

UNIVERSIDAD SIMON BOLIVAR

ESCUELA DE INGENIERIA EN ALIMENTOS CON ESTUDIOS INCORPORADOS A LA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Utilización de Harina de Quinua

(Chenopodium quinoa variedad Sierra Blanca). Cosechada en México, en Galletería

> TESIS CON FALLA DE CERGEN

TESIS

QUE PARA OBTENER EL TITULO DE: INGENIERO EN ALIMENTOS PRESENTA:

ARIADNA ADEATH DIAZ

DIRECTOR DE TESIS: PROF. SALVADOR VEGA Y LEON

MEXICO, D. F.

1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

그 그 그 그 그 생님 본 경험 전 경험을 하는 것	
CONTENIDO	
[
	pág
LISTA DE CUADROS	III
LISTA DE FIGURAS	VI
LISTA DE DIAGRAMAS	VII
LISTA DE ANEXOS	VII
CAPITULO I : INTRODUCCION	1
CAPITULO II : GENERALIDADES	
II.1. Antecedentes Históricos	6
II.2. Características Físicas	8
II.3. Características Químicas	10
11.4. Valor Nutricional de Chenopodium guinoa	28
II.5. Usos y Aplicaciones de Quinua	35
11.6. Galletas	40
CAPITULO III : METODOLOGIA EXPERIMENTAL	
III.1. Objetivos	50
111.2. Desarrollo Experimental	51
CAPITULO IV : RESULTADOS Y DISCUSION	
IV.1. Características Físicas	62
IV.2. Características Ouímicas	70

IV.3. Evaluación Sensorial	
그 집에 그는 [45] 45 전에 제공을 위해서 사람들이 무섭하게 되었다면서 그 사람이 되는 것이다.	
CAPITULO V : Conclusiones y Recomendaciones	
- Conclusiones	96
- Conclusiones	00
- Recomendaciones	88
이번 이 경우 그렇게 하는 항상 하는 하는 하는 하는 하는 것이 되었다. 그 그는 그	
an Die Lawei Palmasiaa Palata kasta alatah saarah di arah arah dalatah dalatah di arah dalatah di arah dalatah	
하다는 이번에는 한 살림에 대한 경험을 가장 하면 하면 하는 것이 되었다. 그는 그는 그는 그는 그는 그는 그는 그를 가장 하는 것이 없는 것이 없는 것이 없는 것이다.	
그는 이 이렇게 안 살려면 바꾸면 적용하다 중요한 경기를 하는데 하는데 그 것이 없는데 그 없다고 있다.	
CAPITULO VI : BIBLIOGRAFIA	90

LISTA DE CUADROS

CUADRO		pág.
No.		
i	Comparación de la Composición Química de	
	Quinua con Otros Cereales.	11
2	Composición Química de Cuatro Variedades	
	de Quinua Cosechadas en México.	12
3	Contenido de Aminoácidos de la Proteína	
	de <u>Chenopodium guinoa</u> Comparado con Di-	
	ferentes Alimentos.	1.4
4 .	Contenidos Máximos y Mínimos de Aminoácidos	
	de las Proteínas de Quinua.	16
	Contenido y Algunas Propiedades del Almidón	
	de Quinua y Otras Semillas.	18
6	Composición de Carbohidratos de Tres	
	Varicdades de <u>Chenopodium quinoa</u> .	19
7	Algunas Características del Aceite de Tres	
	Variedades de Chenopodium quinoa (Variedades	
4.5	Blanca, Amarilla, Roja)	21

	8	Vitaminas y Minerales de Chenopodium	
		guinoa	2.
of Carry 1971 The Carry 1973 The Carry 1973	9	Minerales de Tres Variedades de Quinua	2
	10	Contenido de Saponinas en Diferentes	
and Salah Salah Salah Salah Salah Salah Salah Salah Salah		Variedades de Quinua	2
	11	Indice de Eficiencia Protéica (PER) de	
		Harinas de Granos de Quinua con Diferentes	
		Tratamientos	30
	12	Comparación de Algunas Características	
		Nutricionales entre Quinua y Amaranto	31
	13	Calidad de Algunas Proteínas Vegetales	33
	14	Quinua, Caseína y Trigo como Fuentes de	
		Proteínas para Crecimiento de Ratas	34
	15	Evaluación Química de Galletas Elaboradas	
		con 100% Harina de Trigo y Galletas con 30%	
* .		de Sustitución de Harina de Ouinua	. 38
	16	Usos y Aplicaciones Potenciales de las	
		Variedades Dulces de Quinua	39
	- 17	Especificaciones para Galletas	42
	18	Especificaciones para Harina de Trigo	4 4

		electrical de la companya de la comp	
		병 (경영화의 기사 관리 경영 경영화 기계 기계 기계	
	13.56	그리고 가장 하는 이 말하는 것 같아요. 그렇게 하는 이	
	19	Formulación de la A.A.C.C. para la Elabora-	
		ción de Galletas.	54
	20	Características Físicas de las Galletas	
na di Alama Na terapakan dalam Ma	na garaga ay karang karang Panggang karang kar	Elaboradas con Harina de Trigo o Mezclas	
		de Harinas Trigo-Quinua.	69
	*		
e de la composición del composición de la compos	21	Composición Química de Harinas de Trigo y	
		Quinua.	71
	22	Composición Química de las Galletas Elabora-	
		das con Harina de Trigo o Mezclas de Harinas	
		Trigo-Quinua.	72
	23	Incremento Relativo de Proteínas en las	
		Galletas.	76
	24	Contenido de Proteína de las Galletas	77
Alignachen des error	25	Contenido de Algunos Minerales Presentes	
		en las Harinas de Quinua y Trigo	79
	26	Contenido de Algunos Minerales Presentes	
		en las Galletas.	80
	27	Comparación Entre Especificaciones de la	
		Norma Oficial (NOM-F-6-1983) y las Galletas	
		Experimentales.	82
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
And the state of t			
			and the second of the
		* * * * * * * * * * * * * * * * * * * *	

LISTA DE FIGURAS

TIGURA		pág
No.	이 시간하다. 요즘 이 사람들은 이 사람들은 등록 전혀 바다 등록 하다.	
1	Distribución de Chenopodium quinoa en los	
	Principales Países donde es Cultivado	9
2	Morfología de la Semilla de <u>Chenopodium</u>	
	quinoa.	63
3	Tamaño de Grano	65
4	Tamaño de Partícula de la Harina de Trigo	66
5	Tamaño de Partícula de la Harina de Quinua Integral.	67
6	Tamaño de Partícula de la Harina de Quinua Reventada.	68
7	Calificación Promedio del Sabor en la	
	Prueba de Nivel de Agrado de las Galletas	84

VIT

LISTA DE DIAGRAMAS

AGR.															
														pa	
No															
														52	
		ct.													
		ro													

VIII

LISTA DE ANEXOS

ANEXO		pág
No.		
1	Material y Equipo	97
2	Cuestionario de la Prueba Hedónica	99
3	Cuestionario de la Prueba de Preferencia	100
4	Resultados de la Distribución de Tamaños	
	del Grano <u>Chenopodium</u> <u>quinoa</u> representados	
	en el histograma correspondiente a la fi-	
	gura 3.	101
5	Resultados de la Distribución de Tamaños	
	de Partícula de la Harina de Trigo Comer-	
	cial representados en el histograma co-	
	rrespondiente a la figura 4.	102
6	Resultados de la Distribución de Tamaños	
	do Partícula de las Harinas do Quinua.	103
7	Calificación Promedio de las Galletas	
	en la Prueba Hedónica.	104
8	Rosultados Estadísticos del Análisis de	
	Varianza para la Prueba de Nivel de Agrado	

	ΪX	
	para el Sabor de las Galletas de Harina de	
Al Length (Trigo y las Galletas de Harina de trigo-	
	Harina de Quinua Integral.	105
9	Resultados Estadísticos del Análisis de	
	Varianza para la Prueba de Nivel de Agrado	
	para el Sabor de las Galletas de Harina de	
	Trigo y las Galletas de Harina de Trigo-	
	Harina de Quinua Reventada.	106
10	Resultados Estadísticos del Análisis de t	
	de Student entre los Tratamientos de las	
	Galletas Evaluadas en la Prueba de Nivel de	
	Agrado.	107
11	Tabla 1. Valores Críticos para F.	108
12	Tabla 2. Valores Críticos para t de Student	109
13	Resultados Estadísticos del Análisis de	
	Ordenamiento por Rangos para la Prueba de	
	Textura (Prueba de Preferencia).	110
14	Tabla 3. Diferencia de Sumatoría Ordinal	
	Absoluta Crítica de "Todos los Tratamientos"	112
15	Costo Aproximado de las Galletas	113

CAPITULO I

CAPITULO I

La nutrición adecuada de los individuos que forman una sociedad, así como las oportunidades económicas, educativas y ambientales que se les presentan son la base para su desarrollo y buena salud de lo cual depende el progreso y bienestar de la sociedad que forman (1).

La buena o mala nutrición de un individuo afecta su desarrollo físico y mental, reflejándose en su conducta, aprendizaje, productividad, salud, reproducción y potencial económico por lo que la resolución de problemas nutricios, dentro de una sociedad, tiene una alta prioridad (2).

Una nutrición insatisfactoria, conduce a que el individuo manifieste lo que se conoce como desnutrición cuya forma más grave y generalizada es la desnutrición provocada por la falta de proteínas y calorías. La desnutrición en México se presenta en las personas que no ingieren suficientes alimentos, o que en su dieta excluyan uno o varios nutrimentos básicos como proteínas, carbohidratos, grasas, vitaminas y/o minerales a lo cual se le denomina desnutrición primaria. En el caso de que la esimilación de los alimentos sea deficiente por malformaciones o enfermedad se le denomina desnutrición secundaria. También se puede presentar el caso de una desnutrición mixta. De los casos

anteriores el que merece mayor atención es la desnutrición puimaria por su frecuencia y características epidemiológicas (1) (3).

La desnutrición en México afecta, principalmente, las áreas rurales y suburbios de las grandes ciudades, sobre todo a los grupos más vulnerables como niños, embarazadas, enfermos y ancianos (3) (4).

La ciencia y tecnología de los alimentos buscan poner a disposición a la mayor parte de la población productos de alto
valor nutritivo, bajo costo, fácil conservación y distribución, para lo cual se han venido utilizando varias técnicas
como son por ejemplo el enriquecimiento, la fortificación y la
extensión de alimentos así como el apoyo de la exploración y
uso de alimentos nuevos o el rescate de los que han caído en
desuso (5).

El enriquecimiento consiste en la adición de uno o más nutrimentos en una cantidad mayor a aquella en que están normalmente presentes en el alimento; la extensión se basa en aumentar el volumen de un alimento para abatir su costo como la incorporación de proteína de soya en productos cárnicos; la fortificación incluye la adición de uno o varios nutrimentos que normalmente no se encuentran presentes en un alimento. La fortificación se efectúa comúnmente con vitaminas, aminoácidos y minerales (6).

Los países de menor desarrollo económico dependen en gran medida de los cereales para obtener sus principales nutrimentos. Los cereales son fuentes sobresalientes de proteínas no porque sean ricos en ellas, sino porque se consumen más que otros alimentos como carnes, huevos y productos lácteos. Sin embargo, las proteínas de los cereales en su composición de aminoácidos indispensables presentan limitantes como la baja concentración de lisina, por lo que la calidad de las proteínas es deficiente (2).

Para compensar la deficiente calidad de las proteínas en los cereales se ha aplicado el principio de combinar los cereales, deficientes en uno o más aminoácidos indispensables, con alimentos ricos en estos aminoácidos: es importante la combinación final de aminoácidos de la dieta total y no de cada alimento en forma individual. Este principio se ha seguido instintivamente por siglos hasta que se inició su estudio científico a partir de los años cincuenta (1)(2).

El nivel proteínico de los cereales pueden variar mucho de una región a otra, siendo difícil definir con precisión los niveles de nutrimentos de los granos a causa de la compleja acción recíproca del carácter genético, fertilizantes aplicados y factores ambientales (2).

Hasta hace poco tiempo en nuestro país se inició a nivel

experimental el cultivo de <u>Chenopodium guinoa</u> en los valles altos del Estado de México obteniéndose rendimientos de dos o tres toneladas por hectárea. Esta es una planta nativa y cultivada en el altiplano sudamericano, es un tipo de quenopodácea que produce una semilla comestible, pequeña, rica en almidones y proteínas de buena calidad biológica, adecuada para la complementación de cereales por su buen balance de aminoácidos y alto contenido de lisina (7)(8).

Esta planta se cultiva en Chile, Argentina, Bolivia, Ecuador, Perú y Colombia, lugares en los cuales se consume como: quinua perlada, harina de quinua, hojuelas de quinua y quinuavena la cual es una mezcla de harina de quinua, avena y cebada (8).

Las galletas son productos que se elaboran fácilmente, tienen larga vida de anaquel y su distribución y comercialización se facilita por ser productos de gran aceptación en México, por estas razones son un producto que se presta como vehículo para la incorporación de semillas que complementen el valor nutritivo del trigo (1).

En vista de la amplia gama de aplicaciones que tiene el grano de quinua como alimento en países sudamericanos, de ser una
fuente rica de proteínas y potencial económico, y por su
reciente introducción en nuestro país, se considera de importancia el realizar estudios que permitan conocer la aptitud

galletera de la harina de <u>Chenopodium quinoa</u> a partir de granos cultivados en México. Se contribuye además a enriquecer la información existente sobre quinua principalmente de harina integral y harina de grano reventado de lo cual se carece de información.

CAPITULO II

CAPITULO II

GENERALIDADES

II.1.ANTECEDENTES HISTORICOS

De los cultivos prehispánicos, el grupo de los "pseudecereales" es poco conocido. En este grupo se encuentran las Chenopodiáceas o "quenopodios" (8).

La quinua se ha cultivado en las regiones montañosas de Sudamérica, por centurias ha servido como fuente alimenticia de los pobladores rurales de esas regiones, al igual que el maíz y las papas (9)(10).

La quinua se produce en Chile, Argentina, Ecuador, Colombia, y en mayor medida en Perú y Bolivia, obteniéndose rendimientos hasta de 3000 Kg. por hectárea (10).

Su cultivo se ha llevado a cabo empleando métodos tradicionales ya que sus características físicas hacen difícil una producción mecanizada, principalmente por el hecho de que las semillas son pequeñas, de 2 a 4 mm. de diámetro (11).

La quinua ha recibido diferentes nombres, tanto indígenas como extranjeros: "suba" o "supha" y "pasca", son vocablos de los indios chibchas y de otras tribus de la meseta colombiana. "Pasca" significa, etimológicamente, "la olla de comida del padre", o sea, la comida que los padres aborígenes daban a sus hijos. "Jupha" o "Hupha" de la lengua aymara en Bolivia cayeron en desuso al ser sustituídas por la voz quinua o quinoa (8).

El vocablo "quinua" o "kiwina" se considera de origen chibcha; su alteración fonética dió origen a la voz quinoa, la cual se utilizó para dar el nombre científico a esta planta. Otros nombres de origen indígena sudamericano son: Llijccha, Ackharu, Kinigua. Además quinua recibe nombres de origen no americano como: arrocillos, arrocillo americano, arroz del Perú, arroz pequeño, bledo morisco, mijo, mijo del Perú, trigo inca, etc. (8).

Los primeros datos arqueológicos que se tienen de quinua se encontraron en Perú y Argentina fechados del comienzo de la era cristiana. Sin embargo, se cree que esta planta fue domesticada hace más de cinco mil años antes de Cristo de un ancestro silvestre, Chenopodium hircinum, la cual es la especie sílvestre más afín a Chenopodium quinoa, en las áreas altas de Bolivia, Colombia y Perú, aunque no hay evidencia real para conocer su evolución (8)(12).

La difusión de quinua en Sudamérica se llevó a cabo por las relaciones comerciales de las diferentes tribus nativas con los chibchas y sus antecesores. La quinua les permitía tener cultivos agrícolas en los páramos, hoy inhospitalarios y en las punas, siempre cubiertas por nieve. Este hecho explica la existencia de miles de pequeñas terrazas agrícolas en las partes altas de las cumbres andinas, así como la presencia de ciudades subterráneas, ciudades amuralladas, increíbles obras de ingeniería hidráulica y caminos, en lugares ahora deshabitados, como consecuencia del olvido del cultivo de la quinua (8).

A partir de la conquista española, la quinua fue desplazada como cultivo importante por los cereales introducidos por los conquistadores como cebada y trigo, sustituyéndose así cultivos autóctonos por cultivos de producción y consumo más sencillos, pero de valor nutritivo inferior (12).

11.2.CARACTERISTICAS FISICAS

Quinua es una planta que mide de 120 a 180 centímetros de alto, en el extremo de sus tallos se presentan agrupaciones de pequeñas semillas aproximadamente de dos a cuatro milímetros de diámetro (11).

- 9 -

DISTRIBUCION DE <u>Chenopodium quinoa</u> EN LOS PRINCIPALES PAISES DONDE ES CULTIVADO

* Modificación de Flores, E.,1987. Referencia 8. Las semillas de quinua son comestibles con coloraciones que varían de blancas a oscuras, pasando por el amarillo y el rojo (7).

Crece en altitudes que van de los 2000 a 4000 m. sobre el nivel del mar. Es una planta resistente a bajas temperaturas, a plagas, suelos pobres y escasa humedad. Crece y madura en un periodo de cinco a seis meses, dependiendo de su variedad (11).

En México, a nivel experimental, se han cosechado las variedades: "Sierra Blanca", "Barandales", "Isluga" y "Lipez" con la finalidad de establecerlas en el país, obteniéndose rendimientos de dos a tres toneladas por hectárea (7).

II.3.CARACTERISTICAS OUIMICAS

Estudios químicos sobre la semilla han mostrado que es igual o superior que los cereales comunes con respecto a su composición de nutrientes, principalmente en proteína, grasa y minerales como se observa en el Cuadro 1 (11).

El Cuadro 2 muestra la composición de los granos de <u>Cheno-podium guinoa</u> cosechados en los valles altos de Toluca los cuales pertenecen a las variedades: "Sierra Blanca", "Isluga", "Lipez" y "Barandales".

CUADRO 1

COMPARACION DE LA COMPOSICION QUIMICA

DE QUINUA CON OTROS CEREALES (& B.S.)

DETERMINACION	QUINUA	WAISP	TRIGO ^b APROZ ^b CEBADA ^C AMARANTO ^d
PROTEINAS	12.50-18.50	10.14	10.06 6.69 10.00 14.7
GRASAS	5.03- 7.80	1.33	1.75 2.27 1010 7 3 6.9
FIBRA CRUDA	1.63- 5.57	4.58	3.50 11.24 0.80 6.1
CENTRAS	2.30- 3.77	1.45	1.98 5.11 1.20 3.6
CARROHIDRATOS	60.00-74.30	83.81	86.19 84.70 86.80 62.8

a) Los rangos reportados en la composición química de quinva involucran la diferentes datos encontrados en la bibliografía. Estos datos exhiben una gama moy amplia. Me valores pudiendese interpretar como resultado de la gran enricidad de ensecies que existen.
Fuente: Referencias 1.8.10.11,12.15.19

bl Fuente: Referencia I'

c) Fuente: Referencia 7

d) Fuente: Referencia to

CUADRO : 3

COMPOSICION QUIMICA DE CUATRO VARIEDADES DE QUINUA COSECHADAS EN MEXICO

DETERMINACION	a a granda da kaja propinski prima kaja kaja kaja kaja kaja kaja kaja ka
HUMEDAD	6,27-6.71
PROTEINA CRUDA (N X 6,25)	13.98-14.91
EXTRACTO ETEREO	3.64- 5.48
FIBRA CRUDA	0.87- 1.86
CEN12AS	2.92- 4.25
CARBOHIDEATOS.	68.26-71.08

Fuente: Bufarence - 27

1.-Proteinas

Una de las principales características de quinua y en la cual radica en gran parte su importancia como alimento es su contenido y calidad protéica la cual es superior a la de los cereales comunes como trigo, arroz, cebada, avena y maí:. Estudios con ratas revelan que la calidad protéica de quinua es igual o ligeramente inferior a la leche (11)(13)(14).

Las proteínas están compuestas de cuatro fracciones cuyo contenido varía dependiendo de la variedad del grano, encontrándose dentro de los rangos que se indican a continuación(8):

Fraccion	Porcentaje de la proteina t
globulinas	26.0- 45
albúminas	4.5- 20
prolaminas	0.5- 8
glutelinas	12.0- 51

La composición de aminoácidos de las proteínas de quinua (Cuadro 3) muestra su alto contenido de lisina, aminoácido que es limitante en los cereales; este contenido es más del doble del trigo y mayor que el del arroz, maíz y avena (10)(11)(13) (15).

CUADRO 3

CONTENIDO DE AMINOACIDOS DE LA PROTEINA DE

Chenopodium guinoa COMPARADO CON DIFERENTES ALIMENTOS

(g./16 g. N)

AMI HIACIDO	CATHAN	TH GOD	HAIZD	**********	AVINA	SOYAD	TECHE _p	CARNED	HUEVO ^b	PESCADO ^b	PATRON FAO ^D
AFGINENA	6,5-7-4	4.0	3.5	5.5	6.1	7.2	3.7	6.4	6.6	5.6	-0-
TENTLALANINA	3,2-4.5	5.0	4.5	4.8	5.0	4.9	1.4	4.1	5.8	1.7	6.0
HEST IDINA	2.4- 3.1	1.8	2.1	1.6	1,7	2.4	2.7	1.5	2.4	-0-	
150 FOCTRA	1.6- 6.1	4.2	4.6	4.5	4.0	5.4	10.0	5.2	6.8	5.1	1.0
LIC DIA	3 4 7 2	1.0	13.0	8.2	7.0	7.7	6.5	0.2	6.6	7.5	7.0
LISTA	5.4. 6.6	2.1	2.9	3.8	1.4	6.3	7.9	0.7		8.8	
PITIONINA	1,2- 1.2	1.2	1.4	1.9	1.4	1.1	2.5	2.5	1.1	2.9	1.5
THE SINA	2.8- 1.8	2,6	1.0	3.3	1,1,35	. 1.9 "	4.2	4.4	5.0	•.	4.0
THE COUNTY	0.5-1.1	1.1	0.6	1.0	1.2	1.4		11.	1.6	1.0	1.0
VAL:NA	3.4- 5.3	1,9	5.1	6.7	•.•	5.2	7.0		5.41		5.0

 a) Los datos reportados en quinua son rangos de los diferentes valores encontrados en la bibliografía.

Fuente: Referencias 7, 11, 12, 13, 19, 30

b) Puente: Referencia 5

El grano contiene en promedio 14% de proteína dentro de lo cual el 6%, aproximadamente, es lisina (16).

En experimentos con ratas se observó que al alimentarlas con una mezcla de 80% harina de trigo y 20% quinua, su respuesta en el crecimiento correspondió a adicionar 0.2% de lisina a la harina de trigo. Esto hace pensar que quinua es una fuente potencial para completar las proteínas de los cereales (13).

Además de lisina, presenta altas cantidades de arginina en comparación con proteínas de origen vegetal como las del maíz, arroz y avena y de origen animal como leche, carne, huevo y pescado. También presenta altas cantidades de histidina en comparación con las proteínas de origen vegetal. Supera el contenido de metionina a los cereales comunes, con cantidades cercanas a los requisitos indicados por la FAO.

Presenta bajas cantidades de triptofano y valina, siendo la leucina su aminoácido limitante.

El Cuadro 4 muestra los valores máximos y mínimos de los aminoácidos que componen a las proteínas de quinua.

Tanto la proteína como los lípidos en su mayoría se encuentran en el germen en un 48.5% y 28.0% respectivamente. El germen representa alrededor del 25% del total del volumen de la

- 16 -

CONTENIDOS MAXIMOS Y MINIMOS DE

AMINOACIDOS DI LAS PROTEINAS DE QUINCA E gZIG q N)

AMINOACIDO	I OMINIM	S OMIXAM
ARGININA	1, 30	7.40
ACIDO ASPARTICO	3.03	3.47
ACIDO GLUTAMICO	4.35	5.35
HISTIDINA	2,70	3.86
ISOLEUCINA	5.60	6.84
LEUCINA	5.07	7.10
LISINA	5.81	8.06
METIONINA	2.40	5.10
FENILALANINA	3.50	5.26
PROLINA	2.25	3.31
SERINA	2.52	3,90
TREONINA	4.02	5.16
TIROSINA	4.41	6.44
VALINA	4.00	7.47
TRIPTOFANO	0.72	1.10
CISTINA	5.17	6.90

semilla; este se pierde fácilmente con el descascarillado y molienda para elaborar harinas, lo cual disminuye el valor nutritivo del producto, por lo que conviene el uso de la quinua como grano entero, o bien procesado como harina integral incluido en diversos alimentos básicos (8).

2.-Carbohidratos

El compuesto más abundante lo constituye el almidón cuyo contenido varía entre 54% y 65% dependiendo de la variedad de la semilla, siendo menor esta cantidad que en el trigo y el maíz como se observa en el Cuadro 5 (8).

El almidón se encuentra como gránulos poligonales de uno a tres micras de diámetro. Colorea de azul con soluciones de yoduro. Absorbe 45 mg. de yodo/g. de almidón. Gelifica entre 48 a 64 °C. Su contenido de amilosa es alrededor del 11% (9)(17).

En el Cuadro 6 se muestra la composición de carbohidratos de las variedades roja, amarilla y blanca de quinua.

3.-Grasas

La quinua contiene mayor cantidad de grasas que la cebada, trigo, maíz y arroz (11).

CLADRO 5

CONTENIDO : ALGUNAS PROPIEDADES DEL ALMIDON DE QUINUA Y OTRAS SEMILLAS

FUENTE DE ALMIDON	CONTENIDO DE ALMIDON (% B.S.) ^a	DIAMETRO DE GRANULO (micras)	COLOR CON	CAPACIDAD DE ABSORBER YODO (mg/ g)	RANGO DE GELATIN <u>I</u> ZACION
Amaranthus leucosperma	62.8	1.0-3.5	café-rojizo	2.5	55-72 °C
Chenopodium quinoa	61.5	1.5~3.0	azul	45.0	48-64 °C
MAIZ	70.9	1.0-23.0	azul	54.0	52-75 °C
TRIGU	64.4	2.0-40.0	azul	50.0	51-64 °C

PUENTE: Referencia 17

CUADRO . 6

COMPOSICION DE CARBOHIDRATOS DE TRES

VARIEDADES DE Chenopodium quinoa

(% B.S.)

	VARTEDAD ROJA	VARIEDAD AMARILLA	VARIEDAD BLANCA
ALMIDON (determinación polarimétrica)	59.20	58,10	64.10
AZUCARES PEDUCTORES (monosacàridos)	2.05	2.10	1.85
AZUCARES NO REDUCTORES	2.60	2.20	2.55
(disacăridos)			
FIBRA CRUDA	2.45	3.10	2.10
PENTOSANAS	2.90	3.00	3.60

La composición de ácidos grasos es la siguiente:

Acidos grasos	8
ácido linoléico	50.7 56.0
ácido oléico	48.022.0
ácido linolénico	0.8 7.0
ácidos grasos	
saturados	0.4 11.7
Referencias	4 11

El Cuadro 7 contiene algunas características del aceite de tres variedades diferentes de quinua: roja, amarilla y blanca.

4.- Vitaminas y Minerales

De las vitaminas hidrosolubles de quinua encontramos que sobresalen las vitaminas del complejo B y la vitamina C. De las vitaminas liposolubles, sobresale el contenido en tocoferol o vitamina E (8)(15).

En el Cuadro 8 se reporta el contenido de vitaminas y minerales de quinua y en el Cuadro 9 se encuentran reportados los contenidos de minerales de las variedades roja, amarilla y blanca de guinua. De estas variedades la blanca posee un bajo contenido en cenizas, siendo sus principales componentes el potasio y fósforo, los cuales constituyen el 65% del contenido

CUADRO 7

ALGUNAS CARACTERISTICAS DEL ACEITE DE TRES VARIEDADES DE Chenopodium guinoa (VARIEDADES BLANCA, AMARILLA, ROJA)

DETERMINACION	PROME: 10 DE LAS TRES VARIEDADES
INDICE DE SAPONJF1CACIÓN (accite)	190
INDICE DE SAPONIFICACIÓN (ácidos grasos)	197
PESO MOLECULAR PROMEDIO DI LOS ACIDOS GRASOS	280
INDICE DE YODO (Wijs) (aceite)	129
INDICE DE YODO (Wijs) (ácidos grasos)	137.
MATERIA INSAPONIFICABLE	5.2 %
FOSFATIDOS (lecitinas)	1.8 %
ESTEROLES	1.51%
INDICE DE REFRACCION A 25°C	1.4637

- 22 -

CHADRO B

VITAMINAS Y MINERALES DE <u>Chenopodium guinoa</u> (mg/100 g)

VITAMINAS REQUERIMIENTOS DIAM				
TIAMINA (vitamina B ₁)	0.59	1.4		
RIBOFLAVINA (vitamina	B ₂) 0.60	1.7		
NIACINA	1.25	24.8 ^b		
ACIDO ASCORBICO (vitamina C)	1.21	50.0		
MINERALES				
CALCIO	140.7	500		
FOSFORO	410.6	-0-		
HIERRO	10.7	10		
COBRE	1.2	-0-		
MAGNESIO	198.0	-0-		

- a) Fuente: Referencia 7
- b) mg.eq.: 1 mg.eq. de niacina = 1 mg. de niacina = 60 mg. de triptofano.

CUADRO 9

MINERALES DE TRES VARIEDADES DE QUINUA (mg/100 g)

MINERALES	VARIEDAD VARIEDAD ROJA AMARILLA	VARIEDAD BLANCA
	140:0 410.0	85.0
CALCIO FOSFORO	140.0 +10.0 470.0 395.0	355.0
HIERRO	10.0	8.0
COBRE	5.7	8.2
MAGNES 10	3,0.0	220.0
POTAS10	1040.0 1475.0	845.0
CLORO	110.0 230.0	120.0
SOD10	22,0	11.0

total de cenizas. Es deficiente en calcio (12)(15).

5.-Saponinas

Los granos de quinua poseen en su cubierta externa compuestos que le confieren un sabor amargo. Estos son glucósidos que en agua y con agitación producen espuma y por esta característica reciben su nombre de saponinas, del término soap=jabón (16)(18).

Las saponinas son compuestos en los cuales los azúcares como pentosas, hexosas o ácidos urónicos están enlazados a un grupo no polar denominado sapogenína, el cual puede ser un esterol o un triperteno (18):

R-OH + HO-X -----> R-OH + agua azúcar sapogenina saponina

Las saponinas se localizan en muchas plantas alimenticias y forrajes como: espinacas, betabel, espárragos, castañas de la india,soya, nopales, hojas de té, sorgo, alfalfa, agave,trébol, etc. También se han encontrado en el veneno de las serpientes, en las estrellas de mar y en el pepinillo de mar (18).

En general son sustancias inodoras, de sabor acre, solubles en agua o alcoholes de bajo peso molecular e insolubles en solventes orgánicos. Forman complejos con esteroles y proteí-

nas, disminuyen la tensión superficial e "in vitro" hemolizan glóbulos rojos (18).

El contenido promedio de saponinas en quinua es del 2%, pero existen variedades "dulces", es decir menos amargas, con bajo contenido en saponinas como la Cheweca, de Puno, la Blanca, de Junin, que requieren un simple lavado antes de su uso para eliminarlas (12).

Las saponinas que le confieren un sabor amargo al grano, "in vitro" hemolizan los glóbulos rojos de la sangre; "in vivo" no existe alguna evidencia de que tengan efectos tóxicos (6) (7).

Antes del consumo de la semilla se tienen que remover estos compuestos para eliminar su sabor amargo. Tradicionalmente se llevan a cabo lavados sucesivos con agua fría, frotando las semillas entre las manos hasta que el agua de lavado se encuentre libre de espuma; en ocasiones se utilizan piedras para eliminar la primera capa del grano por fricción. Estos procedimientos se remontan a las culturas originarias de los Andes (7)(10)(16).

Actualmente se han ensayado diferentes formas de remover las saponinas del grano:

1.-Procesos por vía seca:

a)Descascarillado abrasivo (16)

La eliminación de las capas externas del grano se puede llevar a cabo en forma rudimentaria calentando el grano, mezclarlo con arena gruesa y friccionar, ventear y tamizar. En procesos industriales se utilizan pulidoras de granos (12)(16).

2.-Procesos por vía húmeda:

- a)Lavado por agitación y turbulencia (12)
- b) Lavado químico con soluciones alcalinas o alcohol(10)(12)
- c)Lavado de frotación (12)
- d)Lavado térmico (7)

De este último método se han obtenido muy buenos resultados; estos consisten en dejar reposar los granos en agua caliente durante treinta minutos y posteriormente se enjuagan. Se remueven del 75% al 80% de las saponinas con agua de lavado a 50°C y a 70°C ó 87°C prácticamente se eliminan por completo (7).

El Cuadro 10 contempla el contenido de saponinas en diferentes variedades de quinua.

La determinación de saponinas en vegetales se ha llevado a cabo en general entre otros por los siguientes métodos:

-Físicos: capacidad espumosa (8)

CHADRO 10

CONTENIDO DE SAPONINAS EN DIFERENTES VARIEDADES DE QUINUA (g/100 g.)

VARIEDAD	CONTENIDO DE SAPONINAS
KCANCOLLA	0.40
BLANCA DE JULI	0.30
SAJAMA	0.08
BLANCA	1.90
AMAR1 LLA	2.30
COLORADA	2.30

Puente: Referencia 7

-Químicos: cromatografía (8)
espectrofotometría (18)

-Biológicos:hemólisis de eritrocitos (8)

letalidad en peces (18)

inhibición de crecimiento de microorganismos(18)

II.4.VALOR NUTRICIONAL DE Chenopodium quinoa

Los datos analíticos de composición de nutrientes de los granos de quinua han mostrado que es igual o superior a los cereales comunes: trigo, arroz, maíz y avena.

Se han desarrollado diversos estudios para demostrar la calidad nutricional de quinua entre los cuales encontramos evaluaciones biológicas con animales de laboratorio, principalmente ratas, para conocer el valor biológico de la proteína (VB), la relación de eficiencia protéica (PER), eficiencia del nitrógeno para el crecimiento (NEG), digestibilidad(D), etc. Estos estudios se han llevado a cabo en grano entero o procesado. De todos se concluye que la quinua es de alto valor nutritivo.

Los lavados térmicos para eliminar saponinas de la se-

milla incrementan el índice de eficiencia protéica (PER) conforme aumenta la temperatura de lavado como se observa en el Cuadro 11 (7).

La cocción de la quinua aumenta la utilización de su proteína; esto se puede apreciar en el índice de eficiencia protéica, el cual en la quinua lavada fue de 1.99, y en el caso de la quinua cocida, de 2.60 (10).

La semilla reventada presenta una eficiencia de la proteína semejante a la caseína y su digestibilidad es mejor que en el caso de la quinua cruda (19).

En el Cuadro 12 se comparan algunas características nutricionales entre la quinua y el amaranto. Este último se consume normalmente como grano reventado en la "alegría", dulce tradicional mexicano.

En experimentos con ratas se ha observado que al sustituir caseína por la proteína de quinua no se manifiesta ninguna mejora en crecimiento, esto sugiere que ambas fuentes de proteína son iguales (14).

CUADRO. 11

INDICE DE EFICIENCIA PROTEICA (PER) DE HARINAS DE GRANOS DE QUINUA CON DIFERENTES TRATAMIENTOS

TRATAMI ENTO	PER	PATRON (CASEINA)
CRUDA Y LAVADA	1.99	3.0
GRANO REVENTADO	2.00	2.2
LAVADA Y COCIDA .	2.60	3.0
LAVADA Y TEXTURIZADA	2.12	3.0
LAVADA CON AGUA A 50°C	1.68	2.5
LAVADA CON AGUA A 70°C	1.92	2.5
LAVADA CON AGUA A 87°C	2.32	2.5

Fuento: Referencia 7

CUADRO 12

COMPARACION DE ALGUNAS CARACTERISTICAS NUTRICIONALES ENTRE QUINUA Y AMARANTO

DETERMINACION	A. hypocondriacus	<u>Ch. guinoa</u>
VALOR BIOLOGICO	73.70	73.0
DIGESTIBILIDAD	76.40	78.0
EFICIENCIA DE LA PROTEINA A	2.12	2.0
ENERGIA (calorias)	391.00	372.0

 a) Caselna 2.2.La digostibilidad y la eficiencia proteinica se refieren a semillas reventadas.

Fuente: Referencia 19

El trigo proporciona casi tanta proteína como la quinua lavada, pero el crecimiento de ratas con trigo es cerca de la mitad de la obtenida con quinua. Lo anterior se muestra en el Cuadro 13 (14).

La mezcla 20% quinua con 80% harina de trigo favorece la ganancia en peso que el trigo solo, pero esta ganancia es ligeramente menor que con la quinua cocida, la cual se consume más que la no cocida que posee compuestos amargos como se observa en el Cuadro 14 (13).

El valor de promoción de crecimiento como eficiencia de convertir el nitrógeno absorbido en nitrógeno en la canal denominado eficiencia del nitrógeno para el crecimiento (NEG) en la quinua no cocida y caseína fueron similares. La quinua cocida presenta un valor de NEG superior. Los valores de PER en el Cuadro 14 muestran que la calidad protéica de la quinua cocida es casi idéntica a la caseína. La mezcla de 20% quinua con 80% harina de trigo, incrementó los valores de PER y NEG sobre la harina de trigo sola (13).

CITADRO 1

CALIDAD DE ALGUNAS PROTEINAS VEGETALES

	ENTE DE PROTEINA VEL EN LA DIETA(%)	PROTEINA (%)	PROMEDIO DE PESO GANADO/RATA/SEMANA(g) ^a
90	ACAVAL ADRIUQ	10.13	24.4 - 3.7
90	ARROZ BLANCO	5.90	8.8- 0.6
90	MAIZ	7.40	2.2-0.9
88	TRIGO	9.10	9.9-1.2
87	QUINUA LAVADA	9.78	18.8- 2.2

a) El experimento se efectuó con ratas macho destetadas (Holzman Co.) alimentadas por dos semanas.

Fuente: Referencia 14

ړی

CUADRO 14

QUINUA, CASEINA Y TRIGO COMO FUENTES

DE PROTEINAS PARA CRECIMIENTO DE RATAS

DIETA		t	11	111	14	V	٧I	1111
reso inicial, q.		62.0	68.0	65.0	67.0	67.0	60.0	
Pego final, 7.		109.0	104.0	69.0	156.0	123.0	85.0	
Canancia Lotal, g.		43.0	36.0	24.0	89.0	57.0	17.0	
NEG		29.6	18.7	17.1	41.6	12.1	13.1	
PER		2.1	1.5	1.2	2.7	2.7	0.8	
Digestibilidad	1.		•					
Huteria seca, 1		89.0	92.0	89.0	88.0	91.0	93.0	
Prateina. L		MO.0	84.0	80.0	10.0	08.0	86.0	
CONSUMO DE ALTHERTS								
Canancia de peso		4.6	6.4	8.2	3.6	4.0	10.8	
Higado, & dr peso Corporal		3.0	3.0	3.2	7.8	2.7	1.1	
Rinones, 9 peso corporal		0.17	0.68	0.08	0.70	0.72	0.93	
Adrenales, 1 peso corporat		0.02	0.02	0.02	0.01	0.01	0.02	
COMPOSICION DE CANAL .								
Humedad, 1		82.0	12.0	82.0	78.0	82.0	83.0	
Lipidos. 1		i.r	4.4	4.3	7.1	4.1	1.2	34.31
Hitrógeno, 1		2.9	3.2	2.3	1,3	1.6	2.4	
Contza, 1		5.0	5.2	5.5	4.6	4.5	5.3	1,20

I: harina de quinua 100%; II: harina de quinua 20%-harina de trigo 80%; pan de harina de quinua 20%-harina de trigo 80%; IV: quinua cocida; V: caseína; VI: harina de trigo 100%. FUENTE: Referencia 13

II.5.USOS Y APLICACIONES DE OUINUA

La guinua es una planta con gran potencial en la industria alimentaria, ya que de ella se pueden aprovechar tallos, hojas y, principalmente, la semilla.

Las hojas son de alto valor nutritivo con un contenido de 3.3% de proteína en base húmeda ó 20% en base seca, estas se pueden comer crudas o cocidas en ensaladas u otros platillos (12).

Los tallos tiernos se pueden consumir en ensaladas y en otros quisos (8).

Tanto los tallos como las semillas se pueden utilizar en la alimentación animal; por ejemplo al incorporar grano de guinua hasta un 30% en la dieta de aves de corral, no afecta su crecimiento; los cerdos se muestran sensibles a la saponina, pero aprovechan la quinua lavada y cocida. Se conocen pocos experimentos con rumiantes (12).

Para consumo humano se pueden obtener productos como la quinua perlada, la cual se consigue al pulir el grano y eliminar la cáscara. Este producto se puede emplear como el arroz o se utiliza en la elaboración de otros productos como harinas

y hojuelas. Las hojuelas se producen al someter a los granos a un proceso de laminación por presión; estas se consumen cocidas y mezcladas con leche como cereal para el desayuno.La semilla como tal se utiliza para preparar sopas, guisos y bebidas fermentadas como la chicha (10)(12).

Del grano de quinua se pueden obtener varios tipos de harina: cruda, tostada e instantánea, que se pueden emplear en la elaboración de pan, galletas, tortillas, pastas para sopa, pasteles, etc. (10)(12)(19).

En el caso de pastas para sopa se recomienda hasta un 40% de harina de quinua, obteniéndose pastas de buena calidad al sustituir harina de trigo por 10% de harina de quinua cruda ó 20% de harina de quinua precocida (8)(10).

En panificación con una sustitución del 10% de harina de quinua se obtiene pan de excelente calidad, buen volumen, peso y sabor, elevándose en 60% y 25% los niveles de fierro y fósforo respectivamente y se mejora la calidad protéica por el mayor aporte de lisina que compensa el bajo nivel de la harina de trigo. Se aumenta la cantidad de grasa, fibra y cenizas al elevar el nivel de sustitución (8)(10)(12).

El grano es ligeramente ácido con un pH 6, esta característica es favorable para que se lleve a cabo una buena fermentación en el proceso de panificación (8).

En la incorporación de harina de quinua sustituyendo a la harina de trigo en masas panificables se recomienda el empleo de cierto nivel de enzimas para mejorar la masa, ya que el almidón de la quinua posee gran viscosidad. Se recomienda, además, el uso de otro tipo de aditivos mejoradores como agentes reductores u oxidantes (8).

En galletas se puede incorporar harina de quinua hasta un 60% tanto en galleta dulce como salada (10)(12).

A un nivel de sustitución de 30% de harina de quinua en galletas con 10% de leche en polvo y 20 % de huevo se obtuvo un producto de muy buena calidad sensorial y nutricional, elevándose los niveles de aminoácidos esenciales como metionina, tirosina y triptofano; minerales como fierro, magnesio, cobre y manganeso, y vitaminas las cuales se encuentran en el Cuadro 15, en comparación con galletas elaboradas con harina de trigo

CUADRO 15

EVALUACION QUINICA DE GALLETAS FLABORADAS CON

100% HARINA DE TRIGO Y GALLETAS CON 30% DE

SUSTITUCION DE HARINA DE QUINUA

DETERMINACION	GALLETA CON 1801 HAPINA DE TRIGO	GALLETA CON 30 DE SUSTITUCION
HUHEDAD	3.60	3,60
PROTEINA	8.9b	9.63
GRASA	12.63	12.75
CARBOILI DRATOS	71.23	71,10
FIBRA	0.45	6.19
CENJ ZAS	7.44	2.45
TIAHINA	140.40	146.60
HIROCFVAINV	0.14	0.19
PIRIDOXINA	C.16	f . 12
VITAMINA B-12	د 7 ، ت	0.46
NIACINA	3.74	6.95
CALC10	111.00	106.60
FOSFORD	439.40	509.60
MAGNES10	36.20	49.00
r1ERRO	1.52	2.25
23 HC	1.28	1,46
COBRE	166.00	229.00
YODO	77.00	74.90

· Fuente: Referencia 8

CUADRO 16

USOS Y APLICACIONES POTENCIALES DE LAS VARIEDADES DULCES DE QUINUA

PRODUCTOS	FORMA DE USO
A. CHUDUS	
1) Semilla perlada	sopar.quises,procesada como hujuelas, harinas,etc.
2) Semilla entera	granula.confiteria.quisos,fermentados harinas:pastes y galletat.reposteria. "hinole"
3) Scrilla germinada	directe, alimentos especiales (adeltos y minos)
4) Hoja entera	ensaladas, concentrados proteinices
5) Tallo	forrages
6) Germen	accites, concentrados proteinscos.
n.PRECOCIDOS	
1) Semillas y hojas	alimentos infantiles
2) Tallo	suplemento mineral
c. cocinos	
1) Semilla cocida, tostada o reventada	confiteria, quisos, hojuelas, harinas; "" gallotas, pastas, pan, tortillas, tamale;
2) Inflorescencia (pipi)	guisos diversos
	sopas, estofados, ensaladas
3) Hoja	

Fuente: Referencia 19

Para abrir nuevos campos a la investigación y ampliar el uso industrial de la quinua se puede considerar su empleo en forma tostada o reventada en confitería, galletería, preparados con harinas, etc. Otro producto de interés sería el accite de quinua el cual se podría utilizar para consumo humano y animal (19).

Por otro lado por ser una fuente rica en proteína, se podría obtener un concentrado de proteínas de alta calidad, pudiéndose elaborar con esto por ejemplo un producto similar a la leche de soya, formulaciones de alimentos infantiles, etc.(8).

Para mejorar y economizar tiempo y costo de los procesos de transformación de la semilla es necesario buscar y diseñar métodos y equipo adecuado para trillado, limpieza y desaponificación (19).

El agua resultante de la desaponificación se utiliza como jabón para lavar textiles, en la industria fotográfica, cosmética en la fabricación de champúes, farmacéutica, así como para elaborar bebidas fermentadas (12).

II.6.GALLETAS

Las galletas son productos horneados cuyos ingredientes básicos son: harina, azúcar y jarabe de azúcar invertido, grasa y/o aceite vegetal comestible, agentes leudantes, sal, leche o agua (20).

De acuerdo con la Norma Oficial Mexicana para galletas (NOM F-6-1983) se clasifican en tres tipos: finas, semifinas y comerciales. Las especificaciones para estos tipos de galletas se encuentran en el Cuadro 17.

De los productos horneados, las galletas presentan varias ventajas como su elaboración la cual es relativamente simple, así como su fácil distribución y larga vida de anaquel; además son productos de gran aceptación popular (1).

En 1989 la producción nacional de galletas en México fue aproximadamente de 480 000 toneladas (21).

Funciones de los ingredientes básicos en galletas:

1.-Harina de trigo

Es el principal ingrediente que forma la galleta siendo responsable de su estructura. Las proteínas insolubles de la harina de trigo: gliadina y glutenina, al mezclarse con agua forman una masa elástica denominada gluten, la cual se coagula con calor:

gliadina + glutenina + agua ----> gluten

CUADRO 17

ESPECIFICACIONES PARA GALLETAS

PEPECIFICACIONES	TIPO I GALLETAS FINAS		TIPO GALLETAS	TIPO III GALLETAS COMERCIALES		
	ОНІИІН	·HAXIHO	OHINIM	HAXIND	ORIUIR	HAXINO
BUREDAD	-	6.0	-	8.0		R.0
CONIZAS	-	1.5	-	2.0	-	2.0
PROTEZIMAS	8.0	-	6.0	•	r.n	-
PINNA CRUDA	-	0.5		6.5	•	0.5
EXTRACTO ETERIO	15.0	•	10.0	-	5.D	
pa .	6.0	8.0	6.0	H.D	6.0	R.O

Puente: Referencia 20

El almidón al humedecerse y calentarse gelifica por lo que en combinación con el gluten, contribuyen a la estructura semiríqida que resulta del calentamiento de la masa (1)(22).

La Norma Oficial Mexicana para harina de trigo (NOM F- 7 - 1982) indica que la harina de trigo tiene tres grados de calidad, siendo el grado II el adecuado para galletas.Las específicaciones para este tipo de harina se muestran en el Cuadro 18.

Las harinas "fuertes" contienen gluten en mayor cantidad, forman masas que se expanden más sin romperse. Las harinas "débiles" contienen por lo general menos gluten, forman masas que al expanderse se rompen más fácilmente, son menos duras y, al hornearse, dan productos menos resistentes a la mordida (22).

La fuerza de una harina para galletas está relacionada con su índice de esparcimiento (I.E.) el cual determina el esponjamiento de la masa después de hornearla y enfriarla. Este índice se obtiene dividiendo el diámetro común de seis galletas por su espesor común (1).

2.-Agua

Es necesaria para disolver y distribuir ingredientes, así como para formar gluten, gelificar almidón y controlar la consistencia del amasado. Además, contribuye en el volumen del

ESPECIFICACIONES PARA HARINA DE TRIGO

ESPECIFICACIONES	GRADO I PANIFICACION	GRADO II GALLETAS	GRADO III PASTAS PARA SOPA
HUMEDAD % máx.	14.0	14.0	14.0
PROTEINAS % min. (Nx5.7)	9.5	9.0	ċ.0
CENIZAS 1	0.55 máx.	0.4-1.0	0.6 máx.
FJBRA CPUDA 9	0.2-0.4	0.2-0.6	0.3 máx.
GLUTEN HUMEDÖ % min.	31.3	29.7	29.7
GRANULOMETRIA .	máx. 10% de retención en malla 0.125 mm. abertura	variable	min.73% de retención en malla 0.297 mm. abertura

Fuente: Referencia 31

producto, ya que al calentarse forma vapor de agua que se expande (1)(22).

3.-Azúcar y jarabe de azúcar invertido

El azúcar y el jarabe de azúcar invertido funcionan como "suavizantes" ya que tienen la propiedad de retener humedad. Además, actúa como edulcorante y como colorante del producto final por las diferentes reacciones de oscurecimiento que se desarrollan en el producto horneado como las reacciones de Maillard y caramelización (22).

4.-Grasa vegetal

Juega el papel de "suavizante". Al batir la grasa en la elaboración de las galletas se atrapa aire, el cual se libera cuando la masa se cuece en el horno, contribuyendo así a la acción esponjadora del polvo de hornear y del vapor de agua que se está dilatando. Luego la grasa derretida se deposita alrededor de las partículas de almidón y glúten, ablandando y lubricando la textura. La grasa emulsiona al agua (22).

5.-Agentes leudantes

El volumen de los productos horneados depende de la presión interna o expansión de tres agentes gaseosos: aire, vapor de agua y anhídrido carbónico (23).

El anhidrido carbónico se genera por la reacción de los leudantes químicos o polvos de hornear al suministrar agua y calor (1).

Entre las sales que se utilizan como leudantes químicos encontramos al bicarbonato de sodio el cual es muy utilizado por su bajo costo, inocuidad, facilidad de manejo y además, casi no imparte sabor. Los bicarbonatos de potasio y de amonio son menos utilizados ya que son muy higroscópicos e imparten sabor y olor desagradables (23).

Entre los ácidos que participan en el leudado más empleados son: pirofosfato ácido de sodio, fosfato monocálcico, fosfato doble de amonio, cremor tártaro y ácido tartárico (23).

bicarbonato + ácido ----> sal + anhídrido + agua carbónico

Los leudantes químicos afectan el pH del producto final dependiendo de la cantidad de residuos de sales ácidas y/o básicas que permanecen después de haber reaccionado el polvo de hornear (1).

6.-Sal

Resalta el sabor de otros ingredientes, como el sabor dulce. Hace más correoso al gluten y menos pegajosa a la masa debido a su acción astringente. Además, disminuve la temperatu-

ra de caramelización de los azúcares contribuyendo con esto a obtenerse un mejor color de corteza (1)(24).

De los ingredientes básicos en la elaboración de galletas, la harina es el principal de ellos ya que permite desarrollar masas aptas para ser sometidas a procesos manuales o mecáni-cos en la obtención de productos horneados (23).

Uno de los medios por el que se puede conocer la aptitud de las harinas para elaborar productos horneados es conocer el comportamiento reológico de la masa obtenida con la harina.

La Reología se define como la ciencia de la deformación y flujo de la materia (25).

Esta ciencia se apoya en el uso de aparatos para conocer principalmente la resistencia a la ruptura, elasticidad, extensibilidad y viscosidad de la masa para galletas.

Los aparatos empleados para evaluar las características reológicas de la masa para galletas son los siguientes:

1.-Farinógrafo

El Farinógrafo mide el tiempo óptimo de amasado, determina la absorción de agua y la resistencia ofrecida por la masa durante un mezclado prolongado, a temperatura y velocidad constantes, la cual es registrada gráficamente (26).

2.-Mixógrafo

Es un mezclador de masa a alta velocidad, el cual mide, como el Farinógrafo, la resistencia al mezclado (26).

3.-Amilógrafo

Es un viscosímetro que registra los cambios de viscosidad del almidón de una suspensión de harina y solución amortiguadora de fosfato pH 5.30-5.35, cuando la temperatura aumenta a velocidad constante, aproximadamente a 1.5°C por minuto. Este aparato se utiliza en estudios de gelificación de almidones en cereales y el efecto de enzimas como la alfa-amilasa y beta-amilasa en los almidones (26).

4.-Extensógrafo

Mide la resistencia de la masa a la extensión. La gráfica obtenida muestra: 1)La extensibilidad representada por la longitud de la curva, 2)la resistencia a la extensión la cual se aprecia en la altura de la curva, 3)la fuerza requerida para extender la masa representada por el área bajo la curva. Por lo general se realizan mediciones a diferentes intervalos de tiempo para observar los cambios en la extensibilidad de la masa en relación al tiempo (24)(26).

5.-Alveógrafo

Este aparato involucra el uso de aire a presión para formar una burbuja en un disco de la masa en estudio. Del alveograma se obtienen datos de: 1) longitud de curva que repre-

senta la extensibilidad, 2) la altura máxima de la curva representa la resistencia a la extensión así como la presión máxima y 3) área bajo la curva (27).

El Alveógrafo muestra una alta correlación con contenido de proteína en la harina. Entre mayor sea el contenido de proteína, la altura de la curva será mayor (27).

CAPITULO III

CAPITULO III

METODOLOGIA EXPERIMENTAL

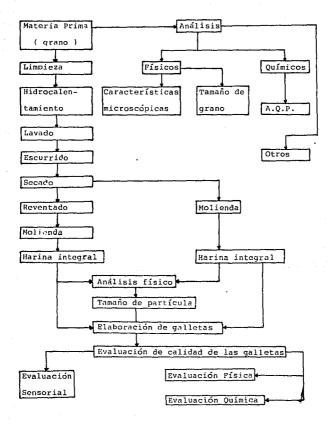
				VO.	

- Determinar características físicas y químicas del grano de quinua.
- Determinar características físicas y químicas de la harina integral y de la harina de grano reventado.

3.-Elaborar productos de galletería sustituyendo harina de trigo por harina de guinua en diferentes proporciones.

4.-Evaluar desde los puntos de vista fisicoquímico y sensorial los productos de galletería elaborados.

III.2. DESARROLLO EXPERIMENTAL


En el diagrama 1 se muestran los pasos efectuados a nivel experimental.

Como primer paso se llevó a cabo la limpieza del grano en forma manual con la ayuda de cribas para eliminar impurezas. Una vez realizada esta función se determinó el tamaño de grano por tamizado y microscopía, pudiéndose observar por este último medio la morfología de la semilla como se muestra en la figura 2.

El hidrocalentamiento se llevó a cabo con agua a 70°C de tres a cinco minutos seguido de un lavado con agua fría frotando las semillas entre las manos. Este tratamiento se efectuó con el fin de eliminar las saponinas evitando así que las galletas presentaran un sabor amargo.

El secado se realizó en un horno a 50°C por un lapso de 24 h. Posteriormente se manejaron dos tratamientos en el grano, uno consistió en la molienda del grano en forma directa ; otro en el cual se sometió la semilla a un acondicionamiento dejándolo reposar en agua por ocho horas a temperatura ambiente para humedecerlo, luego se eliminó el agua del grano y calentó en un comal a fuego directo moviendo constantemente con el propósito de reventarlo como en el caso del amaranto, lo cual es un procedimiento rústico. Después del acondicionamiento y tratamiento

DIAGRAMA 1
ACTIVIDADES EN EL DESARROLLO EXPERIMENTAL

térmico se llevó a cabo la molienda del grano.

Después de la molienda se determinó el tamaño de partícula de las harinas obtenidas así como también el tamaño de partícula de la harina de trigo comercial por tamizado con el objeto de determinar la similitud entre los tamaños de partícula de la harina de trigo comercial y las harinas de guinua.

Elaboración de las galletas:

Las galletas fueron elaboradas de acuerdo a la formulación y preparación propuestas por la A.A.C.C.. La formulación se presenta en el Cuadro 19.

Los pasos a seguir para la elaboración de las galletas se llevaron a cabo como se enlistan a continuación (28):

- Cremar la manteca vegetal con batidora a baja velocidad durante tres minutos, incorporando el azúcar, sal y bicarbonato de sodio cada minuto.
- 2.-Agregar la solución de dextrosa y el agua destilada. Mezclar un minuto a baja velocidad y un minuto a velocidad media. Adicionar la harina y mezclar dos minutos a baja velocidad.
- 3.-Colocar una porción de masa sobre una superficie lisa y

CHADRO 1

FORMULACION DE LA A.A.C.C.

PARA LA ELABORACION DE GALLETAS

INGREDIENTES	OO1 OMOD ANTHART AL ODNAMOT '
HARINA DE TRIGO	100.00
MANTECA VEGETAL	28.40
AZUCAR	57.77
DEXTROSA EN SOLUCION (69 (8.9 g. en 150 ml.)	14.66
SAL	0.93
BICARBONATO DE SODIO	
AGUA	

Fuente:Referencia 28

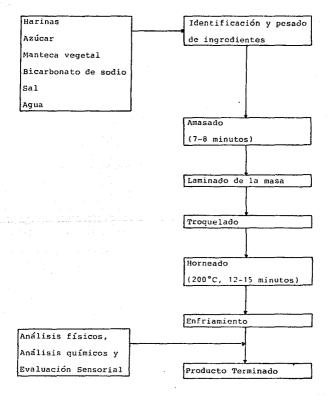
con un rodillo extenderla hasta lograr un espesor homogéneo y una superficie lo más lisa posible.

- 4.-Troquelar la masa laminada con moldes, tomar el peso de la galleta cruda y colocar las piezas en charolas previamente engrasadas.
- 5.-Hornear las galletas a 200°C por 10 minutos.
- 6.-Enfriar, pesar, medir diámetro y espesor para calcular el factor galletero.

Los pasos de elaboración se muestran esquemáticamente en el diagrama 2.

Con el propósito de determinar el efecto de la incorporación de harina de quinua en sustitución de harina de trigo en la elaboración de las galletas se manejaron las siguientes variables:

1.-Variables independientes


Tipo de harina utilizada en la elaboración:

a)Galletas elaboradas con harina de trigo.

b)Galletas elaboradas con mezclas de harinas de trigoquinua.

DIAGRAMA 2

PROCESO DE ELABORACION DE LAS GALLETAS

2.-Variables dependientes

Características físicas y químicas de las galletas obte-

3.-Variables controladas

- a)Formulación de las galletas.
- b)Condiciones y métodos de elaboración.

4.-Niveles de variación

Tipo de harina

Trigo	100
Trigo-quinua integral	80:20
Trigo-quinua reventada	80:20
Trigo-quinua integral	90:10
Trigo-quinua reventada	90:10

Características físicas de las galletas:

El criterio usado para evaluar la calidad galletera es la expansión de la galleta después del horneado y enfriamiento, esto se encuentra representado en el índice de esparcimiento el cual es un cociente que se obtiene al dividir el diámetro de seis galletas entre su espesor.

Análisis bromatológico:

El análisis químico proximal se llevó a cabo con los métodos oficiales del A.O.A.C. tanto en materia prima como en producto final (29):

1.-Humedad

Se empleó el método de secado en estufa descrito en el método No. 14.062 de la Association of Official Agricultural Chemists (A.O.A.C.). Este es un método gravimétrico basado en la evaporación de agua con la aplicación de calor.

2.-Cenizas

La determinación de cenizas se hizo por el método No. 14.063 descrito en los métodos oficiales de la A.O.A.C.. Este es un método gravimétrico basado en la cuantificación del residuo inorgánico que queda después de que la materia orgánica se queme.

3.-Proteinas

El porcentaje de proteína se obtuvo por el método de Kjoldahl descrito en el método No. 14.067 del A.O.A.C..Este método se basa en la cuantificación indirecta de las proteínas por medio del análisis de nitrógeno orgánico. El nitrógeno de la proteína es reducido y transformado a sulfato de amonio en una digestión ácida, posteriormente por medio de una digestión alcalina y destilación se libera amoniaco el cual es

atrapado en una solución de ácido bórico. Por cada átomo de nitrógeno se forma un ión de borato. Posteriormente se titula con ácido clorhídrico. Para convertir nitrógeno a proteína se utilizaron los factores 5.7 para harina de trigo y 6.25 para las galletas y harina de quinua.

4.-Grasa

La determinación se llevó a cabo por el método No. 14.066 del A.O.A.C., el cual se basa en la extracción de las substancias solubles en éter dietílico aplicando calor.

5.-Fibra

La fibra cruda se determinó por el método basado en someter a la muestra a hidrólisis ácida y alcalina (Goldfisch) descrito en el A.O.A.C. por el método No. 14.064.

6.-Minerales

El análisis químico involucró, además, las determinaciones de calcio, magnesio y fósforo de acuerdo a los métodos establecidos por el A.O.A.C. (29).

7.-Gluten Húmedo

El método consistió en un lavado manual en el que se elimina almidón y material hidrosoluble de la harina (29).

El material y equipo utilizado para la elaboración y análisis de las galletas se encuentra enlistado en el anexo 1.

Evaluación Sensorial:

Con el fin de conocer la impresión que causa la incorporación de quinua en galletas, estas fueron calificadas por medio de pruebas afectivas de nivel de agrado y preferencia.

Mucho se puede destacar de las propiedades nutritivas de las galletas sin embargo, el consumo se inclina por considerar más las propiedades sensoriales, principalmente aquellas tomadas en cuenta en estas pruebas: sabor y textura.

Las evaluaciones se aplicaron mínimo en 25 jueces consumidores.

En la prueba de nivel de agrado se utilizó una escala hedónica estructurada de 9 niveles como se muestra en el cuestionario empleado que aparece en el anexo 2 para prueba de sabor. En la prueba de preferencia se le presentaron cinco muestras al juez en forma aleatoria: galleta 100% trigo, galleta 90%-10% trigo-quinua integral, galleta 80%-20% trigo-quinua integral, galleta 90%-10% trigo-grano reventado de quinua y galleta 80%-20% trigo-grano de quinua reventado; de las muestras el juez asignó, de acuerdo a su preferencia, a la muestra con mejor textura el valor de 1 y así sucesivamente hasta llegar a la muestra cuya preferencia fué menor a la cual le asignó el valor de 5. El cuestionario para la prueba de preferencia se encuentra en el anexo 3.

Los datos obtenidos fueron analizados considerando un nivel de confiabilidad del 95%. Para la prueba hedónica se llevó a cabo un análisis de varianza y para la prueba de preferencia se realizó un análisis de ordenamiento por rangos.

CAPITULO IV

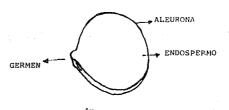
CAPITULO IV RESULTADOS Y DISCUSION

IV.1. CARACTERISTICAS FISICAS

Por medio de una limpieza manual y tamizado se obtuvo de un kilogramo de grano: 98.9% de grano y 1.1% de impurezas. Las impurezas del grano fueron piedras, ramas, polvos, fragmentos de hojas y cascarilla, grano quebrado, grano con manchas de color rojizo y grano inmaduro es decir, grano de tamaño pequeño y translúcido.

Por medio de un microscopio estereoscópico se pudieron conocer algunas características físicas del grano. Se observó en primer término una cubierta externa o cascarilla de apariencia rugosa y lobulada de color amarillo, a la que le sigue la capa de alcurona más delgada, rugosa y de color amarillo, finalmente el endospermo, poroso y blanco, y el germen como se muestra en la figura 2.

El tamaño de grano se midió de dos formas: por microscopía y por medio de tamices. Por microscopía se midieron cien granos tomados al azar y se obtuvo un tamaño promedio del grano de 1.9±0.4 mm. de diámetro. Por medio de tamices se obtuvo un tamaño de grano de 1.43±0.24 mm.. Estas dimensiones fueron cer-


FIGURA 2

MORFOLOGIA DE LA SEMILLA DE Chenopodium quinoa

SEMILLA CUBIERTA CON CASCARILLA

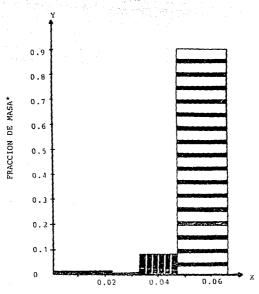
4 x

*Observaciones en microscopio estereoscópico.

canas al tamaño de grano reportado por White y colaboradores de 2 a 4 mm. de diámetro (11).

La figura 3 muestra el histograma de distribución de tamaños de grano con la serie de tamices Tyler.

Las figuras 4,5 y 6 muestran respectivamente los histogramas de distribución de tamaño de partícula de las harinas de trigo, quinua integral y quinua reventada.


Para el caso de la harina de trigo se obtuvo un 1.6% de retención en el tamiz No. 50 cuya abertura de malla es de 0.0117 pulgadas. La harina de quinua integral y quinua reventada tuvieron una retención de 59.6% y 61.38% respectivamente hasta la misma malla. Con este ejemplo, tomando como referencia el tamiz No. 50, se observó que el tamaño de partícula fué mayor para las harinas de quinua que para la harina de trigo pero se debe considerar que las primeras fueron molidas a nivel laboratorio y la harina de trigo fué harina comercial.

El Cuadro 20 muestra los resultados obtenidos en la evaluación física de las galletas donde se tomaron en cuenta los parámetros de peso e índice de esparcimiento.

Es importante mencionar que el equipo y los procesos de mezclado, amasado, laminado y horneado tienen gran influencia sobre las características finales del producto (1).

FIGURA 3

TAMARO DE GRANC

ABERTURA DE TAMIZ (pulgadas)

* Fracción masa = g. muestra retenido en un tamiz
g. muestra total

TAMAÑO DE PARTÍCULA DE LA HARINA DE TRIGO

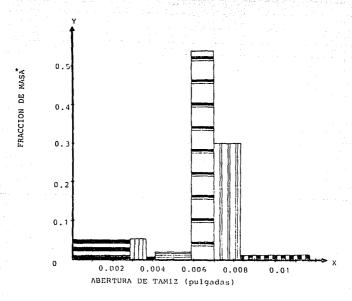
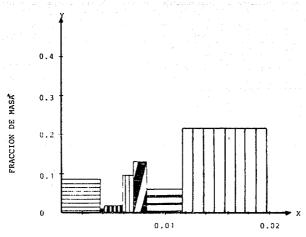
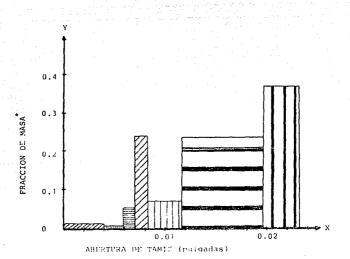



FIGURA 5


TAMAÑO DE PARTICULA DE LA HARINA DE OUINUA INTEGRAL

ABERTURA DE TAMIZ (pulcadas)

FIGURA 6

TAMAÑO DE PARTÍCULA DE LA HARINA DE QUINUA REVENTADA

*Fracción masa = <u>g. muestra retenido en un tami2</u> g. muestra total

CARACTERISTICAS FISICAS DE LAS GALLETAS ELABORADAS
CON HARINA DE TRIGO O MEZCLAS DE HARINAS TRIGO-OUINUA

TIPO DE HARINA	PESO DE GALLETA CRUDA (g)	PESO DE GALLETA HORNEADA (g)	PERDIDA DE PESO DE LAS GALLETAS POR COCCION (%)	DIAMETRO DE GALLETAS HORNEADAS D (cm)	ESPESOR DE GALLETAS HORNEADAS E (cm)	INDICE DE ESPARCIMIENTO D/E
HARINA DE TRIGO 100%	12.95	12.25	5.40	38.90	4.20	9.26
HARINAS TRIGO-QUINUA 90:10	11.91	11.13	6.52	39.20	3.87	10.13
HARINAS TRIGO-QUINUA 80:20	13.37	12.52	6.32	39.58	3.94	10.04
HARINAS TRIGO-QUIN.REV. 90:10	12.18	11.39	6.47	38.80	3.90	9.95
HARINAS TRIGO-QUIN.KEV. 80:20	12.20	11.44	6.21	38.39	3.64	10.55

^{*}Características de 6 galletas tomadas al azar de cada tratamiento.

Tanto el índice de esparcimiento como el peso de la galleta horneada no se vieron afectados significativamente por la sustitución de harina de trigo por harina de quinua.

IV.2. CARACTERISTICAS QUIMICAS

Los Cuadros 21 y 22 muestran los resultados que se obtuvieron en el Análisis Químico Proximal de las harinas de trigo y quinua y de las galletas respectivamente.

Los resultados mostraron que las harinas de quinua, tanto la harina integral como la harina de grano reventado, presentaron contenidos mayores de proteínas, grasas y minerales que la harina de trigo comercial. La cantidad de carbohidratos calculados como extracto libre de nitrógeno fué mayor en la harina de trigo que en las harinas de quinua, debido a que el grano de trigo tiene un contenido de almidón mayor que el de quinua. En cuanto a fibra cruda y cenizas el porcentaje fué mayor en las harinas de quinua porque se usaron harinas integrales y en la cascarilla es donde se encuentran la mayor cantidad de minerales y carbohidratos no asimilables por la especie humana como es el caso de la celulosa. El contenido de humedad fué menor en la harina de grano de quinua reventada debido al tratamiento térmico al cual fué sometido dicho grano.

El contenido de gluten húmedo en la harina de trigo fué de

CUADRO 21

COMPOSICION QUIMICA DE HARINAS DE TRIGO Y QUINUA

TIPO DE HARINA	*HUMEDAD *CENIZAS		*EXTRACTO *PROTEINA ETEREO		*FIBRA CRUDA	*CARBOHIDRATOS POR DIFERENCIA	
	8	% B.S.	% B.S.	% B.S.	% B.S.	% B.S.	
Harina de trigo	14.40	0.83	1.36	11.25	0.084	86.476	
Harina de quinua							
integral	6.89	2.77	5.72	16.53	2.088	72.892	
Harina de quinua							
reventada	2.75	2.53	4.50	16.37	3.480	73-120	

^{*} Promedio de dos repeticiones por muestra.

B.S.= Base Seca.

COMPOSICION QUIMICA DE LAS GALLETAS ELABORADAS CON HARINA DE TRIGO O MEZCLAS DE HARINAS TRIGO-QUINUA

Tratami en	TO	*HUMEDAD *CENIZAS		*EXTPACTO	*PROTEINA	*FIREA *CARBONIDRATOS
	•			ETERBO		CRUDA POR DIFERENCIA
		· V	% B.S.	1 B.S.	1 B.S.	1 B.S. B.S.
Tost igo	Galleta 100 -					Estatian E
	harina de trigo	3.12	1.17	15.95	6.39	0.078 76.4:2
т,	Galleta con103					
	harina quinua	5.07	1:22	14.53	6.69	0.094 77.466
т,	Galleta con 201					
-	harina quinua	6.56	1.24	17.40	7.30	0.128 73.932
т ₃	Galleta con 10%					
	h. quinua reven.	4.09	1.03	15.53	6.42	0.092 76.928
T ₄	Galleta con 20%					
	h. quinua reven.	4.68	1.36	16.02	6.82	0.201 75.599

^{*} Promedio de dos repeticiones por muestra.

4

31.2% el cual se encuentra en el límite mínimo de la harina de trigo perteneciente al Grupo I de acuerdo a la Norma Oficial Mexicana para harina de trigo (NOM-7-1982) correspondiente a la harina usada en panificación más sin embargo este contenido de gluten húmedo es adecuado para usar la harina en la elaboración de pastas para sopa y galletas (31).

El contenido de gluten en las harinas de quinua fué nulo. El efecto de la carencia de gluten en las harinas de quinua se reflejó en la manipulación de las masas ya que a mayor contenido de harina de quinua tanto integral como de grano reventado la masa era menos clástica y al laminarla se rompía con facilidad. Para futuras investigaciones se recomienda realizar estudios para conocer la fuerza de la harina de trigo y de las mezclas de harina de trigo- harina de quinua por medio de estudios reológicos. Para galletas se recomienda el uso de harinas de trigo de baja fuerza, suaves y extensibles; sin embargo, al sustituir la harina de trigo por otros materiales que no contienen gluten provoca deterioro en las características físicas del producto final por lo que se necesita que el gluten sea más fuerte (1).

En cuanto a la harina de trigo, Suárez Nuñez tomó como referencia de límite de proteína en harinas de trigo comerciales un contenido de proteínas de 9 a 10 g/100g. La harina de trigo

utilizada en la elaboración de las galletas trigo-quinua presentó un contenido de proteína aproximado de 11 g/100g que resulta favorable, ya que las harinas de trigo con mayor contenido de proteína toleran mayores niveles de sustitución (1).

De acuerdo con el Cuadro 22 durante la elaboración de las galletas al incorporarse, harina de quinua, integral o reventada, sustituyendo a la harina de trigo en niveles de 10% y 20%, estas se enriquecieron, en comparación con las galletas testigo elaboradas solamente con harina de trigo, incrementándose los contenidos de grasa, proteína y minerales, principalmente en aquellas galletas que fueron elaboradas con 20% de las harinas de quinua.

Las galletas elaboradas con 20% de harina de quinua integral presentaron un contenido en grasa, proteína y minerales mayor que las galletas elaboradas con 20% de harina de quinua reventada; esto es posible explicarlo considerando que en el proceso de obtención de la harina se efectuó un paso más, el de reventado, por lo que hubo mayor manipulación del grano y probablemente perdida de germen y cascarilla reducióndose con ello el contenido de proteínas y grasa que se encuentran en abundancia en el germen (8).

El contenido de humedad en las galletas fué mayor al aumentar el contenido de harina de quinua lo cual reflejó que las harinas de quinua fueron más higroscópicas que la harina de trigo.

De acuerdo con el Cuadro 23 se observa que en la galleta con 10% de harina de quinua integral el contenido de proteína se incrementó aproximadamente en 5% con respecto al contenido de proteína de la galleta testigo. La galleta con 20% de harina de quinua integral aumentó aproximadamente un 14% y las galletas con 10% y 20% de harina de quinua reventada aumentaron su contenido de proteína aproximadamente 0.5% y 7% respectivamente.

Con base al contenido de proteína de la galleta testigo y de los tratamientos y tomando en cuenta los datos de contenido del aminoácido indispensable lisina en la proteína de trigo de 2.10 g/100g. proteína y el contenido mínimo de lisina en quinua de 5.81 g/100g. proteína (Flores,E.; 1987), se pudo suponer un aumento en el contenido de lisina en forma teórica como se observa en el Cuadro 24. Estos datos se podrían tomar en cuenta como referencia para futuras investigaciones en las que se deseara corroborar los datos con resultados obtenidos en forma experimental.

Los datos del Cuadro 24 indicaron que hay un aumento en el contenido de lisina en los tratamientos T_1 y T_2 con respecto al testigo; este aumento fué teóricamente del 25% y 50% respectivamente. De las galletas que fueron elaboradas con 10% y 20%

CUADRO 23

INCREMENTO RELATIVO DE PROTEINAS EN LAS GALLETAS

TRATAMIENTO		PROTEINAS % B.S.	DIFERENCIA EN EL CONTENIDO DE PRO TEINAS, % (Tratamiento-Testigo	INCREMENTO 8
Testigo	Galleta con 100%			
	harina de trigo	6.39		
т ₁	Galleta con 10%			
	harina de quinua	6.69	0.30	4.69
T ₂	Galleta con 20%			
	harina quinua	7.30	0.91	14:24
т ₃	Galleta con 10%			
	h. guinua reven.	6.42	0.03	0.47
т ₄	Galleta con 20%			에 보고 클릭하는 사람들이다.
	h. quinua reven.	6.82	0.43	6.73

CHARRO 24

CONTENIDO DE PROTEINA DE LAS GALLETAS

TRATAMIENTO	36	PROTEIRA • U.S.	1151KA g/160g.DE	PROTEINA
Testigo	Galleta elaborada con			
	harina de trigo	6.39	2,10	
т,	Galleta elaborada con			
	mezcla de harina de			
	trigo-harina quinua			
	integral (90:10)	6.69	2.62	
12	Galleta elaborada con			
	mezela de harina de			
	trigo-harina quinos			
	integral (80:20)	7.30	3.29	

de harina de grano reventado no se hizo referencia alguna en el Cuadro 24 de su contenido de lisina pues el grano al ser reventado presentó el fenómeno de oscurecimiento no enzimático pudiéndose perder lisina por reacciones de Maillard, en las que el grupo amino de dicho aminoácido reacciona con el grupo aldehído o cetona de los azúcares reductores.

En el Cuadro 25 se presentan los resultados del contenido de algunos oligoelementos: calcio, fósforo y magnesio de las harinas que fueron usadas. Se observó que las harinas de quinua tuvieron un mayor contenido de estos minerales en comparación con la harina de trigo.

Comparando los resultados de las harinas de quinua con los datos reportados en los Cuadros 8 y 9 de contenido de minerales de esta semilla, se apreció que el valor en contenido de fósforo fué cercano a estos datos, mientras que el contenido de calcio es mayor y, el contenido de magnesio menor.

En el Cuadro 26 se muestran los resultados de la determinación de calcio, fósforo y magnesio de las galletas. Tomando como referencia las galletas 100% harina de trigo, el contenido de calcio aumentó más de siete veces en las galletas con quinua y el fósforo se incrementó más en aquellas galletas donde el contenido de harina de quinua integral o de grano reventado fué del 20% del total de harina, mientras que el aumento de magnesio fué menos notorio.

La composición química de la galleta testigo la situó entre

ESTA TESIS NO DEBE SALIR DE LA DIRLIOTECA

- 79 -

CUADRO 25

CONTENIDO DE ALGUNOS MINERALES PRESENTES EN LAS HARINAS DE QUINUA Y TRIGO-

		Ca	Mg / 100g	P mg/100g
Harina de Tr	igo	21.6	25.8	149.8
Harina de qu	inua			
integral		263.5	131.4	416.0
Harina de qu	inua			
reventada		323.4	132.4	372.3

^{*} Promedio de dos repeticiones por muestra

CUADRO 26

CONTENIDO DE ALGUNOS MINERALES PRESENTES

EN LAS GALLETAS

		<u>, taki kurupa (t</u>	
	mg∵.C¢g	Нg #g/100g	P .ng/100g
Gallota con 100% harina			J. 14
de trigo	27.9	21.7	77,5
Galletas con 10% harina			
de quinum integral	256.85	22.4	96.2
Galletas con 20% harina			
de quinua integral	273.8	27.7	102.6
Galletes con 10% harina			
de quinua reventada	201.25	20.2	81.0
Galletas con 20% harina			
de quinum reventada	218.1	51.7	110.3

^{*} Promedio de dos repeticiones por muestia

la clasificación de galletas semifinas y galletas comerciales, es decir entre las galletas tipo II y tipo III de acuerdo a las especificaciones dadas en la Norma Oficial Mexicana para galletas (NOM-F-6-1983) como se observa en el Cuadro 27, ya que su contenido en proteína fué de 6.39% B.S.. El mínimo en contenido de proteína en galletas semifinas y comerciales es de 6.0% y para galletas finas de 8.0%. Las galletas de los tratamientos también quedaron incluidas en galletas semifinas o comerciales ya que sus contenidos en proteína fueron inferiores al contenido mínimo de proteína de las galletas finas. Sin embargo, en general las galletas experimentales presentaron contenidos de cenizas, fibra cruda y humedad menores a los valores máximos establecidos en la norma para galletas finas, así como un contenido mayor que el valor mínimo para grasa.

IV.3. EVALUACION SENSORIAL

De los análisis de varianza realizados para las pruebas de sabor para los tratamientos: galletas elaboradas con harina de trigo-harina quinua integral (90:10 y 80:20) vs. galletas elaboradas con harina de trigo (anexo 8) y galletas con harina de trigo-harina de quinua reventada (90:10 y 80:20) vs. galletas elaboradas con harina de trigo (anexo 9), se pudo observar que no existió diferencia significativa entre las medias de cada una de las muestras en un nivel de significancia

CHADRO 27

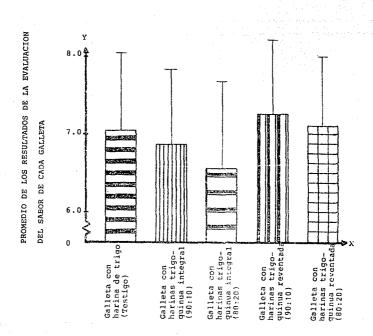
COMPARACION ENTRE ESPECIFICACIONES DE LA NORMA OFICIAL (NOM-F-6-1983) Y LAS GALLETAS EXPERIMENTALES

ESPECIPICACIONES	TIPO I GALLETAS FINAS	TIPO II GALLETAS SEMIPINAS	TIPO III GALLETAS COMERCIALES	TESTIGO GALLETAS 100% HARINA DE TRIGO	T ₁ GALLETAS CON 10% RAKINA QUINUA	T2 GALLETAS COE 204 HARINA QUINUA	T _J GALLETAS CON 104 H. QUINUA REV.	T4 GALLETAS CON 20% H. QUINUA NEV.
HUHEDAD					74.			
	6.0 aix.	e.o máx.	a.O max.	3,12	5.07	6.56	1.05	1.68
CENIZAS 1 8.5.	1.5 máz.	2.0 mex.	2.0 mix.	1.17	1.22	1.24	1,03	1,36
HOTEINAS B.S.	8.0 min.	6.0 min.	6.0 min.	6.39	6.69	7.30	6.42	6.02
TIBRA CRUIIA D.S.	0.5 mis.	D.5 mis.	0.5 máx.	0.08	0.09	0.13	0.09	0.20
CHARTS CTOARTS	15.0min.	IO.Cein.	5.0 min.	15.9	14.5	17.4	15.5	16.0

del 5%, es decir, el agrado por las galletas fué el mismo.

Las evaluaciones se llevaron a cabo con el mismo grupo de consumidores por lo que se pudieron comparar las galletas 10% harina de quinua integral vs. las galletas 10% harina de quinua reventada, así como entre las galletas 20% harina de quinua integral vs. las galletas 20% harina de quinua reventada. De ambas comparaciones se observó que no hay diferencia significativa entre las medias de los tratamientos por lo que el agrado por las galletas de quinua integral fué el mismo que para las galletas con harina de grano reventado. Esta evaluación se realizó por medio de un análisis de t de Student, cuyos resultados se encuentran en el anexo 10.

Para llevar a cabo tanto el análisis de varianza como el análisis de t de Student se consultaron las tablas estadísticas que se encuentran en los anexos 11 y 12.


En la figura 7 se encuentran representados en un gráfico de barras los resultados obtenidos en la prueba de nivel de agrado para el sabor de las diferentes galletas, encontrándose que todos los promedios giraron en valores alrededor de 7, es decir, la tendencia del grupo de consumidores con respecto al sabor fué de gusto moderado.

En cuanto a la prueba de preferencia aplicada para textura,

FTGURA 7

CALIFICACION PROMEDIO DEL SABOR EN LA

n= 25 jueces

los resultados indicaron que las galletas elaboradas con harina de trigo y aquellas elaboradas con 20% harina de quinua integral así como las galletas elaboradas con 10% y 20% harina de quinua reventada no fueron diferentes entre sí de manera significativa, pero sí son significativamente diferentes las galletas de harina de quinua reventada con respecto a las galletas de harina de trigo con 10% harina de quinua integral en un nivel de significancia del 5%.

De esta forma las galletas elaboradas con harina de quinua integral fueron percibidas significativamente con mejor textura que las otras galletas, siendo mejores aquellas con 10% harina de quinua integral.

Sin embargo, se recomienda adicionar algún ingrediente que mejore aún más la textura de las galletas como grasa, yema de huevo o mantequilla, ya que la dureza del producto final tuvo un efecto determinante en los juicios de los jueces.

En el anexo 13 se encuentra el análisis de ordenamiento por rangos para el cual se consultó la tabla del anexo 14.

CAPITULO V

CAPITULO V

CONCLUSIONES

La guinua alimentó a las culturas prehispánicas de Sudamérica como narra Garcilaso de la Vega en su obra Comentarios Reales (34): "El segundo lugar de las mieses que se crían sobre la haz de la tierra dan a la que llaman quinua, y el español, mujo o arroz pequeño, porque en el grano y el color se le asemeja algo. La planta en que se cría se asemeja mucho al bledo, así en el tallo como en la hoja y en la flor, que es donde se cría la quinua; las hojas tiernas comen los indios y los españoles en sus guisados, porque son sabrosas y muy sanas. También comen el grano en sus potajes hechos de muchas maneras. De la quinua hacen los indios brebaje para beber, como del maíz, pero es en tierras donde hay falta de maíz. Los indios herbolarios usan de la harina de la quinua para algunas enfermedades". A esta semilla tan apreciada por los Incas se le puede rescatar del olvido y darle un nuevo impulso como otro recurso alimentario.

La sustitución de harina de trigo por harina de quinua en galletas de tipo comercial resulta un buen recurso para enriquecerlas. Su incorporación no afectó las dimensiones de las galletas en comparación con las galletas elaboradas con harina de trigo y se pudo observar un aumento en los contenidos de grasa, proteína y minerales siendo mayor en aquellas galletas elaboradas con harina integral de quinua.

De las galletas evaluadas sensorialmente no hubo alguna tendencia de agrado hacia alguna de las galletas, tratamientos o testigo, con respecto a su sabor; sin embargo el grupo de consumidores presentó la tendencia a un mayor agrado por la textura de las galletas elaboradas con harina de quinua integral, considerando mejores las galletas elaboradas con 10% de harina de quinua.

Considerando que el cultivo de la quinua se encuentra en fase experimental en México, en el anexo 15 se presentan los resultados del cálculo del costo aproximado de las galletas, tomando en cuenta el precio comercial de los demás ingredientes. Si se toma como referencia el costo de las galletas elaboradas con harina de trigo, el incremento en el costo fué alrededor del 5% para las galletas con 10% de harina de quinua y del 10% para las galletas con 20% de harina de quinua.

Considerando el costo aproximado de las galletas y los resultados de la evaluación sensorial se recomendaría el uso de harina de quinua integral en un nivel de sustitución del 10%; sin embargo con 20% de harina de quinua integral las galletas fueron más ricas en nutrientes por lo que para futuras investigaciones se podría calcular el nivel máximo de sustitución buscando alternativas de producción más económicas.

RECOMENDACIONES

- Incluir en la formulación de las galletas algún elemento lubricante como huevo para obtener galletas con consistencia más suave.
- 2.-Reducir el tamaño de partícula de las harinas de quinua con el fin de mejorar la textura de las galletas, principalmente de la harina de la semilla reventada ya que en los comentarios de las evaluaciones sensoriales se reportaron como arenosas.
- 3.-Continuar el estudio de las harinas de quinua aplicadas en galletas comerciales pudiendo complementar la información con estudios reológicos de las masas obtenidas con las mezclas de harinas trigo-quinua, así como realizar estudios sobre su valor nutritivo.
- 4.-Después de elaborar las galletas y evaluarlas sensorialmente no se hizo referencia alguna por parte de los consumidores de que el sabor fuera amargo o dejara algún resabio amargo por lo que se consideró que las saponinas fueron eliminadas pero de todas maneras se recomienda cuantificar contenido de saponinas en las harinas para asegurar que su consumo se presuma más seguro.
- 5.-Cuantificar el contenido de lisina en las galletas experimentales para corroborar el dato que se obtuvo teóricamente.

6.-Continuar el estudio sobre la aplicación de <u>Chenopodium</u> <u>quinoa</u> en otro tipo de alimentos populares para impulsar su producción en México.

CAPITULO VI

TV ORUTTUAL

BIBLIOGRAFIA

- 1.- Suárez Nuñez, Lucía B., 1989. Caracterización Nutricia, Reológica y Sensorial de Una Galleta Tipo Comercial Elaborada a Partir de Mezclas de Harina de Trigo y Amaranto (A. hypocondriacus). Tesis Profesional. Universidad Iberoamericana. México, D. F.
- Berg, Alan, 1973. Estudios Sobre Nutrición su Importancia en el Desarrollo Socioeconómico. 1^a ed. (2^a reimp., 1983), Editorial Limusa,
 S.A. de C.V., México, D.F.
- 3.- Mayer, Jean, 1984. "Las Dimensiones de la Desnutrición", Cuadernos de Nutrición, 7(1):40-43.
- 4.- Martínez, P.D., 1985. "Consecuencias Sociales de la Mala Nutrición". Cuadernos de Nutrición, 8(4): 17-32.
- 5.- Bourges, Hector, 1987. "Tecnología de Alimentos de Interés Social". Cuadernos de Nutrición, 10(4): 17-32.

- 6.- Badui Dergal, S.,1981. Química de los Alimentos, l^a ed.

 (3^a reimp.,1986), Editorial Alhambra

 Mexicana, S.A.,México,D.F.
- 7.- Vega y León Salvador, Altagracia Marina, Pérez Norma y Ríos
 Camilo. Agroindustrialización de la
 Quinua (Chenopodium guinoa), Serie Académicos CBS. Universidad Autónoma
 Metropolitana-Xochimilco, División de
 Ciencias Biológicas y de la Salud, México, 1991.
- 8.- Flores Acosta, Eunice, 1987. Aspectos Bioquímicos, Nutricionales y Tecnológicos de Tres Especies de Plantas del Género "Chenopodium". Tesis Profesional. Facultad de Química, UNAM.
- 9.- Atwell, W.A., Petrick, B.M., Johnson, L.A. & Glass, R.W., 1983. "Characterization of Quinoa Starch", Cereal Chemistry, 60(1):9-11.
- 10.- Romero, Arturo, Bacigalupo, Antonio & Bressani, Ricardo,
 1985."Efecto de la Extrusión Sobre las
 Características Funcionales y la Calidad Proteínica de la Quinua (Chenopodium quinoa Willd), Archivos Lati-

noamericanos de Nutrición, 35(1):148-160.

- 11.-White, P.L., Alvistur, E., Díaz, C., Viñas, E., White, H.S.
 6 Collazos, C.,1955. "Nutrient Content
 and Protein Quality of Quinua and Cafihua, edible Seed Products of the
 Andes Mountains", J. Agr. Food Chem.,
 3(6):531-534.
- 12.-Salis, Annette,1985. Cultivos Andinos Alternativa Alimentaria Popular?, 1^a ed., Centro de Estudios Rurales Andinos "Bartolomé de las Casas", Perú, 90 pág..
- 13.-Mahoney, Arthur W., López, Javier G. & Hendricks, Deloy G.,
 1975. "An Evaluation of the Protein
 Quality of Quinoa", J.Agr. Food Chem.,
 23(2): 190-193.
- 14.-Quiros-Pérez, Felipe & Elvehjem, Conrad Arnold, 1957."Nutritive Value of Quinoa Proteins", J. Agr. Food Chem.,5(7):538-541.
- 15.-Bruin, A. de., 1964. "Investigation of the Food Value of
 Quinua and Cañihua Seed", Journal of
 Food Science, 29:872-876.

- 16.-Reichert, R.D., Tatarynovich, J.T. & Tyler, R.T., 1986.

 "Abrasive Dehulling of Quinoa (Chenopodium quinoa): Effect on Saponin
 Content as Determined by an Adapted
 Hemolytic Assay", Cereal Chemistry, 63
 (6):471-475.
- 17.-Wolf, M.J., MacMasters, M.M. & Rist, C.E., 1950. "Some Characteristics of the Starches of Three South American Seeds Used for Food",

 Cereal Chemistry, 27(3):219-222.
- 18.-Uribe Lamas, Angel, 1987. Métodos Usados para la Determinación de Saponinas. Tesis Profesional. Facultad de Química, UNAM.
- 19.-Sánchez Marroquin, A., 1983. "Dos Cultivos Olvidados de
 Importancia Agroindustrial: El Amaranto y la Quinua", Archivos Latinoamericanos de Nutrición, 33(1):11-32.
- 20.-Norma Oficial Mexicana para Galletas. NOM F-6-1983, Dirección General de Normas, Secretaría de
 Comercio y Fomento Industrial, México,
 D.F.

- 21.-Altamirano, Delia, 1990. Asociación Nacional de Fabricantes de Galletas y Pastas. Comunicación

 Personal.
- 22.-Potter, N., 1978. La Ciencia de los Alimentos, EDUTEX
 S.A., México, D.f., pp. 525-534.
- 23.-Departamento de Ingeniería Bioquímica, 1990. Introducción

 a la Tecnología de Alimentos. Teoría

 y Práctica, Instituto Politécnico Na
 cional, Escuela Nacional de Ciencias

 Biológicas, México, D.F.,pp. 134-152.
- 24.-Mena Sánchez, Ma. Eugenia C., 1985. Estudio del Efecto de

 Cambio de Ingredientes, Tiempos y Temperaturas de Fermentación en el Volumen del Pan. Tesis Profesional. Universidad Iberoamericana, México, D.F.
- 25.-Charley, Helen, 1987. Tecnología de Alimentos-Procesos Químicos y Físicos en la Preparación de Alimentos, !^a ed. (2^a reimp.,1989), Editorial Limusa, S.A. de C.V., México, D.F.

- 26.-Kramer, Amihud & Twigg, Bernard A., 1973. Quality Control for the Food Industry, 3^a ed., The AVI Publishing Company, INC.,U.S.A., Vol.II, pp. 266-327.
- 27.-Youngs, Vernon & D'Appolonia, Bert, 1982. Curso de Reología de la Masa y Panificación. Asociación de Tecnólogos en Alimentos de México, A.C., pp.30-31.
- 28.-American Association of Cereal Chemists,1976. Cereal Laboratory Methods, 7^a ed.,St. Paul Minn.
- 29.-Association of Official Agricultural Chemists (A.O.A.C.),

 1984. Official Methods of Analysis,

 14^a ed., U.S.A.
- 30.-Van Etten, C.H., Miller, R.W. & Wolff, I.A., 1963. "Aminoacid Composition of Seeds from 200

 Angiospermous Plant Species", J. Agr.

 Food Chem., 11(5):399~410.

- 31.-Norma Oficial Mexicana para Harina de Trigo. NOM -F-71982. Dirección General de Normas, Secretaría de Comercio y Fomento Industrial, México, D.F.
- 32.-0'Mahony, Michael, 1985. Sensory Evaluation of Food,
 Statistical Methods and Procedures.

 Department of Food Science and Technology, University of California, U.S.A.
- 33.-Pedrero, Daniel & Pangborn, Rose Marie , 1989. Evaluación

 Sensorial de los Alimentos Métodos Analíticos, 1^a ed.,Editorial Alhambra

 Mexicana, S.A. de C.V.,México, D.F.
- 34.-De la Vega, Garcilaso, 1991. Comentarios Reales, 16^a ed.,

 Colección Austral, Editorial Espasa
 Calpe Mexicana, S.A., México, D.F.

ANEXOS

Anexo 1. Material y Equipo

- Microscopio Estereoscópico Carl Zeiss
- Serie de tamices Tyler
- Balanza granataria
- Molino de cuchillas. Modelo 4 Thomas Wiley.
- Horno, Modelo 28. Thelco.
- Baño con agitación.
- Batidora Kitchen Aid Inc. 5 velocidades. Modelo k5SS.
- Horno marca "Mabe". Temperatura máxima 300°C.
- Balanza analítica "Sartorius".
- Aparato digestor y destilador Kjeldhal. Marca "Labconco".
- Extractor de grasas. Goldfisch. Marca "Labconco".
- Mufla, Marca "Caisa Huppert",
- Espectrofotómetro.
- Extractor de Fibra Cruda, Marca "Labconco".
- Cristalería y reactivos propios para los análisis proximales.
- Charolas para galletas 45 cm. x 30 cm.
- Moldes para galletas.
- Rodillo.
- Vernier.

Materias Primas:

- Harina de trigo comercial "Gamesa".
- Manteca vegetal "Inca".
- Dextrosa anhidra en polvo.

- Azúcar blanca granulada.
- Sal.
- Semilla de Chenopodium quinoa variedad Sierra Blanca.
- Agua.

Anexo 2. Cuestionario de la Prueba Hedónica.

NOMBRE	JUE2
FECHA	PRUEBA Sabor
PRODUCTO	CLAVE
INSTRUCCIONES:	Por favor indique con una (X) la expresión que
	${\tt describa\ mejor\ su\ gusto\ por\ el\ producto} \qquad {\tt que}$
	tiene la misma clave que esta hoja.
	ME GUSTA MUCHISIMO
	ME GUSTA MUCHO
	ME GUSTA MODERADAMENTE
	ME GUSTA LIGERAMENTE
	NI ME GUSTA NIME DISGUSTA
	ME DISGUSTA LIGERAMENTE
	ME DISGUSTA MODERADAMENTE
	ME DISGUSTA MUCHO
	ME DISGUSTA MUCHISIMO
COMENTARIOS: _	

CDACTAC

Anexo 3. Cuestionario de la Prueba de Preferencia.

		JUEZ	
ГЕСНА		PRUEBA Te	extura
PRODUCTO			
INSTRUCCIONES:	Pruebe cada	una de las muest	tras en el orden
	ter in a significant	de izquierda a o	
	Indique con	el número corres	spondiente el o <u>r</u>
	den de su m	enor (= 1) a ma	ayor (= 5) pr <u>e</u>
	ferencia po	r cada muestra. 1	No se permiten
	empates.		
MUESTRAS		PREFERENCIA	
·			
			
			
			
COMENTARIOS:			

GRACIAS

Anexo 4. Resultados de la distribución de tamaños del grano Chenopodium guinoa representados en el histograma correspondiente a la figura 3.

TAMIZ	APERTURA	PESO DE LA	PORCENTAJE	FRACCION
	(in)	MUESTRA EN	RETENIDO EN	(Xretenido/Xtotal)
		CADA TAMIZ	CADA TAMIZ	
		Х (g)	8	
10	0.0661	2.0	0.43	0.0043
14	0.0469	418.5	90.06	0.9006
20	0.0331	39.0	8.39	0.0839
30	0.0232	0.5	0.11	0.0011
plato		4.7	1.01	0.0101
TOTAL		464.7	100.00	

Anexo 5. Resultados de la distribución de tamaños

de partícula de la harina de trigo comercial representados en el histograma
correspondiente a la figura 4.

TAMIZ	APERTURA	PESO DE LA	PORCENTAJE	FRACCION
100112	MEDITORA	AL 30 DELA	PORCENTAGE	FRACCION
ļ	(in)	MUESTRA EN	RETENIDO EN	(Xretenido/Xtotal)
		CADA TAMIZ	CADA TAMIZ	
	····	X (g)	8	
50	0.0117	4.7	1.64	0.0164
65	0.0083	3.2	1.12	0.0112
80	0.0070	86.4	30.25	0.3025
100	0.0059	154.5	54.10	0.5410
150	0.0041	5.4	1.90	0.0190
170	0.0037	1.5	0.52	0.0052
200	0.0029	15.2	5.32	0.0532
plato		14.7	5.15	0.0515
TOTAL		285.6	100.00	

Anexo 6. Resultados de la distribución de tamaños de partícula de las harinas de quinua.

p	 			
TAMIZ	APERTURA	PESO DE LA	PORCENTAJE	FRACCION
	(in)	MUESTRA EN	RETENIDO EN	(Xretenid o/ Xtotal)
		CADA TAMIZ	CADA TAMIZ	
		x (g)	8	
	Harin	a de quinua i	ntegral, figur	ca 5
35	0.0197	38.0	38.0	0.380
50	0.0117	21.6	21.6	0.216
65	0.0083	6.2	6.2	0.062
80	0.0070	13.1	13.1	0.131
100	0.0059	9.7	9.7	0.097
150	0.0041	1.8	1.8	0.018
170	0.0037	1.0	1.0	0.010
plato		8.6	8.6	0.086
	Harin	a de quinua r	eventada, figu	ıra 6
35	0.0197	51.0	37.4	0.374
50	0.0117	32.6	23.9	0.239
65	0.0083	10.0	7.3	0.073
80	0.0070	32.9	24.1	0.242
100	0.0059	7.3	5.4	0.054
150	0.0041	8.0	0.6	0.006
plato		1.6	1.2	0.012

Anexo 7. Calificación promedio de las galletas en la prueba hedónica.

	x *	DESVIACION STANDARD*
Galletas 100% harina de trigo	7.04	1.00
Galletas 10% harina de quinua		
integral	6.87	0.97
Galletas 20% harina de quinua		
integral	6.56	1.12
Galleta 10% harina de quinua		
reventada	7.26	0.96
Galleta 20% harina de quinua		
reventada	7.13	0.92

^{*} Los valores de la media y la desviación stándard se obtuvieron al asignar valores de 9= Me gusta muchísimo hasta 1= Me disgusta muchísimo a los diferentes niveles de la escala hedónica.

FUENTE DE VARIACION	GRADOS DE	SUMA DE	CUADRADOS	F TABLAS F CALCULADA
	LIBERTAD	CUADRADOS	MEDIOS	
Muestras	2	3,16	1.58	3.21* 2.26*
Jueces	22	41.25	1.87	
Error	_44_	30.84	0.70	
Total	68	75.25		

^{*} Valores calculados para un nivel de significancia de 0.05.

5

^{**} Los cálculos se realizaron asignando valores de 9= Me gusta muchísimo hasta 1= Me disgusta muchísimo.

Anexo 9. Resultados estadísticos del análisis de varianza para la prueba de nivel de agrado para el sabor de las galletas de harina de trigo y las galletas de harina de trigo-harina de quinua reventada.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F TABLAS	F CALCULADA
Muestras	2	0.38	0.19	3.21*	0.33*
Jueces	22	37.92	1.72		
Error	44	24.95	0.57		
Total	68	63.24			

^{*} Valores calculados para un nivel de significancia de 0.05.

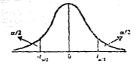
^{**} Los cálculos se realizaron asignando valores de 9= Me gusta muchísimo hasta 1= Me disgusta muchísimo.

Anexo 10. Resultados estadísticos del análisis de t de Student entre los tratamientos de las galletas evaluadas en la prueba de nivel de agrado.

	GRADOS DE	t CALCULADA	COMPARATIVO	t TABLAS*
	LIBERTAD		•	
Galleta 10% harina quinua				
integral vs. galleta 10%				
harina de quinua reventada	22	1.52	<	2.074
Galleta 20% harina quinua				
integral vs. galleta 20%				
harina de quinua reventada	22	1.97	<	2.074 .

^{*} Valores críticos para t de Student a un nivel de significancia de 0.05, dos colas.

ر اوک


Anexo 11. Tabla 1. Valores Críticos para F.

	-		g.l. del numerador												ļ											
1	_																					108	100	100		Ļ
4	-,, {	-1-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,	÷	3 ,;	<u></u>		.	2 22	125	2 50	13	14	16	<u></u>	24	10	1 #4	110	13			162	167	۱
Ł	"1	***	14	iũ	àií	i÷	3.34	13	;5	j 14	1.	1.96	1 13	語	174	113	136	147	1.53	ίũ	is	2.21	214	715	3 10	l
١	["	4 30 7 84		171		1 14	111	1.36	111	311	1 10	113	2 12	100	2.71	1.00	2.51	111	174	171	122	1 72 1 18		1.07	1.00	ļ
1	*	111	14	1 11 4 54	1 70	111	141	1 11	1 21	122	112	14	2 10 3.87	201 171	2 00 2.66	157	1 10	113	1 #0 1 J1	177	12	1 71 2 15	1 LE 2.10	142	1 64 2 63	ļ
	*	111	1 12	137	107	2 13 3 70	141	15	117	2 21 3 84	1 14 1 10	112	104	2 04 174	1 00 2 44	193	120	14	17	! 's	1 12	113	1 14	143	16	ĺ
!	"	111	1 % 1 %	110	147	2 31 3 44	1.41 1.41	1 11 3.15	111	3 17	214 294	2 10 2 24	2 07 2.89	2 02 2 70	117	1 *1 231	144	111	1 76 1 25	114	112	127	101	12	12	
	4	12)]1 131	14	163	149	1 34 1.36	1 30 1 11	3.00	117	H	2 00 2.83	103	200 166	154	119	냺	1 10 1.10	1 74 2 3 1	111	147	1 14	14	14	H	Ì
1	-	4 11 7 2) 12 1.8	11	101	14	2 36 3.35) 18 1 18	2 .71 2.84	111	1 10 1 86	106 176	2 01 1 77	描	1 4) 134	147	1.82	1,72	177	111	1 61 2 04	162 2.00	1 59 1 84	1.54 1.60	1.31	
	r	1 10 1 10	빏	131	12	13	u	1 16 1 15	1 17	111	1 00 LB2	1 01 2 75	101	13	132	1.15 1.⊕	111	111	1,71	147	111	1,59	122	1,34	12	Ì
	*	4 00 7 3 1	1 2) 9 10	111	111	745 351	;;	111	2 12 2.77	112	1 60	2 04 2.73	1 00 1.00	134	140	1 M 2.57	1.25	1.74	! ;;	in	141	1.94	1.33	122	1 51	
	*2	* 07 7 27	ij	12	12	1#	3.11 3.34	114	12	10	100 177	192	E	134	27 2.46	1.33	171	3.57	1.82	H	14	137	114	1.50	14	
	*	123	111	1 42 4 34	176	34	111	1 11 1 57	1 IA	1 10 2.04	185 175	101	141	137	14	3.37	1.14	1 77	1 2	2 80	13	1 34	1.57	1.10	1.75	l
1	*	171	1 10	434	3 %	142). 14 1. 14	; 22	111	100	13	100	1.00	13	141	1 10	111	171	143	14	12	124	1 15		177	
l	#	415	112	1 m	2 30 3 76	14	110	111	114	:01	7 07	1	12	110	1 54	171	1 74	1 70	15	12	12	12	1 70	111	1 41	l

* Los valores críticos de F para un nivel de significancia de 0.05 se encuentran en el primer renglon y seguido a ellos los valores críticos para un nivel de significancia de 0.01. Si el valor calculado es mayor o igual al valor de la tabla, se rechaza la hipótesis nula. Fuente: Referencia 32.

10 J

Anexo 12. Tabla 2. Valores Críticos para t de Student.

Nivel de significancia (a):

1		١.

- 1	0.25	0.20	0.15	0.10	0.05	0.025	10.0	0.005	0.0005
				Do	s colas				
g. i.	0.50	0.40	0.30	0.20	0.10	0.05	0.02	10.0	0.001
1	1,000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.596
3	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924
4	.741	.941	1.190	1:533	2.132	2.716	3.747	4.604	3.610
5	,727	.920	1.156	1.476	2.015	2.571	3.365	4.032	6 869
6	.718	.906	1.134	1.440	1.943	-2.447	3.143	3,707	1 5,959
7	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499	5.403
8	.706	.699	1.108	1.397	1.860	2.306	2.896	3.355	1 5 641
9	.703	.883	1.100	1.383	1.833	2.262	2.821	1.250	4.75
10	.700	.879	1.093	1.372	1.812	2.2.6	2.764	3.169	4.547
11	697	.876	1.082	1.363	1.796	2,201	2,718	3.166	4 437
12	.695	.873	1,083	1.356	1.782	2.179	2.681	3.055	4 318
13	.694	.970	1 079	1.350	1.771	2.160	2,650	1.0:2	4,221
14	.692	.868	1.076	1.345	1.751	2.145	2.624	2.577	4,140
15	.691	.866	1.074	1.341	1.753	2.131	2,602	2.947	4 273
16	.690	.865	1,071	1.337	1,746	2,120	2.533	2.92:	4,315
17	689	863	1.069	1.333	1.740	2.110	2 567	2.898	3.75
18	.653	862	1.067	1.330	734	2 121	2.552	2.8	1 3 3
19	.038	.861	1.066	1.328	1.720	2.093	2.539	2.361	1 447
20	.05*	.200	1.054	1.325	1.725	2.085	2,528	2.845	3.84
21	.650	3.59	1.063	1 323	1 721	2.040	2.513	2.40	1.614
22	.685	818	1 663	1 321	1.717	3,074	2.5%	2.21	1 - 2

Fuente: Referencia 33

Anexo 13. Resultados estadísticos del análisis
de ordenamiento por rangos para la
prueba de textura (Prueba de Preferencia).

- A = Galleta 100% harina de trigo.
- B = Galleta 10% harina de quinua integral.
- C = Galleta 20% harina de quinua integral.
- D = Galleta 10% harina de quinua reventada.
- e = Galleta 20% harina de quinua reventada.

MUESTRAS	Α	В	С	D	E
SUMA DE RANGOS	62 ^a	100 ^b	82 ^{a,b}	66 ^a	65 ^a

a,b= Suma de rangos con distintos supraíndices indican diferencia significativa para un nivel de confiabilidad del 95%,ya que:

DIFERENCIAS	ABSOLUTAS ENTRE SUMA DE		DIFERENCIA
RANGOS			TABLAS*
A - B =	62 - 100 = 38	>	31
A - C =	62 - 82 = 20	4	31
A - D =	62 - 66 = 4	4	31
A _ E =	62 - 65 = 3	4	31
B - C =	100 - 82 = 18	<	31
B - D =	1100 - 66 = 34	>	31
B - E =	100 - 65 = 35		31

* De la Tabla 3 se obtuvo la diferencia de sumatoria ordinal absoluta crítica de 31 considerando un número de muestras igual a 5 y 25 jueces, para un nivel de confiabilidad del 95%.

Anexo 14. Tabla 3. Diferencia de sumatoria ordinal absoluta crítica de "to dos los tratamientos".

	•			Nilmer	o de mu	esiras				
Jueces	3	4	3	6	1	8	9	10	31	12
3	6	8	11	13	13	81	20	23	2.5	28
4	7	10	13	. 15	11	2!	24	27	30	- 11
5	5	11	14	17	21	24	27	30	34	37
6	٧	12	15	19	22	26	30	34	37	42
7	10	13	17	20	24	28	32	36	40	44
8	10	14	18	22	26	30	34	39	43	47
9	10	15	19	23	27	32	36	41	46	50
10	11	15	20	24	29	34	38	43	48	33
11	111	16	21	26	30	35	40	45	51	56
12	12	17	22	27	32	37	42	48	53	58
13	12	18	23	28	33	39	44	50	55	61
14	13	18	24	29	34	40	46	52	57	63
15	13	19	24	30	36	42	47	53	59	66
16	34	19	25	31	37	42	49	55	61	67
17	14	20	26	32	38	44 .	50	56	63	69
18	15	20	26	32	39	45	51	58	65	71
19	15	21	27	33	40	46	53	60	66	73
20	15	21	28	34	41	47	54	61	68	75
21 22	16 16	22 22	28	35	42	49	56	63	70	77
	16		29	36	43	. 50	57	64	71	79
23	17	23	30 30	37	44	51	58	65	73	80
24 25	1 17	23 24	31	37	45	52	59	67	74	82
26	17	24	31	38	46	53	61	6.3	76	- 4
27	18	25	32	39 40	46	54	62	70	77	\$5
28	18	25	33	40	47 48	55	63 64	71 72	74 80	87
29	18	26	33	40		56	65			89
30	19	26	34	42	49 50	57 58	66	73 75	82 83	90
31	19	27	34	42	51	38 59	67	76	85	92 93
32	19	27	35	43	51	60	68	77	86	95
33	20	27	36	44	52	61	70	73	87	95
34	20	28	36	44	53	62	71	79	89	98
35	20	28	37	45	51	63	72	18	90	30
36	20	29	37	46	55	63	73	82	91	100
37	21	29	38	46	55	64	74	83	92	102
38	21	29	38	47	56	65	75	84	94	103
39	- ži	36	39	48	57	66	76	85	45	195
40	21	30	39	48	57	67	76	* 86	46	166
41	22	31	40	49	58	68	77	61	-	196
12	22	31	40	49	59	69	78	SH	48	(0)
43	22	31	41	50	60	69	79	89	99	110
44	11	32	41	51	60	70	80	90	101	111

^{*} Comparaciones al nivel de significancia del 5%. Fuente: Referencia 33.

Anexo 15. Costo Aproximado de las Galletas.

INGREDIENTE	% B.S.	COSTO PARA 1 Kg. DE
		GALLETAS (pesos)
Harina de trigo	49.28	684.99
Manteca vegetal		475.28
Azúcar	28.47	538.08
Solución de		
dextrosa(6%)	7.22	16.24
Sal	0.46	5.98
Bicarbonato Na	0.55	54.45
TOTAL		1775.02
	GALLETAS	10% QUINUA
Harina de trigo	44.35	616.46
Harina de quinua	4.93	150.01
Manteca vegetal	14.02	475.28
Azúcar	28.47	538.08
Sln. dextrosa(6%)	7.22	16.24
Sal	0.46	5.98
Bicarbonato Na	0.55	54.45
TOTAL		1856.50
	GALLETAS	20% QUINUA
Harina de trigo	39,42	547.94
Harina de quinua	9.86	300.03

Manteca vegetal	14.02	475.28
Azúcar	28.47	538.08
Sln. dextrosa(6%)	7.22	16.24
Sal	0.46	5.98
Bicarbonato	0.55	<u>54.45</u>
TOTAL		1938.0

** Los costos se obtuvieron considerando el precio comercial de los ingredientes en 1991.