11.3596	11.6437	11.5223
(002)	11.5228	11.5302	11.6738	11.6129
(003)	11.6373	11.6978	11.6877	11.6373
(004)	11.6069	11.5775	11.6959	11.6401
(005)	11.6274	11.6101	11.6797	11.6448
(006)	11.6782	11.6758	11.6806	11.6570
(007)	11.6353	11.6256	11.6782	11.6548
(008)	11.5316	11.6362	11.5507	11.6639

De esta forma se tiene que, para películas de YBCO depositadas sobre STO, el parámetro de red c promedio es del orden de los 11.6313 ± .0005 Å; para las películas depositadas sobre MGO y LAO el promedio arroja valores de 11.6801 ± .0006 Å y 11.6473 ± .0007 Å, respectivamente.

Apéndice B.

APÉNDICE B.

Determinación del espesor de las películas.

Sea que la densidad de un mol de sustancia se defina como

$$D_m = M_m / V_m, \qquad b.1$$

donde M_m y V_m son la masa y el volumen de un mol de la sustancia. Desde (b.1), el volumen molar se define de la siguiente manera,

$$1/V_{m} = D_{m}/M_{m}$$
.

Mediante un proceso de refinamiento de la estructura del YBCO [66], se ha encontrado que la densidad Dm es del orden de 30.16 gr/cm³, por otra parte M_m es igual a 666.13 gr. De esta forma el volumen molar es igual a:

$$1 V_{m} = 0.04527644754 \text{ cm}^{-3}$$

Ahora bien, definiendo la densidad atómica como

$$D_s = N_A / V_m$$
,

1

b.3

b.4

Apéndice B.

b.6

entonces, sustituyendo valores de NA y Vm (b.3), se tiene que:

$$D_a = 2.72656 \times 10^{22} \text{ atomos cm}^3$$
.

Ya que los anàlisis de RBS proporcionan un promedio del número de átomos por cm² que forman una película (Tabla 5.3), mediante el número N₆ entonces el espesor promedio de una película, d, puede definirse como:

$$d = D_{1} / N_{1}$$
.

De esta forma el valor de d, calculado de acuerdo a los datos de la tabla 5.3 y a las ecuaciones b.5 y b.6, para películas de YBCO depositadas sobre diversos sustratos se muestran en la tabla B.1.

(D.5) y (D.6).		
Suffrato	Ni (10 ¹³ átomos cm ²)	d(Å)
STO	1271 ± 235	4661.55±862
MGO	1175 ± 218	4309.45 ± 799.5
LAO	480 ± 126	1760.46 ± 462

Tabla B.1. Cálculo del espesor d; de acuerdo con los datos de la tabla 5.3 y las ecuaciones (b.5) y (b.6).

APÉNDICE C.

Abreviaturas.

BaO	Óxido de Bario.
CuO	Óxido de Cobre.
ECAPO	Espurreo Catódico a Altas Presiones de Oxigeno.
LAO	Aluminato de Lantano (LaAIO3).
MGO	Óxido de Magnesio (MgO).
N _A	Número de Avogrado.
PD	Parámetro Presión-Distancia.
RBS	Restrodispersión de Rutherford.
	(Rutherford Back Scattering)
R,	Resistencia Superficial.
	(Sheet Resistance)

Apéndice C,

83

RRR	Cociente de Resistividad Residual.
	(Residual Resistivity Ratio)
S	Таза de Езригтео.
SCAT	Superconductores Carámicos de Alto Tomassiura Critico
SCAL	Superconductores ceranicos de Ana Temperatura cinica.
SEM	Microscopía Electrónica de Barrido
	(Scanning Electron Microscopy)
SIS	Junta Superconductor-Aislante-Superconductor.
	(Superconducting-Insulating-Superconducting)
STO	Titanato de Estroncio (SrTiO ₃).
SQUIDs	Dispositivos Superconductores de Interferencia Cuántica.
	(Superconducting Quantum Interference Devices)
YBCO	Itrio-Bario-Cobre (123); YBa ₂ Cu ₃ O _{7-δ}

Apéndice C.

84

Y₂O₃ Óxido de Itrio.

REFERENCIAS.

- 1. Bednorz and K.A. Müller, Z.Phys. B 64 189 (1986)
- Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang and Y.Q. Wang, *Phys. Rev.Lett* 58 405 (1987).
- Wu, J.R. Ashburn, C.T. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q.Wang and C.W. Chu, *Phys. Rev. Lett.* 58 908 (1987)
- Faley, U. Poppe, H. Soltner, U. Dähne, N. Klein, H. Schulz, W. Evers and K.Urban, IEEE Trans. Appl. Superconductivity 3 1 (1993)
- Prieto, M.E. Gómez, L.F. Castro, G. Bolaños and O. Morán, Solid State Comm. 76 5 697 (1990)
- Clarke, in Superconducting Devices, eds S. Ruggiero and D.A. Rodman, Academic Press, New York (1990) chapter 2.
- 7. Gao, W.A.M. Aarmink, G.J. Gerritsma and H. Rogalla, Physica C 171 126 (1990)
- Mizushima, M. Sagoi, T. Miura and J. Yoshida, Jap. J. Appl. Phys. 27 L1489 (1988)
- Poppe, P. Prieto, J. Schubert, H. Soltner, K. Urban and Ch. Buchal, Solid State Comm., 71 7 (1989)
- P.Prieto, M. Chacón, M.E. Gómez, U. Morán and D. Oyola, Solid State Comm. 83 3 (1992)
- Stritzker, J. Fröhlingsdorf, W. Zander, U. Poppe, J. Shubert, K. Krüger and Ch. Buchal, in *Physics and Materials Science of High Temperature Superconductors*, eds R. Kossowsky et al, Kluwer Academic Publishers (1990) p. 369
- Jacob Azoulay, in Physics and Materials Science of High Temperature Superconductors, eds R. Kossowsky et al, Kluwer Academic Publishers (1990) p.363
- Somekh, M.G. Blamire, Z.H. Barber, K. Butler, J.J. James, G.W. Morris, E.J. Tomlinson, A.P. Schwarzenberger, W.M. Stoobs and J.E. Evetts, Nature 326 857 (1987)

Referencias.

- 14. Adachi, K. Setsune and K. Wasa, Phys. Rev. B 35 8824 (1987)
- Camps, J.E. Evetts, B.A. Giowachi, S.B. Newcomb, R.E. Somekh and W.M. Stoobs, Nature 329 229 (1987)
- 16. Lin, Y.C. Chen, J.H. Kung and P.T. Wu, Mat. Res. Soc. Symp. Proc. 99 (1988) p.319
- 17. Li, G. Linker, F. Ratzel, R. Smither and J. Geerk, Appl. Phys. Lett. 52 (13)1098 (1988)
- 18. Setsune, T. Kamada, H. Adachi and K. Wasa, J. Appl. Phys. 64 (3)1318 (1988)
- Proceedings of the NATO Advance Study Inst. on HTSC Physics and Materials Science (1989: Bad Widsheim, Germany), *Physics and Materials Science of High Temperature Superconductors*, Edited by R. Kossowsky, S. Methfessel and D. Wohllebern, NATO ASI Series, Series E, Appl. Science vol. 181 chapter 4.
- 20. Gilbert, R. Messier and S.V. Krishnaswamy, J. Vac. Sci. Technol. 17 389 (1980)
- 21. Girata, Y. Rojas, E. Bacca, M. Chacón, W. Lopera, P.Prieto, J. Heiras. Solid State Comm. 90, (9) (1994) 539
- Springholtz, K. Aichholzer, R. Abt, G. Liesing, O. Leitner and P. Kranebitter, J. Less Comm. Met. 151 377 (1989)
- Tomlison, Z.H. Barber, G.W. Morris, R.E. Somekh and J.E. Evetts. IEEE Trans. Mag. 25 2530 (1989)
- Adachi, K. Hirochi, K. Setsune, M. Kitabatake and K. Wasa, Appl. Phys. Lett. 51 (26) 2263 (1987)
- 25. Li, G. Linker, F. Ratzel, R. Smither and J. Geerk, Appl. Phys. Lett. 52 (13) 1098 (1988)
- Terada, H. Ihara, M. Jo, M. Hirabayashi, Y. Kimura, K. Matsutani, K. Hirata, E. Ohno, R. Sugise and F. Kawashima, Jap. J. Appl. Phys. 27 1639 (1988)
- 27. Somekh and Z.H. Barber, J. Phys. E 21 1029 (1988)
- 28. Epitaxial Growth Part B, edited by J.W. Matthews, Academic Press, New York (1975)
- 29. Grabow and G.H. Gilmer, Surf. Sci. 194 333 (1988)
- Interfaces in High-Tc Superconducting Systems, edited by S.L. Shinde and D.A. Rudman, Springer-Verlag, New York (1994)
- Stowell, in Epitaxial Growth Part B, edited by J.W. Matthews, Academic Press, New York (1975)
- 32. Gurvitch and A.T. Fiory, Mat. Res. Symp. Proc. Vol. 99 297 (1988)

Referencias.

- 33. Dubreuil, G. Garry, Y. Lemaitre, L. Rogier and D. Dieumegard, J. Less. Commn. Met. 151 303 (1989)
- 34. Mogro-Campero and L.G. Turner, Superconductor Sci. Tech. 1990
- Bruyere, J. Pluta, M. Brunel, P.Murel, C. Schwebel and G. Gautherin, J. Less. Comm. Met. 151 429 (1989)
- 36. Tate, P. Berberich, W. Dietsche and H. Knider, J. Less. Comm. Met. 151 311 (1989)
- 37. Hohler, H. Neels and C. Heiden, J. Less. Comm. Met. 151 341 (1989)
- Koren, A. Gupta, E.A. Giess, A. Segmuller and R.B. Labowitz, Appl. Phys. Lett. 54 1054 (1989)
- Mogro-Campero, L.G. Turner, E.L. Hall, M.F. Garbauskas and N. Lewis, Appl. Phys. Lett. 54 (26)1054 (1989)
- Adaptada de P. Mukhopadhyay, ISEC'93 August 1993. Boulder, Colorado. USA. Ext. Abst. p.319
- 41. Vassenden et al, Physica C 175 566 (1991)
- Pernet, Thesis, Universite de Paris Sud., "Self-diffusion of oxygen in bulk ans in grain boundaries in Cu₂₋₈0" (1987)
- Missert, R.H. Hammond, J.E. Mooij, V. Matijasevic, P. Rosenthal, T.H. Geballe, A. Kapitulnik, M.R. Beasley, S.S. Lederman, C. Lu, E. Garwin and R.Barton, IEEE Trans. Mag. 25 (2)2418 (1989)
- 44. Silver, A.B. Berezin, W. Wendman and A.L. de Lozanne, Appl. Phys. Lett. 52 2174 (1988)
- Terashima, K. Iijima, K. Yamamoto, Y. Bando and H. Mazaki, Jap. J. Appl. Phys. 27 L91 (1988)
- 46. Lathrop, S.E. Russek and R.A. Buhram, Appl. Phys. Lett. 51 1554 (1987)
- Chromik, V. Strbik, S. Benada, J. Levarsky, J. Sith, A. Pleanik, A. Gazi, V. Smatko and J. Schiller, IEEE Trans. Mag. 25 2484 (1989)
- 48. Girault, D. Damiani, J. Aubreton and A. Catherinot, Appl. Phys. Lett. 55 182 (1989)
- 49. Fleddermann, J.A.P. 65 (7)2861 (1989)
- 50. Bunshah, J. Vac. Sci. Tech. 11 633 (1974)

- Poppe, J. Schubert, R.R. Arons, W. Evers, CH. Freiberg, W. Reichert, K. Schmidt, W. Sybertz, K. Urban, Solid State Comm., 66 (6) 661 (1988)
- Vossen and J.J. Cuomo, in *Thin Films Processes*, eds J.L. Vossen and W. Kern, Academic Press, New York (1978)
- Westwood, in Microelectronic Materials and Processes, eds. R.A. Levy, Kluwer Academic, Dordrecht (1989)
- 54. Chapman, in Glow Discharge Processes, Wiley, New York (1980)
- Ohring, in *The Materials Science of Thin Films*, Academic Press, New York (1992) p.3-108
- 56. Mattox, J. Vac. Sci. Technol. A7(3), 1105 (1989)
- 57. Glaser and G.E. Subak-Sharpe, in *Integrated Circuit Engineering*, Addison-Wesley, Reading, M.A. (1979)
- Thornton, in *Thin Films Processes*, eds. J.L. Vossen and W. Kern, Academic Press, New York (1978).
- 59. Girata, Y. Rojas, E. Bacca, M. Chacón, W. Lopera, P.Prieto, J. Heiras. Solid State Comm. 90 (9) (1994) 539
- Maissel, in Handbook of Thin Films Technology, eds. C.I. Maissel and R. Glang, Mc Graw-Hill, New York (1970)
- 61. Conductus Commercial Bulletin, Spring'94.
- Gavaler, J. Talvacchio, T.T. Braggins, M.G. Forrester and J. Greggi, J. Appl. Phys. 70 (8), 4383 (1991)
- 63. Kawasahi and M. Nantoh, MRS Bulletin, Sept. 1994, p. 33
- Raistrick and M. Hawley, in Interfaces in High-Tc Superconducting Systems, eds. S.L. Shinde and D.A. Rodman, Springer-Verlag, New York (1994)
- 65. Kester and R. Messier, J. Mater. Res. 8 8 (1993), 1928
- Ch. P. Poole, T. Datta and H.A. Farach, in *Cooper Oxide Superconductors*, Wiley USA (1988). 87-94.