

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

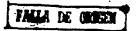
FACULTAD DE QUIMICA

"CUANTIFICACION DE ARSENICO, CADMIO, MERCURIO Y PLOMO EN PESCADOS Y MARISCOS POR ESPECTROFOTOMETRIA DE ABSORCION ATOMICA"

TESIS MANCOMUNADA

Que para obtener el Título de

QUIMICO FARMACEUTICO BIOLOGO


presentan

SILVIA GONZALEZ JIMENEZ

LILIA BEATRIZ MARTINEZ DURAN

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TNOTOR

(ntroducción	Página
Objetivo y justificación	1
galaga pendada salah 1. p <u>ilangan pendada salah salah pada ba</u>	water tarket
Capítulo I. Parte teórica	
목후 가게 하다면서 이렇게 하는 사람들이 하는 것 같은 사람들이 살아가 없다면 없다.	368 L. 1439 S. C.
1. Antecedentes	
1.1.Plomo	A STEEL STATE
1.1.2.Mercurio	5
1.1.3.Cadmio	13
1.1.4.Arsénico	
150 (co.) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	إيخاشن وهود
1.2.Fundamentos de absorción atómica	16
1.2.1.Relación entre absorción atómica y	
concentración atómica	17
1.2.2. Sensitividad y limites de detección	
1.2.3.Instrumentación de absorción atómica	19
1.2.4.Control de interferencias análiticas	
1.2.5.Sistema de generación de hidruros	
1.2.6.Atomización en la flama	
Transcription on the framework	ray many and a
	H-17
Capítulo II. Desarrollo experimental	23
2.1.Presentación experimental	24
2.2.Materiales	25
2.2.1.Descripción de muestras	25
2.2.2.Material de laboratorio	26
2.2.3.Reactivos	26
2.2.4.Aparatos	26
	\$51,000 mg
2.3.Métodos	26
2.3.1.Lavado de material	
2.3.2.Preparación de muestras	
2.3.3.Método de mineralización ácida	29
2.3.4.Método de mineralización ácida para aceite	
vegetal	29
2.3.5.Calibración del aparato	29
2.3.5.1. Condiciones de trabajo	29
2.3.5.2. Estandarización del aparato	
2.3.5.3. Preparación de soluciones patron	30
2.3.5.4. Preparación de curva patron	
2.3.5.5.Lecturas	32
2.3.6.Validación de la metodología de la	32
recuperación del método de análisis	32

Capituro III. Resultad	108
3.1.Humedad	
3.2.Curvas de calibra	ci6n34
	tada y cantidad no detectable ctómetro (N.S.D.)
3.4.Cuadro de valores	promedio de concentración42
	tración obtenidos de un promedio
	sumo a partir de encuestas48
3.7.Valores encontrad	os en aceite54
	exposición de metales en la54
metodología de la	del método de validación recuperación del método de
Capítulo IV. Discusión	
Canitule V Conclusion	es64
Anexos	66
Bibliografía	74

INTRODUCCION.

Los pescados y mariscos, constituyen una fuente básica en la alimentación del pueblo de México, debido a que la situación geográfica del país es pródiga para la fácil adquisición de este producto.

Sin embargo la contaminación en mares y ríos, causado por desechos industriales, que de manera voluntaria e involuntaria se vierten en ellos, ha traído consigo que en la actualidad exista una alta incidencia de metales tóxicos en pescados y mariscos de mayor consumo en México; por lo que es necesario contar con investigaciones que tiendan al monitoreo de estos tóxicos potenciales y valorar el riesgo al que pudiese estar expuesta la población.

OBJETIVO Y JUSTIFICACION.

El objetivo de este estudio, es realizar un análisis cuantitativo para determinar metales como son arsénico, cadmio, mercurio y plomo, en pescados (bagre, mojarra, atún y sardina) y mariscos (almeja y ostión) por medio de la espectrofotometría de absorción atómica.

Este estudio es un aporte preliminar para evaluar los valores de ingesta de metal via pescados y mariscos en la Ciudad de México. Extrapolandose los datos obtenidos se valorarán el riesgo de exposición de los consumidores.

Este estudio se tratará de orientar a las clases económicamente más desprotegidas por medio de la selección de especies de bajo costo.

PARTE TECRICA

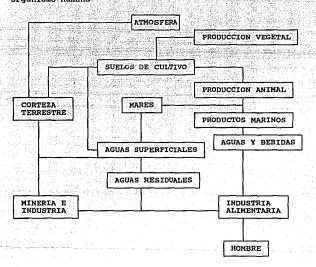
1. ANTECEDENTES.

En los últimos años se viene prestando una atención especial a la presencia de metales tóxicos en el medio y en los sustratos, tanto orgánicos como inorgánicos, debido a que superan los niveles naturales permitidos.

Reilly (1980) menciona que los elementos metálicos se encuentran ampliamente distribuidos en toda la corteza terrestre, así como en los ocêanos, lo que hace inevitable su presencia en todos los seres vivientes. Por otro lado, hay que mencionar que los tejidos corporales humano y animal contienen elementos metálicos en mayor o menor proporción.

Un metal tóxico es aquel que pertenece al grupo de elementos que no son necesarios para el organismo humano o animal y, que son capaces de provocar efectos indeseables en el metabolismo, aún a bajas concentraciones.

Catalá et. al. (1983) reportaron que algunos de estos metales como el mercurio, el cadmio, el arsénico y el plomo, son totalmente ajenos a la vida, y pueden considerarse como tóxicos sistémicos, es decir; su presencia crea serias alteraciones en la fisiología humana. Ya que estos tienden a acumularse en determinados órganos. La fuente de contaminación es generalmente por via oral al consumir alimentos. La ingestión a bajas concentraciones, durante largos períodos de tiempo pueden originar su acumulación a niveles suficientes para ocasionar efectos tóxicos.


La figura 1 muestra una clasificación de las principales fuentes de contaminación de metales al organismo humano. Por otro lado; los efectos tóxicos de los metales han llevado al Comité Mixto FAO/OMS sobre Aditivos Alimenticios al establecimiento de limites de tolerancia al aporte diario de estos elementos al organismo humano.

1.1. Plomo.

Desde hace tiempo, se ha sabido que los metales pesados, como el plomo presentan una fuente de contaminación en alimentos.

Valle (1982) reportó que el plomo ha sido uno de los metales que se les ha considerado desde la antigüedad como nocivo o pestilente; incluso se piensa que fue una de las causas de la caída del Imperio de Roma.

Figura No. 1. Fuentes de Ingreso de los metales organismo humano

Sus principales efectos tóxicos fueron caracterizados desde hace unos 2000 años en la cultura grecoromana, llamándose Saturnismo o Plumbismo la enfermedad causada por la ingestión de este metal, en la cuál se presenta: pigmentación de glóbulos rojos, un retraso en la maduración de los glóbulos rojos en la médula o sea inhibición de síntesis de hemoglobina.

Algunos de estos sintomas eran conocidos en la antigüedad e incluso asociados al plomo, según los describen Hipócrates y Plinio. Posteriormente los mismos síntomas se pueden apreciar en algunas pinturas de Ramazzini, donde se observan los efectos de intoxicación por este metal.

Hamon y Beliles (1980) informan que el plomo es un elemento metálico que ha recibido mayor atención por los numerosos problemas que plantea, tanto por lo que respecta a la multiplicidad de vías de acceso al organismo - figura 1 como su elevada toxicidad y amplio espectro de órganos, y sistemas afectados en el hombre y animales domésticos. Es un elemento ampliamente distribuido en la naturaleza y se encuentra invariablemente en la atmósfera y en los alimentos, como componente o como contaminante de los mismos, de forma que la alimentación humana contiene siempre plomo (trazas) en mayor o menor proporción.

En el cuadro 1 se muestran los niveles medios de plomo encontrados en la dieta actual humana siendo los productos lácteos, las bebidas y los huevos los menos contaminados; las carnes y los pescados los que tienen valores medios, y los invertebrados marinos y las especias los que presentan niveles más elevados. El cuadro 2 muestra la contaminación de plomo y mercurio.

En ausencia de reglamentación especifica, diversos autores han analizado la presencia de plomo en productos cárnicos y en las carnes en general; en el cuadro 3 se resumen los resultados publicados.

1.1.2. Mercurio.

En 1976 una fuente anónima menciona que el valor medio de contenido de mercurio en la corteza terrestre es de 50 mg/Kg. Los valores máximos se encuentran localizados en las áreas mercuríferas de la superficie terrestre, coinciden con zonas calurosas, con la presencia de géiseres o terrenos volcánicos.

CUADRO 1 NIVELES REPORTADOS DE PLONO EN ALIMENTOS (Catala et. al..1983)

NUESTRA/PROCEDENCIA	(#g/g)	MUESTRA/PROCEDENCIA	(µg/q)
Harina y pastas/Blgica	0.14/	Higado(vaca)/Alemani	a 0.120
Harina soya/U.S.A	0,008-0,0	10 Buey/Bigica	0.438
Harina soya/Brasil	0.003-0.0	QS Vaca/Blgica	0.250
Pan/Italia	0.700-1.7	00 Cerdo/Blgica	0,390
Biscuit/Italia	0.400	Cordero/Blgica	0.240
Pasta/Italia	0.700	Berberechos/España	0.860
Papas/Bloica	0.240	Mejillones/España	0.950
Legumbres/Blaica	0.220	Almeias/España	0.990
lomates en lata/U.S.A	0.340	Pescados/Blaica	0.420
Verduras(mezcla)/U.S.A	0.080	Moluscos/Australia	2.09-3.49
Peras/Italia	0.350	Invertebrados/Blgic	a 0.980
Peras en lata/U.S.A	0.270	Leche/Italia	0.26-1.10
Jugo de frutas/Blaica	0.150	Leche/Blaica	0.10-0.35
Frutas variadas/Blgica	0.200	Huevos/Blaica	0.077
Uvas/Italia	0.350	Mantequilla/Blgica	0.029
Mortadela/España	0.250	Caf/Blgica	0.004
Salchicha/España	0.380	Especias/Blasca	1.770
Pat de higado/España	0.460	Aqua.cerveza/Blgica	0.019
Vaca(musculo)/Alemania	0.016	Vino/Italia	0.10-0.3

ANALISIS FISICOQUINICO	e si Mala ka	10	1 T L 4 1 1 1 1 1 1 1 1	that the street of the second	CONTAMINACION	(Consum) do	
PRODUCTO			网络大大 医多种性皮肤 电压管				
Sardina		****					
Sardina	10	MERCUR10 b	PLOMO	MUESIKA	PROCEDENCIA .	MARCA	PRODUCTO
enlatada: Aceite de Oliva							
Oliva Ybarra Nacional 10 0.033 0.00							
en salsa de tomate Pescador Nacional 10 0,000 0,00 Portola Nacional 10 0,000 0,00 en aceite vegetal Yberra Nacional 10 0,000 0,04 Atun en aceite vegetal La Torre Nacional 10 0,000 0,04 Atun en aceite vegetal La Torre Nacional 10 0,000 0,00 Calmex Nacional 10 0,000 0,00 Yaberra Nacional 10 0,000 0,00 Yaberra Nacional 10 0,000 0,00 Calvo Importado 10 0,000 0,00 Calvo Importado 10 0,000 0,00 (España) Vigilante Importado 10 0,000 0,00 (España) Chiles en rajas Clemente Jaques Nacional 0,13 La Goria Nacional 2,35 La Costeña Nacional 1,111		0.00	0 022				Aceite de
en salsa de tomate de tomate de tomate de tomate de tomate de tomate Percador Nacional 10 0,000 0,000 0,000 de naceite vegetal Vbarra Nacional 10 0,000 0,000 Atun en aceite vegetal La Torre Nacional 10 0,000 0,000 Calmex Nacional 10 0,000 0,000 The Nacional 10 0,000 0,000 Gigante Nacional 10 0,000 0,000 Calvo Importado 10 0,000 0,000 (España) Vigilante Importado 10 0,000 0,000 (España) Chiles jalapeños en rajas Clemente Jaques Nacional 0,13 La Gloria Nacional 0,13 La Gosteña Nacional 1,111 Chiles chipotles Clemente Jaques Macional 1,124		0,07	0,000	10	Nacional	Vigilante	0,1,4
Portola Nacional 10 0,000 0,00							en salsa
en aceite vegetal Ybarra Nacional 10 0,000 0,04 Atun en aceite vegetal La Torre Nacional 10 0,000 0,08 Calmex Nacional 10 0,000 0,08 Ybarra Nacional 10 0,000 0,00 Ybarra Nacional 10 0,000 0,00 Gigante Nacional 10 0,000 0,00 Calvo Importado 10 0,000 0,00 (España) Vigilante Importado 10 0,000 0,00 (España) Chiles jalapeños en rajas Clemente Jaques Nacional 0,13 Herdez Nacional 0,13 La Goria Nacional 2,35 La Costeña Nacional 1,11		0,00		10	Naciona)	Pescador	de tomate
Vegetal Ybarra Nacional 10 0,000 0,04						rontona	
Atun en aceite vegetal		0.04	0.000	10	Nacional	Ybarra	
Atun en aceite vegetal La Torre Nacional 10 0.000 0.08 Calmex Nacional 10 0.000 0.00 0.00 10 0.000 0.0		0,04	0,480	10	Importada	Calvo	
Calmex				1 14 New 2 4	4.7		
Calmex Nacional 10 0,000 0,00 0,00							
October Nacional 10 1,250 0,03 Ybarra Nacional 10 0,000 0,00 Gigante Nacional 10 1,250 0,37 Calvo Importado 10 0,000 0,00 (España) Vigilante Importado 10 0,070 0,00 Chiles Jaques Nacional 0,13 La Gloria Nacional 2,35 La Costeña Nacional 1,11 Chiles Chiles Clemente Jaques Macional 1,24 Chiles Chiles Clemente Jaques Macional 1,24		0,08					vegetal
Vasrra Nacional 10 0.000 0.00							
Calvo Importado			0.000	10			
Chiles Clemente La Costeña Nacional La Costeña Nacional La Costeña Nacional Chiles Chiles Clemente La Gloria Chiles Chiles Chiles Clemente				10			
Vigilante Importado 10 0,070 0.00 (España) Chiles jalapeños en rajas Clemente Jaques Nacional 0,13 Herdez Nacional 2,35 La Gloria Nacional 2,35 La Costeña Nacional 1,11 Chiles chipotles Clemente Jaques Macional 1,24		0,00	0.000	10		Calvo	
Chiles jalapeños en rajas Clemente Jaques Nacional 0.13 Herdez Nacional 0.13 La Gloria Nacional 2.35 La Costeña Nacional 1.11 Chiles chipotles Clemente Jaques Macional 1,24		0.00	0.070	10		Vigilante	
Jalapeños					(España)		
Jalapeños	7 . O.		2.61	1.47.1			
en rajas Clemente							
Herdez Nacional 9,13 La Gloria Nacional 2,35 La Costeña Nacional 1,11 Chiles chipotles Clemente Jaques Macional 1,24							
La Gloria Nacional 2,35 La Costeña Nacional 1,11 Chiles chipotles Clemente Jaques Macional 1,24							
Chiles chipotles Clemente Jaques Macional 1,24							
chipotles Clemente Jaques Macional 1,24			1,11		Naciona)	La Costeña	
chipotles Clemente Jaques Macional 1,24			i in Indian		···	,	
						Clemente	
Herdez Nacional 1.86							
La Gloria Nacional 1.10							
						-	
a * Se reporta como límite máximo 1 μg/g b = Se reporta como límite máximo 0.2 μg/g							
	H. Sec						
7		and Maria 1995.		7			

CUADRO 2 ((Consumido	CONTAMINACION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	POR PLONO	Y MERCUR	
PRODUCTO		PROCEDENCIA	TAMAÑO MUESTRA	FISICOOU	
		Nacional Nacional		1,11 2,08 1.27	
Frijoles refritos glaros					
enlatados	Cambell's Haggi La Sierra	Nacional Nacional		0.97 0.27 1.52	
negros					To Half Turner (1)
enlatados	Cambell's Haggi La Sierra	Mac:ona l		0,41 0,41 0,63	
Rebanadas de piña e almibar		Nacional Nacional Nacional Nacional Nacional Nacional		0.27 2.08 0.00 1.38 0.55 0.55	
Duraznos enteros e almibar	n La lorre La Costeña			1.38	
Ensalada vegetales	de Clemente Jaques Herdez Del Monte	Nacional Nacional Nacional		0.00 1.24 0.27	

Cuadro 3 Contenido de plomo en productos cárnicos (Catala et al.1993) Concentración detectada (ug/g)

That Rit	for the state of the same	-97,9			
	Producto	intervalo	Hedia	Autor	٠.
	Vacuno. muscular	0.0100-0.508 0.0320-0.500 0.0001-0.987 0.0400-0.750	0.230 0.100 0.070 0.550	Mushe, 1975 Stabel-laucher et al,1975 Bundesgesundhbl,1979 Hecht et al, 1973	
	Vacuno, higado	0,08 - 0,76 0,01 - 3,31	0,270	Stabel-Taucher et al1975 Bundesgesundhbl,1979	
	Vacuno, riñón	0,05 - 0,85	0,280	Stabel-Taucher et al.,1975	
	Cerdo, muscular	0.52 - 1.10 0.01 - 0.60	0.770	Hecht et al. 1973 Bundesgesundhbl,1979	
	Cerdo, higado	0,007- 1.488	0.149	Bundesgesundhbl. 1979	
	Cerdo, riñon		0,12	Holm. 1979	
	Caballo, muscula	ir -	0.04	Holm, 1979 Holm, 1979	
	Caballo, higado	-	1,06	Holm. 1979 Holm. 1979	
	Caballo, riñon		0.40	Holm, 1979 Holm, 1979	
	Pollo, higado		1,24	Bundesgesundhbl., 1979	
	Pollo, riñón	- 3	1,61	Bundesgesundhbl., 1979	j
	Salchichas	0.04 - 0.16	0.10	Kirkpatrick y Coffin. 1973	
	Mortade la	0.01 - 0.17	0.06	Kirkpatrick y Coffin, 1973	we.
	Jamon cocido	N.D 0.16	0,05	Kirkpatrick y Coffin, 1973	
	Jamon curado	N.D 0,42	0.06	Kirkpatrick y Coffin, 1973	
	Salami	N.D 0,30	0,06	Kirkpatrick y Coffin, 1973	
	Carne en gelatin	a0.05 - 5.10	0.79	Maggi et al., 1974	
	Pastel de carne	0.05 - 2.20	0,36	Maggi et al., 1974	

Jones (1971) reporta el contenido de contaminación de mercurio en la hidrósfera (Cuadro 4). El mercurio no es un bioelemento, sino que, por el contrario constituye un tóxico para los seres vivientes y que por efecto de la contaminación puede llegar a una acumulación peligrosa.

En 1976 una fuente anónima informa que cuando hay contaminación con mercurio, la forma predominante es la oxidada, como Hg(II) y por acción bacteriana reacciona a:

Es decir, a dialquil o diarilmercurio, fundamentalmente dimetil mercurio, ${\rm Hg} \ \, (CH_{t}),$

que se encuentra como en la materia viva. Por tanto, su acumulación de mercurio en peces es de suma importancia.

Eil y Beizen (1970) estiman que el mercurio inórganico, bajo condiciones anaerobias en fondos sedimentarios, es biotransformado a metil mercurio por acción de varias bacterias como Methanobacterium omelanskii, quedando dispuesto para la asimilación por el planctón y demás orgánismos acuáticos. Ackefors (1970) reportó que esta metilación es un proceso no enzimático, que requiere la presencia de vitamina B₁₂, que actua como agente metilante. El mercurio metilico y etilico parecen ser las formas más tóxicas mientras que las formas fenílicas y alcohóxidas son menos potentes. Beacham (1976) reporta que se han dado pasos para eliminar el peligro en la medida posible. Estudios recientes sobre atún y pez espada han mostrado el efecto de bioacumulación donde el mercurio en pequeñas cantidades en el agua, se concentra a través de la vida vegetal acuática, la cual sirve de alimento base a peces pequeños los que son consumidos, por peces mayores hasta que se alcance el grado máximo de concentración en atún o pez espada como el último eslabón de esta cadena alimenticia sería el ser humano.

Las especies de agua dulce que suelen encontrarse en mayor concentración son el Lucio, Carpa y, en especies marinas el pez Espada, Albacora. El cuadro 5 muestra niveles de contenido de metil mercurio en peces marinos, en base a sus lugares de procedencia. En el cuadro 6 se recogen algunos valores referentes al contenido de mercurio en especies de agua dulce. En el cuadro 7 se muestran niveles de mercurio en algunas especíes marinas.

CUADRO & CONTENIDO DE MERCURIO EN LA HIDROSFERA (Catala et al; Jones, 1971)

AMBIENTE		VALORES		OS VALOR	
Agua de lluvia		 0.05	- 0,50	٥,	20
Aguas normales ríos y lagos Aguas cerca de		0.01	- 0,10	0,	03
de SHg		والمناطقة والمتحدث	- 100,0 5.00		والمواد والمساورة
Fondos de cauc normales	market propa			0,	

CUADRO 5 CONTENIDO DE METILMERCURIO EN PECES MARINOS (Catala et al; Sumino, 1978)

ESPECIES	(ha\ka) Fr	JGAR DE CAPIURA
Atun		ano Indico
Besugo		seva Zelanda
Besugo	0.022 A	frica
Robalo	0.096 Ma	ar de China este
Arenque	0.008	or de Bering
Sardina	0.032 No	r interior de Seto
Sardina	0,035 Ma	ar interior de Seto

CUADRO 6 CONTEMIDO DE MERCURIO EN PECES DE AGUA DULCE (Catala et al: Beacham, 1976)

ESPECIE/PHOCEDENCIA	MEKCOK10	ESPECIE/PROCEDENCIA MERCURIO (#9/Kg)
Lucio/Canada	0.14 - 1.20	Anguila/tspana 0.81 - 2.03
Perca/Canada	0.07 - 1.14	Lucio/Espana 0.05 - 0.08
Lota/Canada	0.07 - 0.88	Perca/U.S.A 0.60
Anguila/Canada	0.01 - 2.08	LUC10/U.S.A 0.23
Trucha/Canada	0,12 - 0,38	Capin/U.S.A 0.05
Carpa/España	0.32 - 0.56	Salmon/inglaterra 0.04 - 0.13
Black bass/España	0.83	Lucio/Inglaterra 0,81 - 1,60
Lisa/Espana	0.21 - 0.26	Anguila/Holanda 0.05 - 0.82
Anguila/Espana	0.65 - 1.48	Lucio/Holanda 0.19 - 0.59
Perca/España	1.39 - 4.16	Perca/Holanda 0,57 - 1,90

CUADRO / CONTENIDO DE MERCURIO EM PECES DE AGUAS MARINAS (Catala et a); Beachami(9/8)

ESPECIE/PROCEDENCIA	(h8/k8) WERCHRIO F	SPECIE/PROCEDENCIA	(hd/kd) Wekchbio
Atun/Golfo de Guinea Salmon/Golfo de Guinea Sardina/G.de Guinea Atun/Hawai Atun/Oc. Pacifico Atun/Oc. Atlantico	ea 0.21 0 0.08 B 1.02 P 0.56 P	tun en lata/U.S.A elfin/U.S.A acalao/España ez espada/G.Guinea ez espada/España ez espada/España	0,11 - 3,27 0,47 0.24 - 2.70 0.95 - 1.25 1,36 0.38 - 1.40

1.1.3. Cadmio

El cadmio es un elemento en el cual la presencia en el hombre no se ha establecido hasta el momento como esencial. Parolari y Pezzani (1977) encontraron en el organismo adulto cantidades de 25 a 39 mg, concentrandose preferentemente en el hígado y en el riñón.

Reilly (1980) menciona que la vida media del cadmio en el organismo es muy larga, superior a 40 años. El cadmio es soluble en los ácidos orgánicos presentes en muchos alimentos y bebidas. Su toxicidad aumenta por la actividad de agentes quelantes, como el ácido nitrilo-triácetico.

Una ingesta prolongada de cadmio altera el metabolismo del calcio, resultando osteoporosis y problemas en el esmalte de los dientes. Beacham (1976) informa que en general, a este problema se le conoce como ITAI-ITAI (ay-ay), es una enfermedad muy dolorosa y paralizante. La cantidad de cadmio que parecía producir esta enfermead era del orden de 0.6 mg diarios por un período de años.

La intoxicación por radmio hace que el riñón sea el principal órgano afectado en el cual se encuentran proteínas de bajo peso molecular como la metalotionina con un alto contenido de grupos sulfidrilo, las que terminan unidas al metal.

Waldbott (1973) reporta que en caso de inhalar vapores de este metal trae como consecuencia efisema, Catarro y parálisis del nervio olfatorio. El cadmio puede pasar a la placenta con posibles efectos mutagénicos para el feto. Por otro lado puede dañar a los canales perifericos causando sarcomas (tumores) en testículos.

Miller (1967) estudio el efecto del cadmio en vacas observando una baja en la producción de leche a niveles de 3.0 g de cadmio diario; al eliminarse el cadmio la productividad aumentó. El cadmio fué excretado en heces (82%) y en la leche se encontró a niveles menores de 0.1 mg/Kg; diversos autores han estudiado los niveles del contenido de cadmio en diversos alimentos procedentes de diversos países (Cuadro 8). Los valores más elevados se observan en hígado y en riñón del ganado vacuno y de los invertebrados marinos, llegando a alcanzar valores de 50 mg/g de cadmio. El resto de los alimentos tienen valores por debajo de éste, siendo los menos contaminados los productos lácteos y las bebidas.

CUADRO U NIVELES ENCONTRADOS DE CADRIO EN ALIMENTOS (Catala et. al., 1983)

MUESTRA/PROCEDENCI	A CADMIO (µg/Kg)	MUESTRA/PROCEDENCIA		(hd/kd)
trigo/Suiza trigo/U.S.A	0,050 0,070	Carne de pollo/Nva.Ze Carne de cerdo/Nva.Ze		0,03-0,10
Arroz/Blgica	0.045	Higado vaca/Suiza		0,11
Arroz/U.S.A	0.040 0.030	Riñón vaca/URSS Jamón cocido/España		1,60
Harina/Blgica	G. 147	Mortadela/España		0.057
Harina/UK	0,070	Salchicha/España		0.036
Harina/U.S.A	0,070	Sardina/UK		0,18
Papas/Italia	0.040	Crustáceos/Blaica	1.15	3,50-29,70
Colifior/U.S.A	0.008	I/Blgica	100	0.16-0.53
Peras/Italia	0.040	Vinos/Italia	. 24.	0,00090
Musucs/Wlaics	0 002-0	ne .		The state of the state of

1.1.4. Arsénico.

Al arsénico se le conoce desde hace siglos por tóxico en todas sus formas. La forma trivalente de arsénico es considerablemente más tóxica que la pentavalente. El uso de dióxido de arsénico como veneno ha provocado que se investiguen métodos para su detección y determinación. El papel biológico de el arsénico ha sido sujeto a discusión y controversia por muchas décadas.

Hace 50 años el arsénico se encontraba entre los pocos y efectivos plaquicidas, pero su uso ha decaído considerablemente desde la introducción de nuevos plaquicidas orgánicos. El arsénico es usado para matar hierba mala; para combatir plagas en la fruta y ayuda a las hojas de algodón; y como suplemento directo en los alimentos para aves de corral o cerdos para ayudar a su crecimiento.

El límite tolerable para el arsénico esta en el orden de l a 10 mg/Kg, frecuentemente se recomiendan 3 mg/Kg en industrias de reactivos, colorantes, drogas y alimentos procesados. Actualmente el arsénico "fuerte" (trivalente) ha sido eliminado de la dieta.

Schoeder y Balassa, (1979) estimaron una ingesta diaria de 0.9 mg/Kg: 99% en comida y 1% en agua. El Comité mixto FAO/OMS (1983) determinó una concentración máxima aceptable de arsénico de 3.5 mg/día para un hombre de 70 Kg. El Comité estima que el uso actual en dietas normales para personas no expuestas a una ocupación de alto riesgo es de 0.007 a 0.06 mg/Kg por peso corporal.

El nivel de arsénico encontrado en el primer cuarto de el ado de 1969 usando el método de modificación Gutzeite, contribuye a no más de 95 μg a la dieta por día, planteado por Hundley y Underwood.

En el año de 1970 el máximo nivel de arsónico en la dieta estuvo por debajo de 30 μ g/persona/día. En 1971 fué de μ g/persona/día y 35 μ g/persona/día en 1972 a 1973.

En 1977 en Estados Unidos se implementa el método de análisis de la evolución de el hidráto atómico (absorción atómica) obteniendose mayor límite de detección que se contaba anteriormente de 0.1 a 0.2 mg/Kg.

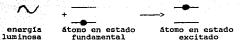
1.2. FUNDAMENTOS DE ABSORCION ATOMICA.

El átomo está constituido por un núcleo rodeado por electrones. Cada elemento tiene un número específico de electrones que está directamente relacionado con el núcleo atómico y que con él, da una estructura orbital, que es única para cada elemento. Los electrones ocupan posiciones orbitales en una forma predecible y ordenada. La configuración más estable y de más bajo contenido energético, es conocida como "estado fundamental" y es la configuración orbital para el

Si a un átomo se le aplica energía de una magnitud apropiada, esta será absorbida por él e inducirá que el electrón exterior sea promovido a un orbital menos estable o "estado excitado". Como este estado es inestable, el átomo inmediatamente y espontáneamente retornará a su configuración fundamental. El electron por tanto retornará a su orbital inicial estable y emitirá energía radiante equivalente a la cantidad de energía inicialmente absorbida en el proceso de excitación. El proceso es ilustrado en la figura 2.

Figura 2

 átomo en estado
 átomo en esta- átomo en estado
 energía


 fundamental
 excitado
 excitado
 luminosa

La longitud de onda de la energía radiante emitida esta directamente relacionada a la transición electrónica que se ha producido, puesto que un elemento dado tiene una estructura electrónica única que la caracteriza; este proceso se conoce con el nombre de emisión atómica y puede ser medida y usada para fines analíticos.

Si un haz de luz de una determinada longitud de onda incide sobre un átomo libre en estado fundamental, el átomo puede absorber energía y pasa al estado excitado, en un proceso conocido como absorción atómica. Este proceso esta ilustrado en la figura 3.

Figura 3

Proceso de la absorción atómica

La característica de interés en las medidas de absorción atómica, es el monto de luz, a la longitud de onda resonante, que es absorbida, cuando la luz pasa a través de una nube atómica. Conforme el número de átomos se incrementa en el paso de la luz, la cantidad de esta que será absorbida se incrementará en una forma predecible.

Esa nube de átomos, es producida por la adición de suficiente energía térmica a la muestra para disociar los compuestos químicos en átomos libres. La facilidad y la velocidad a la cual se pueden hacer determinaciones exactas y precisas utilizando esta técnica, han hecho que la absorción atómica sea uno de los métodos más populares para la determinación de metales.

La absorción atómica se basa en la absorción de luz por los átomos. Todos los átomos pueden absorber luz, pero sòlo a ciertas longitudes de onda correspondientes a los requerimientos de energía de cada átomo.

1.2.1. Relación entre absorción atómica y concentración atómica.

La relación entre absorción y concentración se define en las leyes fundamentales de absorción de luz:

Ley de Lambert. - La porción de luz absorbida por un medio transparente, es independiente de la intensidad de la luz incidente.

Ley de Beer. - La absorción de luz es proporcional al número de especies que absorben en la muestra.

La absorbancia es proporcional a la concentración para una sustancia a una longitud de onda dada.

La absorción atómica, mide la absorción de soluciones donde la concentración es conocida y entonces se comparan esos resultados con la absorbancia de la muestra desconocida.

1.2.2. Bensitividad y límites de detección.

Sensitividad.- Es la concentración requerida para producir una absorción de 1%; o en términos de unidades de absorción la sensitividad viene a ser los microgramos del elemento por mililitro, que den una absorbancia de 0.0044.

Los valores de sensitividad para determinadas condiciones instrumentales, son generalmente dadas para un instrumento y permite a un operador, determinar si las condiciones instrumentales estan optimizadas y si el instrumento está rindiendo de acuerdo a sus especificaciones.

Limite de detección. -Se define como la concentración que haga el cociente señal-ruido igual a 1.

Los términos "sensitividad" y "límite de detección" describen dos características de rendimiento instrumental en absorción atómica. La sensitividad es una convención para definir la pendiente de la curva de calibración con respecto a la concentración de cada elemento.

Beaty (1979) reportó que para la absorción atómica con llama se le expresa en términos de la concentración del elemento en microgramos por mililitro requeridos para producir una absorción de 1%, la sensitividad viene a los microgramos del elemento por mililitro que den una absorbancia de 0.0044, como se muestra a continuación:

Conc. de patron Sensitividad
Abs. medida 0.0044

donde:

Sensitividad = Conc.x 0.0044
Abs.medida

Los valores de sensitividad para determinadas condiciones instrumentales, son generalmente dadas por el aparato o instrumento.

La sensitividad permite al operador determinar si las condiciones instrumentales estan optimizadas y el instrumento esta rindiendo de acuerdo a sus especificaciones, simplemente midiendo la absorbancia de una concentración conocida y comparando el resultado con el valor esperado.

Un valor conocido de la sensitividad también permite predecir el rango de absorbancia que sera observada por un rango conocido de concentración o determinar el rango de concentraciones que producirá niveles de absorbancia óptima. No da información sobre la absorbancia mínima que pueda ser medida. El factor limitante en la medida de pequeños valores de absorbancia, estan dados por el ruido o fluctuaciones de la línea de base.

Por tanto la sensitividad define solo el tamaño de la señal de absorción. Sirve como referencia para optimizar el instrumento conociendo la sensitividad también es posible determinar la concentración óptima de la muestra para análisis.

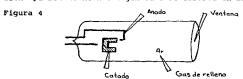
Trazado del límite de detección.

El límite de detección incorpora consideraciones tanto del tamaño de la señal como el ruido de la línea de base para que de esta manera, obtener una indicación de la más baja concentración que haga el cociente señal-ruido igual a 2.

El método de absorción atómica consiste en hacer incidir a una nube electrónica de un cierto elemento una fuente de luz monocromática cuya longitud de onda sea equivalente a niveles energéticos superiores, la cantidad de luz absorbida es proporcional al número de átomos presentes el vapor. La señal luminosa después de pasar por un monocromador donde se selecciona la longitud de onda adecuada, es recogida por un fotomultiplicador a través de el cual esta señal es amplificada y enviada a un registrador donde es leida la absorbancia.

1.2.3. Instrumentación de absorción atómica.

Componentes de un espectrofotómetro de absorción atómica:


- Fuente de luz.
- Celda de muestreo.
- Medio de medir luz específica.

La fuente de luz más usada es la "LAMPARA DE CATODO HUECO" esta diseñada para emitir el espectro atómico de un elemento. También se requiere que la radiación de la fuente sea modulada (encendido y apagado rapidamente), para suministrar una forma de amplificar selectivamente la luz de la lámpara de la fuente e ignorar la emisión de la llama de la celda. Se hace necesario generar un vapor atómico en el paso de el rayo de luz de la fuente. Esto se obtiene generalmente al introducir la muestra en un quemador que se encuentre en el espectrofotómetro.

Para la medición de la luz específica. Un monocromador que dispersa las distintas longitudes de onda de la luz que es emitida de la fuente y separa la línea particular. La selección de una fuente específica y de una longitud de onda particular de aquella fuente, es lo que permite que se pueda efectuar la determinación del elemento seleccionado en presencia de otros. La longitud de onda aislada por el monocromador incide directamente sobre el detector, que sirve como el "ojo " del instrumento. Este es un tubo fotomultiplicador, que produce una corriente eléctrica que deponde de la intensidad de la luz incidente.

Fuentes de la luz para poder medir esta absorción de bandas tan angostas con la máxima sensibilidad, es necesario usar una fuente que emita longitudes de onda muy específicas que puedan ser absorbidas por el átomo.

La lámpara de cátodo hueco es una excelente y brillante fuente de energía discreta para la mayoría de los elementos determinados por absorción atómica. El cátodo de la lámpara es un cilindro hueco, cuyo espectro debe producirse. El ánodo y el cátodo se encuentran en un cilindro de vidrio sellado y lleno ya sea de neón o argón como se observa en la figura 4.

Cuando se aplica un potencial eléctrico entre el ánodo y el cátodo, alguno de los átomos del gas de relleno se ionizan. Los iones cargados positivamente se aceleran a través del campo eléctrico y colisionan con el cátodo cargado negativamente, desalojando átomos metálicos individuales del mísmo en un proceso llamado "desalojo".

Las lámparas de cátodo hueco tienen un tiempo de vida media finito.

Las lámparas para metales volátiles tales como el arsénico y cadmio se envejecen más rápidamente debido a la rápida vaporización del cátodo durante el uso, pueden tener asimismo, una vida limitada aún cuando no se esten utilizando y que no esta relacionada al tiempo de uso.

El cátodo hueco de la lámpara se constituye usualmente de un metal altamente puro, lo que resulta un espectro de emisión muy puro.

El sistema de quemador es la técnica más ampliamente usada de la absorción atómica, es la aspiración directa en la llama de la solución de la muestra. En este sistema de pre-mezcla, la solución de la muestra es aspirada a través de un nebulizador que genera un aercosol fino, dentro de una câmara de mezcla con los gases combustibles y oxidantes y luego es llevado a la cabeza del quemador en donde ocurre la combustión y la atomización de la muestra.

El gas combustible es introducido a la cámara de mezcla a través de la entrada correspondiente y el oxidante entra a través del brazo lateral del nebulizador. Esto permite que los ajustes del flujo del oxidante sean efectuados por medio de la línea auxiliar, mientras que el flujo a través del nebulizador permanece constante.

1.2.4. Control de interferencias analíticas.

1.- Interferencia de matriz

Se refiere a la muestra tenga una tensión superficial diferente a la de los patrones, por lo que el número de átomos en el rayo de luz no será el mismo y por consiguiente, la absorbancia no se podrá correlacionar.

Una forma de compensar este tipo de interferencias es por medio de un ácido o cualquier otro reactivo, añadido a la muestra durante su preparación.

2.- Interferencia química

En este tipo de problema se debe disponer de suficiente energía para disociar la molecula y crear átomos libres. Si la muestra contiene un componente el cual forme un derivado térmicamente estable esté no será descompuesto por la energía disponible.

3.- Interferencia por ionización.

Si se aplica energia adicional, el electrón en un átomo puede ser completamente removido del átomo originando un ion, estos rearreglos electrónicos disminuyen los átomos disponibles y por tanto se reducirá la absorción atómica a la longitud de onda de resonancia, y da origen a una interferencia por ionización.

Los efectos de la ionización pueden ser eliminados por la adición de 2000 μ g/ml a 5000 μ g/ml de un elemento que sea muy fácil de ionizar a todas las soluciones patrón y muestras.

1.2.5. Bistema de generación de hidruros.

En esta técnica los hidruros gaseosos de ciertos metales son producidos por la adición de borohidruros de sodio a 25 ml de muestra en un frasco de reacción. Los hidruros son arrastrados por argón hacia una celda de cuarzo calentada.

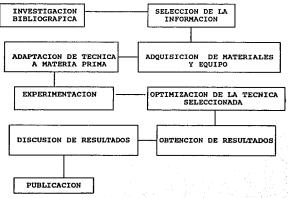
Los elementos determinables utilizando la técnica de generación de hidruros gaseosos son de importancia ambiental o de interés toxicológico, por lo que sus bajos límites de detección hacen que estos métodos sean atractivos para este tipo de aplicación.

1.2.6. Atomización en la flama.

La mayoría de los análisis por absorción atómica se realizan en atomizadores de flama. Aquí, la muestra en forma líquida se reduce a una neblina de finas gotas que luego se introducen a la flama donde reacciones químicas a alta temperatura destruyen cualquier tipo de materia orgánica en la muestra y disocia los compuestos inorgánicos hasta átomos libres, los cuales absorben la luz de una longitud de onda específica.

Con este procedimiento, es posible determinar los elementos a concentraciones mínimas (partes por millón o menos). Para tal efecto, es necesario tener a los elementos de interés en una solución homogonea de viscosidad razonable. Las soluciones acuosas o ácidas son excelentes.

DESARROLLO EXPERIMENTAL CAPITULO II



2.1. PRESENTACION EXPERIMENTAL.

Teniendo como referencia al diagrama de bloques (figura 5) se resume el presente estudio:

- 1.- Investigación bibliográfica.- Recopilación de infomación relacionada con técnicas, límites de detección e información general sobre los metales de interés.
- 2.- Adaptación de técnica.- Una vez elegida la técnica, se harán un número suficiente de repeticiones para óptimizarla.
- 3.- Aplicación de métodos.- Se hará la mineralización ácida en cada materia prima hasta que se tengan los metales en solución y así poder leerlos en el espectrofotómetro de absorción atómica (cuantificación).
- 4.- Resultados y conclusiones.- De acuerdo a los resultados se obtendrá para cada tipo de muestra analizada la ingesta semanal tolerable (I.S.T.) o alguna otra tolerancia reportada por los organismos nacionales o internacionales como la F.A.O., O.M.S., I.N.N.S., etc en base a 70 Kg de peso corporal.

Figura 5 Diagrama de bloques de la presentación experimental.

2.2. MATERIALES.

2.2.1. Descripción de las muestras.

Las muestras fueron recolectadas en diferentes delegaciones de la Ciudad de México incluyéndose tiendas de autoservicio, mercados y central de abastos " La Viga " (en el anexo I se señalan los lugares elegidos asi como su

Las variedades seleccionadas para este estudio son: bagre, mojarra, almeja, ostión, atún y sardina, siendo las dos últimas en aceite vegetal y enlatadas.

Se eligieron aleatoriamente 10 mercados públicos y 5 tiendas de autoservício; de éstos se eligió un puesto al azar, adquiriendose en cada uno tres bagres y tres mojarras (fresco, entero, eviscerado y sin escamas).

Para el caso de el ostión (desconchado) se compró un total de 15 frascos. En cada puesto se compró un frasco considerándose al contenido del frasco como una muestra representativa. El peso neto fué de 315 g, el peso drenado de 245 g y 20 % de agua.

En cuanto a la almeja, se escogió la tipo " Chirle " porque es la que se encuentra en mayor parte de puestos tanto en " La Viga " como en los supermercados siendo ésta la más común y económica. Se recolectó aproximadamente 1 Kg en cada uno de los 15 puestos, considerándose como muestra representativa. La almeja fué adquirida en su concha.

Por otra parte para la compra del atún y la sardina se eligieron tres marcas con claves "y ", "t" y "l" para el atún se adquirieron 30 muestras en tiendas de autoservicio. La recolección de realizo de tal forma que el lote de producción fuera diferente para cada muestra. Para la sardina por no presentar lote de producción, se adquirieron al azar 15 muestras en una tienda de autoservicio y 15 muestras en un mercado público (el anexo II muestra número de lotes y nombres de las claves).

- 1.- Cajas petri.
- 2.2.2. Material de laboratorio.

 1.- Cajas petri.
 2.- Embudo talle corto.
 3.- Espátula.
 4.- Frascos de vidrio con tapón.
 5.- Matraces aforados de 25 de 100 y de 1000 ml 4.- Frascos de vidrio con tapón.
 5.- Matraces aforados de 25, de 100 y de 1000 ml. 5.- Matraces aforados de 25, de 100 y de 1000 ml.
 6.- Matraz kjeldahl de 100 ml.
 7.- Micropipetas de 20, 50 y 100 μl.

 - 8.- Papel filtro poro fino.
 - 9.- Cuerpos de ebullición.

- 1.- Acido nítrico grado analítico.
- 2. Acido perclórico grado analítico.
- 3.- Acido clorhídrico grado analítico: al 1.5%.
- 3.- Acido clorhídrico grado analitico: al 1.3..
 4.- Borohídrico de sodio: al 3% en hidróxido de sodio: al 1%..
 5.- Gas acarreador:aire-acétileno y aire-nitrogeno.
 6.- Agua bidestilada.
 2. Paragrapho de notamio: al 5%.

- 7.- Permanganto de potasio: al 5%.

2.2.4. Aparatos.

- 1.- Espectrofotómetro de absorción atómica. PERKIN-ELMER. modelo 2380
 - a)Lámpara de arsénico cátodo hueco.
 b)Lámpara de cadmio cátodo hueco.
 c)Lámpara de mercurio cátodo hueco.
- 2.- Balanza analítica. METTLER modelo TYPE B5 No.199097.
- 3.- Estufa. EELISA modelo FE 291 No.279939. 4.- Parrilla para microkjeldahl. AMINCO No.2466
- 5.- Congelador, FRIGIDAIRE

2.3. METODOS.

2.3.1. Lavado de material.

Todo el material de vidrio fué lavado previamente con ácido nítrico concentrado durante 12 Horas para solubilizar metales evitando interferencias con la muestra, posteriormente se lavó con agua bidestilada.

2.3.2. Preparación de muestras.

El bagre y la mojarra se secaron hasta obtener peso constante, se analizó sólo la parte comestible. Cada una de las muestras obtenidas se analizó por triplicado

La almeja se extrajo de su concha y se colocó en cajas petri para secarla, no se incluyo la membrana (manto) con la que viene pegada a la concha. Un 90 % de la almeja se encontró sucia; es decir, tenía lodo, arena y agua sucia. Se lavo muy poco para tratar de reflejar la poca higlene que se maneja en los centros de consumo popular. Se recolectaron muestras con concha, entera y sin lavar.

La concha representa un 85 % y la parte comestible un 15 %. Un cuarto de kilo (de cada puesto) se congela como reserva y los tres cuartos restantes se dividen para análisis por triplicado (secandose posteriormente).

Para la preparación del ostión se dreno el agua y se procedio a colocarlo en cajas petri (aproximadamente de 5 a 8 ostiones por caja) secandose a temperatura de 100°C durante 24 Horas.

De las muestras recolectadas que contiene 20 % de líquido y 245 g de parte comestible; una cuarta parte del producto se congela como reserva y las tres cuartas partes restantes se dividen para análisis por triplicado (secandose posteriormente).

El cuadros 9 muestra las características del pescado y marisco adquirido.

Cuadro 9 Características del pescado y marisco muestreado.

TIPO	PRESENTACION	n P	ESO HUMEDO	(g)
Bagre ^d	fresco	15	24,88	12,30
Mojarra ^d	fresco	15	31,05	9,22
Almeja	fresco	15	57,11	14,10
Ostión	fresco	15	31,73	12,61

n = tamaño de la muestra ; x = promedio de muestras

s = desviación estandar ; d = parte comestible (filete)

Antes de abrir las latas de atún y sardina se lavaron las tapas para eliminar la posible interferencia con los metales en estudio, en especial el plomo ya que es el que se encuentra en mayor proporción en estos productos.

Se eliminó el aceite quardandose para posterior análisis.

El atún fué secado en cajas petri a una temperatura de 60°C durante 24 Horas y la sardina a una temperatura de 70°C durante 48 Horas también en cajas petri.

El cuadro 10 muestra las características de sardina y atún analizados. De cada lata de dreno el aceite, la mitad del contenido de la parte comestible se seco, la mitad restante se congelo para reserva.

Cuadro 10 Características de sardina y atún muestreado.

PRODUCTO	MARCA	TAMAÑO DE MUESTRA LATASª	PESO DRENADO ^b (g)	PESO HT	
Sardina en aceite de oliva	у*	15	125	42,47	6,70
Sardina en aceite de oliva	t*	15	125	42,65	7,15
Atún en aceite de oliva	у*	15	198	29,51	4,39
Atún en aceite de oliva	1*	15	198	27,80	3,92

^{*} En el anexo II se muestran las claves

a = latas por mercado

b = peso reportado por fabricante

2.3.3. Método de mineralización ácida *.

Se pesar 1 g de muestra seca en un matraz kjeldahl; agregar 10 ml de ácido nítrico concentrado reposando en premineralización de 10 a 12 Horas a temperatura ambiente. Se adicionan cuerpos de ebullición y se calienta en una parrilla microdigestora de 20 a 30 min. (hasta que no se forme espuma), se enfria a temperatura ambiente agregandose 6 ml de ácido perclórico concentrado, se calienta hasta completar la destrución de la materia orgánica, seguir el calentamiento hasta que la solución sea traslúcida.

Se prosique a filtrar la solución en caliente, aforando a 25 ml con agua bidestilada y desionizada y se procede a leer.

La mezcla de ácidos para la mineralización de 1 g de muestra es de 16 ml de ácido nítrico-ácido perclórico en una proporción de 3:2 .

Agemian et. al (1980) y Anderson J (1972).

2.3.4. Métodos de mineralización ácida para aceite vegetal $^{\circ}$.

Se pesa 2 g de la muestra de aceite (atún o sardina). Se agregan 8 ml de ácido nítrico dejandolo predigerir durante 10 Horas a temperatura ambiente; se calienta lentamente, adicionandose la mezcla de ácido nítrico-perclórico en proporción 3:2 para la total mineralización. Se procede como el método anterior.

Dufek y List (1977).

2.3.5. Calibración del aparato.

2.3.5.1. condiciones de trabajo.

Perkin-Elmer, (1979) reporta las condiciones de trabajo para cadmio y plomo por flama:

	Cadmio	Plomo
LONG. ONDA (nm): APERURA	228.800	217.80
ESPECTRAL:	0.700	0.70
EXPANSION: SENSITIVIDAD (mg/L):	1.000 0.028	1.00 0.19
SENSITIVIDAD CHECK (mg/L): RANGO LINEA (mg/L):	1.500 2.000	9.00 20.00

Perkin-Elmer, (1979) reporta las condiciones de trabajo para arsénico y mercurio por generador de hidruros:

	Arsénico:		Mercurio:	
	MHS-10		MHS-10	質点点
FORMA:	NaBH*		NaBH*	
PURGA I (s):	25		5	4000
REACCION (s):	10	4.0世界政治的	10	经银币
PURGA II (s):	40		40	12
TEM. CELDA:	200°C		900°C	
LONG. ONDA (nm):	193,7		253,6	distriction is
APERTURA				# 15.5
ESPECTRAL(nm):	0,7		υ,7	
SENSITIVIDAD	005		0 005 (1	
CHECK: 10 ml 0,	005 μg/ml As	10 ml	$0,025 \mu g/ml$	нд

(50 nd) da una absorben- (250 ng) da absorbencia de \approx 0,2 cia de \approx 0,2

2.3.5.2. Estandarización del aparato.

Beaty,(1979) reportó que la calibraciones del instrumento se efectuan al iniciar las mediciones y periódicamente durante el análisis, esta calibración se realiza corriendo una serie de patrones y un blanco, este último con el objeto de hacer una correción por fondo.

El proceso de calibración es el siguiente:

- 1.- Curva para arsénico, mercurio, cadmio y plomo (tomando como referencia la solución de 1000 mg/Kg).
- 2.- Lectura a diferentes concentraciones de la curva.

2.3.5.3. Preparación de soluciones patrón.

- Cadmio: 1,000 ± 0,002 g Cd. (cloruro de cadmio en agua) (Ampolleta Estandar de Cadmio 9960 Tritisol. MERCK) Aforar a 1 L con agua bidestilada.
- Plomo : 1,000 ± 0,002 g Pb (nitráto de plomo en agua) (Ampolleta Estandar de Plomo 9969 Tritisol. MERCK). Aforar a 1 L con agua bidestilada.
- Arsénico:1,000 ± 0,002 g As (pentóxido de arsénico en agua) (Ampolleta Estandar de Arsenico 9939 Tritisol.MERCK). Aforar a 1 L con aqua bidestilada.
- Mercurio:1,000 0,002 g Hg (cloruro de mercurio en agua) (Ampolleta Estandar de Mercurio 9965 Tritisol. MERCK). Aforar a 1 L con agua bidestilada.

2.3.5.4. Preparación de curva patrón.

Para la obtención de valores de concentración fué necesarlo elaborar curvas de calibración, expresadas en los cuadros 11, 12 y 13.

De una concentración de 1000 mg/L de cadmio, se tomo 0.1 ml y se aforo a 100 ml para tener una concentración de 1 µg/ml, se tomo una alicuota de 0.1, 0.5 y 1.0 ml aforando a un volumen de 100 ml con agua bidestilada y desionizada para tener la concentración deseda.

Cuadro 11 Curva de calibracion de cadmio

Absorbancia	Concentración, (mg/L)		
0,260	1,0		
0,130	0,5		
0,030	0,1		
0,003	0,0		

a= Preparado a partir de una solución patron de cadmio MERCK.

Para plomo se partió de una concentración de 1000 μ g/ml. Se tomo 0.1 ml y se aforo a 100 ml para tener una concentración de 1 μ g/ml, de esta solución se tomaron alicuotas de 1, 2 y 5 ml aforando a 100 ml con agua bidestilada y desionizada para tener la concentración deseada.

Cuadro 12 Curva de calibración de plomo

Absorbancia	Concentración (mg/L)		
0,200	5,00		
0,078	2,00		
0,036	1,00		
0,002	0,00		

a= Preparado apartir de una solución patron de plomo MERCK. Para arsénico y mercurio se partio de una concentración de 1000 μ g/ml, se tomo 0.1 ml y se aforo a un volumen de 100 ml para tener una concentración de 1 μ g/ml. De esta solución se tomaron alicuotas de 20, 50, 100 y 200 μ l aforandose cada solución a un volumen de 100 ml con agua bidestilada y desionizada.

Cuadro 13 Curva de calibración de arsénico y mercurio

Absorbancia	Concentración ^a				
	0	20	50	100	200
Arsénico	0,003	0,066	0,169	0,286	
Mercurio	0,003	0,015	0,035	0,067	0,146

a= Preparado a partir de una solución patron de arsénico y mercurio MERCK.

2.3.5.5. Lecturas.

Para cada concentración se tomaron lecturas por triplicado y se obtuvo promedio. Los valores son expresados directamente por el espectrofotómetro de absorción atómica como concentración. Con un microcomputador que calibra los datos de absorbancia. En la región líneal los datos de una solución patrón y blanco son suficientes para definir la relación entre la concentración y la absorbancia.

2.3.6. Validación de metodología de la recuperación del método de análisis.

De la solución patron de 1000 µg/ml de cadmio, plomo, arsénico y mercurio se tomo 0.1 ml aforando a 100 ml. De esta solución se tomo 1 ml y fue adicionado directamente a un gramo de muestra. El procedimiento de análisis fué igual al descrito anteriormente (método de mineralización ácida).

RESULTADOS

CAPITULO III

RESULTADOS.

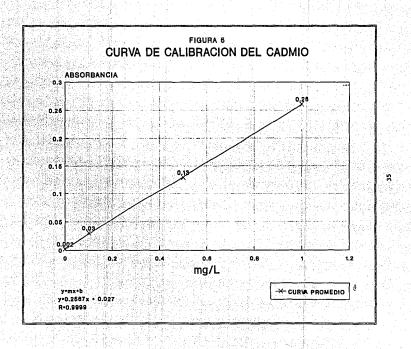
3.1. Humedad.

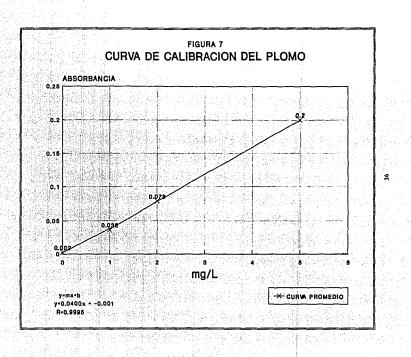
El contenido de humedad reportado en porciento (P/P) de las 6 variedades analizadas se encuentran en el cuadro 14. (Estos valores son valores promedio).

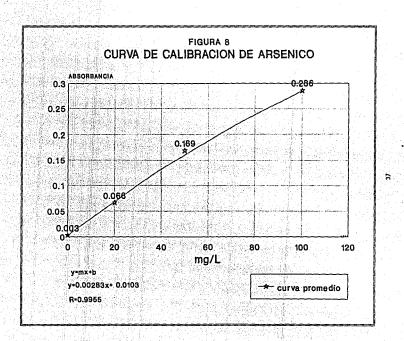
Cuadro 14 Humedad de las muestras expresadas en g agua/100 g muestra.

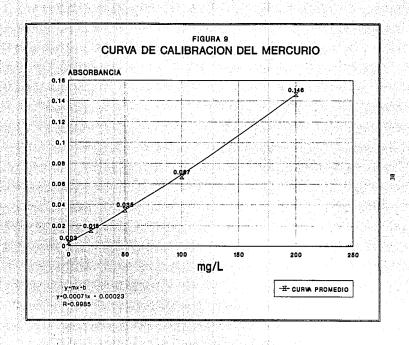
MUSTRA	PESC	HUMEDO		SECO	% 40M	EDAD
	×	s	×	8	×	s
Bagre ^a	27.93	25.62	5.78	2.89	79.30	6.67
Mojarra*	31.59	12.72	6.60	2.65	79.10	2.67
Almeja	32.54	7.45	6.90	3.18	78.12	5.39
Ostión	57.71	14.57	4.18	1.28	92.75	1.70
Atún ^y	29.51	4.39	9.90	2.40	66.45	3.64
Atún ^t	28.13	2.97	9.31	1.03	66.90	1.63
Sardina	43.03	6.43	17.10	4.43	60.26	6.15
Sardomat	43.31	7.35	16.98	2.77	60.79	1.45

a = parte comestible (filete)


b = promedio


c = desviación estandar


3.2. Curvas de calibración.


Para obtener los valores de concentración fué necesario elaborar curvas de calibración para cadmio, plomo, arsénico y mercurio, estas se representan en las figuras 6, 7, 8 y 9 respectivamente. Los cuadros 15, 16, 17 y 18 muestran los valores individuales y promedio de absorbancia y concentración para cadmio, plomo, arsénico y mercurio.

Todas las lecturas detectadas por el espectofotómetro de absorción atómica de las muestras analizadas entran en el rango de linearidad de las curvas.

Cuadro 15 Valores de absorbancia para curva patron de cadmio.

CONCENTRACION (mg/L)	ABSORBANCIA	PROMEDIO	
0,0	0,003	0,003	
0,1	0,026 0,030 0,030 0,034	0,030	
0,5	0,124 0,130 0,137 0,137	0,130	
1,0	0,265 0,270 0,258 0,250	0,260	

Cuadro 16 Valores de absorbancia para curva patron de plomo.

CONCENTRACION (mg/L)	ABSORBANCIA	PROMEDIO
0,0	0,002	0,002
1,0	0,300 0,035 0,040 0,042	0,036
2,0	0,075 0,068 0,095 0,075	0,078
5,0	0,190 0,195 0,205 0,210	0,200

Cuadro 17 Valores de absorbancia para curva patron de arsénico.

	a and a second of a special	a and a right a
CONCENTRACION (ng)	ABSORBANCIA	PROMEDIO
0	0,003	0,003
20	0,066 0,067 0,073	0,066
50	0,171 0,173 0,173	0,169
100	0,279 0,289 0,299	0,286

Cuadro 18 Valores de absorbancia para curva patron de mercurio.

CONCENTRACION (ng)	ABSORBANCIA	PROMEDIO
0	0,003	0,003
20	0,015 0,015 0,016	0,015
50	0,035 0,039 0,032	0,035
100	0,072 0,066 0,064	0,067
200	0,141 0,145 0,146	0,146

3.3. Sensitividad ajustada y cantidad no detectable por el espectrofotómetro (N.S.D.).

Para tener los valores de concentración en el mismo rango de linearidad se descartaron datos obtenidos experimentalmente; de acuerdo a la sensitividad detectada por el espectrofotómetro para cadmio, plomo, arsénico y mercurio que reporta MERCK, se tomaron en cuenta los siguientes parámetros:

- 1.- Peso de muestra seca 1 q .
- 2.- Aforo de muestras mineralizadas a 25 ml .
- 3.- En el caso de generador de hidruros se tomo en la alicuota (1 ml) adicionada al frasco de reacción.
- 4.- De acuerdo a la siguiente ecuación (1), se cálculo el valor mínimo aceptable como detectable bajo las condiciones de trabajo, recomendadas y aceptadas como confiables propuestas por PERKIN-ELMER.

5.- Se siguio la misma ecuación (1), pero la sensitividad, se representa ahora como la lectura directa del aparato (µg/ml para cadmio y plomo y absorbancia para arsénico y mercurio), en esta ecuación se incluye directamente el peso de la muestra.

De acuerdo a Spiridonov (1973), para manejar valores estadisticos umbrales, se considera a N.S.D. como la mitad del valor mínimo detectado instrumentalmente. Ejemplo para plomo en bagre (cuadro 21):

Limite de sensitividad 0,19, por tanto, 0,095 se evalua

$$0,095 \times 25 \times 100$$
 $0,000237 \times 10^4 = 2,37 \mu g/g$ 1×10^6

Siendo entonces 2,37 el valor estadístico corregido que se toma en lugar de N.S.D. Considerando sólo los valores de 6,51; 7,58; 9,25; 8,24; 9,48; 5,23 da una media de 7,715 1,49 , pero se agrega 2,37 en lugar de N.S.D. entoncés el valor promedio (x) es de 4,51 ± 2,88. Es decir, que ante la incertidumbre que no exista plomo en valores abajo de 5,0 µg/g se prefiere tomar la sensitividad ajustada como 2,37 y calcular un valor más cercano a la realidad, ya que si N.S.D. fuera cero la media será 3,09 ± 3,895. El procedimiento se repite para los demás casos

Los datos se reportan en el Cuadro 19.

Cuadro 19 Valores analíticos empleados como referencia para la eliminación de datos que representan interferencia instrumental (ruido).

	Cadmio	Plomo	METAL Arsénico	Mercurio
Sensitividad ¹ (mg/L)	0,028	0,190	250	50
Valor corregido de sensitividad (mg/L)	0,70	4,75	0,00625	0,00125
Compensación ²	1 57.1	i i gradani.		
Porcentaje	7,00	5,30		
Sumar	0,05	0,25		
Criterio para eliminar ³ (mg/L)	0,75	5,00		

- 1 = Valor límite inferior de detección tomado del manual PERKIN-ELMER .
- 2 = Se refiere al ajuste necesario para la variabilidad de la lectura observada directamente en la carátula. Es decir, la falta de estabilidad de un valor numerico en la pantalla, por lo general se observa una variación de aproximadamente 0,006 unidades de absorbancia.
- 3 = Después de los ajustes anteriores los valores que estan por abajo de 0,75 mg/L para cadmio serán considerados como no detectables y para plomo los que estan por debajo de 5 mg/L serán no detectable. Para arsénico y mercurio no se corrige ya que los valores de absorbancia de las muestras entran por arriba del mínimo detectable.

3.4. Cuadro de valores promedio de concentración.

De los valores interpolados individualmente se realizó un cuadro por metal, se encuentran en el anexo III; de estos valores se hizo un promedio, representados en los cuadros 20, 21, 22 y 23.

	CUADRO	20	DE ABSO	RCION A		ARA CO	NCENTRA	TROFOTOME		
	MERCÁDO	BAGRE	MOJARRA	ALMEJA	OSTION	ATUNV	ATUNI	SARDIMAY	SARDINAT	
		NSO	NSD	0.82	0.93	NSD	NSD	NSD		
	8	NSD	NSD	1,03	NSD	130	NSD	NSD		
	C	NSD	NSD	NSD	5.84	NSD	NSD	MSD	NSO	
	U	NSD	NSD	NSD	11.84	NSD	NSD	NSD	NSD	
	E	NSD	NSD	3.93	12.97	MSD	NSD	NSD	NSD:	
100	F	NSD	NSD	NSD	15.31	NSD	MSD	NSD	NSD	
	G	NSD	NSD	NSD	4.89	NSO	NSD	NSD	NSD	
	a kat H illian Kapat P erili	NSD	NSD NSD	1,32	17.6A 7.20	NSD	NSD NSD	NSD NSD	NSD	
		NSD	NSD	1.66	1.15	NSD	NSD	NSD	NSD	
	*	NSD	NSO	NSD	18.63	MSD	NSD	NSD	NSD	
		NSD	NSD	1.04	6.21	4.25	NSD	NSD	NSD	
		NSD.	NSD	- 3,53	5.54	3.75	NSD	MSD	NSD	
400	- N	NSD	NSD	MSD	6,14	NSD	NSD	NSD	NSD	
	0	NSD	NSD	NSD	17.21	NSD	3.66*	NSD	NSD	
	×	NSD NSD	NSD NSD	15 1,13 1,14	15 8.79 6.31	15 0.84 1.28	NSD NSD	NSD NSD	NSD NSD	

^{*} Este valor no se tomo en cuenta por posible contaminacion.

⁻ Pescado y marisco fresco.

Pescado v marisco fro
 Producto procesado.

N.S.D. Cantidad no detectable.

Cuadro 21 VALURES PROMEDIO OBIENIDOS POR ESPECTROFOIOMETRIA
DE ABSORCION ATOMICA PARA CONCENTRACION DE PLOMO.
(ug Pb / g de muestra)

HERCADO	BAGRE	MOJARRA	ALNEJA	05110N	ATUNY	ATUNI	SARDINAV	SARDINAT
•	σ 🧠 💮		σ.	σ	•	•	•1.00 div	1
A state of the state of	6.51	5.10	7,24	9.83	NSD	NSD.	6.14	NSD
Na Tigar •Na Jawai	NSD	NSD	8,75	8.30	N5D	NSD -	7,16	NSD
	5.85	6.44	12,81	5,77	N5D	NSD.	8.50	NSD
,	8,25	5.38	7.35	5,41	NSD	NSD:	NSD	NSD
E	NSD	5.46	10.92	15,92	NSD	NSD	NSD	NSD
	NSD	NSO	7,44	9,85	6,17	NSD	6,17	NSD
	NSD	7,13	11,15	9,57	5,29	NSD	8.25	NSD
	NSD	6.58	5,31	8,24	5,53	NSD	NSD	NSD
	NSO	NSD	8,21	11,10	NSD	N SD	NSD	NSD
	N50	6,97	9,82	13,69	7,49	NSD	NSD	NSO
	NSD	5.75	9,12	11.84	NSD	NSD	5.42	NSD
	MSD	6.04	5,31	5.16	NSD	NSD	NSD	NSD
	6.25	7 , 64	11,04	7.78	NSD	NSD	NSD	NSD
	5.02	6,85	8,72	8,91	NSD	NSD	NSD	NSD
,	NSD	NSD	7.44	8.07	NSD	NSD	N5D	NSD
):	15	15	.15			15	15	15
	NSD NSD	5.26	8.78	9.30	NSD	NSO	NSD NSD	NSD NSD

Anexo L

Pescado v marisco fresco.

[#] Producto procesado.

N.S.D. Cantidad no detectable.

Cuadro 22 VALORES PHOMEDIO OBTENIDOS POR ESPECTROFOTOMETRIA DE ABSURCION ATOMICA PARA CONCENTRACION DE ARSENICO, (149 As / 9 de muestra)

MERCADO	BAGRE_	MOJARRA	ALMEJA	05110N	ATUNY	ATUNE	SARDINAV 8	SARDIHAT	
Α	0.82	0.05	0,25	0,10	0.47	0,36	1,43	2.28	
8	0.14	0,05	0,08	0.00	0,46	0,71	1.39	2,20	
c	0.15	0,79	0.05	0,07	0,58	0,97	2,33	2,02	
D	0,14	1.48	0,04	0.06	0,67	0,72	2,51	2.14	
€	0,13	0,45	0.12	0,08	0,83	0.58	2,48	2,34	
F	0,07	0,07	0.05	0,09	0,85	0,68	2,58	2,38	
G	0,11	0,12	0,08	0,05	0,55	0,87	1,78	1,87	
н	0,37	1,45	0.05	0.09	0,77	0,57	2,81	2.10	
1	0,11	0,09	0,03	0,05	1.02	41,17	2,45	2,47	
J	1,01	0.06	0,08	0.10	0,53	1,60	2,38	1.98	
K	0,08	0,81	0,08	0.08	0,46	0,73	2,41	2.61	
L	0,17	0,12	0.08	0,05	0.58	0,69	2,45	2,37	
	0,14	1.63	0,09	0,04	0,72	0,75	2,03	2,22	
N	0,13	0,10	0,05	0.09	1,27	0,67	2.38	2,12	
0	0,16	0.07	0.08	0,10	0,70	0,66	2.46	2,30	
o Y	15 0.25 0,28	15 0,49 0.58	15 0,08 0,05	15 0.07 0.02	15 0,70 0,23	15 0.78 0.29	15 2.24 0.40	15 2.22 0,18	

^{*} Anexo I.

* Pescado v marisco fresco.

* Producto procesado.

N.S.D. Cantidad no detectable.

N.S.D. Cantidad no detectable.

		6. Jan			9胎 点	35 53	arti.		
	Partie				Personal Per	¥ 147			
							Miller.		Partie of the
4.50									
	Cuadro							OF OTOME I	
		DI	ABSORC	LON ATO	HICA PA	RA CONC	ENTRA	TON DE N	ERCURIO.
der bit			7547 4				liby at		1000
	MERCADO	BAGKE	NOJARRA	ALMEJA	OSTION	ATUNV	ATUNI	SARDINAV	SARDINAT
		7 ACC - 170					•		***
		0.35	0,21	NSD	0,62	1,50	0.95	0.02	NSD
2675 197	8	0.49	0.17	0,08	0.29	1.47	0.39	0.05	0.05
gigalij.	c	0,58	NSD	0,09	0.56	0,42	0,96	0.06	0.05
	1140400	8857 BH			With the		1.5(54)	医结节 化特别	0.08
	0	0.90	0.12	0.08	0.16		1,62		告題(4本年の)
	E	0.54	NSD	0.21	1,10	0,17	0.38	0.02	0.07
	F	0.66	NSD	0.10	0.76	1,56	0,62	NSD	0.07
	G	0,86	NSD	0,13	0,18	1,33	0,28	0,01	0,10
See all	н	0,63	NSD	0,12	0.47	1,42	1,24	NSD	0,09
	1	0,72	0,14	0.16	0,38	0,80	0,18	NSD	0.05
her al	17049						445		
博用菜	J	0,93	0,16	0,10	0,60	1,78	0,12	NSD	0.06
	K	0.52	0.19	0.10	0.77	1.38	2,32	NSD	0,03
	· ·	1,22	0,08	0.12	0,15	0,25	1,08	NSD	0.09
	H	0.07	0,05	0.13	0,14	1,44	0.83	NSD	0.04
退付 背	N	0,18	NSD	NSD	0.15	1.07	0.12	NSD	0,13
					- 10 T		li Mara III		
784 kg	0	0,12	NSD	0,10	1,49	0.51	0,13	0,13	0,05
		15	15	15	15	15	15	15	15
		0.58		0.10	0.52	1,04	0.75	0,02	0.06
						0.54	0,63	0.03	0.03

N.S.D. Cantidad no detectable.

46

3.5. Valores de concentración obtenidos de un promedio

Para facilitar los cálculos de ingesta se realizo un promedio de los resultados reportados de los cuadros 20 al 23, estos promedios se encuentran en el cuadro 24.

Cuadro 24 Valores de concentran-14. Para facilitar los cálculos de ingesta se realizó un

Cuadro 24 Valores de concentración obtenidos por espectrofotometría de absorción atómica.

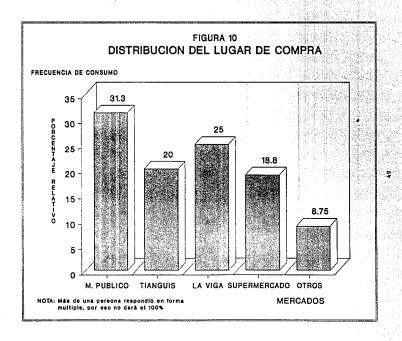
		Mī	JESTRA	17-
ESPECIE	(μg de mo Cadmio		e muestra en	peso seco) Mercurio
Bagre Mojarra Almeja Ostión Atún, Atún, Sardina, Sardina,	N.S.D N.S.D 1,13 8,79 0,84 N.S.D N.S.D N.S.D	N.S.D 5,26 8,78 9,30 N.S.D N.S.D N.S.D N.S.D	0,25 0,49 0,08 0,07 0,70 0,78 2,24 2,22	0,58 0,07 0,10 0,52 1,04 0,75 0,02 0,06
Alimento Atún en- latado en aceite vegetal: "La torre" "Ybarra"			dos de la li ios autores ^b .	
tiburon; pez espada; y peces de agua dulce				1000° 1000°
Salchicha Jamón Pescados y crustáceos	0.036 0,051	0.38 0,32	1,0-2,5 ^d	

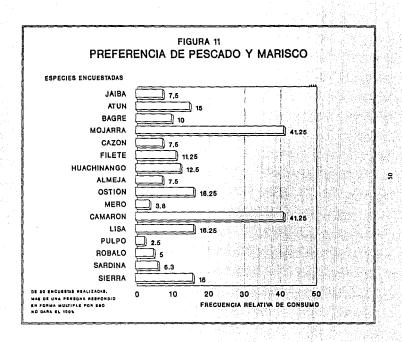
a= Valores promedio de las concentraciones de muestras que se realizaron por triplicado experimentalmente.

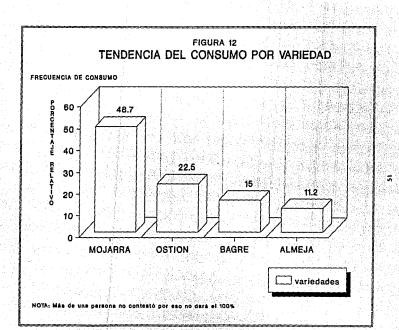
NOTA: N.S.D significa no se detecta por el aparato.

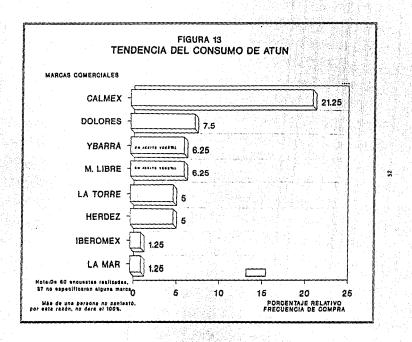
b= Instituto consumidor (1989); Criterios de salud ambiental

^{(1978);} Catalá et. al (1983). c= El consumo diario estimado de mercurio inorgánico es de 4,3 $\mu g/d$ 1a y de metil mercurio niveles que exceden el nivel reportado.

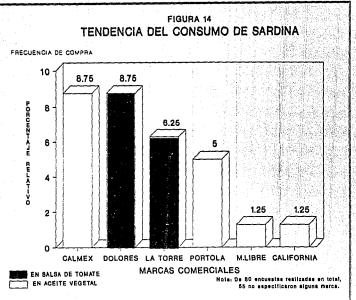

d= Valor reportado en μg As inorgánico/Kg.


3.6. Tendencias de consumo a partir de encuestas.


De la encuesta (Cuadro 25) realizada a los consumidores, se elaboraron histogramas; en ellos se describen los valores de distribución y preferencia de consumo, reportados en porcentaje relativo, para pescados y mariscos así como también las tendencias de consumo para atún y sardina. El cuestionario (se obtuvo de la secretaría de pesca; se modificaron algunas preguntas para el objetivo de este trabajo) que se aplicó al cliente en el momento de hacer su compra en los mercados mencionados con anterioridad, es el siguiente:
Cuadro 25 Encuesta.


1 DONDE ACOSTUMBRA COMPRAR EL PESCADO FRESCO? a) Tianguis b) Conasuper c) Mercado público d) La Viga e) Supermercados
f) Varios
/ Value of the state of the sta
2 QUE TIPO DE PESCADO Y MARISCO CONSUME CON MAYOR. FRECUENCIA?
3 EN LOS QUINCE DIAS ANTERIORES, CONSUMIO ALGUN PRODUCTO PESQUERO?. a) Fresco b) Enlatado
c) Alguna otra presentación ¿ CUANTAS PERSONAS CONSUMIERON EL PRODUCTO PESQUERO?
4 DIGA USTED QUE PESCADO O MARISCO CONSUMIERON Y EN QUE CANTIDADES.
Fresco Kg Congelado Kg Enlatado No.latas sardina atún
5 DE LAS SIGUIENTES ESPECIES CUAL ES LA QUE CONSUME HABITUALMENTE. a) Mojarra— b) Bagre— d) Ostión—— Enlatados: aceite vegetal e) Atún (marca)—— f) Sardina (marca)——
-, , ,

Los resultados obtenidos de la encuestas se muestran en las figuras 10, 11, 12, 13 y 14.



3.7. Valores encontrados en aceite vegetal.

En la mezcla de aceite vegetal que sirve de relleno al atún o a la sardina no se detectó la presencia de los metales cadmio, plomo, arsénico y mercurio.

3.8. Estimación de la exposición de metales en la incresta.

Se elaboraron 80 encuestas, en estás se cuestionó al cliente sobre su compra de pescado y marisco en un período quincenal, para poder calcular la ingesta en base a este período. La cual indica que una familia de 4 personas compra 1 Kg de pescado en un periodo de 15 días, por lo que cada persona consume 125 g de pescado/semana.

La OMS(1989) sugiere como límite de ingesta para arsénico 0,05 mg/Kg peso corporal diarios máximos permisibles. Debido a que no se menciona si es peso seco o húmedo para manejo de datos se considera peso seco.

Ejemplo de estimación de la ingesta de arsénico para bagre:

Si la recomendación de FAO/OMS del límite de ingesta para arsénico sea de 0,05 mg/Kg/día (0,05 µg/g/día). Según la encuesta 4 gentes consumen 1000 g base húmeda/día; es decir, que una persona ingiere 17,86 g en base humeda/día.

Del cuadro 14 se corrige por humedad siendo 3,70 μg/g ingerido por persona/día (base seca);

79,3 % humedad 100 g pescado (79,3 agua) ------ 20,7 sólidos 17,86 g pescado ------ y y = 3,70 g sólidos

Del cuadro 24 se asume que contiene 0,25 μ g As/g muestra (peso seco) entonces, la ingesta será 0,92 μ g As/día:

0,25 µg ------ 1 g muestra z ------ 3,70 g muestra z = 0,92 µg As/g muestra

Es decir, que se sobrepasa en 18 veces los valores internacionales. Se recordara que el nivel de ingesta recpmendado es provisional.

Pero la contaminación detectada en otros productos alimenticios indican valores de 0,6 - 58 mg/Kg peso seco en suplemento para alimentos (Walkiw y Douglas, 1975), el algas marinas, provientes del Japón, se reporta contaminación de arsénico en un rango de 19 a 172 mg/Kg peso seco con una media de 112 mg/Kg (Watanabe et. al., 1979).

Los datos de ingesta estimada se reportan en el cuadro

Cuadro 26 Estimación de la ingesta promedio provisional en base a los resultados obtenidos de cadmio, plomo, arsénico y mercurio.

MUESTRA	IN(GESTA ESTIM	ADA EN PESO SE	co."
	Cadmio*	Plomob	Arsénicob	Mercurio ^b
	(µg)	(μg)	(µg)	(µg)
Bagre Mojarra Almeja Ostión Atún Sardina, Sardina,	N.S.D N.S.D 30,90 11,34 1,08 N.S.D N.S.D N.S.D	N.S.D 19,62 34,24 12,00 N.S.D N.S.D N.S.D N.S.D	0,92 1,83 0,31 0,09 4,19 4,61 15,90	2,15 3,80 3,90 0,67 6,23 6,66 0,14 0,42

- a= Valores de concentración semanal/Kg de peso corporal.
- b= Valores de concentración diaria/Kg de peso corporal.
- »= Se asume el consumo diario segun la encuesta, donde no se considera peso corporal, edad, sexo, mujeres embarazadas, estratos, etc. Indica sólo un promedio de la exposición al metal en particular de las personas entrevistadas.

Los limites estimados por OMS/OPS/FAO semanales (diarios) máximos permisibles/Kg de peso corporal estan reportados en el cuadro 27 para la concentración de cadmio, plomo, arsénico y mercurio.

Cuadro 27 Niveles máximos propuestos por FAO/OMS,

Cuadro 27 Niveles máximos propuestos por FAO/OMS, (1983).

INGESTA		Plomob	ONCENTRACION Arsénico* (mg/Kg)	
Ingesta semanal máxima tolerable provisional. (I.S.T.P)	6,7 a 8,3			
Ingesta diaria máxima tolerable provisional. (I.D.T.P)		0,2 a 2,5	0,05	3,0

a= Por Kg de peso corporal.

b= Para pescado y marisco.

validación 3.9. Valores obtenidos del método de metodologica de la recuperación del método de análisis.

En el cuadro 28 se reportan los valores cálculados para cadmio, plomo, arsénico y mercurio. Este método se realizó sólo a 6 muestras elegidas al azar; estas fueron atún, y atún,.

Cuadro 28 Valores obtenidos experimentalmente de la validación del método de recuperación del método de análisis.

Metal	Valor calculado (c) (mg/Kg)	Valor recuperado (r) (mg/Kg)	Relación r/c
Cadmio		5,83	1,45
Plomo		3,01	0,75
Arsénico		3,29	0,82
Mercurio		3,50	0,87

a= Valor promedio de 2 muestras realizadas por triplicado.

1) Para obtener este valor se preparo una solución estándar de 0.1 mg/1000ml

2) Cálculo de peso seco (1q) más 0,1 mg de metal contaminante

1g muestra-----aforo 25 ml + 0,1 mg 0.1 mg -----25 ml x ----- 1000 ml x = 4 mg/ml Valor calculado (c)Cálculo del valor recuperado (r)

> lectura x aforo x dilición ______ peso muestra x factor conversión (mg)

DISCUSION

CAPITULO IV

4. DISCUSION

Las encuestas realizadas se hicieron con la finalidad de conocer las variedades, el consumo y la frecuencia de compra de pescados y mariscos estudiados.

La pregunta ¿ DONDE ACOSTUMBRA COMPRAR EL PESCADO FRESCO? se hizo con el fin de averigüar la tendencia de compra de pescado y marisco.

En la figura 10 se observa que el lugar de compra más frecuente para pescado y marisco son los mercados públicos, se podría asegurar que el lugar más común de compra es "La Viga"; sin embargo, las personas encuestadas mencionan que no lo adquieren de este, por las entrevistas a los vendedores sobre la adquisición de pescado, mencionan que su fuente de abastecimiento es "La Viga"; y por tanto, esta distribuye a mercados públicos y tianguis. En cuanto a supermercados como Aurrera, Gigante su fuente de compra son proveedores que no se relacionan con "La Viga".

La siguiente pregunta ¿ QUE TIPO DE PESCADO Y MARISCO CONSUME CON MAYOR FRECUENCIA? se relizó para tener una aproximación del tipo de pescado y marisco que se consume con regularidad.

La figura 11 muestra que hay dos variedades más consumidas, que corresponde a mojarra y a camarón. De las dos variedades de consumo con mayor frecuencia; se tomo sólo a la mojarra por ser económica en tanto que el camarón es de mayor costo.

La segunda variedad elegida a analizar fué el bagre por ser una especie económica y, suponer que por encontrarse en el fondo tiende a acumular mayor cantidad de metales tóxicos. Por preferencia de marisco el más consumido es el camaron, siguiendo ostión y finalmenete almeja, para el estudio se eligieron los últimos por ser de bajo costo.

Las preguntas EN LOS QUINCE DIAS ANTERIORES ¿CONSUMIO ALGUN PRODUCTO PESQUERO? Y ¿EN QUE CANTIDADES? se elaboraron con la finalidad de conocer la cantidad que se consume de pescado y marisco obteniendose un promedio de 1Kg por familia de 4 miembros.

La última pregunta ¿DE LAS SIGUIENTES ESPECIES CUAL ES LA QUE CONSUME HABITUALMENTE? se realizo con el objeto de saber que tan frecuente son consumidas las variedades frescas y procesadas, esto se observa en la figura 12, siendo la mojarra la de mayor tendencia de consumo.

La figura 13 muestra la tendencia de consumo de atún enlatado, eligiendose las marcas en aceite vegetal por ser más consumidas. Las marcas analizadas fueron " y ", " l " y " t " (Anexo II).

En la figura 14 se observa la tendencia de consumo de sardina enlatada en sus diversas presentaciones. De esta información se escogio una marca a analizar que fué " l " en aceite vegetal. Para poder hacer un análisis comparativo con el atún se eligio también sardina " y " en aceite vegetal.

Las muestras analizadas (bagre, mojarra, almeja, ostión, en fresco y atún y sardina procesadas y en aceite vegetal) se eligieron por ser económicas y comunes en el mercado.

El cuestionario realizado, no permite obtener la información confiable del origen del pescado o marisco, porque se menciona que proviene del golfo, del pacífico o de río tratandose de un mismo producto, además el comerciante trataba de evadir la pregunta. Cabe resaltar la importancia que tiene "La Viga" en la distribución y que el objetivo del trabajo se refiere a la potencial exposición del consumidor en forma generalizada.

La encuesta estuvo encaminada a grupos familiares en donde el enfoque fue de la cantidad de producto consumido por semana o día (propuesto por OMS para calculo de ingesta) cabe resaltar que los valores que se dan en cuadro 26 trata de representar el total de cadmio, plomo, arsénico y mercurio a los cuales estaria expuesto cualquier persona.

Por el tipo de encuesta que se realizó esta es una limitante al evaluar los resuntados, estos se orientaron a un nivel de contaminación por porción consumida, la cual puede ser ingerida por un niño o un adulto, por lo que la consideración de peso tendría que ser ajustada para el caso respectivo:

Ejemplos:

a) Para un hombre de 70 Kg de peso corporal.

De los cuadros 26 y 27 se observa que para ostión (0,09µgAs)en una porción de 17,86 g (peso seco) de producto, para un adulto de 70 Kg; la FAO/OMS propone una tolerancia de 0,05 mg/Kg siendo 3,5 mg/70 Kg de peso corporal, por lo que esta persona esta dentro del margen de seguridad recomendado.

0,05 μg ----- 1 Kg x ----- 70 Kg x = 3,5mg/70 Kg

Si la misma persona consumiera una porción de 17,86 g de sardina, (15,90 µg As) se observa que el límite dado por la FAO/OMS es de 3,5 mg/70 Kg de peso, por lo que esta persona sobrepasa 5 veces lo recomendado.

b) Si un niño consume una porción de 17,86 g de mojarra (1,83 µg As). Se observa que el limite dado por FAO/OMS es de 1,5 mg/30 Kg de peso; esta persona sobrepasa el margen de seguridad recomendado.

Si se hace el análisis anterior para una persona de de 70 Kg (en los metales estudiados) se observa que los límites de tolerancia propuestos por FAO/OMS estan por arriba de los encontrados experimentalmente (reportados por Kg de peso corporal), excepto en arsénico en las dos marcas de atún y de sardina y para un niño de 30 Kg de peso los valores encontrados estan por debajo de los límites propuestos excepto mojarra y las dos marcas de atún y sardina en arsénico.

Debido a que no existen especificaciones a nivel nacional que tengan los límites de concentración máximos permisibles de cadmio, plomo, arsénico y mercurio, se tomo como referencia a los límites máximos permisibles que señala el Codex Alimentarius que es un organismo conjunto de la FAO/OSE encargado de elaborar normas para el comercio mundial de alimentos.

Los límites estimados dados por OMS/OPS/FAO semanales (diarios) máximos permisibles por Kg de peso corporal estan reportados en el cuadro 27, para la concentración de cadmio, plomo, arsénico y mercurio.

OMS (1983) reporta valores para arsenicales inorgánicos de 0.015 mg/Kg de peso corporal como ingesta semanal máxima tolerable provisional (ISTP), no se pudo calcular cifra alguna para los arsenicales orgánicos en los alimentos.

OMS (1983) asume que el consumo diario de mercurio total proveniente de pescados y sus derivados es de 3.0 μg /g y que el 20% de este estan en la forma de compuestos de mercurio inorgánicos; es decir, 0.6 μg/día y 80% es de metil mercurio (2.4 μg/día).

El Instituto Nacional del Consumidor (1989) propone una concentración máxima para plomo de 1 ppm y para el mercurio de 0.20 ppm. (1 ppm = 1 mg/kg).

Cabe señalar que otras organizaciones a nivel mundial señalan diferentes límites máximos en el contenido de plomo que oscila entre 0.2 a 2.0 ppm.

Haciendo un análisis comparativo de los resultados obtenidos por espectrofotometría de absorción atómica para cadmio, plomo, arsénico y mercurio (Cuadro 24); se observa que para cadmio la variedad que presentó mayor cantidad del metal fué ostión; almeja y atún, también presentaron contaminación. Comparando los valores encontrados experimentalmente con los reportados de otros alimentos en la literatuta se observa que son elevados. La ingesta provisional permisible para mariscos (almeja y ostión) propuesta de los valores obtenidos experimentalmente, estan en un rango de 2 a 4 veces mayor con respecto al que propone la OMS (dado por Kg de peso). El atún, esta por debajo del límite propuesto.

En las muestras analizadas el plomo es el metal que se encuentra en mayor proporción, comparando el pescado fresco (bagre y mojarra), se observa que mojarra se detecta una cantidad elevada de metal; en almeja y ostión hay una diferencia porque estas muestras son las que presentaron valores máximos de concentración de plomo esto puede deberse a diferentes razones como son: origen, manipulación, forma de almacenamiento o refrigeración, transporte a las diferentes áreas de distribución entre otros.

La ingesta experimental provisional propuesta es de un rango de 5 a 14 veces más alto que el límite máximo permisible para pescados y mariscos propuesto por OMS (dado por Kg de peso). En bagre, atún, sardina, y sardina, para cadmio y plomo no se detectó valores de contaminación con excepción de mojarra para cadmio y atún, para plomo no se detectó la presencia de estos metales. El límite mínimo detectable por el espectrofotómetro de absorción atómica es de 0,0044 unidades de absorbancia, los niveles de concentración encontrados estan por debajo de este límite de detección.Para tener una seguridad de la presencia de cadmio y plomo en las muestras se requieren de otros métodos con mayor sensitividad que detecten cantidades menores de 10°12 g como es el método de horno de grafito.

Los niveles de concentración encontrados para arsénico se observa que en las dos marcas de sardina se encuentra en cantidades máximas con respecto a las otras variedades analizadas.

Comparando los ninveles de ingesta máximos propuestos por FAO/OMS y los valores de ingesta encontrados experimentalmente (cuadros 26 y 27) se detecta para arsénico que todas las muestras analizadas sobrepasan el límite propuesto por la OMS (dado por Kg de peso) , principalmente en los productos enlatados.

Para el mercurio todas las variedades analizadas presentaron contenido de este metal, presentandose en mayor proporción en atún.

El bagre, ostión y las dos marcas de sardina estan abajo del límite de ingesta provisional propuesto por la OMS. Las variedades que tienen valores altos de ingesta experimental provisional son mojarra, almeja y las dos marcas de atún siendo de 1 a 2 veces mayor que el límite propuesto por OMS (dado por Kg de peso).

En cuanto a los productos enlatados como es atún, y sardina, los valores de ingesta propuestos para cadmio, plómo y mercurio se encuentran dentro del límite propuesto por OMS, excepto mercurio para atún, sin embargo en arsénico el atún, y la sardina, se detectó con alta concentración.

De todas las variedades analizadas los mariscos (almeja y ostión) siempre se detectó la presencia de metales. Esta contaminación puede deberse a que son organismos filtradores, por ello se presenta alta acumulación de metales.

La consideración planteada anteriormente de que el bagre por estar en el fondo, se esperaba que presentara un alto contenido de metales en particular plomo, pero los valores obtenidos por el método empleado no se detecta cadmio y plomo, y en cuanto a mercurio y arsénico la contaminación no es representativa.

En los aceites analizados no se detectó la presencia de cadmio, plomo, arsénico y mercurio, por tanto el aceite vegetal no influye en la concentración de metales de atún y sardina analizadas.

En general las cantidades encontradas de contaminación por metales es significativa, aclarando que este estudio es un aporte preliminar; por lo que sugiere que se realice un estudio de seguimiento de la posible fuente de contaminación, incluyendo monitoreo y especie.

En cuanto a la validación de metodología de la recuperación del método de análisis comparado con el método de mineralización ácida se observa que para plomo , arsénico y mercurio el porciento de recuperación es aceptable. Para cadmio se obtuvo un porcentaje alto de recuperación presentándose interferencias: análiticas, instrumentales, y no se tuvo las condiciones adecuadas durante el proceso de análisis como pueden ser: mala manipulación, por falta de material (micropipetas), y condiciones ambientales.

Se recomienda que para posteriores análisis se realice una encuesta más indicativa para obtener resultados aproximados sobre consumo, frecuencia de pescados y mariscos, donde se considere peso corporal, edad, sexo, mujeres embarazadas, estrato social, cantidad de personas en una familia que consuman pescado y marisco, etc., para obtener un promedio de la exposición a los metales y así calcular el límite permisible de ingesta.

CONCLUSIONES

CAPITULO V

그들 시장하는도 연극하면 회학교회 화황화

. ..

5. CONCLUSION.

Las encuestas realizadas tuvieron la finalidad de conocer las diferentes variedades de pescado y marisco que se consume, la frecuencia de compra y su valor econômico dentro de la población del distrito federal. El lugar de compra más frecuente de pescados y mariscos fueron los mercados públicos siendo para estos su fuente principal de adquisición el mercado de "La Vica".

No se obtuvo la información adecuada acerca del pescado y marisco; por tanto, no se puede saber con seguridad la posible fuente de contaminación de cadmio, plomo, arsénico y mercurio en pescados y mariscos.No se detectó con la poca información recopilada, de la encuesta, de los encuestados y los vendedores, dar un indicio de la posible fuente de contaminación de metales, por lo que se sugiere ampliar la encuesta, así como también conocer el origen y lugar de procedencia del pescado y marisco.

En las seis variedades analizadas se detectaron niveles de contaminación, en arsénico y mercurio; en cadmio no se detectó contaminación en bagre, mojarra, atún, sardina, y sardina; en plomo se detecto en mojarra, almeja y ostión.

Se propone que en los niveles de ingesta provisional máxima permisible para cadmio, plomo, arsénico y mercurio, no existe riesgo de toxicidad para una persona de 70 Kg de peso que consuma una porción de 17,86 g diarios o 125 g semanales de bagre, mojarra, almeja, ostión y las dos marcas de atún y sardina, excepto en arsénico para las dos marcas de atún y sardina. Sin embargo para cadmio, plomo, arsénico y mercurio, no existe riesgo de toxicidad, para una persona de 30 Kg de peso corporal que consuma 125 g (semanal) 6 17,86 g (diario), excepto en arsénico para mojarra y las dos marcas de atún y de sardina.

El método de espectrofotometría de absorción atómica por flama no es adecuado para determinar concentraciones trazas de cadmio y plomo, porque el nivel de concentración de las muestras analizadas estan por debajo del limite de detección dado por el aparato.

Se recomienda para posteriores análisis de cadmio y plomo en pescados y mariscos se utilice un aparato que detecte mayor sensitividad o cantidades menores a 10^{-12} g, se sugiere el método horno de grafito.

ANEXOS

ANEXOS

			Carrier Control		Commence of the second
				ga, kilokilika ji ila kala gabatangang d	
			500		
		 Agglobation of the filter 			
				ni yakili sasan pani weli	
1.4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rin film - Jer		TOTAL SHAPE AND
taka Sasa	교실하는 사이를 맞은 사람이 사용하는 사람	e e la company de la		化化压缩性 医腹腔性神经 化铁矿	
		ud Militaria suntaks		and the same of the same of the	
Annual Control					
			Sverion i.e.	ANEXO I	
	역 하나는 유리가 되어 들어났다면서		ang Malayan		
		E NO.PUESTO	ESPECIE	PRESENTACION	
a (5 and 6 Art)	UBICACION	u Yradamisty			
					The second section
A11 10 10 10 10 10 10 10 10 10 10 10 10 1		tral regiments lengther	BAGRE		
			MOJARRA	ENIEKO	
		in degrada 👫 🖟 🚶	- ALMEJA	EN CONCHA	
	Av.Insurgentes		OSTION	EN FRASCO	
	Nte.131, Col. Guerro	ero.			
		1	BAGRE	ENTERO	
	AURRERA B	1	MOJARRA	ENTERO	
	ATZCAPOTZALCO		ALHEJA	EN CONCHA	
	Av.Refineria v	1	NOTISO	EN FRASCO	
	Aquiles Serdan.Atz.				
		1	BAGRE	ENTERO	
	AURRERA C	1	MOJARRA	ENTERO	
	ASSUDAT	i i	ALHEJA	EN CONCHA	
	M.A.Guevedo 870	i	OSILON	EN FRASCO	
	Col.Covoacan.	•	05.2011	CM 1 MADED	
	001100100000111	1	BAGRE	ENTERO	
	GIGANTE D		MOJARRA	ENTERO	
	IAXQUEAA		ALHEJA	EN CONCHA	
	H.A.Quevedo 170	;	OSTION	EN FRASCO	
	H.A.QUEVEGO 170		031100	EN PRAJEO	
			BAGRE	ENTERO	
	COMERCIAL				
		•	MOJARRA	ENTERO	
	HEXICANA E	!	ALHEJA	EN CONCHA	
	VILLA	•	OSITON	EN FRASCO	
	Prol.Calz.Misterios				
	62.Col.Aragon.	1	BAGRE	ENTERO	
	NERCADO	1	MOJARRA	ENTERO	
	SAN FELIPE #	8	ALHEJA	EN CONCHA	
	Av.Dolores Hidalgo	1	OSTION	EN FRASCO	
	Col.San.Felipe.				
		1	BAGRE	ENTERO	
	MERCADO	1	MOJARKA	ENTERO	
	MARTINEZ DE G	13	ALMEJA	EN CONCHA	
	LA TORRE	1	OSILON	EN FRASCO	
	Degollado 150				
	Col.Guerrero.	1	BAGRE	ENTERO	
	MERCADO H	i	MOJAKKA	ENTERO	
	SAN COSME	15	ALHEJA	EN CONCHA	
	Rva.San Cosme	i	OSITON	EN FRASCO	
	Coi.San Rafael.	•	03110M	EN PRASCO	
	MERCADO		MOJARRA	ENTERO	
		, , , , , , , , , , , , , , , , , , ,			
	LA VIGA I		ALHEJA	EN CONCHA	
	La viga 124	,	OSTION	EN FRASCO	
	Col.iztacalco.	5	BAGRE	ENTERO	

Continuecton

MERCADO CLAVE NO Ubicación	.PUEST	D ESPECIE	PRESENTACION
MERCADO	5	MOJARRA	ENTERO
LA VIGA J	. 5	ALMEJA	EN CONCHA
4.600 Part (1997年) 1997年 (1997年) 1997年 (1997年)	5	05 F10N	EN FRASCO
		BAGRE	ENTERO
MERCADO		MOJARRA	ENTERO
LA VIGA K	1 .	ALMEJA	EN CONCHA
	1	OSTION	EN FRASCO
	1	BAGRE	ENTERO
MERCADO	1	MOJARRA	ENTERO
LA VILLA L	2	ALMEJA	EN CONCHA
Febrero 540	1	OST10N	EN FRASCO
ol.La Villa.	1	BAGRE	ENTERO
MERCADO	1	MOJARRA	ENTERO
TZCAPOTZALCO H	2	ALMEJA	EN CONCHA
tz. v Esperanza	1	NOTEO	EN FRASCO
ol.Atzcapotzalco.	1	BAGRE	ENTERO
	1	MOJARRA	ENTERO
MERCADO N	4	ALMEJA	EN CONCHA
BALDERAS	1	OSTION	EN FRASCO
	1	BAGRE	ENTERO
v.Chapultepec			
	1	MOJARRA	ENTERO
.v.Chapultepec :ol.Juarez. MERCADO CASAS O	1 6	MOJARRA Almeja	

a) Las muestras fueron recolectadas del 12 de febrero al 25 de Octubre de 1990.

biEl dolar estaba cotizado a \$2000, en Febrero de 1990

ESTA TESIS NO DEBE DE LA BIBLIOTECA

		ESTA Salir	TESIS NO DE De la biblio
	ESPECIE (PROCESADA	ANEXO 11
MARCA ATUN YBARRA CON	/21	MARCA ATUN LIBRE CE AURRERA TAT	TE COSTO UNITARIO (N.N.) 40 2,440 V2;
Clave "y" IAII CB(IAII) CB(IAII) CB/ IAII)	/1: 00 2,440 /2; 00 2,480		Y: 02 2.440 Y:
IAV2 C66 IAII C6M IAII	; 10 2.170 (1; 10 2,170 (2;		43; 20 2.390 41; 20 2.390 17;
1 A1V C?? 1 A1V C68 1 A1V	0 2,400 2; 0 2,400 2; 0 2,400	ARI CET ARI OFT ARI	A1; 44 2,390 A1: 08 2,390
IAIV C76 IAIV C77 IAIV IAIV	0 2,400 1: 0 2,480 1; 0 2,480	OE1 C6 1A1 AR1 OE2 C5	10 2,390 V1: 08 2,390 11: LO 2,390
GES TAIV SARDINA YBARRA	0 2,400	C5 1A1 SARDINA LA IORRE	60 2.390

£1 dolar estaba cotizado a \$ 2.800, en Febrero de 1990.

Las latas de atun marca "Ybarra" y marca "Libre Aurrera" se adquirieron en el supermercado Aurrera. De cada marca se muestrearon al azar 15 latas.

^{- *} Las latas de sardina marca "YBARRA" se adquirieron en Gigante Taxquena y la marca "La lorre" se comoro en el mercado publico San Cosme". Las dos marcas no presentaron lote de produccion. por lo que se muestrearon 15 latas al azar de cada clave.

2.3								y 1 2 3000	
	8 4 1 AM	rayers areas							
							122.30	Marina an	100000000000000000000000000000000000000
				5 m 1 m 1	i ta jev				
			Vertical.					加州的 图片	AGLIONETE, Pari
							W 20 4 12	在一致建筑的	
						1.00		merki ja	가게 하십 시간 기가 있다.
								네 뭐 하네가?	
							a falle h		
								ANEXO 111	
MERCA	ADO BAGRE	HOJARR	A ALHEJA	A 05110N	ATUNY	ATUN1 5	SARDINAV	SARDINAT	
and the first section	dyn dawr		į pg de	Cadmio,	/g de i	Ruestra)		
	NSD	N50	0.99	0.87	NSD	NSD	NSD	Nen	
		NSD	0.98	0.97	NSD	NSD	NSD	Men	
	RSU	NSD	NSD	0.99	NSD	NSD	NSD	NSD NSD	
В	NSD	NSD	MSD	NSD	NSD	NSD NSD	NSD NSD	NSD	
	NSD NSD	NSD NSD	1.27	0.94 NSD	NSD NSD	NSD	NSD	MSD	
c	NSD	NSD	NSD	5,08	NSD	NSD	NSD	NSD	
	NSD	NSD	NSD	5.99	NSD	NSD	NSD	NSD	
0	. NSD NSD	NSD NSD	NSD NSD	6.45 11,25	NSD NSD	NSD NSD	NSD NSD	NSD NSD	
and the same of the same of	NSD	NSD	NSD	11,54	NSD	NSD	NSU	NSD	
	NSD	NSD	0.11	12.72	NSD	NSD	NSD	NSD	
£	NSD	NSD NSD	4.20	12.72	NSD	NSD NSD	NSD NSD	NSD NSD	
	NSD NSD	NSD	5.10 2.50	13.20	NSD	NSD	NSD	NSD	
F	NSD	NSD	NSD	17,98	NSD	NSD	NSD	MSD	
	NSD	NSD	NSD	21.96	NSD	NSD	NSD	NSD	
G	NSD NSD	NSD NSD	NSD NSD	5.99 5.47	NSD NSD	NSD NSD	NSD NSD	NSD NSD	
_	NSD	NSD	1,45	5,46	NSD	NSD	NSD	NSD	
	NSD	NSD	NSD	3.73	NSD	NSD	NSD	NSD	
н	NSD NSD	NSD NSD	0.89 1.75	19,50 13.99	NSD NSD	NSD NSD	NSD NSD	NSD NSD	
	NSD	NSD	1,24	19.44	NSD	NSD	NSD	MSD	
1	NSD	NSD	1,00	6,83	NSD	NSD	NSD	MSD	
	NSD NSD	NSD NSD	1,25	7.49 7.49	NSD NSD	NSD NSD	NSD NSD	NSD NSD	
	MSD	NSD	1.74	1.12	NSD	NSD	NSD	NSD	
	NSD	NSD	1,99	1.21	NSD	NSD	NSD	NSD	
×	NSD NSD	NSD NSD	1.24 NSD	1,13 9,70	NSD NSD	NSD NSD	NSD NSD	NSD NSD	
•	NSD	NSD	NSD	23.28	NSD	NSD	NSO	NSD	
	NSD	NSD	0.99	22.98	NSD	NSD	NSD	NSD	
L	NSD	NSD	0,93	6,27	6.75	NSD NSD	NSD NSD	NSD NSD	
	NSD NSD	NSD NSD	1,21 0.99	5.59 5,76	4.25	NSD	NSD	NSD	
	NSD	NSD	4.70	5.74	5,00	NSD	NSD	NSD	
	NSD	NSD	2,30	5.63	5.48	NSD	N5D	NSD	
	NSD NSD	NSD NSD	3,58 MSD	5,28 7,43	0.75 NSD	NSD NSD	NSD NSD	NSD NSD	
	NSD	NSD	1,45	5.49	NSD	NSD	NSD	NSD	
	NSD	NSO	NSD	5.50	NSD	NSD	NSD	MSD	
0	NSD NSD	NSD NSD	NSD NSD	17,55 16,99	NSD NSD	NSD 4.58*	NSD NSD	NSD NSD	
	NSD	NSD	0.99	17,10	NSD	2.75*	NSD	MSD	
n n	A5 NSD	45 NSD	45 1,21	45 8,80	45 0,84	45 NSD	A5 NSD	45 MSD	
X S	NSD NSD	NSD NSD	1,16	6,65	1.47	NSD	NSD	NSD	
				- • - •					

^{*}Estos valores de eliminaron debido a posible contaminacion.

						B. Jack		
	스 (1914년)			한창 내용				
		6) Hilly-a	elitini.					
gastalia gist			をおりま		A More	44.00		
								ANEXO 111
	O BAGRE	Aller Ti	eg liedybych	051100				SARDINAT
MERCAD	U BAGKE		I PACE	omo/g m	uestra	1	PUKDINAY	SAKUTAAL
A	6,04	5.99	5.67	10,48	5.25	NSD	6.28	NSD
	6,51	6,90	8,82	9.78		5.25	6.01	NSD NSD
	6,98 NSD	NSD	7,22 5,67	9,24	6,50 NSD	8.25 NSD	5.76	
	NSD	5.28	9.94	7,24	NSD	NSD	8,49	NSD
	NSD	5,88	10,65	8.41	NSD	NSD	7,25	NSD
	9,41 NSO	7,02	12.77 12.05	. 6,10 5,50	NSD 8,25	5,50 NSD	6.99 9,51	5.24 NSD
	5,76	6,55	13,92	5.70	NSD	NSD	9.00	6.49
D	10,24	5,51	10,03	5.00	8.50	NSD	NSD	NSD
	10,80	4.82	9,66	5,25	5,66	5,99	NSD	NSD NSD
	B,70 NSD	5,80 5,05	NSD 13,92	5,99 17,21	NSD 5,74	6,00 MSD	NSD NSD	NSD
	NSD	6,05	16,48	14.99	5,50	NSD	NSD	NSD
	NSD	5,29	NSD	15,57	NSD	NSD	5,25	NSD
F	NSD NSD	NSD	6.69 7,99	10,49	5.75 6.25	NSD NSD	8.27 6,50	NSD NSD
	8,18	NSD	7,65	NSD	6.50	NSD	5,75	NSD
G	NSD	6,56	13,38	12,60	6.50	NSD	6,25	NSD
	NSD	7,79	10,88	6,70	6,99 NSD	NSD NSD	6,99 5.50	NSD NSD
н	NSD NSD	7,03 7,41	9,20 7,80	9,68 8,00	NSD	NSD	NSD	NSD
	NSD	5,51	NSD	7.74	1,24	NSD	MSD	NSD
	NSD	6,83	5,75	8,97	6,99	NSD	9,25	NSD
	NSD NSD	6,77 NSD	12,66	9,82 13,74	NSD NSD	NSD NSD	NSD NSD	NSD NSD
	NSD	NSD	NSD	9,74	11.55	NSD	NSD	7,00
J	NSD	6.26	NSD	10.48	7,23	NSD	NSD	NSD
	NSD	5,57 9,08	16,41 10,58	18,32	7,25 8,00	NSD NSD	NSD NSD	NSD NSD
ĸ	NSD NSD	7,54	7,95	9,45	NSD	NSD	5.00	NSD
	NSD	7,35	10,43	12,59	NSD	NSD	5,25	NSD
	NSD	NSD	8,96	13,49	NSD NSD	NSD	6,00 NSD	NSD NSD
	NSD NSD	7,02 5.82	7,80 NSD	7,28 5.84	NSD	5,5D NSD	NSD	5.00
	NSD	5,27	5,75	NSD	NSD	NSD	NSO	NSD
.,	0,99	8,12	1,24	8,74	NSD	NSD	NSD	NSD
	7,50 NSD	7,68 7,11	10,99	8.61 8.01	NSD NSD	NSD NSD	NSD NSD	NSD NSD
N	NSD	5,15	11,05	10,75	NSD	5.00	5,75	NSD
	NSD	8,57	NSD	0,23	NSD	NSD	NSO	NSD
	10,32	8,82	12,73	1.75	NSD NSD	NSD NSD	NSD NSD	NSD NSD
	5,08 5,04	NSD NSD	6,89 7,99	8,28 7,14	NSD	NSD	NSD	MSD
	NSD	NSD	7,65	8,80	NSD	NSD	NSD	NSD
				45	44	45	45	45
, x	45 4,00	45 5,49	45 8,78	9.30	4.00	2.82	4.38	MSD
ŝ	2,67	2.02	3,91	3,57	2,14	1,16	2.33	NSD

	SUM!			rsnico/			SARDINAV	
A	1,69	0.04	. 0 , 04	0,09	0,53	D.48		2,37
	0.70	0.06	0.05	0.09	0.38		1,45	1,82
	0,08	0.05	0,05	0.11	0,51	0,12		2,80
. 8	0,13	0.04	0,05	0,09	0,69	0,40	1,53	2,31
	0.14	0,05	0,08		0,56		1,20	2.17
	0,15	0.05	0.06	0,07	0,12	1,03		2,12
C	0,14	0.58	0,08	0.06		0,70		1,89
	0,14	0,91	0,08	0.07	0,59	1,08	2,44	1,98
	0.16		0.04			1,08	2,26	2,20
D	0,17	1,43	0,04		0,57	0,85	2,17	2,11
	.0,16	1,58	0,04	0.05	0.77	0.58	2,81	2,30
	0,09	1,44	0.05			0.75	2,45	2,37
L	0,13	0,38	0,12	0,08	1,01			2,32
	0,14	0,60	0.14	0,09	0.73	0.37	2.80	2.32
- F	0,12	0,38	0.09	0,09	0.72	0,74	2,56	2,42
Zu-War.	0.10	0,08		0,11	0,98	0,63	2,61	2.43
	0,10	0.08		0,05	0,85	0,68		2.28
G	0,12		0.06	0,05	0,55	0,88	2,33	2,34
iojana Palatra	0,12		0,05	0.05	0,58	1,00	0,84	2,07
三位 犹太	0,11	0,14	0.06	0.04	0,53	0,73	2,20	1.19
н -	0,83	1,48	0,05	0,08	0,77	0.59	2,64	1,77
	0,07	1,20	0,05	0.08		0.59	2,58	2,26
	0,12		0,03	0.10	0.79	0.53	2,60	2,25
100	0,13	0,18	0,04	0.04	0,73	1,13	2,45	2,55
A A	0,14	0,07	0,03	0,06	0,91	1.31	2,39	2,48
v (lakib)	0,08	0,01	0,03	0,05	1.43	1.07	2.51	2,39
J	1,11		0,08	0,08	0,46	1.54	2,41	1.82
	0,97		0,10	0,11	0,63	1,49	2,38	2,14
	0.96	0.04	0.07	0,12	0,50	1,78	2.35	1.87
κ	0,08	1,17	0,07	0.04	0,57	0.71	2,38	2,67
	0.10		0.08	0,10	0,38	0.68	2.44	2,55
	0.07		0,10	0.09	0.44	0.81	2.40	2.59
1.75%	0,17		0.08	0.05	0.58	0.74	2,57	2,40
	0.18		0.00		0,70	0,62		2,38
177.8	0.16	0.14	0.07	0.08	0,47	0,70	2,55	2.34
H	0,13			0.04	0,71	0.83	1.94	2,35
44.55	0,15	1.82	0.08	0,05	0.70	0,79	2,23	2,08
	0,13	1,49	0.09	0,04	0.78	0.62	1,93	2,23
N	0,12	0.10	0.04	0.09	1.33	0,85	2,59	2,15
	0,13	0.09		0.08	1,14	0,89	2,17	2,01
	0,13	0,12	0,08	0.09	1.33	0,66	2,39	2,18
o	0,16	0,05	0,08	0.09	0,76	0.52	2.38	2,14
	0,16	0.08	0.08	0.09	0.55	0,79	2,44	2,38
经合选不同	0.15	0.07	0.07	0.11	0,78	0.66	2,55	2,38
<u> </u>	. 43	45	45	45 0.08	42 0.70	0.78	45 2,25	45 2.22
	0,25		0,08		0.70	0.78	0.44	0.26
5	0.34	0.06	0.08	0.02	0,26	0.31	0.44	0,20
					72			
at in Armi	Sec. 3.5	to detaile.						
3 × 1 × 180 × 1 ×								
end of the contract of		1						

		O BAGRE								
									ANEXO II	
	MERCAD	0 BAGRES 0 10 0 21 0 73 0 41 0 73 0 46 0 39 0 72 0 41 0 55 0 77 0 66 0 77 0 67 0 77 0 67 0 77 0 67 0 77 0 7	MOJARRA	ALMEJA	OSTION rcurio/	ATUNY g muest	ATUN) ra)	SARDINAV	SARDINAt	
		0,10	0,17	NSD	0,65	1,37	1,46	0.04	NSD	
		0.21	0,23	NSD	0,76	1,53	0,89	0,01	U.13	re Jangiera
	B_	0,41	0,22	NSD	0,41	1,97	0,18	NSD	0.06	
viiiid		0,38	0,15	0,10	0,27	0,88	0,43	0,04	NSD	
	C	0,72	NSD	0,07	0,58	0,46	0,88	0.10	0.05	
		0.54	0.10	0,14	0.51	0,50	0.97	NSD 0.08	0.04	
	D.	1,13	NSD	0,09	0,16	0.74	1.41	NSD	0,13	
indy"		0,86	0,22	0,09	0,13	0.70	1,60	0.04	NSD	terangan arit.
	E	0,69	NSD	0,18	1,11	0,18	0,70	0,04	0,01	
o jim s	100	0,47	0,18	0,08	1,20	0,13	0,39	0,01	NSD	
	F	0.58	NSD	0.10	0.75	1.18	0.68	0.01	0.06	is specific
		0,81	NSD	0,10	0,78	1,95	0,64	NSD	0.07	
	G	0,58 0,98	NSD NSD	0,10 0,10	0,76	0,76 1,37	0,55	NSD 0,01	0,08	
		0,88	NSD	0,13	0,17	1,48	0,20	NSD	0,13	
	н	0,75 8,75	NSD NSD	0,17 0,16	0,10	1,13	0,25	0.01	0.08	
		0.62	NSD	0,10	0,20	1,42 1,67	1,58 0,80	NSD	0.08	
		0,51	MSD	0,10	0,75	1,17	1.55	NSD	0.08	
	. 1	0,78 0,90	0,13 0,17	0,14 0,16	0,62 0,17	0,50 0,78	0,27 0,13	NSD NSD	0,06	
		0,49	0,13	0,19	0,39	0,43	0.15	NSD	0,04	
		0,82 1,16	0,17	0,10	0,24	1,97	0.08	N5D 0,01	NSD	
		0,80	0,21	0,10 0.10	88,0	1,50 1,81	0,25 0,04	NSD	0,06 0,13	
	K	0,69	0.20	D, 14	1,00	1,32	1,95	0,08	0.05	
		0,17	0,14 0,24	0,10 0,07	0,68 0,62	1,48	2,39 2,63	NSD NSD	0,01 0,01	
	L.	1.01	0,10	0,16	0,13	0,28	2,02	0,09	0.01	
200		1,44	NSO	0.10	0,16	0.10	1,05	NSD	0.04	
		0.07	0,17	0, 10 0, 17	0,17	0,36	0.10 0.53	NSD NSD	0,22 0,06	
		0.06	0.03	0,10	0.13	1,50	0,90	0,04	0,01	
		0,08	0,08 MSD	0,13 NSD	0,13 0,15	1,48	1,06 0,08	0,02 NSD	0,04	
	24 y 7	0,18	MSD	NSD	0,20	1.08	0,17	NSD	0,20	
	0	0,10	NSD NSD	NSD	0,10	1,41	0.10	NSD	0.06	
		0,17 G.14	NSD	0,10 0,10	1,28	0,69	0,18	0,13	0.04	
		0,15	MSD	0,10	1,70	0.32	0,08	0.13	0.04	
	n	45	45	45	45	45	45	45	45	-
	×	0,58	0,08	0,10	0,52	1,04	0,75	0.03	0.06	
e e e	5	0,34	0.08	0,08	0,41	0,56	0.69	0.04	0.05	
						73				
										100
					40.0					are a featig

1.- ACKEFORS H., LOFROTH G. AND ROSEN C.G. OCEANGR. MAR. BIOL. ANN. REV. 1970,8,203 OCEANGR. MAR. BIOL. ANN. REV. 1970,8,203

2.- AGEMIAN H. ET. AL.SIMULTANEOUS ACID AXTRACTION OF SIX TRACE METALS FROM FISH TISSUE BY HOTBLOCK DIGESTION BY ATOMIC ABSORPTION SPECTROMETRY, 1980, 105,125.

- 3.- ANDERSON J. AT. ABSORPT. NEMSL. WET DIGESTION VERSUS DRY ASHING FOR THE ANALYSIS OF FISH TISSUE FOR TRACE METALS. 1972. 11.88.
- 4.- ANONIMO. MERCURY IN MAN'S EVIRONMENT. PROCEEDINGS OF THE SYMPOSIUM. 15-16 FEBREUARY, 1976. THE ROYAL OF CANADA.
- 5.- BEACHAM, M. L. ALCANCE Y AMPLITUD DEL TRABAJO QUE TIENE POR OBJETO ESTABLECER NORMAS INTERNACIONALES PARA CONTAMINATES Y POLUCIONANTES DE LOS ALIMENTOS. FAO/OMS SOBRE NORMAS ALIMENTARIAS. 1976
- 6.- BEATY, D.R. CONCEPTOS, INSTRUMENTACION Y TECNICAS DE ESPECTROFOTOMETRIA DE ABSORCION ATOMICA, PERKIN-ELMER. 1979.
- 7.- CATALA. R; Y MONTORO. R E IBAÑEZ. CONTAMINACION POR METALES PESADOS DE LOS PRODUCTOS CARNICOS. REVISTAS AGROOUIMICA TECNOLOGIA ALIMENTARIA, 1983, 23 (2), 202-215.
- 8.- DUFEK, E.J. Y LIST, G.R. OIL CHEM. ANALYSIS OF HYDRO-FORMULATED VEGETABLE OILS AND THEIR METHYL ESTERS FOR RHODIUM. SOC. 1977, 54, 271.
 - 9.- EIL, T.B., WILCOX, K.R. Y REIZEN, M.S. MICHIGAN MEDICINE OCTOBER. 1970, 108.
 - 10.~ FAO/OMS. LISTA DE DOSIS MAXIMA DE CONTAMINANTES RECOMENDADOS POR LA COMISION MIXTA FAO/OMS. PROGRAMA CONJUNTO FAO/OMS SOBRE NORMAS ALIMENTARIAS, CAC/FAL-2-FAO. 1973. (ROMA)

- 11.- HAMMOND, P.B. Y BELILES, R.P. METALS. CASARETT AND DOULL'S TOXICOLOGY. ED. DOULL 2a. EDICION. 1980, CAP.17
- 12.- INSTITUTO NACIONAL DEL CONSUMIDOR. REPORTE ESPECIAL.
 REVISTA DEL CONSUMIDOR No. 151, 1-37.
 - 13.- JONES, H.R.. MERCURY POLLUTION CONTROL. POLLUTION CONTROL REVIEW. No. 1 NOYES DATA CORPORATION, NEW JERSEY USA 1971.
 - 14.- MILLER, W.S. DEVERLY- LAMP, POWELL G., SALATTI, C.A., Y BLACK D.M.. INFLUENCE OF A HIGH LEVEL OF DIETARY CADMIUM IN MILK, EXCRETION, AND COW PERFORMACE. J. DAIRY SCI. 1967, 50 (9), 1404.
 - 15.- O.M.S. CRITERIOS DE SALUD AMBIENTAL. NUMERO 1. MERCURIO OPS/OMS. 1978. 64-68
 - 16.- O.M.S. EVALUACION DE CIERTOS ADITIVOS ALIMENTARIOS Y CONTAMINANTES DE LOS ALIMENTOS. 27º. INFORME DEL COMITE MIXTO FAO/OMS DE EXPERTOS EN ADITIVOS ALIMENTARIOS GENEVA 1983, NO.696.
 - 17.- O.M.S. EVALUACION DE CIERTOS ADITIVOS ALIMENTARIOS Y CONTAMINANTES DE LOS ALIMENTOS. 33º.INFORME DEL COMITE MIXTO FAO/OMS DE EXPERTOS EN ADITIVOS ALIMENTARIOS. GENEVA 1989. No. 776.
 - 18.- O.M.S.METHYL MERCURY. ENVIRONMENTAL HEALT CRITERIA 101. INTERNATIONAL PROGRAME ON CHEMICAL SAFETY. (I.P.C.S.).
 - 19.- PAROLARI,G. Y PEZZARI G. SULLA DETERMINAZIONE DEL CADMIO NEGLI ALIMENTI. IND. CONSERVE, 1977,52 (2), 130-132.
 - 20.- PERKIN-ELMER.ANALYTICAL METHODS FOR ATOMIC ABSORPTION SPECTROPHOTOMETRY, NORWALK, CONNECTICUT, 1982.
 - 21.- PERKIN-ELMER. MERCURY/ HYDRIDE SYSTEM OPERATOR'S MANUALS. (MHS-10). 1979.

- 22.- REILLY, C. METAL CONTAMINACION OF FOODS II THE INDIVIDUAL METALS. APPLIED SCIENCE PUBLISHERS, LTD LONDON, 1980, 116-171.
- 23.- SCHOEDER Y BALASSA. ARSENIC AND TIN IN FOODS. REVIWS. OF COMM ONLY USED METHODS OF ANALYSIS. 1979.
- 24.- SPIRIDONOV, V. P.AND LOPATKIN, A. A.. TRATAMIENTO MATEMATICO DE DATOS FISICO-QUIMICOS. URSS 1973.
- 25.- VALLE V. P., TOXICOLOGIA DE ALIMENTOS. CENTRO PANAMERICANO DE ECOLOGIA HUMANN Y SALUD. ORGANIZACION MUNDIAL SALUD, 1982, 143-157.
- 26.- WALDBOTT, G.T. HEALT EFFECT OF ENVIRONMENTAL POLLUTANTS. THE C.V. MOSBY Co., St. LOUIS, USA 1973.