

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

"ELECTROQUIMICA ANALITICA DE UN SISTEMA ENZIMA-SUSTRATO: PEROXIDASA-H₂ O₂ /O₂"

F. Т S S QUE PRES E N A : JOSE DE JESUS GARCIA VALDES PARA OBTENER EL. TITULO DE : Q U Μ Ţ T C 0

TESIS CON FALLA PE CRIGEN

MEXICO, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

1.0 INTRODUCCION Y OBJETIVOS.

A partir de la década de los años 60, un nuevo campo, la electroquímica aplicada a los sistemas biológicos, ha tenido un notorio crecimiento: la bioelectroquímica.

El término bioelectroquímica es un tanto general ya que se podría aplicar a todo aquello que relacione electricidad-químicabiología, lo cual constituye un campo de aplicación muy extenso en el cual se puede obtener información analítica termodinámica y cinética.

Los aspectos que más se han desarrollado se pueden agrupar en los siguientes grupos:

- Estudio de las reacciones electroquímicas de moléculas "simples" utilizando métodos electroquímicos convencio nales iniciándose desde 1940 con los estudios polarográ_ ficos de la tia mina y la riboflavina. Pueden citarse ejemplos como el estudio de la adrenalina (1), el NADH (2), modelos porfirínicos para el estudio de las metaloenzimas, diversas vitaminas, etc. Las reacciones electroquímicas son en general utilizadas para proponer mecanismos de acción de estos analitos.
- Estudio de las reacciones electroquímicas de macromoléculas biológicas. Se estudian por lo general las enzimas que for man parte de la cadena respiratoria haciendolas reaccionar directamente al electrodo o bien por medio del uso de mediadores electroquímicos como el metil viológeno. Se han estudiado derivados de las purinas y pirimidinas así como al DNA por polarografía (3). Se conoce el comportamiento de diversas proteínas al electrodo.
- Análisis electroquímico de sistemas biológicos. Este tipo de análisis se ha visto favorecido por el uso de los metodos impulsionales y de la miniaturización de los electrodos de trabajo que permiten realizar mediciones y estimulaciones -"in situ". Se ha podido estudiar la polarización membranal así como la evolución de metabolitos asociados a neurotransmisores en animales vivos de experimentación.

Con respecto al estudio de los sistemas enzimáticos se puede decir que hay poca información aún que relacione de manera sistematica la información que proporciona la electroquímica analítica con parámetros de relevancia en cinética enzimática.

Es importante mencionar que la utilidad de la electroquímica en el estudio de los procesos enzimáticos radica en dos aspectos:

- a) Monitoreo del sustrato o del producto para la medición cuantitativa de la actividad de una enzima. Desde este punto de visto las técnicas de electroanálisis se suman al conjunto de técnicas de análisis que se emplean habi tualmente para la medición de la actividad de las enzimas. Representa una alternativa a los métodos ópticos que requieren de disoluciones claras y en algunos casos es la técnica de elección por la sencillez en la detección directa de metabolitos.
- b) Obtención de los parámetros de intensidad de corrientepotencial impuesto para diferentes estados del sistema, i.e., en condiciones de v_{max} o en condiciones limitadas por el sustrato o en presencia de inhibidores. En este caso la electroquímica se coloca junto a los estudios cinéticos espectrofotométricos de barrido de longitud de onda rápidos en el cual se requiere ya de un equipo espe cial. En electroquímica analítica es posible dosificar de manera mas específica y controlada los parámetros I/E para poder medir con más exactitud los valores de constantes cinéticas asociadas a la reacción enzimática ya que hay una gran varidad de imposición de potencial o corrien te electrica para ajustarse a los intervalos de constantes de la reacción enzimática particular en estudio.

Por otro lado a diferencia de los métodos espectrofotométricos en los cuales se requiere que las especies asociadas absorban en el UV o VIS o bien que formen complejos coloridos, en electroquímica el sustrato o los productos pueden ser directa o indirectamente electrodetectados con gran exactitud. Es necesario aclarar que es posible plantear la posibilidad de que pueda generarse electroquímicamente una especie que sea, una vez electrogenerado, un sustrato adecuado para una reacción enzimática particular por lo que se piensa en un control electroquímico de un proceso enzimático.

En general no es posible pensar en que la superficie electródica sustituya a los cofactores utilizados por las enzimas que cata lizan reacciones de intercambio de electrones ya que la acción enzi mática está condicionada a la interacción estereoquímica entre el sustrato, el cofactor y la enzima. Sin embargo la perturbación elec troquímica puede condicionar al proceso enzimático global.

Puede representarse en un esquema el conjunto de eventos que puede enlazarse entre un sistema enzimático y un sistema de monitoreo y/o perturbación electroquímica:

Las letras (A), (B), (C) y (D) representan las etapas cuya cinôtica puede limitar el proceso global. La etapa (A) y/o (D) dependen de la manipulación electroquímica externa y pueden modularse de tal manera que se tengan condiciones de oparación solo para medir la velocidad del proceso determinada por los paso (B) y (C), i.e. si se desea solo medir la actividad de la enzima; o bien estas etapas (A) y/o (D) pueden modularse de tal manera que condicionen el proceso global de tal manera de que pueda evaluarse la velocidad de acción delas etapas -(B) y (C), i.e. estudios de cinética enzimática.

De lo expuesto anteriormente puede afirmarse que los métodos electroquímicos a diferencia de los empleados habitualmente en estudios de cinética enzimática, no solo miden la acción de un enzima en un sistema enzimático particular, sino que influyen en el sistema y pueden eventualmente modularlo lo cual ofrece una amplia gama de posibilidades en el estudio de la Química de la enzimas.

En este trabajo se muestra la aplicación en el estudio preliminar de la reacción de descomposición del $\rm H_2O_2$ por una peroxidasa, de cuatro metodologías electroanalíticas diferentes. Cada una de de las técnicas empleadas cuenta con un parámetro muy importante que reúne la forma que perturbación empleada al que se conoce como "ventana de tiempo". La sensibilidad varía con cada técnica y el tipo de información que proporcionan también es diferente pero es importan<u></u> te que la información ostenida en cada técnica se complemente para corroborar las hipótesis planteadas.

La hipótesis de trabajo que puede plantearse en este trabajo es:

" El O₂ es reducido sobre electrodos de Hg° y Pt° en dos etapas: $O_2/H_2O_2/H_2O$, generando señales de intensidad-potencial características, las cuales son modificadas por acción de una peroxidasa que gataliza la dismutación del H_2O_2 .

La modificación de las curvas I/E puede relacionarse con la actividad de la enzima empleada"

Con base a la hipótesis anterior se pretendemalcanzar los siguientes objetivos.

- a) Obtener las curvas I/E de la reducción del O₂ y del H₂O₂ por: polarografía clásica; polarografía diferen cial de pulsos; voltamperometría con electrodo girato rio y voltamperometría de barrido lineal y triangular.
- b) Obtener las curvas de la reducción del O_2 y del H_2O_2 en presencia de una peroxidasa y evidenciar la actividad de ésta.

2.0 GENERALIDADES.

 Fundamentos de electroquímica analítica: introducción a las curvas I/E.

La electroquímica estudia los fenómenos de transferencia de electrones entre una superficie conductora por lo regular metálica y una fase iónica conductora líquida no necesariamente acuosa. Esta transferencia de partícula se lleva a cabo cuando la energía que se impone a tal electrodo externamente es la adecuada para que se lleve a cabo la transferencia de electrones. Si la especie que entra en contacto con el electrodo acepta un electrón, ésta se reduce y la superficie metálica o electrodo actúa como cátodo, si ocurre lo contrario, i.e. que la especie pierde electrones donandolos al elec trodo, se dice que ocurre una oxidación y el electrodo se comporta como ánodo.

Las reacciones electroquímicas ocurren de manera espontánea o nó dependiendo de las caracteristicas de las interfases electrodo-disolución. Las reacciones que ocurren en el ánodo y en el cátodo deben estar suficientemente alejadas para no interferirse, se dice que la oxidación y la reducción estan compartamentalizadas. La figura siguiente muestra esquematicamente tal comp**e**rtamentalización:

Existe una serie de variables que afectan a una reacción electroquímica como son los parámetros referentes al tipo y naturaleza de los electrodos, a la manera en que se transportan las especies del seno de la disolución a la interfase electrodo/disolución, parámetros de química en solución, etc. En general la corriente de electrólisis se ve afectada por: la velocidad de tranferencia de electrones en la interfase, la velocidad de transferencia de masa de la especie que se va a electro lizar y de las especies producto de la electrólisis y de la veloc<u>i</u> dad de reacción química acoplada a la transferencia de electrones heterogénea.

Con respecto a la transferencia de electrones se puede decir que cuando el sistema se encuentra en el potencial de equilibrio, es decir, la velocidad de transferencia de electrones en el proceso de oxidación y reducción del mismo par, es la misma:

$$Ox + ne^{v_1}$$
 Red
 v_2

la corriente global en consecuencia es cero.

Si se perturba el equilibrio imponiendo un potencial diferente al de equilibrio, esta sobretensión provocará que una de las velocidades se modifique aumentando una de ellas y disminuyendo la otra pro vocando la aparición de una corriente de electrólisis que puede ser positiva si la velocidad de oxidación predomina o bien negativa si la velocidad de reducción es la predominante. Si la sobretensión aplica da es pequeña para producir un incremento considerable de la corriente entonces el sistema se comporta como un sistema rápido (4):

 $\eta = E_{imp} - E^{\circ} = sobretension.$

Imponer una sobretensión considerable para producir los efectos antes mencionados, es característico de los sistemas lentos.

La velocidad de transferencia de electrones esta determinado por algunos parámetros como el coeficiente de transferencia de carga o fa<u>c</u> tor de simetría α , y de la constante estándar de intercambio de electrones k°, asi como de la sobretensión η . Todos estos parámetros estan relacionados como se muestra en las siguientes expresiones (5,6):

> $v_1 = k^\circ e^{-\alpha n f \eta}$ f = F/RT $v_2 = k^\circ e^{(1-\alpha)n f \eta}$

Con respecto a la transferencia de masa puede decirse que esta se verifica por diferencias en el potencial químico de las espe cies y/o por diferencia en el potencial electroquímico. Las formas de transporte de masa al electrodo son por migración iónica, por di fusión y por convección.

La migración iónica es el movimiento de cargas en forma de iones solvatados bajo la influencia de un campo eléctrico aplicado. Las moléculas neutras no se ven afectadas por el campo. Los iones po sitivos se dirigen hacia el cátodo y los negativos hacia el ánodo.

La difusión es el transporte de especies en solución provocado por un gradiente osmótico, esto es un gradiente de concentración el cual provoca movimiento de materia hacia donde esta está en menor concentración. Este gradiente se genera por la electrotransformación al electrodo generando un gradiente de concentración de la interfase electrodo/disolución hacia el seno de la disolución.

La convección es el movimiento de capas de disolución hacia -el electrodo por agitación mecánica externa. El régimen de agitación no debe ser turbulanto sino laminar y constante. Las formas habituales de lograr un régimen convectivo constante y reproducible es por medio del empleo de electrodos giratorios o por goteo de mercurio.

La transferencia de masa y la transferencia de electrones son procesos inherentes a la reacción electroquímica, condiciones necesarias, pero no siempre ésta va acompañada de reacciones químicas acopladas. Estas reacciones pueden ocurrir entre una especie quími ca y la especie que se va a electrolizar, o bien puede ocurrir entre una especie química y el producto de una reacción electroquímica. Las reacciones pueden clasificarse en el orden de aparición en solución, poniendo la letra E a la reacción electroquímica y C a la reag ción química acoplada. Puede denotarse la rapidez o reversibilidad de estas reacciones con subíndices "r"y/o "i".

De las posibles combinaciones sencillas y de los procesos de varios pasos pueden obtenerse alrededor de una decena de tipos de reacciones acopladas (5,7):

transferencia de carga rápida simple: E_r

Ox + ne- Red

Ι.

transferencia de carga lenta: E,

Ox + ne ---- Red

III reacción química precedente a la transferencia rápida de electrones: C_E_.

Z ∉==== Ox

Ox + ne Red

IV

t

VI

II.

reacción química reversible precedente a la transferencia lenta de electrones: C_E_ .

Z -===⇒ 0x)

Ox + ne ----> Red.

tranferencia de carga rápida precednete a una reacción química reversible: $E_{\mu}C_{\mu}$.

Ox + ne #====* Red. Red #==== Z

transferencia de carga rápida precedente a una reacción química irreversible: E_rC_i.

Ox + ne emana Red.

Red ----+ 2

VII transferencia de carga rápida precedente a una reacción química catalítica: E_C!.

> $Ox + ne^{-} \in Red$. Red + Z $\sim -- \sim Ox$.

VIII transferencia de carga lenta precedente a una reacción química catalítica: E,C;

Ox + ne ----+ Red.

Red + Z ---- Ox .

Dependiendo del tipo de mecanismo que se presente, los regis-. tros de intensidad/potencial se verán modificados. Sin embargo para detectar tal modificación es necesario modular la medición de la corriente y el potencial con respecto a la velocidad de reacción química acoplada, esto es, trazar la curva intensidad-potencial a una velocidad tal que se pueda manifestar la reacción química aco plada.

Se define al tiempo de detección de la reacción química como el tiempo ventana y se determina en relación a la magnitud de la constante cinética de la reacción química acoplada:

$$t_{i} = i/k'$$

Por otro lado cada técnica electroquímica tiene su propio tiempo de registro de la respuesta intensidad/potencial impuesto, dependiendo sobre todo del tipo de transferencia de masa que se establezca. Si el tiempo de duración del proceso experimental electroquímico τ , es pequeño con respecto a t_v, entonces la reacción de transferencia de carga se detectará como no perturbada. Si por el contrario t_v es menor que τ , i.e. la k' es muy grande, entonces la reacción química acoplada puede modificar notablemente el registro I/E de la reacción electroquímica.

Là detección de los tiempo ventana depende del tipo de técnica electroquímica que se use para el estudio de la reacción química acoplada. A continuación se dan los tiempo ventanas accesibles con las técnicas utilizadas comunmente (5, 6):

intervalo т t, voltamperometria 30 - 1000 rpm 0.001-0.3 s con electrodo giratorio 1/w voltamperometria $10^{-4} - 1$ 0.02-100 V/s barrido triangular RT/Fv polarografía clásica t goteo 1 a 5 s 1 - 5 \mathbf{s}

Para el estudio de una reacción electroquímica afectada por una reacción química acoplada es preciso ensayar las diversas técnicas haciendo variar el parámetro τ en cada una de ellas. La medición de la corriente y el potencial en cada caso se correlaciona según la in-

formación proporcionada por Nicholson y Shain (7) la cual lleva a establecer el tipo de mecanismo de que se trata y si se tiene la suficiente información experimental puede determinarse t_v y en consecuencia el valor de la k' de la reacción química acoplada.

Se muestran en las figuras siguientes los parámetros de Nicholson y Shain que corresponden a los mecanismos ya mencionados en los párrafos anteriores.

En electroquímica analítica además de los principios expuestos anteriormente existen otros que son muy importantes en el desa rrollo y diseño de las reacciones electroquímicas .

En el trazado de las curvas I/E se utilizan electrodos de pequeña superficie llamados microelectrodos para que las relacio nes predichas por las ecuaciones puedan cumplirse.

Durante los fenómenos electroquímicos es necesario considerar que además de la sobretensión se establece un potencial debido a la resistencia de la disolución al paso de corriente. Este potencial, IR_s, se le conoce como "caida óhmica" el cual se evita por el uso de disoluciones iónicas concentradas.asi como el empleo del electrodo auxiliar lo más cercano posible al electrodo de trabajo.

Condiciones operatorias.

Para el estudio de las reacciones electroquímicas y sus reacciones químicas acopladas es necesario establecer condiciones de tr<u>a</u> bajo sistemáticas:

- a) Empleo de un electrolíto indiferente generalmente una sal completamente ionizada en el disolvente de trabajo y que no se electroliza facilmente.
- b) Eliminación del oxígeno disuelto de manera habitual en las disoluciones si este no es el analito en estudio, por medio de burbujeo de nitrógeno a la disolución.
- c) Definición del régimen convectivo de trabajo: Régimen de difusión convectiva (electrodos giratorios, polarografía);
 RDC; o régimen de difusión pura (voltamperometría lineal o cíclica) RDP. Esta condición es muy importante porque condiciona al parámetro de tiempo τ.
- d) Empleo de microelectrodos y compartamentalización de las interfases. Esto último se logra manteniendo los microelec trodos suficientemente alejados lo cual evita el uso de --membranas porosas que tienen la desventaja de introducir un potencial adicional de membrana o de unión líquida, que no es reproducible.

Una vez establecidas las condiciones experimentales de trabajo anteriores se procede a trazar la curva I/E que corresponde al dominio de electroactividad el cual es el intervalo de valores de potencial impuesto que el electrodo de trabajo adopta sin que haya corrien te de electrólisis.

Este intervalo esta delimitado por una corriente de reducción muy grande y una corriente de oxidación también muy grande que corres ponde a la reducción y oxidación de algún componente en gran concentración y que forma parte del medio reaccional de trabajo. Se dice que estos valores de corriente corresponden a la barrera catódica y a la barrera anódica respectivamente y no puede ocurrir ninguna reacción electroquímica a potenciales mas allá de aquellos impuestos por las barreras. Las barreras o muros anódico y catódico pueden estar dada por la reducción y/o oxidación del electrodo de trabajo, del disolvente mismo o bien por el electrolíto soporte por lo que el dominio de electroactividad cambiará con la naturaleza del electrodo, del disolvente y del pH de la disolución.

En la figura siguiente se muestra un dominio de electroactividad obtenido con el electrodo de Hg° en medio neutro acuoso en RDC:

2.2 Polarografía clásica.

El método polarográfico fué inventado por Jaroslav Heyrovsky en 1922 y estudiada por él y sus colaboradores estableciendo sus fundamentos durante casi 15 años (10). La polarografía es una té<u>c</u> nica voltamperométrica que estudia las reacciones electroquímicas que ocurren sobre un electrodo indicador de mercurio en forma de goteo (DME). El LME esta constituído por un capilar con un diameitro de aproximadamente 5×10^{-3} cm alimentado por un recipiente de Hg^{\argue} con una gran área a través de un tubo de caucho virgen de 20 a 50 em por el cual fluye el líquido metálico y la razón de goteo es de 2 a lo segundos (10,1).

La forma que toma la gota de mercurio al final del capilar es similar a una esfera que se desprende de éste cuando la tensión superficial es vencida por el peso de la gota. Debido a que la gota crece con el tiempo, la corriente de electrólisis cuando ocurre sobre este electrodo variará con el tiempo de vida de la gota:

El electrodo capilar se introduce a la disclución y se mantiene fija la altura de la columna de Hg° por lo que para un potencial dado el perfil de la corriente mostrada arriba no variará en un intervalo de tiempo grande. Este tiempo de goteo se ve afectado por la tensión superificial originando el fenónemo de electrocapilaridad (0,5).

El DME presenta ventajas que hacen que sea el más utilizado dentro de las técnicas electroanalíticas y que lo hace mas eficiente con respecto a los electrodos sólidos de Au, Pt o C, estas ventajas son:

- renovación continúa de la superficie además de ser altamente reproducible.
- el depósito de metáles no es acumulativo ya que difunde hacia dentro de la gota.
- es un microelectrodo.
- el tiempo de goteo es ajustable según las necesidades.
- el H⁺ se reduce a potenciales muy negativos por lo que el dominio de electroactividad catódico es muy amplio.

Las desventajas y limitaciones de este electrodo son las siguientes:

- la onda obtenida puede ser irregular por fenómenos de adsorción o de cambios en la tensión superficial.
- se requieren velocidades de barrido de potencial muy lentos (menores a 10 mV/s).
- la sensibilidad depende de la corriente residual o de carga electrica capacitiva. La sensibilidad es del orden de 10⁻⁴M en condiciones operatorias adecuadas.
- Es posible dicernir dos ondas de reducción u oxidación si ocurren por lo menos a una distancia de 300 mV/ne⁻.
- presente un dominio de electroactividad anódico limitado por la oxidación del Hg°.

El montaje experimental para el trabajo polarografico se muestra en la página siguiente asi como la forma típica de un registro polarográfico.

La ecuación de Ilkovic (5,6), muestra las relaciones entre la corriente límite de difusión, i_d, con la concentración en solución:

$$i_a = 605 \text{ n D}^{1/2} \text{m}^{2/3} t^{1/6} \text{C*}$$
 (a 25°C)

donde: n=número de electrones; D=coeficiente de difusión; m=flujo de mercurio; t=tiempo de goteo; C*=concentración en solución.

2.3 Polarografía diferencial de pulsos.

Los métodos de pulsos polarográficos fueron desarrollados por Barker como una extensión de sus trabajos con la polarografía de onda cuadrada (12), solo que estos, los métodos de pulsos, pueden ser descritos empleando algunos conceptos de la polarografía clásica o de y la voltamperometría de barrido lineal.

La mayor sensibilidad de la polarografía diferencial de pulsos (DPP) esta basada en el hecho de que la corriente de carga o capacitiva disminuye debido a que al final de la vida de la gota, cuando el crecimiento es mínimo, la corriente residual es pequeña y cambia lentamente con el tiempo (1814), en tales condiciones la DPP consiste en que se aplica un potencial en rampa co mo en la polarografía clásica pero se superpone un potencial adi cional que va desde 10 hasta 100 mv y que es mantenido hasta la cafda de la gota y a un nivel constante con respecto al potencial de base. La duración del pulso es de 5 a 100 milisegundos; dos muestras de corriente se toman durante cada gota, una antes de a plicar el pulso y la otra durante este y antes de que la gota caí ga (t, y t,) respectivamente, la diferencia de corriente, i2-i1, se grafica en función del potencial de base aplicado dando una -corriente diferencial donde el pico máximo se encuentra cercano al potencial de media onda si la amplitud del pulso es sufiecientemen te pequeña (5,15), La siguiente página muestra la figura que re presenta la relación entre corriente, pulso impuesto y rampa de po tencial impuesto. En esa figura se observa que en ausencia de la de una corriente de electrólisis o faradaica, el resultado es la aparición de una corriente de "clavo" debido a la corriente de car ga que aún decae rápidamente (figura 1.1) cuando el potencial apli cado es suficiente para que aparezca una corriente faradalua el com portamiento se observa en la figura 1.2, donde se aprecia que la disminución de la corriente inducida es un poco mas lenta. La suma de los valores de corriente da la corriente mostrada en 1.3 (16). Esto explica el porqué se toman dos muestras de corriente para poder eliminar la corriente residual y aumentar la sensibilidad.

En la página siguiente se muestra un registro típico obtenido por polarografía diferencial de pulsos.

ΔE= 10-100mv τ≖tiempo de caida de la gota

La expresión de las curvas polarográficas de reacciones rápidas esta dada por la ecuación:

$$E = E_{1/2} + 2.303 (RT/nF) \log \{(i_1 - i)/i\}$$
 (1)

que al ser diferenciada y relacionandola con la ecuación de -Cotrell que expresa la relación de i_1 , se obtiene la siguiente expresión (i_2 , i_5):

$$\Delta \mathbf{i} = (n^2 \mathbf{F}^2 / R \mathbf{T}) \lambda C (-\Delta \mathbf{E}) \{ D_o / \mathfrak{e}_m \}^{1/2} \{ \mathbf{P} / (1+\mathbf{P})^2 \}$$

donde $P = e^{(nF/RT)(E-E_{1/2})}$

' t = intervalo entre aplicación del pulso y la medida de la corriente.

D.= coeficiente de difusión.

La expresión anterior es válida únicamente para valores de amplitud pequeña, AE < RT/nF,y la ecuación para todas las amplitudes queda:

$$\Delta i = nFAC \left(D/st_{m} \right)^{1/2} \left(P_{A} \sigma^{2} - P_{A} / \sigma + P_{a} \sigma^{2} + P_{A} + P_{A}^{2} \sigma \right)$$
$$P_{A} = e^{\left((E_{1} - E_{2} / 2) - E_{1} / 2 \right)}$$
$$\sigma = e^{hF/RT} \left(E_{2} - E_{1} / 2 \right)$$
$$E_{1} = \text{potencial donde } i_{1}\text{es medida.}$$

E, = potencial donde i es medida.

cuando $P_A = 1$ entonces Δi es máximo y la expresión para la corriente de pico máximo es:

(
$$\Delta i$$
)_{max} = nFAC (D/st_m)^{1/2} ($\sigma-1/\sigma+1$)

observandose que a mayor amplitud del pulso la Δi máx. aumento pero también hace que la anchura del pico aumente, por lo tanto la resolución será menor, además se muestra que Δi máx. es lineal con C. El potencial de pico se ve afectado por la amplitud del pico alejándose del potencial de media onda en AE grandes por la siguien te relación:

$$E_{p} = E_{1/2} - \Delta E/2$$

El area de la gota afecta proporcionalmente a la diferencial de corriente. Debido a que se trabaja a concentraciones menores a 10^{-5} M la concentración del electrolito soporte puede ser de una concentración hasta milimolar siempre y cuando se utilicen 3 electrodos Por lo que respecta a la adición de un supresor de máximos polarograficos puede ocurrir que éste haga decrecer la corriente y además que se afecte la corriente de carga de tal manera que algunos sistemas - que son rápidos ya no lo sean(5,13).

2.4 Voltamperometría con electrodos giratorios.

Debido a que la convección forzada puede ser utilizada para que nos proporcione un transporte de masa constante y no del tiempo al establecerse un régimen estacionario, el uso de electrodos giratorios permite obtener información I/E reproducible y controlable.

Dentro de la capa de difusión que se crea por la convección for zada, la solución es considerada inmóvil por lo que la corriente es debida preferentemente por la llegada difusional a través de tal capa también conocida como capa de Nernst, mientras que la convección renueva la concentración de material electroactivo en los límites de es ta capa.

El gradiente de concentración en la capa de difución es considerado lineal y la corriente de electrólisis esta dada por (z, b, ξ) :

$$i = -nFAD \{C_{y=\infty} - C_{y=0}\}/\delta$$

donde x es la distancia medida a partir de la superficie del electrodo hacia el seno de la disolución y δ la distancia de la capa de Nernst.

Si el potencial esta lo suficientemente alejado del potencial normal condicional donde la corriente está limitada por la difusión entonces la ecuación anterior se reduce a:

Para el microelectrodo giratorio de disco el valor de la capa de Ne rnst viene dado por:

 $\delta = 1.61 \ \mathrm{D}^{1/3} \mathrm{v}^{1/6} \mathrm{\omega}^{1/2}$

donde D es el coeficiente de difusión; v es la viscocidad cinemática del disolvente y ω la velocidad de giro del electrodo.

Si la rotación es constante la corriente es proporcional a la concentración de la especie electroactiva en solución.

En condiciones de corriente límite de difusión la expresión exacta de la corriente límite para un electrodo giratorio viene dada por la ecuación de Levich:

$$i_1 = -0.62 \text{ nFA } D^{2/3} \text{ C } v^{-1/6} \omega^{1/2}$$

En la página siguiente se muestra un voltamperograma típico obtenido con un electrodo giratorio de disco.

La ventaja del uso de los microelectrodos giratorios estriba en el hecho de que pueden usarse microelectrodos de Pt°, Au°, C° que porporcionan un mayor domínio de electroactividad en la región anódica lo cual es una limitante en polarografía. Los límites de detección son del orden de los detectados por polarografía clásica.

Una desventaja del uso de microelectrodos sólidos es la gran facilidad que presentan para pasivarse, i.e. de conservar especies adsorbidas al electrodo.

Barrera Catodica

2.5 Voltamperometría de barrido lineal y triangular.

En esta técnica el barrido de potencial se realiza en forma lineal a diferentes velocidades y en forma de rampa. Este barrido puede ser simple o multibarrido (cíclica). Puesto que no hay agita ción no se observa un régimen estacionario y la corriente depende del tiempo en que se imponga el potencial. El proceso depende solo de la difusión, consecuencia de esto la forma en que se registra la corriente tiene forma de pico y no de una meseta ya que si se hace que el potencial cambie con respecto al tiempo desde un valor E, (ver figura) hacia valores positivos aparecerá una corriente faradaica la cual estará en un principio limitada por la transfe rencia de electrones hasta llegar a un pico donde va no limita sola mente ésta sino la difusión para después observarse la total depen dencia de la corriente con la difución, ya que la especie electroac tiva no se renueva con la misma velocidad con la que se esta consumiendo entonces la corriente cae hasta el valor residual. En la cercanía del electrodo se encuentra la nueva especie producto de la electrólisis y solo puede desaparecer de ahí por disufión hacia el seno de la disolución, transporte en general lento, y al hacer un ba rrido de potencial en sentido contrario se puededetectar a esta especie generada al inicio obteniendo una corriente de pico de sentido contrario y de igual magnitud si el sistema es rápido y no existen reacciones químicas acopladas. En esto se basa la voltamperometría cíclica. La ecuación de Randles-Sevick relaciona la corriente de pico con los parámetros involucrados en la reacción electroquímica (5,16):

 $i_n = -2.69 \times 10^8 n^{3/2} A D^{1/2} C v^{1/2}$

donde v es la valocidad de barrido de potencial. Para una sola velocidad de barrido la corriente de pico es proporcional a la concentración en solución. Debido a la dependencia de la corriente con la velocidad de barrido de potencial pueden detectarse concen traciones pequeñas a velocidades altas a condición de no llegar a un valor muy alto ya que en ese caso la corriente de carga aumenta con mayor rapidez que la corriente faradaica.

En la página siguiente se muestra un voltamperograma cíclico típico.

Voltamperograma Cíclico

 $\begin{array}{l} E_1 = \text{Potencial de ininicio de barrido de potencial} \\ \Xi\lambda = \text{Potencial de cambio} \\ E_p^C, I_p^C = \text{Potencial y Corriente de pico catódico} \\ E_p^a , I_p^a = \text{Potencial y Corriente de pico anódico} \end{array}$

Si observamos la figura anterior el potencial concional puede ser calculado de la siguiente forma:

$$E_{p} = E^{\circ} - RT/nF \ln D_{ox}^{1/2}/D_{red}^{1/2} + 1.109 RT/nF$$
$$E_{p} = E_{1/2} + 1.109 RT/nF$$

el valor de E_{1/2} es igual al obtenido por polarografía clásica si el electrodo de trabajo es de platino u otro metal inerte recurbiertos con una película de mercurio o con una poza de mercurio. El poten - cial de media onda, $E_{1/2}$, puede ser obtenido a 25°C por:

$$E_{p} = E_{1/2} + 0.0285/n$$

lo cual puede expresarse como un criterio de la rapidez del sistema. La cinética del proceso electródico puede ser estudiado con relativa sencillez por la voltamperometría lineal y cíclica en su conjunto.

Para un sistema rápido $E_p^c - E_p^a = 59 \text{ mv/n y no varía con la velocidad de barrido de potencial; <math>(i_p^c/i_p^a) = 1; i_p/v^{1/2}$ es independiente de la velocidad de barrido de potencial.

Para un sistema lento el $E_{p,cambia por 30/\alpha n} mv$ (α es elcoeficiente de transferencia de carga) por cada incremento de lo v<u>e</u> ces el barrido de potencial; $i_p/v^{1/2}$ es constante y no hay corrien te de pico inverso.

El proceso de determinación de la rapidez de un sistema es relativamente sencillo cuando no hay complicaciones de reacciones qu<u>í</u> micas acopladas. Los criterios de Nicholson y Shain ya mencionados en secciones anteriores muestras los perfiles de corriente de pico y potencial de pico anódicos y catódicos para diversos casos de reac ciones químicas acopladas.

2:6 Fundamentos de cinética enzimática.

Es posible plantear el concepto de Km y v_{max} para un sistema enzimático si se hecha mano del concepto apliamente usado en Química en Solución de constante condicional de formación (y/o disociación) de un complejo (17, 1%).

En efecto si consideramos que se forma el complejo enzima-sustrato y se establece un equilibrio, puede expresarse la concentración de los participantes de este equilibrio por medio de un diagrama loga ritmico de concentraciones de uso sencillo en Química en solución:

$$E + S \longrightarrow ES K_d = \frac{(E)(S)}{(ES)}$$

 $C_p = (E) + (ES)$ (balance de masa sobre la enzima)

Del diagrama anterior se observa que debe fijarse valores de sustrato tal que $pS << pK_d$ para que la enzima se encuentre totalmente saturada. Cuando $pS = pK_d$ se observa que la enzima esta saturada al 50%. Del diagrama anterior puede en consecuencia derivar se el diagrama de abundancia relativa para cualquier valor de pS:

donde $\phi_{ES} = \frac{(ES)!}{C_E}$ y $\phi_E = \frac{(E)}{C_E}$ y $\phi_E + \phi_{ES} = 1.0$

Ahora bien una vez establecida la relación de equilibrio termodinámico entre la enzima, el sustrato y el complejo enzima-sustrato, puede plantear el equilibrio anterior como una reacción "condicional" en la cual el donador de la partícula S participa en una reacción colateral para formar el producto y liberar a la enzima:

el equilibrio de disociación de ES ahora esta "condicionado" a la formación de P y a la liberación de E (regeneración del receptor de S; condicionalidad catalítica), la magnitud de la condicinalidad depend<u>e</u> rá del estado de equilibrio o del grado de avance en la producción de P.

Para cualquier grado de avance en la velocidad de producción del producto, cuando el donador de la partícula participa en un equilibrio

colateral donde el receptor se regenera, entonces la cantidad de E aparentementes es mayor por lo que se puede proponer que ahora la -disociación esta representada por un valor de $K_d^* > K_d$, $pK_d^* < pK_d$ por lo que se requerirá fijar valores de pS menores para alcanzar el -mismo grado de saturación.

Ahora bien el grado de avance debe fijarse en condiciones ta les que la velocidad de formación de ES y la velocidad de formación de P se igualen, en tal estado del sistema la concentración en cual quier momento es constante. Este estado de equilibrio aparente es en realidad un estado de"equilibrio" cinético o estado permanente ("steady state"):

si además se cumple el hecho de que (P) + 0, i.e. la condiciones iniciales del sistema, pS = constante (rzquisito de amortiguamiento múltiple por imposición de pS en medio concionado), entonces:

$$k_1(E)(S) = (ES)(k_2+k_3)$$

o bien

$$\frac{(E)(S)}{(ES)} = \frac{k_2 + k_3}{k_1} = K_m$$

de tal manera se establece la analogía entre el estado de equilibrio químico y el estado permanente cinético:

equilibrio químico: (E) (S) = K_d (ES) estado permanente: (E) (S) = $K_m = K$ La transformación de S para un valor de pS impuesto en presencia de enzima puede representarse por medio del diagrama logaritmico si se cumplen las condiciones del estado permanente:

la velocidad inicial de reacción es $v_{o} = \left(\frac{\Im(P)}{\Im(L)}\right)_{S} = k_{2}(ES)$

por lo que:

$$v_{o} = \frac{(E)(S)}{K_{m}} k_{2}$$

cuando (ES) = C_E entonces $v_0 + v_{max} = k_2 C_E$.

Por lo tanto si se fija un valor de pS y se mantiene el estado permanente, entonces las condiciones de velocidad máxima puede reprosentarse de la siguiente manera:

2.7 Características de las peroxidasas.

El término peroxidasa comprende a varias enzimas específicas como citocromo-peroxidasa, glutatión-peroxidasa, etc. En el caso de la peroxidasa de rábano la enzima está constituída por grupos hemopróticos; se conocen varias isoenzimas de esta peroxidasa $(\pi^{(j)})$. Su peso molecular es de aproximadamente 40,000 g/mol. Absorbe a 403 nm debido al grupo hemo y a 275 nm debido al grupo proteico. Su pu<u>n</u> to isoelectrico se encuentra en un valor de pH igual a 7.2, siendo estable a temperatura ambiente por semanas (π_{j}, zz) .

El mecanismo de reacción no esta muy bien definido siendo uno de los más probables el siguiente (**):

 $E + H_2O_2$ ----- complejo I complejo I + H_2O_2 ----- complejo II complejo II ----- $E + 2H_2O + O_2$

Cuando la concentración de peróxido es grande se forma un comple jo III inactivo. Además se reporta que los grupos hemo se dimerizan -(x,z) siendo en general más activa la forma monomérica.

Los aceptores de hidrógeno son específicos solamente actúan sobre el peróxido de hidrógeno, metil y etilperóxidos; sin embargo la especie donadora de hidrógeno puede ser: catetel, resorcinol, hidroquinona, piro galol, anilina, guayacol, etc. La actividad de la peroxidasa puede medir a través de la disminución de $11_{2}O_2$ o también puede medirse a través de la disminución del donador de 11 y por la aparición del producto oxidado. El valor de la actividad depende del donador empleado ya que la constante de velocidad de reacción es diferente para los diversos don<u>a</u> dores (x_i, x_i). 3.0 PARTE EXPERIMENTAL.

3.1 Estrategia experimental.

Para poner de manifiesto los fenómenos que ocurren cuando se electroliza el oxígeno y/o el H_2O_2 en ausencia y presencia de la - enzima se proponen las siguientes metodologías de estudio:

Regimen de difusión pura	Regimen de difusión convectiva	tiempo ventana
	polarografía clásica	3 seg
	polarografía difere <u>n</u> cial de pulsos.	l seg
	voltamperometría con electrodo giratorio	0.3 seg

voltamperometria de barrido de potencial lineal y triangular.

0.9 seg

Como se observa los tiempo ventana son grandes y estamos muy lejos de ofrecer una gran variedad de ellos. Sin embargo los cuatro tipo de metodologías permite mostrar los efectos de la acción de la enzima sobre la electroactividad de los sustratos.

Para cada metodología se procederá a analizar el perfil de las curvas I/E para el oxígeno solo, para el peróxido solo, y para el oxígeno en presencia de enzima y para el peróxido en presencia de en zima. En todos los casos se compararán los perfiles de las curvas obtenidas. De los perfiles obtenidos se evidenciará la mejor metodo logía para evidenciar el efecto buscado. 3.2 Analitos, materiales y equipos.

3.2.1 Analitos y medios reaccionales.

Se trabaja en un medio constituido por una disolución amortiguadora del pH de fosfatos de concentración analítica 0.1F y -pH=7.00.

Los polarogramas trazados con oxígeno se obtienen al hacer burbujear aire al medio reaccional por espacio de aproximadamente 10 minutos. La concentración del oxígeno disuelto se evalúa por comparación con la concentración del peróxido de hidrógeno usado y por la diferencia de alturas de las corrientes límites de difusión polarográficas. El H_{2O_2} usado es de marca BDH Laboratorý y de concentración aproximada de 30% p/v.

Se emplea una disolución de concentración 0.4 µg/ml de proteína total la cual tiene conjugada una peroxidasa de origen animal. La disolución proteica-peroxidasa fué sintetizada con la finalidad de ser usada en anólisis de ELISA en el laboratorio de -Química de Proteinas del centro de investigaciones de Cuernavaca (UNAM). Su actividad no ha sido determinada por los metodos convencionales cuantitativamente pero presenta de manera habitual actividad de peroxidasa satisfactoria. En lo suscesivo se referirá a tal disolución come disolución enzimática.

3.2.2 Materiales y equipos.

Se trazan las curvas I/E en polarografos de barrido automático de tres electrodos. Para la polarografía clásica, la voltamperometría con electrodo giratorio y la voltamperometría de barrido lineal y triangular se usa el polarógrafo Beckman-Electroscan de barrido automático con registrador lineal Cole Parmer. Para el trazo de los polarogramas diferenciales de pulsos se usa el Polarógrafo Metrhom E605.

Dependiendo del tipo de técnica empleada se diseña la celda de trabajo. La figura 3.2.a, 3.2.b, 3.2.c, 3.2.d se muestran las celdas y los electrodos de trabajo, auxiliar y de referencia usa das en polarografía clásica, de pulsos, voltamperometría con disco giratorio y voltamperometría de barrido lineal respectivamente.

Fig 3.2.a Celda de trabajo utilizada en Polarografía Clásica

- (1) Electrodo de Referencia de calomel saturado (ECS)
- (2) Electrodo de Trabajo: Goteante de Hg (DNE)
- (3) Electrodo Auxiliar: Wolframio (W)
- (4) Pipeta Pasteur para el flujo de Nitrógeno
- (5) Portaceldas ; (6) Celda de trabajo
- (7) Base de la celda de Trabajo
- (8) Barrita magnética

33

Fig 3.2.b Celda de trabajo utilizada en Polarografía Diferencial de Pulsos

- (1) Electrodo de Trabajo: Goteante de Hg (DME)
- (2) Electrodo Auxiliar: Pt-Pd (Pt-Pd)
- (3) Agitador mecanico
- (4) Manguera de flujo de Nitrógeno
- (5) Electrodo de Referencia : Calomel Saturado (ECS)
- (6) Celda de Trabajo
- (7) Brazo portaceldas del polarógrafo

Fig. 3.2.c Celda de Trabajo utilizada en Voltanperometría con disco giratorio

- (1) Electrodo Auxiliar: Wolframio (W)
- (2) Electrodo de Trabajo: Giratorio de Disco (Pt)
- (3) Pipeta Pasteur de flujo de Nitrógeno
- (4) Electrodo de Referencia: Calomel Saturado (ECS)
- (5) Portaceldas ; (6) Celda de Trabajo
- (7) Base de la celda de trabajo

Fig. 3.2.d Oelda de Trabajo Utilizada en Voltamperametría de Barrido Lineal.

Electrodo de Referencia:Calonel Saturado (ECS)
 Electrodo Auxiliar: Wolframio (W)
 Electrodo de Trabajo: Poza de Mercurio (Hg)
 Pipeta Pasteur de flujo de Nitrógeno
 Portaceldas : (6) Celda de Trabajo
 Base de la colda de trabajo
 Barrita magnética

3.3 Polarografía clásica.

Se trazan los polarogramas de disoluciones de amortiguador de fosfatos pH=7.0 0.1F después de burbujear aire para mostrar las dos ondas de reducción del oxígeno en solución. Posteriormente se burbuj jea nitrógeno a diferentes tiempos para mostrar el desplazamiento del oxígeno por el nitrógeno y corroborar que las señales obtenidas son generadas por el oxígeno introducido inicialmente.

La figura 3.3.a muestra los polarogramas obtenidos.

Se trazan los polarogramas de disoluciones de ${\rm H_2O_2}$ a concentraciones crecientes previa eliminación del oxígeno disuelto por -burbujeo de nitrógeno. Los polarogramas resultantes se muestran en la figura 3.3.b .

Para corroborar la no electroactividad de la disolución enzimática sola se traza el polarograma de una disolución de l0eml de medio reaccional en presencia de 0.1 ml de disolución enzimática - Se observa el dominio de electroactividad limpio previa eliminación del oxígeno por burbujeo del nitrógeno.

Se trazan los polarogramas del medio reaccional saturado de oxígeno en presencia de cantidades crecientes de disolución enzimática. Los polarogramos obtenidos se muestran en la figura 3.3.c. Para el trazo de este experimento se diluye la disolución enzimática original **i**:100 en amortiquador de fosfatos.

Se trazan los polarogramas de disoluciones de H_2O_2 en presencia de enzima y después de agitar la disolución a diferentes tiempos de reacción. La figura 3.3.d muestra los polarogramas trazados.

En todos los casos se mantiene un tiempo de goteo de Hg° constante a razón de l gota cada 3 segundos. El barrido de potencial se mantuvo igualmente constante en un valor de 5 mV/s lo que correg ponde a una velocidad usual en polarografía clásica. El burbujeo de nitrógeno se realizó haciendo pasar el nitrogeno por una trampa de agua para evitar pérdidas de disolvente de trabajo en la celda.

FIG. 3.3.a Polarogramas de disoluciones saturadas de oxígeno y posterior eliminacion con N₂†

- 1) solución saturada de oxígeno.
- 2) 60 segundos de burbujeo de nitrógeno.
- 3) 120 segundos de burbujeo de nitrógeno.
- Eliminación total del O₂ (dominio de elec troactividad).

Vo = 10 ml; Amortiguador fosfatos pH=7 Co=0.1M; v = 5 mV/s; t = 0.3 s . ET: EGM; EA: W°; ER: ECS.

FIG. 3.3.b Polarogramas de disoluciones de H_2O_2 de concentración variable xCo en medio fosfatos pII=7.0.

1) Dominio de electroactividad.

2) x = 0.4; 3) x = 0.6; 4) x = 0.8; 5) x = 1.0.

Co = 1 mM; Vo = 10 m1; v = 5 mV/s; t = 0.3.s;ET: EGM; EA: W°: ER: ECS.

FIG. 3.3.c Polarogramas de disolución saturada de oxígeno en presencia de disolución enzimática.

- 1) Disolución saturada de O, sola.
- Disolución saturada en presencia de disolución enzimática 3.9 ng/ml de prot. total.
- Disolución saturada en presencia de disolución enzimática 7.7 ng/ml de prot. total.

Vo = 10 ml; Amortiguador fosfatos pH=7.0 Co = 0.1M; v = 5 mV/s; t = 0.3 s; ET: EGM; EA: W°: ER: ECS.

FIG. 3.3.d Polarogramas de disoluciones de H₂O₂ en presencia de disolución envimática:

- 1) Dominio de electroactividad.
- 2) H₂O₂ solo 4.4 x10⁻⁵M.
- 3) H_2O_2 4.4×10⁻⁵M + disolución enzimática 3.9 ng/ml de prot. total. después de 10 minutos de agitación.
- 4) Después de 15 minutos de agitación.
- 5) Después de 20 minutos de agitación.
- 6) Después de 25 minutos de agitación.

3.4 Polarografía diferencial de pulsos .

Se trazan los polarogramas de disoluciones del medio reaccional de fosfatos pH=7.0 saturadas de O_2 así como de H_2O_2 solo. Los polarogramas obtenidos se muestran en la figura 3.4.a.

El polarograma en presencia de una alfcuota de disolucion es trazado,previa eliminación de oxígeno por burbujeo de nitrógeno,corroborándose la no electroactividad de la disolución enzimática.

Se traza el polarograma de disoluciones saturadas de O₂ en presencia de enzima no encontrándose cambio alguno . Para dos concentraciones diferentes de $(H_{2}O_{2})_{T}$ en presencia de la disolución enzimática y a diferentes tiempos de reacción, las figuras 3.4.b y 3.4.c muestran la evolución de las curvas I/E=f(t).

Un electrodo goteante de mercurio se emplea con un tiempo de goteo de l segundo y un electrodo auxiliar de platino.Los volumenes de trabajo son de 20 ml de disolución amortiguadora de fosfatos pH= 7.0 . El electrodo de referencia es de calomel saturado.

Se emplea un pulso de potencial de 50 mV y un barrido lineal de potencial de 10 mV/s.

3.5 Voltamperometría con el electrodo giratorio de disco.

Los voltamperogramas di disoluciones del medio reaccional saturado con 0_2 se trazan, observándose una onda de reducción cuya corriente límite aumenta con la velocidad de giro del electrodo.De igual manera se trazan los voltamperogramas de disoluciones de H_2O_2 en concentración creciente.Las figuras 3.5.a y 3.5.b muestran los voltamperogramas que se obtuvieron.

De estos polarogramas se observa que no se definen con claridad las ondas de reducción correspondientes al O₂ y al H_2O_2 y que a cierta concentración las ondas de reducción presentan un pico lo que su giere que el H_2O_2y/o el O₂ presentan fenómenos de adsorción en el platino (26,7), por lo que se realizaron una serie de experimentos colaterales para poner de manifiesto tal comportamiento.

ET: EGM; EA: W°; ER: ECS.

FIG. 3.4.5 Polarogramas diferenciales de una disolución de H.O. 8.8×10^{-4} M en presencia de enzima 3.9×10^{-9} g/ml (prot. total). a diferentes tiempos de reacción:

- (1) 0 min sin enzima; con enzima: (2) 2 min;
- (3) 7 min; (4) 17 min); (5) 27 min; (6) 37 min;
- (7) misma que (6) pero después de 2 minutos de burbujeo de nitrógeno.

FIG. 3.4.c Polarogramas diferenciales de una disolución de H_2O_2 8.8x10⁻⁵M en presencia de enzima 3.95 ng/ml (prot. total) a diferentes tiempos de reacción:

(1) 0 min sin enzima; con enzima: (2) 10 min;
(3) 20 min; (4) 30 min; (5) misma que (4) pero después de 7 minutos de burbujeo de nitrógeno.

w (rpm) 4500 ------3500 ------3000 ------2500 ------

> FIG. 3.5.a Voltamperograma con microelectrodo giratorio de disco de una disolución amortigua dora de fosfatos pH=7.0 saturada de oxígeno a diferentes velocidades de giro del electrodo:

(1) 4500 rpm; (2) 4000 rpm; (3) 3500 rpm;
(4) 3000 rpm; (5) 2500 rpm.

v = 5 mV/s; ET: EGD Pt°; EA: W°; ER: ECS.

FIG. 3.5.b Voltamperograma con microelectrodo giratorio de disco de una disolución de H_2O_2 - de concentración variable;

 dominio de electroactividad del amortiguador de fosfatos pH=7.0.

(2) 3.5 mM; (3) 10.7 mM; (4) 14.4 mM; (5) 17.9 mM;
(6) 21.5 mM.

v = 5 mV/s; w= 4500 rpm; ET: EGD Pt°; EA: W°; ER: ECS.

Se traza el voltamperograma de la disolución de H_2O_2 de concentración 2×10^{-2} M manteniendo la velocidad de giro del electrodo constante. Después del trazo del polarograma se deja de imponer el potencial y se mantiene girando el electrodo después de un interva lo de tiempo fijado con anterioridad (At) se vuelve a trazar el vol tamperograma SIN LIMPIAR LA SUPERFICIE DEL ELECTRODO, este segundo voltamperograma es diferente al anterior. Cuando no hay reacciones de adsorción el repetir los voltamperogramas lleva a la misma gráfica siempre. Se repite esta operación varias voces para el mismo At entre cada voltamperograma. Después de una serie de curvas trazadas asf se limpia la superficie del electrodo y se realiza una nueva serie de curvas con un At diferente.

Las figuras 3.5.c,d,e,f,g muestran los voltamperogramas que se obtienen de los experimentos anteriores.

Se traza un voltamperograma en medio reaccional de amortiguador de fosfatos pH=7.0 y se verifica la no electroactividad de la disolución enzimática sobre este electrodo.

Disoluciones de amortiguador saturados de oxígeno y de H_2O_2 practicamente no varian por adición de disolución enzimática.

3.6 Voltamperometría de barrido lineal y cíclica.

Se trazan lo voltamperogramas de barrido lineal y triangular con un electrodo de poza de Hg° de disoluciones de amortiguador de fosfatos de pH=7.0 en ausencia y presencia de enzima haciendo variar la velocidad de barrido de potencial.

La figura 3.6.a muestra los voltamperogramas obtenidos para La velocidad de 500 mV/s.

Se trazan los voltamperogramas lineales de disolución de H_2O_2 en medio de fosfatos pH=7.0 en ausencia de disolución enzimática a diferentes velocidades de barrido de potencial. La figura 3.6.b muestra los voltamperogramas obtenidos.

Se trazan los voltamperomgramas lineales de una disolución de H_2O_2 en el mismo medio reaccional y en presencia de disolución enzimática a diferentes tiempos de reacción. La figura 3.6.c muestra la evolución de los voltamperogramas obtenidos en este experimento.

FIGURAS 3.5 Voltamperogramas con microelectrodo giratorio de Pt° de disoluciones de - H_2O_2 2x10⁻² M en medio amortiguado de fosfatos pH=7.0 a diferentes tiempos de adsorción (Δ t) a diferentes intervalos de mues treo:

3.5.c:	∆t = 5 min
3.5.d:	∆t = 3 min
3.5.e:	∆t = 2 min
3.5.f:	$\Delta t = 1 \min$
3.5.g:	$\Delta t = 10 seg$
1.1	

v = 5 mV/s; w = 4500 rpm; ET: Hg°; EA: W°; ER: ECC. Las figuras se muestran en las siguientes páginas.

FIG. 3.5.c $\Delta t = 5 \min$

FIG. 3.5.d At = 3 min

49.

FIG. 3.5.e $\Delta t = 2 \min$

FIG. 3.5.f ∆t ≈ 1 min

FIG 3.5.g At = 10 seg.

FIG. 3.6.a Voltamperogramas cíclicos de

Amortiguador de fosfatos pH=7.0 saturado de oxígeno sin disolución enzimática.

Amortiguador de fosfatos pH=7.0 saturada de oxígeno en presencia de disolución enzimática 2 ng/ml proteína total.

FIG. 3.6.b Voltamperogramas lineales de H_2O_2 8.16x10⁻⁴ M en amortiguador de fosfatos pH=7.0 a diferentes velocidades de barrido de potencial:

	10	n/V/S
	25	"
-)	50	n
	100	14

ET: Hg°; EA: W°; ER: ECS.

FIG. 3.6.c Voltamperogramas lineales de H_2O_2 1.8x10⁻⁴M en amortiguador de fosfatos pH=7.0 en presencia de solución enzimática 1.9 ng/ml de proteína total a diferentes tiempos de reacción:

	sin solución enzimática 0 min
~~~~~	con solución enzimática 13 min
• • • • • • •	con solución enzimática 33 min
x	la anterior y 10 min de N ₂ †

v = 50 mV/s; ET: Hq°; EA: W°; ER: ECS.

4.0 DISCUSION.

4.1 Polarografía clásica.

En el medio reaccional de trabajo se encuentra un dominio de electroactividad desde +0.4 v/ECS hasta -1.02 v/ECS.

La solución saturada de oxígeno muestra dos ondas de reducción que corresponden a la formación de  $H_2O_2$  y  $H_2O$ :

I:  $O_2 + H_2O + 2e^- + H_2O_2 + 20H^-$ II:  $H_2O_2 + 2e^- + 20H^-$ 

El burbujeo de nitrógeno desplaza al  $\Omega_2$  en disolución por lo que las ondas de reducción I y II disminuyen de altura total. Las figuras 4.1.a y 4.1.b muestran la disminución de la corriente lím<u>i</u> te de las ondas i_I e i_{II} durante el burbujeo de nitrógeno.

La relación de I_{1ím},  $E_{1/2}$  con el tiempo de burbujeo es la -siguiente para las dos ondas:

t (seg)	I			II		
	ⁱ ī [*]	E 1/2		iII	E1/2	
0	-1.5	0.33		-1.00	-0.60	
60	-1.4	0.33	:	-0.92	-0.54	
120	-1.0	0.30		-0.67	-0.60	

* los valores de i estan dados en uA y los de E en v/ECS.

De los resultados anteriores se observa que la relación de  $i_I/i_{II}$  es constante c igual a l.5 veces. La corriente límite de di fusión disminuye con el tiempo de burbujeo y el potencial de media onda prácticamente no varía con la concentración de O₂ remanente en solución.

La disolución de  $H_2O_2$  presenta una onda de reducción. Esta onda de reducción presenta una corriente límite de difusión que varia linealmente con la concentración. El  $E_{1/2}$  de esta onda también mue<u>s</u> tra una ligera variación con la concentración de peróxido en solu ción. Las gráficas 4.1.c y 4.1.d muestran las figuras obtenidas respectivamente.



FIG. 4.1.a Disminución de la corriente límite de difusión de la reducción del  $0_2 + H_2 O_2$  con el tiempo de burbujeo de nitrógeno.



FIG. 4.1.b Disminución de la corriente límite de difusión de la reducción de  $H_2O_2$  +  $H_2O$  con el tiempo de burbujeo de nitrógeno.





 $m = 1.1 \times 10^4 uA/M$  b = 0.1 uAr = 0.9956



FIG. 4.1.d Variación del  $E_{1/2}$  de la reducción del  $H_2O_2$  con la concentración analítica del peróxido en solución.

De la gráfica  $i_{H_2O_2} = f(C_{H_2O_2})$  y de la relación de l.5 entre la corriente límite del oxígeno y del peróxido es posible deducir la concentración del O₂ presente en las disoluciones saturadas con aire.

Del valor del concentración de las especies en disolución puede evaluarse los coeficientos de difusión del  $O_2$  y del  $H_2O_2$  por medio de la ecuación de Ilkovic corregida (5):

 $i_{d} = 607 \text{ n } D_{o}^{1/2} \text{ Co } m^{2/3} t^{1/6} (1+39D_{o}^{1/2} t^{1/6}/m^{2/3})$ 

sabiendo que:

 $m = (41r_{o}^{3}p/3t) = 18.8 \text{ mg/s}$ 

para t = 3 s;  $r_o = 0.1$  cm;  $\rho = 13.534$  mg/cm³; Co =  $9.6 \times 10^{-2}$  mM n = 2 e⁻.

sustituyendo los valores y haciendo uso de un proceso iterativo de calculo se obtiene el valor de  $D_{\circ}(O_2)$  a partir de la corriente límite de difusión de la primera reducción. Se obtiene el valor de:

$$D_{\circ}(O_2) = 8.6 \times 10^{-6} \text{ cm}^2/\text{s}$$

Se deduce en consecuencia que:  $D_{o(H_2O_2)} = 3.6 \times 10^{-6} \text{ cm}^2/\text{s}$ 

La relación del potencial de media onda con la concentración en solución de  $H_2O_2$  obsedece al tipo de reacción electroquímica de reducción del peróxido la cual es lenta sobre electrodo de Hg° y además ha ce participar en medio tamponado al disolvente (4):

$$H_{2}O_{2} + 2H_{2}PO_{4}^{-} + 2e^{-} + 2H_{2}O + 2HPO_{4}^{2-}$$

$$E_{1/2} \approx (0.06/\alpha n) (\log(1.34 \text{ kt}^{1/2}/D_{0}^{1/2})) - (0.06/\alpha n) pH + 0.06/\alpha n) pKa$$

$$- (0.06/\alpha n) \log C_{H_{0}O_{2}}$$

dado que el pH es constante y amortiguado por la disolución de fosfatos el tiempo de goteo se mantiene constante, el  $E_{1/2}$ no permanece cons tante:

$$E_{1/2} = cte - (0.06/an) \log C_{H_2O_2}$$

De los polarogramas en presencia de disolución enzimática, se observa que a medida que aumenta el tiempo de reacción aparece una onda que se debe al oxígeno proveniente de la catálisis de la bismutación del  $H_2O_2$ , la onda de reducción del  $H_2O_2$  perma nece ya que aunque en disolución la concentración de  $H_2O_2$  disminuye al electrodo se regenera por la reducción del O, producido:



donde (1-x) es la fracción no bismutada en solución por acción de la disolución enzimática.

Las figuras 4.1.e y 4.1.f muestran el valor de  $i_I$  e  $i_{II}$  dura<u>n</u> te el tiempo de reacción de bismutación del peróxido en presencia de disolución enzimática.

De tales figuras se observa que existe un tiempo mínimo en el cual la detección de los cambios (aparición de  $O_2$  y detección de  $H_2O_2$ total al electrodo) son detectables y que hay un tiempo en el cual puede observarse una meseta de saturación del sistema. La porción lineal indica la velocidad de evolución de los eventos que ocurren globalmente. Se encuentra que la relación de velocidades es aproximadamente de 10.35 veces:

$$\{\Im_{I}/\Im_{E} = v_{O_{2}} \ Y \ \{\Im_{I}/\Im_{E} = v_{H_{2}O_{2}}$$
  
 $\{v_{O_{2}}/v_{H_{2}O_{2}}\} = (0.025/0.072) = 0.35 \text{ veces}$ 

El significado de tal proporción con respecto a los balances de masa se tratan en conjunto después del análisis de las demás tecnicas.





 $\left[ \frac{\partial i}{\partial t} \right]_{\rm E} \simeq 0.025 \ \mu {\rm A/min} \ (15 {\rm min} < t < 30 {\rm min})$ 





 $\left(\frac{\partial i}{\partial t}\right)_{E} = 0.072 \mu A/min (15 min < t < 30 min)$ 

## 4.2 Polarografía diferencial de pulsos.

El dominio de electroactividad encontrado va de 0.05 v/ECS a -1.5 v/ECS. De la disolución saturada de oxígeno asi como de la disolución con  $H_2O_2$  de concentración conocida es posible deducir la concentración de oxígeno disuelto por el burbujeo de aire encon trándose una concentración de 5.34x10⁻⁴ M. Por otro lado la relación de corriente de pico de reducción de  $O_2$  con respecto a la corriente de pico de reducción del  $H_2O_2$  se encuentra igual a 2.1 ve ves.

De los polarogramas trazados para una concentración de  $H_{2}O_{2}$ 8.8x10⁻⁴M en presencia de disolución enzimática 3.95 ng/ml (prot. total) se observa que a diferentes tiempos de reacción la i_p de la reducción del  $O_{2}$  es menor que la i_p de la reducción de  $H_{2}O_{2}$ . La evolución de los valores de i₁ y de i₁₁ se muestran en la figura 4.2.b.

De los polarogramas trazadas para una concentración de  $H_{2O_2}$ 8.8x10⁻⁵ M en presencia de disolución enzimítica 2.95 ng/ml (prot. tatal) se observa que a diferentes tiempos de reacción ahora la i_I es mayor que i_{II}. La evolución de i_I y de i_{II} se muestran en la figura 4.2.a.

Se puede deducir del comportamiento de tales gráficas que para la concentración menor la cantidad de  $O_2$  producido es mayor por unidad de tiempo y que una cantidad grande de  $H_2O_2$  inhibe la actividad de la disolución enzimática. De las gráficas i = f (t) se encuentra que la velocidad de evolución de la corriente con el tiempo es muy grande con respecto a la obtenida en polarografía clásica:

$$\begin{split} & C_{\rm H_2O_2} = 8.8 \times 10^{-4} M \qquad (v_{O_2} / v_{\rm H_2O_2}) = 0.3 \; \text{veces.} \\ & C_{\rm H_2O_2} = 8.8 \times 10^{-5} M \qquad (v_{O_2} / v_{\rm H_2O_2}) = 1.4 \; \text{veces.} \end{split}$$

No olvidar que los valores de v representan la velocidad de cambio global registrado por los valores de corriente de pico.

Por otro lado al eliminar el oxígeno de la disolución de  $H_2O_2$ en presencia de disolución enzimática para un tiempo dado se obtiene la cantidad de  $H_2O_2$  remanente no bismutada lo cual nos arroja el dato de la cantidad catalizada por unidad de tiempo:









Para el ensayo donde  $C_{H_2O_2} = 8.8 \times 10^{-4} M$  la cantidad degradada de peróxido por unidad de tiémpo es de  $7.4 \times 10^{-7}$  M/min en las condiciones de trabajo; y para el ensayo con  $C_{H_2O_2} = 8.8 \times 10^{-5} M$  es de 2.26×10⁻⁶ M_{de}esto es tres veces mayor.

#### 4.3 Voltamperometría con electrodo giratorio.

Los voltamperogramas lineales obtenidos con este electrodo no ponen de manifiesto los fenómenos catalíticos de la bismutación del peróxido por la disolución enzimática ya que las disoluciones de  $H_2O_2$  presentan un pequeño pico de reducción en las cercanías de los valores de potencial correspondientes a la reducción del oxí - geno. La figura 4.3.a muestra como la corriente de pico de adsorción aumenta con el número de barridos suscesivos para diferentes tiempos de contacto electrodo- $H_2O_2$ . En esta gráfica se observa - que si registramos inmediatamente el voltamperograma, esto es no se deja mucho tiempo el electrodo giraando en contacto con el peróxido, se registra notablemente un aumento de la especie adsorbida al electrodo. Por otro lado la figura 4.3.b muestra como la corriente límite de difusión del  $H_2O_2$  detectada disminuye en correspondencia con el aumento del primer pico de adsorción.

Este comportamiento esta de acuerdo con el comportamiento de los electrodos de Pt° que catalizan "per se" la descomposición del  $H_2O_2$  generando  $O_2$  altamente soluble en el Pt°. En consecuencia la bismutación del  $H_2O_2$  y la adsorción del  $O_2$  al electrodo "enmasca ra"la bismutación del peróxido por la disolución enzimática.

Es posible obtener regimenes de electrodo giratorio con Hg° si se utiliza una capa de mercurio depositada sobre un microelectrodo giratorio de carbón vítreo como alternativa al Pt°.

Sin duda el patrón de adsorción se modificaría por la acción catal ítica de la enzima sin embargo no es la voltamperometría con electrodos giratorios la técnica ideal para poner de manifiesto tal influencia sino mas bien el estudio de las curvas electrocapilares cyylo estudio sale fuera del dominio de estudio de esta tesis.

El patrón electroquímico encontrado evidencia que la variación de la corriente de difusión sigue el comportamiento típico de las isotermas de Temkin (25,28,29)









### 4.4. Voltamperometría de barrido lineal y cíclica.

El dominio de electroactividad encontrado va de 0.3 v/ECS hasta -1.6 v/ECS. Se corrobora la lentitud de los sistemas con los voltameprogramas de barrido triangular ya que no aparecen los correspondientes picos de oxidación de  $H_10$  y de  $H_2O_2$ .

La disolución de oxígeno a saturación presenta un pico ca tódico que corresponde a la reducción de oxígeno a  $H_2O_2$ , y un pico catódico que corresponde a la reducción de peróxido hasta agua. Ambas reducciones obdecen a un comportamiento regido por la difu sión ya que la corriente de pico es lineal con la v^{1/2} como lo mue<u>s</u> tra la figura 4.4.a.

En presencia de disolución enzimática la dependencia de la corriente de pico con la velocidad de barrido,  $i_p = f(v^{1/2})$  sigue - siendo lineal pero la pendiente de las rectas obtenidas se modif<u>i</u> ca aumentando para la reducción del O₂ y disminuyendo para la re<u>o</u> ducción del peróxido lo que confirma la existencia de dos mecani<u>s</u> mos acoplados: CE para la reducción de O₂ y CE para la reducción del peróxido. Las rectas obtenidas se muestran en la figura 4.4.b.

La figura 4.4.c muestra la variación de la i_p para la primera reducción ( $O_2 \neq H_2O_2$ ) y para la segunda reducción a diferentes tiempos de reacción. Se encuentra que la variación de v_o con respecto a v_{H_2O_2} es en promedio aproximadamente 0.31 veces,² lo cual evidencia que la velocidad de aparición de oxígeno es mayor que la velocidad de conservación de H₂O₂ total.

Finalmente la medición de la cantidad de  $H_2O_2$  remanente después de eliminar el  $O_2$  generado por la acción catalítica durante un tiempo de reacción arroja un valor de 6.1x10⁻⁷M/min para 3.9 ng por ml de disolución (prot. tot.)






FIG. 4.4.b Dependencia de la corriente de pico catódico de la reducción de  $O_2$  ( $\times -\times -$ ) y del  $H_2O_2$ (-.-.) con la velocidad de barrido de potencial en presencia de disolución enzimática 3.9 ng/ml prot. total.

71



FIG. 4.4.c Evolución de la corriente de pico de reducción del  $O_2$  ( $i_1$ ) y del  $H_2O_2$  ( $i_{II}$ ) de una disolución de  $H_2O_2$  1.7×10⁻⁴M total en presencia de 3.9 ng/ml (prot. tot.) de disolución enzimática a diferentes tiempos de reacción.

## Discusión general.

De los experimentos realizados con disoluciones de  $H_2O_2$  sin oxígeno y en presencia de una cantidad fija de disolución enzimática bajo agitación a diversos tiempos de reacción, se obtiene la siguiente información:

- a) Aparecen dos ondas de reducción o dos picos de reducción correspondientes al  $O_2$  que ap<u>a</u> rece en solución por acción de la enzima, y la reducción del  $H_2O_2$  remanente no cataliz<u>a</u> do más la cantidad de peróxido que se genera al electrodo por la reducción del  $O_2$  previammente producido en solución.
- b) La evolución de ambos valores de corriente de reducción para cada tiempo de reacción marca la velocidad del proceso global, i.e. la cantidad de  $O_2$  producido y detectado al electrodo y la cantidad total de  $H_2O_2$  detec tada.
- c) La relación de velocidades de producción de oxígeno y de conservación de ¹¹2⁰2 es constan te si se determinar con una ventana de tiempo, t_u, que iguala a la velocidad de catálisis.
- d) La medición de i_{H2O2} después de eliminar el oxígeno generado lleva a conocer la cantidad de H₂O₂ catalizada por unidad de tiempo por cantidad de disolución engimática.

En las secciones posteriores se pretende aclarar tales puntos.

Si se considera a la concentración analítica de peróxido como Co, se puede expresar la concentración de oxígeno producido en términos de "x" (frácción bismutada en solución por catálisis de la d<u>i</u> solución enzimática:

$$2H_2O_2 = = = O_2 + 2H_2O_3$$
  
i.n. Co  
eq. Co(1-x)  $\frac{x}{2}$  Co Co

Por otro lado cuando en solución existe una cantidad dada de  $O_2$  y éste se reduce al electrodo se generan dos señales de corriente de reducción debidas al oxígeno que se reduce en una primera etapa y una segunda señal que se produce por reducción del  $H_2O_2$  generado al electrodo de la primera reducción. Los valores de corriente límite o de pico dependen del número de electrones intercambiados que en estos casos es igual a 2e⁻ para ambas reducciones, de la constante de trang ferencia de masa que es diferente para ambas reducciones ya que el coeficiente de difusión es diferente para cada especies, y de Co:

$$2H_2O + O_2 + 2e^- + H_2O_2 + 2OH^- \qquad i_{O_2} = (2) m_{O_2}CO$$

$$H_2O_2 + 2e^- + 2OH^- \qquad i_{H_2O_2} = (2) m_{H_2O_2}CO.$$

donde Co es la concentración analítica pero en este caso de O₂ inicial, m es la constante de transferencia de masa. Dado que m no es la misma la altura de las ondas o de los picos de reducción no es la misma pero para un mismo Co la relación de alturas es constante:

$$(i_{O_2}/i_{H_2O_2}) = (m_{O_2}/m_{H_2O_2}) = d$$

donde d es la relación de alturas. Se encuentra que para la polarografia clásica esta relación es de d = 1.5, mientras que para la polarografía diferencial de pulsos es de d = 2.1 veces y para la voltamperometría es igual a 1.0 < d < 1.4.

Si la información anterior se combina para analizar la evolución de las curvas para el peróxido en presencia de enzima en el tiempo se puede encontrar una relación entre las alturas relativas y la cantidad de peróxido que se forma por la reacción química homogenea para cada tiempo de reacción:

$$O_2 + H_2O_2$$
  
 $i_O_2 = 2 m_{O_2} - \frac{1}{2} Co$   
 $i_2O_2 + OH^2$   
 $i_H_2O_2 = 2 m_{H_2O_2} \{(1-x) + \frac{x}{2}\} Co$ 

ya que  $(m_{O_2}/m_{H_2O_2}) \approx d$  y es constante para un técnica dada, entonces la relación de velocidades viene dada por:

$$(v_{0_2}/v_{H_20_2}) = (d/2) \frac{(\partial x/\partial t)}{\partial ((1-x) + x/2)} = (d/2) (v_1/v_{11})$$

donde v₁ representaría la velocidad de detección de O₂ al electrodo y v₁₁ la velocidad de detección de H₂O₂ al electrodo. Por supuesto - que x es función del tiempo de acción enzimática. Cuando el tiempo es muy grande, t + °, v_{O2} ~ v_{H2O2} = v_{max}.

Con respecto a  $v_{I} \neq v_{II}$  varían en magnitud aparente en función de la velocidad con que se haga la detección de la corriente de reducción del oxígeno y del peróxido. Sin embargo si la ventana de tiem por es suficiente para detectar con la misma velocidad el oxígeno pro ducido y la reducción corresponciente al valor de x en el estado estacionario entonces la relación de i_O/i_{HOO} y en consecuencia la relación de velocidades tenderá al valór único y constante de (d/2).

De lo contrario tendremos una acumulación "aparente" de  $O_2$  o de  $H_2O_2$ en la doble capa al electrodo y se detectará una proporción diferente a la estequimetrica esperada:

 $(v_{\tau}/v_{\tau\tau}) = (2/d)r$  (r=relación de velocidades experimental)

de tal manera que si tomamos a  $v_{O_2} = (\Delta i_{O_2}/\Delta t)$  y a  $v_{H_2O_2} = (\Delta i_{H_2O_2}/\Delta t)$ se puede evaluar r para cada valor de i medida en cada tiempo de reacción. Al evaluar este valor de r para diversos tiempos ventana se encuentra que pueden ocurrir tres situaciones:

$$r < d/2 \qquad v_{I} < v_{II}$$

$$r = d/2 \qquad v_{I} = v_{II} = v_{max}$$

$$r > d/2 \qquad v_{T} > v_{TI}$$

La razón por la cual las velocidades de detección varían tiene su origen en el hecho de que si una técnica electroquímica tiene una ventana de tiempo muy grande con respecto a la reacción química homogenea en solución entonces en las cercanías del electrodo se acumula  $O_2$  proveniente de la catálisis homogeneo por lo que el electrodo reduce a la doble capa aparentemente más oxígeno del que realmente hay en solución con respecto a la concentración analítica. Si la ventana de tiempo es muy grande el electrodo detectará menos oxígeno del catalizado con respecto a la concentración total. Existe un valor de véntana de tiempo que corresponde a la velocidad de desaparición y aparición de oxígeno.

La figura 4.5.a muestra la variación experimental de r obtenida por el cociente de cada corriente límite o de pico con el tiempo en minutos en el que se registró tal corriente y después se efectua el cociente entre ambas velocidades promedio. De tal figura se observa que para la polarografía clásica se definen tres comportamientos: un tiempo de respuesta, un intervalo de tiempo aproximadamente lineal, y una pequeña meseta; para la polarografía diferencial de pulsos se observa un comportamiento diferente: hay una subida del valor de r a tiempos cortos y después tiende a permanecer constante. Para esta polarografía clásica. Para la voltamperometría de barrido lineal el comportamiento se acerca a equel obser vado por la cinetica enzimática.

Para determinar el valor de r al que tienden las funciones de r=f(t) para  $t+\infty$ , de la figura 4.5.a se genera la función 1/r = f(i/t) generando sendas lineas rectas cuya ordenada al origen arroja el valor de 1/r para tiempo largos de reacción. La figura 4.5.b muestra las -rectas obtenidas.



r

FIG. 4.5.a Variación del cociente de velocidades promedio de la reducción de  $O_2$  y  $H_2O_2$  con el tiempo de reacción catalítica para tres tecnicas electro-analíticas:

. - . - . voltamperometria de barrido lineal

polarografía clásica
 polarografía diferencial
 de pulsos (valores x 10⁻¹)

77





- (1) voltamperometria de barrido lineal
- (2) polarografía diferencial de pulsos
- (3) polarografía clásica (valores  $x10^{-2}$ )

De las graficas anteriores se puede obtener el valor de r para tiempos muy largos y comparar con los tiempos relativos de ventana:

polarografía clásica d/2 = 0.75 r >>> 0.72 t_v = 3 s polarografía diferencial de pulsos d/2 = 1.1 r = 2.5 t_v = 1 s voltamperometría barrido lineal d/2 = 0.5 r = 0.64 t_v = 0.6 s

Se puede observar que a medida que decrece la ventana de tiempo la relación r tiende al cociente de d/2 por lo que se aproxima el tiempo de detección al tiempo de catálisis enzimática. Es conveniente recordar que las ventanas de tiempo dependen del tiempo de goteo en el caso de la polarografía y de la velocidad de barrido de potencial. De la tabla anterior se observa que aumentar la velocidad de barrido de potencial lleva a un tiempo ventana mas pequeño y en consecuencia la medición de r para diferentes valores de velocidad de barrido de potencial debe llevar al tiempo t_k y en consecuencia a la medición de la constante cinética real de la catálisis enzimática.

Por otro lado se observa que la velocidad de catálisis sobrepasa a la velocidad de detección aún al menor tiempo ventana usado (0.6 s) por lo que la velocidad relativa de aparición de oxígeno se ve incrementada. En efecto si se grafica  $i_{0_2}^{-1}$ =f (t⁻¹)se obtienen valores de velocidad promedio a tiempos muy largos diferentes para cada tecnica:

POLAROGRAFIA CLASICA	1.5	x	10 "	M/min
POLAROGRAFIA DIF. PUL.	20.3	x	10-4	M/min
VOLTAMPEROMETRIA DE BARRIDO LINEAL	1.6	x	10-4	M/min

Ahora bien si se compara con la velocidad de descomposición de H₂O₂ se obtienen valores mas pequeños:

POLAROGRAFIA DIF.	PUL.	2.3	x	10-6	M/min	(pág.	66)
VOLTAMPEROMETRIA		6.7	x	10-6	M/min	(pág.	69)

ESTA TESIS NO DEBE Salir de la milloteca

79

Se puede observar que la velocidad de aparición de O₂ detectada es aproximadamente 100 veces mayor que la velocidad de consumo de - $H_2O_2$  lo que evidencia que la velocidad de catálicis homogéneo es mucho mayor que el tiempo ventana relativo a la detección.

Sin duda la elección del tiempo adecuado llevará no solo a la velocidad de catálisis correcta sino también a la evaluación del va lor de la constante de velocidad respectiva.

## 5.0 CONCLUSIONES Y PERSPECTIVAS.

En general de este trabajo se puede concluir que:

- El perfil de las curvas intensidad-potencial avidencian la reacción catalítica de bismutación del N₂O₂.
- De tal perfil es posible diseñar medios reaccionales electroquímicos así como la mejor operación electroana lítica para evidenciar y calcular los parámetros involucrados en la cinética enzimática de la precondom así como su actividad enzimática.

Las evidencias aqui presentadas sugieren que es posible determinar electroanalíticamente la constante de velocidad de descom posición del  $H_2O_2$  por acción enzimática si se estudia la evolución de los voltamperogramas de barrido lineal en régimen de difusión pura si se controla el tiempo ventana por imposición selectiva del barrido lineal de potencial. Tales evidencias deben ser probadas haciendo uso de enzima pura de actividad conocida lo cual abre camino a un posterior estudio mas detallado.

## 6.0 BIBLIOGRAFIA .

- 1) Hawley, M.D.; et. al.; J. AM. CHEM. SOC. 89, 447 (1969).
- 2) Schmakel, C.O.; et. al.; J. AM. HEM. SOC. 97, 5083 (1975).

```
3) Braun, R.P. J. AM. CHEM. SOC. 97,2591 (1975).
```

- Charlot,G.;Badoz-Lambling,J.;Tremillon,B."Las Reacciones Electroquimicas" Toray Masson.1969
- Bard, A.J.; Faulkner, L.R. "Electrochemical Methods.Fundamentals and Applications". John Wiley & Sons. 1980.
- Weissberger, A.; Rossiter, W. "Physical Methods of Chemistry. Parte IIA.Electrochemical Methods". John Wiley & Sons. 1971.
- 7) Nicholson, R.S.; Shain, I. ANAL. CHEM. 36, 706 (1964).
- Galus, Z. "Fundamentals of Electrochemical Analysis" John Wiley & Sons. 1976.
- 9) Heyrovsky, J. "Principles of Polarography". Academic Press1966.
- 10) Browing, D.R. "Metodos Electrometricos". Toray Masson. 1971.
- 11) Barker, J.C. ANAL. CHIM. ACTA 18, 118 (1958).
- 12) Bond,A.M. "Modern Polarographics in Analytical Chemistry". Marcel Dekker. 1980.
- 13) Parry, E.P.; Osteryoung, R.A. ANAL.CHEM. 49, 489 (1964).
- 14) Flato, J.B. ANAL. CHEM. 44, 75A (1972).
- 15) Parry, E.P.; Osteryoung, R.A. ANAL. CHEM. 37, 1634 (1965).
- 16) Vassos, B.H.; Ewing, G.W. "Electroquimica Analitica" Limusa 1987.
- 17) Cohlberg, J.A. J. CHEM. EDUC. 56, 512 (1979).
- 18) Ault, A. J. CHEM. EDUC. 51, 381 (1974).
- 19) Markert, C.L. "Izizymes". Academic Press 1974.
- Latner, A.L.; Skillen, A.W. "Izozymes in Biology and Medicine". Academic Press 1968.
- Bergmeyer, N.U. Methods of Enzymatic Analysis" vol II Verlag-Chemie. 1983.
- Colowick,S.P.; Nathan, O.K. "Methods in Enzymology" vol. VII Academic Press 1955.
- 23) Brown,S.B.;Hatzikonstantinou,H;Herries,D.G. BIOCHEM. J 174, 901 (1978).
- 24) Hatzikonstantinou,H;Brown,S.B. BIOCHEM. J. 174, 893 (1978).

- 25) Hoare, J.P. J. ELECTROCHEM. SOC. 112,608 (1965).
- 26) Bianchi, G.; Mazza, I. ELECTROCHIM. ACTA 7,457 (1962).
- Hoare, J.P. "Advances in Electrochemistry and Electrochemical Engineering" vol.VI Interscience Publishers. 1967.
- 28) Costa, J.M. "Fundamento de Electrodica. Cinetica Electroquimica y sus Aplicaciones" Alhambra . 1981.
- 29) Dolahay, P. Double Layer and Electrode Kinetics". Interscience Publishers. 1965.