

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

MODELO MATEMATICO PARA CALCULAR EL COMPORTAMIENTO DE UN SISTEMA DE INYECCION DE VAPOR EN PROCESOS DE RECUPERACION TERMICA

T		E		S	l		5
QUE	P	ARA	OBTEN	IER EI	L TITU	ILO	DE:
1 N C	3 E	NIE	RO	ΡE	TRO	LEF	0 ۶
Ρ	R	Ę	S	Έ	N	т	A
JES	ธบ	s	GAR	CIA	м	UN	o z

DIRECTOR DE TESIS ING. MARIO BECERRA ZEPEDA ASESOR: ING. SANTOS REYES GONZALEZ

MEXICO, D. F.

TESIS CON FALLA DE ORIGEN JUNIO DE 1993

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

·	INTRODUCCION	•	• •	• •	•			1
I.	PROCESOS DE RECUPERACION TERMICA .		• •	•••	•			3
	I.1. INVECCION CICLICA DE VAPOR .	•	• •	•				4
	1.2. DESPLAZAMIENTO CON VAPOR	•	• •	•				5
	I.3. INVECCION DE AGUA CALIENTE .		•					2 7).
	I.4. COMBUSTION IN SITU		•				100 and 100 100 and 100 100 and 100	7
11.	PROPIEDADES FISICAS DE LOS MATERIA	LES						9
	II.1. CONCEPTOS FUNDAMENTALES		•• 3	•	•			10
	II.2. PROPIEDADES FISICAS	•	• •					14
	II.2.1 AGUA		•			•		14
	II.2.2 VAPOR		• . • :					15
	II.2.3 ACEITE	•	••••			•		16
	II.2.4 GASES HIDROCARBURO	5		•				17
	II.2.5 AIRE	•	• •	•				18
	II.2.6 FORMACION	• •	• •	•				18
	II.2.7 ACERO		•••		• •		• • •	19
i Linge	II.2.8 AISLANTE TERMICO	••	• •	• * * •		•	•	20
III	I. DESCRIPCION DEL SISTEMA DE INYEC	CION	ι.					21
	III.1. SUPERFICIAL				•••			22
	III.1.1 GENERADOR DE VAP	OR						22
	III.1.2 LINEAS SUPERFICI	ALES	5.					23
	III.2. SUBSUPERFICIAL							24
	III.2.1 TUBERIA DE REVEST	IMI	ENTO					24

т.

	III.2.2 TUBERIA DE INYECCION-PRODUCCION	:5
	III.2.3 AISLANTE TERMICO	:6
	III.2.4 CEMENTACION	26
	III.3. YACIMIENTO	,
	III.3.1 TIPO DE TERMINACION	27
	III.3.2 ESPESOR DEL INTERVALO PRODUCTOR	27
IV.	PERDIDAS DE CALOR EN EL SISTEMA DE INVECCION	31
	IV.1. PERDIDAS DE CALOR EN LINEAS SUPERFICIALES :	33
	IV.1.1 COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR	34
a da Ar en	IV.1.2 PERDIDA TOTAL DE CALOR EN TUBERIAS AEREAS . 3	36
	IV.1.3 PERDIDA TOTAL DE CALOR EN TUBERIAS ENTERRADAS :	37
	IV.2. PERDIDAS DE CALOR EN EL APAREJO DE INYECCION	38
	IV.2.1 COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR	38
	IV.2.2 VARIACION DE LA PRESION Y LA CALIDAD DEL VAPOR CON LA PROFUNDIDAD	14
	IV.2.3 PERDIDA TOTAL DE CALOR	19
	IV.3. PERDIDAS DE CALOR HACIA LAS FORMACIONES ADVACENTES	19
	IV.4 PROGRAMA DE COMPUTO	55
v.	EJEMPLO DE APLICACION	73
vı.	CONCLUSIONES	37
	APENDICE A	90
	APENDICE B	05
	NOMENCLATURA 1	13
	REFERENCIAS	19

RESUMEN

Este trabajo, para cumplir con el objetivo de aportar un modelo matemático que símule el comportamiento de un sistema de inyección de vapor, intenta, además señalar los aspectos fundamentales de los procesos de recuperación térmica; puntualizando las propiedades físicas de los materiales, inherentes a los fenómenos térmicos en los procesos de inyección de fluidos calientes; por otro lado, se describen las partes esenciales que intregran al sistema de inyección que incluyen intalaciones, pozo y fomación productora.

En relación con el programa de cómputo, se analizó la teoría de los fenómenos de transferencia de calor que ocurren en el sistema de paredes compuestas con geometría radial integrado por las líneas superficiales, por el pozo y por el yacimiento.

Se plantea también un ejemplo con dos alternativas prácticas para la ilustración y validación de los algorítmos utilizados.

Finalmente se incluyen los apéndices correspondientes, que contribuyen con gráficas, tablas y expresiones matemáticas al respaldo de los conceptos y métodos utilizados.

INTRODUCCION

La industria petrolera hace frente al reto de, por lo menos, mantener las reservas de hidrocarburos, ya sea descubriendo nuevos campos petroleros o explotando al máximo los ya descubiertos, mediante procesos adicionales de recuperación. Estos procesos se implantan para mejorar las condiciones de flujo del aceite en el medio poroso, una vez que el yacimiento haya disminuido sustancialmente su capacidad original para fluir.

Básicamente los métodos más aplicados son los de recuperación secundaria: la inyección de agua y la inyección de gas natural.

Después de aplicar recuperación secundaria a un yacimiento, pueden aplicarse otras técnicas de explotación más complejas, como los procesos térmicos, miscibles, y químicos, los cuales se conocen como procesos de recuperación mejorada.

Los procesos de recuperación térmica han venido creciendo en importancia en la industria petrolera mundial a partir de que grandes cantidades de aceite previamente consideradas como irrecuperables o económicamente inexplotables se han producido por este tipo de mecanismos de recuperación, principalmente por inyección de vapor.

En México, la recuperación térmica se ha aplicado únicamente en forma experimental, con gran éxito técnico en pruebas piloto de inyección cíclica de vapor en los campos Cacalilao y Moloacán^(15,20).

^{*} Referencias al final

En los procesos de inyección de vapor, tanto las tuberías del pozo, como las líneas superficiales de conducción, estarán sometidas a altos esfuerzos térmicos, los cuales pudieran provocar fallas mecánicas durante la inyección. Otra variable muy importante en estos procesos de recuperación, es la calidad del vapor que se entrega al yacimiento, para lo cual es necesario determinar la cantidad de calor que pierde el vapor en su recorrido hacia el intervalo productor.

Con el objeto de conocer la variación de esos parámetros, este trabajo presenta un programa de cómputo que simula el comportamiento térmico del sistema integral de inyección.

CAPITULO I

PROCESOS DE RECUPERACION TERMICA

Los procesos de recuperación térmica básicos son: la inyección cíclica de vapor, también llamada estimulación con vapor, el desplazamiento con vapor, la inyección de agua caliente y la combustión "in situ". Por lo general estos procesos son aplicados en yacimientos de aceite de alta viscosidad, parámetro que es determinante para la movilidad del aceite en el espacio poroso del yacimiento.

El aceite remanente en este tipo de yacimientos contiene grandes cantidades de fracciones no destilables (a temperatura del yacimiento); así como asfaltenos que obstruyen la porosidad del medio.

La aplicación de un proceso térmico de recuperación le permite al aceite reducir su viscosidad, destilar algunas de sus fracciones y provocarle una expansión térmica, con lo cual ocurrirán cambios en las fuerzas de tensión superficial, mejorando sustancialmente su movilidad en el medio poroso.

I.1 INYECCION CICLICA DE VAPOR

Este proceso se desarrolla en un sólo pozo y su principal efecto es estimular la formación. La inyección cíclica consiste en inyectar una masa de vapor de alta calidad (80% por lo menos) al yacimiento a gastos del orden de 1000 barriles por día, por un período de dos a tres semanas; después de un periódo de cierre del pozo (que puede ser de unos cuantos días hasta varias semanas, dependiendo de las características de geometría, tamaño y potencial de la formación productora), para permitir que el vapor ceda su calor latente al sistema roca fluidos, se abre el

pozo a producción (cuya etapa requiere generalmente la aplicación de un sistema de bombeo artificial). El proceso se efectúa repetitivamente en forma de ciclos, hasta obtener recuperaciones de aceite a un límite económico. La respuesta de la producción para el primer ciclo de inyección es de 8 a 10 veces más alta que para la producción no estimulada y la duración del ciclo es tambien más largo. El segundo y tercer ciclos tienen menor duración y menor efecto en el gasto de producción. La razón de la mejor respuesta en los primeros ciclos se explica por los efectos principalmente de reducción de la viscosidad del crudo, limpieza de la vecindad del pozo (remoción de depósitos parafínicos y asfálticos) y por supuesto por la saturación de aceite. La inyección cíclica de vapor se aplica por lo general en yacimientos con viscosidades entre los 100 y 50000 cp (a temperatura del yacimiento), a profundidades de hasta 3000 pies. El espesor del estrato productor debe ser mayor a 50 pies, para aprovechar eficientemente el calor del vapor de inyección.

Un buen indicador del funcionamiento del proyecto es la relación del aceite producido al agua inyectada. Los mejores resultados indican que en los primeros ciclos se recobran tanto como 30 Bls. de aceite por barril de agua inyectada⁽²⁾.

El porcentaje promedio de la recuperación exclusivamente por este método puede llegar a ser hasta de 15% del volumen original de aceite.

1.2 DESPLAZAMIENTO CON VAPOR

La inyección continua de vapor, debido a que barre mayores áreas, permite gastos más altos de inyección que la estimulación con vapor, lo cual se manifiesta en una mejor eficiencia térmica.

Los gastos de inyección de vapor pueden alcanzar los 1300 bl/día y hasta períodos ininterrumpidos de meses.

Usualmente un proceso de desplazamiento con vapor se aplica previo agotamiento por estimulación a través de la inyección cíclica, lo cual agiliza la producción inicial del yacimiento y permite una inyección continua más efectiva por el calentamiento integral de las áreas estimuladas.

El factor de recuperación como resultado de un proceso térmico esta definido por las característica particulares de cada yacimiento. Por ejemplo, la recuperación final de aceite por explotación primaria o convencional para un cierto yacimiento con características muy pobres, puede estar en un rango de 5-10 % del volumen original de aceite, N. Un proceso térmico podría incrementar este factor hasta un 30-35 %. Sin embargo para las mejores características de yacimiento, la recuperación convencional estaría entre 55 y 60 % de N, donde la recuperación térmica sólo adicionaría un 5% de N⁽³⁾.

Para asegurar un barrido uniforme, los pozos de inyección están distribuidos entre los pozos productores. Esto se hace convirtiendo los pozos productores ya existentes en pozos inyectores o perforando nuevos pozos de inyección. La distancia entre pozos depende de las características del yacimiento o de las necesidades de explotación. En muchos campos esta distancia es del orden de los 2500 pies.

El patron de flujo más común en los procesos de recuperación térmica (excepto para la inyección cíclica que utiliza un sólo pozo) es el arreglo de cinco pozos, en los E.U.: cada pozo de inyección está localizado en el centro de un cuadrado definido por cuatro pozos productores.

1.3 INVECCION DE AGUA CALIENTE

Este proceso es básicamente un desplazamiento inmiscible del aceite por agua caliente. Es un método menos efectivo que la inyección continua de vapor, debido al bajo contenido de calor del agua caliente. Se desarrollan los mismos efectos que para el desplazamiento con vapor, pero, en menor escala. Sin embargo, la inyeción de agua caliente mejora las fuerzas de empuje, propiciando un mejor barrido del medio poroso.

Por ejemplo, si se inyecta agua caliente a 350 °F en un yacimiento a 130 °F, el calor adicionado a la formación es de 224 Btu/lb_m. Por otro lado, si se inyectara vapor a 350 °F en ese mismo yacimiento, el contenido de calor adicionado sería de 1194 Btu/lb_m.

La inyección de agua caliente se aplica en yaciemientos someros, de hasta 2500 pies, con aceites de viscosidad en un rango de 100 a 1000 cp.

I.4 COMBUSTION IN SITU

La combustión in situ es la ignición del propio aceite que satura los poros de la roca del yacimiento. Esto se hace con el propósito de generar calor, y al mismo liempo un mecanismo de desplazamiento. Este proceso, requiere de inyectar aire a altas presiones en el yacimiento para que ocurra una reacción de ignición espontánea del aceite con el óxigeno del aire, en algunas ocasiones se instala un quemador artificial cuando no ocurre esta reacción, la cual depende de las condiciones de presión, temperatura y saturación de gas en la formación.

CAPITULO Π

PROPIEDADES FISICAS DE LOS MATERIALES

Con el propósito de predecir apropiadamente el comportamiento del sistema de inyección de vapor es indispensable conocer las propiedades físicas, asociadas con los fenómenos térmicos de los elementos que intervienen en el proceso de recuperación.

II.1 CONCEPTOS FUNDAMENTALES

Calor específico, C

Es la habilidad de una sustancia de absorver calor, se expresa como la cantidad de energía (Caloría o Btu) necesaria para incrementar 1 °F una lb_m de esa sustancia.

Para cualquier sustancia entre más alto sea su calor específico más grande es la cantidad de calor que puede absorver para un incremento de temperatura dado.

Temperatura de saturación, T.

La temperatura de saturación o punto de ebullición se alcanza cuando la presión de vapor de un líquido al que se le está adicionando calor se iguala a la presión externa a la que se encuentra sometido, en ese punto, el líquido se satura con calor y empieza a hervir.

Calor de vaporización, L

El calor latente de vaporización es la cantidad de calor requerido para desprender las moléculas de la superficie de un líquido en la formación de vapor.

Entalpía, H

La entalpía es la energía calorífica de un sistema termodinámico, cuya magnitud depende de los estados inicial y final del mismo.

Cuando el agua a 32 °F se calienta a la temperatura de saturación a una presión particular, absorve una cantidad de calor, H_r . A este calor se le llama entalpía del líquido saturado. En tanto que la entalpía de vapor húmedo, H_{fg} es el calor total, expresado como la suma de la entalpía del agua y el calor de vaporización.

Viscosidad, µ

La viscosidad se define como la fricción interna entre las moléculas de un fluido.

Es una constante de proporcionalidad entre el esfuerzo de corte y la velocidad del fluido, $f = \mu dv/dz$.

Densidad, p

Es la relación entre la masa de un sólido o líquido y la masa de agua a la temperatura de 4°C que ocupa el mismo volumen.

Para un gas o vapor la relación es entre la masa del aire que, en idénticas condiciones de presión y temperatura, ocupa el mismo volúmen.

Por convención, la densidad del agua es 1 y la del aire 1 también. Entonces, la densidad de cualquier sustancia es la relación entre su masa y su volumen que ocupa.

Conductividad térmica, K

Es una propiedad de los cuerpos de transmitir el calor. No todos los cuerpos transmiten igualmente el calor, algunos lo propagan con mucha facilidad como el acero. En la Ley de Fourier⁽¹⁴⁾, $q = -K \Delta T$, la conductividad térmica es el coeficiente de conducción de calor.

Compresibilidad, c

Es una propiedad de la materia a la cual se debe que casi todos los cuerpos disminuyan de volumen cuando se les comprime o somete a una presión.

Factor de volumen, B

El factor de volumen del gas se define como el volumen de una masa de gas medida a ciertas condiciones de presión y temperatura entre el volúmen de dicha masa a condiones standard. El factor del volumen del aceite es la relación del volumen del aceite más su gas disuelto a condiciones de yacimiento y el volumen del aceite muerto (aceite sin gas disuelto) a condiciones standard.

Emisividad térmica, e

Es la razón de la radiación emitida por cierta superficie a la radiación que emite un cuerpo negro conductor a la misma temperatura.

Difusividad térmica, a

Es la propagación del calor en la superficie de la roca del yacimiento durante un tiempo t. La difusividad relaciona la conductividad térmica y la capacidad calorífica de la roca del yacimiento, $\alpha = K/M$. Calidad del vapor, X

El porcentaje de calidad del vapor se expresa por el peso del vapor seco y saturado por libra de vapor húmedo.

II.2 PROPIEDADES FISICAS

II.2.1 AGUA

El agua es uno de los elementos de mayor importancia en los procesos de recuperación de aceite, posee las mejores propiedades térmicas, lo cual la hace responsable de que tanto en su fase líquida como en la gaseosa sea un ideal agente de transporte de calor.

1. Temperatura de saturación, T. = 212 °F @ C.S., Ec. A.1

2. Calor específico, C_a = 1 Btu/lb_m-°F @ C.S.

La fig. A.2 muestra el comportamiento del calor específico del agua. La viscosidad del agua puede calcularse con la Ec. A.2, el efecto de la presión sobre la viscosidad del agua es despreciable. La viscosidad del agua @ C.S. es de alrededor de 1 co.

4. Densidad, $\rho = 1$ gr/cc @ C.S.

5. El calor latente de vaporización del agua se puede obtener de tablas de vapor, o también de las Ecs. A.3 y A.4

6. La entalpía de tablas o de la Ec. A.5

7. La conductividad térmica de la mayoría de los líquidos, especialmente los líquidos órganicos están en un rango de .05 a .2 Btu/hr-pie-°F. El agua es una excepción con valor máximo de .398 a alrededor de 130°C.

II.2.2 VAPOR

1. Calidad del vapor se puede obtener de la Ec. A.6

La medida de la calidad del vapor sólo puede servir como una referencia, puesto que en general, ésta varía considerablemente con las condiciones de operación. Un método para conocer la calidad del vapor consiste en medir las cantidades másicas de la fase líquida y del vapor seco en recipientes aislados bajo presión en un período corto de tiempo. La calidad del vapor está dada por la relación del flujo másico del vapor seco al flujo másico de las dos fases (vapor seco y líquido).

Las propiedades del vapor están tabuladas en un amplio rango de temperaturas y presiones.

La Fig. A. I representa la variación del calor sensible (H_i), del calor latente de vaporización (H_{ig}) y del calor total. Como se puede ver, empezando aproximadamente con una presión de 470 lb/Pg², el calor total del vapor empieza a decrecer con un incremento en la presión. El decremento en el contenido de calor latente del vapor llega a ser más grande que el incremento del calor sensible. Aplicadas estas propiedades al yacimiento, la presión de inyección del vapor deberá ser sólo la suficiente para desplazar los fluidos, por el hecho de que tendrá más contenido de calor que a presiones mayores.

 El volumen específico del vapor seco, V, es el volumen ocupado por una libra de vapor seco y saturado, el cual se obtiene experimentalmente, ya que el vapor no se comporta como un gas ideal.

El volumen específico del vapor húmedo, V es la suma de los volúmenes de vapor seco y de líquido suspendido (Ecs. A.7 y A.8).

3. El factor de volumen del vapor puede estimarse con la ecuación A.9 o de los volumenes específicos dados en tablas.

4. La compresibilidad del vapor de la Ec. A.10

5. La viscosidad del vapor a presión y temperatura de saturación está dada por la Ec. A.11

6. La densidad del vapor con la Ec. A.12

 El calor específico del vapor saturado a las condiciones de presión y temperatura de la mavoría de los provectos de invección de vapor es de alrededor de .5 Btu/.lb-°F.

8. La entalpía del vapor saturado se obtiene de tablas o de las Ecs. A.13 y A.14

9. La conductividad térmica del vapor se incrementa con la temperatura y presión. A altas temperaturas su valor se puede calcular de (A.15).

11.2.3 ACEITE

Una de 'variables más importantes en la recuperación térmica de hidrocarburos es la viscosidad del aceite como una función de la temperatura.

 La reducción de la viscosidad para un mismo incremento de temperatura es más evidente para aceites pesados. Por cjemplo, para un aceite de 10 °API, su viscosidad decrecerá de 100000 cp a aproximadamente 10 cp, o sea 10000 veces. El mismo incremento de temperatura reduce la viscosidad de un crudo de 14 °API de 2000 cp a 4 cp, sólo 500 veces.

Se sugiere que la viscosidad del aceite sea medida en véz de calcularla con correlaciones.

2. La Tabla A.5 relaciona la densidad del aceite en grados API con la gravedad específica.

3. La tensión superficial en el aceite se reduce con la temperatura Fig. A.3. Esto implica que las fuerzas de presión capilar también se reducen a altas temperaturas.

4. El calor latente del aceite es mucho más bajo que el del agua.

5. Para el aceite la conductividad térmica se puede estimar de la Ec. A.16

Smith^{α 3} recomienda para todas las fracciones de aceite una constante K = .0791 Btu/hr-pie-°F a una temperatura de 30 °C.

II.2.4 GASES HIDROCARBUROS

 La viscosidad de un gas a baja presión se incrementa al elevarse la temperatura, mientras que para los líquidos ocurre lo contrario.

2. La conductividad térmica de los gases bajo temperatura y presión ordinarias está en un rango de .002 a .025 Btu/hr-pie-°F con un promedio de .008. La conductividad del gas generalmente se incrementa con la temperatura. Y se puede estimar de la Ec. A.17

3. El factor de volumen del gas se calcula con la Ec. A.9

11.2.5 AIRE

 La conductividad térmica y el calor específico del aire se muestra en la Fig. A.2. y A.4
La viscosidad del aire se incrementa con la temperatura. La Fig. A.4 muestra esta propiedad para 1 Atm. de presión.

II.2.6 FORMACION

Las propiedades térmicas de la matriz de la roca deberán considerarse en el diseño de un proyecto de inyección de vapor. Generalmente tales características son evaluadas suponiendo condiciones de saturación de agua, aceite y gas en el yacimiento. Por lo 'anto el factor fundamental para estimar la transferencia de calor es la capacidad calorífica de la formación. 1. La capacidad calorífica M, es el producto de la densidad relativa y el calor específico de la roca. Tomando en consideración la presencia de las tres fases, M se estima de la Ec. A.18. Las capacidades térmicas de las rocas decrecen con la temperatura en aproximadamente 30%, para un amplio ranzo de temperatura.

2. La difusividad térmica se puede calcular mediante $\alpha = K/M$, la cual proporciona valores más adecuados que los medidos directamente. La difusividad térmica de las rocas decrece con el incremento en la temperatura.

3. La conductividad térmica de las rocas cristalinas decrece con el incremento en la temperatura. Un incremento en los esfuerzos a los que una roca está sometida incrementará sustancialmente su conductividad térmica. Para areniscas consolidadas, la conductividad térmica se puede calcular de la Ec. A.19. Arenas no consolidadas y saturadas con agua son más conductivas que las no saturadas.

II.2.7 ACERO

 Para aceros simples de carbono los esfuerzos compresivos generados por las fuerzas de expansión térmica son de alrededor de 200 lb/Pg² por cada °F incrementado.

2. El coeficiente de expansión térmica del acero es de alrededor de 7X106 por °F(2).

La Fig. A.6 muestra el comportamiento térmico de la TR. La trayectoria A-B sigue un patrón clástico. B representa el punto de cedencia. Si el esfuerzo compresivo a la máxima temperatura de la TR no excede el punto B, la tubería vuelve a su punto de cero esfuerzo en tanto se enfría el sistema, sin que ocurra ningún daño. A mayores temperaturas los esfuerzos rebazan el punto de cedencia causando deformación a la tubería (comportamiento plástico).

Las propiedades de la TR se encuentran en tablas comerciales. Por ejemplo, una TR J-55 permitirá un incremento de 55,000/200 ó 275 °1² antes del punto de cedencia. La junta de la TR podría ceder (no precisamente fallar, pero si registrar un daño) antes que el cuerpo de la tubería. 3. La conductividad térmica del acero es bastante alta, alrededor de 25 Btu/hr-pie-°F. Tabla A.4 4. La tabla A.2 proporciona la emisividad del acero y otros metales.

II.2.8 AISLANTE TERMICO

La mayoría de los pozos con procesos de inyección de vapor se aislan con protección térmica, no sólo para reducir las pérdidas de calor sino para evitar fallas a la tubería de revestimiento. Existe una gran variedad de aislantes térmicos, todos ellos con las características de poseer un alto valor de resistividad al calor (1/K), entre 40 y 77 [Btu/hr-pie-°F]¹. Los de uso más frecuente son el sodio y el silicato de calcio. Tabla A.4

CAPITULO III

DESCRIPCION DEL SISTEMA DE INVECCION

III.1 SUPERFICIAL

III.1.1 GENERADOR DE VAPOR

El vapor que se ha de inyectar en un proceso de recuperación térmica se produce por generadores de vapor húmedo. Estos son aparatos que tienen tubos en forma de espiral, los hay otros con tubos lineales, dichos tubos están rodeados por flamas y gases calientes, por los cuales se les hace circular agua a altas presiones. Las flamas para calentar los tubos en la sección de radiación se obtienen con comhustibles líquidos o gaseosos. Es importante, sin embargo, que el combustible líquido tenga propiedades constantes (tales como viscosidad, volatilidad y contenido de gas disuelto) para evitar paros en el sistema automático. Los generadores de vapor húmedo están equipados con instrumentos y dispositivos de control que ajustan automáticamente los gastos de combustible, aíre y la alimetación de agua para generar el vapor con la calidad .:equerida.

Estos generadores producen alrededor de 12 a 50 millones de Btu/hr a la salida del vapor, con una presión de saturación entre 2000 y 2500 lb/pg^2 y una calidad del orden de 85%.

La cficiencia de un generador se puede determinar por la entalpía que produce el vapor, relativa al total de energía para generarlo. Alrededor del 20% del calor suministrado a un generador de vapor se pierde a través del sistma de escape, dejando la chimenea a aproximadamente 400 °F. -Tratamiento del agua

El agua de alimentación a los generadores debe ser de buena calidad para evitar sólidos suspendidos en la corriente, incrustaciones y corrosión en la tubería. El API⁽³⁾ recomienda las siguientes consideraciones:

Dureza total	Menos de 1 ppm
Concentración de Fe	Menos de .1 ppm
Sólidos suspendidos	Menos de 5 ppm (preferible menos de 1 ppm)
Aceite suspendido	Menos de 1 ppm
Oxígeno	Preferible 0 ppm
Alcalinidad	Bicarbonatos alcalinos menos de 2000 ppm
р Н	de 7 a 12

III.1.2 LINEAS SUPERFICIALES

Las líneas de distribución del vapor desde el generador a las cabezas de los pozos están a más altas presiones y temperaturas que las lineas de producción hacia los separadores. Si la presión del vapor es inferior a 1500 lb/pg² las lineas de producción pueden ser adecuadas para conducir el vapor.

Las lineas superficiales pueden estar enterradas, colocadas sobre el suelo, o soportadas a cierta altura del suelo. Este último diseño es preferible para instalaciones permanentes, debido a que, permite la expansión de la tubería por los cambios de temperatura. Se colocan a determinados intervalos, vueltas de expansión de la tubería (Fig. 3.1). Por ejemplo, aplicando el coeficiente de expansión del acero, si en una tubería de 1500 pies de longitud se produce un incremento de temperatura de 600 °F, el incremento en su longitud podría ser de 6.3 pies (1.92 m) Cuando las líneas son enterradas, es recomendable colocarlas con un relieno de arena en la zanja, para evitar excesivas pérdidas de calor a través del suelo húmedo.

Para el caso de líneas expuestas a la intemperie es recomendable aislarlas con protección térmica, de esta manera se reducen las pérdidas de calor (por consiguiente los gastos por consumo de combustibles) y como una medida de seguridad.

III.2 SUBSUPERFICIAL

III.2.1 TUBERIA DE REVESTIMIENTO

Una limitación bastante seria en la aplicación de un proyecto de inyección de vapor es sín duda el fallo que podría registrarse en la tubería de revestimiento por los esfuerzos térmicos generados.

En tanto la tubería se calienta tiende a elongarse en proporción directa al cambio de temperatura. En la mayoría de los pozos, cierta parte de la TR está cementada con la pared del pozo, la tendencia a la elongación entonces, es remplazada por esfuerzos compresivos. Cuando la TR está cementada sólo en la parte inferrior, el pandeamiento de la misma es casi inevitable. En cualquiera de ambos casos la expasión de la tubería llega incluso a elevar el arbol de válvulas.

Una manera de prevenir daños a la tubería se logra utilizando materiales de alto punto de cedencia, ésto es, desde luego más caro.

En algunos pozos someros el vapor puede ser inyectado por el espacio anular. Sin embargo, en pozos profundos (los cuales requieren mejor calidad del vapor en la cabeza del pozo) es más conveniente inyectar por la TP para reducir la temperatura en la tubería de revestimiento.

III.2.2 TUBERIA DE INYECCION-PRODUCCION

La tubería de inyección para pozos térmicos puede ajustarse a cualquier aparejo convencional de producción bajo las siguientes caraterísticas: en el extremo inferior de la tubería, en el empacador térmico, deberá colocarse una junta de expansión que permita a la sarta de tubería elongarse libremente con los incrementos de temperatura; dado que la mayoría de los pozos se perforan sin considerar una posible intervención térmica, éstos no se han diseñado para resistir las temperaturas de inyección del vapor, por lo tanto se requiere que la sarta de inyección sea aislada con protección térmica.

Cuando se inyecta en un yacimiento de gran espesor (cientos de pies) existe normalmente bastante diferencia entre la parte inferior y superior; el vapor buscará el punto de presión más baja. Esta tendencia se puede reducir colocando la TP en la parte inferior del intervalo.

III.2.3 AISLANTE TERMICO

El aislante térmico debe mantenerse seco para que sea más efectivo. Hoy día existe tubería preaislada que permite la expansión de sus componentes y mantiene seca la parte del aislante mediante un sellamiento.

Comercialmente también se puede encontrar aislamiento preformado, moldeado para ajustarse a la superficie de la tubería. Se fabrican en diversos diametros (de 1/2'' a 12'') y espesores (1/2a 2'')⁽³⁾.

Otro aislante, un fluido llamado Ken-Pack se ha usado con mucho éxito, el cual consiste de grasas ácidas, y tiene la ventaja de que se puede recuperar y ser usado nuevamente en otro pozo.

III.2.4 CEMENTACION

La cementación de un pozo debe ser completa, hasta la superficie, la razón de esto, es anclar firmemente la tubería de revestimiento con la pared del pozo. De esta manera se evita pandeo de la TR y también protege contra posible corrosión.

El cemento API clase G o H deberá usarse con: por lo menos 30% de flúor silicato, retardadores, reductores de fricción, y aditivos para controlar la pérdida de circulación y densidad de la lechada del cemento. El flúor silicato reacciona con el hidróxido de calcio para formar silicato de calcio el cual proporciona al cemento excelentes características de resistencia a la temperatura. Otros aditivos recomendables son: la perlita (1 pie¹/saco), que reduce la densidad de la lechada y la conductividad térmica del cemento; la bentonita gel, la cual mejora

la mezcla entre la perlita y la lechada de cemento; y la sal común (NaCl), ésta reduce la viscosidad de la lechada, mejora la cementación con las arenas bentoníticas y lutitas, y puede prevenir de derrumbes al pozo.

III.3 YACIMIENTO

III.3.1 TIPO DE TERMINACION

El tipo de terminación de un pozo para la inyección de vapor debe ser diseñada para facilitar y distribuir uniformemente el flujo del fluido a la formación; y al mismo tiempo mantener un medio de retención de arenas hacia la boca del pozo. Una técnica de términación consiste en colocar un paquete de grava en una TR corta con perforaciones (alrededor de 6 disparos por metro). El tamaño de las perforaciones y el diámetro de los granos de grava son importantes para el control de la arena. Saucier⁽³⁾, recomienda que la relación del tamaño medio del grano del paquete al tamaño medio del grano de la formación debe estar entre 5 y 6. Las perforaciones de la TR corta (linner) deberán ser de un tamaño que puedan retener el paquete de grava. La Fig. 3.2 muestra una terminación típica para procesos de inyección de vapor.

III.3.2 ESPESOR DEL INTERVALO PRODUCTOR

En las operaciones de inyección de vapor el espesor del intervalo productor deberá ser mayor de 50 pies, con el objeto de no perder mucho calor hacia las formaciones advacentes. Algunas veces es recomendable separar los intervalos productores, por ejemplo, cuando dos arcnas están a diferente presión. En pruebas piloto usualmente se selecciona el intervalo o se restringe a una cierta porción del intervalo total.

CAPITULO IV

PERDIDAS DE CALOR EN EL SISTEMA DE INVECCION

En los procesos de inyección de vapor las variables a las que se debe prestar mayor importancia son la temperatura en la tubería de revestimiento y las pérdidas de calor a lo largo de todo el sistema de inyección.

La estimación de los cambios de temperatura, a los que la tubería de revestimiento estará sometida, facilita elegir su diseño apropiado. Evitando de esta manera altos esfuerzos térmicos que con seguridad provocarían fallas a las juntas y colapso al cuerpo de la tubería.

Las pérdidas de calor ocasionan una marcada disminución de la calidad del vapor, considerar sus efectos en un proceso de recuperación térmica, permitirá al ingeniero programar las condiciones desde el generador, para alcanzar la formación productora con un vapor con las propiedades deseadas.

El flujo de las pérdidas de calor, que se supone en régimen permanente, es directamente proporcional a la diferencia de temperatura entre el fluido de inyección y el ambiente (atmósfera o formación) y a la longitud de la tubería, e inversamente proporcional a la resistencia térmica total del sistema.

La proporción con que el calor se transfiere a la formación se determina mediante el coeficiente total de transferencia de calor, el cual es la suma de todas las resistencias térmicas específicas del sistema. El aislante, el cemento y la tubería misma tienen una resistencia térmica que está en función de la conductividad térmica y geometría del material.

La pérdida de calor por unidad de tiempo se puede calcular con la siguiente ecuación:

 $Q = U_{\mu}A_{\mu}\Delta T$

(1)
donde :

Q = Pérdida de calor, Btu/hr

U_{ir} = Coeficiente total de transferencia de calor, basado en el área externa de la tubería, Btu/hr-pic²-°l²

 $A_{\mu} = Area ext. de la tubería, pie²$

 $\Delta T = Differencia de temperatura fluido-ambiente, °F$

De acuerdo a la ley de Fourier⁽¹⁴⁾ la cantidad de calor que fluye a través de un cuerpo es directamente proporcional al gradiente de temperatura en el medio. Donde el factor de proporcionalidad se define como la conductividad térmica del medio, K. Para un sistema radial:

$$Q = -2\pi r K \frac{\delta T}{\delta r} \Delta L \tag{2}$$

IV.1. PERDIDAS DE CALOR EN LINEAS SUPERFICIALES

Aunque las primeras pérdidas de calor ocurren en el generador de vapor mismo, éstas se toman en cuenta en la eficiencia térmica de la unidad. Para nuestro propósito la transferencia de calor se inicia en las lineas de conducción superficial, desde el generador de vapor a la cabeza del pozo. Todas las condiciones ambientales tienen efecto en los mecanismos de transferencia y deberán ser consideradas en el diseño del sistema de invección.

IV.1.1 COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR

Integrando la Ec. 2 se obtienen las ecuaciones que permiten calcular la cantidad de calor transferido por conducción en la linea y en el aislante:

En la línea:

$$Q = \frac{2\pi K_{nub} (T_n - T_{te}) \Delta L}{\ln \frac{r_u}{r_n}}$$

En el aislante:

$$Q = \frac{2\pi K_{ins}(T_{ie} - T_{ins})\Delta L}{\ln \frac{r_{ins}}{r_{ie}}}$$

Hacia la atmósfera, cuando es el caso de lineas instaladas al aire libre, la transferencia de calor es por convección forzada (fuerza del viento) y por radiación, la cantidad de calor por estos dos mecanismos se expresa con la siguiente ecuación:

$$Q=2\pi r_{is}(h_c-h_s)(T_{ins}-T_c)\Delta L$$

La diferencia total de temperatura entre el fluido y el ambiente es la suma de las diferencias de temperatura en cada uno de los elementos interpuestos entre el fluido y la atmósfera, es decir:

$$(T_{f} - T_{a}) = (T_{f} - T_{i}) + (T_{i} - T_{i}) + (T_{i} - T_{a})$$

(6)

(5)

(4)

Despejando las ΔT 's de las Ecs. 1 y 3, sustituyendo en (6) y suponiendo $T_f = T_u$ se tiene la Ec. 7 que representa el coeficiente total de transferencia de calor:

$$U_{ts} = \left[\frac{r_{ts}}{K_{tub}} \ln \frac{r_{ts}}{r_{ts}} + \frac{1}{h_c + h_r}\right]^{-1} \tag{7}$$

En forma similar, para un sistema con protección térmica:

$$U_{\mu} = \left[\frac{r_{\mu}}{K_{\mu\nu}b}\frac{1}{r_{\mu}} + \frac{r_{\mu}}{K_{\mu\sigma}}\frac{1}{r_{\mu}} + \frac{r_{\mu}}{K_{\mu\sigma}}\frac{1}{r_{\mu}} + \frac{r_{\mu}}{K_{\mu\sigma}}\frac{1}{h_{\mu}+h_{r}}\right]^{-1}$$
(8)

Los valores de h_c y h_r se pueden determinar de las siguientes correlaciones propuestas por White⁰⁰.

$$h_r = \frac{\sigma e(T_s^4 - T_a^4)}{T_s - T_a} \tag{9}$$

(10)

(11)

(12)

$$h_c = .24 \frac{K}{D_i} \left[\frac{D_i V \rho}{\mu} \right]^{-6}$$

 $T_s = T_a + \Delta T_s$

$$\Delta T_{s} = (T_{f} - T_{a}) [\frac{\frac{1}{r_{a}(h_{c} - h_{r})}}{\frac{r_{m} - r_{tr}}{K_{m}r_{tn}} + \frac{1}{r_{a}(h_{c} + h_{r})}}]$$

donde:

El subíndice m se refiere al medio (tubería o al aislante).

Para determinar U_k se sigue un procedimiento iterativo:

- 1 Suponer un valor de (he + h,)
- 2 Calcular la caida total de temperatura entre el fluido y el ambiente, Ec. 12

(13)

3 Estimar T, mediante Ec.11

4 Calcular h, (Ec. 9)

5 Calcular h, (Ec. 10)

- 6 Comparar el nuevo $(h_e + h_r)$ con $(h_e + h_r)$ supuesto, si se cumple una tolerancia, el procedimiento termina y se realiza el paso 7. De lo contrario se toma el nuevo valor de los coeficientes y se repite el procedimiento desde el paso 2.
- 7 Se calcula el coeficiente total de transferencia de calor, U_u con la ecuación 7 o 8.

IV.1.2 PERDIDA TOTAL DE CALOR EN TUBERIAS AEREAS

La pérdida total de calor se calcula ahora con la Ec. 1. Con lo cual se infiere la calidad del vapor en la cabeza del pozo (Calor total generado - Calor total perdido). Calor generado:

Calor en la cabeza dei pozo:

$$Q_o = Q_{gen} - Q_{per}$$

Entaipía del vapor húmedo en la cabeza del pozo:

$$H_g = \frac{Q_o}{i_v}$$
(16)

Dado que la presión de inyección se mantiene prácticamente invariable en líneas superficiales, la calidad del vapor en la cabeza del pozo, se puede calcular de la siguiente ecuación:

$$X = \frac{H_g - H_f}{H_{ft}}$$
(17)

Donde H_f y H_{fr} se leen de tablas de vapor a la presión de inyección.

IV.1.3. PERDIDA TOTAL DE CALOR EN TUBERIAS ENTERRADAS

Para líneas enterradas el flujo radial de calor se puede calcular con la ecuación de Ramey⁽¹⁹⁾ Ec. 18, o con la ecuación 20⁽²¹⁾, la cual toma en cuenta la profundida I, a la que esta enterrada la línea.

$$Q = \frac{2\pi K_e (T_u - T_e) \Delta Z}{f(t)}$$

(18)

(15)

$$f(t) = \ln \frac{2\sqrt{\alpha t}}{r_{nub}} - 0.29$$

Debido a que el flujo de calor en la formación varía con el tiempo, f(t) es la función transitoria de conducción de calor (Ec. 19) expresada para tiempos mayores de 7 días. Al principio del proceso de inyección de vapor se tienen grandes pérdidas de calor, posteriormente estas pérdidas decrecen con el tiempo, en tanto se incrementa la resistencia de la formación al flujo térmico.

$$Q = 2\pi K_{*} (T_{H} - T_{*}) / \ln \frac{1.08 D_{k}}{D_{*}}$$
(20)

donde:

 $D_h = 2 \times Profundidad de la zanja en la que está enterrada la línea - D_t$

D₁ = Diámetro de la línea

IV.2 PERDIDAS DE CALOR EN EL APAREJO DE INYECCION

IV.2.1 COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR

Los mecanismos de transferencia de calor son por conducción a través de la formación, del cemento, del aislante y de las paredes de la tubería. Por convección natural desde fluido a la cara interna de la tubería. Y por conducción, radiación y convección en el espacio anular. Particularizando la ecuación I para el caso del flujo de vapor en la tubería vertical de inyección, se tiene:

$$Q=2\pi r_{\mu}U_{\mu}(T_{f}-T_{h})\Delta L$$

Donde:

 U_{ie} = Coeficiente total de transferencia de calor referido al exterior de la tubería de producción (T_cT_b) = Diferencia de temperatura entre el fluido y la formación

 $2\pi r_{\mu}\Delta L =$ área externa de la tubería de producción

Integrando (2) para determinar la cantidad de calor a través de las tuberías, del aislante y del cemento se obtienen las siguentes ecuaciones en donde Q tiene el mismo valor, suponiendo que el régimen de flujo es permanente.

39

en la TP

$$Q = \frac{2\pi K_{tub}(T_{ti} - T_{tc})}{\ln \frac{r_{tc}}{r_{c}}} \Delta L$$

en el aislante

$$Q = \frac{2\pi K_{ins}(T_{is} - T_{ins})}{\ln \frac{r_{ins}}{r_{is}}} \Delta L$$

en la TR

$$Q = \frac{2\pi K_{cas}(T_{ci} - T_{ci})}{\ln \frac{r_{ci}}{r_{ci}}} \Delta I$$

(22)

(23)

(24)

en el cemento

$$Q = \frac{2\pi K_{cem}(T_{ce} - T_k)}{\ln \frac{r_k}{r_{ce}}} \Delta L$$

A través del espacio anular el flujo total de calor (Ec. 26) es la suma del calor transferido por cada uno de los tres mecanismos. Definiendo la cantidad de calor en términos de coeficientes parciales de transferencia de calor, h_e es el coeficiente por convección y conducción y h, el coeficiente por radiación, basados en la superficie externa de la tubería de inyección y en la diferencia de temperatura (T_{te} - T_{ci}); o en la superficie externa del aislante y en (T_{m} - T_{ci}), para un sistema con protección térmica.

$$Q=2\pi r_{\mu}(h_{e}+h_{e})(T_{\mu}-T_{e})\Delta L$$

Por otro lado, puesto que la diferencia de temperatura entre el fluido y la formación es igual a la suma de las diferencias de temperatura de cada uno de los elementos interpuestos entre el fluido y la formación, es decir:

$$T_{j} - T_{h} = (T_{j} - T_{h}) + (T_{i_{t}} - T_{i_{t}}) + (T_{i_{t}} - T_{i_{t}}) + (T_{i_{t}} - T_{c_{t}}) + (T_{c_{t}} - T_{c_{t}}) + (T_{c_{t}} - T_{h})$$
(27)

Despejando las ΔT 's de las ceuaciones 2 y de la 22 a la 26 y sustituyendo en (27) se tienen (28) y (29), tomando en cuenta que la temperatura del fluido y la del interior de la tubería es la misma ($T_t = T_u$) y que debido, a la alta conductividad térmica del acero se suponen $T_{ii} = T_{ic}$ y $T_{ir} = T_{cr}$.

(25)

(26)

$$U_{ie} = \left[\frac{1}{h_c + h_r} + \frac{r_{ie}}{K_{cem}} \ln \frac{r_k}{r_{ce}}\right]^{-1}$$

Para un sistema con aislante:

$$U_{tr} = \left[\frac{r_{tr}}{K_{tot}} \frac{m_{box}}{r_{tr}} + \frac{r_{tr}}{r_{tot}} \frac{n}{h_{tr}} + \frac{r_{tr}}{K_{tree}} \frac{n}{r_{tr}} \frac{r_{h}}{r_{tree}} \right]^{-1}$$
(29)

Donde los coeficientes h_t ' y h_c ' están referidos a la superficie externa del aislante y a la diferencia de temperatura (T_{int} - T_{ci}) y pueden evaluarse de la sigueinte manera: El flujo de calor exclusivamente por radiación en el espacio anular esta dado por (30):

$$Q_r = 2\pi r_u h_r (T_u - T_c) \Delta L$$

(30)

(31)

(32)

y por la ley de Stefan-Boltzman⁽¹⁴⁾:

$$Q_r = 2\pi r_\mu \sigma F_m (T_m^4 - T_c^4) \Delta L$$

Igualando (30) y (31) y factorizando se tiene:

$$h_{r} = \sigma F_{ici} (T_{ic}^{2} + T_{ci}^{2}) (T_{ic} + T_{ci})$$

Donde:

 $\sigma = 1.713 \text{ X } 10^{-9}$, constante de Stefan-Boltzman, Btu/ft²-hr-°R

 F_{ki} es un factor de emisividad que representa la fracción de radiación emitida por la cara externa de la TP e interceptada por la cara interna de la TR, este factor geométrico se puede calcular con la Ec. 33

$$F_{ucl} = \left[\frac{1}{e_{u}} + \frac{F_{uc}(-1)}{F_{cl}(-1)}\right]^{-1}$$
(33)

La transferencia de calor por conducción y conveccción natural en el espacio anular esta dada por la Ec. 34

$$Q_{c} = \frac{2\pi K_{bc}(T_{w} - T_{c})}{\ln \frac{r_{cl}}{r_{bc}}}$$
(34)

Donde:

El coeficiente por conducción y convección estaría dado por:

$$h_{e^{u}} \frac{K_{hc}}{r_{u} \ln \frac{r_{ce}}{r_{te}}}$$
(35)

 K_{he} , conductividad térmica equivalente del fluido en el espacio anular, Btu/hr-ft-^eF. La Ec. 36 es una correlación en función del número de Grashof⁽²⁹⁾ y el número de Prandtl⁽²⁹⁾ calculados a partir de (37) y (38) respectivamente.

$$K_{ha} = K_{ha} (.049 (Gr \times Pr)^{333} Pr^{.074})$$

(36)

(37)

 $Gr = \frac{(r_{cl} - r_{u})^3 g \rho_{an} \beta (T_{u} - T_{cl})}{\mu^2}$

$$Pr = \frac{C_{an}\mu_{an}}{K_{ha}}$$

(38)

Kha es la conductividad térmica del fluido en es espacio anular.

El flujo radial de calor en la formación está definido por las ecuaciones de Ramey⁽¹⁹⁾:

$$Q - \frac{2\pi K_{\star}(T_{\star} - T_{\star})}{f(t)} \Delta Z$$
(39)

(40)

$$f(t) = \ln \frac{2\sqrt{\alpha t}}{r_h} = 0.29$$

Analogamente al flujo de vapor en líneas superficiales, el procedimiento para calcular el coeficiente total de transferencia de calor implica un proceso iterativo. Sin embargo, para líneas verticales, deberá considerarse la variación de la temperatura tanto en el fluido como en la formación con respecto a la profundidad. Las temperaturas T_{inv} , T_{ci} y T_{b} se calculan con las siguientes ecuaciones:

Igualando (21) y (22) para un sistema con aislante (Γ_f -T_{ins}):

$$T_{i\alpha\sigma} = T_{i\alpha} - \frac{r_{i\alpha}U_{i\alpha}}{K_{i\alpha\sigma}} \ln \frac{r_{i\alpha\sigma}}{r_{i\alpha}} (T_{i\alpha} - T_{i\lambda})$$
(41)

De las ecuaciones 21, 23 y 24, despreciando la resistencia térmica de la tubería debido a su alta conductividad térmica:

$$T_{ei} = T_{h} + \frac{r_{u}U_{e}}{K_{cem}} \ln \frac{r_{h}}{r_{ee}} (T_{\nu} - T_{h})$$

$$\tag{42}$$

Igualando las Ecs. 21 y 39, haciendo $\Delta Z = h$, se tiene la sigueinte ecuación:

IV.2.2 VARIACION DE LA PRESION Y LA CALIDAD DEL VAPOR CON RESPECTO A LA PROFUNDIDAD

La transferencia de calor en el pozo está en función de la diferencia de temperatura fluidoformación, pero, ambas temperaturas varían con respecto a la profundidad del pozo. La temperatura del fluido puede determinarse por correlaciones con la presión y calidad del mismo. La de la formación con un gradiente geotérmico.

Las Ecs. 44 y 45 definen el comportamiento termodinámico del vapor dentro de la tuberfa, en cualquier punto entre la boca y el fondo del pozo^(13,17).

 $\frac{\frac{\delta Q}{\delta Z} + \frac{\frac{\delta H}{\delta X}}{\frac{\delta V}{\delta Z}}(\frac{fV}{2D_{i}} - \frac{g}{G^{2}V}) + \frac{fG^{2}V^{2}}{2JgD_{i}}}{\frac{\delta H}{\delta Z}} - \frac{\frac{\delta H}{\delta X}}{\frac{\delta H}{\delta Y} - \frac{V}{J} - \frac{\frac{\delta H}{\delta X}}{\frac{\delta V}{\delta Y}}(\frac{g}{G^{2}} + \frac{\delta V}{\delta P})}$

(44)

$$\frac{\delta Z}{\delta Z} = \frac{\frac{\delta Q}{\delta Z}(1+\gamma) + \frac{1}{J}(\gamma + \frac{fG^2 V^2}{2gD_i})}{\frac{\delta H}{\delta X}(1+\gamma) + \gamma \frac{G^2 V}{Jg} \frac{\delta V}{\delta X}}$$

Donde:

$$I = \frac{\frac{V}{J} - \frac{\delta H}{\delta P}}{\frac{\delta H}{\delta P} + \frac{G^2 V}{Jg} \frac{\delta V}{\delta P}}$$

El desarrollo de estas ecuaciones y su método de solución (11)se encuentran en el apendice B.

A) VARIACION DEL CALOR PERDIDO POR UNIDAD DE MASA CON LA PROFUNDIDAD

de las Ecs. 39 y 43, se tiene:

$$\frac{\delta Q}{\delta Z} = \frac{2\pi r_{id} U_{id}}{Q i} [115.1P225 - \frac{K_{hc} T_{e} + 115.1P225 r_{id} U_{id} f(i)}{K_{hc} + r_{id} U_{id} f(i)}]$$
(46)

La temperatura de la formación, T.:

$$T_{e}=T_{s}+aZ$$

donde a corresponde al gradiente geotérmico de la región.

45

(47)

B) VARIACION DEL VOLUMEN ESPECIFICO CON RESPECTO A LA PRESION Y A LA CALIDAD

El volumen específico del vapor húmedo V, es la suma de los volumenes del vapor seco y del líquido suspendido:

$$V = \frac{X}{100} V_{s} + (1 - \frac{X}{100}) V_{w}$$

De correlaciones de Farouq Ali^(9,19), que proporcionan buenos valores para un rango de presiones entre 15 y 1000 psia.

V_=363.9P-.9588

 $V_{\rm m}$ =.01587+.000086 $P^{.225}$ +.0002 $P^{.45}$

sustituyendo las Ecs. 49 y 50 en 48, se tiene:

$$V = \frac{X}{100} (363.9P^{-9588}) + (1 - \frac{X}{100}) (.01587 + .000086P^{-225} + .0002P^{.45})$$

Derivando (51) con respecto a P y a X

 $\frac{\delta V}{\delta P} = \left[\frac{3.48907X}{P^{1.9588}} + (1 - \frac{X}{100})(.01587 + \frac{000019}{P^{.775}} + \frac{00009}{P^{.55}})\right]/144$ (52)

$$\frac{\delta V}{\delta X} = 3.639 P^{-9588} - .00000086 P^{-225} - .00000 P^{-45}$$

(53)

(48)

(49)

(50)

C) VARIACION DE LA ENTALPIA CON RESPECTO A LA PRESION Y A LA CALIDAD

Entalía del vapor húmedo:

$$H=h+\frac{X}{100}L$$

Entalpía del agua:

h=91P.2574

Calor latente de vaporización:

L=1318P.08774

sustituyendo (55) y (56) en (54), se tiene:

 $H=91P^{-2574}+\frac{X}{100}1318P^{-08774}$

derivando la Ec. 57 con respecto a la presión y a la calidad:

 $\frac{\delta H}{\delta P} = (23.4234 P^{.7426} - 1.1564 X P^{-1.08774})/144$

 $\frac{\delta H}{\delta X} = 13.18P^{-.08774}$

(59)

(58)

. .

(56)

(54)

(55)

(57)

D) DETERMINACION DEL COEFICIENTE DE FRICCION

El factor de frieción se lee del diagrama de Moody⁽¹²⁾ (Fig. A.7) con los valores del número de Reynolds y la rugosidad relativa de la tubería, los cuales se calculan con las siguientes ecuaciones:

$$Re = 6.317 \frac{Q_i}{\mu_{wd} D_i} \tag{60}$$

$$Rug.Rel. = \frac{0.0018}{D_i}$$
(61)

.0018 es la rugosidad relativa de la tubería comercial de acero de carbono. Por la correlación de Farouq Ali⁽¹⁹⁾, la viscosidad del vapor húmedo:

$$\mu_{wa} = \frac{X}{100} \mu_s + (1 - \frac{X}{100}) \mu_w \tag{62}$$

La viscosidad del agua y la del vapor seco se calculan mediante la ecuación de Hawkins y la de Kestin y Richardson⁽²⁷⁾ respectivamente.

$$\mu_{w} = \frac{2.185}{.04012T + .000005147T^2 - 1}$$
(63)

$$\mu_{g} = [82.2516 + .17815T + .0000659T^{2} - \rho_{g}(31.45 - .05523T)] \times 10^{-4}$$

(64)

La densidad del vapor se calcula con la correlación propuesta por Farouq Ali:

p_=.00274554278P.9588

(65)

IV.2.3 PERDIDA TOTAL DE CALOR

La pérdida total de calor se puede determinar ahora con la Ec. 66 en función de la presión y la calidad del vapor, en un punto a la profundidad Z.

$$Q = 91P^{2574} + \frac{13.18X}{P^{05774}} - 91P_{by}^{2574} - \frac{13.18X_{by}}{P_{by}^{005774}} - \frac{1}{J} + \frac{G^2}{2gJ}(V_0 z^2 - V_0 c.s.^2)$$
(66)

o con la ecuación 1, tomando el coeficiente total de transferencia de calor.

IV.3 PERDIDAS DE CALOR HACIA LAS FORMACIONES ADYACENTES

La mayor cantidad de calor que se pierde en cualquier proceso de recuperación térmica es a los estratos adyacentes a la formación productora. Aunque la conductividad térmica de la tierra es baja, las áreas involucradas son grandes.

Para estimar el calor perdido a los estratos superior e inferior a la formación productora, los modelos matemáticos de Marx-Langenheim y Rubenshtein^(16,22) hacen las mismas suposiciones: la base y el casquete del yacimiento son geométricamente iguales , hidraúlica y térmicamente homogéneos , isotrópicos y que se puede despreciar la transferencia de calor radial. Además, suponen que únicamente el banco de vapor desplaza los fluidos del yacimiento y que los fluidos son incompresibles.

El mecanismo de transferencia de calor es por conducción transitoria.

Haciendo un balance de calor, para determinar el volumen calentado por una cantidad de vapor dada, se tiene el calor hacia los estratos y el calor utilizado en la formación.

Calor inyectado = Calor perdido - Calor utilizado

El calor perdido Q, se puede calcular con la Ec. 67

$$Q=2\int_{0}^{A_{in}}\frac{K\Delta T}{\sqrt{\pi at}}dA$$

(67)

donde Am es el área calentada al tiempo, t.

El calor perdido al tiempo u(u,t) correspodiente al elemento de área dA sería:

$$\frac{K\Delta T}{\sqrt{\pi\alpha(t-u)}}$$

Dado que el área que se calienta está función del tiempo, se puede escribir:

dA =
$$\frac{dA}{du}du$$

Entonces el calor total perdido al tiempo t es:

$$Q_L = 2 \int_0^{t} \frac{K \Delta T}{\sqrt{\pi \alpha (t-u)}} \frac{dA}{du} du$$

El calor requerido para calentar la formación se determina por la siguiente ecuación:

(68)

$$Q_r = h \frac{dA}{dt} M \Delta T$$

donde: h = espesor de la formación, pies

M = Capacidad calorífica de la formación (Ec. A. 18)

Btu/pie3-°F

sumando ambas partes:

$$Q=2\int_{0}^{t} \frac{K\Delta T}{\sqrt{\pi\alpha(t-u)}} \frac{dA}{du} du + Mh\Delta T \frac{dA}{dt}$$
(70)

(69

Resolviendo esta ecuación por la transformada de Laplace para $A_{i0i} = 0$, se tiene la siguiente⁽⁰⁾.

$$A_{(0)} = \left[\frac{QMh\alpha}{4K^2\Delta T}\right] \left[e^{x^2} erfc(x) + 2\frac{x}{\sqrt{\pi}} - 1\right]$$
(71)

$$x = \left[2 - \frac{k}{Mh\sqrt{\alpha}}\right] t^{1/2}$$
(72)

La Fig. A.5 muestra la gráfica de la función error dada por Marx-Langenheim⁽¹⁶⁾. Ramey⁽⁰⁾⁾ definió el tiempo adimensional para esta presentación, elevando a la segunda potencia x, y haciendo $\alpha = K^2/M^2$

$$t_d = 4\alpha \frac{t}{h^2}$$
(73)

Ramey graficó la pérdida de calor hacia los estratos adyacentes como una función del calor total invectado, Fig. A.8 basado en el modelo de Rubenshtein⁽²³⁾ El mismo modelo de Marx-Langenheim se puede usar para estimar la producción de aceite en un proyecto de empuje por vapor (Ec. 74).

(74)

 $V_0 = 4.273 [\frac{i_{y} \phi(S_o - S_{or})}{M \Delta T}] e^{x^2} erfc(x)$

IV.4 PROGRAMA DE COMPUTO

El objetivo principal del programa de cómputo de este modelo matemático es estimar la cantidad de calor que se pierde desde la salida de vapor del generador hasta los estratos adyacentes a la forinación productora y cuantificar el aceite desplazado en la formación en el proceso de inyección de vapor.

El programa está divido en tres partes, seis subtrutinas y tres funciones. Está codificado en BASIC, se utilizó OB 4.5, en una computadora AT-386.

PROGRAMA FUENTE

- A) La primera parte realiza las operaciones para determinar el coeficiente total de transferencia de calor en líneas superficiales aéreas con y sin protección térmica, calcula la cantidad de calor perdido para ese diseño y también, para el caso de líneas enterradas⁽¹⁴⁾ e imprime resultados.
- B) Posteriormente con los resultados de la primera parte (valores iniciales) simula la variación de la presión y la calidad del vapor en el aparejo de líneas verticales. Determina el coeficiente total de transferencia de calor^{Q+y} y por consiguiente: la pérdida total de calor para cada intervalo de longitud del pozo. El sistema puede ser aislado o no, con protección térmica. Imprime resultados.

C) La parte final del programa estima el porcentaje de calor perdido a los estratos adyacentes a la formación productora por medio de la solución planteada por Rubenshtein⁽²²⁾; determina la cantidad de aceite desplazado en la formación con la ecuación de Marx-Langenheim⁽¹⁶⁾. Imprime resultados.

SUBRRUTINAS

- Sub. Entalpía. Esta subtrutina, para una presión dada, toma 4 parejas de valores presión-entalpía de un conjunto de datos leidos de tablas de vapor para presiones de saturación en un rango de 500 a 1500 lb/pg². Entrega un valor de entalpía interpolado.
- Sub. Ctransfer. Subtrutina que utiliza un proceso iterativo para obtener por ensaye y error el coeficiente total de transferencia de calor para los intervalos de profundidad del sitema de tuberías verticales.
- Sub. Cfricción. Con los valores del número de Reynolds y de rugosidad relativa de la tubería para el sistema vertical de inyección, esta subtrutina entrega un coeficiente de fricción interpolado de una serie de valores leídos del diagrama de Moody⁽¹²⁾.
- Sub. Rubenshtein. De un arreglo de valores leídos de la gráfica del modelo de Rubenshtein, esta subrrutina obtiene por interpolación el porcentaje de calor perdido en los estratos adyacentes, a partir de las características del yacintiento.
- Sub. Erfex. Entrega un valor interpolado de datos de la función error para valores calculados con el modélo de Marx-Langenhein.
- Sub. Spline. Por medio de esta subtrutina se determinan los coeficientes de un polinomio cúbico para un número N de parejas de valores⁽¹⁾.
- Función Seval. Interpola para un valor dado, con los coeficientes del polinomio cúbico obtenidos por Splines.

Funciones Derpz y Derxz. Evaluan las funciones derivadas de la presión y la calidad del vapor respectivamente.

COMENTARIOS

En este trabajo se hicieron las siguientes consideraciones:

 Tiempos de inyección del vapor mayores a 7 días. Por razones de que en la mayoría de los proyectos de inyección de vapor, incluso en la inyección cíclica, los periódos de inyección rebazan los siete días.

- Las propiedades térmicas de la tierra no varían con la profundidad.

 Se desprecia el coeficiente de transferencia de calor por convección en el fluido, por corresponder a la misma temperatura del fluido de inyección.

- Debido a la alta conductividad térmica del acero, las temperaturas en el exterior e interior de las tuberías se suponen iguales.

 Para determinar el coeficiente de fricción, los valores de rugosidad relativa de la tubería y el número de Reynolds corresponden a casos de flujo de vapor.

- Las propiedades del vapor (entalpías) obtenidas de tablas fueron leídas para un rango de presión de 500 a 1500 lb/pg-.

 Los espesores de aislante térmico en las tuberías de inyección del vapor corresponden a los nominales⁽³⁾. DECLARE SUB CTRANSFER (A. B. Ute(), rte, rim(), rci, rce, rh, TV(), Tins(), Te(), Te(), ft, Ke, Kins, Kcm, Kha, Ete, Eci, Eins, sig DECLARC SUB CERECCION (B, DHRath, DAugt), DEF(), TV(), P(), X(), ett, OI, FF) DECLARE SUB SPLINE (N. XX(), Y(), B(), C(), D()) DECLARE FUNCTION SEVAL (N, Y, XX(), Y(), B(), C(), D()) DECLARE FUNCTION DERPZ (P, X, Z, VZ, rte, Gi, Gm, Te, Ke, U, ft, Je, g, FF) DECLARE FUNCTION DERX2 (P, X, Z, VI, rte, Gi, Gm, Te, Ke, U, ft, Je, g, FF) DECLARE SUB ERFCK (fs. Dfs(), Dfrck(), erfc) DECLARE SUS RUBENSHIEIN (igtd, Digtd(), Dheat(), heat) DECLARE SUB ENTALPIA (PI, OP(), Dhf(), Dhfg(), hf, hfg) CL 5 PROGRAMA PARA ESTIMAR LAS PERDIDAS DE CALOR EN UN SISTEMA DE INVECCION DE VAPOR EN PROCESOS DE RECUPERACION TERNICA ESTE PROGRAMA CONSTA SE LAS SIGUIENTES PARTES: 1. ESTIMA LAS PERDIDAS DE CALOR EN LAS LINEAS DE CONDUCCIÓN SUPERFICIAL TANTO EN TUBERTAS AEREAS CON Y SIN PROTECCION TERNICA CONO EN TUBERTAS ENTERRADAS 2. SIMULA LA VARIACION DE LA PRESION Y LA CALIDAD DEL VAPOR Y ESTINA LA PERDIDA PERDIDA TOTAL DE CALOR EN EL SISTEMA VERTICAL DE INVECCION 3. CALCULA LA PERDIDA FOTAL DE CALOR HACÍA LA FORMACIÓN ADVACENTE Y ESTIMA LA CANTIDAD DE ACEITE DESPLAZABLE EN LA FORMACION PRODUCTORA 01# rins(30), drins(30), Tci(30), Tv(30), Tins(30), Te(30), Vz(30), Q(30), Ute(30) DIM DWRe(27), DRug(5), DFF(27, 5), xi(10) DIM P(30), X(30), 2(30), FP(30), (x(30), PP(30), XP(30), PC(30), XC(30) DIM Digtd(13), Dheat(13), Dix(27), Dfrcx(27), Gad(10), Gnet(10), Vo(10) DIM DP(36), Dhf(36), Dhfg(36), Ts(10), Uto(10), Guh(10), Gsf(10) PRINT " ENTRADA DE DATOS GENERALES DEL SISTEMA:" potut IMPUT " Gasto de inveccián del vapor (10/hr) -; 9i INPUT " Timmo de invessión (déas) ** 1 1MPUT " Longitud de Las lineas en la superficie (pies) 8- 13 INPUT " Longitud de la tuborna de produccián (pies) *: 12 INPUT " Calor especarico del fluido en el espacio enular (Bru/1b-WF) "; Can INPUT * Calor expectition del agua (Btu/1b-%F) *; Cw INPUT " Calor expectico del aire (Bru/lb-SF) Nº Ca INFUT * Densidad del fluido en el espacio anular (10/pie'3) */ thean INPUT " Viscosidad del fluido en el espacio anular (ib/pie-hr) -INFUT " Viscosidad del aire (1b/pie-hr) **: **** INPUT " Velocidad del aire (millas/hr) *: Va INPUT * Espesor det estrato productor (pies) No Is INPUT " Saturacián inicial de aceite (X) ": Soi INPUT * Saturacián residual de aceite (%) "; Sor INPUT " Porosidad del estrato productor (1) "; por INPUT " Capacidad caloràfica de la tierra (Btu/pie'3-%F) IMPUT * Difusividad traics de la tierre (pie 2/hr) "; slpha 61.5 PRINT " DIAMETROS (Pg)" PRINT INPUT * Exterior de la tinea superficial *; dse INPUT * Interior de la Linea superficial *: dsi INPUT " Esterior de la tuberta de producción "; dte INPUT " Interior de la tuberão de producción *; dti INPUT * Exterior de la tuberña de revestimiento ; dce TNPUT * Interior de la tuberÀs de revestimiento ": dcl 58

```
INPUT * Pote
                                                                       *2 0
PRINT
PRINT " SELECCIONE GRADO DE TUBERIA"
PRINT
PRINT * 1) F-25
                   2) #+40
                              31 4-55
                                         4) 4-80
                                                    5) P-110*
PAINT
INPUT = TEECLE EL MUMERO 1, 2, 3, 4 o 5
                                                                       "; OP
PRINT
PRINT * CONDUCTIVIDADES TERNICAS (Btu/hr-pla-WF)*
PRINT
IMPUT * Cemento
                                                                       ": Kcom
INPUT . Alsiante
                                                                       "; Kins
IMPUT * Fluido en el especio anular
                                                                       "; Kha
INPUT * Tierra
                                                                       "; Ke
INPUT " Aire
                                                                       ": Ka
tiefut * Tuberåe
                                                                       "r. Etub
CL S
PRINT * ENISIVIDADES TERMICAS (adimensional)*
PRINT
 IMPUT . Exterior de La tuberão de producción
                                                                       ": Ete
 INPUT * Interior de la tuberla de revestimiento
                                                                       ": Eci
IMPUT = Aislante
                                                                       ") Eins
PRINT
PRINT * CONDICTONES INICIALES*
 PRINT
 1MPUT * Temperatura ambiente (%F)
                                                                       *: 1a
 INPUT " Temperature en la superficie del suelo (%F)
                                                                       4. TS
 INPUT * Presián del vapor de inveccián (15/po*2)
                                                                       . ...
 IMPUT * Calidad del vapor de inveccián (%)
                                                                       *z xi
 IMPUT * Longitud de Los intervalos (pies)
                                                                        "; deltaz
z(0) = 0
 ESPESORES MONINALES DE AISLANTE (Pg)
 drins(1) = .125
 drim(2) = .1875
 drins(3) = .25
 drins(4) = .375
 drins(5) = .5
 drins(6) = .75
 dr(m(7) = 1
 drims(8) = 1.5
 dr (ns(9) = 2
 RADIOS (Pies)
 rai = dsi / 2 / 12
 ras e das / 2 / 12
 rti = dti / 2 / 12
 rte # dte / 2 / 12
 rei = dci / 2 / 12
 rce = dce / 2 / 12
 rh = dw / 2 / 12
 MUNERO DE INTERVLOS
 H2 = 12 / deitez
 CONSTANTES
 signe = 1.173E-09 * Constante de Stefan-Boltzmen (Btu/hr-pie*2-NR*4)
 g = 32.17
                   * Aceleracián de la gravedad (pie/seg*2)
 Grav = 4.17E+08
                   / Aceteracián de La gravedad (pie/hr*2)
 Je = 778
                   * Equivalente mec nico del calor (lb-pie/Btu)
```


-

** *

DATES DE PRESION DE SATURACION

DATA 500, 520, 540, 560, 580, 600, 620, 640, 660, 660, 700, 720, 740, 760, 780 DATA 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1050, 1100, 1150 DATA 1200, 1250, 1300, 1350, 1400, 1450, 1500

DATOS DE HT (CALOR SENSIBLE)

DATA 649,4,454,1,458,6,463,467,4,471,6,475,7,479,8,463,8,487,7,491,5,405,3,409,502,6,506,2 DATA 509,7,513,2,516,6,520,6,523,3,526,6,327,6,533,536,2,539,3,542,4,550,557,4,564,6 DATA 571,7,566,5356,4527,1,568,7,652,2,611,6

DATOS DE hfg (CAMBIO DE ENTALPIA)

DATA 735,750.1,745.4,740.8,736.1,731.6,727.2,722.7,718.3,714,709.7,705.4,701.2,607.1,692.9 DATA 685.9,664.8,660.8,676.8,672.8,662.8,664.9,661,657.1,653.3,669.4,639.9,630.4,621 DATA 611.7,602.4,502.3,545.74.5,765.5,55.3

DATOS DEL NUM. DE REYNOLDS

DATA 165,265,365,465,565,463,765,865,765 DATA 1065,2065,3065,4065,5065,4065,7065,8065,9065 DATA 16407, 26407, 36407, 46407, 56407, 76407, 86407, 96407

DATOS DE RUGDSIDAD RELATIVA

10

23

DATA .0002,.0004,.0006,.0008,.001

DATOS DEL COEFICIENTE DE FRICCION

DATA 0.01900.0.02000.0.02090.0.02140.0.02210 DATA 0.01710,0.01830,0.01920,0.02010,0.02110 DATA 0.01630,0.01780,0.01880,0.01980,0.02580 DATA 0.01590,0.01740,0.01840,0.01940,0.02040 DATA 0.01550.0.01710.0.01820.0.01920.0.02020 DATA 0.01520,0.01700,0.01810,0.01910,0.02015 DATA 0.01510.0.01690.0.01805.0.01905.0.02010 0ATA 0.01500, 0.01680, 0.01800, 0.01903, 0.02005 DATA 0.01490,0.01670,0.01795,0.01900,0.02000 DATA 0.01480,0.01660,0.01790,0.01895,0.01995 DATA 0.01430,0.01620,0.01780,0.01990,0.01980 DATA 0.01410,0.01610,0.01770,0.01860,0.01950 DATA 0.01405,0.01605,0.01760,0.01870,0.01950 DATA 0.01400,0.01500,0.01760,0.01870,0.01950 DATA 0.01398,0.01595,0.01760,0.01870,0.01950 DATA 0.01395,0.01595,0.01760,0.01870,0.01950 DATA 0.01390,0.01595,0.01760,0.01870,0.01950 DATA D.01385,0.01595,0.01760,0.01870,0.01950 DATA 0.01383,0.01595,0.01760,0.01870,0.01950 DATA 0.01380, 0.01595, 0.01760, 0.01870, 0.01950 DATA 0.01375,0.01595,0.01760,0.01870,0.01950 DATA 0.01370,0.01595,0.01760,0.01870,0.01950 DATA 0.01370,0.01595,0.01760,0.01870,8.01950 DATA 0.01370,0.01595,0.01760,0.01870,0.01950

DATA 0.01370,0.01595,0.01760,0.01870,0.01950 DATA C.01370,0.01595,0.01760,0.01870,0.01950 27 DATA 0.01370,0.01595,0.01760,0.01870,0.01950

DATOS DEL DIAGRAMA DEL MODELO DE RUBENSHTEIN

CATA -3,-2.5,-2,-1.5,-1,-.5,0,.5,1,1.5,2,2.5,3 DATA 2,3.07,4.615,7.384,11.538,21.538,34,51.538,69.230,81.38-,87.692,92.307,94.615

DATOS DE LA FUNCION ERROR DEL NODELO DE MARX-LANGENNEIM

DATA 0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1,1.25,1,5,1.75,2,2.25,2.5,3,3.5,4,4.5,5,6,7,8,9,10 DATA 1,.8%05,.0070,.7346,.6708,.6157,.5678,.5259,.4091,.4565,.4276,.3678,.3216,.2850 DATA .2554,.2311,.2108,.1700,.1535,.1570,.1225,.1107,.0928,.0798,.6099,.0623,.0561

ENTRADA DE DATOS DE ENTALPIA

FOR J = 1 TO 36 READ DP(1) KEXT I FOR L = 1 TO 36 READ Dhf(1) NEXT 1 FOR J = 1 TO 36 READ Dhfg(1) NEXT 1

ENTRADA DE DATOS PARA EL COEFICIENTE DE FRICCION

```
FOR | + 1 TO 27

READ DWRe(1)

HEXT I

FOR I = 1 TO 5

READ DRug(1)

HEXT I

FOR I = 1 TO 27

FOR J = 1 TO 27

FOR J = 1 TO 5

READ DFF(1, J)

HEXT J

HEXT J
```

```
ENTRACA DE DATOS DEL MODELO DE RUBENSHTEIN
```

```
FOR 1 = 1 TO 13

READ Digtd(1)

HEXT I

FOR 1 = 1 TO 13

READ Dheat(1)

HEXT 1
```

.

.

ENTRADA DE DATOS DEL MODELO DE MARX-LANGENHEIN

```
FOR 1 = 1 TO 27
READ Dfx(1)
HEXT 1
FOR 1 = 1 TO 27
READ Dfrcx(1)
HEXT 1
```

 PERDIDAS DE CALOR EN LAS LINEAS SUPERFICIALES DE INVECCION, DESDE LA SALIDA DEL VAPOR DEL GENERADOR NASTA EL ARBOL DE VALVULAS DEL POZO

6 ¹

A) TUBERIAS AEREAS

```
CALL ENTALPIACEI, CP(), Dhf(), Dhfg(), ht. hfg)
     CALOR TOTAL & LA SALIDA DEL GENERADOR DE VAPOR EN FUNCION DE LA
      CALIDAD Y PRESIDE DEL VAPOR
      Hg = hf + Xi / 100 * hfg
     Stot + Hg + G1
      1 * 0
      drins(0) = 0
     SE ADICIONA AISLANTE TERNICO A LA TUBERIA
1
      rins(1) = rse + drins(1) / 12
      u = 4
      PROCESO ITERATIVO PARA CALCULAR EL COEFICIENTE TOTAL DE TRANSFERENCIA
.
      DE CALOR. TUGERIA CON Y SIN PROTECCION TERMICA
     ٠DO
       Ua = U
        fact = 1 / (Us = rins(1))
        Tf = 115.1 * Pi ^ .225
        DTs = (Tf - Ts) * (fact / (LOG(rins(1) / rse) / Kins + fact))
        Ts(1) = Ts + D1s
        IF I = O THEM
                 E . Ete
                 ELSE
                 E = Eins
       FHD LF
        hr = 1.713E-09 * E * ((Ts(1) + 460) * 4 - (Ta + 460) * 4) ; (Ts(1) - Ta)
        Tev = (Ts(1) + To) / 2
        rhos = 39.734 / (Ta + 460)
        hc = .24 * Ks / (2 * rins(1)) * (2 * rins(1) * 5280 * Va * rhos / mus) * .6
        U = hr + hc
        DIF = ABS(U - Us)
      LOOP UNTIL DIF < .001
      IF 1 . D THEN
        Uto(1) = (rse / Ktub * LOG(rse / rsi) + 1 / (hc + hr)) 1 -1
        ELSE
        Uto(1) = (ree / Ktub * LOG(ree / rei) + ree / Kins * LOG(rins(1) / ree) + ree / (rins(1) * (hc + hr))) * -)
      EKD IF
      CALOR PERDIDD & LO LARGO DE TODA LA LINEA SUPERFICIAL
      Oper(1) = 2 * 3,1616 * rse * Utp(1) * (Tf + Ta) * .*
      CALOR EN LA CASEZA DEL POZO (ARBOL DE VALVULAS)
      Owh(1) = Otot - Oper(1)
      ENTALPTA DEL VAPOR HUMEDO EN LA CABEZA DEL POZO
       Hg(1) = 0+h(1) / 0i
      CALIDAD DEL VAPOR EN LA CABEZO DEL POZO
      Xi(1) = (Hg(1) - hf) / hfg * 100
       PORCENTAJE TOTAL DE CALOR PERDIDO EN EL SISTEMA SUPERFICIAL
      Opes(1) + Oper(1) / Gtot
       1 = 1 = 1
       14 1 4 10 THEN GOTO 1
       S1 TURFRIAS ENTERRADAS
       CON LA FUNCION DE RAWEY SE CALCULA EL CALOR PERDIDO EN LINEAS ENTERNADAS
       PARA TIENPOS DE INTECCION NAVORES DE 7 DIAS
                                                                 1. 1
```

```
ft = LOG(2.* SOR(alona * t * 24) / rse) - .29
DRs = 2 * 3.1416 * Ke * (14 - 14) / 11 * L1
Own = Otot - SPa
Hg = Out / Qi
x = (Hg - hf) / hfg * 100
PRINT : PRINT : PRINT
PRINT USING "PRESION INY.
                          BEER PSIA
                                         SAT. ACEITE
                                                     ### X
                                                                     DIAM. TP SH. SHE PG "; Pi; Soi; dte
                                                      SAS PIE
                                                                     DIAN, TE SE, SEE PG "; Xi; h; cice
PRINT USING "CALIDAD INY. ##8.88 %
                                                  .
PRINT USING "GASTO INT. Bentes LB/HR
                                                       ***
                                                           x
                                                                   DIAM. POZO #8,888 PG *; 41; por; da
                                                POR.
PRINT USING "TIEMPO INT. MAN DIAS
                                            K AISL.
                                                      . ###
                                                          LS/HR-PIE-F E.TUB #4.##4
                                                                                          ": t: Kins: Etc
PRINT : PRINT
PRINT *
                RESULT
                                        PRINT .
                EN EL SISTEMA SUPERFICIAL DE INVECCION
PRINT
PRINT "GENERADOR DE VAPOR:"
PEINT
PRINT .
                    CALOR TOTAL GENERADON
PRINT *
                    G = ": Gtot; "(Stu/hr)"
PEINT
INPUT "CONTINUO"; OPS
IF OPS + "N" OR OPS + "n" THEN COTO 6
CLS
PRINT "TUBERIAS AEREAS:"
PRINT
PRINT PESPESOR
                   TEND EXT.
                                  CA1 00
                                              CALDE EN LA CALIDAD VAPOR"
PRINT PAISLANTE
                    TUBERIA
                                  PERDIDO
                                              CABEZA POZO
                                                            CABEZA POZO #
PRINT TAB(1); STRINGE(64, ---)
PRINT "[Pg]
                                   m
                   1 63
                                                (Btu/hr)
                                                               111 *
PRINT TAB(1); STRINGS(64, ---)
 FOR 1 = 0 TO 9
 LF I = 1 THER
      PRINT TAB(1); STRINGS(64, "-")
   ELSE
 END 1
 PRINT USING "#. ###
                           121.22
                                        $1.85
                                                    ********
                                                                      ##.###*; drins()); Ts()); Opes()); Ovh()); X'())
 WEXT 1
 001117
 PRINT "TUBERIAS ENTERRADAS: "
 PRINT
 PRINT #
                     CALOR TOTAL PERDIOO"
 PRINT *
                              0 = "; ORa; " [Btu / hr] "
 PRINT
 PRINT "
                     CALIDAD EN LA CABEZA DEL POZO"
 PRINT .
                              X * ": X: " (%)"
 PRINT : PRINT : PRINT
 INPUT "CONTINUO"; OPS
 IF OPS - "N= OR OPS - "n" THEN GOTO &
 2. FERDIDAS DE CALOR EN EL APAREJO VERTICAL DE INVECCION.
   DESDE EL ARBOL DE VALVULAS KASTA EL FONDO DEL POZO
 SE DETERNINA LA TEMPERATURA NAXINA QUE PLIEDE SOPORTAR LA TR
 ANTES DEL PUNTO DE CEDENCIA
 SELECT CASE OF
       CASE 1
            Tys = 25000 / 200
           GRAD'S = "F-25"
       CASE 2
            1vs = 40000 / 200
            GPADS = "H-40"
```

```
CASE 3
         Tys = 55000 / 200
         GRADS # MJ-55"
     CASE &
         Tys = 80000 / 200
         GRADS = "N-80"
     CASE FISE
          Tys = 110000 / 200
          GRADS = "P-110"
END SELECT
FUNCION DE RAMEY PARA EL RADIO DEL POZO
ft = LOG(2 * SUR(aiphs * t * 24) / rh) - .29
SE ADICIONA AISLANTE TERNICO A LA TUBERIA DE PRODUCCION
A = 0
rins(A) + rte + drins(A) / 12
Espa(A) = (rci - rins(A)) * 12
IF Espa(A) <= 1 THEN
   IF A = O THEN
     PRINT TAB(5): STRING$(57, ***)
     PRINT
     PRINT #
                  EL DISELO DEL SISTEMA VERTICAL (DIAMETROS) NO CLAMPLE .
     PRINT *
                 CON EL REQUERIMIENTO DE AL MENOS 1 PO DE ESPACIO AMULAR ...
     PRINT
     PRINT TAB(5); STRINGS(57, ***)
     6 0100
    FLCE
    ENO 1F
     PRINT TAB(5); STRINGS(58, ***)
     PRINT
                 ESTE ES EL ESPESOR MUXIMO DE ATSLANTE QUE PUEDE SOPORTAR ...
     PRINT .
                 EL DISEED DEL SISTENA VERTICAL
     PRINT *
                 PERMITIENDO AL NEWOS 1 Pp. DE ESPACIO ANULAR
      PRINT #
      PRINT
     PRINT TAB(5); STRINGS(58, ***)
      6010 5
 ELSE
 END 1F
 PROCEDIMIENTO PARA CALCULAR LA VARIACIÓN DE LA PRESIÓN Y LA CALIDAD
 DEL VAPOR CON RESPECTO A LA PROFUNDIDAD DEL POZO INYECTOR
 SE UTILIZA EL METODO DE MILHE PARA LA SOLUCION DE LAS EDUACIONES DIFERENCIALES
 SE EVALUAN LOS VALORES DE P(2) y X(2) PARA LOS TRES PRIMEROS
 INTERVALOS MEDIANTE EL METODO DE RUNGE KUTTA 4% ORDEN
 Qm = (Q1 / (3.1416 * rte * 2)) / 3600
 P(0) = Pi
 x(0) = X((A)
 Tv(0) = 115.1 * P(0) * .225
 Te(0) . Ts . .0115 . 2(D)
 Vcs = X(0) / 100 * 363.9 * P(0) * -.9588 + (1 - X(0) / 100) * (.01587 + .00086 * P(0) * .225 + .0002 * P(0) * .45)
 $2(0) . Vcs
 FOR 8 = 0 TO 3
    CALL CIRANSFER(A, B, Ute(), rte, rins(), rci, rce, rh, Tv(), Tins(), Tcr(), Tel), ft, Ke, Kins, Kcem, Kha, Ete, Eci, Eins, a
    CALL CERICCION(B, DuRe(), DRug(), DEF(), Tw(), F(), X(), rts, Di, FF)
```

2

P + P(B)

6.1

```
X = X(B)
   2 = 2(8)
   Te + Te(8)
   Vz = Vz(B)
   II a lite/81
   KP1 = deltez * DERP2(P, X, Z, Vz, rte, Qi, Qu, Te, Ke, U, ft, Je, g, FF)
   KR1 = deltez = DERXZ(P, X, Z, Vz, rte, Qi, Qo, Te, Ke, U, ft, Je, g, FF)
   P = P(B) + XP1 / 2
   X & X(B) + KX1 / 2
   2 = 2(B) + doltaz / 2
   KP2 = deltaz = DERPZ(P, X, Z, Vz, rie, Gi, Cm, Te, Ke, U, ft, Je, g, Ff)
   KKZ = deitez * DERXZ(P, X, Z, VZ, rte, Qi, Cm, Te, Ke, U, ft, Je, g, FF)
   P = P(B) + KP2 / Z
   x = x(8) + Kx2 / 2
   z = 2(B) + deltaz / 2
   XP3 = deltaz * DERPZ(P, X, Z, VZ, rte, Gl, Gm, Te, Ke, U, ft, Je, g, FF)
   KX3 = deltaz * DERXZ(P, X, Z, Vz, rte, Gi, Gm, Te, Ke, U, ft, Je, g, ff)
   P = P(8) + KP3
   x = x(8) + 633
   Z = Z(B) + deltaz
   KP4 = deltaz * DERPZ(P, X, Z, V2, rte, Di, Om, Te, Ke, U, ft, Je, g, FF3
   KX4 = deltez * DERXZ(P, X, Z, VZ, rte, Gi, Gm, Te, Ke, U, ft, Je, g, FF)
   P(8 - 1) + P(8) + 1 / 6 * (KP1 + 2 * KP2 + 2 * KP3 + KP4)
   x(8 · 1) = x(8) + 1 / 6 * (xx1 + 2 * xx2 + 2 * xx3 + xx6)
   Z(B + 1) = Z(B) + dettaz
   Tv(B + 1) = 115.1 * P(B + 1) * .225
   1e(8 + 1) = fs + .0115 * Z(8 + 1)
   V2(8 + 1) × X(8 + 1) / 100 * 363.9 * P(8 + 1) * -.9588 + (1 - X(8 + 1) / 100) * (.01587 + .00086 * P(8 + 1) * .225 + .0002
   Tins(8 + 1) + Tins(8)
   Tci(8 + 1) + Tci(8)
NEXT 8
```

SE APLICA EL METODO DE HILNE PREDICTOR-CORRECTOR PARA LOS INTERVALOS SIGUIENTES

108 m = 1 10 mZ - 3 CALL CIRAMSTEREA, G. Utcl), rtc, rins(), rci, rce, rb, Tv(), Tins(), To()), Te(), ft, Xe, Kins, Kcmm, Khm, Ete, Eci, Eine, m CALL CFRECUREG, Duec(), DUug(), DF(), Tv(), P(), X(), rti, Ol, Ff)

```
P = F(8)
        ¥ = x/95
        Z + 2(B)
        te = Te(B)
        ¥2 = ¥2(8)
        U . Utof81
        fP(8) = DERPZ(P, X, Z, Vz, rte, Qi, Om, Te, Ke, U, ft, Je, g, FF)
        fx(B) = DERXZ(P, X, Z, Vz, rte, Gi, Gm, Te, Ke, U, ft, Je, g, FF)
        P = P(8 + 1)
        x = X(8 + 1)
        2 = 2(8 + 1)
        fP(8 + 1) = DERP2(P, X, Z, Vz, rte, 01, 0m, Te, Ke, U, ft, Je, g, ff)
        fz(8 + 1) = DERXZ(P, X, Z, VZ, rte, Gi, Gm, Te, Ke, U, ft, Jc, g, FF)
        P # P/8 + 21
        K = X(B + 2)
        Z = 2(8 + 2)
        FP(B + 2) + DERP2(P, X, Z, VZ, Fte, Gí, Gm, Te, Ke, U, ft, Je, g, FF)
        fx(8 + 2) = DERNZ(P, X, Z, Vz, rtc, Qi, Qm, Tc, Kc, U, ft, Jc, g, ff)
PREDICCION DE LOS VALORES DE P(1) y X(2)
        PP(8 + 3) + P(8 - 1) + 4 / 3 * deitaz * (2 * FP(8) + FP(8 + 1) + 2 * FP(8 + 2))
        xP(8 + 3) = X(8 - 1) + 4 / 3 * deltaz * (2 * fx(8) + fx(8 + 1) + 2 * fx(8 + 2))
```

```
P . PP(8 + 3)
          X = XP(8 + 3)
          2 . 7/8 + 31
          FP(8 + 3) = DEMPZ(P. x, Z, Vs, rte, Gi, Gm, Te, Ke, U, ft, Je, S, FF)
          fa(8 + 3) = DERXZ(P, X, Z, Vz, rte, Gi, Gm, Te, Ke, U, ft, Je, g, FF)
COREECCION DE LOS VALORES DE P(2) y X(2)
          PC(8 + 3) + P(8 + 1) + deltas / 3 * (FP(8 + 1) + 4 * FP(8 + 2) + FP(8 + 3))
          xc(8 + 3) + x(8 + 1) + delts: / 3 * (fx(8 + 1) + 4 * fx(8 + 2) + fx(8 + 3))
 VALORES FINALES DE P(1) y X(2)
                                                                     P(8 + 3) = PC(8 + 3) + 9 / 121 + (PP(8 + 3) - PC(8 + 3))
          x(8 + 3) = xC(8 + 3) + 9 / 121 * (XP(8 + 3) + XC(8 + 3))
          Z(8 + 3) = Z(8 + 2) + deitar
          TV(8 + 3) = 115.1 = P(8 + 3) * .225
          Term + 3) + 16 + -0115 * 2(8 + 3)
          V2(8 + 3) = X(8 + 3) / 100 + 363,9 = P(8 + 3) - .9588 + (1 - X(8 + 3) / 100) - .01587 + .00086 = P(8 + 3) - .225 + .0002
      NEXT &
            FOR B & #7 - 2 TO #7
            CALL CTRANSFER(A. B. Ute(), rte, rins(), rci, rce, rh, Tv(), Tins(), Tcl(), Tel), ft, Ke, Kins, Kcem, Kha, Ete, Eci, Eins
            NEXT B
       IF A = O THEN
         PRINT *
                                 RESULTADOS "
         -
                              EN EL APAREJO VERTICAL DE INVECCION"
         Petet
         PRINT "SISTEMA (LINEA SUP. V TP) SIN AISLANTE TERNICO "
          185 - -
                   .
                                       SIN ATSLANTE TERMICO
          PRINT TAB(1); STRINGS(74, *-*)
          PRINT "PROF.
                       PRESION CALIDAD CALOR PERD. TEMP.VAPOR
                                                                     TEMP. TP
                                                                                 TERP.TE P
          PRINT "(pies) [ib/pg-2] [1]
                                              131
                                                            1.53
                                                                       L F3
                                                                                   r #1
          PRINT TAB(1); STRINGS(74, ***)
        ELSE
          185 - *
                                     AUN CON AISLANTE TERMICO
          POINT
          PRINT "SISTERA (LINEA SUP. y TP) CON": drins(A): "Pp. DE AISLANTE TERNICO"
          PRINT TAB(1); STRINGS(74, "-")
          PRINT "PROF.
                         PRESION CALIDAD CALOR PERD. TEMP. VAPOR
                                                                     TEMP.AISL. TEMP.TR .
          PRINT "(pies) [[b/pg*2] [%]
                                               1 2 1
                                                            f F1
                                                                         e #1
                                                                                   [ 51 P
          PRINT TAB(1); STRING$(74, *-*)
          END IF
       FOR 1 = 1 TO HZ
       Q(1) + 2 * 3.1416 * rte * Ute(1) * (Tv(1) - Te(1)) * 2(1)
       a(1) = 91 * P(1) ^ .2574 + 13.18 * X(1) / P(1) ^ .08774 - 91 = P(0) ^ .2574 - 13.18 * X(0) / P(0) ^ .08774 - 2(1) / Je + 0m ^ 2
       Qpc(1) = Q(1) / Quh(A) * 100
       PRINT USING PRINT
                         888.888
                                      ***.***
                                                                          ***. ***
                                                                                     ###.### ": 2(1): P(1): X(1): Opt(1): Tv(1): Tin
                                                   .. ..
       NEXT 1
       IF TOTONE > THE THEN
        PRINT TRS
        pater .
                     LA TR DE GRADO "; GRADS; " PODRIA NO RESISTIR LOS ESFUERZOS"
        PRINT "
                     TERMICOS GENERADOS POR EL INCREMENTO DE TENPERATURA
        PRINT "
                              TEMP, MAX. PERMISIBLE, T = ": Tys; " [ F]
                                                                               • •
       ELSE
       END LE
       PORCENTAJE TOTAL DE CALOR PERDIDO EN EL SITENA VERTICAL
       QDCV(A) = QDC(NZ)
       CALOR EN EL FONDO DEL POZO
       Gef(A) = Gub(A) - G(HZ)
```

```
3. PERDIDAS DE CALOR HACIA FORMACIONES ADVACENTES Y CANTIDAD DE ACEITE
  DESPLAZABLE EX LA FORMACION PRODUCTORS
SE LITELEZA LA SOLUCION DE RUBENSHTEIN PARA LA CONDUCCION
TRANSITORIA DEL CALOR EN LA FORMACION
FUNCION LOGARITHICA DEL TIENPO ADIMENSIONAL PROPUESTA
POR RANEY
lotd = LOG(4 * micha * t * 24 / h * 2) / LOG(10)
CALL RUBENSHTEIN(igtd, Digtd(), Dhent(), heat)
CALOR PERDIDO A LOS ESTRATOS ADVACENTES
Gad(A) = 9sf(A) * heat / 100
PORCENTAJE TOTAL DE CALOR PERDIDO EN TODO EL SISTENA
Qpct(A) = Qpcs(A) + Qpcv(A) + heat
CALOR NETO EN LA FORMACION PRODUCTORA
Gnet(A) = Osf(A) = (1 - heat / 100)
CANTIDAD DE ACELTE DESPLAZABLE EN LA FORMACION USANDO LA ECUNCION
DE MARX-LANGENHEIM
fx = 2 * Ke / (H = h = alpha * .5) = (t = 24) * .5
CALL ERFCX(fx, Dfx(), Dfrex(), erfc)
Yo(A) = 4.273 * Gnet(A) * por / 100 * (Soi - Sor) / 100 / (H * (Tv(HZ) - Te(HZ)))
                                                                             * erfc
.....
INPUT "CONTINUO S/N"; OPS
 LF OPS = "N" OF OPS + "n" THEN GOTO 5
 1F & < 10 THER GOTO 2
 CLS
PRINT : PRINT : PRINT : PRINT
                       RESULTADOS
DRINT .
 PRINT *
                       EN LA FORMACION PRODUCTORA
 PRINT
 PRINT " EN EL DIA NUM.": 1: "DE INTECCION"
 PRINT TAB(1); STRINGS(70, *-*)
 PRINT * AISLANTE CALOR PERD.
                                  CALOR TOTAL
                                              CALOR METO FM
                                                                 ACE115
 PRINT *
                  ESTRATOS ADY.
                                    PERDIDD
                                               LA FORMACION
                                                               DESPLAZABLE
 PRINT . (Pg)
                   (Btu/HR)
                                     ( * 1
                                                  [Btu/hr]
                                                                 [Bl/dis]
 PRINT TAB(1); STRINGS(70, ***)
 FOR 1 = 0 10 A - 1
   PRINT USING . . ....
                         -
                                                                       HEXT L
 END
```

SUB CFRICCION (8, DNRe(), DRug(), DFF(), Tv(), P(), X(), rti, Qi, Ff) DIM XX(500), T(500), B(500), C(500), D(500), FFCAL(5)

SUBRRUTINA PARA DETERMINAR EL COEFICIENTE DE FIRCCION

MEDIANTE INTERPOLACION DE VALORES LEIDOS DEL DIAGRAMA DE MODDY

PARA UN NUMERO DE REYNOLDS DE 18+5 A 98+7 Y UNA RUGOSIDAD DE LA

TUBERIA DE .0002 A .001 (DE 9 A 1.8 Pg. DE DIAMETRO INTERIOR)

.

0.7

```
CONDICIONES DEL SISTEMA DE INVECCION CON LAS SIGUIENTES ECUACIONES
    rhov = .0027-554278# * P(8) * .9588
    mus = (82.2516 + .017815 * 1v(8) + .0000659 * Tv(8) * 2 - rhov * (31.45 - .05253 * Tv(8))) * .0001
    mai = 2.185 / (.04012 * 1v(E) + .000005147# * Tv(E) * 2 - 1)
    mars = X(5) / 100 * mus + (1 - X(8) / 100) * mar
    HRe = 6.317 = Qi / (mars = dti)
    Rug = .0015 / dti
   NACE LA PRIMERA INTERPOLACION
    . . .
     1 = 0
     90
       1=1+1
       DIF = DHRe(1) - HRe
     LOOP UNTIL DIF > 0
     1F 1 = 25 OR 1 = 27 THEN
          1 . 25
          ELSEIF 1 = 1 THEN 1 = 2
     END SF
     F = L + 1
     FOR E = 1 TO 5
        L = 0
         FOR 1 = F TO F + 3
            1-1+1
            XX(L) = DHRe(L)
            T(L) = DFF(L, K)
        NEXT 1
        CALL SPLINE(M, XX(), T(), B(), C(), D())
        V = MRe
        FFCAL(K) = SEVAL(H, V, XX(), Y(), B(), C(), D())
      HEXT K
     realiza is 2ds. interpolacion
      17 Rug < .0004 THEM
             F = 1
         ELSE F + 2
      ENO 17
      L = 0
      FOR 1 = F 10 F + 3
          L = L + 1
          XX(L) = DRug(L)
          TELS = FFCAL(1)
      NEXT 1
      CALL SPLINE(N. XX(), Y(), B(), C(), D())
      V = Rug
      FF = SEVAL(M, V, XX(), Y(), B(), C(), D())
FIND SUB
```

SE CALCULA EN NUMERO DE RETNOLDS Y LA RUGOSIDAD DE LA TUBERIA PARA LAS

SUB CTRANSFER (A, B, Utel), rte, rins(), rci, rca, rh, Tv(), Tins(), Tci(), Te(), ft, Ke, Kins, Kcom, Kha, Ete, Eci, Eins, sigma, Caru DIN Th(B), Us(B), hr(B), hc(B)

SUBRRUTINA QUE UTILIZA UN PROCESO ITERATIVO PARA DETERMINAR EL

COEFICIENTE DE TRANSFERENCIA DE CALOR TOTAL, ULE DESDE EL INTERIOR

DE LA TUBERIA DE PRODUCCION NASTA LA FORNACION

U # 2
```
Us(B) = U
      fact = Ke / (rte * Us(8))
       Th(B) = (Tv(B) * ft + fact * Te(B)) / (ft + fact) -
       Tins(8) = Tv(8) - (1v(8) - Th(8)) * Us(8) * rte / Kins * LOG(rins(A) / rte)
       Tol(8) = Th(8) + rte * Us(8) * LOG(rh / rce) / Kcm * (Tv(8) + Th(8))
       LF & + O THEN --
                fci = (1 / Ete + rte / rci = (1 / Eci - 1)) * -1
                hr(B) = signa = Fci = ((1+(B) + 460) - 2 + (Tci(B) + 460) - 2) = ((Tv(B) + 460) + (Tci(B) + 460))
          ELSE
           fci = (1 / Eina + rim(A) / rci = (1 / Eci - 1)) * -1
           hr(8) = signa + rci + ((Tins(8) + 460) * 2 + (Tcl(8) + 460) * 2) = ((T(ns(8) + 460) + (Tcl(8) + 460))
        END 15
        bets + 1 / (Tci(B) + 460)
        Pr = Con * much / Kha
        Gr = (rci - rte) * 3 * Grav * rhoan * 2 * beta * (Tv(B) - Tci(B)) / muan * 2
        the = .049 * (Gr * Pr) * .333 * Pr * .074 * Kha
        hc(8) = Khc / (rie * LOG(rci / rie))
        FACIB = rte * LOG(rh / rce) / Kcem
        TE A = O THEN
             U + (1 / (hc(B) + hr(B)) + FACTB) * -1
            ELSE
                                                                      a na har na harar a
           U = (rte * LOG(rins(A) / rte) / Kins + rte / (rins(A) * (hc(B) + hr(B))) * FACTE) ***
        END 17
        difer = ABS(Us(B) + U)
    LOGP UNTIL difer < .001
    Ute(B) = U
END SUB
FUNCTION DEAPZ (P, X, Z, Vz, rte, ai, Dm, Te, Ke, U, ft, Je, g, FF)
     FUNCION PARA EVALUAR LA ECUACION dP/dZ
     DEROZ = -2 * 3.1416 * rte * U / GI * (115.1 * P * .225 - cte * Ke + 115.1 * P * .225 * rte * U * ft) / (rta * U * ft + Ke))
     DERHX = 13.18 * P * -.05774
     DERVX = 3.639 * P * -.9588 - .0001587 - .00000086# * P * .225 - .000002 * P * .45
     DERKP = (23.4234 * P * -.7426 - 1,1564 * x * P * -1,08774) / 144
     DERVP = (-3.4890732# + P - -1.9588 + x + (1 - X / 100) + (.000019 + P - -.775 + .00009 + P - -.55)) / 144
     di + 2 * rte * 12 * 2
     A1 = DEROZ + DERVX = (FF + V2 / d1 - g / (Om * 2 + V2)) + FF + Om * 2 + V2 * 2 / (Je + g + d1)
     61 * DERNP - Vz / Je - DERNX / DERVX * (g / Om * 2 + DERVP)
     DERF2 = A1 / B1 / 144
END FUNCTION
FUNCTION DEXXZ (P, X, Z, Vz, rte, Gi, Gm, Te, Ke, U, ft, Je, g, FF)
     FUNCION PARA EVALUAR LA ECUACION dX/dZ
     DER02 = -2 * 3,1416 * rte * U / Qi * (115.1 * P * .225 - (Te * Ke + 115.1 * P * .225 * rte * U * ft) / (rte * U * ft + Ke3)
     DERHX = 13.18 * P * -.08774
     DERVX = 3.639 * P * -.9568 - .0001567 - .00000086# * P * .225 - .000002 * P * .45
     DERHP = (23.4234 * P * +.7426 - 1.1564 * X * P * -1.08774) / 144
     DERVP = (-3.489732 * P ^ -1.9588 * X + (1 - X / 100) * (.000019 * P ^ -.775 + .00009 * P ^ -.55)) / 144
     di = 2 * rte * 12 * 2
     C = (V2 / Je + DERHP) / (DERHP + Om * 2 * V2 / (Je * g) * DERVP)
     A1 = DEROZ * (1 + C) + (C + FF * Om * 2 * V2 * 2 / (g * di)) / Je
     B1 * DERHX * (1 + C) + C * Gm * Z * Vz * DERVX / (Je * g)
     OER#2 = A1 / B1
END FUNCTION
SUE ENTALPIA (Pi, DP(), Dhf(), Dhfg(), hf, hfg)
DIM XX(4), Y(4), B(4), C(4), D(4)
```

SUBRRUTINA PARA INTERPOLAR LOS VALORES DEL CAMBIO DE ENTALPIA (hfg)
Y DEL AGNA (hf) A LA PRESION DEL FLUIDO DE INTECCION. EN UN RANCO

```
DE 500 A 1500 154/pg*2
     N * 4
     1 = 0
     00
      1 = 1 + 1
       DIF . DP(I) - PI
     LOOP UNTIL DIF >= 0
      1F 1 = 35 OR 1 = 36 THEN
        1 = 34
        ELSELF I = 1 THEM I = 2
      END IF
      F = 1 - 1
      L = 0
      FOR 1 = F 10 F + 3
       1-1-1
        XX(L) = DP(L)
       YEL) = DATEL)
      NEXT 1
      CALL SPLINE(N, XK(), Y(), B(), C(), D())
      V * Pi
      hf = SEVAL(#, V, XXC), Y(), B(), C(), D())
      L = 0
      FOR 1 = F TO F + 3
        1=1+1
        XX(1) = 0P(1)
        Y(L) = Dhfg(1)
      MEXT I
      CALL SPLINE(N, XX(), Y(), S(), C(), D())
      hfg = SEVAL(N, V, XX(), Y(), B(), G(), D())
END SUS
```

SUB ERFEX (fx, Dfx(), Dfrex(), erfe) DIM XX(27), Y(27), B(27), C(27), D(27)

SUBRRUTINA PARA INTERPOLAR EL VALOR DE LA FUNCION ERROR DEL MODELO DE NARX-L'ANGENHEIN

```
8 = 4
1 = 0
DO
  1=1+1
 DIF = Dfx(1) + fx
LOOP UNTIL DIF - 0
1F 1 = 26 OR 1 = 27 THEN
   1 = 25
   ELSELF 1 = 1 THEN 1 = 2
EKD 1F
F = 1 - 1
L = 0
FOR 1 = F TO F + 3
    1 = 1 + 1
    XX(L) = Dfx(1)
    Y(L) = Dfecx(1)
NEVT I
CALL SPLINE(N, XX(3, Y(), B(), C(), D())
 V = fa
  erfc = SEVAL(N, V, XK(), Y(), B(), C(), D())
```

END SUB

```
SUB RUBERSHTEIN (lgtd, Digtd(), Dheat(), heat)
DIN XX(13), Y(13), 8(13), C(13), D(13)
```

.

```
SUBRRUTINA PARA INTERPOLAR EL VALOR DE LA FUNCION LORARITHICA DEL
    TIEMPO ADIMENSIONAL EN EL MODELO DE RUSENSHTEIN PARA OBTENER EL
    PORCENTAJE DE CALOR PERDIDO EN LA FORMACION
    8 = 4
    1:= 0
    00
       1=1+1
       DIF = ABS(Digtd(1) - igtd)
     1F 1 = 12 CM | = 13 THEN
        1 = 15
        ELSELF 1 = 1 THEN 1 = 2
     ENO IF
     5=1-1
     1 - 0
     FOR 1 = F TO F + 3
         L=L+1
         XX(L) = Digtd(1)
         Y(L) = Dheat(1)
     NEXT 1
      CALL SPLINE(N, XX(), Y(), B(), C(), D())
      V = Lgtd
      heat - SEVAL(H, V, KI(), Y(), H(), C(), D())
END SUB
FUNCTION SEVAL (N, V, XXC), Y(), B(), C(), D())
      FUNCION PARA INTERPOLAR UN VALOR PARTICULAR APARTIR DE LOS COEFICIENTES
.
      DEL POLINCHID CUBICO GENERADO POR SPLINES
      1 = 1
      LE I >= N THEN I = 1
         1F V < XX(1) GOTO 100
            LF V <= XX(1 + 1) GOTO 300
100
               1 = 1
               L = H + 1
200
               K = (1 + L) / 2
         V < XX(K) THEN L = K
      1F
         IF V >= KX(K) THEN 1 = K
            IF L > | + 1 GOTO 200
300
            DX + V - XX(1)
            SEVAL = Y(1) + B(1) + DX + C(1) + DX * 2 + D(1) + DX * 3
END FUNCTION
SUB SPLINE (N, XX(), Y(), B(), C(), D())
      SUBRRUTINA PARA DETERMINAR LOS COEFICIENTES DE UN POLINOMIO
      CUBICO GENERADO A PARTIR DE UNA SERIE DE PAREJAS DE DATOS
      1051 = 10 = 1
      1F # < 2 GOTO 51
         IF # < 3 GOTO 50
            D(1) = XX(2) + XX(1)
            C(2) + (Y(2) + Y(1)) / D(1)
      FOR 1 = 2 10 HH1
          D(1) = XX(1 + 1) - XX(1)
          8(1) = 2 * (D(1 - 1) + D(1))
          C(1 + 1) = CY(1 + 1) - Y(1)) / D(1)
```

```
C(1) = 8(1 + 1) + C(1)
  NEXT 1
   8(1) = -0(1)
   B(H) = -D(H - 1)
   C(1) = 0
   C(H) = 0
   LF # = 3 GOTO 15
      C(1) = C(3) / (XX(4) - XX(2)) - C(2) / (XX(3) - XX(1))
    C(N) = C(N - 1) / (XX(N) - XX(N - 2)) - C(N - 2) / (XX(N - 1) - XX(N - 3))
      C(1) = C(1) = D(1) = Z / (XX(4) - XX(1))
      C(H) = -C(H) = D(H - 1) = 2 / (XX(H) - XX(H - 3))
      NEW CONTINUE
   FOR L = 2 TO N
÷
      1 = D(1 - 1) / B(1 - 1)
    B(1) = B(1) - 1 = D(1 - 1)
     · C(1) = C(1) - t * C(1 - 1)
   HERT I
   C(H) = C(H) / B(H)
   FOR 18 = 1 TO HH1
       t = H - 18
       C(1) = (C(1) - D(1) = C(1 + 1)) / B(1)
   HEXT IB
   B(N) = (Y(N) - Y(NH1)) / D(MH1) + D(MH1) = (C(MH1) + 2 = C(H3)
   FOR 1 = 1 TO NH1
       8(1) = (Y(I + 1) - Y(1)) / 0(1) - 0(1) = (0(1 + 1) + 2 = 0(1))
      0(1) = (C(1 + 1) - C(1)) / 0(1)
      C(1) = 3 = C(1)
   HEXT C
   C(H) = 3 * C(H)
   D(N) = D(N - 1)
   GOTO 51
   B(1) = (Y(2) - Y(1)) / (XX(2) - XX(1))
   C(1) = 0
   P(1) = 0
   REN CONTINUE
```

```
S1 RI
END SUB
```

```
72
```

CAPITULO V

EJEMPLO DE APLICACION

Considerese un pozo en proceso de inyección continua de vapor con un gasto de inyección de 800 bl/día, en una formación de 60 pies de espesor con una porosidad de 25%. La saturación del aceite cuando se inicia el proceso es de 70%, y de 15% después del barrido. La calidad del vapor a la salida del generador es de 81.3% a una presión de 690 lb/pg² Abs. (500 °F). La temperatura ambiente es 4e 80 °F. La longitud de las líneas superficiales es de 800 pies y la profundidad del pozo de 1000 pies. El sistema es con líneas de superficiales aereas. Calcular:

- a) Las pérdidas de calor en lineas superficiales
- b) La calidad dei vapor en la cabeza del pozo
- c) La variación de la presión y calidad del vapor con la profundidad del pozo.
- d) La temperatura máxima permisible en la TR,
- e) Las pérdidas de calor en el aparejo vertical de inyección.
- f) La cantidad de calor que entra a la formación
- g) El gasto de accite desplazado por el vapor en la formación para un tiempo de invección de 50 y 100 días.

datos adicionales:

Tubería superficial	Diám, Ext. 3.5 Pg (Int. 3)
Tubería de producción (TP)	Diám. Ext. 3 3/8 Pg (Int. 2 7/8)
Tubería de revestimiento (TR)	Diám. Ext. 7 5/8 Pg (Int. 7 1/8), J-55
Espesores de aislante térmico	1/8, 3/16, 1/4, 3/8, 1/2, 3/4, 1, 1.5 y 2 Pg
Pozo	9 Pg
Conductividad térmica tubería	25 Btu/br-pie-°F

Conductividad térmica aislante	0.0256 Btu/hr-pic-°F
Conductividad térmica formación	0.3708 Btu/hr-pie-°F
Conductividad térmica aire	0.0156 Btu/hr-pie-°F
Conductividad térmica fluido en el	
espacio anular	0.0255 Btu/hr-pie-°F
Conductividad térmica cemento	0.2 Btu/hr-pie-°F
Emisividad térmica TP ext.	0.9
Emisividad térmica TR int.	0.9
Emisividad térmica Aislante	0.4
Calor específico del agua	1 Btu/lb _m -°F
Calor específico del fluido en el	
espacio anular	0.242 Btu/lb _m -°F
Viscosidad del aire	0.0464 lb _m /pie-hr
Viscosidad del fluido en el espacio anular	0.0464 lb _m /pie-hr
Difusividad térmica de la tierra	0.0286 pie ² /hr
Velocidad del aire	5 millas/hr
Densidad del fluido en el espacio anular	0.0388 lb _m /pie ³
Capacidad calorífica de la Tierra	35 Btu/pie3-°F

CORRIDA ND. 1

PRESION	tsv.	690	PSIA .	SAT. ACEITE	70	X .	DIAM. TP	3.375	PG
CALIDAD	INY.	81.3	X Č	- en en en en	60	PIE	DIAN. TR	7.625	PG
GASTO	INY.	11666	LB,"HR	POR.	25	×	DIAN. POZO	9.000	PG
TIEMPO	INY.	100	DIAS	K AISL.	.026	LB/HR-P-	F E.TUB	0.900	

R E S U L T A D O S EN EL SISTEMA SUPERFICIAL DE INVECCION

GENERADOR DE VAPOR:

CALOR TOTAL GENERADO Q = 1.246317E+07 [Btu/hr]

TUBERIAS AEREAS:

ESPESOR AISLANTE	TEMP.EXT. TUBERIA	CALOR PERDIDO	CALOR EN LA CASEZA POZO	CALIDAD VAPOR CABEZA POZO
[Pg]	C F1	[%]	[Btu/hr]	[*]
0.000	500.98	15.89	10482419.00	57.448
0.125	232.40	4.02	11962339.00	75.259
0.188	196.31	3.09	12077971.00	76.662
0.250	173.98	2.53	12147985.00	77.505
0.375	147.76	1.88	12228972.00	78.480
0.500	132.84	1.51	12274580.00	79.029
0.750	116.51	1.11	12324384.00	79.629
1.000	107,78	0.90	12351159.00	79.951
1.500	98.67	0.67	12379490.00	80.292
2.000	93.99	0.55	12394413.00	80.472

PARA EL CASO DE TUBERIAS ENTERRADAS:

CALOR TOTAL PERDIDD Q = 476403.6 [Btu / hr]

CALIDAD EN LA CABEZA DEL POZO X = 75.5633 (X)

HESULTADOS EN EL APAREJO VERTICAL DE INTECCION

SISTEMA (LINEA SUP. y TP) SIN AISLANTE TERNICO

PROF .	PRESION	CALIDAD	CALOR PERD.	TEMP. VAPOR	TEMP. TP	TEMP.12
(pies)	(lb/pg*2)	[2]	[%]	C F1	(F)	LE
100	688.354	56.919	1.05	500.706	500,706	389.224
200	686.697	56.392	2.09	500.435	\$00.435	389,300
300	685.028	55.866	3.13	500.161	500.161	389.374
400	683.383	55.618	4.15	499.890	499.870	389,451
500	681.691	55.212	5.17	499.612	499.612	389.520
600	680.019	55.030	6.19	499.336	499.336	389.593
700	678.322	54.733	7.19	499.055	491.055	389.661
800	676.635	54.622	8.19	498.776	473.776	389.730
900	674.936	54.409	9.18	498.493	498.493	389.797
1000	673.240	54.348	10.16	498.211	498.211	389.864

SIN AISLANTE TERNICO LA TR DE GRADO J-55 PODRIA NO RESISTIR LOS ESFUERZOS TERNICOS GENERADOS POR EL INCREMENTO DE TEMPERATURA TEMP, KXX, PERMISIBLE, T = 275 (KF)

SISTEMA (LINEA SUP. y TP) CON .125 Pg. DE AISLANTE TERMICO

PRESION	CALIDAD	CALOR PERD.	TEMP.VAPOR	TERP.AISL.	TEMP.TR					
[1b/pg=23	[1]	(%)	L FJ	i Fi	t FI					
688.760	75.003	0.28	500.773	398.959	238.973					
687.517	74.737	0.55	500,569	399.056	239.673					
686.272	74,472	0.82	500.365	399.143	240.372					
685.031	73.945	1.09	500,161	399.230	Z41.071					
683.782	73.801	1.36	499.956	397.316	241.769					
682.536	73.381	1.63	499,751	399.403	242.466					
681.272	73.345	1.90	499.542	399.488	243.162					
680.026	72.994	2.15	499.337	399.574	243.859					
678.752	73.042	2.42	499.126	399.658	244.552					
677.510	72,741	2.69	498.921	399.745	245.248					
	PRESION [1b/pg*23] 688.760 687.517 686.272 685.031 683.782 682.536 681.272 680.026 678.752 678.752	PRESION CALIDAD [1b/pg-23] [\$] 688.760 75.003 687.517 74.737 685.272 74.472 685.272 73.401 681.272 73.801 681.272 73.345 680.026 72.994 678.752 73.002	PRESION CALIDAD CALOR PERD. (1b/pg"23) [X] [X] (X) 688.760 75.003 0.28 687.517 74.737 0.55 685.272 74.472 0.82 685.378 73.891 1.36 682.534 73.891 1.36 681.272 73.345 1.90 680.026 72.094 2.16 678.5752 73.042 2.42 677.510 72.741 2.69	PRESIDN CALIDAD CALOR PERD. TEMP.VAPOR (1b/pg"23) [X 1] [X 1] [F] 688.760 75.003 0.28 500.773 687.517 74.737 0.55 500.369 687.517 74.472 0.82 500.365 685.272 74.472 0.82 500.365 685.3782 73.801 1.36 499.751 681.272 73.813 1.34 499.756 681.272 73.345 1.90 499.552 680.026 72.094 2.16 499.337 678.752 73.042 2.42 499.123	PRESIDN CALIDAD CALOR PERD. TEMP. VAPOR TEMP. Alst. (1b/par ² 2) [X] [X] [F] [F] [F] 688.760 75.003 0.28 500.773 398.949 687.517 74.737 0.55 500.369 399.056 686.272 74.472 0.82 500.365 399.143 685.378 73.841 1.36 499.751 399.20 683.782 73.841 1.34 499.751 399.403 681.272 73.345 1.90 499.751 399.403 681.272 73.345 1.90 499.751 399.403 681.272 73.345 1.90 499.751 399.403 681.272 73.455 1.90 499.751 399.403 681.272 73.455 1.90 499.751 399.453 680.026 72.042 2.16 499.337 399.574 677.510 72.741 2.49 499.751 399.656					

SISTERA (LINEA SUP. y TP) CON .1875 Pg. DE AISLANTE TERMICO

					· · · · · · · · • • • · · · ·	********
PROF.	PRESION	CALIDAD	CALOR PERD.	TEMP.VAPOR	TEMP.AISL.	TEMP.TR
(pies)	[1b/pg*2]	[%]	[%]	មេ	(F)	(F)
100	688.784	76.427	0.23	500,777	368,154	220.596
200	687.567	76,192	0.46	500,577	368.325	221.356
300	686.348	75.959	0.68	500, 377	368.490	222.116
400	685.130	75.397	0.91	500.178	368.668	222.876
500	683.908	75.284	1.13	499.977	368.839	223.634
600	682.688	74.834	1.36	499.776	369.011	224.393
700	681.450	74,830	1,58	499.572	369.181	225.149
800	680.231	74.448	1.80	499,371	369.353	225.907
900	678.983	74,528	2.02	499.164	369.522	226.661
1000	677.769	76.197	2.24	498.953	369.695	227.41/

- 77 -

SISTEMA (L'INEA SUP. y TP) CON .25 Pg. DE AISLANTE TERMICO

		÷		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PROF. (pies)	PRESION [15/pg^2]	CALIDAD [%]	CALOR PERD.	TENP.VAPOR	TEMP.AISL. [F]	TEMP.TR (F)
				·····		
100	688.799	77.293	0.20	:00.779	343 894	206,933
200	687.596	77.082	0.40	500,582	344,131	207.756
300	686.392	76.871	0.59	500,385	344.367	208.559
400	685.189	76.284	0.79	500.187	344.604	209.360
500	683,983	76.194	0.98	499.989	344.840	210,162
600	682.778	75.722	1,18	499.791	345.077	210,962
700	681.556	75.740	1.37	499.589	345.313	211.762
800	680.353	75.337	1.56	499.391	345.551	212.562
900	679.120	75.440	1.75	499.187	345.787	213.360
1000	677.922	75.086	1.94	496.929	346.026	214.159

SISTEMA (LINEA SUP. y TP) CON .375 Pg. DE AISLANTE TERNICO

PROF.	PRESION	CALIDAD	CALOR PERD.	TEMP , VAPOR	TEMP.AISL.	TEMP. TR
(pies)	{(b/pg^2)	[*]	[*]	E F3	(F)	C F3
100	688.815	78.300	0.16	500.782	307.391	187,912
200	687.630	78.122	0.32	500.588	307.726	188.770
300	686.443	77.943	0.48	500.393	308.062	189.627
400	685.256	77.320	0.63	500.198	308.399	190.484
500	684.069	77.262	0.79	500.003	308.735	191.340
600	682.881	76.759	0.95	499.808	309.073	192.196
700	681.677	76.810	1.10	499.609	309.409	193.051
800	680.492	76.375	1.25	499.414	309.747	193.906
900	679.276	76.510	1.41	499.213	310.084	194.759
1000	678.098	76.125	1.56	499-01B	310.423	195.614

SISTEMA (LINEA SUP. y TP) CON .5 Pg. DE AISLANTE TERNICO

******		********		***********		
PROF.	PRESION	CALIDAD	CALOR PERD.	TEMP . VAPOR	TEMP.AISL.	TEMP.TR
(pies)	[lb/pg*2]	[%]	(¥)	(F)	£ F1	C F3
100	688.8Z4	78.871	0.14	500.783	280.820	175.049
200	687.648	78.714	0.27	500.591	281.230	175.941
300	686.471	78.557	0.40	500.398	281.641	176.B33
400	685.294	77.910	0.54	500,204	282.053	177.725
500	684.117	77.874	0.67	507.011	282.465	178.617
600	682.939	77.350	0.80	499.817	282.878	179.508
700	681.744	77.422	0.93	499.620	283.290	180.398
800	680.570	76.966	1.07	499.427	253.704	181.268
900	679.363	77.123	1.20	499.227	284.116	182.177
1000	678.196	76.717	1.32	499.034	284.532	163.067

ESTA TESIS NO DEBE Salir de la biblioteca

SISTENA (LINEA SUP. y TP) CON .75 Pg. DE AISLANTE TERMICO

PROF.	PRESICN	CALIDAD	CALOK PERD.	TEMP.VAFOR	TENP.AISL.	TEMP.TR
(pies)	[[b/pg*2]	[#]	1 2 3	C #3	[F]	C FJ
100	663.834	79.499	0,11	500.785	244.032	158.499
200	687.668	79.370	0.21	500.594	244.553	159.435
300	686.502	79.241	0.32	500.403	245.075	160.370
400	685.334	7b.562	0.43	500.211	245,598	161.305
500	684.169	78.553	0,53	500.020	246.121	162.240
600	683.001	78.003	0.63	499.028	246.645	163.174
700	681.818	78.103	0,74	499.632	247.168	164.107
800	680.655	77.619	0.84	499.441	247.694	165.041
900	679.458	77.804	0.94	497.243	248,218	165.974
1000	678.303	77.371	1.05	499.052	248.745	166.907

ESTE ES EL ESPEROR MAXINO DE AISLANTE QUE PUEDE SOPORTAR El DISEED DEL SISTEMA VERTICAL PERMITIENDO AL MENOS 1 Pg. DE ESPACIO ANULAR

R E S U L T A D O S EN LA FORMACION PRODUCTORA

EN EL DIA MUN. 100 DE INVECCION

AISLANTE	CALOR PERD. ESTRATOS ADY.	CALOR TOTAL	CALOR NETO EN	ACEITE OFSPLAZABLE
(Pg)	(Stu/hr)	[%]	(Ntu/hr)	[Bi/dla]
0.000	960585.25	36.25	8457175.00	262.321
0.125	1187362.50	16.90	10453764.00	323.686
0.188	1204365.63	15.53	10603463.00	328.287
0.250	1215051.75	14.67	10697545.00	331.179
0.375	1227882.88	13.64	10810513.00	334.652
0.500	1235393.00	13.04	10876634.00	336,686
0.750	1243910.25	12,36	10951622.00	338,992

79 -

CORRIDA NO. 2

PRESION	INY.	690	PSIA	SAT. ACEITE	70	x	DIAM. TP	3.375	PG
CALIDAD	187.	81.3	×.	· N	60	PIE	DIAM, TR	7.625	PG
GASTO.	ENY:	11666	LB/HR	POR.	25	x	DIAN. POZO	9.000	PĜ
11EMPO	187.	50	DIAS	K AISL.	.026	19/KR-P-	F E,TUB	0.900	

R E S U L T A Ó O S EN EL SISTEMA SUPERFICIAL DE INVECCION

GENERADOR DE VAPOR:

CALOR TOTAL GENERADO Q = 1.246317E+07 (Btu/hr)

TUBERIAS AEREAS:

ESPESOR AISLANTE	TEMP.EXT. TUBERIA	CALOR PERDIDD	CALOR EN LA CABEZA POZO	CALIDAD VAPOR CABEZA POZO
(Pg)	[F]	(%)	[Btu/hr]	[*]
0.000	500.98	15.89	10482419.00	57.448
0.125	232.40	4.02	11962339.00	75.269
0.188	196.31	3.09	12077971.00	76.662
0.250	173.98	2.53	12147985.00	77.505
0.375	147.76	1.88	12228972.00	78,480
0.500	132.84	1.51	12274580.00	79.029
0.750	116.51	1.11	12324384.00	79.629
1.000	107.78	0.90	12351159.00	79.951
1.500	98.67	0.67	12379490.00	80.292
2.000	93.99	0.55	12394413.00	80.472

PARA EL CASO DE TUBERIAS ENTERRADAS:

CALOR TOTAL PERDIDO q = 516721.6 [Btu / hr]

CALIDAD EN LA CABEZA DEL POZO X = 75.07782 [X]

- 80 **-**

RESULTADOS EN EL APAREJO VERTICAL DE INVECCION

SISTEMA (LINEA SUP. y TP) SIN AISLANTE TERMICO

PROF.	PRESTON	CALIDAD	CALOR PERD.	TEMP.VAPOR	TEMP.TP	TEMP.TR
(pies]	[lb/pg^2]	1 * 1	[%]	(F)	(F)	(F1
100	688.354	20.003	1.04	500.706	200.100	361.306
200	686.696	56.331	2.08	500,435	500.435	381.410
300	685.025	55.775	3.10	500,160	500.160	381.512
400	683.379	55.523	4.12	499.890	499.890	381.619
500	681.684	55.097	5.14	499.610	499.610	381.716
600	680.010	54.916	6.14	499.334	499.334	381.817
700	678.309	54.605	7.14	499.053	499.053	381.914
800	676.619	54,499	8.13	498.773	498.773	382.011
900	674.916	54.277	9.11	498.490	498.490	382.106
1000	673.215	54.272	10.08	498.207	498.207	382,202

SIN AISLANTE TERNICO LA TR DE GRADO J-55 PODRÍA NO RESISTIR LOS ESFUERZOS TERNICOS GENERADOS POR EL INCREMENTO DE TENPERATURA .

TEMP. MAX. PERMISIBLE, T = 275 [%F]

SISTEMA (LINEA SUP. y TP) CON .125 Pg. DE AISLANTE TERMICO

******	*********					*********
PROF.	PRESION	CAL 10AD	CALOR PERD.	TEMP . VAPOR	TEMP.AISL.	TEMP.TR
[pies]	[lb/pg^2]	(X)	1 % 1	C FI	C F1	tfi
100	688.760	74,996	0.27	500.773	396,460	229.912
200	687.517	74.724	0.54	500,569	396.551	230.642
300	686.272	74.452	0.81	500.365	396.641	231.372
400	685.030	73.895	1.08	500.161	396,732	232.102
500	683.781	73.754	1.35	499.956	396.822	232.830
600	682.534	73,312	1.62	499.751	396.913	233.558
700	681.269	73.286	1.68	499.542	397,001	234.284
800	680.023	72.916	2.14	499.336	397.092	235,012
900	678.747	72.979	, 2,40	499.125	397, 180	235,736
1000	677.505	72.660	2.55	498.920	397,271	236.462

SISTERA (LINEA SUP. y TP) CON .1875 Pg. DE AISLANTE TERMICO

PROF.	PRESION	CALIDAD	CALOR PERD.	TEMP. VAPOR	TEMP.ALSL.	TEMP.TR
(pies)	[1b/pg^2]	[%]	[%]	£ F1	£ F1	E F3
100	688.784	76.422	0,23	500.777	365.257	212.230
200	687.567	76.182	0.45	500.577	365.433	213,017
300	686.347	75.943	0.68	500.377	365,608	213.804
400	685.130	75.350	0,90	500.178	365.784	214.590
500	683.908	75.242	1,13	499.977	365,960	215.376
600	682.687	74.769	1.35	499.776	366.136	216.161
700	681.448	74.776	1.57	499.571	366.311	216.944
800	680.228	74.374	1.79	499.370	366.488	217.729
900	678.978	74.469	2.00	499.163	366.662	218,510
1000	677.764	74.119	2.22	498,963	366.840	219,294

81 -

SISTEMA (LINEA SUP. y TP) CON .25 Pg. DE AISLANTE TERMICO

PROF.	PRESIGN	CALIDAD	CALOR PERD.	TEMP, VAPOR	TEMP.AISL.	TEMP.TR
(pies)	[1b/pg*2]	(* 1	(*)	[F]	(F)	C F3
			••••••		••••••••••••••	
100	688.799	77.2B9	0.20	500.779	340.857	199.119
200	687.596	77.074	0.39	500.582	341.097	199.946
300	686.392	76.859	0.59	500.385	341.337	200.773
400	685.189	76.238	0.78	500.187	341.578	201.600
500	683.983	76.154	0.98	499.989	341.819	202.426
600	682.777	75.658	1.17	499.791	342.060	203.252
700	681.554	75.689	1.36	499.589	342.300	204.076
800	680.350	75.264	1.55	499.390	342.542	204.901
900	679.115	75,383	1.74	499.186	342.782	205.724
1000	677.918	75.010	1.93	498.988	343.025	206.548

SISTEMA (LINEA SUP. y TP) CON .375 Pg. DE AISLANTE TERMICO

PROF.	PRESION	CALIDAD	CALOR PERD.	TEMP. VAPOR	TEMP.A1SL.	TENP.TR
(pies)	{\b/pg*2]	1 % 3	[%]	E F)	(F)	[F]
100	688.815	78.297	0.16	500.752	304.213	180.975
200	687.629	78.116	0.32	500.588	304.553	181.854
300	686.443	77.934	0.47	500.393	304.892	182.733
400	685.256	77.276	0.63	500.198	305.233	183.611
500	684,069	77.226	0.79	500.003	305.574	184.489
600	682,881	76.697	0.94	499.808	305.915	185.366
700	681.675	76.762	1.09	499.609	306.255	186,243
800	680,490	76.304	1.25	499.413	306.598	187.119
900	679.272	76.456	1.40	499.212	306.938	187.994
1000	678.094	76.051	1.55	499.017	307.282	165.871

SISTEMA (LINEA SUP. y TP) CON .5 Pg. DE AISLANTE TERMICO

		********	**********			
PROF.	PRESION	CALIDAD	CALOR PERD.	TEMP.VAPOR	TEMP.AISL.	TEMP, TR
(pies)	[[b/pg^2]	C % 1	[%]	(F)	[F]	L FI
100	688.824	78.869	0.14	500,783	277,620	168,785
200	687.648	78.710	0.27	500.591	278.035	169.696
300	686,471	78.551	0.40	500.398	278.450	170,608
400	685.293	77.867	0.54	500.204	278,865	171.519
500	684.117	77.839	0.67	500,011	279.281	172,429
600	682.938	77.289	0.60	499.817	279.698	173.339
700	681.742	77.376	0.93	499.620	280,114	174.249
800	680,568	76.896	1.06	499,426	280.532	175,158
900	679.359	77.071	1.19	499.227	280,949	176.066
1000	678, 193	76.644	1.32	499.034	261.369	176.976

SISTEMA (LINEA SUP. Y TP) CON .75 Pg. DE AISLANTE TERMICO

PROF	PRESION	CALIDAD	CALOR PERD.	TEMP.VAPOR	TEMP.AISL.	TEMP.TR
(p'es)	[1c/pg*2]	(*)	1 % 1	LE	£ #3	L P1 .
100	688.834	79,498	0.11	500.785	240.886	153.176
200	687.668	79.367	0.21	500.594	241.412	154.128
300	686,502	79,236	0.32	500.403	241.939	155.079
400	685.334	78,521	0.42	500.211	242.466	156.030
500	684.169	78,521	0.53	500.020	242.993	156.950
600	683,001	77,943	0.63	499.827	243.522	157.931
700	681.816	78,059	0.74	499.632	244.050	158.680
800	680,653	77.551	0,84	499.440	244.580	159.830
900	679.454	77.754	0.94	499.242	245.109	160.779
1000	678.300	77.299	1.04	499.051	245.640	161.728

ESTE ES EL ESPESOR MAXINO DE AISLANTE QUE PUEDE SOPORTAR El diseão del Sistema Vertical Pernitiendo al menos 1 pg. de Espacio Anular

R E S U L T A D O S EN LA FORMACIÓN PRODUCTORA

EN EL DIA NUM. SO DE INVECCION

AISLANTE	CALOR PERD. ESTRATOS ADY.	CALOR TOTAL PERDIDO	CALOR NETO EN	ACE LTE DESPLAZABLE
(Pg)	(Stu/hr)	[1]	(Btu/hr)	[B1/dka]
0.000	739648.69	33.82	8685653.00	291,450
0.125	913744.94	14.53	10730055.00	359,421
0.188	926771.00	13.16	10583020.00	364.506
0.250	934956.00	12.30	10979136.00	367.703
0.375	944785.31	\$1.28	11094561.00	371.542
0.500	950540.44	10.68	11162143.00	373.790
0.750	957070.44	10.00	11238825.00	376.342

ំន ្

CAPITULO VI

CONCLUSIONES

1. Unas cuantas décimas de pulgadas de aislante térmico en las tuberías de inyección, reduce hasta más del 25 % las pérdidas de calor. El ahorro diario que esto representa es alrededor de 10 a 14 barriles de combustible líquido^{*}, dependiendo del diámetro de la tubería, tipo y espesor de aislante, niveles de temperatura y condiciones de operación.

2. Al incrementar el espesor del aislante térmico, se reducen las pérdidas de calor. Sin embargo, esa reducción ocurre en forma exponencial: ésto quiere decir, que las pérdidas de calor no van a ser notablemente disminuidas, aún con un gran incremento de espesor de aislante térmico. Así pues, se puede obtener un espesor óptimo.

3. Es importante que la inyección de vapor se realice a altos gastos: para mantener una buena calidad del vapor en el fondo del pozo. Pero, también es importante que la presión del fluido de inyección sea la adecuada (en la cual el fluido contenga la mayor cantidad de calor latente de vaporización). Estas variables, gasto y presión, pueden combinarse para encontrar la relación óptima: eligiendo el diámetro de la tubería del sistema de inyección.

4. El coeficiente total de transferencia de calor U_{ie} , prácticamente permanece constante para todo el sistema vertical de inyección, sim embargo, existen otros parámetros (como la temperatura) que si se ven influenciados por la profundidad del pozo y deberán de tomarse en cuenta para estimar las pérdidas de calor.

^{*} Para los datos del ejemplo, tomando en cuenta que un barril de combustible líquido produce 13-14 Bls. de vapor con 80 % de calidad a una presión de 680-700 psia.⁽¹¹⁾

5. Es recomendable que la inyección de vapor se realice por la TP y, además, ésta debe estar aislada para evitar fallas mecánicas en la TR debido a los esfuerzos de origen térmico. En este sentido la temperatura en la TR se reduce hasta en un 35 %, con tan sólo 1/8 de pulgada de aislante térmico (para datos del ejemplo).

6. El programa de cómputo que aquí se presenta, ayuda a visualizar en forma muy clara el comportamiento del proceso de inyección de vapor, y permite elegir agilmente el diseño del sistema de inyección.

APENDICE A

PROPIEDADES FISICAS

Temperatura de saturación del agua:

T,=115.1P.225

T °F

P lb/Pg²

Viscosidad del agua:

 $\mu = \frac{2.185}{.04012T + .0000051547T^2 - 1}$

μ ср

T °F (T > 200 °F)

Calor latente de vaporización del agua:

L=1318P-.08774

 $L=898.2e^{-3.224\times10^{-4}p}$

L Btu/ib

P lb/Pg²

Entalpía del agua:

h=91P-2574

Calidad del vapor:

$$X = (H_t - H_f) \frac{100}{H_{ft}}$$

X %

H Btu/lbm

Volúmen específico del vapor:

para todas las presiones

$$V = \frac{X}{100} V_{*} + (1 - \frac{X}{100}) V_{w}$$

para presiones bajas

$$V = \frac{X}{100} V_{,}$$

- V Pie3/lb
- X %

Factor de volúmen del vapor:

$$B_g = .00504 \frac{ZT}{P}$$

B, bl/Pie³

T°R

(A.5)

(A.6)

(A.7)

(A.8)

P lb/Pg²

Compresibilidad del vapor:

$$C_{\mathbf{g}} = \frac{1}{p}$$

C_g volúmen/volúmen-lb/Pg² Viscosidad y densidad del vapor:

 $\mu = [88.02 + .32277 + 2.135 \times 10^{-4}7^{2} - \rho(1858 - 5.907)] \frac{1}{10^{4}}$

- μ ср
- т °С
- ρ gr/cm³
- P lb/Pg²

Entalpía del vapor saturado:

$$H_g = H_f + H_{fg}$$

para 100 % vapor

$$H_g = H_f + \frac{X}{100} H_{fg}$$

para vapor húmedo

Conductividad térmica del vapor:

 $K = 10^{-4}(176 + .587T + 1.04 \times 10^{-3}T^2 - 4.51 \times 10^{-2}T^3)$

(A.10)

(A.11)

(A.13)

(A.14)

(A.15)

K Btu/hr-pie-°F

T ⁰F

Conductividad térmica del aceite:

K=.0677(1-.0003(T-32))/p,

K Btu/hr-pie-°F

T ⁰F

p, densidad relativa del aceite.

Conductividad térmica del gas:

 $K = \mu(C_p + 2.48/M)$

K Btu/hr-pie-°F

M Peso molecular

μ ср

C, Btu/lb-°F

Capacidad calorífica de las rocas:

$$M = (1 - \phi)(\rho C)_m + \phi \left[\frac{S_o(\rho C)_o}{B_o} + \frac{S_g(\rho C)_g}{B_g 5.61} + \frac{S_w(\rho C)_w}{B_w}\right]$$

M Btu/pic3-°F

 ρ lb/pie³ @ C.S., $\rho_m = 165$ para la mayoría de las rocas

C Btu/lb_m-°F (Fig A.49)

(A.17)

(A.18)

Conductividad térmica para areníscas consolidadas:

 $K = .340 p - 3.2 \phi + .530 k^{.10} + .013 F - .031$

- K Btu/hr-pie-°F
- ρ densidad del grano, gr/cm³
- φ porosidad, frace.
- k permeabildad, md
- F factor de resistividad de la formación

		Capacidad	Difusividad
	Temperatura	Calorífica	Térmica
Material	°F	Btu/lb _m -°F	pie²/hr
Aislante Si	100	0.205	0.012
Asbesto	800	0.25	0.01
Concreto	68	0.21	0.0187-0.0270

TABLA A.1 PROPIEDADES TERMICAS DE ALGUNOS MATERIALES NO METALES

Metal	Temperatura °F	Emisividad
Aluminio		
No pulído	400 a 1,100	0.11 a 0.19
Pulído	400 a 1,100	0.04 a 0.08
Acero		
Pulído	350 a 1,200	0.05 a 0.30
No pulído	400 a 1,100	0.75 a 0.95
Inoxidable	75 a 210	0.07 a 0.30

TABLA A.2. EMISIVIDADES APROXIMADAS DE ALGUNOS METALES

	Conductividad Térmica			
Material	Btu/hr-pie-°F			
Acero	25.0			
Aislante (silicato)	0.02 a 0.06			
Cemento				
Húmedo	0.5 a 0.6			
Seco	0.2 a 0.4			

TABLA A.4. CONDUCTIVIDAD TERMICA DE ALGUNOS MATERIALES DEL POZO

° API	DENSIDAD RELATIVA	Lb/gal	
10	l	8.328	
15	0.965	8.044	
20	0.934	7.778	
25	0.904	7.529	
30	0.876	7.296	
35	0.849	7.076	
40	0.825	6.870	
45	0.802	6.675	
50	0.779	6.490	
55	0.758	6.316	
60	0.740	6.167	

TABLA A.5 DENSIDAD DEL ACEITE

	14.7 lb/pg ²		500 lb/pg ²		1500 lb/pg ²		
MUESTRA	seco	agua	gas	agua	gas	agua	gas
areníscas	34	34	34	34.1	34.1	34.9	34.3
Iutitas	39.6	39.6	39.6	39.6	39.6	40	39.7
arcillas	35.4	35.4	35.4	35.5	35.5	36.2	35.7

TABLA A.3 CAPACIDADES CALORIFICAS DE ROCAS SATURADAS

1.1

APENDICE B

VARIACION DE LAS PROPIEDADES DEL VAPOR

VARIACION DE LA PRESION Y LA CALIDAD DEL VAPOR

ø

Los cambios que ocurren en las propiedades del vapor en su recorrido hacia la formación, quedan definidos por las siguientes ecuaciones⁽¹⁷⁾:

$$dQ = dH - \frac{gdZ}{g_s J} + \frac{vdv}{g_s J} - \frac{dW_s}{J}$$
(B.1)

$$-VdP = -\frac{gdZ}{g_c} + \frac{vdv}{g_c} + dF_r$$
(B.2)

De las ecuaciones anteriores, considerando que el vapor no efectúa ni recibe trabajo, que $g = g_c y$ que v = GV, se tiene:

$$dQ = -\frac{dZ}{J} + \frac{G^2}{gJ} V dV + dH$$
(B.3)
$$-V dP = -dZ + \frac{G^2}{gJ} V dV + dF$$

(B.4)

Mediante la solución simultánea de las ecuaciones B.3 y B.4 se obtienen los cambios de la presión y la calidad del vapor con la profundidad. Puesto que la variación de la entalpía y del volumen específico del vapor estan en función de la presión y de la calidad:

$$H=\phi_1(P,X) \qquad \qquad V=\phi_2(P,X)$$

derivando:

$$dH = \frac{\delta H}{\delta X} dX - \frac{\delta H}{\delta P} dP \tag{B.5}$$

$$dV = \frac{\delta V}{\delta X} dX + \frac{\delta V}{\delta P} dP$$
(B.6)

Por otro lado, dado que el modelo tambien toma en en cuenta la variación de la presión por efectos debidos a la fricción, se tiene:

$$dF_{r} = \frac{fG^2 V^2 dZ}{2gDi}$$
(B.7)

Dividiendo entre dZ las ecuaciones B.3 y B.4 y sustituyendo las Ecs. B.5, B.6 y B.7:

$$\frac{dQ}{dZ} = \frac{G^2 V}{Jg} \left[\frac{\delta V}{\delta X} \frac{dX}{dZ} + \frac{\delta V}{\delta P} \frac{dP}{dZ} \right] + \frac{\delta H}{\delta X} \frac{dX}{dZ} + \frac{\delta H}{\delta P} \frac{dP}{dZ} - \frac{1}{J}$$
(B.8)

$$\frac{VdP}{dZ} = -1 + \frac{G^2 V}{g} \left[\frac{\delta V}{\delta X} \frac{dX}{dZ} + \frac{\delta V}{\delta P} \frac{dP}{dZ} \right] + \frac{fG^2 V^2}{2gDi}$$
(B.9)

Despejando de (B.9) a dX/dZ, sustituyendola en (B.8) y despejando de ahi a dP/dZ se obtiene finalmente la Ec. 26.

De la Ec. B.4 se tiene:

$$\frac{G^2}{g}VdV = -VdP - dF_r + dZ$$

sustituyendo (B.10) en (B.3):

$$dH = dQ + \frac{VdP}{J} + \frac{dF_r}{J}$$

dividiendo (B.11) por dZ y sustituyendo dH de (B.5), (B.6) y (B.7) queda:

$$\frac{\delta H}{\delta X} \frac{d X}{d Z} + \frac{\delta H}{\delta P} \frac{d P}{d Z} = \frac{d Q}{d Z} + \frac{Y}{J} \frac{d P}{d Z} + \frac{f G^2 V^2}{2J_g D i}$$
(B.12)

ദ്ര.10)

Despejando dP/dZ de (B.8) y (B.12), igualando y resolviendo para dX/dZ se tiene la siguiente expresión:

$$\frac{dX}{dZ} = \frac{\left(\frac{dQ}{dZ} + \frac{1}{J}\right)\left(\frac{V}{J} - \frac{\delta H}{\delta P}\right) + \left(\frac{\delta H}{\delta P} + \frac{G^2 V}{Jg} \frac{\delta V}{\delta P}\right)\left(\frac{dQ}{dZ} + \frac{fG^2 V^2}{2JgDi}\right)}{\left(\frac{\delta H}{\delta X} + \frac{G^2 V}{Jg} \frac{\delta V}{\delta X}\right)\left(\frac{V}{J} - \frac{\delta H}{\delta P}\right) + \left(\frac{\delta H}{\delta P} + \frac{G^2 V}{Jg} \frac{\delta V}{\delta P}\right)\frac{\delta H}{\delta X}}$$
(B.13)

dividiendo entre

$$\frac{\delta H}{\delta P} + \frac{G^2 V}{J_g} \frac{\delta V}{\delta P}$$

el numerador y el denominador de (B.13) se obtiene finamente la ecuación 27.

PERDIDAS DE CALOR

dQ, Ec. B.1, define la cantidad de calor que pierde una libra de masa de vapor al circular por una longitud dZ de tubería. Considerando que el vapor no efectúa trabajo al exterior y que:

 $wdv = \frac{1}{dv^2}$

8=8,

v≈GV

La ecuación B.1 queda:

$$dQ = dH - \frac{dZ}{J} + \frac{1}{2gJ} d(GV)^2$$

integrando esta útima ecuación entre la superficie y la profundidad Z, se tiene:

$$Q]_0^t = H]_0^t - \frac{Z}{J} + \frac{G^2}{2gJ} V^2]_0^t$$

como:

y por la Ec. 37 :

 $H_{01} - H_{013} = 91P^{-2574} + 13.18XP^{-08774} - 91P_{inv}^{-2574} + 13.18X_{inv}P_{inv}^{-08774}$

finalmente se tiene el calor total perdido a una profundidad, Z

$$Q = \frac{91}{p^{-2574}} + \frac{13.18X}{p^{.08774}} + \frac{G^2}{2gJ} (V_{02}^2 - V_{003}^2) - \frac{Z}{J} - \frac{91}{P_{10}^{-2574}} - \frac{13.18X_{log}}{P_{10}^{-08774}}$$

METODO DE SOLUCION DE LAS ECUACIONES dP/dZ y dX/dZ

La solución de este sistema de dos ecuaciones diferenciales implica la utilización de un método numérico, puesto que no es posible resolverlas en forma analítica. Por lo que sólo se encuentra una aproximación a su solución verdadera, cuya precisión depende del de la subtrutina numérica utilizada. En este trabajo se emplea el método de Milne⁽¹¹⁾ predictor-corrector y el de Runge-Kutta^(1,11) 4° orden. El procedimiento es el siguiente:

Se divide la longitud de pozo, desde la superficie hasta el punto de la formación donde se ha de inyectar el vapor en un número finito N de intervalos iguales ΔZ , en cada uno de los cuales se encontrará una solución apoyada en el punto anteior.

El método de Milne requiere información previa de los tres primeros intervalos, para lo cual se utiliza Runge-Kutta.

Para i = 0, 1, 2, 3

 $K_{\rho i} = f_1(Z_{\rho}P_{\rho}X_{\rho})$

 $K_{xl} = f_2(Z_p P_p, X_l)$

$$\begin{split} K_{p2} &= \Delta Z f_1(Z_i + \frac{1}{2} \Delta Z_i P_i + \frac{1}{2} K_{p1}, X_i + \frac{1}{2} K_{z1}) \\ K_{s2} &= \Delta Z f_2(Z_i + \frac{1}{2} \Delta Z_i P_i + \frac{1}{2} K_{p1}, X_i + \frac{1}{2} K_{z1}) \end{split}$$

$$\begin{split} K_{p3} &= \Delta Z f_1(Z_t + \frac{1}{2} \Delta Z_t P_t + \frac{1}{2} K_{p2}, X + \frac{1}{2} K_{z2}) \\ K_{z3} &= \Delta Z f_2(Z_t + \frac{1}{2} \Delta Z_t P_t + \frac{1}{2} K_{p2}, X_t + \frac{1}{2} K_{z3}) \\ K_{p4} &= \Delta Z f_1(Z_t + \Delta Z_t P_t + \frac{1}{2} K_{p3}, X_t + \frac{1}{2} K_{z3}) \\ K_{z4} &= \Delta Z f_2(Z_t + \Delta Z_t P_t + \frac{1}{2} K_{p3}, X_t + \frac{1}{2} K_{z3}) \end{split}$$

posteriormente:

 $P_{i+1} = P_i + \frac{1}{6} (K_{pl} + 2K_{p2} + 2K_{p3} + K_{p4})$

$$X_{i+1} = X_i + \frac{1}{6} (K_{x1} + 2K_{x2} + 2K_{x3} + K_{x4})$$

Utilizando Milne predictor-corrector:

para i = 1,2,..., N-3

 $F_{p_i} = f_1(Z_p P_p X_i)$

 $F_{x_i} = f_2(Z_i, P_i, X_i)$

 $F_{P_{i+1}} = f_1(Z_{i+1}, P_{i+1}, X_{i+1})$

 $F_{x_{i+1}} = f_2(Z_{i+1}, P_{i+1}, X_{i+1})$

 $F_{p_{1,2}} = f_1(Z_{1,2}, P_{1,2}, X_{1,2})$

 $F_{x_{i+1}} = f_2(Z_{i+2}, P_{i+2}, X_{i+2})$

Predicción de P(z) y X(z) en el siguiente punto:

 $P_{p_{i,3}} = P_{i-1} + \frac{4}{3} \Delta Z (2F_{p_i} - F_{p_{i-1}} + 2F_{p_{i-1}})$

 $X_{p_{i,3}} = X_{i-1} + \frac{4}{3} \Delta Z (2F_{x_i} - F_{x_{i,1}} + 2F_{x_{i,2}})$

 $F_{p_{i+3}} = f_1(Z_{i+3}, P_{p_{i+3}}, X_{p_{i+3}})$

 $F_{x_{l,3}} = f_2(Z_{l+3}, P_{p_{l+3}}, X_{p_{l+3}})$

corrección:

 $P_{c_{i,1}} = P_{i+1} + \frac{\Delta Z}{3} (F_{p_{i+1}} + 4F_{p_{i+2}} + F_{p_{i+3}})$

 $X_{r_{i+1}} = X_{i+1} + \frac{\Delta Z}{3} (F_{x_{i+1}} + 4F_{x_{i+2}} + F_{x_{i+3}})$

Valores finales:

 $P_{i+3} = P_{c_{i+3}} + \frac{9}{121} (P_{p_{i+3}} - P_{c_{i+3}})$

 $X_{i+3} = X_{c_{i+3}} + \frac{9}{121}(X_{p_{i+3}} - X_{c_{i+3}})$

NOMENCLATURA Y UNIDADES

PROGRAMA

GENERAL

alpha	Difusividad térmica de la formación, pie ² /hr	α
beta	Coeficiente de expansión térmica volumetrica, °R-1	β
Ca	Calor específico del aire, Btu/ib-°F	C,
Can	Calor específico del fluido Esp. anular, Btu/lb-°F	C
Cw	Calor específico del agua, Btu/lb-°	C,
dce	Diámetro externo de la tubería de revestimiento, pg	D
dci	Diámetro interno de la tubería de revestimiento, pg	D _{ci}
deltaz	Incremento en la profundidad, pies	ΔZ
DFF	Dato factor de fricción, Adim.	
DNRe	Dato número de Reynolds, Adim	
drins	Espesor del aislante, Pg	Δr _{in} ,
DRug	Dato rugosidad relativa de la tubería, Adim.	
dse	Diámetro externo de la línea superficial, pg	D
dsi	Diámetro interno de la línea superficial, pg	D,
dte	Diámetro externo de la tubería de producción, pg	D⊭
dti	Diámetro interno de la tubería de producción, pg	Du
DTs	Decremento de temperatura fluido-ambiente, °F	ΔТ,
Eci	Emisividad térmica del int. TR, Adim.	£ri

Eins	Emisividad térmica del aislante, Adim.	¢ _{ins}
Ete	Emisividad térmica del ext. TP, Adim.	¢ _{tr}
Fci	Factor geométrico de emisividad, Adim.	F _{ei}
FF	Factor de fricción, Adim.	f
A	función transitoria de Ramey, Adim.	f(t)
g	Constante aceleración de la gravedad, pie/seg ²	g,
Gr	Número de Grashof, Adim.	Gr
Grav	Constante aceleración de la gravedad, pie/hr ²	g
h	Espesor de la formación, pies	h
hc	Coeficiente de transferencia de calor por	
	conducción y convección, Btu/hr-pie2-°F	h _e
heat	Porcentaje de calor perdido a estratos adyacentes	
Hſ	Entalpía del líquido saturado (calor sensible),	
n den National de la composition National de la composition de la composition	Btu/lb _m	Hr
Hfg	Cambio de entalpía (calor latente), Btu/ibm	H _{fg}
Нg	Entalpía del vapor saturado (calor total), Btu/lb _m	H,
hr	Coeficiente de transferencia de calor por radiación,	
	Btu/hr-pic ² -°F	h,
Je	Equivalente mécanico del calor, 778 lb-pie/Btu	1
Ka	Conductividad térmica del aire, Btu/hr-pie-°F	K,
Kcem	Conductividad térmica del cemento, Btu/hr-pie-°F	К

PROGRAMA		GENERAL
Ke	Conductividad térmica de la tierra, Btu/hr-pie-°F	K,
Khc	Conductividad térmica equivalente en el espacio anular,	
	Blu/hr-pic-°F	Кы
Kins	Conductividad térmica del aislante, Btu/hr-pie-°F	K _{ins}
Ktub	Conductividad térmica de la tubería, Btu/hr-pie-°F	K _{tub}
LI	Longitud de las líneas superficiales, pies	L
L2	Longitud del pozo, pies	Ľ
M	Capacidad calorífica de la tierra, Btu/pie ³ -°F	М
mua	Viscosidad del fluido en el espacio anular,	
	lb/pie-seg	μ_{an}
mus	Viscosidad del vapor seco, cp	μ,
muw	Viscosidad del agua, cp	μ_{w}
muws	Viscosidad del vapor húmedo, cp	μ_{w_1}
NRe	Número de Reynolds, Adim.	Re
NZ	Número de intervalos	
P	Presión del vapor, Ib/pg,	Р
Pi	Presión de inyccción de vapor, lb/pg ₂	Pioy
por	Porosidad de la formación, Porcent.	φ
Pr	Número de Prandtl, Adim.	Pr
Qad	Calor perdido a estratos adyacentes, Btu/hr	Q
Oi	Gasto de invección de vapor Bl/día	

Qm	Gasto másico de vapor, lb _m /pie ² -seg	G
Qpc	Porcentaje de calor perdido	
Qpcs	Porcentaje de calor perdido en superficie	
Qpci	Porcentaje total de calor perdido	1
Qpcv	Porcentaje de calor perdido en el pozo	
Qper	Calor total perdido, Blu/hr	Q
QRa	Calor total perdido en líneas enterradas, Btu/hr	Q
Qlot	Calor total a la salida del generador, Btu/hr	Q
Qwh	Calor en la cabeza del pozo, Btu/hr	Q
rce	Radio externo de la tubería de revestimiento, pies	r _{ce}
rci	Radio interno de la tubería de revestimiento, pies	r _{ci}
rh	Radio del pozo, pies	r _b
rhoa	Densidad del aire, lb/pie ³	ρ.
rhoan	Densidad del aire, lb/pie ³	ρ_{*0}
rhov	Densidad del vapor, lb/pie ³	ρ,
rins	Radio externo del aislante, pies	r _{in,}
rse	Radio externo de la línea superficial, pies	r,,
rsi	Radio interno de la línea superficial, pies	۲ _{1i}
rte	Radio externo de la tubería de producción, pies	r _{ic}
rti	Radio interno de la tubería de producción, pies	T _u
Rug	Rugosidad relativa de la tubería. Adim.	

Soi

Sor

Ta

Tav

Tci.

Te

Tf

Th

Tti

Τv

Tys

Ute

Va

Vs

Constante de Stefan-Boltzman, 1.713X10* sigma Btu/pie2-hr-°R4 Saturación inicial de aceite, Porcent. Sai Saturación residual de aceite, Porcent. S, Tiempo, días Temperatura ambiente, °F Т, Temperatura promedio, °F T.v Temperatura en el interior de la TR, °F Ta Temperatura de la formación, °F Т, Temperatura del fluido o vapor, °F T_{i} Temperatura en la interfase cemento-formación, °F T. Temperatura en el aislante, °F Tins Т., Temperatura en el interior de la TP, °F Ты Temperatura del fluido o vapor, °F Τ, Temperatura de cedencia de la TR, F Τ,, Coeficiente total del transferencia de calor. Btu/hr-pie2-°F U⊭. Velocidad del aire, millas/hr ٧. Vcs Volumen específico del vapor @ C.S., pie3/lb V_{etci} Volumen específico del vapor, pie3/lb ٧. ٧w Volumen especifico del agua, pie³/lb v...

Vz	Volumen específico del vapor a la prof. Z, pie ³ /	b	٧ _{Q1}
x	Calidad dei vapor, Adim		x
Xi	Calidad del vapor de inyección Adim.		X _{sey}

REFERENCIAS

- 1. Burden, Faires: Numerical Analysis, Wadsworth International (1981) E.U.
- 2. Butler R.M.: Thermal Recovery Of Oil And Bitumen, Prentice Hall Inc. (1991) 360-370
- 3. Carcoana A.: Applied Enhanced Oil Recovery, Prentice Hall (1992) U.S.A., Capt. 2
- Carslaw, H.S. and Jaeger J.C.: Conduction of Heat in Solids, Oxford U. Press Amen House. (1959) London. 61
- Carter G. And Smith D.K.: Properties Of Cementing Compositions At Elevated Temperatures, Trans. AIME 213 (1958) 227
- Craft B.C. And Holden W.R.: Well Design Drilling And Production, Prentice Hall Inc. (1962) 101-146
- Donaldson E.C. And Chilingarian G.V.: Enhanced Oil Recovery, II Processes And Operations, Elsevier Science Pub. Co. Inc. (1989)
- Earlougher R.C.Jr.: "Some Practical Considerations In The Design Of Steam Injection Wells ", J. Pet. Tech. (Jan. 1969) 79-86
- 9. Farouq Ali: Oil Recovery by Steam Injection, Bradford Pa. Producers (1970). U.S.A.
- Hearn C.C.: " Effect Of Latent Heat Content Of Injected Steam In A Steam Drive ", J.Pet. Tech. (Apr. 1969) 374-375
- 11. Iriarte V. Balderrama R.: Métodos Numéricos, Ed. Trillas-FI, UNAN, (1990) Mex.
- Katz D.L.: Handbook of Natural Gas Engineering, McGraw-Hill Book Co. (1959).
 U.S.A.

- Lopez C.F.F. y Rivera J.J.: Simulación matemática de los mecanismos de transferencia de calor hacia las formaciones que atraviesan los pozos inyectores de vapor, Inst. Mex. Pet. Publicación 72BH/089 (1971)
- 14. McAdams W.H.: " Heat Transmission ", McGraw-Hill Book Co. Inc. (1954) U.S.A.
- Morales Jesús: "Estimulación con vapor en el campo Cacalilao ", Ingeniería Petrolera (Mayo de 1969) 5-19
- Marx J.W. And Langenheim R.H.: " Reservoir Heating By Hot Fluid Injection ", Trans. AIME 216 (1959) 312
- Pacheco E.F. And Farouq Ali: "Wellbore Heat Losses And Presure Drop In Steam Injection ", J. Pet. Tech. (Feb. 1972) 139-144
- Prats M.: Thermal Recovery, Soc. Pet. Eng. Of AIME Monogr. (1982) Dallas, Tx. 126-155, 202-237
- 19. Ramey, H. J. Jr.: "Wellbore Heat Transmission ", J. Pet. Tech. (Apr. 1962), 427-435
- Reyes Santos y Rodríguez Fernando: Alternativas de inyección de vapor en el campo Moloacán, Proyecto D-2228, Inst. Mex. del Petróleo. (Sept. 1989)
- 21. Rohsenow, W. M.: Handbook of Heat Transfer, McGraw-Hill (1973), N.Y, U.S.A.
- Rubenshteim L.I.: " The Total Heat In Injection Of A Hot Liquid Into A Stratum " Neft I Gas (1959)
- 23. Saucier R.J.: " Considerations in Gravel Pack Design ", J. Pet. Tech. (1974) 205-212
- Schumacher M.M.: Enhanced Recovery of Residual and Heavy Oils, Energy Technology Review 59, Noyes Data Co. (1980), U.S.A. 71

- 25. Smith C.R.: Mechanics Of Secondary Oil Recovery, Robert E. Krieger Pub. Co. Inc. (1966) 424
- Somerton W.H.: Thermal Properties And Temperature Related Behavior Of Rock-Fluid Systems, Elsevier Science Pub. Co.Inc. (1992)
- Teran de la G, Benito y Noguerón, T., David.: " Here's How to Find Pressure Drop in Steam Lines ", Oil and Gas Journal (May 1971) 107-109
- Van Poollen H.K. And Associates, Inc.: Enhanced Oil Recovery, Penn Well Books (1980) Capt. 2
- Willhite G.P.: " Overall Heat Transfer Coefficient In Steam And Hot Water Injection Wells ", J. Pet. Tech. (May. 1967) 607-615
- Willhite G.P. And Dietrich W.K.: " Design Criteria For Completion Of Steam Injection Wells ", J. Pet. Tech. (Jan. 1967) 15-21
- White P.D. And Moss J.T.: Thermal Recovery Methods, Penn Well (1983) Tulsa, Ok. Caps. 1 y 6
- 32. Catálogo Vitroform: Aislamiento Preformado Para Tuberías. (1992)