

TESIS CON FALLA DE ORIGEN

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

ENFRIAMIENTO POR CONVECCION NATURAL DE UNA PLACA VERTICAL CONSIDERANDO EL EFECTO DE LA CONDUCCION LONGITUDINAL DE CALOR

T -	E		S	I	S
QUE	PARA	OBTENER	R EL	TITU	LO DE:
INGEN	IERO	MECAN	ICO	ELECI	RICISTA
(AF	R E A	М	IEC	AN	ICA)
P	R E	S	E I	N T	A ;
JOSE	LUIS	COR	DOVA	A M.	AGAÑA

Director: Dr. César Treviño Treviño

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Nomenclatura	i	ii
Introducción		1
Formulación del Problema		4
Modelo Matemático		6
Relaciones de Semejanza		16
Solución Numérica		20
Resultados		38
Conclusiones		44
Bibliografía	an an ann an Arraige ann an Arraige An Arraige ann an Arr	47
Apéndice: Programa		49

NOMENCLATURA

°,	calor específico del fluido
c,	calor específico del material de la placa
ρ	densidad del fluido
ρ,	densidad del material de la placa
λ _w	conductividad térmica del material de la placa
λ _f	conductividad térmica del fluido
ß	coeficiente de expansión volumétrica del fluido
μ	viscosidad dinámica del fluido
т	temperatura
u	componente de velocidad longitudinal
v	componente de velocidad transversal
h	semiespesor de la placa
L	longitud de la placa
x	coordenada cartesiana longitudinal
Y	coordenada cartesiana transversal
P	presión
Pr	número de Prandtl, $(\mu C_{p}^{\prime} / \lambda_{f}^{\prime})$
Gr _L	número de Grashof basado en la longitud de la placa
Re	número de Reynolds
α	parámetro adimensional definido en la ecuación (42)
τ	tiempo adimensional
t	tiempo
t。	tiempo característico
f	función de corriente adimensional
θ	temperatura adimensional del fluido
0 w	temperatura adimensional de la placa

- η coordenada transversal adimensional
- χ coordenada longitudinal adimensional
- ψ función de corriente que satisface la ecuación de continuidad
- g constante gravitacional

INTRODUCCION

El estudio de formas acopladas de transferencia de calor por convección y conducción es muy importante en el análisis de dispositivos sujetos a sus efectos simultáneos. El efecto de la conducción de calor acoplado a la transferencia de calor convectiva ha sido el objeto de varios estudios tanto numéricos como analíticos [1-11].

Luikov [2] y Payvar [3] analizaron el problema donde la superficie inferior de una placa plana de espesor finito, se mantiene a una temperatura constante y uniforme. Por la parte superior, se transfiere calor por convección. Luikov [2] obtuvo dos soluciones aproximadas, una basada en un análisis diferencial con bajos números de Prandtl y otra basada en un análisis integral con los perfiles de velocidad y temperatura dados en formas polinomiales. Payvar [3] utilizó la técnica de Lighthill [4] para obtener una ecuación integral que ha sido resuelta numéricamente. Obtuvo soluciones asintóticas para números de Brun grandes y pequeños. Kelleher [5] y Messiter y Liñán [6], obtuvieron soluciones asintóticas al problema con una discontinuidad en el perfil de temperatura en la placa. Los flujos de calor axiales no se consideraron en ninguno de los trabajos citados; los autores se limitaron a analizar el comportamiento del fluido debido a condiciones de frontera constantes.

and a set of the set of the set

Schal y Howell [7] y Karvinen [8] analizaron el enfriamiento o calentamiento de una placa plana en un flujo convectivo forzado. En ambos trabajos se empleó la aproximación de Lighthill para deducir la ecuación integro-diferencial de la evolución de la temperatura de la placa. En [7], se utilizó un esquema numérico para integrar dicha ecuación. Karvinen [8] utilizó un método iterativo. Treviño y Liñán [9] emplearon técnicas de perturbación para resolver analíticamente la ecuación de la evolución de la temperatura de una placa calentada en un flujo convectivo forzado. La ecuación de evolución de la temperatura contiene sólo un parámetro que tiene en cuenta la capacidad de la placa para conducir calor la dirección longitudinal. Vallejo y Treviño en [10] extendieron el análisis para el enfriamiento de la placa utilizando técnicas de escalas múltiples. Todos estos trabajos se concretaron a resolver el problema para flujos convectivos forzados.

El objetivo del presente trabajo es el de estudiar, de manera numérica, el enfriamiento de una placa plana con conductividad térmica y dimensiones finitas, en un ambiente en reposo, es decir a causa de un flujo convectivo natural. Este trabajo es inovador, ya que aparentemente no existe un estudio similar en la literatura.

Debido a la conductividad de la placa, se genera un gradiente

de temperatura dentro de ésta que invalida cualquier intento de obtener una solución de semejanza en la capa límite. El problema transitorio en la placa se acopla al problema pseudoestacionario en el fluido; el sistema de ecuaciones resultante se integra empleando las técnicas numéricas analizadas en el libro de Cebeci y Bradshaw [11], de manera que se obtiene la evolución de la temperatura de la placa como una función del tiempo y de la posición. Se plantea el modelo matemático de modo que el fenómeno sólo depende de dos parámetros, el número de Prandtl, y un parámetro adimensional que relaciona las propiedades y las características de la placa con las del fluido.

El trabajo consistió específicamente en formular un modelo matemático que describiera el fenómeno, y manipularlo de manera que pudiera resolverse con el planteamiento de diferencias finitas analizado en la referencia [11]. Para esto, fue necesario elaborar un programa de computadora. Se generan soluciones para el caso de una placa con conductividad finita sujeta a enfriamiento por fluido con distintos números de Prandtl característicos.

FORMULACION DEL PROBLEMA

El problema por resolver es el siguience: se tiene una placa vertical delgada que en un tiempo inicial se encuentra a una temperatura uniforme conocida y se coloca en un medio fluido estático a una temperatura diferente. La experiencia indica que se originará una corriente convectiva natural que tenderá a uniformizar la temperatura de la placa con la del ambiente, es decir, el perfil de temperatura dentro de la placa cambiará en el tiempo conforme se llega a la condición de equilibrio. Esto implica que para conocer la temperatura de la placa en cualquier punto e instante, será necesario plantear y resolver un modelo matemático que simule de manera aproximada el fenómeno.

El origen de los ejes coordenados se fija en una de las esquinas inferiores de la placa. Se seleccionan los ejes de manera que el eje α coincida con una de las superficies de la placa y el eje α señale la dirección normal alejándose de ésta. El problema se plantea de manera que el movimiento del fluido y su distribución de temperaturas obedezcan a un modelo bidimensional, mientras que la distribución de temperaturas de la placa se rija por uno unidimensional. Para lograr esto se hacen las siguientes consideraciones: la placa tiene una longitud L y un espesor 2h; la relación de longitud a espesor, debe ser grande, es decir L >> 2h, ya que de esta manera se cumple la suposición de distribución de temperaturas

unidimensional dentro del sólido; el ancho de la placa se supone infinito, de manera que no existirán gradientes de temperatura ni en el fluido ni en la placa en la dirección q, con lo cual no podrán existir ni flujos de calor ni de masa en esa dirección; el ambiente en el que se encuentra inmersa la placa es infinito, así que el fluido no tiene restricciones de movimiento distintas a la superficie de la placa. La temperatura inicial de la placa es T, y la temperatura del ambiente es T. Los extremos de la placa se consideran adiabáticos para simplificar el modelo. Todo el arreglo se muestra de manera esquemática en la figura 1.

Figura 1

MODELO MATEMATICO

Las ecuaciones que gobiernan el comportamiento del fluido son las ecuaciones de continuidad, cantidad de movimiento y energía. Se supone que, con una excepción, el fluido es incompresible; esta excepción corresponde al efecto de densidad variable de la fuerza de flotación que induce el movimiento, y se conoce como Aproximacion de Boussinesq. Para el caso del modelo bidimensional y para un fluido newtoniano, no reactivo, incompresible y con propiedades constantes, las ecuaciones se reducen a:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - \frac{\partial p}{\partial x} - \rho g \qquad (2)$$

$$\rho\left(\frac{\partial \mathbf{v}}{\partial \mathbf{t}} + \mathbf{u}\frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right) = \mu\left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2}\right) - \frac{\partial \mathbf{p}}{\partial \mathbf{y}}$$
(3)

$$\rho C_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right) + \mu \phi$$
(4)

Se considera que dadas las bajas velocidades del fenómeno, el término $\mu\phi \rightarrow 0$. Además se supone que la teoría de capa límite describe al fenómeno con precisión, con lo que los términos de la variación de u son mucho mayores que los de v, es decir:

$$\frac{\partial u}{\partial x} , \frac{\partial u}{\partial y} , \frac{\partial u}{\partial t} >> \frac{\partial v}{\partial x} , \frac{\partial v}{\partial y} , \frac{\partial v}{\partial t}$$

y el sistema de ecuaciones (1) a (4) se transforma en:
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(5)

$$\rho\left(\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{v}\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right) = \mu\left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}\right) - \frac{\partial \mathbf{p}}{\partial \mathbf{x}} - \rho \mathbf{g}$$
(6)

$$\frac{\partial P}{\partial y} = 0$$

$$\rho C_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right)$$
(8)

Se deben cumplir las condiciones de no deslizamiento del fluido sobre la superficie de la placa y la condición de atmósfera en reposo lejos de la placa. Además, la temperatura del fluido en contacto con la superficie de la placa es la misma que la de la placa, y la temperatura lejos de la placa es la de la atmósfera. Lo anterior fija las siguientes condiciones de frontera para el sistema de ecuaciones (5) a (8):

$$y = 0; \quad u = v = 0 \quad T = T_u$$

$$y \to \infty; \quad u \to 0 \quad T \to T_\infty \qquad (9)$$

$$t = 0; \quad u = 0 \qquad T = T_m$$

De la ecuación (7), se observa que p=p(x) exclusivamente, esto significa que el gradiente de presión en la dirección x en cualquier punto dentro de la capa límite debe ser igual al gradiente de presión en cualquier punto fuera de la capa límite, pero como en esta región u = v = 0; la ecuación de cantidad de movimiento fuera de la capa límite se reduce a: $\frac{\partial p}{\partial x} = -\rho_{\infty}g$ (10)

si se sustituye (10) en (6) y se reagrupan términos, se obtiene:

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + g(\rho_{\infty} - \rho)$$
(11)

El segundo término del lado derecho de la ecuación (11) representa la fuerza de flotación que produce el movimiento convectivo. Esta fuerza se origina debido a la variación de la densidad del fluido. Para representar la variación de la densidad ρ se introdue el coeficiente térmico de expansión volumétrica, que se define como:

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p}$$
(12)

Esta propiedad termodinámica proporciona una medida del cambio de la densidad de un fluido con respecto a su cambio en temperatura, y se puede expresar de manera aproximada como:

$$\beta \sim \frac{1}{\rho} \left(\frac{\rho_{\infty} - \rho}{T_{\infty} - T} \right)$$
(13)

o bien

$$(\rho_m - \rho) \sim \rho\beta(T - T_m)$$

y si se sustituye en la ecuación (11) se obtiene:

$$\rho\left(\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{v}\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right) = \mu\left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}\right) + \rho g\beta \left(\mathbf{T} - \mathbf{T}_{\omega}\right)$$
(14)

Es posible definir una velocidad característica si se consideran los órdenes de magnitud de los términos de la ecuación de la siguiente manera:

$$\rho_{\omega}^{\underline{u}_{c}} \sim g\rho_{\omega}\beta \left(\mathrm{T-T}_{\omega}\right)$$
(15)

de donde

$$u_{1} \sim [g\beta(T-T_{1})]^{1/2}$$

(16)

Se definen las siguientes variables adimensionales:

$$\theta = \frac{\mathbf{T} - \mathbf{T}_{\infty}}{\mathbf{T}_{o} - \mathbf{T}_{\infty}}, \ \mathbf{u}^{*} = \frac{\mathbf{u}}{\mathbf{u}_{c}}, \ \mathbf{v}^{*} = \frac{\mathbf{v}}{\mathbf{u}_{c}}, \chi = \frac{\mathbf{x}}{\mathbf{L}}, \ \xi = \frac{\mathbf{y}}{\mathbf{L}}, \ \tau_{f} = \frac{\mathbf{t}}{\mathbf{t}_{eff}}$$
(17)

y de dividir entre $\rho \frac{u^2}{c}$ se obtiene:

$$\frac{\mathrm{L}}{\mathrm{u}_{c} \mathrm{t}_{c}} \frac{\partial \mathrm{u}}{\partial \mathrm{t}} + \mathrm{u}^{*} \frac{\partial \mathrm{u}}{\partial \chi} + \mathrm{v}^{*} \frac{\partial \mathrm{u}}{\partial \xi} =$$
$$= \frac{\mu}{\rho \mathrm{u}_{c} \mathrm{L}} \left(\frac{\partial^{2} \mathrm{u}}{\partial \chi^{2}} + \frac{\partial^{2} \mathrm{u}}{\partial \xi^{2}} \right) + \frac{\mathrm{g} \mathrm{g} \mathrm{L}}{\mathrm{u}_{c}^{2}} (\mathrm{T}_{o} - \mathrm{T}_{o}) \Theta \qquad (19)$$

Se puede definir el tiempo característico del fluido de manera que éste se absorba como parámetro de la siguiente manera: $t_{cf} = \frac{L}{u_c}$ (20)

Si se define el número de Reynolds como Re = $\frac{\rho_u L}{\mu}$, y se sustituye la definición del tiempo característico del fluido dada por la ecuación (20) y el orden de magnitud de la velocidad característica de la ecuación (16) en (19), se obtiene:

$$\frac{\partial \mathbf{u}}{\partial \tau}_{f} + \mathbf{u} \frac{\partial \mathbf{u}}{\partial \chi} + \mathbf{v} \frac{\partial \mathbf{u}}{\partial \xi} = \operatorname{Re}^{-1} \left(\frac{\partial^{2} \mathbf{u}}{\partial \chi^{2}} + \frac{\partial^{2} \mathbf{u}}{\partial \xi^{2}} \right) + \theta$$
(21)

con el fin de absorber el número de Reynolds como parámetro,

se definen dos nuevas coordenadas adimensionales:

$$s = \xi \cdot Re^{1/2}$$
, $V = v^* \cdot Re^{1/2}$ (22)

Al sustituir las ecuaciones (22) en (21), se llega a: $\frac{\partial u}{\partial \tau} + u \frac{\partial u}{\partial \chi} + V \frac{\partial u}{\partial s} = \operatorname{Re}^{-1} \left(\frac{\partial^2 u}{\partial \chi^2} + \operatorname{Re} \frac{\partial^2 u}{\partial s^2} \right) + \Theta$ (23)

Para valores grandes de Re, la ecuación (23) se reduce a:

$$\frac{\partial \mathbf{u}}{\partial \tau} + \mathbf{u} \frac{\partial \mathbf{u}}{\partial \chi} + \nabla \frac{\partial \mathbf{u}}{\partial \mathbf{s}} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{s}^2} + \theta$$
(24)

La ecuación (24) es la ecuación de cantidad de movimiento adimensionalizada. Se hará un manejo similar con la ecuación de la energía (8).

$$\rho C_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right)$$
(8)

Si se sustituyen las ecuaciones (17) y (20) en (8) y se divide entre $(T_0 - T_m)$, se obtiene:

$$\frac{\rho \mathbf{u}_{c}^{c} \mathbf{c}_{p}}{L} \left(\frac{\partial \theta}{\partial \tau}_{f} + \mathbf{u}_{f}^{*} \frac{\partial \theta}{\partial \xi} + \mathbf{v}_{f}^{*} \frac{\partial \theta}{\partial \xi} \right) = \frac{\lambda}{L^{2}} \left(\frac{\partial^{2} \theta}{\partial \chi^{2}} + \frac{\partial^{2} \theta}{\partial \xi^{2}} \right)$$
(25)

si se divide todo entre
$$\frac{\rho u_c C_p}{L_p}$$
, se obtiene:
 $\frac{\partial \theta}{\partial \tau_r} + u \frac{\partial \theta}{\partial \chi} + v \frac{\partial \theta}{\partial \xi} = \frac{\lambda}{\mu C_p} \frac{\mu}{L_p u_c} \left(\frac{\partial^2 \theta}{\partial \chi^2} + \frac{\partial^2 \theta}{\partial \xi^2} \right)$
(26)

al sustituir la primera ecuación (22) en (26) $\frac{\partial \theta}{\partial \tau_{\rm f}} + u^{*} \frac{\partial \theta}{\partial \chi} + {\rm Re}^{1/2} v^{*} \frac{\partial \theta}{\partial s} = \frac{\lambda}{\mu C_{\rm p}} \cdot {\rm Re}^{-1} \left(\frac{\partial^{2} \theta}{\partial \chi^{2}} + {\rm Re} \cdot \frac{\partial^{2} \theta}{\partial s^{2}} \right)$ (27) Si se sustituye la segunda ecuación de (22) en (27) y se consideran valores grandes de Re, se obtiene:

$$\frac{\partial \Theta}{\partial \tau} + \mathbf{u} \frac{\partial \Theta}{\partial \chi} + \mathbf{v} \frac{\partial \Theta}{\partial s} = \frac{\lambda}{\mu C_{p}} \frac{\partial^{2} \Theta}{\partial s^{2}}$$
(28)

El número de Prandtl se define como Pr = $\frac{\mu C_p}{\lambda}$, con lo que (28) se puede rescribir como:

$$\frac{\partial \theta}{\partial \tau} + \mathbf{u} \frac{\partial \theta}{\partial \chi} + \mathbf{V} \frac{\partial \theta}{\partial s} = \mathbf{p} \mathbf{r}^{-1} \cdot \frac{\partial^2 \theta}{\partial s^2}$$
(29)

Análogamente, en la ecuación de continuidad (5), se sustituyen las ecuaciones (17) y (22) y se obtiene: $\frac{\partial u}{\partial \chi}^{*} + \frac{\partial V}{\partial s} = 0$ (30) Las ecuaciones (24), (29) y (30) constituyen el sistema de ecuaciones adimensionales que modelan el comportamiento del fluido. Las condiciones de frontera adimensionales son:

$$s = 0; \quad u^{*} = v^{*} = 0 \quad \theta = \theta_{u}$$

$$s \to \infty; \quad u^{*} \to 0 \qquad \theta \to 0 \qquad (31)$$

$$\tau_{z} = 0; \quad u^{*} = 0 \qquad \theta = 0$$

La ecuación que describe el perfil de temperaturas dentro del

sólido es la ecuación de difusión, que en el caso unidimensional, con una placa de espesor 2h, propiedades constantes y un flujo convectivo en la frontera q_c, toma la forma

$$\left(\lambda_{v \partial x}^{\partial^{2} T}\right) 2hdx - 2q_{c}dx = \rho_{v} C_{v \partial t}^{\partial T} \cdot 2hdx$$
(32)

donde se hace referencia a la figura 2, que muestra el balance de energía dentro de un elemento diferencial de la placa de espesor 2h. Este espesor es posible de suponer dado que se considera en el modelo que no existen los flujos de calor en la dirección normal a la placa. La ecuación (32) se reduce a:

$$h\lambda_{\frac{\partial^2 T}{\partial x^2}} - q_c = \rho_c C_h \frac{\partial T}{\partial t}$$
(33)

donde el flujo de calor q_e se evalúa a partir de las ecuaciones del fluido según la ley de Fourier:

$$\mathbf{q}_{c} = -\lambda \frac{\partial \mathbf{T}}{\partial \mathbf{y}} \Big|_{\mathbf{y}=\mathbf{0}} = -\lambda \cdot \mathrm{Re}^{1/2} \cdot \mathbf{L}^{-1} (\mathbf{T}_{0} - \mathbf{T}_{\infty}) \frac{\partial \theta}{\partial \mathbf{g}} \Big|_{\mathbf{s}=\mathbf{0}}$$
(34)

Las condiciones inicial y de frontera para esta ecuación corresponden a la de temperatura inicial uniforme en toda la placa y a las de fronteras adiabáticas en los extremos de la placa. Es decir:

$$x = 0, L:$$
 $\frac{\partial T}{\partial x} = 0$ (35)

Si se sustituyen (34) y las variables adimensionales definidas por (17) en (33), se obtiene:

$$h\lambda_{w}\frac{(T_{0} - T_{w})}{L^{2}} \cdot \frac{\partial^{2} \theta}{\partial \chi^{2}} + \lambda \cdot Re^{1/2} \cdot L^{-1} (T_{0} - T_{w})\frac{\partial \theta}{\partial s}\Big|_{s=0} = \\ = \rho_{w}C_{w}h\frac{(T_{0} - T_{w})}{t_{c}} \cdot \frac{\partial \theta}{\partial \tau}$$
(36)

donde τ es el tiempo adimensional definido de la forma t/t_c y t_c el tiempo característico del sólido, que se definirá más adelante. Si se divide (36) entre $\rho_{\omega} C_{h} \frac{(T_{o} - T_{\omega})}{t_{c}}$, la ecuación

se convierte en:

$$\frac{\lambda_{w} t_{c}}{L^{2} \rho_{w} C_{w}} \frac{\partial^{2} \theta_{w}}{\partial \chi^{2}} + \frac{\operatorname{Re}^{1/2} \lambda t_{c}}{L \rho_{w} C_{w} h} \frac{\partial \theta}{\partial S} \Big|_{s=0} = \frac{\partial \theta_{w}}{\partial \tau}$$
(37)

Para definir t se supone que $\frac{\text{Re}^{1/2}\lambda t}{\text{Le C h}} \sim 1$, de donde

$$t_{c} \sim \frac{L\rho_{c}Ch}{Re^{1/2}\lambda}$$
(38)

y sustituyendo la definición de Re junto con la definición de la velocidad característica dada por la ecuación (16), se obtiene:

$$t_{c} \sim \frac{L\rho_{c}C_{h}}{Gr^{1/4}\lambda}$$
(39)

donde Gr es el número de Grashof, que se define como:

$$Gr = \frac{g\beta[T_0 - T_{\omega}]L^3}{\nu^2}$$
(40)

Ahora es posible definir un nuevo parámetro. Sea

$$\alpha = \frac{\lambda_{w} t_{c}}{L^{2} \rho_{w} C_{w}}$$
(41)

y de sustituir el valor de t dado por (39), se tiene:

$$\alpha = \frac{\lambda_{\rm u} h}{L\lambda \cdot {\rm Gr}^{1/4}}$$
(42)

La relevancia de este parámetro radica en el hecho que engloba tanto las características del fluido como las geométricas del problema, y además, proporciona una relación entre la conductividad térmica de la placa y la del fluido. Al sustituir (42) en (37), se obtiene:

$$\frac{\partial^2 \Theta}{\partial x^2} + \frac{\partial \Theta}{\partial s}\Big|_{s=0} = \frac{\partial \Theta}{\partial \tau}$$
(43)

Las condiciones de frontera (35) se convierten, al adimensionalizarlas, en:

$$\tau = 0:$$
 $\theta_u = 1$
 $\chi = 0, 1:$ $\frac{\partial \theta_u}{\partial \chi} = 0$ (44)

Las ecuaciones (24), (29), (30) y (43), con las condiciones iniciales y de frontera (31) y (44) constituyen el modelo matemático adimensional correspondiente al problema bajo análisis, sin embargo, las ecuaciones en el fluido (24), (29) y (30), están basadas en un tiempo característico t_{cf} propio del fluido, mientras que la ecuación (43) correspondiente al sólido, está basada en el tiempo característico t_c del sólido. Es necesario uniformar las escalas de tiempo en las que estas se basan, de modo que las derivadas respecto a los distintos tiempos adimensionales τ y τ_r queden como derivadas con respecto a un solo tiempo adimensional. El operador derivada respecto al tiempo se puede representar como:

$$\frac{\partial}{\partial t} = \frac{1}{t_c} \frac{\partial}{\partial \tau} = \frac{1}{t_{cf}} \frac{\partial}{\partial \tau}$$
(45)

de modo que tomando como escala de tiempo el tiempo característico del sólido:

$$\frac{\partial}{\partial \tau_{\rm r}} = \frac{t_{\rm c}}{t_{\rm c}} \cdot \frac{\partial}{\partial \tau}$$
(46)

Si se sustituye el operador derivada respecto al tiempo definido por la ecuación (46) en las ecuaciones (24), (29) y (30), el sistema de 4 ecuaciones se encuentra ahora todo basado en la misma escala de tiempo. Si se analizan las definiciones de t_{cf} y t_c , dadas por las ecuaciones (20) y (38) respectivamente, se puede observar, que el coeficiente t_{cf}/t_c << 1, con lo que los transitorios dentro de las ecuaciones (24) y (29) se vuelven insignificantes. El sistema se transforma en:

$$\frac{\partial u}{\partial \chi}^{\bullet} + \frac{\partial V}{\partial g} = 0$$
(47)
$$u^{\bullet} \frac{\partial u}{\partial \chi}^{\bullet} + V \frac{\partial u}{\partial g}^{\bullet} = \frac{\partial^{2} u}{\partial g^{2}}^{\bullet} + \theta$$
(48)
$$u^{\bullet} \frac{\partial \theta}{\partial \chi} + V \frac{\partial \theta}{\partial g} = Pr^{-1} \cdot \frac{\partial^{2} \theta}{\partial g^{2}}$$
(49)
$$\frac{\partial^{2} \theta}{\partial \chi^{2}}^{\bullet} + \frac{\partial \theta}{\partial g}\Big|_{g=0} = \frac{\partial \theta}{\partial \chi}^{\bullet}$$
(43)

Sujeto a las mismas condiciones de frontera dadas por (31) sin considerar las condiciones iniciales, y a las condiciones inicial y de frontera dadas por (44). Estas ecuaciones constituyen el modelo matemático del fenómeno.

RELACIONES DE SEMEJANZA

Dado que el sistema de ecuaciones que rige el fenómeno es parabólico con respecto al tiempo y que no existe una escala geométrica que acote al fenómeno en la dirección 4, es posible suponer que las capas límite, tanto térmica como viscosa, se comportan siguiendo una relación de semejanza. Al introducir la relación de semejanza, el modelo matemático se transforma de manera que su solución se simplifica.

Se definen los componentes de velocidad en términos de una función de corriente $\Psi(\chi,s)$ de manera que

$$u^* \equiv \frac{\partial \Psi}{\partial s} \quad y \quad V \equiv -\frac{\partial \Psi}{\partial \chi}$$
 (50)

con lo que la ecuación (47) de continuidad se satisface automáticamente, y se vuelve inecesaria. Luego se definen nuevas variables, una función de corriente adimensional y una coordenada independiente, tales que:

 $\Psi = \chi^{3/4} \cdot f(\chi, \eta) \tag{51}$

$$\eta = \frac{s}{\chi^{1/4}} \tag{52}$$

De la sustitución de la ecuación (50) en (48), se obtiene:

$$\frac{\partial \Psi}{\partial s} \frac{\partial^2 \Psi}{\partial \chi \partial s} - \frac{\partial \Psi}{\partial \chi} \frac{\partial^2 \Psi}{\partial s^2} = \frac{\partial^3 \Psi}{\partial s^3} + \Theta$$
(53)

donde según la regla de la cadena:

$$\frac{\partial\Psi}{\partial\chi} = \frac{\partial\Psi}{\partial\eta} \frac{\partial\eta}{\partial\chi} = \chi^{-1/4} \left(\frac{3}{4} \cdot \mathbf{f} + \chi \frac{\partial \mathbf{f}}{\partial\chi} - \frac{1}{4} \eta \cdot \frac{\partial \mathbf{f}}{\partial\eta} \right)$$
(54)

$$\frac{\partial \Psi}{\partial s} = \frac{\partial \Psi}{\partial s} \frac{\partial \eta}{\partial s} = \chi^{1/2} \frac{\partial f}{\partial \eta}$$
(55)

$$\frac{\partial^2 \Psi}{\partial \mathbf{g}^2} = \frac{\partial}{\partial \eta} \left(\chi^{1/2} \frac{\partial \mathbf{f}}{\partial \eta} \right) \cdot \frac{\partial \eta}{\partial \mathbf{g}} = \chi^{1/4} \frac{\partial^2 \mathbf{f}}{\partial \eta^2}$$
(56)

$$\frac{\partial^{3}\Psi}{\partial a^{3}} = \frac{\partial}{\partial \eta} \left(\chi^{1/4} \frac{\partial f}{\partial \eta} \right) \frac{\partial \eta}{\partial a} = \frac{\partial^{3} f}{\partial \eta^{3}}$$
(57)

$$\frac{\partial^{2}\Psi}{\partial \mathbf{z}\partial \chi} = \frac{\partial}{\partial \eta} \left(\chi^{-1/4} \left(\frac{3}{4} \cdot \mathbf{f} + \chi \frac{\partial \mathbf{f}}{\partial \chi} - \frac{1}{4} \eta \cdot \frac{\partial \mathbf{f}}{\partial \eta} \right) \right) \cdot \frac{\partial \eta}{\partial \mathbf{z}} = \\ = \chi^{-1/2} \left(\frac{3}{4} \cdot \frac{\partial \mathbf{f}}{\partial \eta} + \chi \frac{\partial^{2} \mathbf{f}}{\partial \chi \partial \eta} - \frac{1}{4} \eta \cdot \frac{\partial^{2} \mathbf{f}}{\partial \eta 2} - \frac{1}{4} \cdot \frac{\partial \mathbf{f}}{\partial \eta} \right)$$
(58)

Si se sustituyen las ecuaciones (54) a (58) en la ecuación (4) y se reordena, se obtiene:

$$\Theta + \frac{\partial^{3} \mathbf{f}}{\partial \eta^{3}} - \frac{1}{2} \left(\frac{\partial \mathbf{f}}{\partial \eta} \right)^{2} + \frac{3}{4} \mathbf{f} \frac{\partial^{2} \mathbf{f}}{\partial \eta^{2}} = \chi \left(\frac{\partial \mathbf{f}}{\partial \eta} \frac{\partial^{2} \mathbf{f}}{\partial \chi \partial \eta} - \frac{\partial \mathbf{f}}{\partial \chi} \frac{\partial^{2} \mathbf{f}}{\partial \eta^{2}} \right)$$
(59)

Se sustituye (50) en (49) y se obtiene:

$$\frac{\partial \Psi}{\partial s} \frac{\partial \theta}{\partial z} - \frac{\partial \Psi}{\partial z} \frac{\partial \theta}{\partial s} = \Pr^{-1} \frac{\partial^2 \theta}{\partial s^2}$$
(60)

donde

.

$$\frac{\partial \theta}{\partial \mathbf{s}} = \frac{\partial \theta}{\partial n} \frac{\partial \eta}{\partial \mathbf{s}} = \chi^{-1/4} \frac{\partial \theta}{\partial \mathbf{s}}$$
(61)

$$\frac{\partial^{4}\Theta}{\partial \mathbf{s}^{2}} = \frac{\partial}{\partial \eta} \left(\chi^{-1/4} \frac{\partial \Theta}{\partial \eta} \right) \frac{\partial \eta}{\partial \mathbf{s}} = \chi^{-1/2} \frac{\partial^{2}\Theta}{\partial \eta^{2}}$$
(62)

$$\frac{\partial \Theta}{\partial \chi} = \frac{\partial \Theta}{\partial \chi} + \frac{\partial \Theta}{\partial \eta} \frac{\partial \eta}{\partial \chi} = \frac{\partial \Theta}{\partial \chi} - \frac{1}{4} \frac{\eta}{\chi} \frac{\partial \Theta}{\partial \eta}$$
(63)

Sustituyendo (55) y (61) a (62) en (60) y reordenando se obtiene:

$$\mathbf{Pr}^{-1} \cdot \frac{\partial^2 \Theta}{\partial \eta^2} + \frac{3}{4} \cdot \mathbf{f} \frac{\partial \Theta}{\partial \eta} = \chi \left(\frac{\partial \mathbf{f}}{\partial \eta} \cdot \frac{\partial \Theta}{\partial \chi} - \frac{\partial \mathbf{f}}{\partial \chi} \cdot \frac{\partial \Theta}{\partial \chi} \right)$$
(64)

Para completar el sistema de ecuaciones, se hace la sustitución de la definición de η dada por la ecuación (52) en la ecuación (43), con lo que se obtiene:

$$\alpha \frac{\partial^2 \theta}{\partial \chi^2} + \frac{1}{\chi^{1/4}} \frac{\partial \theta}{\partial \eta} \bigg|_{\eta=0} = \frac{\partial \theta}{\partial \tau}$$
(65)

Las condiciones de frontera para las ecuaciones (59), (64) y (65) se transforman en:

$$\eta = 0: \quad f = f_{\eta} = 0 \qquad \theta = \theta_{u}$$

$$\eta \to \infty: \quad f_{\eta} \to 0 \qquad \theta \to 0$$

$$\tau = 0: \qquad \theta_{u} = 1 \qquad (66)$$

$$\chi = 0, \ 1: \qquad \frac{\partial \theta_{u}}{\partial \chi} = 0$$

El sistema constituido por las ecuaciones (59), (64), (65) y las condiciones iniciales y de frontera dadas por (66) conforma el modelo matemático por resolver. Es importante señalar, que las ecuaciones (59), (64) y (65) dependen sólo de dos parámetros, que son el número de Prandtl, y el parámetro α . El Pr es suficiente para describir las propiedades del fluido, sin importar su naturaleza; el parámetro α , como se mencionó anteriormente, describe tanto las características geométricas del fenómeno, como las condiciones bajo las que éste ocurre (ya que engloba al Gr) y además relaciona las conductividades térmicas de la placa y del fluido. El problema de enfriamiento convectivo de una placa vertical, puede resolverse para cualquier conjunto de condiciones, si éstas se adimensionalizan correctamente.

SOLUCION NUMERICA

Dado que las ecuaciones (59) y (64) son independientes de la ecuación (65) debido a la aproximación cuasiestática del comportamiento del fluido, el sistema se puede resolver de acuerdo con el siguiente esquema: en el tiempo $\tau = 0$, la temperatura de la placa es uniforme e igual a 1. Esto permite resolver las ecuaciones del fluido como en el caso de la placa isotérmica descrito en la literatura [12]. El flujo de calor calculado $\frac{\partial \theta}{\partial \eta}\Big|_{\eta=0}$ se sustituye en la ecuación (65). Se procede a resolver la ecuación (65), y se obtiene el nuevo perfil de temperaturas de la placa θ_{μ} . Esto permite resolver nuevamente las ecuaciones (59) y (64), para continuar el proceso hasta que θ_{μ} se aproxime el valor de la temperatura ambiente $\theta = 0$.

El esquema numérico que se emplea es el Método de Keller, que se explica detalladamente en la referencia [11]. Este método permite resolver con relativa facilidad sistemas de ecuaciones tanto lineales como no lineales mediante una transformación de las ecuaciones diferenciales a ecuaciones algebráicas empleando una representación en diferencias finitas. La solución del sistema de ecuaciones por este método se obtiene siguiendo los pasos que a continuación se describen:

- Reducir el sistema de ecuaciones a un sistema de primer orden.
- 2) Expresar las ecuaciones como ecuaciones en diferencias

finitas utilizando diferencias centrales.

- Linearizar el sistema de ecuaciones algebráicas resultantes y expresarlo como un sistema matricial.
- Resolver el sistema lineal por el método de eliminación tridiagonal.
- 5) Iterar sobre la solución hasta cumplir con el criterio de convergencia.

El primer paso consiste en transformar las ecuaciones (59) y (64) en un sistema de primer orden introduciendo variables auxiliares como a continuación se muestra:

$$\frac{\partial f}{\partial \eta} = u$$
 (67)

 $\frac{\partial \mathbf{u}}{\partial \eta} = \mathbf{v}$ (68)

$$\frac{\partial \mathbf{v}}{\partial \eta} = -\theta - \frac{3}{4} \cdot \mathbf{f} \mathbf{v} + \frac{1}{2} \cdot \mathbf{u}^2 + \chi \cdot \mathbf{u} \frac{\partial \mathbf{u}}{\partial \chi} - \chi \cdot \mathbf{v} \frac{\partial \mathbf{f}}{\partial \chi}$$
(69)

$$\frac{\partial \theta}{\partial \eta} = \mathbf{q}$$
 (70)

$$\frac{\partial \mathbf{q}}{\partial \eta} = -\frac{3}{4} \mathbf{P} \mathbf{r} \cdot \mathbf{f} \mathbf{q} + \chi \mathbf{P} \mathbf{r} \cdot \mathbf{u} \frac{\partial \theta}{\partial \chi} - \chi \mathbf{P} \mathbf{r} \cdot \mathbf{q} \frac{\partial \mathbf{f}}{\partial \chi}$$
(71)

Con las condiciones de frontera dadas por: $\eta = 0$: f = u = 0 $\theta = \theta_u$ $\eta \to \infty$: $u \to 0$ $\theta \to 0$ (72)

Según el paso 2, se discretiza el espacio de solución y se procede a escribir las ecuaciones (67) a (72) en diferencias finitas empleando la malla que se muestra a continuación:

Figura 3

El valor de j representa la posición transversal a la placa. Se define n como el máximo valor de j, que corresponde a $\eta + \infty$; j=0 representa la superficie de la placa. La relación entre la malla finita y la coordenada real la da la expresión $\eta = jh$, por consiguiente $\eta + \infty$ se aproxima como $\eta_{\max} = jn$. La coordenada χ se representa por $\chi = ik$, y dado que no se requiere conocer más que la posición de χ previa para obtener la nueva, los valores que tomará el índice de χ serán sólo 1 y 2. Las ecuaciones (67), (68) y (70), que son ordinarias, se centran en el punto medio del segmento P_1P_2 , mientras que las ecuaciones (69) y (71) se expresan como diferencias con respecto al centro del rectángulo $P_1P_2P_4$.

El paso 3 consiste en linearizar el sistema de ecuaciones y expresarlo en forma matricial. Si se supone que los valores de $f_{i,j}$, $u_{i,j}$, $v_{i,j}$, $\theta_{i,j}$ y $q_{i,j'}$ se conocen para $0 \le j \le n$, el sistema de 5n+5 ecuaciones algebráicas resultantes será no lineal con respecto a las 5n+5 incógnitas $f_{2,j'}$, $u_{2,j'}$, $v_{2,j'}$

 $\theta_{2,j}$ y $q_{2,j}$. Para resolver el sistema se emplea el método de Newton; se introducen las variables $f_{2,j}^{(1)}$, $u_{2,j}^{(1)}$, $v_{2,j}^{(1)}$, $\theta_{2,j}^{(1)}$ y $q_{2,j}^{(1)}$, con i = 0,1,2,..., donde i representa el índice de iteración; las nuevas variables tendrán valores iniciales iguales a los de la posición de χ anterior, de modo que:

$$f_{2,j}^{(1+1)} = f_{2,j}^{(1)} + \delta f_{j}^{1} \qquad u_{2,j}^{(1+1)} = u_{2,j}^{(1)} + \delta u_{j}^{1}$$

$$v_{2,j}^{(1+1)} = v_{2,j}^{(1)} + \delta v_{j}^{1} \qquad \theta_{2,j}^{(1+1)} = \theta_{2,j}^{(1)} + \delta \theta_{j}^{1}$$

$$q_{2,j}^{(1+1)} = q_{2,j}^{(1)} + \delta q_{j}^{1} \qquad (73)$$

donde los términos δf_{j}^{1} , δu_{j}^{1} , etc., representan las correcciones sucesivas que debe de sufrir el valor de las variables en la nueva posición de χ ; estas nuevas variables pasan a ocupar el lugar de las incógnitas, ya que los valores de las funciones f, u, v, θ , y q en la nueva posición en χ se expresan como valores conocidos más las correcciones. En adelante, se omitirán los superíndices ya que éstos se sobrentienden. Al aplicar la representación en diferencias finitas al sistema de ecuaciones, las potencias de δf_{j} , δu_{j} , etc., se desprecian, ya que éstas son muy pequeñas. De esta manera, el sistema de ecuaciones por resolver, es lineal con respecto a las variables δf_{j} , δu_{j} , etc.. De acuerdo con estas consideraciones, la ecuación (67) se puede escribir como:

$$\frac{(\mathbf{f}_{2,j} + \delta \mathbf{f}_{j}) - (\mathbf{f}_{2,j-1} + \delta \mathbf{f}_{j-1})}{h} = \frac{1}{2} \Big((\mathbf{u}_{2,j} + \delta \mathbf{u}_{j}) + (\mathbf{u}_{2,j-1} + \delta \mathbf{u}_{j-1}) \Big)$$

Reordenando, de modo que las δ 's desconocidas queden del lado izquierdo de la ecuación, y los valores conocidos del lado derecho. la ecuación se transforma en:

$$\delta \mathbf{f}_{j} - \delta \mathbf{f}_{j-1} - \frac{\mathbf{h}}{2} \cdot \delta \mathbf{u}_{j} - \frac{\mathbf{h}}{2} \cdot \delta \mathbf{u}_{j-1} = \\ = \frac{\mathbf{h}}{2} (\mathbf{u}_{2,j} + \mathbf{u}_{2,j-1}) - (\mathbf{f}_{2,j} - \mathbf{f}_{2,j-1}) = \mathbf{r}_{j,1}$$
(67d)

De manera análoga, las ecuaciones (68) y (70) son en diferencias finitas:

$$\delta u_{j} - \delta u_{j-1} - \frac{h}{2} \cdot \delta v_{j} - \frac{h}{2} \cdot \delta v_{j-1} =$$

$$= \frac{h}{2} (v_{2,j} + v_{2,j-1}) - (u_{2,j} - u_{2,j-1}) = r_{j,4}$$
(68d)
$$\delta \theta_{j} - \delta \theta_{j-1} - \frac{h}{2} \cdot \delta q_{j} - \frac{h}{2} \cdot \delta q_{j-1} =$$

$$= \frac{h}{2}(q_{2,j} + q_{2,j-1}) - (\theta_{2,j} - \theta_{2,j-1}) = r_{j,5}$$
(70d)

La ecuación (69) se expresa de la siguiente manera:

$$\mathbf{v}_{2,j} + \delta \mathbf{v}_{j} - \mathbf{v}_{2,j-1} - \delta \mathbf{v}_{j} = -\frac{h}{2} (\theta_{2,j} + \delta \theta_{j} + \theta_{2,j-1} + \delta \theta_{j-1}) + + \frac{h}{8} (\mathbf{u}_{2,j} + \delta \mathbf{u}_{j} + \mathbf{u}_{2,j-1} + \delta \mathbf{u}_{j-1})^{2} - - \frac{3h}{16} (\mathbf{f}_{2,j} + \delta \mathbf{f}_{j} + \mathbf{f}_{2,j-1} + \delta \mathbf{f}_{j-1}) \cdot \cdot (\mathbf{v}_{2,j} + \delta \mathbf{v}_{j} + \mathbf{v}_{2,j-1} + \delta \mathbf{v}_{j-1}) + + \frac{h\chi}{4k} (\mathbf{u}_{2,j} + \delta \mathbf{u}_{j} + \mathbf{u}_{2,j-1} + \delta \mathbf{u}_{j-1}) \cdot \cdot (\mathbf{u}_{2,j} + \delta \mathbf{u}_{j} + \mathbf{u}_{2,j-1} + \delta \mathbf{u}_{j-1} - \mathbf{u}_{1,j} - \mathbf{u}_{1,j-1}) - - \frac{h\chi}{4k} (\mathbf{v}_{2,j} + \delta \mathbf{v}_{j} + \mathbf{v}_{2,j-1} + \delta \mathbf{v}_{j-1}) \cdot$$

$$(f_{2,j} + \delta f_j + f_{2,j-1} + \delta f_{j-1} - f_{1,j} - f_{1,j-1})$$

Al reordenar, la ecuación queda de la siguiente manera:

..

~ 1

coeficientes a

de

$$a_{j,2,1}\delta f_{j} + b_{j,2,1}\delta f_{j-1} + a_{j,2,2}\delta u_{j} + b_{j,2,2}\delta u_{j-1} + a_{j,2,3}\delta v_{j} + b_{j,2,3}\delta v_{j-1} = r_{j,2}$$
(69d)

donde los coeficientes a y el término r están dados por:

$$a_{j,2,1} = \left(\frac{3h}{16}(v_{2,j} + v_{2,j-1}) + \frac{\chi h}{4k}(v_{2,j} + v_{2,j-1})\right)$$

$$b_{j,2,1} = \left(\frac{3h}{16}(v_{2,j} + v_{2,j-1}) + \frac{\chi h}{4k}(v_{2,j} + v_{2,j-1})\right)$$

$$a_{j,2,2} = \left(-\frac{h}{4}(u_{2,j} + u_{2,j-1}) - \frac{\chi h}{4k}\left[2(u_{2,j} + u_{2,j-1}) - (u_{1,j} + u_{1,j-1})\right]\right)$$

$$b_{j,2,2} = \left(-\frac{h}{4}(u_{2,j} + u_{2,j-1}) - \frac{\chi h}{4k}\left[2(u_{2,j} + u_{2,j-1}) - (u_{1,j} + u_{1,j-1})\right]\right)$$

$$a_{j,2,3} = \left(1 + \frac{3h}{16}(f_{2,j} + f_{2,j-1}) + \frac{\chi h}{4k}(f_{2,j} + f_{2,j-1} - f_{1,j} - f_{1,j-1})\right)$$

$$b_{j,2,3} = \left(-1 + \frac{3h}{16}(f_{2,j} + f_{2,j-1}) + \frac{\chi h}{4k}(f_{2,j} + f_{2,j-1} - f_{1,j} - f_{1,j-1})\right)$$

$$a_{j,2,4} = \frac{h}{2}$$

$$r_{j,2} = -(v_{2,j} - v_{2,j-1}) - \frac{h}{2}(\theta_{2,j} + \theta_{2,j-1}) + \frac{h}{8}(u_{2,j}^{2} + 2u_{2,j}u_{2,j-1} + u_{2,j-1}^{2}) - \frac{h}{2}(\theta_{2,j} - \theta_{2,j-1}) + \frac{h}{8}(u_{2,j}^{2} + 2u_{2,j}u_{2,j-1} + u_{2,j-1}^{2}) - \frac{h}{2}(\theta_{2,j} - \theta_{2,j-1}) + \frac{h}{8}(u_{2,j}^{2} + 2u_{2,j}u_{2,j-1} + u_{2,j-1}^{2}) - \frac{h}{2}(\theta_{2,j} - \theta_{2,j-1}) + \frac{h}{8}(\theta_{2,j}^{2} + 2\theta_{2,j}u_{2,j-1} + \theta_{2,j-1}) - \frac{h}{2}(\theta_{2,j} - \theta_{2,j-1}) - \frac{h}{$$

$$-\frac{3h}{16}(f_{2,j} + f_{2,j-1})(v_{2,j} + v_{2,j-1}) + \frac{\chi h}{4k}(u_{2,j} + u_{2,j-1})(u_{2,j} + u_{2,j-1} - u_{1,j} - u_{1,j-1}) - \frac{\chi h}{4k}(v_{2,j} + v_{2,j-1})(f_{2,j} + f_{2,j-1} - f_{1,j} - f_{1,j-1})$$
(74)

La ecuación (71) se expresa en diferencias finitas como:

$$\begin{aligned} \mathbf{q}_{2,j} + \delta \mathbf{q}_{j} - \mathbf{q}_{2,j-1} - \delta \mathbf{q}_{j} &= -\frac{3h}{16} \cdot \Pr\left(\mathbf{f}_{2,j} + \delta \mathbf{f}_{j} + \mathbf{f}_{2,j-1} + \delta \mathbf{f}_{j-1}\right) \cdot \\ &\cdot \left(\mathbf{q}_{2,j} + \delta \mathbf{q}_{j} + \mathbf{q}_{2,j-1} + \delta \mathbf{q}_{j-1}\right) + \\ &+ \frac{h\chi}{4k} \cdot \Pr\left(\mathbf{u}_{2,j} + \delta \mathbf{u}_{j} + \mathbf{u}_{2,j-1} + \delta \mathbf{u}_{j-1}\right) \cdot \\ &\cdot \left(\theta_{2,j} + \delta \theta_{j} + \theta_{2,j-1} + \delta \theta_{j-1} - \theta_{1,j} - \theta_{1,j-1}\right) - \\ &- \frac{h\chi}{4k} \cdot \Pr\left(\mathbf{q}_{2,j} + \delta \mathbf{q}_{j} + \mathbf{q}_{2,j-1} + \delta \mathbf{q}_{j-1}\right) \cdot \\ &\cdot \left(\mathbf{f}_{2,j} + \delta \mathbf{f}_{j} + \mathbf{f}_{2,j-1} + \delta \mathbf{f}_{j-1} - \mathbf{f}_{1,j} - \mathbf{f}_{1,j-1}\right) \end{aligned}$$

Al reordenar, la ecuación se puede escribir como: $a_{j,3,1}\delta f_{j} + b_{j,3,1}\delta f_{j-1} + a_{j,3,2}\delta u_{j} + b_{j,3,2}\delta u_{j-1} + b_{j,3,2}\delta u_{j-1} + b_{j,3,4}\delta \theta_{j-1} + b_{j,3,5}\delta q_{j} + b_{j,3,5}\delta q_{j-1} = r_{j,3}$

(71d)

donde los coeficientes a y el término r son:

$$a_{j,3,1} = \Pr \left\{ \frac{3h}{16} (q_{2,j} + q_{2,j-1}) + \frac{\chi h}{4k} (q_{2,j} + q_{2,j-1}) \right\}$$

$$b_{j,3,1} = \Pr \left\{ \frac{3h}{16} (q_{2,j} + q_{2,j-1}) + \frac{\chi h}{4k} (q_{2,j} + q_{2,j-1}) \right\}$$

$$a_{j,3,2}^{2} = -\frac{2h}{4k} \Pr\left[\left(\theta_{2,j} + \theta_{2,j-1}\right) - \left(\theta_{1,j} + \theta_{1,j-1}\right)\right]$$

$$b_{j,3,2}^{2} = -\frac{2h}{4k} \Pr\left[\left(\theta_{2,j} + \theta_{2,j-1}\right) - \left(\theta_{1,j} + \theta_{1,j-1}\right)\right]$$

$$a_{j,3,4}^{2} = -\frac{2h}{4k} \Pr\left(u_{2,j} + u_{2,j-1}\right)$$

$$b_{j,3,4}^{2} = -\frac{2h}{4k} \Pr\left(u_{2,j} + u_{2,j-1}\right)$$

$$a_{j,3,5}^{2} = 1 + \Pr\left(\frac{3h}{16}(f_{2,j} + f_{2,j-1}) + \frac{2h}{4k}(f_{2,j} + f_{2,j-1} - f_{1,j} - f_{1,j-1})\right)$$

$$b_{j,3,5}^{2} = -1 + \Pr\left(\frac{3h}{16}(f_{2,j} + f_{2,j-1}) + \frac{2h}{4k}(f_{2,j} + f_{2,j-1} - f_{1,j} - f_{1,j-1})\right)$$

$$r_{j,3}^{2} = -\left(q_{2,j} - q_{2,j-1}\right)_{,1}^{2}$$

$$- \frac{3h}{16} \Pr\left(f_{2,j} + f_{2,j-1}\right)\left(q_{2,j} + q_{2,j-1}\right) + \frac{2h}{4k} \Pr\left(u_{2,j} - \theta_{1,j} - \theta_{1,j-1}\right) - \frac{2h}{4k} \Pr\left(u_{2,j} + u_{2,j-1}\right)\left(f_{2,j} + f_{2,j-1} - f_{1,j} - f_{1,j-1}\right)\right)$$
(75)

Las ecuaciones (67d) a (71d) y (74) y (75) representan el sistema de ecuaciones diferenciales que describen e. comportamiento del fluido como un sistema de ecuaciones lineales algebraicas; este sistema está compuesto por n+1 subsistemas de ecuaciones, es decir, a cada valor de j corresponde un sistema de ecuaciones acoplado con los demás valores de j. Esto hace posible que el sistema sea expresable como un sistema de sistemas de ecuaciones que tenga la siguiente estructura:

$$\mathbf{A}\delta = \mathbf{r} \tag{76}$$

donde los miembros de la ecuación se definen como:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{0} & \mathbf{C}_{0} & & \\ \mathbf{B}_{1} & \mathbf{A}_{1} & \mathbf{C}_{1} & \mathbf{0} \\ & \mathbf{B}_{j} & \mathbf{A}_{j} & \mathbf{C}_{j} \\ & & \mathbf{B}_{j-1} \mathbf{A}_{j-1} \mathbf{C}_{j-1} \\ \mathbf{0} & & \mathbf{B}_{n} & \mathbf{A}_{n} \end{bmatrix}, \quad \underbrace{\underline{\delta}} = \begin{bmatrix} \underline{\delta}_{0} & \\ \underline{\delta}_{1} \\ \\ \underline{\delta}_{j} \\ \\ \underline{\delta}_{j-1} \\ \underline{\delta}_{n} \end{bmatrix}, \quad \underbrace{\underline{r}} = \begin{bmatrix} \underline{\underline{r}}_{0} \\ \underline{r}_{1} \\ \\ \underline{r}_{j} \\ \\ \underline{r}_{j-1} \\ \\ \underline{r}_{n} \end{bmatrix}$$
(77)

Cabe enfatizar que los elementos de la matriz λ son matrices de 5x5 elementos por sí mismos, y los elementos de los vectores $\underline{\delta}$ y <u>r</u> son vectores de 5 elementos también. Según las ecuaciones (67d) a (70d), éstos se definen como a continuación se indica:

para j = 0:

$$\mathbf{A}_{0} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & -\mathbf{h}/2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1} & -\mathbf{h}/2 \end{bmatrix}, \qquad \mathbf{\underline{r}}_{0} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{r}_{0,4} \\ \mathbf{r}_{0,5} \end{bmatrix},$$

para
$$1 \le j \le n-1$$
:

$$A_{j} = \begin{bmatrix} -1 & -h/2 & 0 & 0 & 0 \\ a_{j,2,1} & a_{j,2,2} & a_{j,2,3} & a_{j,2,4} & 0 \\ a_{j,3,1} & a_{j,3,2} & 0 & a_{j,3,3} & a_{j,3,5} \\ 0 & -1 & -h/2 & 0 & 0 \\ 0 & 0 & 0 & -1 & -h/2 \end{bmatrix}, \begin{array}{c} r_{j,1} \\ r_{j,2} \\ r_{j,3} \\ r_{j,4} \\ r_{j,5} \end{bmatrix},$$

para 0 ≤ j ≤ n-1:

0	0	0	0	
0	0	0	0	
0	0	0	0	,
1	-h/2	0	0	
. 0	0	1	-h/2_	
		0 0 0 0 1 -h/2 0 0	0 0 0 0 0 0 0 0 0 1 -h/2 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 1 -h/2 0 0 0 0 1 -h/2

y finalmente para 0 ≤ j ≤ n:

г п

La solución de la ecuación (76) definida por las ecuaciones (77) y (78), se obtiene, según el paso 4 por el método de eliminación tridiagonal, ya que la matriz λ es una matriz tridiagonal. El método consiste en dos barridos, uno hacia adelante, y otro hacia atrás. En el barrido hacia delante, se definen las siguientes matrices y vectores:

(78)

$$\begin{aligned} \Delta_{0} &= A_{0} \\ \Gamma_{j} &= \Delta_{j-1}^{-1} B_{j} \\ \Delta_{j} &= A_{j} - \Gamma_{j} C_{j-1} \end{aligned} \right\} \quad 1 \leq j \leq n \\ \underline{w}_{0} &= \underline{r}_{0} \\ \underline{w}_{j} &= \underline{r}_{j} - \Gamma_{j} \underline{w}_{j-1}; \qquad 1 \leq j \leq n \end{aligned}$$

En el barrido hacia atrás, se obtienen los valores de los vectores de incógnitas de la siguiente manera:

$$\underline{\delta}_{n} = \Delta_{n}^{-1} \underline{w}_{n}$$

$$\underline{\delta}_{j} = \Delta_{j}^{-1} (\underline{w}_{j} - C_{j} \underline{\delta}_{j+1}); \quad j = n-1, n-2, \dots, 0$$
(79)

Una vez calculado el vector $\underline{\delta}$, se modifican los valores de las variables según se indicó en la ecuación (73).

De acuerdo con el paso 5, se itera, hasta que el valor de la corrección del término $v|_{n=0}$ sea menor que una cierta tolerancia, lo que es equivalente a decir que $|\delta v_0| \leq tol$. Este criterio garantiza que la mayoría de los $|\delta x_i|$ también serán menores que la tolerancia, y el error general de la solución es mínimo. En la primera iteración sobre el borde inferior de la placa, osea χ = 0, todos los términos cruzados de las ecuaciones (67) a (71) se anulan. Esto implica que en las ecuaciones (67d) a (71d) y (74) y (75), los valores de las variables $f_{1,j}$, $u_{1,j}$, $v_{1,j}$, $\theta_{1,j}$ y $q_{1,j}$ no existen, por lo que los valores de $f_{2,1}$, $u_{2,1}$, $v_{2,1}$, $\theta_{2,1}$ y $q_{2,1}$ deben suponerse, ya que no hay estación anterior de la cual asignarles valores. Estos valores los corrige el algoritmo siguiendo el mismo método iterativo descrito, y de esta manera se barre toda la longitud de la placa. Se proponen como valores iniciales los siguientes perfiles:

 $\mathbf{f}(\eta) = -\frac{1}{3\eta_{\max}} \cdot \eta^3 + \frac{1}{2} \cdot \eta^2$

- $u(\eta) = -\frac{1}{\eta_{\max}} \cdot \eta^2 + r$ $v(\eta) = -\frac{2}{\eta_{\max}} \cdot \eta + 1$
- $t(\eta) = \theta_{u} \theta_{u} \frac{\eta}{\eta_{max}}$
- $q(\eta) = -\frac{\theta_{u}}{\eta_{max}}$

Estos perfiles son continuos y cumplen con las condiciones de frontera (72). La convergencia se logra generalmente en menos de 5 iteraciones. En diferencias finitas, se representan como:

$$f_{2,j} = -\frac{1}{3} \cdot \frac{(jh)^3}{nh} + \frac{1}{2} \cdot (jh)^2$$

$$u_{2,j} = \frac{(jh)^2}{nh} + jh$$
$$v_{2,j} = -2\frac{j}{n} + 1$$
$$t_{2,j} = 1 - \frac{j}{n}$$

$$q_{2,j} = -\frac{1}{nh}$$

Una vez resuelto el problema en la capa límite, se procede a resolver la ecuación de conducción en el sólido, de manera que se conozca su nueva distribución de temperaturas. La solución

(80)

(81)

de la capa límite generó un parámetro importante, que es el flujo de calor desde la superficie de la placa hacia el fluido. De la primera ley de la termodinámica, ese flujo de calor, es la cantidad de calor que el sólido pierde, que es lo que ocasiona su cambio de temperatura. El término $\frac{\partial \theta}{\partial \eta} \bigg|_{\eta=0}$ de la ecuación (65) corresponde al valor calculado $q_{1,0}$. Este se obtuvo para todos los nodos de la malla en la dirección de χ .

Cabe señalar que aunque este proceso se repite para cada incremento de tiempo, los únicos resultados necesarios en el siguiente tiempo son los valores de la temperatura y del flujo de calor en la superficie de la placa, por lo que se omitió, por simplicidad, el índice correspondiente a la coordenada tiempo. Rigurosamente, el flujo de calor (y el resto de las variables) se debería expresar como $q_{i,j,k}$, pero esto no es necesario hasta que se trabaje con la ecuación (65). En la ecuación (65), no importa lo que sucede lejos de la placa, por lo que el índice j se puede omitir, de forma análoga con lo anteriormente explicado. Por comodidad, se invertirá el orden de los índices i y k de aquí en adelante.

Para resolver la ecuación (65), se emplea el mismo método, que para el sistema de ecuaciones en el fluido, aunque esta vez, la ecuación es lineal y por consiguiente no es necesario iterar. Se siguen nuevamente los pasos ya descritos. Según el paso 1, se debe escribir la ecuación como sistema de primer

orden:

$$\frac{\partial \theta}{\partial \chi} = q_{\mu}$$
(82)

$$\frac{\partial \mathbf{q}}{\partial \chi} = \frac{1}{\alpha} \cdot \frac{\partial \theta}{\partial \tau} - \frac{1}{\alpha \chi^{1/4}} \cdot \frac{\partial \theta}{\partial \eta} \bigg|_{\eta=0}$$
(83)

Las condiciones inicial y de frontera dadas por (66) se transforman en:

$$\tau = 0;$$
 $\theta_{u} = 1$
 $\chi = 0, 1;$ $q_{u} = 0$ (84)

Según el paso 2, se discretiza el espacio de solución y se procede a escribir las ecuaciones (82) a (84) en diferencias finitas empleando la malla que se muestra a continuación:

Figura 4

El valor de i representa la posición longitudinal sobre la superficie de la placa. Se define m como el máximo valor de 1, que corresponde a $\chi = 1$; i=0 representa el borde inferior de la placa. La relación entre la mala finita y la coordenada

real la da la expresión $\chi = i\Delta\chi$, por consiguiente χ_{max} se representa como χ_{max} =im. La coordenada τ se representa por $\tau = k\Delta\tau$, y dado que no se requiere conocer más que los valores de los perfiles de temperatura y de flujo de calor en la placa en el tiempo τ previo para obtener los valores en el nuevo, los valores que tomará el índice de τ serán sólo 1 y 2. La ecuación (82), que es ordinaria, se centra en el punto medio del segmento P₁P₂, mientras que la ecuación (83) se expresa como diferencias con respecto al centro del rectángulo P₁P₂P₃P₄. Los valores de los perfiles se conocen en k = 1, y las incógnitas del sistema son los valores en k=2. De esta manera, el sistema en diferencias finitas se expresa como:

$$\theta_{u^2,i} - \theta_{u^2,i-1} - \frac{1}{2}\Delta \chi \cdot q_{u^2,i} - \frac{1}{2}\Delta \chi \cdot q_{u^2,i-1} = 0$$
(85)

$$q_{u2,1} - q_{u2,1-1} - \frac{1}{\alpha \Delta \tau} \Delta \chi \cdot \theta_{u2,1} - \frac{1}{\alpha \Delta \tau} \Delta \chi \cdot \theta_{u2,1-1} = = - q_{u1,1} + q_{u1,1-1} - \frac{1}{\alpha \Delta \tau} \Delta \chi \cdot (\theta_{u1,1} + \theta_{u2,1-1}) - \frac{2\Delta \chi q_{1,1}}{\alpha (i \Delta \chi)^{1/4}} = r_{1}$$
(86)

y las condiciones (84) se transforman en:

Para expresar las ecuaciones (85) a (87) en forma matricial según las ecuaciones (76) y (77), es necesario redefinir las matrices componentes de A y los vectores componentes de δ y <u>r</u>

de la siguiente manera:

para i=0:

$$\mathbf{A}_{0} = \begin{bmatrix} 0 & 1 \\ \\ \\ -1 & \frac{\Delta x}{2} \end{bmatrix}, \qquad \underline{\mathbf{r}}_{0} = \begin{bmatrix} 0 \\ \\ \\ 0 \end{bmatrix},$$

para
$$1 \le i \le m-1$$
:

$$A_{i} = \begin{bmatrix} -\frac{1}{\alpha\Delta\tau}\Delta\chi & 1 \\ & \\ -1 & -\frac{\Delta\chi}{2} \end{bmatrix}, \qquad \underline{r}_{i} = \begin{bmatrix} r_{i} \\ 0 \end{bmatrix},$$

para 1=m:

$$\mathbf{A}_{\mathbf{a}} = \begin{bmatrix} -\frac{1}{\alpha \Delta \tau} \Delta \chi & 1 \\ & & \\ 0 & 1 \end{bmatrix}, \quad \mathbf{\underline{r}}_{\mathbf{0}} = \begin{bmatrix} \mathbf{r}_{\mathbf{a}} \\ & \\ 0 \end{bmatrix},$$

para
$$1 \le i \le m$$
:
para $0 \le i \le m-1$:
 $B_i = \begin{bmatrix} -\frac{1}{\alpha \Delta \tau} \Delta \chi & -1 \\ & & \\ & & \\ & 0 & 0 \end{bmatrix}$, $C_i = \begin{bmatrix} 0 & 0 \\ \\ \\ 1 & -\frac{\Delta \chi}{2} \end{bmatrix}$

36

(88)

y para
$$0 \le i \le m$$
:

$$\underline{\delta}_{1} = \begin{bmatrix} \theta_{w2,1} \\ q_{w2,1} \end{bmatrix}$$

La solución al sistema de ecuaciones (76) definido por (88), se hace de acuerdo con el esquema de eliminación tridiagonal descrito por las ecuaciones (79), aunque en esta ocasión el sistema es lineal, y lo que se obtiene en el vector $\underline{\delta}_{l}$ es directamente la solución que se requería. Con este procedimiento se avanza en el tiempo, hasta que el perfil de temperaturas en la placa es en promedio alrededor del 10% del valor inicial.

Se elaboró un programa que resuelve la ecuación (76) definida por (88) acoplado a (76) definida por (78). En el apéndice se muestra el programa. En la siguiente sección se muestran las gráficas de resultados para diferentes valores de α y diferentes valores de Pr (que son los dos parámetros de los que depende la solución del problema).

RESULTADOS

En esta sección se presentan las gráficas de las soluciones del problema analizado para diferentes valores de los parámetros de los que depende. El grupo de gráficas presenta los valores de la temperatura adimensional θ en la placa como función de χ y τ para todos los pares de valores de Pr y α que se pueden formar a partir de los siguientes conjuntos:

> $\alpha = \{0.001, 0.01, 0.1, 1.0\}$ Pr = {0.01, 0.1, 0.72, 10, 20}

∝=0.01 Pr=0.72

α=0.1 Pr=10.0

CONCLUSIONES

En este trabajo se analizó la influencia de dos parámetros sobre el comportamiento dinámico del enfriamiento de una placa vertical en la que se considera la conducción longitudinal de calor. Se obtuvieron los resultados correspondientes a diferentes valores del parámetro adimensional α y distintos números de Prandtl, de manera que se ha representado una amplísima gama de casos físicos en forma adimensional. Con los resultados obtenidos, es posible determinar la influencia de los valores de los dos parámeros sobre la dinámica del fenómeno.

La influencia del valor de α sobre los perfiles de temperatura es muy clara a partir de las gráficas de resultados y de un análisis de la ecuación (42). Esta ecuación permite observar que el término dominante en la definición del parámetro α es la relación de las conductividades térmicas del sólido y del fluido. Por esto, es posible considerar a α como a una conductividad adimensional de la placa, evidentemente referida la conductividad del fluido. si la conductividad а adimensional es grande, ocurren grandes flujos de calor dentro de la placa en la dirección longitudinal que tienden a uniformar la temperatura de la placa. En pocas palabras, se observa en las gráficas que mientras mayor sea el valor de α , más planos serán los perfiles de temperatura de la placa.

De manera más clara, si el valor de α es muy pequeño (α = 0.001), el flujo de calor en la dirección axial dentro de la placa es tan pequeño que, el perfil de temperatura dentro de ésta se vuelve fuertemente dependiente de la posición; si se analiza la ecuación (43), se observa que en $\chi=0$, osea en el borde inferior de la placa, hay una singularidad, que físicamente representa un flujo de calor muy grande, lo cual hace que la temperatura de la placa baje rápidamente en un breve lapso de tiempo, ya que el espesor de la capa límite es muy pequeño, y el gradiente de temperatura entre la placa y el fluido es muy grande. Conforme se avanza en la dirección longitudinal, el espesor de la capa límite crece, con lo que el flujo de calor disminuye, y la temperatura de la placa baja más lentamente. Para el caso de conductividad adimensional grande (α = 1), la temperatura de la placa se mantiene prácticamente uniforme.

Los efectos del número de Prandtl son evidentes al observar las escalas de tiempo en las gráficas. Mientras menor es el valor de Pr, el enfriamiento de la placa es más lento. Esto es claro si se observa la definición de Pr dada después de la ecuación (28). Si su valor es chico, significa que domina el efecto de conductividad del fluido sobre su capacitancia térmica, y esto hace que el espesor de la capa límite térmica

45

and a second state of the second second

sea relativamente grande. Esto hace que el gradiente de temperatura entre el fluido y la placa sea pequeño y por lo tanto el flujo de calor de la placa al fluido se dificulte.

BIBLIOGRAFIA

- M. J. Sakikibara, S. Moriand y A. Tanimoto, Effect on wall conduction on convective heat transfer with laminar boundary layer, Heat Transfer- Jap. Research, 2, pag. 94-103, (1973).
- A. V. Luikov, Conjugate convective heat transfer problems, Int. Journal Heat Mass Transfer, 17, pag. 257-265, (1974).
- P. Payvar, Convective heat transfer to laminar flow over a plate of finite thickness, Int. Journal Heat Mass Transfer, 20, pag. 431-433, (1977).
- M. J. Lighthill, Contributions to the theory of heat transfer through a laminar boundary layer, Proc. Roy. Soc., A202, pag. 359, (1950).
- M. Kelleher, Free convection from a vertical plate with discontinuous vall temperature, Journal of Heat Transfer, 349-356, Nov. 1971.
- A. Messiter y A. Liñán, The vertical plate in laminar free convection: effects of leading and trailing edges and discontinuous temperature, Journal of Applied Mathematics and Physics, 26, pag. 633, (1976).
- M. S. Sohal and J. R. Howell, Determination of plate temperature in case of combined conduction, convection and radiation heat exchange, Int. Journal Heat Mass Transfer, 16, pag. 2055-2066, (1973).
- R. Karvinen, Some new results for conjugated heat transfer in a flat plate, Int. Journal Heat Mass Transfer, 21, pag. 1261-1264, (1978).
- C. Treviño and A. Liñán, External heating of a flat plate in a convective flow, Int. Journal Heat Mass Transfer, 27, pag. 1067-1073, (1984).
- A. Vallejo y C. Treviño, Convective Cooling of a thin flat plate in laminar and turbulent flows, Int. Journal Heat Mass Transfer, 33, pag. 543 - 554, (1990).

- T. Cebeci y P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Cap. 13, Springer Verlag, Berlin, 1984.
- F. P. Incropera y M. de Witt, Introduction to Heat Transfer, Cap. 9, John Wiley and Sons, 1988.

APENDICE: PROGRAMA

Aquí se muestra el programa en lenguajé PASCAL empleado para resolver el sistema de ecuaciones dado por las ecuaciones (76) y (88). El programa es particularmente grande. Esto se debe a que para evitar los graves problemas de convergencia que se habían presentado, las matrices de 5x5 y de 2x2 se invirtieron recurriendo a fórmulas analíticas, específicamente al método de la obtención de la adjunta multiplicada por el inverso del determinante. A continuación aparece la impresión del programa:

program coupled_keller(input,output);

type	mat	=	array[01000,15,15] of double;
	vec	22	array[01000,15] of double;
	vai	=	array[12,01000] of double;
	ma	=	array[15,15] of double;
	ve	=	array[15] of double;
	vic	22	array[12,0110] of double;
	vi	=	array[0110] of double;

```
var A,B,C,Delta,Delinv,tau:mat;
    r,w,increm:vec;
    f,u,v,t,q:vai;
    prod:ve;
    proima;
    tw,qw:vic;
    calor:vi;
```

cont, i, j, k, l, n, orden, itcount, numest, ene, ifrec: integer;

inte, tol, h, Pr, d22, d55, X, d, tiempo, dtiempo, alfa: double;

procedure sweeps;

{rutina que invierte la matriz de 5x5}
procedure inv55;

{Determinante de la matriz de 5x5} function det55(b11,b12,b13,b14,b15,b21,b22,b23,b24,b25,b31,b32,b33,

b34, b35, b41, b42, b43, b44, b45, b51, b52, b53, b54, b55; double) : double

begin det55:=b11*(b22*(b33*(b44*b55-b45*b54)+b34*(b45*b53-b43*b55)+b 35*(b43*b54-b44* b53)) +b23*(b32*(b45*b54-B44*b55)+b34*(b42*b55-b45*b52)+b35*(b44*b52 -b42*b54)) +b24*(b32*(b43*b55-b45*b53)+b33*(b45*b52-b42*b55)+b35*(b42*b53) -b43*b52)) +b25*(b32*(b44*b53-b43*b54)+b33*(b42*b54-b44*b52)+b34*(b43*b52) -b42*b53))) +b12*(b21*(b33*(b45*b54-b44*b55)+b34*(b43*b55-b45*b53)+b35*(b4 4*b53-b43*b54)) +b23*(b31*(b44*b55-B45*b54)+b34*(b45*b51-b41*b55)+b35*(b41*b54 -b44*b51)) +b24*(b31*(b45*b53-b43*b55)+b33*(b41*b55-b45*b51)+b35*(b43*b51 ~b41*b53)) +b25*(b31*(b43*b54~b44*b53)+b33*(b44*b51~b41*b54)+b34*(b41*b53 -b43*b51))) +b13*(b21*(b32*(b44*b55-b45*b54)+b34*(b45*b52-b42*b55)+b35*(b4 2*b54-b44*b52)) +b22*(b31*(b45*b54-B44*b55)+b34*(b41*b55-b45*b51)+b35*(b44*b51 -b41*b54)) +b24*(b31*(b42*b55-b45*b52)+b32*(b45*b51-b41*b55)+b35*(b41*b52 -b42*b51)) +b25*(b31*(b44*b52-b42*b54)+b32*(b41*b54-b44*b51)+b34*(b42*b51 -b41*b52))) +b14*(b21*(b32*(b45*b53-b43*b55)+b33*(b42*b55-b45*b52)+b35*(b4 3*b52-b42*b53)) +b22*(b31*(b43*b55-B45*b53)+b33*(b45*b51-b41*b55)+b35*(b41*b53 -b43*b51)) +b23*(b31*(b45*b52-b42*b55)+b32*(b41*b55-b45*b51)+b35*(b42*b51 -b41*b52)) +b25*(b31*(b42*b53-b43*b52)+b32*(b43*b51-b41*b53)+b33*(b41*b52)-b42*b51))) +b15*(b21*(b32*(b43*b54-b44*b53)+b33*(b44*b52-b42*b54)+b34*(b4 2*b53-b43*b52)) +b22*(b31*(b44*b53-B43*b54)+b33*(b41*b54-b44*b51)+b34*(b43*b51 ~b41*b53)) +b23*(b31*(b42*b54-b44*b52)+b32*(b44*b51-b41*b54)+b34*(b41*b52 -b42*b51)) +b24*(b31*(b43*b52-b42*b53)+b32*(b41*b53-b43*b51)+b33*(b42*b51 -b41*b52))); end; {Fin de determinante de 5x5} {Determinante de 4x4} function det44(a11,a12,a13,a14,a21,a22, a23,a24,a31,a32,a33,a34,a41,a42,a43,a44:double):double; begin det44:=a11*(a22*(a33*a44-a34*a43)+a23*(-a32*a44+a34*a42)+a24*(a32*a43-a33*a42))

```
+a12*(a21*(-a33*a44+a34*a43)+a23*(a31*a44-a34*a41)+a24*(-a31*a
43+a33*a41))
+a13*(a21*(a32*a44-a34*a42)+a22*(-a31*a44+a34*a41)+a24*(a31*a4
2-a32*a41))
+a14*(a21*(-a32*a43+a33*a42)+a22*(a31*a43-a33*a41)+a23*(-a31*a
42+a32*a41));
 end:
{Fin de determinante 4x4}
begin
d55:=det55(delta[i,1,1],delta[i,1,2],delta[i,1,3],delta[i,1,4]
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
4],
delta[i,2,5],delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,
4],
delta[i,3,5],delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,
4],
delta[i,4,5],delta[i,5,1],delta[i,5,2],delta[i,5,3],delta[i,5,
4],
        delta[i,5,5]);
DELINV[1,1,1]:=
det44(delta[i,2,2],delta[i,2,3],delta[i,2,4],
delta[i,2,5],delta[i,3,2],delta[i,3,3],delta[i,3,4],delta[i,3,
5],
delta[i,4,2],delta[i,4,3],delta[i,4,4],delta[i,4,5],delta[i,5,
21,
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
DELINV[i,1,2]:=-det44(delta[i,1,2],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,3,2],delta[i,3,3],delta[i,3,4],delta[i,3,
5],
delta[i,4,2],delta[i,4,3],delta[i,4,4],delta[i,4,5],delta[i,5,
2],
     delta[i,5,3].delta[i,5,4].delta[i,5,5])/d55;
DELINV[1,1,3]:=
det44(delta[i,1,2],delta[i,1,3],delta[i,1,4],
delta(i,1,5), delta(i,2,2), delta(i,2,3), delta(i,2,4), delta(i,2,
5],
delta[i,4,2],delta[i,4,3],delta[i,4,4],delta[i,4,5],delta[i,5,
2],
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
DELINV[i,1,4]:=-det44(delta[i,1,2],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,2,2],delta[i,2,3],delta[i,2,4],delta[i,2,
51,
delta[i,3,2],delta[i,3,3],delta[i,3,4],delta[i,3,5],delta[i,5,
2],
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
DELINV[1,1,5]:=
```

```
det44(delta[i,1,2],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,2,2],delta[i,2,3],delta[i,2,4],delta[i,2,
51,
delta[i,3,2],delta[i,3,3],delta[i,3,4],delta[i,3,5],delta[i,4,
2],
     delta[i,4,3],delta[i,4,4],delta[i,4,5])/d55;
DELINV[i,2,1]:=-det44(delta[i,2,1],delta[i,2,3],delta[i,2,4],
delta[i,2,5],delta[i,3,1],delta[i,3,3],delta[i,3,4],delta[i,3,
5],
delta[i,4,1],delta[i,4,3],delta[i,4,4],delta[i,4,5],delta[i,5,
1],
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
  DELINV[1,2,2]:=
det44(delta[i,1,1],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,3,1],delta[i,3,3],delta[i,3,4],delta[i,3,
51,
delta[i,4,1],delta[i,4,3],delta[i,4,4],delta[i,4,5],delta[i,5,
1],
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
DELINV[i,2,3]:= det44(delta[i,1,1],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,2,1],delta[i,2,3],delta[i,2,4],delta[i,2,
5],
delta[i,4,1],delta[i,4,3],delta[i,4,4],delta[i,4,5],delta[i,5,
1],
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
DELINV[1,2,4]:=
det44(delta[i,1,1],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,2,1],delta[i,2,3],delta[i,2,4],delta[i,2,
5],
delta[i,3,1],delta[i,3,3],delta[i,3,4],delta[i,3,5],delta[i,5,
1],
     delta[i,5,3],delta[i,5,4],delta[i,5,5])/d55;
DELINV[i,2,5]:=-det44(delta[i,1,1],delta[i,1,3],delta[i,1,4],
delta[i,1,5],delta[i,2,1],delta[i,2,3],delta[i,2,4],delta[i,2,
5],
delta[i,3,1],delta[i,3,3],delta[i,3,4],delta[i,3,5],delta[i,4,
1],
     delta[i,4,3],delta[i,4,4],delta[i,4,5])/d55;
DELINV[1,3,1]:=
det44(delta[i,2,1],delta[i,2,2],delta[i,2,4],
delta[i,2,5],delta[i,3,1],delta[i,3,2],delta[i,3,4],delta[i,3,
51,
delta[i,4,1],delta[i,4,2],delta[i,4,4],delta[i,4,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,4],delta[i,5,5])/d55;
```

```
DELINV[i,3,2]:=-det44(delta[i,1,1],delta[i,1,2],delta[i,1,4],
delta[i,1,5],delta[i,3,1],delta[i,3,2],delta[i,3,4],delta[i,3,
5],
delta[i,4,1],delta[i,4,2],delta[i,4,4],delta[i,4,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,4],delta[i,5,5])/d55;
DELINV[1,3,3]:=
det44 (delta[i,1,1], delta[i,1,2], delta[i,1,4],
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,4],delta[i,2,
51,
delta[i,4,1],delta[i,4,2],delta[i,4,4],delta[i,4,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,4],delta[i,5,5])/d55;
DELINV[i,3,4]:=-det44(delta[i,1,1],delta[i,1,2],delta[i,1,4],
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,4],delta[i,2,
5],
delta[i,3,1],delta[i,3,2],delta[i,3,4],delta[i,3,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,4],delta[i,5,5])/d55;
DELINV[1,3,5]:=
det44 (delta[i,1,1], delta[i,1,2], delta[i,1,4],
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,4],delta[i,2,
51,
delta[i,3,1],delta[i,3,2],delta[i,3,4],delta[i,3,5],delta[i,4,
1],
     delta[i,4,2],delta[i,4,4],delta[i,4,5])/d55;
DELINV[i,4,1]:=-det44(delta[i,2,1],delta[i,2,2],delta[i,2,3],
delta[i,2,5],delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,
5],
delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,5])/d55;
DELINV[1,4,2]:=
det44 (delta[i,1,1], delta[i,1,2], delta[i,1,3],
delta[1,1,5],delta[1,3,1],delta[1,3,2],delta[1,3,3],delta[1,3,
5],
delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,5])/d55;
DELINV[i,4,3]:=-det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
51,
delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,5])/d55;
```

```
DELINV[1,4,4]:=
det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
5],
delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,5],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,5])/d55;
DELINV[i,4,5]:=-det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,5],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
5],
delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,5],delta[i,4,
1},
     delta[i,4,2],delta[i,4,3],delta[i,4,5])/d55;
DELINV[1,5,1]:=
det44(delta[i,2,1],delta[i,2,2],delta[i,2,3],
delta[i,2,4],delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,
4],
delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,4],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,4])/d55;
DELINV[i,5,2]:=-det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,4],delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,
4],
delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,4],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,4])/d55;
DELINV[1,5,3]:=
det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,4],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
4],
delta[i,4,1],delta[i,4,2],delta[i,4,3],delta[i,4,4],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,4])/d55;
DELINV[i,5,4]:=-det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,4],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
4],
delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,4],delta[i,5,
1],
     delta[i,5,2],delta[i,5,3],delta[i,5,4])/d55;
DELINV[1,5,5]:=
det44(delta[i,1,1],delta[i,1,2],delta[i,1,3],
delta[i,1,4],delta[i,2,1],delta[i,2,2],delta[i,2,3],delta[i,2,
4],
delta[i,3,1],delta[i,3,2],delta[i,3,3],delta[i,3,4],delta[i,4,
1],
     delta[i,4,2],delta[i,4,3],delta[i,4,4])/d55;
end;
```

```
procedure inv22;
begin
d22:=delta[i,1,1]*delta[i,2,2]-delta[i,2,1]*delta[i,1,2];
 delinv[i,1,1]:=delta[i,2,2]/d22;
 delinv[i,1,2]:=-delta[i,1,2]/d22;
 delinv[i,2,1]:=-delta[i,2,1]/d22;
 delinv[i,2,2]:=delta[i,1,1]/d22;
end:
begin
{principio del forward sweep}
{delta 0}
for i:=1 to orden do
 begin
  for k:=1 to orden do
   delta[0,i,k]:=a[0,i,k];
 end;
{W 0}
for i:=1 to orden do w[0,i]:=r[0,i];
for j:=1 to n do
 begin
  i:=j-1;
  if orden=5 then
   inv55
 else
   inv22:
 for i:=1 to orden do
   begin
    for 1:=1 to orden do
    begin
      tau[j,i,1]:=0;
      for k:=1 to orden do
       tau[j,i,1]:=b[j,i,k]*delinv[j-1,k,1]+tau[j,i,1];
    end:
  end;
 for i:=1 to orden do
  begin
   for 1:=1 to orden do
    begin
     pro[i,1]:=0;
      for k:=1 to orden do
      pro[i,1]:=tau[j,i,k]*c[j-1,k,1]+pro[i,1];
    end:
  end;
 for i:=1 to orden do
  begin
   for 1:=1 to orden do
```

2227 2788 1 57 2789

```
delta[j,i,1]:=a[j,i,1]-pro[i,1];
   end:
  for i:=1 to orden do
   begin
    prod[i]:=0;
    for k:=1 to orden do
     prod[i]:=tau[j,i,k]*w[j-1,k]+prod[i];
   end;
  for i:=1 to orden do
   begin
    w[j,i]:=r[j,i]-prod[i];
   end:
end:
{fin del forward sweep}
{principio del backward sweep}
  i:=n;
  if orden=5 then
   inv55
  else
   inv22:
  for i:=1 to orden do
   begin
    increm[n,i]:=0;
    for k:=1 to orden do
     increm[n,i]:=delinv[n,i,k]*w[n,k]+increm[n,i];
   end;
 for j:=n-1 downto 0 do
  begin
   for i:=1 to orden do
    begin
     prod[i]:=0;
     for k:=1 to orden do
      prod[i]:=c[j,i,k]*increm[j+1,k]+prod[i];
    end;
   for i:=1 to orden do
    begin
     increm[j,i]:=0;
     for k:=1 to orden do
      increm[j,i]:=delinv[j,i,k]*(w[j,k]-prod[k])+increm[j,i];
    end:
 end;
{fin del backward sweep}
end;
{fin de sweeps}
```

```
{PROGRAMA PRINCIPAL}
begin
{parametros de entrada} -
   readln(ene);
   readln(h);
   readln(Pr);
   readln(tol);
   readln(d);
   readln(dtiempo);
   readln(alfa);
x:=0;numest:=0;
repeat
 numest:=numest+1;
 x := x + d:
until x>=1;
tiempo:=0;ifrec:=0;
for cont:=0 to numest do
 begin
  tw[1,cont]:=1;tw[2,cont]:=1;
  qw[1,cont]:=0;qw[2,cont]:=0;
 end;
repeat
{Primera aproximacion}
   n:=ene;
   for j:=0 to n do
     begin
      f[2,j]:=-(j*h)*(j*h)*(j*h)/(3*n*h)+(j*h)*(j*h)/2;
      u[2,j]:=j*h-(j*h)*(j*h)/(n*h);
      v[2, 1]:=1-2*j/n;
      t[2,j]:=tw[2,0]*(1-j/n);
      q[2,1]:=-tw[2,0]/(h*n);
      f[1,j]:=0;
      u[1,j]:=0;
      v[1,j]:=0;
      t[1,j]:=0;
      q[1,j]:=0;
     end;
X:=0;cont:=0;
repeat
itcount:=0;
  repeat
   itcount:=itcount+1;
{formacion de las n+1 matrices y vectores independientes}
j:=0;
A[j,1,1]:=1;
A[],1,2]:=0;
```

```
57
```

A[1.1.3]:=0:	
A[1,1,4]:=0:	
A(2, 1, 5) = 0	
λ_{1}^{-1} , λ_{1}^{-1} , λ_{1}^{-0} ,	
A[],2,1];-U;	
A[],2,2]:=1;	
A[],2,3]:=0;	
A[j,2,4]:=0;	
A[j,2,5]:=0;	
A(1.3.1):=0;	
A[1.3.2]:=0:	
A(3, 3, 3) = 0	
λ_{1}^{-1} ,	
A[],3,5]:=0;	
A[],4,1]:=0;	
A[],4,2]:=-1;	
A[j,4,3]:=-h/2;	 A second s
A(1.4.4):=0;	
A(1.4.5):=0:	المتحافظ والمتحج والمتحج والمتحج والمتحج والمتحد والمتحد والمتحج والمتحج والمتحج والمتحج والمتحد والمتحد والمتح
A[], 5, 1]0,	
A[],5,2]:-0;	
A[],5,3]:=0;	
A[],5,4]:=-1;	
A[j,5,5]:=-h/2;	
r[],1]:=0;	
r[],1]:=0; r[j,2]:=0;	
r[],1]:=0; r[],2]:=0; r[],3]:=0;	
r[],1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[2.il)+b*(v[2.i+1]+v[2.i])/2:
r[],1]:=0; r[],2]:=0; r[],3]:=0; r[],4]:=-(u[2,j+1]-u[2,j])+h*(v[2,j+1]+v[2,j])/2;
r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[2,j])+h*(V[2,j+1]+V[2,j])/2; 2,j])+h*(g[2,j+1]+g[2,j])/2;
r[],1]:=0; r[j,2]:=0; r[],3]:=0; r[],4]:=-(u[2,j+1]-u[r[],5]:=-(t[2,j+1]-t[2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
r[],1]:=0; r[],2]:=0; r[],3]:=0; r[],4]:=-(u[2,j+1]-u[r[],5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin	2,j])+h*(V[2,j+1]+V[2,j])/2; 2,j])+h*(g[2,j+1]+g[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(g[2,j+1]+g[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0; C[j,1,5]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,1,5]:=0; C[j,1,5]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,2]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,2]:=0; C[j,2,2]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,2]:=0; C[j,2,3]:=0; C[j,2,3]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,4]:=0; C[j,2,4]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,2,1]:=0; C[j,2,2]:=0; C[j,2,4]:=0; C[j,2,5]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,5]:=0; C[j,2,5]:=0; C[j,3,1]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,5]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,5]:=0; C[j,3,2]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,1,4]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,5]:=0; C[j,2,5]:=0; C[j,3,1]:=0; C[j,3,2]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,3,2]:=0; C[j,3,2]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,3,4]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(g[2,j+1]+g[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,4]:=0; C[j,2,5]:=0; C[j,3,1]:=0; C[j,3,3]:=0; C[j,3,4]:=0; C[j,3,4]:=0; C[j,3,4]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(g[2,j+1]+g[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,3,1]:=0; C[j,3,2]:=0; C[j,3,4]:=0; C[j,3,4]:=0; C[j,3,4]:=0; C[j,3,5]:=0; C[j,3,5]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,4]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,3,1]:=0; C[j,3,2]:=0; C[j,3,3]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,4,1]:=0; C[j,4,1]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,1,4]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,5]:=0; C[j,2,5]:=0; C[j,3,1]:=0; C[j,3,1]:=0; C[j,3,3]:=0; C[j,3,4]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,3,5]:=0; C[j,4,1]:=0; C[j,4,2]:=1; C[j,4,2]:=1; C[j,4,2]:=1; C[j,4,2]:=1; C[j,4,2]:=1;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,3,1]:=0; C[j,3,2]:=0; C[j,3,2]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,3,4]:=0; C[j,4,2]:=1; C[j,4,3]:=-h/2;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(g[2,j+1]+g[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[r[j,5]:=-(t[2,j+1]-t[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,3]:=0; C[j,1,5]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,3,2]:=0; C[j,3,2]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,3,3]:=0; C[j,4,1]:=0; C[j,4,2]:=1; C[j,4,4]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;
<pre>r[j,1]:=0; r[j,2]:=0; r[j,3]:=0; r[j,4]:=-(u[2,j+1]-u[for j:=0 to n-1 do begin C[j,1,1]:=0; C[j,1,2]:=0; C[j,1,2]:=0; C[j,1,4]:=0; C[j,2,1]:=0; C[j,2,1]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,2,3]:=0; C[j,3,3]:=0; C[j,3,4]:=0; C[j,3,4]:=0; C[j,4,2]:=1; C[j,4,3]:=-h/2; C[j,4,4]:=0; C[j,4,5]:=0;</pre>	2,j])+h*(v[2,j+1]+v[2,j])/2; 2,j])+h*(q[2,j+1]+q[2,j])/2;

```
C[j,5,2]:=0;
C[j,5,3]:=0;
C[j,5,4]:=1;
C[j,5,5]:=-h/2;
end;
for j:=1 to n do
begin
B[j,1,1]:=-1;
B[j,1,2]:=-h/2;
B[j,1,3]:=0;
B[j,1,4]:=0;
B[j,1,5]:=0;
B[j,2,1]:=(3*h/16+x*h/(4*d))*(v[2,j]+v[2,j-1]);
B[j,2,2] := -h * (u[2,j]+u[2,j-1])/4
-x*h*(2*(u[2,j]+u[2,j-1])-(u[1,j]+u[1,j-1]))/(4*d);
B[j,2,3]:=-1+3*h*(f[2,j]+f[2,j-1])/16
          +x*h*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d);
B[j,2,4]:=h/2;
B[j,2,5]:≃0;
B[j,3,1] := (3*h*Pr/16+x*h*Pr/(4*d))*(q[2,j]+q[2,j-1]);
B[j,3,2]:=-x*h*Pr*(t[2,j]+t[2,j-1]-t[1,j]-t[1,j-1])/(4*d);
B[j,3,3]:=0;
B[j,3,4]:=-x*h*Pr*(u[2,j]+u[2,j-1])/(4*d);
B[j,3,5]:=-1+3*h*Pr*(f[2,j]+f[2,j-1])/16
          +x*h*Pr*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d);
B[j,4,1]:=0;
B[j,4,2]:=0;
B[j,4,3]:=0;
B[],4,4]:=0;
B[j,4,5]:=0;
B[],5,1]:=0;
B[j,5,2]:=0;
B[],5,3]:=0;
B[j,5,4]:=0;
B[j,5,5]:=0;
end;
for j:=1 to n-1 do
begin
A[j,1,1]:=1;
A[j, 1, 2] := -h/2;
A[j,1,3]:=0;
A[j,1,4]:=0;
A[j,1,5]:=0;
A[j,2,1]:=(3*h/16+x*h/(4*d))*(v[2,j]+v[2,j-1]);
A[j,2,2]:=-h*(u[2,j]+u[2,j-1])/4
          -x*h*(2*(u[2,j]+u[2,j-1])-(u[1,j]+u[1,j-1]))/(4*d);
A[j,2,3]:=1+3*h*(f[2,j]+f[2,j-1])/16
          +x*h*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d);
A[j,2,4]:=h/2;
A[j,2,5]:=0;
A[j,3,1]:=(3*h*Pr/16+x*h*Pr/(4*d))*(q[2,j]+q[2,j-1]);
```

```
A[j,3,2]:=-x*h*Pr*(t[2,j]+t[2,j-1]-t[1,j]-t[1,j-1])/(4*d);
A[j,3,3]:=0;
A[j,3,4]:=-x*h*Pr*(u[2,j]+u[2,j-1])/(4*d);
A[j,3,5]:=1+3*h*Pr*(f[2;j]+f[2,j-1])/16
           +x*h*Pr*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d);
A[j,4,1]:=0;
A[j,4,2]:=-1;
A[j,4,3]:=-h/2;
A[j,4,4]:=0;
A[j,4,5]:=0;
A[j,5,1]:=0;
A[1,5,2]:=0;
A[j,5,3]:=0;
A[j,5,4]:=-1;
A[1,5,5]:=-h/2;
 r[j,1] := -(f[2,j]-f[2,j-1]) + h*(u[2,j]+u[2,j-1])/2; 
r[j,2] := -(v[2,j]-v[2,j-1]) - h*(t[2,j]+t[2,j-1])/2 
         +h*(u[2,j]+u[2,j-1])*(u[2,j]+u[2,j-1])/8
         -3*h*(f[2,j]+f[2,j-1])*(v[2,j]+v[2,j-1])/16
+x*h*(u[2,j]+u[2,j-1])*(u[2,j]+u[2,j-1]-u[1,j]-u[1,j-1])/(4*d)
-x*h*(v[2,j]+v[2,j-1])*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d)
r[j,3]:=-(q[2,j]-q[2,j-1])
-3*h*Pr*(f[2,j]+f[2,j-1])*(q[2,j]+q[2,j-1])/16
+x*h*Pr*(u[2,j]+u[2,j-1])*(t[2,j]+t[2,j-1]-t[1,j]-t[1,j-1])/(4
*d)
-x*h*Pr*(q[2,j]+q[2,j-1])*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4
*d);
r[j,4]:=-(u[2,j+1]-u[2,j])+h*(v[2,j+1]+v[2,j])/2;
r[j,5]:=-(t[2,j+1]-t[2,j])+h*(q[2,j+1]+q[2,j])/2;
end;
j:=n;
Å[j,1,1]:=1;
A[j, 1, 2] := -h/2;
A[j,1,3]:=0;
A[j,1,4]:=0;
A[j,1,5]:=0;
A[j,2,1]:=(3*h/16+x*h/(4*d))*(v[2,j]+v[2,j-1]);
A[j,2,2]:=-h*(u[2,j]+u[2,j-1])/4
-x*h*(2*(u[2,j]+u[2,j-1])-(u[1,j]+u[1,j-1]))/(4*d);
A[j,2,3]:=1+3*h*(f[2,j]+f[2,j-1])/16
           +x*h*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d);
A[j,2,4]:=h/2;
A[1,2,5]:=0;
A[j,3,1]:=(3*h*Pr/16+x*h*Pr/(4*d))*(q[2,j]+q[2,j-1]);
A[j,3,2] := -x + h + Pr + (t[2,j]+t[2,j-1]-t[1,j]-t[1,j-1])/(4 + d);
A[j,3,3]:=0;
```

```
60
```

```
A[j,3,4]:=-x*h*Pr*(u[2,j]+u[2,j-1])/(4*d);
A[j,3,5]:=1+3*h*Pr*(f[2,j]+f[2,j-1])/16
           +x*h*Pr*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4*d);
A[j,4,1]:=0;
A[j,4,2]:=1;
A[j,4,3]:=0;
A[j,4,4]:=0;
A[],4,5]:=0;
A[j,5,1]:=0;
A[j,5,2]:=0;
A[j,5,3]:=0;
A[j,5,4]:=1;
A[j,5,5]:=0;
r[j,1]:=-(f[2,j]-f[2,j-1])+h*(u[2,j]+u[2,j-1])/2;
r[j,2]:=-(v[2,j]-v[2,j-1])-h*(t[2,j]+t[2,j-1])/2
        +h*(u[2,j]+u[2,j-1])*(u[2,j]+u[2,j-1])/8
        -3*h*(f[2,j]+f[2,j-1])*(v[2,j]+v[2,j-1])/16
+x*h*(u[2,j]+u[2,j-1])*(u[2,j]+u[2,j-1]-u[1,j]-u[1,j-1])/(4*d)
-x*h*(v_{2},j_{1}+v_{2},j_{1})*(f_{2},j_{1}+f_{2},j_{1}-f_{1},j_{1}-f_{1})/(4*d)
r[j,3]:=-(q[2,j]-q[2,j-1])
        -3*h*Pr*(f[2,j]+f[2,j-1])*(q[2,j]+q[2,j-1])/16
+x*h*Pr*(u[2,j]+u[2,j-1])*(t[2,j]+t[2,j-1]-t[1,j]-t[1,j-1])/(4
*d)
-x*h*Pr*(q[2,j]+q[2,j-1])*(f[2,j]+f[2,j-1]-f[1,j]-f[1,j-1])/(4
*d);
r[],4]:=0;
r[j,5]:=0;
{matrices definidas}
orden:=5;n:=ene;
SWEEPS;
for j:=0 to n do
 begin
  f[2,j]:=f[2,j]+increm[j,1];
  u[2,j]:=u[2,j]+increm[j,2];
v[2,j]:=v[2,j]+increm[j,3];
  t[2,j]:=t[2,j]+increm[j,4];
  g[2,j]:=g[2,j]+increm[j,5];
 end;
Until abs(increm[0,3])<=tol;
for i:=0 to n do
 begin
  f[1,j]:=f[2,j];
  u[1,j]:=u[2,j];
```

```
v[1,j]:=v[2,j];
  t[1,j]:=t[2,j];
 q[1,]]:=q[2,];
 end;
calor[cont]:=q[2,0];
x:=x+d;
t[2,0]:=tw[2,cont+1];
cont:=cont+1;
until cont>numest;
{redefinicion de matrices}
i:=0;x:=0;
A[1,1,1]:=0;
A[1,1,2]:=1;
A[1,2,1]:=-1;
A[i,2,2]:=-d/2;
C[1,1,1]:=0;
C[i,1,2]:=0;
C[1,2,1]:=1;
C[1,2,2]:=-d/2;
r[i,1]:=0;r[i,2]:=0;
for i:=1 to numest-1 do
begin
 A[i,1,1]:=-d/(alfa*dtiempo);
 A[1,1,2]:=1;
 A[1,2,1]:=-1;
A[1,2,2] := -d/2;
r[i,1]:=-qw[1,i]+qw[2,i-1]-d*(tw[1,i]+tw[1,i-1])/(alfa*dtiempo
١
        -2*d*calor[i]/(alfa*(exp(0.25*ln(i*d))));
r[i,2]:=0;
B[i,1,1]:=-d/(alfa*dtiempo);
B[1,1,2]:=-1;
 B[1,2,1]:=0;
 B[1,2,2]:=0;
C[i,1,1]:=0;
 C[1,1,2]:=0;
 C[1,2,1]:=1;
 C[i,2,2]:=-d/2;
end;
i:=numest;
A[i,1,1]:=-d/(alfa*dtiempo);
A[1,1,2]:=1;
A[1,2,1]:=0;
```

```
62
```

```
A[1,2,2]:=1;
r[i,1]:=-qw[1,i]+qw[2,i-1]-d*(tw[1,i]+tw[1,i-1])/(alfa*dtiempo
        -2*d*calor[i]/(alfa*(exp(0.25*ln(i*d))));
r[i,2]:=0;
B[i,1,1]:=-d/(alfa*dtiempo);
B[i,1,2]:=-1;
B[i,2,1]:=0;
B[i,2,2]:=0;
{matrices redefinidas}
orden:=2;n:=numest;
sweeps;
inte:=0;
tiempo:=ciempo+dtiempo;ifrec:=ifrec+1;
if (ifrec=2) or (ifrec=10) or (ifrec=20)
   or (ifrec=50) or (ifrec=100) or (ifrec=200) then
begin
 writeln;
 writeln('tau = ',tiempo:5:3);
end;
x:=0;
for i:=0 to numest do
 begin
  tw[2,i]:=increm[i,1];tw[1,i]:=tw[2,i];
  qw[2,i]:=increm[i,2];qw[1,i]:=qw[2,i];
  if (ifrec=2) or (ifrec=10) or (ifrec=20)
   or (ifrec=50) or (ifrec=100) or (ifrec=200) then
  writeln(x:5:3,' ',tw[2,i]:11:8);
 x := x + d:
 end;
for i:=0 to numest-1 do
  inte:=inte+(tw[2,i+1]+tw[2,i])*d/2;
  if (ifrec=2) or (ifrec=10) or (ifrec=20)
   or (ifrec=50) or (ifrec=100) or (ifrec=200) then
  writeln(inte:11:8);
until tiempo>10;
end.
```