

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

AREA FABRICACION MECANICA

DISEÑO DE UNA MAQUINA ROLADORA DE PERFILES

T E S I S

QUE PARA OBTENER EL TITULO DE:
INGENIERO MECANICO ELECTRICISTA

P B E S E N T A :
FRANCISCO FLORES JUAREZ

DIRECTOR DE TESIS: ING. ANDRES RUIZ MIJARES

MEXICO, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE.

INTRODUCCION	
DEDI CATORI A	C6)
1 GENERALIDADES SOBRE PERFILADO.	
1 CLASIFICACION DE LOS PROCESOS EN CAL	IENTEC8)
2 TRABAJO EN FRIO	ca)
3 CLASIFICACION DE LAS OPERACIONES DE	
4 OPERACION DE COMPRESION	C11)
5 OPERACION DE CIZALLADO	C16)
6 PROCESO DE TREFILADO	C19)
7 OPERACION DE CURVADO	(22)
2 MATERIALES EN INGENIERIA.	
1 INTRODUCCION	
2 MATERIALES MAS CONUNES PARA LA CONST	PLICCTON DE UNA MAQUINA
E MATERIALES NAS COMUNES FARA LA CONST	tractor out out toutoning
DESDE EL PUNTO DE VISTA DEL FABRICAN	
	TE(29)
DESDE EL PUNTO DE VISTA DEL FABRICAN	TE(29)
DESDE EL PUNTO DE VISTA DEL FABRICAN 3 INFLUENCIA DE LOS ELEMENTOS DE ALEAC	TE(29) ION EN LOS ACEROS(32)
DESDE EL PUNTO DE VISTA DEL FABRICAN 3 INFLUENCIA DE LOS ELEMENTOS DE ALEAC 4 TRATAMIENTOS TERMICOS	TE(29) ION EN LOS ACEROS(32)(34) NAS HERRAMIENTAS
DESDE EL PUNTO DE VISTA DEL FABRICAN 3 INFLUENCIA DE LOS ELEMENTOS DE ALEAC 4 TRATAMIENTOS TERMICOS 5 ACEROS ESTIRADOS Y ACEROS PARA MAQUI	TE(20) ION EN LOS ACEROS(32)(34) NAS HERRAMIENTAS
DESDE EL PUNTO DE VISTA DEL FABRICAN 3 INFLUENCIA DE LOS ELEMENTOS DE ALEAC 4 TRATAMIENTOS TERMICOS 5 ACEROS ESTIRADOS Y ACEROS PARA MAQUI AUTOMATICAS	TE(29) ION EN LOS ACEROS(32)(34) NAS HERRAMIENTAS(38)
DESDE EL PUNTO DE VISTA DEL FABRICAN 3 INFLUENCIA DE LOS ELEMENTOS DE ALEAC 4 TRATAMIENTOS TERMICOS 5 ACEROS ESTIRADOS Y ACEROS PARA MAQUI AUTOMATICAS 6 ACEROS PARA RESORTES	TE(29) ION EN LOS ACEROS(32)(34) NAS HERRANIENTAS(38) R LOS ACIDOS(39)
DESDE EL PUNTO DE VISTA DEL FABRICAN 3 INFLUENCIA DE LOS ELEMENTOS DE ALEAC 4 TRATAMIENTOS TERMICOS. 5 ACEROS ESTIRADOS Y ACEROS PARA MAQUI AUTOMATICAS. 6 ACEROS PARA RESORTES. 7 ACEROS INOXIDABLES E INALTERABLES PO	TE

3 ALTERNATIVAS DE DISENO MOTORAS.	DE MAQUINAS	ROLADORAS	MANUALES	¥
1 INTRODUCCION			C 4 50	
2 FORMAS DE ARREGLO DE LOS R	ODILLOS,		(46)	
4 SELECCION DEL DISERO, DIA ESFUERZOS Y ENSAMBLE.	granas de cue	RPO LIBRE,	ANALISIS	DΕ
1 SELECCION DEL DISERO			(54)	
2 DIAGRAMAS DE CUERPO LIBRE.			(54)	
3 ANALISIS DE ESFUERZOS			(59)	
4 MOMENTOS DE FLEXION			(108)	i
4 MOMENTOS DE FLEXION	LEXION		C114>	
6 TOLERANCIAS Y AJUSTES			(118)	
E ANTENATAL DEL ATTREET				
	 (4) 14, 15, 38, 38, 38 	THE SECTION OF THE PARTY OF THE	State of the state	
8 LUBRICACION 9 ALTURA DE RUGOSIDAD 10DIBUJOS DE FABRICACION 11EXPLOSIVO RODILLO LATERAL.			(138)	
10DIBUJOS DE FARRICACION			(130)	
11 -EXPLOSIVO PODILLO LATERAL			(188)	
12EXPLOSIVO CUERPO DE LA MAQ	ITNA		(187)	
CONCLUSIONES.			(168)	
Bibliografia			(170)	

INTRODUCCION

La evolución de la industria, sólo puede lograrse, si en la actualidad se pone mayor énfasis en el diseño de maquinaria, es decir para que nuestro país empiece a salir del subdesarrollo, es necesario formar buenos diseñadores en los diferentes tipos de maquinaria, para esto se necesita del impulso por parte de nuestro gobierno.

El diseño es la creación de algo que va a ser útil a la sociedad en que vivimos. Por lo que el siguiente trabajo se realizó con el mayor esmero posible, viendo de antemano que el rolado de metales, es darles forma cilindrica ó cónica, en su totalidad ó parcialmente al metal. El curvado se consigue mediante una fuerza de flexión provocada ya sea por presión, a mano, a máquina ó por choques de martillo. En cuanto al curvado de metales mediante maquinaria, estas las hay, de tres y cuatro rodillos, asi cómo de diferentes marcas, cómo lo son: ROUNDO TIPO R-5/6 y 7:LA BABY UNIVERSAL. Donde la máquina de cuatro rodillos es una variante de la disposición de los rodillos de la máquina de tres, es decir tiene mayores ventajas, en cuanto al tamaño del curvado y además que no se tiene que precurvar el metal antes de realizar el rolado de esta.

Se debe de tener en cuenta antes de que se empiece a trabajar con los metales, las siguientes condiciones:

- 1) El material debe de tener forma uniforme, esto con el fin de asegurar la facilidad para trabajarlo, la exactitud de las máquinas y la capacidad para controlar la calidad del producto logrado con el proceso.
- 2) El material demasiado duro no se puede conformar en forma adecuada y puede ocacionar daños a la máquina.
- 3)El material debe de estar libre de escamas, con el fin de evitar daños a las máquinas.

En la actualidad las operaciones con rodillos ocupan un importante sector en la industria, ya que estos procesos se utilizan para laminar, curvar e imprimir figuras en los metales. Las ventajas de dichas operaciones son : Forman objetos con menor costo de producción y el volumén de fabricación es mayor que con algún otro proceso. En el rolado de perfiles se tiene que el material se pasa entre dos rodillos alimentadores que empujan el material contra un tercer y cuarto rodillo, los cuales son llamados de empuje o dobladores. El rolado difiere en gran medida con el laminado, ya que en el segundo proceso mencionado, el material es adelgazado y en el rolado las dimensiones del material se mantienen constantes; en si, los productos rolados tienén un gran campo de aplicación, por lor lo cual el desarrollo de este tipo de maquinas va en aumento. Este trabajo se trató de elaborar lo más claramente expresado, así cómo ilustrado. Se espera que esta obra encontrará, por parte de los que la lean, profesores, alumnos y profesionistas, la acoqida que se espera...

DEDICATORIA

El presente trabajo se los dedico con toda mi estimación y respeto, a todas aquellas personas que de una u otra forma pusieron su granito de arena para que yo llegase a una parte tan importante en la vida de un hombre.

A MIS PADRES: ONESIMO FLORES MAGADAN
ASCENCION JUAREZ GONZALEZ.
A MI ESPOSA: ANA MARIA RODRIGUEZ SALAS.

A MIS HIJAS: GUADALUPE NAYELI,
MONTSERRAT GUADALUPE.
ANA TERESA.

A_MIS_HERMANOS: AMELIA.

CRISTOBAL.

ADRIAN.

ELEAZAR.

MARIA EUGENIA.

A MI DIRECTOR DE TESIS: ING. ANDRES RUIZ MIJARES.

Y a todos aquellos que de una u otra forma fueron un pilar para
que yo llegase a está culminación tan importante en mi vida.

Gracias por tanto cariño y paciencia al impulsarme cara no

MARTIN.

Gracias por tanto cariño y paciencia al impulsarme para no claudicar en esta empresa.

" LA FUERZA DEL ESPICITU ES LA FUERZA DE LA MENTE"

GRACIAS:

FRANCISCO FLORES JUAREZ.

CAPITULO PRIMERO

GENERALI DADES

SOBRE

PERFILADO

El trabajo mecánico de los metales tiene por objeto daries forma, ya sea, en estado frio ó caliente, esto se da empleando algún medio mecánico: esto no incluye el darles forma mediante máquinas-herramientas ó esmerilado, procesos en los cuales el metal es arrancado, tampoco queda incluido el colado del metal fundido para que tome alguna forma mediante el uso de moldes. en los procesos mecánicos, el metal es perfilado por presión, sea por forja, dobiado, troquelado, embutido ó corte hasta su forma final.

En estos procesos el metal puede ser trabajado en frío ó en caliente. Aún cuando la temperatura normal de trabajo es la del ambiente donde se encuentra realizando dicho trabajo. El trabajo en frío se refiere a la deformación de un metal a una temperatura menor a la de recristalización.

El término trabajo en caliente, se refiere a la deformación plástica de metales por encima de su temperatura de recristalización.

1-1) CLASIFICACION DE LOS PROCESOS DE TRABAJO EN CALIENTE.

Los procesos de trabajo en caliente de mayor importancia en la manufactura moderna son los siguientes:

Laminación

Forja con martillo.

Soldadura de tubos

Perforación.

Estirado ó embutido

Extrusión y rechazado.

Debido a que los procesos de trabajo en frío son los que más nos interesan, unicamente describiremos estos. Ya que la diferencia fundamental está marcada por la temperatura de recristalizacón, los equipos son muy semjantes, al igual que los procesos.

1-2) TRABAJO EN FRIO

El trabajo en frio es el modelado de metales por medio de deformaciones plásticas ,por debajo de la temperatura de recristalización. En la mayoria de los casos se hace a temperatura ambiente, aunque puede realizarse también a temperaturas poco elevadas cuando esto proporciona aumento en la ductilidad, como el caso del magnesio. Los procesos de trabajo en frio son muy importantes en la producción y su uso se ha extendido considerablemente en los últimos años. Tienén ciertas ventajas y desventajas, comparadas con los procesos de trabajo en caliente.

. VENTAJAS .

- Mejor control dimensional
- Mejor acabado superficial.
- Mejora las propiedades de resistencia.
- Pueden impartirse propiedades direccionales.

* DESVENTAJAS *

- Se requieren mayores fuerzas para la deformación.
- Se nesecitan equipos más potentes y pesados.
- Superficies limpias y libres de escamas.
- Se produce endurecimiento por deformación.
- Se dispone de menos ductilidad.
- Pueden aparecer propiedades direccionales perjudiciales.

1-3) CLASIFICACION DE LAS OPERACIONES DE TRABAJO EN FRIO.

Las principales operaciones de trabajo en frio pueden clasificarse bajo los encabezamientos de : compresión, cizalladura, estirado y curvado, como se indica a continuación:

COMPRESION

- a) LAMINADO.
- b) Estampado.
- c) Forjado en frio.
- d) Acabado a medida
- e) Extrusión. ,
- f) Remachado.
- g) Enclavijado.
- h) Acuñado.
- 1) Martillado.
- Brufildo.
- k) Estampado en matriz.
- 1) Laminado de roscas.

CIZALLADURA 4

- a) Corte en tiras.
- b) Recorte.
- c) Perforado.
- d) Muescado.
- e) Cepillado.
- f) Tronzado.
- g) Corte con sacabocados.

* ESTIRADO +

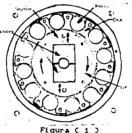
- a) De barra y tubo.
- b) Trefilado de alambre.

c) Rechazado.

- d) Altorrelieve.
- e) Moldeo por estiramiento.
- f) Estampado en casquete.

CURVADO

a) En ángulo.


- b) Con rodillos.
- c) Modelado con rodillos.
- d) Costura.
- e) Rebordeado.
- Enderezado.

1-3-1) OPERACION DE COMPRESION

La mayoría de las operaciones de compresión, tienén su contraparte en el trabajo en caliente. Las razones para realizar trabajo en frio en lugar de en caliente, son: obtener mayor precición dimensional, mejor acabado superficial y mayor productividad.

La mayoria de los equipos son básicamente los mismos, excepto que para trabajo en frio son más grandes.

- <u>Laminado en frio</u>. La mayor parte del laminado se realiza en laminadores de cuatro rodillos, de racimo ó planetario. El laminado en frio de planchas y flejes se clasifica en laminado de superficie un cuarto endurecido, semiduro y duro completo.
- <u>Estampado</u>. El estampado es usado para reducir, rebajar, ahuzar barras y tubos. El estampado en frio generalmente se realiza por medio de una máquina de estampar giratoria, cómo muestra la figura 1 y 2 .

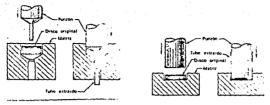


Figura (2)

A medida que el eje gira dentro de la caja, los bloques de soporte son movidos respectivamente hacía adentro cuando pasan bajo los rodillos, apretando las matrices entre si. El operador inserta la barra o el tubo en tre las matrices y lo empuja gradualmente hacía adentro, hasta que se obtiene el grado de estampado deseado.

- Forjado en frio. Gran cantidad de productos son realizados por el forjado en frio, por medio del cual el metal es comprimido en una cavida de matriz que le imparte la forma deseada. A través del uso de varios tipos de matrices cerradas, pueden hacerse partes relativamente complejas con muy estrechas tolerancias, en una unica y rapida operación de forjado en frio. Este proceso es particularmente adecuacdo para los metales dúctiles no ferrosos, pero también puede usarse para muchas aplicaciones de aceros.
- Acabado a medida. Es una operación en la cual se comprimen áreas localizadas en piezas forjadas o de fundición maleable, hasta obtener el espesor deseado. Sólo tiene lugar una deformación limitada, apenas suficiente para obtener los resultados deseados. Es usado principalmente para tetones y planchuelas. Ya que el acabado a medida es realizado entre matrices de prensa mecánica, y puedén mantenerse tolerancias estrechas.

- Extrusión. - Los metales dúctiles de baja resistencia, cómo por ejemplo: el plomo, el estaño y el aluminio pueden ser conformados en frio por el proceso de extrusión por impacto, cómo se ilustra en la figura 3. El aluminio y sus aleaciones son usados para la mayoria de los millones de piezas realizadas por medio de este proceso.

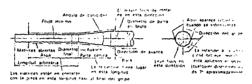


Figura (3)

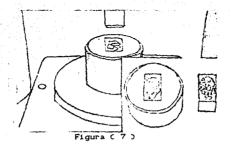
Un único golpe produce la extrusión del metal entre las matrices y el punzón, logrando que la producción total de una sóla sea bastante grande. Se usan principalmente para producir tubos plegables para pasta dentrifica, cremas de afeitar, pequeñas latas, tales cómo las usadas para blindaje en aparatos eléctricos y electrónicos, así, cómo también para latas de alimentos.

- Remachado - En el remachado se modela una cabeza en frio a partir del extremo de un remache, para proporcionar un método permanente de unión de planchas o platos de metal cómo lo indica la figura 4...

Pros removas

El punzón puede ser sostenido y movido en una prensa o por medio de un martillo neumático manual de remachado. Cuando se usa una prensa, el remachado es "encabezado" por una sóla aplicación de compresión.

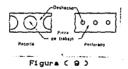
- Clavijado. - Es un método de unión muy usado y es tan simple en apariencia en el producto final que casi no se toma en cuenta, cómo se muestra en la figura 5, un punzón es guiado dentro de una pieza, deformando el metal suficientemente para unirla fuertemente contra una segunda pieza.


Figura (5)

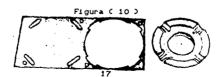
- Acuñado. - El acuñado involucra un trabajo en frio por medio del desplazamiento de un punzón, mientras el metal está completamente cerrado en un conjunto de matrices, el proceso se ilustra esquemáticamente en la figura 6, es usado para producir monedas, medallas y otros ciertos elementos en los que deben obtenerse finos detalles y dimensiones exactas. Debido al confinamiento del metal y al desplazamiento del punzón, no hay posibilidad de que el excedente del metal salga de la matriz, y se requieren altas presiones para llevar a cabo dicho trabajo.

Figura (6)

- Martillado. Es un proceso de trabajo en frio, en el cual la superficie de un metal es golpeada repetidamente por un punzón impulsado ó por una herramienta de boca redonda. Los golpes deforman y tienden a alargar la superficie.
 - Brufido. En el brufido, las planchas de metal estanpadas son empujadas a través de una matriz levemente cónica, cuyo extremo mayor es un poco más grande que la pieza de trabajo y el extremo menor un poco más pequeño que la pieza . El roce contra los extremos de la matriz pule los bordes de la pieza de trabajo, eliminando el borde levemente áspero de las partes recortadas.
 - Estampa. El estampado en una matriz es un proceso de trabajo en frio usado para modelar cavidades en varios tipos de matrices, cómo las usadas para moldear plástico. Cómo muestra la figura 7, se hace una estampa de acero conteniendo el contorno de la parte que será moldeada en último término por la matriz.


Después de que se ha endurecido la estampa, es lentamente presionada dentro de la matriz recocida por medio de una prensa hidráulica, hasta que se produce la impresión deseada.

1-3-2) OPERACION DE CIZALLADO.


La cizalladura es un método de cortar metales en forma de placas o planchas, sin formación de astillas. El metal es cortado entre las hojas cizalladoras. Las operaciones básicas de cizallado son:

- a) Punzonar.
- b) Ranurar.
- c) Contornear.
- d) Realizar trabajos de conformación, tales cómo:
 - escalones.
 - embuticiones.
 - perfiles variados.

- Corte de metal en tiras. Cuando las hojas de cizalla tienen la forma de ranuras circunferenciales alrededor de un cilindro, la operación es de " corte de tiras ". Este procedimiento es utilizado para cortar rollos de planchas finas de metal en tiras continuas de diferentes anchos.
- Perforado y recorte. Son operaciones de cizalladura donde las cizallas toman la forma de curvas cerradas en los bordes del punzón y de la matriz. Estas dos operaciones son básicamente las mismas, su diferencia es puramente de definición, cómo muestra la figura 9, se podra notar que en la operación de recorte, la pieza expulsada es la pieza de trabajo requerida y en el perforado, por el contrario, la pieza que es expulsada es el dehecho, mientras que el resto de la pieza de metal colocada dentro de la prensa es la pieza de trabajo.

- <u>Picado</u>. - Es una operación de perforado que toma la forma do ranuras en el metal o en la cavidad cómo se muestra en la figura 10, el propósito del picado es permitir que el metal adyacente fluya mas facilmente en las operaciones subsiguientes de estirado, en el caso ilustrado las ranuras hacen más facil la formación de las ranuras en el cenícero.

- Muescado. Es esencialmente lo mismo que el perforado, excepto que el borde de la plancha de metal forma parte de la superficie de la pieza que es recortada. Se usa para hacer muescas a lo largo de los bordes de la plancha, las muescas pueden tener cualquier forma deseada.
- Cepillado. Es una operación de acabado en que se corta una pequeña cantidad de metal de los bordes de una pieza recortada.
- Su fin principal es la obtención de mayor presición dimensional, pero también puede ser usada para obtener un borde cuadrado o más pulido. Cómo sólo es eliminada una pequeña parte del metal, los punzones y matrices pueden realizarse con muy poca luz.
- Recortado. Es una expresión para denominar un proceso usado primariamente para eliminar el material excedente que resulta de una operación de estampado o de forja. Es esencialmente lo mismo que el recorte.
- Tronzado. Es aquella operación en la cual se saca una pieza estampada de la tira de metal por medio de un punzón y una matriz. El punzón y la matriz deben cortar a todo lo ancho de la tira, frecuentemente un tronzado de forma irregular puede dar simultaneamente a la pieza de trabajo toda o parte de la forma deseada.
- Corte con sacabocados. Es una operacón de cizalladura modificada que es utilizada para el recorte de formas en materiales de baja resistencia, especialmente goma, fibra y tela. El proceso es ilustrado en la figura ii. La matriz puede ser golpeada por un martillo o con una masa o puede ser accionada por algún tipo de prensa.

1-3-3) PROCESO DE TREFILADO.

El estirado en frio es el moldeado a partir de planchas de metal en el cual se produce flujo plástico a lo largo de un eje curvo. Aunque el estirado en frio es similar al estirado en caliente, las mayores fuerzas de deformación, los espesores más finos involucrados y las tolerancias dimensionales más estrechas requeridas crean algunos problemas diferentes.

- Trefilado de barras. El estirado de barras es el más simple de los procesos de estirado en frio, la barra es colocada y apretada por medio de tenazas por un extremo y alargadas a través de matrices de sección transversal algo más pequeña que la sección original. Las barras son reducidas en sección y alargadas. Como se produce endurecimiento por deformación, se requiere de un recocido si la reducción excede del 3-50%.
- Trefilado de tubos. El trefilado en frio de tuberías sin costura es esencialmente lo mismo que el trefilado de tubos en caliente. El proceso es usado para la fabricación de tuberías con superficies más finas v de dimensiones más exactas que las que

pueden obtenerse por medio del proceso en caliente. Se usan mandriles para tubos de alrrededor de 1/2 a 10 pulgadas de diametro. Los tubos de paredes gruesas y aquellos de menos de 1/2 pulgadasson estirados sin mandril. Esté es el procedimiento usado para el estiramiento de agujas hipodérmicas que pueden tener diametros externos como 0.008 pulgadas y un diametro interno de alrededor de la mitad.

Trefilación.- La trefilación de alambre es esencialmente lo mismo que el trefilado de barras pero en escala menor. Para obtener el pequeño diametro requerido, el proceso generalmente comienza con una varilla de 1/4 de pulgada, en una gran bobina que se pasa a través de una sucesión de matrices de estirado. Las matrices son secciones como la ilustrada en la figura 12, generalmente están realizadas de carburo de tugsteno. Las matrices de diamante a veces se usan para la trefilación de almbres muy finos.

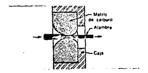


Figura (12)

- Rechezado o entallado. - Es una operación de trabajo en frio muy interesante, en la cual un disco giratorio de plancha de metal es estirado sobre una forma macho, aplicando presión localizada en la parte exterior del disco por medio de una herramienta simple de madera o de metal de bordes redondos o por medio de un rodillo, el proceso básico es ilustrado en la figura 13.

Para rechazar una pieza, la forma o mandril es unida al eje de un torno rápido parecido al torno para madera. El disco de metal va centrado y mantenido contra el extremo más pequeño de la forma por una polea comandada solidaria a la contrapunta del torno. Cuando el conjunto gira, el operador hace que el metal tome la forma deseada, manipulando la herramienta de rechazar contra el metal, como el diametro final de la copa es menor que el disco inicial, es evidente que el metal debe ser comprimido, o acortado en su circunferencia y estirado en sentido radial.

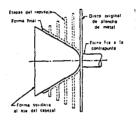


Figura (13)

- Modelado por estiramiento. - Los principios del modelado por estiramiento son ilustrados en la figura 14, la plancha original es asida por dos juegos de mordazas. El movimiento de estas mordazas estira el metal y lo envuelve alrrededor del bloque de modelado a medida que este se levanta.

Figura (14)

- Estampado en casquete. - El estirado de reciplientes cilindricos o rectangulares o una amplia variedad de tales formas, es llamado estampado en casquete o en cartucho. Existen dos tipos básicos de estampado como se muestra en la figura 15, ambas implican curvado axial y flujo del metal. En el modelado por estiramiento hay un adelgazamiento del metal debido al estiramiento circunferencial que debe ocurrir para que el diametro de aumente hasta da. En el modelado por contracción por el contrario el metal tiende a engrosarse, y hay una compresión circunferencial resultado de la disminución del diametro de a didurante el estirado.

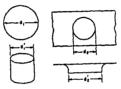
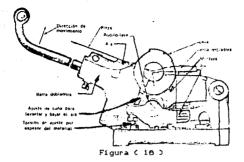



Figura (15)

1-3-4) OPERACION DE CURVADO. -

El curvado es la deformación plástica de metales alrrededor de un eje geométrico con u plequeño o ningún cambio de rea. Cuando dos o más curvaturas se realizan simultaneamente mediante el uso de una matriz, el proceso también es llamado modelado.

- <u>Curvado de ángulos</u>. - El curvado de ángulos por debajo de 1/16 pulgadas de espesor, pueden realizarse en la plegadora de barras mostrado en la figura 16.

Después de que se ha insertado la plancha de metal debajo de la hoja plegadora en la posición deseada, levantando la manija actúa primeramente sobre una leva que hace que la hoja sujete la plancha y luego, con movimiento adicional del mango se curva el metal hasta el ángulo deseado.

- <u>Curvado con rodillos</u>. - Las planchas y chapas pesadas se doblan en rodillos formadores del tipo mostrado en la figura 17.

Esté tipo tiene tres rodillos en forma de pirámide con rodillos curvadores disponibles en un amplio margen de tamaño, algunos son capaces de curvar una placa de más de 6 pulgadas de espesor. En está máquina el rodillos superior es ajustable.

- Costura. - La costura se usa en la fabricación de recipientes con planchas de metal tales como baldes y tambores. El tipo más común del proceso de costura usado, se muestra en la figura 18.

Las juntas son formadas por una serie de pequeños rodillos en máquinas de costura. Estas máquinas van desde el tipo manual pequeño a la máquina automática, capaz de producir cientos de costuras por minuto en la producción en masa de recipientes.

Figura (18)

- Pestameado. Los rebordes puedén ser laminados sobre planchas de metal de igual forma a la que se realiza la costura. Actualmente el modelado de algunos tipos de rebordes y costuras involucran estirado, ya que se produce curvado localizado sobre un eje curvado.
- <u>Enderezado</u> Tiene el objetivo opuesto al curvado. Frecuentemente se hace como preparación para otra operación de trabajo en frio para asegurar la producción de elementos planos o rectos.

En el enderezado por rodillos como se muestra en la figura 19, aqui las varillas o alambres se pasan a través de una serie de rodillos con desviaciones decrecientes respecto a una linea recta.

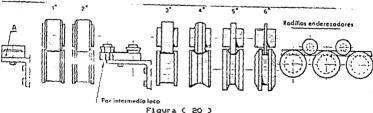
Estos rodillos curvan el metal hacía atrás y adelante en todas direcciones, deformándolo más alla de su limite elástico y quitando así toda tensión elástica previa, que es la causa de la distorsión.



Fig. 19 détodo de enderezado de harras gasandolas a través de un conjunto de rodillos enderezadores, Rodillos que no se muestran, proveen el enderezado en la 3º dimensión.

Figura (19)

- Modelado en frio con rodillos (perfilado). - Los perfiles de chapa con cualquier metal y forma, encuentran un basto campo de aplicación en muchos productos industriales. En el ramo automovilistico los perfiles se emplean para construir molduras metálicas, bisagras para cajas, guias para cristales, etc., en las bicicletas para construir los guardabarros y las llantas de las ruedas; en el ramo aeronaútico en la construcción de molduras u otras piezas de duraluminio, acero o latón, según las exigencias requeridas.


La operación de perfilar se funda en el principio de transformar gradualmente y sucesivamente una tira de chapa en un perfil; este se obtiene haciendo pasar la cinta a trav s de una serie de rodillos (en pares) de acero que con su movimiento rotatorio, transforman la cinta y la hacen tomar formas distintas en cada pasada, esto es con el fin de obtener la forma deseada.Los

pares de rodillos de dar forma, debido a su función característica, vienen fijados en soportes especiales y dispuestos en bateria. Cada par tiene un perfii distinto que se aproxima cada vez más a la sección deseada. El número de pares de rodillos depende del perfil a obtener. En una primera operación se corta la tira de metal en la lóngitud exacta y luego se coloca en la máquina perfiladora. Una vez introducida la tira de metal en el primer par de rodillos, es obligada a avanzar debido al fuerte empuje producido por el rozamiento con la superficie de los rodillos.

El perfilado se usa mucho en las construcciones aeronáuticas. Las ventajas especiales aportadas con el perfilado son las siquientes:

- 1) Anulación de los desperdicios del material
- 2) Aumento de la resistencia, debido a la compresión a que está sometido el material y a la sección especial dada.
- 3) Rapidez de producción.
- 4) Simplicidad constructiva de los rodillos, ya que siendo de forma cilindrica, son ejecutados en el torno.
- 5) Empleo de mano corriente.

En la figura 20 se puede ver un ejemplo de perfilado con su correspondiente bateria de rodillos.

SEGUNDO CAPITULO

MATERI ALES

EN

INGENIERIA

La selección del material que se va a utilizar en el producto o elemento a fabricar, es una desición que se debe de llevar a cabo antés de que se determinan las dimensiones de la pieza, dicha desición le corresponde al ingeniero de diseño. Una vez selecionado el material, el diseñador podra fijar las dimensiones de la pieza, con el objeto que los esfuerzos y deformaciones tengan valores razonables y satisfactorios, técnica y económicamente, en comparación con las propiedades relacionadas con la falla del material

A pesar de la importancia que tienen los esfuerzos y las deformaciones en los materiales a utilizarse en la fabricación de un elemento (pieza) ó de una máquina, muchas veces no se les toma en cuenta en gran importancia, ya que muchas veces se busca que seán resistentes a la corrosión, a la fricción ó al calor.

En si, existen otros muchos factores que influyen en el diseño de los elementos, que hacén en una forma muy necesaria, el conocimiento de las propiedades de los materiales y sus propiedades de acuerdo a sus procesos de fabricación.

Para dicha selección de los materiales es muy necesario saber las condiciones de trabajo a las que va a estar sometido en su vida el material, los costos de fabricación y su adquisición.

- 2-1) Apoyándose en experiencias ya realizadas, en la construcción de máquinas, con frecuencia usaremos:
- Aceros al carbón: para ejes y arboles sencillos.
- Aceros de alta calidad ó clase especial de hierros fundidos:
 para árboles y ejes (ciqueñales).
- - Aceros al medio carbono: para cuñas, chavetas y pernos.
 - Fundición gris : para estatores fundidos y placas fundidas.
 - Aceros templados: para órganos ó elementos sometidos
 - a alta presión con rodamientos (rodamientos y levas).

- Fundición gris: para ruedas dentadas.
- Materiales sin hierro: para superficies sometidas a fricción.
- Aceros de resortes: en casos especiales se utiliza también para lafabricación de resortes el bronce y la madera.
- Aceros resistentes al calor: para organos expuestos al calor.
- Materiales especiales: para organos sometidos a intensos desgastes ó acciones quimicas, eléctricas ó magnéticas, particularmente intensas.

2-2) A continuación trataremos los materiales más comunes para la construcción de una máquina, desde el punto de vista del fabricante.

- Hierro fundido.

La fundición gris es una aleación de hierro con contenido de carbono entre 2 a 4%. Es muy empleado para la construcción de máquinas y piezas fundidas, es un producto barato, de facil colada, con poca contracción y de facil mecanizado por arranque de viruta.

Sus propiedades las podemos enunciar como sique:

- a) Quebradizo debido a la formación de grafito precipitado.
- b) Alta resistencia a la compresión.
- c) Gran amortihuamiento interior.
- d) No es sensible a la entalladura.
- e) Su módulo de elasticidad disminuye al aumentar el esfuerzo.

Fundición gris de alta calidad y fundición gris aleada para fines especiales.

Este tipo de fundición se obtiene a partir de la fundición

perlitica de alta resistencia rebajando el contenido de grafito, añadiendo bastante chatarra y aumentando la dósis de silicio.

Se obtiene una fundición gris más resistente al desgaste y más fluida por la adición de fosforo, así como al adicionarle niquél, cromo, molibdeno, se vuelvén más resistentes tanto al desgaste, a la corrosión y al calor. Cuando a la fundición gris se le agrega entre un 14 a 18 % de sílicio , está se vuelve inalterable a los ácidos.

- Fundición maleable blanca.

Esté tipo de fundición tiene la característica de que en la parte nuclear se tiene una zona perlitica y en las marginales ferritica, siendo apropiada para la fabricación de pequeñas piezas en gran serie C hasta 1 Kg.) como lo son:

- a) Cadenas de cangilones.
- b) Ruedas.
- c) Llaves y guarniciones.

- Fundición negra.

Es una fundición que tiene una matriz en toda su masa por lo cual se presta para piezas con espesor de pared de 3 a 40 mm. y de forma desigual. Se utiliza para la fabricación de carcazas, para transmisiones, tambores de frenos, piezas de hierro, etc. Tiene la caracteristicade que no es soldable, no soporta temperaturas altas y se templa por enfriamiento brusco a 800 °C con su respectivo revenido.

- Acero colado.

Esté tipo de material es adecuado para la fabricación de

piezas fundidas de alta resistencia, elasticidad y tenacidad. El metal es dificil de fundir, pero es forjable, soldable y apto para el temple superficial.

Al momento de la solidificación del metal se tiene un 2 % o más de contracción, formación de rechupes, tensiones internas y grietas por el calor, lo cual eleva el costo del material.

- Acero colado de baja aleación.

El acero colado de baja aleación tiene un 2 % de manganeso y más de 1 % de carbono, se emplea cuando es necesario aumentar la resistencia al desgaste, su templabilidad integral, así como su resilencia y su facultad de deslizante. Es adecuado para ruedas dentadas, crucetas, émbolos de motores y carcazas de turbina de vapor.

- Acero colado duro al manganeso.

Contiene más del 12 % de menganeso y más de 1 % de carbono.

Con lo cual aumenta su resistencia al desgaste y se emplea para aqujas ferroviarias, dientes de excavadora, etc.

- Acero colado al cromo.

En esté tipo de acero, el cromo lo hace resistente a la oxidación y a los ácidos, y con el silicio se le da una gran protección contra el calor. Se utiliza para piezas de horno, casjas de cementación y recipientes químicos. Con la adición de cromo y tungsteno se utiliza para la fabricación de cajas fuertes, esto con el fin de evitar el corte con soplete. Si además se le añade un poco de niquel se proteje contra el aqua de mar.

2-3) Influencia de los elementos de aleación en los aceros.

Para empezar esté estudio abordaremos en primera instancia al carbono.

2-3-1) Carbono.

Esté elemento de aleación es uno de los componentes que se debe de tener en cuenta, ya que , el es necesario para que se forme la aleación llamada acero. De acuerdo a su contenido en por ciento en la mezcla es su dureza del metal; es decir a medida que aumenta el porcentaje en adición del carbono, crece la resistencia al corte por arranque de viruta, como también disminuye la tenacidad , la forjabilidad, la soldabilidad y las capacidades de conducción eléctrica y térmica: Aumenta la resistencia a la rotura por tracción, de alargamiento en caliente. La baja tenacidad se trata de eliminar mediante los elementos de aleación y los tratamientos termicos.

2-3-2) Asufra.

El asufre facilita la maquinabilidad de los aceros, también los hace quebradizos cuando esté carece de manganeso y reduce la resistencia al la fatiga.

2-3-4) Fostoro.

Esté elemento se agrega en los aceros hasta un 2 %, hace al acero resistente a la oxidación y aumenta su limite de fluencia. Si se pasa de esté por ciento lo vuelve quebradizo por fatiga.

2-3-4) Silicio.

El silicio actúa como desoxidante para el acero, fomenta la formación de gráfito y la resistencia a los ácidos, aumenta la penetración al temple y la resistencia eléctrica, disminuye la deformación en frio.

2-3-5) Cobre.

El cobre aumenta el coeficiente de rotura y el coeficiente de alargamiento. Sirve en el acero como protector contra la oxidación.

2-3-6) Manganeso.

El manganeso ayuda a ser más resistente al desgaste, desoxida y desulfura.

2-3-7) Cromo.

El cromo los hace muy resistentes al desgaste, así como les aumenta la dureza, cuando se proporciona entre 12-30 % los hace inalterables al calor, la oxidación y al ataque de los á cidos.

2-3-8) Molibdeno.

Es el elemento más eficaz contra la fragilidad de revenido de los aceros, incrementando la penetración al temple. Cuando se alea con el cromo formando una aleación Cr-Mo, se puede utilizar para la fabricación de calderas de vapor y herramientas de corte.

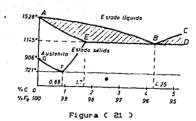
2-3-9) Tungsteno.

El tungsteno elimina la fragilida de revenido en los aceros Cr-Ni de alta calidad y con un 4-12 % le da a los aceros una gran resistencia al calor.

2-3-10) Vanadio.

Actúa como desoxidante, favorece la formación de carburos y aumenta la resistencia al calor, así como también la tenacidad y la consistencia en el filo de las herramientas de acero rápido.

2-3-11) Cobalto.


En los aceros rápidos aumenta la resistencia al corte cuando se afiade a estos hasta un 15 %, porque mejora la consistencia del revenido y la sensibilidad al sobrecalentamiento.

2-3-12) Aluminio.

El aluminio aumenta la dureza superficial del acero nitrurado por la formación de nitruros de aluminio, envejecimiento del acero.

2-4) Tratamientos Térmicos.

Podemos decir que: Tratamiento Térmico es un proceso térmico de calentamientos y enfriamientos para modificar las propiedades mecánicas de los materiales sin que se modifique su composición quimica, a continuación se mencionarán los tratamientos térmicos más usuales, basandose para llevar a cabo dichos tratamientos, la

2-4-1) Recocido.

Es el calentamiento de la pieza hasta arriba de la temperatura de austenisación del material. La descarburación y la formación de escamas pueden evitarse recociendo en atmósfera protectora o recubriendo con virutas de fundición gris.

2-4-2) Normalizado.

Es un proceso de calentamiento hasta arriba de la temperatura de austenisación, se diferencia del recocido por lo siguiente: En el recocido la pieza se deja dentro del horno hasta que baja la temperatura a 200 $^{\circ}$ C y después se deja enfriar al medio ambiente , y en el normalizado se saca la pieza ya calentada a un medio sin corriente de aire.

2-4-3) Recocido de ablandamiento.

Es el calentamiento de la pieza entre 600-700 °C con el fin de obtener la textura suave con cementita granular. Se calienta entre 1-3 horas

2-4-4) Recocido para eliminar tensiones.

Es el proceso de calentamiento del material a una temperatura que ocila entre 450-550 $^{\circ}$ C con el objeto de neutralizar las tensiones internas, sin que por ello disminuya la resistencia , o sea, sin que la cementita adquiera forma granular .

2-4-5) Temple por enfriamiento brusco.

En esté proceso se trata de llevar el material a una temperatura que fluctúa entre 730-760 °C y en está temperatura se saca el material del horno para ser enfriado bruscamente, sumergiéndolo en un baño de agua, aceite, o salmuera con el objeto de aumentar la dureza del material, dicha dureza aumenta con el contenido de carbono.

Con la velocidad de temple aumenta la deformación y las tensiones. Esté tipo de temple se utiliza para los filos de herramientas, resortes, rodamientos, etc.

2-4-6) Revenido.

Es el proceso térmico que se da siempre ó regularmente después del temple con el objeto de obtener la dureza que uno desea. La temperatura de revenido va de 100-400 °C.

2-4-7) Temple y Revenido.

Se les da a los aceros de construcción a una temperatura apróximadamente entre 400-650 $^{6}\mathrm{C}$ con el objeto de aumentar la tenacidad a costa de la dureza.

2-4-8) Temple Interrumpido.

Esté tipo de temple es muy utilizado para aceros de bajo contenido de carbono y consiste en . La pieza ya calentada se enfria bruscamente en agua durante 3-5 segundos, luego se le da un baño de aceite caliente (150-180 °C) para disminuir la contracción causada por el temple.

2-4-0) Tratamiento Isoternico.

Las piezas calentadas a la temperatura de temple se llevan a un baño de sales o metal fundido y se dejan en el , tanto tiempo como sea preciso hasta conseguir la textura deseada, así como, la dureza. Se utilia para piezas chicas y aceros no aleados.

2-4-10) Temple Superficial.

Se da mediante un calentamiento rápido de la zona perifrica de los aceros ricos en carbono, mediante flameado,imersión, por inducción y enseguida enfriamiento rápido con agua o aceite, se obtiene una superficie dura y un núcleo blando. Se utiliza para ruedas dentadas y pernos.

2-4-11) Cementado.

Es la difusión de carbono para aumentar la dureza superficial del acero, esto se da en aceros de bajo contenido de carbono a una temperatura de 800-950 °C.

Con esto se obtiene una muy buena dureza. La cementación puede realizarse en medios cementantes sólidos C polvos y pastas D, líquidos y gaseosos. Aumentan la resistencia al desgaste y la resilencia, por lo cual me utiliza para árboles de levas ó piezas de máquinas sometidas a gran desgaste.

2-4-12) Nitruración.

Esté tipo de proceso se realiza por enriquecisiento de nitrogeno en la superficie de la pieza por medio de una corriente amoniacal, a la temperatura de 800 °C. Se obtiene mayor dureza que en el cementado, mayor resistencia y poca deformación durante en temple. Se utiliza para la nitruración de aceros aleados.

2-5 > Aceros Estirados y Aceros para atquinas-herrantentas automáticas.

Se utilizan los aceros que tienén una mayor proporción de fosforo, asure y plomo, con el objeto de tener una buena maquinabilidad por arranque de viruta y se suministran con el nombre de "aceros automáticos", "aceros de corte rápido "y "aceros de corte libre". Debido al proceso de estirado el material tiende a sufrir una compactación que trae consigo una menor capacidad de alargamiento y resilencia.

2-6) Aceros para resortes.

Son aceros aleados con silicio y manganeso, teniendo estos aceros un limite elástico, lo cual lo hace más facil de arrollar. Se les llega agregar cromo cuando se requiere que el material sea resistente a la corrosión y a los ácidos, así como, vanadio con el fin de aumentar la resistencia al calor.

2-70 Aceros Inoxidables e Intacables por los Acidos.

Son aceros que contienen cromo, mangameso que los hacen más resistentes al desgaste. Por lo regular el acero se alea con los siguentes elementos: cromo, mangameso, molibdeno, tungsteno C da resistencia al calor D, vanadio, niquel C los hace inoxidables e intacables por los ácidos D, cobre C antióxidante D, cobalto y titanio.

2-8) METALES NO FERROSOS.

Entre los metales no ferrosos encontramos los siguientes:

- a) Aluminio.
- b) Magnesio.
- c) Zinc.
- d) Cobre.

Empezaremos esté estudio con el aluminio.

2-8-1) Aluminio y sus aleaciones.

El aluminio es un elemento de color bianco brillante que se encuentra en gran cantidad en la corteza terrestre en forma de distintos minerales de los cuales el principal en la haurita. Funde a 860 °C y tiene un peso especifico de 2.3 gr/8cm. La

resistencia elevada de sus aleaciones favorecen al empleo en la construcción de órganos de máquinas, vehículos, utensilios y aparatos domésticos, dado por el ahoro en el peso que se tiene el utilizar esté a otro material, así como su alta conductividad eléctrica y térmica.

El aluminio puro puede ser utilizado como hojas finas para envolturas, condensadores y aislamientos térmicos.

- Sus propiedades.

El aluminio recocido se vuelve blando y plástico, apto para la embutición profunda. El aluminio es magnético, excelente conductor de corriente eléctrica y del calor, aislante, es soldable autógenamente, pero las soldaduras de aleación son dificiles por que se forman películas de óxido.

- Corresión.

El aluminio, al igual que el cobre se autoproteje formando una pequeña capa de óxido. Es intacable por:

- El agua pura.
- Por el ácido fosfórico dilu do.
- Por el ácido nitrico concentrado.

Es atacado por:

- El agua de mar.
- Los ácidos inorgânicos C clorhidrico, sulfúrico, nítrico y fosfórico).
- El mortero y el hormigon.

- Influencia de los elementos de aleación.

ALEANTE.

INFLUENCIA.

- Hierro.

Lo hace duro y guebradizo.

- Plomo.

Facilità el arranque de viruta.

- Cobre.

Aumenta la dureza.

-Magnesio.

Aumenta la resistencia y la

facilidad de arranque de viruta.

- Antimonio y Titanio.

Lo hace inalterable frente al aqua

de mar.

- Manganeso.

Aumenta la resistencia mecánica y la resistencia a la corrosión.

Cuando se aNade cobre-silicio, cobre-magnesio, cobre-niquel, ó magnesio-silicio, aumenta el endurecimiento de alumínio.

2-8-2) Magnesio y sus aleaciones.

El bajo peso especif co de las aleaciones de magnesio (1.8 gr/³cm.) hace que estas tengán una mayor ligereza, además de que se prestán para un mejor arranque de viruta.

Las aleaciones de magnesio no son soldables con soldadura de aleación y con mucha dificultad por el proceso con gas, siendo poco maleables en frío. Su bajo módulo de elasticidad las hace insensibles a los golpes y choques. Las virutas y el polvo de las aleaciones de magnesio puedén originar incendios facilmente.

- Corresión.

El magnesio se autoproteje con una capa de óxido, es resistente a la corrosión debida al ácido fluorhidrico y a los álcalis. Lo ataca el agua de mar, esto se evita recubriéndolo con una capa de Al-Mg. Las aleaciones magnésicas se empleán en carcazas, mercos y poleas de aparatos móviles y de órganos sujetos a movimientos rápidos.

2-8-3) Zinc y sus aleaciones.

El zinc es un metal blanco azulado, quebradizo a temperaturas normales, blando entre 100-150 °C. Se emplea en el galbanizado de chapa de hierro y aleado con el cobre forma latones, como cojinetes de fricción, ruedas helicoidales y en especial pequeñas piezas de fundición inyectada para la fabricación de aparatos finos.

2-8-4) Cobre y sus aleaciones.

El cobre es un metal de color rojo claro, blando dùctil y maleable, es buen conductor de calor y de la eléctricidad. Se utiliza para conductores eléctricos, cubiertas de tejado, tuberías y recipientes domésticos. El cobre se puede confromar por colada, prensado, inyección, estirado, estampado, forjado y laminado.

El cobre se alea con el zinc para incomo l'impres, con el niquel y el zinc para formar bronces.

2-6-5) Materiales cerámicos.

Estos materiales presentan una elevada resistencia a los ácidos y lejiás, siendo utilizables para la construcción de conductores tubulares, recipientes, bañeras y rodillos, tamices y tóberas: para intercambiadores de calor y revestimientos de loza vitrificada o porcelanas en la industria química, sanitaria y de alimentos: para termotécnicos y aisladores. Los materiales cerámicos puedén ser mecanizados a medidas exactas con injertos duros y discos abrasivos, puedén ser utilizados para bombas centrifugas y de engranes, para bujias de encendido de alta resistencia, crisoles para fundición y utencilios para laboratorios químicos.

2-8-6) Materiales metalcerámicos.

Mediante la acción de presión y calor, es posible aglomerar polvos metálicos de diferentes composiciones para formar cuerpos de dimensiones exactas, que según la composición y estructura poseén propiedades especiales. Entre estos tenemos: el hierro sinterizado y el bronce sinterizado para cojinetes de fricción, juntas herméticas y ruedas pequeñas dentadas.

Los imanes, los metales duros y ciertos materiales de contacto, todos ellos sinterizados y actualmente con aplicaciones como forros metálicos para fricción: hoy en día, aún se estudian nuevos productos en este campo de pulvimetalurgia.

TERCER CAPITULO

ALTERNATIVAS DE

DISERO DE

RAQUI NAS

ROLADORAS MANUALES Y

MOTORAS

Dentro de la última decada ha habido un incremento constante en la demanda de productos de acero. Nuevos métodos de fabricación, así como procesos industriales han sido desarrollados, es necesario modernizar completamente su equipo que facilitará la manufactura de los productos, a un costo menor, mayor rapidez y una calida muy buena. Con lo anterior en mente, se han desarrollado una linea completa de roladoras, con el objeto de formar cilindros a partir del rolado de placas.

Para satisfacer la demanda los fabricantes de roladoras se han preocupado por fábricar máquinas que son capaces de hacer un sin fin de perfiles.

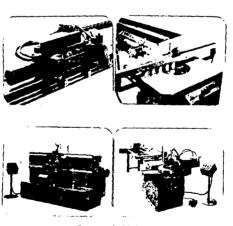


Figura (22)

En esté capitulo trataremos en forma general las características más sobresalientes de los tipos de máquinas roladoras. Empezaremos diciendo que una de las diferencias principales, és la forma de cómo están arreglados los rodillos, esto es tanto en máquinas manuales cómo motoras, las formas de arreglo son:

- a) Forma piramidal.
- b) Forms inicial.
- c) Forma de cuatro rodillos.

- Forma piramidal.

Esté tipo de arregio de los rodillos es cómo se muestra en la figura 23 , es la más utilizada manualmente, pero también se usa en forma motora.

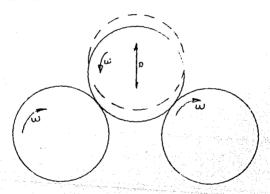


Figura C 23)

En esté tipo de arreglo se tiene que el rodillo central tiene la posibilidad de desplazarse, tanto hacia arriba cómo hacia la parte inferior, teniendo cómo tope de desplazamiento, un radio desde el contacto de los tres rodillos a la parte de arriba. Sus características son las siguientes:

- a) Solo se tiene la posibilidad de realizar anillos con diámetros mayores al del rodillo central.
- b) Se dificulta el curvado de materiales delgados.
- c) Dos de los rodillos son los que están fijos, solo tienén la posibilidad de girar, son los que conducén el material.
- d) En el curvado sólo se tiene una velocidad constante.
- e) El ajuste del rodillo se realiza en forma manual.

A continuación se muestra una maquina de perfiles, figura 24 y 25 .

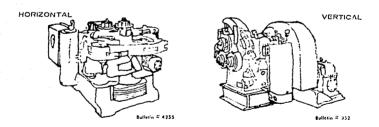


Figura (24)

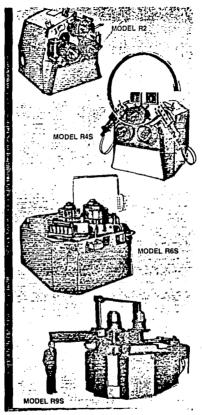


Figura (25)

- Forma inicial.

Esta forma de arreglo tiene la particularidad de que hay dos rodillos ajustables, los cuales son los que se encuentran en la parte baja, el rodillo de mayor diámetro, tiene sólo movimiento en froma vertical. El rodillo lateral tiene el movimiento en forma inclinada, tal cómo se muestra en la figura 26. De esté modo se elimina el impedimento de sólo poder obtener diámetros de curvado grandes.

El ajuste de los rodillos se realiza en forma manual, teniendo un apriete constante entre el material y los rodillos, esto se realiza cuando la máquina está parada.

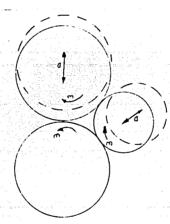


Figura (26)

Las desventajas que se tienén del tipo inicial en comparación con el piramidal son :

- a) Se mesecita aire acondicionado del sistema.
- b) Más accesorios en 1 máquina, cómo lo es, el carro en que se desplaza el portarodillo pequeño.
- c) Sólo se utiliza para radios hasta tres veces el diámetro del rodillos motriz.

- La forma de cuatro rodillos.

Esté tipo de arreglo no es más que una combinación de la forma inicial y la forma piramidal, teniendo con esté tipo de sistema diámetros casi iguales al diámetro del rodillo móvil (1.5 veces el diámetro), esto es debido a que se tienén tres rodillos que son ajustables (los de la parte inferior).

Se tiene como desventaja , en comparación con los otros dos tipos de arreglo, el costo inicial y de mantenimiento aumentan. A continuación se muestra la disposición de los rodillos, figura 27. Y la figura 28, muestra un tipo de máquina con dicho arreglo.

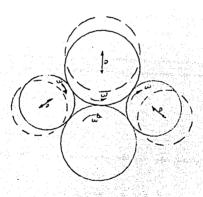


Figura (27)

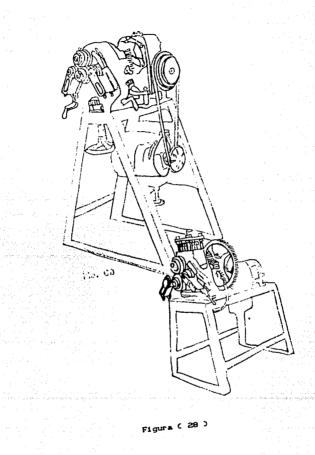


Figura C 20

CAPITULO CUARTO

SELECCION DEL DISERO

DIAGRAMAS DE CUERPO LIBRE

ANALISIS DE ESFUERZOS

EMSAMBLE

SELECCION DEL DISERO

Para la selección del diseño nos basamos en la utilidad de la maquina, es decir, tanto que nos sirva para realizar anillos de gran curvatura, como de curvatura casi igual al rodillo motriz.

Seleccionamos la maquina de cuatro rodillos accionada por un motor eléctrico y transmisión de potencia mediante engranes.

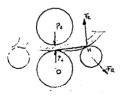
Las partes principales de las que está compuesta la máquina son las siguientes:

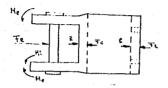
- a) El rodillo motriz
- b) Los tres rodillos conductores y ajustables.
- c) Tornillo sin fin de los tres rodillos ajustables.
- d) Las guías para que los rodillos ajustables de la parte baja deslicén en una sola dirección.
- e) Los engranes de transmisión de potencia hacia la flecha donde se acopla el rodillo motriz.
- f) La horquilla.
- g) Porta-horquilla.
- h) Pernos.
- i) Bujes con bridas.
- j) Tornillos de apriete (horquilla y porta-horquilla).
- k) Por ultimo los engranes que permiten el deslizamiento de los pernos guías del rodillo superior.

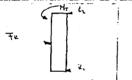
4-1) Diagramas de cuerpo libre.

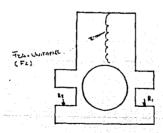
Digamos que un diagrama de cuerpo libre es aquel donde se representán en forma sencilla las diferentes fuerzas que actúan sobre un cuerpo. En este caso trataremos de representar las fuerzas a las que son sometidas las partes principales de la máquina, a nuestro parecer son:

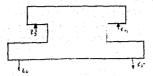
a) RODILLO MOTRIZ


b) RODILLOS ACCIONADOS.


c) TORNILLOS GUIAS DEL RODILLO SUPERIOR.


d) FUERZAS ENTRE LOS RODILLOS Y EL METAL A CURVAR.

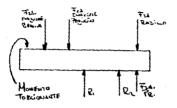

e) FUERZAS ACTUANTES EN LA PIERNA.



() FUERZAS ACTUANTES EN EL PERNO.

g) FUERZAS ENTRE EL CARRO PORTA PIERNA Y LAS GUIAS.

h) FUERZAS EN LOS TORNILLOS DE APRIETE ENTRE EL PORTA PIERNA Y LA PIERNA.


1) FUERZAS EN EL TORNILLO SINFIN.

J) FUERZAS EN LAS TAPAS DE LAS GUIAS.

E) FUERZAS EN LA FLECHA ACCIONADORA DEL RODILLO MOTRIZ.

ANALISIS DE ESFUERZOS.

Para dar comienzo al analisis de esfuerzos en los diferentes elementos de está máquina, es necesario obtener la fuerza máxima aplicable en el perfil, para que este no se deforme plasticamente, en cuanto a sus dimensiones. Como se muestra en la figura 29.

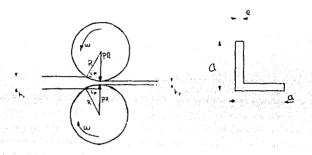


Figura (29)

Lo que se quiere es que los rodillos apliquen la máxima fuerza para que el material sea sólo impulsado por los rodillos. Para esto nos auxiliaremos de las siguiente ecuaciones:

Ec= (E) (e)---- (1)

Donde : Ec= Es el esfuerzo de cedencia del material a curvar. Ec= $4077 \text{ Kg/}^2 \text{ Cm.}$, para un acero 1015.

> E = Es el módulo de Young, sólo para la zona elastica del material.

E = 2.1 x 10^d Kg/ ²Cm.

De la ecuación (1), obtenemos la máxima deformación unitaria a la que puede ser sometido el material y tener una deformación elástica, donde la deformación en este caso está dada por:

em [(Ec)/ (E) 1----(2)

es 4077/ 2.1x 10 = 0.0019

Cómo nos interesa saber qué tanto se deforma, multiplicaremos el resultado anterior por el espesor del perfil, que en este caso es igual a 0.3175 Cm, por lo tanto la deformación total sera:

ate 0.0019 x 0.3175= 0.0006 Cm.

Ya con todo lo anterior, nos auxiliaremos de la fórmula de esfuerzo, esto es con el fin de obtener la fuerza PR que es la necesaria para que el material sólo sea empujado por los rodillos.

E= [2 (PR) / A 1---(3)

Donde: E= 4077 Kg/²Cm.(esfuerzo de cedencia del material).

A= área donde es aplicada la fuerza= a ((R) (et))^{0.5}.

a= Es el ancho de la cara del perfil= 2.54 Cm.

R= Es el radio del rodillo= 6 Cm.

Sustituyendo todos estos valores en la ecuación 3, tenemos:

PR= [(E) ((a)[(R)(et)]0.5]/2

PR=[(4077) ((2.54)[(6)(0.0006)]0.5]/2= 310.66 Kg.

Cómo son dos rodillos ,la fuerza total aplicada es 2PR, ya que en la fórmula, sólo se obtiene la mitad de esta fuerza, por lo tanto;

PRT= 2PR= 20 310.66 Kg.)= 621.33 Kg.

4-2-1) Calculo del diametro de la flecha.

Para el cálculo del diametro de la flecha nos basaremos en la siguiente ecuación y en la figura 30.

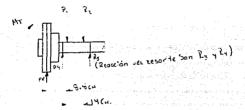


Figura (30)

do ((16) (((Kb) (Mb))2+ ((Kt) (Mt))2)0.51 / ((P1) (Ss))

Donde: Ss= Esfuerzo cortante del material= 5000 lb/ in², para eje con cuñero.

Kb= Factor combinado de choque y fatiga aplicado al momento torsionante= 1, según tabla 1.

Mt= Momento de torsión en C 1b-in D= C63000 C hp DD/r.p.m.

pb= 5

r.p.m.= 40

P1 = 3.1416

Mb= Momento flexionante (lb-in). Para el cálculo de éste momente, nos basaremos en la fígura 31.

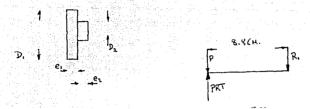


Figura (31)

Figura (32)

En esta figura podemos observar que es necesario obtener el peso propio del rodillo, ya que éste está aplicando una fuerza contraria a PRT, por medio de la densidad del material, obtenemos dicha fuerza:

P= (CD) (A1) (e1) + (A2) (e2)1----(4)

D= Es la densidad del material= 7080 Kg/M^3 CAi)= [CPi) Cdi)1 / 4 = [(3.1416) (0.12 mt.)²1/4= 0.0113 mt.² CAi) (ei)= (0.0113 mt².) (0.048 mt.)= 0.0005 mt.³

CA2)= [C3.1416) C 0.08 0^2 1/4 = 0.005 mt.² CA2) Ce2)= [C0.005 mt.²) C0.03 mt.) i= 0.00015 mt.³

Sustituyendo todo en la ecuación (4), tenemos:

P= (7050) C 0.0005 = 0.00015) Kg. = 4.5825 Kg.

En la figura 32, vemos que el perno que está al principio es el que en realidad está soportando toda la fuerza, por lo que para obtener el momento flexionante, tomaremos la figura 32, donde :

Mb= PRT (8.8) - P (8.8)

Mb= 621.33 (8.8) - [4.5825 (8.8)]= 5427, 378 Kg-Cm.
Mb= 4700.878 lb-lp.

Por lo tanto el diametro de la flecha es :

d3= 6.555 in3., por lo tanto:

d= 1.07 in., que de acuerdo a las medidas de los ejes comerciales, según tabla 2, tenemos que el más cercano es:

d= 1 45/46 = 4.9212 Cm.

4-2-2) Cálculo de los pernos guias del rodillo motriz.

Cómo habiamos dicho anteriormente el perno que recibe la máxima carga es el primero, por lo cual nada más consideraremos que la fuerza sólo está aplicada en este perno. Para el cálculo nos apoyaremos en la figura 33 y en la fórmula del área de esfuerzo del tornillo, aqui consideramos al tornillo como un cilindro sin cuerda, es decir no consideramos la sujeción de la rosca, ya que esta nos soportara una mayor carga.

Figura (33)

Para esto, también nos basaremos en la fórmula del esfuerzo, la cual es:

Sm [(3) (PR) 1/ (As) 1

Fórmula del área de esfuerzo es la siguiente:

Se (C Sy/6) (As) 0.5

Igualando ambas ecuaciones, tenemos:

((Sy/6) (As)^{0.5}] = ((3) (PR)]/ (As)
Despejando el área de esfuerzo, ya es la que nos interesa para este caso, obtenemos:

(As) 4.5 ((3) (PR) (6))/(Sy)

Donde : As= Area de esfuerzo en Cm2.

PR= 621.33 Kg.

Sy= Esfuerzo de fluencia del material, 4429 Kg. / Cm., para un acero 1015.

3= Es el factor de seguridad dado para aceros dulces.

6= Es la constante ya dada en la fórmula, según el libro " Diseño de elementos de máquinas del autor Faires, página 205.

Sustituvendo, obtenemos:

 $(As)^{4.5} = [(3)(621.33)(6)] \times 4429 = (2.525)^{4.5}$

As= 4.012 Cm2

Con está área de esfuerzo nos dirigimos a la tabla 5, y obtenemos una área menor y otra mayor, ya que la encontrada en el cálculo no se encuentra tábulada, por lo tanto, tomamos la mayor. Dicha cantidad es la siguiente: Ass 4.277 Ca²

Con está obtenemos un diámetro de rosca igual a 2.54 Cm., con cuerda fina y 12 hilos por pulgada.

4-2-3) Cálculo del resorte sostenedor del rodillo motriz.

Para esto nos basaremos en la figura 34.

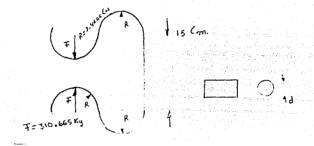


Figura C 34 0

Aqui observamos que el resorte sera tratado cómo una viga curva. Para realizar el cálculo, también nos basaremos en la siguiente fórmula:

S= (M) (hi)/(CA) (e) (ri) 1

Donde: M= Momento flexionante (Kg-Cm. $D=F \times F$ e= R_1 - CrnD = CCmD R, = R+ (d/2)

rn= (Cro) 0.5+ (ri) 0.512/4= Radio del eje neutro (Cm.).

ri= R= Radio de la fibra interna (Cm)).

hi= rn-ri= Distancia del eje neutro a la fibra externa en

A= (Pi) (d) 2/4= Area de la sección (Cm.).

P1= 3.1416

SI = CETD/N = Kg/Cm.

ET= 10000 Kg/cm², para un acero al carbón marca 65, especialpara resortes. Esta cantidad es la que le correspondeal exfuerzo a la tracción, que para esté caso es el mismo que para la compresión.

N= Factor de seguridad= 3

Sustituyendo todo lo anterior en la fórmula y reslizando todos los cálculos correspondientes, obtenemos lo siguiente:

Realizando todas las iteraciones necesarias, con respecto a CdD. obtuvimos el siguiente resultado:

 $d\!\approx\!0.8495011$ Cm. Nosotros tomaremos el valor más próximo superior, que en este caso es:

d= 0.85 Cm.

4-2-4) Cilculo de los engranes, que servirin para transmitir el ecvimiento a los pernos que bajan el rodillo movil.

Para efectuar las operaciones correspondientes a esté

1) Los engranes no están sometidos a fuerzas considerables

- 2) El material de los engranes es acero 1060
- 3) Los diametros primitivos son conocidos y también el paso diametral.
- 4) Utilizaremos la figura 35.

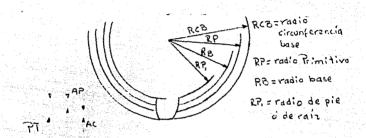


Figura (35)

Por lo tanto, tenemos cómo datos los siguientes:

Dg= 3 in. Es el diametro primitivo de la rueda.

Dp= 2.5 in. Es el diametro primitivo del piñón.

Pd.= 14.4 = N/D = Es el número de dientes por púlgada de diametro.

Ac. = 1/Pd = Altura de cabeza (in.).

AP = 1.157/Pd = Altura de ple (in.).

H = 0.157/Pd = Hueldo (in.).

PT =2.157/Pd = Profundidad total (in.).

DE = Diametro primitivo + 2 (AC)

DP = Diametro exterior (DE) = (2 x PT)

RCB = Radio primitivo x Cos 14.5

Np = 35 dientes: Ng = 43 dientes.

A continuación procedemos a los cálculos, los cuales son:

- a) Altura de cabeza = 1/Pd = 1/14.4 = 0.0694 in.
- b) Profundidad total = 0.1497 in.
- c) Huelgo = 0.01 in.
- d) Diametro exterior: Piñón = 2,6388 in.

Engranaje = 3.1388 in.

- e) Diametro de pie \approx DP; Piñon \approx 2.3394 in.
 - Engranaje= 2.8394 in.
- f) Altura de pie = 0.08 in.
- g)Radio de la circunferencia base= RCB; Piñón= 1.2101 in.

Engranaje= 1.4522 in.

h) La interferencia se evita si: El radio de cabeza del engranaje es menor ó igual a $(CRCB)^2 + C$ distancia entre centros) $^2 \times C$ seno $14.55^2 l$

Sustituyendo, tenemos:

 $((1.4522)^2 + ((1/2)(2.5 + 3))^2$ seno $(14.5)^2 \ge 2.5829$ in. El radio de cabeza del engranaje es (502 - 1.509) in. Por lo tanto no hay interferencia.

Tabla (1)*

Para ejes estacionarios:	Kb	κ_{i}
Carga aplicada gradualmente	1,0	3,0
Carga aplicada repentinamente	1,5 a 2,0	1,5 a 2,0
Para ejes en rotación:		
Carga aplicada gradualmente	1,5	1.0
Carga repentina (choque menor)	1,5 a 2,0	1,0 a 1,5
Carga repentina (choque fuerte)	2.0 a 3.0	1.5 a 3.0

s. » esfuerzo de flexión (tensión a compresión), psi

sa w esfuerro axial (tensión o compresión), psi

El código ASME especifica para ejes de acero comercial

s_s(permisible) = 6/00 psi para ejes sin cuñero s_s(permisible) = 6/00) psi para ejes con cuñero

Tabla (2)

LAS DIMENSIONES NORMALES DE LOS EJES han sido normalizadas tentativamente por tec en la siguiente forma:

Diametro de ejes para trasmisión, en pulgadas:

15/16, 1 3/16, 1 7/16, 1 11/16, 1 15/16, 2 3/16, 2 7/16, 2 15/16, 3 7/16, 3 15/16, 4 7/16, 4 15/16, 5 7/16, y 5 15/16.

Diametro de ejes para maquinaria, en pulgadas:

1/2 pul a 2 1/2 pul, de 1/16 pul en 1/16 pul, 2 5/8 pul a 4 pul, de 1/6 pul en 1/8 pul, 4 1/4 pul a 6 pul, de 1/4 pul en 1/4 pul,

Las longitudes normalizadas de fabricación son 16, 20 y 24 pies.

WDISERO DE MAQUINAS. AUTOR: HOLOVENCO Y LAUGHLIN. EDITORIAL
MAC. GRAV-HILL.

					erg i			
							100	
	and the second second							
	and the second second	The state of	suffer fields.					
		ewil eter di						
		Tabla	(3)					
PROPIED	DES TIPICAS DE MA	TERRALES	FERROSOS	FORUADOS	fe111 1.C	ESO!		
	1	j wa	IMA -	KESISTENCIA	ALARGA-			
MATERIA	L ESTADO	RESIST	TENCIA 🗧	DE FLUENCIA	MIENTO	CIÓN	NO	
N. AL		ertarie :	540	EN TRACCION		AREA .	(BITY)	
	1	kg/cm ksi		kg/cm² ksi	5,08 cm	- 5		
		FB/CIII LS	KE/CIII KII	AB/COL KSI	It Junes		<u></u>	
Hierro du	lce Laminado simple	3 374(a)48(a)	2 531 36	1 757(a)25(a)	35		i	
Acero for		1			1 1			
Ciolo(E)	Estirado en frio	4 710 67	3 515 50	3 867 55	25	57	137	
C101%(7)	Estirado en frio	5 413 77	4 077 58	4 429 63	25	63	170	
C1020 C1020	Laminado simple Normalizado	4 569 65	3 445 49 3 797 54 •	3 374 48	36 39	59 69	143 131	
C1020	Recocido	4 007 57	3 023 43	2952 42	36.5	66	111	
C1020(k)	Estirado en Irla	5 483 78	4 077 58	4 640 66	20	59	156	
C1022	Laminado simple	5 062 72	3 797 54	3 656 52	35	67	149	
- C1030	Laminado simple	5 624 80	4 218 60	3 586 51	32	56	179	
C1035 من	Laminado simple	5 976 85	4 499 64	3 867 55	29		190	
€ C1045 C1095	Normalizado	9 913 141	5 062 72 7 381 105	4 148 59 1 5 624 80	22	45	215 -	
= = Biii3(k)	Acabado en frio	5 835 83	4 359 62	5 052 72	14	40	2#5 170	
· B((1)	Laminado simple	4 921 70	7,557 0-	3 163 45	25	40	138	
CIII	Laminado simple	5 273 75	3 937 56	3 234 46	32	70	149	
CIIIB(E)	Estirado en frio	5 624 80	4 218 60	5 273 75	16	57	180	
C1144 1.140	OQT 1000 (538° C)		6187 88	5 835 83	19	46	235	
13B45	OQT 1200 (649°C)		5 905 84 9 843 140	6 468 92 12 303 175	21	6!	229	
2317(6)	OOT 1000 (538° C)		5 554 79	4 991 71	16	56 72	220	
234Ne)	OQT 1000 (538° C)		7 241 103	8 437 120	22	60	285	
· 3150 -	OQT 1000 (538° C)		7 945 113	9 140 130	16	54	300	
3250(e)	QT 1000 (538° C)	11 670 166	8 577 122	10 264 146	16	52	340	
4(6) 4(30	OQT 1000 (5)8° C)		9 491 135	11 249 160	14	43	375	
413((e)	WQT 1100 (593° C	8 577 122	6 679 95	7 381 105	18 16	62 45	260	
4340(c)	Estirado en frio	8 577 122	6 398 91	7 381 105	15	45	, 248 248	
464((c)	OQT 1000 (538° C)		7 311 104	9 140 130	19	36	310	
5140(e)	OQT 1000 (538°C)		7945 113	8 999 128	19	55	300	
5140(e)	Estirado en frio	7 381 105	5 554 79	6187 88	18	52	212	
8630 8640	Estirado en frio 10 3		6 046 86	7 030 100	22	53	222	
8760	OQT 1000 (538°C)		8 437 120 11 600 165	10 546 150	16	55 43	330	
9255	OQT 1000 (538° C)		9 491 135	11 249 160	15	32	429 352	
4140	OQT 1000 (538° C)	10 686 152	7 311 104	9 491 135	18	61	311	
9850	OQT 1100 (593° C)		9491 135	11 108 158	15	48	360	

DE ORBEIGG ELEMENTOS DE MAQUINAS. AUTOR: FAIRES. EDITORIAL MONTANER Y SIMON, S.A.

Continuación Tabla (3)

ROCK.	120) On	MAUUI- NAIII-	ALGUNOS USOS TÍPICOS
	kgm	pie-lb	(/)	ORSERVACIONES
B60			50(h)	ASTM AK5-36, A41-36.
			50	Barras, tiras, chapa, placa, Pertiles estirados en frio.
	18,94(j)	137(j)		Sarras, chapas. Tabla AT 8. Para cementación: tabla AT 11.
1379	8,84	64		Acero estructural; placa, chapa, tira, alambre.
D74	9,95	72		Calidad de cementación, tabla AT 11.
1366	11,06	80		Aplicaciones generales.
D83	!			liezas diversus de máquinas, forjadas en frio; barras.
1181	8,29	60		Aphaciones generates.
1358	7,60	55		Piezas de maquinaria. Tabla AT 8.
1391	6,22	45	57	Piezas de máquinas. Pueden ser tratadas térmicamente. Tabla AT 9
1196	4,14	30		sjes grandes.
C25	0,41	3	39	Herramientas, muelles. Usualmente, tratadas térmicamente. Tabla A
B87	1			Mecanizado (Acit; alto contemdo de azofte.
B76	i.			Mecanizado fácil; alto contendo de azulte.
BBI	11,06	80		Mecanizado fácil; ordinatiamente sin soldadura. Cementación, tabla
	15,20(j)	f 10(j)		fabla AT 8 para C1117.
C22	4,97	36		Mecanizado fácil. Alto contenido de azufre, Tablas AT 8 y AT 9 par
C31	13,13	95		1,75 % Mn). Acero al manganeso.
C42	ĺ			345 con boro para mejorar la temptabilidad.
B97	11,75	R5		3 1/4 % Ni). Engranajes, forros (cambas) de bomba, etc.
C30	6,91	50		3 ½ ½ Ni). Engranajes, etc.
C32	6,36	46		1,25 % Ni, 0,8 % Cr). Ungranajes, petnos, ejes, etc.
C36,5	4,14	.30		1,85 % Ni, 1,05 % Cr). Eneranajes, etc.
C40	8,15	59		0,25 % Mo). Ejes, barras, etc.
C25	11,75	85		1,45 % Cr., 0,20 % Ma). Lijes, piezas forjudas, pasadores, tubos para :
				1,85 % Ni, 0,8 % Cr, 0,25 % Mo). Aplicaciones generales. Figura A
C33	5,66	41		1,85 % Ni, 0,25 % Mo).
C32				0,80 % Crt. Engranajes, ejes, pasadores, etc.
	i		60(g)	
				0,55 % Ni, 0,5 % Cr, 0,2 % Mo). Tabla AT 9.
C35	4,97	36		0,55 ½ Ni, 0,50 ½ Cr, 0,20 ½ Mo).
C46	2,62	19		0,55 % Ni, 0,50 % Cr, 0,25 % Mu). Herramientus, engranajes, per
C36	0,96	7		2,00 % Si, 0,82 % Mn). Muelles, cinceles, herramientas.
C33	10,09	7.1		0.45 % Ni, 0.4 % Ct, 0.11 % Mol.
C37	6,91	50	50(6)!	1.2. Ni, 0,8 ½ Mu, 0,8 ½ Cr, 0,25 ½ Mo). Serviciu pesado; apl
				nenerales.

				ГаБІ	аС	4 3	, 2					
MM		DIÁME DE BA	TRO	MÁX RESIST	IMA ENCIA	FLUE FLUE EN TRA	D DÉ NCIA CCIÓN	ALARG. % EN 5.08 cm	REDUC- CIÓN ÁREA	NOB (BHN)	122	30
AISI	ESTADO	cm	pulg	kg/cm	ksi	kg/cm'	ksi	(2 pulg)	%	(BILITY)	kgm	pie-lb
C1015	Laminado simple Recocido Normalizado Normalizado Normalizado Normalizado	1,27 2,54 1,27 2,54 5,08 10,16	光 以 以 1 2 4	4288 3937 4429 4323 4218 4143		3198 2952 3374 3304 3128 2938	45,5 42 48 47 44,5 41,8	39 37 38,6 37 37,5 36,5	61 69,7 71 69,6 69,2 67,8		11,19 11,47 11,75 11,75 11,89 11,47	81 83 85 85 86 83
CIII	Laminado simple Recocido Normalizado Normalizado Normalizado Normalizado	1,27 2,54 1,27 5,08 10,16	1 1 1 2 4	4963 4359 4900 4710 4478	62 69,7 67	3114 2847 3163 2917 2460	44,3 40,5 45 41,5 35	33 32,8 34,3 33,5 34,3	63 58 61 64,7 64,7	143 121 143 137 126	8,29 9,54 9,67 11,47 11,61	60 69 70 83 84
C10X (57)	Laminado simple Recocido Normalizado Normalizado WQT 1000	1,27 2,54 1,27 10,16 2,54	1 1 1 4 1	5624 4710 5448 5096 6187	72,5	3586 3445 3515 3304 4780	51 49 50 47 68	32 31 32 29,7 28	54 57,9 61,1 56,2 68,6	179 126 156 137 179	7,60 7,05 9,54 8,43 12,72	55 51 69 61 92
CIII	Laminado simple Recocido Normalizado Normalizado Estirado en frío	1,27 2,54 1,27 5,08 2,54	⅓ ⅓ 1 1 1 1	6538 5976 6890 6749 7241	93 85 98 96 103	3867 3515 4077 3445 6538	55 50 58 49 -,93	26 27 25 22 15	54 58 51 56	192 174 201 197 217	8,43 5,11 9,54 2,90	61 37 69 21
C1045	Recocido Normalizado Lam. en caliente (s) Estirado en frío (b) WQT 1000 (538°C) WQT 1200 (649°C) WQT 1000 (538°C) WQT 1000 (548°C) WQT 1200 (649°C)	5,08 1,27 1,27 5,08 5,08 10,16	1 1 2 1 2 2 2 2 4 4	9140 7734	90 99 87 100 130 110 110 98 94 93	3867 4288 3797 5976 7734 5905 4921 4499 4148 3867	55. 613 54 85 110 84 70 64 59 55	27 25 27 19 16 23 23 26 25 28	54 49 56 45 56 61 50 58 49 55	174 207 187 235 260 220 205 190 180 186	6,63(c) 7,05(c) 10,37(c) 11,75(c)	c) 32(c) c) 45(c) c) 45(c) c) 51(c) e) 75(e) c) 85(c) c) 62(c)
 C1050	Diaminado simple Recocido Normalizado Normalizado Estirado en frío OQT 1100 (593°C) WQT 1100 (593°C) WQT 1100 (593°C) WQT 1100 (593°C) WQT 1100 (593°C) WQT 1100 (593°C)	1,27 5,08 5,08 10,16	1 X 4 1 X X 2 2 4 4	7030 7945 8577	113 122 119 112 117	4077 3726 4359 3937 6679 5695 6187 4780 5518 4112 4780	58 53 62 56 95 81 88 68 78,5 58,5		37 40 45 41,6 35 58 60 55,6 61 54,5 55,5	229 187 223 201 229 248 241 223 235 207 229	3,18 1,66 2,35 2,76 3,04 7,05 2,76 3,31 2,90 2,07	23 12 17 20 22 51 20 24 21 15

DISEÑO DE MAQUINAS. AUTOR: FAIRES. 2) SIMON,E. A.

Continuación tabla (4)

TABLA AT • PROPEDADES TIPICAS DE ACEROS TRATADOS

Los valores de esta fabla han vido tomados de abaços tales como los de las figuras AF l-AF 3. Para obtene la revisione a el aionero firinel para canaquirer otra rempetatura de rescuido interpolar con repartición linea curre fos valores dados. La extrapolación para temperatura más bajas puede dar a veces ma estimación razonable, pero no ve puede contrar on ella 15. No interpolar unilizando este valor.

n.º AISI (Medio de enfria-	ТАМ		ب (REVE		MÁXIMA RESISTENC 5.		PPNID FLUEN EN TRAC 1 ₀	CIA	NOR (HIIN)	ALARG. 5,08 cm (2	ızo	0
miento)	cm	pulg	·c	F	kg/cm² k	si	kg/cm*	ksi		pulg)	kgm	pic/lb
C1035	2,54		. 316	600	8 296 11		6 ! ! 6	87	240	- 11	5,53	41)
(agua)	2,54 2,54	!	538 704	1000	7 170 10 5 976 8)2 35	5 132 4 007	73 57	200 170	22 29	7,88 12,85	57 93
C1095	1,27		427	Suil	12 373 17		7 874	112	16.1	11	0,83	6
(accite)	1,27	У4 4	593	1100	10 194 14 9 140 13		6 187 4 570	88 65	293 262	!7 !7	0,83	5
C1137	1.27	- <u>'</u>	371	700	9 491 12		5 1185	115	277	- !2	1,79(a)	13(a
(aceite)	1,27 5,08	1/2	53H 53B	1000	7 804 11		6 187 4 429	88 63	229 217	23 23	8,43 4,28	61 31
2330	1,27	1/2	316	6(4)	14 760 21		13.710	195	429	13	5,39	39
Acero	1,27	Ж	51s 704	1300	7 522 10		8 858 6 397	126 91	277	20 26	10,64	77 109
(agua)	10,16	4	538	1000	7 381 (1		5 976	85	207	26	12,02	87
4140	1,27	1/1	260	\$(4)	18 980 27		16 943		514	11	1,10(2)	8(a
Cr-Mo (aceite)	1,27	% %	427 649	1200	14 760 21 9 140 13		13.710 8.085	115	429 277	15	11,47	21 83
(accirc)	10,16	4	649	1200	7 874 11		5 835	83	229		12,02	87
4150 Cr-Mo (accite)	1,27 1,27	34 5.	427 649	S00 1263	16 029 22 11 178 15		9911		444 330	16	1,66(a) 7,32(a)	12fa 53(a
5150	1,27	15	427	800	14 760 21		13 710		415	- !!	2,35(a)	17(a
Cromo (accite)	1,27	13	53H 649	1000	11 249 16 8 929 12		10 475 8 226		321 269	15 21	5,39 8,15,81,	39 59
6152	1,27		371	70:1	17 294 24			224	495	10	1,24(a)	9(a
Cr-V (accite)	1,27	54 34	518	1000	9 983 14		9 210		375 293	12	4,14	30 65
(accit)	5,08		649	1200	8 507 12		6 608	94	241	21	6,22(a)	45(a
N630	1,27		427	860			12 233		375	14	8,01	5H
Ni-Cr-Mo	1,27	4	59,1 59,3	1100	9 632 13 6 749 9	ю.	8 768 5 062	125 721	285	20 25	13,13	95 114
8742	2,54	<u> </u>	371	760	15 8hs 22		14 271	203	455	-11	1,93(a)	14fa
Ni-Cr-Mo (aceite)	-2,54 10,16	4	649	1200	9 540 13 8 296 11		7 734 6 397	!10 91	262 235	21 22	9,26(a)	67(a
9261	1,27	14	427	890	18 208 25			228	514	10	1,66	12
Si-Mn (aceite)	1,27	1/2 1/2	482 649	900 (200	15 110 21			192	429 311	11	1,79	13 37(4
4840	2.54		371	7(1)	16 662 23			214	470		1.38(a)	(4
Ni-Cr-Mo	2,54	_ i '	649	12641	9 843 14	(1)	9 4 37	120	280	19	N. 486:45	65ta
(arrite)	15,24	ħ	538	likei	10 616 15	1	9 210	131	302	16		

Tabla C 5 5 5

ROSCAS DE TORNILLO UNIFICADA Y AMERICANA, BASTA Y FINA

Valores seleccionados extractados de ASA B.I.-1960 [3-1], que debe ser consultada en para ajustes de clase 3, rosea exterior. El diámetro menor de la rosea interior no es que corresponde a un diámetro que es igual aproximadamente al prometilo de los diámetros de 12 filetes, por escima del .

2 .25.	n it re	D MAYOR	BASTA (UNC)							
TAMAÑO		SICO	Hilosi	Diámeteo menor	Area de					
TAMANO			Pulgada	rosca exterior	esluerzo A					
!	pulg	слі		pulg em	pulg*	cm ^s				
U	0,0600	0,1524								
i l	0,0730	0,1854	64	0.0538 0.1366	0.00263	0,0169				
2	0.0860	0,2184	56	0,0641 0,1628	0.00370	0.0236				
ī	0.0990	0.2514	48	0.0734 0.1864	0,00487	0,03143				
4	0.1120	0,2845	40	0,0813 0,2065	0,00604	0,0389				
5	0,1250	0,3175	40	0,0943 0,2395	0,00796	0,0513				
6	0,1380	0,3505	32	0,0997 0,2532	0,00909	0,0586				
8	0,1640	0.4166	32	0,1257 0,3192	0,0140	0,0903				
10	0,1900	0,4826	24	0,1389 0,3527	0,0175	0,1129				
12	0,2160	0,5486	24	0,1649 0,4188	0,0242	0,1561				
7.	0,2500	0,6350	20	0,1887 0,4792	0,0318	0;2052				
'/ i	0,3125	0,7938	18	0,2443 0,6204	0,0524	0,3381				
7.	0,3750	0,9525	16	0,2983 0,7576	0,0775	0,5000				
'/	0,4375	1,1113	14	0,3499 0,8886	0,1063	0,6857				
7.	0,5000	1,2700	13	0,4056 1,0302	0,1419	0,9154				
7,, ,	0,5625	1,4288	12	0,4603 1,1691	0,182	1,174				
'/ . '	0,6250	1,5875	- 11	0,5135 1,3042	0,226	1,458				
٧,	0,7500	1,9050	10	0,6273 1,5933	0,334	2,155				
7.	0,875	2,2225		0,7387 1.8762	0.462	2,981				
1 .	.1,0000	2,5400	8	0,8466 2,1503	0,606	3,910				
17.	1,125	2,8575	7	0,9497 2,4121	0,763	4,923				
1 %	1.2500	3,1750	7	1,0747 2,7297	0,969	6,252				
1 1/,	1,375	3,4925	6	1,1705 2,9732	1,155	7,451				
17.	1,5000	3,8100	6	1,2955 3,2909	1,405	9,064				
17.	1,7500	4,4450	5	1,5046 3,8216	1,90	12,26				
2	2,0000	5,0800	47,	1,7274 4,3877	2,50	16,13				
2 1/.	2,2500	5,7150	4 %	1,9774 5,0227	3,25	20,97				
2'/,	2,5000	6,3500	1 1	2,1933 5,5703	4,00	25,81				
2 1/.	2,7500	6,9850	•	2,4433 6,2053	4,93	31,81				
3	3,0000	7,6200	1 4	2,6933 6,8403	5,97	38,52				
17	3,2500	8,2550	1 1	2,9433 7,4753	7,10	45,81				
3.7.	3,5000	8,8900	1 4	3,1933 8,1103	8,33	53,74				
37.	3,7500	9,5250	4	3,4433 8,7453	9,66	62,32				
4	4,0000	10,1600	4	3,6933 9,3803	11.08	71.48				

DISENO DE MAQUINAS. AUTOR: FAIRES, EDITORIAL MONTANER

SIMON,S. A.

Continuación tabla (5)

cuanto a detalles sobre proporciones y tolerancias, y para otras se ies de coscas; dimensiones exactamente el mismo que para la rosca exterior. El áren de exfuerzo de tracción es la de paso y mionet; detalles en referencia (3.1). Valores seleccionados de la serie de rosca tamaño de 1 1/2 pulgadas.

/	FINA	(UNF) Y I	ANCHURA A ENTRE CARAS, REGULAR, EN BRUTO						
Hilos		Diúnictro incnor : Area de			(Selectionado de				
Pulgada	rusca exterior		estuert	0 A,	ASA B 18.2-1952)				
	Pult	cm:	bnje,	cm,		B 18.2-1932	<u>'</u>		
80	0.0447	0.1135	0.00180	0'0119					
72	0.0560	0,1422	0.00278	0.0179	. •	.:			
(+1	0.0668	0,1696	0.00394	0,0254	- 4 -	· `., ·			
56	0.0771	0,1958	0.00523	0.0337	Para caher	as y tuercas	ou.		
48	0,0864	0,2194	0.00661	0.0426		es diferent			
	0,0004	i	0,00001	0,0-20		menores i			
44	0,0971	0,2466	0.0083	0.0535		8 puls) de			
4()	0,1073	0,2725	0.01015	0,0654		tanse detail			
36	0,1299	0,3299	0,01474	0,0950	la Norma.		•		
32	0,1517	0,3853	0,0200	0,1290			ça: /		
28	0,1722	0,4373	0,0258	0,1665	Cabeza: A	pulg			
26	0.2062	0.5237	0.0364	0.2348	pulg cm		1.1		
26	0,2002	0,6639	0,0580	0,3742	7 1.1		1,2		
24	0,3239	0,8227	0,0380	0,5664	7, 1,2		1.4		
		0,9555			/n 1.4	2 / //-			
20 20	0,3762	1,1143	0,1187	0,7658	1 3/4 1.51	1/6	1,7 1,5		
201	0,4387	1,1143	0,1599	1,0316	77, 1,90	1 1/1	1,3		
18	0.4943	1,2555	0.203	1,310	13/1. 2,0	5 1 %	2.3		
18	0.5568	1,4142	0,256	1,652	11/1 2,3				
16	0.6733	1,7101	0.373	2,406	1 1/, 2,8	11/	2.8		
14	0,7874	1,9999	0,509	3,284	1-7, 3,3	17.	3,		
12	0,8978	2,2804	0,663	4,277	1 1/, 3,8		3.8		
12	1,0228	2,5979	0,856	5,523	1 "/, 4,2	1 17,0	4,3		
12	1,1478	2,9154	1,073	6,923	1 1/6 4,76		4,7		
12	1,2728	3,2329	1,315	8,484	2 1/4 5,2		5,2		
12	1,3978	3,5504	1,581	10,200	2 1/4 5.7	2 1/4	5,		
12	1,6478	4,1854	2,1853	14,095	2 % 6.60		6,6		
12	1,8978	4,8203	2,8892	18,639	3 7,6		7,0		
12	2,1478	5,4554	3,6914	23,819	3 % 8,5		8.5		
- 12	2,3978	6,0904	4,5916	29,620	3 °/, 9,5		9.5		
12	2,6478	6,7254	5,5900/	36,060	4 1/6 10,4	4 1/4	10.4		
12	2,8478	7,3603	6,6865	43,141	41/, 11,4		11,4		
12	3,1478	7,9954	7,3812	50,847	4 1/6 12,3				
12	3,1978	8,6304	9,1740	59,186	5 % 13.3				
12	3,6478	9,2654	10,5649	68,161	5 % 14.21				
12 -	1,8978	9,9001	12,0540	77,766	6 15.2	4			

Table (6)4

TABLA 6 δ Valores de resistencia, rigides y ductilidad de varios materiales estructurales

Estos son valores medios; los resultados de ensayos con una probeta de un materia; dado pueden desviarse considerablemente de los valores de la tabla.

	Resistencia a la tracción (Kg/cm²)		Resistencia a la compresión (Kg/cm²)		Resiste esfuerza (Kg/	cortante	Méda de clastic (Kg/c	Alarga- gaiento ga	
Material	Resistencia de fluencia (véase Art, 16)	Resistencia máxima	Resistencia de fluencia (véase Art. 16)	Resistencia máxima	Resistencia de fluencia (whate Art. 16)	Resistencia máxima	A tracción y compresión	A estuerado surfacea	5 centi- metros (2°) (por timuto)
ron estructural (apensimalamente, 30% de rathony laminado en caliente	2 460	4 570	2 460	(4)	1 480	3 160	2 110 000	844 DOD	30
rest (aprensimalamente 0.60% de carbone)	4 220	7 730	4 220	(4)	2 530	5 980	2 110 000	BH 000	1 15
rrin estructural al alquet (3.5% de alquet) Janinada en calente rero al esmoo-night (5AF, 3245), tratada	3 870	7 730	3 870	(4)	2110	4 570	2 110 000	BH 080	25
triminamente (caltuno 0.40 a 0.50%, Ni 1.51 a 2.00% (C.0.50 a 1.25%) indición gra indición con alcarrio muse l'aminario (cobre 0.5%, estaño 5%)	7 730	9 140 1 410 3 160 4 570	7 730 2 460	5270 6330	4 570 i 690	6 (a)0 2 110 3 870	2 110 000 1 050 000 1 410 000	844 (000 472 000 362 000 422 000	20 30
ntin * laminacio (colare 10%, cane 41%) Iranina de aluminio, * laminada, revesida (alu-	2 910	4 220	2 460	(:)	1 690		844 000	352 000	
minio 1876, cobre 476) izgliin ile magnesio, alta resistencia, extrui- da (magnesas 1876, alumnio 676, cing 0.776)	2 460	4 080	2 460	(n) ·	1 330	2 530	705 000	267 000	{is
de (migurae 1915, alumnio 616, cine 0.715) etil monel, laminado en caliente (niquel	2 110	2 950	1 970	(0)	1 150	1 410	457 000	183 000	16
175, color 2876) . Attiro laminar, con bojat, sobre base de	3 160	5 980	2 81D .): (a)	1 760	3 520	1769 000	167 (MB)	•
atirn Jaminar," era toja, soore suse de tejito de vidrio, critzadas y premadas ormigón (1 cemento:2 arena:3.5 grava)	3 160	4 080	::::	246	::::	::::	211 000 176 200	::::::	!
Pino amarillo, muestra seca, limpia	ł	}	Parairia :		1	ì	}]
adera Reble blanco, muratra area, limpia			352	492		91	127 000	····~	
A bedness			302	492	1	127	112 800		}

^{*} Hay morbon materiales en esta classificación con distintas composiciones y hechos bajo diferentes candiciones que tiente ana amplia metación de valorem (vitar, por spenja, "Metah llandocon del hec American Society of Metah").

(a) la reintencia de filencia se considera que en la adulgar estatoria estátora a la compresión de los metales distribu. (12 pandos se considera que en la adulgar estatoria considera del los metales distribu. (12 pandos se considera que en la adulgar estatoria considera del los metales distribu. (12 pandos se considera que en la adulgar estatoria considera del los metales distribu.

.

⁴⁾ Manual del constructor de máquinas del Ingeniero H. Dubbel.

Tabla (7)5

TABLA & COEFICIENTES DE SEGURIDAD (COEFICIENTES DE CALCULO)

Los coeficientes de seguridad señalados con e están destinados principalmente al uso de principlantes, aunque son valores tradicionales. No se deberán utilizar cuando se haga un análisis detallado de las cargas sariables, concentraciones de esfuerros, etc., Capitulo 4. Son aceptables para utilizarlos con resistencias tupicas.

		ERO, DÚCTILES	HIERRO FUNDIDO, METALES QUERRAINZOS	MADERA DE CONS- TRUCCIÓN		
CLASE DE CARGA	Basado en la resistencia máxima	Basado en la resistencia de fluencia	Basade	en la u máxima		
Carga permanente, N = Repetida, una dirección, gradual	3-4	1,5-2	5-6	, 7		
(choque suave) *, N ==	. 6	3	7-8	10 1		
Repetida, invertida, gradual (choque suave) *, N ==	. 8	4	10-12	15		
Choque *, N =	10-15	5-7	15-20	20		

SIMON.S. A.

Table	a C B D ^d				2.1	
2. Propiedades m que se usan p	iccápleus de	los materio	alcs			
Katerint	Marcs	Hesteteric tia 2 la tracción Una Lefranca	Hestatere cia a jo Lordón V, Agf/min?	Alarza- rategia felat va 8, %		
Aceros al carbono	65 70 75 E5	100 165 100 115	86 85 90 100	. 9 8 7 6		
Cuerda de plano Laminado en frio	;; ;; ;; ;;	200 - 300 (03-180 170220 140230	1.0~100	2-3		
Aceros al manganeso	651	70	40	S		
Acern al croino vanedlo	55 FC 56 X DA	65 130	35 110	10	į	-
Accro resistente a la corresión	40X12	110	5)	12		
Acero al zilicio	55/02			6		
	66C2A	130	120	5	•	
	1003A	180	140		1 £	
Areros al cremo-manganeso	5X1° 59X1°A	130	110 120	5 6		
Acero al niquel-silicio	60C2H2A	180	110			
Acero al cromo-gilicio-vanadio Acero al tongsteno-gilicio	FGC9N-DA 65C2BA	190	120	. 5		

[&]amp; INGENIERIA DE DISEÑO. AUTOR: P. ORLOV. EDITORIAL MIR. - MOSCU

ESTA TESIS NO DEBE Salir de la bibliot**eca**

PARTE B

Antes de empezar cualquier analisis de los elementos que componen está parte, es necesario obtener la fuerza máxima necesaria para realizar el curvado del ángulo. Para el calculo de dicha fuerza, nos basaremos en la figura 36, además de los datos síquientes:

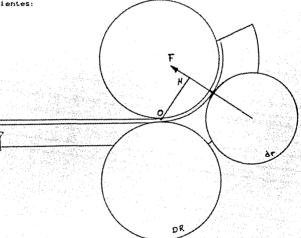


Figura (36)

DR= 12 Cm.

dr = 9 Cm.

EC= Esfuerxo de cedencia del material a curvar, el cual es 5413 Kg/ Cm² para un material de acero 1015.

Z= Modulo de sección = 0.03 in. 0.49 Cm.

OH= Distancia del punto de contacto entre los rodillos mayores (o)
al punto de contacto del material y el rodillo de menor
diametro (H) = 5,22 Cm.

Sabemos que el momento flector (MF) es igual al producto de la distancia (OH) por la fuerza que origina el curvado del ángulo, pero este momento es a la ves igual al esfuerzo de cedencia del materiasl a curvar (EC) por su módulo de sección del ángulo (Z). De acuerdo a todo lo anterior, tenemos lo siguiente:

MF= F x C OH)

MF= (EC) x (2), iqualando ambas ecuaciones, obtenemos:

Fx(OH)=(EC)x(2), despejando F:

F= [(EC) x (Z) 1/ (OH)

Sustituyendo valores, resulta:

F= ((5413) (0.49) 1/ 5.22

F= 500.116 Kg.

PTECNOLOGIA EE LA CALDERIA. TEAZADO,CORTE, CURVADO Y PLECADO.
AUTOR: CH. LOBJOIR, EDITORIAL CEAC.

Tabla (9)

Tabla A. PROPIEDADES DE PERFILES ESTRUCTURALES -- ANGULOS DE LADOS IGUALES

- m. = ps. ar por unidad de longitud de parfiles de aluminia, lh'pie
 m. = peus jor uni fud de longitud de perfiles de acero, lh'r pie
 A = área de vac vión transversal, piga
 1 = momento de inexis, piga

- 4 = radio de giro, plg
 y = distancia centroidal, plg
 Z = middio de sección, plg

Tameño								`1	7
P ¹ E	٠.	٠.	4	1,.,	4,.,	2,.,	,	1,.,	i,.,
1 × 1 × 1	0.28	0.80	023	0.02	0.30	001	0.30	0.005	0 19
1=1=1	0.53	1.49	0 44	0.04	0.29	0.05	0.34	0016	0 19
13 = 13 + 4	0 44	1.23	0.36	007	0.45	0.07	041	100	0.29
13 - 13 - 1	0.53	2 34	0 69	0 14	0 41	013	0.46	0 057	0.29
2 = 2 = 1	0.59	1.65	0 49	0 18	160	013	0.53	0.08	0 40
2 × 2 × 1	1.14	3 19	0 94	0.34	0 60	0.24	0.58	0.14	0.39
2 × 2 = 2	165	4.70	1.37	0 47	0.59	0.35	063	0.20	0 39
23 × 23 × 1	1.45	4.1	1.19	0.69	0.76	0.19	0.71	0 29	0 49
25 = 25 = 2	2.11	59	1.74	098	0.75	0.56	0 76	0.41	0.48
3 × 3 × į	1.73	49	1.43	1.18	091	0.54	0.82	0.49	0.55
3×3×1	2.55	7.2	210	1.70	0 90	0.80	087	0.70	0.58
3 × 3 × }	3.32	94	2 74	2 16	019	104	092	091	0.58
74 × 31 × 1	2 0 5	4.9	1 69	1.93	107	0.76	0.94	0.80	0 69
거 = 거 × 1	301	7.2	2.49	2.79	106	1.11	1.00	1.15	0 68
와·가·!	3.94	11.1	3.25	3.56	1 02	1.45	1.05	1.49	068
4 × 4 × [2.35	66	1.94	294	1.23	100	107	1.21	0.79
4 4 4 4	3 46	9.8	2.86	4.26	1.22	1.45	1.12	1.75	0.78
4 × 4 × j	4.54	12.6	3.75	\$ 46	1.21	193	1.17	2.26	0.78
4 × 4 × ‡	5.58	15.7	4.61	6 56	1.19	2.36	1.22	2.76	0.77
6 = 6 = i	5.27	149	4.35	14.85	1.03	3.38	1.60	6 07	1.16
6 = 6 = }	695	196	5.74	19 38	1.84	4.46	1.66	7.92	1.17
6 × 6 × 1	8.59	24 2	7.10	2364	1.82	5.51	1.71	9.70	1.17
6 × 6 × 1	10 20	287	8.43	27.64	18.1	6 52	1.76	11.43	1.16

4-b-1) Cálculo del perno porta-horquilla.

Ya obtenida la fuerza necesaria para realizar el curvado, proseguiremos con el del perno. De acuerdo a la figura 37. observamos que el perno está sometido tanto a flexión cómo a torsión.

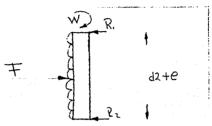


Figura (37)

Para el cálculo del diametro del perno nos auxiliaremos de la ecuación de BACH (formulario de riesistencia y conocimiento de materiales para mecanicos, Luis Pareto, Página 71), la cual es la siguiente:

EP= {(0.35)(M F)+(0.65) | (M F)²+((alfa 0) (MT))²}^{0.5}/2P Donde:

EP= Esfuerzo de cedencia del material del perno, para un acero C1045)= 8740 Kg./ Cm².

MF= ((EP) (ZP))

ZP= Módulo de sección del perno =0.1 Dps

Dp= Diametro del perno = Cm.

N= Factor de seguridad = 3

aifa Q= 1 (para carga constante)

MT= 718 (C potencia en C.V.)/ (R.P.M.)]

C. V. = 2 Hp (1.03 C. V. / Hp.) = 2.06 C. V.

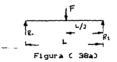
R. P. M. = 54

Sustituyendo valores, obtenemos:

M T= 27.31 Kg-Mt.

Ahora sustituyendo todo lo anterior en la ecuación del esfuerzo de cedencia del perno y realizando los despejes correspondientes, tenemos:

 $\mathrm{Dp}^{\mathrm{d}}((6749)^2(-0.0093)1$ + 315.115=0 , por lo tanto, tenemos que el diametro es igual a:


Do = (-315.115)/(-62.7657) = 5.06 Cm d.

Por lo tanto:

DP= 1.308 Cm. , por comodidad del cálculo, tomaremos a DP= 1.4 Cm.

4-b-2) Cálculo del espesor del brazo de la horquilla. Para esto nos basaremos en las siguientes consideraciones:

a) Consideramos la viga con carga aplicada en el centro y apoyada libremente, donde Mmax. © C F x L)/4

b) No consideramos la carga como uniformemente repartida, por lo siquiente:

Maax. = (F x L2)/8

Igualando ambos momentos, tenemos: $(F \times 1.2)/4 = (F \times 1.2)/9$, donde observamos que el primer momento es el doble que el segundo, por

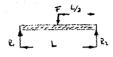


Figura (38b)

lo que es el caso más previsor. Por lo tanto las fuerzas que actuan están representadas en las figuras 38c y 38d.

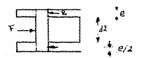


Figura (38c)

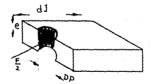


Figura (38d)

Tenemos que el momento flexionante máximo , de acuerdo a las fíguras anteriores, está dado por:

Mmax. • [CF) (d2 + e) 1/4, pero el momento interno del material está dado por:

Mie I CED CZD 1/N. donde:

E= F/A, cómo son dos brazos, entonces son dos áreas, por lo tanto

E= (F)/((2)(DP) (e)]

Z= [(DP) (d1) 1/8

Igualando momentos y sustituyendo variables en ellos, tenemos:

((F) (d2 + e) 1/4 = ((E) (Z) /N 1

[(F) (d2+ e) 1/4= [(F) (DP) (d1)2 1/ [2(DP) (e) (N) (6) 1

despejando la variable "e",que en este caso es la que nos Interesa, obtenemos el siguiente resultado:

 $e^{2} + e (d2) = 1 (4) (d1)^{2} / (12 N) 1$

Sustituyendovalores y resoviendo la ecuación mediante la fórmula siduiente:

e= [-B - [(B)2- 4 (A) (C) 10.5 1/[2 (A)]

A= 1

R= 5.2

c= -2.56, sustituyendo obtenemos:

e= 0.452 Cm., tomamos cómo medida a e= 0.5 Cm.

4-b-3) Cálculo de las lóngitudes (A y B), las cuales se muestran en la figura 30. Para obtener dichas médidas nos basaremos en el porta-horquilla, ya que este ajustará en dicha hoquedad figura 40.

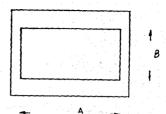


Figura (39

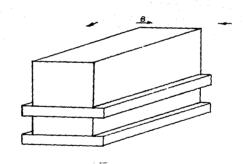


Figura (40)

Además teniendo en cuenta, que para nuestro caso Am2B (por condición de forma). La fuerza en el porta-horquilla es

uniformemente repartida, tal cómo se muestra en la figura 41.

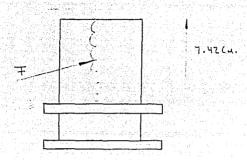


Figura (41)

De acuerdo a la figura 41, observamos que se trata de una viga en cantiliver con carga uniformemente repartida, para este tipo de viga tenemos la siguiente fórmula:

Mmix. = [(F) (L)²1/2, es el momento máximo en el extremo empotrado. Pero este momento a su ves esta en relación con su esfuerzo de cedencia del material, por lo que, tenemos:

((F) (L)2/2 1 = ((Eph) (Zph) 1

Zph= ((B) (A)³)/6= módulo de sección del porta-horquilla (Cm³). Pero cómo A⊕2B. tenemos:

Zph = [(4) (B) 8 1/6. Sustituyendo el valor obtenido de Zph, la ecuación obtenida por la igualación de los momentos, queda de la siguiente forma:

[(F) (L)2]/2# [(Eph)(4)(B)31/6

Despejando el valor que nos interesa, en este caso "B", tenemos:

B⁹el (8) (F) (L) Î/I (4) (2) (Eph) 1, sustituyendo valores:

Eph= 3374 Kg/ (3) Cm^2 = 1124.6668 Kg./ Cm^2 , para la fundición dris.

B = ((6) (508.116) (7.42)²/(4)(2)(1124.6666))^{0.9898}
B= 2.659 Cm. Tomamos el valor cerrado de Be_3Cm., con el objeto de no trabajar con tanto decimal. Por lo tanto:

B= 3 Cm.

Ya teniendo estas medidas, podemos abocarnos al cáculo del espesor de las paredes de la caja de la horquilla, figura 42.

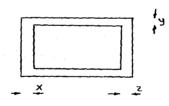


Figura (42)

Para esto consideraremos que la parte rayada, de la figura 43, no existe, es con el objeto de tener mayor facilidad para realizar los cálculos.

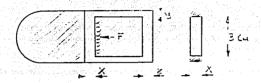


Figura (43)

De acuerdo a la figura 43, podemos observar que la fuerza está uniformemente repartida. Para el cálculo del espesor, utilizaremos la siguiente fórmula:

Mmáx. = [(F) (L) 21/12= [(Eh) (L) (X) 2/(N) (6)]

F= 508.116 Kg.
L= 3 Cm.
Eh= 5976 Kg. / Cm.²
N= 3 (factor de seguridad)
Despejando "X", tenemos:

X=((18) (F) (L)²/(12) (Eh) (3))^{0.5}
Sustituyendo, tenemos:

 $X = ((18) (508.116) (3)^{2} / (12) (5976) (3))^{0.5}$

X=0.61 Cm.

Donde la l'ongitud "Z", en este caso es de la misma medida que "X", entonces:

Z=0.61 Cm.

4-b-4) Cálculo del espesor de las paredes laterales de la caja.

Para esto nos basaremos en la figura 44, en la cual observamos que la fuerza se reparte en cuatro puntos, dichas áreas de contacto están en compresión, por lo que:



Figura (44)

EOF/ C 4 x A)

F= 508.116 KG.

A= (e) (y)= Cm², es el área donde se aplica la fuerza.

Eh= 5976 Kg/ Cm2.

E= Eh/N, donde ; N= 3 (factor de seguridad).

Sustituyendo variables y despejando a "y", tenemos:

ye ((F)/(4)(Eh)(e) 1, sustituvendo valores:

y= [(508.116)/(4) (1992) (0.5)]

y= 0.12 Cm. Cómo se ve el resultado obtenido es muy pequeño, por

lo que considerando la estética del diseño, tomaremos el valor de "y" igual al valor de "X", el cual es:

Y= 0.61 Cm.

4-b-5) Cálculo de los tornillos de apriete, entre la horquilla y el porta-horquilla.

Para efectos del cálculo del ciametro del tornillo, nos basaremos en la figura 45 y en la fórmula del área de esfuerzo, ya que éstas están tabuladas, cuya forma es la siguiente:

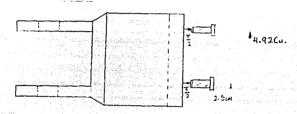


Figura (45)

(A) 1.5 (F) (N) (6) 1/ S

A= area de esfuerzo (CM²).

F= Fuerza aplicada en los tornillos= 508.116 Kg./ Cm. ²C son dos tornillos) = 254.058 Kg.

N= factor de seguridad= 3

6= constante de la fórmula.

S= Esfuerzo de fluencia del material (1015 estirado en frio).

S= 4429 Kg./Cm2.

Sustituyendo todo en la formula del área de esfuerzo, tenemos:

 $(\Delta)^{4.5} = (254.058)(3)(6) \ 1/(4429) = 1.032 \ Cm^{9}$, entonces:

As1.049 Cm. 2

Con el área de esfuerzo encontrada, nos dirigimos a las tablas de área, y obtenemos lo siquiente:

A (tabulada) = 1.31 Cm².

Diametro menor = 1.2555 Cm. Rosca fina.

Diametro nominal = (9/16) in.

Hilos por pulgada = 18

4-b-6) Para el cálculo del buje de casquillo con bridas, nos basaremos en la relación (lóngitud / díametro): ya que teniendo en cuenta que si en dicha relación se obtiene un resultado grande, se reduce el coeficiente de fricción y el escurrimiento lateral del aceite y, en consecuencia, son deseables cuando existe lubricación de pélicula delgada ó al límite.

Con los cojinetes cortos se obtiene mayor flujo de aceite hacía los extremos y se logra un mejor enfriamiento del cojinete.

Además se debe de tener en cuenta en la selección del co|inete lo siquiente:

- a) Que sea resistente al calor (muy importante).
- b) Que el cojinete forme hoquedades al estarse desgastando, en el momento de su funcionamiento, con el fin de que ahí se retenga el lubricante.
- c) Que sea resitente a la compresión (siempre el cojinete la soporta, por lo regular).

De acuerdo a todo lo anterior, escogimos el metal llamado BABBITT con base de estaño y número SAE 12.

Por condiciones de diseño tomaremos las siguientes medidas:

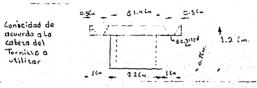


Figura (46)

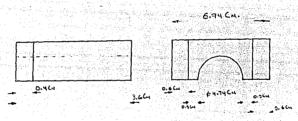


Figura (47)

El cojinete mostrado en la figura 46, se utilizara para el eje del rodillo de menor diametro, y el de la figura 47, se utilizara para el eje de los rodillos de mayor diametro.

4-b-7) Cálculo del diametro del tornillo sinfin.

Esté tornillo es el que nos permitira darle penetración a

todo el cuerpo de la maquina donde va montado el rodillo de menor diametro.

Cómo habíamos visto ya en el inciso (4-b-5), se trato sobre el diametro de dos tornillos, en los cuales se repartía la fuerza (F). En esté caso tenemos que a dicha fuerza sólo la soportará el tornillo sinfin, tal cómo se muestra en la figura 48. Por lo tanto la fórmula quedará:

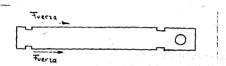


Figura C 48 3

 $(A)^{4.5} = [(CF)(N)(6)/S]$ $(A)^{4.5} = [(CF)(B)(1)(3)(6)/(4429)] = 2.065 \text{ Cm}^3., \text{ por 10 tante};$

A= 2.96 Cm2.

Con está área de esfuerzo encontrada, nos dirigimos a las tablas de áreas, y obtenemos lo siguiente:

A (tabulada) = 3.284 Cm².

Diametro menor= 1.8899 Cm. Rosca fina
Diametro nominal = (7/8) in.

Hilos por pulgada= 14

4-b-8) Cálculo del anillo de retén.

Esté anillo estará montado sobre el tornillo sinfin, dicho

elemento nos servirá para que el sinfin, no tenga movimiento axial. Para realizar el cálculo nos basaremos en lo siguiente:

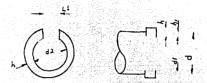


Figura (49)

d= Diametro del sinfin= 2.225 Cm.

d2= (0.9) (d)= (0.9) (2.2225 Cm.)= 2.00025 Cm. Esté es el diametro interior del retén.

di= Diametro interior de la ranura, está comprendido entre (0.91-0.950)(d). Donde el limite inferior corresponde a diametros pequeños y el superior para diametros grandes.

d1=(0.91)(2.2225 Cm)= 2.022475 Cm.

h= (0.08 a 0.15) (d), donde el limite inferior corresponde a diametros de ejes pequeños, por lo tanto:

h= (0.08)(2.2225 Cm.)= 0.1778 Cm.

h1= (0.25)(h)= (0.25)(0.1778 CMD= 0.04445 Cm.

L1= (5 a 10 mm.),para ejes de pequeño diametro.Para nuestro caso tomaremos;

11= 10 mm.

El material utilizado para la fabricación del retén, es un acero al manganeso para muelle del tipo 65G.

4-b-9) Cálculo de las dimensiones de la cuba.

Está cuña nos servirá para que el perno arrastre al rodillo.

Para esto tomaremos en cuenta que el ancho de la cuña es
generalmente una cuarta parte del diametro del eje C sólo cuñas
cuadradas o planas) donde va ha estar alojada.

El diseño de la cuña cuadrada o plana puede basarse en el esfuerzo cortante o de compresión C del material de la cuña) cómo resultado del momento torsionante, siendo la fórmula siguiente, la utilizada para estos casos.

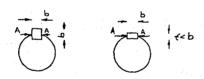


Figura (50)

Ss = CD/(Cb)(L)(r) 1. donde:

T= momento torsionante, para esté caso se toma el cálculado para obtener el diametro de perno, donde va ir montada la cuña.

T= 27.31 Kg.-Mt.

b= Ancho de la cuña (Cm.).

L= Longitud de la cuña (Cm., Mt.)

r= radio del eje= 1.4/2= 0.7 Cm. = 0.007Mt.

Ss= Esfuerzo cortante del material, debe de ser menor que el del perno y del rodillo.Con el fin de que dicha cuña en un momento de máximo esfuerzo, está se fracture, y no el perno ni el rodillo.

 $S_{R} = (4218 \text{ Kg/Cm}^2)/N = 4218/3 = 1406 \text{ Kg./Cm}^2$

En la sección A-A es donde se origina el esfuerzo cortante máximo. Dicho lo anterior, procederemos al cálculo de la lóngitud de la cuña. De la ecuación del esfuerzo cortante, despejaremos la variable que nos interesa, en este caso es "L".

L=((T)/(b)(r)(Ss)]

Sustituyendo valores, tenemos:

L=((27, 31)/(1, 4/4) (0,7) (1406)]

L=0.079 Mt.

Como se puede observar el resultado es mayor que el ancho del rodillo, por lo cual nos vemos en la necesidad de no tomar dicho valor, por lo tanto tomaremos la lóngitud C ancho del rodillo) para obtener el ancho de la cuña. Entonces:

b=(CT)/(r)(Ss)(L)], donde L= 4.8 CM.

b= { (27,31)/(0.7) (1408) (1,4/4) }

b= 0.0057 Mt.=0.578 CmL, que es casi igual a 6 mm.

4-6-10) Cálculo del espesor del patin del porta-horquilla.

Para el cálculo de está parte de dicho elemento, nos basaremos en la figura 51.

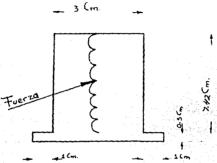


Figura (51)

Observamos que el ancho de el ala, se da de acuerdo al espesor de la pared de la horquilla. Además basandonos en experiencias anteriores, consideramos que: teniendo un espesor de ala igual a 1 Cm., estaremos por debajo del esfuerzo necesario para fracturar el metal, es decir:

Mel(Eph)(Ixg)/(N)(Y)), donde:

M= momento flexionante (Kg-Cm.). Dicho momento, también está en función del esfuerzo de cedencia del material, entonces: $M = (0.5) (\%) (L)^2 = (\%) (a)^2 / 2) 1 1, donde:$

W= Fuerza ejercida en el elemento (Kg).

L= Lóngitud de la parte que soporta la fuerza= 9 Cm.

a= De acuerdo a la figura 51 = 0.5 Cm.

Por lo tanto el momento flexionante es igual a:

M=0.5 (508.116)(7.42)2- ((508.116) (0.5)2/ 2]

Me 13924.0043 Kg. -Cm.

Despejando el esfuerzo (Eph), de la ecuación del momento, tenemos:

Eph=(M) (N) (Y) /(Ixg), donde:

N= Es el factor de seguridad que se a utilizado= 3
Y= Es el centroide de la figura= (Y) CdA>A

Ix= Es el momento polar de inercia de la figura= (B) (h)3/3

Sustituyendo valores, tenemos:

Y= ((3) (7.42)+(2)(1)(0.5)]/[(3) (7.42)+(2)(1)(0.5)] Y= 3.5812 Cm.

A=(3)(7.42) + (2)(1)(0.5)
A= 23.26 Cm.

Ix= (C3)C7.425 + C2)C1)C0.55 1/3

Ixg= Es el momento polar de inercia ,con respecto al eje centroidal. $I \times g = I \times -(A)(Y)^2 = 408.601 -(23.26)(3.5612)^2$ $I \times g = 113.5488 \text{ Cm}^4.$

Por lo tanto sustituyendo todo lo anterior en la ecuación del esfuerzo, tenemos:

Eph=((13924.0043)(3)(3.5816)/(113.5488)]

Eph# 1310.2313 Kg/Cm/2.

Hay que tener en cuenta que este esfuerzo obtenido, está afectado por el factor de seguridad, si no tuviera dicho factor, el esfuerzo sería en este caso tres veces mayor. Ya comprobado que con esta medida estamos más que asegurados, podemos decir: que la medida original C del espesor) es mucho más pequeña. Con esto podemos aventurarnos a decir que el espesor del ala no es tan significativo, en cuánto a las condiciones de esfuerzo a las que está sometido, pero debido a las condiciones de forma y diseño si es muy necesario. Este espesor de ala sólo lo tomaremos para cuestiones estéticas y no de cálculos posteriores.

Ya cálculado el diametro del tornillo sinfin, y observando, que para obtener el espesor que está marcado en la figura 52, se tomaria mucho más tiempo. Por lo anteriormente expuesto en el inciso (4-b-10), consideraremos a la figura 52 cómo una viga de forma rectángular y con una parte barrenada, tal cómo se muestra en la figura 53.

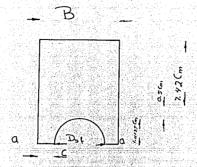


Figura (52)

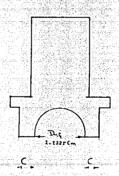


Figura (53)

De acuerdo a la figura 52, tenemos que es una viga en cantiliver, con carga uniformemente repartida en un tramo de la sección y ademas con una parte hueca. Para el cálculo del espesor CBD y la altura (A), se tomará la misma consideración que en el inciso (4-b-3), es decir:

A# 28

El momento flexionante, está dado por la formula siguiente;

M=1(0.5)(F)(L)2-((F)(a)2/2)1. donde:

F= Fuerza ejercida= 508.116 Kg.

L= Longitud donde esta aplicada la fuerza= 7.42 Cm.

a= Sección localizada desde el punto de apoyo al punto inmediato al que se aplica la fuerza= i.6i125 Cm.

Sustituvendo los valores en la fórmula:

 $M=((0.5)(509.116)(7.42)^2-((508.116)(1.61125)^2/2]$]]

M= 13327.9521 Kq-Cm.

Pero a su ves el momento está relacionado con su esfuerzo, en este caso es el de corte. Ya que en la figura la sección a-a, está propensa al corte. Por lo tanto:

He(Es)(2)/3, donde:

Es= Esfuerzo de corte del material empleado= 2531 Kg/ Cm²
Z= Módulo de sección= [(B)(A)²/5]-[(0.1931)(P)³)
Pero cómo A*2B, entonces:

 $Z=\{(\Delta)(B)^3/6\}-\{(0.1931)(R)^3\}=0.8666 B^3-0.2649$ Substituyendo.

13327.9521 = (C2531)CO.8888 B^3 -0.2849) \times 3 1 Despejando a B, tenemos:

B*= ((13327,9521)(3)+(0,2649)) / (2531)(0,6666)= 23,669 Cm.

Bs 2.87 Cm.

Por lo tanto:

A=(2)(2.87 Cm.)=5.74 Cm.

Ahora para la obtención del espesor marcado con la letra "C", nos basaremos en lo siguiente:

B* 2C*Dsf, donde:

Dsf= Diametro del tornillo sinfin= 2,2225 Cm Despejando la variable de interés.

C=(8-Dsf)/2, sustituyendo valores, C=(2.87-2.2225)/2

C=0.3237 Cm., como habiamos comentado con anterioridad, para un cálculo posterior y fabricación más rapida se toman medidas o cantidades cerradas al limite superior, en este caso a:

C=0. 4 Cm.

4-b-11) Forma de las quias.

Para el diseño de las guias, no es necesario realizar cálculo alguno, ya que como se ha visto anteriormente todas las dimensiones obtenidas para el porta-horquilla, están sobre diseñadas. Por lo tanto, las guias seran del mismo material que el porta-horquilla, y tendrán las siguientes dimensiones y forma.

Figura (54)

4-b-12) Cálculo del espesor de las placas laterales de las guias.

Estas placas estarán sometidas a compresión y a flexión, tal como se muestra en la figura 55. Cómo se observa en dicha figura, la fuerza se está ejerciendo en una placa que está barrenada en el centro, por lo que la fuerza estará ejercida por el anillo de retén que estará acoplado en el tornillo sinfin. Trataremos a la placa cómo una viga empotrada en ambos extremos y carga central.

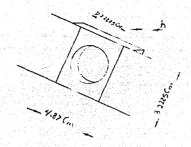


Figura (55)

Donde el momento flexionante está dado por la formula, siguiente:

M= 1(F)(L)/8 1=1(Et)(Z)/3)1, donde:

F= Fuerza aplicada = 508.116 KG.

L= Longitud que existe entre los extremos de la viga (empotrados).=4.87 Cm.

Et= Esfuerzo de cedencia del material de la placa Cacero 1020 laminado simple J= 4580 Kg/Cm².

Z= Modulo de sección=[(L)(h)2/8]- [(0.1)(D)3]

Sustituyendo, en la formula de momento y despejando "h", ya que es la que nos interesa.

h²= [C6/L)C3)CF>CL)1/(C8)CEt)+C6/L)CO.1)CD)⁹]
Sustituyendo valores,

 $h^2 = ((6/4.87)(3)(508.118)(4.87)]/((6)(4569)+(6/4.87)(0.1)(2.2225)^3)$ $h^2 = (1.6 \text{ Cm}^2)$, pero cómo son dos placas, se divide entre dos. Entonces:

h=1.26 Cm, por 10 tanto hr= 1.26/2= 0.63 Cm.

4-b-13) Calculo de los tornillos sujetadores de las placas.

Para este cálculo, nos basaremos en la figura 56.

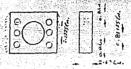


Figura (56)

Sabemos que el cálculo está dado por:

(A)^{1.5}= (F)(NO(6)/(S),pero cómo son doce tornillos, por ser dos placas, entónces la fuerza se divide entre doce, por lo tanto la fórmula queda cómo sigue:

(A)1.5 (F)(N)(6)/(S)(12)

Sustituyendo valores, tenemos: S=4429 Kg/Cm.², acero 1045, estirado en frio. (A)^{4.5}= (508.116)(3)(6)/(4429)(12)= 0.172 Cm³.

A=0.07138 Cm², con esta área, nos dirigimen a las imblas de área de esfuenzo y obtenemos lo siguiente:

A (tabulada) = 0.0654 y 0.095, se toma la mayor, entonces:
Diametro menor= 0.3299 Cm.
Diametro nominal= 0.4166 Cm.
Hilos por pulgada= 36 (rosca fina).

Tabla (10)

FORMULARIO DE RESISTENCIA Y CONOCIMIENTO DE MATERIALES PARA MECANICOS, AUTORILUIS PARETO, EDITORIAL: CEAC (BARCELONA).

		aci				

		Cont	nuacion Ta	bla (10	,	i de Literatura		
1	1,441	· I president	blimojana de Peturo	favorien de la rectinacion de las tavarentes	E averang de la linea glottesa	Fireka	(Pheris sames	
	#		w 24 - 15 w 44 - 15	$\left\{ \begin{array}{ll} u_{\alpha}^{a} \cdot \int_{0}^{b} \left\{ v_{\alpha} \cdot - w_{\alpha}^{b} \cdot v_{\alpha} \cdot v_{\alpha}^{b} \right\} \end{array} \right.$	" [" [" " . " "]"] " " ["]"]	Inco to a PAS	ldræ	
,	芦	s - 200 L	u <u>ru</u> . u u, . r <u>u</u> i	$\begin{array}{c} U_{B}^{B} = \frac{p_{1}}{2} \frac{1}{2} - \\ P_{B}^{B} = \frac{p_{2}}{2} \frac{1}{2} \frac{1}{2} - \\ U_{B}^{B} = \frac{p_{1}}{2} \left(U_{B} - \frac{p_{2}^{2}}{2} \right) \\ = \frac{p_{2}}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{p_{2}}{2} \frac{1}{2} \end{array}$		f = P fiff LE SL /	Services publicate en D	
	苎	۸-۸-۶	w, - ≨, w **	$H_{4k}^{4i} = \frac{t}{4} \cdot x - \frac{p_k}{4k}$	·- 4(6-5·)	'- '4 · '0'	Live.	
	Ť	44		(48) EL (41) - 1911 - 19(1 - 1/2) 11 - 12 - 1/2 - 1/2 11 - 12 - 1/2 - 1/2	- [n - m n - m n - m n - m	reserve pregress thire 4 y ft	
	Fyut	Brainings	Memoryton de l'Estate	Falactina de la melaractina de las tangenties	true, was de la traca electua	Fireha	(Hopera)	
2	F	8 + 1 ¹ 8 + 1 ¹	$\begin{aligned} &M_1 = -P \frac{1}{2} + \\ &M_{\infty} = P \left[-\frac{1-p}{2} + 1 - 2 \right] \\ &M_{\infty} = M_0 = P \tau_1 \end{aligned}$	ope H ^{dy} + Po y Past W Y	1. [-] (-	$C_1 = f_2 + \frac{p_2(t_1)}{2}$ $C_2 = 0.004 \frac{p_1(t_1)}{4}$ $C_3 = 0.004 \frac{p_2(t_1)}{4}$ $C_4 = 0.5771$ $C_4 = 0.5711$ $C_4 = 0.5711$ $C_5 = 0.004$ $C_5 = 0.$	facti en #	•
1	إستنتق	£ . x	$M_{11} = \frac{eL}{2} = -\frac{eV}{2}$ $M_{22} = M_{2} = \frac{eL}{4} + \frac{eL^{2}}{2}$	1	# - 변수 - 17 - 발수	Im + Iq + SPET	lára ra D	
	;	** *** \$ - \$	$\begin{aligned} & \mathbf{M}_{1} = \frac{\sigma}{2L} \mathbf{s}; \\ & \mathbf{M}_{11} = \frac{1}{2L} \mathbf{s} + \mathbf{P} \mathbf{s}_{1} - \frac{\mathbf{P}L}{2} \\ & \mathbf{M}_{2} = \frac{1}{2L} \mathbf{s} + \mathbf{P} \mathbf{s}_{2} - \frac{\mathbf{P}L}{2} \\ & \mathbf{M}_{2} = -\frac{1}{2L} \mathbf{s}^{2} + \frac{1}{2} \mathbf{s}^{2} + \frac{\mathbf{P}L}{2} \\ & \mathbf{M}_{max} + \mathbf{M}_{2} - \frac{\mathbf{P}L}{2} \left(\frac{1}{2} + f_{1} \right) \end{aligned}$	$\begin{split} H^{0}_{f_{1}} &= -\frac{F}{G} \left(t + \frac{F}{2} t^{2} \right) \\ &= \frac{F_{1}}{2} \left(t + \frac{F}{2} \right) \end{split}$	$\begin{aligned} U_{0} &= P\left(\frac{a^{2}}{5a} + \frac{a^{2}}{12} - \frac{a^{2}}{12} - \frac{a^{2}}{5a} + \frac{a^{2}}{12} - \frac{a^{2}}{5a}\right) + \frac{a^{2}}{5a} + \frac{a^{2}}{5a} - a$	16 = \$\frac{\partial}{2} \left\{ \times \frac{1}{2} \right\} \} \end{aligned}	prigrome en 4.2	}
		***** ; ; ;	W P. 1 1 2 3 4 4 2 3 3 4 4 4 4 4 4 4 4	6일 : 세종일 - - 원 : 발 : 발]	*### *##	' 'i Sher	fárm rá C	

Continuación Tabla (10)

		Cont	inuacion i		·		
1	figure	Restaure)	Managatan de Berata	Erunción de la melocación de las los praiss	Economia de la Masso ciantes	Pecas	Olestrop. Databas
		8 8 ² / ₃ - ²⁴ / ₄	$M_{v} = \frac{P}{2} s - \frac{2}{1} \frac{p_{0}^{2}}{L^{2}}$ $M_{von} = M_{v} - M_{\frac{1}{2}} = \frac{PL}{8}$	$\frac{\Omega \frac{\delta p}{\delta t} = \frac{p p^2}{\delta t} + \frac{p}{\delta t} p^2 + \frac{1}{\delta t} p^2}{-\frac{1}{\delta t} p^2}$		//4-/ (11)	idra ta O
		$\begin{array}{c} R_{0} = \frac{P}{3} \\ R_{0} = \frac{2}{3}P \end{array}$	$M^{-} = M^{-} = 0.133347$ $M^{-} = \frac{1}{2} \left[1 - \frac{T_{-}}{T_{-}} \right]_{2}$	$U \frac{ds}{ds} = \frac{p_{2}t}{4} - \frac{p_{2}t}{12L^{2}} - \frac{2}{120}p_{2}t^{2}$		f = 051304 PL ³ Ef para x = 0,3191L	14m 9 U 15m 1 - 0,57742
•	[]	$R_{a} = \frac{rq}{L^{2}} \mu_{1} + 34.1$ $R_{a} = \frac{rq}{L^{2}} \mu_{1} + 34.1$				$f_{0} + \frac{p(f_{1})}{16H_{1}}$ $f_{\frac{1}{2}} - \frac{p(f_{1})}{44H_{2}}(f_{1} - M_{1})$ $f_{} - f_{1} + \frac{2p(f_{1})}{16H_{2} + M_{1}p}$	
	1111	84 + 84 + \$	$M_{+} = -\frac{p_{\perp}}{2} - M_{+}$ $M_{+} = \frac{M_{\perp}}{2} - \frac{p_{\perp}}{2}$ $M_{+} = \frac{p_{\perp}}{2} + \frac{p_{\perp}}{2}$	$D \frac{dy}{dx} = \frac{p_1}{4} \frac{2x - L}{2}$	$y = \frac{p}{2} \left(\frac{1}{4} - \frac{1}{4} \right) \frac{q}{4}$ $\left[\ln \ln \log \log \log \frac{1}{4} - \frac{1}{4} \right]$ $y = \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} \right) \frac{q}{4}$	$t = -t_{i_j} - \frac{p_{i_j}}{10011}$	16cm cs 4, # + H
		as{- ¹ / ₂ - ¹ / ₂ -	$ \begin{aligned} & M_{s} = \frac{p_{s}^{2}}{24} L_{0} - 2^{2} - \frac{L^{2}}{6} \\ & M_{0} = \frac{p_{s}^{2}}{12} \\ & M_{0} + -\frac{p_{s}^{2}}{12} - M_{min} \\ & M_{0} = \frac{p_{s}^{2}}{34} \end{aligned} $	$U \frac{dy}{dz} + \frac{p(1)}{4}z^{1} - \frac{pz^{2}}{6} - \frac{pz^{1}z}{12}$	- 1722 (1.1 - 1.1 1.2)	/4 - 1000	Sezzones prigrous 19 A y B
) yes	Resul many	Measurem de Ressay	Ezmernio de la sucinsacata de las lángesias	Ecuacion de la bana ellonca	Fincte	Othervs- comes
	134	$E_{x} = \frac{3}{10}P$ $E_{y} = \frac{2}{10}P$	$M_1 = P \left[\frac{L}{15} + \frac{1}{16} + \frac{L^2}{16^2} \right]$ $M_2 = -\frac{PL}{15}$ $M_4 = \frac{PL}{16} + M_{00}$	$U = \frac{dt}{dt} - P_1 \left[\frac{3t}{20} - \frac{1}{13} - \frac{x^2}{12L^2} \right]$		$f_{mi} = 0.02415 \frac{r_{ij}^{L}}{EI}$ $f_{j} = \frac{PL^{2}}{184EI}$ $f_{j} = 0.02415 \frac{r_{ij}^{L}}{184EI}$	lorm para , = 0.461
.00	1:3	$\begin{aligned} E_{A} &= \frac{11}{16} F \\ E_{A} &= \frac{3}{16} F \end{aligned}$	$\begin{aligned} M_{0} &= \frac{11}{16}P_{0} - \frac{3PL}{16} \\ M_{0} &= -\frac{3PL}{16} \\ M_{0} - \frac{3PL}{12} - M_{min} \\ M_{m} - \frac{3}{16}PL - c_{11} \end{aligned}$	$\begin{split} H\frac{dp_1}{da_1} &= \frac{M^2}{16} \left(L z_1 - \frac{1}{2} \right) - \frac{P_L^{(1)}}{6} \\ &= -\frac{1}{2} \left(1 - \frac{11}{2} z_1 \right) \\ H\frac{dp_1}{da_1} &= \frac{P_L}{16} \left(1 z_1 - \frac{11}{2} z_1 \right) \\ \left(Lebectons part z_1 - \frac{12}{11} \right) \end{split}$	$1 = \frac{r_{11}}{1224} \left(n_{1} - \frac{11}{3} + \frac{1}{3} + $	for * \frac{p_L^*}{44, \frac{1}{2}} pora 1 = 0.444 L	lden m 4
22		e }r e }r	Marijar jakarif Marijar Ma	$-n\left[\frac{t^2}{4}-\frac{3}{16}t+\frac{t^2}{4}\right]$	s = हर्। असे (2e' = 51a + • धुन्	$f_{\frac{1}{2}} = f_{0} = \frac{PL^{2}}{167L!}$ $f_{min} = 0.0056 \frac{PL^{2}}{L!}$ para $s = 0.5764L$	13em es 4
::	当	8 { 8 }e	Ma = Max = = 2 PL	·[[:-振-발]	$1 = \frac{P_1}{10U} \left[-\frac{2^4}{2U^4} + \frac{U^4}{2} \right]$	les = 0 er, r \(\rightarrow 200 \text{ \ \text{ \	
,,	मुन्	r	Marin P. P. Marin P.			$f_{ab} = 0 \operatorname{total} \frac{p \cdot P}{U}$ $f_{A} = \frac{p}{A} \frac{f + f_{A}}{U} P$ $f_{A} = \frac{p}{A} \frac{f_{A} f_{A}}{U}$	local cn 0 f _{min} pure = 0.5774

Continuación Tabla (10)

-	f-(#1	Beartwart	Magazaras de Festido	Favorate de la esclusiva de las longelists	Es yearing de la linea MANICA	Petta	Crean Crean
		s <u>f</u> ai - s s <u>f</u>	$\begin{aligned} M_{s} &= \frac{p^{s}}{2L}(2L - s) - \frac{ps^{s}}{2} \\ M_{t} &= R \mu L - h \\ M_{t} &= \frac{R}{2p}(\mu u v_{t}) - \frac{R_{s}}{p} \end{aligned}$				
	蓝	44{-5	$\begin{aligned} & M_{t_1} = R_{t_1}t, \\ & M_{t_1} = R_{t_2}t, \\ & M_{t_2} = R_{t_3}t - \frac{p}{2}(1 - k_1)^2, \\ & M_{t_{22}} = \frac{p}{4}\left(L - \frac{j}{2}\right) = M_{d}. \end{aligned}$			- ۳۵۰۰۱) ۱ آون (۳۵۰	
2.7	声	$R_{+} + \frac{p'}{44} d + 2d_{2}$ $R_{+} - \frac{p'}{24} d + 2d_{2}$	45-85-55-15 45-85 4				
		# - 12/4 + 91 # - 2/4 + 2/1				State on 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	二	*, * * * * * * * * * * * * * * * * * *					
	Figure	Presson	Magazonas de l'estito	francisia de la inclascion de las longentes	Fryscoss de la livea elavissa	Pletas	Opures cross
,,		* * {	$M_{s} = \frac{p}{2} z - \frac{b}{2}(1z^{4} - 3izz + l^{2})$ $M_{s} = \frac{p}{24} \frac{M + 12izz + kl^{2}}{4 + lz}$ $para z = \frac{k}{2}$				
		88특분	#_ := !e			/ \$0' - 4 FE.	
	遭					7 H#10	
8		, ~(L-1)-0-; , ~(L-1)-0-;	# - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	11			
		gang disaming disa					

		Cont	inuación Tz	bla (10) 		
	Tyas	Rustiment	bionepor de Bessia	de los tampentes	clarities	Finds	Compact
	<u>(;;;;;)</u>	1,-1 <u>6</u> 4	W. = 27 (L - 11				
13	掛	8 8p - Ma - Ma B 8p - Ma - Ma	*** - [(字 - -] - (- () - () - ((- () () - () - () - () - () - () - () - () - ()				
		$p_{\mu} = \frac{11}{10}p$ $p_{\mu} = \frac{3}{10}p$	M2 MPL M2 MPL M2 MPL			f = Pt Fall	Series Series
u	1-1	$\begin{split} R_{s} &= \frac{p^{2}}{20L^{2}}(11L + 2a) \\ R_{s} &= \frac{p^{2}}{20L^{2}}(10L^{2} - 3La^{2}) \\ 100 &= \frac{p^{2}}{L} \sqrt{\frac{1}{10L}} + \frac{1}{2a} \\ 1 &= a + \frac{p^{2}}{L} \sqrt{\frac{1}{10L}} + \frac{1}{10L} \end{split}$	$M_{\phi} = H_{\phi} x_{1} + M_{\phi}$ $M_{0} = \frac{(P_{\phi}^{2})}{3M_{0}^{2}} + 3L\sigma - L_{1}$ $M_{1} = H_{1} + M_{\phi}^{2} = \frac{M_{0}^{2}}{4}(1 - \sigma^{2})$ $M_{\phi} = -\frac{M_{0}^{2}}{4M_{0}^{2}} + 3M_{0}$ $M_{\phi} = -\frac{M_{0}^{2}}{4M_{0}^{2}} + 10L\sigma$				
1	Topus	Paperson	Menurpum de Tracer	Ecuacion de la racigacion de los tangentes	Economy de la bacs albeten	Pinchia	Charte
,,	₩.	8, - 8, - ^M ori ^M o 8, - 8, - ^{Mar-M} o	M M.				
	铋	R2 - 84 - 5	$M_1 = P_1^2 + \frac{3}{48}L + \frac{3}{2} = -\frac{347}{347}$ $M_2 = M_3 = -\frac{3}{44}PL$ $M_{min} = -\frac{9}{44}PMA + -\frac{1}{2}$	$H_{\frac{2n}{2n}}^{\frac{4n}{2n}} = \frac{5}{4}PL + \frac{p_1}{4L^2} = \frac{p_2}{4L^2}$	$H = -\frac{3}{48}PL\frac{1}{2} + \frac{p_1^4}{12} - \frac{p_1^4}{902}$	$I = -\frac{1}{12}\frac{H^2}{H} - I_{\parallel}$	
37		R ₀ = - FR 2E ¹ (1E = 1,1 R ₀ = P = R ₀	$\begin{aligned} &M_{a_1} = -R_0 L + \epsilon_1 \\ &M_{a_1} = \frac{p_1^{a_1}}{2L^3} (L^3 - l_1) \\ &M_{a_1} = -\frac{p_1^{a_1}}{2} \left[2 - \frac{M_1}{L} + \frac{l_1^{a_1}}{L^3} \right] \end{aligned}$	$EI \frac{d_1}{d_2} = (PI_1 - R_1L)_1 - (P - R_2)_{\frac{1}{2}}^{\frac{1}{2}}$ $EI \frac{d_{21}}{d_{21}} = -R_2L_{\frac{1}{2}} + \frac{R_2}{2}$ $+ \frac{R_2}{2} (I + \frac{PI_2}{2})$		$f_{p} = \frac{pr!}{12Eft^{2}} \left[42^{4} - \frac{1}{12Eft^{2}} \right]$ $= I_{1}(M - I_{1})^{2}$ $f = poss$ $s = \frac{1}{f - R_{1}}$	
"		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$M_{+} = M_{+}^{2} + M_{+}^{2} \frac{d}{d}$ $M_{+} = -\frac{d}{d} \frac{1}{2} (L^{2} L^{2} + 2^{2} - 2^{2})$ $-a^{2} \frac{1}{2} - \frac{(a + b)^{2} - a^{2}}{2}$				

Continuación Tabla (10)

		Conc	11102010			Lat. Barriera I	
	l que	· I marrier	Manageres de Person	Legacion de la melmacion de las casproces	Erveron de la hona plantes	Flecha	Contra
,,		F F - " (1 - 10 - 10 - 0' - 0' - 0' - 0' - 0' - 0					
	• "	- 10 - 10 - 20 - 20 - 20 - 20 - 20 - 20	M M. + M. E			STATE TOWN	
*	==	8, 0 8, 2 (Call - 1) 10, 2 (Call - 2) 8, 0 8, 0 (Call - 2) - 81, 5 (Call - 2)	$\begin{aligned} \mathbf{w}_{t} &= \mathbf{W}_{t} + \mathbf{W}_{t} \frac{\mathbf{r}}{L} \\ \mathbf{W}_{t} &= \frac{\mathbf{r}}{4L^{2}} \left[L^{2}(L^{2} + \mathbf{r}^{2}) - \frac{\mathbf{r}^{2} - \mathbf{r}^{2}}{2} \right] \\ \mathbf{w}_{t} &= {}^{2} \hat{\mathbf{r}}_{t} \mathbf{r} \end{aligned}$				
		# = = = = = = = = = = = = = = = = = = =	$\begin{aligned} M_{p,m} &= P_{p,k} + M_{p,m} \\ &= \frac{P}{M_{p,k}} (p_{p,k} - P_{p,k}) \\ M_{p,m} &= \frac{P}{N_{p,k}} (p_{p,k} - P_{p,k}) \end{aligned}$				
4°		$\begin{aligned} B_{\alpha} &= \frac{g d_{\alpha}}{102} J(1 + 5J) E^{2} J \\ B_{\beta} &= \frac{g d_{\beta}}{102} J(1 + 5J) E^{2} J \end{aligned}$	$M_{s} = \theta_{s,h} - \frac{p_{s}}{m_{s}}$ maximo para $a = \frac{f_{s}}{L} \sqrt{\frac{3(1-3)^{2}}{3L}}$ $W_{s} = \frac{p_{s}^{2}}{M_{s}^{2}} \frac{(3L^{2} - M_{s}^{2})}{3L}$ $M_{p} = \frac{p_{s}^{2}}{M_{s}^{2}} \frac{(3L^{2} - M_{s}^{2})}{3L^{2}} - \frac{3(L^{2}f_{s} - M_{s}^{2})^{2}}{M_{s}^{2}} \frac{(3L^{2} - M_{s}^{2})^{2}}{M_{s}^{2}} \frac{(3L^{2}f_{s} - M_{s}^{2})^{2$				
	Figure	Black with		auscrée de la malmacion de les tangentes	Espainos de la lanca classeca	Fiecha	(Nortes Cores
3.5		$\theta_{s} = \frac{d_{s}}{d\Omega_{s}}(SL + I_{0})$ $\theta_{s} = \frac{d_{s}}{2} - \theta_{s}$	$\begin{aligned} \mathbf{M}_{s} &= \mathbf{p}_{s,0} - \frac{p}{k_{s}}(s - r_{s}t) \\ &= \mathbf{n}_{s} \sin \sigma \text{ parts} \\ \mathbf{a} &= 1_{s} - \frac{p}{k_{s}}(s - r_{s}t) \\ \mathbf{M}_{\theta} &= -\frac{1}{2} \cdot \frac{p}{k_{s}} \\ \mathbf{M}_{\theta} &= -\frac{1}{2} \cdot \frac{p}{k_{s}} \end{aligned}$				
		$g_1 = \frac{p_1^2}{44k^2} (10 - 100)$ $g_2 = \frac{p_1^2}{2} - g_2$	$\begin{aligned} & \mathbf{w}_{\mathbf{e}} \cdot \mathbf{p}_{\mathbf{e}} \cdot \mathbf{i} - \frac{\mathbf{r}_{\mathbf{e}}}{\mathbf{r}_{\mathbf{e}}} \mathbf{i} \\ & \mathbf{w}_{\mathbf{e}} - \mathbf{r}_{\mathbf{e}} \cdot \mathbf{r}_{\mathbf{e}} \end{aligned}$				
4;		1] r [1] 11 11.	и. • ⁷ / ₂ и. • - гг,				
	=	84 - pol = 1 d = p4	40 23 40 24 40 - 34 - 34 - 34				

		Durancus		NIES A LA FLEXIO			
June 1	Porma del perful	de las libras más arriadas al rie neutro s	IX I.,	77 1.,	Tr Z,	n science al eje YY Z,	
	<u>Д</u> :		/ ₁₁ = 166 ¹		Z ₄ = M ² /24		
	÷iiii	; - 1 ; - 2 ; - 2	I _m = M²	t _m = ^{14,5}	2, <u>Md</u>	Z ₁ = \frac{4b^4}{6}	
,	-IEI;	r = ^r ₂	<mark></mark> -	1-1	z 😅	z, - z.	
	· 🔷 🕏	" th	/ fi	I I.	Z • QH715c ¹	16	

^{##} FORMULARIO DE RESISTENCIA Y CONOCIMITATO ---MECANICOS. AUTOR: LUIS PARETO. EDITORIAL:CEAC, BARCELONA.

-		Dogram	inuación T.	in interest de le	Made out for	emerates escape
1.11	Lagrandia -	de la marenas Birides Biria tautra c	[111		T_=2/
	. :)		f., -0.76148* -0.019*	.	d. nisetke	4.4
	· @ ·		L,	l., - l.,	Z, -11 D* - Z* D 197814 F*	
,	نج:	d, = 0.5754p d, = 0.1214p	1,, - a 11x*	t., + 0.102 K*	V. alekta,	Z. 6 %238*
	· 🔊 .	F · F · · ·	I 0.3 F2-e		-1, 11,700 m -2, 1 -2, 1 -3, 1 -4, 1 -4, 1	
	· []:		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	f _{ar} = 0.01 1314 Aug	, at 45	Z ₁ : Ma = 43
	Forms	Distancia de las Thras más	l	rcus responso del e-e		ôn teletente al eje
Series Paris	Jel per 61	siejadas al eje seulto z	XX	ř.,	1.5	7)
	·歯:		In - 191 - 298	1., = "" - 18"	V. 20, 40.	Z _g AA ³ AE'3
"	· !!! :•		4.3.	. °. °.	4	$Z_1 = \frac{6}{h^2}(h - h)$
2:	· @ :	7.7			2. 11° . 10°	4 4.
"	· (\$);	1-71	ı#* _{[5} *	<i></i>	Z, -0.11785 #* _A*	Z, + Z,
	心	1 30 - 25 s	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		/. al-maica;-ai 12 is-25;	
			11			

Continuación tabla (*11)

= = =		Cont	Managem de met	المراد المالية فالمرا	Mississ de Ser.	um tetatatete al vic
Section 1	3 ones a dei portă	de las filmas mas :	13	Γ 🗀	T.X	13
22,		pl. x seutro :	<u> </u>		i 2.	Z,
				1	1 3 4	
	5 (6)	1	1 12 1	l., HB' ::R'	4. • H	z, • 27
	٠٠٠	{ ga • "galai				
. 1		1. 英国际遗传				
7		750 5050 \$			Fe 1 2 4 2 15 11 15	
		以在公司工程 公司				技術性質に E
ja.	F∙∃i∙	: - 1	an. • 3n • 34,		Z. ~ "#"	z, = z.
	الثند		12			
		12 (10 10 10 10 10 10 10 10 10 10 10 10 10 1			142 5 2 3 4 4 1 7 7	機能の変化
		1972 (1994) William (1994)				
100	Λ:				Activity (Sec. 4)	
32	· (†)!·	104.	I., - QHIM-'	J., - Q7154.61	2, = 07551hc	Z, = 0.754.64
10.64	∵ ' '∷'	Tanalan Property	distribution in the			
		The Francis				
10.00			Standard Commission	เกรียนสมาชิกสารา	la de la composição de la	
. 1 1	.:(Q):	7 - 4	t., - 07854 .	Im = 0.7854 a	/. = 0.7854 ·	2, - 0.7854 =
111	· .(6)	1.0	• Da' - bjaj's		e he' - spel	* <u>** - *,b}</u>
1 1		5200-13870s	1.45 (1.35)		İ	,
. 2		Distance	Monentos de iner	cus respecto del eje	Modulo de fiera	on orierense al eje
Numero Jel perfa	Forms del profil	de las fibras más airjudas	r r	YY	.11	77
1 -	- 10.00 may	al ryc sestro z	1,	1	/	7,
11					1	i
	57		4. •	$I_{m} = \frac{hh!}{m!} \cdot \frac{h_{i}h_{i}^{2}}{12}$	۱	٠,,
111	i li	, "	411 - 63 - 646 - 61	311 - 44	Z, 2 3/4	z, = ² n
			12	• "" 12	1	Į.
				1,820 (1984)		ļ
	/ -\	NAMED - 1	i., = 0.5413.R*	(1997) E. T.		
1"1	· ()***	E esta Control			Z, = 0.625R'	
					The water, July	and the second
-	e in automobile (March A linear and Alberta Alberta	na najar yangan. Represi nagyawa	Company of the Company		 	
1.1	_					15 to
],	[-;-]-,		L = 05413R*		7 44,11-61	
	Ų,	Marcall:				t story vis
	<u> </u>	ONE SE		100 5 400 5		
	Congress Seasons	Sail Said	Mar Supplied to the	-	100760	STORES
\perp					Professional Con-	I me jeku bik
22	. (-):	2 = 0.9524 <i>E</i>	£ = 0 s 34 R*	ĺ	Z OHR'	
\mathbf{I}	\sim					
+1				ļ ·	1	le de la la
			116			

	ere de la composition	and the second s	
		inuacion Tabla C 21 D	and the control of th
Links		Marine Warren water at post own to the state of the state	Managed to 20
-	= -		
±1,		H off a set was a	net per kin l
	Å.	L. Guide Co. America	
. 2	57	2 (87) 2 (87) 40 (87) 40 (87)	ing (A.C. Marian) in the second of the secon
,,		H = 12 lifewart with a lifewart or a	i, i
	Y.		
26.		H In PH 144	A PHY NA
1			
	/		THE TAXABLE PROPERTY AND A SECOND SEC
d partie	1	Distancia Je las Reisa mis Je las Reisa (1) Je las Reisa	
Numerio del certa	1	Italia Cara and Cara	
Numeria del prefit	1	de las libras mid-	
	Forms of perfs		7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
	1		Apr. 5,11. 68
	Forms of perfs		7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
	Forms of perfs		7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
	Forms of perfs		7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
· >	Forms of perfs		7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

4-6-13) TOLERANCIA Y AJUSTES.

Para la elaboración de los dibujos de las piezas mecànicas, es necesario conocer hasta que medida maxima ó minima es admisible tener en una pieza ya fabricada. A la diferencia que existe entre la medida máxima admisible y a la medida minima admisible, se le da el nombre de , tolerancia.

T=Ss-Si

T= tolerancia.

Ss= Medida māxima.

Si = Medida minima.

También cabe señalar que al acoplamiento mecánico que existe entre dos piezas mecánicas, una liamada macho y otra liamada hembra, esto es con el fin de que la producción tienda a la normalización, se le liama ajuste.

En el ajuste se puede presentar juego o apriete entre dichas piezas, para determinar estos se tienen las siguientes formulas:

Juego máximo= DMA, - DmE.

Juego minimo = DmA. - DME.

DMA. = Diametro maximo del agujero.

DME. = Diametro maximo del eje.

DmA. = Diametro minimo del agujero.

OmE = Diametro minimo del eje

Apriete máximo= DME. - DmA. Apriete minimo. = DmA. - DMA.

Todo lo expuesto anteriormente C las formulas) debe de tener las mismas unidades.

En la figura 57, se presentan las diferentes posiciones de la tolerancia del sistema "ISA".

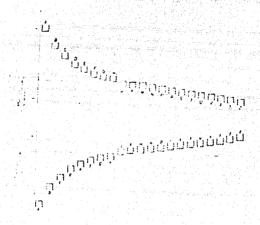


Figura (57)

SISTEMA DE AJUSTE DE EJE UNICO.

En este sistema siempre aparecerá la abreviatura ó el simbolo "h", es decir se mantiene la tolerancia del eje en la posición "h", tal cómo se muestra en la figura 58. Ejemplos de lo anterior son: G8-h7.N8-h8.etc.

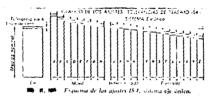


Figura (58)

SISTEMA DE AJUSTE DE AGUJERO UNICO.

En este tipo de ajuste se mantiene la tolerancia en la posición "H" para cualquier condición de ajuste, por ejemplo: H7-g8, H8-m7, etc., tal cómo se muestra en la figura 59.

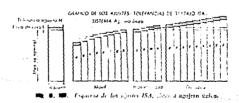


Figura (59)

Cuando el eje o el agujero tiene cualquiera de las posibles posiciones, que a continuación se muestran, podran tener los ajustes que se mencionan a continuación:

Posición (a-h) y (A-H), sera un ajuste móvil.

Posición (j-p) y (J-P), sera un ajuste de transición, es decir; podra tener apriete ó ser móvil.

Posicion (t-2) y (T-Z), sera un ajuste de apriete.

Cómo se vio en parrafos anteriores las letra que significa agujero ó eje están seguidas por un número, dicho número es el que indica la calidad con la que fue fabricada la pieza.

CALIDADES DE FABRICACION.

El sistema "ISA" distingue 18 calidades diferentes de fabricación, las cuales son:

Calidad (1-4): Para fabricación de piezas que requieren altisima presición calibres, marmoles de comprobación, etc.)

Calidad (5-11): Para la fabricación mecánica de piezas acopiadas.

Calidad (12-16): Para la fabricación de piezas sueltas.

Para la designación de cualquier ajuste se nombra primero la abreviatura del agujero y luego la del eje,cada uno seguido con el número de su calidad.

A continuación se dan algunos ejemplos de aplicación de los diferentes tipos de ajuste:

<u>Ajuste de presición y fino</u>. Es utilizado para piezas de ajuste unidas con mucha presición, además que las piezas pueden acoplarse y desacoplarse por simple presión ó a gople de martillo. Se utiliza para rodamientos de bolas, casquillos, perhos, ejes de dinamos, rodetes de turbinas, etc.

Ajuste corriente. Empleado cuando las exigencias de la medida o exactitud no sean tan precisas y se aplica solamente en ajustes móviles, se utiliza para poleas locas, cojinetes de maquinaria agricola, casquillos para ejes delanteros de camiones, etc.

Ajuste ordinario ó basto. Se utiliza en ajustes de piezas que tengan holgura amplia y una gran tolerancia de fabricación: muy conveniente para mecanismos expuestos a la oxídación, tales cómo: elementos para interruptores conmutadores, soportes de frenos, resortes, correderas y guias.

A continuación se muestra en la tabla 12, los diferentes tipos de ajustes, así cómo las diferencias nominales para las diferentes medidas del eje y agujero.

Tabla (12)

fleccion de alustes la Al FIFECION DE AJUSTES «ISA» EJE & S AJUSTE DE PRECISION HOISIDERS SO STRULA & H CREWDA Ajuste forzado N 6. Ajuste lorzaca n S. Para los aguleros cade arraitre M 6. de arrastre m 5. rresponden esta serie de adherentia K.S. Para los ejes corresde adherencia k 3. ponden esta serie de de ertrada susse 15. de giustes....... de entrata sucve J 6. de des'issamento H 6 y G 6. de destigamiente h 5. etustes........ de wege libre 9 5. EJE H & AJUSTE FING AGUJERO H 7 AJUSTE FINO Ajuste a presión 57 y R7. Ajuste a presión s 6 y r 6. » forzedo N 7. forzado n 6. de erreitre M 7. de arrestre m 6 de adharencia K.Z. Para los ecujares code adherencia à 6. de entrada suave 17. Pera los ejes corresrresponden esta ser-e de entrada sucre i 6. de dalisamiento H 7. de ajustes..... panden esta serie de de desissamiento h 6. de jueco libre justo G 7. de juego libre justo 9 6 Ciut'st...... ce juego libre F J. de juego libre 17. de juego licero E 8. de juego ligero e E. juego fuerte D ?. quego fuerte d 9. ELE & & y & F AJUSTE CORLIENTE AGUIERO H & AJUSTE CORRIENTE Parales apperas co- f. Ajus e de desugam enta H.3. Pare les ejes corres- Ajuste con destitamients h B y h 9. " de juego libre f 2 y E 9. rresponden esta seme » ton juego libre ! 8 y e 9. ponden esta serie de de apustes..... » de juego libre fuerte D 10. . cran juego libre d 10. ajustes.... EJE h 11 AJUSTE ODDINARIO O BASTO AGUJERO H II AJUSTE ORDINARIO O BASTO Parallot agujeras ca- j. Ajusta basia ergán Pera los ejes corres- | Ajuste basto según rresponden esta serie H 11. D 11, C 11, B 11, A 11, . . . a 11, 4 11, e 11, b 11, a 11. panden este serie de (Vácase ejemptos de aplicación) (Vannse ejemplos de aplicación)

FORMULARIO BESTSTENCIA CONOCIMIENTO DE MATERIAL PS MECANICOS, Autor: Luis Poreto, EDITORIAL:CEAC, ESPAÑA,1981,

ejustes.....

ADDICACION DE ABUSTES LS.A.

ANDSTES DE PRECISION Y FING

Se and the transporter contains a Magazzaria fina.

Ajusto de precisión willinado se aquites fijos, furzados, de arrastre, "de culturgiotas de entrada suave, pesticamientas y condicion debe ser una grum igualdad en la canstrucción, sienab que concrecitions las

AJUSTE A PREISSA, — Unitrada pare picabaçõe ajuste parmanente jusidas con mucho procisión justos ajustos dependin de la forma de las plazas (vicante ejestis por cuntractión), ya que en algunat acoplamientes, cuenda ya trata de magaines grandes, se procisos interferencias magnosts.

Africas (philosocieté Casquilles de councils en sus toporles, en flument en Social historices de modures, etc.

ATUSTS FORTADO. — University pero piezas que estan queder solidamente acopadas en susilipies com, puedendo ecopiarse y descapilarse univamente par mudio, de presión, el movimiento de gira atres aurapretire par medio de chaves a biran.

Mgushi apiliusonus Bysinionedou Jord Mgunetas, Bysi de Disea politici Museum Milmou Madeus Intoloxy Monapardas sabre syspolitici Charles at Lorente subre of historial micro hand do pera cum al ny in telepitatish Manapardo Manayas tarak syst. Palanrational disease Manapardo Manapardo Manayas tarak syst. Palancas worker in Manapardo Borons de monapardo sabre places.

ATULTY SE ANTASTRE, —Utilizado e prizes con oco, fordin do file girantin paceu i cauptar si y ucujus deme a galpa de diumbita pacado; su mondina so de girandi il un segurato, que insita de massita di arte.

Algunas du Talumes, August Comises, y Persea, Abust de Fade-Frianció de alum mondos sobre que mora cargos notó-tica, Palances, y Cercinidos AJUSTE DE PROMINICIE. — Entranca para plana que rendetamente (P.E.). El ancampara en la Campa de para para y descriptores popolicis entra carbonista de la compactica para y mentra fuera en la grandas, en version consule many consule grando por medo de streete y entre, que carbon qui many anticologia.

Agones aplicaciones: Casa, idas en Ricedas, Foresa y Bielas, Procei para activilaminatas de laja. Escalamies de internacion latificação hacem mates abela sabre la que la carga media. Valorial Astrudente de fuer rela y Esinassi com figna. Paresa sin budas, Procuden sabre las que Diesa de foresa, Araganina de presentarposit Concreto de harda y Casquitas de Sociales, Arbanantes y combares de capresidante an Constituciono Ricela.

AJUSTE DE ENTRADA SUAVE. -- Se vio de ento marque croce estado to y existacione en entra a a callo de estado en madera.

Algunos 63. Columest Amilia intervensi de rodomientos o possi, pora Gergati prepultar y Amilia i esperiares de rodomientos salbuta en sustaças. Amilia de esperiares de rodomientos salbuta en sustaças. Amilia de efigina de vibricación, Amilia de Eduropación, Persa, y Juliades de eduropación, Cologuillos en oportes de eficial por la popular de designación. Conjuntos en oportes de fercialeste demonitar. Todos en a soportes de connecto.

AJUSTE DE DESLIZAMIENTO. - Se utiliza pera plezca que bien chigrareso, se los pueda expejar y descriptor a morto

Algorita pinaciano y Autosi de Fijetion Patronis en tribbe 25 existes. Plata de espaiamento de cultarinho fecti de cembio sobre equi. Producta de una pieza tan checuta. Colombia pinacia jornatiradas de trauses. Appliamento de firecam montados en sú ejes, Tancedo de muñono, en esti objetica y de montante o manuello.

ATUSTE DE JUESO EIGRE MUY JUSTO, - Su chite en prieste qui deben tener une nelle rennance, peres, trata.

Algivias ephicesianes. Andes dente can unificative en enjas de cumbilide mercha. Atopiamiesto, deshicones, Priconemas para reguladores, Copnetes de magaines rechficedoras. Copnetes de eja elgueñoles.

Algunus aplicaciones: Aron de pusha, Coparero de ejes ciqueñoles, Coparero de ejes de leves, Correderes en sus guñas, Copiaces principales en Fresadores, Torado y Taladros, Copareios aportos, en Hansmissanes normates. Est cardon.

AJUSTE DE JUEGO LIGERO, — Se unite en piezes que deban lexer una holque a bollante enerciable entre ambas.

Algunus aplicaciones: Ejes con cojuntes múltiples, Husilios de hornos en sus soportes.

ASUSTE DE JUEGO FUERTE. -- Se unitro en presenque debon fonce une holquea amplia catre ambos.

Algunes, aplicaciones: Coyantes de Iurhogeneradores, Transmisiones de médiunes sun electrolo número de revoluciones, Cosos especiales en for que se precise holques con gren practified.

. AJUSTE CORRIENTE

Empleade cuando las cargencias de la medida o exactivid no sean tan precios como las que requiere al AZUSTE DE PRECISION Y FINO. y se epice solamente un ajustes monites, uando las caracteristicas let injunctics:

ATUSTE DE DESLIZAMIENTO, — Se unha en pietes que deben acriplaris làcilment y cuya éciplacamiento pueda hecesse can un ligera

Aljunci aplicationes: Poles de transmisión de una picza, Anitos de figacia, Acoplanuentos, Auedas duniadas, etc., elementos que deban destinaria par los ests.

AJUSTE DE JUEGO LIBRE.— Se unha en pleses que ecopledos tengan maramicula reciptoca y topa hulgura fueda ser desde se más tenable naste una prusena amplitud.

August, applicationers: Copenties de malacer inclinatos y diferens, Connactas principales sa eyas capateleira. Copentes de materials o manifectos. Girantes de vestalegos de primeira, Valaigen de contractes, Variates de contractes, Variates de contractes, Variates de contraction de malacer de combation, Embolos hapo Basin es se je presentações; Falholos de presentações de contraction de presente de basinas testifiques y vestaladores. Copentita de capatita de capatibolos de production de malacer de capatibolos de production de pro

AJUSTE DE JUEGO FUERTE, ... Se utilità na pietes que ecoalados scapas acon holoura reciproca.

Algunes aplicaciones: Paleas loces, Transmissiones ordinarios, Piesas de preusnessipa, Ranures de aros de picúis, Cópineles de maguinesta auricais. Casavillos cura cue delanteros de camiones.

AJUSTE ORDINARIO O BASTO

AJUSTE OBDINARIO, — Se unica en ejastes de parses que tengas holgera ampile y una gran toleracia de fabricación; may construence para mecanismios repursos a la cacidación, leles come aparatos de manobre en la cubacida de Buques.

Algones epicaciones: H 13 y h 11 agujeros de Manveles y Patintes de mons. Casquillos de oistancia. Correderes y guies de vessegue, Cojincies para palances de freno y embroque.

H 11 y d 11 Palencas y bulgans de herquillas, Varilles articulções de mecanismos prémeros.

li 11 y z 11 Muk-nes a garrance giretarios en veganes de ferracurit. Elementos de máquines agricales.

H 11 y b 11 Figmentos para interruprores communidares y decula prezas similares en manerial eléctrica.

H 11 y a 11 Elementos de Locamolares teles como Puertes de cejes ét humay y de hogar, Soperes de Freno, Sespentión de Frenos y resortes, Titrantes de regulador, Bulancs de engancia, Rubillos para guarras de vesance, etc.

CEURO IN LIGERA PRESION

Apin Chores. Paras can increanes I geras a estremacamente largas, pris la para Cararias acerepas de gremitan matriacas sabre nutiva de maero funciacio por de unitiparso para hitera función.

CAUPS 2. IRESION MEDIA

April 1943 I des ris intégres médias o targas ejents por cerpis. Egypte dan o cernest de prentir en not de profesione para bienças. Caris a servedes en bronce o derre manedas sobre eufores en nigres la cota, ens quies puede solitorse para hierro funcióo quisas gras buscas.

GRUPO L. SALE PREMICE

Administra (E. Barris, 1905) as in protein as desir Stote of probléga de mission en agricon con en que partie mais de contra en alto regió. NO POLICI UTILIZANSE PARA MICRAD FUN-2000, no en agrico de carro en largos de mante para ferra mais proceso. O contra como entre de compando para misso en graciona. Deste con en productivo de la compando para misso en graciona. Deste con en productivo de la compando para misso en graciona.

*Sil Dies promotion Cripality (#2000) # D

i le jaterion qua del melel, a cartided de achierra à exceso de mater al un el dia noma de la piero a aprim del acquismos foi

Bir to review but an elementary of piere questions de plumes

patropalung calonya work in the consistence of baselineary an assistance of superior and a consistence of the consistence of th

Ajueles Internectional I.C.A

DIFERENTIAS 1.01 LINALES

CIFBAS	MARCADAS	CON	ASTERISCO	1417	

NOMINALES	SET D	E.	ES	H2	FESA (PAGA
	train a	- 1	m f	1.1		*5	7.5
14.2	+20°°		::::		- 1		
Miss 1 . 4			• 63.7 • 63.7		+0.32*	- 1 529	
*** ** ** *3	40000				-6.764		- ' GU!
	3700						- ::
Man 40 C	+ 0516*	. 2018 . C 017*			10.734A	0 (L.) 7 (C.) 1	- 2 ft.4 - 2.535
	+ 6214* -275.				-022		-10
	12/2			3.4	-5:5	- 7 - 5 -	
Part of the state		-20//			- 0.3-7 - 0.3111		2 C1 4 0 -2 2
2				-: ::: : (-0.55* -0.55*	00% 	
**************************************	1 2 32.4	. 6211	954	- 3 (. 4			- 127

.

.

DIFFRENCIA NOMINALO

· cita,		DAS CO	H ASTE	IISCO H	-	
DAME TOUR	*:-2;5°0 8:==0	EJ	ES	NO PAS	· ©C) PASA
	p h 1 455		**	••		4.8
143			. 50-1-	1124		
Can pr 3 a &	7.7	2 617	100		• (. 7	
1444 Jr. 0 0 10	1.50	34.1	- 144		11.015	F.
Per 40 10 0 15	+ 63/6"	9 9 9 19	0.511	****		e per
mes de 18 e 17	7 20	1141	0 6 2 9	1111	10.00	
140,00 10 6	1.626	*188		+ 5 0)1		. 25.5
No. 40 1 13	6.20	1027	11:47	-6511	* 6 6 5 1	+ C 2011*
	0.270	. 5 (5)	4 5 141*	* 5 5 20	*****	. : 201-
Par No 12	+ 5 4/3	1000	1 0 0 0	4 5 545	. 2 2 2 5	+ = 013
Mes es 60 + 100	Lac	* £ 161	4 5 27.1	. 6571*		+ t x !*
Hu 4. 130 . 137	136	. 21.70	+ 3146	* 6 5211	-	
Man de 130 a 140	. 2547*	+ C 573	- 3 Cal-	+ 6 5%)	+:5-5	+ 5 7 28
Aug 40 107 0 107	1,000		+ 5 541*	. 5 237 -	. 12:11	+ 2 003.
Wat se 19" a 103		. 2 114	****			
Mar 64 140 a 220	. 2544	1111	+ 5 124	+ 1000	+ 5 846	+2213
		4 5 132*	+ 8 550*			+ 0 354*
M44 44 125 + 253	1		* 0 1 8 4 *	 	4627	+ 6 2 34
wes to 740 a 760	123.	. E 1.0"	1 2 2 14 -	- 0 046	+ c 221	+ 5 304
Andr de \$40 a 315	1,300	- 2 170-		-004,	+ 4 038.	1 + + 204.

Ajustes Internacional I.S.A. Ajustes Internacional I.S.A. Ajustes Unico ACUJERO UNICO GIERANGIA MOMINALES DIFFERMONIS MOMINALES CIFERENCIAS NOMINALES

DIAMETERS	AGUILIO	_	ES		PASA (
HOMENALES	91347					25-26	
**	trps: No	1.6	**	٠,،	10		4+
141	e and	+0.44 -0.44	- C (C)	-84:		C 774 C 778	
man de 3 e e	- C 213.	+ 2 (C? 0 301	- 0 0.V	-0 664	- 0.221 - 0.221	-0023	
-40	+ 0.013*	- C (C.)	0 00C 6 JUT	-0.005 -0.714	- 6 22 ft	- 0 025 - 0 747	-1 12
ana, de 16 a 18	. 6 2:11	- 600)	€ XC ~- 5:11	-6117	ting -623s	-600	-665
	C 700	- 5 X4	-26d	-622	4 550 ~ 6 541 -	-01% -01%	
Man de 12 a 4. Man de 45 g 52	+ 6 752.	-001	6 0.0 - 6 014	- 0 225	-0635	-0.00	
Ha. S. 33 8	1 0 0 12"	+ E #12		1057	- 5 613 3 45	-032	
Mater - Wall	+ 0 L13*	• 8.3.1 • 0.00	0 KZ 2 - \$ 323	- 6234	- 550	-0126	-612
	- C 2+7·	-C 811.	ess:	-2.614	- 0 241		- t 14
man de 146 o 740 man de 126 o 225 man de 126 o 235	4004.	+ 0 018	a 500 - 0 127		- 6253		
may as 24 , 144		4 5,516		g.317			

Continuación tabla (12

Ajusios internacional I.S.A. Agujero unico Diferencias nominales

. CIFAAS MARCADAS CON ASTERISCO NO PASA

DEPOTITORS NOMERALES	1024D		ES	HO PAS	¢X() PASA
^*	tue ha	H 8	h+	1.0		410
1+3	+ 3 514	-104	-0 cyy. 0 toc	- 6 321+	-6514	- C (40)
made to b	4 9 3.F.	0.XG 0.014*	- 0 035. C XX	- 6.026	- 0.523	-0 C/O
Marte 64.75	10.0 10.00	- 0 C13 - C 032	C 316	-003		-0640
Twas de 10 a 18	3.57	-0 037.	- 0 (4). C XC	- 0 541·	-0075-	- 4 550 - 0.120*
Mặt co 18 a 10	* 6 (1).	- 0 C)1-	- 0.317	- 0 675 - 0 656	-0.043 -0.012*	0.545 6,147*
water 47 . W	4 3 224 0 3 00	0 0 0 34 4	- 5 045. 2 070	-0.44	- 0 056 - 5.112*	-0.019 -0.162*
N. 40 SE 0 45	+ 0 (+, 5 ,4)	2:00 ~ 0.14	6.30	-5.510	0 110*	-01K.
Mar dr. 814 170 Mar dr. 100 a 172	+ 4 t/s 0 000	0 500 - 0 054 •	-0.547*	- 0 t10-	-6 572 -0 159*	0.129 0.260*
Here to the ten Here to the ten Here to the ten	0 000 + 0,041	- 0 tx 1 ·	0,000 0,150*	- 0 106. - 0 243	3 Des 5,165*	- 0.145 - 0.305
44 (17 () () () () () () () () () (+ 3 (72)	-0131- 33.0	- 5 113*	- 0 155. - 0 CPO	6.315*	- 9,179 9,215
W 11 7 10 1 11 1	1 0 541*	5 000 6 241 *	0 test 0,130*	- 0 554 - 0.1 7 •	- 0 346.	- 0.170 - 0.400

Ajustes internacional LG.A.

DIFERENCIAS NOMINALES

DIAMITEDS MORENILES	ECTO GENERAL G	ΕJ	ES	NO FA	. O.	<u>ੂ</u> ਨਾਲ
	267-43		411	. 11	6 11	• 11
163	2002	-3.43		_ 3 · 5	1-5:2	- 0 110
Met at 1 0 6	+ 5171	- (5.5	- 0125	2500	-0111	-614
May 40 60 10	+ 5 7 9.	6 240	-012	- 0170	1 1 100	-515
Mai de 13 a 18	0.000	100		F ::5.		
Mes de 18 s 13	+3155	_813.	- 6 191	1207	1-11	= : :::
Ma, 24 X3 6 43	+ 6.162*	÷ ucc	-4.043	- 11.		
14,44 47 43	cex	-1160	- 6 345*	- 6 2%	-614.	-0120
Mai de 50 e 65	+ 6,190*	0,000	-0.100	- 61376-	-016	-039
Me1 de 6> 0 80	6.000	-0.1901	- 0 340-	- 2150		-0.140
Met ce 10 e 100	+ 0 376.	8000	- 3.123	-2.193	E\$2.	
Maj se 162 6 120	6.00	-0 230+	-174	- 6160	-6:	-;;;
Mai de 130 e 140	+ 6376+	6.xu	-0145	-0170	- 03.6	- 3:15
Mat 64 140 0 160				- 6 415.	- 6 15.	-0110
M41 CE 180 e 180	0.200	-c176.	- 0,395*	-0.130	-0 H.	-0717
Hes ee 180 a 200	+ 6.316*	9.300	-0.176 .	-012	-642	- 3755
men en 23ú a 225			_644.	-6.17	- 643	-1 613*
M41 4+ 375 4 755	0 200	- 9 150,		-010		-111
Mit at 157 4 166	+ 6,3121		- 6 190	- 6 1 10 - 6 1 10 - 6 1 10	-0830	-126
M4, 64 250 e 215	8 00%	- 6730.	-050	-0475	-310	-1779

Ajustos interneccional I.S.A. EJE UNICO DIFERENCIAS NOMINALES

· cii	RAS MAP	CADAS	CON A	STERIS	0 40	PASA			
DAVITAUS MONHALIS	4.C)	AGU.	LiO.	PASA DELEG HO PASA					
**	Send Ha	н.	м.	K.	14	114	64		
141	6 LC?,	- 00 A	6 3401 - \$ 401		- 6(6+	120	+ 0.010 + 0.001		
	Cat.2 Cut5		-0-1	_	وي. وران	• 9 CC-1	- 5 2012		
w e. i.	tu.		-t :01	t.i	- 3.X' - 3 PG-		. 0 CT 6		
am. e. 17 e 19	- 000.0	-21.5 -CCN	- 84%	- 0 X.2	- 0 3X	9 000	+ 0 017		
Mar. 18. F	3 DA - 2 PO	0 51"		- cus	- 0 cc.4*	(۳) س:ز	• 0 525 • 0 501		
71.74	2.3	- 311	-104		. 0 615 - 3 5%	170	+ 0 E2		
7	50 . - 6611	-3	100	421	. COI.	0.000	- G L Z		
M. C . A. 11.	(AU)	- 00 -	- 2.05	-00'8	-02'2	1133	+ 2 C 11		
	(A. 20"1"	- 0 - 3 %:	.C 3.8		- 5 ft.s	1.652) 1.76	- 6 214		
N	3'	- 5 31. - 4 7-1		-245		ctre	+52+		
ma 1 - 240 a 44	0 ms	-09.5	-041	+ 6 001		. : 612	+ 0 [4		

Ajustos Internacional I.S.A. EJE UNICO DIFERENCIAS NOMINALES

- 611		CADAS	COH A	STERISE	0 40	PASA	
STANGERS	012 1110	AGU	(*05	PASA [)::#S	9 NO 1	
**	buch for	57	. 7	ж1	۲ ۸۰	.47	17
103	- 0 000	- 6 611	5.710	2011	- : 0.4		- 611
140 to 1 a 4	-0:0		- 6		- 63.1		
to H		-24		1.6.35	-11	1=4-	
Maria 18 a 19	-(0)		1:3	223	1.00	1-300	1.
war 16 a 17	T-165	-3.	- ()				
	- 0 310	F\$	1-1-6	3 11		- 0.71	6 311
Mars de 19 a 11	0130	100	3.2	1-02.		1 .	. 0 0.0.
	-0514	- 574	1 :53	- 0 011	-(613	-9.03	- 0 671
PF 5 5 150	FAC	13.		h-: "			
	-011:	- (Eub	1.05	.6.76	- : 11	-25%	2:11
Mp. or 122 s 142	ندسع		1 500	1-50:2	- cur	-0242	
bage on helf a full	}	- 0 003	1 25.22		1	Lan	-2614
Des de 140 e 140	- 623.	L: ::	1-1-1		1	-	1
	944	F-55	133	- 30	1 0.00	+ 201	4.0.50
mar e mar e dis	-125			-024			1
m. e- 2"1 6 2 4	1-57.	17 ; ; ;	1-6"	-		1	1
man de 196 e 145	1 700	-	- 0 120	1		1	1
Dan be 340 e 311	- 6.0324				- 600	1-66	1-00.0

Ajustes Internacional I.S.A.

EJE UNICO

. CIPRAS MARCADAS CON ASTIRISCO NO PACA

premetable	000	AGUII	(305 W	0 7454	Dux] PASA
	fa sta - fua	н7	67	1,	2.0	0+
1 103	2 4% -5 70"	6 G 1041 52.6		+ 5 019 + 7 502	+5531+	
Node be 1	# \$10a.	+ 0 (A)	- 5 :04	+637	+0.11	+ 9010
war de 16	7455 - CSM*	4 000	+ 5 575	+ 4 274	+ 8 515	+ 2 676*
M4. S. 10 a 18	678 1112	1000 10018	+ 0.35+,	. 5 034.	+ 0 0591 + 5,037	+ 0 0010
P., 10 - 35	G (12	5.4	. 5057	+ 0 641.	+ 0 6/3*	. 2017*
4 44 S	Stan - Litte"	, 362°	70100	+ 50.T.	+ 6 (44.	+6147*
MAN S. M	- 6 pig.	+ 6.5%* 0,000	+000	+ 0.510	+ 6 136*	+ 5 100
Par de 100 155	- 01334 - 0130	0.00	+ 6 541	- D G71*	• 6 131.	+ 2 *20
Mary of 125 a fell Mary for the c Mary for the a fell	5,200 - 4 6.5*	10a;	+ 0 55+*	+ 504)	+ 6 148*	+ 6.245*
M	36% 2675*	0 0001 + D 044+	+ 0 0×1* + 4 713	• 0 ccc • 0 054.	+ 0.172*	+ 0.170
Ma. de 182 a 115	~ pD11.	+0°051* \$0.3%	+ 0 508* + 0 017		+C(M*)	+ 4115*

HOMENTALES THE CASE HE PASSA PROPERTY PASSA	
HOWHALLS THE CALL THE HO PASA PRESENT PASA	
- h3 h1 H4 /3 E1	Q 10
141 000 0.001 + 90*** + 5.72** - 2.53** +	6110
- [- co. - co. - co. - co. -	6623
	5274
- CO11 - CC11 - CC2 - 221 + C 21. +	2()2
	22164
	EWS
	0.130*
	330.0
	795
the same of the sa	41
	110
	- 540
	722-

	214.
	123
May or 160 a 160 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200	125*
	145
May to 18 a 202	
Part at 500 - 517 CCC0 CCC0 CCC17 + C133 + D317 + D	2550
	173
Her 44 557 4 570 mare 1 mare 1 and 1 4 and 1 4 and 1 4 a	
Andr de 223 d 230	-, ;

Continuación tabla (12)

Ajustes Internacional I.S.A.

EJE UNICO

. 5119	AS MARC	ADAS CO	TEA PE	*****	OPISA	
HOMMALS	oc	*601E	105 14	** 🗁	7E 40	FASA
	trad ter	HIL	231	C 11	8 11	A 17
141			* 6 5 A		11-3	100
Puts le .	Dist		.76			
ML 40 F 8 12	3200	F7 :		36.5		
Mair 164 15	- 3112	11.7	. 10:1			+ - 140
Mar pr 18 a 32	→ 2112°	1613			13.3	****
May Ke el	2.20	. 61.31	. 9.107.	100	. 2 . 2	3,0
M1. 40 -C e 30		5.40	- 520,	4.4	1 1 1	****
Pat de 12 e 41	:/\4	.:14	+ 2 252*	E.		
Mar 45 4 45	-311%	112	+6130	11.5	11.72	+ 0 1/5*
Mer de 10 a 1.0	0 000	+0110-	.0.14.	. 6 173	- 120	
Mys de 120 a 172	\$ 2000	0.000	. 6125	2.11	1343	2 413
W. 4 12 6 14	\$,02	+ 9232*	+6317			- 1.75
Mare (4) 1 14					:55	•
tres ex ful a los	-635	175.	. 0 ***	• C 111		
Me, er 195 e 7%	tan	+ 0.210*	+6.461	+ 824	- 10	. 0 640
44+ e+ 220 + 225				.0243	1 2343	+ 1747
Mi 4 27 c 150	-1360	0000	+ 6 179	:: 17.	373	- 1.115*
His + 124 101	9.000	+ 0 150.	4 7.513	137.5	4 6 4 6 4	, 61.2
M 285 s 24	- 612.	tum	+ 2 1 40		7 7 7 7	-102

AGUSES AGULERO UNICO Y EJE UNICO

AGUSEO UNICO

ELE UNI

Valot en milésimas de milimetro de la folerancia T fundamental «A21» innamas de milimetro de la folerancia quepa de admensiones por la colidad de trabajo de 1 a 10 pete «A21» (A21) a 10 LERANCIA DEL «A21) a 10 LERANCIA DEL «A21) a 10 LERANCIA DEL «A210 LERA

E T & Lot. La britega en ma des	casasta premies sa sa ciduale cites	If the water it is not the factor and	
*********		15,440.30 (010.04 013)	1
de des traces to the see		ORMOSY	
		j-;	
	e-cl-26 \$51 0 2620 [1927] 300 6		04 0000
	to a fact of the collect of state		000 a 216 4
	erales state and more tendent		Sico est .
	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		est a cet 4
	[15] 4 2 4 2 14 2 10 2 12 7 7		0(12(1)
	1:12 3 3-11 1 T 10 1500 0 310 2 17 11		021 - 00
	ter alter and modern produce		Ct + 05
	Control of the state of the sta		G 9 9 4
	310 212 02 1600 002 172		41 001 4
	**** 12 1150 1100 110		01 - 1
	5.5 1 m 22 5.7 . 0.0 3 Etc 3 0 7 2		3 2 34 76
	**** - 3 Was tias ems :		(* (*)
2012 10 12 10	9 2 3 3 4 3	3. 2. 5. 5. 5. 5.	2.4
11/11/11/11/11	11 11 11 11 11 11	1111111111111111111	SINOSHIMAI
	9491149		HI ONITO

Continuación tabla (12)

		Carac	teristica	s de los e	justes r	ecomendo	idos a	del sistem	ia ISA		ورده بري ور رهما
		51	STEMA EJ	E ÚNICO			7	SISTE	MA AGUJ	ERO ÚNIC)
									AGUI	EROS	
	h 5	h 6	h 7	h B	h 9	h 11] [h 4	h 7	h a	h 11
	-	A 9	A 9	A 9	- 1	A 11	1		. 9	-	a 11
	-	B 9; B 8			-	B 11		-	b 9; b 8	-	b 11
	l	C 9; C 8	C9; C8	C9; C8		C 11	1 1	-	c 9; c 8	- 1	c 11
	E 7	D9; D8	_	E 9	D 10	D 11		e 7	d 9; d 8	d 10 e 9	4 11 5
	F 6	F 7	_	FB	Fg		1 1	16	17	18	
12 12 13	Ge	G7] _		-	_		g 5	9.6	'-	- i
ಹ	: H6	H 7	нв	нв	н в	H 11	1	h 5	h 6	h 8; h 7	h 11
	J 6	J 7	J 8				1.1	15		17	
	K 6	K7	КВ	_	_		8	k 5	6 k 6	k7	- '
	M 6	M7	M8	-	'	_	1-1	m 5	m 6	m 7	
	N6	N 7	N 8	-	_ `] }	n 5	n 6	n 7	
	P 6	-	-	-	_		1	p 5	p 6	p7	
	R 6	R 7		-	_	_) /	r 5	16	17	-
	56	S 7	-		- !	-		s 5	s 6	s 7	-
	T 6	-		-	-	,	1 1	15	-	17	_
	U6	U 7	-	-	-		, ,	u 5	u 6	u 7	
	V 6**	V 7**	! —		-	-	1	v 5**	v 6**	v 7** .	}
	X 6**	X 7°	-	-	-	-	i	x 5°	x 6*	x 7°	-
		Y **		_ 1		-	1 I		y 6**	y 7**	'

LUBRICACION.

En está parte se hablará en forma muy sencilla lo referente a lo que es la lubricación y de los tipos de lubricantes ha utilizar en diferentes elementos de máquinas.

La lubricación es colocar una capa intermedia de aceite o grasa entre dos superficies en contacto, esto con el fin de evitar en lo máximo el rozamiento de las superficies en contacto que provoca altas temperaturas y desgaste.

En la figura 60, se prezenta una gráfica del coeficiente de fricción, donde:

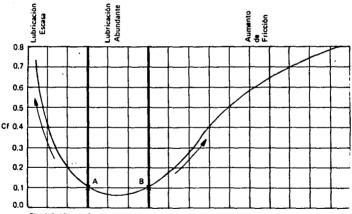


Fig. 1 Gráfica de Coeficiente de Fricción

- Z= Viscosidad absoluta.
- N= Velocidad del muñón.
 - P= Presión unitaria de un cojinete.

En la figura anterior se puede observar, que en la zona comprendida entre a y b es la razonable en viscosidad del aceite del lubricante, porque es donde menos afecta la baja o alta viscosidad. En lubricación dinámica existe el peligro de que con el aumento de viscosidad no llegue a formarse la pelicula adecuada del lubricante y por falta de alimentación se provoque una fricción fluida con el riesgo de aumento de temperatura, fricción y desgaste.

Todo mantenimiento de equipo y máquinas requiere de mayor atención para los efectos de aplicación de lubricantes, en la tabla 13, se resumen los tipos de lubricantes y sus aplicaciones, tanto para equipo en general cómo para cojinetes anti-fricción.

ojinetes de Rodamientos	Grasas de Sodio 1 S-1	· :
lojinetes de Rodamientos	Grasas Little	
ojinetes de Rodamientos	Grass Socie	٠,
ojinetes de Rodamientos	Gresas L'tio 2 L-2	
ojinetes Alta Temperatura	Grases Bentonita 3 8-3	
ojinetas de Extrema Presión	Grașa Molfedeno 2 M-2	_
ojinetes de Alta Temperatura	Grasa Grafitada 3 GG-3	

Conti	nuación tabla (13)		unite element
EQUIPO	TIPO DE LUBRICANTE	VISCOSIDAL	0
		SSU a 100 °F	CLASIFICA
Transformadores o Switches	Acelte Pare Transformadores	. 60	Trans60
Usos Textiles	Aceite Para Textiles	106	Tex105
Turbinas de Vapor		-, -	
Directamente Conectadas	Aceite Tipo Turbine	150	T150
Turbinas de Vapor con			
Transmisión de Engranes	Aceite Tipo Turbina	300	7.–300
Sistemas Hidráulicos	Aceite Hidráulico	300	H300
Motores Diemi	Suplemento núm. 1	700	SI700
Motores Diesel	Serie 3	700	S3700
Cilindros de Vapor	Aceite Compuesto Para Cilindros	3,150	CC3,1
Tr.	Aprite de Cilindros Mineral	3,150	CM3,1
Cilindros de Vapor	Acerte de Cimilatos Killieral	3,150	Len3,1
Reductores de Corona y Sinfín	Aceite Compuesto		
Mot <i>ores</i>	Para Cilindros	3,150	CC3,1
Herramientas Neumáticas	Aceite Neumático	300	N300
Herramientes Neumáticas	Araite Neumético	500	N500
Lubricaciones Escasas			743.2
Reducide o a Toda Pérdide	Aceite Adhesivo	300	AD300
Lubricaciones Escass			
Reducide o a Tode Pérdida	Aceite Adhesivo	500	AD500
Lubricaciones Escasas			
Reducida o a Toda Párdida	Aceitz Adhesivo	700	AD700
Engrares Hipoidales que	• • • • • • • • • • • • • • • • • • •		
Operan a Presiones Extramas	Acelte Compuesto E.P.	4,650	EP4.6
Refrigeración Perm Corte de Metales	Aceite Soluble	150	SC150
			JU.=130
Corte de Metales no Ferrosos	Aceite Azufrado	150	AZ150
Corte de Metales Ferrosos	Aceite Compuesto	150	F150
- Transmisiones o Reductores	Acelte Tipo Turbina	600	T600
con Engranes Rectos,			000

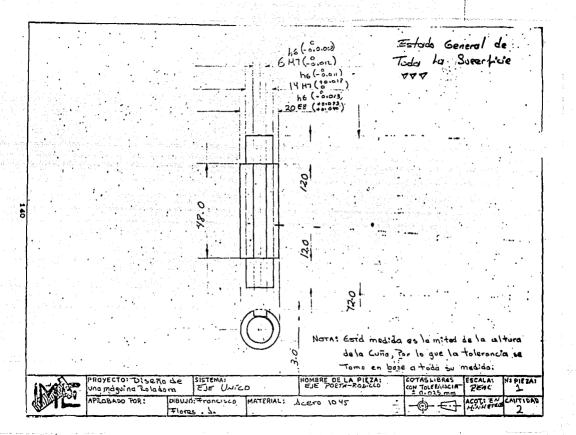
Continuación tabla (13)

LI	JBRICANTES PARA COJIN	ETES ANTI-FRICCIO	N
Temperatura de Operación	Velocidad Cojinete R. P. M.	Tipo de Lubricante	SSU-38.7°C
	Menos de 500	Aceite	150
		Grasa	NLGI -1-
	500 a 2000	Aceite	150
5°C.	· ·	Grasa	NLGI -1-
	Más de 2000	Aceite	150
		Grasa	NLGI -1-
	Menos de 500	Aceite	300
		Grasa	NLGI -2-
	500 a 2000	Aceite	220
5°C a 70°C.	·	Grasa	NLGI -2-
	Más de 2000	Aceite	150
2012년 - 독리 (1942년 - 1942년 - 19 - 1942년 - 1942		Grasa	NLGI -1-
	Menos de 500	Aceite	150
en de la companya del companya de la companya del companya de la c		Grasa	NLGI -2-
	500 a 2000	Aceite	600
70°C. a 150°C.		Grasa	NLGI -2-
	Más de 2000	Aceite	300
		Grasa	NLGI -2-

Estas recomendaciones aon para condiciones de operación normaies. Las condiciones poco comunes de velocidad, temperatura y ambiente requieren consideración especial para la selección de lubricantes.

Tabla (14)

plymatris MDJon DE GATACION [I] Presidiniente can prymane de unterial Pandistis en arena Laginde en sellecte [Cartado a majonte estacetilánien(extrarte) [Expendiad (excess), cherroida)		5	`	Ī	V	1	'n		Γ	t	ťχ	,	٦	٦,		_		
Paodicile ou Arona Lagindo og delioske	-				01		ℴ		\$\$\$\$			- 1	₹XX			41	34	
inninado on callendo	1	100	13	le	1,	Ļ		Į.		-		-	:	=	وا	5	- 1 4	÷
		-	Ę	-	C						Π			IJ	-1	J	T	Ū
Cortado o cepioto exicostilácios(exicorte)			Ŀ	-	ŀ	,	-22	V		ζ,					7	1		3
	L	5	'n		÷		1	72	- 4		4	_	4	_	4	١.	1	4
	L	122	þΖ	•	۰		-	74	ч	4	Ц	-	4	_		-1	-11	-
inerrade alternative, elata, monuel	-	22	12	-	۰		-		72	_	ч	-	-1	_	-		U	
Forjade en enliente	Ŀ	<u>.</u>	۴-	4-	þ	÷	-	-	7	72.	Ц	-4		-1		4	Н	
Copillado borisontal		1	7	-	٠	-	1		_	72	ч	-	4	+	4	-		
Mortajado(sepiliado vartical)	┝	m	ķz.	•	۲	•	-	•	_	Z.	Ц		~-		-1		- 1	
Rotespado es estiente	-		١.	÷-	Ļ.	+-	7		-	12	~	-		-	+	+		
)Torecete con herraniemes cardaine(exterriptes)	۰	٠.,	æ	-	۰	•	н		=	4	-	-	÷	-1	+	1	Ť	Ц
Itimede e magains		٠.	┞	+	ŧ٠	ė -	} −+	1		~	-	-	Н	:+	4		-#	ď
Limite masse	-	Ξ	Ξ	_	ř	_	-			-	-	-+	-	7	4	+	-81	d
hledrede a bross	۲	222	7	-	i.	7	-	-	-		"	-1	ГŤ	::1	+	-+	. 11	h
Hetenisate quiples	۲	-	-	╁╌	۲	+-			ľ		5	7	-1	#	7	: 1	Til.	٦
Pandicila as checare	~	-	1	17	t	+-			Γ		4	-1	٦f	7	া	ıt	- (1)	ü
lacquetosis	-	1	1.	1	+	t.			Ü			-1	1	7	7	7	H	П
Procede	-	1	t-	7	1	ter					***	.:1	ゴ	1	7	7	-#	1
Nandriande	-	1	1	۲.,		-						-1	_	7	7	7	iri	п
Tornatés		1	-	۲.,	Ľ	Ι.,	Ľ.		Γ				7	7	1	7	Ti	И
Pyatisiba en esquilla	Т	1	,-	7**	Т	1						Ω.	7	7	マ	7	4	Ŧ
Extratée		т.	1.	Т	۲	۲,	5	7				-7	J	7	7	ा	17	ħ
Trefilade es frie	Ε.	1	-	7	Ţ	1	77					ы	7	7	\neg	1	- [1]	
laminade en frio	-		Г	ï	ŀ	_	П				_	,,]	-	7	П	-1	- 11	J
Li Brachodo				Γ.	Γ	Τ						Z	7	Π	I	J	.17	
L)Notario (e				Ŀ		E		22	Ü	3		2		J	7	_L	- i	
Acadedo(es tampado em frio)	Ŀ	Ŀ.	1_	1	£	1			a.				1	_1	ユ	_1	- 11	
Pandielin inyestede a prestin	_	ł.,	1.	L.	1.	1	-	-7				2	_	_		_		J
}Bigotro-erosienedo en I'desbanto	-	277		1.75	١	4.	L	1	4	ы	ч	4	Н	_}	4	_1.	- 11	
[Blochro-erestennde on Sidenbanbo	L		1:	777	ь		174		ч	-	ш	_	ч	-	_!	4	T	
B ootro-orgalisando nont-numbado	-	1-	{	1-	4	4_	-	2	I	22		Ц	Н	-1	_!	-1	_#	
[]Electro-eres enade arabade	-	4	ł-	4-	+	<u>Ļ</u> _	-	L	r.		2	-		-	٠÷	-}	1	
Blestyr-orestenede super-eschade	-	-	{ −	╁	ł-	4-	∤	-	Н	22	-	ᄤ	-	}		-1	+	
I)Bactificada piladrica	ŀ	1	ļ.,	┼-	╄	÷	1	77		-	=	-	rz.	-		4	-	
lanipade de receso	-	ł۰	÷	- -	₽	╁╌	łН	74		-	-	-	•	7	-4	-ŀ	÷	
1) Torocado diamento	Н	÷	╁	┿	┝	+	Н	-	Н	44	-	-	-	74	-+	-	+	d
I)Heganisado alegáro-quimico		1	t	t	۲	┿	t-	ŀ-	ŀi	72.		-	-	7	-	-+	Ť	
Brafide redilles(faterier/exterier)	E	╌	t-	Ť	t٠	÷	1	-	-	~	7	-	-	7	-+	-+	-	Н
I)Monifisado dismanto	-	ŧ	t	╆	┝	+	1	-	-	-	74			7	+	-1	÷	4
I) La pende exterior	1	+	t-	t.	†	t	1	۲	Н	Н		1		=	<u> </u>	Ť		4
I)Reetlflesde dissente	t.	1.	t-	7	1-	Ť	1	r			"	_		7	_	3	1	η
I Super-seabede	۲	ř.	t	7	t	+	1	-	Н		7	Ψ.			=	1	+	٦
Threatde piedra (Ispesde feterier)	۲	1	1-	T	1	+	1-1	1	-		"	-	_	.7	_	"1	7	٦
I)Polido desbasta(abrestro duro)	١	Т	1	1	1	т	1	1	М	"		1			_	4	111	ī
tifalia fine(abresive surve)	ŀ	ŧ-	t	7	1-	Ť	7	1	П		П	"	,,,	.1	41	;;;	-	7
I Palide afinade (brille de espejo)	-	Т	Т	Ţ	7	Т	Т	J~	П	1	М	П	-		_	_		7

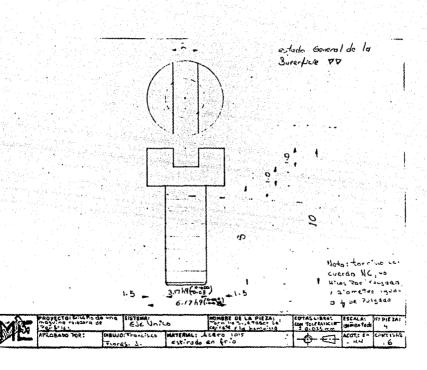

Fig. 3-2. Diferentes medios de elaboración mecánica y rugosidad media (Ra) obtenida narmalmente. También se indica la equivalencia aproximada respecto al signo superficial sexún DIN 140.

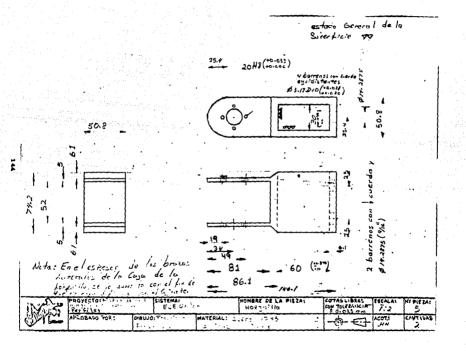
DIBUJOS:

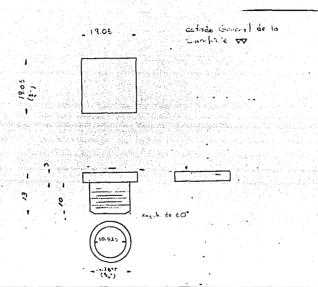
MECANI COS

Y DE

ENSAMBLE

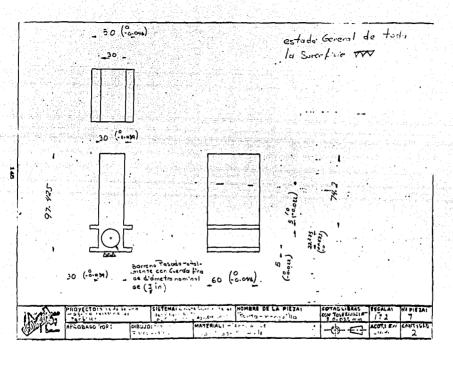

la Superficie AVY

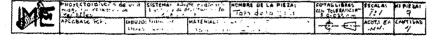



PROYECTO: Dise no de una SISTEMA:
maggina roladora de EJE UNICO COTAS LIBRES CON TOLERANCIA 2 0.025 mm DIBUJO: Francisco Flores Ludrez Scere 1030 laminado ACOT; EN CASTIDAD

estado General de la Superfice DAA

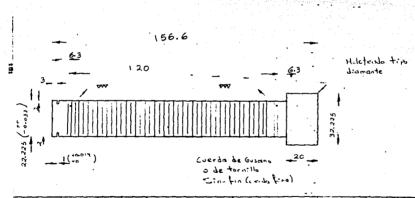
ME	PROYECTOR CICERO SE manufact relators d Partitus	Ele linico	Council Con Dr	ادعا دد.	H TOLESCHICE D	AAL H	3 PIEZAT
	APROBAGO POP:	There was MA	NTERIALI POSETE CA	2 : _	\$ CO !!	N1 EN €	PAGI FINA





PROJECTOR Scrope una distribution de la PIEZA:
moderna reladare de Unico Professione de Unico Professione de Unico Profession de PIEZA:
APZOBADO TOR: OBUJO: Transisco PRITERAL: Actor to 15
Three sudre: Estrado en frio

Scabade Governal de la Suprafrice 77 0 Acobuda laterir For

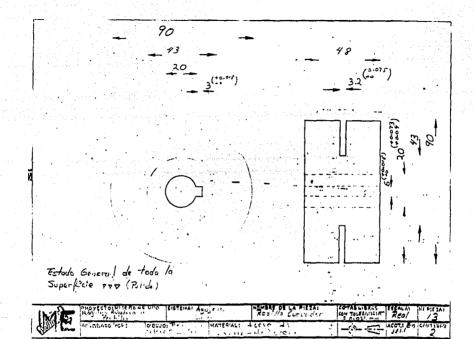

30[werdantotal] Edado General de la Eurerticie 77

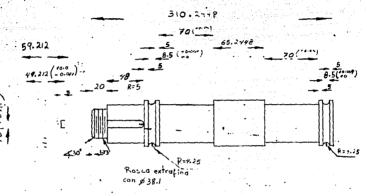
Estado General de la Superficie 84

Nora: el material utilitado en el calculo és acero 1045

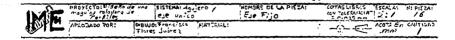
IM	PROYECTOTAL SETE de la coma guina rolade : 1 de la coma gu	Una SISTEMA: 人:	, to Carrie . to Torn'lle accounte tape.		HI PIEZA:
	Ariobato for:	Flores desire	Arminate Stanta	ACOT: EN	24

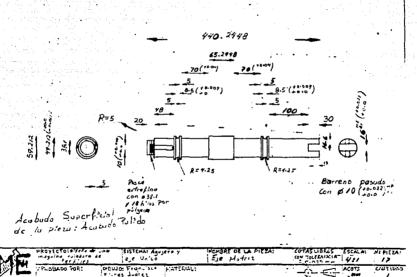
Estado beiest de l Estarficie TV

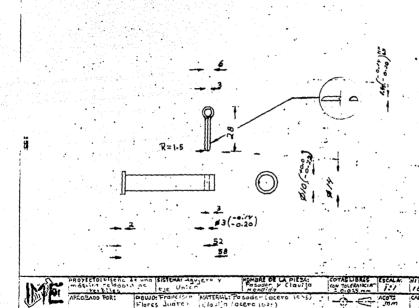


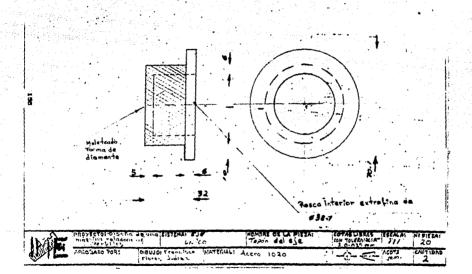


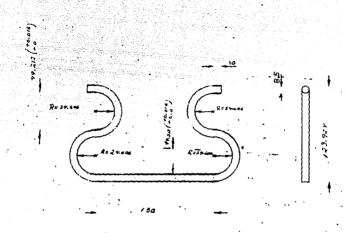
ertiles of DEWO: Flores MATERIA: Learn 10:15


Linear Francis Estrodo en frio

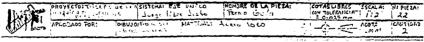

COTAS DEFOL ESCALA: VERICIA CONTROLEMENT /5/ 12

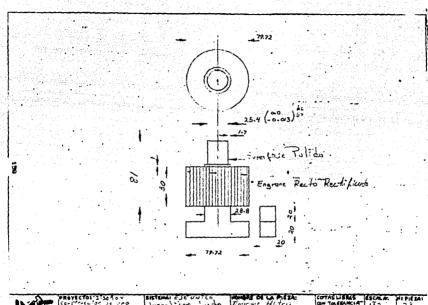





Acabado Superficial de todo la Pieza (m)

..

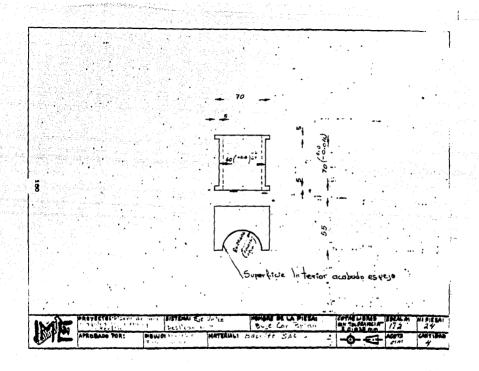

and the second segment of the

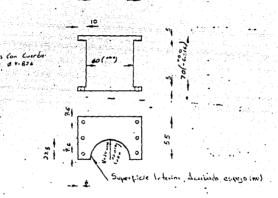

ME	I water a constant	C.C DATES	Resorte	COTAS UERLS ESCALA:	NI PIEZA:
	APROBADO POR:	THE WORKER I MATERIALS		-C	CAUTIONS

_10

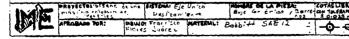
Engrane Recta (Rectificado)

Nora: 1 Con Gorda Tzguizzaa 1 Con Gerda Derezaa

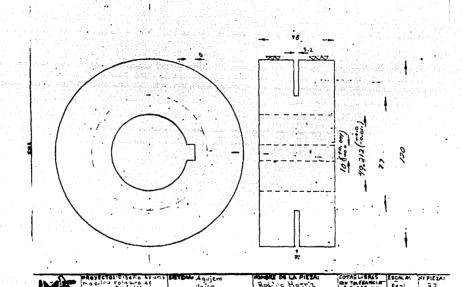




Flore wast


MATERIAL: ACCTO 1060

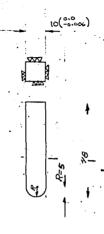
AT PIEZA:


2

2.5 Chaplan

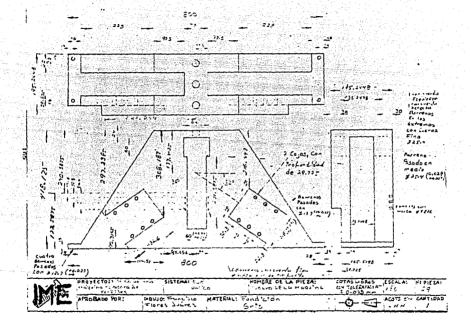
Rosca Lina 32 Hilbs For Piloaca

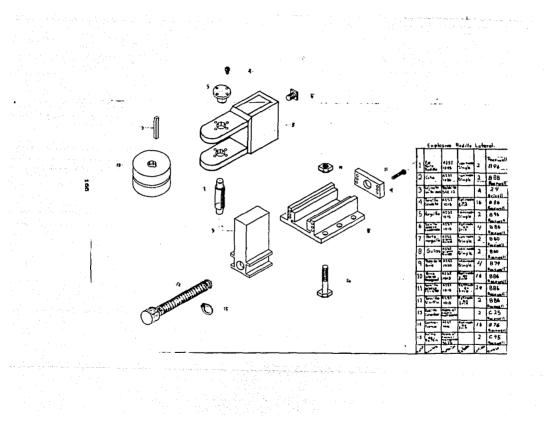
PROPAGATO FOR: DESWOT FOR DESWOT FOR DESCRIPTION ON THE PROPAGATOR TO CANTIDADE OF THE PROPAG

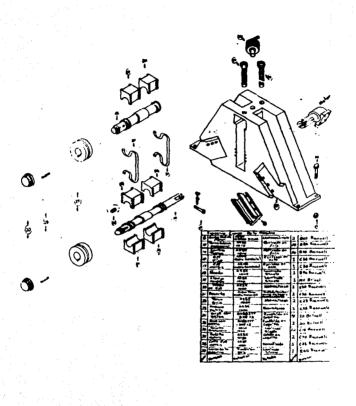

MATERIAL! Licero al Cromo-

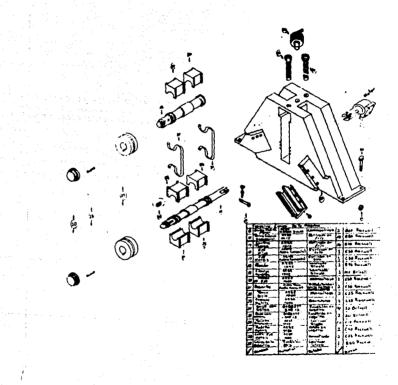
Halibder o

CASTIDAD


00000Francisco


Fires wares




IM	maquina roladora de Perfiles	de una SISTEMAT Agujero		ero .	HOMBRE DE LA PIEZA:		COTAS LIBRES	Reol	NI PIEZAI
ME	APROBADO POR:	TIOLAS		MATERIAL: A	cero 1060	:	-\$-€	ACOTA	CANTIDAD 2
									

the first and an experience of the control of the

The wind of the second

CONCLUSIONES.

El trabajo presentado fué realizado venciendo un sin fin de obstáculos, va que uno cree que el diseño de maquinas es una cosa de juedo y cuando uno se enfrenta a este tipo de problemas ve que no lo es, pues hay que realizar una serie de consideraciones en el cálculo de las dimensiones de los elementos de la maquinaría a diseñar. Por estas consideraciones se tiene que ver en forma comparativa con otras máquinas semejantes , que las dimensiones sean de acuerdo a la realidad, es decir: no tener pernos de dos metros de lóngitud y dos milimetros de diámetro. Este trabajo presenta muchas horas de dedicación y esfuerzo para su terminación, ya que para la obtención de las medidas de cada pieza se tiene que escoger el material adecuado para que soporte el esfuerzo al que va a estar sometido, así cómo a la hora de estar realizando todos los dibujos por separado y después llevarlos al ensamble uno se da cuenta que algunas piezas embonan pero es muy dificil su montaje y desmontaje, hasta esto se tiene que ver en el diseño. En si el diseño de máquinas es un gran compromiso, ya que entran la mayoria de los conocimientos IngenieroMecánico C analisis de esfuerzo, tolerancias, acabados, materiales, dibujo mecánico, poder de decisiones, investigación. etc.).

Además se tiene que tener en cuenta que el presente trabajo se realizó lo menos complicado posible, ya que llegado el momento de su construcción el mantenimiento de la máquina sea sencillo, es por eso que consta de muchas piezas.

Se considera que es de vital importancia realizar trabajos de diseño de maquinaria, por parte de estudiantes de Ingenieria y personas ya tituladas, esto es con el fin de que nuestro país en un futuro cercano no dependa tecnológicamente del extranjero, además que el estudiante tiene la posibilidad de realizar un trabajo que beneficie a la sociedad, es decir que sea útil y que funcione.

BIBLIOGRAFIA.

1) "Tecnología de la Calderería"

Trazado, Corte, Curvado y plegado.
Autor: CH LOBJOIS.

1a EDICION 1984

ED. CEAC (BARCELONA-ESPANA)

 "Fundamentos de Dibujo Mecánico" Autor: JENSEN/MASON.
 EDICION.
 GRAW-HILL.

 Formulario de Resistenciay Conocimiento de Materiales para Mecánicos"

Autor: LUIS PARETO>
2a EDICION 1981
ED. CEAC (BARCELONA-ESPANA)

 "Diseño de Elementos de Máquinas" Autor: FAIRES.
 ED. MONTANER y SIMON, S.A.

- E) "Ingenieria de Diseño" Autor: P. ORLOV.1a EDICION 1975ED. MIR. -MOSCU (U.R.S.S.)
- 6) "Diseño de Maquinas" Autor: SHIGLEY. 4a EDICION. ED. Mc. GRAW-HILL.
- 7) Sr. EDGAR EDLER COTIZADOR de la EMPRESA TECNICOS ARGOSTAL> TELEFONO: 5 15 85 80 al 80
- 8) "Diseño de Maquinas" Autor: HALL-HOLOWENCO Y LAOGHIN ED: MC. GRAW-HILL.