01966

UNIVERSIDAD NACIONAL LE j. AUTONOMA DE MEXICO

FACULTAD DE PSICOLOGIA División de Estudios de Posgrado

Desarrollo y validación psicométrica de una escala de abnegación para adultos. Una aportación a la Etnopsicología Mexicana.

TESIS

Que para Obtener el Grado de: MAESTRA EN PSICOLOGIA SOCIAL

Presenta:

María del Rocio P. Avendaño Sandoval

Director de Tesis: Dr. Rogelio Díaz Guerrero Comité de Tesis: Dra. Isabel Reyes Lagunes Mtra. Patricia Andrade Palos

Sinodales: Dr. Rolando Díaz Loving Mtra. Sofía Rivera

México, D. F

1994

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

	Página
TESTIMONIOS DE GRATITUD	ı
RESUMEN	•
INTRODUCCION	1 - 7.
CAPITULO I MARCO TEORICO	8 - 53.
I.1 Antecedentes	8
I.2 Etnopsicología	25
1.3 Algunos estudios relacionados con la Abnegación	ı 38
I.4 Definición de Abnegación	48
CAPITULO II METODOLOGIA	54 - 67.
II.1 Planteamiento del Problema	54
II.2 Justificación	55
II.3 Objetivo de la investigación	58

II.4 Hipótesis	58
II.5 Tipo de diseño e investigación	58
II.6 Variables	59
It.7 Definición Conceptual	62
II.8 Muestra	62
II.9 Instrumento	63
II.10 Procedimiento	63
II.10.1 Las instrucciones del instrumento	63
II.10.2 Aplicación del instrumento	64
II.11 Análisis estadísticos	69
CAPITULO III RESULTADOS	68 - 90
III.1 Descripción de la muestra	68
III.2 Etapas de la construcción	70
III.3 Consistencia Interna	71

III.4 Validez de constructo

III.5 Diferencias por edad, sexo, estado civil, número de hermanos, ocupación, escolaridad y número de hijos.

76

CAPITULO IV ANALISIS E INTERPRETACION DE LOS RESULTADOS

91 - 104.

CAPITULO V SUMARIO Y CONCLUSIONES

105 - 111.

REFERENCIAS

112 - 123.

APENDICES

A Versión inicial de la Escala

B Versión parcial de la Escala

C Versión final de la Escala

D Análisis de frecuencias

E Correlación de Pearson

F Resultados de la Prueba de Scheffé

G Lista de reactivos que quedaron como control ideológico

INDICE DE TABLAS

- 1 Análisis de frecuencias
- 2 Correlación de Pearson
- 3 Resultados del Análisis Factorial
- 4 Reactivos finales de cada subescala
- 5 Resultados de la prueba de Scheffé respecto a Edad
- 6 Resultados de la prueba, de Scheffé respecto a Escolaridad
- 7 Resultados de la prueba de Scheffé respecto a Ocupación
- 8 Resultados de la prueba de Scheffé respecto al Número de hijos

Dedico esta tesis a mi muy queridos cinco hijos:

Alejandro, Rocío, Emilio, Tatiana y Santiago,

por su amor y permanente apoyo.

Agradezco a mis maestros:

Dr. Rogelio Díaz-Guerrero, querido director de quién recibí sus amplios conocimientos en este campo tan interesante, con gran dedicación, paciencia y generosidad.

Dra. Isabel Reyes Lagunes, por brindarme su saber y su tiempo.

Mtra. Patricia Andrade Palos, que con empeño fue mi tutor académico toda la maestría.

Mtra Lucy Reidl M. por sus inolvidables clases.

Mtros. Romualdo Vitela y Paty Martínez, quienes me enseñaron el nuevo camino de la computación.

Dr. Serafín Mercado Domenech, por su amistad y enriquecedoras enseñanzas.

Dr. Gustavo Fernández Pardo (Q.P.D.), quién a pesar de su ausencia, vive en sus sabios consejos.

A mis sinodales por sus atinados comentarios:

Mtra. Sofía Rivera Aragón y Dr. Rolando Díaz-Loving.

Agradezco a mis increibles amigas por su solidaridad y cariño:

Dra. Carmen Blanco, Lic. Maru Díaz, Mtra. Lidia Ferreira, Dra. Nelly Heredia, Lic. Graziella Zierold y

Muy especialmente a la Dra. Graciela Rodríguez Ortega por su entrañable amistad, a quién espero corresponderle en algo con este logro.

A mis amigos que me enorgullece llamar así:

Elvira Bolaños, Miriam Camacho, Miguel Angel Cañizales, Eric Chargoy, Carmen Conroy, Consuelo Durán, Magda Flores, Dají García Castil, Consuelo Lara, Rosita Mendoza, Lourdes Monroy, Sotero Moreno, Alejandro Muñiz, Rocío Paez, Rebeca Paz Padilla, Benito Ramírez, Rubén Varela y Gabina Villagrán. DESARROLLO Y VALIDACION PSICOMETRICA DE LA ESCALA DE ABNEGACION
PARA ADULTOS, LINA APORTACION A LA ETNOPSICOLOGIA MEXICANA

RESUMEN DE LA TESIS QUE PARA OBTENER EL GRADO DE MAESTRA EN PSICOLOGIA SOCIAL PRESENTA MARIA DEL ROCIO AVENDAÑO SANDOVAL.

El propósito de esta tesis fue elaborar una prueba para medir abnegación en sujetos mexicanos que tuviera los índices suficientes de confiabilidad y validez.

Para estructurar la prueba se pilotearon 86 reactivos (con un reactivo para probar veracidad) en 850 sujetos. Así se obtuvo una escala de 20 reactivos, culturalmente típicos, que prometen medir confiablemente grados de abnegación a través de buen número de variables.

Durante el proceso de la construcción del instrumento, los resultados se sometieron a los siguientes análisis estadísticos:

- Análisis de frecuencias de las respuestas, y medidas de tendencia central y de variabilidad.
- 2.- Alpha de Cronbach para estudiar la consistencia interna de la escala.
- 3.- Análisis factorial.
- 4.- Análisis del efecto de las variables: edad, sexo, estado civil, número de hermanos, lugar que se ocupa entre hermanos, ocupación, escolaridad y número de hilos.
- Análisis de diferencias, entre medias, para medidas múltiples de Scheffé.

En los 850 sujetos se hizo un Análisis Factorial, de componentes principales con rotación ortogonal. Se obtuvieron 20 factores cuyos valores propios, fueron mayores a 1; de los cuales sólo 3 se retuvieron aplicando el criterio de Catell. Los reactivos que obtuvieron un peso factorial mayor a 0.40 fueron considerados adecuados para conformar los factores.

Con el fin de optimizar confiabilidad y validez del instrumento, se obtuvo finalmente la escala formada por 20 reactivos, a la que se denominó Escala de Abnegación para Adultos (E.A.A.). Así mismo se llevó a cabo los análisis de los efectos de las variables; edad, sexo, ocupación, número de hijos, estado civil, escolaridad, número de hermanos y lugar que se ocupa entre los hermanos; encontrándose que la edad, ocupación, estado civil, número de hijos y escolaridad, producen efectos significativos en algunas conductas abnegadas.

Se concluye que la escala de abnegación es una escala original, válida, confiable que constituye una medida estándar para medir la variable abnegación en la población de la Ciudad de México.

INTRODUCCION.

Este estudio responde a la serie de necesidades de conocer y apreciar las características de personalidad que se atribuyen al mexicano, en especial la conducta peculiar conocida como Abnegación.

El hecho de plantearse que existe una personalidad o carácter típicos respecto de un país, puede conducir a meras especulaciones vacías que supondrían un determinismo extremo, sin embargo se efectúa una generalización, que permite cierta distribución estadística. Lo que aquí se plantea es que parte de lo que un individuo aprende culturalmente, se convierte en algo propio. Así por ejemplo, la imitación social de un modelo, es un motivo poderoso para aprender directamente; suele llamarse "aprendizaje sin ensayos". (Cohen 1973).

Los psicólogos transculturales hablan de socialización, y de "enculturación" (Segall, Dasen. Berry, Poortinga, 1990), afirman que mucho de lo que se aprende en una cultura se hace en forma indirecta, es decir, sin el aprendizaje deliberado. Así se llega a aprender ideas particulares, conceptos y valores de manera tan simple como aprender de

las diferencias, por ejemplo entre que es música y que es ruido. Díaz-Guerrero (1981), propone una dialéctica cultura-contracultura, donde el individuo "se convierte en persona a medida que bota y rebota de su ecosistema cultural" (p.77), por lo que "la personalidad resulta de la perenne dialéctica entre la información biopsíquica que trae consigo el individuo y la información que recibe de su ecosistema sociocultural" (Díaz-Guerrero, 1992 pág.94).

¿Y porqué es importante la abnegación?

Díaz Guerrero (1992), destaca que un factor central de las Premisas Histórico-Socio-Culturales en México, es el que demanda la obediencia afiliativa, y señala la hipótesis de que para llegar a ser obediente se necesita, y enotonces los mexicanos tendrían que ser abnegados. En 1990 Avendaño y Díaz-Guerrero reportan la validación factorial de una escala que avala la existencia del rasgo de abnegación, y para rectificar su existencia se llevó a cabo un estudio experimental entre estudiantes de preparatoria, con un rango de edad entre 15 y 19 años. (Avendaño y Díaz-Guerrero, 1992). La definición operacional de este estudio de

laboratorio fue, que abnegación sería ceder un regalo, ganado por esfuerzo personal, a su compañero o compañera de la tarea experimental. Finalmente el 85% de los hombres cedió el regalo tanto a hombres como mujeres. En el caso de las mujeres sólo el 30% cedió el regalo y el 70% quedaron indecisas; conducta que sugiere hipótesis para ser investigadas posteriormente, con el objeto de observar que facetas de la abnegación persisten, o si hay más variables, y como se comportarían estas. Estos datos apoyan la presencia de este rasgo o dimensiones parecidas como parte integrante de la conducta del mexicano (Díaz Guerrero 1972, 1977, 1979, 1984, 1989; La Rosa y Díaz Loving 1988; Flores Galaz 1990; Avendaño y Díaz-Guerrero 1990).

Este trabajo se apoya además en diversos estudios realizados hasta la fecha (Holtzman, Díaz-Guerrero, Swartz, Lara Tapia, Laosa, Morales, Reyes Lagunes y Witzke. 1975; Reyes Lagunes, I. 1982; Spielberger y Díaz-Guerrero, 1975; Díaz-Guerrero, Reyes Lagunes, Witzke, Holtzman, 1976; Díaz-Guerrero 1972a, 1972b, 1975, 1982, 1986, 1987; Díaz-Guerrero e Iscoe 1984; Rivera Aragón y Díaz Loving 1990; La Rosa y Díaz-Loving 1991; Flores Galaz 1992; Díaz-Guerrero y Díaz-Loving 1992;

Valdés y Reyes Lagunes 1992; Avendaño y Díaz Guerrero 1992; etc.) sobre el mexicano, especialmente aquellos que han ofrecido las bases conceptuales y metodológicas para explorar más a fondo y continuar esta línea de investigación. Varios de estos estudios han revelado que dimensiones semejantes a la "abnegación" han sido un factor importante. Por ello es necesario continuar la investigación en esta área y en este caso desarrollar un instrumento adecuado que pueda ser de ayuda, para aclarar aún más las características de esta dimensión. Así surgen las siguientes preguntas:

- ¿Es posible desarrollar un instrumento capaz de medir confiable y válidamente la abnegación en los mexicanos?
- -¿Existen diferencias significativas entre hombres y mujeres en el grado de esta abnegación?
- -¿Existen diferencias significativas por edad, estado civil, número de hermanos, lugar que se ocupa entre hermanos, ocupación, escolaridad y número de hijos?

Para contestar estas interrogantes, se llevó a cabo esta investigación en varias fases.

El instrumento piloto, que constó de 85 reactivos (Ver apéndice A) se aplicó a una muestra de 850 sujetos (50% hombres y 50% mujeres, en cuatro grupos de edad). Se realizó un análisis de frecuencias con el fin de seleccionar aquellos reactivos que mejor distribución presentaran. Se obtuvieron 67 reactivos (Ver apéndice B). Se aplicó una Correlación de Pearson, para medir la fuerza de relación entre variables. (Tabla 2).

Se aplicó un Análisis Factorial con el Método Ortogonal de rotación que supone independencia entre los factores terminales; maximiza la varianza que detecta de una forma u otra; y Varimax porque produce soluciones factoriales que maximizan la cantidad de varianza explicada. Su objetivo es la reducción de datos. Los reactivos que obtuvieron un peso factorial mayor a 0.40 fueron considerados para conformar los factores decisivos.

El Análisis Factorial permite (Thurstone, 1950 p.19) "emplear los

tests como medios de experimentación científica y aprovechar sus resultados en provecho de la psicología sistemática".

Analizando los factores psicométricamente para así optimizar la confiabilidad y validez del instrumento, se ha obtenido finalmente la escala formada por 20 reactivos (Ver apéndice C), a la que se ha denominado: Escala de Abnegación para Adultos (E.A.A.).

Respecto a la variable "sexo", no hubo diferencias significativas en los diferentes grados de abnegación; lo que no ocurrió con la "edad", donde considerándose los factores obtenidos de la escala si hubo diferencias significativas. Respecto al "estado civil", "número de hijos", "escolaridad", y "ocupación", mostraron tener relación con conductas abnegadas. Las variables: "número de hermanos", y "lugar que se ocupa entre los hermanos" no resultaron relacionadas con la conducta abnegada.

Finalmente se desea que con este trabajo se pueda aportar al

campo de la Etnopsicología Mexicana y a la Psicometría, un instrumento original, confiable y factorialmente válido para la población mexicana.

CAPITULO I. MARCO TEORICO.

I.1 ANTECEDENTES.

A la conducta humana, se le debe percibir donde esta ocurre, dentro .

de un contexto sociocultural, para así poder entenderla, ya que es fundamentalmente social; debido en primer lugar, al hecho de que un ser humano no sobrevive si al nacer, alguien no cuida de él; por lo tanto, siempre tendrá la necesidad de interrelacionarse con otros seres humanos, así su conducta y los efectos de su conducta siempre estarán basados en un contexto donde se involucra a los estímulos sociales.

Se considera que existen muchas especies de animales sociales, pero la característica principal de los seres humanos, es que son entes culturales, además de sociales. Herskovits (1948), ya decía que: " el hombre hacía parte de su medio ambiente". (p. 56). Esto sugiere pensar que parte de la conducta de un ser humano estaría influenciada por ciertos productos derivados de la conducta de otros sres humanos, tales como aquellos objetos útiles que lo rodean: por ejemplo el teléfono,

hospitales, templos, escuelas, inclusive ideas o instituciones, etc. Gran parte de lo que rodea al hombre, es producto de su cultura. Entre las definiciones más relevantes de cultura se tienen a los siguientes autores: Taylor (1874), fué el primero que empleó la palabra cultura, definiéndola como "un todo complejo que incluye el conocimiento, las creencias, arte, leyes, conducta, costumbres, hábitos y aptitudes adquiridas por el hombre como miembro de la sociedad" (p. 1). Linton (1945), define a una cultura como "la configuración del comportamiento aprendido cuyos resultados se comparten y se trasmiten por los miembros de una sociedad en particular" (p. 32). Barnouw (1963), define una cultura como "el sistema de vida de un grupo de personas, la configuración de todas las normas más o menos estereotipadas de comportamiento aprendido que son trasmitidas de una generación a la siguiente, por medio del lenguaje y la imitación" (p. 18). Para este autor la cultura abarca las religiónes y el folklore, con el fin de orientar y dar seguridad al individuo; pero también ocasionarían resultados opuestos como las influencias amenazadoras y peligrosas, como la creencia en los demonios, etc., es decir, el individuo recibe ideas estereotipadas para hacer frente a su mundo, sin hacerlo de manera conciente. Skinner (1969), expresaba que "las expresiones

emotivas pueden ser imitadas por conducta operante como en el teatro. y son frecuentemente modificadas por el medio ambiente social para adaptarse a las normas culturales. En cierta medida una cultura determinada tiene su propia manera de reir, de manifestar su dolor, etc.". (p. 166). Brown (1983), asegura que las culturas deben ser estudiadas como un conjunto, porque no se pueden observar creencias y costumbres sin el contexto dentro del cual existen. Para esta autora, la cultura se refiere a "todas las formas aceptadas y modeladas de conducta de un pueblo determinado. Es la suma total y la organización o arreglo de todas las maneras de pensar, de sentir y de obrar del grupo. Incluye asimismo, las manifestaciones físicas del mismo, tal como se manifiestan en las cosas que hacen sus miembros: los vestidos, el alberque, las herramientas, las armas, los implementos, los utensilios, manera de dormir v bafiarnos, vestirnos, comer, e ir a nuestro trabajo. Cada pueblo posee una cultura y ningún individuo puede vivir sin ella. Existe un grado de orden y sistema que da a la gente que participa en él un estilo de vida determinado que es peculiarmente suyo". (p.4 y 5). Reidl (1985), afirma que la cultura influye en los procesos cognitivos del individuo, en lo que el ser humano busca, en la forma que evalúa y por qué lo hace así, por lo que se puede decir que la cultura designa, crea y especifica las condiciones que predisponen al individuo a conducirse.

Klineberg (1965), distingue entre lo social y lo cultural y establece la diferencia diciendo: "la sociedad se refiere a grupos de personas, y la cultura a modos de conducta" (p. 313).

Se debe hacer notar que la conducta social está influenciada culturalmente. Algunos estímulos sociales, provocan expectativas de conducta como es el caso de los "roles" o papeles que se juegan en la vida dentro de las sociedades; si se es estudiante, se espera que estudie, si se es padre o hijo, tendrá las obligaciones y responsabilidades propias de cada uno de sus papeles.

El ser humano modifica su cultura y la cultura lo modifica también a él; adquiriendo hábitos a través de su vida, los cuales modificarán su conducta, como respuesta a las influencias del medio ambiente. La conducta humana puede ser entendida también, como el producto del aprendizaje, particularmente del aprendizaje que resulta de las experiencias con otros seres humanos. Allport (1937), afirmaba que si se quería estudiar la psicología del individuo, debería estudiarse directamente al individuo en su medio ambiente, incluyendo a las personas que lo rodearían.

La forma en que la Psicología Social estudia el comportamiento del individuo es dentro de su contexto, sus relaciones interpersonales, sus influencias en el desarrollo y en el grupo, Perlman y Cozby (1985), mencionan que existen cuatro objetivos principales en la Psicología Social, que se deben de tomar en cuenta cuando se tratan de investigaciones de conducta que son: socialización, actitudes, atributos y procesos de atribución y percepción social. Estos autores consideran que la "Socialización", es un proceso por el cual la gente desarrolla los atributos de la personalidad, así como las normas y valores de su sociedad. Este proceso se realizaría a lo largo de la vida de un individuo y no como comúnmente se piensa que ocurre sólo durante su niñez. A las "actitudes", las consideran reacciones evaluativas de la conducta de los

sujetos; por ejemplo la actitud al cigarro, un individuo podría decir:-"No me gusta fumar" o en torno a un artista podría afirmar:- "Me gusta como trabaja" o de un profesor, comentaría:- "Me gusta su clase" etc. Asimismo la Psicología Social se interesa por medir las actitudes, estudiar como se desarrollan y cambian. Los "procesos de atribución", los fenómenos interpersonales porque implican consideran como percepciones y explicaciones de las conductas ajenas. Su interés principal son las relaciones interpersonales que abarcan: la comunicación, la atracción interpersonal, la sexualidad, los estilos de relación por ejemplo; abnegación, asertividad, autoafirmación, etc. v como influyen estos procesos sociales en él.

Una parte importante de la Psicología Social, serían los Procesos Interpersonales, así como las grandes influencias que sobre la conducta tienen. En este campo los estudiosos de los grupos se enfocarían a las reglas que privan, a los estados de jerarquía, a los modelos de comunicación, a los organismos sociales, como: las iglesias o partidos políticos, etc.

Tapp, Gunnrar y Keating (1985), explican que las teorías acerca de la socialización varían en cuanto al concepto de la naturaleza humana, y consideran que un individuo tiene tres formas de socializarse: antisocial, neutral o prosocial; de acuerdo al papel que desempeñan resulta la conducta de los seres humanos, por ejemplo: una voz privilegiada, cambios hormonales, o los cambios debidos a su propia biología como la edad.

En resumen, desde el nacimiento todos los seres humanos, aprenden a interactuar con las personas que los rodean, su supervivencia depende de la habilidad para vivir juntos, por lo que se puede decir que la socialización está determinada por la cultura y su propia historia.

Díaz-Guerrero (1972), representa al antecedente mas connotado de la investigación sistemática socio-psicológica en México y señala al hombre como una unidad histórico-bio-psico-social-cultural, integrando un enfoque interdisciplinario funcional que esclarece muchas dudas sobre los factores fundamentales que intervienen en el desarrollo de los seres humanos. Como otros primates, el ser humano está sujeto a la

socialización. la cual ocurre involucrando la educación formal. Child (1954), define a la socialización como el "proceso completo por el cual el individuo nace con potencialidades conductuales amplias y enormes propicias para desarrollar la conducta posterior, pero siempre estará confinada, dentro un pequeño rango, en el cual es costumbre aceptar, de acuerdo a los estándares del grupo". (p.653). Esta definición recuerda que todos los seres humanos serían capaces de tener un gran repertorio de conductas, pero que éstas estarían ancauzadas por las pautas culturales.

A partir del nacimiento, empieza la vida en un contexto social en particular; dentro del cual se aprende a responder de cierta manera y no de otra. Un ejemplo de esto es la conducta lingüística. La socialización reduce efectivamente el rango de respuestas que cada persona habitualmente tiene para muchos otros campos de la conducta. Las condiciones bajo las cuales expresamos las emociones y las formas en que rosotros las suprimimos, están determinadas también por la socialización. Por ejemplo: las reacciones de un individuo hacia las figuras de autoridad y las reacciones de las autoridades hacia éste, reflejan las

costumbres de las diferencias conductuales que, por años, se le atribuyeron al "temperamento", tales como: lo frío del británico, lo flojo del latinoamericano; son atribuidos al reforzamiento diferente de ciertas respuestas y a la extinción efectiva de otras. Mientras el ser humano sea capaz de escoger, dentro de los límites tolerantes, a aquellas personas con las cuales afirme su relación ya existente, la probabilidad de relacionarse de cierta manera, se verá afectada por dichas personas; es decir, cualquier persona que posea poder relativo hacia un individuo podrá socializarlo.

Dentro de los agentes que socializan más frecuentemente se incluyen a padres, maestros y personas mayores conocidas y respetadas en su propia sociedad. Uno de los resultados de las interacciones personales es la selección de las conductas socialmente aprobadas. La conducta no aceptada es menos obvia, pero es igualmente importante ya que sirve para dismninuir la probabilidad de ocurrencia en el futuro de las respuestas socialmente desaprobadas.

El proceso de socialización, a menudo resulta conflictivo entre los

agentes socializantes y el individuo que se socializa, como ocurre frequentemente entre adolescentes y maestros. No solamente algunas respuestas son castigadas, sino que además suelen ser inevitables, por ejemplo un maestro aversivo. En otras ocasiones serían los agentes de socialización los que podrían extinguir ciertas oportunidades para funcionar de cierta manera, en el tiempo y lugar que se consideren apropiados, por ejemplo la conducta de comer, que se come, como se come, con quienes se come, a que hora se come. Gran parte de los agentes que socializan involucran esfuerzos para tener el control de la conducta de un individuo, con base en premios y castigos, y poder producir conductas que sean aceptadas dentro del propio contexto. Los estímulos sociales, conducen de manera importante, a la conducta imitativa. La correspondencia entre la conducta del que imita y el imitado son relativamente independientes, pero se dan fácilmente, como en el proceso de la empatía. (Skinner 1969).

Menos directo, pero no menos efectivo que la socialización es el proceso llamado: "enculturación". Si la socialización no tuviera bastante impacto en la conducta del individuo existe este proceso adicional, que

permite aprender. Este proceso de aprendizaje no es a través de la enseñanza directa y deliberada, donde se aprenderían ideas particulares, conceptos y valores, sino por el contrario se aprende de una manera oportuna con las respuestas en aquellos sitios en los que un individuo aprende sin darse cuenta que está adoptando una norma; por ejemplo: se aprende a distinguir, entre lo que es la música y lo que es el ruido; entre lo que es un hombre guapo y un hombre feo; entre la persona llamada "educada" y la que no lo es, etc.

Dentro de una sociedad, un alto porcentaje de individuos podrían estar de acuerdo o no, en aceptar a un determinado artista o podrían aceptar o no los motivos por los cuales se pelearían entre ellos, etc., estas concepciones o valores, son ampliamente transmitidos de manera directa o indirecta, y se aprenden muy bien, porque dichos valores fueron seriamente cuestionados durante bastante tiempo, por otras generaciones. A esta clase de aprendizaje se le llama enculturación. Herskovits (1948), empleó este término por primera vez, refiriéndose a todo el aprendizaje capaz de ocurrir durante la vida humana. Mucho de lo que aprende cada persona, acerca de las diferentes maneras de comportarse en su sociedad,

son conductas generalmente aprendidas sin conflictos interpersonales de una manera fácil, por ejemplo, en el caso de que un niño se golpee con su hermano mayor, también se daría la socialización, pero la conducta de golpear podría referirse al aprendizaje de la defensa que sería en ese caso "enculturación", que forma parte del contenido cultural de su sociedad.

Los teóricos del aprendizaje social (Whittaker, 1979), dicen que la gran parte de las conductas son aprendidas; pero la Teoría Etológica (Tapp y col. 1985), considera, que estamos predispuestos biológicamente a aprender ciertos patrones de conducta debido a su valor de adaptación. Al igual que los animales, el ser humano tiene miles de años de vida evolutiva. Los etólogos a partir de los "etogramas" o "descripciones de conducta en su ambiente natural", identifican homologías en los patrones de conducta, en su motivación y en los procesos de desarrollo entre miembros de una misma especie. Una vez identificado el "etograma", se intenta comprender su función; el interés principal de esta corriente sería determinar la conducta adaptativa, aunque algunos difieran en cuanto al grado de explicación de la conducta en términos de evolución.

La socialización es un proceso de interacción entre el que socializa y el que es socializado. Ambos, reciben influencias uno del otro, ya que ambas conductas se alteran.

Durante la infancia, la familia es el agente principal de socialización, a través del amor y del afecto. Es de interés mencionar que existen estudios (Perlman y Cozby, 1985) donde, resulta que la crianza con desamor produce conductas antisociales.

Para Díaz-Guerrero (1979,81,92); "el individuo se convierte en persona a medida que bota y rebota de su ecosistema cultural", así "la personalidad resulta de la perenne dialéctica entre la información biopsíquica que trae consigo el individuo y la información que provee el ecosistema sociocultural". "Desde el punto de vista de la dialéctiva cultura-contracultura, además de los procesos del aprendizaje, en la formación de los rasgos de personalidad intervienen otros mecanismos: dinámicos, simbólicos, lógicos, paralógicos y lingüísticos". (p.77). Anticipándose (Díaz-Guerrero, 1967), a otros autores da la hipótesis en la que ciertos mecanismos podrían ser responsables del proceso llamado

"enculturación": "Respecto a su génesis (de las premisas históricosocioculturales), creemos que son aprendidas como tales como
afirmaciones de las figuras autorizadas y significativas en su contexto
sociocultural. Estas figuras son predominantemente los padres, pero las
PHSCs son generalmente reforzadas por casi todos los adultos en el grupo
sociocultural, por los hermanos y hermanas mayores, y a menudo por las
instituciones: sociales, educacionales, religiosas, gubernamentales, etc.
Ya se dijo antes que también son "engendradas de las atmósferas de
sentido" forjadas por PHSCs previamente aprendidas, o son adquiridas a
través de "evaluaciones automáticas" de otras PHSCs". (Díaz-Guerrero,
1967, p.81)

Gran parte de lo que aprende una persona se debe a la observación que ha tenido. En los primeros años, son los padres los modelos principales que observan los niños y aprenden así a comportarse como ellos; sí los niños observan, como sus padres ayudan a los demás, o que la madre se abnega ante una necesidad, es muy probable que los niños se conduzcan de la misma manera. Este modelo no se limita a las relaciones positivas. Existen estudios donde aún cuando el modelo sea

negativo es imitado; por ejemplo, un padre distante, favorece el que el modelo de distanciamiento sea aprendido. El ser humano aprende no sólo de sus padres, sino también de modelos ajenos a la familia, como sería el caso de aquellas conductas que se ven a través de la televisión. Otra forma de aprender sería cuando una persona piensa en las recompensas. estas siempre son motivo para actuar y existe gran probabilidad de que una conducta recompensada sea repetida. Existen recompensas "intangibles", como serían los elogios, la estimación de quienes rodean a las personas, o la promesa del cielo, etc.. Este tipo de conductas mencionadas aquí en forma aislada, han llevado a crear un sistema de reglas, sobretodo en la búsqueda de los intereses individuales. lo cual puede originar códigos de comportamiento equitativos o de igualdad, y que motivan conductas posteriores. Un ejemplo de un código aprendido en una cultura como esta, puede ser aquella frase que dice: "se lo tiene merecido", que se debe a una percepción donde existe una distribución y en la que un individuo, en un momento dado, la considera justa. Así como los niños desarrollan progresivamente la percepción de lo justo. también la percepción de aquellas conductas donde se debe una persona abnegar, se desarrollan progresivamente. La abnegación en las primeras

etapas infantiles no es común.

No sólo las recompensas materiales y sociales producen ciertas conductas de ayuda hacia los demás, la conducta en sí puede ser recompensante, es decir; el reforzador positivo, va implícito en la conducta misma. Un ejemplo cuando una persona ayuda a un viajero a encontrar su camino, La satisfacción de la persona que ayuda es el reforzador positivo.

Algunos autores (Cialdini, Schaller, Houlihan, Arps, 1987; Batson, 1983; Duncan, Ackerman, Buckley, y Birch, 1983), han considerado que se ayuda a un semejante cuando el individuo que ayuda se ha sentido mal, y recibe una recompensa "secundaria" al ayudar a otra persona, porque de esta manera ha llegado a sentirse bien. Y comentan que esto puede ocurrir bajo condiciones de empatía; cuando las personas al ver sufrir a otras, son motivadas para ayudar.

Díaz-Loving (1978), encontró que se ayuda dependiendo de los estados de ánimo que se tengan, si una persona está en estado de ánimo

positivo, responde con deseos de ayudar; y se la persona está con ánimo negativo sólo responderá por obligación.

Shalker (1978), encontró que cuando las personas de su estudio estaban de buen humor, se inclinaban a ayudar más, que cuando las mismas personas se encontraban en situaciones donde estaban de mal humor.

Al parecer, la mayoría de las personas actúan de acuerdo a las normas vigentes de su grupo, dentro de las cuales, existe un sinnúmero de normas que indican cuando ayudar o ser equitativo, tener reciprocidad; o simplemente comer, aún cuando no se tenga hambre; o beber, aunque no se tenga sed; o, como dice Cohen (1973), el ser humano es el único ser en la tierra, que hace el amor, en todas las estaciones.

Las normas sociales pueden restringir la satisfacción de las necesidades primarias, aún cuando en ocasiones, éstas puedan resultar antagónicas para la supervivencia del ser humano. Díaz-Guerrero (1992), vislumbra con precisión cómo el concepto de personalidad, se enfoca dentro de un marco transcultural y etnopsicológico; ejemplificando con sus investigaciones, para que otros estudiosos de la conducta descubran las diferentes e importantes dimensiones de cada cultura.

I.2. ETNOPSICOLOGIA

Este inciso tiene la intención de proporcionar un marco de referencia en el que la Etnopsicología, pueda ser entendida para así determinar si existe alguna trama, o relación unificadora con la conducta de abnegación.

Haciendo un poco de historia se puede decir que se considera a Chávez un pionero de la psicología en México; sus trabajos parten de una preocupación central: descubrir el carácter verdadero del Mexicano. Conocedor de la difícil e importante tarea, comenta en 1901: -"Sabernos todos que somos distintos psíquicamente de un francés o de un angloamericano, de un chino o de un alemán; pero ignoramos en que consiste

la diferencia; por lo mismo conservamos en parte la ilusión de que instituciones buenas en otros países serán buenas también en el nuestro"-(p.60). Sus estudios los focalizaba en los rasgos distintivos de la sensibilidad como elemento constitutivo del mismo carácter, haciendo a un lado el pensamiento y la voluntad como componentes que determinan en su conjunto la personalidad del mexicano.

Chávez clasificó en los siguientes tipos al mexicano: Indígenas; Mestizos vulgares; Mestizos superiores y Criollos; y Europeos. Y concluye diciendo que el europeo y criollo tienen una sensibilidad super abundantemente fácil; en el Mestizo superior, relativamente moderada; en el Mestizo vulgar, variable pero a menudo rápida; y en el Indio casi imposible. Para él, la sensibilidad en el Indio era visceral y menos cerebralizada; en el Mestizo vulgar, su sensibilidad era cerebral, pero abstracta y deductiva; y en el Mestizo superior y en el Criollo su sensibilidad era totalmente intelectual. Bajo este esquema de razas, tenía la idea de crear un Instituto de Psicosociología (1907), proyecto que nunca se llevó a cabo.

Siguiendo la línea de Chávez, 34 años después, Samuel Ramos (1938), retoma y enriquece esta línea de investigación, modificando su visión. Tomando a Adler como base planteó con un lenguale más técnico que Chávez, el problema de la psicología del mexicano. Este autor parte de la idea de que el mexicano no es un ser inferior, sino que se siente inferior, y trata de enfocar la conducta desde un punto de vista psicoanalítico: mostró una tipología de los mexicanos, y los dividió en: el Pelado, el Mexicano de la ciudad y el burgués Mexicano; El Pelado: era la persona que ostentaba sus impulsos sexuales, llevaba su alma al descubierto, buscaba el pleito para elevar su vo deprimido y deseaba afirmar su superioridad ante los demás, etc. -El Mexicano de la Ciudad: se caracterizaba por su desconfianza irracional que le hacía reafirmarse en ambientes inestables o inseguros, no planeaba su futuro y actuaba en el presente inmediato entre otras cosas. -El Mexicano burgués: so caracterizaba por tener sentimientos de minusvalía debido a su nacionalidad y a su posición social, se expresaba con una cortesía exagerada, y su yo era ficticio para evitar la humillación, era susceptible a la crítica, maldiciente y le gustaba lo extranjero. Cuando mencionaba al Criollo, lo describía como un educador destacado, con conciencia clara de

la vida, que se impresionaba menos por lo extranjero, era religioso y tenía fé. Cabe decir, que estos estudios, quedaron ubicados en el terreno de la Educación.

Ezequiel Adeodato Chávez y Samuel Ramos, constituyen un antecedente, pero es hasta a Díaz-Guerrero que hace el esfuerzo por desarrollar una disciplina científica que lleve el nombre de Etnopsicología, en México; retomando el nombre de Etnopsicología en 1972.

Díaz-Guerrero (1971), mencionaba como, "el psicólogo en desarrollo debería pensar como construir pruebas que valgan total y específicamente para la idiosincrasia de su propio pueblo" (pág.13); y dice también que: "a partir de las bases de la sociedad y de su dinámica se explican y son predictibles el desarrollo individual y la evolución de los sistemas sociales". Díaz-Guerrero (1979), interesado por el crecimiento y la interacción del hombre en su ecosistema agrega que: "la universalidad es impugnada por datos que sugieren la necesidad de crear una psicología sociocultural de la personalidad. Escalas factoriales específicas de premisas socioculturales mexicanas expresadas en lenguaje natural se han

encontrado asociadas significativamente tanto de manera estadística como psicológica, en tres distintas edades con gran número de medidas confiables de dimensiones psicológicas". (Díaz-Guerrero 1977, p.934). Con los trabajos de Díaz-Guerrero se discierne una visión nacional fundada en las creencias locales de la juventud mexicana, y es a partir de estos datos obtenidos que demuestran tanto estudios intra como transculturales en México. A partir de estas evidencias se declara que la cultura en México, como queda ahí definida, puede explicar varianza significativa de dimensiones válidas, tanto psicológicas como de otras ciencias sociales. Se puede decir, por lo tanto, que existe un fundamento empírico para hablar de psicologías socioculturales, tales como una psicología mexicana. Esta revelación se hace dentro del contexto de los esfuerzos de Díaz-Guerrero para comprender la personalidad de los mexicanos y su sociedad.

Otros estudios, tanto con las premisas histórico-socioculturales que se incorporaron en un inventario de la familia mexicana, como las premisas de estilo de confrontación que crearon el cuestionario de la "filosofía de vida" y sus correlatos, proporcionaron el material para

Inspirar muchos de los principios considerados fundamentales en el desarrollo del campo de la Etnopsicolqía.

De todo lo anterior se derivan los postulados de la Etnopsicología que son: (Díaz-Guerrero 1989, p. 76)

- "Deberá proclamar la existencia de un ecosistema humano específico.
- 2. Deberá reiterar que la conducta, particularmente la de la personalidad, y el comportamiento social están determinados por una dialéctica que implica intercambios de todo tipo de información entre las predisposiciones biológicas y psicológicas del individuo y de los grupos y además, con las poderosas influencias socioculturales y otras del ecosistema humano donde viven. La Etnopsicología deberá, por lo tanto, ser frecuentemente interdisciplinaria.
- 3. De manera operacional, deberá estar de acuerdo con que

un aspecto importante y potencialmente medible del ecosistema humano es la cultura.

- 4. La cultura incluye como los antropólogos culturales y los sociólogos concuerdan afirmaciones verbales tradiciones, normas, valores, creencias y entidades estructurales (cultura, material, organización, instituciones).
- 5. La cultura es, por lo tanto, un gigantesco sistema de información y fundamentalmente el resultado de la historia y de la dialéctica cultura-contracultura.
- 6. Por conveniencias teóricas y operacionales, se estipula que la Etnopsicología debe iniciar sus exploraciones sistemáticas a través de la medición y determinación de diferencias individuales y grupales, de afirmaciones verbales y de dimensiones que se descubran específicamente para la cultura dada y que esas aseveraciones sean llamadas premisas histórico socioculturales (PHSC).

- 7. Las PHSC y las dimensiones derivadas de éstas deberán:
- a) preferiblemente, ser respaldadas por una mayoría de individuos de una cultura dada y mostrar variación autóctona específica para las distintas regiones geográficas, para las clases sociales, para los sexos, etc.;
- b) demostrar permanencia, así como un grado interpretable de variación a través del tiempo;
- c) mostrar correlaciones significativas e interpretables
 con la edad, el grado escolar y en general con las
 variables de educación de grupos de sujetos de la cultura
 dada, y
- d) ofrecer correlaciones significativas e interpretables con el sexo y el nivel socioeconómico.

- 8. Las PHSC y las dimensiones psicológicas derivadas de éstas deben mostrar relaciones significativas con variables cruciales tanto biopsicológicas como de las ciencias sociales en la cultura dada. Así, esto deberá ser cierto con respecto a las características tanto del desarrollo del estilo cognoscitivo como de la personalidad, del concepto del yo, variables cognitivo-intelectuales, disposiciones vocacionales, variables educacionales, desarrollo moral, concepto de la familia y variables ecosistémicas básicas, tales como la ciudad de origen y el lugar de nacimiento.
- 9. Las PHSC y las dimensiones que se deriven de éstas, deberán mostrar diferencias significativas y preferentemente predecibles tanto intracultural como transculturalmente.

Hoy en día con confianza se puede afirmar que gran número de las diferencias entre mexicanos, mexicano-estadounidenses y angloestadounidenses, tanto como diferencias intraculturales en muestras en México, puede ser interpretado y razonablemente predicho partiendo

de conocimientos etnopsicológicos, particularmente el conocimiento acumulado por la investigación de las premisas histórico socio-culturales.

10. Otras características típicas de los individuos y de los grupos de una cultura dada, descubiertas por sondeos realizados con procedimientos diferentes a las de las escalas factoriales de PHSC, por ejemplo a través del Diferencial Semántico de Osgood, de las asociaciones libres de Szalay, a través de las facetas, como ha sido utilizada por Schwartz y Bilsky, son descubrimientos etnopsicológicos aceptables, pero deben de mostrar las características funcionales que se han demandado a las PHSC y, es de esperarse, que eventualmente descubran nuevas premisas histórico- socioculturales".

Las metas de la Etnopsicología son: (Díaz-Guerrero 1989,p.80)

1.- "Será básico proseguir la exploración de los sistemas culturales autóctonos lo que Berry (1974), llama la psicologías sociales vernáculas, para descubrir y comprender los conceptos locales y las variantes individuales e intraculturales. Comprender la variación en creencias

vernáculas en éstas y otras variables resultará muy útil en cualquier programa diseñado para reforzar los aspectos positivos de las etnopsicologías y eliminar los negativos.

- Desarrollar psicologías autóctonas completas, específicamente en las áreas de la personalidad, el desarrollo cognoscitivo y la conducta social.
- 3.- Determinar hasta qué nivel los principios de la percepción, del aprendizaje, del pensamiento y en general de todos los procesos psicológicos se aplican a las poblaciones locales, y si hay diferencias producidas por la edad, el sexo, la educación y diferencias socioeconómicas, urbano- rurales, de mayoría a minoría, así como la distribución de las diferencias individuales.
- 4.- Sondear y determinar la extensión hasta la cual las muchas dimensiones de la personalidad, de la cognición y sociopsicológicas, descubiertas en los países industrializados, se aplican a las poblaciones locales, y si hay diferencias por edad, sexo, nivel socioeconómico, entre

poblaciones rurales y urbanas, entre las mayorías y las minorías, etc., tanto como la extensión de las diferencias individuales locales.

- 5.- Utilizar los datos obtenidos a través de los esfuerzos descritos en los cuatro primeros objetivos, para ayudar sustancialmente en la interpretación de las diferencias transculturales.
- 6.- Asistir a la psicología transcultural en su importante objetivo de discernir dimensiones psicológicas, leyes y teorías de la conducta humana que sean pertinentes y válidas universal o casi universalmente.
- 7.- El desarrollo de una Etnopsicología deberá ejemplificar, a través de sus postulados, el enfoque científico, indispensable desde hace muchos decenios, en el florecimiento de una comprensión rigurosa del desarrollo de la personalidadde sus funcionamientos normal y anormal. Esa aproximación científica, en lugar de una comprensión intuitiva, resulta básica si la psicoterapia, así como otras técnicas de mejoramiento personal, puede ser aplicada óptimamente a las poblaciones locales".

Bajo estos postulados, existen gran número de investigaciones, que permiten la multidisciplinariedad, y plantean un gran camino: la posibilidad de tomar en cuenta la cultura, válida a cualquier nación. El estudio de la metodología utilizado aquí, no es sólo la búsqueda de rasgos en los individuos, sino que permite innumerables implicaciones teóricas y aplicadas.

A través de estos postulados y metas, se permitirá conocer a fondo la propia cultura, así como las diferencias o similitudes locales o regionales. Es a través de esta vía, en que se crearán pruebas idóneas. Y para los psicólogos, será importante hacer conciencia de las interacciones culturales; además de estar particularmente enlazada con la Psicología Transcultural.

La Etnopsicología es posiblemente, la alternativa conceptual y metodológica que pueda fusionar la interdisciplinalidad de los investigadores en Ciencias Sociales. El desarrollo de esta disciplina, será sin duda alguna la llave para comprender mejor el por qué, de las interacciones culturales y contraculturales; tomando cada día más fuerza

en la sociedad, por sus implicaciones en sí.

Es importante aclarar que las PHSCs han motivado el desarrollo de diversas escalas factoriales en diferentes dimensiones culturales y como se desprende del postulado número dos de la Etnopsicología y de la dialéctica cultura-contracultura en que se puede decir que emerge la personalidad individual. Es a partir de estos estudios, en que se hacen factibles algunas dimensiones factoriales de la personalidad.

1.3 ALGUNOS ESTUDIOS RELACIONADOS CON LA ABNEGACION.

Respecto al tema central de este trabajo, es importante mencionar, que, existen varios estudios etnopsicológicos cuantitativos previos que permiten anticipar la existencia de una disposición a la conducta abnegada de los mexicanos.

Un aspecto importante, son aquellos estudios realizados acerca de la obediencia afiliativa (Díaz-Guerrero 1979). Este factor quedó definido por las afirmaciones que quedaron ampliamente registradas en esta

cultura, cuando se investigaron las premisas histórico-socioculturales. (Díaz-Guerrero 1967). Esta dimensión fue llamada así, porque su autor consideró que los mexicanos en general tienden a obedecer sólo a las autoridades que se aman o respetan; y considera que en México se obedece por amor, por lo que para obedecer a alguien hay que poseer la disposición a negarse a sí mismo, y es a partir de este razonamiento en que se creó la hipótesis, de que en los mexicanos existe un rasgo de abnegación. Díaz Guerrero (1955), en su estudio sobre las neurosis y la estructura psicológica de la familia mexicana, fundamenta dicha estructura en dos proposiciones principales: 1) La supremacía indiscutible del padre y 2) el necesario y absoluto sacrificio de la madre; donde la abnegación es expresada por el papel de la madre.

Reyes Lagunes (1982 p.129), a través de la prueba de Premisas Socioculturales, con sus nueve factores, midió la opinión de los maestros hacía la vigencia de estas premisas tradicionales de la familia mexicana en varios estados de la República, y encontró entre otras cosas, que el "Factor IV: Abnegación", se componía de premisas tales como: "La vida es más dura para una mujer que para un hombre". Estos datos indicaron

que el desacuerdo con las premisas era más acentuado en los maestros del D.F. y menos en los del estado de Puebla. Sin embargo "las diferencias entre sus medias son más pequeñas que con los otros factores". Este factor llamado por Reyes Lagunes de "abnegación", ha sido posteriormente denominado "consentimiento", con el objeto de no confundirlo con el descubierto.

Con el fin de determinar cuantitativamente que tan abnegado es el individuo, como la cultura tradicional lo ha imbuido, o que tanto se ha alejado, es decir, menos abnegado y posiblementemás autoafirmativo, se desarrolló un instrumento (Avendaño y Díaz Guerrero 1990), en el grupo donde se creía la hipótesis de que los individuos eran más autoafirmativos, (los hombres). La abnegación en esa muestra, presentó cuatro factores denominados: Abnegación Personal; Abnegación Social; Abnegación y Salud y Abnegación Existencial. Los datos de confiabilidad y validez reportados en este estudio, se consideran que confirman la existencia de este rasgo de conducta en los mexicanos estudiados, y avalan el pronóstico de su existencia.

Si se considera el concepto de rasgo de conducta para la conducta abnegada, se puede entender que este ocurre dentro de un marco social y que se tiende a evaluar no a la persona individual, sino a la persona típica en un medio determinado. Esto significa que el individuo hace una generalización que le permite una distribución estadística.

Para defindir las características de los Factores en la familia mexicana, Díaz-Guerrero (1972b), exploró el campo de las "Premisas Socioculturales de la Familia Mexicana" y la "Filosofía Sociocultural del Estilo de Confrontación"; considerándose los resultados del análisis factorial en este estudio. Es importante mencionar que, de los doce factores obtenidos en el mencionado estudio, la abnegación quedó en cuarto lugar, con afirmaciones como: "La vida es más dura para una mujer que para un hombre", "Las niñas sufren más en sus vidas, que los niños", "La vida es más fácil y feliz para el hombre que para la mujer"; "La vida es para sobrellevarla". La forma de responder a estas escalas, revela cuando una persona está de acuerdo con algún valor o premisa, y de esto resulta que la persona que acepta dichos valores o premisas se los exige a casi toda la gente, de manera congruente; pero también se da el caso

de confrontar a las premisas, como es el caso de los individuos con escolaridad superior, donde la tradición se pierde, por su nivel cognoscitivo, cuestionándose y analizándose los valores locales.

Investigando en estudiantes universitarios y a través de procedimientos diferentes La Rosa y Díaz-Loving (1988), reportaron como primer Factor, poderoso e importante, en el concepto del Yo del mexicano, una dimensión social que queda operacionalmente definida por reactivos como cortés-descortés, educado-malcriado, decente-indecente, amable-grosero, amigable-hostil. Por su parte La Rosa (1986), encontró una correlación entre significativa y altamente significativa a la obediencia afiliativa.

Flores Galaz, Díaz Loving y Rivera Aragón (1987), partiendo de los estudios transculturales de Holtzman, Díaz Guerrero y Swartz (1975), afirmaron que el estilo de confrontación automodificativo, es un Factor parecido al primer factor llamado "No Asertividad". Indicaron además, que el concepto norteamericano de asertividad, ha desentrañado lo que se piensa acerca de la manera de medir con mayor precisión un aspecto

crucial del estilo de confrontación automodificativo y, además, concibieron a la "abnegación" como un concepto afín. Estos autores hacen énfasis en que la "asertividad directa", no es una conducta típica de los mexicanos. Cuando investigaron en una muestra mexicana entre asertividad, agresividad y conflicto, encontraron que los hombres son más agresivos que las mujeres, y que se espera que la mujer sea más abnegada, pasiva, vulnerable y hogareña. Descubrieron además, un Factor secundario, al que llaman la "Asertividad Indirecta", que implica según los autores, que en México existan personas asertivas (autoafirmativas), pero sólo si no tienen que enfrentarse cara a cara con las personas o en situaciones de conflicto.

Flores Galaz (1989 p.84), al estudiar la asertividad, la agresividad y la solución de situaciones problemáticas encontró que en el Factor de "No asertividad", solamente hubo diferencias cuando se trató de la solución de situaciones problemáticas. En los resultados de la Prueba de Scheffé, no se observaron diferencias significativas entre los grupos. La autora menciona que en este estudio la "No asertividad", correlaciona positivamente con "antagonismo", y que las personas no asertivas son

inseguras de sí mismas, que no son capaces de hacer valer sus derechos, que tienden a ser desconfiadas, a sospechar que los demás son hostiles, que experimentan sentimientos de venganza, que tienden a contradecir y a oponerse a los demás. Además menciona que el rasgo de la "No asertividad": "Mide la incapacidad del individuo de exigir sus derechos con personas externas o de negocios, así como también en sus relaciones interpersonales".

Pérez Lagunas (1990), estudió las premisas histórico-socioculturales y la Salud Mental, en estudiantes preparatorianos de ambos
sexos, en las clases media y alta, y encontró que el Factor "abnegación"
(el ahora llamada "consentimiento") era importante; que este rasgo tenía
correlación con la intolerancia y la subjetividad. Observó que no hubo
diferencias significativas entre las mujeres de clase socioeconómicamente
alta y baja; sin embargo entre los hombres de la muestra si las encontró:
los hombres de clase baja, no están totalmente de acuerdo con las
premisas de "abnegación" (que las mujeres muestran más que los
hombres). Afirma la autora, que los hombres de clase alta de la muestra
correlacionan con la variable de "abnegación", cuando se ha tratado de

estudiar la intolerancia. Las mujeres de clase alta de la muestra correlacionan de manera más alta con la abnegación. Cuando se estudiaron los aspectos de síntomas físicos, las mujeres de clase alta son las que más síntomas mostraron además de estar más de acuerdo con las premisas de "abnegación".

Melgoza y Díaz-Guerrero (1990), dentro del contexto de la Etnopsicología mexicana encontraron al estudiar el rasgo de "flexibilidad", que este se podía determinar cuantitativamente que la posición de un individuo en estos casos, podría ser reflejo de su aceptación con las premisas de la cultura tradicional mexicana.

Silva Arciniega y Díaz-Guerrero (1992), en un estudio de las Premisas histórico-socio-culturales en estudiantes preparatorianos de la Ciudad de México, indicaron que los sujetos de la muestra habían mostrado algunos factores "tradicionales". Valdés-Caraveo-Servin y González (1990), afirmaron que las mujeres y los hombres en la sociedad occidental, aprendían guías sexuales basadas en la sumisión (abnegación) de la mujer.

En el estudio de Factores de personalidad y cultura que inciden en la decisión de pareja, y en la planeación de la familia, Mercado-Padilla (1988), aplicó las Premisas histórico-socioculturales y el Cuestionario de "Atributos Personales" y el de "Planeación Familiar", encontrando que la mujer es dependiente del hombre, sumisa y abnegada, es decir el hombre decidía la planificación familiar. Como resultado de la aplicación de la Escala de "Adopción de la Planificación Familiar", en el Análisis Factorial resultó un Tercer Factor llamado "Abnegación". Al aplicarse las Premisas histórico-socioculturales en un estudio del campesino mexicano (Avila Méndez 1988), se encontraron varios grupos mostrando gran tradicionalismo en la familia. En los estados de Puebla y Guanajuato la tradición fue más acentuada.

Aguilar V. (1988), afirma que la falta de control de las personas "no asertivas", se podría deber a que poseen "mucha inseguridad" para realizar sus actividades, por ello buscarían la aceptación de los demás. Que serían personas que tendrían dificultades para controlar sus sentimientos y sus emociones, con incapacidad verbal comunicándose por medio de disculpas, explicaciones y palabrería en el caso de individuos

sumisos, o bien por medio de agresiones verbales en el caso de individuos agresivos que buscaran afirmarse.

Se dice que la persona asertiva, tiene control sobre sí, sobre las situaciones de interacción social y que no le crea ansiedad mostrartse autoafirmativo.

Avendaño y Díaz-Guerrero (1992), en un estudio experimental de la abnegación, mostraron que la conducta abnegada tal como se concibe en este experimento, resultó que el 85% de los varones y en las mujeres sólo el 30% presentaron conducta abnegada, ya que el 70% restante de las mujeres se mostraron indecisas, esperando quizás que las respuestas a sus indecisiónes vinieran de fuera, pudiendo ser en este caso de parte de la experimentadora.

La abnegación parece ser un rasgo normal en su grado moderado en nuestra cultura; desempeña una función útil para mantener el bienestar o eficacia de las "buenas relaciones interpersonales". Sin embargo cabe señalar que cuando se habla de estilos de vida o formas de vida, es decir

un hábito generalizado, o conducta repetitiva cuya probabilidad de ocurrencia deba ser alta, esta puede repercutir en la salud. (Fernández 1990).

L4 DEFINICION DEL CONCEPTO ABNEGACION

Antes de entrar a definir la abnegación, se considera pertinente abordar algunas consideraciones de tipo conceptual que han utilizado diferentes autores. Según algunos diccionarios observados (1969, 1971, 1977); se considera que el Diccionario de la Lengua (1929 p.18), tiene una definición más completa sobre la Abnegación; la considera: "el sacrificio espontáneo de la voluntad, intereses, deseos, y aún de la propia vida. Sin duda que tan superior renuncia no debe de carecer de objeto, sino el contrario fundarse en un motivo adecuado y conveniente. El hombre único ser capaz de tan elevado sacrificio aspira invenciblemente, no puede desprenderse de tan imperiosa inclinación. Buscar el objetivo de la dicha verdadera por la renuncia de sí mismo y demás bienes de este mundo, en esto se basa indudablemente el desasimiento de ánimo o sea la abnegación. Es pues una virtud exclusivamente cristiana, desconocida

de los antiguos y no enseñada por ningún filósofo. Sólo nuestro Señor Jesucristo modelo perfecto de abnegación es el que dio el ejemplo más acabado de esta virtud haciendo consistir en ella la perfección cristiana: Que vult venire post me, abneget semetipsum et tollat crucem suam et seguator me. (Mateo XVI,24). La abnecación para ser tal ha de tener por finalidad el Bien Supremo va que en otro caso no sería completa ni perfecta pues tratándose de bienes relativos, todos ellos pueden dejarse por otro meior. Entendiéndose en este sentido por abnegación la renuncia o el sacrificio hecho de una cosa por una causa cualquiera. Esta clase de abnegación es más o menos perfecta filosóficamente hablando según sea la causa que la motive. Hecha por fines humanos ha sido practicada en todos los tiempos. La vida es una continua abnegación pues siempre se sacrifican unos bienes por ganar otros. Se llama abnegación algunas veces el acto o ideas contrarias al egoísmo: caridad, desinterés, altruismo, filantropía, pueden entrar según sus fines en una u otra de las clases referidas".

El Diccionario de Sinónimos y Antónimos (1986), dice, que la "Abnegación" es sinónimo de : altruismo, generosidad, sacrificio,

renuncia, inmolación, desinterés, filantropía, caridad, celo, virtud, sublimidad; y es antónimo de egoísmo y mezquindad. Al buscar los sinónimos de las palabras que correspondieron a la palabra "abnegación", sólo en la palabra "renuncia" apareció la palabra "abnegación".

A pesar de que en el Diccionario (1990), no se consideran las palabras conformista y sumisión como sinónimos de abnegación, al explorar en el acervo literario la palabra abnegación, (Terakoa, 1982; Brown, 1982; Heszen-Klemens, 1983; Shapiro, 1986; Zetlin, 1989; etc.) sale a la luz una confusión respecto a estos conceptos, que es pertinente aclarar.

Aronson (1972), distingue varios formas de responder a los estímulos sociales: la "sumisión", la "identificación", y la "internalización". Considera a la "sumisión" como un término que describe a una persona, que motivada por el deseo de ganar una recompensa o evitar un castigo asume una conducta en este caso "sumisa", la cual existe sólo mientras la promesa del premio o la amenaza del castigo dura. Considera a la "identificación" como una conducta que

responde a la influencia social, donde un individuo adopta los mismos valores, deseos u opiniones que otro, sin estar plenamente convencido, sin creer en ellos de una manera permanente. Respecto a la "internalización" dice que es una conducta donde un valor o creencia se hace permanente; el individuo en este caso responde a la influencia social. La persona que internaliza un valor es la que percibe de manera confiable la influencia de alguien, convirtiendo el valor ajeno en suyo propio y se caracteriza porque es resistente al cambio. Dicho en otra forma, el "sumiso" puede obedecer las leyes de tránsito para no pagar la multa; el "identificado" no corre porque su padre no lo hacía y quiere parecerse a él, y el "internalizado" no corre porque está convencido de que las leyes de tránsito son adecuadas.

Respecto a la "conformidad", Aronson (1972 p.16), define este concepto como el cambio en una conducta o en unas opiniones acerca de alguna persona, como resultado de una presión real o imaginaria por parte de otra persona o de algún grupo. Freedman, Carlsmith y Sears (1974 p.220), afirman que la conducta de "conformidad" varía inversamente con la inteligencia; a mayor inteligencia de las personas, tenderán a

conformarse menos.

Debido a la importancia que ha ido adquiriendo el concepto de "abnegación", Avendaño y Díaz-Guerrero (1992), decidieron realizar un estudio exploratorio respecto a la red cognitiva en 100 estudiantes de Nivel Medio Superior; las palabras definidoras principales fueron en los hombres, en el siguiente orden, comenzando en primer lugar con: sacrificio, entrega, dar, sumisión y comprensión al prójimo; para las mujeres las palabras definidoras fueron en el mismo orden, las siguientes: sumisión, resignación, obediencia y conformidad.

¿Por qué se habla de abnegación y no de altruismo? El altruismo, como lo propone Kauffman (1984), se refiere a conductas donde existe la voluntad de ayudar a otros, se ceracterizan porque no esperan recompensa, pero se considera que existe el tiempo suficiente para pensar en una negociación del propio costo por un beneficio ajeno, se decide ser altruista. Rimland (1982), le llama a esta conducta "la paradoja del altruismo". En este estudio se le considera a la "abnegación" como una predisposición conductual en la que un individuo es después que otros,

con la característica principal de que es una conducta espontanea, una predisposición para dar por afecto, porque se ha querido postergarse a un segundo plano, por ejemplo en la conducta de cortesía característica común que se puede observar en esta cultura.

Se puede decir que es un acto abnegado, cuando una persona de manera espontanea cede algo propio. Puede ir de ceder una cucharada de sopa, como se vió en algunos Campos de concentración Nazi, hasta ceder el paso.

Es usual estar convencido de que lo que se acostumbra en la propia cultura es lo correcto; ya que de pensar lo contrario afectaría el propio bicnestar; en este estudio se consideran como fuerzas sociales o culturales aquellas creencias o valores que perfilan a la conducta en general. El potencial biológico humano se moldea con la cultura a través de la propia experiencia y el aprendizaje, que como ya se dijo la forman la socialización y la "enculturación".

CAPITULO II. METODOLOGIA.

II.1 - PLANTEAMIENTO DEL PROBLEMA.

En este estudio el problema es constatar si el constructo de "abnegación" puede ser medido tanto en hombres como en mujeres, y de ser así que sea a través de un instrumento confiable y válido, y que reuna los requerimientos psicométricos para alcanzar una distribución apropiada a la cultura local de diferencias individuales. Así surgieron las siguientes preguntas:

- ¿Es posible construir un instrumento capaz de medir confiable y válidamente la abnegación en los mexicanos?

-¿Existen diferencias significativas entre hombres y mujeres, por edad, estado civil, número de hermanos, lugar que se ocupa entre hermanos, ocupación, escolaridad y número de hijos, en el grado de abnegación?

Una parte integral del trabajo del científico consiste en realizar observaciones y recolectar datos. La observación permite el registrar

eventos, contarlos, y medirlos, es decir es un procedimiento sistemático, que permite al investigador obtener medidas de variables de manera adecuada.

Dentro de las diferentes formas que existen para obtener información conductual, es de tomarse en cuenta aquella donde las personas responden a estímulos estructurados. En las ciencias del comportamiento, uno de los estímulos estructurados, más usuales son las "escalas objetivas"; así encontramos (Kerlinger, 1987), que el concepto de escala se resume como: el procedimiento sistemático en el que los individuos que están siendo observados, se les presenta un conjunto de reactivos, que son estímulos estructurados; y las respuestas indican el grado en el que, el individuo posee el atributo que se quiere medir.

II.2 - JUSTIFICACION.

No se puede dejar de lado los intereses sobre las Psicología del Mexicano que nacen a principios de siglo con Chávez (1910), y donde aparecen numerosos artículos de filósofos, historiadores, periodistas

interesados por el tema. Con Ramos y Gómez Robleda (1962), se realizan los primeros estudios formales, y es hasta 1971, cuando dice Díaz-Guerrero a la comunidad científica: "El Psicólogo de los países en desarrollo debe, por lo tanto, dedicar su atención a su propia cultura, en forma paralela a los conceptos desarrollados en la cultura angloamericana, debe procurar identificar las características de su pueblo y desarrollar conceptos que convengan a su idiosincrasia... debe pensar cómo puede construir pruebas que sean total y específicamente válidas para las características mentales de su gente". (Díaz-Guerrero, 1971, p.5-36)

Las investigaciones realizadas a la fecha por Díaz-Guerrero y el gran grupo de investigadores como Reyes Lagunes, Díaz Loving, Pick, Andrade Palos, Reidl, Mercado, Fernández Pardo (Q.P.D.), Rivera-Aragón, Flores-Galaz, etc. han descubierto dimensiones mexicanas y de la personalidad que han enriquecido este campo; Se hace notar que diversos resultados de tales investigaciones, muestran aspectos culturales como la obediencia afiliativa, respeto y rasgos de la personalidad como la asertividad, flexibilidad y abnegación. Obedeciendo a los Postulados de la Etnopsicología, se cree que la construcción de una escala, como la de este trabajo, tiene la intención de aportar al campo de la Etnopsicología

Mexicana y a la Psicometría, un instrumento original, psicometricamente válido y confiable, para la población joven y adulta de la Ciudad de México.

Los datos del estudio parecen indicar que en el rasgo de abnegación predominó la enculturación, o dicho en términos de la Etnopsicología, lo cultural predominó fuertemente sobre lo biopsíquico en la dialéctica cultura-contracultura. Así, se considera que el desarrollo de una escala permitirá determinar cuantitativamente qué tan cerca el individuo es reflejo de su cultura tradicional mexicana, se espera que esta escala pueda ser de ayuda, para aclarar aún más las características de esta dimensión.

Es bueno señalar, que el lema de la Universidad: "POR MI RAZA HABLARA EL ESPIRITU", recuerda y señala la unidad étnica y cultural, concepción de Vasconcelos, que sitúa claramente el desarrollo del ser humano y su contexto cultural.

IL3 - OBJETIVO DE LA INVESTIGACION.

El objetivo general de esta investigación ha sido desarrollar un instrumento confiable y válido para medir abnegación en jóvenes y adultos de ambos sexos, residentes de la Ciudad de México.

II.4 - HIPOTESIS.

Las hipótesis de este estudio son:

- 1) La abnegación se puede medir con este instrumento.
- 2) Existen diferencias significativas entre los sexos, entre grupos de distinta edad, estado civil, número de hermanos, lugar que se ocupa entre los hermanos, ocupación, escolaridad y número de hijos.

II.5 - TIPO DE DISEÑO E INVESTIGACION.

El diseño del presente estudio, denominado Ex post facto, permite

conocer hasta que punto los sujetos de la muestra responden igualmente a los diferentes reactivos de la escala. Es decir, es una búsqueda sistemática empírica en la cual el científico no tiene control sobre las variables independientes porque ya acontecieron sus manifestaciones o por ser intrínsecamente no manipulables, se hace referencia a las relaciones entre ellas, sin intervención directa, a partir de la variación concomitante de las variables dependientes e independientes. (Kerlinger, 1975 p. 268).

Se trabajó con dos grupos: hombres y mujeres. Se clasificaron por edad, sexo, escolaridad, ocupación, número de hermanos, número de hijos, lugar que se ocupa entre los hermanos y estado civil.

II.6 - VARIABLES.

Debido a la naturaleza del trabajo no se controlaron variables, sin embargo se registraron las siguientes variables de carácter atributivo para conocer la presencia o ausencia de su impacto sobre los resultados. Se llaman variables atributivas porque no se pueden manipular como las

variables llamadas experimentales; no es un experimento de laboratorio donde hay control, lo que significa que en la situación de investigación las condiciones se definen, delimitan, restringen y aislan. Las variables son la edad y sexo; así como también, se tomaron en cuenta para el registro las siguientes variables atributivas, considerándolas como variables independientes que producen diferencias:

Estado civil, comprende los siguientes grupos:

- Soltero, sujeto que vive sin pareja, ni ha contraído ninguna clase de matrimonio;
- 2).- Divorciado, sujeto que estuvo casado, vive sin pareja.
- 3).- Viudo, sujeto estuvo casado y murió su pareja.
- 4).- Casado, sujeto que vive con pareja;
- Unión libre, sujeto que vive con pareja y no ha contraído matrimonio.

Número de hermanos: Se refiere al número de hermanos con que cuentan los suietos de la muestra.

Lugar que se ocupa entre los hermanos: Se refiere al lugar que ocupan los sujetos de la muestra, dentro del orden de nacimiento de sus los hermanos.

Ocupación: Se refiere a la ocupación principal del día de un sujeto.

Se consideraron: Hogar, trabajo y estudio.

Escolaridad: Se refiere al grado máximo de estudios logrado;

- 1).- Primaria.
- 2).- Secundaria o comercio.
- 3).- Preparatoria o vocacional.
- 4).- Estudios universitarios.

Número de hijos: Se refiere a los hijos que tenían los sujetos de la muestra, cuando fueron entrevistados.

La Variable Dependiente se refiere a las respuestas de los sujetos a cada uno de los reactivos del inventario de abnegación.

II.7 - DEFINICION CONCEPTUAL.

Desde el punto de vista conceptual, la abnegación es la predisposición conductual de un individuo, para que los otros sean antes que él, o se sacrifique en el beneficio ajeno.

II.8 - MUESTRA.

La muestra estuvo constituida por 850 sujetos (448 hombres y 452 mujeres), adultos de clase media, residentes de la Ciudad de México, obtenidas a través de la técnica de conglomerados, no probabilística.

La distribución de los sujetos de la muestra se hizo a partir de tres grandes grupos: personas dedicadas al hogar; trabajadores (obreros; empleados de instituciones bancarias, de gobierno y de cuerpos policiacos; maestros de primaria, secundaria y preparatoria; choferes, vendendores); y estudiantes. (Gráfica 5)

II.9 - INSTRUMENTO.

El instrumento que se ha empleado en el presente estudio es una escala para medir la variable "abnegación" que ha constado inicialmente de 85 reactivos, que después de ser depurados psicométrica y estadísticamente produjeron 20 reactivos decisivos. (Ver apéndice C).

II.10 - PROCEDIMIENTO.

Para la construcción de esta escala el primer paso fue construir una lista extensa de reactivos con base en la definición de "abnegación". Esta lista fue calificada en términos del contenido de los reactivos, por jueces, a partir de lo cual se determinó que 85 reactivos deberían ser los que se pilotearan.

Se agregó un reactivo más para cerciorarse de la veracidad en la respuestas, es decir al agregar un reactivo, cuya respuesta es inverosímil, y responder un sujeto que si, se percataría de su mentira y esa escala se desecharía.

Una vez seleccionados los tres grandes grupos con los cuales se iban a trabajar, se dio a la tarea de aplicarles el cuestionario a los 850 sujetos, en forma individual o en grupo.

La Escala se hizo tomando en cuenta las siguientes respuestas: Falso, Verdadero e Interrogación.

II.10.1. Las instrucciones del instrumento que se ven en el apéndice A, son:

Cuando lo que dice la pregunta sea verdadero para usted tache la "V", y cuando sea falso tache la "F".

Cuando alguna pregunta se refiera a una situación que usted no ha experimentado o cuando no pueda recordar con exactitud, por favor tache la opción "?".

También se le pidió a cada sujeto que escribiera su edad, sexo, estado civil, escolaridad máxima, lugar que ocupa entre los hermanos, número total de hermanos y número de hijos.

II.10.2. Aplicación del instrumento.

La aplicación en empresas, fábricas y en hogares, fue de manera individual; y a estudiantes, de forma colectiva.

Se pidió a cada sujeto su colaboración, explicándole que la finalidad del trabajo era realizar una tesis, y que su participación era anónima. Se comprobó que las instrucciones fueran claras, así como que el llenado de escala estuviera completo.

II.11 - ANALISIS ESTADISTICOS.

Al resultado de los 850 cuestionarios se le realizó los siguientes análisis estadísticos:

1.- Análisis de Frecuencias de las respuestas, con las medidas de tendencia central, variabilidad, simetría y kurtosis; para conocer la forma de la distribución de las respuestas, y analizar los resultados de cada reactivo.

- 2.- Análisis de la Confiabilidad de la prueba. (Alpha de Cronbach). Es importante este análisis para estudiar la consistencia interna de la escala, que es lo mismo que la confiabilidad. Si esta está baja puede deberse a varios factores: como sería que varios reactivos estén mal construidos; no sean adecuados y se deban sustituir; o que la medida que se pretende como unitaria, no lo sea.
- 3.- Análisis de la Validez de la prueba. (Validez factorial). Se utilizó el Método Ortogonal de rotación que supone independencia entre los factores terminales; y Varimax porque produce soluciones factoriales que maximizan la cantidad de varianza explicada. Su objetivo es la reducción de datos.

El Análisis factorial es un método poderoso desarrollado actualmente para reducir variables a una forma más simple, éste permite emplear los tests (Thurstone, 1950 p.19), como medios de experimentación científica y aprovechar sus resultados enprovecho de la Psicología.

4.- Análisis del efecto de las variables sexo, edad, estado civil, número de hermanos, lugar que se ocupa entre los hermanos, ocupación, escolaridad y número de hijos. (Análisis de Varianza).

 5.- Análisis de diferencias entre medias para medidas múltiples de Scheffé.

CAPITULO III. RESULTADOS

III.1. DESCRIPCION DE LA MUESTRA.

Se entrevistaron a 850 personas, de las cuales un 50% de la población fueron hombres y 50% mujeres. Con un 25.5% de adolescentes; 24% de jóvenes entre los 20 y 25 años; 24% de "Adultos I", lo cual significa que se encuentran entre los 26 y los 32 años; un 25.9% de "Adultos II" llamados así de los 33 a los 71 años. Todos los sujetos entrevistados de 60 años en adelante eran trabajadores productivos. (Gráfica 1).

La media por edad de la muestra total es de 29.46 años. (Gráfica 2)

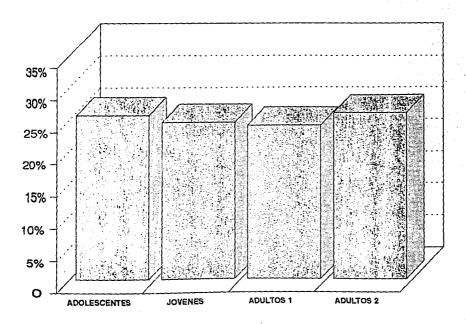
Los sujetos de la muestra contaban con un promedio de 3 hermanos cada uno. El 6% eran hijos únicos, y el 12% tenían de 9 o más hermanos. (Gráfica 3)

Respecto al estado civil un 53% son solteros; un 0.7% son divorciados; un 0.2% viudos, un 3.6% viven en unión libre y el resto de los sujetos se encuentra casado con un 42.4%.(Gráfica 4)

En cuanto a la ocupación de los sujetos el 51% trabaja; el 32.7% estudia; y un 16.3% se dedica al hogar.(Gráfica 5)

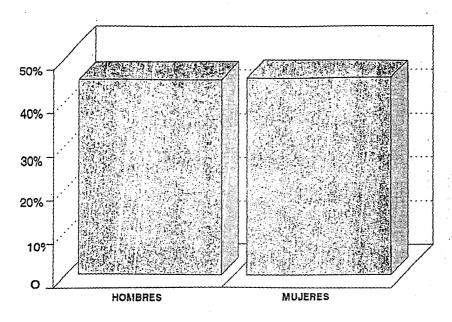
La escolaridad de los sujetos se distribuye de la siguiente manera:

24% con Primaria; 24.5% con Secundaria o Comercio; 21.5% con

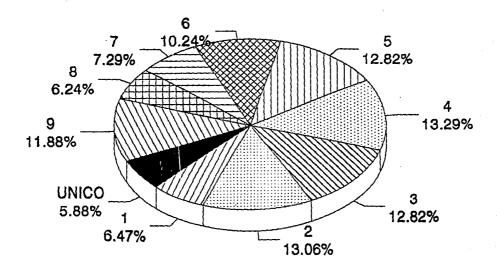

Preparatoria o Vocacional; y 30% con estudios universitarios.

(Gráfica 6)

La media de hijos para el total de los sujetos de la muestra es de 1.4. Es de notar que 58% de los sujetos de la muestra tiene hijos y un 42% no los tiene. El máximo número de hijos es de 9 (.7%) y 36.3% tiene de 1 a 3 hijos. (Gráfica 7)

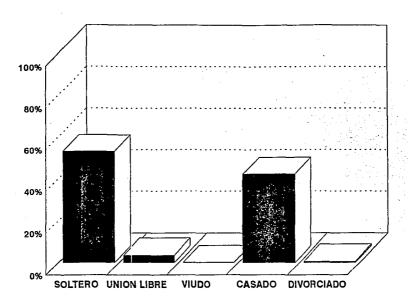

Cabe señalar que el 32.1% del total de la muestra son primogénitos, y sólo el 2.5% ocupan el noveno lugar. El promedio de los sujetos, ocupan el segundo o tercer lugar entre los hermanos (44%).

DISTRIBUCION DE LA MUESTRA POR EDAD DE LOS SUJETOS

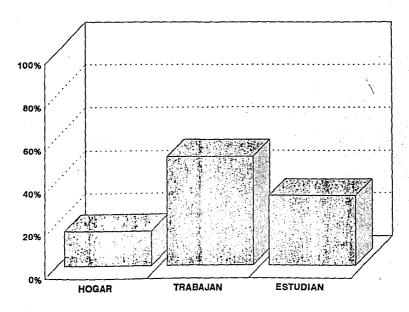


GRAFICA 1

DISTRIBUCION DE LA MUESTRA TOTAL POR SEXO

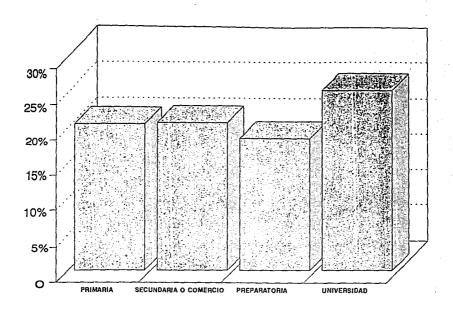


DISTRIBUCION DE LA MUESTRA POR NUMERO DE HERMANOS

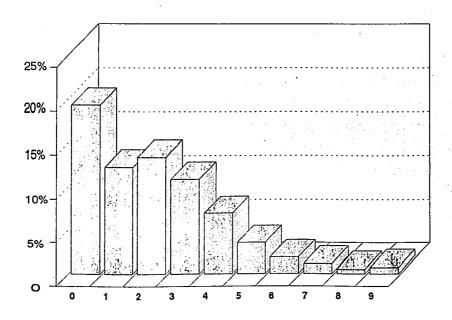


GRAFICA 3

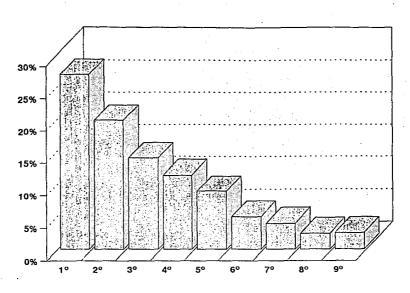
DISTRIBUCION DE LA MUESTRA POR ESTADO CIVIL



DISTRIBUCION DE LA MUESTRA POR OCUPACION



GRAFICA 5


DISTRIBUCION DE LA MUESTRA POR ESCOLARIDAD

DISTRIBUCION DE LA MUESTRA POR NUMERO DE HIJOS

DISTRIBUCION DE LA MUESTRA POR EL LUGAR QUE OCUPA ENTRE SUS HERMANOS

(Gráfica 8)

III.2.- ETAPAS DE LA CONSTRUCCION.

Se seleccionaron 85 reactivos, cuidando que hubiera reactivos positivos y negativos, con 3 opciones de respuesta. (Ver apéndice A).

Se aplicaron 850 cuestionarios, vaciándose los resultados a hojas de codificación para poder ser capturados en medios electromagnéticos (disquetes), para el procesamiento estadístico con medios electrónicos.

Se aplicó un análisis de frecuencias eliminando reactivos con el siguiente criterio: Si el 75% o más del total de los sujetos respondían en una sola opción. Se eliminaron 18 reactivos. (Tabla 1. Ver apéndice D). Los demás daban en promedio cerca del 50% para cada opción.

Tabla 1

Posteriormente se aplicó una Correlación de Pearson, a fin de conocer la fuerza de relación entre los reactivos.(Tabla 2. Ver apéndice E).

Tabla	2
-------	---

III.3.- CONSISTENCIA INTERNA.

Antes de proceder a otros análisis se estudió la confiabilidad de la prueba ya que de no ser esta escala confiable carecería de valor la escala. Por lo tanto se trabajó con el método Alfa de Cronbach. El resultado del total de la prueba fue de .80 lo que implica que la escala fuera congruente.

III.4.- VALIDEZ DE CONSTRUCTO.

El constructo que se está explorando es "abnegación", y se consideró que podría tener más de una faceta, por lo que pudo realizarse un Análisis Factorial de Rotación Oblicua, sin embargo, al analizar las

intercorrelaciones entre reactivos no se encontró justificación estadística para realizarlo (era imposible teóricamente tener un solo factor con todos los reactivos), por lo cual se optó por la Rotación Ortogonal Varimax. Este Análisis Factorial produce componentes principales con iteración (PA2), y la Rotación Varimax produce soluciones factoriales que maximizan la cantidad de varianza explicada.

Este método de validez de construcción o factorial, -el cual es el método más poderoso de validación de construcciones hipotéticas-. se aplicó en los 67 reactivos seleccionados (Ver apéndice B), con el fin de encontrar los reactivos que mejor definieran el fenómeno de la "abnegación".

Tabia No.3 RESULTADOS DEL ANALISIS FACTORIAL				
Factor Comunalidad Valor Eigen % de Var. % de Var. acum.				
1	.60223	8.74231	13.0%	13.0%
2	.59708	2.87394	4.3%	17.3%
3	.63467	2.54435	3.8%	21.1%

El punto de corte para aceptar un factor como real fue el valor Eigen mayor a 1.0.

Se obtuvieron 20 factores iniciales con valores Eigen de 1.00 o mayores, pero cabe señalar que se tomaron en cuenta sólo tres factores, y se desecharon aquellos cuyo valor Eigen no mostraba cambios en su magnitud entre uno y otro de los factores restantes, reduciéndose a una matriz más pequeña. Esta matriz la conforman 3 factores o columnas. Esto significa que los 20 reactivos o variables son reducidos a tres nuevas variables o factores de la matriz original.

Estos 3 factores explican el 21.1% de la varianza de la matriz original de intercorrelaciones llamada también Matriz de varianza reducida. Cabe aclarar que sólo las variables de los factores que cargan alto y no aparecen en otros factores fueron los tomados en cuenta para permanecer en la escala final.

Por último se analizó la confiabilidad interna (Alpha de Cronbach) de la Escala Total (Alpha = .80) y de cada factor; (Factor I Alpha = .77; Factor II Alpha = .72; y Factor III = .69). Resultó finalmente que el contenido de la escala ha sido conformada por 20 reactivos (Ver apéndice C), con un peso mayor a 0.40 y están distribuidos de la siguiente manera: 9 en el Factor I, 6 en el Factor II y 5 en el Factor III.

Tabla No.4 REACTIVOS FINALES DE CADA SUBESCALA		
FACTOR I ALPHA = .77	CARGA FACTORIA L	
Me gusta ayudarle a mi pareja para que no se canse	.63	
Me gusta trabajar de más si es por mi familia	.61	
Aunque esté cansado (a) atiendo a mi familia	.60	
La mejor comida es para mi familia	.57	
Me gusta cuidar el sueño de mi familia	.56	
Trato de darle gusto a mi familia en todo	.56	
Me espero despierto (a) hasta que llegue mi pareja	.53	
Me gusta que mi familia sea primero	.46	
Prefiero comer después que mis hijos o mi pareja	.45	

FACTOR II ALPHA = .72		
Por lo general soy muy amable	.72	
Generalmente soy atento (a)	.69	
Soy una persona educada	.62	
Casi siempre soy cortés	.55	
Soy comprensivo (a)	.47	
Acepto disculpas	.43	

FACTOR III ALPHA = .69	
Me apena decir que no	.71
Me cuesta trabajo decir que no	.67
Me es difícil reclamarte a alguien	.60
Me cuesta trabajo poner límites a las cosas y situaciones	.59
Ante las provocaciones verbales prefiero callar	.44

En el Factor I se observaron 9 variables con carga factorial mayor a 0.44. Este factor es una variable compleja llamada "Abnegación centrada en la familia".

En el Factor II se observan 6 variables con carga factorial mayor a 0.43. Este factor contiene reactivos que hablan de una conducta culturalmente abnegada, reforzada por la aceptación social. Por lo anterior a este factor ha sido llamado "Abnegación centrada en la conducta social".

En el Factor III se observan 5 variables con carga factorial mayor a 0.43. Por el contenido de los reactivos, el Factor III es una variable que se ha llamado "Abnegación sensitiva o cautela".

III.5. DIFERENCIAS POR EDAD, SEXO, ESTADO CIVIL, NUMERO DE HERMANOS, LUGAR QUE SE OCUPA ENTRE LOS HERMANOS, OCUPACION, ESCOLARIDAD Y NUMERO DE HIJOS.

Para probar la hipótesis relacionadas con los efectos de las variables: "edad", "sexo", "estado civil", "número de hermanos", "lugar entre los hermanos", "ocupación", "escolaridad" y "número de hijos"; se realizaron Análisis de Varianza de una vía (ANOVA, one way), para cada una de las variables.

La variable edad, se componía de 4 variables:

	Cuadro 1.	
GRUPO	EDAD	N
1	14-20	227
2	21-26	208
3	27-36	202
4	37-71	313

La variable "sexo", se componía de 2 grupos: Masculino y Femenino.

Respecto a los resultados de la variable "sexo" se concluyó que:

En cuanto al "sexo" de la muestra total de hombres y de la muestra total de mujeres, no se encontraron diferencias significativas, tanto en la Escala Total como en cada uno de los tres Factores.

Respecto a los resultados de la variable "edad", se concluyó que:

En el Factor I, "Abnegación y familia"; la variable "edad" $\{F(3,640)=3.52;p=.01\}$ mostró diferencias significativas, resultando el grupo de 21 a 26 eños (M=1.63), más abnegado que los otros grupos de hombres; y el grupo de 14 a 20 años (M=1.65) más abnegado entre todos los grupos de mujeres. La Prueba de Scheffé hace notar que el grupo de 14 a 20 años (M=1.5946), difiere significativamente del grupo de 33 a 71 años (M=1.4765). (Tabla 5, Ver apéndice F)

Tabla 5

Se encontraron diferencias significativas por "edad" en el Factor II, "Abnegación Social" (F(3,640) = 5.69; p = .001). El resultado de la Prueba de Scheffé (F7.0879; p = .0001), denota que los grupos de 27 a 36 (M = 1.3675); y de 37 a 71 años (M = 1.3711) son diferentes significativamente del grupo de 14 a 20 años (M = 1.2063). (Tabla 5, Ver apéndice F)

Tabla 5

En el Factor III "Abnegación y cautela", se encontraron diferencias significativas en cuanto a la "edad" (F(3,640)=4.303;p=.005). El resultado de la Prueba de Scheffé indica (F4.4065;p=.004) que: el grupo de 27 a 36 años (M=1.7554); es

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA

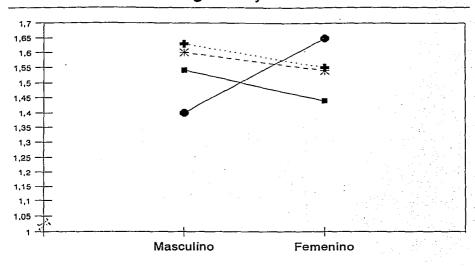

significativamente diferente del grupo de 37 a 71 años (M=1.7417). (Tabla 5, Ver apéndice F).

Tabla 5

Respecto a la variable "edad", en la Escala Total, no se encontraron diferencias significativas (F(3,640 = 1.354; p = .25)) entre los grupos estudiados.

En cuanto al efecto de la variable "edad", resultó una interacción de "edad" por "sexo" que es significativa en el Factor I, "Abnegación y Familia" (F(3,640)=3.52;p=.01), (Gráfica 9). Las mujeres son sistemáticamente más abnegadas que los hombres con excepción del grupo de 14 a 20 años donde se invierte, y son los hombres los más abnegados. El resultado de la Prueba de Scheffé (F3.1331;p=.02), indica que la interacción significativamente diferente la da el grupo de 14 a 20 años (M=1.5946). (Tabla 5, Ver apéndice F).

Edad por Sexo en el Factor I Abnegación y Familia

◆ 14 a 20 años ◆ 25 a 26 años ※ 27 a 36 años ◆ 37 a 73 años

Tabla 5

A continuación se describen en cuantos grupos se compusieron cada una de las variables:

Escolaridad:

	Cuadro 2.	
GRUPO.	ESCOLARIDAD	N
1	Primaria	204
2	Secundaria o Comercio	208
3	Preparatoria o Vocacional	183
4	Estudios Superiores	255

Estado civil:

Cuadro 3.		
GRUPO	ESTADO CIVIL	N
1	Solteros	409
2	Divorciados	30 *
3	Viudos	2 *
4	Casados	360
5	Unión Libre	5 *

^{*} Quedaron excluidos del análisis de varianza.

Lugar entre hermanos:

	Cuadro 4.	
GRUPO	LUGAR ENTRE HERMANOS	N
1	Primer Lugar	229
2	De Segundo a Tercero	288
3	De Cuarto a Noveno	289

. Ocupación:

	Cuadro 5.	
GRUPO	OCUPACION	N
1	Hogar	138
2	Trabajo	434
3	Estudiantes	278

Número de hermanos:

	Cuadro 6.		
GRUPO	NUMERO DE HERMANOS	N	
1	Cero Hermanos	50	
2	De 1 a 3 Hermanos	275	
3	De 4 a 9 Hermanos	525	

Número de hijos:

Cuadro 7.		
GRUPO	NUMERO DE HIJOS	N
1	Sin Hijos	418
2	De 1 a 3 Hijos	309
3	De 4 a 9 Hijos	123

En cuanto a la variable "Estado Civil", se encontraron diferencias significativas en el Factor I, "Abnegación y Familia" (F(1,800)=59.751;p=.000); Los casados (M=1.69), resultaron más abnegados que los solteros (M=1.47).

En el Factor II, "Abnegación Social", en la variable "Estado Civil", se encontraron diferencias significativas (F(1,800)=8.979;p=.003). Resultaron los casados (M=1.25), menos abnegados que los solteros (M=1.34).

En el Factor III, "Abnegación y Cautela", no se encontraron diferencias significativas, entre los diferentes grupos que conforman la variable "Estado Civil", (F(1,800) = .242;p = .623).

En la Escala Total de la variable "Estado Civil", se encontraron diferencias significativas, (F(1,800) = 11.749;p = .001). Resultaron los casados (M = 1.56), más abnegados que los solteros (M = 1.48). Los resultados de la Prueba de Scheffé, no arrojaron diferencias significativas entre los grupo de solteros y casados.

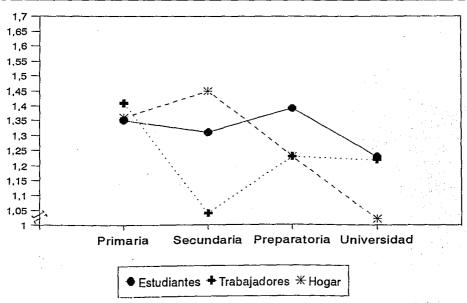
Respecto a la variable "Escolaridad", en el Factor I, "Abnegación y Familia", hubo diferencias significativas tanto en el análisis de varianza (F(2,838)=20.71;p=.000), como en los resultdos de la Prueba Scheffé. El grupo con sólo secundaria (M=1.4840), difiere de los grupos con sólo preparatoria (M=1.6035) y universidad (M=1.6270). (Tabla 6, Ver apéndice F)

Tabla 6

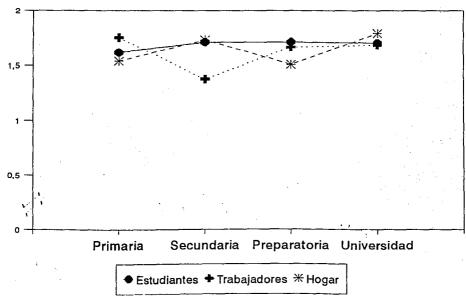
En el Factor II, "Abnegación social", se encontraron diferencias significativas en la variable "Escolaridad", (F(2,838) = 2.600;p = .04).

La Prueba Scheffé, en esta faceta resultó que el grupo universitario (M = 1.2196), difiere significativamente de los grupos con sólo primaria (M = 1.3578) y con sólo secundaria (M = 1.3333). (Tabla 6, Ver apéndice F)

Tabla 6


En el Factor II, "Abnegación Social", resultó una interacción de "Ocupación" por "Escolaridad" (Gráfica 10). En esta interacción, se encuentra que los sujetos con sólo primaria, sin importar a lo que se dediquen, son los menos abnegados; y el grupo que se dedica al hogar con universidad, resultó más abnegado; seguidos de los grupos que trabajan con sólo secundaria.

En el Factor III, "Abnegación y cautela", resultó una interacción de las variables "Ocupación" por "Escolaridad" (Gráfica 11). Los trabajadores con sólo secundaria resultaron los más abnegados; y las mujeres con grado universitario dedicadas al hogar resultaron las menos abnegadas.


En la variable "Ocupación", se encontraron diferencias significativas en el Factor I, "Abnegación y Familia", (F(2,838) = 20.71;p = .000);

En la variable "Ocupación" de la Escala Total (F(2,838) = 20.71;p=.000), resultaron diferenciassignificativas. Los sujetos dedicados al trabajo (M=1.70), se muestran más abnegados, y el grupo menos abnegado es el dedicado al hogar (M=1.40). La Prueba de Scheffé en esta faceta (F29.0574;p=.0000), denota que el grupo

Ocupación por Escolaridad en el Factor II Abnegación Social

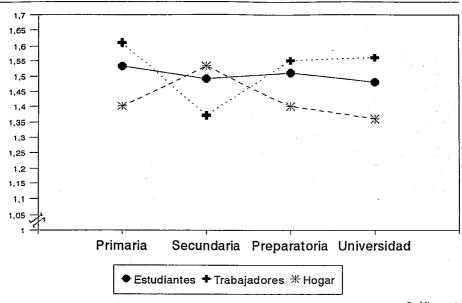
Ocupación por Escolaridad en el Factor III Abnegación y Cautela

dedicado al hogar (M=1.3953), difiere significativamente con los grupos de trabajadores (M=1.7002), y de estudiantes (M=1.5261). (Tabla 7. Ver apéndice F)

Tabla 7

En el Factor II, "Abnegación Social", se encontraron diferencias significativas en la variable "Ocupación" (F(3,838) = 2,699;p = .04). Los resultados de la Prueba de Scheffé en esta faceta (F5.459;p = .004) resulta que el grupo de estudiantes (M = 1.3130) y el grupo dedicado al hogar (M = 1.3623), difieren significativamente del grupo de trabajadores (M = 1.2362) (Tabla 7. Ver apéndice F)

Tabla 7


En el Factor III de la variable "Ocupación" no hubo diferencias significativas entre los grupos (F(3,838) = 2.41;p = .06)

En la Escala Total, se encontraron diferencias significativas, en la variable "Ocupación" (F(1,800) = 11.749;p = .001). Los resultados de la Prueba de Scheffé (F7.0733;p = .0009), indican que el grupo dedicado al hogar (M = 1.4438), difiere significativamente con el grupo de trabajadores (M = 1.5561). Resultando el grupo dedicado al hogar más abnegado. (Tabla 7. Ver apéndice F)

Tabla 7

Existe una interacción entre las variables "Ocupación" y "Escolaridad" en el Factor III, "Abnegacion y Cautela", (Gráfica 11). Existe una segunda interacción de las variables "Ocupación y "Escolaridad", en la Escala Total (F(6,838) = 2.132;p = .04), (Gráfica 12).

Ocupación por Escolaridad en el Factor Total Escala Total

En cuanto a la variable "Número de hijos", resultaron diferencias significativas en el Factor I, "Abnegaión y Familia" (F(2,841)=34.61;p=.000). Los sujetos que tienen hijos (M=1.45), son menos abnegados que los sujetos que no tiene hijos (M=1.68). La Prueba de Scheffé indica en esta faceta (F35.3082;p=.0000), que los grupos de 1 o más hijos (M=1.4466), difieren significativamente del grupo que no tiene hijos (M01.6808); resultando más abnegado el grupo sin hijos. (Tabla 8, Ver apéndice F)

Tabla 8

La variable "Número de hijos" en el Factor II, "Abnegación Social", (F(2,841) = 3.09;p = .04), resultó con diferencias significativas. A menor "Número de hijos" se es menos abnegado. La Prueba de Scheffé indica (F3.3485;p=.03), que el grupo que no tiene hijos (M=1.2612), difiere significativamente con el grupo que tiene de 1 a 3 hijos (M=1.3376). Resulta más abnegado el grupo con hijos. (Tabla 8, Ver apéndice F).

Tabla 8

En el Factor III, "Abnegación y cautela", la variable "Número de hijos" no resultó con diferencias significativas. (F(2,841) = 2.28; p = .10).

En la Escala Total de la variable "Número de hijos", se encontraron diferencias significativas (F(2,841)=10.658;p=.000). La Prueba de Scheffé (F10.7523;p=.0000), hace notar que los grupos que tienen hijos (M=1.4447), difieren significativamente con el grupo que no los tiene (M=1.5571). Resultan más abnegados los que no tienen hijos. (Tabla 8. Ver apéndice F)

Tabla 8

Respecto a los resultados de los análisis de varianza, las variables:
"Número de hermanos" y "Lugar que se ocupa entre los hermanos", no

mostraron diferencias significativas, tanto en la Escala Total como en cada uno de los tres Factores.

CAPITULO IV. ANALISIS E INTERPRETACION DE LOS RESULTADOS.

Esta investigación ha tenido como objeto principal, crear una escala para medir abnegación en la población adulta de la Ciudad de México, que tuviera confiabilidad y validez suficientes; para así proponer a la Etnopsicología y a los estudiosos de la Psicología Transcultural, un instrumento con calidad psicométrica.

Los resultados mostraron que la escala sí reune los requisitos de confiabilidad y validez en la medida de lo requerido por lo que se propone como una escala capaz de medir la conducta de "abnegación".

Se inició este estudio, sometiendo a prueba 85 reactivos; y después de un proceso psicométrico muy cuidadoso, quedaron 20 reactivos, conformándose la escala final.

a) La confiabilidad de la escala, se obtuvo con el coeficiente Cronbach, arrojando un valor de .80; es decir, la escala posee congruencia interna entre los reactivos. Esta confiabilidad resultó similar a la obtenida por Avendaño y Díaz-Guerrero (1990), que fué de .80; lo cual demuestra la confiabilidad de ambos instrumentos.

b) La validez de la escala obtenida, en sus diferentes procedimientos fueron positivos. La validez de Criterio arrojó 67 reactivos que discriminaron entre los sujetos abnegados y no abnegados. El primer requisito de un reactivo para formar parte de la escala final, fue que demostrara diferenciar entre abnegado y el no abnegado; así se llevó a cabo un Análisis Factorial sobre una matriz de correlaciones de 67 reactivos.

Los reactivos que no discriminaron, fueron 18 (Ver apéndice G), porque no fueron sensibles, y no diferenciaron entre la abnegación y la no abnegación, pudiéndose afirmar que probablemente sean características de la muestra. La mediana de los 67 reactivos, fue significativamente mayor en el grupo abnegado, de lo que se infiere que son distintos los grupos abnegados y no abnegados. Esto significa que tiene Validez de Criterio.

La validez de Constructo, se obtuvo a través del Análisis Factorial cuyo método fué de componentes principales con iteración (PA2), con rotación Varimax, que confirmó la existencia de tres factores importantes: Tres grupos de reactivos, que en total sumaron 20, y determinaron a la abnegación, de acuerdo a las características de la escala. El primer grupo de reactivos lo formaron 9, el segundo 6 y el tercer grupo 5. Estos reactivos cubren las exigencias psicométricas, compartiendo buena comunalidad y buena varianza, con cargas mayores a .40. Con estos reactivos se conformó la escala final que este estudio presenta. (Ver apéndice C).

Es probable que el descubrimiento más importante de la presente investigación, sea el de los Factores I y III; tales factores vienen a ser una contribución al esclarecimiento de la predisposición al comportamiento llamado abnegación. Los que trabajan en esta compleja área de la abnegación en el mexicano, parecen ser consistentes entre sí. Validos de la definición operacional de la "abnegación", en la elaboración de los 85 reactivos originales, intervinieron varios maestros y estudiantes de la Facultad de Psicología de la U.N.A.M. La variedad de conceptos y

situaciones para ilustrar la disposición a la abnegación fueron tan variados, que en el análisis factorial inicial se obtuvieron 20 factores diferentes. Sin embargo, lo que viene a ser ahora crucialmente importante, es, que de toda esa variedad cognoscitiva superior, se derivan los tres primeros factores con la mayor parte de la varianza total; fueron: a) el factor de abnegación centrado en la familia; b) el factor de abnegación centrado en la familia; b) el factor de abnegación sensitiva o de cautela.

El primer estudio (Avendaño y Díaz-Guerrero, 1990) se realizó con base en la definición conceptual de abnegación, se hizo con 64 reactivos de elección forzada, los que fueron desarrollados exclusivamente por los dos autores; tal definición es la misma que la utilizada en este estudio. El propósito fue presentar en los reactivos situaciones conductuales reales, en las cuales los sujetos optaran por conductas de abnegación concordantes con la definición planteada o bien que demostraran un comportamiento de autoafirmación. Tratándose de un rasgo de la personalidad en el que probablemente domina la Enculturación en la dialéctica cultura-contracultura, se eliminaron aquellos reactivos que

presentaron más del 83% de respuestas ante una opción. Así se eliminaron 23 reactivos. Los demás, en promedio dieron cerca del 50% de frecuencia en cada opcion. El Análisis Factorial, en aquella ocasión (Avendaño y Díaz-Guerrero, 1990), fue del mismo tipo, que el usado en la presente investigación. En aquel estudio se encontraron cuatro factores decisivos, con Eigen values por arriba del 1 que explicaban el 60% de la varianza. Esta abundante "pesca de varianza" probablemente se debió al hecho de que sólo fueron dos personas las que trabajaron en la operacionalización de la definición conceptual original. El primer factor decisivo fue denominado "Abnegación Personal"; el segundo "Abnegación Social"; el tercero "Abnegación y Salud"; y el cuarto "Abnegación Existencial". La confiabilidad para el primer factor fué .81; para el segundo .71; el tercero .69; y el cuarto .65. La confiabilidad de la escala final fue superior a .80. En el presente estudio, el análisis psicométrico dió como resultado que el primer y más importante factor fuese de "Abnegación centrada en la Familia". Esto rebasa vdifiere del resultado del estudio anterior en el que el factor más importante resultaba estar centrado en la "Abnegación Individual". Una escala polifacética de la abnegación no puede dejar de lado en México a la "abnegación por la

familia". Es importante anotar aquí, que en su reciente disertación doctoral, Rosario Silva Arciniega (1992), descubriera un importante factor centrado en la familia, cuando su esfuerzo era el de descubrir la identidad psicosocial del estudiante preparatoriano.

El tercer Factor, "Abnegación sensitiva o cautela", que en este estudio tuvo importancia, no apareció en el estudio anterior, en donde no se consideraron situaciones conductuales, en donde la cautela fuese lo importante. Esta es también una importante aportación al estudio de la abnegación. Es interesante hacer referencia al hecho de que el tercer factor de la "Filosofía de Vida" de Díaz-Guerrero e Iscoe (1984), sea precisamente el de "cautela vs. audacia". Esto viene a confirmar que en la cultura mexicana existe coherencia entre rasgos de personalidad, y las dimensiones culturales, o como diría la Dra. Isabel Reyes Lagunes: "los niños integran la cultura desde el pecho de sus madres".

Todo lo anterior indica que si bien se tiene una escala de abnegación refinadamente construida, ésta se limita, desde el punto de vista psicológico a tres importantes facetas del fenómeno ya mencionadas. A

saber la disposición conductual de que los otros sean primero, o a sacrificarse en su beneficio, que parece ser un aspecto básico en la psicología de los mexicanos.

c) ¿Por qué no hay diferencias significativas entre hombres y mujeres en las respuestas de abnegación, tanto en la escala final y en cada uno de los factores? Los resultados a la vista no permiten contestar esta pregunta, sólo se puede observar que se encontraron diferencias, y esos resultados parecen coincidir con Pérez-Lagunas (1990), la cual plantea que todos los sujetos de su estudio están de acuerdo con las premisas de abnegación observando que los hombres de clase socioeconómica baja perciben a la abnegación como privativa de ambos sexos.

En el Factor I, "Abnegación y Familia", se encontró que las mujeres respondieron de manera más "abnegada" que los hombres; son más abnegadas que los hombres, con excepción del grupo de mujeres de 14 a 20 años, en donde los hombres se m estraron más "abnegados". Esto concuerda con los hallazgos del estudio experimental realizado por

Avendaño y Díaz-Guerrero, (1992, p.18), donde se presentan resultados similares; los jóvenes se mostraron más "abnegados" que las mujeres; quizás se deba entender esto en términos de socialización. En las instancias de la cultura en que se le pide a la mujer ser abnegada, en ocasiones la mujer de esta etapa de edades se opone al mandato cultural; o como dice Gómez Robleda (1962, p.61), "el hecho de vivir simplemente, o más concretamente, porque el tiempo transcurre, cambia al hombre, cambia al medio...". Los grupos de mujeres con edad mayor salieron abnegadas en la presente investigación.

En el Factor II, "Abnegación Social", el grupo de 14 a 20 años, resultó significativamente diferente a los grupos de 27 a 71 años. Los jóvenes resultaron menos abnegados. ¿Será que los jóvenes se deben de adaptar con más dificultad a las normas del grupo? Se puede inferir que para los jóvenes es trabajoso integrarse al medio cultural adulto, quizás por carecer de herramientas del aprendizaje para lograrlo. En de 14 a 20 años, el caso de los varones, probablemente la tradición cultural no les permite expresarse. En esta etapa adolescente quizás existan marcadas diferencias en los papeles que deben desempeñar ambos géneros. Las

mujeres de la presente investigación parecen presentar una conducta de contra-cultura. Pero como lo señalaron Avendaño y Díaz-Guerrero (1992, p.17), ellas podrían parecer menos abnegadas en su "rol" o papel, porque ellas esperan ser protegidas por su medio, especialmente de los varones de su misma edad.

En el Factor III, "Abnegación y Cautela", el grupo de 27 a 37 años resultó significativamente diferente al grupo de 37 a 71. En este factor se denota que a mayor edad se tiende a un conportamiento más abnegado. ¿Significará esto que a mayor edad el individuo se va haciendo más tolerante y más amoroso?

Se debe hacer notar que cuando se analizan los resultados globales de la escala total, todos los sujetos salen "abnegados". ¿Qué sucede con la abnegación en las diferentes épocas de la vida dentro de una banda promedio? Estos resultados parecen indicar que a mayor edad mayor probabilidad de ser abnegados. ¿Será que la proximidad al adiós a la vida, vuelve más abnegada a la gente? Los resultados de esta investigación apuntan en sentido positivo.

- d) ¿Influye en el comportamiento abnegado el "lugar que se ocupa entre los hermanos", y el "número de hermanos"? Se puede inferir a la luz de esta investigación que cuando un mexicano, como los de la muestra estudiada se abnega; no lo hace en función del lugar que ocupa entre sus hermanos, ni en función del número de ellos.
- e) Respecto a la variable "Estado civil", ¿Por qué los casados resultaron más abnegados que los solteros en el Factor I "Abnegación y Familia". ¿Será porque los solteros carecen de una propía? ¿Requerirá una persona de más amor y afecto en la convivencia para poder ser abnegado?

En el Factor II, "Abnegación Social", los casados resultaron menos abnegados que los solteros. ¿Será que los solteros fingen más en el comportamiento social convencional? Esta comparación resultó significativa a nível global. Es decir que resulta posible diferenciar con esta escala la tendencia a la respuesta abnegada entre solteros y casados.

f) La comparación en función de la variable "ocupación", se observa

que en el Factor I, "Abnegación y Familia", el grupo trabajador resultó más abnegado que el grupo dedicado al hogar. ¿Será porque la socialización recibida durante la infancia, crea un patrón de conducta imborrable y se trabaja para la familia?

En este factor también se observa que el grupo de trabajadores difieren significativamente del grupo de estudiantes. ¿Será posible inferir que la abnegación es una característica de ambos grupos?

g) En cuanto a la variable "escolaridad" en el Factor I, "Abnegación y Familia", el grupo de Secundaria difirió significativamente de los grupos de Preparatoria y Universidad, mostrándose los de Secundaria como menos abnegados. Quizás el grupo dentro de un ámbito escolar apenas comienzan a autoafirmarse. Se puede inferir que el comportamiento de abnegación es una característica del adulto maduro, observando que el estudiante demanda ser protegido. Como el grupo de mujeres dedicadas al hogar en el Factor I, "Abnegación y familia", anteriormente citado.

En el Factor II,"Abnegación Social", se encontraron diferencias

significativas, entre el grupo universitario que resultó el menos abnegado de los grupos con primaria y secundaria. En este Factor se presenta una interacción entre las variables "Ocupación" por "Escolaridad". Los sujetos con sólo primaria sin importar a lo que se dediquen, resultaron los menos "abnegados". En tanto que el grupo con nivel universitario (predominantemente femenino) que se dedica al hogar, resultó ser el más "abnegado". Ambos difieren significativamente de los grupos con sólo secundaria y con sólo primaria. En la Escala Total, dentro de esta interacción, se repite que el grupo más "abnegado" es el universitario dedicado al hogar, y el menos "abnegado" es el grupo con sólo primaria. ¿Se deberá esto al nivel de elaboración cognoscitiva? La respuesta parece ser positiva ya que las personas con nivel de estudios superiores, aparte la madurez que proporciona el estudio, no aceptan aue tienen mecanicamente los valores culturales; pero un valor una vez cuestionado, cuando es aceptado es más profundo, lo hacen con más fuerza. En este Factor, la interacción entre "Ocupación" y "Escolaridad", muestra que el nivel educativo no es una variable determinante de conducta "abnegada". Es decir aue los estudiantes responden como estudiantes, independientemente de ser de primaria o de secundaria; tal vez sea porque el estudiante depende de su núcleo familiar.

h) En el Factor III, "Abnegación y cautela", resultó una interacción de "Ocupación" por "Escolaridad". El grupo que trabaja con sólo secundaria resultó más "abnegado" que el grupo con nivel universitario dedicado al hogar. El grupo universitario resultó el menos "abnegado". De esto se deduce la hipótesis de que los resultados de esta interacción, corroboran la interacción del Factor II, aquí se nota nuevamente como el nivel cognoscitivo las hace tener mayor cautela y sensitivas para "introyectar" un valor, ya que lo pasan por un tamiz de crítica.

i) En cuanto a la variable "Número de Hijos" en el Factor I, "Abnegación y Familia", no parece ser determinanate de la proclividad a dar respuestas "abnegadas". Se demostró que quienes tienen hijos dieron respuestas "abnegadas", a diferencia de los que no los tienen. ¿Podría ser que la carga de responsabilidad que tienen los sujetos con muchos hijos, los hagan menos "abnegados" en esta faceta?

En el Factor II, "Abnegación Social", el grupo que no tiene hijos se

mostró diferente en forma significativa del grupo con 1 o más hijos. Este último grupo resultó más abnegado. ¿Podría ser que los que tienen la responsabilidad de criar una prole han aprendido a ser más "abnegados", de las personas independientes que sólo deben preocuparse por si mismos?.

En todo lo anterior se han planteado en forma de preguntas varias hipótesis que podrían estar sujetas a prueba en estudios posteriores. Como esta investigación lo señala, definitivamente existe un comportamiento de "abriegación" en la cultura mexicana de la Ciudad de México. O como dice Díaz-Guerrero: "...esta cultura es de amor". (1990)

CAPITULO V. SUMARIO Y CONCLUSIONES

Este estudio representa un esfuerzo por comprender el rasgo de "abnegación", en una muestra de jóvenes y adultos de la Ciudad de México.

El interés por conocer y apreciar más las características de personalidad que se le atribuyen al mexicano, han llevado a la construcción de esta escala. Estudios anteriores sobre la conducta del mexicano, resultaron tener relación con el tipo de comportamiento llamado de "abnegación".

Los resultados de las acciones que se llevaron a cabo demostraron que esta escala reúne los requisitos de confiabilidad y validez en una medida conveniente, por lo que se le puede proponer como una escala capaz de medir la conducta de "abnegación".

Después de un proceso psicométrico cuidadoso de 85 reactivos, mismos que después se redujeron a 20, se conformó la escala final.

Se describieron tres facetas de la conducta de "abnegación": 1) en lo familiar; 2) en lo social; y 3) la relacionada con la cautela o "sensitiva".

Los detalles principales del estudio se anotan a continuación:

- a) El nivel de confiabilidad de la escala, se obtuvo con el coeficiente de Cronbach, arrojando éste un valor de .80. Es decir que la escala posee amplia congruencia interna entre sus reactivos.
- b) El nivel de validez de la escala fué obtenida con diferentes procedimientos, y todos mostraron resultados positivos.
- c) Los factores "Abnegación y familia" y "Abnegación sensitiva o cautela" contribuyen para esclarecer la predisposición al comportamiento llamado "abnegación".
- d) Se encontró que las mujeres respondieron de manera más "abnegada" que los hombres, con excepción del grupo de mujeres de 14
 a 20 años, en el ámbito familiar.

- e) Los jóvenes de 14 a 20 años resultaron los menos "abnegados",
 en el ámbito social.
 - f) A mayor edad se tiende a un comportamiento más "abnegado".
- g) Dentro del ámbito familiar y a nivel global, los casados resultaron más "abnegados" que los solteros, sólo en el ámbito social hubo diferencias.
- h) En función de la variable "ocupación", se observó que en el ámbito familiar, el grupo trabajador resultó el más "abnegado"
- i) En función de la variable "escolaridad", el grupo con sólo
 Secundaria es el menos "abnegado".
- j) En el ámbito social, los grupos con sólo primaria, sin importar a lo que se dediquen son los menos "abnegados", en tanto el grupo universitario, predominantemente femenino que se dedica el hogar resultó el más "abnegado".

- k) En el factor de "abnegación y cautela o sensitiva", el grupo universitario dedicado al hogar resultó el menos "abnegado".
- I) Respecto a la "abnegación y familia", se demostró que quienes "tienen hijos", responden con proclividad a la "abnegación".

Para comprender mejor esta conducta, se consideró al contexto sociocultural, ya que no se puede dejar a un lado la cultura que modifica las diferentes formas de responder entre sus miembros. La cultura crea un código ético, con el fin de convivir en paz.

El hallazgo del rasgo de "abnegación", es lo importante de la investigación, aún cuando el origen de esta conducta sea para la autora, una conducta que sirve para reducir la propia angustia e incrementar el propio bienestar, ya que el efecto de "abnegarse" es recompensada de manera intrínseca.

A la pregunta de: ¿Por qué en México se presenta el rasgo de "abnegación"? quizás se pueda responder a manera de hipotésis, recordando como en la época pre-hispánica los sacrificios y ayunos eran para toda la población incluyendo a los niños, además de tomar en cuenta los consejos de la madre a su hija y del padre a su hijo, se hace notar que había un código de respeto y consideración de las personas que los rodeaban.

Se podrían preguntar que después de esta época, vino una época colonial con una conquista española; también se pueden cuestionar como si este grupo conquistador autoritaio y agresivo impuso su religión. idioma, alimentos nuevos, etc. ¿Cómo es que el mexicano actual puede ser "abnegado"? La autora de este estudio supone a manera de hipótesis que habiendo españoles, criollos e indios; ocupaban servidumbre india tanto los españoles como los criollos. Entre los diversos tipos de servidumbre, existían "nanas", "pilmamas", "nodrizas", que de manera indiscutible debieron crear en sus cuidados algunos de los rasgos mexicanos. Ese tipo de tareas, como el ser nodriza o "pilmama" debieron haber generado afecto por ambas partes; a pesar de la dura discriminación que actualmente todavía se ve, se puede constatar en provincia la importancia de estas personas.

Nadie puede negar que el "ser educado" en México debe ser una persona cortés. ¿Qué es la cortesía?, sino una forma de conducta abnegada, donde el individuo cortés se reelega a segundo plano por darle "cortesmente" su sitio a otra persona. El "primero tú y después yo" es una conducta "abnegada". Si alguna persona "por pena", trata de no molestar y se convierte en una persona llamada "no asertiva", ese "no asertivo" es alguien que está considerando al otro y es parte de una ética normativa, que la autora llama conducta "abnegada", o "conducta de donación".

Aquí se corrobora lo dicho por Flores Galaz, Díaz Loving y Rivera Aragón (1987), cuando dicen que la "asertividad directa no es una conducta típica de los mexicanos".

Se sugiere que esta escala, pueda ser utilizada como medida de aquellas carreras que como enfermería se necesita el rasgo de "abnegación", podría servir de una buena selección.

Las incógnitas planteadas a lo largo del estudio, podrán servir de

base como hipótesis para nuevas investigaciones en grupos culturales diferentes al de la Ciudad de México, como serían los diferentes estilos de conductas originadas por ejemplo al ser provincianos, emigrados, fronterizos, etc.; instrumento de utilidad no sólo para la Psicología, sino también para campos afines interesados en el comportamiento de los diferentes grupos humanos.

REFERENCIAS

Aguilar Villalobos, J. (1988) Modos de acercamiento a la gente: Sumisión, culpa, autodivulgación y altruismo. Medición e Interrelaciones. En AMEPSO (Eds.) La Psicología Social en México. 2,88-93, México,D.F.

Allport, G, W. (1937). Personality: A Psychological Interpretation. Londres: Constable and Co.

Almeida, A. E., Rodríguez, G., Mercado, D., Rivero, M., y Sánchez de Almeida. M.E.(1983) Psychological characteristics of male and female students and the status of women in Mexico. International Journal of Psychology. (18),67-81.

Aronson, Elliot. (1972). The Social Animal. Cal. W.H. Freeman and Co. USA.

Aronson, Elliot. (1973). Readings about The Social Animal. Edited by Elliot Aronson. Cal. W.H. Freeman and Company. USA.

Avendaño, R., Díaz-Guerrero, R. (1990). El desarollo de una escala de abnegación para los mexicanos. En AMEPSO (Eds)La Psicología Social en México. 3,9-14, México, D.F.

Avendaño, R., Díaz-Guerrero, R.(1992). Redes Cognitivas de la Abnegación. En AMEPSO (Eds.) La Psicología Social en México.4,328-333, México.D.F.

Avendaño, R., Díaz-Guerrero, R. (1992). Estudio experimental de la abnegación. Revista Mexicana de Psicología.9(1),15-19, México, D.F.

Barnouw, Victor. (1963). Cultura y Personalidad. Buenos Aires: Edit. Troquel S.A.

Batson, C. Daniel. (1983). Sociobiology and the role of religion in promoting prosocial behavior: an alternative view. Journal of Personality and Social Psychology. 45(6),1380-1385.

Batson, C.D., Duncan, B., Ackerman, P., Buckley, T. y Birch, K. (1981). Is emphatic emotion a source of altruistic motivation? **Journal of Personality** and Social Psychology. 40,290-302.

Bernardez, T. (1983). Women in authority: Psychodinamic and Interactional aspects. Social Work with Groups 6, (3-4), 43-49.

Brown, C. O. (1982). Dwindling into a wife: A Jane Austen heroine grows up. International Journal of Women's Studies<u>5</u>,(5),460-469.

Brown, R. (1963). Social Psychology New York: Free Press.

Brown, T.C. (1983). Comprensión de otras culturas. México: Edit. Pax-Mex.

Chávez, E. A. (1901). Ensayo sobre los rasgos distintivos de la sensibilidad como factor del carácter mexicano. Revista de la Instrucción Pública Mexicana. 5,(2,3),58-64 y 88-93.

Child, I L. (1954) Socialization. En Lindzey, G. (Eds) Handbook of Social Psychology 2,655-692, Cambridge M A: Addison-Wesley.

Cialdini, R., Schaller, M., Houlihan, D., Arps, K. (1987). Empathy based helping: It is selflessly or selfishly motivated? Journal of Personality and Social Psychology,52,(4),749-758.

Cohen, Jozef. (1973). Psicología de los motivos sociales. México: Edit. Trillas

Diaz-Guerrero, R. (1965). Sociocultural and Psychodynamic processes in adolescent transition and mental health. En: Sherif and Sherif (Eds.) Problems of Youth. (129-152) Chicago: ALDINE

Díaz-Guerrero, R. (1967). Sociocultural premises, attitudes and crosscultural research. International Journal of Psychology 2, (2), 79-87.

Díaz-Guerrero, R. (1971). La enseñanza de la investigación psicológica en Latinoamerica. Un Paradigma. Revista Latinoamericana de Psicología. 3.(1),5-36.

Díaz-Guerrero, R. (1972). Una escala factorial de premisas histórico-socioculturales de la familia mexicana. Revista Interamericana de Psicología Social. 6,(3-4),235-244.

Díaz-Guerrero, R. (1972a). Hacia una teoría histórico-bio-psico-sociocultural del comportamiento humano. México: Edit. Trillas.

Díaz-Guerrero, R. (1972b). Una Escala factorial de premisas históricosocioculturales de la familia mexicana. Revista Interamericana de Psicología. 6,235-244. Díaz-Guerrero, R. (1974). La mujer y las premisas histórico-socioculturales de la familia mexicana. Revista Latinoamericana de Psicología. 1,(1),7-16.

Díaz-Guerrero, R. (1977). A Mexican Psychology. American Psychologist. 32,(1),934-944.

Díaz-Guerrero, R. (1979). Origines de la personnalité humaine et des systemes sociaux. Revue de Psychologie Applique. 29,(2),139-152.

Díaz-Guerrero, R. (1980). The Culture-Counterculture Theoretical Approach to Human and Social System Development. The case of mothers in 4 Mexican subcultures. Proceedings in the XXII Congress of Psychology. Leipzig 55-60.

Díaz-Guerrero, R. (1981). El enfoque cultura-contracultura del desarrollo humano y social: El caso de las madres en cuatro subculturas mexicanas. Revista de la Asociación Latinoamericana de Psicología Social 1,(1),75-92.

Díaz-Guerrero, R. (1982). Psicología del Mexicano. 4a. Ed. México: Edit. Trillas.

Díaz-Guerrero, R. (1982). The Psychology of the historic-Sociocultural premises. I. Spanish Language Psychology. 2,283-410.

Díaz-Guerrero, R. (1984). La Psicología de los Mexicanos. Un Paradigma. Revista Mexicana de Psicología 1.(2),95-101.

Díaz-Guerrero, R. (1986). Hacia una Etnopsicología. En SOMEPSO (Eds.) La Psicología Social en México.1,5-9, México.D.F.

Díaz-Guerrero, R. (1986). Historia-Socio-cultura y personalidad. Definición y características de los factores en la familia mexicana. Revista de Psicología Social y Personalidad. 2, (1), 15-42.

Díaz-Guerrero, R. (1986). El ecosistema sociocultural y la calidad de vida. México: Edit. Trillas.

Díaz-Guerrero, R. (1987). Historical Sociocultural Premises and Ethnic Socialization. En: Phinne J.S. y Rotheram, M.J. (Eds.) Children's Ethnic Socialization Sage Publications (239-250). USA.

Díaz-Guerrero, R. (1989). Una Etnopsicología mexicana. Ciencia y Desarrollo. Consejo Nacional de Ciencia y Tecnología. <u>15</u>,(86),69-85.

Díaz-Guerrero, R. (1992). El Desarrollo de la Personalidad en México. Implicaciones para las teorías de la Personalidad. Investigación Psicológica. 11.(1),81-99.

Díaz-Guerrero, R. y Salas, M. (1975). El Diferencial Semántico del idioma español. México: Edit. Trillas.

Díaz-Guerrero, R. e Iscoe, I. (1984). El impacto de la cultura lberoamericana tradicional y del estrés económico sobre la salud mental y física: Instrumentación y potencial para la investigación transcultural. I. Revista Latinoamericana de Psicología 16,(12),167-211.

Díaz-Guerrero, R. y Díaz-Loving, R. (1992). La Etnopsicología Mexicana, el centro de la corriente. La Revista de Cultura Psicológica. 1,(1),41-45.

Díaz-Loving, R. (1988). Conductas Prosociales: Efectos del Estado de Animo y el tipo de petición de ayuda. En AMEPSO (Eds.) La Psicología Social en México.2,82-87, México.D.F.

Díaz-Loving, R., Díaz-Guerrero, R., Helmereich, R.L., Spence, I.T. (1981). Comparación Transcultural y Análisis Psicométrico de una medida de rasgos masculinos (instrumentales), y femeninos (expresivos). Revista de la Asociación Latinoamericana de Psicología Social. 1,3-37.

Diccionario de Sinónimos y Antónimos (1986). México: Ediciones Larousse S. A. de C. V.

Enciclopedia de la Biblia. (1969). Primer Volumen A-B Barcelona: Ediciones Garriga S.A.

Enciclopedia Universal Ilustrada Europeo-Americana (1929). Barcelona: Edit. José Espasa.

Encyclopedia Universalis (1985). Bersani, J., Schweizer, H. Edit. Encyclopedia Universalis Editeur à Paris. (107).

Fernández-Pardo, G. (1990). Apuntes de clase. Facultad de Psicología. UNAM.

Flores Galaz, M., Díaz Loving, R. y Rivera Aragón, S. (1988). Asertividad - Agresividad y Conflicto en una muestra mexicana. En AMEPSO (Eds.) La Psicología Social en México 2,16-20, México, D.F.

Flores Galaz, M. (1992). Asertividad, Abnegación y Agresividad: Evaluación Semántica. En AMEPSO (Eds.) La Psicología Social en México. 4.303-308, México. D.F.

Freedman, J.L., Merrill, Carlsmith, J., Sears, D.O. (1974). Social Psychology. Prentice-Hall Inc. Englewood Cliffs New Yersey.

Gómez Robleda, J. (1962). Psicología del Mexicano. Instituto de Investigaciones Sociales. UNAM.

Herskovits, M.J. (1948). Man and his works: The Science of Cultural Anthropology. New York: Alfred A. Knopf.

Heszen.Klemens,I., Lapinska, E. (1983). Wplyw percepcji osoby pacjenta przez lekarza na przebieg kontaktu lekarz-pacjent./The physician's perception of the patient is personality and its influence on the course of the physician-patient rapport. Psichiatria Polska. 17,(4),321-328.

Holtzman, W. H., Díaz-Guerrero, R., Swartz, J. (1975) Personality Development in two cultures. Austin y London: University of Texas Press.

Holtzman, W.H., Díaz-Guerrero, R. y Swartz, J.D. (1977). Desarrollo de la personalidad en dos culturas. México: Edit. Trillas.

Holtzman, W. H., Díaz-Guerrero, R., Swartz, L., Lara Tapia, L., Laosa, M., Morales, M.L., Reyes Lagunes, I. y Witzke, D.B. (1975). Desarrollo de la personalidad en dos culturas: México y Estados Unidos. México: Edit. Trillas.

Kauffman, Duane. (1984). Altruism as (non) selfishness: A Christian view of prosocial behavior. Journal of Psychology and Christianity. 3,(3),50-57.

Kerlinger, F. N. (1975). Investigación del comportamiento. Técnica y Metodología. México: Edit. Interamericana.

Kerlinger, F. N. (1988) Investigación del comportamiento México: Edit. Mc Graw Hill.

Klineberg, O. (1963). Psicología Social. México: Edit. Fondo de Cultura Económica.

Klineberg, O. (1964). The Human Dimension in International Relations. New York, Holt Rinehart and Winston.

La Rosa, J. (1986). Escalas de locus de control y autoconcepto: Construcción y validación. Tesis de Doctorado. Facultad de Psicología. UNAM.

La Rosa, J. (1988). Locus de Control: Una Escala Multidimensional. Revista de Psicología Social y Personalidad. 4,(2),43.

La Rosa, J. y Díaz-Loving, R. (1988). Diferencial Semántico del autoconcepto en estudiantes. Revista de Psicología Social y Personalidad.4,39-58.

La Rosa, J. y Díaz-Loving, R. (1991). Evaluación del autoconcepto: Una escala multidimensional. Revista Latinoamericana de Psicología. 23,(1),15-33

Leonhard, Karl. (1983). Sektennesen, Gefolgschaftsinstinkt, Grenzen der antiautoritaren Erziehung./Sects, herd instinct and the limits of antiauthoritarian education. Nervenarzt. Jan. 54.(1),42-47.

Linton, R. (1945). The Cultural Background of Personality. New York: Appleton Century Crofts.

Melgoza, Enríquez, E. y Díaz-Guerrero. (1990). El desarrollo de una escala de flexibilidad en sujetos mexicanos. En AMEPSO (Eds.) La Psicología Social en México. 3,20-24, México, D.F.

Mercado Padilla,L. (1986). Factores de Personalidad y cultura que inciden en la decisión de pareja de planear la familia. En AMEPSO (Eds.) La Psicología Social en México. 1,251-256, México, D.F.

Pérez-Lagunas, E.R. (1990). Las Premisas Socioculturales y la Salud Mental en Estudiantes Preparatorianos. Tesis de Maestría en Psicología Social. Facultad de Psicología. UNAM.

Perlman, D. y Cozby, P.C. (1985). Psicología Social. México: Nueva Editorial Interamericana S.A. de C.V.

Ramos, S. (1938). El perfil del hombre y la cultura en México. México: Edit. P. Robredo.

Reidl, M. L. (1985). Diferencias Culturales y Sexuales en la pareja: celos y envidia. México-URSS. Tesis Maestría Psicología Social. Facultad de Psicología. UNAM.

Reyes-Lagunes, I. (1982). Actitudes de los maestros hacia la profesión magisterial y su contexto. Tesis de Doctorado. Facultad de Psicología. UNAM.

Rimland, Bernard. (1982). The Altruism Paradox. Southern Psychologist. 2,(1), 8-9.

Rivera Aragón, S. y Díaz Loving, R (1990). Celos y autoconcepto. En AMEPSO (Eds) La Psicología Social en México. 3,144-149.

Segall,M., Dasen,P.R., Berry,J.W., Poortinga,Y.H. (1990). Human Behavior in Global Perspective. Edit. Pergamon Press. Inc. USA.

Shalker, Clark and Karp. (1978) En Klineberg, O. (1963) Psicología Social. México: Fondo de Cultura Económica.

Shapiro, T. (1986). Nuclear conflict and the nuclear self. Psychoanalytic Inquiry. 6,(3),349-365.

Silva Arciniega, R. (1994). Escala de Identidad Psicosocial Emotiva para jóvenes preparatorianos. (EMIJ) de Rosario Silva. Tesis de Doctorado. Facultad de Psicología. UNAM.

Silva Arciniega, R. y Díaz-Guerrero, R. (1992). Premisas Socioculturales de Díaz-Guerrero aplicadas a estudiantes preparatorianos de la Ciudad de México en 1991. En AMEPSO (Eds.) La Psicología Social en México. 3,323-327, México, D.F.

Skinner, B.F. (1969). Ciencia y Conducta Humana. Barcelona: Editorial Fontanella, S.A.

Spielberger y Díaz-Guerrero, R. (1975). IDARE Inventario de Ansiedad: Rasgo y Estado. México: El Manual Moderno.

Tapp, Gunnrar y Keating (1985) En Perlman, D. y Cozby, P.C. (1985) Psicología Social, México: Nueva Edit. Interamericana.

Taylor, E. B. (1874). Primitive Culture. New York: Holt, Rinehart and Winston, Inc.

Teraoka, Takashi. (1982). Detection of the general tendency of responses in the matrix game situation: the construction of the "if-then Method" based upon a normative need model. Japanese Journal of Psychonomic Science. 1,(1),1-13.

The Compact Edition of the Oxford English Dictionary (1971)

The Harper Dictionary of Modern Thought (1977)

Thrustone, L.L. (1950) Implicaciones psicológicas del análisis factorial. Revista de Psicología General y Aplicada. <u>5</u>,18-33

Tyler, S.A. (Ed). (1969). Cognitive Anthropology. New York: Holt, Rinehart and Winston.

Valdés-Caraveo-Servin, J.L. y Gónzalez, C. (1990). Modernidad y estereotipo sexual en la maquila chihuahuense: Una comparación con bachilleres. En AMEPSO (Eds.) La Psicología Social en México. 3,25-28, México, D.F.

Valdés, J.L. y Reyes Lagunes, I. (1992). Las categorías semánticas y el autoconcepto. En AMEPSO (Eds.) La Psicología Social en México. 4,193-199, México, D.F.

Webster's New twentieth Century Dictionary. (1971). Ed. The World Publishing Cimpany. Cleveland and New York. (4).

Whittaker, J.O. (1979). La Psicología Social en el mundo de hoy. México: Edit. Trillas.

Zetlin, Andrea, G. (1989). Managing Conflict: Interactional Strategies of learning handicapped adolescent girls. Journal of Youth and Adolescence. 18,(3),263-272.

APENDICE A

APENDICE A

VERSION INICIAL DE LA ESCALA DE ABNEGACION PARA ADULTOS

Fecha————————————————————————————————————	
Grado máximo de estudios: Número de hijos:	
Número de hermanos: Lugar que ocupa entre los hermanos:	

INSTRUCCIONES

Cuando alguna pregunta se refiera a una situación que usted no ha experimentado o cuando no pueda recordar con exactitud, por favor tache la opción "?". Cuando lo que dice la pregunta sea verdadera para usted, tache la "V", y cuando sea falso tache la "F".

1Me gusta llevar el control de la TV.	V ? F
2Acepto escuchar la música que me disgusta	V?F
3Generalmente otros escogen las películas por mí	v?f
4Acepto sugerencias respecto a que ropa ponerme	V?F
5Empiezo a comer hasta que llegue mi pareja	V?F
6Aún estando enfermo(a) atiendo a mis hijos	V?F
7Me gusta que mi familia sea primero	V ? F V ? F
8Me gusta cuidar el sueño de mi familia	V ? F
9Mi deber es desvelarme por mis hijos	V ? F
10Me gusta trabajar de más si es por mi familia	v?F
11Cuando a mi familia le disgusta lo que cocino les	
preparo otra cosa	V ? F
12Me espero despierto(a) hasta que llegue mi pareja	V ? F V ? F
13Me apena acostarme sin haber terminado mi quehacer	11 2 0
14Me apena si tengo ropa sucia que lavar	V ? F V ? F V ? F V ? F
15Me gusta ayudarle a mi pareja para que no se canse	V ? F
16Aunque esté cansado(a) atiendo a mi familia	V?F
17La mejor comida es para mi familia	V?F
18Me cuesta trabajo aceptar mis errores	V ? P
19Trato de darle gusto a mi familia en todo	V ? F
20Me visto como le gusta a mi pareja	V?F
21Soy comprensivo(a)	v?ř
22Acepto disculpas	V?F
23Prefiero no tener sirvienta	V ? F
24Cocino al gusto de mi familia	V?F
25Generalmente soy atento(a)	V ? F
26Acepto las decisiones de mi familia	V ? F
27Por lo general soy amable	V ? F
28Usualmente soy abnegado(a)	V ? F
29Yo se esperar sin ponerme de mal humor	V ? F
30En mi garage tengo ocho autos propios	V ? F

31Gen	eralmente soy una persona sevicial	٧	?	F	
32Cas	i siempre soy cortés	v	?	F	
	una persona educada	٧	?	F	
34Se	puede decir que soy una persona sumisa	v	?	F	
	cuesta trabajo pedir perdón	٧	?	F	
	es difícil reclamarle a alguien		?		
	cuesta trbajo poner límites a las cosas	-			
	ituaciones	ν	?	F	
	eo con mi pareja porque no acepta lo que yo le dí	v	?	F	
	me reclaman sin razón prefiero callar		?		
	es difícil olvidar mis obligaciones y deberes		?		
	pto la cruz que me tocó llevar	v	?	Ē	
	interesa que los demás sean felices antes que yo		ż		
43Me			?		
	fiero comer después que mis hijos o mi pareja		?		
			?		
	cuesta trabajo decir NO		?		
	pto los errores ajenos sin quejarme	٧	ı	r	
	tico a las madres que pasean sin sus hijos, son		-	_	
mal		٧	?	r	
	to de cumplir mis obligaciones aunque esté		_		
	ermo(a)		?		
	e las provocaciones verbales prefiero callar		?		
	pto que la infidelidad matrimonial es inevitable		?		
	apena pedir lo que me falta		?		
	molesta poco tener que esperar		?		
	han dicho que soy abnegado(a)		?		
	es fácil esperar		?		
55Me	es fácil tenerle paciencia a la mayoría de la gente	V	?	F	
	fiero no preguntar adonde fué mi pareja		?		
57Pre	fiero callar cuando mi garage está ocupado		?		
	i siempre soy servicial		?		
	apena pedir permiso en mi trabajo	٧	?	F	
60Pre	fiero soportar a la enfermera grosera que				
arr	iesgarme a poner mi queja		?	F	
61Pre	fiero quedarme callado(a) cuando tengo poco gasto	٧	?	F	
62Ace	pto que mi esposo(a) salga sin mi	v	?	F	
63Me	enoja que mi esposo(a) vaya solo a lugares o				
esp	ectáculos de diversión	٧	?	F	
64Es	fácil aceptar que mi esposo(a) beba	v	?	F	
65Es	dificil aceptar que mi esposo(a) juegue por dinero	v	?	F	
	fiero quedarme callado(a) cuando alguien fuma				
	i alrededor	v	?	F	
	pto que mi novio(a) se lleve con amigos intimos	٠	٠	•	
	mismo sexo	17	?	F	
	novio(a) puede besar a sus amigas(o) delante de mi		?		
69Me			?		
	orto que una persona sea desatenta		?		
	familia es feliz aún cuando estoy enfermo(a)		?		
	lamo si pierden mi expediente		?		
	me pierden mis papeles, prefiero no reclamar	v		F	
	fiero pagar el aumento de los precios a reclamar	٧	r	r	
	testo, si un chofer de taxi no me deja donde se		2		
	pedi	V		F	
/051e	mpre me formo correctamente en la cola	٧	ī	г	

77Alego y me enojo si me hacen trampa	٧	?	F
78Cuando tengo relaciones sexuales, le doy gusti a mi			
pareja en todo		?	
79Me adelanto a los deseos sexuales de mi pareja	V	?	F
80Nunca me quedo callado(a), cuando lo que me hacen			
está mal		?	
81Sigo un tratamiento kargo aún cuando no me cura	٧	?	F
82Prefiero no reclamar si en un hospital me tratan			
con poco cuidado	v	?	F
83Se debe aceptar el mal humor de la pareja	v	?	F
84Acepto que me cambien una cita sin reclamar	v	?	F
85Una persona resignada es más valiosa que una que			
alega y discute	٧	?	F
86En boca cerrada no entran moscas	v	?	F

APENDICE B

VERSION PARCIAL DE LA ESCALA DE ABNEGACION PARA ADULTOS

Fecha	Sexo: MF-	- Edad:años.
Estado Civil:	-Ocupación:-	
Grado máximo de estudio		
Número de hijos:		
Número de hermanos:		
Lugar que ocupa entre l	os hermanos:-	

INSTRUCCIONES

Cuando alguna pregunta se refiera a una situación que usted no ha experimentado o cuando no pueda recordar con exactitud, por favor tache la opción "?".

favor tache la opción "?".

Cuando lo que dice la pregunta sea verdadera para usted, tache la "V", y cuando sea falso tache la "F".

3Generalmente otros escogen las películas por mí 4Acepto sugerencias respecto a que ropa ponerme V? F 5Me gusta que mi familia sea primero V? F 6Me gusta cuidar el sueño de mi familia V? F 7Me gusta trabajar de más si es por mi familia V? F 9Me apena acostarme sin haber terminado mi quehacer V? F 10Me apena si tengo ropa sucia que lavar V? F 11Me gusta ayudarle a mi pareja para que no se canse V? F 12Aunque esté cansado(a) atiendo a mi familia V? F 13La mejor comida es para mi familia V? F 14Me cuesta trabajo aceptar mis errores V? F 15Trato de darle gusto a mi familia V? F 17Soy comprensivo(a) V? F 18Acepto disculpas V? F 19Prefiero no tener sirvienta V? F 20Generalmente soy atento(a) V? F 21Acepto las decisiones de mi familia V? F 22Por lo general soy amable V? F 23Usualmente soy abnegado(a) V? F 24Yo se esperar sin ponerme de mal humor V? F 25Generalmente soy una persona servicial V? F 27Soy una persona educada V? F 28Se puede decir que soy una persona sumisa V? F 29Me cuesta trabajo pedir perdón V? F 20Me casta trabajo pedir perdón V? F	1Me gusta llevar el control de la TV. 2Acepto escuchar la música que me disgusta	V ? F V ? F
4Acepto sugerencias respecto a que ropa ponerme V? F 5Me gusta que mi familia sea primero V? F 6Me gusta cuidar el sueño de mi familia V? F 7Me gusta trabajar de más si es por mi familia V? F 8Me espero despierto (a) hasta que llegue mi pareja 9Me apena acostarme sin haber terminado mi quehacer V? F 10Me apena si tengo ropa sucia que lavar V? F 11Me gusta ayudarle a mi pareja para que no se canse 12Aunque esté cansado (a) atiendo a mi familia V? F 13La mejor comida es para mi familia V? F 13La mejor comida es para mi familia V? F 15Trato de darle gusto a mi familia V? F 16Me visto como le gusta a mi pareja V? F 17Soy comprensivo (a) V? F 18Acepto disculpas V? F 19Prefiero no tener sirvienta V? F 19Prefiero no tener sirvienta V? F 21Acepto las decisiones de mi familia V? F 22Por lo general soy amable V? F 23Usualmente soy abnegado (a) V? F 24Yo se esperar sin ponerme de mal humor V? F 25Generalmente soy una persona servicial V? F 27Soy una persona educada V? F 28Se puede decir que soy una persona sumisa V? F 29Me cuesta trabajo pedir perdón V? F 30Me es difícil reclamarle a alguien V? F		
5Me gusta que mi familia sea primero V ? F 6Me gusta cuidar el sueño de mi familia V ? F 7Me gusta trabajar de más si es por mi familia V ? F 8Me espero despierto(a) hasta que llegue mi pareja V ? F 9Me apena acostarme sin haber terminado mi quehacer V ? F 10Me apena si tengo ropa sucia que lavar V ? F 11Me gusta ayudarle a mi pareja para que no se canse V ? F 12Aunque esté cansado(a) atiendo a mi familia V ? F 13La mejor comida es para mi familia V ? F 13La mejor comida es para mi familia V ? F 15Trato de darle gusto a mi familia V ? F 16Me visto como le gusta a mi pareja V ? F 17Soy comprensivo(a) V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 29Me des dificil reclamarle a alguien V ? F		A . L
6Me gusta cuidar el sueño de mi familia V? F 7Me gusta trabajar de más si es por mi familia V? F 8Me espero despierto(a) hasta que llegue mi pareja V? F 9Me apena acostarme sin haber terminado mi quehacer V? F 10Me apena si tengo ropa sucia que lavar V? F 11Me gusta ayudarle a mi pareja para que no se canse V? F 12Aunque esté cansado(a) atiendo a mi familia V? F 13La mejor comida es para mi familia V? F 14Me cuesta trabajo aceptar mis errores V? F 15Trato de darle gusto a mi familia en todo V? F 15Trato de darle gusto a mi familia en todo V? F 16Me visto como le gusta a mi pareja V? F 18Acepto disculpas V? F 18Acepto disculpas V? F 19Prefiero no tener sirvienta V? F 20Generalmente soy atento(a) V? F 21Acepto las decisiones de mi familia V? F 22Por lo general soy amable V? F 23Usualmente soy abnegado(a) V? F 24Yo se esperar sin ponerme de mal humor V? F 25Generalmente soy una persona servicial V? F 27Soy una persona educada V? F 28Se puede decir que soy una persona sumisa V? F 29Me cuesta trabajo pedir perdón V? F 30Me es difícil reclamarle a alguien V? F		V : F
7Me gusta trabajar de más si es por mi familia V? F 8Me espero despierto (a) hasta que llegue mi pareja V? F 10Me apena acostarme sin haber terminado mi quehacer V? F 11Me gusta ayudarle a mi pareja para que no se canse V? F 12Aunque esté cansado(a) atiendo a mi familia V? F 13La mejor comida es para mi familia V? F 13La mejor comida es para mi familia V? F 13La mejor comida es para mi familia V? F 15Trato de darle gusto a mi familia V? F 16Me visto como le gusta a mi pareja V? F 18Acepto disculpas V? F 19Prefiero no tener sirvienta V? F 20Generalmente soy atento(a) V? F 21Acepto las decisiones de mi familia V? F 22Por lo general soy amable V? F 23Usualmente soy abnegado(a) V? F 25Generalmente soy una persona servicial V? F 25Generalmente soy una persona servicial V? F 27Soy una persona educada V? F 28Se puede decir que soy una persona sumisa V? F 29Me cuesta trabajo pedir perdón V? F 30Me es difícil reclamarle a alguien V? F		
8Me espero despierto(a) hasta que llegue mi pareja 9Me apena acostarme sin haber terminado mi quehacer 10Me apena si tengo ropa sucia que lavar 11Me gusta ayudarle a mi pareja para que no se canse 12Aunque esté cansado(a) atiendo a mi familia V? F 13La mejor comida es para mi familia V? F 14Me cuesta trabajo aceptar mis errores V? F 15Trato de darle gusto a mi familia v? F 16Me visto como le gusta a mi pareja v? F 17Soy comprensivo(a) V? F 18Acepto disculpas V? F 19Prefiero no tener sirvienta V? F 20Generalmente soy atento(a) V? F 21Acepto las decisiones de mi familia v? F 22Por lo general soy amable V? F 24Yo se esperar sin ponerme de mal humor V? F 25Generalmente soy una persona servicial V? F 27Soy una persona educada V? F 28Se puede decir que soy una persona sumisa V? F 29Me cuesta trabajo pedir perdón V? F 20Me es dificil reclamarle a alguien		V 1 F
9Me apena acostarme sin haber terminado mi quehacer V ? F 10Me apena si tengo ropa sucia que lavar V ? F 11Me gusta ayudarle a mi pareja para que no se canse V ? F 12Aunque esté cansado(a) atiendo a mi familia V ? F 13La mejor comida es para mi familia V ? F 14Me cuesta trabajo aceptar mis errores V ? F 15Trato de darle gusto a mi familia en todo V ? F 15Trato de darle gusto a mi familia en todo V ? F 16Me visto como le gusta a mi pareja V ? F 18Acepto disculpas V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		v r r
10Me apena si tengo ropa sucia que lavar 11Me gusta ayudarle a mi pareja para que no se canse 12Aunque esté cansado(a) atiendo a mi familia V? F 13La mejor comida es para mi familia V? F 14Me cuesta trabajo aceptar mis errores V? F 15Trato de darle gusto a mi familia en todo V? F 16Mc visto como le gusta a mi pareja V? F 17Soy comprensivo(a) V? F 18Acepto disculpas V? F 19Prefiero no tener sirvienta V? F 20Generalmente soy atento(a) V? F 21Acepto las decisiones de mi familia V? F 22Por lo general soy amable V? F 23Usualmente soy abnegado(a) V? F 25Generalmente soy una persona servicial V? F 25Generalmente soy una persona sumisa V? F 28Se puede decir que soy una persona sumisa V? F 29Me cuesta trabajo pedir perdón V? F 20Me es difícil reclamarle a alguien		
11Me gusta ayudarle a mi pareja para que no se canse V ? F 12Aunque esté cansado(a) atiendo a mi familia V ? F 13La mejor comida es para mi familia V ? F 14Me cuesta trabajo aceptar mis errores V ? F 15Trato de darle gusto a mi familia en todo V ? F 15Trato de darle gusto a mi familia en todo V ? F 17Soy comprensivo(a) V ? F 17Soy comprensivo(a) V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F		
12Aunque esté cansado(a) atiendo a mi familia V ? F 13La mejor comida es para mi familia V ? F 14Me cuesta trabajo aceptar mis errores V ? F 15Trato de darle gusto a mi familia en todo V ? F 15Me visto como le gusta a mi pareja V ? F 17Soy comprensivo(a) V ? F 18Acepto disculpas V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	10me apena si tengo ropa sucia que lavar	VIF
13La mejor comida es para mi familia V ? F 14Me cuesta trabajo aceptar mis errores V ? F 15Trato de darle gusto a mi familia en todo V ? F 16Me visto como le gusta a mi pareja V ? F 17Soy comprensivo(a) V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	11me gusta ayudarie a mi pareja para que no se canse	
14Me cuesta trabajo aceptar mis errores V ? F 15Trato de darle gusto a mi familia en todo V ? F 16Me visto como le gusta a mi pareja V ? F 17Soy comprensivo(a) V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		V ? F
15.—Trato de darle gusto a mi familia en todo 16.—Me visto como le gusta a mi pareja 17.—Soy comprensivo(a) 18.—Acepto disculpas 19.—Prefiero no tener sirvienta 20.—Generalmente soy atento(a) 21.—Acepto las decisiones de mi familia 22.—Por lo general soy amable 23.—Usualmente soy abnegado(a) 24.—Yo se esperar sin ponerme de mal humor 25.—Generalmente soy una persona servicial 27.—Soy una persona educada 28.—Se puede decir que soy una persona sumisa 29.—Me cuesta trabajo pedir perdón 30.—Me es dificil reclamarle a alguien V ? F		
16Mc visto como le gusta a mi pareja V ? F 17Soy comprensivo(a) V ? F 18Acepto disculpas V ? F 19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 23Usualmente soy abnegado(a) V ? F 25Generalmente soy una persona servicial V ? F 25Generalmente soy una persona servicial V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		V?F
17Soy comprensivo(a) V ? F		
18Acepto disculpas 19Prefiero no tener sirvienta 20Generalmente soy atento(a) 21Acepto las decisiones de mi familia 22Por lo general soy amable 23Usualmente soy abnegado(a) 24Yo se esperar sin ponerme de mal humor 25Generalmente soy una persona servicial 27Soy una persona educada 28Se puede decir que soy una persona sumisa 29Me cuesta trabajo pedir perdón 30Me es difícil reclamarle a alguien V ? F		V?F
19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		V ? F
19Prefiero no tener sirvienta V ? F 20Generalmente soy atento(a) V ? F 21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		V ? F
21Acepto las decisiones de mi familia V ? F 22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	19Prefiero no tener sirvienta	v?F
22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	20Generalmente soy atento(a)	v ? F
22Por lo general soy amable V ? F 23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	21Acepto las decisiones de mi familia	v?r
23Usualmente soy abnegado(a) V ? F 24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	22Por lo general soy amable	V ? F
24Yo se esperar sin ponerme de mal humor V ? F 25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F	23Usualmente soy abnegado(a)	V?F
25Generalmente soy una persona servicial V ? F 26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		V ? F
26Casi siempre soy cortés V ? F 27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		V?F
27Soy una persona educada V ? F 28Se puede decir que soy una persona sumisa V ? F 29Me cuesta trabajo pedir perdón V ? F 30Me es dificil reclamarle a alguien V ? F	26Casi siempre soy cortés	V?F
28Se puede decir que soy una persona sumisa V ? P 29Me cuesta trabajo pedir perdón V ? P 30Me es difícil reclamarle a alguien V ? F		
29Me cuesta trabajo pedir perdón V ? F 30Me es difícil reclamarle a alguien V ? F		
30Me es dificil reclamarle a alguien V ? F	29Me cuesta trabajo pedir perdón	
	30Me es dificil reclamarle a alguien	
31. The Cuesta tradato doner limites a las cosas	31Me cuesta trabajo poner limites a las cosas	
y situaciones V ? F		V ? F

32Peleo con mi pareja porque no acepta lo que yo le dí 33Si me reclaman sin razón prefiero callar 34Me es difícil olvidar mis obligaciones y deberes 35Acepto la cruz que me tocó llevar 36Me interesa que los demás sean felices antes que yo 37Me apena decir que no 38Prefiero comer después que mis hijos o mi pareja 39Me cuesta trabajo decir NO 40Acepto los errores ajenos sin quejarme	v v v v v v v v v v v v v v v v v v v	???????	FFFFFFFF
41Critico a las madres que pasean sin sus hijos, son malas	V	?	F
42Trato de cumplir mis obligaciones aunque esté enfermo(a) 43Ante las provocaciones verbales prefiero callar	v v		
44Acepto que la infidelidad matrimonial es inevitable 45Me apena pedir lo que me falta	V	?	F
46Me molesta poco tener que esperar 47Me han dicho que soy abnegado(a)	V V	?	F
48Me es fácil esperar 49Me es fácil tenerle paciencia a la mayoría de la gente 50Prefiero no preguntar adonde fué mi pareja	V V	?	F
51Prefile to the pregultar adoles the mr pareja 51Casi siempre soy servicial 52Me apena pedir permiso en mi trabajo	V V	?	F
53Prefiero soportar a la enfermera grosera que arriesgarme a poner mi queja	v		
54Prefiero quedarme callado(a) cuando alguien fuma a mi alrededor	v		
55Soporto que una persona sea desatenta 56Mi familia es feliz aún cuando estoy enfermo(a)	v v	?	F
57Reclamo si pierden mi expediente 58Si me pierden mis papeles, prefiero no reclamar	V	?	F
59Prefiero pagar el aumento de los precios a reclamar 60Protesto, si un chofer de taxi no me deja donde se	v 		-
lo pedí 61Siempre me formo correctamente en la cola	V	?	F
62Alego y me enojo si me hacen trampa 63Nunca me quedo callado(a), cuando lo que me hacen	V		
está mal 64Prefiero no reclamar si en un hospital me tratan	٧		
con poco cuidado 65Se debe aceptar el mal humor de la pareja 66Acepto que me cambien una cita sin reclamar 67En boca cerrada no entran moscas	V V V	?	F F

APENDICE C

APENDICE C

VERSION FINAL DE LA ESCALA DE ABNEGACION PARA ADULTOS

Fecha		
Estado Civil:		
Grado máximo de estudios		
Número de hijos:		
Número de hermanos:		
Lugar que ocupa entre lo	s hermanos:	

INSTRUCCIONES

Cuando alguna pregunta se refiera a una situación que usted no ha experimentado o cuando no pueda recordar con exactitud, por favor tache la opción "?".

Cuando lo que dice la pregunta sea verdadera para usted, tache la

Cuando lo que dice la pregunta sea verdadera para usted, tache la "V", y cuando sea falso tache la "F".

 1Me gusta ayudarle a mi pareja para que no se canse 2Me gusta trabajar de más si es por mi familia 3Aunque esté cansado(a), atiendo a mi familia 4La mejor comida es para mi familia 	V ? F V ? F V ? F V ? F
5Me gusta cuidar el sueño de mi familia	V ? F
6Trato de darle gusto a mi familia en todo	v ? F
7Me espero despierto(a) hasta que llegue mi pareja	V ? F
8Me gusta que mi familia sea primero	V ? F
9Prefiero comer después que mis hijos o mi pareja	V?F
10Por lo general soy muy amable	V ? F
11Generalmente soy atento(a)	V ? F
12Soy una persona educada	V ? F
13Casi siempre soy cortés	· V ? F
14Soy comprensivo(a)	V ? F
15Acepto disculpas	V ? F
16Me apena decir que no	V ? F
17Me cuesta trabajo decir que no	V ? F
18Me es difícil reclamarle a alquien	V ? F
19Me cuesta trabajo poner límites a las cosas y	
situaciones	v ? F
20Ante las provocaciones verbales prefiero callar	A . L

APENDICE D

DATA LIST FILE= AIRDOID, VER JEFFO 4 ERAD 5-9 EBCCIV 7 JOURN B ESDUT 5 MORERAL 19 LUBERBAR 11 MINDS 12 SES 106 FESSO 13-04/PESS 107 RESES 11. FAEDUENCIES VARIABLES = MLL / STATISTICS = MLL The raw data or transformation pass is croceping 850 cases are written to the compressed active first

****** Memory allows a total of 7728 Values, accusulated across all Variables.

There also say be up to 766 Value Labels for each Variable.

Pane 2	1.7		SPSS/PC+ .				5/2/93
SEXO					Valid	Cus	
Value Lauei		Value	Frequency	Percent			
		1	122	49.6	49.6	19.6	•
		2	428		19.6 50.4	100.0	
		Total	850	100.0	100.0		
Mean .	1.504	Std err	.017	Hedi	an	2,000	
Hode	2.000	Std dev	.50ů	. Vari	ance	.250	
Kurtasis	-2.005	S E Kurt	.500 .168 1.000	Skew	iness	014	
S E Skew	.084	Range	1.000	Hini	AUS.	1.000	
Maxieue	2.000	Std dev S E Kurt Ranga Sum	1278.000				
Valid cases	630	Missing c	ases 0				
.			,		 -		
EBAU						e	•
Value Label		Value.	Frequency	Percent	ia.id		
AUTOR CADE!		Yalue	t i Eddenc A	rejtent	reitent	1 El Cent	
6 g (4 f)		14	1	. i	.:		
		16		.6			
		17		1.4		2.1	
		18		7.5		4.6	
		. 15		10.9			
200	1	26		7.1		26.7	
J		21		5.2	5.1	51.9 35.9	
		21		4.0	4.0	75.9	
		: 23	31	3.5 2.7	5.0	39.5 42.1	
		-24		2.7	2.7	12.1	
		,75			5.9	~ p. ;	
		20			3.1	51.2	
		. 27	.:	1.5	1.5 3.6	52.7	
		25		3.6		5e.4	
		29		6	2.5	28.7	
		36	26	3.1			
		31	16	1.9	1.9	53.9	
		32	17	2.0	2.0	65.0	
		30	21	1.5 1.6	2.5	65.4	
				_			
		34	15	1.5		70.1	
		34 35	15 26	1.6 3.1			
				1.6 3.; 1.6	5.1		

				-
41	14	1.6	1.5	64.7
42	6	. 4	9	85.7
43	19	2.2	2.2	88.1
14		. 7	9	89.1
45	. 19	2.2	2.7	91.3
40				91.9
47		1.11	1.1	92.9
46	7		.8	73.8
. 45	10	1.2	1.2	74.7
50	7	.8		. 75.€
51	3	C. A.4		96.1
52		1000/110	1	76.2
53	4	. 5	.5	96.7
54	3.		-,4	57.1
55	6	. 9	.9	98.0
56	5		.6	98.6
57			7 1	78.7
. 58	10.54		.1	98.8
- 61	1	.1	.1	99.9
63	1	7.13	1	99.1
64	1.		.1	97.2
65	2	2	. 2	99.4
66	2	. 2	. 2	99.6
70	1	1	.1	99.8
72	1	.1	. 1	99.9
73	. 1	.1	•i	100.0
Total	850	100.0	100.0	
Std err	.371	. Medi	an	26.000
Std dev	10,808			16.767
S E Kurt	.166	Sken	ness	1.020
Range	59,000			14.000
Sum	25045.000			

29.465 19.000 Kean .626 .084 73.300 Kurtosis

Valid cases 830 Missing cases

EDUCIV					Valid	Cue
Value Label	•	Value	Frequency	fercent	Percent	Fercent
		1	451	53.1	53. 1	53.1
		2	31	3,6	3.6	56.7
		3	2	.2	.2	56.9
			750	42.4	42,4	99.3
		5	ь	.7	,7	100.0
		Total	850	100.0	100.0	
Hean	2,340	Std err	.051	Heoi	an	1.000
Node	1,000	Std dev	1,476	Vari	ance	1.178
Kurtosis	-1.888	5 E Kurt	.169	Sken	ness	.248
3 E Skew	.084	Range	4,000	Mini	AUS	1.000
Maximus	5.000	Sua	1989.000			
Valid cases	850	Hissing o	ases ()		

value Labei						
tatur Laber		ASTOR	LLSCREUCA.	reicent	FE'L TAL	rercent
			138	16.2	10.2	
			136	10.2		67.7
		3	:78	51.1	51.1	
			./8	52.7	32.7	100.0
		otal		100.0	169.0	
				1.0	•	
hean	2.165	Std err	.023	neat	ă A	2,000
hode .	7.000	Sta gev .	. 562 561.	Vari	11C2	,463
Kurtosis	-, 353	5 E Nurt	.162	Skew		217
5 € 3kev	.084	Range	2,000	. 8181	aus .	1.000
harraus	3.000	Sua .	8+0.000	1.4		
					1.0	
Valid Cises	850	#15510g C	ases 0	1		
	•			300		
				- 1	٠,	
			'-			
ESCOL			-			
					Valid	Eus
Value Label		Value	Frequency	Fercent	Percent	
		1	204	24.0	24.0	74.3
		2	203	21.5	24.5	48.5
		;	123	21.5	21.5	70.0
		i	755		30.0	
		•	133	30.0	30.0	100.0
		Total	350	100.0	100.0	
flean .	7.575	Std err	.039	Kedi		3.000
		Std dev	.031	rep		
None	1.000				BUCE	1.326
furtos15	-1.435	3 E kurt	.1:0			065
S E Stex	.084	Eange	3.090	Hins	RUE	1.000
Mariaus	4.000	Şu₽	2139.000			
Va.10 cases	859	preerud c	ases)			
	· · ·				· · · · ·	****
ljherna						
					ial id	
Value Lacel		Value	Frequency	ierzent	Percent	Fer:Est
		5	50	5.7	5.7	5.7
•		:	55	a.:	6.5	12.4
		:	111	15.1	12.1	25.4
		3	109	12.8	12.6	36.2
			:17	15.5	13.3	51.5
			105	12.6	11.5	64.4
			57	10.1	10.2	74.6
		;	6.	7.5	7.3	61.3
			53	ć.:	6.2	
		. 9				1.36
		. ,	101	li.	1:.;	iev.t
		*			_	
		Total	35¢	100.0	100.0	
		***		2		
Apan .	4.27:	513 2-7	.051		43	4.900
Note	4.000	Stø der	1.642		ance	7.612
Kurtosis	961	S E Kurt			7655	.150
3 E S) en	٠٠٥٠	-ange		7133	202	.000
Maxiaua	1,009	3ua	3890.606			

996

F185100 cales

FÜÜNKIICK					/41:0	Cus
Value Label		Value	Preguency	Percent		
		0	44	3.2	5.2 26.5 15.9 14.0 11.4 2.5	5.2
		1	229	26.9	24.5	32.1
		2	165	19.9	15.9	52.0
		5	117	14.0	14.6	60.0
		4	17	11.4	11.4	77.4
		5	76	3.7 4.9	8.5	66.4
			42	4.7	4.7	91.3 95.2 97.5
		7	. 33	3.9	3.9	95.2
		ā	20	2.4	2.1	97.5
		5		2.5	2.5	100.6
		lotal	. 850	100.0	100.6	
Mean	7.969	Sto err Std dev S E Kurt Rande Sua	075	fieds	an	2.000
hode .	1.000	Std day	3,162	Vari	an ance iness	4.762
Furtosis	.084	S.E. durt	146	ike	nate.	228
S E Skew	004	E and a	2 min	No.	W118	.000
S E SIEN	7.000	Sua	2524,620	11191	EUS	.000
USTITUE	7.000	SUR	2224,000		100	1000
Valid cases	650	M153ing C	ases (
·	- -					· -
					14.	
HIJOS				100	Valid	Cus
Value Label		Value	Frequency	Percent		Percea: 47.2 61.4 74.7 85.5 92.5 76.0 97.5 98.0
		e	41B	49.2	49.2	49.2
		i	164	17.2	13.2	61.4
		- :	113	13.3	13.3	74.7
			92	10.3	10.9	85.5
		i	59	4.5	4.3	12.5
		5	30	1.5	3.3	34.0
		6	15	1.8	1.8	97.6
		. 7	. 7	1.1	1.1	98.A
		ě	i	.5		98.8
					.,	100.0
		4.				
		Total		109.0		
Mean	1.446	Sto err	.065	sedi	an .	i.000
Node	1.448	Std der	1,885	Vari	ance.	3.553
sur tosas	1.826	5 E Aurt	.168	Ster	iness	1.422
S E Sken	.084	Ranne	7.000	hini	BUB	.000
Maxieua	9.000	Sto err Sto dev S E kurt Range Sum	1231.000			
Valid cases	859	Missing C	4105 (,		
			 .			
RESI					Valud	7.06
Value Label		Value	frequency	fercent		
		!	284	45.1	45.2 45.8	45.2 99.9
		:				
		3	77	7.1	5	100.0

vallu capus	600	meaning c	area v			
RES) .					Valid	Cum
Value Labei	•	Value	Frequency	Percent		Percent
		1 2 3	384 389 77	45.2 45.6	45.2 45.8 9.1	45.2 90.9. 100.0
* .		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skow Maximum	1.639 2.000 675 .084 3.000	Std err Std dev S E Kurt Range Sum	.022 .642 .168 2.000 1393.000		ence	2.000 .412 .501 1.000
Valid cases	850	Missing c	ases 0			
			and the second second			
RES2					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent,
		1 2 3	352 436 62	41.4 51.3 7.3	41.4 51.3 7.3	41.4 · 92.7 100.0
		Total	850	100.0	190.0	
Mean Mode Kurtosis S E Skew Maximum	1.659 2.000 661 .084 3.000	Std err Std dev 5 E kurt Range Sum	.021 .609 .168 2.000	Skev	an ance iness mum	2.000 .371 .346 1.000
Valid cases	850	Missing C	ases Ů			
RES3					Valid	Cum
Value Label		Value	Crequency	Persent.		Percent
		1 2 3	197 571 82	27.2 67.2 4.6	23.2 67.2 9.6	23.2 70.4 100.0
. ,		Totai	950	100.0	100.0	
Mean Moce Kurtosis S & Skew Maximum	1.865 2.000 .027 .084 3.000	Std err Std dev S 5 Kurt Range Sum	.019 ,557 .166 2.000 1585.000	yarı Sl.ev	ian ance viess . mum	2.000 .310 041 1.000
Valid cases	850	Missing c	ases V			
		- -				
RESA					Valiet	Cum
Verue Late)		Vaine	Frequency	Percent		Percent

ಕರ್ಷ

		2 3	245 44	26.0 28.8 5.2	46.0 28.8 5.2	66. 94. 100.
		Total	850	100.0	100.0	
Mean	1.392	Std err	.020	Medi Vari Skew	an	1.000
Mode	1,000	Std dev	.585	Vari	ance	.342
Kurtosis	.444	S E Kurt	.168	Skev	ness	1.204
S E Skew	084	Range	2.000	Vari Skew Mini	mum	1.000
Maximum	3.000	Sum	1183.000		Talland Die 1926 California (1926)	
Valid cases	850	Missing c	ases 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
RESS	in the second				Markining. Majarakan	
Value Label		Value		Percent	Valid Percent	Perce
		1	338	39.8	39.8	39.
		2	399	46.9	46.9	86.
		. 3	113	13.3	39.8 46.9 13.3	100.
		Total	850	100.0	100.0	
Mean	1,735	Std err	.023	Medi	an	2.000
Mode	2.000	Std dev.	. 679	· Vari	ance .	.461
Kur+osis	835	S E Kurt	168	Sker	iness	.383
S E Skew	.084	Range	2.000		mum	1.000
Maximum	3.000	Sum -	1475.000			
Valid cases	850	Missing c	ases Q			
		-,				- - -
RES6)	 :	-,			Valid	
RESS \	 :	 Value	Frequency		Valid Percent	
	 ;	Value	Frequency 507		Percent	Perce
	 ;		* .	59.6	Percent 59.6	Ferce 59.
	 }	1	507	59.6 15.4 24.9	59.6 15.4 24.9	Ferce 59. 75.
	 ?	1 2	507 .131	59.6 15.4	59.6 15.4	Ferce 59. 75.
Value Label	1.650	1 2 3 Total	507 131 212 	59.6 15.4 24.9	59.6 15.4 24.9	59. 75. 100.
Value Label Mean	1.453	1 2 3 Total	507 131 212 850	59.6 15.4 24.9 100.0	59.6 15.4 24.9 100.0	79. 75. 100.
Value Label Mean Mode	1.000	1 2 3 Total Std err Std dev	507 131 212 850 .029 .852	59.6 15.4 24.9 100.0 Medi Vari	59.6 15.4 24.9 100.0 an	79. 75. 100.
Value Label Mean		1 2 3 Total Std err Std dev S E Kurt	507 131 212 850	59.6 15.4 24.9 100.0 Medi Vari	99.6 15.4 24.9 100.0 an	75. 100. 1.000 .726 .730
Value Label Mean Mode Kurtosis	1.000	1 2 3 Total Std err Std dev	507 .131 .212 	59.6 15.4 24.9 100.0 Medi Vari Ske	99.6 15.4 24.9 100.0 an	Eum Ferce 39. 75. 100. 1.000 .726 .730
Value Label Mean Mode Kurtosis S E Skew	1.000 -1.229 .084	1 2 3 Total Std err Std dev S E Kurt Range Sum	507 131 212 850 .029 .852 .168 2.000	59.6 15.4 24.9 100.0 Medi Vari Skew Mini	99.6 15.4 24.9 100.0 an	79. 75. 100. 1.000 .726 .730
Value Label Mean Mode Kurtosis S E Skew Maximum	1.000 -1.229 .084 3.000	1 2 3 Total Std err Std dev S E Kurt Range Sum	507 .131 .212 .850 .029 .852 .168 .2000 1405.000	59.6 15.4 24.9 100.0 Medi Vari Skew Mini	90.0 15.4 24.9 100.0 an ance muss	79. 75. 100. 1.000 .726 .730 1.000
Mean Mode Kurtosis S E Skew Maximum Valid cases	1.000 -1.229 .084 3.000	Total Std err Std dev S E Kurt Range Sum	507 .131 .212 .850 .029 .852 .168 .2000 1405.000	59.6 15.4 24.9 100.0 Medi Vari Skew Mini	Percent 59.6 15.4 24.9 100.0 an ance ness mum	Force 39. 75. 100. 1.000 .726 .730 1.000
Mean Mode Kurtosis S E Skew Maximum Valid cases RES7	1.000 -1.229 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing C	507 131 212 850 .029 .852 .168 2.000 1405.000	59.6 15.4 24.9 100.0 Medi Vari Skew Mini	Percent 59.6 15.4 24.9 100.0 an ance ness mum	79. 75. 100. 1.000 .726 .730 1.000 Camperce 80.
Mean Mode Kurtosis S E Skew Maximum Valid cases RES7	1.000 -1.229 .084 3.000	Total Std erv Std dev S E Kurt Range Sum Missing C	507 131 212 850 .029 .852 .168 2.000 1405.000	59.6 15.4 24.9 100.0 Medi Vari Skew Mini	Percent 59.6 15.4 24.9 100.0 an ance mess mum	Force 39. 75. 100. 1.000 .726 .730 1.000
Mean Mode Kurtosis S E Skew Maximum Valid cases RES7	1.000 -1.229 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing C	507 131 212 850 .029 .852 .168 2.000 1405.000	59.6 15.4 24.9 100.0 Medi Vari Skew Mini	Percent 59.6 15.4 24.9 100.0 an ance ness mum	79. 75. 100. 1.000 .726 .730 1.000 Camperce 80.
Mean Mode Kurtosis S E Skew Maximum Valid cases RES7	1.000 -1.229 .084 3.000	Total Std erv Std dev S E Kurt Range Sum Missing C	507 131 212 850 .029 .852 .168 2.000 1405.000 .asos 0	59.6 15.4 24.9 100.0 Medil Vari Skew Mini	Percent 59.6 15.4 24.9 100.0 an ance ness mum Valid Percent 60.6 10.7	1.000 75.100. 1.000 726.730 1.000
Mean Mode Kurtosis S E Skew Maximum Valid cases RES7	1.000 -1.229 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing C	507 131 212 850 .029 .852 .168 2.000 1405.000 .ases 0 Frequency .852 .91 74	59.6 15.4 24.9 100.0 Medil Vari Skew Mini Percent 80.6 10.7 8.7	99.6 15.4 24.9 100.0 an ancesness must Valid Percent 60.6 10.7 3.7	1.000 1.000 1.000 1.000 1.000

3 E Skew Maximum	.084 3.000	Range Sum	2.000 1089.000	Minia		1.000
/alid cases	850	Missing c	ases O			
		15.555				7.7.
RESS	1				Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
. 1		. 1	451	53.1	53.1	53. 1
	• .	1 2 3	264 135	31.1 15.9	31.1 15.9	100.0
					:	
		Total	.850	100.0	SECTION AND ADDRESS OF	
Mean	1.628	Std err	. 025	Medi	an	1.000
Mode	1,000	Sto dev	.743 .168	Var 1	ance	. 552
Kurtosis	855	S E Kurt	.168	Skew	ness	.721
S E Skew	.084	Range	2.000		TILM .	1.000
Maximum	3.000	Sun	1384.000		i i dan Maria dan Kangan kasar dan	
Valid cases	850	Missing c	ases O			
RES9)	,			医特别的		
merican concern		Clas 7		/在自己的	Valid	Cum
∀ălue Label		ASIGE	Frequency	Percent		Percan.
		1		52.9	52.9	57.5
	*	2	192	21.4	21.4	74.4
		3	218	25.6	25.6	100.0
		Total	850	100.0	100.0	
	:					
Mean	1.727	Std err	.029	Medi		1.000
Mode	1.000	Std dev	. 8144		ence	.712
Kurtosis	-1.376	S E Kurt			iness	. 551
S E Skew	084	Range	2.000	Mini	mum	1.000
Maximum	3.000	Sum	1468.000			
Valid cases	850	. Missing c	ases 0			
		÷				
RES10					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		1	588	69.2	69.2	69.2
		?	154	18.1	18.1	87.3
		3	109	12.7	12.7	190.0
		lotal	850	100.0	100.6	
Mean	1.435	Std em	.024	Medi		1.000
Mode	1.000	Std dev	.707	Var 1	ance	.501
Kurtosis	. 229	S E Kurt	.169	Skev	ness	1.310
S E Skew	.064	Range	2,000	Mini	mum	1.000
Maximum	3.000	อีนต	1220,000			

Value Labél		Value	Frequency	Percent	Percent	ium Percent
		1 2	235 402	27.6	27.6 47.3	27.6
		3	213	47.3 25.1	25.1	74. 9 100. 0
		Total	850	190.0	100.0	erana a la colo Valuati de la
Mean	1.974	Std err Std dev	.025	Medi	an	2.000
Mode Kurtosis	2.000	Std dev 5 E Kurt	.726 .168	Vari Skev	ance Iness	.527
9 E Skew	.084	Danne	2.000	Mini	RILLIN	1.000
Maximum	3.000	Sum	1678.000			
Valid cases	850	Missing c	ases O			
						12-1-
NES12 .					Valid	Cum
Value Label		Value	Frequency		Percent	Percent
		1	328	38.6	38.6	38.6
	·	2 3	336 186	39.5 21.9	39.5 21.9	78.1 100.0
		- F				100.0
		Total	850	100.0	100.0	
Mean	1.833	Std err	.026	Medi	an	2.000
Mode Kurtosis	2.000 -1.221	Std dev S E Kurt	.760 .168		ance ness	.577 .290
S E Skew	.084	Range	2.000			1.000
Maximum	3.000	Sum	1558.000			
Maximum Valid cases	3.000	Sum	1558.000 ases 0	ı		
Maximum	3.000	Sum		ı	Valid	Cum
Maximum Valid cases	3.000	Sum Missing c Value	ases () Frequency	Percent		Percent
Maximum Valid cases RES13	3.000	Sum Missing c Value	ases 0 Frequency	Percent 38.2	Percent 38.2	Percent 38.2
Maximum Valid cases RES13	3.000	Sum Missing c Value	ases () Frequency	Percent 38.2 46.0 15.8	Percent	Percent
Maximum Valid cases RES13	3.000	Sum Missing C Value	ases 0 Frequency - 325 - 391	Percent 38.2 46.0	Percent 38.2 46.0	Percent 38.2 84.2
Maximum Valid_cases RES13 Value Label	3.000 850	Sum Missing c Value 1 2 3 Total Std err	325 391 154 850	Percent 38.2 46.0 15.8 	S8.2 46.0 15.8 100.0	78.2 84.2 100.0
Maximum Valid_cases RES13 Value Label Mean Mode	1.775 2.000	Sum Missing c Value 1 2 3 Total Std err Std dev	### STORMS	Percent 38.2 46.0 15.8 100.0 Medi Vari	S8.2 46.0 15.8 100.0	Percent 38.2 84.2 100.0
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis S E Skew	1.775 2.000 -957 .084	Sum Missing c Value 1 2 Total Std err Std dev S E Kurt Range	ASS 0 Frequency 325 391 154	Percent 38.2 46.0 15.8 	S8.2 46.0 15.8 100.0	78.2 84.2 100.0
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis	1.775 2.000 737	Sum Missing c Value 1 2 3 Total Std err Std dev S E Kurt	ases 0 Frequency 325 391 134 850 .024 .700 .168	Percent 38.2 46.0 15.8 	Percent 38.2 46.0 15.8 100.0 an	Percent 38.2 84.2 100.0 2.000 .490 .341
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis S E Skew	1.775 2.000 937 .084 3.000	Sum Missing c Value 1 2 Total Std err Std dev S E Kurt Range	850 .024 .700 .159 .250 .024 .700 .168 2.000	Percent 38.2 46.0 15.8 100.0 Medi Vari Skee	Percent 38.2 46.0 15.8 100.0 an	Percent 38.2 84.2 100.0 2.000 .490 .341
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis S E Skew Maximum	1.775 2.000 937 .084 3.000	Sum Missing c Value 1 2 3 Total Std err Std dev 5 E Kurt Range Sum	850 .024 .700 .159 .250 .024 .700 .168 2.000	Percent 38.2 46.0 15.8 100.0 Medi Vari Skee	Percent 38.2 46.0 15.8 100.0 an	Percent 38.2 84.2 100.0 2.000 .490 .341
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis S E Skew Maximum	1.775 2.000 937 .084 3.000	Sum Missing c Value 1 2 3 Total Std err Std dev 5 E Kurt Range Sum	850 .024 .700 .159 .250 .024 .700 .168 2.000	Percent 38.2 46.0 15.8 100.0 Medi Vari Skee	38-2 46-0 15-8 100-0 an ance uness mum	28.2 84.2 100.0 2.000 .490 .341 1.000
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis S E Skew Maximum Valid cases	1.775 2.000 937 .084 3.000	Sum Missing c Value 1 2 3 Total Std err Std dev S E Kurt Range Sum Missing c	850 .024 .700 .159 .250 .024 .700 .168 2.000	Percent 38.2 46.0 15.8 100.0 Medi Vari Skee	Percent 38.2 46.0 15.8 100.0 an ance ness mum	Percent 38.2 84.2 100.0 2.000 .490 .341
Maximum Valid_cases RES13 Value Label Mean Mode Kurtosis S E Skew Maximum Valid cases	1.775 2.000 937 .084 3.000	Sum Missing c Value 1 2 3 Total Std err Std dev S E Kurt Range Sum Missing c	ases 0 Frequency 325 391 134	Percent 38.2 46.0 15.8 100.0 Medi Vari Skee	Percent 38.2 46.0 15.8 100.0 an ance ness mum	28.2 84.2 100.0 2.000 .490 .341 1.000

		Total	850 .025 .736 .148 2.000 1585.000	100.0	106.0	
Mean	1.865	Std err	.025	Medi	an	2.000
	2.000	Std dev	.736	Vari	ince	.541-
Kurtosis	-1.131	S E Kurt	.168	Skew	ness .	.218
S E Skew	.084	Range	2.000	Minio	num .	1.000
Maximum	3.000	Sum	1585,000			
1					有装饰 人生	transfer to the second
Valid cases		Missing ca	ses 0			
RE915		一年 化工品 经保险股份基础				1.5
			Frequency 550 160		Valid	Cum
Value Label		Value	Frequency	Percent	Percent,	Percent
				建砂锅 机氯化铷铁		
		1	550	64.7	64.7	64.7
		2	160	18.8	18.8	83.5
	•	3.	140	16.5		100-0
				100.0		
		Total			100.0	
Mean	1.518	Std err	.026	Medi.	an ance	1.000
Mode	1.000	Std err Std dev	.761 .168	Vari.	ance	.580
Kurtosis	455	S E Kurt			ness	1.064
S E Skew	.084	Range	2.000	Mini	กนก	1.000
Maximum	3.000	Sum	1290.000			•
Valid cases	850	Missing ca	ses O.			
						-
RES16				. •		
					Valid	Cum
Value Label		Value.	Frequency	Percent	Percent	Percent
		1			21.00	
		1	608	71.5	71.5 16.0	71.5 87.5
			106		12.5	100.0
*	•	,	100	12.0	12.0	10010
		Total	850	100.0		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Mean	1.409	Std err	024	. Medi Vari Skew	an	1.000
Mode .	1.600	Std dev	.701	Vari	ance	.492
Kurtosis	.482	5 & Kurt	1e3	Skov	ness	1.413
@ E Skew	.084	Range	2,000	Mini	สเนต	1.000
Maximum	3,000	Sum	1198,000			
Valid cases	850	Missing c	ises . O			
				· *,		
RES17			er a grande			
•					Valid	
Value Label		Value	Frequency	Percent	Percent	Forcent
	A 1. 15	1	235	62.6	62.6	
• • • • • • • • • • • • • • • • • • • •		2	165	19.4	19.4	82.0
		3	153	18.0	18.0	100.0
		Total		100.3	100.0	
		iotal	ಕ್ಟಾ	100.0	100.0	
Mean	1.554	Std err	.027	Medi	an an	1.000
Mode	1.000	Std dev	. 286		ance	.608
Furtosis	681	S E Kurt	.169		uese	.960
S E Skew	.084	Range	2.000 2.000	M TUT		1.000
Maximum	3.000	Sum	1321.000			

	*		2007				
	7,77 - 1						
RESIS TAR		1.0			1.0		
WESTO T.					Valid	Cum	
Value Label		U-11m	Frequency	Percent	Percent	Percent	
Tarac Laber		*4100	, , crime in ,		10	1 CI CEIL	
		1	366	43.1	43.1	43.1	
		2	420	47.4	49.4	92.5	
	•	3	64	7.5	7.5	100.0	
		Total	850	100.0	100.0		Ġ
					10.00		•
Mean	1.645	Std err	.021	Medi	an	2.000	
Mode	2.000	Std dev	.617		ance	.380	
Kurtosis	664	S E Kurt	.160		iness	.403	
S E Skew	.084	Range	2,000		mum	1.000	
Maximum	3.000	Sum	1398.000	5 3 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	Time to the		
114114				25.55			
Valid cases	850	Missing c	ases 0				
70.110 00.00	200						
RES19		*	24				
			100		Valid	Cum	
Value Label		Value	Frequency	Percent	Percent	Percent	
		t	509	59.9	59.9	59.9	
		ż	247	29.1	29.1	88.9	
		, 3	94	11.1	11.1	100.0	
		Total	850	100.0	100.0		
•							
Mean .	1.512	Std err	.024	Medi	ลก	1.000	
Mode	1.000	Std dev	. 687		ance	. 472	
Kurtosis	290	S E Kurt	.168		11622	986	
S.E Skew	.084	Range	2.000		num	1.000	
Maximum	3.000	Sum	1285.000		,	1.000	
TIAN 3 Main	0.000	- Can	11001000				
Valid cases	850	Miesina c	ases 0				
A0110 C0963	550	mastid c	e1343 V				
of the second		•				4.0	
	·	·					
RES20	200						
RESEO					Valid	Cum .	
Value Label		Ha-111	Cuentaness	Devena		Percent	
ASIGE CAREL	•	ASTOR	Frequency	rercent	Percent	rartent	
		1	279	32.8	32.8	32.8	
		2	454	57.4	53.4	86.2	
		3	117	13.8	13.9	100.0	
		2	. 117	13.6	13.0	100.0	
		Total	6890	100.0	100.0		
		10141	giano.	21,000	1000.0		
Mean	1.809	Std err	.022	Medi		2.000	
	2.000	Sto err	- 656		ance	430	
Mode Kurtosis	731	S & Kurt	.146		iness	.220	
Kurtosis S E Skew	.034		5.000	Mini		1.000	
		Range		1,171,17	mum	4.000	
Maximum .	5.000	Sum	1538.000			•	
10. 12. 1 =	otro	****					
Valid cases	850	Missing c	ഷ്യായം 0				
DEBBA 1	4						
RES21	•						
					Valid	Cum	•
Value Label		Value	Frequency	rercent	Percent	Percent	

		25.0		100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			3 2	119 101	14.0	14.0 11.9	88.1 100.0
			Total		and the first of the	100.0	
	Mean Mode	1.378 1.000	Std err Std dev 8 E Kurt Range Sum	.024 .688	. Medi Vari	ance .	1.000
	Kurtosis S E Skew Maximum	.858 .084 3.000	S E Kurt Range Sum	168 2.000 1171.000	Skew Nini	wnw iuses	1.545
1	Valid cases	850	Missing c	ases 0			
	RES22					Valid	Cum
	Value Label		Value	Frequency	Percent		
			1 2 3	736 76 38	86.6 8.9 4.5	8.9 4.5	86.6 95.5 100.0
	. :	•	Total	850	100.0	100.0	•
	Mean Mode Kurtosis	1.179 1.000 6.601	Std err Std dev S E Kurt	.017 .486 .168	" Vəri	an . ance	1.000 .237 2.744
	S E Skew Maximum	084 3.000	Se Kurt Sum	2.000	Mini		1.000
	Valid cases	850 	Missing c	ases . O			
÷	RES23	• • • •		_		Valid	. Cum
	Value Label	•	value 1	Frequency 358	42.1	42.1	42.1
			2 3	351 141	41.3	41.3	B3.4 100.0
			Total	850	100.0	100.0	
	Mean Mode Kurtosis	1.745 1.000 -1.005	Std err Std dev S E Kurt	.025 .723 .168	Vari	ian ance vress	2.000 .522 .428
	S E Skew Maximum	.084 3.000	Range Sum	2.000 1483.000		mum .	1.000
	Valid cases	850	Missing c	ases 0	1		
		-		- -			
	RES24					Valid	Cum
	Value Label		Value	Frequency	Percent		
			1 2 3	434 198 218	51.1 23.3 25.6	51.1 23.3 25.6	51.1 74.4 100.0
			Total	850	100.0	100.0	

Mean Mode Kurtosis S E Skew Maximum	1.746 1.000 -1.393 .084 3.000	Std err Std dev S E Kurt Range Sum	.029 .839 .168 2.000 1484.000	Medi Vari Skem Mini	ence	1.000 .703 .507 1.000
Valid cases	850	Missing c	ases O			
RES25					Valid	Cum
Value-Label		Value	Frequency	Percent	Percent	Percent
		1.1	677,	79.6	79.6	79.6
		2 3	102 71	12.0 8.4	12.0 0.4	91.6
		Total	850	100.0	100.0	
Mean	1.207	Std err	.021	Medi	an	1.000
Mode .	1.000	Std dev	.610	Vari	ance	.372
Kurtosis	2.490	SEKurt	.168	Skev	ness	1.965
S E Skew	.084	Range	2.000	Mini	mum:	1.000
Maximum	2.000	Sum	1074.000			
Valid cases	850	Missing c	ases O	F .		
4	. •					
	-					
RES26 ", "		••			Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		1	531	42.5	62.5	62.5
		2	203	23.9	23.9	86.4
			116	13.6	13.6	100.0
		Total	. 850	100.0	100.0	•
Mean	1.512	Std err	.025	Medi	20	1.000
Mode `	1.000	Std dev	.723		ance	.523
Kurtosis	339	S E Kurt	.168		กตรธ	1.044
S E Skew	.084	Range	2,000	Mini		1.000
Maximum	3.000	Sum	1285.000	******	ancam	1.000
TILN ZINGIN		- Cum	1200.000			
Valid cases	850	Missing c	ases ()			
RES27						_
Value Lebel		Value	Frequency	Percent	Valid Percent	- Cum Percent
		1	687	80.8	30.8	80.8
		2	95	11.2	11.2	92.0
		3	63	8.0	a.o	100.0
		Total	850	100.0	100.0	
Mean	1.272	Std err	.021	Modi	an	1.000
Mode	1.000	Std dev	.579		ance	.358
Kurtosis	2.875	S E Kurt	.169		ness	2.058
S E Skew	.084	Range	2.000	Mini		1.000
Maximum	3.000	Sum	1001.000			
Valid cases	850	Missing c	ases ' O			

			\$ 1.			the transfer of	
			1 7 7 1			e jednosta i stalika i s	
RE528			and the second			_	
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent	
ARIGE CARE		1					
•		1 2	246 470	28.9 55.3	28.9 55.3	28.9 84.2	
		3	134	28.9 55.3 15.8	15.8		
and his	4 40° N	Total	1.0	100.0			
Mean	1.868	Std err	.022	Medi	an	2.000	
Mode	2.000	Std dev	. 656	Media Varia Skewi	ance	.430	
Kurtosis S E Skew	705 .084	S E Kurt Range	2.000	Mini	N255.	144 1.000	
Maximum	3.000	Sum	1588.000	1141141	IIVA:	1.000	
Yalid cases	950	Missing C	ases 0				
RES29 "	•					. =	
Value Label		Value	Frequency	Percent	Valid Percent		
		i	321	. 37.8	37.8	37.8	
		2	455	53.5	53.5	91.3	
		3	74	B.7	8.7	100.0	
		Total	850	100.0	100.0		
1					-	•	
Mean	1.709	Std err	.021 .617	Medi		2.000	
Mode	2.000 639	Std dev S E Kurt	.617	Var 1	ance ness	.381 .280	
Kurtosis S E Skew	.084	Range	.168 2.000	SKEW		1.000	
Maximum	3.000	Sum	1453.000	****		1.400	
O-14d seems	aeo						
Valid cases	B 20	Missing c	ases 0	•		•	
RES30							
			_		Valid		
Value Label		Value	Frequency	Percent	Percent	Percent	
		1	595	70.0	70. Ú	70.0	
		2	168	19.8	19.8	87.8	
		- 3	87	10.2	10.2	100.0	
· .	•	Total	850	100.0	100.0		
Mean	1.402	Std err	.023 .668	Medi		1.000	
Mode	1.000	Std dev	. 668	Vari	ance	.446	
Kurtosis S E Skew	. 595 . 084	5 E Kurt Range	.168 2.000		4De\$∈	1.396 1.000	
- Maximum	3.000	Sum	1192.000		Муш	1.000	
Valid cases	850	Missing c	ases 0)			
RES31		4					
Value Label		Value	Frequency	Percent	Valid Percent		
		1	644	75.8	75.8	75.8	
		2	125	14.7	14.7	90.5	
			•				

	•					
		Total	850	100.0	100.0	
Mean	1.338	Std err	.022			1.000
Mode	1.000	Std dev		Vari	ance	.415
Kurtosis	1.479	5 E Kurt			ness ·	1.696
S E Skew Maximum	.084 3.000	Range Sum	2.000	: Mini	mum	1.000
Valid cases	850	Missing c			4.5	
		-				
RES32						
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1	670	78.8	78.8	78.8
		2	86	10.1	10.1	68.9
-		3	94	11.1	11.1	100.0
		Total	850	100.0	100.0	
Mean	1.322	Std err	. 023	Medi	ลก	1.000
Mode	1.000	Std dev	. 663		ance	.440
Kurtosis	1.704	S E Kurt	.168		ness	1.912
S E Skew	.084	Range	2.000	Mini		1.000
Maximum	3.000	Sum .	1124.000			
Valid cases	850	Missing c	ases O			
RES33					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	
		• 1	205	24.1	24.1	24.1
		2	544	64.0	64.0	88.1
			101	11.9	11.9	100.0
-		Total	850	100.0	100.0	
Mean .	1.878	Std err	.020	Medi		2.000
Mode	2.000	Std dev	.588		ance	.345
Kurtosis	207	S E Kurt	.168		ness	.030
S E Skew Maximum	.084 3.000	Range Sum	2.000 1596.000	Mini	MUM	1.000
Valid cases	850	Missing c	ases O			
	· 					
RE534						_
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1	387	45.5	45.5	45.5
		2	409	48.1	48.1	93.6
		3	54	6.4	6.4	100.0
		Total	850	100.0	100.0	
Mean	1.608	Std err	.021	Medi	an	2.000
Mode	2.000	Std dev	. 605	Vari	ance	- 366

			100				
Magimum	3.000	ยนค	1007.000				•
Valid cases	850	Missing c	ases O			1.1	
RES35					Valid	Cum	
Value Label .		Value	Frequency	Percent	Percent	Percent	
		1	359	42.2	42.2	42.2	
		2 3	428 63	50.4 7.4	50.4 7.4	92.6 100.0	
-		Total:	850	100.0	100.0		
			with the fact of the fact	Mariya Halini			
Mean Mode	1.652 2.000	Std err Std dev	.021 .613	Medi Vari		2.000 .376	
Kurtosis	663	S F Kurt	169	Stew		.375	
S E Skew	3.000	Range	2.000	Mini	mum	1.000	
Maximum	- L	sum	1404.000				
Valid cases	850	Missing c	ases O				
	. 						
RES36					Valid	Cum	
Value Label		Value	Frequency	Percent		Percent	
		1	350	41.2	41.2	41.2	
		2	421 79	49.5 9.3	49.5 9.3	90.7 100.0	
		Total	850	100.0	100.0		
Mean	1.681	Std err	.022	Medi		2.000	
Mode Kurtosis	2.000 689	Std dev S & Kurt	.635 .168		ance ness .	.404 .388	
S E Skew	.084	Range	2.000	Mini		1.000	
Maximum	3.000	Sum	1429.000		÷		
Valid cases	850	Missing c	ases O				
RES37	•					_	
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent	
		<u>i</u>	421	49.5	49.5	49.5	
	•	2 3	305 124	35.9 14.5	35.9 14.6	85.4 100.0	
		Total	850	100.0	100.0		
Mean	1.651	Std err	.025	Kedi	.ลก	2.000	
Mode	1.000	Std dev	721		ance	.520	
Kurtosis S E Skew	854 - 084	S E Kurt Range	-168 2.000	Skew Mini	iness mum	.636 1.000	
Maximum	3.000	Sum	1403.000				
Valid cases	850	Missing c	ases O				

Value Label		Va1ue	Frequency	Percent	Valid Percent	Cun
value Euse.						
		1 2	235 556	27.6 65.4	AR A	27.6 93.1
		. 3	59	6.9	6.9	100.0
		Total	250	100.0 Medi Vari Skew		
Mean	1.793	Std err	019	Medi	an	2.000
Mode .	2.000	Std dev	.551	Vari	ance	.303
Kurtosis	186	S E Kurt	.148	Skew	ness	060
S E Skew	.084	Range				1.000
Maximum	3.000	Sum	1524.000			
Valid cases	850	Missing c	ases 0			
RES39						
					Valid	
Value Label		Value	Frequency	Percent	Percent	Percent
		1	446	52.5	52.5	52.5
		2	364	42.8	42.B	95.3
		3	40	4.7	4.7	100.0
•		Tota1	850	100.0	100.0	
Mean	1.522	Std err	.020	Medi	an	1.000
Mode	1.000	Std.dev	.587	. Vari		.344
Kurtosis	577	S E Kurt	168		ness	.615
S E Skew Maximum	.084 J.000	Range Sum	2.000 1294.000	MINI	mum	1.000
			12,71,000			
Valid cases	650		ases 0			
Valid cases	•					
Valid cases	•					
	•		ases 0	-	Valid Percent	Cum Percent
RES40	•	Missing c	ases 0	-		
RES40	•	Missing c	Frequency 293	 Percent 34.5 48.9	74.5 48.9	74.5 83.4
RES40	•	Missing c	Frequency	 Percent 34.5	Percent 34.5	Percent 34.5
RES40	•	Missing c	Frequency 293	 Percent 34.5 48.9	74.5 48.9	74.5 83.4
RES40	•	Missing c Value	Frequency 293 416 141	Percent 34.5 48.9 16.6	34.5 48.9 16.6	74.5 83.4
RES40	1.821 2.000	Value 1 2 3 Total Std err Std dev	Frequency 293 416 141 850 .024	Percent 34.5 48.9 16.6 100.0 Medi Vari	34.5 48.9 16.6 100.0	Percent 34.5 83.4 100.0
RES40 Value Label Mean Mode Kurtosis	1.821 2.000 913	Value 1 2 3 Total Std err Std dev SE Kurt	293 416 141 850 .024 .652 .168	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew	74.5 48.9 16.6 100.0 an	Percent 34.5 83.4 100.0 2.000 .479 .253
RES40	1.821 2.000	Value 1 2 3 Total Std err Std dev	Frequency 293 416 141 850 .024	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew	34.5 48.9 16.6 100.0	Percent 34.5 83.4 100.0
RES40 Value Label Mean Mode Kurtosis S E Skew	1.821 2.000 913 .004 3.000	Value 1 2 3 Total Std err Std dev S E Kurt Range Sum	Frequency 293 416 141 850 .024 .692 .168 2.000	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew	74.5 48.9 16.6 100.0 an	Percent 34.5 83.4 100.0 2.000 .479 .253
RES40 Value Label Mean Mode Kurtosis S E Skew Maximum	1.821 2.000 913 .004 3.000	Value 1 2 3 Total Std err Std dev S E Kurt Range Sum	Frequency 293 416 141 850 .024 .692 .168 2.000 1548.000	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew	34.5 48.9 16.6 100.0 an ance ness	Percent 34.5 83.4 100.0 2.000 .479 .253 1.000
RES40 Value Label Mean Mode Kurtosis S E Skew Maximum Valid Cases	1.821 2.000 913 .004 3.000	Value i 2 Total Std err Std dev S E Kurt Range Sum Missing c	Frequency 293 416 141 850 .024 .692 .168 2.000 1548.000	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew Mini	Percent 34.5 48.9 16.6 100.0 an ance ness mum	Percent 34.5 83.4 100.0 2.000 .479 .253 1.000
RES40 Value Label Mean Mode Kurtosis Ser Skew Maximum Valid cases RES41 ;	1.821 2.000 913 .004 3.000	Value 1 2 3 Total Std err Std dev S E Kurt Range Sum Missing c	Frequency 293 416 141 850 .024 .692 .168 2.000 1548.000	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew Mini	Percent 34.5 48.9 16.6 100.0 an ance ness sum	2.000 .479 .253 1.000
RES40 Value Label Mean Mode Kurtosis Ser Skew Maximum Valid cases RES41 ;	1.821 2.000 913 .004 3.000	Value 1 2 3 Total Std err Std dev S E Kurt Range Sum Missing c	Frequency 293 416 414	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew Mini Percent 39.2 45.5	Percent 34.5 48.7 16.6 100.0 an ance ness mum Valid Percent 39.2 45.5	Percent 34.5 83.4 100.0 2.000 .479 .253 1.000
RES40 Value Label Mean Mode Kurtosis Ser Skew Maximum Valid cases RES41 ;	1.821 2.000 913 .004 3.000	Value 1 2 3 Total Std err Std dev S E Kurt Range Sum Missing c	Frequency 293 416 141 850 .024 .692 .168 2.000 1548.000 ases 0	Percent 34.5 48.9 16.6 100.0 Medi Vari Skew Mini Percent	Percent 34.5 48.9 16.6 100.0 an ance ness mum Valid Percent 39.2	Percent 34.5 83.4 100.0 2.000 .479 .253 1.000 Cum Percent 39.2

Mean Mode Kurtosis S E Skew Maximum	1.761 2.000 925 .084 3.000	Std err Std dev S E Kurt Range Sum	.024 .699 .168 2.000 1497.000		ance ness	2.000 .488 .365 1.000
Valid cases	850	Missing c	ases 0			
RES42					Valid Percent	Cum Percent
Value Label		Value	t in the stage was first	ligi (Andrew Branch Line and Communication and Communication and Communication and Communication and Communication and Communication and Co		
	· ·	1 2 3	338 466 46	39.8 54.8 5.4	39.8 54.8 5.4	39.8 94.6 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.656 2.000 682 .084 3.000	Std err Std dev S E Kurt Range Sum	.020 .578 .168 2.000 1408.000		ance ness	2,000 .334 .213 1,000
Valid cases	850	Missing c	ases O			
RES43					Valid	Cun
Value Label		Value	Frequency	Percent	Percent	Percent
		1 2 3	228 491 131	26.8 57.8 15.4	26.8 57.8 15.4	26.8 84.6 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Shew Maximum	1.886 2.000 593 .084 3.000	Std err Std dev S E Kurt Range Sum	.022 .640 .168 2.000 1603.000	Skew	ance Ince Incum	2.000 .410 .105 1.000
Valid cases	850	Missing c	ases O			
						
RES44 .					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		1 2 3 Total	316 480 54 	37.2 56.5 6.4	37.2 56.5 6.4	37.2 93.6 100.0
Mean Mode Kurtosis S E Skew Maximum	1.692 2.000 410 .084 3.000	Std err Std dev S E Kurt Range Sum	.020 .584 .168 2.000 1438.000	Medi Vari	ance ance	2.000 .341 .180 1.000

					All the Control	gent of the
Valid cases	850	Missing c	asos O			
RES45					Valid	Cum
Value Label		Value	Frequency	Percent		Percent
		1	240	28.2	28.2	28.2
		2 3	534	62.8 8.9	62.8	71.1
						100.0
		Total	850	100.0	100.0	
Mean	1.807	Std err	.020	Medi	an	2.000
Mode	2.000	Std dev	.579	Vari	ance	. 335
Kurtosis	299	S E Kurt	16B		ness	.041
S E Skew	.084	Range	2.000	Mini	mum	1.000
Maximum	3.000	Sum	1536.000		Salara e	
Valid cases	850	Missing c	ases O			
•	,					
				7.7.7.7		· -
RE546	•				Valid	Cum
Value Label		Value	Frequency	Percent		Percent
		1	197	23.2	23.2	23.2
		. 2	519	61.1	61.1	84.2
		3	134	15.8	15.8	100.0
		Total	850	100.0	100.0	
Mean	1.926	Std err	.021	Medi	an	2.000
Mode	2.000	Std dev	.620	Vari	ance	.384
Kurtosis	416	S E Kurt	.168	Skew	ness	- 049
S E Skew	.084	Range	2.000	Mini	mum	1.000
Maximum	3.000	Sum	1637.000			
Valid cases	850 '	Missing c	ases O			
RES47 .						
Value Label .		Value	Frequency	Percent	Valid Percent	Cum Percent
		1	635	74.7	74.7	74.7
		2	170	20.0	20.0	91.7
		ं उ	45	5.3	5.3	100.0
		Total	B50	100.0	100.0	
Mean	1.306	Std err	.019	Medi	an	1.000
Mode	1.000	Std dev	.564	Vari	ance	.319
Kurtosis	1.848	S E Kurt	. 168		ness	1.691
S E Skev	.084	Range	2.000	Mini	സ്വന	1.000
Maximum	3.000	Sum .	1110.000			
Valid cases	850	Missing c	ases O			
RES48						_

Valid

Value Frequency Percent Percent Percent

Cum

		3	74	8.7	8.7	100.0
	,	Total Std err Std dev S E Kurt Range Sum	850	100.0	100.0	
Mean	1.649	Std err	.022	Medi	an	2.000
Mode	2.000	Std dev	.634	Vari	ance	.402
Kurtosis	676	5 E Kurt	. 168	Skew	ness	. 453
S E Skew	.084	Range	2.000	Mini	mum	1.000
Maximum	3.000	Sum	1402.000			
Valid cases	850	Missing ca	ses 0	STORLLY TORIST TORS		
RES49				Percent	Valid	Cum
Value Label		Value			Percent	Percent
		1	233 512	27.4	27.4	27.4
		2	512	27.4 60.2	60.2	87.6
		3		12.4	12.4	27.4 87.6 100.0
		Total	850	100.0	100.0	
Mean Mode	1.849	Std err	.021	Medi Vari Skew	an	2.000
Mode	2.000	Std dev	. 613	Vari	ance .	375
Kurtosis	439	S E Kurt	.168	Skew	ness	.077
S E Skew	- 084	Range	. 2.000	Mini	ance ness mum	1.000
Maximum	3.000	Sun	1572.000			
Valid cases	850	Missing ca	ses 0			
		- 				
Value Label		Value	Frequency	Percent	Valid Percent	
		1	310	36.5	34.5	36.5
		2	480	56.5	56.5	
		3	60	7.1	7.1	100.0
		•				1
•	•	Tota1	850	100.0	100.0	
Mean	1.706	Std err	.020	Medi	an	2.000
Mode	2.000	Std dev	.591	Vari	ance	.349
Kurtosis	590	S E Kurt	140	C1		100
S E Skew	.084	Range	2.000	Mini	mum	1.000
Maximum	3.000	Sum	1450.000		,	
Valid cases	850	Missing ca	ses O			
RES51					Valid	Cum
Value Label		Value	Frequency	Percent		
		1	408	48.0	48.0	48.0
		2	387	45.5	45.5	
		3	55	6.5	6.5	100.0
		Total	850	100.0	100.0	
Mean	1.585	Total Std err				2,000
Mean Mode	1.585		.021 .610	Medi		2.000 .373

5

91.

* *						100
S E Skew Maximum	.084 3.000	Range Sum	2.000 1347.000	Mini	mum .	1.006
Valid cases	850	Missing d	ases 0			
				<i>(</i> = = = = .		
RES52					Valid .	Cúm
Value Label	and the second of the second	Value	Frequency	Percent		Percent
- A		.i 2	224 494	26.4 58.1	26.4 58.1	26.4 84.5
·			132	15.5	15.5	100.0
		Total		100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.892 2.000 577 .084 3.000	Std err Std dev S E Kurt Range Sum	.022 .638 .168 2.000 1608.000	Skev	ance Iness	2.000 .408 .097 1.000
Valid cases	850	Missing o	ases 0			
RESS3						
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
.i		1 2 3	385 342 123	45.3 40.2 14.5	45.3 40.2 14.5	45.3 85.5 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.692 1.000 896 .084 3.000	Std err Std dev S E Kurt Range Sum	.024 .709 .148 2.000 1438.000	Vari	ance ness	2.000 .503 :522 1.000
Valid cases.	850	Missing c	ases O			
RES54						
					Valid	Cum
Value Label			Frequency			Percent
		1 2 3	464 316 70	54.6 37.2 8.2	54.6 37.2 8.2	54.6 91.8 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.534 1.000 419 .084 3.000	Std err Std dev S E Kurt Range Sum	.022 .643 .168 2.000 1306.000	Medi Vari Skew Mini	ance ness	1.000 .414 .795 1.000
Valid cases	B5¢	Missing c	ases O			

Value Label		Value	Frequency	Percent	Valid Percent.	
value Lauei		1 2 3	212 539	24.9 63.4 11.6	24.9	24.9 88.4 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S-E Skew Maximum	1.867 2.000 248 .084 3.000	Std err Std dev S E Kurt Range Sum	.020 .590	Skev	mum	2.000 .349 .040 1.000
Valid cases	850	Missing c	ases 0			
RES56 Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1 2 3		17.4 50.5 32.1	17.4 50.5 32.1	17.4 67.9 100.0
,	•	Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	2.147 2.000 896 .084 3.000	Std err Std dev S E Kurt Range Sum	.024 .689 .168 2.000 1825.000		ance iness	2.000 .474 200 1.000
Valid cases	850	Missing c	ases 0	•		
RES57		-			Valid	Cum
Value Label		Value	Frequency			
		1 2 3	577 188 85	67.9 22.1 10.0	67.9 22.1 10.0	67.9 90.0 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.421 1.000 .399 .084 3.000	Std err Std dev S E Kurt Range Sum	.023 .667 .168 2.000 1208.000	Vari Ske	ian iance vness imum	1.000 .444 1.307 1.000
Valid cases	850	Missing c	ases C	,		
				·	-	
RE558					Valid	Cum
Value Label		Value			Percent	Percent
,		,1	304 421	35.8 49.5	35.8 49.5	35.8 85.3

		Total	850	.100.0	100.0		
Mean .	1.789	Std err	.023	Medi	an	2.000	
Mode	2.000	CA. 4		Vari	ance	.461	
Kurtosis	848	S E Kurt	.168	Skew	HIGSS	.287	11. Telepin
S E Skew	.084	Kange	2.000	. Mini	mum	1.000	Table 1
Maximum	3.000	Sum	1521.000				
Valid cases	850 ;	Missing c	ases 0				
RES59							
Value Label		Value	Frequency	Percent	Valid Percent	Percent	
value Label		varue	Frequency	Ter cent			
		1	1/48	19.B	19.8 67.2 13.1	19.8 86.9	
		2	571	67.2	67.2	86.9	
		3	111	13.1	13.1	100.0	. 17 A
		Total	850	100.0	100.0		
Mean	1.933	Std err	.020	Medi	20	2.000	Maria de la composição de
Mode	2.000	Std dev	.569	Vari	ance	.324	and the state of
Kurtosis	.051	S E Kurt	.168		iness	009	
S E Skew	.084	Range	2,000	Mini	mum	1.000	
Maximum	3.000	Sum	1643:000			• •	
Valid cases	850	Missing c	ases 0				
RE940	- ,				Valid	Cum	
Value Label		Value	Frequency	Percent			
		1	213	25.1	25.1	25.1	
		2	432	50.8	50.B	75.9	
		3	204	24.0	24.0	99.9	
		5	1	.1	-1	100.0	
•		Total	850	100.0	100.0		
Mean	1.993	Std err	.024	Medi	an	2.000	
Mode	2.000	Std dev	.708	Vai 1	ance	.502	
Kurtosis	661	SEKurt	.168		ness	.090	
S E Skew Maximum	.084 5.000	Range Sum	4.000 1694.000	Mini	mum	1.000	
Valid cases	850	Missing c	ases 0				
RES61						_	
Unlaw Label		Value	Examples	Parcont	Valid	Cum	
Value Label		VAIUG	Frequency	Percent	Percent	Percent	
		. 1	373	43.9	43.9	43.9	
		2	287	33.8	33.8	77.6	
		3	190	22.4	22.4	100.0	
		Total	950	100.0	100.0		
Mean	1.785	Std err	.027	Medi	an	2.000	
Mode	1.000	Std dev	. 785		ance	.617	
Kurtosis	-1.275	S E Kurt	.16B		เบอละ	. 399	
wester-ag	WANGER !	RADD	2,,000	Mini	MLICE.	1.000	

Valid cases	850	Missing c	. 292s			
RES62					Valid	Cum
Value Label		Value		Percent	Percent	Percent
		1 2 3	181 226	52.1 21.3 26.6	21.3 26.6	52.1 73.4 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.745 1.000 -1.425 .084 3.000	Std err Std dev S E Kurt Range Sum	.029 .850 .168 2.000 1483.000		ance ness	1.000 .723 .513 1.000
Valid cases	850	Missing c	eses 0-			
RES63					Valid	Cun
Value Label		Value	Frequency	Percent		
		1 2 3	163 423 264	19.2 49.8 31.1	19.2 49.8 31.1	19.2 69.9 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	2.119 2.000 952 .084 3.000	Std err Std dev S E Kurt Range Sum	.024 .699 .168 2.000 1801.000	Skev	an ance iness mum	2.000 .489 167 1.000
Valid cases	850	Missing c	ases O			
						-
RES64	•					
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1 2 . 3	220 310 320	25.9 36.5 37.6	25.9 36.5 37.6	25.9 62.4 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	2.118 3.000 -1.364 .084 3.000	Std err Std dev S E Kurt Range Sum	.027 .789 .168 2.000 1800.000		ance ness.	2.000 .622 211 1.000
Valid cases	850	Missing c	ases O			
RES45	3			•	Valid	Cum

		1 2 3	389 358 103	45.8 42.1 12.1	45.8 42.1 12.1	45.8 87.9 100.0
		Tota1	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.664 1.000 780 .084 3.000	Std err Std dev S E Kurt Range Sum	.023 .683 .168 2.000 1414.000	Väri Ske	an ance Iness mum	2.000 .466 .541 1.000
Valid cases	850	Missing c	ases O		grandigi astro Sugar Halisa Artista	Visitorio de 1. Nacionales Constantes Nacionales Constantes
RES66					Valid	Cum
Value Label		Value	Frequency	ne ar Malatica e	Percent	Percent
	•	1 2 3	302 310 238	35.5 36.5 28.0	35.5 36.5 28.0	72.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.925 2.000 -1.402 .084 3.000	Std err Std dev S E Kurt Range Sum	.027 .794 .168 2.000 1636.000	Medi Vari Skew	aπ	2.000 .630 .135 1.000
Valid cases	850	Missing c	ases O			
RES67					Valid	Cum
Value Label		Value	Frequency	Percent		
		1 2 3	254 355 240	29.9 41.9 28.2	29.9 41.9 20.2	29.9 71.8 100.0
		Total	850	100.0	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.984 2.000 -1.279 .084 3.000	Std err Std dev S E Kurt Range Sum	.026 .763 .168 2.000 1686.000		ance ness	2.000 .582 .028 1.000
Valid cases	850	Missing c	ases Q			
RES68						C
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1 2 3	283 322 245	33.3 37.9 28.6	33.3 37.9 28.8	33.3 71.2 100.0

						4
						53 J. L. S.
Mean	1.955	Std err	.027 .787	Media Varia		2.000
Mode Kurtosis	2.000 -1.382	Std dev S E Kurt	.168	Skewi	1668	.079
S E Skew	084	Range	2.000	Minim		1.000
Maximum	.2.000	Sum	1662.000			
Valid cases	850	Missing ca	ises 0			
RES69						
NEDO!		and the second		The Hole	Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
•		1	256		30.1	30.1
* 4 4		2		56.0	56.0	86.1
	•	3	118	13.9	13.9_	100.0
		Total	850	100.0	100.0	
Mean	1.839	Std err	.022	Medi	an	2.000
Mode	2.000	Std dev	.644	Vari	ance	-414
Kurtosis S E Skew	647 .0B4	S E Kurt	.168 2.000	Skew Minio	ness	.163 1.000
Maximum	3.000	Range Sum	1562.000	F11(11)	пин	1.000
					Mr. 1	
Valid cases	850	Missing c	ases O		•	
						•
					- -	
RES70						_
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent

		i	186	21.9	21.9 61.2	21.9 83.1
			520			03,1
		2 3	520 144	61.2 16.9	16.9	100.0
		3	144	16.9	16.9	
			144	16.9	16.9	
Mean	1.951	Total Std err	850 .021	16.9 100.0 Medi	16.9 100.0	2.000
'Mode	2.000	3 Total Std err Std dev	144 850 .021 .621	16.9 100.0 Medi Vari	16.9 100.0 an ance	2.000
'Mode Kurtosis S E Skew	2.000 414 .084	Total Std err Std dev S E Kurt Range	144 850 .021 .421 .168 2.000	16.9 100.0 Medi Vari Skew	16.9 100.0	2.000
'Mode Kurtosis	2.000	Total Std err Std dev S E Kurt	144 	16.9 100.0 Medi Vari Skew	16.9 100.0 an ance	2.000 386
'Mode Kurtosis S E Skew	2.000 414 .084	Total Std err Std dev S E Kurt Range	850 .021 .421 .168 2.000	16.9 100.0 Medi Vari Skew Mini	16.9 100.0 an ance	2.000 386
Mode Kurtosis S E Skew Maximum	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum	850 .021 .421 .168 2.000	16.9 100.0 Medi Vari Skew Mini	16.9 100.0 an ance	2.000 386
Mode Kurtosis S E Skew Maximum Valid cases RES71	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum	.021 .621 .168 2.000 1658.000	16.9 100.0 Medi Vari Stew Mini	16.9 100.0 an ance ness mum	2.000 386 .033 1.000
Mode Kurtosis S E Skew Maximum Valid cases	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum	850 .021 .621 .168 2.000 1658.000	16.9 100.0 Medi Vari Stew Mini	100.0 an ance iness	2.000 386 .033 1.000
Mode Kurtosis S E Skew Maximum Valid cases RES71	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing c	144 850 .021 .621 .148 2.000 1658.000	16.9 100.0 Medi Vari Srew Mini	16.9 100.0 an ance mess mum Valid Percent	2.000 .386 .033 1.000
Mode Kurtosis S E Skew Maximum Valid cases RES71	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing C	144 	16.9 100.0 Medi Vari Srew Mini Percent	16.9 100.0 an ance oness on the state of the	2.000 .386 .033 1.000 Cum Percent
Mode Kurtosis S E Skew Maximum Valid cases RES71	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing c	144 850 .021 .621 .148 2.000 1658.000	16.9 100.0 Medi Vari Stew Mini Percent 13.9 75.4 10.7	16.9 100.0 an ance mess mum Valid Percent	2.000 .386 .033 1.000
Mode Kurtosis S E Skew Maximum Valid cases RES71	2.000 414 .084 3.000	Total Std err Std dev S E Kurt Range Sum Missing C	144 	16.9 100.0 Medi Vari Srew Mini Percent	16.9 100.0 an ance oness on the state of the	2.000 .386 .033 1.000 Cum Percent
Mode Kurtosis S E Skew Maximum Valid cases RES71 Value Label	2.000 414 .084 3.000 850	Total Std err Std dev S E Kurt Range Sum Missing c	144 850 .021 .621 .168 2.000 1658.000 eses 0 Frequency 118 641 71	16.9 100.0 Medi Vari Stew Mini Percent 13.9 75.4 10.7	Valid Percent 13.9 75.4 100.0	2.000 .386 .033 1.000 Cum Percent
Mode Kurtosis S E Skew Marimum Valid cases RES71 Value Label	2.000 414 .084 3.000 850	Total Std err Std dev S E Kurt Range Sum Missing C Value 1 2 Total Std err Std derr Std dev	144 	16.9 100.0 Medi Vari Skew Mini Percent 13.9 75.4 10.7	Valid Fercent 13.9 75.4 10.7	2.000 .386 .033 1.000 Cum Percent 13.9 89.3 100.0
Mode Kurtosis S E Skew Manneum Valid cases RES71 Value Label Mean Mode Kurtosis	2.000 414 .084 3.000 850	Total Std err Std dev SE Kurt Range Sum Missing c Value 1 2 Total Std err Std dev SE Kurt	144 850 .021 .621 .168 2.000 1658.000 ases 0 Frequency 118 641 71 850 .017 .495 .168	16.9 100.0 Medi Vari Stewn Mini Percent 13.9 75.4 10.7 100.0 Medi Vari Skew	16.9 100.0 an ance mess mum Valid Fercent 13.9 75.4 10.7 100.0 an ance mess	2.000 .386 .033 1.000 Cum Percent 13.9 89.3 100.0
Mode Kurtosis S E Skew Marimum Valid cases RES71 Value Label	2.000 414 .084 3.000 850	Total Std err Std dev S E Kurt Range Sum Missing C Value 1 2 Total Std err Std derr Std dev	144 	16.9 100.0 Medi Vari Skew Mini Percent 13.9 75.4 10.7	16.9 100.0 an ance mess mum Valid Fercent 13.9 75.4 10.7 100.0 an ance mess	2.000 .386 .033 1.000 Cum Percent 13.9 89.3 100.0
Mode Kurtosis S E Skew Marimum Valid cases RES71 Value Label Nean Mode Kurtosis S E Skew	2.000 414 .084 3.000 850 1.968 2.000 1.071 .084	Total Std err Std dev S E Kurt Range Sum Missing C Value 1 2 3 Total Std err Std dev S E Kurt Range	144 	16.9 100.0 Medi Vari Stewn Mini Percent 13.9 75.4 10.7 100.0 Medi Vari Skew	16.9 100.0 an ance mess mum Valid Fercent 13.9 75.4 10.7 100.0 an ance mess	2.000 .386 .033 1.000 Cum Percent 13.9 89.3 100.0

					-	
RE572						
Value Label		Value	Frequency	Percent	Valid Percent	Com Percent
		1.	122	14.4	14.4	14.4
		2	662	77.9	77.9	92.2
		3		7.8	7.8	100.0
	9 Million (1784) 188	Total	850	100.0	100.0	
				is the transfer of the	to the second second second	
Mean	1.934	Std err		Medi	an .	2.000
Mode	2.000	Std dev	.466	Var 1	ance	.217
Kurtosis	1.472	S E Kurt	. 168	. Skew	ness	226
S E Skew Maximum	.084 3.000	Range Sum	2.000 1644.000	/ / / / / / / / / / / / / / / / / / /	mum	1.000
riaximum	3.000	aum .	03.1 044.000 3 404683207736	randa di katang katang at kata Katang at katang at	entropo o la Reserva	
Valid cases	650	Missino c	ases O	Par Grandski	Maria (Najvara da Karla) Gerapi (Najvara da Karla)	
						War war
RES73					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		1	292	34.4	34.4	34.4
		2	459	54.0	54.0	88.4
	3 3 3 4	ź	99	11.6	11.6	100.0
	1. The second of					15010
		Total	850	100.0	100.0	
Mean	1.773	. Std err	.022	Medi	an	2.000
Mode	2.000	Std dev	. 639	Vari	ance	. 409
Kurtosis	671	S E Kurt	. 148		iness	.241
SESkew	.084	Range	2.000	Mini	mum	1.000
Maximum	3.000	Sum -	1507.000			
Valid cases	850	Missing c	ases O			
RES74					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		· 1	155	18.2	16.2	18.2
		2	622	73.2	73.2	91.4
		3	73	8.6	8.6	100.0
		Total	B50	100.0	100.0	
Mean	1,904	Std err	.017	Medi	a.n.	2.000
Mode	2.000	Std dev	509		ance	.259
Kurtosis	. 676	S E Kurt	.168		iness	157
S E Skew	.084	Range	2.000	Mini	กนล	1.000
Maximum	3.000	Sum	1618.000			
Valid cases	850	Missing c	ases 0			
RES75	•		•			
Value Label		Value	Frequency	Percent	Valid ' Percent	Cum Percent
		1	620	72.9	72.9	72.9

		•				
		Total	850	100.0	100.0	
Mean	1.338	Std err	.021	Nedi	an	1.000
Mode	1.000	Std dev S E Kurt	.598 .168		ance	.358
Kurtosis S E Skew	1.396 .084	Danna	2,000	Mini	ness mum	1.588 1.000
Maximum	3.000	Sum	1137.000			
Valid cases	850	Missing c	ases O		dan di	
RES76				and the second	Valid	Cúm
Value Label			Franciancy	Porcent	Percent	Percent
		1	111	13.1	13.1	13. 1
		2	646	76.0	76.0	87.1
·		3	93	10.9	10.9	100.0
		Total	850	100.0	100.0	
Mean	1.979	Std err	.017	Medi	an	2.000
Mode	2.000	Std dev	. 490		ance	. 240
Kurtosis S E Skew	1.176	S E Kurt Range	.168 2.000	Skew Mini:	ness mum	051 1.000
Maximum	3.000	Sum	1682.000			
Valid cases	. 850	Missing c	ases O			
PES77						
	•		•		Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		1	458	53.9	53.9	53.9
		2	179 213	21.1 25.1	21.1 25.1	74.9 100.0
						100.0
		Total	850	100.0	100.0	
Mean	1.712	Std err	.029	Medi		1.000
Mode Kurtosis	1.000	Std dev S E Kurt	. 641	Vari	ance	.707 .585
S E Skew	.084	Range	2.000	Mini	#ness .mum	1.000
Maximum	3.000	Sum	1455.000			
Valid cases	850	Missing c	ases O			
RES78						
WG9/8	•				Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
		i	273	32.1	32.1	32.1
		2	334 243	39.3 28.6	39.3 28.6	71.4 100.0
		_				100.0
		Total	850	100.0	100.0	
Mean	1.965	Std err	.007	Medi	an	2.000

					The second second	
Kurtosis S E Skew Maximum	-1.348 .084 3.000	S E Kurt Range Sum	.168 2.000 1670.000	Skew Mini	iness mum	1.000
Valid cases	850	Missing c	ases O			
RES79						
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1. 2 3	205 538 107	24.1 63.3 12.6	24.1 63.3 12.6	24.1 97.4 100.0
		Total	850	100.0.	100.0	
Mean Mode Kurtosis S E Skew Maximum	1.885 2.000 257 .084 3.000	Std err Std dev S E Kurt Range Sum	.020 .595 .168 2.000 1602.000	Medi Vari Sken	ness	2.000 .354 .041 1.000
Valid cases	850	Missing c	ases O			•
RESBO				•		
Value Label		Value	Frequency	Percent	Valid Percent	Eum Percent
		1 2 3	243 434 173	28.6 51.1 20.4	28.6 51.1 20.4	28.6 79.4 100.0
		Total	850	100.0	100.0	•
Mean Mode Kurtosis S E Skew Maximum	1.918 2.000 929 .084 3.000	Total Std err Std dev S E Kurt Range Sum		Medi Vari Skew		2.000 .483 .112 1.000
Mode Kurtosis S E Skew	2.000 929 .084	Std err Std dev S E'Kurt Range	850 .024 .675 .169 2.000 1630.000	Medi Vari Skew	an ance iness	.483 .112
Mode Kurtosis S E Skew Maximum	2.000 929 .084 3.000	Std err Std dev S E Kurt Range Sum	850 .024 .675 .169 2.000 1630.000	Medi Vari Skew	an ance ness mum	.483 .112 1.000
Mode Kurtosis S E Skew Maximum Valid cases	2.000 929 .084 3.000	Std err Std dev S E Kurt Range Sum	850 .024 .675 .169 2.000 1630.000	Medi Vari Skew Mini	an ance iness	.483 .112
Mode Kurtosis S E Skew Maximum Valid cases RES81	2.000 929 .084 3.000	Std err Std dev S E Kurt Range Sum	850 .024 .695 .168 2.000 1630.000	Medi Vari Skew Mini	an ance iness mum Valid	.483 .112 1.000
Mode Kurtosis S E Skew Maximum Valid cases RES81	2.000 929 .084 3.000	Std err Std dev S E Kurt Range Sum Missing co	850 .024 .675 .168 2.000 1630.000 asses 0 Frequency 171 563 116	Medi Vari Skew Mini Percent 20.1 66.2	an ance iness mum Valid Percent 20.1 66.2	.483 .112 1.000 Cum Percent 20.1 86.4
Mode Kurtosis S E Skew Maximum Valid cases RES81	2.000 929 .084 3.000	Std err Std dev S E Kurt Range Sum Missing co Value	850 .024 .695 .168 2.000 1630.000 ases O Frequency 171 S63 116	Medi Vari Skew Mini Percent 20.1 66.2 13.6 100.0 Medi Vari Skew	Valid Percent 20.1 66.2 13.6	.483 .112 1.000 Cum Percent 20.1 86.4

RESB2						
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		1	332	37.1	39.1	39.1
1.0		2	413	48.6	48.6	87.6
	• 1	3	105	12.4	12.4	100.0
		Tota1		100.0	100.0	
Mean	1.733	Std err	.023	Medi	an ·	2.000
Mode	2.000	Std dev	. 666	Vari	ance	. 443
Kurtosis	786	S E Kurt	. 168	Skew	ness	.363
S E Skew Maximum	.084 3.000	Range Sum	2.000 1473.000	Mini	mum	1.000
Valid cases	850	Missing c	ases O			
RESB3			A Company		11-12-4	5
Value Label		Value	Frequency	Percent	Valid Percent	Cum Percent
		•				
		1 2	228 495	26.8 58.2	26.8 58.2	26.8 85.1
		, उ	127	14.9	14.9	100.0
		Total	850	100.0	100.0	
Mean	1.881	Std err	.022	Medi	an	2.000
Mode	2.000	Std dev	.636		ance	. 404
Kurtosis S E Skew	- 565 - 084	S E Kurt Range	.168 2.000	Skev	ness mum	1.000
Maximum	3.000	Sum	1599.000	141111	iatan .	11000
Valid cases	850	Missing c	ases 0	•		
	_ ,					
RES84						
RES84					Valid	Cinu.
Value Label		Value	Frequency	Percent	Percent	Percent
•		1	218	25.6	25.6	25.6
		2	518	60.9	60.9	86.6
		3	114	13.4	13.4	100.0
		Total	850	100.0	100.0	
Mean	1.878	Std err	.021	Med.	ian	2.000
Mode	2.000	Std dev	.613		ance	.376
Kurtosis 9 E Skew	407 .084	S E Kurt Pande	.168 2.000		VU622	.075 1.000
Maximum	3.000	Sum	1596.000	71111	t thut th	1.000
Valid cases	850	Missing c	ases C	•		
RE S8 5						
Value Label		. Value	Frequency	Percent	Valid Percent	Cum Percent
		1	515	60.6	60.7	60.7
		2	240	28.2	28.3	88.9
		3	94 1	11.1	11.1	100.0
		•	1	- 1	Missing	

		iotai	850	100.0 100.0	,
Mean Mode Kurtosis S E Skew	1.504 1.000 247	Std err Std dev S E Kurt Range	.024 .687 .168 2.000	Median Variance Skewness Minimum	1.000 .472 1.013 1.000
Maximum	3.000	Sum	1277.000	. PETTERMAN /	1.000
riax Incin	3.000	Dum	1277.000		
Valid cases	849	Missing ca	ises 1		

This procedure was completed at 20:26:15 FINISH.

End of Include file.

Page 2			SPSS/PC+			7/1/9:
Correlations:	RES1	RES2	PES3	PES4	RESS	RES6
RES1	1.0000	.1521**			.0548	.1840##
RES2	.1521**		.193488	. 220711	,143911	.1611**
RES3	.1302**	.1934**	1.0000	. 08721	.114288	.1041#
RES4	.0628	. 2207 * *	.0872*	1.0000	.1361**	.0665
RESS	.0548	.1439##	.114200	.136104	1.0000	.214004
RESA	.1840##	.1611**	.1041#	• 0665	.2140##	1.0000
RES7	.0333	. 1430 * 1	.0495	• 0796	.1368**	.1789##
RESO	.08274	.1391**	.0494	.0639	,2312**	.2855**
RES9	.1590**	.127166	.1471**		.198044	
RES10	.0632	. 1706**	.0921	. 09361	.2543##	
RES11	.07224	.0902#	.131748		.1495**	. 2914##
RES12	.163144	.1839##	.1271**	.1356**	.3941**	.44350*
REB13	.111538		.0673	.0936#	.1039#	.179644
RES14	.1296##	.108008	. 157011	. 0321	.0754	. 2470: :
RES15	.1229##	.118688	.0761	.1172**	.3554##	.3839**
RES16	.0492	. 1431##	.0547	. 136511	.2942##	.379712
RES17	.0418	.0970#	.0402	. OB60#	.247B##	. 291688
RES18	1207##	.0257	.0351	.07174	.0805#	.0114
RES19	.10374	.0524	.08914	. 1155##		. 2030**
RE620	0189	.10148	.1064**	.1475##		
RES21	0248	0263	.0384	.1086**	,0371	.0220
RES22	.0709	.1031#	.0721	.113488	.0753	0029
RES23	.0316	.0202	0659	.0461	.1166**	.209188
RES24	1150##	.0820#	.0779	.0392	.1787**	.31884#
RE525	.144311	.0169	.0002	-109988	.0750*	.0750
RESZA	.0045	.0791	.0407	.1319##	0955	.0376
REB27	.0468	0035	.0505	.119168	.150744	
RESZB	0178	.0199	.1155**	0397	.07120	.1223**
RES29	.0356	.08663	0016	.0584	.0530	.0603
REB30	.0365	.0893#	.08771	.0599	.0942#	.10213
RES31	.0298	.0632	.0357	.0058#	.10178	.0345
RE532	.0630	0070	0411	.117088	.08451	.0220
RES33	.0547	.08384	.1472**	.0404	.0814#	.09124
RES34	.10313	.116088	.08718	.0120	.0320	.0410
RES35	.0039	. 110184	. 134344	.0792	.0535	.0199
RESJA	.0034	.0744	.0709	.0929#	.0779	.0273
RE537	.1265**	.0920#	0363	.0781	.17224#	.225384
RE538	0014	.0733	.07664	10080	.0322	.0318
RES39	0417	.0373	.0433	.0283	.0522	0013
RES40	.0705	.1074**	.0200	.1230##	.133488	.2308##
RES41	.0741	.116344	.1140##			
RES42	0262	.1049##	.107711	.0843*	.16B3##	.1419##
				.0925#	.0569	.0460
RES44	*****	. 0772	. 09943	. 0029	. 2022##	. 359232
	.0018	. 164184	. 1468**	. 1269##	.0799#	.1249**
	0289	.0902	.0467	.0638	.1512##	.0044
	~: 8435	: 2131::	: 8736	-: 9945**	. 13551	*1899##

N of Cases: 849

Page 3			SPSS/PC+			7/1/92
Correlations	RES1	RES2	RES3	RES4	RES5	RES6
RES48	.09431	.09524	.0588	.0922*	.0859#	.09634
RES49	.0487	.0494	~.0387	.0455	.1347**	.164594
RESSO	.0505	.1701 **	.119211	.0739	.0891*	.1200##
RES51	.0294	.09018	.08731	.0972#	.10498	.0021
RE852	.0225	.0411	. 1409	.09181	. 0346	.197134
RES53	.0472	.1425##	.09071	.0403	.1413**	. 1296##
RES54	.09130	.0764	.0741#	.1301##	.0865#	.0614
RE855	.0184	.1348##	.0271	.0264	.185411	.212044
RE556	0195	.0319	.0762	.0040	. 1481**	.0870\$
RESS7	.00021	.0560	.0238	.1347**	.1314##	.0910:
RESSA	.0239	.0604	.0433	.0499	.0717	.0672
RESS9	.0950#	. OB338	.119911	.0508	.0731	.14861*
RES60	.126511	.1418**	, 12B966	-040B	.111344	.2773#4
RES61	.116344	.1483**	.0649	.0645	.1737**	.3421##
RES62	. 156611	.¢809#	.0510	.0392	.1932**	.3440##
REB92	.1269**	.1250##	.0713	~.0064	.1501**	.2970 * 0
RE5-64	.1128**	.0700	.0958*	0220	.1160**	.2604 # #
RES65	.0635	. 1135##	.0532	.0460	.0619	.0974#
RES66	.0036	.0775	.0085	.0622	.0872#	.0250
RES67	.0288	.0513	.0031	.0673	.08951	.0474
RES68	.1825##	.1057#	.0211	.0637	LOBOLS	.2351**
RES69	.0663	.1139**	.0832#	~.0039	.0987#	.1052#
RF570	0034	.0207	. DA23	P770.	. 1003#	. 1233a g

1-tailed Signif: 4 - .01 4# - .001

N of cases:	849	1-tailed		01 68	001	
RESOS ·	.1103+4	.0879*	.0523	0026	.0706	.1375##
RESB4	.0116	.0342	.0450	.0737	.1185**	. 0296
RE583	.0170	.08980	.0942#	.0622	,0228	. 0366
RESBZ	.0529	.132144	.0516	.0152	.193248	.0725
RE501	.0399	.0421	.1198##	.0146	.1136##	.0788
RESBO	.0152	.0642	.10201	.0332	.151244	.100448
RE579	.0638	.0277	08078	.0421	.09678	.108768
RES7B	.0664	.0019	. 0487	.0356	.1384**	. 143188
RES77	.0313	.0736	.0445	.0851#	.1883**	.203188
RES76	.0607	.0495	.0408	0229	.0675	-0047
RES75	, 0279	.0507	.0344	.0634	.0797	.0711
RE574	.0607	.0736	. 0709	0168	. 1251 6 8	.0130
RE573	0242	.0305	. 131844	. 0526	.0328	.0109
RE572	.0229	.0908#	.110844	.0690	. 161044	.0400
RES71	.0714	.10464	.0442	. 0309	. 0381	. 0659
			.0623	. 0334	10031	. 123388

" . " is printed if a coefficient cannot be computed

Page 4			SP	SS/PC+			7/1/92
Correlations:	RES7	RESB	•	RES9	RES10	RES11	RE512
RESI	.0333	.08274		.1590**	.0632	.09221	.1631**
PES2	.1438**	.1391##		.127148	. 170614	.09024	. 163744
RES3	.0495	.0494		. 149184	.0631	. 131766	.1271**
FEB4	.0796	.0639		.0774	.0936#	.0562	. 135688
RES5	.1388**	. 231244		. 198844	,254341	. 149508	.394111
RES6	.1789##	. 7855**		.5728##	.238744	. 291488	.443588
RES7	1.0000	. 2576**		. 2382**	.251944	.124248	.17521#
RESO	.257688	1.0000		.379348	.3034**	.133910	. 261200
RES7	.2382**	. 379314		1.0000	.271848	. 333944	.3918*
RESIO	.251944	.3034**		.2710**	1,0000	. 186444	.2882**
RESII	.124248	.1339**		.333911	186411	1.0000	. 24504 #
RÉS12	.1752#1	.2612##		.391811	.2882**	.2450##	1.0000
RES13	.1577**	.1168**		.1935##	.1590**	.279300	.241888
RES14	.1648**	.163428		.244714	.1715**	356244	. 236184
RES15	1256**	.2767**		.3205##	.318144	.215611	.416311
RESIA	.2903**	.2265**		.3179##	.2011##	.2307##	. 35568 8
RES17	.2202**	.2824**		.307144	.2751**	.2452##	.307488
RESID	.0366	.0008		0082	.0464	0144	.0184
RES19	.202B##	.2736**		. 2675##	.2800**	.2124**	. 2561**
RESTO	.0671	.127300		.226988	. 1655**	.171188	. 2693##
RES21	.1296**	.157148		0100	. 10444	.0660	.0521
RES22	.0995#						
RES23	.0755	.08944		0008	.0814#	.0126	. 0753
RESZ4	.118044	.125411		.186388	.115411	. 235544	. 192111
						.4257##	.31491
RE525	.1489**	.10541		. 1099##	1003:1	.0294	. 10468
RES26	112941	. 141244		.0742	.1460##	.1185**	. 1873**
RES27	.118688	.0761		.0359	.109411	.0128	.0646
RESZB	.0279	.08091		.126456	.0401	.1368 **	. 132016-
RES29	.0079	. 0395		.0367	.0233	0003	. 0815#
RES30	.1171##	.1352**		.1147##	. 1546##	.0985	.0712
RES31	.0811#	.0652		.0169	,0541	.0230	. 0394
REB32	.1443**	.0327		.0805\$.1276**	.09741	.1197**
RE533	.0695	.1118**		.150014	.128466	. 225016	.1228**
RE534	0230	.0169		.0176	. 0472	. 6558	.0100
RES35	.0543	.1118**		.136311	. 1005#	.09721	. 09918
RES36	0052	.116000		.08062	.0632	.0851#	. 0986#
RES37	.0691	.08471		.1733##	. 131608	.134614	. 2650**
RES30	.0577	.114300		.09314	. 09284	.0727	.1109##
RES39	.0402	0172		.0014	. 0595	.0082	. 0387
RES40	.1707##	206344		. 271944	.1127**	.1251##	.216708
RES41	.1151**	.2000##		. 223344	.2099##	. 16981#	.18000
RES42	0505	.0979*		.08911	.08720	.0977#	. 09081
RES43	.1189**	. 254B1 8		397301	. 7707**	237811	. 307294
RES44	.0713#	.124568		.110444	. 143200	0571	. 127300
RES45	.04134	. 0260		.0245	. 0589	.0363	.0780
RE546	.0487	.1602**		.1707##	.0577	.132100	. 1687##
RES47	.1490**	.167111		.159401	. 205611	. 1321	.197500

N of cases: 849 1-tailed Signific 6 - .01 ff - .001

Page 5		2	SPSS/PC+		7/1/92		
Correlations:	REST	RES8	FEST	RE510	RES11	RE517	
RES40	.0723	.1762**	.161444	.1100##	.1522++	.1807**	
RES49	0227	,0774	.155624	.1207##	.0925*	.13098#	
RESSO	.0198	.0742	. 0797	. 142501	. 07.7B	. 152694	
RESS1	0177	.0754	.0026	.108744	.0460	. 0395	
RE552	.0839*	.0345	.1790##	.19464	.1341##	.117944	
RESS3	.0625	.160011	143811	.0720	.1365##	. 1243##	
RE554	.0385	.1031#	.09531	. 144211	.10428	.117488	
R£SSS	.094B*	.1715**	. 179611	. 143388	. 1521##	. 2102**	
RES56	.0265	.1015#	.1443#8	. 08461	,144213	.120311	
RES57	.124544	.1305##	.0718	.1624##	.0898#	.1311##	
RESSB	, Q4B4	. 116849	.09301	. 178264	.0709	.09618	
RESS9	.0541	.10271	.1801**	.0990#	.2356**	. 1565##	
RE540	.0967#	.08683	. 276944	. 128489	.290944	.2279##	
RES61	.0651	.173488	.307488	. 206411	.1459**	.3088**	
RES62	.1139**	. 159004	. 2801 * *	.1393##	205944	.3241##	
RESAG	.0326	.1092#1	. 2710##	.1321**	.268544	. 2463##	

RESAS	.0550	. UB\$/04	.13.044	.47000	.0112	• 511 B
RESA6	.0201	.0018	0085	. OB47 ·	. 117544	.0074
RE567	0077	0170	.0186	. O54B	.10364	0028
RESAB	.1163#1	. 0623	.167988	.0562	. 274511	.229911
RESAF	.0592	.09074	.1024s	.147911	.1327##	.08874
RE570	~.0283	. CB78 *	. 124711	. 126711	.1645##	10971#
RES71	.0644	.0160	.08631	. 0564	.0798	.0453
RE572	.09791	. 0757	.09491	. OB37*	.134611	.108544
RES73	.0520	-0109	.0591	.0315	.0082	. 05374
RES74	.0521	.0030	.08741	.10264	.0735	.0774
RES75	113944	0162	.0245	.0567	-0165	.0653
RES76	.0289	0359	.0174	.0691	.0550	.0661
RES77	.119411	.17521#	2122**	.1591**	.127511	.248744
RES78	.0257	.1097##	.159311	.1156**	.111100	.169211
RES79	.111644	.0523	.0519	0663	.0862#	.0952
RESBO	.0378	.0913#	.148411	.0875≉	.1128##	.1791##
RESBI	.10051	-09068	. 1579	.08526	.1821**	.1154**
RESB2	.0689	.1138**	.0749	.1199**	.1351**	.1370##
RE583	.0647	. 04B7	.0644	.0524	.1265##	.0439
RESB4	.0721	.121201	.1294##	.1302++	.0675	.115744
RESBS	.1831##	. 1844##	. 1597##	.13214#	.0629	.0904

N of cases: 849 1-tailed Signif: 3 - .01 ss - .001

٠.	*	i=	printed	1 #	٠	coefficient	cennot	be	computed

Page 6		1	SPSS/PC+			7/1/92
Correlations	RE513	RES14	RES15	RES16	RES17	RESIB
RES1	.1115**	.129688	.122904	.0692	.0416	.1207**
RES2	. 130211	.1080**	.118644	.143144	.09901	.0257
RES3	.0673	.157094	.0761	.0547	.0402	0351
RES4	.09361	.0321	. 1172##	.1365##	.0860*	.09174
RES5	. 10391	-0754	.355400	.2942##	. 2478**	.08054
RES6	.1796##	.247011	.3839**	.3797**	. 291644	.0114
RES7	. 157788	.164800	. 1256##	.2903**	.2202##	.0366
RES8	.1168**	.1634**	. 2767**	. 226500	. 2824**	.000B
RE59	.19354\$.2447**	.320544	.31794#	.3071**	00B2
RE510	.1590##	.1715**	.3181**	.2811**	.2751*1	.0464
RES11	. 2793**	.3562**	. 215611	.2307**	.2452**	0144
RE512	.2418##	.2361**	.416348	.3556**	.30748#	.0184
RES13	1.0000	.4799**	. 1663 # #	.2182##	.1953*1	.0728
RE514	. 479916	1.0000	. 1536**	.1571##	. 1917**	0245
RES15	1663**	.153664	1,0000	390211	282544	.0334
RES16	. 2182**	.1571**	.3702**	1.0000	. 3255**	.0556
RES17	. 1953**	.1917 **	.2025**	.3253**	1.0000	.0024
RESIG	.0728	0245	. 0334	.0556	.0024	1.0000
RES17	. 197111	.1550 **	. 274614	210000	3691**	. 0340
RE520	.0888	.1472**	.2537**	.1587**	.2227**	. 0357
RES21	. 122011	.0748	.0685	.1061**	.0570	.1718**
RES22	. 08661	.0211	. 0561	.1026#	.0332	.227611
RE623	. 1522##	.21268#	. 2159##	.1917#6	. 140211	109481
RES24 · RES25	201011	.392111	.221848	.260811	.362911	0393
RESZS	. 152111	.08348 .156081		.118411	.10071	.130111
RES27			. 0656	.187488	. 1581**	.0693
RESZE	. 0779 . 0948#	.0188	.0643	.124488	. OB558	. 143444
RE529	. 09204	10094	.08931	.117603	. 1685**	0021
RESZY RESZO	. 0493	.0790	.0111	.0551	1054	.1718**
RESSI	.0581	.0436	.1034	. 1455##	.254211	
RES32	.1379##	.0575	.08100	.12104*	.1605**	.1121**
RES33	202611	.2073**	.0413	.1390::	.1616**	.1935## .0427
RES34	.0292	.0114	.0405	.0625	.0243	.2275**
RES35	0625	.09746	.0372	.0941	.1115**	0591
RES36	. 0752	.1176**	1362**	.0214	. 1174**	.0058
RES37	. 120144		2499**	.177844	.10364	.1630**
RES38	.09751	.09714	.0895	.09191	.11980	0014
RES39	.00084	.0888	.0541	.0327	.0983	.08504
RES40	. 217244	. 210211	129801	218311	. 1B740 s	01B1
RE541	. 2141**	. 171B##	.111517	.146311	207984	.0038
RE542	. 1360**	.110311	.0688	.1183**	1726**	0712
RE943	. 134688	2378**	.290186	.202988	.2303**	0651
RES44	.1222##	.112100	,120011	.1393##	.1589**	0651
RES45	. 09981	.0442	.0713	.100188	.1305**	10B54#
RES46	0758	130644	.163868	.1079**	. 151011	0380
RE547	. 2124+1	. 1446**	.115000	. 245488	-1975**	.0084

N of cases: 849 1-tailed Signif: \$ - .01 ## - .00!

" . " is printed if a coefficient cannot be computed									
Page 7		5	PSS/PC+			7/1/92			
Correlations:	BE212	RES14	RE515	RES.6	RES17	RESIB			
RES48	. 1256**	.1112##	,114306	.1726**	.1771##	.0493			
RE549	.0676	.0784	.120488	. 0551	. 1369**	. 0624			
RE550	.1690##	.1562##	. 0537	. 08551	. 1411##	.0056			
RES51	. 0607	.0698	.OB168	.0680	.0615	.1624##			
RES52	. 164618	.1773**	. 10554	.141386	. 132741	0228			
RES53	.09554	.0310	.1373++	.1348**	. 1919 * *	. 0507			
RES54	.0524	.0825#	.0974#	.0562	.1259**	. 1585 + 1			
RESSS	.107111	.127014	.170444	. 09624	.172511	.0116			
RESS6	. 0655	.1436##	.1217##	.0615	116944	.0193			
RE557	.1317**	.1132**	.114711	. 169541	1982**	.0944#			
RESS8	.1295**	.1443**	, 125344	.118866	.173244	. 0335			
RE559	.1427##	.1699**	.1373**	.0866#	.2061##	0208			
RES60	.2630**	.337501	.2016**	.1695**	. 137344	0158			
RES61	.1284**	.2131**	.3261**	.2023**	.216014	0079			
DECAT	17/10s E	.258144	.7975**	.1867	.205411	.0714			

of Cases:	849	.i-tailed	Signif: *	01 44 -	.001	
RES85	.1176**	. 1341**	.0501	. 1653**	.0959#	0174
RE584	.1071**	.0763	.09158	. 0966	. 148488	0203
RES03	.0699	*089B*	.0100	.0751	. 09048	0145
RES02	.149788	.0735	.1307##	. 146514	127011	0014
RE501	.1340##	.1854**	. 125918	.0557	.170288	0071
RE580	.1078**	.109788	.1318**	. 1153**	.1475**	.08954
RES79	.1162##	. 1046	.0353	.127511	. 1025*	.0651
RE578	.0979*	.0596	.210088	· 0869\$.1022*	.0107
RES77	.106288	.0496	.2509**	. 19574#	.1736**	0324
RES76	.0543	.0900*	.0216	.0233	.0821#	.0519
RE575	.0704	.0359	.0712	. 1 1 45 6 6	.0767	. 1036#
RES74	. 0294	.0445	.0299	.0304	.1120##	.07511
RE573	.0785	.08041	.0014	.0476	.0782	.0137
RE572	.0667	.132344	.0429	. 0575	.136488	0404
RE571	.0679	.1145**	.0749	.0375	.109B**	.0325
RES70	.110011	.135044	.1164##	.122248	.0980#	.0003
RESA9	. 144298	. 1805**	.09928	.0250	.1305#8	.0151
RES6B	189201	. 276688	. 182344	. 1805##	. 1460##	.0644
RE567	. 145411	.113748	.128518	.0479	. 0709	*0402*
RESAL	. 1029	.1480##	.0851*	-0691	.0630	.0674
RE565	.130488	.09991	.OB441	.1150**	.08928	.0298
PES64	. 155014	.2039**	. 173044	. 125044	.1432**	0053
	•					

N of Cases: B49

* +-	printed	16 4	roufficient	rennot	be computed

Page 8			SPSS/PC+			7/1/92
Correlations	RES19	RES20	RE921	RE522	RES23	RES24
RESI ·	. 10371	0187	0248	.0707	.0316	. 115011
RE62	. 0524	1014	0263	.1031#	.0202	. 08208
RES3	.0871*	.1064##	.0384	.0721	.0659	.0779
RES4	.115508	.1475**	.1086**	. 1134##	.0461	. 0392
RESS	.2093**	,2678*	.0371	.0753 0029	.209188	.1787##
RES6	.203011	.152611		4.0029	.0755	.1160##
RES7	.2028**	.0671	.1246##	.08941		.1045#
RESB RES9	.2736**	.1273**	0100	0008	.1256##	. 2918 #
RESIO	.280011	16554	.1044#	.08144	.115444	. 164388
RESIG	.2124**	.1711**	.0660	.0126	.2355**	. 423749
RESI2	. 2561**	. 269311	.0521	.0753	. 1921**	.3199##
RESI3	.1971##	.06881	.122011	.0866	.1522**	.2810**
RE514	1550**	.147211	.074B	.0211	.212611	.3921**
RESIS	.274688	2537**	.0685	.0561	.215944	.221817
RESIA	. 2100 **	.158744	.1041##	. 10264	. 191714	.260841
RES17	.3691**	.222766	.0570	.0332	.1402**	. 362911
RESIB	.0340	.0357	.1718##	. 227644	107411	0393
RESID	1.0000	.2478**	.1485##	.0675	. 170511	. 2521++
RES20	. 247B##	1.0000	. 1011#	.0747	.170011	.211944
RES21	.1485##	.10118	1.0000	.2413##	.0864#	. 10484
RE522	0475	. 0747	.241344	1.0000	09724	. 0794
RES23	.1705**	.170018	.08641	08721	1.0000	. 2313##
RES24	.2521##	.211944	10488	.0794	231341	1.0000
RES25	. 1743	. 126411	.302511	. 179941	.0607	.10091
RESZA	.199611	. 2202 **	.204944	. 144444	. OB28#	.214010
RES27	.1337##	. 109311	. 2451 * *	. 294011	. 05B1	.0528
RESZB	.1737**	.1825**	. 1445##	.0630	.1875**	. 16204#
RES29	.10170	.0454	.137111	.110B##	.0121	.0420
RES30	.2385**	. 1555::	.2045	.09718	.0925	. 123988
RES31	.127808	.1205:1	. 235300	. 2017##	. 0347	. OB22#
RES32	. 2085##	. 1563**	.774741	.211688	.0058	. 161811
RE533	. 143988	. 189944	. 146613	.OB910	.150B**	. 152288
RES34	006B	.0835#	.107481	. 1507##	09961	.0550
RE535	.1334##	.1209##	.161988	.0632	.07994	.0941#
RE536	.107786	- 169988	.09561	. 0363	.0782	.0827#
RE537	.0732	. 157111	.137300	. 0753	.0510	. 1514**
RE538	.171711	10201	. 169644	.1166**	.0795	. 0496
RE939	.0410	.0431	.176788	. 143388	0063	.0412
RE540	.2440##	. 148311	.1092##	.0597	.191788	. 1945##
RES4!	.232211	1552#	. 172611	.07421	.1780**	.2070##
RES42	.09798	.111788	.09901	. 6724	.10171	.1241 **
RES43	.1402##	167584	.0189	0169	. 2193**	. 222584
RES44	.1301**	. 119311	.1176##	.0162	.127961	. 107548
RES45	.0653	.119808	. 1598**	. 114588	.0589	.0351
RES46	.166811	- 1797#8	.1321**	.0167	.12860	. 1474##
RE547	.215288	. 08581	.0607	.107211	.0311	.1515##

" - " is printed if a coefficient cannot be computed

Page 9			PSS/PC+			7/1/92
Correlations:	RES19	RESZO	RES21	RE522	RES23	RE524
RES48	. 1669##	.147013	. 242211	. 0739	. 132511	.129788
RESAY	.0983#	. 1694##	.0140	.0504	.0491	.112144
RESSO	. 144188	. 0768	.0990:	.0311	. 1246**	.1070**
RES51	.106541	. 0744	.1332##	. 1318**	0151	0055
RE552	.1643**	.12224#	. 122811	.0056	.146788	-160043
RESS3	.1133**	. 1258**	.119688	.1577**	.1625**	.113910
RESS4	.14918#	.1185**	.212911	.1489**	.0275	.13168#
RESSS	.1206**	. 198948	.0788	.0017	.112844	. 136311
RESS6	.0685	- 1329**	.0277	0229	. 144311	. 1605##
RE557	.1894##	- 169468	.2175**	.126748	.07296	. 193344
RESSB	. 162411	.0606	.111848	-0317	.1018	.0558
RE559	. 1754**	.110811	,1009#	.0264	.173181	.1890s#
RE560	.133468	.1216**	.0369	.0447	.1462**	.262B##
DCC41	***		^			

of cases:	849	i-tailed	Signif: 1	01 **	001	
RE585	.1642**	.0319	.1301**	.0895#	.0735	.1072##
RES84	175841	.1006	.120188	.0472	.1134**	. 0640
RESB3	.QB03.	0124	.09484	.1146##	.0464	.0783
RE582	.1039*	.0748	.0433	. 10068	.0483	. 1045*
RESB1	.153748	.1143##	.0665	. 0574	.1136##	.1250##
RESBO	.1107**	.0895#	.1071##	.10291	.0776	.1117**
RE679	*0812*	.0520	.1037#	.0795	.0242	.1492**
RE678	.1022*	. 164688	.0975#	.0634	.09918	- 0585
RES77	. 1840**	. 2031**	.1061 08	. 0665	.168841	- 0715
RES76	.0728	.0639	.0708	.08438	.0238	. 0725
RE975	.0759	0278	.0769	.0518	0452	. 0339
RE574	.0422	. 0689	. 0459	.0453	.0039	. OB714
RE573	.09901	.0758	.0722	.0551	.0267	. 0662
RES72	.160988	.09751	.0705	0415	.1003#	. 1382**
RE571	.0341	.0175	.0630	0057	. 107011	. 0544
RE970	.0787	.118500	.0906*	.0137	.1687**	. 143304
RES69	.0792	.0685	.0B56s	. OB55+	.0572	08551
RES68	.0402	.0359	*5280	.0425	.0731	.3523**
RES67	. 0454	.0432	.115204	.0937#	0270	.0946
REBAA	.0656	40125	.1157**	.08131	.0253	.0789
RESAS	.166484	.0579	.0672	.1578**	.0463	.0399
RE564	.0964*	.0626	0539	U21B	.122144	. 270344
HESUS	سەدە.		45.474			

" . " is printed if a coefficient cannot be computed

Page 10			SPSS/PC+			7/1/92
Correlations:	RES25	RES76	RES27	RE528	RES29	RES30
RES1	.144388	.0045	.046B	0178	.0356	.0365
RES2	.0149	.0791	0035	. 0199	.08661	.0893#
RES3	.0002	.0407	.0505	. 1155**	~.0016	.0597#
RES4	.1099##	.131911	.1171**	. 0397	.0584	.0599
RESS	.0950#	.09551	.150744	.0912#	.0530	.0942*
RES6	.0750	.0376	.00B2	. 1223**	.0603	. 1021*
RES7	.1487##	.1129##	.118644	.0279	.0079	.1171**
RESO	.10548	.1412**	.0761	. OBO9*	.0395	.1352**
RES9	.1099##	. 0742	. 0224	. 12B4##	.0367	.1149**
RES10	.108311	.1460##	.1094##	.0401	.0233	.1546**
RESI 1	.0294	.1185**	.0128	. 1368**	0003	.0985*
RES12	.1046#	. 1873**	.0645	.1328##	.08150	.0712
RE913	. 125911	. 1521##	.0779	.0948€	.09201	.0493
RES14	.0B341	. 1560##	.0188	. 1530**	.10091	• 0790
RES15	.183944	. 0656	.0643	. OB93#	.0111	.0962
RE516.	.118488		.124411	.1176**	.0551	.1455**
RES17	.1007#	.1581##	.0855*	. 1625: *	.10541	.25420
RES18	.1301##	. 0693	.1434#1	0021	.1718**	.0122
RE519	.174386	. 1976##	.1337**	.1737##	.10174	.23B5**
RES20	.1264**	.2202##	.109300	.1825**	.0454	. 1555# #
RES21	.3025##	.2049##	.2451**	.14458#	.137168	.7045**
RE922	.1799##	. 144488	.2940**	.0430	.1108**	.09711
RE923	.0687	.092B#	.0581	.1873##	.0121	.0925#
RESZ4	.10094	. 214044	0528	.1620**	.0420	.1339**
RES25	1.0000	.168288	476211	. 1772**	.1545**	.2507**
RES26	.1602##	1.0000	.10242	.1599##	.09121	.2237**
_RES27	476211	. 10741	1.0000	.1934##	.144288	.2239**
RES28	.1772**	.1579##	.193411	1.0000	.106018	. 2452**
RES29	. 1565##	07124	.144211	.106088	1.0000	.1044#
RES30	.250748	.2239**	.223988	.2452**	.1044#	1.0000
RES31	.3824##	.1592##	.375711	. 18658 8	.1735##	.3272**
RE532	.373411	.180711	.340311	.157413	.148814	.2624**
RES33	.1311##	1255**	.1785##	3095##	.1161**	.152B##
RE534	.126811	.0582	.112618	. 0626	.114188	.0792
RES35	.0664	.1160##	.0724	.1435##	.0744	.1410**
RES36	.0969#	. 0765	.123148	.1930**	.0335	.1422**
RES37	.2245#	. 0766#	. 117844	.0491	.1070##	.120300
RESSA	.0967#	.145414	.0175	.1134**	.0790	.1150**
RE539	,134011	. OB344	.132544	.0718	0024	.1010*
RES40	.0569	. 1751 **	.0372	. 15864 9	.0913#	.206244
RES41	.0638	. 229710	.07GB	.2169**	.131944	.2107##
REB42	.009B	.1257 6 8	.0424	.1537 * *	.08274	.1821**
RE543	.0579	.1178**	.0020	.129514	.0463	.0759
RES44	.1069##	.1179**	.1257##	.1706##	.0222	.1891 **
RES45	.1039#	.1661**	.1007#	.1656##	.1824+4	.0978●
RE546	.0844#	.1373##	,0195	.1874**	.0329	.1235**
RE547	.110411	.1696**	0672	.1155**	. 157540	.1509##

N of cases: 849 1-tailed Signif: 1 - .01 82 - .001

" . " is print		OFFICIONE C	annot be co			
Page 11		9	PSS/PC+			7/1/92
Correlations:	RES25	RES26	RES27	PE528	RES29	RES30
RE548	.1738:0	.1969##	.1616**	.1747##	.0973	.1810**
RE549	.0615	.1066**	.0211	.0976*	.0594	.1043#
RES50	.08698	.1533##	.0725	.1495##	.08261	.1414**
RES51	.10278	,1070**	.1120**	.0748	.2137**	.0526
RESS2	.0558	.0182	.0587	. 3344##	.0934#	.1328##
RES53	. 1407#8	.1305##	.10161	.1783**	. 265611	.224281
RES54	.162868	. 146588	. 157744	.0615	.262341	.1529##
RE655	.0419	.0848#	.026B	.1076**	.0772	.0746
RES56	.0515	.1502##	.0437	.1497**	.0973#	.1155**
RES57	. 258204	.1871**	.3207##	.200044	.1351**	.5105**
RES58	.1029#	.0533	0738	.0087#	.0316	.116388
RESSY	.0454	.0864#	.0432	.1813**	. 1470##	.1270*#
RFS60	.0838*	. 156544	.0129	.1273##	. OB69*	.0B33#

1-4-2-4		40.00				100
RESAO	.0828*	. 1565**	.0127	×127344	.0869#	. 0.554
RE561	.10074	.0470	.00551	. 107018	.0888\$.0903#
RES62	.110788	.0474	.09114	. 0991	.0890#	.0599
RE563	.0643	.08110	.0248	.0776	.0522	.0321
RES64	. 0759	.0481	.013B	.132988	.0664	.0858*
RE965	.0409	.1005#	1245**	. 1058#	.0771	.1207##
RE566	.113788	.0829#	.0662	.0440	.0797	.0271
RES67	.1343##	.0708	.0511	. 0357	.09498	.0454
RES68	.1028*	.0740#	.0583	.0730	.09208	.0276
RESA9	.0740	108188	.0567	. 10553	.1064##	.116B##
RE570	.0779	179588	.0425	. 0765	.0669	. 1559##
RES71	.0537	.0683	.0451	. 0451	.10474	.0209
AES72	.0584	.159788	.0263	.1218##	.138144	.1460##
RES73	.0920*	.114344	10401	. 1335**	.0861#	.09311
RES74	-0619	.0529	.0776	. 0470	.0242	.0786
RES75	.160811	.0339	.1421##	. 0652	125211	.0938#
RES76	.0888#	.09584	.0853#	.0753	.0644	.110788
RES77	.1327##	.09321	.0772	.09108	.0646	.2019##
RES78	.1330**	.046B	.0333	.0831*	.0321	.090B#
RES79	* 0881 *	. 123788	.1113**	.0606	9840.	.0726
RESBO	.10031	.07116	.119016	.1389##	.1198#	. 1833**
RE501	125644	.10354	.0740	.1241**	.1333##	.1658##
RESB2	.0793#	.1573**	.0555	.113444	146211	.0860#
RES83	.0973#	.10181	.0324	.1714#0	.0830	.1046#
RES04	.0650	. 151011	.0451	1390##	.162244	.159788
RESOS	.1125**	.132148	.0646	. OB49¢	.07321	10951#

. . .

N of cases: 849 1-tailed Signif: 4 - .01 #4 - .001

Page 12			SPSS/PC+			7/1/92
Correlations	RES31	RES32	RES33	RES34	RES35	RE836
RES1	.0298	.0630	.0547	.10310	.0039	.0096
RES2	.0632	-,0070	*0838	.1160##	.1101##	.0744
RE53	.0357	~.0411	.1472**	.0871#	.134311	.0709
RES4	.08581	.1170##	.0404	.0120	.0792	.0929#
RESS	.1017#	.0845%	.0B14*	.0320	.0535	.0779
RES6	.0345	.0220	.0912*	.0410	.0177	.0273
RES7 .	.00118	.144388	.0695	0230	.0543	0052
RESO	.0452	.0327	.1118**	.0169	.1118#	.1160**
RE59	.0169	.0805#	.1580##	0176	. 1363##	.08061
RE510	.0541	.1270#2	.128414	.0472	.10054	.0632
RESII	.0230	.09748	.2250**	.0558	.0972*	.0851#
RES12	.0394	.11974#	.1228**	.0100	.0991*	.09861
RES13	. 05B1	.137911	.2026 *	.0292	.0625	.0752
RES14	.0436	.0575	.2073**	.0114	.09744	.117688
RESIS	.1034	.08101	.0413	0405	.0372	.136244
RES16	.121016	.1005#	.1390##	.0625	.0941	.0214
RES17	.168500	.173144	.18184#	.0243	.111500	.117488
RESIB	.112104	. 1935# 4	.0427	.227588	0591	.005B
RES19	.127811	.2085##	1439**	~. 006B	.1334**	.1077##
RE520	.1205##	.1563**	.1899##	.0835#	.1209##	.167784
RE621	. 235364	.274788	. 146614	.107412	.1619##	.09564
RES22	.2017##	.211641	08718	.15074#	.0632	.0363
RES23	. 0347	,0058	.1568**	0986	.07998	.0782
RE524	.0822#	.16188\$.1522**	.0550	.09418	.08274
RES25	.3824**	.373488	.1311**	.126810	.0664	.07691
RES26	. 159244	100744	.125544	.0582	.1160##	.0765
RE627	.3757##	.3403**	17850	.112620	.0724	.123160
RESZ8	. 186514	, 1574##	.3075**	.0626	. 143544	.193011
REB29	.173544	.148811	.11617#	.114188	.0744	.0335
RES30	.327268	.262488	.1528##	.0792	.141844	.1422##
RES31	1.0000	.3623**	.184188	.174243	.200211	.17741#
RE532	. 752311	1.0000	. 100044	. 145344	.146434	.1802**
RES33	.184180	.180044	1.0000	.0372	.108C e #	.1855**
RES34	.1742**	.145308	. 6372	1.0000	.0347	.0328
RE535	.200211	.146412	. 108014	.0247	1.0000	.310244
RES36	.177488	.1802**	. 1055**	.0228	.3102+1	1.0000
REST7	. 149466	.200411	.0682	.1005#	.0243	.0358
RES38	. 151100	. OB64#	.190B##	.0812#	.204728	.1779#8
RE539	.131611	.163688	.110341	.015B	.145789	.124688
RES40	.1006*	.109748	. 233388	0373	.2205	.1443**
RES41	.131788	.1429##	.244788	.0663	. 166711	.1660##
RE542	.1510**	.0653	.139500	0052	.3332##	.227201
RES43	0082	.0518	.1348 * *	0349	.0717	.07201
RES44	.11761#	. 0565	.202314	0041	.334811	.3094**
RES45	.1650**	.1225**	. 1659**	.0652	.205744	.114214
RES46	.0363	08974	. 133411	.0007	.1613**	.182138
RES47	.10084	.09131	.071B#	.0137	.1759##	.128184

N of cases: 849 1-tailed Signif: 0 - .01 #8 - .001

Page 13			SPSS/PC+			7/1/92
Correlationsi	FES31	RES32	RES33	RES34	RES35	PE936
RE548	.1657##	.179700	.226088	.09560	. 2489##	.1751##
RE549	.0566	.1334**	. 1521 * *	.0611	.0305	.119618
RESSO	. 0607	.1124##	2987**	.0242	. 2448**	.2246##
RESS1	.1239**	.1191**	. 130624	.132628	141544	.1590##
RESS2	.114988	.0492	.2471##	.0272	.1533**	132611
RES53	.1780##	.0850*	. 1551 **	.0931 #	. 106788	. 0656
RE654	.1371**	.1440##	. 151900	.1498##	-08261	.0930#
RES55	.0762	.0416	.119240	.0472	115088	.0743
RESS&	.0693	.11354*	.143394	.0188	.0761	.0851*

AES55	0762	.0416	. 1192++	.0472	.1:50**	.0743
RESSA	.0693	113511	. 1433**	.0188	.0761	.08514
RESS7	.3740##	. 2837##	.1950##	.126988	.1956##	.1789**
RE658	. OB418	.0780#	.1217##	. 0264	.1670*#	. 1536**
RES59	.0471	. 163488	. 2324 8 8	0149	.125446	.1688##
RES60	.0052	.0550	.173344	. 0595	.1083##	.1190**
REBAI	.0355	.0488	.1136##	.0617	.0683	.1189##
REB62	.0963#	. 0969#	.0833#	.0929#	.0430	.0402
RES63	.0241	. 0654	.1614**	. 09541	.0519	. OABB
RES64	.0345	.0415	. 1485**	.0485	.0322	. 0465
RES65	.0645	.09298	.1466**	.0498	.1945##	. 1345 * *
RE566	. OB074	.0761	.0582	. 1241**	.0784	.0414
RESA7	.1073##	.124614	.0323	.08301	.0255	.0986*
RE568	.0182	. 113488	.1256**	.09431	.045B	.0633
RE569	.0644	.0180	.1186**	. 0571	.1132**	.0690
RES70	.0624	. 10161	.1221##	.0236	.0784	.1072**
RES71	.1002#	.0599	. 1566##	.0410	.0838*	.0951*
RES72	.0390	. 0374	.1382**	.0169	.1092**	.1398**
RES73	. 0551	. 0571	.1014#	.0283	.1615**	.1056
RE574	.0626 .	.0809#	. 0752	.0200	.1428**	.1574##
RE975	.2059**	.180208	.08394	. 0657	.1019#	. 059B
RE576	.128918	. 0675	.1053#	.0780	.0880*	.1364**
RES77	.0788	.10234	.1166##	.0661	.0532	. 0651
RE878	.08024	.0859#	.1218##	.1131##	.0112	. 0605
RE579	.1049#	.1302**	.1212**	.109944	.1287##	.1051*
RESBO	.0840#	.09352	.1338**	.0604	.1427**	.0951#
RESOL	.0959*	.1367##	. 2584 0 0	.0433	.1338**	.1664##
RES82	.0623	. 1047#	.166144	. 0701	.1035=	.1185**
RESB3	.0608	.1246##	.1313##	.09620	.10224	*1218**
RESB4	.0950#	.1051*	.2663**	.0083	.1854**	.1427**
RES05	.0248	.0488	.1560##	.0280	.0790	.0530

N of cases: 849 1-tailed Signifi # - .01 ## - .00:

" . " is printed if a coefficient cannot be computed

18 prin		************				
Page 14			SPSS/PC+			7/1/92
Correlations	RES37	RES38	PES39	RES40	RES41	RES42
RESI	. 126588	0014	-,0417	.0705	.0741	0262
RES2	.0920#	.0733	.0373	.1074##	.1163**	.1047**
RES3	0363	.0766#	. 0433	.0200	.11404#	.1077##
RES4	.0781	.0B06#	.0283	.1230##	.0843*	.07251
RESS	.1722##	.0522	.0648	.1334**	.1683**	. 0569
RES6	. 2253 * *	.031B	0013	.230B:3	.141911	. 0440
RES7	.0691	.0577	.0402	.170740	.1151**	.0305
RESB	.08474	.114314	.0172	,2063##	.2000**	.0979*
RES9	.1753##	.09311	.0014	. 271944	.2233**	.0891*
RES10	.131688	.09284	. 0595	.1127**	.2099**	.0872*
RESII	. 134688	.0727	.0002	.1251##	.1698##	. 09774
RES12	. 2650**	.1109##	.0387	.216700	.1800##	. 09084
RES13	. 120144	.0875#	.0908	,2172**	.214101	.1388**
RE914	. OB683	.09718	, 68891	,2102**	.1718**	.1103**
RESIS	.2688*	.0895#	. 0541	.1298**	.11154#	4 0688
RES16	. 1778#8	.0719#	. 0327	.2183::	.146388	.1183**
RES17	. 10361	.117811	.0833#	.187488	.2079**	.177681
RES18	.1630**	0014	.0820:	01Bt	.0028	0712
RES19	. 0732	.1719##	.0410	.2440##	.23224#	.0879#
RE520	.1571**	.1020:	.0431	. 1483**	.15524#	.1117**
RE921	.1373##	.167688	. 1767##	.1072##	.1726**	.0990#
RES22	.0753	.1166**	.1433##	.0597	.0942#	.0724
RES23	.0510	.0795	0063	.1917##	.1780##	.1017#
PE524	. 151411	.0474	.0412	.194588	.2090##	.124164
RE625	. 2245**	.0967#	. 1340**	.0569	.0628	.0098
RE826	.0966#	.1454##	.08341	.1751##	.229788	.1237**
RES27	.1178##	.0175	.1325##	,0372	.0788	.0424
RESZO	.0491	.113444	.0718	.15860:	.2169**	.1537##
RES29	.1070##	.0790	0036	.09151	. 1319**	.0827#
RE930	.1203##	.1150::	.1010#	,2062##	.2107##	.1821**
RES31	. 149488	.151100	. 1318**	.10068	.1517##	.1510**
RES32	. 2004##	.08641	. 163611	.1097:0	.1429##	.0653
RES33	.0682	.170844	.1103##	.2333**	.244788	.1395##
RE934	.10051	.0812#	.0158	0373	-0663	0052
RES35	.0243	.204788	. 145746	. 220511	.1667##	.333218
RE536	.0358	.1779##	. 124604	.1443**	.1660**	.227204
RES37	1.0000	.0542	. 10474	.0450	.0365	0241
RES38	.0542	1.0000	. 1745**	.172211	.1178**	.2164**
RES39	1047#	.1745**	1.0000	.0372	. 0357	.1764**
RE540	.0450	.1722**	.0372	1.0000	.2733**	.2035 **
RES41	.0565	.119844	. 0357	. 273311	1.0000	.2671**
RE542	0241	.2164##	. 126411	. 2035	. 2671##	1.0000
RES43	.129616	.1261**	- 0256	.1588**	. 2262##	.106211
RE544	.0478	.1858**	. 1195**	. 1967##	. 2274 * *	.5479##
RES45	1201**	.1404##	. 0575	. 146611	.2098**	.170211
RES46	.0367	.1136##	.0514	.243900	.147088	.0636
RES47	.0994	.1171**	. 1259: 1	.2120##	. 1849##	. 15320#

" . " is printed if a coefficient cannot be computed

Page 15		8	SPSS/PC+			7/1/92	
Correlations	RE937	RES3B	RE539	REB40	RES41	RES42	
RES40 RES49 RES50 RES51 RES52	.1508** .0841* 0011 .0537 .1095**	.2470## .1107## .2187## .1010# .1170##	.0776 .0731 .1256** .0599	.2068## .1653## .1867## .0704 .2204##	.2397## .1345## .2821## .1244## .2513##	.1658## .0843# .2843## .0921#	

	REDIN	**************************************					. 284344
	RESS!	.0539	. 10104	. 0599	.0704	. 124498	.09216
	RESS2	.1095##	.117064	.0315	.220404	.251386	- 157600
	RE653	-047B	.0830#	.0007	.132B##	. 21556#	.0793
	RES54	.1136#4	.1175##	- 0549	.10571	. 200011	. OBOB1
	RESSS	.150011	.1574##	.0528	.230488	.160088	.123811
	RESSA	.155944	.0302	.0301	.173488	.116588	.0671
	RESS7	.1736**	.161244	.1423**	.190B##	. 1802##	. 1686**
•	RESSB	.0978#	.0508	-0648	. 141488	.17828#	. 16468\$
	RESS9	.1035*	. 120748	.0591	. 191011	.232488	.199311
	RES60	.159Z##	.0959#	.0599	. 261988	. 175211	. 137911
	RES61	.199200	,0523	. 0513	.1700##	.10574	.0772
	RES62	.2285**	-,0307	.0207	.154744	.0917#	.0193
	RESAS	.1631**	.04B2	.0254	.170111	.0792	.0566
	RE564	.1817**	.0270	. 0314	.1772#8	.10501	-0614
	RESAS	.0006	.1366**	. 1556**	.232400	.162768	. 162486
	RESOL	.1222**	.0500	.07601	.0761	. 0501	.0351
	RES67	.0689	0250	.0640	.0346	.0568	.0593
	RES68	.2031**	.0193	.0634	, 136B##	.0620	· 043B
	RES69	.1025*	.09778	.0531	.1071**	. 145622	-1379##
	RES70	+04ZB	.0767	. 0611	. 152211	.133011	.0641
	RES71	.0877#	.070B	.08154	.0316	*0802#	.0406
	RE572	.0715	.171600	0163	. 1500**	.219788	.1432**
	RES73	-,0275	.1605##	. 0493	.121641	.1638##	.148611
	RES74	. 09538	.0935#	.024B	.0690	.0987#	. 1329**
	RES75	.0449	.09401	. 106711	.0708	.0312	.134199
	RES74	. 151911	.0878#	.00ZB	.0405	.0431	.0228
	RES77	. 1592**	.0815#	.024B	.134344	.169741	.0517
	RES78	.129216	.0763	.0172	. 130511	. 1145**	0270
	RE579	.09528	.0528	.0106	.09891	.0671	.114088
	RE5B0	.0316	.124618	.0747	.140011	.178011	.1640##
	RESB1	.0738	. 184611	.0389	.1517##	.1934##	.14648\$
	RESBZ	.1115**	.147686	. 0526	.134688	.152011	-1100##
	RES83	- 0194	.0911#	.0B12#	.134188	.1804##	.1451##
	REB84	005B	.169918	.0024	.241011	. 235514	.1849##
	RESBS	.0315	.1237**	. 0371	.243411	.14458#	.140188

1-tailed Signif: 8 - .01 88 - .001

" . " is printed i	f a	coefficient	cannot	þæ	computed
--------------------	-----	-------------	--------	----	----------

* 15 pi 10	1000 14 4 5	DETTICIENT	Carmot De C	OMPUCEO		
Page 16			SPSS/PC+			7/1/92
Correlations	RE543	RE544	RE545	RE546	RES47	RE548
RES1	. 0364	.0018	0289	0435	.0413	.09431
RES2	.0772	.1641**	.09021	.0171	. 1638 #	.07524
RES3	. OB844	. 1458*	.0467	.0221	.0158	.0568
RES4	.0014	.1269##	.0638	0042	. 1535++	. 9B22#
RESS	. 2422**	.07991	. 131211	. 135511	.09721	. 98591
RES6	.3572**	. 1249**	.0044	.120611	.195488	.0763#
RES7	. 118944	.09131	.08351	.0487	.1490**	.0723
RESB	.2548##	. 1245**	.0360	. 1602**	.167188	.136268
RES9	.3873##	. 110411	. 0265	. 170789	.1594##	. 161411
RESIO	.220711	.143288	.0589	. OB721	205611	. 110014
RESII	.2328**	. 0571	.0363	. 1321**	.0761	.132288
RES12	.3072##	. 12734#	- 0788	. 1687**	.1975**	.1807##
RE513	. 1346#8	.12224#	.0778#	. 0758	.212400	125644
RES14	. 2378**	.112111	.0442	. 150601	.144688	.111200
RESIS	. 2901##	.120014	.0713	. 163814	.1150##	. 114310
RES16	.2029**	. 139311	.10B1##	. 107714	.245411	1726#1
RE517	. 230344	. 158988	.1305##	. 151011	.1975##	. 177100
RES18	0651	0651	.1085##	0380	.0684	.0493
RES19	.140241	.13014#	.0853	.166B##	.215214	. 166711
RE520	. 1695##	. 119311	.1198##	. 179711	.08581	. 1470##
RES21	.0189	117688	.159811	132114	.0689	. 24220
RE522	0169	.0162	.1145**	.0167	.109214	. 0739
RES23	.219344	.1279##	.0589	. 128644	.0311	.1325**
RE524	. 272544	.1075**	. 0351	. 147414		
REB25	.0379	.1069##	.10391	.08441	. 1515**	.129760
RESZ6	.1178**	.117988	.166177	. 137308	110488	.193811
PES27	.0020	12570#	. 10078	.0195	. 169611	. 19694
RESZB	.129544	.170688	.1656**	. 187411	.0677	. 101044
RES29	-0463	.0222	.182463		. 1155**	. 174744
RESJO	.0759	.1671**	. 09781	.0329	. 1375+8	.09730
RES31	-,0082	117811	.1658**	. 0363	. 150911	- 181044
RE532	-051B	.0565	-1225**	.0363	.1008#	-163718
RES33	.1348**	.202311	.1659**	. 1334##	.0715:	-179701
RES34	0349	.0041	.0662	. 0009	.0137	. 226011
RESIS	.0717	. 3348**	.200744	.161541		.09361
RES36	.09201	. 3094**	.1142=0	.182144	.175911	. 24891
RES37	.129600	.047B	.120144	0367	.0794	.1751**
RE938	. 1761**	.1658**	.1404##	. 1136**		
RE539	.0256	. 119543	.0375	.0514	.1171##	-247088
RE540	.1588**	196788	. 146644	.2437##	. 2120: 4	0776
RE541	.226241	.227444	2098	. 147088	.184900	.206B*8
RES47	106200	. 547944	.1782##	.0436	.153244	.2397##
RES43	1.0000	125600	.08741	.201418	.0948#	.1688**
RES44	. 1256##	1.0000	. 186244	. 10274	.183211	-144208
RES45	.0874#	. 1862+#	1.0000	.143944	.152344	-1975**
RES46	201488	.1027#	.1439**	1.0000		.1876##
RES47	.09484	.103244	. 1523**	.10541	1.0000	. 14058 8
** 5					1.0000	.142488

N of cases: 849 1-tailed Signif; 8 - .01 ## - .001

* . * is printed if a coefficient cannot be computed Page 17 SPSS/PC+

7/1/92 Correlations: RES43 RES44 RES4S RES46 RES47 RES48

Page 17		8	PSS/PC+			7/1/9
Correlations:	RES43	REB44	RE545	RES46	RE647	RES40
RE648	.144211	.1975##	.1874**	.1405##	. 142418	1,0000
RE549	.172746	.0435	.0714	. 2005**	* 0882*	.0893*
RES50	.119448	.311600	. 1755##	.0821#	.18:2**	.2221**
RESSI	.1125**	.1952**	.1261**	.0772	.0551	. [707**
RE652	. 14B3##	. 1884**	. 118789	. 1255**	.1412**	. 176611
RES53	. 155311	.110744	.1673**	.1060##	.1549##	.13824#
REB34 -	.1391**	.111122	. 1611**	.0968	. 1255**	.2186*#
RE555	.2122**	.1570**	. 131201	.2047##	.1343##	.1418#
RE556	. 2125##	. 0507	. 162611	.1386**	.0395	.0743
RE557	.0341	.2104##	. 177618	.0814	.2016##	. 227611
RE558	.09094	.223488	.172701	.0890#	. 1431**	*1201**
RE959	. 2215##	.1787#0	. 1537**	.1894##	.0823#	.2088**
RES60	.3027##	.12860*	. 1231**	.1276**	.1380**	. 17548#
RES61	.2956##	.116488	.1102**	.129211	.1234##	. 1265##
RE562	.203744	.0516	. 10521	.0511	. 09774	.0623
RESA3	.2653**	.0256	. 0563	.:317##	. 0489	.0747
RES64	.216B##	.0337	. 0272	.1266**	.0293	.1425##
RES65	.09988	.2057**	.0973#	.144200	.1743**	.172511
RE566	.0453	.07404	.119211	.0627	.0524	.0590
RES67	.0227	* 0B2B *	. OB09#	.07764	.0063	.0367
REGAR	134781	.0289	. 0586	.0704	.0468	.133744
RES69	.1148**	.1299##	. 197244	.129211	. 1371#4	.09694
RES70	.116111	.0326	.0127	. 1892**	.133948	.0755
RES71	.07269	.08424	. 1389**	.134341	10601	.125844
RES72	.1327**	.2024##	. 1799##	.1B29##	. 0679	.1648**
RES73	.0280	.130B##	.1201**	.1417**	.1113**	.140244
RES74	.00224	.10334	.0935#	.0635	. 0362	.0898#
RES75	0123	.1156**	.0621	0120	. 123611	1006#
RES76	.0634	.0791	. 1430##	.0723	.0163	.107711
RES77	.1747**	.1060**	. 0399	.119344	.0221	.134244
RE578	1480**	0460	.0737	.111741	.0166	.0464
RES79	0140	.0772	1405**	.10134	. 1228##	.1205**
RES80	.1059#	.178349	.1595**	.1689##	. 169511	.121444
RESB1	.1846**	1656##	. 1855**	1479**	.0381	138611
RE582	.1276**	.1150##	.2145**	.200211	.117614	.1488**
RE683	148988	.1297##	.136114	.09120	.09174	.09224
RESB4	.1147##	.1786**	. 223011	.22448#	.0496	.1876##
RES85	1085##	.111988	.0405	.10452	.10314	.0791

N of Casesi

1-tailed Signif: 4 - .01 ## - .001

Page 18			SPSS/PC+			7/1/9
Correlations	RES49	RE550	RES51	RES52	RE553	RES54
RE51	.0487	. 0305	.0294	.0225	.0472	.09134
RES2	.0494	.1701##	.0701#	.0411	. [42514	.0764
RES3	0387	.1192**	.0B73*	.1409##	.0907#	.0941#
RES4	. 0455	.0739	.0972#	.0918#	.0403	.1301 **
RESS	.1347##	.0891#	.1049#	.0346	.141311	.0865.
體勢	0227	. 1200##	.0021	.1971**	.12964	.0616
RESB		.0198	0177	.0839#	.0625	.0385
RES9	. 0774	.0742	.0754	.0345	.140011	.1031*
	. 1556**	.0797	.0026	.1790##	.1438**	.0753
RES10	.1207##	. 14258 #	.1087##	.1046#	.0720	.1442**
RES11	.0925#	. 0738	.0460	.1341**	1345##	.10424
RES12	.1307##	152614	. 0395	.117988	.124344	.1174##
RES13	.0476	·16902#	.0607	.1646##	.0955*	.0624
RES14	. 0784	.1562##	.0698	.1773**	.0310	.08254
RE\$15	.1204##	. 0537	.00164	.1055#	.1373**	.0874#
RES16	. 0351	.0855	.0480	.1413**	.1348*	.0562
REB17	. 1369##	.1411**	.0615	.1327##	.1915**	. 1259**
RESIB	.0624	. 0054	. 162411	0228	.0507	.1585**
RE619	.09838	.1441**	.1065##	.164384	.1133##	.1491## .1183##
RES20	. 1494**	· 0768	.1332**	.1228**	.119644	.2129##
RE821	. 0140	.0990#		.0055	.1577**	.148944
RES22	. 0504	.0311	0151	.1467**	162544	.0275
RE623	-0471	.124648	0055	.1600**	.1139**	.1316**
REB24	. 112100	.1070##	.1027#	.0559	.1407##	.16200
.RES25	.0615	.1533**	.109001	.0182	.1305**	146514
RES26 RES27	.0211	. 1533**	.1130**	.0587	.10164	. 159704
RES28	.09760	.1495**	.0748	.334488	.178300	.0415
RES29	.0594	.0926#	.2137**	.0934#	265611	. 2623##
RES30	. 10434	.141488	.0526	.132814	.224248	1527**
RES31	.0566	.0687	.123941	.1149##	.1780##	.13714#
RES32	.133489	.1124**	.1191**	.0492	.0850#	.144011
RE533	. 1521**	.208788	.130600	.2471**	.155100	. 151988
RE534	1440	.0242	. 1376#1	.0272	.09314	. 14981 a
RESSS	.0305	. 2448 * 1	. 141541	.1533**	.106788	.0826\$
RES36	.1176**	. 224644	.159011	.1326**	.0456	.0730#
RES37	.0841#	~.0011	.0539	.1075**	.0478	.11384#
RES3B	.110744	.218788	.10101	.1170**	*0850*	.1175++
RES39	.0731	.1256**	.0599	.0315	.0007	.0549
RE540	.1453**	.106711	.0704	.2204**	.1328**	.10571
RES41	. 1345##	.202133	.1244##	.2513**	.2155#4	.20004#
RES42	0843	. 2843##	.0921*	.157644	.0793	.08081
RES43	.172744	.1194##	.1125**	.1483**	.1553**	. 137100
RES44	.0455	.311688	1623**	,188453	.1107**	. 111110
RES45	. 0714	.1755**	.126111	.1167##	.167344	.161144
RES46	2005##	.08214	0772	.1255**	.1060**	.076B#
RE547	.0883	.1812##	.0551	.1412##	.154988	. 125511

" . " is print	ted if a co	efficient c	annot be co	mputed		
Page 19		9	PSS/PC+			7/1/92
Correlations:	RE549	RE550	RE951	RESS?	RESS3	RESS4
RES4B	.0893#	.222140	.1707##	.1766##	,1382**	.2186** .0720
REB49	1.0000	.1231**	,0258	. 1213**	.0443	.0720
RESSO	.1231**	1.0000	.1192**	. 2375##	.0898*	. 1379 ##
RE551	.0258	.119288	1.0000	. 10501	.101788	. 2076##
RE552	.1213**		.1050#	1.0000	.1082**	. 1070##
RESS3	.0643	.0878*	.1817##	.1082**	1.0000	.199111
RES54	.0720	.1379##	.2076##	.1070**	.1991##	
RESSS	.169788	. 1035#	.047B	.171144	.1290**	. 124688
RES56 .	.1162##	.1112**	.040B	.08978	.167B##	.0414
RESS7	.0B25#	.0958*	.1096##	.1628##	.1820**	. 1625##
RESSO	.0465	.2082##	.1479**	. [434##	.0708	. 133466
RE559	.170611	.1902##	.0654	.2068**	.138422	.146522
RES60	.1443##		.0177	.1885##	.106011	. 145488
RES61	.1582**	.114611	.0652	.204818		. 140288
RES62	.1029#	. 0777	1200	.118244	.1165**	.1269##
RES63	.168044	.1038#	.0375	. 129011	.08071	. 0535
RESOS RESO4	.1029#	.1003#	.0343	.170811	00074	0578
RES65	.0793	.1635##	.0727	.154146	.0930s	*0736*
	.0662	.0200	.1143##	. 09991	.106712	. 128944
RES66	.0951#	.0076	.08651	.04974	.112711	.0805
RE567				. 116911	.0744	.09621
RES6B	.0594	.0731	.0373	.1148##	.1144#8	.1137**
RESA9	.0629	.150488	.0618	. 1148**	.08561	.0781
RE570	.09824	.0535	.0203	. 0755		
RES71	.069B	.08098	.0615	.0336	.1231**	.0905
RES72	.1182**	.1566**	.0775	.146214		
RES73	.1689##	.1602**	.0234	.08391	.0006	.112940
RES74	.0261	.10201	.0810#	.0589 .0709 .09041	.0259	* OBRO
RE675	.021B	.0530	,122411	. 0709	08221	.0849#
RES76	.0676	.0671	.0952*	.07041	.1128**	.1057*
REST7	.1128**		.0706	.1370**	.1403**	.108788
RES78	.1619**	.0543	.0360	. 1344##		. 0754
RE579	.1175**	.1249##	.0430	. 1345##	.0493	.0632
RESBO	.09016	.1448**	.0497	. 1099##	.1420##	.119924
RESOL	.1599##	.1804**		.1026*	.0951#	
RESB2	.0926	.09424	.0975#	.1092##	.1471##	
RE583	.0845#	.129988	.1124##	. OB148	.0778	.1156##
RESH4	.1307##	.1654**	.1865##	.174281	.1171##	. 1023#
RE885	.1486##	.1090**	.0983:	. 1515::	.0644	.0790
N of cases:	849	1-tailed	Signif: #	01 .0 -	001	
" . " is prin		efficient o		orputed		
Page 20			5PSS/PC+			7/1/92
Correlations	RESSS	RESS6	RES57	REGSB	RES59	REB60
RESI	.0184	0195	.08821	. 0239	.07501	.126588
			.0360	.0239	,08334	.141843
RES2	.1348##	.0319				
RES3	.0271	.0762	.0238	.0433	.1199##	.128911
RES4	.0264	.0040	.13478#	.0499	.0508	.0408
RES5	.1854**	.1481**	.131404	.0717	.0731	.111214

RES1	Page 20		5	5PS5/PC+			7/1/92
RES2 1340## .0319 .0560 .0604 .08131 RES3	Correlations	RESSS	RESS6	RES57	RESSB	RES59	REB40
RESS							. 126588
RESIA .0264 .0040 .1371s .0499 .0060 RESS .1851st .1481st .131st .0477 .146st .2717 RES6 .2120st .0070s .0910s .0472 .146st .208 RES7 .0748s .0351 .1243st .0404 .0541 .20 RES7 .1715st .101st .102st .102st .102st .070st .070st RES10 .1435st .084st .122st .143ct .090st .102st .070st .090st .070st .090st .070st .090st .09	RES2	.1348##	.0319	.0560	.0604	,0B33¢	.1418##
RESS 1854** 1481** 1314** 0717 0731 11 RES7 0.048* 0.040* 0.010* 0.072* 14864* 22 RES7 0.048* 0.055* 1.243* 0.040* 0.541 0.0 RES9 1.770** 1.015* 1.306** 1.188** 1.027** 0.0 RES9 1.795** 1.043** 0.716 0.930* 1.0011* 2.2 RES9 1.795** 1.043** 1.124** 1.7018 0.930* 1.0011* 2.2 RES11 1.145** 0.046** 1.122** 1.701** 0.050* 1.0011* 2.2 RES12 2.102** 1.223** 1.311** 0.041* 1.255** 1.2 1.12** 1.2 1.12** 1.2 1.12** 1.2 1.14** 1.2 1.2 1.2 1.2 1.14** 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 </td <td>HE22</td> <td>.0271</td> <td>.0762</td> <td>.0238</td> <td>.0433</td> <td>.1199##</td> <td>.128911</td>	HE22	.0271	.0762	.0238	.0433	.1199##	.128911
RES6 212091 00701 0072 146611 20 RES7 0748 00365 124391 0409 0.051 20 RES8 171591 10151 120591 116811 10271 00 RES8 171591 144511 0718 070070 18011 20 RES1 17961 144511 0718 0700 1700 18011 20 RES1 17961 144511 0718 0700 1700 18011 20 RES1 17961 144511 0718 1700 1700 18011 20 RES1 17961 14501 1700 1700 1700 18011 20 RES1 17011 10055 13171 1700 1700 1700 12061 22 RES1 10711 0055 13171 1700 1700 1700 1700 1700 1700 170		.0264	.0040	.134788	.0499		.0408
RES7 0.948 0.555 1.24518 0.404 0.551 0.078	RES5	.1B54##		.131484	. 0717	. 0731	.1113**
RESS 17153 10154 10154 10254 116841 10271 0 RESS 171763 104454 10718 0.0930 190111 0 RESS 171763 114451 0.0930 1.0707 125041 12 RESS 1 14531 0.0944 10248 177214 0.0900 1 RESS 1 107114 0.055 13174 12751 14771 14771 12751 14771 14	RES6		.0870 E	.0910#	.0672	. 148611	. 277313
RES19 179648 144348 0718 09300 180118 22 RES10 145258 06464 162481 170218 09901 1. RES11 152148 144241 08901 070° 235648 2. RES12 270218 144214 08901 070° 235648 2. RES13 15118 04561 13118 070. RES14 17018 06561 13118 170218 1.42718 2. RES15 10718 06561 13118 1.20718 1.12718 2. RES14 17018 06561 13118 1.20718 1.12718 2. RES15 17048 1.21718 1.14718 1.25518 1.27318 2. RES15 17048 1.21718 1.14718 1.25518 1.17318 2. RES16 07028 0615 1.0958 1.18818 0.08661 1. RES17 17254 1.16718 1.98248 1.73218 2.0618 1. RES18 0.116 0.193 07444 0.3355 -0.200 -0. RES17 1.12648 0.0858 1.18748 1.12748 1.12748 1.12748 1. RES18 0.106 0.087 1.19748 1.12818 1.0078 1. RES18 0.106 0.087 1.19748 1.12818 1.0078 1. RES2 0.017 -0.0579 1.20718 1.11818 1.0078 0. RES2 0.017 -0.0579 1.20718 1.11818 1.0078 0. RES2 0.017 0.0578 1.10718 1.0078 0. RES2 0.010 0.015 1.0080 1.17348 1.0078 0. RES2 0.010 0.015 1.0080 1.17348 1.0078 0. RES2 0.010 0.015 1.0080 1.17348 1.0078 0. RES2 0.0010 0.015 1.0080 1.17348 1.0078 0.0084 0.0088 0.008	RES7	.0948#	.0365	,1245**	. 0484	.0541	.09678
RES10 143538 008468 162488 179288 009700 11	RESO	. 171514	.10154	.1305##	. 1168##	.10278	\$88B0.
RES11 1521	RES9	.1796**	.144348	.0718	.0730#	.180118	. 2769**
RES12 210214 120314 13114 0.070 131141 120514 142714 22 RES13 10714 140514 142514 142714 22 RES14 177044 143514 115244 14714 169744 23 RES15 17844 142714 14	RES10	.143311	.0846E		.1782##		. 128488
RESI3 1071## 0055 1317## 1275## 1427## 23 RESI3 1776## 1127## 1147## 1275## 1427## 23 RESI3 1776## 1277## 1147## 1275## 1427## 23 RESI3 1776## 1277## 1147## 1275## 1373## 23 RESI3 0766 1016 0193 0944# 033502040 RESI8 0116 0116 0.0855 1494## 1033502040 RESI8 0116 0.0855 1494## 1624## 1624## 1734## 1734##	RESI 1	.1521 **	.144281	.0898#	. 0709	. 235611	.290911
RES14 1.77048 1.43641 11.7248 1.43641 1.07248 1.07948 2.28616 0.90424 0.015 1.97348 1.27348 1.27348 2.20118 1.27348 1.	RESIZ		.1283**		.07610		.227966
RESIS 178448 121791 114718 125518 137318 2	RE513	.1071##	. 0655	. (31744	. 129548	.142711	. 2630##
RES16 0.9028 0.015 1.9298 119819 0.00.01 1.8288 1.73281 0.016 0.173 0.9444 0.335 -0.200 -0.188818 0.116 0.193 0.9444 0.335 -0.200 -0.188818 0.116 0.193 0.9444 0.335 -0.200 -0.188818 0.116 0.1888 0.19494 0.335 -0.200 -0.188818 0.10494 0.018 0.10494 0.1049	RESIA	.127048	.143611	.115240	.144344	. 169911	.3375#E
RES17 1725** 11691* 19821* 1732** 2061** 1.7 RES18 0116 0193 0944* 0335 -0200 -0 REB19 12064* 0.085 1894** 1624** 1734** 1.7 REB20 1798** 1379** 1694** 1624** 1734** 1.7 RES21 0788 0277 2173** 1118** 1.00** 0.7 RES22 0.0788 0277 2173** 1118** 1.00** 0.7 RES23 0.0788 0277 2173** 1118** 1.00** 0.7 RES24 1354** 1865** 1933** .0556 190** 1.7 RES25 0.410 0.515 .2562** 1029** .0054 .00** 0.7 RES26 0.0868 1502** 1871** .0529 .0534 .00** 0.7 RES27 0.260 0437 .7207** .0733 .00** 1.00** 0.7 RES28 1.00** 1447** .000** .00			.121782			.137311	.2016##
REBIB .0116 .0193 .09444 .0335 0200 0 REB19 .12048 .0885 .18948 .16248 .17348 .1 REB20 .19998 .132918 .10448 .0606 .110818 .1 REB21 .0788 .0277 .21738 .11188 .10698 .0 REB22 .11289 .144518 .09299 .10188 .17318 .1 RES23 .112898 .144518 .09299 .10188 .17318 .2 RES24 .133789 .18918 .0939 .10188 .17318 .2 RES25 .0410 .0515 .296218 .10299 .0454 .0 RES26 .0240 .0515 .296218 .0535 .0644 .0 RES27 .0260 .0472 .18718 .0535 .0644 .0 RES27 .0720 .0772 .0773 .15189 .0316 .14718 .0 RES33							. 16950#
REB19 120641 0085 149941 16241 17341 17861 17861 17861 17861 18861							.1373##
RES20 1999* 1329* 1994* 1004* 0006 11068* 11 RES21 0.788 0.277 2175* 11188* 1009* 0 RES22 0.017 - 0.059 1269** 0317 0.264 0 RES23 0.107* 0.059 1269** 0318 1.108** 1609* 0 RES24 0.108** 1502** 1975** 1005** 1005** 1720** 0 RES25 0.410 0.515 0.262** 1005* 1029* 0.044 0 RES26 0.0868 1502** 1897** 0.055* 0.064* 0 RES27 0.0268 0.437 1207** 0.708 0.032 0.044 1 RES28 1.096** 1497** 12000** 0.032 0.044 1 RES28 0.1096** 1497** 12000** 0.032 0.044 1 RES28 0.0968 1497** 12000** 0.087** 11613** 1 RES28 0.0968 1497** 12000** 0.087** 11613** 1 RES28 0.0968 1497** 12000** 0.087** 1013** 1 RES28 0.0968 1497** 12000** 0.087** 1200** 1 RES28 0.0968 1497** 12000** 1200** 1 RES30 0.0766 1155** 13003** 1102** 1200** 1 RES31 0.0968 11503** 13003** 1102** 1200** 1 RES32 0.416 1135** 13003** 1102** 1200** 1044** 0 RES33 0.0968 1400** 1200** 1200** 1200** 1 RES34 0.0972 0.098 1200** 0.0244 0.049 0 RES35 0.0763 0.008** 1.790** 1.500** 1.600** 1.750** 1.7							013B
RES21 .076B .0277 .217518 .111818 .10098 .0 RES22 .00170259 .120918 .0317 .0264 .0 RES23 .11289 .144518 .0029 .10188 .173188 .1 RES24 .134518 .184518 .0029 .10188 .173188 .1 RES25 .0110 .00218 .193318 .00357 .00454 .00 RES26 .0010 .00218 .193318 .00357 .00454 .00 RES27 .0260 .0437 .220718 .00357 .00454 .00 RES27 .0260 .0437 .220718 .00357 .00454 .00 RES28 .109618 .149718 .200018 .00357 .00454 .00 RES29 .0722 .07318 .135188 .0316 .10318 .10318 .10318 .00418 .00 RES29 .0772 .09738 .135188 .0316 .16318 .10 RES20 .0746 .115518 .510318 .116318 .127018 .00 RES23 .0416 .113518 .283718 .09401 .163418 .00 RES23 .0416 .113518 .283718 .09401 .163418 .00 RES23 .115018 .0761 .176918 .176918 .135618 .127018 .10 RES33 .1472 .0093 .176018 .115018 .12718 .127018 .00 RES33 .1472 .0093 .176018 .176918 .135618 .166818 .176918 .135618 .166818 .176918 .155618 .156818 .176918 .155618 .105618 .							.1334##
RE522 .0017 -0.059 .126918 .0317 .0264 .088823 .1128918 .144518 .192929 .10189 .173181 .188824 .134518 .192929 .10189 .173181 .173181 .188824 .134518 .189518 .192318 .05596 .190018 .202318 .100018 .202318 .100018 .202318 .100018 .202318 .100018 .202318 .100018 .202318 .100018 .202318 .100018 .202318 .100018 .202318 .100018 .							. 121611
RE523 1128+8 144311 0929 10181 173111 1788 RE524 133431 189451 193311 0536 119001 24 186525 0410 0515 250211 10291 0434 06 186525 0410 150211 187111 0533 10564 119311 187111 187							.0369
RES24 13A3 ** IBA3** 1933 ** 10536 10900** 2 RE525 0410 0515 25621** 1029** 00534 06 RE526 00868 1502** 1871** 0333 00844 06 RE527 0260 0437 72074 0733 00844 13134 13 RE528 1096** 1497** 2000** 0809** 16134 13 RE529 1096** 1497** 2000** 0809** 16134 13 RE520 0772 0973 1351** 0316 1490** 0 RE531 0762 0973 1351** 0316 1270** 0 RE531 0762 0903 13700** 0014 1270** 0 RE531 0762 0903 13700** 0014 1270** 0 RE533 1192** 14334 1250** 1270** 09803 1634** 0 RE533 1192** 14334 1250** 1217** 2224** 1 RE533 1150** 0761 1750** 1227** 1224** 1 RE533 1150** 0761 1750** 1270** 1035** 1 RE536 0743 0851** 1760** 1570** 1688** 1 RE537 1500** 1559** 1734** 0778** 1035** 1688** 1 RE537 1500** 1559** 1734** 0509 1209** 19 RE539 0520 0301 1423** 0509 1209** 19 RE539 0520 1301** 1760** 1400** 1300** 1300** 1209** 19 RE530 1200** 1734** 1900** 1414** 1910** 2 RE540 1200** 1734** 1900** 1414** 1910** 2 RE541 1700** 1700** 1000** 1100							.0447
RES225 0410 0515 22621 10299 0434 05 PES226 09409 150212 10212 0732 0944 11 PES227 0260 0437 220714 0732 0943 11 PES227 0260 0437 220714 0732 0943 11 PES227 0437 120714 120714 120714 11 PES230 0746 115518 120714 11 PES230 0746 115518 120714 11 PES230 0746 115518 120714 1041 120714 1041 120714 1041 120714 1041 120714 1041 120714 1041 120714 1041 120714 1041 1041 1041 1041 1041 1041 1041							-1462**
RES20 00608 150024 187114 0033							. 2628**
RES27 0.266 0.437							.0838
RES28 1096# 14971# 2000# 10937# 16131# 1276# RES29 0772 0973# 1351## 2316 1490## 08 14							. 1565**
RES29 0.772 0.973							.0129
RESSO .0746 .1155** 5105** 1162** 1270** 078 .1853** .0742 .0973 .3760** .0941 .0491							. 127344
RESSI .0762 .0993 .376018 .00411 .0491 .0491 RESSI .0416 .113514 .28378 .09803 .163418 .0 RESSI .11924 .143344 .195018 .121718 .222418 .1 RESSI .0472 .0188 .126918 .0264 -,0149 .0 RESSI .15048 .0761 .195648 .167018 .125448 .1 RESSI .0733 .08318 .179648 .137018 .135248 .168818 .1 RESSI .15748 .0302 .161248 .0509 .120748 .167488 .1 RESSI .15748 .0301 .142388 .0509 .120919 .07 RESSI .25049 .17348 .19688 .14144 .19109 .2 RESSI .25049 .17348 .19688 .14144 .19109 .2 RESSI .12248 .0071 .10648 .10408 .19318 .3							. 00694
RES22							.08221
RES33 .1928* .14334* .1950#* .1217#* .2224#* .12 RES34 .0472 .0189 .1269#* .0264 -0149 .0 RES35 .1150#* .0761 .1956#* .1707#* .1224#* .0 RES36 .0743 .0851* .1796#* .1376#* .1536#* .1688#* .1 RES37 .1500#* .1559#* .1736#* .050# .1035#* .1505#* .050# .1209#* .09 RES39 .0220 .0301 .1422#* .064# .059# .050# .1035#* .05 .050# .1035#* .06 .050# .050#* .050# .06 .050#*							.0052
RES34 .0472 .0188 .126918 .0264 0149 .00 RES35 .15048 .0761 .19568 .167018 .12548 .1 RES36 .0743 .08518 .17898 .15368 .16888 .1 .1051 .1 RES37 .15048 .15598 .17368 .0798 .10251 .15 .18 RES39 .0520 .0302 .16128 .0549 .12091 .09 .68 .0591 .09 .0501 .0002 .14238 .0648 .0591 .09 .68540 .73048 .17348 .19068 .14148 .19104 .26 .26 .26 .26 .26 .26 .27 .26 .16048 .19314 .20 .26 .26 .27 .26 .26 .27 .26 .26 .27 .26 .27 .26 .26 .27 .26 .26 .27 .26 .26 .27 .26 .27 .26 .27 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.0550</td>							.0550
RES33 .1150-11 .0761 .1750-11							. 1733##
RES36 0743 08511 176992 153649 160881 1176978 153649 160881 175649 17364							. 0595
RES37 1500+1 1559+1 1736+1 0778+ 1035+ 1258+ 12574+ 0302 16124+ 0508 1209+1 09 RES39 0520 0301 1423+1 0648 0591 00 RES39 0520 0301 1423+1 0648 0591 00 RES40 1504+1 1736+1 1706+1 1414+1 1910+1 02 RES40 11064+1 1706+1 1414+1 1910+1 02 RES40 11064+1							. 108311
RES3B 1574st 0302 1612st 050B 1209st 09 RES39 0520 0301 1427st 064B 0591 09 RES40 7304st 1734st 1902st 1414st 1910st 22 RE541 1660st 1165st 1802st 1702st 2324st 22 RE542 1320st 0671 1666st 1664st 1983st 13 RE543 2122st 212st 2324st 178st 22 23 RE544 1370st 0307 2104st 2234st 178fst 12 RE545 1312st 1626st 1776st 122st 123tt 12		.0743		.178988			.116000
RES37 0520 0301 142781 0048 0591 05 RE540 720444 17344 19064 141441 19104 26 RE541 16064 11654 18024 17021 23244 17 RE542 15304 0671 16664 18024 17021 23244 17 RE543 1704 0077 21044 2774 1774 1774 1774 1774 1774 1774 17							. 1592**
RES40 .73.04 st .17.34 st .19.02 st .14.4 st .19.01 st .17.2 st .17.2 st .17.2 st .17.2 st .17.2 st .17.2 st .23.2 st .17.2 st .17.2 st .23.2 st .17.2 st	RESJO	.1574**	.0302	. 16124*	.0508	. 120941	. 07594
RES41 .166044 .116544 .180244 .170244 .232444 .17 RES42 .12384 .0671 .168644 .184648 .198314 .13 RES43 .212244 .21224 .0341 .09094 .221548 .30 RES44 .157044 .0507 .210444 .223444 .178744 .12 RES45 .131248 .162648 .177648 .172948 .172948 .153744 .18		.0528	. 0301	.1423**	. 064B	.0591	. 0599
RES42 123048 0671 168648 164648 178838 13 PES45 212248 212248 0324 00009 221548 30 RES44 157064 0507 210448 223446 178784 13 RES45 131248 162648 177648 172948 153789 12		.7304##	.1734##	.1908**	. 141448	.1910##	.2619##
PES43 .2125*2 .2125*2 .0341 .09092 .2215*8 .30 RE344 .1570*2 .0507 .210442 .223442 .179784 .12 RE545 .1312*2 .1626*2 .1776*2 .1729*2 .1337*3 .12		.1600**	.116544	. 1802##	. 1702**	. 232411	. 1752**
RES44 .1570** .0507 .2104** .2234** .1787** .12 RES45 .1312** .1626** .1776** .1729** .1537** .12			.0671			.1983**	. 137944
RES44 .1570** .0507 .2104** .2234** .1787** .12 RES45 .1312** .1626** .1776** .1729** .1537** .12				.0341		.221500	.3027##
		.1570**	. 0507	.210448	. 2234#0		.128618
RES46 .2049## .1386## .0814# .0890# .1894## .17					.172911	.1537##	. 1231#0
					.0890	. 187441	. 127648
00047 174792 ,0705 ,201644 ,143144 ,08254 ,13	DECAT	(TATES	. 0795	.701644	. 143144	.08230	.1390##

of cases: 849 1-tailed Signify 8 - .01 48 - .001

" . " is printed if a coefficient cannot be computed

Page 21			5P89/PC+			7/1/92
Correlations	RESSS	RES56	RESS7	RE558	RESSY	RE960
RES48	.1418:3	.0743	.227611	.1301##	.2088##	,1754##
RES49	.1697##	.1162**	.0825#	. 0465	.1706**	1443=4
RES50	.10358	.1112**	.0958=	.2082**	.1702##	.2232**
RE551	.047B	.040B	.109688	.147911	. 0654	.0177
RESS2	.1711##	.0897*	162844	.1434##	.206811	,1885**
RESS3	.127018	.1678**	.182011	.070B	.1384**	.1060##
RESS4	.124684	.0414	.1625##	.1334##	.1465**	. 145468
RESSS	1.0000	.1588**	.10528	.1005#	.0760#	.1671##
RE556	.1588**	1.0000	.08928	. 1615##	.2506##	. 2656##
RESS7	. 10524	.0892*	1.0000	.1982**	.08084	.OBA2*
RESSS	.1005#	161588	.1982**	1.0000	. 1953##	. 136611
RESS9	.09601	.2506##	.0808¢	. 1953**	1.0000	.3026##
RES60	.1671##	.2656**	.08624	. 1366**	.302600	1.0000
RES61	.2021##	.1285**	10501	.1360**	.2312**	. 283544
RE962	.2113**	.173144	.1018	. 1356##	.1641**	.3084##
RE963	. 164411	.2216**	.0730	.136684	.1887##	.3183**
RE964	.133488	.2374##	.0637	.1040#	.2121##	.3455##
RES65	.1422##	.0400	.1324**	. 1448##	.123740	. : B30**
RES66	.0839#	.1025*	.1591##	.1803**	.1217**	. 1689##
RE567	.09471	.1213**	.1041#	.1413**	.1250##	.106688
REB6B	.0861#	.131788	.10111	.1059##	.1720##	.3207**
RE569	.141344	.09624	.1021*	.1054#	.1792**	.1087**
RES70	.0880*	*****	.0788	.1039*	.1604##	.205211
RES71	.15494*	.1416**	.0692	.0959#	.2431**	.1303**
RES72	.100B#	.1807##	.0744	.0704	.2719**	.1735**
RES73	.0597	.0273	.08674	.0B02*	.1617##	.0875#
RE574	.0438	.1476##	.09441	.0991#	.1651**	.1552**
RES75	.0314	0165	.21104#	.0667	.0284	.0807#
RES76	0714	.1269**	.1231##	.0996#	.1513**	.1235**
RES77	.1713##	.1181**	.1131**	.0526	. 144188	.1233**
RES78	.1000#	.1679##	.1240**	.0640	.119561	.1213**
RES79	. 0465	.110268	.110808	.0509	.6488\$.09314
RESBO	.1398**	.14090*	.1818**	.1332 **	.1825**	.1471**
RESBI	.1066##	.1718##	.1709##	.14654#	.324122	. 2554**
RE502	.157744	.1238**	.163911	.1575##	.1484**	.:808::
RE503	.0360	.0747	.1379##	.0842#	.2318**	.2100**
RESO4	.0985#	.151144	.1282**	.1372**	.2165**	.120211
RE585	.1178**	.0735	.163511	. 1055#	.10178	.1938:1

N of cases: B49 1-tailed Signify \$ -.01 \$0 -.001

" . " is printed if a coefficient cannot be com	ut ed

Page 22		!	SPSS/PC+			7/1/92
Correlations:	RES61	RES62	RES63	RES64	RES65	RESAL
RES1	.1163##	.1566##	.1289**	.1128**	.0635	.0036
RES2	.:48310	.0809#	.1250**	- 0700	.1135**	.0775
RESJ	.0649	.0510	.0713	.0958#	.0532	.0085
RES4	.0646	.0392	0064	0220	.0460	.0622
RESS	.173788	.1932**	.150111	.116044	.0619	.08724
RES6	.3421##	.3440**	.2970**	.2604**	.0974#	.0250
REST	.0031	.113466	.0326	.0696	.0530	.0201
RESB	.1734##	. 157000	.1092##	.0075#	.0820:	.0018
RESP	.307411	.2801**	.2710##	.2461**	.1538##	-,0085
RES10	. 2064 #	.1393##	,1321**	.07306	.0755#	.08474
RES11	.1459##	. 2059##	.2685**	.2464**	.0713	. [175#8
RE512	.3088**	. 3241	,2463**	. 1911**	.0767	.0079
RES13	.1284**	.1789##	.167611	.1530**	.130444	.10274
RES14	.21314#	. 2581 * *	.2671**	.2839**	.0999#	.1480##
RESIS	.3261**	.2075##	.2362**	.173042	.0844	.0851*
RES16	.2023##	. 186711	.1515**	.1250**	.115000	.0691
RE617	.2160##	.2064**	.2023##	. 1438* B	.0892*	.0530
RESIB	0079	.0714	0152	0053	.0288	.0674
RES19	.110011	.08638	,0363	.0964*	.166488	.0656
RES20	.162211	.0745	.129311	.0626	.0579	.0125
RE521	~.0424	.0210	.0201	.0539	.0692	.115700
RES22	.0323	.0400	.0003	0218	. 1578##	.08130
RE823	.0599	.0654	.111488	.1221##	.0463	.0253
REB24	.2175##	. 2694##	.316588	270388	.0399	.0789
RES25	.10074	.110746	.0643	. 0759	.0609	.113748
RES26	.0670	.0474	.OB11s	.04B1	.1005#	.0828#
RES27	. OR55#	.09118	.0248	.0138	.124504	.0662
RES28	.1070#	.0661	.0776	. 13291 €	.10588	-0440
RES29	.0888	.0870#	.0522	. 0664	.0771	.0797
RE530	.0703#	.0599	.0321	.0858*	.12074#	.0271
RES31	.0355	. 07638	.0241	. 0345	.0645	.08071
RE932	.0688	. 09698	.0654	. 0415	.09294	.0761
RES33	.11364#	- OB33#	.161443	. 148511	. 146611	.0582
RES34	-0617	.09291	.09541	. D4B5	.0498	. 1241*1
RE635	.0483	. 0430	.0519	.0322	.1945**	.0784
RES36	.11894*	.0402	.0608	.0445	.1345##	.0614
RE537	.1992##	. 22854#	.183144	.181748	.0006	.1222##
RES38	.0323	0307	.0402	.0270	.1366##	.0500
RES39	.0513	. 0207	.0254	.0314	.1556**	.09601
DECAN	170011	154914	. 1701 ##	.177288	.232444	.0761

RES42 0.772 0.193 0.966 0.014 1.6248 0.0351
RES43 29564 20374 2.8334 21684 0.9988 0.453
RES44 116448 0.316 0.365 0.337 2.05748 0.9408
RES45 11021 1.0524 0.053 0.072 0.9738 0.9401
RES45 1.1021 1.0524 0.053 0.072 0.9738 0.0402
RES46 1.29248 0.0311 1.131748 1.26648 1.44288 1.0622

N of cases: 849 1-tailed Signify 4 - .01 ss - .001

" . " is printed if a coefficient cannot be computed

Page 23			SPSS/PC+			7/1/92
Correlations	RES61	RES62	RES63	RES64	RES65	RESAL
RE548	. 1265##	.0623	.0747	.1425##	.1725##	.0590
RE549	. 158200	. 10291	.16B0##	.10291	.0793	.0662
RE650	. 1146**	.0777	* 103B*	.1003	. 163588	.0200
RE551	. 0652	.0031	.0375	.0343	.0727	.114388
RES52	.2048**	.1182*6	.1290**	.170B##	. 1541 * #	.0999#
FESS3	.1167##	.116588	.0809*	.0873#	.0930#	.1067##
RES54	. 1607##	. 126916	. 0535	.0578	.09264	.1289**
RESSS	.202111	.211368	.164488	.133488	.142284	.0839#
RESSA	.1285**	.1731**	.2216##	. 237411	.0400	. 1025#
RE557	. 10501	.10181	. 0730	.0637	.1324**	. 1591**
RESSO	. 1360++	.135611	. 126688	.1040#	.1448**	.1803##
RE559	.231241	.1641##	.1887**	.212144	.1237##	.121788
RESAQ	. 2835**	.308488	.318311	.3455##	.1830**	. 168988
REBAL	1.0000	. 484311	.382000	.2324##	.1120##	.141988
RE562	.4843##	1.0000	.450248	.411708	.10044	.1387##
RE863	.382044	450211	1.0000	.441105	.11831#	.16948#
RE564	. 232400	.4119##	.441188	1.0000	.0508	. 1955##
RE565	.1120##	. 10041	. 118348	.050B	1.0000	.0894#
RES66	. 1419**	. 1287##	. 1474**	.1755##	.03744	1.0000
RE567	.1370**	.1626##	. 196011	. 169914	.120816	580211
RESAU	. 2723##	*3526**	.3287##	3864##	.0443	.1850##
RE569	. 2056##	. 1564**	.1186**	.142788	.1487##	.160200
RE570	.1254**	.145648	.1789**	.132301	.09401	.1166**
RE871	.0763	. 1263**	. 1709**	.1697##	. 10431	-137B##
RE572	.0802#	.1070**	.1576**	.1722##	+0671	.1202##
RE573	.0732	.0227	. 0441	.0443	. 108611	.0865#
RE574	- OB701	1070**	.127984	.113788	. 10086	.1514##
RES75	. 13B1 · ·	.1216**	.0516	.0574	.1870##	.09160
RE576	* OBBB *	.0770	.0906#	.1110::	. 1116**	. 141514
RE577	.2373**	.164944	. 158618	. 153611	.1088**	.0392
RES7B	. 1687##	1840##	.211200	.156611	.0352	.155844
RES79	. OBO21	. 1748 * *	. 137511	.144818	. 124688	.14358#
RESBO	. 112068	. 1318**	10981	.1297##	.1153**	.1082**
RESOL	. 1205**	. 1759##	. 2144**	.2499##	.116140	.1284##
RE582	. 2094**	.1161##	.1209**	.1198**	.1461##	.1375##
RESB3	.0924#	.09181	.08444	.108211	. [819##	. 1782##
RE584	. 0679	.0103	.0912#	.1105##	.121988	.0560
RE585	.0760	. 0483	.1267##	.08954	.1730##	.0817#

N of cases:

1-tailed Signify # - .01 ## - .00

Page 24		5	SPSS/FC+			7/1/9
Correlationsi	RES67	RES68	FES69	RES70	RES71	RES72
RES1	.0289	.182511	.0463	0034	.0714	.0229
RES2	.0513	.10574	. 113814	.0207	. 10461	.0906#
RES3	.0031	.0211	.0832#	.0623	.0442	.1108es
PE54	.0573	. 0637	gotr	. 0334	. 0309	.0690
RESS	.0895*	.108011	. 0987#	.10031	. 0391	.161000
RE54	. 0474	.235100	.1052#	.123300	0629	-0400
PES7	0077	. 116311	.0572	02B3	. 0644	.09798
RESO	0170	.0623	09071	.097B*	.0160	0757
RES9	.0184	.167988	. 10244	.124740	. 0B63¢	.07474
RE510	. 0548	.0562	. 1479##	.176714	. 0564	.08374
RESII	. 10361	.2745**	. 132718	164511	.0798	. 134648
RESIZ	~,0028	.2299**	60074	. 109711	. 6453	108511
RESI3	. 145444	. 189744	. 144200	.110011	- 0679	10667
RES14	.113748	. 276618	. 180549	.1350##	. 1145##	.132300
RESI5	. 128500	. 1823**	09921	.116411	.0749	.0429
RESI6	479ن.	.1805.4	. 0750	.1222**	. 0375	.0575
RE517	. 0709	1460##	.1305**	.09801	109811	.136444
RESIB	09031	.0644	.0151	0003	.0325	0404
RES19	. 0454	.0402	. 0792	. 6787	. 6341	1609##
RES20	.0432	.0359	. 0683	.118544	.0175	.09751
RES21	.115211	.0835*	.0856	.0906	. 0630	.0705
RES22	.09371	.0425	08554	.0137	0057	0415
RE523	0270	.0731	.0572	.1697##	. 10908#	10021
RESZ4	.09484	.3523**	.08534	.14330#	0544	.138244
RES25	.134380	.10281	.0740	. 0779	. 0537	.0584
RESZ6	.0708	.0940#	108148	.1795**	. OADS	.1597##
RE527	0511	.0283	.0567	.0425	.0451	.0263
RE928	.0357	.0730	.1055#	-0765	. 0451	.121841
RE529	.09494	.09204	106411	-0765	. 10474	
REB30	.0454	.0276	116600	.155944	. 0209	.138188
RES31	.107311	.0182	.0644	.0624		. 1460##
RES32	.124614	.1134##	.0186		. 10021	.0390
RE533	.0323	.1256##		-10161	. 0599	.0574
RESJ4	.0323	.09434	.1186##	.122148	. 156618	.138200
RES35	.0255		.0571	. 0256	.0410	.0169
RES36	.0255	.0458 .0633	.1132**	· 0784	08381	.109211
RESST	*6466		.0690	-1092**	. 09518	11398##
RE537	0250	.203188	. 1032	•042B	. 08774	.0715
VC 210	0250	.0193	.0977*	- 0767	. 0708	.171688

RES39	.0640	.0634	.0531	.0611 .081540165
RE540	.0346	.1368**	.1071##	.1522## .0316 .1500##
RE541	.0568	.0620	. 16561 \$.133014 .08034 .219744
RE542	.0593	.0438	.1379##	.0641 .0606 .1432**
RE543	.0227	.134988	.1148**	.116141 .09261 .132704
RES44	.083B#	,0289	. 12998E	.0326 .0842# .2024##
RE845	.0809#	.0586	.1972##	.0127 .1389** .1799**
RES46	.09961	.0704	.1292##	.1872## .1343## .1829##
RE547	.0062	.0468	.137184	.1339## .0601 .0679

Of cases: 849 1-tailed Signifi

" . " is printed if a coefficient cannot be computed

Page 25			SPSS/PC+			7/1/92
Correlations	RE547	8683R	RES69	RES70	RE571	RE872
RES4D	. 0367	. 133749	.09690	.0755	.1258**	.164800
RE549	.0931#	.0594	.0639	.0982#	.0498	.1182**
RESSO	.0076	.0731	.1504**	.0535	.00094	.1566#
RES51	.08658	.0373	.0618	.0203	.0615	.0775
RE952	. OAB9	.1169##	.1148##	.0755	· 0228	.1462**
RE653	.112744	.0744	. 114488	.0856t	.1231**	.120411
RESS4	.0805#	.09628	.1137**	.0781	.0905#	.07441
RESSS	.09474	.0861*	.141300	.0880*	.1549##	.1008
RE556	.1213**	.131700	.0962#	. 145611	.1416**	.18071#
RE857	.1041#	.1011#	.10214	.0788	.0692	.0744
RE558	.141314	.105988	.10541	.10391	.09591	.0904#
RESS9	.1250##	.1720##	.17924#	.1604##	.2431**	.2719##
RE660	.106611	.328911	.1887**	.2052##	.1303**	. 17554#
RES61	.1378**	.272311	. 2056##	.1254**	.0763	.08021
RES62	.1626**	.352B**	.1564##	. 145644	.1263**	.1090##
RES63	. 176011	.328764	.1186**	.1789**	.1709**	.1578**
RES64	.1699##	.386418	.142788	.1323**	. 169748	.17221#
RES65	.1208#	.0443	.1487**	.0940#	.1043*	.0671
RESAL	.5802**	.1850##	.1602**	. 116611	.1378**	.1202**
RES67	1.0000	.1832**	.1212**	.0B771	.126584	.0632
RESAB	.1832**	1.0000	.122811	.1688**	.1414##	.1332**
RES69	.1313**	.1220 * *	1.0000	.1772**	.1723**	.2039**
RES70	.0877#	.1689**	.177242	1.0000	.1400**	179988
RES71	.1265##	.14146#	.1723**	.1460##	1.0000	.2921**
RES72	.0632	.1332##	.2059**	.1799**	.29218#	1.0000
RES73	.0382	.0283	.1270**	.0992#	.09624	.16321#
RES74	. 132711	.1536**	.0894*	.0B574	.1565**	.1376**
RES75	.0767	.0570	.0290	.0227	.0322	.0628
RE676	.1065##	.0770	.1645**	.0352	.1967##	.128100
RES77	.0643	.0356	.0981*	.1305**	.0317	.1167##
RES78	.1934**	.0647	.113144	. 127811	.0704	.0845#
RES79	.1385 s s	.175044	. 1386**	.0705	.119514	.1170##
RESBO	.0B63#	.1375**	.1307**	. 14876 0	.0408	.132301
RESOL	.126103	.1493**	.140340	.1653**	.18268#	.3087##
RES82	.1467**	.114200	.2010**	.10471	.1493**	.1710**
RESO3	.1661**	.1212**	. 1745#4	.0984≢	.1414**	.2002+4
RESB4	.0537	0406	.144291	. 1575**	.0921*	,2072**
RES85	.0541	.08101	.1135**	.0833¢	.0541	.1334**

N n5 ---- 040

I-tailed Signif: # - .01 ## - .00

".. " to printed if a coefficient cannot be computed

Page 26		5	PS9/PC+			7/1/92
Correlations:	RES73	RES74	RES75	RES76	RES77	RES78
RESI	.0242	.0607	.0279	.0607	.0313	.0664
RES2	. 0305	.0736	.0507	.0495	.0736	.0019
RE93	. 1318: *	.0709	.0344	.0408	.0445	.0487
RE54	.0526	0168	.0634	0229	.0851#	. 0356
RESS .	.0328	.125144	.0797	.0675	.1883**	.138444
RES6	.0109	.0130	.0711	.0067	.2031**	.143144
RES7	.0520	.0521	.113904	.0289	.119414	.0257
RESO	.0109	.0030	.0162	0359	.1752**	.109711
RESP	. 0571	.08748	.0245	.0194	212244	.159344
RE510	-0315	.10264	.0567	.0691	.1591**	.1156##
RESII	.00B2	.0735	.0165	.0550	.1275##	.11114*
RES12	.08374	.0774	.0653	.0661	.2487**	.1892**
RES13	.0785	.0294	.0704	.0543	.1062**	. 09791
RES14	- 0B04#	.0445	.0359	.09001	.0496	0576
RESIS	.0014	.0299	.0712	.0216	250944	.2100##
RESI6	.0476	.0304	. 114594	.0233	.1957**	.08691
SES17	.0782	.1178**	.0767	.08211	. 173644	.10220
RESIB	.0137	.09511	.1036#	.0519	0324	.0107
RES19	.0990#	.0422	.0759	.0728	.1840 **	.1022#
RES20	.0758	.0687	.0298	.0439	.2031**	. 1646**
RES21	.0722	.0459	.0769	. 0708	.106111	. 09758
RES22	. 0551	.0453	.0518	.08631	.0665	.0634
RES23	.0267	.0039	0452	,023B	.168B**	. 0991#
RES24	.0662	.0871*	.0339	.0725	.0715	.0565
RES25	.09201	.0619	.160B##	.0888	. 132714	. 1330**
REB26	.1143**	.0529	.0339	.09588	.09321	.0460
RES27	1040.	.0776	.142146	.08531	.0772	. 0333
RES2B	. 133544	.0470	. 0652	.0753	.09101	.0B31*
RES29	. OB61 #	.0242	.1252**	. 0644	.0646	.0521
RESSO	.09311	.0786	.0730+	.110714	.2017##	09094
RES31	.0551	.0626	2059**	.1289##	.0789	.0B02#
RES32	.0591	.08094	.1802**	.0695	.1025#	.08594
RES33	.10144	0752	.0859*	1053	11664#	.1218##
RE834	.0293	.0200	.0657	.0780	.0661	.113100
RES35	.1615##	1428##	.1019*	.08800	.0532	.0112

Chara						
RE930	.09511	. 078a	.09381	.110744	.201986	.07084
RESTI	.0551	0626	.2029**	.126744	.0788	.06024 -
RES32	.0591	.08071	.180244	.0695	. 10238	. OB594
RESIJ	.10141	.0752	· 08394	10221	.11668*	.1218##
RES34	.0283	. 0200	0657	·0780	1440	.1131**
RES35	.1615**	.142888	.1017#	*OB80*	.0532	.0112
RE936	.10561	.1574##	.0598	.13648#	. 0651	.0603
RES37	0275	. 09534	.0449	. 1519##	.1592##	.1292##
RE538	160511	.09354	.0940#	• 087B #	.0815#	.0763
RE539	.0493	.0246	.106744	.002B	.0248	.0172
RES40	.1216**	.0690	.070B	.0405	.1343#4	.1305##
RES41	.1639**	.07874	0312	.0431	. 109766	. 114544
RE542	.1486**	.1329**	. 1341##	.0228	.0519	0270
RES43	.0280	.0822*	0123	.0634	. 174741	. 1480 # #
RES44	. 1208**	10224	.1156**	.0791	.1060**	0460
RE545	. 120144	.07356	.0621	.1430**	.0399	.0737
RES46	.1417##	.0635	0120	-0723	.11930*	.1117**
RES47	.1113**	.0362	.1236##	.0163	.0331	.0164

N of cases: 849 1-tailed Signifi # + .01 ## - .001

Pag e 27		. :	SPSS/PC+			7/1/92
Correlations:	RES73	RE574	RES75	RES76	RES77	RES78
RES48	.1402##	.0878#	.10060	. 1077**	. 134200	-0464
RES49	. 1687**	. 0261	.0218	-0676	.112811	.161911
RESSO	.1603**	.1020#	.0530	.0671	- 0685	-0543
RESS1	.0234	.08104	,1224**	.09521	- 0706	. 0360
RE552	OB391	.0589	.0709	.0704#	.137011	.154411
RESS3	4000	.0259	.0823#	.1128**	. 14034#	. 129761
RESS4	.112941	.0880*	.08474	.10574	.108744	.0754
RESSS	0597	.043B	.0314	.0714	.1713##	-1000#
RESS6	.0275	. 147684	0165	120714	.1181**	1679 # #
RES57	.0867#	.09448	.2110**	. 123144	.1131**	124014
RESSB	.08021	.0991*	.0667	.0996#	0526	.0640
SESS9	.161914	. 165144	.0284	.1513**	. 1441**	.1195**
RES60	.08751	1552**	08071	.125511	. 123300	.1215##
RES61	.0732	.0870#	.138100	.0888	. 237314	1687**
RES62 .	.0227	.1070**	.12164#	.0770	. 164744	.1840**
RESA3	.0441	.127941	.0516	.0706#	. 1506**	.211244
RES64	0443	.1137**	. 0574	.1110**	. 1536**	.156644
RES65	.1886**	.100B#	.1870**	.111044	. 108811	.0352
RESAS	.0865	.1514**	.09168	.141544	.0392	.1558**
RES67	.0382	.132748	.0767	.106511		
RESAR	.0382	.133644	.0370	.0770	.0643	.1934**
RESA9						.0647
	.127B**	.0894	.0290	. 1645+1	.09814	-1131+#
RES70	.0992#	.0857#	.0227	0352	130500	.1278**
RES71	.0962	. 1565* *	. 0322	. 1967**	-0317	.0704
RES72	.163244	.1376**	.0628	.1201**	-116788	.0845#
RE673	1.0000	.0964	. 126518	.108291	.109800	.1092**
RES74	.0964#	1.0000	. 0786	. 2144##	. 0484	.0391
RES75	.1263**	.0786	1.0000	0185	.1474##	.0837#
RE576	.108288	.214484	0165	1.0000	-194B*	.0475
RES77	.109841	.0484	. 1474**	. 10491	1.0000	.4544##
RE578	.1092**	.0391	.08374	.0475	. 454444	1.0000
RE579	. 1260**	.1349##	.132411	.141011	.116980	.0725
RESBO	.135444	.1244##	.0780#	.122944	.10031	.09474
RES61	.1907##	.1561**	109911	. OB691	.172188	.1759##
RES82	. 1145**	.0892#	.1128##	108411	.137414	.181744
RESU3	.1685**	.1253+4	.145711	-0787	10311	10578
RE584	. 1551**	.0423	0698	+0697	.133214	.11694
RE685	. 159141	.0505#	. 1228**	.107488	157344	.130244

1-tailed Signif: 4 - .01 #8 - .001

" . " is printed if a coefficient cannot be computed

Page 2B			SPSS/FC+			7/1/92
Correlations	RE579	RE680	RES01	FES82	RES83	RE584
RES1	.0638	.0152	. 0399	. 0529	. 0190	.0116
RES2	.0277	.0642	.0421	.1321**	.00980	.0342
RES3	.0807#	.10201	.11980.	.0314	.09424	.0450
RES4	.0421	.0372	.0145	. 0152	. 0622	.0737
RES5	. 09671	.151244	. 113614	. 1932##	.0226	.1185**
RES6	.1089##	.1804##	.0988	.0725	.0366	.0296
RE97	.1116**	.9376	+10051	.0689	-0647	.0721
RES8	.0523	.0913#	.0706#	. 115804	· U487	. 121211
RES9	.0519	.14848#	. 157988	.0749	.0544	.129418
RESIO	.0663	.0875*	.08521	.1177##	- 0524	.130211
RESII	.08624	.1120**	. 1821**	.135144	.126582	.0675
RES12	. (-9524	.179104	. 1154#8	.1370##	.0439	.11574#
RES13	.116288	.1098##	. 1340**	-1497##	• 0699	.1071##
RES14	.10464	.1097##	. 185410	0735	.0868#	.0763
RESIS	. 0353	.131844	. 125988	. 1307##	.0100	.07154
RES16	-1275**	. 1153**	. 0557	. 146544	.0751	.09668
RES17	.10254	.147541	. 170244	. 127018	.0904#	.1484**
RESIB	+ 0651	.08854	0071	0014	0145	0203
RES19	.08134	.110784	. 1557.00	10391	.08034	.175811
RES20	.0520	.00924	.114304	.076B	0124	.1006#
RES21	.1037+	.1071#4	.0665	.0453	.09404	.120111
RES22	.0795	1029#	. 0574	.1006*	.11461#	.0492
REB23	.0242	.0776	.113601	.0483	.0464	.113488
RE524	149241	.111784	.175044	.10454	.0783	.0640
PE525	.08814	1003#	125611	. 09938	.09736	-0650
		.10034	10750	161701	10161	151010

HES24	. 1492**	.111744	. 125011	.1045+	.0763	.0090
RE525	.08814	.1003*	.1256##	.09931	.09731	. 0650
RES26'	.123744	.09114	. 1035	.157348	.10184	1,151000
RES27	-111344	.1170##	.0740	.0555	.0324	. 0451
RES28	-0606	138968	124188	.1134 88	.1714**	1390+
RES29	.0689	.1178*	. 133344	.166214	.0B30#	.1622**
RES30	.0726	. 1833**	.185844	. OBAG 8	.10464	.159948
RES31	.10491	* OBAO *	.09591	.0625	8040	40950#
RES32	.130200	. 07354	. 1367##	.10478	.1246**	. 1051 #
RES33	.121244	.1338**	.258411	.16618	.1313**	. 26634#
RES34	. 10994#	.0604	.0453	.0701	.07624	.0083
RES35	.1287**	.142711	.1338##	. 10351	.1022#	.1854##
RES36	.1051#	.0951#	.166443	.1185**	.1218**	. 14271 5
RES37	.09524	.0316	093B#	.1115**	.0194	0058
RES38	.052B	.1246**	.184644	.1476**	.0711*	. 1699# 2
RE939	.0106	. 0767	.0389	.0526	.08121	.0024
RES40	.0989#	.1900##	. 151711	. 134614	.1341**	.2410**
RES41	.0671	.178014	.1934##	.1520##	.1804##	.2355**
RES42	.1140##	.1640##	. 1464##	.1100##	.145100	.1847**
RE543	.0610	. 10594	. 184688	. 127614	.1487##	.1147**
RES44	.0772	.1783**	. 165614	.1150**	.1297**	.1786**
RES45	.1405##	. 1575**	. 1855**	.2145**	.136144	, 22504 #
RE546	. 10174	. 1689##	.1679##	.2002**	.09124 -	. 2244##
RES47	. 1228**	. 169511	.0381	.11764#	.09174	.0496

Of Cases: Bey 1-tailed Signiff # - .01 ## - .001

" . " is prin	ted if a co	efficient	Cannot be co	mputed		
Page 29			SPSS/PC+			7/1/92
Correlations:	RES79	RESBO	RES81	RE\$82	RE583	RE504
RES48	.120511	.1214**	. 1386**	.1488.	.0922#	.1876**
RE549	.117511	.09018	.1599##	.0926#	.0845#	.1307==
RESSO	.124981	.1448##	.1804**	.09424	.1299##	.16548#
RES51	.0430	.0497	.0620	.0975#	.112484	. 1865##
RES52	.134588	.109988	. 1028#	.1072**	.0B14#	.1742**
RESS3	.0493	.1420**	.09314	.1471**	.0778	.1171**
RES54	.0632	.1199**	.126811	.1173##	.1156**	.1023
RESSS	.0465	.1398**	. 1066##	. 1577##	.0360	.0985#
RE556	.1102##	.140988	.171818	.1238**	.0747	.1511##
RES57	.1108**	.1018*	. 1709##	.1639 **	.1379##	.12024*
RESSØ	.0509	.133216	. 1465##	. 1575**	.0842*	.13724#
RE559	.09881	. 182544	.324101	.1484#	.2318**	. 2165##
RE560	.0931#	,1471##	. 255411	*1808**	.2100**	.1202**
RES61	.08021	.1120**	.1205##	.2094##	.0924*	.0679
RES62	.1768**	,1318##	. 175944	.1161**	.0718	.0103
RES63	. 1375##	.1098##	.2144**	.1209**	.0846#	.0912*
RES64	. 14484	. 1297**	.2499##	.1168**	.1082##	.110544
RES65	.124644	. 115300	.116111	.1461##	.1017##	.121944
RES66	.143588	.1082**	,1284**	.1375**	.178211.	. 0560
RES67	.1385##	.08630	.1261**	.146788	.166188	. 0537
RE568	.175000	.1375**	. 1493##	.11428#	.1212**	0406
RE569	.1386**	.1507##	.140311	201011	.1745**	.14424#
RES70	.0705	.1487##	. 16551#	.1047#	.07B4#	.15750+
RES71	.1195**	. 060B	. 182611	.1493#	.141480	.0921*
RES72	.1170##	.132300	.308714	.1710**	.2002**	.207244
PES73	.1260##	.1354**	.190748	.1145##	.1885**	.1551**
RES74	. 134911	. 124444	. 156144	.00824	.1253**	.0423
RES75	.152488	.09808	.1099##	.1138##	.14574#	.0698
RES76	.1410**	.1229##	.08691	.1084##	.0787	.0497
RES77	.1169**	. 1003*	.132111	.1374**	.1031*	.133244
RES70	-0725	.09474	. 1759**	.1817**	.105/#	.116744
RES79	1.0000	.0482	.1330##	.115344	.116244	.0618
RESBO	.0482	1.0000	.221941	.1595**	. 148411	.186B**
RESDI.	.1330**	. 221944	1.0000	.2072**	.2460**	.28156#
RESB2	.1153**	. 1585**	. 207211	1.0000	.2255**	,2497**
RES83	.116344	.1484**	. 246011	.225511	1.0000	.1354##
RESB4	.0618	. 1868**	.2815##	.2497**	.1354**	1.0000
RE565	.10214	.141488	. 1018+	.1841 **	.1670**	. 2547**

N of cases: 649 1-tailed Signif: 1 -

. " is printed if a coefficient cannot be computed

Page 30	SPSS/PC+	7/1/92					
Correlations	RESUS						

RESI	.1103##
RES2	.08771
RES3	.0323
RES4	-,0026
RESS	.0704
RES4	. 137511
RES7	.183144
RESO	.184400
REST	.159700
RE510	.132111
RES11	.0629
RESIZ	.07061
REB13	.117681
RES14	.134144
RES15	.0501
RES16	.165344
RE517	.07594
RESIO	0174
RES19	.16420\$
RES20	.0319

```
RESTI
                 .1301+1
  PES22
RES23
  RE524
  RECTE
                  117544
  RESTA
  RES27
RES28
                 .0646
  RES30
                 .107518
  RES31
                 .04BB
  PECT2
                  0280
  RESSS
                  0770
                  0438
  RESSA
  RES37
                 .0315
  REGAT
                 140111
  RES43
                  108511
                 .1045#
N of cases:
" . " is printed if a coefficient cannot be computed
Page 31
                                      5P55/PC+
Correlations
  RE548
                 .0771
  RE549
                 148681
  RE550
                 .1070**
  RESSI
                 .09831
  RECS?
                 .151500
  RESST
                 .0644
  DES54
                 . 0770
                 .1178**
  RESSA
  RESS7
                 .1455 **
  RESSB
                 1055
  RESS9
                 . 10170
                 . 1938**
  RESAG
  FES61
                 0760
                 . 126784
  RESAL
  REGAS
                 . 1730**
  RESAM
                  08174
  RESAT
                 . 0541
  RESAR
                 68101
  RES69
  RE570
  RES71
  RES72
  RES73
  RE574
  FES75
FES76
                  122844
  RE577
  RES78
  RES79
  RESBO
  RESUL
RESUZ
                 . IB410a
  RESET
                 .1698##
  RESB4
                  254711
  RE585
               1.0000
Page
                                      5955/PC+
                                                                                 7/1/92
This procedure was completed at 17:41:07
FINISH.
End of Include file.
```


	RESUL	TADOS DE LA	a No. 5 PRUEBA DE S a la Edad.	SCHEFFE.	
Abneg Fan	ación y milia	ción y Abnegación Social		Abnegación y Cautela	
MEDIA	G - 4	MEDIA	G - 1	MEDIA	G - 4
1.4765	4 .	1.2063	1.	1.6216	4
1.5315	3.	1.2583	2 .	1.6571	1 .
1.5759	2 .	1.3675	3 *	1.7417	2 .
1.5946	1 *	1.3711	4 *	1.7554	3 *

^{*} Significativa al 0.05 G = Grupo.

Tabla No. 6. RESULTADOS DE LA PRUEBA DE SCHEFFE. Respecto a la Escolaridad.				
Abnegación y Familia		Abnegación Social		
MEDIA	G - 2	MEDIA	G - 4	
1.4840	1.	1.2196	4 .	
1.5223	2 .	1.2905	3.	
1.6035	3 *	1.3333	2 *	
1.6270	4 *	1.3578	1 *	

^{*} Significativas al 0.05 G = Grupo.

Tabla No. 7. RESULTADOS DE LA PRUEBA DE SCHEFFE. Respecto a Ocupación.						
Abnegación y Familia		Abnegación Social		Escala Total		
MEDIA	G 1 - 2	MEDIA	G - 3	MEDIA	G - 1	
1.3953	1	1.2362	з	1.4438	1 .	
1.5261	2 * .	1.3130	2 *	1.5033	2 .	
1.7002	3 * *	1.3623	1 *	1.5561	3 *	

* Significativas al 0.05 G = Grupo.

Tabla No. 8. RESULTADOS DE LA PRUEBA DE SCHEFFE. Respecto al Número de Hijos						
Abnegación y Familia		Abnegación Social		Escala Total		
MEDIA	G 2 - 3	MEDIA	G 1	MEDIA	G 2 - 3	
1.4446	2	1.2612	1.	1.4447	3	
1.4472	3	1.3088	3 .	1.4749	2	
1.6308	1 * *	1.3376	2 *	1.5571	1 * *	

^{*} Significativas al 0.05 G = Grupo.

APENDICE G

LISTA DE REACTIVOS que quedaron como Control Ideológico.

- 5.- Empiezo a comer hasta que llegue mi pareja.
- 6.- Aún estando enferma(o) atiendo a mis hijos.
- 9.- Mi deber es desvelarme por mis hijos. 11.- Cuando a mi familia le disgusta lo que cocino, le preparo otra cosa.
- 24 .- Cocino al gusto de mi familia.
- 57.- Prefiero callar cuando mi garage está ocupado. *
- 61 .- Prefiero quedarme callado(a) cuando tengo poco gasto.
- 62.- Acepto que mi esposa(o) salga sin mí. *
- 63.- Me enoja que mi esposo(a) vava a lugares o espectáculos de diversión.
- 64.- Es fácil aceptar que mi esposo(a) beba. * *
- 65.- Es dificil aceptar que mi esposo(a) juegue por dinero. *
 67.- Acepto que mi novio(a), se lleve con amigos intimos del mismo sexo. * *
- 68.- Mi novio (a) puede besar a sus amigas (os) delante de mi.* *
- 69 .- Me da coraje que dejen lo que cocino. 78.- Cuando tengo relaciones sexuales le doy gusto a mi pareja en
- todo. 79.- Me adelanto a los deseos sexuales de mi pareja.
- 81.- Sigo un tratamiento médico largo, aún cuando todavía no me
- 85.- Una persona resignada, es más valiosa que una que alega y discute.
- * Estas afirmaciones, las aseguran la mayoría de los sujetos estudiados, y no distinguen entre conducta "abnegada" y "no abnegada".
- ** Estas afirmaciones las niegan la mayoría de los sujetos estudiados, y no distinguen entre conducta "abnegada" y "no abnegada".