

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

PROCESO PARA ELABORAR ESPECIFICACIONES DE
MATERIALES, EMPLEADOS EN EL DISEÑO Y CONSTRUCCION
DE SISTEMAS DE TUBERIAS DE ACERO, PARA PLANTAS
INDUSTRIALES

TESIS PROFESIONAL

OUE PARA OBTENER EL TITULO DE:
INGENIERO MECANICO ELECTRICISTA
PRESENTA :
ANASTACIO GONZALEZ OLIVARES

DIRECTOR DE TESIS: ING JESUS ROVIROZA LOPEZ

MEXICO, D. F.

FALLA DE ORIGEN

1991

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

	사람이 되었다. 경기에 있어야 함		
	실어 연구되는 사회 강하는 화가를 다 다		
	INDICE		
			Pag.
	INTRODUCCION		
	CAPITULO I CONSIDERACIONES BA	SICAS	5
	CAPITULO II CODIGOS Y NORMAS		12
2.1.	Codigos, Estándares y/o Especificac	iones	15
	de Referencia		
2.2.	Descripción de Códigos y Estàndares		18
	CAPITULO III PROCEDIMIENTOS Y	METODOS	
	DE SELECCION		25
3.1	Lista de Fluidos		26
3.2.	Codification		29
3.3.	Selección de Material		32
3.3.4.	Factores que determinan la Selecció	in .	63
	de Materiales	San San San	
3.3.5.	Pasos Necesarios en la Selección de		66
	Materiales		
3.3.6.	Tablas generales de Selección Rápid	a	70
3.3.7.	Tablas de Especificaciones ASTM	The same of the same of	80
	mas usuales.		
3.3.8.	Materiales más usuales para Cuerpos	•	84
	Bonetes e Interiores de Válvulas	1982	

		Maria da Ma	A Sauce of the
		되는 이렇게 되고 있는데 그래요?	
		요일 내가 보고 없는 살아왔다. 그렇게 그릇	
3.	.4.	Rangos de Temperatura-Presión	92
3.	.5.	Corrosión Permisible	114
3,	.6.	Tipos de Extremos en Válvulas	116
		Conexiones y Tuberia.	
3.	.7.	Selección de Bridas	119
3.	.в.	Cálculo del Espesor de Pared en una Tubería	125
		bajo Presión Interna	
3	.9.	Selección de Conexiones	136
3	.10.	Selección de Válvulas	137
3.	.11.	Selección de Empaques	155
3	.12.	Selección de Espárragos y Tornillos	170
3	.13.	Notas Table 1	175
3	.14.	Accesorios Especiales	179
3	.15.	Concentrado de Información	181
		CAPITULO IV EJEMPLO	183
		CAPITULO V CONCLUSIONES	218
		DIBLINGBAFIA	222

INTRODUCCION

Actualmente existen dos retos que debe de superar la Tecnologia Nacional. Uno, la crisis económica que no le permite alcanzar los niveles requeridos por el país, y el otro, el defasamiento existente en cuanto al avance tecnológico universal.

Anteriormente el atraso tecnológico se incrementaba importando tecnología, creando con esto un abismo entre los países desarrollados y el nuestro.

Dadas estas condiciones, en el área de diseño de plantas indus triales gran parte de la tecnología se importo.

Asi, en cuanto a la especificación de materiales para tubería se refiere, tenemos que:

En las plantas petroquímicas, de refinación del petróleo, en - la industria de generación de fuerza, en la industria azucarga ra, alimenticia, del cemento, etc. se tienen normas y especificaciones que inicialmente se importaron como tecnología y - que con el paso del tiempo se van acondicionando por las necesidades y características mismas de cada proceso.

Actualmente en las firmas de ingenieria, donde se desarrolla -

el trabajo de diseño y construcción de plantas industriales, - además de consultoria y asesoramiento. Cuando se hace el trabajo de especificar material para tubería, se realiza de la siguiente forma.

Por las necesidades mismas de cada proyecto y dada la amplia - gama de proyectos, además de su experiencia en estos mismos se desarrolla un trabajo de selección de especificaciones, tomando como base la similitud de las características y de las variables del fluido en estudio.

En segundo término si dentro de su amplia gama de especificaciones no se encuentra la que se adapta a las características y a las variables del fluido en estudio, se procede a elaborar una especificación que satisfaga estas condiciones.

Esta elaboración de específicaciones actualmente se desarrolla sin un procedimiento establecido , sino que se elabora en función de la experiencia del ingeniero que esta haciendo la específicación de materiales de tubería , esto trae consigo altos costos de horas-hombre de ingeniería, y posiblemente la específicación de materiales para tubería no sea la óptima, dado que al elaborar la específicación también debe de improvisar un mé

todo de elaboración de especificaciones.

En virtud de lo anterior, y tomando en cuenta la importancia — que se le debe dar a las especificaciones de materiales para — tuberias, de las cuales se obtendrá toda la información requerida para el diseño, adquisición e instalación de los siste_ — mas, éste trabajo tiene como objetivo fundamental presentar un proceso para la elaboración de especificaciones de materiales para tuberia, basándose en consideraciones básicas, códigos, — normas, descripción de procedimientos, métodos de selección — así como un ejemplo y conclusiones.

CAPITULO I CONSIDERACIONES BASICAS

CONSIDERACIONES BASICAS

Todo trabajo de ingenierla requiere de una base, en la cual se fundamente su desarrollo. En función de esto se establecen un conjunto de consideraciones básicas , las cuales son una serie de lineamientos a seguir para elaborar unas especificaciones.

1.1 MATERIALES

Los materiales que se especifiquen deberán de satisfg cer los requerimientos del proceso tales como:

- A) Resistencia Mecanica
- B) Resistencia Química o a la corrosión
- C) Satisfacer condiciones por presión y temperatura.. etc.

1.2 CODIGOS Y NORMAS

La elaboración de especificaciones de materiales para tubería, se hará en base a códigos y normas relaciona cionados con este tema, los cuales describen los minimos requerimientos para el diseño, materiales, fabricación, erección, pruebas e inspección.

Una referencia definida a un código o a una norma eli

mina el tener que hacer largas descripciones de los métodos de diseño y fabricación.

1.3 OPERACION Y MANTENIMIENTO

También se debe de tomar en cuenta, los requerimien tos de operación y mantenimiento, tales como facilidad en el desmantelamiento de las tuberías cuando éste se requiera, el uso de operadores con engranes para válvulas de gran diámetro, selección de válvulas para venteos y drenajes. etc.

1.4 DISPONIBILIDAD DE MATERIAL

Otro aspecto que se debe considerar es la facilidad en la adquisición de los materiales, puesto que en muchas ocasiones se especifican materiales que son difíciles de adquirir, y que se tienen que importar, ocacasionando largos tiempos de entrega que pueden atrasar la construcción y además por la naturaleza de los mismos sus partes de repuesto sean de difícil obtención, entorpeciendo la operación y mantenimiento de la planta.

En tales casos es preferible buscar algún material -

que lo sustituya y que sea de fàcil adquisición -

.5 FACTOR ECONOMICO

Un factor importante es el económico y muchas veces es el que decide la elección entre varios materiales
que satisfacen los requerimientos de proceso. Tam_ bién se puede buscar economía en otras característi_
cas de los materiales, por ejemplo para servicios no
criticos sin costura, puesto que la primera es menos

También se puede específicar el usar insertos en lugar de tees, con lo cual se ahorrará en el costo de la conexión y en dos soldaduras, otro caso, en tube_ rías de diámetros mayores, sería emplear válvulas sol dables en lugar de válvulas bridadas, evitándose así el uso de dos bridas y ahorrándose en el costo de la válvula etc.

Otros ejemplos como estos se podrían citar, sin embar go en cada caso en particular se deberá analizar silas condiciones de proceso, operación y mantenimiento de la planta lo permiten.

1.6 DUPLICIDAD DE FUNCIONES

También durante la elaboración de las especificaciones de materiales para tubería hay que eliminar aquellos materiales que tengan duplicidad en sus funciones, por ejemplo; especificar válvulas de compuerta y mariposa para el mismo diâmetro de tubería, cuando ambas válvulas tiene como función bloquear las tuberrias.

Otro punto es especificar hasta donde sea posible .-solo el material requerido ; pues en varias ocasiones
se especifican materiales para tuberías hasta 24" de
diametro, cuando solo se requieren hasta 6" de diame-

Con todo lo anterior se ahorrarà tiempo y recursos en la ingenieria y se evitaràn posibles confusiones du rante la aplicación de las especificaciones de materiales para tubería.

1.7 CRITERIO LOGICO EN LA VARIEDAD DE LOS MATERIALES

Al preparar un grupo de especificaciones de materia_ les para tubería es recomendable evitar demasiada variedad en los materiales de las mismas y tratar de usar hasta donde sea posible materiales idénticos -para diferentes servicios. Es decir, suponiendo que se estén elaborando especificaciones de materiales para tubería a emplear en servicios de vapor, agua y aceite combustible v estos tienen semejantes condicio nes de temperatura y presión, entonces puede ser posi ble usar el mismo tipo de valvulas, conexiones y tube ría en lugar de específicar para cada servicio los ma teriales para las tuberías con ligeras variantes. Lo mismo puede suceder en el caso donde en varias especi ficaciones se requieran tuberlas sin costura con cédu la 40, y existe una que requiere tubería con costura cédula 30, de la cual se estima que su cantidad no sea importante; en tal situación conviene especificar en todos los casos tubería sin costura con cédula 40, aunque aparentemente el costo sea superior. El agrupar varios servicios en una sola especificación y evi tar la variedad en los materiales , tal como se ejem_ plificó en los casos antes citados, tendrá como conse cuencia un ahorro significativo durante la ingenie_ ría, compra y construcción de la planta y a largo pla zo en el costo de los materiales, puesto que al haber menos variedad de materiales, las partes de repuesto para los mismos disminuirán considerablemente.

1.8 ALCANCE DE LA INFORMACION DE UNA ESPECIFICACION

Por último, una especificación de materiales para tubería, debe contener toda la información necesaria para el diseño, adquisición e instalación de las tube rías para una planta industríal.

Esta información se puede dividir en dos partes, la primera en donde se proporciona la información general de la especificación tal como: codificación, servicio, material, condiciones de temperatura, presión, factor de corrosión permisible, etc., y la segunda en donde se proporcionan todas las catacterísticas de material espesor o clase, extremos, interiores, etc., para tuberia, conexiones, bridas, válvulas, empaques y tornillos.

En las siguientes secciones se describirán con detalle como obtener toda la información necesaria para elaborar una especificación de materiales para tube_ ría. CAPITULO II

CODIGOS Y NORMAS

CODIGOS Y NORMAS

El 7 de Febrero de 1904, una gran parte de la Ciudad de Balti_
more fue destruida por el fuego. El servicio contra incendios
pidió la ayuda del servicio de bomberos de la próxima Ciudad de Washington, así como de Nueva York y Philadelphia, aunque estas ciudades respondieron ràpidamente a la llamada no pudieron hacer mucho debido a que las conexiones de las mangueras de las otras ciudades no podían ser conectadas a las tomas de
agua de Baltimore. Este hecho histórico nos muestra la necesi
dad de una normalización o standarización; no siempre es tan dramático pero si es una imperiosa necesidad para la indus_ tria moderna.

En 1918 cinco de las mayores sociedades de ingeniería se unieron para formar la llamada American Standards Association -
(ASA) ahora American National Standards Institute (ANSI). Esta asociación consiste en más de 100 sociedades técnicas y comerciales a las cuales sirve legalmente como dueños y utilizadores. Los fondos de mantenimiento son previstos fundamentalmente por las compañías miembro.

Para comprender las funciones de la ANSI antes ASA es necesa_rio situarse a principios del siglo XX cuando el imperio indug
trial americano en crecimiento y sus más vanguardistas compa_

Mias sintieron la necesidad de una normalización.

Ciertos problemas de diseño que requieren la aplicación de un cierto juicio en su solución y aparecen con frecuencia, precisan de un criterio común de los expertos de una determinada — compañía, con lo cual se ahorran muchas horas—hombre de diseño y costosos retrasos que podrían haber aparecido a causa de la indesición. Además de esto, la normalización de las partes y componentes normalizados no solo aseguran el éxito de la fabricación en masa, sino también incrementan la confianza del — cliente en el equipo para el cual se pueden encontrar rápidamente partes intercambiables.

El standard de tubería más importante y de uso más frecuente — es el código para tuberías a presión ANSI B31. Este código es una guía de los minimos requerimientos de diseño, tal como per mitir al diseñador hacer rápidas decisiones en los problemas — de diseño con la seguridad de que estas decisiones serán aceptadas no solamente por sus colegas, sino también por las autoridades.

Aunque su utilización no está sancionada por ninguna ley, es de aceptación general, lo cual le hace de una valiosa ayuda al diseñador. 2.1 CODIGOS, ESTANDARES Y/O ESPECIFICACIONES DE REFERENCIA.

Las especificaciones de materiales para tuberlas normalmente hacen referencia a algunos de los siguientes códigos, estándares y/o especificaciones.

2.1.1 ANSI (American National Standards Institute) (Instituto Nacional Americano de Estandares).

Los estandares y códigos ANSI anteriormente ASA (American Standards Association), se dividen básicamente en dos partes, la primera compuesta de varios estanda res que establecen las dimensiones, tolerancias, rangos de presión, marcado, requerimientos de bisel, tipos de rosca, etc., para tubería, conexiones, bridas, válvulas, empaques y tornillería; y la segunda parte constituída por varios códigos que describen los requerimientos mínimos para el diseño, materiales, fabricación, erección, pruebas e inspección para sistemas de tuberías.

2.1.2 ASME (American Society of Mechanical Engineers) (Sociedad Americana de Ingenieros Mecánicos)

> Los códigos ASME abarcan los materiales, métodos de manufactura, pruebas de materiales, diseño y cálculo

de recipientes y sistemas de tuberias que caen dentro de su jurisdicción.

2.1.3 ASTM (American Society for Testing and Materials)
(Sociedad Americana para Pruebas y Materiales)

Las especificaciones ASME cubren materiales, métodos de manufactura, tratamiento térmico, pruebas, toleran cias dimensionales, etc. para materiales en general.

2.1.4 API (American Petroleum Institute)
(Instituto Americano del Petroleo)

Los estandares API establecen requerimientos, de materiales, métodos de manufactura, tolerancias dimensionales, etc. para sistemas de tuberías relacionados — con la industria petroquímica.

2.1.5 AWWA (American Water Works Association)
(Asociación Americana para trabajos del agua)

La AWWA cubre normalmente todo lo relacionado para - sistemas de conducción de agua.

2.1.6 MSS (Manufacturers Srandarization Society)
(Sociedad de Manufactureros para la Estandarización).

Los estandares de la MSS proveen los requerimientos de los materiales, dimensiones, tolerancias, etc., de
la Industria productora de válvulas, bridas, conexio-

2.1.7 AISI (American Iron and Steels Institute)
(Instituto Americano del Hierro y los Aceros)

Las normas AISI determinan la composición química de algunos aceros, sobre todo aceros inoxidables.

Estas normas en conjunto con las normas ASTM definen y especifican un material.

2.2 DESCRIPCION DE CODIGOS Y ESTANDARES

A continuación se describen algunos de los códigos y estandares más usuales en las específicaciones de materiales para tuberías.

2.2.1 CODIGOS ANSI PARA TUBERIAS A PRESION

- ANSI B31 Formado por 8 secciones que son:
- ANSI B31.1. (Power Piping) Tuberias para Gas Combust<u>i</u>
- ANSI B31.2 (Fuel Gas Piping) Tuberlas para Gas Com_ bustible.
- ANSI B31.3 (Petroleum Refinery Piping) Tubería para Refinerías de Petroleo.
- ANSI B31.4 (Liquid Petroleum Transportation Piping
 Systems) Sistemas de Tuberías para Trans
 portación de Petrólero Líquido.
- ANSI B31.5 (Refrigeration Piping System)

 Sistemas de Tuberlas para Refrigeración.
- ANSI B31.6 (Chemical Process Piping) Tuberlas para Procesos Químicos.
- ANSI B31.7 (Nuclear Power Piping) Tuberias para

 Plantas Nucleares.
- ANSI B31.8 (Gas Transmission and Distribution Piping

Systems) Sistemas de Tuberias para Transmisión y Distribución de Gas.

2.2.2. RELACIONADOS A TUBERIA

ANSI A21.6, A21.7, A21.8 y A.21.9 Diferentes tipos de Tuberlas de Fierro Fundido.

ANSI A40.5 Tuberia de Fierro Fundido Roscado para Dre najes, Venteos, etc.

ANSI BZ.1 Roscado en Tuberias.

ANSI 836.10 Tuberlas de Acero y Hierro Forjado

ANSI B36.19 Tuberías de Acero Inoxidable

API 5L Características para Tuberías de Acero

API 5LX Características y Pruebas Rigurosas para tub<u>e</u>
rías de acero.

AWWA C102, C106 y C108 Tuberias de Fierro Fundido -

2.2.3 RELACIONADOS A CONEXIONES Y BRIDAS

ANSI B16.1 Bridas y Conexiones Bridadas de Hierro Fundido.

- ANSI B16.3 Conexiones Roscadas de Hierro Maleable de
- ANSI Bl6.4 Conexiones Roscadas de Hierro Fundido de 125 y 250 Lbs.
 - ANSI 816.5 Bridas y Conexiones Bridadas de Acero
 - ANSI Bib.9 Conexiones Soldables de Acero
 - ANSI B16.11 Conexiones Roscadas y Socket-Weld de -Acero.
- ANSI B16.12 Conexiones de Fierro Fundido para Drena-Jes.
- ANSI B16.15 Conexiones Roscadas de Bronce de 125 Lbs.
- ANSI 816.17 Conexiones Roscadas de Bronce de 250 Lbs.
- ANSI 816.18 Conexiones Soldables de Bronce Fundido
- ANSI 816.19 Conexiones Roscadas de Hierro Maleable de 🖓
- ANSI B16.22 Conexiones Soldables forjadas de Cobre y
 Bronce.
- ANSI B16.23 Conexiones de Bronce Fundido para Drena_

ANSI B16.24 Bridas y Conexiones Bridadas de Bronce ANSI Bib.25 Características para Extremos Soldables a tope.

API 6-A Roscas en Valvulas, Conexiones y Bridas

API 6-B Bridas en Lineas de Tuberias

API 605 Bridas de Acero al Carbón de gran diàme_ tro.

AWWA C100 Conexiones de Fierro Fundido

AWWA C207-54T Bridas de Fierro Fundido

MSS-SP-33 Bridas en Lineas de Tuberias

Conexiones Soldables de Acero de gran Dia MSS-SP-48 metro.

MSS-SP-49 Conexiones Forjadas de Acero.

2.2.4 RELACIONADOS A VALVULAS

ANSI-816.10 Dimensiones entre caras y entre extremos de vălvulas.

- API-6-C Válvulas Bridadas de Acero, Compuerta y Macho para Servicios de Perforación y Producción.
- API-6-D . Especificación para Válvulas en Líneas de de Tuberías.
- API-597 Vilvulas de Compuerta de Acero tipo Ventu-
 - API-598 Inspección y Prueba de Válvulas
- API-599 Válvulas tipo Macho de acero
- API-600 Válvulas de Acero de Compuerta Bridadas y Soldables para Servicios en Refinerías.
- API-602 Diseño Compacto para Válvulas de acero de Compuerta para uso en Refinerías.
 - API-603 Válvulas de Compuerta resistentes a la Co-
- API-604 Valvulas de Hierro de Compuerta y Macho -
 - AWWA-C-500 Vàlvulas de Compuerta para Servicios de Aqua.

MSS-SP-6 Acabados en caras de Bridas para Conexiones y Válvulas.

MSS-SP-25 Sistema de marcado para Valvulas, Conexi<u>o</u> nes, Bridas y Uniones.

MSS-SP-37 Valvulas de Bronce de 125 Lbs.

MSS-SP-42 Valvulas Bridadas resistentes a la corrosión de 150 Lbs.

MSS-SP-52 Valvulas de Hierro Fundido

MSS-SP-61 Pruebas Hidrostáticas para Válvulas de acero.

MSS-SP-66 Rangos de Presión y Temperatura para Válvulas de Acero Soldable.

MSS-SP-67 Válvulas de Mariposa

MSS-SP-70 Valvulas de Compuerta de Hierro Fundido
con extremos bridados y roscados.

MSS-SP-72 Valvulas de Bola para usos generales

2.2.5 RELACIONADOS A EMPAQUES Y TORNILLOS

ANSI B1.1 Cuerdas y Roscas para tornillos y tuer_

. .

ANSI B1.4 Cuerdas y Roscas para tornillos y tuer_
cas de alta resistencia.

ANSI B16.20 Empaques tipo Anillo y Ranurado en Bridas de acero.

ANSI B16.21 Empaques no Metálicos

ANSI B18.2 Tuercas y Tornillos con cabezas cuadradas y hexagonales.

CAPITULO III

PROCEDIMIENTOS Y METODOS DE SELECCION

PROCEDIMIENTOS Y METODOS DE SELECCION

Este capitulo está compuesto principalmente de conceptos relacionados con materiales y elementos de tuberia como:

Descripción, características, propiedades, factores y tablas —
todos ellos convenientemente preparados en procedimientos y mé
todos de selección.

3.1 LISTA DE FLUIDOS

El trabajo de elaborar una especificaciones se inicia a partir de la necesidad de determinar como? y con que? conducir varios fluídos en una planta indus trial.

El primer paso a seguir en la elaboración de especificaciones de materiales para tubería es hacer una lista de todos los fluidos que han de ser manejados y sus respectivas condiciones de diseño.

El estudio de esta lista permitirà establecer una serrie de ciertas categorias lògicas, dentro de las cua_ les pueden ser divididas las especificaciones en función de la presión y temperatura de diseño, y los materiales de construccion. Un gran cuidado y juício — debe ser puesto en juego para la selección del número de tales categorías. Un número excesivo haría el diseño, la construcción y el mantenimiento dificil y — costoso, mientras que, por el contrario, un número excesivamente corto produciría un gran costo inicial.

Una sola especificación diseñada para ser aplicable a todas las tuberías de una planta debe ser hecha para las condiciones más severas y en tal caso todas las demás tuberías estarian sobre diseñadas.

Es conveniente por lo tanto, preparar una lista de fluidos para ser usada en conjunción con los materiaa usar, con el fin de determinar las especificacio nes. Estudiando cada material y los fluidos corres_
pondientes es posible desarrollar un agrupamiento logico de fluidos dentro de un número minimo de especificaciones.

Aunque todos los materiales tiene su importancia las bridas, válvulas y tuberia son la clave en la divi_ sión de especificaciones de materiales para tube rías, siendo conveniente considerar las condiciones

mās severās para las primeras.

3.2 CODIFICACION

Existen varias reglas para la codificación de las específicaciones de materiales para tuberia, sin embargo cualquier codificación deberá indicar como mínimo
la presión del servicio, el tipo de material y el número o letra consecutivo. El siguiente sistema indica como codificar una especificación.

Sistema para codificar especificaciones de tubería.

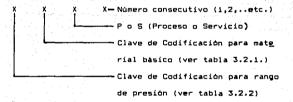


TABLA 3.2.1
CLAVE PARA CODIFICAR MATERIAL DE TUBERIA

CLAVE	MATERIAL	
A	Acero al Carbón	
:. B	Acero Inoxidable	
C	Acero al Carbón Galvanizado	
n	Hierro Maleable	

E	Cobre y Bronce	
	Hierro Fundido	
G	PVC	
H	Fibra de Vidrio (FRP)	
	Acero de Aleación	
J	Aluminio	
κ	Titanio	
	Polipropileno	
М	Asbesto	
N	Hasteloy	
0	Monel	
P	Zirconio	
0	Disponible	
R	Disponible	
s	Disponible	
т	Disponible	

TABLA 3.2.2

CLAVE PARA CODIFICAR RANGOS DE PRESION

CLAVE	RANGO PSIG.
Α	125
В	150
C	250

	ara di Mila Carlotto II di Jakerra ali ku ku k
3 1	
	그렇게 그와 어떤데 함께 하실 그들 하다 다니다.
D	300
	400
	400
	600
	900
日本日本 本計 大学 医乳腺 重点 號 5 电电路 東島 [編	
그러워 하는 그리는 생각이 하다는 살을 바다 사용하다 했다.	1500
	1. 글러워워 내려고 없이 밥이 먹고 있는 이 사람이다.
그리는 그는 그 그리는 그는 어느를 다 가장 시간을 다 살아.	2500
이 그는 경기를 가고 있다면 그는 이 사람이 휴지를 입니다.	
	ille and the file of his superior in the superior of the super
	100
	100
	175
그리는 사고 그림으로 하고 사람은 회사와 가 관련적으	현실 선물학교 문화를 살고하는 하는 그는 것이 되는 것이다.
and the second of the second o	em kan ili de medi de mid ili ili ili eve e legi de de milije sidi gali ili
	网络人名英格兰姓氏 医二角管 医电影电影
and the first of the control of the	
والمنافي والبراء والمنافع والمنافر والمنافرة والمنافع والمنافع والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة	
	and the state of t

3.3 SELECCION DE MATERIAL

Dada la extensa area dentro de la cual se tiene una - amplia gama de materiales usados en Ingenieria, podemos conjuntarlos en dos grupos que son ; metales y no metales.

Dentro de los metales existen los metales ferrosos co mo; acero al carbón, acero de aleación, hierro fundido, etc. y los no ferrosos como; magnesio, cobre, ní_ quel, etc.

Dentro de los no metales podemos agrupar a todos los plasticos y ceramicos.

La interpretación actual del término materiales de Ingeniería incluye la mayoría de los metales y los plás ticos que son solidos y que tienen resistencia razona ble a la temperatura ambiente.

La mayoría de los metales y plásticos se les hace referencia como materiales de ingeniería. Las características de este grupo son las propiedades de relativa resistencia, tenacidad y durabilidad. El vidrio, la ceràmica, la madera, el concreto y los textiles aunque pueden competir con los metales en mu chas aplicaciones, usualmente se les excluyen de esos materiales estructurales debido a una diferencia en la combinación de propiedades, una diferencia en los requisitos de proceso y una diferencia en el tipo de articulos producidos.

Como podemos ver acerca de materiales podriamos escribir varios volúmenes, pero este no es nuestro objetivo y nos enfocaremos principalmente a los más usuales en especificaciones de materiales para tuberia como son; los metales ferrosos.

Ahora bien, en virtud de que las características de los fluidos son muy variables no se puede establecer una regla para la selección del material , pero si se puede establecer un procedimiento el cual se desarrolla en las siguientes etapas:

- 3.3.1 Descripción de los materiales más usuales
- 3.3.2 Efectos de los elementos de aleación en las propiedades finales de los materiales.

- 3.3.3 Tratamientos térmicos del acero.
- 3.3.4 Factores que determinan la selección de materiales.
- 3.3.5 Pasos necesarios en la selección de materiales
- 3.3.6 Tablas generales de selección rápida
- 3.3.7 Tablas de especificaciones ASTM más usuales
- 3.3.8 Materiales más usuales para cuerpos, bonetes e interiores de válvulas.

3.3.1 DESCRIPCION DE LOS MATERIALES MAS USUALES

En una planta industrial, el material más usado para su construcción es el hierro, que aleado con carbono obtenemos el acero, de esto se tiene que; Una alea_ ción es una combinación de dos o más elementos que - poseen propiedades metálicas como; ductibilidad, durg za, resistencia a la corrosión, etc.

Las aleaciones pueden dividirse en dos clases, ferrosas y no ferrosas. Las primeras que tienen como base
el hierro, son las más importantes para nuestro traba
jo y en función de esto menciono algunas caracteristicas muy generales del hierro, para no correr el rissdo de desviarnos del tema.

Una de las características importantes de todos los metales es su cristalinidad, esto es; que sus átomos
están colocados en un órden definido que se repite en
un arreglo tridimensional.

Algunos metales pueden cristalizar en diferentes formas según la temperatura a la que se encuentren, mien tras que otros solo existen con un tipo de cristaliza ción. El hierro es uno de los metales que pueden cristalizar en diferentes formas como se muestra: de tempera tura ambiente y hasta 905 grados centigrados tiene la forma cúbica centrada en el interior y se le designa hierro alfa (o, 1); a esa temperatura la estructura de los cristales cambia a la de cúbica caras centradas conocida como hierro gama (S), la que se conserva hasta 1400 grados centigrados , temperatura a la cual los cristales vuelven a cambiar a la estructura cúbica centrada en el interior o hierro delta (o, 1), forma que se conserva hasta el punto de fusión (1530 grados centigrados).

Sus otras denominaciones de estas fases sólidas son; hierro alfa (α) o ferrita, hierro gama (δ) o austenita y hierro delta (δ) o delta ferrita.

A continuación presento las caracteristicas generales de los materiales más usuales en especificaciones — para sistemas de tubería.

3.3.1.1 ACERO

Es una aleación a base de hierro puro y carbono prin-

cipalmente y a veces otros elementos.

Por su contenido de carbono el acero se clasifica en:

Aceros Hipoeutectóides (Hasta 0.8% de carbono)

Acero Hipereutectóides (De 0.8 a 2% de carbono).

Los aceros Hipoeutectóides (aceros bajos en carbono) son los más importantes del grupo, principalmente a - causa de su alta ductibilidad, tanto en frío como en caliente, lo cual permite que sean procesados en formas con excelente resistencia y tenacidad. Todos los aceros estructurales y para carrocerías de automóviles están dentro de este grupo. La mayoría de las fundiciones en acero también están dentro de esta gama de composiciones.

Los aceros hipereutectóides (acero con alto contenido de carbono) poseen mayor cantidad de la fase de carbono dura y son útiles cuando se requiere mayor resistencia, dureza y resistencia al desgaste.

El acero deberá diferenciarse de las dos clases generales del hierro como son el hierro fundido (alto con

tenido de carburo de 2 a 5%) y los hierros relativamente puros como el hierro dulce o de lingote y el hierro electrolítico (bajo contenido de carbono).

En algunos aceros con contenido extremadamente bajo de carbón, el manganeso es el factor que determina su
diferencia. Un acero contiene por lo menos 0.25% de
MN, mientras que un hierro dulce contiene considerablemente menos.

En general el acero contiene menos del 2% de carbono y con un porcentaje de otros elementos menor de:

		7.
Manganeso		1.65
Fásfora		0.12
Azufre		0.10
Fósforo + Azufre		0.20
Silicio	그 동안 (1. 14년) 11년 (1. 14년)	0.60
Manganeso + Silicio	The second second	2.00
Cobre		0.40
Niquel		0.20
Cromo		0.20
Molibdeno		0.05
Vanadio		0.05

Tungstend	i i waka.						0.20
Cobalto							0.30
Plomo	Harrieri Harrieri	44					0.10
Otros ele	mentos (consi	derado	s			0.10 má
separadam	ente.	4046		William	The said	114 42	

3.3.1.2 FUNDICIONES DE ACERO (STEEL CASTINGS)

Para obtener mayores ventajas de los materiales en su forma final, se emplea el proceso de fundición. el - cual consiste en vaciar el material fusionado con la composición específicada en un molde con las características físicas determinadas, esto con la ventaja de que la fundición no sufrirá procesos mecánicos posteriores.

El acero también se puede obtener en forma de fundición, obteniéndose la ventaja de resistencia a la corrosión ocasionada por soluciones acuosas a temperatura ambiente, de gases calientes y líquidos a temperatura de ebullición arriba de 1200 grados fahrenheit.

Algunos de estos materiales definidos por el ASTM - son: A-27, A-148 y para bajas aleaciones A-216, A-217

A-356, etc.

Estos aceros son usados en; Hornos para la industría petroquímica, cambiadores de calor, turbinas de gas, etc.

Lassfundiciones de acero tienen mayor resistencia al al desgaste que los aceros forjados de similar composición.

3.3.1.3 FUNDICIONES DE HIERRO (CAST IRON)

El termino general hierro fundido incluye al hierro - gris (Gray Iron), fundición blanca (White Iron) y hie rro maleable (Malleable and Nodular Iron).

A) Hierro Gris y Fundición Gris

Son aleaciones de hierro, carbón y silicio, las -cuales contienen un exceso de carbón (1.7 a 4.5% C y 3% Si) y que tienen la designación ASTM A-48, el cual define los diferentes tipos de acuerdo con el esfuerzo a la tensión.

Algunas otras designaciones ASTM además del A-48 -

son:

A-74 (Tuberia)

A-126 (Valvulas, Bridas y Accesorios)

A-142 (Tubo de Alcantarillado) etc.

La resistencia a la corrosión de estas aleaciones se mejora por la adición de niquel, cromo y cobre en combinación con un exceso de silicio mayor del 3%.

B) Hierro Maleable

Son aleaciones de carbón, silicio, manganeso, azufre y fósforo (2.0 a 2.65% C, 0.9 a 1.65% Si, 0.25 al 1.25% MN, 0.05 a 0.18% S y 0.18% P máx.)

Las fundiciones de hierro maleable son seleccionadas porque estos materiales tienen excelente ducti bilidad, otras ventajas son: dureza, resistencia -

La clasificación ASTM para esta fundición es el -A-47 con sus diferentes grados, algunas de sus -aplicaciones son en parte automotrices como suspen

siones, etc., y también en equipo para agricultura y ferroviario.

La resistencia a la corrosión de estas fundiciones se incfrementa por la adición de cobre (generalmen te el 1%).

C) Hierro Fundido Nodular (Nodular Cast Iron)

Su composición es similar a la del hierro gris, y tiene aproximadamente 3.2 a 4.1% C, 1.8 a 2.8% Si, arriba del 0.8% Mn, 0.10% P máx. y 0.03% S máx.

Algunas aplicaciones para el hierro nodular son donde la resistencia al desgaste es importante, tiene mucha resistencia a la oxidación a temperatu
ras elevadas (esta resistencia se incrementa al au
mentar el contenido de silicio) y tiene mayor resistencia a la oxidación que el hierro grís, el acero y el hierro maleable.

Algunas de las designaciones ASTM para este mate_ rial son: A-339-55, A-336-58, A-395-56T etc., y son usados en carcazas de bombas, válvulas, ventiladores etc., su resistencia al choque térmico es importante.

Un alto porcentaje de silicio en los hierros fundi dos, (arriba del 3%) promueve la formación de una película superficial protectiva la cual reduce la oxidación de superficies expuestas a ácidos.

3.3.1.4 ACEROS ALEADOS O ESPECIALES

Son aceros que contienen cantidades significativas de elementos de aleación (diferentes al carbón) los cuales al adicionarse cambian las propiedades físicas y mecànicas del metal, estos elementos son: el fósforo, molibdeno, manganeso, silicio, cobre, cromo y niquel, generalmente estos aceros sufren menor ataque por corrosión que el observado en los aceros al carbón; sin embargo esto depende del tipo y composición seleccionada. Los porcentajes de los elementos de aleación en estos aceros serán mayores a los contenidos en los aceros al carbón, además de contener otros elementos que se agregan para modificar sus propiedades y/o me-

A los aceros aleados o especiales se les suele llamar

44 aceros alimanganeso, alisilicio aliniquel, etc.

aceros al manganeso, al silicio al niquei, etc.

A continuación enlisto la clasificación más usual en
tuberlas y sus respectivos elementos de aleación.

TIPO DE ACERO	PRINCIPALES ELEMENTOS DE ALEACION
99-302	18% Cr. 8% Ni
SS-304	19% Cr. 9% NI
SS-304L	19% Cr, 10% Ni
55-309	23% Cr, 13% Ni
SS-310	25% Cr, 20% Ni
55-316	18% Cr, 11% Ni
SS-316L	17% Cr, 12% Ni
SS-410	12.5% Cr.
SS-414	12.5% Cr, 2.5% Ni
CARPENTER 20	20% Cr, 29% Ni
HASTELLOY B	67% Ni, 28% Mo, 5% Fe
HASTELLOY C	59% Ni, 16% Mo, 16% Cr,
	5% Fe, 4% W.
INCOLOY 800	31.9% (Ni + Co), 20.6% Cr, 46%Fe
INCONEL 600	76.4% (Ni + Co), 15.8% Cr,7.2%Fe
MONEL	66.1% (Ni + Co), 31.3% Cu,
	1.3% Fe.
RED BRASS	85% Cu, 15% Zn.

NAVAL BRASS 60% Cu, 39.2% Zn, 0.8% Sn.

ADMIRALTY

71% Cu, 28% Zn, 1% Sn.

MUNTZ

60% Cu, 40% Zn.

3.3.1.5 ACEROS INOXIDABLES

Son aleaciones a base de hierro en donde el contenido de cromo es de 12 a 30%. Cuando el contenido de cromo es mayor del 30%, estos se usan principal mente para servicios a altas temperaturas.

Los aceros inoxidables se clasifican en cuatro cate gorias de acuerdo con sus características microestructurales.

A) FERRITICOS

Son aceros al cromo con cerca del 4.5% de niquel son suaves y facilmente maquinables.

B) MARTENSITICOS

Son aceros al cromo en varios grados, con un porcentaje de cromo hasta del 27% y de carbón hasta del 1.25% tienen alta resistencia a la corrosión. pero no son recomendables para la industria de -

alimentos

C) AUSTENITICOS

Tienen 20% de cromo y 7% de niquel, son superiores en sus propiedades físicas a bajas temperaturas.

D) DE ENDURECIMIENTO POR PRECIPITACION

Son fabricados por medio de un sistema controlado de apagado con un rociador uniforme de agua presu zada, distribuida uniformemente. Esto proporciona una dureza uniforme que incrementa el esfuerzo a la tensión.

Los aceros inoxidables se clasifican de acuerdo a las designaciones AISI en diferentes series las cuales son:

Serie 200

Son aleaciones austeníticas en la cual la posición del níquel ha sido emplazada por el manganeso y nitrógeno.

Serie 400

Son aquellos que no contienen niquel, o que contienen más de 2.5%, algunos de la serie 400 pueden ser endurecidos por medio de templado y son aquellos de nominados como martensiticos, aquellas aleaciones que no corresponden a este tratamiento térmico se clasifican como ferriticos.

Serie 500

Comprende aleaciones que contienen de 4 a 6% Cr.

El término martensitico a veces puede ser mal aplicado a los aceros inoxidables templados o recocidos.

La propiedad de endurecerse no está limitada a los - aceros martensiticos, puesto que el endurecimiento - por trabajo y precipitación ocurre en los tipos austeniticos y ferrítico.

Estos aceros se fabrican en forma de placas, barras , alambres, tubos, etc.

Algunas de las designaciones para estos aceros son:

Austeniticos: A-201, 304, 304L, 316, 316L, 347 etc.

Martensiticos: 410, 414, 416, 440A, 501, etc.

Ferriticos: 405, 430, 430F.

El primer digito representa la serie principal y los digitos siguientes identifican al acero, una letra in dica una modificación.

La resistencia a la corrosión de los aceros inoxidables ferriticos y martensiticos se debe a la presencia de cromo.

Adiciones de 3 al 12% de cromo en los aceros, aumentan progresivamente la resistencia a oxidarse, sin - embargo unicamente aquellos aceros que contienen cerca del 12% de Cr. o más tienen cierta pasividad y aún así en algunos de ellos se pueden formar una película oxidada en atmósferas severas , marinas o industriales.

La presencia de niquel en los aceros con alto conten<u>i</u>
do de cromo mejora la resistencia en medios no oxigenados. El niquel incrementa la tendencia de los aceros para convertirse en pasivos en condiciones extre-

madamente oxidantes

El manganeso tiene un efecto benéfico para el trabajo en caliente de estos aceros sin reducir su resistencia a la corrosión, este también es usado como un -- substituto del niquel en algunos aceros austeniticos (serie 200) que son usados en ambientes corrosivos.

3.3.1.6 COBRE Y SUS ALEACIONES

propiedades como son: conductividad eléctrica, conductividad eléctrica, conductividad térmica, resistencia a la corrosión, maquinabilidad, maleabilidad, etc., además de que puede ser soldado. Cuando se desea aumentar cualquiera de estas propieddes básicas, principalmente la resistencia sin sacrificar las demás, las aleaciones de este material solucionan el problema.

Sus aleaciones son: los latones, latones al plomo, -bronces, aleaciones cobre-niquel, bronces especiales.

A veces el término "latón" y "bronce" se utiliza indistintamente, sin embargo la "American Society for -

Laton (Brass)

Es una aleación que consiste principalmente de cobre (mayor de 50%) y zinc a la cual pueden adicionarse pe queñas cantidades de otros elementos de aleación.

Bronce (Bronze)

Es una aleación rica en cobre y estaño con o sin pequeñas cantidades de otros elementos tales como el - zinc y el fósforo, sin embargo algunas aleaciones que no contienen estaño también suelen llamárseles bronces, por ejemplo: el bronce-aluminio, el bronce comercial, etc.

Algunos ejemplos son:

A) Cobres

Electrolitico 99.9% Cu 0.04 0

Fosforizado 99.9% Cu 0.02 P
(alto residuo de fósforo)

Fosforizado 99.9% Cu 0.005 P

B) Latones Simples

Latón comercial 90% 90% Cu 10% 2n

Bronce (latón) rojo 85% 85% Cu 15% Zn

Bronce (latón) amarillo 65% 65% Cu 35% Zn

Metal Muntz 60% Cu 40% Zn

C) Bronces de Corte Libre

Bronce comercial-plomo 87% Cu 9.25% Zn 1.75 Pb.

Latón-plomo (tubo) B135-4 66% CU, 32.4% Zn 1.6% Pb.

Laton-plomo (tubo) B135-3 66% Cu, 33.5% Zn 0.5% Pb.

D) Bronces Miscelaneos

Admiralty 71% Cu, 28.0% Zn 1.0% Sn.

Bronce Naval 60% Cu, 39.25% Zn 0.75% Sn.

Bronce-Alumínio 7% 91% Cu, 7.0% Al

DI UILE TIMILIAN VALAR

Bronce-Aluminio-Silicon 91% Cu. 7.0% Al 2.0% Si.

E) Aleaciones que contienen Niquel

Cupro-Niquel 10% 85.5% Cu, 10% Ni l.5% Fe. Cupro-Niquel 30% 67.5% Cu, 30% Ni 0.5% Fe:

La mayoria de las aleaciones que contienen estaño, plomo o zinc. tienen moderado esfuerzo a la tensión.de baja a media dureza y alta elongación, cuando se requiera elevados esfuerzos, las aleaciones con aluminio, manganeso o silicón pueden emplearse. El esta no puede adicionarse a los bronces con manganeso para inhibir la de-zincificación pero deberá ser menor del 0.1% en los de alto esfuerzo; estos bronces son utili zados en propelas de barcos, accesorios, etc.

3.3.1.7 NIQUEL Y SUS ALEACIONES

Se utiliza principalmente en la fabricación del acero inoxidable incrementando en estos su soldabilidad, re "sistencia a la oxidación, esfuerzo a elevadas tempera turas y tenacidad a bajas temperaturas.

Las aleaciones que contienen más del 16% de niquel se

emplean para altas temperaturas y son muy resistentes

a la corrosión, algunos metales como el cobalto y molibdeno a veces se emplean en estas aleaciones.

El niquel en cantidades mayores del 9% es un componen te importante en las aleaciones de acero y es frecuen temente usado con otros elementos de aleación tal --como el cromo y molibdeno.

Una de las propiedades del niquel es su marcada habilidad para bajar la temperatura a la cual el acero se hace quebradizo.

Algunas de las aleaciones con niquel son:

Monel 67% Ni, 30% Cu

Inconel 76% Ni, 16% Cr, 8% Fe

Hastelloy Alloy C 54% Ní, 17% Mo, 15% Cr, 5% Fe, --

4% W.

3.3.2 EFECTOS DE LOS ELEMENTOS DE ALEACION EN LAS PROPIEDA-DES FINALES DE LOS MATERIALES.

Los elementos carbón, manganeso, fósforo, azufre, silício, cobre, cromo y niquel, imparten propiedades particulares al acero, ellos influyen tanto en el método de fabricación como en las propiedades finales.

3.3.2.1. CARBON

La calidad de la superficie en los aceros se deteriora a medida que se incrementa el contenido de carbón, la dureza del acero es impartida principalmente por el carbón a mayor contenido de éste, mayor dureza. La resistencia a la tensión también crece hasta que el contenido de carbón alcanza 0.85% aprox.la ductibilidad y soldabilidad decrecen cuando el cotenido de carbón aumenta.

Aceros con contenido de carbón mayor de 0.37% no se consideran soldables a menos que se precalienten.

En los aceros inoxidables la corrosion intergranular puede presentarse cuando el contenido de carbono es - mayor de 0.28%. Si se desea tener superficies duras en los aceros inoxidables, para servicios corrosivos.

puede lograrse con mayor adición de niquel o cromo.

3.3.2.2 MANGANESO

Su tendencia a segregarse es menor que la del carbón, y demás produce una acción benéfica para la calidad — de la superficie en todos los rangos del carbono y — particularmente en los aceros con alto contenido de — azufre.

El manganeso contribuye a la resistencia y dureza del acero, el incremento de estas propiedades, es función inversa del contenido de carbón, o sea este incremento disminuye conforme aumenta el contenido de carbón.

La ductibilidad y la soldabilidad de un acero disminu ye a medida que el contenido de manganeso aumenta.

3.3.2.3 FOSFORO

Seneralmente al incrementar el contenido de fósforo se aumenta la resistencia y la dureza del acero, pero
decrece la ductibilidad, esto es particularmente cier
to en los aceros de alto carbón que son templados.

La presencia de fósforo mejora la resistecia a la co-

rrosión atmosférica

El porcentaje máximo aceptable en la mayoria de los aceros es de 0.04% a excepción de los aceros reforzados en los cuales se puede aceptar limites máximos de
0.12%.

3. 3. 2. 4. ATHERE

El azufre actúa disminuyendo la calidad de la superficie, en particular en los aceros de bajo carbono y
bajo manganeso. En general, un aumento del contenido
de azufre tiene como consecuencia una disminución de
la ductibilidad, soldabilidad y tenacidad, pero mejora notablemente la maquinabilidad que es la única razón para especificar contenidos de azufre en los aceros.

3.3.2.5 SILICIO

El silicio es uno de los principales desoxidantes empleados en la refinación del acero, el porcentaje de
este en el análisis final está relacionado con el tipo de acero, su acción es menos efectiva que la del manganeso en lo que se refiere al incremento de la -

resistencia y dureza.

Su incremento disminuye la calidad de la superficie de los aceros de bajo contenido de carbono.

3.3.2.6 COBRE

El cobre perjudica la calidad de la superficie en apreciables cantidades, también perjudica el trabajo en caliente del acero. Las pequeñas cantidades de cobre presentes en los aceros al carbón no afectan de manera significativa sus propiedades mecánicas, sin embargo mejora la resistencia a la corrosión atmosférica cuando está presente en proporciones mayores.

3.3.2.7 CROMO

Después del silicio y el manganeso, el cromo es el me tal más utilizado en los aceros aleados.

Este elemento aumenta la resistencia a la corrosión.

El cromo es un enérgico formador de carburo y en los aceros al alto carbono aumenta la resistencia a la -abrasión y por lo tanto al desgaste.

Las principales aplicaciones del cromo son en los ac<u>e</u>
ros inoxidables, que son aceros resistentes a la abr<u>a</u>
sión, a las altas temperaturas y a la corrosión, se emplea comunmente combinado con niquel y molibdeno.

El'acero inoxidable 18-8 (18% Cr, 8% Ni) tiene un contenido de carbón inferior a 0.15% con objeto de evitar la corrosión intergranular, sin embargo, no se permite un contenido de carbón superior a 0.05% si se va a trabajar a temperaturas entre 650 y 850 grados centigrados.

3.3.2.8 NIQUEL

Este elemento no forma carburos y cuando se agrega hasta 5% a algunos aceros, aumenta la resistencia y la dureza sin reducir la ductibilidad.

Es usual agregar pequeñas cantidades de cromo y moli<u>b</u> deno en los aceros al niquel para mejorar sus propiedades físicas. Algunos aceros que contienen niquel son los de grado maquinaria, inoxidable, resistentes a altas temperaturas y a la corrosión, así como los aceros que deben trabajar a bajas temperaturas.

3.3.5 TRATAMIENTOS TERMICOS DEL ACERO

En sentido general un tratamiento térmico puede definirse como una operación o combinación de operaciones que comprenden el calentamiento y enfriamiento de un metal o aleación en el estado sólido, con el objeto de obtener ciertas condiciones o propiedades deseables.

La utilidad del acero se debe en gran parte a la rela
tiva facilidad con que sus propiedades pueden alterar
se controlando adecuadamente la manera en que se calienta y enfría; los cambios que se presentam en las
propiedades del acero están relacionados directamente
con cambios en su estructura final.

Aunque los aceros empleados en la industria no son aleaciones hierro-carbono puras, el diagrama de equilibrio de esas aleaciones puras sirve admirablemente
en el estudio del tratamiento térmico del acero y de
los cambios estructurales que ocasionan.

Debe recordarse que la presencia de otros elementos altera el diagrama, pero los cambios son muy reducidos cuando se encuentran en pequeñas cantidades; de - cualquier manera, los principios básicos obtenidos del estudio del diagrama de las aleaciones puras pueden aplicarse a las aleaciones comercíales.

A continuación describo las características generales de estos tratamientos térmicos.

3.3.3.1 ENDURECIMIENTO POR TEMPLADO

El térmico "endurecimiento", cuando se emplea en tratamientos térmicos del acero, se refiere al proceso de enfriamiento utilizado para aumentar su dureza.

El acero se templa en algún medio, líquido o gas, a través del cual se le extrae el calor a la velocidad deseada.

3.3.3.2 REVENIDO

Este proceso consiste en calentar a cualquier tempera tura debajo de la critica inferior un acero previamen te endurecido y enfriarlo después a la velocidad deseada. El objeto del revenido es reducir la dureza y eliminar los esfuerzos residuales de un acero templado para obtener una ductibilidad mayor que la asocia-

da con la gran dureza de este.

3.3.3.3 NORMALIZACION

La normalización de un acero consiste en calentarlo a una temperatura unos 50 grados centigrados arriba de la crítica superior y en enfriarlo a continuación en aire, es decir, sacándolo del horno de calentamiento y exponiendolo a la acción enfriadora del aire en un local. La temperatura máxima, su duración y el enfriamiento tienen gran importancia en el resultado final.

3.3.3.4 RECOCIDO

En general, el término recocido se emplea para designar cualquier operación de calentamiento y enfriamien to cuyo objeto sea ablandar el acero.

3.3.3.5 RECOCIDO DEL ACERO TRABAJADO EN FRIO

Los aceros trabajados en frío pueden recuperar su estructura y su ductibilidad originales con un simple calentamiento dentro de los limites.

3.3.3.6 TRATAMIENTO PARA ELIMINAR ESFUERZOS RESIDUALES

Las piezas forjadas y coladas y las estructuras solda das pueden retener esfuerzos residuales elevados, debido al enfriamiento desigual y a los efectos de contracción, los que pueden ocasionar serias deformaciónes e incluso roturas. Estos esfuerzos residuales se eliminan mediante un recocido, pero si éste no es necesario puede lograrse el mismo resultado por medio de un calentamiento a temperatura mucho más baja.

3.3.4 FACTORES QUE DETERMINAN LA SELECCION DE MATERIALES

- Al especificar un material generalmente se piensa en las siguientes características:
 - A) Resistencia mecánica
 - B) Tenacidad
 - C) Dureza
 - D) Resistencia a la corrosión
 - E) Conductividad térmica
 - F) Factibilidad de formado
 - G) Peso relativo
 - H) Costo etc.

Sin embargo deberán de tomarse en cuenta otros factores como son:

3.3.4.1. CONDICIONES Y RESTRICCIONES PROPIAS DEL PROCESO

- A) Temperatura
 - B) Presión
- C) Fluido (concentración, ácidos, alcalis, etc.)
- D) Contaminación permisible
 - E) Corrosión

3.3.4.2 COSTO

- A) Costo del material
 - B) Costo de instalación
 - CJ Costo de operacion y mantenimiento

3.3.4.3 CALIDAD

A) Selectionar la cantidad adécuada según los códigos estándares ASTM, SME, AISI, etc. (composiciones, pruebas, propiedades).

3.3.4.4 DISPONIBILIDAD

A) Tipos de materiales disponibles en el mercado.

3.3.4.5 EXPERIENCIA

Basada en:

- A) Información sobre el material especificado o sele<u>c</u>
 cionado en situaciones identicas y comportamiento
 observado.
 - B) Experiencias en plantas piloto o en plantas industriales.
 - C) Pruebas de corrosión en laboratorio

.65 D) Literatura disponible.

3.3.5 PASOS NECESARIOS EN LA SELECCION DE MATERIALES

3.3.5.1 CONDICIONES DE SERVICIO (OPERACION)

Generalmente esta información la proporciona el Ingeniero Guímico como base para iniciar nuestro trabajo de selección de material. Esto dependiendo de su alcance, si no es así, entonces se debe proceder a obtener las condiciones de servicio.

Se debe tratar que estas condiciones sean lo más - precisas posibles. Tomar en cuenta contingencias - tales como: paros, arranques, probables condiciones de trastornos y operaciones de limpieza.

Las condiciones extremas frecuentemente crean varig ciones en el flujo, presion y/o temperataura y pueden causar fallas en los materiales.

3.3.5.2 CONDICIONES MAXIMAS

Las condiciones máximas de temperatura y presión en las especificaciones de tuberías deberán seleccionarse usando temperaturas y presiones de diseño de acuerdo a los siguientes criterios:

A) Temperatura de Diseño

Será la temperatura máxima esperada durante las condiciones de operación y esta será 25 grados centiorados más que la temperatura de operación.

B) Presión de Diseño

3.3.5.3 RESTRICCIONES

Confirmar si no existe restricción de uso de ciertos materiales en el proceso, debido a reglamentaciones gubernamentales locales, requerimientos de seguridad, códigos o por tipo de proceso como ocurre en la industria de alimentos.

3.3.5.4 ORDEN DE SELECCION

Tomando en cuenta los puntos anteriores , seleccionar tipos de materiales recomendables para el manejo del fluido en el siguiente orden:

A) Resistencia a la Corrosión

La corrosión se mide como desgaste en milesimas de pulgada por año. Confirmar que el material no sufra otra manifestación de corrosión como picaduras,grietas, etc.

- B) Resistencia a Temperatura de Operación

 Confirmar que no hay restricción de uso del mate

 terial elegido por temperatura.
- C) Resistencia a Esfuerzos Mecànicos

 Si el material va a estar sujeto a presión o va
 cio, confirmar que el material es adecuado para

 resistir estos esfuerzos.

3.3.5.5 EVALUACION TECNICO-ECONOMICA

Si al aplicar los criterios del punto anterior se tiene como resultado varias alternativas que cumplen técnicamente con el propósito, corresponde tabular comparativamente sus ventajas y desventajas - técnico-económicas, tomando en cuenta:

- A) Costo de inversión inicial (incluyendo costo de instalación).
- B) Costo de mantenimiento
- C) Ventajas y desventajas particulares del material
 - D) Disponibilidad en el mercado nacional

69
E) Tiempo de entrega

3.3.6 TABLAS GENERALES DE SELECCION RAPIDA

Dentro de los materiales más usuales en las especificaciones para tuberia están:

Acero al Carbón, Acero de Aleación, Acero Inoxida_ ble, Hierro Fundido, etc. y analizando los factores que determinan la selección de materiales observa mos que se puede usar como guía para la elaboración de especificaciones de tubería la siguiente informa_ ción tabulada que es:

Resistencia a la corrosión de los materiales contra los fluidos a transportar, basada en la experiencia de los fabricantes y con las cuales se puede obtener una selección rápida, ya que nos da los siguies tes criterios para un material.

A = Excelente

B = Bueno

C = Regular

D = Pobre

Otro factor determinante es la temperatura, en este aspecto se pueden seguir las siguientes aplicacio_ nes tentativas de los materiales,pero sin dejar de tomar en cuenta las características de los fluidos.

- A) Para temperaturas de 50 a 775 Grados F.Se puede usar acero al carbon.
- B) Para temperaturas de 750 a 875 Grados F. Se puede usar acero de aleación,
- C) Para temperaturas de 750 a 1050 Grados F. Se puede usar acero de aleación de 1.25 % cromo - 0.5% molibdeno.
- D) Para temperaturas de 1050 a 1200 Grados F. Se puede usar acero de aleación de 2.25% cromo-0.5% molibdeno.
- E) Para temperaturas de 900 a 1200 Grados F. Y con servicios de corrosión moderados, se puede usar acero de aleación de 5% cromo -0.5% molibde no.
- F) Para temperaturas hasta 1500 Grados F.
 Y con servicios de corrosión se debe usar acero inoxidable.

w
•
3
•
-

					0.000	V 1 7 7 1 1 1 1 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9	A D Subbase Colo.		2.5	Ρ.
	100,000	3	1. 1. 1.		1.0	医乳脂类物物的	and the state of the	9	7478		F 849	_
		2	46.00	All Prince				≣Alakika?	7 V. W. 19	3/11/11/4/		-
f to 12 to 14 to 2 to 14 do		5		14.17(4)	목 :	N 16						Ω.
	and the second			17,024.0		1 an 2 an	5 5		F 18 18 18 18	7 ₹	e):	EXCEL FATE
		100	: : : <u></u>	4.74	2 5	170	330 J.A.		ă .	(1) 2) (1)	ا ع ا	2
	PROVICE	2 5		₩			5 5	<u> </u>	2 2	- A	6	귬.
STEEL BUILDING SOLES		ž 8		9	4 :	{ - 3 ±	1 1	E 2	7 5			
ACEITE OF ALCOHON						Balaban and Anna and	vi avelika siste					Β.
ACEITE DE ALQUITAAM	1			200	1000			0	4 (13-2)	10-2		-
ACEITE ANIMAL				2.3		建设 换			de de la company			≅ .
ACEITE DE APAGADO		8 1				F 10	学·操告 -4-3	100	A .			PIER I
ACEITE DE COCO					100	1 Just - 1170		A	A A	C	- A P	5
ACCITE COMESTIBLE					A	. ·		CALL A.	A A		!	
ACEITE DE CREUSOTA] 8					•	• 554	0 0	A	. t	D . A .	, ·
ACEITE DE LINAZA	•		1 mm A	and a firefact	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	5. W	D A	A .		• . · · · (C=866III A8
ACLITE LUBRICANTE	•	A (N / . A	나 사람들이 살	A		5 7 Total #	D	A	В	9 . A Ç	2
ACEITE DE MANTECA	1.	c 9	199					D . A	A			=
ACEITE MINERAL	! !	: :	•			7.1		142 Z.			: : (2
ACEITE DE PALMA	1:	; ;				Section 1		100				-
ACEITE DE PESCADO	1:	: :		1.0	1.00	100		19437 ·	7 7		: : k	2
ACEITE DE PINO	1:	: :					2.0					
ACEITE DE RECINO	1 .	: :							A . A	, i	ا ۾	39809
ACESTE DE SECADO	l ë	či		1.7	 ■ 100 mg/s 	57 ST 1987		D. A	۸			∌
ACCITE DE SILICON	À		Ä		77.75	# 100 PM	· · · · · · · · · · · · · · · · · · ·	0	A A	A	4 A F	Ħ
ACEITE DE SOYA		c c			• 1, 1, 1,	122		CALA	A A	A :	B . A {	
ACEITE TERMICO	A		•	•		4.0	4. * 3. 12. * 15. E	0 0	A A	. 0	(
ACE ITE VEGETAL	•			- 1	A	1	A Plant Verter	A A	A A	. B 1	8 A [
ACE TALDEHIDO	C		l 1	- A-3	A 9.540	1 to 4 to 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 0	A C			
ACETATO AMILICO) (:1885. ≜ - 凝		\$ 40,000	1 TA 1 ST 3	AD	Α D	. 0	• • •	
ACETATO BUTILICO			^	不能∧疑	3. 16.55	理於條	1.09	C 3 = 0	^ ·		, 1)	
ACCIATO DE CALCID	1:		192	1 de	1.00	超短 勝	t 1886 386				: : 1	
ACCIATO DE COBAL	1 :			190 59	1	GY 5- 5-		1988	Ā .		انما	
ACETATO DE METILO	1 .	. :	35.5		ge restant				A D	0		
ACETATO DE PLOMO	1.			No. of the		A 1 2 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					o (
ACETILEND	(a			0 014 a r60	100	A	A A	A	A A			
ACETONA	A .	A		心海•横	A 64	A SHARE	A A	- 0	A D	. 0	C A	
AC, ACETICO (LIBRE DE AIRE)	C	0 (A		A B	1 A	• 3 C	A . 0	ç	•	
AC, ACETICO (CAUDO)	0	D 1			1 15	\$ }************************************	3 3 36 4 36 7	• D	A D			
AC.ACETICO(10%)) c .	C (3500 B	See C		 1999 ■ 1997 	→● がは本事。	D	A D			
AC.ACETICO(80%)	D	0			· · · · · · · · · · · · · · · · · · ·	A	# \$45.0 ± 220	C			انتا	
AC. ACETICO (PURO)				427 339				44-44				
AC.ARSENICO				新疆、张	1.00	add M		12 AV 12 E		· ·	D A]	
AC. SCRICO	11:			医学 滑	2 10 7				A A		ا ۸	
AC. BUTIALCO	1 .			200	i e	A A	A . A		A C	. 0 .	A A (

AC. CAMBONICO AC. CAMBONICO AC. CLORANCETICO AC. CLORANCE		FLUIDO	T AL CANBON	70. KINIO	1MOX. 304 190X. 316	CKTER 20	5	TIEND ELITERS	5 :	2	§ .	A= EXCELEN	
	AC. AC.C. AC.F. AC	COMBACTICO COMPACTICO			O A A A A A A A A A A A A A A A A A A A	CALLEGE CONTRACTOR CON	X		A A A A A A A A A A A A A A A A A A A	50 D D C D D D D D D D D D D D D D D D D		3.3.6. BUENO C= REGULAR D= PC	73

F L U 1 0 0	влонсе		ē.	Month #10	AC. 110x. 304		CARPENTER 20	MASTELLOY C	PROPILEND ET K.E.	EUKA-N	V.170	MEDPACING	MPALOH (POIY	EXCELENTE
AC, TARTARICO ACRILATO DE ETILO	^	9	0		1 1	^	•	A A			A	•	A A	7 2
ACRILONITRILO	A	•	Č	• -	Ä	A .	A	A A	. 0	0	. 0	0	D . A	BUENO
AGUA BLANCA AGUA CARBONATADA			•			•								18
AGUA DESTILADA	246	D .	D .		- A	- i		A A	. A.	A .	A A		A A	1
AGUA FRESCA	A 1.72	C	Č .			A	Α.,	-	Α .	A .	A		8 A	10
AGUA DE MAR	C	٥ .	0	c .	•		A			A /			•	1-5
AGUA SALAGA	•		P	• .	D	.	<u>.</u>	: · · · :		1 1		•	â î	REGULAR
ALCOHOLES		:	•	6.50		7	-		- A	7	Ä	Ā		18
ALCOHOL AMILIED	•	8	•	• -	A	Α	A .	- A	^_	1 .			A 'A	1 33
ALCOHOL BUTILICO	• 1	•	C		San 🕭 🗆			•			•	•	• •	1
ALCOHOL ETILICO ALCOHOL METILICO		•		100	9	200	2	2 2	1	2 . 3			à Ã	ㅣ모
ALCOHOL PROPILICO	A		: : :		Â	Ä	A		Ä	Ä :	Ā	í	A A	1 -
ALMI DOM	•	Č -	C	A -	• •	•	A 15	A A	Α .	A :/			A A	POBRE
AMIRAS	Α	•	C .	•		A		A		- 1			1 1	1 2
AMONIACO ACUOSO AMONIACO ANNIDRO	2	•	•	: . I	•		2	1 1			: 5		Č Ä	1
AMONIACO SOLUCIONES					Ä	Ā	A	- A	: ii .				D -	1
AMIDRIDO ACETICO	č	Ď	ō	. · .	1 to 1	A	•	A. A		c /	. 0	· c		ł
ANILINA	C	٠	•	c -		•	٠.	A	•		` :			1
AZUFRE FUNDIOO BENCENO	P .	:	:	•	•	- 2	2					. 5	D A	1
BENZALDEN1DO	:	Ĭ.	•		Ã	Ä.	Ä	A A		0 ./	٠. ٥		0 4	1
BICARBONATO DE POTASIO	•	Ä	:	-		. A	-				-			1
BICARBONATO BE SUDIO	•	C			•		•	A : A.	•	A :	•	•	100	100
BICROMATO DE SODIO" BIDZIDO DE AZUFAE	ç	:	:	•	- 1					7		Ē	D A	
BIGZIDO DE CARBONG (MUMEDO)	ì	č	5	; ä	î	Ä	Ã,		ē			č	A A	1
BIOXIDO DE CARBONO(SECO)	Ā		•	A Ā	Ā	A	A .	A A.				•	A . A	l
BISULFATO DE MAGNESIO	•		•	• -	•	•	:	: :	:	- 1	: :			1.
BISULFITO DE CALCIO BISULFITO DE POTASIO	:	è		, ,	-	:	:	: :	:	Ā .				1
BISULFFIG DE POTASTO	-			: :		- :	7	: :	-			Ä	A -	1 .

BISULFITO DE SODIO (10%) BISULFURO DE CARBOND BORATO DE SODIO BRONUÑO DE METILO

. . .

FLUIDO	* NOWEZE	ACENO AL CARBON		ALUMUNIO	AC. 1401. 304	AC. 1401. 316	CAUPENTER 20	MASTELLOY B	MSTELLOT C	PROPILEND EFILEND	LUAN	1664	8114	ch1.40ja	#PALGE	A- EXCELENTE		
BUTADIENO	c	•		۸ -	A	A	A	- 4		. 0	D	Α.	LASS:	0	District -	ි ස <u>ු</u>		
DWATUE				A -			Α,	A	v. h.	D	蒙集● 着		A	C	A A	l		
8U11LEMO				۸ -			Α.		1.5		0	A 2	C	D	D -	1 ⊆		
CARDHATO DE AMONIO							•				· • 36		1		• 335	BUENO		100
CARBONATO DE BARID CARBONATO DE CALCID			•	: :			٠.	. · . ↑ .	in a		14.4				200	10	1.4.7.	
CARBONATO DE MAGNESIO			٠		•		. •						6.430			l .		
CAPBORATO DE POTASIO	:	- :		: :	. :	•							11.00		Charles .	1 V	Salati	Part at
CARBONATO DE SODIO			•	· .			1 			4.5		₩	97.28		A 100	70		
CERVEZA	- 1	č	ě		Ä					315 A		1 4	S	12.7	200	REGULAR		
CIANURO DE BARLO		č	č		A .	, (A)	Α.			100	- C	11.1	ne.		C	15	100	
CIANURO DE COBRE	ε	D	0	-		A		14 - 3		11 T		110	AL	A 15 15	A A	1 2	w	1.000
CIAMURO DE MERCURIO	D	Ð		D -		Α.	-	. 1	1.	Bury .	14-16	1 4 1	A 25	in the same	A 55 -	1~	w	~
CIAHURD DE POTASIO	. 0	, A		0 -				4/ 🐧	1	4.51	37.4	A	# A 370	A	A A .	P	· σ · · ·	Uto .
CIANURO DE SODIO	D.		* A	D -			. A		(A		Α.		A 1	A 5, 1	A Tay		•	
CICLOHENANO		•				. •		ig[A .€	1	0	C	10 A 116	A	.0	D	POBRE	TABLA	
CLORATO DE CALCIO CLORATO DE SODIO	:								46.	3 J		影 越			1.0	18 .	60	
CLORITO DE 50010 (201)	•			我们的人的正规			elina .	D.	100		100	100		1.1	1.494.50	1 22	-	
CLORD (NUMEDO)							D		Log B								24年,张兴	Street Street
CLORG (SECO)	č						3	410.00		100		(A. 12)		D 0		1000	the s	
CLORD BENCEND					4.50	A			100	D	. 0		A 125	D	D A	1300		
CLOROFORMO			8	D	- 8				li di el	AC 70	. 0	- A		0	D -	1 3	1000	
CLORURG DE ALILO	. •	• 1	D	-,17	34-	9.7-	18 A.S.	S	100	of the state	100	- A-		1000	D	10.0	51i	
CLORUNG DE ALUMINIO		D	0		0	C	D,		c	4.4	366		A 455	10,488			Y . P	547 (54)
CLORURG AMILICO CLORURG DE AMONIO	:	A .	A 5	1000	30 ° 5	题"图	· 第二章	16.1		11.7 5		200	71.000	4 20%	A A	1		27 (3 (27)
CLUBURG DE MARIO		- 5		0	UN.	130	MG .	15		經費 文	10 A		C. Wes		A VOA	1		
CLORUPO DE CALCIO		ě		650.4	100			18 9			80 N	1			A Mary Mary	Land of	maria.	상사람 그
CLOAURO DE COBRE		Ĭ.			100	200	200	1	4	113.4	A A		C		c -	1	400	 55 x 5
CLORURG DE ETILENO	č				5 A V	雅 🗚		10.4	200	1.11-3	- 41		0	0	D . A	1000		
CLORURG DE ETILO	Ã			. A B			10 A	A.	A	(A)	L C		A	C	0 A	Table 1	and the fire	
CLGAUNG FERRICO	. 0	. D	. 0	0 D		. D	0	. 0	9 K B .	. 0	A B	/TA	÷ A 8 %	Α	A Skill A	1	614 7	1.45
CLORURO DE MACHESTO		· D ·	. 0	D	. 6 €		184 A.D		SEA.	. A	34 A L	(A.E.	A	A	A	1		41.5
CLORURD DE MERCURIO	0	. 0	0	0 0	. D	. 0	2.0	- D	. 0		- N-1	4.	1 Tab.	14.6	A	100		
CLORURO DE METILEMO				ig ≜off at a	您落▲☆		(4) 📑	10.		3L-0	OF D	型				1	100	7 B. W.
CLORUNG OF METILS		ç		. D . C) (·				- 4	34		ii ii			1 0 P			
CLUMUNO DE POTASIO			C				禁門				W S	d. 1		- 50	- A		Section 1	
CLORUNG DE SODIO				î		8				1704	御言				Ā -			1.0
CLUBURG DE ZINC	D	. 0	0	500		50 P 40		16.7	(100.4)							والأراطب		

					نين			_					٠			<u> </u>			_				
	1	CARBON							٠.,		ā	. 7				,				-,7			7
FLUIDO		3		*			ğ	=	. 2		12		- 1	=									lœ.
, , , , , , , ,											· =	-		0					_			4	ĕ
		ಕ		2			NOK.	ğ	. =		2	- 2		Ξ.	- 2				3				LENTE
[. 5	2	Ę	-	=		= '	=	٠.5	100	್ಷ		1	Ξ :	ा ‡ः	- 5		8	Ξ	- 3		=	12
	ğ	ACE NO	ė	ALLPHIN 19	ě		ني	ą.	CARCHIER		MSTELLOY	HASTELLOY		200	100			2	HEOPAEND	HYPALON		FOX	1=
	_ =	:				_	⁴-			<u>.</u>	_=		21.				•		. 2	_ =			j
COMBUSTOLEO	В		8				c	A	Ξ,		114	. no .	. 10		-	: 1	A	•				_	8
€ C00JE		8	B		-		Ā					1 - L		•				8	· č				
CADMATO DE POTASIO		8	C							٠.			CO.	A		0.14	A	Ä	. A			c	۱۳.
CROMATO DE SODIO				8			Α.			١.				8.0			4	Α.			١.	C	OHIBU
CROMO		8	В		-		-	0	٠,				- 45		D		A	· c			,	÷ :	} ō
GETERGENTE	A						A .	A			1.			A :			A 🔑	- A			١	Α.	I .
DICLORDETANO	-	-	-	•	-		A				-	-	W	•	-		• "	(-)	-	· •		- 1	l ü
DICROMATO DE POTASTO		c	c				В	8	,	١.		, " •	1.50	A .	. A		4 ()	Α.,	. A			•	J 📛
DIESEL					-		A						33	0	1. A			Α.		-		. A :	I A
DIETILANINA				A	•					١.			1987		- C.			0				• .	REGULAR
DIETTLENGLICOL		-	٠.	-	-		Α.									100		•	•			. •	17
DIFOSFATO DE AMONTO		D	ç				A										311	Α.			2.0	٨	1 5
EDIA		•			-			•		٠.	•		- 314	-	٠.	G.,	218	٨	· *				
ETAMO		:		. :			•	•	•	100		· line	. Ju				96			_		•	0
ETAMOLANINA		•					•		-				110	0		1	2.3	A .			基式		,.₩;
ETERES		•	•	- 1			-	•	. :	· .			Mr.	•				D			10.3	•	POBRE
ETER ETILICO		2	•	- 2	:		. •	् 🐧					44.	C		916	1	6	16.1		1717		ĕ
ETILENGLICOL		•	•		٠:						e .		413			NE.	19		M	1.0	7.00	Α.	쥬
ETILMERCAPTANO	•	-							. 7		, C		0.2		14.5	100	112						250
FENDL (AC. CARBOLICO)								•		100			400	172		100	113			ř			11.
FERRICIANUAD DE POTASIO		ř	č	ं 🖫			1					100	150	117	4	356	1100	. 38	1.6				100
FEAROCIANURO DE POTASIO		ē	. č				Ā	Ä					100	201	200	114		44.5			1		19.
FLUOR (SECO)		0	ă	. 0	: <u>:</u>	11	0		. 3 🖫			46 C.	416	C .	14 B.	dis	110			-	Ÿ.,		30
FLUCAURO DE POTASIO		Ā	-				A .				-		M155.	-	10000	34.	16		~- s	2016			100
FLUGRURO DE SODIO	c	c	c	c							•		100	•		7	100				10.	-	146.5
FORMALDENIDO (CALIENTE)		Ċ	€ .			$\mathcal{A} : \mathcal{A}$	•	C					HA.	•		41.	150	5 - 3	. 8		6.5	•	
FORMALDEHIDO (FRIO) .	8		C					. A		- 35	•		102	A .	n A	30 E	神精	A	. C	0.70	()-	Α.	13.5
FORMIATO DE METILO	A	c	C	C.				•		÷-:	•	4.7		B	8	100	13	** 1	2.0	A		•	100
FOSFATO DE AMONIO	Þ	9	D		- g/g =	2	A		: (A		A		183	-24		76			(·	. A	3.1%	•	150
ENSFATO DE POTASIO	0	D .	D	•	•					Oil.			40.3	-	Α.	100	11.5			<u>^</u>		•	l .
FOSFATO DE SODIO(META)	c		•		: :				્ •	. 13	A			^ €				4	9	£ 9.		•	1
FREOR 11,NF,112	•	-	C :		Ç	40	:		: : : •		`÷		16.7	0	3.5	1.7	3			36 F	97	2 . 1	1.9
FACON 12,13,32,114,115	•	•		• •		1		•		14.5		146	12.010	<u>.</u> 8		112	172					-	1
FREON 21,31 FREON 22,113	•	5	č	: :			-	0.0				1	- 14	9	D	()	140	0.00	0.00				. :
FURFURAL	•	٠		•	•			- 1				~:	偿权	•	11		1140		80.0	100	68.6	2	100
CAS DE ALUMBRAGO	•	•	•	•	: 3	1.5		ៈ		114	h					11/47							
CAS LP	•	•	•	•				• •	9.5	7.0	: I	re i				10.					1	•	١
CAS MATURAL	•	•	•	•			1	- 1							4							•	1
Par Bulling	<u> </u>			<u> </u>	:		<u> </u>	<u> </u>		_				_							_		

76 3.3.6 TABLA

3.3.6.
ABLA

							tion a North	~ [
	ž.	Profit (All the State	es é la rich					
1	2			a .		■音響 JBA 中分的	to the public at	EXCELENTE
	5				100			18
FLUIDO			ğ ğ	CARPENTER KASTELLOY	MISTELLO		3 8	15
	ີ ເ	N TOWN		. 5	- € :	5 3	VITON MEOFALIN MPPALION	THE STATE
To hear		5 1	第四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	90 4 997 3 3		1 1	- 2 -	2 12
i <u>2</u>	₹ £	ALCM North	₹ ₹	ე ≥.	2		> = = =	~
CASES MITADSOS D	B C		5 Co 6 (54) 8 S	Section Consulting	els' • 1 d 11	-3602 B . GS A. **		
CAS COORIZANTE B			物 极规 军	SPENNING		D B A-	A B -	
GASOLINA CON PLONO A						D C A	A D D	BUENO
GASOLINA SIN PLOND A			40.0			D . B . A .	A D D	A ITT
GASOLINA PARA AVIACION A	7 7		34 A CO (1)	17 - 2 17 3 - 18	集件。例 位	DI C A	A 0 D	- 15
GASOLINA SULFUROSA B	8 8		A A	从经验的现在	部分 姚俊	D' C A	A U D	- 1
CASOLINA PARA MOTOR A	A B	A 10. 2.1	A A	20 min 1	Alta-Dec.	D C A	A D D	ି ।ଦ
GELATINA A	D . D	A C	A SELLAR	66 6 ■ 300 倍 = 6		DISTRIBUTE A	A A A	
GLUCOSA A		A	A A	37 A 37 3	Mr - 240	B R A A A A A A	A A A	ᆥ
CLICERINA B	8 8	A LINE	A		第14 章 5	B 带 图 A 电流 A 行	A A A	REGULAR
GLICOLES .	8 8	A -	8. 0		SEA - SEA	A	A A A	- 15
GRASA B	A A	A	RA BEAD		1885 - WAST	District	A C 8	. A R
MEPTANO A	8 8	1 1 1	A	(1) = 17 lg = 1		- A - A - A A	. A . B	A ~
HE XANO B	6	B & B &	6 B		1 to 1	D A A	A C B	<u> </u>
HERAHOL TERCIARIO A	A A	A	48. A. S. S. A. S.		De Albert			- =
HIDRAZINA -	D D		第一人员会人员	31 14 15 13		A 55 (A 56 (A 5		~ l~
HIDROGENO B	8 8	A	and the second					POBRE
HIDAORIDO DE ALUNINIO -	D C			A Ship Co	100	4.30 Let		1 2
HIGROXIDO DE AMONIO D	C . C.		San Apple 1	A	acr best			- 117
MIDADXIDO DE BARIO	С В		St 1 1255 AM		选 助致			- T-1
MIDROXIDO DE CALCIO A	C C		Grade Balance Barre	流 交换	S. 1			21
HIDROXIDO DE MAGHESID(CAL) D	- 14 A B	A	数子: 他为 "d	400 . 李俊莹 《				
HIDADXICO DE MACHESIO(FRIO) B			us IFF S	排。例如 所	得知 机测定	14 (18 18 18 18 18 18 18 18 18 18 18 18 18 1		- A 1
HIDROXIDO DE POTASIO(CAL) D				SE 485	4.5		A	
HICROXIDO DE POTASIO(DIL FA) D	2	300	30 PM 1	Mr. there's	4.5	PF-0 266-2 a		4.1
MIDROSIDO DE POTASIO(70%CAL)D	A	5		The state of		- 1911 - 1912 - 24	A	-
MIDEGRIDO DE PORTO(ZOZCAT) B		0	A				о в -	A
HIDAQXIDO DE SODIO(2015RIO) B		0 6	A BARA	3 × 5 ★ 5	ELANDIN	- A A	A	. A
HIDROXIDO DE SODIO (SOLCAL) B		0 1 2 - 3	A	B A	(• • • • • • • • • • • • • • • • • • •	-5.00 B	1 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
HIDAGETOD DE SOULO(503FRED) B	ĀĀ	D B	C B	B - A	A	- C A	C	•
HIDROXIDO DE SODIO(701CAL) B		0 -	. C . C	\$48 - 10 Vic - 1	A	- D A	C C D	A
HIDAGEIDG DE 50010(701FRIO) A	A . A	0 -	A		15-36.	• P D A		- 1
MIPOCLORITO DE CALCIO D	D D	B D	CONTRACT	COO		A COLA	JAA SECTION A JE	
MIPOCLORITO DE SODIO D'	D - D	D D	, C C.	C C		Bagadejara Aja		- T
ISO-OCTANO A	A - B	A	A COLAR	以 。	· • 444	O and A and A		: 1
KEROSIMA A	3 3	*	A 7 A 7	A	45 A. C. K.	D . A . A		60 H
LICOR DE AZUCAR DE CARA A		A	, A . A	(甲基)安康制	***		나를 잃다 맛이 없다	- 11
LICOR DE AZUCAR DE DOMACHA A		A 11 1	(i) A993.A9	60.66等。由	1.0	I (. i i i
LICOR BLANCO C	C . C	5 A		100	5.自点摆放	· 超级企业企业。	And Charles and American	- 1
1 · · ·								

F L U 1 Q 0	Browce Browce	ACERO AL CARBON	60. F0.	ALLUMENTO .	201	4		CAMPARTA 20	MASTELLOY B	WASTELLOT C	MOPLENS ETICEN	Bura - H	Tercon	v 10e	MOPALNS	WYP2 LDH	CPOST	= EXCELENTE
LICOR WEGRO LICOR VERDE		ç	Ç	c	:			A		:		٤	Â			, C	:	2
MÉRCURIO MÉTANO	0	•	Ā	ò	è		•				Ā	Ă	Ă.	4	i	ć		BUENO
METIL ACETOMA	ã			:	:							ŝ	î	õ	í			(ã
METILAMINA	D				-			Ä . Ä		· -	, i =	÷	Ä	Ď	-	b	-	(-
METILETILCETONA (MER)		•			-		١	A A	-	•	•	0		0	Û	p	-	ů.
FIEL MASTA	•	•			-			• •		· •		•		•		•	•	-
MAFTALTHO		•	•		- :						7.2	٠ ۽	•	2		,	- 2	38
MITRATO DE ALUMINIO	:	-	ê				10.0	A A		-		- :	-		-	č	-	100 100
BITRATO DE AMORIO	0	. 0	c			- 1		A A		4	- 1	. 8	Ą					E.
OLDIAL DE CATELO	A .				-	!		A . A	``, ' ≜ .,						-	•		[~.
MITRATO FERRICO MITRATO DE MAGRESIO	D ;	Đ			. g: P	1.0		• •				ু	•	•	- 2	•		9
MITANTO DE MIQUEL		ō	- ;		· · · · I		1.00			39.00					Á	-		_
HITRATO DE PLATA	0	ō					100			-		t						POBRE
MITAATO DE POTASIO				•		3.77		A MORA				. 1				٠.	-	遥
HITRATO DE SODIO		•	•					• •			10 mg	(i)		9 🚉 i			- 2	<u> </u> "
N 1 TROBENCENO N 1 TROGENO		•		٠.		414				96.	-17				/ i 🚡	-	:	l
DL EUM	•	ē	5	:	D		. 137	. 4			C			C	· · · ·	c	•	ł
DIIGO DE ETILEMO	Ā				-			9 A		A.	(C	D		. 0	D		A .	1
02100 #17R050	D	٠	•		. 0					9¦ (€!	5 1							1.
DX1GENG DXQXQ	•	•	:	•			100	249	1.60	103				4				}
FARAFINA	•	•		` ;		- 7			100	1	X							
PENTANO	Ã	ï	•	. ;		111			1-30	10.		75				•	7 - T	535
PERMANGAMATO DE POTASTO					¢				C	171.		435	最脂肪					1,000
PERGRIDO DE HIDROGENO PERCRIDO DE SCOIC	9	è		ŗ	:		100	: :		9				39.1		•	6 i.	1
PETAGLATO		÷		•	:	- 7			100		. 0					. 0		1.50
PETROLEO	ē	č	č	Ä		-: i	· .	A	-9.5		D	V 11. A	, A.		•	٠, ٨		
PROPANO	A	•	•		-	9			-4	Gart.	0		1 A	44	被性 生	: P 🐧		
PRSFILEMELICOL	•	•	•		-			• •			. 0		5版/	雅 :			U.₽.	LO.
SILICATO DE SOCIO SOLUCIONES DE AZUEAR		:	:	:	•	- 1				189.19	1	4	(1) a	38.5		D		
SULFATO DE ALUMINIO	-		, B	î	ì	- 1						A	300	BEA1	- A	gi. ♠ j		1000
SULFATO DE AMONTO	ĩ	ě	č	- 1	Ĭ	- 1	•				- 1		A					()
SULFATO DE BARIO	c	Č	ć		,		•	3 R				i 🗚	ni A	12.	. •			1
A																		•

9

ESTA TESIS NO DEBE SALIR DE LA BIBLIDIEUA

LEHTE 3= BUEHO C= REGULAR D= POBRE

r.u100	IVOVE	ACERD AL CARBON	. .	Month.	AC. 1801. 304 AC. 1801. 316	CAPPENTER 10	. ≩	100 M	VITON	HTPALGY
SULFATO DE CALCIO SULFATO DE COBRE SULFATO FERRICO SULFATO DE PACRESTO SULFATO DE POTASTO SULFATO DE POTASTO SULFATO DE SOULO SULFATO DE SOULO SULFATO DE ARONIO	C D B B	D D B D B D B B B	D O O O A O B B	8 C D D D D C G C S 8 D C E C B S	6 A B C B B B B B B B B B B B B B B B B B	8 B A C A B B A C A B B A A A A A A A A A		D A A A A A A A A A A A A A A A A A A A	A B A A A A A A A A A A A A A A A A A A	- A - A - A - A - A - A - A
SULFURO DE BARIO SULFURO DE POTASIO SULFURO DE SODIO TETRACLORURO DE CARBONI TINTAS TIOZIANATO DE AMONIO TIOSULFATO DE SODIO TOLUEMO		6 8 D D C A	C 8 8 8 0 D C 4	D - D C B 8 C - B B A B B A B	8 B A A B B B A A A A A A A A A A A A A	A	•	A A A A A A A A A A A A A A A A A A A	A B A A B B A A A A A B B D	A A A A A A A A A A A A A A A A A A A
TRICLORURO DE ANTIHONIO TRIFCSFATO DE ANONIO TRIFCSFATO DE ANONIO TRIOXIDO DE AZUFRE UPEA UPEA TORNALDENTO TILINO TODOCORRO TODOCORRO	0 D C B C	0 B C A B D B	D - C B C A B D C	A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	Ā.	B A A A B C A B B A A C A A B B A A A A	A A A B B B B B B B B B B B B B B B B B	C A A B A A B B A A B B B B B B B B B B
WHISKY Y WINOS		0		•						

1

3.3.7 TABLAS DE ESPECIFICACIONES ASTM MAS USUALES

En las siguientes tablas, se enlistan las especificaciones caciones ASTM más usuales en las especificaciones de materiales para tuberías, de acuerdo con los ti-

pos de materiales y a la forma en que se presentan

los mismos.

Por ejemplo en la primera tabla se muestran las especificaciones ASTM para los diferentes tipos de aceros al carbón, aceros de aleación (aceros aleados) y aceros inoxidables. En estos casos el material forjado se aplica en válvulas, en conexiones roscadas y socket-weld, y a bridas de cualquier tipo; el material fundido a válvulas bridadas y soldables; el material para conexiones soldables se utiliza únicamente para conexiones soldables a tope, y el material tubular a tuberías de cualquier tipo.

ASTM para materiales diversos como aluminio , cobre y sus aleaciones, níquel y sus aleaciones y a las - diferentes clases de hierros.

El material forjado se aplica a válvulas y conexio-

nes roscadas y socket-weld, y a bridas de cualquier tipo, el material fundido se usa en válvulas y conexiones roscadas y soldables, y a bridas , dependiendo del caso, el material para conexiones soldables a tope y el material tubular a tubería.

Sin embargo, estas tablas deben considerarse como una guía en la selección de las especificaciones ASTM, pues en muchas ocasiones, es necesario conocer
a fondo las especificaciones ASTM para determinar
las características de los materiales, tales como:

Composición, esfuerzos permisibles, consideraciones metalurgicas, etc.

3.3.7 TABLAS DE ESPECIFICACIONES ASTM MAS USUALES

En las siguientes tablas, se enlistan las especificaciones ASTM más usuales en las especificaciones - de materiales para tuberias, de acuerdo con los tipos de materiales y a la forma en que se presentan los mismos.

Por ejemplo en la primera tabla se muestran las especificaciones ASTM para los diferentes tipos de aceros al carbón, aceros de aleación (aceros aleados) y aceros inoxidables. En estos casos el material forjado se aplica en válvulas, en conexiones roscadas y socket-weld, y a bridas de cualquier tipo; el material fundido a válvulas bridadas y soldables; el material para conexiones soldables se utiliza únicamente para conexiones soldables a tope, y el material tubular a tuberias de cualquier tipo.

En la segunda tabla se indican las especificaciones ASTM para materiales diversos como aluminio , cobre y sus aleaciones, niquel y sus aleaciones y a las - diferentes clases de hierros.

El material foriado se aplica a válvulas v conexio-

3.3.7 TABLA

TABLA DE ESPECIFICACIONES A.S.T.M. PARA ACEROS AL CARBON, ACEROS DE ALEACION Y ACEROS INOXIDABLES, APLICABLE EN NATE RIALES PARA TUBERIAS.

MATERIAL	FORJADO	PUNDIDO	CONEXIONES SOLDABLES,	TUBULAR
Acero al carbón (Bajo contenido de carbón, hasta .351 C.Máx.)	A-105-I, II A-181-I, II A-350-LF1 A-350-LF2	A216-WCA A216-WCB A216-WCC A352-LCB	A234-WPA A234-WPB A234-WPC	A53-A,B A106-A,B,C. A120 A134 ^A A135-A,B. A129-A,B. A155 ^A
ACERO DE ALEACION	FORJADO	FUNDIDO	CONEXIONES SOLDABLES	TUBULAR
C-Mo C-Mo(Baja Temp.) 1/2Cr-1/2Mo 1Cr-1/2Mo 1 1/4Cr-1/2Mo 2 1/4Cr-1/2Mo 5Cr-1/2Mo 9Cr-1Mo	A182-F1 A350-LF3 A182-F2 A182-F12 A182-F11 A182-F22 A182-F5 A182-F9	A217-WC1 A352-LC3 A217-WC4 	A-234-WP1 A420-WPL3 A234-WP2 A234-WP12 A234-WP11 A234-WP2Z A234-WP5 A234-WP9	A335-P1 A333-3 A335-P2 A335-P12 A335-P11 A335-P22 A335-P5 A335-P9
ACERO INOXIDABLE	FORJADO	FUNDIDO .	CONEXIONES SOLDABLES	TUBULAR -
18Cr-ENi 25Cr-20Ni 18Cr-12Ki 18Cr-10NiTi 18Cr-10Ni-Eb	A182-F304 A182-F310 -A182-F316 A182-F321 A182-F347	A351-CF8 A351-CK20 A351-CF8M A351-CF8C	A403-WP304 A403-WP310 A403-WP316 A403-WP321 A403-WP347	A312-TP304 A312-TP316 A312-TP316 A312-TP321 A312-TP347

C = Carbón Cr = Cromo Ti = Titanio Mo = Molibdeno Ni = Niquel Cb = Columbio * = Varios Grados.

3.3.7. TABLA

TABLA DE ESPECIFICACIONES A.S.T.M. PARA MATERIALES DIVERSOS, APLICABLE EN MATERIALES PARA TUBERIAS.

MATERIAL	FORJADO	FUNDIDO	CONEX TONES	TUBULAR
Aluminio	B-221 ** B-247 **	B-26	B-361 WP *	B-210 ** B-241 **
Bronce		B-61 B-62		ar ja sa sa Kada ar atga
Bronce Rojo	10 m 可是强力的。	garistan dun sa		B-43
Cobre				B-42 ** B-68 ** B-75 **
Hastelloy		A296-CW-12M A296-N-12M		
Hierro Forjado	- 97 se (a 64 e 8)	A-48 *		A-72
Hierro Fundido		A-126-A,B,C A-278 * A-74		
Hierro Dúctil		A-377 A-395 A-445		
Hierro Maleable		A-47 A-197		
Inconel	B-166	A296-CY-40		B-167
Mone1 .	B-164	A296-N-35		B-165
Niquel	B-160	A-296-C2100		

^{* -} Varios Grados,

^{** -} Varias Aleaciones.

3.3.8 MATERIALES MAS USUALES PARA CUERPOS, BONETES E INTE

Ya se vió la descripción de los materiales más usua les de una forma genérica, ahora describo las carac terísticas de los materiales más usuales para válvu las, tanto de cuerpos como de interiores de las mis

3.3.8.1 CUERPOS Y BONETES

A) Latón

(Aleación de cobre y zinc)
ASTM B62

Resistencia a la tensión 2100 kg/cm2 (30000 Psi).

Punto de cedencia 990 kg/cm2 (14000 Psi).

Temperatura Máxima 206 grados C.

B) Bronce

(Aleación de cobre y zinc y otro material que predomine sobre el zinc, tal como el estaño)

ASTM B61

Resistencia a la tensión 2400 kg/cm2 (34000 Psi).

Punto de cedencia 1120 kg/cm2 (16000 psi)

Temperatura maxima 260 grados C.

C) Fierro Fundido

ASTM A126 Clase A (fundición gris)
Resistencia a la tensión 1480 kg/cm2 (21,000 psi).

Temperatura máxima 232 grados C
ASTM A126 Clase B (fundición gris de alta resistencia).

Resistencia a la tensión 2200 kg/cm2 (31,000 psi).

Tempereatura máxima 232 grados C
(Comercialmente llamado semi-acero o hierro acerado).

ASTM A395 (hierro ductil o hierro modular)
Resistencia a la tensión 4250 kg/cm2 (60,000 psi).

Punto de cedencia 3,150 kg/cm2 (45,000 psi)
Temperatura máxima 343 grados C
Temperatura mínima - 29 grados C

D) Acero Fundido

ASTM A216 grado WCB

Resistencia a la tensión 4900 kg/cm2 (70,000

Psi:

Punto de cedencia 2540 kg/cm2 (36000 psi)
Temperatura maxima 455 grados C
Temperatura minima - 27 grados C

E) Acero Inoxidable

ASTM A351 Gr CFB 6 CFBM

Resistencia a la tensión 4900 kg/cm2 (70,000

Punto de cedencia 2100 kg/cm2 (30000 psi)

ASTM A4B7 Grado 4N (API 6A tipo 2)

Resistencia a la tensión 6300 kg/cm2 (90000 psi)

Punto de cedencia 4250 kg/cm2 (60000 psi)

Temperatura maxima 121 grados C.

Temperatura minima - 29 grados C.

Tanto el fierro fundido como el acero al carbón no se caracterizan por una gran resistencia a la co_rrosión. Sin embargo, la oxidación inicial forma una capa protectora que mejora su resistencia para

la oxidación subsecuente y los hace aptos para medios relativamente corrosivos, siempre y cuando esa capa no se destruya. Esto se logra en partes estacionarias, como son el cuerpo, bonete, etc., pero en las partes sujetas a movimiento, el roce entre los elementos (compuerta contra asientos, vástago contra el empaque, etc.) cada vez que se opera la válvula se destruye la película protectora y se acelera el proceso de desgaste por corrosión.

Por esta razón, los interiores son generalmente - de material distinto al del cuerpo o con recubrimiento que resistan mejor el efecto corrosivo del fluido tales como cromo, monel, disulfuro de molibudeno, estelita, etc.

Cabe mencionar que los espesores de pared para -cuerpos de válvulas de acero que especifica la nor
ma API 600 son mayores que los especificados por ANSI B16.5 para paredes de conexiones. Esto se de
be a que las normas API 600 conceden un margen de
seguridad por el efecto de corrosión en los procesos de refinación.

3.3.8.2 INTERIORES DE VALVULAS

Los interiores son; el vástago, superfície de asiento, superfície de compuerta o disco y buje de asiento del vástago y generalmente se hacen de diversos materiales o con recubrimientos, incluyendo materiales plásticos.

Deberá tenerse en cuenta que la limitación por temperatura en muchos casos no depende solo del material del cuerpo, sino del material utilizado en los inte_
riores.

A) Bronce

Temperatura máxima 200 grados C.

Usado regularmente en interiores de válvulas de fierro de alta presión (clase 250) y en algunas válvulas de acero clase 150%.

B) Disulfuro de Molibdeno

Temperatura maxima 316 grados C.

Posee buenas condiciones anti-fricción y soporta bien la acción de fluidos moderadamente corrosi_ vos.

C) Acero al Cromo

Temperatura máxima 454 grados C.

Se recomienda para aceite, vapores de aceite o -cualquier otro fluido lubricante. Tiene buenas -propiedades anticorrosivas, pero en servicios no -lubricados, como agua, vapor de agua o gas existen
te, tendencia de adherencia en las superficies pulidas, lo que causa desgarramiento al deslizar una

D) Aleación Cobre-Niquel (Monel)

Temperatura máxima 454 grados C.

Se recomienda en servicio de fluidos no lubricantes, como agua, vapor, aire, etc. su resistencia a
la corrosión es buena. En muchas ocasiones se usa
compuerta y disco de monel o recubrimiento de monel, contra asientos de acero al cromo o con recubrimientos de acero al cromo, en fluidos no lubricantes, para evitar la tendencia de las superficies de adherirse y evitar el desgarramiento de estas.

E) Aleación Cobalto-Cromo Tungsteno

Temperatura máxima 454 grados C.

Recomendable para servicios donde la erosión es -considerable, tiene buenas propiedades contra la -corrosión.

F) Plasticos

Algunos tienen muy buenas propiedades antifric_
ción y una gran resistencia a casí cualquier tipo
de fluido.

Entre los termo-deformables se encuentra el nylon y el teflón; su temperatura máxima es de 66 grados C.7150 grados C. respectivamente. Entre los termo-fijos se encuentran la baquelita y el plaskón; su temperatura máxima varia entre 150 y 200 trados C.

G) Hule

----- Un término más amplio es elastómero.

Se usan con bastante frecuencia como insertos, dig cos, empaques. Entre estos se encuentran el Hycar, Buna N etc.

Ahora bien, después de varios años de experiencia

usando varios materiales, en diferentes condicio_
nes de servicios se ha obtenido un tipo de interio_
res estandar que son de acero inoxidable 13% Cr.

RANGOS DE TEMPERATURA-PRESION

Uno de los puntos importantes en la elaboración de es pecificaciones, es el de determinar, la clasificación ANSI o clase, en funsión de la temperatura y la presión, esto para cada material y en sus diferentes formas de producción.

De acuerdo a las condiciones máximas de temperatura - presión y tipo de material. Se determina la clasificación ANSI o clase, para bridas, accesorios y válvulas bridadas, para la cual se hace uso de información ya tabulada de rangos de presión contra temperatura - para diferentes clasificaciones de presiones y materiales, basadas en el estandar ANSI 816.5.

A continuación se muestran las tablas para diferentes clasificaciones de presión (150, 300, 400, 600, 700, 1500 y 2500 Psig.) y diferentes materiales (acero al carbón, aceros de aleación y aceros inoxidables) para temperaturas hasta 1500 grados F.

Las unidades que se emplean en estas tablas son:

Presión; Libras sobre pulgada cuadrada (psig)

Temperatura; Grados Fahrenheit (OF)

Tablas 3.4.1 v 3.4.3

Ejemplo del uso de las tablas

Tenemos las siguientes condiciones y debemos de dete<u>r</u>
minar la clasificación ANSI o clase .

Temperatura máxima 700 grados F.

Presion maxima 150 psig.

Material acero al carbón

Clasificación a determinarse

Explicación

Si se observa en la Tabla 3.4.1 (150 psig), para la temperatura de 700 grados F, la presión es 110 psig que no es suficiente para cumplir con los requerimientos. Por lo tanto, viendo en la siguiente Tabla 3.4.1 (300 psig), para la temperatura de 700 grados F, la presión es de 535 psig. que excede a la requerida, de donde se determina que la clasificación ANSI o clase es de 1 300 psig.

TABLE 1A LIST OF MATERIAL SPECIFICATIONS
Applicable ASTM Specifications

W	starial Groups				Pro	duct Form				
Meterial	Rominal Designation		Forgings			Castings			Places	
No.	Stael	Spec. No.	Grade	Notes	Spec. No	Grade	Notes	Spec. No.	Grade	Notes
1.1	Cerban	A 105 A 350	UF2	(1)(2)	A 216	wcs	11)	A 515 A 516	70 70	(1)
	C-Mn-Si							A 537	C1.1	
1.2	Carbon	:::	:::		A 216 A 352	rcc wcc	(3)	:::	:::	•••
	21/1Ni	ł			A 352	LC2		A 203	В	
	31/sNi	A 350	UF3		A 352	rc3		A 203	E	
1.3	Carbon		::: '		A 352	LCB	(1)	A 515 A 516	65 65	(1) (1)
	21/2Ni]						A 203	A .	
	31/Mi	}						A 203	0	,.
1.4	Carbon	A 350	UF1		:::			A 515 A 516	60 60	(1)
1.5	C-1/sMa	A 182	F1	(3)	A 217 A 352	WC1 LC1	(3)(4)	A 204 A 204	A B	(3)
1.7	C-YeMa							A 204	С	(3)
	1/2Cr-1/2Mo	A 182	FZ							
	Ni-Cr-1/2Mo				A 217	WC4	(4)			
	Ni-Cr-1Mo				A 217	wcs.	(4)			•••
1.9	1Cr-Y;Mo	A 182	F12	(4)						•••
	1 YaCr-YzMo	A 182	F11	(4)	A 217	WC6	(4)	A 387	11 CI.2	
1.10	21/eCr-1Ma	A 182	F22		A 217	wcg	(4)	A 387	22 CI.2	
1.13	SCr-ViMa	A 182 A 182	F5 F5a		A 217	C5	(4)	•••		•••
1.14	\$Cr−1Mo	A 182	F9		A 217	C12	(4)			. ,
2.1	1BCr-8Ni	A 182 A 182	F304 F304H	(5)	A 351 A 351	CF3 CF8	 (5)	A 240 A 240	304 304H	(5)(6)
2.2	18Cr-12Ni-2Mo	A 182 A 182	F316 F316H	(5)				A 240 A 240	316 316H	(5)(6)
	18Cr-13Ni-3Mo			- 1			i	A 240	317	(5)(6)
	18Cr-9Ni-2Mo	:::	.:		A 351 A 351	CF3M CF8M	(5)			

PIPE FLANGES AND FLANGED FITTINGS

3.4.1. TABLA

ASME/ANSI B16.5-1986

TABLE 1A LIST OF MATERIAL SPECIFICATIONS (CONT'D)
Applicable ASTM Specifications

Ma	sterial Groups				Pro	duçt Form	1			
Material Group	Nominal Designation		Forgings			Cestings			Plates	
No.	Steel	Spec. No.	Grada	Notes	Spec. No.	Grade	Notes	Spec. No.	Grade	Notes
2.3 .	18C+-8141	A 162	F304L					A 240	304L	
	16Cr-12N-2Mo	A 182	F316L					A 240	315L	,
2.4	18C1-10%-Ti	A 162 A 162	F321 F321H	(5)	:::	:::		A 240 A 240	321 321H	(5116)
2.5	18Cr-10Ni-Cb	A 182 A 182 A 182 A 182	F347 F347H F348 F348H	(5) (5)	A 351	CFBC	(5) 	A 240 A 240 A 240 A 240	347 347H 348 348H	(51(8) (5)(6)
2.6	25C1-12Ni	:::	:::	•••	A 351 A 351	CH8 . CH20	(5) (5)	:::	:::	:::
	23Cr-12N							A 240	3095	(5)(6)
2.7	25Cr-20Ni	A182	F310	(5)(7)	A 351	CK50	(5)	A 240	3105	(5)(6)(

							 -				
	. Ma	narial Groups				Pro	duct Form	<u> </u>	,		
	Material Group	Nominal		Forgings			Ceetings		i	Pletos	
	No.	Designation	Spec. No.	Grade	Notes	Spec. No.	- Grade	Notes	Spec. No.	Grade	Notes
	3.1	Cr-Ni-Fe- Mo-Cu-Cb Alloy 20Cb	B 462	NOB020	(8)	A 351	CN7M	(9)	8 463	N08020	(8)
	3.2	Ni Alloy 200	8 160	N02200	(8)(10)	:	•••		B 162	N02201	(8)
	3.3	Ni-Low C Alloy 201	B 160	N02201	(8)(10)				8 162	N02200	(8)
	3.4	Ni-Cu Alloy 400	B 564	NO4400	(8)			•••	8 127	N04400	(8)
		Alloy 405	B 154	N04405	(8)(10)				ļ		
	3.5	Ni-Cr-Fe Alloy 600	B 564	N06600	(8)				B 168	N06500	(8)
general english	3.6	Ni-Fe-Cr Alloy 800	8 564	N08800	(8)		•••		B 409	NOBBOO	(8)
	3.7	Ni-Mo Allay B2	8 335	N10665	(9)(10)		•••		8 333	N10665	(9)
	3.8	Ni-Mo-Cr Alloy C276	B 574	N10276	(9)(10)				B 575	N10276	(0)

(Table 1A centinues on next page; Notes follow at and of Table)

TABLE 1A LIST OF MATERIAL SPECIFICATIONS (CONT'D)
Applicable ASTM Specifications

Ma	terial Groups	1			Pro	duct form	16			
Material Group	Nominal		Forgings			Castings			Plates	
No.	Designation	Spec. No.	Grade	Notes	Spec. No.	Grade	Notes	Spec. No.	Grade	Note
3.8 (cont'd)	Ni-Cr-Mo-Cb Alloy 525	B 564	N06625	(8)				B 443	N96625	(8)
	Ni-Ma Alloy B	8 335	N10001	(9):10)		* -		B 333	N10001	(9)
	Ni-Cr-Mo-Fe Alloy N	B 573	N10003	(8)(10)				8 434	N10003	181
	Ni-Mo-Cr Alby C4	B 574	N06455	(9)(10)				B 575	N06455	(9)
	Ni-Fe-Cr-Ma-Cu Atlay 825	B 425	N08825	(8)(10)			• •	B 424	N08825	(8)
3.9	Ni-Cr-Mo-Fe Alloy X	B 572	N06002	(8)(10)				B 435	N06002	(8)
3.10	Ni-Fe-Cr-Mo-Cd Aloy 700	B 672	N08700	(9)(10)				B 599	N08700	(9)
3.11	Ni-Fe-Cr-Mo- Cu-Low C Alloy 904L	B 649	N08904	(8)(10)				8 625	N08904	(8)
3.12	Ni-Fe-Cr-Ms Alloy 20 Mod.	8 621	N08320	(9)(10)				B 620	N08320	(9)
	Ni-Cr-Fe-Mo-Cu Alloy G-3	8 581	N06985	(9)(10)				B 582	N06985	(9)
3.13	Ni-Cr-Fe-Mo-Cu Alloy G-2	8 561	N06975	(9)(10)				B 582	N06975	(91
3.14	Ni-Cr-Fe-Mo-Cu Aflay G	B 581	N06007	(9)(10)				B 582	N06007	(9)
3.15	NI-Fa-Cr Alloy 800H	B 564	N08810	(8)				B 409	N08810	(8)
3.16	Ni-Fe-Cr-Si Alloy 330	B 511	N08330	(8)(10)		-		B 536	N08330	(8)

PIPE FLANGES AND FLANGED FITTINGS

ASME/ANSI B16.5-1988

TABLE 1A (CONT'D)

GENERAL NOTES:

- (a) For removerature limitations, see Notes in Table 2.
- (a) For impressive ministerin, see notes in Lake 2.

 (b) Plate materials are listed only for use as blind linges (see para, 5.1), Additional plate materials fisted in ANSI B16.34 may also be used with corresponding B16.34 Standard Class raings.

 (ii) Alternal Cingus not listed in Table 1.4 are intended for use in valves. See ANSI B16.34.

NOTES:

- nures:

 (1) Upp prolonged exposure to temperatures above about 800°F, the carbide phase of carbon steel may be convented to graphite.

 (2) Only haided steel shall be used above 850°F.

 (3) Upp prolonged exposure to temperatures above about 875°F, the carbide phase of carbon-molybdenum steel may be convented to graphite.
- to graphite.

 (If Use normalized and tempered material only.

 (5) At remoretaives over 10007F, use only when the carbon content is 0.04% or higher.

 (6) At remoretaives above 10007F, use only if the material is heat treated by heating it to a temperature of at least 1900°F and questioning in water or anothy cooling by other meens.

 (7) Service temperature of 1050°F and above should be used only when assurance is provided that grain size is not finer than ASTM.

- No. 6.

 Ill Use annealed material only,

 Ill Use some aled material only,

 Ill Use solution proceed material only,

 Ill Use solution proceed material only,

 Ill The chemical composition, mechanical properties, heat treating requirements, and grain size requirements shall conform to the
 applicable ASTM specification. The manufacturing procedures, tolerances, tests, carufication, and markings shall be in accordance with ASTM 8 564.

ACLIC/AUCI D18 5.1000

3,4.3, TABLA

PIPE FLANGES AND FLANGED FITTINGS

TABLE 2 PRESSURE-TEMPERATURE RATINGS^{1,1}
Pressures Are in psig
Class 150

Meterial Group	Γ		Γ_							Γ							
No.	1.1	1.2	1.3	1.4	1,5	1.7	1.9	1.10	1.13	1.14	2,1	2.2	2,3	2.4	2.5	2.6	2.7
	Γ						Alloy !	Etools					Austi	enitic S	topis		
Temp.,		Carbo	n Steel		C- 4:M6	YıCı- YıMa, Ni-Cı- Mo	1Cı- YıMa, 1¼Cı- VıMa	2½Cr- 1 M o	SCr- VzMo	9Cr- 1Ma	Туре 304	Түре 316	Type 304L Type 316L	Type 321	Types 347, 348	Type 309	Type 310
~ 20 to	Γ-			-				}			_						
100	285	290	265	235	265	290	290	290	290	290	275	275	230	275	275	260	260
200	260	260	250	215	260	260	260	260	260	260	235	240	195	235	245	230	230
300	230	230	230	210	230	230	230	230	230	230	205	215	175	210	225	220	220
400	200	200	200	200	200	200	200	200	200	200	180	195	160	190	200	200	200
500	170	170	170	170	170	170	170	170	170	170	170	170	145	170	170	170	170
600	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140
650	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125
700	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110
750	95	95	95	95	95	95	95	95	95	95	95	95	95	95	95	85	95
800	80	60	80	80	80	80	80	ao	80	80	60	80	80	80	80	80	ao.
850	65	65	65	. 65	65	65	65	65	65	65	65	65	65	65	65	65	65
900	50	50	50	50	50	50	50	50	50	50	50	50		50	50	50	50
950	35	35	35	35	35	35	35	35	35	35	35	35	1	35	35	35	35
1000	20	20	20	20	20	20	20	20	20	20	20	20		20	20	20	20
	1	ائد ا	_20	ئى ا		ے۔		1 20	_40		_20	_20		سك	_20	٠	1

TABLE 2 PRESSURE-TEMPERATURE RATINGS'2 Pressures Are in psig

Prof. F.	LANGE	S AND	FLANGE CONTRACTOR OF THE PROPERTY OF THE PROPE		INCS	PRINCE PRINCE	ESSUF	.4.3. RE-TE		NTURE	The second secon	NGS*		ASME	NNSF81	6 5-1986
								Class	re In p 150	sig						
3.1	3 2	3.3	3.4	3.5	3.6	3.7	3.6	3.9	3.10	3.11	3.12	3.13	3.14	3 15	3 16	Material Group No.
\equiv					_	Nic	kel and	Nickel	Alloys		,					
Cr- Ni- Fe- Mo. Cu- Cb Alloy 20Cb	Ni Alloy 200	Ni- Low C Alloy 201	Ni- Cu Alloys 400, 405	Ni- Cr- Fe Alloy 600	Ni- Fe- Cr Alloy 800	NI- Mo Allay 82	NI Al- loys	Ni- Cr- Mo- Fe Alloy	Ni- Fe- Cr- Mo- Cd Allay 700	Ni- Fe- Cr- Mo- Cu- Low C Alloy 904L	Alloys 20 Mod. & G-3	Ni- Cr- Fe- Mo- Cu Alloy G-2	NI- Cr- Fe- Mo- Cu Alloy G	Ni- Fe- Cr Alloy 800H	NI- Fe- Cr- Si ASoy 330	Temp.,
230 215 200 185	140 140 140 140	90 85 85 85	230 200 190 185	275 250 230 200	275 255 230 200	290 260 230 200	290 260 230 200	290 260 230 200	275 260 230 200	245 230 210 190	260 240 225 200	290 260 230 200	275 245 230 200	230 205 195 185	275 245 225 200	-20 to 100 200 300 400
170 140 125 110	140	85 85 85 85	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125 110	170 140 125 110	500 600 650 700
95 80		80 65 50	95 80 65 50	95 80 65 50	95 80 65 50	95 80 	95 80 65 50	95 80 65 50			95 80 	95 80	95 80 65 50	95 80 65 50	95 80 65 50	750 800 850 900
_:::		35 20	:::	35 20	35 20		35 20	35 20	: .: ::		:::	::: :::	35 20	35 20	35 20	950 1000

(Table 2 continues on next page; Notes follow at and of Table)

TABLE 2 PRESSURE-TEMPERATURE RATINGS^{1,2} (CONT'D)
Pressures Are in psig
Class 300

Material Group No.	1.1	1.2	1,3	1.4	1.5	1.7	1.9	1.10	1.13	1.14	2.1	2.2	2 3	2.4	2.5	2.6	2.7
					$\overline{}$		After !	Steels			i i		Aust	enitic :	Steels		
A		· · · · · · · · · · · · · · · · · · ·	10.5		├						}					г	
	1						ł	ŀ		1	,	,	i .		1	1	
								1			1		i	ĺ	1	1	
	1				ł) .	ļ	,		l	1	ĺ	(((ı	
	1				ļ)	ļ	}		1	1		_	i	ł	ł	
					j	4.Cr-	1C:-				į .		Туре	1		1	Į
_					c_	hMo. Ni-Cr-	¥₂Mo. 1¼Ce−	21/4Cr-	5Cr-	901-	Type	Type	304L	Type	Types 347.	Type	Туре
Temp.		Carbo		. '	V.Mo	Mo	Y/Mo	IMa	14Ma	1Ma	304	316	316L	321	348	309	310
		Lama	2100	<u>'</u>	1790	100	7/7-0	1	11	1				-		-	-
- 20 to	1	ĺ	1	i i				}			ļ	720	600	720	720	670	670
100	740	750	695	620	695	750	750	750	750 750	750	720 500	620	505	610	635	605	605
200	675 655	750	655	560 550	680	750	710 675	715 675	730	730	530	560	455	545	590	570	570
300 400	635	705	640 620	530	640	705	660	650	705	705	470	515	415	495	555	535	535
400	620	105	620	330	0-0	103	600	1 02	1.03	,,,,	17,5	""	1]		
500	600	665	585	500	620	665	640	640	665	665	435	480	380	460	520	505	505
600	550	605	535	455	605	605	605	605	605	505	415	450	360	435	490	480	460
650	535	590	525	450	590	590	590	590	590	590	410	445	350	430	480	465	465
700	535	570	520	450	570	570	570	570	570	570	405	430	345	420	470	455	455
	1						530	530	530	530	400	425	335	415	460	445	445
750 800	505	505	475 390	370	530 510	530	510	510	500	510	395	415	330	415	455	435	435
850 850	270	270	270	270	485	485	485	485	440	485	190	405	320	410	445	425	425
900	170	170	170	170	450	450	450	450	355	450	385	395		405	430	415	415
300	```		1		1				1				•	ı	i	1	
950	105	105	105	105	280	345	380	380	260	370	375	385		385	385	385	385
1000	50	50	50	50	165	215	225	270	190	290	325	365		355	365	335	350
1050						190	140	200	140	190	310	360		345	360	290 225	335 290
1100							95	115	105	115	260	325	l · · ·	300	325	123	250
1150	í	i	l	}	}	}	50	105	70	75	195	275		235	275	170	245
1200	•••			١			35	55	45	50	155	205		180	170	130	205
1250	1:::							1			110	180		140	125	100	160
1300		1:::				1		1	1		65	140		105	95	80	120
	l ''	1		1	i '	i	1	}	ì	1	1		j				
1350								Į į	١.		60	105		60	70	60	60
1400	١.		١.	١			3	1	l		50	75		60	50	45	55 40
1450	١٠٠) ·			i	i			35	40		50	40 35	30	25
1500						1 '	[١.		25	40		- 40	1 35	1_43	۲,3

							10	T 41.								
	y nav Navy					rom Nye.	45									
PIPE FI	AUGES	AND F	LANGE	D FITTI	VGS	75/4	100	3.4.	3.	TABLA		-	111	ASME/A	NSI B1	6.5-19
		David.		galli e	Sit.	2.9										
343	. 40	lai :	\$10 L		198	114										
			T/	ABLE 2	PR						NGS'	(CO	NT.D)			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.4						Pressi	ires A Class :		sig						
_		Π	_	Г		Γ				Γ			Γ^{-}			Mate
3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	2.10	3.11	3.12	3.13	3.14	3.15	3.16	Grou
			1.5.		3.0						3.72	3.13	1			 ""
	_			_		Nic	kel and	Mickel /	lioya					_	_	ł
Cı-		l	1	'		l				N⊢ Fe-		l	ł			1
Ni-			1.			l		ŀ	Wi-	Cr-		Ni-	N⊢			l
 Fe-		Ni-	Ni-	NI-	Ni-			Ni-	Fe- Cr-	Mo-	ĺ., !	Cr-	Cr-	Ni-	NI-	
Mo, Cu-		Low	Cu	C/-	Fe-	Ni-	ĺ	Mo-	Mo-	Low	Alloys 20	Fe-	Fe-	Fe-	Fe- Cr-	1
Cb	Ni i	C	Alloys	Fe	Cr	Mo	Ni :	Fe	Cd	c	Mod.	·Cu	Cu	C.	SI	l
Alloy 20Cb	Alloy 200	Alloy 201	400,	Alloy 600	Alloy 800	Alloy B2	Al-	Alloy	700	ARcy 904L	G-3	Allay	Alloy	BOOH	Alloy 330	Temp
2008	200	201	405	600	800	BZ	loys		700	SOAL	6.3	G-2	-G	BOOH	310	⊢∸
600	360	240	600	720	720	750	750	750	720	640	670	750	720	600	720	-20
555	360	230	530	670	650	750	750	750	720	600	625	705	645	540	635	20
525	360	225	495	640	625	730	730	680	680	545	585	660	600	505	590	30
480	360	215	480	615	600	705	705	600	640	495	535	635	560	480	550	40
470	360	215	475	595	580	665	665	575	610	455	500	595	535	455	-525	50
455	360	215	475	575	575	605	605	560	595	430	475	560	520	440	500	60
450 445	:::	215	475 475	565 555	570 565	590 570	590 570	560 560	570	420	465 450	555 545	510 505	425 420	490 480	65 70
	***	l	1				l		•••	1.0		373	505	7.0	-00	1
440	• • • •	210	470	530	530	530	530	530			445	530	500	415	470	75
430		205	460 340	510 485	505 485	510	510 485	51 485	`		430	510	495 485	410 400	465 455	80 85
		140	245	450	450		450	450		:::	:::		450	395	445	90
			1 1	325	385		385		i '	ì	i '	ì		١	ì	ì
:::	:::	115 95		215	365		365	385 365	:::	:::		:::	385	385	365	100
	3	75	1	140	360		360	360				l :::		325	310	105
•••.	14.	60		95	325	• • • •	325	325	••••					320	240	110
		45	١	70	275	١ ا	275	275			ا ا	١		275	185	115
		35	1	60	205		185	205						205	145	120
• • • •	•••	•••		•••	130	• • • •	145	180					•••	180	115	125
	•••	···		••••	50	•••	110	140		····	· · · ·			140	95	130
					50			105					:	105	75	135
	•••				35	•••		75		٠				75	55	140
•••	•••				30 25	• • • •	l ::: ,	60	•••	•••				60 40	45 35	145
1			I								·					

(Table 2 continues on next page; Notes follow at end of Table)

ASME: ANSI 818.5 1988

3.4.3, TABLA

PIPE FLANGES AND FLANGED FITTING

TABLE 2 PRESSURE-TEMPERATURE RATINGS^{1 2} (CONT'D)
Pressures Are in psig
Class 400

Material Group No.	1.1	1.2	1.3	1.4	1.5	1,,	1.5	1,10	1.13	1.14	2.1	2.2	2.3	2.4	2.5	2.6	2.7
	i				_		ASoy	Stools	L		-		Aust	enitic t	ipols	·	
		1 4				T		T			_	_				_	1
100				1	i	1		1					1			1	
						Ì	ł	}			}	1					}
					Ì	V/Cr-	1Cr-	1	1		}		Type			1	1
						ViMa.	YzMa.				_	. :	3041		Types	ł	
Temp.,		Carbo	s Steel		C~ WMs	Ni-Cr- Mo	116Cr-	21/sGr=	5Cr- YxMo	9Cr-	304	Type 316	Type 316L	7400 321	347, 348	309	7ype 310
- 20 to																	
100 200	990	1000	925 875	750	925	1000	1000	1000	1000	1000	800	960 825	800 675	960 815	980 B50	895	895
300	875	870	850	730	870	970	695	905	570	970	705	745	605	725	785	750	760
400	845	940	825	705	855	840	880	865	940	940	630	685	550	660	740	710	710
500	800	885	775	665	830	885	655	855	865	885	585	635	510	610	690	670	670
600	730	805	710	610	805	805	805	805	805	805	555	600	480	585	655	635	635
650 700	715	785 755	695	600	785 755	785 755	785 755	785 755	785	785 755	545	575	470	570 560	640 625	620 610	610
750	,	133	1050		1 133	/33	, , 33	('""	133	/55	340	3/3	*Bu	304	023	0.0	10.0
750	670	670	630	590	710	710	710	710	710	710	530	565	450	555	616	595	595
800	550	550	520	495	675	675	875	675	665	675	525	555	440	550	610	580	580
850 900	355 230	355 230	355 230	230	600	650 600	650	650 800	585 470	650 600	520	540	430	545 540	590 575	565 555	565 555
300	130	230	230	250	1000	1000	900	, au	4,0	800	210	25.2		3eu	3/3	223	322
950	140	140	140	140	375	460	505	505	350	495	500	515		515	515	515	515
1000	70	70	70	70	220	285	300	355	255	390	430	485		475	485	450	465
1050						250	185	265	190	250	410	480		480	480	390	445
1100	***	• • • •					130	150	140	150	345	430	• • • •	400	430	300	390
1150	1		l	Ì			70	140	90	100	280	365		315	365	230	330
1200							45	75	60	70	203	275		240	230	175	275
1250							}				145	248		185	165	135	215
1300											110	185		140	125	105	180
1350			١			·		·	l		85	140		110	90	80	105
1400											85	100		80	70	80	75
1450											45	80		65	85	40	50
1500							}		۱ · · · ۱		30	65		60	45	30	30

TABLE 2 PRESSURE-TEMPERATURE RATINGS^{1,2} (CONT'D)
Pressures Are in psig
Class 400

		_		-			_									
	100	100]	1		1	1						Material
3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	3.10	3.11	3.12	3.13	3.14	3.15	3.16	No.
				-		Nici	el and	Nickel A	Hoys							
	1		_	_		_							_		_	1
	i.	i		l	í		l		1	Ni-	1				i .	ŀ
Cr-	l	l	į l	Į.	ļ	}	(1	NF:	Cr	1	Ni-	Ni-) '	1	ì
Fo-	1	1		ĺ			1	Ni-	Fe-	Mo-	l i	Cr-	Cr-	1	NI-	ļ
Mo.		NI-	Ni-	Ni-	Ni-			Cr-	Cr-	Cu-	Allays	Fe-	Fo-	Ni-	Fe-	i
Cu-	Ì	Low	Cu	Cr-	Fe-	NI-		Mo-	Mo-	Low	20	Mo-	Mo-	Fe-	Cr-	l
СЬ	Ni	C	Alloys	Fe	Cr	Mo .	NE	Fa	Cd	(c	Mod.	Cu	Cu	Cr	SI	_
Alloy	Allay	Alloy	400.	Alloy	Alloy	Alloy	Al-	Alloy	ABoy	Alloy	4	Alloy	Alloy	Alloy	Alloy 330	Temp.,
20Cb	200	201	405	600	800	82	loys	Χ.	700	904L	G-3	G-Z	G	800H	330	<u></u>
	1	1	1			1)	ì	_		1		1	ľ	l	- 20 to
800	480	320	800	960	960	1000	1000	1000	960	855	895	1000	960	800	960	100
740	480	305	705	E95	885	1000	1000	1000	960	800	830	940	860	720	850	200
700	480	300	660	850 ·	830	970	970	905	905	725	780	885	795	675	785	300
640	480	290	635	820	800	940	940	795	855	660	715	B45	750	640	735	400
625	480	290	635	790	770	885	885	770	815	610	665	790	715	610	700	500
605	480	290	635	765	765	805	B05	745	790	575	635	750	690	585	670	600
600		290	535	750	760	785	785	745	760	550	620	735	680	565	655	650
595		290	635	740	750	755	755	745		545	600	725	675	560	645	700
585	l	280	625	710	710	710	710	710	l		590	710	670	550	625	750
575	{ :::	270	610	675	675	675	675	675			575	675	660	545	620	800
		270	455	650	650		650	650					650	530	605	850
•••		185	430	600	600		600	600			} ····	'	600	530	590	900
	l	150	l	435	515		515	515			ا ا		615	515	515	950
•••	l :::	125	1 ::: 1	290	485		485	485					485	485	485	1000
		100		185	480		480	480						435	410	1050
		80		125	430		430	430						430	320	1100
	1	1				Ι.	365	365		İ	l l			365	245	1150
• • •	• • • •	60		90	365 270	Į į	245	275					•••	275	195	1200
• • • •		50			175	Ì ::: ˈ	195	245					:::	245	155	1250
	:::	i :::	l :::	l :::	80	l :::	145	185		l :::	I ::: I			185	130	1300
	}	١	١		1 ~~	1	1	1	J	l	1		l	1	١٠	J
	١	1			65			140						140	100	1350
				'	45			100						100	75	1400
]				40			80						60	60	1450
		•••			35	l		55						55	45	1500

(Table 2 continues on next page; Notes follow at and of Table)

ARTIC ALC: A16 5.1965

3.4.3. TABLA

FIFE FLANGES AND FLANGED FITTING

TABLE 2 PRESSURE-TEMPERATURE RATINGS' 2 (CONT'O)

Pressures Are in psig

Class 600

Material Group			1.3				1,9	1.10	1.13	1,14	2.1	2.2	2.3	2.6	2.5	i	2.7
No.	1.1	1.1 1.2 1.3 1.4			1.5 1.7 1.9 1.10 1.13 1.14 ABoy Steels						Austenitic Steels						
				Appy Steels													
	1				}	}	l	}			{		. "				1
	1					l		}									İ
	1				1		l	1								}	į.
	}					4,Cr-	1Cr-	}					304L				{
Temp.	1				c-	V≀Ma. Ni-Cr-	1/4Cr~	24-C1-	SCr-	acr-	Тура	Type	Type	Type	Types 347.	7104	Type
**	Carbon Steel			Y,Mo	Mo	1/JMo	1Ma	V2Mp	1Mo	304	316	316L		348	309	310	
~ 20 to				1		i			-								
100					1390	1500	1500	1500	1500		1440		1200	1220	1440	1345	
200 300				1125		1500	1425	1430	1500	1500	1055				1175		
400					1280	1410	1315	1295	1410	1410		1030	825		1110	1065	
-100					1			1					}			}	
500		1330			1245	1330	1285	1280	1330	1330	875	955	765 720	915 875	1035	1010	
650		1210		915		1210	1210	1210	1210	1210	830 615	890	700	855	960	930	930
700		1135		695		1135	1135	1135	1135	1135	BOS	865	685	840	935	910	910
	1					ł	-										
750		1010		885		1065	1065	1065	1065	1065	795 790	845	670 660	830 825	920	895 870	870
800 850	825 535	825 535	780 535	74D 535	1015	1015	1015 975	975	995 880	1015	780	810	545	815	890	850	850
900	345	345		345	900	900	900	900	705	900	770	790		810	865	830	830
950	205	205	205	205	560	685	755	755	520	740	750	775		775	775	775	775
1000	105	105	105	105	330	425	445	535	385	585	645	725		715	725	670	700
1050						380	275	400	280	380	620	720		695	720	585	585
1100							190	225	205	225	515	645		605	645	445	203
1150							105	205	140	150	390	550		475	550	345	495
1200							70	110	90	105	310	365		365 280	345 245	260	325
1250				• • • •				1:::		***	220 165	275		280	185	160	240
				٠	٠	***	• • • •							{ ` `			
1350	}				٠			·			125	205		165	135	115	150
1400								{ · · ·	• • • •		70	150		95	80	50	75
1450	111		1.			***	:::	1			50	85		75	70	50	
	خشا	٠					<u></u>		سننا	خنسا							

MOT ELANGES AND ELANGED ELTTINGS

3.4.3. TABLA

ACME/ANCIBLE C. IGAR

TABLE 2 PRESSURE-TEMPERATURE RATINGS¹² (CONT'D)
Pressures Are in palg
Class 600

3.1	1.2	3.3	3.4	3.5	3,6	3.7	3.8	3.9	3,10	3.11	3.12	3,13	3,14	3.18	3.16	Material Group No.
	1	977			-	Nic	tel and	Nickel A	Boys							,
Cr- Ni- Fa- Mo. Cu-		Ni- Low	Ni- Cu	Ni- Gr-	Ni- Fo-	Ni-		Ni- Cr- Mo-	Ni- Fe- Cr- Mo-	Ni- Fe- Cr- Mo- Cu- Low	Alloys 20	NI- Cr- Fe- Mo-	Ni- Cr- Fe- Mo-	Ni-	Ni- Fe- Cr-	
Alloy 20Cb	Ni Alloy 200	ABoy 201	400, 400,	Alloy 500	Alloy BOO	Mo Allay BZ	Ai- lovs	Fa Alloy	Ed Allay 700	ABOY 904L	Mod.	Alley G-2	Alloy G	Allay BOOH	Alloy 330	Tamp
2000		-	-					 -				-	<u> </u>	-	-	- 20 to
1200	720	480	1200	1440	1440	1500	1500	1500	1440	1280	1345	1500	1440	1200	1440	100
1115	720	455	1055	1345	1325	1500	1500	1500	1440	1200	1245	1410	1290	1080	1270	200
1045	720 720	445	990	1275	1250	1455	1455	1360	1360	1085	1175	1325	1195	1015	1175	300 400
960	120	4.30	355	1230	1200	1-10	1410	,,,,,,	1200	993	1073	1202		1 300	105	-00
935	720	430	950	1185	1155	1330	1330	1150	1225	915	1000	1190	1070	910	1050	500
910	720	430	950	1145	1145	1210	1210	1120	1190	865	950	1125	1035	860	1005	600
900 890		430	950 950	1130	1140	1175	1175	1120	1140	840 820	930	1105	1020	850 840	980 965	650 700
690		1 -30	950	1115	11.30	1135	11.33	1120		1 620	, 300	1003	1015	1 0-0	303	,,,,
880		420	935	1065	1065	1065	1065	1065			885	1065	1005	825	940	750
865		410	915	1015	1015	1015	1015	1015	· · · ·	ł	855	1015	995	815	925	800
	* - 4	410	680	975	975		975	975	1				975	795	905	850
		380	495	900	900		900	900					900	790	885	900
		230	1	655	175		775	775	i				775	776	775	950
1		185		430	725		725	725		·			725	725	725	1000
!		150		280	720		720	720						650	615	1050
		125	j	185	645		645	645			}			640	480	1100
		95	}	135	550	l	550	550		1	١			550	370	1150
		75		125	405		370	410		1	1		1	410	290	1200
					260		295	365						365	235	1250
					125		215	275		į				275	190	1300
		į	Ì.		100	.,.		205		l			١	205	150	1350
		:::			70	111		150	1	1 :::		ł :::	1	150	110	1400
					60	1		115		1]			115	95	1450
				!	50			85						85	70	1500

(Table 2 continues on next page; Notes follow at and of Table)

TABLE 2. PRESSURE-TEMPERATURE RATINGS' ¹ (CONT'D)
Pressures Are in psig
Class 900

								in . San										
4 (4) 24 (4)																		
		1, 4 1						10	16							- Qr Desir		
	ASI/Æ/AI						.4.3.	TAR										•
	ASTRETAL	SIBIT	עו כ נ				.4.3.	TAB	LA				are re	ANGES	AND	FLANG	EU 711	IINGS
								villa S Springer										
				T¢	BLE	2 PI	ESSU		MPERA			NGS'	, (CO	NT'D)			
		_	j % L						Class 9		····				,			
	Material Group No.	1.1	1.2	1.3	1.4	1.5	1.7	1.5	1.10	1.13	1.14	2.1	2.2	2.3	2.4	2.5	2.6	2.7
						+-4,0 		Alloy !	Stools	_		_		Aust	entic S	loaks	_	_
						ä,:												
				٠.		C-	YzCr- YzMo, NI-Cr-	1Cr- ViMo.	24cr-	BCr-	9Cr-			Type 304L	Type	Турев	_	_
	Temp., ef	-	Carbo	Steel		1/2Mo	Mo	Y#Mo	1Mo	1/1Mo	1Ma	Type 304	316	Type 316L	321	348	Type 309	310
	100 200 300	2025	2250	1970	1685	2085 2035 1955	2250 2250 2185	2250 2135 2020	2250 2150 2030	2250 2250 2185	2250	1800	1860	1800 1520 1350	1830	1910	1815	1815
	400 500	1900	2115	1850	1585	1920	2115	1975	1945	2115	2115	1410	1540	1240	1485	1665	1600	1600
	600 650 700	1610	1765	1570	1345	1815 1765 1705		1815 1765 1705	1815 1765 1705	1815 1765 1705	1765	1225	1330	1080 1050 1030	1280	1440	1395	1395
	750 800 850	1235	1235	1175	1110	1595 1525	1595	1595 1525 1460	1595 1525	1595 1490	1525	1195 1180 1165	1245	985	1240	1370	1340 1305 1275	1305
	900	805 515 310	515	}		1460 1350 845	1460 1350	1350	1460 1350 1130	1315 1060 780		1150	1180	965	1215	1295	1245	1245
	1000 1050 1100	155				495	640 565	670 410 290	805 595 340	575 420 310	875 565 340	965	1090		1070 1040 905	1090	1010	1050
	1150	:::	:::	:::				155	310 165	205 135	225 155	585 485	825 620		710 545	825 515	\$15 390	740 620
	1250 1300	:::	:::	:::		:::	:::	:::	:::	:::	:::	330 245	545 410	:::	420 320	370 280	300 235	485 360
	1350 1400 1450	:::	:::	:::		:::	:::	:::	:::	:::	:::	165 145 106	175	:::	245 185 145	206 155 125	176 135 95	115
	1500	ـــنــا	٠	٠	٠	•••		٠		L	٠:.	70	125	•••	116	105	70	70

TABLE 2 PRESSURE-TEMPERATURE RATINGS' (CONT'O) Pressures Are in psig Class 900

3.1	3.2	3.3	3.4	3.5	3,6	3.7	3.6	J.9	3.10	3.11	3.12	3.13	3.14	3.15	3.16	Material Group No.
-	Section 1					Nic	kel and	Nickel A	Hoys							
Cr- Ni- Fo-								Ni-	u. Ni-	Ni- Fe- CI- Mo-		Ni-	Ni- Cr-		NI-	
Má,		Mi-	NI-	Ni-	Ni-			Ct-	Cr-	Cu-	Attoys	Fa-	Fe-	Ni~	Fe-	
Cu-		Low	Cu	Cr-	Fe-	Ni-		Mo-	Mo-	Low	20	Mb-	Mo-	Fe-	Cr-	l
Ch	NI .	Alloy	Alloys 400.	Fa	Cr Alfay	Mo	Ni Al-	Alloy	Cd	ABov	Mod.	Affor	AROY	Alloy	Alley	Temp.
20Cb	200	201	405	600	BOO	82	lovs	X X	700	904L	6.3	G-2	G	800H	330	*F
		-			-					-						- 20 to
1800	1080	720	1800	2160	2150	2250	2250	2250	2160	1920	2015	2250	2160	1800	2160	100
1670	1080	685	1585	2015	1990	2250	2250	2250	2160	1805	1870	2115	1935	1620	1910	200
1570	1080	670	1485	1915	1870	2165	2185	2040	2040	1630	1760	1985	1795	1520	1765	300
1445	1080	650	1435	1845	1800	2115	2115	1795	1920	1490	1610	1900	167	1440	1655	. 400
1405	1080	650	1435	1780	1735	1995	1995	1730	1835	1370	1500	1780	1605	1370	1575	500
1365	1080	650	1435	1720	1720	1815	1815	1680	1780	1295	1425	1685	1555	1320	1505	600
1350	1000	650	1435	1690	1705	1765	1765	1680	1705	1265	1395	1660	1535	1275	1470	650
1335		850	1435	1670	1690	1705	1705	1680		1230	1350	1630	1520	1260	1445	700
1320		635	1405	1595	1595	1595	1595	1595	1		1330	1595	1505	1240	1410	750
1295		610	1375	1520	1520	1520	1520	1525	:::		1295	1525	1490	1225	1390	800
		610	1D20	1460	1460		1460	1460					1460	1195	1360	850
		415	740	1350	1350		1350	1350			}	· · · .	1350	1190	1330	900
		345		980	1160		1160	1160	,		ا ا		11160	1160	1160	950
		280		650	1090		1090	1090		1	1 :::: 1	1	1090	1090	1090	1000
		220		415	1080	1	1080	1080	,	1				975	925	1050
	;	185		280	965		965	965						965	720	1100
		140		205	825		825	825				١		825	555	1150
		110		185	610	111	555	620		1				620	435	1200
					390		440	545						545	350	1250
					185	,	325	410						410	1285	1300
					150			310		ł				310	220	1350
	***		:::		100			225		1		1		225	165	1400
			J ::::		95		1	176						175	140	1450
					75			125						125	100	1500

(Table 2 continues on next page; Notes Ipliow at end of Table)

3.4.3. TABLA

PIPE FLANDES AND FLANGED FITTINGS

TABLE 2 PRESSURE-TEMPERATURE RATINGS^{1,2} (CONT'D)
Pressures Are in psig
Class 1500

	1.0																
Material Group No.	,,	1.2	1.3	7.4	1.5	,,	1.9	1,10	1.13	1.16	2.1	2.2	2.3	2.4	2.5	2.6	2.7
			-			L	Aboy	Stanle		1	1		Auet	enitic 1	teels		
					 	,	,==:	7	·				,				
					1	1	ł	l		ł			}				ĺ
100	1				1	í	ł	1	1		ł	}	}	1	1	} .:	
	l				1	1	l	1	į	}	1	ì	}	{		} :	l
	1				1	ViC+-	10-	Į.	1	}	£ .	1	Type	1	1	} :	ĺ
					}	YeMa.	₩a.	ł	1	Ì	ł		3044	l	Types	} :	ĺ
Temp.,	١.				C-	Ni-Cr-	11/4Cr=	21/4C1-	SC-		Type		Type	Type	347.	Type	
•f	L	Carbo	n 5100		1/2Mo	Mo	YıMo	1Mo	Y/Mo	110	304	316	3161.	321	348	305	310
- 20 to	1	1	}	1	_	}	1	}	ł	-	1				[
					3470	3750	3750	3750	3750		3600		3000 2530	3600		3360	3360
200			3280		3395 3260	3750	3560 3365	3580	3640		2540		2270	2725	2940		2845
400			3085			3530	3290	3240	3570				2065			2665	
	1	1	ł	1	ł	{		1	i	ł	{		1				ĺ
500					3105	3325	3210	3200	3325	3325	2185	2390	1910	2290	2590 2460	2520	2520
600 650			2665		3025	3025 2940	3025 2940	3025	3025		2040			2135	2400		2330
700					2840	2840	2840	2840	2840				1715			2280	
	1	1	1	ı	}	1	Ì				f						
750					2660	2660 2540	2560 2540	2660 2540	2660	2660	1990	2110	1680	20/3	2305	2230	2230
800 850					2540	2635	2435	2435	2195	2435			1610	2040		2125	
900	860	860			2245	2245	2245	2245	1765		1920				2160		
	1	}		1				£					}				
950 1000	515 260	515 260	260	260		1715	1885	1885	1305		1870		:::	1785	1930		
1050	260	200	260	200	023	945	685	995	705	945		1800	1 :::	1730			
1100		1	1				460	\$55	515	585	1285	1610		1510	1610	1115	1460
	1	ł	{	Ì		1		1		380		1370	}	,,85	1370		1235
1150	1:::	1:::		}			260 120	275	345 225	260		1030	1:::	ato	855		1030
1250	100	1:::	1:::	1:::	1						550	910		705	615	495	805
1300	1			}		1.15					410	685		530	485	395	600
	1	ł	{	1	1	ĺ	ł	1	1		310	515	}	410	345	290	395
1350	1 ::	1:::	1				::::	11.1			240	380		310	255	225	275
1450	1	1		1:::					1		170	290		240	205	155	
1500				}		i					120	205		190	170	120	120
,																	

PREFLANCES AND FLANCED RITTINGS 3,4,3, TABLA

TABLE 2 PRESSURE-TEMPERATURE RATINGS'-2 (CONT'D)

Pressures Are in psig
Class 1500.

3.1	3.2	3.3	3.4	3,5	3.6	3.7	3.8	3.9	3.10	3.11	3.12	3.13	3.14	3.15	3.16	Material Group No.
100	1111		-			Nici	tel and I	Nickel A	Boys							
Ci- Ni- Fe- Ci- Ch Aloy	Ni Alloy	Ni- Low C Alloy	NI- Cu Alloys 400,	Ni- Cr- Fe Alloy	Ni- Fe- Cr Alloy	NI- Mo Atay	NI Al-	Ni- Cr- Mo- Fe Alloy	Ni- Fe- Cr- Mo- Cd Alloy	Ni- fe- Cr- Mo- Cu- Low C Alloy	Alloys 20 Mod.	Ni- Cr- Fe- Mo- Cu Alloy	NI Cr Fe- Mo- Cu Alloy	Ni- Fe- Cr Alloy	Ni- Fe- Cr- Si Alloy	Temp.,
20Cb	200	201	405	600	800	B2	5075	×	700	904L	G.3	G-2	G	80011	330	**
3000	1800	1200	3000	3600	3600	3750	3750	3750	3600	3205	3360	3750	3600	3000	3600	- 20 to
2785	1800	1140	2640	3360	3310	3750	3750	3750	3600	3005	3115	3530	3230	2700	3180	200
2615 2405	1800	1115	2470	3190	3120	3540	3640	3395 2990	3400 3205	2720	2935 2680	3310	2990	2530	2940	300 400
)]						1	1				
2340 2275	1800	1080	2375	2965 2870	2890	3325	3325	2880 2795	3060 2970	2285	2500 2375	2970	2675	2195	2510	500 600
2250	1800	1080	2375	2820	2845	2940	2940	2795	2845	2105	2320	2765	2555	2125	2450	650
2225		1080	2375	2785	2820	2840	2840	2795		2050	2250	2720	2530	2100	2410	700
2200	ا ا	1055	2340	2660	2550	2660	2660	2660	١	ĺ	2215	2560	2510	2065	2350	750
2160		1020	2290	2540	2535	2540	2540	2540			2160	2540	2485	2040	2315	800
		1020	1695	2435	2435		2435	2435.					2435	1990	2270	850
	•••	695	1235	2245	2245		2245	2245					2245	1980	2215	900
		570		1635	1930		1930	1930			١		1930	1930	1930	950
		465		1080	1820		1820	1820					1820	1820	1820	1000
• • • •		370		695 465	1800	l	1800	1800		:::	:::	· · · ·		1625	1545	1050
		310		-03	,,,,,		10.0	ì		}			1	1	1	1
		230		340	1370		1370	1370						1370	925	1150
• • • •	• • • •	185		310	1020		925 735	1030					(1030	725	1200
:::		:::	[:::]	:::	310	:::	540	685		:::	:::	:::		685	480	1300
i	1		ľ	1		1	1		1	}		,	j	١		1350
	· · · · ·		:::	::::	170	l :::	::: ˈ	\$15 380	l :::	l :::			1 ::: '	380	370	1400
					155			290	:::] :::				290	230	1450
					125			205						205	170	1500

TABLE 2 PRESSURE-TEMPERATURE RATINGS^{1,3} (CONT'O)
Pressures Are in psig
Class 2500

Material								·		·		_		_		_	_
Group Na.	1,1	1.2	1.3	1.4	1.6	1.7	1.9	1.10	1.13	1.14	2.1	2.Z	2.3	2.4	2.5	2.6	2.7
		. 7		1			Alloy 1	Steeks					Aust	onic I	tools		
	3000				[-					}		
											ŀ						
						ViCr-	1Cr-						Type 304L		Types		
Үелф., °⊊		Carbo	n Stock		C- Yello	Na-Cr-	14cc-	21/4Ce-	SCr- Yallo	SCr- 7Mo	Type 304	Type 316	1790 318L	Type 321		7ype 305	7794 310
~ 20 to	-	_	_	_	_						-	-		_			_
100				5145		6250	6250	8250	6250		6000				6000		
200				4660		6250	5930	5965	6250						5300		
300 400			5315		5435 5330	607Q 5880	5605 5485	5640 5400	6070 5880	6070	3520	4660		4540	4900	4740	
•00	12500	3000	3143	03	2230	3000	2403	54.00	2680	2000	1320	*450	3440	1120	4020	7770	****
500	4990	5540	4850	4150	5180	5540	5350	5330	5540	5540	3540	3980	3180	3820	4320	4200	4200
600				3805		5040	5040	5040	5040	5040	3460	3760		3640	4100	3980	3980
650				3740		4905	4905	4905	4905	4905	3400		2930		4000		
700	4440	4730	4320	3740	4730	4730	4730	4730	4730	4730	3390	3600	2850	3500	3900	3800	3800
750	4200	4200	3945	3685	4430	4430	4430	1:430	4430	4430	1770	2520	2800	2465	3840	},,,,,	1770
					4230	4230	4230	4230	4145						3800		
850	2230	2230	2230	2230	4060	4060	4060	4060	3660	4060	3240	3380	2680	3400	3700	3540	3540
900	1430	1430	1430	1430	3745	3745	3745	3745	2945	3745	3200	3280		3380	3600	3480	3460
950	650	860	850		2345	2850	3145	3145	2170	2005	3120	2270	l	,,,,,	3220	12220	1270
1000	430	430			1370	1770	1860	2230	1600		2685		} :::		3030		
1050						1570	1145	1660	1170		2570			2885			2770
1100							800	945	860	945	2145	2685		2515	2685	1860	2430
1150	l	,	{	١			430	850	\$70	830	1630	2285		1970	2285	1430	2060
1200				1::::			285	450	370		1285			1515			1716
1250											915	1515		1170	1030		1345
1300					• • • •				····		685	1145		885	770	660	1000
1350	[j		}	} ·	l		·	l	{		515	880	·	685	570	485	660
1400							1		}		400	830		\$15	430	370	
1450											285	485		400	345	260	315
1500				<u> </u>							200	345		315	205	200	200

PIPE FLANGES AND FLANGED FITTINGS, 3.4.3. TABLE 2. PREFERENCE. TABLE 2 PRESSURE-TEMPERATURE RATINGS' 2 (CONT'D) Pressures Are in psig

3.1	3.2	3.3	3.4	3.5	3.5	3.7	3.8	3.9	3.10	3.11	3.12	3.13	3.74	3.15	J. 16	Material Group No.
- 7						Nic	kel and	Nickel A	Hoy 2					_		ł
Cr- Ni- Fo- Ma,	; i/V=.	Ni-	NI-	NI_	Ni-			NI- Cr-	NI- Fe- Cr-	Ni- Fe- Cr- Mo- Cu-	Alloys	Ni- Cr- fe-	Ni- Cr- Fe-	Ni=	Ni- Fo-	
Cb Cb Alloy 20Cb	Ni Alloy 200	C Alloy 201	Cu ABoys 400. 405	Fe Alloy 600	Fe- Cr Allay 800	Ma Alloy B2	Ni Al- loys	Mo- Fe Alloy X	Mo- Cd Alloy 700	C Atloy 904L	Mod. E G-3	Mo- Cu Alloy G-2	Mo- Cu Alloy G	Fe→ Cr Alloy 800H	Cr- Si Atlay 330	Yemp., °F
5000 4640 4360 4010	3000 3000 3000 3000	2000 1900 1860 1800	5000 4400 4120 3980	6000 5600 5320 5120	6000 5520 5200 5000	6250 6250 6070 5880	6250 6250 6070 5880	6250 6250 5660 4980	6000 6000 5670 5340	5340 5010 4530 4140	5600 5190 4890 4470	6250 5880 5520 5280	6000 5380 4980 4630	5000 4500 4220 4000	6000 5300 4500 4600	- 20 to 100 200 300 400
3900 3790 3750 3710	3000	1800 1800 1800 1800	3960 3960 3960	4940 4780 4700 4640	4820 4780 4740 4700	5540 5040 4905 4730	5540 5040 4905 4730	4800 4660 4660 4660	9100 4950 4740	3810 3600 3510 3420	4170 3960 3670 3750	4950 4680 4605 4530	4450 4320 4260 4220	3660 3660 3540 3500	4380 4180 4080 4020	500 600 650 700
3665 3600	:::	1760 1700 1700 1755	3900 3820 2830 2055	4430 4230 4060 3745	4430 4230 4060 3745	4430 4230 	4430 4230 4060 3745	4430 4230 4060 3745			3690 3600	4430 4230	4180 4140 4060 3745	3440 3400 3320 3300	3920 3860 3780 3690	750 800 850 900
	:::	950 770 615 515	:::	2725 1800 1155 770	3220 3030 3000 2685		3220 3030 3000 2685	3220 3030 3000 2685			:::		3220 3030 	3220 3030 2710 2675	32 20 3030 2570 2005	950 1000 1050 1100
:::	:::	385 310 		565 515	2285 1695 1080 515		2285 1545 1220 900	2285 1715 1515 1145		:::	:::	:::	:::	2285 1715 1515 1145	1545 1210 975 795	1150 1200 1250 1300
					410 285 255 205	:::		860 630 485 345	::: :::		 			850 630 485 345	615 465 385 285	1350 1400 1450 1500

(Notes follow on next page)

ASME/ANSI 818.5-1986

TABLE 2 (CONT'D)

NOTES.

riorisa.
(1) Provisions of Section 2 apply to all ratings.
(2) Temperature notes for all Material Groups, Table 2, Classes 150 through 2500 (see Table 1.4 for additional information and Notes.)

Material			Material		
Group	Materials	504	Group	Materiels	See
No.	(Spec. No. and Grade)	Notes	No	(Spec. No. and Grade)	Note
1.1	A 105, A 216 WCB, A 515 70	(al(b)	2.5	A 182 F347, A 240 347	(b)
	A 516 70	(a)(c)	J	A 182 F347H, A 240 347H	
	A 350 LF2, A 537 Cl.1	(d)	ì	A 182 F348, A 240 348	(D)
			ì	A 182 F348H, A 240 F348H	
1.2	A 203 B, A 203 E, A 216 WCC	(alth)	Ţ		
	A 350 LF3, A 352 LC2, A 352 LC3		2.6	A 240 309S, A 351 CHB, A 351 CH20	
	A 350 LCC	(6)	İ		
			2.7	A 182 F310, A 240 3105	Φ
1.3	A 352 LCB	(a)		A 351 CK20	
	A 203 A, A 203 D. A 515 65	(a)(b)	i	•	
	A 516 65	(a)(c)	3.1	B 462 NO8020, B 463 NO8020	
			1	A 351 CN7M	(n)
1.4	A 515 60	(a)(b)	ì		
	A 516 60	tallet	3.2	B 160 NO2200, B 162 NO2200	
	A 350 LF1	idi			
			3.3	8 160 NO2201, 8 162 NO2201	
1.5	A 182 F1, A 204 A, A 204 B, A 217 WC1	felfbl	1		
	A 352 LC1	(d)	3.4	B 564 N04400, B 127 N04400	
			l	B 164 N04405	
1.7	A 204 C	(c)	J		
	A 182 F2, A 217 WC4	(b)	3.5	8 564 N05500, 6 168 N06500	* *,*
	A 217 WC5	(1)	1		
			3.6	8 554 N08800, B 409 N08800	
1.9	A 182 F1 1, A 182 F12, A 387 11 Ct.2	(g)	١		
	A 217 WC6	(1)	3.7	B 335 N10665, B 333 N10665	• • • •
			3.8	6 574 N10276, 8 575 N10276	
1.10	A 182 F22, A 387 22 CL2	(0)	3.6		(61)
	A 217 WC9	(15)	ì	8 574 N06455, B 575 N06455 B 564 N06625, B 443 N06625	(D) Milli
			Į.		
1.13	A 182 FS, A 182 FSa, A 217 CS			B 335 N10001, B 333 N10001	(0)
	- 101 1 3, A 101 1 36, A 11 7 C3		ł	8 573 N10003, 8 434 N10003	251
1.14	A 182 F9, A 217 C12		J	8 425 NOBB25, B 424 NOBB25	(6)
	N 102 F9, N 217 C12	• • • •	3.9	8 572 N05002, 8 435 N05002	
2.1	A 182 F304, A 182 F304H		3.9	8 572 NOSOU2, 8 435 NOSOU2	• • • •
4,1	A 240 304, A 351 CFE	• • •	3.10	8 672 NO6700, 8 599 NO8700	
	A 351 CF3		3.10	8 872 NO8700, 8 588 NO8700	• • • •
	A 240 304H	(1)	3.11	8 649 N08904, 8 625 N08904 *	
	A 240 3040		3.11	6 049 NOBSO4, 8 023 NOBSO4	• • • •
2.2	A 182 F316, A 182 F318H, A 240 316		3.12	8 621 NO6320, 8 820 NO6320	
	A 240 317, A 351 CF8M			8 581 NOCESS, 8 582 NOCESS	• • • •
	A 351 CF3M	lci	j	B 54 - HUCHES, B 562 HUCHES	•••
	A 240 318H		3.13	8 581 N06975, 8 582 N06975	
		• • • •	1 3.13	2 24 1 MODE (2) & 262 MODE (2	
2.3	A 182 F304L, A 240 304L	tib.	3.14	8 581 NOSO07, 8 582 NOSO07	
J.•	A 182 F318L A 240 316L	(s)	٠,٠٠	- a	•••
	- 1-5 1-5 100 H CAN 3100	164	3.15	8 564 NOSE10, 8 409 NOSE10	
2.4	A 182 F321, A 240 321	ты	,		•••
	A 182 F321H, A240 321H		1.10	6 511 N08330, 8 536 N08330	
	- 144 F 421M, AZ4U 3Z1M		3.10	9 01: POS330, E \$30 NOS330	٠.

PIPE FLANGES AND FLANGED FITTINGS

ASME/ANSL B16.5-1588

TABLE 2 (CONT'D)

- NOTES (CONTID):
- ici

- ITS SCONTD:

 permissible but not recommended for prolonged use above about 800°F;

 not to be used over 1000°F;

 not to be used over 500°F;

 not to be used over 500°F;

 not to be used over 500°F;

 not to be used over 1050°F;

 not to be used over 800°F;

 not to be used over 800°F;

 not to be used over 800°F;

 not to be used over 1050°F;

 not to be used over 1050°F;

 not to be used over 1050°F;

 not to be used over 1250°F;

 not to be used over 1250°F;

 not to be used over 1250°F;

 not to be used over 1200°F;

 not to be used over 1200°F; (k) (f) (m)

CORROSION PERMISIBLE

La corrosión permisible, es un factor de seguridad que se considera en el espesor de la tubería por; el roscado, la corrosión y la erosión en las tuberías.

En la Tabla 3.5.1 que se muestra a continuación se - indican los valores de corrosión permisible ("C") -- para las secciones 1, 2, 3, 4 y 5 del código para tuberías a presión ANSI B31.

Los valores de "C" (corrosión permisible) para tube_ rias de acero, estan dados en pulgadas.

TABLA 3.5.1 VALORES PARA LA CORROSION PERMISIBLE

Diámetro Nominal de Tubería (pulg)	Extremo	s Lisos		Ext.Rosc.
	Secciones 1, 4 y 5	Sección 2	Sección 3	Secciones 1,3,4 y 5
178	0.05	0.02*	0	0.05
1/4 y 3/8	0.05	0.02#	0	0.05
1/2 y 3/4	0.05	0.02#	0.05	0.0571
1.2.2.5	0.05	0.05 *	0.05	0.0696
1 1/4 a 2	0.05	0.05#	0.05	0,0696
Mayores a 2	0.05	0.05*	0.05	0.1

^{*} Usese solo como referencia: Depende de las condiciones de -

NOTA: En algunos casos muy especiales donde el fluido es muy corrosivo y no se maneja con el material adecuado resultan factores por corrosión muy altos, éstos deberán ser determinados por el Ingeniero Quimico.

Para la tubería roscada el factor "C" estará compuesto por la suma de la profundidad del roscado más la corro sión permisible (ANSI 831.3 304.1.1 Inciso B y ANSI 82.1 profundidad de roscado).

3.6 TIPOS DE EXTREMOS EN VALVULAS, CONEXIONES Y TUBERIA

Dentro de los típos de extremos en válvulas, accesorios y tubería mencionaremos los más usuales, así como su -aplicación.

A) Extremos Roscados

Se usan básicamente para diámetros menores, ésto es de 1 1/2" de diámetro y menor, en tuberia, conexiones
y válvulas.

Este tipo de extremos se emplea en servicios modera_
dos de temperatura y presión.

B) Extremos Inserto Soldable (socket-weld)

Se usa también para diametros menores, de 1 1/2" y - menor en válvulas y conexiones.

Su selección se basa en servicios severos de temperatura y presión, en donde el peligro de fuga debe ser eliminado.

C) Extremos Planos (lisos)

Se emplea únicamente en tuberia para conectar a válvu las y/o conexiones con extremos inserto soldable , en

117 diametros de 1 1/2" y menor.

D) Extremos Biselados o Soldable a Tope

Se utiliza normalmente en tuberia y conexiones de 2" de diametro y mayores, en valvulas también se emplea pero no es muy común.

E) Extremos Bridados

Se usan normalmente en valvulas de 2" de diametro y mayores, en conexiones que requieren continuo des mantelamiento, para conectarse a equipos y en donde no es posible usar conexiones soldables por el tipo de material.

F) Extremos de Campana y Espiga

Este tipo de extremo es común emplearlo en sistemas tales como: Drenajes, conducción de agua, etc., en condiciones moderadas de temperatura y presión.

Ahora bien dentro del proceso de selección o de deter minación del tipo de extremo se tiene un limite de un tipo de extremo a otro el cual se determina tomando -

en cuenta las características físicas, económicas y - de seguridad del sistema de tuberías.

Este limite usualmente en plantas industriales es de 1 1/2" de diámetro y menores para extremos inserto — soldable o roscados y de 2" de diámetro y mayores para extremos biselados.

3.7 SELECCION DE BRIDAS

Una brida es un accesorio que se utiliza para determinar nar un tipo de extremo y establecer una unión en válvu_ las, equipos y tuberías.

Para seleccionar una brida se debe de determinar los siquientes conceptos.

- io. Material
 - 20. Clase o Rango
 - 30. Tipo de Brida
 - 40. Tipo de Cara

de los cuales los puntos lo. y 20. se pueden determi_ nar por:

- 10. Material (ver punto 3.3 Selección de Material)
- Clase o Rango (ver punto 3.4 Rangos temperaturapresión).

Los puntos 3o. y 4o. los veremos a continuación.

3.7.1 TIPOS DE BRIDAS

A) Roscada (Threaded)

Este tipo de brida se une a la tuberia por medio de rosca y no necesita soldadura, se usa en servicios con presión y temperatura moderada. No es adecuada para servicios que impliquen fatigas térmicas.

B) Deslizante (Slip-On)

Para su instalación se desliza la brida en la tubería y se hacen dos soldaduras, una interior y otra exterior, su costo inicial es menor que el de una de cuello, pero de igual costo instalada, requiere menos destreza en el montaje que la de cuello. La resistencia bajo presión interior y la vida de condiciones de fatiga es menor que para una de cuello.

Por estas características su recomendación de uso es para servicios moderados y particularmente cuando un montaje fácil es una consideración de primer orden.

C) De Cuello (Weldin Neck)

La brida termina en un cubo cónico que coincide con la tuberia a la cual se une por soldadura, por ésta razón en la brida de cuello debe específicarse su espesor de pared (cédula), el cual debe coincidir con

La disminuación progresiva hace que se produzca una buena distribución de fatigas, siendo la brida que me jor se adapta a este tipo de esfuerzos.

Sus recomendaciones de uso son para condiciones de -servicios severas, alta presión y temperatura. , Cemper a CUT &

D) De Traslape (Lapped Joint)

Usada con casquillos para brida loca (stub end) , en sistemas que requieren desmantelamiento frecuente y en tubería de acero inoxidable o aleación que admitan por economia bridas locas de acero al carbón.

Por fatiga del material de la brida se considera 1/10 de la brida de cuello.

Para grandes diámetros, en los que la posibilidad de girar la brida es importante. Se debe evitar para -condiciones que impliquen fatigas de flexión.

E) Inserto Soldable (Socket Weld)

Tiene dos diàmetros interiores escalonados, uno el de orificio de conducción igual al diàmetro interior del tubo al cual se conecta y otro un poco mayor que el diàmetro exterior del tubo, su union se hace por medio de una soldadura en el exterior del tubo, se usan para servicios de altas presiones y temperaturas, y donde se requiere estanqueidad.

F) Ciega (Blind Flange)

Es una placa circular que obtura el flujo, se usa --principalmente para taponar válvulas, boquillas, cabg
zales y conexiones futuras,

G) De Orificio (Orifice Flance)

Básicamente es igual a la brida de cuello excepto que la de orificio tiene una conexión perpendicular al flujo, roscado o inserto soldable, para conectar el dispositivo de medición.

3.7.2 TIPO DE CARA

El tipo de cara está determinado por el grado de sellado que se requiere en la junta y estos son:

A) Cara Plana

Normalmente usada en conexiones y válvulas bridadas - de fierro fundido para 125 y 250 psig.

B) Cara Realzada

El tipo de cara más común, se emplea en servicios con condiciones moderadas de temperatura y presión.

C) Cara tipo Anillo

Preferida en servicios para alta presión y temperatura.

D) Cara tipo Macho y Hembra

Usada en servicios especiales en donde se requiere re tener el empaque.

E) Cara tipo Ranura y Empaque

Usada en servicios especiales en donde se requiere - una gran retención del empaque y eliminar el contacto

con el fluido que se esté manejando.

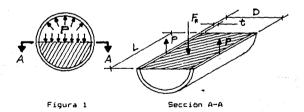
- 3.8 CALCULO DEL ESPESOR DE PARED EN TUBERIA BAJO PRESION INTERNA.
 - El espesor de pared o cédula de una tubería se puede obtener mediante varios procedimientos como:
 - A) Por fórmula general

 - C) Por presiones de trabajo, en tuberías de acero al carbón.
 - D) Etc.

pero todos estos métodos tienen ciertas limitaciones ---

- A) Por información disponible en la que se basan .
- B) Aplicable a un solo material y a una sección especifica del ANSI B31.
- C) El espesor de pared de la tubería debe ser menor que un sexto del diámetro, esto es t<D/6.</p>

Dande:


- t = espesor de pared en la tubería
- D = diametro de la tubería

D) Etc.

Aunque existen varios procedimientos todos tienen en común la siquiente base teórica.

Una tubería que contenga un fluido a presión interna está sometida a fuerzas de tensión según sus seccio_ nes longitudinales y transversales, y las paredes han de resistir estas fuerzas para evitar que falle.

La figura 1 muestra una sección en tubería donde se - indican las fuerzas actuantes.

De la figura 1 tenemos que:

(1)

El esfuerzo puede ser evaluado de la siguiente forma:

si F = PDL (ecuación 1)

y A = tL pero, como se tienen dos secciones

A = 2tL

sustituyendo en la ecuación (2) los valores de F y A

$$5 = \frac{PDL}{2tL} = \frac{PD}{2t}$$

tenemos que, el esfuerzo denominado circunferencial -

$$5 = \frac{PD}{2t}$$

El esfuerzo calculado mediante la expresión anterior es el esfuerzo medio para tubería en la cual, la pared tenga un espesor menor que D/6; este esfuerzo medio calculado es prácticamente igual al esfuerzo máximo que se tiene en la superficie interior y exterior de la tubería.

Ahora bien, para nuestro objetivo y en función de que es un procedimiento fundamentado en el ANSI 831.3 edíción 1984 optamos por el siguiente método.

3.8.1 PROCEDIMIENTO POR FORMULA GENERAL

ALCANCE

Este procedimiento sirve para determinar el espesor - de pared para tuberías de acero al carbón (carbón - steel), acero de aleación (alloy steel) y acero inoxidable (stainless steel), y es aplicable a las secciones 1, 3, 4 y 5 del código de referencia.

3.8.1.1 INFORMACION

La información requerida para determinar el espesor de pared de la tubería es la siguiente:

- A) Específicación y/o material de la tubería
- B) Fluido que maneja
- C) Sección a la que corresponde, según el código de referencia.
- D) Presión máxima
- E) Temperatura máxima
- F) Diámetro de la tubería

3.8.1.2. ESPESOR COMERCIAL

A excepción de las tuberías de gran diámetro, el espe sor comercial de las tuberías está determinado por la cédula de una tubería, y mediante esta forma se expre sarán los espesores de las tuberías que se obtengan.

3.8.1.3 ESPESOR MINIMO PERMISIBLE

Representa el minimo espesor para consideraciones de esfuerzos.

Si el espesor requerido para contener la presión es menor que el minimo permisible, deberá considerarse este último.

A continuación se enlistan los valores de espesores minimos permisibles en tuberías con extremos planos y roscados para diferentes diámetros.

Di a metro de Tuberia	Espesor minimo p/ Tubs.c/ext.planos	Espesor minimo p/ Tubs.c/ext.rosc.
1/2"	0.06	0.03
3/4"	0.06	. 0.04
1"	0.06	0.045

			and the state of t	state and fifth			
	.1 1	/2"		٥.	06		0.05
		5	1000				
	7.1	Agriculture			06	计打造性 化氯化	
					06		
	4.			7 - Sec	STAGE A LOCAL		
	- 3"	Y 4"		0.	06	Section 1979	
ŀ		化二氯烷			Age of the first	13.15	
	A.11	Y 12		o.	nο		
				da Talan.			
					<u> 10</u>		
٠	14	' Y 2	4.	0.	12.		

Por razones de resistencia mecànica es costumbre en muchas plantas utilizar un minimo de cédula 80 para tuberlas de acero al carbón roscadas o inserto soldable para tamaños de 1 1/2" de diâmetro y menores o para tuberías con extremos planos, el espesor mínimo permisible, es el espesor remanente después de la reducción del espesor nominal de la tubería por tolerancia del molino y corrosión permisible y para tuberías con extremos roscados, es el espesor remanente des pués de la reducción del espesor nominal de la tubería por tolerancia del molino, roscado y corrosión permisible.

Por lo tanto, se deberán añadir los espesores por los conceptos mencionados al espesor minimo permisible -- para obtener el espesor total requerido.

3.8.1.4. FORMULA GENERAL

Para el càlculo del espesor en tubería sometida a presión interna, el código ANSI B31 para tuberías establece lo siguiente.

A)
$$t = \frac{PD}{2 \text{ (SE+PY)}}$$
 cuando $t < D/6$ O P/SE < 0.385

B)
$$t = \frac{D}{2} (1 - \sqrt{\frac{SE-P}{SE+P}})$$

cuando t ≥ D/6 6 P/SE. ≥ 0.385

en donde para la ecuación del inciso B) se deberá de tomar en cuenta también factores del material y de - diseño tales como, la teoría de falla, fatiga y esfuerzos térmicos.

C) Con el valor de t determinar el valor de T enton

TN = tm + TF

finalmente TN → T

donde:

- = Espesor minimo requerido por presion
- P = Presión de diseño o presión máxima de trabajo.
- D = Diametro exterior (ANSI B36.10 y B36.19)
- Y = Factor de corrección (tabla 3.8.1)
- = Espesor minimo requerido incluyendo tolerancias mecánicas, corrosión y erosión.
- C. = Suma de tolerancias mecánicas, de corrosión y erosión (tabla 3.5.1)
- TN = Espesor nominal promedio
- TF = Tolerancia de fabricación # (table 3.8.2)
 - = Espesor comercial inmediato superior
- Dependiendo de la especificación del material, la tolerancia de fabricación será un porcentaje o una cantidad adicional al espesor minimo tm.

TABLA 3.8.1. FACTOR DE CORRECCION "Y"

	TEM	MPERATURAS GRADOS F (GRADOS C)
MATERIALES	900 (485) y Men.	950 1000 1050 1100 1150 (510) (540) (560) (595) (620) y May.
Aceros Ferriticos	0.4	0.5 0.7 0.7 0.7 0.7
Aceros Austeniticos	0.4	0.4 0.4 0.4 0.5 0.7
Otros Metales Ductiles	0.4	0.4 0.4 0.4 0.4
Fundiciones	0.0	

para cuando t > D/6 $Y = \frac{d}{d+D} \ donde;$ $d = diametro interior \ d = D-2 \ (\overline{I}-C)$

134 TABLA 3.8.2 TOLERANCIA DE FABRICACION

Especificación de Materiales ASTM	Tolerancía de Fabricación		le Diametros icación
		DE	А
A-53	12.5%	0.125"	26"
A-106	12.5%	0.125"	26"
A-120	12.5%	0,125"	16"
A-134	0.010"	16" y	mayores
A-135	12.5%	2"	30"
A-139	12.5%	4"	92"
A-155	0.010"	16" y	mayores
A-211		4"	4B"
A-252	12.5%	To	dos
1 -312	12.5%	0.125"	30"
1-333	12.5%	Todos	
A-335	12.5%	16" y	mayores
4-336		To	dos
A-358	0.010"	8" y	Mayores
1–369	0.125"	τ	odos
4-376	12.5%	Todos	
N-381	0.010"	 16" v	Mayores
A-405	12.5%	Todos	

135

CONTINUACION TABLA 3.8.2 TOLERANCIA DE FABRICACION

A-409	0.01B"	14"	30"
A-426	0.063"		Todos
A-430	0.125"		Todos
A-451	0.063"		Todos
A-452	0.125"		Todos
A-671	0.010"	16" y n	ayores
A-672	0.010"	16" у п	ayores
A-691	 0.010"	16" у п	ayores
B-165	10%	0.75"	4"
B-165	12.5%	6"	. B"
B-337	12.5%	0.125"	12"
B-464	12.5%	0.125"	30"

3.9 SELECCION DE CONEXIONES CONEXIONES O ACCESORIOS

Son todos aquellos elementos que se utilizan para realizar un cambio de dirección en la tubería, una derivación una reducción de diámetro, un acoplamiento, etc. Los cuales se conocen con los nombres de:

Codo 90 grados

Codo 45 grados

Te Recta

Te Reducción

Reducción Concentrica

Reducción Excentrica

Suaje Concentrico

Suaje Excentrico

Cople

Medio Cople

Inserto Reductor

Tapón Cachucha

Tapón Macho

Reducción Bushing

Etc.

3.9.1 DETERMINACION DE LA PRESION Y CEDULA PARA CONEXIONES

La presión y la cédula son dos de los datos fundamenta_ les que debe cubrir las especificaciones de materiales.

El valor de la presión para bridas, válvulas y conexiones o accesorios bridados se determina mediante la clasificación ANSI para rangos de presión (ver punto 3.4.).

Para conexiones o accesorios de extremos biselados o soldable a tope (2" y mayores) el espesor o cédula debe ser el mismo que se calculá para la tuberia (ver punto 3.8).

Para conexiones o accesorios de diametro menor (1 1/2" y menores) se clasifican por presión, el valor de ésta se determina por una equivalencia con el espesor o cédula - de la tubería de acuerdo al material de las conexiones - según se muestra a continuación.

Espesor o Cédula de Tubería	Tipo de Extremo en la Conexión	Designación de clase o - Presión en Lb/Plg2 a Co- nexiones de Ac.Forjado.
80 (XS)	Roscado	2,000
160 -	Roscado	3,000
_ (XXS)	Roscado	6,000
80 (XS)	Inserto Soldabi	le 3,000

160 - Inserto Soldable 6,000 - (XXS) Inserto Soldable 9,000

Con esta información y la del punto dedicado a tipos de extremos se determina la clase o rango de presión para las conexiones o accesorios.

3.10 SELECCION DE VALVULAS DEFINICION

Una válvula es un dispositivo mecánico que nos permite — controlar los fluidos que se conducen o manejan por tubg

Este control que ejerce la valvula sobre los fluidos se desarrolla en tres formas que son:

- A. Obturar o permitir el flujo; esto es hermeticidad total o hermeticidad relativa .
- B, Regular el flujo; esto se da en sus diferentes variables como son:

Volúmen

Temperatura

Presión

Dirección

C. Prevenir retroceso del flujo; esto es, cierran autom<u>á</u> ticamente cuando el flujo cambia de sentido.

Un punto de vista importante es que :

Dentro de la inversión total en la instalación de una planta se estima que las válvulas representan de un - 6% a un 8%. Con esto nos damos cuenta que representan una parte considerable tanto en la inversión tototal que se efectúa cuando se construye o amplia una planta, como en el costo del mantenimiento de la mig

Por este motivo se debe poner un gran interés en la correcta selección y aplicación de las válvulas.

En la industria de los hidrocarburos, aproximadamente el 60% de las válvulas instaladas son del tipo com puerta, el 20% válvulas macho, el 10% válvulas de globo y el 10% restante lo conforman válvulas de retención, mariposa, etc.

1.10.1 TIPOS DE VALVULAS

Existe una gran diversidad de válvulas para lograr los objetivos señalados, entre los más comunes encontramos los siquientes tipos:

GRUPO COMPUERTAS

Válvulas de Compuerta sólida tipo cuña Válvulas de Compuerta flexible tipo cuña Válvulas de Compuerta partida tipo cuña Válvulas de Compuerta doble disco y asientos paralelos.

Válvulas de Compuerta sólida caras paralelas

GRUPO GLOBO

Vàlvulas de globo disco esférico
Vàlvulas de globo disco cónico
Vàlvulas de aguja
Vàlvulas de àngulo
Vàlvulas de pistón
Etc.

GRUPO RETENCION

Valvulas de retención tipo columpio Valvulas de retención tipo pistón Valvulas de retención de balín Valvulas de pie

GRUPO MACHOS

Válvulas de macho cónico Válvulas de macho cilindrico Válvulas de macho esférico o bola 142

Vâlvulas macho de varias vias

Etc.

Válvulas de mariposa

GRUPD DE DIAFRAGMAS Válvula de diafragma

GRUPO DE AUTOMATICAS Válvulas reguladoras de presión y/o temperatura Válvulas de seguridad y alivio Válvulas selenoide Trampas de vapor Etc.

3.10.2. CLASIFICACION

Como puede verse, existe una gran variedad de válvulas con nombres diferentes, estos responden en algunas ocasiones a la forma exterior (globo.bola.etc), en otras al uso (reguladoras de presión, de alivio) en otros casos al mecanismo que opera la válvula (selenoide), en otros el mecanismo de obturación (com puerta, diafragma, etc.) .

Mediante una clasificación de tipos de válvula, basada en la forma en que el elemento regulador actúa sobre el flujo, prácticamente todos los tipos de válvulas pueden quedar comprendidas en siete grupos bási_
cos, los cuales se describen a continuación mencionan
do sus características y variables.

3.10.2.1. VALVULAS DE COMPUERTA

Las válvulas de compuerta se caracterizan porque - su cierre o apertura se efectúa mediante un elemento móvil que se desliza en plano paralelo a los - asientos de la válvula cortando el flujo transversalmente.

Esta válvula se usa en la industria únicamente - para interrumpir o restablecer el flujo totalmente; por lo que su posición es 100% abierta ó 100% cerrada.

En virtud de no ofrecer grandes cambios de direc_ ción y de que el paso por lo general es completo,ofrecen poca resistencia al paso del flujo y su - caída de presión es muy pequeña, por lo que respe<u>c</u>

ta al vástago éste puede ser: Vástago salienterosca interior o vástago saliente-yugo y rosca e<u>x</u>

terior.

El primero tiene la ventaja de poderse apreciar la posición de la compuerta por la posición del vásta go y las desventajas de que el volante cambia de maltura y la rosca queda en contacto con el fluido.

El segundo tiene las ventajas anteriores además dequedar la rosca fuera del fluido y tener el volante siempre a la misma altura.

3.10.2.2 VALVULAS DE GLOBO

Las válvulas de globo se caracterizan porque la regulación del flujo se efectúa mediante un elemento movil que se aleja o se acerca del asiento en la misma dirección del flujo.

El uso de esta válvula es obturar y/o regular el flujo; puede utilízarse totalmente abierta, par cialmente abierta o totalmente cerrada. En cuanto a su caída de presión es bastante considerable, esto debido al paso restringido y a los cambios de dirección que experimenta el fluido al pasar por la válvula.

3.10.2.3. VALVULAS DE RETENCION

Las válvulas de retención se caracterizan porque permiten el flujo en un solo sentido mediante un elemento movil que se aleja o se acerca del asiento.

Su uso es básicamente prevenir el retroceso del --flujo.

Su caida de presión es de las más altas sobre todo en las de tipo pistón.

3.10.2.4 VALVULAS MACHO O ESFERICAS

Las válvulas tipo macho o esféricas se caracterizan por que el corte o cambio de dirección del flu jo se efectúa mediante un elemento movil , con uno o varios conductos y que gira sobre su eje, de manera que en determinadas posiciones estos conductos quedan comunicados o incomunicados con los con

ductos del cuerpo de la valvula.

El uso de este tipo de válvula es obturar , permi_ tir o cambiar la dirección del flujo.

Su caída de presión es variable, en machos de paso reducido es alta, en machos tipo venturí es menor y en machos de paso completo es muy pequeña.

Por su forma de sello existen dos clases los lubr<u>í esta de</u> cados y los no lubricados.

3.10.2.5. VALVULAS DE MARIPOSA

Las válvulas de mariposa se caracterizan porque la regulación del flujo se efectúa mediante un eje - acetado giratorio, cuya forma es igual al contorno interior del cuerco de la válvula.

Su uso es obturar, permitir o regular el flujo, su caida de presión es muy pequeña, ya que totalmente abierta, su diámetro es casi igual al de la tuberia.

Se recomienda especialmente en servicios donde el

fluido contiene gran cantidad de sólidos en suspen sión, ya que por su forma es dificil que se acumulen en la válvula entorgeciendo su funcionamiento.

3.10.2.6 VALVULAS DE DIAFRAGMA

Las válvulas de diafragma se caracterizan porque — la regulación del flujo se efectúa mediante una — membrana deformable que al ser presionada, corta — el flujo transversalmente.

Se usa para obturar, permitir y regular el fluío - su caida de presión es relativamente alta, debido - al paso restringido y trayecto que debe seguir el fluido.

Son muy herméticas y no existe peligro de corro - sión en el vástago porque queda aislado por la mem brana, que a la vez sirve de empaque entre el cuer po y el bonete.

Son recomendables para baja presión y temperatura, muy especialmente para servicios de vacio.

3.10.2.7 VALVULAS AUTOMATICAS

Las válvulas automáticas se caracterizan por ser válvulas que integran los elementos de cierre, actuación y medición que les permite regular, en for
ma automática, presión, temperatura , flujo, nível
o velocidad del fluido, no se consideran válvulas
automáticas a ningún tipo de válvula manual descri
ta anteriormente a la cual se le adapte un opera_
ador, ya sea eléctrico, de selencide , de pistón neumático o hidráulico, etc., ya que en este caso
no sería más que una válvula de operación manual con operador, pero que no se auto-opera, en virtud
de que no cuenta con elementos propios de señal.

Cabe mencionar que este tipo de vàlvulas general_
mente queda fuera del alcance de las especificacion
nes de materiales para tuberia, ya que las especifica un ingeniero especialista en instrumentación.

3.10.3 SELECCION

Seleccionar la válvula correcta para una aplicación — específica, no es una tarea sencilla, ya que se tiene una amplia gama de tipos de válvulas. Algunas de las cuales se mencionaron anteriormente, cuenta además —

con una diversidad de materiales para el cuerpo y el bonete de la válvula, tales como fierro fundido, acero al carbón, acero de aleación, latón, bronce, etc.

Asimismo se pueden escoger recubrimientos interiores de vidrio, plástico, hule, etc. para el cuerpo.

Las quarniciones (vástago, compuerta o disco, asientos y buje de asiento de vástago), pueden ser de mate terial diferente al del cuerpo o con recubrimientos - especiales de cromo, monel, estelita, disulfuro de molibdeno, etc.

Sin embargo, el conocimiento de los factores deben to marse en consideración para una correcta selección y el conocimiento de las características principales de las diversas válvulas disponibles en el mercado serán un valioso auxiliar en hacer la mejor selección posible, aunque en muchas ocasiones ésta elección será una transacción entre lo óptimo y lo satisfactorio, tomando en cuenta el factor economía.

3.10.4 FACTORES

Al seleccionar una valvula deberán tenerse en cuenta los siguientes factores:

A) Tipo de Servicio

Esto es obturar o permitir flujo, regular flujo, cambiar dirección de flujo, evitar retroceso del flujo.

En este factor se debe considerar; grado de hermeticidad, caida de presión , tipo de regulación deseada, velocidad de cierre, dirección de flujo.

B) Naturaleza del Fluido

Sus variantes pueden ser; aceite, vapores de aceite, gas, vapor de agua, compuestos quimicos, productos alimenticios, etc. y se debe considerar; - acción corrosiva, acción erosiva, peligro de fugas (toxidad, inflamabilida, etc.) densidad, contaminación, etc.

C) Temperatura del Fluido

Esta puede ser máxima, mínima o bajo cero y se debe considerar el efecto de la temperatura sobre - los materiales (cuerpo, guarniciones, empaques, - lubricantes ,etc.).

D) Presión del Fluído

La presión máxima o de vacío se debe considerar para la resistencia de los materiales, efecto de - la temperatura sobre la presión de trabajo posibilidad de golpe de ariete.

E) Tamaño de la Valvula

Sus variantes pueden ser; paso completo, paso completo y continuado, paso restringido, venturi y se debe considerar gasto, caida de presión, distancia entre extremos.

F) Conexión a la Tubería

Esta puede ser bridada (cara realzada, junta tipo anillo, etc.) cajas para soldar, biselada para soldar y rosca. Se debe de tomar en cuenta hermétici dad de la conexión, presión de trabajo, permanencia en la linea, tamaño, tiempo de instalación.

G) Colocación de la Valvula

Esta puede ser en el piso, elevada, enterrada en espacio limitado, bajo el agua, en lugar inaccesible y se debe considerar cambios de temperatura, corrosividad del medio ambiente, posibilidad de operación (cadena, extensión del vástago) dimensignes, resistencia estructural, etc.

H) Operación de la Valvula

Esto es manual, transmisión de engranes,cadena , - motor eléctrico o de aire, etc. y se debe considerar frecuencia de operación, presión diferencial - máxima, ubicación, etc.

I) Normas

Sus variantes son para servicio de refinerias, ser vicio contra incendio, servicio en calderas , servicio en producción de hidrocarburos, servicios en plantas químicas, servicios en productos alimenticios, etc., y se debe de tomar en cuenta el diseño de la válvula, seguridad, intercambiabilidad , reglamentos, etc.

J) Costo

Por tipo de válvula, materiales especiales para el cuerpo, interiores, empaques, tamaño, etc., y se - debe considerar costo inicial, costo de manteni_ - miento, costo de reposición.

Teniendo en cuenta los factores mencionados, se de termina la válvula que más se acerque al cumpli_ - miento de todos los requisitos necesarios. Deberá tenerse muy en cuenta el diseño propio de los fa_ bricantes de la válvula para asegurar que ésta cum pla con las normas establecidas, que su rigidez es tructural sea adecuada para los esfuerzos mecáni_ cos a que va a estar sometida en la línea y que, - en caso de incendio, si existiera esa posibilidad, la válvula siga reteniendo sus características de funcionamiento y sello.

En cuanto a la clase o rango se determina igual — que un elemento bridado con información de fabri_ cantes.

Para válvulas con extremos inserto soldable o ros cados su clase o rango se determina de igual for-

ma que una bridada, pero en base al API-602.
RANGOS DE PRESION-TEMPERATURA (*1) API 602

	RATURA DE VICIO	PRESION DE TRABAJO EN Ib/pulg ² CLASE 800				
•c	•F	ASTM (*2) A-105N ACERO AL CARBON	ASTM (*3) A-182 Gr. F5 a 5% Cr. Vs W Mo.	ASTM A-182, Gr. F316 18% Cr. 8% Ni y Mo.		
—29 a 38	20 a 100	1975	2000	1920		
94	200	1800	2000	1655		
149	300	1750	1940	1495		
205	400	1690	1880	1370		
260	500	1595	1775	1275		
316	500	1460	1615	1205		
344	650	1430	1570	1185		
371	700	1420	1515	1150		
399	750	1345	1420	1130		
427	800	1100	1325	1105		
455	850	715	1170	1080		
482	900	460	940	1050		
510	950	275	695	1030		
538	1000	140	510	970		
566	1050	- '''	375	960		
594	1100	_	275	860		
621	1150	_	185	735		
649	1200	_	120	550		
677	1250			485		
705	1300	- 1		365		
732	1350	_	_	275		
760	1400	<u> </u>		200		
788	1450	_	_	155		
816	1500	_		110		

^(*1) Estos rangos están sujetos a las restricciones aplicables de los estándares y normas vigentes.

^[*2] Los rangos para las Válvulas de Acero al Carbón A.S.T.M. A-105 N fueron extraídos de la norma API 602 "Válvulas de Compuerta Compactas de Acero al Carbón", como fueron publicadas por el Instituto Americano del Petróleo. El acero al carbón no se recomienda para usos prolongados arriba de los 800°F (427°C).

^(*3) Se debe tomar en cuenta la posibilidad de oxidación excesiva arriba de los 1,100°F (593°C).

3.11 SELECCION DE EMPAQUES

Un empaque es un elemento de sello el cual tiene ciertas características como el ser suave, deformable, resigtente a la corrosión, resistente a la compresión, resistente a la temperatura, etc.

Su aplicación en sistemas de tuberías es en juntas o -uniones bridadas, ya que existe la posibilidad de fugas
o pérdidas si no se tiene un buen sellado en estas.

Para lograr un sellado eficiente en juntas o uniones brida das se puede realizar por medio de dos formas.

La primera se requiere que los elementos de unión, en este caso las bridas tengan un acabado finisimo tipo espejo para que en el momento de ensamble se desarrolle la característica de adherencia y una vez realizado el apriete de los tornillos no existan fugas.

Otros de los requerimientos de este tipo de sellado es que la tubería esté 100% estática, esto es que no existan deflecciones, expansiones, etc.

También se requiere que las bridas se manejen con mucho

cuidado antes y durante el ensamble, ya que cualquier r<u>a</u>
yón o despostilleo en las bridas las haría inadecuadas para el sellado.

La desventaja de este tipo de sellado es el tener un alto costo es el acabado de las bridas, además de que es imposible que exista una tuberia 100% estática, o que sus elementos no sufran algún rayón o deterioro en las caras antes y durante el ensamble.

La segunda forma de sellado y la más adecuada para plantas industriales es, la de utilizar el empaque entre br<u>i</u> das.

Esta forma de sellado es mucho más económica que la anterior, ya que se puede disponer de diferentes tipos de acabado en las caras de las bridas.

También se dispone de diferentes materiales para el empa que el cual tiene las características de ser deformable, resistente a la compresión, etc. y así poder introducirse en los acabados de las bridas o compensar las toleran cias del mecanizado de las mismas.

3.11.1 TIPOS DE EMPAQUE

Existen cinco tipos básicos de empaques algunos de los cuales se pueden usar con uno o más materiales de pendiendo de las condiciones a las que trabajen.

El diseño más común es descrito como una junta libre, normalmente este diseño es usado para presiones y ser vicios moderados.

Un segundo diseño es conocido como ranura y lengüeta.

Aqui el empaque es rodeado en tres lados por la ranura en una brida y por un cuarto lado por la lengüeta en la brida unión.

Este diseño es adaptado para empaques metálicos.

Un tercer diseño es una variación del segundo tipo, —
en este arreglo el empaque está limitado por dos —
lados y un lado fuera del borde, antes de apretar los
tornillos este se puede mover en una sola dirección.

Y es frecuentemente usado en caras de bridas tipo ma cho-hembra para aplicaciones de vacio. Otro tipo es el de junta de anillo, donde se requiere que no se mueva el empaque, la forma del empaque en - su sección transversal es octagonal u oval, y se usa para crear un alto grado de sello.

El quinto tipo de empaque es comunmente llamado autoenergizado, como el nombre lo indica, en el diseño el
sellado no depende de la fuerza aplicada en el tornillo, sino que en lugar de esto, el empaque es precionado por la fuerza del liquido a contener y automàticamente se crea el sello.

Este tipo es comunmente usado en calderas, calentado res de agua y accesorios para calderas.

Ahora bien para desarrollar el proceso de selección - se dividen en tres grupos que son:

GRUPO I Bridas deslizables, de ancho igual al de
la cara realzada. En este grupo el diámetro interior del empaque es igual al diámetro exterior del tubo correspondiente, y el diámetro exterior del empaque es igual al diámetro exterior de la cara

realzada de la brida.

GRUPO II De ancho igual al de la lengüeta larga.

GRUPO III De ancho igual al de la lengüeta cor esto es:0.03 pulg. ≤ ancho ≤ 0.18 pul

El grupo II y III tienen el diametro interior igual al diametro exterior del tubo correspondiente.

Estos grupos tienen subgrupos los cuales se muestr en la tabla.

En los subgrupos IIa y IIIa los empaques estan dise dos para ser usados cerca del diámetro interior y c esto se obtiene una máxima flexibilidad a la junta bridada.

Los subgrupos IIb y IIIb se localizan en el diàmet exterior de la cara realzada para el fácil alineami to del empaque fuera del centro del anillo.

3.11.2 SELECCION DEL EMPAQUE

Para seleccionar el empaque se toma en cuenta varios factores que son determinantes los cuales son; la na turaleza del fluido, la temperatura del fluido, la presión de cierre en las tuercas, la presión inter_na, la presión hidrostàtica y la furza de escurri miento en el empaque.

A) Material

La naturaleza del fluido a manejar determina el ma terial del emoaque.

Todo material para empaques disponible a la industria tiene ciertas limitaciones inherentes que -tienden a restringir el campo de aplicación a cada
material, muchas de estas limitaciones pueden ser
parcial o totalmente eliminadas por medio de va rios métodos, incluyendo la inserción de refuerzos
combinando varios materiales dependiendo de la -aplicación en particular.

Los materiales para empaques están generalmente agrupados como sique:

- 1. Asbesto comprimido
- 2. Hules con o sin refuerzos

The first the second section is

- 3. Fibra Vegetal
 - 4. Teflon
- 5. Metal
 - 6. Semi-metálico

B) Aplicaciones

Algunas de las aplicaciones de estos son:

Para la mayoría de los ácidos se tienen buenos resultados con el teflón, asbesto comprimido con hule o el acero inoxidable con teflón, dependiendo de la temperatura y presión.

Para algunos gases como el halógeno , el amoniaco se puede usar el teflón con sus diferentes combin<u>a</u> ciones.

Para el petróleo y algunos solventes se puede usar fibra vegetal, teflón y acero inoxidable dependien do de su temperatura y presión.

Para el vapor se puede usar el asbesto comprimido o el acero inoxidable dependiendo de su temperatura, etc. Si se tiene un fluido específico fuera de lo común se debe de consultar la información técnica comercial existente.

C) Temperatura

En cuanto a la temperatura del fluido a manejar te nemos que:

Los hules en sus diferentes combinaciones tienen un rango de temperatura de -20 grados F a 400 grados F.

La fibra vegetal tiene un rango de -20 grados F a 200 grados F.

El teflón en sus diferentes combinaciones tiene un rango de -60 grados F a 450 grados F.

El asbesto comprimido en sus diferentes combinaci<u>o</u> nes tiene un rango de -20 grados F a 750 grados F.

Los metálicos o semimetálicos en sus diferentes -

combinaciones tienen un rango de -250 grados F a 1900 grados F.

D) Presiones

La presión de cierre en las tuercas es la fuerza que mete a la junta dentro de los vacios de la br<u>i</u> da para un sello perfecto.

La presión interna del fluido es la fuerza que actúa sobre la parte de la junta expuesta al lado de presión del fluido y ésta tiende a expulsar el empaque fuera de la brida.

La presión hidrostàtica es la fuerza que tiende a separar las bridas cuando existe una presión interna.

Ahora bien , la presión de cierre en las tuercas, la presión interna del fluido y la presión hidro<u>y</u> tática están involucradas en el factor "M".

El factor "M" es la relación de la fuerza residual de la junta a la presión interna del sistema.

La fuerza de escurrimiento en el empaque es el fag tor "Y" que debe ser aplicada a la junta en el área de contacto para que esta escurra y llene los huecos.

El factor "Y" es totalmente independiente de la presión interna. Es la fuerza minima para que la
junta selle perfectamente.

En la tabla correspondiente a empaques los valores de "M", "Y" están referidos a la carga de compresión (código ASME Secc.VIII Div.1), los cuales fueron definidos para el diseño de una brida y pue den ser usados para el diseño de una junta de determinado servicio. Para juntas pequeñas a baja presión el valor "Y" será preferencial, pero para bridas grandes y altas temperaturas el factor "M" es mandatorio.

Para el objetivo de este trabajo empleo una regla muy sencilla, la cual determina si un material se puede emplear o no.

Como regla general, si se multiplica la presión de operación (psi) por la temperatura de operación (grados F) y resulta un producto que no exceda de los siguientes valores se puede emplear con absoluta seguridad el material del valor comparado.

	166
	VALORES DE PXT (máximos)
PXT	
15,000	Natural Rubber (NR)
	e Agent particular de la Calabara de la Calabara de la Calabara de la Calabara de la Calabara de la Calabara d
15,000	
15,000	Nitrile or Buna N (NBR)
15,000	Styrene or Buna S (SBR)
15,000	Silicone
15,000	Fluoro Carbon Rubber (FPM)
40,000	Vegetable Fiber
75,000	Solid Virgin TFE (Tetrafluoroetylene)
75,000	TFE Impregnated with Ceramic Asbestos or Graphite
75,000	TFE Envelope with three Layers of Asbestos
75,000	TFE Envelope with Corrugated steel between two layers of Asbestos
250,000	Compressed (white) Asbestos with
250,000	Compressed (blue african) asbestos with SBR or NBR Binder
250,000	Grafoil (All graphite)
Arriba de 250,000	Spiral Wound tipe 304 SS with TFE Filler
Arriba de 250,000	Spiral wond monel with TFE Filler
Arriba de 250,000	Spiral wound tipe 304 SS with white Asbestos Filler
Arriba de	Spiral wound tipe 304 SS with blue

250,000 asbestos filler.

Arriba de Spiral wound tipe 304 L or 316L SS

250,000 whit Asbestos Filler

Arriba de Spiral wound monel with grafoil or

250,000 ceramic filler.

Arriba de Spiral wound incomel 600 with grafoil

250,000 or ceramic filler.

Estos valores son una quía y no debe de olvidarse de otras variables como la máxima temperatura a la que trabaja determinado material , o las características químicas del fluido, etc.

E)Espesores

Donde las superficies o las bridas están perfecta mente limpias y planas, una junta delgada, general mente es mejor que una gruesa. Donde las superficies estén asperas o no estén alineadas perfectamente, una junta gruesa efectúa un mejor trabajo.

Los siguientes espesores son usualmente los más comunes con sus respectivos materiales y fueron la base para determinar los valores de PXT.

Elastomers

1/16 in

Vegetable Fiber	1/16 in
TFE	1/16 in
TFE Envelope	3/16 in
Compressed Asbestos	1/16 in
Grafoil	0.015 in
Spiral Wound	0.175 in

Considerando estos factores y con información técnica comercial se selecciona el empaque.

TABLA 3,11 EMPAQUES

							
	1		Ι.	Minimum Design	I		
	ł				1		
Gaskel			Gesket	Seating	ļ.		
Group	1		Factor	Stress	i .		
Number	Gasket Material	m	y, pai	Statche			
	Self-energizing types: O rings, metallic, elastomer, other gasket typ	es considered as self-sealing			-		
	Elastomer without fabric or a high percentage						
	Below 75 Shore durometer	or aspestos moer.	0.50		/~~		
	75 or higher Shore durameter		1.00	200	_		
le .	Compressed sheet suitable for the operating	O.12 in. thick	2.00	1,600	<u></u>		
	conditions	0 06 in, thick	2.75	3,700	C-ELECTION OF THE PERSON OF TH		
	Elastomer with cutton fabric insertion		1.25	400			
	Elestomer with asbestos fabric insertion, with	3 ply	2.25	2,200			
	or without wire reinforcement	2 ply	2.50	2,900	23		
		1 ply	2.75	3,700			
		1 1/17	4.75	3.700	6		
	Vegetable fiber		1.75	1,100			
	Spiral-wound metal, with asbestos or other	Carbon steel	2.50	10,000	1		
	nonmetallic filler	Stainless steel or Monel	3.00	10,000	Cilliniti		
	Corrugated metal or corrugated metal double	Soft alarmoum	2.50	2.900	RECK		
ю	iscketed with nonmetallic filer	Soft conper or brass	2.75	3,700	10:03		
	,	fron or soft steel	3 00	4,500			
		Soft aluminum	2.75	3.700			
	Corrugated metal	Soft copper or brass	3.00	4,500	1000		
	Compressed sheet suitable for the operating conditions	O.03 in. thick	3.50	6,500			
					RRX		
	Corrugated metal or corrugated metal double	Monel or 4%-6% chrome	3.25	5,500	CONTO		
	jacketed with nonmetallic liller	Stainless steels	3.50	6,500	<i>(44,23)</i>		
		Iron or soft steel	3.25	5,500	-		
	Corrugated metal	Monel or 4%-6% chrome	3,50	8,500	1200		
	•	Stainless steels	3.75	7,800	Luc		
	· · · · · · · · · · · · · · · · · · ·	Soft eluminum	3.25	5,500			
أدعا		Soft copper or bress	3.50	6,500			
and I	.	iron or soft steel	3.75	7,600			
Mb	Flat metal jacketed with nonmetallic filler	Monel	3,50	8,000			
- 1	•	4%-6% chrome	3.75	9,000	10		
}		Stainless steels	3.75	9,000	محتت		
		Soft aluminum	3.25	5.500			
	· · · · · · · · · · · · · · · · · · ·	Soft copper or brass	3.50	6,500	*****		
	Grooved metal	Iron or soft steel	3.75	7.600			
		Monel or 4% - 6% chrome	3.75	9,000			
Į			4.25	10,100			
ł		Stainless steels					
	Solid flat metal	Soft aluminum	4.00	8,850			
	Solid flat metal	Soft aluminum					
		Soft aluminum Soft copper or bress	4.75	13,000			
and	Solid flat metal	Soft aluminum Soft copper or bress kon or soft steel	4.75 5.50	13,000			
		Soft aluminum Soft copper or bress	4.75 5.50 5.00	13,000 18,000 21,800			
and		Soft aluminum Soft copper or bress Iron or soft steel Monel or 4%-6% chrome Stainless steets	4.75 5.50 5.00 6.50	13,000 18,000 21,800 26,000			
		Soft aluminum Soft copper or brass Iron or soft steel Monel or 4%-6% chrome	4.75 5.50 5.00	13,000 18,000 21,800			

FIG. E1 GASKET MATERIALS AND CONSTRUCTION
Based upon the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
The details given in this Table are suggested only and are not mandatory.

3.12 SELECCION DE ESPARRAGOS Y TORNILLOS

En el diseño y construcción de plantas industriales se pueden especificar espárragos y tornillos, pero es más - común especificar espárragos , debido a su rango de aplicación y a sus características que veremos más adelante.

Un espárrago es una barra cilindrica roscada en toda su longitud con dos tuercas hexagonales.

Un tornillo es una barra roscada con cabeza cuadrada y una tuerca.

Para seleccionar un espárrago o tornillo se deben de tomar en cuenta varios factores, los cuales ya están normalizados.

3.12.1 FACTORES

Material

Dimensiones

Esfuerzos o Resistencia

El ANSI B16.5 (table 18 ed.1988) clasifica a los materiales para espárragos y tornillos en:

Alta Resistencia
Intermedia Resistencia
Baja Resistencia
Aleaciones Especiales

En cuanto a dimensiones el ANSI B18.2.1 y B18.2.2 en coordinación con ANSI B16.5 determinan su diámetro y longitud en función del material y rango de presión de la brida.

- 3.12.2 DETERMINACION DEL MATERIAL EN FUNCION DE SU APLICA-CION.
 - A) Servicios Generales

Para servicios generales se específica el material ASTM A307 Gr.B para tornillos y tuercas, su rango de temperatura es de -20 grados F a 400 grados F, su aplicación principal es en bridas de fierro fundido 125 libras y 250 libras.

B) Servicios de Alta Presión y Temperatura Para servicios de alta presión y temperatura los tornillos y espárragos se especifican de acero de aleación ASTM A193 Gr. 87 con tuercas de acero al carbon ASTM A194 Gr.2H.

Este material es el más adecuado por que se puede usar con todos los materiales y rangos de las bridas, las otras aleaciones son muy específicas como para aplicarse en: pre-apretado especial, condicig nes muy severas, mayor dureza, incremento de resig tencia a la oxidación o corrosión , etc. El rango de temperatura para el ASTM A193 Gr.B7 es de -20 grados F a 1000 grados F.

C) Servicios de Baja Temperatura

Para servicios de baja temperatura los tornillos y espárragos se específican de acero de aleación -- ASTM A320 con tuercas de acero al carbón ASTM A194 su rango de temperatura es de -20 grados F a -300 grados F.

D) Casos Especiales

Para casos especiales se puede consultar la Tabla 3.12 y 3.12.1, donde se describen características particulares.

TABLE 1B LIST OF BOLTING SPECIFICATIONS Applicable ASTM Specifications

Bolting Materials (Note (1))											
High Strength [Note (2)]		Intermediate Strength [Note (3)]			Low Strength [Note (4)]		Nickel and Special Alloy [Note (5)]				
Spec. No.	Grade	Notes	Spec. No.	Grada	Notes	Spec. No.	Grade	Notes	Spec. No.	Grade	Notes
A 193	87		A 193	B5		A 193	B8 CI.1	(6)	B 164		17H8H9
A 193	B16		A 193	B6		A 193	BBC CL1	(6)	(
			A 193	B6 X		A 193	88M CI.1	(6)	B 166		(7)(8)(9
A 320	L7	1101	A 193	B7M		A 193	B8T CI.1	(6)	Į.		
A 320	L7A	(10)	A 193	88 C1.2	(11)	A 193	B8A	161	B 335	N10665	17)
A 320	L7B	(10)	A 193	88C C1.2	{11}	A 193	BBCA	(6)	ł		
A 320	L7C	(10)	A 193	B8M CI.2	(11)	A 193	BBMA	(6)	B 408		17/16/19
A 320	L43	(10)	A 193	88T CI.2	(11)	A 193	ATSS	(6)	1		
			(1			B 473		171
A 354	BC		A 320	88 CI.2	(11)	A 307	8	(12)	1		
A 354	80		A 320	B8C C1.2	(11)				8 574	N10276	171
			A 320	BBF CI.2	(13)	A 320	B8 C1.1	(6)	ł		
A 540	821		A 320	BBM CI.2	(11)	A 320	B8C CI.1	(6)	i		
A 540	622		A 320	B8T C1.2	(13)	A 320	B8M CI.1	(6)	ĺ		
A 540	B23		i			A 320	BET CI. 1	(6)	1		
A 540	824		A 449		(13)				ł		
			A 453	651	(14)	1			S		
			A 453	660	(14)	ł			ì		

GENERAL NOTE: Bolting material shall not be used beyond temperature limits specified in the governing code.

- (4) These botting materials may be used with all listed materials but are limited to Classes 150 and 300 joints. See pare. 5.4.1 for re-
- quied gestar practices.

 (5) These materials may be used as bolting with comparable nickst and special along parts.

 (6) These materials may be used as bolting with comparable nickst and special along parts. material.

- material.

 The Human plan suchined from the same material or may be of a compatible grade of ASTM A 194.

 His many be machined from the same material or may be of a compatible grade of ASTM A 194.

 His many plan such many plan such plan

- 121 This carbon statement instruction because the control of the c

TABLE 1C FLANGE BOLTING DIMENSIONAL RECOMMENDATIONS

Product	Carbon Steel	Alloy Steel			
Stud bolte	ANS: 818.2.1	ANSI 818.2.1			
Bolts amalier than Y- in.	ANSI B18-2.1, equale or heavy hex head	ANSI B18.2.1, heavy hex head			
Bolts equal to or larger then % in.	ANSI 818.2.1, square or hex head	ANSI B18.2.1, heavy hea head			
Nuts smaller than Yr in,	ANSI B18.2.2, heavy hex	ANSI B18.2.2, heavy hex			
Nuts equal to or larger than Yx in.	ANSI B18.2.2, hex or heavy hex	ANSI 818.2.2, heavy hex			
Male threads	ANSI 81.1, Cl. 2A course series	ANSI 81.1, Ct. 2A course series up through 1 in.; eight thread series for larger botts			
Female threads	ANSI 81.1, Cl. 2B course series	ANSI 81.1, Ct. 28 course series up through 1 in.; eight thread series for larger botts			

3.13 NOTAS

Una nota es una aclaración de como, porqué o cuando utilizar un elemento especificado.

Las notas no son propiamente un procedimiento, si no mas bien son un complemento de una específicación, ya que ésta describe específicamente que características , o ba jo que condiciones, y/o para que circunstancias emplear uno o varios accesorios de la específicación.

Las notas están en función básicamente del tipo de planta, o área de la misma planta, dado que no se pueden — aplicar los mismos criterios de diseño, de un sistema de tuberías de cierto fluido en una área de servicios — (áreas exteriores), como en una área de proceso, por — ejemplo para un sistema contra incendio en una planta — fundidora, en las áreas exteriores se requiere que la tubería sea enterrada, que se solde, que se proteja contra la corrosión, que las válvulas tengan registros de concreto o que tengan poste indicador, etc.

Para el àrea de proceso éste mismo sistema contra incendio requiere que la tuberia sea aerea, sea roscada, que se pinten, etc. En estas condiciones podemos desarrollar una sola especificación complementandola con notas.

3.13.1 A CONTINUACION SE ENLISTAN ALGUNAS NOTAS

- Los accesorios soldados a tope deberán ser con el diámetro interno, igual al diámetro interno de la tubería y deberán ser sin costura.
- 7 Toda la tuberia y conexiones de acero bajo nivel de piso deberá protegerse contra la corrosión.
- 3) Las conexiones roscadas podrán usarse cuando la tuberla no exceda de 93 grados C.
 - 4) En los insertos a los cabezales deberá verificarse si se requiere placa de refuerzo de acuer
 do al ANSI 831,3.
 - Las vàlvulas de embutir para soldar (socketweld) deberán estar cerradas antes de soldarse.

- 6) Emplear este tipo de bridas en donde exista reducción de espacio o donde sea impráctico el uso de bridas cuello soldable.
 - 7) Las bridas de acero deberán ser cara plana cuan do se usen para conectar a bridas de fierro fun dido en equipo, válvulas y conexiones.
 - Emplear este tipo de bridas donde es impráctico
 el uso de bridas deslizable.
 - Para las conexiones de instrumentos y los ramales en tuberia, debe usarse medio cople 3000 # de acero al carbón forjado ASTM A105.
 - 10) Estas válvulas con adaptación para poste indica dor, son únicamente para lineas subterráneas.
- En todas las juntas roscadas de tubería deberá usarse como material sellante el compuesto Garlock tipo A o similar.
 - 12) Para usarse exclusivamente en hidrantes.

- 178

 13) No usar válvulas de globo en instalaciones de tubería bajo nível de piso.

 14) Etc

3.14 ACCESORIOS ESPECIALES

En una planta industrial generalmente existen elementos que son muy poco frecuentes dentro de un sistema de tuberias, a estos elementos se les denomina accesorios eg peciales.

Los accesorios especiales son todos aquellos elementos que no son comunes en una especificación de materiales para tuberia, y que en relación a los demás elementos exporadicamente son utilizados.

Los accesorios especiales más comunes que pueden ser ut<u>i</u> lizados en un sistema de tuberias son los siguientes:

Trampas de Vapor

Filtros

Mangueras

Etc.

Para el propósito de este trabajo no se realizará el procedimiento de específicar cada uno de los elementos especiales, ya que esto sería otro trabajo específico , ade_ más de que se tendría que contar con características específicas del fluido a manejar. Usualmente en empresas que desarrollan ingeniería básica y/o de detalle (firmas de ingeniería), algunos elementos especiales los especifica el depto. de proceso (ingenieros químicos) y en consecuencia quedan fuera del alcance de la especificación de tuberías.

3.15 CONCENTRADO DE INFORMACION

Este resumen que le llamo concentrado de información de una especificación de materiales para tubería, se divide en dos partes.

La primera que es la parte del encabezado se proporciona la información muy general como; nombre de la planta, nú mero del proyecto, fecha, codificación de la especificación, servicios que cubre ésta, material, condiciones de temperatura y presión, tolerancia por corrosión, etc.

La segunda parte contiene las características generales del material como; tipo de elemento (tubería,conexiones, bridas, válvulas, etc.), tipos de extremos, diámetros, cédula, rango de presión, descripción, codificación o es pecificación del elemento y notas.

Para visualizar esto ver el ejemplo en su parte de con_

centrado de información.

CAPITULO IV

4.0 EJEMPLO

Un ejemplo siempre es bastante ilustrativo y en este caso lo es, además de ser complementario.

Para empezar nuestro trabajo contamos con una lista de fluídos la cual contiene el nombre del fluído la clave
del mismo y sus condiciones de presión y temperatura de
diseño.

4.1 Lista de Fluidos

CLAVE FLUIDO	FLUIDO O SERVICIO	CONDICIONES TEMP. °C.	DISENO PRESION KG/CM2
SA-C	Acido Sulfúrico Concentrado	53	4.8
ACR	Acrinolitrilo	53	7.3
FPW	Agua contra incendio	58	14.0
DMW	Agua desmineralizada	116	8.5
CWR	Agua de Enfto. Retorno	69	5.9
CWS	Agua de Enfto. Suminist	ro 60	5.9
RWR	Agua refrigerada retorn	10 46	5.9
RWS	Agua refrigerada sum.	38	5.9
SOF	Agua suavizada	128	13.4
IA	Aire de instrumentación	56	9.0

	185		
PA	Aire de Planta	68	8.8
BD	Butadieno	55	8.8
FO	Combustoleo	118	7.0
LPC	Cond. de baja presión	116	4.3
MPC	Cond. de medía presión	213	14.0
DIE	Diesel	58	7.0
STY	Estireno	53	9.0
NAOH	Hidróxido de Sodio	53	4.0
N2	Nitrageno	Le.	9.8
BB	Purga de Calderas	213	15.9
FS	Sistema de Espuma	58	12.3
LPS	Vapor de Baja Presión	166	4.3
MPS	Vapor de media presión	213	14.0

AGRUPAMIENTO LOGICO 4.2

El primer paso es establecer un agrupamiento lógico de los fluidos para determinar el número de especificaciones, tomando en cuenta como variables principales el material y la presión.

Para establecer el agrupamiento lógico se le asigna a ca da fluido el material, para esta asignación nos adelanta mos al punto de selección de material en el cual existen factores a tomar en cuenta , así como las tablas de se_ lección rápida basada en la experiencia de los febrican-

Así obtenemos la siguiente asignación de material.

FLUIDO D SERVICIO

Acido sulfúrico concentrado

Acrilonitrilo

Agua contra incendio

Agua desmineralizada

Agua de Enfto. retorno

Agua de Enfto. suministro

Aqua Refrigerada retorno

Aqua Refrigerada suministro

Acua suavizada

Aire de instrumentos

Aire de planta

Butadieno

Combustoleo

Condensado de baja presión

Condensado de medía presión

Diesel

Estireno

Hidróxido de sodio

Nitrógeno

Purga de Calderas

Sistema de espuma

Vapor de baja presión

Vapor de media presión

MATERIAL

Acero al carbón

Acero al carbón

Acero al carbón

Acero inoxidable

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero inoxidable

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

Acero al carbón

.

Acero al carbón

Acero al carbón

De esta asignación de material nos damos cuenta de una forma general que la mayoría de los servicios se manejan con acero al carbón, pero aún no está determinado un -- agrupamiento lógico, para esto continuamos con el estudio y nos enfocamos a la variable de la presión que básicamente nos determina el libraje de bridas y válvulas.

De la lista de fluidos, tenemos las condiciones de disefio temperatura y presión, las cuales analizamos empezando por la más alta.

Los valores más altos son 213 grados C. con 14.0 kg/cm2. Los valores equivalentes son 415 grados F. y 200 psig — con estos valores entramos a la tabla temperatura-pre — sión, clase 150 psig y vemos que para acero al carbón y a una temperatura de 415 grados F tenemos una presión — máxima de trabajo menor de 200 psig, lo cual nos indica que ésta clase de 150 psig no nos garantiza las condiciones de presión-temperatura, por lo cual analizamos la siguiente clase de 300 psig.

Con los mismos valores tenemos que:

Para acero al carbón y a 415 grados F. tenemos una pre -

sion de 629.75 psig que es mayor de 200 psig por lo cual nos garantiza las condiciones de presión-temperatura.

Con esto determinamos que los fluidos que tienen estas condiciones se debe especificar bridas y válvulas clase 300 psig.

De igual forma continuamos el análisis para los fluidos restantes y obtenemos que se debe de especificar rangos de 150 psig.

De esta forma se obtiene un factor más para determinar el agrupamiento lógico.

Ahora, analizaremos el material de las válvulas de el temas selección de válvulas, específicamente material en que se fabrican.

Estudiamos la lista de fluidos contra este punto y desig namos que; para la mayoría de los fluidos de agua se pug de emplear válvulas de fierro fundido y bronce, mientras que para los fluidos restantes con válvulas de acero al carbón y acero inoxidable. Esta asignación se hace con la ayuda de una tabla de materiales para válvulas de algún fabricante, información que no anexo por haber infinidad de fabricantes e infini dad de válvulas.

También no debemos de olvidar que esta designación inicial es general y que nos sirve para determinar el agrupamiento lógico y así poder definir el número de especificaciones.

Finalmente estudiaremos el concepto de extremos, principalmente en diámetros menores.

Analizando la lista de fluidos se observa que existen fluidos en que es permisible una fuga, aunque no deseable, pero hay otros en que no es permisible una fuga, - como tampoco deseable y porlo tanto se tienen que manejar con extremos tipo inserto soldable, y los primeros con extremos roscados.

Con esto ya se puede determinar el agrupamiento lógico quedando como sigue:

PRIMER GRUPO

Fluidos: FPW, CWR, CWS, RWR, RWS, IA, PA, FS.

Material: Acero al carbon

Valvulas: Fierro fundido 125 psig Bronce Roscadas

Conexiones: En diámetros menores roscadas

SEGUNDO GRUPO

Fluidos: LPC, LPS

Material: Acero al carbón

Válvulas: Acero al carbón 150 psig Bronce Roscadas

Conexiones: En diámetros menores roscadas

TERCER GRUPO

Fluidos: MPC, 88, MPS

Material: Acero al carbón

Valvulas: Acero al carbon 300 psig

Conexiones: En diametros menores inserto soldable

CUARTO GRUPO

Fluidos: SA-C, ACR, BD, FO, DIE,, STY, NACH, NZ

Material: Acero al carbón

Válvulas: Acero al carbón 150 psig

Conexiones: En diametros menores inserto soldable

QUINTO GRUPO

Fluidos: DMW, SOF

Material: Acero inoxidable

Valvulas: Acero inoxidable 150 psig

Conexiones: En diametros menores roscados

4.3 CODIFICACION

El segundo paso a seguir es codificar los grupos, esto est darle una clave a las especificaciones.

Con ayuda del procedimiento de codificación para el primer grupo se tiene:

Rango: 125 psig	Letra A
Material: acero al carbón	Letra A
Fluido: servicio	Letra S
Número consecutivo:	1

entonces para el primer grupo se tiene la siguiente codi ficación AASI.

Desarrollando lo mismo para los siguientes grupos se tig ne:

Segundo grupo	BAS2
Tercer grupo	DAS3
Cuarto grupo	BAS4
Quinto grupo	8655

con esto ya tengo las específicaciones que son:

AAS1

BAS2

DAS3

BAS4

BBS5

De aqui en adelante retomo la especificación DAS3 para - desarrollarla como ejemplo.

Hasta ahora se ha determinado en forma genérica, que el material es acero al carbón, el rango de presión es 300 psig y que se utilizará en los fluídos de vapor de medía presión (MPC) y purque de calderas (BB).

4.4 MATERIAL

De aquí en adelante seguimos con el ejemplo en forma específica y empezamos por el material.

Del capítulo 3.3 (selección de material) consultamos la tabla de especificaciones ASTM para acero al carbón y - así se determina que para la tubería es acero al carbón ASTM AS3 Gr.B y ASTM A106 Gr.B (para hacer esta determinación se requiere consultar las especificaciones ASTM - como guía o hacerlo en base a la experiencia obtenida - para estos tipos de fluido).

Entonces tenemos que:

Para tuberia de diâmetro menor (1/2" a 1 1/2") serà acero al carbón ASTM A106 Gr.B sin costura.

Para la tubería de diàmetro mayor (2" a 10" máximo esperado) será acero al carbón ASTM A53 Gr.B sin costura.

De la misma tabla se tiene que para conexiones de diámetro mayor será acero al carbón ASTM A234 Gr.WPB y para conexiones de diámetro menor será acero al carbón ASTM - A105.

Para el cuerpo de las valvulas tenemos que es acero al carbón ASTM A216-WCB.

Con esto se ha determinado la especificación ASTM de los materiales.

1.5 RANGO TEMPERATURA-PRESION

Ahora pasamos al punto relacionado con rangos de tempera tura-presión el cual ya se desarrolló obteniéndose que - las bridas y válvulas bridadas son especificadas bajo el rango de 300 osíg.

4.6 CORROSION PERMISIBLE

Este factor lo determinamos por el tipo de servicio del fluido, que se clasifica como fluido para plantas de --fuerza sección i, del código ANSI B31 y que le asigna un factor de corrosión permisible de 0.05 pulgadas.

4.7 TIPOS DE EXTREMOS EN VALVULAS, CONEXIONES Y TUBERIAS.

Analizando los difetentes tipos de extremos y tomando en cuenta las características de los fluidos de esta especificación (corrosivo, erosivo, nulificación de fugas, - etc.)

Se determina lo siguiente:

En tuberia, comexiones y válvulas de 1/2" a 1 1/2" de - diametro el tipo de extremo es: inserto soldable.

Para tubería y conexiones de 2" y mayor, el tipo de extremo es biselado para soldar a tope.

Para válvulas de 2" y mayores el tipo de extremo es bridado.

4.8 TIPO DE BRIDA

Para seleccionar el tipo de brida se analiza las caracte risticas del fluido como alta presión, alta temperatura esfuerzos severos, etc., contra los factores de selección de bridas y se especifican las siguientes:

En diâmetros de 1/2" a 1 1/2" Brida inserto soldable 300 psig cara realzada ASTM A105.

En diàmetros de 2" a 10" Brida de cuello 300 psig cara realzada ASTM A105.

Brida porta orificio cuello taps. ins. sold. 300 psig C. R. ASTM A105 en diametros de 1/2" a 10".

Brida ciega 300 psig cara realzada ASTM A105 en diame tros de 1/2" a 10".

4.9 CALCULO DEL ESPESOR DE LA TUBERIA

Para el cálculo del espesor de tubería se requiere de cierta información que ya se tiene y describo para tene<u>r</u>
la presente.

Material: Acero al carbón ASTM A106 Gr.B y ASTM A53 Gr.B.

Fluido: Vapor de media, condensado de media y purga de calderas.

Sección: No.1 Código ANSI 831 la cual específica 0.05
de corrosión permisible para todos los diàme
tros.

Presión máxima: 15.9 kg/cm2 ~ 227 psig

Temperatura máxima: 213 grados C ~ 415 grados F

Diametro de la tuberia: Variable (ANSI 836.10)

SE = 15,000 de tabla (-20 a 650 grados F. SE=15,000) apéndice "A" ANSI B31.1

Y = 0.4 (de tabla)

Solucion

Calculo del espesor minimo requerido por presión

Sustitución: De valores para 4" de diám, 4.5" de diáme_
tro exterior.

cálculo del espesor mínimo requerido por presión más las tolerancias mecánicas y corrosión.

tm = t + c

Sustitución:

tm = 0.034 + 0.05 = 0.084 pulg.

Cálculo del espesor nominal promedio

TN = +m + TE

Como TF = 12.5% tenemos que:

$$TN = \frac{tm}{100\% - 12.5\%} = \frac{0.084}{0.875} = 0.096 \text{ pulg.}$$

Selección del espesor comercial inmediato superior.

$$TN \rightarrow \overline{T}$$
 $\overline{T} = 0.237$

Céd. Std. o Céd.40

De igual forma se desarrolla el cálculo para los restan tes diámetros. Obteniéndose los siguientes resultados.

De 1/2" a 1 1/2" de diámetro los calculos indican que se puede utilizar una tubería de cédula 40, pero por razones mecánicas y estructurales se determina utilizar céd. BO.

Para diâmetros de 2" a 6" los cálculos determinan especificar cédula estandar.

Para diâmetros de 8" y 10" los cálculos determinan especificar tubería cédula 20.

A continuación se específica el rango o cédula de las conexiones.

4.10 DETERMINACION DE LA PRESION Y CEDULA PARA CONEXIONES.

Para todas las conexiones de 2" a 10" la cédula de estas es igual que la calculada para la tubería, esto es:

De 2" a 6" cédula std.

De 8" a 10" cédula 20

y el material para estas conexiones se específica por - equivalencia de la tabla de específicaciones ASTM para - aceros al carbón y es el siguiente:

Conexiones de 2" a 10" ASTM A234 Gr.WPB

para todas las conexiones de 1/2" a 1 1/2" de diâmetro se especifica su clase o rango por equivalencia del espesor de la tubería o cédula.

Y del capítulo correspondiente se especifica que para — una cédula 80 equivale tener conexiones de 3000 psig y — de extremos inserto soldable.

Por lo tanto se especifica:

Conexiones de 1/2" a 1 1/2" de diametro 3000 psig en ace ro al carbón forjado ASTM A105.

205 El siguiente punto a especificar son las válvulas.

4.11 ESPECIFICACION DE VALVULAS

TIPO DE VALVULA

Para el servicio requerido (vapor de media , condensado de media y purga de calderas), es práctica normal usar:

Valvulas de Compuerta: Para obturar o permitir el flujo.

Valvulas de Globo: Para regular el flujo

Válvulas de Retención: Para evitar el retroceso.

MATERIALES EN LAS VALVULAS

Como el material es acero al carbón, entonces se específica para cuerpos y bonetes el siguiente:

Para diámetros de 1/2" a 1 1/2" acero foriado ASTM A105.

Para diámetros de 2" a 10" acero fundido ASTM A216-WCB.

ÆEn cuanto a los interiores, se requiere de un material - más resistente, ya que estará en contacto directo con el fluido, por lo tanto se específica:

Interiores de acero inoxidable 13% cromo, que son inte-

riores tipo estandar o de linea.

4.11.1 CARACTERISTICAS PRINCIPALES

De acuerdo a la clasificación ANSI, las válvulas bridadas serán 300 psig como minimo.

Para válvulas inserto soldable serán 800 psig según -API-602.

Para facilidad en su mantenimiento, se específica bonete bridado para los tipos compuerta y globo, tapa atornillada para el tipo retención.

Para evitar que la rosca del vástago esté en contacto con el vapor, el cual es bastante erosivo, se específica que el vástago sea del tipo saliente en las válvulas de compuerta y globo.

En el caso de las válvulas de retención, éstas serán del tipo pistón para diámetros menores y del tipo columpio para diámetros mayores.

4.11.2 MARCA

De acuerdo a las características enunciadas, se sele<u>c</u> ciona una marca reconocida y de fácil adquisición de sus productos, y para este caso se especifica:

Marca Walworth

Ahora retomando las características enunciadas, se eg pecifican las válvulas:

Válvula de Compuerta, de acero al carbón forjado ASTM A105, 800 psig, extremos inserto soldable, interiores de acero inoxidable 13% cromo, bonete bridado, vástago ascendente, rosca externa, cuña sólida, asientos renovables, empaquetadura de asbesto, marca Walworth Fig. W950SW ó equivalente, en diámetros de 1/2" a - 1 1/2".

Válvula de Globo, de acero al carbón forjado ASTM -A105, 800 psig, extremos inserto soldable, interiores
de acero inoxidable 13% cromo, bonete bridado, vástago ascendente, rosca externa, asiento renovable, empa
quetadura de asbesto, marca Walworth Fig.W3520SW o -equivalente, en diámetros de 1/2" a 1 1/2".

Válvula de Retención tipo pistón, de acero al carbón forjado ASTM A105, 800 psig, extremos inserto soldable. interiores de acero inoxidable 13% cromo . tapa

bridada, asiento renovable, junta de asbesto con acero inoxidable, marca Walworth Fig.W55405W o equivalen
te, en diámetros de 1/2" a 1 1/2".

Válvula de Compuerta, de acero al carbón fundido ASTM 216-WCB, 300 psig, extremos bridados cara realzada -- ANSI B16.5, interiores de acero inoxidable 13% cromo, bonete bridado, vástago ascendente, rosca externa, -- disco flexible, asientos estelitizados, empaquetadura de asbesto, marca Walworth Fig.5206F-UT o equivalen_te, en diámetros de 2" a 10".

Válvula de Globo, de acero al carbón fundido ASTM — A216-WCB, 300 psig, extremos bridados cara realzada — ANSI B16.5, interiores de acero inoxidable 13% cromo, bonete bridado, vástago ascendente, rosca externa, — disco esférico , asientos estelítizados, empaquetadura de asbesto, marca Walworth Fig. 5281F-UT o equivalente en diámetros de 2" a 10".

Válvula de Retención tipo columpio, de acero al car_ bón fundido ASTM A216-WCB, 300 psig, extremos bridados cara realzada ANSI B16.5, interiores de acero -inoxidable 13% cromo, tapa bridada, anillos solda -- bles, empaquetadura de asbesto, instalación horizon_ tal o vertical, marca Walworth Fig.5344F ó equivalente, en diámetros de 2" a 10".

4.12 SELECCION DEL EMPAQUE

Para seleccionar el empaque el procedimiento nos indica tomar en cuenta varios factores en los cuales se valoran las variables principales.

Las variables principales son:

Fluido: Vapor, condensado y purga de calderas.

Temperatura: 213 grados C. (415 grados F)

Presión: 14.0 Kg/Cm2 (200 osig)

- 10. En aplicaciones de materiales para empaques se recomienda usar asbesto comprimido o acero inoxidable para el tipo de fluido de este problema.
- 20. En temperatura máxima para estos materiales el ran que establecido es:

Para asbesto comprimido de -20 grados F a 750 grados F.

Para acero inoxidable de -250 grados F a 1900 grados F.

Con esto nos damos cuenta que el material más adecuado es el asbesto comprimido. Porque resiste la temperatura, su mecanizado es más sencillo y su costo es más bajo.

El siguiente punto es establecer si tiene la resisten cia adecuada para este caso y para eso nos auxiliamos del procedimiento que establece:

Si se multiplica la presión por la temperatura y el producto no excede al valor tabulado del material, -éste se puede emplear con seguridad.

El valor tabulado para el asbesto comprimido es: 250,000

Entonces 415 \times 200 = 83,000 que es menor que 250,000 lo cual indica que se puede usar.

El siguiente paso es seleccionar el espesor.

En el procedimiento nos indica que una junta delgada trabaja mejor que una gruesa, siempre y cuando las -- caras de las bridas no estén deterioradas, y que el -- espesor base para los valores tabulados es 1/16" los cuales empleamos para seleccionar el empaque.

Por lo tanto para este caso empleamos empaques de as-

besto comprimido con 1/16" de espesor.

4.13 SELECCION DE ESPARRAGOS

De acuerdo a las condiciones de trabajo a las cuales es tarán sometidos los espárragos se selecciona el material adecuado.

Las condiciones de trabajo son:

Alta Resistencia Alta Presión Alta Temperatura

No requiere condiciones especiales de instalación etc.

En base a estos requerimientos el código ANSI B16.5 determina usar:

Espárragos de acero de aleación ASTM A193 Gr.87 con tuer cas de acero al carbón ASTM A194 Gr.2H .

Este material es adecuado porque además se puede usar con otros rangos de bridas y otros materiales de bridas.

4.14 NOTAS

Bajo el contexto de que una nota es un complemento de -una específicación, ya que esta describe específicamente
que características o bajo que condiciones, y/o para que
circunstancias emplear un elemento de los específicados.

Para este caso se requiere de las siguientes notas:

- 10. Los accesorios soldados a tope deberán ser con el díámetro interno, igual al diámetro interno de la tubería, y deberán ser sin costura.
 - 20. En los venteos y drenajes para la prueba hidrostá tica deberán ser roscados, 3000 # y de 3/4" de diám.
 - Las válvulas de extremos inserto soldable deberán estar cerradas antes de soldar.

ESPECIFICACIONES TUBERIAS CONCENTRADO DE INFORMACION FECHA

SERVETO: YAPOR DE HEDIA, COMBUNSADO DE MEDIA, PURCA DE CALDERAS RECENTOS E MEDIAS CASTO, C.A., AMST 816.5 TOLERANCIA DE COMPROSON: 0.00" TIPO DE 1988 PECCION RELEVADO DE CSTUERZOS:

TEMPERATURA MAXIMA :415"F

	 	•••	
ı			DIAM

	CONCEPTO	(PULG.)	O RANGO	DESCRIPCION	ESPECIFICACION O CODIFICACION
TOBERIA	Extremos Planca Extremos Biselados Extremos Biselados	1/2"-1 1/2" 2" - 6" \$" - 10"	8Q 5TD 2O	Ac, al Carbón e/c Ac, al Carbón e/c Ac, al Carbón e/c	ASTM ADD Gr.B ASTM ADD Gr.B ASTM ADD Gr.B
COMEXIONES	inserto Soldable Extremos Biselados Tuerca Unión	1/2"-1 1/2" 2" - 10"	10008 del tubo 30008 1.5.	Ac. al Carbón Porjado Ac. al Carbón e/c Aejentos Integrales	ASTH A105 ASTH A234 CT.WFB ASTM A105
BRIDAS	Inserto Soldable Cuello Soldable Forta Orificio Cuello Ciega	1/2"-1 1/2" 2" - 10" 2" - 10" 1/2" - 10"	300# C.R. 300# C.R. 300# C.R. 300# C.R.	Ac. al Carbón Forjado Ac. al Carbón Forjado Ac. al Carbón Forjado Ac. al Carbón Forjado	ASTH A103 ASTH A105 ASTH A105 ASTH A105
VALVULAS	Compuerta Compuerta Clobo Clobo Ret. Pistón Ret. Columpio	1/2" - 1.1/2" 2" - 10" 1/2" - 1.1/2" 2" - 10" 1/2" - 1.1/2" 2" - 10"	3004 C.S.	Ac, al Carbón Int. 13% crosso	
VARIOS	Espārragos c/2 tcas.	1/2" - 10" Todos	300¢ C.B.	Adbesto Comprisido Acero de Alesción	ASTH A193-87 ASTH A194-2H

- NOTAS: 1: Los accesorios soldados a tope deberão ser con el difestro interno igual al de la tuberla y deberão ser sin costura.
 - 2: Las válvulas de extremos inserto soldable deberán enter cerradas antes de soldares,
 - En los venteos y dransjes para la Prueba Hidrostático deberán ser roscados, 30000 y de 3/4"6 3:

L		1				
		MEA				
		L.V				
REVISIONES	REVISO APROBO	1				

CAPITULO V

CONCLUSIONES

Dado el avance tecnològico actual es de vital importancia el adquirir más conocimiento de los elementos , procedimientos ,normas, etc. relacionados con el trabajo de especificar materiales para tuberia.

Esta adquisición del conocimiento solo se logra mediante el proceso acumulativo de estudiar, discernir, inducir, relacionar, conjuntar, etc., la información técnica, es decir solo se logra mediante la manipulación de la información.

El presente trabajo muestra una guía general culminando su objetivo de formular un proceso acumulativo de la información en sus diferentes etapas, como son; consideraciones básicas, cód<u>i</u> gos, procedimientos y métodos de selección, las cuales se deben de auxiliar con información comercial.

Haciendo un análisis del proceso para elaborar especificaciones se encontró que básicamente existen tres aspectos fundamen tales que son; el servicio, las condiciones de operación y la economía.

El servicio es un factor determinante en la especificación del

material, puesto que influye bastante en la selección de éste, además de tomar en cuenta otras consideraciones.

Las condiciones de operación desempeñan el papel más importante en la específicación de materiales para tuberia, dado que con esta información se determina el tipo y rango de bridas , válvulas, conexiones, así como el espesor y material para tube ria.

La economia es otro de los aspectos fundamentales que siempre está presente, puesto que se debe de especificar materiales — con una visión de ahorro a largo plazo, ésto es, se deben de — especificar materiales que inicialmente parecen muy costosos, pero que con el paso del tiempo estos resultarán los más económicos.

Ahora bien recapitulando esta serie de conclusiones y pensando en la función primordial de la universidad, de formar profesionales vinculados con las necesidades actuales de la industria nacional, orientándolos hacia las disciplinas en las que existen fuentes de trabajos reales, se presenta éste trabajo, con la finalidad de que sea útil como obra de consulta para aque llos profesionistas que de una u otra forma estén relacionados con el diseño de plantas industriales, fundamentalmente en el

área de sistemas de tuberias.

BIBLIOGRAFIA

RIBLICGRAFIA

AMERICAN NATIONAL STANDARDS INSTITUTE

ANSI 831.1 - 1986 (Power Piping)

ANSI 816.5 - 1988 (Pipe Flanges and Flanged Fittings)

ANSI 816.11 - 1980 (Forged Steel Fittings, S.W. and T.)

PIPING DESIGN AND ENGINEERING

ITT Grinnell Industrial Piping Inc. 1976

PIPING DATALOG NAVCO 1966

DISEMO DE TUBERIAS PARA PLANTAS DE PROCESO HOWARD F. Rase Editorial Blume 1973

II SEMINARIO DE INGENIERIA MECANICA PETROLERA ENRIQUE VELAZCO RUEDA

DESCRIPCION DE LAS PRINCIPALES VALVULAS
H.O. CLARK
Empresa Lanzagorta S.A. 1972

NOCIONES DE METALURGIA DE LA SOLDADURA OSCAR DE BUEN Instituto de Ingenieria (UNAM) 1969

NORMAS FPD-005 Y PPT-25

BUFETE INDUSTRIAL 1984

CHEMICAL ENGINEERING/DESKBOOK ISSUE February 1973