

UNIVERSIDAD LA SALLE

ESCUELA DE INGENIERIA :

ESTUDIO DE FACTIBILIDAD DE UN SISTEMA DE PRODUCCION DE ALARMAS PARA AUTOMOVILES EN MEXICO

TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA CON ESECUADOAD EN EL AIEA INDUSTRIAL

FRANCK ALAIN PHILIPPE LIBONIE MIJANCOS

DIRECTOR DE TESIS:

ij.,

INC. EMRIQUE BARCIA DELBADO

MEXICA. B. F.

FALLA DE ORIGEN

1981

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE						•		Pag.
INTRODU	cion		••	• • •		••		. 1
CAPITUL	D I : ANTECEDENTES	•••	,•.	• • :	, .		• .• ,•	<u>.</u> . 2
1.1	Sonido							. 2
1.1.1	Definición							
1.1.2	Caracteristicas del sonido							. 2
	Frecuencia							
1.1.2.2	Amplitud							. ž
	Periodo							
	Longitud de onde							
	Reflexion							
	Refracción							
1.1.2.7	Difracción		•					3 4
1.2	Ultrasonido		• • • • • • • • • • • • • • • • • • • •			•		. 5
1.2.1	Definición							
1.2.2	Características de las ondas de ultr		ion	idi				. 5
	Frecuencia y longitud de onda				•••	•••	• • •	. š
1.2 2.2	Reflexion	• •	• •	• • •	•••	••	• • •	. 6
1 2 2 3	Difracción	• •	• •	• • •	•••	• •	• • •	. 6
112121	Sobreposición	• •	• •	• • •		••	• • •	: 6
1 2 2 5	Efectos de temperatura	•	• •	• • •	• •	•	• • •	. 6
	Atenuacion							
1.3	Efecto Doppler							
1.4	Sensores	• •	٠.	• • •	• •	• •	• • •	: ;
1.4	Denmores	• •	٠.	• • •	• •	• •	• • •	• , •
CAPITUL	II : ALARMA DE ULTRASONIDO		٠.	• • •		••		. 8
2.1	Definición							
2.2	Funcionamiento	•	::	• • •	• •	• •	• • •	. 8
2.3	Caracteristicas generales	• •	••	• • •	• •	••	• • •	
2.3.1	Protección	• •	• •	• • •	• •	••	• • •	. 11
2.3.2	Nodo de operación							
2.3.2	Sensibilidad							
2.3.4	Señal de alarma	• •	• •	٠.,	• •	• •	• • •	. 12
2.3.5	Instalación							
	Características técnicas							
2.4	Componentes de la alarma de ultrason							
2.4.1	Circuito electronico	• •	••	• • •	• •	••	•••	. 14
2.4.1.1	Componentes nacionales	• •	• •	• • •	• •	• •	• • •	. 14
	Componentes importados							
2.4.2	Otros componentes							
2.4.3	Protección de los componentes	••	••	• • •	• •	• •	• • •	. 14
CAPITULA	III : ESTUDIO DE MERCADO	٠.				• •		. 15
3.1	Antecedentes							. 15
3.2	Situación del mercado actual	•		- 	•			. 10
3.2.1	Distribución geográfica del mercado							
3.2.2	Determinación del mercado potencial							
3.2.2	Mercado potencial futuro							
3.4	Paricipación en el mercado							
3.5	Canales de distribución							

	Pag.
CAPITUL	D IV : ESTUDIO TECNICO 28
4.1	Introducción 28
4.2	Sistema productivo para les elermes de ultrasonido, 28
4.2.1	Montaje circuito electrónico
4.2.3	Prusbas
	Pruebes mecánicas ambientales
4.2.3.2	Prueba eléctrica
4.2.3.3	Prueba de durablidad
	Prueba de funcionamiento
4.2.4	Empaque
4.5	Plan de producción
4.4	Balance de linea perteneciente al ensamble del
4.5	circuito electrónico
4.6	Realización de las pruebas
4.7	Cantidad y distribución de la mano de obra 54
4.8	Distribución de la planta55
4.9	Maquinaria y equipo 57
CAPITUL	O V : EVALUACION ECONOMICA58
5.1	Antecedentes 59
5.2	Estado de resultados
5.3 5.4	Flujo de efectivo 64 Belance general 66
5.5	TIR Y VPN 70
	·
	IONES
AMEXOS.	
BIBLIOG	RAPIA

	·	
INDICE D	DE FIGURAS:	Pag.
1.	Amplitud y periodo	2
2.	Longitud de onda	
3.	Reflexion	3
4.	Refracción	
5.	Difracción	4
6.	Sensores	7
7.	Diagrama de bloques	10
	Diagrama de instalación	
9.	Categorias del parque automotriz mexicano	
10.	Automóviles producidos en México (1983-88)	
11.	Producción de automóviles en México (1983-88)	
12.	Distribución geogáfica del mercado de consumo	
13.	Determinación del mercado potencial actual	
14.	Tabla de elección del producto en el cambio	
15.	Pronostico de automóviles nuevos en México	
16.	Participación en el mercado	
17.	Diagrama de flujo de un sistema de producción de	
17.	elarmas de ultrasonido	
18.	Longitud de las patas de los componentes	
19.		
	Diagrama de flujo de soldadura	
20.	Cursograma sinoptico del empaque	
21.	Plan de producción	42
22.	Cursograma analítico de la alarma de ultrasonido	
23.	Cantidad y distribución de la mano de obra	
24.	Distribución de la planta	56

pag.

1.	Abaco de las relaciones entre frecuencia, longitud de onda y velocidad
2	Componentes nacionales del circuito electrónico74
	Componentes importados del circuito electrónico75
4.	Componentes nacionales e importados del circuito
	electrónico
5.	Componentes del sistema de alarmas de ultrasonido78
6.	Cálculo de la producción 1989-93
7.	Producción automóviles 1989-93
	Designación componentes
	Circuito impreso85
10.	Puestos de montaje para componentes
11.	Caja de cartón
12.	Cartón perforado94
13.	Costo de los componentes de la alarma de ultrasonido.95

INTRODUCCION

Esta Tesis se origina de un problema concreto y se realiza con autorización de la empresa que solicitó la investigación, por lo que se hacen algunos cambios en ciertos datos de carácter confidencial, siendo todos los demás reales y obtenidos del mercado en nuestro medio.

El problema puede resumirse de la siguiente forma: La empresa de la cual es objeto este trabajo se dedica básicamente a la comercialización de productos importados. Recientemente esta empresa empezó a ensamblar un producto en especial, la alarma de ultrasonido, donde el circuito electrónico era de procedencia extranjera. Así pues se requiere la formación de un sistema productivo en el cual se realicen todos los montajes existentes, incluido el circuito electrónico, y de esta forma obtener un aprovachamiento de sus instalaciones actuales.

En el primer capitulo se tratan las características y definiciones de los elementos necesarios para el estudio y comprensión del funcionamiento de una alarma de ultrasonido.

En el segundo capítulo se determinará el funcionamiento de la claras de ultrasonido, sus características generales y los componentes requeridos.

En el tercer capítulo se presenta un análisis de mercado de las alarmas de ultrasonido que permite determinar la capacidad requerida del sistema de producción.

El cuarto capítulo se refiere al estudio técnico del proyecto donde se elabora un plan de producción, el diseño del sistema productivo, un balance de línea general, la distribución de la planta y se menciona la mano de obra y equipos necesarios.

El quinto y último capítulo se refiere a la evaluación económica necesaria para la validación de este estudio de factibilidad.

CAPITULO I

ANTECEDENTES

En el siguiente capítulo se van a mencionar las características, así como las definiciones, de los elementos necesarios para el estudio del funcionamiento de una alarma de ultrasonido.

En primer lugar se verán las características generales del sonido involucrandonos posteriormente en un área específica llamada ultrasonido.

Posteriormente se explicará el efecto Doppler, efecto medianto el cual funcionam las alarmas de ultrasonido, así como el funcionamiento de los sensores ultrasónicos.

1.1 SONIDO

1.1.1 Definición:

"El sonido puede definirse como un movimiento vibratorio que se propaga a través de los medios elásticos materiales, y que cuando llega al oido produce una sensación fisiológica." (Enciclopedia DURMAN vol 17 p585)

Este movimiento vibratorio, antes mencionado, se transforma en ondas sonoras así como el oido es considerado como órgano receptor por lo que propongo una definición más generalizada.

El sonido puede definirse como una emisión de ondas sonoras, causadas por un movimiento vibratorio, que se propaga a través de los medios elásticos materiales hasta un punto de recepción.

1.1.2 Características del sonido:

1.1.2.1 Procuencia

Mimero de veces que un fenómeno periódico se repite por unidad de tiempo. Cuando la unidad de tiempo es el segundo, la frecuencia se indica en Hertz (Hz), llamados también ciclos por segundo (C/seg).

Cuando se habla de alta frecuencia se refiere a más de 10,000 Hz y a baja hasta 60 Hz.

1.1.2.2 Amplitud

En un fenómeno oscilatorio, como este, indica el valor máximo absoluto alcanzado por el mismo en el curso de las oscilaciones, dicho de otra forma es el desplazamiento máximo desde el neutro. (Ver figura 1)

fig:1

1.1.2.3 Periodo

El periodo es el intervalo de tiespo entre repeticiones sucesivas de una forme de onda periódica conocido como: T=1/f

T-Periodo f-Frecuencia

(Ver figure 1)

1.1.2.4 Longitud de onda

Para una onda sincidal que se propaga en un medio uniforme, es la distancia entre un punto cualquiera y el punto más próximo en el cual la meñal se encuentre en fame con la meñal presente en el punto considerado. Existe una relación entre longitud de onda y la frecuencia: f=c/a (Ver figura 2)

f - Frequencia.

a - Longitud de onda.

c = Velocidad de propagación de la onda an el medio.



fig:2

1.1.2.5 Reflexión

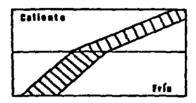
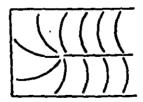

La forma más sencilla de reflexión del sonido es cuando una serie de ondas sonoras se proyectan contra la superficie plana. Cada onda sucesiva que choca contra el obstáculo rebota convirtiéndose en una nueva serie de ondas. Esta tiene la misma inclinación que la original.(Ver figura 3)

fig:3

1.1.2.6 Refracción

Cuando una onda sonora incide oblicuamente sobre una superficie de separación de los medios en los que el sonido se propaga con diferente velocidad, el frente de onda cambia de dirección conociandose como fenómeno de refracción. (Ver figura 4)



fia:4

1.1.2.7 Difracción

"Cuendo una onda sonora en su movimiento de avance rebasa un obstáculo, no se encuentra detrás de este una zona definida de reposo. El frente de onda cambia de dirección y penetra en una región de la que normalmente podía esperarse no resultara perturbada." (Enciclopedia Durvan vol 17 página 585)

Es por esto que los sonidos a la vuelta de una esquina son audibles.
(Ver figura 5)

1.2 ULTRASONIDO

En los últimos veinte años, miles de especialistas han ido estudiando diferentes aplicaciones técnicas e industriales del ultrasonido. El material ultrasonico no solamente forma parte del equipo de laboratorios y controles de investigación, sino que está siendo fabricado en gran cantidad para usos requiares.

El importe de producción constituye una parte muy importante de las fabricaciones electrónicas. En los E.U.A se estima que el importe ha crecido en un 40t aproximadamente.

La ultrasónica desempeña un papel esencial, como uno de los mátodos de ensayo más importantes, no destructivos, en la detección de imperfecciones, mejoramiento del proceso, control y prueba, y medición de propiedades mecánicas, físicas, quimicas y metalúrgicas de los materisles.

En aplicaciones submarinas se emplea el ultrasonido para medir la profundidad del aqua, hacer mapas del suelo marino y detectar objetos submergidos tales como bancos de peces, minas y submarinos.

En medicina se emplea para la detección de tumores, medidas biológicas y diagnósticos.

Tambien se utiliza en el control de tráfico de vehículos, limpieza de paños y telas, envejecimiento de vinos, empaquetamiento de camento, conteo y clasificación.

1.2.1 Definición

Ultrasonido es el nombre que se le da al estudio y aplicación de las ondas sonoras de frecuencias superiores a las del oido humano.

1.2.2 Características de las ondas de ultrasonido

Las ondas de ultrasonido son sonidos que no son permisibles por el cido humano y son normalmente fracuencias de alrededor de 20 IMs. Las carecterísticas de las ondas de ultrasonido son expuestas a continuación.

1.2.2.1 Precuencia y longitud de onda

La relación de frecuencia, longitud de onda y velocidad que se ha explicado anteriormente, se mantiene para las ondas ultrasónicas igualmente. (Ver anexo 1)

La velocidad de una onda sónica es de 344 m/s (20 C) cuando la de una onda electromagnética es de 3x10 m/s. A esta velocidad tan baja, la onda sónica tiene una longitud de onda más corta, lo que significa que a una elta resolución es posible obtener mayores medidas con una gran precisión.

1.2.2.2 Reflexión

Cuendo una onda ultrasónica encuentra un obstáculo, puede ser reflejada de varias maneras, dependiendo de la naturaleza del obstáculo y de su tamaño. La acción depende de la relación entre la longitud de onda y el tamaño del obstáculo. Si este es grande comparado con la logitud de onda, hay una onda fuertemente reflejada.

Sin embargo, si el obstáculo es muy pequeño, de solamente una pequeña fracción de longitud de onda, no hay en realidad reflexión. Las ondas ultrasónicas pasan alrededor del obstáculo, rodeandolo, y vuelven a juntarse detrás de él, siguiéndose como si no hubiera ninguna interferencia.

1.2.2.3 Difracción

Las ondas ultrasónicas no siempre se propagan de manera rectilinea. For ejemplo, una onda que pasa carca del borde de un objeto tiene una tendencia a torcerse alrededor de él. Esta desviación de onda se llama difracción.

1.2.2.4 Sobreposición

Se ha mostrado que la misma sección de un medio puede transmitir una cantidad de ondas distintas a la vez, que no intervienen entre si en su movimiento y que viajan individualmente. Así pues, éstas se pueden considerar como completamente independientes y separadas.

1.2.2.5 Efectos de temperatura

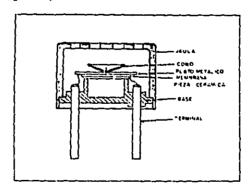
La velocidad de las ondes de ultrasonido varian de acuardo a la temperatura del medio ambiente, es por esto que es necesario verificarla cuando se side una distancia a un objeto.

1.2.2.6 Atenuación

La fuerza de las ondes de ultrasonido propagadas en el aire son atenuadas proporcionalmente con la distancia. Esto es causado por la pérdida por difusión y absorción.

1.3 EFECTO DOPPLER

Cuando una fuente da ondas sonoras se mueve con respecto al medio en el cual las ondas se propagan, o cuando un observador tiene un movimiento relativo con respecto al medio, la frecuencia detectada por el observador merá diferente a la frecuecia existente de las ondas sonoras emitidas por la fuente.


Este cambio aparente de frecuencia se conoce con el nombre de efecto Doppler.

Un ejemplo para esto podria eer el camo de un automóvil que se acerca a alta velocidad a un observador fijo en un lugar, al observador para el conductor hace sonar la bocina. Aquí, el observador interpretará el efecto como el de una longitud de onda que se contrae y tendrá la sensación de un aumento aparente en el tono interceptando más ondas por segundo. Sin embargo, una vez que el vehículo se empieza a alejar del observador, éste percibirá menos pulsaciones por segundo, las ondas perecerán más largas y el tono disminuirá.

1.4 SENSORES

El ultrasonido se produce gracias a dos sensores, también conocidos como transductores, teniendo uno que emite las ondas ultrasónicas y otro que las recibe.

El funcionamiento de un transductor es muy sencillo. Una señal eléctrica, de aproximadamente 40 KHz, excita una membrana piezoeléctrica para hacer vibrar una placa de metal. El sonido producido es radiado por un cono, también conocido por resonador cónico. (Ver figura 6)

CAPITULO II

ALARMA DE ULTRASONIDO

A pesar de que las ondas de ultrasonido se propagan en el aire amortiquandose rápidamente, como ya hemos indicado en el capítulo anterior, existen diversos aparatos que funcionan bajo la acción de un haz que se propaga a través del aire. En este capítulo se presenta la alarma de ultrasonido que funciona, de manera análoga, bajo el efecto de las variaciones determinadas por el paso de un obstáculo móvil cualquiera. El efecto utilizado en residad es el efecto Doppler. Así pues se determinará el funcionamiento de la alarma de ultrasonido, como sus características generales y los cosponentes que se requieren.

2.1 DEFINICION

Como definición de alarma se tienen las siguientes propuestas;

"Dispositivo que emite una señal para prevenir la presencia de cualquier peligro." (Enciclopedia LAROUSSE)

"Aperato o disposición que en determinadas circunstancias dan automáticamente señales cleramente perceptibles." (Enciclopedia Universal Ilustrada ESPASA-CALPE)

"Técnicamente, cualquier sistema material creado por el hombre con el fin de generar señales que avisen ante un caso de peligro." (Enciclopedia de la ciencia y de la técnica vol 1 p120.)

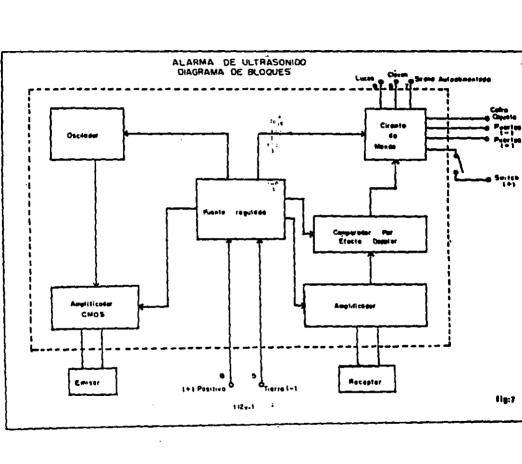
2.2 FUNCIONANIENTO

Les ondes ultrasónicas son constantemente radiadas en todas direcciones, por lo que la frecuencia de las señales recibidas es constante; aunque la mayor parte de la energía captada proviene de raflexiones multiples sobre superficies del espacio irradiado.

Al no haber desplasamientos en este espacio, se forma un régimen de ondas estacionarias y la frecuencia de las señales recibidas permenece constante. Pero cuando hay un desplasamiento en el espacio, la frecuencia de la energía reflejada por los objetos aumenta o disminuye según la distancia a la que se encuentra el obstáculo.

Esta variación es detectada por un receptor, el cual activa un sistema de alarma.

La explicación técnica más profunda del funcionamiento de una alerma de ultrasonido se puede describir como:


Tenemos un oscilador que está compuesto por dos inversores y controlado por un cristal de cuerzo, el cual ajusta la frecuencia de oscilación a 40 kHz. La salida del oscilador es amplificada por circuitos CNOS (2 inversores) para atacar el transductor emisor que manda una señal cuadrada con los mismos 40 kHz.

El transductor receptor recibe la señal enviada por el emisor y amplificada por tres transistores.

Cualquier variación de volumen en el interior del automóvil (rosper cristal, intruso, etc...) provoca un defassiento, que es un pequeño retardo en la señal recibida, detectado por el circuito comparador.

Al detectar un defasamiento, el circuito comparador manda una señal al circuito de mando para que este dé la señal de alarsa. El circuito de mando está compuesto de una memoria que envía una señal, de 45 segundos de duración, a un oscilador, formado por dos transistores, que activa unos relevadores. Estos mandan una señal a luces, bocina y sirena.

Todos los circuitos están elimentados por una fuente regulada que protega los componentes internos contra cambios de voltaje. (Ver figura 7 en la siguiente página.)

2.3 CARACTERISTICAS GENERALES

2.1.1 Protección

A) Protección en cabina

La protección en la cabina se obtiene gracias al sistema de ultrasonido mencionado anteriormente.

B) Protección perimétrica

La protección perimátrica se efectúa por medio de botones de tierra (o corriente) para proteder contra la apertura de:

- Cofre.
- Cajuela.
- Puertas.

Este tipo de protección es la que normalmente de una alerma tradicional.

2.3.2 Modo de operación

La alarma es activada y desactivada por medio de un pequeño interruptor instalado en un lugar escondido, pero accesible, dentro del coche. Este interruptor tiene una segunda función que es interruppir el paso de corriente en el encendido, desconectando la bobina, lo que persite que el automóvil no pueda ser arrancado....

pespués de activar la alarma, el conductor dispone, para salir del automóvil, de un tiempo fijo de 50 segundos, puesto que al término de este, el sistema de ultrasonido se pone en funcionamiento.

Para entrar y desactivar la alarma, se dispone un tiempo regulado que va de 2 a 15 segundos, según los requerimientos del usuario.

El sistema ya viene calibrado con un tiempo de entrada de 7 segundos. Este tiempo puede ser variado con suma facilidad puesto que unicamente hay que hacer girar el potenciómetro, con la ayuda de un pequeño desarmador, en el sentido deseado. Este potenciómetro no es más que una resistencia variable donde se puede dimeinuir o aumentar la señal manualmente.

La duración de la señal de la elema es de 45 esquados aproximadamente apagéndose automáticamente al transcurrir este tiempo, a no ser que el extraño permanezca en el interior del automóvil. De tal manera se evita el desgaste innecesario de la bocina y de la batería. En caso de que el intruso decida violar nuevamente el volumen del interior del automóvil, el sistema se vuelve a conectar ya que cuenta con un mecanismo que restablece automáticamente la señal ultrasónica.

2.3.3 Sensibilided

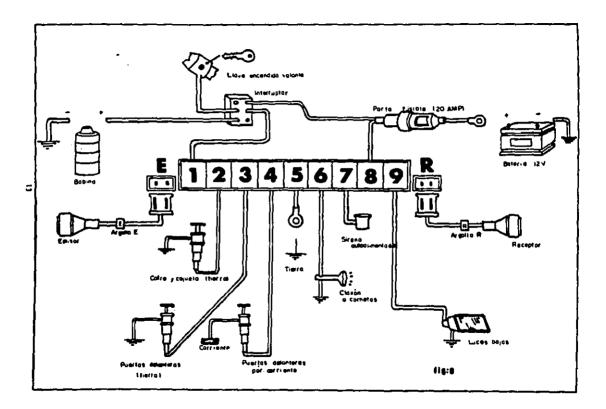
La sensibilidad es la potencia de radiación con la cual se van a esitir las ondas, siendo regulado el volumen de emisión. De esta forma, en automóviles de gran tamaño, las ondas pueden tener suficiente potencia para cubrir el espacio requerido.

La sensibilidad se regula, con el tiempo de entrada, con un potenciómetro.

2.3.4 Señal de alarma

Le alerma acciona en forma intermitente los relevadores del sistema, con una frecuencia de 1 MS, activando la bocina y las luces bajas del automóvil.

2.3.5 Instalación


La instalación de la alerma de ultrasonido no presenta dificultades, puesto que se instala en forma similar a las alarmas tradicionales. (Ver figura 8 en la siguiente página.)

Observación: El emisor y el receptor se pueden instalar indistintamente a la isquierda o a la derecha.

2.3.6 Caracteristicas técnicas

Todos los factores que se van a considerar son establecidos por diseño propio de la alarma.

- a) Procuencia de emisión 40 kHz.
- b) Potencia total radiada 40 mW.
- c) Intensidad máxima en las salidas
 - Bocinss 15 Amp.
 - Luces 15 Amp.
- d) Consumo de la alarma en reposo 25 mAmp / 13 V por hora. Consumo de alarma en funcionamiento 110 mAmp / 13 V por hora.
- e) Precuencia de la alarma sonando 1 Hz (+/- 10%).
- f) Tiespo de la alarma sonando 50 segundos (+/- 10%).
- g) Detección ultrasónica: Efecto Doppler.

2.4 COMPONENTES DE LA ALARMA DE ULTRASONIDO

2.4.1 Circuito electrónico

El circuito electrónico, que era importado en su totalidad, va a ser ensamblado en nuestro país, de tal manera que la mayor parte de los componentes van a ser de fabricación nacional, siendo una minoría importados del extranjero.

Este producto require de dispositivos electrónicos de buena calidad lo que explica la importación de algunos.

A continuación se presentan los componentes del circuito electrónico.

2.4.1.1 Componentes nacionales

Los componentes nacionales del circuito electrónico, de la alarma de ultrasonido se muestran en el Anexo II y son básicamente resistencias, diodos, transistores, circuitos integrados y algunos condensadores.

2.4.1.2 Componentes importados

Los componentes importados del circuito electrónico se muestran en el anexo III y son autoacopladores, potenciónetros, bobina y algunos condensadores.

2.4.2 Otros componentes

Los demás componentes del circuito electrónico se muestran en el anexo IV giendo casi en su totalidad de procedencia nacional.

2.4.3 Protección de los componentes

La alarma de ultrasonido cuenta con los siguientes sistemas de protección:

Unos transductores ultrasónicos, fabricados especialmente para esta alarma, que trabajan en forma estable a diferentes temperaturas.

Un sistema de emisión estabilizada con un cristal de cuarzo para evitar falsas alarmas.

Para una mejor comprensión de estos componentes ver el anexo v.

CAPITULO III

ESTUDIO DE MERCADO

3.1 ANTECEDENTES

Para hablar del mercado potencial de las alerses de ultrasonido es necesario considerar tres factores importantes que determinan de una u otra manera su consumo.

- 1- La critica situación socioeconómica por la cual atraviesa nuestro país refleja un acalerado crecimiento en al número de robos de automóviles.
 Los ladrones tienen preferencia por el robo de automóviles por sencillas rasones: El acceso en muy sencillo así como su localización, existe una gran demanda de autopartes y nunca se denuncia esta tipo de hurto.
- 2~ El parque automotriz mexicano es de 3.5 millones de automoviles, produciendose anualmente un promedio de 250.000. lo que represente una considerable cantidad.
- 3- Como se mabe le solución a este problema es le instalación de una slarma eficas. En el mercado mexicano se encuentran diferentes tipos de alermas cuyos precios oscilan entre 35,000 y 900,000 pesos. Algunes alermas son de muy baja calidad porque raramente se atienen a las normas automotrices. Como ejemplo tenemos la típica alarma que cubre cofre, cejuela, puertas y corta encendido, dando generalmente un sinnúmero de problemas de oxidación y provocando cortocircuitos en el sistema electrico. Un dato relevante es que un 500 de los automóviles robados conteban con esta tipo de alarma. (Información proporcionada por Aseguradora Bancomer)
- ¿ Porqué la elección de una elerge de ultresonido ?

Alqunos fabricantes de alarmas ofrecen sistemas que incluyen sensoras de movimiento (interruptoras de mercurio) y sensoras de percusión, o segnetodinámicos, con los cuales protegen equipos periféricos y liantes. Desgraciadamente estos mistemas producen un gran número de falsas alarmas ya que los movimientos y las vibraciones no solo son producidos por los ladrones, mino también, por gulpes al estacionarse o personas que se apoyan en al vehículo. Résumiendo la alarma óptima requiere cubrir las siguientes características:

- e) No depender en un 100% de la bateria del automovil ni de la bocina, las cuales pueden ser, en algunos casos, facilmente desconectadas.
- b) Proteger contra desmontage y rotura de cristales.
- Que no provoque falsas alarmas por golpes o movimientos involuntarios, ni por cambios de temperatura.
- d) Que funcione durante el tiempo necesario para auyentar al ladrón, hasta que se interruspa su funcionamiento , quedando activada para seguir protegiendo el automovil.
- e) Precio razonable.

La alternativa más adecuada que cubre estas características es la alarma de ultrasonido. (Ver tabla en la página siguiente)

ALARAMAS EXISTENTES EN EL MERCADO MEXICANO

Tipo de Alarma	1 1	dad		cio i	ľ		17	Talsas Nar-		Protección
Alerse de chapa Tradicional	:	3/2	:	1		1	:			Puertas, cofre, cajuela Corte de encendido: Opcional
Alarma de consumo de corriente	1	3/2	:	1	:	1	:		:	Puertas, cofre, cajuela Corte de encendido: Opcional
Interruptor de Mercurio	1 1	2	:::::::::::::::::::::::::::::::::::::::	3	! !	2	:			Fuertas, cofre, cajuela y llantas. Corte de encendido: Opcional
Microfono para Cristales		2	1 1	3	:	2	1	51	:	Puertas, cofre, cajuela y cristales. Corte de encendido.
Sistema de Corte de Encendido	1	2	:	2	:	2	:	НО	1 1 1	Corte de encendido.
Alarma de Codigo Númerico	:	2/1	:	3	:	2	:	NO	::::	Puertas, cofre y cajuela. Corte de encendido.
Alarma de Ultrasonido	:	1	:	3	:	4	:	МО	1	Puerta, cofre, cajuela y cristales. Corte de en- cendido y sirena (opc)
Ultramónica con menmor Magnetodia námico	:	2/1	:	4	:	3	:	SI	:::::::::::::::::::::::::::::::::::::::	Puertas, cofre, cajuela, cristales y llantas. corte de encendido.

CLAVE

	Precio		Vulnerabilidad	¢	alidad
1 2 3	Muy barato Barato Accesible Caro		Muy vulnerable Vulnerable Segura Muy segura	1 2 3	Buena Regular Mala
-	Mari cara	•	,,		

En el capitulo siguiente se presenta un análisis de mercado de la producción de alarses de ultrasonido con objeto de validar la factibilidad de este proyecto.

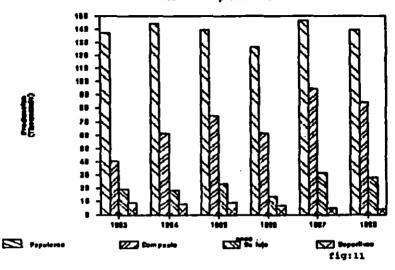
De esta forma se dividirá el estudio en el mercado actual, considerando el perque autosobilistico existente, y la producción en los próximos cinco años.

3.2 Situación del mercado actual

En un primer punto se va a estudiar el parque automotriz considerando únicamente los automotiles producidos del año de 1983 hasta 1988. El perque automotris mexicano se divide en las siguientes categorías:

Popular	i Compacto	, De lujo	: Deportivo
Renault Volksvagen Datsun/Nissan	gen : Volare	: Ford LTD : Caprice : La Baron/K : Montecarlo : New Yorker : Cougar : Century : Taurus : Phantom	: Hustang : Hagnum : Thunderbird : : : : : :

Puente: Asociación mexicana de la industria automotris.


Automóviles producidos en México (1983-86)

	,						٠.			
		1			Compacto					
٠						•				
1	1983		137,603		40,620		19,905		9,009	1
1	1984	1	144,277 1		61,348	:	18,300		7,653	
1	1985	1	139,819	t	74,543	:	23,390	1	9,208	1
:	1986	1	126,339	Ł	61,615	1	13,967	:	6,548	
	1987	:	146,756		94,607	:	31,658	1	4,783	:
3	1980	:	139,643	t	84,397	:	28,455	1	3,994	1
				ı	•	:		1		1
1	Total	:	034,437		417,130	ı	135,675	1	41,195	

Total automóviles = 1'428,437

fig:9

Automóviles producidos en México.

3.2.1 Distribución geográfica del mercado de consumo.

Como se puede observar en la tabla de la siguiente página, un gran porcentage del mercado automotris está situado en cinco entidades federativas básicamente, donde se encuentran las ciudades más importantes del país, así como el indice más alto de robos. Por consecuente nuestro producto va a ser comercializado básicamente en estas sonas, reduciendose el parque automotris a:

Entided federative :	Porcentage
Distrito Federal :	39.18
México	9.0%
Jalisco :	6.49
Puebla	4.64
Muevo León :	4.5%
Total :	63.6 t

fig: 12

Situación geográfica del sercado de consumo,

Estructura porcentual del número de automóviles según entidad federativa.

Entided federative ;	Múmero de automóviles
Estados Unidos Mexicanos :	100.0
3	
Aguscelientes :	0.5
Bēja California :	1,5
Baja California Sur :	0.1
Campeche :	0,4
Coehulla :	2,4
Colima :	0.4
Chiapas :	1.1
Chihushua	1.7
Distrito Vederal :	39.1
Durango :	9.7
Guanajuato :	3.5
Guerrero :	1.1
Hidalgo	0.8
Jaliaco :	6.4
México :	9.0
Kichoecen :	ă-2
Horelos :	1.1
Mayarit :	0.4
Nuevo Leán :	4.5
Osxaca :	0.7
Pueble	4.6
Queretero :	1.4
Quintens Roo	0.6
San Luis Potosi :	1.2
#insloa ;	1.7 2.8
Sonore	1.0
: Tabasco : : Tabaulipas :	3.8
Tiercals :	0.3
Veracrus	3.5
Yucatan	1.2
: Tacatecas :	0.4
: No especificados :	0.4
; no exhactiteron ;	V.4

Fuente: Cantro de estadistica y presupuesto

Por consiguiente, el número de automóviles a considerar será un 63.6% del parque automotriz, obteniendo:

1'428.437 x 0.636 = 908.486 automóviles

3.2.2 Determinación del mercado potencial actual.

A partir de estos datos se define el número de alarmas instaladas ya sea de fábrica o de acción posterior.

	Cantided total de automóviles.	:	Cantid móviles		auto- alarma.	-,
Popular :	530,702	;	27.00%		143,290	
Compacto :	265,295		32.00%		84,894	_;
De lujo :	86,289		38.00%		32,790	_ ;
Deportivo :	26,200	:	28.00%		7,336	_
Total :	900,406	:			268,310	_;
(fuente: Alarm	e de Ultrasonido.	B.A (de .C.V		fig: 13	

Donde: n - Número de automóviles con alerma.

n = 268,310 / 908,486 = .2953

Por consiguiente un 30% de los automóviles considerados tienen una alarma instalada.

A continuación se determinará el mercado potencial actual resolviendo las siguientes preguntas, basandonos en los resultados obtenidos a partir en un estudio realizado por la empresa, objeto da este trabajo en cuestión.

¿ Están todos los consumidores contentos con su alarma ?

se observa que una gran parte de los consumidores estan insatisfechos con su alarma, ya sea por problemas técnicos como falsas alarmas, cortocircuitos, etc... o por mejorar la seguridad de su automóvil, por lo que requieran un cambio. De esta forma se determina un mercado potencial actual de automóviles con alarma.

Tipo de consumidores

Consumidores	1		_
: Satifechos	1 35% 1	3,908	3
: Instisfectos	: 65% 17	74,402	1
(fuente: Alermas de Ul			

Se define que un 80% de los consumidores insatisfechos requieren un cambio de alarma, presentandose el otro 20% pasivo al problema, por lo que se obtiene:

Cantidad de consumidores insatisfechos dispuestos al cambio = 0.8x174,402 = 139,521

Se estima que los automovilistas insatisfechos , ya sea por problemas técnicos (65%) o mejoramiento de sistema (35%), van a elegir una alarma de ultrasonido en un 30% y 75% respectivamente.

Table de elección del producto en el cambio.

		: Rlección		
: Cambio debido a	Cantided	Alerma de : ultrasonido :	Otras :	
: Problemes técnicos	454 90,689	30% 27,207	70% :	
: Nejoramiento sietema:	35% 48,832	75% 36,624	25% :	
	139,521			
(fuente: Alermee de Uli	rasonido .S.A	de .C.V)	fig:14	

En conclusión tenemos que el mercado potencial actual de personas que ya tienen alermas es de 62.831 consusidores.

¿ Cúal será el mercado potencial actual de aquellos automóviles que no possen alarma ?

Se tiene que este parque automotris está compuesto por 640,176 vehículos, de los cuales el 58 son oficiales, por lo que no tendrán alarma, quedando un mercado potencial de 608,167 automóviles. Gracias a la fuente informativa mencionada anteriormente, se tiene que un 288 de este mercado le va a poner una alarma, donde un 338 es de ultrasonido. Por consecuente, el mercado potencial actual de aquellos automóviles que no poseen alarma será de 56,195 automóviles.

Concluince que:

Mercado potencial mercado potencial mercado potencial actual e actual de automó- viles con alarma viles sin alarma

Mercado potencial actual = 63,831 + 56,195 = 120,026 vehículos.

3.3 MERCADO POTENCIAL FUTURO

En un segundo punto se estudie, gracias a las diferentes técnicas estadísticas empleadas e información relevante , el mercado potencial futuro.

De acuerdo al método de minimos cuadrados, con medias móviles, se calcula la producción en los próximos cinco años obteniendo como resultado la siguiente tabla. (Ver anexo VII)

Pronóstico de automóviles nuevos en México.

!	Año		Producción de automóviles
	1989	:	272.333
	1990	2	201,878
	1991		291,422
	1992		300,967
	1993	1	310,513
			•
1	Total	:	1'457,113

fig:15 (Los cálculos de esta tabla se presentan en el anexo VI)

Como se ha visto en la primera parte de este capítulo, el mercado potencial de consumo se concentra en cinco entidades federativas básicamente, considerando un 63.6% de todo el parque automotris por lo que se considera un mismo porcentage de la producción de automóviles a futuro.

Mercado geográfico de consumo a futuro.

1	1989	1990	1991	1992	1993 :
					:
: Automóviles : :	173,204	179,274	185,345	191,415	197,486 :

En los últimos años, el número de robos a ido ausentando en una forma vardaderamente asombrosa, teniando como base los siguientes datos: (Información Seguros la República)

- El 90% de los robos de autoestéreos se hace por medio de rotura o desprandimiento de algún vidrio, por lo que el ladrón no necesita habrir la puerta para cometer el hurto.
- El 80% de los automóviles robados tiene un máximo de tres años de antiquedad.
- Se considera que el 30% de los automóviles robados tienen una alarma instalada.

A causa del indice ten elevado de robos, se registra un aumento en el número de automóviles que saldrán de fábrica con alarma. De acuerdo con los datos facilitados por las armadoras ford, Chryslar, Volkswagen, Missan y General Motors un promedio del 80t de los automóviles llevarán instaleda, de planta, una alarma.

Obtaniendo:

: Producción			****		
: automoviles	1 1989	1990	1991	1992	1993 :
: Con elerne	: 217,866	225,502	233,135	240,773	248,410 :
: Sin elerma	1 54,467	53,376	58,284	60,194	42,103 :

De acuerdo a un estudio realizado por la empresa Alarmas de Ultrasonido .5.A de .C.V, se obtiene que un 30% de los automovilistas que adquieren un automóvil con alarma de fábrica, cambierán a una de ultrasonido.

Se considera que el 5% de la producción enuel total es de vehículos oficiales, que en un 100% no llevan alarma, ni de fébrica ni de acción posterior. Por lo que el 20% de la producción de vehículos, que selen de fébrica sin alarma, se reduce a un 15%, donde un 75% de los automovilistes comprará una alarma de ultrasonido.

Mercado potencial futuro.

: Automéviles	1989	1990	1991	1992	1993 :
Con alarma	45,360	67,651	69,941	72,232	74,523 1
: Sin elerma	21,446	21,016	22,950	23,701	24,453 :
Total					

3.4 PARTICIPACION EN EL MERCADO

En último lugar tomamos en consideración uno de los factores En último lugar tomamos en consideración uno de los factores más importantes de la mercadotecnia: La competencia. Sabemos que en México existe otra empresa que se dedica a la venta de alarmas de ultrasonido. Los costos de nuestras alarmas, van a ser en téoria más bajos que los de la competencia dedicandose a la importación. Por esto se considera que durante los próximos cinco años se va obtener un mínimo del 30t de participación en el mercado, obteniendo: (Ver figura 16)

Donde:

Mercado potencial actual = 120.026 Mercado potencial futuro = M.P.F

Participación en el mercado.

	1989	1990	1991	1992	1993
N.P.P	28,932				
Nercado	potencial				
********					fig:16

3.5 CANALES DE DISTRIBUCION

Los canales a utilizar son los siguientes:

A minoristas, refiriéndose a las tiendas dedicadas a la instalación y venta de autopartes como estéreos, alarmas, antenas, etc...

A mayoristas, que en este caso son armadoras, para que repartan el producto a sus concesionarias.

A agentes, para realizar la exportación.

CAPITULO IV

ESTUDIO TECNICO

4.1 INTRODUCCION

En el siguiente capítulo se presenta el estudio técnico necesario pera validar la factibilidad de este proyecto.

En un primer plano se tienen las operaciones, tiempos y características de las diferentes etapas requeridas para la fabricación de alarmas de ultrasonido.

En un segundo punto se elabora un plan de producción de acuerdo a las necesidades del consumo y de la empresa.

Posteriormente se resliza un balance de linea en la sección de montaje del circuito electrónico, donde posteriormente, se obtiene un tiempo minimo base óptimo del balance general, verificando su compatibilidad con las demás etapas.

Para finalizar se estudia la mano de obra y equipos requeridos para este proceso, así como la distribución de planta y sua áreas necesarias.

4.2 SISTEMA PRODUCTIVO PARA ALARMAS DE ULTRASONIDO

El sistema productivo requerido para la fabricación de alarmas de ultrasonido está formado por las etapas que se suestran el el siguiente diagrama de flujo y se explican en forma detallada posteriormente. (Ver figura 17 en la siguiente página)

Diagrama de fujo de un eistema de producción de alarmae de ultrasonido.

: Montaje :
: :
: Soldadura :
: Prueba :
: :
: Espaque :

fig: 17

4.2.1 Montaje circuito electrónico

Después de haber eido inspeccionados, los circuitos impresos (o tarjetas) se llevan a la mesa de monteje, donde posteriormente se le montan los componentes electrónicos.

Los componentes elimentan unos cajones sobre la mesa, marcados con una o dos letras que distinguen el tipo y un número consecutivo que marca el orden en el cual se van a ir montando. (Ver anexo VIII)

Esta misma referencia viene impresa en la terjeta justo en el lugar donde se tiene que montar cada elemento, lo que reduce la posibilidad de cometer algún intercambio de componentem. (Ver anexo IX)

Los componentes se van montando en un orden específico en el cual se busca: (Ver anexo X)

- 1/ Poner puntos de referencia para facilitar a la persona del siguiente puesto de montaje donde poner sus componentes.
- 2/ Nontar hasta el final los componentes de mayor tamaño.
- 3/ Se evitam poner muchos componentes consecutivamente en la misma linem. Esto se debe a que si en un puesto de montaje se efectua un error en el posicionamiento, es más fácil que en uno de los siguientes puestos se detecte, dado que el elemento a montar tiene su lugar ocupado.
- 4/ Control extricto en la polaridad de los componentes que lo requieren, como condensadores electrolíticos, diodos, al igual que el sentido en circuitos integrados y transistores.

Una vez montados todos los dispositivos electrónicos en el circuito impreso, este se lleva al área de moldadura.

Observación: Para facilitar el montaje de los condensadores, todos tienen el positivo del lado isquierdo por diseño.

A continuación se muestra los tiempos y operaciones con los cuales se hace factible la operación de ensemble del circuito electrónico.

Operaciones realizadas para el ensamble del circuito electrónico de una alarma de ultrasonido.

N.	Operac		Tiempo (min)
01 -		n de la tarjeta.	0.333
02 -		9 diodos.	1.667
O3 -		condensadores.	0.333
04 -		resistencie.	0.150
05 -		remistencies.	0.383
06 -		resistencia.	0.150
07 -	• 1	O resistencias.	1.333
08 -	. 3	condensadores.	0.483
09 -		resistencies.	0.450
10 -		•	0.283
11 -			0.383
12 -	* 1	resistencia.	0.150
13 -	= 5	resistencias.	0.583
14 -	• :	· •	0.383
15 -	* 1	resistencia.	0.150
16 -		puentes.	0.417
ī7 -		transistores.	0.583
18 -		bobina.	0.200
19 -		resistencies.	0.283
20 -	* 4		0.450
21 -	* 1		0.383
22 -	• 2	• •	0.283
23 -	- j	resistencia.	0.150
24 -	* 1	transistor.	0.167
25 -	• 5	potenciometro.	0.283
26 -	• j		0.283
27 -	• j	•	0.283
28 -		condensadores.	1.033
29 -	• 5	resistencia.	0.150
30 -		diodos.	0.433
31 -	•	relevadores.	0.350
32 -		condensadores.	0.600
33 -	• 3		0.433
34 -	• 3		0.433
35 -			0.333
36 -		diodo zener.	0.150
37 -		diodos emisor de luz.	0.333
38 -		circuito integrado.	0.300
39 -	- 3		0.300
40 -	• •		0.300
41 -		autoacopladores.	0.283
42 -		condensadores.	0.333
43 -		condensador.	0.183
44 -		cuarso.	0.167
45 -		condensador.	0.183
46 -		resistencia.	0.150
47 -	4	condensador.	0.183
46 -	4	resistencia.	0.150
49 -	i i		0.150
50 -		que no falte ningún compo	
30 -	CNEST AND	dea no retre uruden combo	ii=… ^= • ^ • J J J

4.2.2 Soldadura

Una vez que los circuitos tienen montados todos los componentes, se le montan 9 cebles, necesarios para la conexión, pasan al área de soldadura, donde son afirmados lateralmente en unos carritos que pasan por el siguiente proceso: (ver fig 19 en la siguiente página)

- 1/ Primero los cicuitos electrónicos pasan por un baño de flux donde se eliminan los contaminantes del cobre y de las terminales.
- 2/ Luego se pasa por un baño de soldadura donde se realiza la adhesión de data, fijando todos los componentes, así como los cables.
- 3/ Posteriormente los circuitos pasan por la sección de enfriamiento y corte, donde se reduce la longitud de las patas de los componentes al mismo tamaño, de aproximadamente 2.5 mm. (Ver fig 18)

fig:18

- 4/ Se vuelve a pasar el circuito por un baño de flux limpiador, que tiene la función de quitar los residuos de soldadura.
- 5/ En último lugar se verifica, por medio de una lupa, el terminado general de soldadura.

DIAGRAMA DE FLUJO " SOLDADURA "

fig:19

A continuación se suestra los tiempos y operaciones con los cuales se hace factible el funcionamiento de la operación de soldadura.

w.	Operación	Tiempo(min)		
01 -	Monter cables.	0.967		
02 -	Posicionar el circuito en el			
	carrito.	0.250		
01 -	Beño de flux.	0.167		
04 -	Baño de soldadura.	0.117		
05 -		0.250		
06 -		0.167		
07 -				
•	carrito.	0.250		
08 -		0.333		
		الله الله بلك بيئة مية منها من منا		
	Tiempo total	- 2.501		

4.2.3 Pruebas

La alarma de ultrasonido es un diseño ya probado desde hace siete años, puesto que ha sido desde esa fecha desarrollado por la empresa Veleo Electronique. Esta empresa está considerada como la segunda más importante en la fabricación mundial de autopartes, por lo que se tiene una objetiva calidad en lo que a diseño se refiere.

Mo obstante se va a imponer un sistema de control de calidad formado por pruebes que se presentan a continuación, encaminadas a:

- 1/ Seguridad (brindar protección al usuario).
- 2/ Confiabilidad en el funcionamiento.

Debido a la inexistencia de normas mexicanas específicas sobre aparatos de seguridad se establece gracias a las normas estadounidenses y reglamentos, básicamente de Ford y Chrysler, una rutina general para las alarmas de ultrasonido.

4.2.3.1 Pruebas mecánicas y ambientales

- 1) Humedad

 La alarma debe mer mometida a 48 horas de 95% 3% de
 humedad relativa a 50°c 5°c.
- 2) Vibración
 La unidad electrónica deberá soportar 30 minutos de
 vibración en cada una de las tres direcciones del
 movimiento. La frecuencia de vibración deberá ser de 10 Hz
 a 50 Hz, retornando a los 10 Hz en un tiempo de 60
 segundos. La amplitud será de 5.5 ms pico a pico.
- 3) Hanejo La unidad deberá resistir tres caidas en un piso de concreto a una altura de 1.2 metros sin que esto afecte su funcionamiento.
- 4) Cicladotérmico La unidad será transferida a una temperatura de -29°c por un periodo de dos horas como mínimo, despues del cual se pasará instantáneamente a una temperatura de 80°c durante el mismo intervalo de tiempo. Este ciclo de funcionamiento se repetirá durante cinco ocasiones.

5) Resistencia térmica La unidad deberá ser sometida durante 48 horas a una temperatura de 70°c 5°c.

Observación:

Las pruebas ambientales serán efectuadas en el siguiente orden:

- a) Cicladotérmico. ·
- b) Vibración.
- c) Humadad.
- d) Cicladotérmico.
- e) Resistencia térmica.

4.2.3.2 Prueba electrica

La unidad no deberá dañarse por la aplicación de los siguientes voltajes:

- a) Sobrecarga de voltaje +18 VDC por 5 minutos. +29 VDC por 30 segundos.
- b) Voltaje inverso aplicado -16 volts por 5 minutos.
- c) Pulso carga negativa -80 volts cada 15 mseg durante 1 minuto.

4.2.3.3 Prueba de durabilidad

Le unidad deberá funcionar de forma continua durante 12 horas a 70°C y 12 volts con un dispositivo que reiniciara el disparo cada dos minutos.

4.2.3.4 Prueba de funcionamiento

La unidad deberá mandar y racibir señales correctamente a su debido tiempo, tales como:

- a) Tiempo de activación de la alarma después de su conexión (va de 2 a 15 segundos, según como se requie).
- b) Recepción de señal en los sensores.
- c) Recepción de meñal en caso de aperturas de puertas, cofre y cajuela.
- d) Corte de encendido.
- a) Duración de la señal de alarma (45 magundos).
- f) Señal de luces y bobine (frecuencia de 1 Hz).
- q) Señal de sirena.

Observación: Todas las alarmas deberán funcioner antes y después de hacerles cualquiere de las pruebes.

Las pruebas de funcionamiento, eléctrica, de durabilidad y manejo seran hechas por la empresa. En cuanto a las otras, se ilverán a algún centro de pruebas; donde tengan los instrumentos necesarios para realisarlas.

4.2.3.5 Análisis de tiempos

A continuación se presenta los tiempos y operaciones con los cuales se hace factible la existencia de una estación de pruebas. En primer lugar se analisa la prueba de funcionamiento.Como ésta se tiene que hacer a todos los circuitos electrónicos, puesto que tiene una frecuencia del 100%, se podría llamar prueba en linea, obteniendo:

Pruebe de funcionamiento

M.	Operación	Tiempo(min)
01 -	Tomar circuito y conectarlo	
	a la maquina de pruebes.	0.417
02 -	Se realisa la prueba.	1.333
03 -	Desconectar el circuito y poner en la charola de aceptación o	
	rechaso.	0.250
	Tiempo tota	1 = 2.000

En segundo lugar se presentan, para una alarma, los tiempos de duración de la realización de las siguientes pruebas:

Prueba	Tiempo(min)
Eléctrica	43
Durabilidad	720
Manajo	6

4.2.4 Empaque

Una vez que las elermas han sido probadas se llevan a una ultima mesa de trabajo, donde se va a realizar el empaque. Para esto es indispensable que se haga una preparación de componentes.

Estas dos etapas se presentan brevemente a continuación:

1/ Preparatives:

- ~ Se le pone a cada circuito su correspondiente base y tapa.
- Doblado de cable de comexión. (12 m de longitud)
- Realizar subensamble de bolsa de plástico que tiene los siguientes componentes:
 - a) Pusible.
 - b) Interruptor.
 - c) Canchos para fijación de sensores.

2/ Empaque:

٠.

Una vez doblada la caja de cartón (ver anexo XI), se le introducen, con el siguiente orden, los elementos que se muestran a continuación:

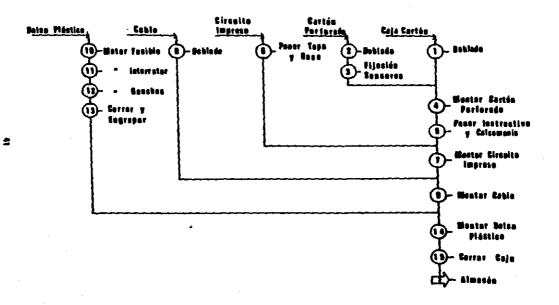
- a) Cartón perforado con sensores. El sensor queda fijo por medio de una ligera presión.(Ver anexo XII)
- b) Instructivo.
- c) Calcomaniam.
- d) Circuito electrónico con tapa y base.
- e) Cable.
- f) Bolsa de plástico con sus respectivos componentes.

Una vez empacada la alarma se lleva al almacén.

El funcionamiento de este puesto de trabajo es el siguiente: Cada cierto tiempo se tiene la llegada de una charola con sus respectivos circuitos electrónicos. Como el tiempo de operación de esta estación es menor al tiempo base real, se obtiene un tiempo muerto, el cual será aprovechado por el operador para realizar los subengambles requeridos.

A continuación se muestran los tisspos y operaciones con los cuales se hace factible el funcionamiento de esta operación, así como el cursograma sipnótico del empaque.

(Ver fig 20)


1/ Etapa: Montaje.

¥.	Operación	Tiempo(min)
01 -	Coger y doblar caja cartón.	0.333
02 -	Tomar cartón perforado y fijar los	
	sensores.	0.340
03 -	Introducir cartón perforado.	0.100
04 -	" instructivo y calcomania.	0.117
05 -	Tomar circuito electrónico y ponerle	
	tapa y base.	0.317
06 -	Introducir circuito impreso.	0.100
07 -	" cable de conexión.	0.083
08 -	· bolsa de plástico.	0.083
09 -	Cerrar caja.	0.100
10 -		0.083
	sehester sele su re cuerore.	
	Tiempo total 1	- 1.656

2/ Etapa: Subensambles.

и.	Operación	Tiempo(min
	Doblar cable de conexión. Realizar subensamble bolsa plástico.	0.750 0.760
	Tiempo total 2	

Tiempo total 1 + Tiempo total 2 = 3.166 min

4.3 PLAN DE PRODUCCION

De (2)

Después de haber determinado en el capítulo anterior la participación en el mercado que se quiere obtener, actual como futuro, se elabora un plan de producción basándonos en los siguientes muntos:

Se espera un 2.5% de aumento anual en la producción durante los cinco proxisos años.

Se considera que el mercado futuro deberá estar cubierto en los años que se produccan los mismos automóviles. Por lo que se obtienen las siguientes cifras: (ver pádina 26.)

```
1989 - 28,932 Automóviles.
1990 - 29,553 " .
1991 - 30,960 " .
1992 - 31,974 " .
1993 - 12,989 " .
```

El mercado actual deberá estar cubierto en un máximo de tres años, puesto que los proprietarios de automóviles de ocho años de antiguedad o más, tienen un riesgo a robo y una disposición a la inversión en una alarma mucho menor que los demás.(Ver página 26.)

```
1989 - X1 Automóviles.
1990 - X2 " .
1991 - X3 " .
Donde: X1 + X2 + X3 = 40.004
```

Una vez terminado el mercado actual, se originará la exportación de las alarmas de ultrasonido. Por lo que en el tercer y cuarto año se obtendrá:

(1)

```
1992 - X4 Alarmas.
1993 - X5 " .
```

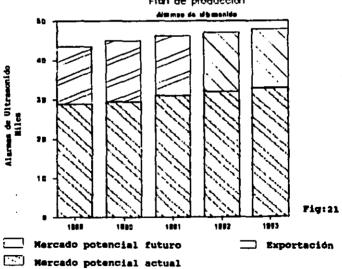
Para encontrar la producción requerida se hacen los siguientes cálculos:

De (3)
$$28,932 + X1 = 32,527 + 1.0506 X3$$

 $X3 = (X1 - 3,595) / 1.0506$ (7)

Sustituyendo en (1) obtenemos:

X1 + X2 + X3 = 40,004X1 + (X1-1360)/1.025) + ((X1-3,595)/1.0506) = 40,004X1 = 15,287


Sustituyendo en las demás ecuaciones tendremos que:

X2 = 13.587X3 = 11,130X4 = 9,087X5 - 7,071

Por lo que se obtiene que la producción del primer año será de 44,219 alarmas, lo que equivale a 144 alarmas diarias, teniendo en total les siguientes cifras: (Ver fig 21)

Año	Producción
1989	44.219
1990	45,324
1991	46,458
1992	47.619
1993	48.810

Flan de producción

4.4 BALANCE DE LINEA PERTENECIENTE AL ENSAMBLE DEL CIRCUITO ELECTRONICO.

A continuación se presenta el balance de la línea de producción de circuitos electrónicos para alarmas de ultrasonido.

Para ello se toman en consideración los siguientes datos:

Cantidad a producir: 144 alarmam de ultramonido al día.

Turnos de trabajo: un turno.

Jornada de trabajo: La jornada es de 8 horas.

Para el desarrollo del balance se considera que los tiempos son estandares.

En un primer lugar se determina el tiempo ciclo (Tc):

To = Tiempo disponible / n. de unidades To = 8 hr / 144 unidades

Tc = 0.0556 hr/uni = 60 min/hr = 3.33 min/unidad Tc = 3.33 min/unidad.

Cálculo del número de estaciones:

N. estaciones - Tiempos de operaciones / Tiempo ciclo

N. estaciones = 18.242 / 3.33 = 5.5

Con lo cual se decide poner 6 estaciones, puesto que es más conveniente que se reduzca a 5 estaciones con tiempos extras. Se tiene que tomar en cuenta un tiempo de 14 segundos en total, de montaje y desmontaje del circuito impreso en el portatabletas.

Así pues, a cada estación, que en este caso son seis, se le tiene que agregar 14 segundos, por lo que el tiempo total (Tt) quederá como se muestra a continuación:

> Tt = Tc + (0.234 + N. estaciones)Tt = 18.242 + (0.234 + 6)

Tt = 19.648 min

De esta manera se recalcula el tiempo ciclo:

TC = 19.648 / 6TC = 3.275

Por lo que se tendrá una linea de montage de circuitos electrónicos para alarmas de ultrasonido con 6 estaciones y un tiempo ciclo de 3.275 minutos.

La eficiencia resultante será:

E = Tiempos estandares / (Tiempo real * N. estaciones)

$$E = 19.648 / (3.317 * 6)$$

El tiempo real se refiere al tiempo más grande que va a haber en cualquiera de las estaciones, en este caso, como se ve en la página 46, es en la quinta esteción.

Analizando los tiempos muertos, tenemos que la diferencia de tiempos más grande es de tres segundos, y sabiendo que se tiene una eficiencia de un 98.72%, deducimos que se ha obtenido un balance de linea bastante aceptable.

Por lo que la linea de montaje queda de la siguiente forma: (Ver balance de linea propuesto en la siguiente página.)

N. de estación	Operaciones	Tiempo
1	01-08	3.250
3	09-16	3.317
3	17-26	3.203
4	27-37	3.249
5	38-47	3.300
6	48-62	3.249
Total		19.648

Balance de linea propuesto.

M.	Operación	Tiempo (min)
		Estación 1
01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 -	Inspección de la tarjeta. colocar tarjeta. 10 diodom. 2 condensadores. 1 resistencia. 1 resistencia. Retirar tarjeta Tie	0.333 0.117 1.667 0.333 0.150 0.383 0.150 0.117
		Estación 2
09 - 10 - 11 - 12 - 13 - 14 - 15 -	Colocar tarjeta. 10 resistencias. 2 resistencias. 2 n . 1 resistencias. Retirar tarjeta.	0.117 1.333 0.483 0.450 0.283 0.383 0.150 0.117 mpo total = 3.317
17 18 19 20 21 22 23 24 25	Colocar tarjeta. 5 resistencias. 1 resistencia. 4 puentes. 4 transistores. 1 bobins. 2 resistencias. 4 transistores. Tota	0.117 0.583 0.383 0.150 0.417 0.583 0.200 0.203 0.450 0.117

Estación 4

27	_	colocar	tarjeta.	0.117
28	-	71	3 resistancies.	0.383
29	_		2 .	0.283
30	_		1 resistencia.	0.150
31	-		1 transistor.	0.167
32	-	**	1 potenciómetro.	0.283
33	-	*	1 .	0.283
34	-		1 " .	0.283
35	-	•	7 condensadores.	1.033
36	-	*	1 resistencia.	0.150
37	-	Retirar	tarjeta.	0.117

Tiempo total = 3.249

Estación 5

38	_	Colocar	tarjeta.	0.117
39	~	•	3 diodos.	0.433
40	•	#	2 relevadores.	0.350
41	-	H	4 condensadores.	0.600
42	-		3 "	0.433
43	-		з • .	0.433
44	_	•	2 .	0.333
45	_	#	1 diodo sener.	0.150
46			4 diodos emisor de luz.	0.333
47		Retirar	tarjeta.	0.117

Tiempo total = 3.300

Estación 6

48	-	Colocar	tarjeta.	0.117
49	-	•	1 circuito integrado.	0.300
50	-		1 * * * * * * * * * * * * * * * * * * *	0.300
51	-		1 * .	0.300
52	-		2 autoacopladores.	0.283
53	-		2 condensadores.	0.333
54	-		1 condensador.	0.183
55	-	•	1 cuargo.	0.167
56	-	•	1 condensador.	0.183
57	-	-	1 resistencia.	0.150
58	-	**	1 condensador.	0.183
59	-	•	1 resistencia.	0.150
60	-		1 .	0.150
61	-	Observat	r que no falte ningún componente	.0.333
62	-	Retirer	tarjeta.	0.117
			•	

Tiempo total = 3.249

4.5 BALANCE DE LINEA GENERAL

A partir del balance de línea de montaje del circuito electrónico realizado para la producción requerida se obtiene un tiespo óptimo mínimo. A partir de este se presenta un balance de línea general, en el cuel se demuestra la compatibilidad con los tiempos de las etapas siguientes.

Nuestro tiempo óptimo minimo obtenido es de 3.317 minutos siendo el tiempo más alto en la linea de montaje.

Para la realización del balance de línea general se tienon que considerar los siquientes puntos:

Tiempo de operación en:

Soldadura = 2.501

Prueba funcionamiento = 2.000

Empague = 3.166

Las pruebas eléctricas, de durabilidad y manejo se hacen de manera esporadica en un periodo de tiempo determinado, con lo cual no se involucran en el balanceo general. (Ver 4.6)

Hay que mencionar que el transporte, realizado entre cada una de las etapas mencionadas anteriormente, se hace por medio de charolas con una capacidad de 12 circuitos electrónicos cada una, y que no se lleva a cabo si la charola en cuestión no está completa. Así pues, el balance de linea se hace en base a lotes de 12 circuitos electrónicos (o alarmas).

Por lo que se obtiene:

W.	Operación	Tiempo(min)
01 -	Montaje dircuitos electrónicos.	39.804
02 -	Se lieva el lote a soldadura.	0.250
03 -	Soldadura.	30.012
04 -	Se lleva el lote a pruebas.	0.250
05 -	Prueba.	24.000
06 -	So lleva el lote a empaque.	0.250
07 -	Espaque.	37.992
08 -	Se lleva el lote a almacán.	0.333
	Tiespo total	- 132.891

Donde el tiempo óptimo mínimo = 3.317 * 12 = 39.804

El número de estaciones será:

$$n = 132.891 / 39.804 = 3.34$$

Por lo que se tomará un número de cuatro estaciones, donde se realizarán las cuatro etapas del proceso, obteniendo el siguiente balance de linea:

Estación 1

W.	Operación	Tiespo(min)
01 -	Montaje circuitos electrónic	39.804
	Tiempo to	tal = 39.804

Estación 2

H.	Operación	Tiempo(min)
	Se lleva el lote a coldadura. Soldadura.	0.250 30.012
	Tiempo total	= 30.262

Estación 3

04	Se lleva Prueba.	•1	lote	4	pruebas.		0.250
	Se lleva	•1	lote		empaque.		0.250
					Tiespo total	_	

Estación 4

		Empaque. Se lleva	_,	1-5-	_	-14-	_	37.992		
V-8	_	Se ITeA	41	TOEM	•	a 1 mac en	1.	0.333		
						Tiempo	total	38.325		

Con lo cual se obtiene el cursograma analítico que se muestra en la siguiente página. (Ver fig 22)

La producción diaria será de 144 alarmas.

Cursograma analítico. Alarmam de ultramonido.

	1	
3.317	\odot	Montaje circuito electronico.
0.795	₽	Llenado de charola.
0.250	➾	Se lleva charola a soldadura.
2.501	②	Soldadura.
1.270	(1)	Llenado de charola.
0.250	中	Se lleva charols a pruebas.
3. 000	•	Prueba.
0.250	da≯	Se lleva charola a empaque.
3.166	•	Empaque.
0.111	d c ⟩	Se lleva el lote al almacén.

fig:22

4.6 REALIZACION DE LAS PRUEBAS

De acuerdo a los datos proporcionados por las armadoras Ford y Chrysler, las pruebas deberán realizarse, para la producción deseada, de la siguiente forma:

Prueba	Lote min	nimo(Piezas) ecuencia	Criterio de aceptación			
Funcionamiento .	100%	/ 100%	Remover partes defectuosas			
Eléctrica	10 ,	/ semana	90%			
Durabilidad	10	/ 3 meses	90%			
Husedad	10	/ año	#0 %			
Vibración	10	/ año	90%			
Manejo	10	/ año	90%			
Resistencia térmica	5 ,	/ mes	80%			

4.7 CANTIDAD Y DISTRIBUCION DE LA MANO DE OBRA

Se estima que la cantidad y distribución óptima de la mano de obra es la que se muestra en la siguiente tabla:

	Cant	Sexo
Hesa de montaje	6	7
Soldadura	1	М
Prueba eléctrica	1	Ж
Montaje	1	M
Almacén	2	М
Supervisión	1	×
		fig:23

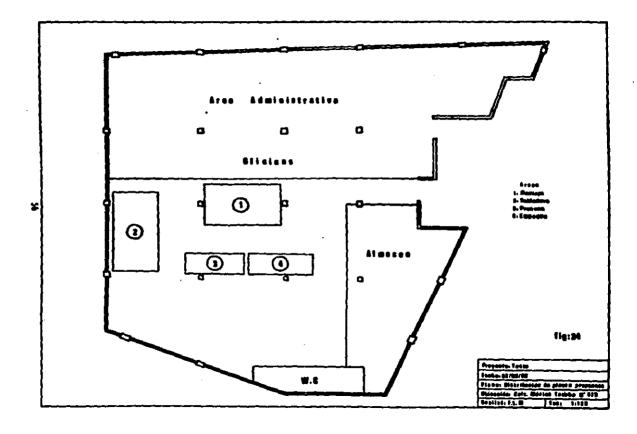
Nota: La preparación de los componentes, que se utilizan para el proceso de fabricación de las alarmas de ultrasonido, se realiza en el almacén.

4.8 DISTRIBUCION DE LA PLANTA

En este caso se presenta la distribución de la planta de acuardo a las características de las Areas que se requieren. El estudio en este caso se hace tomando en consideración básicamenta los siguientes puntos:

Se consideró necesaria un área de almacenamiento, para s disa hábiles, donde se quadará materia prima, producto en proceso y producto terminado, quedando mituada cerca de la puerta de entrada y malida.

El equipo de manejo de materiales está compuesto por charolas, que se acoplan en un carrito transportador, por lo que no representan ningún problema.


Se toman en cuenta oficines y áreas administrativas.

De acuerdo e los señalementos de la Ley Federal del Trabajo, debe de existir un sanitario completo por cada miete trabajadores del miemo sero.

Se consideró dejar un área para una posible ampliación de la línea o para un producto adicional en un futuro.

Se estudiaron las áreas neceserias pera cada etapa del proceso, así como el flujo de materiales.

Por lo que la alternativa que ofrece un flujo adecuado de materiales, menores distancias de recorrido y mayor aprovechamiento del espacio, se muestra en la siguiente página. (Ver fig 24)

4.9 NACUINARIA Y EQUIPO

De acuerdo a los factores decisivos sobre la compra de equipo y maquinaria , se obtiene la siguiente elección para el sistema productivo del cual es objeto el estudio.

Area de montaje de dircuitos electrónicos:

- 1 Mesa (6 operatios) - 1 Insector de directios integrados (\$130,000) - 3 Porta circuitos integrados (\$60,000) - 7 Soportes de terjeta (\$200,000) - 6 Contamedores de componentes (\$200,000) - 6 Pinses (\$23,000) - 6 Bencos (\$140,000)	\$ 7'000,000.00 \$ 250,000.00 \$ 180,000.00 \$ 1'400,000.00 \$ 1'200,000.00 \$ 138,000.00 \$ 840,000.00
Area de soldadura:	
- 1 Equipo de soldadura(soldadora por clas, baño de flux, transportador, enfriador, dortadora y extractor) - 1 Mesa - 1 Lupa - 1 Silla	\$ 15'000,000.00 \$ 180,000.00 \$ 200,000.00 \$ 120,000.00
Area de pruebas:	
- 1 Māquina computarizada de pruebes - 1 Mesa - 1 Silla - 1 Cautin	\$ 4'300,000.00 \$ 330,000.00 \$ 120,000.00 \$ 186,000.00
Area de empaque:	
- 1 Engrapadora - 1 Hesa - 1 Banco - 1 Pinsa	\$ 40,000.00 \$ 330,000.00 \$ 140,000.00 \$ 60,000.00
Area de alamacén:	
- 1 Perfomador y contador de componentes - 1 Juago de metanterias - 1 Hesa - 2 Sillas (\$120,000)	\$ 2'760,000.00 \$ 3'100,000.00 \$ 330,000.00 \$ 240,000.00
Manejo de materiales:	4 1/40# 000 00
- 3 Carritos porta charolas (\$535,000)	\$ 1'605,000.00

CAPITULO V

EVALUACION ECONOMICA

Como se ha visto anteriormente hay un mercado potencial por cubrir y tecnológicamente no existe ningún impedimento para la realización de este trabajo, por lo que, a continuación, en el siguiente capítulo se presenta la evaluación económica del proyecto, necesaria para la validación de este estudio.

Los datos del ejercicio se presentan en una primera instancia, encontrando posteriormente balance, estado de resultados, flujo de efectivo, obtención de la tasa interna de retorno y el valor presente neto.

5.1 CONSIDERACIONES

Para esto resulta interesante tener en cuenta algunas consideraciones:

- 1/ Se considera que todo lo que va a ser producido en los próximos cinco años será vendido, y en un axximo da 8 dias de haber entrado al almacen como producto final.
- 2/ Algunos de los datos útilizados para este estudio son tomados de ejercicios pasados reales, sin considerarse situaciones anomales como aumentos en los costos de materias primas, rentas, mano de obra, existencia de algún accidente, etc... Así mismo se considera que no existe inflación.
- 3/ Le tasa minima de aceptación es de un 18% de acuerdo a las tasas de interés bancarias actuales, teniendo una linea de credito del 18% y una inversión en valores del 12%.
- 4/ Todo este capítulo ha sido elaborado con la ayuda de las hojas de cálculo del paquete integrado Lotus 1-2-3 de Microsoft.
- 5/ Para una mejor interpretación de este ejercicio, los costos de las materias primas son expuestas en el anexo XIII, así como de los materiales y equipos requeridos en la sección 4.9 en la página 57.

Costo de la alarma:

_	Materia	prisa	nacional circuito electrónico	\$ 19,611.00.00
-		- **	importada " "	\$ 8,033.00
-	•	-	" alarma (otros)	\$ 16,350.00
-	•		nacional "	\$ 7,346.00
				\$ 51,340.00

- Materiales indirectos

\$ 2,036.00

- Mano de obra directa. (Mensual)

11 trabajadores con sueldo minimo 1 persona en supervisión \$ 361,296.00 \$ 1'170,000.00 \$ 5'144,256.00

Costo de mano directa por alarma

\$ 5'144,256.00 / 144 / 20.7 = \$ 1,726.00

Donde:

144 - Produccion diaria de alarmas. 20.7 - Promedio de número de dias en un mes.

- Electricidad \$ 280,000.00
Renta planta \$ 2'300,000.00
Mantenimiento \$ 363,000.00

Del área total de la planta tenemos que:

Area administrativa 43% = \$ 1'265,490.00 Area de producción 57% = \$ 1'677,510.00

\$ 1'265,490.00 / 144 / 20.7 = \$ 424.00 \$ 1'677,510.00 / 144 / 20.7 = \$ 563.00 \$ 987.00

Donde: 144 = Producción diaria de alarmas. 20.7 = Promedio de número de diam en un mes.

Costo total: \$ 51,340.00 + \$ 2,036.00 + \$ 1,726.00 + \$ 987.00

7/ Precio de venta: Para obtener el precio de venta promedio de la alarma de ultrasonido se le agrega un 40% de margen de utilidad. Por lo que el precio de venta promedio será de 78,442 pesos.

- 8/ Los gastos de ventas y de administración tienen un monto del 5% y 10% respectivamente, del costo de venta de la alarma.
- 9/ Las depreciaciones obtenidas de acuerdo al ISR y el monto total del equipo se presenta a continuación:

- Mobiliario y equipo	108	\$ 26'000,000.00
- Maquinaria y equipo	35%	\$ 21,024,000.00
- Computadora	25%	\$ 4'300,000.00
- Equipo de transporte	20%	\$ 75'000.000.00

10/ La inversión inicial es de 260 Millones de pesos (M.N).

A continuación se presenta el estado de resultados,flujo de efectivo y balance de este ejercicio, así como la tasa interna de retorno y el valor presente neto.

S.2 ESTADO DE DESULTADOS.

HELLENST DE PERSON GARE	1		3	4	5	4	7	•	•	10	11	12
227/80 30 00007/0000												
VOLTAG METAG CORTO DE VOSTAG	349 160	226 143	234 143	236 143	237 172	244 180	257 172	260 188	215 155	237 172	237 172	215 155
4711.1940 MAPE	**	42	4	42	44	**	**	72	30	44	44	59
výsta Apria i stálaž i do	12 25	11 23	11 23	11 23	34 12	12 23	12 34	13 26	11 21	54 15	12 24	11 21
-	37	24	24	24	24	37	34	29	32	34	34	32
VIII.1040 OR GRANCIES	32	,,,		29	30	12	30	31	27	30	30	27
INTERNAL LIGHA COMPLETO	•	•	•	•	•	•	•	•	•	•	0	•
187. 18 400 01888\$ \$4 WALENES	•	•	(0)	(1)	(1)	(2)	(2)	(3)	(3)	(4)	(5)	(5)
TOTAL FIRMETONS	•	•	(8)	(1)	(1)	(2)	(P)	(3)	(3)	(4)	(5)	(5)
UTILIDAD ARTEG DE INVAESTO	<u> 11</u>	20	19	*	31	33	12	36	31	34	35	33
WILISAS GRANIGLE	12	20	27	27	31	33	32	34	31	34	35	12
I. S. G. AMPLIAGA P. T. U.	1	"	11	12 3	12	13 4	18 3	16	12	14 4	54 4	13
TOTAL DIFFERENCE	1	14	13	19	16	17	16	18	19	17	17	16
429A1/60 MITO	30	14	14	15	16	17	14	18	15	17	18	16

-							
	MILLIMES OF PERSON	1980	1986	1991	1988	1973	
	**************************************	2,813	2,983	3,391	1.200	9,419	
	-	2,434	2,134	3,191 2,340	3,200 2,300	2,443	•
	UTILIDAD GENTA	7779	219	44 1	100	754	
	YOUTA	141	149	199	145	171	
	AMERICANACION TOTAL GARRON OFGINES	301 422	275 443	310	327 400	\$42 \$13	
	VILLIAND DE STRACTO	357	376		419	443	
							•
	INTERNACIO LINEA CARD	0 (27)	6 (76)	(190)	(363)	(413)	
	TOTAL PIRMETERS	(27)	(74)	(194)	(200)	(613)	•
	VIIL1040 ARTES DE 14	364	410	165	701	6 7	
	ALITHO CHANGES	764	490	340	791	867	
	1. 8. 8. APRIADA P. T. U.	191 41	360 100	214 61	254 73	***	
	THE PERMIT	190	471	277	327	397	
	MERATAGO METO	192	(22)	311	379	44	
							•
					* *	•	
						7.	
*				•		63	

S.3 FLUJO DE EFECTIVO.

MILLERES OF PESSO SAGE	. 1	2	,	4	\$	4	,	•		10	11	12
PLALID DE EFECTIVO												
Maria Tabo Milito	30	14	14	19	14	17	16	18	13	17	10	16
POPOSE ACION V ANNETIZACION				2	2		*		7	3	2	ž
MATOS (PAND) FIRMICIENDO	•	•	(0)	(1)	(1)	(2)	(₹)	(3)	(3)	(4)	(\$)	(7
Managhtida GM/th og EPOSTIVA Malaktida (GM/Mala)	23	16	16	14	16	17	14	17	14	15	19	13

BOTH FUE CHINA	44	(6)	•	•	3	3	(3)	4	(12)	4	a	(4
MANAGER DIVENDED	•	•	•	•	•	•	•	•	•	0	0	
1900ay AB 100	19	•	•	•	•	•	•	•	•	۰		٠
Table (Charles)	•	•	•	•	•	•	•	•	•	•	•	•
cinglithts of ventus	•	•	•	•	•	•	•	•	•	•		•
.a.a. T P.T.V.	•	(1)	(1)	(3)	(3)	(4)	(3)	(4)	(3)	(4)	(4)	O
MPITAL TANDLID GETO	*	(9)	(3)	(1)	(#)	(1)	(4)		(19)	2	(4)	(7)
11722 1000		۰	0				6	٥		o		
CHESPERS LABOR PLACE	ē	•	•	ě	•	ē	ě	ē	•	ŏ	ō	•
PLIC. (SKISSI) STRATIVO	*	(9)	(3)	(3)	(8)	(1)	(6)	\$	(15)	2	(4)	(*
MONTO FINE. OF COCCIVE	(53)	*	19	19	17	18	22	15	29	13	19	23
IMA M CHANTO		15	•			•		b	0	0		
MAR APRIL - CHID (190)	•	19	•	•	•	•	•	•	0	0	0	0
OTBAINES EIMA OF CHIDITO	•		•	•			•	•	0	0	0	
USA PAGO DE TOUBA	•	19	•	•	•	8		•	0	0		
MD . Fibhetites	•	•	(0)	(1)	(1)	(8)	(Đ)	(3)	(3)	(4)	(5)	(9)

FLALIS ACTO DE SPEC.	(53)	10	19	20	18	19	75	18	33	17	. 23	20
CONTRATACION LINEA COCCIO	\$3 12	19	25	41	45 1	47	162	127 •	143	179	196	218
CAMA 7 SAUCHO INCOCION EN VALUACE	19	19 19	13	19	15	13 87	19 112	15 130	19 143	13 179	15 203	1 9 291

DIFFERENCE OF MARKET	1987	1990	1991	1992	1993
PLUM DE EFECTIVO					
MESATANO METO	192	(22)	311	177	44
SOFTOCIACION Y AMES	77	25	25	20	77
	(37)	(74)	(199)	(262)	(413)
-	190	(71)	144	117	72
AFLICACIONES (GRISER					
DESTINA PER CHANN	37		1	4	1
CONTRACTOR STATEMENT			•	•	•
1000746100	10	220	•	•	•
*************	•	(1,632)	•	•	•
ACRESTMENT 01VESCOO	•	•	•	•	•
1.8.8. T P.T.U.	(41)	(48)	41	(18)	(16)
	3-76	,	•	.,.,	•
-	34	(939)	49	(8)	(12)
D19621000	•	•	•	•	•
ACRESPANCE LIBER PLA	•	•	•	•	•
MLIE. (MIMM) SPEE	34	(539)	45	(8)	(12)
GENERALION FINANT.	•••••		*********	*******	,,
DE EFECTIVO	134	449	181	125	84
LIMA OC COORITO	•	. •	•	•	
	•	•	•	•	•
INTENDANCE LINEA DE C	_			_	_
	.	•	······	•	
100 PAGE 95 160A					
PROD. FIGARCIESOS	(27)	(74)	(1901	(2031	(413)

FLUJO METO DE EFEC.	181	530	201	487	497
MO. INICIAL BYEC. Y CHITANICIAN LIMEA C	33	234	773	1,864	1,471
CAM T BMCHS LOVERSION EN VALORES	19 21 0	180 993	189 884	190 1,291	188 1,788

S. A DALAGEE GENERAL.

MILLANDO DE PERM	54dE	1	2	3	4	\$	٠	7		•	10	11	12
WELLIAD GENERALIS													•
CALL T SANGE JACKS TO ANTINO JACKS JAC	53 •	15 44 •	15 10 60	15 26 60	19 34 66	15	13 87 66 6	15 112 43	13 130 #6	15 163 57	15 179 43 0	15 203 63 0	15 231 57
MATERIAL PRINCE	81	90	90	**	30	70	36	30	50	30	10	50	58
FREE, THEN MADES	•	**	90	30	70	50	30	74	30	30	30	\$0	50
SAN A. CLANCASTE	134	181	186	365	225	346	340	200	314	331	378	341	403
E7110 7120													
ACT PROS. \$1,000	126	136	126	124	186	136	136	126	126	136	126	126	126
(SOPRECIALISM ACUR.)		2	4			10	18	15	17	19	21	23	25
ACTIVO FIRO ACTO ACTIVO SIPORNO	126	194	122	130	118	116	114	112	110	ina	106	103	101
91700100 2279	•	•	•	•	•	•	•	•	•		•	۰	
-	•	•	•	•	•	•	•	•	•	•	0	•	•
ACTIVO TOTAL	200		365	323	343	W	342	482	424	447	443	404	504

Diritoria or Mann	1989	1990	1991	1992	1993	
ACTIVO CIRCUALITE	•					

CAM Y BARRES STEEL CO TALENCY	19 219	160 273	100	100 1,291	180 1,700	
CHESTAL PIE CHEAN	37	-73	7	7,577	·" "	
STREETS STREETS	• -	•	•	ē	•	
TENDETALISMI MATERIAL PRIMA	*	-	400	-		
Fig. 1900an	20				96	
	~	-	-	-	-	
••						
MANA A. CINCALANTE	301	1,486	1,788	2,196	2,094	
ACT 190 71.00						

ACTIVAL FIRM	124	136	136	126	125	٠
(90700CIALISE AGAIL)	25	50	73	186	125	
ACTIVE FIAM MITS	101	76	71	*	2	
ACTIVO GIFTSINO						

91 790190 FETO		•	•			
**				••••••	•••••	
GANA 91798190	.	•	.			
ACTIVE TOTAL	493	1,506	1,654	1,230	2.000	

mirrans os usaso	144	1		1		1	4	7		•	18	11	12
PREING & CHETO PLANS												•••••	•=
PERFERENCE ALAMOSTES DIVERSON	:	:	:	:	:	:	:	:	:	:	;	0	:
t. D. G. P. T. W.	•	•	•	:		13	14	**	B	37	*	34	37
L1186 14 450170		19		•	•	•	•	•	•	•	•		•
900 0070 FLAN	•	15	<u>.</u>	•	•	13	16			27	30	34	27
PASTER LAND FLAT													
MANAGORIES A L. P.	•	•	•	•	•	•	•	•	•	•	•	•	•
man LANG PLANS	•	•	•	•	•	•	•	•	•	•	•	•	
PASTUS TURM.		19	3		•	13	16	**		27	>>	34	37
COPITAL CONTINUE													
SENIOR FIGUR	**	***	200	***	340	246	340	344	***	240	***	340	200
NIGHTANN MITTER. NIGHTANN DEL EAST,	:		30 14	44	15	75	17	14	122	110	155	173	190
	840		304	319	333	34.9	300	300	460	415	433	410	' 444
-	200	205)#	329	343	142	300	442	424	442	443	484	504

HELLANDS OF PERSON	1980	1990	1991	1992	1992
MARINE & CONTO PLAJO	•				
PARISONNES MANGEMENT E L'AGRAGES	:	1,000	1,000	•	1,002
l. 8. 8. P. T. W.	41	***	41	'n	÷
LIGHT OF STREET		•	•	•	•
		1,134			
PARING LABOR PLANS					
MINISTRALL P.	•	•	•	•	•
 NATA LANGO PLAGO	•	•	•	•	•••••••••••••••••••••••••••••••••••••••
MEIND TOTAL	41	1,134		1,100	1,170
EMPITAL CHITAGLE					
DIPTAL MICTAL MESSING LEGAL	***	200 0 170	300 0 170	***	*** _!
MODALTADO DOL EJOO.	192			481 379	44
w		430			
MIN MIN T CAPITAL	47)	1,564	1,694	2,290	2,000

.

•

A.S. TIR Y WIR.

MILLOWES DE PESOS		1	2
	TABA INTERNA	DE	RETORNO
PLUJOS DE EFECTIVO	INICIAL		-260 180,842
72000 00 17301110	1990 1991		\$30.422 291.041
	1992		407.360

TABA INTERNA DE RETORNO DEL PROYECTO 114.90%

WALOR PRESENTE METO

0.000

CONCLUSIONES

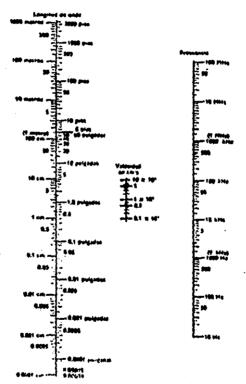
El producto ultrasónico obtenido, gracias a su diseño y a sus elementos de calidad, cubre las características generales de la alarma óptima.

Se tiene un sistema de producción sencillo y barato, puesto que requiere mano de obra no especializada y equipo facilmente operable. Al iqual, dete puede estar sujeto a un cambio de producto, por otro de características similares, lo cual resulta muy atractivo, puesto que se la puede dar al proyecto otro enfoque comercial.

La alarma al ser producida en su totalidad en México reduce el costo a la mitad, lo cual cubre uno de los puntos más importantes de esta tesis. El precio de venta resulta ser muy inferior al de la competencia, encontrando así, las puertas abiertas en un mercado tanto nacional como internacional.

El sistema de ensamble del circuito electrónico resulta muy práctico puesto que el hecho de tener referencias de posicionamiento reduce el grado de error y aumenta la velocidad de montaje.

La tasa interna de retorno resultante hace que el valor presente sea igual a cero, igualando la suma de los flujos descontados a la inversión inicial, por lo que de acuerdo el criterio de aceptación, el proyecto puede considerarse viable.


De otra forma, se considera llevar a cabo este proyecto ya que origina una tasa interna de rendimiento del 114.9%, y si se compara con las tasas de interés ofrecidas para la inversión, está por encima de ellas. Así pues este proyecto puede considerarse igualmente factible.

•

AMEXOS

ANEXA :

43.7% terminal

Attant de la relacione errar l'agrantic, banquel de ante e selected

ANEXO II

CIRCUITO ELECTRONICO

COMPONENTES NACIONALES

Element		Referencia	Centided
Resistancia	680 kg	1003	
	56 n	1004	1
•	15 kg	1005	3
		1006	.1
			10
-		1008	4
÷ ·		1009	2
<u>.</u>	100 <u>n</u>	1010	3
-	4.7 瓦	1011	1
-	100 kg	1012	5
	470 p	1013	3 1
==	2.7 Kg	1014	1
	1 10	1019	2
•	47 k <u>n</u>	1020	4
•	3.3 k <u>n</u>	1021	3
•	10 k <u>n</u>	1022	ž
•	18 kñ	1023	ī
•	2.2 พฏิ	1029	ī
**	820 km	1046	7
•	200 kg	1048	•
•	1 หกั	1049	•
Condensador	100 UF 63V	1032	1 1 1 1 4
	10 UF 50V	1033	3
•	22 ur 25V	1034	4
	47 UF 25V	1035	:
	220 UF 40V	1043	3 2 1
•	100 uF 63V	1045	1
	22 UF 25V	1047	i
Diodo	1W4003	1001	
55555	1M414B	1030	10
	B2x55C 10V	1036	3
	sor de lus		1
Puente	sol de 142	1037	4
		1015	4
Transistor	3C233	1016	4
-	BC337-40	1024	1
Circuito int	egrado		
•	HCE4001BE	1038	1
•	4069UBE	1039	ī
	LM741C	1040	ī
Circuito imp		1050	i
Relevador		1031	2
Cable #16		1008	9 de 10cm
		2444	A GE TOCK

ANEXO TIT

CIRCUITO ELECTRONICO

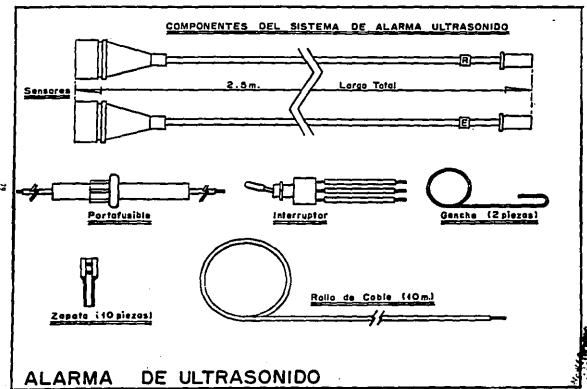
COMPONENTES IMPORTADOS

Elemento		Referencia	Cantidad
Condensador # # #	2.2 up 1 up 47 up 25V 100 up 25V	1002 1007 1028 1042	2 3 7 2
Bobina	5.6 mH	1018	1
Potenciómetro #	10k <u>n</u> 470k <u>n</u> 1k <u>n</u>	1025 1026 1027	1 1 1
Autoacoplador	hembra	1041	2
Cuarzo	40 kHz	1044	1

AMEXO IV ALARKA

COMPONENTES NACIONALES

Elementos	Referencia	Centidad
Capuchón plástico sensor	1052	2
Base plástico circuito	1053	1
Tapa plástico circuito	1054	1
Tapón plástico negro	1055	2
Tapón plástico rojo	1056	4
Gancho sensor	1057	2
Letra E sensor	1058	1
Letra R sensor	1059	1
Autoacoplador macho	1060	2
Espaqueti	1061	5cm
Portafusible	1062	1
Fusible	1064	1
Cable doble via sensor	1065	2.5m
Caja cartón	1066	1
Cartón perforado	1067	1
Instructivo	1068	1
Calcomania	1069	2
Ligs	1070	1
Solsa plástico	1071	1
Cable #16	1072	12 m
Terminal Faston hembra	1073	10
Circuito electrónico	1074	1


Continuación AMEXO IV

ALARNA

COMPONENTES IMPORTADOS

Elemento	Referencia	Cantidad
Transductor emisor	1075	1
Transductor receptor	1076	1
Interruptor	1063	1

OXBNA

3

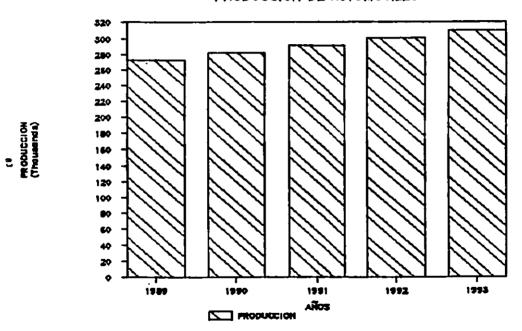
ANEXO VI

CALCULO DE LA PRODUCCION 1989-93

Metodo de mínimos cuadrados con medias móviles.

Tenemos que la producción de automóviles de los años anteriores es del

	Año	*	Produce:6n	
	178	3	207,137	
	198	4	231,578	
	178	5	246.760	
	198	6	208,469	
	198	7	277,804	
	198		252, 495	
×	¥	x- x	(X−X) * Y	(x− x)²
1963.5	217,357	-2.0	-430,714	4.0
1784.5	239, 269	-1.0	-239,269	1.0
1785.5	227.714	0.0	. 0	0.0
1986.5	243,136	1.0	243,136	1.0
1987.5	265,149	2.0	530, 298	4.0


La ecuación de la recta est yea+bx

Dunde:
$$\mathbf{a} = \overline{\mathbf{Y}} - \mathbf{y} - \mathbf{b} = (\Xi_{\mathbf{H}}\mathbf{Y}) \times (\Xi_{\mathbf{H}}^2)$$
 siendo $\mathbf{H} = (\mathbf{X} - \overline{\mathbf{Y}})$

Por lo que la ecuación de la recta será: y=239,925+9,545:: Cálculo de la producción en los próximos cinco años:

X	x-x	Y
1929	3.5	272,333
1990	4.5	201.070
1991	3.5	291,422
1992	6.5	200.967
1793	7.5	310,513

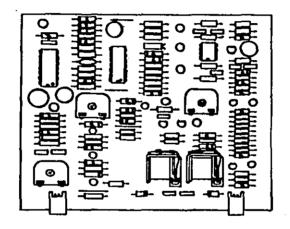
PRODUCCION DE AUTOMOVILES

A STABLE

AMEXO VIII

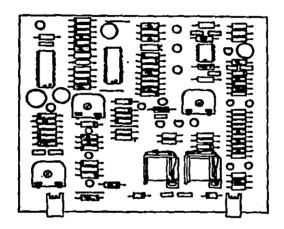
DESIGNACION COMPONENTES.

Elemento	Designació
Resistencia	R
Bobina	L
Condensador	c
Circuito integrado	CI
Diodo	D
Diodo Zener	DE
Diodo emisor de luz (led)	LD
Relevador	RL
Puente	ST
Transistor	Ŧ
Potenciómetro	P
Cuarzo	Q
Autoacoplador	A

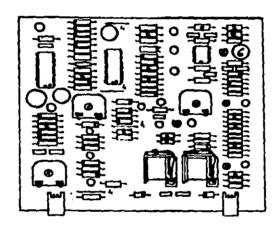

ANEXO IX

CIRCUITO IMPRESO

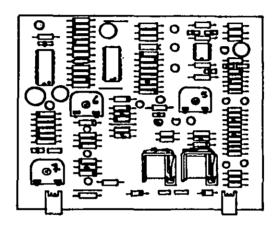
<14	64	06 : 404 : 810 : 4	::::
***	14 PM.		Z ;
161			
g :	44 · 44 · 44 · 44 · 44 · 44 · 44 · 44	1 the case of the case of the	4
" :	*		4:
491 .444	Bit . Brig.	. 419 	
636		144 944 919	494
. 44 .		14.	4 :
. 810 .	21,	19 75 49 E	Ei .
: ## :	99 . 911		
	: 34 :		
iii jii	-71		-
Ter		** * ** ***	77
	**** 🛥 .		
	- STHE -	100 - \$40 COL - 100 - 251	
-44			


ANEXO X

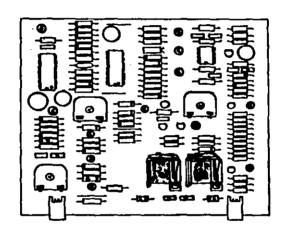
PUESTO DE MONTAJE N'I


N	Q	Elemento	Ref	
1	19	Diedo 184483	1001	7
2	2	Condensador 1.2 / f tev	1002	8
3	1	Resistencia sesso	1003	9
4	3	# \$80.	1004	10
8		# 15KΩ	1005	
.6			<u> </u>	12

PUESTO DE MONTAJE Nº2

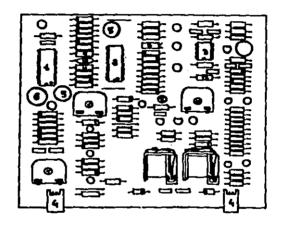

N	a	Elemento		Rof	1
ī	10	Resistencia	UMBEE	1006	
2	3	Condensador	1pf 25V	1007	18
3	4	Resistencia	1.5 E.L.		
4	2		249 84		
8	3		1000	1818	B 111
6	1		4,7 LQ	1011	1 12

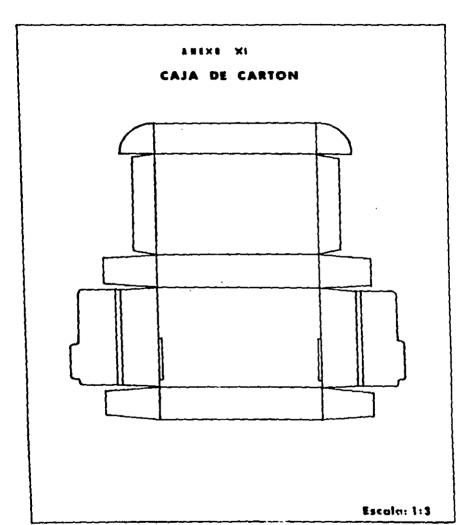
PUESTO DE MONTAJE N'3


N	Q	Elemente		Ref					
1		Resistencia	14410	1012	7	2	Resistencia	180	1019
2	3		4190	1013	8	4	Resistencia	4140	1828
3	T		1.7kg	1014	9]		[
4	4	Puente		1015	10				1
3		Trensister	862378	1010	ii		ł		
6	1	Bobina	5.0 = 0	1016	12	i]

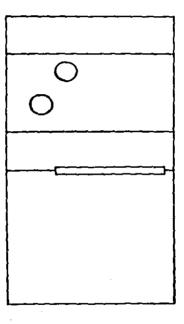
PUESTO DE MONTAJE Nº4

N	a	Elemento	Rof	l		
1	3	Resistancia 1,14 A	1021	7 1	Patenciametre 1k	
2	2	μ ' 10 h Ω	1022	8 7	Condensador 47/1 211	1828
3	1	# 18k Ω	1023	9	Resistencie 1,280	1029
4	1	Transistor 88327-48	1824	10		
		Petenciometre 18k	1025	11		
6	1	478k	1026	12		


PUESTO DE MONTAJE N'5


Z	Q	Elemento			R]_					
		Diedo	19 41	4 8		36	7	1	Diede		2 - 5 50 184	
2	2	Relevador			11	31	8	4	*	emisor	de luz	1037
3	4	Condensador	185,5	637	11	32	9					
4	3	*	184	104	10	33	10	1				
3	3		224	257	11	34	111	1	<u> </u>			
6	2		4 14	257	11	35	112	1	1			

91


PUESTO DE MONTAJE N'6

N	Q	Elemento	Ref	L		
T		C.1 #8840019E				1044
2		404801	1839	8 1	Condensador 100 f 83v	
3		# LM7418	1040	9 1		1046
	2	Autoacopiador	1041		Condensador 22,F25 V	1047
	2	Condensador IN ₂ F25V	1042	11 1		1948
<u> </u>		# 220pf 41V	1843	12 1		1049

CARTON PERFORADO

Escala: 1:2

•

ANEXO XIII

CIRCUITO ELECTRONICO

COMPONENTES MACIONALES

Elemento		Ref	Cent	Costo*	Total*
Resistancia	680 k	1003	1	18.00	18.00
	56	1004	3	-	54.00
*	15 k	1005	1	-	18.00
•	220 k	1006	10	-	180.00
	1.5 k	1008	4		72.00
•	560 k	1009	2	26.00	52.00
	100	1010	3	18.00	54.00
	4.7 k	1011	1		18.00
ï	100 k	1012	5		90.00
	470	1013	3	•	54.00
-	2.7 k	1014	1		18.00
	1 H	1019	2		36.00
i	47 k	1020	4	*	72.00
_	3.3 k	1021	3	-	54.00
	10 k	1022	2	-	36.00
	18 k 2.2 M	1023	1		18.00
	820 k	1029 1046	i	-	18.00
	200 k	1048	i		18.00
	1 k	1049	î		18.00 18.00
		1045	•	-	14.00
Condensador	100 F 63V	1032	4	269.00	1,156.00
	10 F 50V	1033	3	157.00	525.00
	22 F 25V	1034	3	188.00	564.00
•	47 F 25V	1035	2	260.00	536.00
	220 F 40V	1043	1	190.00	190.00
•	100 F 63V	1045	1	289.00	289.00
•	22 F 25V	1047	1	179.00	179.00
Diodo	1N4003	1001	10	80.00	\$00.00
•	1W4148	1030	3	60.00	180.00
	B2x55C 10V	1036	1	160.00	160.00
" eni	sor de lus	1037	4	165.00	660.00
Puente		1015	4	0.00*	0.00
Transistor	BC23B	1016	4	175.00	700.00
•	BC337-40	1024	1	225.00	225.00
Circuite int	egrado				
•	NCE4001BE	1038	1	600.00	600.00
-	4069UBE	1039	1	727.00	727.00
•	IJ1741C	1040	1	970.00	970.00
Circuito imp	reso	1050	1	2,500.00	2,500.00
				(Sigue)	

Relevador	1031	2 3	,727.00	7,454.00
Cable #16	1088	***	****	180.00
Soldadura	1077	1	100.00	100.00

Los precios estan dados en pesos mexicanos.
 El costo de los puentes es nulo puesto que se hacen a partir del desecho de corte de otros componentes.
 9 unidades de loras de largo cada una.
 200 pesos por metro.

CIRCUITO ELECTRONICO

COMPONENTES IMPORTADOS

Eleme nto		Ref	Cant	Costo	Total
Condensador	2,2 F	1003	2	0.50	1.00
•	1 7	1007	3	0.50	1.50
•	47 P 25V	1028	7	0.52	3.64
•	100 F 25V	1042	2	0.54	1,06
Bobina	5.6 mH	1018	1	3.79	3,79
Potenciómetro	10k	1025	1	1.32	1.32
•	470k	1026	1	1.32	1,33
*	ik	1027	ī	1.32	1.32
Autoacoplador	hembra	1041	3	2.29	4.58
CHRYSO	40 kHz	1044	1	1.87	1.67

Note: Todos los componentes tienen un 16% de impuesto de importación exceptuando el autoacoplador hembra que tiono un 21%.

^{*} Los precios son dados en franceses.

ALARMA
COMPONENTES MACIONALES

Elementos	Ref	Cant	Costo*	Total*
Capuchon plástico sensor	1052	2	50.00	100.00
Base plástico circuito	1053	1	800.00	∂ € 00.00
Tapa plastico circuito	1054	1	800.00	■00.00
Tapon plastico negro	1055	2	25.00	50.00
Tapon plástico rojo	1056	4	25.00	100.00
Gancho sensor	1057	2	125.00	250.00
Letra I sensor	1056	1	50.00	50.00
Letra R sensor	1059	1	50.00	50.00
Autoacoplador macho	1060	2	50.00	100.00
Espagueti	1061	5cm	••	311.00
Portafusible	1062	1	125.00	125.00
Pusible	1064	1	110.00	110.00
Cable doble via sensor	1065	2.5m	•••	1,360.00
Caja cartón	1066	1	1,250.00	1,250.00
Carton perforado	1067	1	300.00	300.00
Instructivo	1068	1	180.00	180.00
Calcomania	1069	2	150.00	300.00
Liga	1070	1	5.00	5.00
Bolsa plástico	1071	1	1.00	1.00
Cable #16	1072	12=	****	2,640.00
Terminal Faston hembra	1073	10	50.00	500.00
Circuito electrónico	1074	1	****	****
			(Sigue)	

Continuación de la tabla de los componentes nacionales para la alarma.

e Sl precio esta dado en pesos mexicanos. e 6,220 pesos por metro. e 200 pesos por metro. e 200 pesos por metro. e 200 pesos por metro.

ATARMA

COMPONENTES IMPORTADOS

Elemento	Ref	Cant	Costo*	Total*
Transductor emisor	1075	1	16.50	16.50
Transductor receptor	1076	1	16.50	16.50
Interruptor	1063	1	10.60	10.60

Nota: El tercer y último artículo tiene 16t de impuesto de importación, quedando los desás exentos.

^{*} Los precios estan dados en francos franceses.

BIRLYOGRAPIA

Evaluación de proyectos. G. Baca Urbina. Mc Gray Mill.

Formulación y evaluación de proyectos inddustriales. Ing. Humberto Soto R. Ing. Rrnesto Espejel I. Ing. Hector F. Kartines F. Banco de México.

Elements of accustics. Blits.J. Bulterworlts.

Vibration and sound. Horse P.W. No Graw Hill.

Ultrasonics. Nayer W.G. Blackie.

Investigación de mercados. Welter B. Wents. Editorial Trilles.

Marcadotecnia. Taylor. Editorial Trillas.

Ingenieria económica. Leland Blank y Anthony Tarquin. Mc Grav Hill.

Pundamentos de administración financiera. Weston y Brigham. Interamericana. Introducción a la estadistica matemática. Krayezig Erwin. Limusa.

Probabilidad y estadistica. Maisel Luis. Fondo Educativo Interamericano.

Ingenieria industrial; Estudio de tiespos y movimientos. Miebel. Representaciones y servicios de ingenieria.

Motion and time study, disign and measurement of work. Barnes Ralph. Wiley