UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA

the states

EFECTO DEL CAMPO ELECTRICO SOBRE LA TENSION INTERFACIAL DEL SISTEMA CCI4/H2O

Tesis que presenta la Srita. MARIA DEL ROSARIO CUELLAR ROMO

para optar por el título de INGENIERO QUIMICO

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

на <u>Tesis 1977</u> на <u>H-107 (100)</u> часта « <u>H-107 (100)</u> часта « <u>H-107 (100)</u> часта « <u>H-107 (100)</u>

JURADO ASIGNADO

PRESIDENTE VOCAL SECRETARIO. 1er. SUPLENTE 2do. SUPLENTE

FCO. JAVIER GARFIAS AYALA HECTOR SOBOL ZASLAV MARCELA CEJUDO VAZQUEZ JAIME KELLER TORRES HUMBERTO LARIOS VELARDE

ESTA TESIS SE DESARROLLO EN:

LAB. DE FISICOQUIMICA. DIVISION DE ESTUDIOS SUPERIORES FACULTAD DE QUIMICA. U.N.A.M.

ASESORES AVIER GARFIAS A. FCO. DR

DR. HECTOR SOBOL ZASLAV

SUSTENTANTE

Ma del Rosaino Quellar Romo MA. DEL ROSARIO CUELLAR ROMO

A MIS PADRES

AGRADEZCO AL DR. FCO. JAVIER GARFIAS Y AL DR. HECTOR SOBOL Z. SU GRAN APOYO EN LA REALIZACION DE ESTE TRABAJO.

INDICE

INDICE

-			
na	Π	1	na
pu	ч	•	114

		2
INTRODUCCION	 	

TEORIA

Tensión superficial7	
Tensión interfacial	
Influencia de la temperatura sobre la	
tensión superficial e interfacial 12	
Relación entre tensión superficial y	
la diferencia de presión, a través de una	
superficie líquida curva 15	
Forma de la superficie que divide dos	
fluidos de diferente densidad 18	\$
Tratamiento de Bashforth y Adams para	
superficies de revolución 20)
Determinación de la tensión interfacial	
por aplicación de la ecuación de Laplace, a	
la figura de revolución creada al jalar una	
boquilla que está en contacto con una inter-	
fase 25	5

Determinación de los radios de curvatura Primer método para determinar:

a) el radio	vertical	29
b) el radio	horizontal	34
Segundo método	para determinar:	

a)	еl	radio	vertical	• • • • •	36
ь)	el	radio	horizontal		36

TECNICA EXPERIMENTAL

	Descripción del equipo	39
	Sustancias utilizadas	48
	Placas fotográficas	48
	Limpieza del equipo	49
	Medición del perfil de la curvatura de	
ntei	rfase	49
	Procedimiento experimental	51

CALCULOS

i

	Primer método	56
	Segundo método	66
	Forma en que varía la tensión interfacial	
al	modificar los radios de curvatura	68

RESULTADOS	 	 70
CONCLUSIONES.	 	 105
BIBLIOGRAFIA.	 	 111

INTRODUCCION

Este trabajo experimental, trata sobre el efecto que se produce en la tensión interfacial del sistema Tetracl<u>o</u> ruro de Carbono - Agua, al aplicarle un campo eléctrico.

La tensión superficial e interfacial, son propiedades muy sensibles a las impurezas, por lo que la estruct<u>u</u> ra de la intercara y la medición de la tensión superficial e interfacial son notablemente afectadas por ellas.⁽¹⁾

La tensión superficial de un líquido está determinada fundamentalmente por la segunda fase en contacto con él y es muy diferente si esta segunda fase es un líquido, que si éste fuera un gas.⁽2⁾

Otro factor que interviene en el valor de la tensión interfacial es la temperatura, ya que al aumentar la temperatura, disminuye la tensión interfacial, con excepción de unas cuantas sustancias (ciertos metales).⁽3)

Estudios experimentales y teóricos muestran que los efectos de campos no uniformes sobre dieléctricos son ba<u>s</u> tante notables, para partículas mas largas que el tamaño de la molécula. Los resultados muestran que los efectos pueden ser usados para producir una acción de bombeo bastante eficiente de líquidos no conductivos, causar separaciones continuas y fácilmente medibles en suspensiones

ordinarias, causar precipitación selectiva y producir - mezclado. (4)

La manera en que muchos materiales se comportan en campos eléctricos fuertes no uniformes, muchas veces parece extraña cuando se juzga por patrones usuales. Estos efectos sinembargo han recibido muy poca atención en el pasado. Mueller $\begin{pmatrix} 5 \end{pmatrix}$, Pohl $\begin{pmatrix} 6 \end{pmatrix}$, y Loesche y Hultschig $\begin{pmatrix} 7 \end{pmatrix}$ independientemente estudiaron la teoría del tamaño y d<u>i</u> rección de los objetos.

Mueller, en un análisis muy conciso, concluyó que los efectos no podían definirse para partículas de tamaño molecular. Loesche y Hultschig también concluyeron ésto de su estudio de la teoría y de sus cuidadosos experimentos. Por otro lado, Pohl mostró que estos efectos fueron verdaderamente apreciables para partículas macro<u>s</u> cópicas o cuerpos de líquido. Debye, en un estudio de la teoría de tales efectos sobre moléculas de polímeros largas, concluyó que era posible hacer una graduación por t<u>a</u> maño molecular.

En la práctica, el estudio de los efectos de campos no uniformes se complica por la presencia de un número de eventos, como la dielectroforésis, con la que se relacio-

nan la conducción, convección térmica, difusión y repulsión electrostática.

La "Dielectroforésis" se define como el movimiento de materia causado por efectos de polarización en un campo eléctrico no uniforme. El material mas polar se mueve hacia el lugar de mayor intensidad de campo. A diferencia de electroforesis, ésta no requiere de partículas cargadas. En su lugar depende de las fuerzas experimentadas por un material polar cuando se encuentra en un campo no uniforme. Se puede considerar que tal fuerza se incrementa de la siguiente manera: cualquier dipolo tendrá una separación finita de iguales cantidades de más y menos cargas en él. El campo eléctrico causará una medida de alineamiento con el dipolo. Debido a que el campo es no uniforme, un e<u>x</u> tremo del dipolo estará en un campo más débil que el otro. Una fuerza neta resultará entonces y el dipolo será jalado hacia el lugar de mayor intensidad de campo. (8)

En el curso de este estudio se encontró que el valor de la tensión interfacial está dado en gran parte por la precisión con que se miden los radios de curvatura obtenidos del perfil de la figura de revolución que se produce al jalar la interfase por medio de una boquilla cilíndrica.

Se pueden encontrar condiciones óptimas de operación si se utilizan fuentes monocromáticas luminosas, como la que proporciona un láser pulsante de rubí (emisión en 6943 Å) y placas fotográficas de vidrio Kodalith Pancromáticas.

5

En este estudio no se pudo usar el láser pulsante de rubí y en su lugar se utilizó como fuente luminosa un flash electrónico (Mecablitz 215, L22C), por lo que no se obtuvo la misma precisión en el contorno del perfil de la figura de revolución, pero el obtenido proporciona una adecuada precisión.

Cuando hay dos fases en contacto, la superficie límite entre ellas, se considera como una interfase. En estos sistemas, los fenómenos interfaciales dan a las supe<u>r</u> ficies propiedades especiales, cuyas aplicaciones aumentan dia a dia en diversos campos de la ciencia.

TENSION SUPERFICIAL.- Es una propiedad de la interf<u>a</u> se líquido - gas; que se debe a las fuerzas de atracción intermoleculares en el seno del líquido, como se ve en la figura (1).

Líquido

Figura 1.- Fuerzas de atracción entre moléculas, en la superficie y en el interior del líquido.

Como consecuencia de estas fuerzas de atracción resulta una fuerza neta perpendicular a la superficie dirigida hacia el seno del líquido. Esta fuerza, que es la

tensión superficial, tiende a hacer que el líquido asuma el mínimo estado de energía y como es un hecho observado que una gota de líquido en caída libre asume el área de superficie mas pequeña, correspondiente a la forma esfér<u>i</u> ca, el estado de mínima energía para una gota líquida es el de mínima superficie. (9)(10) Para aumentar la superficie, han de moverse moléculas desde el seno del líqu<u>i</u> do hasta la superficie, contra las fuerzas de atracción intermoleculares, o sea, realizarse trabajo o suministrarse energía.

Un artificio sencillo para definir el trabajo necesario para aumentar la superficie es el que se muestra en la figura (2).

Figura 2

En un marco rectangular se suspende una película líquida. Para mantener el área (A), es preciso ejercer una fuerza (F) sobre el lado móvil del marco. Esta fuerza es

paralela a la superficie y perpendicular al borde de la superficie en contacto con la barra móvil. Si aumenta F en dF, aumenta A.

Si suponemos que se mueve el alambre móvil una distancia d, con el consiguiente aumento de A en 2 ld (pues hay en realidad dos superficies, una a cada lado de la película). El trabajo realizado es Fd y es proporcional al aumento de A. La constante de proporcionalidad, k, es igual a la tensión superficial, γ .

$$W = Fd = \gamma A = \gamma 2 ld \qquad (1)$$

de donde γ = energía . área⁻¹ (erg . cm⁻²) si d = 1 y l = 1 entonces γ = trabajo necesario para aumentar en una unidad de área su superficie.

La tensión superficial se define como la fuerza en dinas que actúa en dirección perpendicular sobre toda línea de 1 cm. de longitud en la superficie, (dinas . cm⁻¹)

Las mismas consideraciones pueden aplicarse a las intercaras entre dos líquidos inmiscibles.

También en este caso hay desequilibrio de fuerzas in termoleculares, aunque en menor magnitud. Para diferenciar la tensión superficial (intercara líquido-gas) de la tensión interfacial (intercara líquido-líquido), designaremos la primera por γ_o y la segunda por γ_c .

TENSION INTERFACIAL. - Es la fuerza en dinas que actúa en dirección perpendicular sobre toda línea de 1 cm. de longitud en la intercara entre dos líquidos inmiscibles -(dinas . cm⁻¹).

Si se pone en contacto agua con un aceite, un hidrocarburo u otro líquido orgánico, la intercara tiende a co<u>n</u> traerse. Esta fuerza, como se dijo anteriormente, se repr<u>e</u> senta por γ_i .

En el caso de un líquido orgánico de cadena relativamente corta y con un grupo polar, γ_i es pequeña; por ejem plo, para butanol y agua, γ_i es 1.8 dinas.cm⁻¹, valor característico de líquidos orgánicos.

Ello muestra que las moléculas del líquido orgánico, en este caso butanol ($\gamma_o = 24 \text{ dinas.cm}^{-1}$), se concentran en la interfase, en la cual la repulsión entre las moléculas acumuladas y las orientadas compensa la tendencia a la contracción de la interfase. Figura (3)

Figura 3.- Un líquido con cabeza polar se orienta hacia la superficie del agua, con las cabezas ancladas en ella. Un líquido no polar no se orienta en capa compacta.

El empaque interfacial ocurre debido a que las "cabezas" hidroxílicas de las moléculas de butanol penetran al interior del agua, mientras que las cadenas permanecen en la fase hidrocarbonada, este proceso resulta en un estado de baja energía libre estándar. (14)

Algo similar ocurre con nitrobenceno en contacto con agua, $\dot{\gamma}_i = 25.1 \text{ dinas.cm}^{-1}$, mientras que para este aceite $\gamma_o = 43.9 \text{ dinas.cm}^{-1}$. La diferencia indica considerable orientación de las moléculas polares en la interfase. En

The Way

cambio, para hidrocarburos, γ_{i} es aproximadamente de 50 dinas.cm⁻¹, valor mucho mas alto que el de γ_{o} en la mayor parte de los hidrocarburos, para los que γ_{o} es a-proximadamente entre 22 y 25 dinas.cm⁻¹. (15)(16)

Esta diferencia entre la tensión interfacial (líquido-líquido) y la tensión superficial (líquido-vapor o líquido-aire, en que la diferencia es pequeña) permite ver que la tensión superficial de un líquido está determanada fundamentalmente por la segunda fase en contacto con él, y es muy diferente si esta segunda fase es otro líquido. (17)

INFLUENCIA DE LA TEMPERATURA SOBRE LA TENSION SUPERFICIAL E INTERFACIAL.

La tensión superficial e interfacial, es el trabajo realizado para trasladar desde el seno del líquido, las moléculas necesarias para formar la superficie renovada, contra la atracción de las moléculas que se encuentran por debajo de la superficie y que es ejercida sobre las moléculas de la superficie. Por lo tanto es una medida de la intensidad de esta fuerza que actúa hacia el seno del líquido. La agitación cinética de las moléculas y la tendencia de éstas a escapar hacia afuera, aumentan al subir la temperatura; por consiguiente es de esperar que al aumentar la temperatura, la tensión superficial disminuya, y de hecho, casi invariablemente, la tensión superficial se comporta de este modo, con las únicas excepciones de unas cuantas sustancias (ciertos metales). A medida que la temperatura se acerca a la temperatura crítica, la tensión superficial se desvanece. (18)

En muchos casos, la disminución de la tensión superficial con el aumento de la temperatura es casi lineal. -Eötvös⁽¹⁹⁾ y Ramsay y Shields⁽²⁰⁾, mostraron que existe cierta semejanza del cambio de tensión superficial con la temperatura.

La ecuación de Ramsey y Shields para la variación de la tensión superficial con la temperatura es:

$$(M_V)^{2/3} = k (T_C - T - 6) (2)$$

donde Mv es el volúmen molecular y Tc la temperatura crítica.

Eotvos dedujo su ecuación a base del exámen de los

estados correspondientes de líquidos de constitución molecular similar, bastante difíciles de considerar. Sin embargo, la base de su teoría es que las superficies han de compararse en cuanto al número de moléculas por unidad de área, el cual, si las moléculas son de forma similar y están empacadas simétricamente, ha de ser proporcional a $(Mv)^{2/3}$.

Por diferenciación de la ecuación anterior:

$$-\frac{d}{dT}\left(\gamma (Mv)^{2/3}\right) = k \qquad (3)$$

se encontró que para líquidos normales k era aproximadamente 2.12.

Investigaciones posteriores han permitido confirmar que los primeros investigadores eran demasiado optimistas al creer que habían descubierto un método tan sencillo pa ra determinar la complejidad molecular de líquidos. Ahora se sabe que no hay constante de Eotvos, pues lós valores de k varían desde 0.56 hasta 19.3, según el líquido y el intervalo de temperatura.

Bennett y Mitchel⁽²¹⁾ mostraron que prácticamente todos los líquidos considerados como no asociados tienen un valor constante de la energía de superficie molecular total:

$$\left(\gamma - T \frac{d}{dT}\right) (Mv)^{2/3} \qquad (4)$$

y sugieron que el comportamiento de esta cantidad, para un intervalo de temperatura considerable, puede servir – como guía en cuanto a si el grado de asociación se manti<u>e</u> ne, o no, constante. En términos de la teoría molecular, el significado de esta prueba es bastante oscuro.⁽²²⁾

RELACION ENTRE TENSION SUPERFICIAL Y LA DIFERENCIA DE PRESION A TRAVES DE UNA SUPERFICIE LIQUIDA CURVA.

Vamos a la mas importante consecuencia de la existe<u>n</u> cia de energía libre de superficie, la cuál fué conocida por Young y Laplace, y es la fundamentación de la Teoría Clásica de Capilaridad, y de la mayoría de los métodos de medición de tensión superficial.

Si la superficie líquida es curva, la presión es más grande en el lado cóncavo que en el convexo, para una ca<u>n</u> tidad que dependa de la tensión superficial y la curvatura. Esto se debe a que el desplazamiento de la superficie curva, paralela a la misma, resulta en un incremento de <u>á</u> rea, como la superficie que se mueve hacia el lado convexo

.

y se ha realizado trabajo para incrementar el área. Este trabajo es proporcionado por la diferencia de presión de la superficie.

El cálculo debe hacerse considerando los cambios de energía envueltos en un desplazamiento de la superficie. -En la figura (4), ABCD es una pequeña parte de la supe<u>r</u> ficie con lados de ángulos rectos; esta área permite desplazarle paralela a la misma, fuera del lado cóncavo, por una distancia δ_n , con las normales de los límites en la posición desplazada A'B'C'D' con las mismas normales en la

16

Figura 4

Las normales de A y B se encuentran con 0_1 , y las de B y C con 0_2 . Los radios de curvatura del arco AB es R_1 , y de BC es R_2 . El ángulo A 0_1 B es AB/ R_1 radianes, y el ángulo $B0_2$ C es BC/ R_2 . El área del elemento de superficie después del desplazamiento es:

$$\begin{pmatrix} AB + \frac{AB}{R_1} & \delta_n \end{pmatrix} \begin{pmatrix} BC + \frac{BC}{R_2} & \delta_n \end{pmatrix}$$
 (5)

anulando cantidades de segundo orden:

$$ABCD \left(1 + \frac{\delta n}{R_1} + \frac{\delta n}{R_2}\right)$$
 (6)

El trabajo realizado contra la energía libre o la tensión superficial γ de la superficie es entonces:

$$\gamma \text{ ABCD } \delta_{n} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right) \qquad (7)$$

Si la presión del lado cóncavo es p_1 y la del convexo p_2 , el trabajo hecho por esta diferencia de presión es:

$$(p_1 - p_2) \delta_{n} ABCD$$
 (8)

No se hace trabajo por otras fuerzas, por lo tanto estas cantidades son iguales y

$$p_1 - p_2 = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
 (9)

Esta es la ecuación fundamental de Capilaridad. Permite el cálculo de las formas de superficie de líquidos cuando el peso del líquido no es despreciable, las presiones pueden ser expresadas en términos de la altura superior a un punto fijo en el fluído y sus densidades.

FORMA DE LA SUPERFICIE QUE DIVIDE DOS FLUIDOS DE DIFERE<u>N</u> TE DENSIDAD.

La figura (5. "a" y "b"), representa la superficie de separación entre dos fluídos. En un punto A, en el c<u>a</u> so "a", la superficie es cóncava hacia arriba; en el caso "b", es cóncava hacia abajo. Tomando otro punto P en la curva, en un plano z arriba o abajo de A, z es posit<u>i</u> va en el lado cóncavo de la curva en A (valores positivos de z son: arriba en el caso "a" y abajo en el caso "b"). p_1 es la presión en el lado cóncavo de A, y p_2 en el lado convexo; D_1 es la densidad del lado de abajo y D_2 del lado de arriba. $p_1 - p_2 = C$, C es determinada por la curva

tura de acuerdo a la ecuación (9).

Las presiones en P serán: $p_1 - gD_2 z$ y $p_2 - gD_1 z$ en el caso "a", y $p_1 + gD_1 z$ y $p_2 + gD_2 z$ en el caso "b"; en ambos casos la diferencia de presión a través de la s<u>u</u> perficie curva en P será $p_1 - p_2 + gz(D_1 - D_2)$, así que, de la ecuación (9):

$$\gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = C + g z (D_1 - D_2) \quad (10)$$

que es la ecuación general de la superficie curva bajo acción de la tensión superficial y gravedad. Proporciona un medio de medición de tensión superficial por comparación de su'magnitud con la gravedad.

Desafortunadamente los radios de curvatura de superficies fluídas no son fácilmente medibles, y cuando las - cantidades que pueden ser medidas son sustituídas en la ecuación (10), la ecuación dá solución imposible en términos finitos. (23)

Numerosas soluciones aproximadas han sido dadas para casos especiales; la más general es la de Bashforth y Adams ⁽²⁴⁾ para el caso de figuras de revolución cerca de un eje vertical.

TRATAMIENTO DE BASHFORTH Y ADAMS PARA SUPERFICIES DE REVOLUCION.

La solución de la ecuación está dada para cuatro o cinco figuras significativas de revolución con respecto a un eje vertical.

La ecuación fundamental de la superficie de separación entre dos fluídos es la ecuación (10); donde z es la altura vertical de un punto en la superficie, medida desde un punto fijo, siendo z positiva cuando la medida es hacia el lado cóncavo de la curva. Son importantes cu<u>a</u> tro casos. Figura (6).

En el caso "a", que incluye la forma ordinaria de los meniscos en la presión de burbuja máxima y los métodos de altura capilar, el vértice es convexo hacia abajo; en "b" (gotas cayendo), el vértice es convexo hacia aba-

jo y el fluído denso está arriba; en "c" (gotas apoyadas) el vértice es cóncavo hacia abajo y el fluído denso está abajo; en "d", el vértice es cóncavo hacia abajo y el flu<u>í</u> do denso está arriba, esto es una burbuja escapando hacia arriba en el interior de un líquido. La figura muestra s<u>e</u> cciones de la superficie a través de el eje de revolución OC.

"a". menisco ordinario

"b". gota cayendo

0

che

A

в

La ecuación (10) se transforma como sigue: se toma O como origen y "z" y "x" como coordenadas vertical y horizontal de un punto P en la curva; dibujar la normal PC a la curva, cortando el eje en C; el ángulo PCO es ϕ .

Dejando el radio de curvatura de la superficie en P, en el plano del papel está ρ ; el radio perpendicular a ésto es PC, ya que PC es la normal, y C está en el eje de revolución, P permanece en la curva cuando PC rota con respecto a OC y P se mueve perpendicular al papel. Los r<u>a</u> dios principales R₁ y R₂ son por consiguiente x/Sen ϕ y ρ .

Si el radio de curvatura en 0 es b (todos los radios son iguales en este punto), entonces en 0, z = 0 y -C = 2 γ /b. La ecuación (10) llega a ser:

$$\gamma \left(\frac{1}{\rho} + \frac{\operatorname{Sen} \phi}{x} \right) = \frac{2 \gamma}{b} + g z \left(D_1 - D_2 \right)$$
(11)

0

$$\frac{1}{\rho/b} + \frac{\text{Sen }\phi}{x/b} = 2 + \frac{z}{b} \left(D_1 - D_2 \right) \frac{gb^2}{\gamma}$$
(12)

Acomodando :

$$\beta = \frac{gb^2}{r} (D_1 - D_2) = \frac{2b^2}{a^2} (13)$$

donde a² es la constante de capilaridad definida por:

$$a^{2} = \frac{2 \gamma}{g (D_{1} - D_{2})}$$
(14)

$$\frac{1}{\rho_{/b}} + \frac{\text{Sen } \phi}{x/b} = 2 + \beta \frac{z}{b}$$
(15)

La ecuación (15) describe los meniscos en una forma en que una cantidad b, determina la escala de los meni<u>s</u> cos, mientras β , determina su forma.

Aparecen dos casos de acuerdo al signo de β · β es positiva si el fluído de arriba de la interfase es ligero, y negativa si es el denso, que tiene el mismo signo que D₁ - D₂. Los casos "a" y "c" tienen β positiva; por lo tanto una gota de líquido en una placa tiene la misma forma que la burbuja formada hacia abajo o el menisco en la cima de una columna de líquido. Los casos "b" y "d" tienen

β negativa, así que la gota cayendo y la burbuja escapando hacia arriba tienen formas similares. Las tablas de Bashforth y Adams dan los valores de x/b, z/b y V/b³ para valores dados de ϕ y β , positivas y negativas. V es el volúmen incluído entre el plano horizontal, la altura z y el ápice de la superficie.⁽²⁵⁾

Los meniscos asimétricos formados por una unterfase separando dos fluídos inmiscibles, son básicamente de dos tipos:

a) Perfiles delineados que cruzan el eje de simetría como la gota que pende, la gota apoyada y la burbuja que emerge. Este tipo también incluye perfiles que están del<u>i</u> neados por la superficie líquida de un líquido, tal como la superficie-libre-jalada o el perfil exterior de un anillo de Du Noüy.

b) Perfiles sin delinear como los de un líquido pue<u>n</u> te soportado entre dos planos horizontales paralelos rígidos.

La forma de los parámetros de ambos tipos de perfiles de meniscos está definida. Los perfiles se obtienen de un juego de tablas generadas por integración de la Ecuación de Laplace. ⁽²⁶⁾

Nosotros nos dedicaremos solamente al estudio de la superficie de revolución creada al jalar una boquilla metálica, en que la relación de diámetro interior a diámetro exterior es casi 1, esto es, de paredes muy delgadas.

DETERMINACION DE LA TENSION INTERFACIAL POR APLICACION DE LA ECUACION DE LAPLACE A LA FIGURA DE REVOLUCION CR<u>E</u> ADA AL JALAR UNA BOQUILLA QUE ESTA EN CONTACTO CON UNA INTERFASE.

La Ecuación de Laplace:

$$\gamma \left(\begin{array}{cc} \frac{1}{R_{h}} + \frac{1}{R_{v}} \end{array} \right) = \Delta \quad D \quad g \quad z \tag{16}$$

es obedecida por todos los meniscos, si las fuerzas que actúan son solamente tensión superficial o interfacial y gravedad.

En la ecuación (16), γ es la tensión superficial o interfacial de la fase delineada, D la densidad relativa, g la aceleración gravitacional, z la altura vertical arriba o abajo de la superficie plana libre entre las dos fases, R_v el radio de la curvatura en el plano vertical y R_h el radio de curvatura horizontal cuyo centro debe encontrarse en el eje de simetría; los dos últimos describen a la superficie en el punto considerado.⁽²⁷⁾

El valor de la tensión superficial es obtenido de la geometría de los perfiles.

La determinación de los radios de curvatura se logra fotografiando el perfil de la figura de revolución creado por la boquilla con el sistema fotográfico de alta definición, como por el descrito por Sobol, Garfias y Keller.⁽²⁸⁾

En la figura (7), apreciamos un perfil típico de la figura de revolución obtenida por medio de nuestro sistema fotográfico.

(0,0)

- ×
La ecuación de Laplace es:

$$\gamma \left(\frac{1}{R_v} + \frac{1}{R_h} \right) = C + g z \left(D_1 - D_2 \right)$$
 (17)

donde: C = constante

D₁ = densidad del líquido de abajo

 D_2 = densidad del líquido de arriba

despejando C de la ecuación (17)

$$C = \gamma \left(\frac{1}{R_{v}} + \frac{1}{R_{h}} \right) - gz (D_{1} - D_{2}) \quad (18)$$

Para el punto I:

$$C = \gamma \left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}} \right) - gz^{l} (D_{1} - D_{2}) \quad (19.a)$$

Para el punto II:

$$C = \gamma \left(\frac{1}{R_{v}^{||}} + \frac{1}{R_{h}^{||}} \right) - gz^{||} (D_{1} - D_{2}) \quad (19.b)$$

Por lo tanto:

$$\gamma \left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}} \right) - gz^{l} (D_{1} - D_{2}) = \gamma \left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}} \right) - gz^{ll} (D_{1} - D_{2})$$
$$\gamma \left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}} \right) - \gamma \left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}} \right) = gz^{l} (D_{1} - D_{2}) - gz^{ll} (D_{1} - D_{2})$$

ya que g es constante, despejando γ tenemos:

$$\gamma = \frac{-g (D_1 - D_2) (z^{11} - z^{1})}{\left(\frac{1}{R_v^1} + \frac{1}{R_h^1}\right) - \left(\frac{1}{R_v^{11}} + \frac{1}{R_h^{11}}\right)}$$
(22)

DETERMINACION DE LOS RADIOS DE CURVATURA.

1.a) El primer método para determinar el radio vertical. Figura (8):

Figura 8.- Radio vertical de la figura de revolución

fué el método de Douglass-Avakian⁽²⁹⁾ por diferenciación numérica, en el que se emplea un polinomio de cuarto grado que es ajustado a siete puntos equidistantes por el método de mínimos cuadrados. El polinomio es:

$$y = a + bx + cx^{2} + dx^{3} + ex^{4}$$
 (23)

Los valores de la variable independiente deben estar espaciados a intervalos iguales "h" y se hace una traslación de coordenadas, de tal manera que para el punto central de los siete valores de la variable independiente, x sea igual a cero. Ahora los nuevos valores de las variables independientes son: -3h, -2h, -h, 0, h, 2h, 3h.

Si "k" representa el coeficiente de "h" en los valores de x; entonces a x = 3h, k = 3; a x = -3h, k = -3, etc. Los valores de las constantes en la ecuación (23) están entonces dadas por las expresiones:

$$a = \frac{524 \Sigma y - 245 \Sigma k^2 y + 21 \Sigma k^4 y}{924}$$
 (23.a)

$$b = \frac{397 \ \Sigma \ ky}{1512 \ h} - \frac{7 \ \Sigma \ k^3 y}{216 \ h}$$
(23.b)

$$c = \frac{-840 \Sigma y + 679 \Sigma k^2 y - 67 \Sigma k^4 y}{3168 h^2}$$
 (23.c)

$$d = \frac{-7 \sum ky + \sum k^{3}y}{216 h^{3}}$$
 (23.d)

$$e = \frac{72 \Sigma y - 67 \Sigma k^2 y + 7 \Sigma k^4 y}{3168 h^4}$$
 (23.e)

Con estos valores de las constantes formamos el polinomio, entonces nuestra curva está dada por la ecuación

$$y = f(x)$$

teniendo f una segunda derivada continua. (30) En el punto determinado P_o (x_o, y_o), la tangente de la curva forma un ángulo con el sentido positivo del eje x que designaremos por ϕ .

Figura 9

En el punto P(x, y)

$$\phi(\mathbf{x}) = \operatorname{Arc} \operatorname{tan} f'(\mathbf{x}) \tag{24}$$

La forma en que varía ϕ a medida que recorremos la curva, es una medida de lo pronunciada que es ésta.

Ahora, la curvatura K de un arco dado en la forma y = f(x) es la razón de variación del ángulo ϕ con respecto a la longitud del arco s, esto es,

$$K = d\phi/ds$$
 (25)

De la Regla de la Cadena sabemos que:

$$K = \frac{d \phi}{ds} = \frac{d \phi}{dx} \cdot \frac{dx}{ds}$$
(26)

Determinemos primero d ϕ / dx:

$$\frac{d \phi}{dx} = \frac{d}{dx} (Arc tan f'(x)) = dx$$

$$= \frac{1}{1 + (f'(x))^2} \cdot f''(x) \quad (27)$$

Para obtener ds/dx, recordamos que siendo la derivación y la integración procesos inversos, la fórmula:

$$s = \int \sqrt{1 + (f'(x))^2} dx$$
 (28)

puede diferenciarse, y el resultado es:

$$ds = \sqrt{1 + (f'(x))^2} dx$$
 (29)

$$\frac{ds}{dx} = \frac{1}{\sqrt{1 + (f'(x))^2}}$$
(30)

Por lo tanto obtenemos:

.

ó

$$K = \frac{f''(x)}{1 + (f'(x))^2} \cdot \frac{1}{\sqrt{1 + (f'(x))^2}}$$
$$= \frac{f''(x)}{(1 + (f'(x))^2)^{3/2}}$$
(31)

La curvatura puede ser positiva, negativa o nula. Para arcos dados en la forma y = f(x), la curvatura tiene el mismo signo que f"(x). Si ϕ crece en la forma que la curvatura va girando hacia la izquierda cuando el parámetro crece, entonces K es positiva; y K es negativa si ϕ es decreciente. Esto es equivalente a decir que el lado cóncavo de la curva está a la izquierda si K > 0 y

a la derecha si K < 0.

Figura 10

El radio de curvatura "R" de un arco en un punto, se define como el recíproco del valor absoluto de la curvatura en ese punto, esto es:

$$R = \frac{1}{|K|}$$
(32)

b) Para determinar el radio horizontal, necesitamos obtener la ecuación de la normal, para poder conocer la longitud entre el punto y el eje de simetría y así obtener el radio.

En la figura (11) se muestra la normal trazada a la curvatura.

La pendiente del polinomio, ecuación (23) al punto central (x = 0) es:

$$\frac{dy}{dx} = b \tag{33}$$

 $m_N = \frac{1}{dy/dx}$ = pendiente de la normal (34)

La ecuación de la línea recta es:

$$(y - y_0) = m_N (x - x_0)$$
 (35)

$$y = m_N x - m_N x_0 + y_0$$
 (36)

como x = 0, $m_N x = 0$; por lo tanto:

$$y = -m_N x_0 + y_0$$
 (37)

Ahora ya conocemos los dos puntos, o sea, (x_0, y_0) y (0, y), entonces la distancia entre ellos dos será:

$$d = \sqrt{(x_0 - 0)^2 + (y_0 - y)^2} - (38)$$

y esta distancia es el radio de curvatura en el plano horizontal.

2.a) El segundo método usado para la determinación del radio de curvatura fué geométrico.

Primero se trazaron los ejes vertical y horizontal con respecto a la boquilla; el vertical en el centro de la boquilla y el horizontal en el límite inferior de ella.

Se tomaron seis del lado izquierdo y seis del derecho, con una separación vertical de 0.5 cm (en la fotografía); a estos puntos se les trazó geométricamente la normal; y los radios de curvatura se midieron con compás.

b) El cálculo de los radios de curvatura horizontales
 se hizo prolongando la normal hasta el eje de las "y" y

midiendo la distancia que existe entre el punto y dicho eje.

En este segundo método se usaron fotografías de la figura de revolución, amplificadas en papel de alto co<u>n</u> traste.

TECNICA EXPERIMENTAL

39

DESCRIPCION DEL EQUIPO.

En la figura (12) se muestran en forma esquemática del equipo utilizado en el experimento, que consta de:

- a) Espejo
- b) Flash electrónico Mecablitz 215, L22C
- c) Diafragma Central Scientific CO
- d) Lente biconvexo
- e) Lente convexo
- f) Lente biconvexo
- a) Sistema de control de temperatura
- h) Termómetro de graduación de 0.1 C $^{
 m o}$
- i) Boquilla con sistema de desplazamiento horizontal y vertical para formar la interfase
- j) Celda de vidrio Pyrex con paredes ópticamente paralelas de 6 x 6 x 10 cm.
- k) Cámara fotográfica Leitz-Aristofat (lente 1:4.5 Ernst Leitz Wetzlar $\zeta = 8$ cm. Summar)
- 1) Catetómetro
- m) Generador de corriente eléctrica con salida de
 12 000 volts

- n) Baño Colora Electronic Tauchkuhler
- o) Disparador del flash
- p) Sistema para desplazar la cámara fotográfica a lo largo del eje óptico
- q) Soporte de la celda de vidrio con capacidad de desplazamiento vertical, horizontal y angular
- r) Sistema de soporte para la cámara fotográfica con capacidad de desplazamiento vertical, horizontal y angular
- s) Banco óptico CENCO de 115 cm. de longitud
- t) Loza de granito de 3.75 cm. de espesor
- u) Placas de espuma rígida de poliestireno de 2.5 cm. de espesor
- v) Banco de madera

٢,

En las siguientes fotografías se muestra en forma detallada cada una de las partes del equipo.

Figura 13.- Baño Colora Electronic Tauchkühler

Figura 15.- Celda de vidrio Pyrex de paredes ópticamente paralelas.

Figura 16.- Boquilla con sistema de desplazamiento horizontal y vertical

Figura 17.- Sistema óptico de reducción del haz luminoso.

Figura 18.- Celda de vidrio Pyrex, sistema de control de temperatura, boquilla formadora de la figura de revolución, termómetro y generador de corriente eléctrica.

Figura 19.- Catetómetro y disparador del flash

Figura 20.- Cámara fotográfica Leitz-Aristofat

Figura 21.- Catetómetro

Figura 22.- Equipo completo

SUSTANCIAS UTILIZADAS.

Las primeras pruebas que se hicieron fueron con varias sustancias insolubles en agua, para obtener la formación de la interfase.

Se escogió el Tetracloruro de Carbono, debido a que la formación de la interfase CCI₄/H₂O al contacto con las paredes de la celda de vidrio es cóncava hacia abajo, y por lo tanto, mucho más fácil de fotografiar la curvatura de interfase formada al jalar la boquilla.

Las sustancias empleadas fueron:

- a) Tetracloruro de carbono. Marca Merck de -99.8% de pureza.
- b) Agua destilada.

PLACAS FOTOGRAFICAS.

Se utilizaron placas fotográficas de tipo Kodalit Pancromáticas de 10 x 12.5 cm. Estas placas fueron reveladas con:

a) Revelador líquido Kodalit (Concentrado A + Concentrado B)

b) Acido acético diluído al 10%

c) Fijador rápido Kodak con endurecedor.

Se hicieron pruebas para determinar el tiempo óptimo de revelado, en que el perfil de la interfase apareciera mejor delineada y fuera más clara y precisa.

El tiempo óptimo de revelado fué de 2 min. 30 seg.

LIMPIEZA DEL EQUIPO

El equipo que estuvo en contacto con el tetracloruro de carbono y el agua del experimento, se trató con mezcla crómica caliente, seguido de un enjuague con agua destilada, y se le secó en un desecador con vacío.

La boquilla se limpió con acetona y se dejó secar.

MEDICION DEL PERFIL DE LA CURVATURA DE INTERFASE.

En la medición de las placas de vidrio se utilizó un microscopio con desplazamiento horizontal y vertical, marca PYE, obteniéndose una precisión de [±] 0.0001 cm. Figura (23).

Para medir las fotografías amplificadas en papel de alto contraste, se utilizó un juego de compases marca -Lotter de mucha precisión e intercambiabilidad de todas sus piezas.

Figura 23.- Microscopio marca PYE, con desplazamiento horizontal y vertical y una precisión de ⁺0.0001 cm. PROCEDIMIENTO EXPERIMENTAL.

Lo primero que se realizó en este experimento fueron pruebas con algunas sustancias insolubles en agua; en estas pruebas lo que se pretendía era determinar qué sustancia se utilizaría, ya que lo que necesitábamos era una sustancia insoluble en agua, que al contacto con las paredes de la celda de vidrio se formara una interfase cóncava hacia abajo para facilitar la medición de los radios de curvatura en las fotografías.

Después se alineó todo el equipo y se pusieron los lentes necesarios para reducir el haz luminoso del flash electrónico a un haz lo suficientemente pequeño para que quedara concentrado alrededor de la interfase formada al jalar la boquilla; la posición del flash electrónico sobre el banco óptico CENCO fué a 95.7 cm del origen, la del primer lente biconvexo 67.45 cm, del lente convexo (e) 58.2 cm, y del segundo lente biconvexo 51.59 cm. – Entre el flash y el primer lente biconvexo se colocó un diafragma Central Scientific CO, con una abertura de 12 mm de diámetro y en una posición sobre el banco óptico de 76.92 cm.

También se hicieron pruebas con la posición de la cámara fotográfica Leitz-Aristofat, para obtener las me-

jores fotografías.

Se alineó la celda Pyrex de vidrio y se introdujeron a ella, el serpentín de control de temperatura, el termómetro y la boquilla formadora de la interfase; todo ésto perfectamente limpio. Se llenó la celda con el tetracloruro de carbono y agua, de tal manera, que la interfase se formara en la misma dirección del eje central horizontal del lente de la cámara fotográfica, para poderla fotografiar.

Ya que estaba listo todo ésto, se colocaba la boquilla en el centro de la celda y mediante su sistema de desplazamiento vertical se jalaba la boquilla lo suficiente para formar la figura de revolución, pero sin romperla; se procedía después a tomar la fotografía, colocando la placa Kodalit Pancromática en la cámara y disparándo el flash inmediatamente después.

Al aplicar campo eléctrico, se introducía en la celda una de las terminales del generador de corriente eléctrica y la otra se conectaba a la boquilla cilíndrica, para formar el campo eléctrico dentro de la celda, y se hacía lo mismo que en las fotografías sin campo.

El diafragma de la cámara se mantuvo abierto y el tiempo de exposición quedó determinado por la duración

del haz de luz proveniente del flash electrónico.

Las fotografías tomadas se revelaron y se marcaron con un lápiz de punta de diamante.

Estas placas de vidrio fueron las que se utilizaron para medir los radios de curvatura en el primer método y tenían una amplificación de 4.812615 cm del real. De estas placas se sacaron fotografías en papel de alto contraste para utilizarlas en el segundo método, éstas tenían una amplificación de 13.9168 cm del real.

La primera serie de placas se tomó inmediatamente después de formada la interfase, la segunda después de haber tenido en contacto durante 18 horas la interfase, y la tercera serie, también inmediatamente después de formada la interfase.

ERIE	PLACA	POSICION	TIEMPO DE	REVELADO	CAMPO ELECTRICO
1	А	1	2 min.	30 seg.	NO
	В	1	2 min.	30 seg.	NO
	С	2	2 min.	30 seg.	NO
	D	2	2 min.	30 seg.	NO
	E	2	2 min.	30 seg.	S I
	F	2	2 min.	30 seg.	S I
	G	3	2 min.	27 seg.	SI
	Н	3	2 min.	30 seg.	S I
					a
2	1	4	2 min.	30 seg.	NO
	J	4	2 min.	30 seg.	ΝΟ
	К	4	2 min.	30 seg.	S 1
	L	4	2 min.	30 seg.	S 1
3	м	5	2 min.	30 seg.	ΝΟ
	N	5	2 min.	30 seg.	ΝΟ
	Ñ	5	2 min.	30 seg.	S I
	0	5	2 min.	30 seg.	S I

54

S

CALCULOS

Para los cálculos de la tensión interfacial, se utilizaron dos métodos diferentes.

PRIMER METODO.

Usando el primer método para medición de la tensión interfacial, un ejemplo de los cálculos sería el siguiente:

Para la placa de vidrio "A": Diámetro de la boquilla = 4.3918 cm. h = 0.01 cm

Figura 24

PUNTO I. La	do Izquierd	0
-------------	-------------	---

Microscopio

X	Y	×	У
6.54	7.0135	-3.46	0.9865
6.55	7.0114	-3.45	0.9886
6.56	7.0100	-3.44	0.9900
6.57	7.0065	-3.43	0.9935
6.58	7.0035	-3.42	0.9965
6.59	7.0013	-3.41	0.9987
6.60	7.0002	-3.40	0.9998

	k	×	У	ky	k ² y	k ³ y	k ⁴ y
3h	3	-3.46	0.9865	2.9595	8.8785	26.6355	79.9065
2 h	2	-3.45	0.9886	1.9772	3.9544	7.9088	15.8174
h	1	-3.44	0.9900	0.9900	0.9900	0.9900	0.9900
0	0	-3.43	0.9935	0.0000	0.0000	0.0000	0.0000
- h	- 1	-3.42	0.9965	-0.9965	0.9965	- 0.9965	0.9965
-2h	- 2	-3.41	0.9987	-1.9974	3.9948	- 7.9896	15.9792
-3h	- 3	-3.40	0.9998	-2.9994	8.9982	-26.9946	80.9838

6.9536 -0.0666 27.8124 - 0.4464 194.6736

$$a = \frac{524 \Sigma y - 245 \Sigma k^{2}y + 21 \Sigma k^{4}y}{924} =$$

 $= \frac{524(6.9536) - 245(27.8124) + 21(194.6736)}{924} =$

= -0.99328355

$$b = \frac{397 \ \Sigma \ ky}{1512 \ h} - \frac{7 \ \Sigma \ k^3 y}{216 \ h} = \frac{397(-0.0666)}{15.12} - \frac{7(-0.4464)}{2.16} =$$

= -0.302023809

$$c = \frac{-840 \Sigma y + 679 \Sigma k^2 y - 67 \Sigma k^4 y}{3168 h^2} =$$

 $= \frac{-840(6.9536) + 679(27.8124) - 67(194.6736)}{0.3168} =$

= 1.465909091

$$d = \frac{-7 \quad \Sigma \, ky + \Sigma \quad k^3 y}{216 \quad h^3} = \frac{-7(-0.0666) - 0.4464}{0.000216}$$

= 91.66666667

6

$$e = \frac{72 \Sigma y - 67 \Sigma k^2 y + 7 \Sigma k^4 y}{3164 h^4} =$$

$$\frac{72(6.9535) - 67(27.8124) + 7(194.6736)}{0.00003168}$$

= -1780.30303

$$y = a + bx + cx^{2} + dx^{3} + ex^{4}$$

= 0.99328355 - 0.302023809x + 1.465909091x² + 91.66666666x³
- 1780.30303x⁴

En el punto
$$x_0 = (-3.43)$$
:
 $dy/dx = -7121.21212x^3 + 275x^2 + 2.931818182x - 0.3020238$
 $= 290591.5847$
 $d^2y/dx^2 = -21363.63636x^2 + 550x + 2.931818182$
 $= -253224.6136$

$$\kappa(x) = \frac{f''(x)}{(1 + (f'(x))^2)^{3/2}} = \frac{-253224.6136}{(1 + (290591.5847)^2)^{3/2}}$$
$$= \frac{-253224.6136}{2.4538562 \times 10^{16}} = -1.0319456 \times 10^{-11}$$
$$R = \frac{1}{\kappa(x)} = -9.690433 \times 10^{10}$$
$$R_v^1 = -9.690433 \times 10^{10}$$

$$m_N = -\frac{1}{dy/dx} = \frac{1}{290591.5847} = -0.0000034441$$

 $(y_{1} - y_{0}) = m_{N}(x - x_{0})$

$$y_{1} = m_{N}x - m_{N}x_{o} + y_{o}$$

$$y_{1} = -m_{N}x_{o} + y_{o} = -(-0.000003441)(-3.43) + 0.9935$$

$$= 0.993488197$$

$$d = \sqrt{(x_0 - 0)^2 + (y_0 - y_1)^2} =$$

= $\sqrt{(-3.43 - 0)^2 + (0.9935 - 0.993488)^2} = 3.43$
 $R_h^1 = 3.43$

PUNTO II. Lado Izquierdo

Microscopio

X	Y	×	У
7.04	6.8322	-2.96	1.1678
7.05	6.8283	-2.95	1.1717
7.06	6.8222	-2.94	1.1778
7.07	6.8178	-2.93	1.1822
7.08	6.8130	-2.92	1.1870
7.09	6.8078	-2.91	1.1922
7.10	6.8018	-2.90	1.1982

	k	x	У	ky	k ² y	k ³ y	k ⁴ y
					10 5100	21 5206	01 5018
3 h	3	-2.96	1.1678	3.5034	10.5102	31.5306	94.5910
2 h	2	-2.95	1.1717	2.3434	4.6868	9.3736	18.7472
h	1	-2.94	1.1778	1.1778	1.1778	1.1778	1.1778
0	0	-2.93	1.1822	0.0000	0.0000	0.0000	0.0000
- h	- 1	-2.92	1.1870	-1.1870	1.1870	- 1.1870	1.1870
-2h	- 2	-2.91	1.1922	-2.3844	4.7688	- 9.5376	19.0752
-3h	- 3	-2.90	1.1982	-3.5946	10.7838	-32.3514	97.0542
			8.2769	-0.1414	33.1144	- 0.9940	231.8332
	501	(0 07(0)	245(22 11/1/	+ 21/221	8222)	
a =	= 524	(8.2/69)	- 245(.	33.1144)	+ 21(2)1.		
				924			

= 1.18242943

 $b = \frac{397(-0.1414)}{15.12} - \frac{7(-0.994)}{2.16} = -0.491388889$

 $c = \frac{-840(8.2769) + 679(33.1144) - 67(231.8332)}{0.3168} =$

= - 2.34469697

 $d = \frac{-7(-0.1414) - 0.9940}{0.000216} = -19.44444444$

$$e = \frac{72(8.2769) - 67(33.1144) + 7(231.8332)}{0.00003168} =$$

= 3295.454545

$$y = a + bx + cx2 + dx3 + ex4$$

= 1.182429437 - 0.491388889x - 2.34469697x² - 19.4444444x³
+ 3295.454545x⁴

En el punto
$$x_0 = (-2.93)$$
:
 $dy/dx = 13181.81818x^3 - 58.333333x^2 - 4.68939394x$
 $- 0.491388889 = 332059.7886$
 $d^2y/dx^2 = 39545.45454x^2 - 116.66666666x - 4.68939394$
 $= 339830.9166$

$$K(x) = \frac{339830.9166}{\left(1 + \left(-332059.7886\right)^2\right)^{3/2}} = 9.2814115 \times 10^{-12}$$

$$R = \frac{1}{K(x)} = 1.0774223 \times 10^{11}$$

$$R_{...}^{||} = 1.074223 \times 10^{11}$$
$$m_{N} = \frac{1}{-332059.7886} = 0.000003012$$

$$y_{1} = -m_{N}x_{o} + y_{o} = -(0.000003012)(-2.93) + 1.1822$$

$$= 1.182208824$$

$$d = \sqrt{(-2.93 - 0)^{2} + (1.1822 - 1.1822088)^{2}} = 2.93$$

$$R_{h}^{11} = 2.93$$

UNIDADES:

$$z = cm$$

$$g = cm/seg^{2}$$

$$D = g/cm^{3}$$

$$R = cm$$

$$\gamma = \frac{\text{cm x cm/seg}^2 \text{ x g/cm}^3}{1/\text{cm}} = \frac{\text{g x cm}}{\text{seg}^2 \text{cm}} = \frac{\text{dina}}{\text{cm}}$$

$$g = 997.9416 \text{ cm/seg}^{2}$$

$$D_{H_{2}0} = 0.99913 \text{ g/cm}^{3}$$

$$D_{CC1_{4}} = 1.604 \text{ g/cm}^{3}$$

$$z_{amplificada} = z_1 - z_2 = 1.1822 - 0.9925 = 0.1887$$
 cm.

Diámetro boquilla amplificada = 4.3918 cm

Diámetro_{boqu}illa real = 0.91256 cm.

 $\frac{\text{Diámetro}_{\text{amplificado}}}{\text{Diámetro}_{\text{real}}} = \frac{4.3918}{0.91256} = 4.812615$

$$z_{real} = \frac{0.1887}{4.812615} = 0.03920945$$

RADIOS DE CURVATURA REALES:

$$\frac{1}{R_v^{I}} = \frac{1}{-9.690433 \times 10^{10} / 4.812615} = -0.225567016 \times 10^{-11}$$

$$\frac{1}{\frac{1}{R_{b}^{1}}} = \frac{1}{3.43/4.812615} = 0.0637271761$$

$$\frac{1}{R_{V}^{11}} = \frac{1}{1.0774223 \times 10^{11} / 4.812615} = 0.235507504 \times 10^{-11}$$

 $\frac{1}{\binom{1}{R_{h}^{11}}} = \frac{1}{2.93/4.812615} = 0.07460212$

$$\gamma = \frac{-g(D_1 - D_2)(z^{11} - z^{1})}{\left(\frac{1}{R_v^{1}} + \frac{1}{R_h^{1}}\right) - \left(\frac{1}{R_v^{11}} + \frac{1}{R_h^{11}}\right)}$$

 $\gamma = -\frac{997.9416 \ (0.99913 \ -1.604) \ (0.03920945)}{(0.225567 \ \times \ 10^{-11} \ + \ 0.063727) \ - \ (0.2355 \ \times \ 10^{-11} \ + \ 0.074}$

 $\gamma = 2 \ 243.56486 \ dinas/cm$

SEGUNDO METODO.

Utilizando el segundo método de medición de radios de curvatura, el valor de la tensión interfacial para el mismo ejemplo es el siguiente:

UNIDADES:

$$z = cm$$

$$g = cm/seg^{2}$$

$$D = g/cm^{3}$$

$$R = cm$$

$$\gamma = dinas/cm$$

VALORES:

 $g = 977.9416 \text{ cm/seg}^{2}$ $D_{H_{2}0} = 0.99913 \text{ g/cm}^{3}$ $D_{CC1_{4}} = 1.604 \text{ g/cm}^{3}$ Amplificación = 13.9168 cm

Para la fotografía "A" en los puntos I y II. Lado Izquierdo:

 $z^{||} - z^{||} = 0.5/13.9168 = 0.035927799$ cm

$$R_{v}^{l} = 8.58 \text{ cm}/ 13.9168 = 0.616521039 \text{ cm}$$

$$R_{h}^{l} = 45 \text{ cm}/ 13.9168 = 3.233501954 \text{ cm}$$

$$R_{v}^{l} = 5.225 \text{ cm}/ 13.9168 = 0.375445505 \text{ cm}$$

$$R_{h}^{l} = 21.67 \text{ cm}/ 13.9168 = 1.55711083 \text{ cm}$$

$$\frac{1}{R_{v}^{l}} = 1.622 \text{ cm}$$

$$\frac{1}{R_{v}^{l}} = 0.30926 \text{ cm}$$

$$\frac{1}{R_{v}^{l}} = 2.6635 \text{ cm}$$

$$\frac{1}{R_{v}^{l}} = 0.64221 \text{ cm}$$

$$\gamma = \frac{-g (D_{1} - D_{2}) (z^{ll} - z^{l})}{\left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}}\right) - \left(\frac{1}{R_{v}^{l}} + \frac{1}{R_{h}^{l}}\right)}$$

$$\gamma = \frac{997.9416 (0.99913 - 1.604) (0.35927799)}{(1.622 + 0.30926) - (2.6635 + 0.64221)}$$

$$\gamma = 15.45096 \text{ dinas/cm}$$

D

D

C

FORMA EN QUE VARIA LA TENSION INTERFACIAL, AL MODIFICAR LOS RADIOS DE CURVATURA.

(1 mm. amplificado ó 0.0071855 cm. real)

 R_{γ}^{I} (cm) γ (dinas/cm) R_{h}^{I} (cm) γ (dinas/cm) 27.234843 27.234843 10.4 3.975 27.463481 10.3 28.908562 3.875 27.700587 30.908669 10.2 3.775 27.946643 10.1 33.340997 3.675 28.202167 10.0 3.575 36.362602 29.968655 9.4 110.763150 2.975

R <mark> </mark> (cm) v	γ (dinas/cm)	R <mark>ll</mark> (cm) h	γ (dinas/cm)
3.125	27.234843	7.15	27.234843
3.025	24.887060	7.05	26.761394
2.925	22.788259	6.95	26.291193
2.825	29.890568	6.85	25.824211
2.725	19.194401	6.75	25.360416
2.125	11.624266	6.15	22.642752

RESULTADOS

La siguiente fotografía, es un ejemplo de las placas tomadas en el experimento, muestra: la boquilla jalando la interfase CCl_4/H_20 ; están trazados, el eje de simetría y el eje horizontal, los radios de curvatura verticales y horizontales para los lados derecho e izquierdo; los números romanos, indican los puntos en los cuales se midió la tensión interfacial y se encuentran a una distancia vertical de 0.5 cm uno de otro.

A continuación, se muestran las tablas de resultados de cada una de las fotografías tomadas; primero las de los radios de curvatura verticales y horizontales de cada punto y después, las tensiones interfaciales entre estos puntos.

PLACA	''A''
-------	-------

	LADO IZ	ZQUIERDO	LADO [DERECHO
	RAD	10.5	RAD	05
PUNTO	vertical	horizontal	vertical	horizontal
1	8.580	45.000	7.620	24.550
11	5.225	21.670	4.820	15.020
111	3.800	12.790	3.800	10.870
IV	3.100	9.650	3.000	8.600
V	2.475	7.880	2.460	7.320
V I	2.430	6.975	2.450	6.575

f

PLACA "A"

			LADO IZQUIERDO	LADO DERECHO
	Z	Puntos	γ dinas/cm	γ dinas/cm
			The sales designed	
0.5	cm	1 = 11 +	15.45096	14.94847
		11 - 111	14.69910	18.81438
		111 - IV	17.98120	16.15503
		IV - V	14.56901	16.31891
		V - VI	63.71377	89.03526
1.0	cm	1, - 111	15.07615	16.67105
		11 - IV	16.18661	17.39499
		III - V	16.10748	16.24787
		IV - VI	23.73308	27.60176
1.5	cm	I - IV	15.93790	16.50011
		11 - V	15.61354	17.02579
		111 - VI	21.45253	22.23640
2.0	cm	I - V	15.57586	16.45791
1		11 - VI	19.24747	21.34327
2.5	cm	I - VI	18.34848	19.66358

20.24621

PLACA "B"

	LADO I	ZQUIERDO	LADO I	DERECHO
	R A D	RADIOS		105
PUNTO	vertical	horizontal	vertical	horizontal
1	8.380	40.750	7.975	25.180
11	5.120	21.475	4.760	15.450
111	4.120	12.430	3.775	11.175
١V	3.500	9.480	2.950	8.780
V	2.725	7.850	2.625	7.375
VI	2.550	6.850	2.380	6.720

PLACA "B"

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	I - II	15.56990	13.90960
	н - щ	18.77114	19.17453
	111 - IV	22.42997	15.49266
	IV - V	14.79125	23.96546
	V - VI	34.85278	29.10209
1.0 cm	1 - 111	17.03318	16.13438
	II - IV	20.45195	17.15072
	111 - V	17.83965	18.83334
	IV - VI	20.78399	26.30513
1.5 cm	I - IV	18.52260	15.91959
	11 - V	18.14463	18.95095
	111 - VI	21.31055	21.34837
2.0 cm	I - V	17.42796	17.38093
	11 - VI	20.61809	20.76464
2.5 cm	I - VI	19.36506	18.90476

19.86084

PLACA "C"

	LADO I	ZQUIERDO	LADO	DERECHO
	RAD	RADIOS		105
VNTO	vertical	horizontal	vertical	horizontal
1	5.450	20.760	5.325	14.280
11	3.600	12.050	3.750	10.340
111	3.430	9.150	3.215	8.240
IV	2.680	7.625	2.560	7.1.20
V	2.300	6.810	2.300	6.480
V I	2.200	6.500	2.200	6.325

DIACA	11011
PLACA	L

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	C I - II	11.81860	14.45590
	11 - 111	38.08420	20.10680
	111 - IV	14.75110	15.46440
	IV - V	19.72850	26.29490
	V - VI	57.00880	64.82230
1.0 cm	1 - 111	18.05180	17.49300
	11 - IV	21.28030	19.21120
	111 - V	16.89230	19.48880
	IV - VI	29.33340	37.43600
1.5 cm	I - IV	16.80410	16.76520
	II - V	20.74200	20.29500
	111 - VI	22.07190	25.42550
2.0 cm	I - V	17.45400	18.43840
	11 - VI	24.66720	24.50440
2.5 cm	I - VI	20.26660	21.51760

23.26365

24.18062

PLACA "D"

LADO IZQUIERDO LADO DERECHO

	R A D	1 0 S	RADIOS	
PUNTO V	vertical	horizontal	vertical	horizontal
1	5.275	18.650	5.300	14.570
11	3.775	10.910	3.800	10.520
111	3.580	8.800	3.200	8.350
IV	3.925	7.575	2.550	7.125
V	2.450	6.780	2.300	6.475
VI	2.200	6.450	2.300	6.325

PLACA "D"

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	13.45990	15.12290
	н - ш	41.91000	20.60920
	111 - IV	18.85440	15.22060
	IV - V	18.66390	26.90450
	V - VI	29.29550	65.14040
1.0 cm	1 - 111	20.39010	17.45640
	11 - IV	26.02640	17.52190
	111 - V	18.77170	19.45580
	IV - VI	22.50760	38.10740
1.5 cm	I - IV	19.85690	16.64650
	11 - V	23.00950	19.83100
	III - VI	21.14860	25.39620
2.0 cm	I - V	19.54890	18.4032
	11 - VI	24.14110	24.00750
2.5 cm	I - VI	20.83860	21.48670

PROMEDIOS

22.49487

24.08728

PLACA "E"

LADO IZQUIERDO

Ρ

LADO DERECHO

1

	RAD	105	RADIOS	
UNIO	vertical	horizontal	vertical	horizontal
I	4.500	11.710	4.100	10.000
11	3.500	9.070	3.300	8.000
111	3.030	7.620	2.975	6.790
IV	2.420	6.700	2.750	6.280
V	2.225	6.300	2.310	6.120
VI	1.180	6.250	1.270	6.150

PLACA "E"

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	17.27189	18.13785
	11 - 111	23.36788	27.55391
	111 - IV	15.07689	28.66678
	IV - V	33.39487	20.78273
	V - VI	3.82158	4.31411
1.0 cm	1 - 111	19.87616	21.89090
	11 - IV	18.34082	32.20031
	111 - V	20.78908	27.05359
	IV - VI	6.86311	7.14990
1.5 cm	I - 1V	17.97530	25.59714
	11 - V	21.58910	27.22586
	111 - VI	8.38746	9.81824
2.0 cm	I - V	20.32429	24.20167
	11 - VI	9.98935	11.70237
2.5 cm	I - VI	10.90981	12.59719

16.53184

20.59483

PI	ACA	11 11 11

LADO IZQUIERDO

LADO DERECHO

1

	RAD	105	RAD	10S
PUNTO	vertical	horizontal	vertical	horizontal
1	4.330	11.950	3.870	10.280
11	3.750	9.350	3.375	7.980
111	3.200	7.780	2.800	6.850
IV	2.700	6.820	2.520	6.300
V	2.250	6.340	1.880	6.080
VI	1 780	6.300	1.500	6.160

PLACA "F"

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	25.85947	23.14276
	11-2-111	22.64016	18.71820
	/ 111 - IV	20.08873	29.10608
	IV - V	17.91597	10.83514
	V - VI	13.13202	11.50617
1.0 cm	1 - 111	24.15939	20.71107
	11 - IV	21.30279	22.79984
	111 - V	18.95259	15.80263
	IV - VI	15.00483	11.16836
1.5 cm	1 - IV	22.63778	22.91936
	11 - V	20.04552	16.67228
	111 - VI	16.39109	14.05777
2.0 cm	1 - V	21.24307	17.92820
	11 - VI	17.60883	14.99372
2.5 cm	I - VI	18.81038	16.13069
			I
	PROMEDIOS	19.71951	17.76615

PLACA "G"

LADO IZQUIERDO

LADO DERECHO

1

RADIOS

ŗ

RADIOS

UN105	vertical	horizontal	vertical	horizontal
	4 100	10.050	4.080	9.230
	3.400	8.120	3.260	7.550
111	2.980	7.100	2.670	6.575
IV	2.450	6.380	2.420	6.070
V	2.200	6.150	2.150	5.950
V 1	1.900	6.360	1.825	6.400

PLACA "G"

				LADO IZQUIERDO	LADO DERECHO	
Z	Pu	un t	tos	γ dinas/cm	γ dinas/c	: m
				20 74218	17 79313	
0.5 0	:m i		11	25.81796	17.45408	
			IV	17.25676	29.71896	
	IV	-	v	29.22839	27.63544	
	v	-	VI	22.99662	21.48816	
1.0 c	:m I	-	111	23.01944	17.63426	
	11	-	IV	20.70100	22.00743	
	111	-	V	21.71613	28.65932	
	IV	-	VI	25.75864	24.19402	
1.5 0	m I	-	IV	20.72049	20.40347	
•	11	-	۷	22.93630	23.61598	
	111	-	VI	22.13281	25.79875	
2.0 0	:m I	-	V	22.35037	21.83549	
	. 11	-	VI	22.95615	23.05061	
2.5 0	cm I	-	VI	22.47914	21.76761	
			×.		00.07015	

PROMEDIOS

22.72083

PLACA "H"		
LADO IZQUIERDO	LADO DERECHO	
RADIOS	RADIOS	

PUNTOS	vertical	horizontal	vertical	horizontal	
1	3.950	10.050	4.030	9.350	
11	3.400	8.200	3.060	7.520	
Ш	3.020	7.000	2.680	6.530	
IV	2.680	6.350	2.290	6.050	
V	2.450	6.120	2.100	5.950	
VI	2.270	6.340	1.950	6.300	

PL	ACA	""
	AUA	

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
			•
0.5 cm	1 - 11	24.06731	14.57617
	11 - 111	26.34783	22.94686
	111 - IV	26.94483	20.15820
	IV - V	37.26523	36.08444
	V - VI	57.16011	55.90858
1.0 cm	1 - 111	25.17352	17.80027
	11 - IV	26.66138	21.47728
	111 - V	31.29720	25.88443
	IV - VI	45.14824	43.89107
1.5 cm	1 - IV	25.74431	18.55616
	11 V	29.46201	24.83250
	111 - VI	36.86310	31.53382
2.0 cm	I – V	27.90530	21.12389
	11 - VI	33.52753	28.84354
2.5 cm	1 - V1	31.08875	24.12658

PORMEDIOS

32.31044

PLACA "I"

LADO IZQUIERDO

LADO DERECHO

	RADI	0 S	RADIOS		
PUNTO	vertical	horizontal	vertical	horizontal	
1	8.600	31.350	8.000	38.800	
11	5.170	17.500	. 5.050	18.890	
111	4.100	12.150	4.060	12.780	
IV	3.100	9.100	3.075	9.420	
V	2.290	7.540	2.500	7.250	
V 1	1.880	6.650	2.110	6.270	

D	I A	r	Λ	111	11
	LA	C	A		

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	14.90301	15.23098
	11 - 111	20.17319	20.73394
	111 - IV	14.35965	14.37696
	IV - V	11.15134	15.77983
	V - VI	13.50559	16.56698
1.0 cm	1 - 111	17.15413	17.57370
	11 - IV	16.78876	16.99181
	111 - V	12.56250	15.05625
	IV - VI	12.22459	16.17510
1.5 cm	I - IV	16.11410	16.36616
	11 - V	14.37261	16.67247
	111 - VI	12.86533	15.53237
2.0 cm	I - V	14.50460	16.21901
	11 - VI	14.14867	16.57457
2.5 cm	I - VI	14.29488	16.28921

14.60820

16.40262

PLACA "J"

LADO IZQUIERDO

LADO DERECHO

	RAD	RADIOS RAD		105	
PUNTO	vertical	horizontal	vertical	horizontal	
1	11.820	47.150	9.040	35.750	
11	6.090	22.900	5.550	19.280	
111	4.560	14.140	3.600	12.230	
١V	3.480	10.000	3.100	9.480	
V	2.610	8.070	2.700	7.700	
VI	2.250	7.030	2.380	6.790	

DI	Λ	C A	11 111
P L	. А	LA	J

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	14.95105	16.32720
	11 - 111	18.57517	11.96825
	111 - IV	15,67662	22.26893
	IV - V	12.74767	21.14193
	V - VI	19.16144	22.70600
1.0 cm	1 - 111	16.57877	13.82175
	11 - IV	17.01510	15.57990
	111 - V	14.07104	21.70592
	IV - VI	15.32063	21.91133
1.5 cm	I - IV	16.27142	15.82571
	11 - V	15.31203	17.08149
	111 - VI	15.44174	22.03535
2.0 cm	I - V	15.22339	16.89021
	11 - V1	16.12461	18.21228
2.5 cm	I - VI	15.87731	17.80356

15.88987

	-	

PLACA "K"

LADO IZQUIERDO

LADO DERECHO

	RADI	RADIOS		05
PUNTO	vertical	horizontal	vertical	horizontal
i.	10.600	47.700	11.950	43.750
11	6.620	22.030	6.250	20.780
111	4.480	13.900	4.400	13.570
1 V	3.380	9.920	3.290	9.960
V	2.750	8.060	2.780	7.930
VI	2.180	6.870	2.200	6.900

PLACA	''K''
-------	-------

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	18.80449	15.02116
	11 - 111	15.45904	16.43565
	111 - IV	15.03246	14.75903
	IV - V	16.76062	18.73142
	V - VI	13.09006	13.42553
1.0 cm	1 - 111	16.48027	15.70755
	II - IV	15.25339	15.56312
	III - V	15.86062	16.52114
	IV - VI	14.70919	15.65164
1.5 cm	I - 1V.	16.28210	15.38256
	II - V	15.72892	16.49716
	111 - VI	14.81997	15.34677
2.0 cm	I - V	16.40252	16.10521
	11 - VI	14.97778	15.60836
2.5 cm	I - VI	15.61458	15.48908

15.71845

PLACA "L"

LADO IZQUIERDO

RDO

RADIOS

LADO DERECHO RADIOS

PUNTO				
o li r o	vertical	horizontal	vertical	horizontal
1	9.750	41.070	8.540	42.040
11	6.720	22.150	6.500	21.360
111	4.550	13.650	4.250	13.570
IV	3.380	11.800	3.480	9.950
V	2.700	8.000	3.000	8100
VI	2.280	6.930	2.570	7.000

DI	Δ	CI	1 1	1	11	1
Г	-A	61	7		-	

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	22.76002	25.52555
	11 - 111-	15.40017	14.08661
	111 - IV	17.42634	19.34649
	IV - V	13.29577	22.13669
	V - VI	17.43375	20.29890
1.0 cm	F - 111	18.38316	18.16710
	11 - 1V	16.36212	16.31416
	111 - V	15.09389	20.66214
	IV - VI	15.09667	21.19276
1.5 cm	1 - IV	18.05795	18.54892
	11 - V	15.19882	17.88616
	111 - V1	15.80486	20.54542
2.0 cm	I - V	16.57810	19.33583
	11 - V1	15.70505	18.43748
2.5 cm	I - VI	16.74422	19.52313

16.62272

PLACA	''M''	

	· LADO I	ZQUIERDO	LADO D	DERECHO
PUNTO	RADIOS		RADIOS	
	vertical	horizontal	vertical	horizontal
1	4.740	12.670	4.370	11.500
11	3.620	9.480	3.440	8.620
111	3.150	7.800	2.830	7.280
IV	2.650	6.760	2.450	6.490
V	2.140	6.270	2.080	6.220
V I	1 910	6.310	1.820	6.450

PLACA "M"

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	16.62841	16.78347
	Ш - ЦЦ	23.88297	18.16289
	111 - 1V	19.17821	21.33337
	IV - V	15.04562	19.24360
	V - VI	27.63342	24.24067
1.0 cm	1 - 111	19.61980	17.45811
	II - IV	21.28840	19.63455
	111 - V	16.87416	20.24877
4 ×	IV - VI	19.49677	21.46996
1.5 cm	I - IV	19.47587	18.58798
	11 - V	18.70807	19.50799
	111 - VI	19.39488	21.43024
2.0 cm	I - V	18.14497	18.75150
	11 - VI	20.35467	20.51273
2.5 cm	I - VI	19.48424	19.64265

PROMEDIOS

19.68070

19.80056

1

PLACA "N"

LADO IZQUIERDO

LADO DERECHO

	RADIOS		RADIOS	
PUNIO	vertical	horizontal	vertical	horizontal
1	4.590	12.800	4.340	11.480
	3.680	9.370	3.540	8.630
111	3.100	7.860	2.950	7.200
IV	2.480	6.730	2.600	6.450
V	2.220	6.280	2.350	6.160
VI	2.030	6.320	2.030	6.340
PLACA "N"

		LADO IZQUIERDO	LADO DERECHO
Z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 ÷ 11	18.50199	18.87616
	n - nr	21.38796	19.19114
	111 - IV	14.95887	24.69823
	IV - V	26.36704	31.64777
	v - vi	37.07936	24.42631
1.0 cm	1 - 111	19.85440	19.04561
	11 - IV	17.61709	21.61423
	111 - V	19.10162	27.76377
	<u> </u>	30.84034	27.59125
1.5 cm	I – IV	17.90736 @	20.62355
	11 - V	19.81261	24.17374
	111 - VI	22.78815	26.56231
2.0 cm	I – V	19.47211	22.59441
	11 - VI	22.42609	24.24144
2.5 cm	I - V1	21.51647	22.94083
	PROMEDIOS	21.97543	23.73272

1

PLACA "N"

LADO IZQUIERDO RADIOS RADIOS PUNTO vertical horizontal @vertical horizontal 4.480 4.750 13.550 1 3.720 9.360 9.780 11 3.640 3.000 7.770 3.170 8.050 111

6.880 2.620 6.330 2.230 6.320 1.980

LADO DERECHO

12.690

6.260

6.240

1

6.660 2.580

2.290

1.980

1 V

V

VI

DI	۸	C	Λ	11	Ñ	11
L 1	- A	C	A		14	

		LADO IZQUIERDO	LADO DERECHO
z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	16.47003	20.72169
	11 - 110	24.33427	17.66537
	111 - 1V	17.13450	20.15372
	IV - V	19.64603	20.40442
	V - VI	26.83157	23.46332
1.0 cm	1 - 111	19.65800	19.08515
	11 - 1V	20.12308	18.84081
	111 - V	18.31702	22.09171
	IV - VI	22.69916	23.94130
1.5 cm	I - IV	18.74357	19.43379
	11 - V	19.96716	20.39522
	111 - VI	20.48834	22.53683
2.0 cm	I - V	18.96517	20.48011
	11 - VI	21.33514	21.08850
2.5 cm	I - VI	20.14796	21.01650
	•		

PROMEDIOS

20.32404

21.02123

PLACA "O"

LADO IZQUIERDO

LADO DERECHO

6

DUNTO	RADIOS		RAD	105
PUNIO	vertical	horizontal	vertical	horizontal
	4.870	13.880	4.650	12.380
11	3.600	9.940	3.600	9.260
111	2.800	7.860	2.650	7.500
IV	2.550	6.800	2.300	6.660
V	2.300	6.370	2.000	6.220
VI	2.120	6,320	1.790	6.280

P	I A	CA.	0	
•		•	-	

		LADO IZQUIERDO	LADO DERECHO
z	Puntos	γ dinas/cm	γ dinas/cm
0.5 cm	1 - 11	15.10855	16.96589
	11 - 111	14.39702	12.21484
	111 - IV	27.82155	20.55250
	IV - V	29.03577	20.12041
	V - VI	39.98982	26.71264
1.0 cm	1 - 111	14.75448	14.21349
	11 - IV	18.98817	15.33387
	111 - V	28.43550	20.34882
	1V - VI	33.66707	22.96856
1.5 cm	I - IV	17.49656	15.84601
	11 - V	21.46868	16.65853
	111 - VI	31.47324	22.10941
2.0 cm	1 - V	19.42954	16.73778
	11 - VI	24.28328	18.39161
2.5 cm	I - VI	21.65732	18.08982

PROMEDIOS

\$

23.86710

18.48435

CONCLUSIONES

.

De los dos métodos de cálculo utilizados para encontrar el valor de la tensión interfacial, únicamente el método geométrico dió resultados aceptables, pues el método de diferenciación numérica arrojó resultados del orden de 2250 dinas/cm; lo que puede deberse a la imprecisión de la medición de las placas fotográficas con el microscopio.

El valor reportado en la literatura⁽³¹⁾⁽³²⁾⁽³³⁾ para la tensión superficial del tetracloruro de carbono a 25[°]C es de 26.15 [±] 1 dinas/cm, mientras que la tensión interfacial del sistema tetracloruro de carbono-agua es de 43.7 dinas/cm.

Al aumentar la temperatura disminuye la tensión interfacial; para CCl₄/H₂O a 20^OC, $\gamma_i = 45.1$ dinas/cm y a 25^OC, $\gamma_i = 43.7$ dinas/cm.

Nuestro experimento se realizó a una temperatura constante de 25⁰C, y sin embargo, nuestros resultados fu<u>e</u> ron los siguientes para la interfase CCl₄/H₂O:

En la Serie 1, que fué tomada inmediatamente después de formada la interfase, el promedio de la tensión interfacial del lado izquierdo de la figura de revolución fué de 21.0 dinas/cm y del lado derecho de 21.3 dinas/cm.

Para la Serie 2, tomada después de haber tenido en contacto la interfase durante 18 horas, el promedio del lado izquierdo fué de 15.2 dinas/cm y del lado derecho de 17.4 dinas/cm.

Para la Serie 3, tomada también inmediatamente después de formada la interfase, para el lado izquierdo fué de 20.8 dinas/cm y para el derecho de 21.8 dinas/cm.

Todos estos valores resultan ser la mitad de los reportados en la literatura para CCl_4/H_2^{0} a $25^{O}C$, incluso, menores que el valor de la tensión superficial del CCl_4 . Esto se puede deber fundamentalmente, a que la tensión interfacial es una propiedad muy sensible a las impurezas; y aunque se hizo con el mayor cuidado la limpieza del equipo, las sustancias no eran lo suficientemente puras para obtener buenos resultados.

Esto se demuestra observando la Serie 2, y comparándola con la 1 y la 3. En esta segunda serie los valores de la tensión interfacial bajaron, debido a que al mantener la interfase durante algún tiempo, una mayor cantidad de impurezas se adsorbe en ella.

1 ,.

Otro factor que influye en estos valores, es la precisión con que se miden los radios de curvatura y ésto es bastante difícil, ya que el método que dá resultados ló-

gicos es el geométrico; en la sección de cálculos de la página 68, se muestra una tabla de la forma en que varía la tensión interfacial, al cambiar 1 mm. el radio de curvatura. Puede observarse en esta tabla, que el radio de curvatura mas sensible a error de medición es aquel que se encuentra perpendicular al plano de simetría de la figura de revolución.

Respecto a la exactitud con que se midieron los radios de curvatura, se estima que el error es de $\stackrel{+}{-}$ 1 mm lo que arrojaría un error en la medición de la tensión interfacial de $\stackrel{+}{-}$ 1.9 dinas/cm.

EFECTO DE UN CAMPO ELECTRICO EN LA TENSION INTERFACIAL:

Los valores promedio de la tensión interfacial con campo eléctrico son los siguientes: En la Serie 1, del lado izquierdo 22.8 dinas/cm; del lado derecho 22.1 dinas/cm. En la Serie 2, del lado izquierdo 16.2 dinas/cm y del derecho 17.6 dinas/cm y en la Serie 3, del lado izquierdo 22.1 dinas/cm y del derecho 19.8 dinas/cm.

De una comparación de los valores obtenidos CON y SIN campo eléctrico, puede inferirse que no hay un efecto notable del campo en la tensión interfacial; esta conclusión es congruente con el estudio de Pohl⁽³⁴⁾, quien

indica que el efecto del campo sobre partículas pequeñas del tamaño de una molécula, es generalmente despreciable, y que solamente el efecto llega a ser notable cuando se tienen partículas grandes. De haber trabajado con soluciones que tuvieran tenso-activos o macromoléculas, es posible que se hubiera observado algún efecto notable en la tensión interfacial.

Un efecto que se observó debido a la presencia de un campo, fué el de bombeo, que consiste en poder mantener una columna de mayor altura adherida a la boquilla cuando se tiene un campo eléctrico.

Pohl, al tratar el efecto de un campo no uniforme en dieléctricos deduce que la fuerza traslacional efectiva es:

$$F_{e} = \mu_{e} \cdot \nabla E$$

$$= 4 \ \Pi a^{3} \ \kappa_{1}^{\prime} \varepsilon_{0} \left(\frac{\kappa_{2}^{\prime} - \kappa_{1}^{\prime}}{\kappa_{2}^{\prime} + 2\kappa_{1}^{\prime}} \right) \varepsilon_{0} \nabla \varepsilon_{0}$$
$$= 2 \ \Pi a^{3} \ \kappa_{1}^{\prime} \ \varepsilon_{0} \left(\frac{\kappa_{2}^{\prime} - \kappa_{1}^{\prime}}{\kappa_{2}^{\prime} + 2\kappa_{1}^{\prime}} \right) \nabla \varepsilon_{0}^{2}$$

de la ecuación anterior se observa que la fuerza es pro-

porcional al cubo del radio de la molécula, a la diferencia de la constante dieléctrica con respecto al medio que la rodea y al gradiente del cuadrado del campo eléctrico. Este último comentario contiene la implicación que la dirección de la fuerza es la misma si el campo cambia de signo.

La teoría de Pohl es congruente con las observaciones que se hicieron en nuestro laboratorio.

BIBLIOGRAFIA

BIBLIOGRAFIA

- Héctor Sobol Zaslav. Tesis Doctoral. El efecto de la difusión de aire y el estructuramiento de la interf<u>a</u> se en la tensión superficial del sistema agua/aire. División de Estudios Superiores. Fac. de Química. UNAM.
- Fisicoquímica de Superficies y Sistemas Dispersos.
 Ma. Teresa Toral. Bilbao. Urmo, 1973
- Fisicoquímica de Superficies y Sistemas Dispersos.
 Ma. Teresa Toral. Bilbao. Urmo, 1973
- Herbert Ackland Pohl, Journal of Applied Physics.
 Vol. 29, No. 8, 1182 (1958).
- 5. H.F. Mueller, Wiss. Veroffentl. Siemens Werken 17, 20-36 (1938)
- 6. H.A. Pohl, J. Appl. Phys. 22, 869-871 (1951)
- 7. A. Loesche and H. Hutschig, Kolloid. Zhur. 141, 177-187 (1955)
- Herbert Ackland Pohl, Journal of Applied Physics.
 Vol. 29, No. 8, 1182 (1958)
- 9. Fisicoquímica de Superficies y Sistemas Dispersos. Ma. Teresa Toral. Bilbao. Urmo, 1973
- 10. The Physics and Chemistry of Surfaces. Neil Kensington Adam, ScD., F.R.S. Dover Publications Inc. New York.

- Fisicoquímica de Superficies y Sistemas Dispersos.
 Ma. Teresa Toral. Bilbao. Urmo, 1973
- Fisicoquímica de Superficies y Sistemas Dispersos.
 Ma. Teresa Toral. Bilbao. Urmo, 1973
- Interfacial Phenomena. J.T. Davies and E.K. Rideal.
 Second Edition. Academic Press. New York, San Francisco, London 1963.
- 14. Interfacial Phenomena. J.T. Davies and E.K. Rideal. Second Edition. Academic Press. New York, San Francisco, London 1963.
- 15. Fisicoquímica de Superficies y Sistemas Dispersos. Ma. Teresa Toral. Bilbao. Urmo, 1973
- 16. Interfacial Phenomena. J.T. Davies and E.K. Rideal. Second Edition. Academic Press. New York, San Francisco, London 1963.
- 17. Fisicoquímica de Superficies y Sistemas Dispersos.Ma. Teresa Toral. Bilbao. Urmo, 1973
- 18. Fisicoquímica de Superficies y Sistemas Dispersos.
 Ma. Teresa Toral. Bilbao. Urmo, 1973 DA 506
 19. Eotvos, Ann. Physik, 27, 448 (1886) 7 65
- 20. Ramsay and Shields, Phil. Trans. A 184, 647 (1893); J. Chem. Soc., 1089 (1893)

- 21. Bennet and Mitchell, z. Phys. Chem., 84, 475 (1913)
- 22. Fisicoquímica de Superficies y Sistemas Dispersos. Ma. Teresa Toral. Bilbao. Urmo, 1973
- 23. The Physics and Chemistry of Surfaces. Neil Kensington Adam, ScD., F.R.S. Dover Publications Inc. New York.
- 24. An Attempt to test the theories of Capillary Action (Cambridge), 1883.
- 25. The Physics and Chemistry of Surfaces. Neil Kensington Adam, ScD., F.R.S. Dover Publications Inc. New York.
- 26. Padday, J.F. and Pitt, A., J. Colloid Interface Sci, Vol. 38, No. 2, 323 (1972)
- 27. Padday, J.F. and Pitt, A., J. Colloid Interface Sci, Vol. 38, No. 2, 323 (1972)
- 28. Héctor Sobol, Javier Garfias and Jaime Keller. Journal of Physical Chemistry, 80, 1941 (1976).
- 29. Applied Mathematics in Chemical Engineering. Harold S. Mickley, Thomas K. Sherwood and Charles Reed. 2a. Edition. McGraw-Hill, Book Company Inc.
- 30. Calculus with Analytic Geometry. A First Course. Murray H. Protter and Charles B. Morrey Jr. University of California, Berkeley, California Addison-Wesley Publishing Company.

- 31. International Critical Tables., Vol IV, p.447 McGraw-Hill New York, N.Y.
- 32. Tables of Physical and Chemical Constants G.W.C. Kaye and T.H. Laby. Thirteenth Edition, 1966 Longinans, Green and CO Ltd pags 41, 42.
- 33. Handbook of Chemistry and Physics. 55 HT. Edition 1974-1975 CRC Press.
- 34. Herbert Ackland Pohl.

Some Effects of Nonuniform Fields on Dielectrics Journal of Applied Physics. Vol 29, No. 8, (1958).

4P