Universidad Nacional Autónoma de México

Facultad de Ciencias

Difracción de Rayos X por el método de Debije-Scherrer para detectar cambios dimensionales pequeños en la celda unidad de los cristales

Tesis Profesional que para obtener el título de Físico presenta

Beatriz Marcela Millán Malo

México, D. F.

JESIS CON FALLA DE ORIGEN

1991

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Introducción

CAPITULO I

1

45

51

EL ESTADO CRISTALINO DE LA MATERIA.	
1 Introducción.	5
2 Elementos básicos de teoría de repeticiones	7
i) Operaciones geométricas de repetición elementales.	7
li) Operaciones compuestas de repetición.	9
iii) Patrones periódicos de repetición.	11
3 Elementos de teoría de simetrías y teoría de grupos.	12
4 Morfologia cristalina y grupos puntuales y espaciales.	20
5 Red puntual.	21
6 Las redes de Bravais.	23
7 Los sistemas cristalinos.	27
8 Distancias interplanares.	28
9 La red recíproca.	33
i) Construcción gráfica.	33
ii) Construcción algebraica.	
iii) Relaciones entre las dimensiones de la red	
reciproca y la red directa.	35
CAPITULO II	
LOS RAYOS X	
1 Descubrimiento de los rayos X.	39
2 Naturaleza de los rayos X.	41
3 Producción de rayos X.	43
A) Tubos convencionales de filamento productores	
de rayos X.	44

B) Espectro continuo.

 i) Características generales.
 45

 ii) Origen del espectro continuo.
 46

 ili) Variación de la intensidad del espectro continuo.
 47

 C) Espectro característico.
 48

 i) Origen del espectro característico.
 48

Intensidad.

ı

4.- Absorción de rayos X.

5.- Filtros.

CAPITULO III

DIFRACCION DE RAYOS X POR CRISTALES

1 Introducción.	55
2 Descripción general del proceso de dispersión.	57
3 Dispersión por un par de puntos dispersores.	59
4 Dispersión de una distribución de puntos dispersores.	62
5 Dispersión de Thomson.	63
6 Dispersión de Compton.	68
7 La dispersión de rayos X por átomos.	69
8 Dispersión por una celda unidad.	73
9 Difracción de rayos X por un cristai.	74
A) Difracción de rayos X por un arregio unidimensional	
de celdas unidad.	74
B) Difracción de rayos X por un arregio bidimensional	
de celdas unidad.	76
C) Difracción de rayos X por un arregio tridimensional	
de celdas unidad.	77
10 Factor de estructura.	78
11 Ley de Bragg.	80
12 Construcción de Ewald de la difracción.	82
13 El problema de la fase.	84
14 Extinciones sistemáticas.	86
15 Métodos experimentales,	88

CAPITULO IV

EL METODO DE DEBIJE-SCHERRER

1 Introducción.	92
2 Procedimiento experimental.	93
i) Preparación de la muestra.	93
a) Método del tubo capilar.	95
b) Método de la fibra.	96
c) Método del cigarrillo.	97

ii ·

ii) Montaje de la muestra en la cámara.	100
A) Descripción de la cámara.	100
ili) Alineación de la muestra en la cámara.	107
iv) Colocación de la película en la cámara.	107
v) Colocación de la cámara en el equipo de rayos X.	108
A) Descripción del generador de rayos X.	108
B) Alineación de la cámara en la ventana.	110
vi) Exposición de la muestra a los rayos X.	111
vii) Revelado de la película.	111
viil) Lectura y medición del patrón de la equisgrafía	
de Debije-Scherrer.	112
3 Fundamentos teóricos.	116
i) Geometría de la difracción según el tratamiento	
de Ewald.	116
ii) Geometria de la difracción según la ley de Bragg.	117
ili) Interpretación del patrón de difracción de	
Debije-Scherrer.	118
a) Relación entre el ángulo de difracción y la	
longitud de las separaciones entre cada pareja	
de arcos del patrón.	119
b) Relación entre las posiciones de las líneas y la	
distancia interpianar.	120
c) Relación entre cada pareja de arcos del patrón	
de difracción y los indices de reflexión.	121
4 Aplicaciones.	122
i) Identificación de fases cristalinas.	122
ii) Determinación del sistema cristalino.	124
iii) Determinación de la red de Bravais.	126
iv) Determinación de los parámetros de red.	126
5 Fuentes de inexactitud e imprecisión en la determinación	
de los parámetros de red.	129
i) Errores estocásticos.	129
il) Errores sistemáticos.	129
a) Absorción de rayos X por el espécimen.	130
b) Refracción de los rayos X por el espécimen.	133
c) Distribución inhomogénea en la intensidad de	
fondo.	134

d) Excentricidad del espécimen con respecto al eje de	
la cámara.	135
e) Radio real de la cámara.	136
f) Divergencia axial del haz y tamaño de la muestra.	138
g) Saturación de velamiento de la película.	140

CAPITULO V

INDEXACION DE PATRONES DE DIFRACCION DE DEBLIE-SCHERRER 1.- Introducción. 145 2.- Idea básica de la metodologia de indexación. 145 3.- Metodología de Indexación. 146 4.- Aplicación a los diferentes sistemas cristalinos. 153 i) Sistema cúbico. 153 11) Sistema tetragonal. 154 iii) Sistema hexagonal. 155 Iv) Sistema ortorrómbico. 156

CAPITULO VI

CALCULO EXACTO Y PRECISO DE PARAMETROS DE RED	
1 Introducción.	159
2 Valores relativos de los parámetros de red.	159
3 Valores absolutos.	162
 Errores estocásticos. 	162
ii) Variaciones en el radio efectivo de la cámara.	163
iii) Divergencia axial del haz y tamaño de muestra.	165
iv) Refracción de los rayos X por el espécimen.	166
v) Distribución inhomogénea de la intensidad de	
fondo.	166
vi) Excentricidad del espécimen con respecto al eje	
de la cámara.	167
vii) Saturación de velamiento de la película.	172
vili) Absorción de los rayos X por el espécimen.	172
4 Resumen.	181

CAPITULO VII

PROGRAMAS COMPUTACIONALES ALAEP E INXPAR	
1 Introducción.	183
2 Programa computacional ALAEP.	183
i) Objetivo.	183
ii) Parámetros de entrada.	183
ili) Datos de entrada.	185
iv) Constantes y variables.	185
v) Matrices.	188
vi) Diagrama de flujo.	192
vii) Archivo de salida.	216
3 Programa computacional INXPAR.	220
i) Objetivo.	220
ii) Parámetros de entrada.	220
ill) Datos de entrada.	222
iv) Constantes y variables.	222
v) Matrices.	224
vi) Diagrama de flujo.	229
vii) Archivo de Salida.	272

CAPITULO VIII

APLICACIONES A LAS METODOLOGIAS DESARROLLADAS

A SUSTANCIAS CRISTALINAS CONOCIDAS

I Objetivos.	274
2 Muestras cristalinas utilizadas.	275
3 Resultados de la aplicación de ALAEP e INXPAR.	276
i) Sistema cúbico.	276
ii) Sistema tetragonal.	297
ili) Sistema hexagonal.	315
a) Carbón (grafito)	315
b) Cloruro de estroncio hidratado.	325
iv) Sistema ortorrómbico.	339
4.Discusión de los resultados.	357-

CAPITULO IX CONCLUSIONES

Conclusiones

Bibliografia.

363

INTRODUCCION

El descubrimiento de la difracción de rayos X por cristales en 1912 por Laue, permitió demostrar, entre otras cosas, que los cristales poseen un orden interno, es decir, que son estructuras atómicas ordenadas con simetrías, y que, además de manifestarse externamente también se refleja en los patrones de difracción. Esto ayuda a determinar la estructura de los cristales, esto es conocer las posiciones de los átomos que los componen. A partir de entonces, la cristalografía por difracción de rayos X se ha desarrollado rápidamente y ha sido de gran importancia en química, física, metalurgia y mineralogía.

Dentro de los métodos experimentales de difracción de rayos X por cristales se encuentra el método de Deblje-Scherrer. Su práctica usual es la identificación de fases cristalinas. También se utiliza para medir los parámetros de red de sustancias cristalinas pulverizadas. En la práctica de este método se presentan diversas fuentes de error que limitan los grados de exactitud y precisión con los que los parámetros de red pueden ser determinados. Estas fuentes de error provienen de las componentes geométricas entre los elementos de la cámara de Deblje-Scherrer, y de las características físicas que intervienen en el proceso.

El objetivo primordial del presente trabajo es desarrollar una metodolgia experimental, usando la técnica de Debije-Scherrer, para calcular con alta precisión y exactitud, los parámetros de red de sustancias cristalinas.

Para el cumplimiento de dicho objetivo, ha sido necesario:

- a) estudiar el origen físico de todos los errores presentes en el método experimental de Debije-Scherrer,
- b) conocer el efecto que produce cada uno de ellos sobre las medidas experimentales,
- Debije, Petrus Josephus Wilhelmus, es conocido en la literatura inglesa como Debye, Peter Joseph William.

L

- c) determinar la forma explicita para calcular dichos efectos,
- d) desarrollar una metodología para corregir las medidas experimentales y con éstas calcular los parámetros de red con la mayor exactitud y precisión posíbles.

Para el cálculo de parámetros de red a partir de las medidas experimentales de una equisgrafía de Debíje-Scherrer, se asignan triadas de indices a las lineas de velamiento producidas por los haces difractados. Este proceso se conoce como indexación, y es fácil realizario cuando la sustancia cristalina por analizar es conocida. Sin embargo, cuando dicha Fase es desconocida, es necesario tener una metodología alternativa. Con este propósito, un objetivo más de esta tesis es:

 e) desarrollar una metodologia que sea capaz de indexar patrones de difracción tipo Debije-Scherrer.

El desarrollo de ambas metodologías se inició en el Laboratorio de Rayos X del Instituto de Fisica de la UNAM, desde hace aproximadamente sels años (Clavel, 1986). El trabajo alcanzado en la presente tesis abarca sólo una parte de los objetivos en los incisos al, b) c) y d) anteriores, ya que no se estudiaron todos los errores de origen físico de la metodología experimental. Las metodologías de indexación se aplican únicamente a los sistemas cristalinos cúbico, tetragonal, hexagonal y ortorrómbico. No obstante, es posible aplicar los mismos principios de las metodologías a los sistemas cristalinos restantes.

Este trabajo se introduce con tres capitulos. En el capitulo I. El estado cristalino de la materia, se exponen las características de la materia en estado cristalino y los principios fundamentales de la cristalografia geométrica. En el capítulo II, Los rayos X, se mencionan las principales propiedades de los rayos X y la manera de producirios por tubos. En el capitulo III, Difracción de rayos X por cristoles, se desarrolla la teoría fundamental del proceso de dispersión debido а ſa interacción de la radlación ` electromagnética con la materia, en particular, el fenómeno de

difracción de rayos X como interacción de rayos X por cristales. Se explican las condiciones necesarias para que ésto pueda ocurrir. Se exponen brevemente los métodos experimentales utilizados para detectar y estudiar la difracción de rayos X por cristales.

En el capitulo IV, El método de Debl Je-Scherrer, se explica detalladamente la metodología experimental para obtener una equisgrafía de Debl je-Scherrer. Se interpreta el patrón de difracción obtenido por este método. Se habla de sus aplicaciones en general, y se hace énfasis en la aplicación del cálculo de parámetros de red de cristales. Se plantea el problema de la determinación exacta y precisa de estos parámetros debido a los errores sistemáticos presentes en la metodología experimental, y se propone una forma de calcular el efecto de cada uno de estos errores en las medidas experimentales.

En el capítulo V, Indexación de patrones de Debije-Scherrer, se explica detalladamente la metodología desarroliada para indexar patrones de difracción de Debije-Scherrer, la cual se restringió a los sistemas cristalinos cúbico, tetragonal, hexagonal y ortorrómbico.

En el capítulo VI, Cálculo exacto y preciso de parámetros de red, se explican detalladamente dos metodologías desarrolladas para medir parámetros de red con alta precisión y exactitud. La primera de ellas se hace en relación a una fase patrón, y se calculan valores relativos. La segunda, en la que se corrigen los errores sistemáticos descritos en el capítulo IV, se calculan valores absolutos.

En el capitulo VII, se presentan los programas computacionales desarrollados para aplicar los métodos de indexación y de cálculo de parámetros de red absolutos y relativos. Se muestran sus diagramas de flujo y una lista de todas las variables, constantes y matrices utilizadas en cada uno de los programas.

з

El método experimental de Debile-Scherrer se aplicó a cinco sustancias cristalinas conocidas, pertenecientes cada una. а alguno de los sistemas cristalinos las cuales bara se desarrollaron las metodologias de indexación y de cálculo de parámetros de red. Se obtuvieron sus equisgrafías y se indexaron cada uno de los patrones por el método expuesto en el capítulo V. Con la indexación encontrada, se calcularon los parámetros de red absolutos para cada fase cristalina, y los valores obtenidos se compararon con los valores reportados por las tarjetas del JCPDS. Los resultados de estos experimentos se muestran en el capítulo viii.

Por último, en el capítulo IX se discuten los resultados mostrados en el capítulo anterior y se evalúan las metodologias desarrolladas discutiendo posibles mejoras y proyectos a futuro.

CAPITULO I

EL ESTADO CRISTALINO DE LA MATERIA

1.- Introducción.

El estado sólido de la materia es aquel en el que los átomos están fuertemente unidos entre si y se mantienen en posiciones estadísticamente fijas por medio de fuerzas de origen electromagnético. Tradicionalmente se ha clasificado de acuerdo al orden interno de sus átomos en sólidos cristalinos y sólidos amorfos.

Los sólidos amorfos son aquellos en los que el conglomerado de agragados atómicos no posee orden como la palabra misma lo indica, ya que, amorfo significa sin forma. Los sólidos cristalinos, por el contrario, se caracterizan por la repetición traslacional periódica tridimensional de un motivo atómico o molecular, esto es, poseen un orden.

Otra diferencia entre la materia cristalina y la amorfa es el alcance del orden. Toda la materia posee un orden a nivel atómico que no va más allá de 10 Angstroms, a lo que se le llama de corto alcance; sin embargo, en los cristales, el ordenamiento de las moléculas en el patrón de repetición es por lo menos de 150 Angstroms, se dice entonces que existe un orden de largo alcance.

Sin embargo, hay estructuras que no se clasifican en ninguno de estos dos tipos de materia, sino en una fase intermedia. Por ejemplo los cuasicristales, descubiertos en 1985 por Schechtman, llamados de esta manera por poseer orden traslacional de largo alcance cuasiperiódico.

A partir de esta clasificación, es posible, entonces, clasificar toda la materia de acuerdo al grado de ordenamiento interno de sus componentes. La ciencia que se dedica al estudio de la materia en estado cristalino, se llama cristalografía. El orden traslacional de los cristales permite el estudio sistemático y detallado de este tipo de materia, dando lugar a una clasificación general de cualquier cristal, como se verá después.

La formación natural de los cristales en la tierra, como los minerales, es un proceso largo (de millones de años), durante el cual debe haber condiciones favorables de temperatura y presión sobre ciertos átomos. Sin embargo, si las condiciones se crean artificialmente en laboratorios, es posible crecer cristales artificiales, mediante un proceso mucho más rápido, el cual puede variar, de acuerdo al tamaño deseado del cristal, de algunas horas a algunos días.

Cualquiera que sea la forma de crecimiento del cristal, el estado cristalino se logra cuando el apliamiento de agregados atómicos se realiza de tal forma que se minimiza la energía libre por unidad de volumen dentro del material. Los tipos de unión de los átomos están determinadas por los enlaces químicos (lónico, covalente, etc). La mínima energía se alcanza cuando se cumple la neutralidad eléctrica, se mínimiza la repulsión en todo enlace iónico y se satisface que sea direccional y discreto todo enlace covalente.

El orden interno de los cristales da lugar a ciertas propiedades macroscópicas, tanto físicas como geométricas. Dentro de las características geométricas está la forma externa, ilamada hábíto. la cual, bajo ciertos ambientes de crecimiento, presenta caras planas con ángulos diédricos característicos de la especie cristalina, aunque de tamaño variable de espécimen a espécimen; el estudio de la simetrías de las forma cristalinas es llamada morfología cristalina.

Por otra parte se encuentran las propiedades físicas de los cristales determinadas por el tipo enlace de químico predomiante, de las cuales, por mencionar una, está la fractura de los minerales, éstos poseen una dirección preferencial de clivaje.

De acuerdo a las características geométricas de los cristales, las teorías apropiadas para su estudio son: teoría de repeticiones, teoría de simetrías y teoría de grupos.

^{*} Las propiedades físicas de los cristales pueden ser mecánicas, eléctricas, magnélicas, óplicas itémicas, etc. Para un estudio compleio véase Cristalografía Física, Fabregat Guinchard, F. J. Boléin número 99 del Instituto de Geologia, UKMM.

Con ayuda de éstas es posible simplificar la determinación de la estructura cristalina, y pasar al estudio de sus propiedades físicas. Esta tesis sólo abarca un estudio cristalográfico geométrico, por lo que en el presente capitulo se mencionarán los principios de dichas teorías.

2.- Elementos básicos de teoría de repeticiones.

Desde un punto de vista geométrico cada átomo o molécula que constituye el cristal puede considerarse como una copla, o una repetición, de alguna otra unidad molecular escogida, a la que comunmente se le llama motivo. En teoria de repeticiones al proceso de repetir un objeto reproduciendolo en algún otro lugar del espacio, se le llama operación geométrica de repetición. Se dice que el objeto original y el repetido son equivalentes, éstos pueden ser de dos clases: congruentes o enantiomorfos. Cuando sen congruentes además de ser iguales, son idénticos, es decir, al desplazarse uno sobre otro los dos objetos colnciden (figura 1). Dos objetos son enantiomorfos cuando siendo iguales, al desplazarse uno hasta sobreponerse al otro, no coinciden (figura 2).

9⁷⁸ 9⁷⁸

Fig. 1. Objetos congruentes. Fig. 2. Objetos enantiomorfos

Hay cuatro operaciones geométricas de repetición elementales y cuatro operaciones diferentes que resultan de la combinación de dos de éstas, a las que se les llama compuestas. A continuación se da una descripción de cada una.

i) Operaciones geométricas de repetición elementales.

Traslación: cada punto del motivo se mueve una distancia *t* en una direccion determinada. El resultado de esta operación es un objeto congruente desplazado una distancia t (figura 3).

Figura 3. Traslación.

Rotación: cada punto del motivo se gira un ángulo constante α, en un sentido determinado, y con respecto a un eje, llamado de rotación y denotado por A. El resultado de esta operación es un objeto congruente (figura 4).

Figura 4. Rotación.

Reflexión: esta operación se realiza con respecto a un plano llamado plano especular o espejo, de la siguiente manera: cada punto del motivo se desplaza hacia el espejo y perpendicularmente a él, por una distancia igual a dos veces la distancia que hay entre este punto y el plano especular, dando por resultado un objeto enantiomorfo, (figura 5).

Figura 5. Reflexión.

Inversión: esta operación se realiza respecto a un punto, llamado de inversión, de la siguiente manera: cada punto del motivo se desplaza dos veces la dístancia que hay entre este punto y el punto de inversión, en la dírección que los une. El resultado es un objeto enantiomorfo (figura 6).

Figura 6. Inversión.

il) Operaciones compuestas de repetición:

Deslizamiento: es la combinación de una refiexión más una traslación. Esta última se realiza paralela al plano de reflexión, al que se le llama entonces plano de deslizamiento y se denota por m_{ti}. El resultado de esta operación es un objeto enantiomorfo (figura 7).

Figura 7. Deslizamiento.

Hélice o tornilio: es la combinación de una rotación más una traslación. Esta última se realiza paralela al eje de rotación, ilamado entonces eje helicoidal y se denota por

A c.tll. Esta operación da como resultado un objeto congruente (figura 8).

Figura 8. Hélice o tornillo.

Rotorreflexión: es la combinación de una rotación más una reflexión. Esta última se realiza respecto a un piano perpendicular al eje de rotación, al que se le llama plano de rotorreflexión. por Esta operación se denota **٨**ू. E١ resultado de esta operación es un objeto enantiomorfo (figura 9).

Figura 9. Rotorreflexión.

Rotoinversión: es la combinación de una rotación más una inversión. Esta última se realiza respecto a un punto que esté contenido en el eje de rotación, al que se le llama eje de rotoinversión. Esta operación se denota por $\overline{\Lambda}_{\alpha}$. El resultado de esta operación es un objeto enantiomorfo (figura 10).

Figura 10. Rotoinversión.

III) Patrones periódicos de repetición: la aplicación de una operación de repetición, a un objeto ya repetido por la misma operación, producirá un tercer objeto equivalente a los dos primeros. Si esta misma operación se aplica n veces cada vez al nuevo objeto repetido, se producirá un conjunto de n objetos equivalentes entre si y relacionados por la operación geométrica de repetición. A este conjunto de objetos se le llama patrón de repetición geométrica periódica, y a la operación que los produjo, su generador. Un ejemplo de un patrón de repetición deslizamiento se muestra en la figura 11.

Figura 11. Patrón de repetición periódica deslizamiento.

3.- Elementos de teoría de simetrías y teoría de grupos.

Cuando se realiza una operación geométrica de repetición sobre todo un patrón de repetición periódica, y como resultado se obtiene el patrón mismo, se dice que el patrón periódico tiene simetria, y a tal operación se le llama entonces operación de simetría. Toda operación de simetria se realiza respecto a un punto, una linea o un plano, a los cuales se les llama elementos de simetría.

Cuando una operación de repetición rotacional repite un objeto en su objeto congruente, se le liama rotación propia y a su correspondiente elemento de simetria *eje propio de rotación*. Y si el objeto repetido es su enantiomorfo se dice que la rotación es *impropia* y su correspondiente elemento de simetria *eje impropio de rotación*. Las operaciones de rotoinversión y rotorreflexión son operaciones impropias, mientras que las operaciones de rotación y hélice son operaciones propias. Las operaciones de rotación y hélice son operaciones propias. Las operaciones de repetición que producen un objeto congruente se llaman operaciones de primera clase. A este conjunto pertenecen las traslaciones y las rotaciones puras. Cuando producen objetos enantiomorfos, se les llama operaciones de *segunda clase*. A este conjunto pertenecen las operaciones de reflexión, inversión y rotoinversión.

La operación elemental para la formación de un patrón tridimencional periódico, como por ejemplo un cristal, es la traslación. Si se impone la existencia de un eje de simetría rotacional a este patrón, el orden dei eje de rotación se restringe a tomar únicamente los valores 1, 2, 3, 4, 6 6. Ninguna otro eje de rotación puede ser consistente con la traslación. Este hecho conduce a que los ejes de simetría de las operaciones de rotonversión y hélice en un patrón periódico, traslacional, únicamente puedan tomar los valores $\overline{1}, \overline{2}, \overline{3}, \overline{4}$ 6 $\overline{6}, y, l_i, 2_i, 3_i, 4_i, 6 6_i, respectivamente. Un estudio completo demuestra que las traslaciones que pueden tomar las operaciones de tornillo, son las que se indican en la tabla 1.A, donde el subíndice t, significa 1/t de la traslación generadora del patrón.$

En las tablas i.A y 1.B se han resumido los ejes de simetria perimitidos cristalográficamente.

Tabla i

Elementos de simetría de las operaciones geométricas de repetición. A. Ejes rotacionales.

	·····		
Operaciones de repetición	Elemento de simetria	Simbolo escrito	Símbolo gráfico
Rotación	eje de rotación de orden:		
	uno	1	ninguno
	dos	2	
		_	perpendicular
			paralelo
	tres	3	
	cuatro	4	
	seis	0	•
Reflexión	plano de	m ol 2	
	reflexión		
Inversión	centro de	LOI	•
	inversión		
Hélice	eje helicoidal		1
	de orden:		
	dos	2. 2 ₁	• •
	tres	3, 3 ₁ , 3 ₂	
	cuatro	4, 4 ₁ .	
		4 ₂ , 4 ₃	
	seis	6, 6 ₁ , 6 ₂ ,	
	•	6 ₃ , 6 ₄ , 6 ₅	
Rotoinversión	eje de rotoinversión de orden:		
	dos	ž	6
		7	
	u'es -		
	cuatro	4	
	seis	6	

Tabla 2

Elementos de simetría de las operaciones geométricas de repetición.

B. Planos.

Operaciones de repetición	Elemento de simetría	Símbolo escrito	Símbolo gráfico
Reflexión	piano de reflexión:		
	perpendicular al plano de proyección		
	paralelo al plano de proyección		
Deslizamiento	plano axial de deslizamiento:		
	perpendicular al plano de proyección	a, b c	
, , ,	paralelo al plano de proyección	а, b	↓ 1,001 ↓ b/2 ↓ 10101
		c	ninguno
	plano diagonal de deslizamiento:		
	perpendicular al plano de proyección	n	
	paraleio al plano de proyección	n	$\overline{\mathbf{N}}$
12 12 • 1	plano de deslizamiento tipo diamante		
	perpendicular al plano de proyección	đ	:::::\$:::::
	paralelo al plano de proyección	đ	3
1	1	l	°

Una aplicación repetida dos veces de una operación A a un objeto, matemáticamente se expresa así:

$$A \cdot A = A^2 \qquad \dots (1)$$

Una tercera aplicación de la misma operación se expresa como:

La aplicación sucesiva n veces de la misma operación se expresa como un producto de n veces la operación de repetición, es decir:

$$\begin{array}{ccc} A \cdot A \cdot & \cdot A = A^n & \dots(3) \\ \Box_n & veces \ \Box \end{array}$$

Por otra parte, supongamos que teneinos una operación de repetición E, tal que aplicada a cualquier objeto no le hace absolutamente nada. Esta operación puede ser por ejemplo una rotación de 360° , o una traslación de magnitud O, etc.

Consideremos ahora el conjunto de operaciones de repetición $\{E, A, A^2, A^3, \dots, A^n\}$ tal que forma un patrón de repetición periódica. Por el mismo hecho de que estas operaciones generaron al patrón, la aplicación de cualquiera de estas operaciones al patrón de repetición geométrica lo deja invariante. El conjunto de operaciones de simetrías que deja invariante un patrón de repetición forman un grupo matemático, esto es, cumple con los cuatro postulados de grupo, que son:

a) cerradura,

b) asoclatividad,

c) existencia del elemento neutro, y

d) existencia del elemento inverso para todos los elementos del grupo.

El mismo problema se puede ver de manera inversa, esto es, el conjunto de elementos de simetrías que posea un patrón, forman un grupo.

^{*} Para un tratamiento completo de Teoría de grupos véase, por ejemplo, Engel, Peter, Geometric Crystallography, (1986).

Cuando una operación de repetición después de aplicarla nveces hace coincidir al objeto n veces repetido con el original, es decir cuando:

F=Gⁿ

el conjunto de operaciones {A, A^2 , A^3 ,..., A^{n-1} , $A^n=E$ } forman un grupo cíclico de orden n. El ejemplo más común, es el conjunto de operaciones de rotación A_{α} cuando su ángulo de rotación α cumple la condición:

α=2π/n ...(5)

...(4)

donde a es un número entero. A los elementos de simetría de estos grupos se les denota por el número del orden n. Los patrones de repetición aplicados a un punto con el eje de rotación perpendicular al papel, para los primeros órdenes, se muestran en la figura 12.a. Otros ejemplos de grupos ciclicos son las reflexiones, con n=2, las rotoinversiones y las rotorreflexiones cuvos ángulos de rotación cumple la condición (5). Los diagramas de repetición de estos grupos semejantes al de las rotaciones se muestran en las figuras 12.b y 12.c, donde se ha indicado con un punto hueco aquellos que se encuentran debajo del papel. En estos patrones una observación inmediata muestra que cada uno de de los patrones de rotorreflexión es igual a uno de los patrones producidos por las operaciones de rotoinversión, por ejemplo $\overline{6}=\overline{3}$. Debido a esta equivalencia se puede hacer referencia únicamente a uno u otro de los patrones. рог convención se toman las rotoinversiones.

Las mayoría de estas operaciones impropias de rotación puede descomponerse en la combinación de dos operaciones de repetición elementales. Asi pues, un eje de rotoinversión de orden n, se descompone de la siguiente manera: cuando n es impar, el patrón se obtiene combinando todas las operaciones del grupo rotacional de orden n con la operación inversión, lo cual se denota como n i; cuando n es par hay dos casos, n/2 par o impar; si es impar, la combinación de todas las operaciones de rotación del grupo n, con una reflexión en un espejo perpendicular al eje de rotación, lo cual se denota por n/m; cuando n/2 es par, los patrones de rotoinversión y de

(a)

(b)

rotorreflexión son iguales y no es posible descomponer estas operaciones en otras elementales. Las equivalencias entre los ejes de rotoinversión y rotorreflexión, y su descomposición en operaciones elementales, se muestran en la tabla 2.

Tab	la	2	
-----	----	---	--

Equivalencias entre ejes de rotoinversión y rotorefiexión.

n impar	n par n/2 impar	n impar	n par n/2 par
$\tilde{1} = 1 \cdot \iota = \tilde{2}$	$\overline{2}$ = 1/m = $\overline{1}$	3= 3·1 = 6	4 = 4
5≖ 5·i = 10	ē= 3/ni = 3	7 = 7·ί = 14	<u>8</u> = 8
9=9·ℓ = 13	$1\tilde{0}=5/m=\tilde{5}$	$\overline{11}=11\cdot l=2\widetilde{2}$	$\overline{12} = 1\widetilde{2}$
13 = 13·ℓ = 26	14=7/m = 7	$\overline{15}=15\cdot l=3\widetilde{0}$	$\overline{16} = 1\widetilde{6}$

Debido a la restricción de los órdenes de los ejes de rotación consistentes con la traslación, en un plano únicamente pueden existir 5 ejes de simetria que lo dejen invariante, los cuales se pueden combinar con la operación reflexión, y formar 10 grupos puntuales bidimensionales, los cuales se denotan asi: 1, 2, 3, 4, 6, m, 2mm, 3m, 4mm y 6mm.

Sin embargo, en el espacio es posible la combinación de más operaciones de simetria, dando lugar a nuevos elementos de simetría. Por ejemplo, cuando se combinan dos operaciones de rotación cuyos ejes se intersectan, dan lugar a un tercer ele de rotación. Si se combinan dos cles de rotación cuvos eles no se intersectan, dan lugar a una traslación. Los posibles conjuntos de combinaciones de operaciones de repetición omitiendo traslaciones, es decir considerando sólo rotaciones propias e impropias, cuyos ejes se intersectan, según la construcción de Euler, están limitadas a ciertos ángulos, que son: 30°, 35°15'52'', 45°, 54°44'08'', 60°, 70°31'44'' y 90°, Estas combinaciones determinan solo 32 grupos llamados grupos puntuales cristalográficos, porque al aplicarios de ian invariante un punto del espacio, es decir no se mueve porque no intervienen las traslaciones. En la figura 20 se representan las proyecciones ortográficas de los 32 grupos puntuales.

Una operación que consiste de una rotación, propia o impropia, y una operación que consiste de la combinación de la misma rotación más una traslación, se dice que son isogonales, va ambas tienen la misma repetición angular. Las aue combinaciones de rotaciones con traslaciones están limitadas a las mismas combinaciones de sus correspondientes rotaciones isogonales. Las combinaciones permisibles de rotaciones con traslaciones determinan 230 grupos liamados grupos espaciales. Estos grupos determinan los 230 diferentes tipos de patrones tridimensionales. Puesto que los cristales están formados por la repetición de una misma molécula repetida sistemáticamente, su arregio espacial debe pertenecer a alguno de los 230 diferentes tipos de patrones tridimensionales. Las simetrias internas de cualquier cristal corresponden a uno de los 230 grupos espaciales.

4.- Morfologia cristalina y grupos puntuales y espaciales.

Como se mencionó en el apartado 1, bajo circunstancias favorables el crecimiento de un cristal da lugar a una superficie externa que consiste de caras planas. Cada cara es paralela a una familia de planos racionales de la red. Aunque la red tiene infinito número de familias de planos racionales sólo unas cuantas, las que tienen indices mas simples o menores, se representan en superficies externas del cristal por caras. Esto se debe al llamado Principio de Bravais, (Fabregat, 1971), según el cual las caras presentes son por lo general paralelas a planos con mayor densidad de puntos reticulares. Siendo éstas las de indices más sencilios.

Cuando a un plano (hkl) se le aplican las operaciones de un grupo espacial, las operaciones de traslación producirán una plia de planos paralelos, y las operaciones de rotación repetirán esta plia de planos en un conjunto de planos relacionados entre si de acuerdo a la simetria rotacional del grupo. Si al mismo plano (hkl) se le aplican las operaciones del grupo puntual isogonal, lo que se tiene son planos individuales relacionados con la misma simetria rotacional que

el grupo espacial. Por esta razón, cuando una cara del cristal es paralela al plano (hkl) será paralela al conjunto de planos relacionados entre si por la simetria traslacional, es decir, en la morfología cristalina sólo se observan las simetrias rotacionales del grupo espacial, las simetrias traslacionales se suprimen. Esto explica el hecho de que las simetrias de la morfología externa de un cristal corresponden a una de las simetrías del grupo puntual. Isogonal al grupo espacial. Entonces, un cristal puede clasificarse, de acuerdo a su morfología, en uno de los grupos puntuales, a los cuales se les llama clases cristalinas.

5.- Red puntual.

cristal. ha mencionado, es la repetición E.L como se traslacional periódica tridimensional de un motivo atómico, al cual llamaremos módulo mínimo material (según Amezcua-López y Cordero-Borboa, 1988). Un modelo dei Cloruro de Sodio se muestra en la figura 13, y en la figura 14, se muestra el módulo mínimo material. Asociado a éste, se encuentra el módulo mínimo espacial, que es la minima porción de espacio con el cual se puede generar todo el espacio que ocupa el cristal, con la misma repetición traslacional periódica tridimensional la que construye cl cristal. con se (figura 15). Un punto cualquiera de él se puede utilizar para representar la posición del módulo mínimo espacial y a la vez del módulo minimo material del cristal. El punto equivalente de todos los módulos mínimos espaciales producirá un conjunto puntos geométricos cuyas posiciones representan las de posiciones de todos los módulos mínimos materiales. Todos estos puntos tienen exactamente los mismos alrededores, y son idénticos en posición relativa dentro del módulo mínimo Este conjunto de puntos en dos dimensiones material. constituye una red. El mismo término de red se conserva para tres dimensiones, por lo que se le llama red puntual espacial cristalina (figura 16) y al conjunto de motivos atómicos red cristalina. Hay que hacer notar que en la red puntual existe un punto por cada motivo molecular, y no un punto por cada átomo de la red cristalina.

Fig. 13. Red Cristalina

Fig. 14. Módulo mínimo material.

Fig. 15. Módulo mínimo espacial.

Fig. 16. Red puntual.

Por dos puntos de red puede trazarse siempre una línea a la que se le liama *dirección racional*. Si se scoje un punto de red como origen, se puede crear un sistema de referencia a partir de tres vectores linealmente independientes. Cuando estos vectores van de un punto de red a su vecino más cercano en una dirección racional dada, se les liama vectores primitivos (figura 17).

Fig. 17. Vectores primitivos.

Fig. 18. Vectores unidad.

Con los vectores primitivos se puede formar un paralelepipedo que tenga puntos de red únicamente en sus vértices. A tal paralelepipedo se le llama celda primitiva. Sin embargo esta celda no siempre refleja la simetria de la red lo mejor posible. Algunas veces es preferible definir otro sistema de referencia que lo muestre. Los vectores que lo cumplen se llaman vectores unidad y definen un paralelepipedo llamado celda unidad (figura 19). Las magnitudes de los tres vectores unidad y los ángulos que forman entre ellos se denotan ao, bo, co, ao, β_0 , γ_0 , y se les llama pardmetros de red (figura 20).

Fig. 19 Celda unidad.

Fig. 20. Parámetros de red.

6.- Las redes de Bravais.

Con las definiciones anteriores se ha podido abstraer la red cristalina a conceptos puramente geométricos. Cualquier punto de la red puntual representa la posición de un módulo mínimo material del cristal. En este conjunto de puntos, que es la red puntual espacial, dos puntos cualesquiera tienen idénticos alrededores. Y, de acuerdo a la forma como se construye, es claro que pueden existir muchos tipos diferentes de redes, cada una con simetrias diferentes. En 1848 August Bravais demostró que solamente existen 14 tipos diferentes de redes espaciales. Esta deducción puede hacerse apilando todos los tipos de redes planas permitiendo que los ejes de simetría entre los diferentes planos sean consistentes (M. J. Buerger, 1956). Los tipos de redes planas consistentes con la traslaciones periòdicas, se pueden deducir aplicando los elementos de simetria de cada uno de los grupos puntuales bidimensionales, (1, 2, 3, 4, 6, m. 2mm, 3m, 4mm y 6mm), a una red plana primitiva y obligando dejaria invariante, al combinarios con las traslaciones bidimencionales, \vec{t}_1 , \vec{t}_2 y $\vec{t}_1 + \vec{t}_2$.

Esta deducción da lugar a únicamente cinco tipos generales de red: paralelogramo (P), triángulo equilátero (E), cuadrado (S), rectángulo (R), y diamante (D). La distribución de los elementos de simetría en los cinco tipos de redes planas, asi como los grupos puntuales planos con los cuales son consistentes, se muestran en la figura 21.

Figura 21. Distribución de los ejes de simetría en los cinco tipos de redes planas.

Así como los grupos puntuales bidimensionales originaron solo cinco tipos de redes planas diferentes, los 32 grupos puntuales tridimensionales originan un número determinado de redes puntuales tridimensionales, las 14 redes de Bravais, como ya se ha mencionado. Las redes planas simétricas se apilan permitiendo que los ejes de simetria entre los diferentes planos sean consistentes. En la tabla 3 se resume la deducción de las redes espaciales.

	Clase Cristalina	Clase Centrosimétrica representativa	Red Plana apilada	Red Espacial
	1, T	T	P xyz	1P
	2, m, <u>2</u> m	2 m	$\begin{array}{ccc} P & 00z \\ P & \frac{1}{2} & \frac{1}{2} & z \end{array}$	2P 2 I
	222		$\begin{array}{c} R & 00z \\ R & \frac{1}{2} & \frac{1}{2} & z \end{array}$	222P 222 I
	2mm 2 2 2 m m m	$\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$	$\begin{array}{ccc} R & 0 & \frac{1}{2} & z \\ D & 0 & 0 & z \\ D & \frac{1}{2} & \frac{1}{2} & z \end{array}$	{ 222A 222C } 222F
	4, 4 , <u>4</u> m	4 m	S 00z	4P
	$\frac{422}{m}, \frac{4}{m}, \frac{2}{m}, \frac{2}{m}$	$\frac{4}{m} \frac{2}{m} \frac{2}{m}$	$S \frac{1}{2} \frac{1}{2} z$	41
	3, 3 32, 3m, 3 <u>2</u> m	3 3 2 m	$E \frac{1}{3} \frac{2}{3} z$ $E 00z$	3R (3P)
	6, 6 , <u>6</u> m 622, 6mm	6 m	E 00z	3P
	δm2, <u>6</u> <u>2</u> <u>2</u> <u>m</u> <u>m</u> <u>m</u>	$\int \frac{\delta}{m} \frac{2}{m} \frac{2}{m}$		
	23, <u>2</u> 3	2/m 3	S 001	23P
;	432, 4 3m 4 - 2	$\frac{4}{m}$ $\frac{3}{3}$ $\frac{2}{m}$	$S \frac{1}{2} \frac{1}{2} \frac{1}{2}$	231
	<u>m</u> 3 m		$S 0 \sqrt{\frac{2}{2}} \sqrt{\frac{2}{2}}$	23F

Tabla 3 Derivación de las redes espaciales.

En las primeras dos columnas se muestran los grupos puntuales cristalográficos consistentes con cada tipo de red. En las dos siguientes columnas se específica el tipo de red plana utilizada y las coordenadas de la celda apliada. En la última columna se da la designación de la red espacial. En la figura 22 se pueden observar las celdas unidad de los diferentes tipos de red. Las celdas que sólo tienen puntos de red en sus vértices se llaman celdas primitivas, y se les denomina con P. Las celdas que tienen puntos adicionales se les denomina de acuerdo a la posición de estos puntos. Un resumen de la designación de los diferentes tipos generales de red, así como la localización de los puntos adicionales y el número total de puntos por celda, se encuentra en la Tabla 4.

Tabla 4 Designación de los tipos generales de red.

Símbolo	Nombre	Localización de puntos adicionales	Número total de puntos por celda
P	Primitiva	-	1
I	Centrada en el cuerpo	centro de la celda	2
A B C	Centrada en la cara: A B C	centro de la cara (100) centro de la cara (010) centro de la cara (001)	2 2 2
F	Centrada en las caras	centro de las caras A, B, y C	4
R	Romboedral	dos puntos: $\frac{1}{3} \frac{2}{3} \frac{1}{3}$ y	з
		$\frac{2}{3}\frac{1}{3}\frac{2}{3}$, a lo largo de	
		la diagonal de la celda	

Figura 22. Celdas unidad de las 14 redes de Bravais.

7.- Los sistemas cristalinos.

Todos los cristales posen uno de los 14 tipos de redes espaciales. Estas redes pueden expresarse analiticamente escogiendo un sistema de coordenadas. Las expresiones más simples se obtienen cuando los ejes coordenados se seleccionan colineales a los ejes de simetria del cristal. Una selección de este tipo no siempre coincide con una celda primitiva aunque ésta sea el sistema de referencia más natural. En la tabla 3 se han agrupado los conjuntos de redes que pueden representarse por el mismo tipo de celda simétrica. Las aristas de estas celdas forman los sistemas de referencia comunmente utilizados. A estos ejes coordenados se les llama *ejes cristalográficos.*

Al conjunto de clases cristalinas representadas por los mismos ejes cristalográficos se le llama *sistema cristalino*. Existen seis sistemas diferentes (algunos autores consideran que la ceida romboedral da lugar a un sistema más). Sus nombres, propiedades y simetrías de cada uno se muestran en la tabla 5.

8.- Distancias interplanares.

Una de las propiedades de la red puntual es que se puede representar por conjuntos de planos paralelos igualmente espaciados. Sin embargo esta representación no es única, pues una red como tal posee infinidad de conjuntos de planos con estas propiedades. La práctica ha demostrado que es conveniente denominar de alguna manera estos conjuntos de planos pues están intimamente ligados a observaciones experimentales, (como se verá en el capítulo III), Para denominar a una familia de planos se utilizan los índices de Miller.

Por una parte se define un plano racional aquel que contiene por lo menos tres puntos de la red puntual (figura 23). Al conjunto de planos racionales que son paralelos entre si se les llama familia de planos racionales (figura 24).

Figura 24. Familia de planos racionales.

Tabla 5

Los sistemas cristalinos.

Clase Cristalina	Tipo de Red Espacial	Tipo de celda	Sistema Cristalino	Parámetros de red
1, 1	IP	1P	Tr iclínico	α,*b,*c, α,≠β,≠γ,
2, m, <u>2</u> m	2P, 21 2P Monoclínico		α,≠b,≠c, α,≠b,≠c,	
222 2mm <u>2</u> <u>2</u> <u>2</u> <u>m</u> <u>m</u>	22P 22 I	22P	Ortorrómbico	αູ≠bູ≠c ∝ູ≖βູ≠γູ αູ=90°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4P 4 I	4P	Tetragonal	α ₅ = b ₅ ≠ C ₅ α ₅ = β ₅ = ₹ ₆ α ₅ = 90°
3, $\overline{3}$ 32, $3m$, $\overline{3}$ $\frac{2}{m}$ 6, $\overline{6}$, $\frac{6}{m}$	3P 3R	3P	Hexagonal	α ₀ ≕ b ₀ ≠ c ₀ α ₀ = β ₀ = 90° γ _ = 120°
$\overline{6}m^2$, $\frac{6}{m}\frac{2}{m}\frac{2}{m}$	ىد 			•
23, <u>2</u> 3 432, 4 3m 4/ 7 3 2/ 7	23P 231 23F	23P	Cúbico o Isométrico	α ₀ =b ₀ =c α ₀ =β ₀ =γ α ₀ =90°

El proceso de asignación de indices de Miller es el siguiente:

- a) se selecciona de entre toda la familia de planos, el plano más cercano al origen, pero que no pase por él (figura 25),
- b) se toman los valores fraccionales de las intersecciones de este plano con los vectores unidad.
- c) se toman los reciprocos de las intersecciones fraccionales,
- d) se toman los números primos relativos entre sí. A estos números se les llama índices de Miller, y se denotan por hkl.

Un plano se denota por (hkl), y una familia de planos (hkl) por {hkl}.

A la distancia entre dos planos adyacentes de una familia de planos racional dada se le llama distancia interplanar y se denota por d_{hkl} (figura 24). Existe una relación muy importante entre la distancia interplanar, d_{hkl} , de la familia de planos {hkl}, y los parámetros de red. Esta relación en general es muy complicada pero se simplifica para los sistemas de alta simetría. Los valores específicos de d_{hkl} y $1/d_{hkl}^2$, se muestran en la tabla 6.

Tabla 6

Relación entre la distancia interplanar y los parámetros de red.

Sistema Cristalino	d _{. N K I}	1/d ² h k l
Cúbico	$\frac{a_{o}}{\sqrt{h^2 + k^2 + l^2}}$	$\frac{h^2 + k^2 + l^2}{a_o^2}$
Tetragonal	$\frac{1}{\sqrt{(h^2 + k^2)/a_a^2 + l^2/c_a^2}}$	$\frac{h^2 + k^2}{a_0^2} + \frac{l^2}{c_0^2}$
Hexagon a l	$\frac{1}{\sqrt{4(h^2+hk+k^2)/3a_0^2+l^2/c_0^2}}$	$\frac{4}{3a_{o}^{2}}(h^{2}+hk+k^{2})+\frac{l^{2}}{c_{o}^{2}}$
Ortorrómbico	$\frac{1}{\int h^2/a_o^2 + k^2/b_o^2 + l^2/c_o^2}$	$\frac{h^2}{a_0^2} + \frac{k^2}{b_0^2} + \frac{l^2}{c_0^2}$
Monoci f n ico	$\frac{1}{\begin{bmatrix} \frac{h^2}{a_s^2} + \frac{k^2}{b_o^2} - \frac{2hk\cos\gamma}{a_o b_o} + \frac{l^2}{c_o^2} \\ \frac{a_o^2}{\sin^2\gamma} \end{bmatrix}}$	$\frac{\frac{h^2}{a_o^2} + \frac{k^2}{b_o^2} - \frac{2hk \cos \gamma}{a_o b_o}}{\sin^2 \gamma} + \frac{l^2}{c_o^2}$
	$\frac{\left(1-\cos^2\alpha-\cos^2\beta-\cos^2\gamma\right)}{\left(\frac{h^2}{a_o^2}\sin^2\alpha+\frac{k^2}{b_o^2}\sin^2\beta+\frac{l^2}{c_o^2}\sin^2\gamma\right)}$	$\left\{\frac{h^2}{a_o^2} \sin^2 \alpha + \frac{k^2}{b_o^2} \sin^2 \beta + \frac{l^2}{c_o^2} \sin^2 \gamma + \frac{2hk}{a_o b_o} \left(\cos \alpha \cos \beta - \cos \gamma\right)\right\}$
Triclínico	$-\frac{2hk}{a}(\cos\alpha\cos\beta - \cos\gamma)$	$+ \frac{2h}{a_{o}b_{o}} (\cos\beta \cos\gamma - \cos\alpha)$ $+ \frac{2h}{a_{o}b_{o}} (\cos\gamma \cos\alpha - \cos\beta) \}$
	$+ \frac{2lh}{c_a} (\cos \beta \cos \gamma - \cos \alpha)$	$\frac{c_{0}a_{0}}{\left\{1 - \cos^{2}\alpha - \cos^{2}\beta - \cos^{2}\gamma + 2\cos\alpha\cos\beta\cos\gamma\right\}}$

9.- La red reciproca.

La red reciproca, introducida por Ewald en 1913, es un concepto que facilita la interpretación de la difracción de los rayos X por cristales. Como se ha visto, la propiedad fundamental de un cristal es la periodicidad tridimensional de una unidad básica repetida por operaciones geométricas de traslación. Una descripción de este patrón es lo que denominamos red puntual, y a la que se le acostumbra llamar red directo, debido a que está asociada directamente a la geometria del cristal. Por otro lado, la herramienta básica para estudiar un cristal es la difracción de rayos X, ya que la longitud de onda de estos últimos es aproximadamente del mismo orden que el espaciamiento de los planos de la red. Como se verá en el capitulo III, la condición para que el fenómeno de difracción por un cristal ocurra es la triple periodicidad de la red directa, y, las propiedades de simetría de la red caracterizan el patrón de difracción. Desde el punto de vista la difracción puede Interpretarse como la matemático. transformación del espacio directo a otro espacio llamado espacio reciproco. Este concepto y la relación entre las redes directa y reciproca a través de la transformada de Fourier, lo cual se verá en el capitulo III, las introdujo Ewald en 1921. En este capítulo únicamente se dará la definición de red reciproca a través de la red directa. Primero se explicará la construcción gráfica para hacer notar la relación geométrica entre ambas redes, y después se definirá matemáticamente. i) Construcción gráfica.

Cosideremos la familia de pianos {hkl} de distancia interpianar d_{hkl} de la red puntuai, y un punto de red cualquiera. El vector normal a la familia de pianos dada con origen en el punto de red dado y de magnitud $1/d_{hkl}$, da un punto al final de este vector, {figura 26}, de la red reciproca, llamado HKL. Siguiendo el mismo procedimiento para todas las familias de pianos de la red directa, se obtiene conjunto de puntos ilamado red reciproca. Esta red preserva todas las características de la red directa, la. dirección del vector conserva la dirección de la familia de

planos, su magnitud la distancia interplanar, y el sentido el sistema de referencia.

Figura 26. Construcción gráfica de la red reciproca.

ii) Construcción algebraica: los vectores unidad de la red recíproca, denotados por \vec{a}_{o}^{\prime} , \vec{b}_{o}^{\prime} , \vec{c}_{o}^{\prime} , se definen a partir de los vectores unidad de la red directa, \vec{a}_{o} , \vec{b}_{o} , \vec{c}_{o} , de la siguiente manera:

$$\vec{a}_{s}^{\dagger} = \frac{\vec{b}_{s} \times \vec{c}_{s}}{\vec{a}_{s} \cdot \vec{b}_{s} \times \vec{c}_{s}},$$

$$\vec{b}_{s}^{\dagger} = \frac{\vec{c}_{s} \times \vec{a}_{s}}{\vec{a}_{s} \cdot \vec{b}_{s} \times \vec{c}_{s}},$$

$$\vec{c}_{s}^{\dagger} = \frac{\vec{a}_{s} \times \vec{b}_{s}}{\vec{a}_{s} \cdot \vec{b}_{s} \times \vec{c}_{s}}, \dots (6)$$

Hay que hacer notar que $\vec{a}_{o} \cdot \vec{b}_{o} \times \vec{c}_{o}$, es el volumen, V, de la celda unidad de la red directa. Realizando el producto escalar de las ecuaciones (6) con \vec{a}_{o} , \vec{b}_{o} , y \vec{c}_{o} , se cumplen las siguientes relaciones:

Cualquier punto de la red reciproca con coordenadas (h,k,l) puede expresarse como la combinación lineal de los vectores unidad reciprocos, de la siguiente manera:

$$\vec{H}_{hkl} = h\vec{a}_{o}^{*} + k\vec{b}_{o}^{*} + l\vec{c}_{o}^{*}$$
 ...(8)

donde h,k y l son números enteros. Este vector tiene las siguientes dos propiedades: es normal a la familia de planos {hkl}, y su magnitud es $1/d_{xx}$.

 iii) Relaciones entre las dimensiones de la red directa y la red reciproca: los vectores reciprocos definen una celda unidad reciproca cuyo volumen está dado por:

$$v = \ddot{a}_{v} \cdot \ddot{b}_{v} \times \ddot{c}_{v}$$
 ...(9)

Multiplicando esta expresión por V, el volumen de la celda unidad de la red directa, tenemos:

utilizando la propiedad conmutativa del producto punto y realizando el doble producto vectorial, tenemos:

$$v''v = \vec{a}'' \cdot \vec{a}_v \cdot \vec{b}''_X \vec{c}'' \cdot \vec{b}_X \vec{c}_o$$

 $\mathbf{v}^{*}\mathbf{v}_{=} \ \vec{a}_{o}^{*} \cdot \vec{a}_{o} \cdot [(\vec{b}_{o}^{*} \cdot \vec{b}_{o})(\vec{c}_{o}^{*} \cdot \vec{c}_{o}) - (\vec{c}_{o}^{*} \cdot \vec{c}_{o}^{*})(\vec{b}_{o}^{*} \cdot \vec{b}_{o}^{*})]$

aplicando las relaciones (4), nos queda:

$$\mathbf{v}^{''}\mathbf{v}=\,(\vec{a}_{o}^{''}\!\cdot\vec{a}_{o})(\vec{b}_{o}^{''}\!\cdot\vec{b}_{o})(\vec{c}_{o}^{''}\!\cdot\vec{c}_{o})$$

es decir, el volumen de la celda unidad de la red reciproca es el reciproco del volumen de la red directa.

Sustituyendo la expresión para el volumen de la red directa en la ecuación (8), tenemos:

multiplicando ambos mlembros de esta ecuación por $(\vec{b} \times \vec{c})$:

$$v''(\vec{a}_{,} \cdot \vec{b}_{,} \times \vec{c}_{,}) \cdot (\vec{b}_{,} \times \vec{c}_{,}) = (\vec{b}_{,} \times \vec{c}_{,})$$

y realizando otra vez el doble producto vectorial, nos da:

o blen:

 $\vec{a}_{g} = \frac{(\vec{b}_{x} \times \vec{c}_{g})}{v^{*}}$

sustituyendo la ecuación (9) en esta última expresión, nos da la expresión del parámetro de red directa en términos de los parámetros de la red reciproca, es decir:

$$\vec{a}_{j} = \frac{\vec{b}_{j} \times \vec{c}_{j}}{\vec{a}_{j} \cdot \vec{b}_{j} \times \vec{c}_{j}}$$
(12)

Realizando un procedimiento similar para encontrar los vectores \vec{b}_{o} y \vec{c}_{o} equivalentes, se encuentran las siguientes expresiones:

Tabla 7 Relaciones entre los parámetros de red directa

y los parámetros de red recíprocos.

Las relaciones entre las magnitudes de los parámetros de red directa y red recíproca, se muestran en la Tabla 7. Como se ha visto, la magnitud del vector recíproco Rest 1/d , se acostumbra definir el cuadrado de esta magnitud, como Q_{hid}, así:

$$Q = \vec{H}_{hkl} \cdot \vec{H}_{hkl} = 1/d_{hkl}^2 \dots (14)$$

Estos valores en términos de los parámetros de red de la red directa, mostrados en la tabla 3, por lo general son complicados, pero utilizando las relaciones de la tabla 7 se pueden expresar de una manera más sencilla. En la Tabla 8 se muestra la simplificación del valor Q.

Tabia 8

Relaciones entre la distancia interplanar y

r 1	los	рага	imet	ros	de	red	reci	procos.
-----	-----	------	------	-----	----	-----	------	---------

Sistema Cristalino	$1/d_{hki}^2 = Q_{hki}$
Cúbico	$(h^2 + k^2 + l^2)a_0^{*2}$
Tetragonal	$(h^{2} + k^{2})a_{0}^{*} + l^{2}c_{0}^{*}$
Hexagonal	$(h^{2} + hk + k^{2})a_{0}^{*} + l^{2}c_{0}^{*}$
Ortorrómbico	$h^2 a_0^{*2} + k^2 b_0^{*2} + l^2 c_0^{*2}$
Monoclínico	$h^{2}a_{0}^{*2} + k^{2}b_{0}^{*2} + l^{2}c_{0}^{*2} + 2hka_{0}^{*}b_{0}^{*}\cos\gamma^{*}$
Triclínico	$h^2a^2 + k^2b^2 + l^2c^2 + 2hka^2b^2\cos^2$ + 2klb ² c ² cosa ² + 2hlc ² a ² cosβ ²

CAPITULO II LOS RAYOS X

1.- Descubrimiento de los rayos X.

El descubrimiento de los rayos catódicos, durante la segunda mitad del siglo XIX, y el interés por el conocimiento de su naturaleza conllevó a otros descubrimientos entre los cuales está el de los rayos X.

Los rayos catódicos se producian por descargas eléctricas a través de gases a muy bajas presiones en tubos de vidrio seliados, los cuales podian ser del tipo de Crookes, de Lenard o de Hittorf, debidos a sus inventores, el inglés Sir William Crookes (1832-1919), el checoslovaco Philip Eduard Anton Lenard, (1862-1947), y el alemán Johan Wilhelm Hittorf, (1824-1914), respectivamente.

En el verano de 1895, el alemán Wilhelm Conrad Röntgen, (1845-1923), quien en ese tiempo era profesor de física de la Universidad de Würzburg, diseño un experimento con un tubo de rayos catódicos cubierto con cartón negro, con el fin de investigar si podian atravesar las paredes de vidrio del tubo y salir al aire, como lo había hecho Lenard con unas ventanas de metal muy delgadas. El 8 de noviembre del mismo año, en el transcurso de su experimento que realizaba en un cuarto oscuro, mientras enviaba un pulso de rayos catódicos a través del tubo, observó que una pantalla hecha de cristales de Platinocianuro de Bario y colocada a cierta distancia, emitia cuenta luz (fluorescia). Röntgen se dlo de aue la fluorescencia no se debia a los ravos catódicos, va que éstos se absorbian fácilmente por el vidrio del tubo, por el cartón que lo cubria y por el aire del cuarto. Por medio de una serie de experimentos subsecuentes dedujo que cuando los rayos catódicos golpeaban el vidrio del tubo, una señal invisible pasaba a través del aire y de los objetos hasta llegar a la pantalla haciendola fluorescer. Desconociendo su naturaleza la llamó rayos X.

Inmediatamente después, Röntgen desarrolló un estudio sobre estos nuevos rayos por medio de experimentos y encontró la

mayoría de las propiedades de los rayos X que se conocleron en los siguientes 16 años. Entre estas propiedades están las siguientes: 1) todos los cuerpos son transparentes a los rayos X en menor o mayor grado: 2) muchos materiales, además del Platinocianuro de Bario, cuando son expuestos a los rayos X, fluorescen: 3) los rayos X sensibilizan las emulsiones fotográficas; 4) los objetos electrificados pierden su carga al ser expuestos a los rayos X; 5) la intensidad de los rayos X varia inversamente proporcional al cuadrado de la distancia. 6) los rayos X se pueden colimar por rendijas, demostrando que vialan en línea recta: 7) los campos eléctricos o magnéticos no deflectan los rayos X; 8) cuando un haz de rayos catódicos de muy alta energía golpea un objeto, produce rayos X; 9) los elementos pesados son más eficientes para producir rayos X que los elementos ligeros; 10) no se observan ni la reflexión ni la refracción de ravos X.

A partir de estas observaciones Röntgen no pudo encontrar la naturaleza de los rayos X; debido a que había algunos comportamientos comunes a los de la luz visible pero otros que no se observaban, no se podía concluir que fueran ondas electromagnéticas. Sin embargo la seguridad de que no eran rayos catódicos o luz ultravioleta era completa. Röntgen concluyó que se trataba de un nuevo tipo de rayos y sugirió que podrían ser "vibraciones longitudinales en el éter".

El primer comunicado de Röntgen apareció en enero de 1896, en la Sitzungsberichte, revista de la Würzburg Physical-Medicine Society, en un artículo llamado Sobre una Nueva Clase de Rayos. Su segundo comunicado se publicó dos meses después con una placa de la radiografía de la mano del profesor Kölliker, la cual la habia realizado en una plática al público en enero de ese mismo año.

Inmediatamente después del descubrimiento de Röntzen otros científicos empezaron a investigar las propledades de los rayos X y muy pronto se aplicaron para obtener radiografías como una herramienta en los diagnósticos médicos.

2.- Naturaleza de los rayos X.

El hecho de que la interferencia de los rayos X con reillas de difracción, como comunmente se hacía, no se observara era debido a que la longitud de onda de los rayos X es demasiado pequeña lo que requeria un enrejado cuyas separaciones fueran del mismo orden de magnitud y la más alta tecnología de esa época no lo lograba. Con las investigaciones de diferentes científicos se fue descubriendo la naturaleza de los rayos X. Un acontecimiento importante inmediatamente después del descubrimiento de Röntgen fue que, en 1897, el inglés Sir Joseph John Thomson (1856-1940), a partir de una serie de experimentos, en los que determinó que la razón carga/masa era constante, concluvó que los rayos catódicos estaban compuestos de pequeñas partículas cargadas negativamente, los electrones, Este hecho sugirió que los rayos X consistian de ondas electromagnéticas de onda corta, pero no era posible afirmario hasta que se demostrara el fenómeno de difracción. Otra propiedad de los ravos X que reafirmaba esta teoría fue la propiedad de dispersión de los ravos X al pasar por gases y de la polarización de los rayos X dispersados. Esta demostración fue hecha en 1904 por Charles Glover Barkia (1877-1944), un físico inglés de la universidad de Cambridge. Él utilizó trozos de carbón para dispersar los rayos X. Uno, colocado directamente a los rayos X incidentes provenientes de un tubo, servia como dispersor principal, el otro, colocado en una dirección perpendicular a la dirección del haz incidente. servia como analizador. Si el primer haz dispersado estaba polarizado, el haz secundario solo podría dispersar en la dirección de polarización del haz primario. Para medir la Intensidad de los rayos X dispersados por el segundo carbón midió la lonización de dos cámaras colocadas en direcciones mutuamente perpendiculares, una paralela a la dirección de propagación del primer haz dispersado, .(H figura 1), y otra perpendilcular a ésta, (V, figura 1). Él encontró que la ionización de la cámara H era mucho más intensa que la ionización de la cámara V. lo que demostraba que los ravos X dispersados por el primer carbón estaban polarizados.

Figura 1. Diagrama del diseño experimental utilizado por Barkia para demostrar la polarización de los rayos X.

Además de esto, Barkla demostró que cuando los rayos X inciden sobre la materia la radiación dispersada consiste de dos tipos: rayos X dispersados iguales a los incidentes, y radiación característica del elemento dispersor. De estos últimos, encontró dos tipos: unos más penetrantes, a los que llamó radiación K, y otros menos penetrantes a los que llamó radiación L. Estas características fueron explicadas hasta que se entendió la estructura del átomo.

Otra demostración que apoyó la teoría ondulatoría de los rayos X fue la de E. Marx, en 1906, quien encontró que la velocidad de los rayos X era aproximadamente igual a la de la luz, con esto se esperaba que los rayos X fueran ondas electromagnéticas de longitud de onda corta pero aún faltaba demostrar el fenómeno de difracción.

En 1909, el alemán Paul Peter Ewald (1888-1985) utilizó un modelo de un cristal como pequeños osciladores separados periódicamente en tres dimensiones con 10⁻⁶ cm aproximadamente entre uno y otro. El alemán Max Theodor Felix von Laue (1879-1960), sugirió que si esta suposición era correcta entonces los planos de los átomos de los cristales podrían servir como rejillas de difracción como las que se hacian para la luz visible. Con tal hipótesis se llevó a cabo un experimento por los estudiantes Walter Friedrich y Paul Knipping, en el verano de 1912. Irradiaron un cristal de Sulfato de Cobre con rayos X colocando una placa fotográfica sensible detrás del cristal, como resultado obtuvieron un patrón de puntos arreglados regularmente alrededor de un ounto

central más intenso. ésta era la prueba de la difracción de rayos X, y así, se estableció la naturaleza exacta de los rayos X como ondas electromagnéticas.

Otras formas de radiación electromagnética son rayos gamma, luz ultravioleta, luz visible, radiación infrarroja y ondas de radio. La posición que ocupan los rayos X en la escala electromagnética está entre los cavos v el. le jano ultravioleta (figura 2). Su iongitud de onda está aproximadamente entre 0.05 a 100 Å.

Figura 2. Espectro electromagnético.

3.- Producción de rayos X.

Los rayos X se producen por diversos procesos, de los cuales en este trabajo solo trataremos dos: el frenado repentino de electrones viajeros a muy altas velocidades, y las transiciones de los electrones cercanos al núcleo atómico debido a los cambios en el estado energético de los átomos.

Los espectros de emisión que se producen en cada uno de estos dos procesos se conocen como *espectro continuo y espectro característico* respectivamente. Antes de pasar a la explicación detallada de cada uno de estos espectros, se analizará la producción de rayos X en tubos convencionales usados para experimentos de difracción de rayos X por cristales.

- A) Tubos convencionales de filamento productores de rayos X.
 - Las partes esenciales de un generador de rayos X (figura 3) son:
 - a) un generador de electrones precedentes de un cátodo,
 - b) un metal que es bombardeado por los electrones que funciona como blanco y anticátodo o ánodo.
 - c) un acelerador de alto voltaje, y,
 - d) un sistema de enfriamiento para evitar el sobrecalentamiento del blanco.

A continuación se describen las características generales de un tubo productor de rayos X del tipo empleado en el Laboratorio de Rayos X del IFUNAM. Este tipo de tubos, llamados de filamento, fueron inventados por el norteamericano William David Coolidge (1873-1975), en 1913. Consisten de un tubo de vidrio pyrex al alto vacio, aprox. 1×10^{-6} mm de Hg., el cual en un extremo tiene un ánodo, que es por lo general una pieza de W, Cu, Co, Fe u otros

metales, y por el otro un cátodo, que es un filamento, por lo general de Tungsteno, (figura 4). Una terminal de alto voltale se aplica al filamento, y la otra al ánodo, el cual está al mismo tiempo conectada a tierra. El filamento se calienta usando corrientes entre aproximadamente 2 y 3 amperes, produciendo electrones libres fáciles de escapar, efecto termoeléctrico. Estos electrones son por el fuertemente atraidos por la diferencia de potencial, de 20 a 100 KV, aprox., entre éste y el ánodo. Debido a que casi el 98% de la energia cinética de los electrones se convierte en calor al chocar con el ánodo, se introduce un sistema de enfriamiento por circulación de agua. Una pequeña cubierta de metal alrededor del filamento se mantiene al mismo voltale que éste y repele los electrones emitidos, afocándolos en una área del ánodo llamada área focal. El área focal emite rayos X en todas direcciones escapando del tubo a través de dos o más ventanas. Estas ventanas se fabrican de materiales que sean tanto transparentes a los rayos X como lo suficientemente resistentes para conservar el vacío dentro del tubo: algunos ejemplos son: Berilio, Aluminio o Mica.

B) Espectro continuo.

i) Características generales.

El espectro continuo es una mezcla de diferentes longitudes de ondas análogo a la luz blanca, por lo que también se le llama *espectro blanco*. Su intervalo

empieza a partir de una longitud de onda llamada limite de iongitud de onda corta, λ_{min} , en donde la intensidad de la radiación es cero, y a partir de la cual se incrementa rápidamente llegando a un valor máximo para un cierto valor de longitud de onda llamada λ_{impr} , y luego decrece de una manera menos abrupta. La intensidad de la radiación aumenta en general para todas las longitudes de onda cuando se aumenta el voltaje del tubo. los valores disminuyen, y de λ,,,,,, (figura 5).

Figura 5, Espectro continuo de rayos X.

ii) Origen del espectro continuo.

El espectro continuo se produne cuando electrones de muy alta energía cinética son desacelerados al incidir sobre la materia. La energía cinética que alcanzan los electrones acelerados en un tubo de rayos X, antes de llegar al ánodo está dada por (Cullity 1967, p.4):

$$\frac{1}{2}mv^2 = eV \qquad \dots (1)$$

donde $e=1.6 \times 10^{-19}$ coulombs es la carga del electrón, m=9.11 × 10⁻³¹ kg es su masa, u [m/s] es su velocidad justo antes del impacto, y V [Volts] es el voltaje que se mantiene entre el cátodo y el ánodo del tubo. De acuerdo a la relación de Planck-Einstein, la energía de

un fotón de frecuencia ν de la radiación emitida está dada por (Bockhoff, 1976, p. 36):

$$E=h\nu=hc/\lambda$$
 ...(2)

donde c es la velocidad de la luz en el vacio. Los electrones que pierden toda su energia cinética de un solo impacto, la convierten en energía de radiación cuya longitud de onda corresponde a λ_{min} . Entonces, igualando las ecuaciones (i) y (2), se liega a la siguiente expresión:

$$\lambda_{\min} = \frac{hc}{eV} \qquad \dots (3)$$

Sin embargo, la probabilidad de que esto ocurra es cero, la mayoria de los electrones convierten su energía cinética en energía de radiación en varios decrementos de energía ΔE correspondiente a varias colisiones sucesivas con los átomos del ánodo, produciendo fotones de menor energía que la correspondiente a la longitud de onda λ_{min} . Estos fotones de longitud de onda mayor forman el espectro continuo.

iii) Variación de la intensidad del espectro continuo.

Un aumento en el voltaje del tubo, produce un aumento en intensidad del espectro continuo va la. que 105 electrones del filamento del tubo son acelerados hasta lograr una mayor velocidad de impacto. Además, en la ecuación (3) se puede observar que un aumento de voltaje causa que el limite de longitud de onda corta disminuva. Lo mismo ocurre para la longitud de onda λ_{imax} . Intensidad Integrada del espectro continuo es proporcional al área bajo una curva, del tipo mostrado en la figura 5, y depende del número atómico Z del metal del ánodo y de la corriente i de electrones que pasa por el tubo, de la siguiente manera (Cullity, 1967 p.6);

donde A es una constante de proporcionalidad y m es un valor constante aproximadamente igual a 2.

C) Espectro característico.

Cuando el voltaje de un tubo de rayos X rebasa un cierto valor, característico del metal del ánodo, se observa que sobre el espectro continuo aparecen lineas discretas de intensidad máxima en longitudes de onda características del elemento del ánodo. Estas lineas, liamadas *líneas* espectrales, forman el espectro característico (figura 6).

Figura 6. Espectro característico de rayos X, sobre el espectro continuo.

i) Origen del espectro característico.

Los electrones de los átomos están agrupados en capas o niveles de energía, designadas K, L, M, N, O, P, Q, en orden de distancia creciente a partir del núcleo. La energía de los electrones que llegan al ánodo del tubo de rayos X puede ser sufuciente para sacar uno de los electrones de las capas internas. Cuando un electrón de la capa K sale deja un hueco y se dice que el átomo está en el estado cuántico K. Otro electrón de las capasinternas en un nivel superior, o guizás un electrón de valencia, o un electrón libre, puede caer en ese hueco de la capa K. El cambio energético del electrón, llamado transición, se manifiesta en un fotón cuya energía se encuentra en la región de los ravos X. El electrón que ocupa el hueco de la capa K puede provenir de las capas L. M. N. etc., cuando el electrón proviene de la capa L. a la línea de emisión de rayos X se le denomina Kα, a la que proviene de la capa M. KS. y asi sucesivamente Ky. etc. Lo mismo ocurre para las capas L. M. etc. Sin embargo las transiciones son más complejas, pues cada nivel de energia puede tener subniveles de energía. Las transiciones que pueden ocurrir en un átomo deben satisfacer las ilamadas reglas de selección. Los ejectrones en cada capa están clasificados con respecto a su momento angular y su dirección de spin. Cada uno de estos parámetros está designado por un número cuántico, los cuales pueden tener sólo ciertos valores, y deben cumplir el principio de exclusión de Pauli, es decir, dos electrones no pueden tener un mismo conjunto de números cuánticos. En la tabla i se muestran las designaciones de los números cuánticos, sus nombres, su significado y las reglas de selección permitidas.

Cuando una transición va del estado K al estado L_{III} de un átomo, a la línea espectral se le denomina K α_1 , cuando va del estado K al estado L_{II} , se le denomina K α_2 . Un ejemplo de los niveles de energía para el átomo de Plata se muestra en la figura 6, donde se han indicado las transiciones posibles con flechas, y sus designaciones. La notación empleada para las líneas espectrales debidas a un elemento particular es anteponiéndoles el símbolo del elemento a cada una de ellas , por ejemplo, las líneas espectrales del Cobre son: CuK α_1 , CuK α_2 , etc.

Simbolo	Nombre	Significado	Valores Permitidos	Reglas de Selección
n	Principai	Especifica la capa (n=1 corresponde a K, n=2 a L, etc) y determina la energia del electrón	1, 2,,n	∆n≠0
ı	Azimutal	Determina su momento angular. orbital.	0, 1,,(<i>n-</i> 1) $\Delta t = \pm 1$
T.	Magnético	Proyección del momento angular (1) sobre el campo magnético; indica la orientación de el orbital en un campo magnético.	0, ±1,,±ł	
S	Spin	Describe la orientación de la dírección de spin.	$\pm \frac{1}{2}$	
J	Precesión interna	Vector suma de l y s.	$l \pm \frac{1}{2} \neq -\frac{1}{2}$	∆j=±1,0

Tabla 1 Números cuánticos

Figura 6. Diagrama de los niveles de energía del átomo de Plata con sus transiciones permitidas indicadas con flechas.

ii) Intensidad: la intensidad de una linea característica de rayos X depende de la probabilidad relativa de que ocurran las transiciones respectivas de electrones. Por ejemplo, en la serie K, las intensidades relativas de Ka, Ka, K β , y K β , son 100, 50, 15 y 5 respectivamente, y son proporcionales a las probabilidades relativas de las transición de un electrón a la capa K de los níveles LIII. LII. MIII y NIII. Estas probabilidades cambian con Z. debido al número de electrones que hay en sus capas, por ejemplo, el espectro L no se observa para los elementos ligeros debido a que su capa M no está liena. Debido a que el valor de la longitud de onda de la línea Ka es muy parecido al valor de la longitud de onda de la línea K α_{s} , en algunos experimentos no se logran distinguir les efectos que producen cada una, observando como si el efecto proviniera de una sola longitud de onda, que es la sobreposición de las dos longitudes de onda. En estos casos se considera un valor de longitud de onda promedio, $\lambda K_{\overline{\alpha}}$, pesada de acuerdo a las intensidades relativas de las líneas Ka, y Ka, esto es:

$$\lambda K_{\overline{\alpha}} = \frac{2\lambda K \alpha_1 + \lambda K \alpha_2}{3} \qquad \dots (5)$$

Lo mismo ocurre con las lineas $K\beta_1 K\beta_3$, el símbolo K β indica el promedio de estas dos lineas.

4.- Absorción de rayos X.

Cuando un haz de rayos X atraviesa un materiai, el rayo transmitido es de menor intensidad que el rayo incidente. Se ha demostrado experimentalmente que la fracción dí que decrece la cantidad I, es proporcional a la distancia atravesada dx y a la intensidad incidente, como se muestra en la siguiente expresión:

$$-\frac{dI}{I} = \alpha dx \qquad \dots (6)$$

donde a, la constante de proporcionalidad, es llamado el

coeficiente de obsorcion lineal, y depende de la sustancia que atraviesa el haz, y de la longitud de onda de los rayos X. El coeficiente de absorción lineal α es proporcional a la densidad ρ , lo que significa que la cantidad α/ρ es constante, A esta razón se define como el coeficiente de absorción de masa μ :

$$\mu = \alpha / \rho \qquad \dots (7)$$

Integrando la ecuación (6), se obtiene la siguiente expresión:

$$\int_{x}^{-\frac{\alpha}{\rho}} \rho x - \mu \rho x$$

$$I_{x} = I_{\rho} e^{\rho} = I_{\rho} e^{\rho} \dots (8)$$

donde I_{o} e I_{x} son las intensidades del rayo incidente y del haz transmitido que pasa a través del grosor x, respectivamente.

El coeficiente de absorción de masa varía dependiendo de la longitud de onda de los rayos X incidentes, como se muestra en la figura 7. La función de variación del coeficiente de absorción de masa con el número atómico de el elemento y la longitud de onda, puede expresarse mediante la siguiente ecuación:

$$\mu_a = K \lambda^3 Z^3 \qquad \dots (9)$$

donde K es una constante que difiere para cada rama de la curva. El coeficiente de absorción de masa mide dos fenómenos: la dispersión y la absorción. El fenómeno de dispersión es similar al de la dispersión de la luz por particulas de polvo en el aire. Este fenómeno se analizará con más detalle en el capitulo III. El fenómeno de absorción es causado por transiciones electrónicas dentro del átomo. Así como un electrón con suficiente energía puede excitar un electrón de un átomo y entonces originar emisión característica, un fotón característica, llamada radiactón fluorescente. ésta se emite en todas direcciones y tiene exactamente la misma longitud de

onda que el fotón de rayos X que lo originó, que es precisamente la longitud de onda en la que el cambio del coeficiente de absorción de masa sufre un cambio abrupto. A esta discontinuidad abrupta se le llama arista de absorción, y es característica del elemento al que incide la radiacion X.

5.- Filtros

La mayoría de los trabajos en difracción de rayos X requieren un haz monocromático, aunque esto no es posible totalmente, se ha encontrado la manera de aislar la linea característica más intensa (la componente α , en la figura 8) del resto del espectro. Para disminuir la radiación de la línea K β se hace pasar el haz de rayos X incidente a través de un *filtro*.

Estos filtros se hacen de un material cuya arista de absorción esté entre las longitudes de onda de las líneas K α y K β dei ánodo. El material del filtro tiene por lo regular un número atómico menor en 1 ó 2 unidades que el del material del ánodo. Estos filtros absorben más componente K β que la componente K α , ya que el cambio abrupto de su coeficiente de absorción está entre esas dos longitudes de onda.

En la figura 8 se muestra el resultado de aplicar un filtro de Niquel (Z=28) a la radiación característica del Cobre (Z=29).

b) con filtro de Nickel.

Figura 8. Comparación del espectro de la radiación característica del Cobre: (a) antes, y, (b) después, de pasar a través de un filtro de Nickel. La linea discontinua representa el coeficiente de absorción de masa del Ni en función de la longitud de onda.

CAPITULO III

DIFRACCION DE RAYOS X POR CRISTALES

1.- Introducción.

La interacción de los ravos X con la materia es uno de intereses predominantes. Cuando una onda nuestros electromagnética incide sobre un átomo o molécula interacciona con la nube de electrones enlazados, impartiendo energía al átomo. Podemos imaginar el proceso como si el nivel de energia más baja o base del átomo se pusiera en vibración. La frecuencia de oscilación de la nube electrónica es igual a la frecuencia impulsora v, es decir la frecuencia del campo armónico E de la onda incidente. La amplitud de oscilación será grande únicamente cuando v esté en la vecindad de la frecuencia de resonancia del átomo. En efecto, en resonancia podemos emplear la descripción simple del átomo como si estuviera primero en su estado base: al absorber un fotón (que tiene la frecuencia de resonancia), hace la transición a un estado exitado. En medios densos, lo más probable es que el átomo regrese a su estado base habiendo disipado su energía en forma de calor. En gases rarificados el átomo generalmente hará la transición hacla abajo emitiendo un fotón, en un efecto conocido como radiación de resonancia.

A frecuencias inferiores o superiores a la resonancia, los electrones que vibran con respecto al núcleo se pueden considerar como dipolos eléctricos oscilantes y como tales rerradiarán energía electromagnética con una frecuencia que coincide con la la luz incidente. La extracción de energía de una onda incidente y la reemisión subsecuente de alguna porción de esa energía se conoce como dispersión. Este es el mecanismo físico operativo básico en la reflexión, refracción y difracción; el efecto de dispersión es por esto fundamental.

Además de los osciladores electrónicos, que generalmente tienen resonancias en el ultravioleta, hay osciladores atómicos que corresponden a la vibración de los átomos que forman una molécula. Debido a sus grandes masas los

osciladores atómicos generalmente tienen resonancia en el infrarrojo. Además, tienen amplitudes vibracionales pequeñas y por consiguiente son de poco interés por el momento.

La amplitud de un oscilador y por consiguiente la cantidad de energia extraída de la onda incidente aumenta conforme la frecuencia de la onda se aproxima a la frecuencia natural del átomo. Para gases de baja densidad donde las interacciones interatómicas son despreciables, la absorción será insignificante y la onda esparcida o rerradiada llevará cada vez más energía conforme la fuerza impulsora se acerca a una resonancia.

Lord Rayleigh fue el primero en deducir la dependencia de la frecuencia de la densidad de flujo esparcido. De acuerdo a la ecuación de la irradiancia, dada por:

$$I(\theta) = \frac{\mu_o^2 \omega^4}{32\pi^2 c^3 c_1} \frac{\sin^2 \theta}{r^2} ...(1)$$

que describe el patrón de radiación para un dipolo oscilante, la densidad de flujo esparcido es directamente proporcional a la cuarta potencia de la frecuencia impulsora. La dispersión de luz por objetos que son pequeños en comparación con la longitud de onda se conoce como dispersión de Rayleigh. Este esparcimiento ocurre con frecuencias del fotón incidente diferentes a las que corresponden a los niveles de energía estables del átomo. En este caso el fotón será irradiado sin ningún retraso apreciable y muy a menudo con la misma energía que tenía el cuanto absorbido. El proceso se conoce como dispersión elástica o coherente porque hay una relación de fase entre los campos incidente y dispersado.

Es también posible que un átomo excitado no regrese a su estado inicial después de la emisión de un fotón. Ya que el átomo cae a un estado provisional, emite un fotón de energía más baja que el fotón primario incidente en lo que generalmente se dice que es una *transición Stokes*. Si el proceso ocurre rápidamente (aprox. 10^{-7} seg.) se llama fluorescencia. Mientras que si hay un retraso apreciable (en algunos casos segundos, minutos y aún varías horas), se conoce como fosforescencia.

2.- Descripción general del proceso de dispersión.

Siempre que cualquier tipo de radiación electromagnética incide con la materia, ocurre, en menor o mayor grado, el fenómeno de dispersión.

Vamos a considerar que la radiación incidente es una haz de rayos paralelos, aunque la radiación dispersada es reemitida en todas direcciones. La distribución espacial de la energía en el haz dispersado depende del tipo de proceso de dispersión que toma lugar pero hay características generales comunes a todos los tipos de dispersión.

Supongamos que un haz de rayos paralelos monocromático incide sobre un centro dispersor O (figura 1). La intensidad de radiación de este haz se define como la energía por unidad de tiempo que pasa a través de una sección transversal perpendicular a la dirección de propagación de la radiación. Asi, para la radiación incidente su intensidad se puede describir como la potencia por unidad de sección traversal del haz. Sin embargo, la radiación dispersada radia en todas direcciones con alguna distribución espacial alrededor del punto O. En la figura se muestra un cono de rayos con ápice en O representando los rayos dispersados dentro de un pequeño ángulo sólido en una dirección particular. En este caso la intensidad de la radiación dispersada dependerá de la distancia a partir de O disminuyendo la intensidad según la lev del inverso del cuadrado. De esta manera, la intensidad de la radiación dispersada se describe como la energía dispersada por unidad de tiempo por unidad de ángulo sólido en una dirección particular, lo cual es una medida de lo que sucede en el dispersor mismo.

La variación con el tiempo del desplazamiento de la radiación incidente que llega a O se puede describir por la ecuación:

$$\psi(x=0,t) = \Lambda \cos 2\pi \nu t \qquad \dots (2)$$

donde ν es su frecuencia.

Para la onda dispersada, la función de onda correspondiente cambiará en amplitud y fase en un punto P alejado de O por una distancia y, de acuerdo a los siguientes tres factores:

- a) Se introduce un corrimiento de fase con respecto a la onda dispersada en O de -2πy/λ donde λ es la longitud de onda de la radiación incidente. También puede expresarse como -2πyv/v donde v es la velocidad de propagación de la radiación.
- b) El mismo proceso de dipersión puede introducir un corrimien to de fase α_{p} , al que se le llama corrimiento de fase dispersor, con respecto a la onda incidente en O.
- c) La amplitud de radiación dispersada disminuye inversamente proporcional a la distancia r, conforme la ley del inverso del cuadrado de la intensidad de la radiación.

De acuerdo a esto, el desplazamiento de la radiación dispersada en P se puede describir como:

$$\phi(20, y, t) = f_{20} - \frac{\Lambda}{y} \cos[2\pi v(t - y/v) - \alpha_{g}] \qquad ...(3)$$

La cantidad f_{20} es una constante de proporcionalidad, a la que llamaremos longitud de dispersión, que tiene dimensiones de longitud y depende del ángulo de dispersión (se le denota como 20 para relacionarlo con la teoría de difracción de rayos X como se verá subsecuentemente).

Es más conveniente expresar una ecuación de onda en forma compleja:

 $\psi = \psi_{\alpha} \exp[2\pi i \nu (t - x/\nu)]$

$$\psi = \psi \cos[2\pi i \nu (t - x/\nu)] + i \psi \sin[2\pi i \nu (t - x/\nu)] \qquad \dots (4)$$

donde ψ_{o} es la amplitud de la onda, la parte real es su desplazamiento y la relación parte imaginaria/parte real es la tangente de la fase del movimiento ondulatorio en el punto (x,t) con respecto al origen (0,0).

Siguiendo esta nomenclatura la ecuación (3) se puede escribir así:

$$\psi(2\theta, y, t) = f_{2\theta} \frac{\Lambda}{y} \exp[2\pi i v(t - y/c) - i\alpha_{g}] \qquad \dots (5)$$

Y la amplitud de la perturbación en P debido a un punto dispersor es:

$$\psi_{o}(2\theta, y) = f_{2\theta} \frac{A}{y} \dots (6)$$

y la fase con respecto a la onda incidente en O es:

$$\alpha_{cp} = 2\pi v y/c + \alpha_{cp} \qquad \dots (7)$$

La intensidad del haz dispersado en términos de la potencia por unidad de ángulo sólido está dado por:

$$\mathcal{G}_{20} = K[\psi_{o}(20,y)]^{2} \cdot y^{2} = f_{20}^{2}KA^{2}$$

 $\mathcal{G}_{20} = f_{20}^{2}I_{o} \qquad ...(8)$

donde K es la constante de proporcionalidad e $I_{\omega} = KA^2$ es la intensidad del haz incidente sobre el dispersor.

3.- Dispersión por un par de puntos.

Una vez que hemos considerado el proceso de dispersión por un punto, consideremos la situación cuando la radiación incide sobre dos centros dispersores idénticos $O_1 \ y \ O_2$, separados entre si por un vector de posición r. Si consideramos la onda resultante en un punto P alejado una distancia y de O_1 siendo ésta muy grande comparada con la distancia de separación, r, entre $O_1 \ y \ O_2$, la radiación dispersada que llega a P tendrá aproximadamente el mismo ángulo de dispersión, 20, de $O_1 \ y$ de O_2 , como se muestra en la figura 2.

Figura 2. Dispersión por un par de puntos dispersores.

Ya que los dispersores son idénticos, el corrimiento de fase dispersor, α_s , será el mismo para cada uno, entonces, la diferencia de fase de la radiación que llega a P dispersada por O₁ con respecto a la radiación dispersada por O₁ es:

$$\alpha_{0102} = -\frac{2\pi}{\lambda} (CO_2 + O_2 D) \qquad ...(9)$$

SI definimos dos vectores unidad \hat{S}_{o} y \hat{S} que determinen las direcciones de los haces incidente y dispersado, entonces:

$$CO_2 = \mathbf{r} \cdot \hat{\mathbf{S}}_o, \ O_2 \mathbf{D} = -\mathbf{r} \cdot \hat{\mathbf{S}}$$

y asi, de (9),

$$\alpha_{0102} = 2\pi r \cdot (\frac{\hat{S} - \hat{S}_0}{\lambda}) \qquad \dots (10)$$

La cantidad entre paréntesis puede remplazarse por un vector equivalente:

$$\mathbf{s} = \left(\frac{\hat{\mathbf{S}} - \hat{\mathbf{S}}_o}{\lambda}\right) \qquad \dots (11)$$

dando:

$$\alpha_{0,02} = 2\pi \mathbf{r} \cdot \mathbf{s} \qquad \dots (12)$$

El vector s tiene un alto significado pues se utiliza para describir una posición en el espacio de difracción, como se verá en la sección 10, de la misma manera que r se utiliza para describir una posición en el espacio real. En la figura 3 se muestra la relación geométrica.

Figura 3. Relación entre s y \hat{S}_{a} y \hat{S} .

 $\hat{S}_{o}/\lambda y \hat{S}/\lambda$ en las direcciones de incidencia y de dispersión tienen la misma magnitud 1/ λ . En la figura se observa que s es perpendicular al bisector del angulo entre $\hat{S}_{o} y \hat{S} y$ que su magnitud está dada por:

$$s = (2 \text{sen}\theta) / \lambda$$

...(13)

Si el desplazamiento debido a la radiación incidente en O_1 se describe por la ecuación (2), entonces la perturbación en P, a una distancia y de O, estará dada por:

$$\psi(2\theta, y, t) = f_{2\theta} \frac{A}{y} \{ \exp[2\pi i \nu (t - y/u) - i\alpha_s] +$$

 $\exp[2\pi i v(t-y/v)-i\alpha_{s}+2\pi i r\cdot s]$

=
$$f_{20} - \frac{A}{y} \exp[2\pi i \nu (t - y/v) - i\alpha_{g}](1 + \exp 2\pi i r \cdot s) \dots (14)$$

La amplitud de esta resultante es:

$$\psi_{o2}(2\theta, y) = f_{2\theta} - \frac{A}{y}(1 + \exp 2\pi i \mathbf{r} \cdot \mathbf{s})$$

la cual, usando la ecuación (6), se puede expresar en términos de la amplitud de dispersión a partir de un origen común como:

Esta ecuación se puede interpretar por medio de un diagrama vector-fase como se muestra en la figura 4.a. La amplitud de la perturbación en P debido al dispersor en O_1 está representado por el vector AB y debido al dispersor O_2 por BC. Ambos tienen la misma magnitud $\psi_o(2\theta,y)$ y el ángulo entre ellos es igual a la diferencia de fase de la radiación dispersada por O_1 y O_2 , $2\pi r \cdot s$. La resulante AC tiene la magnitud $\psi_{o2}(2\theta,y)$ y difiere en fase de la radiación dispersada por O_1 y O_2 , $2\pi r \cdot s$. La resulante AC tiene la magnitud $\psi_{o2}(2\theta,y)$ y difiere en fase de la radiación dispersada en O_1 posición de uno de ios dispersores, sino en un punto arbitrario O, y las posiciones de O_1 y O_2 con respecto a O están dadas por los vectores \mathbf{r}_1 y \mathbf{r}_2 , la ecuación (15) se puede expresar:

$$\psi_{o2}(20, y) = \psi_{o}(20, y) \exp(2\pi i r_{1} \cdot s + 2\pi i r_{2} \cdot s)$$
 ...(16)

cuyo diagrama vector-fase se muestra en la figura 4.b.

- Figura 4. Diagrama vector-fase para un par de puntos dispersores con: (a) uno de los puntos como origen de fase, y (b) un punto general como origen de fase.
- 4.- Dispersión de una distribución general de puntos dispersores.

Para un caso más general, consideremos ahora la situación de un sistema de puntos dispersores idénticos O_1, O_2, \dots, O_n . Vamos a encontrar la amplitud de la perturbación en una dirección correspondiente al vector de dispersión s a una distancia que es grande comparada con la extensión del sistema de los dispersores.

Si la posición del dispersor en O_j se denota por su vector desplazamiento \mathbf{r}_j a partir de un punto de origen O, entonces, por extensión del tratamiento anterior expresado en la ecuación 16, encontramos:

Esta ecuación se aplica a dispersores idénticos, como puede verse por el factor $\psi_{o2}(20, y)$ que aparece fuera de la suma. Cuando los dispersores no son equivalentes la amplitud de la dispersión debe escribirse:

$$\psi_{on}(2\theta, y) = \sum_{j=1}^{n} [\psi_{o}(2\theta, y)] \exp 2\pi i r_{j} \cdot s$$
$$\psi_{on}(2\theta, y) = -\frac{\Lambda}{y} \sum_{j=1}^{n} (f_{2\theta}) \exp 2\pi i r_{j} \cdot s \qquad \dots (18)$$

donde ahora la longitud de dispersión aparece dentro del símbolo de suma. El diagrama vector-fase para dispersores no idénticos se muestra en la figura 5 para el caso n=6. Se supondrá que aunque ellos sean dispersores no idénticos, tienen el mismo valor asociado α_s . Ésta es la situación real en la difracción de rayos X. Sin embargo algunes veces es posible tener los dispersores con un corrimiento de fase diferente. En la sección 7 se verá que la ecuación (18) es la ecuación básica para describir el fenómeno de difracción de rayos X.

Figura 5. Diagrama vector-fase para seis dispersores no idénticos.

5.- Dispersión de Thomson.

Hemos discutido los resultados de dispersión por una distribución de dispersores sin considerar su naturaleza o el proceso de dispersión. En lo que sigue consideraremos que los dispersores son los electrones. La teoría de dispersión de ondas electromagnéticas por electrones libres fue dada por primera vez por J. J. Thomson.

El mecanismo básico de la dispersión de Thomson es la siguiente: cuando una onda electromagnética incide sobre un electrón el vector de campo eléctrico oscilante imparte al electrón una aceleración oscilante y la teoría electromagnética clásica nos dice que cuando la aceleración de una partícula cargada cambia emite ondas electromagnéticas. Así, el proceso puede ser tratado como la absorción y reemisión de la radiación y, aunque la radiación incidente va en una dirección, la radiación dispersada será emitida en todas direcciones. Si consideramos el caso de línea recta donde la radiación incidente es una onda continua y monocromática, entonces la aceleración del electrón tendrá una variación armónica simple y tanto la radiación incidente como la reemitida tendrán la misma frecuencia.

Si un electrón en O, de carga e y masa m, se ha puesto a oscilar, de tal manera que la aceleración es periódica con amplitud α (figura 6), entonces la teoría nos dice que la radiación dispersada en P, la cual ha viajado en la dirección OP, tiene un vector eléctrico de amplitud:

$$E = \frac{ea \, \mathrm{sen} \, \phi}{4 \pi c_{\mathrm{r}} c^2} \qquad \dots (19)$$

el cual es perpendicular a OP y está en el plano definido por OP y \vec{a} .

Figura 6. Relación del vector eléctrico de radiación electromagnética dispersada en un punto P al vector aceleración de un electrón en O. Los vectores están en el plano del diagrama.

En la figura 7 un haz paralelo de radiación electromagnética viaja a lo largo de OX incidiendo sobre un electrón en O. Deseamos determinar la naturaleza de la dispersión en P. La amplitud del vector eléctrico. E, de la onda incidente es perpendicular a OX y se puede descomponer en sus componentes E_{\perp} y E perpendiculares entre si y en el plano OXP. El electrón tendrá sus correspondientes componentes de la aceleración de amplitudes:

Figura 7. Relación entre las componenetes del vector eléctrico de la radiación electromagnética dispersada en P a las componentes del vector eléctrico de la radiación incidente.

Sustituyendo estos valores en la ecuación (19) encontramos las componentes del vector eléctrico de la onda dispersada en P como:

$$E'_{1} = \frac{e^{2}}{4\pi c_{o}rc^{2}m} E_{1}$$

$$E' = \frac{e^{2}\cos 2\theta}{4\pi c_{o}rc^{2}m} E_{1}$$
...(21)

La cantidad $e^2/4\pi c_c^2 m$, la cual tiene las dimensiones de longitud y es igual a 2.82×10^{-15} m, es considerada en la teoría electromagnética clásica como el radio del electrón.

Aunque hemos considerado una onda electromagnética, simple monocromática y continua, toda la teoría descrita se puede aplicar cuando la radiación incidente es de forma compleja. Una onda incidente complicada se puede analizar en componentes simples y la aceleración del electrón y la rerradiación resultantes se pueden encontrar sumando los efectos de cada componente. Así E_{\perp} y E se pueden considerar como las componentes de la amplitud de cualquier radiación electromagnética que llega a O.

Si la intensidad de la radiación incidente es I_o y si la radiación es no polarizada, entonces:

$$E_{\perp}^{2} = E^{2} \propto \frac{1}{2} I_{o}$$

= Clo ...(22)

La intensidad de la radiación dispersada, definida como la potencia por unidad de ángulo sólido dispersada en un ángulo 28 está dada por:

$$f_{20} = \frac{1}{C} r^2 [(E_{\perp}')^2 + (E')^2]$$

$$f_{2\theta} = I_0 \frac{e^4}{(4\pi c_0 r c^2 m)^2} (\frac{1 + \cos^2 2\theta}{2})$$
 ...(23)

Esta es la llamada fórmula de Thomson para radiación de dispersión por una carga libre, y el factor entre paréntesis se le llama factor de polarización. El factor $1/m^2$ muestra porqué los electrones son los únicos dispersores efectivos del átomo, ya que los protones que son los más ligeros del núcleo, aunque tienen igual magnitud de carga que el electrón, tienen 1837 veces la masa del electrón.

La dispersión de Thomson es coherente, es decir, hay una relación de fase definida entre la radiación incidente y la dispersada; en el caso de un electrón libre el corrimiento de fase de dispersión es π . En todos los procesos concernientes con la dispersión de rayos X los electrones están ligados en los átomos y en la sección 8 se investigará la forma de la dispersión de un conjunto de electrones contenidos en un átomo.

Es importante determinar la porción de potencia de un haz incidente sobre un material el cual será dispersado. Primero calculamos la dispersión total por cada electrón individual. En la figura 8 el punto O representa el electrón y OX la dirección del haz incidente. La potencia total dispersada en el ángulo sólido dΩ, definida por la región entre las superficies de los conos de semiángulos γ y γ +d γ , es:

 $dP = f_{\gamma} d\Omega$

y ya que d Ω =2 π sen γ d γ e F_{γ} está dado por la ecuación (23) tenemos:

$$dP = \pi \left(\frac{e^2}{4\pi c_r c_m^2}\right)^2 (1 + \cos^2 2\theta) I_p \operatorname{senyd} \gamma \qquad \dots (24)$$

De aquí que la potencia total dipersada por un solo electrón es:

P

$$= \pi \left(\frac{e^{2}}{4\pi c_{r}c^{2}m}\right)^{2} I_{0} \int_{0}^{\pi} (1 + \cos^{2}2\theta) \operatorname{sent} dt$$
$$= \frac{8\pi}{3} \left(\frac{e^{2}}{4\pi c_{r}c^{2}m}\right)^{2} I_{0}. \qquad \dots (25)$$

Para un material que contiene n electrones por unidad de volumen inmerso en un haz incidente paralelo con área de sección transversal β , la potencia del haz incidente es βI_{σ} (ya que I_{σ} , la intensidad, es la potencia por unidad de área del haz incidente). El número total de electrones atravesados por el haz por unidad de longitud de trayectoria es $n\beta$ y de aquí que la potencia total dispersada por unidad de longitud, por la ecuación (25), es:

$$P_{i} = \frac{8\pi}{3} \left(\frac{e^{2}}{4\pi c_{r} c^{2} m} \right)^{2} n\beta I_{o}. \qquad \dots (26)$$

La relación de P_i a la potencia en el haz incidente, βI_o , es liamada la potencia de dispersión del material y es:

$$\sigma = \frac{P_i}{\beta I_o} = \frac{8\pi}{3} \left(\frac{c^2}{4\pi c_o r c^2 m} \right)^2 n. \qquad \dots (27)$$

La cantidad o es la fracción de la radiación incidente dispersada por unidad de longitud de la trayectoria (1 m en unidades del SI).

Si se supone que todos los electrones en un material son libres podemos hacer una estimación de la fracción de la radiación incidente que es dispersada. Para un cristal comunmente usado en difracción de rayos X se encuentra que únicamente el 27 o menos del haz incidente de rayos X es dispersado.

6.- Dispersión de Compton.

Experimentalmente se ha encontrado que la radiación dispersada por los materiales consiste de dos partes. La primera parte, asoclada con la dispersión de Thomson, tiene la misma longitud de onda que la de la radiación incidente; la segunda parte tiene una longitud de onda más grande que la de la radiación incidente dependiendo del ánguio de dispersión. Esta última componente se debe al efecto conocido como dispersión de Compton y es incoherente con la radiación incidente. Se describe mejor en términos de una collsión elástica de un fotón con un electrón. En la figura 10.a el fotón incidente se mueve a lo largo de la trayectoria PO y, después de la collsión con el electrón, se mueve a io largo de OQ mientras el electrón se desvia por la trayectoria OR.

Figura 10. Diagrama de la dispersión de Compton.

De la conservación de la energía en la colisión elástica, encontramos que:

$$\frac{hc}{\lambda} = \frac{hc}{\lambda + d\lambda} + \frac{1}{2}my^2$$

o, haciendo aproximaciones:

$$\frac{hc}{\lambda^2} d\lambda = \frac{1}{2}mv^2 \qquad \dots (28)$$

Además de la energía, también se conserva el momento como se muestra en la figura 10.b. Es aproximación válida ignorar el cambio en la magnitud del momento del fotón dispersado, y así, se deduce de pura geometría que:

$$\frac{1}{2}mv = \frac{h}{\lambda} \sin\theta \qquad \dots (29)$$

Eliminando v de (28) y (29) tenemos:

o

$$d\lambda = -\frac{h}{mc}(1 - \cos 2\theta) \qquad \dots (30)$$

Sustiyendo el valor de las constantes físicas, se encuentra:

 $d\lambda = \frac{2h}{ma} sen^2 \theta$

$$d\lambda = 0.024(1 - \cos 2\theta) \Lambda$$
 ...(31)

Se observa que el cambio de la longitud de onda es independiente de la longitud de onda de la radiación incidente y depende sólo del ángulo de dispersión. El cambio máximo posible de longitud de onda es para $2\theta=\pi$ y da d $\lambda=0.048$ Å. Aunque este cambio en la longitud de onda es muy pequeño, es muy significativo para los rayos X cuya longitud de onda es del orden de 1 Å.

7.- La dispersión de rayos X por átomos.

Ahora vamos a considerar cómo los rayos X son dispersados por los electrones que no están libres sino ligados en estados de energia definidos en los átomos. Ya que el electrón puede existir sólo en estados discretos de energía entonces la dispersión de Thomson debe corresponder a no cambiar la energía del electrón y la dispersión de Compton a cambiaria. Este último cambio podría ser entre un estado energético y otro o la expulsión completa de un electrón del átomo.

En general ocurren ambas, pero para determinar la cantidad relativa de cada tipo se debe hacer un tratamiento completo de mecánica cuántica del proceso de dispersión. Tal tratamiento muestra que para un electrón atómico particular la intensidad total de dispersión, ambas de Thomson y de Compton, igualan el valor dado por la fórmula de Thomson, ecuación (23). Además, se muestra que la componente coherente se puede encontrar de primeros principios tomando en cuenta el hecho de que la carga electrónica está distribuida y no localizada en un punto. La solución de la ecuación de onda de un electrón atómico da una función de onda, Ψ , de la cual se puede encontrar la distribución de carga electrónica, dada por:

 $\rho = i\Psi |^2$

donde o representa la densidad de carga de un electrón por unidad de volumen. En el caso especial cuando $|\Psi|$, y entonces, o, tiene simetria esférica, podemos representar la densidad por $\rho(r)$. Si. por e jemplo, expresamos los electrónica parámetros posicionales en coordenadas esféricas polares con respecto al centro dei átomo como origen, entonces la carga asociada con un pequeño elemento de volumen es $\rho(r)r^2$ sen ψ drd ψ d ϕ (figura 11). Así, si el vector de dispersión es s y si el sistema de coordenadas cosiderado es tal que s es paralelo al eje a partir del cual se mide ψ , entonces la amplitud total de la radiación dispersada se puede encontrar de la ecuación (18) reemplazando la suma por una integral. La amplitud de la onda dispersada por սո pequeño elemento de volumen A es proporcional a la Si C_ es la constante de carga. proporcionalidad que depende del vector de dispersión s, la amplitud de un electrón completo es:

$$\mathbf{F}(\mathbf{s}) = C_{\mathbf{y}} \int_{r=0}^{\infty} \int_{\psi=0}^{\pi} \int_{\phi=0}^{2\pi} \rho(r) r^{2} \exp(2\pi i r s \cos \psi) \operatorname{sen} \psi dr d\psi d\phi \qquad \dots (33)$$

ya que r-s=rscos ψ . Nótese particularmente que los limites de integración para ψ y ϕ cubren todo el espacio. Si la densidad de distribución electrónica es esféricamente simétrica entonces también es centrosimétrica, y esto simplifica la ecuación (33). Para cada punto P con coordenadas (r,ψ,ϕ) hay otro punto P' con coordenadas ($r,\pi-\psi,\pi+\phi$) (ver figura 11), con la misma densidad electrónica. La contribución de los dos elementos de volumen alrededor de P y P' darán una resultante, cuya forma se puede apreciar sumando dos términos tales como:

exp[2nirs cos\phi]+exp[2nirs.cos(n-\phi)]
=exp[2nirs cos\phi]+exp[-2nirs.cos\phi]

=2 cos(2πrs · cosψ]

Figura 11. Elemento de volumen en coordenadas esféricas polares.

En este caso de distribución de densidad electrónica centrosimétrica F(s) es una cantidad real para toda s y la ecuación (33) se puede reescribir como:

$$\mathbf{f}(\mathbf{s}) = \mathbf{C}_{\mathbf{s}} \int_{r=0}^{\infty} \int_{\psi=0}^{\pi} \rho(r) r^2 \cos(2\pi r s \cos\psi) \operatorname{sen} \psi dr d\psi d\phi \qquad \dots (34)$$

El hecho de que p(r) es independiente de ψ y ϕ esta integral se puede resolver sobre d ψ y d ϕ dando:

$$f(s)=4\pi C_{s} \int_{r=0}^{\infty} \rho(r) r^{2} \frac{sen 2\pi r s}{2\pi r s} dr \qquad ...(35)$$

Para un valor dado de s podemos expresar la amplitud dispersada de $\rho(r)$ como una fracción, p_g , de la amplitud f(0) dada por un electrón puntual en el origen. Dando $\rho(r)=\delta(r)$, en la ecuación (35), siendo δ la función delta de Kronecker que tiene las siguientes propiedades:

$$\delta(r)=0, \quad r\neq 0,$$

$$\delta(r)=\infty \quad r=0,$$

$$\int \delta(r) dv=1$$

donde la integración se puede hacer sobre cualquier volumen finito del espacio alrededor del origen, no hay contribución en la ecuación (35) mas que para el origen, y ya que:

 $\lim_{r \to 0} \frac{\text{sen} 2\pi r s}{2\pi r s} = 1$

y, por definición:

$$\int_{r=0}^{\infty} \delta(r) r^2 dr = 1$$

entonces se sigue que:

$$(A_{s})_{0} = C_{s}$$
 ...(36)

De esto encontramos que:

$$p_{s} = \frac{f(s)}{f(0)} = 4\pi \int_{r=0}^{\infty} \rho(r) r^{2} \frac{\sin 2\pi rs}{2\pi rs} dr \qquad ...(37)$$

donde se ve que *p* depende sólo de la magnitud de s. Si un átomo contiene Z electrones entonces la densidad total de electrones, $\rho_a(r)$, será la suma de las densidades de cada uno de los electrones individuales, i.e.

$$\rho_{a}(r) = \sum_{j=1}^{Z} \rho_{j}(r). \qquad \dots (38)$$

La amplitud de la dispersión coherente de la densidad electrónica total se obtiene al sumar las amplitudes de los electrones tomados indivudualmente. Ahora definimos el factor de dispersión atómico, $f_{a}(s)$, como la relación de la amplitud de la dispersión coherente de un átomo a la de un electrón situado en el centro atómico. Éste derivado de las ecuaciones (37) y (38), es:

Los factores de dispersión atómico están tabulados en el volumen III de las International Tables for Crystallography. La forma exacta de $\rho(r)$ sólo se conoce para el átomo de Hidrógeno, para otros átomos se han usado varios modelos. Para átomos ligeros se utiliza comunmente el método de Hartree-Fock mientras que para átomos pesados se utiliza la aproximación de Thomas-Fermi.

Ahora investigaremos la naturaleza de la dispersión de Compton para átomos. De la ecuación (8),

$$g_{2\theta} = f_{2\theta}^2 I_o$$

donde en nuestro caso, $f_{2\theta} = p_s y (A_s) = I_o$, podemos ver de la

ecuación 37 que la intensidad de dispersión coherente de un electrón atómico A_{p} es $p_{g}^{2} q_{20}$ y de aquí, ya que la intensidad total de dispersión según la mecánica cuántica es g_{20} , la intensidad de la dispersión de Compton debe ser $(1-p_{g}^{2})g_{20}$. Sin embargo la dispersión de Compton de un electrón atómico es incoherente con respecto a la dispersada de cualquier otro y de aquí que la intensidad total de todos los electrones se obtiene sumando la intensidades individuales de cada uno de los electrones. De esta manera tenemos:

$$\mathcal{G}_{Compton} = \sum_{j=1}^{Z} \{1 - (p_g)_j^2\} \times \mathcal{G}_{20} \qquad \dots (40)$$

$$\mathcal{G}_{\text{Thomson}} = \left\{ \sum_{j=1}^{Z} (p_{x})_{j} \right\}^{2} \times \mathcal{G}_{2\theta} \qquad \dots (41)$$

De la ecuación 37 se ve que si s=0 ($\theta=0$) tenemos:

$$\lim_{s \to 0} \frac{\text{sen} 2\pi rs}{2\pi rs} = 1$$

entonces $p_0^{=1}$. De aquí que la radiación dispersada en la dirección del haz incidente no tiene componente incoherente. Conforme θ crece p decrece pero la razón de decrecimiento es menor para los electrones que están más fuertemente atados al átomo.

8.- Dispersión de rayos X por una celda unidad.

Ahora deduciremos la expresión para la dispersión de rayos X por un conjunto de átomos colocados en posiciones definidas en una celda unidad, cada uno descrito por el vector de posición r_i respecto al origen común O definido por los vectores unidad de la celda. Este cambio de origen respecto al que se consideró en la deducción del factor de dispersión atómica, para el *l*-ésimo átomo se expresa como r+r_i, por lo que la expresión (33) en este caso es:

$$\mathbf{f}_{i}(\mathbf{s}) = \mathbf{C}_{\mathbf{s}} \int_{r=0}^{\infty} \int_{\psi=0}^{\pi} \int_{\phi=0}^{2\pi} p(r) r^{2} \exp(2\pi i r + r_{i} \cdot \mathbf{s}) \operatorname{sen} \psi dr d\psi d\phi$$
$$= f_{i} \exp(2\pi i r_{i} \cdot \mathbf{s})$$

...(42) .

donde f_i es el factor de dispersión atómico para el átomo f. La onda total dispersada por todos los átomos está dada por la suma de cada uno de ellos dentro de la celda unidad, la cual se expresa por:

$$G(\mathbf{s}) = \mathbf{f}_{1} + \mathbf{f}_{2} + \dots + \mathbf{f}_{N} = \sum_{i=1}^{N} f_{i} \exp(2\pi i \mathbf{r}_{i} \cdot \mathbf{s}) \qquad \dots (43)$$

Esta ecuación representa la transformada de Fourier de la molécula, a lo que se le llama transformada molecular, y representa el patrón de difracción de una sola molécula. Debido a la débil dispersión de rayos X, no es posible observar las transformadas de moléculas individuales, es necesario cristalizar el compuesto para que la suma de cada una, arregiadas en forma periódica transformada molecular.

9.- Difracción de rayos X por un cristal.

Ahora vamos a analizar el caso de la onda de dispersión por un arregio periódico tridímensional de átomos, es decir un cristal. Primero consideraremos el caso de un arregio periódico unidimensional de celdas unidad, después pasaremos a un arregio bidimensional, y, por último, al caso real de tres dimensiones.

 A) Difracción de rayos X por un arregio unidimensional de celdas unidad.

Consideremos una hilera de *n* celdas unidad separadas una de otra por una distancia \vec{d}_{o} . La amplitud de dispersión en la dirección s en una distancia grande comparada con \vec{d}_{o} , expresada en términos del factor de dispersión atòmico o bien de G, para la primera celda unidad simplemente es G(s); para la segunda celda unidad relativa al mismo origen suponiendo que el ángulo que forma con respecto a s es el mismo que para la primera, es G(s)exp($2\pi i \vec{d}_{o}$ ·s); y así sucesivamente, para la J-ésima celda unidad será G(s)exp($2\pi i (J-1) \vec{d}_{o}$ ·s). Entonces la suma de la dispersión de todas las celdas unidad será la onda total dispersada, y se expresa como:

$$F(s) = \sum_{j=1}^{n} G(s) \exp(2\pi i (j-1) \vec{a}_{o} \cdot s) \qquad \dots (44)$$

Si el número de celdas unidad es grande, la onda total dispersada F(s) será aproximadamente del mismo orden que G(s). Sin embargo, cuando las ondas dispersadas de cada una de las celdas unidad tiene una fase que es múltiplo entero de 2π , la onda total se refuerza dando una onda de dispersión de intensidad maxima a lo que se le llama haz difractado. La condición para que haya haz difractado se expresa como:

con m un entero, o bien, ya que j-1 también es un entero,

$$\vec{a}_{r} = h$$
 ...(44)

donde h es un entero. Esta es la primera condición para que exista difracción, y se aplica en difracción de rayos X cuando se tienen celdas unidad en una sola dirección.

La misma condición se puede encontrar desde un punto de vista más físico. En la figura 12 se muestra una hilera de átomos pertenecientes a la hilera de celdas unidad, separados entre sí por una distancia a_{o} . La radiación incidente en la dirección \hat{S}_{o} hace un ángulo α_{o} con el rengión. Consideremos la radiación dispersada en la dirección \hat{S} que hace un ángulo α con respecto al rengión. Para que la radiación dispersada de los átomos vecinos se refuerce la diferencia de camino óptico a lo largo de la trayectoria descrita debe ser un múltiplo entero de veces la longitud de onda. Haciendo referencia a la figura 12, lo expresamos como:

$$CB - AD = h\lambda$$

donde h es un entero, o bien;

 $a_{\alpha}(\cos\alpha - \cos\alpha) = h\lambda$...(46)

75

Figura 12. Relación entre el haz incidente y el haz difractado de rayos X con una hilera de átomos separados por el vector \vec{a}_{μ} .

Se debe hacer notar que las direcciones \hat{S}_{o} y \hat{S} no son necesariamente copianares. Para un ángulo particular α_{o} , el número entero h define un cono de semiángulo α cuyo eje es el rengión de átomos. Diferentes valores de h definen una familia de conos cuyas superficies indican direcciones en las cuales la intensidad difractada es diferente de cero. Para h=0, de la ecuación (46) se obtiene $\alpha_{o}=\alpha$, y entonces el haz incidente está sobre la superficie de este cono.

Se puede observar que las condiciones (45) y (46) para que la difracción ocurra son equivalentes, ya que, sustituyendo s de la ecuación (11) en la ecuación (45) tenemos:

 $\frac{1}{\lambda}(\vec{a}_{o}\cdot\hat{S}-\vec{a}_{o}\cdot\hat{S}_{o})=h \qquad \dots (47)$

en donde se puede ver que $\vec{a}_{o} \cdot \hat{S} = a_{o} s \cos a_{o}$, y $\vec{a}_{o} \cdot \hat{S} = a_{o} s \cos a$.

B) Difracción de rayos X por un arregio bidimensional de celdas unidad.

Ahora consideremos el caso de dos arregios unidimensionales de celdas unidad cada uno definido en términos de los vectores \vec{a}_{o} y \vec{b}_{o} . La condición para que la radiación dispersada por todos los átomos del arregio interfiera constructivamente se puede expresar por separado para cada uno de los rengiones como se hizo para el caso de una solahilera de celdas unidad. Esto es, que se cumplan

simultáneamente las siguientes dos ecuaciones:

$$\vec{c}_{o's} = h$$

$$\vec{b}_{o's} = k \qquad \dots (48)$$

donde h y k son enteros.

Haciendo la misma interpretación que en el caso anterior, donde el haz incldente hace ángulos α_{o} , α , β_{o} y β , con las direcciones \vec{a}_{o} y \vec{b}_{o} respectivamente, las condiciones para que haya difracción se pueden escribir como:

$$a_{c}(\cos \alpha - \cos \alpha_{c}) = h\lambda$$

 $b_{c}(\cos \beta - \cos \beta_{c}) = k\lambda$...(49)

Estas dos ecuaciones definen dos familias de superficies cónicas con ejes a lo largo de las direcciones \vec{d}_o y \vec{b}_o respectivamente, y la dirección del haz difractado está en la intersección de esos dos conos.

C) Difracción de rayos X por un arregio tridimensional de celdas unidad.

Similar a los casos anteriores, la condición para que exista la difracción se puede expresar como tres condiciones por separado, siendo cada una la condición de los arregios unidimensionales definidos en términos de los vectores \vec{d}_o , \vec{b}_o y \vec{c}_o . (figura 13). Las tres condiciones son:

0:

 $a_{\beta}(\cos \alpha - \cos \alpha_{\beta}) = h\lambda$ $b_{\beta}(\cos \beta - \cos \beta_{\beta}) = k\lambda$ $c_{\beta}(\cos \gamma - \cos \gamma_{\beta}) = l\lambda$...(51)

donde los ángulos están definidos como en los casos anteriores. Estas ecuaciones son conocidas como la *ecuaciones de Laue*, quien fue el primero en dar una explicación al fenómeno de difracción, y son de primordial importancia en cristalografía de rayos X.

Figura 13. Relación entre el haz incidente y el haz difractado de rayos X, con los vectores que definen el arregio tridimensional de átomos a , さ y さ.

Cada una de las ecuaciones (51) define una familia de conos para cada valor entero de h, k y l. Un haz difractado se produciria en la dirección de la intersección de los tres conos con un origen común. Sin embargo, es muy difícil que esto ocurra cuando el haz incidente tiene una dirección arbitraria en relación al arreglo determinado por los vectores \vec{a}_{a} , \vec{b}_{a} y \vec{c}_{a} . Si queremos conocer la condición para que el haz difractado exista debemos encontrar los ángulos de incidencia, α_{o} , β_{o} y γ_{o} , apropiados para que los valores α , β y γ , sean directiones posibles del haz difractado, ya que estos ángulos no son independientes. Otra manera de ver el problema es buscar el vector s que satisfaga las ecuaciones (50). Si se encuentra este vector existen un número completo de familias de soluciones, pues como se verá en la sección 15, cuando se hace girar al cristal respecto a un eje en la dirección de alguno de los vectores unidad, la familia de conos correpondiente queda inalterada mientras que las otras dos giran hasta que en algún momento intersectan con ella. En esta solución se puede observar que para un vector de dispersión s dado, los haces

ESTA TESIS NO DEBE Sazir de la Biblioteca

incidente y difractado deben estar en una dirección tal que los vectores \hat{S}_{a} , \hat{S} y s sean coplanares.

10,- Factor de estructura.

Reescriblendo la ecuación (44) de la siguiente forma:

$$F(s) = \sum_{j=1}^{N} f_{j} \exp(2\pi i r_{j} \cdot s) \qquad \dots (52)$$

donde el vector de posición r_j del j-ésimo átomo tiene coordenadas fraccionales $x_j y_j z_j$ es decir:

$$\mathbf{r}_{j} = x_{j} \dot{a}_{o} + y_{j} \dot{b}_{o} + z_{j} \dot{c}_{o} \qquad \dots (53)$$

entonces:

$$\mathbf{r}_{j} \cdot \mathbf{z} = \mathbf{x}_{j} \mathbf{a}_{o} \cdot \mathbf{z} + \mathbf{y}_{j} \mathbf{b}_{o} \cdot \mathbf{z} + \mathbf{z}_{j} \mathbf{c}_{o} \cdot \mathbf{z}$$

y por las ecuaciones de Laue, podemos expresarlo de la siguiente manera:

$$\mathbf{r}_{j} \cdot \mathbf{s} = \mathbf{x}_{j} \mathbf{h} + \mathbf{y}_{j} \mathbf{k} + \mathbf{z}_{j} \mathbf{l} \qquad \dots (54)$$

sustituyendo la ecuación (54) en la ecuación (52) tenemos:

$$F(hkl) = \sum_{j=1}^{N} f_j \exp(2\pi l(x_j h + y_j k + z_j l)) \qquad \dots (55)$$

A F(hkl) se le conoce como factor de estructura, y se acostumbra escribir como:

donde F(hkl) es la amplitud de la onda y $\alpha(hkl)$ es su fase, que están dadas por:

$$|F(hkl)|^{2} = A(hkl)^{2} + B(hkl)^{2}$$
 ...(57)

$$\tan \alpha(hkl) = \frac{B(hkl)}{A(hkl)} \dots (58)$$

donde A(hkl) y B(hkl) son:

$$A(s) = \sum_{j=1}^{N} f_j \cos\{2\pi r_j \cdot s\}$$

$$\mathbf{B}(\mathbf{s}) = \sum_{j=1}^{N} f_j \operatorname{sen}(2\pi \mathbf{r}_j \cdot \mathbf{s}) \qquad \dots (59)$$

La intensidad del rayo difractado de todo el cristal es proporcional al cuadrado de la magnitud del factor de estructura, ésto es:

$$\mathcal{J}(hkl) \propto F(hkl) \cdot F(hkl)$$

 $\propto |F(hkl)|^2 \qquad ...(60)$

Por lo que, de las ecuaciones (57) y (59), tenemos:

$$\begin{aligned} \mathcal{I}(hkl) &\propto \left(\sum_{j=1}^{N} f_j \cos(2\pi \mathbf{r}_j \cdot \mathbf{s})\right)^2 + \left(\sum_{j=1}^{N} f_j \sin(2\pi \mathbf{r}_j \cdot \mathbf{s})\right)^2 \\ &\propto \sum_{i=1}^{N} \sum_{j=1}^{N} f_i f_j (\cos 2\pi \mathbf{r}_i \cdot \mathbf{s} \cos 2\pi \mathbf{r}_j \cdot \mathbf{s} + \sin 2\pi \mathbf{r}_i \cdot \mathbf{s} \sin 2\pi \mathbf{r}_j \cdot \mathbf{s}) \\ &\propto \sum_{i=1}^{N} \sum_{j=1}^{N} f_i f_j (\cos 2\pi (\mathbf{r}_i - \mathbf{r}_j) \cdot \mathbf{s}) \\ &\qquad \dots (61) \end{aligned}$$

De aquí podemos ver que la intensidad de un haz difractado depende sólo de las posiciones relativas entre los átomos y no de las coordenadas de los átomos dentro de la celda unidad.

11.- Ley de Bragg.

En 1913 W. L. Bragg dio la primera interpretación matemática de las posiciones de los puntos en un patrón de difracción de un cristal por rayos X. Consideremos un haz de rayos X que incide sobre el cristal. Al cristal lo podemos representar por una familia de planos hki de la red puntual cuya distancia interplanar es d_{hs} , (figura 14).

Figura 14. Condición para la difracción de rayos X según Bragg.

Si el haz consiste de rayos paralelos, tendrán un frente de ondas común y estarán todos en lase en XX' como se muestra en la figura, e inciden con un ángulo θ_1 respecto a los planos de la familia de planos hkl. Cuando el rayo la llega al punto A, el rayo l está en el punto C. Cuando el rayo 2 llega a B, el rayo la está en D. La diferencia de trayectorias recorridas por los dos rayos es CB-AD. Para que la suma de los rayos dispersados sea constructiva, es necesario que esta diferencia sea un número entero de longitudes de onda de la radiación incidente, es decir:

$$CB - CA = n\lambda$$
 ...(62)

donde n es un entero.

De la figura se observa que $CB=ABcos\theta_t$, y que $AD=ABcos\theta_d$, donde θ_d es un ángulo cualquiera de dispersión. Sustituyendo estos valores en la ecuación (62), tenemos:

AB
$$(\cos\theta_{1} - \cos\theta_{2}) = n\lambda$$
 ...(63)

tomando el caso particular cuando n=0, tendremos:

$$\cos\theta_{i} = \cos\theta_{d}$$
 ...(64)

lo cual se cumple cuando $\theta_1 = \theta_2$. Ésta es la primera condición

para que exista difracción: el ángulo de difracción debe ser igual al ángulo de incidencia.

Ahora, analizando los rayos I y 2, la diferencia de trayectoria es FE + EG. Para que en YY' lleguen en fase, es necesario que se cumpla:

$$FE + EG = n\lambda$$
 ...(65)

donde n es un entero. Y como FE≂d_{hki}sen0 y EG⊨d_{hki}sen0, entonces:

$$2d_{hkl}sen\theta_{hkl} = n\lambda$$
 ...(66)

esta expresión es conocida como la Ley de Bragg, y nos permite conocer el ángulo de difracción, θ_{hbl} , en términos de la longitud de onda, y de la distancia interplanar d_{bai} de la familia de planos hkl. Aquí se observa porqué a los haces difractados se les acostumbra llamar "reflexiones" y porqué el ángulo entre el haz incidente y el difractado forman un ángulo 20. El haz difractado de primer orden ocurrirá cuando se cumpla la ley de Bragg a un ángulo θ_{pti} para n=1, el de segundo orden cuando n=2, etc. En una reflexión de primer orden los rayos dispersados 1' y 2' podrian diferir en longitud de trayectoria por una longitud de onda, los rayos l' y 3' por dos longitudes de onda, y así a través de todo el cristal. Los rayos dispersados por todos los átomos en todos los planos estarán completamente en fase y se reforzarán uno con otro para formar un haz difractado en la dirección mostrada.

Una manera equivalente a la ley de Bragg, y que se usa comunmente es la siguiente:

$$\lambda = 2 \frac{d_{hkl}}{n} \sin \theta_{hkl} \qquad \dots (67)$$

definiendo:

$$\frac{d_{hkl}}{n} = d_{HKL} \qquad \dots (68)$$

la ecuación (67) queda:

$$\lambda = 2 d_{\mu K L} \sin \theta_{\mu K L} \qquad \dots (69)$$

Puesto que d_{hkl} es la distancia interplanar de la familia de planos hkl, d_{NKL} será una distancia entre planos no racionales. A los indices HKL se les llama indices de plano o indices de reflexión.

Otra forma de la expresión (66) es la siguiente:

$$\frac{n \lambda}{2 dh_{kl}} = sen \theta_{hkl} ...(70)$$

Aquí podemos ver que, ya que la función sen(x) es menor o igual a uno, se tiene que $n\lambda \le 2 d_{x,i}$, o bien, cuando n=1.

En un cristal cuya distancia interplanar sea del orden de 3 Å, es necesario que λ sea del orden de 6 Å. De esta manera se puede determinar la longitud de onda de la radiación incidente para que exista difracción, si se conocen las separaciones entre centros dispersores.

12.- Construcción de Ewald de la difracción.

La condición para que la difracción de rayos X por un cristal ocurra, puede ser expresada ya sea en términos de la ley de Bragg, ecuación (69), o bien, en términos de las ecuaciones de Laue, ecuaciones (50).

Ewald (1921) propuso una construcción geométrica muy simple que relaciona las dos condiciones anteriores, y da una descripción muy útil de la difracción, que se ilustrará en seguida.

Sea una circunferencia de radio $1/\lambda$ (figura 15). Ya que un trlángulo inscrito en una circunferencia cuyo diámetro coincide con la hipotenusa del trlángulo, resulta ser un trlángulo rectángulo, entonces, escribiendo la ley de Bragg de la siguiente manera:

$$\sin \theta_{HKL} = \frac{1/d_{HKL}}{2/\lambda} \qquad \dots (72)$$

se puede relacionar el segmento OP del triángulo de la figura 15.a, con 1/d_{HKL} y el ángulo opuesto con θ_{HKL} . Se demuestra enseguida que el ángulo PCO es $2\theta_{uvr}$.

Los ángulos PAO y PCO tienen la misma longitud de arco PO. El triángulo CPA, es isósceles, por lo que tiene dos ángulos iguales, CAP y APC, que es θ_{HKL} . El ángulo PCO es un ángulo externo de este triángulo, por lo que la suma de los ángulos iguales del triángulo CPA debe ser igual al ángulo externo del ángulo diferente, es decir: $2PCO=2\theta_{uv}$.

Figura 15. Construcción de la esfera de Ewald.

Recordando que a cada conjunto de Indices se le asocia un vector de la red reciproca $\vec{H} = h\vec{d}_{0}^{2} + k\vec{b}_{0}^{2} + l\vec{c}_{0}^{2}$; cuya magnitud es $1/d_{HKL} = (2 \text{sen}\theta_{HKL})/\lambda$, donde θ_{HKL} es el ángulo de Bragg, y su dirección es normal a la familia de planos {hkl}, encontramos las siguientes relaciones: el segmento OP coincide con \vec{H}_{HKL} la dirección del haz incidente dada por \hat{S}_{0} , hace un ángulo θ_{HKL} con la familia de planos {hkl} del cristal colocado en C, el segmento CP coincide con \hat{S} , y, de acuerdo a la ecuación (11), el vector \vec{H}_{uv} , coincide con el vector \vec{s} , esto es:

$$|\mathbf{s}| = \frac{2 \operatorname{sen} \theta_{HKL}}{\lambda} = \frac{1}{d_{HKL}} \qquad \dots (73)$$

Desde este punto de vista la condición para que la difracción ocurra, es que la punta del vector \vec{s} esté justamente sobre la superficie de una circunferencia de radio $1/\lambda$. En tres dimensiones el circulo se convierte en una esfera, a la que se le conoce como *esfera de Ewald* o *esfera de reflexión*. 13.- El problema de la fase.

En la ecuación (18) se expresa la amplitud de dispersión de una distribución de n dispersores por:

$$\psi_{on}(20,y) = \sum_{j=1}^{n} \left[\psi_{o}(20,y) \right]_{j} \exp 2\pi i r_{j} \cdot s \qquad \dots (74)$$

donde $[\psi_{(20,y)}]_{j}$ es la amplitud de dispersión a una distancia y del j-ésimo dispersor a un ángulo 20 con respecto a la radiación incidente. Si en vez de una distribución discreta de centros dispersores tenemos una distribución de densidad electrónica $\rho(\mathbf{r})$, expresada en electrones por unidad de volumen, entonces una diferencial de volumen tendrá una carga puntual efectiva $\rho(\mathbf{r})dv$ electrones. De esta manera, la amplitud totai dispersada de la distribución de densidad electrónica, está dada por:

$$F(s) = \int_{v} \rho(r) \exp(2\pi i s \cdot r) dv \qquad \dots (75)$$

donde la integración se realiza sobre todo el volumen del espacio en el cual $\rho(\mathbf{r})$ es diferente de cero. F(s) es la transformada de Fourier de $\rho(\mathbf{r})$. Si suponemos que la transformación inversa es válida, entonces:

$$\rho(\mathbf{r}) = \int_{v''} F(\mathbf{s}) \exp(2\pi (\mathbf{s} \cdot \mathbf{r}) dv'' \qquad \dots (76)$$

donde la integración se lleva a cabo en el volumen del espacie reciproco donde s está definido.

Hay un resultado muy importante en cristalografía que se llega a través de considerar la naturaleza periódica de la densidad electrónica en el cristal. Así pues, se dice que la amplitud de dispersión total del cristal es el producto de la transformada de la densidad electrónica dentro de una celda unidad del cristal con la transformada de un conjunto de funciones δ colocadas en puntos de una red representando las celdas unidad cubriende todo el volumen del cristal. La transformada de este conjunto de funciones delta, es otro conjunto de funciones delta colocadas en los puntos de ia red reciproca. Así pues, la amplitud difractada para todo el cristal, se puede considerar como la transformada de Fourier de la densidad electrónica de una celda unidad, F(s), colocada en puntos de la red reciproca, $s=k\vec{a}_s^{\dagger}+k\vec{b}_s^{\dagger}+l\vec{c}_s^{\dagger}$, donde la amplitud de dispersión correspondiente al punto (hkl) de la red reciproca está dado por (1/V)F_{Lu}.

Reemplazando la integral de la ecuación (76) por sumatorias ya que F(s) es diferente de cero únicamente en los puntos de red recíproca, tenemos:

$$\rho(xyz) = \frac{1}{V} \sum_{h=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} F(hkl) \exp(-2\pi l(hx+ky+lz)) \quad \dots (77)$$

De esta manera, si se conoce el factor de estructura para todas las reflexiones del patrón de difracción, es posible conocer la densidad electrónica para cada punto xyz, dentro de la celda unidad. La función de densidad electrónica representa la estructura del cristal.

Del patrón de difracción sólo es posible conocer lac la amplitud intensidades. y de ellas del factor de estructura. Sin embargo, toda la información sobre la fase se pierde. De aquí que sea imposible determinar la estructura del cristal directamente del patrón de difracción.

Este problema, llamado problema de la fase, es el problema básico para la determinación de cualquier estructura cristalina. Para resolver el problema hay varios métodos de los cuales sólo se mencionan algunos a continuación: método de Patterson, métodos directos, método del átomo pesado, y método de dispersión anómala.

14- Extinciones sistemáticas.

A partir de la ecuación (55) es posible calcular el factor de estructura para casos muy simples como los siguientes.

 a) Factor de estructura para un solo átomo: supongamos que el átomo se encuentra en el origen, entonces:

 $\mathbf{F} = f \, \exp\{2\pi i 0\} = f$

b) Factor de estructura para una celda centrada en la base; esta celda tiene dos puntos equivalentes localizados en 000, y en $\frac{1}{2}\frac{1}{2}$ 0, por lo que:

 $F = fexp(2\pi i0) + fexp(2\pi i(H/2 + K/2))$

 $F^{2} = f^{2}$

 $= f (1 + \exp(\pi i (H + K)))$...(79)

ya que (H + K) es siempre un número entero, y:

у,

 $exp(n\pi) = -1$ cuando n es impar,

 $e_{\mathbf{x}\mathbf{p}}(\mathbf{n}\pi) = 1$ cuando n es par,

entonces:

F = 2f cuando H y K son ambos pares o impares, y,

F = 0 cuando H y K son míxtos.

Cuando sucede que H y K son mixtos, es decir, uno es par y el otro impar, el haz de difracción correspondiente a estos indices no aparece. Se dice entonces que se han extinguido sistemáticamente.

c) Factor de estructura para una celda centrada en el cuerpo: esta celda tiene dos puntos equivalentes cuyas coordenadas son: 000 y $\frac{1}{2}$, $\frac{1}{2}$, 0, entonces:

 $\mathbf{F} = f \exp(2\pi i 0) + f \exp(2\pi i (H/2 + K/2 + L/2))$

 $= f(1 + \exp(\pi i(H + K + L)))$

por lo tanto:

 $\mathbf{F} = 2f$

у,

F = 0 cuando (H + K + L) es impar.

cuando (H + K + L) es par

d) Factor de estructura para una celda centrada en las caras: los puntos equivalentes para una celda de este tipo son: $000, \frac{1}{2} \frac{1}{2} 0, \frac{1}{2} 0 \frac{1}{2}, y 0 \frac{1}{2} \frac{1}{2}$, entonces: $F = fexp(2\pi i0) + fexp(2\pi i(H/2+K/2)) + fexp(2\pi i(H/2+L/2)) + fexp(2\pi i(K/2+L/2))$

= $f(i + \exp(\pi i (H + K)) + \exp(\pi i (H + L)) + \exp(\pi i (K + L))$

SI H, K y L son todos pares o todos impares, es decir, no mixtos, entonces las tres sumas (H + K), (H + L) y (K + L), son todas pares. Si H, K y L son todos impares entonces la suma de los tres términos es -1, entonces:

F = 4f para indices no mixtos,

F = 0 para indices mixtos.

Un resumen de las extinciones sistemáticas para cada tipo de red espacial se muestra en la tabla 1.

Tabla 1 -

Extinciones sistemáticas en los diferentes tipos de red.

Red de Bravais	Reflexiones presentes	Reflexiones ausentes Ninguna	
Primitiva	Todas		
Centrada en:			
cara A	KyL no mixtos	K y L mixtos	
cara B	Hy L no mixtos	H y L mixtos	
cara C	Hy Knomixtos	H y K mixtos	
el cuerpo	H+K+L par	H + K + L impar	
las caras	H, K y L no mixtos	H, K y L mixtos	

15.- Métodos experimentales.

٧.

Como se recordará en la sección 9 se expresó el hecho de que la condición para que exista un haz difractado cuando un haz de rayos X incide sobre el cristal no ocurre en cualquier dirección de éste, sino está determinada por las ecuaciones de Laue, ecuaciones (50). Sín embargo es posible encontrar un número de soluciones cuando se alinea correctamente el cristal, o se gira con respecto a un eje colineal a uno de los vectores unidad. En esta sección se verá cómo se puede mover el cristal hasta colocarlo en una posición en la que un haz de difracción particular exista.

Supongamos que tenemos un cristal al que le incide un haz de rayos X monocromático, de longitud de onda λ , en la dirección \hat{S}_{ρ} y consideremos un vector de la red reciproca $s=h\vec{d}_{\rho}+k\vec{b}_{\rho}+l\vec{c}_{\rho}$ como se muestra en la figura 16 en donde también se ha dibujado la esfera de Ewald, Si el cristal se gira con respecto a un eje perpendicular al papel, entonces toda la red reciproca gira con él y el vector s determina una trayectoria circular como se indica en la figura. Después de haber girado un ángulo α al cristal, el vector s intersecta con la esfera de Ewald y un haz difractado emerge de él en la dirección \hat{S} .

Como se observa en la figura, todos los puntos de la red reciproca que están dentro de la esfera de Ewald en algún momento la intersectarán produciendo cada uno un haz de difracción particular. Además, no sólo estos puntos, sino en total todos aquellos cuya magnitud cumpla la relación

...(80)

en algún momento intersectarán la esfera de Ewald.

Este proceso lo podemos generalizar a tres dimensiones, girando el cristal con respecto a toda una serie infinita de ejes dando posibilidad a todos los vectores de la red reciproca cuya magnitud cumplan la condición (80) a producir un haz de difracción. Esta condición establece sólo un número determinado de puntos de la red reciproca capaces de difractar a los rayos X incidentes para una longitud de onda dada. A la esfera de radio 2/A centrada en O, se le llama *esfera limitante.*

En un experimento de rayos X lo que se obtiene es un diagrama de los haces de difracción producidos durante el experimento. Este diagrama normalmente se registra sobre una película fotográfica o por medio de un contador electrónico, el cual permite:

- a) identificar el cristal (si es desconocido),
- b) reconocer la siemtria del cristal y las dimensiones de la celda unidad, y
- c) determinar las posiciones de los átomos en la celda unidad, esto es, determinar la estructura cristalina.

Distintos métodos nos dan diferente información, si se quiere obtener información sobre la distribución de los átomos en la celda unidad del cristal os necesario tener un monocristal; si, por el contrario, lo que se quiere es sólo caracterizar un determinado compuesto a partir de su diagrama de difracción, es posible identificarlo a partir de una pequeña cantidad de polvo cristalino, aunque no es posible determinar su estructura cristalina.

Los métodos experimentales más utilizados en cristalografía de rayos X se muestran en la Tabla 2, en donde se ha especificado el tipo de muestra, radiación y detector utilizados, así como la información suministrada que se puede obtener del método. En el presente trabajo lo que se requiere es el cálculo de parámetros de red con alta precisión y exactitud, por lo que se utiliza el método de polvos de Debije-Scherrer. El siguiente capítulo se dedicará a este método.

MétodoRadiaciónMuestraDetectorInformación SuministradaLauePolicromáticaMonocristalPelícula FotográficaSimetría cristalina (Grupo de Laue)Giro u OscilaciónMonocromáticaMonocristalPelícula FotográficaSimetría cristalina (Grupo espacial Parámetros cristalina (Grupo espacial a intensidades difractadas'Weissenberg y PrecesiónMonocromáticaMonocristal MonocromáticaPelícula FotográficaSimetría cristalina (Grupo espacial Parámetros cristalina de estructura cristalina por medio de lase)Difractó- metroMonocromáticaMonocristalContador ElectrónicoSimetría cristalina intensidades difractadas'Difractó- metroMonocromáticaPolvo CristalinoContador ElectrónicoSimetría cristalina por medio de lase)Debije- ScherrerMonocromáticaPolvo CristalinoContador ElectrónicoParámetros de Red antitativo de fases cristalina por medio de lase)Debije- ScherrerMonocromáticaPolvo CristalinoPelícula ElectrónicoParámetros de Red Intensidades difractadas	Metodos Experimentales de Dirracción de Nayos A mas demados					
LauePolicromáticaMonocristalPelícula FotográficaSimetría cristalina (Grupo de Laue)Giro u OscilaciónMonocromáticaMonocristalPelícula FotográficaParámetros cristalinoWeissenberg yMonocromáticaMonocristalPelícula FotográficaSimetría cristalina (Grupo espacial netros cristalina)Weissenberg yMonocromáticaMonocristalPelícula FotográficaSimetría cristalina (Grupo espacial netros cristalina)PrecesiónMonocromáticaMonocristalContador ElectrónicoSimetría cristalina (Grupo espacial a intensidades difractadasDifractó- metroMonocromáticaPolvo CristalinoContador ElectrónicoSimetría cristalina (Grupo espacial intensidades difractadasDebije- ScherrerMonocromáticaPolvo CristalinoPelícula ElectrónicoParámetros de Red intensidades difractadasDebije- ScherrerMonocromáticaPolvo CristalinoPelícula FotográficaParámetros de Red intensidades difractadas	Método	Radiación	Muestra	Detector	Información Suministrada	
Giro u OscilaciónMonocromáticaMonocristalPelícula FotográficaParámetros cristalinosWeissenberg 	Laue	Policromática	Monocristal	Película Fotográfica	Simetría cristalina (Grupo de Laue)	
Weissenberg yMonocromáticaMonocristalPelícula FotográficaSimetria cristalina (Grupo espacial Parámetros cristalina)PrecesiónNonocromáticaMonocristalFotográficaSimetria cristalino)Difractó- metroMonocromáticaMonocristalContador ElectrónicoSimetria 	Giro u Oscilación	Monocromática	Monocristal	Película Fotográfica	Parámetros cristalinos	
PrecesiónParámetros cristalinosDifractó- metroMonocromáticaMonocristalContador ElectrónicoIdentificación de estructura cristalina por medio de la intensidades difractadas'Difractó- metroMonocromáticaPolvo 	Weissenberg y	Monocromática	Monocristal	Película Fotográfica	Simetría cristalina (Grupo espacial)	
Difractó- metroMonocromáticaContador ElectrónicoIdentificación de estructura cristalina por medio de la intensidades difractadas'Difractó- metroMonocromáticaContador ElectrónicoSimetría Cristalina (Grupo espacia)Debije- ScherrerMonocromáticaPolvo 	Precesión				Parámetros cristalinos	
Difractó- metro Monocromática Monocristal Contador Electrónico Simetría Cristalina (Grupo espacial Polvo Cristalino Polvo Cristalino Contador Liectrónico Parámetros de Red Análisis cuantitativo de fases cristalina por medio de las intensidades difractadas Debije- Scherrer Monocromática Polvo Cristalino Película Parámetros de Red Identificación					Identificación de estructura cristalina por medio de las intensidades difractadas	
Debije- Debije- Bebije- DED DED DED DED DED DED DED DED DED DE			Monocristal	Contador Electrónico	Simetría Cristalina (Grupo espacial)	
Polvo Cristalino Contador Electrónico Análisis cuantitativo de fases cristalina por medio de la intensidades difractadas Debije- Scherrer Monocromática Polvo Cristalino Película Fotográfica Parámetros de Red Identificación	Difractó- metro	Monocromática			Parámetros de Red	
Debije- Scherrer Monocromática Polvo Película de Red Cristalino Fotográfica Identificación			Polvo Cristalino	Contador Electrónico	Análisis cuantitativo de fases cristalinas por medio de las intensidades difractadas	
de fases des conocidas ²	Debije- Scherrer	Monocromática	Polvo Cristalino	Pelicula Fotográfica	Parámetros de Red Identificación de fases desconocidas ²	

Tabla 2 Métodos Experimentales de Difracción de Rayos X más utilizados.

 Por las tablas de identificación: Grystal Data, U.S. Department of Gommerce (N.B.S.) y Joint Committee on Powder Diffraction Standards.
 Por las tarjetas de identificación: Powder Data, Joint Committee on Powder Diffraction Standards.

CAPITULO IV EL METODO DE DEBIJE-SCHERRER

1.- Introducción.

Dentro de los métodos de difracción de rayos X para estudiar sustancias cristalinas, se encuentra el método de polvos de Debile-Scherrer, llamado asi debido a sus iniciadores alemanes P. Debije y P. Scherrer en 1916. Aunque en un principio se utilizaba sólo para estudiar propiedades cristalográficas. actualmente se utiliza como un medio de identificación de fases cristalinas ya que, a partir del diagrama de difracción, es relativamente fácil y directo, el cálculo de distancias interplanares que cumplen la ley de Bragg, las cuales son características de cada sustancia. Además para el análisis es necesario sólo una cantidad muy pequeña de material cristalino pulverizado, es decir no es necesario tener un monocristal para su identificación. Otra de sus aplicaciones es el cálculo de parámetros de red con alta precisión y exactitud, los cuales se pueden calcular, aunque de manera menos directa, a partir de las distancias interplanares. Sin embargo, el valor real de estos valores, se ve alterado por las fuentes de error involucradas en la metodología experimental. En este capitulo se dará una explicación detallada del método experimental tal y como se realiza actualmente en el Laboratorio de Rayos X del Instituto de Física de la UNAM. Después, haciendo uso de la teoría de difracción de ravos X por cristales, se explicará el fenómeno de difracción de ravos X por el polyo cristalino para poder interpretar su patrón de difracción. Con estos elementos será posible obtener la información necesaria para sus aplicaciones, de las cuales se hará énfasis en el cálculo de parámetros de red, va que es el tema central de esta tesis, Dentro de este tema se incluyen los estudios de los factores tanto físicos como geométricos, que alteran la determinación precisa y exacta de los valores experimentales, y la forma de corregirlos.

2.- Procedimiento experimental.

La muestra por analizar pude ser cualquier fase cristalina, natural o artificial, orgánica o inorgánica. Un ejemplo es el monocristal de NaCl que se muestra en la figura 1, el cual fue crecido artificialmente en el intituto de Física de la UNAM.

Figura I. Cristal de NaCi puro.

i) Preparación de la muestra.

Para pulverizar el cristal, se puede moler en un mortero de ágata como se muestra en la figura 2, o si se trata de un metal puede limarse. Para homogeneizar el tamaño de grano del polvo, se cierne por un tamiz o cedazo con ciaro de .05 mm aproximadamente (figura 3).

Con el polvo cernido se forma una muestra cilindrica de 0.5 mm de diámetro y l cm de altura aproximadamente. El espesor de la muestra (T) puede calcularse con la siguiente fórmula:

$$T = \frac{2}{\mu} \qquad \dots (1)$$

donde μ es el coeficiente de absorción lineal de la muestra para la longitud de onda utilizada.

Figura 2. Cristal de NaCl pulverizándose en el mortero de ágata.

Figura 3. Polvo cristalino de NaCl cirniéndose por un cedazo de .05 mm de diámetro.

Aunque idealmente la muestra debería contener sólo el polvo cristalino bajo estudio, para mantener unidos los granos de polvo es necesario introducir algún otro material. Éste debe ser tal que no afecte el patrón de difracción de la muestra por analizar. Escencialmente hay tres formas de preparar la muestra las cuales se describen a continuación.

a) Método del tubo capilar: se introduce el polvo dentro de un tubo capilar, va sea directamente, o bien, mezclado con algún diluyente (Licopodium, tragacanth o algún almidón) para obtener una consistencia óptima. El tubo capilar debe ser lo más delgado posible pues la radiación 10 atraviesa dos veces disminuvendo su intensidad. Los capilares utilizados tienen entre 0.3 a 1 mm de diámetro y están hechos de vidrio Lyndemann muy delgado. Una de las terminales del tubo capilar se cierra con una pequeña flama, y por la otra, se introduce el polvo haciendo que caiga al fondo con ligeros golpes en la pared del tubo. (figura 4). Una vez lleno se observa a través del microscopio para cerciorarse de que el polvo esté compacto y no haya huecos. Entonces se sella con cera suave (figura 5).

Figura 5. Muestra preparada por el método del capilar.

b) Método de la fibra: se coloca el polvo en un portaobjetos. Se sumerge una fibra de vidrio Lyndemann o vidrio pyrex, de aproximadamente .1 mm de diámetro, en cemento, goma, celulosa u otro adhesivo que sea compatible con el material bajo estudio, y en seguida, se rueda sobre el polvo hasta que se cubra con él (figura 6).

Figura 6. Preparación de la muestra por el método de la fibra

c) Método del cigarrillo: se coloca el polvo en un portaobjetos y se le agrega un aglutinante, por ejemplo, cemento Duco (figura 7), con el cual se mezcla hasta formar una pasta suave uniformemente densa (figura 8).

Figura 7. Preparación de la muestra por el método del cigarrillo

Se coloca sobre ella un segundo portaobjetos comprimiendo la pasta por presión de los dedos sobre los vidrios (figura 9), hasta formar una película de la mezcla entre los dos vidrios. Se desplaza el segundo portaobjetos sobre el primero hasta que se separen quedando una película delgada sobre cada uno de los dos vidrios (figura 10).

Figura 9. Preparación de la muestra por el método del cigarrillo

Figura 10. Preparación de la muestra por el método del cigarrillo

En seguida, sin dejar que la mezcla endurezca, se corta un rectángulo de aproximadamente 0.5 a 1.0 cm y se levanta del vidrio con una navaja (figura 11) obteniendose una laminilla de la muestra la cual se enrrolla con los dedos formando un cigarrillo lo más delgado y homogéneo posible (figura 12).

Figura 11. Preparación de la muestra por el método del cigarrillo

La muestra, preparada por cualquiera de estos tres métodos, se coloca en un casquillo de cobre cuidando que el eje del cilindro de la muestra coincida con el eje del casquillo. Este casquillo está listo para montarse en la cámara (figura 13).

Figura 13. Muestra preparada por el método del capilar montada en un casquillo de cobre.

il) Montaje de la muestra en la cámara.

Este paso consiste en colocar el portacasquillos con la muestra en la cámara. Para la mejor comprensión de este paso y los siguientes, se da una descripción detallada de la cámara de polvos de Debije-Scherrer.

A) Descripción de la cámara. La cámara está hecha de metal cromo plateado, (figuras 14 y 15), y consta escencialmente de cinco partes que son las siguientes:

1) Cuerpo de la cámara (a) y tapadera (b),

- Sistema para el haz incidente y el haz transmitido: colimador (c) y captor (d),
- Portacasquillos (e) y sistema de alineamiento: tornillo de alineamiento (f), y tornillo cardioide (g),
- 4) Sujetador de la película (h), y
- 5) Base o soporte del cuerpo de la cámara (i).

Figura 14. Cámara de Debije-Scherrer, vista frontal.

Figura 15. Cámara de Debije-Scherrer, vista lateral.

Cada una de estas partes se describe a continuación:

- 1) Cuerpo de la cámara y tapadera: el cuerpo de la cámara es un cilindro de metai de 3.937 cm de altura. Una de sus bases está pegada a él, y la otra es la tapadera que sella perfectamente para evitar el paso de luz al interior de la cámara. Su radio puede ser de dos tamaños: 57.296 cm, a la que se le llama cámara grande, ó 28.648 cm, a la que se le llama cámara chica. Ambas son iguales excepto por el tamaño, por lo que la presente descripción se aplica a culquiera de ellas.
- 2) Sistema de haz incidente y transmitido: la superficie del cilindro tiene dos orificios uno frente a otro. Por uno se introduce el colimador, y, por el otro, el captor, ya sea que se atornillen, o entren a presión. Por el colimador entra la radiación al interior de la cámara, y el captor detiene el haz transmitido.

El colimador consiste de un tubo hueco de forma cónica apuntando hacia el centro de la cámara. En la parte interna tiene dos discos de plomo con una abertura central para definir el haz incidente que entra en la cámara en un haz de rayos lo más paralelos posibles (figura 16).

Figura 16. Sección transversal del esquema del colimador y del captor en la cámara de Deblje-Scherrer.

La forma como se colima el haz incidente se muestra en la figura 17. La fuente de radiación (S) se muestra en forma cuadrada de altura h, y las dos aberturas circulares, de diámetros d, separados por una distancia u, donde u es grande comparada con d.

Figura 17. Esquema de un colimador circular de radio d.

Los rayos convergentes de los vértices de la fuente se cruzan en el centro del colimador y entonces divergen. El ángulo máximo de divergencia está dado por:

$$\beta_2 \approx \frac{2d}{u}$$
 radianes ...(2)

y el centro del colimador se puede considerar como el origen virtual de estos rayos divergentes. Del colimador emergen no sólo rayos paralelos y divergentes, sino también convergentes, cuyo ángulo máximo está dado por:

$$\alpha = \frac{d}{u + w} \quad radianes \qquad \dots (3)$$

donde w es la distancia de la salida del colimador al cristal. De estas dos ecuaciones se puede calcular la diferencia máxima entre rayos no paralelos. Para valores típicos de d=0.5 mm, u=5 cm, y w=3 cm, nos da $\beta = 1.15^\circ$ y $\alpha = 0.36^\circ$, lo que da una diferencia de 0.79°.

Al pasar los haces por la abertura 2, el plomo puede producir lineas de difracción, por lo que se coloca un tercer diafragma (figura 16) al final del colimador, para detener esos haces difractados y no se confundan con el patrón de difracción de la muestra por analizar.

Hay dos tipos de colimadores de acuerdo a la forma de las aberturas de los discos internos del tubo, circulares y lineales. Los primeros tienen forma circular, y los segundos forma rectangular. Los colimadores lineales tienen los lados mayores del rectángulo paralelos al eje de la muestra, por lo que aumenta el volumen de muestra expuesta a la radiación. Esto tiene la ventaja de disminuir el tiempo de exposición, pero requiere mayor precisión en la alineación de la muestra en la cámara.

El captor es un tubo similar al colimador, pero no tiene hendiduras internas, y el final está cerrado por tres discos de diferente materiai en el siguiente orden: papel negro para impedir el paso de luz externa នរ interior de la cámara. pantalla fluorescente con vista al frente para asegurarse que hay haz transmitido cuando se monta la cámara a la fuente de rayos X, y, finalmente, una pieza densa de vidrio de plomo para prevenir la salida del haz transmitido al exterior y proteger al operador cuando realiza las observaciones.

Además de las funciones descritas del colimador y del captor, ambos tienen la función de minimizar la extensión de aire que atraviesan el haz incidente y el haz transmitido, y asi, disminuir la dispersión por aire. La separación entre los vértices del colimador y del captor es de 11 mm para una cámara grande. Su forma afilada evita, lo más posible, la interferencia de los haces difractados a pequeño y grande ángulo. 3) Portamuestras y sistema de alineamiento: en la base del cuerpo de la cámara se encuentra centrado un disco (a, figura 18) que a su vez tiene centrado un cilindrito hueco (b, figura 18) donde entra el casquillo que porta la muestra. Este disco puede girarse por medio de un tornillo cardioide que se encuentra en la parte trasera de la cámara (g figura 15).

Figura 18. Portacasquillos de la cámara de Debije-Scherrer.

En la parte superior del cuerpo de la cámara se encuentra el tornillo de alineamiento (f figuras 14 y 15), el cual permite desplazar el disco hacia abajo como se muestra en la figura 19.

4) Sujetador de la película: la película se pega sobre la superficie interna del cilladro de la cámara. dejando una de sus terminales en un sujetador fijo (s' figura 20), y la otra en un sujetador deslizable (s figura 20), que se mueve por medio de una placa (p figura 13) que se encuentra en la parte superior del cuerpo de la cámara. Un tornillo (h figura 13) mantiene fija la posición correcta de la película. Este arregio geométrico de colocar la película en la cámara se le debe a Straumanis (1949). La forma de la película, para este arreglo, debe ser un rectángulo cuvas medidas sean, casi el perímetro de la cámara. es decir casi 360 mm para cámara grande, o casi 180 mm para cámara chica, de lado mayor, y de lado menor, un poco menos que la altura del cilindro de la cámara, es decir, 35 mm aprox. A la película se le hacen dos orificios por donde pasan el colimador y el captor.

- Figura 20. Sujetador de la película en una cámara de Deblje-Scherrer preparada para un arregio de Straumanis.
 - e) Base o soporte del cuerpo de la cámara: la base de la cámara está hecha de metal pesado, tiene forma rectanguiar con hendiduras por debajo para deslizarse. en el brazo del equipo de rayos X.

Dos tornillos (q y q' figuras 14 y 15) sujetan la posición de la cámara en el brazo, y un tornillo largo (t figura 13) en la parte delantera sirve para abrir la ventana del generador de rayos X.

Para colocar la muestra en el portacasquillos de la cámara, es más fácil introducir el casquillo con unas pinzas y habiendo retirado previamente el colimador y el captor.

iii) Alineación de la muestra en la cámara.

Una vez que se ha colocado el casquillo de cobre en la cámara, el siguiente paso es de primordial importancia para obtener una buena eqisgrafía, y consiste en alinear la muestra en el eje de la cámara. La forma básica para una buena alineación es la siguiente.

Se coloca el colimador a la cámara, una lente de aumento en la entrada del colimador y una pantalla lluminada en ia entrada del captor. Con el tornillo cardioide se gira la muestra observándola simultáneamente a través de la lente. Cuando la muestra se encuentra en la parte más alta del claro del colimador, se despiaza hacia abajo con ayuda del tornillo de alineamiento, hasta que la muestra se observe en la parte media del campo visual. Se regresa el tornillo de alineamiento, y se vuelve a girar la muestra. Si se observa que ésta sube y baja, se vuelve a repetir el proceso de bajaria con el tornillo de alineamiento, hasta que se observe que la muestra ya no se mueve. De esta manera el eje del cilindro de la muestra habrá coincidido con el eje central de la cámara, y se dice que la muestra

iv) Colocación de la película en la cámara.

Una vez que la muestra ha sido alineada, se prosigue a colocar una película virgen, sensible a los rayos X, en la cámara, para lo cual es necesarlo trabajar en la oscuridad total.

La película previamente cortada y perforada, se expande con los dedos sobre la superficie interna del manto del cilindro. Una vez bien colocada se sujeta con el tornillo de ajuste. Se colocan el colímador y el captor, y se tapa. De esta manera la cámara ha quedado cargada.

v) Colocación de la cámara en el equipo de rayos X.

El siguiente paso es colocar la cámara directamente en el generador de rayos X para la exposición, pero muchas veces es necesario hacer un paso previo de alineación de la cámara, por lo que antes de proseguir, se hará una breve descripción del generador utilizado en el desarrollo de este trabajo, y después del proceso de alineamiento.

A) Descripción del generador de rayos X.

El generador de rayos X del Laboratorio de Rayos X del IFUNAM, es de marca Philips, modelo PW 1729 (figura 21). Tiene cuatro ventanas, dos de las cuales pueden utilizarse para cámaras de Deblje-Scherrer (2 y 3 figura 22). Debajo de cada una de estas ventanas, y casi perpendicularmente, hay un riei por donde puede deslizarse la cámara (r y r' figura 22).

Figura 21. Generador de rayos X, marca Philips PW 1729.

La ventana tiene una abertura circular que se cubre con un disco (f figura 23) que gira para permitir el paso del colimador a la ventana. Esta se abre por medio de un botón (b figura 22) que se encuentra debajo de este disco y por encima del riel.

Figura 22. Ventanas del generador de rayos X.

Figura Z3. Cámara de Debije-Scherrer colocada a la ventana del generador de rayos X.

Al introducir la cámara por el brazo del riel, el tornillo largo de la base de la cámara aprieta este botón simultáneamente a la posición correcta del colimador en la ventana (figura 23). Para evitar la salida de radiación al exterior al pasar de la ventana al colimador, se coloca un dispositivo de metal llamado tunel Azdrof (a figura 23), que consiste de un pequeño tubo de cobre cuyas terminales embonan perfectamente, por una parte al colimador, y por la otra a la ventana del equipo. Detrás de la ventana hay un disco (d figura 23) que contiene diversos tipos de filtros: V. Mn. Fe. Ni y Zr. Este disco se gira para escoler el filtro deseado, o también hay una posición para la cual no se filtra la radiación.

B) Alineación de la cámara en la ventana.

Cuando el haz de ravos X entra a la cámara, la pantalla del captor debe fluorescer, si ésto no sucede, quiere decir que el haz de ravos X no ha entrado a la cámara. Puede ser por dos razones: que la ventana no haya sido abierta, o que la posición del colimador en la ventana no esté a la altura adecuada y sea el mismo túnel azárof el que impide entrar la radiación en la cámara. Cuando se trata del primer caso, simplemente debe asegurarse que el tornillo abra la ventana. En el segundo caso debe hacerse un alineamiento del riel para subir o bajar la cámara, según sea necesario. Para este alineamiento se utilizan los tornillos niveladores que se encuentran en la base del brazo (t figura 21). Durante este proceso se debe emplear la cámara vacía pero cerrada y observar la pantalla del captor. Cuando ésta fluoresca a su máxima intensidad, entonces se tendrá la altura adecuada, y se dice que la cámara está alineada. Para mayor eficiencia de trabajo este paso debe ser previo a la preparación de la cámara, para que no sea necesario descargarla y volveria a cargar.

vi) Exposición de la muestra a los rayos X.

Durante la exposición de la muestra a los rayos X, se gira la muestra con un motor eléctrico (fígura 24). El tiempo de irradiación depende de la muestra, de la intensidad y longitud de onda del haz de rayos X, y del tipo de película sensible.

- Figura 24. Motor eléctrico para girar la muestra durante la exposición a los rayos X.
 - vii) Revelado de la película.

Al término de la exposición, se revela la película obteniendose un patrón como el que se muestra en la figura 25.

Zona de retrorreflexión.

Figura 25. Patrón de Debije-Scherrer de TiO2.

vili) Lectura y medición de la equisgrafía de Debije-Scherrer.

Para el análisis experimental, una vez que se ha obtenido la equisgrafía de Debije-Scherrer, se prosigue a medir directamente de la película, la longitud de las separaciones entre cada pareja de arcos. Para esto se utiliza un vernier-caja de luz (figura 26).

Flgura 26. Equisgrafla de Debije-Scherrer sobre el vernier-caja de luz.

Esta caja tiene una pantalla de vidrio ópalo traslúcido que se ilumina con una fuente de luz fria que se encuentra en el interior de la caja, y suficientemente separada de la pantalla para evitar expanciones térmicas de la escala milimétrica que tiene la pantalla. Esta escala abarca 360 mm. Por medio de un cursor se desliza una lente de aumento cuyo aumento es de 2.5 X. Debajo de la lente hay una marca lineal, delgada, perpendicular a la escala. El cursor puede deslizarse paralelo a la escala de dos formas: manualmente para colocarlo en alguna marca de la escala milimétrica, y con la ayuda de un tornillo micrométrico, cuya resolución es de .025 mm, para desplazarlo entre milimetro y milimetro.

Para medir las separaciones entre arcos, se coloca la película sobre la pantalla de manera que la zona de transmisión quede al lado izquierdo del observador, y la zona de retrorreflexión, al lado derecho (la zona de retrorreflexión se distingue de la zona de transmisión porque en ella se resuelven los dobletes de la radiación K α_y K α_y). Al colocar la película hay que cuidar que la

dirección del lado mayor de la película quede paralela a la escala de la pantalla (figura 27).

Transmisión

Retrorreflexion

Figura 27. Diagrama de una equisgrafía de de Debije-Scherrer.

Para facilitar el procedimiento, se siguen las siguientes definiciones y convenciones: cada pareja de arcos tiene un arco derecho y un arco izquierdo, donde izquierdo y derecho se definen sobre la película, así colocada, con respecto al haz transmitido (figura 28). Cada uno de estos arcos tiene un limite externo y un límite interno, es decir cada arco tiene un ancho determinado. El límite interno es el más cercano al haz transmitido, y el límite externo es el más alejado. Cada pareja de arcos se numera en forma creciente conforme la separación entre arcos aumenta. A los arcos provenientes de la radiación K α se les asignaràn números enteros, a los provenientes de la radiación K α_i y K α_j se les asignará el número entero correspondiente más .i y .2 respectivamente, y a los arcos provenientes de la radiación K β , se les sumará .4.

Figura 28. Definiciones y convenciones de la equisgrafia de Debije-Scherrer para su medición.

3.- Fundamentos teóricos.

A continuación se interpretará el patrón de Deblje-Scherrer con base en los fundamentos teóricos explicados en el capitulo ш. v se obtendrá una relación entre lac medidas experimentales y las propiedades físicas de la muestra nulverizada.

i) Geometría de la difracción según el tratamiento de Ewald. La muestra pulverizada que se utiliza en este método consiste de un gran número de pequeños cristalitos, cada uno de ellos tiene su red puntual, y por lo tanto su red recíproca, orientadas al azar respecto al haz incidente.

Debido al gran número de orientaciones es muy probable que existan todas las orientaciones posibles que la red reciproca puede tener, de tal manera que un un vector cualquiera de la red reciproca, digamos \vec{R}_{HKI} , tendrá todas las orientaciones posibles respecto a un origen común, al cual llamaremos O. El número infinito de puntos de las posiciones de este vector formarán la superficie de una esfera (figura 29).

La red reciproca del espécimen será la superposición de todas las redes reciprocas. En total, la red reciproca del espécimen es una familia de esferas concéntricas en O, de radios (\vec{H}_{inv}) .

Figura 29. Interpretación de la difracción según Ewald,

Las esferas de la red reciproca que intersectan con la esfera de Ewald, son aquellas que cumplen:

La intersección de una esfera de la red reciproca con la esfera de Ewald es una circunferencia, por lo que las direcciones de los haces difractados, son conos de difracción como se muestra en la figura 30. Así, los haces difractados por toda la muestra, darán lugar a un conjunto coaxial de conos de haces de difracción. Cada uno de estos conos se identifica con la triada de indices HKL del vector reciproco \vec{R}_{urr} .

Figura 30. Intersección de la red reciproca con la esfera de Ewald.

ii) Geometria de la difracción según la ley de Bragg.

Como hemos dicho el espécimen de este método consiste de un gran número de pequeños cristalitos orientados al azar. Cuando un haz de rayos X de longitud de onda λ incide sobre ella hay una gran posibilidad de que un subconjunto de los cristalitos estén orientados con respecto al haz incidente de tal manera que alguna de sus familias de planos de red, por ejemplo la familia {HKL} con distancia interplanar d_{HKL}, forme con el haz un ángulo θ_{HKL} , que satisfaga la Ley de Bragg:

$$\lambda = 2d_{\mu\nu}$$
, sen $\theta_{\mu\nu}$...(10)

donde HKL son los Indices de reflexión, no de Miller. Cuando esto ocurre, cada grano del subconjunto difracta un

haz a un ángulo $2\theta_{HKL}$ con respecto al haz incidente. El conjunto de haces difractados por este subconjunto de granos forma el manto de un cono cuyo ángulo semiapical es $2\theta_{HKL}$ y cuyo eje coincide con la dirección del haz incidente. Lo mismo sucede para todas las familias de planos de la red cristalina del espécimen, cuyas distancias interplanares tengan posibilidad de satisfacer la ley de Bragg con la longitud de onda de la radiación incidente. De esta manera, los haces difractados por toda la muestra, dan lugar a un conjunto coaxial de conos de haces de difracción. Cada uno de estos conos se identifica con la triada de indices (HKL) de la familia de planos que le dió origen.

Hemos encontrado que ambas interpretaciones, la de Bragg y la de Ewald, son completamente equivalentes.

III) Interpretación del patrón de difracción de Debije-Scherrer. Cada cono de difracción velará la película, colocada alrededor de la muestra, produciendo un par de arcos o líneas denominadas HKL (figura 31). El conjunto de estos pares constituye el patrón de difracción de rayos X de Debije-Scherrer.

Figura 31. Intersección de los conos de difracción con la película.

Los arcos que se encuentran alrededor del orificio del captor son producidos por los conos de difracción con Angulos 29_{HKL} menores que 90°. A esta zona de la película se le llama zona de transmisión. Los arcos HKL producidos por los conos de difracción con ángulos semiapicales mayores que 90°, se encuentran alrededor del orificio del colimador. A esta zona de la película se le llama zona de retrorreflexión. Una característica importante del patrón en esta zona es que resuelve los pares producidos por la radiación K α .

a) Relación entre el ángulo de difracción y la longitud de la separaciones entre cada pareja de arcos del patrón: si el ángulo semiapical de un cono de difracción es 2θ_{HKL}, el ángulo de la abertura total de un cono será 4θ_{μχ1}, como se muestra en la figura 32.

Figura 32. Relación entre el ángulo de difracción θ_{HKL} y la longitud entre la separación entre arcos S_{UVI}.

Las longitudes de arco S_{HKL} medidas sobre la película, guardan la siguiente relación con el ángulo θ_{HKL}

$$4\theta_{HKL}R = S_{HKL} \qquad \dots (11)$$

donde R es el radio de la cámara y el ángulo está en radianes. Despejando $\theta_{\mu\mu}$ de esta última obtenemos:

$$\Theta_{HKL} [rad] = \frac{S_{HKL} [mm]}{4R [mm]} \dots (12)$$

y convirtiendo a grados se tiene:

$$\Theta_{HKL} \left[\text{grados} \right] = \frac{180^{\circ}}{\pi} \frac{1}{4\text{R} \left[\text{mm} \right]} S_{HKL} \left[\text{mm} \right] \qquad ...(13)$$

Pero la cámara ha sido construida expresamente con un radio de:

$$R = \frac{180}{\pi} [mm] \qquad ...(14)$$

para cámara grande, y:

$$R = -\frac{90}{\pi} [mm]$$
 ...(15)

para cámara chica.

Sustituyendo (14) y (15) en (13), nos queda:

$$\theta_{HKL} |grados| = \frac{S_{HKL}}{4} \dots (16)$$

para cámara grande, y:

para cámara chica.

b) Relación entre las posiciones de las líneas y la distancia interplanar.

A partir de la medición de las separaciones entre arcos del patrón de difracción, es posible calcular el ángulo de Bragg por medio de las ecuaciones (16) ó (17) según sea el caso. Con él, entonces, se pueden calcular las distancias interplanares correspondientes a cada pareja de arcos del patrón, sustituyendo θ_{HKL} en la ley de Bragg, ecuación (10), y despejando d_{urr} :

$$d_{HKL} = \frac{\lambda}{2 \sin \theta_{HKL}} \qquad \dots (18)$$

y las incertidumbres son:

$$\Delta^{\dagger} d_{HKL} = \left| \frac{\lambda + \Delta \lambda}{2 \operatorname{sen} (\theta_{HKL} - \Delta \theta_{HKL})} - d_{HKL} \right| \qquad \dots (19)$$

$$\Delta^{-}d_{HKL} = \left| \frac{\lambda - \Delta \lambda}{2 \operatorname{sen} (\theta_{HKL} + \Delta \theta_{HKL})} - d_{HKL} \right| \qquad \dots (20)$$

De la ecuación (18), se puede observar que el valor de la distancia interplanar disminuye conforme el ángulo de Bragg aumenta.

c) Relación entre cada pareja de accos del patrón de difracción y los índices de reflexión.

Cada pareja de arcos del patrón es producida por una familia de planos {HKL}. Al proceso de aslgnar a cada pareja de arcos del patrón sus índices HKL correspondientes, se le conoce como indexación.

Sin embargo, no hav una manera directa de realizar este proceso, pues la única información que se obtiene del patrón de difracción, es el ángulo de Bragg, y, a partir de él se puede calcular la distancia interplanar de la familia de planos correspondiente, pero no así, sus índices. La forma como se relacionan los índices con la distancia interplanar, es por medio de las ecuaciones de la Tabla 3 del capítulo I. Estas ecuaciones relacionan la distancia interplanar con los índices, por medio de los parámetros de red de la celda unidad del cristal. Así, si se conocieran estos últimos valores, se podría indexar fácilmente el patrón de difracción, pero en realidad estos valores son desconocidos inicialmente. Hay varios métodos para la indexación de patrones de difracción de Deblje-Scherrer, en el capitulo siguiente se muestra la metodologia desarrollada que es parte del presente trabajo, para indexar este tipo de patrones.

4.- Aplicaciones.

i) Identificación de fases cristalinas.

Ésta es una de las aplicaciones más usuales del método de polvos, determinar la composición química de un cristal. No importa que el cristal sea la mezcla de varias fases, por este método es posible determinar sus componentes, y de alguna manera, el porcentaje de cada elemento. Existen otros métodos para la determinación de la composición química de un compuesto, como son métodos químicos, micoscopio polarizador. espectroscopia óptica. fluorescencia y absorción de rayos X, etc., pero únicamente por difracción de rayos X es posible identificar todas las sustancias cristalinas. Los otros métodos son análisis complementarios, particularmente cuando se trata de una mezcla muy compleja.

Cada fase cristalina diferente origina un patrón de difracción característico de esa fase. De la misma manera, si dos polvos originan patrones de difracción iguales. querrá decir que los dos materiales son el mismo, no hav materiales iguales que den patrones diferentes. ésta es la base para identificación de fases cristalinas la. desconocidas. El método fue propuesto por J. D. Hanawalt, H. W. Rinn y L. K. Frevel en 1938. Actualmente se le conoce como Método Hanawalt. Existe un catálogo llamado Powder Difraction file, publicado por el Joint Committee on Powder Diffraction Standards (JCPDS), consiste de un índice y una colección de tarietas individuales. El índice contiene todas las sustancias cristalinas estudiadas por alguno de los métodos de polvos, (difractómetro, Debile-Scherrer o Gandolfi) y las tarjetas contienen la información de cada sustancia. Cada tarjeta contiene la siguiente información:

a) Los valores de las distancias interplanares e intensidades relativas, de las tres líneas más intensas en orden de mayor a menor intensidad. Las intensidades se determinan con base a 100 sobre la línea más intensa.

- b) El nombre del material, fórmula química, nombre mineral o fórmula estructural, según se trate de un mineral o de un compuesto orgánico.
- c) Técnicas y condiciones experimentales utilizadas. Grupo o personas que hicieron el estudio.
- d) Datos cristalográficos como son: parámetros de red, grupo espacial, etc.
- e) Datos ópticos.
- f) Observaciones del material bajo estudio.
- g) Una lista completa de las distancias interplanares de todos los haces de difracción observados en el patrón del método empleado, las intensidades relativas y los indices de reflexión determinados, si es posible.

En la esquina superior izquierda aparece un número por el cual se identifica la tarjeta, el primer número se refiere al volumen de la colección de tarjetas, y el segundo al número de tarjeta de ese volumen. El National Bureau of Standards ha publicado durante años, datos de alta precisión para los compuestos más comunes. Estas sustancias están marcadas con una estrella.

El índice se utiliza para encontrar la tarjeta, ya sea, conociendo el nombre químico de la sustancia o conociendo los valores de las distancias interplanares del patrón de difracción. Consiste de dos volúmenes, uno para fases orgánicas, y otro para fases inorgánicas. Ambos se publican anualmente. En la primera parte de cada volumen, se ordenan, en orden decreciente, triadas de los valores de d_{HKL} de las líneas más intensas con sus intensidades relativas. En la segunda parte se ordenan las sustancias por su nombre químico, en orden alfabético. Hay una segunda lista de las sustancias que sean minerales, o bien, si se trata de compuestos orgánicos, los nombres químicos seguidos del contenido de carbón en orden creciente. Cada lista da el número de volumen y de tarjeta que contiene toda la información.

sustancia identificar แกล método Hanawalt рага FL cristalina a partir de los valores experimentales de las distancias interplanares de cada una de las líneas del patrón de difracción, y de sus intensidades relativas. es sigulente: primero. se escogen las distancias el. interplanares de las tres líneas más intensas del patrón de difracción y se buscan en el indice; segundo, se busca la tarieta que contiene la información, si el valor de todas las distancias interplanares del archivo coincide con todo el conjunto medido, así como sus intensidades, entonces la fase balo estudio podría ser identificada como la fase archivada.

ii) Determinación del sistema cristalino.

En el método de polvos las simetrías del sistema cristalino se pierden en el patrón de difracción. Sin embargo, cada sistema cristalino tiene cierta distribución general de líneas.

Para el sistema cúbico las reflexiones pueden ocurrir en una de las tres secuencias ilustradas en la figura 33. Cuando la red es primitiva se observan siete líneas espaciadas regularmente seguidas de un espacio y siete líneas más, etc. Para las redes centradas en el cuerpo, y centradas en la cara la secuencia se reduce de siete líneas a tres y dos.

Figura 33. Distribución de las líneas de difracción en un patrón de Debije-Scherrer producido por un cristal perteneciente al sistema cúbico.

Cuando el número de líneas es aún bastante más pequeño, pero las reflexiones están agrupadas en grupos menos regulares, es muy probable que el material pertenezca a uno de los sistemas uniaxiales. Conforme la densidad de lineas aumenta, es muy probable que la simetría decrezca. Un ejemplo del incremento de líneas en el patrón de difracción, conforme la simetría de la celda unidad decrece, se muestra en la figura 34. Aquí se muestra la representación gráfica de los patrones de difracción calculados por Gerward et al. (1986). Los autores presentan la forma de desdoblamientos de las líneas del patrón de difracción, a partir de las deformaciones de una red con celda FCC (cúbica centrada en las caras).

celda fcc distorcionada

ili) Determinación de la red de Bravais.

A partir de las extinciones sistemáticas, es posible determinar el tipo de red de Bravals que forma el compuesto. Si ya se tiene indexado el patrón de difracción, bastará observar qué relaciones guardan los índices entre si. De acuerdo a la tabla 1 del capítulo III, si los índices KL son no mixtos, se trata de una red tipo C, etc.

iv) Determinación de los parámetros de red.

Cuando se tiene indexado el patrón de difracción de Debije-Scherrer, es fácil calcular los parámetros de red por medio de las relaciones entre los parámetros de red y las distancias interplanares. Tabla 6 del capítulo I.

Para cada sistema cristalino hay que resolver un sistema de N ecuaciones con N incógnitas. Por ejemplo el caso más sencillo es el sistema cúbico, el cual tiene solamente una incógnita, α_{o} . Así, para este sistema sustituyendo d_{HKL}, se tiene:

$$a_{o} = \frac{\lambda}{2} - \frac{\sqrt{H^{2} + K^{2} + L^{2}}}{\sec \theta_{HKL}} \qquad ...(22)$$

Es decir, conociendo el ángulo de Bragg y los indices correspondientes de cualquier linea del patrón, en principio, se podría calcular el parámetro de red de una fase crisatiina pertenuciente al sistema cóbico.

En los sistemas tetragonal y hexagonal hay dos incógnitas, $a_o \ y \ c_o$, por lo que se necesita resolver un sistema de dos ecuaciones conocidos dos cualesquiera ángulos de Bragg del patrón de difracción, $\theta_{h_k h_1 l_1} \ y \ \theta_{h_k h_2 l_2}$ por ejemplo. De esta manera, se tendrían los siguientes dos sistemas de ecuaciones siendo las incógnitas $1/a_2^2 \ y \ 1/c_c^2$,

...(23)

para el sistema tertragonal, y,

para el sistema hexagonal.

Sin embargo el procedimiento que se sigue en general para calcular los parámetros de red es mas largo, pues en la práctica se observa que no se obtiene el mismo valor al calcular los parámetros de red con diferentes ángulos de Bragg. El caso más sencillo de observar es el de una fase perteneciente al sistema cúbico. Por ejemplo, para el NaCl, el comportamiento del valor del parámetro de red en función del ángulo de Bragg se observa en la Gráfica 1.

Este comportamiento se debe a los errores involucrados en la metodología experimental. Hay dos tipos de errores asoclados con cualquier medida experimentai, estocásticos y sistemáticos. La dispersión de los puntos a una curva ajustada, se debe a los errores estocásticos, mientras que el comportamiento en general de la curva, la cual en ausencia de errores sistemáticos deberia ser una recta, se debe a los errores sistemáticos. En lo que resta de este capítulo se analizan las diferentes fuentes de error presentes en el método de polvos difracción de rayos X de Debije-Scherrer para determinar la comportamiento de esta curva.

Gráfica 1. Parámetro de red del NaCl calculado a partir de datos experimentales, en función del ángulo de difracción θ_{HKL} 5.- Fuentes de inexactitud e imprecisión en la determinación de los parámetros de red.

En esta sección se estudian todas las fuentes de error que intervienen en el método de polvos de Debije-Scherrer. Esto es, conocer su origen físico, la forma como alteran el valor experimental de la longitud de arco entre cada pareja de lineas del patrón de difracción, y la manera de corregiria. La metodología experimental desarrollada para corregirios se explica detalladamente en el capítulo VI.

i) Errores estocásticos.

Estos errores provienen de la lectura de las posiciones del cursor sobre las líneas de la película para la determinación de las separaciones S_{HKL} . La Incertidumbre asociada a esta medida es comunmente la mitad de la resolución del tornillo micrométrico con la que se mide. O bien, si se quiere una mayor precisión, se pude realizar un conjunto de medidas y obtener el promedio y la desviación estándar. En el caso más pesimista, la incertidumbre asociada puede ser hasta la mitad del ancho de la línea.

ii) Errores sistemáticos.

Hay diferentes tipos de errores sistemáticos, todos ellos afectan la posición correcta de las líneas de velamiento en la película de una manera sistemática, lo que ocasiona una discrepancia entre el valor medido y el teórico. Sin embargo, el error relativo del parámetro de red disminuye conforme el ángulo de Bragg tiende a 90°. Ésto se puede demostrar diferenciando la ley de Bragg con respecto a θ_{urr} :

$$2 \frac{\Delta d_{HKL}}{\Delta \theta_{HKL}} \sin \theta_{HKL} + 2d_{HKL} \cos \theta_{HKL} = 0$$
$$\frac{\Delta d_{HKL}}{d_{HKL}} = -\cot \theta_{HKL} \Delta \theta_{HKL} \qquad \dots (25)$$

Para el caso del sistema cúbico:

$$\frac{\Delta d_{HKL}}{d_{HKL}} = \frac{\Delta a_o}{a_o} \qquad \dots (26)$$

por lo que:

$$\frac{\Delta a_{o}}{a_{o}} = -\cot \theta_{HKL} \Delta \theta_{HKL} \qquad \dots (27)$$

El valor relativo de a_o disminuye conforme θ_{HKL} aumenta y se hace cero en 90°.

Los errores de este tipo provienen tanto de las componentes geométricas entre los elementos del tubo de rayos X, cámara y muestra, como de las características físicas que intervienen en este proceso. A continuación se analizan todos las fuentes de error sistemáticas que se presentan en este método.

a) Absorción de rayos X por el espécimen.

Cuando la radiación pasa a través de la muestra, su intensidad disminuve de acuerdo a la ecuación (6) del capítulo II. En ausencia de cualquier tipo de error se esperaria que el perfil de intensidad de la línea de velamiento fuera simétrica, con un máximo de intensidad en el centro de la línea. Sin embargo, debido a que la muestra absorbe radiación, cuando su coeficiente de absorción es muy alto, sólo la superficie externa puede difractar rayos X, corriendo el punto de intensidad máxima de la línea hacia ángulos de Bragg mayores. En la figura 35 se muestra este efecto representando la sección transversal de la muestra circular, y suponiendo que los rayos incidentes en la dirección XA, paralelos, bañan la muestra completamente y un haz difractado en la dirección 28 paralelo al rayo central AB sale de ella. Se muestra el perfil de intensidad del haz difractado donde la región sombreada representa la distancia que recorre la radiación a través de la muestra. El efecto de la absorción desplaza el centro de la línea de velamíento como se muestra en la gráfica del perfil de intensidad de la línea en la figura. Este defecto decrece conforme el ángulo de Bragg aumenta y se hace cero en $\theta_{uvr} = 90^{\circ}$.

Figura 35. Efecto de absorción por el espécimen.

Es posible corregir el error en la determinación del ángulo de Bragg por este efecto. Uno de los primeros métodos más eficientes fue propuesto por Kettmann (1929) quien sugeria que en la gráfica del valor del parámetro de red, calculado de cada línea del patrón, contra el valor del ángulo de Bragg correspondiente, se dibujara una curva suave a través de los puntos. Una extrapolación de la curva a 90° daria el valor del parámetro de red correcto.

Bradley and Jay (1932) propusieron que en vez de graficar directamente contra θ_{HKL} , se graficara contra $\cos^2 \theta_{HKL}$, ya que para valores cercanos a $\cos^2 \theta_{HK} = 0$ la curva se aproxima a una recta la cual es más fácil de extrapolar. De esta manera se corrige al mismo tiempo, según los autores, por los errores de absorción y excentricidad de la muestra.

Cohen (1935), propuso un método para ajustar la recta a la función de Bradley y Jay por mínimos cuadrados. Investigadores posteriores propusieron otro tipo de

funciones, algunas de ellas son las siguientes:

$$\frac{\Delta \alpha_o}{\alpha_o} \propto \left(\frac{\cos^2 \theta_{HKL}}{\sin \theta_{HKL}} + \frac{\cos^2 \theta_{HKL}}{\theta_{HKL}} \right) \qquad \text{Taylor y} \\ \text{Sinclair (1944)}$$

Nelson y Riley (1945) hicieron un estudio experimental graficando los valores de los parâmetros de red contra todas las funciones siguientes:

$$\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cos^{2}\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cos^{2}\theta_{HKL}, \quad \cot\theta_{HKL}, \quad \cot\theta_{HKL}$$

Ellos encontraron en primer lugar que la función $\cos^2 \theta_{HKL}$ es lineal sólo en un pequeño intervalo y que no difiere mucho de la gráfica contra $\theta_{HKL'}$. En segundo lugar se observó que la gráfica debería ser contra la función $\cot \theta_{HKL}$ o alguna similar, ya que en ella se observaba linearidad en todo el intervalo.

La gráfica contra $\cot\theta_{HKL}$ misma muestra un caida de la linearidad a ángulos muy grandes, y la gráfica contra $\cot\theta_{urr}$, $\cos^2\theta_{urr}$, da la desviación opuesta. Una media

aritmética de estas dos funciones

$$\cot\theta_{HKL}(\frac{1 + \cos^2\theta_{HKL}}{2}).$$

muestra una mejoria, pero aún cae a ángulos grandes. La gráfica contra la media geométrica, $\frac{\cos^2 \theta_{HKL}}{\sin \theta_{HKL}}$, como lo es la gráfica contra la función muy similar $\frac{\cos^2 \theta_{HKL}}{\theta_{HKL}}$, es aparentemente lineal, sin embargo, un θ_{HKL} examen cuidadoso muestra que en la primera función la

examen cuidadoso muestra que en la primera función la recta ajustada a los puntos correspondientes a ángulos grandes tiene una pendiente ligeramente menor que la recta ajustada a todos los puntos, mientras que la segunda función muestra el comportamiento contrario. De acuerdo a estas observaciones, una buena gráfica lineal se obtiene graficando contra la media aritmética de estas dos funciones:

$$\frac{1}{2} \left(\frac{\cos^2 \theta_{HKL}}{\sin \theta_{HKL}} + \frac{\cos^2 \theta_{HKL}}{\theta_{HKL}} \right) \qquad \dots (28)$$

Esta función es conocida como la función de Nelson-Riley, aunque también fue deducida sobre bases teóricas por Taylor y Sinclair.

Además de estos estudios, Straumanis en 1949 propuso un nuevo arregio de colocar la película en la cámara de tal manera que se lograran captar los conos de difracción de la zona de retrorreflexión, ya que en ese tiempo el arregio que se utilizaba, llamado simétrico, era colocar la película desde un lado del colimador al otro, pasando por el captor. De esta manera captaban todos los arcos de la zona de transmisión. pero no los de retrorrefiexión que son los que mayor precisión dan.

b) Refracción de los rayos X por el espécimen.

Toda la radiación electromagnética se refracta al atravesar una frontera óptica. Para los rayos X

comunmente usados en el método de polvos, el índice de refracción de casi todas las sustancias está entre 0.99997 y 1.00003 aproximadamente. La forma como afecta este fenómeno a la posición de las líneas en la película fue estudiada por Taylor y Sinclair (1945), y sólo es necesario considerarlo cuando se quiere alcanzar una precisión menor de dos diezmilésimas de Angstrom. En el presente trabajo aún no es posible alcanzar dicha precisión por lo que no se ha estudiado a fondo esta fuente de error.

c) Distribución inhomogénea en la intensidad de fondo.

En toda la película se observa un velamiento de fondo que es más intenso en la zona de transmisión que en la zona de retrorreflexión. Esto se debe a la dispersión por el aire de la radiación incidente al pasar del colimador a la muestra y de ésta al captor. La intensidad de la radiación dispersada decrece conforme el ángulo de incidencia aumenta por lo que es más afectada la zona de transmisión que la zona de retrorreflexión. El material mezciado con la muestra, o vidrio capilar. cuando el es el caso. también contribuyen a la intensidad de fondo. Algunas veces la respuesta de velamiento de la película misma es inhomogénea.

La distribución de la intensidad sobre la película es la suma de la intensidad de la radiación de fondo más la del haz difractado. La intensidad no uniforme de la intensidad de fondo produce un perfil de intensidad asimétrico de la línea del patrón de difracción sobre la película, corriendo el pico de máxima intensidad hacía ángulos de Bragg menores (gráfica 2). Este efecto produce un corrimiento en la posición de la línea en la película originando una longitud de arco menor por una fracción ΔS_{HRL} , que en principio, si se conociera la forma exacta de la función del velamiento de fondo se podría cuantificar.

Gráfica 2. Efecto de la radiación de fondo en el perfil de intensidad de una línea de difracción.

> Esta fuente de error no ha sido aún estudiada pero en la sección correspondiente del capitulo VI proponemos una forma de cuantificar la fracción de error producido por este error.

d) Excentricidad del especimen con respecto al eje de la cámara.

Como se mencionó en el procedimiento experimental, hay un paso de alineamiento de la muestra, que consiste en colocarla en el eje central de la cámara. Sin embargo, aunque esta alineación se haga lo mejor posible, puede suceder que la cámara misma esté excéntrica, por lo que la muestra (B, figura 36.a), se encuentre desplazada del centro geométrico de la una distancia p, y un ángulo ϕ , respecto al haz incidente.

Bradley y Jay (1932) demostraron que el desplazamiento se puede considerar como un vector dividido en dos componentes: $p \, \text{sen} \, \phi$ y $p \, \cos \phi$, como se muestra en las figuras 36.b y 36.c.

El desplazamiento p sen ϕ produce un cambio neto de $2\Delta S_{\mu r t} = -\Delta S_{\mu r t} + \Delta S_{\mu r t} = 0.$

Mientras que el desplazamiento $p \cos \phi$ produce un cambio neto $2\Delta S_{NKL} = 2p \cos \phi$ sen $2\theta_{NKL}$ io que produce un error fraccional en a_{a} de:

$$da_{\sigma} = a_{\sigma} \left(\frac{p \cos \phi}{R} \right) \cos^2 \theta_{HKL} \qquad ...(29)$$

y un error fraccional en Sum, de:

Al factor -2pcosø le llamaremos Fe, fuctor de excentricidad, y al factor pcosø lo denotaremos Fe'.

e) Radio real de la cámara.

Para el cálculo del ángulo de Bragg a partir de la separación entre arcos S_{HKL} se ha supuesto que el radio de la cámara es $180/\pi$, (ó $90/\pi$ para cámara chica). Sin embargo, aún suponiendo que la cámara haya sido construida con alta exactitud, la película que se coloca en ella, además de tener un grosor, puede sufrir un encogimiento o estiramiento debido al proceso de revelado y almacenamiento. Por esta razón dicha suposición deja de ser válida y es necesario hacer una

corrección en el valor real del radio de la cámara. De aquí el nombre de esta fuente de error.

Sea \mathbb{R}^{i} el radio ideal de la cámara , y S_{HKL}^{i} la longitud de arco ideal que se obtendría con ese radio, (figura 37). Entonces, para el ángulo de difracción θ_{HKL} se cumple la siguiente expresión:

$$S_{HKL}^{t} = 4 \theta_{HKL} R^{t} \qquad \dots (31)$$

Mientras que si R^r el radio real de la cámara, o mejor dicho, aquel que tendría de acuerdo al tamaño actual de la pelicula, entonces la longitud de arco medida S^r_{NKL} es:

$$S_{HKL}^{r} = 4 \theta_{HKL} R^{r}$$
 ...(32)

Dividiendo ambas ecuaciones tendremos:

$$S_{HKL}^{t} = \frac{R'}{R^{t}} S_{HKL} \qquad \dots (33)$$

Esta ecuación expresa la longitud de arco esperada en
términos de la longitud de arco experimental, y la relación de radios R^{r}/R^{4} al que liamaremos Fr, factor de radio.

f) Divergencia axial del haz y tamaño de la muestra.

La radiación que incide sobre la muestra proviene de los ravos X que emergen del ánodo del tubo productor, y que pasan a través del colimador. De cada punto del ánodo, los rayos X divergen en todas direcciones, y sólo logran entrar al colimador, aquellos que están en una pequeña zona AA' (figura 38) determinados por los orificios O, y O del colimador. De la misma manera se determina el área de la muestra a la que le llega radiación, BB'. En ésta hay una zona, MM', de máxima intensidad de radiación incidente, determinada por los rayos CM y C'M'. Después hay una zona de penumbra, EM' y M'B, la cual està delimitada por el orificio O. De aqui se determina el tamaño relativo entre los orificios del colimador. El orificio O, no debe ser más pequeño que el orificio O, porque de esta manera disminuiría la zona de máxima intensidad, pero tampoco debe ser mucho más grande porque aumentaria la zona de penumbra. Por lo regular la abertura del orificio O es igual a la abertura del orificio O.

Toda la zona de muestra radiada difractará rayos X, produciendo no sólo una línea de velamiento, síno un área a la que le llamaremos el ancho de la línea. Este efecto se conoce como divergencia axiat o vertical del haz incidente porque el tamaño longitudinal de la muestra es lo que produce el ancho de la línea. El efecto de divergencia sobre el tamaño radial o sea el ancho de la muestra, llamada divergencia radiat u horizontal, se desprecía debido a que la muestra es mucho muy delgada en comparación con el tamaño longitudinal.

Este efecto introduce un error al ángulo de difracción calculado a partir de la longitud de arco medida sobre la pelicula, el cual fue estudiado por Langford et al. (1964). Ellos determinaron la fracción de ángulo <2c> que se debe sumar al ángulo medido 2¢ para que de el ángulo correcto 20 que deblera ser si no existiera el error de divergencia y tamaño de muestra, es decír:

$$2\theta = 2\phi + \langle 2\varepsilon \rangle \qquad \dots (34)$$

La forma explicita de <2c> encontrada por estos autores a partir de ciertas aproximaciones es:

 $(2c) = \frac{1}{6(q_1 - q_2)} \{\alpha_2^2 Q_{11} + \alpha_1^2 Q_{22}\} \qquad \dots (35)$

donde:

 $\alpha_i = \frac{x_i}{S - y_i} \qquad \dots (36)$

$$q_1 = \frac{y_1}{s - y_1}$$
 ...(37)

y:

$$Q_{ii} = \{1 - q_i(\mu - 1)\}^2 \cot 2\phi + \{2\mu q_i(1 + q_i)\} \cot \phi \dots (38)$$

a partir de los siguientes valores medidos en el equipo utilizado (figura 39): 2x, es la abertura dei orificio i del colimador,

 y_i es la distancia de la muestra al orificio del colimador i.

S es la distancia de la muestra al ánodo,

µ=S/R, donde R es el radio de la cámara.

Figura 39. Esquema que muestra los efectos de divergencia axial y tamaño de muestra en la difracción de rayos X por polvos, en el método de Debije-Scherrer. Figura tomada de Langford et. al.

g) Saturación de velamiento de la película.

El proceso de velamiento de los rayos X sobre la película es el siguiente: cuando la radiación incide sobre el baño de Bromuro de Plata de la película, origina una reacción fotoquímica la cual da lugar al crecimiento de granos de Plata en las regiones que recibieron radiación. Se define como transmisión luminosa, Т, а la razón entre la intensidades transmitida e incidente, I/I_, que según la ecuación (8) del capítulo II es:

$$T = \frac{1}{l_{o}} = e^{-\alpha x}$$
 ...(39)

El grado de ennegrecimiento o densidad de velamiento del grano de plata, D, es función de T. La opacidad, O, es el reciproco de la transmisión luminosa, i. e.:

$$0 = \frac{I}{T} \qquad \dots (40)$$

Asi pues, se tiene que:

$$D = \log O = \log (1/T) = \log (I_0/I) ...(41)$$

El velamiento por rayos X obedece la ley de reciprocidad que señala que el velamiento es proporcional a la *exposición* E, definida como el producto de la intensidad del haz incidente I, por el tiempo de exposición t.

Esto es:

donde el tiempo t, es el tiempo total, el cual puede ser continuo o la suma de intervalos de tiempo discontinuos. Se debe hacer notar que la exposición no siempre es una función lineal del tiempo.

Si se grafica la densidad de velamiento contra el logaritmo de la exposición se obtiene la curva característica de una película fotográfica, (gráfica 3).

En esta gráfica se observa que se presenta un velamiento mínimo llamzdo "fog" presente aún cuando no se haya expuesto la película. La primera parte de la curva muestra un ligero cambio en D llamado "toe", y luego viene una región lineal ligeramente proporcional, casi finalmente llega a una curva en forma decreciente llamada "shoulder". Por último llega a un ligero decrecimiento llamado "Reversal".

Se ha demostrado que el velamiento de una relícula, para una intensidad dada, tiene el comportamiento que se muestra en la gráfica 4.

Gráfica 3. Curva característica de una película para rayos X.

Gráfica 4. Comportamiento del velamiento sobre la película.

Como se puede observar en esta gráfica, la respuesta de velamiento de la película es lineal respecto al tiempo durante un intervalo de tiempo t $\langle t_i$. A partir del tiempo t_i el velamiento sigue un comportamiento exponencial, es decir, los incrementos de tiempo no son directamente proporcionales a los tiempos de velamiento. Este comportamiento continúa hasta un momento en que el velamiento prácticamente no cambia y tiende a un valor constante, este valor es el valor de saturación de velamiento de la película, y al tiempo t_s le llamamos tiempo de saturación.

Se llega a la saturación cuando se ha evaporado todo el Bromo del Bromuro de Plata que cubre la película. Para cuantificar el tiempo de saturación, en el tipo de películas empleadas en el Laboratorio de Rayos X del IFUNAM, se han hecho pruebas midiendo los perfiles de intensidad de las líneas de un patrón de difracción de Debije-Scherrer de NaCI, con un microdensitómetro óptico. El tiempo de saturación para la línea más intensa de este patrón es de aproximadamente 25 minutos, mientras que para las líneas menos intensas 12 horas son apenas suficientes para definir la línea en la película.

La saturación del velamiento en la película para las líneas más intensas del patrón origina un error en la determinación correcta de los ángulos de Bragg, debido a la asimetría del perfil de intensidades de las líneas del patrón de difracción. Esta asimetría como hemos visto, se debe a los efectos de absorción, divergencia, etc. Si tuviésemos el perfil de intensidad de una línea de una película ideal, es decir, en la que no existiera saturación, observariamos una gráfica como la que se muestra en la gráfica 5. En esta gráfica también se señala la meseta que se presenta en la realidad.

Gráfica 5. Perfil de intensidad ideal (si no existiera saturación en el velamiento) de una linea del patrón de Deblje-Scherrer.

> Cuando se miden las separaciones entre los arcos del patrón, se coloca el cursor a la mitad de la línea, x_r , que está a una distancia Δx de la posición correcta, x_i , que debiera ser si no fuese finito el velamiento. Entonces la longitud de arco S_{HKL} corregida por este error es:

$$S_{HKL} = S_{HKL} + 2\Delta x_{L} \qquad \dots (43)$$

Como se verá en el capítulo VI, este error no se corrige, pero ésta sería la forma de hacerio.

CAPITULO V

INDEXACION DE PATRONES DE DIFRACCION DE DEBIJE-SCHERRER

1.- Introducción.

Los primeros trabajos para indexar patrones de difracción producidos por polvos cristalinos fueron métodos gráficos. Runge en 1917 aportó el primer método, P. Scherrer en 1918 desarrolló otro método gráfico para el sistema isométrico. Estos métodos son relativamente sencillos cuando se conoce el sistema cristalino y se trata de sistemas cúbico tetragonal o hexagonal, pero para sistemas con menos simetrias estos métodos se vuelven muy complicados. Estos métodos se han vuelto inusuales ya que resulta extremadamente laboriosa la construcción de nomogramas y cartas. En 1948 R. Hesse publicé el primer método analítico de asignación de índices. A partir de entonces, estos últimos se han desarrollado notablemente gracías a que son aplicables a todos los sistemas cristalinos y a los recursos de computadoras con los que se cuenta actualmente.

A continuación se describe un método analítico para indexar patrones de difracción de equisgrafías de Debije-Scherrer, desarrollado en el Laboratorio de Rayos X del Instituto de Física de la UNAM. Este método se basa en los métodos de ito (1950), D. Taupin (1968) y Hesse (1948).

Este método, en principio, puede aplicarse a cualquier sistema cristalino pero hasta el momento sólo se desarrolló para los sistemas cúbico, tetragonal hexagonal y ortorrómbico.

Para la aplicación de este método es necesario haber tomado una equisgrafia de Debije-Scherrer como se explicó en el capitulo anterior.

2.- Idea básica de la metodología de indexación.

Como se mencionó en el capitulo anterior, el problema de la indexación consiste en que de los datos experimentales sólo es posible conocer los valores de las distancias interplanares. Y las relaciones entre éstas y los parámetros de red es a través

de los indices, los cuales son inicialmente desconocidos. Es decir se tiene un sistema de n ecuaciones (n es el número de parámetros de red del sistema) con n incógnitas, los parámetros de red, más 3n incógnitas, que son los indices. Este problema se resuelve asignando indices tentativos a las primeras líneas del patrón. Ya que a estas líneas les corresponden los indices más bajos, es fácil hacer una asignación de indices sistemática. Con esos indices asignados tentativos se calculan los parámetros de red, los cuales también serán parámetros de red tentativos. Después con los narámetros de red tentativos, se calculan distancias interplanares con toda una serie de combinaciones de indices posibles para el sistema cristalino. Si de todas las distancias interplanares calculadas existe un subconjunto que coincida con todas ias distancias interplanares experimentales, se puede decir que los parámetros de red tentativos son correctos, y consecuentemente, que los índices tentativos también son correctos. De esta manera a cada línea del patrón le corresponde una triada de indices, es decir, el patrón está indexado.

Esta idea aunque parece simple debe hacerse lo más eficiente posible pues requiere de una cantidad extremada de cálculos y comparaciones lo que requiere una sistematicidad rigurosa. Es por esto que es necesario contar con un buen equipo de cómputo para acelerar el proceso y abarcar un mayor número de posibilidades.

A continuación se describe el método en general para cualquier sistema cristalino, pues en el programa de cómputo, llamado INXPAR, el cual se describe en el capítulo VII, se divide por sistemas cristalinos.

3.- Metodologia de indexación.

Una vez que se ha obtenido el patrón de Debije-Scherrer, se inicia con una serie de cálculos, que son los incisos 1) a iv) que a continuación se describen.

i) Se miden las longitudes de arco $S_{HKL}^{exp} \pm \Delta S_{HKL}^{exp}$ como se explicó en el inciso 2.vi del capitulo IV. La incertidumbre.

asociada ΔS_{HKL}^{exp} a estas medidas se asigna de acuerdo a los siguientes opciones:

- a) r + A/2,
- b) r + A/4,
- с) г + (SM Sm)/2, о
- d) r + σ,

donde: r es la resolución del vernier, A es el ancho de la línea, SM y Sm son el máximo y el minimo valor de $S_{HKL}^{\sigma_{XP}}$ respectivamente, y σ es la desvlación estándar de la distribución de los centros de las posiciones.

En el caso más pesimista se usa la opción a), y en el caso en que se quiera mayor precisión se utiliza la opción d), sin embargo para esta última se requieren mayor número de medidas (más de 10 por línea).

ii)

Se calculan los valores de los ángulos de Bragg $\theta_{HKL}^{exp} \pm \Delta \theta_{HKL}^{exp}$ por medio de las ecuaciones (16) ó (17) del capítulo IV, según sea el caso. La incertidumbre propagada se calcula así:

$$\Delta \Theta_{HKL}^{exp} = \frac{\Delta S_{HKL}^{exp}}{4} \qquad \dots (1)$$

para cámara grande, y:

$$\Delta \Theta_{HKL}^{exp} = \frac{\Delta S_{HKL}^{exp}}{2} \qquad \dots (2)$$

para cámara chica.

- (iii) Se calculan los valores de las distancias interplanares $d_{HKL}^{exp} \pm \Delta d_{HKL}^{exp}$ por medio de la ecuaciones (18), (19) y (20) del capítulo IV.
- iv) Se calculan los valores de las magnitudes $Q_{HKL}^{exp} \pm \Delta Q_{HKL}^{exp}$ según las siguientes ecuaciones:

$$Q_{HKL}^{exp} = 1 \tilde{B}_{HKL}^{exp} I^2 = \left(\frac{1}{d_{HKL}^{exp}}\right)^2$$
 ...(3)

$$\Delta^{\bullet} Q_{HKL}^{exp} = \left[\frac{1}{\left(d_{HKL}^{exp} - \Delta^{-} d_{HKL}^{EXP} \right)^{2}} - Q_{HKL}^{exp} \right] \dots (4)$$

$$\Delta^{-}Q_{HKL}^{exp} = \left| \frac{1}{\left(\frac{d^{exp}}{d^{exp} + \Delta^{+} d^{EXP}_{HKL}} \right)^{2}} - Q_{HKL}^{exp} \right| \qquad \dots (5)$$

La comparación entre los valores calculados y los valores experimentales no se hace directamente a través de las distancias interplanares como se había dicho, sino entre los valores $Q_{HKL} \pm \Delta Q_{HKL}$. Además los parámetros de red tentativos no son los parámetros de red directos sino los recíprocos. Esto se hace porque las relaciones entre los parámetros de red recíprocos, índices y valores Q_{HKL} es más sencilla que las relaciones entre los parámetros de red directos, índices y distancias interplanares.

- v) Este paso es el de la selección de líneas a las que se les asignarán los índices prueba tentativos. De todos las líneas del patrón, se seleccionan aquellas P líneas cuyos ángulos de Bragg sean menores, es decir con los valores menores de sus correspondientes Q^{exp}_{HEL}. El número P debe ser igual al número de incógnitas o valores desconocidos en el conjunto de parámetros de red dei sistema cristalino por asociar a la sustancia desconocida, (es decir, 1 para el sistema cúbico, 2 para los sistemas tetragonal y hexagonal, y 3 para el sistema ortorrómbico). A estas P líneas se les llama líneas base.
- vi) Este paso es el de asignación de índices tentativos prueba.
 - A la i-ésima línea, de las P líneas base, se le asigna una tríada de índices (HKL), que cumpla las siguientes condiciones:
 - a) (HKL), debe estar formado por los números enteros más pequeños, no todos iguales a cero.
 - b) (HKL) ≠ (HKL),
 - c) (HKL)₁ y (HKL)₁₊₁ deben representar familias de planos no paralelas.

vil) En la ecuación:

$$Q_{HKL} = |\vec{H}_{HKL}|^2 \approx H^2 a_0^2 + K^2 b_0^{2} + L^2 c_0^2 + 2HKa_0^2 b_0^2 cos \gamma + C_{HKL}^2 cos \gamma + C_{HKL}^2 b_0^2 cos \gamma + C_{HKL}^2 cos \gamma +$$

2HL
$$c_{\alpha}^{*2}a_{\beta}^{*2}\cos\beta^{*}$$
 + 2KLb $c_{\alpha}^{*}\cos\alpha^{*}$...(6)

se sustituye la triada de indices (HKL) y el valor de Q_{HKL}^{exp} asociados con cada uno de las P lineas base. Así obtenemos un sistema de P ecuaciones con P incógnitas, donde las incógnitas son los parámetros de red recíprocos que tentativamente se asociarán a la fase que se está estudiando. El sistema de ecuaciones puede expresarse de la siguiente forma:

$$\begin{cases} H_{i}^{2}a_{o}^{*2} + K_{i}^{2}b_{o}^{*2} + L_{i}^{2}c_{o}^{*2} + 2H_{i}K_{i}a_{o}^{*}b_{o}^{*}\cos \alpha^{*} + 2K_{i}L_{i}b_{o}^{*}c_{o}^{*}\cos \alpha^{*} \\ + 2H_{i}L_{i}a_{o}^{*}c_{o}^{*}\cos \beta^{*} = Q_{(iKL)i}^{exp} \end{cases} \qquad ...(7)$$

con i=1,2,...,P

viii) La solución de este sistema de ecuaciones son unos parámetros reciprocos tentativos:

llamados pardmetros recíprocos base. A estos parámetros se les asigna una incertidumbre mediante el siguiente proceso: con las triadas de índices base que resolvieron el sistema de ecuaciones (7), se forman otros S sistemas de ecuaciones por la sustitución de cotas superiores y/o inferiores de los intervalos experimentales $Q_{HKL}^{exp} \pm \Delta Q_{HKL}^{exp}$ correspondientes a los pares de líneas base que se utilizaron. Estos S sistemas de ecuaciones tienen la siguiente forma:

$$\begin{cases} H_{l}^{2}a_{o}^{*2} + K_{l}^{2}b_{o}^{*2} + L_{l}^{2}c_{o}^{*2} + 2H_{l}K_{l}a_{o}b_{o}cos \gamma^{*} + 2K_{l}L_{l}b_{o}c_{o}cos \alpha^{*} \\ + 2H_{l}L_{a}c_{o}c_{c}cos \beta^{*} = Q_{(HKL)i}^{exp} (1)_{l} \Delta Q_{(HKL)i}^{exp} \end{cases} \begin{cases} J_{l} & \dots(9) \\ J_{l} & \dots(9) \end{cases}$$

con i=1,2,...,P j=1,2,...S

donde el símbolo (), representa el signo de suma (+) o de resta (-). A cada uno de estos sistemas le corresponde una combinación diferente de los símbolos (+) y (-). El número posible de estas combinaciones, y de sistemas de ecuaciones por resolver es $S=2^{P}$.

Con las soluciones $(a_{a}^{*}, b_{a}^{*}, c_{a}^{*})^{j}$ con j=1,2,...,S de los S sistemas de ecuaciones, se escogen las cotas máximas y mínimas de cada parámetro base, denotándolas asi:

El paso v) de la elección de líneas base, resulta la mayoría de las veces muy tardada, pues los índices reales no slempre dan lugar a un sistema de ecuaciones (7) que tenga solución. Entonces todas las elecciones de indices prueba asignados dan lugar a parámetros de red erróneos y todos los siguientes pasos son inútiles. Sin embargo para los sistemas de más alta simetría la elección de indices tentativos es menor y el proceso se agiliza, por eso este método es más eficiente para estos sistemas. Cuando se han encontrado unos parámetros prueba tentativos, se sigue con los siguientes pasos.

ix) Se construye una lísta de T triadas de índices (HKL)_x, con K=1,2,...,T de todas las posibles combinaciones de índices con valores desde O hasta un cierto valor I_{max}. El número de combinaciones diferentes, T, depende de cada sistema:. cúbico.

$$T = \sum_{j=0}^{lmax} \sum_{i=0}^{j} (j + 1 - i) = 1,$$

tetragonal y hexagonal: $T = (Imax + 1) \sum_{i=0}^{Imax} (Imax + i-i) - 1$,

ortorrómbico, $T = (Imax + 1)^3 - 1$.

La razón por la cual cada sistema tiene diferente número de combinaciones de indices posibles es debido a las simetrías del sistema. Por ejemplo, en el sistema cúbico las familias de planos {100}, {001} y {010} dan lugar a la misma reflexión, es decir, al mismo ángulo de Bragg. Mientras que en el sistema ortorrómbico cada una de estas familias da iugar a reflexiones diferentes.

x) Con cada una de las T triadas de esta lista de indices, los parámetros reciprocos base, ecuación (8), y sus cotas, ecuación (10), se calcula un valor $Q_{HK}^{ealc} \pm \Delta Q_{HK}^{oalc}$ así:

$$Q_{(HKL)}^{calc} = H_{K}^{2} a_{o}^{*2} + K_{K}^{2} b_{o}^{*2} + L_{K}^{2} c_{o}^{*2} \qquad \dots (11)$$

$$\Delta^{+}Q^{calc}_{(HKL)_{K}} = \left| \begin{array}{c} Q^{calc}_{(HKL)_{K}} \\ (HKL)_{K} \end{array} - \begin{array}{c} Q^{calc}_{(HKL)_{K}} \end{array} \right| \qquad ...(12)$$

$$\Delta^{-}Q_{(HKL)_{K}}^{catc} = \begin{vmatrix} Q_{(HKL)_{K}}^{catc} (min) & - Q_{(HKL)_{K}}^{catc} \end{vmatrix} \qquad ...(13)$$

donde:

$$Q_{(HKL)_{K}}^{Caic}(max) = H_{K}^{2}a_{o(max)}^{*2} + K_{K}^{2}b_{o(max)}^{*2} + L_{K}^{2}c_{o(max)}^{*2} \dots (14)$$

$$Q_{(HKL)_{\mu}}^{calc}(min) = H_{K}^{2}a_{o(min)}^{*2} + K_{K}^{2}b_{o(min)}^{*2} + L_{K}^{2}c_{o(min)}^{*2} \qquad \dots (15)$$

xi) Todos y cada uno de los valores $Q_{\mu KL}^{exp} \pm \Delta Q_{\mu KL}^{exp}$ obtenidos en el paso iv) de esta metodología, se compara con todos y cada uno de los valores $Q_{\mu KL}^{calc} \pm \Delta Q_{\mu KL}^{calc}$ recién mencionados. Se dice que un valor de $Q_{HKL}^{exp} \pm \Delta Q_{HKL}^{exp}$ coincide con un valor de $Q_{HKL}^{calc} \pm \Delta Q_{HKL}^{calc}$ cuando se cumple la siguiente desigualdad:

$$Q_{HKL}^{exp} - Q_{HKL}^{calc} | \leq Q_{HKL}^{exp} + \Delta Q_{HKL}^{calc}$$
 ...(16)

Esta desigualdad se puede entender de la siguiente manera: colocamos en el espacio de las Q_{HKL} los intervalos $Q_{HKL}^{exp} \pm \Delta Q_{HKL}^{exp}$, $Q_{HKL}^{cole} \pm \Delta Q_{HKL}^{cole}$.

Si la desigualdad (16) se cumple, sucede lo siguiente:

los intervalos de Q_{HKL}^{exp} y Q_{HKL}^{calc} coinciden en un pequeño intervalo. Cuando se cumple la igualdad intersectan en un solo punto:

Este criterio de comparación se basa en el hecho de que tanto los valores experimentales como los calculados tienen una incertidumbre asociada, pues estos últimos fueron calculados a partir de valores experimentales.

xii) La triada de indices (HKL) con la que se calculó el valor $Q_{HKL}^{colc} \pm \Delta Q_{HKL}^{colc}$ que coincidió con $Q_{HKL}^{exp} \pm \Delta Q_{HKL}^{exp}$, según el criterio del paso anterior, se asigna a la pareja de líneas (HKL) del patrón de difracción,

Nôtese que pueden existir ninguna, una, o más de una triadas asignadas a cada una de las parejas de líneas del patrón. Al conjunto de triadas de índices asignados a cada pareja de líneas (HKL) se le liama *triadas de índices* posíbles de la pareja de líneas (HKL). xiii) Cuando a todos los pares del patrón de difracción se le ha asignado un conjunto no vacío de tríadas de índices posibles, entonces se dice que se ha encontrado un conjunto de indexaciones posibles del patrón de difracción.

El método de indexación aquí descrito puede aplicarse a todos los sistemas en principio, sin embargo, como se ha dicho, para los sistemas de menos simetrias es extremadamente tardado por la cantidad de cálculos y comparaciones que se deben realizar.

A continuación se dan explicitamente los sistemas de ecuaciones que se deben aplicar a cada sistema cristalino de los tratados en esta tesis.

4.- Aplicación a los diferentes sistemas cristalinos.

i) Sistema cúbico.

En este sistema la única incógnita es a_{σ}^{e} . En el paso v) de la metodología anterior, se escoge el valor más pequeño de $Q_{(HKL)1}^{exp}$. Si estos valores están ordenados i=1, sin embargo puede ocurrir que i sea 1.4, es decir que el valor del ángulo de Bragg para la longitud de onda K β sea menor que el ángulo de Bragg para la longitud de onda K α experimentalmente. Si esto ocurre, es preferible considerar como linea base a i=1.

El sistema de ecuaciones (7) en este caso es:

$$(H_{1}^{2} + K_{1}^{2} + L_{1}^{2}) a_{o}^{*2} = Q_{(HKL)_{1}}^{exp}$$
 ...(17)

cuya solución es el parámetro reciproco base tentativo a_o. Su incertidumbre se calcula resolviendo las siguientes dos ecuaciones:

$$(H_1^2 + K_1^2 + L_1^2) a_{o\{max\}}^{w_2} = Q_{\{HKL\}_1}^{exp} + \Delta Q_{\{HKL\}_1}^{exp} \qquad ...(18)$$

$$(H_1^2 + K_1^2 + L_1^2) a_{o(m(n))}^{*2} = Q_{(HKL)_1}^{exp} - \Delta Q_{(HKL)_1}^{exp}$$
 ...(19)

ii) Sistema tetragonal.

En este sistema las dos incógnitas son a_o^* y c_o^* . El sistema de ecuaciones (7) en este caso es:

cuya solución son los parámetros recíprocos base tentativos a_{n}^{*} y c_{n}^{*} .

Sus incertidumbres se calculan resolviendo los siguientes cuatro sistemas de ecuaciones:

$$(H_{1}^{2} + K_{1}^{2})a_{01}^{*2} + L_{1}^{2}c_{01}^{*2} = Q_{(HKL)1}^{exp} + \Delta Q_{(HKL)1}^{exp}$$

$$(H_{2}^{2} + K_{2}^{2})a_{01}^{*2} + L_{2}^{2}c_{01}^{*2} = Q_{(HKL)2}^{exp} + \Delta Q_{(HKL)2}^{exp} \qquad ...(21)$$

$$(H_{1}^{2} + K_{1}^{2})a_{o2}^{*2} + L_{1}^{2}c_{o2}^{*2} = Q_{(HKL)1}^{exp} + \Delta Q_{(HKL)1}^{exp}$$

$$(H_{2}^{2} + K_{2}^{2})a_{o2}^{*2} + L_{2}^{2}c_{o2}^{*2} = Q_{(HKL)2}^{exp} - \Delta Q_{(HKL)2}^{exp} \qquad ...(22)$$

$$(H_{1}^{2} + K_{1}^{2})a_{o3}^{*2} + L_{1}^{2}c_{o3}^{*2} = Q_{(HKL)_{1}}^{exp} - \Delta Q_{(HKL)_{1}}^{exp}$$

$$(H_{2}^{2} + K_{2}^{2})a_{o3}^{*2} + L_{2}^{2}c_{o3}^{*2} = Q_{(HKL)_{2}}^{exp} + \Delta Q_{(HKL)_{2}}^{exp} ...(23)$$

$$(H_1^2 + K_1^2) a_{o4}^{*2} + L_1^2 c_{o4}^{*2} = Q_{(HKL)1}^{exp} - \Delta Q_{(HKL)1}^{exp}$$

$$(H_2^2 + K_2^2) a_{o4}^{*2} + L_2^2 c_{o4}^{*2} = Q_{(HKL)2}^{exp} - \Delta Q_{(HKL)2}^{exp}(24)$$

Las cotas superiores e inferiores de los parámetros recíprocos tentativos son:

$$a_{omax} = \max \{a_{o1}, a_{o2}, a_{o3}, a_{o4}\}$$
 ...(25)

$$a_{antin}^{*} = \min \{a_{o1}^{*}, a_{o2}^{*}, a_{o3}^{*}, a_{o4}^{*}\}$$
 ...(26)

$$c_{omax} = \max \{c_{o1}, c_{o2}, c_{o3}, c_{o4}\}$$
 ...(27)

$$c_{omin}^{*} = \min \{c_{o1}^{*}, c_{o2}^{*}, c_{o3}^{*}, c_{o4}^{*}\} \dots (28)$$

ili) Sistema hexagonal.

En este sistema las dos incógnitas son $a_0^{"}$ y $c_0^{"}$. El sistema de ecuaciones (7) en este caso es:

$$(H_1^2 + H_1K_1 + K_1^2)a_0^{*2} + L_1^2c_0^{*2} = Q_{(HKL)_1}^{exp}$$

$$\left\{ H_{2}^{2} + H_{2}K_{2} + K_{2}^{2} \right\} a_{0}^{\mu_{2}} + L_{2}^{2}c_{0}^{\mu_{2}} = Q_{(HKL)_{2}}^{exp}$$
 ...(29)

cuya solución son los parámetros reciprocos base tentativos a^{*}_{a} y c^{*}_{a} .

Sus incertidumbres se calculan resolviendo los siguientes cuatro sistemas de ecuaciones;

$$(H_{1}^{2} + H_{1}K_{1} + K_{1}^{2})a_{o1}^{*2} + L_{1}^{2}c_{o1}^{*2} = Q_{(HKL)1}^{exp} + \Delta Q_{(HKL)}^{exp},$$

$$(H_{2}^{2} + H_{2}K_{2} + K_{2}^{2})a_{o1}^{*2} + L_{2}^{2}c_{o1}^{*2} = Q_{(HKL)2}^{exp} + \Delta Q_{(HKL)2}^{exp} ...(30)$$

$$(H_{1}^{2} + H_{1}K_{1} + K_{1}^{2})\alpha_{o2}^{*2} + L_{1}^{2}c_{o2}^{*2} = Q_{(HKL)1}^{exp} + \Delta Q_{(HKL)1}^{exp}$$

$$(H_{2}^{2} + H_{2}K_{2} + K_{2}^{2})\alpha_{o2}^{*2} + L_{2}^{2}c_{o2}^{*2} = Q_{(HKL)2}^{exp} - \Delta Q_{(HKL)2}^{exp} ...(31)$$

$$(H_{1}^{2} + H_{1}K_{1} + K_{1}^{2})a_{\sigma 3}^{2} + L_{1}^{2}c_{\sigma 3}^{2} = Q_{(HKL)1}^{exp} - \Delta Q_{(HKL)1}^{exp}$$
$$(H_{2}^{2} + H_{2}K_{2} + K_{2}^{2})a_{\sigma 3}^{2} + L_{2}^{2}c_{\sigma 3}^{2} = Q_{(HKL)2}^{exp} + \Delta Q_{(HKL)2}^{exp} ...(32)$$

Las cotas superiores e inferiores de los parámetros reciprocos tentativos son:

$$a_{omax} = \max \{a_{o1}, a_{o2}, a_{o3}, a_{o4}\}$$
 ...(34)

$$a_{omin}^{\dagger} = \min \{a_{o_1}^{\dagger}, a_{o_2}^{\dagger}, a_{o_3}^{\dagger}, a_{o_4}^{\dagger}\} \dots (35)$$

$$c_{omax} = \max \{c_{o1}, c_{o2}, c_{o3}, c_{o4}\}$$
 ...(36)

$$c_{amin} = \min \{c_{o1}, c_{o2}, c_{o3}, c_{o4}\}$$
 ...(37)

iv) Sistema ortorrómbico.

En este sistema hay tres incógnitas: $a_{o}^{*} b_{o}^{*} y c_{o}^{*}$. El sistema de ecuaciones (7) en este caso es:

$$H_{1}^{2} \sigma_{o}^{\pi_{2}} + K_{1}^{2} b_{o}^{\pi_{2}} + L_{1}^{2} c_{o}^{\pi_{2}} = Q_{(HKL)1}^{exp}$$

$$H_{2}^{2} \sigma_{o}^{\pi_{2}} + K_{2}^{2} b_{o}^{\pi_{2}} + L_{2}^{2} c_{o}^{\pi_{2}} = Q_{(HKL)2}^{exp}$$

$$H_{3}^{2} \sigma_{o}^{\pi_{2}} + K_{2}^{2} b_{o}^{\pi_{2}} + L_{3}^{2} c_{o}^{\pi_{2}} = Q_{(HKL)3}^{exp} \qquad \dots (38)$$

cuya solución son los parámetros reciprocos base tentativos $a'_{\perp}, b'_{\perp}, y, c'_{\perp}$.

Sus incertidumbres se calculan resolviendo los siguientes ocho sistemas de ecuaciones:

$$H_{1}^{2}\alpha_{o_{1}}^{u_{2}} + K_{1}^{2}b_{o_{1}}^{u_{2}} + L_{1}^{2}c_{1}^{u_{2}} = Q_{(HKL)_{1}}^{exp} + \Delta Q_{(HKL)_{1}}^{exp}$$

$$H_{2}^{2}\alpha_{o_{1}}^{u_{2}} + K_{2}^{2}b_{o_{1}}^{u_{2}} + L_{2}^{2}c_{1}^{u_{2}} = Q_{(HKL)_{2}}^{exp} + \Delta Q_{(HKL)_{2}}^{exp}$$

$$H_{3}^{2}\alpha_{o_{1}}^{u_{2}} + K_{3}^{2}b_{o_{1}}^{u_{2}} + L_{3}^{2}c_{0}^{u_{2}} = Q_{(HKL)_{3}}^{exp} + \Delta Q_{(HKL)_{3}}^{exp} ...(39)$$

$$H_{2}^{n} a_{ac}^{n} + K_{2}^{0} b_{ac}^{n} + L_{2}^{2} a_{ac}^{n} = Q_{(HKL)1}^{exp} + \Delta Q_{(HKL)2}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{2}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} + \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} + \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{2} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{(HKL)3}^{exp} - \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{(HKL)3}^{exp} + \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{(HKL)3}^{exp} + \Delta Q_{(HKL)3}^{exp}$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{ac}^{exp} + \Delta Q_{(HKL)3}^{exp} - (43)$$

$$H_{3}^{2} a_{ac}^{n} + K_{3}^{0} b_{ac}^{n} + L_{3}^{0} a_{ac}^{n} = Q_{(HKL)3}^{exp} + \Delta Q_{(HKL)3}^{exp} - (43)$$

U2_"2

$$H_{1}^{2}a_{\sigma7}^{*2} + K_{1}^{2}b_{\sigma7}^{*2} + L_{1}^{2}c_{\sigma7}^{*2} = Q_{(HKL)1}^{exp} - \Delta Q_{(HKL)1}^{exp}$$

$$H_{2}^{2}a_{\sigma7}^{*2} + K_{2}^{2}b_{\sigma7}^{*2} + L_{2}^{2}c_{\sigma7}^{*2} = Q_{(HKL)2}^{exp} - \Delta Q_{(HKL)2}^{exp}$$

$$H_{3}^{2}a_{\sigma7}^{*2} + K_{3}^{2}b_{\sigma7}^{*2} + L_{3}^{2}c_{\sigma7}^{*2} = Q_{(HKL)3}^{exp} + \Delta Q_{(HKL)3}^{exp} ...(45)$$

$$H_{1}^{2}a_{\sigma4}^{*2} + K_{1}^{2}b_{\sigma4}^{*2} + L_{1}^{2}c_{\sigma4}^{*2} = Q_{(HKL)1}^{exp} - \Delta Q_{(HKL)1}^{exp}$$

$$H_{1}^{2}a_{\sigma4}^{*2} + K_{2}^{2}b_{\sigma4}^{*2} + L_{2}^{2}c_{\sigma4}^{*2} = Q_{(HKL)2}^{exp} - \Delta Q_{(HKL)1}^{exp} ...(45)$$

$$H_{2}^{2}a_{\sigma4}^{*2} + K_{2}^{2}b_{\sigma4}^{*2} + L_{2}^{2}c_{\sigma4}^{*2} = Q_{(HKL)2}^{exp} - \Delta Q_{(HKL)2}^{exp} ...(46)$$

Las cotas superiores e inferiores de los parámetros recíprocos tentativos son:

$$a_{omax}^{*} = \max\{a_{o1}^{*}, a_{o2}^{*}, a_{o3}^{*}, a_{o4}^{*}, a_{o5}^{*}, a_{o6}^{*}, a_{o7}^{*}, a_{o8}^{*}\} \dots (47)$$

$$a_{omin}^{*} = \min\{a_{o1}^{*}, a_{o2}^{*}, a_{o3}^{*}, a_{o4}^{*}, a_{o5}^{*}, a_{o5}^{*}, a_{o7}^{*}, a_{o8}^{*}\}$$
 ...(48)

$$b_{omax}^{*} = max\{b_{o1}^{*}, b_{o2}^{*}, b_{o3}^{*}, b_{o4}^{*}, b_{o5}^{*}, b_{o5}^{*}, b_{o7}^{*}, b_{o8}^{*}\} \dots (49)$$

$$b_{omin}^{*} = \min\{b_{o1}^{*}, b_{o2}^{*}, b_{o3}^{*}, b_{o4}^{*}, b_{o5}^{*}, b_{o5}^{*}, b_{o7}^{*}, b_{o8}^{*}\}$$
 ...(50)

$$c_{oncx} = \max\{c_{o1}, c_{o2}, c_{o3}, c_{o4}, c_{o5}, c_{o6}, c_{o7}, c_{o8}\}$$
 ...(51)

$$c_{omin} = \min\{c_{o1}, c_{o2}, c_{o3}, c_{o4}, c_{o5}, c_{o6}, c_{o7}, c_{o8}\}$$
 ...(52)

CAPITULO VI

CALCULO EXACTO Y PRECISO DE PARAMETROS DE RED

1.- Introducción.

Una de las aplicaciones más importantes de la difracción de rayos X por polvos cristalinos, se encuentra en estudios que requieren valores muy precisos y exactos de los parámetros de red. En general hay dos tipos de metodologías capaces de calcular los parámetros de red con alta precisión y exactitud: una es calculando los parámetros de red relativos a una sustancia conocida, y la otra calcular los parámetros de red absolutos. El tratamiento de este último caso involucra una técnica experimental y un análisis de datos apropiados que considerando los errores presentes por este inétodo, estudiados en el capítulo IV, sea capaz de arrojar valores absolutos exactos y precisos. En este capítulo se explican las técnicas desarrolladas en el laboratorio de rayos X dei IFUNAM, para calcular los parámetros de red, absolutos y relativos, con alta precisión y exactitud.

2.- Valores relativos de los parámetros de red.

La sustancia patron utilizada en este caso es Silicio (Si) puro. El Si puro es un elemento cuvo estado cristalino ha sido ampliamente estudiado. Su estructura fue determinada por Deblje y Scherrer en 1916. Pertenece al grupo espacial O⁷-Fd3m, su estructura es cúbica tipo diamante con ocho Atomos de Si por celda unidad. Tiene un parámetro de red a 26° C de 5.4301 Å según Swanson y Fuyat en 1953, y su coeficiente de expansion lineal es $4,15 \times 10^{-6}$ de acuerdo a Straumanis y Aka en 1952. Su patrón de difracción de Deblie-Scherrer ha sido blen caracterizado por Swanson y Fuyat (1953). Los Indices de reflexión para cada parela de arcos se muestra en la Tabla i. así como sus intensidades relativas У sus distancias interplanares. Estos valores se tomaron de la tarjeta del JCPDS, 5-0565, y la última reflexión se encontró en el Laboratorio de Rayos X del IFUNAM, y ahl mismo se determinaron . sus indices y su distancia interplanar.

and the second sec			
Indices HKL	intensidad relativa	Distancia interplanar (Å)	Longitud de arco (mm)
1 1 1	100	3.138	56.884 ± .0092
220	60	1.920	94.689 ± .0261
311	.35	1.638	112.300 ± .0373
400	8	1.357	138.467 ± .0583
331	13	1.246	152.883 ± .0724
422	17	1.1083	176.105 ± .0102
511	9	1.0450	189.935 ± .0118
440	5	0.9599	213.452 ± .0160
531	11	0.9178	228.240 ± .0192
620	9	0.8586	255.121 ± .0274
533.	5	0.8281	273.831 ± .0350
444	4	0.7838	317.331 ± .0775
ſ			•

TABLA 1 Información del Silicio puro.

partir de estas distancias obtuvieron A se los correspondientes valores de las separaciones de arco de una misma pareja, para todas las parejas, considerando cámara grande y radiación CuKa para las primeras cinco parejas, y CuKa рага las restantes. Estos valores son llamados S^{pat} HKL ± ASpat par Hxt. y representan los valores más exactos y precisos conocidos hasta ahora para las separaciones entre arcos de una muestra estándar de Si puro. Estos valores se han colocado en la columna 4 de la Tabla 1.

- El procedimiento para calcular los parámetros de red relativos al Si es el siguiente:
- Se muele y se cierne la muestra de interés y por separado se muele y se cierne Silicio puro.

ii) Se mezclan ambos polvos en proporción aproximada 70:30 %.

- Se prepara el espécimen para ser usado en la cámara de Deblje-Scherrer, por cualquiera de los tres métodos, cigarrillo, fibra de vidrio o capilar.
- iv) Se monta y se alinea muy bien la muestra preparada en la cámara grande de Deblje-Scherrer.
- v) Se obtiene una equisgrafía de Debije-Scherrer con sobreexposición (aprox. 1.5 veces el tiempo normal).
- vi) Se identifican las parejas de arco dei patrón, provenientes del Silicio y de la fase de interés. Esto puede hacerse fácilmente superponiendo sobre esta equisgrafía una de silicio puro sobre la caja de luz.
- vii) Se miden N veces usando el vernier caja de luz para equisgrafías de Deblje-Scherrer las separaciones entre arcos de cada pareja de arcos, tanto de la fase patrón, como de la fase de interés. A las separaciones entre arcos provenientes de la fase patrón las llamaremos $S_{HKL}^{pat}(exp) \pm \Delta S_{HKL}^{pat}(exp)$ y a las provenientes de la fase de interés las llamaremos $S_{\mu rr}^{exp} \pm \Delta S_{\mu rr}^{exp}$.
- - x) Se ajusta la mejor curva a los rectángulos experimentales.
 - xi) En esta gráfica, se marcan en el eje de las abscisas los Intervalos experimentales $S_{HKL}^{exp} \pm \Delta S_{HKL}^{exp}$. Una vez marcados, se interpolan sobre la curva ajustada para encontrar los correspondientes intervalos en el eje de las ordenadas. A estos nuevos intervalos los llamaremos $D_{HKL}^{exp} \pm \Delta D_{HKL}^{exp}$

xii) Se suman algebraicamente los valores $D_{HKL}^{exp} \pm \Delta D_{HKL}^{exp}$ a los valores $S_{HKI}^{exp} \pm \Delta S_{HKI}^{exp}$. Los nuevos vajores son los valores autocalibrados de las separaciones entre arcos de la fase de interés, a los cuales llamaremos Sure ± ASexp.rel

Con estos valores corregidos relativamente se calculan xiii) parámetros de red directamente los cuales serán relativos al Silicio.

3.- Valores absolutos.

Para calcular los valores absolutos de los parámetros de red es necesario corregir todos los errores presentes en el método experimental, mencionados en el capitulo IV. La metodología desarrollada se explica a continuación.

i) Errores estocásticos.

Para reducir estos errores se realiza una muestra estadística de las medidas en el patrón de difracción, la cual se realiza de la siguiente manera:

se miden N veces (donde N ouede variar desde 1 hasta 10 6 más) las posiciones del cursor sobre el centro de cada arco de una misma pareja. A la 1-ésima medida de la 1-ésima línea de los centros derecho e izquierdo los denotaremos asi: Cd y Cd.

Se toma el promedio de cada uno de los centros sobre i:

y:

 $c_{i}^{J} = \frac{\sum_{i=1}^{N} c_{i1}^{J}}{\sum_{i=1}^{N} c_{i1}}$...(2)

Llamaremos separación no funcional, $S_{HKL,nf}^{exp} \pm \Delta S_{HKL,nf}^{exp}$ al valor absoluto de la distancia entre el centro derecho y el centro izquierdo de cada pareja de lineas HKL, ésto es:

$$\mathbf{S}_{HKL,nf}^{exp,J} = \left| \begin{array}{c} \mathbf{C}_{d}^{J} - \mathbf{C}_{l}^{J} \right| \qquad \dots (3)$$

ya que la separación funcional es el arco que subtiende el dngulo $4\theta_{HKL}^{exp}$, es decir, para las líneas que se encuentran en la zona de transmisión, las separaciones no funcional y la funcional son las mismas, mientras que en la zona de retrorreflexión, la separación funcional es:

$$S_{HKL,f}^{exp,j} \text{Lpi-} |C_d^j - C_l^j| \qquad \dots (4)$$

donde Lpi es la longitud total de la película idealmente, 360 mm para cámara grande ó i80 mm para cámara chica.

ii) Variaciones en el radio efectivo de la cámara.

Para corregir las separaciones entre arcos experimentales por este error, de acuerdo a la ecuación (29) del capitulo IV, es necesarlo calcular el factor de radio Fr. Para esto hay que conocer el radio real de la cámara, lo cual se puede hacer calculando los centros de las perforaciones de la película a partir de las medidas C_{di}^{J} y C_{di}^{J} , asi:

$$C_{tl}^{j} = \frac{C_{dl}^{tj} + C_{ll}^{tj}}{2} \qquad \dots (6)$$

٧.

$$C_{rl}^{J} = \frac{C_{ll}^{rJ} + C_{ll}^{rJ}}{2} \qquad \dots (7)$$

donde C_{dl}^{tj} y C_{ll}^{tj} , y C_{dl}^{rj} y C_{ll}^{rj} son las posiciones del cursor sobre los centros de los arcos que se encuentran en la zona de transmisión y retrorreflexión, respectivamente.

Se toma un promedio de estos centros primero sobre *i* y después sobre *j*:

$$C_{t}^{j} = \frac{\sum_{t=1}^{N} C_{tt}^{j}}{N} \qquad ...(8)$$
$$C_{r}^{j} = \frac{\sum_{t=1}^{N} C_{rt}^{j}}{N} \qquad ...(9)$$

$$C_{t} = \frac{\sum_{j=1}^{N_{t}} C_{t}^{j}}{N_{t}} \qquad \dots (10)$$

$$C_{r} = \frac{\sum_{j=1}^{N_{r}} C_{r}^{j}}{N_{r}} \qquad \dots (11)$$

El perimetro ideal de la camara es $2\pi R^{4}$, por lo que la semilongitud ideal de la película, Lpi/2, es:

$$\frac{Lpi}{2} = \frac{2\pi R^{1}}{2} \qquad \dots (12)$$

y en el caso real:

٧:

$$\frac{Lpr}{2} = \frac{2\pi R^{r}}{2} \qquad \dots (13)$$

la semilongitud real de la película es precisamente la separación entre los centros calculados de las perforaciones de la película:

$$\frac{Lpr}{2} = C_{r} - C_{t} \qquad \dots (14)$$

De las ecuaciones (12) y (13) se obtienen los radios ideal' y real de la câmara:

$$R^{t} = \frac{Lpi}{2\pi} \qquad \dots (15)$$

y:

$$R^{r} = \frac{Lpr}{2\pi} = \frac{C - C_{t}}{\pi} \qquad ...(16)$$

sustituyendo las ecuaciones (15) y (16) en la ecuación (5) tenemos:

$$F_r = 2 \frac{C_r - C_t}{Lpi} \dots (17)$$

el factor de radio.

Entoces se corrigen las separaciones entre arcos no funcionales de la siguiente manera:

y después se calculan las separaciones funcionales de la zona de retrorreflexión corregidas de acuerdo a la ecuación (4).

iii) Divergencia axial del haz y tamaño de muestra.

Para corregir las sepraciones entre arcos debido al error que se produce por el efecto de divergencia axial del haz y tamaño de muestra, utilizamos la expresión encontrada por Langford et. al. (1964), ecuación (31) del capítulo IV. Para lo cual es necesario obtener los valores de los parámetros X₁, Y₁, y S. Estos valores se midieron en nuestro equipo de rayos X, y son los siguientes:

 $X_{1} = 0.75 \pm .015 \text{ mm},$ $X_{2} = 0.50 \pm .006 \text{ mm},$ $Y_{1} = 8.40 \pm .50 \text{ mm},$ $Y_{2} = 49.8 \pm .50 \text{ mm},$ $Y_{3} = 132.0 \pm 2 \text{ mm}.$

a partir de los cuales se obtuvo la siguiente expresión:

 $(2c) = [.00106804 ^{+} - .00029367 / .90022677] cot <math>2\theta_{HKL}^{exp}$ [.00585632 ^{+} - .00178744 / .00135758] cot θ_{HKL}^{exp}

La fracción de àngulo que hay que sumar al àngulo medido $2\theta_{HKL}^{exp}$ para obtener el ángulo de Bragg que debiera ser si no existiera el error producido por divergencia axial del haz y tamaño de muestra, es (2c):

$$2\theta_{HKL}^{corr} = 2\theta_{HKL}^{exp} + (2c) \qquad \dots (20)$$

y por la relación entre el ángulo de Bragg y la separación entre arcos:

$$4\Theta_{HKL}^{exp} R^{r} = S_{HKL}^{exp} \dots (21)$$

donde \mathbf{R}^r es el radio real de la cámara y el ángulo está en radianes, por le que convirtiendo a grados:

$$2 \theta_{HKL}^{exp} = \frac{\frac{S_{KKL}^{exp}}{2 R^r} \frac{180}{\pi} \qquad \dots (22)$$

de la ecuación (16) puede verse que R^r es:

$$R' = \frac{Lpr}{2\pi} \qquad \dots (23)$$

por lo que sustituyendo esta última ecuación en (22), tenemos:

 $2 \theta_{HKL}^{exp} = \frac{S_{HKL}^{exp} \cdot 180}{Lpr} \dots (24)$

entonces, convirtiendo el factor (2c) al factor que hay que sumarle a S_{HKL}^{exp} para obtener la separación corregida, tenemos:

$$\Delta S_{HKL}^{da,tm} = \frac{Lpr \cdot \langle 2c \rangle}{180} \qquad ...(25)$$

Finalmente la separación corregida por error de divergencia axial del haz y tamaño de muestra es:

$$S_{HKL,da,tm}^{exp,corr} = S_{HKL}^{exp} + \Delta S_{HKL}^{da,tm} \qquad \dots (26)$$

iv) Refracción de los rayos X por el espécimen.

El error producido por este efecto no se toma en cuenta ya que la precisión que se alcanza no supera las diezmilésimas de Angstrom.

- v) Distribución inhomogénea de la intensidad de fondo.
 - Para corregir el error que produce este efecto, es necesario tener la curva de radiación de fondo y restársela al perfil de intensidad de la línea. El problema está en encontrar esa curva. Una manera de determinarla, es a partir del perfil de intensidad de la película completa, como se muestra en la gráfica 1. Los picos de esta gráfica son los perfiles de intensidades de cada una de las líneas del patrón de difracción, por lo que la curva sobre la que se mueven es el perfil de radiación de fondo.

Figura 1. Perfii de intensidad (zona de transmisión incompleta) del patrón de difracción de Deblje-Scherrer de NaCl puro.

Como se mencionó en el capítulo IV, no se hicieron correcciones debido a este error.

vi) Excentricidad del espécimen respecto al eje de la cámara.

La solución de este problema no es trivial pues para calcular el factor de excentricidad, Fe= $-2p\cos^2\phi$ según la ecuación (26) del capitulo IV, directamente serla necesario conocer p y ϕ explicitamente, lo cual no es posible. Sin embargo el factor de excentricidad es una característica de la cámara y sólo es necesario calculario una vez.

La metodología propuesta se hizo con base en el tratamiento de Nelson-Riley sobre la absorción de la radiación por el espécimen. Según estos autores, si las medidas experimentales estuvieran libres de todo error excepto el de absorción, al graficar el parámetro de red para cada ángulo de reflexión de una sustancia perteneciente al sistema cúbico, contra la función de Nelson-Riley, ecuación (27) del capítulo IV, la gráfica debe aproximarse a una linea recta, aunque no necesariamente de pendiente cero. Nosotros supusimos que si nuestras medidas se corrigen por los errores de radio real de la cámara y divergencia axial

los errores de radio real de la camara y divergencia axiai de la muestra más tamaño de muestra, los únicos errores que le faltarian por corregir serian el de excentricidad y el de absorción (descartando los de intensidad de velamiento de fondo y el de saturación del velamiento de la película). La fase cristalina escogida para calcular el factor de excentricidad fue el NaCl puro. Se obtuvo una equisgrafía y se midieron las longitudes de arco $S_{HKL}^{exp} \pm \Delta S_{HKL}^{exp}$. Se corrigieron por los errores estocásticos, de radio y de divergencia axial más tamaño de muestra. Se calcularon los parámetros de red para cada línea del patrón de difracción, y se graficaron contra la función de Nelson-Riley. La curva se muestra en la gráfica 2.

Como se ha dicho, la curva esperada no es una línea recta, puesto que le faita hacer la corrección por excentricidad.

Recordando que el error fraccional da a_a ascciado al error de excentricidad es Fe'a $\cos^2\theta_{HKL}$, donde Fe' es $p\cos\phi/R$, el único factor que se descence es $p\cos\phi$. En la gráfica 2 también se muestra la función $\cos^2\theta_{HKL}/R$ contra la función de Neison-Riley.

Como se puede observar la curva de esta última función muestra un comportamiento contrario al de la curva anterior. Esta observación conduce a buscar un factor $pcos\phi$ de un orden tal que al multiplicarse por $a_c cos^2 \theta_{HKL}$ /R de el valor da apropiado tal que al sumarse a a_o de una línea recta. da es del orden de magnitud de la diferencia entre los valores mayor y menor de a_o . A partir de esta estimación es posible caicular el orden de magnitud de $pcos\phi$.

Sin embargo, encontrar el orden de magnitud de pcos
 el cual en nuestro caso es del orden de .0001 R, no es suficiente: hav que determinarlo exactamente.

Nuestro método es proponer una lista de valores de pcos ϕ que vayan desde un orden de magnitud menor al determinado empiricamente, hasta un orden de magnitud mayor, con incrementos pequeños constantes. En nuestro caso se varió desde .00001 · R hasta .001 · R con incrementos de .00001 · R. Después, corregir el parámetro de red para cada ángulo de Bragg con cada uno de estos factores, sumando $a_o + da_o$. El factor pcos ϕ que mejor ajuste una recta a estos valores será el factor elegido.

El criterio que se tomó para escoger el mejor ajuste fue aquel que presentara una dispersión menor. Entonces para cada uno de las correcciones hechas con cada uno de los factores Fe' propuestos se les ajustó una recta por minimos cuadrados, y se calculó la dispersión como la suma de los absolutos de la diferencia valores entre el. valor experimental y el valor dado por el ajuste. Después se graficaron las dispersiones obtenidas contra los factores pcosó correspondientes al ajuste. El resultado esperado es una curva con un minimo, como la que se muestra en la gráfica 3, correspondiente a nuestro caso.

De esta gráfica se determinó el valor del factor *pcos*¢ para el cual la dispersión toma el minimo valor, el cual se encontró que es:

pcos()= .07449 ± .00573 mm

Con este valor se determina entonces el factor Fe de excentricidad buscado, de la siguiente manera:

$$-2pcos(\phi) = -0.14898 \pm .01146 mm$$

Finalmente se calcula el error fraccional que se le debe sumar a la longitud experimental para corregirlas por error de excentricidad asi:

 $\Delta S_{HKL}^{exp} = -2p\cos\phi \ \sin 2\theta_{HKL}$

vii) Saturación de velamiento de la película.

El error producido por este efecto se puede corregir siguiendo el procedimiento del capítulo IV, sin embargo, debido a que el microdensitómetro óptico del Laboratorio de Rayos X del IFUNAM aún no está funcionando del todo bien, no se pudo cuantificar para corregir. Por el momento se deja como un proyecto a futuro.

viii) Absorción de los rayos X por el espécimen.

En este caso se utilizan los métodos de extrapolación de una recta a los puntos experimentales obtenidos después de aplicar cada una de las correcciones anteriores, radio real de la cámara, divergencia axial del haz incidente más tamaño de muestra, y excentricidad.

El método de Cohen (1936), el cual se describe a continuación, originalmente utilizaba la función $\cos^2\theta$. Como se ha observado, una mejor función de extrapolación es la función de Nelson-Riley, que es la que utilizamos aquí:

$$\frac{\Delta d}{d_{HKL}} \propto \frac{1}{2} \left(\frac{\cos^2 \theta_{HKL}}{\sin^2 \theta_{HKL}} + \frac{\cos^2 \theta_{HKL}}{\theta_{HKL}} \right). \quad \dots (27)$$

Método de Cohen.

Si la ecuación de Bragg la escribimos de la siguiente manera:

$$\frac{\lambda}{2} \approx d_{HKL} \sin \theta_{HKL} \qquad \dots (28)$$

y después la elevamos al cuadrado:

$$\left(\frac{\lambda}{2}\right)^2 = d_{HKL}^2 \sin^2\theta_{HKL} \qquad \dots (29)$$

Entonces, tomando logaritmos en ambos miembros de la última ecuación:

$$2 \log \left(-\frac{\lambda}{2}\right)^2 = 2 \log d_{HKL} + \log (\operatorname{sen}^2 \theta_{HKL}) \qquad \dots (30)$$

la diferencial de esta ecuación es:

$$2 \frac{\Delta \lambda}{\lambda} = 2 \frac{\Delta d_{HKL}}{d_{HKL}} + \frac{\Delta \mathrm{sen}^2 \theta_{HKL}}{\mathrm{sen}^2 \theta_{HKL}} \qquad ...(31)$$

Suponiendo que la longitud de onda es suficientemente conocida, es decir que $\Delta\lambda=0$, la ecuación (31) la podemos escribir como:

$$-2 \frac{\Delta d_{HKL}}{d_{HKL}} = \frac{\Delta sen^2 \theta_{HKL}}{sen^2 \theta_{HKL}} \qquad ...(32)$$

Las ecuaciones (27) y (32) se combinan para dar:

$$\frac{\Delta \mathrm{sen}^{2} \theta_{HKL}}{\mathrm{sen}^{2} \theta_{HKL}} \propto \frac{\mathrm{i}}{2} \left(\frac{\mathrm{cos}^{2} \theta_{HKL}}{\mathrm{sen}^{2} \theta_{HKL}} + \frac{\mathrm{cos}^{2} \theta_{HKL}}{\theta_{HKL}} \right) \qquad (33)$$

Definiendo D a la constante de proporcionalidad, la ecuación (33) la podemos escribir como:

$$\Delta \mathrm{sen}^{2} \theta_{HKL} = \frac{D}{2} \mathrm{sen}^{2} \theta_{HKL} \mathrm{cos}^{2} \theta_{HKL} \left(\frac{1}{\mathrm{sen}^{2} \theta_{HKL}} + \frac{1}{\theta_{HKL}} \right) \dots (34)$$

ya que sen20=2sen0cos0, y definiendo K=-D/2, esta última ecuación se expresa así:

$$\Delta \operatorname{sen}^{2} \theta_{HKL} = K \operatorname{sen}^{2} 2 \theta_{HKL} \left(\frac{1}{\operatorname{sen}^{2} \theta_{HKL}} + \frac{1}{\theta_{HKL}} \right) \dots (35)$$

Para los diferentes sistemas cristalinos considerados, los valores reales de los sen² θ se obtienen sustituyendo los valores 1/d_{nki} de la tabla 3 del capitulo I, que contienen los valores reales de los parámetros de red, en la ecuación (29), los cuales son:
$$\operatorname{sen}^{2} \theta_{HKL}^{r} = \frac{\lambda^{2}}{4a_{o}^{2}} \left(\frac{H^{2} + K^{2} + L^{2}}{a_{o}^{2}} \right) \qquad \text{Sistema cubico}$$

$$\operatorname{sen}^{2} \theta_{HKL}^{r} = \frac{\lambda^{2}}{4} \left(\frac{H^{2} + K^{2}}{a_{o}^{2}} + \frac{L^{2}}{c_{o}^{2}} \right) \qquad \text{Sistema tetragonal}$$

$$\operatorname{sen}^{2} \theta_{HKL}^{r} = \frac{\lambda^{2}}{3} \left(\frac{H^{2} + HK + K^{2}}{a_{o}^{2}} \right) + \frac{\lambda^{2} L^{2}}{4 c_{o}^{2}} \qquad \text{Sistema hexagonal}$$

$$\operatorname{sen}^{2} \theta_{HKL}^{r} = \frac{\lambda^{2}}{4} \left(\frac{H^{2}}{a_{o}^{2}} + \frac{K^{2}}{b_{o}^{2}} + \frac{L^{2}}{c_{o}^{2}} \right) \qquad \text{Sistema ortorrombico}$$

$$\ldots(36)$$

Sustituyendo las ecuaciones (35) y (36) en la ecuación que expresa la diferencia entre los valores experimentales y los valores reales de sen²O_{HKI};

$$\Delta \mathrm{sen}^{2} \theta_{HKL} = \mathrm{sen}^{2} \theta_{HKL}^{exp} - \mathrm{sen}^{2} \theta_{HKL}^{r} \qquad ...(37)$$

tenemos las siguientes ecuaciones:

o bien;

 $A(\alpha + \beta + \gamma) + E\delta = sen^2$ HRL $A(\alpha + \beta) + C\gamma + E\delta = sen$

HKL

$$\Lambda(\alpha + \sqrt{\alpha\beta} + \beta) + C\gamma + E\delta = sen^2 \theta_{HKL}^{exp}$$

$$A\alpha + B\beta + C\gamma + E\delta = sen^2 \theta_{\mu\nu}^{exp}$$
 ...(39)

donde:

 $\alpha = H^2$, $\beta = K^2$, $\gamma = L^2$,

$$\delta = 10 \operatorname{sen}^2 \theta_{HKL} \left(\frac{1}{\operatorname{sen}^2 \theta_{HKL}} + \frac{1}{\theta_{HKL}} \right),$$

$$A = \frac{\lambda^2}{a_1^2}, B = \frac{\lambda^2}{b_2^2}, C = \frac{\lambda^2}{c_2^2}, K = \frac{D}{10} \dots (40)$$

el factor 10 se incluye para hacer los valores de δ más cercanos a los otros valores.

Sin embargo las ecuaciones (39) no pueden ser aplicadas directamente a todas las líneas del patrón de difracción, ya que en él aparecen líneas debidas a varias longitudes de onda, las más comunes son K α_1 , K α_2 y K β . Para que dicha ecuación sea aplicable a todas las líneas del patrón de difracción, se hace un tratamiento preliminar de datos llamado normalización. Este proceso convierte un valor de $sen^2 \theta_{HKL}$ asociado a la longitud de onda λ_j al valor que hubiera tenido si hubiese sido producido por la longitud de onda λ_i . La normalización se hace por lo general a la longitud de onda KB porque para distancias interplanares muy pequeñas es posible que no haya líneas difractadas correspondientes a las longitudes de onda K α_1 y K α_2 , pero si correspondientes a Kß. Para convertir supongamos que las ecuaciones (39) se cumplen para la longitud de onda λ_i , o sea:

$$sen^{2}\theta_{HKL}^{exp,j} = \frac{\lambda_{j}^{2}}{a_{o}^{2}} (\alpha + \beta + \gamma) + E\delta_{j}$$

$$sen^{2}\theta_{HKL}^{exp,j} = \frac{\lambda_{j}^{2}}{a_{o}^{2}} (\alpha + \beta) + \frac{\lambda_{j}^{2}}{c_{o}^{2}} \gamma + E\delta_{j}$$

$$\operatorname{sen}^{2} \theta^{\operatorname{exp}, j}_{\operatorname{HKL}} = \frac{\lambda_{j}^{2}}{\alpha_{o}^{2}} \left(\alpha + \sqrt{\alpha\beta} + \beta\right) + \frac{\lambda_{j}^{2}}{c_{o}^{2}} \gamma + E\delta_{j}$$
$$\operatorname{sen}^{2} \theta^{\operatorname{exp}, j}_{\operatorname{HKL}} = \frac{\lambda_{j}^{2}}{\alpha_{j}^{2}} \alpha + \frac{\lambda_{j}^{2}}{b_{o}^{2}} \beta + \frac{\lambda_{j}^{2}}{c_{o}^{2}} \gamma + E\delta_{j} \qquad \dots (41)$$

donde:

$$\delta_{j} \approx 10 \, \operatorname{sen}^{2} \theta_{HKL}^{j} \left(\frac{1}{\operatorname{sen}^{2} \theta_{HKL}^{j}} + \frac{1}{\theta_{HKL}^{j}} \right) \qquad \dots (42)$$

Multiplicando ambos miembros de las ecuaciones (41) por

...(43)

Ya que por la ley de Bragg sabemos que para una misma distancia interplanar los ángulos de difracción para dos longitudes de onda diferentes se cumple la siguiente relación:

$$\operatorname{sen}^{2} \theta_{HKL}^{1} = \frac{\lambda_{1}^{2}}{\lambda_{1}^{2}} \operatorname{sen}^{2} \theta_{HKL}^{J} \qquad \dots (44)$$

las ecuaciones (43) se convierten en:

$$\sin^{2}\theta_{HKL}^{exp,l} = \frac{\lambda_{l}^{2}}{a_{o}^{2}} (\alpha + \beta + \gamma) + E\delta_{l}$$

$$\sin^{2}\theta_{HKL}^{exp,l} = \frac{\lambda_{l}^{2}}{a_{o}^{2}} (\alpha + \beta) + \frac{\lambda_{l}^{2}}{c_{o}^{2}} \gamma + E\delta_{l}$$

$$\sin^{2}\theta_{HKL}^{exp,l} = \frac{\lambda_{l}^{2}}{a_{o}^{2}} (\alpha + \sqrt{\alpha\beta} + \beta) + \frac{\lambda_{l}^{2}}{c_{o}^{2}} \gamma + E\delta_{l}$$

$$\operatorname{sen}^{2} \Theta_{HKL}^{exp,i} = \frac{\lambda_{i}^{2}}{a_{j}^{2}} \alpha + \frac{\lambda_{i}^{2}}{b_{o}^{2}} \beta + \frac{\lambda_{i}^{2}}{c_{o}^{2}} \gamma + \mathrm{E}\delta_{i} \qquad \dots (45)$$

sen²0^{exp} estas ecuaciones expresan los valores de urt correspondientes a la longitud de onda λ_i , considerando δ_i como la función δ_j normalizada, esto es $\delta_j = (\lambda_j^2/\lambda_j^2) \delta_j$. En 1951 Hess modificó el método de Cohen introduciendo pesos apropiados para cada uno de los valores de sen $\frac{\partial e^{xp}}{\partial_{xp}}$ HEL para que todos los términos experimentales contribuyeran de igual manera. Con estos pesos se obtiene un valor más exacto de los parámetros de red. El peso ω que se asocia a cada uno de estos valores normalizados sen $\theta_{uni}^{exp,n}$ el inverso de la incertidumbre de este valor, o sea:

$$\omega = \frac{1}{\Delta \operatorname{sen}^2 \theta_{HKL}^{exp, \Pi}} \dots (46)$$

De acuerdo al método de mínimos cuadrados los valores más probables de los parámetros A, B, C y E, de las ecuaciones (39) son aquellos que hacen que la suma de los cuadrados de las dispersiones sea mínima, es decir que:

$$\sum_{i=1}^{N} \left(\Lambda(\alpha_{i} + \beta_{i} + \gamma_{i})\omega_{i} + E\delta_{i}\omega_{i} - \operatorname{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} \right)^{2} = \sum_{i=1}^{N} \varepsilon_{i}^{2}$$

$$\sum_{l=1}^{N} \left(\Lambda(\alpha_{l} + \beta_{l})\omega_{l} + C\gamma_{l}\omega_{l} + E\delta_{l}\omega_{l} - \sec^{2}\theta_{HKL}^{exp,l}\omega_{l} \right)^{2} = \sum_{l=1}^{N} c_{l}^{2}$$

$$\sum_{l=1}^{N} \left(\Lambda(\alpha_{l} + \sqrt{\alpha\beta} + \beta_{l})\omega_{l} + C\gamma_{l}\omega_{l} + E\delta_{l}\omega_{l} - \sec^{2}\theta_{HKL}^{exp,l}\omega_{l} \right)^{2} = \sum_{l=1}^{N} c_{l}^{2}$$

$$\sum_{l=1}^{N} \left(\Lambda\alpha_{l}\omega_{l} + B\beta_{l}\omega_{l} + C\gamma_{l}\omega_{l} + E\delta_{l}\omega_{l} - \sec^{2}\theta_{HKL}^{exp,l}\omega_{l} \right)^{2} = \sum_{l=1}^{N} c_{l}^{2}$$
...(47)

scan minimos.

Las solucioneas A, B, C y E, que minimizan cada una de estas ecuaciones se obtienen resolviendo los siguientes sistemas de ecuaciones:

$$\begin{split} & \Lambda \sum_{i=1}^{N} (\alpha_{i} + \beta_{i} + \gamma_{i})^{2} \omega_{i} \quad + \quad E \sum_{i=1}^{N} (\alpha_{i} + \beta_{i} + \gamma_{i}) \delta_{i} \omega_{i} \quad = \sum_{i=1}^{N} (\alpha_{i} + \beta_{i} + \gamma_{i}) \operatorname{sen}^{2} \Theta_{HKL}^{exp,i} \omega_{i} \\ & \Lambda \sum_{i=1}^{N} (\alpha_{i} + \beta_{i} + \gamma_{i}) \delta_{i} \omega_{i} \quad + \quad E \sum_{i=1}^{N} \delta_{i}^{2} \omega_{i} \qquad = \sum_{i=1}^{N} \delta_{i} \operatorname{sen}^{2} \Theta_{HKL}^{exp,i} \omega_{i} \end{split}$$

$$\begin{split} & \Lambda \sum_{i=1}^{N} (\alpha_{i} + \beta_{i})^{2} \omega_{i} + C \sum_{i=1}^{N} (\alpha_{i} + \beta_{i}) \gamma_{i} \omega_{i} + E \sum_{i=1}^{N} (\alpha_{i} + \beta_{i}) \delta_{i} \omega_{i} = \sum_{i=1}^{N} (\alpha_{i} + \beta_{i}) \operatorname{sen}^{2} \theta_{HKL}^{exp,i} \omega_{i} \\ & \Lambda \sum_{i=1}^{N} (\alpha_{i} + \beta_{i}) \gamma_{i} \omega_{i} + C \sum_{i=1}^{N} \gamma_{i}^{2} \omega_{i} + E \sum_{i=1}^{N} \gamma_{i} \delta_{i} \omega_{i} = \sum_{i=1}^{N} \gamma_{i} \operatorname{sen}^{2} \theta_{HKL}^{exp,i} \omega_{i} \\ & \Lambda \sum_{i=1}^{N} (\alpha_{i} + \beta_{i}) \delta_{i} \omega_{i} + C \sum_{i=1}^{N} \gamma_{i} \delta_{i} \omega_{i} + E \sum_{i=1}^{N} \delta_{i}^{2} \omega_{i} = \sum_{i=1}^{N} \delta_{i} \operatorname{sen}^{2} \theta_{HKL}^{exp,i} \omega_{i} \end{split}$$

$$A \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l})^{2} \omega_{l} + C \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l}) \gamma_{l} \omega_{l} + E \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l}) \delta_{l} \omega_{l}$$

$$= \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l}) \sin^{2} \omega_{l} + C \sum_{l=1}^{N} \gamma_{l}^{2} \omega_{l} + E \sum_{l=1}^{N} \gamma_{l} \delta_{l} \omega_{l} = \sum_{l=1}^{N} \gamma_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l}) \gamma_{l} \omega_{l} + C \sum_{l=1}^{N} \gamma_{l}^{2} \omega_{l} + E \sum_{l=1}^{N} \gamma_{l} \delta_{l} \omega_{l} = \sum_{l=1}^{N} \gamma_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l}) \delta_{l} \omega_{l} + C \sum_{l=1}^{N} \gamma_{l} \delta_{l} \omega_{l} + E \sum_{l=1}^{N} \delta_{l}^{2} \omega_{l} = \sum_{l=1}^{N} \delta_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} (\alpha_{l} + \sqrt{\alpha_{l}\beta_{l}} + \beta_{l}) \delta_{l} \omega_{l} + C \sum_{l=1}^{N} \gamma_{l} \delta_{l} \omega_{l} + E \sum_{l=1}^{N} \alpha_{l}^{2} \omega_{l} = \sum_{l=1}^{N} \delta_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l}^{2} \omega_{l} + B \sum_{l=1}^{N} \alpha_{l} \beta_{l} \omega_{l} + C \sum_{l=1}^{N} \alpha_{l} \gamma_{l} \omega_{l} + E \sum_{l=1}^{N} \alpha_{l} \delta_{l} \omega_{l} = \sum_{l=1}^{N} \alpha_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l}^{2} \omega_{l} + B \sum_{l=1}^{N} \beta_{l}^{2} \omega_{l} + C \sum_{l=1}^{N} \beta_{l} \gamma_{l} \omega_{l} + E \sum_{l=1}^{N} \beta_{l} \delta_{l} \omega_{l} = \sum_{l=1}^{N} \beta_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l} \beta_{l} \omega_{l} + B \sum_{l=1}^{N} \beta_{l}^{2} \omega_{l} + C \sum_{l=1}^{N} \gamma_{l}^{2} \omega_{l} + E \sum_{l=1}^{N} \gamma_{l} \delta_{l} \omega_{l} = \sum_{l=1}^{N} \beta_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l} \delta_{l} \omega_{l} + B \sum_{l=1}^{N} \beta_{l} \omega_{l} + C \sum_{l=1}^{N} \gamma_{l}^{2} \omega_{l} + E \sum_{l=1}^{N} \gamma_{l} \delta_{l} \omega_{l} = \sum_{l=1}^{N} \gamma_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l} \delta_{l} \omega_{l} + B \sum_{l=1}^{N} \delta_{l} \beta_{l} \omega_{l} + C \sum_{l=1}^{N} \delta_{l} \gamma_{l} \omega_{l} + E \sum_{l=1}^{N} \delta_{l}^{2} \omega_{l} = \sum_{l=1}^{N} \delta_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l} \delta_{l} \omega_{l} + B \sum_{l=1}^{N} \delta_{l} \beta_{l} \omega_{l} + C \sum_{l=1}^{N} \delta_{l} \gamma_{l} \omega_{l} + E \sum_{l=1}^{N} \delta_{l}^{2} \omega_{l} = \sum_{l=1}^{N} \delta_{l} \sin^{2} \theta_{HKL}^{exp,l} \omega_{l}$$

$$A \sum_{l=1}^{N} \alpha_{l} \delta_{l} \omega_{l} + B \sum_{l=1}^{N} \delta_{l} \beta_{l} \omega_{l} + C \sum_{l=1}^{N} \delta_{l}$$

Una vez resueltos los sitemas de ecuaciones anteriores, los valores A, B y C, determinan los valores de los parámetros de red asi:

$$a_{g} = \frac{\lambda_{i}}{2\sqrt{\lambda}}, \quad b_{g} = \frac{\lambda_{i}}{2\sqrt{B}}, \quad c_{g} = \frac{\lambda_{i}}{2\sqrt{C}} \qquad \dots (49)$$

Las incertidumbres de estos valores se encuentran, de acuerdo a Whittaker y Robinson (1952), de la siguiente manera:

$$\Delta a_{o} = \sqrt{\frac{1}{4A}} \Delta \lambda^{2} + \frac{\lambda^{2}}{16A^{3}} \Delta A^{2}$$
$$\Delta b_{o} = \sqrt{\frac{1}{4B}} \Delta \lambda^{2} + \frac{\lambda^{2}}{16B^{3}} \Delta B^{2}$$
$$\Delta c_{o} = \sqrt{\frac{1}{4C}} \Delta \lambda^{2} + \frac{\lambda^{2}}{16A^{3}} \Delta C^{2} \qquad \dots (49)$$

donde ΔA , ΔB y ΔC , se determinan de la siguiente manera:

$$\Delta A = -\frac{M}{W_A}; \quad \Delta B = -\frac{M}{W_B}, \quad \Delta C = -\frac{M}{W_C} \dots (50)$$

donde M está dada por:

$$M = \frac{U}{(T-P)V} \dots (51)$$

donde T es el número de datos experimentales que aparece en las sumatorias, P es el número de incógnitas de los sistemas de ecuaciones, V es el determinante del sistema de ecuaciones (48) que se esté tratando, y U es uno de los siguientes determinantes de acuerdo al sistema cristalino correspondiente:

 $\begin{array}{cccc} \left(\alpha_{i}^{+}\beta_{i}^{+}\gamma_{i}\right)^{2}\omega_{i} & \left(\alpha_{i}^{+}\beta_{i}^{+}\gamma_{i}\right)\delta_{i}\omega_{i} & \left(\alpha_{i}^{+}\beta_{i}^{+}\gamma_{i}\right)\operatorname{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} \\ \left(\alpha_{i}^{+}\beta_{i}^{+}\gamma_{i}\right)\delta_{i}\omega_{i} & \delta_{i}^{2}\omega_{i} & \delta_{i}^{2}\omega_{i} \\ \left(\alpha_{i}^{+}\beta_{i}^{+}\gamma_{i}\right)\operatorname{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} & \operatorname{sen}^{2}\theta_{HKL}^{exp,i}\delta_{i}\omega_{i} & \operatorname{sen}^{4}\theta_{HKL}^{exp} \end{array}$

$$\begin{aligned} & \alpha_{1}^{2}\omega_{1} & \alpha_{1}\beta_{1}\omega_{1} & \alpha_{1}\gamma_{1}\omega_{i} & \alpha_{1}\delta_{1}\omega_{1} & \alpha_{1}\mathrm{sen}^{2}\theta_{HL}^{exp,i}\omega_{i} \\ & \alpha_{1}\beta_{1}\omega_{1} & \beta_{1}^{2}\omega_{1} & \beta_{1}\gamma_{1}\omega_{1} & \beta_{1}\delta_{1}\omega_{1} & \beta_{1}\mathrm{sen}^{2}\theta_{HL}^{exp,i}\omega_{i} \\ & \alpha_{1}\gamma_{1}\omega_{i} & \gamma_{1}\beta_{i}\omega_{1} & \gamma_{1}^{2}\omega_{i} & \gamma_{1}\delta_{1}\omega_{1} & \gamma_{1}\mathrm{sen}^{2}\theta_{HL}^{exp,i}\omega_{i} \\ & \alpha_{1}\delta_{1}\omega_{1} & \delta_{1}\beta_{1}\omega_{1} & \delta_{1}\gamma_{1}\omega_{1} & \delta_{1}^{2}\omega_{1} & \delta_{1}\mathrm{sen}^{2}\theta_{HL}^{exp,i}\omega_{i} \\ & \alpha_{1}\delta_{1}\omega_{1} & \delta_{1}\beta_{1}\omega_{1} & \delta_{1}\gamma_{1}\omega_{1} & \delta_{1}^{2}\omega_{1} & \delta_{1}\mathrm{sen}^{2}\theta_{HL}^{exp,i}\omega_{i} \\ & \alpha_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{1} & \beta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} & \delta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} & \delta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} \\ & \alpha_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{1} & \beta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} & \delta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} & \delta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} \\ & \alpha_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{1} & \beta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i} \\ & \beta_{1}\mathrm{sen}^{2}\theta_{HKL}^{exp,i}\omega_{i}$$

W_A, W_B y W_C son:

$$W_{A} = \frac{V}{A_{11}}, \quad W_{B} = \frac{V}{B_{11}}, \quad W_{C} = \frac{V}{C_{11}} \dots (53)$$

donde $A_{11}^{}$, $B_{11}^{}$ y $C_{11}^{}$, son los cofactores de A, B y C, en el determinante V.

4.- Resumen.

Los valores de los parámetros de red obtenidos por este método han sido corregidos por cuatro fuentes de error. Las primeras cuatro, se dice, son fuentes de error geométricas ya que se deben a la geometria entre los elementos de la cámara, haz de rayos X y muestra. Estas fuentes de error son las siguientes:

a) Radio real de la cámara. Su forma de corregirlos es:

 $S_{HKL,nf,r}^{exp,corr} = F_r \cdot S_{HKL,nf}^{exp}$

donde las separaciones funcionales son:

para la zona de transmisión, y:

$$S_{HKL,f,r}^{exp,corr} = \lfloor Lpi - S_{HKL,nf}^{exp} \rfloor$$

para la zona de retrorreflexión.

b) Divergencia axial más tamaño de muestra.

$$S_{HKL,r,da,tm}^{exp,corr} = S_{HKL,f,r}^{exp} + \Delta S_{HKL}^{da,tm}$$

donde,

$$\Delta S_{HKL}^{da,tm} = \frac{Lpr \cdot \langle 2\varepsilon \rangle}{180}$$

es el factor de divergencia axial más tamaño de muestra.

c) Excentricidad de la muestra en la cámara.

 $S_{HKL,r,da,tm,e}^{exp} = S_{HKL,r,da,tm}^{exp} + \Delta S_{HKL}^{exc}$

donde,

$$\Delta S_{HKL}^{exc} = -2p\cos\phi \, \sin 2\theta_{HKL}$$

es el factor de excentricidad.

La última corrección es la de absorción, la cual se dice que se debe a un error físico. La forma de corregir por este error es por el método de Cohen.

CAPITULO VII

PROGRAMAS COMPUTACIONALES ALAEP E INXPAR

1.- Introducción.

Para facilitar los cálculos de las metodologías de indexación y de cálculo de parámetros de red, descritas en los capítulos V y VI, respectivamente, se crearon dos programas computacionales: Autocalibración de Longitudes de Arco para Equisgrafías de Poivos, ALAEP, e Indexación y cálculo de Parámetros de red, INXPAR. Para correr ambos programas es necesario crear un archivos de parámetros y otro de datos. Estos archivos se pueden crear a partir del programa mismo. A continuación se describen los programas mencionados, se presenta la estructura general de cada uno, el nombre de las variabies y matrices utilizadas, y sus diagramas de flujo.

2.- Programa computacional ALAEP.

- i) Objetivo: calcular las longitudes de arco, S^{exp}_{HXL} ± ΔS^{exp}_{HXL}, de acuerdo a las siguientes opciones;
 - a) promediadas sin ninguna corrección,
 - b) corregidas a partir de una fase patrón,
 - c) corregidas por error de radio de la cámara,
 - d) corregidas por error de radio de la cámara más error de divergencia axial dei haz más tamaño de muestra,
 - corregidas por los dos errores anteriores más error de excentricidad de la cámara.

il) Parámetros de entrada.

De acuerdo a las opciones del inciso i);

Rutina principal: Ruiprin\$ = -	a) "Promedio",		Ruiprin=1
	b) "Patrón",	+	Ruiprin=2
	c) "Radio",		Ruiprin=3
	d) "Divergencia",	+	Ruiprin=4
	e) "Excentricidad"	•	Ruiprin=5

De acuerdo a las dos opciones de introducir los datos de entrada, (ver inciso ili):

La incertidumbre asociada a S_{HKL}^{exp} de acuerdo a las opciones indicadas en el inciso 2.1 del capítulo V:

Į

Resolución del vernier (en mm): Resol.

Número de equisgrafía de Deblje-Scherrer: Eds, (este dato es sólo para control interno del laboratorio).

En el caso de que Ruiprin=2:

si la fase patrón es Silicio: Fasep\$="Si",

si la fase de interés es NaCl, Fasei\$="NaCl",

(en caso de no ser ninguna de estas dos fases, se introduce el nombre químico de las sustancias utilizadas),

si la radiación utilizada es debida al cobre: Radiación\$=:Cu", (en caso de no ser cobre se introduce el nombre químico del elemento utilizado como ánodo en el tubo de rayos X). En los casos de que Ruiprin=4 ó 5, se introducen las siguientes medidas en mm:

Abertura del orificio I: $(2XI \pm \Delta 2XI)$: Orfi, Dorfi. Abertura del orificio 2: $(2X2 \pm \Delta 2X2)$: Orf2, Dorf2. Distancia de la muestra al orificio I (YI $\pm \Delta YI$): Dom1, Ddom1. Distancia de la muestra al orificio 2 (Y2 $\pm \Delta Y2$): Dom2, Ddom2. Distancia de la muestra al ánodo (S $\pm \Delta S$): Dmbm, Ddmbm.

En el caso de que Ruiprin=5, se introduce el factor de excentricidad y su incertidumbre: Exce, Dexce.

iii) Datos de entrada:

Número de líneas medidas:

NI, para la fase patrón, (si Ruiprin=2),

N2, para la fase de interés.

Número de veces realizada cada medida para cada línea, en el mismo orden, primero los de la fase patrón, y después los de la fase de interés.

Medidas de la equisgrafía de Debije-Scherrer de acuerdo a las siguientes dos opciones:

a) centros de los arcos derecho e izquierdo, Cd y Ci, o,

b) limites interno y externo, Li y Le, de cada arco,

El número de valores introducidos varía de acuerdo al número de veces realizada cada medida y al número de líneas del patrón. Si Ruiprin#2 únicamente se introducen los datos de la fase de interés.

iv) Constantes y variables, (los nombres entre paréntesis corresponden a los nombres utilizados en las metodologías descritas en los capitulos V y VI): número de líneas que aparecen en el patrón de difracción: en la zona de transmisión: Trans. en la zona de retrorreflexión: Retro. Suma de las posiciones de los centros de los orificios de la película:

en transmisión: Cptps.

en retrorreflexión: Cprps.

Posiciones promedio de estos centros, y sus desviaciones estándar:

en transmisión: Ctrans (C.), Dsvct.

en retrorreflexión: Cretro (C), Dsvcr.

Semilongitud real de la película (i.pr/2), e incertidumbre: L, DL,

Semilongitud ideal de la película (Lpi/2): Vnc.

Factor de corrección de radio (F_p), e incertidumbre (Δ F_p): Fcr, DFcr.

En la subrutina para corrección de longitudes de arco por error de divergencia axial más tamaño de muestra: Mu=µ, Dmu=∆µ,

Muno= μ -1, Dmuno= $\Delta(\mu$ -1),

Mudo= 2μ , Dmudo= $\Delta(2\mu)$,

$$q_1 = \frac{Y_1}{S - Y_1}, \qquad q_2 = \frac{Y_2}{S - Y_2},$$

Dqi Ma=∆^{*}qi, Dqi Mi=∆[°]qi, Dq2Ma=∆^{*}q2, Dq2Mi=∆[°]q2,

Alfal =
$$\alpha_1 = \frac{X_1}{S - X_1}$$
, Alfa2 = $\alpha_2 = \frac{X_2}{S - X_2}$,

Dalfal Ma= $\Delta^{\dagger}\alpha_{1}$, Dalfal Mi= $\Delta^{-}\alpha_{1}$, Dalfa2Ma= $\Delta^{+}\alpha_{2}$, Dalfa2Mi= $\Delta^{-}\alpha_{2}$, Alfal c= α_{1}^{2} , Alfa2c= α_{2}^{2} , Dalfal cMa= $\Delta^{+}\alpha_{1}^{2}$, Dalfal cMi= $\Delta^{-}\alpha_{1}^{2}$, Dalfa2cMa= $\Delta^{+}\alpha_{2}^{2}$, Dalfa2cMi= $\Delta^{-}\alpha_{2}^{2}$, Fac0= $\frac{1}{6(q_1 - q_2)}$

DFacOMa=4 FacO, DFacOMi=4 FacO,

 $q1mmc=(1-q_{(\mu-1)})^{2}$

$$q2mmc=(1 - q_(\mu - 1))^{4}$$

Dq1 mmcMa=&^{*}q1 mmc, Dq1 mmcMi=&^{*}q1 mmc, Dq2mmcMa=&^{*}q2mmc, Dq2mmcMi=&^{*}q2mmc,

q1 mmca2c =
$$(1-q_1(\mu-1))^2 \alpha_2^2$$
, q2mmca1c = $(1-q_2(\mu-1))^2 \alpha_1^2$

Dqi mmca2cMa=4^{*}qi mmca2c, Dqi mmca2cMi=4^{*}qi mmca2c, Dq2mmcai cMa=4^{*}q2mmcai c, Dq2mmcai cMi=4^{*}q2mmcai c,

$$q_1 m = q_1(1 + q_1),$$
 $q_2 m = q_2(1 + q_2),$

DqimMa≈A^{*}qim, DqimMi≈A^{*}qim, Dq2mMa=A^{*}q2m, Dq2mMi=A^{*}q2m,

q1 mm=2µq₁(1+q₁), q2mm=2µq₂(1+q₂), Dq1 mmMa=ð^{*}q1 mm, Dq1 mmMi=ð^{*}q1 mm, Dq2mmMa=ð^{*}q2mm, Dq2mmMi=ð^{*}q2mm,

 $qimma2c=2\mu q_1(i+q_1)\alpha_2^2$

$$q2mmai c=2\mu q_{1}(1+q_{1})\alpha_{1}^{2}$$

Dqi mma2cMa= Δ^{\dagger} qi mma2c, Dqi mma2cMi= Δ^{-} qi mma2c, Dq2mmai cMa= Δ^{\dagger} q2mmai c, Dq2mmai cMi= Δ^{-} q2mmai c,

Fac1 = $(1-q_1(\mu-1))^2 \alpha_2^2 + (1-q_2(\mu-1))^2 \alpha_1^2$

DFaci Ma=A*Faci, DFaci Mi=A Faci,

Fac2 = $2\mu q_1(1+q_1)a_2^2 + 2\mu q_2(1+q_2)a_1^2$

DFac2Ma=4*Fac2, DFac2Mi=4 Fac2,

Facfi = $\frac{1}{6(q_1 - q_2)} [(1 - q_1(\mu - 1))^2 \alpha_2^2 + (1 - q_2(\mu - 1))^2 \alpha_1^2]$ DFacfiMa=A^{*}Facfi, DFacfiMi=A^{*}Facfi,

Fac2fi=
$$\frac{1}{6(q_1 - q_2)} 2\mu [q_1(1+q_1)\alpha_2^2 + q_2(1+q_2)\alpha_1^2]$$

DFac2fiMa=4 Fac2fi, DFac2fiMi=4 Fac2fi,

Facfig = $i \frac{1}{6(q_1 - q_2)} [(1 - q_1(\mu - 1))^2 \alpha_2^2 + (1 - q_2(\mu - 1))^2 \alpha_1^2] [\frac{180}{\pi}]$ DFac2figMa= Δ^{+} Fac2fig, DFac2figMi= Δ^{-} Fac2fig,

Fac2fig= $i \frac{1}{6(q_1 - q_2)}$ 2µ $(q_1(1+q_1)\alpha_2^2 + q_2(1+q_2)\alpha_1^2)$ $1 \frac{180}{\pi}$ DFac2figMa= Δ^* Fac2fig, DFac2figMi= Δ^- Fac2fig,

v) Matrices.

Datos de la fase patrón Silicio: S(5,100): S(1,t)=indices de reflexión HKL, $S(2,t)=S_{HKL}^{Pat}$ $S(3,t)=\Delta S_{HKL}^{Pat}$ S(4,t)=intensidades relativas, I/Io, S(5,t)=distancia interplanar, d_{HKL}^{Pat} .

Medidas experimentales de los arcos en el patrón de difracción: Limites externos: Ex(100,1000,2). Límites internos: In(100,1000,2).

Centros: C(100.100.2).

Anchos: A(100,100,2).

Número de linea en película: Npic(100). Número de medidas rezlizadas para cada línea de: la fase patrón: Np(15). la fase de interés: Ni(100).

Longitudes de arco experimentales de la fase patrón: Spat(5,15): Spat(1,1)= $S_{HKL}^{pat}(exp)$, Spat(2,1)= $\Delta^{+}S_{HKL}^{pat}(exp)$, Spat(3,1)= $\Delta^{-}S_{HKL}^{pat}(exp)$, Spat(4,1)= $S_{HKL}^{pat}(exp)+\Delta^{+}S_{HKL}^{pat}(exp)$, Spat(5,1)= $S_{HK}^{pat}(exp)-\Delta^{-}S_{HKL}^{pat}(exp)$. Longitudes de arco experimentales de la fase de interés: Sint(5.100):

 $Sint(1,t)=S_{HKL}^{exp}$

 $Sint(2,i)=\Delta^{+}S_{HKL}^{exp}$, $Spat(3,i)=\Delta^{-}S_{HKL}^{exp}$.

 $\operatorname{Sint}(4,i) = \operatorname{S}_{HKL}^{exp} + \Delta^{+} \operatorname{S}_{HKL}^{exp}, \quad \operatorname{Sint}(5,i) = \operatorname{S}_{HKL}^{exp} - \Delta^{-} \operatorname{S}_{HKL}^{exp}.$

Diferencias entre las longitudes de arco de la fase patrón de tarjeta y experimentales: Difp(5,15): Difp(1,t)= $D_{KL'}^{pat}$ Difp(2,t)= $\Delta D_{RL'}^{pat}$ Difp(3,t)= $D_{RL+}^{pat}\Delta D_{RL'}^{pat}$ Difp(4,t)= $D_{RL-}^{pat}\Delta D_{RL'}^{pat}$

Diferencias interpoladas de las longitudes de arco de la fase de interés: Dif(15,100): Dif(1,t)= D_{HK}^{exp} , Dif(2,t)= Δ_{HKL}^{exp} , Dif(13,t)= D_{HKL}^{exp} , Dif(4,t)= D_{HKL}^{exp} - Δ_{HKL}^{exp} , Dif(3,t)= D_{HKL}^{exp} , Dif(4,t)= D_{HKL}^{exp} - Δ_{HKL}^{exp} .

Longitudes de arco a escala para graficar en pantalla: de la fase patrón: Spatp(2,100). de la fase de interés: Sintp(2,100).

Diferencias a escala para graficar en pantaila: $D_{KKL}^{pot} \pm \Delta D_{KKL}^{pot}$ Difpp(2,100). $D_{KKL}^{pop} \pm \Delta D_{KKL}^{exp}$ Difip(2,100).

Coordenadas de los puntos para ajustar una recta por minimos cuadrados: X(100), Y(100).

Longitudes de arco corregidas por la fase patrón: Sintep(4,100).

Centros de los orificios de la pelicula calculados de: transmisión: Cent(100,100). retrorreflexión: Cenr(100,100). Suma de los centros de transmisión: Cents(100). Suma de los centros de retrorreflexión: Cents(100). Promedio del centro de transmisión: Centp(100). Promedio del centro de retrorreflexión: Centp(100). Suma de los centros derechos: Cds(100). Suma de los centros izquierdos: Cds(100). Centro derecho promedio: Cdp(100). Centro izquierdo promedio: Cip(100).

Número de medidas realizadas en total en la zona de transmisión: Nt(100).

Número de medidas realizadas en total en la zona de retrorreflexión: Nr(100).

Número de medidas en general: N(100).

Longitudes de arco no funcionales estadisticas: Snfe(100.100);

Snfe(j,l)=j-esima separación no funcional de la i-ésima línea, $S_{kl,n}^{exp,j}$

Suma de las longitudes de arco no funcionales: Snfs(100).

Promedio de las longitudes de arco no funcionales:

Snfp(2,100).

Separaciones funcionales promedio sin ninguna corrección: Sf(3,100).

Promedio de las longitudes de arco no funcionales corregidas por error de radio: Snfpcr(3,100); Snfpcr(1,1)=S^{exp.cor}

Snfpcr(2, i)= $\Delta^* S_{HKL,nf}^{exp,corr}$, Snfpcr(3, i)= $\Delta^* S_{HKL,nf}^{exp,corr}$.

Longitudes de arco funcionales corregidas por error de radio: Sfcr(3,100):

Sfcr(1,1)=Sexp

 $Sfcr(2,i)=\Delta^{\dagger}S_{HKL,f}^{exp}$, $Sfcr(3,i)=\Delta^{\dagger}S_{HKL,f}^{exp}$.

Longitudes de arco corregidas por divergencia axial más tamaño de muestra: Sítda(3,100).

Longitudes de arco corregidas por excentricidad: Sfcre(3,100).

Máximo valor de las longitudes de arco calculadas para cada linea: Smay(100)

Minimo valor de las longitudes de arco calculadas para cada línea: Smen(100)

Intervalo Smay-Smen: Is(100).

Desvlación estándar de Sunt: Desv(100).

Angulo de Bragg: Th(3,100).

Incremento ΔS_{HKL} que se le suma a S_{HKL} para corregir las longitudes de arcu por error de excentricidad: Dse(2,100).

Incremento ΔS_{HKL} que se le suma a S_{HFL} para corregir las longitudes de arco por error de divergencia axial más tamaño de muestra: Ds(3,100).

Función (2c): Dosep(3,100).

Primer término de la función <2c>: Term1(3,100), Segundo término de la función <2c>: Term2(3,100),

Longitudes de arco para crear el archivo de datos a INXPAR: Sinx(2,100).

Sinxp(2,100): debidas a la longitud de onda $K\overline{a}$. Sinx1 (2,106): debidas a la longitud de onda $K\pi_1$. Sinx2(2,100): debidas a la longitud de onda $K\pi_2$. Sinxb(2,100): debidas a la longitud de onda $K\beta$.

Número de opciones de indices para cada línea, para crear el archivo de datos para INXPAR: Nop(100). Indices HKL, primera opción: Inx(3,100). Indices HKL, segunda opción: Inxu(3,100). Indices HKL, tercera opción: Inxu(3,100). vi) Diagrama de flujo.

El programa ALAEP puede dividirse en 5 rutinas principales. Las dos primeras siempre se realizan, las otras tres son opcionales. Estas rutinas son las siguientes:

I. Introducción de parámetros y datos.

- II. Cálculo de centros, separaciones no funcionales y funcionales corregidas o no por error de radio.
- III. Corrección de longitudes de arco por error de divergencia axial más tamaño de muestra.
- Corrección de longitudes de arco por error de excentricidad.
- V. Corrección de longitudes de arco por medio de una fase patrón.

Dentro de cada una de estas rutinas existen subrutinas que la complementan. La mayoria de elias son internas al programa ALAEP, pero hay algunas, LIMPIA y LINEA, que se utilizan para graficación, que son externas, para lo cual es necesario ligar el programa al directorio donde se encuentran estas subrutinas. A continuación se muestra el diagrama de flujo de cada una de las ramas del programa ALAEP.

Diagrama de Flujo de ALAEP

Rama I

Introducción de parametros y datos.

Rama II

Cálculo de centros, separaciones no funcionales y funcionales corregidas por error de radio.

Subrutina 9000

Subrutina 10000

Creación de archivo de datos de entrada.

Return

Subrutina 7900

Cálculo de longitudes de arco del Silicio puro a partir de las distancias interplanares con cualquier longitud de onda de la radaición incidente y cualquier tamaño de la cámara de Debije-Scherrer.

Return

Rama III

Corrección de longitudes de arco

por error de divergencia axial más tamaño de muestra.

Rama IV

Correcciones de longitudes de arco por error de excentricidad de la muestra en la cámara.

Rama V

Corrección de longitudes de arco por medio de una fase patrón.

Subrutina 7000

Subrutina 11000

Creación de archivo de datos para INXPAR

vii) Archivo de salida.

El programa crea un archivo de salida, en el que aparecen los datos de entrada y los resultados del programa. A continuación se enumeran estos en la forma como aparecen en el archivo.

- El nombre del programa.
- Los nombres de los archivos de parámetros de entrada, de datos de entrada y el nombre del propio archivo.
- La Tabla I en la que aparecen las medidas experimentales. de la fase de interés. Esta tabla tiene 8 columnas, en la primera aparece el numero de pareja en película y en la segunda, el número de medida de cada pareja. Estas dos columnas las les tal cual del archivo de datos de entrada. Las siguientes dos columnas son los centros derecho (Cd) e izoulerdo (Ci) de las medidas experimentales, en ese orden. Enseguida aparece el ancho (A) de un arco de la pareja. Estos tres últimos valores son calculados cuando Ruisec\$="Lim", de manera contraria se leen del archivo de datos de entrada. Después aparace la separación no funcional (Snf) calculada como (Cd-Ci). Por último aparecen los centros del haz de transmisión (Ct) y de retrorreflexión (Cr) calculados como (Cd+Ci)/2. con las Dare ias de arco correspondientes. Las incertidumbres asiganadas a cada una de las medidas experimentales es la mitad de la resolución del vernier (R/2). A las medidas calculadas se les asocia la incertidumbre propagada.

- La Tabla II, en la que aparecen los promedios sobre el número de veces medida cada pareja de arcos, de cada uno de los valores de la tabla anterior. De esta manera desaparece la columna dos de la tabla I. A la separación no funcional promedio se le asocia la incertidumbre R+&i donde &i denota la opción escogida para este valor. La incertidumbre asociada a las posiciones de los centros Ct y Cr sigue siendo R/2 debido a que no se considera la desviación estandar de estas medidas. - La semilongitud real de la película calculada con el promedio de cada uno de los centros Ct y Cr, y el factor de corrección de radio. La incertidumbre asociada a cada uno de estos valores es la suma de la mitad de la resolución del vernier y su desviación estándar sobre N, (número de líneas). Sin embargo, si la desviación estándar es mucho mayor que R/2 (cuatro veces, por ejemplo) sólo se considera la primera, y viceversa, si la desviación estándar es muy pequeña comparada con R/2, ésa no se considera. En el caso de que Ruiprin\$="Promedio", aquí termina el archivo, y en la columna de separaciones no funcionales aparecen las separaciones funcionales promedio.

- La Tabla III, titulada Correcciones por variaciones en el Radio efectivo de la cámara, en la que aparecen las separaciones no funcionales promedio (Snf ± &Snf), las separaciones no funcionales corregidas por radio (Snfr ± &Snfr), y las separaciones funcionales corregidas por radio (Sr ± &Sr). En el caso de que Rulprin\$="Radio" aquí termina el archivo.
- La ecuación <2c>, que expresa el factor de corrimiento por error de divergencia axial mas tamaño de muestra.
 Debajo de dicha ecuación los valores experimentales introducidos con los que fue calculada.
- La Tabla IV, Correcciones por divergencia axiai y tamaño de muestra, en la que aparecen, el doble de los valores de los ángulos de Bragg (2Th ± &2Th) calculados a partir de las separaciones funcionales corregidas por radio; el incremento (2c) que se les suma para corregirlos por este error (<2Epsilon>); su equivalente en δSexp (Delta Sexp), que se le suma a las separaciones funcionales corregidas por radio, y estas últimas corregidas por los errores de divergencia axial y tamaño de muestra, (Srtda ± &Srtda). En caso de que Ruiprin\$="Divergencia" aquí termina el archivo.

- El factor de corrección de excentricidad Fe.

- Por último, la Tabla V, Correcciones por excentricidad de la muestra en la cámara, en la que aparecen nuevamente separaciones funcionales corregidas por radio. ias divergencia axial y tamaño de muestra, el ángulo de Bragg (Th) calculado, el factor de excentricidad (E) que se le suma a cada una de las separaciones funcionales para corregirlas DOL este error. v las separaciones funcionales corregidas por todos los errores: radio, divergencia axial, tamaño de la muestra y excentricidad (Se +- &Se). Aqui termina el archivo.

En el caso de que RuprinS="Patron", aparecen únicamente cuatro tablas, las dos primeras son iguales a la Tabla I descrita anteriormente, una para las medidas de la fase patrón y otra para las medidas de la fase de interés. Las siguientes dos tablas, son los resultados de la calibración por una fase patrón, Tabla A, Datos de la fase patrón y Tabla B. Datos de la fase de interés. Cada una consiste de tres columnas, en la primera aparecen las longitudes de агсо medidas, $(Sp(x) \pm \&Sp(x))$ para la Tabla A, y (SI(J) ± &SI(J)) para la Tabla B. En la segunda columna de la Tabla A, aparecen las longitudes de arco patrón (SHKL ± &SHKL), calculadas a partir de las distancias interplanares reportadas en la tar leta del **JCPDS** correspondiente a dicha fase patrón. En la tercera columna de esa misma tabla aparecen las diferencias de las medidas experimentales, columna dos menos columna uno de esa misma tabla (Dp(κ) ± &Dp(κ)). En la segunda columna de la Tabla B, aparecen las diferencias interpoladas en la recta a justada а la gráfica $(Dp(\kappa) \pm & Dp(\kappa))$ contra $(Sp(K) \pm \&Sp(K))$, llamadas $(Di(J) \pm \&Di(J))$. Finalmente en la columna tres de la Tabla B aparecen las longitudes de агсо corregidas por la fase patrón, $Sc(J) \pm \&Sc(J)$. obtenidas por la suma de la columna uno más la columna dos de esa misma tabla.

Por último, del programa ALAEP es posible crear un archivo de datos para INXPAR automáticamente para cualquiera de las opciones de rutina principal de ALAEP. Si así se desea únicamente se da el nombre de dicho archivo, en caso contrario el programa termina. La forma de crear este archivo de datos es de la misma manera que se crea desde INXPAR, es decir existen las dos opciones, para indexar o únicamente para calcular parámetros de red. Si se quiere esta segunda opción será necesario introducir los indices de reflexión.

- 3.- Programa computacional INXPAR.
 - Objetivo: calcular parámetros de red con alta precisión y exactitud. Para calcular los parámetros de red es necesario conocer los índices de reflexión de cada una de las líneas del patrón de difracción. Esto lo puede hacer el programa mismo, así pues, tiene dos opciones:
 - a) indexar el patrón de difracción de rayos X de una equisgrafía de Debije-Scherrer, y a partir de la indexación encontrada calcular los parámetros de red, o,
 - b) calcular los parámetros de red introduciendo los índices de reflexión del patrón.
 - ii) Parámetros de entrada:

Rutina principal: Ruiprin
$$= \begin{cases} a) \text{ "Ind", } + \text{Ruiprin}=1 \\ b) \text{"Par", } + \text{Ruiprin}=2 \end{cases}$$

Cémara utilizada: Camara\$= { "G" , (Grande) "C" , (Chica)

Si la radiación utilizada es debida al Cobre: Lambda\$=:Cu", (en caso de no ser cobre se introduce el nombre químico del elemento utilizado como ánodo en el tubo de rayos X).

Número de equisgrafía de Deblje-Scherrer: Eds, este dato es sólo para control interno del laboratorio.

Número de medidas realizadas de longitudes de arco $S_{KLL}^{*xp} \neq \Delta S_{KLL}^{*xp}$, debidas a las diferentes longitudes de onda de la radiación: para Ka, Kp\$="K alfa-p", Nkp para Ka, K1\$="K alfa-1", Nk1 para Ka, K2\$="K alfa-2", Nk2 para K β , Kb\$="K beta ", Nkb

Longitud	de	onda	a nor	malizar	los	valores	medidos
Lambdano	r\$=	"Ка "Ка "Ка "Кb	lfa-p' lfa-l' lfa-2' eta"	⇒ Lam ⇒ Lam ⇒ Lam ⇒ Lam	bdano bdano bdano bdano	r=0 r⇒1 r≈2 r=4	

Sistema cristalino a probar: Siscris\$= {
 "Cubico"
 "Tetragonal"
 "Hexagonal"
 "Ortorrombico"

Lineas base iniciales determinadas Si o No: Lbsn\$= ("S", Si "N", No

En caso de que Lbsn\$="S" entonces: número en película de la primera línea base: Lb1, • número en película de la segunda línea base: Lb2, •• número en película de la tercera línea base: Lb3, ••• Triadas de índices asignadas a las líneas base: prímera línea base: IHp1, IKp1, ILp1, • segunda línea base: IHp2, IKp2, ILp2, •• tercera línea base: IHp3, IKp3, ILp3, ***

para todos los sistemas.
para todos los sistemas excepto cúbico.
sólo para el sistema ortorrómbico.

En este caso, si las líneas base no son las primeras, se puede, o no, indexar las líneas anteriores a las asignadas:

todas\$= { "S", se indexan todas las lineas
 "N", se indexan a partir de la primera línea base

Número máximo permitido de asignaciones de valores diferentes de $Q_{HKL}^{exp} \pm \Delta Q_{HKL}^{exp}$ a cada una de las líneas base: Lb, puede ser el valor que se quiera, se sugiere usar 2 ó 3, pero se puede usar hasta 5 ó 6 según sea el caso.

Número de líneas toleradas sin identificar, es decir sin indexar, Nt. Este valor puede ser 0, 1, 2, etc. según sea el caso.

Valor más alto de los índices por asignar: I_{max} , este valor es el número que probablemente sea el más alto de las triadas de índices del patrón por asignar. Por lo regular si se trata de una fase inorgánica se observan valores de índices hasta de 10 ó 12, si se trata de una fase orgánica puede ser hasta de 20. Además, mientras más líneas tenga el patrón más alto debe ser el índice máximo.

- iii) Datos de entrada: los valores que se introducen al programa son los valores de las longitudes de arco $S_{HKL}^{exp} \pm \Delta S_{HKL}^{exp}$ corregidas por ALAEP.
- iv) Constantes y variables:
 Valores de la longitud de onda de la radiación utilizada: en caso de que Lambda\$="Cu",
 Kp=1.54178, DKp=.00006,
 K1=1.54051, DK1=.00006,
 K2=1.54433, DK2=.00006,
 Kb=1.39217, DKb=.00006.
 en caso de que Lambda\$="Cu", se introducen los valores al correr el programa en interactivo.

Número total de líneas en el patrón (N): Np=Nkp, Np1=Np+Nk1, Np12=Np1+Nk2, N=Np12+Nkb.

Longitud de onda de la radiación a la que se normaliza:

Variables en la subrutina 16400:

A0 =	[1		Np+1		Np1+1		Np12
NO =	Np		Np1	•	Np12		N
K4 ≖	Кр	<u>}</u> , 1	K 1	<u>}</u> , ,	K2	}• 1	Kb
D4 ≖	DKp		DK1		DK2		DKb

Número de combinaciones (T) de tríadas de índices para cada sistema cristalino: Nchki.

Número de rengión de la matriz Q, que contiene el valor Q_{HCL}, que se le asigna a la primera línea base en el proceso de indexación: Nibordi.

Número de líneas no indexadas: Nini. Número de líneas sí indexadas: Nii.

Número de combinaciones de indexaciones debido a las opciones de triadas de índices para cada línea: Ct.

Número de rengión de la matriz I que contiene el valor Q_{HIL}^{exic} con el que se cumplió la desigualdad (16) del capítulo V, para la primera opción: K, para la segunda opción: U, para la tercera opción: V.

Valor de los parámetros recíprocos base: (a_{ob}^{*}) Aor, ($a_{o(max)}^{*}$) Amax, ($a_{o(max)}^{*}$) Anin, [†] (b_{ob}^{*}) Bor, ($b_{o(max)}^{*}$) Bmax, ($b_{o(max)}^{*}$) Bmin, ^{††} (c_{ob}^{*}) Cor, ($c_{o(max)}^{*}$) Cmax, ($c_{o(max)}^{*}$) Cmin, ^{†††}

Número de valores de Q^{esp} diferentes asignados a: la primera línea base: Nibl, [†] la segunda línea base: Nib2, ^{††} la tercera línea base: Nib3, ^{†††} [†] para todos los sistemas. ^{††} para todos los sistemas excepto cúbico. ^{†††} sóle para el sistema ertorrómbico. Variables utilizadas en la subrutina para calcular los parámetros de red con UNA, SIETE o TODAS, las combinaciones de indexaciones:

Número de combinaciones de indeaxciones con las que se desea calcular los parámetros de red: Cti.

Número de opción para las líneas que tienen más de una opción de tríadas de indices: Noc,

Número de combinación del número de combinaciones de indexaciones: bina.

Número de combinación para la impresión de la tabla VII, que va en grupos de 7 en 7: Ordin.

v) Matrices:

Número de línea en película: Nplc(2,100): Nplc(1,1)= Número de línea en película, de introducción. Nplc(2,1)= Número de línea en película, ordenado.

Longitudes de arco experimentales: Se(2,100):

Se(1,i)= S_{HKL}^{exp} , Se(2,i)= ΔS_{HKL}^{exp} .

Angulo de Bragg: Th(4,100):

 $\begin{array}{ll} {\rm Th}(1,t)=\;\theta^{exp}_{HKL} & {\rm Th}(3,t)=\;\theta^{exp}_{HKL} + \;\Delta\theta^{exp}_{HKL}, \\ {\rm Th}(2,t)=\;\Delta\theta^{exp}_{HKL} & {\rm Th}(4,t)=\;\theta^{exp}_{HKL} - \;\Delta\theta^{exp}_{HKL}. \end{array}$

Función Seno: Sth(6,100):

$$\begin{split} & \text{Sth}(1,i) = \text{Sen}(\theta_{HKL}^{exp}), & \text{Sth}(4,i) = \Delta \text{Sen}^2(\theta_{HKL}^{exp}), \\ & \text{Sth}(2,i) = \Delta \text{Sen}(\theta_{HKL}^{exp}), & \text{Sth}(5,i) = \text{Sen}^2(\theta_{HKL}^{exp}) \text{ normalizado}, \\ & \text{Sth}(3,i) = \text{Sen}^2(\theta_{HKL}^{exp}), & \text{Sth}(6,i) = \Delta \text{Sen}^2(\theta_{HKL}^{exp}) \text{ normalizado}. \end{split}$$

Distancia Interplanar experimental: Dexp(6,100): $Dexp(1,t) = d_{HKL}^{exp}$ $Dexp(4,t) = d_{HKL}^{exp}$ ordenado, $Dexp(2,t) = \Delta d_{HKL}^{exp}$ $Dexp(5,t) = d_{HKL}^{exp} + \Delta d_{HKL}^{exp}$ ord, $Dexp(3,t) = d_{HKL}^{exp}$ ordenado, $Dexp(6,t) = d_{HKL}^{exp}$ ord,

Peso para calcular los parámetros de red: Peso(100): Peso(i)= $1/\Delta Sen^2(\theta_{\mu Kl}^{exp})$ normalizado.

Valor Q experimental:	Q(10,100);
$Q(1,i) = Q_{HKL}^{exp}$	$Q(6,i) = Q_{HKL}^{exp}$ ordenado,
$Q(2,t) = Q_{HKL}^{exp,max}$	$Q(7,i) = Q_{HKL}^{exp,max}$ ordenado,
$Q(3,i) = Q_{HKL}^{exp,min}$	$Q(8,t) = Q_{HKL}^{exp,min}$ ordenado,
$Q(4,i) = \Delta^* Q_{HKL}^{exp}$,	$Q(9,i) = \Delta^{\dagger} Q_{HKL}^{exp}$ ordenado,
$Q(5,i) = \Delta^{C}Q_{HKI}^{exp}$,	$Q(10,i) = \Delta^{Q} Q_{HKL}^{exp}$ ordenado.

Valor Q calculado,

con la primera triada de indices optativos: Qcl(4,100): $Qcl(1,t) = Q_{HKL}^{calc}$ $Qcl(3,i) = Q_{HKL}^{calc,min}$ $Qcl(2,l) = Q_{HKL}^{calc,max}$ $Qcl(4,t) = \Delta Q_{HKL}^{calc}$ con la segunda triada de indices optativos: Qclu(4,100): Qclu(3, i)= Q. $Qclu(1, l) = Q_{HKLu}^{calc}$ $Qclu(2,i) = Q_{HKlu}^{calc,max}$ $Qclu(4,i) = \Delta Q_{HKim}^{calc}$ con la tercera triada de indices optativos: Qclv(4,100): Qclv(1,i)= Q^{catc}_{HKLv}, Qclv(3,i)= Q^{caic,min} $Qclv(2,i) = Q_{HRLv}^{catc,max}$ $Qciv(4,l) = \Delta Q_{HKlw}^{calc}$

Distancia interplanar calculada,

con la primera triada de indices optativos: Dcl(4,100): $Dcl(1,t) = D^{catc}$ $Dcl(3,i)=D^{calc,min}$ 'HKL ' HKL Del(2,t)= D^{cale,max} $Dcl(4, i) = \Delta D^{calc}$ нкі. * con la segunda triada de indices optativos: Dclu(4,100): Delu(1,t)= D^{cate} Delu(3,1)= D^{cale,min} 'нкш' BKLU Delu(2,1)= D^{calc,max} $Dclu(4,t) = \Delta D^{catc}$ 'нкш` con la tercera triada de indices optativos: Dciv(4,100); Delv(3,1)= D^{calc,min} Delv(1,t)= D. нкы HKLU Dclv(2,i)= D^{cale,max} $Dclv(4,i) = \Delta D^{calc}$ ้หหม่ HKLV

Indices HKL y valores Q^{calc}; I(7,1880); I(1,*l*)= H, I(2,*l*)= K, I(3,*l*)= L, I(4,*l*)= H²+K²+L², (sólo para el sistema cúbico),

Diferencia entre $d_{HKL}^{exp} y d_{KLL}^{calc}$; Difdv(4,100); Difdv(1,*t*)= $d_{HKL}^{exp} - d_{HKLL}^{calc}$; Difdv(1,*t*)= $d_{HKL}^{exp} - d_{HKLL}^{calc}$; Difdv(4,*t*)= $\Delta(d_{HKL}^{exp} - d_{KLL}^{calc})$; Difdv(3,*t*)= $d_{HKL}^{exp,min} - d_{HKL}^{calc,max}$.

Diferencia entre $d_{HKL}^{exp} y d_{HKLu}^{calc}$. Difqu(4,100): Difdu(1,t)= $d_{HKL}^{exp} - d_{HKLu}^{calc}$. Difdu(2,t)= $d_{HKL}^{exp,max} - d_{HKLu}^{calc,min}$. Difdu(4,t)= $\Delta (d_{HKL}^{exp} - d_{HKLu}^{calc})$.

Diferencia entre $d_{HKL}^{exp} \neq d_{HKL}^{ealc}$: Difd(4,100): Difd(1,t)= $d_{HKL}^{exp} = d_{HKL}^{calc}$, Difd(2,t)= $d_{HKL}^{exp,max} - d_{HKL}^{calc,min}$, Difd(4,t)= $\Delta(d_{HKL}^{exp} - d_{HKL}^{calc})$, Difd(3,t)= $d_{HKL}^{exp,min} - d_{HKL}^{calc,max}$.

 $\begin{array}{l} \text{Diferencia entre } Q_{HKL}^{exp} \ y \ Q_{HKL}^{ealc}. \ \text{Difqv}(4,100): \\ \text{Difqv}(1,t) = \ Q_{HKL}^{exp} - \ Q_{HKL\nu}^{calc}. \ \text{Difqv}(2,t) = \ Q_{HKL}^{exp,max} - \ Q_{HKL\nu}^{calc,min} \\ \text{Difqv}(4,t) = \ \Delta(Q_{HKL}^{exp} - Q_{HKL\nu}^{calc}). \ \text{Difqv}(3,t) = \ Q_{HKL\nu}^{exp,min} - \ Q_{HKL\nu}^{calc,max}. \end{array}$

Diferencia entre Q_{HKL}^{exp} y Q_{HKLi}^{calc} ; Difqu(4,100); Difqu(1,*t*)= $Q_{HKL}^{exp} - Q_{HKLii}^{calc}$; Difqu(2,*t*)= $Q_{HKL}^{exp,mdx} - Q_{HKLi}^{calc,mln}$ Difqu(4,*t*)= $\Delta(Q_{HKL}^{exp}-Q_{HKLii}^{calc})$, Difqu(3,*t*)= $Q_{HKLi}^{exp,mln} - Q_{HKLii}^{calc,mln}$

 $\begin{array}{l} \text{Diferencia entre } \mathsf{Q}_{HRL}^{exp} \; y \; \mathsf{Q}_{HRL}^{ealc} \; \; \text{Difq}(4,100); \\ \text{Difq}(1,l) = \; \mathsf{Q}_{HRL}^{exp} \; \mathsf{Q}_{HRL}^{ealc} \; \; \text{Difq}(2,l) = \; \mathsf{Q}_{HRL}^{exp,max} \; - \; \mathsf{Q}_{HRL}^{calc,min} \\ \text{Difq}(4,l) = \; \mathsf{\Delta}(\mathsf{Q}_{HRL}^{exp} \; \mathsf{Q}_{HRL}^{calc}), \; \; \text{Difq}(3,l) = \; \mathsf{Q}_{HRL}^{exp,min} \; - \; \mathsf{Q}_{HRL}^{calc,max}. \end{array}$

$$I(5,t) = \begin{cases} (H^{2} + K^{2} + L^{2})a_{ob}^{*2} + L^{2}c_{ob}^{*2}, & cubico, \\ (H^{2} + K^{2})a_{ob}^{*2} + L^{2}c_{ob}^{*2}, & tetragonal, \\ (H^{2} + HK + K^{2})a_{ob}^{*2} + L^{2}c_{ob}^{*2}, & hexagonal, \\ H^{2}a_{ob}^{*2} + K^{2}b_{ob}^{*2} + L^{2}c_{ob}^{*2}, & ortorrombico. \end{cases}$$

$$I(6,t) = \begin{cases} (H^{2} + K^{2} + L^{2})a_{ob}^{*2}(max) + L^{2}c_{ob}^{*2}(max), & tetragonal, \\ (H^{2} + K^{2})a_{ob}^{*2}(max) + L^{2}c_{ob}^{*2}(max), & tetragonal, \\ (H^{2} + K^{2})a_{ob}^{*2}(max) + L^{2}c_{ob}^{*2}(max), & hexagonal, \\ (H^{2} + HK + K^{2})a_{ob}^{*2}(max) + L^{2}c_{ob}^{*2}(max), & ortorrombico. \end{cases}$$

$$I(7,t) = \begin{cases} (H^{2} + K^{2} + L^{2})a_{ob}^{*2}(min) + L^{2}c_{ob}^{*2}(max), & tetragonal, \\ (H^{2} + K^{2})a_{ob}^{*2}(min) + L^{2}c_{ob}^{*2}(max), & ortorrombico. \end{cases}$$

$$I(7,t) = \begin{cases} (H^{2} + K^{2} + L^{2})a_{ob}^{*2}(min) + L^{2}c_{ob}^{*2}(min), & tetragonal, \\ (H^{2} + K^{2})a_{ob}^{*2}(min) + L^{2}c_{ob}^{*2}(min), & hexagonal, \\ (H^{2} + K^{2})a_{ob}^{*2}(min) + L^{2}c_{ob}^{*2}(min), & ortorrombico. \end{cases}$$

En los sistemas tetragonal y hexagonal: Y(3,70) y R(11): Y(1,t)= H, Y(2,t)=K, R(1)=L. Y(3,t)=H² + K², (tetragonal), H² + HK + K², (hexagonal).

En el caso de que Ruiprin=2, Indices de cada línea: primera opción de índices: Inx(3,100), segunda opción de índices: Inxu(3,100), tercera opción de índices: Inxu(3,100).

Función Nelson-Riley: Funr(2,100), Función deita: Fund(2,100), Función Nelson-Riley normalizada: Funrn(2,100), Función deita normalizada: Fundn(2,100). Valores de los parámetros de red para encontrar los valores máximo y mínimo: Ao(2,100), Bo(2,100) y Co(2,100).

Número de opciones de triadas de indices de cada línea: Nop(100).

Número de opciones de triadas de indices en cada combinación de indexaciones para cada línea: Nopi(100).

Número de renglón de las líneas que tlenen más de una opción de triadas de indices: Yi(100).

Número de opción en el cálculo de parametros de red para cada combinación de indexaciones: Ordi(190),

Índicos HKL para determinar la red de Braveis: B(3,100). Red de Bravals para cada combinación de indexaciones: Red\$(100).

Número de rengión de la matriz I, que identifica la triada de indices con la que se cumplió la desigualdad (16) del capítulo V, para las tres opciones: Nhkl(3,100).

Número de triada de índices que se permuta en las combinaciones de indexaciones: Nhklu(100).

Número de triada de indices para cada linea para cada 7 combinaciones de indexaciones: lhklc(100,100).

Número de triada de indices para cada combinación de indexación: Nhkil(3,100).

Valor del parámetro de red para el sistema cubico calculado con la primera opción de (ndices: Acon(2,100), con la segunda opción de indices: Acon(2,100), con la tercera opción de indices: Acon(2,100). Coeficientes del sistema de ecuaciones para calcular los parámetros de red base: M(4,4).

Términos constantes del sistema de ecuaciones: S(5,2).

Mitad de los coeficientes del sistema de ecuaciones para calcular los parámetros de red: C(6,6).

Coeficientes del sistema de ecuaciones para calcular los parámetros de red: F(5,5).

Menores de los sistemas de ecuaciones: K(4,4).

Coeficientes del sistema de ecuaciones para la subrutina de cálculo de determinante y solución del sistema de ecuaciones: D(6,6).

Solución del sistema de ecuaciones: X(5,1).

vi) Diagrama de flujo:

El programa INXPAR se divide en 5 ramas principales:

I. Introducción de parámetros y datos.

II. Cálculo de ángulos de Bragg, distancias interplanares y valores Q experimentales.

III. Indexación del patrón de difracción.

IV. Cálculo de parámetros de red por el método de Cohen.

V. Determinación de la red de Bravais.

Todas las subrutinas necesarias son internas al programa. A continuación se muestra el diagrama de flujo de cada una de las ramas mencionadas con sus subrutinas. El proceso de indexación de los sistemas tetragonal, hexagonal y ortorrómbico son similares por lo que sólo se muestra el diagrama de flujo para los sistemas tetragonal y hexagonal.

Diagrama de Flujo de INXPAR

Rama I.a

Introducción de parámetros y datos.

Subrutina 18000

Creación de archivo de parámetros de entrada.

Subrutina 18400

Creación de archivo de datos.

Subrutina Ord

... significa que de igual manera se ordenan: Q(7, i), Q(8, i), Q(9, i), Q(10, i), Dexp(3, i), Dexp(4, i), Th(1, i), Th(2, i), Th(3, i), Th(4, i), Sth(3, i), Sth(4, i), Sth(5, i), Sth(6, i), Peso(i), Npic(2, i), Funr(1, i), Funr(2, i), Fund(1, i), Fund(2, i), Funrn(1, i), Funrn(2, i), Fundn(1, i), Fundn(2, i), y si Rulprin=2, también se ordenan: Inx(1, i), Inx(2, i), Inx(3, i), Inxu(1, i), Inxu(2, i), Inxu(3, i), Inxv(1, i), Inxv(2, i), Inxv(3, i) y Nop(i).

Rama III Proceso de Indexación Sistema Cúbico

Subrutina de Indexación.

Rama III

Proceso de Indexación

.

Rama IV

Cálculo de parámetros de red por el método de Cohen.

.

Rama V

Subrutina para determinar la red de Bravais.

vil) Archivo de salida.

El programa INXPAR crea un archivo de salida que contiene los parámetros y datos de entrada, así como los resultados dei programa. A contunuación se da una lista del contenido de este archivo en el orden que aparecen estos datos.

- El nombre del programa, los nombres de los archivos de parámetros y datos de entrada utilizados para correr el programa, y el nombre del archivo mismo.
- Las condiciones experimentales leidas del archivo de parámetros de entrada: Cámara utilizada, radiación del tubo de rayos X y número de equisgrafía de Debije-Scherrer.
- la Tabla I, Longitudes de onda utilizadas, que contiene la longitudes de onda de las componentes de la radiación utilizada, K_{α} (K alfa-p), $K\alpha_1$ (K alfa-1), $K\alpha_2$ (K alfa-2) y K_{β} (K beta). Su incertidumbre, y el número de líneas medidas con cada una de ellas. Al final de esta tabla se especifica la longitud de onda usada para normalizar las longitudes de arco experimentales.
- La Tabla II, dividida en cuatro seciones para las líneas medidas con cada una de las longitudes de onda. La tabla contiene el número de línea en película y las longitudes de arco experimentales (Sexp ± &Sexp), leidos del archivo de de entrada. ángulos datos Los de Bragg, (Theta ± &Theta) calculados de las longitudes de arco experimentales У las distancias interplanares (dexp ± &dexp) calculadas a partir del ángulo de Bragg experimental.
- La Tabla III, Funciones calculadas a partir de Sen(Theta), muestra los valores de los sen²0 normalizados y no normalizados, y los valores de Q experimentales (Qexp ± &Qexp) ordenados de menor a mayor.
- Parámetros de entrada que especifican: el sistema cristalino a probar; la opción de la rutina principal utilizada; la opción de introducir líneas experimentales como líneas base, y en su caso las líneas y los índices

introducidos; el número máximo (Nt) de líneas toleradas sin identificar; el valor más alto (Imax) de los índices por asignar, y los números en película de las líneas experimentales que se utilizaron como líneas base. En caso de que Ruiprín**\$=**"Par" únicamente se especifica el sistema cristalino.

- Las Tablas IV y V, que muestran los índices asignados a cada una de las líneas experimentales. En la tabla IV aparecen los valores de Qcalc ± &Qcalc, calculados con los índices optativos y parámetros recíprocos base, y las diferencias entre las Qexp y las Qcalc, Qe-Qc ± &Qe-Qc. En la Tabla V aparece lo mismo pero con distancias interplanares. Si Ruiprin\$="Par" estas tablas co omiten.
- Las Tablas VI y VI', en las que aparecen los valores utilizados en el cálculo de parámetros de red. Estos son, los valores de la función de Nelson Riley y función delta, los pesos utilizados en el mètodo de Cohen, y, si el sistema es cúbico, los valores de los parámetros de red calculados con cada uno de los índices optativos. En la Tabla VI se calculan valores de las funciones normalizadas, y en la Tabla VI', no normalizadas.
- El número de combinaciones diferentes de indexaciones, y la opción de calcular los parámetros de red de UNA, SIETE o TODAS las combinaciones.
- Finalmente, la Tabla VII, donde se muestran los parámetros de red y la red de Bravais encontrados con cada una de las combinaciones de indexaciones.

CAPITULO VIII APLICACION DE LAS METODOLOGIAS DESARROLLADAS A SUSTANCIAS CRISTALINA CONOCIDAS

1.- Objetivos.

Durante el desarrollo de las metodologías de *indexación de* patrones de difracción de Deblje-Scherrer y ediculo exacto y preciso de pardmetros de red, se utilizaron medidas experimentales de sustancias cristalinas conocidas, ya que, tanto las indexaciones como los valores de los parámetros de red aparecen reportados en las tarjetas del JCPDS. Comparando tales valores es posible evaluarlas.

El objetivo de este capítulo es mostrar los alcances de estas metodologías por medio de la aplicación de los programas ALAEP e INXPAR a las medidas experimentales. Adeinás de ser ejemplo de como utilizar ambos programas.

El programa ALAEP, que calcula medidas experimentales libres de algunos errores sistemáticos, se utiliza en general para todos los sistemas cristalinos, sin embargo el programa INXPAR, que tanto indexa patrones de difracción como calcula parámetros de red, tiene sólo la opción de usarse para cuatro, Debe hacerse la aclaración de que tanto la metodología de indexación como la de cálculo de parámetros de red son iguales para estos cuatro sistemas cristalinos pero que se divide el programa INXPAR debido a que las simetrías de cada uno de los sistemas da lugar a relaciones entre parámetros de red. índices de reflexión y distancias interplanares diferentes, lo que conduce a calcular parâmetros de red con diferentes fórmulas para cada uno de ellos. Conforme las simetrías de los sistemas cristalinos decrecen las ecuaciones se vuelven más complejas y el mismo principio de la metodología de indexación, de ensayo y error, requiere tiempos largos de CPU lo que vuelve difícil su aplicación. No sucede lo mismo en la metodologia de cálculo de parámetros de red, pero no se anlica para los sistemas monoclínico y triclínico.

De esta manera, para eraluar en general las metodologías, se trabajó principalmente con el sistema cúbico utilizando como muestra experimental el NaCl, que es bién conocido, y después, con medidas experimentales adecuadas, se probaron cada uno de los sistemas cristalinos restantes para evaluar el programa INOPAR completo.

A continuación se describe la aplicación completa de las metodologías a cada una de las sustancias cristalinas y se muestran los resultados obtenidos por los programas computationales.

Los pasos a seguir en la aplicación para cada uno de los sistemas cristalinos son los siguientes:

- a) Utilizar el método de Debije-Scherrer, tal como se describió en el capitulo iV, para obtener una equisgrafía de alta calidad.
- b) Medir las separaciones entre arcos e introducir estas medidas en el programa ALAEP usando la opción de corregir las fuentes de error que según convengan.
- c) Utilizar el programa INNPAR para indexar el patrón de difracción, a partir de las separaciones entre arco corregidas, obtenidas por ALAEP.
- d) Utilizar este mismo programa para calcular los parámetros de red con alta precisión y exactitud.
- e) Comparar los resultados con los valores reportados en (as tarjetas del JCPOS hasta donde sea posible de acuerdo a la precisión y exactitud alcanzadas.

2.- Muestras cristalinas utilizadas.

Las sustancias cristalinas utilizadas, así como los sistemas cristalinos a los que pertenecen y el número de tarjeta del JCPDS con las que se identificaron, se enuncian a continuación. La razón por la que se escojieron estas sustancias, fue porque se contaba con ellas en el laboratorio, o porque era de inetrês su análisis para otros proyectos.

Fórmula química	Nombre químico	Nombre mineral	Sistema cristal ino	Tarjeta JCPDS
NaCl	Cloruro de sodio	Halita	Cúbi c o	5-0628
TIO	Oxido de titanio	Rutilo	Tetragonal	21-1276
SrCi, ·6h,0	Cloruro de estroncio			
• •	hidratado		Hexagonal	6-0073
с	Carbón	Grafito	Hexagonal	23-0064 ¹
s	Azufre		Ortorrómbico	8-0247

3.- Resultados de la aplicación de ALAEP e INXPAR.

A continuación se expone de manera concisa las características más relevantes al aplicar las metodologías desarrolladas en el presente trabajo, a las sustancias cristalinas mencionadas.

i) Sistema cúbico.

La muestra del NaCl se preparó por el método del capilar. El tiempo de exposición a los rayos X para obtener su equisgrafía fue de 12 horas en cámara grande. Se utilizó radiación debida al Cobre sin filtrar. Se obtuvo un patrón claro con 38 líneas observadas. La película se identificó con el número DS-513, Para correr el programa ALAEP se creó el archivo de parámetros de entrada, llamado AlaepNaCl.Par, con las siguientes opciones: corregir por los errores de divergencia axial más tamaño de radio. muestra v excentricidad: introducir como medidas experimentales los centros de las lineas; tomar come incertidumbre la resolución del vernier (.025 mm) más la desviación estándar.

Enseguida de los resultados de ALAEP se muestran el archivo de parámetros de entrada para INXPAR. Las opciones utilizadas fueron indexar el patrón de difracción y calcular los parámetros de red, normalizar a la longitud de onda K_{β} , no dejar ninguna línea sin indexar, y tomar 6 como valor máximo de los índices por asignar. Los resultados se muestran en el archivo de salida llamado InxparNaCl.Sal.

Archivo de parámetros de ALAEP para el NaCi.

AlaepNaCl.Par

```
Excentricided
Cen
R+Sigma
G
.025
513
1.5..03
1..012
8.4..5
49.8..5
132.2
- 14896..01146
```

El archivo de datos de entrada no se muestra ya que los mismos datos se encuentran en la tabla i del archivo de datos de salida. Este último se muestra a continuación.

> Archivo de Salida de ALAEP del NaCl. AlaepNaCl.Sal

CALIBRACION DE LONGITUDES DE ARCO PARA EQUISORAFIAS DE POLVOS

Nombre del Archivo de parametros de entrada: AlaepNaCl.Par Nombre del Archivo de datos de entrada: AlaepNaCl.Dat Nombre de este Archivo: AlaepNaCl.Sal

Nu	n	de Ja	Nun	de ida		Cent	ro		Cen Izqu	tro iero	! ! o !	And	ho	de!	Sep. No 7	arac	101	1	Centre	o Ha misi	z!	Cen Ret	tro	Haz
! en	p	ē1	d/c	ada	C	d +-	- R/	2!	Ci +	- R/	12	A	+	R !	Sn	f +-	R	1	Ct +	- R/	2 !	Cr	+-	R/2
	·	1	par	e ja	!	(៣/	•)	!	(m	m)	. !		(mm)	1		(114	•	4	0	(ma	!		(ma	1)
	ι.	4	!	1	!	113.	600		64	. 200	5 !		150) !	4	9.40	0	1	88	900				
1	ι.	4	!	2		113.	600	1	64	. 200) !		150) !	4	9.40	00	. !	68.	900	- 1			
! :	ι.	4	!	3	1	113.	575	1	64	. 200) !		150) !	4	9. 37	5	1	68.	887	1			
	i.	4 (!	4		113.	575	1	64	. 200	5 1		150) !	4	9. 37	5	1	68	887	- 1			
	ι.	4 1		5		113.	600	1	64	. 200			150) !	4	9. 40	ю	Į	88.	900	. 1			
1	ι.	4		6		113.	600	- t	64	. 200	5 i		150). I	4	9.40	0		88.	900	. 1			
	È	1	1	1		116.	300	÷	61	. 500	5 1		150) !	5	4.80	0	- i	88.	900	1			
	È.			2		116.	325	1	61	. 52:	5 !		150) !	5	4. 80	00	1	88.	925	. 1			
	L	5		з		116.	325	1	61	. 52:	5 1		150) !	5	4, 80	00	. !	88.	925	<u> </u>			
1	Ľ		!	4	:	116.	325	. !	61	. 500	5 !		150) !	5	4. 84	25		88.	912				
: 1	t	1	!	5		116.	300	- 1	61	. 525	5 !		150) !	5	4. 77	5	- 1	68	913	1			
	1		1	6		116.	325		61	525	5 1		150	i i	5	4 80	0		88	925	. i			

TABLA I Medidas de la Fase de interes.

Continuación de la Tabla I del archivo AlaepNaCl.Sal

11111

ţ

ł

•	241	1		117 525 1	60 325 1	. 175		57. 200	,	88.925 !	
:	241	•	÷	117 525 1	40 325	175		57 200	÷.	88 925	
		-	÷	117 838 1	40 200 1	175		57 335	÷	88 012 1	
			÷	117. VEG /	40.228 1	174		57 200		88 035 1	
	2.	- 2	1	117. 525 :	60, 325 :	. 175		57.200		00,720 1	
	2.4	5		117. 525 :	60.325	. 1/5		57.200		88. 450 ;	
!	2.4 !	6	1	117, 525 !	60.300	. 175		57. 225		88.912	
!	2 !	1	1	120.700 !	57.175 !	. 300	1	63. 525		88, 938 !	
	2 !	2	1	120.675 !	57.175 !	. 300	1	63.500	4	88.925 !	
!	2 !	з	1	120. 675	57.150 !	. 300	!	63. 525		88.913 !	
	2 !	4	1	120.700 !	57.175 !	. 300		63. 525	1	88. 738 !	
	2 1	5	÷.	120.675 !	57.175 !	. 300		63. 500	1	88, 925 !	
	5 1	Ā	i.	120 675 1	57 175 1	300	÷.	63. 500	÷.	88.925 !	
	341	ī	i.	129 825 1	48 025 1	175	÷.	81.800	i.	88,925 1	
	7 4 1	- i	÷	120 025 1	49 050 1	175	i.	81 775	i.	88 938 4	
	3.4	-	5	120 075 1	40.050	175		01.775	÷	00.700 .	
	3.4		÷	100 000 1	40.000	178	÷	01 775	- 1	00.700 .	
	3.4	- 2	÷	127.000 1	40.020	175		01.775	- i -	00.910 1	
	3.4	3	1	127.823 :	48.030 :	. 173		01.775	1	80,730 :	
	3.4	4	1	129.825	48,050	. 1/5		81, 775		88, 936	
!	3 !	1		134.450 !	43.350	. 250		91.100	1	88. 900 ·	
ŧ.	3 !	2	1	134,450 !	43, 375 !	. 250		91.075		88.912 !	
:	3!	з	!	134, 425 !	43.350 !	250	!	91.075	1	86. 888 !	
ŧ.,	3!	4	ł.	134.450 !	43.375 !	. 250	1	91.075		88,912 !	
1	3 !	5	:	134.450 !	43.375 !	, 250	!	91.075	1	88,912 !	
	3 (6	!	134.450 !	43.375 !	. 250		91.075	1	88.912 !	
	5.4 !	1	1	139. 575 !	38, 250 !	. 150	1	101. 325		88.912 !	
	5 4 1	ē	ì.	139 600 1	38 225 1	150	i.	101.375	i	BB 913 J	
ī .	541	3	÷	139 600 1	38 250	150		101 350	÷	88 925 1	
	5 4 1	-	÷	139 600 1	39 250 1	150	÷	101 350		88 925 1	
	5 4 1		÷	138 400 1	30.250 1	150	÷	101.350		00.720 .	
			1	139,400 1	30,250 1	. 100	1	101.350		00.723 :	
	3.4	-	1	137.000 :	38.230 :	. 150		101.350	-	GG, 723 ;	
	1 1	-	1	142.023 :	34.700 1	. 150		107. 725		00.003 :	
	1. 1.	ž.	2	142.823 :	34.075 !	. 150	1	107.950		88.850	
	4	3	1	142.825	34,875	. 150	1	107.950		88.850	
	4 !	4		142.825 !	34.875 !	. 150		107.950	1	88.850 !	
!	4 !	5	1	142.825 !	34.875 !	. 150	1	107.950	1	88, 850 !	
•	4 1	- 6	1	142.825 !	34,875 !	. 150		107.950	1	88.850 ł	
	5.1 !	1	1	145.450 !	32.350 !	. 150	!	113.100	÷.	88.900 !	
•	5.1 1	2	ł.	145.475 !	32, 375 !	. 150		113.100	1	88.925 !	
	5.1 !	з	٩.	145.475 !	32.350 !	. 130		113.125		88.913 !	
!	5.1 !	4	ţ.	145.475 !	32.350 !	. 150		113.125		68,913 !	
!	5.1 !	5	1	145.475 !	32, 375 !	. 150		113.100	1	88, 925 !	
	5.1 1	6	1	145.475 !	32.350 !	. 150		113, 125	÷	88.913	
	5.2 1	1	÷	145.600	32,250 1	100	÷.	113 350	i.	88 925 1	
	5.2 !	2	÷.	145.625 1	32 275 1	100	÷	113 350	÷.	88 950	
i .	5 2 1	3		145 600	32 250 1	100		113 350	÷	89 925 1	
	5 2 1	4	÷	145 425 1	32 250 1	100	;	113 375		00.020 1	
	5 2 4	5	;	145 405 4	32 250 4	100		112 274	÷	00,708 :	
			÷	145 175	33 376 1	. 100	÷	110.070		00.700 ! DD 080 !	
	5.4.1	-	÷	140 100	32.2/3 1	. 100	1	113.350	1	88.950 !	
	0.4	4	1	148.100	27.000 S	153.	1	118.500	1	88.850	
	0.4	4	1	148,100 !	27.025	. 123	1	118, 475		88.863 i	
	0.4	3		148.125	29.625	. 125	1	118.500	1	88, 875 !	
	0.4	4	1	148.100	29.625	. 125		118. 475	1	88. B63 1	
	6.4 !	5		14B. 100 !	29.625 !	. 125	1	118.475	!	88.863 !	
	641			148 100 1	29 625 1	125		119 475	1	09 843 1	

Continuación de la Tabla I del archivo AlaepNaCI.Sal

,	411	1		155 225 1	22,600 1	. 125	4	132, 625		68.913	!!!
1		÷.	:	188 008 /	33 400 1	125		172 425		69 013	1 1
÷	0.1	<u>د</u>	1	133,223	22,000 .			100.680		00,700	i i
•	6.1 !	3	£.,	155, 225 1	22. 5/5	. 125	1	132,030	-	00.005	
1	6.1 !	4	!	155.250 !	22.600 !	. 125	- E - E	132,650		88. 923	
!	6.1 !	5	٩.	155.250 !	22.575 !	. 125	1	132,675	!	88, 912	
1	6.1 !	6	1	155, 225 !	22.600 !	. 125	- t	132.625	1	88.913	!. !
i.	6.21	1	•	155.400 !	22, 425 1	. 100		132.975		66, 912	!!!
ï	4 3 1	5	÷	155 400 1	22 425 1	100	i.	132.975	- ÷	88. 912	!!!
÷	4.5.1		÷	155 400 1	22 400 1	100	÷.	133,000		88.900	i
1	0.2		2	155.400 .	22.428.4			122 075		88 015	
3	0.4	2	1	135.400 :	22.423	. 100		132.773	1	00.712	: :
;	6.2 !			155.425 !	22.425	. 100		133,000		80.723	
!	6.2!	6		155,400 !	22.425	. 100		132, 975		88, 912	
ł	0.4 !	1	£.,	155.875 !	21.825 !	. 150		134.050	1	88. 850	!!!
ŗ	8.4 !	2	٤.	155.975 1	21.825 !	. 150	1	134, 150		68.900	!!!
1	8.4 !	3	٤.	155.975 !	21.800 !	. 150	!	134.175	÷.	88. 868	!!!
i		ē	i.	155 975 1	21.825 1	. 150		134.150		88, 900	!!!
÷		1	÷	154 000 1	21 825 /	150	i	134 175	i.	48 912	i i
1	0.41		1	155 075 1	21 925 1	150	÷.	174 150		68 900	i
÷	8.41	2	1	133.975 1	21.023:	. 150		140.000	-	00,700	
1	y 4	1		103. 375 1	14.3/5 :	. 150		147.000	1	00.075	
:	9.4 !	2	۰.	163. 375 !	14.400	. 150		148.975		88.887	
ł	9.4 !	3	:	163.375 !	14.400 !	. 150	1	148, 975		88.887	
!	9.4 !	4	1	163.375 !	14.400 !	. 150	1	148. 975	•	98. 6 87	!!!!
!	9.4 !	5	١.	163.375 !	14.400 !	. 150		148.973		88. 687	!!!
ŧ.	9.4 1	6	1	163.375 !	14.400 !	. 150	1	148.975		88, 887	!!
i.	811	1	i.	164 275 1	13.475 !	150		150.800		88. 875	! !
÷		-	÷	144 200 1	12 475 1	150	÷	150 825		88 888	i i
÷	0.1.	5	:	144 300 1	13 478 /	150	;	190 025		89 600	
1	0.1	-	1	164.300	10.470	. 150	1	150.025		00.000	
1	8.1	- 1	1	164,275 !	13.475	. 150		150.800		88.875	
	8.1 1	2		164.300	13.475	. 150		120, 852		88.888	
!	8.1 !	6	1	164.300 !	13.475 !	. 150	1	150, 825	!	88, 888	!!!
1	8.2 1	1	!	164. 525 !	13.300 !	. 125		151.225	1	88.912	!!!
ţ.	8.2 !	2	1	164.525 1	13.325 !	. 125	1	151.200		88. 925	!!
÷	8.2 1	3	i.	164.525 !	13.300 !	125	1	151.225	- i	68, 912	
i.	8 2 1	4	i.	164 500 1	13 300 1	125	;	151 200	÷	88 800	i i
÷	0.21	-	;	144 535 1	12 200 1		÷	151 225		00.017	: :
1	0.4		1	104. 323 :	10.000 1	. 125		101.220		00.712	
Ξ.	8.2	•	2	164. 525 1	13.300 !	. 123	1	151, 225	:	88.912	
1	9.1	1	÷.,	172.975	4.875	. 150		168, 100		88, 925	
!	9.1 !	2	۰.	173.000 !	4.850 !	. 150	1	168.150	!	88, 925	!!!
!	9.1 !	з	!	172.975 !	4.875 !	. 150		168, 100		88. 925	! !
٤	9.1 !	4	٩.	173,000 !	4.875 !	. 150	!	168, 125		88, 938	1 1
ŗ	9.1 !	5	۰.	172.975 !	4.850 !	. 150		168, 125		89, 913	!!!
ŧ.	9.1.1	6	£.,	172 975 4	4.875	150		168 100	i.	88 925	i i
i	0 7 1	ī	÷	172 250 1	4 4 3 5 1	125	-	140 435		00 070	; ;
÷			:	172 280 1	4 4 38 1	175		140 478	:	00.000	: ;
÷	7.8.1		1	173.200 :	4 (00)	. 125	1	100.023		66,736	
2	7. 4	3	2	173, 230 :	4. 600 :	. 125		108. 650		88, 725	
÷	9.2	4	÷.,	173, 250 !	4.625	. 125		168.625	!	88.938	!
	9.2 !	5		173.250 !	4.625 !	. 125		168, 625		88, 938	!!!
1	9.2 !	6	1	173,250 !	4.625 !	. 125		168, 625	1	68, 938	!!!
!	13.4 1	1	۰.	184.500 !	353. 425 !	. 125	1	168. 925			268.962
!	13.4 !	2	!	184.475 !	353. 425 1	. 125	1	168, 950	!		268.950
£	13.4 !	з	•	184, 475 1	353.400 !	. 125	1	168, 925	- i		268, 938
2	13.4	4	1	184,475	353. 425	125	i.	168.950			268.950
i.	13 4	ś	;	184 475	353 425 1	125	÷	148 950			200.700
÷	13 4 1	Ă	÷.	184 475	353 435 4	1.25		160 050			1 740 080 4

Continuación de la Tabla I del archivo AlaepNaCl.Sal

1	11.1 !	1 !	190.175 !	347, B50 !	. 150		157.675		1	269.	013	!
i.	11 1 1	2 1	190,150 1	347.850 1	. 150		157.700	1	!	267.	000	
		- ā i	190 150 1	347 BSO 1	150	÷.	157.700		1	267.	000	
:			190 150 1	347 850 1	150	÷.	157 700	- i -	i	269	000	÷
1		- 2 - 1	100.100 1	047.000 1			187 705		i	740	012	
1	11.1.1		170, 150 1	347.075	. 150	1	107.720	:		207.		- 1
	11,1 !	6 1	190.175 !	347.850 !	. 150	1	157.675		:	207.	013	- 1
1	11.2!	1 !	190.475 !	347, 550 !	. 125		137.075		:	269.	013	•
÷	11.2!	2 1	190.475 !	347, 550 ł	. 125		157.075		!	269.	013	!
	11.2 !	3 !	170.450 !	347. 525 !	. 125	. t	157.075		1	268.	987	
٠	11 2 1	4 1	170.450 !	347.550 !	. 125	1	157.100		!	269.	000	
÷			190 475 1	347 550 1	125	÷	157.075	÷.	i	269	013	÷.
÷			100 475 1	247 550 1	125	÷.	157 075	· ·	i	269	013	÷.
1			170.470 :	347.000 ·			154 000		i	740	075	÷
1	14. 4		191. 525 :	340, 323 :	. 173	1	134.000			200.	723	
	14.4 :	- X - 1	191. 550 :	346.325 !	. 1/5		134.775			200.	730	
!	14.4 !	3 1	191.550 !	346.330 !	. 175	1	154.800			268.	950	
!	14.4 !	4 !	191.350 !	346, 325 !	. 175		154.775		!	268.	938	
!	14.4 !	5 1	171.550 !	346.325 !	. 175	1	154.775	1	!	268,	738	:
1	14.4 1	6 !	191. 325 !	346.350 !	. 175		154. 825		!	268.	938	!
÷	12 1 1	1 1	196.800 !	341.200 !	. 150		144, 400	- ÷		269.	000	1
÷	12 1 1		196 774 1	741 200 1	150	÷	144 425	i.	i i	268	988	÷
1	10.1.1		194 000 1	341 175 1	150	÷	144 175	÷	i	940	097	÷
5	1		170.000 :	341.175 1	. 150		144.3/3		;	740	000	
	12.1	- 2 - 1	176.800 :	341.200 :	. 150	-	144.400			207.		-
:	12, 1 !		196.800 !	341.175 !	. 150	÷	144. 375			268.	487	
	12.1 !	6 !	196.775 !	341.200	. 150	!	144. 425		1	268.	788	!
!	13.1 !	1 !	199.050 !	338.975 !	. 150	!	139. 925	1	!	269,	013	1
!	13.1 !	2 !	199.075 !	339.000 !	. 150	1	139. 925	1	!	269.	038	!
	13.1 !	3 !	199.050 !	337.000 !	. 150	1	139, 950	1	!	267.	025	
÷	13 1 1	4	199.050 1	339.000 !	. 150	•	139, 950	1	1	269.	025	÷.
÷	12 1 1		199 075 1	239 000 1	150	;	130 025	-	i	249	038	÷
1	10.1		100.050.	337.000 ·		÷	130 080		i	340	000	- 2
1	13.1 :		177.030 :	337.000 :	. 150		139. 450	-		207.	025	-
•	13.2 !	1 1	199.475	338, 600	. 125		139, 125			207.	038	1
!	13.2 !	2 !	199,450	338, 600 !	. 125		139.150	-	1	267.	025	1
!	13.2 !	э !	199.450 !	338.600 !	. 125		139.150		!	269.	025	1
1	13.2!	4 1	199.450 !	338, 500 !	. 125	1	139.150	1	!	269.	025	
٤.	13.2 !	5 5	179.450 !	338, 625 !	. 125	!	139. 175		!	269.	038	1
1	13 2 1	6 !	199.450 !	338.600 !	. 125	1	137.150	ŧ	!	269.	025	t
÷.	14 1 1	1 1	208 450 1	329 625 1	123	÷.	121.175	- i -		269	033	-i
÷	14 1 1		209 475 1	229 400 1	125	i	121 125			DAC	038	
1			200.475	327,000 :	125	÷.	101 180	÷		240	050	- 1
1	14.1		208.473	327.023 :		1	121.100		:	207.		
1	14.1	- 2 - 1	208.450 1	347.043	. 125	1	121.1/5	- 1		207.	038	1
:	14.1 !	. s	208.450	329.600	. 125		121.150		!	269.	025	
•	14.1 !	6 !	208.450 !	329.625 !	. 125	1	121.175		!	269.	038	. !
!	14, 2 !	1 !	208.925 !	329.100	. 125	!	120.175		!	269.	013	1
:	14.2.1	2 !	208.925 !	329.125 !	. 125	!	120.200		!	269.	025	1
÷.	14.2 !	3 1	208, 925 !	329, 100 !	. 125		120, 175	1		269.	E10	÷
i.	14.21	4 1	208.950 !	329, 100 1	. 125	1	120, 150		,	269	025	÷
÷	14 2 1		208 025 1	729 100 1	125	;	120 175			740	017	÷
1	14 2 1	1	200.025	229 100 1	125	÷	120 175	- :		207.		1
1	44, 2	0	EUD. 763 !	327.100 1	. 123		120.170	1		207.	213	1
1	13.1 1	<u>+</u>	216.0/3 !	321.023	. 120	1	105.750			268	420	1
۰.	15.1 !	2 !	216.075	321.800	. 150		105.725		!	268.	738	ł
!	15,1 !	3!	216,075 !	321.800 !	. 150	!	105.725	!	!	268.	938	1
۰.	15.1 !	4 !	216.075 !	321.825 !	. 150	1	105.750		!	268.	950	1
•	15.1 !	5 !	216.050 !	321.800 !	. 150	!	105.750	t	!	268.	925	-t
•	15.1 !	6 !	216.050 !	321.800 !	. 150		105.750			26B	925	÷
i.	15 1 1	7	216.075 !	321.800 1	150		105.725	i	i	268	0.78	÷
						•		•				

Continuación de la Tabla I del archivo AlaepNaCl.Sal

	14 1 1	1 1	218 850 1	319 150 !	. 150	1	100.300		!	269.	000	!
	10.1		210.075	310 178 1	180	;	100 300	÷.	,	249	025	1
- 5	10.1	5	210,070 1	317.178		:	100 200	÷	i	249	025	1
1	16.1		218.875 :	319.173 :	. 130	:	100.300	1	;	760	025	i
1	16.1	- 1 - 1	218, 875 1	319, 175 :	. 150	-	100.300	1	;	949	023	
1	16.1 !	3 !	218,875 !	319, 175 1	. 150		100. 300	-		£07.	020	
ţ	16.1 !	6 !	218.875 1	319, 175 5	. 150		100.300			209.	025	1
1	16.2 !	1 1	219.450 !	319, 600 1	. 175	<u>ا</u>	99.150		:	269.	025	:
	16.2 !	2 !	219.475 !	318, 575 1	. 173	<u>۲</u>	99.100		;	269.	025	
÷	16.2 1	3 !	219.475 1	318, 575 1	. 175	t -	99.100	- ÷	1	269.	025	
-	16.2 1	A 1	219.475	318. 575 1	. 175	£	99, 100	1	1	269.	025	
- 1	16 2 1		219 475 1	318 575	. 175	t .	99.100	1	!	269.	025	1
- 1	14 3 1		210 478 1	319 575 4	175	÷.	99 (00	÷.	1	269	025	
-	00.4.1		222 000 1	314 075 1	178	÷.	90 275	i	i	269	938	t
1	20.4		223.800 :	314,075 3	178	÷ .	40.200	i	ì	248	050	÷
- 1	20.4 :	- <u>-</u>	223,800 :	314, 100 :		1	70. 000	:		- CLD	020	
1	20.4	3 1	223.800	314,075	. 1/5	1	90.275	1		208.	7.30	-
1	20.4 1	4 1	223, 800 1	314,075 !	. 175	1	90.275		:	205.	738	
!	20.4 1	5 1	223.800 !	314,075	. 175	1	90. 275			268.	A3B	-
	20.4 !	- 6 - 1	223.800 !	314.075 !	. 175	:	90. 275			268.	436	1
•	17.1 !	1 !	231, 175 !	306,800 !	. 200	١.,	75.625		!	268.	987	- 2
1	17.1 1	2 !	231.175 !	306, 775 !	. 200	1	75.600	1	;	268.	975	1
1	17.1 1	3 1	231.175 !	306, 800 !	. 200	<u>؛</u>	75.625	!	i	268.	987	!
÷	17.1 1	A 1	231.175 1	306. 775 1	. 200	1	75. 600	÷	!	269.	975	
÷	17.1 1	5 1	231, 150 1	306 800 1	200	i -	75.650			268.	975	1
1	17 1 1	ž i	221 175 1	206,000 1	200	;	75 425	÷,	i	268	497	ï
1	17.1		231 036 1	205 000 1	200	:	74 000		i i	740	025	÷
1	17.8		231,723 :	303, 783 :		1	74.000		;	940	0.00	:
1	17.2		231.723 (305, 430 3	. 223	1	74.020			ALD.	730	
1	17.2		231. 900 1	305.950 /	. 220	:	74.050	1		200.	TEO	1
1	17.2 1	4 1	231.925	305, 950	223	1	74.025	1	1	ZOU.	438	
1	17.2 !	5 1	231.925 !	305. 925 !	. 225	1	74,000	1		208.	925	
1	17.2 !	6 !	231.925 !	305, 950 !	. 225	ŧ	74. 025	1	! !	269.	936	1
1	18.1 !	1 !	243.400 !	294.550 !	250	ŧ	51.130	1	!	268.	975	1
!	18.1 !	2!	243.400 1	294, 550 1	. 250	!	51.150	1	1	268.	975	
1	18.1 !	3 !	243, 400 1	294. 550 !	. 250	1	51, 150	1	1	268.	975	
i.	18.1 1	4 1	243.375 !	294. 350 1	. 250	1	51.175	- 1	1	269.	962	5
÷	19 1 1	5 1	243 400 1	294 575 1	250	÷ .	51.175			268.	988	1
• 7	10 1 1	- 2 - 2	242 375 1	204 550 2	250	; i	51.175	÷.	i	248	962	÷
- 1	10.01		244 876 1	203 300 1	200	;	AD 475	÷		240	400	ì
	10.4	- 4 - 6	244.070 :	273,200 :		1	40.020		;	740	000	÷.
1	10.20		244.070 :	273.223 :	. 300	:	40.070			200.	700	1
1	10.2		244.600 1	273, 223 !	. 300	÷	40.623	1		#00.	413	1
1	19.2	4	244.600	243, 255	. 305		48.625			200.	413	1
	18.2 !	3 1	244. 375 !	253, 223 1	. 300	÷	48.650	1		268.	900	÷.
1	18.2 !	6 !	244. 575 1	273, 200 1	. 300	1	48. 623		1	269.	888	1
í	18.2 1	7 !	244. 575 !	293.225	. 300	ŧ.,	48. 650		t (268.	900	1
1	19.1 !	1 !	248.973 !	289.075 !	. 225	÷ .	40.100	1	:	269	025	
ļ	19.1 !	2!	248.975 1	289.075 !	. 225	1	40.100	- !	•	269.	025	
1	19.1 1	3 1	248.975 !	289, 100 1	. 225	1	40. 125	1	1	269.	038	1
1	19.1 1	4 1	246.950 !	289,075	. 225	1	40. 125	1	i	269.	013	÷
÷	19.1	5 1	248.975	289, 100	223	÷ .	40, 125		i	269	038	÷
÷	19.1	6 1	249. 950 4	289.075	225	1	40. 125	1	i	269	013	- 1
÷	19 2 1	- ĩi	250 575	287 350	275	í.	36 775	- î		240	942	i
÷	10 2 1	5.	250 600 1	207 37= /	974	i i	74 775	;	;	540	200	÷
	10 3	-	250.500 :	207 280	- 278	1	36.773	1		240	04.7	÷
1	10 0 1			207.330 :	. 2/3	1	30.773	-		200	104	-
1	17. 2	2 1	≥30,373 ;	207.330	. 2/3	:	30.773	-	1	201	702	:
1	19.2		200. 375	₹87, 350 5	. 275	1	36.775		1	268	495	1
	10 7 1	<u> </u>			7775		26 775		1	710		
Continuación del archivo AlaepNaCl.Sal

Ī	Num	de!	Centro Der.	1	Centro Izq.	Ī	Ancha de!	Separacion No !	Canti	ro Haz	ţ	Centro Haz!
٤.	pare	ijat	promedio	ţ	promedio	1	un arco !	func. promedio !	Tran	smision	۱!	Retroreflx!
ŧ.	en p	e1!	Cd +- R/2	ł.	Ci +- R/2	1	A +- R !	Sn# +- (R+&i) !	Ct -	+- 8/2	!	Cr +- R/2!
ŧ		. !	(mm)	1	(mm)	ļ	(mm) !	(mm)		(mm.)	ŗ	(mm) !
:												
1	1.	4 !	113. 592	ł	64. 2000	ļ	.170	49.3917 .0379	. 68.	8958	!	
!	1	. !	116.317	!	61.5167	1	120 1	54.8000 .0408	88.	9167	ļ	!
1	2.	4 !	117. 525	1	60. 3167	ļ	. 17± 1	57.2083 .0379	. 88.	9208	ł	!
!	2	!	120. 683	ł	57.1708	!	.305 !	63. 5125 . 0387	88.	. 9271	!	:
1	3.	4 !	129, 821	!	48. 0417	ł	. 175 - 1	81.7792 .0352	98.	9313	ţ	!
!	з	. !	134.446	!	43. 3657	ł	.250 !	91.0792 .0332!	89.	9063	1	!
1	Э.	4 !	137. 576	ł	38. 2458	ļ	.150 1	101.3500 .0408	88.	. 7208	!	!
£	4	. !	142, 525	ţ	34. 8792	ł	.156 !	107.9460 .0352	88.	8521	1	:
•	5.	1 !	145.471	ţ	32.3583	ł	.150 !	113.1130 .0387	99.	. 9146	1	!
ŧ.	5.	2 :	145, 517	ł	32. 2583	1	. 100 !	113.3580 .0379	88.	9375	ļ	!
!	6.	4 !	148.104	:	29.6208	ł	.127 !	118.4830 .0379	69.	. 8625	ł	!
1	6.	1 !	155. 233	ļ	22. 5917	1	. 125 !	132.6420 .0454	88.	. 9125	!	!
1	6.	2!	155.404	ţ	22. 4208	ł	. 100 !	132. 9830 . 0379	88.	9125	ł	!
۲.	8.	4 !	155.963	!	21.8208	1	. 150 !	134.1420 .0715	! 8 8 .	. B717	ł	!
ţ.	9.	4 !	163.375	ļ	14. 3958	ţ	.150 !	148. 9790 . 0352!	89.	8854	1	!
1	8.	1 !	164.292	٩	13.4750	1	.100 !	150.8170 .0379	98.	. 2233	ţ	!
!	8.	2 !	164, 521	ł	13.3042	ł	. 125 - 1	151.2170 .0379	99.	9125	1	!
ļ	9.	1 !	172, 983	!	4.8667	ł	. 126 - 1	16B. 1170 . 0454	88.	. 9250	!	!
1	9.	2 !	173.250	ł	4. 6208	ţ	, 123 - 1	168.6290 .0352	98.	9354	1	!
	13.	4 1	184. 479	1	353. 4210	1	. 125	168.9420 0379			ł	26B. 9500 !
	11.	1 !	190.159	1	347.8540	ł	. 150 !	157.6960 .0438	2		1	269.0060 !
£.,	11.	2 !	190.467	1	347. 5460	1	. 127 !	157.0790 .0352			1	269.0060 !
	14.	4 !	191.542	ł	346. 3330	ł	. 175	154.7920 .0454	!		1	268.9380 !
!	12.	1 !	196.792	1	341. 1920	1	. 150 !	144.4000 .0474			1	268.9920
1	13.	1 !	149,058	1	338. 9960	ł	120	139. 9380 . 0387			÷	269.0270
5	13.	2 !	199.454	Ł	338. 6040	1	. 125	139.1500 .0408			1	269.0290 !
1	14.	11	208, 458	1	329.6170	1	. 125	121.1580 .0454			÷	269.0380 !
:	14.	2 !	208. 929	5	329.1040	ł	127 1	120. 1750 . 0408			ł.	269.0170
1	15.	1 1	216.068	1	321, B070	1	.120	105.7390 .0384			ţ	268.9380 !
!	16.	1 !	218.871	ł	319. 1710	ł	.156	100.3000 .0250			1	269.0210
:	16.	21	219.471	1	318. 5790	ł	.173	99.1083 .0454			1	269.0250 !
1	20.	9 !	223.800	1	J14.0790	ł	.175 !	90. 2792 . 0352!			1	268.9400 !
:	17.	1 !	231.171	1	306. 7920	1	. 200	75.6208 .0438			1	268.9810 !
	17.	21	231. 921	1	305. 9420	ł	. 225 !	74.0208 .0438			Ł	268. 9310 !
	18.	1 !	243, 392	1	274. 5540	!	217 1	51.1625 .0387!			1	268.9730 !
	18.	2 !	244. 582	1	273.2160	1	. 300 1	48.6357 .0384!			Ł	268.9000
:	19.	1 !	248.967	1	287.0830	!	. 201	40. 1167 . 0379!			1	269.0250 !
:	14.	z !	230. 379	:	287. 3540	ł	.2.3	36.7750 .0250			ł	268.9670 !

TABLA II Medidas Promediadas.

Continuación del archivo AlaepNaCl.Sal

Semilongitud real de la pelicula (idealmente: 180 mm): L +- &L=(Cr +- &Cr)-(Ct +- &Ct) donde: &Cr=Signa de Cr prom. y &Ct=R/2+(Sigma de Ct prom.) =(268,984 +- .417039E-01) - (88,9076 +- .361349E-01) = 180.077 +- .778408E-01

```
Factor de correccion de radio:
Fr= 180 /(L +- &L) = .999574 +/- .432253E-03 / .431836E-03
```

Tabla III Correcciones por variaciones en el Radio efectivo de la camara.

! Num de !	Separaci	on No t	Separacion	No 1	Separacion	Funcional
! pareja §	Funcional	promedio !	Funcional c	orregida !	correg	ida
! en pel !	5nf +-	&Snf !	Srfr +-	&Snfr !	5r +	&Sr
! !	(m	Separation No Incional promedio Incional promedio Snf +- & Sanf (mm) 49.3917 .0379 54.8000 .0408 57.2063 .0379 63.5125 .0367 81.7792 .0352 91.0792 .0352 91.3500 .0408 07.9460 .0352 13.1130 .0367 13.3590 .0379 18.4830 .0379 32.4420 .0454 32.9830 .0379 34.1420 .0715 48.9790 .0352 50.8170 .0379		· ·	(mm)	
1.4 1	49. 3917	. 0379 !	49. 3705	. 0593 !	49. 3706	. 0593
!!		1		. 0592 !		. 0572
!!!	54.8000	. 0408 !	54. 7766	.0645 !	54. 7766	. 0645
t !		!		.0644 !		. 0644
2.4!	57. 2063	. 0379 !	57. 1839	. 0626 !	57. 1639	. 0626
!!!		!		.0626 !		. 0626
2	63. 5125	. 0387 !	63. 4B54	. 0661 !	63. 4854	. 3661
				. 0661 !		. 0661
3.4	81.7792	. 0352	81. 7443	. 0706 !	81.7443	. 0704
				.0705 !		. 0705
3	91.0792	.0352	71.0403	.0746 !	71.0403	. 0746
				.0745		. 0745
5.4	101.3500	.0408	101. 3070	.0846	101.3070	. 0846
				.0845		. 0845
	107. 9460	. 0352	107. 9000	.0819 !	107. 9000	. 0819
	117 1100	0007		.0818 :		. 0818
3.1	113.1130	. 0367 :	113.0640	.0878 !	113.0640	. 0876
	113 3500	0370 1	113 3100	.08/5 !	110 0100	. 08/5
	113.3360	. 03/7	113. 3100	.0867 :	113. 3100	. 0867
	110 4000	0370	110 4000	. 0666 :	110 4000	. 0868
	110. 1000		110.4330	.0871 :	110. 4330	. 0871
	132 6420	0454	122 5950	1079 1	122 5050	10071
			ICE. COOC	1026 1	104. 0000	1074
6.2	132, 9830	0379	132 9270	0954 1	132 9370	0054
				0953		0953
8,4 1	134, 1420	.0715	134.0840	1295	134.0640	1295
1				1294	10.100.0	1294
9.4 1	148. 9790	. 0352	148. 9160	.0996 !	148, 9160	0996
!!				. 0995 !	• • • • • • • • • •	0995
8.1 !	150. 8170	. 0379 !	150.7520	. 1031	150, 7520	1031
!!				. 1030 !		1030
0.2!	151.2170	. 0379 !	151.1520	. 1033 1	151, 1520	1033
· •		1		. 1032 !		. 1032
9.1 !	168. 1170	. 0454 1	168. 0450	.1181 !	168. 0450	. 1181
l †		!		. 1180 !		. 1180
9.2 !	168. 6290	. 0352 !	169. 3370	. 1081 !	168. 5570	. 1081
1				1000 1		1000

Continuación de la Tabla III del archivo AlaepNaCl.Sal

13.4 !	168. 9420	. 0379	168. 8700	. 1107 !	171. 1300	. 1109	1
•			l	.1108 !		. 1108	
11.1 !	157. 6960	. 0438	157.6290	.1120 !	202. 3710	. 1120	
. t			!	.1119 !		. 1119	
11.2 !	157.0790	. 0352	157.0120	. 1031 !	202, 9880	. 1031	
!			!	. 1030 !		. 1030	1
14.4 !	154.7920	. 0454	154.7260	.1123 !	205. 2740	. 1123	
· · · · · ·			!	.1122 !		. 1122	
12.1 !	144, 4000	. 0474	144. 3380	. 1098 !	215. 6620	. 1098	. J
!			!	. 1097 !		. 1097	1
13.1 !	139.9380	. 0387	137.8790	. 0992 !	220. 1220	. 0992	
1			1	.0991 !		. 0991	1
13.2 !	139, 1500	. 0408	139.0910	. 1010 !	220. 9090	. 1010	1
!			!	.1009 !		. 1007	1
14.1 !	121.1580	. 0454	121, 1070	.0978 !	238, 8930	. 0978	1
1			!	. 0977 !		. 0977	1
14.2 !	120. 1750	. 0408	120.1240	. 0928 !	239. 8760	. 0928	1
1				. 0927 !		. 0927	ł
15.1 !	105. 7390	. 0384	105, 6940	.0841 !	254. 3060	. 0841	
!			1	.0840 !		. 0840	
16.1 !	100. 3000	. 0250	100, 2570	.0684 !	259.7430	. 0684	
			!	. 0683 !		. 0683	
16.2 !	99. 1083	. 0454	97, 0661	. 0882 !	260. 9340	. 0682	
			1	. 0882 !		. 0882 .	
20.4 !	90. 2792	. 0352	90, 2407	. 0742 !	269.7590	. 0742	
			!	.0742 !		. 0742	
17.1 !	75.6208	. 0438	75 5884	.0765 !	284.4110	. 0765	
!			1	.0764 !		. 0764	
17.2 !	74. U20B	. 0438	73, 9893	.0758 !	286. 0110	. 0758	
!			!	.0758 !		. 0758	
18.1 !	51.1625	. 0387	91 1407	.0608 !	308.8570	8040	
1			!	. 0608 !		. 0608	
18.2 !	49. 6357	. 0384	9 48. 615C	.0594 !	311, 3950	. 0594	
!			!	.0593 !		. 0593	
17.1 !	40. 1167	. 0379	40, 0996	.0552 !	319. 9000	. 0552	
		1	• · · ·	.0552 !		. 0552	
19.2 !	36. 7750	. 0250	94. 7573	.0409 !	323. 2410	. 0409	
			!	.0409 !		. 0407	

Continuación del archivo AlaepNaCl.Sal

La ecuacion que espresa el factor de corrimiento, <2Epsilon>, por error de Divergencia Axial del haz y tamano de muestra, al angulo medido 2*Phi, es:

<2E>= (.00106804 +/- .00029367 / .00022677)*COT(2*Phi) + (.00585632 +/- .00178744 / .00135758)*COT(Phi)

Calculado con los valores (en mm) de los siguientes parametros:

Abertura de el Orificio 1 (2X1 +- &2X1): 1.5 +- .03 Abertura de el Orificio 2 (2X2 +- &2X2): 1 +- .012 Distancia de la muestra al Orificio 1 (Y1 +- &V1): 9.4 +- .5 Distancia de la muestra al Orificio 2 (Y2 +- &Y2): 49.8 +- .5 Distancia de la muestra al Andod (8 +- &8). 132 +- 2

Tabla IV Correcciones por Divergencia Axial y Tamano de Muestra.

Num de! pareja!	2 Theta exp. sin corregir	<2Epsilon> calculado	!	Delta Seap correspondiente	19	er corregi Div ax ta	da por! m mues!
en pelt	2Th +- 42Th	!	!	a <2Epsilon>	11	Srtda +- 8	Srtda !
	(grados)	(grados)	!	(mm)	ł	(mm)	
1.4 1	24, 6853 . 0296	0. 029087 . 008808	1	0. 058200 017656	;	49. 4288	. 0769
1 1	. 0296	. 006698	!	. 013420			.0726 !
1 !	27.3883 .0322	0.026096 .007902	1	0.052214 .015841	!	54. 828B	. 0803 !
I I	. 0322	. 006009	1	. 012041	!		.0765 !
2.4 !	28, 5920 . 0313	0.024942 .007553	٩.	0.049904 .015141	!	57. 2338	. 0778 !
! !	. 0313	. 005744	1	. 011509	!		. 0741 !
2 !	31,7427 .0331	9. 022324 . 006761	1	0.044668 .013554	!	63. 5301	. 0797 !
: !	. 0330	.005141	!	. 010302	!		.0764 !
9.4 !	40, 8721 . 0353	0.016951 .005136	!	0.033717 .010276	1	81.7782	.0809 !
: t	. 0352	. 003705	!	. 007826	1		. 0783 !
3!	45, 5202 . 0373	0.015008 .004549	!	0.030028 .009118	!	91.0704	. 0837 !
	. 0373	. 003459	1	. 006930	!		.0814 !
5.4 !	50,6534 .0423	0.012250 .004018	!	0.026511 .008054	!	101, 3330	.0927 !
	. 0423	. 003054	!	. 006120	1		.:0907 !
4 !	53, 9499 . 0409	0.012284 .003726	!	0. 024578 . 007468	!	107.9240	. 0893 !
	. 0409	. 002832	!	. 005675	1		.0875 !
5.1 !	56, 5321 . 0438	0.011598.003518	ł.	0.023206 .007053	!	113, 0870	. 0746 !
1 1	. 0438	. 002675	1	. 005360	!		. 0929 !
5.2!	56.6550 .0435	0.011567 .003509	1	0.023143 .007034	!	113, 3330	. 0737
	. 0434	. 002668	1	. 005345	!		.0922 !
6.4 !	57.2164 .0446	0.010942 .003320	1	0.021893 .006656	1	118, 4350	.0758 !
1 1	. 0445	. 002524	1	. 005058	!		. 0741 9
6.1 !	66, 2926 . 0514	0.009437 .002866	1	0.018882 .005745	!	132, 6040	. 1085 !
· · ·	. 0513	. 002178	:	. 004365			. 1070 1
6.2 !	66.4633 .0477	0.009404 .002856	1	0.018816 .005725	!	132, 9450	. 1011 !
	. 0477	.002171	!	. 004350	1		. 0997 1
8.4 !	67,0422 .0648	0.009293 .002823	!	0.018594 .005658	!	134, 1030	. 1352 !
	. 0647	. OC2146	1	. 004299	1		. 1337 1
9.4 1	74.4578 .0498	0. 00B004 . 002434	ł	0.016016 .004879	!	148. 9320	. 1045
!!	. 0478	. 001850		. 003706	1		. 1032

Continuación de la Tabla IV del archivo AlaepNaCI.Sal

!	8. 1	75. 3762	. 0516 !	0. 007859	. 002390 !	0.015725	. 004792	130.7680	. 1077 !
i		1	. 0515 !		. 001816 !		. 003640	!	. 1067 !
ł	8.2	75. 5761	. 0516 !	0,007828	. 002381 !	0.015662	. 004773	! 151.16BO	. 1080 !
į		1	. 0516 !		. 001809 !		. 003625	!	. 1068 !
!	9.1	84.0225	. 0570 !	0,006613	. 002015 !	0.013232	. 004039	168.0380	. 1221 !
ļ		!	. 0590 !		. 001531 !		. 003067	!	. 1210 !
ł	9. 2	84. 2786	. 0540 !	0. 006579	. 002005 !	0.013164	. 004017	168. 5700	. 1121 !
ţ		!	.0540 !		.001523 !		. 003052	!	. 1111 !
ļ	13.4	95. 5652	.0555 !	0.005209	. 001644 !	0.010423	. 003295	! 191.1410	. 1142 !
ţ	1	!	. 0554 !		. 001260 !		. 002525	!	. 1133 !
ţ	11.1	101.1860	. 0560 !	0.004600	. 001513 !	0.009205	. 003033	202.3810	. 1150 !
ţ	1	!	. 0559 !		.001173 !		. 002351	!	. 1142 !
ţ	11.2	101.4740	. 0516 !	0.004568	.001507 !	0.009140	. 003020	202.9970	. 1061 !
ļ		!	.0515 !		.001167 !		. 002342	!	. 1053 !
ţ	14.4	102. 6370	.0562 !	0.004447	.001482 !	0.008902	, 002970	205, 2830	. 1153 !
ļ	1	!	0561		. 001153 !		. 002309	!	. 1145 !
ţ	12.1	107.8310	.0549 !	0.003725	. 001376 !	0.007852	. 002757	215. 6690	. 1125 !
ţ			. 0549 !		. 001084 1		. 002171	!	. 1117 !
ł	13.1	110.0610	.0496 !	0.003796	. 001333 !	0.007415	. 002671	220, 1300	. 1017 !
ţ		!	.0495 !		.0(1057 !		. 002117	!	. 1012
ļ	13.2	110.4550	. 0505 !	0, 003668	. 001326 !	0.007339	. 002657	220. 9170	. 1036
!		!	. 0504 !		. 001052 !		. 002107		. 1030
ł	14.1	119.4470	.0489 !	0.002016	. 001172 !	0, 005634	. 002348	238, 8790	. 1001
!			. 0488 !		. 000958 !		. 001919	!	. 0996 !
1	14.2	114, 4380	.0464	0.002770		0.005543	. 002332	239.8820	. 0951 !
ł			. 0463 !		. 000954		. 001910		.0946 :
ł	15.1	127.1530	. 0420 :	0.002101	. 001080 !	0.004203	. 002124	254.3100	. 0862 :
1			.0420 :	0.001047	. 000897 :		. 001796		. 0858 :
i	10.1	127.0710	.0342 :	0.001847	. 001020 :	0.003643	. 002034	237.7460	. 0704 :
i	14 7	1120 4470	. 0341 :	0.001701	051019	0 003603	. 001/62		. 0/01
i	10. 4	130.4870	. 0441	0.001771		0.003363	.002037	200.7380	. 0703 :
i	20 4	134 0000	.0441 :	0 001340	. 0008/7 :	0 002740	. 001733	: 1 740 7470	. 0877 :
i	20. T	1 104. 0000	0371 1	0,001387	000954 1	0.002/40	001714	E 207.7020	N750 1
÷	17 1	142 2040	0383 1	0.000429	300904	0.001254	001714	-	0707 1
i			0382 1	0.000020	000843	0.001230	001697		0701 1
i	17.2	. 143. 0050	0379	0 000542	COOP49 1	0 001084	001800	. 286 0120	0776 1
i			0379	0.000042	- COB44 1	0 001004	001688	. 200.0120	0774
i	18.1	154 4300	0304	- 000903	000880 1	- 001807	001760		0674 1
i			0304		000922 1		001843	1 200.0000	0424 1
i	18.2	. 155. 6930	0297	~. 001103	000887	- 002208	001775	. 311 3830	0617 1
i			0297				001884	, 0111.0000	0612 1
i	19.1	159. 9500	0276	001891	000737	003784	001875	319.8970	. 0571
i		1	0276		. 001045 !		002088		0573
i	19.2	161. 6200	. 0205 !	002267	. 000972 !	004536	001943	. 323. 2340	0428
i		!	. 0204 1		. 001103 !		. 002205	!	. 0431
1								•	

Continuación del archivo AlaepNaCl.Sal

Factor de correrrion de excentricidad: Fem -. 14876 +- .01146

Table V Correcciones por Excentricidad de la muestra en la camara.

Th	lum da!	Sr corred	ida por !	Angulo d	A Bragg!	Factor	de !	Sf correg	ida por
10	ter ere	Div ax + t	en nues !	Calcu	ilado !	excentr:	icidad !	excentr	icidad !
14	n pull	Srtde +-	&Srtda !	Th +-	-&Th !	E +	&E !	5e +-	4Se 1
1		(mm)	•	(gra	dos) !	(154)) !	(mm)	
! -						****			
t -	1.4 !	47.4288	.0769 !	12. 3572	.0192 !	~. 062238	.0047 !	49, 3665	. 0816 !
<u>!</u>	1 !	54, 8288	.0803 !	13.7072	. 0201 !	~. 068594	.0052 !	54, 7603	. 0855 !
1	2.4 !	57, 2338	.077B !	14. 3085	. 0174 !	071354	. 0054 !	57.1625	. 0832
1	2 !	63. 5301	.0797 !	15, 8825	.0197 !	~. 078429	. 0060 !	63, 4517	. 0856 !
<u>ا</u>	3, 4 1	61.7782	.0809 !	20.4446	. 0202 !	~. 097522	.0074 !	81.6907	. 0883 1
!	3!	71.0704	.0837 !	22.7676	.0207 !	~. 106324	. 0081 !	90, 9640	. 0918
ŧ.,	5,41	101.3330	.0927 !	23. 3333	. 0232 !	~. 115232	.0088 !	101.2180	. 1015 1
!	4 !	107. 9240	. 0893 !	26. 9811	. 0223 1	~. 120470	. 0092 !	107.8040	. 0985
!	5.1 1	113.0870	.0746 !	28.2719	. 0237	~. 124295	.0095 !	112. 9630	. 1041
1	5.2 !	113. 3330	. 0939 !	28.3333	. 0235 !	~. 124471	.0095 !	113, 2090	. 1035 !
٩.	6.4 !	118.4550	.0758 !	29. 5137	. 0239 !	~. 128004	.0098	118. 3270	. 1056
!	6.1 !	132. 6040	. 1085 !	33. 1510	. 0271	~. 136418	.0104 !	132, 4680	. 1189
1	6.2!	132. 9450	. 1011 !	33, 2364	. 0253 !	~. 136595	.0105 !	132, 8090	. 1116
:	8,4 !	134. 1030	. 1352 !	33. 5258	. 0338 !	~. 137189	. 0105 !	133. 9640	. 1457
1	9.4 !	148, 9320	. 1045 !	37.2327	. 0261	~. 143538	. 0110 !	149, 7880	. 1155
£	9.1 !	150.7680	. 1079 !	37. 6920	.0270 !	~. 144159	. 0111 !	150. 6240	. 1190
<u>.</u>	8.2 !	151.1680	. 1080 !	37.7920	. 0270 !	~. 144289	. 0111 !	151.0240	. 1191
!	9.1 !	168.0500	. 1221 !	42.0146	. 0305 !	~, 148172	.0114 !	167. 9100	. 1335
£	9.2 1	168. 3700	. 1121 !	42.1426	. 0280 !	~. 148240	. 0114 !	168. 4220	1235
!	13.4 !	191, 1410	.1142 !	47.7852	. 0266	~. 148276	.0114 !	190. 9930	. 1256
	33, 1 !	202. 3810	. 1150 !	50. 5951	. 0298 !	~. 146148	. 0113 !	202.2340	. 1263
<u>!</u>	11,2 }	202. 9970	. 1061 !	50.7492	0265	~. 145990	. 0113 !	202. 8510	. 1174
<u>.</u>	14, 4 1	205.2830	1153 !	51. 3208	. 0289 !	145368	.0112	205. 1380	. 1265
1	12.1 !	215.6690	. 1125 !	53. 9174	. 0281 !	~. 141821	. 0110 !	215, 5280	, 1235
2	13,1 1	220. 1300	. 1019 !	55.0324	. 0255 !	~. 139938	.0108 !	217.9900	. 1127
£.,	13.2 !	220. 9170	1036	55. 2292	. 0259 !	~. 139583	. 0108 !	220. 7770	. 1144
<u>.</u>	14.1 (238.8990	1001	59. 7247	. 0250	~. 129730	. 0100 !	238.7690	. 1102
5	14, 2 !	237.6820	. 0951	59.9704	. 0238 !	~. 129097	. 0100 !	239.7530	. 1051
	19,1 !	254, 3100	. 0862 !	63. 5775	.0215	~. 119738	. 0092 !	254, 1910	. 0954
	16, 1 1	259.7460	. 0704 !	64. 9366	. 0176 !	~. 114337	. 0088 !	257.6320	. 0793
:	16.2 !	260.9380	. 0903 !	65. 2344	. 0226	~. 113338	. 0060 !	260, 8240	. 0791
1	20.4	269.7620	. 0762 !	67.4405	. 0190 !	~. 109563	. 0082. 1	267.6560	. 0844
:	17.1 1	284.4130	. 0783 !	71.1032	. 0196 !	~. 091298	. 0071 !	284. 3210	. 0834
:	17.2 !	286.0120	. 0/76 !	71. 5030	. 0194 !	~. 089646	. 0070 !	285, 9220	. 0846
1	18,1 1	308, 8580	. 0626 !	77.2144	. 0156	064305	. 0050	308.7930	.0676
:	18.2 !	311, 3030	. 0012 !	77.9457	. 0153 !	~. 061328	. 0048 !	311.3210	. 0660
:	19.1 1	314, 8970	. 0371 !	79.9742	. 0143	~. 051080	. 0040	319.8460	. 0611
:	14.5	323, 2360	0428 !	80.8040	.0107 !	~, 046981	. 0037 !	323, 1890	. 0465

Archivo de parámetros de INXPAR para el NaCl.

InxparNaCl.Par

```
Ind

G

Cu

513

K alfa-p, 4

K alfa-1, 13

K alfa-2, 11

K beta, 10

K beta

Cubico

N

3

0

6
```

El archivo de datos de entrada no se muestra ya que los mísmos datos se encuentran en la tabla II del archivo de datos de salida, ej cual se muestra a continuación.

Archivo de Salida de INXPAR del NaCl.

InxparNaCI.Sal

INDEXACION DE PATRONES DE DEBIJE-BCHERRER Y CALCULO DE PARAMETROS DE RED INXPAR

Nombre del Archivo de Parametros de Entrada: InsparNaCl.Par Nombre del Archivo de Datos de Entrada: InsparNaCl.Dat Numbre de este Archivo: InsparNaCl.Sal Cond. Esp.: Camara: G. Radiación: Cu. Equisorafía DB: 513

ļ	Radiacion Cu	!	Long. de Ond (Angstroms)	a 	Incertidumbr (Angstroms)	e! !	Numero de lineas medidas	1
ī	K alfa-p	!	1, 54178		. 00006	!	4	!
t	K alfa-1	!	1. 54051		. 00006	1	13	
ŧ	K alfa-2	!	1. 54433		. 00006	1	11	!
!	K beta	!	1. 39217		. 00006	!	10	!

TABLA I (Longitudes de Onda Utilizadas)

Long. Usada p/normalizar mediciones de las longs, de arco: K beta

Continuación del archivo InxparNaCi.Sal

TABLA IT

Promedios de las longitudes (Sexp) de arco (valores experim: introducidos), Angulos (Theta) de Bragg (calculados a partir de Sexp) y Distancias (dexp) Interplanares (calculadas a partir de Theta)

		-							
!Numero de!	Longitud de Arco	!	Angulo de Bragg	! Distancias Interplanares					
iparejā ent	Sexp +- &Sexp	1	Theta +- Θ	! dexp +- &dexp					
[pelicula !	(mm)	!	(grados)	! (Angstroms)					
!			Para K alfa p						
1 1	54.7603 .0855	1	13.6901 .021375	3. 2572 . 005387					
1 2 1	63.4517 .0H56		15,8627 .021400	2.8203 .004054					
	90.9640 .0913	į.	22.7410 022750	1. 9942 . 002153					
4 1	107.8040 .0985	1	26.7510 .024625	1,7007 .001649					
1			- Para K alfa 1.						
5.1 !	112.9630 . 1041	1	28, 2408 . 026025	1.6278 001579					
. 6.1 !	132.4680 .1169	i.	33, 1170 .029725	1.4098 .001276					
8.1 1	150.6240 .1190	É.	37. 4560 029750	1.2609 .001005					
9.1 !	167. 7100 . 1335	÷.	41.9775 .033375	1.1516 .000889					
11.1	202.2340 .1263	÷	50 5585 .031575	0.9974 .000576					
12.1	215.5280 .1235	į.	53.8820 .030875	0.9535 .000474					
13.1	219.9900 .1127	i.	54. 9975 . 028175	0. 7403 . 000441					
14.1	238.7690 .1102	į.	59.6923 .027550	0.8922 000362					
15.1	254.1910 .0954	÷	63. 5478 . 023850	0.8603 000286					
16.1	259. 6320 . 0793	i.	64. 9050 . 019825	0.8505 .000244					
17.1	284 3210 0854	i.	71 08 021350	0 8142 000204					
19.1	308 7930 0676	i	77 1993 014900	0 7899 000152					
191	319 8460 0611	÷	79 9415 015275	0 7822 000135					
		•	Pana M alfa 2	. 0.1022 .000100					
421	113 2090 1035	T	20 20-3 025975	1 4284 001548					
	132 8090 1114	÷	32 2023 027900						
	151 0240 1191	÷	37 7540 029775	1 74101 .001223					
	169 4220 1225	÷	47 1055 020975						
	202 8510 1124	÷	50 7129 029350						
1321	220 7770 1144	ì	55 19.12 029400	0.9404 000542					
14 2 1	239 7520 1051	÷.	50 0253 024075						
16.2	260 8240 0991	÷	A5 2040 024775						
1721	285 9220 0844	÷.	71 4905 021150						
19 2 1	311 3210 0440	÷	77 9907 014500						
10.2	323 1890 0445	÷	BO 7973 011425						
•	313.1370 .0405	•	Repark bots	. 0.782# .000123					
1 4 1	49 3445 0914	-	17 7414 020400	1 7 7547 005471					
2.4	57 1425 0832	÷	14 2906 020800	1 3,8307 003431					
3.4	81 6807 0883	÷	20 4200 022075	1 1 9951 003149					
8 4 1	101 2190 1015	÷	25 3045 025375	1 1 6205 001504					
641	119 3270 1054	÷	28 5810 024400	1 1 4:00 001304					
94	133 9660 1457	÷	33 4915 034435	. 1.7100 .001204					
941	149 7880 1155	÷	37 1970 1 029975						
134	190 9930 1254	ì.	47 7492 031400	· · · · · · · · · · · · · · · · · · ·					
14 4	205 1380 1245	÷	51 2010 031425						
20.4	269 6560 0844	ì.	A7 A110 001020	0.0721 .000433					
		•		. 0.7007 .000148					

Continuación del archivo InxparNaCl.Sal

	TABL	A 1	III		
[Funciones	calculadas	æ	partir	đ∎	Sen(theta)]

Numero d		CSeno (t	heta)]^2 !	(Seno (t	heta)]^2 !	Gerp +- &G	exp Ordenados	_
! pareja	1	No Nors	alizados !	Norma	lizados !	Gexp=4sen(Theta)^2/Lambda	~2
							000040800	
	1	. 036013	. 000172 :	043667	.000147 !	0.094204	. 000312530	
1.4	1	. 043683	. 000147 :	. 043683	. 000149 !	0.074286	. 000315234	- 1
2.	1	. 0/4/13	. 000197 :	. 050917	. 000170 !	0.123722	. 000362217	- 1
	1	. 060930	.000174 :	. 060730	. 000174 :	0.123730	. 000389534	- 1
	1	. 121/33	. 000252 :	121/33	. 000252 :	0. 201230	. 000341888	
3	1	. 147433	. 000288 :	. 121037	. 000233 :	0.231436	. 000343/14	
	-	204707	000377	107404	. 000311 ;	0.343660	.000374939	- 1
5.4	÷	107105	000347	105405	000343	0.377084	000729317	
	1	202007	000378	100094	000372 1	0.377034	000733078	
4.2	1	2099841	000446	243493	000403 1	0.577380	000074570	
	÷	243705	000796	343705	000794 1	0.502940	000860314	- 1
A 1	÷	200400	000475	343750	000428 1	0.502988	000924425	
A 4	÷	304499	000585	304498	000595	0 628434	001262020	- 1
8.2	÷	374911	000503 1	304472	000459	0 628794	001001300	
R 1	÷	373222	000502	304804	000460	0 629069	001004160	
9.1	÷	447345	000579	365341	000533	0 754004	001165330	
9.2	i.	449567	000536 !	345347	000476	0.754006	001088080	
9.4	÷	365490	.000485 !	365490	.000485	0 754311	001066860	- ;
11.2	÷.	. 599047	.000502 !	486816	. 000488 !	1.004710	001093510	i
11.1	÷.	. 596407	. 000541 !	. 487077	. 000522 !	1.005250	. 001163010	-
12. 1	1	. 632349	. 000513 !	. 532929	. 000006 !	1.099880	.001140000	
13. 2	!	. 674192	.000458 !	. 547883	. 000470 !	1.130740	. 001067520	
13.4	!	. 547693	.000546 '	. 547893	.000546 !	1.130760	. 001223330	- 1
13.1	1	. 670969	.000462 !	. 547971	. 000467 !	1.130920	. 901061800	!
14.1	1	. 745334	.000419 !	. 608704	. 000442 !	1. 256270	. 001020430	:
14.2	٤	. 749066	.000398 !	. 608730	. 000423 !	1.256320	. 000781212	
14. 4	٩.	803803.	.000539 !	. 606808	. 000539 !	1.256480	.001219870	!
15.1	1	. 801573	.000332 !	. 654634	. 000378 !	1. 351060	. 000897169	. 1
16. 2	!	. 824140	.000327 !	. 669730	.000377 !	1.382230	. 000878004	. 1
16. 1	!	. 820162	.000266 !	. 659813	.000327 !	1.382390	. 000793695	
17.2	!	. 897113	.000222 !	. 730665	.000300 !	1. 307970	. 000747746	:
17. 1	1	. 874866	.000228 !	. 730825	. 000306 !	1. 508300	. 000762105	!
18. 2	!	. 955560	.000117 !	. 776537	.000224 !	1.602650	. 000397861	. !
18. 1	1	. 950903	.000127 !	776390	. 000231 !	1.602760	. 000615597	!
19.2	1	. 974423	.000064 !	. 791846	.000182 !	1.634280	. 000515938	
19.1	1	. 969616	. 000091 !	. 791873	.000204 !	1.634300	. 000562668	!
20.4	1	. 852490	.000261 !	. 852470	.000261 !	1, 759400	. 000690579	. !

Continuación del archivo InxparNaCl.Sal

PARAMETROS DE ENTRADA:

Sistema a probar: Cubico

Opcion utilizada: 1.- Asignar Indices en una Equisgrafías de polvos y (opcional) a partir de ellos calcular los Parametros de Red.

El intento de indexacion NO se hara asignando las lineas experimentales con las que se empezaran a probar como lineas base y asignandoles indices especiales.

Numero maximo permitido (Lb) de asignaciones de valores diferentes de Gexp a cada una de las lineas base: 3

Numero (Nt) de lineas toleradas sin identificar: O

Valor (Imax) mas alto de los indices por asignar: 6

Numero de linea experimental que se prueba como Primera Linea Base: 1

Continuación del archivo InxparNaCl Sal

				ABLA	IV			
/alores	de	Gcalc	(calculados	con	indices	optativos	y par	ametros
Tecipro		i base)	, diferencia	s Ge	exp-Gcalo	: e Indices	; Opta	tivos

Ē	Numero	!	Qcalc +-	&Qcalc	1	Ge-Qc +	&Ge-Qc	1	Inc	lice	8 5	!
:	pareja	ł.	(Angstr	om\$^-2)	٩	(Angstr	oms^-2)	ł	н	к	ւ	1
ŧ,		_										_!
1	1	!	0.094254	. 000313	1	0.000000	. 000625	1	1	1	1	-
1	1.4	1	0,074254	000313	!	0.000032	. 000627	!	1	1	1	1
•	2	•	0.125672	. 000417	:	0.000050	. 000778	1	2	0	Q	- 1
1	2.4	!	0. 125672	. 000417	ł	0. 000078	. 000786	1	2	0	0	- 1
۲.	3.4	!	0.251345	. 000833	1	00010B	. 001374	!	2	- 2	0	1
٩.	3	!	0.251345	. 000833	1	0.000112	. 001376	1	2	- 2	0	1
1	4	1	0.345599	. 001146	ļ	0. 000061	. 001815	!	з	1	1	!
!	5. 2	Į.	0. 377017	. 001250	!	0, 000000	. 001975	۰.	2	2	2	;
!	5.4	1	0. 377017	. 001250	!	0.000037	. 001987	1	2	2	5	
i.	5.1	!	0. 377017	001250	!	0. 000363	. 001781	1	2	- 2	2	. !
ŧ.	6.2	1	0.502690	. 001667	!	0.000232	. 002539	!	- 4	0	0	
۲.	6.4	1	0. 502690	. 001667	٢	0.000278	. 002524	1	4	0	0	!
!	6.1	1	0. 502690	. 001667	!	0. 000433	. 002590	1	4	0	0	. !
1	8.4	1	0. 628362	. 002083	!	0.000072	. 003342	!	4	2	0	1
Ł	8. 2	ŧ	0. 628362	. 002083	t	0.000432	. 003081	1	- 4	2	0	
!	8.1	1	0.628362	. 002083	ł.	0.000707	. 003084	!	4	2	0	
!	9.1	1	0.754034	. 002500	!	000030	. 003661	1	- 4	2	2	
!	9.2	1	0.754034	. 002500	1	000029	. 003584	1	- 4	2	2	:
!	9.4	۰.	0.754034	. 002500	!	0.000277	. 003563	!	4	2	2	1
1	11.2	1	1.005380	. 003334	1	000670	. 004421	!	- 4	4	0	1
Ł	11. 1	!	1.005380	. 003334	ţ.	000131	. 004491	!	4	4	0	
!	12, 1	!	1.079630	. 003646	!	0.000243	. 004780	1	5	Э	1	1
!	13. 2	۰.	1.131050	. 003750	!	~. 000310	. 004811	!	6	0	0	!
!	13.4	1	1. 131050	. 003750	!	000290	. 004967		6	0	0	
!	13. 1	۰.	1.131050	. 003750	!	000127	. 004806	۰.	6	0	Ö	1
!	14.1	÷	1.256720	. 004167	1	000457	. 005180	1	6	2	0	1
1	14.2	1	1.256720	. 004167	1	000405	005141	÷	6	2	ō	- i
÷.	14.4	÷	1.256720	. 004167	÷	000244	. 005380	i.	6	2	ō	- 1
:	15.1	1	1.350980	. 004480	ł	0. 000060	. 005369	÷.	5	3	3	i
:	16.2	ŗ	1.382400	. 004584	ŧ	000166	. 005474	į.	6	2	2	- j
!	16.1	÷	1.382400	004584	÷	000006	005370	i.	6	2	2	- í
	17.2	í.	1. 508070	005000	í.	- 000074	005742	÷	4	4	4	i
i.	17.1	÷	1.506070	.005000	÷	0.000236	. 005754	i.	4	4	A	- 1
i.	18.2	í.	1.602320	005317	í.	0.000323	005904	÷	5	- 5	1	- 1
í.	18.1	÷.	1. 602320	005313	÷	0 000432	005920	÷	5	1	:	
i	19.2	÷	1 633740	005417	;	0.000542	005924	÷	Ă	Ă		÷
i.	19.1	÷	1.633740	005417	i.	0.000555	005971	÷	4	4	š	÷
;	20.4	÷	1.759410	005824	÷	- 000012	006514	÷	4	7	2	1
1		•	1		1			•	•	- 4	~	- 1

Continuación del archivo InxparNaCI,Sal

Ŧ	Numero	1	dcalc +	&dcalc !	de-dc +-	&de-dc !	Inc	ice	5	!
ŗ	pareja	ŧ	(Angst	roms) !	(Angst	TOMS) !	н	ĸ	L	!
ŗ			_							ير
ł	1	ŧ	3. 237240	. 005387	0.000000	. 010792 !	1	1	1	!
•	1.4	ŗ	3, 257240	.005387 !	~. 000350	. 010835 !	1	1	1	!
ŧ	2	ł	2.820850	.004665 !	000557	. 008734 !	2	0	0	1
٢	2.4	ł	2.820650	. 004665 !	000871	.008815 !	5	ú	0	!
!	3.4	٤	1.994640	.003277 !	C. 000430	.005457 !	2	2	0	ł
ł	з	ţ	1.994640	. 003299 !	000443	. 005462 !	2	2	0	1
ł	4	:	1.701040	.002813	000150	.004471 !	3	1	1	!
ţ	5. 2	ŗ	1.628620	002673.	000001	.004270 !	2	2	2	!
ţ	5.4	ł	1.628620	. 002673' !	000079	. 004296 !	2	2	2	ļ
ł	5.1	!	1.628620	. 002673 !	000783	. 004281 !	2	2	2	!
!	6.2	ł	1.410430	.0023322 !	000326	.003565 !	- 4	0	0	!
!	6.4	!	1.410430	.002332 !	000390	.003544 !	4	0	0	!
ł	6, 1	:	1.410430	. 002332. !	000607	.003636 !	- 4	0	0	!
!	8.4	ŧ.	1.261520	.002086 !	000072	.003358 !	- 4	2	0	!
!	8.2	ŧ.	1.261520	. 002086. !	000433	. 003096 !	- 4	2	0	!
ł	B, 1	ł.	1.261520	.002086 !	000710	.003098 !	- 4	2	0	!
!	9.1	!	1.151610	.001904 !	0.000023	. 002800 !	- 4	2	2	!
ł	7.2	!	1.151610	,001904 !	0.000022	.002741 !	- 4	2	2	!
ļ	9.4	1	1.151610	. 001904 !	000211	.002724 !	4	2	2	!
!	. 11. 2	:	0.997321	. 001647 !	0.000332	.002197 !	- 4	4	0	!
!	11.1	!	0.997321	.001649 !	0.000065	. 002231 !	- 4	4	0	!
ł.	12, 1	!	0.953622	. 0015771	000105	. 002075 !	5	з	1	!
t	13.2	1	0.940284	.001555 !	0.000129	. 002004 !	6	0	0	1
!	13.4	!	0.940264	.001555 !	0.000121	. 002068 !	6	0	0	!
ţ	13.1	ŧ.	0.940264	. 0015551	0.000053	.002001 !	6	0	0	1
5	14.1	٩.	0.892031	.001475 !	0.000162	. 001842 !	- 6	2	0	1
1	14.2	1	0.892031	. 001475 !	0.000144	. 001828 !	- 6	2	0	1
1	14, 4	ŧ.	0.892031	. 001475 !	0. 000087	. 001913 !	6	2	0	1
1	15.1	1	0.860351	. 001423	000025	. 001713 !	5	3	3	1
1	16.2	1	0.850518	. 001407 !	0.000051	. 001687 !	6	2	2	1
1	16.1	1	0.850518	. 001407 !	0.000002	. 001655 !	6	2	2	1
1	17.2	1	U. 814309	001347 !	U. 000026	.001554 !	4	4	4	1
1	17.1	1	0.814309	.001347 !	000064	. 001557 !	- 4	4	4	1
1	10.2	1	0.789996	. 001306 !	000080	.001459 !	5	5	1	1
1	18.1	1	0.789996	001306 !	000107	. 001462 !	5	5	1	!
t	19.2	1	0.782363	.001294	000130	.001422 !	6	4	0	1
1	19.1	1	0.782363	001294 !	000133	. 001433 !	- 6	4	0	1
5	20.4	•	0.753904	.001247 !	e. 000003	.001397 !	- 6	4	2	1
•										

CABLA V

Valores de dcalc (calculados con indices optativos y parametros reciprocos base), diferencias dexp-dcalc a Indices Optativos

Continuación dei archivo inxparNaCI.Sal

		1	LAPI	AVT				
[Valores	Utilizados	an.	ei	Caiculo	de.	Parametros	de	Red 3

Numera!	Ind		! F	unc. Nel	ison-Ril:	y!	Funcion	Delta !	Pesos !Parametro da Red!
t de t	HJ	K L	!	cos(Thet	ta)^2#F/2	2.1	10sen(The	+++)^2+F!	1/%søn ! (en sist.cubicu)!
toarejet			1	F=[]	l/sen(The	ta.)+1/Theta	1 I	(Th)^2 ! (ao +~ &ao) !
e - E			ŧ		Norm	ni	28425	!	! Angstroms
!			~~						
! 1 !	1	1 1	!	3. 58449	. 006498	!	14, 5035	066725!	6780.21!5.64170 .009375 !
1.4!	1	1 1	!	4. 44761	. 008000	1	16. 2551	. 077187!	5720. 63! 5. 64075 . 007453 !
121	2 (0 0	!	3. 03722	. 004945		16. 3920	. 064238'	3973, 86! 5. 64059 . 008142 !
2,4 !	5 (0 0	ŧ	3. 78470	. 006139	!	18.4482	075872!	5754, 24! 5. 63996 . 008304 !
1 3,41	2 I	20	١.	2, 49076	. 003353	1	24, 2565	. 068783!	3967.4215.64292 006094 1
! 3 !	2 3	20	ŧ.,	1.96092	. 002747	1	21. 1674	057667!	3993. 511 5. 64045 . 006107 1
: 4 !	3 :	1 1	1	1.55416	. 002174		23. 0619	. 052999!	3218. 50! 5. 64120 / 005484 !
: 5.2!	2 3	2 2	t –	1. 44433	. 002087	1	23, 4148	. 052263!	2972.05! 5.64170 .005446 !
. 5.4 !	2 3	22	<u>t</u>	1.89136	. 002614		27, 4973	. 066715!	2920.4415.54143 .005538 1
5 5.1 !	2 1	22	!	1.45261	. 002112		23, 5134	. 052754!	2946.2115.63899 .005484 1
. 6.2 !	4 (0 0	1	1.12088	. 001694	- ÷	24, 2393	. 043789!	2482.65! 5.64040 .004910 !
. 6.4 !	4 (0 0	!	1.47842	, 002061	- t	27, 2138	. 057047!	2526.6915.64014 .004829
! 6.1 !	4 (30	!	1. 12857	. 001812		24, 3550	. 046954!	2337.3115.63927 .005198
! B, 4 !	4 ;	20	1	1.22511	. 002286		27.8436	. 062784!	1708.6515.64138 .005672 1
. 8.2 !	4 3	2 0	Ł	0.88771	. 001434		24. 0018	. 034290!	2179.28.5.63976 .004495
! 8.1 !	4 :	20	:	0. 89451	001444		24. 1342	. 034704!	2172.6515.63853 .004505 1
1 9.11	4 ;	2 2	: 1	0.71421	. 001321	1	23, 0986	. 026060!	1875.70! 5.64181 .004364 !
1 9.21	4 :	22	•	0.70763	. 001216	1	22, 9426	023945!	2017.3415.64181 .004074 !
9.4 !	4 3	22	!	1.01345	. 001504	- 1	29. 6325	037966!	2060.0715.64067 .003992 !
11.21	4 .	4 0	! !	0.43766	. 000801	!	18.9087	. 004585!	2049.8815.64358 .003073 1
11.11	4 .	4 0	! !	0, 44281	, 000844	!	19,0930	005020!	1917.4015.64207 .003266
12.11	5 :	3 2	! !	0.36129	. 000736	1	17.0448	. 000875!	1974.4915.64108 .002926
13.2 !	6 (0 0	! !	0. 33130	. 000644		16.1090	. 002476!	2127.4715.64247 .002665 1
13.4 !	6 1	o 0	!	0. 57665	. 001027		25. 2754	. 009130!	1833. 17! 5. 64243 / 003054 !
! 13, 1 !	á (o o	: 1	0. 33639	. 000642	:	16, 3178	. 002140!	2137. 95! 5. 64202 . 002650 !
14.1 5	6 8	2 0	!	0.24374	. 000510		13, 1340	. 007324!	2262.60! 5.64273 .002292 !
14.21	6 ;	20	<u>ب</u>	C. 23880	. 000480		12,9003	. 007061!	2364.32! 5.64261 .002204 !
14.4 !	6 3	20	•	0.46920	. 000892		22. 0524	. 000689!	1856.7115.64225 .002741
15.1 !	5 3	з Э	<u>!</u>	0.18099	, 000369	!	10.4882	. 008529!	2643.3315.64154 .001873 1
16,21	6 3	22	:	0.13697	. 000351	1	7.0273	. 009609!	2650.0115.64204 .001833 1
16,11	-6 - 3	22	!	0.16146	000289	1	9, 5737	. 007320!	3057.30! 5.64171 .001521 !
17.21	4 4	4 4	:	D. 08441	. 000510		5. 4731	. 008729!	3328.8115.64188 .001403 1
17.1 1	4 4	4 4	!	0,08851	. 000218	!	5,7263	. 008887!	3264. 69! 5. 64126 . 001426 !
10.2 !	5 1	5 1	•	0. 03524	. 000101	?	2, 4263	. 005485!	4469.1615.64113 .001056 !
18.1 !	3 :	5 1	£ -	0.03922	. 000110	!	2. 6939	. 005841!	4321.8015.64094 .001083 !
19.2 !	6 4	4 0	: ·	0.01985	. 000053	:	1.3952	. 003064!	5500, 73: 5. 64077 . 000891 .
19.1 !	6 .	4 0	! I	0. 02379	, 000076	!	1.6670	004408	4892. 74! 5. 64074 . 000970 !
20.4	6 4	4 2		0, 14257	. 000284	1	9.7229	. 012070!	3828. 67! 5. 64172 . 001108 !
									-

Continuación del archivo InxparNaCl.Sal

TABLA VI' EValores Utilizados an ei Calculo de Parametros de Red]

NUMETO!	Ind	lices	1 !	Func. Nel	son-Rile	u!	Funcion	Delta !	Pesos ! Parametro de Red!
de !	H	KL		cos(Thet	a)^2*F/2	1	10sen(The	eta)^2#F!	1/&sen ! (en sist. cubico)!
toare.ia!			1	F=L1	/sen(The	ta)+1/Theta	•3 ÷	(Th)^2 ! (ao +- &ao) !
1			÷		No Norm	a l	1 zadas	:	! Angstroms !
1									
1 1 1	1	1 1		3.96970	. 006870	!	17.7883	. 078909!	6780. 21! 5. 64170 . 009375 !
1 1.4 !	1	1 1	1.1	4. 44761	. 008000	!	16. 2551	. 077187!	6720, 63! 5. 64075 . 009453 :
1 2 1	2	0 0) (3.36361	. 005200	!	20, 1045	. 075480!	5873.86!5.64059.008142 !
1 2.4 !	2	0 0) !	3.78470	. 006159	1	18, 4482	. 075972!	5754, 24! 5. 63996 . 008304 !
1 3.4 !	2	2 () !	2. 49076	. 003353	1	24. 2565	. 068983!	3967. 42! 5. 64292 . 006094 !
131	2	2 0		2.17166	. 002864	1	23. 7614	. 066463!	3953. 51! 5. 64045 . 006107 !
1.4. 1	3	1 1	11	1.72120	. 002267	1	28. 2849	. 060360!	3218. 50! 5. 64120 . 005484 !
1 5.2 1	2	2 2	2 !	1.60219	. 002194	1	28.6127	. 057582!	2972.05! 5.64170 .005446 !
1 5.4 1	2	2 3	2 !	1.88136	. 002614	ł	27. 4973	. 066715!	2920. 44! 5. 64143 . 005538 !
1 5.1 1	2	2 3	2 !	1.60739	. 002205	1	28.7912	. 060112!	2946. 21! 5. 63879 . C05484 !
! 6.2!	4	0 0) !	1.24338	, 001777	1	29.8274	. 042788!	2482.85! 5.64040 .004910 !
! 6.4!	4	0 0) !	1.49842	. 002061	1	29.2138	. 057047!	2526, 69! 5. 64014 . 004829 !
1 6.1 !	4	0 0) !	1.24892	. 001702	1	27, 8218	. 052473!	2337. 31! 5. 63927 . 005198 !
8.4 !	4	2 () !	1.22511	. 002286	1	29, 8436	. 062784!	1708.65! 5.64138 .005672 !
! 8.2 !	4	2 () !	0, 98474	. 001510	1	29. 5352	. 037350!	2179. 28! 5. 63976 . 004495 !
! 8.1 !	4	2 (0.98982	. 001516	1	29. 5538	. 037643!	2172. 65! 5. 63853 . 004505 !
9.1 !	4	2 3	2 !	0.79031	. 001397	1	28, 2833	. 027267!	1875. 70! 5. 64181 . 004364 !
9.2!	4	2 2	2 1	0.78497	.001285	1	28.2318	. 024836!	2017. 34! 5. 64181 . 004074 !
9.4	4	2 2	2 !	1,01345	. 001504	1	27. 6325	. 037966!	2060. 07! 5. 64067 . 003992 !
111.2 !	4	4 9	2 !	0. 48552	. 000848	1	23. 2680	. 001829!	2049.88!5.64358 .003073 !
1 11.1 1	4	4 (0, 48999	. 000918	1	23. 3786	. 002314!	1917. 40! 5. 64207 . 003266 !
1 12.1 1	5	3 1		0.39979	. 000781		20.8707	. 004492!	1974.4515.64103 002926 !
13.2	6	0 0	2 !	0.36751	, 000685	1	19. 8216	. 0062941	2127. 47! 5. 64247 . 002665 !
13.4	6	0 0	2 1	0. 57665	. 001027	4	25. 2754	. 009130!	1833.1715.64243.003054
13.1	÷.	0 0	2 1	0.37223	. 000680	1	14. 4805	. 005894	2139. 95! 5. 64202 . 002650 !
14.1	÷.	2 0	2 ÷	0.26971	. 000342	1	15.0820	. 011602!	2262.60:5.642/3.002292
14.21	è.	2 (2 :	0.26490	. 000511	1	10.0744	.011288	2364.3215.64261 .002204 !
1 1 7 7 1	2	a 2	11	0. 46920	. 000892	1	42.0344	. 000589:	1656.7115.64225.002741 ;
1 15.1 1	2	3 3		0.20027	,000372	1	12.0424	. 01234/	2643.33:5.64154 .001873 :
: 10.2 :	?		::	0.17412	. 000375	1	11.4000	. 013704	2650.01:5.84204 .001838 :
: 10,1 :	2		£ :	0.1/866	. 000305.	1	11. / 440	. 010883!	3039.30:5.64171 .001621 :
1 17.46	2	7 1		0.07363	. 000223	1	3,7348	. 011041	3348. 31: 3. 64188 . U01403 !
	2	1 1	1	0,07774	. 000233	-	7.0110	.012030	JEG4. 07: J. 04120 . 001420 :
1 10.41	2			0.03909	. 000109	-	2, 7661	. 007237	4931 0015 44084 001036 1
: 10.1 :	1			0.04337	000057	1	1 7149	004051	
1 10 1 1	4	2 7	1	0.02421		÷	2 0411	005721	4002 7415 44074 000891
1 20 4 1	2	2		0. 14257	000284	÷	0 7990	012070	3030 4715 44173 001100 1
. 20.71	0	-		0.1923/			7. / ##7		3080. 07: 3. 04172 . UUIIUB

Continuación del archivo InxparNaCi.Sal

Hay una indexacion, Se quieren calcular los parametros de red para TODAS las combinaciones de indexaciones.

Se continuo con el calculo de parametros de red, para una combinacion.

TABLA VII

Parametros de red y Red de Bravais encontrados con diferentes indices optativos

Linea	Opcion 1	Opcion 2	Option 3 Optio	on 4	Opcion 5	Opcion 6
1	1 1 1				······································	
2.4	1 1 1					
24	200					
3.4	2 2 0					
3	2 2 0					
	3 1 1					
5. 2	2 2 2					
5.4	222					
5, 1	222					
6.2	4 0 0					
6.4	4 0 0					
0.1	4 2 0					
8.2	4 2 0					
8.1	4 2 0					
9.1	4 2 2			s - + 7		
9.2	4 2 2					
9.4	4 2 2					
11.2	4 4 0					
11.1	4 4 0			22.2	Sec. Sec.	
12.2	331					
13.4	6 C O					
15.1	600					
14.1	620			100		
14.2	620					
14.4	620					
15.1	533					and the second
16.2	622					
16.1	6 2 R					
17.2						
10.5						
18 1	5 5 1					
19.2	6 4 0					
19.1	6 4 0					
20. 4	6 4 2					
	8 43141				·····	

5.64141 .000281

&ao: Red de

Bravais:

ii) Sistema tetragonal.

La muestra del TiO se preparó por el método del cigarrillo. Con la idea inicial de utilizar fase patrón para corregir las separaciones entre arcos, se preparó con el 20% de Silicio. El tiempo de exposición a los ravos X fue de 57.75 horas en cámara grande. La radiación utilizada fue debida al Cobre con filtro de Níquel. El patrón muestra lineas nitidas con 51 líneas observadas, para la fase de interés y 12 del silicio, aunque 6 de ellas se traslaparon. La película se identificó con el púmero DS-424. Se creó el archivo de parámetros de entrada para ALAEP con las siguientes opciones: corregir por los errores de radio, divergencia axial, tamaño de muestra y excentricidad; introducir como medidas experimentales los centros de las líneas: tomar como incertidumbre la resolución del vernier (.025 mm) más la desviación estándar. De las 51 líneas medidas para la fase de quedaron interés, 8 sin identificar. De las 43 lineas identificadas hay 5 a las que no se les observa su pareja ya que su ángulo de Bragg es cercano a los 45°. Para trabajar únicamente se utilizaron 39 líneas, 17 pertenecientes a la radiación K $_{a}$, 12 a K α , y 10 a Km. No se observó ninguna para Kg.

> Archivo de parámetros de ALAEP para el TiO₁. AlaepTIO229.Par

> > Excentricidad Cen R+Bigma 0 .025 424 1.5,.03 1,.012 8.4,.5 49.8,.5 132,2 .14398,.01146

Archivo de Salida de ALAEP del Ti U_2 . AlaepTi0229.Sal

CALIBRACION DE LONGITUDES DE ARCO PARA EQUISGRAFIAS DE POLVOS

Nombre del Archivo de parametros de entrada: AlaepTiO229.Par Nombre del Archivo de datos de entrada: AlaepTiO229.Dat Nombre de este Archivo: AlaepTiO229.Sal

TABLA I Medidas de la Fase de interes.

N	im.	de	Nur	do	ĩ	Cent	tro		Cen	tro		An	cho	de		Secar	ACI	on l	Centr	0	Ha	. 1	Cer	tro	Haz
1 04			med	ida	,	Der	echo	, î	Izou	ierd	0	Un	ar		į.	No fur	ncio	nal	Trans	mi	si	an!	Ret	ror	rfix
	1	sel!	d/c	ada	ίc	d +-	- R/	2!	Ci +	- R/	2	A	+-	R	į.	Snf	+	R	Ct +	-	R/1	2 !	Cı	• +	R/2
•			par	eja	į	(m)	n J	7	(m)	m)	7	••	(mm	, .	į		(mm)			τ.	1)			(៣	m)
!	1			1	;-	115	450			474			700		,	54	974		88		112	,			
	÷.	i		-	i.	114	537	1	60	390		•	700		i.	54	0.40		96		6.4	- ;			
;	÷	1		7	i.	174	150	. i	51	001		•	550		÷	72	163		86		140	i			
	2			2	i.	124	213	i	51	929	, i		150		÷	72	288		BE	ì	244	i			
;	3	- i		ī	÷	127.	287		48	912		•	500		i.	78	375		68		00				
	3	j,		2	i i	127.	313	. 1	48	836			500		i.	78	475		86		75	- i			
i	4			ī	į.	129.	325	1	46	775	5		613		÷	82.	550	. 1	96		50	į			
ŧ.	4			2	į.	129.	300	ı İ	46	800	5		413		į.	82.	500		85	. c	50	-			
į –	5	1		1	i i	132.	125	1	44	050			475		÷.	88.	075		86). c	88	- 1			
	5			2	1	132.	163	1.1	44	. 037			475		1	88.	125		86	1. 1	00	. !			
!	6	5		1	ł	142	387	· !	33	. 668	1 1		625		ŗ	108.	700		65	i, c	37	!			
•	6	. 1		2	!	142.	425	1.1	33	. 700) !		625		ł.	108.	725		98	i. (263				
£ 1	7			1	t	144.	900	1	31	27:	5 !		250		ł.	113.	625		86). C	087				
!	7	. !		2	<u>ا</u>	144.	850	1	31	. 175	5 !		250		ŧ.	113.	675		86	i, c	13				
!	8			1	£	150.	825	1	25	. 225	5 !		550		ţ.	125.	600		86	I. C	25	. !			
!	8	÷ 1		2	١.	150.	925	1	25	. 225	, !		550		£.	125.	600		88	i. C	25			•	
ŧ	9			1	!	152.	163	1	53	. 825	5 !		350		1	128.	338	1 1	87	<u>ا</u> ج	794	!			
ŧ	9			2	!	152.	125	1	23	. 875	5.5		350		١.	128.	250		86	I. C	000				
! 1	0			1	!	157.	175	1	18	. 87	5.3		550		!	138.	300		88	i, (25	1			
! 1	0			2	٩.	157.	100	1	18	. 939			550		1	138.	163		88	I. C)17				
! 1	1			1	!	157.	975	•	18	. 136	1		300		ŗ	139,	838	1	86	I. C	55	. !			
1 1	1			2	!	157.	989	1	18	. 075	5.5		300		ŗ	139.	913	1	88	I. C	31	. !			
1 1	2	!		1	! -	160.	600	1	15	. 550) !		150		۲	145.	050		98	I. C)75				
! 1	2			2	!	160.	625	. 1	15	563	1 !		150		٩	145.	063	: :	88	I. C	94				
! 1	3			1	!	164.	825	1	11	. 462	2 !		600		1	153.	363		88	1, 1	44	1			
! 1	3			2	!	164.	500	1	11	. 200) !		600		!	153.	300		87	۲. E	350				
	4			1	:	168.	100	1	8	. 400) !		150		ł.	159.	700		88	1. 2	250	1			
1	4			2	!	167.	950	1	8	300) !	•	150		!	159.	650		. 88	1. 1	25	. 1			
1	5			1	•	170.	575		5	. 600) !		400		ļ	164	975	· !	86	I. (988				
: 1	5			2	<u>.</u>	170.	538	1	5	. 700) !		400		ţ	164.	838		88	1, 1	19				
: 1	6			1	1	172.	450	1	3	. 839	1		600		ŧ.	168,	613	1	86	1. 1	44	- !			
! 1	6			2		172.	325	. F	3	. 400	. !		600		1	168.	925		97		162				

Continuación de la Tabla I del archivo AlaepTiO229.Sal

	17 1	1	163.425 1	352, 500 !	. 300		169.075		!	267.962	1
÷	17 1		183 450 1	352 400 1	300		168.950	1	ļ	267. 925	1
í	19 1 1		184 300 1	351 575 1	300	- i	167 275	- i	i	267. 938	1
÷	10.1.1		104.000	251 725 1	300	- i -	167 625	÷	i i	267.913	i
÷	10.1.	-	104.100	251 525 1	250	- i	167.150	i	i	267 950	÷
1	10.2	-	104.3/3 :	391, 569 1	250		147 100		i	267 950	i
1	18.2 1	2	184,400	J51. 500 1	. 230		107.100	-		267. 750	
1	19.1	1	185.375 1	350.725	. 550	-	165. 350	-		268.000	
1	19.1	2	185, 300 1	350.712	. 330		165. 412			200.000	
!	20.1	1	194 100 !	341.875 !	. 300	1	147.775			267.988	1
!	20.1 !	2 9	194,150 !	342.000 !	. 300		147.850			268.075	1
!	20.2 !	1	194,700 !	341,300 !	. 300		146. 600	1	!	268.000	- 1
!	20.2 !	2	194.625 !	341.350 !	. 300	!	146. 725	1	!	267. 988	
!	21.1 ! .	1 !	204.462 !	331.825 !	. 350	!	127. 363	!	;	268. 144	:
1	21.1 !	2 9	204.500 !	331.725 !	350	!	127. 225	!	!	269. 113	. !
ł	21.2 !	1 1	204.850 !	331.300 !	. 250		126. 450		!	268.075	!
ŧ	21.2 !	2 9	204,900 !	331.325 !	. 250		126. 425		!	268.113	1
1	22.1 !	1 9	205.700 !	330, 400 !	. 300		124.700	!	!	268.050	1
÷	22.1 !	2 1	205.650 !	330, 450 !	. 300		124, 800		1	268.050	. !
÷	22.21	1 1	206.150	329.900 !	250	i i	123.750	i.	i	268.025	- 1
÷	22 2 1	5 1	206 063	129 938	250		123 875	÷.		268,000	÷
÷	23 1 1	1 1	208 125 1	327 763 1	400		119 638	÷	i	267. 944	
÷	23 1 1		208 150 1	227 842 1	400		119 713	-	i	268 006	- 1
÷	22.2.1		209 (50)	327.002.	750		110 478		i	247 843	
÷	23.2	-	200.000 :	327.273	350		110.025			740 030	- 1
1	23.2	~	208.775	327.300 :	. 330	-	110. 323	-		200.030	1
÷	24.1	-	211.000 :	323.073	. 400		114.025			260.036	1
1	24.1	- ÷ ÷	210.938	323, 123 :	400		114.188		1	200.031	1
1	24.2	1 1	211.550	324, 462	. 350		115.415			268.006	-
1	24.2	2	211.450	324,450	. 350		113.000			267.950	1
5	25.1 1	1 !	211.900 1	324.212	. 300	1	112.313		1	268.056	- 1
1	25.1 !	2 9	211.900 !	324.175 !	. 300	1	112.275	!	!	268.038	!
1	25.2 1	1 !	212.425 !	323.675 !	. 250	!	111.250	!	!	268. 030	!
	25.2	2 !	212.350 !	323.650 !	. 250		111.300	1	i	268, 000	1
ł.	26.1 !	1 !	220.050 !	316.075 !	. 400		96. 025		!	268.063	. !
٤	26.1 !	2 !	219.950 !	316. 125 !	. 400		96.175		;	268.038	
1	26 2 1	1 !	220. 575 !	315,450 !	. 350	•	94. B75		!	268.013	
٤	26.2 1	2 !	220, 725 !	315, 275 1	. 350		94. 550		!	268,000	
٤	27.1 !	1 !	228.150 1	307, 800 1	. 400		79, 650	- i		267.975	ġ
t.	27.1	2 !	228.150 !	307.900 !	. 400		79.750	i.	i	268.025	i
	27.2 !	1 1	229.000	307 050 1	350	÷ .	78 050	i.		268 025	÷
1	27.2	2 0	229 000	307 000 1	350	÷	78 000	÷	i	268.000	÷
÷	28.1	1	231 143 1	304 800 1	300	÷	73 437	i i	i	267 981	i
í.	28 1	5 1	231 200 1	204 850 1	300	÷	73 450	i		240 028	
÷	28.2	1	232 074	304 000 1	300	- i -	71 875	- 1		240.023	1
÷	28 2 1		222 100 1	304.000 1	200		71.723	1		200.038	- 1
÷	29 1 1	1	244 175	307.000 :	. 300	-	17.900	1		200.000	:
í.	20 1 1	-		272.007 1	. 400		47. 962	-		268.106	- 1
1	E 7 - 4 - 1	- :	243.423 !	272.123 !	. 400	:	48.200	1		268 025	

Continuación del archivo AlaepTiO229.Sal

Ē	Nun	n de!	Centro	Der.	ĩ	Centro Ir	(q. !	An	icho	de!	Sepa	sraci	on No	ī	Cent	0	Haz	ï	Centro Har!
11	ar	e sat	OTOR	edio	÷	promedic	• !	ur	arc	0!	func.	pro	medio	1	Trans	smi	sior	11	Retroref1x!
1	10	pel!	Cd +-	R/2	i.	CI +- R/	/2 !	A	+-	R !	Snf	+- (R+&i)	1	Ct 4	+-	R/2	1	Cr +- R/2!
ŧ.			(m	m)	÷	(ო)	!		(mm)	. !		(mm	}	!		(mm)	ł	(mm) !
٠.					~														!
!	1	ι ι	115.	494	!	60. 5810	3 !		700	. !	54.	9125	. 078	0!	68.	03	75	!	!
	2	2 !	124.	181	٤	51.9562	2 1		550	. !	72.	2250	. 113	4!	68.	06	87	1	!
	3		127.	300	!	48.6750) !		500		78.	4250	095	7!	88,	08	75	!	!
١.	4	s :	129.	313	!	46.7875	5 !		613		82.	5250	. 060	3!	88.	05	00	!	!
£.,	5		132.	144	!	44. 043E	a !		475	. !	89.	1000	. 060	4!	88.	09	38	٩.	•
Ł	6	5 1	142.	406	٢	33. 673E			625	. !	108.	7130	. 042	7!	68.	05	00	ţ.	!
!	- 7	r !	144.	875	•	31.2250) !		250		113.	6500	. 060	4!	88.	05	00	ł.	1
۰.	E	3!	150.	825	!	25. 2250	> !		552		125.	6000	. 025	D!	68.	02	50	1	!
٩.	9	7!	152.	144	!	23.8500	. י	•	350	. !	128.	2740	. 086	7!	87.	97	69	1	!
•	10) !	157.	136	!	18. 9063	3 !	•	550		138.	2310	. 122	2!	68.	02	19	!	!
٠.	11	L !	157.	981	!	18, 1063	3 !		300		139.	8750	. 078	0!	89.	04	38	!	!
٤.	12	2 !	160.	613	ļ	15. 5563	3 !	•	150	!	145.	0540	. 633	8!	88.	08	44	1	į
!	13	3 !	164.	663	ł	11.3313	3 !	•	600	. 1	153.	3310	. 0693	2!	87.	99	69	1	!
!	14	l i	168.	025	!	8.3500) !	•	150		157.	6750	. 040	4!	88.	18	75	1	!
١.	15	5 !	170.	556	!	5,6500) !	•	400	1	164.	9060	. 122	2!	68.	10	31	!	!
1	16	5 !	172.	387	1	3. 6188	3 !		600	. !	168.	7690	. 246	0!	88.	00	31	!	!
!	17	r !	183.	438	1	352. 4500) !		300	•	169.	0120	. 113	4!				!	267.9440 !
£.,	18	3.1 !	184. :	200	!	351, 6500	> 1		300	!	167.	4500	. 272	5!				Į.	267.9250 !
!	18	3.2!	184. :	387	!	351.5130) !		250	. 1	167.	1250	. 060	3!				1	267.9500 !
ŧ.,	19	2.1.1	185. 1	338	!	350.7190	} !		550	. ł	165.	3810	. 069	2!				ţ.	268.0280 !
!	20). 1 !	194.	125	!	341. 9380) !		300	- 1	147.	6130	. 078	0!				1	268.0310 !
!	20). 2 !	194. (663	:	341. 3250) !		300	. 1	146.	6630	. 113	4!				!	267.9940 !
ŧ.,	21	1 !	204.4	481	5	331. 7750) !		350	1	127.	2940	. 122	2!				1	268.1280 !
!	21	.2!	204.1	875	ł.	331. 3130) !		250		126.	4380	. 042	7!				!	268.0940 !
•	22	1.1 !	205. 4	675	ł.	330. 4250) !		300		124.	7500	. 095	7!				1	268.0500 !
!	22	.2!	206.	106	ŗ	329. 9190) !		250		123.	8130	. 113	4!				!	268.0130 !
•	53	1.1.1	209.	137	:	327. 8130) !		400		119.	6750	. 078	0!				!	267.9750 !
<u>!</u>	23	3.2!	208.1	712	!	327. 2890	5 1		350	- 1	118.	5750	. 095	71				١.	26B. 0000. !
•	24	1.1.1	210.9	969	1	325.1000) !		400	!	114.	1310	. 104	5				1	268.0340 !
<u>؛</u>	24	1.2 1	211.	500	٤	324.4560) !		350	. !	112.	9560	. 086	7!				٩.	267.9780 !
•	25	5.1.!	211.1	900	ŗ	324. 1940) !		300		112.	2940	. 051	5				ł.	268.0470 !
•	25	5.2 !	212.3	388	۲.	323. 6630) !		250		111.	2750	. 060	4!				5	269.0250 1
١.	26	5.1 !	220. (000	1	316.1000) !		400	. !	96.	1000	. 131	1 !				ŗ	268.0500 !
•	26	.21	220. (650	Į.	315.3630) !		350		94.	7125	. 254	8!				!	268.0060 !
•	27	1.1.1	228.	150	!	307.8500) !		400	- 1	79.	7000	. 095	7!				ł.	268.0000
ŧ.,	27	.2 !	229.0	000	!	307. 0250) !		350	ł	78.	0250	. 060	3!				1	248.0130 !
•	28	1. 1. 1	231.	181	:	304.8250) !		300	:	73.	6437	. 033	7!				÷	268.0030
	28	1.2 !	232.	088	!	304.0000) !		300E	!	71.	9125	. 042	7!				1	268.0440 !
1	29	1.1.2	244. (025	:	292.1060) !		400	!	48.	0812	. 172	7!				٤	268.0660 !

TABLA II Medidas Promediadas.

Continuación del archivo AlaepTiO229,Sal

Semilongitud real de la película (idealmente: 180 mm): L +- &L=(Cr +- &Cr)-(Ct +- &Ct) donde: &Cr=Sigma de Cr prom. y &Ct=Sigma de Ct prom. =(268.017 +- ,467813E-01) - (88.0563 +- ,485873E-01) = 179.961 +- ,932686±-01

Factor de correccion de radio: Fr= 180 /(L +- &L) = 1.00022 +/-- .530362E-03 / .529706E-03

Tabla III Correcciones por variaciones en el Radio ofectivo de la camara.

Num de 1	Separacion	No	Separacion	No !	Separacion	Funcional	
pareja !	Functional pro	omedio i	Funcional co	orregida !	correg	ida	
en pel 1	Snf +- &Sr	nf !	Snfr +- 1	kSnfr !	Sr +- :	4Sr	
	(mm)		(mm)	!	(mm)		
1 !	54. 9125 .	0780	54. 9244	. 1072 !	54, 9244	. 1072	
!				.1071 !		. 1071	
2 !	72.2250 .	1134	72 2407	.1518 !	72. 2407	. 1518	
1				.1515 !		. 1516	
э :	78.4250 .	0957	78, 4420	.1374 !	78.4420	. 1374	
				.1372 !		. 1372	
4	82. 5250	0403 9	82, 5429	.1042 !	82. 5429	. 1042	
				.1040 !		. 1040	
5 !	88.1000 .	0604	89. 1191	.1071 !	BB. 1171	. 1071	
		1		.1070 !		. 1070	
6 !	108.7130 .	0427 !	108, 7360	.1004 :	108. 7360	. 1004	
•				.1003 !		. 1003	
7 !	113.6300 .	0604 1	113.6750	. 1207	113.6750	. 1207	
				.1206 !		. 1206	
8 !	125.6000 .	0250 !	125.6270	.0716 !	125. 6270	0916	
!				.0915 !		. 0715	
9 !	128.2940 .	0867 9	128, 3220	.1550 !	128. 3220	. 1550	
		1		.1548 !		. 1548	
10 !	138.2310 .	1222 !	139, 2610	.1956 !	138. 2610	. 1956	
:				.1954 !		. 1954	
11 !	139.8750 .	0780 9	139, 9050	.1523 !	139. 9050	. 1523	
!			1	.1521 !		. 1521	
12 !	145.0560 .	0338 !	145.0880	.1108 !	145.0880	. 1108	
· ·				.1107 !		. 1107	
13 !	153 3310 .	0692 !	153.3640	.1505 !	153. 3640	. 1506	
!		* !	1	. 1504 !		. 1504	
14 !	159.6750 .	0604 !	159.7100	1451	159.7100	. 1451	
1		!	•	. 1449 !		. 1449	
15 !	164.9060 .	1222 !	164, 9420	. 2078 !	164.9420	. 2078	
· · · ·	1	!		, 2095 !		. 2095	
16 !	168.7690 .	2460 !	168, 8050	. 3357 !	168.8050	. 3357	1
				.3353 (3352	

Continuación de la Tabla III del archivo AlaepTi0229.Sal

17 !	169.0120	. 1134	169.0490	2031	190.9510	2031	1
	147 4500	7778 1	147 4940	3615	192 5140	3615	
10.1	147, 4300		107. 4000	3611		3611	
19 2 1	167 1250	0603	167 1610	1490	172.8390	1490	
	107. 1200			1489		. 1489	1
19.1	165. 3810	. 0692	165. 4170	. 1570	194, 5830	. 1570	1
				. 156B	!	. 1568	1
20.1 !	147, 8130	. 0780 !	147.8450	. 1565	212, 1550	. 1565	ļ
1		!		. 1563	!	. 1563	
20.2 !	146. 6630	. 1134 !	145. 6940	. 1913	213, 3060	. 1913	
!		!		. 1911	!	. 1911	
21.1 !	127, 2940	. 1222 !	127. 3210	. 1876	232, 6790	. 1978	
		1		1875	!	. 1896	
21.2 1	125.4380	. 0427 !	126.4650	. 1097	233, 5350	. 1047	
!				. 1096		. 1076	
22.1	124, 7500	. 0757	124. 7770	. 1620	: <u>2</u> .30.∡2.30	1610	
	172 0120	1124	100 0000	1701		1791	
atat. at 1	183.0130	. 1134 1	123. 8370	1789		1789	
22 1 1	119 6750	0780	119 7010	1415	240 2990	1415	
	117.0700			1414	!	. 1414	
23.2	118. 5750	.0957	118, 6010	1587	241.3990	1587	
		1		1585	•	. 1585	
24.1 !	114. 1310	. 1045	114, 1560	. 1652	245. 8440	. 1652	
•		!		. 1650	!	. 1650	
24.2 !	112, 9560	.0869 !	112. 7810	. 1469	247.0190	. 1469	
!		!		. 1467	!	. 1467	
25.1 !	112 2940	.0515 !	112.3190	. 1111	247. 6820	. 1111	
•				. 1110	1	. 1110	
25.2	111.2750	. 0604	111.2990	. 1194	248.7010	. 1194	
				. 1193	!	. 1193	
26.1	96.1000	. 1311	96,1208	. 1921	253 8790	. 1821	
	04 7104	-	04 7770	. 1819		. 1819	
#0. r. i	74.7123	.2348	44.7550	3033	205.2070	3049	
27 1 1	79 7000	0957 1	78 7173	1381	. 280 2830	1281	
	77.7000		17.7473	1379	1 200. 2000	1979	
27.2 1	78.0250	. 0603	78.0419	1018	281 9580	1018	
				1017	!	1017	
28.1 !	73. 6437	. 0339	73. 6597	. 0729	286. 3400	. 0729	
!				. 0729	• · · · ·	0729	
28.2 !	71.9125	. 0427	71, 9291	. 0807	288. 0720	. 0809	
!		!		. 0808	<u>!</u>	. 0808	
29.1	48.0812	. 1929	4B. 0917	2186	911, 9080	. 2186	
!				. 2183	!	. 2183	

Continuación del archivo AlaepTiO229.Sal

La ecuación que expresa el factor de corrimiento, <2Epsilon>, por error de Divergencia Axial del haz y tamano de muestra, al angulo medido 2#Phi, es:

<2E>= (.00106804 +/- .00029367 / .00022677)*CDT(2*Phi) + (.00385632 +/- .00178744 / .00138758)*COT(Phi)

Calculado con los valores (en mm) de los siguientes parametros:

Abertura de el Grificio i (2X1 += &2X1): 1.5 += .03 Abertura de el Grificio 2 (2X2 += &2X2): 1 += .012 Distancia de la muestra al Orificio i (Y1 += &Y1): 8.4 += .5 Distancia de la muestra al Orificio 2 (Y2 += &Y2): 49.8 += .5 Distancia de la muestra al Ando (S += &S): 132 += 2

Tabla IV Correcciones por Divergencia Axial y Tamano de Muestra.

Num of a fine a file Calculation Date jail Date jail Diver jailis					
Party at 1 Cartor and at 1		# 10854 EI	in i coleutado		This as fam more
Image: Image:<	pareja:	SIN COFFEG	The Calcorado	correspondience	DIV dr. cam mues:
I 27.4622 0.026022 .027880 0.03203 0.03779 54.9724 1230 1 27.4622 .0326 0.026022 .027880 0.032033 .013779 54.9724 .1230 2 36.1203 .0379 0.019423 .005864 0.038538 .011792 72.2795 .1630 3 J .2210 .0687 0.01745 .003377 0.035483 .010775 78.4775 .1630 3 J .92210 .0687 .0.01745 .003377 .0.035483 .010775 78.4775 .1630 .0646	en per:	210 4~ 921	i (amadaa)		: Srtua +- esrtua :
1 27.4622 .0536 0.026022 .0C7880 0.052033 .013773 54.9764 .1236 .0335 .03797 .01792 .026032 .01792 .012003 .01772 .1171 2 36.1203 .0759 0.017423 .05884 0.03883 .013792 .72.2795 .633 3 37.2210 .0667 0.017745 .003377 0.03543 .010775 .78.4775 .1462 .04667 .017745 .0035377 0.033433 .010775 .78.4775 .1456 .0466 .047745 .003493 .007399 .1116 .03352 .007399 .1145 .0520 .01577 .004721 0.031147 .007431 B8.1502 .1166 .0335 .0033537 .0033147 .007461 B8.1502 .1166 .0301 .03236 .0033537 .003493 .003621 .1057 .0301 .012260 .003493 .0033637 .0035621 .1057 .00311		(grados)	: (grauos)		: (88.)
1 .0333 .75992 .012003 .1191 2 36.1203 0759 0.019423 .03884 0.03883 .010882 .1203 3 .0759 0.017423 .03884 .008837 .008838 .1191 3 .0759 0.017423 .03884 .008833 .10075 .1600 4 .0647 0.017745 .003377 0.035483 .010755 .78.4775 .1484 4 .041.2714 .0321 0.016768 .003352 .000189 B2.5764 .1145 5 .44.0575 .0336 0.015377 .004721 0.03177 .007739 .1116 5 .44.0575 .0336 0.015377 .004721 0.01170 .1146 6 .0333 .03351 .003337 .003177 .007170 .1116 6 .54.3680 .0302 .012149 .03341 .002147 .007461 .1057 6 .54.373 .0603 .011212 .003493 <th>1 !</th> <th>27. 4622 . 0</th> <th>536 ! 0.026022 .0C7880 !</th> <th>0.052033 .015793</th> <th>1 54.9764 1230</th>	1 !	27. 4622 . 0	536 ! 0.026022 .0C7880 !	0.052033 .015793	1 54.9764 1230
1 2 1 36.1203 .0759 0.019423 .063894 10.038938 .011792 72.2795 .1632 1 1 .0759 .011745 .003774 0.038483 .010775 78.4775 .1436 1 3 1 39.2210 .0687 0.017745 .003377 10.035483 .010775 78.4775 .1436 .0646	i	. 0	535 !	. 012003	1 . 1191 !
.0738 .07474 .008742 .008742 .008742 3 37.2210 .0687 .035473 .003453 .010775 78.775 .1460 .0487 .017745 .03377 .0.03483 .010775 78.775 .148 .4 .41.2714 .0321 .0.01745 .033437 .0.031837 .0.01831 82.5764 .145 .5 .44.0575 .0320 .0.01577 .0031147 .007739 .1116 .5 .44.0575 .0336 .0.015577 .0031147 .007431 B8.1502 .1166 .0335 .0.012479 .03361 .0.03147 .007461 B8.1502 .1166 .0301 .03353 .0.03147 .007461 B8.1502 .1166 .0301 .03351 .0.03473 .0.023621 .005621 .1057 .04031 .0.01240 .022806 .0035621 .1057 .1057 .04031 .0.011521 .003493 .0.02363 .0070321 .1257 <t< th=""><th>2 !</th><th>36.1203 .0</th><th>759 ! 0.019423 .005884</th><th>0.038838 .011792</th><th>1 72.2795 .1636 !</th></t<>	2 !	36.1203 .0	759 ! 0.019423 .005884	0.038838 .011792	1 72.2795 .1636 !
1 3 1 37.2210 .0687 0.01773 .003372 0.03543 .010773 78.4773 .1495 4 1.12714 .0521 0.016768 .003081 0.033529 .01183 82.5764 .1145 4 1.12714 .0521 0.016768 .003081 0.033529 .01183 82.5764 .1145 5 1.40570 .03361 0.037371 10.03147 .007431 88.1502 .1146 5 1.40575 .03354 .0.01577 .004721 10.01147 .007461 88.1502 .1146 6 .54.3660 .03021 0.012169 .0033691 .007397 .108.7600 .1075 6 .54.3660 .05021 .003491 .0.23036 .007397 .108.7600 .1075 7 .56.8373 .06031 .011521 .003493 .0.030362 .113.9800 .1277 7 .06031 .01140 .023240 .003322 .1235 .1275 7		. 0	798 ! . 004474 !	. 008962	! . 1606 !
0.686 0.0406 0.0406 0.01679 0.06362 0.016133 1434 4 14.2714 0.021 0.016769 0.03329 0.01332 92.3764 1144 5 14.0595 0.334 0.015377 0.03329 0.03329 0.07190 1114 5 14.0595 0.334 0.015377 0.03347 0.07190 1144 6 34.3680 0.3022 0.012147 0.03437 0.07190 1144 6 34.3680 0.3022 0.012147 0.03437 0.024322 0.07397 108.7600 1076 6 34.3680 0.3022 0.01121 0.03493 0.030521 10.5621 1057 7 56.8373 0.603 0.01121 0.03493 0.030322 113.5980 127 7 56.8373 0.030140 C202451 0.09322 123.647C 0972 7 56.8373 0.030984 0.023401 0.020276 0.04687 125.647C 0972	3!	39. 2210 0	587 ! 0.017745 .005377 ·	0.035483 .010775	· 78.4775 .1482 !
4 ! 41.2714 .0221 ! 0.016769 .03081 ! 0.03329 .010183 ! 82.3764 .1142 5 ! 44.0575 .0336 ! 0.01577 .004721 ! 0.03147 .007739 ! 1116 5 ! 44.0575 .0336 ! 0.01577 .004721 ! 0.031147 .007190 ! 1146 6 ! 54.3680 .0302 ! 0.012169 .03363 ! 0.02307 ! 108.7600 ! 1076 7 ! 56.8373 .0603 ! 0.011521 .003493 ! 0.023036 .007397 ! 108.7690 ! 1277 7 ! 56.8373 .0603 ! 0.011521 .003493 ! 0.023036 .003522 ! 123.5764 .1277 16 .0603 : 0.32697 : 0.03322 ! 123.5764 .1077 17 ! 56.8373 .0603 ! 0.011521 .003493 ! 0.023276 .003322 ! 123.5476 18 ! 62.8136 .0438 ! 0.010140 .023240 ! 0.023276 ! 125.447C .0976 19 ! 64.1608 .0735 ! 0.009860 .002340 ! 0.019716 .004887 ! 0		. 04	586	. 008189	. 1454 !
1 .0320 .03382 .007739 .1111 5 1 44.0573 .0334 0.01577 .004721 0.01147 .007461 1.89.1502 .1144 6 1 .0335 0.01577 .003587 .007190 .01142 .007190 .1144 6 54.3680 .0302 0.012147 .003587 .007190 .1044 6 54.3680 .0302 0.012147 .003471 0.024332 .007397 108.7600 .1076 6 .0301 .0024951 0.024322 .0073971 108.7600 .1076 7 56.8373 .0603 0.01121 .003495 0.030264 .0039321 .13.8980 .1277 7 0.603 0.01121 .003495 0.020276 .005322 .123 .127 7 0.603 0.010140 .623078 .002326 .003322 .125 .09487 .09487 .09487 .09487 .09487 .094687 .09487 .094687	4 !	41.2714 .0	521 0.016768 .005081	0.033529 .010183	92. 5764 . 1143 !
5 1 44.0595 .0335 0.01577 .004721 0.03147 .009461 88.1502 .1144 6 1 .0335 .033537 .003147 .009461 88.1502 .1144 6 54.3680 .0332 .0.012187 .03331 .007190 1 .1144 6 54.3680 .0302 0.012187 .03351 .003232 .007197 1 .067 7 56.8373 .0603 0.011521 .003493 0.023036 .0070032 1 .1275 8 62.8134 .0438 0.010140 .C32767 .002276 .0046147 125.647C .0776 7 .0438 .0010140 .C32786 .002407 .004687 125.647C .0776 8 .62.8134 .0438 .0022401 .0014647 125.647C .0742 9 .64.1608 .0775 .0022401 .0014714 .004687 128.3410 .0414	:	. 0	20 !	. 007739	! . 1118 !
! .0333 .003337 .007170 ! .1141 4 ! .0302 ! .003671 ! .007170 ! .1141 4 ! .0302 ! .003671 ! .007170 ! .1141 1 .0501 .002807 ! .003671 ! .003797 ! .1087 7 ! .06031 ! .011521 .003473 ! .003022 ! .1057 1 .06031 ! .011521 .003473 ! .003022 ! .1277 1 .06031 .011521 .003473 ! .003322 ! .1275 8 ! 62.8136 .0458 ! .010140 .C3078 ! .003324 ! .00487 ! .0756 9 ! ! ! .010716 .002740 ! .00487 ! .00766 9 ! !	5 5	44.0575 .0	536 ! 0.015577 .004721 :	0.031147 .009461	! 88.1502 .1166 !
6 1 54.3680 .0502 0.012169 003691 6.024322 .0073971 108.7600 1075 1 5001 .022806 .005621 .005621 .1057 1 54.8373 .0603 0.011321 .003493 0.023036 .00700321 113.6980 .1275 1 54.8373 .0603 0.011321 .003493 0.023036 .00700321 .1235 1 6431 .0438 0.010140 .CG307B .002276 .004687 .023404 .004687 .024467 .07468 2 .0438 0.010140 .CG207B .02176 .004687 .024467 .07468 3 .0438 .020240 .001408 .002400 .004687 .07468 .07468 4 .1608 .0775 .002974 .0017716 .004000 .128.3410 .161	!	. Q	535 . 003589	. 007190	. 1142 !
1 .0301 .02806 .005621 .1055 7 56.8373 .0603 0.011521 .003495 0.023036 .007005 ! 113.6980 1277 5 .0603 .026267 .003322 .1235 .003322 .1235 8 ! 62.8136 .0438 .0.010140 .623078 ! 0.020276 .064687 ! 125.647C .0976 9 ! 64.1608 .0735 ! 0.009860 .002340 ! 0.019716 .004687 ! 0.996 9 ! 64.1608 .0735 ! 0.009860 .002374 ! 0.019716 .004697 ! 128.3410 .1610	6 !	54.3680 .0	02 ! 0.012169 .003691 :	0.024332 .007397	! 108.7600 . 1078 !
7 1 56.8373 .0603 0.011321 .003493 0.023034 .007003 113.6980 1273 6 1 0603		. 0	501 . 002806	. 005621	. 1059 !
! .0603 ! .052637 ! .003322 ! .1254 ! ! 62.8136 .0458 ! 0.010140 .623078 ! 0.020276 .096169 ! 125.647C .097E ! .0458 ! .003240 ! .004687 ! .09458 ! .09746 ? ! .0458 ! .009744 ! .004487 ! .094687 ! ? ! .0458 ! .009744 ! .019716 .006000 ! 128.3410 .1610	7 !	56.0373 .0/	503 ! 0.011521 .003495 !	0. 023036 . 007005	113.6980 .1277 !
8 ! 62.8136 .0458 ! 0.010140 .C3078 ! 0.020276 .004687 ! 125.647C .0976 9 ! .0458 ! .002340 ! .004687 ! 125.647C .0976 9 ! .64.1608 .0775 ! 0.02924 ! 0.019716 .006000 ! 128.3410 .1610		. 04	503 . 362657 .	. 005322	1259 1
9 44, 1608 0775 0.009860 002994 0.019716 006600 128.3410 .61	8 !	62.8136 .0	458 1 0.010140 .CC3078	0.020276 .006169	! 125.647C .097B !
9 44.1608 .0775 0.009860 .002994 0.019716 .006000 1 128.3410 .1610		. 0-	158 · . 002340 ·	. 004687	. 0762 !
	9 !	64,1608 . 0	775 ! 0.009860 .002994	0.019716 .006000	! 128.3410 .1610 !
.002276 .004558 .1374		. 01	774 . 002276	. 004558	! . 1574 !
· 10 · ! 69.1306 · 0978 ! 0.008907 · 002766 ! 0.017811 · 005424 ! 138.2790 · 2011	10 !	69.1306 .0	778 ! 0.008907 .002706 !	0.017811 .005424	138.2790 .2011
0777		. 0'	777	. 004120	1 1995 1
11 ! 69.9527 .0761 ! 0.008761 .002662 ! 0.017518 .005335 ! 139.9230 .1576	11 1	69.9527 .03	761 ! 0.009761 .002652 !	0.017518 .005335	1 139.9230 . 1576 1
		0	761 . 002023 :	. 004053	. 1562 !
12 / 72.5438 0554 0.008316 02528 0.016629 005067 145.1040 1159	12 /	72.5438 .0	554 . 0.008316 .002528	0.016629 .005067	145.1040 .1159
1145	1	. 0	53 !	. 003849	1145
13 174.5522 0753 0.007657 002327 0.015311 004667 153.3800 1552	13 !	76.5522 .0	753 ! 0.007657 .002327 !	0.015311 .004667	1 153.3800 .1552 !
.0752 .075770 .003546 . 1540	•	. 0	752 1	. 003546	1540
14 ! 79.8548 .0725 ! 0.007188 .002198 ! 0.014374 .004385 ! 159.7240 .149	14 !	79.8548 .0	25 ! 0.007188 .002198	0.014374 .004385	1 159.7240 . 1495
0725	•	. 01	725 ! . 0.1653 !	. 003330	1483
13 92.4710 .1047 0.006822 .002078 0.013642 .004165 164.9360 2130	15 '	82.4710 .10	47 0.006822 .002078	0.013642 .004165	164.9560 2139
1048 : 11579 : .003162 : .2127		. 10	48 1 71579	. 003162	. 2127

Continuación de la Tabla IV del archivo AlaepTiO229.Sal

16	84. 4027	. 1678 ! 0. 006563	.002000 !	0.013123	. 004008	168.8180	. 3397 !
•	!	. 1676 !	. 601519 !		. 003043	!	. 3383 !
! 17	95.4754	1016 0.005219	.001646 !	0.010437	. 003299 !	190.9610	. 2064 !
•		1014 !	.001262 !		. 002527	!	. 2054 !
18.1	96, 2369	1807 ! 0.005132	.001627 !	0.010262	. 003261	192. 5240	. 3648 !
		1805 !	,001245 !		002502	!	. 3636 !
18.2	96 4194	0745 1 0.005114	.001623 !	0.010226	. 003253	172.8490	. 1523 !
	1	0744 !	001246 !		002496	1	. 1514 !
191	97 2915	0785 ! 0.005018	001602	0.010034	003211	194 5930	1602 !
	•	0784 !	001233 !		002469		1592 1
20 1	106 0780	0783 / 0 004099	001410	0.008195	002826	212.1640	1593 !
,		0782 1	701106		002215		1565 !
20 2	106 6130	0956 1 0 004041	001399	0.008081	002803	213 3140	1941
	,	0955 /	001099		002200	,	1933 1
21 1	116 3390	0949 0 003107	001222 1	0 006212	002448	232 6850	1923
	1	0948 /	200989		001978		1916 !
21 2	116 7690	0549 0 003066	001215	0.006131	002433	233 5410	1122 1
		0548	200984	0. 000101	001969	. 200.0.10	1116
22 1	117 6110	0910 / 0 002987	001201	0.005973	002406	235 2290	1644
		0000 1	000976	4. 000770	001953		1697 1
	119 0800	0996 1 0 003943	001193	0 005884	002790	. 236 1670	1815 /
	1	0095 (000971	0.000000	001944		1809 1
	1170 1800	0709 1 0 002751	001141 1	0.005500	007725	1 240 2050	14001
E .J. I	1 120. 1000	0707 /	0001101	0. 000000	001804	. 240.3000	1437
		0793 1 0 003693	101152 1	0 005390	007208	. 241 4050	1610 1
	120.7000	0793 1 0.002077	CC0847 1	0.000078	002305		1404 1
	1175 8330	0034 1 0 003493	001110	0.004004			1474 1
44.1	122.742U	0026 0.002473	.001117 :	0.004768	002241	243.8470	1440 1
74 7	: 1177 8100	0734 1 0 003438	001110	0.004977	0012334		1401 1
£4.2	123. 5100	0734 : 0.002437		0.0048//	002224	: en/.ce=0	1404 1
		.0734 :	001101	0.004018	. 001847		. 1400 :
#J. 1	123.0410	.0358 : 0.002408		0.004615	. 002214		
78.0		. 0555 1		0.004704	. 001843		. 1128 :
¥3.2	124.3300	.0377 . 0.002331	. 001078 :	0.004721	. 002200	248.7060	. 1210 :
		.0376 !	. 020917		. 001636		. 1211 !
≼ 0.1	131.9400	.0711 0.001651	.001001	0.003302	. 002004	263.8820	. 1841 !
		. 0910 :	. 000869 :		. 001739		. 1837 1
20.2	132,6330	. 1526 1 0. 001585	. 000993	0.003170	. 001968	265,2700	. 3072 !
		. 1525 !	000866		. 001732		. 3067 1
27.1	140.1410	0.000844	.000920	0.001688	. 001841	280.2840	1399
·		.0690 !	. 100844		. 001689		. 1396 !
27.2	140, 9790	. 0509 ! 0. 000757	.000913 !	0.001514	. 001628	281.9600	. 1036 !
	!	.0508 !	. 000843		. 001686		. 1033 !
28.1	143, 1700	.0365 ! 0.000324	.000878	0.001047	. 001797	286.3410	.0747 !
	!	0364 !	. 200844 !		. 001698	ţ	. 0745 !
28 2	144.0360	.0404 ! 0.000429	. 000873 !	0.000857	. 001786	288.0730	.0826 !
	•	. 0404 !	.000845 !		. 001690	!	. 0825 !
29 1	155, 9540	. 1093 ! 001146	000897	~. 002292	. 001777	311. 9060	. 2204 !
	!	. 1092 !	. 000947 !		. 001892	!	. 2202 !

Continuación del archivo AlaepTiO229.Sal

Factor de correction de excentricidad: Fes - 14878 +- .01146

Tabla V Correcciones por Excentricidad de la muestra en la camara.

_						_		
£	Num de!	Sr corregida por	1	Anguio de Bragg!	Factor de	!	Sf corregid	a por!
1	pareja!	Div ax + tam mues	- !	calculado !	excentricidad	:	excentric	idad !
!	en pel!	Brtda +- &Srtda	÷	Th +- &Th !	ヒ +- 炎狂	٩.	Se +- &S	e t
١		(mm)	1	(grados) !	(mm)	<u>†</u>	(mm)	
÷						• • • •		!
ŗ	1 !	54.9764 1230	÷	13.7441 .0308 !	~ 068764 0052	٤.	54.9077	1282 !
ŗ.	2 !	72 2795 1636		18 0699 .0109 !	- 087862 0056	۰.	72.1916	1702 !
ţ	3 !	78 4775 . 1482	1	19.6194 .0370 !	094238 . 0071	1	78, 3832	1553 !
ŗ.	4 !	82. 5764 . 1143	1	20.6441 .0286 !	078304 . 0075	٠.	82.4791	1218 !
ł.	5 !	EB. 1502 1166	•	22.0376 .0291 !	103631 . 0079	!	88.0466	1245 !
ŧ	6!	108.7600 . 1078	1	27.1901 0269 !	- 121106 .0092	٠.	108.6390 .	1170 !
ŗ	7 1	113.6980 .1277		28 4244 .0319 !	- 124731 .0095	٠.	113.5730	1372 !
!	8 !	125.6470 .0978	1	31.4119 .0244 !	- 132533 .0101	٤.	125, 5150	1079 !
t	9 !	129. 3410 . 1610	1	32.0953 .0402 !	134096 . 0102	۰.	128.2070 .	1712 !
ŗ	10 !	136.2790 .2011		34. 5698 0503 !	- 139214 .0106	!	128.1400	2117 !
ł	11 !	139 9230 . 1576	!	34.9007 .0374 !	139961 . 0107	ŧ.,	139.7830 .	1663 !
t	12 !	145, 1040 , 1159	1	36. 2761 . 0270 !	142125 . 0109	٤.	144.9620 .	1268 !
į.	13 !	153, 3800 . 1552		38.3449 0388 !	- 144978 0111	۰.	153 2350 .	1664 !
•	14 1	159, 7240 1495		39.9310 .0374 !	146654 . 0112		159. 5770	1607 !
÷	15 1	164,9560 .2139	1	41.2389 0535 !	147698 .0113	۰.	164 8080	2253 !
ŗ	16 !	149, 8160 . 3397	!	42.2046 .0849 !	148271 . 0114	1	148.6700	3510 1
ł	17 !	190.9610 . 2064		47.7403 .0516 '	- 148299 0114	÷.	190.8130	2179 !
!	18.1 !	172. 5240	•	48.1310 .0712 !	148091 . 0114	÷.	192.3750	3762 !
į.	18.2 !	192.9490 .1523	÷	48.2123 .0381 !	- 148044 0114	÷.	192 7010	1637 !
÷	19.1 !	194, 5930 1602	÷	48, 6482 . 0400 !	- 147/74 0114	÷	194.4450	1716 !
į.	20.1	212.1640 .1573		53.0409 .0398 !	~ 143150 0111	i.	212 0210	1704 !
i.	20.2 1	213.3140 .1941	1	53. 3285 . 0125 !	- 142729 0110	÷	213 1710	2051
÷	21.1 !	232.6850 1923	÷	58.1712 .0421 !	- 133510 0104	÷	232.5510	2027
ŗ	21.2 1	233. 5410 . 1122	÷	58.3253 0220 !	- 133012 0103	÷	233.4080	1225 1
÷	22.1 !	235, 2290 . 1644	1	58.8072 .0411 !	- 132009 0102	÷	235 0970	1746
i.	22.2 1	236 1670 1815	÷	59 0416 0454 /	- 131440 0102	÷.	236 0350	1917 1
÷	23.1	240 3050 1439	÷	60 0761 0360 1	- 128822 0100	÷	240 1760	1520 1
i.	23 2 1	241, 4050 1610	÷	50.3512 0402 1	- 128098 0100	÷.	241 2770	1709 1
÷	24 1 1	245 8490 1674	÷	61 4623 0418	- 125052 0097	÷	245 7240	1771 1
i	24.2	247 0240 1491		51 7560 0373 /	- 124215 0097		246 9000	1587 /
i.	25.1	247 6870 1133	÷	41 9217 0263 1	- 123737 0094		247 5630	1226 1
î.	25 2 4	248 7050 1216	÷	62 1764 0:104 1	- 122995 0095	;	249 5930	1217 1
ï	26 1 1	243 8820 1941		45 9706 0460 1	- 110814 0087		243,7030 .	1010 1
ï	26 2 1	265 2700 2072	÷	56 3175 0769 I	- 109603 0087	÷	245 1410	1760
÷	27 1 1	280 2840 1399	i	10 0711 0350 1	- 095479 0075	÷	200.1010	3137 : 1878
i	27 2 4	281 9600 1076	÷.	70 4609 0350	- 093797 0073	i.	201 0440	1100
÷	28 1 1	294 3410 0747		1 8953 01071	- 000304 0049	1	201.0000 .	1107 :
ï	28.2	288 0730 0824		12 0193 0167 1	- 097493 0049	1	203, 2320	JUL7 '
÷	20 1 1	311 9040 3304	÷	7 9745 0851 /	- 040707 0048	÷	EG/. 7030	3353 !
	R. / I :	311.70.30 2204		77 7767 .0551	060/07 . 0049		311.0450	2203 :

El archivo de parámetros de INXPAR se creó con las siguientes opciones: indexar el patrón y calcular los parámetros de red; normalizar a la longitud de onda $K_{\overline{\alpha}}$; probar máximo con tres lineas diferentes para cada linea base; no dejar ninguna línea sin identificar, y, el valor máximo de los índices por asignar, 5.

Archivo de parámetros de INXPAR para el TiO,.

InxparTiO229.Par

Ind 9 Cu 424 K alfa-p, 17 K alfa-1, 12 K alfa-2, 10 K alfa-p Tetragonal N 3 0 5

Archivo de Salida de INXPAR del TiO₂. inxparTiO229.Sai

INDEXACION DE PATRONES DE DEBIJE-SCHERRER Y CALCULO DE PARAMETROS DE RED INXPAR

Nombre del Archivo de Parametros de Entrada: InxparTiO229.Par Nombre del Archivo de Datos de Entrada: InxparTiO229.Dat Nombre de este Archivo: InxparTiO229.Sal Cond. Exp.: Camara: G. Radiacion: Su. Equisgrafia DS: 424

ī Radiacion ! Long. de Onda! Incertidumbre! Numero de (Angstroms) ! Cυ ł (Angstroms) ! lineas medidas 1. 54178 alta-p 00006 17 00006 к alf=-1 1. 54051 12 K alfa-2 1. 54433 . 00006 1 . 10 1 1 K beta ŧ 1.39217 00006 . ò

TABLA I (Longitudes de Onda Utilizadas)

Long. usada p/normalizar mediciones de las longs. de arco: K alfa-p

Continuación del archivo InxparTi0229.Sal

TABLA IT

Promedios de las longitudes (Serp) da arco (valores experim. introducidos). Angulos (Theta) de Brang (calculados a partir de Serp) y Distancias (derp) Interplanares (calculadas a partir de Theta)

INUMETO del	Longitud de Arco	Angulo de Braco	Distancias Interplanares
Inare ia en!	Seto +- &Seto	Theta +- Θ	dexp +- &dexp
inelicula !	(mm)	(grados)	(Angstroms)
1		Para K alfa p	
1 1 !	54.9077 .1282	13.7257 .032050	3. 2487 . 007548
! 2 !	72, 1916 . 1702	18.0479 .042550	2.4883 .005754
1 3 1	78.3832 .1553	19,5953 ,038825 !	2. 2985 . 004456
1 4 1	32.4781 .1218	20.6175 .030450 !	2.1890 .003172
1 5 1	88.0466 .1245	22.0117 .031125 !	2.0568 .002840
1 6 1	10B. 6390 . 1170	27,1593 .029250 !	1.6888 .001744
! 7 !	113. 5730 . 1372	28,3933 .034300	1.6211 .001856
! 0 !	125, 5150 , 1079	31,3733 .026975 !	1.4805 .001199
9 1	128.2070 .1712	32.0518 .042800 !	1.4526 .001787
10 1	138, 1400 . 2117	34, 5350 , 052925	1,3598 .001875
1 11 1	139.7830 . 1483	34,9458 ,042075 !	1.3458 .001465
1 12 1	144.9620 .1268	36.2405 .031700 !	1.3040 .001034
! 13 !	153. 2350 . 1664	39.3038 .041600	1.2436 .001190
1 14 1	159.5770 .1607	37,8743 .040175	1.2017 .001054
1 15 1	164.8080 .2253	41,2020 .056325 !	1.1703 .001358
! 16 !	168.6700 .3510	42.1675 .087750 !	1.1484 .001982
! 17 !	190.8130 .2179	47.7033 .054475	1.0422 .000741
!		Pera K sifa 1	
1 18.1 1	192.3760 .3762	48.0940 .094050	1.0350 .001642
19.1	194.4450 .1716	48,6113 .042900 !	1.0267 .000797
20.1	212.0210 .1704	53.0053 .042600	0.9644 .000652
21.1	232. 5510 , 2027	58.1378 .050675	0.9069 .000604
22.1	235.0970 .1746	58,7743 .043650 !	0.9007 .000521
23.1	240, 1760 . 1539	60,0440 .038475	0.8890 .000448
24.1	245.7240 .1771	61,4310 .044275	0.8770 .000471
25.1	247. 5530 . 1229	61,8900 .030725	0.8733 .000352
26.1	263, 7720 . 1928	65,9430 .048200	0.8435 .000415
27.1	280, 1890 . 1474	70.0473 .036850 !	0.8194 .000287
29.1	286.2520 .0817	71.5639 .020425 !	0.8119 .000191
29.1	311.8450 .2253	77,9613 .056325 !	0.7876 000257
	188 7010 1107	Par# K alfa 2	
10.2 1	192.7010 . 1637	49,1753 040925	1.0362 .000783
20.2	213.1710 .2051	53 2923 .051275 !	0.9632 .000754
	233.4080 .1223	50. JJ.J. UJU625 !	0.9071 .000404
	241 2770 1702	40 7107 047923	0.9008 .000357
: at J. at . !	244 9000 1807	41 7050 000/25	0.8688 .000481
	240 5020 1207	101.7200 .037675 !	0.0768 .000428
. <u></u>	245 1410 2122	44 7977 032900 1	0.8734 .000366
	201 0440 1100	00.2703 .078973 !	0.8433 .000608
29.2	201 0050 .1109	10,4655 .U2//23 !	0.8193 .000236
: ed.e. !	201.7000 .0895	11.9952 .022379 !	0.8117 .000198

Continuación del archivo inxparTiO229.Sal

	TABI /	A 111		
[Funciones	calculadas	a partir	de	Sen(theta)]

NUMETO	de!	(Seno (t	heta)1^2 !	(Seno ()	heta)]^2 !	Gezp +- &0	exp Ordenados
: pareja	a 1	No Nore	alisados !	Norma	lizados !	Gezp=4sen(Theta}^2/Lambda^2
!					·		
1 1	1	. 056309	, 000258 !	. 056369	. 000258	0.094753	. 000441842
: 2	1	095983	. 000438 !	. 075783	.000438	0, 161515	. 000749588
! 3		112481	. 000429 !	. 112481	. 000429 !	0.189276	. 000735924
! 4		124017	. 000351 !	. 124017	. 000351	0.208688	.000505164
5 5		. 140471	.000378 !	. 140471	. 000378	0. 236376	.000654101
! 5		208368	.000415 !	208348	.000415	D. 350627	. 000725359
! 7		226120	. 000301 !	. 226120	.000501 !	0.330499	. 000872761
: 9	1	. 271121	. 000419 !	27117	.000419 !	0.456225	.000740111
! 9	;	. 281627	.000672 !	291627	. 000672 !	0. 473902	. 001169250
10		. 321386	. 000863 1	. 321334	. 000863 !	0. 540808	001494410
! 11	- 1	. 328101	.000670 !	. 328101	. 000640	0, 552106	. 001203780
! 12		. 349489	. 000528 !	. 349439	. 000528 !	0.588097	. 000933707
! 13	1	. 384275	.000706 !	. 384275	. 000706 !	0.646632	. 001239060
! 14	!	. 411359	.000690 !	. 411359	. 000690 !	0.692207	.001215260
: 15		. 433906	.000975 !	. 133706	.000975 !	0.730149	. 001696830
! 16		. 450644	.001524 !	. 450641	. 001524 !	0.756314	. 002624030
17		. 547111	.000947 !	. 547111	000947 !	0. 720641	. 001664460
: 18.1	2 !	. 555305	.000710 !	. 553473	. 000794 !	0. 931347	. 001408260
! 19.1	L 1.	553896	. 001632 !	. 554807	. 001721 !	0. 933596	. 002768830
! 19.1	L 8	. 562861	.000743 !	. 563790	.000832 !	0, 948708	. 001473720
20.1	L !	. 637907	.000715 !	. 438959	.000815 !	1.075200	. 001455780
! 20.5	5 5	. 642723	.000857 !	640602	.000954 !	1.077960	. 001689910
: 21.5	2 !	, 724691	. 600477 !	. 722277	000588 !	1.215440	. 001084330
21,1	L ?	. 721344	.000793 !	. 722534	.000907 !	1.215836	. 001620410
22.	5 1	. 734871	.000736 !	. 732446	.000850 !	1.232510	. 001525640
22.1	L 1.	. 731250	.000675 !	. 732456	. 000791 !	1.232530	. 001426220
23.1	L 1.	750665	.000581 !	. 751903	. 000697 !	1.265250	. 001274390
23. 2	2 !	. 754810	.000641 !	. 752319	. 000756 !	1,265950	. 001370910
! 24. 1	. !	. 771309	.000649 !	. 772561	.000770 !	1.300050	. 001397250
24.2	2 !	. 775605	.000578 !	. 773045	.000696 !	1.300830	. 001272200
: 25. a	2 !	. 781702	000473 !	. 779122	. 000392 !	1.311050	. 001098750
: 25.1	1 1	778014	.000445 !	. 779297	. 000568 !	1.311350	. 601057270
26.1	1 1	833825	. 000626 !	. 835201	. 000757 !	1.405420	. 001363300
26. 2	2 1	. 838313	. 001014 !	. 323346	. 001140 !	1.406000	. 002028470
27.1	. !	. 683552	. 000412 :	885009	. 000551 !	1,469230	. 001042940
27. 1	2 !	. 668205	. 000305 !	. 885274	. 000441 !	1. 489680	. 000858545
29.1	1.1	899979	.000214 !	. 901463	. 000355 (1. 516920	. 000714660
28.3	2 !	. 904470	. 000229 !	. 901486	. 000369 !	1. 516960	. 000738740
29.1		. 956497	. 000400 !	. 958075	. 000550 !	1.612180	001051190

PARAMETROS DE ENTRADA:

20

Sistema a probar: Tetragonal

Opcion utiliada: 1. - Asignar Indices en uma Equisgrafías de polvos y (opcional) a partir de ellos Calcular los Parametros de Red.

El intento de indexacion NQ se hara axignendo las lineas experimentales con las que se empezaran a probar como líneas base y asignandoles indices especiales.

Numero maximo permítido (Lb) de asignaciones de valores diferentes de Gexpa cada una de las lineas base: - 3

Numero (Nt) de lineas toleradas sin identificar: O

Valor (Imax) mas alto de los indices por asignar: 5

Numero de linea experimental que se prueba como Primera Linea Base: 1

Numero de linea experimental cue se prueva como Segunda Linea Base: 2

TABLA IV Valores de Gcalc (calculados con indices optativos y parametros reciprocos base), diferencias Gexp-Gcalc e Indices Optativos

		100010	00-00 +-	Indices					
Numero :	GCALC +-	&ucaic :		HKLI					
: ратеја :	LANGSCH	0	(Higse)	UNUS K. / L			-	i	
· · · · · · ·	0 094753	000442 1	0.000000	. 000883 !	1	1	0	٦.	
	0 161515	001191 !	0.000000	.001939 !	ī	ō	1	÷	
	0 189505	000884	- 000229	001618 1	2	ö	ō	÷	
i a i	0 208991	001412 1	- 000203	. 002016 !	1	1	ī	÷	
	0 236882	001105	000506	. 001756 !	2	ī	ō	÷	
	0 351020	. 002075 !	000373	. 002796 !	2	1	ī	÷	
	0.379010	001767 !	0.001489	. 002636 !	2	2	õ	÷	
A I	0.456553	003830 !	000328	. 004616 !	ö	0	2		
	0 473763	002209 1	0.000137	. 003372 !	Э	1	0	٠	
10	0.540525	. 002758 !	0.000283	. 004447 !	Э	0	1	1	
i ii i	0.551306	. 004322 !	O. 000B00	.005520 !	1	1	2	!	
12	0.587901	. 003179 !	0.000195	. 004107 !	Э	1	1		
13	0.646058	. 004764 !	0.000574	.005996 !	2	0	2		
14	0.693434	. 004985 !	-, 001227	. 006193 !	2	1	2	1	
15 1	0,730030	. 003842 !	0.00011B	. 005531 !	Э	2	1	!	
16	0.758021	. 003535 !	0.000273	.006151 !	4	0	0	1	
17 1	0. 919536	. 004726 !	0.001106	. 006380 !	4	1	1	ł	
18.2	0.930316	. 006089 !	0.001031	.007488 !	з	1	2	!	
10.1 !	0, 730316	. 006089 !	0.003280	.009049 !	Э	1	2	1	
1 17.1	0,947526	. 004418 !	0.001182	.005882 !	4	2	0	!	
20.1	1.074620	.008951 !	0.000577	.010396 !	1	0	Э	1	
!!!	1.072440	.006752 !	0.002752	. 008197 !	3	2	2	1	
! 20.2 !	1.074620	. 008751 !	0.003342	.010630 !	1	0	з	1	
!!!	1.072440	.006752 !	0.005517	.008431 !	з	2	2	1	
21.2 !	1,216750	.009614 !	001312	.010686 !	2	0	з		
1 !	1,214570	. 007415 !	0.000B63	.008487 !	4	0	2	1	
! 21.1 !	1,216750	.007614 !	000918	.011222 !	2	0	з	1	
1 1	1.214570	.007415 !	0.001257	. 009023 !	4	0	2	1	
1 22.2 !	1.231780	. 005744 !	0.000727	.007257 !	5	1	0		
! 22.1 !	1.231760	. 005744 !	0.000744	.007157 !	5	1	0		
1 23.1 1	1.264130	. 009835 !	0.001126	.011097 !	2	1	з	1	
	1,261950	. 007636 !	0.003302	. 002897 !	4	1	2	1	
23.2	1.264130	.009835 !	0.001827	.011193 !	2	1	з	1	
!!	1.261950	. 007636 !	0.004002	.008994 !	4	1	2	ł	
24.1 !	1.278550	. 006493 !	0.001501	.007877 !	5	o	1	1.	
!!	1.298550	. 006493 !	6.001501	.007877 !	4	з	1	1	
! 24.2 !	1.309330	. 007857 !	008498	.009115 !	3	Э	2	ļ	
! !	1.278550	.006473 !	0.002283	.007752 !	5	0	1	1	
1 1	1,278550	.006493 !	0.002283	.007752 !	4	з	1	!	
25.2 1	1.309330	.007857 !	0.001728	. 008942 !	з	з	2	•	
1 25, 1 1	1.307330	. 007857 !	0.002022	.008900 !	з	з	2	1	
26.1	1.406250	.010497 !	000835	.011867 !	2	2	з	ł	
1 1	1.404080	. 008297 !	0.001341	.009667 !	4	2	2	ţ	
26.2 !	1.406250	.010497 !	000253	.012512 !	2	2	3	1	
! !	1.404080	.008277 !	0.001922	.010312 !	4	2	2	!	
27.1	1,501010	. 010937 !	- 011773	011967 !	3	1	з	1	
! !	1.488050	. 307377 !	0.001183	.008404 !	5	2	1	ł	
27.2	1.501010	. 010939 !	011328	.011783 !	3	1	з	ł	
	1.488050	. 007377 !	0.001629	. 008220 !	5	2	1	1	
28.1	1.516040	. 007069 !	0.000880	. 007768 !	4	4	0	1	
28.2	1.516040	. 007049 !	0.000918	.007792 !	4	4	0	1	
! 27.1 !	1,610790	.007511 !	0.001390	.008546 !	5	з	0	1	

TABLA V Velores de dcalc (calculados con indices optativos y parametros reciprocos base), diferencias dezp-dcalc e Indices Optativos

Alter and		40.010 1-	Ideals 1	de-dc +- &de-dc ! Indices							
NUMBED	1			(Anost		н	ĸ	1	÷		
: horela	•	Child a c						-	÷		
; — <u> </u>	-	3 248660	007548	0.000000	. 015132 !	1	1	0	7		
	÷	2 488250	009123	0.000000	014966	ī	ō	1	÷		
; 7	;	2 297150	005337 1	0.001390	009818	2	ö	ō	÷		
	÷	2 187940	007357	0.001065	010593	1	1	1	÷		
	÷	2 054630	004774 !	0.002197	. 007637 !	2	1	ō	j		
	i	1 687850	004966	0.000745	.006745 !	2	1	1	÷		
	:	1 624330	001774	- 003181	005648	2	2	ō	i		
i é	÷	1 479980	006249	0 000533	007521	ō	ō	2	į		
i õ	;	1 452850	003376	- 000214	005179 1	3	1	õ			
1 10	÷	1 260170	003707 1	- 000355	005605	ā	ō	ĭ	÷		
1 11	i.	1 244900	005269	- 000976	006768	ī	ī	5	i		
1 12	1	1 204210	003512	- 000217	004568	- 3	ĩ	1	÷		
i 13 i	i.	1 744120	004442	- 000552	005796 1	5	õ	-	÷		
1 14		1 200920	004393	0.001064	005387 /	5	ĩ	5	i		
1 1 1		1 170390	002047	- 000095	004443	5	- 5	7	÷		
14	ì.	1 140500	003448	- 000222	004443	Ă	5	ā	÷		
1 17	í	1 042940	002440	- 000622	003625		ĭ	ĭ	1		
1 10 0	1	1.071700		- 000574	004107 1		•	-	i		
1 10.4	1	1,036780	. 003376 :	- 001922	004167 1	3	•	5	÷		
1 10 1	1	1.030700	. 003378 :	- 000640	. 003048 :		÷	5	÷		
20 1	1	1.02/320		- 000259	004490 1	- 7		ž	÷		
		0.704038	. 003773 :	000237			ž	3	÷		
20.0	1	0.903034	. 003025 :	001237	004707 1		5	5	i		
20,2	2	0. 964636	. 003993 1	001497	.004/92 :	-	2	3	÷		
	:	0.965634	. 003025 !	002474	. 003803 /	2	÷	É	1		
81.2	5	0. 906566	. 003569 !	0.000489	. 004003 !	2	2	3	1		
		0,907378	. 002757 !	000322	.003182 !	- 2		- Z	1		
21.1	1	0.906566	. 003560	0.000342	.004202	- 2	0	3	1		
! !		0.907378	. 002757 !	000467	. 003381	- 1	0	2	1		
22.2	!	0.901016	. 002093 !	000266	. 002660	2	1	0	1		
22.1		0.901016	. 002093 !	000272	.002624 !	5	1	S	1		
23.1		0.889416	. 003449 1	000396	. 003923 !	- 2	1	3	1		
!	!	0.890182	. 002681 !	001162	.003148 !		1	2	1		
23,2	!	0.889416	. 003440 !	000642	003956 !	2	1	з			
f !	!	0.890182	. 002681 !	~. 001408	.003182 !	- 4	1	2	!		
! 24.1 !		0. 877549	.002166 !	000507	. 002667 !	5	0	1	!		
!!		0, 877549	. 002186 !	000507	. 002669 !	- 4	з	1	!		
! 24.2 !	!	0.873929	.002610 !	0.002850	. 003058 !	3	з	2	1		
!!!	!	0. 877549	.002165 !	000770	.002626 !	5	0	1	ļ		
!!!	!	0. 877549	. 002185 !	000770	. 002626 !	- 4	з	1	!		
1 25.2 1		0. 873929	. 002610 !	000576	. 002995 !	Э	3	2	!		
! 25.1 !	ŧ.,	0.873929	. 002610 !	000674	. 002981 !	э	з	2	ł		
1 26.1		0.843273	. 003130 !	0.000250	. 003576 !	2	2	з	1		
! !	t.	0.843926	. 002483 !	000403	. 002915 !	- 4	2	2	1		
26.2		0.843273	.003130 !	0.000076	. 003769 !	2	2	з	4		
!!!		0.843926	. 002483 !	000577	.003108 !	- 4	2	2	1		
! 27.1	1	0.816223	. 002958 !	0.003220	. 003273 !	Э	1	Э	!		
!!!	ŧ.,	0.819768	. 002024 !	000326	. 002322 !	5	2	1	!		
27,2		0.816223	. 002958 !	0.003097	.003223 !	э	1	з	1		
1	!	0.819768	. 002024 !	00044B	. 002271 !	5	2	1	!		
28.1	:	0.012165	. 001887 !	000235	. 002087 !	4	4	0			
! 28.2 !	!	0.812165	. 001887 !	000246	. 002094 !	4	4	0	į		
27.1	!	0. 787916	. 001831 !	000340	. 002096 !	5	Э	0			
1									÷		

I Numero!	1	die		Func. Ne	Ison-Rile	. Funcion	Delta !	Pesos !
de !	Ĥ	ĸ	Ľ.	! cos(The	ta)^2#F/2	10sen(Th	ta)^2#F!	1/&sen !
Iparejat				! F=0	1/sen(The	ta)+1/Thet	a) !	(Th)^2 !
1 1				1	Norma	lizad≞s	!	!
!								
1 1	1	1	0	9.95791	. 010257	17.6292	. 118345!	3873.36!
1 2 1	1	0	-1	2.89394	. 008126	22. 2217	. 142422	2283.271
1 3 1	2	0	0	2.62064	. 006365	23, 5819	. 124456!	2333, 41!
1 1 1	1	1	1	2, 46078	004544	24.4143	. 094614	2852 60
	2	- 1		2.26033	004122	: 23.45/1	. 092400:	2047.17
	1	-		1 1 50454	002036	28.3734	. 071032:	1005 001
	5	5	3	1 1 34434	001899	1 20.0440	0108000	2200 221
	ž	ĭ	5	1 1 31002	002802	1 50 7154	000677	1407 411
1 10 1	ä	â	ĭ	1 1 14145	003147	1 29 8420	085079	1158 69
1 11 1	ĭ	ĩ	-	1 1 13731	002450	1 29 6523	045714	1449 691
1 12	â	ī	ī	1.06441	001730	1 29.7599	044981	1895 09
i ia i	2	ō	2	0.95708	002056	1 29, 4226	049726	1415.54
1 14 1	2	1	2	1 0.88157	001846	1 27.0121	041323!	1448.93!
1 15 1	з	2	1	1 0. 82330	. 002441	1 28. 5787	050369	1024.10
1 16 1	4	0	o	! 0.78240	, 003646	1 28.2066	. 067973!	656. 06!
1 17 1	4	1	1	! 0. 57012	. 001786	1 25.3038	. 016010!	1056. 501
18.2 !	з	1	2	! 0. 56189	. 001357	! 24.9204	. 014301!	1259. 74!
1 18.1 1	з	1	2	! 0. 56570	. 003082	! 25.0966	. 028503!	581.05
1 19.1 1	4	2	0	! 0. 54940	. 001397	1 24.7574	. 013344!	1202.06!
! 20.1 !	1	0	з	! 0. 42273	. 001153	! 21. 5907	. 000576!	1226. 40!
1 1	з	2	2	!		1	!	•
20.21	1	0	Э	0.41420	. 001361	21.2619	. 002335!	1047. 79!
!	3	2	2	!		!		!
1 51.5 1	2	0	3	0. 29637	. 000661	17.1540	. 008623!	1700. 16
	2		2					
2 #1.1 2	-	×	3	0. 30161	. 001093	17.4192	. 015631	1102.89
	- 2	¥.	5	:	000000			
	1	1	×.	: 0.20207 I 0.76077	. 000993	1 16.0033	. 016342!	11/7.02!
1 23 1 1	ž	;	Ä	0.20037	000744	1 15 0111	014270:	1400 481
	2	:	5	: 0. ±0307	. 000768	10.0111	.014234	1430. 85:
1 23.21	2	÷	ā.	0 25713	000836	1 15 5013	016434	1322 501
	4	ī	2			1		- JEE. JU:
24.1	5	ó	ī	0. 23704	. 000824	14. 6387	018845	1298 241
1	4	3	1	1		!		
24.2 1	э	з	2	0.23116	. 000728	14, 3196	. 016928	1437. 02
1 i	5	0	1	!		!	1	1
!!	4	Э	1	!		!		
25.2 !	э	з	2	0. 22371	. 000593	13.9671	. 014018!	1688. 17!
1 25, 1 1	3	з	2	0. 22978	. 000565	14.2510	. 012816!	1761. 57!
26.1 !	5	2	з	0.16332	. 000716	10.9032	. 025418!	1320. 83!
!!	4	2	2	1		!	!	1
26.2	2	2	Э	0. 15791	. 001142	10. 5727	. 042637!	876. 87!
!	4	2	2			!	1	!
27.1	3	1	3	0, 10966	. 000437	7.7574	. 019862!	1815, 32!
	2	2	1		00000			!
. ∠/. ∠	3	1	9.	0.10459	. 000322	7,4194	. 014553!	2265.66!
	4	~	1		000000		!	
28 2 1	7	7	0	0.07283	. 000224	: 6.6893	. 010397!	2820, 171
2911	3	-		0.08809	. 000237	: 6.3635	. 011379!	2/10.81!
47.1 1	5	3	0	0. 03826	. 000373	1 8.4299	. 024053!	1817.68!

W? EValores Utilizados an el Calculo de Parametros de Redj

TABLA VI'

EValores Utilizados en el Calculo de Parametros de Red]

Numerol	1.	dic		Func Ne	1son-Riley	Funcion Delta !	Petos		
de l	Ĥ	ĸ	Ľ	! cos(The	ta)^2+F/2	10sen(Theta)^2#F!	1/ksen !		
1 parela			-	! F=L	1/sen(Thet	a)+1/Theta] !	(Th)^2 !		
1 1				1	No Norma	lizades !	1		
!							·		
1 1	1	1	0	1 3.95791	. 010257	! 17.8272 .118345!	3873. 36!		
! 2 !	1	0	1	2.89394	. 008126	! 22, 2217 . 142422!	2283, 27!		
131	2	0	o	2.62064	. 006365	! 23.5819 .124456!	2333. 41!		
. 4	1	1	1	2. 46078	. 004544	24.4143 .094614!	2852. 60!		
5 5	2	1	0	2.26533	. 004122	! 25.4571 .092455!	2647. 19!		
. 6	2	1	1	1.70213	. 002656	1 28.3734 071032	2410.61!		
	2	2	9	1. 59454	. 002879	28.8446 .078655	1995. 80!		
			2	1.36536	. 001892	27.0142 .052986	2388. 22		
	3			: 1.31072	. 002702	1 20 8430 005070	1467.41		
		•	-	: 1.10143	003147	1 00 0500 04571AL	1440 401		
		- 1	-	1 1 06444	001730	27.0023.003714;	1005 001		
1 12 1		â	÷	1 0 05709	002056	1 39 4334 049734	1415 54		
1 14		ĭ	-	1 0 00150	001846	1 28 0121 041223	1440.00.		
1 15 1	5	÷	- ī	0.00107	002441	1 28 5789 050369	1026 10		
16	4	5	ō	0.78240	003646	1 28 2066 059973	656.06!		
1 17	4	ĩ	ĩ	0.57812	001786	! 25.3038 .016010!	1056, 50!		
19.2	3	1	2	0. 56282	. 001315	1 23.0029 .010460!	1257.74		
18.1	3	1	2	1 0. 56543	. 003036	1 25.0552 .024549!	5B1. 05!		
1 17.1	4	2	ò	1 0. 54895	. 001354	1 24.7186 .009468	1202.06!		
20.1	1	0	з	! 0.42236	. 001117	! 21. 5552 . 003933!	1226. 40!		
1 1	3	2	2	<u>!</u>		1 1	!		
1 20.2 1	1	0	э	! 0.41468	. 001331	! 21.3323 .005659!	1047.79!		
!!!	Э	2	2	1		1 1	:		
21.2 !	2	0	з	! 0. 29686	. 000639	! 17.2108.011326!	1700. 16!		
1 1	4	0	2	1		1 1	1		
21.1	2	0	э	! 0. 30136	. 001069	! 17.3706 .018312!	1102, 89!		
! !		0	2	1					
22.2	2	1	0	0.29336	. 000973	16 6564 018984!	1177. 02		
22.1	5	1	0	1 0.28813	. 000875	16.8559 .016890!	1264.96!		
23.1	1	1	3	0.26285	. 000745	15.7851 .016667	1430. 65!		
		- 1	5	:	000817	1 18 8524 0100341	1222 80		
		-	3	: 0.20700	. 000017	10.0028.010404	1322, 30:		
		â	-	. 0 23484	000805	1 14 4144 021087	1200 24		
1 1	Ă	ă	î	!		1	a a rug, at 41 1		
24.2	3	3	2	. 0. 23155	. 000711	1 14.3670 .019215	1437. 02		
	5	ō	1	!		1			
t i	4	3	1	i		i i	i		
1 25.2	з	з	2	. 0. 22408	. 000576	14.0133 .016241	1688. 19		
25.1 !	Э	Э	2	1 0.22859	. 000546	! 14.2276 .015011!	1761. 57!		
26.1 !	2	2	з	! 0. 16318	. 000703	10.8853 .027068	1320, 83!		
!!	4	2	2	!		!!!			
26.2 !	2	2	з	! 0.15817	. 001132	! 10.6077 .044621!	876. 87!		
!!	- 4	2	2	!		!!!	1		
27.1 !	Э	1	Э	! 0.10957	. 000428	! 7.7447 .021032!	1815.32!		
!!!	5	2	1	1		1 1	!		
27.2	з	1	3	9. 10476	. 000314	1 7.4439 .015756!	2265. 66!		
! !	5	2	1	!		1			
28.1!	4	4	0	0.09276	. 000216	9 6.6783 .011419	2820. 17!		
28.2	1	4	0	! 0.08824	. 000230	1 6.3846 012407!	2710. B1!		
: 29.1 !	5	Э	o	! 0.03823	. 000370	2.9251 .024466!	1817, 68!		

Hay 172 combinaciones diferentes se indexaciones.

Se quieren calcular los parametros de red para SIETE combinaciones de indexaciones.

Se continuo con el calculo de parametros de red, para 7 combinaciones.

TABLA VII

Parametros de red y Red de Bravais encontrados con diferentes indices optativos

Lines	Opcion 1	Opcion 2	Opcian 3	Opcion 4	Option 3	Option 6	Opcion 7
1	1 1 0						
2	1 0 1						
4							
	2 2 2 3						
ě	211						
ž	220	r					
ė	0 0 2						
ý.	3 1 0						
10	301						
11	1 1 2						
12	311						
13	202						
14	212						
15	321						
16	4 0 0						
17	4 1 1						
18.2	312				2000 C. 1997		
19.1	312						
27.1							
20.1	103						
21 2	203						
21 1	2 3 3					702	
22.2	5 1 0				ч U &	- v *	- U 2
22.1	3 1 0						
23. 1	2 1 3		4 1 2	4 1 2			
23, 2	2 1 3		4 1 2	4 1 2			A 1 2
24. 1	501	4 3 1		4 3 1		4 3 1	
24. 2	3 3 2						
25. 2	3 3 2						
25. 1	3 3 2						
26.1	223						
26.2	223						
27.1	313						
27.2	3 1 3						
28. L	4 4 0						
29.2	4 4 0						
29.1	530						
80:	4. 59446	4. 59446	4. 59372	4. 59372	4. 59416	4. 59416	4. 59336
1.2C :	. 00186	L .001961	. 001831	. 001831	. 001835	. 001835	. 001799
_ CO:	2. 76505	2.96505	2. 96599	2.96599	2. 7654	2. 9654	2. 96663
4C8;	.001641	L , 001641	. 001764	.001764	. 001756	. 001756	. 001904
R85 68	-	_		-			
8T#V#19; -	۲	F	P '	P	P	р	P

ili) Sistema hexagonal.

a) Carbón.

Para esta fase se preparó la muestra por el método del cigarrillo. Se expuso a los ravos X durante 20 horas en cámara grande. La radiación utilizada fue debida al Cobre sin filtrar. La equisgrafia obtenida, registrada con el número DS-435, mustra un natrón claro con las líneas de transmisión intensas. aunque las de la zona de retrorreflexión poco intensas. Para las líneas menos nitidas las medidas se realizaron colocando el cursor en los límites interno y externo de cada línea, para las más nítidas se colocó el cursor directamente en su centro. Cada medida se realizó, en promedio, 8 veces. La resolución del vernier utilizado es de .025 mm. En total se observaron 23 líneas de las cuales sólo se identificaron 17 con la tarjeta, las 6 restantes se consideraron como líneas espurias. De las 17 líneas observadas 7 pertenecen a la radiación $K_{\overline{\alpha}}$, 5 a K $\alpha_{,}$ y 5 a K $_{\rho}$.

Archivo de Parámetros de ALAEP para el Carbón AlaepCi 2.Par

Promedio Lim R+Sioma . 025 435

A continuación se muestra el archivo de datos de salida de ALAEP. Se omite el archivo de datos de entrada ya que los datos se encuentran en la Tabla I del archivo de datos de salida.

Achivo de salida de ALAEP para el Carbón.

AlaepCl 2.Sal

CALIBRACION DE LONGITUDES DE ARCO PARA EQUISORAFIAS DE POLVOS

Nombre del Archivo de parametros de entrada: AlaepC12p.Par Nombre del Archivo de datos de entrada: AlaepC12.Dat Nombre de este Archivo: AlaepC12p.Sal

TABLA I Medidas de la Fase de interes.

Num	de	! Num	de!	Cer	10	7	Cen	tro	7	Anch		1.	Sepa	rac	ion	Cer	tre	H.	0 Z	10	enti	-0	Haz
p er	e ja	d med:	ida!	Der	recho	1	Izqu	ierd	0!	un a	TCC	. !	No fu	nci	onal:	Tra	ពេ នគ	ni s :	Lon	! F	letri		f1x
en i	pēl	td/ca	ada!	Cd →	R/	2!	C1 +	- R/	2!	A +	- 6	: !	5n f	+	R	C (t +-	- R.	/2	!	Cr -	+	R/2
		!pari	10	(#	sm)	!	(#	m)	!	(a	m)	!		(mm)	1	(n	\m)		!		(nan)
	. 4	! 1	1 !	112	2. 537		64	. 575		. 4	25	!	47	96	3		88.	35	5	<u>.</u>			
4	4	1	2 !	112	. 525	i İ	64	. 600	1	. 4	25	- 1	47	92	5		88.	56:	3	t			
4	4		3 1	112	. 513	i i	64	. 388	i i	. 4	25	- 1	47	92	5		69.	550	5	i .			
- 4	. 4	1	i i	112	. 550	÷	64	. 638	i i	. 4	25	- 1	47	71	2		89.	57	ŧ .	i			
4	4	1 1	5 1	112	. 550	÷ i	64	. 625	1	. 4	25	- 1	47	92	5		88.	580	3	į			1
4	. 4	! 6	5 1	112	2. 588	1.2	- 64	. 600	11	. 4	25		47	. 988)		88.	59/	•				9
4	4	! 7	7 !	112	2. 513	11	64	. 650	1	. 4	25	. !	47	863	3	!	88.	581	ι.	2			1
4	4	! E	. 1	112	1. 525	1	64	. 600	1	. 4	25		47.	92	5 .		88.	563	3	!			9
- 4		! 1	. !	115	. 150	11	61	. 975	1	. 7	00	1	53.	175	5	!	89.	56;	3 !	!			ļ.
4		: :	2 !	115	. 063	11	61	. 889	1	. 7	00	!	53.	17	5	!	88.	47:	5.	!			1
- 4		! 3	9 I	115	. 063	1	61	. 900		. 7	00		53.	16	2 .		88.	48;	L				5
- 4		ł 4	F 1	115	. 088	. !	61	. 950	1	. 7	00		53.	138	3		88.	519	7	!			1
- 4		! :	5 !	115	. 089	1	61	. 963	1.1	. 7	00	!	53.	12:	3		88.	52:	5 !				1
- 4		! é	i 1	115	. 100	1	61	. 950	1	. 7	00		53.	150)		68.	523	5.	!			1
- 4		! 7	· !	115	. 113	1	61	. 963	: !	. 7	00		53.	. 150) (89.	536	Э :	!			!
- 4		! E	3 !	115	. 125	1	61	. 963	1	. 7	00		53.	16	2 !		88.	544	ŧ !	!			
7.	4	! 1	L 1	128	. 700	1	48	. 550	1	. 0	00		80.	. 150) (68.	62	5.	!			1
7.	4	! :	2 !	128	1. 675	1	48	. 550	1	. 0	00		80.	12:	5	1	68.	613	з '	!			1
7.	4	! 3	1	128	. 675	11	48	. 425	. !	. 0	00	1	BQ.	250)		88.	550)				1
7.	4	! 4	1 1	129	. 625	1	48	. 400	1	. 0	00	!	BO.	22:	5		88.	51:	3.	!			1
7.	4	! :	1	128	. 700	1	48	. 475	1	. 0	00		80.	22	5		89.	588	э '				1
7.	4	! é	. !	128	. 675	1	48	375	. !	. 0	00		80.	300)		88.	52;	5	!			
7.	4	! 7	· !	128	. 675	1	48	. 450	1	. 0	00		80.	22:	5		89.	560	3 !				1
7.	4	! E	11	128	1. 600	1	48	. 500		. 0	00	1	80.	100) !		88.	550)	•			
7.	4	! 9		128	. 725	1	48	. 475	1	. 0	00	- !	80.	250)		88.	600)				
7.	4	! 10) !	128	1. 700	!	48	. 525	1	. 0	00	!	80.	175			88.	610	3 1				
5		! 1	. !	130	. 950	1	46	. 150	!	. 0	00	!	B4.	800) (88.	550) :	2			
5		! :	5 1	131	. 025	1	46	150	1	. 0	00		84.	87:	5		69.	588	3 !	!			
5		! 3	3 !	131	. 000	1	46	. 200	!	. 0	00	!	84.	800) !		68.	600) !				
5		! 4	1 1	131	. 025	1	46	150	1	. 0	00	. !	84.	875	•		88.	566		2			
5		! 5	5 I	130	. 975	1	46	150	1	. 0	00		84.	825	5		88.	560		!			
5			1	131	. 025	1	46	125	1	. 0	00	!	B4.	900)		68.	57:	5 9	!			
5		! 7	r 1	131	. 000	1	46	200	1	. 0	00		84.	800) !		88.	600)				1
		. P		131	025		46	125		•	00		84	800			00	871					

Continuación de la Tabla I del Achivo AlaepCI2.Sal

	7	1 1	133.200 1	44.000 !	. 000 !	87, 200	1.	88, 600	1
;	7		1 133 175	44 000	000	89.175	÷.	88, 588	1
	÷ .		133 200 1	44.000 1	000	87, 200	- i	BB. 600	÷.
1	÷		1 133 200 1	43 900 1	000	87.300	i.	88 550	÷.
÷	7		1 133 174 1	44 000 1	000	89 175	i.	88 588	÷.
÷	, 'r		+ 133 175 4	43 925 1	000	89, 250	- i	88.530	i.
1	4		1 133 200 1	44 000 1	000	89 200		88 600	i.
1	÷.		1 133 200 1	44.000 1	000	89 200	i	88 400	
	10 4		1 137 512 1	39 400 1	375 1	98 112		88 456	i.
	10.7		1 107.400 1	39. 743 1	375	00 175		00,400	÷.
1	10.4		1 107 400 1	30 313 1	375 1	00 125		89 375	÷
÷	10.4		1 137.450 1	37.313 :	275 1	30 150		00 707	÷
1	10.4		1 137 475 1	20 225 1	375 1	99 100		00.007	÷
1	10.4		1 100 420 1	37.327	375	00.107		88 249	÷
1	10.4		1 137.430 1	37.300 :	275	70.137	- 1	09 297	
1	10.4	íá	1 107 475	37.320 :	275 1	00 143	-	00.307	÷
1	10. 4		1 140 110 1	37. 313 :	375 1	100 470		00, 374	i
1	10		1 143.113 1	22 778 1	375 1	109.430	- 1	00.374	1
1	10		1 142 180 1	33.775 1	. 375	100 425		00,444	1
1	10		1 142 100 1	33.723 :	275 1	100 475		00,430	1
1	10		1 143,100 1	33.713 :	. 375 1	107.475		00,450	1
1	10		1 143.103 :	33.763 :	.375 1	109.440		00,403	1
:	10		1 140 140 1	33.713 :	.375	107.483	-	00.477	1
1	10		2 193.103 2	33.713 :	. 375	107.450	1	00.430	1
1	10		143.130 :	33.738 :	. 375 :	107.413		00,444	1
1	11		148.473	28.430 1	.000	120.025		00,403	1
1	11		148.400 :	28.330 :	.000 :	117.850		88.475	÷.
1	11		148.473 :	20.473 !	.000 !	120.000		88.475	
1	11	: 1	148.525 1	28.475	.000 !	120.050		88, 500	1
1	11		148.450 :	28.400	,000	120.050	1	88, 425	1
1	11	-	148.450 !	28.500 1	.000	119.950	1	88.475	
1	11		148,4/3 !	28.425	. 000	120.050	1	88, 450	1
1	11		148.525 !	58. 200 1	.000	120.025		88.512	÷.
1	12.4		157.425	19.600	.000	137.825	1	88, 513	
1	12.4		1 1 37, 430 1	19. 575 !	.000	137.875	1	88. 512	÷.
1	12.4		1 157. 425	19.600	.000	137.825		88, 513	÷.
1	12.4		137.475	19.600	.000	137. 875		88, 538	
1	12.4		157.400 !	19.600 !	.000	137.800		88, 500	÷.
1	12.4		107.475	19. 575	.000	137.900		88, 525	1
1	12.4	7	157.450	19.600 !	.000 !	137.850		88, 525	!
5	12.4		157.425	19. 550 !	,000 !	137.675		88, 488	1
	13.4	1	162.675	14. 500 !	. 000	148. 175		88. 588	÷.,
1	13.4	2	! 162.725 !	14.425 !	. 000	148.300		88, 575	1
!	13.4	Э	162.650	14.375 !	.000	148. 275	1	68.512	1
!	13.4		162.750	14.325 !	.000.	148. 425	1.	68. 537	1
1	13.4		162.675	14.425	. 000	148.250		88. 550	ł
1	13.4	6	162.650	14.300 !	. 000	148. 350	1	88.475	ł.
1	13.4	7	162.750	14.375 !	.000 !	148.375	· !	88. 563	!

317

!
Continuación de la Tabla I del Achivo AlaepCi 2.Sal

										· .			
1	12		1	1	166.163 !	10.950 !	. 225		155.213		88.356	1	•
1	12		2		166 188 !	10.925 1	. 225	<u>۲</u>	155, 262		68. 556	1	
	25	:		-	144 700 1	10 013 1	225	÷	155 397		88 556	i	
÷.	140		-		100.200 :	10.713		1	100.207	:	00.000	:	- :
	12	1	- 4		166.137 !	10.925	. 225	1	135, 212		88. 231	:	
	12	1	5	1	166.213 !	10.925 !	. 225	!	155. 288		88. 569	ł	- ÷
÷.	12		Ā	÷	166 175 1	10 938 1	225		155, 238		68, 556	1	
1	15	:	- -	:	444 010 1	10.050	208	;	155 040		00 501	i	
÷.,	14				100.213	10. 950 1		÷	133.203		00.701	:	
1	12		8	1	166.188 !	10.925 !	. 225	÷	155.262		88. 336	1	
1	13		1	1	172.300 !	4.950 !	. 000		167.350		68. 625	1	
÷	1.73	÷			179 975 1	4 075 1	000		167 400		88 575	1	
1	13			1	172.275	4.075		1	107.400		00.400	:	
	13	:	Э	:	172.325 !	4.8/3 :	. 000	:	107.430		88. 800	-	
	13		4	1.	172.325 !	4.900 !	. 000	<u>!</u>	167, 425		88.612	!	- 1
÷	13	1	5		172.300 !	4.900 !	. 000		167.400		89. 600	1	
÷	17	- i	4	÷	172 275 1	4 000 1	000		167 375		68 597	1	
1			<u> </u>		170.000	4 000 1		1	147 350		00 575		
÷.	13			1	172.200 :	4.900 1	. 000	÷	107.350	-	00. 373		
1	13		8		172.300 !	4.900 !	. 000		167.400		88. 600	!	
1	14.	1 !	1	!	175.650 !	1.538 !	. 300	<u>.</u>	174. 113	!	88. 594	1	
i.	14	1 1		÷	175 550 1	1 5 3 67 1	300		174 012		88.544	1	,
1		. .	-	:	170.000 .	1		:	174 075	:	80.400	:	
Ξ.	14.	1 :	3		175.638 :	1. 203 2	. 300	÷	174.075		00.000		
1	14.	11	4		175.588 !	1.575 !	. 300		174.013		98. 581	1	
	14.	1 !	5		175.600 !	1.575 !	. 300	1	174.025	- I	68. 389	1	
÷	14	4 i			175 550 1	1 468 1	300		174 043		88 519	i i	
1		2 2	- -		478 445 1	1 400 1			174 110		00 884	:	
:	14.	1 !			1/5.613 !	1, 500 !	. 300	۰.	174.113	:	68. 336	:	
1	14. :	1 !	8		175.588 !	1.550 !	. 300	1	174.039		88. 569	1	
1	15.	1 !	1	1	190.550 !	346.700 !	. 000		156, 150	2		! 268.625	5 1
÷.	15			÷.	190 550 1	346 725 1	000	i i	156 175			248 438	
÷.		::			100 580 1	744 775 1		1	164 178	:		1 349 499	
	10.	1 1			140.550	340.723	. 000	÷	136.175	-		: £00.030	
1	15.	1 !	- 4	1	190.500 !	346.650	. 000	!	156.150			268.575	5 I
	15.	1!	5	1	190, 500 1	346.725 !	. 000	1	156. 225			1 268, 613	
÷	15	i i .	Ā	÷.	190 525 1	346 675 1	000	i i	156 150	i		1 249 400	
1				-	100 475 1	244 700 1		:	18/ 008			1 240 500	
÷.	15.	1 :		•	190.475	346.700 1	. 000		136. 223			208.386	
	15, 1	1 !	8	1	190.500 !	346.700 !	. 000	1	156.200			268, 600) !
	16. 1	1 !	1	1	221.950 !	315.425 !	. 000	<u>۱</u>	93, 475	- t		1 268, 688	3 !
	16	1 1	2		221 900 1	315 425 1	000	i -	93 525	- i		1 248 A43	i i
	44			÷	221 076 1	015 ASO 1		÷	00.475			. 200.000	
	10.				221. 7/3 :	313.430			73.973			2 200, 713	
	16.3	1 !	4		221.900 !	315.425 !	. 000	1	93. 525			268, 663	
1	16.	1 !	5	!	221.975 !	315.450 !	. 000	1	93.475	. t		1 26B. 713	
	16 .	• •	6		221 900 1	315 350 1	000	÷.	97 450	÷.		1 248 124	
÷	14		-	÷	221 850 1	G18 400 1	000		00.480	· :		1 0/0 /28	
1	10.			1	221. 700 :	313.400 :	. 000		43.430			: KOD. 0/3	
۰.	16.1	1 !	в	1	221.925	315.425 !	. 000	1	93, 500	- 1		268.675	, ·
÷.	17. :	1 !	1	1	225.975 !	311.388 !	1.250	!	85. 413	1		268.681	. 1
	17.	1 !	2	ŧ	226.137 !	311.613 1	1.250	1 - I	85.475	1		268 875	5 8
÷.	17			i.	225 000 1	211 400 1	1 780	÷.	06 410			1 2/0 204	: :
÷.	47				223.900 :	311.600	1.250	÷	85. 813			268.794	
	17.	r i	4		259.052	311,425 !	1.250		85.400			268,725	
<u>و</u>	17. :	1 !	5	1	225.875 !	311.425 !	1.250	1	85. 550			! 268.650	
	17.1	1 1	6		225.913	311.487 /	1.250		85 575			268 700	i i
	17		-	i.	225 042 1	311 378 1	1 280	÷.	08 810				
	17.		<u> </u>	1	223.003	311,373	1. 200		63. 31g			. TOO. 014	
1	17. 3	r i	в	:	242, 813	311.500 /	1.250	1	85.628			268, 656	. !
!	18. 1	1 !	1	1	237.425 !	300.000 !	. 000 .	:	62, 575			1 268.712	2 1
۰.	18.1	1.1	2		237. 500 1	300 025	000		62 525	- i -		1 249 743	i i
	10		-		237 474 1	200 025	000	÷ .	47 580	i		1 740 700	
	40.1			÷	237. 473	000.020	. 000	1	02.000	÷.		200,750	
!	18.1	L 1	4	:	237.430 !	300,100 1	. 000	:	62.650			268.775) (
٤.	18.1	11	5	1	237.550 !	300.000 !	. 000	÷	62.450			1 268.775	
	18.1	11	6	1	237, 550 1	299,950	. 000	1	62, 400			1 268.750	, i
÷	18	i i .	7	i.	237 400	300 050	000	÷.	47 450			1 740 700	
÷	10.1	• •	'	٠	237.400	330.030 :		•	0 a. 0 J U	:		: 200.723	, ;

10060	* *		•	 	
		the second	_	 	

Haz!
flx!
2/2
!
!
- 1
1
1
- i
i
- i
- 1
en i
70 1
30 1
00 3
7730

El archivo de parámetros de INXPAR para el Carbón se creó con las siguientes opciones: indexar el patrón, normalizar a la longitud de onda K_{β} ; no asignar lineas experimentales que se van a probar como líneas base; probar máximo con tres líneas experimentales cada línea base; cero líneas sin identificar y 9 el valor máximo de los indices por asignar. A continuación se muestran los archivos de parámetros de entrada a INXPAR. Sólo por mostrar el formato del archivo de datos, en este caso también se muestra, y posteriormente el archivo de salida.

319

Archivo de parámetros de INXPAR para el Carbón.

InxparCl 2.Par

Ind	
0	
Cu	
435	
K alfa-p,	7
K alfa-1,	5
K alfa-2.	0
K beta, 5	
K beta	
Hexagonal	
N -	
3	
0	

Archivo de datos de INXPAR para el Carbón

InxparCl 2.Dat

4		53, 1547		. 0426
. 5		84, 9469	,	. 0702
7		89. 2125	,	. 0673
10	- ia -	109. 4250	,	. 0683
11		120.0000		. 0744
12	,	155. 2530		. 0547
13		167. 3740		. 0597
14. 1		174. 0560		0662
15.1		203.8190	,	. 0570
16.1		266. 3160		. 0547
17.1		274. 4720	,	. 1236
18. i		297, 4570		. 1193
4.4	÷	47, 7281	,	. 0614
7.4	,	60, 2025		. 0879
10.4		98, 1297	,	. 0450
12.4		137.8530		. 0589
13.4		148. 2770	,	. 1078

Archivo de salida de INXPAR para el Carbón InxparCl 2.Sal

INDEXACION DE PATRONES DE DEBIJE-SCHERRER Y CALCULO DE PARAMETROS DE RED IMAPAR

Nombre del Archivo de Parametros de Entreda: InxparCl2.Par Nombre del Archivo de Datos de Entreda: InxparCl2p.Dat Nombre de este Archivo: InxparCl2p.Sal Cond. Exp.: Camare: G. Radiscion: Cu. Equisgrafia DS: 435

TABLA I (Longitudes de Onda Utilizadas)

Ĩ	Radiacion Cu	!	Long. de Onc (Angstroms)	dal } !	Incertidumbr (Angstroms)	•	Numero de líneas medidas	!
Ŧ	K alfa-p	1	1. 54178	•	. 00006	1		<u> </u>
Ţ	K alfa-1	!	1. 54051	. !	. 00006	1	5	1
1	K alfa-2	!	1.54433		. 00006		0	!
1	K beta	!	1. 39217	ŗ	. 00006	!	5	!

Long, usada p/normalizar mediciones de las longs, de arco: K beta

TABLA II

Promedios de las longitudes (Berp) de arco (valores experim, introducidos), Angulos (Theta) de Bragg (calculados a partir de Serp) u Distancias (dexo) Interpolanares (calculadas a partir de Tweta)

Numero de	1 1	Longitud	de Arco	!	Angulo de Bragg	!	Distancias Interplanares
ipareja en	1	Sexp +	- &Sexp	!	Theta +- Θ		dexp +- &dexp
pelicula.	1	(80	1	!	(grados)		(Angstroms)
!					Para K al*a p		
4	!	53.1547	.0426	!	13.2887 .010650	1	3.3538 .003056
! 5		84. 8469	. 0702	:	21.2117 .017550	ţ	2.1306 .001946
! 7	!	89. 2125	. 0673	:	22.3031 .016825		2.0313 .001707
! 10	t :	109. 4250	. 0683	!	27.3563 .017075	1	1.6776 .001175 .
! 11	1	120.0000	. 0944	1	30.0000 .023600	. !	1.5418 .001292
12	:	155.2530	. 0547	1	36.8133 .013675	1	1.2299 .000518
! 13	1	167.3940	. 0597	÷	41.8485 .014925	1	1.1555 .000480
!					Para K alfa 1		
14.1	į –	174.0560	. 0662	:	43. 5140 . 016550	!	1.1187 .000480
15.1	1 3	203.8170	. 0570	۰.	50.9548 .014250		0.9918 .000324
16.1	1 1	266. 5160	. 0547		66.6290 .013675	.!	0.8371 .000191
17.1	1 1	274. 4720	. 1236	1	68.6120 .030900		0.8272 .000278
18.1	1.1	297. 4570	. 1173	!	74.3643 .029825		0.7999 .000216
!				_	Par# K beta		
4.4	!	47.9281	. 0614	Ŧ	11.9820 .015350	!	3. 3529 . 004372
5.4	!	80. 2025	. 0879	1	20.0506 .021975	!	2.0303 .002218
10.4	!	98. 1297	. 0450	!	24. 5324 . 011250		1.6765 .000793
12.4	1	137.8530	. 0589	!	34.4633 .014725		1.2301 .000513
13.4	1	148. 2970	. 1078	÷	37.0743 .026950	1	1.1547 .000768
!							

Continuación del archivo inxparCI2.Sal

TABLA III (Funciones calculad#s a partir de Sen(theta))

Numero	de	!	ESena (theta)]^2 !		[Seno (theta)]^2	1	Gexp +- &G	exp Ordenados	
parej	æ	!	No Norm	nalizados !		Norma	lizados	!	Gerp=4sen(Theta)^2/Lambda	^2
4	_	!	. 052834	. 000083 !	-	. 043076	. 000075	Ţ	0.088906	. 000162244	
! 4.	4	1	. 043100	.000109 !		. 043100	. 000107	!	0.088951	. 000232399	
: 5		!	, 130910	.000207 !		. 106737	. 000186	ŗ	0. 220287	. 000402987	
. 7	-	ţ.	. 144025	. 000206 !		. 117430	. 000187	!	0.242356	. 000407800	
! 7.	4	ŧ	. 117546	.000247 !		. 117516	. 000247	Ł	0.242597	. 000531018	
10		1	. 211160	.000243 !		. 172168	. 000227	Ł	0.355326	. 000478384	
! 10.	4		. 172398	. 000148 !		. 172392	. 000148	1	0.355601	. 000336885	
! 11	1	!	. 250000	. 000357 !		. 203835	. 000324	1	0.420683	. 000705717	
12.	4		. 320217	. 000240 !		. 320217	. 000240	!	0.660877	. 000551999	
12	1	2	. 392858	. 000233 !		. 320314	. 000243	!	0. 661076	. 000557482	
13	1		. 445107	.000257 !		. 362914	. 000271	!	0.748996	. 000623047	
13.	4 !		. 363427	. 000453 !		. 363427	. 000453	!	0.750055	. 000998676	
14.	L 1		. 474076	. 000298 !		. 387172	. 000299	!	0.799059	. 000685990	
15.	1 1		. 603183	. 000243 !		. 472612	. COO2BO	!	1.016670	,000664711	
16.	L !		. 842642	.000174 !		. 668175	. 000255	!	1.420280	. 000647902	
17.	L 1		. 867078	.000366 !		. 708131	. 000415	!	1.461470	. 000782404	
18.	L !		. 927359	.000270 !		. 757361	. 000345	!	1. 563070	. 000846148	

PARAMETROS DE ENTRADA:

Sistema a probar: Hexagonal

Opcion utilizada:

 Asignar Indices en una Equisgrafías de polvos y (opcional) a partir de ellos calcular los Parametros de Rad.

El intento de indexacion NO se hara asignando las lineas experimentales con las que se emperaran a probar como lineas base y asignandoles indices especiales.

Numero maximo permitido (Lb) de asignaciones de valores diferentes de Gexp a cada una de las lineas base: 3

Numero (Nt) de lineas toleradas sin identificar: O

Valor (Imax) mas alto de los indices por asignar: B

Numero de linea experimental que se prueba

como Primera Linea Base: 4

Numero de linea experimental que se prueba

como Segunda Linea Base: 5

TABLA IV

Valores de Gcalc (calculados con indices optativos y parametros reciprocos base), diferencías Gexp-Gcalc e Indices Optativos

ĩ	Numero	1	Qcalc +-	&Qcalc	Ŧ	Ge-Oc +-	&Ge-Oc	1	Inc	110		!
ţ	pareja	1	(Angstr	oms^-2)	ţ	(Angstr	oms^-2)	ŗ	н	ĸ	Ļ	- 1
ł	4	7	0. 088906	. 000162	ī	0.000000	. 000324	1	0	0	2	7
£	4.4	1	0.088906	. 000162	!	0.000045	. 000394	1	0	0	2	1
Ł	5	t	0. 220287	. 000403	ţ.	0.000000	. 000806	1	1	0	0	
!	7	1	0.242514	000444	!	000158	. 000851	1	1	0	1	1
ŧ	7.4	1	0.242514	. 000444	1	0.000083	. 000974	1	1	0	1	!
1	10	:	0.355625 -	. 000649	ŗ	000299	. 001147	1	0	0	4	1
ŧ	10.4	÷£.	0.335625	. 000649	£	0.000176	. 000985	5	0	0	4	1
ŧ	11	ţ	0. 420326	. 000768	1	6. 000357	. 001473	1	1	0	Э	!
÷	12.4	1	0. 660861	. 001209	ŗ	0.000015	. 001760	!	1	1	0	!
£	12	1	0. 660861	. 001209	!	0.000214	. 001765	!	1	1	0	ŗ
÷.	13	1	0.749768	.001371	!	000772	. 001993	1	1	1	2	
÷.	13.4	÷.	0.749768	. 001371	į.	0.000288	. 002369	÷.	1	1	2	
1	14.1	ţ	0.800156	. 001460	!	001097	. 002145	÷	0	0	6	!
1	15.1	ŗ	1.016490	. 001852	ţ.	0.000184	. 002521	1	1	1	4	!
ŝ.	16.1	i	1. 422500	. 002576	1	002219	. 003241	÷.	ō	ō	8	ġ
£	17.1	!	1.461020	. 002669	!	0.000450	. 003649	1	1	1	6	1
ţ	18.1	Í.	1. 564240	002861	!	001166	. 003705	÷	2	1	1	- i
ŝ										-	-	į

TABLA V

Valores de deale (calculados con indices optativos y parametros reciprocos base), diferencias dexp-deale e Indices Optativos

ī	Numero	!	dcalc +	&dcalc	1	de-dc +-	- ûde-dc	1	In	lice	2 5	1
!	parels	!	(Anget	roms)	!	(Angsi	roms)	!	н	ĸ	L	1
:	4	-	3 353780	003054		0.000000	006117	.				4
ţ	4.4	i	3. 353780	003056	į	-, 000842	. 007433	i	ŏ	ŏ	2	ì
ļ	5	ŧ	2.130620	. 001946	!	0.000000	. 003896	1	1	ō	ö	į
ŧ.	7	!	2.030630	. 001854	ł	0. 000660	. 003565	!	1	0	1	į
ļ	7.4	!	2.030630	. 001854	!	000346	. 004076	ł	1	0	1	i
	10	!	1.676890	. 001528	!	0. 000704	. 002706	ł	0	0	4	i
	10.4	1	1.676890	.001528	!	000415	. 002324	÷	0	0	4	1
	11	1	1. 542430	. 001407	!	000655	. 002701	1	1	0	з	ŧ
2	12.4	!	1.230110	. 001124	!	000014	. 001639	ł	1	1	0	!
	12	1	1.230110	. 001124	1	000199	. 001644	!	1	1	۵	
	13	1	1.154880	. 001055	+	0.000595	. 001537	4	1	1	2	ţ
!	13.4	1	1.154680	. 001055	1	000221	. 001824	4	1	1	2	4
	14.1	!	1.117930	, 001019	1	0.000767	. 001300	4	0	0	6	1
	15.1	1	0. 991857	. 000905	1	000090	. 001231	1	1	1	4	1
	16.1	1	0.838444	. 000764	1	0.000655	. 000957	4	0	0	8	- 1
:	17.1	1	0.827318	. 000755	1	000127	. 001034	1	1	1	- 6	1
:	18.1	1	0. 799556	. 000730	:	0.000298	. 000949	1	2	1	1	1
ι.												

Hay una indexacion. Se quieren calcular los parametros de red para TODAS las combinaciones de indexaciones.

Se continuo con el calculo de parametros de red, para una combinación.

TABLA VII Parametros de red y Red de Bravais encontrados con diferentes indices optativos Linea Opcion 3 Opcion 4 Opcion 1 Opcion 2 Opcion 5 Opcion 6 Opcion 7 4,4 5 7,7 10 10,4 11 12,4 12,1 13,4 14,1 15,1 16,1 17,1 18,1 00111001111101012 00000001111010 22011443002244841 1 1 ao 2. 46066 . 000441 6. 71158 . 001240 &au: cu: &co: Red de Bravais: •

324

Continuación del archivo InxparCi 2.Sal

b) Cloruro de estroncio hidratado, SrCl - 6H O.

Para esta fase se preparó la muestra por el método del capilar. Se utilizó Silicio como fase patrón, aunque posteriormente no se corrigieron las longitudes de arco experimentales. Se expuso a los ravos X durante 50 horas en cámara grande. La radiación utilizada fue debida al Cobre Niquel. La usando filtro de equisgrafia obtenida. registrada con el número DS-404, mustra un patrón claro con líneas nitidas. Las medidas se realizaron colocando el cursor directamente en el centro de cada línea. La resolución del vernier utilizado es de 025 mm. En total se observaron 62 líneas de las cuales se identificaron 44 con la tarjeta, 6 cuyo ángulo de Bragg es cercano a los 45°, 17 líneas de la zona de retrorreflexión y una en transmisión que no aparecen en tarjeta. De las 38 lineas identificadas se escogieron 36, 32 que pertenecen a la radiación K₂, 2 a Ka, y 2 a Ka. Todas estas lineas pertenecen a la zona de transmisión.

Archivo de Parámetros de ALAEP para el SrCl₂·6H₂O AlaepStron36.Par

> Promedio Cen R+Sigma Q ,025 404

A continuación se muestra el archivo de datos de salida de ALAEP. Se omite el archivo de datos de entrada ya que los datos se encuentran en la Tabla I del archivo de datos de salida.

Achivo de salida de ALAEP para el SrCi₂·6H₂O AlaepStron36.Sal

CALIBRACION DE LONGITUDES DE ARCO PARA EQUISGRAFIAS DE POLVOS

Nombre del Archivo de parametros de entrada: AlaepStron36.Par Nombre del Archivo de datos de entrada: AlaepStron36.Dat Nombre de este Archivo: AlaepStron36.Bal

TABLA I Medidas de la Fase de interes.

_					_	_		_			_	_	_	_		_		_	_	_				_			_
ŗ	Num	de!	Num	de		Cent	tro	!	Cer	itri	0	! A	ncl	ho	de!	!	Separ	act	on	! C	entro	۶ŀ	la z	ł	Cent	ro	Ha z !
!	pare	i ja!	medi	i d a !	!	Dere	rc h O	1	Izqu	ie	raa	t u	n a	arc	e 1	1	∜o fun	cic	inal	!Τ	ranse	n i s	iion	11	Retr	07.4	#1 x!
!	en j	e 1!	d/c/	nda!	! C	:d +-	- R/	2!	Ci	- 1	R/2	1	٩·	+-	R	!	Snf	+-	R	1	Ct +-	- 8	1/2	ł	Сr	+	R/2!
ł		. !	pare	eja!	!	(mi	n) –	!	n)) m		±	۱,	nm)		•	(ጠጠ]	1	!	<u>(</u> п	(an		!		(៣៣	0 1
ł																											!
!	1	. !	1	1 1		101.	300	1	75	. 6	13	!	. :	375		•	25.	686	1	!	88.	45	÷÷-	1			
ŗ	1			2 9	!	101.	287	1	75	1. 6	50	!	. :	375	1	!	25.	637	r	!	86.	46	9	ļ			
•	2		1	1 9		110.	775		- 66	. 12	23	<u>۱</u>	. :	375			44.	650) .	•	69.	45	50	1			
•	2	. ,		2 !	1	110.	800) :	- 66	. 10	00	!	. :	375		!	44.	700)	!	88.	45	90	ł			!
!	Э	. !	1	1 1		113.	600	1	- 63	1. 30	00	!	. 4	450		!	50.	300) .	<u>!</u>	88.	4	90	1			
!	з			2 9	1	113.	900	1	63	1, 21	87	!	. 4	450		:	50.	313	3	!	88,	44	4	ł.			!
!	4	. !	1	1 !		114.	425	1	65	. 63	38	<u>؛</u>	. :	350	- 1	!	51.	788	3	!	88.	53	31	!			
!	4	. !		2 9	!	114.	438	11	6	. 6	25	!	. :	390		!	51.	813	3	•	88.	53	2	ł			
ł	5	. !	1	1 1	!	119.	650	11	57	. 2:	50	t -	. :	338	1	!	62.	400)	!	89.	4:	50	1			
!	5	. !		2 !	!	119.	662	1	57	. 2	63	!	. :	338	1 1	!	62.	400)	•	BB.	46	2	ŗ			1
!	- 6	. !	1	1 !	!	122.	325	1	54	. 5	50	!	. :	325	6 3	ļ	67.	77	5	!	89.	43	38	!			
!	- 6			2 !	!	122.	287	'!	54	. 5	50	!	. :	325	- 1	•	67.	737	7	!	89.	41	9	ł			!
!	7	. !	1	L !		122.	863	11	53	. 92	25	:	. 1	200	1	<u>.</u>	68.	938	3	!	88.	39	74	!			!
!	7	. !		2 !		122.	875	1	53	. 9	12	<u>t</u>	. 6	200	- 1	•	68.	963	3	!	88.	39	74	ł.			
!	8	!	1	1 1		127.	600	1	49	. 33	25	ł.	. :	350	1 2	!	78.	275	5	!	88.	46	3	ŗ			
ŗ	8	. !	1	2 9		127.	600	1	49	. 20	87	1	. :	350		!	78.	313)	!	88.	44	4	ł.			
٩.	9	. 1	1	L !		127.	387	1	47	. 50	00	!	. :	375		1	B1.	867	, I	!	88.	44	3	i.			
!	9	!		2 !	1	129.	413	1	47	. 30	00	<u>؛</u>	. :	375		•	81 .	910	3	!	89.	45	56	1			- i
1	10		1	L !	1	132.	350	1.1	44	. 54	63	!	. :	350		!	87.	768	3	!	88.	45	56	÷.		٠	
1	10			2 9		102.	375	1	44	. 53	37	!	. :	350		!	87.	838	3	1	99.	45	6	1			i i
!	11		1	1 !		133.	675	1	43	2. 30	00	!	. :	300		•	90.	37	5		88.	4E	88	i.			
ł	11		-	2 1		103.	650	11	43	1. 27	75	÷ .	. :	300		!	90.	37:	5	<u> </u>	88.	46	3	÷.			1
ţ.	12	1	1	1 !		134.	125	11	42	2. 73	75	!	. 4	275		•	91.	350)	!	88.	45	50	È.			- i
1	12	!		2 !		134.	113	11	43	. 7	50	ŧ.	. :	275			91.	363		i .	88.	43	12	i.			
!	13		1	1 !		134.	462		42	. 40	00	!	. :	250			92.	063	2	•	88.	43	31	1			i i
ŧ	13			2 9		134.	425	1	42	. 50	00	1	. :	250			91.	92:	5	i .	88.	44	э	i.			
	14	. !	1	1 1		138.	250	i i	36	. 60	00	i.	. :	300		È.	99.	650	`		68.	42	25	i.			
!	14	- 1		2 !		138.	275	÷.	36	. 5	75	i i		300			99.	700)		98.	42	5	÷			i
!	15		1	1		140.	200	÷.	36	. 73	37	i.		275			103.	465		i i	68.	46	9	i.			i
•	15			2 1		140.	200	1	34	. 7	75	!		275		•	103.	42	ł		66.	48	B	į.			1
ļ	16	- 1	1	1		141.	188	ΕĒ	35	. 6	75	i.		325			105.	513			88.	43	2	÷			i
	16			2 1		141.	225	÷	35	. 6/	52	i i		325	. 1		105.	563		j.	89	44	4	i			;

1	17	1	1	ŗ	145.400 !	31.500 !	. 350		113.900	1	88.450 !
÷	17		2		145.375 1	31.487 !	. 350		113.668	!	88.431 !
i	18	i i	1	÷.	146.375 !	30.462 !	. 350	1	115. 912	1	BB. 419 !
i	18	i i	2	÷	146.413 !	30.462 !	. 350	1	115.950		88,438 !
ï	19		1	÷	148.750 !	28.125 !	. 250	1	120. 625		88.438 !
i	19	11	2	i.	149.788 !	28.163 !	. 250		120.625	1	88.475 !
;	20	÷ .	1	i	150,100 !	26.775	. 300	1	123.325	•	88.433 !
÷	20	i i	ž	÷	150, 113 1	26.800 !	. 300	!	123. 313		BB. 457 !
÷	21	i i	1	i.	131,400 1	25. 513 !	. 350	:	125. 987	!	88.456 !
÷	21	i i	2	i.	151.400 !	25, 500 1	. 350	1	125. 900		BB. 450 !
÷	22	i i	ĩ	÷.	153.700 !	23.337 !	. 300		130. 363		89.517 !
÷	22	i .	2	i	153.650 !	23, 225 !	. 300	1	130. 325	!	88.487 !
÷	23	÷	ī	÷	155.175 !	21.775 !	. 300	1	133.400	1	88.475 !
÷	23	i.	2	÷.	155, 175 1	21.775 !	. 300	÷	133.400	!	88.475 !
i.	24	÷ .	1	÷	158,212 1	18,725 !	. 300	÷.	137.487	1	88,469 !
i	24	÷.	2	÷.	158.238 !	18.763 !	. 300	1	139.476	1	88.500 !
÷	25	<i>i</i> .	1	÷	159.675 !	17.462 1	. 200		142.213	÷	88.567 !
÷	25	i.	2	÷	159.663 !	17.550 !	. 200	÷	142.113	1	88.606 !
÷	26	i.	1	÷	159,900 !	17.200 !	. 200	÷.	142.700	!	88.550 !
1	26	1	2	1	159,900 !	17.212 !	. 200		142. 688	1	88, 556 !
1	27	1	1	1	160,650 !	16.300 !	. 350	1	144. 350		88.475 !
1	27	1	2	1	160.650 !	16.300 !	. 350		144. 350		88.475 ! .
!	26	1	1	1	161.425 !	15.775 !	. 350		145.650	•	88.600 ! .
1	28	!	2	1	161.413 !	15.850 !	. 350	!	145. 563	1	68, 632 !
÷	27	1	1	!	162,800 !	14.313 !	. 213	1	148. 488	: :	88.556 !
1	29	!	2	1	162.700 !	14.275 !	. 213	1	140. 425		88.487 !
!	30	!	1	1	163.688 !	13.350 !	. 400	<u>.</u>	150.336		88.517 !
1	30	!	2	1	163,688 !	13,262 !	. 400	t -	150. 426		88.475 !
ŧ	31	!	1	1	164, 250 !	12.675 !	. 313	1	151. 575	1	88.463 !
1	31	!	2	ł	164,250 !	12.675 !	. 313	1	151. 575	!	88.463 !
1	32	1	1	1	165, 125 !	11.938 !	. 200		153. 188	•	88.531 !
!	32	!	2	!	165.150 !	11.850 !	. 200	!	153. 300	!	58.500 !
	33. 1	1	1	1	167,125 !	9.925 !	. 225	1.1	1 57. 200	!	88. 925 !
ŧ	33. 1	£	2	Ł	167.125 !	9.900 !	. 225	1	157.225	!	88.512 !
1	33. 2	1	1	!	167, 275 !	9.637 !	. 150	1	157.738	!	88.506 !
ł.	33.2	!	2	ł	167.375 !	9.700 !	. 150	1	157.675	1	88. 537 !
1	34. 1	!	1	!	175.775 !	1.375 !	. 150	1	174. 400	!	88. 575 !
!	34.1	:	2	!	175,800 !	1.400 !	. 150	!	174.400	!	BB. 600 !
1	34.2	1	1	!	176.200 !	1.075 !	. 100		175. 125	!	88.637 !
!	34.2	!	2	!	176.163 !	1.125 !	. 100	<u>؛</u>	175. 038	1	88.644 !

327

ļ

Continuación del archivo AlaepStron36.Sal

ī	Num	de!	Centro	Der.	1	Centr	o Iz	q. !	And	cho	de!	Sepa	sraci	on	1	Centr	0 1	Haz	Cen	tro	Ha z !
ţ	par	eja!	prom	edio	1	pron	nedio		υn	атс	۹ ۱	func.	pro	nedio		Trans	imi	sion	Ret	rore	f1x!
1	en	p e 1!	Cd +-	R/2	1	Ci 🕯	⊢ R/	2 !	A	+	R!	Sf	+- (1	R+&i)		Ct 4	- 1	R/2	! Cr	+	R/2!
1		`!	(ന	(m	ł.		(mm)	1		(ጠጠ)	1		(៣៣	>	!		៣៣)	2	(៣៣)	
١																					!
1	1		101.	294	1	75.	6313			370	!	25.	6623	, 060	7!	88.	46	24			
!	2	. !	110.	788	1	66.	1125			375	. 1	44.	6750	. 060	4!	89,	45	00			
ţ	з		113.	600	1	63.	2938		•	410	!	50.	3063	. 033	8	88.	44	69			
i	4	!	114.	432	!	62.	6313			350	!	51.	8003	. 043	0!	69.	53	14			
ţ	5	:	119.	656	1	57.	2553			370	1	62.	3998	. 325	4!	86.	45	61			
ļ	- 6	- I	122.	306	1	54.	5500			3.1		67.	7560	. 051	<u>9</u> !	88.	42	BO			1
ţ	7	!	122.	869	1	53.	9188			500	- 1	69.	9503	. 042	3!	89.	37	39			
!	8	1	127.	600	1	47.	3093			320		78.	2738	. 051	51	89.	453	31			1
5	. ?	- !	129.	400	1	47.	2000		•	3.3		81.	9000	. 043	4!	88.	450	00			
ł	10	1	132.	363	1	44.	5500		•	350	1	87.	9125	. 060	<u>4!</u>	88.	40	63			
1	11	1	133.	663	1	43.	2875		•	300		90.	3750	. 025	0!	88.	47	50			
1	12	. !	134.	119	1	42.	7625		•	275		91.	3965	. 034	2:	88.	44	DB 1			
1	13		134.	444	1	42.	4500		•	210		91.	4935	. 121	7!	88.	44	68 3			
ł	14		138.	262	÷	38.	5875		•	300			6750	. 060	4!	88.	42	50			
ł	15		140	200	1	36.	7563		•	2		103.	4440	. 051	2!	88.	47	81			
÷	10		141.	207	1	35.	0088			3		105.	5380	. 060	02	88.	4.3	/0			
ł	17	- 1	145.	387	1	31.	4937		•	350		113.	8940	. 033	8	88.	440	06 1			
÷	18	-	140.	394	1	30.	4620		•	350	- 1	115.	4310	. 051	72	88.	4.6	82			
1	14		148.	/67	1	28.	1438			250	- 1	120.	6250	. 025	4:	88.	40	64			
1	20		150.	107	1	26.	18/3	- 1	•	300		123.	3140	. 033	2:	88.	44	/0			
÷	~÷		101.	400	÷	23.	2003		•	3.00		120	2440	. 0.3.3		00.	40.	31 3			-
1	22		100.	176	÷	23,	7780		•	300		130.	4000	. 031	5:	00.	30.	51 5			
1	2.3		150	275	÷	21.	7750		•	300		133.	4000	. 023		00.	47				
i	25		150	440	÷	17	50430		•	200		147	1420	. 033	1:	88.	801	76			
i	24		150	007	÷	17.	2003		•	200	- 1	140	1030	. 073		00.		21			
i	27		160	440	÷	14.	2000	- 1	•	250		144	2500	. 033	0:	00.	47				1
÷	28		161	419	÷	15	8125	;	•	290	;	145	4070	020	51	80	411	50 1			- 1
;	29		162	750	÷	14	2037			212		140	4540	. 000	5	00.	82				:
i	30	- 1	163	499	÷.	13	3063	- 1		410	- 1	150	2020	007	<u>.</u> .	63.	10	71			
ì	31	;	164	250	i	12	6750		•	3	- 1	151	5750	025	ői.	90	44	25			i
ì	32	i	165	137	i	11	8938	- 1		200	- 1	153	2440	104		89	511	44			
i	33.	11	167	125	÷	9	9125	i		5	i	157	2130	042	71	88	519	ae 1			- 1
ì	33	21	167	375	i	÷.	6687	i		10	÷	157	7060	049	÷.	89	57	19 1			i
i	34	11	175	788	i.	1	3875	i	Ċ	1	i	174	4000	025	N 1	89.	58	75			;
i	34	21	176	182	į.	1.	1000	i		1.	- 1	175	0810	084		88	A4/	17 1			
•		- ·	- / 0.			•••		•		• •	•				Ψ.	30.					-

TABLA II Medidas Promediadas.

A continuación se muestran los resultados de INXPAR.

Archivo de parámetros de INXPAR para el SrCi₂·6H₂O InxparStron36,Par

> Ind G Cυ 404 32 K alfa-Dr K alfa-1. 2 K alfa-2, 2 K hets, O × alfa-o Hexagonal N з ō 5

Archivo de salida de INXPAR para el SrCl₂·6H₂O InxparStron36.Sal

INDEXACION DE PATRONES DE DEBIJE-SCHERRER Y CALCULO DE PARAMETROS DE RED INXPAR

Nombre del Archivo de Parametros do Entrada: InxparStron36.Par Nombre del Archivo de Datos de Entrada: InxparStron36.pat Nombre de este Archivo: InxparStron36.Sal Cond. Exp.: Camara: O. Rediacion: Cu. Equisgrafia DS: 404

!	Radiacion Cu	!	Long. de Onda (Angstroms)	!	Incertidumbre! (Angstroms) !		Numero de líneas medidas	1
ī	K alfa-p	1	1. 54179	•	. 00006 !		32	Ŧ
!	K alfa-1	ţ	1. 54051		. 00006		2	1
٤	K alfa-2	!	1.54433		.'00006 !	!	2	ţ
ţ	K beta	!	1. 39217		. 00006 !	2	0	t

TABLA I (Longitudes de Onda Utilizadas)

Long, usada p/normalizar mediciones de las longs, de arco; K alfa-p

Continuación del archivo InxparStron36.Sal

ТАЫА II

Promedios de las longitudes (Sexp) de arco (valores experim, introducidos), Angulos (Theta) de Bragg (calculados a partir de Berp) y Distancias (derp) Interplanares (calculadas a partir de Theta)

Dareja ent Sesp + & Sesp Theta + & Theta desp (Angstroms) Pareja (mm) (grados) (Angstroms) (Angstroms) 1 25.6623 0607 6.4152 015175 6.8990 016479 2 44.6730 0604 11.1688 015100 3.9778 002476 3 50.3063 0338 12.5764 008450 3.4399 002476 4 51.8003 0433 17.2374 010575 2.6449 001247 7 68.9503 0423 17.2374 010575 2.6014 001647 9 81.9000 0434 20.4750 010850 2.2038 001203 10 87.8123 0604 21.9531 018675 2.6014 001647 11 90.3750 02240 22.0381 001203 00246 11 91.9730 122.9791 00850 1.9861 000604 12 91.3565 0342	Numero	del	Longitud de Arc		Angulo de Spage	! Distancias Internlanares
Perifcula (mm) (gradus) (Angstroms) 1 25.6623 .0607 : 6.4154 .015175 : 6.8990 .016479 2 : 44.6730 .0604 : 11.1688 .015175 : 6.8990 .016479 3 : 30.3063 .0338 : 12.5764 .008450 : 3.5403 .002476 4 : 51.4003 .0430 : 12.9701 .010750 : 3.497 .002476 5 : 62.3798 .0234 : 15.600 .00530 : 2.8664 .001247 7 : 68.9700 .0433 : 17.2374 .010575 : 2.6014 .001647 7 : 68.9700 .0434 : 20.4700 .010850 : 2.2038 .001620 10 : 87.8123 .0604 : 21.9531 .015100 : 2.0620 .00147 11 : 90.370 : 22.9531 .002450 : 2.038 .001203 11 : 97.30 : 00450 : 2.0954 .001103 12 : 91.36440 .0315	Inarela	an ¹	Savo +- &Sav	;;	Theta +- Θ	devn +- &devn
Park K alfa p 1 25.6623 .0607 6.4156 .015175 6.8990 .016479 2 44.6730 .0604 11.1688 .015175 6.8990 .016479 3 30.3063 .0338 12.5764 .008450 3.4399 .002476 4 51.8003 .0430 12.5701 .017750 3.4399 .002478 5 62.3998 .0234 15.6002 .006350 2.8666 .001247 7 68.9503 .0423 17.2374 .010575 2.6414 .001647 9 81.9000 .0434 20.4750 .010850 2.0065 .001643 10 87.8125 .0644 .21.9731 .015100 2.0620 .001427 11 90.3730 .02200 .22.8391 .006450 1.9661 .002846 12 91.3565 .0342 .22.8391 .008530 1.9861 .002846 13 91.9735 .0244 .9192 .001475 1	i pelicul		(00)	1	(arados)	(Angstroms)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		·- ·			Para K alfa p	
2 i 44,6730 0.604 i 1.1688 0.01500 i 3.7978 0.00346 3 i 30.3063 0.338 i 12.7646 0.00450 i 3.5403 0.02476 4 i 1.8003 0.430 i 12.7501 0.10750 i 3.4399 0.02476 5 i 62.3998 0.0244 i 15.6000 0.06350 2.8666 0.01247 6 67.750 0.3431 i 7.277 i 68.9503 0.423 i 7.277 i 68.9503 0.433 i 17.2374 0.10575 12.6414 0.01447 7 i 68.9503 0.433 i 17.2374 0.10575 12.6409 0.01477 10 878.9515 0.12753 0.12875 1.2620 0.0147 11 90.9730 0220 22.9731 0.06550 1.96650 1.96650 0.01427 11 91.9735 0.12474 0.06475 1.7673 0.00687 1.9731 0.02246 12	1 1	1	25,6623 .0607	-	6.4154 .015175	4.8990 .016479
3 1 03 033 1 2 5746 00830 1 3 3 002476 4 11,8003 0430 12,9701 010750 1 3,4399 002475 5 162,3978 0234 15,6000 006350 2,8666 001249 6 167,7560 0319 16,9390 012775 2,6014 001647 7 168,9303 0423 17,7237 01575 2,3011 001647 8 78,2938 0515 19,5735 012675 2,3011 001647 7 61,9000 0434 20,4750 010650 2,2038 001203 10 87,8125 0604 21,9531 015100 2,0655 000664 12 91,3545 0342 22,8391 008550 1.9861 000781 13 91,9735 122,8974 004551 1.7673 000887 14 99,4750 0604 24,9192 015100 1.97	2	- j	44.6750 .0604	- 1	11.1688 .015100	3.9798 .005460
4 51,8003 0430 12,9501 010730 13,4999 002938 5 16,23998 0234 115,6000 006350 12,8666 001249 6 16,77560 0219 16,6390 012775 2,8439 002049 7 168,9503 0423 17,2374 010575 2,6414 001647 7 168,9503 0433 17,2375 012875 2,3011 001433 9 18 978,2938 0515 12,575 012875 2,3011 001433 10 878,2938 0515 19,575 012875 2,3011 001433 11 90,3750 0220 22,9734 004250 2,0625 000604 12 91,355 032,427 108530 1,9661 002736 13 91,9735 1219 22,9794 030475 1,7731 00284 14 99,6730 0604 24,9192 015100 1,2773 001083 15 103,4440 0515 2,5640 012875 1,3747 0006202	. 3	i	50.3043 .0338	- 1	12 5765 .008459	3. 5403 . 002476
5 i 622 9798 6254 i 5.6000 606330 i 2.8666 601249 4 i 67.7360 6519 i 6.6390 012775 i 2.4566 601249 7 i 68.9303 0423 i 7.2374 010575 i 2.4014 001447 8 i 78.2938 0515 i 19.9735 01875 2.2018 001203 10 87.6123 0604 21.9531 015100 2.0220 001427 11 90.3750 0250 2.20391 000250 2.0065 000664 12 91.355 0342 22.8391 008530 1.9861 000781 13 91.9735 121.912 22.934 03475 1.7731 000284 14 99.6700 0404 24.9192 015100 1.18773 000887 15 103.440 0515 25.6610 012875 1.6170 000782	4		51.0003 .0430	- i	12 9501 010750	3,4399 ,002936
L 67,7540 CS19 16,6370 012975 2,6499 002069 7 68,9503 0423 17,2374 010575 2,6014 001447 8 78,2938 0515 17,9735 012875 2,3011 001447 9 81,9000 0434 20,4750 010850 2,0020 02024 10 87,82938 0515 19,9735 012875 2,3011 001437 11 90,3750 0250 22,9738 006250 2,0625 000604 12 91,355 0342 22,89738 003475 1,9661 000781 13 91,9935 1219 22,9934 030475 1,9743 000887 14 99,6735 0440 0515 2,6495 012075 1,7673 000887 15 103,4440 0515 2,8495 012075 1,874 000350 17 113,6740 0338 28,475 008450 1,4170 000952 17 123,6190 0331 30,6273 006873 1,5434 000535 <td>5</td> <td>- i</td> <td>62.3998 .0254</td> <td>- 1</td> <td>15.6000 .006350</td> <td>2.8666 .001249</td>	5	- i	62.3998 .0254	- 1	15.6000 .006350	2.8666 .001249
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		÷	67.7560 .0519		16. 9390 . 012975	2 6457 .002069
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $! 7	- i	68.9503 .0423	. 1	17.2374 .010575	2.6014 .001647
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 8	1	78.2938 .0515	- 1	19.5735 .012875	2, 3011 , 001543
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	- i	B1. 9000 . 0434	- i	20.4750 .010850	2.2038 .001203
1 1 1 0 0750 0230 1 22.9738 006250 1 2.0067 000604 12 1 355 034250 1 9861 000781 13 1 97.9735 1219 1 22.9734 030475 1 9731 002846 14 97.6735 0604 1 24.9198 015100 1 02746 001108 15 103.4440 0515 1 25.640 012875 1 7673 000887 16 105.3380 0600 1 24.3845 015000 1 7473 000782 17 113.67910 0338 28.4735 008450 1 6177 000702 18 115.9310 0319 23.6273 008375 1 5442 000322 20 123.3170 0333 13.6273 006275 1 4745 000427 23 133.4003 0250 1 475 000427 1 434 000322 24 139.4610	! 10	- i	87.8125 .0604	!	21,9531 .015100	2.0620 .001427
12 191.3563 0342 12.8971 008350 1.9861 000781 13 91.9795 121.9791 020475 1.9751 002346 14 99.4730 0604 24.9192 015100 1.8751 002346 13 103.440 0515 25.8610 012875 1.7673 000887 14 99.4730 0604 24.9192 015100 1.8773 000987 15 103.440 0515 25.8610 012875 1.7673 000887 14 199.470 0338 28.4735 008450 1.6170 000722 17 113.0740 0338 28.4735 006350 1.543 000322 20 123.5170 0370 0373 1.6273 00427 1.344 00032 22 123.540 0388 13.4735 002450 1.4745 000427 23 133.4000 0250 13.3520 006250 1.3424 000332 24 139.4610 0331 35.475 004850 1.3242 000232 <t< td=""><td>1 11</td><td>- ÷</td><td>90, 3750 . 0250</td><td>. !</td><td>22. 5728 . 006250</td><td>2.0065 .000604</td></t<>	1 11	- ÷	90, 3750 . 0250	. !	22. 5728 . 006250	2.0065 .000604
$\begin{array}{c c c c c c c c c c c c c c c c c c c $! 12		91.3565 .0342	!	22,8371 .008550	1.9861 .000781
$\begin{array}{c c c c c c c c c c c c c c c c c c c $! 13	- <u>i</u>	91.9935 .1219	!	22.9934 .030475	1. 9731 . 002546
15 ! 103.4440 0515 ! 25.6610 012875 ! 1.7673 000887 16 ! 105.5380 0600 ! 26.3845 015000 ! 1.7347 000782 17 ! 113.0740 0338 ! 28.4735 008450 ! 1.747 000782 18 ! 115.7310 0517 ! 28.4825 012975 ! .510 000712 19 ! 120.6230 0234 ! 30.1533 006350 ! .3435 000322 121 ! 122.5570 0338 ! 30.6273 006375 ! .5445 000427 20 ! 123.570 0338 ! 31.4755 006450 ! .4765 000427 23 ! 133.400 0235 ! .33.50 006250 ! .4023 000287 23 ! 134.400 0331 ! .47673 008450 ! .422.000287 24 ! 137.4810 0331 ! .47673 008275 ! .4344 000332 25 ! 424.6940 0338 ! .35.4735 008450 ! .3217 000323 25 ! 424.6940 .0334 ! .35.4018 021455	! 14		99.6750 .0604	1	24.9198 .015100	1.0276 .001109
16 ! 105. 3380 0600 ! 26, 3845 015000 ! 1.7347 000962 17 113. 6970 0338 ! 28, 4735 008450 ! 1.6170 000502 18 ! 113. 6910 0319 ! 28, 4928 012975 ! 1.5910 000712 19 ! 120. 6250 0234 ! 30. 1553 006350 ! 1.5943 000332 20 ! 123. 3190 .0335 ! 30. 8273 008450 ! 1.5942 000427 21 ! 125. 6940 .0338 ! 31.4735 .008450 ! .4714 .000359 22 ! 130. 3440 .0515 ! 32. 5840 .012975 ! .4314 .000359 23 ! 133. 4000 .0250 ! 33. 3503 .006230 ! .4024 .000323 24 ! 137. 4810 .031 ! 3.5473 .008450 ! .3246 .000232 25 ! 142. 1636 .0974 ! 3.5408 .023950 ! .3246 .000232 25 ! 142. 1636 .0974 ! 3.5408 .021850 ! .3246 .000245 26 ! 142. 6470 .0338 <td>! 15</td> <td></td> <td>103.4440 .0515</td> <td></td> <td>25.8610 .012875</td> <td>1.7673 .000887</td>	! 15		103.4440 .0515		25.8610 .012875	1.7673 .000887
17 113.0740 0338 128.4735 008450 1.6170 000502 18 115.9710 0519 28.9628 012775 1.5710 000712 19 120.6250 0234 30.1553 006350 1.5345 000352 20 123.3190 0335 130.8273 006375 1.5445 000427 21 125.6740 0338 131.4735 006450 1.4765 000413 22 130.3440 0315 132.5860 012875 1.4314 000559 23 133.4000 0250 13.3500 006250 1.4023 000824 24 139.4610 0331 13.4795 008250 1.422 000824 25 142.1630 0744 33.5488 023850 1.3242 000824 26 142.6940 0338 35.6735 008450 1.3217 000323 27 144.43500 0250 136.0875 006250 1.3089 000246 28 143.6070 0865 136.4018 021251 1.2070 000715 <td>! 16</td> <td>!</td> <td>105. 5380 . 0600</td> <td>- !</td> <td>26,3845 .015000</td> <td>! 1.7347 .0009B2</td>	! 16	!	105. 5380 . 0600	- !	26,3845 .015000	! 1.7347 .0009B2
18 ! 113.9310 .0317 ! 28.9628 .012775 ! .5910 .000712 19 ! 120.6250 .0234 ! 30.1533 .004350 ! .543 .000352 20 ! 123.3190 .0338 ! 30.6273 .06875 ! .543 .000427 21 ! 125.5740 .0338 ! 30.6273 .06875 ! .4745 .000427 22 ! 130.3440 .0515 ! 32.5860 .012875 ! .4314 .000397 23 ! 133.4000 .0250 ! 33.350 .006230 ! .4023 .000287 24 ! 137.4810 .031 ! 3.673 .006275 ! .3484 .000332 25 ! 142.1636 .0974 ! 3.5428 .023850 ! .3217 .000232 26 ! 142.6470 .0338 ! 35.675 .004850 ! .3217 .000244 28 ! 145.670 .0657 .006250 ! .3217 .000557 30 ! 150.3820 .0869 ! 37.1140 .017300 ! .2774 .000557 30 ! 150.3820 .0869 ! 37.8938 .00	! 17	!	113.0740 .0338		28.4735 .008450	1.6170 .000502
19 120.6230 0234 130.1503 006350 1.534 000352 20 123.3190 0338 130.6273 006375 1.5042 000427 21 125.5940 0338 131.4735 008450 1.4765 000427 22 130.3440 0515 12.5940 002352 1.4745 000427 23 133.400 0254 132.5960 012875 1.4744 000599 23 133.400 0234 132.590 06220 1.4023 000287 24 137.4610 0331 13.4773 008450 1.3242 000824 25 142.1630 0924 133.480 023850 1.3242 000824 25 144.4350 0236 136.6735 006450 1.3219 000246 26 144.500 0250 136.6735 006450 1.3219 000246 28 145.6070 0665 136.4018 021625 1.2776 000715 30 150.3820 0667 137.575 021275 1.2636 000671	! 18	!	115.9310 .0519	- !	28.9828 .012975	1.5910 .000712
20 ! 123, 3190 .0335 ! 30, 6273 .066775 ! 1.5042 .000427 21 ! 125, 6540 .0338 ! 31, 4735 .006450 ! 1.4765 .000413 ! 22 ! 130, 3440 .0515 ! 32, 5863 .012875 ! 1.4745 .000359 ! 23 ! 137, 4810 .0331 ! 34, 8703 .008275 ! 1.4023 .000287 ! 24 ! 137, 4810 .0331 ! 34, 8703 .008275 ! 1.3444 .000352 ! 24 ! 137, 4810 .0331 ! 34, 8703 .008275 ! 1.3444 .000322 ! 25 ! 142, 1636 .0974 ! 33, 555 .004450 ! .3217 .000287 ! 26 ! 142, 6970 .0358 ! .35, 675 .006450 ! .3217 .000322 ! 27 ! 144, 3500 .0250 ! .364, 02795 .02125 ! .3000715 ! 28 ! 145, 670 .0667 ! .3740 .000559 : 30 ! 150, 3820 .0697 ! .37595 .021725 ! .2476 .000559 : 30 ! 150, 5750 .021725 ! .2435	! 19	•	120.6250 .0254		30.1553 .006350	1.5345 .000352
1 1 122 1 123 5740 0338 1 4735 008450 1 4745 000413 1 22 130 3440 0515 1 32450 012875 1 4314 000379 1 23 133 4000 0250 1 33 3500 006230 1 4444 000379 1 24 137 4610 0331 134 37673 008275 1 3484 000332 1 25 142 1636 0794 1 33 4503 002875 1 3484 000323 1 25 142 1636 0794 1 33 4575 00450 1 3217 000323 1 26 142 6470 0338 135 6675 00450 1 3219 000324 27 144 3500 0250 1 360575 004250 1 21776 000557 30 150 3820 0847 7<5758	! 20	!	123.3190 .0335		30,8273 ,008375	1. 5042 . 000427
1 22 1 130.3440 .0515 1 22.5640 .012875 1.4314 .000359 23 1 133.400 .0250 1 .02250 1 .4023 .000287 24 1.39.4810 .0331 1 .47.8703 .008275 1 .3484 .000322 25 1.42.6940 .0338 1 .35.6735 .006450 1 .3217 .000244 26 1.42.6940 .0338 1 .35.6735 .006450 1 .3217 .000243 27 1.44.3500 .02651 1 .066250 1 .000715 28 1.45.6070 .0652 1 .001253 1 .274 .000323 27 1.44.4500 .0672 .37.1140 .017300 1 .274 .000559 30 1.50.3820 .0684 .37.8938 .006250 1 .2551 .000671 31 1.51.5750 .0230 .37.8938 .006250 1 .2551 .000675 32 1.53.2440 .1045 </td <td>! 21</td> <td></td> <td>125.6940 .0338</td> <td>. !</td> <td>31.4735 .002450</td> <td>1.4765 .000413</td>	! 21		125.6940 .0338	. !	31.4735 .002450	1.4765 .000413
23 ! 133.4000 .0250 ! 33.3500 .006230 ! 1.4023 .000287 24 ! 137.4610 .033.133.4503 .006230 ! 1.4023 .000332 25 ! 142.1636 .0974 ! 33.4503 .023850 ! .3484 .000332 25 ! 142.1636 .0974 ! 33.4575 .004850 ! .3219 .000323 26 ! 142.6470 .0338 ! 35.675 .004850 ! .3219 .000323 27 ! 144.3500 .0250 ! 36.0575 .006270 ! .3048 .000345 28 ! 145.607 .06675 ! .36408 .021255 ! .2970 .000715 29 ! 148.4560 .0672 ! 37.1140 .017300 ! .2776 .000279 30 ! 130.3820 .0869 ! 37.9798 .002125 ! .2551 .000225 31 ! 31.37.2130 .0427 ! 37.9798 .021251 ! .2435 .000755 27 ! 33.1 ! 174.4000 .0230 ! .37.9303 .01675 ! .2435 .0007419 33.1 ! 174.4000 .02	! 22	!	130.3440 .0515	!	32.5860 .012875	1.4314 .000559
24 ! 137.4810 .0331 ! 3.4.8703 .008275 ! 1.344 .000332 25 ! 142.1636 .0974 ! 3.5488 .02850 ! 1.3262 .000824 1 26 ! 142.6940 .0338 ! 35.6735 .006450 ! 1.3219 .000824 27 ! 144.3500 .0250 ! 36.0275 .006450 ! .3089 .000246 28 ! 145.6070 .0665 ! 36.0275 .006250 ! .3089 .000246 28 ! 145.6070 .0665 ! 36.4018 .021625 ! .2970 .000715 29 ! 146.4500 .0672 ! 37.1140 .017200 ! .2774 .000557 30 ! 150.3820 .0664 ! 37.9575 .021725 ! .2636 .000671 31 ! 151.9750 .021725 ! .2636 .000255 ! .2551 .000765 32 ! 133.2440 .1045 ! .38.3110 .026125 ! .2435 .000765 33.1 ! 137.2130 .0427 ! 39.303 .01675 ! .2160 .000419 33.1 ! 174.4000	! 23		133.4000 .0250	- 1	33, 3500 . 006250	1.4023 .000287
25 ! 142.1636 .0954 ! 33.5428 .023850 ! 1.3262 .000224 26 ! 142.6470 .0338 ! 35.6735 .004850 ! .3217 .000323 27 ! 144.3500 .0250 ! 36.0575 .004250 ! .3217 .000323 28 ! 145.6070 .0665 ! .36.0575 .004250 ! .3049 .000246 28 ! 145.6070 .0665 ! .4018 .021625 ! .2970 .000715 29 ! 148.4500 .0692 ! 37.1140 .017300 ! .2774 .000559 30 ! 150.3820 .0869 ! 37.8938 .004250 ! .2551 .000225 32 ! 133.2440 .1045 ! 38.3110 .026125 ! .2435 .000755 Pare K alfa 1	! 24		139.4810 .0331	- !	34.8703 .008275	1.3484 .000332
1 26 1 42.6740 .0338 1 35.6735 .008450 1 .3219 .000323 1 27 1 44.3500 .0250 1 .3069 .000246 1 28 1 45.6070 .0665 1 .3649 .000246 1 28 1 45.6070 .0665 1 .3649 .000246 1 28 1 45.6070 .0665 1 .3649 .000246 1 29 1 48.4560 .0672 1 .017300 1 .2776 .000579 30 1 30.3820 .0869 1 .37.8735 .021725 1 .2626 .000671 1 31 1 51.5750 .021725 1 .2435 .000225 32 1 33.2440 .1045 1 38.00 .006250 1 .2435 .000765 1 21.32.440 .0427 1 39.3033 .01675 1 .2160 .000419 33.1 1 37.2130 .0427 1 39.3030 .01675 1 .2160 .000419 34.1 1 74.4000 .0250 1 .4365 .0002280 1 .1169 .000288	25	1	142.1630 .0954	1	35. 5408 023850	1.3262 .000824
27 ! 144.3500 .0250 ! 36.0275 .066250 ! .3089 .000246 28 ! 145.6070 .0665 ! 36.018 .021625 ! .2970 .000715 ! 29 ! 146.4500 .0672 ! 37.1140 .017300 ! .274 .000559 : 30 ! 150.3820 .0869 ! 37.953 .021725 ! .2636 .000671 : 31 ! 151.5750 .0250 ! 37.8938 .006250 ! .2551 .000225 : 32 ! 133.2440 .1045 ! 38.3110 .026125 ! .2435 .000755	! 26	!	142.6940 .0338		35.6735 .008450	1.3217 .000323
1 28 ! 145.6070 .0665 ! 36.4018 .021625 ! 1.2776 .000715 1 29 ! 146.456 .0672 ! 37.140 .017300 ! 1.2776 .000559 30 ! 150.3820 .0869 ! 37.5955 .021725 ! 1.2636 .000671 1 11 ! 151.5750 .0230 ! 37.8938 .006250 ! 1.2531 .000225 1 21 ! 131.2740 .00431 ! 37.8938 .006250 ! 1.2433 .000225 1 21 ! 137.2130 .0427 ! 37.9333 .010475 ! 1.2160 .000419 33.1 ! 157.2130 .0427 ! 39.3033 .010475 ! 1.2160 .000419 34.1 ! 174.4000 .0250 ! 43.6052 .06250 ! 1.1169 .000258 Pare K alfa 2	27	1	144.3500 .0250	!	36.0075 .006250	1.3088 .000246
27 ! 148.4540 .0452 ! 37.1140 .017300 ! 1.2736 .000559 30 ! 150.3820 .0649 ! 37.953 .021725 ! 1.2636 .000671 1 ! 151.9750 .021725 ! 1.2551 .000225 31 ! 151.9750 .0210 ! 37.9738 .006250 ! 1.2435 .000225 32 ! 133.2440 .1045 ! 38.3110 .026125 ! 1.2435 .000765 33.1 ! 157.2130 .0427 ! 37.3033 .010675 ! 1.2160 .000419 33.1 ! 174.4000 .0250 ! 43.6050 .06250 ! 1.1169 .000258 33.2 ! 157.7060 .0250 ! 39.4055 .01700 ! 1.2188 .000588	! 28	1	145.6070 .0865	1	36.4018 .021625	1.2990 .000715
30 ! 150, 3820 .0869 ! 37, 5955 .021725 ! 1.2436 .000671 31 ! 151, 5750 .0250 ! 37, 8938 .006250 ! 1.2551 .000225 32 ! 133, 2440 .1045 ! 38, 3110 .026125 ! 1.2435 .000755	29	- ÷	148,4560 .0692	- 1	37.1140 .017300	1.2776 .000559
31 ! 151.5750 .0250 ! 37.8738 .006250 ! 1.2435 .000225 32 ! 153.2440 .1045 ! 38.310 .026125 ! 1.2435 .000765 974 K alfa ! .00475 ! 1.2430 .000419 33.1 ! 157.2130 .0427 ! 39.3033 .010675 ! 1.2160 .000419 34.1 ! 174.4000 .0250 ! 43.6053 .006250 ! 1.1169 .000288 9476 K alfa 2	30	- 1	150.3920 .0869	- !	37. 5955 . 021725	1.2636 .000671
32 1 133.2440 1.043 38.3110 .026125 1.2433 .000755	31		151.5750 .0250	- !	37.8938 .006250	1.2551 .000225
Pare K alfa 1 33.1 ! 157.2130 .0427 ! 39.303 .010675 ! 1.2160 .000419 34.1 ! 174.4000 .0250 ! 43.6000 .006250 ! 1.1169 .000258 Pare K alfa 2 33.2 ! 157.7060 .0692 ! 39.4965 .017300 ! 1.2158 .000588	32		153, 2440 , 1045	- !	38.3110 .026125	1.2435 .000765
33.1 1 137.2130 .0427 1 39.3033 .010675 1 .1.2160 .000419 34.1 1 174.4000 .0250 1 43.605 .006250 1 .11169 .000258 Pare K-81fa 2 33.2 1 157.7060 .0659 1 39.4265 .017300 1 .12158 .000558					Para K alfa 1	
: 34.1 : 1/4.4000 .0250 ! 43.6000 .006250 ! 1.1169 .000258	33.1		157.2130 .0427	1	39, 3033 . 010675	1.2160 .000419
33.2 ! 157.7060 .0692 ! 39.4265 .017300 ! 1.2158 .000588	: 34.1		1/4.4000 .0250	!	43, 6000 . 006250	1.1169 .000258
: JJ.Z ! LJ/./VAU .VA72 ! J7.4263 .01/300 ! 1.2158 000598			187 7010 0100		Pare K-alfa 2	
			175 0210 0015	- 1	37. 4263 . 01/300	. 1.2158 .000588
	. 34.4 !	. :	110.0010 .0803	-	HG. //02 . UE1627	1.116x .0003/0

	TABLA	111		
(Funciones	calculadas.a	partir	de	Sen(theta)]

I N	UMPTO	de!	LSeno (t	theta)]^2 !	CSeno	(theta)]^2	! Gex	p +- &G	exp (Brdenados
1	pareja	1	No Nors	malizados !	Nori	halizados	. Qex	p=4sen(Theta)	^2/Lambda^2
<u>!</u> -								001010		
!	1	1	. 012486	. 000059 !	. 012484	. 000059	! 0.	021010	. 000	100728
1	2	1	.037519	. 000100 1	. 03/51		. 0.	063135	. 000	1/33/6
	3		. 047413	. 000083 :	. 04741.			079783	. 000	111/0/
<u>!</u>	4	1	. 050222	. 000082 !	. 050222	2 .000082	· U.	084510	. 000	144334
	?		. 072317	. 000057 1	. 0/231	.00005/	. 0.	121891	. 000	104081
1	2		. 084887	. 000125 !	. 08489	.000128	: 0.	142842	. 0004	223060
1		1	.087814	. 000103 !	. 08/91	. 000105	. 0.	147768	. 000	18/352
2			. 112233	. 000142 :	. 11223	.000142		100002	. 000	233484
1			. 122357	.000124 !	.12230	.000124	. 0.	202848	. 0003	224903
:	10	- 1	. 139/02	. 000183 :	147/0		: 0.	239193	. 000.	223740
1	11	-	. 14/803	. 000077 :	. 14/00		: 0.	240301	. 000	
1	12	-	150657	. 000107 :	. 10060		: 0.	233313	. 000	177437
1	1.5	-	177871	. 000383 :	17787		: 0.	20070	. 0004	304143
1	14		180341	. 000201 :	10074	000176	: 0.	270/21	. 000.	30244/
1	14	-	107405	. 000178 :	17020		: U.	320137	. 000.	321770
1	17	-	, 17/403	. 000208 :	. 17/40.		: 0.	335313	. 000.	3/0042
1			22/273	. 000124 :	13470	5 .000129	. 0.	302473	. 000/	23//73
:	10		234/83	. 000192 :	18034	. 000192	· U.	342081	. 000.	333783
1	20	÷	242445	. 000078	. 20200		: 0.	424004	. 000	190000
÷	21		777503	. 000121	17762	000127	. 0.	441701	. 000/	230737
	22	÷	290052		20008	000131	· 0.	408000	. 0004	200/4/
÷	22	÷	201127	000204 1	27003	000204	. 0.	480060	. 000	301142
1	24	-	334944	000135	. 30222	000100		550024	. 0007	200137
1	25	- 1	. 380004	000284	. 32000	000130	. 0.	540674	. 0000	2/0/24
÷ .	26	÷	340082	000140	740093	000140		572347	0000	7705/6
:	27		344045	000104	74624	000104	. o.	502015		10000
i -	28	÷	342174	000361	23217	000761		503613	. 0000	19008
i i	29	÷	364095	000291	36409	000301		619675	. 0000	574400
:	30	- i	372201	000367	372201	000247	i õ.	676315		45545
i -	31	i	377241	000106 1	377341	060106		424705	. 0000	7777
i.	32	- ;	384313	000444	38431	000444	i ö	6466Q6	. 0000	704705
i	33. 1	i	401227	000183	401899	000246	, õ	676271		465751
i.	33. 2	i	403337	000296	402004	000358	i õ	676468	000	54638
i i	34.1	÷	475575	000107	476353	000183	. 0.	801586	0000	171039
i.	34.2	÷	478543	000377	476964	000450		802604	0000	19423
i i	- •• •	•					. 0.	002004	. 0000	511023

PARAMETROS DE ENTRADA:

ដ្ឋ

Sistema a prober: Hexagonal

Opcion utilizada: 1.- Asignar Indices en una Equisgrafias de polvos y (opcional) a partir de ellos calcular los Parametros de Red.

El intento de indexacion NO se hara usignando las lineas experimentales con las que se emperaran a probar como lineas baso y asignandoles indices especiales.

Numero maximo permitido (Lb) de usignaciones de valores diferentes de Gexp a cada una de las lineas base: 3

Numero (Nt) de lineas toleradas sin identificar: O

Valor (Imax) mas aito de los indices por esigner: 5

Numero de linea experimental que se prueba como Primera Linea Base: 1

Numero de linea experimental que se prueba como Begunda Linea Base: 2

Numero de lines experimental que se orueba como Begunda Lines Base: 3

Continuación del archivo InxparStron36.Sal

- BLA IV

Valores de Gcalc (calculados con indices optativos y parametros reciprocos base), diferencias Gexp-Gcalc e Indices Optativos

ĩ	Numero	1	Gcalc +-	&Gcalc	1	Ge-Gc +-	&Ge-Gc !	Ine	lice	16	1
į.	pareja	÷	(Angstr	oms^-2)	÷	(Angstr	oms^-2) !	н	ĸ	L	
į.											_
ŧ.	1	7	0.021010	. 000101	1	0.000000	.000201 !	1	0	0	1
5	2	1	0.063030	. 000302	۰.	0.000105	.000475 :	1	1	0	1
٤	э	!	0.079783	. 000313	1	0.000000	.000425 !	1	0	1	
1	4	!	0.084040	. 000403	!	0.000470	.000546 !	2	0	0	1
:	5	!	0.121803	. 000514	1	000112	.000620 !	1	1	1	1
٠	6	ł	0.142613	. 000615	1	0. 000029	.000838 !	2	0	1	1
ţ.	7	!	0.147070	. 000705	1	0.000698	.000891 !	2	1	c	1
1	8	!	0. 189090	. 000907	1	000228	.001158 !	з	0	0	1
ŗ	9	!	0.205842	. 000917	1	0.000055	.001141 !	2	1	1	:
Ł	10		0.235091	. 000849	!	0.000092	. 001175 !	0	0	2	1
ł.	11	!	0.247862	. 001119	1	C. 000518	.001266 !	з	0	1	
ł	12	1	0 252120	. 001209	1	0.001395	. 001405 !	5	2	0	!
ł	13	!	0.256101	. 000750	1	0.000769	. 001614 !	1	0	2	1
ł	14	:	0.278121	. 061191	:	0.000600	. 001513 !	1	1	2	1
1	15	!	0.319131	. 001252	!	0.001028	. 001573 1	2	0	2	ļ
ŗ	16	!	0. 331902	. 001522	۰.	0.000412	.001875 !	з	1	1	!
1	17	1	0.382161	. 001554	!	0.000312	. 001791 !	2	1	2	1
!	18	!	0. 374732	. 001824	!	0.000148	. 002174 !	4	0	1	<u>؛</u>
1	19	!	0.424181	. 001755	1	0.000483	. 001949 !	з	0	2	
t	20	1	0.441209	. 002115	!	0.000752	.002361 !	4	1	0	
٤	21	!	0.457962	. 002125	!	0.000739	. 002378 !	з	2	1	!
5	22	!	0.487210	. 002058	!	0.000870	. 002436 !	2	2	2	!
ł	23	!	0.508220	. 002159	•	0.000347	.002364 !	з	1	5	
ţ	24	!	0. 549964	. 002011	!	0.000060	.002283 !	1	c	з	!
1	25	•	0. 971250	. 002460	i	002674	.003164 !	4	0	2	!
!		!	0.567269	. 002720	!	0.001307	.003420 !	з	з	0	
1	26	!	0. 571250	. 002460	1	0.001017	. 002/37 !	4	0	2	•
	27	•	0. 584022	. 002733	1	-, 000207	.002945 !	5	0	1	
ł.	28	1	0. 591984	.002212	1	0.000633	. 002866 !	1	1	з	!
1	29	1	0.612994	. 002313	1	000320	.002850	2	0	3	1
÷	30	1	0.626042	. 002932	1	0.000274	. 003591 3	3	3	1	-
Ł	31	1	0. 634280	. 002752	1	0.000515	. 002986 !	Э	2	2	
5	32		0. 647052	. 003033	1	000356	. 003823	4	2	1	
÷	33. 1	1	0. 376024	.002615		0.000247	. 003080 !	2	1	3	
1		1	0. 676300	002964	1	000029	. 003426 !	4	1	2	1
1	33, 2	1	0.676024	. 002615	1	0.000444	. 003269 !	5	1	3	1
1		1	0. 676300	. 002964	1	0.000168	. 003614 !	4	1	2	1
1	34.1	1	0. 802084	.003219	1	-, 00049B	.003589 !	3	1	3	1
1		1	0. 802360	. 003559	1	000774	. 003934 .!	3	Э	2	1
1	34.2	1	0.802084	. 003219	1	C. 000520	.004037 !	3	1	Э	1
1		1	0.802360	. 003568	!	0.000244	.004382 !	3	з	2	1
1											

Continuación del archivo InxparStron36.Sal

TIBLA V

Valores de dcalc (calculados con indices optativos y parametros reciprocos base), diferencias dexp-dcalc e Indices Optativos

Ŧ	Numero	!	dcalc +-	&dcalc !	de-dc +-	&de-dc	Ind	ice		!
ł	pareja	!	(Ang s t	roms) !	(Angst	roms) !	н	ĸ	L	1
ł	<u> </u>	-	6 899020	016479	0.000000	033037	1	0	0	4
ï	÷	÷	3 003150	009514	- 003322	015020		1	õ	÷
÷	5	÷	3 540350	006922	0.000000	009438	ī	â	ĩ	÷
÷	4	÷	3 449510	008239	- 009602	011217	, ÷	ň	ō	- i
÷		÷	2 945310	004071	0.001315	007312	1	Ť	ĩ	÷
÷	ž	1	2 444140	005690	- 000271	007779		â	i	i
i	7	÷	2 407580	006229	- 005166	007906	- 5	ĩ	â	- i
÷	à	÷	2 299470	005493	0.001388	007062	3	ō	ō	÷
÷	9	÷	2 204110	004894	- 000296	006122	2	ĩ	ŝ	i
i	10	÷	2 062440	003713	- 000402	005164	5	ò	2	÷
i	11	1	2 008610	00451H	- 002096	003145	ā	ō	ī	÷
i	12	i	1.991560	.004757	005487	.005561	2	2	ō	j
i	13	÷	1.976030	.003653	002763	. 606221	1	ō	2	i
i	14	÷	1.831490	.003525	001840	. 004654	1	ī	2	ġ
÷	15	÷.	1.770170	. 003461	002844	. 004369	2	ò	2	1
÷	16	÷	1.735780	. 003755	001077	. 004967	3	1	1	1
÷	17	÷.	1.617620	. 003279	000661	. 003799	2	1	2	!
÷	19	÷	1.591250	. 003662	000279	. 004371	4	ō	1	÷
1	19	1	1. 535410	. 003167	~. 000874	. 003536 !	3	0	2	1
ŗ	20	ł	1.505490	. 003596	001281	. 004040 !	4	1	0	1
ţ	21	!	1.477700	. 003416	001190	. 003848	3	2	1	1
!	22	1	1.432660	.003016	001277	. 003590	2	2	2	!
!	23	ŧ	1.402730	. 002969	000479	. 003272 !	3	1	2	
!	24		1. 348440	. 002458	000074	. 002805	1	0	3	1
!	25	ł	1.323080	. 002840	C. 003108	. 003679 !	4	0	2	1
1		1	1.327720	. 003171	001527	. 004010	3	з	Ö	4
ŗ	26	1	1.323090	. 002840	001176	. 003178 !	4	0	2	ł
ţ	27	Ł	1.308540	. 003048	0.000231	. 003309	5	0	1	1
1	28	1	1.299710	. 002421	000674	.003151	1	1	3	1
!	29	1	1.277240	. 002403	0.000333	002976	2	0	з	!
!	30	!	1.253860	. 002749	000276	. 003634	3	з	1	1
1	31	1	1.255620	. 002726	000509	. 002764	3	2	2	!
ţ	32	!	1.243170	. 002703	0.000342	. 003683 !	4	2	1	!
!	33.1	!	1.216240	. 002345	000222	. 002777	2	1	з	4
1		ł	1.215990	. 002656	0. 000026	. 003088 !	4	1	2	ţ
!	33, 2	ţ	1.216240	. 002345	000399	.002747	2	1	Э	1
ţ		!	1.215990	. 002656	000151	. 003258	4	1	2	1
!	34, 1	ł	1.116580	. 002234	0.000347	. 002505	3	1	з	1
1		!	1.116390	002474	0.000539	002745	Э	з	2	1
!	34, 2	1	1.116580	. 002234	000362	.002816	з	1	э	ļ
1		!	1.116390	. 002474	000170	. 003056	3	з	2	!
										- 1

Continuación del archivo inxparStron36.Sal

TABIA VI

Evalores Utilizados en el Calculo de Parametros de Red]

de H L : cos(Theta)^2#F/2 [!0sen(Theta)^2#F/2 [!10sen(Theta) *1/Theta] I/Keen ! pare ja! FEI/sen(Thota) *1/Theta] (Th)^2#F I/Keen ! 1 1 0 0 8.82945 0.21416 9.8183 0.62215 1.6922 301 2 1 1 0 1.4.93224 .00178 1.4.8674 .05215 9977.14 3 1 0 1.4.33728 .003193 1.6.527 .03183 1.6.927.031803 1.997.701 4 2 0 1.4.33728 .00216 1.1.99.344 .05211 1.997.701 5 1 1.1.3.42844 .001571 1.1.48674 .024874 .771.771 7 2 1<0
Image Image <th< td=""></th<>
I I Normalizadas I 1 1 0 <t< td=""></t<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 4 35728 003193 1 16.5272 031803115949 807 1 4 1 2 0 0 1 4.22016 003841 16.9555 0402011212197 11 11 13.42844 001591 1 19.8349 0224991 112197 701 71
1 4 1 2 0 0 1 4.22016 003841 1 16.9535 .0402011 12177.70 1 5 1 1 1 3.42844 .001371 1 19.8349 .0224971747.30 1 6 1 2 0 1 3.05312 .02137 1 17.052 1 7 1 2 1 0 3.05312 02137 1 12.4626 .0306487 121.4526 .0306487 7968.531 1 0 0 1 2.46246 .001637 12.4343 .0449164 546.770 .0338279 8056.279 1 0 0 1 2.47907 .0010587 25.8520 .01818112918 124.902 .044444 942.579 1 1 2 1 .213947 .001787 25.8520 .01818112918 124.922 .024644 945.57.961 1 1 1 1 1 17.9701 010391 27.7011 .0330681 5667.961 1 1 1 </td
1 1 1 1 3.42844 .001371 1 19.8347 .0224971 17477.30 1 6 2 0 1 3.11813 .002785 1 17.0 0.44574 7917.32 1 7 2 1 0 3.05312 .002197 1 1.4626 .034068 7968.53 1 8 1 1 2 2.62430 .002112 2 3.041237 7047.03 1 9 2 1 1 2.427307 .002079 1 2.3.6431 .044916 5467.97 1 1 2 2.13787 .001058 1 2.6.0270 .024644 9363.57 1 1 1 2 1.3211 .001058 1 2.6.1323 .0874644 9363.67 1 1 1 1.4211.9013 .001758 1 2.6.1323 .0874621 6367.77 13 1 0 2.13787 .00137
1 6 1 2 0 1 3 11813 .002785 1 21 10 7 12 1 0 3 .05312 .002197 1 1 1 0 3 .05312 .002197 1 1 1 .03468 .034681 .94284 .034681 .94284 .034681 .94284 .034681 .94234 .033829 .0477.03 1 1 2 1 1 2 .42424 .01639 1 .23,5431 .041239 .0477.03 1 1 2 1 2 .42424 .01639 1 .23,5431 .0449161 .04697 1 1 2 1 .24,213947 .001289 1 .25,4133 .0449161 .04697 .9253 .1333 .0744861 .04242 .461 .92637 .92637 .92637 .92637 .92637 .92637 .92637 .92637 .92637 .9273621 .0439618 .92
1 7 1 1 0 1 3.05312 .002117 1 21.4626 .036068 7968.53 1 8 1 0 0 2.62430 .002112 2.3.5631 .041237 7047.03 1 9 2 1 1 2.46240 .00137 1 23.5631 .041237 7047.03 1 0 0 2 2.27307 .002079 1 23.4134 .044916 5469.79 1 1 2 0 1 2.1947 .001058 1 26.0270 .024644 936.567 13 1 0 2 1.2197 .003789 1 26.0270 .024644 936.567 13 1 0 2 1.2197 .001378 1 26.0270 .024644 936.567 14 1 1 2 1.92161 .001375 1 27.9711 .033081 9667.726 15 2 0 2 1.25378 .001375 1 27.9711 .019287 16089.30
! 8 ! 3 0 0 ! 2.42430 .002112 ! ! 2.35631 .041239' ?047.02 .03129' ?047.02 .03129' ?047.02 .03129' ?047.02 .03129' ?047.02 .03129' ?045.03' .03129' ?047.02 .03129' ?047.02 .03129' ?047.02 .03129' ?047.04 .03129' ?047.04 .03129' ?057.03' .03129' ?057.03' ?057.03' ?057.03' ?25.052.0 .011111' ?21.00' .03129' ?057.04' ?057.03' ?25.052.0 .011111' ?21.00' ?04464' ?045.35' ?27.701 .040304' ?24.74 ?24.64' ?24.24' ?24.70' ?24.78' ?26.77.01 .040304' ?24.77.74' ?25.77.01 .040304' ?24.77.70' ?26.77.0' ?24.77.74' ?26.77.0' ?24.77.74' ?26.77.0' ?27.931' .029.77' ?27.931' .029.77' ?27.931' .029.77' ?27.931' .029.77' ?26.77.0' ?24.77.24' ?27.931' .029.77' ?27.931' .029.77' .029.77' ?27.77' .023421' ?27.97' .027.931'<
! ? ! 2 1 1 ! 2.4244 .001397 ! 2.3001 .033827! 8056.27! ! 10 ! 0 0 0 2 ! 2.3001 .033827! 8056.27! ! 11 ! 3 0 1 ! 2.13947 .001058 ! 25.4134 .0449161 546.7 ! 12 ! 2 1 2.13947 .001058 ! 26.0270 .024664 241.2 46.1 ! 1 ! 1 ! 1.92161 .001378 ! 26.1323 .0974861 26.27 .04644 96.36.7
1 0 0 2 1 2,2,7307 .002007 1 25,4134 .0449164 5469,791 1 1 3 0 1 2.19013 .000767 1 25,6420 .0181811 12918 .00 1 2 2 0 2.19913 .000767 1 25,6420 .0181811 12918 .00 1 1 1 2 1.97161 .001798 1 .26,1323 .0874861 .2612.461 1 1 1 1 .17427 .001378 1 .27,2701 .040308 .264.77.861 1 1 1 .17427 .001378 1 .27,7701 .043048 .24972.34 1 1 .17479 .001370 1 .28,071 .012807 .299.300 1 1 1 .17479 .001304 1.29,3620 .01304110385.200 1 1 2 1 .53783 .0000601 1.29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
1 1 1 0 2 1 2,1,2,3,9,4 2,1,3,2,0,4,4,4 2,4,4,4 1 <t< td=""></t<>
! 14 ! 1 1 2 ! 1,92161 .001378 ! 2,7201 .040308: 4963.671 ! 15 ! 2 0 2 ! 1,8250 .001275 ! 27,7811 .03068: 5667.961 ! 16 : 3 1 ! 1 ! 77429 .001434 ! 28,0317 .037682: 4797.264 ! 17 ! 2 1 : 2 ! 1,53783 .000705 ! 28,8721 .019287: 8089.301 ! 18 ! 4 0 1 ! 1,45397 .001434 ! 28,0317 .037682: 4797.264 ! 17 ! 2 1 : 1,53979 .001030 ! 27,0313 .028971: 5208.701 ! 18 ! 4 0 1 ! 1,4436 .000477 ! 29,3623 .01304!10385.201 ! 20 ! 1 ! 4,4436 .000591 ! 29,6300 .016466!776.217 ! 17! ! 23 ! 3 ! 1 ! 23826 .000347 ! 29,8300 .016466!7980 .031.97 ! 24 ! 4 0 ! 1.132971 .000371 ! 29,8148 .0129815 .981.97
! 15 ! 2 0 2 ! 1,8520 001275 ! 27,7811 033068 5667,96 ! 16 ! 3 1 ! 17,742 001434 ! 28.9721 03768 24797.26 ! 17 ! 2 ! 1.59783 001030 ! 28.9721 019297 8089,30 ! 18 ! 0 ! 1.59783 001030 ! 28.9721 019297 8089,30 ! 17 ! 2 ! 1.43436 000470 ! 29.3623 01304!!10393 206 776.23! ! 21 ! 3 2 ! 1.23671 000341 ! 29.5120 016466! 7612.17 ! 21 ! 3 1 ! 1.33671 000341 ! 29.6700 016466! ? 012482! ? 9700 024482! ? 010341 ?
1 1
1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 3 0 1
1 1 1 1 1 1 1 2 0 0380 1 2 0381 028891 3208971 3208971 3208971 3208971 3208971 3208971 3208971 3208971 3208971 3208971 3208971 329776 291 321 31029776 291 321 3102977 291 321 3102977 291 321 291 320 0169281 7776 291 1 2 2 1 1 33971 000391 29 6300 0164661 7612 191 12 2 2 1 1<28120
17 1 3 0 2 1 45326 .000477 1 29.3623 .013304110335.201 1 20 1.4 1 0 1 .04436 .000477 1 29.3623 .013304110335.201 1 21 1 3 1 1 .04436 .000602 .29.3120 .0164661 .7612.173 1 21 1 2 2 1 .28926 .000847 1 .29.37770 .0234831 4903.471 1 23 1 2 1 .23826 .000347 1 .29.8548 .0129051 .7381.071 1 25 1 0 3 1 .14171 .000437 1 .29.8548 .0129051 .7381.071 1 25 1 0 2 1 .002376 .000474 1 .29.8731 .29.8731 .29.8731 .29.8731 .29.8731 .29.8731 .29.12121 .7157 .041212121
1 1
1 21 1 2 1 1 23971 000391 1 29.6300 0164661 7612 171 1 22 2 2 1 29.6300 0164661 7612 171 1 23 1 2 1 29.6300 0164661 7612 171 1 23 1 2 1 29.6300 0164661 7612 171 1 23 1 2 1 29.6300 006471 29.7770 0224821 4903 471 1 3 1 1 14171 C00493 29.8548 0129037 7381.091 1 25 4 0 2 1 10323 001347 1 29.874 1 29.874 1 29.874 1 29.874 1 1 29.7757 069722 7442 1 1 1 1 1 1 1 1 29.7777 069722
1 2 2 2 1 28326 000847 1 29,7770 023483 4903 471 1 23 1 2 1 28326 000847 1 29,7770 023483 4903 471 1 23 1 1 2 1 23402 000394 129,834 018621 9980.50 1 24 1 0 3 1 14171 100433 29,8548 018405 7381.09 1 3 0 1 1 10323 001347 129,8214 033675 2538,93 1 3 0 1 1 07576 000474 129,8118 0125121 7159.04 1 7 5 0 1 1<07278
123 13 1 2 1.23402 .000394 129.8363 .010862 9980.501 124 1 0 3 1.14171 .000394 129.8548 .012935 7381.097 125 4 0 2 1.10323 .001347 129.8214 .0396751 2538.931 125 4 0 2 1.10323 .001347 129.8214 .0396751 2538.931 126 4 0 2 1.09576 .000474 129.8214 .012512 7157.044 127 5 0 1 1.07278 .000343 129.7757 .008972 9642.061 128 1 1 3 1.007278 .000343 129.7757 .008972 2773.322 127 5 0 1 1.01736 .000171 129.7419 .033032 2773.322 128 1 1 3 1.01786 .000171 129.5448 .027630 3441.131 130 3 3 1 .097270 .000110 129.5468 .0072620
24 1 0 3 1 14171 C00433 1 29.8548 012905 7381.09 1 24 1 0 2 1 10323 001347 1 29.8548 012905 7381.09 1 2 3 0 1 29.8548 012905 7381.09 1 2 3 0 1 29.814 033675 2538.93 1 2 0 2 1.09576 000474 1 29.8118 012512 7159.04 1 2 0 1 1.09576 000474 1 29.8118 012512 7159.04 1 27 5 0 1 1.09576 000474 129.7419 033021 2773.32 1 27 1 1 1.01778 000715 129.6453 027031 3441.13 1 3 2 1 0.92790 000110 129.54548 0275301 278.00
1 25 4 0 2 1 10323 001347 29.8214 0336751 2538.931 1 3 3 0 1 <td< td=""></td<>
2 1 3 0 1 10012 10014
26 4 0 2 1.09576 .000474 1.29.9118 .012512 7159.04 1 27 5 0 1 1.07278 .000343 1.29.7737 .008972 7642.06 1 28 1 1 3 1.05565 .001171 1.27.749 .030302 2773.32 1 29 2 0 3 1.01778 .000905 1.29.6455 .0229031 3441.13 1 3 3 1 0.99270 .001110 1.29.5468 .0276301 27428.00 1 31 1 2.9.9270 .001110 1.29.5468 .0276301 27428.00
27 1 5 0 1 1 1.07278 000343 1 29.7777 .008721 7422 01 28 1 1 3 1.05565 000343 1 29.7777 .008721 7422 01 28 1 1 3 1.05565 001171 1 29.7419 .0303021 2773.321 29 2 0 3 1 1.0178 000905 1 29.6455 022903 3441 13 1 30 1 3 3 1 1 0.97270 .001110 1 29.5468 .0276301 2728.001 31 1 3 2 2 1 0.97778 000315 1 29.5468 .0276301 2728.001
28 1 1 3 1 1.0356 00171 27.749 03002 2773.32 29 2 0 3 1.0376 00175 27.749 03002 2773.32 29 2 0 3 1.01778 000905 27.6455 022903 3441.13 30 3 3 1 0.9290 00110 29.548 027630 2728.00 31 3 2 2 0.97778 000315 27.548 007762 7457.24
29 2 0 3 1 1.0178 600905 2 2,6455 022003 3441 13 1 30 1 3 3 1 0.9229 00110 1 29,5455 022003 3441 13 1 30 1 3 3 1 0.9229 00110 1 29,5468 027630 2728.00
27 1 2 0 3 1 1.01778 00010 1 27.548 027630 2471.13 3 0 1 3 1 1 0.99290 00110 1 29.5648 027630 2728.00 3 1 1 3 2 2 1 0.97778 000315 1 29.5086 007742 9457.28
30 3 3 1 0.77270 001110 29.5848 027630 2728 00 31 3 2 2 0.97778 000315 29.5086 007742 9457 28
· 31 · 3 2 2 · 0.97778 .000.113 · 29.3086 .007742 9437.28
2 32 1 4 2 1 2 0.4567 .001271 2 24.421 .03122/2 2254.24
: 33.1 ; 2 I 3 ; 0.40484 .000575 ; 24.2282 .018212; 4073.13;
: 33.2 ; 2 I 3 ; 0.40180 , 000880 ! 29.0503 , 023048! 2795.04!
: 34.1 : 3 1 3 : 0.72540 .000300 ! 27.6215 .008432! 5451.57!
1 34.2 1 3 1 3 1 0.71701 .000892 1 27.4044 .0181371 2222.441
ा अन्य था। <u>।</u>

Continuación del archivo InxparStron36.Sal

TAN A VI'

EValores Utilizados en el Calculo de Parametros de Redl

i	Numero!	In	dic	45	!	Func.	Ne	l s	an-	Ril	ey!	Fu	ncio	7	Delt		Pes	05	1
1	de t	н	к	L	t	C0\$	(The	ta)^2	2#F/	2.	10s	en (Th	1 8	ta)^2	FF!	1/64	en	ł
1	pareja				!		F=C:	ι/	ser	i(Th	eta)+1.	/The	ta	נ	. !	(Th)	~2	1
ļ	1 I.				1			1	No	Nor	mal	iza	d a s			1			!
1														_					
5	1 !	1	0	0	:	8.8	2845	•	021	416	• •	8.	8193	3.	0650	21!	16982	. 30	ł
1	2 !	1	1	0	1	4. 7	5324	•	007	178	1	14.	8674	٤.	0582	15!	9977	. 16	!
1	3 !	1	0	1	1	4.3	5728	•	003	1193	: !	16.	527:	2.	0318	23	15749	. 60	ł
1	4 !	2	0	0	1	4.22	2016	•	003	1841	. 1	16.	955	5.	0402	21	12197	. 70	ļ
1	5 1	1	1	1	:	3.4:	2844	•	001	571	. :	19.	E349	7.	0224	77!	17417	. 30	3
1	6 !	2	0	1	1	3.11	1813	•	005	2785		21.	1750	ς,	0445	74!	7917	. 52	ł
1	7!	2	1	0	!	3. 0	5512	•	002	197		21.	4628	5.	0360	58!	9966	1. 53	!
;	8 !	з	0	0	!	2.6	2430	•	002	1112	: :	23.	5631	ι.	0412	39!	7047	'. ea	•
!	9 !	2	1	1		2. 46	3246	• 1	001	639	· •	24.	3001	ι.	0336	27!	8056	. 27	:
1	10 !	0	0	2	1	2.27	7309	•	002	005	· •	25.	4154	ι.	0449	16!	5469	. 79	ļ
;	11 !	з	٥	1	!	2. 19	7013	• '	000	787		25.	8620	Σ.	0191	31!	12918	. 60	!
!	12 !	2	2	0	!	2.1	5947	• '	001	058	i 1	26.	0270	Э.	0246	54!	9363	. 59	!
1	13 !	1	0	2	ï	2. 13	3787	•	003	728	1	26.	1323	з.	08746	36!	2612	. 46	!
!	14 !	1	1	2	!	1. 7	2161	. '	001	578	1	27.	2901	ι.	04030	98;	4963	1. 67	!
!	15 !	2	0	2	!	1.8	2520	• •	001	275		27.	7811	ι.	0330	68!	5667	'. 9B	•
ţ	16 !	Э	1	1	!	1. 77	7429	•	001	434	· 1	29.	0317	γ.	0376	32!	4797	. 26	!
!	17 !	2	1	2	!	1. 56	3783	. '	000	705	1	20.	6721	ι,	01920	37!	8089	. 30	ļ
!	18 !	4	0	1	!	1.54	1599	. 1	001	050	· •	29.	0381	ι.	0288	71!	5208	. 70	!
:	19 !	Э	0	2	!	1.45	5436	. 1	000	479	1	27.	362	з.	01330	04!	10385	. 20	ţ
1	20 !	4	1	0	!	1.40	2456	. 1	000	609	1	29.	9120	Э.	01692	28!	7776	. 23	ļ
!	21 !	з	2	1	1	1. 35	5871	•	000	591	. !	27.	6300).	01644	56!	7612	. 17	!
!	22 !	2	2	2	!	1.28	3326	.1	000	847	÷ 1	27.	7770).	02341	33!	4703	. 47	2
:	23 !	з	1	2	!	1.23	3402	. (000	374	- 1	29.	8363	з.	010B	52!	9980	. 50	!
!	24 !	1	0	з	!	1. 14	1171	. 1	000	483	1	29.	8548	з.	01291	35!	7381	. 07	ļ
1	25 !	4	0	2	٤	1. 10)323	. 1	001	347	1	29,	8214	ŧ.	03567	75!	2538	. 93	5
1	•	э	з	0	۰.						1								ł
!	26 !	4	0	2	!	1.05	7376	. (000	474	. 1	29.	8116	з.	0125	12!	7159	. 04	ł
•	27 !	5	0	1	1	1. 07	7278	. (000	343	1	29.	7757	٢.	00893	72!	7642	. 06	ļ
!	20 !	1	1	з	!	1.0	5565	. 1	001	171		27.	7419	1.	03030	72!	2773	. 32	ŗ
ļ	29 !	2	0	з	!	1.01	1778	. (000	905		27.	6455	5.	02290	23!	3441	. 13	ļ
!	30 i	з	з	1	!	0. 75	290	. (001	110		27.	564E	3.	02763	30!	2728	. 00	ł
!	31 !	з	2	2	!	0. 77	778	. (000	315	!	29.	5086		00774	12:	S457	. 28	ł
,	32 !	4	2	1	1	0. 95	5697	. (001	291	ŧ	27.	4221		03122	27!	2254	. 24	ł
:	33.1 !	2	1	з	٩.	0.90	909	. (200	504	!	27.	1801		01163	37!	4073	. 13	i
!	!	4	1	2	!											1			1
ļ	33,2 !	2	1	з	1	0.90)327	. (000	611	!	29.	1465	۶.	01864	11!	2795	. 04	ł
!		4	1	2	٩.						:					1			!
!	34,1 !	Э	1.	з	١.	0.72	2481	. (000	244		27.	5760).	00413	22	5451	. 57	ł
!	!	Э	3	2	!						;					!			ļ
ł	34, 2 1	3	1	Э	:	0.71	020	. (000	837		27.	4951		0137	18!	2222	. 44	2
ł	!	з	э	2	ŧ.						!					. !			!

Continuación del archivo InxparStron36.Sal

Hay 8 combinaciones diferentes de indexaciones.

Se quieren calcular los parametros de red para TODAS las combinaciones de indexaciones.

Se continuo con el calculo de parametros de red, para 8 combinaciones.

TABLA VII

Parametros de red y Red de Bravais encontrados con diferentes indices optativos

Linea	Opci	on 1	Op	c i o	12	Opc	ion	э	Opo	107	4	Op	cior	5	Op	101	1 6	Ορο	ion	7
1 2	1	0 0																		
3	1	 																		
4	2	ōō																		
5	1	1 1																		
6	2	01																		
7	2	10																		
6	3 (0 0																		
9	2	1 1																		
10	0	0 2																		
11	3 (0 1																		
12	2 3	20																		
13		0 2																		
14																				
15	5									•										
17	2																			
19		1																		
19	3 6																			
20	4	1 0																		
21	3 3	2 1																		
22	2	2 2																		
23	3	1 2																		
24	1 (0 3																		
25	4 6	0 2										з	3	0	Э	з	0	з	з	0
26	4 (02																		•
27	5 (0 1																		
28	1.	1 3																		
29	5 (0 3																		
30	3 3	3 1																		
31	3 3	2 2																		
32	-	2 1				-		_			_									
33.1		1 3				4	1	2	4	1	2								1	2
33.2				-	~	4	1	2	1	1	2					_	-	4	1	2
34, 2	3	1 3	3	3	ž				3	3	2				3	3	2			
ao:	7. 9	5763	7	. 966	178	7.	967	95	7.	969	15	7	966	08	7.	967	7	7.	966	59
kao:	. 00	270	2	. 002	2610	• '	002	746	۰.	002	606		002	146		002	2092		002	121
CO:	4. 13	2644	4	126	54	4.	126	74	4.	126	89	4.	126	17	4.	126	27	4.	126	48
&== 0 ;	. 00	0129	1	. 001	402	•	001	356		001	578	Ι.	000	977	· .	001	141		001	669
Red de				-												•				
Bravais:							P			Р			P			P			P	

Continuación del archivo inxparStron36.Sal

Linea	Opcion 1	Opcion 8	Option 9	Opcion	10 Opcion 11	Option 12
1 2 3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		· ·	······································		
4	200					
5	1 1 1					
6	2 0 1					
	2 1 0					
ě.	2 1 1				· · · ·	* . · ·
10	002					
11	301					
12	220				· · · · · · · · · · · · · · · · · · ·	
13	102					
14	1 1 2					
15	202					
10	3 1 1		100 A.			
16	4 0 1					
19	302					
20	4 1 0				10.00	
21	321					
22	2 2 2					1997 - A. 1997 -
23	3 1 2					
24	103					
26	4 0 2	3 3 0				
27	501					
28	1 1 3					
29	203					
30	3 3 1					
31	322					
32 1	921				a di Antonia di Anto	
33.2	213	4 1 2				
34.1	3 1 3	3 3 2				· · · ·
34. 2	3 1 3	3 3 2				
AO:	7.96763	7.96802			·····	
&a0:	. 002902	. 002067				
co:	4. 12644	4, 12659				
aco: Ded de	. 001291	.001268				
Bravais;	P					

TARLA VII (Continuation)

(v) Sistema ortorrómbico.

Para el azufre (S) se preparó la muestra por el método del cigarrillo. Se utilizó Silicio como fase patrón, aunque posteriormente no se corrigieron las longitudes de arco experimentales con fase patrón. Se expuso a los ravos X durante 48 horas en câmara grande. La radiación utilizada fue debida al Cobre usando filtro de Niquel. La equisgrafia obtenida, registrada con el número DS-395, mustra un buen patrón aunque las líneas no son muy nitidas. En total se observaron 42 líneas touas identificadas en tarjeta, aunque en ésta no todas las líneas aparecen indexadas. Todas las lineas pertenecen a la zona de transmisión. De las 42 líneas se escogieron 17 de las más intensas. Las medidas se realizaron colocando el cursor directamente en los límites externo e interno de cada linea. La resolución del vernier utilizado es de .025 mm. Se escogió ja opción de corregir las medidas experimentales por los errores de radio. divergencia axial, tamaño de muestra y excentricidad. Se escogió la opción de tomar la resolución del vernier más la desviación estándar como incertidumbre.

Archivo de Parámetros de ALAEP para el S AlsepSI 7.Par

Excentricidad
Lim
R+Sigma
e –
. 025
395
1.503
1 . 012
8.4 5
49 8 5
132.2
- 14898. 01144

A continuación se muestra el archivo de datos de salida de ALAEP.

Achivo de salida de ALAEP para el Azufre.

AlaepS17.Sal

CALIBRACION DE LONGITUDES DE ARCO PARA EQUISORAFIAS DE POLVOS

Nombre del Archivo de parametros de entrada: Alsep817.Par Nombre del Archivo de datos de entrada: Alsep817.Dat Nombre de este Archivo: Alsep817.Sal

TABLA I Medidas de la Fase de interes.

		-1	Nine de		Capters		6		-	Ac		-		Rea				A			τ.	ñ		11
: NU	m d		NUM Ge	1	Centro	. 1	Cer	IGP		: 40		a 0	'i .	Separ		on	Len Ter	TT	ы н		1		ro	naz
pa	r#1		medica		Derecho	2	Izqu	116	rao	un	Arc		1	10 7 07	1010	na:	174	Insi	114	100	1	Rett	.010	****
en	p e	ni.	d/cada		Cd +- R/	2	C1 4		8/2	: ^	.+	R	1	Sut	+	н	Ct		- н	15	5	Cr	+	R/2
			pareja		(64)		(1	100)			(៣៣)				men 1				nch)		:		(m	n)
			1		00 047		74		1.7		5.74				000	·		6.3	74					
	:	÷	÷	ï	69 010		74		20		875		:	23	500	í		00.	70		÷			
	:	÷	2	i	77.030		74		300			<u> </u>	ł	22.	700			60.	30		1			
-	:	1	~	;	77. OEC	(i	70		13		= 25		÷	22	38/	, i		80.	20					
	:	1	1	i	77.012		74		50				1	20	0.0			80.	20		1			
	:	÷	1	i	97.010		74		00		875		÷	22	000			eo.	34		1			
	÷	÷	1	i	103 739				36		27			30	007			00.	34		1			
, •	5	÷		ì	103.752				13				i.	20.	013			00.	22		1			
;	5	1	5	÷	103.782			. 7	00		77		1	30.	007			60. 00	20	4	1			
÷	5	1	4	÷	103.707				12		275		÷	30.	007			00.	34		-			
, I	2	4		i	103 77		- 73	. 7	12		777		÷	20.	000			80. 80	24	7	1			
	5	1		ï	103 703	11	75		50		275		÷	30.	000			00.	34		÷			
i -	5	÷	i i	ï	110 236				42 1		475		i.	40.	775			00. 00	38	0				
	3	÷	•	÷	110 250	::	44		75 1		A75		1	43.	079			00.	33	š	1			
1	3	;	2	ì	110 300	1	44		80 1		4125		1	42	050			60. 00	37	2	1			
	3	;	Ă	i	110 250	1	64		50 1		475		÷	43	000			00.	26	2				
, :	3	÷	-	÷	110 286	11	44		47 1		475		÷	43.	000			60. 00	33		1			
	7	÷	Å	ï	110 236	1	64		75		475		÷	40	020			00. 80	40					
	Ă	÷	Ť	ï	111 500	11	65	13			400		ì.	44	227			00.	20					
		÷		ï	111 443	i i	45		201		400		i.	40.	237			00.	20					
		÷		ì	111 463	ii			00 1		400		÷	40.	178			00. 00	33	2				
		÷	Ă.	ï	111 450	1	6.		43 0		400		1	40.	100			00. 00	31	2				
, '	2	1			111 424		45		A 7 1		400		-	70.	147			88. 0a	33	2				
i.		÷			111 425		4		78 8	•	400		1	40.	1602			08. 07	34	7				
, 1		÷	1		113 287		60	5	75.1		400		÷	40.	4.30			08. 88	33	÷				
	5	-	2	ï	113 313		63		00 1		475		÷	47.	714			00.	23	± 1				
, ;	ž.	1	3		113 300		60		00 1	•	424		1	47.	714			00.	22	4				
		÷		;	113 313		63		75 1		425		î	47.	713			00. 00	24	7				
	5	1	5	ï	113 350	1	60		43 1	•	425		;	47.	730			00.	14	7				
	3	÷	Ă	ï	113 363	i	63		40 1		425		i.	50	000			00.	32	2				
	6	÷	1	ï	114 250		60		24 1		500			50.	000			00.	20					
	~	÷	2	÷	114 225	1			201		500			51.	707	1		00.	23	•				
	Ā	÷	- 3 -	;	114 200	1	42		AR 1		500			51	017			00. 00	23					
	~	1	Ă		114 175		60		62 1		500		;	51.	713			08.	£7	2				
	2	÷	5		114 230		40		12 1		500			51.	113			00.	31	2				
		÷		ï	114 225		4.7	1		•				51.	775			68.	22					

Continuación de la Tabla 1 del Achivo AlaepSI 7.Sal

. 7	• •	115 075 1	61.650	450	53.425		88.363 !
			41 425 1	490 1	51 500	÷	89 375 1
: :			14 (66)	. 400 .	80.460	-	00.070
		115.075 :	01.020	. 450 :	53.450	-	ao. 320 :
1 7	- 4	115.088 !	61,613 !	.450 (53.475		88.350 1
! 7	! 5 :	! 115.100 !	61.650 !	.450 !	53, 450	!	88.375 !
! 7	1 6	! 115.075 !	61,600 !	. 450 !	53.475	1	88. 339 1
5 8	! 1	116.100 1	60.625 !	, 350 !	55, 475		BB. 363 1
	1 2	1 116 100 /	60 650 1	350 1	55 450		88.375
		1 116 000 1	10 412 1	250 1	85 475	i	80 350 1
		118.000 :	60,013		55.475		00.000 ;
	1	110.100 3	80. 613 2		55,468	-	
: 8	1. 2	116.113 1	80. 800 I	.350 !	55, 513	1	88.356
! 8	. 6	! 116.037 !	60,600 !	.350 !	55, 437	•	88.319 !
! 9	1 1	117.813 !	56.875 !	.375 !	62. 938	1	88.344 !
1 9	! Z	119,788 1	56.900 !	. 375 !	62, 683		88.344
1 9	1 3	119.767 !	56. 913 !	375 1	62.875		6E. 350 !
ié		119 800 1	56 888 1	375 /	A2 91'1	÷.	89 344
i é i		1 110 075 /	54 000 1	276 1	41 020	÷	00.044
			30.009		02.730	-	
		119.787 !	36.668	. 375	62, 900		88.338
10	! 1	122.550 !	54.200 !	.330 ;	59, 350	- t -	88.375 !
! 10	2	122.525 !	54.175 !	.300 !	68.350	1	88.350 !
! 10	: 3	122.550 !	54.162 !	. 300 !	68. 389	- ţ -	66.356
1 10	. 4	122.600 1	54.113 !	.300 !	69, 487	- 1	88.356 !
1 10	5	122.575 !	54, 163 (300 !	68.413	- i -	88.369
1 10		122 575 1	94 174 1	300 1	AB 400	÷	88 775 1
	iii		53 400 L		71 017	-	
			50.410		71. 716		00.330 :
	: <u>*</u>	124,338 (22. 413	. 3/2	71.923	- 1	88.375
1 11	: 3	124.325	52.350 ?	. 375	/1. 9/5	- ÷ -	88.338
! 11	} 4 ·	124.350 !	52.350	.375 !	72.000		88.350 !
11	1. 5.	! 124, 325 !	52.413 !	. 375 1	71.913		88.367 !
1 11	: 6	124.363 !	52, 362 !	. 375 !	72.000		88.363
12	: I ·	125,438 !	51.300 !	. 425 !	74, 138	1	88.367 !
12	1 2	125.412 1	51, 213 (425 1	74 200	i.	88 717 1
1 12	1 3	1 125 425 1	51 225 1	428 (74 200	÷	DO 775 1
		1 100.980 ;	B1 777 1	478 1	74.200		00.020 :
	2	123.423 :	51.837 1	. 42.3	74.108		88.331
1 12		125.425 1	51.263	. 425	74. 163		UB. 344 !
: 12		125,425 !	51,250 !	.425 !	74.175		88.338 !
: 13	1 1	126.300 !	50.339 !	.400 !	75, 963	- !	89.317 !
! 13	1 2	126, 325 !	50,400 !	. 400 !	75.925	1	88.363 !
13	! 3	126.339 !	50.375 !	. 400 !	75.963		88.356
1 1 3	4	126 300 1	50 339	400 /	75 943		10 210 1
1 13		126 325 /	50 375 (400 1	75 050	÷	00.017
1 17		1 (34 376 1	50.070	. 400 1	73, 430		00,000 :
		1 120. 373 !	40.400 2	. 400 !	13. 7/3		49. 399
	. 1	127.750	48.863	. 600	78.887		88.306
1 1 4	2	127.738 !	48.925	. 600 !	78. 813	1	88.331 !
14	: 3	127.713 1	48,900 !	. 600. !	78, 913	1.	88.306
! 14	9 4 3	127.725 !	48.875 !	. 600 !	78,850	- <u>1</u>	88.300 1
14	1 5	127.750 !	48.938 1	. 600 !	78.813		88.344
! 14	1 6	127 739 1	48 900 1	600 /	78 838	÷.	80 710 1

341

ę

!

ł

Continuación de la Tabla I del Achivo AlaepSi 7.Sal

	4.5				101 000 1								
	15				131.200 :	45.513 !	. 400		85, 688		89, 356		
	15		- 2	- 2	131.138 !	45.488 !	. 400	1	65, 650		88. 313	1	
1	15		Э		131.113 !	45.513 !	. 400	· •	85.600		88.313	- i -	
!	15	!	4		131.125 !	45.500 !	. 400	÷	85.625	į	88.313	i.	
!	15		5	!	131.163 !	45.487 !	400	i.	85.675	-	BB. 325	i	
ł	15		6	1	131.225 !	45.550 !	400	÷.	85.675	i i	88 388	÷	
1	16		1	!	139.600 !	37.025 1	. 500	÷	102.575	i	88.313	i i	
1	16	. E	2	1	139.637 !	37.013 1	. 500	- i	102.625	÷	68.325	÷	
1	16	!	з	1	137.663 !	36.987 !	. 500	÷.	102, 675	i	88.325	i	
1	16	1.1	4	ŧ	139.650 !	37.063 !	500	i.	102.588	i	68.356	÷.	
1	16		5	1	139.613 !	37.025 !	. 500	1	102, 568	1	88. 317	j.	i
1	16	!	6	!	139.680 !	37.025 !	, 500	÷	102, 662	- i	88.356	- i	
ł	17	1	1	1	141.525 !	35, 138 !	. 450	1	106.388	1	88.331	i.	
!	17	!	2	!	141. 950 !	35.163 !	. 450	÷	106.368		88.356	i i	
:	17	!	Э	!	141.500 !	35.100 !	. 450	1	106, 400	i	88.300	i i	
÷	17		4	!	141.512 /	35. 175 !	. 450	÷.	106. 337		88.344	i -	
Ł	17	!	5	1	141.525 !	35, 100 1	. 450	÷	106.425	i	88.313	i	
!	17	!	6	ŧ	141.550 !	35.188 !	. 450	÷.	106, 363	i.	88.367	i i	
_													

TABLA II Medidas Promediadas.

_	_			_			_	_		_		_		_			_	_	_			_
! Nua	n dø!	Centro) Der.	!	Centro Iz	q. 1	And	:ho	de	. 8	e p a	ITAC:	10	n No		Cent	r٥	На	1 !	Cer	itro	Haz
t par	rejaŝ	pror	nedio	!	promedio	- !	un	ar:	. o 1	fu	٦c.	pro	om:	edio	:	Tran	smi	lsi	on!	Ret	TOT	eflx!
! en	pel!	Cd +-	- R/2	ł	Ci +- R/	2 !	A	+	R	! Si	n f	+ <u> </u>	(R·	+&i)		Ct	+	R/3	2!	C	r +	R/2!
!	С. 1		nm)	!	(mm)	. !		(mm)			(ന	n)		1		(നദ	a)			(നന)) (
i																						
i i	L !	99.	8229	!	76. 9313	!		52:	5	: :	22.	8917	7	. 091	8!	88	. 37	771	. !			1
	i i	103.	771	i	72.9168	- 1		275			30.	852	1	050	51	88	34	48	j			
		110	294	÷	66 4625	- 1		40	5		17	831		063	51	88	37	781	i			
		111	454	i	65 2646	;		40	วั		4.6	189/	ĩ	059	ă,	88	3	94	i			
i,		117	321	ï	43 3771	;		4.9				047		065	11	89	74	100				
		114	219	÷	60. 6771	- 1	•	500	5			700	с. с	063		60		240				
: :			000	÷	41 4071	- 1	•	454				447			<u>.</u>			107				
			000	1	01.02/1		•	200				402.			~;	00		103				
		110.	070	1	00.0107	-		35			35.	4/2	7	. 051	23	88		16.5				
	<u> </u>	119.	800	1	36. BY1.	- 1		373	2		5∠.	408	۶.	. 050	ы:	88	. 34	128	- 5			
! 10) :	122.	563		54. 1646			30			58.	3979	7.	. 075	9!	88	. 36	535				
! 1:	L !	124.	335	!	52, 3813	. !		37:	5		71.	934	2.	. 067	3!	- 88	. 3:	583				:
1 12	2 !	125.	425	ţ	51, 2479	. !		42		1 1	74.	177	1.	. 049	3!	88	. 3:	365	1			1
! 13	3 9	126.	327	!	50. 3708	. !		40	5		75.	956	з.	. 042	2!	88	. 34	190				
1 14	¥ !	127.	735	!	48, 9000	- 1		6Ū(2		78.	8354	4.	. 035	0!	. 88	. 31	177				
! 1!	5 3	131.	160	:	45. 5083			404	0		35.	652	1	. 058	9!	89	. 33	344	- 1			1
1 16	5 9	139.	642	÷	37. 0229			50		1 10	32.	6190	ō.	. 067	4	88	. 33	323				
1 17	,	141.	527	÷	35, 1438			45	n.	1 10	36.	3830	Ď	. 055	a	88	. 33	354				, i
• • •													-									

Continuación del Achivo AlaepSI 7.Sal

No se puede tomar en cuenta, en la correccion de los datos, alguna posible variacion en R debido a que no hau lineas de retrorreflexion.

Se continua con los calculos sin realizar las correcciones debidas a una posible variacion en R

Tabla III Correcciones por variaciones en el Radio efectivo de la camara.

	Separacion No Funcional promedio	: Separacion No ! Funcional corregida	! Separacion Funcional ! correcida
en oel !	Sof +- &Sof	1 Sufr +- \$Sufr	5r +- \$8r
	(തന)	! (mm)	! (mm)
1 !	22.0917 .0819	! 22.8917 .0618	! 22.8917 .0618
!!!		. 0818	. 0818
2	30.8521 .0505	30, 8521 . 0505	90.8521 .0505
		. 0505	. 0505
3	43.8313 .0635	43.8313 .0635	43.8313 .0635
			. 0635
	46.1876 .0378	46.1876 .0378	40.1846 .0348
	40 0400 0/Et	:	
5	47.7438 .0631	: 47 7438 .0051	47.7136 .0651
	S1 7004 0/70		
•	51.7878 .0874	: J1.7876 .0677	. 51.7876 .0677
7 1	53 4435 0513	. 53 4425 0512	
í 1	00.4020 .0012	0519	0512
	55 4729 0517		5 4729 0517
- i		0517	0517
9 1	62, 90B3	42,9083 .0508	42 9083 0308
. i i		0508	0508
10 İ	68.3979 .0759	68 3979 .0759	49.3979 .0759
		. 0759	0759
11 1	71.7542 .0673	71.9542 .0673	71.9542 .0673
!		. 0673	. 6673
12 !	74. 1771 . 0493	! 74.1771 .0493	74, 1771 . 0493
!		. 0473	. 0473
13 !	75.9363 .0422	! 75.9563 .0422	75.9563 .0422
		! . 0422	. 0422
14 !	78 8354 .0550	· 78.8354 .0550	78.8354 .0550
!		! . 0550	. 0550
15 !	65.6521 .0589	! 85.6521 .0589	85. 6521 . 0589
!		! . 0589	. 0589
16 !	102.6190 .0674	! 102.6190 .0674	102.6190 .0674 !
!		! . 0674	. 0674
17 !	106.3830 .0553	! 106.3830 .0553	! 106.3830 .0553 !
! !		! . 0553	. 0553

Continuación del Achivo AlaepSi7.Sal

La ecuacion que expresa el factor de corrimiento, <2Epsilon>, por error de Divergencia Aximl del haz y tamano de muestra, al angulo medido 2#Phi, es:

C2ED= (.00106804 +/- .00029367 / .00022677)*CDT(2*Phi)
 + (.00585632 +/- .00178744 / .00135758)*COT(Phi)

Calculado con los valores (en mm) de los siguientes parametros:

Abertura de el Orificio 1 (2X1 +- &2X1): 1.5 +- .03 Abertura de el Orificio 2 (2X2 +- &2X2): 1 +- .012 Distancia de la muestra al Orificio 1 (Y1 +- &Y1): 8.4 +- .5 Distancia de la muestra al Orificio 2 (Y2 +- &Y2): 49.8 +- .5 Distancia de la muestra al Andod (S - &65): 132 +- 2

Tabla IV Correcciones por Divergencia Axial y Tamano de Muestra.

Num de!	2 Theta	exp. !	<2Ep 8 :	lian> !	Delta	Sexp	Sr correg	ida por!
! pareja!	sin cor	regir	calcu	Jaao !	COTTESP	ondiente	Div ax t	an nues!
ien peli	2Th +-	&2Th !		!	a CSEU	silon>	Srtda +-	&Srtda !
! !	(grad	0\$) !	(grac	135) !	()	18) 	! (#id) !
1 1	11.4458	. 0409 !	0, 063711	. 019286 !	0, 127423	038572	1 23.0191	. 1204 !
: j		.0409 !		.014666 !		. 029333	!	. 1112 !
1 2 1	15, 4260	.0253 !	0.047111	.014262 !	0.094222	. 028524	9463	. 0790 !
!!		. 0253 !		.010846 !		. 021691	1	.0722 !
! 3 !	21.9156	. 0318 !	0.032902	.009962 !	0.065804	. 019924	! 43.8971	. 0834 !
!!		. 0318 !		.007575 !		. 015151	1	.0787 !
242	23, 0948	. 0299 1	0.031168	.009437 !	0.062336	. 016974	46, 2519	0787 !
!!		. 0299 !		. 007176 !		. 014353	1	.0742 !
! 5 !	24, 9719	. 0356 ;	0. 028740	.008703 !	0.057480	. 017405	! 50.0012	.0825 !
		. 0326 !		. 906618 !		. 013235	!	.0784 !
161	25.8748	.0339 !	0. 027673	. 008380 !	0. 055346	. 016760	! 51.8449	.0846 !
, ,		. 0339 !		.006372 !		. 012744	!	. 0806 !
7	26.7313	. 0256 !	0.026769	. 008106 !	0.053537	. 016212	53. 5160	. 0674 !
		. 0256 !		. 006164 !		. 012328		. 0635 !
. 8 .	27.7365	.0259 !	0. 025752	. 007798 !	0.051504	. 015597	1 55. 5244	.0673 !
		.0257 1		.005930 !		. 011860		. 0636 !
9	31 4542	. 0254 !	0.022543	. 006928	0.045086	. 013655	62.9534	.0645 !
	~~	. 0254 !		. 005192 !		. 010383		. 0612 !
10	34, 1990	.0379 !	0. 020609	. 006242	0.041217	. 012485	68.4391	.0884 !
		. 0379 !		. 004747		. 009493		.0854 !
11	35, 9771	. 0337 !	0.019507	. 005909 !	0.039015	. 011819	71.9932	. 0791 !
		. 0337 !				. 008987		. 0763 !
14	37.0885	.0246 :	0. 018871	. 005/17 !	0.037741	. 011434	1 74.2148	. 0607 !
		.0246 :	0.010007	. 004347 :		. 008694		. 0580 !
13	37. 9781	. 0211 :	0.018387	. 000071 !	0.036773	. 011141	75.9930	. 0534 !
	30 4177	.0211 :	0.017/10	005247		. 008471	:	. 0507 !
14	37. 4177	. 0275 :	0.01/048	. 003347 :	0. 035275	. 010674	: /8.8/0/	. 0657 1
	43 0340	.02/5 :	A 41/40/	.004066 :	0 000470	. 008131		. 0631 1
10	42.0200	.0275 :	0. 016086	. 004875 :	0. 0321/2	. 009750	95.6843	. 0687
		.0275 :	0.010040	. 003706 :		.007413		. 0663 !
10 1	31. 3074	. 0337 :	0.013049	. 003757 1	0.026097	. 00/914	: 102.6400	. 0753 !
	53 1017	. 0337 !	0.010484		0.004000	. 006016	:	. 0734 !
	23. 171/	.02/8 !	0.014490	. 003/90 !	0.024992	. 00/580	: 106,4080	. 0629 !
:		. 02/6 :		. 002881 !		. 005762	:	.0610 !

Continuación del Achivo AlaepSi7.Sal

Factor de correccion de excentricidad: Fe= -.14896 +-- .01146

Tabla V Correcciones por Excentricidad de la muestra en la camara.

ī	Nur	de!	Sr corrag	ida por !	A	ngulo d	e Bragg	!	Factor	de	1	Sf correg	ida por
!	par	e jati	Div ax + f	cam muas !		calcu	ilado	ŗ	excentri	cídad	1	excentr	icidad !
1	en.	pal!	Srtda +-	&Srtda !		Th +-	• &Th	!	E +	&E	!	Se +-	&Se !
ł		· +	(mm)) !		(gra	rdos)	i	(mm)		ł	(mm)	
i	1		23. 0191	. 1204 !		5. 7348	. 0301		029726	. 0021	1	22. 9894	. 1225
i	- 2		30, 9463	0790		7. 7366	. 019B	i.	037746	0030	i.	30, 9066	. 0820
i	- 5		43. 8971	0834	1	0. 9743	0209	į.	055685	0042	i	43.8414	0876
i	Ā		46. 2519	0787	ī	1. 5630	0197	i.	058512	0044	i	46. 1934	0831
i		i i	50,0012	0825	1	2. 5003	0206	i.	062963	0048	÷	49, 9383	0873
i	Ā		51. B449	0846	Ē	2.9612	0212	i.	065127	0049	÷	51.7798	0896
i			53, 5140	0674	1	3. 3790	0169	į.	067074	0051	i	53.4490	0725
i	É		55, 5244	0673	ŝ	3. 9811	0168	i.	069395	0053	i.	55, 4550	0726
i		i i	62 9534	0645	- 7	5 7384	0161	i.	- 077790	0039	÷	62 8756	0704
i	10		68 4391	0884	î	7 1098	0221	ì.	+ 083781	0064	÷	69 3554	0947
i	11	· ;	71.9932	0791	÷	7.9983	0198	i.	- 097561	0067	÷	71 9056	0858
i	13		74. 2148	0607	- 1	8 5537	0152	i	- 089881	0069	÷	74 1250	0675
i	12		75, 9930	0534 1	- î	8 9983	0133	÷	- 091714	0070	÷	75 9013	0604
i	. 14	(i	78 8707	0657	- 1	9 7177	0164	÷	- 094633	0072	i	78 7761	0729
i	1.5		85 4843	0687 1	•	1 4211	0172	i.	- 101304	0077	÷	85 5830	0764
i	14		102, 6450	0753	5	5 6612	0169	i	- 116305	0089	ì	102 5290	0842
į	17		106. 4080	. 0629 !	2	6. 6021	. 0157	i.	117299	. 0091	i	106. 2890	. 0720
_					_						÷.		

En este sistema - hicieron dos pruebas: una con la opción de indexar c) atrón asignando las líneas base con sus índices, y la otra calcular parámetros de red introduciendo todos los índices.

En la primera opción tenemos el siguiente archivo de parámetros:

Archivo de parámetros para INXPAR del S InxparSi 7.Par

> Ind G Cн 395 K alfa-p, 17 к alfa-1, O к a-2, 0 ĸ beta, O K alfa-p Ortorrombico s 1 2 5 , 1 . 1 , 1 1 з . 1 . 1 . Э . з s 0 10

y el siguiente archivo de salida.

Archivo de salida de INXPAR del S

InxparSi 7.Sal

INDEXACION DE PATRONES DE DEBIJE-SCHERRER Y CALCULO DE PARAMETROS DE RED

Nombre del Archivo de Parametros oc Entrada: InxparS17.Par Nombre del Archivo de Datos de Entrada: InxparS17.Dat Nombre de este Archivo: InxparS17.Sal Cond. Exp.: Camara: G. Radiacion: Cu. Equisgrafia DS: 395

TABLA I (Longitudes de Onda Utilizadas)

I t	Radiacion Cu	1	Long de Onda! (Angstroms) !	Incertidumbre {Angstroms}	ł	Numero de lineas medidas	!
	K alfa-p K alfa-1	!	1.54178 1.54051	. 00006 . 00006	!	17 0	!
ł	K alfa-2 K beta	!	1. 54433	. 00006 . 00006	!	0 0	!

Long, usada p/normalizar mediciones de las longs, de arco: K alfa-p

TABLA II

Promedios de las longitudes (Sexp) de arco (Valores experim, introducidos), Angulos (Theta) de Brang (calculados a partir de Sexp) y Distancias (dexp) interpianares (calculadas a partir de Theta)

Numero	de!	Longitud	de Arco	!	Angulo d	e Bragg	!	Distancias Interplanare
pareja	ent	Sexp +	- &Sexp	!	Theta +-	Θ	!	dexp +- &dexp
pelicu	la !	(mm	່	!	(gra	das)		(Angstroms)
					Para K	alfa p_		-
1	!	22.9894	. 1225	1	5 74- :	. 030625	!	7. 6980 . 040961
2	1	30. 9066	. 0820		7.7257	. 020500		5.7339 .015303
Э	•	43.8414	. 0876	1	10 9604	. 021700		4.0545 .00B143
4		46. 1934	. 0831	1	11, 5401	. 020775	!	3.8507 .006969
5		49. 9383	. 0873	÷	12.4815	. 021825		3.5660 .006263
6		51.7798	. 0896	!	12, 9450	. 022400	!	3.4412 .005976
7	!	53. 4490	. 0725	1	13.36.5	. 018125		3. 3356 . 004565
8		55. 4550	. 0726		13, 8633	. 018150		3.2172 .004249
9		62.8756	0704		15.7129	017600	1	2.8455 .003212
10	•	69. 3554	0947		17.0837	023675	1	2. 6234 . 003623
11		71.9056	. 0858	1	17.9754	021450	÷	2.4978 .002976
12		74.1250	. 0675		18 5313	016875	÷.	2,4255 002223
13		75.9013	. 0504	ŗ	18, 9753	015100		2.3708 .001908
14		78. 7761	0729	1	19.6940	018225	1	2,2875 .002120
15		85. 5830	. 0764		21.3975	019100	÷	2.1131 .001879
16		102. 5290	. 0842	1	25.6323	021050	÷	1.7820 .001432
17		106.2890	0720	÷	25. 5723	018000	÷	1.7233 001149

Continuación
del
archivo
InxparSI.
7.Sal

TABLA III (Funciones calculadas a partir de Sen(theta))

Numero	de!	[Seno (t	heta)]^2 !	[Seno (1	heta)]^2 !	Gexp +- &G	xp Ordenado	5
parej	• 1	No Norm	alizados !	Norma	lizados !	Gerp=4sen(Theta)^2/Lambd	a^2
1	!	. 010028	. 000107 !	. 010028	. 000107 !	0.016875	. 000181029	
2	1	. 018076	.000095 !	. 018076	.000075 !	0.030417	. 000163009	
Э	!	. 036149	. 000143 !	. 036149	.000143 !	0.060830	. 000245087	
4		. 040078	.000142 !	. 040078	. 000142 !	0.067441	. 000244789	
5	1	. 046732	. 000161 !	. 046732	.000161 !	0.078638	. 000276938	
6	. !	. 050183	.000171 !	. 050183	. 000171 !	0.084444	. 000294067	
. 7		. 053410	. 000142 !	. 053410	. 000142 !	0. 089875	. 000246540	
8		. 057415	. 000147 !	.057415	. 000147 !	0.096614	. 000255689	
9		073397	. 000160 !	073397	. 000160 !	0. 123507	. 000279345	
10	!	086350	.000232 !	. 086350	.000232 !	0.145305	.000402197	
11		. 095250	. 000220 !	. 075250	. 000220 !	0.160280	. 000382543	
12	!	. 101011	.000178 !	. 101011	.000178 !	0.169974	. 000312030	
13		. 105730	. 000162 !	. 105730	. 000162 !	0.177915	. 000286667	
14		. 113567	.000202 !	. 113567	.000202 !	0.191103	. 000354663	
15		. 133085	. 000227 !	. 133085	. 000227 !	0. 223946	. 000398651	
16	!	. 187137	.000287 !	. 187137	.000287 !	0.314902	. 000506818	
17	- i	200101	. 000251 !	. 200101	. 000251 !	0.336716	000449330	

PARAMETROS DE ENTRADA:

Sistema a probar: Ortorrombico

Opcion utilizada:

 Asignar Indices en una Equisgrafias de polvos y (opcional) a partir de ellos calcular los Parametros de Red.

El intento de indexacion SI se hara asignando las ineas experimentales con las que se emperaran a probar como lineas base y asignandoles indices especiales.

Numero (en película) de las tres parejas experimentales que se introdujeron como lineas base: 1 , 2 , 5

Indices que se le asignaron a la primara linea base para empezar a probar el calculo de valores prueba de parametros de red: 1 1 1

Indices que se le asignaron a la segunda linea base para empezar a probar el calculo de valores prueba de parametros de red: 1 1 3

Indices que se le asignaron a la tercera linea base para empezar a probar el calculo de valores prueba de parametros de red: 1 3 3

La indexacion y/o el calculo de parametros de red SI se hara con todas las lineas.

Numero maximo permitido (Lb) de asignaciones de valores diferentes de Gexp a cada una de las líneas base: 4

Numero (Nt) de lineas toleradas sin identificar: O

Valor (Imax) mas alto de los indices por asignar: 10

Numero de linea experimental que se prueba como Primera Linea Base: 1

Numero de linea experimental que se pruesa como Segunda Linea Base: 2

Numero de linea experimental que se prueba como Tercera Linea Base: 5

5±6

Continuación del archivo InxparS17.Sal

TABLA IV Valores de Gcalc (calculados con indices optativos y parametros reciprocos base), diferencias Gaxp-Gcalc e Indices Optativos

I NUMBER	I Ocale +-	Lucale	Garde to	ton-Oc !	Ind	100		ī
I DADALA	/ (Angett	0ms^-21 /	(Annetr	0.05-2)	н	Ř.	Ē.	i
, paraja					••		-	į
1	! 0.016875	. 000336 !	0.000000	. 000516 !	1	1	1	ł
2	1 0.030417	. 000679 !	0.000000	. 000842 !	1	1	3	٤
	0.060939	. 001544" !	000109	.001791 !	0	0	6	1
; –	0.061020	. 000666 !	000170	. 000911 !	0	3	2	ŗ
i	0 060349	001144	0.000480	001389 !	1	2	4	ŧ
i 🔺	0 066966	001597 1	0.000474	001846 !	ō	1	6	÷.
	1 0 066429	001292.1	0 001011	001538	ō	2	5	i
i	0.067501	001344	000060	001585 !	2	2	2	ŧ.
	0.078638	001119	000000	001395	1	3	3	i.
; ,	0 078938	002025	- 000.300	002299 !	2	ō	5	i.
	1 0 082944	002101	0 001495	002399	õ	ñ	7	i.
i	1 0 085040	001764	- 000605	002060	ō	5	À	÷
;	1 0 084965	302080 4	- 000521	002371	- 2	1	5	i
	1 0 080977	002156 1	0.000903	002406	5	ĩ	7	÷
; '	1 0 042099	002340 /	- 002224	002588 4	ĭ	ò	ź	ï
;	1 0 090497	0014191	~ 000617	001665 1	;	3	ż	i
	1 0 096567	001547	0 000047	001824	ò	ä	5	ï
	1 0 094443	000979 1	0.000172	001135 /	ŏ	Ā	õ	i
;	1 0 000107	00000777	- 001512	002652 1	ĭ	- 7	7	÷
	1 0 100524	.002374 :	- 000019	001045 1	â			÷
	1 0 123510	. 001035 :	- 000011	. 001040 1	Ň	-7	2	i
	1 0 104040	. 003034 :	- 000011	.003520 :	- 1	-	2	1
1 10	1 0 143140	002270 :	000833	. 002007 :	- 6	-	8	÷
10	1 0 144747	. 003327 :	- 0002185	. 003730 :	- ¥		~	1
	: 0.146207	. 003714. :	- 001042	. 004110 :	-	2	2	÷
	: 0.140340	002634	- 000043	. 003230 :		3	~	i
	1 0 147804		000743	. 004081 :	ž	1	~	1
	: 0, 102,004	. 003237 :	~. 002303	.003828 :		3	õ	1
	: 0.137040	. 001012 1	0.000434	. 001993 :	-	2		÷
	1 0 170370	. 004266 :	- 000/00	. 004807 :		4	10	÷
	1 0 17:770	. 003732 ;	000404	.004246 :	- :	5	~	1
	1 0 178202	.003477 :	001/63	. 003/72 :			-	ł
4 4 3	1 0 170302	007343 (- 001473	. 004837 :	ž	-	10	1
	: 0,177367	.002700 :	0.0001472	. 003200 :	Š	- 2	÷.	÷
	1 0 102208	. 002060 :	0,000140	. 002347 :	Š	3	7.	÷
	: 0.173365	. 004508 :	- 0002802	.0043300 1	Š	<u>ج</u>	10	÷
í 1	1 0 100000	.003788 :	000236	.004320 :	Š.	-	2	1
	1 0 202822	.002940 :	001708	.002802 1	Š	5	3	1
: 13	. 0.223323	. 004/63 :	0.000423	. 005188 !	Š.		10	÷
	: 0.223/66	. 002149 !	0.000190	.002348 !	0	2	2	÷
	: 0.220784	. 003135 !	0.003162	. 003555 !	1	5	-	÷
- 10	1 0.319965	. 003662 !	003064	.006175 !		3	10	1
	: 0.314553		0.000349	. 004979 !	- 2	6	6	1
	: 0.315948	. 006497	001046	. 006999 !	3	4	2	1
7	: 0.337672	. 003764 !	000957	.004215 !	0		5	1
	0.334485	. 004961 !	0.002231	. 005413 !	1	- 6	8	1
	· 0. 336558	. 005032 !	0.000157	. 005480 !	2	6	7	!

Continuación del archivo hosparS17.Sal

TABLE V Valeres de dcalc (calculados com índices optativos y parametres reciproces base), diferencias desp-dcalc e Indices Optativos

ī	Numero	:	dcalc +	Licalc	ī	de-dc +-	late-dc		Ind	ice	1
•	pareja	ţ	(Angst	TORS)	ŧ	(Amgst	rens)	:	H	ĸ	Ľ
٤.		_			_			_			
	1	ŧ	7.697960	. 075519	•	0.000000	.118544		1	1	1 1
:	2	:	5.733780	. 662955	1	0.000000	. 080397	5	1	1	3
!	3	5	4.050710	. 050358.	:	0.003634	. 060534		•	o	
2			4.048230	. 021913	ł.	0.006319	. 030425		0	3	2
:		:	4.070650	. 038046	:	016105	. 047287	5	1	2	
:	4	:	3.864310	. 042318	•	013506	.054011		0	1	6
!			3.879900	. 037185	1	027203	. 045303	-	0	2	2
	_	÷.	3.648980	. 0377-97	5	C. 001717	. 045741	1	2	2	2
1	5	1	3. 566020	. 023095	5	0.000000	. 031889	5	1	3	3
		:	3. 559240	. 044792.	5	0.006775	. 052754	5	2	0	3
	6	5	3. 472210	.043164	1	030967	. 050882	1	0	0	7
2		5	3. 429990	. 035006	5	0.012269	.042139	5	0	2	
			3. 430670	. 041235	5	0.010576	.049702	Ξ.	2	1	2 3
	7	1	3. 352530	. 037901	1	016871	. 046006	1	0	1	<u>Z</u>
5		:	3. 295130	. 041071	5	0.040517	.047272		1	0	7
2		2	3. 324340	. 023760	:	0.011297	. 030937		1	3	4 3
	8	÷.	3.217990	025799	÷.	~. 000775	. 030699		0	3	5
		5	3. 220080	.014575	5	002853	. 019023		0	4	0
	_	٩.	3.172320	. 0.38251	•	0.024901	. 043762	1	1	1	7
	9	Ł	2.845250	. 017854	1	0.000221	. 021422	÷.	0	4	4
:		:	2.845340	. 034356	:	0.000130	. 039978		1	1	8 1
•		!	2.833700	. 0,25609	\$	0.009575	. 029550	۰.	1	з	6 · !
ł	10		2.643140	. 631996	:	019762	. 036866	3	0	1	7 !
		ŧ.	2 614733	. 032559	٩.	0.003645	.037485	5	1	0	2 9
1		1	2. 614010	. 024943	ŧ.	0.007368	. C29326		1	3	<u>Z</u>
	11		2.490500	. 028046	5	0.007318	. 032044		0	2	9
		Ŧ.,	2.400050	024341	5	0. 017767	. 039088	÷.	0	Э	39
		1	2. 501210	.012515	5	0033899	. 015672		1		0
•	12	ŧ.	2.430550	030215	!	305008	. 033658	5	0	0	10 1
		1	2. 422670	. 027473	1	0.002974	. 030700		1	2	9
			2.413050	. 024024	:	0.012476	. 027052		1	3	8 !
5	13	5	2.386400	. 029049	1	017602	. 032103	1	0	1	10
		1	2.361050	.019372	5	0.009746	. 021790		0	4	7
		5	2. 371730	013621	5	000734	.015773	1	0	3	4 1
	14	1	2.273990	. 026051	1	0.013536	. 029137	1	0	2	10
		5	2. 285990	. 06233377	5	0.001542	. 026228	1	0	3	9
		1	2. 276200	.014295	1	0.011325	- 016688	-	0	5	5
5	15	5	2.115140	. 0222/3	1	001998	. 024909		0	3	10
:		5	2.113990	. 010080	1	000852	.012105	5	0	6	2
ž	••	1	2.128220	.015047	1	015077	. 017258	1	1	5	6
1	16	5	1. 767860	. 015437	1	0.014157	. 017303		0	5	10 5
		5	1.783019	.012548	5	000988	. 014245	3	2	6	6
		5	1. 779070	.018013	1	0.002752	. 019798		3	4	7 !
	17	:	1. 720870	.009512	1	0.002443	. 010825	5	0	7	2
		:	1. 729070	. 01:2631	1	005737	. 014122	1	1	6	
		:	1.723730	.012743	:	000403	. 014178	5	2	6	7

. West

Continuación del archivo InxparS17.Sai

TABLA VI EValores Utilizados en el Calculo de Parametros de Redl

Numer	ro!	Iπ	dic		!Func. Nelson-Riley	! Funcion Delta !	Pesos !
t de	1	н	ĸ	L	! cos(Theta)^2#F/2	! 10sen(Theta)^2*F!	1/&sen !
I pare.	ja!				f=E1/sen(Thet	a)+1/Theta]	(Th)^2 !
· • •			iradas !	1			
:						1 7 0044 104040	0244 001
		-	- 1	-	1 7 20224 020040	: /.7K99 .1K0397; 1 10 8454 009779	10475 701
	- 1			4	1 5 05401 010904	1 14 4150 004770	7001 451
	1	ŏ	ň	5	1	1 14.0107 .004770	7001.40.
ì	-	ĭ	5	-	1		;
	i	ō	7	6	4 77874 009242	15.3218 .079459	7025 08
i 7	;	ō	2	5	1	1	
i	i	2	2	2	i	i	i
5	÷	ī	ā	3	4.39226 .008372	16.4269.082388	6213.78
	- i	2	ō	5	!	1 1	1
! 6		0	0	7	4.22199 .008015	16. 9496 . 083866!	5853, 37!
1		0	2	6	1	1 1	!
!	1	2	1	5	1	!!!	!
! 7	ŧ	0	1	7	4.07738.006101	! 17.4220 .067312!	7024. 90!
!	1	1	0	7	1	!!!	!
!	1	1	3	4	!	! !	
: 8	1	0	э	5	3.91463 .005693	17.9806 .066759	6780. 73
		0		<u>o</u>	1	!	
! _	1	1	1	7			
	- 1			2	3.39886 .004349	19.9572 .062252	6238.62
	- 1	+	-				
	1		3	2			4008.14
10	ì	¥.		2	1	: 21.3177 .081120:	4305.10
i	÷	î	ž	-	;		
	;	ô	3	÷	2 90742 004123	1 22 1540 071028	4847 201
	÷	ō	3	Ŕ	1		
	÷	ī	5	ē	1	i i	i
12	1	0	ō	10	1 2.80407.003065	22. 6593 . 055668	5631.83!
1	1	1	2	9	1	!	
!	!	1	з	8	1	1	i
13	!	0	1	10	1 2. 72524. 002625.	23.0511 .049208!	6168. 09!
!	!	0	4	7	!	!!!	!
		0	5	4	!	!!!	!
14		0	2	10	1 2. 60464. 002758	23.6641 .058187!	4952. 50!
	1	0	3	2	1	! !	!
		0	5	5	1	! !	!
15		ő	3	10	2. 34894. 002663	25.0086 .037871!	4414.17
	1		6	2	1	!!!!	
			2	-	:		
10	-	2	5	10	· · · · · · · · · · · · · · · · · · ·	: ≤/.6666 .U34586!	3488, 87!
		5	4	8			
17	i	0	7	7	1 1 75647 001699	: 29 1177 044050	2074 021
	1	ĭ		Ă	· · · · · · · · · · · · · · · · · · ·	. 20.11// .044803	3770. 02:
	÷	2	Ă	7	i i	i	
	•	-	3		•	• •	:

Continuación del archivo InxparSi7.Sal

TABLA VI' EValores Utilizados en el Calculo de Parametros de Redj

Numerot		Indices			Func. Nelson-Riley! Funcion Delt		Delta.	Pesos !	
1. de	1	н	ĸ	L	t cos(The	ta)^2*F/2	10sen(Th	eta)^2#F	1/4sen !
pare	Jat				! F=C	1/sen(The	ta)+1/Thet	•]	(Th)^2 !
1.				!	No Norm	alizadas	1		
		1	1	1	9.87739	. 053891	1 7, 9244	. 126349	9364.00
i 2	i	î	ī	ā	7. 29236	620049	1 10, 5454	082772	10475. 70!
: 3	i	õ	ō	6	5.05401	010806	1 14.6159	. 084770	7001. 45!
!	- 1	0	з	2	1		!	1	I I
!		1	2	4	•		!		1 1
5 4		0	1	à	! 4.77874	. 007252	! 15.3218	. 079659	7025.08
!	- !	0	5	5	!		!	1	I I
!		2	2	2	!		!		
: 5		1	3	3	4. 39226	. 008372	16. 4209	. 082388	6213.78
	. 1	2		2			1	00004	
: 0	-	×	ŭ	1	: 4.22177 	. 008015	1 10. 7470	. 083866	3833.37
	- 1	5	1	5			i		
; 7	•	5	;	ž	A 07738	006101	1 17 4990	067312	7024 90
i	÷	ī	ō	ż			1		
Ì	i	ĩ	3	4	•		1		
. 8		0	Э	5	: 3. 91463	. 005693	! 17.9806	. 066759	6780. 73!
!	!	0	- 4	0	!		1	1	
!	!	1	1	7	!		1		
1 9	1	0	4	4	9.37886	. 004349	19.9572	. 062252	6238. 62!
!		1	1	8			1		
		1	3	2				004400	
: 10	-			ä	: 3.08623	, 005002	1 21.3177	.081120	4303.16
	- 1	1	ă	÷	ì		1		
. 11	i	ò	2	ý.	2.90762	. 004123	1 22, 1560	. 071838	4547. 29
	i	õ	3	ŝ	1		!		
ł		1	5	ō	1		1		
112		0	0	10	1 2.6040	7.003065	1 22.6593	. 055668	5631.83!
!	ł	1	2	9	!		!	1	1
!	!	1	з	8	!		1		1
: 13	!	0	1	10	! 2.7252	4.002625	23.0511	. 049208	6168. 09!
:		0	- 1	7					
	1	2	2	1.			1 77 ////	050100	4050 50
: 14 	÷	ň	1	10	; ∡.o∪46 '	4. 002938	: 23.0041	. 038189	4732.50
;	;	ŏ	5	5	;		:		
15	;	ŏ	ă	ĭo	. 2. 3489	4 002663	. 25 0086	057871	4414 19
	i	õ	6	2	!		1		
!	•	1	5	6			È.		. i
! 16	!	0	5	10	1.8480	2. 002119	1 27. 6666	. 054586	3488. 89!
!	. !	2	6	6	!		1		1
!	!	3	4	9	!		1	9	· •
17	1	0	7	5	1.75647	. 001678	20.1177	. 044853	3976. 82!
		1	6	8	!		1		· !
	!	2	6	7	:		1	1	· · ·
Hay . 956594E+07 combinaciones diferentes de indexaciones.

Se quieren calcular los parametros de red para BIETE combinaciones de indexaciones.

. Se continuo con el calculo de parametros de red, para 7 combinaciones.

TABLA VII Parametros de red y Red de Bravais shcontrados con diferentes indices optativos

Linea	Opo	:107	1 1	Cl p (- 1 01	2	Ope	:101	3	Opo	:107	4	Ope	:101	1 5	Ope	ior	6	Ope	:101	. 7
1	1	1	1				-					···· ,			~~~~						
· 2	1	1	з																		
3	0	0	6																		
4	0	1	6																		
5	1	э	з																		
6	0	٥	7																		
7	0	1	7																		
8	0	з	5							0	4	0	0	4	0	0	4	0	- 1	1	7
9	0	- 4	4	1	1	8	1	з.	. E				1	1	8	1	э	6			
10	0	1	9																		
11	o	2	9																		
12	0	0	10																		
13	0	1	10																		
14	0	2	10																		
15	0	э	10																		
16	0	5	10																		
17	0	7	5																		
80:	10	. 96	57	11	. 00	83	11	. 11	24	11	. 01	03	11	. 0	291	11	. 13	85	11	. 34	65
&ao:		583	276		558	432		613	248	ι.	564	1 5 9	۰.	534	1117	· .	374	871		636	176
bo:	13	I. OC	22	10	3. 00	36	13	. 00	6	13	3. 00	48	13	3. OC	62	15	a. oc	84	13	3. 01	08
&bo		050	788		051	127	۰.	051	411		050	691		050	912		051	126		053	983
CO:	24	. 48	75	24	1. 49	99	24	. 50	71	24	1. 49	35	24	1. 50	941	24	1. 51	17	24	1. 54	39
&co:		137	317		148	757	۰.	156	028		126	035	۰.	133	2671		137	490	· .	152	992
Red de																					
Bravais:		P			P			Р			Р			P			Р			P	

En la segunda opción se creó eł siguiente archivo de parámetros.

Archivo de parámetros para INXPAR del S

InxparS17p.Par

Par ۵ Cu 395 K alfa-p, 17 u alfa-1, O alfa-2, ĸ 0 к beta, O K alfa-p Ortorrombico 4 0 10

y el siguiente archivo de datos de entrada.

Archivo de datos de entrada a INXPAR del S InxparSi7p.Dat

1		22. 9894		. 1225,	1,	1,	-1
2	,	30. 9066		. 0820,	1.	1.	з
Э		43. 8414	,	. 0876,	2,	2,	0
4		46. 1934		. 0831,	2,	2,	2
5		49, 9383	,	. 0873,	1.	з,	з
6	,	51, 779B		. 0896,	ο,	2,	6
7		53. 4490		. 0725,	з,	1,	1
8		55, 4550		. 0726,	2,	٥.	6
4	,	62, 9756	,	. 0704,	٥,	4,	4
10	,	68, 3554		. 0947,	1.	э,	7
11		71.9056		. 0858,	2,	4,	4
12		74. 1250	,	. 0675,	з,	1.	7
13		75, 9013	,	. 0604,	4,	2,	2
14		78, 7761		. 0729,	о,	2,	-10
15		85, 3230		. 0764,	з,	1.	9
16		102, 5290		. 0842,	2,	6,	6
17	,	90ئٹے . 106		. 0720,	6,	٥,	2

Dando por resultado el archivo de salida del cual sólo se muestran los resultados de la tabla VII.

Archivo de salida de INXPAR del S

InxparSi 7p.Sal

Hag una indexacion, Se quieren calcular los parametros de red para TODAS las combinaciones de indexaciones.

Se continuo con el calculo de perametros de red, para una combinacion.

TABLA VII

Parametros de red y Red de Bravais encontrados con diferentes indices optativos

Linea	Opcion 1	Opcion 2	Opcion 3	Opcion 4	Option 5	Opcion 6
1	1 1 1					
2	1 1 3					
3	220					
4	222					
5	1 3 3					
6	026					
7	3.1.1					
8	206					
9	044					
10	1 3 7					
11	244					
12	317					
13	4 2 2					
14	0 2 10	•				
15	319					
16	266					
17	602			1		
A0:	10.4399					
kao:	. 005564					
bo:	12, 8423					
kba:	. 009063)				
CO:	24, 468					
kco:	. 018121					
Red de						
Bravais:	F					

4.- Discusión de los resultados.

A continuación se discuten los resultados obtenidos y las experiencias obtenidas al aplicar las metodologías a cada una de los sistemas cristalinos.

i) Sistema cúbico.

Para este sistema la indexación se logra de inmediato ya que es el de más alta simetria. A continuación se muestra la tarjeta del JCPDS con la que se identificó el patrón de difracción del NaCl.

5-0	628	CHOR CO								
4	1.92	1.19	1.4	3.154	-					*
٤٨,	100	и	15	U	See	Ne Celo	156	(Hauste	3	
Red Lo Dia Str. G. Sad Se Bat. In Bat. In Bat. In Bat. In Res. Co Sar Sar Sar Sar Sar Sar Sar Sar Sar Sar	Ca C, Dirs andol An ACE by ACE by Pate 10. Date 20. ACE by 20. ACE by 2	A 1.5408 Chi de Martad T T Co Furst, 1 T Co Furst, 1 T Co Furst, 1 T Co Furst, 1 T Co Furst, 1 T Co Furst, 1 T Co Furst, 1 Co	A d EC CINUT ECU ECU CONT FUE Acco MID.	Film HI Cold. art birt Col. Col. Col. Col. Col. Col. Col. Col.	n.H	6 4 2.136 2.921 1.934 1.934 1.435 1.440 1.241 1.131 1.033 0.9405 .9533 .9405 .9533 .9405 .9533 .9533 .9535 .9533 .9555 .9535 .95555 .95555 .95	VL 13 130 15 2 15 4 1 17 1 2 5 4 1 1 1 1 1		64	hat
1.1	11 17/1	1			_		L	 1		L

Aquí se puede observar que hay dos líneas de intensidad 1 que no se observaron experimentalmente, pero que hay tres líneas en retrorreflexión que no aparecen reportadas. También se observa que el valor del parámetro de red calculado con el método:

$a_1 \pm \Delta a_2 = 5.64141 \pm .000281$ Å.

alcanza una precisión de diezmilésimas de Angstrom. Este valor está muy de acuerdo al valor reportado. Comparando ambos valores, encontramos que coinciden hasta las centésimas de Angstrom. No esperamos obtener el mismo valor ya que no es posible tener las mismas condiciones experimentales con las que fue calculado el valor reportado. ii) Sistema tetragonal.

Para este sistema la indexación ya no fue trivial, pero si se obtuvo la indexación con las 29 líneas, aunque 6 de ellas con más de una opción. Esto subió el número de combinaciones de indexaciones a 192, el cual es un número muy elevado. A continuación se muestra la tarjeta del JCPDS con la que fue identificado el patrón de difracción del TiO_-

1-1276					
i J.25 1.69 2.49 1.25 (TiO ₇)s <u>T</u>					オ
E 1, 100 60 10 100 Titaniam Out	la		(Butile)		
Rad Colley, 5 1 54054 Column House, 12 .	111	II INI	4.	11,	ALL
Futurel El; Diffractometer I/Icar, «1,4 Ref. tational bureau of Standardis, None. 24, Soc. 7, 85 (1969)	\$.247 E 2.487 1.257	00 110 50 101 8 200	1.0425		411 312 420
4: 5. Tetragonal S.G. P42/MMS (134) 4: 4: 4:5933 by ro 2.9592 A C 0.6442 7 Ref. 1614, Z Da 4.250	2.188 2.054 1.6874 1.6237 1.6797	35 121 10 210 60 211 76 320 17 002	0,9703 .9644 .9438 .9072 .9009		421 103 113 602 510
te n.w.jt sy Segn ⊇V D nep Calor Ref.	1.6528 1.6263 1.3598 1.3665 1.3061	18 310 7 221 28 301 17 177 2 111	.4774 .4774 .4731 .4437 .4437		431 431 432 472 303
We imperity every 0.0015 Veryle matrixed from Rational Lend Co., South Amber, New Jessey, UKA, Calitern at 23". Internal accordered: W, The Ather polymorphis matrices (celrogonal) and broadite interthermanic) converted to rutilis on Maxing above	1.7076 1.7076 1.1707 1.1483 1.1143 1.0936	4 702 2 212 6 321 6 400 2 410 8 222	.8194 .8120 .7677	12	571 440 510

Se puede observar que siempre alguno de los indices optativos encontrados corresponde a la triada reportada, por lo que consideramos la indexación encontrada aceptable. Hay un error tipográfico en la tarjeta en la línea con distancia interpianar .8892, ya que un simple cálculo muestra que los indices correctos son 213 en vez de 212.

La red de Bravais determinada, P, es correcta.

Los valores de ios parámetros de red calculados experimentalmente:

> $a_{g} \pm \Delta a_{g} = 4.59446 \pm .002861$ Å. $c_{g} \pm \Delta c_{g} = 2.96505 \pm .001641$ Å.

alcanzan una precisión de milésimas de Angstrom, y comparándolos con los valores reportados están de acuerdo hasta las centésimas de Angstrom.

iil) Sistema hexagonal.

La indexación para este sistema ya no resultó tan fácil ya que cuando se utilizaron longitudes de arco experimentales corregidas por todos los errores que corrige ALAEP las incertidumbres propagadas crecen demasiado y se encuentran indexaciones incorrectas. Por esta razón en este sistema se utilizaron longitudes de arco sin ninguna corrección.

a) Carbón (grafito).

La indexación del patrón para esta fase по fue complicada. ٧a aue las dos primeras lineas experimentales se pudieron tomar como lineas base. Además resultó una sola indexación completamente correcta, como se puede ver en la siguiente tarjeta

13-1	<u>i</u>										
4	3.56	1.03	1.03	3.54	((1)-11						i
И	108	10	50	100	Carbon				aphles.	ZH	
2.1	Color 1	1 1411	F 14-4		*1.1	44	1/11	bb 1	d A	11,	<u>144</u>
Cat a Ref.	H Ferguene 15 33 (1)	1-1 ₂ 4 84277 8 621	inel d Timps	1 Gen1. 5			100 10 50	401 100 101			
\$70.	Hunger a 1		5.G	. P5;/mc	(194)	1.61	i iii	804	({	
Rel.	1.443 64 1914.	•	9 4.1	114 Å 4	D , 1.	26 L.544 1,732 1,158	29.9	103			
* 17 A.	7514, ^D	••#	-,	7 Cale	Sign Plack	1,128	2 - 3 :	201 111,106			
1994) 7	3.87(0.1	Cey (ee. (02,23).				11	1	111			
						1	}	1			ł

Se puede observar que la línea i 5.1 reportada con indices optativos eligió los primeros.

Los valores de los parámetros de red calculados:

 $a_{g} \pm \Delta a_{g} = 2.46066 \pm .000441$ Å. $c_{g} \pm \Delta c_{g} = 6.71158 \pm .001240$ Å.

tienen diferente precisión. El primero alcanza las diezmilésimas de λ , mientras que el segundo hasta las centésimas. Comparando estos valores con los reportados

coinciden hasta las centésimas.

La red de Bravais determinada, P. es correcta.

b) Cioruro de estroncio hidratado.

Para este sistema la indexación se logró con la primera y tercera líneas experimentales satisfactoriamente, como se puede ver en la siguiente tarjeta:

6-0	073	MINOR O	CORRECT	TICH .										
•	6,09	3,54	3.44	4.19	5.4	L Mig0					*			
5	Ω1	ю	e 5	100	SIMONESING CHLORIDE HEEA HYDRATE									
Red C	-	1.1.100		Time In	_	47	44	M	1 44	44	1 11			
	1774.5c 100 a.5 000 CT CT.10000 CT CT.100000 CT.100000 CT.100000 CT.100000 CT.100000 CT.100000 CT.100000 CT.1000000 CT.1000000 CT.1000000 CT.1000000 CT.1000000 CT.10000000 CT.10000000 CT.100000000 CT.1000000000000000000000000000000000000	Cost off 1715 44, 1805 7 7 8 = # 1,5 54 mp	21400 40 21400 40 20 2175 A 21 2175 A 21 2175 A 21 2175 A	Dat min da 1 223 231 Plat (1 C c	Haa) 501 - 5100	4.99 3.96 3.559 3.665 2.865 2.865 2.996 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706	0 3 x = 2 9 0 9 8 1 = 2 4	20 10 11 10 10 11 10 10 10 10 10 10 10 10	111111111111111111111111111111111111111		410 128 128 103 103 100 407 501 113 501 113 103 103			
11.1	r filte tin 1 40.19 84, 40, 5 Patrana	Franca 3 Na Cay 40 Ing 40,000 Ing 40,000 Ing 2000	Sector of 11 DI Ya Ut. 196 Ac., 1	r Co. Se i 40,001 Ge, Ft.	/#1. %	1.471 1.471 1.770 1.715 1.715 1.717		10 11 10 11 10 11 10 11 10 11 10 10 10 1	1.11.1		211.112 211 211 211 211 211 211 211 211			

Se puede observar que las lineas experimentales 33.1, 33.2 y 34.1 y 34.2 coinciden con los mismos índices optativos que los reportados.

Los valores de los parámetros de red calculados, según la opción 5 de la tabla VII, son:

> a ± Aa = 7.96608 ± .002146 Å. $c_{1} \pm \Delta c_{2} = 4.12617 \pm .000977 \text{ Å}.$

los cuales están muy de acuerdo con los valores reportados. En este caso se alcanza mayor precisión para el segundo parámetro, que es del orden de diezmilésimas de Å, mientras que para el primero de 2 milésimas de Å. Se observa que la red de Bravais determinada. P. es correcta.

ly) Sistema ortorrómbico.

Este sistema fue el más difícil de indexar debido a que se trata de una red de Bravais centrada en las caras, lo que da lugar a muchas líneas con indices múltiples, es decir existen los indices 111, 222, etc. La razón por la que se asignaron las líneas experimentales como líneas base con sus indices fue debido a que las primeras tres lineas de la lista tienen indices de reflexión dependientes, según tarjeta, la cual se muestra a continuación.

8-267	MALOR COMPLETION

4	3.65	3.31	3,44	1.41	3						*
~	100	#0	40		Section				(54	(**)	1
181	DAK 11 SOA MSOLFF,	.5405 L/In Pro Tecolity Pa	Filmr Innersa In Dese	E	HDLLMD	**	1/1	111 111 001	4 4 1.414 1.541 2.501		zuß E
5 . J	047-004-004 -45 % 45 4	12.94	80. 9 24.44 7	Face (10 A 0. X 1) 1131 C 1.905 18 De 2.016	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	102 154 150 111	3.434 1.404 1.375 1.344		317 404 413 335 0.4.10
	1917 1930	107	0377 (718.8*	7 8.3452 Caler 6 MA CIN	Res 6	1.5		133 034 234 311	2.315 2.144 2.113 3.099	10-	044,2.04 1,1,11 319,042 1,2,10
Katura		SATUR			(106796.) (CA.)	3.13 3.04 1.05	111	313 135 000	1.001		0.0.11,344 353 400
Ser	fpillos:48					2,480		331 341	1.914	l î	174064.313 174064.313

_			_	_		_	_				
4	3.65	3.31	1.11	7,48	5					_	*
~	100	•0	40	6	Smrun					(Series	-)
-			784	De	· · · · · · · · · · · · · · · · · · ·	4.4	14	-	64	<u> </u>	
Deter		L/1.				1:25	1	1.4.10	133		
-				_		1.771	11	864,359	1.414	11	t l
Spa.			84.			1.75	11	401	1.11	11	
		•	•	<u>.</u>	C	1.494		1.3.13	1.361	1.	
1			•		110	1.42			1.394	٠ ا	1
						1.447	1.1				
1.		***	_ *	·	1 april 1	1.42			1 .	I 1	
<u> </u>	-	-				1.401	i '		í	(1
						1.555	1		1	I 1	l
						1.54	1	{	1	ł	1
						1.531			1	1	l
						1.50	1	1	1	1	1
*** ***						1,410	8			1	

Como se puede observar, las líneas experimentales 1, 2 y 3, las cuales se escogen inicialmente como líneas base, tienen indices, 111, 113 y 220, respectivamente. El determinante de un sistema con estos indices es cero. De esta manera nunca hubiera llegado a una indexación correcta. Lo mismo sucede para las líneas experimentales 1, 2 y 4, cuyos indices son 111, 113 y 133, respectivamente, que también dan determinante cero. Hasta que se tiene a la línea 5 como tercera línea base, se encuentra un sistema de ecuaciones independiente, con los índices correctos. De esta manera se encuentra una infinidad de combinaciones de indexaciones por lo que se tomó la opción de calcular los parámetros de red para siete opciones. Con una de estas indexaciones los valores de los parámetros de red son los siguientes:

> $a_{p} \pm \Delta a_{q} = 10.9957 \pm .002146$ Å. $b_{q} \pm \Delta b_{q} = 13.0022 \pm .050788$ Å. $c \pm \Delta c_{q} = 24.4875 \pm .137517$ Å.

Estos valores son parecidos a los reportados en tarjeta pero son incorrectos, además de que su incertidumbre es muy alta. Por eso se intentó calcular los mismos valores con los índices correctos resultando los siguientes valores;

> $a_{0} \pm \Delta a_{0} = 10.4399 \pm .005564 \text{ Å}.$ $b_{0} \pm \Delta b_{0} = 12.8423 \pm .009063 \text{ Å}.$ $c \pm \Delta c_{0} = 24.468 \pm .018121 \text{ Å}.$

Con éstos ya se puede hablar de precisión de milésimas de \hat{A} , para los dos primeros, y de centésimas de \hat{A} , para el tercero. Además comparandolos con los valores reportados coinciden hasta donde es posible compararlos, excepto el primero que difiere por una centésima de \hat{A} .

CAPITULO IX CONCLUSIONES

En este trabajo se presentaron dos metodologías, una para indexar patrones de difracción tipo Debije-Scherrer, y otra para calcular parámetros de red de sustancias cristalinas con alta precisión y exactitud, utilizando el método de Debije-Scherrer de difracción de rayos X. Las metodologías se restringieron a los sistemas cristalinos cúbico, tetragonal, hexagonal y ortorrómbico.

Para alcanzar mayor exactitud y precisión, se estudiaron las fuentes de error involucradas en el proceso experimental por cuatro fuentes de origen geométrico y una de naturaleza física. Las fuentes de error de naturaleza geométrica son: radio de la cámara, divergencia axial del haz incidente, tamaño de la muestra y excentricidad de la cámara. La fuente de error física es la absorción de la radiación por la muestra. Se analizó el origen físico de cada una de ellas, se buscó la manera de calcular los efectos en las medidas experimentales, y se desarrolló una metodología para corregir estas medidas. Con los valores corregidos se calcularon los parámetros de red. La precisión alcanzada se aprecia dentro de las décimas de À para el sistema cóblico. Y para los sistemas restantes está entre las centésimas y las milésimas de Á.

Para visualizar mejor cada una de las correcciones realizadas sobre las medidas experimentales, en la gráfica siguiente, se muestra el valor del parámetro de red del NaCl, sistema cúbico, $a_o \pm \Delta a_o$, contra la función de Nelson-Riley. El parámetro de red se calculó a partir de las longitudes de arco experimentales:

- a) sin corregir,
- b) corregidas por radio efectivo de la cámara,
- c) corregidas por error de radio, más divergencia axial y tamaño de muestra, y,
- d) corregidas por errores de radio, divergencia axial, tamaño de muestra y excentricidad.

Gráfica. Variación del parámetro de red calculado a partir de las $S_{HFL}^{}$ experimentales corregidas por los cuatro tipos de errores geométricos estudiados, contra la función de Nelson Riley.

En esta gráfica se observa que los valores del parámetro de red calculado de las $S_{\rm exp}^{\rm exp}$ sin corregir muestran un fuerte decaimiento entre los ángulo de Bragg, 20° a 42°, aproximadamente. Este decaimiento se va reduciendo conforme las longitudes de arco se corrigen por la diversas fuentes de error. Lo que se espera alcanzar en esta gráfica es una linea recta, lo cual se lograría si las medidas experimentales estuvieran libres de error. Sin embargo, después de aplicar todas las correcciones (excepto la de estas gráficas y extrapolando a 90°), la curva del parámetro de red muestra una ligera curva hacia arriba en los puntos cercanos a 90°. Los valores de los parámetros de red (en Å), calculados por el método de Cohen, ajustando una recta a cada una de estas curvas se muestra a continuación.

a) $a_{\pm} \pm \Delta a_{\pm} = 5.6414 \pm .000276$ b) $a_{\pm} \pm \Delta a_{\pm} = 5.64076 \pm .000280$, decremento de: .00064 Å c) $a_{\pm} \pm \Delta a_{\pm} = 5.64088 \pm .000268$, incremento de: .00012 Å d) $a_{\pm} \pm \Delta a_{\pm} = 5.64141 \pm .000281$, incremento de: .00053 Å

Todos estos valores muestran la misma precisión por lo que partiendo únicamente de ellos no es posible concluir cuál ha sido la mejor corrección, pero observando la gráfica es posible decidir que con la corrección de los errores estudiados es posible obtener un valor más confiable. Además debe tenerse en mente que hay otra fuente de error, que es la saturación de velamiento en la pelicula que no fue considerada, y otros más que dejamos sin estudiar. Esto, probablemente, sea lo que aleja la curva de una línea recta,

Como proyecto a futuro se espera que corrigiendo por las fuente de error restantes se alcance mayor precisión en los valores obtenidos.

Por otra parte, la metodologia de indexación resultó altamente confiable para los sistemas cúbico, tetragonal y hexagonal. No sucedió lo mismo con el sistema ortorrómbico, pues fue difícil

encontrar una indexación satisfactoria suponiendo que la fase por estudiar es desconocida. Un criterio que se puede tomar para aceptar una indexación dada es de acuerdo al número de opciones que se tengan. Si el número es muy alto, dificilmente se espera que sea correcta, pero hay que tener cuidado, pues todo es relativo al número de lineas experimentales que se deseen indexar. Una observación muestra que cuando el orden de magnitud de la precisión alcanzada en los parámetros de red no es muy alta, lo más probable es que se trate de una indexación incorrecta.

El proceso de la determinación de la red de Bravais, muestra los resultados esperados. Es correcto, pero la detrminación misma, está sujeta a la indexación, si ésta es incorrecta, consecuentemente lo será ella.

Este trabajo se concluyó satisfactoriamente, si bien es posible hacer algunas extensiones a este estudio. Una de ellas es estudiar con esta metodología los sistemas cristalinos monoclínico y triclínico, con lo que seguramente se encontrarán mejoras con respecto a los resultados alcanzados.

BIBLIOGRAFIA

Libros.

Amigo, José María; Claire de Brianso, Marie; Brianso, José Luis; Coy Yil, Ramón; y Solans Huguet, Joaquín. (1981) Cristalografía Editorial Rueda. Madrid, España.

Anderson, David L. (1964) The discovery of the electron D. Van Nostrand Company, Inc. Princenton, New Jersey. U.S.A.

Authier, André (1981) The reciprocal lattice International Union of Crystallography, Cardiff, Wales. England.

Azároff, Leónid V. y Buerger, Martin J. (1958) The powder method in x-ray crystallography McGraw-Hill Book Company, New York. U.S.A.

Azároff, Leónid V. (1968) Elements of x-ray crystallography McGraw-Hill Book Company, New York. U.S.A.

Bertin, Eugene P. (1970) Principles and practice of X-Ray spectrometric analysis Plenum Press. U.S.A.

Bleich, Alan Ralph (1960) The story of X-rays from Röntgen to isolopes Dover Publications Inc. New York, U.S.A.

Blundell, T. L. y Johnson, L. N. (1976) Protein crystallography Academic Press Inc. London, England. Bockhoff, Frank J. (1976) Elements of quantum theory Addison-Wesley Publishing Company, Massachusetts, U.S.A.

Bragg, Sir Lawrence, (1949) The crystalline state vol. I G. Bell and Sons LTD, London, England.

Buerger, Martin J. (1942) X-Ray crystallography John Wiley & Sons, Inc., New York. U.S.A.

Buerger, Martin J. (1956) Elementary crystallography John Wiley & Sons, Inc., New York. U.S.A.

Clavel Hernández, Alberto (1986) Determinación precisa de parámetros de red por el método de polvos de Deblje-Scherrer. Tesis profesional, Facultad de Ciencias, UNAM. D. F., México.

Compton, Arthur H. and Allison, Samuel K. (1943) X-Rays in theory and experiment D. Van Nostrand Company, Inc. U.S.A.

Cullity, B. D. (1967) Elements of x-ray diffraction Addison-Wesley Publishing Company, inc. U.S.A.

Dominguez Esquivel, José Manuel (1973)

El problema de asignación de índices y algunos algoritmos de asignación para patrones de difracción de rayos x producidos por polvos.

Tesis profesional, Facultad de Ciencias, UNAM. D. F., México.

Enciclopedia Británica (Micropedia)

Fabregat G., Francisco J. (1971) Gristalografía geométrica Universidad Nacional Autónoma de México, México.

Feynman, Richard P. (1972) Lectures on physics Fondo Eucativo Interamericano, S. A. México.

Glazer, A. M. (1987) The structures of crystals Pitman Press. London, England.

Guinier, A. (1964) Théorie et technique de la radiocristallographie Dunod. Paris, France.

Guinier, André (1984) The structure of matter Edward Arnold Ltd. London, England.

Henry, N. F. M., Lipson, H. and Wooster, W. A. (1951) The interpretation of X-ray diffraction photographs MacMillan and Co. London, England.

Jackson, John D. (1962) Classical electrodynamics John Wiley & Sons Inc. U.S.A.

Kaelble, Emmett F. (1967) Handbook of x-ray McGraw-Hill Book Company, U.S.A.

Lipson, H. S. (1970) Crystals and X-rays Wykeham Publications Ltd. London, England, Lonsdale, K. (1948) Crystals and x-rays G. Beil & Sons LTD. U.S.A.

Meier, W. M. (1984) Space group patterns International Union of Crystallography, Cardiff, Wales. England.

Rabinowicz, Ernest (1970) An introduction to experimentation Addison-Wesley Publishing Company, U.S.A.

Richtmyer, F. K., Kennard, E. H. and Lauritsen, T. (1955) Introduction to modern physics McGraw-Hill Book Company, Inc. U.S.A.

Sands, Donald E. (1969) Introduction to crystallography W. A. Benjamin, Inc. New York, U.S.A.

Weber, Robert L. (1980) Ploneers of science J. M. A. Lenihan, Briston and London, England.

Whittaker, Edmund and Robinson, G. (1952) The calculus of observations Blackie & Son Limited, London, England.

Woolfson, M. M. (1970) An Introduction to x-ray crystallography Cambridge at the University Press, U.S.A.

Artículos.

Barabash, I. A. and Davydov, G. V. (1967) Neskuchaeu's method of indexing powder patterns applied to systems of intermediate symmetry. Acta Cryst. 23, 6-9.

Blake, F. C. (1925) Precision x-ray measurements by the powder method. Physical Review 2, 26 60-70.

Bradley, A. J. and Jay, A. H. (1932)

A method for deducing accurate values of the lattice spacing from x-ray powder photographs taken by the Debye-Scherrer method. Proceedings of the Physical Society of Londen 44, 563-579.

Bragg, Sir Lawrence (1968) X-Ray Crystallography Scientific American, Vol. 219, No. 2, pp. 58-70

Cohen, M. U. (1935) Precision lattice constants from x-ray powder pholographs. Rev. Sci. Instrum. 6, 68-74. Errata: idem, 7, 155.

Cohen, M. U. (1936) The elimination of systematic errors in powder photographs. Zeitschrift für Krystallographie "A", Vol. A94 pp. 288-298.

De Wolff, P. M. (1957) On the dtermination of unit-cell dimensions from powder diffraction patterns. Acta Cryst, 10, 590-595. De Wolff, P. M. (1957)

Detection of simultaneous zone relations among powder diffraction lines.

Acta Cryst. 11, 664.

De Wolff, P. M. (1968) A simplified criterion for the reliability of a powder pattern indexing.

J. Appl. Cryst. 1, 108-113.

Ekstein, Hans and Siegel, Stanley (1949) Limits of accuracy in the determination of lattice parameters and stresses by the Debye-Scherrer method. Acta Cryst. 2, 99-104.

Frevel, Ludo K. (1978) Error Analysis of 29 powder data for cubic or unlaxial phases. J. Appl. Cryst. 11, 184-189.

Gerward, L., Staun Olsen, J. and Benedict, U. (1986) On the use of distorted fcc structures for describing high-pressure phases. Preprint Physica B.

Hess, James B. (1951) A modification of the Cohen procedure for computing precision lattice constants from powder data. Acta Cryst. 4, 209-215.

Hesse, R. (1948) Indexing powder photographs of tetragonal, hexagonal and orthorhombic crystals. Acta Cryst. 1, 200-207. Ishida, T. and Watanabe, Y. (1967)

Probability computer method of determining the lattice parametrs from powder diffraction data.

Journal of the Physical Society of Japan, Vol. 23, No. 3. 556-565.

Ishida, T. and Watanabe, Y. (1971) Analysis of powder diffraction patterns of monoclinic and triclinic crystals. Journal of Appl. Cryst. 4, 311-316.

Ito, T. (1949) A general powder x-ray photography. Nature, V. 164, No. 4174, pp. 155-156.

Jamard, C., Tsupin, D. and Guinier, A. (1966) Méthode d'indexation automatique des diagrammes de poudres. Buil. Soc. franç. Minér. Crist.

Jette, R. and Foote, Frank (1935) Precision determination of lattice constants. Journal of Chemical Physics. 3, 605-616.

Kettmann, Gustav. (1929) Belträge zur Auswertung von Debye-Scherrer-Aufnahmen. Z. f. Phys. 53, 198-208.

Langford, J. I., Pike, E. R. and Beu, K. E. (1964) Precise and accurate lattice parameters by films methods. IV. Theoretical calculation of axial (vertical) divergence profiles, centroid Shifts, and variances for cylindrical powder diffraction cameras.

Acta Cryst. 17, 645-651.

Langford, J. I. (1973)

The accuracy of cell dimensions determined by Cohen's method of least squares and the systematic indexing of powder data. J. Appl. Cryst. 6, 190–196. Langford, J. 1. (1973) Geometrical and statistical aspects of the accuracy of camera powder data.

J. Appl. Cryst. 6, 197-202.

Lipson, H. and Wilson, A. J. C. (1941) The derivation of lattice spacings from Debye-Scherrer photographs. Journal of Science Instruments 18, 144-148.

Lipson, H. (1949). Indexing powder photographs of orthorhombic crystals. Acta Cryst. 2, pp. 43-45.

Nelson, J. B. and Riley, D. P. (1945) An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160-177.

Runge, C. (1917) Die Bestimmung eines Kristallsystems durch Röntgenstrahlen. Physik Zeitung 18 pp. 509-515.

Straumanis, M. E. (1949) The precision determination of lattice constants by the powder and rotating crystal methods and applications. Journal of Applied Physics 20, 726-734.

Schechtman, D., Blech, D., Gratias, D., Cahn, J. W. (1984) Metallic Phase with Long-Ranged Orientational Order and No Translational Symmetry Phys. Rev. Lett., Vol. 53, No. 20, Nov. pp. 1951-1953

Stosick, A. J. (1949) A method for indexing powder photographs, using linear diophantine equations, and some tests for crystal classes. Acta Cryst. 2, 271-277.

Swanson, H. E. and Fuyat, (1953) X-ray diffraction powder patterns. NBS circular 2 6

Taupin, Daniel (1968) Une Méthode Générale pour l'indexation des diagrammes de poudres. J. Appl. Cryst. 1, 178-181.

Taylor, A. and Sinclair, H. (1945) The influence of absorption on the shapes and positions of lines in Debye-Scherrcr powder photographs. Proc. Phys. Soc. 57, 108-125.

Taylor, A. and Sinclair, H. (1945) On the determination of lattice parameters by the Debye-Scherrer method. Proc. Phys. Soc. 57, 126-135.

Wannier, Gregory H. (1952) The Nature of Solids Scientific American, Vol. 187, No. 6, pp. 39-48

Watson, E. C. (1945) The Discovery of X-Rays Scientific American, Vol. 13, No. 5, pp. 281-291

Zsoldos, Lehel (1958) A general method of indexing photographs of low-symmetry crystals. Acta Cryst, 11, 835-839.