

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO

FACULTAD DE INGENIERIA

AUTOMATIZACION DEL ANALISIS DE PRUEBAS ISOCRONALES EN POZOS PETROLEROS

DOMINGO DAVID FRANCO ASSAD

DIRECTOR DE TESIS, ING. NESTOR MARTINEZ ROMERO

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

RESUMEN	 	•••••	 <i>.</i> .	
INTRODUCCION	 • • • • • • • •		 	3

CAPITULO I

1.1	DETERMINACION EMPIRICA DE LA ECUACIÓN DE FLUJO EN MEDIOS					
	POROSOS					
	1.1.1 Experimento en Una Arena no Consolidada6					
	1.1.2 Experimento en Una Arena Consolidada					
	1.1.3 Comportamiento del Modelo de Flujo con las					
	Características de la Arena					
	I.1.4 Aplicaciones Prácticas					
	1.1.5 Conclusiones de los Experimentos					
1.2	DATOS DE PRESION Y GASTO EN POZOS DE GAS NATURAL					
1.3	DETERMINACION DEL POTENCIAL ABSOLUTO DE FLUJO					
1.4	COMPORTAMIENTO ISOCRONAL EN POZOS DE GAS					
	1.4.1 Aplicaciones Prácticas					
	I.4.2 Conclusiones del Comportamiento					

1.5	PROBLE	MAS PUR	PRESENCI	A DE	CINOIDO E	NEL	INTERIUR	DEL	FUZU	
	Y EN L	A FORMA	LION PROD	UCTO	RA ADYACEN	τε.,				34
	1.5.1	Observa	aciones a	los	Problemas	por	Fresencia	de	líquido.	39

1.0	FRIARI	LIZAGIUN DE LA PRESION DE FLUJU PURAPIE UNA PRUEBA
	ISUCRO	NAL EN POZOS DE GAS
	1.6.1	Observaciones de la Estabilización del Fluig
1.7	VARIAC	ION DE LA CAPACIDAD DE AFLUENCIA EN POZOS DE GAS DURANTE
	SU VID	А РЬОВИСТІЧА
	1.7.1	Conclusiones de la Variación de la Capacidad de
		Atluencia
1.8	COMPOR	TAMIENTO DE AFLUENCIA EN YACIMIENTOS CON EMPUJE DE GAS
	DISUEL	TO
	1.0.1	Comportamiento en las Curvas de Afluencia para
		Yacimientos Agotados con Empuje de Gas Disuelto52
	1.8.2	Precisión en el Uso de la Curva de Referencia
	1.8.3	Perspectiva del Uso de la Curva de Raferencia en
		Otros fipos de VacimientosG!
1.9	PRUEBA	S ISOCRONALES EN POZOS DE ACEITE

I.9.1 Conclusiones de las Pruebas en Pozos de Aceite......65

CAPITULO II

PROCEDIMIENTO D	E ANALISIS	AUTOMATIZADO	67
dal Granning da Cá			11

CAPITULO III

11.1

111.1	PRUEBAS	ISOCRONALES EN POZOS DE GAS
£11.2	PRUEBAS	ISOCRONALES EN POZOS DE ACEITE
	111.2.1	Presión dei Yacimiento Arriba de la Presión de
		Saturación de Gas Crítica
	111.2.2	Yacimientos Baiosaturados
	111.2.3	Yacimientos Saturados
	111.2.4	Observaciones de los Elempios en Pozos de Aceite100

CAPITULO IV

BIBLI

CONCLUSION	S Y RECO	MENDACIONES	
DGLOFIA			

RESUMEN

El desarrollo del tema Automatización del Análisis de Pruebas Isocronales en Pozos Petroleros, está sustentado por cuatro caoítulos con los siguientes contenídos ; en el primero 58 definen experimentalmente los factores que obbiernan el flujo de das a través de materiales porosos, uno consolidado y otros no consolidados, donde se reproducen flujos lineales y radiales. En todos los casos se encontró que el cuadrado de la diferencia de presiones es proporcional al exponente de la velocidad de la masa, a partir de lo cual alounas aplicaciones fueron deducidas. En seguida se muestran los antecedentes de la elaboración de pruebas isocronales para pozos de das. presentando un simple gradiente de presión , representativo de un pozo de gas advacente a una área de drene productora ($0 = C (Fr^2 - Fe^2)^n$).

A continuación se define el término isocronal, su comportamiento, y parte de un proceso de análisis (cálculo del " AOF ") obtenido por medio de una serie de curvas paralela: graficadas en papel Log.-Log.; cada curva representa la relación entre el gradiente de presión y el gasto de gas de un pozo dentro de un intervalo de tiempo específico . Algunos problemas asociados a la producción de pozos de gas natural son estudiados por las pruebas isocronales, siendo éstos: presencia de líquido en el interior del pozo, tiempo de estabilización durante las nruebas isocronales, y variación de la capacidas productiva.

También se describe el comportamiento de la presión de fondo - fluvendo en función del gasto, cuondo - está representado por las curvas de Indice de productividad - IP -, e indice de productividad rea:

" IPR ", El último tema dentro de este Capítulo muestra los resultados y el análisis de precoas isocronales efectuadas en poros de aceite, en donde se observa que el comportamiento del flujo os similar al presentado por los poros de gas.

El Capítulo II expone en forma general, el contenido y funcionamiento de un paquete especializado de cómputo para el análisis de proebas de presión (Sistema de Análisis de Prubbas de Presión, SAPP), en el cual está integrado el análisis automatizado de pruebas isocronales.

Una serie de pruebas isocronales de campo efectuadas tanto en pozos de gas como de aceite, se revisan en el Capítulo III . Estos ejemplos. son seleccionados para representar ampliamente los fenómenos más comunes presentados por las pruebas en potos de gas. Con esta mara. también son elegidas las pruebas en pozos de aceite, las cuales fueron aplicadas en vacimientos con permeabilidades de 6 a poco más de 1000 md., y clasificadas por la presión de saturación en : bajosaturadas. saturadas, y con saturación de gas arriba de la crítica del vacimiento, considerando para todas 105 Casus un estado oseudo-estacionario.

Finalmente en el Capítulo IV se presentan algunas de las conclusiones más relevantes mencionadas por los autores estudiados. Igualmente se infieren los aspectos más importantes tratados a través de la tesis.

INTRODUCCION

De la misma manera en que la demanda por los hidrocarburos aumenta a través de los años, el desarrollar más remunerativamente los campos petrolíferos, cobra mavor interés. Incrementar la recuperación total de los hidrocarburos, implica el noder prederir con elactitud la productividad de los pocos, por lo tanto es indispensable identificar primeramente las características físicas de los yacimientos.

La aplicación de pruebas isocronales en la explotación de los yacimientos, se remonta a 1936, cuando Rawlins y Schellhardt² utilizaron el método para estudiar el comportamiento en los pozos productores de gas, y posteriormente Cullender⁹ en 1955. Fetkovich en 1973 publicó un análisis con pruebas isocronales para pozos de aceite. Actualmente, efectuar pruebas isocronales en pozos petroleros no es una práctica común, sin embargo contribuyen a caracterizar físicamente a los yacimientos (obtención del Fotencial Absoluto de Flujo, AOF).

Otras de las principales aplicaciones de las pruebas isocronales a problemas de producción de gas natural, consiste en poder conocer y medir los efectos causados por la presencia de líquido en el interior del pozo, inestabilidad de la presión en el fondo del pozo durante las pruebas, cambios naturales de producción durante la vida redituable de un pozo, taponamiento en el pozo originado por tratamiento con ácido, así como calcular el volumen con el cual los pozos depen producir.

Las necesidades actuales y el avance de la técnica, obligan a manejar

cada vez más cantidad de información y mayor número de pruebas. Lo que obliga a diseñar programas de cómputo capaces de procesar y ordenar rápidamente gran cantidad de datos. EL desarrollo de este tipo de herramientas se ha comercializado desde 1970 ; hov en día se ofrecen avanzados paquetes de análisis de pruebas. En México el Instituto Mexicano del Petróleo ha desarrollado el Sistema de Análisis de Pruebas de Presión (SAPP)⁹, siendo capaz de analizar a los vacimientos petrolíteros en base a pruebas de variación de presión. Li paquete realiza automáticamente un análisis de 105 datos tiempo-presión-dasto en una amplia variedad de pruebas 🧃 incremento. decremento, isocronales, etc.), considerando yacimientos homogéneos y fracturados.

Con objeto de diversificar al paquete , el número de análisia diferentes que este presenta se ha incrementado de tal forma, que las opciones del sistema incluyan el estudio de cualquiera de nuestros campos productores; este desarrollo considera la integración de las pruebas isocronales como un apoyo a las pruebas de presión.

Parte importante para interpretar realmente el comportamiento de un sistema pozo-yacimiento, se hace por medio de la automatización de les pruebas isocronales, o bien, por medio de otras pruebas; no obstante para alcanzar exitosamente el objetivo, es necesario que el Ingeniero Retrolero conozca los fundamentos que describen la naturaleza del sistema, así como las teorías y análisis que de estos se derivan.

CAPITULO I

TEORIA BASICA Y ANALISIS

En aste caoítulo primero se desarrollañ los conceptos que definen 01 comportamiento del flujo de fluidos a través de materiales porasas, y permeables najo diferentes condiciones, tanto e perimentales como de campo, de tal manera que sea posible analizar muchos casos reaves de pozos productores asociados a un vacimiento. En todos ellos 17.5 comportamiento estará representado por la relación entre 105 parámetros " gasto-presión-tiemop ".

1.1 DETERMINACION EMPIRICA DE LA ECUACION DE FLUJO EN MEDIOS POROSOS

Esta parte del capítulo presenta algunos de los primeros estudios efectuados observando el comportamiento del flujo de gases a través de materiales porosos, con miras de aplicación en la industria pelrolera. Los resultados de estos estudios, conforman las bases de un oran número de desarcellos de modelos matemáticos que intentan recrezentar la física de los vacimientos.

En 1911 Musiat v Botset¹ llevan a cabo un estudiu experimental, para establecer cuantitativamente, las características y leves que gobiernan el flujo de gases a través de materiales porosos, consolidados y no consolidados de textura (iné.

1.1.1 EXPERIMENTO EN UNA ARENA NO CONSOLIDADA

Un tudo de acero de 3.17 cm. de diámetro interior y 92 cm. de longitud, se monta en posición vertical con tapas de acero en sus extremos, a las cuales se conectan manómetros, y de igual forma de instalan tres manómetros más a lo largo del tubo, a intervalos de distancias iguales. Como elementos de medición se emplean vasos comunicantes de 0.632 mm, de diámetro , y se hace uso de un material de tamaño de grano uniformo; un esquema se muestra en la figura # 1.

Este ordenamiento de manómetros es adecuado para determinar la naturaleza de las distribuciones de presión, a lo largo de la columna de arena. Adémas, las tapas colocadas en los extremos estan provistas con termómetros, con el objeto de verificar que el flujo sea isotérmico.

Las mediciones de fluio se hacen para diversas caidas de presión, manteniendo constante la presión a la salida. El tiempo requerido para el paso de un volúmen dado de flujo (aire) a través del tubo, se mide con un cronómetro. Fara mediciones de presiones bajas se usan tubos llenos con agua, v para presiones mayores se utilizan tubos lienos con mercurio.

FIG. No. 1. - APARATO PARA MEDICION DEL FLUJO DE AIRE A TRAVES DE UN NEDIO POROSO (ARENA NO CONSOLIDADA) Los resultados representativos del experimento, pueden observarse en la figura # 2. En esta gràfica " ρ u " es la velocidad pásica, " ρ " es la densidad, v " u " es la velocidad efectiva del gas o arre en centimetros por segundo, el parámetro " u " se obtiene al dividir el volúmen del fluto o la salida por besindo v ser el área sectional que cruca el tubo. " $\operatorname{Pr}^2 = \operatorname{Pr}^2$ " es la diferencia al cuaorado pe las presiones de fluto, actidas a la entrada v a la salida del "Sulo poroso, y son leidas directorecte en los menómetros.

Con la finalidad de observar el comportamiento de la variación en la pendiente con el tamaño del grano, el tubo se llena con una arena. de una malla de objeca, ca porosidad de esta arena es de 43.2%, tos datos a partir de entas confluida se grafican en la figure # 3, curva # 0. De la misma forma se obtienen los datos para el flujo de aire a través_ide una arena neterogéneo. Con tor i constad continunda de 42% . Estos datos también son graficados en la figura # 3, curva # 3. Los datos graficados sobre la curva # 1, figura # 3, fueron tomados cuando se , tienen perlas de vidrio como medio poroso.

Los valores de presión tomados a lo largo del tubo de trena v graficados en la figura # 4, indican que, el cuadrado de la presión " P^2 ", tiene un comportamiento lineal con respecto a la longitud del tubo. Los puntos cercanos a las líneas, representan la ubicación v lectura de los manómetros en el tubo. La divergencia destrata lucite explicarse suponiende que existen pequeños errores en la localización de los orificios de asiento de los manómetros.

FIG. No. 2.- REPRESENTACION GRAFICA DE FLUJO MASICO DE AIRE A TRAVES DEL MEDIO POROSO.

FIG. No. 3.- REPRESENTACION GRAFICA DEL FLUJO MASICO DE AIRE A TRAVES DE TRES MEDIOS POROSOS DIFE RENTES.

FIG. No. 4.-DISTRIBUCION DE PRESION A LO LARGO DEL MEDIO POROSO, CON FLUJO DE AIRE A TRAVES DE UNA ARENA HETEROGENEA, CON TRES DIFERENTES -GRADIENTES DE PRESION.

1.1.2 EXPERIMENTO EN UNA ARENA CONSOLIDADA

Con un bloque de arenisca de textura uniforme y lun porosidad de 19.65%, se realizan pruebas, en las cuales se toman mediciones durante el paso del flujo de aire.

Tres muestras de diferente tipo se preparan para el experimento. Dos de ellas son núticos sólidos cortados del ploque, uno paralelo y el otro perpendicular, respecto al plano de estratificación.

La tender muestra es un cliindro perforado, duvo conte se pido e través de su ele estando perpendicular al plano de estratificación, esto con objeto de obtener mediciones de fluto racial.

Las primeras dos pruebas se efectuan en cilíndros de 4.8 cm de diámetro y de 12.7 cm de longitud. La periferia de los núcleos se cubre con alguitrán, y se sellan con un tubo roscado de hierro de 12 og de longitud. Se conectan manómetros arriba y abaio (posición vertical de los tubos). Las mediciones al paso del fluio se hacen exactamente igual a las de la prueba en la arena no consolidada. Los resultados para el flujo paralelo respecto al plano de estratificación estan gados en la figura # 5, curva # 1, la información para el flujo perpendicular respecto al plano de estratificación está representada en la curva # 2. La caída de presión en el fluio perpendicular es tan grande como en la del flujo paralelo. Esto era de esperarse, ya que se trata de una arenisca muy uniforme.

FIG. No. 5- REPRESENTACION GRAFICA DEL FLUJO DE AIRE A TRAVES DE UNA ARENISCA.

Puede notarse que estas dos curvas están próximas a una inactal cuando se grafican en escalas doble logaritmicas, como en la figura # 6, donde el flujo aparece sólo con una pequeña desviación sobre la pendiente de la línea # 1. La procesada " ρv " es la velocidad másica.

Para la prueba del (lujo radial, se tiune un cilindro concentricamente perforado de arenista, contenido dentro de un recipiente de adera, como se muestra diagramáticamente en la figura # 7. "A" es el contenedor de acero, "B" es un plato de matal para sellar el estremo de la muestra, "C" son varillas por medio de las cuales la muestra y el plato están fijas, "F" v "G" son conexiones à los manómetros. La contrapresión en el sistema se regula por la válvula "H". El alic entra por la sección "D", fluyendo radialmente a través de la muestra, desde la superfície periférica esterior, y de ahí hacia el medidor "E". Como va se diro, la muestra regula contada en suntido radiale respecto al olano de estratificación.

Para los primeros flujos de esta prueba, el diámetro del aguiero se hace tan pequeño como es posible, con objeto de obtener el márimo efecto del flujo radial.

La muestra es de 10 cm, de longitud, 7.8 cm, de diàmetro exterior, v0.8 cm, de diàmetro interior. Esta muestra se corta del bloque de arenisca, con un taladro de compresión rotatorio con cliindros de acero, usando agua y un abrasivo.

Los datos tomados en las primeras corridas son graficados en la figura # 8, curva # 1. Puede notarse que a una velocidad (masical cercana la

FIG. No. 6.- CURVAS LOG-LOG REPRESENTATIVAS DE FLUJO LINEAL A TRAVES DE ARENISCAS.

FIG. No. 7- APARATO DE MEDICION PARA FLUJO RADIAL

0.002 gm/ch²/seg., aparece una clara desviación en la curva cartesiana, indicando el início de una transición afectada por la viscosidad y por el flujo turbulento.

fa que las areniscas usadas durante el flujo lineal y radial son contadas del mismo bioque, las permeabilidores determinadas para cada tipo de flujo podrian ser aproximadamente las mismas. Sin embargo, se encuentra en el cálculo, que la permeabilidad radial es prácticamente la mitad de la permeabilidad lineal. Estos resultados fueron may confusos al principio, pero finalmente son aclarados al considerar que durante la perforación del agujero concéntrico se produce lodo fino el cual tiende a taponar los poros en la superficie, ocasionando una notoria reducción en la permeabilidad.

Entonces el agujero es raspado cuidadosamente con una lima, previendo que el radio del agujero no sea incrementado notablemente. Las mediciones durante el flujo después de este tratamiento, se presentan en la curva # 2, figura # 8. Como puede observarse, la permeabilidad es reducida por este ligero raspado . Si consideramos aún la posibilidad de que la permeabilidad pueda ser incrementada por una nueva ampliación, raspamos hasta aumentar a 1mm el diámetro. Sin embargo a pesar de esto se ha reducido más aún la permeabilidad, como puede notarse en la curva # 3, figura # 8.

Lo que significa, que el limo o la arcilla producida por la perforación es forzada o imbibida hacia el interior del espacio poroso de la muestra, formando una capa superficial de baja permeabilidad . Fara reducir este efecto tanto como sea posible, la muestra se mantiene en agua durante varios dias, y el diámetro del agujero 45

FIG. No. 8.- FLUJO RADIAL A TRAVES DE UNA ARENISCA

agrandado modiante una reperferación manteniendo la muestra saturada con agua. Posterior a este tratamiento y después de secar la muestra, se efectuan mediciones de flujo: los resultados obtenidos son representados por la curva # 4. figura # 8. El factor de la permeabilidad se incrementa a un valor muy cercano al obtenido para flujo lineal.

I.I.3COMPORTAMIENTO DEL MODELO DE FLUJO CON LAS CARACTERISTICAS DE LA ARENA

En realidad el valor de la pendiente es una función de la porosidad. del tamaño del grano, del grado de cementación, del volúmen de porosi intercomunicados. y de la proporción de estas relaciones. En forma general puede decirse, que el valor de la pendiente presenta un decremento con la disminución en el tamaño del grano (como se observa en la figura # 0), sin que una relación cuantitativa pueda ser definida.

1.1.4 APLICACIONES PRACTICAS

A partir de un punto de vista teórico, el movimiento de un gas a través de una travectoria tortuosa en una columna de arena, es en alto grado complicado. No obstante es bien entendido el fenómeno del flugo de líquidos a través de un medio poroso, y se ha establecido empiricamente una ley (Ley de Darcy). La cual nos otce que la velocidad del líguido es proporcional al gradiente de presión.

El problema del ficio del ficidos compresibles puede presentar una mayor completidad. Sin embargo un anàlisis dimensional puede realizarse ràpicamente, y es suricirente para indicar la manera en una las variables importantes del problema pueden relacionarse en la encresión final, y ser aplicables en el experimento presentado (arena no consolidada). Pestat y botset⁴ presentan una ecuación en que la velocidad y la presión están relacionadas para cualquier títuido de la siguiente manera i

donde " δp " es la calda de presión a lo largo de la arena. " v " es la velocidad promedio del fluido interporoso . " δS " es la longitud de la muestra, " d " es una distancia promedio representativa del recorrido del fluido en el espacio intercomunicado a lo largo del núcleo, " μ " es la viscosidad dol fluido. " ρ " es la densidad promedio del fluido. " n ", " m ", y " const." son constantes que pueden ser determinadas experimentalmente.

Los termómetros ubicados en los extremos del tubo de acero, indican que el flujo no tiene diferencias en su temperatura. Esto puede ser posible, dado que se tiene una alta conductividad característica de la cubierta de metal. En consecuencia, al considerar la temperatura constante, tenemos que, el cambio de volumen que sufre un volumen unitario de gas ideal (Z = 1), será por unidad de variación de presión. Esto necesariamente implica que la densidad " p " es proporcional a la presión, es decir :

donde

donde " p " es la presión media en el elemento " ó S " . " w " es al peso molecular del gas. " T " es la temperatura absoluta. " R " es la constante pel gas por mol. Al sustituir en la ecuación # 1, puede ser escrita como :

3

donde ahora la constante se toma como el Fautor de ($2 \mu^2 / C d^2$, Observandose a partir de esta ecuación, que la variable fundamental dependiente para el flujo de gas es " p^2 ", o en particular " δp^2 ", para el problema dal flujo de liquido, se ouede ver facilmente a partir de la ecuación # 1, que la correspondiente variable dependiente será " δp ".

Considerando que en los dos experimentos (de flujo de gas), el comportamiento de los valores de la presión cuadrada respecto a la longitud de la muestra, está representado en la figura # 4, y usando simultáneamente la ecuación # 3, cuando el exponente " m = 1 ", podemos supener para un fluto de gas a través de una columna de arena dada, que (δ S / d)^m v (d / μ)ⁿ son estables, y por lo tanto los incluimos dentro del constante. Finalmente se considera que la caída do presión " δ F² " es función solamente de " $\rho =$ ". Con este arregio la ecuación se puedo reescribir de la siguiente forma :

esta podría ser la ecuación diferencial que dobierna el flúto en un medio que tenga cualquier forma.

En nuestro caso particular se tione que $(\delta p^2 / \delta S) \vee (\rho v)$ son constantes a lo lango del tudo cilindrico, lo que podría sersuficiente para determinar la Ley del Fluis en un estudio de la " $\delta p^2 = p_1^2 - p_2^2$ ", si se consideran los extremos de la columna de arena como una función de la velocidad de la masa " ρv ".

El cálculo de los valores de " n " en este proceso, pueden dar algunos significados Hisicos de la Ley General del Flujo, expresada por la acuación 0 1, que es aplicable al flujo de fluidos a través de tubos cilindricos de arena limpia. Esto puede ser demostrado a partir de la hidrodinámica clásica, donde la viscosidad en el travecto del flujo de gas dentro del núcleo es :

$$\delta p^2 = \frac{16\mu}{\sqrt{3}} (\rho v) \delta S \dots (5),$$

Esta expresión es equivalente a la ecuación # i, cuando " m " y " n " se evalúan iguales a uno. Si bien los autores consideran, que cuando se tiene el flujo del fluido dentro del núcleo de arena para un valor de " n = 1 ", es equivalente a un flujo de gas viscoso, y es llamado " flujo viscoso ".

De la misma forma, a partir de experimentos con flujo de gas a través de tubos cuenco se fience polocidades altas. En particular cuando el número de Revnolds (d ρ v $\in \mu$) escede un valor crítico definido, se observa que la naturaleza del flujo cambia, no siendo representativa la ecuación # 5, si no a un nuevo tipo descrito por una echación de la forma :

$$\delta p^2 = \text{const.} (\rho v)^2$$
 (6).

Este flujo llamado turbulento, claramente corresponde al valor de $\leq n \approx 2$ " en la ecuación # I. Algunos otros estados de flujo en tubos corresponden a valores de " n ≤ 1 " d " n ≥ 2 ", no siendo conocidos.

Esto muestra que la ley del flujo para la cual " $n \ge 1$ ", es establecida representando parcialmente estados de flujo turbulento., exponente " n ", no cambia abrigi mente del valor de l ai valor de 2, pero en cambio toma valores intermedios dados en la realidad, ya que a través de una trayectoria naturalmente capilar y tortuosa, el flujo de gas no puede efectuar un cambio súbito y completo dentro de un sistema de remolinos, característico del flujo turbulento.

EI mismo punto de vista permite anticiparnos a los resultados graficados en la fígura # 3, por lo tanto, a medida que la porosidad y el promedio de los diámetros de los granos de arena disminuyan, el valor de la nendiente y el grado de turbalencia. decrecen también para valores correspondientes de " δc^2 ". Si bien es clarto dua a. velocidades y gradientes de presión suficientemente altos, pueden formarse remolinos en los poros de la arena, igualmente es que et. volumen capilar y las irregularidades de la trayectoria por donde 105 remelines fluyen, podrian inhibir o eliminar la actividad de 105 remolinos, hasta obtener una corriente estable y continua a través del cuerpo de arena.

Puede Jerse due las Leves de l'Hujo exponimentalmente, derivados, por " Musiat y Botset" ", pueden ser eplicadas à diferentes elementos de Un querpo do presa.

A partir de los datos graficados en un papel doble logarítorico para arenas finas, se demuestra que dentro de un considerable ranço de velocidades del flujo másico, la Ley del Flujo es de la forma presentada por la ecuación # 3, expresada con un sólo término al lado peracho, elera si hacemos a $E = E^{n}$ y despejamos en la ecuación # 4, tenemos :

1.1.5 CONCLUSIONES DE LOS EXPERIMENTOS

Es importante recalcar que un estudio experimental de laboratorio, está limitado principalmente en reproducir las condiciones exactas de campo, como son : gradientes de presión, gastos, dimensiones del vecimiento, etc. . No obstante Muskat y Botset⁴ consideran que sus resultados son suficientes para estudiar realmente el tenómeno. Considerando que propablemente la diferencia más grande entre el flujo de gas en el vacimiento, y el flujo reproducido en los aparatos de laboratorio, se presenta en los valores del exponente " n " y de la permeabilidad, por lo tanto se ha pensado que deben tratárseles como parámetros denarales cama problema particular de campo.

1.2 DATOS DE PRESION Y GASTO EN POZOS DE GAS NATURAL

Las presiones y flutos de gas existentes en un sistema pozo-yacimiento bato diferentes condiciones de operación, son designadas con simbolos como lo muestra la figura # 9 . La presión de un floto estable después del cierre en un pozo productor, es denotada con " Fr ", y " Pe " represente a la presión que se tiene en la cara de la arona productura dentro del pozo al nivol de los disparos.

La afluencia en este trabajo soca considerada como la cantidad de líquido que fluye de la formación productora al interior del pozo, bajo un sistema de presión definido por " Fr " y " F• " tiver figura # 9).

El volumen que un yacimiento de gas puede producir durante un corto tiempo (periodo de prueba), comparado con su volumen original de gas, es insignificante, y la presión de formación f(f) prácticamente permanece constante. Como se muestra en la figura # 9 . La calda de presión a través del estrato productor, es denotada por la diferencia de entre " Pf" y " Pa ".

Los estudios de E. L. Rawlins y M. A. Schellhardt² presentados 20 ~ 1 año de 1936, muestran que en pozos de gas natural, se tiene เลกส consistente relación entre los gastos y su correspondiente presión de formación, Los resultados de las pruebas muestran, que guando 105 gastos son graficados en papel logaritmico, contra la respectiva diferencia de presiones al cuadrado (Pf² -Po^z). 3.0 relación 0.5 representada por una línea recta, que puede ser expresada

FIG. No. 9.- ESQUEMA DE FLUJO Y PRESIONES DEFINIDAS EN UN SISTEMA POZO-YACIMIENTO. matemáticamente por la fórmula :

 $Q = C (Ft^2 - Ft^2)^n \dots (7)$

Q = gasto del gas (miles de pies cúbicos por dia)

C = coeficiente

- Pf = presión estabilizada al cierre del pozo (psia)
- Pe ≈ presión de la cara de la arena en el fondo del pozo (psia)
- n = exponente, correspondiente al inverso de la pendiente de la linea recta en la gráfica logaritmica,

Los valores del coeficiente " C " y del exponente " n " en la ecuación # 7, son determinados considerando flujo de gas desde la formación productora hacia el interior del pozo, para un caso en particular, y a partir de las relacionos de línea recta ilustrada en la Figura # 10, donde el valor de " n " es igual a " $\Delta x / \Delta y$ ", para este ejemplo n = 0.707.

Los cálculos matemáticos del valor de " n " están basados en la definición de linea recta, donde :

$$n = \frac{x_2 - x_2}{y_1 - y_2} = \frac{\log (3,000,000) - \log (116,000)}{\log (10,000)} = 0.707$$

El coeficiente " C " es calculado por sustitución de los valores conocidos en la ecuación # 7 como sigue;

$$Q = C (Ft^{2} - Fa^{2})^{n}$$

log Q = log C + n log (Ft^{2} - Fa^{2})
log C = log Q - n log (Ft^{2} - Fa^{2})

FIG. No. 10.- REPRESENTACION GRAFICA DE LA ECUACION DE AFLUENCIA Q = C ($P_f^2 - P_S^2$)"

Los valores se selectionan de la figura # 10, así que $\theta = \log 5,000,000 = 6.47712$, y el correspondiente log ($P(^2-P_{\theta}^2)$)=log 1,000,000 = 6.00, por lo tanto C = 173.44

Sustituyendo los valores de " n " y ' C " en la ecuación de flujo. La relación es obtenida como se muestra:

$$Q = 173.44 (Pt^2 - Fa^2)^{0.70033}$$

1.3 DETERMINACION DEL POTENCIAL ABSOLUTO DE FLUJO

El término "Potencial Absoluto de Fluio", se usa para referirse al número de pies cúbicos de gas que pueden ser productios en un día por un pozo de gas, cuando la presión en la cara de la arena productore en el interior del agujero, es igual a la presión atmosférica; este concepto es manejado ampliamente por Rawlins y Schellhardt².

El potencial absoluto de flujo de un pozo de gas, puede ser obtenido directamente a partir de una gráfica, en la cual el valor del gasto "Q" es graficado contra el correspondiente gradiente de presión "P(²-Pe²". La linea recta definida de esta relación en un plano de ejes logaritmicos, puede ser extrapolada hasta que "Pe" sea equivalente a la presión atmosférica, "Q" entonces seria el potencial absoluto de flujo, también puede ser calculado a partir de la ecuación # 4.a, si Pe = Patm.

Las variaciones de la presión atmosférica en las áreas productored de gas, son generalmente despreciables, y no necesitan ser tomadas en consideración para determinar los valores del flujo, siempre y cuando la presión de formación estabilizada al cierre " Fr" sea mayor a 100 (pera). A fin de esclarecer esta consideración, y a manera de ejemplo, supondremos ligeras variaciones de la presión atmosférica en la ecuación # 7, para un sólo caso en particular. Si la " Pr" os de 100 (psia) y la presión atmosférica es de 15 (psia), el valor de " $Pr^2 - Ps^2$ " es entonces :

$$P_1^{z} - P_2^{z} = (100^{z} - 15^{z}) = 9,775.$$

De otra manera, si la presión de formación – al cierre es de 100 (psia), y la presión atmosférica es de 12 (psia) , el valor de " Pf^2-Ps^2 " es de :

$$Pf^2 - Pe^2 = (100^2 - 12^2) = 9,856.$$

La variación de la presión atmosférica, causa solamente una pequeña variación en el factor de presión.

Abora bien sf " Pr < 100 psia ", y suponemos sensibles cambios de " Ps ", al tomar los valores de n = 0.75, C = 3040. y Pr = 25 psia. tenemos que :

a) para Ps = 13 psia, Q = 3040 ($25^2 - 13^2$) = 300 H ft⁹/ dfa.

b) para Pe = 15 psia, 0 = 3040 ($25^2 - 15^2$) = 271.9 M ft³/ día.

Puede verse que si se incrementa el valor de la "Ps" en tan sólo 2 psia, el valor del Potencial Absoluto de Flujo se reduce en 28. M ft⁹/ día. Esta considerable variación del potencial se debe principalmente a que "Pf \ll 100 psia ".

1.4 COMPORTAMIENTO ISOCRONAL EN POZOS DE GAS

M. H. Cuilender[®] en 1955 presenta un método empirico, con el cual se determina el parámetro " n " de la curva representativa de la caida de presión relacionada al gasto, y graficada en escalas logarítmicos (ecuación # 7). Hace referencia también a la ecuación # 4.a presentada por Muskat y Botset⁴, indicando que es una relación empírica, producto de un desarrollo que puede proporcionar amplia extensión para su aplicación, y que las suposiciones hechas con respecto al tipo de flujo existente (viscoso no-viscoso) pueden en algunos casos no ser correctas.

El término " isocronal " se adopta como descriptivo del método. Esto significa en términos generales, en medir un conjunto de valores de flujo en función de un gradiente de presión, tomados en un lapso relativamente corto. La ecuación # 7 es una expresión pensada para definir las condiciones existentes al rededor de un pozo, mediante el manejo de una constante que puede determinar el valor del gasto, siendo ésta válida exclusivamente durante un tiempo específico, tomado a partir de las condiciones de cierre (con presiones y flujos estabilizados en el pozo).
El procedimiento empleado para obtener los datos del gasto y presión representativos del comportamiento as: abrir un pozo COR 165 condiciones de cierre, y medir el valor del gasto (0) y de presión Ps i al final de un tiempo específico, tratando de evitor fluctuaciones al tomar el valor del pasto. Posteriormente el poto es cerrado, de tal forma que puedan presentarse la condiciones iniciales de cierre y sean comparables a los originales. El cozo se abre nuevamente, ahora con un valor de gasto diferente, ios valores de " - 0 " y de " fs " se registran en la misma forma. El procedimiento 63 repetido tantas veces como sea posible o necesario para obtener el número de datos deseable.

Dos suposiciones pueden ser hechas en el comportamiento de un poro, de gas, representado por una carle de curvas permisias, definidas por un exponente " n " y un coeficiente " C 1, en un intervalo de tiempo específico.

- 1.- La característica " n " de la pendiente y su comportamiento en un pozo de gas, es independiente del área de drene.
- 2.- El comportamiento del coeficiente " C " respecto al tiempo, es independiente del valor del gasto e igualmente de la presión.

et comportamiento real de 60 determinar 185 F۱ problema características (C y n) de los yacimientos, se acentúa. cuando SE presenta una estabilización lenta en la diferencia de presiones durante la prueba i esto es que $Ff - P_{\bullet} = 0$ a tiempos muy grandes ١. lo qual puede observarse en yacimientos de permeabilidad baja.

31,

1.4.1 APLICACIONES PRACTICAS

Las principales aplicaciones de las pruebas isocronales a problemas de producción de gas natural, contemplan los siguientes casos : problemas per presencia de líquido en el interior del pozo y en la formación productora, estimación del rango dentro del cual los pozos deben por producidos, determinación de la variación de afluencia causada por inestabilidad del flujo durante las pruebas, problemas originados en los pozos al ser tratados con ácido, y el estudio de los cambios naturales de producción de un pozo durante su vida productiva.

I.4.2 CONCLUSIONES DEL COMPORTAMIENTO

A partir de las pruebas isocronales conducidas en pozos de gas, Difiender[®] na podido llegar a concluir for printos printipales que caracterizan su comportamiento, así como el alcance en su aplicación. A continuación se enumeran estas conclusiones, considerando en todas estas la premisa de que la saturación de líquido alrededor del pozo no es físicamente variable :

 El comportamiento isocrenal de un pozo de gas, puede ser determinado a partir de los datos del flujo obtenidos bajo condiciones de un estado transitorio, y cuando estos esten representados por un simple gradiente de presión que caracteriza al área de drene.

2) El análisis isocronal para pozos de gas, permito calcular

un simple gradiente de presión, el cual es representativo de la afluencia en un sistema poro yacimiento durante un tiempo específico, en donce es posible obtener los datos "Pivs.ŭ".

3) El comportamiento del coeficiente " C " de la ecuación de afluencia (ecuación # 7 / para el caso general, está en función de la extensión del área de drene y de su gradiente de presión. For lo tanto para una área de drene inestable, " C ", será una variable con respecto al tiempo.

1.5 PROBLEMAS POR PRESENCIA DE LIQUIDO EN EL INTERIOR DEL POZO Y EN LA FORMACION PRODUCTORA ADYACENTE

Una de las principales aplicaciones del método isocronal en pozos de gas, consiste en determinar en forma sencilla la presencia de líquidos indeseables en el interior del pozo, de tal manera que nos permita tomar medidas necesarias para su control.

El liquido en el interior del pozo y en la formación productora, puede ser agua, aceite crudo, y/o gases licuables que vaporizan cuando no se someten a altas presiones en el yacimiento. Primeramente Rawlins y Schelihardt² observan que la presencia de líquido en los pozos de gas, hace difícil una interpretación representativa de los resultados de las pruebas isocronales, ya que el efecto del líquido cambia el valor de los datos, lo cual afecta la relación entre el Q y el gradiente " $p_1^2 = p_2^2$ ".

-34

Estas alteraciones pueden ocurrir cuando al medir el volúmen de gas fluyente, el líquido ocompaña al flujo de gas a través de los equipos de medición.

Los resultados de dos pruebas isocranales, efectuados en un sólo pozo con presencia de líquido en el interior, se suestran en la figura # il, los datos y cálculos estan dados en la tabla # i.

La presión estabilizada al cierre en la cabeza del pozo es de 478 lb/pg². El pozo se abre a producción a través de un estrangulador en la cabeza de l⁴/4 og. (diámetro interior del orifício). La velocidad del flujo es suficiente para levantar el lignido desde el fondo del pozo.

Después de un cierre, el pozo se abre nuevamente por un tiempo, pero la cantidad de líquido producido no disminuyó aparentemente, y el pozo se cierra. Una voz estabilizada la presión en la cabeza, se mide un valor de 550 lb/pg², indicando que el líquido ya ha sico removido del fondo. Abora podemos observar que la presencia de líquido es equivalente a una presión de 72 lb/pg². La Curva A. figura # 11, muestra los resultados considerando la presión afectada por el líquido; los datos se muestran en la tabla # 1, prueba A.

Posteriormente, la toma de datos muestra un decremento de la presión estabilizada al cierre en la cabeza del pozo de, 550 lb/pg² a 524 lb/pg², lo que significa un incremento en la columna del liquido equivalente a 25 lb/pg². Tiempo dospués el pozo produce con 713 lb/pg² en la cabeza y 5740 M pie³/día. Con estos valores de afluencia el liquido fluye constantemente con el gas.

FIG.No.11.- EFECTO DE LA PRESENCIA DE LIQUIDO EN LOS DATOS DE DOS PRUEBAS ISOCRONALES CONDUCIDAS EN UN POZO DE GAS.

PRUE	EBA A
------	-------

LEGTUKA	rt	Pe	HF -F	0	Presión (167ma ²) en la cobeza	
No.	p51a	DSID	miles	Mpie ⁸ /d		
					Huvendo	al cierro
1	600	350	238.0	5.740	315	antes de SSO
2		464	145.0	3,800	422	
2		503	107.0	2.780	459	1
4		530	79.0	1,638	484	
5	۳.	551	56.0	773	504	después de 524
6		376	218.6	5.740	{	
7		490	119.9	3.800		
8		529	80.2	2.780		
Ψ		555	59.7	1.639		
10		577	27.1	773		

PRUEBA B

No.	Pf psia	Р. 0915	Pf ² -P• ² miles	Q M pie [®] /d	'Presión (lb/pg ²) en la cabeza fluyendo al cierre	
1 2 3 4 5 6 7	614 11 11 11 11 11 11 11 11 11 11 11 11 1	469 518 553 576 484 533 568	157.0 109.0 71.0 45.0 142.7 92.9 54.4	3.920 2.860 1,705 805 3.920 2.860 1.705	427 473 506 528	antes de 563 después de 548
8	۰.	591	27.7	805		

TABLA # 1 ... DATOS DE DOS PRUEBAS ISOCRUNALES EFECTUADAS EN UN POZO DE GAS CON PRESENCIA DE LIQUIDO EN SU INTERIOR.

Una véz más el pozo se cierra por la noche, y en la mañana siguiente la presión estabilizada al cierre en la cabeza es de 526 $1b/pg^2$, virtualmente igual a la última observada. Por cuarta ocasión el pozo se abre a producción s través de un estrangulador de 1 pg., e la velocidad del flujo es suficiente para remover el líquido. La cantidad de líquido producido con el gis no disminuyó, finalmence el nozo es cerrado registrando una presión estabilizada de 563 lb/pg².

Una segunda prueba isocronal (prueba B. tabla # 1) se efectua. la curva B. figura # 11, muestra los resultados basados en la presión de cierre estabilizada que se observa al inicio de la prueba. considerando a la presión con efecto de líquido en el interior de, pozo. Los datos muestran un decremente en la preción estabilizada al cierre en la cabeza del pozo, de 563 a 548 lb/pg², o un cambio en la columna de líquido equivalente a 15 lb/pg².

Los valores de 26 lb/pg² y 15 lb/pg² deducidos respectivamente de las pruebas " A " y " B ", para cada columna de líquido, son tomados en consideración para poder eliminar el efecto causado por la presencia de líquido. Esto se hace sumando a cada valor de presión de fondo leído en las pruebas, el peso de la columna de líquido correspondiente.

ilos resultados para cada prueba aon graficados en la figura # 11. donde puede observarse que los datos corregidos son consistentes a fo largo de la curva " C"; cuando se tienen valores de afluencia menores a 2.500.M ft³/día y a valores mayores, se presenta una pequeña variación.

También puede observanse que durante las process " A " y " B ", los valores tomados en la cabeza del pous son diferentes, como se questra én las curvas " D ' y $^\circ$ E ".

1.5.1 OBSERVACIONES A LOS PROBLEMAS FOR PRESENCIA DE LIQUIDO

En muchos de los casos la cantidad de líquido que pasa del yacimiento al interior de un pozo productor de gas es baja, no obstante. La presencia de líquido en los espacios permeables, afecta la capacidad de afluencia.

Los datos de presión tomados durante una proeba Esocronal en un pozo de gas con presencia de líquido, están sujetos a error; ésto sucede cuando los datos de presión leídos tanto en el fondo como en la cabeza del pozo, pretenden ser representativos de una afluencia que ha sido expresamente definida (ecuación # 7), entre otras cosas, para un gradiente de presión que no considera el efecto de la presión ejercida por la columna de líquido en el interior del pozo.

Los resultados de las pruebas isocronales que han sido realizadas en pozos de gas afectados por líquido, muestran la necesidad de obtener tantos datos como sea posible, con el objeto de estimar las porciones de líquido presentes en el interior del pozo, y con esto evaluar su efecto.

1.6 ESTABILIZACION DE LA PRESION DE FLUJO DURANTE UNA PRUEBA ISOCRONAL EN POZOS DE GAS

Si un pozo está produciendo un volúmen constante de gas y se cierra, la presión ecistente en la cabeza del pozo se incresenta, hasta que no hava más paso de fluio de gas a través de la formación productora y dentro del pozo. De otra manera, si un pozo se encuentra inicialmente cerrado y es abierto, permitiendo que el gas se desolace dentro del sistema de líneas, la presión se abite hasta que la afluencia en todo el sistema pozo-yacimiento se vuelva constante. Lo que significa que si el valor del flujo en el interior de un pozo de gas es alterado notablemente, ocasiona que la presión en el pozo y en el vacimiento, varía durante un tiempo.

El tiempo requerido para que se presente la estabilización de los valores de presión, varia considerablemente para diferentes poros de gas. En muchos poros de gas natural las condiciones se estabilizan rápidamente, esto quiere decir, que son constantes en 5 ó 20 minutos después de un cambio en el valor del flujo. En otros poros , sin embargo, el tiempo requerido es mayor a los 20 minutos, y en muchos de los poros en que se efectuaron pruebas isocronales, 2 ó 3 días son necesarios.

En seguida se comentan casos que requieren tiempos muy protongados para alcanzar la estabilización. De pruebas efectuadas en pozos terminados en formaciones de arenisca con gas (de granos pequeños v compactos), al Deste de Virginia, EUA, se vió, que la presión en algunos de los pozos no se estabiliza aún después de dos mesos: en la mayoría de los casos, el cambio en el valor de la presión de fondo.

ocurrió durante el inicio del período, posteriormente los cambios de presión fueron pequeños hasta alcanzar la estabilización.

El que muchos poros muestren la característica de un tiempo prolongado para alcanzar la estabilización, no depende completamente de la relación entre la capacidad de afluencia, y los ospacios vacíos dentro de la zona de drene de un poro, ya que se ha observado frecuentemente, que los valores de la presión en poros altamente productores de gas. se estabilizan más lentamente que otros poros similarmente terminados y de la misma profundidad, pero capaces de aportar, sólo relativamente, pequeños volúmenes de gas.

Rawlins y Schellhardt² observaron, en un pozo productor de gas, el cual presenta un Potencial Absoluto de Flujo (AOF) de aproximadamente 100,000. M pie⁹/dia, características de una mayor lentitud de estabilización, que otro de la misma área y campo con un "ADF " menor a 10,000. M pie⁹gas/dia.

Una lenta estabilización de la presión en el pozo, es causada seguramente cuando se tiene un valor de flujo pequeño de la formación hacia el pozo, y una sarta de tubería de producción con un volúmen interior grande donde el gas puede acumularse; no obstante también en estos pozos hay un límite definido para el tiempo de estabilización. En otros casos el período requerido para la estabilización, esté afectado por cambios en las condiciones del líquido dentro del yacimiento y del pozo. Sin embargo, en muchos pozos no se explica el período de tiempo requerido para la estabilización, excepto por la estructura del vacimiento y por las variaciones de la permeabilidad.

Una estabilización lenta de los valores de la presión de afluencia. afecta a las pruebas isocronales de dos formas :

- El tiempo requerido en una prueba isocronal frecuentemente es demasiado grande.
- 2.- Los datos de presión tomados durante la prueba, pueden no ser interpretados correctamente, y por lo tanto no estar en función de sus valores de flujo, a menos que las condiciones de lenta estabilización sean correctamente identificadas.

Algunas veces en poros de gas, las relaciones entre valores de flujo " 0 " y gradientes de presión " $P(^2 - P_{\bullet}^{2n})$, resultar inconsistentes, esto puede ocurrir cuando los datos son tomados en una prueba durante un flujo que no ha estabilizado; la inconsistencia se puede observar cuando los datos graficados no presentan una alineación clara, que pueda definir una sola pendiente (1 / n) bajo condiciones específicas (ver figura # 10).

I.6.1 OBSERVACIONES DE LA ESTABILIZACION DEL FLUJO

Es recomendable que las pruebas isocronales efectuadas en pozos de gas, sean obtenidas bajo condiciones de presión estabilizada. Esta práctica es posible un muchos pozos; sin embargo algunos otros están sujetos a tiempos muy grandes para que la estabilización en la afluencia se presente; cuando esto ocurre no es siempre posible

esperar una estabilización total, do obstante pueden hacerse buenas interpretaciones cuando se conoce en forma aproximada dicho tiempo de estabilización.

Un método o procediarento que pueda ser aplicada la cualquier prueha Dajo condiciones inestables, no ha sido desarroarado, debido a que los factores que tentrolan la producción, varían considerablemente para cada caso en particular.

1.7 VARIACION DE LA CAPACIDAD DE AFLUENCIA EN POZOS DE GAS DURANTE SU VIDA PRODUCTIVA

En un estudio relacionado con los factores que tienen influencia en el flujo de gas a través de medios porosos, Rawlins y Schellhardt², analizan la relación entre el flujo " Q " y el gradiente de presión " $P\alpha^2 - Pb^2$ ", donde " $P\alpha$ " es la presión absoluta al final de la corriente arriba en el medio poroso, y " Fb " es la presión absoluta al final de la corriente abajo, la cual fue expresada para propósitos prácticos por la fórmula :

Esta fórmula es de la misma forma a la usada para interpretar los resultados de las pruebas isocronales en poros de gas, ecuación # 7...

Las pruebas isocronales realizadas con flujo de gas a través de un

medio poroso, muestran que la porosidad del yacimiento, la tortuosidad en el desplazamiento del gas, y el volúmen de roca productora. están relacionados al coeficiente " C " de las ecuaciones # 7 y 7.a , así mismo, las características de los granos de arena y la permeabilidad, afectan tanto al coeficiente " C " como al exponente " n " de estas ecuaciones.

Es razonable suponer, que si las condiciones mecánicas y físicas de la formación productora y/o del interior de un pozo no cambian, el coeficiente " C " y el exponente " n " para un caso en particular, podrían ser constantes durante toda la vida productiva. En realidad el agotamiento de gas en una formación productora, es la causa del abitimiento constante de presión en el sistema pozo-vacimiento, por lo tanto puede pensarse que la afluencia no es la misma durante todo jel tiempo.

Pruebas isocronales efectuadas en diferentes tiempos de la vida oroductiva de alounos 00205 de das. nuestran Variaciones insignificantes en los valores de producción, y las relaciones entre el flujo " Q " y el gradiente " Pr²-Po² ", resultan virtualmente iouales. Sin embargo, esto no puede generalizarse para garantizar que las relaciones puedan ser las mismas en toda la vida productiva de cualquier pozo de gas.

Los valores de la capacidad de afluencia en pozos de gas, indican, por medio de los resultados de las pruebas isocronales hechas en diferentes tiempos de la vida productiva de los pozos, cambios, generalmente cuando el vacimiento se encuentra en etapas de gran agotamiento.

Con el objetivo principal de estudiar las variaciones de la copacidad de afluencia, bajo condiciones de operación normal, fueron llevadas la cabo pruebas isocronales en los siduientas campos : Depew Urlahoma com Li podos, en el cantanole de Teras con 75 podos, y en el área de la Rocky Mountain con 30 podos más, siendo efectuadas en podes de gas la diferentes ciemput de sub vidos productivas, sin latender las causas que originan las variaciones.

Los resultados de la serie de pruebas isocronales, en el Campo Depew. Oklahoma, se comentan a continuación. La primera prueba se hizo en diciembre 13. de 1929, cuando la presión de formación estabilizada al cierre era de 706 (psia). V el "ADF " obtenido al graficar " O " - vs. " Ff²-Fe² " era de 7,300.M pie⁹/dia: la segunda prueba se lefectuó en Marzo 21, de 1930 , donde se tiene una presión de formación al cierre de 610 (psia), y un "AUF " de 5,100.M pie³ (día: la tercera prueba se realiza en Diciembre 4, de 1930, para este tiempo la presión de la formación al cierre ha disminuido a 558 (psia), y el " AOF " se a incrementado a 9,500.M pie⁸/dia: los resultados de la cuarta prueba, eoroximadamente un año después de la tercera, muestra un mayor decremento en la presión de formación al cierre, siendo de 504 (psia), y un nuevo incremento en el "AOF " a 13,300.M pie⁸/dia. Los valores og afluencia para una " $\mathbf{ff}^2 + \mathbf{s}^2$ " = 80,000, psia² en la primera. segunda, tercera, y cuarta prueba, corresponden a 1,500., 1,100., 3.200.. y 5.800. M pre⁹/dia, respectivamente, lo que permite observar que la capacidad de afluencia baio estas condiciones de presión. aumenta en un 80% de la tercera a la cuarte prueba. Las variaciones de la capacidad de afluencia a diferentes tiempos en la vida productiva de los pozos, es sin duda debida principalmente a la presencia de liquido en el interior del pozo y en la formación productora adyacente.

Comportamientos parecidos también fueron observados en los campos Fanhandle y en el Rocky Mountain.

1.7.1 CONCLUSIONES DE LA VARIACIÓN DE LA CAPACIDAD DE AFLUENCIA

A partir de los resultados de una serie de pruebas isocronales llevadas a cabo en pozos de gas, operando bajo diferentes condiciones. ha sido posible concretar que : la afluencia cambia la través de la vida productiva debido a causas naturales asociadas a la producción. también es muy posible que algunos factores artificiales contribusion significativamente. Se han considerado entre las principales causas la presencia de líquido en el interior del pozo, tapphamiento por depósito de partículas (arena, arcilla /, combios de permeabilidad - (tanto absoluta como relativa), canalizaciones de fiuido» producidos. y por el agotamiento provocado por la extracción. Por lo tanto. កភ puede establecerse una relación constante entre el dasto y el gradiente de presión para cualquiar sistema (pozo-yacimiento), de tai. forma que se pueda conocer el comportamiento futuro de los posos. Sin ambargo, el análisis de las pruebas isocronales y el conocimiento de factores susceptibles a alterar las características de producción. permiten predecir en forma aproximada las condiciones futuras de operación.

En términos generales puede decirse que cuando la formación productora del yacimiento es depresionada, la capacidad de afluencia de los poros de pas cambia.

1.8 COMPORTAMIENTO DE AFLUENCIA EN YACIMIENTOS CON EMPUJE DE GAS DISUELTO

Se ha supuesto, que durante la producción de los pozos de aceite, los gastos de producción son proporcionales a las caídas de presión, con esta premisa, el comportamiento de un pozo puede ser descrito por un método tradicional, basado en el concepto de Indice de Productividad " IP ", el cual es muy empleado en la industria petrolera. El concepto puede deducirse de la siguiente expresión :

Donde cada término es equivalente a los expresados por la ecuación # 7 6 7.a; el coeficiente " Jo " es representativo del " IF ", la relación se desarrolla a partir de la Ley de Darcy, para un estado estable, de flujo radial, de un sólo fluido incompresible y homogéneo. Estas condiciones normalmente se tienen para pozos de aceite, cuando estos se encuentran bajosaturados en toda la formación productora. El " IF " del pozo es la pendiente de la línea recta, como aparece en la figura # 12.

Se ha observado, que en vacimientos donde la presión de afluencia es menor a la presión de burbujeo ($\mathsf{Pwf} < \mathsf{Pb}$), los pozos productores no siguen el comportamiento descrito por esta simple ecuación. Realmente las pruebas de campo indican que los gastos de aceite obtenidos en la superficie del pozo, varian mucho más rápido que las predicciones realizadas por la ecuación # 8.

90, BOPD

FIG. No. 12 .- COMPORTAMIENTO DE AFLUENCIA (LINEA RECTA).

Los trabajos de Musiat⁴ penniten concluir favorablemente que, cuando existe flujo de dos fases, liquido y gas dentro del yacimiente, las relaciones del "IP" no pueden obtenerse. Además presenta cálculos teóricos para demostrar que si se grafican los datos del gasto de producción de aceite contra la presión de fondo, en cualquier pozo y en presencia de dos fases, la relación resulta más cercana a una curva que a una línea recta. Por lo tanto, cuando la gráfica presenta curvatura, no se puede tener una simple constante de proporcionalidad "IP", debido a que el valor de la pendiente varia centinuamente para los valores del gasto y la presión.

Por esta razón Bilbert⁵ propone un método de análisis para pozos que permitan a través de sus datos, graficar gastos en función de la presión de fondo. La gráfica es una curva que representa jel comportamiento del flujo del vacimiento al interior del pozo, denominado " Indice de Productividad Real ", (IPR).

A partir de las aproximaciones matemáticas de Weller⁴, heches pará que yacimiento con presencia de dos fases (aceite v aqua) que produce mediante el mecanismo de empuje por gas disuelto. Vogel⁷ calcula una serie de curvas del "IPR ", tomando datos a partir de diversos yacimientos. Finalmente y con el objetivo de tener una sola curva prumedio, que represente la afluencia para muchos pozos productores de aceite, se desarrolla una curva de referencia adimensional. La relación de Vogel⁷ toma en cuenta las siguientes consideraciones : amplio rango en propiedades presión-volumen-temperatura (PVT) del aceite, y características de la permeabilidad relativa, incluyendo pozos fracturados, pozos con fracturamiento hidráulico, el efecto de espaciamiento entre pozos. y daño positivo.

La solución incluye específicamente las siguientes suposiciones :

- El yacimiento es circular y limitado, con una penetración completa del poro.
- La porosidad media es uniforme e isotrópica, con una saturación constante de agua en todos los puntos.
- 3.- Los efectos de la gravedad son despreciados.
- 4.- La compresibilidad de la roca y del agua son despreciadas
- 5.- La composición y el equilibrio es constante para el aceite γ el gas.
- 6.- La presión existente es la misma para la fase de aceite y la fase de gas.
- 7.- Se tiene un estado semiestacionario en el modelo del yacimiento de aceite.

Las predicciones para un vacimiento típico con mecanismo de empuje por gas disuelto, se muestran como una familia de curvas " IPR " en la figura # 13.

Las curvas representativas de la afluencia obtenidas en la investigación, son válidas, sólo cuando la presión en el vacimiento se encuentre deutio del punte de burbujeo. Sin embargo, el córputo se realiza a partir de datos tomados en vacimientos donde sus presiónes

FIG. No. 13-COMPORTAMIENTO DE AFLUENCIA EN UN YACIMIENTO CON MECANISMO DE EMPUJE POR GAS DISUELTO.

inicialmente si están arriba del punto de purpujes: aún esf ios resultados muestran que no se tiene un cambio significativo en el comportamiento.

1.8.1COMPORTAMIENTO EN LAS CUNVAS DE OFLUERUIA PARA YACIMIENTOS AGUTADOS CON EMPUJE DE GAS DISUELTO

Cuando la productividad de un poro típico degreze en un yartalento dos empuje de gas disuelto a consecuencia fol agoiariento, se debe primeramente, a que se fai regulido la presión del viciniento, en consecuencia. La saturación de gas se incrementa vicituna resistencia al flujo de aceite. El resultado se observa en un decremento progresivo en las curvas " IFR ", representadas en faitorna m 13. Si bien todas ellas poseen algunas propiedades en comun, como el ser cóncavas al origen.

El évito del trabajo de Vogel⁷ radica, en que las curvas del " IFK " se manejan en forma adimensional, esto uniero decir, que cada dato de presión tomado o supuesto de algun pozo en particular, es dividido por el valor máximo de presión, obtenido al momento del cierre (con flujo estabilizado) en el fondo del pozo; también, el valor del gasto correspondiente, se divide por el máximo valor de flujo, e; cuel se obtendría si la presión del flujo en el fondo del pozo; se pudiese abatir totalmente (Fwf = 0). Las curvas de la figura # 13, también pueden ser graficadas como se muestra en la figura # 14.

en resumen, resulta que de los cálculos para 21 condiciones diferentes

90/(90) max.

FIG. No. 14-CURVAS IPR ADIMENSIONALES PARA UN YACIMIENTO CON MECANISMO DE EMPUJE POR GAS DISUELTO. en el vacimiento, les curvas del (IPR) presentan generalmente una desviación semejante. No obstante una importante divergencia se observa para los crugos que presenten las provientes perticularidades:

- a) valores altos de viscosidad
- b) presión al pierre arriba del punto de purbujer
- c) puzo produciendo a través de un daña restrictivo

Para tener una idea clara de la divergencia que puede tenerse cuando se presentan eclos tres casos, a continuación se ilustran gráficamente algungs agenalds. Li comportamiento de un vacimiento en particular. puede obtenense por curvas adimensionales (curvas de la R); la información necesaria, como las características - EV(" del aceite - v las permeabilidades relativas, se tienen de gráficas como la 15.a y la 45.5 . En la figura # la.a. se nuestra el comportaniento de las polo que produce aceite con las signientes particularidades : presión inicial 2130 ppi, presión de burbajes 21% ppi, radio del pozo 0.33 pies, y una separación entre los polos de 20 acres: las Figuras subsiguientes representan el misuro caso de la figura # 16.4. exceptuando la figura # 16.5 en que el pozo tiene un daño de "-+5-'. la figura # 16.c en que la presión inicial es de 2040 psi (superior a la Pb), y la figura # 16.d en que el crudo posee una mayor viscosidad. La curva de "No/N = 0.1X " de la fiodra # 16.8. 05 reproducida en las figuras # 16.6, 16.c, 16.d, y designada con la intra " A ".

La expresión matemática que representa a la curva da referencia adimensional de Vogel⁷, y que es usada para describir la afluencia cuando se tiene un mecanismo de emplue por gas disuelto, es :

FIG. No. 15.a.- CARACTERISTICAS DEL ACEITE CRUDO (P V T) Co = 1.2×10^{-5} EN TODOS LOS CASOS.

FIG. No. 15. b. CURVAS DE PERMEABILIDAD-RELATIVA.

FIG.No. 16a-

FIG. No. 16b.

CALCULOS ADIMENSIONALES DE LAS CURVAS DE IPR

$$\frac{c_{0}}{(q_{0})} = 1 - 0.20 \frac{Pwt}{FR} - 0.00 \left(\frac{PNT}{FR}\right)^{2} \dots 191.$$

donce " $q_{\rm e}$ " es el gasto de aceite medido en la superficie, en función de una presión de fondo " Pvf ". " Fx " do la provión a findo estático en el vacimiento, y " ($q_{\rm fmax}$, " es el " HOF ". La figura # 17 presenta el comportamiento fínico, en términos de variables adimensionares.

Para on case on particular, si " $\overline{P}R$ " y " $q_{\rm p}$ max " sent conductos, puade sen ebtenido cualquier valor de la " \overline{e} r en función de la " \overline{e} r ".

Una combaración de esta curva de referencia, con las obtenidas para diferentes valores de la recuperación, se ilustran en la figure # 18. Las curvas con valores bajos de recuperación (Np / N \leq $\theta_{\rm c}^{\prime}$), se aproximan aás a la curva de referencia , for lo fanto, el percentaje de error es mínimo el inicio del agotamiento.

1.8.2 PRECISION OF EL USO DE LA CURVA DE REFERENCIA

Es necesario puntualizar que una indortante restricción en (r) manego de la ecuación # 9, és que, correde se tienen gastos muy banos en función de bajos decrementos de presión, un considerable error podría ocurrir.

El error máximo en el que suede incorrirso, al calcuar la productividad de algún pozo de aceite en un cacimiento por conseile de gas disuelto, se presenta para el caso explicado en el párrafo anterior.

Cuando se usa la curva de referencia, puede esperarse un error no mayor al 20% , siempre y cuando se consideren los siguientes casos :

- a) que no se tengan crudos muy viscosos, ni flujo restringido por efecto de daño.
- b) cuando las curvas del " IFR " aparezcan graficadas tan cerca como sea posible de la curva de referencia.

Por comparación, si se extrapola la línea recta del " IP ", para un caso donde " Pf < Pb ", en un pozo de aceite, se observaría que el máximo error obtenido es del 70% al 80% al final del agotamiento.

1.8.3 PERSPECTIVA DEL USO DE LA CURVA DE REFERENCIA EN OTROS TIPOS DE VACIMIENTOS

La aplicación de las curvas adimensionales " IPR " propuestas, a partir de las ecuaciones de agotamiento, para vacimientos con empuje de gas disuelto y con flujo en dos fases (aceite y gas), no puede ser considerado correcto en vacimientos donde existe otro tipo de empuje. Sin embargo la curva de referencia puede emplearse cuando se

GI

tienen tres fases, (acoite, gas y agua), siempre y cuando exista un gas libre fluyendo en el vacimiento.

La curva de referencia puede ser Usada también, en determinadas etapas de la vida productiva de los pozos que producen en campos con empuje parcial de aqua, y de la misma forma en yacimientos donde la expansión de una capa de gas es un factor significante.

1.9 PRUEBAS ISOCRONALES EN POZOS DE ACEITE .

Los resultados de una serie de pruebas isocronales efectuadas en pozos de aceite, son ocblicadas por M. J. FetFovich[®] en 1977. Las encebas sa llevan a cabo en un vacimiento de una sóla capa productora, para un estado pseudo-estacionario, considerando una presión con fluyo estático en el vacimiento, y dentro de rangos de permeabilidad que van . de 6 a poco más de 1000 md. .

Las pruebas son clasificadas por su presión de saturación en :

- 1.- Pruebas en condiciones de bajosaturación
- 2.- pruebas a presión igual a la de saturación
- 3.- Saturación de gas arriba de la saturación critica.

Los resultados graficados⁶ (q_{r} vs. $\vec{PR}^2 - Pvr^2$) muestran una curva que cuede ser expresada por :

 $a_{\mu} = J_{\mu} \left(\vec{F} \mathbf{x}^2 - F v \mathbf{f}^2 \right)^n \dots \left(\frac{1}{2} \mathbf{y} \right)^n$

La ecuación # 10, es idéntica en su forma a la ecuación # 7 para poros de gas. De las oruebas conducidas en cada uno de los tres casos clasificados, se encontró, que la ecuación # 10 es válida igualmente cuando la presión en el fondo del poro, está arriba ó abajo de la presión de burbujeo.

Así mismo Fetkovich[®] observa que de 40 pruebas analizadas en pocos de aceite, el exponente " n " varía entre 0.568 y 1.00, muy cercanos a los limited communente presentados por las pruebas realizadas en pocos de gas.

La figura # 19 presenta una comparación entre las curvas adimensionales del " IPR ": para flujo de líquido (línea recta), flujo de gas (n = 1 y n = 0.5), y flujo en dos fases (curva de ruferencia y n = 1.24).

Como es evidente la posición de la curva de referencia (líquido y gas), que representa la producción de un pozo en un yacimiento con mecanismo de empuje por gas disuelto, demuestra, que el comportamiento realmente es muy parecido a un pozo de gas. Va que el flujo esta definido para una inclinación " n " muy cercena a la unidad.

FIG. No. 19- RELACION DEL COMPORTAMIENTO DE AFLUEINCIA PARA-VARIAS ECUACIONES DE FLUJO.

1.9.1 CONCLUSIONES DE LAS PRUEBAS EN FUZOS DE ACEITE

Los puetos importantes que Fethovich[®] menciona son los siguientes :

- a) Las pruebas isocronales en los pocos de aceite, determinan en forma precisa, los valorre del gauto en función del gradiente de presión, y un verdadero " AOF ".
- b) Los resultados de las pruebas en los pocos de aceite, se comportan muy similar a los resultados de las pruebas en pocos de gas, por lo tanto pueden ser efectuadas y analizadas upando la misma ecuación básica de flujo.
- c) El valor del exponente " n " obtenido de las pruebas en pozos de aceite, varía entre 0.563 y 1.0, estando muy sercanos a los ifmites comunmente presentados por las curvas obtenidas de las pruebas en los pozos de gas.
- d) El alineamiento de los puntos que forman la pendiente " 1/n ", cuando se analizan pozos de acerte, es tan bueno, como el obtenido a partir de las pruchas para pozos de gas.
- e) Un valor del exponente " n " menor a uno, se obtiene generalmente de pozos cuando el yacimiento está bajosaturado, a menos que se tenga el caso de un flujo no-Darciano.
- f) En yacimientos bajosaturados es posible determinar algunas veces la presión en el punto de burbujeo, a partir de pruebas isocronales, giempre y cuando sea tomado un rango suficiente de valores del gasto.

Es importante recalcar, que la presión de fondo fluyendo más baja registrada durante las oruebas isocronales para pozos de aceite, fue superior a la presión de saturación crítica del vacimiento. lo que físicamente significa, que no se tiene fluio de gas desde el vacimiento. No obstante Fetkovich^e generaliza, que las pruebas en pozos de aceite se comportan y analizan muy similar a las efectuadas en pozos de gas, por lo tanto pueden ser estudiadas usando la misma ecuación de afluencia. Esta conclusión puede validarse en la figura # 19, dondo se observa que la curva de referencia (aceite v gas), es relativamente convergente a la curva " IPR de n = 1 " (flujo de gas exclusivamente), aún para elevados valores de gasto (aceite).

CAPITULO II

PROCEDIMIENTO DE ANALISIS AUTOMATIZADO

A medida que el avance en los aparatos de medición nos permite mejorar la calidad y la cantidad de datos en cada prueba de presión, la interpretación del comportamiento del sistema pocoryacimiento se ve favorecida, pero ocasiona una mavor lentitud el maneio de los mismos, si se agrega la necesidad de obtener varias pruebas de presión para cada uno de los pozos que pertenecen a un yacimiento, el problema es aún más manifiesto.

Es por lo tanto patente la necesidad de desarrollar programas de cómputo, que permitan graficar datos y resultados de una prueba en diferentes escalas.

En los años 70's varias universidades y empresas de los EUA. iniciaron el uso de las computadoras como herramienta auxiliar en el análisis de las pruebas de presión en pozos petrolíferos. Los trabajos elaborados por un gran número de destacados investigadores, permiten analizar estas pruebas; ésto implica en forma muy general, el desarrollo de técnicas que pueden determinar los coeficientes de la ecuación de difusión, representativa de los cambios de presión del vacimiento respecto al tiempo, en vacimientos homogéneos, homogéneamente fracturados, estratificados, con pozos desviados, con fracturas inducidas, y cercanos a límites impermeables. En el caso de México. el Instituto Mexicano del Petróleo ha patroicinado el desarrollo de una herramienta de análisis automático. que permite caracterizar físicamente a los vacimientos petrolíferos, en base a pruebas constituidas por la medición de presión en los pozos. La herramienta se denomina "Sistema de Análisis de Pruebas de Presión (SAPP)", y se inició desde 1981 por los Ingenieros Néstor Martínez Romero y Ulises Ricoy Saldaña⁶.

Este sistema se distingue principalmente por introducir algunas novedades, tales como la integración de un concepto (la Teoría de Señales⁹) para el análisis de pruebas de presión, y un procedimiento de correlación (CORINE⁹), para efectuar ajustes o comparaciones automáticas de cualquier familia de curvas tipo con el sistema pozo-yacimiento, y efectuar con éstas el análisis automáticado de los datos tiempo-presión-gasto. Esto le ha permitido ser una ericiente y práctica herramienta de análisis automático, en la determinación de algunos parámetros físicos de yacimientos petrolíferos.

El " SAPP " realiza el análisis automatizado de 103 datos tiempo-presión-pasto de las siguientes pruebas : incremento de presión, decremento de presión, interferencia, invectabilidad, e isocronales, en pocos de aceite y gas, y de gas al gasto constante o variable: para varimientos homogéneos y fracturados. Entre 1.45 técnicas de anélisis contenidas, el sistema utiliza las referidas como: ajuste por curvas tipo. Herner, Miller-Dyes-Hutchinson, Candelario Pérez Rosales. Mathews-Brons-Hazebroek. Adarwual. v Pérez-Balderas,

En forma general se presentan los procesos básicos que constituyen al
SAPP y que caracterizan ifsicamente a los yacimientos petrolíteros:

A / Revisión de datos

El programa autométicamente revisa que los datos que alimentan a una prueba, presenten una secuencia lógica en tiempo y presión, y de no ser así la información es eliminada. El usuario, tamatéo, puede corregir directamente cualquier dato.

B) Estimación de información faltante

En caso de faltar datos complementarios tales como viscosidad, Factor de volumen, compresibilidad de la formación, etc., éstos pueden estimarse a través de correlaciones.

C) Procesamiento de datos antes del análisis.

- En el caso de pruebas de variación de presión respecto al tiempo con gasto variable, se transforman los datos a una prueba representativa con gasto unitario.
- 2) En las pruebas de variación de presión respecto al tiempo en pozos de gas, se transforman los datos a una prueba representativa de pozos de aceite.
- En las pruebas de incremento de presión con tiempos cortos de producción, se elimina el ofecto del decremento de presión relacionado con esta prueba.

- 4) En el caso de las pruebas de Variación de presión respecto al tiempo, se calcula la derivada de los datos de presión, mediante una función específica.
- La aplicación de filtros característicos del sistema, eliminan variaciones de datos no representativos del comportamiento del yacimiento.

D) Correlación entre información real del pozo y las curvas tipo

En el caso de pruebas de variación de presión respecto al tiempo (utilizadas para obtener las características del vacimiento), se ideó y desarrollo un procedimiento automatizado de comparación o correlación denominado " CORINE ", el cual puede seleccionar la curva tipo que represente los datos " presión vs. tiempo " particulares de una prueba, con gran precisión; esto se hace mediante una comparación cuantitativa entre una gráfica de datos de p vs. t y las curvas tipo.

E) Estimación de características físicas del vacimiento

A través del análisis tanto en pruebas isocronales como en pruebas de variación de presión respecto al tiempo, el sistema es capáz de determinar : la permeabilidad (k), el factor de daño (s), la eficiencia de flujo (kh), y el potencial absoluto de flujo (AOF): así como la presión media y el radio de drene.

F) Verificación de las características físicas del modelo.

En el caso de pruebas de variación de presión respecto al tiempo,

un simulador numérico desarrolla el comportamiento de los datos de presión respecto al tiompo a partir de los resultados del análisis (k, s, kh, \overline{P} , re).

G) informe

1) Técnicas utilizadas y sus resultados.

2) Typos de gráficas utilizadas: $\log(Pp)$ vs $\log(-t_D/Up)$, $\log - (P)$ vs $\log(t)$, P vs $\log(t)$, P vs $\log(-t+\Delta t)/(t)$, y $\log(q)$ vs $\log(-PR^2 - Pvt^2)$.

3) Gráfica del gradiente de presión en el pozo

4) Gráfica de gasto vs. tiempo en la vida productiva del pozo.

11.1 MANEJO DEL PROGRAMA DE COMPUTO

El diseño del paquete, versión computadora personal, permite al usuario un acceso fácil, presentando una serie de opciones para su operación, las cuales se muestren en la pantalla en grupos conocidos como menús, a través de los cuales se llevan a cabo todas las funciones del programa.

Primeramente la pantalla presenta un menú (menú principal / que contiene ilgetrativamente los principales rubros, como se muestra a continuación:

MENU PRINCIPAL

AYUDA GENERAL DEL PAUUETE (F1) GEQUISICIUN DE INFORMACIÚN (F2) GRAFICACION DE DATOS (F3) ANALISIS DE LA FRUEBA (F4 , REPORTE Y EITACURA (F5) REVISION GRAFIGA DE ARCHIVOS (F6) SISTEMA OPERATIVO DE DISCO (F7)

A su vez las opciones F2, F3, F4, y F5, estan ligadas a otros menús (sub-menús) a manera de ramificación, como se ilustra en el esquema siguiente, fig 20.a .

Cada menú contiene una ventana de ayuda enfocada a orientar al usuario en el uso de esa parte.

Cuando se analiza una prueba isocronal se debe seguir el procedimiento que brevemente se explica a continuación. Como primer paso se introducen los datos de la prueba en el módulo " ADQUISICION DE INFORMACION " (F2). Los datos se clasifican en dos tipos :

- a) Datos de Prueba. Estos son: el tiempo (horas), la presión (psi), y el gasto (bl/día). El dato del tiempo será considerado como un valor arbitrario, pero deberá seguir un orden ascendente.
- b) batos Generales. Estos son: nombre del pozo. fecha de inicio de la prueba. gasto (sólo cuando este sea constante, bl/día), factor de

volumen del aceite, viscosidad (cp.), porosidad (+rección). compresibilidad total (psi $\frac{r_{4}}{2}$), radio del pozo (pie), presión al tiempo cero (psi), y el tiempo de producción (horas).

En algunos casos, los valores de la presión de cierre pueden estar representados por una sola presión promedio " $\vec{F} \mathbf{x}$ ". La cual debe introducirse en " Datos Generales ", con la variable presión al tiempo cero " F(u=0)" ; si el usuario no desea utilizar una sóla presión promedio, las presiones de cierre deben introducirse en " Datos de Prueba ", en la columna correspondiente a la variable " tiempo ".

Los datos se pueden transferir directamente desde el pozo (con la sonda), por medio del programa "Adquisición Automática " (programa " GRC "): también pueden ser introducidos a través de un disco, o bien en forma manual en su opción " EDICION DE DATOS ". Una vez proporcionada la información quedaré almacenada en archivos que el usuario pueda intitular a su conveniencia.

Con la información disponible (en archivos), se puede proceder a analizar la prueba, como poro productor de gas o de laceite; esto se hace en el módulo " ANALISIS DE LA PRUEBA " en su opción " PRUEBAS ISOCRONALES " i.a versatilidad del ຫວັດໃນໂອ permite trazar automáticamente pendientes sobre los auntos dato, de acuerdo al criterio del usuario; esto se hace con la sub-opción " Trazo de Rectas ", en donde dos cursores pueden ser posesionados a voluntad en la pantalla, delimitando el inicio y el fin de la línea recta. La calidad del ajuste es cuantificado con el coeficiente de correio ión " CC ", el cual mide el grade o la bondad de alineación de los -puntos dato sobre la pendiente. También se pueden efectuar ampliaciones en la

gráfica, esto se ejecuta con la sub-opción " Ampliación ", seleccionando el intervalo deseado, de la misma forma que se hizo con " Trazo de Rectas " ; una vez incrementada cualquier sección, esta puede ser ampliada tantas vuces como sea posible.

Al término del análisis los resultados se imprimen automáticamente por la opción " PRUEBAS ISOCRONALES ", obteniéndose una gráfica doble logarítmica con datos de la prueba, v los siguientes valores : coeficiente " C " denotado como " b ", exponente " n ", pendiente "m", coeficiente de correlación " CC ", y el " AOF ".

En la figura # 20.6, puede verse en forma general un diagrama de flujo representativo del paquete SAPP .

Por disposición de la Gerencia de Ingeniería de Yacimientos de PEMEX, el paquete ha sido probado en numerosos casos de campo, considerando yacimientos homogéneos y fracturados. Actualmente se encuentra instalado en todas las áreas que conforman el sistema petrolero nacional.

DIAGRAMA DE FLUJG FAQUETE SAPP

CAPITULO III

APLICACION A CASOS DE CAMPO

Algunos casos importantes que se presentan comunmente en el campo ison vistos en este capítulo, esto es para ilustrar lo relativo al análisis isocronal y al comportamiento de afluencia definido por la ecuación # 7, tanto en pozos de gas como en pozos de aceite, considerando en estos últimos una clasificación que está definida por su presión de saturación (Pb < Pe y Pb > Pe J.

111.1 PRUEBAS ISOCRONALES EN POZOS DE GAS

En la figura # 21 se presentan los datos obtenidos en un pozo típico de gas (pozo # 1), produciendo de una formación que presente características de lenta estabilización. Los datos estan comprendidos en el período de 1944 a 1946, ver tabla # 2.

Los puntos de interés son la pendiente " n ", con un valor de 0.867, que se define en un espacio de muy pocos minutos después de abrir el pozo, y la declinación en el coeficiente " C ", que es de hecho una variable con respecto al tiempo.

FIG. No. 21.- COMPORTAMIENTO ISOCRONAL DE LA PRUEBA DEL POZO DE GAS Nº 1

FECHA	P(psre	DURACION DEL FLUJO Horas	R pie ³ /c	Pr²-ps² psie²	
			0.00		
10-3-44	455.3	24	4,900	47.1%	
10-24-44	436.0		4.256 4.55 4.440	17.51 10 18.6	
12-11-45	394.7	0.1 0.2 0.5 1 3	2.016 2.009 2.031 1.944 1.980	4.51 5.88 7.10 8.26 10.39	
1-11-46	199 . 7	24 0.1 0.2 0.5	1.944 2.977 2.977 2.955	14.55 1.71 7.21 11.56	
1+15-4	394.0	1 0.2 0.5 1	7.327 7.199 7.092	10-5 16-07 1-28 10-5	
1-17-46	391.1	0.5 1 3	0,887 2.952 2.937 2,905	42.07 11.23 12.87 15.72	
12-5-46	381.0	0.1 0.2 0.5 1 3	4.158 4.130 4.086 4.052 2.989	10.61 12.72 10.24 12.72 22.42	

TABLA # 2 -- DATOS DE LA PRUEBA ISOCRONAL EFECTUADA EN EL POZO DE BAS # 1 1 DE 1944 A 1945 7.

SALLE DE LA NO DEBE

En este pozo es posible observor poelloi coeficiente (" C (no se mantiene constante durante la vida propubli a del pozo, este fiende la disminuir : esto es que el coeficiente no satisfade la igualdad en la esuación # 7 durante todo el tiompo.

Si un pozo produce invariablemente a un determinano gasto, el coefficiente " C " llega a ser constanta, y sí posteriormente cambia bi flujo, podría Sucedar que " C " cambie tambiés . Esto significa que el valor de afluencia estabilizado se perturba.

Los datos tomados en el poco # 2, se muestran en la figura # 22 \vee la tabla # 3. Ahore la característica " n " es de 0.835, obtenida durante tiempos cortos. Nuevamente la declinación en el coeficiente " C " la hace una variable con respecto al tiempo.

En diciembre de 1951 se llevó a cabo una prueba en el pozo # 3, ธน comportamiento isocronal se muestra en la figura # 23, tabla # 4. donde las curvas A, B, C y D son obtenidas a intervalos de liempo de 0.5 hr. i hr. 2 hr y 3 hr. respectivamente. La presión de cierre estabilizada en el pozo es de 352 psia. Durante 1944 cuando la presión de cierre en este mismo pozo era de 441.6 psia, se efectuó una prueba de flujo de nueve días de duración (figura # 23), en donde el único osto obtenido de un tiempo corto, corresponde a una hora ; éste de observa en la curva B para un gasto de 1029 M ft³/d. El comportamiento de los datos outenidos a 23.8 brs, 70,5 brs, y 214 brs está representado por la curvas E. E y 6 respectivamente. Las cuales han sido trazadas considerando la misma pendiente 👋 🕅 👘 - de 0.748. Esto aignifica due i e i es válida tante para una Pf = 352 poia. como de una Ff = 441.6 psia, lo mismo puede decirse de la constante "C", ¥a

FIG. No. 22,- COMPORTAMIENTO ISOCRONAL DE LA PRUEBA DEL POZO DE GAS Nº 2.

FECHA	Psta Psta	DURACION DEL FLUJO horas	G 11 pie ⁹ /o	ff ² ff <mark>a² psia²</mark>	
2 10 45	171 0		1 324	p de	
7-10-40	430.0		1.215	11.70	
		5	1.200	16.77	
3-2 411	435.8	1	4.262	52.22	
	Ì	2	4.114	63.35	
	}	3	4.022	70.26	
	Į	24	3.495	106.70	
	1	72	3,236	11.2.43	
3-23-48	434.6	1	1,710	17.09	
		2	1.691	21.11	
	1	3	1,680	23.77	
		24	1,599	40.46	
		72	1,562	49.57	
7-25-49	434.4	1	2,107	22.77	
		2	2.073	28.34	
		3	2,054	31.88	
7-26-49	432.7	1	3.067	35.20	
		2	2.986	43.09	
		3	2,942	48.07	
7-27-49	432.4	1	4.208	51.39	
	1	2	4.061	62.59	
	}	3	3,963	69.23	
		1	}		

TABLA # 3 -- DATOS DE LA PRUEBA ISOCRONAL EFECTUADA EN EL POZO DE GAS # 5.

FIG. No. 23-COMPORTAMIENTO ISOCRONAL DE LAS PRUEBAS CONDUCIDAS EN EL POZO DE GAS Nº 3.

FECHA	Ft	DURACION DEL	U U	Pr ² -+ 2 ²	CUEF ICTERTI.
	pers	fluj0 noras	M ote _g ∖q	ps1a ²	c
				<u></u>	
10-11-44	441.6	1	1.229	8.52	159.5
	1	4	1.202	13.01	27.5
	1	23.5	1.187	23.07	50.6
	1	49	1.176	26.71	52.2
	1	20,5	1.171	28.81	40.4
	ļ	ిం. ప	1.165	30.52	45.6
		120	1.163	31.56	44.1
	1	144	1.161	32.13	47.3
	1	169	1.159	12.89	42.3
		190	1.157	33.54	41.4
	100 1	214	1.156	33.91	40.9
12= 1-51	352.4	0.5	983	5.37	
			977	6.96	
	1		970	8.93	
17-1-51			765	10.19	
12-4-31	1		2.001	12.54	
			2,000	17.02	
			2.555	24.03	
12-5-51	1 751.0	u.5	5.654	1.63	
		1	3.565	07.40	
			3,453	34.03	
		3	3.390	37.97	
12-6-51	349.5	0.5	4.782	28,84	
		1	4,625	35.96	
		2	4,438	43.98	
		3	4,318	48.96	
	DATOS ANU	JALES DE PRUEBAS	DE TRES DI	AS DE DURAC	ION
4-5-45	417.7	72.5	1.010	43.94	
7-13-45	403.2	72	1,848	41.16	
5-10-46	389.7	72	1,665	35.57	
5-28-47	389.9	72.25	1.457	34.65	
5-17-48	378.5	71.83	1.249	28.81	
6-17-49	371.7	72	1,389	31.95	
5-23-50	365.5	71.75	4,438	34.16	
5-29-51	355.0	72.25	1,195	27.23	
5-26-52	348.5	71.5	1,073	24.97	
7-7-53	336.1	72	1,164	27.43	
	1	1	(,	

TABLA # 4 .- DATOS DE LA PRUEBA ISOCRONAL EFECTUADA EN EL POZO DE GAS # 3. que así lo demuestra la prueba hecha en el año de 1944 $_{\rm CON}$ el Unico dato obtenido a 1 hr.

Algunas vaces es difícil visualizar la variación del coeficiente con respecto al tiempo, esto es posiblemente por la manera en que se presentan los datos de la prueba. Por esta razón ordenamos los datos de " C " como se muestra en la figura # 24. donde la variación de " C " con respecto al tiempo durante el periodo de nueve dias, es más clara.

Los datos del pozo # 4 se muestran en la tabla # 5 y en la figura # 25; para valores bajos en el gasto (Q < 800 M ft[®]/d) se tiene un valor de "n" de 1, la pendiente presenta un quiebre o ligera desviación para gastos mayores; esto nace que el valor de "n" cambie de 1 a 0.859. El punto de quiebre en la curva ocurre aproximadamente a 800 Mcf/D. . Una explicación satisfactoria de este comportamiento, es que el cambio es indicativo de una alteración en la capacidad de producción del sistema pozo-yacimiento.

Se ha observado en estos y en otros casos más, que el valor del inverso de la pendiente " n ", varía entre los límites de 0.5 a 1.0 .

Ciertamente los pozos de gas estabilizan rápidamente. No obstante esto no es necesario para poder obtener datos confiables en una primeba isocronal.

FIG. No. 24.- COMPORTAMIENTO DEL COEFICIENTE "C" RESPECTO AL TIEMPO EN EL CASO PARTICULAR DEL POZO Nº 3.

FIG. No. 25-COMPORTAMIENTO ISOCRONAL EN EL POZO DE - GAS Nº 4.

FECHA	Pr psia	DURACION DEL Fludo noras	ŭ M pie ³ /d	Pr ² -Ps ² psie			
9-28-49	449.7	0.5	76 76 25	0.95			
9-30-49	450.1	3 0.5 1	76 145 143	1.4. 1.79 7,00			
10-3-49	450.2	2 3 0.5	143 145 576 5	2.4. 12.51 5.52 11.05			
10-4-49	449.6	2 3 0.5 1	570 572 1,237 1,229	9.72 10.94 16.95 19.28			
10-5-49	449.3	3 0.5 1	1.219 1.212 2.148 	011,49 24,48 29,32 15,37			
10-6-49	448.5	.5 0.5 1	2.085 2.065 3.079 3.017	41.04 44.55 48.22 55.08			
10-7-49	447.4	2 3 0.5	2.947 4.218 4.087	63.52 58.25 55.70 76.22			
10-11-49	448.6	2 3 0.5	3,936 3,852 5,373 5,136	86.85 90.87 85.49 99.42			
10-14-49	448.7	2 3 0.5	4.887 4.756 326 325	1111 118.45 3.83 4.57			
11-2-49	449.3	2 3 0.5	324 323 886 481	5.50 6.12 10.03 12.49			
		23	874 870	15.14 15.86		00.00	
TABLA # 5	DATOS I	DE LA PRUEBA 19	AUCKONAL EI	PECTUADA EN	26	F020	DE

GAS # 4.

111.2 PRUEBAS ISOCRONALES EN POZOS DE ACEITE

Los resultados obtenidos a partir de las pruebas isocronales realizadas en pocos de aceite. y presentados para este tema, se clasifican de acuerdo a la presión de saturación considerando tres casos :

[[1].2.1 a) Presión del Yacimiento Arriba de la Presión de Saturación de Gas Crítica.

Para ejemplificar este caso se comentan dos pruebas isocronales hechas en pozos que producen de un vacimiento carbonatado, con un mecanismo de empuje por expansión del gas disuelto (Campo A).

La saturación de gas promedio en el yacimiento al tiempo en que fueron efectuadas las pruebas, está entre 10% y 12% .

La prueba en el pozo # 6 , del Campo A (figura # 26, tabla # 7), consistió de siete flujos realizados por separado, con una aparente estabilización para cada uno. Los primeros cuatro valores del gasto fueron corridos en una secuencia normal de incremento, seguido de una reducción a 70 BOPD, y finalmente por una secuencia de dos incrementos de flujo. En la gráfica puede verse que todos los puntos se ajustan en una misma línea, en este caso los efectos de flujo transitorio no fueron causa de divergencias.

FIG. No. 26- COMPORTAMIENTO ISOCRONAL EN EL POZO DE-ACEITE Nº 6, CAMPO "A".

LEGTURA	PR-19	BIONES	4°0	RGH	THESTON EN	Temp.
14o	cierre	st) tleveado	BOPD	ft ⁹ /bl	SU SEPARADOR	°F
1	6439.5	5654.4	2973	2670	405	107
2		5148.4	1328		310	ēv.
3	5427.1	6301.6	722	2680	215	53
4	6437.8	5660.1	2871	2835	445	104
5	6427.0	5947.0	212.0	2668	395	46
6	6427.1	6181.2	12.56	2593	380	82
7	5428.1	6249.9	992	2683	285	12
8	6427.1	6320.1	605	2591	(1)	66

TABLA # 6 -- DATOS DE LA PRUEBA ISOCRONAL CON 4 HORAS DE AFLUENCIA. EN EL POZO DE ACEINE 1-8, CAMPO 5.

сце ТЫЯЛ 	DURACION horas	9. BOPD	essi esa fiuvendo	86A +t ⁹ 7bu	
			(psia)		
0 1234 567	SIF 42 34 38 42 36 53 40	0 65 134 137 229 93 321 341	1345 1242 1142 1123 921 1178 719 638	5233 5212 3148 3760 3960 3676 3975	

TABLA # 7 .- DATOS DE LA PRUEBA ISOCRONAL EFECTUNDA EN EL POZO DE ACETTE # 6. CAMPO A.

Los puntos definen para este ejemplo una pendiente con un valor cencano a la unidad. El estrabolamol (a línea en la gráfica e igualamos la presión de fondo fluyendo a cero (Pvr = 0), y consideramos que la presión a fluido estático en el vacimiento no cambia, puede obtenerse el "ADF", el cual resultó, para este casode 445 BOPD. . Debe recordarse que un abatimiento total de presión en el fondo del podo, es sólo una consideración teórica.

En el pozo # 3 del Lampo A, se conduce una segunda prueba isocronal ilustrada en la figura # 27, tabla # 9. De la gráfica puede verse una excelente alineación de cinco puntos representativos de valores de afluencia estabilizados: de esta forma el valor del inverso de la pendiente " n ", se determina en 0.648 y el " AOF " en 340 BOPD. .

III.2.2 b) Yacimientos Bajosaturados

 La presión de fondo fluyendo puede estar abajo de la presión de burbuieo.

La figura # 28 muestra los resultados obtenidos durante seis horas en una prueba isocronal, realizada en un yacimiento bajosaturado en Abril de 1970 en el pozo Fhillios Ekofisk 274 - 2X . En este caso se presentan dos lineas rectas en una gráfica doble logaritmica, donde se muestra una intersección que indica la aparente presión en el punto de burbujeo. Usando los primeros dos datos de flujo y la relación del IF, se obtiene el AOF en 13.000. BOPD. El AOF determinado por extrapolación de los datos comodo PwF = 0, es de 5.200. DOPD. La diferencia en los potenciales se debe a que el IP considera un solo

FIG. No. 27.- COMPORTAMIENTO ISOCRONAL CON FLUJO ESTABILI-ZADO EN EL POZO DE ACEITE №3, CAMPO "A".

LECTURH	PINES	STOLES	1 40	RGA	PRESION EN
No	cierre	jsia) fluvende	8060	ft ^{\$} 7bi	EL SHEABADOR S pera 2
·	INTER	VALO PERFORI	00 20 FL	- 12/14/	71
1 2 4 5 5 7 4 horas	3934.0 1930.6 3920.9 3927.9 1921.4 3913.5 1933.9 INTERS	3912.5 2759.4 3652.6 3761.8 3835.5 5901.4 2910.2 /ALU PERFOR/	701 2447 1616 2502 1775 787 490 ADO 60 ft	1452 1369 1383 1348 1476 1496 1415 	186 430 25 489 257 180 170
1 2 4 5	3899.2 3897.9 3896.1 3892.2	3820.8 5884.3 3807.4 9854.7 3808.6	2490 766 707 1591 2620	1418 1413 1503 1483 1358	452 298 147 250 456

TABLA # 8 .- DATOS DE LA PRUEBA ISOCRUNAL CON 4 HORAS DE AFLUENCIA. EN EL FOZO DE AUEITE 8-E. CAMPO D.

LECTURA No	DURACION horas	9 BCHD	PRESION Sluvendo (psia)	RGA it ⁵ ∵bi
0 1 2 3 4	SIF 36 44 44 50	0 70 147 209 280	1200 1147 1025 856 612	1733 1733 2193 2431

TABLA # 9 .- DATOS DE LA PRUEBA IBUCRONAL EFECTUADA EN EL PUZO DE ACEITE # 3. CAMPO A.

FIG. No. 28- COMPORTAMIENTO ISOCRONAL DEL POZO EKOFISK (2/4-2X), ZONA 2, ABRIL 14, 1970.

fluto (líquido), y una presión en el vacimiento mayor o igual a la presión de burbujeo.

 La presión de fondo fluvendo está arriba de la presión de burbuies.

ve todas las pruebas isseronales, uno de los resultados ៣ភ័ទ interesantes es el obtenido en el pozo 1-A. Campo G. figura (# 19. - v tabla # 6 . Los datos graficados presentan una excelente alineación de B valores de flujo, Cada dato se tomó entre cierres repetidos (por separado), mediante tres secuencias de decremento en el valor de l fluio, seguidas por cinco más: todas la presiones tomadas en el poro estan arriba de la presión de burbuieg, por lo tanto se tiene flujo en una sóla fase (aceite). De la gráfica, el exponente n se estimó en 0.813 y el AOF en 9500 EOFD. Simultánechente es graficado q iva Δ (P), sirviendo para ver como la pendiente 1/n vale 1.23, y el del IP 1.00 ; esto se debe, a que el IP está desarrollado a partir de conceptos que definen implicitamente este valor como es el de considerar el flujo Darciano (fluio no turbulento entre otras).

Para verificar la presencia de flujo turbulento (flujo no-Darciano) en el pozo, se utiliza el número de Reynolds, el cual se expresa como :

considerando los siguientes datos : gasto 2973 BOPD. factor de volúmen del aceite 2.7 (separación flash). densidad 0.48 gm/cc. viscosidad 0.22 cp. y suponiendo un diámetro grande de 0.5 mm. se tiene que el

FIG. No. 29.- COMPORTAMIENTO ISOCRONAL PARA 4 HORAS DE AFLUENCIA EN EL POZO I-A CAMPO G, ENERO I8, 1972.

número de Revnolds es de 8. De acuerdo con Muskat¹⁰, el flujo turbulento se presenta para un número de Raynolds mayor que uno.

III.2.3 () Yacimientos Saturados

El poro # 8 ~ E del Campo D. (igura # 50. V tabla # 9. es un esemulo seleccionado de varios yacimientos. Las siguientes características definen este caso particular: el yacimiento es relativamente simétrico y está en campos de arenisca, los rangos de profundidad son de 7800 a 11200 ft, las permeabilidades determinadas a partir de pruebas de incremento de presión van de 130 a 2500 md. . Los espesares productores estan entre 20 y 180 ft. , la porosidad promedio es del 22% , la saturación de agua os pe 30% aurocimaciadente. V sus rangos de saturación de qas crítica van del 7% al 13% .

La prueba isocronal se efectúa a las 4 horas de producción, seguido de un cierre de 4 horas. El exponente n se obtiene a partir de la prueba, con rangos de 0.568 a 0.875. Las curvas son preficadas considerando que la primera presión al cierre es igual a la presión del punto de burbujeo.

El cambio en el valor de n. es un resultado causado por el inscremento del intervalo perforado de 20 a 60 pies; en consecuencia cambia también el AOF y la posición de la pendiente.

Los datos de este ejemplo son :

FIG. No. 30- COMPORTAMIENTO ISOCRONAL PARA 4 HORAS DE AFLUENCIA EN EL POZO 8-E, CAMPO D, Y CON UN INCREMENTO EN EL INTERVALO -DE 20 ft. A 60 ft.

Espesor neto de la formación productora = 182 pies permeabilidad absoluta, k = 2469 md permeabilidad del aceite. ke = 1284 md permeabilidad relativa del aceite, km = 0.52 saturación crítica del gas. Sgc = 0.1 espesor del intervalo disparado = 20 pies porosidad. ϕ = 0.21 saturación del agua congénita. Swc = 0.32 compresibilidad total. Et = 25x10⁻⁶ psi⁻¹¹ radio del pozo, rv = 0.33 pies viscosidad del aceite. μ o = 0.27 cp factor de volumen del aceite. Bo = 1.94 b1/b1 tiempe en que se toman los datos. t = 0.167 días.

III.2.4 OBSERVACIONES DE LOS EJEMPLOS EN POZOS DE ACEITE

Todas las pruebas isocronales reportadas[®] de pozos de aceite, fueron tomadas en un estado pseudo-estacionario.

Un cambio de la pendiente en la gráfica doble logarítmica de la figura # T0, es indicativo de una variación en la capacidad de afluencia; este caso puede explicarse claramente, ya que se trata de un yacimiento bajosaturado, que ha estado produciendo lo suficiente para que se presente una presión de fondo fluyendo igual y posteriormente inferior a la presión de burbujeo; de aquí que se tenga un cambio en " C " y en " n " cuando la Pvr < Pb , a presar de que la extensión del área de drene se mantenga igual. En la figura # 30 se tiene también un

cambio en "C" y en "n", causado por un incremento i del intervalu perforado en el estrato productor (de 20 a 60 pies); esta vez los nuevos valores de "C" y "n" son diferentes a los anteriores para cualquier presión de fondo fluyendo (Evr. 2 Pb ó Evr. (Pb.), a pesar de que, también la extensión del área de dreme se mantenga igual.

A continuación se presentan tres pruebas isocronales analizadas e ilustradas por el "SAPP ".

SISTEMA DE ANALISIS DE PRUEBAS DE PRESIDN. (SAPP) version 4.0 - 1990

> UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO INSTITUTO MEXICANO DEL PETROLEO

POZO : Ejemplo No. 1 FECHA : Julio de 1990. ANALISTA : Domíngo Franco Assad OPERADOR :

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION (SAPP) Version 4.0

Ejen Julí	npio No. 1 no de 1990.	
Presión	Caida de	Gasto
(psi)	Presión	(bpd)
1242.00	103.00	66.00
1142.00	203.00	134.00
1123.00	222.00	137.00
921.00	424.00	229.00
1178.00	167.00	93.00
719.00	626.00	321.00
630.00	715.00	341.00
	Ejen Juli Presión (psi) 1242.00 1142.00 1123.00 921.00 1178.00 719.00 630.00	Ejemplo No. 1 Julio de 1990. Presión Caida de (psi) Presión 1242.00 103.00 1142.00 203.00 1123.00 222.00 921.00 424.00 1178.00 167.00 719.00 626.00 630.00 715.00

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION (SAPP) version 4.0

Pozo : Ejemplo No. 1 Fecha : Julio de 1990.

DATOS UTILIZADOS EN EL ANALISIS

	90 -		ting trans
GASTO DE PRODUCCION	Ŧ	1000	BPD
FACTOR DE VOLUMEN	=	1.3	CY/CS
VISCOSIDAD	-	.3	CP
RADIO DEL POZO	×	.33	FT
POROSIDAD	Ħ	.2	FRACCION
COMPRESIBILIDAD TOTAL	. ≍	.000002	17951
ESPESOR	=	20	FT

NOTAS:

Los datos de prueba son representativos de un pozo de aceite, y fueron tomados del artículo de Fetkovich, los datos generales del pozo son supuestos.

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION, (SAPP) version 4.0 - 1990 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO INSTITUTO MEXICANO DEL PETROLEO

POZO 1 EJEMPLO NO. 2 FECHA 1 MARZO 1990 ANALISTA : Domingo Franco Assad OPERADOR :

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION (SAPP) Version 4.0

Pozo : Fecha :	EJEMPL MARZO		
Tiempo	Presión	Caida de	Gasto
(hrs.)	(psi)	Presión	(bpd)
3724.6000	2979.10	799.80	2467.00
3730.0000	3198.40	580.50	2099.00
3737.6000	3430.70	348,20	1351.00
3761.4000	3601.10	177,80	702.00
3762.9000	3671.20	107.70	393.00
3764.2000	3604.10	174.80	730.00

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION (SAPP) Version 4.0

Foro : EJEMPLO NO. 2 Fecha : MARZO 1990

DATOS UTILIZADOS EN EL ANALISIS

GASTO DE PRODUCCION	32	800	BPD
FACTOR DE VOLUMEN	¥	1.4	CY/CS
VISCOSIDAD	#	.4	CP
RADIO DEL POZO	=	.25	FT
PDROSIDAD	Ŧ	.18	FRACCIO
COMPRESIBILIDAD TOTAL	=	.000004	1/PS1
ESPESOR	=	25	FT

NOTAS:

Los datos de prueba son representativos de un pozo de aceite, y fueron tomados del artículo de Fetkovich, los datos generales del pozo son supuestos.

FIG.NO. 32 .-ANALISIS ISOCRONAL A LOS DATOS DEL POZO EJEMPLO NO. 2 MARZO 1990

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION. (SAPP) version 4.0 - 1990

> UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO INSTITUTO MEXICANO DEL PETROLEO

POZO : EJEMPLO No. 3 FECHA : 28 DE NOVIEMBRE DE 1990 ANALISTA : Domingo Franco Assad OPERADOR :

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION (SAPP) version 4.0

Pozo : Fecha :	EJEMPLI 28 DE 1	D ND. 3 NOVIEMBRE DE 1	990
Tiempo (hrs.)	Presión (psi)	Caida de Presión	Gasto (bpd)
439.0000	438.99	0.59	1491391.00
439.0001	438.97 438.95	0.60	2223639.00
439.6000 439.8000	439.60 439.80	0.02	862274.00

SISTEMA DE ANALISIS DE PRUEBAS DE PRESION (SAPP) Version 4.0

Pozo i EJEMPLO No. 3 Fecha : 28 DE NOVIEMBRE DE 1990

DATOS UTILIZADOS EN EL ANALISIS

GASTO DE P	RODUCCION	=	1500000	8PD
FACTOR DE	VOLUMEN	Ħ	,006	CY/CS
VISCOSIDAD		=	.02	CP
RADIO DEL	POZO	-	.33	FT
POROSIDAD		=	.06	FRACCION
COMPRESIBI	LIDAD TOTAL	E	.000447	1/PS1
ESPESOR		I	25	FT

NOTAS:

Los datos de prueba son representativos de un pozo de gas, y fueron tomados del artículo de Cullender, los datos generales del pozo son supuestos.

FIG.NO. 33 .-ANALISIS ISOCHONAL A LOS DATOS DEL POZO EJEMPLO NO. 9 20 DE NOVTEMBRE DE 195

113

CAPITULO IV

CONCLUSIONES Y RECOMENDACIONES

Primeramente se mencionan y comentan las principales conclusiones de algunos de los autores consultados :

Muskat y Botset⁴ consideran que probablemente la diferencia más grande entre el flujo de gas en el yacimiento, y el flujo reproducido en los aparatos de laboratorio, se presenta en los valores del exponente " n " y de la permeabilidad " k " , por lo que debe tratárseles como parámetros generales para cada problema particular d. campo.

A partir de las pruebas isocronales conducidas en poros reales de gas, Cullender[®] recalca entre otras cosas que :

- a) El análisis isocronal para poros de gas, bien puede ser definido por un simple gradiente de presión, el cual as representativo de la afluencia en el sistema poro-yacimiento, durante un tiempo específico, en donde es posible obtener los datos " p vs. Q ".
- b) El comportamiento del coeficiente "C " en la ecuación de afluencia para el caso general, es función de la extensión del área de drene y de su gradiente de presión. Por lo tanto para una área de drene inestable, "C " sería una variable con respecto al tiempo.

114

Nawlins y fonelihardi² consideren que no puede establecerse una relación constante entre el desto y el gradiente de presión, para cualquier sistema poporyacimiento, de tal forma que se pueda conocer el comportamiento futuro de los popos; esto se debe a que cuando la formación productora del vacimiento es depresionada, la capacidad de afluencia de los popos de gas cambia. También recomiendan, enfáticamente, que las pruebas isocronales sean obtenidas pajo condiciones de presión estabilizada.

Todas las pruebas isocronales conducidas en pozos de aceite por Fetkovich⁹, fueron tomadas durante un estado pseudo-estacionario y considerando en cada medición una presión estática en el yacimiento Fa. De las pruebas se alcanzaron las siguientes conclusionest

- a) Los resultados de fas orcebal en (ercos de aceite, se comportan muy similar a los rasultados de fas pruebas en pozos de gas, por fu tanto pueden ser efectuadas y analizadas usando la misma ecuación básica de flujo.
- b) En vacimientos bajosaturados es posible determinar algunas veces la presión en el punto de burbujeo, a partir de pruebas: siempre y cuando sea tomado un rango suficiente de valores del gasto.

Finalmente se exponen las conclusiones más relevantes de este trabajo :

 El objetivo primordial del Capítulo I, ha sido el describir y analizar, empíricamente, el movimiento de un fluido a través de un medio poroso, considerando siempre que el flujo esté en función de la presión. El Capítulo III ejemplifica presentando prochas, de campo neprosentativas de concluines típicas.

- 2) Se na intentado que estos temas puedan sen vistos como una quía básica para los cursos de producción, pero tomando en cuenta previamente que este trabajo no pretende ser un estudio completo la soficientemente eltenso para ser aprobado como tal.
- 3) El programa de automatización del análisis isocronal, alimentado con información suficiente y representativa de algún caso en particular, puede determinar en forma precisa los valores del gasto en función del gradiente de presión, y el potencial absoluto de flujo. Igualmente el uso de esta técnica manejada como una herramienta de análisis, bien puede ser útil en el estudio de los siguientes fenómenos : presencia de líguido en el interior de los pozos productores de gas, determinación de la variación de afluencia causada por inestabilidad del flujo durante las pruebas, y cambios naturales de producción de un pozo durante su vida productiva, entre otros.
- 4) El éxito en la calidad de los resultados es fuertemente dependiente de la información obtenida en el campo durante las pruebas, por lo lanto, es recomendable tener especial cuidado en la medición del gasto y de la presión. Un caso frecuente que altera las mediciones de la presión, se tiene cuando el dispositivo sensible (sonda), que transmite los cambios de presión dentro del pozo, no está localizado frente a la zona de los disparos (entrada de los fluidos al pozo), lo que significa, que un valor real de la presión de fondo no puede ser obtenido.

116

- 3) En forma general puede decirse, que las pruebas isocronates permiten entender el comportamiento de afluencia, y caracterizan físicamente el sistema pozo-yacimiento; lo dicho implica, el estudio de algunos de los fenómenos inherentes a la física de los yacimientos, esto a su vez, posibilita la resolución de problemas particulares de producción, esí como prevenírlos.
- 5) Recientementa el programa de automatización de análisis isocronal. ha sido integrado al paquete SAPP. Actualmente se encuentra disconible en el distrito Frontera Noreste, así como en. la± diversas zonas productoras del país. para ser utilizado en e1 campo por el personal capacitado adscrito a la Gerencia 20 Ingeniería de Yacimientos de PEMEX. El programa previamente fue probado con ejemplos tomados de la literatura especializada, пD obstante es necesario aún, observar la calidad de los resultados. en casos particulares de diversos campos productores.

BIBLIOGRAFIA

- 1) M. MUSHAT AND H. G. BOTSET FLOW OF GAS THROUGH POROUS MATERIALS FHYSICS (JULY, 1931 / 1, 13
- 2) E. L. RAWLINS AND M.A.SCHELLHARDT BACK-FRESSURE DATA ON NATURAL-BAS WELLS AND THEIR APPLICATION TO FRODUCTION PRACTICES BUREAU OF MINES, MONOGRAPH 7, PUELISHED ON 1936
- 3 / M.H. CULLENDER THE ISOCHRUNAL PERFORMANCE METHOD OF DETERMINING THE FLOW CHARACTERIFICS OF ONS WELLS. TRANS. AIME (1955 / 204, 117,
- 4) M. MUSKAT AND H. H. EVINGER CALCULATION OF THEORETICAL FRODUCTIVITY FACTOR. TRANS. AIME (1942) 146, 126-139
- 5) W. E. GILBERT FLOWING AND GAS-LIFT WELL PERFORMANCE. DRILL AND FROD. PRAC., API (1945) 126
- 5) W. T. WELLER RESERVOIR PERFORMANCE DURING TWO-PHASE FLOW.

J. PET. TECH. (FEB., 1766) 240-245

7) J. V. VOGEL

INFLOW PERFORMANCE RELATIONSHIPS FOR SOLUTION-GAS DRIVE WELLS. J. PET. TECH. (JAN., 1968) 82 8) M. J. FETKOVICH

THE ISOCHRONAL TESTING OF DIL WELLS. SOCIETY OF PETROLEUM ENGINEERS OF AIME (SEP.-OCT., 1973 SPE 4329

- 9) RESTOR MARTINEZ ROMERO Y ULISES FILOY SALDERS. SISTEMA DE ANALISIS DE PRUEBAS DE PRESION EN POZOS FETROLEROS. INGENIEFIA PETROLERA (JULIO DE 1997)
- 10) M. MUSHAT
 - FHYSICAL FRINCIFLES OF OIL PRODUCTIONS. Mc. GRAW-HILL BOOK Co., Inc., NEW YORK (1947) 793, 126
- 11) FRANCISCO GANALICCHEA PETRIRENA Y JOSE LUIS BASHBUSH APUNTES DE COMPORTAMIENTO DE LOS YACIMIENTOS. DIVISION DU INGENILRIA EN CICICIAS DE LA TIERRA, OPIC, SE EXPLOTACION DEL PETROLEO, FACULTAD DE INGENIERIA, UNAM, (1984).

12) VALDERRABAND H.-RAYON CASIAND-OSORNO MANZO-RODRIGUEZ NIETO. APUNTES DE EVALUACIÓN DE LA PRODUCCIÓN. DIVISIÓN DE INGENIERIA EN CIENCIAS DE LA (TERRA, 2000), DE EXPLOTACIÓN DEL PETROLEO, FACULTAD DE INGENIERIA, UNAM. (1984).