

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

ESTUDIO AMBIENTAL EN UNA EMPRESA REFINADORA DE COBRE

JOSE F. G. ROSALES OSCOS, INGENIERO QUIMICO

México, D.F. 1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE: PROF. MARGARITA EUGENIA GUTIERREZ RUIZ

VOCAL: PROF. MA. DEL CARMEN DURAN DOMINGUEZ DE BAZUA

SECRETARIO: PROF. JOAN GENESCA LLONGUERAS

1er. SUPLENTE: PROF. SILVIA CASTILLO BLUM

2do. SUPLENTE: PROF. RODOLFO TORRES BARRERA

SITIO CONDE SE DESARROLLO EL TEMA:

INSTITUTO DE GEOGRAFIA

FLANTA REFINADORA DE COBRE

ASESUR DEL TEMA: 4

M.C. MARGARITA EUGENIA GUTTERREZ RUIZ

Mr. Eugene J

SUPERVISOR TECNICO:

DR. JOAN GENESCA LLONGUERAS

SUSTENTANTES:

ARANDA RODRIGUEZ ROCIO

RAMIREZ BURGOS LANDY I.

ROSALES OSCOS JOSE F.G.

J. Jaca

Louly Honors

nul f Moren)

INDICE

r. :	INTRODUCCION	1
	I.1 DEFINICION DEL PROBLEMA	
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	
	I.2 ESTRATEGIA	2
	I.3 OBJETIVOS	
	ANTECEDENTES	
7.1.	ANTECEDENTES	8
	II.1 BREVE HISTORIA DE LA REFINACION DEL COBRE	
	II.2 REFINACION DE COBRE POR VIA ELECTROLITICA	9
	II.2.1 Generalidades	9
	II.2.2 Sistemas de refinado	10
	II.2.3 Aspectos generales del proceso	
	II.3 COMPORTAMIENTO DE IMPUREZAS EN LA REFINACION	
	ELECTROLITICA DEL COBRE	12
	II.4 FUNDAMENTOS DE UNA AUDITORIA AMBIENTAL	16
	II.4.1 Generalidades	16
		17
~~~	PARTE EXPERIMENTAL	• •
TIT	PARTE EXPERIMENTAL	73
	III.1 AUDITORIA AMBIENTAL EN LA PLANTA	
	REFINADORA DE COBRE	19
		19
	III.1.2 Descripción de los procesos	19
	Manejo de materiales	19
	Fundición de ánodos	21
	Electrólisis	
	Tratamiento de lodos anódicos	
		37
		39
	Casa de fuerza	
	capa de factiga	
	III.1.3 Relación de residuos generados	42
•	III.1.4 Modificaciones en los procesos	
	en la planta durante 1991	43

		and the second of the stage of	
TTT.2 AN	NALISIS QUIMICOS Y FISICOS	43	
	MILLER QUINTOUS I ILLUXUUS		
III.	2.1 Estrategia de muestreo	43	
	-		
	Datos generales	43	
	Descripción de los puntos de mu	estreo 44	
III.	.2.2 Análisis de iones metálicos	47	
	2-121-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
	Análisis por espectrofotometría absorción atómica		
	absorcion atomica	4/	
TTT	.2.3 Análisis de parámetros comp	lementaring 52	
	.z.s Andrisis de parametros comp	rementarios Jz	
	Determinación de pH	52	
	Conductividad eléctrica	53	
	Determinación de sodio	54	
	Determinación de cloruros:	54	
	Determinación de Carbonatos y acidez total	55	
	ácido muriático y sosa empleado	s	
	en la regeneración de resinas	56	;
III.	.2.4 Tratamiento estadístico	58	1 .
	Generalidades	58	1
	Manejo estadístico de los resul	tados 63	
TO DECUTE ON	DOS Y DISCUSION	65	
.v. REBULIAI	DOB I DISCUSION		'
TV.1 EF	LUENTES PLUVIALES	66	:
T4.7 DI	BODRIDO FIOVIADES		100
TV.2 AGI	UA DE SERVICIOS	67	
IV.3 ELE	ECTROLISIS Y PLANTAS QUIMICAS	67	
IV.4 LOI	DOB ANODICOS	73	
IV.5 OP	FIMIZACION DE PROCESOS	73	
	5.1 Tratamiento de lodos		1
IV.	5.2 Cementación de telurio y ve		
	de selenio	75	i
IV.			
	de sodio en electrólito, ác		
	y otras corrientes del proc		,
IV.			
	sulfúrico gastado para reu		
	mismo y posible recuperació		
	valores		•
14.:	5.5 Resumen de tratamientos par		
	remover impurezas de una so		
	fuertemente ácida		

v.	CONC	TORION	EB Y RECOME	INDACIONES	• • • • • • • • • •	• • • • • • •	82
	٧.2	AGUAS	RESIDUALES	DOMESTICAS O "NE	egras"		83
	₩.3	EFLUE	NTES INDUST	RIALES	• • • • • • • • • •		83
		V.3.1	Situación modificac	actual y recient	es		83
		₹.3.2	Alternati	va de solución	• • • • • • • • •		84
BII	BLIOG	RAFIA				•••••	87
ANI	exo.	(Tablas	y figuras	)			92

- Efecto de las impurezas sobre la conductibilidad del cobre
- Diagrama de flujo de una planta de electrorefinado de cobre
- Efecto de la acidez del electrólito sobre la concentración de plata, selenio, antimonio y bismuto en los cátodos de cobre
- 4. Esquema general del control ambiental
- Diagrama de flujo: Manejo de materias primas (sin modificar)
- Diagrama de flujo: Manejo de materias primas (modificado)
- Diagrama de flujo: Fundición de ánodos (sin modificar)
- Diagrama de flujo: Fundición de ánodos (modificado)
- Diagrama de flujo: Producción de hojas iniciadoras
- 10. Diagrama de flujo: Proceso electrolítico
- Diagrama de flujo: Separación de lodos anódicos
- Diagrama de flujo: Tratamiento de lodos anódicos (sin modificar)
- Diagrama de flujo: Tratamiento de Lodos anódicos (modificado)
- Diagrama de flujo: Deselenización de solución proveniente de oxidadores (sin modificar)

- Diagrama de flujo: Deselenización de solución proveniente de oxidadores (modificado)
- Diagrama de flujo: Decuprización de soluciones de lodos anódicos deselenizados (sin modificar)
- Diagrama de flujo: Decuprización de soluciones de lodos anódicos deselenizados (modificados)
- Diagrama de flujo: Proceso SeTeCu (sin modificar)
- Diagrama de flujo: Proceso SeTeCu (modificado)
- 20. Diagrama de flujo: Obtención de Te
- 21. Diagrama de flujo: Purificación de solución electrolítica (sin modificar)
- Diagrama de flujo: Purificación de solución electrolítica (modificado)
- Diagrama de flujo: Recuperación de níquel (sin modificar)
- Diagrama de flujo: Recuperación de níquel (modificado)
- 25. Diagrama de flujo: Horno de cubilote
- 26. Diagrama de flujo: Casa de fuerza (sin modificar)
- Diagrama de flujo: Casa de fuerza (modificado)
- 28. Plano de ubicación de puntos de muestreo

- 29. Efecto de la salinidad sobre la cantidad de muestra aspirada
- Efecto de la acidez sobre la cantidad de muestra aspirada
- 31. Efecto del interferente sobre la absorbancia del analito
- 32. Determinación de carbonatos
- Curva de neutralización de NaOH con biftalato de potasio
- 34. Curva de neutralización de HCl con Na₂CO₃
- Estadística básica para un método de medición
- Bandas de confianza para la regresión de una curva patrón
- Cálculo gráfico de la incertidumbre asociada a una cierta concentración
- Diagrama de flujo resumido de los procesos de la planta (con resultados analíticos). Parte 1
- Diagrama de flujo resumido de los procesos de la planta (con resultados analíticos). Parte 2
- Diagrama de flujo resumido de los procesos de la planta (con resultados analíticos).
   Parte 3
- Comparación de las concentraciones de los elementos y acidez del electrólito con la solución desarsenizada
- Eficiencia de adsorción del carbón activado en el proceso de clarificación de la solución desarsenizada

- Comparación de las concentraciones de los elementos entre el electrólito y el ácido negro
- 44. Tratamiento de lodos anódicos
- Diagrama general para el tratamiento de los lodos anódicos usando lixiviación con ácido sulfúrico y tostación oxidante
- Tratamiento para la remoción de impurezas de soluciones de ácido sulfúrico (dos partes)
- Estrategia de manejo de los efluentes líquidos de la planta
- 48. Situación original de la empresa antes de la auditoría ambiental
- Modificaciones actuales instrumentadas por la empresa a partir de la auditoría ambiental
- Alternativas propuestas con base en el estudio ambiental integral realizado en la planta

#### RELACION DE TABLAS

- Composición de los ánodos en el refinado electrolítico del cobre
- 2. Relación de residuos generados
- Modificaciones en los proceso de la planta con vías a reducir las descargas de contaminantes, instrumentadas durante el desarrollo el proyecto
- 4. Justificación del muestreo
- Datos sobre el muestreo llevado a cabo en la planta
- Condiciones de trabajo para el análisis de los iones metálicos por espectrometría de absorción atómica
- Resultados del análisis por espectrometría de absorción atómica de los iones aluminio, arsénico, antimonio y bismuto
- Resultados del análisis por espectrometría de absorción atómica de los iones calcio, cobalto, cromo y cobre
- Resultados del análisis por espectrometría de absorción atómica de los iones estaño, fierro, magnesio y manganeso
- Resultados del análisis por espectrometría de absorción atómica de los iones níquel, plomo, silicio y telurio
- Resultados del análisis por espectrometría de absorción atómica de los iones selenio y zinc
- Resultados analíticos de los parámetros complementarios
- Limitaciones en efluentes que representan el grado de reducción alcanzado cuando se aplica la mejor tecnología práctica de control ambiental comunmente disponible

14. Limitaciones en efluentes que representan el grado de reducción alcanzado cuando se aplica la mejor tecnología práctica de control ambiental económicamente disponible

#### I.1 DEFINICION DEL PROBLEMA.

Una planta refinadora de cobre ubicada en la Delegación Política de Azcapotzalco, México, D.F., produce cobre electrolítico de alta pureza (99.97%), así como subproductos de los procesos de refinación. Cuenta con una capacidad instalada de 156,000 ton/año de cátodo electrolítico y hasta el momento es la única planta refinadora de cobre por vía electrolítica que opera en la República Mexicana.⁽¹⁾

El proceso general consiste, básicamente, en el recubrimiento de cátodos de cobre electrolítico a partir de ánodos de cobre impuros, por medio de procesos de electrólisis en un electrólito, sulfato cúprico disuelto en una solución de ácido sulfúrico-, a  $60^{\circ}\mathrm{C}$ .

Algunos de los ánodos que se emplean en la electrólisis se obtienen en la misma planta, a partir de diversas materias primas, conocidas como cobre "blister", "scrap", chatarra de cobre y materiales de recirculación, que contienen gran cantidad de impurezas. Se recuperan como subproductos selenio, telurio, arsénico y níquel y se genera un lodo final que contiene plomo, oro, y plata, que se retorna a las minas de las cuales proviene la materia prima.

Durante la operación se generan diversos desechos, ya sean gaseosos, líquidos o sólidos. Los hornos de fundición y tostado producen gases, los procesos de recuperación generan varios efluentes líquidos, unos provienen de los lodos anódicos y otros de la purificación de la solución electrolítica. Otros efluentes se originan durante la purga de calderas y la regeneración de resinas y, además, se tienen residuos sólidos provenientes de plantas químicas y de fundición (ver sección III.4).

En esta planta funcionan desde hace tiempo algunos sistemas de control ambiental, como son el lavado de gases y la captación de polvos. Hasta principios de 1991, se controlaba la acidez de los efluentes líquidos procedentes de plantas químicas, neutralizando con cal. Esta operación se suspendió ya que se generaban gran cantidad de lodos residuales con alto contenido de elementos tóxicos, los cuales azolvaban las líneas del drenaje y, además, en los casos en que la neutralización no era adecuada, los efluentes ácidos destruían el material de las tuberías. Actualmente se está probando el reciclado del ácido⁽²⁾. Los desechos sólidos se han confinado en tambos metálicos, pero como algunos están a la intemperie donde la lluvia los puede dispersar

⁽¹⁾ Hasta Julio de 1991.

⁽²⁾ Durante la auditoría ambiental se identificó que era más conveniente tratar de reciclar el ácido y recuperar al máximo los valores que contiene (Cu, As, Se, Te, etc.); ya que se ahorra ácido sulfúrico, se consume menos agua, no se generan lodos y no se pierden elementos valiosos que pueden representar una ganancia extra a la empresa.

y cada vez existe menos espacio disponible para su almacenaje, se están vendiendo aquellos residuos para los cuales existe mercado y se planea realizar un estudio para la estabilización y/o reuso del resto.

Estos controles son limitados y, por lo tanto, no les permiten cumplir con las normas establecidas en la Ley General del Equilibrio Ecológico y la Protección al Ambiente publicada en 1988. Esta empresa, como casi toda la industria mexicana, se desarrolló dentro de una política de proteccionismo y en una época en que el impacto ambiental se consideraba como un costo necesario para lograr la industrialización del país. Como consecuencia, se enfrenta junto con casi el resto de la industria nacional, a que sus procesos tecnológicos son antiguos, en muchos casos resultan obsoletos y que deben, en una época de crisis económica, establecer sistemas de control ambiental eficaces y eficientes.

Esta ley se emitió para detener el grave deterioro que ha sufrido el ambiente en México en las últimas décadas, debido al aumento de población y de satisfactores, ya sean productos alimenticios o industriales. Entre los diferentes problemas que se buscan resolver con la aplicación de esta ley, uno de los principales, se refiere a la generación y dispersión de desechos industriales peligrosos (DIP) -término que engloba a las emisiones, los efluentes y los residuos sólidos de las industrias-, cuya composición resulta peligrosa para la vida. No menos de 3 millones de toneladas métricas de desechos industriales peligrosos se generan anualmente en México (Ortiz, 1987).(3)

#### I.2 ESTRATEGIA

La mayoría de las industrias mexicanas deben cumplir con los lineamientos y plazos exigidos por esta ley, a través de convenios específicos establecidos por la Sedue. Comunmente se apoyan en la compra de equipo que permite transformar los residuos (ya sean sólidos, líquidos y/o gaseosos) en sustancias estables y manejables, que puedan ser dispuestas en forma controlada o, en su defecto, enviadas sin peligro al drenaje. Se recurre a la implantación de sistemas de tratamiento tradicionales para efluentes; la minimización de emisiones atmosféricas mediante el cambio de combustóleo por gas LP o gas natural e instalación de filtros; y el envio de los residuos sólidos a confinamientos controlados.

⁽³⁾ Dado que la reglamentación al respecto es muy reciente, en muchas ocasiones, su aplicación es incompleta. Por lo tanto en la actualidad se está buscando acelerar las medidas que permitan un control adecuado sobre su tratamiento o disposición final.

No obstante y, a pesar de que estas soluciones presentan algunas ventajas, en los países donde ya se han aplicado se han observado que producen diversos problemas. A continuación se enumeran consecutivamente sus ventajas e inconvenientes.

#### Ventajas:

- Para su instrumentación se pueden utilizar paquetes tecnológicos, algunos de los cuales son compactos, automatizados y se pueden adquirir prefabricados.
- Los fabricantes de los equipos de tratamiento, no solicitan información sobre los procesos, sino únicamente exigen análisis de los desechos a tratar.
- En el caso de los efluentes, el agua tratada puede ser reutilizada (dependiendo de la calidad obtenida y requerida).
- Los tiempos requeridos para su instalación son relativamente cortos.

# Desventajas:

- En general no se seleccionan los equipos de tratamiento adecuados a la composición y volumen real de los desechos generados (en muchas ocasiones se compran equipos mucho más caros de los requeridos). Lo anterior se debe a que la selección se basa en datos que no son representativos de la realidad, pues los análisis se realizan en muestras puntuales de desechos obtenidos durante la operación de procesos, que generalmente no tienen sistemas de control automatizados ni han sido evaluados previamente.
- Generalmente la composición de los desechos no es homogénea, por lo que los equipos de tratamiento no operan adecuadamente.
- Los sólidos generados en las plantas de tratamiento de aguas que emplean agentes precipitantes, generalmente presentan un mayor volumen que los residuos de los que provienen. En el caso de que contengan compuestos, elementos o microorganismos tóxicos, pueden requerir de tratamientos especiales para su disposición que, en general, son costosos.
- Los sólidos confinados dependiendo su composición representan un peligro potencial para la vida en la tierra. Esto se debe principalmente a dos factores: su acumulación progresiva y al hecho de que las sustancias peligrosas que contenían los desechos gaseosos o líquidos

tratados, se precipitan sin realmente estabilizarse y pueden, en un futuro, volverse a disponibilizar y contaminar nuevamente el medio ambiente.

- Los costos de operación de los sistemas de control ambiental son altos, ya que requieren de personal técnico y mantenimiento, además de que consumen reactivos y servicios (vapor, energía eléctrica, etc).
- Muchos de los desechos contienen sustancias que pueden ser recicladas dentro de la propia industria o reutilizadas para otros fines, y los sistemas tradicionales no contemplan su recuperación.

Si se quieren evitar esta clase de problemas en lugar de este tipo de solución, es necesario establecer tecnologías limpias. En caso de que no se hayan desarrollado ese tipo de procesos, o económicamente no sea viable su implantación, se debe a corto plazo establecer sistemas alternativos de control ambiental que permitan mejorar los procesos ya existentes. Esto es, se requiere llevar a cabo:

- la minimización de los residuos por medio de la optimización de los procesos.
- el reciclado y/o reuso de los residuos
- el tratamiento de los desechos (por métodos físicos, químicos, biológicos y/o térmicos)
- la disposición controlada de los residuos sólidos

Para llevar a cabo estas acciones, primeramente se debe elaborar un diagnóstico profundo y minucioso de todas las actividades de la planta para que, con base en la información obtenida, sea posible conocer todos los puntos críticos en donde se generan residuos inclusive aquellos que en la práctica, se pasan por alto. Con la información recolectada, es posible establecer una estrategia de muestreo y análisis que ayude a identificar los procesos que pueden ser modificados u optimizados para minimizar la generación de contaminantes y, en caso necesario, instrumentar equipos de tratamiento específicos o desarrollar sistemas de reciclado o reuso para la recuperación de valores de estos residuos. Además, permite conocer la participación de la empresa en impactos ambientales de carácter global, como es la producción de CO2, lluvia ácida, destrucción de la capa de ozono, etc.

A continuación se describen las ventajas y requerimientos de este tipo de sistema:

#### Ventajas:

- Al optimizar los procesos para minimizar su impacto, se logra el control de los procesos y en consecuencia se aumenta la calidad de los productos.
- Se ahorran energéticos, aqua y consumo de insumos.
- Se mejoran las condiciones de seguridad y salud ambiental para los trabajadores.
- Se cumple con la normatividad actual y, en general, con la que se aplique a un mayor plazo.
- La recuperación de valores a partir de los residuos, trae consigo ingresos extras a la compañía. En caso de que se reciclen materias primas, también se obtiene un importante ahorro.
- Mejora la imagen de la compañía con su personal, los vecinos y público en general, incluyendo al de otros países si es que se exportan los productos.
- Se produce la información necesaria para seleccionar el equipo más adecuado para el tratamiento de los desechos mínimos que se generan.

## Desventajas y requerimientos:

- La instrumentación de este tipo de sistemas integrales requiere de mayor tiempo que la instalación de equipos tradicionales de tratamiento de desechos.
- Para el desarrollo de estos sistemas se necesita la participación entusiasta del personal, desde obreros hasta directivos, ya que el proceso de evaluación ambiental puede causar problemas de inseguridad profesional, rechazo al cambio, etc.
- Su implantación, exige un nivel de creatividad y empuje en el personal, especialmente en los niveles directivos.

Con respecto a las opciones que se refieren al tratamiento de los desechos industriales y que se piensan adecuadas para el caso de la planta, se plantean los siguientes enfoques (Ortiz, 1987):

- a) Minimizar la generación de desechos, optimizando los procesos industriales.
- b) Estimular el reuso de los desechos, basados en el concepto de que lo que es desecho para una industria puede convertirse en materia prima para otra o ser reciclado en la misma planta.

Existen cuatro grandes grupos de acciones que pueden llevar a una disminución considerable de los desechos. Estas son las siguientes:

- Beparación en la fuente. Se trata de separar el residuo tóxico evitando que se mezcle o diluya con otros residuos. Este método es el más sencillo y económico de los que existen para reducir el volumen y facilitar el reuso. Además, se lleva a cabo en el mismo sitio donde se genera. Por ejemplo, una empresa metalúrgica, que gasta importantes cantidades de agua para los procesos de enfriamiento, si no las mezcla con otras procedentes de procesos que las contaminan con metales, puede recircularlas o drenarlas directamente sin ningún tratamiento (excepto el de enfriamiento si es necesario).

Las empresas obtienen beneficios al disminuir las cantidades de desechos, reduciendo los costos de operación, tratamiento y transporte de grandes cantidades de ellos, además de los beneficios que para el medio ambiente representan.

- Modificación del proceso. La industria tiene opciones para el manejo de desechos y, dentro del intervalo abierto de las innovaciones tecnológicas, puede instrumentar modificaciones en el proceso que, además de disminuir la emisión de desechos, hace más eficiente el consumo de energía y disminuye costos. La magnitud de las modificaciones es muy variable, en ocasiones bastan cambios pequeños en los métodos de operación, como variaciones de temperatura, de presión, sustitución de materias primas, o pueden requerirse adaptaciones de mayor envergadura, como la implantación de nuevos procesos o nuevas maquinarias.
- Sustitución del producto. Cuando se conoce que un producto es altamente tóxico, por lo general sus procesos de fabricación generan desechos de las mismas características. Por lo tanto, un cambio de este tipo de productos por otros que ofrezcan los mismos resultados con mayor seguridad para su uso y manejo, deriva en una reducción cualitativa y cuantitativa de los desechos industriales.
- Recuperación y reciclaje. Los desechos pueden ser materiales, sustancias o productos que se vuelven contaminantes al confinarse en lugares inadecuados, pero que si se manejan adecuadamente pueden resultar de valor, ya sea por el contenido de elementos o sustancias con valor comercial o porque sirvan como materia prima para el mismo u otros procesos.

Esta última opción puede llevarse a cabo ya sea por reciclado en la propia planta, recuperación comercial fuera de la planta, o por intercambio con otras fábricas, a las cuales estos desechos les sean valiosos.

#### I.3 OBJETIVOS

Con el fin de resolver los problemas ambientales, relacionados con sus efluentes, la empresa, solicitó a la Universidad Nacional Autónoma de México mediante oficio num. 1015 con fecha 2 de julio de 1990 una cotización por servicios de caracterización de sus efluentes industriales que incluyera los siquientes puntos:

- muestreo de efluentes generados en la planta.`
- análisis (composición en g/L o mg/L.) de los efluentes
- otros, como temperatura, pH, gasto, color, cantidad de sólidos, etc.

En respuesta a esta solicitud y después de una visita ocular, se convino en realizar un proyecto cuyas actividades permitieran en un futuro implantar un sistema integral de control de la contaminación ambiental, como el descrito. Los objetivos que se fijaron para dicho estudio fueron los siguientes:

- Estudio de los procesos con un criterio ambiental (auditoria ambiental).
- Muestreo de los efluentes y puntos especiales.
- Análisis químicos de las descargas(4).
- Análisis complementarios en puntos especialmente seleccionados.
- Comparación de los resultados obtenidos respecto a los límites señalados en las normas nacionales ó internacionales existentes, ó en las condiciones particulares que para las empresas refinadoras de cobre señale Sedue.
- Identificación de los procesos viables de optimizar de acuerdo a criterios ambientales y técnico-económicos.
- Opciones de tratamiento de los efluentes.

⁽⁴⁾ Se analizaron diferentes puntos de descarga para evaluar la viabilidad del reciclado del ácido.

#### II.1 BREVE HISTORIA DE LA REFINACION DEL COBRE

El cobre ha tenido desde la primera mitad del siglo XIX una gran demanda por parte de la industria eléctrica moderna, con un consumo anual en constante aumento. Ambas industrias dependen la una de la otra y han experimentado un desarrollo paralelo. Es un hecho que la invención de la "dinamo" hizo posible el refinado electrolítico de cobre y, a su vez, la producción a nivel industrial de cobre de alta pureza permitió la trasmisión de la electricidad.

Existen dos tipos de refinado de cobre (Kirk-Othmer, 1984):

- refinado pirometalúrgico, el cual es usado en la remoción de impurezas que acompañan al cobre, donde se consiguen purezas de cobre hasta un 98-99.5 %. Las impurezas son removidas en la escoria que sobrenada en el momento de la fundición. El cobre obtenido por este método, es adecuado para aplicaciones donde la pureza de cobre no es un factor crítico, tales como tubería para agua, cierto tipo de aleaciones y algunas herramientas sencillas.
- refinado electrolítico, en el cual se emplean soluciones de las que se deposita el cobre en el cátodo por medio un proceso electrolítico. La pureza del cobre obtenido es de 99.95 a 99.98 %. El cobre de alta pureza obtenido se emplea básicamente en la fabricación de conductores.

Las leyes fundamentales de Faraday sobre la electrólisis fueron enunciadas en 1831. Jacobi las utilizó para describir algunas aplicaciones prácticas en su obra titulada <u>Galvanoplastia</u> (1838). Durante los años 1865-1870 James Elkington publicó sus patentes sobre el refinado electrolítico del cobre, donde describió los métodos de un modo tan completo, que aún hoy día su lectura resulta interesante.

La primera refinería en los Estados Unidos fue establecida por Edward Balbach, en Newark, en el año de 1883 y funcionó en forma constante hasta 1918, cuando se desmanteló la casa de tanques.

Sin embargo, el refinado electrolítico no fue analizado de una manera sistemática sino hasta 1921, cuando Lawrence Addicks estudió las pérdidas de metal, impurezas en el ánodo, efecto de las impurezas del electrólito, celdas y resistencia de las celdas, densidad de corriente, efecto de la temperatura, corrosión del cobre por parte del electrólito, proceso de los lodos anódicos y su rentabilidad, productos secundarios, costos de energía, rendimiento de corriente, etc. y, sobre todo, consideró el efecto de cada uno de estos factores sobre los elementos de diseño de la fábrica.

Los cambios que desde entonces se han efectuado, se han relacionado más con la automatización de los procesos que con cambios esenciales en ellos; como ya lo había hecho notar en 1954

Butts, quien afirmó "no ha habido ningún cambio esencial en las teorías de los electrodos desde 1902"..."los cambios esenciales en la industria han sido en aparatos mayores y mecánicos instalados para sustituir la labor manual" (Mantell, 1962).

#### II.2 REFINACION DE COBRE POR VIA ELECTROLITICA (Mantell, 1962)

#### II.2.1 Generalidades

El refinado eléctrico del cobre, no sólo produce el metal de alto grado de pureza que requiere la industria eléctrica, sino que también recupera las pequeñas cantidades de metales preciosos que contiene el mineral. El cobre en bruto contiene oro, plata y platino, así como níquel, arsénico, antimonio, selenio, telurio y otras impurezas metálicas. El efecto de las impurezas sobre la conductibilidad del cobre según Skowronski se muestra en la figura 1.

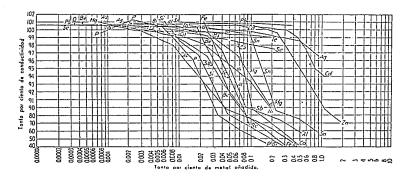



FIGURA 1

Efecto de las impurezas sobre la conductibilidad del cobre (Tomado de Mantell, 1962)

Las materias prima para el refinado son: el cobre "blister", que se produce en los altos hornos de cobre; el cobre de cementación, material finamente dividido y de estructura granular que se recupera de las soluciones al reducirlo con hierro o chatarra de hojalata desestañada; y los bloques de cobre y chatarra de varias formas y diversos grados de pureza. De todas estas materias, la más empleada es el cobre blister.

#### II.2.2 Sistemas de refinado

En la actualidad se emplean dos procedimientos electrolíticos: el sistema múltiple, denominado en ocasiones de Elkington, que se emplea en casi todas las refinerías, y el sistema en serie, llamado también de Hayden. En el sistema múltiple, los ánodos y los cátodos se montan en paralelo, y requiere que en el tanque se coloque una hoja de iniciación en la que se precipite el cobre y barras de conexión entre los diversos ánodos y cátodos.

En el sistema en serie sólo se conectan al circuito los dos electrodos extremos. Los otros, en número de 100 a 150, se sumergen en los tanques y actúan como electrodos bipolares, una de cuyas caras, la que funciona como ánodo, va disolviéndose y la otra,- el cátodo-, recibe el depósito de metal puro.

Ambos sistemas ofrecen ventajas e inconvenientes, pero debido a su mayor flexibilidad el sistema multiple se emplea con mayor frecuencia.

#### II.2.3 Densidad de corriente

La densidad de corriente que se adopta es el factor más importante en el refinado del cobre. Los datos sobre la operación de las refinerías más importantes del mundo indican que utilizan una densidad de corriente catódica que varía de 1.6 a 1.9 A/dm². Cuanto menor sea la densidad de corriente usada, mejor será el depósito obtenido; pero el tiempo requerido es mayor. "La corriente empleada en una refineria cualquiera representa el equilibrio económico entre el coste de la energía consumida y el coste de la planta industrial con su equipo y el del metal entretenido⁽⁵⁾ en el proceso".

II.2.4 <u>Aspectos generales del proceso</u> (Mantell, 1962 y Kirk-Othmer, 1984).

La figura 2 muestra un diagrama simplificado de una planta moderna de electrorefinado, el cual es un proceso complejo que se lleva a cabo en cinco etapas:

 las materias primas se funden para moldear ánodos con formas que se adapten al equipo de soporte de las celdas de electrólisis, de manera que puedan ser introducidos y suspendidos continuamente. Además, los ánodos deben de contar con una superfície lisa para evitar que se produzcan cortocircuitos durante la operación;

⁽⁵⁾ Término que se refiere al tiempo que se retiene el material durante el proceso y que representa un costo importante a considerar.

2) los ánodos de cobre se colocan en las celdas electrolíticas (casa de tanques), donde al iniciar el proceso electrolítico se disuelven y el cobre pasa a la solución como ion. Simultáneamente, se reduce cobre de la solución que se deposita sobre el cátodo conformado por delgadas hojas iniciadoras y que al término de la operación conforman el producto final (cobre de alta pureza). Las ecuaciones de oxido-reducción que se llevan a cabo, son:

ánodo: Cu
$$\xrightarrow{}$$
 Cu²⁺ + 2 e⁻ Cátodo: Cu²⁺ + 2 e⁻ Cu

3) la concentración del cobre en el electrólito se mantiene constante, por medio del método denominado "electrowinning", que básicamente consiste en utilizar un ánodo insoluble, que generalmente es de Pb-Ca, para que todo el cobre que se deposite proceda de la solución. En electrowinning, la reacción catódica es la misma que para el electro-refinado:

$$Cu^{2+} + 2 e^{-} > Cu$$

Sin embargo, debido al uso de ánodos insolubles, se libera oxigeno en el ánodo

$$H_2O$$
 ---> 2  $H^+$  + 1/2  $O_2$  + 2  $e^-$ 

La reacción neta es:

$$cu^{2+} + H_2O \longrightarrow 2 H^+ + 1/2 O_2 + Cu$$

El cobre así obtenido, normalmente tiene un alto contenido de plomo, en parte debido al empleo de ánodos de este elemento.

Para que la concentración de impurezas no aumente, periódicamente se realizan procesos de separación con condiciones específicas para cada impureza (referirse a la sec.III.1.2.3 y Kirk-Othmer, 1984);

- el lodo anódico, esto es, el residuo que se deposita en el fondo de las celdas durante el refinado, es procesado para recuperar metales preciosos, selenio y telurio y
- finalmente, los cátodos de cobre refinado, son fundidos y moldeados en formas comerciales.

# II.3 COMPORTAMIENTO DE IMPUREZAS EN LA REFINACION ELECTROLITICA DEL COBRE

El objetivo principal de la refinación electrolítica del cobre es la obtención de cobre de alta pureza (>99.95 %) en el cátodo. Por lo tanto, es importante conocer el comportamiento de las impurezas y controlar su concentración. Estas impurezas provienen de los ánodos de cobre utilizados en el proceso electrolítico, las cuales durante la operación se pueden disolver y/o precipitar, formando los lodos anódicos; de donde a su vez, pueden transferirse al cátodo y codepositarse.

Los ánodos de los cuales se parte deben poseer una pureza mayor al 99% de Cu (Mantell, 1950). Las impurezas más comunes son: As, Se, Te, Pb, Ag, Au, Sb, Ni, Fe, Co, Zn, Bi, S y Sn. En la tabla 1 se describen la composición de diversos ánodos provenientes de varias refinadoras de cobre.

Las impurezas que alteran en mayor grado ciertas propiedades físicas del cobre, produciendo efectos no deseados como puede ser el ablandamiento por recristalización son, en orden decreciente de efecto dañino: Te, Se, Bi, Sb y As (Cooper, 1988).

Las impurezas que se encuentran en el ánodo presentan principalmente las siguientes formas físicas (Chen y Dutrizac, 1990):

En solución sólida: se encuentran el Ni (aproximadamente el 100% cuando los contenidos son bajos), Ag ( $\approx 85\%$ ), Au (100%), As ( $\approx 30\%$ ) y Pb (vestigios).

Como inclusiones: Esta forma la presenta principalmente el Cu₂O⁽⁶⁾, no obstante también corresponde a otros compuestos, como: NiÖ, cuando el contenido del níquel es alto (asociado con Cu, Fe, Sb y Sn); aleaciones de Ag-Cu; seleniuros y telururos de cobre (I) y de plata y una serie de óxidos complejos de Cu, Pb, As, Sb, Bi, como el llamado "Kupferglimmer" (mica de cobre) cuya fórmula es 3Cu₂O.4NiO.Sb₂O₅. Estos óxidos son la fuente principal de Sb y Bi, y contribuyen con concentraciones importantes de Pb y As (Cooper, 1988).

Durante el electrorefinado muchos de los elementos pasan a la solución electrolítica aunque de manera parcial. Como ya se dijo, es importante señalar que la contaminación del cátodo puede provenir, tanto de los elementos disueltos en el electrólito, como de los sólidos suspendidos (lamas) provenientes de los lodos anódicos o formados en el mismo.

⁽⁶⁾ Aunque el cobre es la materia prima del proceso, compuestos oxigenados del tipo del Cu₂O se consideran impurezas ya que al reaccionar con el ácido del electrólito, se desproporcionan formando Cu insoluble que pasa a los lodos anódicos. Cu₂O + 2H⁺ ····> Cu²⁺ + Cu_{DO} + H₂O (Kirk-Othmer, 1984)

Estas lamas consisten básicamente de los óxidos compuestos de fórmula compleja, como por ejemplo:  ${\rm As}_2{\rm O}_5, {\rm Sb}_2{\rm O}_3,$  Cu $_3{\rm As},$  3Cu $_3{\rm O}.4{\rm Nio}.{\rm As}_2{\rm O}_5$  y 3Cu $_2{\rm O}.4{\rm Nio}.{\rm Sb}_2{\rm O}_5$  (Cooper, 1988). La cantidad presente de lamas y la posibilidad de que estas se depositen en el cátodo aumenta cuanto más pequeña es la partícula y mayor la densidad de la solución (fig. 3). A concentraciones mayores de ácido sulfúrico, las partículas precipitan más lentamente y la cantidad de lamas aumenta (Cooper, 1988 y Abe S. y Takahashi M., 1987).

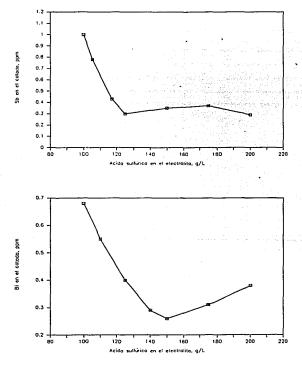
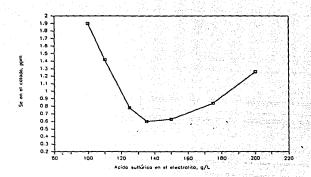




FIGURA 3 (a y b)

Efecto de la acidez del electrólito sobre la concentración de Sb y Bi en los cátodos de cobre (Tomado de Cooper, 1988)



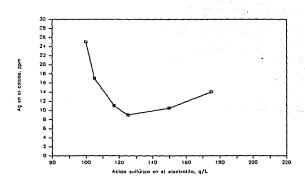



FIGURA 3 (c y d)

Efecto de la acidez del electrólito sobre la concentración de Se y Ag en los cátodos de cobre (Tomado de Cooper, 1988)

Los lodos anódicos, que son la fuente de las lamas contaminantes, se acumulan tanto sobre la superficie del ánodo como en el fondo de las celdas electroquímicas. El porcentaje de los elementos que los conforman varía de acuerdo a la composición del ánodo original, pero en general consisten de: Cu (1-5%, luego de su recuperación mediante la decuprización por oxidación con  $H_2SO_4$ ), Ni (1-3%), Pb (5-20%), Sn (1-4%), Sb (1-5%), As (1-4%), Bi (0.5-3%), Se (0.5-25%), Te (0.5-10%), Ag (1-30%), Au (0.05-2%), Pt (0.01-0.05%), Pd (0.03-0.2%) (Hoffmann, 1990b).

Según Mantell -citado por Cooper (1988) y Chen y Dutrizac (1990)- los compuestos que forman estos elementos en los lodos son: seleniuros ( $\mathrm{Se^2}^-$ );  $\mathrm{PbSO_4}$ ;  $\mathrm{CuSO_4.5(H_2O)}$  y  $\mathrm{CuS}$ ;  $\mathrm{NiO}$  y  $\mathrm{NiSO_4}$  n( $\mathrm{H_2O}$ ); óxido de CuNiSb (Kupfergummer),  $\mathrm{NiFe_2O_4}$  y óxido de CuNiFe; arseniato de antimonio, bismuto, cobre y estaño; óxidos de antimonio, bismuto, arsénico y plomo; cloruro básico de antimonio; oxicloruros de Sb y Bi;  $\mathrm{CuSeO_3}$  2( $\mathrm{H_2O}$ );  $\mathrm{Ag(0)}$  y  $\mathrm{Ag(1)}$ ; vestigios de  $\mathrm{Cu_2O}$ ,  $\mathrm{SnO_2}$ ,  $\mathrm{CuCl}$ ,  $\mathrm{Cu}$ ,  $\mathrm{Au}$  [metálico o bien asociado a seleniuros o  $\mathrm{CuSO_4}$  5( $\mathrm{H_2O}$ )] y diversas especies de telurio, la mayor parte de las cuales corresponden a  $\mathrm{Te^2}^-$ , que forma junto con los seleniuros soluciones sólidas en los lodos. Cuando su concentración es del 5 al 7% está como  $\mathrm{Ag_2Te}$ .

La proporción de los seleniuros en los lodos se puede predecir de la proporción molar Ag/Se+Te de los ánodos. En el fondo generalmente los seleniuros son más ricos en Ag que en los lodos pegados al ánodo. Las partículas de plata que aparecen en los lodos anódicos se generan debido a la cementación que produce el ánodo de cobre y en menor grado por reacción con iones cuprosos (Lange et al., 1977, tomado de Cooper, 1988). También proviene de las reacciones de cobre para formar CuAgSe y Ag2Se que son los principales compuestos de plata que contienen los lodos. Según Cooper (1988) se llevan a cabo las siguientes reacciones:

$$Cu_2Se + Ag^+---> Cu^+ + CuAgSe$$
  
 $Cu_2Se + 2Ag^+---> 2Cu^+ + Ag_2Se$ 

En los lodos existe una fase oxidada compleja de composición muy variable, que es la fase que cementa particulas y acarrea cantidades significativas de metales preciosos (Chen y Dutrizac, 1990).

El resto de las impurezas que pueden coprecipitar en el cátodo, provienen del electrólito, el cual presenta la siguiente composición (Krasikov et al., 1990):

Cu 40-45 g/L Ni 10 g/L
As 6-7 g/L Zn 2 g/L
H₂SO_A 150-300 g/L Sb 0.2 g/L

Bi 0.1 g/L

Fe(II) 0.5 g/L

Cola < 0.5 g/L

Fe(III) 0.4 g/L

Tiourea 0.02 g/L

El arsénico está presente principalmente en estado de oxidación (V), pues aunque originalmente se disuelve como arsénico (III), el oxígeno presente lo oxida.

II.4 FUNDAMENTOS DE UNA AUDITORIA AMBIENTAL (Russell, 1985 y Singh 1984)

### II.4.1 Generalidades

Una auditoría ambiental consiste en la elaboración de un examen minucioso de las operaciones y prácticas ambientales de una compañía. El fin de esta investigación es reunir información referente al cumplimiento de la empresa respecto a las obligaciones legales, de acuerdo a la normatividad ambiental vigente, la normatividad probable a entrar en vigor en el corto y mediano plazo, los compromisos adquiridos ante autoridades y aquellas medidas que la empresa tenga en proyecto.

La importancia de las auditorías ambientales se ha incrementado debido al desarrollo de nuevos productos químicos, a las expectativas de salud de los trabajadores y comunidades vecinas, a las regulaciones ambientales y el aumento potencial del peligro que representa un desastre ambiental. Cuando la auditoría es bien conducida, puede ser una herramienta valiosa para identificar y prevenir problemas ambientales.

Los beneficios que se obtienen de practicar una auditoría ambiental son, entre otros:

- Verificar el cumplimiento de la planta en cuanto a los requerimientos establecidos en las regulaciones y estatutos ambientales.
- Evaluar los riesgos potenciales de los contaminantes para la salud humana en el medio de trabajo y su dispersión en el ambiente, determinando el grado de afectación de las comunidades vecinas.
- Evaluar el nivel de compromiso del personal con las políticas de protección ambiental, seguridad y salud, manejo de material peligroso y técnicas de disposición.
- Establecer las normas de seguridad en operaciones peligrosas dentro de la planta.

- Definir las fuentes generadoras y determinar los métodos más adecuados de muestreo para la evaluación de los niveles de contaminación y su control.
- Además, en algunos casos, una auditoría ambiental ayuda a vislumbrar la inconveniencia de comprar una firma industrial con problemas ambientales serios que pudieran afectar el futuro financiero de la compañía compradora.

No obstante que la auditoría puede ser efectuada por personal de la planta, en general, es más conveniente que la realice un grupo experto en cuestiones ambientales y con experiencia. Este grupo debe contar con la metodología y coordinación necesarias y siempre que sea posible, se debe incluir a expertos legales, financieros y de seguridad, de manera que se logre una interpretación integral de las diferentes regulaciones ambientales y un manejo adecuado de las mismas.

En México se ha visto la necesidad de practicar este tipo de estudios con mayor frecuencia, no obstante, son realmente pocas las compañías nacionales que ofrecen este tipo servicio.

# II.4.2 Procedimiento básico

El primer paso consiste en organizar al equipo de trabajo, haciendo reuniones entre los varios miembros del grupo con el fin de asignar tareas. El grupo debe revisar todas las operaciones en planta y determinar cual información es esencial para realizar la auditoría. Posteriormente, se solicita al personal adecuado, información diversa relacionada con las actividades, operación e instalaciones en la planta. Algunos documentos que generalmente se requieren, son:

- Diagramas de flujo de los procesos.(3)
- Plano de localización general.
- Diagrama de la red de drenajes. - Inventario de emisiones gaseosas.
  - Especificación de los equipos de control ambiental.
  - Permisos y documentación de apoyo.
  - Técnicas analíticas.
  - Registro de mantenimiento.
  - Diario de operación.
  - Datos sobre muestreos.
  - Plan de acción de emergencia.
- Plan de contingencia para descarga de aceites y
- sustancias peligrosas.
- Notificación de procedimientos.

La información disponible depende del tipo de planta. Hay casos en los que parte de la información necesaria no existe, por lo que durante la auditoría es necesario generarla. Como segundo

⁽⁷⁾ Es muy importante que aparezca para todos los documentos listados la fecha de expedición.

paso se procede a realizar una revisión en planta de todos los procesos que potencialmente contribuyan a la contaminación del aire, agua, suelo, generación de residuos peligrosos, seguridad y salud ocupacional.

La revisión debe ser efectuada junto con ingenieros, supervisores y personal de operación, siendo vital la cooperación de todos los involucrados con los procesos. Debe haber acceso a registros o expedientes de las diferentes actividades realizadas en planta. Se debe estimular al personal a colaborar en la inspección, pues la experiencia indica que la inseguridad personal de algunos directivos y/o trabajadores, evita que realmente se identifiquen las fuentes de error y se puedan instrumentar los cambios necesarios. Se ha observado que en las empresas donde se han implantado programas de calidad total, no se han presentado problemas de esta indole, ya que el personal está estimulado a los cambios y participa en ellos.

Cuando parte de los procesos son llevados a cabo fuera de la planta, es necesario realizar visitas en las instalaciones externas. La auditoría se puede limitar a estudiar aspectos de aire, agua o suelos o ampliarse para incluir control de sustancias tóxicas, higiene industrial, y salud ocupacional.

Con toda la información obtenida se elabora un informe, el cual debe describir, al menos, la situación de la empresa respecto al cumplimiento de los requerimientos legales, el impacto local de los contaminantes generados en los procesos y la descripción de los puntos críticos generadores de contaminantes. Esta información permite definir el tipo de análisis se deben realizar para continuar con el desarrollo del programa integral de control ambiental (referirse al capitulo I). Además, si es posible, conviene indicar en el informe, el impacto a futuro de los productos vendidos, la contribución de la empresa en problemas de indole global como son el efecto invernadero, la lluvia ácida, la disminución de la capa de ozono y el aumento de la concentración de ozono en la troposfera, así como la situación de la relación empresa-comunidad.

#### III PARTE EXPERIMENTAL

# III.1 AUDITORIA AMBIENTAL EN LA PLANTA DE REFINADO DE COBRE

#### III.1.1 Generalidades

Durante los meses de noviembre, parte de diciembre de 1990 y enero de 1991, se efectuó la revisión de todos los procesos. Para cada uno se realizó un análisis de las operaciones unitarias, describiendo en cada operación, qué tipo de residuos se generan, los cuerpos receptores de los residuos (ver sección II.1) y su peligrosidad potencial. El análisis se sistematizó con base en un diagrama general de control ambiental (fig.4), que permitió estudiar los siguientes aspectos de cada proceso: la recepción de materias primas, las operaciones unitarias que lo conforman, la obtención de producto(s) y subproductos, la generación de desechos y los sistemas de control existentes. Simultáneamente a la descripción de los procesos, se elaboraron los diagramas de flujo correspondientes a cada proceso como se realizaban antes del inicio de este estudio y después de las modificaciones (figuras 5-27).

# III.1.2 Descripción de los procesos

La obtención de cobre electrolítico en la planta puede ser dividida en siete aspectos básicos, que son los siguientes:

- Manejo de materiales.
- Fundición de ánodos.
- Electrólisis.
- Tratamiento de lodos anódicos.
- Purificación de solución electrolítica.
- Fundición de barras.
- Casa de fuerza.

A continuación se describe, por separado, cada uno de los anteriores aspectos.

#### III.1.2.1 Manejo de materiales

#### Generalidades

El término "materiales" engloba a las materias primas, las cuales a su vez se refieren a las sustancias básicas de los procesos, y los materiales de recirculación y auxiliares-, subproductos y residuos sólidos que se almacenan. Las sustancias básicas de los diferente procesos, pueden provenir de minas, ser adquiridos en comercios especializados o ser generados en otros procesos de la

misma planta⁽⁸⁾. Los materiales de recirculación se generan durante las diferentes operaciones y, por sus características y valor, se reintegran nuevamente al mismo proceso. Los materiales denominados auxiliares se refieren a sustancias que se utilizan en algunos procesos para favorecer ciertas reacciones, como el carbón mineral, troncos de árbol, piedras calizas, etc. Como subproductos se denominan a todas aquellas sales impuras obtenidas en los diferentes procesos de plantas químicas, -como los óxidos de níquel, sales dobles de sulfato y amonio, arseniuros y arseniatos-, las cuales son purificadas dentro de la misma planta para su venta. Y, finalmente, los residuos sólidos, están conformados por aquellos materiales que actualmente no han podido ser reutilizados y que son enviados a los basureros o se al macepan.

Las materias primas son recibidas en la planta por medio de ferrocarril, camión y trailer; y son almacenadas en patios techados y/o a la intemperie. Tanto la chatarra como el varejón se prensan para disminuir su volumen. La chatarra es tratada previamente en un horno de prequemado, con el fin de eliminar todos aquellos materiales no metálicos susceptibles de calcinarse. El movimiento de materiales por parte de tráfico interno se realiza en montacargas. Cada una de estas actividades puede visualizarse como una operación unitaria y de esa manera analizar su contribución a la generación de contaminantes.

### Operaciones unitarias

Recepción de materias primas

En esta operación al descargar los camiones se generan <u>polvos fugitivos</u>. Algunos materiales traen consigo aceites u otros <u>líquidos que escurren al piso</u>. En época de lluvias, todos estos residuos <u>son arrastrados a las alcantarillas</u>.

#### Selección de materiales

La selección de materiales se hace manualmente. La chatarra es clasificada por categorías, 1ª, 2ª y, en ocasiones, hasta de 3ª, de acuerdo a la presencia de basura y de su contenido de cobre. Durante esta operación <u>se dispersa el polvo</u> que trae consigo la chatarra, el cual es parcialmente recolectado y <u>enviado junto con otros residuos sólidos al basurero municipal</u>, pero parte <u>escapa como particulas fugitivas</u>.

⁽⁸⁾ Las materias primas se describen en cada proceso.

⁽⁹⁾ Debido a los resultados preliminares de este estudio, actualmente, el quemado de chatarra ya no se realiza en esta planta de refinado de cobre.

#### Almacenamiento

Las materias primas son almacenadas ya sea a la intemperie o bajo techo. Al llover se lavan y lixivian residuos de los materiales expuestos a la intemperie, como son grasas, aceites, sólidos solubles e insolubles. Es el caso del "scrap" que, a pesar de ser enjuagado en las celdas de electrólisis, lleva consigo vestigios de sales procedentes de la solución electrolítica (principalmente CuSO₄) por lo que al contacto con la lluvia se redisuelven y van a dar al desagüe. Muchos de los materiales que se almacenan en tambos sin tapa se inundan y lixivian en época de lluvias, generando aquas contaminadas que también van al drenaje.

#### Prequemado de chatarra

La chatarra es introducida en un horno a 450 °C. Se emplea gas natural para la combustión. Los gases se llevan a un tubo aletado enfriado por aire con el fin de condensar las partículas que se sublimaron. Estos gases son llevados a una torre de lavado en donde la efectividad de absorción es muy baja. Se emplea aqua para lavar los gases, ésta se recircula durante 3 días, a término de este período se desecha al drenaje, conteniendo un porcentaje alto de sólidos suspendidos, grasas y material orgánico. Durante el proceso de lavado de gases, el pH baja bruscamente, por lo que se controla mediante la adición de sosa para enviar las aguas al drenaje con un pH neutro. La composición de los gases que se envian a la atmósfera es desconocida. Probablemente contienen SO_X, NO_X, CO, CO₂, compuestos clorados, fluorados, óxidos de metales, etc.

#### III.1.2.2 Fundición de ánodos

#### Materias primas

La materia prima usada en este proceso consta de:

- "blister" (producto de los altos hornos de cobre procedente de las minas)
- "scrap" de ánodos
- ánodos de segunda
- chatarra de cobre
- cobre negro de recirculación
- barreduras y material en general de recirculación

#### Descripción del proceso

Los materiales se introducen a los hornos de reverbero que trabajan con quemadores de gas natural a presión. En promedio, la capacidad de los hornos es de 100 ton/dia. El cobre contenido en la escoria es de un 30-40 %, por lo que se procede a recuperar en un horno de cubilote fuera de la planta.

Durante la fusión se generan gases a muy alta temperatura (se realiza a temperaturas arriba de  $1000^{\circ}\mathrm{C}$ ), que pueden estar compuestos de  $CO_2$ , NOX, SOX, CO, óxidos de metales y elementos de frontera, denominados anteriormente como metaloides; así como una serie de humos producidos por la combustión de plásticos, pinturas, grasas, aceites, telas, etc. El cobre fundido es vaciado en una cuchara por medio de canales que son mantenidos a una temperatura tal, que el cobre permanece en estado líquido. Por medio de esa cuchara se hace el colado de ánodos en la rueda de colar. Los ánodos así producidos son enfriados con agua en piletas de enfriamiento. El agua empleada para este proceso forma parte de un ciclo de enfriamiento en donde el calor removido de los ánodos es transferido posteriormente en torres de enfriamiento.

Para evitar que los ánodos se adhieran a los moldes, se rocía una suspensión de  ${\rm BaSO_4}$  como desmoldante. Al cabo de un tiempo, es necesario separar este sólido insoluble de las piletas de enfriamiento y reciclarlo.

# Operaciones unitarias

Las operaciones unitarias de que consta este proceso son:

Carga de hornos Fusión Oxidación Escoriación Reducción Moldeado en rueda de colar Enfriamiento Selección pesado y almacenaje de ánodos

#### Generación de contaminantes

### Carga de hornos

Los hornos se cargan por medio de una máquina eléctrica la cual a su vez es alimentada por montacargas. El polvo que contienen los materiales al ser transportados se dispersa.

Los diferentes porcentajes de material con que se cargan los hornos (de chatarra, "blister", "scrap", etc), dependen del tipo de material almacenado y de su composición. La planeación del

proceso de tratamiento de lodos anódicos también se adecúa a la composición del material cargado. Por ejemplo, el "blister" y los ánodos impuros provenientes de Sonora (Mexicana de Cobre) contienen poco selenio (subproducto comercial) y, por lo tanto, el tratamiento que se les da a los lodos generados es diferente al material de mezcla de San Luis Potosí (Industrial Minera México, S.A.), que produce lodos altos en selenio. De la misma manera, se manejan los materiales con diferente contenido de níquel. Normalmente el horno se carga sólo con un 10 % de chatarra, pero esto depende también de la limpieza de la misma y de su contenido de cobre.

#### Fusión

Esta operación es la fuente de contaminantes gaseosos más importante. Las materias primas contienen muchas impurezas y al someterse a altas temperaturas, <u>los elementos no metálicos se calcinan y producen diversos gases</u> potencialmente tóxicos que, sin ningún tratamiento, van a dar a la atmósfera.

El cobre "blister" contiene elementos con puntos de fusión relativamente bajos (Pb, Sn, Zn, As, Se, etc.). A las altas temperaturas con que se trabaja, estos son volatilizados preferentemente en forma de óxidos, aunque posiblemente algunos de ellos pueden estar en estado basal. Como el "blister" contiene sulfuros metálicos, al ser expuesto a altas temperaturas, el azufre se oxida formando SO₂.

La chatarra posee porcentajes de cobre que varian entre un 89 y un 98 % de cobre (p/p), el porcentaje restante lo constituyen diversos materiales como son plásticos, grasas, pinturas, resinas, barnices, papel, tela, materiales metálicos, etc. Al ser expuestos a las temperaturas de trabajo del horno de reverbero, se queman generando humos cuya composición incluye óxidos del tipo Nox, Sox, vapores de Cd, Zn, Pb, Sn, compuestos fluorados, clorados, etc.

# Oxidación (Kirk-Othmer, 1984)

El cobre se oxida parcialmente soplando aire en el seno del cobre fundido, donde el óxido de cobre formado, oxida a su vez, preferencialmente a las impurezas, que quedan como escoria o en forma de gases que van a la atmósfera sin tratamiento. El cobre se reduce y se recupera parcialmente, como lo indican las siguientes reacciones generales:

Donde M representa al As, Sb u otras impurezas.

#### Escoriación

Durante el proceso de fundición que incluye la oxidación se genera la escoria (especie de nata) que sobrenada en el cobre fundido. Durante esta operación la escoria es removida y extraída del horno. Dado que el porcentaje de cobre es alto (varía entre un 30 y un 40%), se lleva a cabo su recuperación en un horno de cubilote (10). Sin embargo, como la escoria se almacena en los patios de la empresa en donde se le reduce de tamaño, se generan polvos finos que por acción del viento pueden ser dispersados o en época de lluvias arrastrados al drenaje.

#### Reducción

Durante el soplado de aire, la concentración de óxido de cobre en el material fundido alcanza de un 6 a un 10%, la cual es demasiado elevada para que los ánodos que se producen con este material puedan ser empleados en la refinación. Para disminuir la concentración del óxido se introducen troncos de árbol en el cobre fundido. En estas condiciones, la madera se quema y promueve la reducción del óxido, ajustándose de esta manera la concentración de oxigeno a los requerimientos del proceso. En ocasiones, se emplea gas natural para la reducción durante la cual <u>básicamente se genera CO</u>2 como lo indican las siguientes reacciones:

$$2 \text{ Cu}_2\text{O} + \text{C} \longrightarrow 4 \text{ Cu} + \text{Co}_2$$
  
 $\text{Cu}_2\text{O} + \text{CO} \longrightarrow 2 \text{ Cu} + \text{Co}_2$   
 $4 \text{ Cu}_2\text{O} + \text{CH}_4 \longrightarrow 8 \text{ Cu} + \text{Co}_2 + 2\text{H}_2\text{O}$ 

#### Moldeado en rueda de colar

Esta operación consiste en el vaciado del cobre fundido sobre una cuchara de colar la cual posteriormente alimenta a los moldes de ánodos. Para evitar que se peguen los ánodos con el molde, se rocían los moldes con una mezcla de BaSO₄ como desmoldante. En esta operación no se aprecia generación de contaminantes.

#### Enfriamiento de ánodos

Los ánodos colados se enfrían por medio de agua de un circuito de enfriamiento. Es de hecho una de las operaciones donde <u>mayor consumo de agua se tiene</u> pues genera una gran cantidad de vapor no recuperable. Debido a la evaporación constante, la presencia de iones en el agua aumenta notablemente, precipitándose algunos en forma de sales insolubles en las fosas del circuito, como es

⁽¹⁰⁾ También por los resultados preliminares de este estudio se decidió trasladar el horno de cubilote, a una planta industrial ubicada en Celaya, Guanajuato.

el caso del BaSO₄. Junto con estas sales, se depositan polvos provenientes de los materiales depositados en zonas cercanas al circuito de enfriamiento. Cuando el nivel del agua excede los niveles de retención, <u>parte del agua con sólidos suspendidos va a drenaje</u>, acarreando algunos residuos que encuentra a su paso.

Selección, pesado, muestreo y almacenaje de ánodos

Durante operación prácticamente no se generan contaminantes.

#### III.1.2.3 Electrólisis

La primera fase de este proceso consiste en la producción de hojas iniciadoras, que se lleva a cabo en el departamento de electrólisis en la sección de matrices. Estas consisten en delgadas hojas de cobre muy puro, obtenidas mediante una electrólisis donde el cátodo es de titanio. Posteriormente, esas hojas iniciadoras son utilizadas como cátodos, y según se deposita cobre van engrosando hasta que alcanzan el peso comercial para su venta. Los subprocesos se conocen como "producción de hojas iniciadoras" y "producción de cátodo" y dada su similitud, conviene describirlos conjuntamente.

#### Materias primas

Para la producción de hojas iniciadoras se usan ánodos de Cu de alta calidad, denominados de primera por su bajo contenido de impurezas y cátodos de titanio. En la producción de cátodo comercial se emplean ánodos de Cu, producidos en el país y como cátodos, las hojas iniciadoras. En ambos subprocesos se utiliza un electrólito compuesto por sulfato cúprico (45  $\pm$  5 g/L) y ácido sulfúrico (165 $\pm$  5 g/L), aunque cada uno cuenta con su propio circuito. Además, se agregan aditivos que aseguran una electrodepositación uniforme, entre ellos se pueden listar a la tiourea, cola, avitone, y cloruro de sodio. Las cantidades adicionadas son del orden de mg/L(**).

⁽¹¹⁾ Las cantidades exactas de aditivos son parte de la información confidencial de la empresa.

## Descripción del proceso

Producción de hojas iniciadoras:

Se emplean celdas electrolíticas iguales a las empleadas en la producción de cátodo comercial. Como ya se mencionó, el cátodo lo forma una placa de titanio en la que se deposita el cobre proveniente de ánodos seleccionados. El proceso dura 24 h., generándose una placa de 1 mm de espesor aproximadamente y con unos 4 kg de peso. Se separan las hojas de cobre de las matrices de titanio, por medio de una cuchilla y se sacan para lavarse en una regadera. Posteriormente, las hojas de cobre se aplanan y mediante remaches, se le colocan unas orejas que servirán para sostenerlas en las celdas de electrólisis.

#### Producción de cátodo comercial:

El departamento de electrólisis está organizado por tres grupos de "casas" (1-2; 3-4 y 5), que están constituídas por varios pares de secciones. A su vez, cada sección está conformada por 7 celdas.

En cada celda se introducen 20 ánodos y 21 cátodos separados una distancia de 2-3 cm. Se hace fluir la solución de electrólito a razón de 16 L/min, manteniéndose a una temperatura de unos  $64^{\circ}$ C. Como medio de calentamiento se emplea vapor, que fluye a través de serpentines de titanio y calentadores de tubo y coraza. El tiempo de depositación promedio es 24 días dependiendo de la densidad de corriente utilizada. Terminado el depósito de cobre se sacan las placas catódicas cuyo peso alcanza los 110 kg. Los ánodos ya desgastados, -pierden 77% de su peso y se les denomina "scrap"-, son enviados fundición a recirculación.

El 90% de la producción de cátodo comercial se vende entero o en fracciones, y el 10% pasa a fundición de barras, donde se producen lingotes para venta.

# Operaciones unitarias

Se pueden distinguir las siguientes operaciones :

Calentamiento del electrólito Electrólisis Cambios Bombeo y recirculación de electrólito Liberadores

### Generación de contaminantes

#### Calentamiento del electrólito

Se emplean dos tipos de sistemas de calentamiento por vapor: serpentines de titanio e intercambiadores de tubo y coraza.

Los intercambiadores de tubo y coraza han presentado problemas de operación constantemente, porque los tubos de grafito empleados se fracturan fácilmente. Cuando esto sucede se contamina el condensado con los componentes de la solución electrolítica. Un sistema de alarma instalado en la casa de fuerza, se activa cuando registra un aumento en la conductividad del condensado de retorno, provocado por la fuga de solución electrolítica. De inmediato se desvian las lineas de retorno del condensado hacia los tanques de almacenamiento de electrólito. Sin embargo, en ocasiones el nivel que se tiene en estos tanques es tal que no es posible admitir mas líquidos, con lo que se ve la necesidad de enviar a drenaje el condensado contaminado.

Debido al problema anterior se ha tenido la necesidad de ir reemplazando poco a poco los intercambiadores de tubo y coraza por serpentines de titanio.

#### Electrólisis

Durante la electrodepositación de cobre en el catodo, que se realiza a una temperatura promedio de  $64^{\circ}\text{C}$ , el electrolito circula por las celdas a un flujo promedio de 16 L/min. Se emplea una densidad de corriente de 2.6 A/dm². Durante esta operación se generan vapores que arrastran acido sulfurico.

#### Cambios

Pasados de 22 a 26 días, los cátodos se sacan de las celdas de electrólisis y son transportados por medio de una grúa viajera, hasta unas tinas para enjuagarlos en agua caliente. Las celdas se destapan y se permite que la solución salga sin que arrastre los lodos anódicos. Esta operación se realiza por medio de un tubo de acero inoxidable de unos 15 cm. Los lodos se desprenden de los ánodos gastados ("scrap"), con agua a presión. El "scrap", dependiendo del grado de desgaste, es enviado a hornos de fundición o a otras celdas para continuar utilizándolo. Finalmente, los lodos se extraen de las celdas y se transportan a unos tanques, de donde posteriormente se envían a un filtro tipo Oliver.

Debido a las acciones que se efectúan en esta operación, parte de la solución electrolítica cae al piso de los sótanos que están cubiertos de un material conocido como yesicreto. Hay constante goteo de solución de las celdas por fugas, lavado de contacto

(lavado con manguera de los contactos eléctricos para desprender el sulfato de cobre precipitado), escurrimiento de solución de los cátodos al ser transportados fuera de la celda, etc.

La solución que se acumula en los sótanos, se sifonea a los tanques de lodos. No obstante como el vesicreto se agrieta y se desprende fácilmente, parte de la solución puede infiltrarse hacia el subsuelo.

Bombeo y recirculación de electrólito

La solución proveniente de las celdas se recibe en tanques. Se bombea a través de filtros prensa para remover sólidos acarreados, se calienta para mantener la temperatura de operación y se bombea nuevamente a las celdas de electrólisis. Cuando las mangueras están picadas o los sellos de las bombas están en mal estado, ocurren fugas de solución que van a dar a los sótanos. Pueden presentarse los mismos problemas de infiltraciones de electrólito que en la operación anterior.

### Liberadores

Cuando la concentración de cobre en el electrólito es alta, parte de la solución se envía, a una sección de celdas denominada de liberadores, donde se realiza una electrólisis con un ánodo de plomo y un cátodo de cobre. Este proceso es continuo, la solución continuamente pasa de los tanques de almacenamiento de solución a los liberadores y regresa ya decuprizada. El número de liberadores en operación depende de la cantidad de cobre que se requiere retirar de la solución. Durante esta operación al igual que en la producción de hojas iniciadoras y cátodo, existen fugas de electrólito y producción de vapores ácidos. Debido a que los ánodos son de plomo en lugar de cobre, se ve favorecida la oxidación del oxígeno del agua, produciéndose un gas constituido de oxígeno molecular. Este fenómeno genera burbujas que arrastran solución ácida.

### III.1.2.4 Tratamiento de lodos anódicos

Durante el tratamiento de los lodos se llevan a cabo los siguientes subprocesos:

- OXIDACION Y LIXIVIACION DE LODOS ANODICOS
- DESELENIZACION DE SOLUCION PROVENIENTE DE OXIDADORES
- DECUPRIZACION DE SOLUCIONES DE LODOS ANODICOS DESELENIZADOS
- PROCESO SeTeCu
- OBTENCION DE TELURIO

## OXIDACION Y LIXIVIACION DE LODOS ANODICOS

## Materias primas

Los principales materiales empleados en este subproceso son dos residuos que se diferencian por su contenido de selenio: lodos altos en selenio provenientes de la electrólisis de material de Cananea e Industrial Minera México (IMMSA), conocidos com lodos de mezcla y lodos con menor contenido de selenio de Mexicana de Cobre. Además se emplea ácido sulfúrico para la lixiviación y gas natural como combustible.

## Descripción del proceso

El tipo de tratamiento depende de la concentración de selenio (12). Los lodos de mezcla con alto contenido de Se son sometidos a una tostación oxidante, donde el selenio pasa de seleniuro a selenito:

Se 
$$^{-2}$$
 ----> Se  $^{-4}$ 

El material de Mexicana de cobre, con bajo contenido de Se, no se somete a este proceso de tostación.

El paso siguiente consiste en una lixiviación con ácido sulfúrico en concentraciones de 58-68 g/L para lodos de Mexicana, y de 113-127 g/L para lodos de mezcla. La. temperatura de operación es de  $80^{\circ}$ C, el medio de calentamiento vapor y la mezcla se mantiene en constante agitación con aire. El objetivo de esta lixiviación es disolver todos los componentes del lodo manteniendo insoluble a la plata, el oro y el plomo, aunque parte de impurezas quedan también en el lodo final (Sagindykova et al., 1986).

## Operaciones unitarias

Las operaciones unitarias de este proceso son:

Separación de lodos anódicos Tostación oxidante Lixiviación Filtración y lavado de lodos finales Tratamiento de lodos finales

⁽¹²⁾ Para mayor información sobre la composición de los lodos referirse al capítulo IV

## Generación de contaminantes

## Separación de lodos anódicos

Durante la operación de cambios que se efectúa en el proceso de electrólisis, la solución se separa de los lodos. No obstante, como parte de éstos son arrastrados por la solución, es necesario filtrarla, y los sólidos retenidos son enviados a los tanques de lodos. La solución se regresa al circuito de electrólisis. Los lodos sedimentados en el fondo de la celda se bombean a canastillas que no son sino coladeras que retienen piedras, plásticos, cortos (pedazos de cobre que se eliminan manualmente de los cátodos durante la operación), y otras piezas de gran tamaño. Posteriormente, se hacen pasar a través de un filtro Oliver, que trabaja por medio de succión. La solución se reintegra al circuito y los lodos filtrados se envasan y se envían a tostación ó lixiviación, dependiendo del contenido de Se.

El problema que presenta esta operación es el <u>escurrimiento de electrólito a los sótanos, en donde como ya se comentó, puede haber infiltraciones</u> al subsuelo.

#### Tostación oxidante

Para la tostación de los lodos ricos en selenio, se emplea gas natural. La temperatura de operación es de 250 °C. Durante la tostación se generan SeO₂, SO₂ y otros gases producidos por la combustión del gas natural que son enviados a una torre de lavado. El agua empleada en este lavado se recircula durante un mes, al cabo del cual se conducen a un tanque de neutralización y luego al drenaje, -como ya se indicó, esta operación se suspendió-, (ver sec. III.1.4). Es necesario verificar la eficiencia de la torre lavadora.

Se cuenta con un extractor de mangas para los polvos finos que se generan.

#### Lixiviación

Los lodos son sometidos a lixiviación ácida a 83°C de donde se desprenden vapores de agua que contienen solución ácida (ácido sulfúrico). Estos por medio de un extractor son enviados a la misma torre lavadora que recibe los gases procedentes de la tostación oxidante. Cabe hacer notar, que como los tanques oxidadores no se encuentran bien tapados, parte de los vapores se escapan a la atmósfera sin pasar por la torre de lavado.

## Filtración y lavado de lodos finales

Los lodos ya lixiviados se pasan por un filtro Sparkler (de cartucheras) y luego se lavan con agua caliente. La solución resultante de la lixiviación se envía junto con el agua de lavado, al tratamiento de Se -el cual se describe posteriormente-. En esta operación se producen escurrimientos de soluciones al piso.

#### Tratamiento de lodos finales

Los lodos finales se secan en un horno a 100-150°C. El agua evaporada durante el secado se manda también a la torre de lavado. Los lodos secos que contienen metales preciosos, se someten a molido, cribado y envasado en tambos y son transportados por el personal de tráfico interno a los patios de la empresa. Posteriormente se envian a las minas de donde proceden los materiales originales. Durante esta operación los polvos finos que se generan son captados mediante un extractor de mangas.

## DESELENIZACION DE SOLUCION PROVENIENTE DE OXIDADORES

### Materias primas

Solución resultante de la lixiviación de los lodos anódicos, dióxido de azufre (SO₂), ácido sulfúrico y agua oxigenada.

### Descripción del proceso

La solución resultante de la lixiviación es tratada en tanques agitados con burbujeo de  $SO_2$ . El objeto de este tratamiento es precipitar el selenio mediante la reacción siguiente:

$$H_2SeO_3 + 2SO_2 + H_2O -----> Se_{pp} + 2H_2SO_4$$

El selenio que precipita en forma amorfa (selenio rojo), se filtra y se trata para transformarlo en la forma cristalina (selenio gris). Por otro lado la solución se manda a cementación.

#### Operaciones unitarias

Deselenización
Filtración
Reacción Se(rojo)---> Se(gris)
Lavado de Se
Secado
Molido y cribado

## Generación de contaminantes

#### Deselenización

Durante la reacción de precipitación de Se se burbujea SO₂, pero como parte de este gas no reacciona, se requiere captarlo y enviarlo a una torre de lavado. El agua de lavado de gases, se neutraliza con cal y se envía a drenaje (actualmente ya no se realiza esta neutralización, referirse sec. III.1.4)

#### Filtración

El selenio rojo se pasa por un filtro prensa, la solución se envía a un proceso de cementación y el sólido se envía a un reactor para obtener selenio gris. <u>Durante esta operación ocurren</u> escurrimientos de solución al piso de concreto.

## Reacción Se(rojo)---> Se(gris)

En tanques agitados se mezcla el selenio rojo con solución ácida ( $H_0$ SO $_4$ ), para solubilizar los vestigios de cobre y otros elementos presentes. Posteriormente se adiciona agua oxigenada y se calienta con vapor a  $85^{\circ}$ C. Al cabo de un tiempo el selenio rojo se transforma en selenio cristalino. Durante esta reacción se generan vapores que arrastran solución, y no existe ningún equipo de captación de los mismos.

#### Lavado de Se

Con el fin de extraer toda solución (con impurezas) remanente del sólido formado, primero se procede a decantar la solución sobrenadante. Luego se efectúa una serie de lavados. Todas las soluciones resultantes se envían a un tanque de almacenamiento para posteriormente ser neutralizadas y enviadas a drenaje (actualmente ya no se realiza este proceso, referirse a la sección III.1.4).

#### Secado

El selenio gris ya limpio se seca colocándolo en charolas e introduciéndolo a un horno de secado que utiliza gas natural como combustible. Los gases resultantes se descargan a la atmósfera sin tratamiento previo.

### Molido y cribado

Una vez seco el selenio se muele y criba para posteriormente envasarlo. En el cuarto que se efectúan estas operaciones se cuenta con un extractor de mangas para captar los polvos finos que se desprenden. Para mejorar las condiciones de salud de los trabajadores, sería recomendable exigirles <u>que se mantenga el lugar más limpio y se utilice el equipo apropiado de seguridad, como es la mascarilla, quantes y lentes de protección.</u>

DECUPRIZACION DE SOLUCIONES DE LODOS ANODICOS DESELENIZADOS

## Materias primas

Solución deselenizada, varejón de cobre, ánodos de plomo y hojas iniciadoras.

## Descripción del proceso

La solución resultante del proceso de deselenización se envía a tanques de cementación en donde se obtienen compuestos del tipo SeCu, TeCu. Para este fin se hace pasar la solución a través de una cama de cobre metálico (varejón), manteniendo una temperatura de 60-65°C. Se procede a filtrar la solución y a enviarla a secciones de electrólisis para decuprizarla. Los lodos filtrados se envian al proceso SeTeCu. Finalmente, la solución decuprizada se neutraliza con cal y se envía a drenaje (esta operación ya no se lleva a cabo, referirse a la sec. III.1.4).

## Operaciones unitarias

Cementación Filtración Decuprización

### Generación de contaminantes

## Cementación '

Como esta operación se realiza a 60-65°C, se generan a la salida de los tanques cementadores, vapores ácidos que se despiden a la atmósfera sin ser tratados.

#### Filtración

<u>Durante el filtrado ocurren escurrimientos de solución al piso, sin embargo no parece haber infiltraciones al suelo original.</u>

### Decuprización

La decuprización de la solución se lleva a cabo en las secciones 446 y 448 utilizando hojas iniciadoras como cátodo y ánodos de plomo, con un procedimiento semejante al descrito en la operación de liberadores.

Después de la decuprización se obtiene un licor ácido que se neutraliza con cal y se envía al drenaje (operación suspendida, referirse a la sec III.1.4). De las celdas de electrólisis se extraen escamas de plomo provenientes del ánodo, éstas están constituidas de PbSO $_4$  y plomo metálico, las cuales se envían a fundición de ánodos de plomo (fuera de la planta).

#### PROCESO SETECU

## Materias primas

Como materias primas se emplean los lodos obtenidos en la cementación, gas como combustible, solución de sosa al 40%, ácido sulfúrico,  $\rm H_2O_2$  y  $\rm SO_2$ .

# Descripción del proceso

Este proceso consiste en la separación del Se, Te y Cu del lodo obtenido en cementadores. Las diferentes partes del proceso se describen en las operaciones unitarias así como la generación de contaminantes en cada una de ellas.

### Operaciones unitarias

Tostación Lixiviación alcalina Tratamiento del lodo Precipitación de telurio Precipitación de selenio

# Generación de contaminantes

### Tostación

La primera parte de este proceso consiste en someter a los lodos recuperados del proceso de cementación a una tostación oxidante a 300°C. El combustible utilizado es gas natural. Los gases generados se envían a la atmósfera sin ningún tratamiento previo.

### Lixiviación alcalina

Una vez tostados los lodos, se envían a un tanque donde se someten a una lixiviación alcalina. Se utiliza solución de sosa al 40%,  $\rm H_2O_2$  y se calienta con vapor saturado de 85°C. El tiempo que lleva la lixiviación es de unas 8 h. (un turno), al cabo del cual se procede a filtrar los lodos. La solución se envía a precipitación de Te y el sólido denominado residuo de sosa aunque en realidad contiene todavía Se, Te y Cu, se envía a una lixiviación ácida.

## Tratamiento del lodo (lixiviación ácida del "residuo de sosa")

El "residuo de sosa" se carga en un tanque con el fin de lixiviarlo en medio ácido. Se emplea H₂SO₄ y vapor saturado como medio de calentamiento. Se lixivia parte del cobre, selenio y telurio contenido en el residuo quedando un sólido de color café que se envasa, tuesta y muele para ser enviado a lixiviación alcalina nuevamente. Por otra parte, la solución ácida se somete a un proceso similar al que reciben los lixiviados de los lodos anódicos originales, es decir, cementación, decuprización y procesos SeTeCu. Se trata en realidad de un proceso cíclico en que con base a diferentes tratamientos se recuperan al máximo los valores presentes en los residuos sólidos.

Como se puede ver, la generación de contaminantes de la mayoría de las operaciones de los procesos SeTeCu, ya han sido analizados previamente. Solamente se encontraron dos fuentes adicionales de contaminación: los vapores ácidos resultantes de la lixiviación ácida y los gases generados durante la tostación del sólido café que no son captados en torres de lavado.

# Precipitación de telurio

El teluric se encuentra en forma soluble (telurito de sodio) en la solución resultante de la lixiviación alcalina. Se precipita como óxido de telurio ajustando el pH a 6 con ácido sulfúrico concentrado. El sólido se recolecta por medio de una filtración y se coloca en charolas para posteriormente enviarlo a recuperación de telurio vía electrowinning. La solución se envía a un tanque para la recuperación de selenio. En esta operación no se aprecia la generación de contaminantes.

## Precipitación de selenio

La solución que contiene todavía alta concentración de selenio se bombea para ser tratada con SO₂, a tanques de precipitación. Esta operación fue descrita en el proceso denominado "deselinización de solución proveniente de oxidadores". Como se explicó, los gases se envían a torre de lavado, pero en ocasiones ésta no

opera y <u>los vapores son enviados directamente a la atmósfera. Es recomendable que se vigile a los trabajadores para que esto no suceda.</u>

### OBTENCION DE TELURIO

## Materias primas

Oxido de telurio obtenido en la operación conocida como "precipitación de telurio" y gas natural como combustible.

## Descripción del proceso

El óxido de telurio se disuelve en un tanque, ajustando el pH a 13 con una solución de sosa y agitando. La porción de sólido no disuelta se envia nuevamente a lixiviación alcalina, donde las condiciones de extracción son más severas. La solución se manda a una cisterna, y se bombea a un sistema de 10 celdas de electrovinning, cuando la concentración de telurio ha alcanzado un valor mínimo de 70 g/L. En este proceso electrolítico, se emplean ánodos y cátodos de acero. Los cátodos se golpean y raspan para desprender el telurio depositado. Posteriormente este elemento se envia a un horno de fundición para producir lingotes comerciales.

## Operaciones unitarias

Disolución del óxido de telurio Filtración "Electrowinning" Fundición

## Generación de contaminantes

No se observaron la generación de desechos contaminantes en las diferentes operaciones efectuadas, excepto en la fundición del telurio, que se lleva a cabo a 4500°C. Durante esta operación se generan contaminantes atmosféricos, pues no se cuenta con equipo de captación de gases. Es necesario analizar los gases enviados a la atmósfera y si son tóxicos poner un sistema de lavado.

### III.1.2.5 Purificación de solución electrolítica.

#### Materias primas

Solución electrolítica, ánodos de plomo y, ocasionalmente, sulfato de amonio.

## Descripción del proceso

Con el fin de mantener baja la concentración de arsénico  $^{(6)}$  en el electrólito, se drenan diariamente del orden de 15 m³ de esta solución, a celdas de electrólisis en el departamento de plantas químicas con el fin de decuprizarla y desarsenizarla. Si la concentración de níquel es adecuada, este elemento se recupera posteriormente.

## Operaciones unitarias

Decuprización Desarsenización Descarga de matrices Bombeo y filtración de lodos Tratamiento de niquel

## Generación de contaminantes

### Decuprización

En la decuprización del electrólito, se utilizan ánodos de plomo y cátodos de cobre (hoja iniciadoras), para disminuir la concentración de cobre de 65 g/L hasta 12 ó 13 g/L. El cátodo con cobre se envía a tráfico interior, que se encarga de almacenarlo y, posteriormente, de acuerdo a los resultados del laboratorio, lo envía a fundición o se vende. El ánodo de plomo se desgasta lentamente, formando en el fondo de las celdas un residuo conocido como escama de plomo (PbSO₄ mezclado con fragmentos de plomo metálico) que se separa y envía a fundición de plomo. En algunos casos, cuando la escama contiene grandes cantidades de sulfato de cobre, se manda a fundición de ánodos. Durante esta operación se generan los contaminantes gaseosos propios del proceso electrolítico (arrastre de vapores ácidos). Cuando se utiliza en hornos de reverbero escama de plomo contaminada con sulfato de cobre, se generan a las temperaturas de trabajo del horno, óxidos de plomo y compuestos volátiles.

⁽¹³⁾ El arsénico interfiere en la electrorefinación del cobre.

#### Desarsenización

La solución decuprizada se envía a celdas formadas por cátodos de acero inoxidable y ánodos de plomo. Se electrodeposita un sólido negro de arseniuro de cobre en el cátodo de acero, con el desprendimiento de arsina (ASH₃), compuesto gaseoso con alto grado de toxicidad. Se emplea un recubrimiento de "pellets" de plástico sobre la superficie de las celdas con el fin de inhibir la formación de arsina. Sin embargo, a pesar de esta medida, se observa la formación de burbujas pequeñas que rompen en la superficie del líquido, muy probablemente de arsina e hidrógeno.

## Descarga de matrices

La solución desarsenizada se envía a filtración. El cátodo impregnado de arseniuro de cobre (Cu₃As) se raspa y lava dentro de la misma celda, depositándose un lodo en el fondo de la misma, el cual se bombea junto con la solución restante a un filtro. El ánodo de plomo nuevamente forma escama, la cual se separa del arseniuro de cobre. La escama limpia de arseniuro de cobre se manda a fundición de plomo y la impregnada con Cu₃As se envía a fundición de ánodos. La descarga manual de las matrices, si no se trabaja con el equipo adecuado, puede causar problemas de salud a los trabajadores. Cuando se introduce la escama de plomo impregnada de arseniuro en los hornos de fundición de cobre, pueden formarse gases altamente tóxicos por la presencia de As y Pb. Es necesario analizar estos gases.

# Bombeo y filtración de lodos

La solución desarsenizada, como se ha explicado, se pasa a través de un filtro prensa para separar el arseniuro de cobre, el cual parcialmente deshidratado, se envasa en tambos que posteriormente son almacenados por tráfico interno. Anteriormente se transformaba el arseniuro en arseniato de cobre, pero dada la generación tan grande de contaminantes se suspendió el proceso. No obstante, hay que resolver el problema de estar almacenando residuos tan tóxicos. Sería recomendable efectuar un estudio para encontrar un proceso limpio de recuperación de cobre y arsénico.

Durante la filtración se tiene escurrimiento de solución al piso y polvos de arseniuro que caen en el manejo del mismo. Cuando se seca se tiene la posibilidad de tener polvos fugitivos dada la proximidad a la entrada del departamento de plantas químicas.

## Tratamiento de niquel

Sólo cuando la concentración de niquel es mayor de 10~g/L, se trata en una sección del mismo departamento de plantas químicas. De otra manera, la solución desarsenizada puede ser recirculada al circuito de electrólisis o neutralizada con cal y enviada al

drenaje. Actualmente, ya no se efectúa la neutralización, sino que la solución desarsenizada se clarifica con carbón activado y se envía al circuito de electrólisis (ver sec. III.1.4).

En un tanque llamado de niquel impuro se descargan unos 150  $\mathrm{m}^3$  de solución desarsenizada, la cual se agita y se mezcla con sulfato de amonio, con el fin de obtener sal doble de niquel y amonio.

El sólido formado se pasa a un filtro de cartucheras. La solución es neutralizada y enviada a drenaje. Los cristales impuros de la sal formada se redisuelven en agua limpia mediante calentamiento con vapor. Posteriormente, se traspasa la solución a un tanque de cristalización, en donde se decanta la solución madre y se recircula al tanque de niquel impuro. Los cristales formados se centrifugan hasta tener una humedad de 20-25%, se envasan y son transferidos a tráfico interno, quien se encarga de su venta.

En este procedimiento se generan efluentes líquidos que una vez neutralizados con cal (con la subsecuente formación de sólidos), son enviados a drenaje (esta operación ya no se efectúa, referirse sec III.1.4).

### III.1.2.6 Fundición de barras

#### Materias primas

Se utilizan como única materia prima el cátodo obtenido por electrólisis y como combustible gas natural.

#### Descripción del proceso

Un porcentaje pequeño de la producción de cátodo es transformado en barras que son obtenidas por fusión en hornos de reverbero. La fusión se lleva a cabo con gas natural.

### Operaciones unitarias

Carga de hornos Fusión Escoriación Colado Selección de barras

## Generación de contaminantes

Dada la alta pureza del cobre obtenido por vía electrolítica, durante la fusión no se presentan los mismos problemas de generación de contaminantes atmosféricos que en fundición de ánodos. <u>De hecho, los gases despedidos en las chimeneas contienen básicamente los productos de combustión del gas natural como son: SOx, NOx, CO₂ y CO. Sin embargo sería pertinente realizar monitoreos en la chimenea del horno para determinar si es o no necesario utilizar equipo de control de emisión de gases o simplemente se requiere optimizar la combustión del gas natural.</u>

## III.1.2.7 Casa de fuerza

## Materias primas

En la regeneración de resinas de intercambio iónico se emplea solución de sosa al 40% y ácido clorhídrico al 30%.

En las calderas se emplean aditivos constituídos por fosfatos (desincrustantes), sulfitos y nitritos (para prevenir la corrosión por oxígeno -"pitting"- de las tuberías)

## Descripción del proceso

Básicamente se llevan a cabo dos procedimientos:

- Regeneración de resinas de intercambio y
- Purga de calderas

El agua que entra a calderas se pasa a través de torres de intercambio iónico, donde los cationes responsables de las incrustaciones (Ca y Mg), son intercambiados en las resinas por iones H+, y los aniones incrustantes (carbonatos y sulfatos) por OHT. El procedimiento ayuda a evitar la formación de incrustaciones dentro de los tubos de las calderas, ya que provocan el sobrecalentamiento de la tubería en pequeñas zonas, ineficiencias en la transferencia de calor y picaduras.

La purga de calderas se efectúa periódicamente, con el fin de eliminar todos los sólidos sedimentados en el domo de la caldera por el efecto de los desincrustantes, es decir, los carbonatos de calcio y magnesio son transformados en fosfatos no incrustantes, pero sí sedimentables.

## Operaciones unitarias en la regeneración de resinas

Retrolavado de torres Succión de sosa y ácido Lavado de torres Neutralización y drenaje de soluciones

## Operaciones unitarias en la purga de calderas

Purga del domo inferior Neutralización y drenaje

# Generación de contaminantes en la regeneración de resinas

Retrolavado de torres Cuando se deciden regenerar un par de torres de intercambio (catiónica y una aniónica), se introduce agua a contracorriente por la parte inferior, para sacar todos los sólidos asentados. El agua asi obtenida se envía directamente a drenaje. Actualmente el agua se envía a enfriamiento de ánodos (ver sec III.1.4).

## Succión de sosa y acido

Se regeneran las torres haciéndoles pasar una solución de ácido clorhídrico en el caso de la torre catiónica, y sosa en la aniónica. Las soluciones gastadas se reciben en una fosa de neutralización y se envía a drenaje (la operación se suspendió, referirse a sec. III.1.4).

#### Lavado de torres

Con el fin de quitar el exceso de ácido o sosa, se procede a realizar un lavado con agua, recibiendo también las soluciones generadas en la fosa de neutralización. Sin embargo, el tamaño de la fosa no es el adecuado, por lo que parte de la solución se desborda a drenaje sin ser neutralizada en forma adecuada.

## Neutralización y drenaje de soluciones

La solución normalmente queda básica pues se adiciona un exceso de sosa. Para resolver este problema se agrega más ácido clorhidrico hasta obtener un pH de la solución final de alrededor de 7. En ocasiones, se utiliza más agua de la necesaria, por lo que se desborda la fosa y no se neutraliza adecuadamente. Sería recomendable dosificar la cantidad de sosa necesaria para evitar el que de ácido clorhidrico y no usar más agua de la que se requiere. La solución neutralizada, actualmente, se bombea a las torres de enfriamiento (ver sec.III.1.4).

## Generación de contaminantes en la purga de calderas

Purga del domo inferior

Durante esta operación, se abren las válvulas de purga para permitir la salida del agua contenida en el domo inferior. Esta se envia a un tanque de atemperamiento. No hay generación de contaminantes.

## Atemperamiento

Debido a que la purga sale en forma de vapor saturado, es necesario alimentar una cierta cantidad de agua fría con el fin de condensarla como líquido saturado (a la misma temperatura de trabajo) y, posteriormente, ser neutralizada.

# Neutralización y envio a drenaje

La purga es recibida en una fosa de neutralización. Los aditivos empleados tienen carácter básico: sulfito de sodio, que evita la presencia de oxigeno que corroe las tuberías ("pitting"), hidracina que tiene el mismo efecto secuestrante de oxigeno, fosfatos y EDTA que actúan como desincrustantes ya que reaccionan con el calcio. En consecuencia, para neutralizarla a un pH 7, se utiliza ácido clorhídrico concentrado. Anteriormente se enviaba al drenaje, aunque actualmente el agua se recircula a las torres de enfriamiento (ver sec.III.1.4)

## III.1.3 Relación de residuos generados

En cada uno de los procesos se efectuo una evaluación de los contaminantes generados, haciendo notar cual o cuales cuerpos receptores eran afectados.

De la misma forma se hizo una evaluación cualitativa del impacto sobre los cuerpos receptores, clasificando a los residuos peligrosos, de acuerdo a su posible composición y propiedades del mismo. Se detectaron un total de 39 desechos. En la tabla 2 se listan, de acuerdo al proceso donde se originan.

## III.1.4 Modificaciones efectuadas en los procesos de la planta refinadora de cobre durante 1991

Con base a los diagramas de flujo de los diversos procesos presentados a la empresa, se han realizado modificaciones en cuanto a efluentes se refiere. Estas han ido implementándose desde los meses de enero y febrero de 1991.

Hasta el mes de octubre de 1991 se han realizado los cambios mencionados en la tabla 3. El propósito de estas modificaciones es el de tener ahorros de agua y ácido, así como de evitar enviar descargas a drenaje sin el tratamiento adecuado y están siendo probados de manera temporal, mientras se investigan los procesos viables para la recuperación de valores en los efluentes.

### III.2 ANALISIS QUIMICOS Y FISICOS

### III.2.1 Estrategia de muestreo

## III.2.1.1 Datos generales

De acuerdo a los datos recabados durante la auditoria ambiental, son 39 los desechos generados por los procesos de la planta (tabla 2). De acuerdo a los objetivos fijados pára este estudio, el muestreo se dirigió a resolver, primeramente, el problema de contaminación de los efluentes líquidos, ya sea por tratamiento de éstos o por reciclado.

Se realizó un muestreo a juicio (Barnett, 1984 y Keith, 1991), considerando que procesos generaban residuos cuyo cuerpo receptor, al momento de iniciar este estudio, era el agua (tabla 2). Se plantearon 7 grupos de líquidos potencialmente tóxicos:

Aguas pluviales contaminadas.
Aguas de lavado de gases.
Aguas de enfriamiento.
Aguas de servicios.
Electrólitos y condensados.
Soluciones generadas en el tratamiento de lodos.
Soluciones de la purificación del electrólito.

Para el muestreo, se seleccionaron 19 puntos relacionados directamente con estos grupos (tabla 4). Adicionalmente, se muestrearon cuatro tipos de lodos anódicos.

Para determinar la magnitud de la concentración de los elementos presentes en las muestras líquidas y poder seleccionar las condiciones adecuadas de cuantificación, se llevó a cabo un muestreo preliminar y, posteriormente, cuando los métodos estaban

establecidos, se realizó un segundo muestreo en los meses de junio y julio para asegurar que los drenajes recibieran agua de lluvia. La frecuencia de este muestreo fue variable ya que tuvo que adaptarse a las condiciones de los procesos. En algunos casos no fue posible tomar muestras ya que los procesos fueron suspendidos en el lapso comprendido entre la planeación del muestreo y la toma de muestras.

Las muestras fueron tomadas en las descargas finales de cada proceso y, en algunos casos, se complementaron con puntos intermedios o muestras sólidas para evaluar la posibilidad de reciclar los desechos y optimizar los procesos. En los casos en que se consideró importante determinar la variación en la concentración de elementos tóxicos, se analizaron las muestras sin mezclarse; mientras que en los casos en que únicamente se requería conocer la concentración promedio de los elementos se prepararon muestras compuestas.

Los datos sobre la ubicación del punto de muestreo, la carga, el flujo aproximado, número de repeticiones, fecha y hora, así como observaciones y comentarios aparecen en la tabla 5. Para indicar el punto de muestreo se utilizan dos digitos, y un número entre paréntesis para identificar cada una de las muestras tomadas en cada punto. Como información complementaria se anexa un plano de localización general de planta (fig. 28), donde se indican los puntos de muestreo.

## III.2.1.2 Descripción de los puntos de muestreo.

- (Puntos 1.1 al 1.6), muestras que corresponden a aguas pluviales. Se seleccionaron 6 puntos de muestreo . En cada uno de estos puntos se tomaron tres muestras -una cada tres días-. Los análisis se realizaron en cada muestra individual para evaluar la calidad de esta agua que va al drenaje municipal y analizar su composición y variabilidad, con el fin de utilizarla en los procesos de la planta.
- (Punto 2), agua de lavado de gases del horno de chatarra. Como la empresa suspendió el proceso de prequemado, no se pudieron tomar muestras ni realizar los análisis correspondientes.
- (Punto 3), se trata de agua de enfriamiento de ánodos que, cuando se sobrepasa el nivel del contenedor del agua de enfriamiento, va a dar al drenaje arrastrando a su paso sustancias solubles e insolubles procedentes de los materiales ubicados cerca de las torres de enfriamiento ("scrap", y tambos de sales y residuos impuros). Se seleccionó un solo punto de muestreo (3) y se tomaron tres muestras, una cada cinco dias.

(Punto 4), corresponde a los condensados ácidos por fuga de electrólito cuando ocurren rupturas de los tubos de grafito de los intercambiadores empleados en el calentamiento de la solución electrolítica. No obstante, no se tomaron muestras de condensados como inicialmente estaba planeado, porque la empresa decidió sustituir este sistema por uno más seguro (sec.III.14).

Cabe aclarar que es posible deducir los contaminantes presentes en el condensado ácido, ya que se conoce la composición del electrólito (muestras tipo 6), que es la sustancia que contamina el condensado (procedente del vapor de calentamiento). No obstante, como uno los cambios establecidos en la planta, durante la realización de este estudio, es el que en lugar de enviarse al drenaje, los condensados se mandan a los tanques de lodos, donde se mezcla con el resto de la solución del sistema (sec III.1.4), ya no se produce contaminación.

- (Puntos 5.1-5.6) incluyen todos aquellos puntos de muestreo relacionados con los procesos de plantas químicas:
  - 5.1) receptor de agua de lavado de gases procedentes de la lixiviación y tostación oxidante de los lodos anódicos. Se realizó un muestreo a mediados y otro a fin de mes, antes de que el agua fuera desechada.
  - 5.2) receptor de agua de lavado de gases del proceso de deselenización y de procesos SeTeCu. Se realizó un muestreo del agua de lavado a la mitad del ciclo de uso y otro al final, antes de que el agua fuera desechada.
  - 5.3) soluciones del último lavado del selenio gris, tomadas del tanque reactor. Se tomaron dos muestras, cuando el proceso estaba en operación, ya que no es continuo. No existe una frecuencia en el manejo de este tipo de material, ya que depende de que los lodos anódicos contengan selenio -lodo de mezcla-.
  - 5.4) solución decuprizada obtenida después de la cementación, tomadas en la sec. 446-448. Como esta solución, al ser evaporada, conforma el denominado ácido negro que se recicla en forma continua, se tomaron tres muestras durante diferentes ciclos para ver la acumulación de impurezas en el ácido negro reutilizado.
  - 5.5) solución resultante del drenado del electrólito, tomado del tanque de almacenaje de solución desarsenizada. Esta solución corresponde a

electrólito decuprizado y desarsenizado. (proceso que permite mantener la concentración de arsénico por debajo de un nivel que pudiera afectar la depositación de cobre en el cátodo). Se trata de un proceso que se lleva a cabo diariamente (un turno). Se tomaron tres muestras, una cada cinco días.

- 5.6) solución decuprizada y desarsenizada procedente del punto 5.5 y clarificada con carbón activado. Con el fin de observar si existe una adsorción apreciable de algunos de los elementos presentes, se procedió a tomar una muestra de la solución antes de clarificarse (punto 5.5) y una vez tratada (punto 5.6).
- (Puntos 6.1-6.3), electrólitos procedentes de las casas de electrólisis. Se seleccionaron para determinar los niveles originales de los elementos antes de que sean removidos (durante el tratamiento del electrólito). Como el electrólito de las casas 1-2 y 5 pasa a las casas 3-4, de donde es drenado a plantas químicas, se consideró necesario únicamente tomar un mayor número de muestras en este último grupo de casas:
  - 6.1) electrólito de las casas 1-2, una muestra
  - 6.2) electrólito de las casas 3-4, tres muestras
  - 6.3) electrólito de la casa 5, una muestra
- (Punto 7) "Acido negro", que resulta de la evaporación de la solución decuprizada después de pasar por los cementadores. Es empleado en la lixiviación ácida de los lodos. Se tomó un muestra para determinar su contenido de impurezas, ya que éstas corresponden a elementos comerciales, denominados valores.
- (Punto 8), se refiere a las soluciones resultantes de la regeneración de resinas. Es una mezcla de las descargas de las dos torres de intercambio que contienen ácido muriático y sosa, reactivos empleados para su regeneración. Durante este proyecto otro de los cambios instrumentados fue el de que el agua dejó de enviarse al drenaje y fue utilizada como agua de enfriamiento de las torres. Por lo tanto, se tomaron muestras antes de que las soluciones se bombearan hacia las torres, durante tres regeneraciones consecutivas, a diferentes horas de un mismo día.

(Punto 9), soluciones obtenidas en la purga de calderas después de ser neutralizadas con ácido y antes de ser enviadas a las torres de enfriamiento. Para los análisis se tomaron tres muestras representativas, en forma similar al muestreo realizado en el punto 8.

## III.2.2 Análisis de iones metálicos

## III.2.2.1 Análisis por espectrofotometría de absorción atómica

## <u>Técnica:</u>

La espectrofotometría de absorción atómica tiene como fundamento la medición de la absorbancia de los átomos en estado gaseoso de un elemento a una longitud de onda específica, la cual sigue la ley de Beer en un intervalo de concentraciones también específico para cada elemento, llamado intervalo lineal (Ramette, 1983).

Como todo método, la espectrofotometría de absorción atómica tiene sus limitantes, entre las que se encuentran las interferencias que repercuten en la sensibilidad, exactitud y precisión. Estas pueden variar con las condiciones de operación y, por consiguiente, producen un error irregular que afecta la reproducibilidad y repetibilidad (Pinta, 1971).

Se han observado tres tipos de interferencias:

## Interferencias espectrales:

Se deben a las superposiciones de rayos o bandas de absorción o de emisión. Interferencias de este tipo están relacionadas con el poder de resolución de un monocromador.

### Interferencias físicas:

Son las modificaciones de las propiedades físicas de las solución (matriz) que producen una variación en la cantidad de solución nebulizada dentro de la flama. Este tipo de interferencias puede afectar a nivel de nebulizador o a nivel de flama.

La matriz de las muestras debe ser considerada ya que puede tener diversos efectos como son:

-Precipitación puede ser que el elemento de interés se encuentre precipitado dadas las condiciones o bien este formando un compuesto insoluble.

-Propiedades físicas del estándar y la muestra. cantidad de muestra aspirada por el nebulizador y la porción que llega a la flama depende de las propiedades físicas de la solución, a saber, la viscosidad, tensión superficial, densidad, salinidad (fig. 29), acidez (fig. 30) y presión de vapor del disolvente, así como de los flujos y gases empleados. Para evitar diferencias en la cantidad de muestra y estándar que llega a la flama, es necesario que las propiedades físicas de ambos sean tan iguales como sea posible, por lo que se recurre al método de igualación de matrices. En casó de que esto no pueda lograrse por la complejidad de la matriz debe emplearse el método de las adiciones estándar.

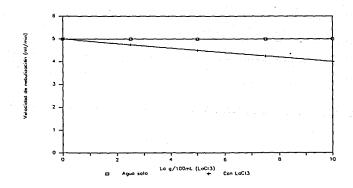



FIGURA 29

Efecto de la salinidad sobre la cantidad de muestra aspirada (Tomado de Pinta, 1971)

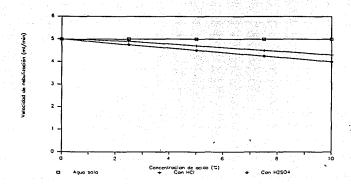



FIGURA 30

Efecto de la acidez sobre la cantidad de muestra aspirada (Tomado de Pinta, 1971)

## Interferencias químicas:

Son específicas y son provocadas por las reacciones químicas en la flama. La formación de átomos en estado basal puede ser inhibida por dos formas generales de este tipo de interferencias, siendo éstas:

Disociación incompleta de compuestos. La causa más común de este tipo de interferencia se debe a la formación en la flama de compuestos refractarios tales como fosfato de calcio y fluorotantalato de potasio. Estos interferentes ocasionan la formación de compuestos que no son disociados completamente a la temperatura de la flama y, por ende, evitan la formación de átomos neutros en estado basal. Al establecerse una técnica analítica debe usarse un método para conocer la interferencia química. Este método puede ser (Varian, 1989):

- Preparar una serie de soluciones con varios niveles del interferente.
- Medir la absorbancia de cada solución.
- Graficar los resultados (fig. 31).

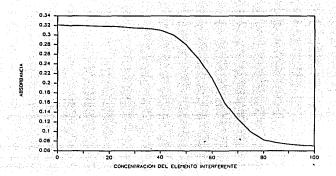



FIGURA 31 Efecto del interferente sobre la absorbancia del analito

evitar la interferencia:

- Determinar de acuerdo a la gráfica, la región donde no se observa interferencia para seleccionar esas condiciones de trabajo. Si no se encontrara esta región o no se pudiera trabajar en ella existen varias formas para
- Ajustar el quemador para obtener una absorbancia máxima, con una solución de concentración conocida del elemento a analizar, en una matriz preparada igualando la de la muestra. Ajustar flujo de iqualar el gases para absorbancias entre la solución anterior otra que contenga la misma concentración del analito en agua destilada.
- Usar una flama de mayor temperatura ya que algunos compuestos requieren de este tipo de flama para alcanzar una disociación completa. Un ejemplo de este tipo de flama es la de óxido nitroso-acetileno.
- Extraer el elemento a analizar en un medio orgánico utilizando un agente quelante que asegure la separación del interferente y el analito.
- Extraer el interferente lo cual generalmente se logra por medio de una extracción orgánica.

 Usar agentes liberadores. La formación de algunos compuestos refractarios puede prevenirse mediante la adición en exceso de otro elemento que se combine preferencialmente con el interferente.

Ionización. Las flamas de alta temperatura como la de óxido nitroso-acetileno puede causar una ionización apreciable del elemento a determinar. Los metales alcalino y alcalino-térreos son más susceptibles de ionización que los elementos de transición. Para controlar la ionización del elemento es necesario añadir un catión que posea un potencial de ionización menor al de éste. La adición de elementos fácilmente ionizables como el sodio, potasio y cesio en concentraciones entre 2000 y 5000 microgramos/mL crea un exceso de electrones en la flama y suprime de forma efectiva la ionización del elemento.

## Desarrollo:

Los análisis se realizaron con un espectrofotómetro de absorción atómica Varian modelo Spectra 400, empleando estándares marca Sigma y Merck. Las condiciones de trabajo fueron las recomendadas por el manual del aparato empleado (Varian, 1989).

En las muestras preliminares se determinaron por espectrofotometría de absorción atómica las concentraciones de los siguientes elementos: Cu, Ni, As, Ag, Al, Fe, Mg, Ca, Zn, Si, Se, Bi, Cr, Co, Mn, Pb, Te y Sb (ver apéndice). Para evitar errores por interferencia de matriz y química se utilizaron dos curvas estándar⁽¹⁴⁾ para cada elemento (tabla 6). Adicionalmente, se determinó la concentración de sodio por fotometría de flama (Analysis of Saline and Sodic Soils, 1989).

En el segundo muestreo se determinaron los mismo elementos descritos para el muestreo preliminar (tablas 7-11). Se evitaron las interferencias de matriz de la siguiente manera: en muestras neutras o ligeramente básicas, que no contenían cobre ni níquel, se utilizaron estándares preparados con agua; en muestras con matriz compleja se empleó una curva estándar preparada simulado una matriz semejante o bien cuando las muestras eran heterogéneas, se aplicó el método de las adiciones estándar (Perkin-Elmer, 1982).

Se determinó para cada elemento su límite de detección (LD = 3*s), su límite de cuantificación (LC = 10 X s) y sus bandas de confianza. Para la realización de las curvas patrón se efectuaron 10 lecturas por punto. Cuando la concentración del elemento era igual o mayor al límite de cuantificación se aplicaron métodos

⁽¹⁴⁾ Una curva se preparó con agua y otra con una solución 1.8 % H2SO4 con 45 000 mg/L de Cu (máxima concentración determinada)

rutinarios con cinco lecturas o bien tres lecturas en el caso de una alta concentración de sales de cobre o níquel en la matriz que tapaban el quemador. En el caso de muestras con concentraciones menores que el LC pero mayores que el LD, se aumentó el número de lecturas realizadas en cada a muestra a diez (Perkin-Elmer 1982 y Taylor 1987). Para mayor información sobre las técnicas y métodos empleados referirse a la tabla 6.

## III.2.3 Análisis de parámetros complementarios

Los parámetros que se utilizan para evaluar la calidad del agua son: gasto, pH, conductividad, sodio, calcio, magnesio, carbonatos, bicarbonatos, cloruros y acidez total. Los resultados obtenidos se informan en la tabla 12. Las técnicas empleadas corresponden a las recomendadas por Sedue en las normas AA-8-80 y AA-51-81. Como no se muestrearon los drenajes finales, no fue posible medir el gasto directamente, sino que se utilizó información proporcionada por los ingenieros encargados de las diferentes áreas para calcular un flujo mensual aproximado (tabla 5).

## III.2.3.1 Determinación de pH:

Existen básicamente dos métodos para la determinación del pH. A saber, el método colorimétrico y el potenciométrico. El segundo es el más preciso ya que no requiere del uso de indicadores, los cuales presentan varias desventajas como son: el cambio de coloración con el tiempo, la nitidez del viraje que depende de la naturaleza del indicador, un posible error debido a la salinidad de la muestra ya que la coloración depende del pH así como de la naturaleza de la sal disuelta y de la concentración de la misma, la destrucción parcial de los indicadores ó bien el reforzamiento de la coloración debido a la presencia de derivados clorados.

El método potenciométrico consiste en medir la diferencia de potencial entre dos electrodos (uno de vidrio y otro de calomel). El potencial del electrodo de vidrio depende de la concentración de los iones  $\mathbf{H}^{\dagger}$  de la solución, mientras que el potencial del electrodo de calomel es constante, pero depende de la concentración de cloruros en la solución.

$$Hg_2Cl_2 + 2e- ---> 2Hg + 2Cl^-$$

Una vez considerado esto, la diferencia de potencial entre los dos electrodos depende de la concentración de los iones  ${\rm H}^+$  en la solución. La ecuación de Nernst relaciona la diferencia de potencial (E) con el pH: E = E_0 - 0.059 pH, donde E_0 es el potencial estándar.

Para la determinación del pH de las muestras se empleó el método potenciométrico. Se usó un potenciómetro marca Corning mod. 10. Antes de realizar la determinación se ajustó el aparato a la temperatura de trabajo (ambiente), y posteriormente se calibró con una solución amortiguadora de pH 7 y otra de pH 4 ó bien 9, de acuerdo a las condiciones de acidez de la muestra. Algunas muestras fueron diluidas para realizar la determinación del pH ya que su concentración de H⁺ era muy elevada. El método recomendado por Sedue en la norma NOM-AA-8-80 es el potenciométrico.

### III.2.3.2 Conductividad eléctrica:

La determinación de la conductividad eléctrica indica la concentración de iones libres en la solución. Se basa en la determinación de la resistencia entre dos electrodos de platino dentro de una celda de conductividad, la cual se llena con la solución. La resistencia de la celda se mide mediante la colocación de ésta sobre un puente de Wheatstone para corriente alterna. La frecuencia de la corriente empleada es normalmente 1000 Hz.

Según la siguiente ecuación, la resistencia es:

$$R = pl/A = l/kA$$

donde:

R = resistencia

p = resistividad

l = distancia entre los electrodos

A = área de los electrodos

dado que p = 1/k, para k obtenemos:

$$k = 1 / R A$$

La constante de la celda  $K_{\text{celda}} = 1$  / A depende de su forma geométrica. (Castellan, 1987)

La conductividad es una función de la concentración y tipo de electrólitos presentes en la solución.

Para la determinación de este parámetro, se empleó un conductimetro marca Cole/Parmer Mod. 1481-00. Para algunas muestras fue necesario realizar una dilución previa a la medición de la conductividad. Todas las mediciones se realizaron a temperatura ambiente.

#### III.2.3.3 Determinación de sodio:

Para la determinación de este elemento se empleó la espectrometría de flama, la cual se basa en que cuando se aplica energía a un átomo, sus electrones pueden pasar a un nivel de energía más alto. Después de un tiempo regresan a su nivel de energía original y liberan energía radiante con una longitud de onda característica. La intensidad de la radiación corresponde al número de átomos llevados a un nivel de energía más alto en una flama a temperatura constante y está relacionada a la concentración del elemento.

La temperatura de la flama del sistema emisor no debe ser muy alta, ya que podría ocasionar una ionización. La ionización ocurre cuando la energía es tan alta que el electrón sale del átomo. Debido a que el electrón no regresa a su nivel de energía original no hay emisión de radiación

El aparato que se usó fue el Flamómetro Corning Mod. 400. Se elaboró una curva patrón de 0.5, 1, 1.5 y 2 meg/L, en la cual se interpolaron las lecturas de las muestras. Se observó que el cobre a altas concentraciones (4.5g/100 L) con ácido sulfúrico disminuye considerablemente la emisión del sodio. Debido a esto, se empleó el método de adiciones estándar para aquellas muestras con altas concentraciones de cobre (5.4, 5.5 y electrólito casa 3-4) y en algunos casos se emplearon diluciones tales que la concentración de cobre dejó de ser un factor importante.

#### III.2.3.4 Determinación de cloruros:

Existen diversos métodos directos e indirectos para la determinación de cloruros. El método que se utilizó fué indirecto ya que no se contaba con un electrodo selectivo de cloruros.

La determinación de cloruros por medio de espectrofotometría de absorción atómica es un método indirecto que consiste en precipitar cuantitativamente los cloruros en forma de cloruro de plata (AgCl), mediante la adición de una cantidad conocida de nitrato de plata. La cantidad de cloruros en la muestra original se determina por medio de la cuantificación de la plata remanente en la solución después de eliminar el AgCl precipitado (Varian, 1989).

Se emplearon estándares de Ag para la elaboración de una curva patrón en la cual se interpolaron las absorbancias de la plata remanente. Las condiciones empleadas para la absorción atómica⁽¹⁵⁾, fueron las señaladas en el manual para la determinación de Ag.

⁽¹⁵⁾ FLUJO DE GASES, TIPO DE FLAMA, RANURA, CORRIENTE DE LA LAMPARA, LONGITUD DE ONDA, ETC.

Con base en los resultados de los análisis preliminares, se calcularon las diluciones de las muestras para que los cloruros presentes reaccionaran con 0.5 mol de  ${\rm Ag}$ . La cantidad de  ${\rm Ag}$  agregada fue de 50 mg/L, y se midió finalmente la plata remanente.

# III.2.3.5 Determinación de carbonatos y acidez total

Los análisis se realizaron por el método de neutralización utilizando una solución 3.15 N de sosa (NaOH) para acidez total, y otra de ácido clorhidrico (HCl) 0.012 N para carbonatos (HCO₃). El pH se midió con un potenciómetro marca Corning Mod. 10

Para acidez total, se midió el volumen necesario para llegar a pH de siete, en cuyo caso, los equivalentes neutralizados corresponden a los equivalentes de ion H⁺ presentes en las muestras ácidas. La reacción de neutralización es:

Para determinar la concentración de carbonatos totales se hicieron curvas de pH vs mililitros agregados de reactivo neutralizante. Se determinó gráficamente el punto de equivalencia, como lo muestra la siguiente figura:

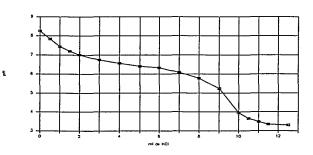



FIGURA 32
Determinación de carbonatos

El volumen gastado al punto de equivalencia corresponde a la concentración de bicarbonatos de aquellas muestras que presentan pH's inferiores a 8.5 (sólo existen carbonatos libres a pH mayores a 8.5). La reacción de neutralización es la siquiente:

$$HCO_3^- + H^+ -----> H_2CO_3$$

## III.2.3.6 Cálculo de la concentración de ácido muriático y sosa empleados en la regeneración de resinas.

Estas muestras provienen de la regeneración de resinas intercambiadoras utilizadas en Casa de Fuerza.

Para calcular la concentración de sosa es necesario emplear un patrón de biftalato (o hidrogenoftalato) de potasio y llevar a cabo una titulación ácido-base potenciométrica (a pH 7) o con indicador de fenolftaleína.

Se utilizó una dilución adecuada de la solución de sosa (aprox. 2/150) para neutralizar 0.0025 moles de biftalato de potasio. Considerando la reacción 1:1 se gastaron 9.7 mL de sosa (fig. 33):

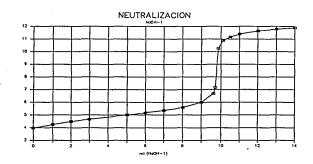



FIGURA 33

Curva de neutralización de la sosa con biftalato de potasio

La concentración de OHT, se calcula de la siguiente manera:

0.0025 mol x (1000/9.7) x (1/0.013254) = 19.44 M = 777.6 g NaOH/L solución

Para la determinación de ácido clorhídrico (muriático) se requiere de un patrón de carbonato de sodio. Considerando que la reacción es 2HCl a 1  ${\rm CO_32}^-$  y que se utilizaron 0.050 moles de carbonato para 15.5 mL de una dilución 3/200 (aprox.) de la muestra (fig. 34):

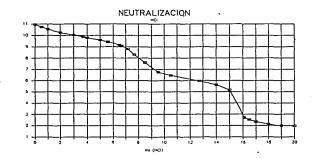



FIGURA 34

Curva de neutralización del ácido clorhídrico con carbonato de sodio

la concentración de HCl es:

0.05 mol x 2eg/mol x (1000/15.5) x (1/0.0154) = = 10.5 N = 383 g HCl/L solución

De esta manera, para lograr una neutralización completa cuando se desechan ambas soluciones al drenaje, es necesario mezclar:

1.86 volumenes de HCl por 1 volumen de NaOH

Así por ejemplo, si se usan 20 litros de sosa para la regeneración de la torre aniónica, deben ser empleados 37.2 litros de HCl.

## III.2.4 Tratamiento estadistico

### III.2.4.1 Generalidades

Los datos obtenidos en la determinación de una muestra, generalmente, varian entre si. Si esta variación está dentro del límite del control de calidad no afecta la confiabilidad del resultado.

El control de calidad de un método de medición considera todas las variables para obtener estabilidad en el proceso y reproducibilidad de los datos, con lo cual se aseguran resultados confiables.

"Si un proceso de medición genera resultados correctos, se dice que es exacto, y el valor medido es también exacto.... Un valor medido, es un estimado y puede ser lo `suficientemente cercanop al valor correcto para ser considerado `sin errorp, y el proceso de medición puede ser considerado como exacto" (Taylor, 1987).

Al realizar mediciones repetitivas, se encuentra que difieren unas de otras en mayor o menor grado, y las medias de conjuntos de mediciones pueden diferir también, aunque en menor grado. "La dispersión de los valores es una medida de la precisión, cuanto menos dispersos se encuentren mayor es la precisión." (Taylor, 1987).

En un proceso estable de medición, un gran número de valores individuales tienden hacia un valor medio, que puede o no ser el valor real. En este último caso, se dice que el proceso es sesgado, influenciado por un error sistemático.

Los parámetros de calidad que dan la base para la selección de la metodología apropiada para un propósito dado, cumplen con las siguientes características:

### Características esenciales

Características deseables

Precisión Nivel de detección Sensibilidad Sesgo Selectividad Intervalo útil Rapidez Bajo costo Sencillez Operación fácil

## <u>Precisión</u>

La desviación estándar, representa la dispersión de los miembros de una población alrededor de su media, informada en las mismas unidades que tiene la población. La desviación estándar puede ser estimada de la siguiente manera:

$$s = ((x_i - \overline{x})^2 / (n-1))^{1/2}$$

donde:

s = desviación estándar

n = número de datos

x_i = cada uno de los datos de de la población con i = 1 hasta n.  $\overline{x}$  = media de la población

A menudo se utilizan para describir las dispersiones otros dos parametros adimensionales que son el coeficiente de variación (CV) y la desviación estándar relativa (RSD)

$$CV = s / \overline{x}$$
 RSD =  $CV * 100$ 

Dado el caracter adimensional de estos últimos, es posible hacer comparaciones de dispersión con poblaciones de diferentes magnitudes.

En análisis químicos, la desviación estándar a cualquier nivel de concentración representa la precisión esperada de la medición en ese punto. La desviación estándar de mediciones hechas en tres niveles de concentración como mínimo (bajo, medio y alto), pueden ser graficadas como función de la concentración, obteniéndose normalmente una linea recta (fig.35).

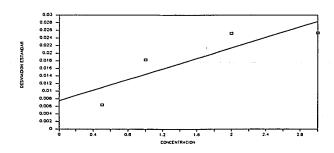



FIGURA 35

Estadística básica para un método de medición (Taylor, 1987)

El valor de  $s_0$  obtenido por extrapolación -cuando la concentración tiende a cero-, es usado para evaluar el límite de detección.

## Sensibilidad

La sensibilidad está definida como la razón del cambio de la respuesta del instrumento ( $I_o$ ) con respecto al cambio correspondiente en el estímulo (conc. del analito).

La pendiente de la curva de calibración es usada para determinar los valores de sensibilidad.

La sensibilidad también se define como la concentración del analito que se requiere para dar una respuesta en espectrometría de absorción atómica; se expresa en  $\mu g/mL$  del analito que produce una absorbancia del 1% o 0.0043 unidades de absorbancia.

Algunos factores que influyen en la sensibilidad son:

- Propiedades físicas y químicas del analito.
- Composición de la matriz de la muestra.
- Condiciondes instrumentales.

# Limite de detección y límite de cuantificación

Una medición es creíble cuando ésta es mayor que la incertidumbre asociada con ella. El punto en el cual ocurre esto se le conoce como límite de detección (L.D.). Se expresa en unidades de concentración y describe la menor concentración de un elemento que puede ser determinado y que es estadísticamente diferente al blanco. Arbitrariamente se define como 3*so (Taylor, 1987).

El nivel mínimo en donde las mediciones son significativamente cuantitativas es conocido como el límite de cuantificación (L.C.), y se define arbitrariamente como 10so correspondiendo a una incertidumbre relativa del ± 30% con una probabilidad del 95%.

#### <u>Sesqo</u>

Cuando una medición está estadísticamente controlada y su desviación estándar ha sido evaluada, el sesgo en la medición puede ser evaluado convenientemente por el análisis de un estándar de referencia. Cualquier diferencia estadísticamente significativa entre el valor conocido de referencia y la medición

puede ser atribuido al sesgo, que comunmente se atribuye al error inherente del método, o bien a errores en el proceso de medición como son: contaminación, pérdidas, errores en la calibración, etc.

## Selectividad

La selectividad se refiere a la especificidad en la respuesta de una metodología. Raramente un método responde a un solo analito, por lo que es importante saber a que sustancias puede responder. La situación ideal se presenta cuando los interferentes se encuentran en concentraciones tales que no causan problemas. Cuando no es este el caso, el interferente debe ser removido selectivamente, complejandolo o enmascarándolo mediante un tratamiento químico.

La selectividad es difícil de cuantificar y depende de la respuesta relativa del analito de interés. En situaciones complejas, la verificación experimental puede ser la única manera de evaluar la magnitud de los problemas que causa el interferente.

## Intervalo útil

Muchas de las mediciones hechas en química no involucran comparaciones directas con estándares, sino comparaciones indirectas e intermitentes en las cuales el uso de estándares se limita a establecer una función en la respuesta analítica, la cual es usada para las subsecuentes mediciones. La mayoría de las veces una función lineal es apropiada, por lo que los datos obtenidos se deben linearizar para adquirir esta condición.

En la mayoría de los casos, la linearidad se presenta solo en cierto(s) intervalo(s), por lo que al máximo valor de la parte lineal, en la cual se puede predecir con seguridad, es conocido como el límite de linearidad (L.L). Entonces, el intervalo útil del método es, por lo tanto, aquel intervalo de concentraciones entre el límite de cuantificación (L.C.) y el límite de linearidad (L.L.)

### Incertidumbre

El empleo de un método analítico siempre va acompañado de la elaboración de curvas de calibración. La incertidumbre en la calibración puede ser caracterizada de acuerdo a la confiabilidad de los estándares utilizados así como a las incertidumbres generadas en su uso durante el proceso de medición. La incertidumbre en la composición de los estándares químicos

depende del cuidado que se ponga en el cálculo de la composición del estándar que se quiere preparar (basada en el conocimiento del grado de pureza de los constituyentes), de la exactitud en la preparación y de las consideraciones de estabilidad de los componentes.

La incertidumbre estadística de una curva de calibración se muestra como una banda "de confianza" alrededor de la línea estimada.

El modelo de regresión lineal :  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$  tiene asociado una incertidumbre que depende tanto de la variación de la respuesta "y" y de la correlación entre las variables ( x vs. y), como los puntos tomados en cuenta en la regresión (Ramette, 1983).

En espectrofotometría de absorción atómica, las bandas de confianza con respecto a la absorbancia de cada estándar (AY). se calculan utilizando las siguientes ecuaciones: (Hines y Montgomery, 1987)

$$\hat{y}_0 \pm t_{\propto /2n-2} * \{ MS_e * [ 1/n + ( (x_0 - \bar{x})^2 / S_{xx} ) ] \}^{1/2}$$

 $\hat{y}_o$  = Absorbancia calculada según el modelo de regresión.

 $x_0$  = Concentración correspondiente a  $y_0$ 

t = t de Student para el 95 % de confiabilidad.

n = número de datos

$$MS_e = SS_e / (n-2)$$
  $SS_e = S_{yy} - S_{xy}^2/S_{xx}$ 

$$S_{yy} = \sum (y_i - \overline{y})^2 \qquad S_{xy} = \sum y_i (x_i - \overline{x})$$

$$S_{xx} = \sum x^2_i - (\sum x_i)^2 / n = \sum (x_i - \bar{x})^2$$

⁽¹⁶⁾ Todas las sumatorias (∑) son evaluadas con i≃ 1 hasta n (donde n es el número de datos).

## III.2.4.2 Manejo estadístico de los resultados

Los datos obtenidos mediante espectrofotometría de absorción atómica para las muestras fueron manipulados mediante este tratamiento. De esta forma, fue posible establecer la incertidumbre del método, asociada a cada muestra. Un ejemplo del cálculo de las bandas de confianza se presenta a continuación:

En la determinación de Cu se preparó una curva estándar de donde se obtuvieron los siguientes resultados (la absorbancia calculada se obtuvo de acuerdo al modelo de regresión lineal).

Conc.mg/L Cu	A exp.	Abs. calculada
0.0	0.000	0.019
0.5	0.090	0.090
1.0	0.172	0.160
2.0	0.323	0.319
3.0	0.447	0.443
4.0	0.568	0.584

Número de datos = 6 t de student para 95% confiabilidad = 2.7761  $MS_e$  =0.000308  $S_{xx}$  = 3.446

Sustituyendo los valores de absorbancias para cada concentración de Cu se tienen los siguientes resultados:

Conc. (mg/L)	A exp.	Banda superior Y (+)	Banda inferior Y (-)
•			
0.0	0.000	0.051	-0.012
0.5	0.090	0.116	0.064
1.0	0.172	0.183	0.138
2.0	0.323	0.322	0.282
3.0	0.447	0.469	0.416
4.0	0.568	0.621	0.547

Para cada valor de absorbancia se tiene una incertidumbre asociada a ella (±). La figura 36 muestra las bandas de confianza calculadas para el ejemplo:

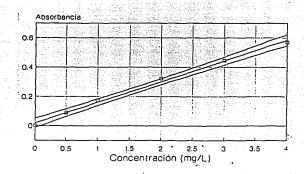
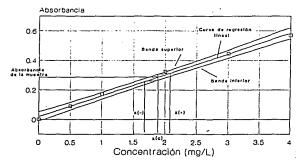




FIGURA 36

# Bandas de confianza para la regresión de una curva patrón

Este modelo puede ser usado para conocer la incertidumbre asociada a cada absorbancia experimental y expresarla en unidades de concentración. Para cada absorbancia existe una incertidumbre asociada, si se interpola el valor de la absorbancia y su inceridumbre (+/-) en las bandas de confianza podemos relacionar estos valores a su concentración correspondiente. Esto se muestra gráficamente en la figura 37.



x(c) = concentración de la muestra problema x(+/-) = incertidumbre

FIGURA 37

Cálculo gráfico de la incertidumbre asociada a una cierta concentración

### IV RESULTADOS Y DISCUSION

Hasta la fecha no existen normas técnicas ecológicas para establecer los límites máximos permisibles y el procedimiento para la determinación de contaminantes en las descargas de aguas residuales en cuerpos de agua, provenientes de la industria refinadora de cobre. Las más cercanas a este tipo de industria resultan ser la NTE-CCA-017/88 de la industria de acabados metálicos y NTE-CCA-018/88 de la industria de laminación, extrusión y estiraje de cobre y sus aleaciones. Por lo tanto, se buscó información internacional al respecto, encontrandose datos de la Agencia de Protección Ambiental de los Estados Unidos de Norteamérica (EPA Federal Register (40), 8513-8535, Feb. 27, 1975). Las limitaciones en los efluentes están relacionados al grado de reducción de contaminantes que se alcanzan cuando se aplica la mejor tecnología de control que está disponible (421.52) y, por otro lado, cuando se aplica la mejor tecnología que es viable desde un punto de vista económico (421.53). Los limites de la concentración de contaminantes en los efluentes vienen informados de acuerdo a diferentes parámetros. Los límites del inciso 421.52, señalan el valor máximo de cualquier día de Cu, Cd, Pb y Zn en Kg/1000 Kg de producto. Además marcan el pH y los sólidos suspendidos. Los limites del apartado 421.54 vienen reportados para diferentes efluentes que se generan en las operaciones que se realizan en este tipo de industria:

- enfriamiento de ánodos por contacto (mg/Kg de Cu moldeado.
- enjuague de ánodos y cátodos (mg/Kg de cátodo de Cu producido)
- electrólito gastado(mg/Kg de cátodo de Cu producido)
- torres de lavado de gases para hornos de fusión (mg/Kg producción de Cu moldeado)
- recuperación de subproductos (mg/Kg de producto recuperado de los lodos anódicos)

Como en la actualidad la planta solamente manda al drenaje las aguas pluviales, pues el resto de las aguas y efluentes se recirculan o reusan, los valores obtenidos de los puntos de muestreo de aguas pluviales se compararon con las normas técnicas NTE-CCA-017/88 y NTE-CCA-018/88. El resto de las muestras líquidas analizadas se comparó cuando fue posible con los datos informados por la EPA (tablas 13 y 14). Para interpretar los resultados de las comparaciones es necesario considerar las siguientes limitantes:

- Las normas NTE-CCA-017/88 y NTE-CCA-018/88 para efluentes industriales se adaptaron para evaluar aguas de lluvia que arrastran residuos industriales, las cuales no fueron muestreadas de acuerdo a tal norma.
- Como en la planta se implantó la recirculación de todos los efluentes ácidos y algunos más no ácidos, no fue posible tomar muestras directamente

del drenaje, sino que fueron obtenidas directamente de los procesos. Y esos datos fueron contrastados contra los límites informados por EPA.

# IV.1 EFLUENTES PLUVIALES (tablas 7-12)(17)

El punto 1.2, cuya ubicación se encuentra más cercana al sitio donde se almacena a cielo abierto, la materia prima y de recirculación (plano de localización, fig.28), mostró los contenidos más altos de metales y acidez. El valor promedio de pH fue de 3.6 (aunque una de las tres muestras mostró pH neutro). Se encontraron en cantidades considerables Cu, Ni, Na, Fe, Zn y Ca. Los valores que sobrepasan la norma 018, corresponden al cobre, zinc y pH. La desviación estándar en todos los casos es alta, lo que indica que las muestras son muy heterogéneas.

El punto 1.1 mostró también concentraciones relativamente altas de dichos elementos, aunque en mucha menor magnitud. No cumple con los límites de cobre, zinc y pH indicados por la norma 018. El punto 1.4 presenta, en general, valores bajos de metales, pero sobrepasa los límites de Zn. Finalmente, los puntos 1.3 y 1.5 mostraron contenidos bajos de metales y pH ligeramente alcalino. En el caso del 1.3 los bajos niveles pueden estar relacionados a que no solamente recibe agua de lluvía contaminada por el scrap almacenado, sino que también recibe agua de las torres de enfriamiento.

El punto 1.6 está ubicado en la zona de los depósitos de escoria. No obstante existe un registro más cercano que no pudo ser muestreado por estar tapado. Presentó un valor promedio de pH de 8.3 con una desviación estándar de 0. Unicamente se detectaron Zn, Na, Ca y Mg y ninguno sobrepasa los límites indicados por la NTE-CCA-018/88.

En general, el análisis de las aguas pluviales en la zona de almacenamiento de materiales mostró que se trata de aguas ligeramente ácidas con contenidos promedios de metales por orden de importancia: cobre (510 mg/L), sodio (780 mg/L), zinc (301 mg/L), níquel (159 mg/L) y fierro (195 mg/L).

El contenido de metales y el pH está inversamente relacionado con la distancia entre los registros y el almacenamiento de material contaminante. Queda claramente en evidencia que la fuente de contaminación del agua son los materiales almacenados a cielo abierto por lo que, si se quiere seguir descargando estas aguas al drenaje, es urgente que se coloquen los materiales en lugares protegidos. En el caso de que se implante un sistema de

⁽¹⁷⁾ Ver también la figura 38.

recolecta de agua de lluvia para su uso dentro de la planta, el contenido de metales resulta aceptable, básicamente, porque al mezclarse con aguas procedentes de los techos que no contienen metales se diluye. Adicionalmente, como el contenido de sólidos se verá incrementado, se recomienda filtrar el agua recolectada.

# IV.2 AGUA DE SERVICIOS (tablas 7-12)(18)

El punto 8 mostró un pH promedio de 8.1, variando entre 7.8 y 8.3, lo cual, indica que <u>la operación de neutralizado es muy ineficiente</u>, se gastan más reactivos de lo necesario, pues no se calculan teóricamente los requerimientos de ácido y/o base. De acuerdo a los cálculos realizados en este estudio (ver sección III.2.3.6), 1.86 volúmenes de ácido muriático reaccionan con 1 volumen de sosa. Los análisis indicaron un alto contenido de sodio y cloruros (ya que se usa NaOH y HCl en la regeneración), así como de Ca, Mg y HCO3 que provienen del lavado de las resinas saturadas las cuales se utilizan específicamente para la estos remoción de iones. Se detectaron vestigios niquel (4 ppm), hierro (0.7 ppm) y cobre (0.2 ppm), pero los valores son tan bajos que no deben afectar su reuso en las torres de enfriamiento. Cabe aclarar, que los bicarbonatos pueden en algún momento causar la presencia de incrustaciones de carbonatos en el equipo.

El punto 9, que corresponde a la solución de purga de calderas, mostró valores de pH básicos (entre 8.3 y 9.7), con valores ligeramente más altos del que marca la norma 018, aunque cabe aclarar que esta agua se envía a torres de enfriamiento, en donde ese intervalo de pH no causa problemas. Se detectó la presencia de Na (213 ppm), y pequeñas concentraciones Ca (11 ppm) y Mg (9 ppm).

# IV.3 ELECTROLISIS Y PLANTAS QUIMICAS (Tablas 7-12)(19)

Punto 6.2, electrólito de las casas 3-4. Mostró una acidez total (5.4 M) y una concentración de cobre soluble (48 g/L) elevadas, así como contenidos excesivamente altos de Ni, As, Na y Fe solubles. Se encontraron concentraciones menores, pero importantes, de Zn, Mg, Ca, Sb, Bi y Mn y bajas concentraciones de Co, Cr y Pb. Aunque la acidez total del electrólito es muy

⁽¹⁸⁾ Ver también la figura 40

⁽¹⁹⁾ Ver también las figuras 39 y 40.

constante, <u>la concentración de Cu soluble es muy variable y el</u> <u>intervalo de concentración (33.96 g/L a 66.36 g/L) no corresponde al considerado como óptimo por la empresa (35 a 45 g/L).</u>

Puntos 6.1 y 6.3, que corresponden a las soluciones de electrólito de las casas 1-2 y 5 mostraron también altas concentraciones de los elementos antes mencionados, aunque los valores son considerablemente menores que para el electrólito anterior (a excepción de Ca, Co, Cr y Pb). Esto resulta lógico puesto que el electrólito de las casas 1-2 y 5 se envía a las casas 3-4, de donde se drena para el tratamiento de desarsenizado.

Al comparar los análisis del muestreo preliminar con las del definitivo (cuatro meses) se observó un <u>aumento significativo en concentración</u> de algunos elementos respecto al primer muestreo. La relación de aumento es la siguiente: Na 1.5, Sb 1.3, Zn 1.2, Mn 1.2, Mg 1.2 y Ni 1.3. Este aumento se debe a la implantación del reciclado de la solución desarsenizada y, no se observa para las impurezas que se remueven periódicamente (As y Cu) (ver sección III.1.4).

La solución desarsenizada (punto 5.5) mostró una notable reducción en las concentraciones de algunos metales con respecto al electrólito (casas 3-4). Las disminuciones son aproximadamente: Cu 93%, Bi 90%, As 73%, Ni 58%, Sb 55%, Pb 39%, Co 36%, Zn 34%, Mg 29%, Mn 27% y acidez 23%. Dichos elementos deben codepositarse con el cobre y/o arsénico. Sin embargo, el Cr aumenta en un 100% y otros metales como el Fe y Ca aumentan ligeramente o no muestran cambios significativos en su concentración. Algunas muestras presentaron Te, pero en concentraciones muy cercanas al límite de detección del equipo, como se puede observar en la figura 41.

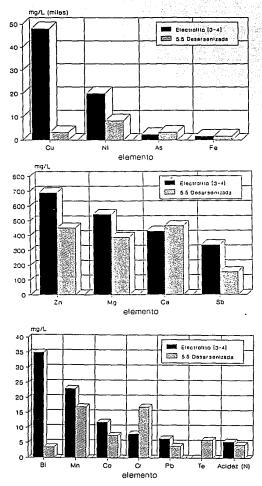



FIGURA 41

Comparación de las concentraciones de los elementos y acidez del electrolito con la solución desarsenizada

El tratamiento de la solución desarsenizada con carbón activado disminuyó la concentración de los siguientes elementos con la siguiente eficiencia: Ca 23%, As 12%, Na 11%, Fe 9%, Ni

8%, Mg 8%, Cu 7%. Los demás elementos permanecen aproximadamente constantes. La eficiencia es baja, como se puede observar en la siguiente figura:

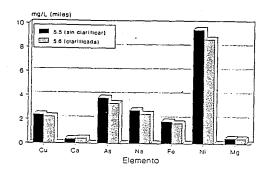



FIGURA 42

Eficiencia de adsorción del carbón activado en el proceso de clarificación de la solución desarsenizada

La acidez total fue de 4.4, este valor es menor del esperado, ya que de acuerdo a la siguiente reacción según se remueve el cobre del electrolítico por depositación en los cátodos, se genera ácido libre:

$$H_2O$$
 ----> 2  $H^+$  + 1/2  $O_2$  + 2e⁻

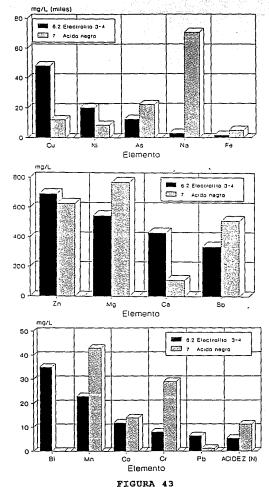
(tomado de Kirk-Othmer 1984, pp 843)

Posiblemente, cuando se tomaron las muestras, la solución desarsenizada provenía de la casa 5, donde la acidez medida fue de 3.93 y no de la casas 3-4, que presentó una acidez de 5.4.

Punto 5.1 El agua de lavado de gases de la lixiviación oxidante y tostación de los lodos anódicos contiene principalmente  $\underbrace{\text{Na. Se. Mg y Ca. y menores concentraciones de Fe.}}_{\text{Mn. Ni. Zn y Cu; y un pH}}$  de 4.4 (ligeramente ácido) con una acidez total de 0.0016 N. La concentración de los siguientes elementos Fe, Ni, Na, Se, Mn, Mg y Zn, aumentan conforme se recicla el agua y el pH disminuye (3.9).

Por otro lado la solución del lavado de gases de deselenización (punto 5.2) mostró un valor elevado de acidez total, 0.38 N. Los principales elementos detectados fueron Cu. Na, Fe, As, Ca, Ni, Mq, Se, Te y Zn y los secundarios: Sb, Cr, Pb y Bi. Estos elementos provienen principalmente de los gases generados en los tratamientos de SeTeCu que son enviados a la misma torre de lavado, aunque también reciben aportaciones del tanque de precipitación de selenio.

El agua de lavado final de la transformación de Se rojo a Se gris (punto 5.3) contiene principalmente selenio (valor promedio 184 ppm). Sin embargo, la desviación estándar indica que el proceso de lavado no es uniforme y es susceptible de mejor control. Lo anterior se confirma ya que en una muestra se determinó la presencia de Cu, Na, Mg, Ca, Ni, As, Sb, Fe, Zn, Pb, Si, Te y Cl⁽²⁰⁾ y en la otra, más reciente, únicamente se encontraron en concentraciones menores Na, Mg, Ca y Cl⁻.


La solución decuprizada luego de cementación (punto 5.4) mostró las siguientes elementos en mayor concentración: Cu (3.8 g/L), Na (10.2 g/L), As (0.4g/L) y Ni (1.5g/L). También se identificaron en menor concentración, Se, Sb, Bi, Te, Fe, Zn, Mn, Mg, Ca, Co, Cr, Pb, Al, Si y Cl. La gran desviación estándar que presenta el Cu indica que el proceso de decuprizado no se controla adecuadamente. El selenio únicamente se detectó en la primera muestra.

Esta solución al evaporarse forma el llamado "ácido negro" (punto 7), el cual mostró un aumento general en la concentración de todos los elementos. Cabe hacer notar que la muestra de ácido negro no provenía de la evaporación de la muestra 5.4, sino que correspondía a una mezcla de varias cargas evaporadas; por lo que no puede hacerse una comparación directa. No obstante, al relacionarlas, se observó que la evaporación produjo una concentración significativa de los elementos. La mayor parte aumentó de 3.2 a 7.7 veces.

Los únicos elementos que presentan concentraciones que se salen de este intervalo son el Mn (8.6 veces) y el Cr (12.7 veces). Por otro lado, se observó la disminución de la concentración de los siguientes elementos: Pb (disminuye 5 veces), el Ca (2.8 veces) y el Bi que no se detecta en el ácido negro. Posiblemente al concentrarse la solución, los compuestos más insolubles alcanzan su constante de solubilidad (pKs) y precipitan, como puede suceder, por ejemplo, con el PbSO₄.

Una comparación gráfica entre los contenidos de los elementos en ácido negro y electrólito casas 3-4 muestra los siguientes resultados:

⁽²⁰⁾ En todos los casos debe considerarse la presencia de sulfatos.



Comparación de las concentraciones de los elementos entre el electrólito y el ácido negro

Se observa que las diferencias más importantes se presentan en el Na y el Cu. El ácido negro contiene menor cantidad de Cu, mayor de Na y As que el electrólito y su acidez total es mayor.

El aumento de sodio se debe a que el proceso de lixiviación alcalina de lodos se lleva a cabo adicionando sosa. En un estudio futuro debe estudiarse la posibilidad de recuperar el arsénico, quizá como arseniuro de cobre y/o probar un mismo tratamiento para este ácido y el electrólito (referirse a la sección IV.6.3).

### IV.4 LODOS ANODICOS

El análisis de las digestiones de lodos anódicos antes de lixiviar con ácido sulfúrico y lodos finales (del mismo lote), muestran concentraciones de Se similares (tabla 11). A pesar de que no se pueden comparar los resultados absolutos de ambas muestras puesto que la matriz es diferente (se ha solubilizado gran parte del cobre y del arsénico en la muestra lixiviada), se puede observar que el tratamiento dado a dichos lodos parece no ser eficiente, ya que se nota un aumento de selenio y otros elementos debido a la disminución de la masa total, por la solubilización de los elementos que están en formas solubles, y si el proceso fuera eficiente, se esperaria una disminución en la concentración del selenio.

### IV.5 OPTIMIZACION DE PROCESOS

De acuerdo a lo observado en la auditoría ambiental y en la revisión bibliográfica, las operaciones que pueden optimizarse y/o implantarse, para disminuir la generación de desechos, son las siguientes:

- Tratamiento de lodos (oxidación y separación de Se)
- Cementación de telurio y vestigios de selenio.
- Detección y eliminación de la fuente de sodio en el acido negro.
- Remoción de impurezas en el ácido sulfúrico gastado para reuso del mismo y recuperación de valores (si conviene).

# IV.5.1 <u>Tratamiento de lodos (oxidación y separación de selenio)</u> (Fig. 44; Zárate, 1987)

Existen diversos procesos para lograr la solubilización del cobre, selenio y telurio contenido en los lodos anódicos, aunque "el insuficiente estudio que se ha hecho de las formas de los compuestos de los elementos valiosos e impurezas en lodos hasta la actualidad, complican la selección del método más eficiente

para tratarlos. La mayoría de los diagramas de flujo han sido desarrollados empíricamente, regulados más por las condiciones industriales que no por consideraciones determinadas por los cambios en la naturaleza de los materiales" (Savin, 1965 tomado de Cooper, 1990).

De acuerdo a la revisión hecha por Cooper (1990), todos los procesos parten de una oxidación drástica en condiciones de temperatura tales, que el selenio se separa en forma de SeO₂ gaseoso. Este gas es captado separadamente del telurio y cobre y reducido con SO₂, a su forma elemental.

La oxidación requiere ya sea de un tostado en aire u oxígeno a alta temperatura (550-800°C), o de una sulfatación previa a la tostación para ayudar a oxidar al selenio. Es este último método el más recomendable, puesto que además el SO $_2$  producido durante la tostación sulfatante reduce al SeO $_2$  a selenio elemental oxidándose a SO $_3$ , el cual genera  $\rm H_2SO_4$ . La dificultad de este proceso radica en que se requiere de equipo propio para la producción de ácido sulfúrico (Hoffmann, 1989a).

Hyvarinen et al. (1989) proponen una tostación de lodos (que han sido previamente lixiviados en ácido sulfúrico y aire), por medio de  $\mathrm{SO}_2$  y aire a menos de 680°C. Informan que con este método se logra la oxidación de los seleniuros y la volatilización del  $\mathrm{SeO}_2$ , sin tener que utilizar ácido sulfúrico concentrado, como se puede observar en las siguientes reacciones:

$$Ag_2Se + O_2 -----> Ag_2SeO_3$$

$$SO_2 + O_2 ----> SO_3$$

$$Ag_2SeO_3 + SO_3 -----> Ag_2SO_4 + SeO_2$$

Shevelev Y Naboichenco (1990), obtuvieron una eficiencia de recuperación > 97 %. en lodos con la siguiente composición:

Cu 17.39 % Ni 9.55 % Se 2.53 % Te 1.01 % As 2.86 % Sb 8.61 % Bi 10.29 %

bajo las siguientes condiciones de lixiviación en autoclave:

T = 140 - 180 °C  

$$P_{O2}$$
 = 0.2 - 0.4 MPa  
Relación líquido/sólidos = 4-6  
t  $\mu$  180 min.  
Concentración de ácido sulfúrico  $\mu$  150 g/L

Mamani e Itagaki (1990), durante el tostado de lodos anódicos que presentan un contenido de Se > 27%, encontraron lo siguiente:

En atmósferas oxidante, sulfatante y de nitrógeno ocurre volatilización de Se elemental a > 365°C.

En atmósfera oxidante, los seleniuros de Ag pasan a selenitos y luego plata elemental a > 700°C.

En atmósfera sulfatante los seleniuros y selenitos de plata pasan a sulfato de plata y SeO₂ que se volatiliza a > 550°C.

Se puede usar  ${\rm SO}_2({\rm g})$  de fundición para sustituir el uso problemático de  ${\rm H}_2{\rm SO}_4$  concentrado.

En todos los casos el SeO₂ volatilizado se recupera por medio de un lavado con soluciones alcalinas de sosa o de sosa cáustica.

Dichos tratamientos separan completamente el Se de los demás componentes, de tal manera que la reducción se lleva a cabo de manera limpia y el selenio obtenido es de alta pureza.

# IV.5.2 Cementación de telurio y vestigios de selenio

Según Sarkisyan y Mkrtumiyan en Cooper (1988) y Ryzhov et al (1988) la cementación se lleva a cabo de manera eficiente utilizando polvo de cobre en concentración de 5.3-10~g/L y a una temperatura de 85-90°C, con suplemento de aire.

# IV.5.3 <u>Detección y eliminación de la fuente de sodio en</u> <u>electrólito, ácido negro y otras corrientes del proceso</u>

En la tabla 12 se puede observar concentraciones muy altas de sodio en el electrólito, el ácido negro y los efluentes muestreados en el punto 5.4. También se identifica la presencia de calcio, ion que al disminuir la temperatura precipita como sulfato. La eliminación de las fuentes de estos elementos, permitiría el reuso directo del ácido que contiene cantidades importantes de cobre, en las casas de electrólisis.

El calcio se origina cuando la solución electrolítica se derrama a los sótanos y disuelve parcialmente el yesicreto que cubre el piso. Por lo tanto, se recomienda buscar un material inerte al ácido sulfúrico, o menos reactivo.

El sodio del ácido negro proviene del tratamiento del lodo SeTecu mediante el cual se solubiliza al telurio. Este problema se puede evitar si no se mezcla la solución alcalina con la solución decuprizada ácida que se evapora, sino como se indica en la figura 45, se vuelve a utilizar dentro del mismo proceso, para volver a lixiviar más lodo. De esta manera, se puede obtener una solución decuprizada, (después de cementación) que puede ser tratada para remover el arsénico y otras impurezas conjuntamente con el electrólito y, posteriormente, ser reutilizados ambos en las casas de electrólisis.

# IV.5.4 Remoción de impurezas en el ácido sulfúrico gastado para reuso del mismo y posible recuperación de valores

A continuación se describen los procesos encontrados en la literatura para recuperar o remover las impurezas disueltas en el electrólito o en otras soluciones que también contienen ácido sulfúrico.

## - Remoción de arsénico (fig.46):

En el proceso utilizado en la planta, se recupera el As por electrowining, como Cu₁As. No obstante, se obtiene un producto que no puede venderse directamente por su composición y porque es impuro. Durante el electrowining se codepositan muchos otros elementos, como se puede observar en la figura 40, al comparar la composición del electrólito (punto 6) respecto a la solución desarsenizada (punto 5.5). Sería conveniente estudiar otros procesos con el fin de encontrar condiciones más eficientes y limpias. A continuación se discuten algunos resultados publicados:

(Mil'ke et al., 1990), utilizan para remover el As de los lodos de As-Cu (Cu₃As), un lixiviado con solución de sosa que contiene azufre a una temperatura de 70-80°C en una relación líquido/sólido = 4, y durante 1.5 h. Informan una remoción de 95-96% del As presente en un lodo que contiene 51.5% de Cu, 23.1% de As y 3.4% de Pb. La solución lixiviada se trata con  $\rm H_2SO_4$  para precipitar los sulfuros de arsénico no tóxicos. El residuo sólido que contiene sulfuros de cobre ( 85%) y PbSO $_4$  se procesa por métodos pirometalúrgicos convencionales.

En el electrólito gastado (Khalemskii et al., 1990) utilizan un tratamiento en autoclave con aire ( $300~\text{m}^3/\text{h}$ , 0.1-0.5~MPa), temp =  $90-110^\circ\text{C}$ , pH = 3.8-3.0~y un tiempo = 0.5-1.5~h, en presencia de cantidades estequiométricas de polvo de Cu como agente "neutralizante". De esta manera se oxidan e hidrolizan las impurezas (Fe y As), y la concentración de As disminuye a 0.2-0.4~g/L y la del Fe a 0.05-0.2~mg/L.

Del electrólito gastado, Baipeisova et al., (1987), precipitan el As(V) con hidróxido de Ti(IV). La eficiencia es máxima a un pH 1, y disminuye al aumentar el pH.

Del electrólito gastado, Baradel et al. (1986) extraen As con 2-etil-1-hexilalcohol (2 EHA). Informan los siguientes porcentaje de rendimiento: 50% As(III) y 20% As (V), con una relación de fases orgánica/acuosa = 3. La temperatura óptima es de 50 °C. Se realiza una nueva extracción del As con NaOH 5% para As(III) y  $\rm H_2O$  para As(V). El mejor equipo a nivel industrial para un circuito de refinería productora de 1-2 toneladas de Cu al día, está conformado por una columna pulsada con un flujo de 35-150 L/h .

De acuerdo con Fukuoka et al. (1987), se utiliza en electrólito gastado,  $\rm H_2S$  al 99.5% en dos etapas para remover As 5-5.1 g/L, Sb 0.3 g/L y Bi 0.1 g/L en forma de sulfuros, de una solución que contiene 370 g/L de  $\rm H_2SO_4$ . Se obtiene una solución con 0.5 g/L de As y cantidades despreciables de Sb y Bi.

Nagai (1985) informa que con un electrólito que contiene 4.91 g/L As y 190 g/L  $\rm H_2SO_4$  se puede extraer 10.0 g/L As, agitando con  $\rm Bu_3PO_4$  a 35°C. Posteriormente, se enjuaga con agua y se reextrae con  $\rm NH_4OH$  acuoso que contiene ( $\rm NH_4)_2SO_4$ , a 45°C. La solución tratada se hace reaccionar con  $\rm Ca(OH)_2$  para regenerar  $\rm NH_3$  y producir yeso un contenido de As de solo 0.76%.

Del electrólito Akbasova et al., (1985), utilizan xantato de potasio a 22-60°C y una relación molar de As: xantato de 1:(0.43-8.8), en  $\rm H_2SO_4$  0.05-3.4 M. Obtienen un precipitado de xantato de arsénico y remueven el 60-84% del As y el 100% de Sb.

De soluciones de ácido sulfúrico Ashikhmina y Ugorets (1988) remueven As precipitándolo como FeAsO $_4$ . Con una eficiencia de remoción del 75-85% de As, en un electrólito con las siguientes condiciones: 5-8 g/L As, 75-85°C,  $\rm H_2SO_4$  2.5-5 g/L, concentraciones estequiométricas de FeSO $_4$  para la formación de FeASO $_4$  y 100-150% de la cantidad estequiométrica necesaria de KClO $_3$  para la oxidación del Fe(II) a Fe(III).

Durante la depositación del arsénico en forma electrolítica (Cu $_3$ As) se puede formar la arsina AsH $_3$  con el hidrógeno reducido en el cátodo, la cual es muy tóxica (Bombach et al., 1989 y Jonge et al., 1988). La cantidad generada disminuye con el uso de corriente reversa periódica, agitando el electrólito, manteniendo las concentraciones de Cu y Ni altas y también con concentraciones bajas de As (Schloen, 1986).

Para minimizar la formación de arsina en la depositación electrolítica de arsénico recomiendan la precipitación simultánea de Cu y As como arseniuros de Cu y, cuando la concentración de arsénico es alta, es necesaria la reducción química del As(V) a As(III) antes de remover el Cu.

### - Remoción de Antimonio

Langner y Kunst, 1986, informan que se puede remover antimonio de licores de ácido sulfúrico, utilizando madera natural, preferiblemente corteza de roble en forma de astillas o polvo, se filtra y la solución baja en Sb se recicla.

Toyabe et al., de la Sumitomo Niihama Copper Refinery, en Cooper (1988), remueven Sb del electrólito, mediante la absorción selectiva de antimonio en la forma de SbAsO $_4$  sobre carbón activado granulado (malla 10-32). El carbón activado tiene una capacidad de 100-200 g Sb/Kg. A una temperatura de 50 $^{\circ}$ C lograron disminuir la concentración de Sb de 580 mg/L a 90 mg/L y la de arsénico de 6 400 mg/L hasta 5.900 mg/L

Travkin et al. (1990) extraen Sb de soluciones de ácido sulfúrico, con 5-20% en volumen de ácido dioctilfenilfosfórico. Obtienen un alto rendimiento y el consumo de reactivo es bajo.

## - Remoción de impurezas generales en el electrólito gastado:

Moriya e Imachi (1986) utilizan para remover iones metálicos del electrólito, una resina quelatante basada en un copolímero de divinílbenceno, resina epóxica, resina fenólica, resina de resorcinol, o resina de cloruro de vinilo. que tiene · 1 grupo funcional de un ácido aminoalquileno P-O (su sal), ácido iminoalquileno P-O (su sal), ácido P-O (su sal), y amidoxima.

Abe y Jakasawa (1987), en Cooper (1988), evitan lamas de As y Bi en el electrólito, usando  ${\rm SO}_2$  al 10% en forma gaseosa y una resina quelatante.

Hyvärinen y Heimala (1982) en su patente proponen que el precipitado formado naturalmente, del tipo (Sb, Bi, As)(III)(As, Sb)(V)O $_4$ , se recircule a una temperatura adecuada. La temperatura de inicio es < 250°C y el precipitado se recicla a las condiciones adecuadas para la precipitación a 65-120°C.

Takahashi e Imai (1980), en Cooper (1988), proponen eliminar As, Sb y Bi del electrólito, mediante un calentamiento a  $50^{\circ}$ C, la adición de Sb₄SO₉.H₂O y Bi₂S₂O₉.3H₂O, y la separación del precipitado formado.

El As, Sb y Bi, se pueden adsorber con  $\mathrm{SnO}_2$  hidratado en forma de pellet (Schulze, 1971). Para una planta con una producción de 100 toneladas diarias, se usa 1.1 toneladas de  $\mathrm{SnO}_2$  formado a partir de estanato de calcio, y se mantiene la concentración de Sb en 0.1 g/L y de Bi en 0.035 g/L.

Rickleton y Brown, (1985), utilizan para eliminar As, Sb y Bi, una extracción líquida con óxido de fosfina -Cyanex 923-, en diluyente Exsol D-180. Este proceso no es muy eficiente para Sb. El Cianex 923 es completamente miscible con diluyentes hidrocarbonados comunes.

Zauzolkov et al. (1989a), utilizan ácido metastánico como adsorbente para As, Sb y Bi, con una capacidad respectiva para cada elemento de 175 mg/L, 35 mg/L y 5 mg/L.

Unitaka Ltd.(1985) utiliza para purificar soluciones electrolíticas, una resina que contiene grupos del ácido aminometilenfosfónico Unicellex UR-3300 T o ácido alquilaminometilfosfónico (tipo H). También se menciona que se evita la deposición de As, Sb y Bi, burbujeando  ${\rm SO}_2$ , utilizando un ánodo de Pb-Ca y cátodo de acero inoxidable.

Zharmenov y Sharipov (1984) utilizan un sistema dè membranas de intercambio iónico para purificar el ácido.

Kehl et al., (1989) eliminan As, Sb, Bi y Fe del electrólito que contienen en g/L: As 12.0, Bi 0.030, Sb 0.52, F 0.30, Cu 45, Ni 10 y  $\rm H_2SO_4$  100, poniendo éste en contacto con soluciones que contienen ácidos hidroxámicos: DC(0)NHOH (R =  $\rm C_{6-22}$  alquil, lineal, ramificado, saturado o insaturado o  $\rm C_{<19}$  cicloalquil o aril), se regresan a solución acuosa y se precipitan con sulfuros. La eficiencia de la remoción de As y Sb es 45% y 37%, respectivamente.

Baipeisova et al. (1987) precipitan As y Sb con  $(NH_4)_2TiO(SO_4)_2$  a una temperatura de 60°C por 5 hr. El precipitado se trata con  $Na_2CO_3$  (150 g/L) en solución a 70-80°C, con una relación liq./solid. de 5:1. La solución alcalina se trata con Cao para precipitar el As como  $Ca_3(AsO_4)_2$ , el cual se filtra. Se regenera  $TiO(OH)_2$  y se recicla. El As y Sb se recuperan en 73.5 y 97.3 % respectivamente, de soluciones que contienen 31.8-66.6 g As/L y 1.68-2.49 g Sb/L.

# - Remoción de impurezas en soluciones de ácido sulfúrico

Zauzolkov et al. (1989b) remueven impurezas de soluciones de tratamiento de lodos, por electrólisis fraccionada de metales con una concentración tipo en g/L de: 24 Cu, 15 Ni, 1.8 Fe, 0.5 As, 0.4 Sb, 0.25 Se, 0.3 Te y 70 H₂SO₄. Se remueve de un 85-90% de arsénico a un voltaje >5 mV, níquel en un intervalo de 0.46-0.57 mV y posteriormente se separan simultáneamente el Se, Te y Sb llevando la solución a un pH de 1.2.

# IV.5.5 Resumen de tratamientos para remover impurezas de una solución fuertemente ácida

# Precipitación:

- Oxidación e hidrólisis de As y Fe por tratamiento en autoclave con aire.
- Precipitación de As (V) con hidróxido de Ti(IV).
- Precipitación de As, Sb y Bi utilizando H₂S, en forma de sulfuros.
- Precipitación de As y Sb con xantato de potasio, como xantatos.
- Precipitación de As como FeAsO₄ utilizando FeSO₄ y oxidando con KClO₃.
- Precipitación de As, Sb y Bi con  $Sb_4SO_9.H_2O$  y  $Bi_2S_2O_9.3H_2O$ .
- Precipitación de As, Sb y Bi recirculando el precipitado formado naturalmente del tipo (Sb,Bi,As)(III)(As,Sb)(V)O₄
- Precipitación de As y Sb (en muy altas concentraciones) con (NH₄)₂TiO(SO₄)₂. Se redisuelven con Na₂CO₃ y reprecipita como Ca₃(AsO₄)₂, regenerándose TiO(OH)₂.
- Precipitación de Ni como sulfato de níquel.

### Extracción:

- Extracción de As(V) y As(III) con 2-etilhexilalcohol (2EHA) y recuperación con NaOH 5% o H2O.
- Extracción de As con  ${\rm Bu_3PO_4}$ , y re-extracción con  ${\rm NH_4OH/(NH_4)_2SO_4}$ .
- Extracción de Sb con ácido dioctilfenilfosfórico 5-20%.
- Extracción líquida con óxido de fosfina (Cyanex 923), que es completamente miscible con diluyentes hidrocarbonados.
- Extracción de impurezas con una solución de keroseno de ácido di-2-etilhexilfosfónico o mono-2etilhexil-2-etilhexil-fosfonato.

- Extracción de As, Sb, Bi y Fe con soluciones que contienen ácidos hidroxámicos: DC(0)NHOH (R =  $C_{6-22}$  alquil, lineal, ramificado, saturado o insaturado o  $C_{<19}$  cicloalquil o aril), reextracción en agua y precipitación como sulfuros.

### Adsorción:

- Adsorción de impurezas con un sistema de membranas de intercambio iónico.
- Adsorción de Sb sobre madera astillada o en polvo.
- Adsorción de iones metálicos con resina quelatante de copolímeros con grupos funcionales P-O.
- Adsorción de As, Sb y Bi con SnO₂ hidratado, a partir de estanato de Ca.
- Adsorción de As, Sb y Bi con ácido metastánico.
- Adsorción de impurezas utilizando resina con ácido aminometilenfosfónico Unicellex UR-3300 T o ácido alquiaminometilfosfónico (tipo H).
- Adsorción de Sb sobre carbón activado granulado como SbAsO₄.
- Adsorción de As y Bi utilizando una resina quelatante luego de burbujear con SO2.

# Electrólisis tipo "electrowining":

- Depositación electrolítica de As como arseniuros de cobre, disminuyendo la generación de arsina con base en el uso de corriente reversa periodica (Duby, 1984), agitando el electrólito, manteniendo las concentraciones de Cu y Ni altas. A contenidos altos de As, el As(V) debe reducirse químicamente a As(III).
- Depositación electrolítica de As, Sb y Bi utilizando un ánodo Pb-Ca y cátodo de acero inoxidable. Opcionalmente puede burbujearse preliminarmente SO₂.
- Depositación electrolítica fraccionada de metales (As, Ni, Se, Te y Sb), de soluciones de tratamiento de lodos.

## V.1 AGUAS PLUVIALES (figura 47).

De acuerdo a los resultados analíticos obtenidos, es posible utilizar el agua de lluvia para los procesos de la planta. También pueden enviarse al drenaje, siempre y cuando se evite su contaminación eliminando el almacenaje de materiales a cielo abierto, manteniendo los tambos cerrados y procurando que los materiales que contienen estén protegidos mediante bolsas de plástico en buen estado y cerradas.

La primera opción resulta atractiva, ya que el recurso agua cada día va a ser más escaso y caro y de acuerdo a los planes del Departamento del Distrito Federal, la industria tendrá que sustituir sus actuales fuentes de agúa por aguas grises tratadas de baja calidad. Cabe hacer notar, que debido a que en la Cd. de México la época de lluvia está concentrada en una determinado periodo, esta solución no resuelve el problema de falta de agua en época de secas, a menos que se construya un depósito muy grande, que puede resultar incosteable⁽²¹⁾.

Se propone el siguiente diagrama para el tratamiento de las aguas pluviales:



Esta propuesta queda sujeta al tipo de equipos que convenga comprar (costo, espacio, etc). En el caso de que se instrumente el uso de agua pluvial, conviene realizar análisis después de proteger los materiales y mantener limpia las zonas de almacenaje. Actualmente, los fabricantes ofrecen equipos compactos que separan sólidos y grasas y que permiten obtener

⁽²¹⁾ En el proyecto de separación de drenajes de la planta, a cargo de una compañía constructora, se decidió canalizar las bajadas de agua pluvial de los techos y los registros de los patios de almacenaje, hacia una fosa de captación. Se determinó el volumen adecuado para la fosa de captación, de acuerdo a la precipitación pluvial en la zona. El área destinada para la fosa es de 13.25 m por 10 m aproximadamente.

buena calidad de agua para ser usada como agua de enfriamiento o en su defecto para mantener el nivel en los diferentes procesos de la planta.

# V.2 AGUAS RESIDUALES DOMESTICAS "NEGRAS" (figura 47)

Para este tipo de efluente, se proponen dos posibilidades de manejo, la primera es enviarlo al drenaje municipal y la segunda, reutilizarlo. En el primer caso, se recomienda el uso de fosas septicas y, posiblemente, la colocación de una trampa de grasas y aceites. Para la reutilización de estas aguas resulta necesario someterlas a un tratamiento biológico. En el mercado existen plantas compactas automatizadas.

## V.3 EFLUENTES INDUSTRIALES (figuras 48 y 49)

# V.3.1 <u>Bituación actual y recientes modificaciones</u>

Hasta el momento del inicio de este estudio, todos los efluentes se enviaban al drenaje, con los consecuentes problemas de contaminación, destrucción de la tubería, pérdida de elementos con valor para la empresa, etc. (fig 48). A partir de los primeros resultados de la auditoría ambiental y antes de tener resultados analíticos, el personal de la planta, inició una serie de modificaciones tendientes a disminuir el impacto ambiental, ahorrar agua y acido sulfúrico (fig. 49):

- Las soluciones del tratamiento de lodo, se evaporan y el ácido recuperado denominado negro, se recircula a los tanques lixiviadores. Esta solución únicamente puede funcionar a corto plazo, ya que los análisis indicaron que en este circuito se están concentrando impurezas que no son removidas. Además, cabe hacer notar que la evaporación de ácido sulfúrico puede producir gases con carácter ácido.
- La solución electrolítica se decupriza y desarseniza y posteriormente se clarifica con carbón activado, para ser reciclada nuevamente al circuito de electrólisis. Aunque esta medida evita la contaminación de los desagües y ahorra ácido, tampoco puede funcionar durante mucho tiempo sin hacer mayores modificaciones. Se observó que durante el decuprizado y desarsenizado se codepositan diversos valores junto con el arseniuro de cobre, que forman un residuo peligroso y no presentan el beneficio que pudiera obtenerse de ellos recuperándolos

- independientemente. Por otro lado, se observa que las impurezas están aumentando en la solución reciclada y que la eficiencia del carbón activado es baja (figs. 41 y 42).
- Las aguas residuales de casa de fuerza (servicios), como son purga de calderas y regeneración de resinas, se están neutralizando y enviando a las torres de enfriamiento con el propósito de ahorrar agua. Esta solución es aplicable a largo plazo, pero deben realizarse algunas modificaciones para que el reuso no cause problemas, ya que se determinó la presencia de bicarbonatos de calcio y magnesio que pueden producir incrustaciones en los equipos.

# V.3.2 Alternativa de solución

De acuerdo a los resultados obtenidos en este estudio ambiental integral Se propone la siguiente alternativa de solución (fig. 50):

### Tratamiento de lodos

En este caso existen dos opciones, la primera consiste en continuar con el tratamiento actual de tostación y lixiviación, optimizando el proceso (referirse sec IV.5 y fig. 44). Algunas de las operaciones que posteriormente se efectúan, deben ser optimizadas. En la cementación del telurio se debe utilizar perdigón de cobre en lugar de varejón, ya que presenta mayor superficie de contacto; asimismo se debe aumentar la temperatura de operación de 60°C a 85-90°C. El tratamiento de telururo de cobre, producto de la cementación actualmente se realiza solubilizando al telurio con sosa. La solución de esta lixiviación que contienen mucho sodio, se evapora posteriormente, se mezcla con las soluciones que conforman el ácido negro. Es una de las fuentes de contaminación del ácido negro, por lo que no puede ser empleado en el circuito de electrólisis. Sin embargo, es posible resolver este problema si se hace más eficiente la recuperación de selenio de los lodos, se evita la necesidad de adicionar ácido a los residuos sólidos que quedan después de solubilizar el telurio y en cambio pueden ser enviados nuevamente a los tanques de lixiviación de lodos anódicos para recuperar más telurio, selenio y cobre. La solución básica puede utilizarse para solubilizar más telurio dentro del mismo circuito. Esta propuesta permite, aparte de reutilizar la sosa, enviar la solución ácida de este proceso al circuito de electrólisis, recuperando arsénico (fig. 45).

La segunda opción se refiere a un cambio en el proceso de recuperación del selenio y las modificaciones antes descritas para la operación de recuperación de telurio. Se propone la lixiviación aereada de los lodos o lixiviación en autoclave para

solubilizar el cobre y el telurio. El lodo decuprizado se somete a una tostación oxidante o sulfatante para recuperar, posteriormente, el selenio en forma de SeO₂ que se envía a una torres de absorción con solución básica, inyectando SO₂. Se obtiene de esta manera un selenio de alta pureza y ácido sulfúrico que puede ser reciclado al sistema de electrólisis. Por otro lado, la solución que contiene al telurio y al cobre se envía a cementación y el sólido generado se trata de la forma ya indicada anteriormente para la opción que no contemplaba un nuevo proceso (fig. 45).

## Electrólito (fig. 50)

Se propone estudiar otros métodos para la extracción del arsénico en el electrólito drenado, de acuerdo a los resultados de la investigación documental realizada (sec. IV.5.4 y fig. 46 parte 1 y 2), con lo cual no se tendría el problema de tratar arseniuro de cobre impuro, que como ya se dijo no tiene mercado. Además, se mitigaría el problema que causan los residuos sólidos peligrosos que se están almacenando y/o enviando a tratar fuera de la por que su contenido de arsénico disminuiría drásticamente. Adicionalmente se esperaría recuperar níquel y otros valores que no se recuperan con la eficiencia deseada. Estos cambios permitirían regenerar soluciones de ácido sulfúrico con bajo contenido de iones tóxicos que puede ser reciclado a electrólisis o en caso de exceso de nivel puede tratarse y enviarse al drenaje. El lodo residual de la planta de tratamiento contendría menor concentración de elementos tóxicos.

En cuanto a la generación de condensados ácidos, es urgente reemplazar totalmente los intercambiadores de tubo y coraza por serpentines de titanio, para evitar la contaminación de los drenajes. Esta medida es necesaria se hagan o no cambios en los procesos.

### Servicios (Fig. 50)

En este caso se considera que el reciclado que actualmente está en operación es adecuado, solamente se propone un tratamiento para remover dureza con el objeto de mejorar la calidad del agua y evitar incrustaciones.

Finalmente, se debe hacer mención que el personal de la planta aplicó excelentes medidas para cortar drásticamente la contaminación que esta planta causaba al ambiente. No obstante, se debe continuar con el esfuerzo, haciendo los estudios necesarios para lograr que las medidas anticontaminantes puedan seguir operando permanentemente. No se considera pertinente poner plantas de tratamiento ya que se debe comprar equipo caro, que genera residuos peligrosos y no permite ahorrar materias primas,

agua ni recuperar valores. Además de que se debe contar con personal preparado y gastar energía en su mantenimiento y en el manejo de los residuos peligrosos.

La industria de la refinación de metales debe tomar en cuenta que tiene ventajas respecto a otras, ya que la instrumentación de procesos mas limpios que ayudan a disminuir el impacto ambiental, resultan muy favorables para la economía de la empresa, pues aumentan la recuperación y calidad de los valores.

# BIBLIOGRAFIA

- Abe S. y Takahashi M. (1987). "Prevention of Floatating Slimes Precipitations in Copper Electrorefining", Tomado de Hoffmann J.E., Bautista R.G., Ettel V.A., Kudryk V. and Wesely R.J. Eds. The Electrorefining and Winning of Copper., TMS-AIME, Warrendale, PA, E.E.U.U.A., pp.71-84.
- Akbasova A. D., Dzekunov V. P., Valikhanova N. K. Urazalin A. y Nauryzbaev M. (1985). "Reaction of arsenic with xantates in sulfuric acid solutions". Izv. Akad. Nauk. Kaz. SSR, Ser., Khim. (5) pp 27-31.
- Analysis of Saline and Sodic Soils. (1989) Salinity Laboratory, Dept. of Soils and Fertilizers, De Dreijen 3, Universidad Agricola de Wageningen, Holanda., documento interho.
- Ashikhmina T.P. y Ugorets M.Z. (1988). "Oxidation of iron (II) with precipitation of iron (III) arsenate from sulfuric acid solutions". Zh. Prikl. Khim. 61 (1), pp 148-50.
- Baipeisova B. S., Suleimanova D. X. y Ugorets M. Z. (1987)
  "Flowsheet for the removal of arsenic and antimony from
  solutions of copper electrorefining". Kompleksn. Ispol'z.
  Miner. Syr'ya, (1), pp 30-4.
- Baradel A., Gerriero R., Meregalli L., and Vittadini I. (1986). "Extraction of As from Copper Refining Elecrolyte". Journal of Metals, Feb., pp 32-37.
- Barnett, V. (1984). Elements of Sampling Theory. London: Hodder Stoushton.
- Bombach H., Hein K., Krauss T. y Lange H.J. (1989). "Formation of arsine in copper removal from electrorefining electrolytes". Erzmetall. 42 (3), pp 129-34.
- Castellan G. W., (1987). Fisicoquímica. México, segunda ed., SITESA, pp 810-811.
- Cooper W.C. (1988). "Comportamiento y control de las impurezas en la refinación electrolítica del cobre". Minerales (Chile), 43 (183), pp 55-67.
- Cooper W.C. (1990). "The Treatment of Copper Refinery Anode Slimes". JOM, Aug. 1990, pp 45-48.
- Chen T.T. y Dutrizac J.E. (1990). "The Mineralogy of Copper Electrorefining". JOM, August, pp 39-43.
- Duby, P. (1984). "Review of development in electrometallurgy-1983". JOM 56-60

- EPA Federal Register 40 (40), 8513-8535, Feb. 27, (1975). "Nonferrous metals manufacturing point source category: interim and proposed effluent limitations, guidelines and standards".
- Fukuoka Y., Nakano T. y Kubo N. (1987). "Selective recover of copper and arsenic from slime in electrolytic copper refining". (Sumitomo Metal Mining Co Ltd) Jpn Kokai Tokkyo Koho JP 6277,431 [8777,431] (CL. C22B15/08) 09 Apr 1987, Appl. 85/217,388, 30 sep 1985; p 4.
- Hines W. W., Montgomery D.C. (1987). Probabilidad y Estadística para Ingeniería y Administración. Ed. CECSA, México D.F. pp 389-404.
- Hoffmann J. E. (1989a). "Recovering Selenium and Tellurium from Copper Refinery Slimes". JOM, July, pp 33-38.
- Hoffmann J. E. (1989b). "Selenium and Tellurium Rare But Ubiquitous". JOM, July, p 32.
- Hyvärinen O. y Heimala S. (1982). "Removal of Arsenic, Antimony and Bismuth from a Sulfuric Solution". (Outokumpu Oy). Finn. FI 62,685 (C1. C25C), 29 oct 1982, Appl 80/3,523, 11 Nov 1980; pp 11
- Hyvärinen O, Lindroos L., and Yllö E. (1989). "Recovering Selenium from Copper Refinery Slimes". JOM, July 1989, pp 42-43.
- Jonge H.L., Bombach H., Hein K. (1988). "Formation of arsine during decoppering electrolysis". Neue Huette, Feb. 33 (2), pp 60-4.
- Kehl R., Schawab W., Sudderth R. y Kordosky G.(1989) "Removal of impurities from electrolyte". (Henkel K- Ga A) Ger. Offen DE 3,725,611 (CLBOIDII/OO), 9 Feb 1989 Appl 01 1987.
- Keith, H.L. (1991). Environmental Sampling and Analysis: A Practical Guide. Lewis Pub. U.S.A.
- Khalemskii O.A., Naboichenko S.S. y Kaplun R.(1990). Tsvetn Met., (9), pp 45-6.
- Kirk-Othmer, (1984). Encyclopedia of Chemical Technology. Wiley, C1984, 3ed, New York, vol 6. pp 839-853.

- Krasikov B. S., Astakhova R. K., Kasaeva B. Ya., Serushkin K. I., Rybinin N. A., Belen'kii A. B., Solov'ev E. M., Amurov A. A., Zatitskii B.E., Kudryashov Yu. (1990). "Electrolyte for electrorefining of copper" Patent No. 408,133; 15 sep 1990, Appl. 4 from Otrkrytika Izobret 22 feb 1988. Su 1, 592,398, (Cl. c25c1/12) U.S.S.R.
- Kudryashov Yu. E., Lebedev A.E., Barskii L.A., Marchenkova T.G., Savinkin V.I. (1989). "Recovery of nickel sulfate from spent solutions of copper electrolysis". Tsvetn. Met. (12), pp 33-5.
- Langner E., May A. y Kunst G.(1986) "Selective separation of antimony from sulfuric acid liquors". Ger. Offen de 3,441,566 (Cl.c22B30/20) 22 may 1986
- Mamani F.B. e Itagaki K. (1990). "Roasting of copper anode slimes with high selenium content". Metall. Rev. MMIJ 7 (2), pp 122-33.
- Mantell C. L. (1962). <u>Ingenieria Electroquimica</u>. Ed. Reverté S.A., Barcelona, (traducción de la 4a ed en inglés: <u>Industrial Electrochemistry</u>, McGraw Hill, New York, por Fernández F. J.); pp 138-163.
- Mantell C. L. (1950). <u>Industrial Electrochemistry</u>. McGraw-Hill, New York, 3d. Edition, pp 781.
- Mil'ke E. G., Usenov N. A., Isabaev S. M. (1990). Kompleksn Ispol'z. Miner Syr'ya (9), pp 46-51.
- Moriya M. e Imachi t.(1986) "Removal of impurity metal ions in copper electrolysis solution". Jpn Kokai Tokkyo Koho Jp 61,227,190 (86,227,190) (C1. C25 C1/12) 9 Oct.1886.
- Naboichenko S.S., Kharitidi E.Z., Kuznetsova T.P., Furashova (1988). "Processing of contaminated nickel sulfate salts". Kompleksn. Ispol'z. Miner. Syr'ya, (8), pp 58-61.
- Nagai T. (1985). "Removal of Arsenic from Copper Electrolytes by Solvent Extraction". Jpn. Kokai Tokkyo Koho JP 60,258,432 [85,258,432] (C1 C22B15/08), 20 dec 1985, Appl. 84/112,803, 01 jun 1984, pp 5.
- Ortiz M. F., Cortinas de N. C. y Maffey G. M. (1987). Manejo de los Desechos Industriales Peligrosos en México 1a. Edición, Fundación Universo Veintiuno, A.C. pp 20-25, 32-33,, 56-57, 157-161, 166-169.
- Perkin-Elmer (1982) Analytical Methods for Atomic Absorption Spectroscopy. Connecticut, USA. pp 9.2-9.5.

- Pinta M. (1971) Spectrométrie D'Absorption Atomique. Masson Et, Editeurs., Paris, tome I, pp 129-133.
- Ramette R. (1983) Equilibrio y análisis químico. Fondo Educativo Interamericano. pp 138-142 y 148-155.
- Rickelton W. A. y Brown T. J. (1985). "Impurity Removal from Copper-Nickel Electrolytes by Solvent Extraction with Liquid Phosphine Oxides" Impurity Control Disposal, Proc. CIM Annv. Hydrometall, Meet, 15th, Can. Inst. Min. Metall., Metall, soc. Hydrometall, Sect. Montreal Qu.
- Ryzhov A.G., Ter-Oganesyants A.K. (1988). "Recovery of tellurium from intermediate products of processing of copper anode slimes". Tsvetn. Met. (3), pp 13-15.
- Russell D. L. (1985) "Managing your Environmental Audit". Chemical Engeneering, vol 92, no. 13, June 24, pp 37-43.
- Sagindykova Z.B., Semina O.I., Ugorets M.Z. (1986). "Sulfuric acid decoppering of a copper electrolytic anodic sludge with the aid of oxygen". Tsvetn. Met. (8), pp 35-8.
- Schloen J. H. (1986). "Electrollitic Copper Refining Reviewed". CIM Bulletin, June 1986. pp 103-107.
- Schlossel, Richard H. (1989) "Metal-containing wastewater treatment and metal recovery process". U:S: US 4, 824,575 (Cl.210-662; BOIJ49/00). 25 Apr 1989. Appl 64,520, 22 jun 1987.
- Schulze R. (1971). "Purification of Electrolytes for Copper
  Refining". Ger. Offen. 2,004,410 (C1. C22d), 05 Aug 1971,
  Appl, 31 Jan 1970; pp 13.
- Shevelev D.V. y Naboichenko S.S. (1990). "Autoclave sulfuric acid leaching of copper anode slimes". Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (3), pp 55-7.
- Singh J. (1984). "Environmental Auditing". Plant Engin., vol 38 no. 4, Feb 23, pp 43-44.
- Taylor, J. K. (1987). Quality Assurance of Chemical Measurements. Lewis Pub. U.S.A, pp 75-106.
- Travkin V.F., Yakshin V.V., Kravchenko A. N. y Bulgakova V. B. (1990). "Antimony recovery from sulfuric acid solutions" U.S.S.R. Su 1, 544.830 8cL. C22B3O7029, 23 Feb 1990.

- Unitaka Ltd. (1985) "Purification of copper electrorefining
   solutions". Jpn. Kokai Tokkyo Koffo Jp 60,50,192 (85,50,192)
   (Cl.C25Cl/l2). 19 mar 1985, Appl 83/156.972 27 aug 1983.
- Varian (1989). Analytical Methods for Flame Atomic Absorption <u>Spectrometry</u>. Revised March 1984, Publication No. 85-100009-00.
- Zárate G. González F. (1987). "Process Definition for Anode Slimes Treatment". Copper 87, 3, pp 499-524.
- Zauzolkov I.V., Holmanskih Yu. B. y Meloyan R.G. (1989a).
  "Adsorption of arsenic, antimony and bismuth from copper refining electrolytes". Kompleksn. Ispol'z. Miner. Syr'ya, (10), pp 43-4.
- Zauzolkov I.V., Puzakov U.V., Meloyan R.G., Airapetyan V.A. y Edilyan R.S. (1989b). "Fractionate electrolysis of metals in hydrometallurgical solutions". Kompleksn. Ispol'z. Miner. Syr'ya (8), pp 27-9.
- Zharmenov A.A., y Sharipov M. (1984). "Copper Electrolyte
  Treatment in a system of ion-exchange membranes". Kompleksn.
  Ispol'z. Miner. Syr'ya (5), pp 30-3.

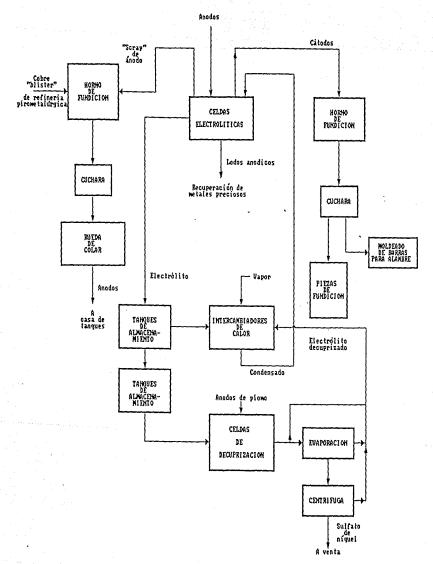



Figura 2. Diagrama de flujo de una planta de electrorefinado de cobre

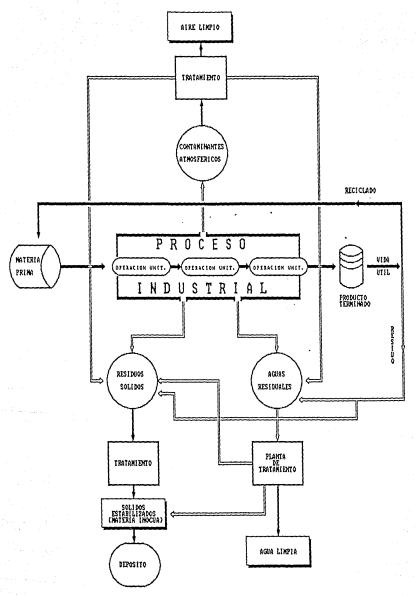



Figura 4. Esquema general del control ambiental

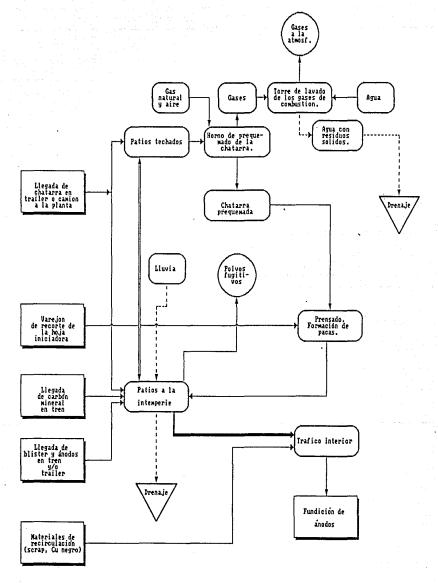



Figura 5. Diagrama de flujo: Manejo de materias primas (sin modificar)

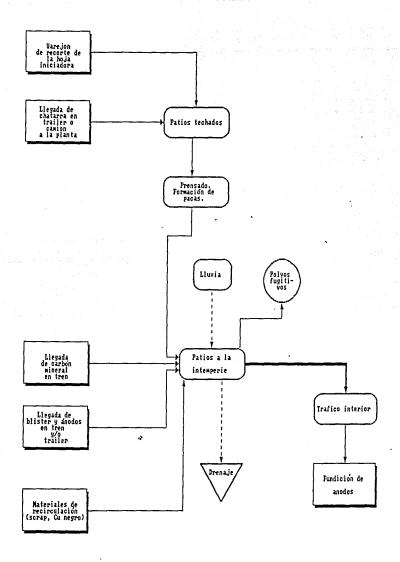



Figura 6. Diagrama de flujo: manejo de materias primas (modificado)

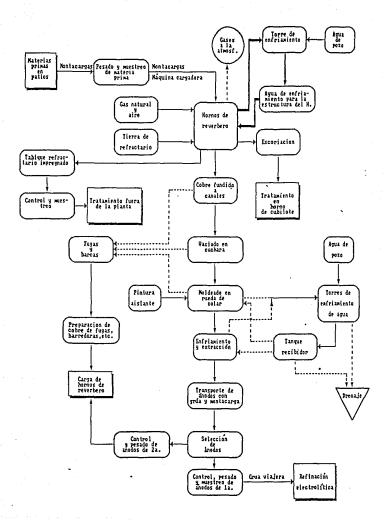



Figura 7. Diagrama de flujo: Fundición de ánodos (sin modificar)

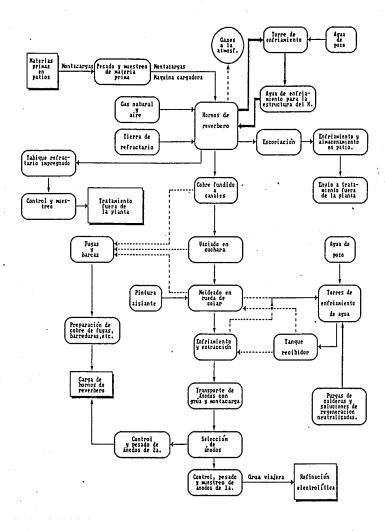



Figura 8. Diagrama de flujo: Fundición de ánodos (modificado)

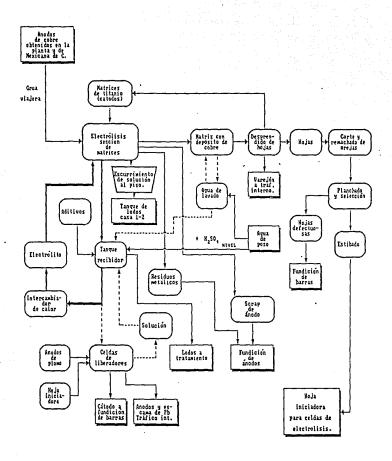



Figura 9. Diagrama de flujo: Producción de hojas iniciadoras

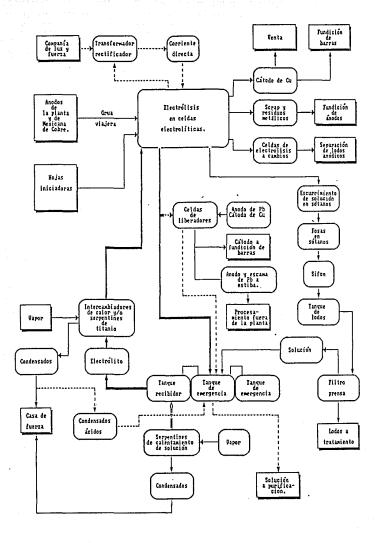



Figura 10. Diagrama de flujo: Proceso electrolítico

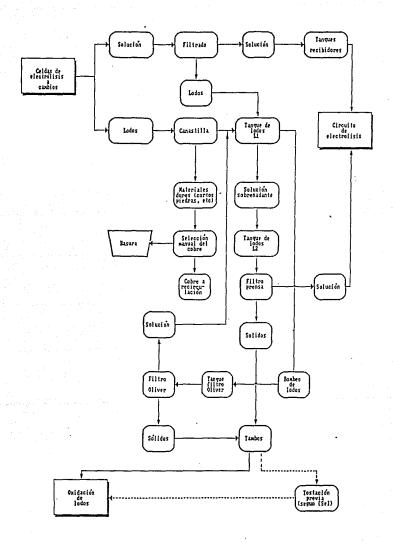



Figura 11. Diagrama de flujo: Separación de lodos anódicos

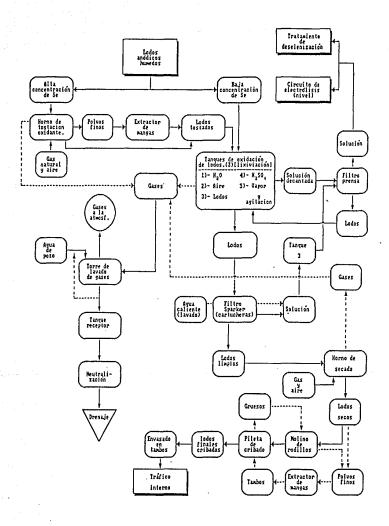



Figura 12. Diagrama de flujo: Tratamiento de lodos anódicos (sin modificar)

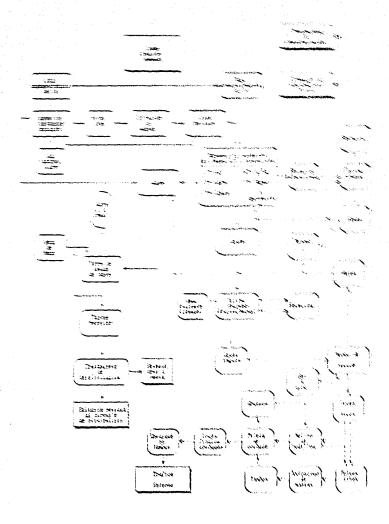



Figura 13. Diagrama de flujo: Tratamiento de lodos ambellos (modificado)

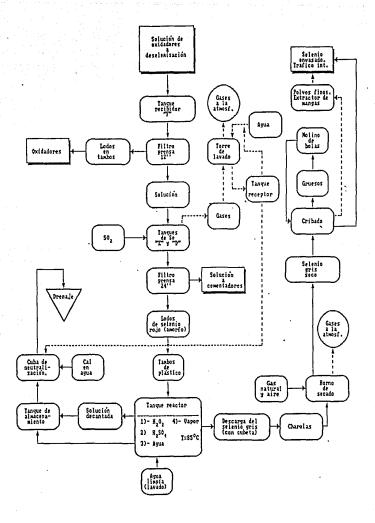



Figura 14. Diagrama de flujo: Deselenización de solución proveniente de oxidadores (sin modificar)

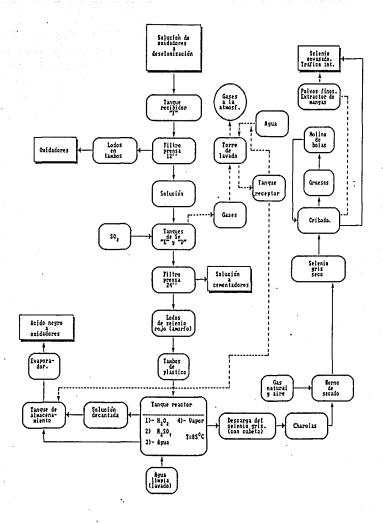



Figura 15. Diagrama de flujo: Deselenización de solución proveniente de oxidadores (modificado)

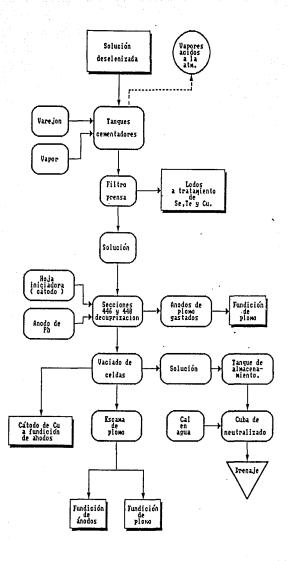



Figura 16. Diagrama de flujo: Decuprización de soluciones de lodos anódicos deselenizados (sin modificar)

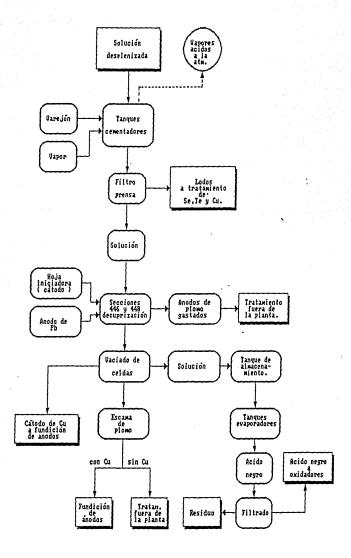



Figura 17. Diagrama de flujo: Decuprización de soluciones de lodos anódicos deselenizados (modificado)

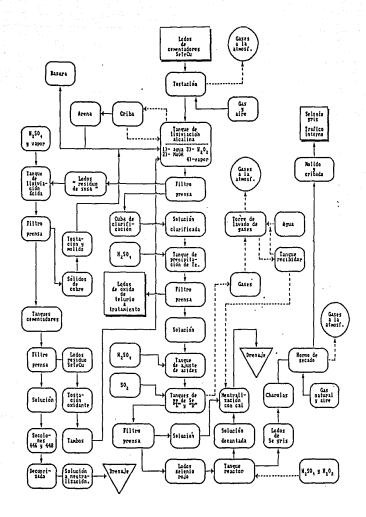



Figura 18. Diagrama de flujo: Proceso SeTeCu (sin modificar)

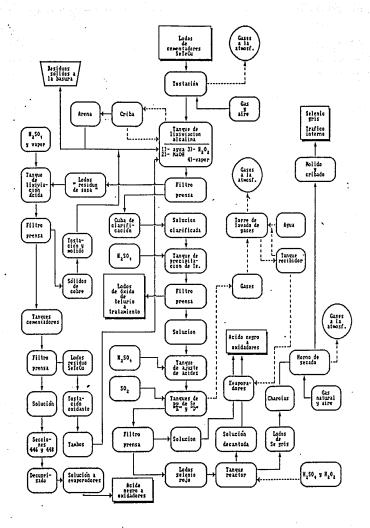



Figura 19. Diagrama de flujo: Proceso SeTeCu (modificado)

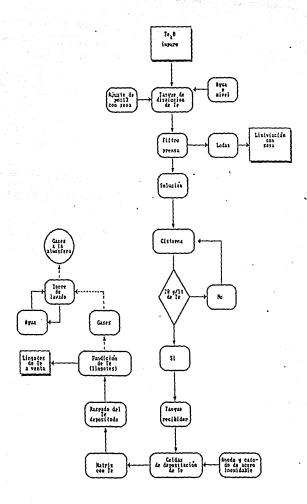



Figura 20. Diagrama de flujo: Obtención de Te

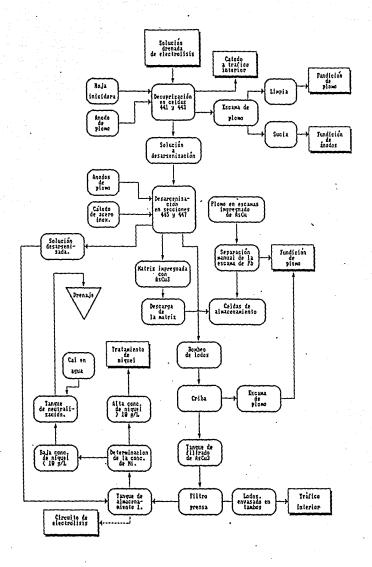



Figura 21. Diagrama de flujo: Purificación de solución electrolítica (sin modificar)

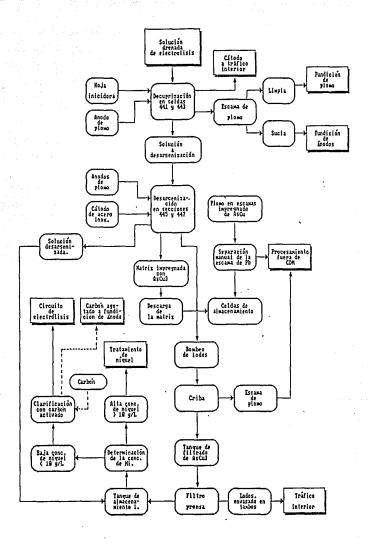



Figura 22. Diagrama de flujo: Purificación de solución electrolítica (modificado)

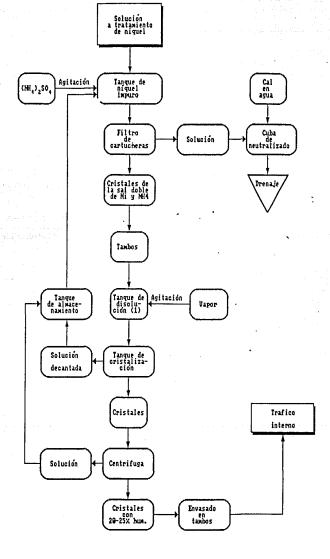



Figura 23. Diagrama de flujo: Recuperación de níquel (sin modificar)

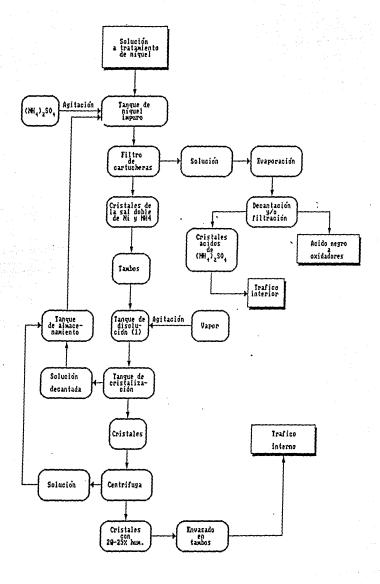



Figura 24. Diagrama de flujo: Recuperación de níquel (modificado)

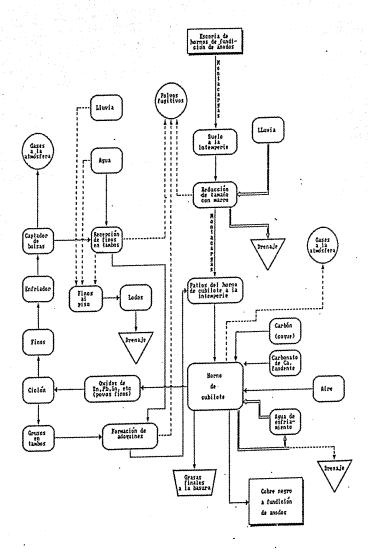



Figura 25. Diagrama de flujo: Horno de cubilote

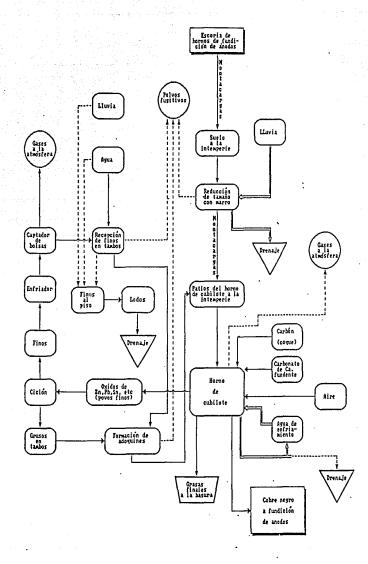



Figura 25. Diagrama de flujo: Horno de cubilote

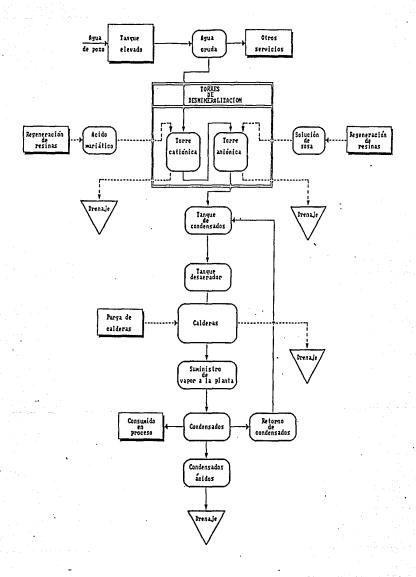



Figura 26. Diagrama de flujo: Casa de fuerza (sin modificar)

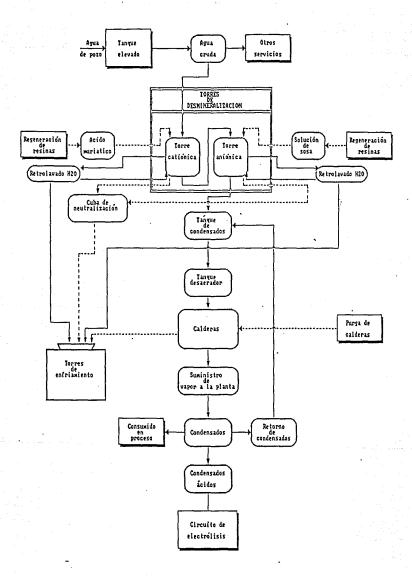
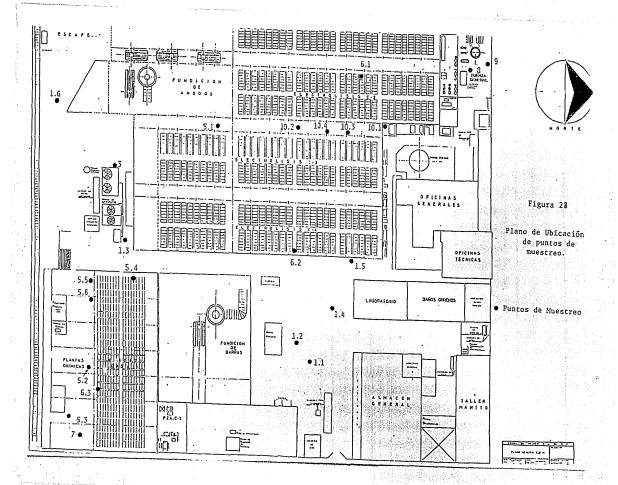
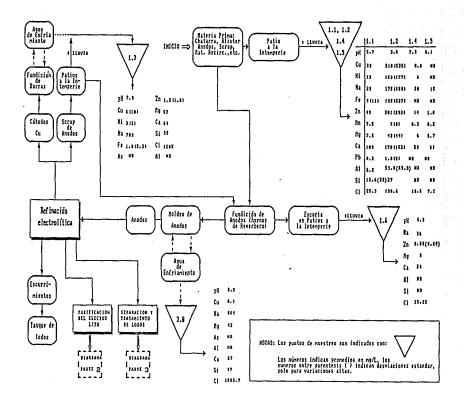





Figura 27. Diagrama de flujo: Casa de fuerza (modificado)





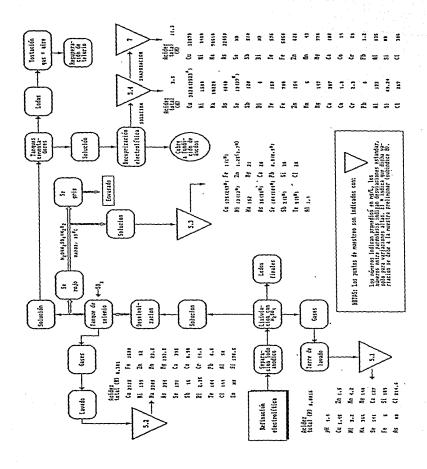
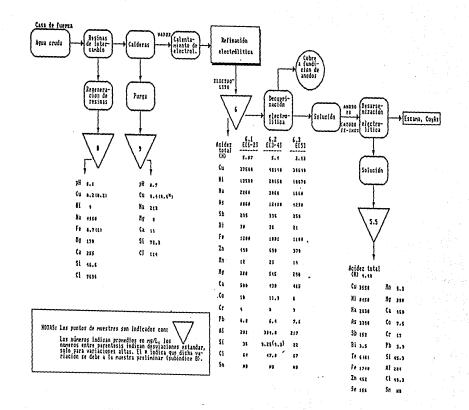




Figura 39. (Parte 2) Diagrama de flujo resumido de los procesos de la planta (con resultados analíticos)



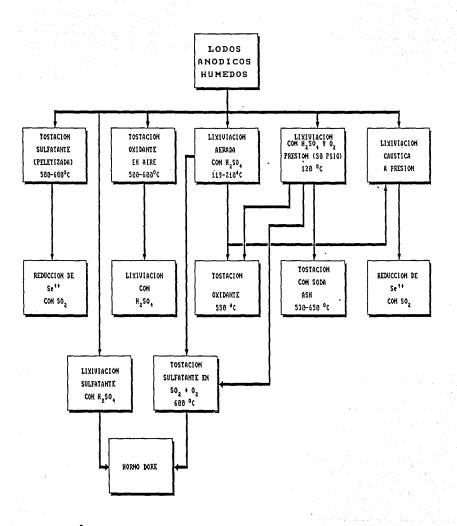



Figura 44. Tratamiento de lodos anódicos

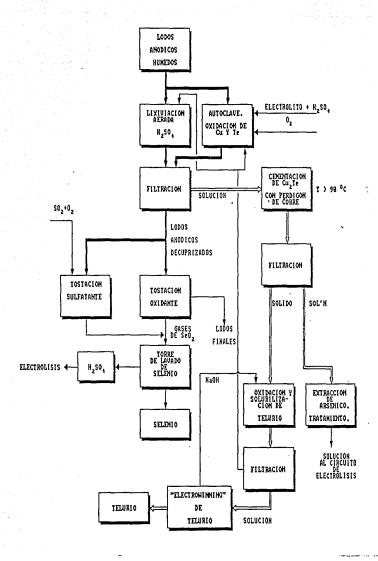



Figura 45. Diagrama general para el tratamiento de lodos anódicos usando lixiviación con H₂SO₄ y tostación oxidante

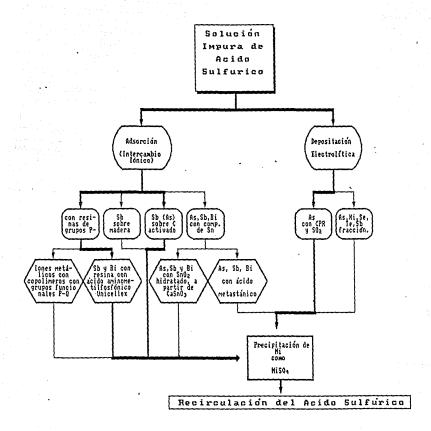



Figura 46. (Parte 1) Tratamiento para la remoción de impurezas de soluciones de ácido sulfúrico

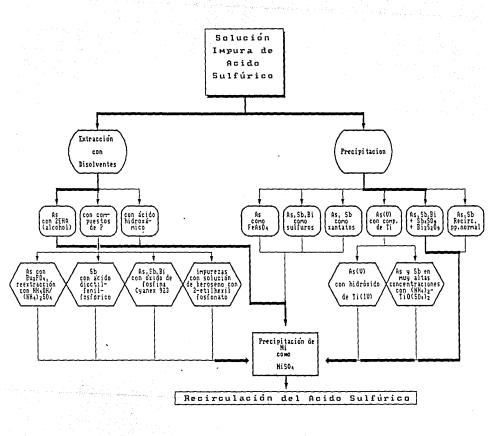



Figura 46. (Parte 2)Tratamiento para la remoción de impurezas de soluciones de ácido sulfúrico

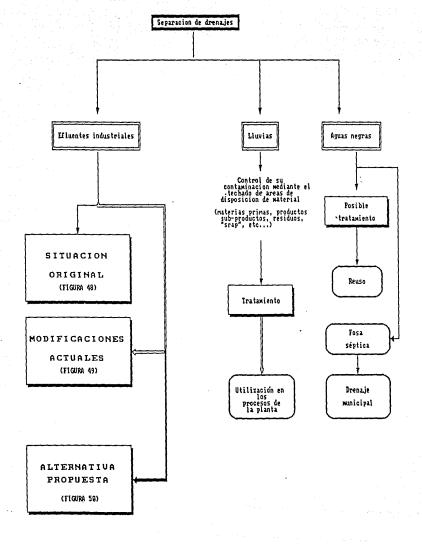



Figura 47. Estrategia de manejo de los efluentes líquidos de la planta

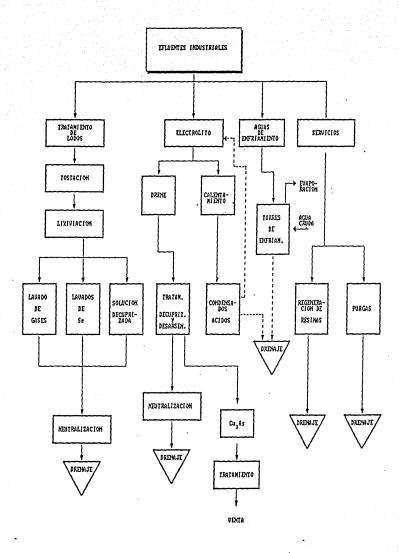



Figura 48. Situación original de la empresa antes de la Auditoría Ambiental

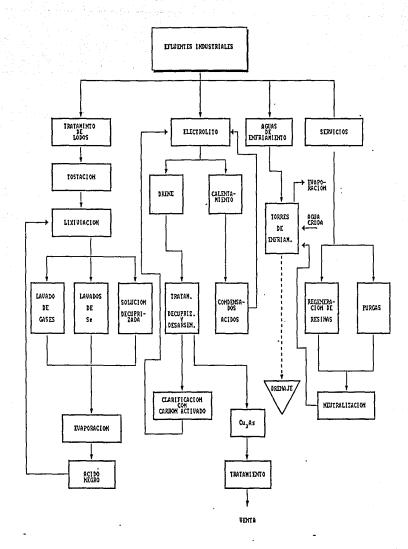



Figura 49. Modificaciones actuales instrumentadas por la empresa a partir de la Auditoría Ambiental

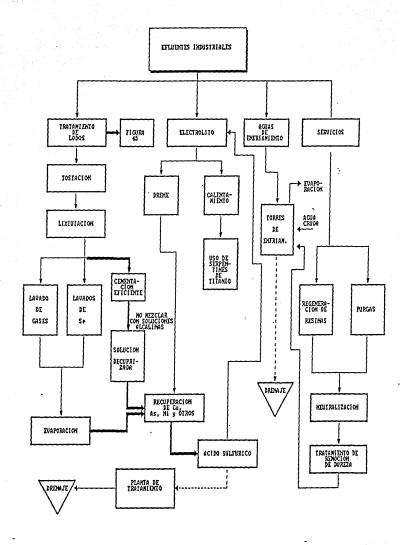



Figura 50. Alternativa propuesta con base en el estudio ambiental integral realizado en la planta

TABLA 1
COMPOSICION DE LOS ANODOS EMPLEADOS EN EL REFINADO ELECTROLITICO DEL COBRE.

ANGDO	As \	8b \$	Bi . %	Ni %	Se %	Pb.	re \	Te %	Zn %	Co \$
1	0.0012	0.0001		0.017	0.144	0.0004	0.0013	0.027		~-
2	0.015	0.0045		0.009	0.117	0.035	0.0013	0.015		
3	0.0019	0.0088	<0.0001	0.02	0.021	0.0073	0.042	0.0093		
4	0.0011	0.0002	0.0045	0.015	0.014		0.005	0.002		0.006
5	0.17	0.025		0.15	0.01	0.2	0.002			0.001
6	0.05	0.11	0.002	0.15	0.074	0.18	0.03	0.045	0.005	
7	0.154	0.044	0.015	0.005	0.013	0.003	0.02	0.003	0.017	
8	0.022	0.02	0.001	0.005	0.01	0.003	0.0002	0.001	0.003	5

^( 1 ) Canadian Copper refiners. Ltd.(Anodos Noranda)

^( 2 ) Canadian Copper refiners. Ltd.(Blister de Hudson Bay)

^( 3 ) Ltd. Queenstown, Tasmania.

^( 4 ) Rhodesia Copper Refineries Ltd.

^( 5 ) Société Générale Métallurgique de Hoboken, Bélgica.

^( 6 ) U. S. Hetals Refining Co.

^( 7 ) Anodo de Nexicana de Cobre

^( 8 ) Anodo de COBREMEX.

(1/3)
RELACION DE RESIDUOS GENERADOS

#RF	PROCESO/RESIDUO	CUERPO RECEPTOR	PELIGROSIDAD	
	MANEJO DE MATERIAS PRIMAS			
1	POLVOS Y ACEITES CONTENIDOS EN	SUELO, AGUA, AIRE	si si	
2	BASURA GENERADA EN LA SELECCION DE MATERIALES	SUELO	МО	
3	SALES(CUSO4), POLVOS DIVERSOS, SOBRE MATERIALES A LA INTEMPERIE	AGUA, AIRE	SI	
4		'AIRE, ÀGUA	SI.	
	FUNDICION DE ANODOS			
5	POLVOS FUGITIVOS DE LOS MATERIA- LES DE CARGA DE HORNOS	AIRE	SI	
6	GASES GENERADOS DURANTE LA FUSION	AIRE	SI	
7	POLVOS GENERADOS POR LA ESCORIA ALMACENADA EN PATIOS	AIRE	POSIBLE	
8	AGUA DE ENFRIAMIENTO DE ANODOS QUE ACARREA MATERIALES A SU PASO	AGUA	SI	
	AL HABER EXCESO DE NIVEL			
	ELECTROLISIS			
9	CONDENSADOS ACIDOS POR FUGA DE ELECTROLITO EN INTERCAMBIADORES	AGUA	SI	
10		AIRE	POSIBLE	
11	ELECTROLITO DERRAMADO EN SOTANOS	SUELO	POSIBLE	
	TRATAMIENTO DE LODOS ANODICOS	· · · · · · · · · · · · · · · · · · ·		
	OXIDACION Y LIXIVIACION DE LODOS	·		
12	GASES GENERADOS EN LA TOSTACION DE LODOS DE MEZCLA	AIRE, AGUA	sı	
13	GASES Y VAPORES DE LA LIXIVIA- CION DE LOS LODOS	AIRE, AGUA	SI	
14	POLVOS GENERADOS DURANTE EL MOLIDO DE LODOS FINALES	AIRE	POSIBLE	

#RF: Número de referencia

TABLA 2 (2/3) RELACION DE RESIDUOS GENERADOS

#RF	PROCESO/RESIDUO	CUERPO RECEPTOR	PELIGROSIDAD
	DESELENIZACION DE SOLUCION PROVENIENTE DE OXIDADORES	·	
15	GASES RESIDUALES DEL PROCESO DE PRECIPITACION DE Se (SO ₂ )	AIRE, AGUA	SI
16	VAPORES GENERADOS EN LA REACCION	AIRE	POSIBLE
17	DE Se(rojo)> Se(gris) SOLUCIONES NEUTRALIZADAS DEL LA- VADO DEL SE GRIS	AGUA	SI
18	GASES GENERADOS DURANTE EL SECA- DO DEL SELENIO	AIRE	POSIBLE
19	POLVOS DE SELENIO GENERADOS DURANTE LA MOLIENDA	AIRE, ȘUELO	`SI
	DECUPRIZACION DE SOLUCIONES DE LODOS ANODICOS DESELENIZADOS		
20	VAPORES ACIDOS GENERADOS EN LA CEMENTACION	AIRE	≐ :=::-SI
21	SOLUCION DECUPRIZADA Y NEUTRALI- ZADA CON CAL	AGUA	SI
-			
	PROCESO SeTeCu	And the second s	
22	GASES GENERADOS EN LA TOSTACION OXIDANTE DEL MATERIAL SETECU	AIRE, AGUA	SI
23	VAPORES GENERADOS EN LA CEMENTA- CION	AIRE	STORE SI
24	SOLUCION DECUPRIZADA Y NEUTRALI-ZADA CON CAL	AGUA	= SI
25	VAPORES ACIDOS GENERADOS DURANTE LA LIXIVIACION ACIDA	AIRE	sı
26	GASES GENERADOS EN LA TOSTACION DEL SOLIDO CAFE QUE SE LIXIVIA	AIRE	SI
27	POSTERIORMENTE CON SOSA GASES RESIDUALES DE LA PRECIPI- TACION DE SELENIO(SO ₂ )	AIRE	SI
	OBTENCION DE TELURIO	MAR	
28	GASES GENERADOS EN LA FUNDICION DEL TELURIO	AIRE	SI

#RF: Número de referencia

(3/3)

## RELACION DE RESIDUOS GENERADOS

<b>∦</b> RF	PROCESO/RESIDUO	CUERPO RECEPTOR	PELIGROSIDAD
	PURIFICACION DE SOLUCION ELECTROLITICA		
29	GENERACION DE VAPORES ACIDOS EN LA ELECTROLISTS	AIRE	POSIBLE
30	GASES GENERADOS POR LA FUSION DE ESCAMA DE PLOMO IMPREGNADA DE Cu-SO. EN HORNOS DE REVERBERO	AIRE	SI
31	DESPRENDIMIENTO DE ARSINA(HJAS) DUPANTE LA DESARCENIZACION	AIRE	SI
32	GASES GENERADOS EN LA FUSION DE ESCAMA DE COBRE IMPREGNADA DE	AIRE	SI
	ARSENIURO DE COBRE EN HORNOS DE REVERBERO		
33	POLVOS FUGITIVOS DE ARSENIURO DE COBRE	AIRE	s, SI
34	SOLUCION DESARSENIZADA Y NEUTRA- LIZADA	AGUA	SI
35	SOLUCION DESNIQUELIZADA NEUTRA- LIZADA CON CAL	AGUA	SI
	FUNDICION DE BARRAS		
36	GASES GENERADOS DURANTE LA FUSION DEL COBRE	AIRE	POSIBLE
	CASA DE FUERZA		
37	SOLUCION DE RETROLAVADO DE TORRES DE INTERCAMBIO IONICO	AGUA	ио
38	SOLUCIONES DE REGENERACION NO NEUTRALIZADAS ADECUADAMENTE	AGUA	POSIBLE
39	PURGA DE CALDERAS	AGUA	POSIBLE

#RF: Número de referencia

TABLA 3 (1/2)

MODIFICACIONES EN LOS PROCESOS DE LA PLANTA CON VIAS A REDUCIR LAS DESCARGAS DE CONTAMINANTES, INSTRUMENTADAS DURANTE EL DESARROLLO DEL PROYECTO

PROCESO/OPERACION	RESIDUO	MODIFICACION		
MANEJO DE MATERIAS PRIMAS				
- PREQUEMADO DE CHATARRA	AGUA DE LAVADO DE GASES	NO SE QUEMA CHATARRA EN LA PLANTA.		
- ALMACENAJE	LAVADO POR LLUVIAS DE ALGUNAS SALES ALMACENADAS EN TAMBOS A LA INTEMPERIE	SE HAN ALMACENADO LA MAYORIA DE LOS TAMBOS BAJO TECHO.		
FUNDICION DE ANODOS				
- ENFRIAMIENTO DE ANODOS	FUGA DE AGUA DE ENFRIA-` MIENTO A DRENAJE.	SE CONSTRUYO UNA CANA- LIZACION PARA EVITAR QUE ARRASTRE Y LAVE SOLIOOS PRESENTES A SU PASO.		
ELECTROLISIS				
- CALENTAMIENTO DE ELECTROLITO	CONDENSADOS ACIDOS	SE EVITA ENVIAR A DRE- NAJE, SE RECIBEN EN LOS TANQUES DEL CIR- CUITO DE ELECTROLISIS.		
TRATAMIENTO DE LODOS ANODICOS				
- OXIDACION DE LODOS - LIXIVIACION DE LODOS	LAVADO DE GASES	EL AGUA DE LAVADO SE ENVIA A TRATA- MIENTO DE DESELENIZA- CION Y POSTERIORMENTE- ES ENVIADA A NIVEL EN EL DEPTO DE ELECTRO.		
- DESELENIZACION DE SOLU- CIONES PROVENIENTES DE OXIDADORES (PRECIPITACION DE SELENIO ROJO)	AGUA DE LAVADO DE GASES	LA SOLUCION SE EVAPORA JUNTO CON SOLUCION DE- CUPRIZADA PARA OBTENER ACIDO NEGRO(EMPLEADO EN OXIDADORES)		

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·
PROCESO/OPERACION	RESIDUO	MODIFICACION
- REACCION Se(rojo)> Se(gris)	AGUA DE LAVADO DEL Se	SE EVAPORA Y SE USA COMO ACIDO NEGRO
- DECUPRIZACION DE SOLU- CIONES DE LODOS ANODI- COS DESELENIZADOS	SOLUCION DECUPRIZADA	SE EVAPORA Y SE USA COMO ACIDO NEGRO
- PROCESO SeTeCu	SOLUCION DECUPRIZADA	SE EVAPORA Y SE USA COMO ACIDO NEGRO
	AGUA DE LAVADO DE PRECI- PITACION DE SELENIO	SE EVAPORA Y SE USA COMO ACIDO NEGRO
PURIFICACION DE BOLUCION ELECTROLITICA		
- DESARSENIZACION DEL ELECTROLITO	SOLUCION DESARSENIZADA	SE CLARIFICA CON CARBON ACTIVADO PARA QUITAR IMPUREZAS Y SE RECIRCULA AL CIR- CUITO DE ELECTRO- LISIS.
- DESNIQUELIZACION	SOLUCION DESNIQUELIZADA	SE HA SUSPENDIDO EL PROCESO POR LA BAJA CONCENTRACION DE NIQUEL PRESENTE
CASA DE FUERZA		
- REGENERACION DE RESINAS	SOLUCION NEUTRALIZADA PROVENIENTE DE LA REGE- NERACION DE LAS TORRES DE INTERCAMBIO IONICO	SE ENVIA A TORRES DE ENFRIAMIENTO DE ANODOS
- PURGAS DE CALDERAS	SOLUCION NEUTRALIZADA DE PURGA DE CALDERAS	SE ENVIA A TORRES DE ENFRIAMIENTO DE ANODOS

TABLA 4

JUSTIFICACION DEL MUESTREO

CLASIFICACION GENERAL (GRUPO)	P.G.R.C. # referencia tabla (2)	PUNTO DE MUESTREO	COMENTARIOS
AGUAS PLUVIALES	1, 2 3, 7	1.1 AL 1.6	ACARREAN RESIDUOS SOLIDOS Y GRASAS DEPOSITADAS EN LOS PATIOS
AGUA DE LAVADO DE GASES	12, -13 15, 22 25, 27	5.1 5.2	ESTAS AGUAS ABSORBEN CONTAMINANTES PRESENTES EN LOS GASES
AGUA DE ENFRIAMIENTO	870	3	CAPTAN PARTICULAS CONTAMINANTES DE LOS MATERIALESDEPOSITAD EN LAS ZONAS CERCANAS A LAS TORRES DE ENFR.
ELECTROLITOS Y CONDENSADOS	9 11	5:1 6:2 6:3	LOS CONTAMINANTES PRESENTES EN LOS CONDENSADOS ACIDOS PROVIENEN DE LOS ELECTROLITOS
SOLUCIONES GENERADAS DURANTE EL TRATAMIENTO DE LODOS ANODICOS	17 21 24	5;3 5;4	CORRIENTES RESIDUALES DE LOS PROCESOS DE RECUPERACION DE LOS VALORES CONTENIDOS EN LOS LODOS
SOLUCIONES RESULTANTES DE LA PURIFICACION DE ELECTROLITOS	34 35	5.5 5.6	SOLUCIONES ACIDAS CON CONTENIDOS IMPORTANTES DE ARSENICO, COBRE Y NIQUEL
SOLUCIONES DE CASA DE FUERZA	37, 38 39	8	PURGA DE CALDERAS Y SOLUCIONES DE REGENARACION DE RESINAS

HOTA:

P.G.R.C. => PROCESOS GENERADORES, RESIDUOS Y CUERPOS RECEPTORES.

TABLA 5 (1/5) DATOS SOBRE EL MUESTREO LLEVADO A CABO EN LA PLANTA

PUNTO	UBICACION	CARGA	FLUJO APROX.	MUESTREO	j #MUEST.) FECHA	HORA	OBSERVACIONES	COMENTARIOS
	JUNTO AL ALMACEN,	AGUA PLUVIAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EN EPOCA	(1)	[21/V1/91	12:45	Solución turbia, cafe, con sólidos sedimentados	
1.1	EN PATIO DE CARGA Y DESCARGA Y FRENTE	OUE CAE SOURE MATERIALES A LA INTEMPERIE	EN FUNCION DE LA LLUVIA	LLUVIAS	(2)	24/VI/91	11:50	Solución amarillenta con sedimento cafe	ARRASTRE DE POLVOS, GRASAS Y COMPUESTOS SOLUBLES
	A LA BASCULA DE CAMIONES				(3)	28/VI/91	11:03	Solución turbia cafe, con aspecto graso	
		LLUVIA CON		EN EPOCA	(1)	19/V1/91	16:40	Huestra estancada verde claro, ligeramente turbia, con sedimento obscuro	
1.2	PATIO DE ALMACENAJE DE CATODO Y BARRA	ARRASTRE DE POLVOS DE LOS MATERIALES A LA INTEMPERIE	EN FUNCION DE LA LLUVIA	DE LLUVIAS	(2)	24/V!/91	11:35	Solución incolora con sedimento cafe obscuro	ARRASTRE DE POLVOS, GRASAS Y COMPUESTOS SOLUBLES
					(3)	28/VI/91	12:05	Solución turbia con sedimento cafe	
		LLUVIA ESTANCADA QUE CAE SOBRE EL SCPRAP			(1)	19/V1/91	12:25	Solución café/negro, con sólidos sedimentados	Tomada del registro
1.3	FRENTE A TORRE DE ENFRIAMIENTO DE BARRAS	ALMACENADO EN EL AREA Y JAGUA DE TORRE DE	EN FUNCION DE LA LLUVIA	EN EPOCA DE LLUVIAS	(2)	19/V1/91	12:30	Solución negra, turbia con sólidos sedimentados	Tomada del registro
		ENFRIANIENTO QUE LAVA Y ARRASTRA			(3)	19/VI/91	12:40	Solución color crema con sólidos sedimentados	Tomada del registro
		LOS SOLIDOS DE- POSITADOS EN LA ZONA			(4)	24/V1/91	12:15	Solución verde clara con sedimento cafe	Tomada del registro
					(1)	21/V1/91	11:50	Solución turbia con sólidos finos sedimentados de color oscuro	EN ESTE PUNTO COMO EN LOS
1.4	1.4 PASO DE MONTACARGAS JUNTO AL LABORATORIO DE ANALISIS	AL LABORATORIO ARRASTRE		EN EPOCA DE LLUVIAS	(2)	24/VI/91	11:41	Solución incolora con sedimentos abundantes de color café oscuro	OTROS, SE TIENE ARRASTRE DE GRASAS DE HONTACARGAS Y CAMIONES
		}	} } }		(3)	28/v1/91	11:05	Solución turbia clara con sedimento cafe	

TABLA 5 (2/5)

DATOS SOBRE EL MUESTREO LLEVADO A CABO EN LA PLANTA

PUNTO	UBICACION		FLUJO APROX.		#MUEST.	FECHA	HORA	OBSERVACIONES	COMENTARIOS
1.5	A UN COSTADO DE LA CASA 3-4	LLUVIA CON	EN FUNCION	EN EPOCA		21/V!/91	12:55	Solución transparente con sólidos suspendidos (sedimento obscuro)	LA COLADERA SE ENCUENTRA PARCIALMENTE OBSTRUIDA.
	DE ELECTROLISIS, Y JUNTO AL LABORATORIO DE ANALISIS	ARRASTRE DE POLVOS	DE LA	DE LLUVIAS	(2)	24/VI/91	12:00	Solución turbia blanquecina con sólidos finos sedimentados color cafe	PARCIALHENTE OBSTRUTOA, POR LO QUE PARTE DE LOS SOLIDOS ACARREADOS SON RETENIDOS
	7		[(3)	28/VI/91	11:15	Solución turbia cafe, Aspecto grasoso	
	AREA DE PASO DE MONTACARGAS, CERCANA	AGUA DE LLUVIA CON POSIBLE	EN FUNCION	EN EPOCA	(1)	21/VI/91	13:10	Solución clara con sólidos finos obscuros	NO FUE POSIBLE MUESTREAR EN UN PUNTO MAS CERCANO
1.6	AL ALACENAMIENTO DE ESCORIA	ARRASTRE DE POLVOS DE ESCORIA	DE LA LLUVIA	DE LLUVIAS	(2)	28/VI/91	11:35	Solución clara con sólidos finos color cafe	AL AREA DE ALMACENAMIENTO DE LA ESCORIA, POROUE EL REGISTRO ESTA TAPADO
					(0)	15/11/91	16:48	Solución clara amarillenta	
: 3	EN TORRE DE ENFRIAMIENTO	AGUA DE ENFRIAMIENTO	DEPENDE DEL	INDISTINTO	(1)	19/V1/91	12:20	Solución turbia con con sólidos sedimentados de color cafe claro (fuga)	TOMADAS DIRECTAMENTE DEL
	DE ANCOOS	DE ANODOS	QUE SE TENGA	I THUISTINIU	(2)	24/V1/91	11:24	Solución amarillenta turbia con sedimentos escasos,finos de color cafe	DEPOSITO DE AGUA DE ENFRIAMIENTO DE
			 		(3)	28/VI/91	12:20	Solución turbia blanca con sedimentos finos color cafe	ANCOOS
	TANQUE RECEPTOR DE	AGUA DE LAVADO DE GASES DE		ANTES DE SER RECICLADA	(0)	15/11/91	17:00	Solución clara amarillenta, con sólidos finos	Tomada el dia de inventario en planta
5.1	LAVADO DE GASES EN PLANTAS QUINICAS ENTRE CASAS 1-2 Y 3-4	LIXIVIACION, OXIDACION Y TOSTACION DE LODOS ANODICOS	14.5 m3/mes	Y/O NEUTRALIZADA	(1)	19/VI/91	14:50	Solución transparente con sólidos finos sedimentados de color cafe	Tomada a mitad del ciclo de uso
	1-2 1 3-4	LOUS ANOTEUS	<u> </u>		(2)	01/VI/91	11:30	Solución clara	Tomada el dia de inventario en planta
	TANQUE RECEPTOR DE AGUA DE LAVADO DE GASES	AGUA DE LAVADO DE GASES DEL PROCESO DE DESELENIZACION	0.63 m3 cada 2 o 3	ANTES DE SER RECICLADA Y/O	(1)	19/V1/91	14:40	Solución verde cristalina con sólidos finos de color obscuro sedimentados	EL TIEMPO DE USO DEL AGUA DE LAVADO DE GASES ES MUY IRREGULAR
5.2	JUNTO A TANQUES CEMENTADORES	Y DE SeTeCu	i atamientos	NEUTRALIZADA	(2)	28/VI/91	13:00	Solución verde clara sin sedimentos	

TABLA 5 (3/5) Datos sobre el muestreo llevado a cabo en la planta

PUNTO	UBICACION	CARGA	FLUJO APROX.	MUESTREO	#HUEST.	FECHA	HORA	OBSERVACIONES	COMENTARIOS	
	TANQUE REACTOR	SOLUCIONES DE LAVADO FINAL	8.9-14.8	ANTES DE SER RECICLADA	(0)	15/11/91	14:40	Solución gris-azul transparente,con sólidos negros sedimentados	Tomada de la tina del filtro prensa	
5.3	Se(ROJO)>Se(GRIS) DEL SELENIO EN PLANTAS QUÍMICAS GRIS		(m3/mes)	Y/O NEUTRALIZADA	(1)	19/V1/91	14:00	Solución transparente incolora con sedimento fino de color obscuro	Tomada del tanque reactor	
					(0)	15/11/91	16:30	Solución azul	ESTA MUESTRA	
		SOLUCION ACIDA	i	ANTES DE SER EVAPORADA Y/O	(1)	19/VI/91	14:15	Solución cristalina azul-verdosa	CORRESPONDE A LA SOLUCION OUE POSTERIORHENTE	
5.4	SECCIONES 446 Y 448 (DECUPRIZADO)	DECUPRIZADA DESPUES DE CEMENTACION	195 m3/ mes		NEUTRAL I ZADA	(2)	28/VI/91	16:30	Solución verde clara transparente sin sedimento	SE EVAPORA PARA FORMAR EL "ACIDO NEGRO"
	e .				(3)	02/V11/9	10:30	Solución verde-azul transparente sin sedimento	"XCIDO REUNO"	
	:			ANTES DE SER	(0)	15/11/91	11:32	Solución verde obscura con algunos sólidos lamosos	Tomada de las secciones 445-447	
5.5	TANOUE DE SOLUCION DESARSENIZADA EN PLANTAS	SOLUCION ACIDA DECUPRIZADA Y DESARSENIZADA.	300 m3/mes	RECICLADA Y/O	RECICLADA Y/O	(1)	19/VI/91	14:20	Solución verde jade sin sedimento	TOMADA DEL TANQUE DE
1	QUIHICAS	SIN CLARIFICAR		NEUTRAL IZADA	(2)	24/V1/91	13:10	Solución verde clara	ALMACENAMIENTO DESPUES DE	
}] 				(3)	28/VI/91	11:14	Solución verde clara sin sedimento.	SER FILTRADA	
5.6	TANQUE DE ALMACENAMIENTO DE SOLUCION CLARIFICADA EN PLANTAS QUIMICAS	SOLUCION ACIDA DECUPRIZADA Y DESARSENIZADA. CLARIFICADA CON CARBON ACTIVADO	300 m3/mes	ANTES DE SER RECICLADA	(1)	28/V1/91	11:21	Solución desclarificada verde clara sin sedimento	TOMADA ANTES DE SER ENVIADA AL CIRCUITO. CORRESPONDE A LA MUESTRA 5.5. (3) CLARIFICADA CON CARBON	

TABLA 5 (4/5) DATOS SOBRE EL MUESTREO LLEVADO A CABO EN LA PLANTA

PUNTO	UBICACION	CARGA	FLUJO APROX.	HUESTREO	#MUEST.	FECHA	HORA	OBSERVACIONES	COMENTARIOS
6.1	CELDAS INTERMEDIAS DE CASAS 1-2	SOLUCION ELECTROLITICA	NO SE TRATA DE UNA DESCARGA	INDISTINTO	(1)	19/VI/91	15:10	La solución fria mostró solidos finos en forma de agujas suspendidas y sedimentos blancos	TOMADA DIRECTAMENTE DE LAS MANGUERAS DE ALIMENTACION A LAS CELDAS
					(0)	15/11/91	16:30	Solución azul obscura, con sólidos blancos	
6.2	CELDAS INTERMEDIAS DE CASAS 3-4	SOLUCION ELECTROLITICA	NO SE TRATA DE UNA DESCARGA	INDISTINTO	(1)	19/VI/91	15:18	Solución azul turbia con sedimento blanco	TOMADAS DIRECTAMENTE DE LAS MANGUERAS DE
					(2)	24/VI/91	13:05	Solución azul opaca	ALIMENTACION A LAS CELDAS
			 		(3)	28/VI/91	12:15	Solución azul opaca	
6.3	CELDAS INTERHEDIAS DE CASA 5	SOLUCION ELECTROLITICA	NO ES DESCARGA	INDISTINTO	(1)	19/VI/91	15:15	Solución azul turbia	TOMADA DE LOS TANQUES DE SOLUCION EN LOS SOTANOS
7	TANQUES DE ALMACENA- MIENTO, JUNTO A EVAPORADORES	ACIDO NEGRO PARA UTILIZARSE EN OXIDACION DE LODOS	NO SE TRATA DE UNA DESCARGA	INDISTINTO	(1)	19/VI/91	15:05	Solución verde esmeralda cristalina con partículas negras suspendidas y cris- tales verdes sedimentados	TOMADA DIRECTAMENTE DEL TANQUE DE ALMACENAMIENTO EN AREA DE NIQUEL
					(0)	15/11/91	15:43	MUESTRAS DE ACIDO MURIATICO Y SOSA	SE TOMARON CON EL FIN DE CONOCER SUS CONCENTRACIONES
	CASA DE FUERZA.	SOLUCION RESUL-	104-74	ANTES DE SER	(.1.)	20/VI/91	9:00	Solución transparente con sólidos finos color cafe	LA FOSA DE NEUTRALIZACION, NO ES LO SUFICIENTEMENTE
8	DE CONDENSADOS EN LA FOSA DE NEUTRALIZACION	TO A TANOUE TANTE DE LA NDENSADOS EN REGENERACION DE A FOSA DE RESINAS YA	496m3/mes	BOMBEADA A TORRES DE ENFRIAMIENTO	(2)	20/VI/91	14:30	Solución transparente con sólidos obscuros	GRANDE PARA CAPTAR TODOS LOS CICLOS DE LAVADO, POR LO QUE PARTE DE LAS SOLUCIONES SON BOMBEADAS
				O DRENAJE	(3)	21/VI/91	12:20	Solución transparente con precipitado fino	SIN UNA NEUTRALIZACION ADECUADA

TABLA 5 (5/5) DATOS SOBRE EL MUESTREO LLEVADO A CABO EN LA PLANTA

PUNTO	UBICACION	CARGA	FLUJO APROX.	MUESTREO	#MUEST.	FECHA	HORA	OBSERVACIONES	COMENTARIOS
[:			(0)	15/111/9	14:30	Solución amarillenta con solidos obscuros	
9	CASA DE FUERZA. JUNTO A CALDERAS, DE LA FOSA DE NEUTRA-	SOLUCION DE PURGA DE CALDERAS YA	600m3/mes	ANTES DE SER BOMBEADA A TORRES DE	(1)	19/VI/91	11:50	Solución transparente con sedimentos finos	Mezcla de purga dos calderas (domo del fondo), ya asentada. (2 hrs.despues de purga y bombeo)
	LIZACION	NEUTRAL 12ADA		ENFRIAMIENTO O DRENAJE	(2)	19/V!/91	13:20	Solucion cafe con sólidos finos	Mezcla de purga de dos calderas
					(3)	19/VI/91	16:20	Solucion cafe con sólidos finos	Mezcla de purga de dos calderas
10.1	JUNTO A TANQUES DE LIXIVIACION DE LODOS	MUESTRA DE LODOS ANODICOS		INDISTINTO	(1)	5/111/91	13:10	, Lodos humedos	Lodos de Mexicana de Cobre sin Lixiviar
10.2	PILETA DE CRIBADO EN PLANTAS QUIMICAS	MUESTRA DE LODOS FINALES		INDISTINTO	(1)	5/111/91	13:20	Lodos secos polvos finos	Lodos finales procedentes de Mexicana de Cobre
10.3	FILTRO OLIVER	MUESTRA DE LODOS SIN TOSTAR		INDISTINTO	(1)	5/111/91	13:45	Lodos humedos	Lodos de mezcla con alto contenido de selenio sin tostar y sin lixiviar
10.4	BANDA TRANSPORTADORA DEL HORNO DE TOSTADO	MUESTRA DE LODOS TOSTADOS		INDISTINTO	(1)	5/111/91	14:05	Lodos secos particulas grandes.	Lodos de mezcla con alto contenido de selenio tostados y sin lixiviar

TABLE 6
(1/4)

CONDICIONES DE TRABAJO PARA EL ANALISIS DE LOS IONES METALICOS POR
ESPECTROFOTOMETRIA DE ABSORCION ATOMICA

ELEMENTO	ESTANDAR	GABES	METODO	MUESTRA	OBSERVACIONES
ALUMINIC Al	IC SIGMA N ₂ O-ACET FLAMA REDUC- TORA		CURVA EST 0.03 M H ₂ SO ₄	1.1 al 1.6 3, 6, 5.3 y 9	SILICIO>100 mg/L INTERFIERE DEBIDO A LA
			CURVA EST IGUALANDO MATRIZ	5.2, 5.5, 6 y 7	FORMACION DE UN COMPLEJO REFRACTARIO NO DISOCIADO QUE DISMINUYE LA SEÑAL
			ADICIONES ESTANDAR	5.4	
ANTIMO- NIO. Sb	MERCK	N ₂ O-ACET	CURVA EST 0.6M H ₂ SO ₄ CURVA EST Cu400mg/L Cu 2100 Cu 4500	1.1 al 1.6 5.4 (2), 3, 5.5 (0), 8, 5.6, 9, 10 Y 7 5.4 (0,1,3) 5.5 (1,2,3) 5.2 Y 6	EN UNA FLAMA DE AIRE- ACETILENO, EL COBRE Y EL NIQUEL DISMINUYEN LA SEÑAL, ESPECIAL- MENTE UNA FLAMA REDUCTORA. UNA FLAMA OXIDANTE ELIMINA EL EFECTO
ARSENICO As	MERCK	N ₂ O-ACET	CURVA EST 0.1 M H ₂ SO ₄	1.1, 1.2, 1.3 (1, 2 y 3) 1.4, 1.5, 1.6, 3 (0 y 1), 9, 5.1 y 5.3	
			CURVA EST. Na1250mg/L Na2500mg/L	3 (2 y 3) 5.2(1 y 2) y 8 (2)	•
			Cu 30mg/L	1.1 (3), 1.3 (4), 5.4 (1 y 3), 5.5(1, 2 y 3)	- ii i , - , - ,
			Cu 60mg/L	5.6 6.2 (0, 3) 6.1 y 6.2 1.1 (2) 5.3 (0) 5.4 (0) 6.2 (1 y 2)	
			ADICIONES ESTANDAR	8 (1 y 3) y 9	

NOMENCLATURA:

F.OX., FLAMA OXIDANTE; C.F., CORRECTOR DE FONDO (LAMPARA DE DEUTERIO); EST., ESTANDAR; AIR-ACET., AIRE ACETILENO; M20-ACET., OXIDO NITROSO-ACETILENO;

NOTA:

LOS NUMEROS ENTRE PARENTESIS () INDICAN EL NUMERO DE HUESTRA.

TABLA 6 (2/4)

ELEMENTO	ESTANDAR	GASES	METODO	MUESTRA	OBSERVACIONES
BISMUTO Bi	SIGMA	AIR-ACET FLAMA OXIDANTE	CURVA EST EN 0.1 M H ₂ SO ₄	1.1 al 1.6, 3, 8, 9 5.1 y 5.3	EL SODIO HASTA 6000 mg/L NO INTERFIERE Cu, As, Ni > 1000 mg/L INTERFIERE POSITIVAMENTE
		·	CURVA EST IGUALANDO MATRIZ	5.2, 6. 5.5 (1 y 2), 5.4 (1 y 3) y 10.	INIERIERE POSITIVAMENTE
			ADICIONES ESTANDAR	5.4 (0,1 y 2) 5.5 (0 y 3), 5.6 y 7	
CALCIO Ca	SIGMA	N ₂ O-ACET	CURVA EST 0.1MH2SO4	TODAS	
COBALTO Co	SIGMA	AIR-ACET	CURVA EST 0.1M H ₂ SO ₄	1.1 al 1.6; 5.1 al 5.1; 3, 8, 9, 10	INTERFIEREN: NIQUEL> 1000 mg/L NEGATIVAMENTE SODIO > 6000mg/L
			CURVA EST IGUALANDO MATRIZ	6 y 5.5	POSITIVAMENTE
			ADICIONES ESTANDAR	5.4 y 7	•
COBRE Cu	SIGMA	AIR-ACET FLAMA OXIDANTE	CURVA EST EN 0.1 M H ₂ SO ₄	TODAS	LA DILUCION DE ALGUNAS MUESTRAS FUE TAL QUE NO REQUIRIO OTRA CURVA
CROMO Cr	SIGMA	N ₂ O-ACET	CURVA EST. 0.1NH ₂ SO ₄	1.1 al 1.6 3, 8, 9, 5.1 al 5.3	EL COBALTO, HIERRO Y NIQUEL(PARTICULAR- MENTE EN ACIDO PER-
			ADICIONES ESTANDAR	y 10. 5.5, 5.4 6 y 7	CLORICO) CAUSAN DISMI- NUCION EN LA ABSORBANCIA DEL CROMO. ESTO SE ELIMINA USANDO UNA FLAMA REDUCTORA DE N ₂ O
ESTAÑO Sn	MERCK	N ₂ O-ACET FLAMA REDUC- TORA.	CURVA EST ADICIONES ESTANDAR	1.1 al 1.6 3, 8, 9, 5.1 al 5.3 y 10 5.4, 5.5, 5.6, 6, Y 7	
HIERRO Fe	SIGMA	N ₂ O-ACET	CURVA EST. 0.1N H ₂ SO ₄	TODAS	EL USO DE OXIDO NITROSO ELIMINA TODAS LAS INTERFERENCIAS

HOMENCLATURA:

f.Ox., FLAMA OXIDANTE; C.F., CORRECTOR DE FOMOO (LAMPARA DE DEUTERIO); ESI., ESTAMDAR; AIR-ACET., AIRE ACETILENO; N2O-ACET., OXIDO NITROSO-ACETILENO;

NOTA:

TABLA 6 (3/4)

ELEMENTO	ESTANDAR	GASES	METODO	MUESTRA	OBSERVACIONES
MAGNESIC Hg	SIGMA	N ₂ O-ACET	CURVA EST 0.1MH ₂ S0 ₄	TODAS	UNA FLAMA DE N2O-ACETILENO ELIMINA INTEFERENCIAS
MANGA- NESO MI	MERCK	AIR-ACET	CURVA EST 0.1M H ₂ SO ₄ CURVA EST IGUALANDO MATRIZ ADICIONES ESTANDAR	1.1 al 1.6 5.2, 5.1, 3, 8 y 9 10, 5.3, 5.5, 5.6 5.4 (2 y 3), 7, 6.2 (0 y 3) y 6.1 6.2 (1 y 2) y 6.3	EN UNA FLAMA REDUCTORA DE AIRE - ACETILENO LA ABSSORBANCIA DISMINUYE EN PRESENCIA DE FOSFATOS. HIERRO, NIQUEL, SILICIO Y COBALTO. EN UNA FLAMA OXIDANTE ESTAS INTERFERENCIAS DESAPARECEN
NIQUEL	MERCK	N ₂ O-ACET C.F.	CURVA EST 0.1N H ₂ SO ₄ ADICIONES ESTANDAR	1 1 al 1:6 3, 8, 9, 5.1 al 5.5 7 y 10:	Cu> 450 mg/L INTERFIERE LAS INTERFERENCIAS SE ELIMINAN USANDO N ₂ 0
PLOMO Pb	MERCK	AIR-ACET F.OX.	CURVA EST. EN AGUA	1.1, 1.2 (2) 1.3 al 1.6 3, 8 9, 5.1 5.3 y 10	
	*. **		CURVA IGUALANDO MATRIZ	6 y 5.5	
	:		ADICIONES ESTANDAR	5.4, 5.2, y 7.	
SILICIO si	MERCK	N ₂ O-ACET FLAMA MUY REDUCTO- RA	CURVA EST	1.2 (2 y 3) 1.1, 1.4 1.5, 1.6 7, 5.1, 5.3 y 10	EL SODIO >1000 mg/L INTERFIERE POSITIVAMENTE
			CURVA EST Na1000mg/L Na5000mg/L	1.2 (1), 1.3 y 3	
			IGUALANDO MATRIZ	5.4, 5.5, 5.6 y 6	

NOMENCLATURA:

F.OX., FLAMA OXIDANTE; C.F., CORRECTOR DE FONDO (LAMPARA DE DEUTERIO); ESI., ESTANDAR; AIR-ACET., AIRE ACETILENO; N2O-ACET., OXIDO NITROSO-ACETILENO;

HOTA:

LOS NUMEROS ENTRE PARENTESTS () INDICAN EL NUMERO DE MUESTRA.

TABLA 6 (4/4)

ELEMENTO	ESTANDAR	GASES	KETODO	MUESTRA	OBSERVACIONES
TELURIO Te	SIGMA	AIR-ACET F.OX. C.F.	CURVA EST 0.1N H ₂ SO ₄		
			ADICIONES ESTANDAR Cu1250mg/L	5.4, 5.5, 6 y 7	
SELENIO Se	MERCK	N ₂ O-ACET F.RED. C.F.	CURVA EST. CURVA EST. Cu60 mg/L ADICIONES ESTANDAR	.1.3 (1,2 y 3) 1.4, 1.5 1.6, 3, 8, 9, 5.1 y 5.3 (1) 1.1 (2 y 3) 1.3 (4) y 5.3 (0)	EL EMPLEO DE LA LAMPARA DE DEUTERIO COMO CORRECTOR DE FONDO ELIMINA LAS INTER- FERENCIAS
ZINC Zn	SIGMA	AIR-ACET F.OX.	CURVA EST 0.1N H ₂ SO ₄	TODAS	

NOMENCLATURA:

F.OX., FLAMA OXIDANTE; C.F., CORRECTOR DE FONDO (LAMPARA DE DEUTERIO); EST., ESTANDAR; AIR-ACET., AIRE ACETILENO; N2O-ACET., OXIDO NITROSO-ACETILENO;

TABLA 7 (1/3)RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		NLU	MINIO	ARSE	NICO	ANTI	anto	BIGMUT	o .
PUNTO	#MUEST	mg/L	Al (+/-)	mg/L	As (+/-)	mg/L	5b (+/-)	Bi mg/L ((+/-)
1.1 1.1 1.1	(1) (2) (3)	3 8 8.6	1.6 1.4 1.4	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
	EDIO . ST.	6.5 2.5	1.5						
1.2 1.2 1.2	(1) (2) (3)	157 N.D. 23	12 1	N.D. N.D. N.D.		N.D. N.D.		N.D. N.D.	
	EDIO . st.	60 69	4						
1.3 1.3 1.3	(1) (2) (3) (4)	N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.	
	EDIO ST.								
1.4	(1) (2) (3)	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
	EDIO . ST.								
1.5 1.5 1.5	(1) (2) (3)	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
PROM DESV	EDIO . ST								
1.6	(1) (2)	N.D. N.D.		N.D. N.D.		N.D.		N.D. N.D.	
	EDIO 7. ST.								
3 3 3	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.		N.D. N.D. N.D.	-	N.D. N.D. N.D. N.D.	
	ÆDIO 7. ST.								
L.D.	(mg/L)	0.	.08		4.97	1.	69	0.	59

(2/3)RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		ħLU	MINIO	ARSEI	rico	ANTI	MONIO	BICK	uTo
PUNTO	#MUEST	mg/L	Al (+/-)	mg/L	As (+/-)	mg/L	Sb (+/-)	mg/L	i (+/-)
5.1 5.1 5.1	(0) (1) (2)	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	:	N.D. N.D. N.D.	
	EDIO . ST.								
5.2 5.2	(1) (2)	49 51	15 15	411 377	22 20	14 18	0.5 0.5	2.4 2.3	1.3
	EDIO ST.	50 1	15	394 17	21	16 2	0.5	2.35 0.07	1.3
5.3 5.3	(0) (1)	2.7 N.D.	1.6	75 N.D.	4	3.5 N.D.	1.6	N.D. N.D.	,
	EDIO . ST.	1.4	0.8	37.5 53		1.75 1.75	0.8		
5.4 5.4 5.4 5.4	(0) (1) (2) (3)	83 160 129 116	16 21 21 13	3418 4683 3137 4923	165 446 151 401	115 147 91 125	5 5 13 5	3.7 11 3.3 5.3	1.1 1.2 1.7 1.6
	EDIO . ST.	122 27.6	9	4040 774	291	120 20	7	6 3	1.4
5.5 5.5 5.5 5.5	(0) (1) (2) (3)	230 315 239 352	17 19 17 20	2112 3526 4127 3778	180 301 344 319	100 175 167 169	16 4 4 4	3.4 4.0 4.1 3.0	3.2 2.2 1.8 2.6
	EDIO . ST.	284 51	18	3386 766	286	153 31	7	3.6 0.5	2.45
5.6	(3)	350	20	3331	288	178	12	N.D.	
6.1	(1)	281	13	8856	1480	295	9	30.4	1.2
6.2 6.2 6.2	(0) (1) (2) (3)	394 380 380 385	19 16 16 17	13515 15768 10027 10603	1676 1045 911 1547	282 324 320 417	9 10 10 16	33.4 31.4 35.4 38.9	2.4 2.3 2.6 1.6
PROME	DIO . ST.	385 5.7	17	12478 2314	876	336 50	11	34.8 3.2	2.2
6.3	(1)	217	13	4230	195	251	8	20.61	0.79
L.D.	(mg/L)	0.	08	4	.97	1.	69	0	.59

TABLA 7

		ALU	ININIO	ARS	ENICO	ant	INGNIG	BIG	OTUN
PUNTO	#MUEST	mg/L	(+/-)	mg/L	As (+/-)	mg/L	Sb (+/-)	mg∕r B	i (+/-)
7	(1)	835	68	22048	1461	510	64	и.р.	
8 8 8	(1) (2) (3)	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
	EDIO . ST.								
9 9 9	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.		и.D. и.D. и.D. и.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
	EDIO . ST.								
10.1 10.2 10.3 10.4	(1) (1) (1) (1)	, %(I N.D. N.D. N.D. N.D.	p/p)	%(2.53 0.30 2.09 2.39	p/p) 0.13 0.02 0.12 0.13	%(1.43 1.21 0.80 0.69	P/P) 0.12 0.12 0.13 0.14	8E-2 11E-2 3E-2	/p) 0.1E-2 1.1E-2 1.1E-2 1.2E-2
L.D.	(mg/L)	0.0	08	4	.97	1.	69	0	.59

NOTA: N.D.=> NO DETECTADO.

TABLA 8 RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		CALCI	ď	cor	IALTO	CROMO	СОВ	RE
PUNTO	#MUEST	Ca mg/L (+/-)	mg/L	Co (+/-)	Cr mg/L (+/		u (+/-)
1.1 1.1 1.1	(1) (2) (3)	91 105 130	9 11 14	N.D. N.D. N.D.		N.D. N.D. N.D.	13 56 30	2 6 3
	EDIO . ST.	109 16	11				33 18	4
1.2 1.2 1.2	(1) (2) (3)	393 16 100	80 11 10	N.D. N.D. N.D.		N.D. N.D. N.D.	1249 2.3 279	189 0.3 31
	EDIO . ST.	170 162	34				509 533	73
1.3 1.3 1.3	(1) (2) (3) (4)	51 48 60 96	7 7 7 9	N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.	N.D. N.D. 0.55 24	0.15
	EDIO . ST.	64 19	7.5				6.14 10.4	0.79
1.4	(1) (2) (3)	62 42 74	4 4 4	N.D. N.D. N.D.	-	N.D. N.D. N.D.	N.D. 0.75 1.5	0.16
	EDIO	59 13	4				0.75 0.61	0.12
1.5 1.5 1.5	(1) (2) (3)	38 87 57	4 4 4	N.D. N.D. N.D.		N.D. N.D. N.D.	N.D. N.D. N.D.	
	TEDIO 7. ST	61 20	4					
1.6	(1) (2)	6.2 42	6 4	и.D. и.D.		N.D. N.D.	N.D. N.D.	
	EDIO /. ST.	24.1 18	5					
3 3 3 3	(0) (1) (2) (3)	16 48 101 64	2 4 5 4	N.D. N.D. N.D.		N.D. N.D. N.D. N.D.	N.D. N.D. 0.25 0.46	0.14 0.15
	MEDIO /. ST.	57 31	3.8				0.18 0.19	0.07
L.D.	(mg/L)	0.01		0	.29	0.04		0.02

(2/3)
RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		CALC	.a	COHL?	CTO	CRO)	10	COHR	E
PUNTO	#MUEST	Ca mg/L	(+/-)	mg/L	(+/-)	Cr mg/L	(+/-)	Cu mg/L	(+/-)
5.1 5.1 5.1	(0) (1) (2)	119 142 121	7 7 7	N.D. N.D. N.D.		N.D. N.D. N.D.		1.5 1.4 1.5	0.2 0.2 0.2
	MEDIO 7. ST.	127 10	7					1.46 0.05	2
5.2 5.2	(1) (2)	370 420	42 40	0.87 0.92	0.17 0.17	14.4 15.0	3.1 3.1	2060 2170	250 259
	MEDIO ST.	395 25	41	0.9 0	0.17	14.7 0.5	3.1	2115 55	255
5.3 5.3	(0) (1)	28 12	5	N.D. N.D.		N.D. N.D.		350 N.D.	39
	MEDIO	20 8	4					175 247	20
5.4 5.4 5.4 5.4	(0) (1) (2) (3)	474 191 345 216	38 53 43 51	1 2.4 1.7 2.2	0.16 0.48 0.73 0.44	2.07 3.91 3.24 3.79	0.29 0.23 0.24 0.36	7720 4130 923 2500	2748 1470 169 288
	TEDIO /. ST.	307 113	46	1.8 0.5	0.45	2.3 1.5	0.28	3820 2916	1169
5.5 5.5 5.5 5.5	(0) (1) (2) (3)	464 574 455 365	38 36 39 42	7.6 7.9 5.6 9	0.2 0.2 0.2 0.2	12.86 19.61 18.62 17.90	0.74 0.66 1.66 0.67	1200 4770 4770 2376	8817 1489 1489 277
	MEDIO	465 74	39	7.5 1.2	0.2	17.25 3	0.93	3550 2257	3018
5.6	(1)	407	47	9.2	0.2	18.05	0.66	2220	
6.1	(1)	502	9	10	0.5	3.5	0.43	37575	4020
6.2 6.2 6.2	(0) (1) (2) (3)	378 456 629 255	9 9 9 11	12 11 12 12	0.5 0.5 0.5 0.5	6.2 10.8 8.9 5.7	0.40 0.50 0.45 0.45	42190 66360 50070 33960	4597 7230 5760 3690
	EDIO	430 136	10	11.8	0.5	8 2	0.45	48145 13810	5319
6.3	(1)	465	9	6	0.5	8.69	0.36	38640	4120
L.D.	(mg/L)	0.01		0.2	9	0.	04	0.	02

NOTA: N.D. => NO DETECTADO

(3/3)
RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		CA	LCIO	COB	ALTO	CRO	мо	COE	RE
PUNTO	#MUEST	mg/L	Ca (+/-)	mg/L	Co (+/-)	c mg/L	r (+/-)		(+/-)
7	(1)	108	2	14	0.5	29	3	12070	1860
8 8 8	(1) (2) (3)	95 280 390	5 47 41	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. 0.52 N.D.	0.15
	EDIO	255 122	31					0.17 0.25	0.05
9 9 9	(0) (1) (2) (3)	N.D. 13 13 16	0.8 0.7 0.8	N.D. N.D. N.D.		N.D. N.D. N.D.	`	1.4 N.D. 0.32 0.2	0.2 0.14 0.14
	EDIO	11 6	0.76					0.48 . 0.54	0.12
10.1 10.2 10.3 10.4	(1) (1) (1) (1)	%() 0.06 .04 0.21 0.43	P/P) 3 E -3 4 E -3 5 E -2 4 E -2	% () N.D. N.D. N.D. N.D.	p/p)	%(p N.D. N.D. N.D. N.D.	/p)	%(10.4 7.18 14.1 16	p/p) 1.8 1.6 · 1.9 2.1
L.D.	(mg/L)	0.	01	0.	29	. 0.	04	0	.02

NOTA: N.D. => NO DETECTADO

TABLA 9 (1/3)RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		ESTA	ίΟ	FIER	IRO .	ИAGI	(E610	MANGAN	E60
PUNTO	#MUEST	Sn mg/L	(+/-)	re mg/L	(+/-)	mg/L	(+/-)	mg/L	(+/-)
1.1 1.1 1.1	(1) (2) (3)	N.D. N.D. N.D.		1.8 0.9 24	0.09 0.12 1	5 8.6 9	0.1 0.2 0.2	0.9 0.7 1.5	0.3 0.3 0.3
	EDIO . ST.			9 11	0.4	7.5 1.8	0.16	7.5 1.8	0.3
1.2 1.2 1.2	(1) (2) (3)	N.D. N.D. N.D.		529 N.D. 57	19 2	104 2.4 22	0.06 2	19 N.D. 2.9	0.3
	EDIO . ST.			195 237	7	43 44	1.4	7.3 8.3	1.1
1.3 1.3 1.3	(1) (2) (3) (4)	N.D. N.D. N.D. N.D.		1.3 5.7 N.D. N.D.	0.1	45 47 54 66	1 1 1	N.D. N.D. N.D. N.D.	
	EDIO . ST.			1.8 2.3	0.08	. 53 8	1		
1.4	(1) (2) (3)	N.D. N.D. N.D.		N.D. N.D. N.D.		4.9 2.3 11	0.1 0.2 0.2	N.D. N.D. 0.8	0.3
	EDIO . sr.					6.1 3.6	1.7	0.3 0.4	0.1
1.5 1.5 1.5	(1) (2) (3)	N.D. N.D. N.D.		N.D. N.D. N.D.		3.7 6.1 7.2	0.1 0.1 0.1	N.D. N.D. 0.7	0.3
	EDIO . ST.					5.7 1.50	0.1	0.2 0.3	0.1
1.6	(1) (2)	N.D. N.D.		N.D. N.D.		12 4.2	0.3	N.D. N.D.	
	EDIO . ST.					8.1 3.9	0.2		
3 3 3 3	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.	. ———	N.D. N.D. N.D.		35 46 57 40	1 1 1	N.D. N.D. N.D. N.D.	
	EDIO . ST.					45 8	1		
L.D.	(mg/L)	1.5	9		.38		0.01	0.	06

TABLA 9
(2/3)

RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		ESTAÑO	FIE	iro	ИAGI	MESTO	MANGAI	ESO
PUNTO	#MUEST	sn mg/L (+/-)	mg/L	(+/-)	mg/L	(+/-)	Mr mg/L	(+/-)
5.1 5.1 5.1	(0) (1) (2)	N.D. N.D. N.D.	5.4 8.7	0.1 0.2 0.3	124 174 145	3 4 3	3.5 4.4 4.7	0.3 0.4 0.4
PROM DESV	EDIO . ST.		5 3	0.2	148 20	3	4.2 0.5	0.4
5.2 5.2	(1) (2)	N.D. N.D.	1760 1600	. 90 93	195 192	16 16	23 24	2 2
PROM DES.			1680 80	92	193.5 1.5	,16	23.5 0.5	2
5.3 5.3	(0) (1)	N.D. N.D.	2 N.D.	0.09	25 18	0.7	N.D. N.D.	
	EDIO . ST.		1 1	0.05	21.5 3.5	0.9		
5.4 5.4 5.4 5.4	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.	843 698 618 626	32 25 22 22	95 190 139 162	2 16 3 3	4 5.6 5.2 5.1	0.5 0.2 0.2 0.2
	EDIO . ST.		696 90	2.5	147 35	6	5 0.06	0.3
5.5 5.5 5.5	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.	1600 1830 1640 1840	93 89 93 90	345 482 280 443	13 12 14 12	8.8 9.5 9.2 9.7	0.7 0.8 0.8 0.8
	EDIO . ST.		1740 122	91	388 80	13	9.3 0.34	0.8
5.6	(1)	N.D.	1680	92	407	12		
6.1	(1)	и.D.	1280	46	379	13	12	11
6.2 6.2 6.2	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.	1680 1680 2365 1800	92 92 89 90	477 648 537 519	12 13 12 12	20 25 26 22	1 4 3 1
	EDIO . ST.		1881 284	91	545 63	12	23 2	2
6.3	(1)	N.D.	1110	44	288	14	14	1.4
7	(1)	N.D.	5050	184	770	15	43	1.8
L.D.	(mg/L)	1.59	<u> </u>	.38		0.01	0.	06

TABLA 9 (3/3)

		ESTAÑO		FIE	RRO	ИР	GNESIO	MANGA	NEGO
PUNTO	#MUEST		+/-)	mg/L	Fe (+/-)	mg/I	Mg (+/-)		n (+/-)
8 8 8	(1) (2) (3)	N.D. N.D. N.D.		N.D. 2.2 N.D.	0.09	45 205 249	1 16 15	N.D. N.D. N.D.	
	EDIO . ST.			0.7 1.3	0.03	166 88	11		
9 9 9	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.	,	5.1 9.7 10 12	0.1 0.2 0.2 0.3	N.D. N.D. N.D.	
	EDIO . st.					9.2 2.5	0.2		
10.1 10.2 10.3 10.4	(1) (1) (1) (1)	0.25 1 0.52 1) .5E-2 .2E-2 .0E-2 .4E-2	%(p, 0.16 0.12 0.16 0.12	/p) 9 E -3 4 E -3 9 E -3 1 E -2	% (N.D. 0.06 N.D. N.D.	p/p) 1 E -3	%(p N.D. N.D. N.D.	/p)
L.D.	(mg/L)	1.59			0.38		0.01	0.	06

NOTA: N.D. => NO DETECTADO

TABLA 10
(1/3)

RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		NIQUE	L	PLONO		SILI	CIO	TELUR	O
PUNTO	#MUEST	Ni mg/L	(+/-)	Pb mg/L	(+/-)	si mg/L	(+/-)	Te mg/L	(+/-)
1.1 1.1 1.1	(1) (2) (3)	8.73 16.88 12.16	0.36 0.69 0.51	N.D. 0.88 N.D.	0.35	N.D. N.D. 38	10	N.D. N.D. N.D.	
	EDIO . ST.	12.59 4.09	0.52	0.29 0.51	0.12	12.6 21.9	3.3		
1.2 1.2 1.2	(1) (2) (3)	406 N.D. 71.8	25 2.9	1.46 N.D. 3.99	0.31. 0.31	47 N.D. 34	5 10	N.D. N.D. N.D.	
	EDIO . ST.	159.2 216.7	9.3	1.82 2.02	0.10	30 29	` 5		
1.3 1.3 1.3	(1) (2) (3) (4)	N.D. 2.63 2.04 7.22	0.30 0.32 0.29	N.D. N.D. N.D. N.D.		40 30 38 32	5 6 6	N.D. N.D. N.D. N.D.	
	EDIO . ST.	2.97 3.05	0.23			35 4	6		
1.4 1.4 1.4	(1) (2) (3)	3.89 4.27 9.28	0.26 0.25 0.39	N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
	EDIO . ST.	5.81 3.01	0.3						
1.5 1.5 1.5	(1) (2) (3)	и.D. и.D. и.D.		и.D. и.D. и.D.		N.D. N.D. N.D.		N.D. N.D. N.D.	
PROM DESV									
1.6 1.6	(1) (2)	N.D. N.D.		N.D. N.D.		N.D. N.D.		N.D. N.D.	
PROM DESV	EDIO . ST.								
3 3 3	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.		N.D. N.D. N.D. N.D.		56 41 47 44	5 5 5 5	N.D. N.D. N.D. N.D.	
PROMI DESV	EDIO . ST.					47 6	5		
L.D.	(mg/L)	0.81]	0.	. 14	4.4	1	5.1	.7

TABLA 10 (2/3)

		итба	i.	PLOMO		6111	CIO	TELUR	9
PUNTO	#MUEST	Ni mg/L	(+/-)	Pb mg/L	(+/-)	si mg/L	(+/-)	Te mg/L	(+/-)
5.1 5.1 5.1	(0) (1) (2)	2.21 3.05 4.23	0.32 0.28 0.25	и.D. и.D. и.D.		109 118 40	10 10 10	N.D. N.D. N.D.	
	EDIO . ST.	3.16 1.01	0.28			89 35	10		
5.2 5.2	(1) (2)	123 275	15 29	6.65 6.5	0.74	175 166	5 5	113 95	6 7
	EDIO ST.	199 76	22	6.58 0.11	0.6	171 5	্ 5	104 9	7
5.3 5.3	(0) (1)	26 N.D.	3	2.14 N.D.	0.28	40 36	10 10	18 N.D.	1
	EDIO . ST.	13 18.4	1.5	1.07 1.51	0.14	38 2	10	9 9	0.5
5.4 5.4 5.4 5.4	(0) (1) (2) (3)	1435 1823 1183 1578	58 76 51 64	5.8 7.24 6.06 4.7	1.7 0.32 0.01 0.34	173 35 35 34	0.16 0.04 0.04 0.04	179 244 149 61	44 20 22 6
	EDIO . ST.	1505 232	62	5.95 1.04	2.37	69 60	0.07	158 66	23
5.5 5.5 5.5 5.5	(0) (1) (2) (3)	8271 10335 5702 9493	338 453 249 404	3.78 3.09 5.83 2.89	0.07 0.06 0.11 0.07	59 50 43 29	5 5 6 6	N.D. 5.6 20 N.D.	1 4
PROM DESV	EDIO . ST.	8450 1748	361	3.9 1.2	0.08	45 11	6	6 8	1
5.6	(3)	8692	360	2.8	0.07	29	6	N.D.	
6.1	(1)	13576	916	6.83	0.39	36	7	N.D.	
6.2 6.2 6.2	(0) (1) (2) (3)	17850 25241 21434 16087	1204 139 4131 1085	5.86 5.81 7.12 6.73	0.34 0.34 0.41 0.38	17.5 14 20 15	8.7 8.9 8.5 8.9	N.D. N.D. N.D. N.D.	
	EDIO . ST.	20152 3512	1640	6.4 0.6	0.37	16.6 2.7	8.8		
6.3	(1)	10874	733	7.60	0.44	22	8	N.D.	
L.D.	(mg/L)	0.8	31	0	.14	4.4	1	5.3	17

TABLA 10 (3/3)RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

		NI	QUEL	PL	эмо -	61	ricio	TE	LURO
PUNTO	#MUEST	mg/L	Ni (+/-)	mg/L	Pb (+/-)	mg/L	si (+/-)	mg/L	Te (+/-)
7	(1)	8482	349	1.2	0.07	N.D.		576	64
8 8 8	(1) (2) (3)	2.5 6.2 3.9	0.30 0.26 0.25	N.D. N.D. N.D.		21 63 56	10 8 8	N.D. N.D. N.D.	
	EDIO '. ST.	4 2	27			47 18	9		
9 9 9	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.		N.D. N.D. N.D.		N.D. 81 98 110	8 9 10 10	N.D. N.D. N.D. N.D.	
	EDIO . ST.					72 43	9		
10.1 10.2 10.3 10.4	(1) (1) (1) (1)	% (1 0.52 0.33 0.53 0.56	2.4E-2 2.7E-2 2.5E-2 2.5E-2	%(p) 4.2E-2 14E-2 4.6E-2 3.5E-2	/p) 25E-4 82E-4 27E-4 20E-4	% (N.D. N.D. N.D. N.D.	p/p)	% (0.14 0.17 0.18 0.21	p/p) 0.033 0.034 0.034 0.037
L.D.	(mg/L)	0	.81		0.14	4	. 4	5	.17

TABLA 11
(1/3)
RESULTADOS DEL ANALISIS POR ESPECTROMETRIA DE ABSORCION ATOMICA

	····	SELENIO	ZINC	
PUNTO	#MUEST	Se mg/L (+/-)	zn mg/L	(+/-)
1.1 1.1 1.1	(1) (2) (3)	N.D. N.D. N.D.	41 45 62	1.6 1.8 2.5
	EDIO . ST.		49 9	1.96
1.2	(1) (2) (3)	N.D. N.D. N.D.	700 5.6 196	29.3 1.7 13.4
	EDIO . ST.		301 293	14.8
1.3 1.3 1.3	(1) (2) (3) (4)	И.D. И.D. И.D. И.D.	N.D 0.45 0.94 4.64	0.02 0.16 0.18
	EDIO . ST.		1.51 2.12	0.09
1.4	(1) (2) (3)	N.D. N.D. N.D.	10 7.2 26	1.6 0.30 . 1.3
	EDIO . st.		14 8	1.06
1.5 1.5 1.5	(1) (2) (3)	N.D. N.D. N.D.	1.2 1.2 0.58	0.15 0.15 0.02
	EDIO . ST.		1.0 0.3	0.11
1.6	(1) (2)	N.D. N.D.	N.D 0.15	0.01
PROM DESV	EDIO . ST.		0.075 0.11	0.005
3 3 3	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D.	
	EDIO . ST.			
L.D.	(mg/L)	7.47	0.01	

TABLA 11 (2/3)

		6E1	ENTG.	atuc	
PUNTO	#MUEST	mg/L	Se (+/-)	mg/L	(+/-)
5.1 5.1 5.1	(0) (1) (2)	104 166 154	110 16 15	1.1 1.6 1.8	0.15 0.14 0.14
	MEDIO V. ST.	141 27	47	1.5 0.3	0.14
5.2 5.2	(1) (2)	137 204	49 64	. 63 101	3 16
	MEDIO - ST.	171 34	57	82 19	10 🛴
5.3	(0) (1)	368 N.D.	29	2.5 N.D.	0.13
	MEDIO 7. ST.	184 184	15	1.25 1.77	0.065
5.4 5.4 5.4 5.4	(0) (1) (2) (3)	74 N.D. N.D. N.D.	20	110 203 149 155	15 13 14 14
PROM DESV	MEDIO /. ST.	19 37	5	154 33	- 14
5.5 5.5 5.5 5.5	(0) (1) (2) (3)	N.D. 214 204 206	115 116 115	394 585 337 493	16 24 14 19
	EDIO . ST.	156 90	87	452 95	18
5.6	(3)	N.D.		493	19
6.1	(1)	N.D.		493	19
6.2 6.2 6.2	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.		585 913 626 639	24 160 170 26
	EDIO . ST.			691 150	95
6.3	(1)	N.D.		372	15
L.D.	(mg/L)	7.	. 47	0.01	

NOTA: N.D. => NO DETECTADO

TABLA 11 (3/3)

		6ELE	NIO		INC	
PUNTO	#MUEST	se mg/L	(+/-)	mg/L	Zn (+/-)	
7	(1)	N.D.		62	6 17	0
8 8 8	(1) (2) (3)	N.D. N.D. N.D.		N.E N.E N.E).	
	EDIO '. ST.					
9 9 9	(0) (1) (2) (3)	N.D. N.D. N.D. N.D.	•	. й.с и.с и.с и.с	· ·	
	EDIO . ST.					
10.1 10.2 10.3 10.4	(1) (1) (1) (1)	%(p/ 1.34 2.49 4.08 4.43	(p) 0.11 0.80 0.27 0.26	0.6 0.9 0.9	7 0.00 1 0.10	3
L.D.	(mg/L)	7.	47		0.01	

TABLA 12

(1/4)

								ing the second s			
CONDUC. ELEC.	(M) (Mmm)	0.76 0.01 0.15 0.02 0.17 0.02	0.4 0.013	0.19 0.2 0.64 0.06 2.65 0.03	0.09 90.07	0.38 0.04 3.73 0.04 0.41 0.04	0.05	0.73 0.007 0.62 0.006 0.13 0.01	600.0 600.0	0.56 0.006 0.47 0.005 0.72 0.007	0.58 0.006 0.10 0.001
CONDI	DIL	0.1	0.42	0.01 0.1	5.7	0.1 0.1 0.1		1 1 0:1	21 W 2011 2013 2013 2013 2013 2013 2013 2013	1.1	
os.	(-/+)	7 ÷ 6	7	100 2 29	4	190 188 , 279 266	231	5 6	e. 9	1.9 2.4	1.9
CLORUROS.	mg/L	23 27	3.5	298 11 83	131	1045 1034 1248 1495	1205 189	21 17 18	19	5.7 6.9 9	7.2
	(-/+)	014	4	2 4 C	34	41 41 44 567	173	·δ·Ω 4	ú	কতন	ú
SOBIO	пк/Г	18 40 31	65 20	406 13 106	175 168	676 686 736 1058	789 157	12 . 19 .	20	11 19 15	15 3
CARBONATOS	(R CO ₂ /L)	0.0117	3.9E-3 6.8E-3	4.95* 0.0149 0.86*		0.2219 0.2159 0.1619	0.1996 0.0327	0.072 0.072 0	0.124	0.222 0.216 0.162	0.20
CARBC	(M)	0.0002	6.6E-5 1.15E-4	0.101* 0.0002 0.017*		0.0037 0.0036 0.0027 0	0.0033	0.0012 0.0012 0	0.0828	0.0027 0.0021 0.0023	0.0024 0.0003
	Hd	សស.ស ខ.គ.ស.	5.7	3.3 7.1 3.6	2.1	00 00 00 ល់ 4 44 4	9.0	8.3 7.3 6.4	7.3	8.2 8.1 7.9	8.1
PH	DIL.	еее								1111	
	#MUEST	383	PROMEDIO DESV. ST.	333	PRCMEDIO DESV. ST.	3663	PROMEDIO DESV. ST.	333	PROMEDIO DESV. ST.	(2)	PROMEDIO DESV. ST.
	PUNTO	777	PROM	5.55	PROM		PROM DESV	4.1.4.4.4	PROM	1.5	PROM

NOTA: A las muestras marcadas(*) se les determiné acidez total.

TABLA 12

(5/4)

			177							Mr. 1618 (930165
EC.	(N)	3E-4 0.005	0.002	0.01 0.04 0.07 0.08	0.05	0.05	0.046	1		0.5	0.2
CONDUC. ELEC.	(mmho)	0.03	0.0	1.43 0.44 0.68 0.79		4.5	4.6	1.08		0.47	300 300 300 300 300 300 300 300 300 300
CO	DIL	п п		000.1		1		0.01 0:001		0.01	
ROS.	(-/+)	1.2	5.6	22 194 581 491	322	33 48 54	. 45	34 1.5	18	2.2	4.6
CLORUROS.	mg/L	7.5 63	35 28	120 915 2667 2313	1504 1033	166 229 249	215	158 130	144 14	, 13	28 15
0	(-/+)	্ব চে	4.5	45 41 567 538	298	45 38 43	42	432	425	46	25
SODIO	mg/L	39	26 19	276 666 1058 1458	364	286 486 326	366 86	3159	3309 150	256	152 104
ACIDEZ TOTAL	(g H≥SO4/L)	0.114*	0.097*	0.378* 0.216* 0.276* 0.359*	0.307*	0.017 0.123 0.091	0.08	18.5 18,8	18.7 0.15	24.5	
ACIDEZ	(N) (g H	0.0019*	0.0016* 0.0004*	0.0063* 0.0036* 0.0046* 0.0060*	0.0051* 0.0013*	0.00035 0.0025 0.00186	0.0016	0.378	0.381	0.5	
	Hd	8.2	8.3	8.8 1.8 7.8	8.5	5.3 3.9 4.0	4.4	2.7	2.8	2.1	5.0
Hd	DIL.	11		дде				0.01		0.1	
	#MUEST	(1)	PROMEDIO DESV. ST.	3659	PROMEDIO DESV. ST.	(0) (1) (2)	PROMEDIO DESV. ST.	(1)	PROMEDIO DES. ST.	<u>6</u> 6	PROMEDIO DESV. ST.
	PUNTO	1.6	PROM! DESV	ოოოო	PROMI	5.1 5.1 5.1	PROM	2.0 2.4	PROMI DES.	0. 0. 6. 6.	PROM DESV

NOTA: A las muestras marcadas (*) se les determino carbonatos.

TABLA 12 (3/4)

		РĦ		ACIDEZ TOTAL .		SODIO		CLORU	ROS.	CONDUC. ELEC.		
PUNTO	#MUEST	DIL.	рН	(N) (g H=	:SO4/L)	mg/L	(+/-)	mg/L	(+/-)	DIL	(mmho)	(N)
5.4 5.4 5.4 5.4	(0) (1) (2) (3)	0.0001 0.0001 0.001 0.001	3.9 3.7 2.7 2.6	1.8 3.35 2.97 3.59	88 164 146 176	4159 14578 9575 12577	393 5376 5750 5523	28 296 478 266	4.5 57 102 49	0.001 1E-4 0.001 0.001	0.64 0.13 1.07 1.31	6 13 11 13
PROMI DESV			3.2 0.6	2.9 0.7	144 34	10223 3927	4261	267 160	53			11 3
5.5 5.5 5.5 5.5	(0) (1) (2) (3)	0.0001 0.0001 0.0001 0.0001	3.5 3.4 3.5 2.5	3.81 4.92 3.19 5.15	187 241 156 253	1758 3859 2959 2759	516 402 442 453	87 11 63 31	17 4.3 12 6	0.01 1E-4 0.01 0.001	1.33 0.25 8.06 1.67	1 25 8 17
PRONI DESV	EDIO . ST.		3.2 0.4	4.3 0.8	209 39	2834 747	453	49 34	10			13 9
5.6	(3)	0.001	2.6	5.19	255	2458	471	23	· / 4 8	0.001	1.52	15.2
5.1	(1)	0.0001	3.6	5.07	249	2258	483	64	11	₹1E-4	0.16	16
6.2 6.2 6.2 6.2	(0) (1) (2) (3)	0.0001 0.0001 0.0001 0.0001	3.5 3.3 3.4 3.5	4.95 5.43 5.53 5.6	243 266 271 275	2565 3848 5884 3059	209 234 399 437	36 48 59 48	7 10 13 13 10 10 10	1E-3 1E-4 1E-4 1E-4	1.34 0.25 0.17 0.2	13 25 17 20
PROM DESV	EDIO . ST.		3.4 0.1	5.4 0.25	264 12	3839 1462	320	48 8.1	10			19 4
6.3	(1)	0.0001	3.7	3.93	193	1658	523	67	12	1E-4	0.13	13

TABLA 12 (4/4)

		На		CARBONATOS		SODIO		CLORUROS.		CONDUC. ELEC.		
PUNTO	#MUEST	DIL.	рH	(M)	(g CO ₅ /L)	mg/L	(+/-)	mg/L	(+/-)	DIL	(mmho)	(N)
7	(1)	0.0001	3.2	11.3	553*	70611	4235	386	7	1E-4	0.38	38
8 8 8	(1). (2) (3)	1 1 1	8.3 7.8 8.1	0.0044 0.011 0.0156	0.6598	5160 3459 6261	379 418 394	8350 3634 10923	2860 1011 3646	0.1 0.1 0.1	2.04 1.83 3.15	0.2 0.2 0.3
	EDIO . ST.		8.1 0.2	0.010		4960 1152	397	7636 3018	2506		2.3 0.6	0.23
9 9	(0) (1) (2) (3)	1 1 1 1	9.7 8.4 8.3 8.4	0.0178 0.0028 0.0028 0.0028	0.168 0.156	516 86 126 126	38 58 55 55	307 87 246 117	68 27 53 40	1 1 1	1.92 0.59 0.71 0.78	0.02 0.006 0.007 0.008
	EDIO		8.7 0.6	0.0064		213 176	52	114 86	. 47		0.5	0.010 0.005

NOTA: A las muestras marcadas(*) se les determino acidez total.

LIMITACIONES EN EFFLUENTES QUE REPRESENTAN EL GRADO DE REDUCCION ALCANZADO CUANDO SE APLICA LA MEJOR TECNOLOGIA PRACTICA DE CONTROL AMBIENTAL COMUNENTE DISPONIBLE

concentración en mg/L

		m^3	SOL.	T.S	1 cc	BRE	CAD	110	PLOHO)	ZI	NC	pH	si Ng V
PUNTO] CARGA	MES	PRC	EPA	PRC	EPA	PRC	EPA	PRC	EPA	PRC	EPA	PRC	EP/
5.1	AGUA DE LAVADO DE GASES DE OXIDACION DE LODOS ANODICOS.	15	NO DET.	79310	1.5	1348.3	NO DET.	47.6	ND	475.9	1.5	951.7	4.4	6-9
5.2	AGUA DE LAVADO DE GASES DEL PROCESO DE DESELENIZACION	.6/TRAT 15 TRAT * MES = 9.0	NO DET.	127778	2115.0	2172.2	NO DET.	76.7	6.58	766.7	82.0	1533.3	2.8 DIL 1/100	6-9
5.3	SOLUCION RESIDUAL DEL PROCESO Se(rojo)>Se(gris)		NO DET.	19167	175.0	325.8	NO DET.	11.5	1.07	115.0	1.3	230.0	2.1 DIL 1/10	6-9
5.4	SOLUCION ACIDA DECUPRIZADA DESPUES DE CEMENTACION.	225	NO DET.	5111	3820.0	86.9	NO DET.	3.1	5.95	30.7	14.0	61.3	3.2 DIL 1/10000	
5.5	SOLUCION ACIDA DECUPRIZADA Y DESARCENIZADA	300	NO DET.	3833	3550.0	65.2	NO DET.	2.3	3.90	23.0	452.0		3.2 DIL 1/10000	
5.6	SOLUCION 5.5 CLARIFICADA	87	NO DET.	13218	2220.0	224.7	NO DET.	7.9	2.80	79.3	493.0	White was a fee	2.6 DIL 1/1000	6-9
8	SOLUCIONES USADAS EN LA REGENERACION DE RESINAS	496	NO DET.	2319	0.2	39.4	NO DET.	1.4	, ND	13.9	ND	27.8	8.1	6-9
9	SOLUCIONES DE PURGA DE CALDERAS	24	NO DET.	47917	0.5	814.6	NO DET.	28.8	ND	287.5	ND	575.0	8.7	6-9

ND = NO DETECTADO NO DET. = NO DETERMINADO

PRODUCCION kg/MES

PRC = PLANTA DE REFINADO DE COBRE EN ESTUDIO EPA = ENVIRONMENTAL PROTECTION AGENCY COBRE 9100
NIQUEL 2000
ARSENICO 3575
DE CATCOO: 1.15E+07

TABLA 14

LIMITACIONES EN EFFLUENTES, QUE REPRESENTAN EL GRADO DE REDUCCION ALCANZADO CUANDO SE APLICA LA MEJOR TECNOLOGÍA DE CONTROL AMBIENTAL ECONOMICAMENTE VIABLE

concentración en mg/L

					. .					
	i	m^3	ARSE	NICO	COBRE	Ē	NIQUEL		pH	- 1
PUNTO] CARGA	MES	PRC	EPA	PRC	EPA	PRC	EPA	PRC EP	A [
5.1	AGUA DE LAVADO DE GASES DE OXIDACION DE LODOS ANODICOS.	15	ND	2.22E-04	1.5	5.65E-04	3.2	1.24E-04	4.4 7.5	10
5.2	AGUA DE LAVADO DE GASES DEL PROCESO DE DESELENIZACION	.6/TRAT 15 TRAT * MES = 9.0	ĺ	3.58E-04	2115.0	9.10E-04	199.0	2.00E-04	2.8 7.5-1 DIL 1/100	10
5.3	SOLUCION RESIDUAL DEL PROCESO Se(rojo)>Se(gris)	60	37.5	5.36E-05	175.0	1.36E-04	13.0	3.00E-05	2.1 DIL 7.5-1 1/10	10
5.4	SOLUCION ACIDA DECUPRIZADA DESPUES DE CEMENTACION	225	4040.0	1.43E-05	3820.0	3.64E-05	1505.0	8.00E-06	3.2 7.5-1 01L 1/10000	10
5.5	SOLUCION ACIDA DECUPRIZADA Y DESARCENIZADA	300	3386.0	3	3550.0	2.42E+00	8450.0	1.03E+00	3.2 D1L 7.5-1 1/10000	10
5.6	SOLUCION 5.5 CLARIFICADA	87	3331.0	9	2220.0	8.33E+00	8692.0	3.57E+00	2.6 DIL 7.5-1 1/1000	10

PRODUCCION kg/MES

ND = NO DETECTADO NO DET. = NO DETERMINADO

PRC = PLANTA DE REFINADO DE COBRE EN ESTUDIO EPA = ENVIRONMENTAL PROTECTION AGENCY COBRE 9100
NIQUEL 2000
ARSENICO 3575
DE CATODO :

DE CATOOO : 1.15E+07 DE ANOGO : 6.90E+06