

00575 J UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

ESTUDIO DE LA ALTERACION ESTRUCTURAL DE LA ZEOLITA TIPO 4A FLUORADA

T E S I S

OUE PARA OBTENER EL GRADO DE MAESTRA EN QUIMICA INORGANICA -CERAMICA E P R S Ε N т : I.Q. NORMA ANGELICA SANCHEZ FLORES ASESOR: DR. JOSE м. SANIGER BLESA MEXICO, D. F.

1993

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

En base al interés que se ha mostrado en los últimos años por la búsqueda de zeolitas con nuevas propiedades catalíticas, basadas en la desaluminización de las mismas, se ha realizado el presente trabajo cuyos temas principales son dos:

(a) el comportamiento del flúor cuando interactúa con la zeolita,

(b) el estudio estructural de la zeolita tipo 4A después de haber interactuado con el fluor.

Para el desarrollo del tema del inciso (a) se utilizaron los datos obtenidos por caída de presión y por un mótodo analítico, determinación potenciomótrica del flúor en la zeolita ya fluorada haciendo uso del electrodo ion selectivo.

Para el análisis del inciso (b) se obtuvieron patrones por Difracción de Rayos X y por Espectroscopía Infrarroja. De los datos obtenidos por estás técnicas se determinó, principalmente, la conservación de cristalinidad de la zeolita y el tipo de alteración estructural después de haber interactuado con el flúor.

De los resultados obtenidos, es alentador, concluir que la zeolita tipo 4A después de haber interactuado con el flúor, en forma directa y bajo condiciones determinadas, mantiene en buen grado su cristalinidad, aún cuando penetra una cantidad significativa de fluor. Por lo tanto, es posible que pueda llegar a presentar alteración de sus sitios ácidos y con ello llegar a tener nuevas propiedades.

INDICE

INTRODUCCION

CAPITOLO I. LA ZEOLITA TIPO A.
1.1 LOS SILICATOS 1
1.2 LAS ZEOLITAS
1.3 DESCRIPCION ESTRUCTURAL. ZEOLITA TIPO A 6
1.4 EL METODO DE POLVOS EN EL ESTUDIO DE LAS ZEOLITAS.13
1.5 ESTUDIO ESTRUCTURAL DE ZEOLITAS POR INFRARROJO15
1.6 PROPIEDADES DE LA ZEOLITA A19
1.7 APLICACIONES
CAPITULO 2. METODOS ANALITICOS PARA LA DETERMINACION
DE FLUOR.
2.1 PROPIEDADES GENERALES DEL FLUOR22
2.2 METODOS ANALITICOS PARA LA DETERMINACION
DEL FLUOR22
2.3 METODOS DE DESCOMPOSICION DE MUESTRAS25
2.3.1 DESCOMPOSICION DE MUESTRAS POR FUSION26
2.4 FUNDAMENTOS DE LA DETERMINACION DE FLUOR CON
UN ELECTRODO ION SELECTIVO
CAPITULO 3. FLUORACION DIRECTA DE LA ZEOLITA TIPO 4A
3.1 FLUORACION DIRECTA DE LA ZEOLITA TIPO 4A33
3.1.1 METODOLOGIA DE LA FLUORACION
3.1.2 RESULTADOS
3.2 DETERMINACION DE FLUOR EN ZEOLITAS FLUORADAS37
3.2.1 METODOLOGIA39
3.2.2 RESULTADOS

CAPITULO 4. ESTUDIO DE LA ZEOLITA TIPO 4A FLUORADA
POR DIFRACCION DE RAYOS X.
4.1 INTRODUCCION
4.2 DETERMINACION DEL GRADO DE CRISTALINIDAD43
4.3 DETERMINACION DE PARAMETROS DE RED DE LA
ZEOLITA TIPO 4A48
CAPITULO 5. ESTUDIO DE LA ZEOLITA TIPO 4A FLUORADA
POR ESPECTROSCOPIA INFRARROJA.
5.1 LA ESPECTROSCOPIA INFRARROJA
5.2 METODOLOGIA EXPERIMENTAL53
5.3 RESULTADOS
CAPITULO 6. ANALISIS DE RESULTADOS Y CONCLUSIONES.
6.1 ANALISIS DE RESULTADOS
6.2 CONCLUSIONES76
BIBLIOGRAFIA

INTRODUCCION

Las zeolitas son aluminosilicatos cristalinos cuyo armazón está formado por tetraedros λlo_4 unidos a tetraedros Sio_4 . Generalmente, se acepta que las unidades estructurales que contienen aluminio producen los llamados "sitios ácidos" los cuales, influyen en la actividad catalítica de las zeolitas. Estos mismos sitios ácidos son también responsables en una o más formas de la preferencia adsortiva de la mayoría de las zeolitas por molóculas polares fuertes, de aquí su carácter hidrofílico.

En las zeolitas sintóticas, la relación molar Si/Al, esencialmente se determina por la naturaleza de los materiales de partida y de las cantidades relativas de ellos durante la preparación de las zeolitas. Sin embargo, existen limites definidos en la relación máxima Si/Al que se puede obtener en cada grupo de zeolitas por lo cual, se han desarrollado diversas técnicas post-síntesis para aumontar dicha relación.

Se han propuesto un gran número de técnicas para eliminar el aluminio estructural de las zeolitas y así crear estructuras de redes deficientes en aluminio. Con dicha deficiencia disminuirían los sitios ácidos y, consecuentemente, la hidrofilicidad del material lo que originaría una alteraración de su actividad catalítica.

Sin embargo. algunas veces las técnicas empleadas son demasiado rigurosas para permitir una desaluminización suficiente que altere significativamente ya sea la hidrofilicidad o la actividad catalítica, antes de causar el colapso de la red cristalina total. En otros casos, la estructura de la red de la zeolita original tiene integridad suficiente para que la desaluminización permita que se dé un rango notable de hidrofobicidad y su consiguiente aumento en estabilidad térmica e hidrotérmica.

Entre las técnicas llevar empleadas para а cabo la desaluminización es frecuente el uso de compuestos fluorados (NH,F, HF, etc), mientras que el fluor elemental (F_) se ha utilizado poco. Por lo cual, en el laboratorio de química del Centro de Instrumentos de la UNAM se pensó en está posibilidad, ya que se cuenta con el sistema necesario para realizar la fluoración directa de cualquier material. La posibilidad de llevar a cabo la fluoración directa de una zeolita como alternativagen el estudio de la desaluminización, fue por tanto sumamente atrayente.

La zeolita que se eligió para la realización de este estudio fue la 4A ya que es la que presenta la relación Si/Al mayor, además de tenerse disponibilidad en su uso.

CAPITULO 1.

LA ZEOLITA TIPO A

1.1. LOS SILICATOS. (3,4)

El silicio en la mayor parte de sus compuestos estables y en condiciones ordinarias, forma cuatro enlaces tetraédricos. El enlace Si-Si se presenta en muy pocas moléculas simples, como en los silanos, siliciuros, etc. Mientras que la química de los compuestos complejos de silicio se basa en gran parte en la unión de átomos de Si por intermedio de átomos de O, formando tetraedros SiO₄. De aquí que las series más amplias de poliedros unidos aparecen en la química del silicio.

La descripción de las estructuras cristalinas en base al uso de poliedros, se ha desarrollado con el fin de simplificar estructuras complejas y de poder visualizarlas en forma más sencilla.

En los silicatos, usualmente los tetraedros SiO₄ se unen unos a otros por compartición de vértices. Dependiendo de la forma en que se unan estos grupos surge la clasificación de los silicatos (Fig.1):

a) Cuando un átomo de O de cada SiO₄ es compartido con otro SiO₄, se obtiene el ion pirosilicato $Si_2O_2^{-6-}$ con estructura insular.

b) Si dos átomos de O de todos y cada uno de los SiO₄ son compartidos con otros SiO₄, resultan anillos cerrados o cadenas infinitas del tipo $(SiO_4)^{2n}$.

c) Cuando tres átomos de O de cada SiO₄ son compartidos con otros tetraedros SiO₄, se obtienen sistemas de composición $(Si_2O_5)_n^{2n-1}$ que pueden ser finitos o infinitos en una, dos o tres dimensiones.

d) La compartición de todos los vértices de cada uno de los tetredros SiO₄ conduce a armazones tridimensionales (3D) infinitos.

Cuando algunos de los silicios se sustituyen por aluminio el armazón queda cargado negativamente, lo cual nos lleva a la estructura de los llamados aluminosilicatos cristalinos o zeolitas.

1.2. LAS ZEOLITAS.

Cuando se sustituye el aluminio por el silicio en los armazones 3D de los silicatos se produce una deficiencia de carga eléctrica que puede compensarse por la presencia de algún ion positivo (generalmente R^* o R^{2^*}) dentro de los intersticios de las estructuras, lo que da lugar a las estructuras de las zeolitas.

Las zeolitas comprenden un gran número de aluminosilicatos con diferentes topologías de armazón y un número infinito de posibles combinaciones de ellos.

El término topología de armazón se refiere al arreglo geométrico en un espacio tridimensional de la unidad estructural tetraédrica básica. Al respecto, Meier (5) propuso la existencia de unidades finitas de armazones tetraédricos, a las cuales les llamó unidades de construcción secundaria (SBU) (las unidades primarias corresponden a los tetraedros AlO₄ y SiO₄ en los cuales los átomos de Si o de Al se conocen como átomos T por ser los átomos centrales en los tetraedros).

Los armazones de las zeolitas se puede pensar que consisten de unidades finitas en arreglos infinitos (cadenas o capas). Las unidades finitas (SBU), que se han encontrado, presentes en los armazones tetraédricos se muestran en la Fig. 2. Estas unidades contienen hasta 16 átomos-T y se derivan de la suposición de que todo el armazón está hecho de por lo menos un sólo tipo de SBU. Por otra parte, una celda unitaria siempre contiene un número entero de SBU.

з

Debido a que los parámetros a definir para describir la estructura de una zeolita son diversos, actualmente, se utiliza una nomenclatura para cada parámetro(5) la cual se detalla a continuación:

A. DENSIDAD ESTRUCTURAL.

La densidad estructural (FD) se define como el número de átomos-T por cada 1000 $Å^3$. Este valor, obviamente, está relacionado con el volumen de poro pero no refleja el tamaño de su apertura.

B. CONFIGURACION EN LAZO (LOOP) DE ATOMOS-T.

La configuración en lazo es una gráfica simple que muestra como los 3 o 4 miembros de los anillos llegan a un átomo-T dado. Cuando en las gráficas se presentan líneas sólidas, óstas representan enlaces T-O-T, mientras que las líneas punteadas, indican enlaces T-O como los que se encuentran en armazones interrumpidos.

C. SECUENCIAS DE COORDINACION (CS).

En el armazón de una zeolita típica cada átomo T está unido a Ni=4 átomos-T como primeros vecinos, a través de los enlaces con los oxigenos. Estos primeros átomos T están unidos de la misma manera a N2 átomos-T como segundos vecinos. De forma similar, los segundos vecinos están unidos a Nº átomos-T como terceros vecinos, etc. De esta forma, la secuencia de coordinación se puede determinar para cada átomo T, quedando los siguientes Nk≤4 (3^{k-1}) intervalos: N₁≤4 N2512 N3≤36...

D. CANALES.

Para la descripción de los canales en los diversos armazones se ha adoptado una notación corta. Cada sistema de canales equivalentes se ha caracterizado por:

. la dirección del canal (en relación a los ejes del tipo de estructura),

. el número de átomos-T o átomos-O que forman los anillos y controlan la difusión a través de los canales, y

. el diámetro libre cristalográfico de los canales (Å).

Los valores del diámetro libre, dados en la descripción del canal y sobre el dibujo del anillo, se basan en las semejanzas atómicas del tipo de especies en el estado hidratado y en el radio iónico del oxígeno de 1.35 Å. Ambos valores, máximo y mínimo, están dados para aperturas no circulares. En algunos casos, los vectores de distancia interatómica correspondiente son sólo aproximadamente coplanares; en otros casos, el plano del anillo no es normal a la dirección del canal. Una inspección minuciosa del dibujo del armazón y de los anillos daría una evidencia cualitativa de estos factores.

El número de asteriscos en la notación indica si el sistema del canal es uni-, bi- o tridimensional. Sólo se consideran las aperturas mayores que las formadas por anillos de seis miembros. En la mayoría de los casos, las aperturas menores forman ventanas que conectan a cavidades mayores. La representación del sistema de canales interconectados es por una doble flecha ($\leftarrow \rightarrow$), mientras que una barra vertical (|) indica que no hay un acceso directo de un sistema de canal a otro.

1.3. DESCRIPCION ESTRUCTURAL. ZEOLITA TIPO A.

La zeolita A consiste básicamente de un armazón tridimensional de tetraedros SiO₄ y AlO₄(6). Los tetraedros se entrecruzan por la compartición de átomos de oxígeno de tal manera que la relación de los átomos de oxígeno y el número total de átomos de Al y Si es igual a dos, O/(Al+Si)=2. La electrovalencia de los tetraedros que contienen aluminio se balancea por la inclusión en los cristales de un catión (por ejemplo, de metal alcalino o de tierras raras) mientras que los espacios entre los tetraedros se ocupan por moléculas de agua.

El armazón de la zeolita A se genera colocando las unidades cúbicas 4-4 en el centro de las aristas de 12.3 Å de un cubo

(Fig.3) y un octaedro truncado en cada vártice del mismo (Fig.4).Los tetraedros (Si, Al)0, se encuentran en los vártices del octaedro truncado, el cual, de acuerdo con el teorema de Euler(n),contiene 8 caras hexagonales, 6 caras cuadradas, 24 vártices y 36 aristas. A este tipo de arreglo, se le conoce comunmente como unidad sodalita. Esto es, cada unidad sodalita contiene 24 iones (Si, Al) interconectados con 36 átomos de oxigeno.

En la zeolita A, estos octaedros están unidos en un arreglo cúbico por la unión de sus caras cuadradas, Fig. 5. Este arreglo produce unidades octaédricas truncadas centradas en las esquinas del cubo. Cada esquina del cubo está ocupada por un octaedro truncado (jaula β) encerrando una cavidad grande, la cual tiene un diámetro libre de 11.4 Å y un diámetro de entrada a la cavidad de 4.1 Å formado por anillos de 8 miembros. La relación Si/Al es de 1.0 y su fórmula empírica corresponde a: Na₂O:Al₂O₃:2SiO₂:4.5H₂O, lo cual nos lleva a la fórmula por celda unitaria (cu):

La descripción estructural detallada de la zeolita A la podemos apreciar en la Fig.6

Cuando la zeolita A se activa por calentamiento para eliminar el agua de hidratación de los canales de la zeolita, se tiene como resultado el entrelazamiento de los cristales con canales de dimensiones moleculares que ofrecen áreas superficiales muy grandes, lo cual permite que la zeolita se pueda utilizar para la adsorción selectiva de diversas molóculas.

Con respecto a su composición, la celda unitaria de la zeolita A contiene 24 tetraedros, 12 Alo, y 12 Sio,, además, cuando está totalmente hidratada, contiene 27 moléculas de agua.

FIG. 4 OCTAEDRO TRUNCADO O JAULA β

FIG. 5 ARMAZON DE LA ZEOLITA TIPO A(8).

La zeolita A hidratada contiene 12 iones sodio de los cuales 8 están localizados cerca del centro de los anillos de 6 sobre el eje del pliegue 3 interno en la jaula α . Esta posición se conoce como sitio I (Na₁). Los otros 4 iones sodio aparecen asociados con moléculas de agua en las jaulas $\alpha(9)$ (Fig.7).

Sin embargo, cuando la zeolita λ se deshidrata, los 8 iones sodio, Na, son desplazados por efecto de la deshidratación 0.4 Å dentro de la jaula α desde el centro de los anillos de 6:00. Tres iones sodio, Na₁₁, se encuentran en las jaula \bullet con desplazamiento de cerca de 1.2 Å desde el centro (:1). Los cationes Na₁₁, por bloqueo de la apertura, influyen en la adsorción de gases y vapores, esto es, regulan el tamaño de poro. El sodio restante, Na₁₁, ha sido localizado opuesto al anillo de 4 (Fig.8).

FIG. 7 POSICION DE LOS IONES SODIO EN LA ZEOLITA TIPO A Hidratada(9).

FIG. 8 POSICION DE LOS IONES SODIO EN LA ZEOLITA A DESHIDRATADA(12).

1.4 EL METODO DE POLVOS EN EL ESTUDIO DE LAS ZEOLITAS.

Una tócnica muy utilizada en el estudio de las zeolitas ha sido el mótodo de polvos de difracción de rayos X(18). Debido a que las zeolitas son sólidos cristalinos, presentan patrones de difracción de rayos X característicos(19), a partir de los cuales se puede determinar el grado de cristalinidad y los parámetros de la celda unitaria.

Existen diferentes métodos para llevar cabo a dichas determinaciones, sin embargo, para el caso de las zeolitas faujasitas existen dos motodos que permiten evaluaciones cuantitativas: (a) el método planteado por Skeels(20) a través del cual puede determinarse el porciento de cristalinidad y (b) el método A.S.T.M.D 3942-85 para determinar dimensiones de la celda unitaria.

(a) Para determinar el porciento de cristalinidad, se hace una relación de los maximos del difractograma de la zeolita modificada con los de la zeolita original, esto es, se comparan las intensidades relativas de determinados máximos.

El porciento de cristalinidad en las zeolitas se obtiene sumando la altura de los máximos, en unidades arbitrarias a partir de la linea base, del material inicial considerado como estándar, y se compara con la correspondiente altura de los máximos de los productos de reacción de dicho material. Por ejemplo, si la suma de la altura de los máximos del producto corresponde al 85% del valor de la suma de la altura de los máximos del material estandar, entonces, se dice que el 85% de cristalinidad del material inicial ha sido retenido.

Para el caso de las zeolitas modificadas, se toma la zeolita original como referencia y la suma de la altura de sus

intensidades se toma como el 100 % de cristalinidad. Sin embargo, en la práctica se utilizan sólo algunos de los máximos, por ejemplo, se pueden tomar cinco de los seis máximos más intensos.

Para la zeolita A los máximos más intensos corresponden a los indices de Miller (300), (311), (321), (410) y (332) y se presentan en un intervalo 20 de 20 a 35°.

(b) Para determinar las dimensiones de la celda unitaria se utiliza la reflexion de un estándar interno(21) como referencia. El estándar interno debe de ser un cristal con estructura estable y, que además no reacciona con el material a analizar. Despuós de realizar un estudio de las diferentes sustancias cristalinas, se llegó a la conclusión de que el cloruro de potasio es el estándar interno más adecuado para este trabajo.

Las dimensiones de la celda unitaria de la zeolita se calculan a partir del patrón de difracción de rayos X de la mezcla, utilizando las reflexiones del estándar interno como referencia. El método utilizado es el siguiente:

1. Se corrigen los ángulos de reflexión medidos en la zeolita añadiendo a cada uno la cantidad correspondiente al desplazamiento en el ángulo de reflexión del estándar interno, esto es, la diferencia entre el ángulo de reflexión calculado y el ángulo de reflexión medido.

2. Utilizando los ángulos de reflexión corregidos se calcula la distancia d por medio de la siguiente ecuación:

$$d_{hkl} = \lambda / (2sen\theta)$$

donde:

dhkl= distancia entre los planos de reflexión hkl, (nm x 10)

λ = longitud de onda de la radiación de los rayos X, la cual correponde a 1.54178 Å para Cu Kα. Se debe de considerar que el ángulo medido en el patrón de difracción corresponde a 20 y el que se utiliza es 0. 3. Para calcular la dimensión "a", de la celda unitaria cúbica de la zeolita, se utiliza la siguiente ecuación:

$$a = [(d_{hk1})^2 (h^2 + k^2 + 1^2)]^{1/2}$$

donde: dhk1 corresponde al valor corregido, d, en el punto anterior.

4. Se promedian los valores de a calculados a partir de más de una reflexión (se sugieren cinco valores).

1.5 ESTUDIO ESTRUCTURAL DE ZEOLITAS POR INFRARROJO.

Un método complementario al de difracción de rayos X es la espectroscopía infrarroja. Con este método se pueden visualizar algunos cambios en el armazón de las zeolitas, esto es, utilizando la región media infrarroja, 1300 a 200 cm⁻¹, ya que esta región contiene las vibraciones fundamentales del armazón de tetraedros (Si,A1) 04=T04

los experimentos previamente realizados, interpretaciones En preliminares(22) sugieren específicamente el uso del infrarrojo para determinar la presencia tanto de los diferentes grupos y tipos estructurales de una zeolita como la de las subunidades estructurales, tales como anillos dobles y aperturas de poro grandes. Además se ha podido estudiar la composición estructural Si/Al, cambios estructurales durante la descomposición térmica, y movimiento catiónico durante deshidratación la Y la. deshidroxilación.

Según Skeels (20), una banda de adsorción ancha no definida que inicia a 3750 y se extiende hasta 3000 cm⁻¹, en el espectro de infrarrojo, se atribuye a que los grupos hidroxilo en los sitios vacantes en el armazón están coordinados de tal forma que estos interactúan con cualquier otro formando puentes de hidrógeno. Sin embargo, los grupos hidroxilo de las moléculas de agua adsorbida

forman también puentes de hidrógeno que producen una banda de absorción similar a la anterior, por lo cual se sobreponen. Por otra parte, se ha visto que el contorno de la banda de absorción se incrementa con la reducción del aluminio estructural de la zeolíta.

En el trabajo presentado por Flanigen y Col.(22) la mayoría de los espectros de transmisión infrarroja se obtuvieron utilizando la técnica con pastillas delgadas de KBr (23). En algunos casos se utilizó CSI, muselina grasa mineral y pastillas de zeolita pura, para estudiar cualquier efecto de matriz. Sólo se observaron variaciones espectrales pequeñas entre las diversas matrices empleadas.

En general, se puede mencionar que la región menor a 300 cm⁻¹ en pastillas de KBr no es utilizable ya que ésta frecuencia es cercana a la de corte para el KBr, estando además cerca del limite de frecuencia inferior de la mayoría de los instrumentos habituales (200 cm⁻¹).

Se hicieron algunas medidas cuidadosas de algunas fases utilizando pastillas de CsI, ya que en éstas se mejora la resolución en la región de 200-300 cm⁻¹. Se observó una banda débil y ancha cerca de 250-300 cm⁻¹ en los espectros de las zeolitas A, X, Y y en la hidroxisodalita. Inicialmente se consideró como indicativo de la presencia de las unidades TO en estas estructuras. Sin embargo, tales asignaciones no están claramente sustentadas y no son generalmente aceptadas.

Cada especie de zeolita tiene un patrón infrarrojo típico. El espectro de infrarrojo de las zeolitas en la región de 1300 - 200 cm^{-1} al parecer consiste de 2 clases de vibraciones:

(a) aquéllas causadas por vibraciones internas de los tetraedros TO, del armazón (unidad de construcción primaria en todos los armazones de zeolitas), las cuales tienden a ser insensibles a modificaciones estructurales. (b) las vibraciones relacionadas a uniones externas entre tetraedros, sensibles a la estructura del armazón, a la presencia de alguna unidad de construcción secundaria (SBU) y al poliedro de construcción, tal como anillos dobles y las aperturas de poro grandes.

Es importante enfatizar que no pueden asignarse vibraciones específicas al tetraedro λlo_4 y al SiO₄ ó enlaces $\lambda l = 0$ y Si=O sino más bien vibraciones de los grupos TO₄ y enlaces TO donde las frecuencias vibracionales representan el promedio de composición Si, Al y las características de enlace del catión central T.

De manera general, las señales de infrarrojo que se han propuesto para los armazones de zeolitas, se mencionan a continuación.

Tetraedro Interno:

Alargamiento	asimétrico	1250	-	950	cm ⁻¹
Alargamiento	simétrico	720	-	650	cm^{-1}
Enlace T-O		500		420	cm^{-1}

Enlaces Externos:

Anillos Dobles	650 -	500	cm ⁻¹
Apertura de Poro	420 -	300	cm^{-1}
Alargamiento Simétrico	820 -	750	cm ^{~1}
Alargamiento Asimétrico	1150 -	1050	cm ⁻¹

La primera clase de vibraciones comunes a todas las zeolitas están señaladas como vibraciones del tetraedro interno e incluyen las dos bandas más intensas en el espectro, la más fuerte a 950 -1250 cm⁻¹ y la otra de intensidad media a 420 - 500 cm⁻¹.

Las vibraciones fuertes en la región de 950 - 1250 cm⁻¹ se asignan al alargamiento T-O incluyendo principalmente el movimiento asociado con átomos de oxígeno, o alternativamente descrito como un modo de alargamiento asimétrico $O \leftarrow T \leftarrow O$.

Los modos de alargamiento, incluyendo principalmente los movimientos asociados con los átomos T, o alternativamente descritos como modos de alargamiento simétrico \leftarrow OTO \longrightarrow , están asignados en la región de 650 - 820 cm⁻¹. Este modo de alargamiento se clasifica como un alargamiento tetraédrico interno que aparece en la región espectral menor de 650 - 720 cm⁻¹ y como una unión de alargamiento simétrico reflejada en las uniones externas sensibles a la estructura en la región mayor de 750 - 820 cm⁻¹.

Las frecuencias de vibraciones de uniones externas, las cuales son sensibles a la topología y a las unidades de construcción presentes en los armazones de la zeolita. бе presentan principalmente en 2 regiones del espectro, 500-650 cm⁻¹ y 300-420 cm⁻¹. La aparición de una banda de intensidad media en la primera región se relaciona con la presencia de anillos dobles poliédricos en el armazón. La presencia de bandas en la segunda región se asigna al movimiento de "respiración" de los anillos aislados que forman la apertura de poro en las zeolitas. Es interesante hacer notar que la banda es prominente en aquéllas estructuras cuya celda unitaria tiene simetría cúbica, y disminuye.en prominencia con la disminución de simetría. Por esto, se prefiere mantener la propuesta del asignamiento de apertura de poro con reserva.

De una manera general, podemos decir que: "La posición de las bandas aparece relacionada al tipo estructural y a la clase de zeolita."

"Todos los modos de alargamiento son sensibles a la composición Si/Al y cambia a frecuencias menores con el incremento del contenido de Al."

"La concentración relativa de Si y Al en el sitio T afecta la frecuencia de la banda, pero no el número de bandas."

"El ensanchamiento y reducción de las intensidades de las bandas sensibles a la composición indican destrucción estructural."

"La frecuencia asignada a los anillos dobles es simétrica en forma e independiente de la relación Si/Al."

Según Flanigen y col.(22), después de obtener el espectro de la zeolita A en forma repetitiva, habiendo utilizado una concentración típica en las pastillas de 0.5mg de zeolita en 300mg de KBr o CsI, se obtuvieron los resultados que se resumen a continuación.

<u>510</u> 2	Alargamient	co	Anillos	Enlace	Apertura
Al ₂ 03	Asimétrico	Simétrico	Dobles	T-0	de Poro
1.88	1090 1050 995	660	550	464	378
	(vwsh) (vwsh) (s)	(vw)	(ms)	(m)	(ms)

s = fuerte; ms = medio fuerte; m = medio; vw = muy débil; sh = hombro.

1.6. PROPIEDADES DE LA ZEOLITA A.

El descubrimiento de la zeolita A por Milton (13) representó una zeolita óptima en composición, volumen de poro y canales estructurales.

Se puede decir que esta zeolita está "saturada" en aluminio, en la composición del armazón, con una relación molar de Si/Al cerca de uno (éste valor representa el contenido de aluminio máximo posible en los armazones de los aluminosilicatos tetraédricos, si se acepta la regla de Lowenstein). Como consecuencia, ésta contiene el número máximo de sitios catiónicos intercambiables que balancean el aluminio estructural y, por lo tanto, el mayor contenido catiónico y capacidad de intercambio.

Su superficie es altamente selectiva para el agua y para moléculas polares y polarizables, lo cual sirve como base en muchas de sus aplicaciones, particularmente en secado y purificación. Además, sus canales tridimensionales no aceptan moléculas que tengan dimensiones mayores a la de la sección transversal mínima proyectada, aproximadamente 4.0 Å.

Por otra parte, por intercambio catiónico, se pueden obtener diferentes tamaños de poro. El arreglo espacial del aluminio, el silicio y el oxígeno, que conforman la red cristalina básica de la zeolita, permanece esencialmente sin cambio después de una sustitución parcial o total de los iones sodio por otros cationes.

1.7 APLICACIONES.

Los primeros usos prácticos de la zeolitas, probablemente, ocurrieron aproximadamente hace 2000 años cuando la piedra natural de zeolita se usó como piedra ebullente (6), aunque en realidad las zeolitas no se reconocieron como una nueva especie mineral sino hasta hace 200 años aproximadamente(14).

El desarrollo de las zeolitas con una distribución de tamaño de poro con un solo valor, ha hecho posible realizar separaciones utilizando el principio de "tamizado". Además, debido a que éstos materiales cuentan con una alta capacidad como adsorbentes selectivos, (a) pueden separar moléculas basándose en el tamaño y la forma de la especie molecular particular en relación a la apertura uniforme de los canales en de la zeolita, y (b) pueden separar moléculas basándose en efectos de selectividad, lo cual es causado por la interacción de la zeolita con ciertas características moleculares del material en estudio, tales como momentos dipolares.

Las principales aplicaciones de la zeolita A(15-17), se enuncian a continuación:

- En Secado:

- Secado de gas craqueado (plantas de etileno), se utiliza la zeolita 3A para eliminar el agua y prevenir la coadsorción del etileno y de los hidrocarburos insaturados pesados.

- Secado de gases refrigerantes, se utiliza la zeolita 4A para eliminar la humedad de los refrigerantes en los refrigeradores caseros.

- Como tamiz molecular:

- La zeolita 4A adsorbe compuestos de bajo peso molecular como vapor de agua, mon×xido de carbono, dióxido de carbono, amonio, vapores de etanol y metanol, etileno, acetileno, propileno y óxido de etileno. A bajas temperaturas, también adsorbe metano, nitrógeno, oxígeno, neón y argón.

 La zeolita 5A adsorbe fácilmente todos los compuestos adsorbibles por la 4A y además el ciclopropano, parafinas mayores, isoparafinas, butileno, olefinas mayores, butanol, alcoholes mayores y freón 12.

- En la producción de detergentes:

- Se reemplazan los polifosfatos de los detergentes por la zeolita con alta capacidad de intercambio iónico. La ventaja que se obtiene es la eliminación de iones duros del agua Ca^{**} y Mg^{**}, por intercambio selectivo sin ocasionar problemas ambientales.

CAPITULO 2.

METODOS ANALITICOS PARA LA DETERMINACION DE FLUOR

2.1 PROPIEDADES GENERALES DEL FLUOR. (24)

El flúor es un gas de color amarillo pálido y de díficil manejo por ser sumamente reactivo. Condensa a un líquido naranja amarillento a -188°C y pasa a estado sólido (color amarillo) a -220°C presentando una transición de fase a -228°C con un cambio de color a blanco.

El flúor es el elemento más oxidante de toda la clasificación periódica, por lo cual, puede inducir estados de oxidación extraordinariamente altos en los elementos con los que reacciona. Sin embargo, tanto la alta reactividad del flúor como sus propiedades, se atribuyen principalmente a que los átomos de flúor tienen un tamaño muy pequeño (radio iónico = 133pm) y a que sus distancias interatómicas son muy cortas (F-F=149 pm en F_2). Es decir, cuando el átomo de flúor se combina consigo mismo para dar la molécula diatómica F_2 , las separaciones internucleares son muy pequeño) por lo que los pares electrónicos no ligantes se repelen.

En resumen, el flúor es capaz de reaccionar casi con cualquier elemento, por lo tanto, cuando la zeolita se pone en contacto directo con él se puede pensar en alguna probable reacción. Por lo cual se requiere establecer un método de análisis para determinar el contenido de flúor que penetra en la estructura de cada muestra de zeolita.

2.2. METODOS ANALITICOS PARA LA DETERMINACION DE FLUOR.

La determinación de flúor en diferentes compuestos se considera un problema analítico difícil. A lo largo del tiempo se han desarrollado diversas pruebas cualitativas para detectar la presencia de flúor(25-28).

La prueba más antigua es la de grabado de vidrio, la cual es específica para el ion fluoruro y requiere de experiencia para ser capaz de estimar la cantidad presente del mismo. La muestra se calienta en presencia de H_2SO_4 concentrado y el HF que se libera, según la siguiente reacción, graba el vidrio humedecido expuesto a los vapores.

2F + H_SO_ ---- 2HF + SO_2-

También, se puede disolver el HF liberado en un chorro de agua, a la que se añade sílica (p.ej. vidrio) para formar tetrafluoruro de silicio que se hidroliza produciendo silicio gelatinoso.

En general, para muestras minerales, si éstas no se descomponen en H_2SO_4 , puede utilizarse la fusión con $CaCO_3$ y posteriormente filtrar el fundido con una pequeña cantidad de agua. El exceso de SiO_2 en el precipitado se separa con NH₄CO₃ y/o ZnO. Finalmente, precipita una mezcla de CaCO₃ y CaF₂, la cual se usa para la prueba de fluoruro.

Además existen diversas pruebas, las cuales incluyen la decoloración por el ion fluoruro de un complejo coloreado. Sin embargo, debido a que muchos aniones y cationes interfieren, es necesario primero separar el ion fluoruro por volatilización. Es importante que las determinaciones de fluor se lleven a cabo cuidadosamente para evitar la contaminación del laboratorio por reactivos tal como el HF.

Los métodos empleados para las determinaciones cuantitativas son muy diversos. Entre las técnicas más recientes para determinar trazas de fluor se pueden citar el Análisis por Activación Neutrónica, la Espectrometría de Emisión, la Espectrometría de Masas de Fuente de Chispa y, con ciertas limitaciones, los Electrodos Ion-Selectivo, los cuales requieren, generalmente, alguna separación preliminar del fluor.

El método para la determinación colorimétrica automática de flúor y cloro en muestras minerales ha sido descrito por Fuge(20). En él la muestra se funde con Na_2CO_3 , los elementos que interfieren quedan retenidos en el residuo de filtración de la pastilla fundida y los iones flúor se miden en el filtrado, después de que éste ha sido acidificado. Esta medición se hace utilizando un analizador Technicon y se basa en el efecto de decoloración del ion fluoruro sobre el complejo naranja circonio-xilenol.

Otro mótodo para la determinación de flúor a nivel ultramicro ha sido desarrollado por Kirstein(30). En óste, después de la descomposición de la muestra con WO_3 y H_3PO_4 , el flúor liberado se hidrogena, absorbióndolo en agua, y posteriormente se mide espectrofotomótricamente. Este mótodo, puede usarse para determinar cantidades tan pequeñas como 0.2 ppm de flúor y ha sido aplicado al análisis de flúor en silica gel, fosfato trisódico, cal muerta y otros compuestos inorgánicos.

Por otra parte, un método indirecto para la determinación de flúor se basa en el empleo de la AAS (Espectroscop!a de Absorción Atómica). En éste, se usa el efecto de inhibición de flúor sobre 18 señal de absorción atómica del magnesio(31). E1 ъH al produce inhibición caracterí stico que se la permite distinguirlo de otros aniones tales como sulfato, fosfato y silicato.

Para la determinación rutinaria de nanogramos de fluor en materiales geoquímicos existe otro método indirecto, el de Auffarth y Klochow(32). En éste, el fluor se separa por microdifusión sobre hexametildisiloxano y después se determina, cinéticamente, por su efecto de inhibición sobre la reacción, catalizada con circonio, entre el borato y el ioduro. Además, sólo se usan cantidades de miligramos de muestra, lo cual facilita su empleo para análisis de inclusiones.

El último método (electrodo ion-selectivo), ha sido utilizado con éxito para la determinación de flúor en concentraciones hasta de

ppm(33). El límite de sensibilidad del electrodo en esta técnica es de aproximadamente 0.02 ppm en solución (el cual equivale a un límite de detección de aproximadamente 40 ppm en la muestra mineral original)(34). Por lo cual, se consideró este mótodo, el más adecuado para la determinación de fluor presente en las muestras de zeolita.

Sin embargo, el uso de este mótodo requiere de la descomposición preliminar de las muestras, por lo que se investigaron las diversas alternativas existentes al respecto.

2.3. METODOS DE DESCOMPOSICION DE MUESTRAS.

Por descomposición de una muestra se entiende cualquier proceso de transformación química que lleve a esa muestra desde su estado original hasta otro que permita el análisis químico de la misma, por un método determinado.

Existen un gran número de mótodos de descomposición de una muestra, pero la selección del método más adecuado es un paso crítico para el éxito de cualquier análisis. Para una buena selección deben considerarse muchos factores. Los primeros factores a considerar son la naturaleza misma de la muestra y el trabajo analítico que se vaya a emplear. Tambión, se debe descomposición efectiva considerar que una no implica, necesariamente, una descomposición completa, por lo que el analista debe pensar cuidadosamente este punto.

Los métodos más usuales de descomposición de una muestra se pueden dividir en dos grupos:

1.- Descomposición por ácidos:

(a) Oxidantes (HNO₃, HClO₄, H₂SO₄ concentrado-caliente).
(b) No oxidantes (HCl, HF, H₃PO₄, HBr, H₂SO₄ diluído, y HClO₄ diluído).

2.- Descomposición por fundentes:

(a) Por fusión con compuestos ácidos tales como bisulfatos, pirosulfatos, y fluoruros ácidos.

(b) Por fusión con compuestos básicos, siendo los más comunes los hidróxidos, peróxidos, carbonatos y boratos.

Sin embargo, el uso de alguno de ellos depende de la naturaleza de la muestra, siendo para el caso de las zeolitas, los aluminosilicatos.

En general, los silicatos de naturaleza pásica (contienen iones como calcio o sodio) se descomponen con ácidos fuertes, tal como el HCl, mientras que los de naturaleza ácida (con iones Al o Fe) no se descomponen. Para una descomposición completa sería necesario el uso de una mezcla de HCl, HNO₃, H₂SO₄ y HClO₄, o bien el uso de HF que es muy efectivo en la descomposición de los aluminosilicatos. Sin embargo, el uso del ácido perclórico requiere de cuidados especiales por ser explosivo y el ácido fluorhidrico puede alterar los resultados que se obtengan. Por lo cual, después de haber hecho una revisión cuidadosa de los métodos mencionados, se encontró que el más adecuado para el análisis de fluor en las zeolitas era el de fusión que será descrito a continuación.

2.3.1 DESCOMPOSICION DE LAS MUESTRAS POR FUSION.

Existen diferentes compuestos que se utilizan en la descomposición de muestras por fusión, los cuales podemos enumerar a continuación:

1. Con Carbonato de Sodio.

El Na₂CO₃ es el fundente alcalino comúnmente usado. En general, considerando unicamente las muestras más comunes, descompone a los

silicatos, óxidos, sulfatos, fosfatos, fluoruros y carbonatos. La descomposición ocurre por la formación de un compuesto definido (silicato, vanadato, aluminato, cromato, etc.) o por el paso del material a otro estado más sensible al ataque ácido.

2 Con Carbonato de Potasio.

En general, la mayoría de los materiales que se descomponen con Na_2CO_3 lo hacen también con K_2CO_3 , pero la diferencia está en que éste último es más higroscópico. Por esto, rara vez se usa, excepto cuando los productos de fusión de algunos elementos son más solubles que las correspondientes sales de sodio (p.ej. el Nb). Sin embargo, de acuerdo con Hoffman y Lundell(35), la masa que se forma por la fusión con K_2CO_3 de una muestra que contiene mucho SiO₂ y elementos que forman carbonatos insolubles (Ca, Pb y Mg), se desintegra con MayOr A_2CO_3 .

Además, el uso del K_2CO_3 tiene la desventaja de la adición a la solución de una gran cantidad de iones potasio, lo que tendería a contaminar los precipitados más fácilmente que los iones de sodio.

3. Mezcla de fusión.

Una mezcla intima de Na anhidro y K_2O_3 en la relación de sus pesos moleculares forma la llamada "mezcla de fusión", que tiene un punto de fusión menor que cualquiera de las sales simples. Por ello, resulta adecuado para la fusión de muestras en las que se va a determinar cloro o fluor. Sin embargo, para determinaciones diferentes se usa poco, debido a que sería necesario operar a temperaturas mayores al punto de fusión de la mezcla.

4 Con Hidróxido de Sodio y Potasio.

Los hidróxidos de sodio y potasio son fundentes alcalinos muy fuertes, pero se usan sólo bajo circunstancias especiales, Esto se debe a que son muy difíciles de obtener en un estado puro, lo que hace que no sean aplicables a muchas determinaciones de trazas de elementos.
Las fusiones con hidróxido alcalino (en una relación 10:1 o más) son efectivas en la disolución de numerosos tipos de minerales y su eficiencia como fundente puede aumentarse por la adición de otros compuestos. Por ejemplo, en la disolución de Be y en la mayoría de los minerales de Zr, así como para la determinación de W y Mo en minerales complejos, se usa como fundente una mezcla de hidróxido-peróxido alcalino.

Por otra parte, Grinaldi(36), en su determinación de Nb, usando KOH, obtuvo sales solubles de Nb en el subsecuente lavado con agua. Mientras que, usando NaOH como fundente, se hidrolizó el Nb y 5e obtuvo el nicbiato de sodio insoluble.

5. Con Peróxido de Sodio.

El peróxido de sodio es un fundente oxidante poderoso. Sin embargo, no es de uso frecuente en el análisis de minerales, lo cual se debe a la dificultad de encontrar un recipiente en el que se pueda hacer la fusión sin que se contamine seriamente la muestra. Esto aunado a su naturaleza fuertemente higroscópica, dificulta, algunas veces, su manejo.

Generalmente, el Na₂O₂se usa como fundente en la descomposición de una muestra mineral de silicatos, sólo si ésta contiene espinelas, circonio, arseniuros, sulfuros, y compuestos afines. Igualmente se utiliza en la descomposición de fosfatos de tierras raras, tungsteno, minerales de Nb y Ta, óxidos de Zr, y vanadatos.

Con Oxido Bórico y Bórax.

El oxido borico es un fundente de alta temperatura $(1000 - 1100^{\circ}C)$ y efectivo en aquóllos minerales que son sensibles a la fusión del borax. Además, una desventaja del borax sobre el óxido borico, es que agrega una cantidad de sales de sodio a la muestra que se va a analizar. Al respecto, Hillebran y colaboradores(37), creen que el borax es un mejor fundente cuando no se van a determinar los alcalis de la muestra, ya que es necesaria la eliminación completa del boro. Por todo lo anterior, el bórax se usa generalmente en la descomposición de muchos compuestos refractarios que incluyen minerales de Ta, Nb y Ti que contengan oxígeno.

7. Con Pirosulfato de Potasio.

El pirosulfato de potasio es un fundente más efectivo que el pirosulfato de sodio debido a que este último tiende a perder el sulfato de sodio más rápidamente y, entonces, reduce su efectividad (una vez que el pirosulfato ha sido convertido a un sulfato normal éste queda sin efecto para descomponer la muestra). Por otra parte, los compuestos de sodio tienden a ser más solubles que los de potasio, pero su desventaja es la tendencia del fundido a incrustarse más fácilmente lo cual dificulta el observar cuando es completa la descomposición de la muestra.

El pirosulfato de potasio es mucho más usado y se ha encontrado un uso particular en los óxidos del grupo R_2O_3 . En general, los pirosulfatos son particularmente efectivos con los óxidos y menos efectivos con los silicatos.

7 Con Fluoruros Alcalinos.

Los fluoruros alcalinos (KF, KHF_2 , NH_4F) son fundentes de baja temperatura. Se usan principalmente para la apertura de los silicatos y de los óxidos refractarios, tales como algunos minerales de Nb, Ta, Be y Zr, a travós de la formación de complejos de fluoruros solubles.

Una ventaja en el uso de estos fundentes, es que a pesar de que la temperatura es baja, el tiempo de fusión es usualmente menor que el requerido en otros casos, por lo cual se pueden usar los recipientes de platino.

9. El Fundente Universal.

El tetraborato de litio $(Li_20.2B_{20_3})$ y el metaborato de litio $(Li_20.B_{20_3})$, o alguna mezcla de los dos, son los fundentes más comunes de muestras minerales. Actualmente se usan en los

trabajos analíticos de espectrometría por absorción atómica, por fluorescencia de rayos X y otros.

Los fundentes de borato de litio son admirablemente adecuados para este tipo de aplicaciones debido a diversas razones. No dañan las navecillas de oro o de platino, por lo que se puede completar la fusión. Además, son capaces de disolver casi todos los minerales y los fundidos resultantes, y son fácilmente solubles en ácidos diluídos. Adicionalmente, pueden obtenerse en un estado muy puro por lo que es posible utilizarlos para análisis de trazas de elementos. Por lo cual este fundente es el más apropiado a usarse en este trabajo.

La diferencia entre el metaborato y el tetraborato es la alta acidez relativa de éste último. Por esto, la sal de metaborato es un mejor fundente para minerales ácidos (alto contenido de silicio) y la sal de tetraborato es mejor para algunos minerales básicos, como la dolomita (alto contenido en aluminio).

Con respecto al uso del metaborato fundido existen muchas ventajas, las cuales se deben a que su temperatura de fusión es baja $(849^{\circ}C$ contra $917^{\circ}C$ del tetraborato) y su rendimiento es mayor como fluido fundido.

La relación fundente-muestra depende de la naturaleza de la muestra y de la técnica analítica subsecuente a usarse pero, en general, el intervalo va desde 3:1 hasta 10:1 para silicatos.

Debido a que el tetraborato de litio sólo es efectivo en un 100% para aluminio y un 95% para silicio, mientras que el metaborato es para 100 % de silicio y de un 80 a un 85% de aluminio, se vió la posibilidad de hacer una mezcla que pudiera cubrir el intervalo completamente. Para lo cual, Bennett y Oliver(38), propusieron un "fundente universal", siendo óste una mezcla de 1+4 de tetraborato y metaborato para muestras con silicio y/o aluminio como constituyentes mayores.

10 Con Otros Fundentes.

Existen otros numerosos fundentes, generalmente mezclas de dos o más compuestos, de los cuales, mencionaremos sólo unos pocos para tener una idea de la gran variedad que ha sido usada con propósitos especiales.

Una mezcla de ZnO y Na_2CO_3 (39,40) se usa frecuentemente en la descomposición de silicatos antes de la determinación y separación de fluor.

El ácido fosfórico cristalino, calentado a 250ºC, se usa para separar sílica libre y combinada(41).

Mientras que, para descomponer minerales, Isakov(42) usó haluros y nitrato de amonio y, encontró que una mezcla de NH₄Cl y NH₄NO₃ (aqua regia sólida) era más efectiva.

2.4. FUNDAMENTOS DE LA DETERMINACION DE FLUOR CON UN ELECTRODO ION SELECTIVO.

El electrodo Ion Selectivo consiste en un cuerpo inerte químicamente con una membrana sensitiva. La calidad de la superficie final de la membrana es una característica esencial para tener una máxima sensibilidad y un buen funcionamiento.

El electrodo que se utilizará en las pruebas tiene una respuesta a la actividad del ion fluoruro no acomplejado en el intervalo $10^{-1}a$ 5*10⁻⁶ M y un tiempo de respuesta menor a un minuto.

Cuando existe interferencia, por iones Al u otros iones, en la determinación de la concentración de fluoruros algunos autores(34) han propuesto el uso de buffers.

For otra parte, el potencial eléctrico de un electrodo ion selectivo es función del logaritmo de la actividad del iom que va

a ser medido, cuya relación está dada por la ecuación de Nernst: $E = E^{O} - 2.303RT \text{ Log } A_{e}.$

donde:

E^O es una constante característica del electrodo.

R Es la constante universal de los gases

T es la temperatura absoluta

F es la constante de Faraday

A, es la actividad de los iones fluoruro.

Por lo que el electrodo da una respuesta logarítmica de las actividades de los iones más que de sus concentraciones.

La actividad de un ion depende de la fuerza iónica de la solución, la cual es función de la carga y de la concentración de todos los iones presentes. Sin embargo, a dilución infinita la actividad del ion es igual a la concentración, pero cuando la concentración aumenta, el aumento de la actividad no es lineal. Esto, se debe al incremento de la interacción del ion fluoruro con otros iones presentes en la solución.

Sin embargo, los electrodos se pueden utilizar directamente para medir concentraciones si se añade un buffer como ajustador de fuerza iónica a todas las muestras. Con lo cual se logra que todas las soluciones tengan la misma fuerza iónica, es decir, que tengan los mismos coeficientes de actividad en todas las muestras.

Un ajustador de fuerza iónica apropiado a nuestras necesidades es el TISAB IV desarrollado por la compañía ORION. Este ajustador acompleja más de 100 ppm de hierro o aluminio en presencia de lppm de fluoruro. La medición de lppm de fluoruro nos daría un error del 15% en presencia de 200 ppm de hierro o aluminio.

CAPITULO 3.

FLUORACION DIRECTA DE LA ZEOLITA TIPO 4A

3.1. FLUORACION DIRECTA DE LA ZEOLITA TIPO 4A.

Cuando la zeolita se pone en contacto con un gas que puede alterar su estructura se puede pensar en una probable reacción o sustitución dentro de la red de la zeolita. Al poner en contacto la zeolita con flúor a diferentes condiciones de presión y temperatura se observó una alteración estructural de ósta, por lo cual se le adjudicó al proceso de interacción zeolita-flúor el nombre de "fluoración de zeolita".

3.1.1 METODOLOGIA DE LA FLUORACION.

Para realizar la fluoración de las muestras de zeolita se utilizaron muestras de Zeolita 4A con una composición nominal $Na_{12}[(Al0_2)_{12}(Si0_2)_{12}]27H_20$, (zeolita comercial de Linde Co.) y un sistema de fluoración (Fig. 9) conformado por:

 a) un tanque de fluor conectado a una bureta de gases a través de una trampa de NaF;

b) un volumen de expansión usado como contenedor de fluor; y

c) un sistema de vacío mecánico con trampa de cal sodada.

En la trampa de NAF se eliminan las impurezas de HF del flúor gasecso, mientras que en la trampa de cal-sodada se retiene el flúor sobrante de la reacción cuando se va a evacuar del sistema. Además, para realizar la medición de la presión en la zona de reacción se utiliza un manómetro digital, el cual tiene una precisión de 0.1 mbar.

FIG. 17 SISTEMA DE FLUORACION.

ω A Los pasos que se siguieron en la fluoración de las muestras de zeolita son:

a) pulverización de la muestra original y tamizado a 90 mallas.

b) desecado en horno de 200°C durante 24 horas y almacenamiento en una caja de atmósfera seca.

c) pesada de 5 gramos de la muestra con una precisión de 0.1 mg
e introducción de la muestra en el plato de reacción, todo ello dentro de la cámara de atmósfera seca.

d) montaje del plato de reacción en el sistema de fluoración.

 e) secado de la muestra por calentamiento en vacio a 200°C.
Utilizando como trampa de agua, zeolita seca colocada en el dedo frío, el cual se sumerge en nitrógeno líquido.

f) después del secado se cierra la válvula del plato. y se introduce una cantidad determinada de flúor en el contenedor, dicha cantidad se determina como presión inicial de flúor.

g) por medio de una cámara de enfriamiento o de calentamiento, según sea el caso, se fija la temperatura de toda la zona de reacción.

 h) se abre la válvula que conecta la línea y el contenedor de flúor con el plato de reacción para iniciar la fluoración.

El fluor en exceso después de la reacción se evacúa y los cilindros se llenan con nitrógeno seco. Finalmente, las muestras se sacan y se almacenan en la caja de atmósfera seca.

Las condiciones experimentales que se variaron durante la fluoración fueron la presión y la temperatura según se indica en la tabla 1.

TABLA 1. CONDICIONES EXPERIMENTALES DE FLUORACION.

Muestra	Presión Inicial de Flúor a Temperatura Ambiente.	Temperatura de Fluoración
1	50 mbar	20°C
2	100 mbar	20°C
3	300 mbar	20°C
4	600 mbar	20°C
5	50 mbar	70°C
6	100 mbar	70°C
7	300 mbar	70 °C
8	600 mbar	70°C
9	50 mbar	-74°C
10	100 mbar	-74°C
11	300 mbar	-74°C
12	600 mbar	-74°C

3.1.2 RESULTADOS.

Después de la fluoración de cada muestra se obtuvieron datos de presión inicial de fluoración y presión final en las diferentes condiciones experimentales.

Para realizar la determinación de la cantidad de flúor que queda dentro de la zeolita se consideró el comportamiento del flúor como el de un gas ideal, esto es, que cumple con la ley de los gases ideales: PV=nRT.

Los cálculos realizados se hicieron a partir de los datos de presión inicial de fluoración y presión final de la misma, por lo que, considerando diferencias de presiones, llegamos a la siguiente ecuación: $V\Delta P = nRT$ en donde:

V=volumen ocupado por el flúor durante la fluoración, ΔP = diferencia entre las presiones inicial y final, n=número de moles de flúor adsorbidos por la muestra, R=constante universal de los gases T=temperatura de fluoración.

Después de hacer los cálculos necesarios, fue posible establecer la relación de la masa de flúor incorporada en función del cambio de presión en la muestra:

> m(mg)= 3.05 ΔP (T= 20°C) m(mg)= 2.56 ΔP (T= 70°C) m(mg)= 4.41 ΔP (T=-74°C)

De aquí, se obtuvieron los resultados tabulados en la tabla 2 cuyos encabezados corresponden a:

ZEOLITA (MG): Cantidad de zeolita que se utilizó para la fluoración. <u>TEMPERATURA C/K</u>: Temperatura de fluoración en grados Celsius y Kelvin. P INICIAL (MBAR): Presión inicial de fluoración a la temperatura de la misma. P FINAL (MBAR): Presión obtenida a los 10 minutos de fluoración. (Tiempo promedio después del cual ya no se aprecia disminución en la presión). P(T)-P(F) (MBAR): Diferencia entre las presiones inicial y final de fluoración (AP). MASA FLUOR MUESTRA (MG): Cantidad de fluor incorporada por la muestra.

3.2 DETERMINACION DE FLUOR EN ZEOLITAS FLUORADAS.

Después de realizar la fluoración en cada muestra se determinó la cantidad de fluor retenida por la zeolita. Para esto, se fundieron las muestras con la mezcla de tetraborato y metaborato de litio, y posteriormente se determinó la cantidad de flúor presente en ellas con ayuda de un electrodo ion selectivo.

TABLA 2. RESULTADOS DE LA FLUORACION DIRECTA.

No. DE MUESTRA	ZEOLITA (mg)	TEMPERATURA C/K	P INICIAL (mbar)	P(I)-P(F) (mbar)	MASA FLUOR MUESTRA(mg)
1	5000	20/298	50	10.6	32.37
2	5000	20/298	100	24.7	75.43
3	5000	20/298	300	55.0	167.97
4	5000	20/298	600	88.0	268.75
5	5000	70/343	50	9.2	23.56
6	5000	70/343	100	30.9	79.13
7	5000	70/343	300	77.0	197.20
8	5000	70/343	600	126.0	322.69
9	5000	-74/199	50	0.9	4.19
10	5000	-74/199	100	1.6	7.06
11	5000	-74/199	300	5.7	25,16
12	5000	-74/199	600	4.5	19.87

3.2.1. METODOLOGIA.

A PREPARACION DEL TISAB IV.

El TISAB IV (nombre comercial que se le da al ajustador de fuerza iónica) se prepara de la siguiente forma:

A 500 ml de agua destilada se le agregan 84 ml de HCl concentrado, 242g de TRIS (hidroximetil-amino-metano) y 230g de tartrato de sodio (Na₂ C₄4₀ 2H₂0). Se agita hasta disolver y se deja a temperatura ambiente. Se transfiere a un matraz volumétrico de 1 litro y se afora con agua destilada.

B PREPARACION DE LAS MUESTRAS.

Se toman 0.5g de zeolita fluorada y se mezclan con 0.5g de tetraborato de litio y 2g de metaborato de litio. Se coloca la mezcla en una mufla en atmósfera de oxígeno con flujo controlado y se lleva a 850°C durante 20 min., posteriormente se aumenta la temperatura hasta 1050°C y se deja por 5 min, para finalmente dejar enfriar el producto formado en atmósfera de oxígeno.

Posteriormente, se disuelve el producto en 80 ml de HNO₃ (1.1 M). Una vez disuelto el cristal se afora la solución en agua a 100 ml.

Se toma una alicuota de 25 ml de la solución y se mezcla con 25ml. de TISAB IV.

C CURVA DE CALIBRACION

Para realizar la curva de calibración se prepararon soluciones estándar de fluoruro de sodio a diferentes concentraciones.

a) Se pesaron 2.210g de NaF, se disolvió el NaF en agua destilada y se aforó a 100 ml, obteniéndose una concentración inicial de 10,000 ppm de fluoruros.

b) Por diluciones sucesivas se prepararon diferentes concentraciones. Las diluciones se realizaron tomando 10 ml de la solución de partida y aforando a 100 ml.

c) Las concentraciones del ion fluoruro que se obtuvieron y se utilizaron en las curvas de calibración antes de cada medición potenciométrica de las distintas muestras fueron: 10,000 ppm F, 1000 ppm F, 100 ppm F, v 10 ppm F.

A todas las soluciones se les agregó TISAB IV en una relación de 1:1 por lo que las concentraciones finales fueron: 5000, 500, 50 y 5 ppm de F.

3.2..2 RESULTADOS.

Los resultados obtenidos se tabulan en la Tabla 3, en donde los encabezados corresponden a:

LECTURA (mV): Lectura potenciométrica obtenida para cada muestra cuando se introduce el electrodo en ella.

<u>DETERMIN. DE FLUOR</u>: Valor obtenido para la recta de la curva de calibración representada por la ecuación y=mx + b. Donde y corresponde al valor del potencial obtenido para cada muestra, <u>m</u> es la pendiente de la recta y <u>b</u> es la ordenada al orígen. <u>X</u> nos indica el logaritmo de la concentración (ppm) de fluoruros presentes en la alicuota: $X = \frac{y-b}{-}$

<u>CONC. DE FLUOR MUESTRA (PPM)</u>: es la concentración de la muestra cuyo valor corresponde a 10^{\times} .

MASA FLUOR MUESTRA (MG): Es la masa de flúor presente en la muestra (m= 125 mg).

MASA FLUOR TOTAL (MG): Es la masa de flúor presente en la muestra total de zeolita fluorada (5g).

NOTA: La nota C-X indica el número de la curva que se utilizó para la determinación de las ppm de fluoruros presentes en la muestra (Fig.10) y se degloza la pendiente de la misma.

No. MUES	DE TRA	LECTURA (mV)	DETERMIN DE FLUOR	CONC. FLUOR MUESTRA (PPM)	MASA FLUOR MUESTRA (mg)	R MASA FLUOR TOTAL(mg)
	_	c-	·1= (Y+88.1	5)/52		
	1	-184	1.84	69.70	3.48	139.41
	2	-192	1.99	99.37	4.97	198.67
	3	-210	2.34	220.43	11.02	440.85
	4	-220	2.53	343.22	17.16	686.45
٠		c-	·2≕ (¥+166.	8)/52.5		
	5	-256	1.69	50.00	2.50	100.02
	6	-274	2.04	110.13	5.51	220.26
	7	-297	2.48	301.99	15.01	603.99
	8	-309	2.70	511.18	25.56	1022.35
		c-	·3= (¥+211.	6)/51.8		
	9	-270	1.13	13.41	0.67	26.82
1	0	-271	1.15	14.02	0.70	28.04
3	1	-274	1.20	16.02	0.80	32.04
1	12	-279	1.30	20.00	1.00	40.02

TABLA 3. DETERMINACION POTENCIONETRICA DE FLUORUROS.

CAPITULO 4.

ESTUDIO DE LA ZEOLITA TIPO 4A FLUORADA POR DIFRACCION DE RAYOS X

4.1. INTRODUCCION.

El uso de la difracción de rayos X (DRX) en el estudio de las zeolitas es ya muy conocido. Este mótodo, además de utilizarse para determinar el tipo de celda unitaria y los parámetros de red de la misma, permite determinar el grado de cristalinidad de una muestra respecto a otra. Por lo tanto, es factible hacer uso de la DRX para poder determinar parámetros de red y grado de cristalinidad en las muestras de zeolita antes y después de la fluoración.

Por lo antorior, se realizó un estudio comparativo de cada una de las muestras de zeolita fluorada en relación con la muestra de zeolita original, la cual se tomó como referencia. Los patrones de difracción se obtuvieron por el método de polvos en el difractómetro Siemens D500 del Instituto de Investigaciones en Materiales de la UNAM.

4.2. DETERMINACION DEL GRADO DE CRISTALINIDAD.

Después de que las muestras de zeolita se trataron con flúor en diferentes condiciones de presión y temperatura, se sometieron a un análisis por DRX. Para dicho análisis se utilizaron bases circulares de vidrio de aproximadamente 5 cm de diámetro. En el centro de la base se tiene una caja circular de 1 cm de diámetro en donde se colocan las muestras en polvo, oprimióndolas posteriormente para que queden lo más compactas posible.

Ya preparadas las muestras en la base, se montaron en el difractómetro acoplado a un tubo de rayos X con el ánodo de cobre y un filtro de níquel que permite la monocromatización del haz de rayos X incidente sobre la muestra. Las condiciones de operación

del difractómetro con que se corrieron las muestras fueron: Voltaje=35 KV, Corriente=30 mA y una velocidad de barrido de 0.3°/min.

Los patrones de difracción obtenidos de las distintas muestras se presentan en la Fig.11 en donde se hace una comparación visual respecto a la referencia. A partir de los difractogramas, fue posible obtener el grado de cristalinidad que prevalecía en las muestras después de la fluoración. Para esto se seleccionarón los máximos correspondientes a los índices de Miller (300), (311), (321), (410) y (332)(Tabla 4).

La cristalinidad del 100 % se le asignó a la zeolita sin fluoración previa. Mientras que, el porciento de cristalinidad del resto de las muestras se calculó en base a la de la muestra referencia(20).

MUESTRA	INDICE DE MILLER	ALTURA (CPS)	Σ ALTURA	<pre>% CRISTA- LINIDAD</pre>
0 Original	(110) (300) (311) (321) (410)	705 1005 1725 1485 1830	6750	100
1 20°C, 50 mbar	(110) (300) (311) (321) (410)	705 975 1665 1500 1725	6570	97.3
20°C, 100 mbar	(110) (300) (311) (321) (410)	675 885 1530 1365 1740	6193	91.7
3 20°C, 300 mbar	(110) (300) (311) (321) (410)	480 615 1095 1035 1140	4365	64.7
4 20°C, 600 mbar	(110) (300) (311) (321) (410)	330 435 750 600 675	2790	41.3

TABLA 4. REPORTE DEL GRADO DE CRISTALINIDAD EN LA ZEOLITA.

TABLA 4.	continuacion.

MUESTRA	INDICE DE MILLER	ALTURA (CPS)	Σ ALTURA	<pre>% CRISTA- LINIDAD</pre>
5 70°C, 50 mbar	(110) (300) (311) (321) (410)	780 960 1590 1470 1800	6600	97.8
6 70°C, 100 mbar	(110) (300) (311) (321) (410)	765 900 1425 1335 1605	6030	89.3
7 70°C, 300 mbar	(110) (300) (311) (321) (410)	414 549 873 738 909	3483	51.
8 70°C, 600 mbar	(110) (300) (311) (321) (410)	217 336 476 420 427	1876	
9 -70°C, 50 mbar	(110) (300) (311) (321) (410)	784 960 1552 1488 1744	6528	96.7
10 -70°C, 100 mbar	(110) (300) (311) (321) (410)	832 1008 1664 1472 1776	6752	100
11 -70°C, 300 mbar	(110) (300) (311) (321) (410)	704 960 1568 1472 1792	6496	96.2
12 -70°C. 600 mbar	(110) (300) (311) (321) (410)	784 992 1584 1536 1872	6768	100.3

4.3. DETERMINACION DE PARAMETROS DE RED DE LA ZEOLITA TIPO 4A.

Cuando se obtienen los difractogramas, cada máximo presente corresponde a un ángulo 20 y por lo tanto, a una distancia interplanar determinada asociada a un índice de Miller. A partir del ángulo 20 reportado es posible determinar dicha distancia utilizando la ley de Bragg: $d = \lambda/2 \sin \theta$. En la cual λ es la longitud de onda del haz de rayos X incidente y corresponde en este caso a un valor de 1.5406Å.

Sin embargo, por errores sistemáticos dados por el equipo se pueden presentar corrimientos de los ángulos θ reportados con respecto a los reales. Por lo tanto, cuando se quieren tener valores exactos de θ para realizar cálculos de parámetros de red es necesario introducir un estándar interno en las muestras.

El papel de un estándar interno en las muestras es medir el tamaño de la desviación y con ella corregir los ángulos 0 reportados en la muestra. El estándar interno debe de ser un compuesto que presente un espectro bien definido y de díficil alteración que, además, no reaccione con la muestra a analizar.

Una vez corregidos los ángulos θ en la muestra(21) es posible obtener los valores reales de la celda unitaria. Debido a que la zeolita tipo 4A presenta una red cúbica , entonces la ecuación que nos permite conocer el parámetro de la red es:

$d^2 = [(h^2 + k^2 + 1^2)/a^2]$

donde d es la distancia interplanar, (h,k,l) son los índices de Miller del máximo correspondiente y <u>a</u> es el tamaño de la arista que define la red cúbica de la celda unitaria.

Para determinar los parámetros de red en la zeolita se utilizó como estándar interno cloruro de potasio, KCl, ya que esta sal presenta un patrón bien definido que no interfiere con el de la zeolita, permitiendo una perfecta visualización de sus máximos. La posición teórica del máximo que se tomó como referencia para el KCl se presenta a un ángulo 20 = 50° y corresponde a una distancia d= 1.816 Å.

Para tener una mejor estimación de las desviaciones presentes se utilizó el intervalo del difractograma de 45 a 55° (velocidad de barrido de 0.15 ^o/min) ya que a mayores ángulos corresponden distancias interplanares menores, por lo que las desviaciones pequeñas serán más visibles en este intervalo. Los resultados obtenidos en cada muestra se tomaron como el promedio resultante del valor de los cuatro máximos correspondientes a los índices de Miller (540), (541), (550) y (720). Los difractogramas obtenidos se presentan en la Fig. 12 y los resultados se tabulan en la Tabla 5.

No. MUESTRA	FLUORACION P/T (mbar/ ⁰ C)	V KC1	ALORES 1 DIS' (540)	EXPERIMEN FANCIA (541)	TALES DE (550)	(720)
0	NULAS	1.816	1.919	1.895	1.740	1.690
1 2 3 4	50/ 20 100/ 20 300/ 20 600/ 20	1.816 1.816 1.816 1.816	1.918 1.918 1.919 1.914	1.895 1.895 1.895 1.895 1.892	1.740 1.740 1.740 1.730	1.690 1.690 1.690 1.690
6	100/ 70	1.816	1.918	1.896	1.740	1.690
7 B	300/ 70 600/ 70	1.816	1.919 1.912	1.893 1.893	1.730	1.690
hanii						
9	50/-70	1.816	1.918	1.895	1.740	1.690
10	100/-70	1.816	1.918	1.896	1.740	1.690
11	300/-70	1.816	1.919	1.896	1.740	1.690
12	600/-70	1.816	1.919	1.896	1.740	1.690

TABLA 5. DETERMINACION DE PARAMETROS DE RED.

TABLA 5. continuación.

NO. MUESTRA	VALORES	CALCULADOS DE RED	DEL PARAME	TRO	VALOR PROMEDIO
L	(540)	(541)	(550)	(720)	
0	12.288	12.281	12.304	12.303	12.294
1	12.281	12.281	12.304	12.303	12.292
2	12.281	12.281	12.304	12.303	12.292
3	12.288	12.281	12.304	12.303	12.294
4	12.256	12.262	12.233	12.230	12.245
r	r				<u></u>
5	12.281	12.287	12.304	12.303	12.294
6	12.281	12.287	12.304	12.303	12.294
7	12.281	12.268	12.233	12.303	12.271
8	12.243	12.268	12.233	12.230	12.244
				r	
9	12,281	12.281	12.304	12.303	12.292
10	12.281	12.287	12.304	12.303	12.294
11	12.288	12.287	12.304	12.303	12.295
12	12.288	12.287	12.304	12.303	12.295

CAPITULO 5.

ESTUDIO DE LA ZEOLITA TIPO 4A FLUORADA POR ESPECTROSCOPIA INFRARROJA

5.1. LA ESPECTROSCOPIA INFRARROJA.

Como ya se ha mencionado (Cap.2) la espectroscopía inrfrarroja es una herramienta que nos permite visualizar, en forma general, la estructura de las zeolitas y, por lo tanto, las modificaciones que se presenten en ella.

Ya que en este trabajo se estudia la alteración estructural de la zeolita tipo 4A debida a su interacción con el flúor gaseoso, entonces, la espectroscopía infrarroja es una buena técnica complementaria para el estudio estructural de la misma.

5.2. METODOLOGIA EXPERIMENTAL.

Para obtener los espectros de las muestras por infrarrojo se prepararon pastillas con una mezcla de KBr y zeolita tipo 4A, tanto de la original como de las tratadas previamente con fluor. Con el fin de optimizar los espectros obtenidos se llevó a cabo un estudio previo de la influencia de la relación muertra/soporte sobre la intensidad y definición de las bandas de absorción.

Con una deshidratación previa en la estufa, el KBr y la zeolita se introdujeron en la cámara de atmósfera seca y se hicieron mezolas de 0.2 g. de KBr con 0.5, 1.0, 1.5, 2.0 y 2.5 mg. de zeolita de la muestra 5. La humedad relativa en la cámara durante la pesada se mantuvo en un intervalo de 0.0 - 0.1%.

Observando el espectro comparativo de las cinco muestras se pudo apreciar claramente que la mejor resolución de las bandas se tenía con una concentración de 1.0 mg. de zeolita (Fig.13).

FIG. 13 ESPECTRO COMPARATIVO DE LA MUESTRA 5 A DIFERENTES CONCENTRACIONES.

NOTA:

Cl= 0.2g KBr + 0.5mg Zeolita M5 C2= 0.2g KBr + 1.0mg Zeolita M5 C3= 0.2g KBr + 1.5mg Zeolita M5 C4= 0.2g KBr + 2.5mg Zeolita M5 C5= 0.2g KBr + 5.0mg Zeolita M5 Posteriormente, con el fin de verificar este efecto, se prepararon mezclas de muestras representativas, las cuales fueron: a) 0.2g. de KBr con 0.5, 1.0 y 1.5mg de zeolita de la muestra 2. b) 0.2g. de KBr con 0.5 y 1.0mg de zeolita de la muestra 4. c) 0.2g. de KBr con 0.5 y 1.0mg de zeolita de la muestra 10.

En el caso de la muestra 2, la resolución de las bandas resultó muy semejante en los 3 casos mientras que, para las muestras 4 y 10 la mejor resolución se tuvo con una concentración de 1.0 mg. de zeolita (Fig.14).

Por lo tanto, se definió que la cantidad de zeolita óptima en la preparación de las mezclas para las pastillas era de 1.0mg manteniendo la cantidad de KBr como 0.2g.

Ya definida la mezcla ideal para lograr una buena resolución en las bandas de infrarrojo, se procedió a preparar las mezclas con las diferentes muestras de zeolita. Una vez preparadas en atmósfera seca las mezclas de zeolita-KBr se procedió a empastillarlas en una prensa a 4000 Psi de presión. Los espectros se obtuvieron en el espectrómetro 5PC de Nicolet Instruments en el Centro de Instrumentos de la UNAM, con las siguientes condiciones de operación: ganancia=1, velocidad de harrido=1 barrido/seg, número de barridos=32, rango espectral de 1500 a 300 cm⁻¹.

FIG.14 ESPECTROS COMPARATIVOS & DIFERENTES CONCENTRACIONES.

5.3. RESULTADOS.

De los espectros obtenidos, el espectro de la pastilla preparada con KBr y zeolita tipo 4A sin tratamiento previo se tomó como referencia (Fig.15). En él, se indican las bandas debidas a vibraciones externas y a vibraciones internas de los TO₄según Flanigen y col.(22).

El resto de los espectros corresponden a las muestras de las zeolitas fluoradas, los cuales se obtuvieron en las mismas condiciones que la de referencia con el fin de tener la misma base y poder así compararlos(Fig. 16). En la figura se desglosan los espectros de las muestras de zeolitas tratadas con fluor **a** una temperatura fija y diferentes presiones de fluoración (P=50, 100, 300 y 600 mbar de fluor).

A partir de la comparación de los espectros se pueden visualizar de modo general las variaciones de las diferentes bandas respecto a las de la referencia. Sin embargo, se requirió de un análisis más preciso para poder confirmar si en realidad se daba una alteración estructural y de quó tipo.

Para llevar a cabo dicho anílisis se requiere del conocimiento de la posición exacta de las bandas así como de sus áreas. Esto, permitió establecer si se está dando una desaluminización con rompimiento parcial o total de la estructura, o bien, sólo la pórdida de estructura(22). Con este fin, se localizó el mínimo en transmitancia de cada banda y se tomó la frecuencia a la que corresponde. Ademís, se obtuvieron las áreas de las bandas en las regiones indicadas, así como sus alturas para poder establecer si se presentan o no cambios en ellas, como ensanchamiento o reducción (Tabla 6 y 7).

FIG. 16 ESPECTROS COMPARATIVOS DE LAS MUESTRAS DE ZEOLITA FLUORADAS EN DIFERENTES CONDICIONES DE PRESION Y TEMPERATURA.

TABLA 6. RESULTADOS OBTENIDOS À PARTIR DEL ESPECTRO DE Infrarrojo para la muestra referencia.

INTERVALO DE	FRECUENCIA	ALTURA DE	AREA DE	<pre>% AREA</pre>
FRECUENCIA	DEL MAXIMO	LA BANDA	LA BANDA	RELATIVA
(Número de	onda)	(Absorbancia)		

1312-847	1006.28	1.386	238.30	83.23				
624-495	553.39	0.484	25.33	8.85				
495-427	462.86	0.242	7.29	2.55				
400-323	377.46	0.0461	10.88	3.79				
	1							
			Σ=286.32					
	· · · · · · · · · · · · · · · · · · ·			T				
--	---------------------------------------	---------------	----------	----------	--	--	--	--
INTERVALO DE	FRECUENCIA	ALTURA DE	AREA DE	% AREA				
FRECUENCIA	DEL MAXIMO	LA BANDA	LA BANDA	RELATIVA				
(Número de	e onda)	(Absorbancia)						
<u>Muestra 1.(T= 20 C, P= 50 mbar)</u>								
1326 - 844	1003.8	1.47	266.1	84.21				
809 - 640	669.1	0.07	4.4	1.39				
626 - 495	551.9	0.49	26.4	8.35				
495 - 424	462.1	0.25	7.8	2.47				
403 - 321	377.7	0.45	11.3	3.58				
			Σ=316.0					
Muestra 2. (T= 2	20 C. P= 100	<u>mbar)</u>						
1323 - 844	1004.2	0.88	154.2	85.33				
802 - 643	668.5	0.04	2.4	1.33				
619 - 495	551.8	0.27	14.0	7.75				
495 - 422	461.6	0.14	4.5	2.49				
403 - 337	378.0	0.24	5.6	3.10				
l			Σ=180.7					
Muestra 3. (T= :	20 C. P= 300	<u>mbar)</u>						
1323 - 842	1004.0	0.77	146.1	87.54				
802 - 640	668.2	0.04	2.1	1.26				
621 - 506	551.3	0.19	10.6	6.35				
495 - 422	459.4	0.13	4.1	2.46				
411 - 342	378.5	0.16	4.0	2.40				
			Σ=166.9					
Muestra 4. (T=	20 C, P= 600	<u>mbar)</u>						
1325 - 842	1008.1	0.73	148.7	89.20				
802 - 645	668.7	0.03	2.1	1.26				
626 - 509	551.7	0.15	8.5	5.10				
499 - 419	459.3	0.13	4.8	2.88				
405 - 351	378.2	0.11	2.6	1.56				
			Σ=166.7					

TABLA 7. RESULTADOS OBTENIDOS À PARTIR DE LOS ESPECTROS DE INFRARROJO PARA LAS MUESTRAS "FLUORADAS".

Tabla 7. 🗆	continuaci	ión.
------------	------------	------

·							
INTERV	ALO DE	FRECUENCIA	ALTURA DE	AREA DE	* AREA		
FRECU	ENCIA	DEL MAXIMO	LA BANDA	LA BANDA	RELATIVA		
(Número de onda)			(Absorbancia)				
Muestra							
1325 -	851	1005.5	1.03	174.60	84.36		
805 -	643	668,9	0.05	2.51	1.21		
620 -	500	552.3	0.34	17.66	8.53		
493 -	424	462.6	0.17	4.95	2.39		
403 -	330	377.8	0.31	7.24	3.50		
				Σ=206.96			
Muestra	<u>6. (T=</u>	70 C. P= 100	mbar]				
1325 -	842	1005.0	0.98	173.80	85,16		
800 -	643	668.6	0.04	2.22	1.09		
621 -	497	551.5	0.31	16.24	7.96		
497 -	422	461.5	0.16	5.18	2.54		
406 -	330	378.0	0.28	6.64	3.25		
1				Σ=204.08			
Muestre	7.(T=)	70 C, P= 300	mbar)				
1326 -	837	1008.2	0.84	156.20	88,36		
795 -	643	667.4	0.03	. 2.04	1.15		
626 -	507	551.4	0.19	10.64	6.02		
497 -	420	459.5	0.13	4.47	2.53		
406 -	354	378.1	0.16	3.41	1.93		
1				Σ=176.76			
Muestra	8. (T=_)	70 C. P= 600	<u>mbar)</u>				
1327 -	837	1015.5	0.73	151.80	90.88		
800 -	640	578.0	0.10	1.48	0.89		
640 -	509	554.7	0.10	6.98	4.18		
509 -	410	459.5	0.13	5.28	3.16		
410 -	359	378.7	0.05	1.49	0.89		
1				Σ=167.03			

,

Tabla 7, Com	۱t:	inua	cid	'n.
--------------	-----	------	-----	-----

				······			
INTERVALO DE	FRECUENCIA	ALTURA DE	AREA DE	\$ AREA			
FRECUENCIA	DEL MAXIMO	LA BANDA	LA BANDA	RELATIVA			
(Número de	e onda)	(Absorbancia)					
Muestra 9. (T=-70 C, P= 50 mbar)							
1328 - 849	1005.0	0.93	149.70	84.28			
809 - 643	667.7	0.04	2.30	1.29			
617 - 497	552.4	0.30	14.92	8.40			
497 - 424	463.1	0.14	4.39	2.47			
407 - 344	377.9	0.27	6.31	3.55			
			Σ=177.62				
Muestra_10.(T=-	-70 C. P= 100	mbar)					
1323 - 847	1004.6	0.87	147.10	83.94			
805 - 645	668.3	0.04	2.27	1.29			
619 - 495	552.6	0.29	15.05	8.58			
495 - 424	462.7	0.14	4.37	2.49			
403 - 330	377.7	0.27	6.45	3.68			
1			Σ=175.24				
Muestra 11. (T=-	-70 C. P= 300	mbar)					
1326 - 849	1005.3	0.74	128.00	83.84			
802 - 643	668.3	0.04	2.19	1.43			
621 - 497	553.3	0.25	12.98	8,50			
497 - 422	462.7	0.12	3.84	2.51			
407 - 339	377.9	0.23	5.66	3.71			
			Σ =152.67				
Muestra 12. (T=	-70 C. P= 600	mbar)					
1328 - 851	1004.8	0.80	140.30	83.42			
809 - 643	668.6	0.04	2.45	1.45			
621 - 497	553.1	0.28	14.80	8.80			
497 - 424	462.6	0.14	4.33	2.57			
403 - 333	377.9	0.27	6.30	3.75			
			$\Sigma = 168.18$				

CAPITULO 6.

ANALISIS DE RESULTADOS Y CONCLUSIONES

6.1 ANALISIS DE RESULTADOS.

De los datos obtenidos en la determinación de flúor, tanto por caida de presión como por potenciometría, se puede hacer un resumen que nos permita realizar su análisis (Tabla 8). Además, es posible establecer una relación de la masa de flúor, calculada a partir de los datos obtenidos por el mótodo potenciometrico y de los calculados por caida de presión (Pot/Pres).

Analizando los resultados de la tabla 8, se puede apreciar que la cantidad de fluor determinada únicamente por caída de presión en el sistema durante la fluoración es siempre menor que la determinada por análisis potenciomótrico. Lo cual nos lleva a proponer una primera teoría: "cuando interactúa el fluor con la zeolita ocurre un desprendimiento simultáneo de algún(os) compuesto(s) volátil(es) que se forma(n) durante la fluoración. Por lo cual, no es posible apreciar mediante la caida de presión la masa real de fluor que está penetrando en la red de la zeolita".

Algunos de los posibles compuestos volátiles que se podrían producir son: la formación de O_2 por sustitución y, la formación de HF y de F₂O por reacción del F₂ con H₂O y con los grupos hidroxilo. Sin embargo, existen muchos posibles compuestos que se pueden producir por la interacción del flúor con la zeolita. Por lo tanto, se puede establecer que los datos absolutos del flúor incorporado obtenidos por diferencia de presión son poco confiables.

Si en una gráfica presentamos los datos de la masa de flúor determinada por caída de presión contra los datos de presión inicial de fluoración (Fig.17) es posible apreciar que la cantidad de flúor "incorporada" por la zeolita a 50 y 100 mbar de presión inicial es poco dependiente de la temperatura, mientras que a presiones mayores (300 y 600 mbar) la dependencia se hace evidente (a mayor temperatura mayor cantidad de flúor incorporado).

	~				
No. DE	CONDICIONES	DE FLUORACION	FLUOR	FLUOR	POT
MUESTRA	P (mbar)	т с/к_	ADS (mbar)	POT(mbar)	PRES
ı	50	20/293	32.37	139.41	4.31
2	100	20/293	75.43	198.67	2.63
3	300	20/293	167.97	440.85	2.62
4	600	20/293	268.75	686.45	2.55
r					
5	50	70/343	23.56	100.01	4.24
6	100	70/343	79.13	220.26	2.78
7	300	70/343	197.19	603.99	3.06
8	600	70/343	322.69	1022.35	3.17
r					
9	50	-74/199	4.19	26.82	6.39
10	100	-74/199	7.06	28.04	3.96
11	300	-74/199	25.16	32.04	1.27
12	600	-74/199	19.86	40.01	2.01

TABLA 8. RESUMEN DE LOS RESULTADOS DE DETERMINACION De masa de fluor.

Igualmente, si presentamos la misma gráfica pero con los datos de masa de fluor determinados por potenciometría se puede apreciar que el fenómeno es muy similar. A presiones iniciales de fluor de 50 y 100 mbar no se presenta una dependencia clara con la temperatura mientras que a presiones de 300 y 600 mbar sí se ve una clara dependencia (Fig.18).

Por otra parte, como ya se indico, es claro que la relación de las cantidades de fluor determinadas potenciométricamente y por caída de presión (Pot/Pres) difieren, siendo el valor de esta relación dependiente de las condiciones de fluoración. En efecto, se puede observar que las muestras fluoradas a 50 mbar de presión presentan una relación Pot/Pres mayor que la de las muestras fluoradas a presiones mayores.

Curiosamente, cuando se gráfica la masa de flúor determinada por caída de presión contra la masa de flúor determinada por potenciometría (Fig.19) se observa un comportamiento lineal cuya pendiente es mayor a mayor temperatura:

> $T = 20^{\circ}C$ Y = 2.376 X + 42.97 $T = 70^{\circ}C$ Y = 3.133 X - 0.928

Los hechos anteriores podrían explicarse suponiendo basicamente dos formas de interacción del flúor con la zeolita:

- La primera, ocurriría al inicio de la fluoración y tendría que ver con la interacción del fluor con los grupos hidroxilo superficiales y con el remanente de agua no extraída durante el proceso de secado. En esta fase la emisión de volátiles sería máxima, y su efecto se dejaría sentir más en las muestras fluoradas a baja presión, en las que la cantidad de fluor incorporado es menor en tórminos absolutos.

- La segunda, estaría asociada fundamentalmente con un mecanismo de sustitución O-F en el propio armazón de la zeolita. Esta etapa mantendría una emisión de volátiles (el oxígeno sustituido) prácticamente constante y tendría mayor peso relativo en los ensayos a presiones mayores, donde la cantidad absoluta de flúor incorporado es mayor.

La comprobación experimental de estos supuestos requeriría de un análisis de la variación de la composición química de la fase gaseosa durante el proceso de fluoración, lo cual podría abordarse por espectroscopia infrarroja y Raman de transformada de Fourier. Este estudio, que requiere de un cuidadoso diseño experimental, se abordará como continuación del trabajo que se presenta.

Por otro lado, para conocer más sobre el efecto de la fluoración de la zeolita 4A es necesario un análisis estructural, por lo que se recurrió en primer tórmino al análisis por Difracción de Rayos X (DRX). Este mótodo permitio realizar el cálculo del porciento de cristalinidad retenido por cada muestra después de un tratamiento con fluor (Tabla 9).

De manera general, es posible observar que el grado de cristalinidad retenido en cada muestra depende de la presión inicial de fluor y de la temperatura. Esto es, conforme se incrementa la presión inicial de fluor disminuye el grado de cristalinidad de la muestra, hacióndose más marcado este fenómeno a mayor temperatura.

A partir de los datos obtenidos para cada muestra, es posible construir una gráfica que nos permita visualizar el grado de cristalinidad de cada muestra en función de la cantidad de fluor que penetro en la zeolita según los datos de determinación potenciomótrica. (Fig.20)

En esta gráfica se observan dos zonas claramente diferenciadas. La primera, en la que la pórdida de cristalinidad es mínima, se extiende hasta un valor de aproximadamente 150 mg y podría considerarse, en primera aproximación, como el valor límite de penetración del fluor en la zeolita sin interacción con el armazón. En la segunda zona la pórdida de cristalinidad es prácticamente lineal con respecto a la masa de fluor incorporado, lo que es evidente por la amorfización de la estructura de la zeolita en condiciones extremas (Fig.21).

FIG. 17 GRAFICA DE MASA DE FLUOR DETERMINADA POR CAIDA DE PRESION CONTRA PRESION DE FLUOR INICIAL.

FIG. 18 GRAFICA DE MASA DE FLUOR DETERMINADA POR Potenciometria contra presion inicial de fluor.

68

FIG. 19 GRAFICA DE MASA DE FLUOR DETERNINADA POR CAIDA De Presion contra masa de fluor deterninada por potenciometria:

FIG. 20 GRAFICA DE PORCIENTO DE CRISTALINIDAD CONTRA MASA DE FLUOR DETERMINADA POR POTENCIOMETRIA.

69

De aquí, es claro que el grado de cristalinidad que conservó la zeolita es totalmente dependiente de la cantidad de fluor que penetró en ella, lo cual, permite aseverar las teorías planteadas. "Si el fluor está interactuando con la zeolita, a la vez, está formando algún compuesto que rompe la estructura de la zeolita, siendo dicho fenómeno más marcado a altas presiones."

Ahora, la pregunta siguiente sería, quó le ocurre al armazón estructural de la zeolita? Para contestar está interrogante, en primera instancia, se recurrirá a los datos de parámetros de red reportados en la tabla 5 y resumidos en la tabla 9.

De los datos de la tabla 5, se puede apreciar que no se presentaron corrimientos en el valor "d" del estándar internolo cual implica que no hubo desviaciones en los valores 20 obtenidos experimentalmente para las muestras. Por lo tanto, los valores "d" medidos para los índices (540). (541), (550) y (720) pueden conservarse para el cálculo del parámetro "a" de la celda cúbica correspondiente a la estructura de la zeolita tipo 4A.

Los valores obtenidos para el parametro "a" (Ver tabla 9) en la muestra de zeolita original se puede apreciar que difieren entre si por 0.02 Å, lo cual se puede tomar como un error mínimo de medición. Para las muestras tratadas con fluor, se aprecian pequeñas alteraciones del parámetro de red solo en las muestras para las que se utilizo presión inicial de fluor de 600 mbar (ambas temperaturas) y de 300 mbar (T=70°C), muestras 4, 7 y 8.

A partir de los valores de "a" calculado para cada índice de Miller se obtuvieron valores promedio para cada muestra. De estos valores se puede apreciar que la red cúpica se mantiene sin alteración para la mayoría de las muestras. A excepción de las citadas muestras 4, 7 y 8 en las cuales el valor de "a" se ve disminuído, lo cual indica que la red cúpica se ve ligeramente afectada.

MUESTRA	CONDICIONES PRESION	DE FLUORACION TEMPERATURA	PARAMETRO DE RED "a"	<pre>% DE CRIS- TALINIDAD</pre>
0	Nula	Nula	12.29	100.0
1	50 mbar	20 ⁰ C	12.29	97.3
2	100 mbar	20 ⁰ C	12.29	91.7
з	300 mbar	20 ⁰ C	12.29	64.7
4	600 mbar	20 ⁰ C	12.24	41.3
5	50 mbar	70 ⁰ C	12.29	97.8
6	100 mbar	70 ⁰ C	12.29	89.3
7	300 mbar	70 ⁰ C	12.27	51.0
8	600 mbar	70 ⁰ C	12.24	27.8
9	50 mbar	-70 ⁰ C	12.29	96.7
10	100 mbar	-70°C	12.29	100.0
11	300 mbar	-70°C	12.29	96.2
12	600 mbar	-70°C	12.29	100.0

TABLA 9. RESUMEN DE LOS RESULTADOS OBTENIDOS POR DIFRACCION DE RAYOS X.

En términos generales puede concluirse que la incorporación'de fluor a la zeolita no produce una distorsión de su red cristalina, sino más bien una destrucción progresiva de la misma.

Para recabar una mayor información de lo que le ocurre a la estructura de la zeolita cuando interactúa con el flúor, se recurrió a la espectroscopía infrarroja. A partir de los datos obtenidos por espectroscopía infrarroja para cada muestra (Cap.6) se resumieron los resultados más sobresalientes en la tabla 10.

De los resultados obtenidos se puede apreciar una clara disminución gradual de estructura y pórdida de simetría dependiente de la presión de fluoración y de la temperatura. Lo cual es compatible con los resultados previos obtenidos por difracción de rayos X.

Sin embargo, fue posible obtener información adicional buscando algún corrimiento de la banda correspondiente al alargamiento asimótrico de los TO, que nos indicará alguna probable desaluminización. Lo cual es claro para la muestra 8.

Además, observando el resto de las posiciones de los máximos de las bandas, en general, se mantienen sin cambio, excepto la banda correspondiente al enlace T-O. Basándose en los datos correspondientes a la muestra 8, es claro que acompañando a la desaluminización va aunado una disminución en la frecuencia correspondiente al enlace T-O. Por lo tanto, podría pensarse en una posible correlación entre la disminución en la frecuencia del enlace T-O y la ruptura del enlace A1-O.

Por otra parte, como se presenta una disminución en la relación altura/base de las bandas que corresponden a los anillos dobles y a la apertura de poro (tabla 11), se podría pensar que el flúor está penetrando en las cavidades mayores de la zeolita atacando los sitios TO₄ que forman los anillos dobles de 4 que a su vez sirven de unión entre las unidades sodalita.

MUESTRA	ALARGAMIENTO	INTERNO	ANILLOS	ENLACE	APERTURA
L	ASIMETRICO	SIMETRICO	DOBLES	т-о	DE PORO
r	···	<u> </u>			
0	1006	669	553	463	377
	·····				
1	1004	669	552	462	378
2	1004	669	552	462	378
3	1004	668	551	459	378
4	1008	669	552	459	378
·					
5	1006	669	552	463 .	378
6	1005	669	552	462	378
7	1008	667	551	460	378
8	1016	578*	555	460	379
······					
9	1005	668	552	463	378
10	1005	668	553	463	378
11	1005	668	553	463	378
12	1005	669	553	463	378

TABLA 10. RESUMEN DE LOS DATOS OBTENIDOS POR ESPECTROSCOPIA INFRARROJA.

MUESTRA	ANILL ALTURA	OS DOBL BASE	es <u>Alt</u> Base	APERT ALTURA	URA DE BASE	PORO ALT BASE
0	0.48	129	3.75*10 ⁻³	0.46	77	5.98*10 ⁻³
1	0.49	131	3.74*10 ⁻³	0.45	82	5.49*10 ⁻³
2	0.27	124	2.18	0.24	66	3.64
3	0.19	129	1.47	0.16	69	2.32
4	0.15	_117	1.28	0.11	54	2.04
r						
5	0.34	120	2.83*10 ⁻³	0.310	73	4.25*10 ⁻³
6	0.31	124	2.50	0.28	76	3.68
7	0.19	119	1.60	0.16	52	3.08
8	0.10	131	0.76	0.05	51	.098
9	0.30	120	2.50*10 ⁻³	0.27	63	4.29*10-3
10	0.29	124	2.34	0.27	73	3.70
11	0,25	124	2.02	0.23	68	3.38
12	0.28	124	2.26	0.27	70	3.86

TABLA 11. RESULTADOS DE LAS BANDAS SENSIBLES A MODIFICACION ESTRUCTURAL DETERMINADAS POR ESPECTROSCOPIA INFRARROJA

6.2 CONCLUSIONES.

En base al análisis realizado, es posible pensar que el flúor cuando interactúa con la zeolita, inicialmente, sustituye algún elemento en su estructura. Debido a que no se aprecia una alteración significativa cuando se tiene una cantidad pequeña de flúor 1a zeolita, se puede creer que DOL en tener electronegatividades y tamaños atómicos semejantes el flúor sustituye parcialmente al oxígeno estructural.

Posteriormente, el flúor provocaría el rompimiento en los enlaces Al-O de los anillos dobles en forma gradual hasta llegar a abrir los anillos y con ello causar el colapso estructural.

Sin embargo, es posible intercalar hasta aproximadamente 40 mg de fluor por gramo de zeolita tipo 4A sin alterar de manera significativa su estructura cristalina. Por lo tanto, como la zeolita mantiene en su estructura el fluor, es factible pensar en la posibilidad de llegar a tener una zeolita modificada que pueda tener nuevas aplicaciones.

Sin embargo, para llegar a tener la certeza de que la zeolita puede tener nuevas aplicaciones es necesario realizar otro tipo de pruebas que permitan medir su acidez y su actividad catalitica, pero que quedan fuera del alcance de este trabajo y que se plantean como continuación del mismo.

BIBLIOGRAFIA

- Gortsema, Frank Peter "Modification of molecular series by treatment with a silicon tetrafluoride gas mixture". <u>Union</u> <u>Carbide USA</u> 0,100,544,B1.
- Brent, Mei-Tak Lok "Modification of Zeolites by Treatment with Chlorine Gas". <u>Union Carbide USA</u> 0,091,076,A1.
- 3. Adams, D.M. "Solidos Inorganicos", Editorial Alhambra, 1986.
- Wells, A.F. <u>"Ouimica Inorginica Estructural</u>", Esitorial 1978.
- Meier, W.M. and Olson, D.H. <u>"Atlas of Zeolite Structure Types"</u>
 2a. Ed., London, Butterworths, 1987.
- Mumpton F.A., Short Course Notes, <u>Mineral Soc. Am.</u>, 4, 177 (1977).
- Breck, Donald W. "Zeolite Molecular Sieves". John Wiley and Sons, New York, N.Y. (1974).
- 8. Unión Carbide "Molecular Sieves", Folleto (1983).
- Broussard, L. and Shoemarker, D.P. <u>J. Am. Chem. Soc.</u>, 82,1044 (1960).
- 10. Smith, J.V. and Dowell, L.G. Z. Kristallogr., 126:135 (1968).
- Kondis, E.F. and Dranoff, J.S. "Molecular Sieve Zeolites", <u>Advan. Chem. Ser.</u> 102, American Chemical Society, Washington, D.C. 1971, p.171.
- Yanagida, R.Y., Amaro, A.A. and Seff, K. <u>"J. of Phys. Chem.</u>, 77, 805 (1973).
- Milton, R.M. U.S. Patent 2,882,243 (1959); R.M. Milton, <u>U.S.</u> Patent 2,882,244 (1959).
- 14. Cronstedt, A.F. Akad, Handl. Stockholm, 17, 120 (1756).
- 15. Weisz, P.B. and Frilette, V.J. J. Phys. Chem., 64, 382 (1960).
- 16. Barrer R.M., Brit. Chem. Engr., 4, 267 (1959).
- Vaidyanathan, K "Natural/synthetic zeolites and their applications, part II - structure, adsorption characteristics and applications". <u>Chem. Ind. Dev.</u>, 1978.

- Atkins, P.W. <u>"Fisicoquímica"</u>. Fondo Educativo Interamericano 1986.
- (a) Rao, C.N.R., <u>"Chemical Applications of Infrared Spectroscopy"</u>. Academic, New York, 1963.
 (b) C.N. Banwell <u>"Fundamentos de Espectroscopía Molecular"</u>, Ediciones del Castillo, S.A. Madrid 1977.
- Skeels, Gary William. "Silicon Substituted Zeolite Compositions and Process for Preparing Same". <u>Union Carbide.</u> <u>USA</u> 0 082 211 B1.
- 21. Designación ASTM D3942-85.
- Flanigen, M. y col. "Infrared Structural Studies of Zeolite Frameworks". <u>Advances in Chemistry Series</u> 101, 1971, no.6.
- Rao, C.N.R. "Chemical Applications of Infrared Spectroscopy", Academic, New York (1963).
- Greenwood, N.N. and Earnshaw, A.<u>"Chemistry of the Elements"</u>, Pergamon, Press (1985).
- Willard, H.H. and Winter, O.B. <u>Ind. Engng. Chem. Analyt.Edn</u>, 5, 7 (1933).
- 26. Ingamells, C.O. <u>Talanta</u>, 9, 507 (1962).
- 27. Hollingworth, R.P. Analyt. Chem. 29, 1130 (1957).
- Huang, W.H. and Johns, W.D. <u>Analytica Chim Acta</u>, 37, 508 (1967).
- 29. Fuge, R. Chem. Geol., 17, 37 (1976).
- 30. Kirstein, W.B. Anal. Chem., 48, 84 (1976).
- 31. Fong, C.C. y Huber, C.O. Spectrochim. Acta, 31B, 113 (1976).
- 32. Auffarth, J. y Klochow, D. Anal, Chim. Acta, 111, 89 (1979).
- 33. Bodkin, J.B. Analyst, 102, 409 (1977).
- 34. Ingram, B.L. Anal. Chem., 42, 1825 (1970).
- 35. Hoffman, J.I. y Lundell, G.E.F. <u>J. Res. Natl. Bur. Std.</u>, 3, 581 (1929).
- 36. Grimaldi, F.S. Anal. Chem., 32, 119 (1960).
- Hillebrand, W.F., Lundell, G.E.F., Bright, H.A. and Hoffman, J.I. <u>Applied Inorganic Analysis</u>, 2a. ed. Wiley, New York, 1953. pp. 835-851.
- 38. Bennett, H. y Oliver, G.J. Analyst, 101, 803 (1976).
- Grimaldi, F.S., Ingram, B. y Cuttitta, F. <u>Anal. Chem.</u>, 27, 919 (1955).
- 40. Shell, H.R. y Craig, R.L. Anal. Chem., 26, 996 (1954).

- Bulycheva, A.I. y Millnikova, P.A. <u>Akad. Nauk. SSSR</u>, 23 (1958).
 Ref. <u>Zh. Khim.</u>, 11, 328, Abstr. 38 (1959).
- Izakov, P.M., Vestn. Leningr. Univ., Ser. Biol., Geogr. Geol., 117 (1955); through <u>Chem Abstr.</u>, 49, 15606 (1955).

ESTA TESIS NO DEPA SAME DE LA BIELINYESE.