

Universidad Nacional Autónoma de México

CENTRO DE INVESTIGACION SOBRE FIJACION DE NITROGENO U.N.A.M.

Relación entre la respiración y la fijación de nitrógeno durante la simbiosis entre <u>Rhizobium</u> phaseoli y frijol.

T E S I S

Que para obtener el Título de Doctor en Investigación Biomédica Básica

presenta

M. en C. MARIO SOBBRON CHAVEZ

México, D. F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RELACION ENTRE LA RESPIRACION Y LA FIJACION DE NITROGENO DURANTE LA SIMBIOSIS ENTRE Rhizobium phaseoli Y FRIJOL.

MARIO SOBERON CHAVEZ

A Pablo y Ale.

Agradecimientos.

Quisiera agradecer al Dr. Edgardo Escamilla y al Dr. Federico Sánchez por su interés y sugerencias durante la realización de este trabajo. También a los Doctores Miguel Lara y Alicia González por haber participado en mi Comité Tutorial.

Agradezco a los Doctores Alejandra Covarrubias, Jaime Mora, Francisco Bolivar y Antonio Peña por haber revisado el contenido y la forma de esta tesis.

Agradezco a Claudia Villarreal por la transcripción de este trabajo.

INTRODUCCION.

El nitrógeno (N_2) es el elemento más abundante en la atmósfera terrestre, representa el 80% de los gases que la forman; sin embargo las plantas y los animales son incapaces de utilizarlo para crecer; sólo las bacterias fijadoras de nitrógeno lo usan, reduciéndolo a NH₃, aumentando de esta manera la cantidad de formas nitrogenadas útiles en la biósfera. A la conversión de N₂ en NH₃ por los seres vivos se le denomina fijación biológica de nitrógeno.

Las plantas asimilan los compuestos nitrogenados inorgánicos que se encuentran en el suelo; transformandolos en compuestos nitrogenados celulares, tales como proteínas, ácidos nucléicos y otras biomoléculas importantes.

Debido a su escasez, el nitrógeno disponible en el suelo para ser utilizado por las plantas es uno de los factores que limitan la agricultura, es por esto que los suelos deben ser fertilizados constantemente. El proceso de Haber Bosh para la producción de fertilizantes requiere un gasto muy grande de energía (altas temperaturas y altas presiones) y un procesado costoso (transporte, almacenamiento y aplicación); esto ha dado como consecuencia que se concentre la atención en el estudio de la fijación biológica de nitrógeno como una alternativa para el incremento y mejoramiento de la producción agrícola.

La sustitución de fertilizantes nitrogenados por fijación biológica de nitrógeno se ha visto limitada por la poca eficiencia de fijación de nitrógeno de algunas cepas empleadas como inoculantes además que las cepas endógenas son en general más capaces, de competir con las cepas inoculadas por la planta (1).

RESPIRACION BACTERIANA:

La función principal de la respiración bacteriana es la translocación de protones hacia el exterior de la membrana plasmática, para generar una fuerza motíl de protones que es utilizada en la síntesis de ATP. Diferentes especies bacterianas pueden utilizar O_2 y otros compuestos como último aceptor de electrones (eg NO₃). Aquí se revisarán las cadenas respiratorias que utilizan O_2 como último aceptor.

La cadena respiratoria bacteriana está formada por diferentes componentes que asemejan la composición de la cadena respiratoria mitocondrial (2, 3). Estos incluyen, deshidrogenasa de NADH, deshidrogenasa de succinato, proteínas fierro azufre, quinonas y citocromos del tipo **a**, **b**, **c**, **d**, y **o**. A difrencia de la cadena respiratoria mitocondrial, en la mayoría de las bacterias existen más de un citocromo oxidasa terminal (2, 3). Se han distinguido 4 diferentes tipos de citocromos con capacidad de reaccionar y reducir 0_2 : estas son citocromo **aa₃**, **citocromo o**, **citocromo d** y **citocromo a₁ (3)**.

Recientemente se propuso que estos citocromos oxidasas terminales pueden formar parte de cuatro tipos de cadenas respiratorias que se distinguen por la composición de citocromos y por el lugar donde se bifurca la cadena respiratoria (2). El primer tipo de cadena los citocromos terminales oxidan a citocromos tipo c y las oxidasas terminales tienen grupos hemo del tipo a (aa3, a1), tipo 1A y hemo tipo b (citocromo o) tipo En este tipo de cadenas se encuentra un complejo de **1B**. citocromos b/c1, homólogo al encontrado en mitocondría el cual El complejo b/c₁ fue inicialmente reduce al citocromo c (2). descrito en <u>Rhodopseudomonas capsulata</u> (4) y <u>Paracocus</u> denitrificans (5), y recientemente en una especie de Rhizobium, Bradhirhizobium japonicum (6). Este tipo de cadenas se bifurca a nivel de citocromo c (2). Como ejemplos de citocromos o que oxidan a citocromos tipo c se encuentran los de Rhodopseudomonas palustris, Azotobacter vinelandii y Pseudomonas aeruginosa (7, 8, 9).

El otro tipo de cadenas (2A y 2B) no participan citocromos tipo c y se bifurca a nivel de la ubiquinona-8. Las oxidasas terminales asociadas a este tipo de cadenas son citocromos o y citocromo d. Ejemplos de citocromos o que oxidan a citocromos tipo b son <u>Escherichia coli</u> y <u>Salmonella typhimurium</u> (10, 11).

1) Citocromos aa₃

Estas oxidasas son las más parecidas a la oxidasa mitocondrial, sin embargo se distinguen por una composición de subunidades más simple y por estar asociados a citocromos c o c₁ (3). Este citocromo oxidasa se presenta en la mayoría de los diferentes grupos fisiológicos bacterianos (12) y generalmente se encuentra con citocromo o como oxidasa terminal alterna. El citocromo **aa**₃ es reemplasado por citocromo **o** cuando se cultivan las bacterias en bajas tensiones de 02 (13, 14, 89). El citocromo aa, se ha purificado de diferentés especies bacterianas y se ha reportado que esta formado por 2 ó 3 subunidades a diferencia de la enzima mitocondrial que esta formada por 7 a 13 subunidades (3). Las tres subunidades que forman el citocromo **aa**₃ de la bacteria termofílica **PS3** son homólogas a la enzima mitocondrial (15), al igual que la enzima de <u>Paracocus</u> <u>denitrificans</u> (16, 17). La absorción característica de los grupos hemos tipo a dá una absorción de 424 y 602 nm para la enzima oxidada, y de 445 nm y 605 nm para la enzima reducida (3). Como en el caso de la enzima mitocondrial en el citocromo aa3, los dos grupos hemos se distinguen por sus propiedades para unir ligandos. Citocromo \mathbf{a}_3 une, en su forma reducida CO, cianuro, y otros ligandos. El citocromo \mathbf{a} no une estos ligandos (18). El citocromo aa3 contiene 2 o 3 átomos de cobre que son importantes para la reducción del O_2 (2). La enzima tiene una Km por oxígeno, 4 a 8 μ M (ver 14) lo que la distingue como la oxidasa terminal bacteriana con menor afinidad por O_2 .

El citocromo aa_3 funciona como una bomba de protones (3). Esto ha sido demostrado con enzima purificada y reconstituída en vesículas membranales de tres diferentes especies bacterianas (19, 20, 21).

En Paracocus denitrificans se aisló un gene cuya secuencia

nucleotídica es homóloga al gene que codifica para la subunidad II mitocondrial (17). Un segundo gene que se encuentra 1.5 Kb río abajo del gene de la subunidad II, ha sido descrito con alta homología al gene de la subunidad III de la oxidasa mitocondrial (22).

2) Citocromo o:

El citocromo o es la oxidasa terminal más representada en diferentes especies bacterianas (14). Por otra parte se ha demostrado que existe una relación antigénica entre citocromos o de diferentes especies bacterianas (23).

El citocromo o es una proteína membranal que ha sido purificada recientemente (3). Está formado por 2 ó 4 subunidades, y se puede encontrar otro grupo hemo b o hemo c asociado al hemo b del citocromo o (3). Se ha propuesto que el citocromo o puede participar en dos tipos de cadenas respiratorias dependiendo si oxidan a citocromos tipo b o tipo c (2).

En <u>Escherichia coli</u> se reportó la presencia de cobre en el citocromo o (10) al igual que en la bacteria **PS3** (25). Estas dos bacterias tiene citocromos o, que oxidan a citocromos tipo b (24, 10). Por lo que se ha sugerido que los citocromos o que oxidan a citocromos tipo b utilizan cobre en la reducción del O_2 (2).

El citocromo o reducido tiene una absorción caracteristica típica de citocromos b (picos 430 y 560 nm), por lo que su identificación espectofotométrica requiere el identificarlo por su capacidad de reaccionar con CO (3). Espectros de preparaciones reducidas más CO muestran señales caracterízticas a 417 y valles a 430 y 560 nm.

Evidencia directa que el citocromo o reacciona con O_2 se ha obtenido a través de la fotolísis del complejo formado por la oxidasa y CO, en presencia de O_2 a temperaturas abajo de O C. En <u>E. coli</u> (25), <u>Vitroecilla</u> (26) y <u>Acetobacter pasteurianum</u> (27) se demostró que el espectro diferencial después de la fotolísis es el inverso del espectrodiferencial de monóxido de carbono. En presencia de O_2 se forma un complejo de O_2 con el citocromo el cual no es fotodisociable.

En diferentes especies bacterianas se han reportado que el citocromo o tiene una Km por O_2 de 1-8 a 6.5 μ M (3), sin embargo se han reportado Km menores, a 1 μ M en <u>Escherichia coli</u> (28), <u>Salmonella typhimurium</u> (29) y <u>Beneckea natriagens</u> (14).

El citocromo o de <u>E. coli</u> es capaz de generar un potencial de membrana cuando se reconstituye en proteoliposomas en presencia de ubiquinona-8 y piruvato oxidasa (30). En otro estudio se demostró que la oxidación de quinol (donador de hidrógeno) involucra la liberación de protones al exterior de las membranas (31), sin embargo utilizando N,N,N',N'-TMPD como donador de electrones se presenta un cambio en el pH externo muy bajo (31). Estos datos demuestran que el citocromo o no cataliza una translocación vectorial de protones, sino que genera un gradiente de pH a través de reacciones que consumen y liberan H^+ en diferentes lados de la membrana (3). Sin embargo en <u>Rodop-</u> <u>seudomona capsulata</u> se ha propuesto que el citocromo o si funciona como una bomba de protones (32).

En <u>E. coli</u> se dexcribió el aislamiento de una mutante que carece de citocromo o. Esta mutante se aisló a partir de una cepa citocromo d⁻ (33). La doble mutante cit o⁻ cit d⁻ es incapaz de utilizar succinato en aerobiosis, sin embargo puede utilizar NO₃ como aceptor de electrones (33).

3) Citocromo d:

El citocromo **d** se puede encontrar entre bacterias gram negativas heterotróficas. El citocromo **d** generalmente se encuentra asociado al citocromo **o** como oxidasa alterna (3). Se ha reportado que el citocromo **d** de diferentes bacterias gram negativas es idéntico antigénicamente (34).

En cuanto a su regulación se ha reportado que el citocromo **d** se expresa en condiciones de limitación de O_2 (14, 35), sin embargo esta es sólo una de las condiciones donde se induce la expresión de citocromo **d**. Otras condiciones donde se expresa el citocromo **d** son en la fase estacionaria de crecimiento, crecimiento en anaerobiosis, crecimiento en presencia de cianuro y en condiciones de limitación de cobre (35).

Un complejo enzimático que contiene la oxidasa \mathbf{d} se purificó de <u>E. coli</u> y <u>Photobacterium phosphoreum</u> (36, 37). En estas dos bacterias se encontró que el complejo está formado por dos subunidades de diferente peso molecular. Espectros de preparaciones reducidas menos oxidasas muestran la presencia de hemos tipo **b**, tipo **d** (8) y citocromo a₁ (3, 36, 37). El hemo **d** es capaz de unir CO (38, 39). La oxidasa purificada no tiene cobre (36, 37, 39, 40). La oxidación de quinol por citocromo **d** se inhibe con concentraciones de cianuro y azída mucho mayores que las requeridas para inibir la oxidación de quinol por citocromo **o** (36, 37).

Utilizando anticuerpos y genéticamente se pudo demostrar que la subunidad I contiene al citocromo b $_{558}$ y la subunidad II a los citocromos d y a_1 (40, 41).

El citocromo **d** en su forma reducida absorbe a 628 a 632 nm, esta absorción se recorre 5nm hacia el rojo en presencia de CO (3). En preparaciones aireadas el pico del citocromo **d** se recorre alrededor de 650 nm (3).

El citocromo d reacciona con O_2 y CO y presenta una Km por O_2 que va de 0.024 a .39 μ M (42, 43), lo que distingue a este citocromo como la oxidasa bacteriana con mayor afinidad por O_2 (3). En <u>Acetobacter pasteurianus</u> se demostró por experimentos de fotodisociación que el citocromo **a**₁ y **b**₅₅₈ participan en la reducción de citocromo d (27).

El citocromo **d** de <u>**E**</u>. <u>coli</u> (43) se ha reconstituído en proteoliposomas y se demostró que es capaz de generar un potencial de membrana hasta de 160 a 180 mV, y se ha sugerido que este

potencial se produce de una manera análoga al producido por el citocromo o (43).

En <u>**E**. coli</u> se reportó el aislamiento de mutantes incapaces de oxidar el colorante TMPD (44). Una de estas mutantes carece de citocromos **d**, **b**_{EEO}, **a**, y de las dos subunidades (45).

de citocromos d, b₅₅₈, a₁ y de las dos subunidades (45). La alta sensibilidad de esta mutante por CN y Azida de Na permitó aislar más mutantes por su sensibilidad a azida (45). Esta mutantes muestran lesiones en dos diferentes grupos de complementación cydA y cydB (45). Posteriormente se aislaron genes que complementan estas mutantes y se identificaron como los genes estructurales de citocromo d (46).

Citocromo a₁.

Los estudios originales de la composición de citocromos de la bacteria <u>Aacetobacter pasterianum</u> mostró una banda de abosrción a 589 nm que desaparecía al agitar los últimos cultivos (47). La absorbancia a 589 nm era suficiéntemente lajana a la de **aa₃** (600 nm) lo que permitió distinguir estos pigmentos (3). Posteriormente se ha designado citocromo **a**₁ a todos aquellos pigmentos que absorben cerca de 590 nm. Sin embargo se ha demostrado que en el caso de ciertos pigmentos que absorben luz a cerca de 590 nm no funcionan como oxidasas terminales (3). Este es el caso de <u>E. coli</u>, <u>Corynebacterium</u>, <u>Halobacterium halobium</u> y <u>Rhizobium sp</u> en los cuales se demostró que el citocromo a₁ tiene un hemo tipo **b** y pudiera ser una hidroperoxidasa (3).

En otras especies bacterianas se demostró la participación del citocromo $\mathbf{a_1}$, como oxidasa con experimentos de fotodisociación y unión de O₂ (3). En el caso de <u>T. ferroxidans</u> la enzima parece involucrar a cobre con reducción del O₂ (48).

FIJACION SIMBIOTICA DE NITROGENO:

El género Rhizobia incluye a las bacterias gram negativas habitantes normales del suelo, que interactuan con las raíces de las leguminosas para formar nódulos en los que se lleva a cabo la fijación de nitrógeno. Para que se forme un nódulo es necesario que exista un reconocimiento específico entre la bacteria y la planta, y que Rhizobium penetre por los pelos radiculares hasta la corteza de la raíz, donde pasa a través de la pared celular y quedan englobado en vesículas membranosas dentro del citoplasma (49). En la formación de un nódulo existe una marcada proliferación de las células de la corteza radicular y un proceso de diferenciación de ambos participantes; Rhizobium generalmente sufre cambios morfológicos y metabólicos. A esta forma diferenciada se conoce como bacteroide el cual llevará a cabo la fijación del nitrógeno atmosférico.

Durante la simbiosis entre <u>Rhizobium</u> y la planta, esta última provee a los bacteroides de substratos de carbono para garantizar el poder reductor y energético necesarios para la fijación de nitrógeno; a la vez la planta requiere de esqueletos de carbono y poder energético para la asimilación de amonio fijado por los bacteroides. Es necesario identificar los esqueletos de carbono que ocupan los bacteroides para poder entender cómo el metabolismo de carbono de la planta y el de Rhizobium se coordinan, además de poder identificar las rutas metabólicas que intervienen en la oxidación de estos sustratos con el fin de poder establecer estrategias que permitan seleccionar mutantes más eficientes en estos procesos. En diferentes especies de <u>Rhizobium</u> se ha identificado a los ácidos dicarboxílicos (succinato, malato, etc.) como los esqueletos de carbono que metabolizan los bacteroides. La evidencia que sugiere ésto se ha obtenido a través del estudio de la utilización de diferentes fuentes de carbono por bacteroides aislados. De ésta manera se reportó que bacteroides de Bradyrhizobium japonicum transportan ácidos dicarboxílicos por un mecanismo activo y que tienen un sistema de transporte para carbohidratos lento y pasivo (50). Este mismo tipo de evidencia se reportó para especies de Rhizobium de crecimiento rápido (51, 52).

Otro enfoque experimental que sugiere la utilización de los ácidos dicarboxílicos como fuente de carbono por los bacteroides ha sido el aislamiento de mutantes afectadas en la utilización de diferentes fuentes de carbono y su caracterización en cuanto a sus capacidades simbióticas (nodulación, y fijación de nitrógeno). De esta manera se reportó el aislamiento de mutantes de **Rhizobium leguminosarum** que carecen de la actividad de glucocinasa, fructocinasa y piruvato deshidrogenasa, las cuales no pueden utilizar azúcares como fuente de carbono y sin embargo no se ven afectadas en su capacidad de fijar nitrógeno (53). Por el contrario, mutantes de **Rhizobium leguminosarum** que no transportan succinato nodulan pero no fijan nitrógeno (54). Otro tipo de mutantes que sugiere la utilización de succinato son las que carecen de la deshidrogenasa succínica en **Rhizobium meliloti**, las cuales son incapaces de fijar nitrógeno (55).

SENSIBILIDAD DE LA NITROGENASA A 02.

La nitrogenasa es la enzima que cataliza la reducción de N_2 a NH₃. Está formada por dos componentes (56). El componente I o proteína Fe-Mo, tiene un peso molecular de 200,000 daltones; está formada por dos tipos de polipéptidos que forman un tetrámero. Este componente contiene uno o dos átomos de molibdeno y otros veinte a treinta átomos de fierro (Fig. 1).

El componente II o proteína-Fe, tiene un peso molecular de 50,000 daltones esta formado por dos subunidades idénticas y contiene de uno a cuatro átomos de fierro.

La proteína II es reducida por algún donador de electrones (ferrodoxinas, flavodoxinas, NADPH). En el estado reducido forma un complejo con Mg-ATP, lo que resulta en un cambio conformacional que permite la interacción con el componente I y la transferencia de un par de electrones a éste componente ; este proceso está ligado a la hidrólisis de ATP. La proteína I reducida cataliza la reducción del N₂. Así la reducción de nitrógeno molecular se lleva a cabo dando como productos NH₃ y H₂ (57). Los dos componentes de la nitrogenasa son sensibles al 0₂ (58). El componente II es más sensible que el componente I. El componente II de la nitrogenasa de <u>Klebsiella pneumoniae</u> y <u>Azotobacter chroococcum</u> tiene vida media de 45 segundos en presencia de aire. El de <u>Azotobacter vinelandii</u> de 2 minutos. El componente I de <u>A. vinelandii</u> y <u>A. chroococcum</u> tienen vida media de 10 minutos. El de <u>K. peneumoniae</u> 8 minutos y el de Bradhyrhizobium japonicum 4.5 min (58).

A pesar de la sensibilidad al O_2 de la nitrogenasa, la capacidad de fijar nitrógeno se ha encontrado en microorganismos que son aerobios estrictos (59). Esto implica el desarrollo de diferentes estrategias que permiten la protección de la nitrogenasa del O_2 (58).

PROTECCION DE LA NITROGENASA DEL 02 DURANTE LA FIJACION SIM-BIOTICA DE NITROGENO.

La regulación de abastecimiento de O_2 dentro del nódulo es de vital importancia para la fijación simbiótica de nitrógeno, ya que los bacteroides requieren un flujo alto de O_2 para la síntesis de ATP pero a su vez la nitrogenasa, como se mencionó previamente, es inactivada irreversiblemente por altas tensiones de O_2 .

1) Leghemoglobina.

Las células infectadas del nódulo contienen una hemoproteína (leghemoglobina) que une O_2 de manera reversible con alta afinidad (60). Esta proteína tiene una alta homología a nivel de la secuencia del DNA con otras globinas de origen animal (61). Esta proteína se ha relacionado con el transporte de O_2 a los bacteroides, ya que no se encuentra en células no infectadas (62). Se ha propuesto que la **leghemoglobina** funciona como un transportador muy eficiente de O_2 que a la vez mantiene una tensión muy baja de O_2 libre (63).

La leghemoglobinã es producto de la simbiosis, ya que se ha demostrado que el grupo hemo es sintetizado por la bacteria y la apoproteína por la planta (64, 65, 66).

El papel de la **leghemoglobina** en el transporte de O_2 a los bacteroides fue sugerido por experimentos que demostraron que los bacteroides aislados de <u>R. leguminosarum</u> presentan una actividad óptima de fijación de nitrógeno a tensiones de oxígeno menores en presencia de **leghemoglobina** (67). Sin embargo, el papel de esta proteína en la protección de la nitrogenasa depende de su localización intracelular, ya que se requiere su presencia en el espacio peribacteroidal para bajar la tensión de O_2 a la que está expuesta la nitrogenasa (60). A este respecto se reportó que en nódulos de Soya y de Lupini la **leghemoglobina** se encuentra exclusivamente en el citoplasma vegetal (62, 68). Sin embargo, otros autores reportaron que hasta el 30% de la **leghemoglobina** está compartimentalizada en el espacio peribacteroidal en nódulos de Soya (69).

2) Barrera de la difusión de O₂.

La existencia de una barrera a la difusión de O_2 en el interior del nódulo se ha demostrado utilizando microelectrodos de O_2 , con los cuales se demostró que la concentración interna de O_2 se regula en respuesta a cambios a la concentración externa de O_2 (70), sin que ocurran cambios en la respiración (71). Se ha propuesto que esta barrera se localiza en la corteza nodular rodeando las células infectadas (72). También se ha sugerido que esta barrera consiste de una capa continua de células con espacios intracelulares llenos de agua (73).

3) Protección Respiratoria.

Este mecanismo de protección de la nitrogenasa del 0, se reportó inicialmente en Azotobacter vinelandii, una bacteria fijadora de nitrógeno; se propuso cuando se reportó que A. vinelandii consume más carbono del que se requiere para satisfacer sus requerimientos energéticos y de crecimiento cuando se cultiva en tensiones altas de O_2 y en ausencia de nitrógeno (74). Posteriormente se reportó que cuando Azotobacter vinelandii se cultiva en estas condiciones su capacidad respiratoria aumenta de manera considerable (75) y este aumento en respiración no está acoplado a la síntesis de ATP (76). La cadena respiratoria se ha estudiado exhaustivamente y se ha reportado que sus componentes incluyen deshidrogenasa de NADH, deshidrogenasa de malato, hidrogenasa, ubiquinona-8 y cuando menos siete citocromos, b-560, \underline{C}_4 , \underline{C}_5 , $\underline{C-551}$, y las oxidasas terminales \underline{a}_1 , \underline{d} y o (77, 78). La protección respiratoria de la nitrogenasa se lleva a cabo por un aumento en la respiración que se ve acompañada de un aumento de la actividad de la deshidrogenasa de NADH y de los niveles de citocromo d (79).

En diferentes especies de <u>Rhizobium</u> existen evidencias que sugieren la existencia de protección respiratoria. Los bacteroides de <u>Bradhyrhizobium japonicum</u> tienen dos sistemas de oxidasas de diferente afinidad por el O_2 , pero sólo el de alta afinidad parece estar acoplado eficientemente a la producción de ATP (80). Por otra parte, <u>Rhizobium spp</u>, el cual es capaz de fijar nitrógeno en vida libre, aumenta su respiración en tensiones altas de O_2 (80). Con base en estos resultados se propuso que el sistema de oxidasas de baja afinidad puede funcionar como un sistema de protección similar al reportado para <u>Azotobacter</u> (80).

Otras evidencias que sugieren la existencia de protección respiratoria en <u>Rhizobium</u> son: Los bacteroides aislados de plantas de Siratro aumentan su respiración y actividad de nitrogenasa en presencia de citosol de nódulos (81). Este efecto no se debe a **leghemoglobina** sino a la presencia de ciertos substratos respirables (e.g. Ascorbato) (81). <u>Azorhizobium caulinodans</u> es capaz de fijar nitrógeno en vida libre y tiene la capacidad de inducir su capacidad respiratoria al aumentar la tensión de O_2 , manteniendo una concentración de O_2 libre baja (82).

LA CADENA RESPIRATORIA DE Rhizobium.

1) La Cadena respiratoria en vida libre.

La composición de citocromos de la cadena respiratoria de <u>Rhizobium</u> cuando se cultiva en condiciones aeróbicas se ha reportado para diferentes especies. <u>Bradyrhizobium japonicum</u>, <u>Rhizobium leguminosarum y Rhizobium trifolii</u> expresan citocromos tipo b, citocromos tipo c y cuando menos dos citocromo oxidasas: citocromo o y citocromo aa₃ (83, 84, 85). En <u>Bradyrhizobium</u> japonicum las oxidasas terminales o y aa₃ se identificaron por espectros de fotodisociación (83).

En otra especie, <u>Azorhizobium caulinodans</u>, se reportó que la composición de citicromos no incluye a la oxidasa terminal o (86). Esta bacteria presenta citocromo **aa**₃ como oxidasa terminal y probablemente también al citocromo **d** (86). En <u>Rhizobium tri-folii</u> también se ha sugerido la expresión de la oxidasa terminal **d** en ciertas condiciones de cultivo (87). En un estudio muy extenso se reportó la composición de citocromos de 22 cepas pertenecientes a diferentes <u>Rhizobiums</u> de crecimiento rápido y crecimiento lento. Todas las cepas presentaron citocromos tipo **b** tipo **c** o y **aa** (88)

b, tipo c, o y aa₃ (88). En cuanto a la regulación de la expresión de los citocromos, se reportó que <u>B. japonicum</u> y <u>Azorhizobium caulinodans</u> expresan niveles reprimidos de la oxidasa terminal aa₃ cuando se cultivan en tensiones bajas de O₂ (89, 86), como se ha reportado para diferentes especies bacterianas (3).

2) Simbiosis:

La composición de citocromos de la cadena respiratoria durante la simbiosis en <u>B. japonicum</u> es diferente a la encontrada en vida libre: los bacteroides de <u>B. japonicum</u> no expresan las oxidasa terminales o y aa₃ y expresan el doble de citocromo tipo c (91). También se reportó la expresión de cuando menos 5 citocromos que reaccionan con monóxido de carbono (CO) por lo cual es probable que se trate de oxidasas terminales: c-552, c-554, p-450, p-428 y p-420 (90, 91, 92). De estos citocromos, el citocromo p-450 es el que parece tener un papel importante como oxidasa terminal (93). En los bacteroides aislados de <u>Rhizobium lupini</u> se observa la aparición de citocromos p-450 y la pérdida de aa₃ (94). Otros autores reportaron un incremento paralelo de nitrogenasa y citocromo p-450 (95). La composición de citocromos de la cadena respiratoria durante simbiosis puede ser diferente entre diferentes cepas, ya que se reportó la existencia de cepas de <u>B. japonicum</u> que retienen el citocromo **aa**₃ durante la simbiosis; además se observa una correlación de concentración del citocromo **aa**₃ y la fijación de nitrógeno en estas cepas (96).

RESPIRACION Y FIJACION DE NITROGENO.

La relación estrecha entre la respiración de <u>B. japonicum</u> y la fijación simbiótica de nitrógeno ha demostrado por el aislamiento y caracterización de mutantes afectadas en la respiración y la fijación de nitrógeno (97, 98). En estos trabajos se aislaron mutantes incapaces de reaccionar con el reactivo **Nadi** (α -naftol+dimethyl-p-fenilendiamine) el cual es específico para las citocromo oxidasas. La mayoría de las mutantes tenían actividades respiratorias bajas y bajo citocromo c y citocromo **aa**₃ (97, 98). Una mutante sin citocromo **aa**₃ y que retenía el citocromo **c** era capaz de fijar nitrógeno, lo que sugiere que citocromo **aa**₃ no se requiere durante la simbiosis en **B. japonicum** (98).

Se ha sugerido que la respiración bacteriana es importante para la infección efectiva de la planta por la bacteria (99). Una mutante de <u>R. meliloti</u> que carece de la actividad de la deshidrogenasa succínica induce la formación de nódulos; sin embargo, no es capaz de diferenciarse completamente (99). Theiesal Liz/L. Mease / W4-5X JOBNAME/JB-JAN-8969/JNL VACE: 1 SESS: 9 OUTPUT: Wed Nov 2 09:35:26 1988 CLS: monthlyli GRP: asm2 JOB: jb-jan DIV: 8969-882

JOURNAL OF BACTERIOLOGY, Jan. 1989, p. 000-000 0021-9193/89/010000-00\$02.00/0

Isolation of a Rhizobium phaseoli Cytochrome Mutant with Enhanced Respiration and Symbiotic Nitrogen Fixation

MARIO SOBERÓN, 1. HUW D. WILLIAMS, 2 ROBERT K. POOLE, 2 AND EDGARDO ESCAMILLA3

Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal Centro de Investigation 300-e l'auctoris rundocurs (Microbiology, Kings College London, Kensington Campuz, London W8 7AH, England¹; and Instituto de Fisiología Celular, Universitad Nacional Autónoma de México, Distrito Federal, México, D. F. C.P. 04520, Mexico.³

Received 15 August 1988/Accepted 15 October 1988

Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa₃. Cytochrome aa₃ was partially expressed when CE2 cells were grown on minimal medium, during symblosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a tourfold-higher cytochrome aa₃ content when cultured on minimal and complex media and had twofold-higher cytochrome aa_3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N₃ than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains, Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa₃. Both cytochromes react with O₂ at -180°C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.

Rhizobium respiration is central to nitrogen fixation in the bacteroid-plant symbiosis. Electron transfer to oxygen is believed to represent an oxygen-scavenging mechanism to prevent oxygen damage to nitrogenase (3, 24), while oxida-tive phosphorylation yields ATP for the nitrogen-fixing reaction (3).

The cytochrome composition of the electron transport chain of different Rhizobium species has been described. Free-living Rhizobium-species express b-type and c-type cytochromes and possibly two terminal cytochrome oxidases: cytochromes aa_3 and o (2). Both were identified by photodissociation spectra, although the signals from cytochrome o were poorly defined and oxygen binding was not demonstrated (2). Bradyrhizobium japonicum bacteroids express a complement of carbon monoxide-reactive proteins different from that found on cultured cells (1). It has been reported that B. japonicum expresses cytochrome aa3 neither in nonagitated cultures (4) nor during symbiosis (1),

probably due to low oxygen tensions (4). The close relationship between B. japonicum respiration and symbiotic nitrogen fixation has been demonstrated by the isolation of mutants affected in respiration and symbiotic nitrogen fixation (10, 16). In both cases mutants were isolated which cannot react with Nadi reagent, which specifically reacts with cytochrome oxidases. Most mutants showed low respiratory activities and low cytochrome c and aa_3 content (10, 16). These mutants formed ineffective symbiosis. A mutant which lacked cytochrome aa_3 and retained cytochrome c could still fix nitrogen, implying that cytochrome *aa*₃ is dispensable for symbiosis in *B. japo vicum* (16).

· Corresponding author.

In this paper we described the cytochrome composition of the electron transport chain of Rhizobium phaseoli and the application to P. phaseoli of low-temperature photolysis and ligand exchange techniques, which have proved useful it. studying oxidases of the *aa*₃, *o*, and *d* types of other bacteria (18, 19; R. K. Poole, *in* C. Anthony, ed., *Bacterial Cyter* chrome Oxidases in Energy Transduction in Bacteria, 1. press).

AUTHOR: SEE QUERY

PAGE 2. H. 5.

4PTI.

Vol. 171. No. 1

We also described the isolation of two cytochrome in .tants, one of which has an altered regulation of cytochron... aa3 expression and has nitrogen fixation activity significantly greater than that of the wild-type strain.

MATERIALS AND METHODS

Bacterial strains and plasmids. Strains and plasmid are listed in Table 1.

Media. All media were as described by Noel et al. (15), Two types of complex medium were used: PY1 medium contained 0.5% peptone, 0.3% yeast extract, and 10 min CaCl2; the peptone was Peptona de caseina, obtained fro ... Bioxon de México, S.A. de C.V. PY2 medium had the same composition as PY1 medium except for the peptone which was lab M balanced peptone no. 1, obtained from London Was tao M balanceo peptone no. 1, obtained from London Analytical and Bacteriological Media. Antibiotics used were the following (in micrograms milliliter⁻¹): kanamycin, 30; rifampin, 25; tetracycline, 10; and streptomycin, 100. Tns mutagenesis. The mobilizable "suicide plasmic" pSUP5011 carrying Tn5-mob (23) was mobilized into r-phaseoli CE2 (Table 1). Matings were done on PY1 plate unstricki 2 30°C; therefore the mode the set

overnight at 30°C; the cells were then suspended in stern. water and plated on selective medium (PY1 medium with rifampin and kanamycin). Isolation of mutants. CE2 cells were mutagenized with

_NAME: JB-JAN-8969/JNL PAGE: 2 SESS: 9 OUTPUT: Wed Nov 2 09:35:26 1988 CLS: monthly1i GRP: asm2 JOB: jb-jan DIV: 8969-882

SOBERÓN ET AL.

TABLE 1. Bacterial strains and plasmids Relevant Strain or plasmid Source or reference characteristics Strain Rhizobium phaseoli Wild type Sm' derivative of CFN42 CFN42 CE3 Quinto et al. (22) Nocl et al. (15) CE2 Rif' Cm' Nocl et al. (15) derivative of CFN42 Mutant isolated CFN4201 This work after transfe of pSUP5011 to strain CE2 **CFN4205** Mutant isolated This work after nitrosoguanidine mutagenesis of strain CE2 Boyer and Roulland-Dussoix (7) Escherichia coli recA hsaR HB101 hasM Sm' pro leu Plasmid PJB3 R68.45 Km* Brewin et al. (8) Cm' Ap oSUP5011 Simon et al. (23) TnS-mob nub inserted into TnS)

nltrosoguanidine as described previously (10) or with Tn5mob and plated on minimal medium (MM) plates with 10 mM succinate and 10 mM NH₂(al as carbon and nltrogen sources, respectively. After 5 days of growth at 30°C, TMPDmutants were screened by overlayering a solution of 9 mM N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and 0.4 mM ascorbate. Colonies unable to oxidize TMPD, identified by their white color, were purified on PY1-kanamycin plates. TMPD** mutants were screened as TMPD mutants, but 4 mM ascorbate was used in the overlayering solution instead of 0.4 mM since under these conditions the staining capacity of the cells is significantly lowered. Colonies with increased staining were purified until a stable TMPD** phenotype was established. The mutant strains

TABLE 2. Cytochrome levels in membrane particles of R. phaseoli strains

Strain	Concn ^{et} of cytochrome:				
	ь	c	aas	0-CO	
CE2	0.310	0.166	0.077	0.069	
CFN4201	0.156	0.06	0.122	0.112	
CFN4205	0.134	0.160	0.089	0.031	

⁴ Cytochrome concentrations (nanomoles milligram of protein⁻¹) in the membrane fraction were determined from the difference spectra at room temperature (nor shown). b-type and ag-type cytochromes were determined from a dithionite-reduced minus oxidized preparation, the c-type cytochrome concentration was determined from sacorbate-TMPD-reduced amino oxidized spectra, and the o-type cytochrome concentration was determined from dithionite pluce Om minus dithionite-reduced spectra.

AUTHOR: SEE QUERY +PTT. PAGE 6. 7. 8. 33 3 J. BACTERIOL

of the parental strain.

¹ Membrane preparations: A biofermentor containing 20 liters of PY1 medium (adjusted at 30°C, 8 liters of air min⁻¹, and agitation at 250 rpm) was inoculated with 1 liter of air active culture in PY1 medium. Cells were collected after 1 hof growth (early stationary phase), washed with 50 mM Tris hydrochloride (pH 7.4)-5 mM CaCl₂-5 mM MgCl, (TCM buffer), and suspended in 500 ml of Tris hydrochloride (pH 7.4) buffer containing 40 mM EDTA and 0.5 M sucros: (TES buffer), Spherophasts were made by lyzozyme-EDTA treatment, and membrane particles were prepared therefrom by the procedure described for *Rhizobium trifolii* (9). The homogenate was incubated at room temperature for 15 min with a few crystals of DNase and centrifuged at 8,000 × g for 10 min; the pellet, which contained nondisrupted cells, was discarded. Membranes were recovered by centrifugation at 100,000 × g for 30 min and stored under liquid nitrogen until used.

Respiratory activities. NADH and succinate oxidase activities were determined at 30°C in a model 52 oxygen meter (Yellow Springs Instrument Co.). The reaction ves el contained 3 ml of 50 mM potassium phosphate (pH 7.4) and membranes (1.5 mg of protein); the reaction was started by the addition of 40 mM succinate or 5.5 mM NADH (final concentrations). TMPD oxidase was determined under the same conditions except that the pH was 6.8 and 10 mM ascorbate (pH 6.8) and 0.1 mM TMPD were used as electron donors.

Spectral analysis of cytochrome. Cytochrome spectra of membrane particles, cultured cells, or bacteroids were recorded on an SLM Aminco Midan II spectrophotometer as described previously (11). Samples were suspended in TCM buffer and reduced with dithionite (few grains) or with 10 mM ascorbate and 0.1 mM TMPD. Membrane particles, whole cells, or bacteroids were oxidized with ammonium persulfate. Spectra were obtained at room temperature (1.0cm-light path cuvettes) or under liquid nitrogen (2.0-mmfollowing wavelength pair and millimolar extinction coeffi-The owner wavelength pair for minimum value of the owner of the owner of the owner as a starter culture and used to inoculate 10 liters of PY2 medium in a 12-liter Biostat V fermentor (FT Scientific; at 30°C, acrated at 4 liters of air min⁻¹ and with stirring at 250 30°C, aerated at 4 liters of air min⁻¹ and with stirring at 250 rpm). Cells were collected after 18 h of growth (early stationary phase). Cells were washed and suspended to about 30% (packed by volume, -12 mg of protein ml⁻¹) in 46 mM potassium phosphate buffer (pH 7.4); ethylene glycol was added to give a final concentration of 30% (vol/vol). The cell suspension was reduced with sodium succinate (10 mM final concentration) for 30 min, and CO was bubbled into the cuvette for 5 min. The cuvette (2.0-mm path) was cooled in an ethanol-solid CO_2 bath to -23°C and allowed to equilibrate for 5 min in the dark. Where indicated, O2 was added by vigorously stirring the sample with vertical strokes of a closely fitting coiled wire for 30 s. The anoxic or O_2 , supplemented sample was then quickly frozen in an ethanoldry CO2 bath at -78°C, where it was maintained for at least 5 min in the dark before equilibration (10 to 20 min) at the temperature of the experiment in the sample compartment of the spectrophotometer. Difference spectra were recorded using a Johnson Foundation DBS-3 dual-wavelength scanning spectrophotometer described previously (26). TemperJOBNAME: JB-JAN-8969/JNL PAGE: 3 SESS: 9 OUTPUT: Wed Nov 2 09:35:26 1988 CLS: monthlyli GRP: asm2 JOB: jb-jan DIV: 8969-882

VOL. 171, 1989

AUTHOR:	
SEE QUERY	
PAGE 9.10	+PTr'

CYTOCHROME MUTANTS OF KHIZOBIUM PHASEOLI

ature control (±1°C) was achieved by blowing a stream of N₂ (cooled by circulation through liquid N₂) over the base of the cuvette coupled with a small heater and temperature regulation circuit. Illumination by the measuring and reference beams was avoided during temperature equilibration. This sample was then scanned twice, generating a reduced plos. CO minus reduced plus CO base line and then photolyse the Photolysis by white light was achieved using a 60-s exposure to the light from a 150-W projector lamp which was focused by a lens onto one afferent limb of a bifurcated light guide leading to the cuvette, the other limb transmitting reference and measuring beams.

Nitrogen fixation determination. For nodulation tests and acetylene reduction measurements, Phaseolus vulgaris cv. negro jamapa was surface sterilized in hypochlorite and germinated on moist sterile filter paper. Three-day-old seedlings were transferred to plastic growth pots, inoculated with a bacterial suspension in PY1 medium, and grown with nitrogen-free salts (25) in a greenhouse. After 25 days of inoculation, nodulation was scored and nitrogenase was determined by measuring the acetylene reduction of nodulated plant roots transferred to tubes with rubber seal stoppers by injecting acetylene to a final concentration of 10% of the gas phase. Ethylene production was determined by gas chromatography in a Packard model 430 chromatograph. The percentage of plant nitrogen content was early mated in total shoots and leaves which were dried and homogenized. A sample (100 mg) of homogenate was digested by heating in the presence of 1 g of selenium reagent mixture and 3 ml of 7 M H2SO4. The digest mixture was distilled in the presence of 0.1 mg of phenolphthalein and 25% NaOH. The distillation products were recovered in 4% boric acid and a ρH indicator (usually bromocresol green). The nitrogen content was estimated by titration with a 0.1 N HCl solution as described previously (6).

Bacteroid preparation. Nodules were harvested 32 to 35 days after planting. Bacteroids were isolated by layering a nodule extract on a sucrose gradient as reported by Awonaike et al. (5).

Protein determination. Protein was measured by the method of Markwell et al. (14), using serum albumin as the standard.

RESULTS

Cytochrome composition of the electron transport chain of *R*, phaseoli. A rifarmpin-resistant derivative (strain CE2) of *c*. phaseoli CFN42 was used in this study and has been described previously (15). Membrane particles were outained from cultured cells of strain CE2 in order to deternine its cytochrome composition. Figure 1A shows the difinituitereduced minus -oxidized difference spectrum. This strain contains b-type (peaks at 429 and 557 nm) and aa₂-type (shoulder at 445 nm and peak at 602 nm) cytochromes. No cytochrome c was clearly distinguishable at 417 to 420 nm, but a shoulder near 550 nm was observed. O' Brian et al. (16)_ishowed that in *B. japonicum* ascorbate-TMPD is oxidized by the cytochrome c-aa₃ branch since a mutant which lacks both cytochromes or one lacking just cytochrome aa₃ could not oxidize ascorbate-TMPD. Figure 1B shows the ascorbate-TMPD-reduced minus -oxidized difference spectra of

sulfate-oxidized spectrum at 77 K; (C) CO difference spectrum (dithionite-reduced membranes) recorded at room temperature. --Spectra recorded at an absorbance (A) of 0.03.

26NAME: JB-JAN-8969/JNL PAGE: 4 SESS: 9 OUTPUT: Wed Nov 2 09:35:26 1988 CLS: monthlyli GRP: asm2 JOB: jb-jan DIV: 8969-882

d SOBERÓN ET AL.

I	AUTHOR:
I	SEE QUERY
I	PAGE 14. 15
5	

J. BACTERIOL.

TABLE 3. Respiratory activities in membrane particles and cytochrome aa, levels in whole cells of R. phaseoli strains

Constr	Oxidases activity					Cytochrome aa, concn*		
Strain .	Succinate	NADH	Ascorbate-TMPD		PY1 liquid	PY2 liquid	MM plates	Symbiosis
CE2 CFN4201	65.2 16.0	217.3 16.8	190.0 33.5		0.0452 ND	0.0097 ND	0.0105 ND	0.0118 ND
CFN4205	185.1	227.1	172.0	1 	0.0434	0.0321	0.0480	0.0251

* Activities are reported as nanogram-atoms of oxygen consumed minute -1 milligram of protein -1. Representative results of three experiments with a variation of less than 10% are shown.

or less than 10% are shown. ¹ The cyclothreme ag concentration (nanomoles milligrams of protein ¹) was determined from spectra of whole cells on MM plates, in plants, and in liquid PY medium. Representative results of three experiments with a typical variation of less than 10% are shown. ND, Not determined.

CF2 membrane particles. Cytochrome b is partially reduced by ascorbate-TMPD, as shown by the 429-nm absorption peak; two components in the α region were resolved, with maxima of 554 nm ("e₅₅₄") and a shoulder at 552 nm ("b₅₄₅"). A similar cytochrome b has been reported to be present in B. japonicum and R. trifolii (2, 9).

(b_{362}), R similar cytochrome D has been hep-field to be present in *B. japonicum* and *R. trifolii* (2, 9). Putative terminal oxidases were identified in carbon monoxide difference spectra (Fig. 1C). Membranes showed two. CO-reactive cytochromes, cytochrome o (peak at 417 nm, shoulder at 430 nm, and features near 560 nm) and cytochrome aa_5 (troughs at 445 and 610 nm and shoulder at 594 nm). Both CO-reactive cytochromes were identified as terminal oxidases by photodissociation spectra and oxygen binding (see below). The cytochrome composition of the *R. phaseoli* respiratory chain thus resembles that of the respiratory chains proposed for other *Rhizobium* species (2, 9, 12).

Isolation and characterization of *R. phaseoli* mutants. Mutanis with altered respiration capacities were screened by using the TMPD overlay procedure described in Materials and Methods. Colonies with functional cytochromes stained a blue color within a few minutes.

CE2 cells were mutagenized with Tn5-mob or with nitrosoguandine as described previously (10, 23), and two types of mutants were screened, negative color mutants (TMPD⁺⁺) (see Materials and Methods for details). About 4,000 Km⁷ mutant colonies were screened for putative cytochrome mutants. One TMPD⁻⁺ mutants was identified and further characterized; no TMPD⁺⁺ mutants were detected after Tn5 mutagenesis.

About 7,000 colonies were screened from nitrosoguanidine mutagenesis; two TMPD⁻ mutants and one TMPD⁺⁺ mutant were identified. Further analyses were performed with the TMPD⁻ Tn5-induced mutant (CFN4201) and with the TMPD⁺⁺ mutant strain (CFN4205).

Strain CFN4201 has a single Tn5 insertion, as proven by blot hybridization against Tn5 sequences (data not shown). The Tn5 insertion in strain CFN4201 was shown to be genetically linked to the TMPD⁻ phenotype. Plasmid PJB3 was introduced into strain CFN4201; this plasmid contains the functions necessary to mobilize the *mob* sequences present in Tn5 (8, 23). Strain CFN4201(PJB3) was mated with a streptomycin-resistant derivative of CFN42 (CE3). The Km⁻ guerim was mobilized ta frequency of 10⁻⁺, and all of the transconjugants were found to be TMPD⁻, indicating that this phenotype was due to the TMPD⁻, indicating that this phenotype was due to the TMPD⁻, indicating time

Strain CFN4201 and CFN4205 had the same doubling time (2.5 h) in complex liquid cultures. In MM with succinate as the sole carbon source, strain CFN4201 showed a lag phase (4 h) but grew with the same doubling time as strains CE2 and CFN4205 (3 h). Strain CFN4201, unlike CE2 and CFN4205, could not utilize glucose as the sole carbon source. Strain CFN4205 reached a lower culture protein content (48 μ g ml⁻¹) when compared with strain CE2 (77 μ g ml⁻¹) with glucose as the sole carbon source.

Contact the properties of the mutants. Membrane particles were obtained from liquid cultured cells in order to determine cytochrome composition and respiratory activities, Strain CFN4201 showed low levels of *b*-type cytochromes since the absorption peaks at 429 and 57 nm were clearly lower than those in strain CE2 (Fig. 1A). Strain CFN4201 also showed reduced levels of *c*-type cytochrome, Figure 1B shows the ascorbate-TMPD-reduced minus -oxidized difference spectra; clearly, the 552-um absorption peak is lower than that in the parent strain. Strain CFN4201 retained both CO-reactive cytochromes pattern similar to that of the CE2 strain, although it showed reduced levels of cytochrome *b* (peak at 557 nm) (Fig. 1A) and of cytochrome o (Fig. 1C). Table 2 shows the dytochrome tracefold-lower *c*-type cytochrome almost twofold-lower *b*-type cytochrome. Strain CFN4205 had twofold-lower *b*-type cytochrome almostic twofold-box context and almostic twofold-lower cytochrome o that of the CF1.

Table 3 shows the respiratory activities obtained with membrane particles from the different strains. Strain CFN4201 had fourfold-lower succinate, 13-fold-lower NADH, and 5.6-fold-lower ascorbate-TMPD oxidase activities than did CE2, whereas CFN4205 had 2.6-fold-ligher succinate oxidase activity than did CE2 and NADH and ascorbate-TMPD oxidases activities similar to those of CE2. Ascorbate-TMPD oxidase activity was determined in whole cells cultured on plates. Strains CFN4205 and CFN4201 showed similar ascorbate-TMPD oxidase activity in cells cultured on plates (93.33 ng-atom of O₂ min⁻¹ mg of protein⁻¹) than in cells cultured in liquid medium. The different ascorbate-TMPD oxidase activity of strains CFN4205 and CE2 in cells cultured on plates explains the TMPD^{+*} phenotype shown.

Effect of growth conditions on cytochrome complement of R. phaseoli strains. Since strain CE2, but not CFN4205, showed a different ascorbate-TMPD oxidase activity when cultured under different conditions (see above), the cytochrome composition of these strains was analyzed in cells grown under various conditions (spectra not shown). The major difference observed was in the cytochrome ar_3 content of these strains (Table 3). Strains CE2 and CFN4205 showed a similar cytochrome aa_3 content when cultured in PY1 medium; nevertheless, strain CE2 showed a fourfold-less cytochrome aa_3 content when cultured on MM plates, PY2 medium, or during symbiosis, where strain CFN4205 showed a higher cytochrome aa_3 content (Table 3).

FIG. 2. Photolysis and initial stages of O_2 binding to cytochrome *o* in a whole-cell suspension of strain CE2. The spectra of CO-liganded, succinate-reduced cells were scanned and stored in a digital memory of a dual-wavelength spectrophotometer. The first scan, before photolysis, yielded a reduced plus CO mass line (-----) (A) Spectra obtained after scanning a CE2 cell suspension after 60 s of exposure to white light at -121°C in the absence of O_2 . (B) Spectra of a similar cell suspension at -121°C in the presence of O_2 . (C) - Spectra of a similar cell suspension at -108°C in the presence of O_2 . Spectra of a similar cell suspension at -121°C in the presence of O_2 . (C) - Spectra of a similar cell suspension at -108°C in the presence of O_2 . (D) Spectra of a similar cell suspension at -76°C; last scan recorded 40 min (3), 17 min (4), and 30 - min (5) later, after photolysis; (6) reflashing sample after last scan. (D) Spectra of a similar cell suspension at -76°C; last can recorded 40 min after photolysis. Spectra were scanned at 2.86 nm F^{-1} with 500 nm as a reference wavelength and a spectral band width of 8 nm.

ò

Second 5 Photolysis of reduced, CO^O-liganded cytochromes in intact cells of CE2 and CFN4205. The fact that CE2 and CFN4205 had different CO-binding cytochromes when cultured in PY2 medium (Table 3; see below) allowed us to determine carbon monoxide and oxygen binding to cytochromes o and aa_3 independently. Thus, CO and O₂ binding to cytochrome o was analyzed in CE2 cells, while CO and O₃ binding to

7-1

cytochrome a_3 was analyzed in CFN4205 cclls grown on PY2 medium. As a prerequisite to studying the reaction of cytochrome oxidases with O_3 , attempts were made to photodissociate CO from cytochromes o and a_3 . Reduced, CO-saturated whole cells of CE2 were photolyzed for 60 s with white light at -121° C. The resulting (postphotolysis-minus-prephotolysis) photodissociation spectrum showed the features of a pure cytochrome o spectrum (Fig. 2; see reference 21). There were absortion maxima at 423 and about 552 nm, due to the generation by photolysis of reduced cytochrome o, and minima at 416, 536, and 570 nm, due to a loss of CO-liganded cytochrome o. Repetitive scanning of this sample for 12 min showed nucleange in the spectrum, suggesting no CO recombination (data not shown). When a similar experiment was done in the presence of O_2 , the difference spectrum was similar to that founded in the absence of O_2 , although the signals were smaller, probably due to some oxidation before freezing (Fig. 2B). Nevertheless, repetitive scanning of this sample showed no change in the spectrum, suggesting no further O_2 recombination with cytochrome o was analyzed in CE2 cells after photolysis for 60 s with white light at -108° C. The first scan, which was measured 1 min after photolysis, showed a 'Oough at 417 nm and a maximum at 435 nm attributable to cytochrome o. The α -region signals (minima at 536 and 570 m) were weak (Fig. 2C). Repetitive scanning at this temperature showed a progressive loss of the 417- and 435-sm signals due to O_2 recombination, since reflashing of the

AUTHOR:

The identification of the component responsible for the electron transfer to cytochrome oxidases could be estab-

FIG. 3. Photolysis and initial stages of O_2 binding to cytochrome a_3 in a whole-cell suspension of strain CFN4205. The spectra of CO-liganded, succinate-reduced cells were scanned and stored in a digital memory of a dual-wavelength spectrophotometer. The first scan, before photolysis, yielded a reduced plus CO minus reduced plus CO base line (----). (A) Spectra obtained after spanning a CFN4205 cell suspension at -121°C. In the presence of O_2 . (C) Spectra of a similar cell suspension at -121°C in the presence of O_2 . (C) Spectra of a similar cell suspension at -121°C in the presence of O_2 . (C) Spectra vere initiated 1 min (1), 4 min (2), 7 min (3), 9.5 min (4), 14.25 min (5), 22 min (6), and 33.25 min (7) after photolysis; (8) reflahing sample after last scan. (D) Spectra of a similar cell suspension at -76°C; last scan recorded 40 min after photolysis. Spectra were scanned as stated in the legend to Fig. 2.

lished by obtaining a photodissociation spectrum at warmer temperatures in the presence of O2, where the oxidation of the cytochrome oxidase is achieved more rapidly. Thus, any change in the spectra after repetitive scanning is due to the oxidation (by electron transfer to the cytochrome oxidase) of the immediate component of the electron transport chain.

To identify the component responsible for the electron transfer to cytochrome o, a photodissociation spectrum was obtained from a similar CE2 cell suspension in the presence of O_2 at -76°C. The first scan showed no signal that could be assigned to cytochrome o in the Soret region, due to complete ligand binding to cytochrome o at this temperature (Fig. 2D). Repetitive scanning showed the progessive development of a trough (relative to the CO-liganded form) at 434 nm, attributed to the oxidation of a b-type cytochrome (Fig. 2D).

A suspension of CFN4205 cells was photolyzed for 60 s at -121°C as described above for CE2 cells. The resulting (postphotolysis-minus-prephotolysis) photodissociation spec trum showed the features of a pure cytochrome a, photodis-

sociation spectrum (Fig. 3A; see references 13 and 20) and little cytochrome o (trough at 415 nm). The absorption maximum at 447 nm was due to the appearance of reduced cytochrome a_3 . Repetitive scanning of this sample for 20 min after photolysis showed no change in the spectrum, suggesting no CO recombination (data not shown). When a similar experiment was done in the presence of O2, no trace of cytochrome σ was found, probably due either to rapid O₂ binding after photolysis or to CO displacement by O₂ before freezing (trough at 415 nm). A pure cytochrome aa_3 photodissociation spectrum was obtained (Fig. 3B). Repetitive scanning of this sample showed no change in the spectrum, suggesting no O2 recombination at this temperature (data not shown). Oxygen recombination with cytochrome a3 was analyzed in a suspension of CFN4205 cells, in the presence of O_2 , which was photolyzed for 60 s with white light at -108° C. The first scan, which was recorded 1 min after photolysis, showed a minimum at 432 nm and a maximum at 448 nm; the α -region signal at 595 nm was very weak (Fig. 3C). Repetitive scannings at this temperature showed a

J. BACTERIOL

JOBNAME: JB-JAN-8969/JNL PACE: 7 SESS: 9 OUTPUT: Wed Nov 209:35:26 1988 CLS: monthlyli GRP: asm2 JOB: jb-jan DIV: 8969-882

VOL. 171, 1989

FIG. 4. Acetylene reduction activity (ARA) in plants inoculated with strains CE2 ($^{\circ}$) and CFN4205 (O). Ten pots with three plants each were inoculated with the two strains. Acetylene reduction activity was determined in one pot on the specified days. One hundred percent represents an activity of 565 nm of C₂H₄ nodule⁻¹ h⁻¹. Vertical bars represent SD of three determinations.

progressive loss of 432- and 445-nm signals due to O₂ recombination, since reflashing of the sample did not restore the spectrum signals (Fig. 3C). The first scan after photolysis at -76° C showed a minimum at 429 nm but no maximum at 448 nm, due to a complete ligand combination to cytochrome a_3 at this temperature (Fig. 3D). Repetitive scanning showed the progressive development of a trough (relative to the CO-liganded form) at 429 nm, attributed to the oxidation of a *b*-type cytochrome, although different from that found to be oxidized by cytochrome o (Fig. 2D and 3D).

Symblotic phenotype of the mutants. The symbiotic phenotype of the mutant strains was determined by inoculating three pots with three plants of *P. vulgaris* cv. negro jamapa cach with the different strains. Nitrogen fixation was estimated by the total nitrogen content determined in the three pots independently. The mutant strains were able to nodu-iate *P. vulgaris*, but the nodules formed by CFN4201 were green rather than pink and smaller than those formed by strain CE2. CFN4205-nodulated plants had 22% (4.80 ± 0.23 Stain CE2. CPU205-ROOtate plants had 22% (4.80 \pm 0.22 (standard deviation (SD) of three determinations) mg of nitrogen 100 mg (dry weight)⁻¹) more nitrogen content than did the wild type (3.92 \pm 0.35 (SD of three determinations) mg of nitrogen 100 mg (dry weight)⁻¹), whereas CFN4201-inoculated plants had 40% (1.58 \pm 0.11 (SD of three deter-minations) mg of nitrogen 100 mg (dry weight)⁻¹). minations] mg of nitrogen 100 mg [dry weight]" 1) of the nitrogen content found in plants inoculated with the wildtype strain. Subtracting the nitrogen content found in plants which were not inoculated with bacteria (1.30 ± 0.10 [SD of three determinations] mg of nitrogen 100 mg [dry weight] showed that plants inoculated with strain CFN4205 had 33% more nitrogen content than did the wild-type-inoculated plants and plants inoculated with strain CFN4201 had only 10% of the nitrogen content found in wild-type inoculated plants.

The nitrogen content differences found between plants inoculated with the wild-type strain and those inoculated with CFN4205 are the result of nitrogen accumulation during the period of nitrogen fixation (Fig. 4). Nitrogen fixation was AUTHOR: SEE QUERY PAGE 21, 22, 3

CYTOCHROME MUTANTS OF RHIZOBIUM PHASEOLI

measured during a period of 14 days by the acctylene reduction assay. The first determination was done 12 days after inoculation since this is the 1st day that nitrogenase activity can be determined. CFN4201-inoculated plants showed no detectable activity. Figure 4 shows that plants inoculated with strains CFN4205 and CE2 reached a similar nitrogenase activity. However, CFN4205-inoculated plants reached the optimum activity 5 days before plants inoculated with the wild-type strain (Fig. 4).

DISCUSSION

1

Two R. phaseoli cytochrome mutants were isolated and characterized in the free-living and symbiotic states. Mutant strain CFN4201 had diminished amounts of b-type and c-type cytochromes in culture and forms ineffective symbic-type cytoentomes in cutation and forms inductive sympto-osis. This mufant has a phenotype similar to those of mutants previously isolated in *B. japonicum* (10, 16). Mutant CFN4205 showed higher levels of cytochrome *aa*₃ when cells were incubated on MM plates, PY2 medium, or during symbiosis than did the wild-type strain. Plants inoculated with strain CFN4205 had a nitrogen fixation capacity higher than that of wild-type-inoculated plants. The reason for this enhanced nitrogenase activity could be due to an enhanced supply of ATP or reducing equivalents to support nitrogenase or to respiratory protection of nitrogenase from O_2 damage or both. The fact that the enhanced nitrogenase activity is only apparent in young nodules could reflect the participation of the respiratory chain in the protection of nitrogenase from oxygen, as has been suggested by Appleby: "perhaps it is only in very young nodules or in the vicinity or air tubules that local O_2 concentration might rise above Lb-saturating levels and provoke protective respiration" (3). The only cytochrome content difference between CFN4205 and CE2 bacteroids was twofold-higher cytochrome aa, of strain CFN4205. Cytochrome aa3 was shown to be genetically dispensable during symbiosis in B. japonicum (16). Nevertheless, the cytochrome aa, mutant characterized in that study showed an enhanced expression of an alternative cytochrome c oxidase activity which could compensate for the absence of cytochrome aa_3 (16). When the wild-type strain is cultured on MM plates or

When the wild-type strain is cultured on MM plates or during symbiosis, the cytochrome a_3 content is fourfold lower than in cells grown on a complex medium (PY1). It has been reported that *B. japonicum* expresses cytochrome a_3 neither in nonagitated cultures (4) nor during symbiosis (1), probably due to low oxygen tensions (4). In other bacterial species O_2 deprivation tends to cause the replacement of cytochrome a_3 by cytochrome o (Poole, in press). The low content of cytochrome o_3 of cells cultured on MM plates may also be due to low gen tension, since cells grown in well-aerated liquid cultures in this medium expressed a higher cytochrome a_3 content (data not shown). The fact that CE2 and CFN4205 cells had different CO-

The fact that CE2 and CFN4205 cells had different CObinding cytochromes when cultured in PY2 medium allowed us to determine CO and O_2 binding to cytochromes o and a_3 independently. Photodissociation spectra of cultured cells showed that both cytochrome o and cytochrome a_3 func.... tion as terminal cytochrome oxidases. Such spectra also showed that a <u>b-type (404-nm)</u> cytochrome b is oxidized by cytochrome σ_1 [The oxidation of cytochrome b is oxidized by (cytochrome a_3 suggests an electron transfer from b to a_3 , although different from the b-type cytochrome oxidized by cytochrome o. In other bacterial species cytochrome a_3 is β^* reduced preferentially by cytochrome o (18; Poole, in press), JOBNAME: JB-JAN-8969/JNL PAGE: 8 SESS: 9 OUTPUT: Wed Nov 2 09:35:26 1988 CLS: monthly1i GRP: asm2 JOB: jb-jan DIV: 8969-882

SOBERÓN ET AL

We have shown here that there is a correlation between bacterial respiration and symbiotic nitrogen fixation in R. phaseoli. We have also established a method which resulted in the isolation of a mutant with an increased nitrogen fixation capacity. The argicultural benefits of the improve-ment of nitrogen fixation could be important but remains to be determined.

ACKNOWLEDGMENTS

We thank the British Council for financial support and the Royal Society and Smith Kline Foundation for equipment grants. We thank Martha Contreras and José Luis Zitlalpopoca for technical assistance.

LITERATURE CITED

- Appleby, C. A. 1969. Electron transport systems of *Rhizoblum* japonicum. I. Haemoproteins p-450, other CO-reactive pig-ments, cytochromes and oxidases in bacteroids from N₂-fixing
- Appleby, C. A. 1969. Electron transport systems of *Rhizobium* japonicum. II. *Rhizobium* hacmoproteins, cytochromes and oxidases in free living (cultured) cells. Biochim. Biophys. Acta 172:88-105
- Appleby, C. A. 1984. Leghemoglobin and Rhizabium respira-tion. Annu. Rev. Plant Physiol. 35:443-478.
 Avisar, Y. J., and K. D. Nadler. 1978. Stimulation of tetrapy-role formation in Rhizabium japanicum. J. Bacteriol. 135:782-789
- 5. Awonalke, K. O., P. J. Len, and B. J. Miflin, 1981. The location of the enzymes of ammonia assimilation in root nodules of Phaseolus vulgaris. Plant Sci. Lett. 23:189-195.
- Bergersen, F. J. 1980. •••••• p. 65-138. In F. J. Bergersen (cd.), Methods for evaluating biological nitrogen fixation. John Wiley & Sons, Inc., New York. 6.
- Boyer, H. B., and D. Roulland-Dussoix. 1969. A complementation analysis of the restriction and modification of DNA Escherichia coli. J. Mol. Biol. 41:459-472.
- Brewin, N. J., J. E. Beringer, and A. W. B. Johnston. 1980. Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum, J. Gen. Microbiol. 120: 413-420.
- DeHollander, J. A., and A. H. Stouthamer. 1980. The electron transport chain of *Rhizobium trifolii*. Eur. J. Biochem. 111:473-
- El Mokaden, M. T., and D. L. Keister. 1982. Electron transport in *Rhizobium japonicum*. Isolation of cytochrome c deficient mutants. Isr. J. Bot. 31:102-111.
- Escamilia, J. E., R. Ramírez, P. Del-Arenal, and A. Aranda. 1986. Respiratory systems of the *Bacillus cereus* mother cell and 11. forespore, J. Bacteriol, 167:544-550.
- 12. Kretowich, W. L., V. I. Romanov, and A. U. Korolyou. 1973.

J. BACTERIOL.

Rhizobium leguminosarum cytochromes (Vicia faba). Plant Soil 39:614-634.

- Ludwig, B., and Q. H. Gibson. 1981. Reaction of oxygen with cytochrome c oxidase from Paracoccus denipyficans, J. Biol. Chem. 256:10092-10098.
- Chem. 256:10092-10096.
 Markwell, M. A. K., S. M. Haas, Z. Z. Vleber, and N. E. Tolbert. 1978. A modification of the Lowry procedure to sim-plify protein determination in membrane and lipoprotein sam-plify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87:206-210.
- pics. Anal. Biochem. 87:205-210.
 S. Noei, K. D., A. Sanchex, L. Fernandez, J. Leemans, and M. A. Cavallos. 1984. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J. Bacteriol. 158:148-155.
 O'Brian, M. R., P. M. Kirshbern, and R. J. Maler. 1987. Th5-induced cytochrome mutants of Bradynkizobium japonicuum: effects of the mutations on cells grown symbiotically and in culture. J. Bacteriol. 169:1089-1094.

- Collarta, J. Bacteriol. 169:1089-1094.
 O'Brian, M. R., and R. J. Maier. 1982. Electron transport components involved in hydrogen oxidation in free-living *Rhi-tobium japonicum*. J. Bacteriol. 152;422-430.
 Poole, R. K. 1983. Bacterial cytochrome oxidases. A structur-ally and functional diverse group of electron-transfer proteins. Biochim. Biophys. Acta 726:205-243.
 Poole, R. K., B. S. Baines, J. A. M. Hubband, and H. D. Williams. 1985. Microbial metabolism of oxygen. The binding and reduction of oxygen, bacterial cytochrome oxidases, p. 31-62. *In* R. K. Poole and C. S. Dow (ed.). Microbial gase metabo-lism: mechanistic. metabolic and biotechnological aspects. Ac-tion. lism: mechanistic, metabolic and biotechnological aspects. Academic Press, Inc. (London), Ltd., London. 20. Poole, R. K., R. I. Scott, B. S. Balnes, I. Salmon, and D. Lloyd.
- 1982. Identification of cytochrome o and aa3 functional terminal oxidases in the thermophilic bacterium, PS3. FEBS Lett. 150: 281-285.
- 281-285.
 281-285.
 21. Poole, R. K., A. J. Waring, and B. Chance. 1979. The reaction of cytochrome o in *Escherichia coli* with oxygen. Low temperatures kinetic and spectral studies. Biochem. J. 184:379-389.
 22. Quinto, C., H. de la Vega, M. Flores, L. Fernández, R. Ballado, G. Soberón, and R. Palaclos. 1982. Reiteration of nitrogen fixation gene sequences in *Rhizobium phaseoli*. Nature (London) 239:724-726.
- Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784– 11. Bio/Technology 1:784–11. 791
- 24. Udvardi, M. K., D. A. Day, and P. M. Gresshoff. 1986. Stimu-lation of respiration and nitrogenase in bacteroids of Siratro (Macropitilium atropurpureum) by plant nodule cytosol. Plant Cell Rep. 3:207-209.
- 25. Wacek, Wacek, T., and W. J. Brill. 1976. Simple rapid assay for screening nitrogen fixing ability in soy-bean. Crop Sci. 16:519-522
- Williams, H. D., and R. K. Poole. 1987. The cytochromes of 26. Acetobacter pasteurianus NCIB 6428. Evidence of a role for cytochrome a₁-like haemoprotein in electron transfer to cyto-chrome oxidase. J. Gen. Microbiol. 133:2461-2472.

OBJETIVOS.

Como se mencionó previamente, la respiración es central en el proceso de fijación simbiótica de nitrógeno. La respiración acoplada a la fosforilación oxidativa proporciona el poder reductor y energético necesarios para la reacción de fijación de nitrógeno (60). La respiración puede funcionar como un mecanismo que regula la concentración de O_2 , evitando la inactivación de la nitrogenasa (90, 81, 82). La relación tan estrecha de estos procesos permite la proposición de incidir en la capacidad de fijación de nitrógeno de <u>Rhizobium phaseoli</u> durante su asociación simbiótica con frijol, a través de incidir en el proceso de la respiración celular.

El aislamiento de mutantes respiratorias de <u>Rhizobium</u> <u>phaseoli</u> permitirá establecer el papel de los diferentes componentes de la cadena respiratoria en los procesos de respiración y fijación de nitrógeno. Asi mismo, la caracterización genética y bioquímica de estas mutantes podría permitir establecer estrategias para el aislamiento de cepas con capacidades respiratorias y de fijación de nitrógeno incrementadas.

Los objetivos de este trabajo son determinar la composición de la cadena respiratoria de **Rhizobium phaseoli** y estudiar la regulación de la expresión de estos componentes en diferentes condiciones de cultivo y durante la simbiosis. Asimismo se propone aislar mutantes afectadas en la expresión de distintos componentes de la cadena respiratoria con el propósito de establecer el papel de cada uno de ellos en los procesos de nodulación y fijación de nitrógeno. Por último, la caracterización genética de las mutantes aisladas podría permitir el diseño de estrategias para aislar cepas con capacidades incrementadas de fijación simbiótica de nitrógeno.

Los objetivos que se cumplieron en este trabajo fueron la determinación de la composición de citocromos de la cadena respiratoria de <u>Rhizobium phaseoli</u>, la regulación de la expresión de citocromos oxidasas en diferentes tensiones de O_2y durante simbiosis además de el aislamiento y caracterización de mutantes afectadas en la expresión de los diferentes citocromos.

AISLAMIENTO Y CARACTERIZACION DE MUTANTES QUE AFECTAN LA EXPRE-SION DE LAS OXIDASAS TERMINALES O Y aa₃ DE Rhizoboim phaseoli.

En el trabajo previo se reportó la composición de citocromos de la cadena respiratoria de <u>Rhizobium phaseoli</u>, que tiene citocromos tipo **b**, tipo **c** y dos oxidasas terminales: **citocromo o** y **citocromo aa**₃.

Las oxidasas terminales se identificaron por sus espectros de acción y por su capacidad de reaccionar con el 0_2 . También se reportó el aislamiento de una mutante inducida con nitrosoguanidina, la cual expresa la oxidasa **aa**₃ de manera constitutiva y tiene una capacidad de fijación de nitrógeno incrementada.

En este trabajo se presenta el aislamiento y caracterización de tres mutantes respiratorias de <u>Rhizobium phaseoli</u>. El análisis de estas mutantes permitió establecer que existe una correlación entre la capacidad de infectar la planta de estas mutantes y su actividad simbiótica de fijación de nitrógeno.

<u>Aislamiento y caracterización genética de mutantes respiratorias</u> <u>de Rhizobium phaseoli</u>.

Se hicieron dos mutagénesis de la cepa CE3 con diferentes transposones Mud lac Km y Tn5mob. De 4,000 colonias probadas de la mutagénesis con Mu se identificó una cepa (CFN4202), incapaz de oxidar el colorante TMPD (TMPD).

De 5,000 colonias probadas de una mutagenesis de la cepa silvestre CE3 con el transposón Tn5 mob se identificaron 5 cepas con una capacidad incrementada para oxidar el colorante TMPD⁺⁺ (ver Tabla 1). Una de estas cepas (CFNO31) crece lentamente en placas de medio mínimo, succinato (Tabla 1).

Con el propósito de establecer el número de inserciones del transposón Tn5mob en el genoma de las cepas TMPD⁺⁺, el DNA total de estas cepas se digirió con la enzima EcoRI y se sometió a electroforesis en geles de agarosa. Estas digestiones se hibridizaron con un detector de Tn5 marcado con ³²P y mostraron una sola banda de hibridización (Figura 2). El peso de la banda de hibridización es el mismo para las cepas CFN032, CFN033, CFN036 y CFN037, lo que sugiere que afectaron la misma región del genoma.

Se probó que esta inserción está ligada genéticamente con el fenotipo succ⁻ para la cepa CFNO31 y el fenotipo TMPD⁺⁺ para las demás cepas. Se transfirió la resistencia a Km (Tn5), utilizando el plásmido ayudador PJB3, a la cepa CE2. El 94% de las transconjugantes Km^T tenían un fenotipo succ⁻ para la cepa CFNO31. El fenotipo TMPD⁺⁺ de las mutantes restantes está ligado al Tn5 ya que en todas las cepas más del 90% de las transconjugantes Km^T presentaban este fenotipo. Dado que las mutantes CFNO32, CFNO33, CFNO36 y CFNO37, tienen el mismo fenotipo y parecen estar afectadas en la misma región genómica, se procedió a caracterizar completamente a la cepa CFNO37 como representante de este grupo. Como la figura 3 muestra, la cepa CFN4202 no puede utilizar succinato ni glucosa como únicas fuentes de carbono. La cepa CFN031 tampoco puede utilizar succinato y presenta una fase de retardo en la utilización de glucosa. Por último la cepa CFN037 utiliza estas fuentes de carbono como la cepa silvestre.

<u>Citocromos y Actividades respiratorias de cepas de Rhizobium</u> phaseoli.

Con el propósito de determinar la composición de citocromos y actividades repiratorias de las cepas mutantes, se prepararon sus membranas. La figura 4 muestra los espectros diferenciales de las membranas de las cepa silvestre y las cepas mutantes. La cepa CFN4202 expresa niveles altos de citocromo aa3 (hombro 445, pico 604 nm) ver figura 4A. Las membranas reducidas con ascorbato -TMPD no muestran el pico a 554 nm, identificado previamente como citocromo c (figura 4B). Los espectros diferenciales con CO de las membranas reducidas, de esta mutante (figura 4C), muestran que la citocromo oxidasa o (valles a 430 y 560) está presente. La mutante CFN037 tiene una composición de citocromos muy parecida a la de la cepa silvestre (figura 4A y 4C). También la cepa CFN031 presenta una composición de citocromos parecida a la de la cepa silvestre (ver figura 4A); sin embargo tiene niveles reprimidos de citocromo o (valles a 430 y 560); ver figura 4C. La Tabla 2 presenta la concentración de citocromos encontrados en las membranas de las cepas mutantes. La cepa CFN4202 no presenta citocromo c, la cepa CFN037 presenta la mitad de citocromo tipo b y una concentración de los demás citocromos similar al de la cepa silvestre, mientras que la cepa CFN031 presenta una concentración de citocromo o 7 veces menor que la cepa silvestre.

Se determinaron las actividades respiratorias en estas preparaciones de membranas (Tabla 3). La mutante CFN4202 tiene actividades de NADH y TMPD oxidasas bajas. La mutante CFN031 tiene las actividades de NADH y succinato oxidasas de la cepa silvestre y de TMPD oxidasa 50% mayor que la cepa silvestre. Por último la cepa CFN037 tiene una actividad de NADH oxidasa intermedia (Tabla 3).

Como en el trabajo previo se demostró que el fenotipo \texttt{TMPD}^{++} se debía a una expresión constitutiva de la oxidasa \texttt{aa}_3 . Se obtuvo un espectro de células enteras de las cepas CE2 y CFN037 cultivadas en medio completo con bajas tensiones de O₂ (sin agitar). Se realizó en estas condiciones ya que en el trabajo anterior se sugirió que la expresión del citocromo \texttt{aa}_3 se regulaba por la tensión de O₂ al igual que en otras especies de <u>Rhizobium</u> (86). La figura 5 muestra que la cepa silvestre tiene niveles bajos de citocromo \texttt{aa}_3 (pico 600 nm); sin embargo, expresa citocromo d (pico 634 nm, valle 650). La cepa CFN037 expresa citocromo \texttt{aa}_3 y no presenta la señal de citocromo d (ver figura 5).

FENOTIPO SIMBIOTICO DE LAS MUTANTES.

Se inocularon plantas de **phaseolus vulgaris** negro jamapa con las diferentes cepas para determinar la actividad de reducción de acetileno por la nitrogenasa y nitrógeno total en plantas. En la tabla 4 se pueden observar los valores de las actividades de reducción de acetileno en plantas 21 días después de inoculadas. La cepa CFN4202 no presentó actividad detectable de reducción de acetileno, la cepa CFN031 tiene el 20% de la actividad de la cepa silvestre y la cepa CFN037 tiene el doble de la actividad de la

Las actividades de reducción de acetileno que presentaron las mutantes se reflejaron en el contenido de nitrógeno encontrado en las plantas inoculadas con estas cepas. La cepa CFN031 tiene el 58% del nitrógeno encontrado en la cepa silvestre mientras que la cepa CFN037 tiene 21% más nitrógeno total que la cepa silvestre.

En la figura 6 se muestran las plantas inoculadas con las diferentes cepas de <u>Rhizobium phaseoli</u>. Las plantas inoculadas con las cepas CFN4202 y CFN031 muestran un fenotipo característico de las plantas crecidas en limitación de nitrógeno (hojas etioladas, más chicas, etc.), mientras que las plantas inoculadas con la cepa CFN037 son ligeramente más grandes y las hojas presentan un verde ligeramente más obscuro que las plantas inoculadas con la cepa silvestre.

MICROSCOPIA DE LOS NODULOS INDUCIDOS POR LAS CEPAS MUTANTES

La capacidad de inducir nódulos por estas mutantes está afectada, ya que la cepa CFN4202 induce muy pocos nódulos y éstos son de color blanco, la cepa CFN031 induce nódulos verdes y más pequeños que los nódulos rosados inducidos por la cepa silvestre.

Por esto se decidió determinar la otra estructura de los nódulos por microscopía de luz y electrónica,. La figura 7 muestra los cortes de nódulos inducidos con las diferentes cepas. La cepa CFN4202 induce nódulos en los que no se pueden observar bacteroides. La cepa CFN031 induce nódulos con pocos bacteroides en las células vegetales mientras que la cepa CFN037 parece tener más bacteroides en los nódulos que los que presenta la cepa silvestre.

DISCUSION

de citocromos de la cadena respiratoria de La composición Rhizobium phaseoli comprende citocromos tipo b, tipo c y las oxidasas terminales o y aa3. En este trabajo se muestran datos que indican la existencia de otra citocromo oxidasa terminal: el citocromo d (pico 634 nm, valle 650). La mutante CFN 4201 muestra una señal característica de este citocromo, (ver manuscrito, figura 1 B). Esta mutante presenta una expresión alta de las otras oxidasas terminales o y aa_3 , lo que explicaría la expresión del citocromo d. Por otra parte, la cepa silvestre expresa este citocromo cuando se cultiva en tensiones bajas de O2 á (ver figura 5); en estas condiciones de cultivo el citocromo se expresa en otras especies bacterianas (3, 13,). Una fuerte evidencia de que existe un citocromo tipo **d** es el aislamiento de un plásmido de un banco de genes de la cepa **CFN42**, el cual complementa el crecimiento de una mutante de Escherichia coli que carece de los citocromos o y d. La cepa complementada presenta una señal característica de citocromo d (ver figura 8).

La cadena respiratoria de <u>Rhizobium phaseoli</u> se bifurca antes o a nivel de los citocromos tipo **b**. Los espectros de fotodisociación muestran que el citocromo **o** oxida a un citocromo tipo **b** (434 nm). El citocromo **aa**₃ oxida otro citocromo **b** (429 nm). El citocromo **b** que reduce al citocromo **aa**₃ pudiera ser un complejo de citocromos **b/c**, ya que en otras especies bacterianas el citocromo **aa**₃ se reduce por citocromos tipo **c** (14). Reciéntetemente se reportó el aislamiento de una mutante de <u>B. japonicum</u> que es incapaz de fijar nitrógeno, y el gene mutado es homólogo en su secuencia a los genes del complejo **b/c**₁ (operón _Fbc₁) de <u>Rhodoseudomonas capsulata</u> (6). Esta mutante no oxida TMPD. Los datos que sugieren la existencia de un complejo **b/c**₁

en <u>Rhizobium phaseoli</u> son: Las dos mutantes que afectan la expresión del citocromo c descritas en este trabajo están afectadas también en la expresión de citocromos tipo b. Estas 2 mutantes mapean en diferentes regiones del genoma de <u>R. phaseoli</u> (Germán R. Aguilar, comunicación personal). Estas mutantes inducen preferencialmente la oxidasa terminal **aa**₃, lo que sugiere la participación del citocromo c en la reducción de **aa**₃; sin embargo, **aa**₃ oxída a un citocromo b. Estos datos se podrían explicar si el citocromo b que oxida **aa**₂ fuera un complejo b/c₁.

plicar si el citocromo b que oxida aa_3 fuera un complejo b/c_1 . En cuanto a la regulación de la expresión de la cadena respiratoria, se encontró que el citocromo aa_3 se regula por la tensión de O_2 en la que se cultiva <u>Rhizobium phaseoli</u>, al igual que en diferentes especies bacterianas (3). Por otra parte, se demostró que este citocromo se regula negativamente por otros metabolitos, independientemente de la tensión de O_2 . El citocromo aa_3 se encuentra reprimido durante la simbiosis; esta represión se debe a bajas tensiones de O_2 en el interior del nódulo (89), sin embargo, ésto no ha sido demostrado y es interesante determinar si el citocromo aa_3 se regula durante la simbiosis por represión de estos metabolitos. La mutante CFN4205 no reprime la

expressión de citocromo aa_3 en condiciones microaerofílicas, sin embargo se puede observar algo de repressión de la expressión de citocromo aa_3 en esta cepa durante simbiosis lo que sugiere que estos dos mecanismos de regulación son independientes.

Como se mencióno previamente el citocromo d se expresa en condiciones microaerofílicas, la expresión de este citocromo pudiera estar regulada por el mismo sistema genético que el que regula la expresión de aa_3 . Los datos que sugieren esto es que la mutante CFN037 que expresa el citocromo aa_3 en condiciones microaerofílicas no expresa el citocromo d en estas condiciones. Sin embargo existe la posibilidad de que la expresión de citocromo aa_3 en esta cepa pudiera cambiar la concentración intracelular de O_2 y evitar la expresión de citocromo d.

El aislamiento y caracterización de las mutantes afectadas en la expresión de diferentes citocromos permitió establecer el papel de los diferentes citocromos en el proceso simbiótico. Las mutantes aisladas están afectadas en su capacidad de fijación simbiótica de nitrógeno. Sin embargo, en este trabajo se demuestra que la respiración bacteriana se requiere no sólo para el proceso de fijación de nitrógeno, sino para que se lleve a cabo una infección efectiva de la planta por <u>Rhizobium phaseoli</u>.

Durante el proceso de infección de la planta por Rhizobium, la bacteria se divide para poder avanzar hacia las células Cuando llega a estar en contacto vegetales que va a infectar. con estas células es internalizado por endositocis quedando englobado en membranas de la célula vegetal. En el interior de la célula vegetal el Rhizobium se divide nuevamente hasta alcanzar una densidad de población de 10^4 a 10^5 bacteroides por célula (100, 101). La mutante CFN4202 que carece de infectada citocromo c es capaz de inducir la formación de nódulos; sin embargo, en estos nódulos no se observan células vegetales infec-La inducción de nódulos vacios, por tadas por la bacteria. mutantes de Rhizobium ha sido reportado para mutantes que afectan la producción de exopolarizados de <u>Rhizobium meliloti</u> (102, 103). Se caracterizaron 2 tipos de mutantes, elprimer tipo eran mutantes que no producen exopolisacaridos y la mutación mapea en un plásmido (103). El segundo tipo de mutantes sobre produce exopolisacarido y la mutación mapea en cromosoma (103). La mutante CFN4202 es la primer mutante Inf de <u>Rhizobium</u> que se localiza en la cadena de transporte de electrones. Esto sugiere que el citocromo c es importante en la cadena de transporte de electrones que proporciona el ATP necesario para el crecimiento bacteriano al inicio de la infección.

El citocromo \underline{o} se requiere para que la bacteria infecte a la célula vegetal sin embargo, no es indispensable en el proceso de fijación de nitrógeno. Los nódulos inducidos por la cepa **CFN031**, que presenta niveles bajos de citocromo \underline{o} , tienen una actividad de fijación de nitrógeno del 20% del que presenta la cepa silvestre, esta actividad se correlaciona a simple vista con la cantidad de bacteroides encontrados en las células vegetales infectadas. Estos datos muestran que los pocos bacteroides inducidos por esta mutante son capaces de fijar nitrógeno atmosférico. Estos datos sugieren también que el citocromo o forma parte de la cadena de electrones que proporciona el ATP necesario para el crecimiento bacteriano en el interior de la célula vegetal.

En cuanto al papel del citocromo aa_3 , el aislamiento de mutantes que expresan este citocromo de manera constitutiva, permitió demostrar que el citocromo aa_3 es importante en la infección de la planta por la bacteria, ya que la cepa CFN037 induce la formación de nódulos con células infectadas con más bacteroides que los inducidos por la cepa silvestre. Por otra parte, el citocromo aa_3 se requiere para la reacción de fijación de nitrógeno, ya que una mutante que presente niveles bajos de este citocromo (proyecto en colaboración con el Dr. E. Escamilla) infecta a la planta mejor que la cepa CFN031 y sin embargo es incapaz de fijar nitrógeno atmosférico.

Las mutantes CFN4205 y CFN037 expresan la oxidasa aa_3 de manera constitutiva y tienen una actividad de fijación de nitrógeno similar y mayor que la encontrada en la cepa silvestre. Sin embargo estas dos cepas presentan diferentes actividades de succinato oxidasa y la cepa CFN4205 presenta niveles bajos de citocromo <u>o</u>. Estas diferencias se pudieran deber a que el fenotipo de la mutante CFN4205 se debe a más de una mutación, ya que fue inducida por mutagénesis química de la cepa silvestre. Estos datos demuestran que es la expresión de citocromo aa, en estas cepas la responsable del aumento en la capacidad de fijar nitrógeno atmosférico. La correlación de la fijación de nitrógeno con la concentración del citocromo aa3 se pudiera explicar por un aumento en la cantidad de ATP disponible para la Como se mencionó en la introducción el citocromo nitrogenasa. aa, es un sitio de conservación de energía (19, 20, 21).

Por último el hecho de haber podido aislar mutantes que tuvieran una expresión constitutiva de la oxidasa terminal **aa**₃ con mutagenesis con el transposon **Tn5** permitirá proponer el identificar este mismo sistema de regulación en diferentes especies de <u>Rhizobium</u>. El aislamiento de mutantes en estas especies con capacidades de fijación de nitrógeno incrementada pudieran ser importantes en el cultivo de otras leguminosas.

Fig.¹.- Diferentes componentes estructurales y mecanismo de acción de la nitrigenasa.

> PI: Componente I, contiene molibdeno (Mo) y tiene afinidad por una molécula de nitrógeno atmosférico (N≣N). PII: Componente II al cual se une ATP y magnesio (Mg). F: Donadorde electrones representados como (●).

FIGURA 2. HIBRIDACION DE DNA TOTAL DE CEPAS DE <u>RHIZOBIUM</u> <u>PHASEOLI</u> CONTRA TN5. DNA'S DIGERIDAS CON ENZIMA EcoRI. CARRILES 1. CFN031, 2. CFN032, 3. CFN033, 4. CFN036, 5. CFN037.

FIGURA 3. CRECIMIENTO DE CEPAS DE RHIZOBIUM PHASEOLI EN DIFERENTES CONDICIONES DE CULTIVO.

FIGURA 5. ESPECTROS DE CITOCROMOS DE CELULAS ENTERAS DE CEPAS DE <u>RHIZOBIUM PHASEOLI</u> CULTIVADAS EN CONDICIONES MICROAEROFILI CAS. ESPECTROS DETERMINADOS A TEMPERATURA AMBIENTE, REDUCIDO DITIONITA VS OXIDADO.

FIGURA 6. PLANTAS DE <u>PHASEOLUS VULGARIS</u> 34 DIAS DESPUES DE HABER SIDO INOCULADAS CON DIFERENTES CEPAS <u>R. PHASEOLI</u>.

FIGURA 7. Microscopia de luz y electronica de nódulos inducidos por cepas de <u>R. phaseoli</u>. CE2 40x y 5263x, CFN037 40x y 4385x, CFN4202 40x y 5263x, CFN031 40x y 7017x.

FIGURA 8. Espectos diferenciales de cepas de <u>Escherichia coli</u>. A reducido ditionita vs oxidado E reducido + CO vs reducido

TABLA 1.

FENOTIPO DE OXIDACION DE N',N',N,N-TETRAMETIL PARAFENILENDIAMINA (TMPD) DE MUTANTES DE <u>Rhizobium phaseoli</u>.

СЕРА	MUTAGENESIS	FENOTIPO TMPD	CRECIMIENTO PLACAS MM SUCCINATO
CE2		TMPD ⁺	+
CFN4202	Mud Lac Km	TMPD ⁻	+
CFN031	Ти5мов	TMPD ⁺⁺	-/+
CFN032	Ти5мов	TMPD ⁺⁺	+
CFN033	Ти5мов	TMPD++	. +
CFN036	Ти5мов	TMPD ⁺⁺	+
CFN037	Ти5мов	TMPD ⁺⁺	+

TABLA 2.

CONCENTRACION DE CITOCROMOS EN MEMBRANAS DE CEPAS DE RHIZOBIUM PHASEOLI.

		СІТО	C R O M O S ^A	4.
CEPA	В	C	AA3	0-C0
CE2	.310	.166	.077	,069
CFN4202	.153	N.D. ^B	.166	.111
CFNC37	.176	.177	.054	,063
CFN031	.200	.162	.042	.010

ACONCENTRACION DE CITOCROMO COMO NMOL/MG PROTEINA

^BN.D. NO DETECTABLE

TABLA 3.

ACTIVIDADES RESPIRATORIAS DE MEMBRANAS DE CEPAS DE RHIZOBIUM PHASEOLI

		O X I D A S A S ^A	
CEPA	SUCCINATO	NADH	TMPD
CE2	65.2	217.3	190
CFN4202	46.7	39.7	29,2
CFN037	68.6	86,1	141.3
CFN031	87.	255.4	267.0

 $A_{ACTIVIDAD}$ como natomos de 0₂ consumido/min/mg proteina.

TABLA 4.

ACTIVIDAD DE FIJACION DE NITROGENO DE PLANTAS INOCULADAS CON DIFERENTES CEPAS : DE RHIZOBIUM PHASEOLI.

30

СЕРА	ARAA	NITROGENO ^B TOTAL
CE2	100	2.61
CFN4202	N. D. ^C	S.D. ^D
CFN037	193	3.16
CFN031	20	1.52

A_{ACTIVIDAD} DE REDUCCION DE ACETILENO DETERMINADA EN PLANTAS DE FRIJOL 21 DIAS DESPUES DE INOCULADAS. ACTIVIDAD COMO % DE LA ACTIVIDAD DETERMINADA EN LA CEPA SILVESTRE.

^BMG DE NITROGENO POR 100 MG DE TALLOS Y HOJAS DE PLANTAS DE FRIJOL 35 DIAS DESPUES DE INOCULADAS

CN.D. NO DETECTABLE

^DS D. SIN DETERMINAR

REFERENCIAS

- 1.- Hallidey, J. (1985). PROC. OF 6TH INTERNATIONAL SYMPOSIUM OF NITROGEN FIXATION. pg. 675-682.
- 2.- Anraku, Y. Ann. Rev. Biochem. (1988). 57: 10 1-32.
- 3.- Poole, R. K., in C. Anthony ed., Bacterial Cytochrome Oxidases in Energy Transduction in Bacteria, C.C. Anthony ed Academy Press London. **En prensa**.
- 4.- Gabellini, N., Sebald, W., (1986). Eur. J. Biochem. <u>154</u>: 569-579.
- 5.- Kurowski, B., Ludwing, B., (1987). J. Biol. Chem. <u>262</u>: 13805-13811.
- 6.- Hennecke, H., Meyer, L., Göttfent, M., and Fisher, H-M. (1988) In Molecular Genetics of Plant-Microbe Interactions. Rafael Palacios and Desh Pal-Verna eds. APS press.
- 7.- King, M-T. and Drews, G., (1976). Eur. J. Biochem <u>68</u>: 5-12.
- 8.- Wony, T. Y., and Jurstshuk, P., (1984). J. Bioenerg. Biomicrob. <u>16</u>: 447-489
- 9.- Yang, T., (1982). Eur. J. Biochem. <u>121</u>: 335-341.
- 10.- Matsushita, K., Patel, L., and Kaback, H. Q. (1984). Biochemistry 23: 4703-4714.
- 11.- Laszlo, D, J., Fandrich, B. L., Sivaram, A., Chance, B., Taylor, B. L., (1984). J. Bacteriol. <u>159</u>: 663-667.
- 12.- Peschek, G. A. (1981). Biochem. Biophys. Acta <u>635</u>: 470-475.

- 13.- Sone, N., Kagawa, Y., and Orii, Y., (1983). J. Biochem. <u>93</u>: 1329-1336.
- 14.- Poole, R. K., (1983). Biochim. Biophys. Acta<u>726</u>: 205-243.
- 15.- Ludwing, B., (1980). Biochim. Biophys. Acta. <u>594</u>: 177-189.
- 16.- Panskus, B., Steinrücke, P., Peatow, B., and Ludwing, B. (1986). Abstr. 4TH E B E C, Prague. p 103.
- 17.- Ludwing, B., (1987). F E M S Microbiol. Rev. en prensa.
- 18.- Poole, R. F. (1981). F E B S Lett. 133, 255-259.
- 19.- Solioz, M., Carafoli, E., and Ludwing, B., (1982). J. Biol. Chem. <u>257</u>: 1579-1582.
- 20.- Sone, W. and Yanagita, Y. (1982). Biochim. Biophys. Acta <u>682</u>: 216-220.
- 21.- Yoshida, T., and Fee, J. a., (1985). J. Inory Biochem. <u>23</u>: 279-288.
- 22.- Sareste, M., Raitio, M., Jall, T., and Peramad, A. (1986). F E B S Lett. <u>206</u>: 154-156.
- 23.- Krans, R. G., and Gennis, R. B., (1985). J. Bacteriol. <u>161</u>: 709-713.
- 24.- Baines, B. S., Williams, H. D., Hubbart, J. A. M. and Poole R. K. (1984) Biochim. Biophys. Acta. <u>766</u> 438-445.
- 25.- Poole, R. K., Chance, B., J. Gen. Microbiol. 26: 277-287.
- 26.- De Maio, R. A., Webster, D. A., and Chance, B., (1983). J. Biol. Chem. <u>258</u>: 13768-13771.

- 27.- Williams, H.D., and R. K. Poole., (1987). J. Gen. Microbiol. <u>133</u>: 2461-2472.
- 28.- Rice, C. W., and Hempding, W. P., (1978). J. Bacteriol. <u>134</u>: 115-124.
- 29.- Laszlo, D. J., Fandrich, B. L., Siuaram, A., Chance, B., and Taylor, B. L. (1984). J. Bacteriol. <u>159</u>: 663-667.
- 30.- Carter, K., and Gennis, R. B., (1985). J. Biol. Chem. <u>260</u>: 10986-10990.
- 31.- Matsushita, K., Patel, L., and Kaback, H. R., (1984). Biochemistry 23: 4703-4714.
- 32.- Hüding, H., and Drews, G. (1984). Biochim. Biophys. <u>765</u>: 171-177.
- 33.- Au, D. C. T., Lorence, R. M. and Gennis, R. B., (1985). J. Bacteriol. <u>161</u>: 123-127.
- 34.- Kranz, R. G., and Gennis, R. B., (1985). J. Bacteriol. <u>161</u>: 709-713.
- 35.- Ingledew, W. J., and Poole, R. K., (1984). Microbiol. Rev., <u>48</u>: 222-271.
- 36.- Finalyson, S. D., Ingledew, W. J., (1985). Biochem. Soc. Trans.
- 37.- Konishi, K., Ouchi, M., and Harikoshi, I. (1986).
 J. Biochem. <u>99</u>: 1227-1236.
- 38.- Miller, M. J., and Gennis, R. B., (1983). J. Biol. Chem. <u>258</u>: 9159-9165.
- 39.- Konishi, K., Ouchi, M., Kita, K., and Horikoshi, I. (1986).

- 40.- Kranz, R. G., and Gennis, R. B. (1984). J. Biol. Chem. <u>259</u>: 7998-8003.
- 41.- Green, G. N., Lorence, R. M., and Gennis, R. B., (1986). Biochemistry <u>25</u>: 2309-2314.
- 42.- Rice, C. W., and Hempfling, W. P. (1978). J. Bacteriol. <u>134</u>: 115-124.
- 43.- Kita, K., Konishi, K., Anraku, Y. (1984). J. Biol. Chem. <u>259</u>: 3375-3381.
- 44.- Green, G. N., and Gennis, R. B. (1983). J. Bacteriol. <u>154</u>: 1269-1275.
- 45.- Green, G. N., Kranz, R. G., Lorence, R. M., and Gennis, R. B. (1984). J. Biol.Chem. <u>259</u>: 7994-7997.
- 46.- Green, G. N., Kranz, J. E., and Gennis, R. B., (1984). Gene <u>32</u>: 99-106.
- 47.- Castor, L. N., and Chance, B., (1959). J. Biol. Chem.<u>234</u>: 1587-1592.
- 48.- Ingledew, W. J., (1982). Biochim. Biophys. Acta. <u>683</u>: 89-117.
- 49.- Betinger, J. E., Brewin, N., Johnston, A. W. B., Schulman, H. M. y Hopwood, D. A. (1979). Proc. R. Soc. LOnd. <u>204</u>: 214.
- 50.- Reibach, P. H. y Streeter, J. G. (1984) J. Bacteriol. <u>159</u>: 47-52.
- 51.- de Uries, G. E. et al (1981) J. Bacteriol. 149: 872-879.
- 52.- Saroso, S. et al (1984) J. Gen. Microbiol. <u>130</u>: 1809-1814.

- 53.- Gleen, A. R., Mc Kay, I. A., Arwas, P., Dilworth, M. J. (1984) J. Gen. Microbiol. <u>130</u>: 239-245.
- 54.- Finan, T. M., Wood, M. J., Jordan, D. C., (1983) J. Bacteriol. <u>154</u>: 1403-1413.
- 55.- Gardiol., A., Arias, A. J., Cervenansky, C., y Martinez-Drietz, G. (1982) J. Bacteriol. <u>151</u>: 1621-1623.
- 56.- Winter, H. C., Burris, R. H., (1976) Ann. Rev. Biochem. 215: 409-425.
- 57.- Haaker, H., Veerger, C., (1984) TIBS (abril):188-192.
- 58.- Robson, R. L., Postgate, J. R. (1980) Ann. Rev. Microbiol. <u>34</u>: 183-207.
- 59.- Murray, M. A., Horne, A. J., Benennan, J. R., (1984). Appl. Environ. Microbiol. <u>47</u>: 449-454.
- 60.- Appleby, C. A. (1984) Ann. Rev. Plant Physiol. <u>35</u>: 443-478.
- 61.- Hyltig-Nielsen, J. J., Jensen, E. O., Palutan, K., Wilborg, O., Garret, R., Jorgensen, P., y Marcker, K. A. (1982). Nucleic Acid Res. <u>10</u>: 689-701.
- 62.- Verma, D. P. S., Long, S. (1983) Int. Rev. Cytol. Suppl. <u>14</u>: 211-245.
- 63.- Stokes, A. N. (1975). J. Theor. Biol. 135: 199-204.
- 64.- Appleby, C. A. (1978). In FEBS Colloq. ed H. Degn., D. Lloyd., G. C. Hill., <u>48</u>: 11-20.
- 65.- Dilworth, M. J., Appleby., C. A., (1979) IN A TREATISE ON DINITROGEN FIXATION, SECT. I AND II, ed R. W. F. Handy, F. Bottomley, R. C. Burns, pp 691-704 New York: Wiley, 812 pp.

- 66.- O'Brian, M. R., Kishbom, P. M., Maier, R. J., (1987) Proc. Natl. Acad. Sci. USA <u>23</u>: 8390-8393.
- 67.- Laane, C., Haaker, H., Veeger, C., (1978). Eur. J. Biochem. <u>87</u>: 147-153.
- 68.- Robertson, J. G., Warbunton, M. P., Lyttleton, P., Fondyce, A. M., Bullivant, S. (1978) J. Cell Sci. <u>30</u>: 183-207.
- 69.- Bergersen, F. J., Appleby, C. A., (1981). Planta <u>52</u>: 534-543.
- 70.- Sleely, J. E., Minchin, F. R., Witty, F. J., (1983) Ann. Bot. <u>53</u>: 565-572.
- 71.- King, B. K., Hunt, S., Weagle, G. E., Walsh, K. B., Pottler, R. H., Canuin, D. T., Layzell, D. B., (1988). Plant Physiol. <u>87</u>: 296-299.
- 72.- Tjepkema, J. D., Yocum, C. S., (1974). Planta <u>119</u>: 351-360.
- 73.- Sinclair, T. R., Goutriaan, J., (1981) Plant Physiol. <u>67</u>: 143-145.
- 74.- Phillips, D. H., Johnson, M. J., (1961) J. Biochem. Microbiol. Technol. Eny. <u>3</u>: 277-309.
- 75.- Williams, A. M., Wilson, P. W. (1954) J. Bacteriol. <u>67</u> 303-360.
- 76.- Dalton, H., Postgate, J. R., (1969) J. Gen. Microbiol. 56: 307-319.
- 77.- Jones. C. W., y Redfearn, E. R. (1966) Biochem. Byophys. Acta. <u>113</u>: 467-481.
- 78.- Jones, C. W., y Redfearn, E. R. (1967) Biochem. Byophys. Acta. <u>143</u>: 340-348.

- 79.- Jones, C. W., Brice, J. M., Wright, U. y Ackrell, B. A. C. (1973) FEBS Lett. <u>29</u>: 77-81.
- 80.- Appleby, C. A., Turner, G. L., Macnicol, P. K., (1975) Biochem. Byophys. Acta. <u>387</u>: 461-474.
- 81.- Udardi, M. K., Day, D. A., Gresshoff, P M., (1986). Plant Cell Reports. <u>3</u>: 207-209.
- 82.- Bergesen, F. J., Turner, G. L., Bogusz, Y., Wu, Y. Q., Y Appleby, C. A. (1986). J. Gen. Microbiol. 132: 3325-3336.
- 83.- Appleby, C. A. (1969). Biochim. Byophys. Acta 172: 71-87.
- 84.- Kretowich, W. L., Romanov, V. I., Korolyon, A. V. (1973) Plant Soil. <u>39</u>: 614-634.
- 85.- De Hollander, J. A., Stouthamer, A. H. (1980). Eur. J. Biochem. <u>111</u>: 473-478.
- 86.- Stam. H., van Verseveld, H. W., de Uries, W., Stouthamer, A. H., (1984). Arch Microbiol. <u>139</u>: 53-60.
- 87.- de Hollander, H., (1981). Ph. D. Thesis, Urije Universiteit Amestardam.
- 88.- Chakrabarty, S. K., Ajit, K. M., Chkrabarty, P. K. (1987) Curr. Microbiol. <u>15</u> 165-170.
- 89.- Avissar, Y. J., Nudler, K. D., (1978). J. Bacteriol. <u>135</u> 782-789.
- 90.- Appleby, C. A. (1969). Biochim. Biophys. Acta. 172: 88-105.
- 91.- Daniel, R. M., Appleby, C. A., (1972). Biochim, Biophys. Acta. <u>275</u>: 347-354.

- 92.- Tuzimura, K., Watanabe, I., (1964). Plant CellPhysiol <u>5</u>: 157-170.
- 93.- Appleby, C. A., Turner, G. L., Macnicol, P. K., (1975). Biochim. Biophys. Acta. <u>387</u>: 461-474.
- 94.- Kretovich, U. L., Matus, U. K., Melik,-Sarskis, Yan, S.S. (1972) Fisiol. Rost. <u>14</u>: 1060-1065.
- 95.- Ching, T. M., Hedtko, S., Newcomb, W., (1977). Plant Physiol. <u>60</u>: 771-774.
- 96.- Keistec, D. L., Marsch, S. S. El Makadem. M. T. (1983). Plant Physiol. <u>71</u>: 194-196.
- 97.- El Mokadem, M. T., Keister, D. L. (1982) J. Botany <u>31</u>: 102-111.
- 98.- O'Brian, M. R., Kirshbom, P. M., Maier, R. J. (1987) J. Bacteriol. (1987) <u>169</u> 1089-1094.
- 99.- Gardiol, A. F., Truchet, G. L., Dazzo, F. B. (1987) Applied Environmental Microbiology <u>53</u>: 1947 - 1950.
- 100.- Dudley, M. E., et al; (1987). Planta 171: 289-301.
- 101.- Turgeon, B. G., and Bauer, W. D. (1985). Planta <u>163</u>: 328-349.
- 102.- Finan, T. M., Hirsh, A. M., Leigh, J. A., Johansen, E., Kuldau, G. A., Deega, S. S., Walker, G. C. andSinger, E. R. (1985). Cell <u>40</u>: 869-877.
- 103.- Müller, D., Hynes, M., Kapp, D., Niehaus, K., and Pühler, A., (1988). Mol. Gen. Genet. <u>211</u>: 17-26.