

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

TRATAMIENTO TERMICO DE ACERO INOXIDABLE TIPO 304 Y ACERO INOXIDABLE TIPO 316 PARA LA ELABORACION DE UN ELECTRODO DE ESTADO SOLIDO SELECTIVO DE PROTONES

> TESIS CON FALLA DE ORIGEN

T E S I S
OUE PARA OBTENER EL TITULO DE
INGENIERO QUIMICO
PRESENTA:
ADRIAN ALFONSO MALDONADO MARTINEZ

DIRECTORES DE TESIS:

Q.F.B. JOSE DE JESUS PEREZ SAAVEDRA I.Q. JOSE FRANÇO PEREZ AREVALO

CUAUTITLAN IZCALLI, EDO. DE MEX.

1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

	INTRODUCCION	1
1	OBJETIVOS Objetivos	8 9
2	EQUIPO, MATERIAL Y REACTIVOS Equipo Material Reactivos	10 11 12 13
3	DESARROLLO EXPERIMENTAL Preparación de las placas Montaje Experimental Desarrollo Experimental	14 15 17 19
4 . –	RESULTADOS Etapa I Etapa II Discución de Resultados Cálculo de Media y Desviación Estandar	22 23 25 27 30
5	COMPARACION DE LOS RESULTADOS PARA LOS DOS SISTEMAS USANDO LOS DOS TRATAMIENTOS	31
6	CONCLUSIONES Conclusiones	37 38
	ANEXO I	42
	ANEXO II	72
	BIBLIOGRAFIA	102

INTRODUCCION

La medida de la fuerza electromotríz (f.e.m.) o potencial, es la base para varios métodos de análisis, de los cuales, el análisis potenciométrico (a intensidad nula) es uno de ellos:

El análisis potenciométrico, debido a su simplicidad, rápidez y exactitud, es posible aplicarlo en un amplio rango de concentraciones a un costo muy bajo y utilizando equipo de fácil manejo.

La f.e.m., medida, es la diferencia de potencial entre un electrodo indicador y un electrodo de referencia, ambos sumergidos en una solución electrolítica; donde el potencial, está relacionado a las actividades de las especies involucradas en el equilibrio electroquímico de la solución, por medio de la ecuación de Nernst⁽¹⁾; y a su vez la actividad, está relacionada a la concentración por medio de coeficientes de actividad.

Un potencial de referencia estable, es uno de los requerimientos principales para realizar medidas exactas y reproducibles. El electrodo de referencia más usado, es el electrodo de calomel saturado⁽²⁾.

Y como electrodo indicador (3):

- a) el de membrana de vidrio, para medir pH.
- b) el de platino, para medir potencial (E).
- c) el de plata, para medir Ag+.
- d) etcétera.

En las mediciones de pH, el electrodo indicador, es un electrodo de vidrio⁽⁴⁾ el cual tiene una afinidad por los protones; estos, se acumulan en la superficie de la membrana debido a un fenómeno de adsorción y desorción, verificandose éste, por medio de un mecanismo de intercambio iónico que se establece entre los protones de la superficie de la membrana y los de la solución⁽⁵⁾ provocando que las concentraciones del ión hidrógeno de la solución interna y los de la solución externa sean diferentes, acumulandose en un lado de la membrana, más protones que en el otro lado, desarrollandose, así, un potencial. La relación entre el potencial y la concentración del ión hidrógeno de la solución externa, es la siguiente:

 $E = K + 0.059 \log |H| = K - 0.059 pH Ec. Nernst$

es decir, el potencial es una función lineal del pH de la

solución, en donde el valor de K, depende de la composición del vidrio, de la temperatura, de la concentración del ión hidrógeno de la solución interna y del potencial de referencia interno.

Actualmente, éste electrodo, es usado en la industria e investigación, pero el incremento económico del mismo, ha provocado una serie de investigaciones, tratando de encontrar otro sistema o electrodo selectivo a protones, con el objetivo de sustituir al electrodo de vidrio, en las medidas de pH.

En estudios anteriores (6), se ha demostrado que algunos óxidos metálicos son sensibles al ión hidrógeno, siguiendo un mecanismo de intercambio iónico, y han reportado que, un alambre de molibdeno recubierto con óxido de molibdeno, muestra un comportamiento nernstiano en un rango de pH de 2 a 12; y han mostrado que ésta respuesta si se mantiene aun en presencia de iónes haluro.

En estudios más recientes (7), se sugirió la elaboración de otro sistema selectivo a protones, otro tipo de metal recubierto, que respondiera como sensor al ión hidrógeno; para lo cual, se seleccionó acero inoxidable tipo 304 y 316, sobre de los cuales, por tratamiento químico y tratamiento

térmico, se elaboró una película de óxido. Inicialmente, se realizó un tratamiento térmico al acero inoxidable tipo 304 (700°C, 1 hr). Se ajustaron algunas soluciones a un pH determinado con H2SO4 y NaOH. El sistema: acero inoxidable 304 / película de óxido, mostró una respuesta lineal, de tipo nernstiana. Además, se encontro que aún en la presencia de otros iónes (NH₄+, Li+ , NO₃=), presentes en la solución se mantuvo la respuesta del sistema: acero inoxidable 304 / película de óxido; sin embargo, en presencia de iónes Cl-, ya no se obtuvo una respuesta nernstiana, esto es, hubo interferencia en la respuesta del sistema. En segundo lugar, se realizó tratamiento térmico al acero inoxidable 316, pero la respuesta al ión hidrógeno no fué estable; por lo que a éste acero se le trató químicamente (CrO, 2.5 M, H₂SO₄ 5 M, 70°C, 13 min), y el sistema: acero inoxidable 316 / película de óxido, mostró una respuesta lineal, incluso, en presencia del ión Cl", por lo cual el sistema: acero inoxidable 316 / película de óxido (tratamiento químico), sí responde a los protones en presencia de iónes C1-, mostrando una respuesta lineal de tipo nernstiana.

En la Sección de Química Analítica de la Facultad de Estudios Superiores Cuautitlán, se desarrolló un trabajo de Tesis⁽⁸⁾, en donde, una placa de acero inoxidable tipo 304, fué tratada químicamente (CrO_3 / H_2SO_4 , 17 min , 70°C).

El sistema: acero inoxidable 304 / película de óxido, se utilizó como electrodo de medida, en el seguimiento de una reacción ácido-base (ácido fosfórico titulado con hidróxido de sodio). La respuesta que se obtuvo al gráficar E = f(pH), fué lineal y de tipo nernstiana en un rango de pH de 2 a 12; posteriormente, éste mismo sistema: acero inoxidable 304 / película de óxido, se utilizó en el seguimiento de la reacción ácido-base en presencia de los iónes $(Na^+, NH_4^+, SO_4^-, NO_3^-)$, sin presentar una variación considerable en la respuesta nernstiana. Y, en presencia de iónes Cl^- , la respuesta del sistema: acero inoxidable 304 / película de óxido, no fué lineal.

Los resultados obtenidos, en el trabajo de tesis antes descrito, motivaron el siguiente trabajo de tesis, en donde, acero inoxidable tipo 304 y 316, se trataron térmicamente, para elaborar los sistemas: acero inoxidable 304 y 316 / película de óxido.

Completandose así, una fase de la investigación de éstos sistemas, como electrodos de estado sólido selectivo a protones.

El trabajo de Tesis, se presenta de la siguiente manera:

- _ En el capítulo 1; se plantean los objetivos de este trabajo de tesis.
- En el capítulo 2; se da a conocer el equipo, material y reactivos utilizados en el presente trabajo.
- En el capítulo 3; se detalla el desarrollo experimental para la elaboración y verificación, como electrodo de estado sólido selectivo a protones, del sistema: acero inoxidable 304 y 316 / película de óxido.
- _ En el capítulo 4; se reportan los resultados, así como el tratamiento de los mismos.
- En el capitulo 5; se realiza la comparación entre los resultados del sistema que presenta una oxidación térmica y el sistema que presenta una oxidación química.
- En el capítulo 6; se realiza la discución y se señalan las conclusiones de los resultados obtenidos, en base a los objetivos planteados en este trabajo de tesis.

OBJETIVOS

Objetivos:

- A). Obtener, una película de óxido, sobre una placa de acero inoxidable tipo 304, mediante tratamiento térmico.
- B). Verificar que el sistema: acero inoxidable 304 / película de óxido, funciona como un electrodo selectivo de protones, para un cierto intervalo de pH.
- C)._ Obtener, una película de óxido, sobre una placa de acero inoxidable tipo 316, mediante tratamiento térmico.
- D)._ Verificar que el sistema: acero inoxidable 316 / película de óxido, funciona como un electrodo selectivo a protones, para un cierto intervalo de pH.
- E). Señalar las posibles interferencias que producen, la presencia de otros iónes, en la respuesta nernstiana del electrodo, para ambos sistemas.
- F)._ Comparar los resultados de ambos sistemas, al tratarlos térmicamente.
- G). Realizar una comparación de los resultados de este trabajo, al tratar acero inoxidable térmicamente; con los resultados del trabajo de tesis anterior, en donde el acero inoxidable se trató químicamente.
- H)._ Concluir, de acuerdo a los resultados obtenidos y las comparaciones realizadas; qué tratamiento y qué acero es el más apropiado, para ser utilizado como un electrodo de estado sólido selectivo a protones.

EQUIPO, MATERIAL Y REACTIVOS

Equipo:

- _ Mufla. Thermoline Tipe 1500 furnace (Sybron Corporation) con termopar.
- _ 2 Potenciómetros. Corning, modelo 7.
- _ Agitador Magnético. Corning PC-353 stirrer.
- _ 2 Electrodos de Calomel Saturado. Corning # 476002.
- _ Electrodo de Vidrio. Corning # 476022.
- Balanza Granataria. Ohaus. 2 Kg .
- _ Barra Magnética.
- _ Soporte Universal.
- _ Balanza Analítica. Sauter 414.

Material:

- Placas de acero inoxidable:
 - -Placa de acero inoxidable tipo 304 (1 \times 20 \times 80)mm
 - -Placa de acero inoxidable tipo 316 (3 x 20 x 80)mm
- Vaso de precipitado 100 ml (2 piezas).
- _ Vaso de precipitado 150 ml (2 piezas).
- Matraz de bola aforado a 500 ml (3 piezas).
- Matraz de bola aforado a 250 ml (2 piezas).
- _ Matraz de bola aforado a 100 ml (3 piezas).
- Bureta de 50 ml
- Vidrio de reloj
- Pipeta de 10 ml, 5 ml, 2ml
- _ Puente de Agar-Agar
- Soporte matálico para tratamiento de placas
- _ Caimanes y cable de conexión
- _ Piseta
- _ Lija de agua # 400

Nota: El material de vidrio utilizado es de marca Pyrex.

Reactivos:

_ Acido fosfórico	H ₃ PO ₄	Baker
_ Hidróxido de sodio	NaOH	Baker
_ Hidróxido de potasio	кон	Baker
_ Sulfato de sodio decahidratado	Na_2SO_4 10 H_2O	Baker
_ Nitrato de sodio	NaNO ₃	Baker
_ Cloruro de sodio	NaC1	Baker
_ Hidróxido de amonio	ин ₄ он	Baker
_ Acido sulfúrico	H ₂ SO ₄	Baker
_ Nitrato de potasio	kno ₃	Baker
_ Agar-Agar en hojuelas		Sigma
_ Agua destilada	н ₂ о	
_ Solución buffer. pH = 5.8 (0	.05 @ 25 C)	pHydrion

Reactivos (grado analítico)

3

 $\texttt{D} \; \texttt{E} \; \texttt{S} \; \texttt{A} \; \texttt{R} \; \texttt{R} \; \texttt{O} \; \texttt{L} \; \texttt{L} \; \texttt{O} \qquad \texttt{E} \; \texttt{X} \; \texttt{P} \; \texttt{E} \; \texttt{R} \; \texttt{I} \; \texttt{M} \; \texttt{E} \; \texttt{N} \; \texttt{T} \; \texttt{A} \; \texttt{L}$

Preparación de las placas:

Las placas de acero inoxidable tipo 304 y 316, se cortan a la medida necesaria; y con una lija # 400, se le da a las caras de las placas un acabado ligeramente rugoso; posteriormente se limpian con una franela para evitar que exista grasa en las superficies de las placas y así lograr una película de óxido homogénea.

Se prende la mufla, llevando la temperatura de la misma hasta 700°C. Se introducen las placas de acero inoxidable 304 y 316 (en su soporte), para su tratamiento manteniendo la temperatura constante (700°C), durante una hora. (Ver figura 1).

Una vez apagada la mufla, se dejan transcurrir doce horas y después de éste tiempo se sacan las placas de la mufla, evitando así, que un cambio brusco de temperatura provoque formación de grietas en la película de óxido.

Se quita el óxido de la parte superior de las placas, donde se harán las conexiones eléctricas necesarias.

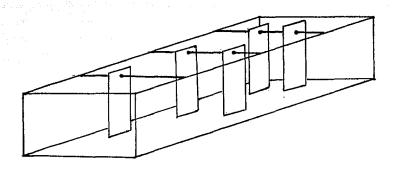
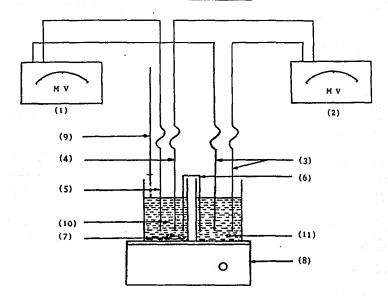


Figura 1._ Soporte metálico, con placas de acero inoxidable.

Montaje Experimental:

Los dos potenciómetros, calibrados con un electrodo de calomel saturado, un electrodo de membrana de vidrio y solución buffer (pH = 5.8); son colocados de frente y entre ellos el agitador magnético.


Los electrodos de calomel, sumergidos en una solución saturada de nitrato de potasio, se conectan, uno en cada uno de los potenciómetros, en el lugar marcado (ref).

El electrodo de vidrio, se conecta a uno de los potenciómetros en el lugar marcado (input). Mientras, que en el otro potenciómetro, se conecta la placa de acero oxidada, por medio de un caimán y una conexión.

Estos dos electrodos (vidrio y acero inoxidable / película de óxido), se introducen en la solución por titular y se cierra el circuito, comunicando ambas soluciones con un puente de Agar-KNO₃. Finalmente se lleva a cabo la titulación, adicionando la solución valorante por medio de una bureta.

(Ver figura 2).

MONTAJE EXPERIMENTAL

- (1).- Potenciometro, medidor de pH.
- (2).- Potenciometro, medidor de potencial.
- (3).- Electrodos de calomel saturado.
- (4) .- Electrodo de acero.
- (5).- Electrodo de vidrio.
- (6).- Puente salino de agar-agar.
- (7).- Barra magnética.
- (8) .- Agitador magnético.
- (9).- Bureta con solución valorante. (NaOH).
- (10).- Solución valorada (H_3PO_4) .
- (11).- Solución salina (KNO,).

Figura 2._ Montaje Experimental.

(Con permiso del autor: Miguel Angel Carrasco S.)

Desarrollo Experimental:

El desarrollo experimental, está dividido en dos etapas: en la Etapa I , el electrodo de medida utilizado es: acero inoxidable 304 / película de óxido. Mientras que en la Etapa II , es utilizado acero inoxidable 316 / película de óxido. Para ambas etapas, se desarrolla lo que a continuación se describe.

- a) Acido titulado con una base.
 - En un vaso de precipitados de 150 ml, se vierten 50 ml de ácido fosfórico. Se sumergen en ésta solución, el electrodo indicador de pH (vidrio), y el sistema: acero inoxidable 304 ó 316 (electrodo para medir E) y se agita la solución para tomar la primera lectura. Se titula con una solución de hidróxido de sodio, agregando de 2 en 2 ml, hasta un volúmen de 50 ml, tomando la lectura de pH y E, para cada uno de los volúmenes agregados. Se lavan los electrodos con agua destilada. Se repite ésta titulación 9 veces más. Los datos obtenidos se tabulan para gráficarlos. (Graf. 1 al 10).
 - _ Posteriormente, se hace una titulación del mismo ácido,

pero, utilizando una solución de hidróxido de potasio, se toman las lecturas, se tabulan y se elabora la gráfica correspondiente. (Graf. 11).

Soluciones:

ácido fosfórico, aproximadamente 0.01 M hidróxido de sodio, aproximadamente 0.05 M hidróxido de potasio, aproximadamente 0.05 M

b) Interferencias.

- En un vaso de precipitados de 150 ml, se vierten 50 ml de ácido fosfórico 0.01 M , y se agregan 3.22 g de sulfato de sodio decahidratado 0.1 M . Se agita ésta nueva solución, y se sumergen los electrodos (vidrio, sistema: acero inoxidable 304 ó 316 / película de óxido). Se titula con una solución de hidróxido de sodio 0.05 M, agregando de 2 ml en 2 ml, hasta 50 ml, tomando las lecturas de pH y E, se tabulan y se obtiene la gráfica. (Graf. 12).
- Se lavan los electrodos, y se hace una nueva titulación agregando 16.11 g de sulfato de sodio decahidratado 0.5 M, en 50 ml de ácido fosfórico 0.01 M. Este procedimiento se hace nuevamente agregando las

siguientes sustancias amortiguadoras:

- _ 0.85 g de nitrato de sodio 0.1 M
- _ 4.25 g de nitrato de sodio 0.5 M
- _ 0.58 g de cloruro de sodio 0.1 M
- 2.92 g de cloruro de sodio 0.5 M

 todas las titulaciones se hacen con hidróxido de sodio
 0.05 M, agregando de 2 en 2 ml hasta 50 ml, se toman
 las lecturas de pH y E, se tabulan y se trazan las gráficas. (Graf. 13 a 17).
- c) Base titulada con un ácido.
 - En un vaso de precipitados de 150 ml, se agregan 50 ml de hidróxido de amonio 0.01 M. Se sumergen en ésta solución los electrodos indicadores, y se agita para tomar la primer lectura. Se titula con una solución de ácido sulfúrico 0.01 M, agregando de 2 en 2 ml, hasta un volúmen de 50 ml. Se toman las lecturas de pH y de E, se tabulan y se hacen las gráficas. (Graf. 18 y 19).
- d) Es importante, que después de cada período de titulaciones se sumerja el sistema: acero inoxidable 304 ó 316 / película de óxido, en agua destilada, con el proposito de mantener hidratada la interfase de contacto.

RESULTADOS

Etapa I

- a) Al tratar térmicamente, la placa de acero inoxidable 304, en una mufla a 700 C, se obtuvo una capa de óxido homogénea y sin grietas en las superficies de la placa, cuya coloración final fué azul-violeta.
- b) Los datos que se obtuvieron, tanto de pH, como de E, se resumen en las siguientes tablas:
 - * De las tablas I.1....I.10, corresponde a las titulaciones de ácido fosfórico 0.01 M, con hidróxido de sodio 0.05 M.
 - * La tabla I.11, corresponde a la titulación de ácido fosfórico 0.01 M, con hidróxido de potasio 0.05 M.
 - * Las tablas I.12 y I.13, representan la titulación de ácido fosfórico 0.01 M, con hidróxido de sodio 0.05 M, amortiguadas con sulfato de sodio 0.1 M y 0.5 M respectivamente.
 - * Las tablas I.14 y I.15, corresponden a la titulación de ácido fosfórico 0.01 M, con hidróxido de sodio 0.05 M, amortiguadas con nitrato de sodio 0.1 M y o.5 M, respectivamente.
 - * Las tablas I.16 y I.17, reportan los datos de la titu-

lación de ácido fosfórico 0.01 M , con hidróxido de sodio 0.05 M , amortiguadas con cloruro de sodio 0.1 M y 0.5 M , respectivamente.

* Las tablas I.18 y I.19, representan los datos de las titulaciones de hidróxido de amonio 0.01 M , con ácido sulfúrico 0.01 M.

Como se observó, al realizar las gráficas, el comportamiento es casi lineal, lo cual se esperaba si el electrodo fuera selectivo a protones. Debido a estos datos fué necesario realizar un tratamiento estadístico.

Las tablas y gráficas, correspondientes a ésta Etapa, se localizan en el Anexo I , reportando los datos de b = pendiente y r^2 = correlación, que se obtuvieron al calcular la recta de regresión, utilizando el método de mínimos cuadrados.

Nota: La pendiente de las lineas graficadas se representará como: b

Etapa II:

a) El tratamiento térmico, (700 C, 1 hr), aplicado a una placa de acero inoxidable 316, formó una capa de óxido color azul-violeta, en las caras de la placa.

Posteriormente el sistema: acero inoxidable 316/película de óxido, se utilizó como electrodo indicador.

- b) Los datos obtenidos en las titulaciones, tanto de pH como de E, se resumen en las siguientes tablas:
 - * Las tablas II.1....II.10, corresponden a las titulaciones de ácido fosfórico 0.01 M, con hidróxido de sodio 0.05 M.
 - * La tabla II.11, representa la titulación de ácido fosfórico 0.01 M, con hidróxido de potasio 0.05 M.
 - * Las tablas II.12 y II.13, corresponden a las titulaciones de ácido fosfórico 0.01 M, con hidróxido de sodio 0.05 M amortiguadas con sulfato de sodio 0.1 M y 0.5 M, respectivamente.
 - * Las tablas II.14 y II.15, representan la titulación de ácido fosfórico 0.01 M, con hidróxido de sodio 0.05 M, amortiguadas con nitrato de sodio 0.1M y o.5 M, respectivamente.

- * Las tablas II.16 y II.17, reportan las titulaciones de ácido fosfórico 0.01 M , con hidróxido de sodio 0.05 M , amortiguadas con cloruro de sodio 0.01 M y 0.5 M , respectivamente.
- * Las tablas II.18 y II.19, corresponden a la titulación de hidróxido de amonio 0.01 M , con ácido sulfúrico 0.01 M .

El comportamiento lineal de los datos al graficarlos, motivó a un tratamiento estadístico.

Las tablas y gráficas, correspondientes a ésta Etapa, se localizan en el Anexo II, reportando los datos de los de los parámetros: b = pendiente y r^2 = correlación, que se obtuvieron al calcular la recta de regresión, utilizando el método de mínimos cuadrados.

Discusión de resultados:

Al tratar térmicamente (700°C, 1 hr), las placas de acero inoxidable 304 y 316; la capa de óxido formada sobre las superficies de las mismas, fué homogénea y con una coloración azul-violeta, elaborando, así, los sistemas: acero inoxidable 304 y 316 / película de óxido, que al ser utilizados como electrodos de medida, proporcionaron respuestas estables y rápidas (máximo 2 segundos).

Al realizar, 10 titulaciones de ${\rm H_3\,PO_4}$ con NaOH, para cada uno de los sistemas, y graficar: E = f(pH), se obtuvieron curvas con tendencia lineal, por lo cual, se realizó, una regresión lineal a los datos de cada gráfica, obteniendose valores de r² = 0.99, en intervalos de pH de 2 a 11.

Con los valores de pendiente, que se obtuvieron (10 datos), para cada uno de los sistemas, se calculó la media y desviación estandar. (Ver pag. 30)

La pendiente promedio, para cada sistema fué:

Acero inox. 304

b = -63.96 mv/pH

Acero inox. 316

b = -66.51 mv/pH

En presencia de los iónes: sulfato, nitrato, potasio, sodio, amoniaco y la especie amonio; no hubo modificación apreciable en la pendiente de la recta al graficar E = f(pH), para cada uno de los sistemas.

Unicamente, la presencia de iónes cloruro, provocaron respuestas aleatorias en el potencial, de los dos sistemas.

Dos aspectos interesantes a mencionar, son los siguientes:

_ La literatura⁽⁹⁾, reporta:" las películas preparadas sobre
acero inoxidable 316 por tratamiento térmico a 600°C, 800°C,
durante 1 hr , no muestran respuesta estable al ión hidrógeno ".

Este reporte, no fué congruente con los resultados obtenidos por nosotros, provocandose una duda sobre el material
usado (acero inoxidable 304 ó 316); lo que motivó, un análisis
de la placa de acero inoxidable por absorción atómica comprobandose la existencia de molibdeno en un 2.6 %, (molibdeno
mínimo para acero inoxidable 316 = 2.5 %).

Y para reafirmar la respuesta a los protones, del sistema: acero inoxidable 316 / película de óxido, por tratamiento térmico, se utilizó una placa de acero inoxidable tipo 316 (plenamente identificada y anteriormente usada como sistema selectivo a protones, preparado por tratamiento químico), ésta, se limpió y preparó por tratamiento térmico (700°C, 1 hr)

Los datos que se obtuvieron al titular H_3PO_4 con NaOH, mostraron una respuesta lineal de E = f(pH), con una pendiente

promedio de: - 65.76 mv/pH y correlación = 0.99.

Por lo tanto, el sistema: acero inoxidable 316 / película de óxido, al tratarlo térmicamente, sí responde al ión hidrógeno.

La presencia de iónes cloruro, provocó una respuesta aleatoria en el sistema, tal y como se menciona en la misma literatura.

Sin embargo, en este trabajo se mostró, que si el electrodo, después de estar sumergido en la disolución con cloruros es enjuagado e inmerso en agua (hidratación), el
electrodo recupera la respuesta lineal en soluciones que
no contengan el ión cloruro.

Por lo tanto, éstos resultados aportan nueva información respecto a la literatura consultada.

Calculo de media y desviación estandar

ETAPA	I:- %	ETAPA I	[: -
n	b(mv/pH)	n •	b(mv/pH)
1	- 57.08	1 :	- 65.43
2	- 69.76	2	- 69.90
3	- 66.76	3	- 65.00
4	- 65.09	4	- 65.59
5	- 65.12	5	- 66.56
6	- 63.94	6	- 66.26
7	- 63.68	7	- 67.45
8	- 65.22	8 .	- 67.09
9	- 59.38	9	- 66.00
10	- 63.57	10	- 65.90
n = 1	0	n = 10	
x = -	E <u>Xi</u> n	x̄ = Σ.x̄	<u>i</u>
x = -	63.96 mv/pH	x = - 6	6.51 mv/pH

$$S = \frac{\sum (xi - \overline{x})^2}{n}$$

$$S = 3.35 \text{ mv/pH}$$

$$S = 7.63 \text{ mv/pH}$$

Xi = b = pendiente

COMPARACION DE LOS RESULTADOS

PARA LOS DOS SISTEMAS

USANDO LOS DOS TRATAMIENTOS

(TERMICO Y QUÍMICO)

A continuación, se presentan las siguientes tablas, resumiendo los parámetros: b = pendiente y r² = correlación, para cada una de las titulaciones realizadas con los sistemas: acero inoxidable 304 y 316/película de óxido, preparados por tratamiento térmico.

Así, como también se presentan tablas que resumen, los datos obtenidos con los sistemas: acero inoxidable 304 y 316/película de óxido,preparados por tratamiento químico.

Sistema: Acero inoxidable 304/película de óxido, por tratamiento térmico.

Tabla 1.

	14014			A	: do	- e	30.0					Gase -	Vergo
	H 3 PO4 NaOH KOH					ин, он	H ₂ SO ₄						
Titulacion	1	2	3	4	5	6	7	В	9	10	1	1	2
Ь	-57.08	-69.76	-66.76	-65.09	-65.12	-63.94	-63.68	-65.22	-59.38	-63.51	-62.63	-62.50	-63.69
Y2	0.9794	0.9994	0.3333	0.9988	0.9994	0.9994	0.9995	0.9991	0.9965	0.9976	0.9747	0.997	866.0
b prom.					- 63	,96					-62.65	-62	ee,

Tabla

	Tabia 2.		
	Acido - E	gase en l	LO.I M)
	HaPO4 NaOH		H. PO4 CI NaOH
Titulacion		1	1
٥	-64.60	- 62.35	
Y2	0.9960	0.9918	-

- . . .

	Tabla 3.		
	Acido -	Base en	presencia (0.5 M)
	H3PO4 504 NaOH	HSPO- NOS NOOH	HSPO4 CL NaOH
Titolacul	ı	((
Ь	-69.61	-62.74	
72	6.9975	0.9961	

b = pendiente = mv/ r² = correlación Sistema: Acero inoxidable 316/película de óxido, por tratamiento térmico.

Tabla 4.

	Acido - Base									Dase-	Acido		
	H3 PO4 Na OH KOH								ин4Он	Ha504			
Totalacede	1	2	3	4	5	6	7	8	9	la	ı	1	2
Ь	-65.43	-69.90	-65.00	-65.59	- 66.56	-66.26	-62.45	-67.09	- 66.00	-66,30	-64.62	-63.81	-61.53
Y 2	0.9670	0.995	0.996	0.9991	0.9906	0.9993	D.9994	0.995	0.999	0.998	700.0	0.995	0.9952
p brow	- 66. 51							-64.52	-66	.67			

Tabla E

	Tabla 5.		
	Acida -	s iones	presencia.
	HSP04 50, No.OH	HOSPOY NOOH	Hapon CL NaOH
Titulare	l.	1	l .
Ь	- 69.81	-63.69	–
Y 2	0. 995	0.999	

mahla c

	Acido - Bose en presencia de otros iones (0.5 M)						
	HSPO4 BOY NOOH	HSPO4 NOS NOH	H3PO4 CL UaOH				
Tituland		,	1				
Ь	- 61.53	- GL.50					
(2	0.9952	0.9170					

b = pendiente = mv/pH $r^2 = correlación$ Sistema: Acero inoxidable 304/película de óxido, por tratamiento químico.

	_Tabla	1.									-		
Acido - Base									Base Acida				
	H ₃ PO ₄ N _a OH H ₃ PO ₄ KOH								NH4OH HE5O4				
Titulación		2	3	4	5	6	7	8	9	10	1	2	_ i
Ь	-59.79	- 59,94	- 57.66	-56.66	- 58.87	-60-07	-60.69	-56,90	-57.86	-59,15	-60.66	-60.20	-62.68
42	0.998	200.0	0.989	0.999	0.999	0.999	0.999	0.959	0.999	0.999	0.999	0.999	866.0
b prem.	-58,819 -60.43								-62.68				

	Tabla 2.		
	de ote	Base en f ös iones	CO.I M
	H3P04 KOH	H3PO4 KOH	HaPO4 CLT KOH
Titularian	1	į.	- 1
۵	-60.07	-60.07	
Y2.	0.998	0.996	

b =	= E	pendiente	=	mv/pH
r²	=	correlaci	ιόι	1

Tabla 3.	_
Acido Base en presencia de atras iones (as M)	
H3PO4 KOH NO3 KOH CL	KOH
Titul accom	
b -55.17 -62.73 -	
72 0.997 c.999	-

Datos recopilados de la Tesis:

Tratamiento químico de un acero inoxidable, para la construcción de un electrodo de estado sólido selectivo a protones.

		A C	ERO I	NOXIDABLE
		3	0 4	3 1 6
T A T A	TERMICO	*	- 0.06396 - 0.06263 - 0.0671 - 0.06254 - 0.06299 - 0.06384	0.06651 0.06452 0.06567 0.06259
E N T	QUIMICO	*	- 0.05881 - 0.06043 - 0.05762 - 0.0614 - 0.06268 - 0.06018	Fase del proyecto en proceso

- . Valor de pendiente al titular H_3PO_4 con NaOH
- .. Valor de pendiente al titular H₃PO₄ con KOH
- ... Valor de pendiente al titular H₃PO₄+ SO₄ con NaOH
- Valor de pendiente al titular H₃PO₄ + NO₃ con NaOH
- Valor de pendiente al titular H3PO4 + Cl- con NaOH
- Valor de pendiente al titular NH₄OH con H₂SO₄
 - * Valor de pendiente promedio.

pendiente = v/pH

CONCLUSIONES

- A). Se logró obtener una capa de óxido, al tratar térmicamente, los dos tipos de acero inoxidable (304 y 316).

 Y al usarlos como electrodos de medida, sí se obtuvieron
 respuestas de pH; por lo tanto, estos sistemas funcionan
 como electrodos selectivos a los protones.
- B). El sistema: acero inoxidable 304 / película de óxido, efectivamente es un electrodo de estado sólido selectivo a protones en el intervalo de pH de 2 a 11, debido a que la ecuación de E = f(pH), sigue la siguiente estructura: E = k (0.0639 ± 0.00335)pH, la cual se cumple en el intervalo de pH mencionado.

Y, el sistema: acero inoxidable 316 / película de óxido, es un electrodo de estado sólido selectivo a protones, debido a que la ecuación de E = f(pH), tiene la siguiente estructura: $E = k - (0.0665 \pm 0.00763)pH$, en un intervalo de pH de 2 a 11.

- C)._ El electrodo acero inoxidable 304 / película de óxido, es selectivo a protones, incluso en presencia de los siguientes iónes: (potasio, sulfato, nitrato, amoniaco/amonio), debido a que la respuesta de E = f(pH), es lineal y se representa por las siguientes ecuaciones:
 - * iónes potasio

E = k - 0.06263 pH

* iónes sulfato

E = k - 0.06710 pH

* iónes nitrato E

E = k - 0.06254 pH

* iónes amoniaco/amonio

E = k - 0.06299 pH

Y el electrodo acero inoxidable 316 / película de óxido, es selectivo a protones, incluso en presencia de los iónes antes mencionados; donde la respuesta de E = f(pH), se representa por las siguientes ecuaciones:

* iónes potasio

E = k - 0.06452 pH

* iónes sulfato

E = k - 0.06567 pH

* iónes nitrato

E = k - 0.06259 pH

* iónes amoniaco/amonio

E = k - 0.06567 pH

la diferencia de pendiente, se debe a que no se controló fuerza iónica, ni temperatura.

El electrodo acero inoxidable 304 y 316 / película de óxido , no es selectivo a protones, cuando en el sistema están presentes los iónes cloruro

- D). Estos electrodos, una vez sumergidos en una solución con cloruros, pueden regenerarse hidratandolos durante 4 horas.
- E). Una adecuada selección del electrodo acero inoxidable / película de óxido, como electrodo sólido selectivo a protones, se determinará en base a la información acumulada: Si se analiza como tipo de acero, se tendrá que tomar en

cuenta, la pendiente registrada con cada uno de ellos, la velocidad de la respuesta, así como el costo del material. Si se analiza, como tratamiento, se tendrá en cuenta, cual es más rápido y económico para elaborar la capa de óxido en el acero, así como , cual de ellos da una respuesta más cercana a la teórica.

F)._Comparando los resultados de las tablas 1, 2 y 3, para el electrodo acero inoxidable 304 / película de óxido, por tratamiento térmico, con las tablas 1, 2 y 3, para el electrodo acero inoxidable 304 / película de óxido, por tratamiento químico; se observa que en ambos casos la r^2 para las titulaciones de $H_3^{PO}_4$ con NaOH es de 0.99, observandose variaciones en la r^2 de la titulación de $H_3^{PO}_4$ con KOH (r^2 para tratamiento térmico = 0.97; • r^2 para tratamiento químico = 0.99).

La pendiente promedio (10 titulaciones: H₃PO₄ con NaOH), para tratamiento térmico es de: - 0.0639 v/pH; para tratamiento químico es de: - 0.0588 v/pH; concluyendose, que en ambos casos, la relación: E = f(pH) es lineal. Y el electrodo acero inoxidable 304 / película de óxido, por tratamiento químico, da una respuesta muy cercana a la reportada teóricamente: - 0.059 v/pH.

- Las respuestas del electrodo acero inoxidable 316 / película de óxido por tratamiento térmico, no son tan satisfactorias, pero si para ser utilizadas.
- G). Elaborar, el electrodo: acero inoxidable 316 / película de óxido, por tratamiento químico y hacer las pruebas correspondientes, nos daría la información faltante para concluir en forma definitiva, que electrodo y con que tratamiento, es el mejor, para ser usado como electrodo sólido selectivo a los protones.

Å N E X O I

•	ı.		ı.	2
<i>l</i> olumen de	pн	E	pн	, E
itulante	Electrodo	Electrodo de	Electrodo	Electrodo de
gregado	de vidrio	acero (mv)	de vidrio	acero (mv)
(m1)				
0	1.5	400	1.9	440
2	1.58	390	1.9	438
4	1.62	382	1.95	430
6	1.7	380	2.05	420
8	1.9	362	2.25	400
10	2.2	340	3.0	350
12 14	2.5	325	5.25	200
16	5.0	160	5.6	170
	5.5	140	5.9	142
18	6.0	110	6.25	120
20	6.7	70	7.6	40
22 24	9.2 9.7	50	9.05	- 70
26		20	9.5	-100
28	9.8	- 50	9.7	-115
30	9.9	- 9^	9.8	-125
32	10.0	-100	9.9	-130
34	10.15	-110	10.0	-132
36	10.2	-120	10.05	-138
38	10.3 10.35	-130	10.1	-140
40		-135	10.15	-142
42	10.4	-140	10.2	-145
44	10.45	-145	10.2	-148
46	10.5	-150	10.25	-150
48	10.5	-150	10.3	-150
	10.52	-150	10.3	-152
50	10.6	-152	10.35	-155
	b = -67	08 mv/pH		
	5 57.	oo waabu	b = -69.	76 mv/n#

2:- Datos referentes a la primera y segunda titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M

 $r^2 = 0.9794$

b = -69.76 mv/pH

Volumen de	I.	3 B	I.4		
titulante	pH Electrodo		pH Electrodo	Electrodo o	
	de vidrio		de vidrio		
`′o	1.6	470	1.4	470	
2	1.7	462	1.48	460	
4	1.7	458	1.5	455	
6	1.8	450	1.62	452	
8	1.98	440	1.8	442	
10	2.52	400	3.1	360	
. 12	5.0	250	5.0	250	
14	5.5	215	5.4	220	
16	5.8	200	5.8	200	
18	6.15	170	6.1	170	
20	6.7	140	6.65	140	
22	9.2	- 30	9.1	- 25	
24	9.6	- 65	9.6	- 60	
26	9.8	- 80	9.85	- 80	
28	10.0	- 90	10.0	- 90	
30	10.1	- 98	10.1	- 98	
32	10.15	-100	10.18	-100	
34	10.2	-108	10.2	-102	
36	10.25	-110	10.3	-105	
38	10.3	-112	10.32	-108	
40	10.35	-118	10.35	-111	
42	10.4	-120	10.4	-115	
44 .	10.4	-120	10.4	-120	
46	10.48	-125	10.45	-122	
48	10.5	-130	10.5	-128	
50	10.5	-132	10.5	-130	
	b = -66	.76 mv/pH	b = -65	.09 mv/pH	
	-2 - 0 t	0000	-2 - 0	0000	

Tablas 3 y 4:- Datos referentes a la tercera y cuarta titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M.

	1.5		I.			
Volumen de	рĦ	E	pн	E		
titulante	Electrodo	Electrodo de		Electrodo d		
agregado	de vidrio	acero (mv)	de vidrio	acero (mv)		
(m1)	e William III at al.					
0	1.5	468	1.48	462		
2	1.52	460	1.5	460		
4	1.58	458	1.55	458		
6	1.7	450	1.65	450		
8	1.9	440	1.8	440		
10	3.2	350	2.45	400		
12	5.15	240	4.9	250		
14	5.5	215	5.4	220		
16	5.8	192	5.7	200		
18	6.1	170	6.1	175		
20	6.7	130	6.65	140		
22	9.1	- 30	8.8	0		
24	9.65	- 65	9.58	- 50		
26	9.9	- 80	9.8	- 70		
28	10.0	- 90	10.0	- 80		
30	10.1	- 92	10.08	- 85		
32	10.15	-100	10.1	- 90		
34	10.2	-100	10.2	- 95		
36	10.28	-105	10.3	- 98		
38	10.3	-110	10.35	- 98		
40	10.35	-110	10.35	-100		
42	10.4	-112	10.4	-108		
44	10.42	-115	10.4	-108		
46	10.45	-118	10.42	-110		
48	10.5	-120	10.45	-110		
50	10.5	-120	10.5	-112		
	b = -65.	12 mv/pH	b = -63	.94 mv/pH		
	$r^2 = 0.9$	994	$r^2 = 0.9$	9994		

Tablas 5 y 6:- Datos referentes a la quinta y sexta titulación de ácido fosfórico aproximadamente 0.01 M,
con hidróxido de sodio aproximadamente 0.05 M.

	I.	1.8		
Volumen de	рН	E	pН	E
titulante	Electrodo	Electrodo de	Electrodo	Electrodo de
agregado (ml)	de vidrio	acero (mv)	de vidrio	acero (mv)
. 0	1.5	470	1.55	480
2	1.5	460	1.58	472
4	1.58	460	1.6	470
6	1.68	458	1.7	468
. 8	1.8	450	1.88	460
10	2.45	410	2.5	420
11	4.9	270	4.8	270
14	5.35	242	5.4	240
16	5.8	215	5.75	215
18	6.1	192	6.1	190
20	6.6	160	6.6	160
22	8.9	10	8.8	- 10
24	9.6	- 38	9.6	- 45
26	9.8	- 55	9.85	- 60
28	10.0	- 68	10.0	- 70
30	10.1	- 75	10.1	- 78
32	10.15	- 80	10.15	- 80
34	10.2	- 85	10.2	- 85
36	10.25	- 90	10.25	- 88
38	10.3	- 90	10.3	- 90
40	10.35	- 92	10.35	- 92
42	10.4	- 98	10.4	- 92
44	10.4	-100	10.4	- 98
46	10.42	-100	10.42	-100
48	10.45	-100	10.45	-102
50	10.5	-102	10.5	-105

Tablas 7 y 8:- Datos referentes a la septima y octava titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M.

b = -65.22 mv/pH

 $r^2 = 0.9991$

b = -63.68 mv/pH

21.5	ı.	o :	I.1	n
** . 1				E
Volumen de	Hq	E	pH	_
titulante	Electrodo	Electrodo de		lectrodo de
agregado	de vidrio	acero (mv)	de vidrio a	cero (mv)
(ml)				
0	1.48	425	1.5	480
· ž	1.5	420	1.55	475
4	1.52	430	1.6	448
*				
6	1.6	430	1.72	418
8	1.8	428	2.0	410
10	2.4	400	4.35	280
12	4.85	260	5.2	240
14	5.3	232	5.5	210
16	5.65	215	5.9	190
18	6.0	195	6.25	165
20	6.5	150	7.65	80
22	8.7	20	9.35	- 35
24	9.5	- 30	9.7	- 60
26	9.8	- 50	9.9	- 75
28	9.98	- 60	10.0	- 82
30	10.02	- 70	10.1	- 90
32	10.1	- 75	10.15	- 90
34	10.2	- 80	10.2	- 92
36	10.22	- 82	10.25	- 98
38	10.3	- 85	10.3	-100
40	10.32	- 88	10.35	-100
42	10.35	- 90	10.4	-102
44	10.4	- 90	10.45	-105
46	10.4	- 90	10.48	-110
48	10.45	-100	10.5	-115
50	10.5	-100	10.55	-120

Tablas 9 y 10:- Datos referentes a la novena y décima titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M.

b = -63.57 mv/pH

 $r^2 = 0.9976$

b = -59.38 mv/pH

r 11

	Ι.	11
Volumen de	рH	£
titulante		Electrodo de
agregado (ml)	de vidrio	acero (mv)
0	1.45	530
2	1.5	528
4	1.58	525
6	1.68	520
8	1.78	510
10	2.0	500
12	2.5	468
14	4.8	320
16	5.3	285
18	5.7	260
20	5.95	245
22	6.2	235
24	6.6	215
26	7.5	158
28	9.3	50
30	9.7	25
32	9.9	15
34	10.0	10
36	10.1	8
38	10.2	0
40	10.25	- 30
42	10.3	- 35
44	10.35	- 38
46	10.4	- 40
48	10.4	- 40
50	10.45	- 45

b = -62.63 mv/pH

r2 = 0.9747

Tabla 11:- Datos referentes a la titulación de ácido fosfórico aproximadamente 0.01 M, con hidró-xido de potasio aproximadamente 0.05 M.

	1.12		I.13	
Volumen de	pН	E	рH	E
titulante	Electrodo	Electrodo de		Electrodo de
agregado		acero (mv)	de vidrio	
(m1)				
0	2.0	480	2.35	500
2	2.15	470	2.48	490
4	2.28	460	2.6	485
6	2.4	460	2.7	480
8	2.65	450	2.98	460
10	3.3	410	3.6	420
12	4.7	325	4.6	355
14	5.2	300	5.08	322
16	5.55	275	5.4	300
18	5.9	258	5.7	280
20	6.3	230	6.1	255
22	8.3	100	7.8	140
24	9.2	40	9.0	60
26	9.6	20	9.4	35
28	9.85	0	9.7	20
30	10.0	- 35	9.88	5
32	10.1	- 40	10.0	- 35
34	10.2	- 48	10.1	- 42
36	10.3	- 50	10.2.	- 50
38	10.35	- 55	10.3	- 55
40	10.4	- 60	10.4	- 60
42	10.48	- 60	10.45	- 62
44	10.5	- 65	10.5	- 70
46	10.55	- 68	10.55	- 70
48	10.6	- 68	10.6	- 72
50	10.7	- 70	10.6	- 80
	b = -64	.60 mv/pH	b = -69	.61 mv/pH
		,	0,,	, pii

Tablas 12 y 13:- Datos referentes a las titulaciones de ácido fosfórico aprox. 0.01 M, con hidróxido de sodio aprox. 0.05 M, en presencia de sulfato de sodio (0.1 M y 0.5 M, respectivamente)

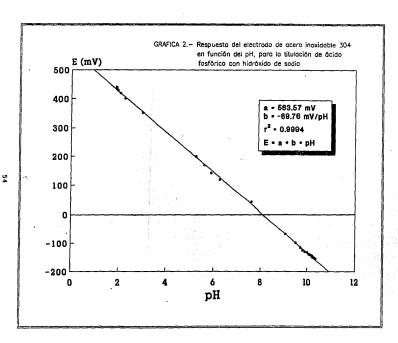
 $r^2 = 0.9973$

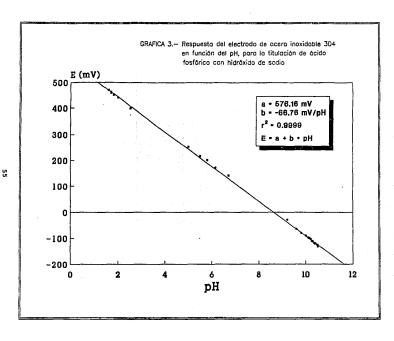
titulante agregado (m1) 0 2	pH Electrodo de vidrio 1.2 1.3 1.42	E Electrodo de acero (mv)	pH Electrodo de vidrio	E Electrodo de acero (mv)
agregado (ml) 0 2	Electrodo de vidrio 1.2 1.3	Electrodo de acero (mv)	Electrodo de vidrio	Electrodo de acero (mv)
agregado (ml) 0 2	Electrodo de vidrio 1.2 1.3	acero (mv) 470	Electrodo de vidrio	acero (mv)
agregado (ml) 0 2	1.2 1.3	acero (mv) 470		
(m1) 0 2	1.2 1.3	470		
0 2	1.3		1 1	
2	1.3			480
		460	1.2	470
4		455	1.38	465
6	1.6	442	1.5	460
8	1.88	430	1.8	452
10	2.7	375	2.5	415
12	4.68	255	4.38	302
14	5.1	225	4.8	275
16	5.5	201 .	5.1	260
18	5.85	185	5.48	240
20	6.25	160	5.9	220
22	8.1	50	7.45	120
24	9.2	- 50	8.85	30
26	9.6	- 70	9.25	5
28	9.8	- 80	9.5	- 40
30	9.9	- 85	9.7	- 50
32	10.02	- 90	9.8	- 60
34	10.12	- 90	9.9	- 65
36	10.2	- 92	10.0	- 70
38	10.25	- 98	10.1	- 75
40	10.3	-100	10.15	- 80
42	10.38	-100	10.2	- 85
44	10.4	-100	10.3	- 88
46	10.45	-100	10.32	- 90
48	10.5	-102	10.35	- 90
50	10.5	-102	10.4	- 90
	b = -62.	.35 mv/pH	b = -62	.74 mv/pH

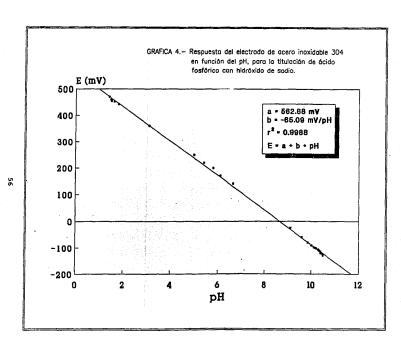
Tablas 14 y 15:- Datos referentes a las titulaciones de ácido fosfórico aprox. 0.01 M, con hidróxido de sodio aprox. 0.05 M, en presencia de nitrato de sodio (0.1 M y 0.5 M, respectivamente)

 $r^2 = 0.9961$

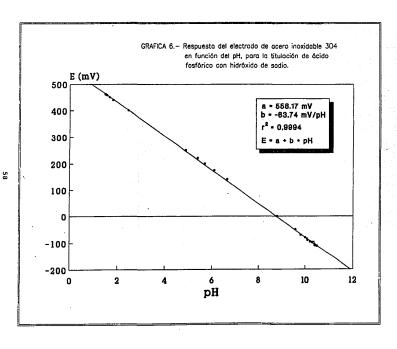
	and the second of the second	and the state of the state of the state of		
	I.16		I.17	
Volumen de	pН	E	pН	E
titulante		Electrodo de	Electrodo	Electrodo de
agregado	de vidrio	acero (mv)	de vidrio	acero (mv)
(ml)		AMERICAN STREET		
0	1.2	-290	1.0	-235
2	1.3	-290	1.1	-235
4	1.42	-288	1.3	-235
6	1.6	-282	1.5	-235
8	1.85	-280	1.75	-230
10	2.6	-260	2.6	-240
12	4.7	-240	4.4	-280
14	5.2	-230	4.8	-285
16	5.5	-220	5.15	-270
18	5.8	-220	5.5	-270
20	6.25	-220	5.9	-270
22	8.1	-225	7.88	-280
24	9.2	-230	9.0	-270
26	9.6	-232	9.3	-275
28	9.8	-235	9.5	-270
30	10.0	-235	9.7	-260
32	10.1	-235	9.8	-260
34	10.15	-235	9.9	-260
36	10.25	-238	10.0	-260
38	10.3	-235	10.1	-260
40	10.35	-238	10.15	-250
42	10.4	-235	10.2	-250
44	10.45	-235	10.25	-250
46	10.5	-235	10.3	-245
48	10.5	-232	10.35	-240
50	10.52	-232	10.4	-235
	b =	-	b =	
	-		2	

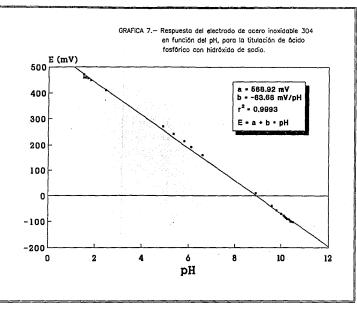

Tablas 16 y 17:- Datos referentes a las titulaciones de ácido fosfórico aprox. 0.01 M, con hidróxido de sodio aprox 0.05 M, en presencia de cloruro de sodio (0.1 M y 0.5 M, respectivamente)

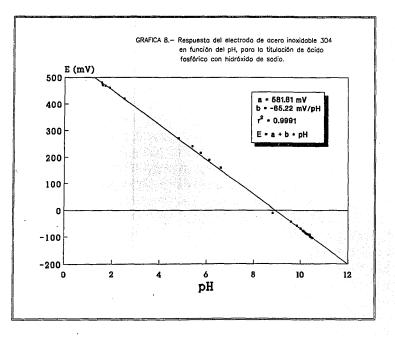

	I.18		1.19	
Jolumen de		E	pН	E
		Electrodo de		
	de vidrio	acero (mv)	de vidrio	acero (mv)
(ml)				
. 0	8.6	- 40	8.8	- 25
2	8.4	- 20	8.55	- 5
4	8.2	30	8.4	35
6	8.1	40	8.25	40
8	8.0	50	8.15	48
10	7.9	52	8.05	50
12	7.8	- 60	8.0	55
14	7.7	68	7.9	60
16	7.6	70	7.8	68
18	7.5	80	7.75	70
20	7.4	90	7.65	78
22	7.25	98	7.6	80
24	7.1	105	7.5	90
26	6.92	115	7.4	95
28	6.7	130	7.35	100
30	6.1	165	7.25	108
32	2.45	390	7.15	112
34	1.9	420	7.0	120
36	1.7	435	6.8	132
38	1.6	440	6.6	150
40	1.5	448	6.0	190
42	1.4	450	2.4	410
44	1.38	452	1.98	435
46	1.3	455	1.75	450
48	1.28	458	1.6	458
50	1.2	460	1.5	462
	b = -62	.3 mv/pH	b = -63	.69 mv/pH
		···· / E ···	- , ••	

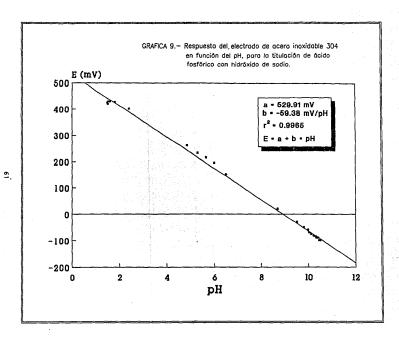

Tablas 18 y 19:- Datos referentes a la primera y segunda titulación de hidróxido de amónio aproximadamente 0.01 M, con ácido sulfúrico aproximadamente 0.01 M.

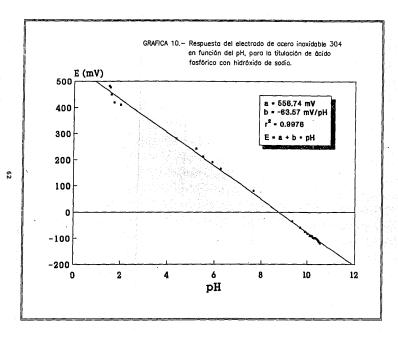
ί

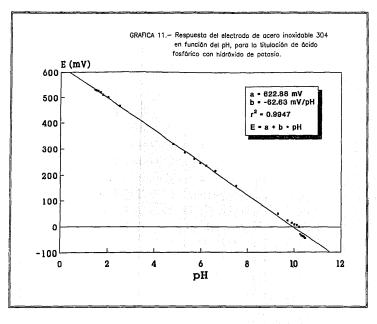

53

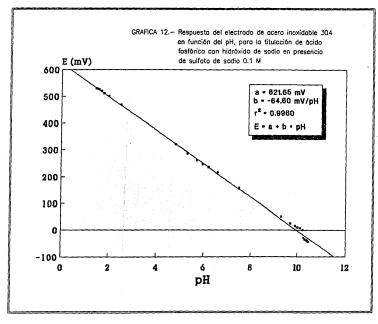


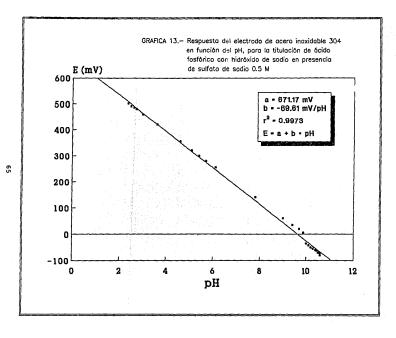


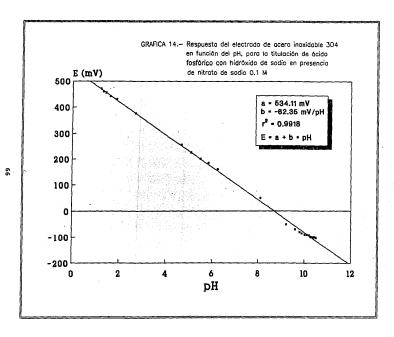

GRAFICA 5.— Respuesta del electrodo de acero inoxidable 304 en función del pH, para la titulación de ácido fosfórico con hidróxido de sodio.

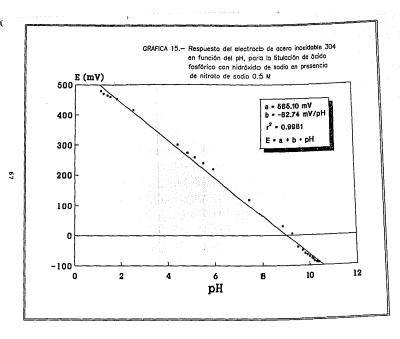


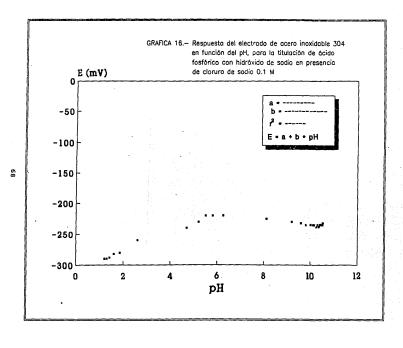


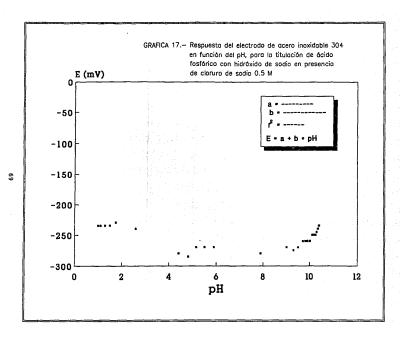


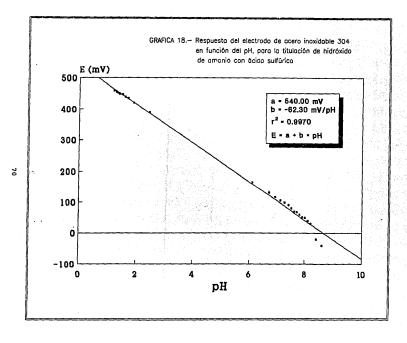












71

A N E X O II

and the second second	7 - 1 To 1			
	II.1		11	.2
Volumen de	рĦ	E	рH	E
	Electrodo	Electrodo de	Electrodo	Electrodo de
agregado	de vidrio		de vidrio	acero (mv)
(ml)	ac viairo	40010 (1)	de vidito	uccio (mv)
(mr)	0.92	460	1.15	470
2	1.1	455	1.2	460
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.3	435	1.6	. 450
6	1.7	400	1.9	415
8	4.2	240	4.4	240
10	4.88	190	5.2	175
12	5.3	90	5.6	145
14	5.7	50	6.1	102
16	8.4	- 90	8.45	- 80
18	9.2	-115	9.3	-120
20	9.5	-135	9.5	-130
22	9.7	-140	9.6	-145
24	9.8	-145	9.75	-148
26	9.92	-148	9.85	-150
28	10.0	-150	9.95	-150
30	10.1	-152	10.0	-152
32	10.15	-155	10.05	-155
34	10.2	-158	10.1	-155
36	10.25	-160	10.15	-158
38	10.3	-160	10.2	-160
40	10.32	-162	10.22	-160
42	10.38	-165	10.25	-162
44	10.4	-168	10.3	-165
46	10.4	-168	10.32	-165
48	10.45	-170	10.35	-168
50	10.5	-170	10.35	-168
30	10.5	-170	10.55	-100
	b = -65.4	13 mv/pH	b = -69	9 mv/pH
	$r^2 = 0.98$	37	$r^2 = 0.9$	95

Tablas 1 y 2:- Datos referentes a la primera y segunda titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M.

	II.3		11.4	
Volumen de	pН	E	pН	E
titulante	Electrodo	Electrodo de	Electrodo	Electrodo de
agregado	de vidrio	acero (mv)	de vidrio	acero (mv)
(m1)		44010 (1117)	40 1-4110	,
0	1.1	440	1.1	440
2	1.28	425	1.2	435
4	1.4	420	1.4	430
- 6	1.8	400	1.75	415
8	4.3	240	4.22	250
10	5.0	200	5.05	190
12	5.5	160	5.5	160
14	6.0	120	6.0	122
16	8.4	- 60	8.3	- 45
18	9.25	-100	9.2	- 95
20	9.5	-110	9.5	-100
22	9.7	-120	9.65	´-110
24	9.8	-122	9.75	-120
26	9.9	-130	9.8	-125
28	10.0	-132	9.9	-130
30	10.05	-135	9.95	-132
32	10.1	-140	10.0	-135
34	10.12	-142	10.1	-138
36	10.2	-150	10.05	-140
38	10.2	-150	10.10	-140
40	10.25	-150	10.10	-140
42	10.3	-152	10.15	-142
44	10.3	-155	10.15	-145
46	10.35	-158	10.2	-148
48	10.38	-160	10.2	-150
50	10.4	-162	10.22	-150
	b = -65.	.00 mv/pH	b = -65	.59my/pH
	$r^2 = 0.9$	998	$r^2 = 0.9$	999

Tablas 2 y 3:- Datos referentes a la tercera y cuarta titulación de ácido fosfórico aproximadamente 0.01 M. con hidróxido de sodio aproximadamente 0.05 M.

	II	.5	11	
Volumen de	pН	E	рĦ	E
titulante	Electrodo	Electrodo de	Electrodo	Electrodo de
agregado (ml)	de vidrio	acero (mv)	de vidrio	acero (mv)
0	1.1	450	1.05	450
2	1.15	440	1.2	440
4	1.3	430	1.35	430
6	1.8	400	1.7	400
8	4.2	260	4.3	240
10	5.0	170	5.1	185
12	5.4	138	5.48	160
14	5.9	100	6.0	130
16	8.1	- 60	8.5	- 50
18	9.1	-120	9.2	-100
20	9.45	-132	9.5	-115
22	9.6	-140	9.65	-122
24	9.75	-145	9.75	-130
26	9.82	-148	9.82	-135
28	9.9	-150	9.9	-138
30	10.0	-150	9.98	-140
32	10.02	-150	10.0	-145
34	10.1	-152	10.05	-150
36	10.1	-155	10.1	-150
38	10.15	-158	10.12	-150
40	10.18	-160	10.15	-150
42	10.2	-160	10.2	-152
44	10.25	-160	10.2	-155
46	10.28	-160	10.25	-155
4B	10.3	-162	10.25	-158
50	10.3	-162	10.3	-158

Tablas 5 y 6:- Datos referentes a la quinta y sexta titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M

b = -66.26 mv/pH

 $r^2 = 0.9993$ 

b = -66.56 mv/pH

The second second	11.7		11.8	
Volumen de	pН	E	pН	E
	Electrodo	Electrodo de	Electrodo	
		acero (mv)	de vidrio	
(m1)			<del>-</del>	
0	1.08	470	1.0	460
2	1.2	455	1.15	460
4	1.35	445	1.3	450
6	1.7	420	1.68	428
8	4.35	255	4.3	260
10	5.1	208	5.1	210
12	5.6	170	5.5	182
. 14	6.0	138	6.02	150
16	8.6	- 50	8.6	- 42
. 18	9.22	- 90	9.3	- 85
20	9.5	-105	9.5	-100
22	9.7	-115	9.65	-110
24	9.8	-120	9.8	-120
26	9.9	-130	9.9	-122
28	9.95	-132	9.95	-130
30	10.0	-135	10.0	-130
32	10.08	-138	10.05	-135
34	10.1	-140	10.1	-138
36	10.15	-142	10.15	-140
38	10.2	145	10.18	-142
40	10.2	-148	10.2	-145
42	10.22	-148	10.2	-145
44	10.25	-150	10.25	-148
46	10.3	-150	10.3	-150
48	10.3	-152	10.3	-150
50	10.3	-152	10.35	-150
	b = -67	.45 mv/pH	b = -67	.09 mv/pH
	2 - 0 1	204	-2 a	

Tablas 7 y 8:- Datos referentes a la séptima y octava titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M.

Volumen de		9		1.10
titulante	pH Electrodo	Electrodo de	Electrodo	E
agregado	de vidrio	acero (mv)	de vidrio	Electrodo de
(m1)		acced (my)	de Atditio	acero (mv)
0	1.05	460	1.2	460
2	1.2	450	1.25	450
4	1.38	435	1.35	435
6	1.6	415	1.5	420
8	4.15	258	2.1	370
10	5.0	205	4.68	220
12	5.5	178	5.1	190
14	6.0	140	5.6	170
16	8.4	- 45	5.8	150
18	9.28	- 90	6.3	110
20	9.5	-105	8.5	- 60
22	9.7	-110	9.2	- 90
24	9.8	-120	9.4	-100
26	9.9	-125	9.6	-110
28	9.95	-130	9.65	-112
30 .	10.0	-130	9.72	-120
32	10.02	-132	9.8	-120
34	10.05	-132	9.85	-122
36	10.1	-135	9.9	-125
38	10.12	-140	9.95	-125
40	10.15	-140	10.0	-130
42	10.2	-142	10.0	-130
44	10.2	-142	10.05	-130
46	10.2	-142	10.05	-132
48	10.25	-145	10.1	-132
50	10.28	-148	10.1	-135
	b = -66.	• •	b = -65	.90 mv/pH
	$r^2 = 0.9$	99	$r^2=0.$	998

Tablas 9 y 10:- Datos referentes a la novena y décima titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de sodio aproximadamente 0.05 M

	II.	-11
olumen de	фн	E
itulante	Electrodo	Electrodo
gregado	de vidrio	acero (mv)
ml)		
0 ;	1.7	400
2 4	1.75	390
4	1.8	388
6	1.9	380
8 1	2.0	378
10	2.2	365
12	2.5	340
14	4.55	222
16	5.0 5.2	200
18	5.2	182
20	5.5	175
22	5.7	170
24	5.95	150
26	6.4	128
28	7.8	35
30	8.5	- 40
32	8.72	- 55
34	8.9	- 62
36	9.0	- 68
38	9.1	- 70
40	9.15	- 70
42	9.2	- 72
44	9.3	- 75
46	9.3	- 75
48	9.4	- 80
50	9.5	- 80

Tabla 11:- Datos referentes a la titulación de ácido fosfórico aproximadamente 0.01 M, con hidróxido de potasio aproximadamente 0.05 M.

b = -64.52 mv/pH $r^2 = 0.997$ 

## ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA

\$ 4	TT	.12	11	.13
Volumen de	Hq	E	pН	E
		Electrodo de	Electrodo	Electrodo de
titulante	Electrodo		de vidrio	acero (mv)
agregado	đe vidrio	acero (mv)	de vidrio	acero (mv)
(ml)				050
0	1.5	342	2.4	250
2	1.8	335	2.5	240
4	2.0	330	2.58	240
6	2.1	320	2.7	238
8	2.2	305	2.9	232
10	3.8	275	3.5	205
12	4.35	160	4.45	155
14	4.8	130	4.75	130
16	5.0	110	5.0	120
18	5.3	90	5.28	100
20	5.6	70	5.6	85
22	6.3	40	7.0	10
24	8.0	-100	8.1	- 90
26	8.5	-140	8.48	-110
28		-150	8.65	-130
	8.7		8.8	-140
30	8.9	-160		
32	9.0	-165	9.0	-145
34	9.1	-170	9.08	-150
36	9.2	-178	9.15	-158
38	9.25	-180	9.25	-160
40	9.3	-180	9.3	-162
42	9.4	-182	9.4	-165
44	9.45	-185	9.4	-170
46	9.45	-188	9.48	-172
48	9.5	-190	9.5	-172
50	9.52	-190	9.5	-170
	b = -69.	81 mv/pH	b = -61	.53 mv/pH

Tablas 12 y 13:- Datos referentes a las titulaciones de ácido fosfórico aprox. 0.01 M, con hidróxido de sodio aprox. 0.05 M, en presencia de sulfato de sodio (0.1 M y 0.5 M, respectivamente).

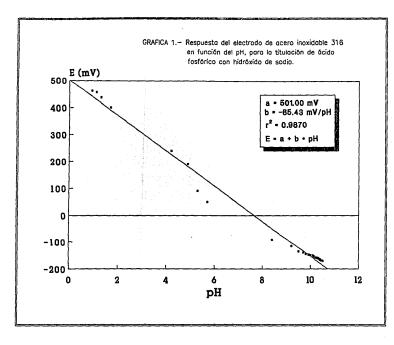
 $r^2 = 0.995$ 

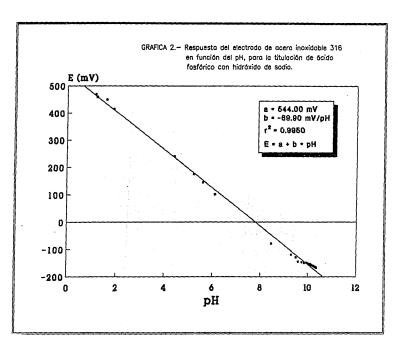
	II.14		II.15		
olumen de	рH	E	рH	E	
itulante	Electrodo	Electrodo de	Electrodo	Electrodo de	
gregado	de vidrio		de vidrio	acero (mv)	
(m1)				n i kan san San San	
0	1.1	370	1.1	450	
2	1.2	365	1.25	445	
4	1.3	360	1.4	435	
6	1.45	350	1.58	420	
. 8	1.65	340	1.95	405	
10	2.2	305	3.9	. 340	
12	4.25	190	4.6	310	
14	4.7	. 162	5.0	290	
16	5.0	150	5.3	240	
18	5.3	130	5.95	235	
20	5.7	100	8.4	115	
22	6.7	30	8.9	80	
24	8.5	-100	9.1	60	
26	8.85	-120	9.3	40	
28	9.0	-130	9.45	20	
30	9.2	-140	9.52	- 35	
32	9.3	-150	9.6	- 55	
34	9.4	-150	9.65	- 75	
36	9.45	-155	9.8	- 90	
38	9.5	-160	9.8	- 95	
40	9.6	-160	9.9	-100	
42	9.6	-162	9.95	-100	
44	9.65	-165	10.0	-105	
46	9.7	-170	10.0	-110	
48	9.7	-170	10.05	-115	
50	9.75	-170	10.1	-120	
	b = -6	1.69 mv/pH	b = -61	.50 mv/oH	

Tablas 14 y 15:.- Datos referentes a las titulaciones de ácido fosfórico aprox. 0.01 M, con hidróxido de sodio aprox. 0.05 M, en presencia de nitrato de sodio ( 0.1 M y 0.5 M, respectivamente)

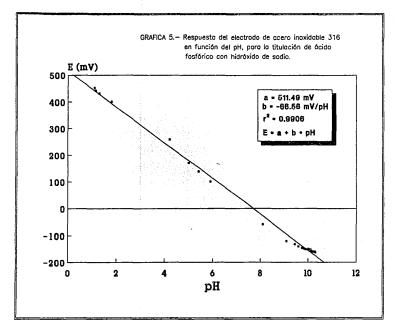
 $r^2 = 0.977$ 

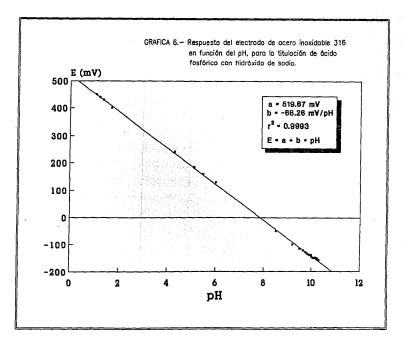
	II	.16	II.1	7	
Volumen de	pН	E	pН	E	
titulante	Electrodo	Electrodo de	Electrodo E	lectrodo de	4
agregado	de vidrio	acero (mv)			
(ml)					
0	1.2	-215	1.25	-200	
2 4	1.35	-210	1.38	-210	
4	1.48	-220	1.45	-220	
6	1.65	-190	1.60	-235	
8	2.0	-180	2.1	-260	
10	4.15	-230	4.2	-200	
12	4.9	-225	4.5	-190	
14	5.2	-210	4.8	-220	
16	5.6	-170	5.2	-240	
18	6.25	-200	5.7	-235	
20	8.7	-250	5.9	-215	
22	9.2	-260	7.8	-175	
24	9.4	-255	8.8	-180	
26	9.6	-250	9-4	-190	
28	9.7	-245	9.7	-195	
30	9.75	-240	9.8	-200	
32	9.85 9.9	-230	10.0	-230	
34	10.0	-225	10-05	-250	
36 38	10.0	-220 -220	10.1 10.15	-260	
40 ·	10.05	-220 -220	10.15	-240 -220	
42	10.05	-218	10.15		
44	10.1	-215 -215	10.10	-220 -220	
46	10.15	-212	10.2	-215	
48	10.2	-210	10.25	-210	
50	10.2	-210	10.3	-210	
				-2:0	
	•				
	b =		b =		
	_	Section 1985 to the	_		
	7		2		

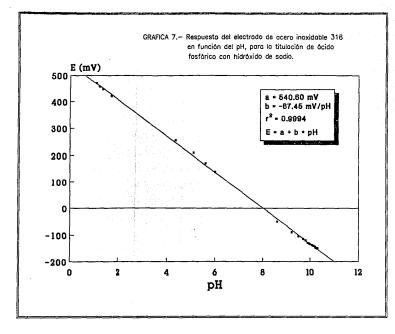

Tablas 16 y 17:.- Datos referentes a las titulaciones de ácido fosfórico aprox. 0.01 M, con hidróxido de sodio aprox. 0.05 M, en presencia de cloruro de sodio (0.1 M y 0.5 M, respectivamente).

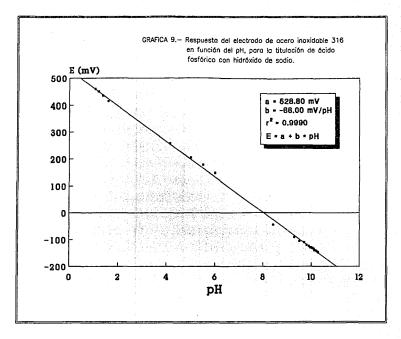

1000	ıı	.18	II.	.19	
Volumen de	pН	E	рĦ	E	
titulante	Electrodo	Electrodo de	Electrodo	Electrodo de	3
agregado	de vidrio	acero (mv)	de vidrio	acero (mv)	
(m1)		Service Services			
0	8.85	.65	8.7	25	
2 4	8.65	75	8.5	40	
4	8.5	80	8.35	50	
6	8.35	90	8.25	60	
. 8	8.25	95	8.15	70	
10	8.18	100	8.08	75	
12	8.1	110	8.0	80	
14	8.0	112	7.9	85 90	
16	7.9	118	7.85	90 98	
18 20	7.85 7.75	122 128	7.8 7.7	100	
22	7.7	130	7.6	108	
24	7.6	135	7.55	110	
26	7.5	140	7.45	115	
28	7.45	150	7.35	120	
30	7.35	155	7.3	130	
32	7.33	160	7.1	140	
34	7.05	175	7.0	150	
36	6.7	200	6.7	168	
38	6.3	230	5.7	232	
40	3.9	370	2.8	415	
42	2.6	458	2.4	450	
44	2.3	470	2.25	465	
46	2.15	480	2.1	470	
48	2.05	480	2.0	480	
50	1.9	485	1.9	480	
35	,				
	b = -6	2.34 mv/pH	b = -6	6.33 mv/pH	

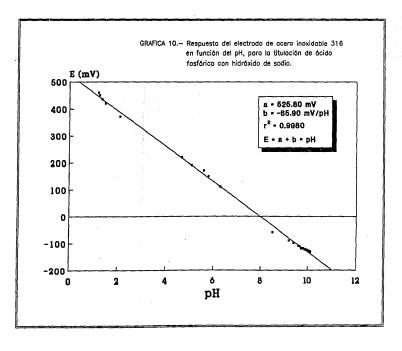
Tablas 18 y 19:- Datos referentes a la primera y segunda titulación de hidróxido de amónio aproximadamente 0.01 M, con ácido sulfúrico aproximadamente 0.01 M.

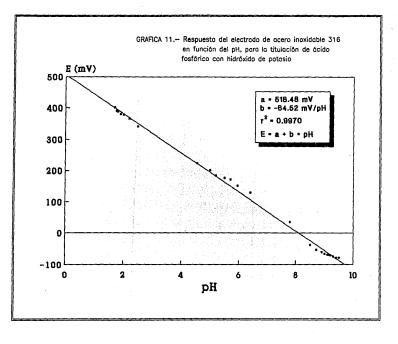

 $r^2 = 0.9996$ 

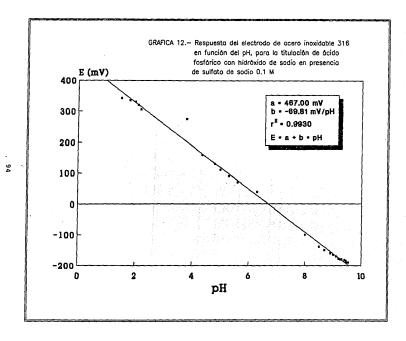

b = -66.33 mv/pH $r^2 = 0.9997$ 

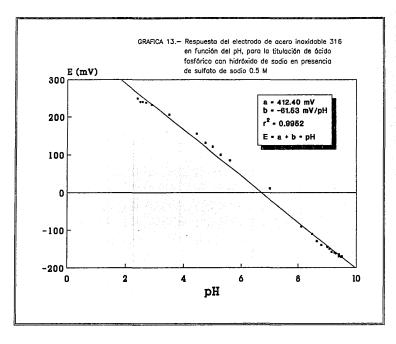


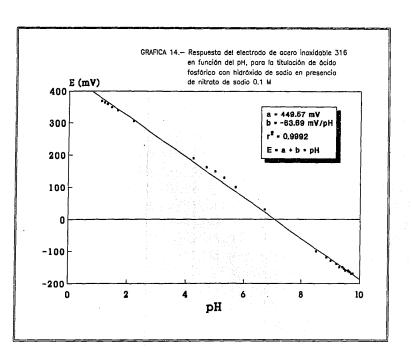



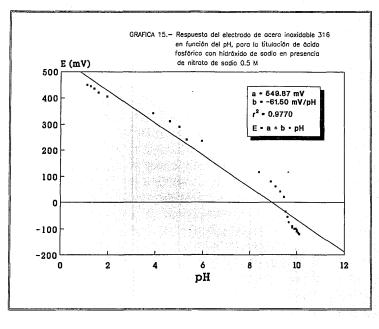



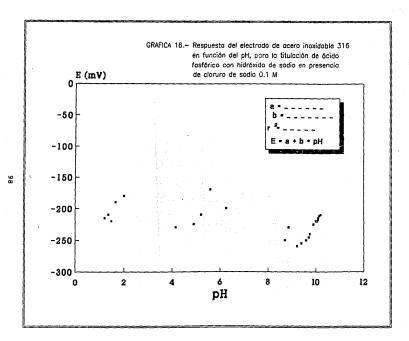



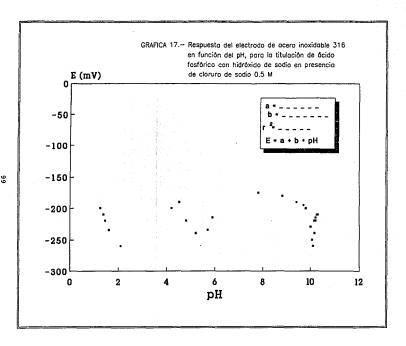



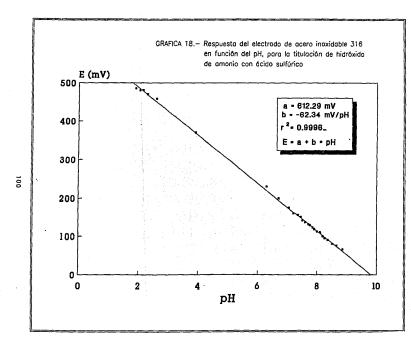
















## BIBLIOGRAFIA

1.- Akiyama T., Ujihira Y., Okabe Y., Sugano T. Ion-Sensitive Field-Effect Transistors with Inorganic Gate Oxide for pH Sensing.
IEEE Transaction on Electron Devices, 1982, 29, 1936-1941.

2.- Nomura K., Ujira V.
Response of Oxide Films on Stainless Steel as a pH Sensor.
Anal. Chem., 1988, 60, 2564-2567.

3.- Carrasco Suárez Miguel Angel Tesis de Licenciatura "Tratamiento Químico de un Acero Inoxidable para la construcción de un Electrodo de Estado Sólido Selectivo de Protones".
F. E. S. C., UNAM., 1991.

4.- Flaschka H. A., Barnard A. J.

Química Analítica Cuantitativa Vol. I.

1984

C. E. C. S. A.

5.- Latinen H. A., Harris W. E.
Análisis Químico
1982
Ed. Reverte.

6.- Sidney W. B.
Cálculos Químicos
1980
Ed. Limura

7.- Day, Jr. R. A., Underwood A. L. Química Analítica Cuantitativa 5ta. ed. 1989
Prentice-Hall Hispanoamericana S. A.

Ayres H. G.
 Análisis Químico Cuantitativo
 1970
 Ed. Harla.

9.- Sánchez B. P. Química Electroanálitica. Fundamentos y Aplicaciones. 1981

Ed. Alhambra

10.- Vogel A. I. Química Analítica Cuantitativa V-I 1974 Ed. Kapeluz

11.- Lincoln L. Chao Introducción a la Estadistica 1985 C. E. C. S. A.

12. - Pérez S. J., Galván M. N., García G. L. Reporte "Electrodo modificado SUS 316 Acero Inoxidable.

F. E. S. C., UNAM., 1990

CITA	REFERENCIA	
BIBLIOGRAFICA	BIBLIOGRAFICA	PAGINAS
		<b>2</b> 53 - 255
	h (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
4	7	383 - 386
6	4	308, 309 1937
7		2564 - 2567
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>.</b>	1 - 80 2564 - 2567