Facultad de Química

La Computación Aplicada a la Enseñanza de la Ingeniería Química

T E S I S Que para obtener el título de : Ingeniero Químico Presentan: José Agustín <u>Moreno Garza</u> Gerardo Navarro Cota

319

MEXICO, D. F.

1976

- 52)

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

\$

QUIMICA

Jurado asignado originalmente según el tema

- PRESIDENTE ING. OTHON CANALES VALVERDE
- VOCAL ING. ALEJANDRO LOZADA CAÑIBE
- SECRETARIO ING. ENRIQUE BRAVO MEDINA
- 1er. SUPLENTE ING. JOSE ANTONIO GUERRERO MORALES
- 2do. SUPLENTE ING. GERARDO RODRIGUEZ ALONSO

Sitio donde se desarrolló el tema

CENTRO DE SERVICIOS DE COMPUTO, U.N.A.M.

Nombre de los sustentantes

JOSE AGUSTIN MORENO GARZA

GERARDO NAVARRO COTA

Asesor del Tema

ING. ENRIQUE BRAVO MEDINA

INDICE

1.	INTRC	DUCCION	ł		1			
2.	CALCI	LO DE PROPIEDADES						
	2.1	Métodos	odos de evaluación					
		2.1.1	Densidad		5			
		2.1.2	Entalpia	1	1			
		2.1.3	Capacidad calorífica	1	5			
		2.1.4	Calor latente de vaporización	1	7			
		2.1.5	Presión de vapor	2	0			
		2.1.6	Tensión superficial	2	4			
		2.1.7	Viscosidad	2	27			
		2.1.8	Conductividad térmica	3	84			
	2.2	Cálculo	de equilibrio de fase	4	1			
		2.2.1	Constante de equilibrio	4	3			
		2.2.2	Puntos de burbuja y rocío	5	1			
		2.2.3	Análisis de fase	5	3			
		2.2.4	Cálculo de un tanque separador	en				
			un proceso adiabático	5	57			
	2.3	Descripo	ción del programa Propiedades en					
		Fortran	IV	4	0			

		2.3.1 A	Análisis de subrutinas	62
		2.3.2 C	Datos de operación	69
		2.3.3 R	esultados del programa Propie ⁻	
		c	lades	77
3.	DESAR	rollo de pr	OGRAMAS	
	3.1	Balance de	masa en un proceso cíclico	87
	3.2	Cálculo de	la temperatura de flama teórica	
		en la combi	ustión de hidrocarburos	95
	3.3	Cálculo de	la potencia de una bomba centrí-	
		fuga		102
	3.4	Análisis de	rendimiento de un intercambiador	
		de tubo y c	oraza existente	107
	3.5	Cálculo y c	optimización de un evaporador	116
	3.6	Diseño y co	osto de una torre de destilación	
		fraccionada	y su equipo	127
	3.7	Diseño de u	un reactor catalítico de lecho fijo	
		para la sínte	esis de acetato de vinilo	138
4.	CONC	LUSIONES		146
5.	BIBLIC	GRAFIA		148
	APENI	DICE		151

CAPITULO 1

El campo que le ofrece al Ingeniero Químico el desarrollo industrial y petroquímico de nuestro país lo obliga al conocimiento, desarrollo y aplicación de nuevas técnicas en el diseño, administración y realización de nuevos proyectos, así como a la optimización de los existentes.

Esta visión que se nos presenta al inicio de nuestra vida profesional, aunada a una serie de inquietudes que se provocaron por la falta de realización de ideas enfocadas a resolver problemas inherentes a las materias cursadas, muchas veces por falta de recursos o de tiempo para concretar resultados intuídos, debido a la complejidad de los cálculos o al manejo de la información existente, nos llevó a realizar este trabajo.

Un problema de Ingeniería Química, como lo puede ser la relación – costo-diámetro de un sistema de tuberías, la optimización de un evaporador de múltiple efecto o el cálculo de una torre de destilación, puede su resolución, ser intentada por el estudiante aplicando correlaciones que muchas veces no lo llevan a ningún resultado por la falta de datos o porque requiere de un procedimiento iterativo en el cual necesita repetir sus cálculos a costa de muchas horas; por lo que si se le diera la facilidad de obtener resultados rápidos y exactos, además de la posibilidad de modificar variables y condiciones de una manera – sencilla, podría tener un panorama mas objetivo del problema.

El propósito de esta tesis es el de proporcionar al estudiante de Ingeniería Química las bases para ampliar su entendimiento de tos conceptos básicos e incrementar su habilidad para interpretar y analizar nuevas situaciones; al pro fesorado, darles la facilidad para poder desarrollar sus programas de estudio de una manera mas extensiva y proponer a las autoridades universitarias la creación de una biblioteca de programas de computadora dentro de las instalaciones del -Centro de Servicios de Cómputo al alcance del estudiante, así como instituir la cátedra de Programación y Computación como obligatoria dentro del Plan de Est<u>u</u> dios de la carrera de Ingeniería Química.

El trabajo se enfocará primeramente a seleccionar los métodos de pr<u>e</u> dicción de propiedades tomando en cuenta los siguientes factores:

- a) Un estudio preliminar de tipo teórico para definir, en principio, si el método es aplicable al cálculo de propiedades físicas y termodinámicas de sistemas de hidrocarburos.
- b) La elección se restringe a métodos que sean programables para el cálculo por medio de computadoras, dando resultados exactos en amplios límites de operación y alimentándose con datos sencillos.

Una vez seleccionados los métodos, se adaptarán en un programa de computadora para que trabaje como simulador de corrientes, el cual puede ser aplicado a casi cualquier cálculo en mezclas de hidrocarburos.

2.

En el Capítulo 3 se presentará una descripción teórica y técnica de – problemas comunes en la carrera de Ingeniería Química, así como un programa para la resolución de dichos problemas.

CAPITULO 2

CALCULO DE PROPIEDADES

2.1 Métodos de evaluación.

La determinación experimental de una propiedad física ó fisicoquími ca de un compuesto ó mezcla fué durante muchos años la única fuente de información para el ingeniero en diseño; sin embargo, debido al rápido avance de la tecnología, estos datos experimentales se han traducido a ecuaciones teóricas y a correlaciones empíricas ó semiempíricas, muchas de las cuales no habían sido utilizadas, debido a su complejidad, hasta la aparición de computadoras d<u>i</u> gitales de alta velocidad.

Este desarrollo de la ciencia nos ha proporcionado un sinnúmero de – técnicas de cálculo de las diversas propiedades, lo cual nos lleva al problema de poder seleccionar, para cada propiedad, un método confiable por su exactitud y que puede ser utilizado en una amplia gama de condiciones. Otro factor muy importante, que se tomó en cuenta en este trabajo para dicha selección, fué el hecho de que el método sea alimentado con datos disponibles en libros comunes para el estudiante de Ingeniería Química.

En el presente capítulo, se presenta una breve descripción de los métodos seleccionados para el cálculo de cada una de las propiedades que se consi deraron en este trabajo.

2.1.1 Densidad

La densidad es definida como la cantidad de masa en una unidad de volumen. Esta propiedad intensiva nos relaciona, en fluidos, los flujos volumétricos con flujos másicos y es la base para dimensionar el equipo de transporte. Es de importancia considerar el efecto de la temperatura a presión consta<u>n</u> te sobre el volumen, el cual es utilizado para calcular el efecto de la presión en la entalpia y en otras propiedades termodinámicas.

La evaluación de la densidad de gases y líquidos por una ecuación de estado es el método mas apropiado debido a su exactitud para las dos fases; la ecuación de los gases ideales ha sido la base para el desarrollo de ecuaciones de estado muy complejas; en este trabajo presentamos la ecuación de Starling-Han, la cual es una modificación de la ecuación de Benedict-Webb-Rubbin, que ha dado magníficos resultados, aún en condiciones de alta densidad y baja temperatura.

La forma de esta ecuación es la siguiente:

$$P = \rho RT + (B_{o}RT - A_{o} - \frac{C_{o}}{T^{2}} + \frac{D_{o}}{T^{3}} - \frac{E_{o}}{T^{4}})/\rho^{2} + (bRT - a - \frac{d}{T})\rho^{3} + \alpha(a + \frac{d}{T})/\rho^{6} + \frac{C\rho^{3}}{T^{2}}(1 + \gamma\rho^{2}) \exp(-\gamma\rho^{2})$$
(2.1)

Esta ecuación de procedimiento iterativo involucra un total de once constantes, las cuales son calculadas para cada compuesto a partir de datos sen⁻ cillos tales como el factor acéntrico, el volumen crítico, la temperatura críti⁻ ca, por la constante de los gases, R y las constantes propuestas por Starling⁻Han, las cuales se presentan en la tabla 2.1.

Las relaciones para el cálculo de cada constante son:

1

1

$$P_{Ci} B_{oi} = A_{i} + B_{i} \omega i \dots (2.2)$$

$$\frac{P_{ci}A_{oi}}{RT_{ci}} = A_2 + B_2 \omega i \dots (2.3)$$

$$\frac{\underline{B_{i}}\left(\underline{a}\right)}{R_{i}T_{i}^{3}} = A_{3} + B_{3}\omega_{i} \dots \dots (2.4)$$

$$A_{4} + B_{4} \omega_{1} \dots \dots (2.5)$$

$$\int_{ci}^{2} b_{i} = A_{5} + B_{5} \omega_{i} \dots \qquad (2.6)$$

$$\frac{\overline{ci} \ a_i}{R \ T_{ci}} = A_6 + B_6 \omega i \ldots (2.7)$$

$$\frac{\partial_{ci}^{2} Ci}{R T_{ci}^{3}} = A_{g} + B_{g} \omega_{i} \dots (2.8)$$

$$P_{i}^{3} \ll i = A_{7} + B_{7} \omega_{i} \dots (2.9)$$

$$\frac{P_{ci}}{R} \frac{D_{ci}}{T_{ci}} = A_q + B_q W_{L} \dots (2.10)$$

$$\frac{2i}{RT_{ei}^{4}} = A_{i0} + B_{i0} \omega_{1} \dots \qquad (2.11)$$

$$\frac{\frac{2}{E_{ci}}E_{ci}}{RT_{ci}} = A_{II} + B_{II} \omega i \exp(-3.8\omega i) . . (2.12)$$

donde:

Wi = factor acéntrico.

Aj, Bj = constantes propuestas por Starling-Han.

Para el cálculo de la densidad de compuestos puros, se utilizan las constantes anteriormente calculadas de una manera directa en la ecuación 2.1; en el caso de mezclas de n componentes se utilizaron las siguientes reglas de mezcla:

$$A_{\circ} = \sum_{i} \sum_{j} x_{i} x_{j} A_{\circ i}^{\frac{1}{2}} A_{\circ j}^{\frac{1}{2}} (1 - K_{i}) . \qquad (2.13)$$

$$C_{o} = \sum_{i} \sum_{j} x_{i} x_{j} \left(\sum_{oi}^{\frac{1}{2}} C_{oj}^{\frac{1}{2}} \left(1 - K_{ij} \right)^{3} \right)$$
(2.14)

$$b = \left[\sum_{i} x_{i} b_{i} \frac{1}{3}\right]^{3} \qquad (2.16)$$

$$q = \left[\sum_{i} x_{i} b_{i} \frac{1}{3}\right]^{3} \qquad (2.17)$$

$$C = \left[\sum_{i} X_{i} C_{i}^{\frac{1}{3}}\right]^{3} \dots (2.19)$$

$$D_{-} = \sum_{i} \sum_{i} X_{i} V_{i} D_{\overline{Z}}^{\frac{1}{2}} D_{\overline{Z}}^{\frac{1}{2}} (1 - K^{(1)})^{4} \dots (2.20)$$

$$D_{\sigma} = \sum_{i} \sum_{j} X_{i} X_{j} D_{\sigma i}^{\overline{z}} D_{\sigma j}^{\overline{z}} (I - K_{i})^{4}$$

$$E_{\circ} = \sum_{i} \sum_{j} \times_{i} \times_{j} E_{\circ i}^{\frac{1}{2}} E_{\circ j}^{\frac{1}{2}} (1 - K_{ij})^{5} \qquad (2.22)$$

$$B_{o} = \sum_{L} \times i B_{oL} \qquad (2.23)$$

El parámetro de interacción kij es una medida de las desviaciones del comportamiento de una solución ideal entre uno u otro componente, por lo que kij es cero o cercano a cero para componentes cercanos a la idealidad.

Los datos de condiciones críticas para un total de veintitrés componen tes para el uso de esta ecuación se presentan en el Apéndice 1 y son las propues tas por los autores para una mayor exactitud de la ecuación. Se informa un – porcentaje de error promedio, para los veintitrés compuestos entre amplios límites de temperatura (-250 a 500°F), de 1.36, calculado a partir de <u>exp-calc</u> x 100. La variación calculada en un total de 971 puntos es de 0.86. Para catorce mezclas binarias y terciarias a temperaturas de -283 a 460°F y presiones – de 14.7 a 5000 psia se informa una desviación promedio absoluta con respecto a datos experimentales de 1.16%.

Para aplicar el método a un sistema de multicomponentes es, por tanto, necesario conocer los valores de los parámetros de interacción de todos los sistemas binarios que se presentan en la mezcla.

Este requerimiento representa la única desventaja del método de – Starling; en la tabla 2.2 se presentan estos valores para dieciocho componentes.

Valores de los parámetros Aj Y Bj para el uso de la

ecuación de estado generalizada

	Valor del parámetro						
Parámetro suscrito (j)	Aj	Bj					
1 2 3 4 5 6 7 8	0.443690 1.28438 0.356306 0.544979 0.528629 0.484011 0.0705233 0.504087	0.115449 -0.920731 1.70871 -0.270896 0.349361 0.754130 -0.044448 1.32245					
9	0.0307452	0.179433					
10	0.0732828 0.006450	0.463492 -0.022143					

TABLA 2.1

9.

TABLA 2.2	-Valores	de	Parámetros	de	Interacción	Kij	para	utilizar	la	Correlacion	Generalizada
-----------	----------	----	------------	----	-------------	-----	------	----------	----	-------------	--------------

(Kij X 100)

0	0																	
Acido Sulfhídricc	Acido Sulfhídrico	Bióxido de Carbono	Nitrógeno	Undecano	Decano	Nonano	Octano	Heptano	Hexano	n-Pentano	i-Pentano	n-Butano	i-Butano	Propano	Propileno	Etano	Etileno	Metano
5.0 Metano	.0 5.0	5.0	2.5	10.1	9.2	8.1	7.0	6.0	5.0	4.1	3.6	3.1	2.75	2.3	2.1	1.0	1.0	0.0
4.5 Etileno	.8 4.5	4.8	7.0	1.5	1.3	1.2	1.0	0,85	0.7	0.6	0.5	0.45	0.4	0.31	0.3	0.0	0.0	
4.5 Etano	.8 4.5	4.8	7.0	1.5	1.3	1.2	1.0	0.85	0.7	0.6	0.5	0.45	0.4	0.31	0.3	0.0		
4.0 Propileno	.5 4.0	4.5	10.0	1,3	1.1	1.0	0.8	0.65	0.5	0.45	0.4	0.35	0.3	0.0	0.0			
4.0 Propano	4.0	4.5	10.0	1.3	1.1	1.0	0.8	0.65	0.5	0.45	0.4	0.35	0.3	0.0				
3.6 i-Butano	5.0 3.6	5.0	11.0	0.3	0.3	0.25	0.2	0.18	0.15	0.1	0.08	0.0	0.0					
3.4 n-Butano	5.0 3.4	5.0	12.0	0.3	0.3	0.25	0.2	0.18	0.15	0.1	0.08	0.0						
2.8 i-Pentano	5.0 2.8	5.0	13.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
2.0 n-Pentano	5.0 2.0	5.0	14.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
0.0 Hexano	5.0 0.0	5.0	17.2	0.0	0.0	0.0	0.0	0.0	0.0									
0.0 Heptano	5.0 0.0	5.0	20.0	0.0	0.0	0.0	0.0	0.0										
0.0 Octano	5.0 0.0	5.0	22.8	0.0	0.0	0.0	0.0											
0.0 Nonano	5.0 0.0	5.0	26.4	0.0	0.0	0.0												
0.0 Decano	5.0 0.0	5.0	29.4	0.0	0.0													
0.0 Undecano	5.0 0.0	5.0	32.2	0.0														
0.0 Nitrógeno	0.0 0.0	0.0	0.0															
) 3.5 Bióxido d Carbond	0.0 3.5	0.0																
0.0 Acido Sulfhío	0.0																	
the second				1			1		1	1	4	(1	1	1		

2.1.2 Entalpia

Se define la entalpia de un sistema como la suma de su energía interna más el producto presión-volumen:

Como la energía interna y el volumen, la entalpia es una propiedad termodinámica extensiva; es decir, que depende de la masa del sistema consid<u>e</u> rado.

Definiendo a la entalpia como una función de temperatura y presión y recordando las propiedades de una diferencial exacta, la diferencia total resulta:

$$dH = \left(\frac{\delta H}{\delta T}\right)_{p} dT + \left(\frac{\delta H}{\delta P}\right)_{T} dP \quad (2.25)$$

en donde el primer término representa el efecto isobárico de la temperatura y el segundo el efecto isotérmico de la presión sobre la entalpia. Esta expresión representa la variación de la entalpia en un proceso termodinámico.

Todos los gases a presión cero se comportan como gas ideal, y la ental pia definida por la ley de los gases perfectos se representa como:

$$\left(\frac{\delta H}{\delta P}\right)_{T} = V - \left(\frac{\mathcal{P}}{\mathcal{P}}\right)T = 0 \quad . \quad . \quad (2.26)$$

de donde se deduce que la entalpia de un gas ideal no depende de la presión y -

es solo función de la temperatura del sistema.

En este estado de gas ideal la entalpia molar parcial de un componente es igual a la entalpia del componente puro, es decir se produce una mezcla ideal. La entalpia ideal de la mezcla resulta entonces:

$$H_{m}^{\circ} = \sum_{i=1}^{n} q_{i} H_{i}^{\circ}$$
 (2.27)

La entalpia de un gas o líquido real se determina por dos clases de métodos:

- a) Métodos basados en el uso de diagramas de entalpias de componentes puros.
- b) Métodos basados en el cálculo de la desviación isotérmica de la entalpia.

El inciso b) nos define los métodos de cálculo que se basan en que -

el cambio de entalpia es independiente de la forma en que se realice el proceso, pudiendo dividir éste en dos etapas;

- Variación de la temperatura desde el valor de referencia hasta el valor final del sistema en un proceso isobárico a presión cero, por lo que se calcula H (T, 0) basándonos en la ecuación (2.27).
- Compresión isotérmica desde presión cero hasta la presión del sistema.

Por lo que el cambio en la entalpia H (T, P) - H (T, O), se denomi-

na desviación isotérmica de entalpia.

Debido a que la entalpia es función del estado del sistema, de una – ecuación de estado puede derivarse una ecuación analítica para su evaluación; se presenta la ecuación de Starling-Han para el cálculo de la diferencia de entalpia con respecto a un estado basal o ideal, la cual cumple con los criterios anteriormente expuestos. La ecuación se presenta como:

$$H(T, \rho) - H(T, 0) = (B_0 RT - ZA_0 - \frac{4C_0}{T^2} + \frac{5D_0}{T^3} - \frac{6E_0}{T^4})^{\rho} + \frac{1}{2} (2bRT - 3a - \frac{4d}{T})^{\rho^2} + \frac{c}{5} (6a + \frac{7d}{T})^{\rho^5} (2.28) + \frac{C}{8T^2} [3 - (3 + \frac{8\rho^2}{2} - 8\rho^2) \exp(-8\rho^2)]$$

El cálculo de los valores de las constantes presentadas, tanto para – componentes puros como para mezclas, se presenta en el inciso 2.1.1. Por consistencia, los valores de densidad utilizados en esta ecuación son los obtenidos por la ecuación 2.1 para los datos de presión y temperatura.

Los valores de entalpia ideal se calcularon a partir del polinomio – presentado en el API, los cuales nos representan una referencia de idealidad de líquido saturado a-200°F.

La secuencia de cálculo para esta propiedad es:

- a) Obtención de la diferencia de entalpia por la ecuación 2.28.
- b) Cálculo de la entalpia ideal a la condición de temperatura, si-

guiendo la regla de mezcla.

$$H^{\circ} = \sum X_{L} H_{L}^{\circ} \qquad (2.29)$$

c) La entalpia real a las condiciones de presión y temperatura será:

$$H^{T,P} = \Delta H^{T}_{P} + H^{\circ}_{T} \qquad (2.30)$$

2.1.3 Capacidad calorífica.

La capacidad calorífica, como la entalpia, es una propiedad termodinámica muy importante al analizar o proyectar sistemas de ingeniería que impli can trasmisión de calor, ya que la variación en estas propiedades puede relacionarse frecuentemente con las variables de operación importantes, como la eleva ción de temperatura de un fluido dentro de un cambiador de calor, por lo que es importante estimar la variación de esta propiedad con respecto a presión y temperatura.

Estableciendo el cálculo de la capacidad calorífica a partir de la derivada de la entalpia con respecto a presión y temperatura:

$$dH = \left(\frac{\delta H}{\delta T}\right)_{p} dT + \left(\frac{\delta H}{\delta P}\right)_{T} dP \qquad (2.31)$$

y siendo $d_p = o$ para una transferencia a presión constante, tenemos que:

$$dH = \left(\frac{\delta H}{\delta T}\right)_{p} dT \qquad (2.32)$$

la que nos relaciona la cantidad de calor tomada por un sistema de sus alrededores con el incremento de la temperatura en un sistema. La relación dH/dt es el Cp, la capacidad calorífica del sistema a presión constante, por lo que tenemos que:

que identifica esta importante parcial con la cantidad experimental Cp, quedando:

$$dH = C_p dT$$
 (2.34)

De la ecuación de estado que utilizamos para calcular el valor de la entalpia en el inciso 2.1.2, se obtiene la siguiente ecuación:

$$C - C_{p}^{\circ} = \frac{A}{B} + C - R \qquad (2.35)$$

$$A = T \left[R + B_{0}R^{\rho} + \frac{2C_{0}\rho}{T^{3}} + bR\rho^{2} \left(\frac{2C\rho^{2}}{T^{3}} \right) \right]^{2}$$

$$(1 + \chi\rho^{2}) \exp\left(-\chi\rho^{2}\right) \left[2.36 \right]^{2}$$

$$B = RT + 2\rho (B_{0}RT - A_{0} - \frac{C_{0}}{T^{2}}) + 3\rho^{2} (bRT - a)$$

$$+ 6a\alpha \rho^{5} + (\frac{C\rho^{2}}{T^{2}}) (3 + 38\rho^{2} + 8\rho^{2}) \exp(-8\rho^{2})$$
(2.37)

$$C = \frac{6C_0}{T^3} + \left(\frac{6C}{7T^3}\right) \left[\exp\left(-\frac{1}{7}\rho^2\right) - 1.0\right]$$

$$+ \left(\frac{3C^{1/2}}{T^3}\right) \exp\left(-\frac{1}{7}\rho^2\right)$$
(2.38)

2.1.4 Calor latente de vaporización.

La entalpia de vaporización AH_V ó calor latente de vaporización es la diferencia que existe entre las entalpias de vapor saturado y líquido saturado a las mismas condiciones de presión y temperatura.

Debido a las fuerzas de atracción que existen entre las moléculas del líquido, las moléculas que pasan a la fase vapor son aquellas cuya velocidad y energía son mayores que la media. La energía de las moléculas que quedan en el líquido se reduce y tiene que suministrarse más energía para mantener consta<u>n</u> te la temperatura. Esta es el cambio en la energía interna de vaporización ΔE . Se efectúa trabajo sobre la fase vapor a medida que continúa la vaporización, puesto que el volumen del vapor debe aumentar si la presión permanece constante, la cual corresponde a la presión de vapor. Este trabajo es definido como w = Pvp (Vg - V_e). La entalpia de vaporización queda definida como:

$$\Delta H_{v} = \Delta E_{v} + \omega . \qquad (2.39)$$

$$\Delta H_{v} = \Delta E_{v} + \mathcal{R}_{p} \left(V_{g} - V_{L} \right) = \Delta E_{v} + \mathcal{R} T \Delta Z_{v} \qquad (2.40)$$

La ecuación de Clapeyron nos establece:

$$\frac{d(\ln P_{vp})}{d(\frac{1}{T})} = -\Delta H_v / R\Delta Z_v \qquad (2.41)$$

por lo que concluímos que el calor latente de vaporización está directamente re-

lacionado con la pendiente de la curva temperatura-presión de vapor. El método aquí presentado está derivado de la ecuación (2.41) ya que la relación temperatura-presión de vapor puede ser calculada con exactitud.

La ecuación de Riedel-Plank-Miller (2.42) fué el resultado de un estu dio amplio de los métodos más exactos a partir de la presión de vapor; la forma final de la ecuación es:

$$\Delta H_{vb} = 2.303 \text{GPT}_{c} \Delta Z_{vb} \left[1 + T_{br}^{2} + K' (1 + 2T_{br}) \right] \quad (2.42)$$

$$\Delta Z_{v} = I - \frac{0.97}{P_{c} T_{b}}$$
(2.44)

$$K' = \frac{cL}{2.303G} - (1 + T_{br}) \cdot \dots \cdot (2.45)$$

Esta ecuación nos da como resultado el calor latente de vaporización a la tempertatura normal de ebullición. Para el cálculo de la variación de la en⁻ talpia de vaporización con respecto a la temperatura se eligió la correlación ⁻ empírica de Theisen (17), la cual ha demostrado ser la mas útil y es presentada como:

$$\Delta H_{v} = k \left(T_{z} - T \right)^{n} \qquad (2.47)$$

siendo K y n constantes. Al escribir esta ecuación a dos temperaturas diferentes y al dividir una entre otra obtenemos:

$$\Delta H_{vz} = \Delta H_{v_i} \left[\frac{I - T_{rz}}{I - T_{c_i}} \right]^2 \qquad (2.48)$$

considerando Hv1, el calor latente de vaporización a la temperatura normal – de ebullición calculado por la ecuación 2.42. Gambill (17) proporciona referencias de muchos autores quienes han propuesto algunos valores para el exponente n. Watson (17) propone el exponente 0.38 con el que obtuvo resultados con un error medio de 1.8 por ciento. Fishtine propone obtener a partir de:

$$n = \begin{cases} 0.74 \ T_{br} = 0.116 & 0.57 < T_{br} < 0.71 \\ 0.30 & T_{br} < 0.57 \\ 0.41 & T_{br} > 0.71 & (2.49) \end{cases}$$

lo cual nos lleva a resultados exactos entre amplios límites de temperatura, - - (- 10°C a 500°C).

2.1.5 Presión de vapor.

La presión desarrollada por las moléculas de un componente en fase gaseosa, en equilibrio con la fase líquida, es función únicamente de la temperatura del sistema. Esta presión denominada presión de vapor, es característica de cada compuesto puro líquido y nos define la temperatura normal de ebullición, cua<u>n</u> do se iguala a la presión atmosférica.

El mecanismo de esta presión se explica de una manera lógica por la – Teoría de la distribución de energía de Maxwell-Boltzmann, estableciendo que a bajas temperaturas una fracción de las moléculas en el líquido, posee energía en exceso con respecto a la energía cohesiva del líquido, incrementándose esta fracción rápidamente con el incremento de la temperatura, lo que implica una relación inversa entre la energía cohesiva y la presión de vapor.

Para seleccionar el método de cálculo de esta propiedad entre varios métodos de buena exactitud y amplios límites, como son las ecuaciones de Cox-Antoine, Kirchhoff, Riedel y Frost-Kalkwanf-Thodos, se tomaron en cuenta los datos iniciales disponibles, eligiéndose la ecuación de Frost-Kalkwanf-Thodos (1), que es la mas exacta para diversos tipos de compuestos en una amplia gama de temperaturas.

La relación que presentan, basada en la ecuación general de Clapeyron:

$$\frac{d \hat{P}_{\nu\rho}}{dT} = \frac{\Delta H_{\nu}}{T\Delta V_{\nu}} = \frac{\Delta H_{\nu}}{\left(\frac{PT^{2}}{P_{\nu\rho}}\right)\Delta Z_{r}}$$

$$\frac{d(\ln P_{\nu\rho})}{d(\frac{-1}{T})} = -\frac{\Delta H_{\nu}}{P\Delta Z_{\nu}}$$
(2.50)
(2.51)

la resuelven con las siguientes suposiciones:

1) El calor de vaporización es una función lineal de la temperatura.

$$\Delta H_{v} = \Delta H_{v_{0}} + \Delta C_{sT} \cdot \cdot \cdot \cdot \cdot (2.52)$$

 La ecuación de Van der Walls representa satisfactoriamente el comportamiento volumétrico del gas:

$$\mathsf{RT} = \left(\mathcal{P} + \frac{a}{\sqrt{2}} \right) \left(\sqrt{-b} \right) \qquad (2.53)$$

 El volumen molar del líquido se calcula aproximadamente por la constante b de Van der Walls.

La forma general de la ecuación deducida es:

$$\log P_{\nu p} = A + \frac{B}{T} + C \log T + \frac{D \rho_{\nu p}}{T^2} \qquad (2.54)$$

D se relaciona en la deducción, a la constante a de Van der Walls, en la forma:

$$D = \frac{a}{2.303 R^2}$$
 (2.55)

$$a = \frac{\frac{27}{64} R^2 T_c^2}{\rho^2}$$
(2.56)

donde:

Asi:
$$D = 0.1832 T_c^2 C_c^2$$
 (2.57)

La colaboración de Thodos fué la de relacionar las constantes $B \ y \ C \ en$ tre sí, por la relación:

$$C = 1.80\left(\frac{B}{T_c}\right) + 2.67$$
 (2.58)

a fin de obtener una ecuación de presión de vapor reducida con la siguiente forma:

$$\log P_{vpr} = \left(\frac{B}{T_c}\right) \left(\frac{1}{T_r} - 1\right) + \left(\frac{1.80B}{T_c} + 2.67\right) \log T_r + 0.1832 \left(\frac{P_{vpr}}{T_r^2} - 1\right) (2.59)$$

con la cual se puede obtener el valor de B por medio de un estado de referencia como el punto de ebullición normal por medio de un procedimiento iterativo; ya definido el valor de B, la única incógnita por resolver sería la presión de v<u>a</u> por reducida, la cual se debe resolver por medio de una computadora.

El valor de B puede ser calculado por medio de métodos de grupo aditivo para hidrocarburos, lo cual resulta mas complicado e impráctico; sin emba<u>r</u> go esto le dá un sentido físico a las constantes utilizadas.

Los resultados obtenidos para esta relación son muy satisfactorios para una gran variedad de compuestos tanto orgánicos como inorgánicos obteniéndose errores promedio del 2 por ciento para presiones de vapor mayores de 1,500 mm Hg y 6 por ciento de error en presiones menores para un total de 34 hidrocarburos. Los datos que requiere esta relación son:

- Pc = Presión crítica, atmósferas
- Tr = Temperatura crítica, ^oK
- Tb = Temperatura normal de ebullición, ^oK
- T = Temperatura, ^oK

2.1.6 Tensión superficial.

En el equilibrio de las fases líquidas y gaseosas de un componente o de una mezcla, la capa de separación puede considerarse como una tercera fase con propiedades intermedias, dentro de la cual existen grandes gradientes de densidad y energía molecular.

Un panorama microscópico cualitativo de la capa superficial nos muestra que existen' fuerzas desiguales que actúan sobre las moléculas, lo cual provoca una tensión en la capa superficial, lo que hace que tienda a contraerse hacia el área mínima, compatible con la masa del material y las paredes del recipiente.

Un índice cuantitativo de este fenómeno puede presentarse en diversas formas, siendo la más común la tensión superficial, la cual se define simplemente por la fuerza ejercida en el plano de la superficie, por unidad de longitud.

El método seleccionado para el cálculo de esta propiedad es el propue<u>s</u> to por Brock y Bird (17), en el que el grupo adimensional $\int /Pc^{2/3}Tc^{1/3}$ se corr<u>e</u> laciona con el principio de estados correspondientes, dando lugar a la siguiente – ecuación:

$$\frac{\sqrt{1-T_r}}{P_c^{2/3}} = (C_{133} \sim C_{-0.281}) (1-T_r)^{\frac{11}{9}} . (2.60)$$

El factor « que se presenta en esta ecuación es el propuesto por Riedel (17); es un parámetro de caracterización semejante al factor acéntrico y se - define como:

$$\propto_{e} = d(\ln Pvpr)/d(\ln Tr)$$
 enel purto critico . . (2.61)

El autor desarrolló una ecuación generalizada de presión de vapor, a partir de la cual se determina

Por datos experimentales observó que cuando la temperatura reducida tiene un valor de 1, la presión de vapor reducida es igual a 1, de donde obtuvo la siguiente ecuación con una sola constante de presión de vapor reducida:

$$\log \mathcal{D}_{vpr} = -\phi Tr - (\sigma_c - 7) \psi(Tr) \dots (2.62)$$

donde:

$$\phi(T_r) = 0.118 \, \varphi \, T_r - 7 \log \, T_r \, \dots \, (2.63)$$

$$\Psi(Tr) = 0.0364 \ \Psi(Tr) - \log 7r$$
 ... (2.64)

$$\varphi(T_r) = \frac{36}{T_r} + 42 \ln T_r - 35 - T_r^6 \dots (2.65)$$

Un punto de referencia conveniente es el de ebullición normal, ya – que es una constante de cada compuesto, por lo que la presión de vapor reduc<u>i</u> da se define como 1/Pc y la temperatura reducida queda como Tb/Tc, siendo – Tb la temperatura normal de ebullición.

Para mezclas multicomponentes se emplean constantes pseudo críticas, siguiendo la regla de Kay, la cual nos define que una constante es obtenida a - partir de sus fracciones molares, por lo que se obtendría Pcm, Tcm, y Xcm.

Se informa para este método un error medio del tres por ciento para hidrocarburos, tanto lineales como cíclicos, teniendo amplios límites de uso.

Fig. 2.1 Diagrama de flujo para el cálculo de la presión de vapor.

2.1.7 Viscosidad.

La viscosidad es una medida de la fricción interna del fluido, que tien de a oponerse a cualquier cambio dinámico del movimiento; es decir, si la fricción entre las capas del fluido es pequeña, se tiene un valor bajo de viscosidad, una fuerza cortante dará como resultado un gran gradiente de velocidad. Conforme aumenta la viscosidad, cada capa de fluido ejerce un mayor arrastre friccional sobre las capas adyacentes y el gradiente de velocidad disminuye, por lo que se concluye que la viscosidad es una propiedad dinámica de desequilibrio en una escala microscópica, siendo función de la temperatura, presión y volumen.

Para el cálculo de la viscosidad de líquidos y gases se encontraron los siguientes métodos con resultados satisfactorios, según se enumeran a continuación:

1) Gases puros a baja presión.

Stiel y Thodos (17) estudiaron en forma extensiva la correlación de estados correspondientes, la cual nos reduce la función de viscosidad como:

$$M_{F}^{e} = M(\frac{T_{e}^{2}}{M^{\frac{1}{2}} P_{e}^{\frac{2}{3}}}) = f(T_{r}, Z_{e}) \dots (2.66)$$

Los datos experimentales ajustados a esta función han proporciona-

do las siguientes ecuaciones que parecen ser las mejores disponibles:

Gases no polares:

$$M_{\xi} = (3.40)(10^{-3}) T_{r}^{0.94} \quad T_{r} \leq 1.5 \quad (2.67)$$

$$M_{\xi} = (17.78)(10^{-3})(4.58 T_{r} - 1.67)^{5} \quad T_{r} > 1.5 \quad (2.68)$$

Gases polares. Tipos con enlace de hidrógeno:

$$\mathcal{M}_{e}^{e} = (7.55T_{r} - 0.55)(10^{-5})Z_{c}^{-\frac{5}{4}} T_{r} < 2.0 \quad (2.69)$$

Tipos con enlace sin hidrógeno:

$$M_{F}^{E} = (1.90 Tr - 0.29) (10^{-4}) Z_{c}^{-\frac{2}{3}} Tr < 2.5 \quad (2.70)$$

En las ecuaciones anteriores:

M = viscosidad $\xi = T_c^{1/6}/M^{\frac{1}{2}}P_c^{2/3}$

Tc = Temperatura crítica ^oK

Pc = Presión crítica, atm.

M = Peso molecular

Tr = Temperatura reducida

Estas ecuaciones simples se aplican a todos los gases polares y no

polares excepto el hidrógeno, helio, fluor, bromo y yodo.
Al compararse con valores experimentales los valores calculados se encontró un error medio de sólo un 1.8 por ciento en gases no polares y 3.2 por ciento en los gases polares.

2) Gases puros a alta presión.

Como criterio de alta presión tomaremos presiones mayores de 5 atm., ya que no encontramos grandes diferencias con resultados – experimentales, y para evaluar la viscosidad a estas condiciones nos basamos en el método de la viscosidad residual, la cual nos – relaciona la viscosidad a baja presión por medio de la densidad reducida.

La correlación presentada por Jossi, Stiel y Thodos cubre el intervalo entre 0.1 < / < 3, lo cual nos permite correlacionar vis cosidades de líquidos.

La ecuación presentada es:

$$\left[\left(\mathcal{M} - \mathcal{M}^{\circ} \right) \xi + 10^{-4} \right]_{=0.023+0.025364/r}^{0.25} + 0.025364/r (2.71) + 0.058533/r^{-2} = 0.040758/r^{-3} + 0.093324/r (2.71)$$

En esta ecuación:

M = viscosidad, centipoises

Me= viscosidad a baja presión a la misma temperatura, centipoises.

29.

Para el cálculo de la densidad se utiliza el método explicado en – este mismo capítulo.

El error medio de esta ecuación al compararse con datos experimen tales fue del diez por ciento.

3) Viscosidad de mezcla de gases a baja presión.

La extensión de la teoría cinética de Chopman y Enskog puede – emplearse para expresar la viscosidad de una mezcla multicompone<u>n</u> te de gases a baja presión.

Las expresiones son bastantes complicadas y consisten en la relación de dos determinantes que comprenden términos en las que involucran fracciones molares, pesos moleculares, viscosidades de componentes puros, temperaturas, integrales de colisión y difusividades; se presen tan como:

$$\mathcal{H}_{m} = \frac{\sum_{i=1}^{n} \mathcal{H}_{i}}{1 + \sum_{i=1}^{n} \phi_{ii} \left(\frac{\mathcal{Y}_{i}}{\mathcal{Y}_{i}}\right)} \qquad (2.72)$$

$$p_{ij} = \frac{6}{5} A_{ij}^{\dagger} \left(\frac{\mathcal{P}T}{\mathcal{P}\mathcal{H}_{i}}\right) \left(\frac{\mathcal{H}_{i}}{\mathcal{D}_{ij}}\right) (2.73)$$

y donde:
$$A_{ij}^{\star} = \Omega v_{ii} / \Omega v_{ij}$$
 (2.74)

Wilke (17) simplificó la facilidad de aplicación de esta expresión aproximando el coeficiente de difusión del modelo de la teoría cinética de Sutherland, para que dé:

$$\oint_{ij} = \frac{\left[1 + \left(\frac{\mathcal{H}_i}{\mathcal{H}_j}\right)^{l_2} \left(\frac{\mathcal{H}_j}{\mathcal{H}_i}\right)\right]^2}{\sqrt{8}\left[1 + \left(\frac{\mathcal{H}_i}{\mathcal{H}_j}\right)\right]^{l_2}}$$
(2.75)

Al comparar los resultados de esta ecuación con datos experimen⁻ tales se encontró una desviación media del uno por ciento en mez⁻ clas binarias, teniendo valores más altos en mezclas con hidróge⁻ no.

4) Viscosidad de mezclas de gases a alta presión.

Se presenta una modificación de la técnica de viscosidad residual explicada en el inciso 2), desarrollada por Dean y Stiel, cuya – ecuación es:

$$(\mathcal{H}_{m} - \mathcal{H}_{m}^{\circ}) \stackrel{e}{\xi}_{m} = (10.8)(10^{-5}) (e^{1.439} - e^{1.11} + 1.858) \cdot (2.76)$$

donde:

 $\mu_{\rm m}$ viscosidad de la mezcla de alta presión, centipoises. = 14 m° viscosidad de la mezcla a baja presión, centipoises. = Prm densidad pseudo reducida de la mezcla. Ξ densidad de la mezcla, g mol/cm 3 Pm = / cm = a partir del volumen crítico de mezcla, $1/V_{cm}$. El peso molecular de la mezcla así como las demás propiedades pseu docríticas se calculan por medio de las reglas de Prausnitz y Gunn a partir de las fracciones molares:

$$\mathcal{T}_{cm} = \sum_{i=1}^{n} \mathcal{Y}_{i} \mathcal{T}_{ci} \qquad (2.77)$$

$$Z_{cm} = \sum_{i=1}^{n} q_i Z_{ci}$$
 (2.78)

$$V_{cm} = \sum 4i V_{ci} \qquad (2.79)$$

$$P_{cm} = \frac{Z_{cm} R T_{cm}}{V_{cm}} \qquad (2.80)$$

Con estos valores pseudocríticos se calculan los valores de

El cálculo de la densidad de mezcla se logra a partir del método – · explicado anteriormente.

Esta correlación puede aplicarse a gases y a líquidos debido a su límite amplio de densidad. Con respecto a datos experimentales se presenta un error promedio del 3.7 por ciento.

Para el cálculo de viscosidades de líquidos no se encontró ningún método confiable ya que no existe ninguna base teórica cuantitat<u>i</u> va que nos describa en forma exacta el comportamiento de la vi<u>s</u> cosidad de líquidos.

Eyring propone un método con bases teóricas que tiene como variables la densidad, el calor latente de vaporización y la temperatura normal de ebullición; sin embargo, presenta errores hasta del 67.7 por ciento.

El método de Jossi, Stiel y Thodos presentado en el inciso 2), – con densidades calculadas a partir del método usado nos presenta errores medios del 10 al 15 por ciento, lo cual resulta aceptable.

6) Viscosidad de mezclas de líquidos.

Por lo presentado en el inciso 5) y por consistencia en los cálculos presentamos el método enunciado en el inciso 4) para el cálc<u>u</u> lo de viscosidad de mezcla de líquidos, siempre que se tenga una densidad reducida menor de 2, ya que la exactitud arriba de ese valor no será aceptable.

2.1.8 Conductividad térmica.

La conductividad térmica es una propiedad dinámica de desequilibrio térmico en escala microscópica, siendo función de la temperatura y presión del sistema.

Esta propiedad es una medida de la cantidad de calor transmitido en una unidad de tiempo, por unidad de área, a través de una unidad de espesor p<u>a</u> ra cada unidad de cambio de temperatura.

Cuando la resistencia que presenta el fluido al paso del calor es muy alta, se obtiene un valor bajo de conductividad térmica, por lo que tenemos un – aislante de calor. En caso contrario, se obtiene un alto valor de conductividad térmica y entonces se tiene un conductor de calor eficiente.

Para realizar la estimación de la conductividad térmica para gases y <u>lí</u> quidos, se encontraron los siguientes métodos enumerados a continuación:

1) Gases puros a baja presión.

Misic y Thodos proponen un método basado simplemente en un an<u>á</u> lisis dimensional.

$$k = \propto \left(\mathcal{U}^{e} T_{c}^{b} T^{c} P_{c}^{d} V_{c}^{e} C_{p}^{\dagger} R^{g}\right) \dots (2.81)$$

Como resultado se obtiene la siguiente relación:

$$k i = \propto \left[T_r^c \left(\frac{c_p}{R} \right)^{\dagger} Z_c^{\frac{5}{c} - g - f} P_{-}^{\frac{5}{c}} \right] \dots \qquad (2.82)$$

donde X se define por:

$$V = T_c^{\frac{1}{6}} \mathcal{H}^{\frac{1}{2}} P_c^{\frac{3}{3}} \qquad (2.83)$$

El método de Missic y Thodos reduce entonces, el tener que hallar la mejor relación funcional entre $k \neq y$ Tr, Cp y Zc.

Se encontró que hay varias ecuaciones para distintos tipos de compuestos y para distintos intervalos de temperatura reducida. Las ecuaciones son:

$$\frac{k\delta}{C_{p}} = (0.445)(10^{5})T_{r}; T_{r} \leq 1.0 \quad (2.84)$$

para metano, naftenos e hidrocarburos aromáticos.

$$\frac{k}{c_{p}} = (10^{-6})(14.52 T_{p} - 5.14)^{\frac{2}{3}} . (2.85)$$

para todos los hidrocarburos a todas las temperaturas, excepto los casos anteriores.

Al comparar los valores calculados con valores experimentales, observamos un error medio de 2.4 por ciento.

2) Gases puros a alta presión.

Para el caso de sistemas con alta presión, trabajos recientes que -

tratan del efecto de la presión sobre la conductividad térmica han utilizado una sugerencia de correlación notablemente simple hecha por Abas-Zade (17).

En este esquema, la conductividad térmica residual, k-k^o, se tran<u>s</u> porta a una gráfica en función de la densidad (o densidad reducida); ésto es:

$$k - k^{\circ} = f(P)$$
 (2.86)

La temperatura y la presión no intervienen explícitamente, pero sus efectos se incluyen en los parámetros k^o (de temperatura únicamente) y densidad.

Stiel y Thodos han generalizado la ecuación con el razonamien⁻ to de que f $\langle \rho \rangle$ depende sólo de Tc, Pc, Vc, My ρ . Por aná⁻ lisis dimensional, obtienen una correlación entre k-k°, Zc, $\zeta =$ y ρ_{r} .

Las expresiones analíticas aproximadas son:

$$(k - k) \langle Z_{c}^{5} = (14.0) (10^{-8}) (e^{0.535} - 1) ; r < 0.5 (2.87)$$

$$(k - k) \langle Z_{c}^{5} = (13.1) (10^{-8}) (e^{0.47} - 1.069); 0.5 \langle r < 2.0(2.88)$$

$$(k - k) \langle Z_{c}^{5} = (2.976) (10^{-8}) (e^{1.155} + 2.016); 2.0 \langle r < 2.8(2.89)$$

El error promedio encontrado al comparar valores experimentales con valores calculados es de \pm 10 al 20%.

3) Mezcla de gases a baja presión.

Muchos de los métodos para predecir la conductividad térmica de mezclas están basados en una ecuación propuesta por Wassiljewa:

$$k_{m} = \frac{\sum_{i=1}^{n} k_{i}}{\sum_{j=i}^{j} A_{ij}\left(\frac{x_{j}}{x_{i}}\right)} \qquad (2.90)$$

El término Aij no fue especificado por Wassiljewa, por lo que existen muchas correlaciones propuestas.

Lindsay y Bromles propusieron la siguiente ecuación para calcular el término Aij:

$$A_{ij} = \frac{1}{4} \left\{ 1.0 \left[\frac{\mathcal{M}_{i}}{\mathcal{M}_{j}} \left(\frac{\mathcal{M}_{j}}{\mathcal{M}_{i}} \right)^{3/4} \left(\frac{1.0 + \frac{S_{i}}{T}}{\frac{1.0 + \frac{S_{i}}{T}}{T}} \right)^{1/2} \right\}^{2} \\ \left[\left(1.0 + \frac{S_{ij}}{T} \right) / (1.0 + \frac{S_{i}}{T}) \right]^{1/2} \right]^{2}$$
(2.91)

$$5_{L} = 1.5 T_{bL}$$
 (2.92)

$$S_{ij} = \left(S_i S_s\right)^{1/2} \qquad (2.93)$$

Usando este método de estimación se puede encontrar una desvia ción de la realidad de menos del 4%. 4) Líquidos puros.

Se han propuesto muchas técnicas de estimación para calcular la conductividad térmica de un líquido puro; la mayoría son empíricas, aunque algunas se basan en modelos teóricos no muy seguros.

Weber, en 1880, sugirió que la conductividad térmica era propor cional al producto $C_{p} \mathcal{F}_{q}^{*} y$ este tipo general de correlación se ha modificado varias veces. Sin embargo, la mejor modificación parece ser la realizada por Robbins y Kingrea, quienes han propuesto la siguiente relación:

$$K_{L} = \frac{(88.0 - 4.94 H)(10^{3})}{\Delta 5^{*}} \left(\frac{0.55}{T_{c}}\right)^{N} C_{P} / \frac{2}{3} \qquad (2.94)$$

donde:

 $K_{L} = Conductividad térmica de líquido, cal/cm⁻seg^{-o}K.$ Tr = Temperatura reducida, T/Tc. Cp = Capacidad calorífica molar del líquido, cal/gmol^{-o}K. $\swarrow = Densidad molar del líquido, gmol/cm³.$ $\Delta S^{*} = Entropia de vaporización modificada de Everett$ $= \frac{\Delta H_{\nu b}}{T_{b}} + R \ln \frac{273}{T_{b}}$ (2.95)

 ΔH_{vb} = Calor molar de vaporización en el punto de ebullición

normal, cal/gmol.

Tb = Punto de ebullición normal, ^oK.

Los parámetros H y N se obtienen de la siguiente tabla. H depe<u>n</u> de de las estructuras moleculares y N de la densidad del liquido a 20 °C.

Grupo funcional	No. Grupos	Н				
Hidrocarburos no ramificados:						
Parafinas		0				
Olefinas		0				
Anillos		0				
Ramas CH ₃	uno	1				
	dos	2				
	tres	3				
Ramas C ₂ H ₅	uno	2				
Ramas iso ^{-C} 3H7	uno	2				
Ramas C ₄ H ₉	uno	2				
Sustituciones F	uno	1				
	dos	2				
Sustituciones Cl	Uno	1				
	dos	2				
	tres ó cuatro	3				

Sustituciones Br	uno		4
	dos		6
Sustituciones 1	uno		5
Sustituciones OH	uno	(iso-)	1
	uno	(normal)	-1
	dos		0
	uno	(terc)	5
Sustituciones oxígeno			
cetonas, aldehic	los		0
ácidos, ésteres			0
éteres			2
Sustituciones NH2	uno		1
Densidad de	líquido, g/cm ³	Ν	
	1	1	

Se informa una desviación media de la realidad de 3.7 por ciento.

0

1

2.2 Cálculo del equilibrio de fase.

El estudio del equilibrio de fase en mezclas binarias en los cursos de -Ingeniería Química ha sido la base para la enseñanza de operaciones unitarias como la destilación y la absorción, debido a la amplia información que existe de datos de equilibrio, así como la gran cantidad de métodos desarrollados para el cálculo de las etapas de equilibrio.

Cuando se estudian mezclas multicomponentes, la representación gráfica de sus propiedades de equilibrio no oueden ser aplicadas para determinar una etapa de equilibrio, por lo que es necesario utilizar un procedimiento de computación analítico, usualmente implementado en una computadora digital debido a la complejidad de los cálculos.

Las propiedades termodinámicas estarán representadas por ecuaciones al gebráicas y dependerán de la temperatura, presión y de las composiciones de fase, por lo que estas ecuaciones tienden a ser muy complejas, particularmente cuando las interacciones entre moléculas disímiles son importantes.

La importancia de la exactitud de las correlaciones de propiedades termodinámicas dentro del diseño de equipo de operación no debe ser más enfatizada, así como los límites que cubre cada método a estudiar; sólo así el diseñador puede seleccionar el modelo más adecuado a su separación, a fin de tener una mejor posición para determinar el factor de diseño más conveniente a su sistema.

Se presenta a continuación una descripción del método seleccionado para el cálculo de la constante de equilibrio, así como de los algoritmos para d<u>e</u> terminar las propiedades de las fases.

2.2.1 Constante de equilibrio.

La relación de vaporización en el equilibrio, K_i, para un componente distribuido entre las fases líquido y vapor en un sistema multicomponente, está de⁻ finida como:

$$K_{i} = \frac{Y_{i}}{X_{i}} \qquad (2.97)$$

donde y_i, x_i son las fracciones mol del componente i en las fases vapor y líquido respectivamente. Para mezclas de hidrocarburos los métodos tradicionales para predecir datos de equilibrio son las correlaciones gráficas a partir de datos experimentales y los modelos teóricos que representan las dos fases. La relación de tres propiedades termodinámicas definen la constante de equilibrio como.

$$K_{i} = \frac{f_{i}}{\phi_{i}} \qquad (2.98)$$

donde f_{L} es la fugacidad del líquido puro i, b_{L} es el coeficiente de actividad de la fase líquida y ϕ_{L} es el coeficiente de fugacidad del componente i en la fase vapor.

Entre los métodos gráficos más comunes encontramos las gráficas de – De Priester (22) basadas en la ecuación de estado de Bennedict-Webb-Rubin, la cual tiene la limitación de trabajar sólo en hidrocarburos ligeros y mezclas de hidrógeno en límites muy pequeños. Las gráficas de Lenoir o las cartas del API suelen ser mas versátiles a pesar de ser derivadas de datos experimentales.

Desde un punto de vista práctico los modelos teóricos de la constante de equilibrio propuestos por Chao-Seader (4) y Grayson-Streed (8) son de gran utilidad. La única diferencia entre estos dos modelos son los valores de los coeficientes determinados empíricamente utilizando la teoría de estados correspondientes de Pitzer.

Estos dos métodos fueron seleccionados en el presente trabajo, si no – por una gran exactitud, sí por sus amplios límites de operación y su confiabilidad en diferentes tipos de mezclas de hidrocarburos.

Los valores termodinámicos enunciados en la ecuación (2.98) se calculan a partir de los siguientes métodos:

1) Coeficiente de fugacidad del componente líquido.

Chao-Seader (4) desarrollaron una expresión empírica para el cálculo del coeficiente de fugacidad en la fase líquida en términos de la temperatura y la presión reducidas y del factor acéntrico utilizando la correlación generalizada de Pitzer et al (7), la cual está basada en la ecuación de estado expresada como:

$$P = \frac{ZRT}{V} \cdot \cdot \cdot \cdot \cdot \cdot (2.99)$$

Para condiciones hipotéticas del líquido ($P > Pc_i$ o $T > Tc_i$), la c<u>o</u> rrelación se obtuvo a partir de datos experimentales resolviendo - en orden inverso la ecuación (2.98). La correlación se presenta como:

$$\log f_{i} = \log f_{i}^{(0)} + \omega_{i} \log f_{i}^{(i)} \cdot \cdot (2.100)$$

donde:

$$log f_{i}^{(6)} = A_{0} + \frac{A}{T_{ri}} + A_{2}T_{ri} + A_{3}T_{ri}^{2} + A_{4}T_{ri}^{3} + (A_{5} + A_{6}T_{ri} + A_{1}T_{ri}^{2})P_{ri} + (A_{8} + A_{9}T_{ri})P_{ri}^{2} - log P_{ri}$$
(2.101)

y:

$$log f_{i}^{(0)} = A_{10} + A_{11}T_{ri} + \frac{A_{12}}{T_{ri}} + \frac{A_{13}}{T_{ri}^{3}} + A_{14} \left(P_{ri} - 0.6 \right) . \qquad (2.102)$$

Las constantes para (2.102) son:

$$A_{10} = -4.23893$$
 $A_{11} = 8.65808$ $A_{12} = -1.22060$
 $A_{13} = -3.15224$ $A_{14} = -0.025$

Grayson-Streed (8) presentan constantes revisadas para A_0, \ldots, A_g como se presentan en la tabla 2.3.

Estas ecuaciones empíricas son aplicables para temperaturas reducidas de 0.5 a 1.3. 2) Coeficiente de actividad de la fase líquida (f_i) .

Se consideran las mezclas de hidrocarburos como soluciones regulares, caracterizadas por un exceso de entropia igual a cero, sie<u>n</u> do cualquier comportamiento fuera de la idealidad debido al calor de solución. Hildebrand (17) propuso la siguiente ecuación:

$$ln = \frac{Vi(\delta i - \overline{\delta})^2}{RT} \qquad (2.103)$$

donde S es un parámetro de solubilidad definido por Hildebrand (17) como:

$$\delta = \left(\frac{A E_{v}}{v}\right)^{\frac{1}{2}}.$$
 (2.104)

El valor de \vec{S} representa el parámetro de solubilidad medio para la mezcla:

$$\overline{\delta} = \frac{\sum \times i \, \forall i \, \delta_i}{\sum \times i \, \forall i} \qquad (2.105)$$

siendo V_{i} igual al volumen molar del líquido a 25°C.

3) Coeficiente de fugacidad en la fase vapor.

Chao-Seader eligieron la ecuación de estado de Redlich-Kwong para resolver el cálculo del coeficiente de fugacidad representado por una ecuación PVT como:

$$f_r = \frac{l_n f}{P} = \frac{l_n f}{RT} \int \left(V - \frac{RT}{P} \right) dP \quad (2.106)$$

La ecuación de Redlich-Kwong:

$$P = \frac{RT}{V-b} - \frac{q}{T^{0.5}V(V+b)} \qquad (2.107)$$

donde:

$$\alpha = \frac{0.4278 R^2 T_c^{2.5}}{P_c}$$
(2.108)

$$b = \frac{0.0867 R T_c}{P_c}$$
(2.109)

La ecuación de fugacidad quedará definida como:

$$l_{n} \frac{f}{P} = Z - I - l_{n} \left(Z - BP \right) - \frac{A^{2}}{B} l_{n} \left(I + \frac{BP}{Z} \right) \quad (2.110)$$

El factor de compresibilidad Z se definirá por medio de la misma – ecuación de estado como:

$$Z = \frac{1}{1-h} - \frac{A^2}{B} \frac{h}{1+h}$$
 (2.111)

donde:

$$A^{2} = \frac{a}{R^{2} T^{2.5}}$$
 (2.112)

$$\mathcal{B} = \frac{b}{\mathcal{E}\mathcal{T}} \qquad (2.113)$$

$$h = \frac{BP}{Z} = \frac{E}{V}$$
 (2.114)

$$\frac{A^2}{B} = \frac{a}{bRT^{15}}$$
(2.115)

Sustituyendo la ecuación (2.111) en (2.110) nos queda como ecu<u>a</u>ción de trabajo:

4

$$Z^{3} - Z^{2} + BP(\frac{A^{2}}{B} - BP - I)Z - \frac{A^{2}}{B}(BP)^{2} = 0$$
 (2.116)

Debido a la naturaleza de esta ecuación por ser cúbica con respecto a Z nos presenta tres valores matemáticos reales en su solución, por lo que es necesario implantar un criterio para determinar el valor real dentro del algoritmo de solución.

Coeficientes determinados por Grayson - Streed	(8)
para el cálculo de la fugacidad de líquido	
en la Ecuación de Chao - Seader	

		Hidrógeno	Metano	Fluído Simple
	CLAVE	· 1	2	3
Ao		1.50709	1.36822	2.05135
٩ _١		2.74283	-1.54831	-2.10899
A ₂		-0.02110	0.	0.
A3		0.00011	0.02889	-0.19396
A ₄		0.	-0.01076	0.02282
A5		0.008585	0.10486	0.08852
A ₆		0.	-0.02529	0.
А ₇		0.	0.	-0.00872
A ₈		0.	0.	-0.00353
A9		0.	0.	0.00203

TABLA 2.3

4

Fig. 2.2 Cálculo y uso de la constante de equilibrio.

2.2.2 Puntos de burbuja y rocio.

La determinación del punto de burbuja y rocío en una mezcla de multi componentes es la base para el cálculo del análisis de fase y de los métodos rigurosos para el cálculo de sistemas de destilación, ya que determinan los límites en las condiciones de presión y temperatura de coexistencia de las fases líquido y vapor.

El punto de burbuja se define como la condición, ya sea de presión o temperatura (por lo que una de éstas debe ser fijada), bajo la cual un líquido alcanza la saturación, es decir, entra en equilibrio con la fase vapor, siendo la suma de las fracciones mol, x; y del vapor y; igual a la unidad, por lo que tenemos:

$$\sum_{i=1}^{n} X_{i} = \sum_{i=1}^{n} \mathcal{Y}_{i} = / \qquad (2.117)$$

Partiendo de la definición constante de equilibrio K_i y de lo anterio<u>r</u> mente dicho, tenemos:

$$\sum_{i=1}^{n} K_i \times Z_i = /$$
 (2.118)

donde z_i se refiere a la fracción mol de cada componente de la mezcla, las cua⁻ les se identifican en este caso con las fracciones mol de líquido.

$$\sum_{i=1}^{n} \frac{Z_{i}}{K_{i}} = 1 \quad . \qquad . \qquad (2.119)$$

Las funciones error para estos cálculos, ya que se requiere hacerlos a partir de métodos de convergencia como el Newton-Raphson o por procedimientos de prueba y error, son:

Punto de burbuja:

$$f(T_b) = \sum_{i=1}^{n} Z_i(K_i - 1) = 0 \qquad (2.120)$$

Punto de rocio:

$$f(T_r) = \sum_{i=1}^{n} \frac{Z_i(K_i-1)}{K_i} = 0 \qquad (2.121)$$

La figura 2.3 nos presenta las características de la convergencia de es⁻ tas funciones.

Fig. 2.3 Convergencias en las funciones de Temperatura de burbuja y temperaratura de rocio.

2.2.3 Análisis de fase.

La fase de una corriente de hidrocarburos se determina a partir de los – puntos de burbuja y de rocío de la mezcla, los cuales son comparados con las co<u>n</u> diciones de temperatura y presión del sistema.

A una misma condición de presión, se compara la temperatura con la – temperatura de burbuja; si resulta menor, la fase será líquida; en el caso contra– rio se compara con la temperatura de rocío, si resulta ser más alta se encuentra en fase vapor. La composición en ambos casos no se alterará.

En el caso de que la temperatura del sistema sea intermedia a las dos temperaturas de referencia, se tiene un equilibrio entre las dos fases, por lo que se debe determinar qué fracción de la corriente corresponde a cada fase y la composición mol de cada una. El método utilizado para lograr ésto es el den<u>o</u> minado Vaporización instantánea isotérmica, el cual consiste en la simulación de la separación de fases en un tanque con control de temperatura.

Refiriéndose a la figura 2.5 podemos realizar el siguiente balance de masa por componente en una vaporización contínua:

$$Z_{i}F = V_{i}Y_{i} + L_{i}X_{i} \qquad (2.122)$$

L, V, y F se refieren a los flujos molares de las corrientes líquida, vapor y de la

2.2.3 Análisis de fase.

La fase de una corriente de hidrocarburos se determina a partir de los – puntos de burbuja y de rocío de la mezcla, los cuales son comparados con las con diciones de temperatura y presión del sistema.

A una misma condición de presión, se compara la temperatura con la temperatura de burbuja; si resulta menor, la fase será líquida; en el caso contrario se compara con la temperatura de rocío, si resulta ser más alta se encuentra en fase vapor. La composición en ambos casos no se alterará.

En el caso de que la temperatura del sistema sea intermedia a las dos temperaturas de referencia, se tiene un equilibrio entre las dos fases, por lo que se debe determinar qué fracción de la corriente corresponde a cada fase y la composición mol de cada una. El método utilizado para lograr ésto es el den<u>o</u> minado Vaporización instantánea isotérmica, el cual consiste en la simulación de la separación de fases en un tanque con control de temperatura.

Refiriéndose a la figura 2.5 podemos realizar el siguiente balance de masa por componente en una vaporización contínua:

$$Z_{i}\mathcal{F} = V_{i}\mathcal{Y}_{i} + \mathcal{L}_{i}\mathcal{X}_{i} \qquad (2.122)$$

L, V, y F se refieren a los flujos molares de las corrientes líquida, vapor y de la

alimentación, respectivamente. x_i, y_i, y z_i son las fracciones mol del compone<u>n</u> te i. Un balance total de masa nos dará:

$$F = \vee + \sqcup \qquad (2.123)$$

La expresión de equilibrio para cada componente es:

$$\mathcal{Y}_{i} = \mathcal{K}_{i} \times \mathcal{L}_{i}$$
 (2.124)

Sustituyendo las ecuaciones (2.123) y (2.124) en la ecuación (2.122) tenemos:

$$X_{i}L + K_{i}X_{i}V = Z_{i}F \qquad (2.125)$$

donde:

$$X_{L} = \frac{FZ_{L}}{\forall K_{L} + L} = \frac{FZ_{L}}{\forall K_{L} + F - \forall} = \frac{FZ_{L}}{\forall (K_{L} - l) + F} = \frac{Z_{L}}{\frac{\forall}{F}(K_{L} - l) + l}$$
(2.126)

haciendo lo mismo con y; tenemos:

$$Y_{i} = \frac{Z_{i} \ k_{i}}{\frac{V}{F}(k_{i}-l)+l}$$
(2.127)

En el equilibrio tenemos que la suma de las fracciones mol de cada fase son igual a la unidad, por lo que:

$$\sum_{i=1}^{n} \chi_{i} = \sum_{i=1}^{n} \mathcal{Y}_{i} = 1.0 \qquad (2.128)$$

Si se toma como función error la resta de las dos sumas tenemos:

$$f(\xi) = \sum_{i=1}^{n} \frac{Z_{i}(k_{i}-1)}{\frac{V}{F}(k_{i}-1)+1} \quad . \quad . \quad . \quad . \quad (2.129)$$

lo cual nos satisface el modelo.

Para que se cumpla esta función error debemos iterar el valor de V/F; a fin de que la convergencia se acelere se utiliza el método de Newton-Raphson. Una vez determinado este valor se calcula la fracción de líquido y las composi ciones de cada fase a partir de las ecuaciones (2.126) y (2.127).

Fig. 2.5 Tanque Separador (2 opciones)

2.2.4 Cálculo de un tanque separador en un proceso adiabático.

La separación de una mezcla de hidrocarburos en componentes ligeros y pesados en una sola etapa de equilibrio, sin ningún intercambio de calor con el sistema, se puede lograr mediante una reducción en la condición de presión a la corriente de alimentación de un tanque provocada por una válvula reductora, lo cual nos establece un sistema de dos fases, siendo éstas separadas por gravedad en el tanque separador. Dado que se considera un sistema adiabático, el balance de energía resulta como:

$$H_{ent} = H_{aas} + H_{lia}$$
 (2.130)

La temperatura de operación del tanque resulta menor a la temperatura – de alimentación debido al cambio de fase de una fracción de la corriente, lo que provoca una transformación de calor sensible a calor latente.

El cálculo de las características de la separación sigue la siguiente secuen cia:

a) Se realiza una vaporización instantánea isotérmica de la corriente de alimentación a partir de los datos iniciales de temperatura, pre sión y composición antes de la válvula reductora. Una vez definidas
 las características de la corriente se calcula la entalpia de alimenta Ción.

- b) Se fija la presión del equipo y supone una temperatura.
- c) Se realiza una vaporización instantánea isotérmica con las nuevas condiciones de presión y temperatura, determinando la relación gas⁻ líquido y sus composiciones. Se calculan las entalpias de cada fa⁻ se.
- d) Se compara la suma de las entalpias de cada fase con la entalpia de la alimentación. Sí resultan iguales dentro de una tolerancia – la temperatura será correcta, así como el análisis de las corrientes de salida, en caso contrario se supone una nueva temperatura a – partir de un Newton-Raphson, el cual se basa en las temperaturas de burbuja y rocío para sus límites de iteración.

Las entalpias de gas y líquido se calculan por las ecuaciones sugeridas por Chao-Seader a fin de mantener una consistencia en el cálculo.

Fig. 2 4 Diagrama de flujo del cálculo de un tanque se rarador.

2.3 Descripción del programa Propiedades en Fortran IV.

Una vez definidos los métodos de cálculo para cada una de las propi<u>e</u> dades descritas en este capítulo, se elaboró un programa de computadora en el lenguage Fortran IV, el cual se ejecutó en la computadora Burroughs 6700/ 7700 del Centro de Servicios de Cómputo de la Universidad Nacional Autónoma de México.

El programa fué elaborado a base de subrutinas, las cuales son descri tas en el inciso 2.3.1; cada una de las cuales corresponde a las diversas propiedades, a fin de que en un momento dado trabajen de una manera independiente, pudiendo ser utilizadas como fuente de información en el desarrollo de otros cál culos.

La operación del programa está diseñada para tres opciones básicas de cálculo, siendo las dos primeras de información de propiedades, y la tercera un simulador de una mezcla de hidrocarburos en etapas de equilibrio.

Las opciones son:

 Propiedades de compuestos puros a diferentes condiciones de presión y temperatura, con una capacidad de veinte compuestos dif<u>e</u> rentes y veinte juegos de condiciones para cada compuesto, pudiéndose ampliar este campo modificando la capacidad de los ve<u>c</u> tores correspondientes. La subrutina Props sirve como monitor de este juego de propiedades, seleccionando el cálculo por medio de una serie de claves, las cuales se leen como datos y se especifican en la tabla 2.4.

- Propiedades de mezclas multicomponentes a diferentes condiciones de temperatura y presión, como se especifica en la opción 1). Se deben alimentar como datos la composición y la fase de la mezcla.
- 3) Simulación de las propiedades de una corriente de hidrocarburos, dada la composición inicial y las condiciones de presión y temperatura. Esta opción involucra cálculos de los puntos de burbuja y de rocío, el análisis de las fases líquido y vapor, determinando composiciones y porcentajes de cada fase por medio del cálculo de una vaporización instantánea (flash isotérmico).

Además, se incluye el cálculo de una expansión adiabática utili zando un balance de entalpias en los límites de un tanque separador.

Una vez determinadas las características de fase de la corriente, se estiman sus propiedades físicas y termodinámicas por medio de los métodos de la opción 2).

Los datos de operación para este programa se describen en el inciso 2.3.2, especificándose la manera como deben ser alimentadas, dependiendo de la opción del cálculo. A continuación se presenta una síntesis de las subrutinas empleadas.

SUBRUTINA EQUIL

Calcula las constantes de equilibrio K_i para cada componente en las condiciones de presión, composición y temperatura requeridas por el método de Chao-Seader.

SUBRUTINA FEBUR

Calcula la función error para el cálculo de la temperatura de burbuja.

SUBRUTINA FEROC

Calcula la función error para el cálculo de la temperatura de rocío.

SUBRUTINA TBURB

Calcula las temperaturas de burbuja y de rocío por el método de Newton⁻ Raphson utilizando las constantes de equilibrio.

SUBRUTINA ZETA

Calcula el factor de compresibilidad a la presión indicada utilizando la ecuación de estado Redlich-Kwong.
SUBRUTINA FLASH

Realiza una vaporización instantánea de la corriente en las condiciones especificadas para conocer la fracción de la corriente en estado líquido y en estado vapor, así como la composición de ambas fases.

SUBRUTINA GEXY

Asigna a X y a Y los valores de la composición alimentada.

SUBRUTINA FASE

Realiza un análisis de fase en las condiciones de la corriente, calculando el flujo de vapor y el flujo del líquido en dicha corriente. Utiliza como criterio la comparación de la temperatura con respecto a la temperatura de burbuja y a la temperatura de rocío.

SUBRUTINA FLAD

Esta subrutina es el monitor de la expansión adiabática. Calcula la entalpia de la corriente de alimentación.

SUBRUTINA FLA2

Calcula la temperatura y la composición de las salidas de vapor y líqui do, de un tanque separador, por el método de convergencia de entalpias.

SUBRUTINA HVL

Cálculo de la entalpia de mezcla de la fase líquida por el método de Chao⁻Seader. Cálculo de la entalpia de mezcla de la fase vapor utilizando⁻ la ecuación de estado de Redlich⁻Kwong. La entalpia ideal la calcula a partir de las constantes del API.

SUBRUTINA IMPRES

Calcula los valores de flujo, llama las subrutinas necesarias para el cálculo de las propiedades e imprime los resultados del programa.

SUBRUTINA ANACOR

Esta subrutina realiza la lectura de las condiciones iniciales, constan⁻ tes y opciones de cálculo. Con la opción de cálculo se define qué subrutina tr<u>a</u> baja.

SUBRUTINA DENPUR

Calcula la densidad de compuestos puros utilizando la ecuación de es tado de Starling-Han.

SUBRUTINA VISPUR

Calcula la viscosidad de compuestos puros en fase vapor a baja presión. Utiliza el método de estados correspondientes de Stiel y Thodos.

SUBRUTINA VISPAP

Calcula la viscosidad de compuestos puros en fase vapor o en fase líquida a alta presión. Utiliza el método de estados correspondientes de viscosidad reducida de Dean y Stiel.

SUBRUTINA ENTP

Calcula la entalpia de compuestos puros utilizando la ecuación de Sta<u>r</u> ling-Han.

SUBRUTINA CPRP

Calcula la capacidad calorífica de compuestos puros utilizando la ecu<u>a</u> ción de estado de Starling⁻Han.

SUBRUTINA CONGAS

Calcula la conductividad térmica de gases puros a baja presión utiliza<u>n</u> do el método de Misic-Thodos.

SUBRUTINA CONGAP

Calcula la conductividad térmica de gases puros a alta presión. Utiliza el método de Stiel y Thodos.

SUBRUTINA CLAVA

Esta subrutina puede evaluar el calor latente de vaporización a la tempe-

ratura normal de ebullición. Se utiliza el método de Riedel, Plank y Miller.

SUBRUTINA CALAT

Esta subrutina calcula el calor latente de vaporización a cualquier tem peratura utlizando el método de Watson.

SUBRUTINA CONLQ

Calcula la conductividad térmica de compuestos puros en fase líquida. Utiliza el método de Robbins y Kingrea.

SUBRUTINA TENSUP

Esta subrutina calcula la tensión superficial de compuestos puros utili zando el método de Riedel, Plank y Miller.

SUBRUTINA PREVAP

Calcula la presión de vapor de compuestos puros. Utiliza el método de Frost-Kalkwanf-Thodos.

SUBRUTINA DENSI

Esta subrutina calcula la densidad de mezcla utilizando la ecuación de estado de Starling-Han.

SUBRUTINA HREAL

Calcula la entalpia de mezcla por el método de Starling-Han.

SUBRUTINA CPREAL

Calcula la capacidad calorífica de mezcla utilizando la ecuación de estado de Starling-Han.

SUBRUTINA VISMBP

Esta subrutina calcula la viscosidad de mezcla de gases a baja presión. El método utilizado es el propuesto por Wilke.

SUBRUTINA VMAP

Calcula la viscosidad de mezcla de gases a alta presión utilizando el método de Dean y Stiel.

SUBRUTINA CONMBP

Calcula la conductividad térmica de mezcla de gases a baja presión. Utiliza el método propuesto por Thodos.

SUBRUTINA BWRC

Esta subrutina calcula las constantes para la ecuación de Starling-Han.

SUBRUTINA ENT

Calcula la desviación de la entalpia con respecto a la idealidad con -

el método de Starling-Han.

SUBRUTINA CPR

Calcula la desviación de la capacidad calorífica con respecto a la idealidad utilizando la ecuación de estado de Starling-Han.

SUBRUTINA XY

Asigna valores de fracción mol.

SUBRUTINA REDUCP

Calcula los valores de la presión y la temperatura reducidas para cada componente. A continuación se presenta una descripción de los principales variables del Programa "PROPIEDADES"

Njuego	-	Número de juegos de datos.
Корс	-	Clave para opción de cálculo.
		Kopc = 1 Propiedades compuestas puros.
		Kopc = 2 Propiedades de mezclas multi-
		componentes.
		Kopc = 3 Simulación de corrientes.
Kc	-	Opción de cálculo para la simulación de
		corrientes.
		Kc = 1 Temperatura de burbuja y rocío.
		Kc = 2 Análisis de fase.
		Kc = 3 Expansión adiabática.
Ndata	-	Número de juegos de presión y tempera-
		tura para el cálculo de propiedades de -
		componentes puros.
KF	-	Clave de fase.
		KF = 1 Líquido.

69.

		KF = 2 Gas
e.		KF = 3 Gas ⁻ líquido
C (I)	-	Opción de cálculo de las diferentes pro-
		piedades. Tabla 2.4.
То	-	Temperatura, ^o C.
Po	-	Presión, atm.
Peqp	-	Presión de equipo, atm.
F	-	Flujo de alimentación, moles/hr.
Q	-	Calor transferido, Btu/hr.
A1, A2, A3 (I)	-	Nombre del componente i.
Z (I)	-	Fracción mol del componente i.
PM (I)	-	Peso molecular del componente i.
Tc (I)	-	Temperatura crítica del componente i, ^o K.
Pc (I)	-	Presión crítica del componente i, atm.
∨c (I)	-	Volumen crítico del componente i, ml/gr-
		mol.
Zc (1)	-	Factor de compresibilidad crítico del –
		componente i.
W (I)	-	Factor acéntrico del componente i.
D (I)	-	Parámetro de solubilidad del componente i,
		cal/cm ³ .

∨ _w (I)	Volumen molar del líquido a 25ºC, del		
	componente i, cm ³ /gmol.		
Ть (I)	- Temperatura normal de ebullición en el		
	componente i, °K.		
Acp, Bcp, Ccp,			
Dcp, Ecp. (1)	- Constantes del polinomio de la entalpia		
	ideal del componente i.		
ltipo (I)	- Indice en el cálculo de la viscosidad de		
	el componente i.		
Ind (I)	- Clave para el cálculo de la constante de		
	equilibrio del componente i.		
Kij (I, J)	- Parámetro de interacción en la ecuación		
	de Starling.		

71.

Los datos que se alimentan al programa deben seguir la siguiente secuen cia, dependiendo de la opción de cálculo que seleccione el usuario.

Para las opciones 1 y 2 tenemos:

Tarjeta No.	1	Columna	1-2	Njuego
Tarjeta No.	2	Columna	1-2	Корс
Tarjeta No.	3	Columna	1-2	KF
		Columna	3-4	Ndata
		Columna	5-6	Ncomp
Tarjeta No.	4	Columna	1-30	C (I)
Tarjeta No.	5	Columna	1-10	P (J)
		Columna	11-20	(L) T
		Se alimen	itan Ndata	número de
		tarjetas.		
Tarjeta No.	6	Columna	1-6	Al
		Columna	7-12	A2
		Columna	13-18	A3
		Columna	19-24	z
Tarjeta No.	7	Columna	1-10	Pm
		Columna	11-20	Tc
		Columna	21-30	Pc

	Columna	31-40	Vc
	Columna	41-50	Zc
Tarjeta No. 8	Columna	1-10	Tb
	Columna	11-20	w
	Columna	21-30	D
	Columna	31-40	Vw
	Columna	41-42	ltipo
	Columna	43-44	Ind
Tarjeta No. 9	Columna	1-10	Acp
	Columna	11-20	Bcp
	Columna	21-30	Сср
	Columna	31-40	Dcp
	Columna	41-50	Ecp
	Se alimen	tan grupos de	tarjetas
•	de 6 a 9	como compone	ntes haya.
Tarjeta No. 10	Columna	1-80	Kij
	Se alimen	tan tarjetas co	mo comp <u>o</u>
	nentes -1	h aya.	
Para la opción 3 tenemos:			
Tarieta No. 1	Columna	1-2	Niuego

.

Tarjeta No.	2	Columna	1-2	Корс
Tarjeta No.	3	Columna	1-5	Kc
		Columna	6-10	Ncomp
		Columna	11-20	To
		Columna	21-30	Ро
		Columna	31-40	Peqp
		Columna	41-50	F
		Columna	51-60	Q
Tarjeta No.	4	Columna	1-6	Al
		Columna	7-12	A2
		Columna	13-18	A3
		Columna	19-24	Z
Tarjeta No.	5	Columna	1-10	Pm
		Columna	11-20	Tc
		Columna	21-30	Pc
		Columna	31-40	Vc
		Columna	41-50	Zc
Tarjeta No.	6	Columna	1-10	ТЬ
		Columna	11-20	w
		Columna	21-30	D

Columna	31-40	Vw
Columna	41-42	ltipo
Columna	43-44	Ind
Columna	1-10	Acp
Columna	11-20	Bcp
Columna	21-30	Сср
Column <mark>a</mark>	31-40	Dcp
Columna	41-50	Ecp
Se aliment	an tarjetas de	4 a 7

Tarjeta No. 7

como componentes haya.

PROPIEDADES PUROS	SUBRUTINA	CLAVE C (I)	
Densidad	DENPUR	2	
Viscosidad	VISPUR	3	
Entalpia	ENTP	4	
Capacidad calorífica	CPRP	5	
Conductividad térmica de gases	CONGAS	6	
Calor latente de vaporización a			
temperatura normal	CLAVA	7	
Calor latente de vaporización	CALAT	8	
Conductividad térmica de líquidos	CONLQ	9	
Tensión superficial	TENSUP	10	
Presión de vapor	PREVAP	11	
PROPIEDAD MEZCLA	SUBRUTINA	CLAVE C (I)	
Densidad	DENSI	12	
Entalpia	HREAL	13	
Capacidad calorífica	CPREAL	14	
Viscosidad	VISMBP	15	
Conductividad térmica	CONMBP	16	

Tabla 2.4 Claves para el cálculo de las diferentes propiedades.

2.2.4 Resultados del programa Propiedades.

CALCULO DE LA DENSIDAD DEL PROPANO

PRESION	TEMPERATURA	DENSIDAD	DENSIDAD
(ATMS)	(GR.C)	(MOLES-LITRO)	(LBMOL-FTCUBICO)
1.000	25.000	.4157000E=01	.2595631E=02
1.000	50.000	.3821000E=01	,2385832E=02
ī.ōoō	75.000	.3537000E-01	.2208503E=02
1.000	100.000	.3293000E=01	,2056149E-02
5.000	50.000	.2019800E+00	.1261163E-01
10.000	50.000	.4386500E+00	2738931E=01
20.000	50.000	.1126830E+01	.7035927E=01
30.000	50.000	.5243040E+01	.3273754E+00

VISCOSIDAD DE COMPUESTOS PUROS, CENTIPOISES

PRESION	TEMPERATURA	COMPUESTO
(ATMS)	(GR.C.)	

		PROPANO	N-BUTANO	N-PENTANO
1.0000	25.0000	0.00831363	0.00758593	0.00699745
1.0000	50.0000	ō.00896728	0.00818237	0.00754762
1.0000	75.0000	0.00961790	0.00877604	0.00809524
1.0000	100.0000	0.01026572	0.00936716	0.00864050
5.0000	50.0000	0.00906044	0.00830359	0.00770696
10.0000	50,0000	0.00910343	0.00840113	0,04865802
20.0000	50.0000	ō.00927884	0.02976007	0.04961901
30.0000	50.0000	0.01218059	0.03053774	0.05056577

OUMINE

PRESION	TEMPERATURA	ENTALPI	A IDEAL	DESVIACIO	DN ENT	ENTALPIA	RFAL
(ATMS)	(GR.C.)	(CAL/GHOL) (B	BTU/LBMOL)	(CAL/GMOL)	(BTU/LBMOL)	(CAL/G!OL)	(PTU/LBHOL)
1.000	25.000	7482.089	13467.760	-99,2	-178,581	7581.30	0 13646.341
1.000	50.000	7945.155	14301.280	-81.2	38 -146, 22 ⁸	8026.39	3 14447.507
1.000	75.000	3438.394	15189.108	-67.6	-121_844	8506,0 ⁸	5 15310 .95 3
1.000	100.000	8960.842	16129.515	-57.24	-103.034	°018.0 ^A	3 16232,549
5.000	50.000	7945.155	14301.280	-417,99	•752,382	⁸ 363,14	5 15053,662
10.000	50.000	7945.155	14301.280	-871.8	78 -1569,380	8817.03	3 15870.65°
20.000	50.000	7945.155	14301.280	-1971.8	-3549,416	9917.05	3 17850,696
30.000	50.000	7945.155	14301.280	-3753,90	-6757,139	11609.12	2 21058,419

CALCULU DE LA ENTALPIA DEL PROPANO

CALOR LATENTE DE VAPORIZACION EN CAL'GHOL

TEMPERATU	RA		COMPUESTO) 	
	PROPENO	PROFALIC	I-BUTANO	N-BUTANC	N-PENTANO
-100.000	4897 • 40	5058+09	5985 • 72	6423.401	7767-32
-75.000	46¢9•78	4825 • 54	5749•31	6186.86	7516.93
-50+000	4418•42	4569.66	5494 • 05	5933+38	7231.479
-25.000	4135.91	4283•43	5215.57	5658.88	6969 • 15
c•000	3810 • 17	3955•óó	4907.53	5358 .25	6685.85
25.000	3419.33	3566•57	4560 • 27	5023.96	633677
50.000	2915 • 33	3074.74	¢157•76	4644.28	5976+15
75.000	2139.98	2358.74	3669.73	4199.04	5574 • 38

PPESION DE VAPOP

COMPUESTO

•

TENPERATURA

	PROPEND	PROPANO	I-BUTANO	N-BUTANO	N-PENTANO
-100.000	0.040123	0.028137	0.003736	0+001567	0.000092
-75.000	6 • 237444	0.176163	0 • 0 3 2 6 4 9	0.016125	0 • 001556
50. 000	0.898116	0 • 5 9 4 0 7 7	0 • 164386	0•092080	0 • 0 1 2 9 2 5
25. 000	2 • 51 87 97	2 •005685	0 • 574359	0 • 352269	0 +845978
0.000	5.749226	4•689667	1 • 543967	1 • 017656	0 •238545
25.000	11.348120	9.393371	3 • 449543	2 • 403449	0+671402
50.000	20.182303	16.914531	6•736874	4 • 899491	1.570422
75.000	33.312477	28 • 172447	11.913950	8.955064	3 • 197 386

TENSICE SUPEFFICIAL DE LIQUIDOS FUROS EN DINAS/CM

TEMPERATURA

COMPUESTO

	PROFEIC	FFOFANC	I-PUTANC	N-BUTANO	N-PENTANC
-100.0 C0	73.05	29.65	29.05	34 • 78	33+54
-75.000	34.07	26.17	26.24	31.66	31.02
-50.000	29.26	22.60	23.34	28.45	28 • 42
-25.000	24•36	18.93	20 • 38	25+16	25 . 77
0.000	19.33	15.19	17.35	21.80	23.05
25.000	14.20	11.36	14.25	18.37	20.27
50.000	8.97	7 • 46	11.10	14.87	17•45
75.000	3 • 65	3.50	7.89	11.31	14.57

10''BRC	FPACCION MOL	CONSTANTE De Equilterin
PPUPENU	U.U.10	.3181896F+01
PROPANO	0.0730	·2º7/1775F+01
I=801VIIO	0.3305	,1390658F+01
U-BUTA 10	0.3826	.1061632F+01
N=PERTAILS	0,2829	.4326739E+00
PRESIDU DE LA MEZCLA = 102.0	900 PSIA	
TE IPERATURA DE SURBUJA = 154	4.930 GR.F TEMP	ERATURA DE ROCIO = 174,482GR.F

IEZCILA :

TEMPERATURA DE BURBHJA Y TEMPERATURA DE LOCIO

PESULIADUS DEL CALCULO DE UNA VAPORIZACIUN INSTANTANEA

REALIZADA EN UN ENVIPE CUYA PRESIUN DE UPERACIUN ES 50.000 PSIA

CUL DICIONES INICIALES

		ALIMEN	TACICH	LIQU	100	VAP	UR
COUMPONENTS	CONSTANTE	L8-M0L/H	% MOL	LB-MUL/H	\$ 101	15-MOL/H	X MOL
PRUPPENO	.3181889E+01	0.100	0.1000	0.100	0.1000	0.000	0 <u>.</u> 0000
PRC=PANO	.2874768E+01	^.300	0.3000	0.500	0.3000	9.000	0.0000
I-EsUTANO	.'3°0655E+01	33.050	33.0500	33,050	33.0501	0.000	0.0000
N-GUTANO	.1061630E+01	38.260	38.2000	38.260	38.2400	0.000	0.0000
N-PENTALO	.4326732E+00	28.290	28.2900	28.290	28.2000	0.000	0.0000
		*******	********	******	*****	*******	*******
TUTAL LB-"IOL/H			0 . 0 0 0 0	100.000	100.0000	0.000	0.0000
FLUJO TOTAL LB/H *	KG/H	5038.7	2693.8	5938.7	2643. *	°• °	0.0
PESO MOLECULAR PROMEDIO		5 9 •387		59,387		0.00 9	
DEFISIDAD RELATIVA	A 60 F	^.	47026	٥.	47026	۰.	00000
BPL A 60 F		865.5		865.5		0 <u>.</u> 0	
MM#PCSD 68 F, 1 KG/0	C''2	4.845		4,865		0 <u>.</u> 000	
PRESION PSIG (P AT	1= 14.73	10	2.901				
TEMPERATURA GR. F		· 4	9.00^				· ·
DENSIDAD A P Y T L	_B/FT3	29	.2975	29	2975	C	.0000
EN TALPIA MBTU/HR	¥.	20.0	. 045 *	200	.6458	0	. 0000
CONDUCTIVIDAD TERMICA,C/L/CM-SEG-M		.958-02		.956-07		° <u>.</u>	
VI SCOSIDAD, CPS		^.06	6335	0.00	6332	0 • 0 C	0000
						3	
CAPACIDAD CALORIFIC	A, BTU/LB-MOL-F	-16.	1406	-18.	1166	۰,	9000

		*L*060	TACION	L1903	00	4 A V	UP
Cu - 011. T(i t'nite	1 ··· - 10,6 ו1	% ↔OL	リトードリレノト	• • 1,2	· ····L7+	% MUL
PROF END	•	0.100	0.1000	9.080	C. (PA7	0,014	U.332H
PROP ALL		2.300	0.3001	0.245	1. · c + 64	0.045	0.9056
I-0 - TAMO	.1169022E+01	33.050	33.0500	30.565	32.0P22	2.25"	47.1583
H-ULE TANO	.1.67490E+01	38.260	38.2600	36.245	38.0050	1.925	
11-P2 (!TA':0	.713084E+00	28.200	28.2900	28.080	29.4795	0.518	10.9461
		********	*****	********	*****	*******	*******
TOTAL LB-MOLZO		101.000	100.0000	95.271	00.9000	4.72"	100.0087
FLUD 0 TOTAL LOZU	· 25/1	5°3°.7	2095.8	5681.9	2-77.3	203."	114.5
PES. MOLECULAR PRO	14F010	5	9.387	5'	P.637	5	5.708
DE SIDAD RELATIVA	, ^v or F	۰.	00000	o.,	50664	۰.	12157
BPL A 60 F			2823.7		768.7		2055.0
MHPLSD 68 F, 1 KG	10112		15.871		4.520		11.550
PRESIDE POIC (P &	T(= 14.7)	5	0.000				
TEN₽ERATURA GR. F		10	4.953				
DEUSIDAD & P Y T	LOZETZ	0	.0000	۱۵	.5635	ŋ	.5474
ESTALPIA DETUZOP		200	.645 ^R	153	.8341	40	. 81 94
	101-C1LZCH-SEC-K	11		506	-02	. 211	-04
VISIONETATE CDR	·19/70 270 -320-7	•••	υ.		, D''E = U/		11744
130031: 107(13		0.00		0.15	- 6 1 1	···• 6 9	دد،،،
CAP-CIDAD CALOPIES	ICA, MILVLB-MOL-F	۰.	0000	-1.	7176	۲۰.	68/2

CUE ICIONES FINALES

CAPITULO 3

.

.

DESARROLLO DE PROGRAMAS

3.1 Balance de masa en un proceso cíclico.

Descripción teórica.

En un proceso, cualquiera que sea su naturaleza, la materia sigue leyes muy precisas fundamentadas en la ley de la conservación de la masa, las cuales -exigen que en el proceso no pueda haber ni pérdidas ni ganancias de masa durante el mismo, excepto, por supuesto, en los procesos nucleares.

Para el diseño, así como para la evaluación económica de un proceso, es necesario definir la cantidad de materia y energía como primer paso para el desarrollo del mismo.

Un proceso cíclico es aquel donde productos ó subproductos del mismo son recirculados a la alimentación ó a algún otro punto del proceso, a fin de obt<u>e</u> ner una pureza ó una concentración específica del producto final; por lo que se requiere, para llegar a conocer los valores de las diversas corrientes, de un proc<u>e</u> dimiento iterativo, el cual seguirá una secuencia parecida a la del arranque del proceso hasta llegar a una estabilización; o bién, la resolución de un juego de -ecuaciones simultáneas utilizando métodos numéricos, los cuales por su naturaleza resultan bastante complicados sin el uso de una computadora digital de gran rapi-dez.

Descripción técnica.

Se presenta un programa, el cual consiste en dos rutinas, la primera --

de las cuales lee los coeficientes de las ecuaciones simultáneas e imprime resulta dos; la segunda es el método de resolución basado en la técnica de Gauss-Jordan, eliminando los miembros de una matriz abajo de la diagonal en cada renglón de cada columna. Las incógnitas se resuelven por sustitución regresiva. Se presenta en la figura 3.2 un diagrama de flujo del procedimiento de cálculo. Esta subrutina se puede utilizar para resolver un número máximo de cincuenta ecuaciones simultáneas para cualquier tipo de problema.

Como ilustración del método a seguir para alimentar el programa presen tamos a continuación la secuencia del planteamiento del problema representado en la fig. 3.1.

Formulación del problema.- Se plantean los balances de masa para cada corriente, pudiéndose éstos en un momento dado complicarse con balances por componente, quedando en la forma siguiente:

Μ,	-	$F + M_6$				•	(3.1)
M_z	=	$X \star (M_1)$					(3.2)
M_3	8	$M_1 - M_2$		•	•		(3.3)
M_4	11	$M_2 + M_7$				•	(3.4)
Мs	Ŧ	$M_{3+}M_4$	540)				(3.5)
ML	-	X ×(M5)					(3.6)
M7	-	M5-P	- M.				(3.7)

Este juego de ecuaciones puede ser reducido por sustituciones a un núme

ro menor, sin embargo se busca la sencillez en el procedimiento. A continuación se escribe una matriz con los coeficientes, dejando del lado extremo derecho los términos independientes, como se representa:

М.	Mz	M3	M_4	Ms	M	M7	ΤI	
١					-1		F	
- X	1						0	
- 1	l	(0	
	-1		T			-1	0	
		- 1	- 1	1			0	(3.8)
				-×	1		0	
				- 1	1	l	Ρ	

Todos los balances de masa así expresados toman la misma forma, por lo que no importa qué tan complicados sean éstos, o bien las ecuaciones en sí, si – éstas se plantean con cuidado. En la diagonal siempre deben quedar números "1" automaticamente cuando las ecuaciones están bien planteadas.

La forma de llenar la matriz la explicaremos a partir de la ecuación (3.2).

Si-X x M1 + M2 = 0, entonces en el renglón dos colocamos X abajo

de M₁ y 1 abajo de M₂, quedando 0 en el término independiente.

En el planteamiento del problema se debe vigilar que en cada ecua-ción haya una sola incógnita por cada corriente, por lo que los datos del problema deben seguir ciertas reglas:

- a) En un equipo donde se deriva más de una corriente, se requieren los porcentajes de cada una de las corrientes.
- b) Se requieren los datos de alimentación, así como algún producto, si no, el problema quedará indefinido.

LA MATRÍZ A

1.00	0.00	0.00	0.00	0.00	-1.00	0.00	100.00
-0.30	1.00	9.90	0.00	0.00	0.00	0.00	0.00
-1.00	1.00	1.00	0.00	0.00	9.00	0.00	0.00
0.00	-1.00	0.00	1,00	0.00	0.00	-1.00	0.00
0.00	0.00	-1.00	-1,00	1.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	-0.50	1.00	0.00	0.00
0.00	0.00	0.00	0.00	-0.40	0.00	1.00	0.00

CORRÍENTE	VALOR
1	600.00
2	180.00
3	420.00
4	580.00
5	1000.00
6	500.00
7	400.00

6 50 % CORRIENTE 5

Fig. 3.1 Ilustración del problema de un proceso cíclico.

3.2 Cálculo de la temperatura de flama teórica

en la combustion de hidrocarburos.

Descripción teórica.

El cálculo de la temperatura de flama en la combustión de una mezcla de hidrocarburos sigue las siguientes bases teóricas:

- 1) El proceso es adiabático.
- 2) La combustión es perfecta.
- El combustible y el aire se mezclan a la temperatura de referencia.
- Todos los productos de la combustión se encuentran a una temperatura.

La reacción general de combustión en un hidrocarburo es:

$$C_n H_m + O_z \longrightarrow n C O_z + \frac{1}{2} m H_z O$$
(3.9)

por lo que podemos plantear balances de materia y energia con la información de cada compuesto en cuanto composición, calor de combustión, y datos de capacidad calorífica. El balance de masa se plantea a partir de las siguientes igualda des:

$$NCO_2 = N_c$$
 (3.10)

$$NH_z O = \frac{N_H}{2} \qquad (3.11)$$

$$NO_{z} = N_{c} + N_{u}/4 + N_{s}$$
 (3.12)

$$NN_{z} = NO_{z} + 3.7619$$
 (aire) (3.13)

$$N = SO_2 = N_S$$
 (3.14)

La cantidad de reactivos depende de la calidad de la combustión prov<u>o</u> cada por la mezcla aire-combustible.

El balance de energía se establece entre el calor de combustión de la mezcla y el cambio en la entalpia de los productos de la combustión:

$$\Delta H \text{ productos} = \Delta H \text{ combustion}$$
 (3.15)

El primer término de esta igualdad se calcula a partir de los datos de capacidad calorífica de cada componente:

$$\Delta H_{\text{productos}} = \int_{T_{\text{ref}}}^{T} \sum_{i=1}^{n} n_i C_{\text{Pi}} dT \qquad (3.16)$$

y el segundo término a partir de los calores de combustión de cada componente por su fracción mol.

$$\Delta H_{c} = \sum_{i=1}^{n} \Delta H_{ci} \times X(i) \qquad (3.17)$$

Un factor importante que se presenta en temperaturas mayores que los -2900°F es la disociación de los productos de combustión.

$$CO_2 \longrightarrow CO + \frac{1}{2}O_2 \qquad (3.18)$$

$$H_2 O \longrightarrow H_2 + \frac{1}{2} O_2 (3.19)$$

por lo tanto el porcentaje de disociación es función de la temperatura y depende -

de la constante de equilibrio, así como la temperatura final es función del porciento de disociación, por lo que la inclusión de este factor complica la solución de la temperatura de flama.

Descripción técnica.

Para la resolución del algoritmo para el cálculo de la temperatura de flama se requiere el análisis del combustible, los datos de capacidad calorífica y el calor estandar de cada componente, a fin de plantear los balances. El progr<u>a</u> ma que se plantea a continuación genera varias relaciones de aire con respecto a un aire teórico requerido, a fin de obtener una serie de resultados a diferentes -relaciones. Los balances de masa requieren determinar el número de elementos -C, H, O, S, del combustible a partir de cada componente a fin de determinar los productos y plantear el balance de energía.

Las capacidades caloríficas se plantean de la siguiente forma:

$$C_{pi} = a_{ii} + a_{2i}T + a_{3i}T^{2} + a_{4i}T^{3} + a_{5i}T^{-\frac{1}{2}} + a_{4i}T^{-2} \qquad (3.20)$$

Método de solución.

A partir de las ecuaciones (3.16), (3.17), (3.20), la función error se plantea como:

$$F(T) = C_{1}T^{4} + C_{2}T^{3} + C_{3}T^{2} + C_{4}T + C_{5}T^{\prime 2} + \frac{C_{6}}{T} + C_{7} \qquad (3.21)$$

la cual se logró integrando la ecuación (3.16) y agrupando términos de la siguien-

te forma:

$$C_{i} = \sum_{i=1}^{n} \frac{n_{i} \, \mathcal{Q}_{ai}}{4} \qquad (3.22)$$

$$C_{a} = \sum_{i=1}^{n} \frac{n_{i} \, \mathcal{Q}_{ai}}{4} \qquad (3.23)$$

$$C_{3} = \sum_{i=1}^{n} \frac{n_{i} Q_{2i}}{2}$$
(3.24)

$$C_{4} = \sum_{i=1}^{n} n_{i} \ \mathcal{Q}_{ii}$$
(3.25)
(3.26)

$$C_5 = \sum_{i=1}^{2} 2n_i \, \mathcal{Q}_{5i} \tag{3.27}$$

$$C_{7} = -\Delta H_{c} - (C_{r}T_{ref.}^{a} + C_{2}T_{ref.}^{3} + C_{3}^{2}T_{ref.}^{a} + C_{4}T_{ref.}^{a} + C_{5}T_{ref.}^{a} + \frac{C_{6}}{T_{ref.}^{a}})$$
(3.28)

- Tref = 298°K.
- AHc = calor estandar de combustión de la mezcla.
- ni = número de moles de cada componente en los productos a partir

de la relación de aire.

La ecuación (3.21) es resuelta para la temperatura de flama usando el

método iterativo de Newton-Raphson:

$$T_{r+1} = T_r - F(T_r) / \frac{dF}{dT} T_r \qquad (3.29)$$

donde r es el número de iteraciones.

La derivada dF/dT está dada por:

$$\frac{dF}{dT} = 4C_1T^3 + 3C_2T^2 + 2C_3T + C_4 + C_5T^2 + \frac{2}{T^2}C_6 \quad (3.30)$$

Se encontró que este método no es sensible a la temperatura supuesta y
que convergía rápidamente.

A continuación se presenta el diagrama de bloques y los resultados del programa elaborado para la resolución del algoritmo. Los datos alimentados se obtuvieron de las referencias 13 y 19.

Fig. 3.3 Diagrama de bloques para el calculo de la temperatura de flama.

100.

CALCULO DE LA TEMPERATURA DE FLAMA EN LA COMBUSTION DE GAS NATURAL

COMPONENTE	FRACCION MOL	CALOR DE COMBUSTION CALORIAS/GMOL	c	н	0	S	
METANO	0.94500	197750.00000	1	4	Ö	0	
ETANO	0.02000	341261.00000	2	6	ò	0	
PROPANO	0.01800	488527.00000	3	8	ċ	0	
BUTANO	0.00100	635384.00000	4	10	Ó	0	
PENTANO	0.00050	782040.00000	5	12	ō	0	
HEXANO	0.00020	921370.00000	6	14	ò	0	
C05	0.01330	0.00000	1	0	2	0	

RESULTADOS

RELACION AIRE ACTUAL/AIRE TEORICO	TEMPERATURA DE FLAMA TEORICA	NUMERO DE ITERACIONES
	(GRADOS KELVIN)	
0.50000	2105.25250	3
0.66667	2246.56356	3
0.83333	2343.13586	3
1.00000	2412.77015	3
1.16667	2187.00141	3
1.33333	2005.37622	3
1.50000	1855,80465	3
1.66667	1730.35549	3
1.83333	1623.56750	3
2.00000	1531.53785	3

TEMPERATURA SUPUESTA = 1500.00

Descripción teórica.

En el diseño y evaluación económica de un proceso el cálculo de la – potencia de bombas es un factor muy importante, debido al costo y al consumo de energía que requiere este equipo, el cual debe suministrar la energía mecánica – necesaria para cumplir con las condiciones requeridas en el proceso.

Los factores más importantes en este cálculo se deben a los cambios de elevación, la resistencia provocada por la fricción y los cambios de energía inte<u>r</u> na dentro de un sistema, los cuales se relacionan por medio de un balance total de energía mecánica a régimen contínuo, el cual se representa en forma diferencial como:

$$\frac{g}{g_c}dZ + VdP + \frac{V_i dv_i}{g_c} = S \omega_o - dF \qquad (3.31)$$

Esta ecuación se integra entre los puntos inicial y final del sistema:

 $Z, \frac{g}{g_c} - \int_{1}^{2} \sqrt{dP} + \frac{\sqrt{2}}{2 \times g_c} + \omega_o = Z_2 \frac{g}{g_c} + \frac{\sqrt{2}}{2 \times g_c} + \sum F(3.32)$ donde V es el promedio de velocidad, por el coeficiente de corrección de la velocidad, y v el volumen específico del fluído.

Las ecuaciones anteriores son suficientemente generales para el tratamiento de casi cualquier problema de flujo y la base para muchas ecuaciones de diseño. El término Σ F, que resume el efecto provocado por la fricción debida a la rugosidad de la tubería, a los accesorios de la misma y el patrón de flujo -provocado por las propiedades del fluído, es un factor muy importante en el diseño de tuberías, ya que una vez definida la potencia de la bomba se deben conse<u>r</u> var las condiciones.

Descripción técnica.

El algoritmo que presentamos a continuación está basado en el método de cálculo de LUMMUS Co. para bombas centrífugas.

Los datos que se deben alimentar al programa son:

- 1) Gasto en GPM.
- 2) Densidad relativa en las condiciones de operación.
- 3) Longitud de la tubería.
- 4) Número y tipo de accesorios.

Los resultados del programa son:

- 1) El NPSH requerido por la bomba.
- 2) El NPSH disponible en el sistema.
- 3) Recomendación de la altura del tanque de succión.
- 4) Cabeza total de la bomba.
- 5) Potencia de la bomba.
- El balance total de energía mecánica lo podemos plantear en función

de la presión de succión y la presión de descarga como sigue:

$$\Delta P = P_{2} - P_{3} \qquad (3.33)$$

para lo cual tenemos que la presión de succión es:

$$P_{s} = P_{i} + \Delta P_{elev} - \Delta P_{fricción} \cdot \cdot \cdot (3.34)$$

P₁ es la presión a la cual se encuentra el recipiente, Δ Pelev es el cambio de presión debido a la diferencia de altura entre el recipiente y el nivel de la bomba; y Δ Pfricción son las pérdidas de energía debidas a la fricción en la tubería de succión.

La presión de descarga es:

$$P_{b} = P_{z} + \Delta P_{elev} + \Delta P_{friccion} + \Delta P_{varios} \quad (3.35)$$

 P_2 es la presión a la cual se encuentra el recipiente en el que se descar ga el fluido, Δ Pelev es el cambio de presión debido a la diferencia de altura en tre el nivel de la bomba y el nivel de descarga en el recipiente, Δ Pfricción son las pérdidas por fricción en la tubería de descarga, y Δ Pvarios corresponde a cambios de presión causados por instrumentos y válvulas de control, más cambios imprevistos anteriormente.

El cambio de presión por la diferencia de altura lo podemos calcular como:

$$\Delta P_{elev} = \frac{h S_q}{2.31} \qquad (3.36)$$

La altura (h) corresponde al equipo en la succión o en la descarga, según sea el caso. En el primero (si no se conoce dicha altura) se recomienda que sea 2ft., mayor que la cabeza neta de succión positiva disponible (NPSHD)

$$A_{LTURA} SUCCION = NPSH_{0} + 2 ft. \qquad (3.37)$$

En el segundo, dicha altura se debe conocer de antemano.

La pérdida de presión por fricciones la podemos conocer por medio de la ecuación:

$$\Delta P_{\text{fricción}} = \left(\frac{\Delta P}{100}\right)_{\text{fricción}} \times \frac{LT}{100}$$

$$\left(\frac{\Delta P}{100}\right)_{\text{fricción}} = 9.401 \quad \omega^2 / 10^6 \rho \phi^{5.3}$$
(3.38)

siendo L_T, la longitud total la cual se obtiene a partir de la longitud de la línea y de la suma de las longitudes equivalentes de los accesorios del sistema.

En el programa se encuentran incluídos los factores de longitud equivalente que corresponde a cada tipo de accesorio. También se incluyó un factor de seguridad para diseño, correspondiente a tres veces la longitud total.

Este programa incluye una relación gráfica entre el gasto (GPM) y la cabeza neta de succión positiva que requiere la bomba, utilizando como parámetro las revoluciones por minuto que se desean en el impulsor.

Se recomienda que la cabeza neta de succión positiva disponible sea 3ft., mayor que la requerida por la bomba (como mínimo).

$$NPSH_{p} = NPSH_{R} + 3ft. \qquad (3.39)$$

Con este valor ya podemos conocer la altura del equipo en la succión.

Si tenemos vacío en la succión entonces:

$$NPSH_{p} = NPSH_{R} + 6ft$$
 (3.40)

Una vez determinada la caída de presión del sistema, ya podemos con<u>o</u> cer la cabeza y la potencia de la bomba.

$$H = \frac{\Delta P \times 2.31}{S_q} \qquad (3.41)$$

$$POT = \Delta P \frac{Qdis}{1715}$$
(3.42)

Se presenta otra relación gráfica entre el gasto (GPM) y la eficiencia

de la bomba, con la cual podemos conocer la potencia real de la bomba.

$$bHP = \frac{PoT}{n}$$
(3.43)

A continuación presentamos un diagrama de bloques que nos muestra el

método de solución.

Fig. 3.4 Diagrama de bloques. Bomba Céntrifuga.

3.4 Análisis del rendimiento de un intercambiador

de tubo y coraza existente.

Descripción teórica.

En la economía de un proceso a nivel industrial, uno de los factores más importantes que se debe tener en cuenta es el máximo aprovechamiento de la energía suministrada al proceso, ya sea energía mecánica ó energía calorífica.

El aprovechamiento de la energía calorífica se lleva a cabo mediante – el intercambio sucesivo de calor por gradientes de temperatura ó calores latentes de corrientes diferentes, donde una es la fuente y otra es el receptor. De la misma forma se puede aprovechar calor generado dentro del sistema por reacciones -exotérmicas a fin de optimizar procesos.

Existe en la actualidad una gran variedad de equipos de intercambio de calor, desde el diseño sencillo de tubos concéntricos hasta condensadores de complejas superficies con grandes áreas de transferencia. El tipo más común a escala industrial es el de intercambiadores de tubo y coraza, debido a su versatilidad dentro de diferentes procesos y a muy diversas condiciones de operación.

Descripción técnica.

El análisis que se presenta nos da como conclusión que el intercambia-

BOMBA CENTRIFUGA NO : 1

FLUIDO : CRUDO

DATES HE LA CORRIENTE :

FLUJO MASICO LB/HR = 82254.71 PENSIDAD LB/FT3 = 51.79 VISCOSIDAD CP = 0.43 Gasto operacion M3/HR * GPM = 39.00 171.60 Gasto disego M3/HP * GPM = 45.00 198.00 pensidad relativa = 0.830 presion pe vapor psia = 0.09 Gasto disego M3/HP * GPM = 45.00 198.00 pensidad relativa = 0.830 presion pe vapor psia = 0.09

RESULTADOS :

UPSH REQUERIDO FT =	7.54	PRESION DE SUCCION PSIA =	19,25	CABEZA DE LA POMBA FT =	250,55
NESH DISPONIBLE FT =	10.54	PRESION DE DESCARDA PSIA =	102,09	POTENCIA DE LA BOMBA HE =	9,56
ALTURA DEL EQUIPO En la succión det =	12.54	DIFERENCIA DE PRESION PSIA =	82.84	POTENCIA AL FRENO DE La bomba de phe =	19,99

dor de tubo y coraza estudiado es apropiado para las condiciones de proceso e<u>s</u> tablecidas.

Hay tres puntos de significación en la adaptabilidad del intercambiador:

- El coeficiente global de transferencia "limpio" es determinado por las propiedades fisicoquímicas de los fluidos y por su patrón de flujo.
- 2) Por medio del balance de calor, del área del intercambiador y de la diferencia verdadera de temperaturas, se obtiene un valor de diseño para el coeficiente global de transferencia, U_D, el cual debe ser menor que el calculado, de manera que el factor de obstrucción, R_D, el cual es una medida del exceso de superf<u>i</u> cie, nos garantice la operación del intercambiador por un peri<u>o</u> do de servicio razonable.
- La caída de presión permitida para las dos corrientes no debe excederse.

Las condiciones de proceso requeridas para la evaluación de cambiador son:

- a) Temperaturas de entrada y salida de ambas corrientes.
- b) Flujos másicos.
- e) Datos de capacidad calorífica, conductividad térmica, densidad

relativa, y viscosidad de los fluídos en las condiciones de operación.

 d) El factor de obstrucción requerido y las caídas de presión permisibles.

Los datos del cambiador existente que se deben conocer son:

- a) Diámetro interno de la coraza, especiado de los deflectores y el número de pasos.
- b) Número, longitud, diámetro, especificación, arreglo y número de pasos de los tubos.

Para iniciar la secuencia de cálculo, lo primero es determinar qué flu<u>í</u>

do pasará por la coraza y cual por los tubos; no hay ninguna regla que nos defina

La secuencia de cálculo que se presenta es la desarrollada por Donald,

Q. Kern, "Procesos de Transferencia de Calor".

La secuencia se inicia con el balance de calor:

ésto, sino únicamente criterios a partir de las áreas de flujo.

$$Q = \omega_c(T_i - T_z) = \omega_c(t_z - t_i) \quad (3.44)$$

y el cálculo de la diferencia de temperaturas:

$$\Delta T = \frac{(T_1 - t_2)(T_2 - t_1)}{\ln(\frac{T_1 - t_2}{T_2 - t_1})} F T \qquad (3.45)$$

El cálculo de las temperaturas calóricas se realiza por medio de las si-

guientes ecuaciones:

Para el fluido caliente tenemos:

$$T_{c} = T_{z} + F_{c} \left(T_{i} - T_{z} \right) \qquad (3.46)$$

y para el fluido frío:

$$t_{c} = t_{1} + F_{c}(t_{2} - t_{1})$$
. (3.47)

El factor FC lo obtenemos de:

$$F_{c} = \frac{\frac{1}{K_{c}} + \frac{r}{r-1}}{\frac{1}{K_{c}} + \frac{1n(K_{c}+1)}{r} - \frac{1}{K_{c}}} - \frac{1}{K_{c}}$$
(3.48)

donde:

$$K_{c} = \frac{U_{\mu} - U_{c}}{U_{c}} \quad \gamma \quad r = \frac{T_{z} - t_{1}}{T_{1} - t_{z}}$$
(3.49)

 $U_{H} y U_{C}$ se refieren a los coeficientes globales de transferencia de calor calculados en la terminal caliente y en la terminal fría respectivamente.

El cálculo del coeficiente global limpio se realiza a partir de los coeficientes de película del lado de la coraza y de los tubos.

$$U_{\text{limpio}} = \frac{h_{\text{io}} \times h_{\text{o}}}{h_{\text{io}} + h_{\text{o}}}$$
(3.50)

Para conocer los coeficientes de película se han propuesto en diversos artículos las siguientes ecuaciones:

$$h_{io} = \left[\left(\frac{1.86 R_e P_r D}{T_L} \right)^{\circ.33} \frac{k}{D} \right] \frac{D}{D_{ext}}.$$

$$R_e \leq 2100 \quad (3.51)$$

$$h_{io} = \left[\left(\begin{array}{c} 0.027 \ R_e^{\circ s} P_r \end{array} \right)^{\circ.33} \frac{k_e}{D} \right] \frac{D}{D_{ext}} \\ R_e > 10,000 \end{array}$$

y para el intervalo 2100 (Re < 10,000 se hace una interpolación entre las dos re− laciones.

$$h_{o} = 0.36 R_{e}^{0.55} P_{r}^{0.35} \frac{k}{Dequiv.}$$
 (3.52)

Para las tres ecuaciones tenemos:

y ya que conocemos el valor de UL podemos calcular el valor del factor de obstruc ción.

$$P_{0} = \frac{U_{L} - U_{0}}{U_{L} \times U_{0}}$$
(3.54)

Como criterio tenemos que si R_D excede al factor de obstrucción requ<u>e</u> rido, el cambiador cumple desde el punto de vista térmico.

Ahora debemos comprobar si la caída de presión no excede de la perm<u>i</u> tida para lo cual calculamos las caídas de presión de la siguiente manera:

$$\Delta P_{coraza} = \frac{f G_s^2 D_s (N+1)}{5.22 \times 10'' D_{es} \phi_s} ... (3.55)$$

У

$$\Delta P_{tubos} = \Delta P_{t} + \Delta P_{retorno}$$

$$\Delta P_{t} = \frac{f G t^{2} \times L_{n}}{5 z z \times 10^{10} D_{s} f_{t}^{2}}$$

$$\Delta P_{retorno} = \frac{L_{n}}{S} \times \frac{V^{2}}{2g} \times \frac{62.5}{144}$$
(3.56)

En el caso que la caída de presión permitida no se ha excedido, pod<u>e</u> mos concluir que el cambiador cumple con las condiciones de proceso.

A continuación se presenta un diagrama de flujo en el cual se mues⁻ tra la secuencia de cálculo.

Esta misma secuencia se puede aprovechar para diseño, suponiendo cambiadores existentes, hasta lograr el óptimo.

113.

Fig. 3.6 Diagrama de bloques. Análisis hidraulico.

		CALU [®] TRANSFERIDO DIFE [®] ENCIA CORREGIDA DE TEMPERATURA AREA DE TRANSFERENCIA DE CALOR	5110700.00 135.71 661.83	BTU/HP GR∎F FT★FT	
CONEFICIENTE DE PELICULA DEL LADO DE LA CORAZA = 170	6.95 BTU/H	IR (FT*FT) GR.F		CREFICIENTE DE PELIFULA DEL LADO DE LOS TUBOS D 118,23	RTUZHREFT*FTJGK+F
		COEFICIENTE GLOBAL LIMPIO	70.87	BTU/HR(FT*FT)GR.F	
		COEFICIENTE GLOBAL DE DISENO FACTOR DE INCRUSTACION CALCULADO FACTOR DE INCRUSTACION REQUERIDO	 56.90 0.00346 0.00300	BTU/HP(FT*FT)GR.F HP(FT*FT)GR.F/BTU HR(FT*FT)GR.F/BTU	
CAIDA DE PRESION EN LA CORAZA CAIDA DE PRESION PERMITIDA	= 3.73 L	.B/(PLG*PLG) .B/(PLG*PLG)		CAIDA DE PRESION EN LOS TUROS CAIDA DE PRESION PERMITIDA = 1	9,35 LB/(PLG*PLG) 0,00 LB/(PLG*PLG)

FLUJO HASICO	■ 4380^,00 LB/AR
TEPPERATURA DE ENTRADA	■ 39^,00 GR,F
TEPPERATURA DE SALIDA	■ 20^,00 GR,F

EKEROSE' A 42 API

NOMBRE DEL FLUIDO	=(PUDO	1.F	SH AHI
FLUJO MASICO		149000	.00	I B/HR
TEMPERATUPA DE ENTRADA		100	0.00	GR.F
TEMPERATUPA DE SALINA	3	170	0,00	UR .F

NUMERO	= 15B	
LOMGITUD	= 10.0° F	T
DIAMETPO EXT	FRIOP = 1.00 P	.6
BWG	= 13	
PITCH	= 1,25 P	6
ARPEGLO	= EN CHADRI	0
PASOS	R ()	

TUPUS

INTERCAP BIADOR : COPAZA

SERVICIU:

DIA METTO INTERIOP

HOF IBRE DEL FLUIDO

DIA METTO INTERIOP = 21.25 PLG ESTRACIADO DE LOS DEFLECTORES = 5.00 PLG PASIOS = 1

3.5 Cálculo y optimización de un evaporador.

Descripción teórica.

En la industria química la manufactura de agentes químicos tales como la sosa cáustica, sal de mesa, y azúcar se logra a partir de soluciones diluídas de las que deben eliminarse grandes cantidades de agua antes de poder llegar a la -cristalización en equipo adecuado para este fin.

Para lograr ésto se utilizan evaporadores de múltiple efecto a régimen contínuo, de los cuales se encuentran básicamente dos tipos: con alimentación – en paralelo y a contra corriente, (Figs. 3.7 y 3.8). Los criterios de selección – de uno u otro se enuncian en "Procesos de Transferencia de Calor", Donald Q. Kern, Cap. 14.

Aún cuando los evaporadores de múltiple efecto son capaces de altas – eficiencias térmicas, ésto se ve afectado debido al aumento del punto de ebulli– ción sobre la temperatura de saturación correspondiente al agua pura debido al – aumento en concentración.

El análisis de la operación se logra a partir del balance total de materia y de los balances de energía correspondientes a cada efecto.

Balance total de materia:

$$m_f X_f = m_n X_n \qquad (3.57)$$

mf = alimentación, lb/hr

x_f = fracción en peso de sólidos en la alimentación

 $m_n = producto, lb/hr$

x_n = fracción en peso de sólidos en los productos

Balances de energía en el efecto 1:

$$m_{i-1}(H_{fi-1}) + (m_{i-2} - m_{i-1})(H_{fgi-1}) = (m_{i-1} - m_i)H_{gi} + m_iH_{fi}$$
 (3.58)

donde:

m;	= flujo másico de concentrado del efecto i
H _{fi}	= Entalpia del líquido del efecto i, BTU/Ib.
H _{gi}	= Etalpia del gas del efecto i, BTU/Ib.
H _{fgi}	= Calor latente de vaporización del vapor en el efecto

Para el primer efecto $m_{L-1} = m_f \ y \ m_{L-2} \ -m_{L-1} = m_s$. El juego de n + 1 ecuaciones lineales simultáneas tiene n + 1 incógnitas, m_1, m_n, m_s, \dots Los coeficientes en estas ecuaciones son las entalpias de las corrientes apropiadas. La entalpia de cada corriente es una función de la temperatura normal de ebullición, T, de la fracción peso de las salidas, x, y del incremento de la temperatura de eb<u>u</u> llición, E, debido a la concentración de salidas en las corrientes líquidas. Las ecuaciones para el cálculo de H_{gi} y H_{fgi} son para agua pura y se escriben:

$$H_{gi} = 1075 + 0.3466 (T_i) + 0.45 (E_i) - (3.59)$$

i.

donde: $Q_i = (m_i-2 - m_i-1) (H_{fgi}-1)$, BTU/hr $U_i = \text{coeficiente global de transferencia de calor, BTU/hr - ft}^2$ $A_i = \text{área total de transferencia, ft}^2$ $T_i = Ti-1 - (Ti + Ei)$

En el primer efecto q_i = m_s (H_{fgs}) Ys y T₁ = Ts - (Ti + Ei) ya que el vapor es usado para calentar este efecto cuando se encuentra flujo en paralelo.

Debido a que es necesario estimar la temperatura y la concentración en cada efecto antes de calcular los flujos y la cantidad de calor transferido, una -aproximación iterativa se requiere para la solución del problema. Estas estimaciones de T y X son hechas y modificadas hasta que las áreas de cada efecto son iguales y las concentraciones convergen a las estimadas. Cuando esta condición es e<u>n</u> contrada, la solución del problema es correcta.

Descripción técnica.

Dadas las condiciones de la alimentación en un evaporador de múltiple efecto en paralelo ó a contracorriente, se pretende determinar lo siguiente:

- La cantidad de vapor requerida y la economía del mismo definida como lb agua evaporada/lb de vapor en función del número de efectos y de la temperatura de alimentación.
- 2) El área de transferencia.
- 3) El aumento del punto de ebullición en cada efecto.

$$H_{fgi} = 1104 - 0.64(T_i)$$
 (3.60)

La ecuación (3.59) para la entalpia de vapor de agua es una aproxima⁻ ción lineal de las tablas de vapor desde T = 50°F a T = 350°F, más el sobrecale<u>n</u> tamiento debido al incremento de temperaturas; de una manera similar, la ecuación (3.60) es una aproximación lineal del calor latente de vaporización.

La entalpia de las corrientes líquidas pueden ser escritas como:

$$H_{f_{i}} = C_{P_{i}}(t - 3Z)$$
 (3.61)

para materiales que tienen un ligero incremento en su punto de ebullición. La c<u>a</u> pacidad calorífica, cp, puede ser una función de X y T.

En sistemas donde existe un gran incremento en el punto normal de ebullición, se estima necesario considerar los calores de solución para calcular H_f. Los datos de entalpia concentración son conocidos para algunos sistemas de interés. Se utiliza una forma polinomial a fin de aproximar estos datos.

Para determinar los flujos de entrada y salida de cada efecto es necesario suponer la temperatura y concentración para el efecto en cuestión, dicha estima ción se considera correcta cuando los resultados obtenidos satisfacen las ecuaciones que rigen la transferencia de calor.

Estas son:

$$Q_i = U_i A_i \Delta t_i \qquad (3.62)$$

- 5) La cantidad de calor transferida para cada efecto.
- 6) La temperatura normal de ebullición en cada efecto.
- 7) El flujo másico del concentrado.
- 8) Concentración de salidas en cada efecto.

Se consideran las áreas de transferencia iguales para cada efecto.

Método de solución:

Al comenzar el cálculo se estima T y X en cada efecto, dividiendo el incremento de temperatura total entre el número de efectos para el flujo en paralelo:

$$\Delta t = \frac{T_s - T_n}{n}$$
 (3.63)

La temperatura normal de ebullición para el primer efecto será:

$$T_{i} = T_{s} - \Delta T \qquad (3.64)$$

y para los siguientes:

$$T_{i} = T_{i-1} - \Delta T. \qquad (3.65)$$

Las concentraciones serán inicialmente distribuidas de una manera simi

lar:

$$\Delta X = \frac{X_f - X_P}{n}$$
(3.66)

para el primer efecto:

$$X_{i} = X_{f} - \Delta X \qquad (3.67)$$

y para los subsiguientes:

$$X_{i} = X_{i-1} - \Delta X \qquad (3.68)$$

Para cada efecto, Ti y Xi son utilizados para calcular E_i, H_{fi}, H_{fgi}, y U_i. Las funciones usadas para calcular E, H_f, y U son dependientes de los materiales evaporados y se deben incluir para cada problema. Las funciones para calc<u>u</u> lar H_g y H_{fg} son generales para cualquier problema. Estos parámetros se usan para determinar los coeficientes de la ecuación lineal de balance de energía mostr<u>a</u> da en la matriz de la figura 3.9. La solución de estas ecuaciones lineales consi<u>s</u> te en los flujos para cada efecto y se logra mediante la subrutina SIMQ (9).

Determinados los flujos, se calculan las áreas de transferencia de cada efecto utilizando la ecuación (3.62). Las áreas se comparan entre sí para comprobar su igualdad con un 0.5% de error.

Las concentraciones en cada efecto son calculadas utilizando:

$$X_{i} = \frac{X_{f} m_{f}}{m_{i}} \qquad (3.69)$$

Estas son comparadas individualmente con las concentraciones estimadas originalmente, previendo un porcentaje de error de 0.5%. Si las áreas son iguales y las concentraciones concuerdan, todas las características de operación son co nocidas y el algoritmo se ha cumplido.

do:

Cuando estos valores no convergen, las temperaturas son ajustadas usa<u>n</u>

$$\overline{A} = \sum_{i=1}^{n} \frac{A_i}{n} \qquad (3.70)$$

$$\Delta t_{i} = \Delta t_{i} \frac{A_{i}}{A}$$
(3.71)

Esta corrección en Δ Ti puede no resultar cuando:

$$\sum \Delta t'_{i} \neq T_{s} - T_{n} - \sum_{i=1}^{n} E_{i} \qquad (3.72)$$

lo cual es necesario para el establecimiento del problema, por lo que es necesario ajustar el Δ T utilizando:

$$\Delta t'_{i} = \Delta t_{i} \frac{T_{s} - T_{n} - \sum_{i=1}^{n} E_{i}}{\sum_{i=1}^{n} \Delta t_{i}}$$
(3.73)

Los nuevos T son utilizados en lugar del original y el cálculo es rep<u>e</u> tido hasta lograr la igualdad de las áreas de transferencia y la concordancia de las concentraciones.

A continuación se encuentra el diagrama de bloques y el programa que se utiliza para la solución del algoritmo que nos presenta Mc Cabe & Smith en el capítulo 16 de su libro "Unit Operations of Chemical Engineering".

Fig. 3.7 Evaporador de múltiple efecto en paralelo.

123.

Fig. 3.8 Evaporador de multiple efecto contracorriente.

Fig. 3.9 Matriz de coeficientes de las ecuaciones en el cálculo del evaporador de flujo en paralelo.

ALIMENTACIUM EN PARALELO 3 EFECTOS

DATOS DE ENTRADA:

AME LEVHE	XF	TF,GR. F	XP	MINIMA T	YS	TS,GR, F
200000.0	0.05	60.0	0.50	101.7	1.00	344.3

SOLUCION DESPUES DE 4 ITERACIONES:

118=115303	S.LB/HR EC	ONOMIA DE VAPO	R 1.56				
EFECTO	AREA FT2	T(I),GR.F	E(I),GR.F	U(I)	Q(I),BTU/HR	M(I),LR/HR	X(I)
ī	2626.4	293.0	2.8	800.	101887012.	141644.	0.07
2	2629.3	245.1	7.2	500.	53482532.	80346.	0.12
3	2635.2	101.7	70.0	300.	58056487.	20000.	0.50

3.6 Diseño y costo de una torre de destilación fraccionada y su equipo.

Descripción teórica.

La separación de un producto ó subproducto de una mezcla de compue<u>s</u> tos debe ser llevada a cabo cuidando la pureza ó la concentración del mismo, p<u>a</u> ra utilizarse como producto de venta ó como materia prima, tal es el caso típico del petróleo, el cual contiene una gran variedad de hidrocarburos que requiere todo un proceso de refinación para obtener materias primas y energéticos.

La destilación fraccionada es la operación unitaria para la separación de compuestos volátiles de una mezcla; basándose en la diferencia que existe en tre los puntos de ebullición de compuestos más pesados, habiéndose logrado sep<u>a</u> raciones de compuestos de muy similares propiedades.

El proceso consiste básicamente en lograr el contacto de vapores y líquidos de los diversos componentes en una etapa de equilibrio logrando una trans ferencia de masa y energía. Se requiere un cierto número de estas etapas colocadas en serie hasta lograr que los vapores del compuesto ligero logren la pureza necesaria en el domo de una torre y los compuestos pesados salgan por los fondos.

Los métodos de cálculo en el diseño de una torre de destilación fraccionada deben ser rigurosos, ya que es un equipo crítico debido a los productos obtenidos, a sus requerimientos energéticos y al alto costo del equipo, por lo - - que se deben evitar grandes sobrediseños.

En este trabajo se presenta un diseño y una evaluación económica preliminar de una torre de destilación basados en métodos cortos.

Descripción técnica.

Se presenta una secuencia de cálculo a fin de determinar el número de platos de la torre, su diámetro, así como las características del condensador y rehervidor, el fondo de la torre y el tanque de reflujo. Calculamos además el costo de todos estos componentes.

Esta secuencia se basa en el método corto de cálculo de una torre de ⁻ destilación de Fenske-Underwood-Gilliland para determinar el aspecto de proc<u>e</u> so de la torre. Para el cálculo de tamaños y costos de los equipos se utilizan m<u>é</u> todos tradicionales.

Se presenta la siguiente secuencia de cálculo:

Determinación de la separación de componentes a reflujo total, así como el número mínimo de platos, por las ecuaciones de Fenske.

Determinación de la relación de reflujo mínimo a partir de la ecuación de Underwood por el Método de Ripps.

Evaluación del número de etapas teóricas a la relación de reflujo óptimo, el cual se calcula por la Ecuación de Van-Winkle-Todd, a partir de la corr<u>e</u> lación de Gilliland. Determinación del diámetro de la torre a partir del flujo de vapor en el fondo y el domo de la torre usando la correlación de Souders-Brown para la máxima velocidad de vapor.

Cálculo de la altura de la torre a partir del número de platos, la e<u>fi</u> ciencia especificada del plato y el espaciamiento en los mismos. Se toma en cuenta además la altura de los fondos de la torre, el espacio de estabilización en los domos, y el faldón.

Cálculo del espesor de los materiales de construcción de la torre y del acumulador de reflujo de acuerdo al ASME Pressure Vessel Code, Div. I.

Se determina el costo de la torre y del acumulador de reflujo a partir de datos publicados de costo en revistas técnicas, tomando como parámetro el peso del equipo.

Se determina el tamaño del rehervidor y del condensador usando temperaturas especificadas de agua de enfriamiento y vapor, así como coeficientes globales de resistencia a la transferencia de calor especificados (U).

Se determina el costo del rehervidor, condensador, y platos a partir de datos publicados.

Estima el tamaño de bombas y motores requeridos.

Los datos requeridos en este estudio son los siguientes:

a) Composición de la alimentación.

- b) Separación deseada.
- c) Propiedades físicas: Se calcula por medio de las subrutinas enume radas en el capítulo de Propiedades como sigue:
 - Valores de constante de equilibrio por el método de Chao-Seader-Grayson-Streed.
 - 2) Densidades por el método Starling-Han.
 - 3) Tensiones superficiales por el método de Riedel.
 - Calores de vaporización por el método de Riedel-Plank-Miller.
- d) Parámetros de Diseño.
 - 1) Presión.
 - 2) Eficiencia de Plato.
 - 3) Espaciamiento de Platos, faldón y espaciamiento del domo.
 - Tiempos de residencia en el acumulador de reflujo y en los fondos de la torre.
 - 5) Factor de Corrosión, peso específico del metal, y eficiencias de soldadura en uniones.
 - 6) Temperaturas de agua de enfriamiento y de vapor.
 - 7) Resistencias a la transferencia de calor.
- e) Factores de costo. El índice de costo para equipo de Marshall y Stevens al año en curso.

Los límites de aplicación son determinados por la válidez de las propied<u>a</u> des calculadas, las cuales son especificadas en el Capítulo 2.

El diseño de recipientes a presión y sus costos están basados en la cons⁻ trucción en acero, lo mismo para los platos de la torre. Otros costos válidos pue⁻ den ser obtenidos para otros materiales teniendo los datos de esfuerzos permisibles y su peso específico. Estos costos pueden ser calculados multiplicando el costo⁻ del acero por factores publicados para otros materiales.

El programa de computadora que se utiliza para el cálculo descrito cons ta de dos partes principales, el diseño preliminar de la torre, el cual se hace m<u>e</u> diante un programa desarrollado en la Facultad de Química (19), y la evaluación mecánica, el cual dimensiona los equipos y realiza el cálculo del costo de cada uno.

A continuación se presenta una descripción de las principales variables de operación, a fin de que en un momento dado el alumno pueda realizar cambios utilizando otros datos.
VARIABLES EN EL DISEÑO PRELIMINAR DE LA TORRE

FT	-	Flujo en moles/hr de la corriente de alimentación.				
TA	-	Temperatura en ^o F de la corriente de alimentación.				
PA	-	Presión en psia de la corriente de alimentación.				
Ρ	-	Presión de operación de la torre en psia.				
LK	2-	Componente clave ligero.				
нк	-	Componente clave pesado.				
NCOMP	-	Número de componentes en la corriente de alimentación.				
PSEPL	-	Porcentaje de recuperación deseado del componente clave lige-				
		ro en la corriente de domos.				
PSEPH	-	Porcentaje de recuperación deseado del componente clave pesa-				
		do en la corriente de fondos.				
TC	-	Temperatura crítica en ^O R.				
PC	-	Presión crítica en psia.				
VW	-	Constante de volumen molar en c.c./gmol.				
ZF	-	Fracción mol en la alimentación.				
D	-	Parámetro de solubilidad en (calorías/c.c.) 1/2.				
INOM	-	Indice para las constantes de Chao-Seader.				
		•				
		01 Hidrógeno				
		01 Hidrógeno 02 Metano				

- 04 Nitrógeno
- 05 Bióxido de carbono
- 06 Acido sulfhídrico
- NOMBRE Nombre del componente.

٢

VARIABLES DE LA EVALUACION MECANICA

- CORSN Factor de corrosión permisible.
- STRESS Esfuerzo permisible.
- EFJNT Eficiencia de soldadura.
- SGMET Peso específico del metal.
- SPACE Espaciamiento entre platos en pulgadas.
- DOMO Espacio para separación de vapores en el domo en ft.
- FALDON Altura del faldón de la torre en pies.
- TRACUM Tiempo de residencia en el acumulador en minutos.
- TRFOND Tiempo de residencia en los fondos de la torre en minutos.
- TWIN Temperatura de entrada del agua de enfriamiento en ^OF.
- TWDEL Incremento de Temperatura en el agua de enfriamiento en ^oF.
- RCOND1 Resistencia de transferencia de calor en el condensador.
- RCOND2 Resistencia de transferencia de calor en el condensador.
- RREB1 Resistencia de transferencia de calor en el rehervidor.

- RREB2 Resistencia de transferencia de calor en el rehervidor.
 STMHT Calor de vaporización del vapor de agua BTU/Ib mol.
 EBOMBA Eficiencia de la bomba.
 EMOTOR Eficiencia del motor de la bomba.
 XNO Indice de costo para equipo de Marshall y Stevens.
- IYR Año de diseño.

Fig. 3.11 Equipo de una torre de destilación fraccionada.

TORRE NUMERO 1

DATOS GENERALES

CORRIE	NTE DE ALIMENTACIÓN	1000.0	MOLES/HORA
TEMPER	Atura de alimentación	187.2	GRD.FARH.
Presio	N de alimentación	100.0	PSIA
Presio	N de operación	101.0	PSIA
COMPON	ENTE CLAVE LIGERO	2	
Compon	ENTE CLAVE PESADO	3	
Numero	DE COMPONENTES	4	
PORCIE	NTO DE SEPARACIÓN DE LIGEROS NTO DE SEPARACIÓN DE PESADOS	95.10 95.10	
i ==	COMPONENTE	FRACCION Mol 25222278	
ī	ISO BUTANO	0.0600	
2	Butano n	0.1700	
3	ISO Pentano	0.3200	
4	Pentano n	0.4500	

RESULTADOS

		FRA	ссі	0 11	MOL
Ì	ALFA ======	ALIMEN TACION	I DES	ADO	FONDO
1234	2.4364 1.9626 1.0000 0.8450	0.0600 0.1700 0.3200 0.4500		2459 6676 648 0218	0.0006 0.0110 0.4016 0.5868
TEMPE TEMPE TEMPE	RATURA DE RATURA DE RATURA DE	ALIMENI Domos Fondos	ACION	187 152 218	GRD_FARH GRD.FARH GRD.FARH
MOLES MOLES	TOTALES E Totales e	N EL DO N EL FO	0M0 000	242.2	MOLES/HP. MOLES/HR.
CONDI EBEEE	CIONES DE	ALIMENT ======	ACION		
i ==	Z	×	Y		
ĩ 2 3 4	0.0600 0 0.1700 0 0.3200 0 0.4500 0	0600 1700 3200 4500	0.000 0.000 0.000 0.000	00 00 00 00	
PORCE Porce	NTAJE DE L NTAJE DEVA	IGUIDO Por	100.	00	
DISEN	O DE LA TO	RRE			
NUMER NUMER	O MINIMO D O DE ETAPA	E ETAPA S TEORI	AS TEOP	RICAS	8.80 16.52

RELACION	DE	REFLUJO	MINIMA	3.05
RELACION	DE	REFLUJO	OPTIMA	3.89
(1.27 VE	CE	S EL MIN	IMO)	

PLATO DE ALIMENTACION TEORICO 9 (A PARTIR DEL DOMO)

PARAMETROS DE DISELO Y COSTO DE LA TORRE Y EQUIPO AUXILIAR

<pre>Mumero DE Diatos 37 FACTOR DE COROSION_IN 1/10 FACTOR E DIGENT, PDIG 115, Mumero DE LATORE 90, ESPECIAMIENTO DE TARASIN 0.564 (125% PAFSION 00,) 115, 100 FACTOR DE CORROSION) ALTURA DEL FANDANTES 6.00 115, 13730, 110 LATORE, LSS 11370, 014EE 1000,PTES 6.00 110 LATORE, LSS 11370, 014EE 1000,LST 100,PTE 100,LST 100,PT 110 LEC DE COSTO, 1070, 014RES 100,PT 110 LEC DE COSTO, 1070, 104,LST 100,LST 100,LS</pre>	TORRE						
Difference 96. ESPESSOR DE TAPAS.IN 0.549 (1255 PRFSION OP.) ALUNG A TOTAL OL A TORRE, PTES 74. ESPESSOR DE TAPAS.IN 0.549 (1255 PRFSION OP.) CINCLUVE FACTOR DE CORROSION) ALTURA DEL FALON, PIES 6.00 6.00 6.00 6.00 PESO DE LA TORRE, LSS 133539. ALTURA DEL FALON, PIES 6.00 COSTO DE TOTAL, ASS 1443. 22239. COSTO JETORIELS 13179. DIAMETRO DE LA TORRE EN DONGA, N. 97.7 INTIED F COSTO 1474. 2233. COSTO JETORIELS 101379. DIAMETRO DE LA TORRE EN PONDOS, IN 90.77 INTIED F COSTO 1474. 2230. COSTO JETORIELS 101379. DIAMETRO DE LA TORRE EN PONDOS, IN 90.77 INTIED F COSTO 1474. 2230. COSTO JETORIELS 101379. DIAMETRO DE LA TORRE EN PONDOS, IN 90.77 INTIED F COSTO 1474. 1240. CARGA TERNICA.BUV/NR 9118517. TEMPERATURA AGUA ENFF 87. COEFICIENTE GLOBAL.U 91. CARGA TERNICA.BUV/NR 9118517. TEMPERATURA DE ROCIO.F 152. FLUJO ALORARE.NYNOL.HR 1184. COSTO JETORIELA.BUV/NR 9118517. TEMPERATURA DE UNAR DE BUNDA.F 152. FLUJO ALORARE.NYNOL.HR 1184. <td>****</td> <td></td> <td>37 FACTOR DE</td> <td>CORROSION, IN</td> <td>1./16</td> <td>PRESION DE DISEND, PSIG</td> <td>115.</td>	****		37 FACTOR DE	CORROSION, IN	1./16	PRESION DE DISEND, PSIG	115.
A LTURA "TOTA_"DE LA TORRE, PIES 74 ESPACIAMIENTO DE PLATOS, IN 16, FSPUERZO PERTITO, P3, 16, 75, 74, 75, 74, 75, 74, 75, 74, 75, 74, 75, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75	DIAME TRO DE LA TORRE	9	6. ESPESOR DE	TAPAS, IN	0.549	(125% PRESION OP.)	
ALUMA DEL PUNDUDATES ALUMA DE ALUMA ALUMA DE ALUMA ALUMA DEL PUNDUDATES ALUMA DE DELA PORTA ALUMA DE DELA PORTA ALUMA DE DELA PORTA ALUMA DE DE ALES ALUMA DE LA BONDA ES ALONA ALUMA DELES PESO DEL METAL, ALUMA DE ALMA PESON ALUMA DO DE LA BONDA ES ALONA ALUMA DELA BONDA ES ALONA ALUMA DELA BONDA ES ALONA ALUMA DE LA BONDA ES ALONA ALUMA DE DE LA BONDA ES ALONA ALUMA DEL PESON DE LISION PESO EL METAL, LBS ALUMA DE ALES ALONA ALUMA DEL PESON DE LISION PESO EL METAL, LBS ALUMA DE ALES ALONA ALUMA DEL PESON DE LA BONDA ES ALONA ALUMA DELA DEL ALBONDA ES ALONA ALUMA DELES AL	ALTURA TOTAL DE LA TORRE,	PIES 7	4. ESPACIAMIE	NTO DE PLATOS, I	N 18,	ESFUERZO PERMITIDO, PSI	13750
PESD TO ADDE LOURNOSIDING 133539. ALTION DE LEPROTO DE DOMO,PIES 4.00 FOSTO TOTALASE TANGE 22100 COSTO JELA TORRE EN DONCANN 60,77 INFIED DE LATORRE EN DONCANN 60,77 INFIED COSTO TOTALASE 1049 COSTO JETRO DE LATORRE EN DONCANN 60,77 INFIED COSTO TOTALASE 1049 1200 CONDENSA DOS INTER DO LA TORRE EN DONCANN 60,77 INFIED COSTO JETRO 91 CARGA TERNICA.BTU/HR 9118517. TEMPERATURA AGUA ENF.F 87. COEFICIENTE GLOBAL.U 91 AREA.PIES CUADRADUS 1042. TEMPERATURA DE ROCIO.F 152. FLUJON DE GARES INTOL-MR 1184. COSTO JIFO.DOLARES 50212. LIND.F EMPERATURA DE ROCIO.F 145. CAUDELATE 100008 1440 FLUJO DE AGUA DE ENFGPM 54733. COEFICIENTE DE TRANSFERENCIA 10016.0008 100007 100007 100008 CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE NOCIO.F 2200. FLUJO DE COSTO 1976 1200 CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DEL VAPOR.F 296. COFFICIENTE GLOBAL.U 125. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE BURDALAF 210. 10007 <td< td=""><td>ESPES OR DE PARED</td><td>0.0</td><td>25 ALTURA DEL</td><td>FUNDO, PIES</td><td>6.00</td><td>COSTO DE PLATOS DOLARES</td><td>22259</td></td<>	ESPES OR DE PARED	0.0	25 ALTURA DEL	FUNDO, PIES	6.00	COSTO DE PLATOS DOLARES	22259
CONTO, 1976 DOLARES LOISTO, 1976 DOLARES Só212. LUTD F LOUSTO LATENTE, DOULARES LUTD F LOUSTO, 1976 DOLARES Só212. LUTD F LOUSTO LATENTE, DOULARES LUTD F LOUSTO, 1976 DOLARES Só212. LUTD F LONG LATENTE, BTU/G REHERVID OF AREA, PIES CUADRADOS H.L. TEMPERATURA DE LVAPOR,F LOUSTO, 1976, DOLARES Só212. LUTD F LONG LATENTE, BTU/G REHERVID OF AREA, PIES CUADRADOS 811. TEMPERATURA DEL VAPOR,F LONG LATENTE, BTU/G AREA, PIES CUADRADOS 811. TEMPERATURA DEL VAPOR,F LONG LATENTE, BTU/G AREA, PIES CUADRADOS 811. TEMPERATURA DEL VAPOR,F LOUSTO, 1976, DOLARES JOISO, 1	PERO DE LA TOPPELLAS	13353	9. ALTURA DEL	ESPACIO DE DOM	O,PIES 4.CO	COSTO TOTAL, BASE 1949	22190.
CONTO, 1976 DOLARES 161379. DIAMETRO DE LA TORRE EN FONDOS, IN 90.77 INFICE DE CORTO, 1976 161379. DIAMETRO DE LA TORRE EN FONDOS, IN 90.77 INFICE DE CORTO, 1976 CONTO, 1976, DOLARES 1992. TEMPERATURA AGUA ENF.,F AREA, PIES CUADRADUS 1992. TEMPERATURA AGUA ENF.,F AREA, PIES CUADRADUS 1992. TEMPERATURA DE DURBUJA,F 1992. FLUJO DE CARES, INFINITA DE BURBUJA,F 1992. FLUJO DE CARES, INFINITA DE BURBUJA,F 1992. FLUJO DE AGUA DE ENF., GPH S4733. CONTO, BASE 1949 CONTO, 1976, DOLARES CORTO, 1976, DOLARES CORTO, 1976, DOLARES CORTO, 1976, DOLARES CORTO, 1976, DOLARES CORTO, 1976, DOLARES CORTO, 1976, DOLARES CONTO, 1976, DOLARES CONTO, 1976, DOLARES CORTO, 1976, DOLARES CONTO, 1976, DOLARES CONTO, 1976, DOLARES CONTO, 1976, DOLARES CONTO, 1976, DOLARES CONTO, 1976, DOLARES S0189. LIND,F FLUJO DE VADOR, LES/HR FLUJO DE VADOR, LES/HR FLUJO DE VADOR, LES/HR FLUJO DE VADOR, LES/HR 8767. CONTO, 1976, DOLARES S0189. LIND,F FLUJO DE VADOR, LES/HR 8767. CONTO, 1976, DOLARES S0189. LIND,F TUBOS, HR=FT2=F/BTU 0,001 ACUMULADOR, DE REFLUJO ************************************	(I NCLUYE DOS TAPAS)	•	DIAMETRO D	E LA TORRE EN D	OMC3, IN 80.74	INFICE DE COSTO 1949	165
CONPENSA DOB CARGA TERMICA.BTU/HR 9118517. TEMPERATURA AGUA ENF.,F 87. CARGA TERMICA.BTU/HR 9118517. TEMPERATURA AGUA ENF.,F 87. TEMPERATURA DE COCLOF AREA. PIES CUADRADUS 1962. TEMPERATURA DE GURDEATURA PE 20. BU/(HP=FZ=F) COSTO J1976.DOLARES 50212. LUTO,F 51. COSTO J1976.DOLARES 50212. LUTO,F 51. COSTO J1976.DOLARES 50212. LUTO,F 51. COSTO J1976.DOLARES 50212. LUTO,F 51. COSTO J1976.DOLARES 50212. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE LVAPOR,F 296. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE LVAPOR,F 296. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE LVAPOR,F 210. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE LVAPOR,F 210. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DE COLOF.F 210. AREA.PIES CUADRADOS 811. TEMPERATURA DE COLOF.F 210. CARGA TERMICA.BTU/HR 8005920. CARGA TERMICA.BTU/HR 911. CARGA TERMICA.BTU/HR 91. CARGA TER	COSTD , 1976 DOLARES	16137	9. DIAMETRO	DE LA TORRE EN F	ONDOS, IN 90.77	INDICE DE COSTO, 1976	1200
CARGA TERNICA:BTU/HR 9118517. TEMPERATURA AGUA ENF.,F 87. COFFICIENTE GLOBAL,U 91. AREA, PIES CUADRADUS 1902. TEMPERATURA DE BURBUJA,F 20. BTU/(HP=HT2=F) 91.0000. COSTO, 1970, DOLARES 50212. LMTO,F 145. CALOR LATENTE, DOMOS 150. FLUJO DE AGUA DE ENF., CPM 54733. CORZA,H H=PT2=F/BTU 0.004 INDIE DE COSTO 1949 165 CARGA TERNICA:BTU/HR B005920. TEMPERATURA DEL VAPOR,F 298. COFFICIENTE GLOBAL,U 125. REHERVIDOR TEMPERATURA DEL VAPOR,F 298. COFFICIENTE GLOBAL,U 125. CARGA TERNICA:BTU/HR B005920. TEMPERATURA DEL VAPOR,F 298. COFFICIENTE GLOBAL,U 125. REHERVIDOR TEMPERATURA DEL VAPOR,F 298. COFFICIENTE GLOBAL,U 125. 110.0000000000000000000000000000000000	CONDENSA DOD						
CARGA TERNICA.BTU/HR 9118517. TEMPERATURA AQUA EMP.F.F. 87. COFFICIENTE GLOBAL/U 91. AREA.FIES CUADRADUS 1962. TEMPERATURA DE ROCIO.F. 152. FLUJO DE GABES.LA/MOLHR 1184. COSTO.FIGTE.VIT.GLOBAL/U 1962. TEMPERATURA DE BURBUJA,F 145. CALOP LATEMEP.DONOS 130. COSTO.FIGTE.VIT.GLOBALES 50212. LMTD.F. GORZA,HR=FT2=F/BTU 0.004 INDICE DE COSTO.1949 165. FLUJO DE AGUA DE ENFGPM 54733. CORAZA,HR=FT2=F/BTU 0.004 INDICE DE COSTO.1949 165. CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DEL VAPOR,F 296. COFFICIENTE GLOBAL/U 125. AREA.FIES CUADRADOS 811. TEMPERATURA DEL VAPOR,F 296. COFFICIENTE GLOBAL/U 125. AREA.FIES CUADRADOS 811. TEMPERATURA DE NORDA,F 218. CALOP LATENTE,FORDA 114. COSTO.FIGTE.SCORT.BARES 30189. LMTD.F 79. COSTO.RASE 1949 114. COSTO.FIGTE.SCORT.BARES 30189. LMTD.F 79. COSTO.RASE 1949 114. COSTO.FIGTE.SCORT.ARE TO SUBUJA,F 218. CALOP LATENTE,FORDOS 114.	*******						
AREA, PIES CUADRADUS AREA, PIES CUADRADUS 1962. TEMPERATURA DE BURBUJA,F 195. CAUCH LATENTE,DOMOS 1976. COSTO, 1976.DOLARES 50212. LMTD.F COBTCIENTES DE TRANSFERENCIA COBTC, BASE 1949 COBTCIENTES DE TRANSFERENCIA COBTC, BASE 1949 COSTO, BASE 1949 1000 COBTCIENTES DE TRANSFERENCIA COBTC, BASE 1949 1000 COBTC, BASE 1949 1000 COSTO, BASE 1949 1000 1000 1000 1000 1000 REHERVIDUOR ********* CARCA TERMICA,BTU/HR 8005920. TEMPERATURA DEL VAPOR,F 296. COFFICIENTE GLOBAL/U TUBOS, HR=FT2=F/BTU 0.007 PLUJO DE COSTO 1976 112. COSTO, J076, DOLARES 30189. LMTD.F COSTO, J076, DOLARES 30189. LMTD.F CORAZA, HR=FT2=F/BTU 0.007 TUBOS, HR=FT2=F/BTU 0.007 ACUMULADUR, DE RESIDENCIA,MIN = 10. PRESION DE DISENO,PSIG 1200 ACUMULADUR, DE REFLUJO ************************************	CARGA TERMICA, BTU/HR	9118517.	TEMPERATURA AGUA	A ENF.,F Emperatura,F	87. 20.	COEFICIENTE GLOBALIU BTU/(HR=FT2=F)	91 ₈
COSTO, J976, DOLARES 50212. LMTD,F 51. COSTO, FASE 1949 650 FLUJO DE AGUA DE ENFGPM 54733. CORAZA, HR-FT2=F/BTU 0.004 INDICE DE COSTO 1976 1200 REHERVIDIOR ************************************	AREA, PIES CUADRADUS	1962.	TEMPERATURA DE P	ROCIO,F BURBUJA,F	152. 145.	FLUJO DE GASES,LR/MOL-HR Calor Latente,domos	1184.
FLUJO DE AGUA DE ENFGPM 54733. CORAZA.HR.=F72=F/BTU 0.004 INFICE DF COSTO 1976 1200 PEHERVIDIOR TUBOS,HR=F72=F/BTU 0.007 INFICE DF COSTO 1976 1200 ARGA TERNICA.BTU/HR 8005920. TEMPERATURA DEL VAPOR.F 298. COFFICIENTE GLOBAL.U 125. ARGA TERNICA.BTU/HR 8005920. TEMPERATURA DEL VAPOR.F 298. BUT/(HR=F72-F) BUT/(HR=F72-F) AREA.FIES CUADRADOS 811. TEMPERATURA DE BURBUJA.F 218. CALOR LATENTE, FONDOS 114. COSTO JOFO.DOLARES 30189. LMTD.F 218. CALOP LATENTE, FONDOS 114. FLUJO DE VAPOR,LES/HR 8787. COFFICIENTES DE TRANSPERENCIA 79. COSTO,BASE 1949 4155 FLUJO DE VAPOR,LES/HR 8787. CORAZA.HR=FT2=F/BTU 0.001 INFICE DE COSTO 1976 1200 ACUMULADIOR DE REFLUJO TIEMPO DE RESIDENCIANIN = 10. ESPESOR IN = 0.438 1001 COSTO JOFO,DOLARES = 29030. PESO DEL METAL,LES = 40472. 0.0438 10076 BOMBAS Y MOTORES EFICIENCIA DEL A BOMBA = 50.0 X EFICIENCIA DEL MOTOR = 90.0 X ALIMENTACION REFLUJO <td>COSTO,1976,DOLARES</td> <td>50212.</td> <td>LMTD,F</td> <td>TRANSFERENCIA</td> <td>51.</td> <td>COSTO, BASE 1949 INDICE DE COSTO 1949</td> <td>6904 165</td>	COSTO,1976,DOLARES	50212.	LMTD,F	TRANSFERENCIA	51.	COSTO, BASE 1949 INDICE DE COSTO 1949	6904 165
PEHERVIDOR ********* CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DEL VAPOR.F 298. COFFICIENTE GLOBAL.U 125. AREA.PIES CUADRADOS 811. TEMPERATURA DE ROCIO.F 220. FLUJO DE GASES.LF.MOL.HR 1184. TEMPERATURA DE BURBUJA.F 218. FLUJO DE GASES.LF.MOL.HR 1184. COSTO J.976.DOLARES 30189. LIMTD.F 72. FLUJO DE VAPOR.LES/HR 8787. CORTICIENTES DE TRANSPERENCIA TUBOS.HR=FT2=F/BTU 0.007 TUBOS.HR=FT2=F/BTU 0.001 ACUMULADOR DE REFLUJO ************************************	FLUJO DE AGUA DE ENF.,GPM	54733.	CORAZA, HR=F TUBOS, HR=F1	12=F/81U 12=F/81U	0.004 0.007	INFICE DE COSTO 1976	1200
ARGA TERMICA, BTU/HR B005920. TEMPERATURA DEL VAPOR, F 298. COFFICIENTE GLOBAL, U 125. AREA, PIES CUADRADOS B11. TEMPERATURA DE ROCIO, F 220. FLUJO TE GASES, LF, MOL=HR 1184. COSTO, 1976, DOLARES 30189. LMTD, F 79. COSTO, FASE 1949 4151 FLUJO DE VAPOR, LES/HR 8787. CORZA, HET FZ-F/BTU 0.007 INDICE DE COSTO 1949 126. ACUMULADIOR DE REFLUJO TEMPERATURA DE DISENO, PSIG 126. 126. 1001 1001 ACUMULADIOR DE REFLUJO SS. (INCLUYE CORROSION) 0.007 INDICE DE COSTO 1976 1200 COSTO, J976, DOLARES \$2000. PRESION DE DISENO, PSIG 126. 1200 ACUMULADIOR DE REFLUJO SS. (INCLUYE CORROSION) 0.001 1001 COSTO, 1976, DOLARES \$2000. PESO DEL METAL, LBS \$40472. BOMEAS Y MOTORES \$2000. PESO DEL METAL, LBS \$40472. BOMEAS Y MOTORES 284. 309. 284. 309.	REHERVIDOR						
CARGA TERMICA.BTU/HR 8005920. TEMPERATURA DEL VAPOR,F 296. COFFICIENTE GLOBAL/U 1425. AREA. PIES CUADRADOS 811. TEMPERATURA DE ROCIO,F 220. FLUJO PE GASES,LP/MOL_HR 1184. TEMPERATURA DE BURBUJA.F 218. CALOP LATENTE,FONDOS 114. COSTO , 1976, DOLARES 30189. LMTD.F 79. COSTC, RASE 1949 4151 FLUJO DE VAPOR,LES/HR 8787. COFFICIENTES DE TRANSFERENCIA COSTO 1949 165 FLUJO DE VAPOR,LES/HR 8787. CORAZA,HR=FT2=F/BTU 0.007 INDICE DE COSTO 1976 1200 ACUMULAD OR DE REFLUJO ************************************	*******						()#
AREA, PIES CUADRADOS 811. TEMPERATURA DE ROCIO,F 220. FLUJO DE GASES,LF//OL_HR 1184. COSTO , Î976, DOLARES 30189. LMTD,F FLUJO DE VAPOR,LES/HR 8787. COFICIENTES DE TRANSPERENCIA COEFICIENTES DE TRANSPERENCIA COEFICIENTES DE TRANSPERENCIA CORAZA,HR=FT2=F/BTU 0.007 NDICE DE COSTO 1949 165 CORAZA,HR=FT2=F/BTU 0.007 ACUMULADIOR DE REFLUJO ************************************	CARGA TERMICA, BTU/HR	8005920.	TEMPERATURA DEL	VAPOR .F	298.	COFFICIENTE GLOBAL/U But/(HD-ET2=F)	1600
ACUMULADIOR DE REFLUJO TEMPERATURA DE BURBUJA,F 218. CALÓP LATENTE, FÓNDOS 114. COSTO , 1976, DOLARES 30189. LMTD,F 79. COSTO, BASE 1949 4151 FLUJO DE VAPOR, LES/HR 8787. COEFICIENTES DE TRANSFERENCIA INDICE DE COSTO 1949 165 ACUMULADIOR DE REFLUJO TIEMPEO DE REFLUJO 0.007 INDICE DE COSTO 1976 1200 ACUMULADIOR DE REFLUJO ESESOR/IN 0.438 0.438 10. ESPESOR/IN 0.438 LONGT TUD, PIES 55. (INCLUYE CORROSION) 0.0472. 0.438 10.4776. 10.4776. BOMEAS Y MOTORES 29030. PESO DEL METAL, LB3 40472. 40472. 40472. BOMEAS Y MOTORES ALIMENTACION REFLUJO FONDOS 1090. 1090.0	AREA. PTES CUADRADOS	e11.	TEMPERATURA DE P	ROCIO	220.	FLUJO DE GASES, LF / MOL HR	1184.
COSTO , 1976, DOLARES 30189. LMTD, F 79. COSTO, BASE 1949 4151 COEFICIENTES DE TRANSPERENCIA INDICE DE COSTO 1949 165 FLUJO DE VAPOR, LES/HR 8787. CORZA, HR = FT2=F/BTU 0.007 TUBOS, HR = FT2=F/BTU 0.001 ACUMULADIOR DE REFLUJO ************************************		0	TEMPERATURA DE E	SURBUJA, F	218.	CALOP LATENTE, FONDOS	114.
FLUJO DE VAPOR,LES/HR 8787. COEFICIENTES DE TRANSPERENCIA TUBOS,HR=FT2=F/BTU 0.007 INDICE DE COSTO 1976 1200 ACUMULADIOR_DE REFLUJO TUBOS,HR=FT2=F/BTU 0.001 0.001 INDICE DE COSTO 1976 1200 ACUMULADIOR_DE REFLUJO TIEMPIO DE RESIDENCIA,MIN = 10. PRESION DE DISENO,PSIG = 126. 126. 1200 DIAME TRO,IN = 60. ESPESOR/IN = 0.438 0.438 LONGI TUD,PIES = 55. (INCLUYE CORROSION) 0.4472. BOMEAS Y_MOTORES = 29030. PESO DEL METAL,LBS = 40472. BOMEAS Y_MOTORES = 29030. PESO DEL METAL,LBS = 40472. BOMEAS Y_MOTORES = 29030. PESO DEL METAL,LBS = 40472. BOMEAS Y_MOTORES = 29030. PESO DEL METAL,LBS = 40472. BOMEAS Y_MOTORES = 29030. PESO DEL METAL,LBS = 40472. BOMEAS Y_MOTORES = 29030. PESO DEL METAL,LBS = 40472. BOMEAS Y_MOTORES = 280. 284. 309. = 50.0 X	COSTO . 1976, DOLARES	30189.	LMTD,F		79.	COSTO, BASE 1949	4151
ACUMULADIOR DE REFLUJO ************************************	FLUTO DE VADOR LES/HR	8787	COEFICIENTES DE	TRANSFERENCIA T2=F/atu	9.007	INDICE DE COSTO 1976	1200
ACUMULADIOR DE REFLUJO ************************************		0/0/.	TUBOS, HR=F	2-F/BTU	0.001		
ACOMOLANDE DE LA BOURAS CEM PRESION DE DISENO,PSIG 126. TIEMPNO DE RESIDENCIA,MIN 10. PRESION DE DISENO,PSIG 126. DIAME TRO,IN = 60. ESPESOR,IN = 0.438 LONGI TUD,PIES = 55. (INCLUYE CORROSION) COSTO,1976,DOLARES = 29030. PESO DEL METAL,LBS = 40472. BOMBAS Y MOTORES ************************************	ACUMULADIOD DE DEELUTO						
TIEMPHO DE RESIDENCIA, MIN = 10. PRESION DE DISENO, PSIG = 126. DIAME TRO, IN = 60. ESPESOR, IN = 0.436 LONGITUD, PIES = 55. (INCLUYE CORROSION) COSTO, 1976, DOLARES = 29030. PESO DEL METAL, LBS = 40472. BOMEAS Y MOTORES ************************************							
DIAME TRO, IN = 60. ESPESOR, IN = 0.436 LONGITUD, PIES = 55. (INCLUYE CORROSION) COSTO , 1976, DOLARES = 29030. PESO DEL METAL, LBS = 40472. BOMBAS Y MOTORES ************************************	TIEMP O DE RESIDENCIA, MIN	= 10.	PRESION DE E	ISENO, PSIG	m 126.		
COSTO # 1976, DOLARES = 29030. PESO DEL METAL, LBS = 40472. BOMBAS Y MOTORES ************************************	DIAME TRO, IN	= 60.	ESPESOR, IN		= 0.438		
BOMBAS Y MOTORES ************************************	LONGI TUD, PIES	s 55. s 20030	(INCLUYE	TAL LBS	= 40472.		
BOMBAS Y MOTORES ************************************	10310 31476, 00LARES	- 27030.	PESO DEL ME				
**************************************	BOMBAS Y MOTORES						
ALIMENTACION REFLUJO FONDOS			0 % Feici	ENCIA DEL MOTOR	= 90.0 %		
ALIMENTACION REFLUJO FONDOS CAPACITDAD DE LA BOUBA-CRUA 286- 284- 309-		- 00mDA - 90%					
CAPACIDAD DE LA BOUBA-CPM 286- 284- 309-		ALIMENTACI	ON REFLUJO	FONDOS			
	CAPACIDAD DE LA BONBA.GPM	286.	284.	309			
PRESION DE SUCCION, PSIG 30. 101. 83.	PRESION DE SUCCION.PSIG	30.	101.	83.			

PRESION DE SUCCION, PSIG 30. 101. 83. POTENCIA DEL MOTOR, HP 69.2 62.9 58.6 3.7 Diseño de un reactor catalítico de lecho fijo para la síntesis de acetato de vinilo.

Descripción teórica.

El diseño y la operación de equipo para llevar a cabo reacciones quí micas requiere analizar los procesos químicos y físicos que ocurren dentro del equipo. Los principios que gobiernan la transferencia de masa y de energía son tan importantes como aquellos que gobiernan la cinética química.

Para diseñar un reactor tenemos que considerar los siguientes factores: el tipo y el tamaño requerido, las necesidades para el intercambio de energía – con el medio ambiente, y las condiciones de operación (temperatura, presión, concentraciones y flujos másicos).

Para el diseño de un reactor, los conocimientos que debemos tener al alcance son:

Las ecuaciones para la velocidad de reacción, en el caso que no se conozcan, se pueden encontrar por medio del análisis de datos experimentales.

Junto con la cinética, debemos conocer los principios de conservación de masa y energía y las ecuaciones para los procesos físicos.

Normalmente, en los reactores catalíticos, se utiliza la velocidad de reacción global, en la cual se han considerado la cinética química y las resistencias que se presentan en los procesos físicos, de tal forma que podemos usar las mismas ecuaciones de diseño para reactores homogéneos no catalíticos que para reactores hetereogéneos, sean catalíticos o no.

Usando la información anterior se evalúa la composición del efluente de un reactor para un juego de condiciones de diseño específicas.

Las condiciones de diseño que se deben especificar son la temperatura, presión y composición de la corriente de alimentación, las dimensiones del reactor y de las pastillas de catalizador, y los datos del medio ambiente para evaluar el flujo de calor a través de las paredes del reactor.

Descripción técnica.

Problema: Síntesis del acetato de vinilo por medio de la siguiente -reacción catalítica:

> CzHz(g) + CH3COOH(g) -- CH3-COO-CH=CHzq acetileno ac. acético acetato de vinilo

La reacción se lleva a cabo en un reactor tubular de lecho fijo. Suposiciones:

- Régimen contínuo.
- 2) Gas ideal.
- Simetría radial.

139.

- 4) Flujo tapón.
- 5) Temperatura de la pared constante.
- 6) Sistema homogéneo.

Datos:

- 1) Velocidad de reacción.
 - r = lb mol de acetato de vinilo formado/hr (lb cat.) = $2.46 \times 10^5 \exp(-17300/RT) P_{c2}H_2$ T = $^{\circ}R$ $P_{\alpha c}'$ = Presión parcial del acetileno, atm. R = $1.98 \operatorname{cal/(gmol)} (^{\circ}K)$
- 2) Capacidad calorífica de la mezcla (constante)

C_p = 0.46 BTU/Ib °F

3) Calor de reacción (constante)

 $Hr = -44,470 BTU / Ib mol C_2H_2$ reaccionado.

4) Propiedades del catalizador

 $f_c^{P} = 45 \text{ lb/ft}^3$ dP = 0.01305 ft $\xi = 0.6$

5) Coeficiente de transferencia de calor en la pared (constante). hw = 4.33 BTU/hr -ft²-°F

$$\mathcal{H} C_{2}H_{2} = 0.0054 + 3.66 \times 10^{-5} T$$

$$\mathcal{H} ac. Acet. = -0.0013 + 4.05 \times 10^{-5} T$$

$$\mathcal{H} ac. vinilo = 0.0004 + 3.55 \times 10^{-5} T$$

$$\mathcal{H} N_{2} = 0.0145 + 5.25 \times 10^{-5} T$$

$$T = {}^{\circ}R$$

$$\mathcal{H} = lb/ft hr.$$
(3.74)

Análisis técnico.

Las ecuaciones de conservación de materia y energía formuladas para este sistema son:

Balance de materia por componente:

$$\frac{dx_i}{dz} = \frac{M_i}{G} a_i r \qquad (3.75)$$

$$^{a}C_2H_2 = -1 \qquad ^{a}ac. \text{ vinilo} = 1$$

^aac. acét. = -1 M; = Peso molecular

Balance de Energía:

$$\frac{dT}{dz} = \frac{h\omega_{i}C}{AGC_{p}}(T-T_{\omega}) + \frac{i}{GC_{p}}r\Delta H_{r}c^{2} \qquad (3.76)$$

- A = Area transversal del reactor, ft^2
- C = Perímetro del reactor, ft

Ecuación de presión.

$$\frac{dP}{dz} = \frac{-f}{2i20} \frac{G^2}{g_c/d_p}$$

$$f = \frac{i - \xi}{\xi^3} \left[\frac{i.75 + i.5}{R_e} \frac{i - \xi}{R_e} \right] \qquad (3.77)$$

$$R_e = \frac{d_p G}{\mathcal{A}}$$

$$\mathcal{A} = \frac{\sum 4i \mathcal{H}_i \mathcal{M}_i^{0.5}}{\sum 4i \mathcal{M}_i^{0.5}}$$

Método de solución.

Los balances de materia de los tres componentes, el balance de energía y la ecuación de presión se resolvieron para las fracciones masa de cada componente, temperatura y presión en función de la longitud del reactor. Para resolver las ecuaciones diferenciales se utiliza el algoritmo de Runge-Kutta-Gill. Resultados.

*

Como resultado del cálculo se obtienen los perfiles de composición, temperatura y presión como función de la longitud del reactor.

Fig. 3.12 Diagrama de Bloques.

IMPRESION DE DATOS ALI'ENTADOS

NUMERO DE ECUACIONES # 5

FRACCION MASA DE ACETILENO (LB/LBT) = .51110000E+00 FRACCION MASA DE ACIDO ACETICO (LB/LBT) = .41670000E+00 FRACCION MASA DE ACETATO DE VINILO (LB/LBT) = 0.

PRESION INICIAL (ATM) # .20200009E+01 TEMPERATURA INICIAL (GR.R) # ...76600090E+03

LOS PESOS ERRUR SON 0.32000 0.32000 0.32000 0.02000 0.02000

LIMITE INFERIOR = 0. LIMITE SUPERIOR = .10000000E+02 INCREMENTO INICIAL = .10000000E+01 LIMITE DE ERROR = .10000000E+00 PRMT (5) = 0.0

PERFIL DEL	PEACTOR	DE	ACETATO	UE	VIUILO
------------	---------	----	---------	----	--------

(FT)	(LB/LBT)	ACIDO ACETICO (LB/LBT)	ACETATO DE VINILO (LR/LUT)	TEPPERATURA (GP.F)	PRESING (ATP)
6.0 G	.511100E+00	.416700E+00	ο.	, *06000F+03	\$05000F+01
1.00	.508969E+UD	.411783E+00	,704782F=02	.319858F+03	.201975E+01
5.00	.506247E+00	.405501E+00	.160523F=01	.3264P0F+13	.2"195"t+01
3.00	.503186E+00	.398436E+00	.2617855-01	, 32076 3F+13	.201925t+01
4.00	.409944E+00	.390955E+00	.369012F=01	.331415F+^3	.201899t+01
5.00	.496611E+01	.383265E+00	"#79237F=01	.332245F+03	.2018741+01
0.00	.493237E+00	.375478E+00	.590848Fm01	.3326525+13	.201844E+01
7.00	.489847E+00	.367654E+00	· 702988F=01	.*32841F+^3	.201820E+01
R. u 0	.486454E+0"	.359825E+00	.B15206F=01	332917F+03	.201794t+01
9.6.3	.433066E+00	.352007E+00	"27266F=n1	,332933F+13	.201774E+01
10.00	479687E+00	344208E+00	103904E+00	332919F+03	20175"E+01

CAPITULO IV

CONCLUSIONES

El objeto de la descripción de los métodos seleccionados para la evalua ción de propiedades fué el de proporcionar información teórica y dar una idea de la confiabilidad de cada cálculo, ya que continuamente se presentan nuevos métodos, usualmente en la forma de modificaciones o ajustes a los ya conocidos.

Se logró realizar un simulador de corrientes de hidrocarburos con límites de operación y una exactitud aceptables para los fines que se pretenden; siendo su operación bastante simple aún cuando el estudiante no cuente con conocimientos en computación.

Los problemas presentados en el capítulo 3 fueron consultados con el Area de Ingeniería Química, a fin de que fueran representativos y congruentes con los diferentes cursos que se imparten; están diseñados de tal manera que el usuario pueda alimentar los datos de un problema específico; excepción hecha del caso que se presenta de un reactor de lecho fijo.

Pensamos que la conclusión básica del contenido de este trabajo es dar una idea clara de la utilidad de la computación en la enseñanza de la Ingenie⁻ ría Química, como complemento del criterio y ampliación de los recursos del - alumno para el inicio y ejercicio de su vida profesional.

CAPITULO 5

BIBLIOGRAFIA

- Bird, R. B., Stewart, W. E., y E. N. Lightfoot "Transport Fenomena".
 John Wiley & Sons, Inc. New York, 1960.
- (2) Carnahan, B.. "Applied Numerical Methods". Ed. John Wiley & Sons.
 New York (1969).
- (3) Cooper, H. W. y I. C. Goldfrank, Hydrocarbon Processing (1967).
 46 (12) 141.
- (4) Chao, K. C. y J. D. Seader, AICHE Journal Vol. 7 pag. 598 (1961).
- Denbigh, K. G. y J. C. R. Turner. "Chemical Reactor Theory.
 An Introduction" 2a. Edición Cambridge University Press (1971).
- Edmister, W. C. "Applied Hydrocarbon Thermodynamics". Hydrocar bon Processing (1968), Vol. 47 (9) p.p. 239.
- (7) Edmister, W. C., "Thermodynamics, Composition and Enthalpy Prediction for Coexisting Vapor and Liquid Mixtures". The College of Engi-

neering, Oklahoma. State University, (1971).

- (8) Grayson, H. G. y C. W. Streed, Sixth World Petroleum Congress
 Frankfurt Main (June 19–26, 1963).
- Jelink, R. "Computer Programs for Chemical Engineering Education".
 University of Syracuse, Editor (1972).
- (10) Kern, D. Q. "Procesos de Transferencia de Calor". C.E.C.S.A.,
 México (1973).
- (11) King, C. J., "Separation Processes". Mc Graw-Hill Chemical Engineering Series, New York (1971).
- Mc Cabe, W. L. y J. C. Smith, "Operaciones Básicas de Ingeniería Química", Ed. Reverte. México (1972).
- Perry, J. H. (Ed.), "Chemical Engineers, Handbook", 4th Edition, Mc Graw-Hill Book Company, New York (1963).
- (14) Peters, M. S. y K. D. Timmerhaus, "Plant Design and Economics -for Chemical Engineers". Mc Graw-Hill Book Company, New York (1968).
- (15) Prausnitz, J. M., Chueh, P. L., "Computer Calculations for High-

- Rase, H. F. y M. H. Barrow, "Project Engineering of Process Plants".
 John Wiley & Sons, Inc, New York (1959).
- (17) Reid, R. C. y T.K. Sherwood, "Propiedades de los Gases y Líquidos.
 Su Estimación y Correlación". Ed. UTEHA. México (1968).
- Schmidt, A. X. y H. L. List, "Material and Energy Balances".
 Prentice-Hall, Inc., Englewood Cliffs New-Jersey (1962).
- (19) Smith, S. M., "Chemical Engineering Kinetics", 2a. Edición. Mc
 Graw-Hill. Kogakusha LTD. Tokyo (1970).
- Sosa, J. y A. J. Ostos, "Programa de Computadora para el Estudio
 Preliminar de Torres de Destilación Fraccionada a partir de Métodos
 Cortos". Tesis Profesional (1976).
- Starling, K. F., "Fluid Thermodynamic Properties for Light Petroleum Systems, Gulf Publishing Company. Houston, Texas (1971).
- (22) Van Winckle, M. "Distillation", Chemical Engineering Series, Mc
 Graw-Hill Book Company Inc., New York (1969)