UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA

PREPARACION Y CARACTERIZACION DE UN CATALIZADOR SILICE - ALUMINA A PARTIR DE UN KAOLIN MEXICANO

T E S I S

QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO PRESENTA

LUIS MANZANO GAYOSSO

MEXICO, D. F.

1974

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

Presidente:	Prof.	Leopoldo Rodríguez Sánchez
Vocal:	Prof.	Martín Hernández Iuna
Secretario:	Prof.	Enrico Martínez Saenz
Primer Suplente:	Prof.	Jaime Noriega Bernechea
Segundo Suplente:	Prof.	Juan M. Fritz Corona

SITIO DONDE SE DESARROILO EL TEMA:

FACULTAD DE CUIMICA

SUSTENTANTE

LUIS MANZANO GAYOSSO

ASESOR DEL TEMA

DR. ENRICO MARTINE? SAENZ

A MIS PADRES

CON ADMIRACION Y CARINO

A MIS HERMANOS

.

.

A MIS AMIGOS

.

RECONOCIMIENTO:

Deseo expresar mi gratitud al Dr. Enrico Martínez -Saenz, quien, una vez más, me ha demostrado su amistad al dedicar su tiempo para dirigir atinadamente este trabajo y darme a conocer sus valiosas ideas al respecto. Al Dr. Martín --Hernández Luna que por su preocupación en los detalles se igua la a su erudita comprensión del tema tratado. Siempre que necesitaba sugerencias pude contar también con un amigo como lo es el M. en C. Gildardo Acosta Ruiz. Finalmente agradezco la colaboración de mi hermana María Elena por su paciencia en la escritura de este trabajo.

Es muy significativo para mi haber podido colaborar en el Depto. de Catálisis, así como en el desarrollo del mismo, y abrigo la esperanza de que se refleje en mi trabajo.

RESUMEN

En este trabajo se ensayaron diversos métodos para activación de caolines mexicanos con miras a su utilización como catalizadores sílice-alúmina para desintegración catal<u>í</u> tica de hidrocarburos.

El método seleccionado supone efectuar un trata--miento químico con H_2SO_4 al 30% en peso, así como una calcinación del caolín ácido a 400 °C durante 6 horas en atmósfera de aire. El catalizador que se obtiene en esta forma tiene un área superficial de 220 m²/gr determinada por el método -B.E.T. y su densidad real es de 2.593 gr/c.c.

Se hicieron análisis por difracción de rayos X pudiendose observar que la estructura del caolín cambia de cao linita a cristobalita como consecuencia del tratamiento mencionado.

Microfotografías por medio del microscopio electr<u>ó</u> nico de barrido permitieron observar que los cristalitos de las muestras tratados tienen forma esférica con tamaños rel<u>a</u> tivamente uniformes.

Se efectuaron pruebas de actividad del catalizador para la desintegración de cumeno, obteniéndose una conversión a benceno del 98%.

INDICE

	Pag.
INDICE DE FIGURAS	1
INDICE DE TABLAS	11
INTRODUCCION	1
OBJETIVOS	3
x ·	
CAPITULOS.	
1. ASPECTOS TEORICOS	4
II. MATERIALES Y EQUIPO	7
A. Reactor de lecho fijo	7
B. Determinación de área superficial y Estructura porosa	7
C. Medida de la densidad real del catalizador.	. 8
D. Sistema de flujo de gases	8
E. Catalizador	11.
F. Microscopio electrónico de barrido	.13
III. PROCEDIMIENTO EXPERIMENTAL	16
A. Preparación del catalizador	16
B. Operación del reactor batch	17
C. Operación del reactor de lecho fijo	17
D. Operación con el picnómetro	18
E. Análisis con rayos X	19
F. Microfotografías por el Microscopio electrónic de barrido	0 19
IV. PRESENTACION DE RESULTADOS	20
A. Area Superficial	- 20
B. Análisis de rayos X	20
C. Densidad real	. 40

Páo

		2		Pág.
		D.	Microscopio electrónico de barrido	40
		E.	Actividad Química	51
	v.	D13	SCUCION DE RESULTADOS	53
×		A.	Area Superficial	53
		Β.	Densidad real	55
		C.	Rayos X	56
		D.	Actividad Química	56
		E.	Microscopio electrónico de barrido	57
	CUNC	CLU	SIONES Y RECOMENDACIONES	58
		Α.	CONCLUSIONES	58
		Β.	RECOMENDACIONES	60
	APEN	DI	CES	62
		A.	Curva de calibración de rotámetro y velocidades de flujo de alimentación para N_2	62
		В.	Datos calculados para obtener valores de área Superficial	64
		c.	Secuencia de cálculo utilizada para obtener valores de densidad real	82
		D.	Balance de materiales para obtener gasto de alimentación de cumeno	83
	NOM	ENC	IATURA	84
	BIBI	.10	GRAFIA	85

INDICE DE FIGURAS

Fig	. Núm.		Pág.
	1.1	Estructura Cristalina idealizada de la ar- cilla natural	5
	1.2	Estructura Cristalina idealizada de la ar- cilla tratada	5
	2.1	Diagrama de flujo de gases de alimentación	9
	2.2	Partes principales del M.E.B.	14
	4.1	Area Superficial de muestra I	21
*	4.2	Area Superficial de muestra II	2.2
	4.3	Area Superficial de muestra 2A	23
	4.4	Area Superficial de muestra 3A	24
	4.5	Area Superficial de muestra 4A	25
	4.6	Area Superficial de muestra 5A,	26
	4.7	Area Superficial de muestra 5A2	27
	4.8	Area Superficial de muestra 5A3	2.8
£	4.9	Area Superficial de muestra 6A	29
	4.10	Area Superficial de muestra 6A2	30
	4.11	Area Superficial de muestra 6A2	31
	4.12	Area Superficial de muestra 7A ₁	32
	4.13	Area Superficial de muestra 7A2	33
	4.14	Area Superficial de muestra 7A3	34
	4.15	Area Superficial de muestra 8A1	35
	4.16	Area Superficial de muestra 842	36
	4.17	Area Superficial de muestra 8A3	37
	4.19	Estructura Cristalina de muestra I	41
	4.20	Estructura Cristalina de muestra II	42
	4.21	^o structura Cristalina de muestra 2A	43

Fig. Núm.		Pág.
4.22	Estructure Cristalina de muestra 3A	44
4.23	Estructura Cristalina de muestra 4A	45
4.24	Estructura Cristalina de muestra 6A ₁	46
4.25	Estructura Cristalina de muestra 7A	47
4.26	Estructura Cristalina de muestra 8A2	48
4.27	Microfotografías de muestra 4A	49
4.28	Microfotografías de muestra 5^1	50
4.29	Relación de Cumeno/Benceno de muestras 4A y 7A ₃	52
5.1	Area Superficial a distintas temperaturas de calcinación	54
1. 4	Curva de calibración de rotámetro a lat	63

INDICE DE TABLAS

Tabla Núm.

	0
Análisis guímico del caolín	12
Resultados de área superficial a diferen- tes tratamientos	38
Resultados de densidad real	39
Datos calculados para obtener área super- ficial aparecen en las tablas 1.b a 17.b	65
	Análisis químico del caolín Resultados de área superficial a diferen- tes tratamientos Resultados de densidad real Datos calculados para obtener área super- ficial aparecen en las tablas 1.b a 17.b

Pág.

TI

INTRODUCCION

Jos catalizadores de sílice-alumina son de gran im portancia en la industria petroquímica por su utilización en gran volumen para la o tención de gasolinas a partir de hi-drocarburos pesados. Cabe hacer notar que en México las im-portaciones de dichos catalizadores durante el período com-prendido de 1970-73 alcanzaron cifras del orden de.los - - -\$ 15,000,000.00 M. N. anuales.

En los últimos años, han cobrado gran auge los catalizadores sílice-alumina sintéticos debido a que en con--traste con los preparados de productos naturales, son suscep tibles de un control más estricto de sus propiedades físicas y químicas, permitiendo tener catalizadores con característi cas totalmente uniformes de un lote a otro, con las ventajas que esto representa durante la operación de las refinerías.

Sín embargo, en algunos paises como Arabia Saudita donde existe gran cantidad de arcillas sílico-aluminatos, se han realizado estudios profundos tendientes a la utilización de las mismas como materia prima para la fabricación de cat<u>a</u> lizadores sílice-alumina con características similares a las de los sintéticos (3). Es evidente que esto podría representar un gran ahorro en el caso de México, de ser posible ex-plotar los caolines que abundan en algunas zonas de la república.

En base a los estudios arriba mencionados y otros varios, se planteó la posibilidad de utilizar caolines del país como catalizadores para desintegración catalítica enfo-

-1-

candose los estudios primordialmente a determinar la concentración de ácido sulfúrico necesaria para el tratamiento quí mico más adecuado y la temperatura de calcinación para obtener un valor elevado de área específica.

Para poder llevar a cabo la experimentación es necesario partir del análisis químico del caolín, ya que en esa forma se conoce la proporción existente de óxido de silicio (SiO₂), con respecto al óxido de aluminio (Al₂O₃); por lo tanto es posible fijar las condiciones de operación para preparar el catalizador de sílice-alumina.

En este trabajo se probarán varios métodos de preparación de catalizadores sílice-alumina, con el propósito.de encontrar la concentración de H_2SO_4 y temperatura de calcinación óptimas para la preparación de los mismos. Una vez tratadas las muestras, se utilizará el B. E.T. estático para determinar valores de área específica. Por otro lado se usará el microscopio electrónico de barrido para obtener forma y tamaño de partículas. Se efectuaran análisis por difracción de rayos X para precisar posibles cambios en la estructura cristalina.

Por último se usarán un reactor tubular de tipo in tegral con el objeto de obtener resultados de actividad quím<u>i</u> ca. Para las pruebas en el reactor se utilizará como reactivo el cumeno, el cual es muy empleado en el laboratorio por su fácil desintegración en benceno y por la formación de pocos subproductos; También se determinará la densidad real del -sólido, por medio del método del picnómetro para complemen-tar los datos obtenidos con el B.E.T. con respecto a la por<u>o</u> sidad de cada una de las muestras tratadas.

-?-

OBJETIVOS

- 1. Determinar la concentración de ácido sulfúrico necesaria para conferirle al caolín mexicano acidez en la superfi-cie.
- 2. Abtener la temperatura de calcinación óptima para lograr una mayor área específica.
- 3. Hacer pruebas de actividad para precisar en esta primera etapa el método de preparación del catalizador sílice-al<u>u</u> mina a partir de caolín mexicano.

1. ASPECTOS TEORICOS

la preparación de catalizadores de sílice-alumina a partir de arcillas naturales ha sido estudiada por diversos autores, así por ejemplo, Stover (5) propone para la -preparación de catalizadores un tratamiento químico con un ácido fuerte seguido de calcinación con el objeto de mejo-rar las características físico-químicas.

En este caso no se específica la composición química de la arcilla natural, por lo cual, es necesario cons<u>i</u> derarla como variable. Por otro lado se habla de una temperatura de calcinación, así como del tiempo que dura el tratamiento térmico. Por lo que, es necesario co siderar estas, también como variables.

Para resolver el problema que se plantea, Thomas (8) sugiere diversos tratamientos ácidos para mejorar la -actividad química de las arcillas, la cual alcanza un máximo conforme aumenta la concentración de ácido. Con el trata miento térmico se provoca un reacomodo de átomos de la capa central dentro de la red cristalina, junto con pérdida de agua, la cual disminuye el espacio interplanar y aumenta el área superficial y la porosidad.

Una forma idealizada de la red cristalina se mue<u>s</u> tra en la figura 1,1. En esta estructura hay una capa cen-tral que contiene átomos de aluminio en coordinación octahí_ drica. Cada átomo de aluminio está asociado con cuatro átomos de oxígeno y dos grupos axhidrilo. Arriba y abajo de la capa central de aluminio hay capas que contienen sílice en

-4-

lig. 1.1 Estructura Cristatina idealizada o la arcilla natural

1

dir. 1.2 structura Cristalina idealizado de la arcilla tratada. coordinación tetrahédrica con oxígeno, todas esas capas están unidas bara formar un plano neutral. Hay un espacio in-terplanar el cual buede contener agua y desbués se repite la estructura.

Existen variantes en las que en lugar de haber un átomo de silicio, hay un átomo de fierro y como el primero es tetravalente y el segundo trivalente, se origina un exceso de carga negativa, la cual se equilibra con iones alcalinos o alcalinotérreos y estos a su vez pueden ser sustitui-dos por iones hidrógeno que son los que confieren a la arcilla propiedades ácidas.

Por lo tanto si él tratamiento químico es con ácido a temperatura ambiente lo que se va a remover unicamente son los iones alcalinos o alcalinotérreos. En cambio si el tratamiento químico se hace en caliente y con agitación con<u>s</u> tante, se remueven además los átomos de aluminio que se encuentran en la capa central. Transformandose así la estruct<u>u</u> ra atómica de su forma octahédrica original a una nueva estructura tetrahédrica (8). Ver figura **1.2**.

Una vez que ya se han delineado las variables que deben ser controladas de acuerdo con el método de preparación seguido, es necesario probar si la arcilla ha mejorado en -sus propiedades físico-químicas. Para ello es necesario cono cer algunos parámetros tales como: actividad química, área superficial, estructura porosa, porosidad, red cristalinà, tamaño de partícula, densidad real, análisis químico, dureza y resistencia al envejecimiento.

-6-

II. MATERIALES Y EQUIPO

A. Reactor de lecho fijo.

Para medir la actividad de un catalizador se usó un reactor tubular de tipo integral de lecho fijo, de 1.905 cms. de diámetro interno cédula 40 por 30 cms. de largo. El tubo tiene soldado en los extremos superior e inferior una brida de 8.82 cms. de diámetro por 1.1 cms. de espesor. Cada una de las bridas tiene cuatro perforaciones de 2 cms. de -diámetro.

De la longitud total del tubo, unicamente se ocup<u>a</u> ron 8 cms. para el lecho catalítico, la otra parte sirvió c<u>o</u> mo zona de precalentamiento.

La temperatura dentro del lecho catalítico fue 450 ^oC, por lo que fue necesario embobinar el reactor con alam-bre de cantal de 2 ohms. y 2.5 amperes, con el objeto de alcanzar la temperatura arriba mencionada. Para el control de dicha temperatura se usó un termopar de Felconst conectado a un pirómetro controlador marca pyroplastik modelo 45.

Las pérdidas de calor con los **alrededores** se evit<u>a</u> ron al máximo cubriendo el reactor con canal de asbesto, la variación de la temperatura con respecto al punto de control es de $\frac{+}{-}$ 0.45%.

B. Determinación de área Superficial y estructura porosa.

En este estudio se empleó el B.E.T. estático con el objeto de obtener resultados de área superficial y estruc

-7-

tura porosa, para su determinación fue necesario obtener datos de presión y volumen adsorbido. En el caso de área supe<u>r</u> ficial se trabajó en un rango de presión de 0.3 P/P_o 0.4 que corresponde a una monocapa de moléculas adsorbidas. Sí se -trata de determinar estructura porosa es necesario llegar -hasta la presión de saturación del gas que se está adsorbie<u>n</u> do o sea una relación de P/P_o=1, que corresponde a multicapas de gas adsorbido. El material y equipo de que consta el aparato, así como su operación se describen en detalle por ohms y Terán (10).

C. Medida de la densidad real del catalizador.

Para su determinación fue necesario hacer uso de un picnómetro de 50 M1 de vidrio con junta esmerilada, se em plea un líquido que moje la muestra de catalizador a una tem peratura de 20 $^{\circ}$ C, para tales propósitos se ocupó la queros<u>i</u> na de densidad conocida y una balanza analítica de presición (0.0001 gr).

D. Sistema de flujo de gases.

Los gases que se emplearon para llevar a cabo la -• reacción fueron nitrógeno como gas acarreador y vapor de cumeno como reactivo, el nitrógeno se almacenó en un tanque de alta presión (210 lb/in²) y se alimentó por medio de un regu lador de presión marca Aga de bronce, el cual está provisto de dos manómetros, uno es para medir la presión del gas dentro del tanque y el otro es para medir la presión a la cual se desea alimentar el gas, en este trabajo se usó 1 kg/cm².

El gas acarreador antes de ser mezclado con el cumeno líquido como se muestra en la figura 2.1 pasa por un r<u>o</u>

-8-

Figura 2.1 Diagrama de Flujo de gases de alimentación

.

- 0-

támetro Lab-Crest con flotador de acero inoxidable de 1/16 de pulgada cuya curva de calibración y tabla de velocidades de flujo en C.C. por mínuto se muestran en el apéndice A, -con el objeto de medir el flujo de gas de salida del tanque. Posteriormente el nitrógeno se alimenta a un saturador de vi drio de 28 cms. de largo por 2.5 cms. de diámetro externo -con junta esmerilada de 2.74 cms. de diámetro, el cual conti<u>e</u> ne un cierto volumen de cumeno líquido. Este saturador se e<u>n</u> cuentra sumergido en un baño de aceite a temperatura consta<u>n</u> te para controlar la fracción mol de cumeno en la alimenta-ción.

La corriente de salida del saturador (nitrógeno y vapor de cumeno) se alimentan al reactor integral, a través de un tubo de cobre previamente calentado, para evitar que el vapor de cumeno se condense antes de llegar al reactor, el tubo de cobre se calienta con una resistencia eléctrica conectada a un reostato en paralelo con la resistencia del baño de aceite.

Por último ya que se llevó a cabo la reacción, la corriente de salida del reactor pasa por un refrigerante de 65 cms. de largo, el cual consta de dos tubos concéntricos,uno de 0.625 cms. de diámetro interno de acero inoxidable, el otro de fierro galvanizado de 1. 875 cms. de diámetro interno, el refrigerante se encuentra acoplado a un serpentín de tubo de cobre de 0.625 cms. de diámetro externo, el ser-pentín a su vez está acoplado a un tubo de ensaye donde se = colecta el condensado que debe ser una mezcla de Benceno y -Cumeno no convertido. Para obtener una mayor eficiencia de condensación el serpentín y el tubo de ensaye se sumergen en un frasco dewar, el cual contiene una mezcla de hielo seco y alcohol industrial en proporciones tales que se alcance una temperatura de -15 ^oC.

-10-

El condensado que se colecta como producto de 1a reacción, se aueliza por medio de cromatografía de gases. lo más adecuado hubiese sido que los gases de salida del reac-tor se analizaron directamente con el cromatógrafo con el -propósito de tener mayor presición en los datos obtenidos, pero en esta ocasión no fue posible hacerlo por limitaciones de tipo económico.

E. Catalizador.

^{*} La arcilla natural utilizada para este estudio, -proviene de los Azufres Michoacán, su área superficial origi nalmente es de 18 M^2/gr determinada por el método B.E.T., la densidad real es de 2.007 gr/c.c., los datos de análisis qu<u>í</u> micos aparecen en la tabla 2.1.

La preparación del catalizador a partir de la arc<u>i</u> 11a natural se hízo con dos métodos diferentes a saber:

- a).- El primer método consiste en mezclar una parte de arcilla natural con una parte de carbonato de sodio hidrat<u>a</u> do, la mezcla se calcina a un rango de temperatura en-tre 426-760 °C en presencia de aire por un par de horas, después se mezcla con una parte de ácido sulfúrico concentr<u>a</u> do, se lava, se filtra y el precipitado se seca por espacio de 1-2 noras a una temperatura entre 82-99 °C.
- b).- El segundo método consiste en mezclar dos partes de arcilla natural con una parte de ácido sulfúrico durante 6 horas con agitación constante a una temperatura de --90-95 °C. Después del tratamiento químico la arcilla se lava varias veces con agua, por último la arcilla se e-calcina a 550 °C durante 6 horas en atmósfera de aire.

-11-

TAR1	A	2 1
1 11111	11	1

Análisis Químico del caolín

SILICE (SiO ₂)	45.08 %	
TITANIA (TiO ₂)	1.10	
AIUMINA (A1203)	33.66	
OXIDOS DE FIERPO (Fe ₂ O ₃)	1.28	
OXIDO DE MANGANESO (MnO)	0.01	
MAGNESIA (MgO)	0.32	
CAL (CaO)	0.00	
OXIDU DE SODIO (Na ₂ O)	0.25	
0X1D0 DE POTASIO (K ₂ 0)	0.35	
ANHIDRIDO FOSFORICO (P205)	0.00	
ANHIDRIDO SULFURICO (SO3)	0.00	
ANHIDRIDO CARBONICO (CO ₂)	0.00	
AGUA DE COMBINACION	12.88	
HUMEDAD ADHERENTE	<u>5.20</u> 100.13 %	

-12-

Las áreas super icial s obtenidas después del tratamiento por el primer método, mostraron valores ligeramente mayores que el área original, sín embargo los resultados no fueron satisfactorios. Por el contrario los resultados de área superficial con el segundo método mostraron un aune to considerable con respecto a la original, por lo que el método de preparación del catalizador de desintegración adecuado aparentemente debe ser el segundo.

F. Microscopio Electrónico. de Barrido.

El microscopio electrónico de barrido (H.E.B.) pr<u>o</u> porciona imágenes de objetos en tres dimensiones y permite observar la forma y el tamaño de las partículas que constit<u>u</u> yen el catalizador así como de los poros presentes en el mi<u>s</u> mo.

Mayores detalles sobre el funcionamiento y construc ción del microscopio utilizado pueden encontrarse en la literatura (9).

El aparato consta de cuatro partes principales como se muestra en la figura 2.2 :

- a).- Un sistema óptico para el haz de electrones que se util<u>i</u> za para el barrido de la muestra.
- b).- Un recipiente de muestra donde interacciona el haz de electrones dirigido y el material produciendose una señal.
- c).- Un sistema de detección que colecta la información emitida por la muestra y amplifica la señal.
- d).- Un sistema de exposición que permite observar la imagen que se forma en cada caso.

-13-

Los electrones detectados no son los electrones -dirigidos al especimen de la muestra, sino que son electro-nes secundarios desprendidos de la muestra.

111. PROCEDIATENTO EXPERIMENTAL

A. Preparación del catalizador.

En el procedimiento experimental se manejaron como variables el porcentaje de ácido sulfúrico, la temperatura de calcinación, el porcentaje de arcilla natural y la temperatura de mezclado; por lo que fue necesario hacer.ciertas modificaciones a cada uno de los métodos empleados, con el propósito de seleccionar el método de preparación más adecua do.

El primero de los métodos consiste en mezclar caolín con 30-80% de carbonato de sodio hidratado, moler la pas ta y someterla a calcinación durante 1-2 horas a una tempera tura de 426-760 °C, después se muele la pasta y se mezcla -con una solución de ácido preferentemente de 70-100% en peso de ácido, la mezcla se lava con agua, se filtra y el precip<u>i</u> tado se lava varias veces con agua destilada, hasta que no exista la presencia de sulfatos (la prueba de sulfatos se hace con las aguas de lavado e hidróxido de bario), por último el precipitado se calienta a una temperatura de 82-99°C durante 1-2 horas quedando la muestra lista para ser sometida a pruebas de caracterización.

El segundo método consiste en lo siguiente:

 a).- Tratar la muestra térmicamente a 550 °C durante 6 horas.
b).- Secar la muestra a 120 °C y colocarla en un desecador hasta que alcance peso constante.

c).- La arcilla seca se activa químicamente durante 6 horas

-16-

con agitación constante a 90-95 ^OC (dos partes de arci-11a por una parte de ácido sulfúrico), la concentración de la solución ácida es de 35% en peso.

- d).- Lavar la arcilla con agua destilada y después filtrar la solución, el precipitado formado se lava varias ve-ces con agua destilada hasta eliminación completa de -sulfatos.
- e).- Nuevamente la arcilla se trata térmicamente durante 6 horas a 550 °C.

En el último método los pasos a) y b) fueron suprimidos para algunas muestras, siguiendose el método a partir del paso c). En este paso fue necesario usar un reactor tipo batch a volumen constante y presión de 585 mm de mercurio, - con el propósito de evitar la evaporación del agua presente en la mezcla y lograr la agitación constante.

B. Operación del reactor batch.

El reactor se carga con una cantidad previamente pesada de arcilla natural y ácido sulfúrico diluido, antes de llevarse a cabo la corrida experimental se le hace recircular una corriente contínua de aceite a 92 °C; posteriorme<u>n</u> te se coloca el egitador mecánico que va a accionarse por m<u>e</u> dio de un motor, el cual a su vez está conectado a un reóst<u>a</u> to con el objeto de mantener agitación constante. A continu<u>a</u> ción se hace girar el agitador hasta obtener un mezclado lo más uniforme posible, la agitación dura 6 horas.

C. Operación del reactor de lecho fijo.

Una muestra de catalizador previamente pesada se carga en el reactor. Antes de iniciar la corrida experimen--

-17-

tal se acondiciona el equipo; el lecho catalítico y la zona de precalentamiento deben estar a 450 $^{\circ}$ C, el baño de aceite que contiene al saturador debe estar a 125 $^{\circ}$ C, y la línea de alimentación entre el saturador y el lecho catalítico debe estar a una temperatura constante según la presión de vapor de cumeno que se desee obtener, al refrigerante se le pasa agua por la chaqueta hasta que alcance una temperatura de --10 $^{\circ}$ C, el frasco dewar que contiene el serpentín debe estar a una temperatura de -15 $^{\circ}$ C.

Una vez que ya se ha acondicionado todo el equipo, se hace pasar nitrógeno al saturador con el objeto de arrastrar el cumeno, la mezcla de salida del saturador fluye hasta la cama de catalizador en donde se lleva a cabo la desintegración catalítica en fase gas-sólido entre la arcilla activada y el vapor de cumeno, actuando, en este caso el nitr<u>ó</u> geno como un inerte, además de evitar un mayor envenenamiento del catalizador debido a la formación de carbón. El pro-ducto que se desorbe junto con la fracción de cumeno no rea<u>c</u> cionado en fase vapor, se enfría en el refrigerante y se co<u>n</u> densa por medio del serpentín. Cada corrida se efectuó dura<u>n</u> te 45 minutos a un mismo gasto de alimentación, los resultados de conversión se obtienen por análisis cromatográfico.

D. Operación con el picnómetro.

El picnómetro previamente secado se pesa vacío, -después se llena con querosina hasta el tope y nuevamente se pesa; por otro lado se pesa como máximo un gramo de muestra de catalizador, a continuación se introduce el catalizador en el picnómetro que contiene querosina y de nuevo se vuelve a pesar; con los datos obtenidos se procede a determinar la densidad real del catalizador por medio del método que se d<u>e</u> talla en el apéndice C.

-18-

E. Análisis con rayos X.

Las muestras tratadas química y térmicamente fueron analizadas por medio de rayos X en la Facultad de Química., para determinar la estructura cristalina. El propósito era saber si dicha estructura cristalina había sufrido cam-bios debido a los tratamientos antes mencionados para cada una de las arcillas utilizadas.

Las gráficas de cada una de las muestras se presen tan en el siguiente capítulo.

F. Microfotografías por el microscopio electrónico de barrido

Como las muestras a analizar eran óxidos de meta-les (semiconductores), el operador del M.E.B. impregnó las muestras con un metal conductor (plata metálica) capáz de captar los electrones dirigidos por el cátodo; posteriormente las muestras se introdujeron en una cámara de evacuado, con el propósito de absorber el agua presente en las mismas.

Una vez preparadas las muestras, se colocaron en el microscopio para obtener resultados de forma y tamaño de los poros. En este microscopio pueden obtenerse acercamien-tos de 1 micra. Las gráficas de algunas muestras son presentadas en el siguiente capítulo.

-10-

IV. PRESENTACION DE RESULTADOS

A. Area Superficial.

Se obtubieron mediciones de volumen adsorbidos y presiones para cada una de las muestras preparadas a distintos tratamientos térmicos y químicos por medio del B.E.T. estático. Para poder calcular los parámetros de la ecuación --B.E.T. fue necesario usar un programa de computadora, el cual se menciona en el trabajo realizado por Lópe: Munguía (11).

Las muestras I y II se prepararon con el método -que se menciona en la sección III-A, los datos que se obtu-bieron para el cálculo del área superficial se muestran en el apéndice C y aparecen graficados en las figuras 4.1 y 4.2, los resultados de acuerdo con el tratamiento usado, se muestran en la tabla 4.1.

Las muestras 2A a la $8A_3$ se prepararon con el mét<u>o</u> do que se menciona en la sección III-A, los datos que se obtubieron para el cálculo del área superficial se muestran en el ápendice C. y aparecen graficados en las figuras 4.3 a --4.17, los resultados de acuerdo con el tratamiento usado se muestran también en la table 4.1.

B. Análisis de Rayos X.

La arcilla original se sometió a rayos X con propó sito de saber de que tipo de estructura cristalina se trataba. Según puede observarse en la figura 4.18 la estructura cristalina corresponde a la de la caolinita.

-20-

Figure 4.1 Area Superficial de Muestre I

Figura 4.2 Area Superficial de Suestra 11

Figura 4.3 Area Superficial de Muestra 2A

Figura 4.4 Area Superficial de Muestra 3A

-25-

177 1 +2

Figura 4.6 Area Superficial de la Muestra 5A1

Figure 4.17 Area Superficial de la Muestra 843

Figura 4.8 Area Superficial de la Muestra $5A_3$

Figura 4.9 Area Superficial de la Muestra 6A1

Figura 4.10 Area Superficial de la Muestra 6A2

Figura 4.11 Area Superficial de la Muestra 6A3

Figura 4.12 Area Superficial de la Muestra 7A1

Figura 4.13 Area Superficial de la Muestra $7A_2$

Figura 4.14 Area Superficial de la Muestra 7A3

\$

Figura 4.15 Area Superficial de la Muestra 84,

E

Figure 4.16 Area unerficial de la destre $\delta \Lambda_0$

Figura 4.17 Area Superficial de la Muestra 843

		TRATAMIENTO TERMICO		TRATANIES TO UTM. CO		
MUESTRA	AREA SUP. $(m^2/\pi r)$	TEMP. (^O C)	TIEMPO(Hrs)	%PESO(H_SO_)	TEMP. MERCIA(^C C)	TIENO(Tre)
I	60.4	426-760	2	68	20	
]]	47.7	426-760	2	86	20	
2.4	73.0	550	6	38	02	1
3A	52.2	550	6	38	67	1
4 A	103.0	550	6	20	75	6
5A.	129.7	500-550	6	20	65	6
5A	120.5	600	6	20	6.5	6
5 A 3	130.3	550	6	20	65	6
6A,	167.4	550	6	25	70	6
6A	164.4	600	6	25	70	6
6A2	151.9	700	6	25	70	6
7A.	195.5	400	6	20	86	6
7A	1.00.2	450	6	20	26	6
7A3	186.8	550	6	20	86	6
8A,	220.0	400	6	30	70	6
8A ¹	215.0	450	6	30	70	6
8A2 3	184.4	550	6	30	70	6

77	P.	31	A	4	1

-38-

TA	BLA	4.	2
T 4	****	··· •	ζ.

PUSHLTADOS DE DENSIDAD REAL A 20 °C Y atm.

11. M. A	LA. A. D. CATAITZARD (2r)	V. LUMEN DE CAPALISAUR (C. C.)	DEVISIOND REAL (gr/C.C.)
ן	0.5858	0.2902	2.010
דו	0.8438	0.4524	
2 A	0.8550	0.3912	2, 188
3 A	0.5883	0.2591	2, 270
7 A	0.8555	0.5570	1, 535
5 A 1	0.6598	0. 3201	2.061
5 A 2	0.6904	0. 3362	2.053
5 A 2	0.5185	0. 3032	1.710
· 6 ^ 1 6 ^ 2	0.5423 0.9360 1.2177	0.1500 0.4070 0.5800	3. 410 2. 300 2. 067
7 Å 1	0.1860	0.1474	1,262
7 Å 2	0.4477	0.2332	1,020
7 Å 2	0.7999	0.3226	2,480
8Å1	0.7132	0.2750	2.503
8Å2	0.2948	0.1593	1.840
8Å3	0.6814	0.2931	2.325

Después de cada tratamiento fue necesario saber -que cambios sufrió en su estructura cristalina cada una de las muestras. Así por ejemplo de la tabla 4.1 se analizaron las 4 primeras muestras, en todas ellas la estructura crist<u>a</u> lina corresponde a la cristobalita, como se muestra en las figuras 4.19 a 4.22.

Posteriormente solo se analizaron muestras representativas con mayor área superficial como son: 4A, $6A_1$, $7A_1$, y $8A_2$. Los resultados son semejantes a las cuatro muestras anteriores y se muestran en las figuras 4.23 a 4.26.

C. Densidad real.

Otra de las características a determinar en este trabajo es la densidad real, la cual proporciona información de algún posible aumento en la porosidad de las muestras, -después de cada tratamiento tanto térmico como químico. Los resultados se muestran en la tabla 4.2. En este caso la masa de catalizador no fue constante.

D. Microscopio electrónico de barrido.

De las muestras preparadas unicamente fue posible analizar en el M.E.B. dos de ellas a saber: 4A y 5A, con el propósito de saber el posible tamaño y forma de los micro y macroporos.

La porción de la superficie que se logró fotogra-liar, como se muestra en las figuras 4.27 y 4.28 varía desde 2 u hasta 40u, habría sido posible fotografiar porciones --más pecueñas, pero las muestras no estaban bien evacuadas, por lo que la humedad interfirió de tal manera que no fue posible obtener mayor información.

-40-

τ.

Hr. 1. 12 intelatourations de Muestra 40

 $i_{\rm T}$, by interaction to setter $5A_1$

E. Actividad (uímica.

Las medidas experimentales se llevaron a cabo a -presión de 585 mm de llg, el flujo de alimentación del gas acarreador (N_2) fue constante en todas las corridas, su valor de acuerdo con el rotámetro empleado cuya curva de calibración se muestra en el apéndice 0.

Se utilizaron dos diferentes fracciones mol de cumeno en la alimentación, su valor fue calculado por un sim-ple balance de materiales como se muestra en el apéndice D, la masa de catalizador y la temperatura de la cama catalítica permanecieron constantes y fueron respectivamente 5 gr y 450 °C. Las resistencias de transporte tanto externas como internas se consideraron despreciables.

El condensado fue analizado en un cromatógrafo de gases y los valores fueron reportados como relación en peso de benceno obtenido a cumeno no convertido. Los resultados para cada una de las corridas se muestran en las figuras 4.29

En este trabajo unicamente se hicieron corridas p<u>a</u> ra dos muestras de catalizador, ya que no fue posible pastillar las demás muestras, por lo que quedan pendientes resultados de actividad para las demás muestras preparadas.

-51-

Bencan RINTED IN U.S.A. 1 28. 5% 71.2 Relacion <u>Cumeno</u> = 2.5 Benceno Retario Gen 1/24 -0.9 19, inc 44 U. Cumeno/Benceno de Mueistra . . Benena 0 CUM220 พลาสตร์ดัก ตุ้ 1 ł 500 4 5.5 8 2 3 X Puneno 1-1-1-1-1-+++-Í. 1 2 2 2 4 -52-1 111-D (1) 703

V. DISCUSION DE RESULTADOS

A. Area Superficial.

De acuerdo con los resultados que se muestran en la tabla 4.1 para las muestras I y II, aparentemente el área superficial disminuye a medida que se aumenta la concentración de ácido en el tratamiento químico, a una misma temper<u>a</u> tura de tratamiento térmico.

Estos resultados corresponden al primer método el cual no menciona nada acerca de la temperatura de mezclado,y como el rango de temperatura de tratamiento térmico es muy grande, se pensó en otro método que tomara en cuenta estas dos variables para ver si era posible aumentar el área supe<u>r</u> ficial.

En consecuencia, con el segundo método, las mues-tras 2A y 3A se trataron con menor concentración de ácido, a la misma temperatura de tratamiento térmico y variando la temperatura de mezclado, observandose una disminución en el área superficial al disminuir dicha temperatura. A continua-ción se redujo aún más la concentración de ácido, manteniendo las otras variables constantes, con lo cual se logró aumentar considerablemente el área superficial como sucedió con la -muestra 4A.

Por lo tanto para las muestras $5A_1$, $5A_2$ y $5A_3$ se mantuvo la concentración constante y se varió la temperatura de trataciento térmico para determinar el valor óptimo de d<u>i</u> cha temperatura. En este caso, el área superficial disminuyó a medida que se aumentó la temperatura de calcinación, según se muestra en la figura 5.1.

-53-

Figura 5.1 Area Superficial a distintas temperaturas de calcinación

- 54-

Ios resultados obtenidos hasta la muestra 5A₃ da-ban lugar a pensar en incertidumbres, ya que usardo las mismas condiciones de operación, no se obtuvo la misma área superficial como en la muestra 4A.

Por lo tanto, se pensó en varias posibilidades para optimizar las características del catalizador; aumentar la concentración de ácido o la temperatura de tratamiento -térmico o bien ambas. Habiendo decidido este último, el re-sultado fue que conforme se aumenta la temperatura de tratamiento térmico a una misma concentración de ácido, el área superficial disminuye para las muestras $6A_1$, $6A_2$, y $6A_3$, según puede observarse en la figura 5.1.

A continuación se pensó en disminuir ambas varia-bles (Temperatura de calcinación y concentración de ácido), el resultado fue **que conforme** disminuye la temperatura de -calcinación a una misma concentración de ácido, el área super ficial aumenta este hecho puede constatarse en la figura 5.2 para las muestras $7A_1$, $7A_2$ y $7A_3$.

Aparentemente se podía suponer que las variables ya se habían controlado. Pero había que comprobar dicha supo sición, para ello se mantuvieron las temperaturas de calcina ción del caso anterior y se aumentó la concentración de ácido, resultando un aumento en el área superficial, conforme aumenta la concentración de ácido y disminuye la temperatura de calcinación, como sucedió en las muestras $8A_1$, $8A_2$ y $8A_3$, según puede observarse en la figura 5.2.

B. Densidad Real.

Para hacer un análisis de los resultados experimen tales de densidad real, se tomaron en cuenta muestras repre-

-55-

sentativas em donde se utilizó una masa de catalizador aproximadamente semejante, con el objeto de averiguar si el volu men de los poros aumenta o disminuye al aumentar el área superficial.

En este caso se usaron los datos de las muestras – $5A_2$, $7A_3$, $8A_1$ y $8A_3$, que aparecen en la tabla 4.2 y se obser va que conforme el área superficial aumenta, la densidad real del catalizador también aumenta, por lo tanto el volumen de los poros disminuye.

C. Rayos X .

Considerando las figuras mostradas en el capítulo anterior para rayos X, se puede decir que la estructura cri<u>s</u> talina que se obtuvo para todas las muestras fue cristobalita.

En cada una de las figuras lo único que varía son los picos correspondientes a una distinta distancia interpl<u>a</u> nar, esto depende de la cantidad de agua que se elimina a -la arcilla durante la calcinación, logrando con ello mejor di<u>s</u> tribución de los átomos dentro de la red cristalina.

D. Actividad Química.

En este trabajo únicamente se lograron probar dos muestras con respecto a su actividad para la desintegración de cumeno, 4A 7 7A, de las cuales, la segunda dió una mayor conversión, posiblemente debido a que el tratamiento térmico usado en este caso dió lugar a una mayor distribución de los centros activos, así como el hecho de que para la muestra $7A_1$ se trabajó en condiciones tales que no hubo evaporación de agua durante el tratamiento con H_2SO_4 , lo cual si sucedió --

-56-

con la muestra 4A, hecho que posiblemente haya i fluido en las características de acídez de la superficie.

E. Microscopio electrónico de barrido.

Tomando en consideración las microfotografías mostradas en las figs. 4.27 y 4.28, se puede observar que la -forma de las partículas es esférica y su tamaño promedio es aproximadamente de 5.48**u**.Así, como también se observa que -los poros que es posible definir, en su mayoría son macroporos, la forma de los mismos no es posible precisarlas por este método.

CONCIUSIONES Y RECOMENDACIONES

A. Conclusiones.

De acuerdo con lo expuesto en el capítulo anterior, fue necesario recurrir a un segundo método de preparación, con el cual si fue posible aumentar considerablemente el área superficial, por lo que se consideró, por el momento, el método adecuado para tratar arcillas naturales de composición química semejante. Además se pudo comprobar la suposición -teórica hecha en el primer capítulo, de que a medida que se aumenta la concentración de ácido hasta un máximo de 30% en peso, es posible aumentar el área superficial, pero para lograr tal propósito, también es necesario fijar una temperat<u>u</u> ra de tratamiento térmico, por lo que también se puede con-cluir que a medida que se disminuye la temperatura de tratamiento térmico desde 700 hasta un mínimo de 400 °C, se obti<u>e</u> ne un área superficial mayor.

El método consiste en mezclar partes proporciona-les de arcilla natural y ácido sulfúrico al 30% en peso, en un reactor batch a 80 $^{\circ}$ C con agitación constante durante 6 horas, posteriormente se trata la mezcla térmicamente a 400- $^{\circ}$ C durante 6 horas.

Otra de las suposiciones hechas en el primer capítulo fue que mediante el tratamiento químico es posible remo ver átomos de aluminio de la red cristalina que se encuen--tran formando enlaces octahédricos, tal propósito se logró con la arcilla natural que en un principio tenía una estructura correspondiente a la caolinita y finalmente se obtuvo -

-58-

la cristobalita secún revelan los análisis por ravos X. Además esto trae como consecuencia una disminución en el tamaño de poros, lo cual se pudo comprobar al hacer pruebas de densidad real, en las cuales a medida que aumenta el área supe<u>r</u> ficial, el volumen de los poros disminuve.

Como no siempre resulta que las muestras de mejor área superficial son las que tienen mayor actividad química, fue necesario hacer pruebas de dicha característica para determinar la conversión de Cumeno a Benceno bajo ciertas condiciones de operación sin tomar en cuenta fenómenos de tran<u>s</u> ferencia de masa y calor externos e internos a nivel reactor y a nivel partícula catalítica.

En este caso la conversión fue mayor para la muestra que tenía relativamente menor área superficial, pero cuyo tratamiento químico hacía suponer que tuviera mejores características de acidez superficail, dado que dicho trata--miento se llevó a cabo bajo condiciones perfectamente contr<u>o</u> ladas y con una concentración constante de H_2SO_A .

En resumen, a partir de los resultados obtenidos podemos concluir lo siguiente :

- Se logró un método de preparación de catalizadores sílice alúmina a partir de caolines mexicanos, que requiere utilizar ácido sulfúrico al 30% en agua para el tratamiento químico y una temperatura de calcinación de 400 °C.
- El área superficial de la arcilla natural una vez prepara da por el método arriba mencionado, sufrió un aumento con siderable con respecto a la arcilla original. El valor -del área superficial alcanzado fue de 220 m²/gr.

-59-

- 3. Por medio de rayos X se logró verificar el cambio sufrido por la arcilla natural en lo que respecta a la red crista lina de caolinita a cristobalita.
- De acuerdo con las microfotografías tomadas en el M.E.B. se obtuvo un valor promedio de tamaño de partícula.de - -5.48 u. Así como, la forma de la partícula que fue esfér<u>i</u> ca.
- 5. Con los resultados de densidad real fue posible comprobar que a medida que aumenta el área superficial, disminuye el volumen de los poros, como consecuencia de un aumento en la porosidad.
- Como resultado de las pruebas de actividad para desinte-gración de cumeno, se logró obtener conversiones hasta de un 98% a benceno.
- B. Recomendaciones.
- Para poder corroborar los resultados de actividad es nec<u>e</u> sario probar todas las muestras que se prepararon, y con ello verificar cual de ellas es la mejor para la reacción de desintegración.
- Cabe mencionar que en este trabajo, no fue posible obte-ner isotermas de adsorción, con las cuales se logran re-sultados de forma, tamaño, y distribución de los poros; tales resultados se podrían comparar con los obtenidos en

el M.E.B. por lo tanto es necesario efectuar tal determinación.

3. Es de suma importancia determinar la distribución de los centros ácidos en la superficie, por lo cual, es necesario hacer dichas determinaciones por alguno de los méto-dos conocidos.

APENDICE A.

Curva de calibración de rotámetro y velocidades de flujo de alimentación para $\mathrm{N}_2.$

Condiciones de Operación para N_2 en c.c./min

FIG. 1. A CURVA DE CALIBRACION DE ROTAMETRO A 1 AT Y 20 °C

-63-

APENDICE B.

Datos Calculados para obtener valores de área su-perficial.

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	1	
35 645000000			
28.3800000000	16.0576081173	0.0596686871	0.4893103448
30.8750000000	18.1149158981	0.0628348955	0.5323275862
33.4300000001	19.1244239816	0.0711447499	0.5763793103
36.040000000	21,2414592298	0.0772623829	0.6213793103
38.4300000001	23.3127098592	0.0842338789	0.6625862069
41.3795999999	25,9616873506	0.0959017542	0.7134482759

.

TABLA 1.b

TABLA 2.b

PRESIONES	VOL. ADSORBIDO	P/V*(PO-P)	Р/РО
	<u>Muestra II</u>		
15.075000000			
11.0449999999	5.2085528373	0.0451613381	0.1004310345
12.0250000000	5.5303249585	0.0472947241	0.2073275862
13.330000000	5.8013981598	0.0514376980	0.2298275862
14.6749999999	5.8748855619	0.0576554183	0.2530172414
.16.040000000	6.3043145157	0.0606360654	0.2765517241
17.6100000000	6.6261932160	0.0657993203	0.3036206897

-66-

- 11 a

PRESIONES	VOL. ADSORBIDO	P/V*(PO-P)	P/P0
	Muestra 2 A		
24.2949999999			
18.44499999999	11.1176392640	0.0419435024	0.3180172414
20.7300000000	11.8952776381	0.0467590120	0.3574137931
22.640000000	12.3946095316	0.0516572540	0.3903448276
24.2100000000	13.0352213557	010549652474	0.4174137931
26.085000000	13.7458637691	0.0594598702	0.4497413793
28.1150000000	14.3060621262	0.0657604416	0.4847413793

-67-

TABLA 4.b

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	<u>3 A</u>	α.
21.8450000000			
16.7600000000	7.7410070361	0.0524998298	0.2889655172
18.44499999999	8.0869156839	0.0576626179	0.3180172414
20.4750000000	8.6544973846	0.0630465547	0.3530172414
22.5300000000	9.1195868618	0.0696505963	0.3884482759
24.04499999999	9.7550640854	0.0725923607	0.4145689655
25.9349999999	10.3279511344	0.0783142573	0.4471551724

-

-68-

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	4 A	
20.6500000000			
8.6550000000	27.2318844378	0.0064408951	0.1492241379
10.0900000000	28.2057718383	0.0074666708	0.1739655172
11.1949999999	29.4382335575	0.0081245389	0.1930172414
12.5100000000	30.5622839481	0.0089981984	0.2156896552
13.9150000000	31.9150331878	0.0098900176	0.2399137931
15.3650000000	33.0612827684	0.0109005045	0.2649137931

-69-

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	5 A ₁	
20.9399999999			
12.5649999999	18.7369468595	0.0147595506	0.2166379310
14.0900000000	19.3525496271	0.0165809483	0.2429310345
15.7749999999	20.1666697632	0.0185253117	0.2719827586
.17.3650000000	21.1115951542	0.0202420025	0.2993965517
19.0750000000	22.0184662140	0.0222560897	0.3288793103
20.4500000000	22.9574483708	0.0237224617	0.3525862069

.

-70-

VOL. ADSORBIDO	P/V*(P0-P)	P/P0
Muestra	5 A ₂	
14.2841517109	0.0239080158	0.2545689655
14.9556293036	0.0264722090	0.2836206897
15.7102585156	0.0286552428	0.3104310345
16.4484246315	0.0318394896	0.3437068966
17.4211910067	0.0336371637	0.3694827586
18.1470410557	0.0370547285	0.4020689655
	VOL. ADSORBIDO <u>Muestra</u> 14. 2841517109 14. 9556293036 15. 7102585156 16. 4484246315 17. 4211910067 18. 1470410557	VOL. ADSORBIDO P/V*(P0-P) Muestra 5 A2 14.2841517109 0.0239080158 14.9556293036 0.0264722090 15.7102585156 0.0286552428 16.4484246315 0.0318394896 17.4211910067 0.0336371637 18.1470410557 0.0370547285

•

TABLA 7.b

•

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	5 A3	
22.8400000000			
14.7849999999	17.3163839706	0.0197573914	0.2549137931
16.5750000000	18.5016101893	0.0216262637	0.2857758621
18.3149999999	19.3119154840	0.0238976494	0.3157758621
19.9049999999	20.2032069613	0.0258627017	0.3431896552
21.7100000000	21.1986523060	0.0282204935	0.3743103448
23.3700000000	22.2447115708	0.0303374757	0.4029310345

TABLA 8.b

•

۱

.

TABLA 9.b

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	6 A ₁	
21 4650000000			
11 060000000	22 1506262127	0.0101727224	0 1006806552
11.080000001	23.1590302137	0.0101737324	0.1906890552
12.745000000	24.4138364826	0.0115355217	0.2197413793
14.2900000000	25.5017698947	0.0128197956	0.2463793103
15.7400000000	26.3959879376	0.0141103347	0.2713793103
17.3400000000	27.6400552612	0.0154291788	0.2989655172
18,8400000000	28.5628051859	0.0168436946	0.3248275862

TABLA 10.b

PRESIONES	VOL. ADSORBIDO	P/V*(PO-P)	P/P0
	Muestra	6 A ₂	
21.9900000000			
12.6350000000	19.7059746775	0.0141337176	0.2178448276
14.4350000001	20.9813897513	0.0157922794	0.2488793103
16.1650000000	22.0946266486	0.0174883674	0.2787068966
17.740000000	23.0231112534	0.0191388497	0.3058620690
19.490000000	24.3503345414	0.0207842036	0.3360344828
21.095000000	25.3228827521	0.0225725787	0.3637068966

-74-

. . .

•

TABLA 11.b

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	6 A ₃	
20.6750000000			
10.3350000001	22.9757827548	0.0094371437	0.1781896552
11.8350000001	23.9484217138	0.0107047992	0.2040517241
13.4500000001	25.2574267258	0.0119532355	0.2318965517
14.8700000000	26.6801550166	0.0129223995	0.2563793103
16.5700000001	28.0396887731	0.0142637719	0.2856896552
18.3250000001	29.0453318299	0.0159019618	0.3159482759

-75-

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra 7 A_1		
23.805000001			
10.4250000000	24.0713468709	0.0091032585	0.1797413793
11.8550000001	25.0025158339	0.0102752689	0.2043965517
13.3550000001	25.8548740136	0.0115698743	0.2302586207
14.9250000000	26.8808965198	0.0128897741	0.2573275862
16.460000001	27.7619490859	0.0142729382	0.2837931035
17.990000000	28.7881022103	0.0156188688	0.3101724138

-76-

TABLA 12.b

TABLA	13.b

PRESIGNES	VCL. ADSORBIDO	P/V*(P0-P)	P/P0
	Muestra	7 A ₂	
22.630000000			
11.3400000001	22.0523944781	0.0110207860	0.1955172414
12.7300000001	22.9476589594	0.0122540465	0.2194827586
14.010000000	23.7699272510	0.0133985043	0.2415517241
15.540000000	24. 5007789067	0.0149379545	0.2679310345
16.9350000001	25.2315647781.	0.0163444078	0.2919827586
18.4800000001	25.6772490784	0.0182111150	0.3186206897

TABLA 14.b

PRESIONES	VOL. ADSORBIDO	P/V*(PO-P)	P/P0
		*	
	Muestra 7 A3		
21.0150000000			
10.505000000	24.0700201221	0.0091890732	0.1811206897
11.885000000	25.2261781394	0.0102165794	0.2049137931
13.3050000001	26.2423183055	0.0113436740	0.2293965517
14, 9700000001	27.1961972609	0.0127921125	0.2581034483
16.630000000	28.2191072209	0.0142450330	0.2867241379
18.035000000	29.3502162184	0.0153753505	0.3109482759

•

TABLA 15.b

PRESIONES	VOL. ADSORBIDO	P/V* (PO-P)	P/P0
	Muestra	8 A ₁	
21.8850000000			
8.8050000001	27.9942093404	0.0063935224	0.1518103448
10.0600000001	27.8875942982	0.0075246950	0.1734482759
11.2800000000	28.0654868366	0.0086026784	0.1944827586
12.6050000000	28.0208349181	0.0099095460	0.2173275862
13.8250000001	27.9965372670	0.0111785188	0.2383620690
15.090000001	28.0649179170	0.0125304581	0.2601724138

-79-

ΤA	B	LA	1	6.	b

.

PRESIONES	VOL. ADSORBIDO	P/V*(p0-P)	P/P0
	Muestra	8 A ₂	
21.3650000000			
8.4399999999	25.2367189681	0.0067480495	0.1455172414
9.605000000	26.3347758251	0.0075364574	0.1656034483
10.7250000000	27.2298121210	0.0083314601	0.1849137931
12.830000000	28.7013034369	0.0098963477	0.2212068966
14.030000000	29.7883035787	0.0107116268	0.2418965517
15.4150000000	30.4559132736	0.0118854396	0.2657758621

.

.

.

. . .

.

TABLA 17.b

PRESIONES	VOL. ADSORBIDO	P/V*(P0-P)	P/P0
		~ .	
	Muestra	<u>8 A3</u>	
24 755000000			
14.0600000001	56.8429088760	0.0159152665	0.2424137931
15.3400000000	58.7005787304	0.0173191696	0.2644827586
17.2200000000	53.4109366474	0.0223522204	0.2968965517
18.6800000001	63.5250633496	0.0211438075	0.3220689655
20.4600000000	66.4648462848	0.0231837826	0.3527586207
21.9900000000	68.8001465416	0.0250944502	0.3791379310

APENDICE C.

Secuencia de Cálculo utilizada para obtener valo-res de densidad real.

- (1) mq = (mp + mq) mp(2) Vq = mq/dq(3) dq = S grav. (20 °C) x gr/c.c. (4) $mq_1 = m_t - (m_c + m_p)$ (5) $Vq_1 = mq_1/dq$ (6) $Vc = Vq - Vq_1$
- (7) dc = mc/Vc

APENDICE D.

Balance de materiales pars obtener gasto de ali--mentación de cumeno.

1. Cálculo de gasto de cumeno

(1)
$$q_{t}^{*} = qn_{2} + qc$$

(2) $qn_{2} Yn_{2} = q_{t}^{*} Yn_{2}^{*}$
(3) $qc = q_{t}^{*} Yc$
(4) $Yn_{2}^{*} + Yc = 1$
(5) $Yn_{2}^{*} = 1 - Y_{c}^{*}$ (5) en (2)
(6) $qn_{2} Yn_{2} = q_{t}^{*} (1 - Y_{c}^{*})$
(7) $q_{t}^{*} = qn_{2} Yn_{2}$
(1 - Y_{c}^{*} (7) en (1)
(8) $qn_{2} Yn_{2} = qn_{2} + qc$
(1 - Y_{c}^{*} Si $Y_{n2} = 1$
(9) $qc = qn_{2} (1 - Y_{c}^{*})$

2. Cálculo de fracción mol de cumeno.

(10)
$$Y_c^* = \frac{P_c^*}{P_c}$$

como $P_c^* = P_t^*$
(11) $Y_c^* = \frac{P_c^*}{P_t}$

NOMENCI ATURA

mp.	masa de picnómetro vacío (gr)
mp + mq.	masa de picnómetro con querosina (gr)
mg.	masa de q uerosina (gr)
Vq.	Volumen de querosina (c.c.)
dq.	densidad de querosina (gr/c.c.)
mt.	masa de picnómetro con querosina y catalizador (gr)
mc.	masa de catalizador (gr)
Vq ₁ .	Volumen desplazado de querosina (c.c.)
mq1.	masa desplazada de querosina (gr)
de.	densidad real (gr)
q * .	gasto de cumeno y nitrógeno (c.c./min)
qn ₂ .	gasto de nitrógeno a la entrada del saturador (c.c./min)
gc.	gasto de cumeno (c.c./min)
Yn ₂ .	fracción mol de nitrógeno a la entrada
Yn ₂	fracción mol de nitrógeno a la salida del saturador
Yc	fracción mol de cumeno a la salida del saturador
Pc	Presión parcial de cumeno (mm Hg)
Pr	Presión total (mm Hg)
Pc	Presión de vapor de cumeno (mm Hg)

ABREVIATURAS.

- B.E.T. Brunauer, Emmett & Teller
- M.E.B. Microscopio electrónico de barrido.
- C.C. Centímetros cúbicos

)

-84-

BIBI IOGRAFIA

- 1. Emmett Paul H. Measurement of the surface area of solid -catalysts. Chapter 2. Catalysis.
- 2. Fikry H. Khalil. Preparation of cracking catalyst from local clys. Seventh Arab. Petroleum Congress.March 1970.
- 3. Nicholson D.E. Catalyst activity in Cracking of pure hydro carbons. I.E.Ch. June 1955, Vol. 47, No. 6.
- Rodney V. Silankland. Advances in Catalysis Vol. V, 1954. Academic Press. New York.
- William A. Stover and Warren. S. Briggs. Clay Craking cata lyst. Patent U. S. 3, 123, 575, March 3, 1964, Appl, aug. 29, 1961; 4 p.p. (1964, Vol. 60, p15661 a).
- Ordoñez González Carlos R. Estudio monográfico de la viabi lidad del empleo del Caolín como catalizador tipo Sílicealumina. Tesis l. Q. 1974. U.N.A.M.
- 7. Smith J. M. Chemical Engineering Finetics 2nd. Edition. Mc. Graw Hill Book Company.
- 8. Charles 1. Thomas, John Hickey, and Glen Stecker. Chemestry of Clay Cracking catalystas, J.E.CH. may 1950, vol. 42, 165.
- 9. Thomas E. Everhart and Thomas 1. Hayes. the Scanning electron microscops.
- 10. Terán Flores Pamiro y Olmos García Felipe. Determinación de la estructura Porosa de Catalicadores a b<u>a</u> se de V_2O_5 . Tesis I.Q. 1973. U.N.A.M.
- 11. Lopez Munguia Agustin. Tesis I.Q. 1974. U.N.A.M.