

Universidad Nacional Autónoma de México

Facultad de Ingeniería

Análisis de Marcos Planos de Sección Variable

TESIS

Que para obtener el título de **INGENIERO CIVIL** esenta p r

Adalberto Enrique Fuentes Zurita

56

México, D. F.

1988

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

			Pag.
1	Intro	ducción	1
2	Fundar	mentación Teórica	4
2	2.1	Energía de Deformación Axial	4 .
2	2.2	Energía de Deformación por Cortante	7
2	2.3	Energia de Deformación por Flexión	9
2	2.4	Energla de Deformación de la Barra	13
2	2.5	Energía y Trabajo Complementario	14
:	2.6	Segundo Teorema de Castigliano	14
2	2.7	Integrales de Mohr	17
2	2.8	Primer Teorema de Castigliano	17
2	2.9	Teorema de los Recíprocos para las	
		Rigideces	19
2	2.10	Matriz de Flexibilidad en el Extremo	
		Inicial de una Barra de Sección Variable	21
2	2.11	Matriz de Rigidez en el Extremo Inicial	
		de una Barra de Sección Variable	24
2	2.12	Matriz de Rigidez Total de una Barra de	
		Sección Variable	27
2	2.13	Obtención de Reacciones de Empotramiento	
		para Barras de Sección Variable	32
3	Integr	ración Numérica	39
3	5.1	Newton-Cotes Cerrado	40
3	5.2	Integración Gaussiana	41
3	5.3	Fórmulas de Gauss-Legendre	43
3	5.4	Formulas de Gauss-Chebyshev	43
3	5.5	Integración Compuesta	43
3	5.6	Análisis Comparativo entre Métodos de	
		Integración	44
4	Metodo	ologia de Análisis	46
4	1.1	Ejes de los Elementos	46
4	.2	Elementos Constitutivos del Marco	50
4	4.3	Sístemas de Referencia	50
4	.4	Cargas	52
4	.5	Elementos Mecánicos	52
		V	

INDICE

4.6.- Diagrama de Flujo

5 Estudio Comparativo entre Métodos de Análisis 64			
5.1 Descripción del Modelo			
5.2 Método de Dovelas	64		
5.3 Método de Parámetros Elásticos	74		
5.4 Método de Factores de Rigidez y			
Reacciones de Empotramiento	81		
5.5 Método de Integración Numérica	89		
5.6 Tabla Comparativa	91		
6 Conclusiones	95		
Bibliografia			
Apéndices			

Apéndice A	Abcisas y Pesos de Cuadraturas	99
Apéndice B	Integración de la Función x ⁴ / I	109

чi

57

INDICE DE FIGURAS

•

Figura		
Número		Pag.
1.1	Discretización de Elementos.	2
2.1	Alargamiento de una Barra en Tracción.	5
2.2	Ley de Hooke.	5
2.3	Trabajo Externo Efectuado por la Carga P durante la Deformación d <i>ó</i> .	6
2.4	Barra sometida a Fuerza Cortante.	8
2.5	Deformación por Esfuerzos Cortantes de un Elemento Diferencial.	8
2.6	Viga Sometida a Flexión. Definición de Variables.	11
2.7	Deformación Axial de Fibras Longitudinales por Efecto de Flexión.	12
2,8	Energia de Deformación y Energia Complementaria.	15
2,9	Segundo Teorema de Castigliano. Incremento Diferencial de una Fuerza.	16
2,10	Flexibilidad en A (extremo inicial) de una Barra de Sección Variable.	23
2.11	Obtención de la Matriz de Flexibilidades en A (extremo inicial) por medio de las Integrales de Mohr.	25
2.12	Matriz de Rigidez Total en una barra de Sección Variable.	29
2.13	Obtención de la Matriz de Rigidez Total en Función de la Matriz de Rigidez en A (extremo inicial) de una Barra de Sección Variable.	31
2.14	Momentos de Empotramiento para Cargas Perpendiculares a una Barra de Sección Variable.	22
2,15	Obtención de los Giros en la Isostática por medio de las Integrales de Mohr.	34
2.16	Reacciones Axiales de Empotramiento para Cargas Axiales en una Barra de Sección Variable.	37
2.17	Obtención del Desplazamiento Axial en el Extremo Inicial de la Isostática por medio de las Integrales de Mohr.	38
4.1	Elemento de Sección Transversal Rectangular Variable.	4/
4.2	Elemento de Sección Tipo I Variable.	48
4.3	Diferentes Tipos de Acartelamientos.	49
	vii	

4.4	Reducción de una Estructura a sus Elementos Constitutivos.	51
4.5	Cargas en Nudos.	53
4.6	Cargas en Elementos.	53,54
4.7	Convención de Signos para los Elementos Mecánicos.	55
4.8	Elementos Mecánicos en el Interior de Elementos Cargados.	56
5.1	Estructura con Diversas Cargas para Análisis Comparativo.	65
5.2	Modelación de la Estructura por el Método de Dovelas.	66
5.3	Notaciones para la Estructura de Doble Vertiente. Método de Parámetros Elásticos.	76
5.4	Análisis Separados en el Mátodo de Parámetros Elásticos.	78
5.5	Relaciones Características de un Elemento. Método de Factores de Rigidez y Reacciones de Empotramiento.	84
5.6	Modelo para Análisis Comparativo del Marco. Método de Factores de Rigidez y Reacciones de Empotramiento.	84

NOMENCLATURA

Capitulo 2

A	- Area de la sección transversal
A	- Area de cortante de la sección transversal
ь	- Ancho de la sección transversal
(d)	- Vector de desplazamientos de una barra
(d)	- Vector de desplazamientos en el extremo
-	inicial de una barra
d, d, p	- Desplazamiento axial, transversal y giro en el
	extremo inicial de una barra
d _{xb} , d _{Ub} , p _b	- Desplazamiento axial, transversal y giro en el
	extremo final de una barra
dxoq	- Desplazamiento axial en el extremo inicial de
	la barra isostática
E	- Módulo de elasticidad o de Young
{F}	- Vector de fuerzas de una barra
(F_)	- Vector de fuerzas en el extremo inicial de una
	barra
F _{xa} , F _{ya} , M _a	- Fuerza axial, cortante y momento en el extremo
	inicial de una barra
F _{xb} , F _{yb} , M	- Fuerza axial, cortante y momento en el extremo
•	final de una barra
[f]	- Matriz de flexibilidad en el extremo inicial
	de una barra
f _{ij}	~ Coeficiente de flexibilidad según los grados
	de libertad de una barra
G	- Módulo de elasticidad al corte
I	- Momento de inercia de la sección transversal
A	- Curvatura de la elástica deformada
C K J	- Matriz de rigidez de una barra
[k_]	- Matriz de rigidez en el extremo inicial de una
	barra
^k u	- Coeficiente de rigidez según los grados de
	libertad de una barra
L	- Longitud de la barra
M, N, V	- Momento flexionante, fuerza normal y fuerza
	cortante actuantes
м, п, V	- Momento flexionante, fuerza normal y fuerza

18

cortante debidos a una carga unitaria en dirección del desplazamiento que se desea conocer

- Momento flexionante, fuerza normal y fuerza cortante totales
- Momento flexionante, fuerza normal y fuerza cortante debidos a una carga ficticia en dirección del desplazamiento que se desea conocer
- Momento flexionante, fuerza normal y fuerza cortante en la barra isostática debidos a la carga actuante
- Momento flexionante, fuerza normal y fuerza cortante debidos a una carga unitaria en dirección de la redundante hiperestática
 - Momento de empotramiento en el extremo inicial y final de una barra
 - Reacción normal de empotramiento en el extremo inicial de una barra
 - Fuerza
 - Momento estático o primer momento de la sección transversal por arriba de cierta ordenada y,
 - Coeficiente de rigidez
 - Energía de deformación
 - Energia complementaria
 - Flecha debida a flexión

1

- Trabajo
 - Trabajo complementario
- Coordenadas centroidales de la sección transversal: longitudinal con origen en el extremo inicial, paralela y perpendicular al peralte

a r

٨

M_, N_, V_

MAN NAN VA

M, N, V

m_, n_, v_

m_, **m**_

N_

s_{ij}

u

uf.

v

Ψ

×. y. z

- Angulo que se forma entre dos secciones transversales deformadas por flexión
- Angulo que giran las fibras longitudinales durante la deformación por cortante
- Deformación axial debida a la fuerza normal x

 9 - Deformation mial unitaria 9 - Deformation paralela al peralte debida a la generative debida				
 9 9				
 9 - Beformación 9 - Beformación anial unitaria 9 - Belo de curvatora 9 - Belo de curvatora de las notecursados de las notecursados de las notecurs 9 - Belo de curvatora de las notecurs de las notecurs 9 - Belo de curvatora de las notecurs de las notecurs 9 - Belo de curvatora de las notecurs 9 - Belo de curvatora de las notecurs de las notecurs 9 - Belo de curvatora de las notecurs de las notecurs 9 - Belo de curvatora de las notecurs				
 9 9				
 9 9	+ ¹			
 9 - Deformación 9 - Deformación priale a liperale debida a la fuerza cortante 9 - Ralio de curvatura. 9 - Ranción que resulta de sustitair la variable x curvatura. 10 - Ranción que resulta de sustitair la variable x curvatura. 11 - Ranción que resulta de sustitair la variable x curvatura. 12 - Ranción que resulta de sustitair la variable x curvatura. 14 - Ranción que resulta de sustita. 15 - Ranción que resulta de sustita. 16 - Ranción de curvatura. 17 - Ranción de curvatura. 18 - Ranción de curvatura. 19 - Ranción de curvatura. 19 - Ranción de curvatura. 10 - Ranción de curvatura. 10 - Ranción de curvatura. 11 - Ranción de curvatura. 12 - Ranción de curvatura. 13 - Ranción de curvatura. 14 - Rancio				
 e Deformación paralela al peralte debida a la largura cortate P. Beformación paralela al peralte debida a la largura cortate P. Beformación paralela al peralte debida a la largura cortate P. Beformación paralela al peralte debida a la la largura cortate P. Beformación paralela al peralte debida a la la largura cortate P. Beformación paralela al peralte debida a la la largura cortate P. Beformación paralela al peralte debida a la la largura cortate P. Beformación paralela al peralte debida a la la largura cortate P. Beformación paralela al peralte debida a la la largura cortate P. Beformación paralela al peralte debida a la la largura fortate P. Beformación a ditegra P. Beformación a integra? P. Beformación a fotogra? P. Beformación a fotogra? P. Beformación a fotogra? P. Beformación a ditegra? P. Beformación ad la la longitud de una la largura? P. Beformación de largura?<td></td><td>5</td><td>- Deformación</td><td></td>		5	- Deformación	
 beformación paraitel al peralte debida a la fuerza contante Radio de curvatura Esfuerzo axial Esfuerzo contante Esfuerzo axial Esfuerzo contante Esfuerzo contante A b - Limites inferior y superior de integración Función a integrar (x) - Aproximación a f(x) fácil de integrat Esparación equidistante entre los puntos de evaluación A - Esparación equidistante entre los puntos de evaluación A - Función multiplicadora de Lagrange Número de evaluaciones menos uno Pa(2) - Función multiplicadora de grado n A(2) - Función de Legendre de grado n A(2) - Polinomio ortogonal de grado n A(2) - Polinomio de Chebyshev de grado n A - Polinomio de Chebyshev de grado n A - Polinomio de Chebyshev de grado n A - Polinomio de Legendre de grado n A		<i>c</i>	- Deformación axial unitaria	
fuerza cortante ρ Radio de curvatura σ Esfuerzo axial τ Esfuerzo cortante θ Carga ficticia en dirección del desplazamiento que se desse obtener P_{arb} Biros en el extremo inicial y final de la barra isostàtica T_{arb} - Giros en el extremo inicial y final de la barra isostàtica P_{arb} - Biros en el extremo inicial y final de la barra isostàtica P_{arb} - Clinites inferior y superior de integración f(x) P_{arb} - Limites inferior y superior de integración f(x) P_{arb} - Clinito de y a que se desse de sutituir la variable x como función de z en q(x) h - Separación equidistante entre los puntos de evaluación $A(z)$ - Función multiplicadora de Lagrange n - Numero de evaluaciones menos uno $p_{a}(z)$ - Función multiplicadora de Lagrange n - Numero de evaluaciones de grado n $q_{a}(z)$ - Folinomio de Legendre de grado n $q_{a}(z)$ - Folinomio de Legendre de grado n $q_{a}(z)$ - Folinomio de Legendre de grado n $q_{a}(z)$ - Folinomio de tregoración $q_{a}(z)$ - Polinomio de regorasita $q_{a}(z)$ - Polinomio de regoración $q_{a}(z)$ - Polinomio de regoración $q_{a}(z)$ - Polisias de integración $q_{a}(z)$ - Polisias de integración $q_{a}(z)$ - Variable que se define para transformar los itarias de integración de [a, b] a (a, c)] a $q_{a}(z)$ - Operador de integración $q_{a}(z)$ - Operador de integración <td></td> <td>λ</td> <td>- Deformación paralela al peralte debida a la</td> <td></td>		λ	- Deformación paralela al peralte debida a la	
 Radio de curvatura Esfuerzo axial Esfuerzo contante Carga ficticia en dirección del desplazamiento que se desea obtenen P_{iel}, P_{ob} Gios en el extremo inicial y final de la barra isostàtica Capitulo 3 a, b Limites inferior y superior de integración f(x) Función a integrar g(x) Aproximación a f(x) fácil de integrar G(z) Función que resulta de sustituir la variable x como función de z en g(x) h Besparación equidistante entre los puntos de evaluación A(z) Función multiplicadora de Lagrange n Número de evaluaciones menos uno p_n(z) Polinonio de Legendre de grado n q(z) Polinonio de Chebyshev de grado n T_n(z) Polininio de Chebyshev de grado n T_n(z) Polinonio de se define para transformar los limites de integración k Variable que se define para simplificar las expressiones, y que es igual a (z - z₀ / h Operador de diferencias progresivas 			fuerza cortante	
o- Esfuerzo axialt- Esfuerzo cortantea- Carga ficticia en dirección del desplazamiento que se desea obtener P_{ca}, P_{cb} - Biros en el extremo inicial y final de la barra isostàticaCapitulo 3-a, b- Limites inferior y superior de integración f(x)f(x)- Función a integrarg(x)- Aproximación a f(x) fácil de integrarg(z)- Función que resulta de sustituir la variable x como función ponderanteg(z)- Función ponderanteg(z)- Función outriplicadora de Lagrange n Numero de evaluaciones menos uno p_n(z)n- Numero de evaluaciones menos uno p_n(z)n- Polinomio de Legendre de grado n $T_n^{(2)}$ q(z)- Polinomio de Chebyshev de grado n $T_n^{(2)}$ q(z)- Polinomio de Chebyshev de grado n $T_n^{(2)}$ z- Variable que representa la longitud de una barraz- Variable que se define para transformar los limites de integraciónx- Variable que se emplea para simplificar las expresiones, y que es igual a ($z - z_0^{-1}/h$ A- Operador de diferencias progresivas		ρ	- Radio de curvatura	
T= Esfuerzo cortante#- Carga ficticia en dirección del desplazamiento que se desea obtener e_{ab} , e_{ab} - Giros en el extremo inicial y final de la barra isostàticaCapitulo 3a, b- Limites inferior y superior de integración f(x)f(x)- Aproximación a f(x) fácil de integrarG(z)- Función que resulta de sustituir la variable x como función de z en g(x)h- Separación equidistante entre los puntos de evaluaciónA(z)- Función ponderante $z_i(z)$ - Polinomio de Legendre de grado n n $p_n(z)$ - Polinomio ortogonales $q_n(z)$ $q_i(z)$ - Polinionio de Chebyshevide grado n n_n $v_{ariable que se define para transformar loslimites de integraciónz- Variable que se define para simplificar lasexpresiones, y que es igual a (z - z_0) / h\Delta- Operador de diferencias progresivas$		σ	- Esfuerzo axial	
 Larga ficturia en direccion del desplazamiento que se desse obtener e_{in}, e_{ot} Giros en el extremo inicial y final de la barra isostàtica Capitulo 3 a, b Limites inferior y superior de integración f(x) Función a integrar g(x) Aproximación a f(x) fácil de integrar G(z) Función que resulta de sustituir la variable x como función de z en g(x) h Separación equidistante entre los puntos de evaluación A(z) Función ponderante ξ(z) Función multiplicadora de Lagrange n Número de evaluaciones menos uno p_n(z) Polínomio de Legendre de grado n q_n(z) Polínomio ortogonal de grado n T_n(z) Polínomio de Chebyshev de grado n Variable que representa la longitud de una barra z Variable que se define para transformar los límites de integración x Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h Operador de diferencias progresivas 		τ.	- Esfuerzo cortante	
que de dese obserer $ $		1	- Carga ficticia en dirección del desplazamiento	
p_{ab} - Gross en el extremo inicial y tinal de la barra isostàticaCapitulo 3a, b- Limites inferior y superior de integración f(x)f(x)- Función a integrar G(z)G(z)- Función que resulta de sustituir la variable x como función de z en g(x)h- Separación equidistante entre los puntos de evaluaciónA(z)- Función ponderante $\xi_1(z)$ - Función multiplicadora de Lagrange nn- Número de evaluaciones menos uno p_(z)p_(z)- Familia de polinomico ortogonales q_(z)q_(z)- Polinomic ortogonal de grado n T_n(z)r- Polinomic de Chebyshev de grado n a t_x- Variable que se define para transformar los limites de integraciónx- Variable que se define para simplificar las expresiones, y que es igual a ($z - z_0^{-1}/h$ Δ - Operador de diferencias progresivas		. .	que se desea obtener	
 Capitulo 3 a, b - Limites inferior y superior de integración f(x) - Función a integrar Q(x) - Aproximación a f(x) fácil de integrar Q(x) - Función que resulta de sustituir la variable x como función de z en g(x) h - Separación equidistante entre los puntos de evaluación A(z) - Función ponderante x(z) - Función multiplicadora de Lagrange - Número de evaluaciones menos uno p_n(z) - Polinomio de Legendre de grado n Q(z) - Familia de polinomios ortogonales q_n(z) - Polinomio otrogonal de grado n T_n - Polinomio de Chebyshev de grado n x - Variable que se define para transformar los límites de integración x - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h A - Operador de diferencias progresivas 		Post Pob	- biros en el extremo inicial y final de la	
Capitule 5a, b- Limites inferior y superior de integraciónf(x)- Función a integrar9(x)- Aproximación a f(x) fácil de integrar8(z)- Función que resulta de sustituir la variable x como función de z en g(x)h- Separación equidistante entre los puntos de evaluaciónA(z)- Función ponderante $\xi(z)$ - Función multiplicadora de Lagrange nn- Número de evaluaciones menos uno p_n(z)p_n(z)- Polinomio de Legendre de grado nq_n(z)- Polinomio de Chebyshev de grado nT_n(z)- Polinimio de Chebyshev de grado nw- Variable que representa la longitud de una barraz- Variable que se define para transformar los límites de integracióna- Abscisas de integracióna- Variable que se emplea para simplificar las expresiones, y que es igual a (z - z_0) / hA- Operador de diferencias progresivas			Darra Isobiatica	
a, b- Limites inferior y superior de integraciónf(x)- Función a integrarg(x)- Aproximación a f(x) fácil de integrarg(z)- Función que resulta de sustituir la variable x como función de z en g(x)h- Separación equidistante entre los puntos de evaluaciónA(z)- Función ponderante $z_1(z)$ - Función multiplicadora de Lagrange nn- Número de evaluaciones menos uno p_n(z)p_n(z)- Polinomio de Legendre de grado n q_n(z)q_n(z)- Polinomio ortogonal de grado n T_n(z)r- Variable que representa la longitud de una barraz- Variable que se define para transformar los limites de integraciónz- Variable que se emplea para simplificar las expresiones, y que es igual a $(z - z_0) / h$ A- Operador de diferencias progresivas		Capitulo 3		•
 f(x) - Función a integrar g(x) - Aproximación a f(x) fácil de integrar g(z) - Función que resulta de sustituir la variable x como función de z en g(x) h - Separación equidistante entre los puntos de evaluación A(z) - Función ponderante f(z) - Función multiplicadora de Lagrange n - Número de evaluaciones menos uno p_n(z) - Polinomio de Legendre de grado n q(z) - Familia de polinomios ortogonales q_n(z) - Polinomio de Chebyshev de grado n T_n(z) - Polinomio de Chebyshev de grado n T_n(z) - Polinimio de Chebyshev de grado n t_n - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración a - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h A - Operador de diferencias progresivas 		a, b	- Limites inferior y superior de integración	
 g(x) - Aproximación a f(x) fácil de integrar g(z) - Función que resulta de sustituir la variable x como función de z en g(x) h - Separación equidistante entre los puntos de evaluación A(z) - Función ponderante ξ(z) - Función multiplicadora de Lagrange n - Número de evaluaciones menos uno p_n(z) - Polinomio de Legendre de grado n q(z) - Familia de polinomios ortogonales q_n(z) - Polinomio de Chebyshev de grado n T_n(z) - Polinomio de Chebyshev de grado n W_i - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h Δ - Operador de diferencias progresivas 		f(x)	- Función a integrar	
 G(z) - Function que resulta de sustituir la variable x como functión de z en g(x) h - Separación equidistante entre los puntos de evaluación A(z) - Función ponderante Z'_L(z) - Función multiplicadora de Lagrange n - Número de evaluaciones menos uno p''_n(z) - Polinomio de Legendre de grado n Q(z) - Familia de polinomios ortogonales q''_n(z) - Polinomio de Chebyshev de grado n T''_n(z) - Polinimio de Chebyshev de grado n W''₁ - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración a - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z'o) / h A - Operador de diferencias progresivas 		9(x)	- Aproximación a f(x) fácil de integrar	
 como función de z en g(x) h - Separación equidistante entre los puntos de evaluación A(z) - Función ponderante X'(z) - Función multiplicadora de Lagrange n - Número de evaluaciones menos uno p'(z) - Familia de polinomios ortogonales q'(z) - Familia de polinomios ortogonales q'(z) - Polinimio de Chebyshev de grado n T'(z) - Polinimio de Chebyshev de grado n W' - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z) / h Δ - Operador de diferencias progresivas 		G(z)	- Función que resulta de sustituir la variable x	
 h = Separación equidistante entre los puntos de evaluación A(z) = Función ponderante \$\frac{1}{2}(z)\$ Función multiplicadora de Lagrange n = Número de evaluaciones menos uno p_n(z) Polinomio de Legendre de grado n Q(z) Familia de polinomios ortogonales q_n(z) Polinimio de Chebyshev de grado n T_n(z) Polinimio de Chebyshev de grado n W_i Pesos de integración x = Variable que representa la longitud de una barra z = Variable que se define para transformar los límites de integración α = C-1, 11 z = Abscisas de integración α = Variable que se emplea para simplificar las expresiones, y que es igual a (z - z_0) / h Δ = Operador de diferencias progresivas 			como función de z en g(x)	
evaluación $A(z)$ - Función ponderante $Z_{L}(z)$ - Función multiplicadora de Lagrangen- Número de evaluaciones menos uno $p_{n}(z)$ - Polinomio de Legendre de grado n $Q(z)$ - Familia de polinomios ortogonales $q_{n}(z)$ - Polinomio ortogonal de grado n $T_{n}(z)$ - Polinimio de Chebyshev de grado n W_{L} - Pesos de integraciónx- Variable que representa la longitud de una barraz- Variable que se define para transformar los límites de integración de [a, b] a [-1, 1] z_{L} - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a $(z - z_{0}) / h$ Δ - Operador de diferencias progresivas		h	- Separación equidistante entre los puntos de	
$A(z)$ - Function ponderante $\mathcal{X}_{L}(z)$ - Function multiplicadora de Lagrangen- Número de evaluaciones menos uno $p_{n}(z)$ - Polinomio de Legendre de grado n $Q(z)$ - Familia de polinomios ortogonales $q_{n}(z)$ - Polinomio de Chebyshev de grado n $T_{n}(z)$ - Polinimio de Chebyshev de grado n w_{i} - Pesos de integraciónx- Variable que representa la longitud de una barraz- Variable que se define para transformar los límites de integración z_{i} - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a $(z - z_{o}) / h$ Δ - Operador de diferencias progresivas			evaluación	
\$\mathbf{L}_{L}(z)\$ - Function multiplicadora de Lagrange n - Número de evaluaciones menos uno \$\mathbf{p}_n(z)\$ - Polinomio de Legendre de grado n \$\mathbf{Q}_{(z)}\$ - Familia de polinomios ortogonales \$\mathbf{q}_n(z)\$ - Polinomio ortogonal de grado n \$\mathbf{q}_n(z)\$ - Polinimio de Chebyshev de grado n \$\mathbf{q}_n(z)\$ - Polinimio de Chebyshev de grado n \$\mathbf{u}_n(z)\$ - Variable que representa la longitud de una barra \$\mathbf{u}_n(z)\$ - Variable que se define para transformar los límites de integración \$\mathbf{u}_n(z)\$ - Abscisas de integración \$\mathbf{u}_n(z)\$ - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z_0) / h \$\Delta\$ - Operador de diferencias progresivas <t< td=""><td></td><td>ዲ(z)</td><td>- Función ponderante</td><td></td></t<>		ዲ(z)	- Función ponderante	
 n - Número de evaluaciones menos uno p_n(z) - Polinomio de Legendre de grado n Q(z) - Familia de polinomios ortogonales q_n(z) - Polinomio ortogonal de grado n T_n(z) - Polinimio de Chebyshev de grado n W₁ - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración de [a, b] a [-1, i] z - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h Δ - Operador de diferencias progresivas 		£_(z)	- Función multiplicadora de Lagrange	
 p_n(z) - Polinomio de Legendre de grado n Q(z) - Familia de polinomios ortogonales q_n(z) - Polinomio ortogonal de grado n T_n(z) - Polinimio de Chebyshev de grado n W_i - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración de [a, b] a [-1, 1] z_i - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h Δ - Operador de diferencias progresivas 		n	- Número de evaluaciones menos uno	
Q(z) - Familia de polinomios ortogonales q _n (z) - Polinomio ortogonal de grado n T _n (z) - Polinimio de Chebyshev de grado n W _i - Pesos de integración x - Variable que representa la longitud de una barra z - Variable que se define para transformar los límites de integración de [a, b] a [-1, 1] z _i - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z _o) / h Δ - Operador de diferencias progresivas xi		p_(z)	- Polinomio de Legendre de grado n	
 q_n(z) - Polinómio orcegonal de grado n T_n(z) - Polinimio de Chebyshev de grado n Ψ_i - Pesos de integración × - Variable que representa la longitud de una barra z - Variable que se défine para transformar los límites de integración de [a, b] a [-1, 1] z_i - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z_o) / h Δ - Operador de diferencias progresivas 		Q(z)	- Familia de polinómios ortogonales	
 Pesos de integración Variable que representa la longitud de una barra Variable que se define para transformar los límites de integración de [a, b] a [-1, 1] Abscisas de integración - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z₀) / h Δ - Operador de diferencias progresivas 		q_(z) T (=)	- Polinomio ortogonal de grado n	
 A constraint of the second constraints 		"n'27	- Portra de lateonación	
 a variable que vepresenta la fongitud de dua barra variable que se define para transformar los límites de integración de [a, b] a [-1, 1] z, - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z) / h Δ - Operador de diferencias progresivas 		"i	- resus de integración	
 z - Variable que se define para transformar los límites de integración de [a, b] a [-1, 1] z - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z) / h Δ - Operador de diferencias progresivas 			harra	
límites de integración de [a,b] a [-1, 1] z _i - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z _o) / h Δ - Operador de diferencias progresivas <i>xi</i>		z	- Variable que se define para transformar los	
<pre> [-1, 1] z_i - Abscisas de integración a - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z) / h A - Operador de diferencias progresivas xi xi xi</pre>			límites de integración de [a,b] a	
z _L - Abscisas de integración α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z _o) / h Δ - Operador de diferencias progresivas xi			[-1,1]	
α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z _o) / h Δ - Operador de diferencias progresivas xi		z	- Abscisas de integración	
α - Variable que se emplea para simplificar las expresiones, y que es igual a (z - z _o) / h Δ - Operador de diferencias progresivas <i>xi</i>				
expresiones, y que es igual a (z - z _a) / h Δ - Operador de diferencias progresivas xi		α	- Variable que se emplea para simplificar las	;
Δ - Operador de diferencias progresivas xi			expresiones, y que es igual a (z - z) / h	
×i		Δ	- Operador de diferencias progresivas	
×4				
			1 X	

Capitulo 4

A, A, A

- Longitudes del acartelamiento en el extremo inicial, del tramo central de sección constante y del acartelamiento en el extremo final de una barra
- Distancia del nudo inicial al punto de aplicación de la carga concentrada o al inicio de la carga uniformemente repartida.
- Longitud de aplicación de la carga uniformemente distribuida.
- Ancho de la sección transversal rectangular o del patín en vigas I en el extremo inicial, en la sección constante central y en el extremo final de una barra.
- Peralte de la viga I en el extremo inicial, en la sección constante central y en el extremo final de una barra.
- Fuerza nodal alpicada en direción de x global,
 y global y momento alrededor de z global.
- Peralte de la sección transversal rectangular en el extremo inicial, en la sección constante central y en el extremo final de una barra.
- Espesor del alma y de los patines en una viga tipo l.
- Coordenadas de la estructura en el sistema global.
- Coordenadas de la barra en el sistema local.

Capitulo 5			
Método de Dovelas			
c	- Factor de cortante		
ν	- Relación de Poisson		
Método de Parámet	ros Elásticos		
Α, Β, Γ, φ, ψ, θ	- Parámetros generales de la estructura		
f	- Altura del caballete		
h	- Altura de las columnas		
H, V	- Reacciones horizontal y vertical		
k	~ Constante intermedia sin representación física		
L	- Longitud entre columnas del marco xii		

c

B, B,

H_, H_, H_

D, D, D,

t_u, t_r X. Y

X', Y

м	- Momento flexionante
R, R	- Constantes de carga
t, v	- Constantes geométricas de una barra
W	- Carga actuante sobre un elemento
Método de Factore	a de Rigidez y Reacciones de Empotramiento
C _{ab} , C _{ba}	- Factores de transporte
h _a , h _b , h _a	- Peralte de la sección rectangular en el
	extremo ini⊂ial, en el extremo final y en el
	tramo central de sección constante
I	- Momento de inercia de la sección constante
A _{ab} , A _{ba}	- Factores de rigidez
M_, M_	- Momento flexionante en los extremos inicial y
	final de una barra
M _{ab} , M _{ba}	- Coeficientes de momentos de empotramiento
rax	- Coeficiente de rigidez axial de una barra
raa, rab, rba, rbb	- Coeficientes de rigidez angular de una barra
%_, %	- Pesos por unidad de longitud en los extremos
	de las cartelas
$\alpha_a, r_a, \alpha_b, r_b$	- Relaciones caraterísticas de los elementos
Pat Pb	- Giros en los extremos inicial y final de una
	barra

xiii

1.- INTRODUCCION

Los marcos hiperestáticos con elementos de sección transversal variable, son frecuentemente utilizados en la construcción moderna; debido a ello, se hace necesario poner atención especial a la rapidez y calidad de su diseño. Los elementos rigidamente conectados forman un marco y su análisis se basa en el comportamiento elástico de la estructura entera. No es posible continuar tolerando en la práctica de la ingeniería los análisis simplificados o abreviados, apoyándose en hipótesis de dudosa validez.

El progreso lento que ha habido en el empleo de estructuras de sección variable puede atribuirse en parte a que hasta ahora no ha sido posible contar con una metodología de diseño rápida y económica para tales estructuras.

Existen muchas razones por las cuales se prefiere el uso de elementos de sección variable sobre aquellos de sección constante (ref 1): "(1) ahorro de materiales, que se traduce en estructuras más grandes o más altas; (2) mejor comportamiento en la transmisión de esfuerzos cortantes, particularmente en los apoyos y en las uniones con otros elementos, lo que es de vital importancia en diseño por sismo; y (3) los diagramas de momentos de cortantes pueden ser correspondientes con el espesor del elemento, esto es, una mayor rigidez y estabilidad lateral". La razón de tipo estético, adicionalmente a las anteriores, en ocasiones define la forma de la sección, de acuerdo con el proyecto arquitectónico.

La práctica general en el análisis de marcos planos integrados por elementos de sección variable es llevada a cabo de diferentes maneras. En algunos casos se procede a discretizar a los elementos de sección variable en una serie de elementos de sección constante, como se esquematiza en la fig 1.1. A cada uno de los elementos producto de la discretización se le conoce con el nombre de dovelas. Este método converge a la solución correcta a medida que el número de dovelas aumenta; sin embargo implica un tiempo de computación muy grande, el cálculo y almacenamiento de un gran número de valores intermedios innecesarios, además de que resulta demasiado tedioso y tardado en cuanto a la preparación de datos.

1

flg. 1. 1 DISCRETIZACION DE ELEMENTOS

Otros métodos contemplan la utilización de gráficas, tablas y fórmulas que si bien son obtenidas de manera exacta, no contienen todos los casos posibles de variación, ni proporcionan toda la información necesaria para el análisis, además de que se tiene un mayor riesgo de error en el manejo y obtención de datos.

El advenimiento del uso generalizado de las microcomputadoras en el análisis y diseño de estructuras facilita la comparación de alternativas y la realización de estudios exhaustivos de una manera rápida y sencilla. Además, al ahorrar el trabajo numérico al diseñador le permite concentrarse en aspectos conceptuales. Es así que se han implementado en paquetes de análisis, métodos numéricos que resuelven ciertas operaciones de manera cada vez más expedita, aunque sin embargo dichos métodos no serían los mass adecuados en caso de tener que resolver el problema manualmente.

En el presente trabajo se revisa un método de análisis para marcos planos de sección variable. Está basado en el método de las flexibilidades y su empleo requiere la solución de integrales. El problema se resuelve por medio de integración numérica. El objetivo que se persigue es el de obtener de manera explícita la matriz de rigideces del elemento de sección variable y además, las reacciones de empotramiento para diversas condiciones de carga en el claro. Una vez logrado lo anterior los algoritmos son implementados en un programa de análisis de marcos planos, basado en el método de las rigideces. Finalmente, se lleva a cabo un ejemplo de aplicación.

2.- FUNDAMENTACION TEORICA

2.1 Energia de Deformación Axial.

Cuando un elemento diferencial de una barra en tracción simple se carga paulatinamente, a partir de cero, por una fuerza con valor final N, el elemento diferencial de barra se alarga (fig 2.1), y si el material sigue la ley de Hooke, la gráfica deformación total-carga será una recta como se muestra en la fig 2.2.

Durante la carga del elemento diferencial de barra, la fuerza desarrolla un trabajo sobre la misma y tal trabajo se transforma en energia potencial, llamada energia de deformación, que se almacena en el elemento diferencial. Si la magnitud de la fuerza N se disminuye lentamente, el elemento diferencial recobrará su longitud original. Durante este proceso de descarga la energia de deformación almacenada en el elemento diferencial se recupera en forma de trabajo. Así pues, el elemento diferencial de barra actúa como un resorte elástico que puede almacenar y liberar energía a medida que la carga se aplica o se quita.

La energía de deformación almacenada durante la carga puede determinarse a partir del diagrama carga-desplazamiento. Supongamos que P representa un valor intermedio de la carga y δ el alargamiento correspondiente. Entonces un incremento dP en la carga producirá un incremento d δ en el alargamiento. El trabajo efectuado por P durante este alargamiento diferencial es P dó, correspondiente con el área elemental sombreada de la fig 2.3.

El trabajo total realizado en el proceso de carga es la suma de todas las áreas elementales y será igual al área bajo el diagrama carga-desplazamiento. Por lo tanto, el trabajo total hecho por la carga N, igual a la energía de deformación dU almacenada en el elemento diferencial de barra es:

$$dU = \int_{0}^{\Delta} P \, d\delta = \int_{0}^{\Delta} \frac{N \, \delta}{\Delta} \, d\delta = \frac{N \, \Delta}{2} \qquad 2.1$$

 Δ es la deformación correspondiente al nivel de carga N. En la deducción de esta fórmula se consideró que el material seguía la ley de Hooke, en cuyo caso sabemos que N está relacionado con Δ

fig. 2.1 ALARGAMIENTO DE UNA BARRA EN TRACCION

fig. 2.3 TRABAJO EXTERNO EFECTUADO POR LA CARGA P

por medio de la ecuación:

$$\Delta = \frac{N dx}{E A}$$

en la que E es el módulo de elasticidad, A el área de la sección transversal y dx es la diferencial de la longitud. Sustituyendo esta relación en la ec 2.1 podemos expresar la energía elástica de deformación axial de la diferencial de barra en la forma siguiente:

$$dU = \frac{N^2 dx}{2 E A}$$

2.2 Energia de Deformación por Cortante.

La energía elástica almacenada en un elemento diferencial de barra sometido a fuerzas cortantes V (fig 2.4), puede calcularse basándose en el método utilizado en el caso de tracción simple. Consideremos un elemento de altura dy a la distancia y_{i} del eje centroidal como se muestra en la fig 2.5. Durante la deformación del elemento diferencial las secciones "ab" y "cd" se mueven paralelamente y en sentido contrario una distancia relativa:

$\lambda = \gamma dx$

a medida que la diferencial de fuerza cortante crece desde cero hasta su valor final:

$dV = \tau b dy$.

En las ecuaciones anteriores γ es el ángulo que giran las secciones "ac" y "bd" con respecto a su posición inicial horizontal, τ es el esfuerzo cortante que actúa en la sección transversal a la distancia y_i , b es el ancho de la sección en ese mismo punto y dx es la diferencial de longitud. El diagrama de carga-desplazamiento (dV vs λ) es anàlogo al de la fig 2.2 para una barra en tracción.

El trabajo efectuado por la fuerza V y almacenado en forma de energía de deformación elástica en el elemento diferencial es:

$$dU = \int_{y} \frac{1}{2} \lambda \, dV = \frac{1}{2} \int_{y} \gamma \tau b \, dy \, dx \quad .$$

a) $V = \int_A \tau dA$

b) SECCION TRANSVERSAL

DIAGRAMA DE ESFUERZOS CORTANTES

fig. 2.4 BARRA SOMETIDA A FUERZA CORTANTE

fig. 2 . 5 DEFORMACION POR ESFUERZOS CORTANTES

Sustituyendo en esta expresión la ley de Hooke para esfuerzo cortante $\tau = 6 \gamma$ en la que 6 es el módulo de elasticidad al corte, se obtiene:

$$dU = \frac{1}{2} \int_{y} \frac{\tau^{2}}{G} b \, dy \, dx \quad .$$

Recordando la expresión de los esfuerzos tangenciales producidos por una fuerza cortante V a una distancia y del eje centroidal z:

donde Q es el momento estático del área de la sección transversal por arriba de y e I es el momento de inercia de la sección. Sustituyendo en la expresión para dU obtenemos:

$$dU = \frac{1}{2} \int_{y} \frac{v^{2} q^{2}}{G I^{2} b} dy dx .$$

V, G e I son constantes para cualquier sección transversal, por lo tanto la ecuación anterior se puede expresar:

$$dU = \frac{v^2}{2 G I^2} \int_{y} \frac{G^2}{b} dy dx$$

Si consideramos que:

$$A_{a} = \frac{I^{2}}{\int_{y} \frac{Q^{2}}{b} dy}$$

en donde definimos a A_c como el área de cortante de la sección transversal, entonces podemos escribir:

$$dU = \frac{V^2 dx}{2 G A_2}$$

que representa la energia elástica por cortante de la diferencial de barra.

2.3 Energia de Deformación por Flexión.

Consideremos una viga sujeta a fuerzas perpendiculares a su eje

longitudinal. Como consecuencia de dichas fuerzas la viga se verá sujeta a esfuerzos flexionantes que deforman a la viga según una línea curva (fig 2.6). Para cualquier punto de dicha curva se define a la curvatura A como la relación entre la variación del ángulo θ con respecto a la longitud de arco s, esto es:

Si tomamos en cuenta que el ángulo 0 que forma la viga deformada con respecto a su forma original es muy pequeño, entonces podemos usar a dx en lugar de ds; dx es una diferencial de longitud; de esta manera obtenemos:

$$A = \frac{d\theta}{dx} \qquad 2.2$$

Calculemos a continuación la deformación unitaria axial c por efecto de flexión de una fibra longitudinal a una distancia y_i del eje neutro (fig 2.7). La longitud de la fibra deformada es:

$$ab = (\rho + y_i) \alpha$$

donde ρ representa el radio de curvatura medio y α el ángulo entre las secciones transversales que contienen a "a" por un lado y a "b" por el otro. La longitud de esta misma fibra antes de la deformación es la misma que la de la fibra que se encuentra en el eje neutro. Ahora bien, en el eje neutro no existen alargamientos ni acortamientos por efecto de flexión, por lo tanto la distancia entre "c" y "d" se mantiene constante independientemente de la curvatura, siendo

$$\overline{ab} = \overline{cd} = \overline{cd} = \rho \alpha$$

entonces, la deformación unitaria axial es:

$$c = \frac{ab - ab}{ab} = \frac{y_i}{\rho}$$

Como la curvatura & es igual al inverso del radio de curvatura ρ podemos escribir:

fig. 2 . 7 DEFORMACION AXIAL DE FIBRAS

Si utilizamos la expresión que representa a la ley de Hooker

σ = E ε

donde σ representa los esfuerzos axiales; y al mismo tiempo recordamos la fórmula de la escuadría de la que obtenemos los esfuerzos axiales producidos por un momento M a una distancia y del eje neutro:

$$\sigma = \frac{M}{I} y_{i}$$

podemos obtener una expresión que nos relaciona la curvatura con el momento:

$$A = \frac{M}{EI}.$$

Igualando la expresión anterior con la ec 2.2 obtenemos:

$$d\theta = \frac{M dx}{E 1}$$

La energía de deformación almacenada en un elemento diferencial de barra debida al trabajo de un momento M, aplicado gradualmente, acompañado de una rotación que crece desde cero hasta d θ está dado port

Finalmente podemos escribir la fórmula que permite obtener la energía elàstica de deformación por flexión del elemento diferencial de barra:

$$dU = \frac{M^2 dx}{2 E I}.$$

2.4 Energía de Deformación de la Barra.

La energia de deformación de la barra se obtiene sumando las contribuciones por fuerza axial, cortante y momento flexionante, e integrándolas a toda la longitud de la barra:

$$U = \int_{0}^{L} \frac{M^{2} dx}{2 E I} + \int_{0}^{L} \frac{N^{2} dx}{2 E A} + \int_{0}^{L} \frac{V^{2} dx}{2 G A_{c}} .$$

2.5 Energia y Trabajo Complementario.

Definamos ahora otro tipo de trabajo para la barra cuya gráfica deformación total-carga es no lineal (fig 2.8). Este trabajo recibe el nombre de trabajo complementario W^{*}, y se define como sigue:

$$W^* = \int_0^{P} \delta dP$$
.

El trabajo complementario está representado por el área comprendida entre la gráfica deformación total-carga y el eje vertical (fig 2.8b). No tiene una connotación física obvia como el trabajo W, pero puede observarse que:

 P_{4} es la carga aplicada y δ_{1} el desplazamiento correspondiente. Por tanto, en sentido geométrico, el trabajo W^{*} es el complemento del trabajo W porque completa el rectángulo mostrado en la fig 2.8b. La energía complementaria U^{*} de la barra es ígual al trabajo complementario de las cargas aplicadas.

2.6 Segundo Teorema de Castigliano.

Consideremos una estructura con comportamiento no lineal sometida a n cargas P_1, P_2, \dots, P_n , que producen los desplazamientos $\delta_1, \delta_2, \dots, \delta_n$. El valor δ_1 representa el desplazamiento en el punto de aplicación de la carga P_1 , en dirección de dicha carga y debido a la totalidad de las fuerzas (fig 2.9a). La energía complementaria total se obtiene sumando el trabajo complementario efectuado por cada una de las fuerzas (fig 2.9b):

$$\mathbf{u}^* = \sum_{i=1}^n \int_0^{\mathbf{P}_i} \delta \, d\mathbf{P} \, .$$

Si imaginamos que una carga, digamos P₁, sufre un pequeño incremento dP₁, mientras que las otras cargas no cambian (fig 2.9c), la energía complementaria se incrementará en una

(a)

(c)

cantidad pequeña dU[#], que está dada por:

$$dU^* = \frac{\partial U^*}{\partial P_i} dP_i .$$

El trabajo complementario adicional debido al incremento de carga es el rectángulo elemental mostrado en la fig 2.9d. De esto se deriva otra expresión para el incremento de energía complementaria:

Igualando las dos expresiones anteriores se llæga a lo que se conoce como el teorema de Crotti-Engesser:

En el caso de comportamiento lineal la energía complementaria es igual a la energía de deformación (el área bajo la curva de la fig 2.9b) y el teorema de Crotti-Engesser se transforma en:

Esta ecuación se conoce por segundo teorema de Castigliano y se enuncia como sigue: "En una estructura lineal, la derivada parcial de la energía de deformación con respecto a una carga P_i es igual al desplazamiento correspondiente δ_i ".

En el desarrollo presentado se utilizaron las fuerzas y desplazamientos en un sentido generalizado. Si la carga es un par M, con un desplazamiento correspondiente θ , entonces simplemente se sustituyen P y δ por M y θ respectivamente.

2.7 Integrales de Mohr.

Es evidente que el segundo teorema de Castigliano sólo puede utilizarse para hallar desplazamientos que corresponden a cargas que actúan sobre la estructura. Si se desea obtener un desplazamiento en algún sitio en que no haya ninguna carga, se Jeberá aplicar una carga ficticia sobre la estructura que corresponda al desplazamiento deseado. A continuación se procede a calcular el desplazamiento utilizando el segundo teorema de Castigliano, resultando que el desplazamiento quedará expresado en función de las cargas reales y la ficticia. Haciendo igual a cero la carga ficticia en la expresión final, se obtiene el desplazamiento deseado debido a las cargas reales.

En el caso de una barra, anteriormente se derivó la expresión que nos dá la energía interna de deformación en función de los elementos mecánicos debidos a un sistema de cargas cualquiera:

$$U = \int_{0}^{L} \frac{M_{T}^{2} dx}{2 E I} + \int_{0}^{L} \frac{N_{T}^{2} dx}{2 E A} + \int_{0}^{L} \frac{V_{T}^{2} dx}{2 B A_{c}}$$

El subindice " τ " se emplea por conveniencia para representar eleméntos mecánicos totales y la expresión es equivalente a la anteriormente desarrollada. Consideremos que en una barra sujeta a un sistema de cargas cualquiera se requiere determinar el desplazamiento δ_{ϕ} de un punto donde no está aplicada ninguna fuerza exterior. Aplicamos una fuerza § en este punto y en la dirección que nos interesa. Los elementos mecánicos serán:

$$M_{\tau} = M + M_{\phi} + V_{\tau} = V + V_{\phi} + N_{\tau} = N + N_{\phi}$$

donde M, V y N son los elementos mecánicos debidos a las fuerzas actuantes y M_{ϕ}, V_{ϕ} y N_{ϕ} son los debidos a la carga ficticia a. La contribución por efecto de la carga a se puede expresar en función de ella misma de la manera siguiente:

entonces m, v y n son los elementos mecánicos debidos a una fuerza unitaria en la dirección de & y en el mismo punto de aplicación. Elevando al cuadrado las expresiones anteriores tenemos:

Sustituyendo estas expresiones en la energía interna de deformación, derivando con respecto a 🎙 de acuerdo al segundo teorema de Castigliano y tomando en cuenta que 🕏 vale cero se obtiene :

$$\delta_{\phi} = \frac{\partial U}{\partial \Phi} |_{\Phi} = 0$$

o sea

$$\delta_{\phi} = \int_{0}^{L} \frac{M m dx}{E I} + \int_{0}^{L} \frac{N n dx}{E A} + \int_{0}^{L} \frac{V v dx}{G A_{c}} . \qquad 2.3$$

Las integrales asi obtenidas se denominan integrales de Mohr.

2.8 Primer Teorema de Castigliano.

El primer teorema de Castigliano establece que:

$$P_i = \frac{\partial u}{\partial \delta_i}$$

Esta ecuación expresa que la derivada parcial de la energía de deformación con respecto a un desplazamiento δ_i es igual a la fuerza correspondiente P. La demostración de este teorema es analoga a la seguida para obtener el teorema de Crotti-Engesser (sección 2.6) excepto que se utiliza a la energía de deformación en lugar de la energía complementaria y se calibra el incremento diferencial de un desplazamiento δ_i en vez del incremento diferencial de una fuerza P. Puede observarse que el primer teorema de Castigliano tiene una aplicación general a estructuras lineales, a diferencia del segundo teorema que aplica exclusivamente a estructuras lineales.

2.9 Teorema de los Reciprocos para las Rigideces.

Sea una estructura lineal sometida a n cargas P con sus desplazamientos correspondientes ó_l. La energía de deformación está expresada por:

$$U = \sum_{i=1}^{n} \int_{0}^{\delta_{i}} P \, d\delta_{i} = \sum_{i=1}^{n} \frac{P_{i} \, \delta_{i}}{2} = \frac{1}{2} \left(P_{i} \delta_{i} + P_{2} \delta_{2} + \dots + P_{n} \delta_{n} \right)$$

como la estructura se comporta linealmente las cargas se pueden

expresar como combinaciones lineales de los desplazamientos, esto es:

$$P_{1} = s_{11} \delta_{1} + s_{12} \delta_{2} + \dots + s_{n} \delta_{n}$$

$$P_{2} = s_{21} \delta_{1} + s_{22} \delta_{2} + \dots + s_{2n} \delta_{n}$$

$$Q_{n} = s_{n1} \delta_{1} + s_{n2} \delta_{2} + \dots + s_{nn} \delta_{n}$$

donde s_{ii} , s_{i2} ,...., s_{nn} son coeficientes constantes que dependen exclusivamente de las propiedades de la estructura. Sustituyendo en la expresión para U obtenemos:

$$U = \frac{1}{2} \left(s_{11} \delta_{1}^{z} + s_{12} \delta_{1} \delta_{2} + \dots + s_{1n} \delta_{1} \delta_{n} + s_{21} \delta_{2} \delta_{1} + s_{22} \delta_{2}^{z} + \dots + s_{2n} \delta_{2} \delta_{n} + \dots + s_{nn} \delta_{n} \delta_{n} + s_{n1} \delta_{n} \delta_{1} + s_{n2} \delta_{n} \delta_{2} + \dots + s_{nn} \delta_{n}^{z} \right)$$

en la que se observa que U es una función cuadrática de los desplazamientos.

A continuación vamos a derivar las ecs 2.4 con respecto a cada uno de los desplazamientos:

De acuerdo con el primer teorema de Castigliano:

y sustituyendo en las expresiones anteriores se tiene:

$$\mathbf{s}_{11} = \frac{\partial^2 U}{\partial \delta_1^2} , \quad \mathbf{s}_{12} = \frac{\partial^2 U}{\partial \delta_2^2 \partial \delta_1} , \quad \dots , \quad \mathbf{s}_{1n} = \frac{\partial^2 U}{\partial \delta_n^2 \partial \delta_1}$$
$$\mathbf{s}_{21} = \frac{\partial^2 U}{\partial \delta_1^2 \partial \delta_2^2} , \quad \mathbf{s}_{22} = \frac{\partial^2 U}{\partial \delta_2^2} , \quad \dots , \quad \mathbf{s}_{2n} = \frac{\partial^2 U}{\partial \delta_n^2 \partial \delta_2^2}$$
$$\dots \dots \dots \dots$$
$$\mathbf{s}_{n1} = \frac{\partial^2 U}{\partial \delta_1^2 \partial \delta_n^2} , \quad \mathbf{s}_{n2} = \frac{\partial^2 U}{\partial \delta_2^2 \partial \delta_n^2} , \quad \dots , \quad \mathbf{s}_{nn} = \frac{\partial^2 U}{\partial \delta_n^2}$$

o sea:

$$\mathbf{s}_{ij} = \frac{\partial^2 U}{\partial \delta_j \partial \delta_i}$$

como el orden de derivación es indiferente:

$$\mathbf{s}_{ij} = \frac{\partial^2 \mathbf{U}}{\partial \delta_i \partial \delta_j} = \frac{\partial^2 \mathbf{U}}{\partial \delta_i \partial \delta_j} = \mathbf{s}_{ji}$$

Esta expresión establece el teorema de los reciprocos para las rigideces de una estructura linealmente elástica. El teorema anterior explica la simetría de la matriz de rigideces para este tipo de estructuras.

2.10 Matriz de Flexibilidad en el Extremo Inicial de una Barra de Sección Variable.

Supongamos una barra recta de sección transversal variable, con comportamiento elástico-lineal en la que en su extremo inicial A existen tres grados de libertad en el plano (fig 2.10), a saber:

$$\left\{ \begin{array}{c} d_{a} \end{array} \right\} = \left\{ \begin{array}{c} d_{xa} \\ d_{ya} \\ \varphi_{a} \end{array} \right\}$$

 $d_{x\alpha}$ representa el desplazamiento axial, $d_{y\alpha}$ el desplazamiento perpendicular al eje longitudinal y ρ_{α} el giro del extremo A de la barra. Dichos desplazamientos corresponden con las fuerzas nodales:

$$\left\{ \begin{array}{c} F_{\alpha} \end{array} \right\} = \left\{ \begin{array}{c} F_{\alpha} \\ F_{\gamma \alpha} \\ F_{\gamma \alpha} \\ M_{\alpha} \end{array} \right\}$$

respectivamente, F_{xa} representa la fuerza axial, F_{ya} la fuerza contante y M_{a} el momento actuante en dicho extremo A. Debido al comportamiento lineal los desplazamientos se pueden expresar como combinaciones lineales de las fuerzas (y viceversa como se utilizaron en el desarrollo del teorema de los reciprocos para las rigideces), esto es:

 $d_{xa} = f_{ii} F_{xa} + f_{i2} F_{ya} + f_{i3} M_{a}$ $d_{ya} = f_{i2} F_{xa} + f_{22} F_{ya} + f_{23} M_{a}$ $P_{a} = f_{3i} F_{xa} + f_{32} F_{va} + f_{33} M_{a}$

o bien, expresado matricialmente:

$$\left\{ \begin{array}{c} \mathsf{d}_{\alpha} \end{array} \right\} = \left[\begin{array}{c} \mathsf{f}_{\alpha} \end{array} \right] \left\{ \begin{array}{c} \mathsf{F}_{\alpha} \end{array} \right\} \ .$$

2.5

El término f_{ij} se conoce como coeficiente de flexibilidad y se define como el desplazamiento del grado de libertad i debido a una fuerza unitaria correspondiente al grado de libertad J, mientras las demás fuerzas permanecen nulas. La matriz $[f_{a}]$ se denomina matriz de flexibilidad en A.

De acuerdo con la definición de coeficiente de flexibilidad

b)

fig. 2.10 FLEXIBILIDAD EN (A) DE UNA BARRA DE SECCION VARIABLE tenemos:

$$f_{ii} = d_{xa} \begin{vmatrix} F_{xa} = 1 \\ F_{ya} = 0 \\ M_{a} = 0 \end{vmatrix}, f_{sz} = d_{xa} \begin{vmatrix} F_{xa} = 0 \\ F_{ya} = 1 \\ M_{a} = 0 \end{vmatrix}, f_{sz} = d_{xa} \begin{vmatrix} F_{xa} = 0 \\ F_{ya} = 1 \\ M_{a} = 0 \end{vmatrix}, f_{zz} = d_{ya} \begin{vmatrix} F_{xa} = 0 \\ H_{a} = 0 \\ M_{a} = 1 \end{vmatrix}, f_{zz} = d_{ya} \begin{vmatrix} F_{xa} = 0 \\ F_{ya} = 1 \\ H_{a} = 0 \\ M_{a} = 1 \end{vmatrix}$$

(| léase "tal que"). Para la obtención de estos coeficientes nos apoyaremos en las integrales de Mohr.

Haciendo todas las combinaciones de i con j en la fig 2.11 y sustituyendo en la ec 2.3 obtenemos:

$$f_{11} = \int_{0}^{L} \frac{dx}{EA} \qquad f_{12} = 0 \qquad f_{13} = 0$$

$$f_{21} = 0$$
 $f_{22} = \int_{0}^{L} \frac{x^2 dx}{E I} + \int_{0}^{L} \frac{dx}{G A_c}$ $f_{23} = -\int_{0}^{L} \frac{x dx}{E I}$ 2.

$$f_{BL} = 0$$
 $f_{Z} = -\int_{0}^{L} \frac{x d}{E}$ $f_{BB} = \int_{0}^{L} \frac{dx}{E I}$

que son los coeficientes de la matriz de flexibilidad en el extremo A de una barra de sección variable.

2.11 Matriz de Rigidez en el Extremo Inicial de una Barra de Sección Variable.

Las fuerzas en extremo A de una barra expresadas en función de

	del Desplazamiento por Obtener
$j = 1$ $F_{xa} = 1$ $F_{ya} = 0$ $M_{a} = 0$	$i = 1$ $i \longrightarrow A$ $i \longrightarrow A$
E.M. $\begin{cases} M = 0 & (0 \le x \le L) \\ N = -1 & " \\ V = 0 & " \end{cases}$	E.M.
j = 2 $F_{xa} = 0$ (A) (B) $F_{ya} = 1$ ($i = 2$ $d_{ya} \neq A B$ $\downarrow 1$
E.M. $\begin{cases} M = x & (0 \le x \le L) \\ N = 0 & " \\ V = 1 & " \end{cases}$	E.M.
$J = 3$ $F_{xa} = 0$ $F_{ya} = 1$ $B = 1$	i ≖ 3
E.M.	E.M. $\begin{cases} m = -1 & (0 \le x \le L) \\ n = 0 & " \\ v = 0 & " \end{cases}$

Fuerza Unitaria en Dirección

(E.M.: Elementos Mecánicos)

Fuerzas Unitarias Actuantes

fig 2.11 Obtención de la Matriz de Flexibilidades en A por medio de las integrales de Mohr.
los desplazamientos que producen están dadas por:

$$\left\{ F_{\alpha} \right\} = \left[k_{\alpha} \right] \left\{ d_{\alpha} \right\}$$

A la matriz $[k_{a}]$ se le denomina matriz de rigidez en el extremo A y los coeficientes de rigidez k_{ij} que la integran están definidos como la fuerza que hay que aplicar en dirección del grado de libertad j para producir un desplazamiento unitario en el grado de libertad i, mientras los demás desplazamientos permanecen nulos. Comparando la ecuación anterior con la 2.5 se puede ver que:

$$\left[\begin{array}{c}k_{\alpha}\end{array}\right] = \left[\begin{array}{c}f_{\alpha}\end{array}\right]^{-1}$$

esto es, la matriz de rigidez es igual a la inversa de la matriz de flexibilidad. Entonces para encontrar la matriz de rigidez en el extremo A solo tenemos que invertir la matriz de flexibilidad que ya conocemos. Como se puede observar, en la matriz de flexibilidad el coeficiente f₁₁ se halla desacoplado de los demás por lo que para la inversión dicha matriz se puede subdividir en dos de la manera siguiente:

$$\begin{bmatrix} f_{\alpha} \end{bmatrix}^{-1} = \begin{bmatrix} \begin{bmatrix} f_{11} \end{bmatrix}^{-1} & 0 & 0 \\ 0 & \begin{bmatrix} f_{22} & f_{23} \\ f_{23} & f_{33} \end{bmatrix}^{-1} \\ 0 & \begin{bmatrix} f_{23} & f_{33} \end{bmatrix}^{-1} \end{bmatrix}$$

La inversión de la primera es directa:

$$\left[f_{ii}\right]^{-1} = \frac{1}{f_{ii}} \ .$$

Para invertir la segunda nos apoyaremos en el método de la adjunta el cual establece que la inversa de una matriz [L] es igual al producto de la matriz adjunta [L]^{*} por el recíproco del determinante |L|. A su vez la matriz adjunta [L]^{*} es igual a la matriz de cofactores de la transpuesta. Para nuestro caso tenemos que el determinante vale:

$$DET = f f - f^2_{22}$$

(nota: $f_{22} = f_{32}$), la transpuesta es:

$$\begin{bmatrix} f_{22} & f_{23} \\ f_{23} & f_{33} \end{bmatrix}$$

y la adjunta:

$$\begin{bmatrix} f_{22} & -f_{22} \\ -f_{22} & f_{22} \end{bmatrix}$$

finalmente la inversa será:

Agrupando a las dos matrices invertidas obtenemos la matriz de rigidez en el extremo inicial de una barra de sección variable:

$$\begin{bmatrix} k_{a} \end{bmatrix} = \begin{bmatrix} \frac{1}{f_{11}} & 0 & 0 \\ \hline f_{11} & 0 & 0 \\ 0 & \frac{f_{23}}{DET} & \frac{f_{23}}{DET} \\ 0 & -\frac{f_{23}}{DET} & \frac{f_{22}}{DET} \end{bmatrix}$$

2.12 Matriz de Rigidez Total de una Barra de Sección Variable. Los extremos de una barra en el plano tienen 6 grados de

libertad que son:

$$\left\{\begin{array}{c} d \end{array}\right\} = \begin{cases} d_{xa} \\ d_{ya} \\ \varphi_{a} \\ d_{xb} \\ d_{yb} \\ \varphi_{b} \end{cases}$$

 $d_{xa} y d_{xb}$ son los desplazamientos axiales, $d_{ya} y d_{yb}$ son los desplazamientos perpendiculares y $\rho_a y \rho_b$ son los giros de los extremos A y B respectivamente (fig 2.12). Las fuerzas nodales correspondientes son:

$$\left\{ \begin{array}{c} F \end{array} \right\} = \left\{ \begin{array}{c} F_{xa} \\ F_{ya} \\ H_{a} \\ F_{xb} \\ F_{yb} \\ H_{b} \end{array} \right\}$$

 $F_{xa} \ y \ F_{xb}$ representan las fuerzas axiales, $F_{ya} \ y \ F_{yb}$ las fuerzas cortantes y $M_a \ y \ M_b$ los momentos actuantes en los extremos A y B, respectivamente. La matriz de rigidez total en el plano de una barra de sección variable [k], que relaciona a las fuerzas con los desplazamientos por medio de la ecuación:

$$\left\{ \begin{array}{c} \mathsf{F} \end{array} \right\} = \left[\begin{array}{c} \mathsf{k} \end{array} \right] \left\{ \begin{array}{c} \mathsf{d} \end{array} \right\} \ .$$

se puede obtener con base en la matriz de rigidez en el extremo inicial de la misma barra $\begin{bmatrix} k_{o} \end{bmatrix}$ apoyándose en el equilibrio, en el teorema de los recíprocos para las rigideces (sección 2.9) y teniendo en cuenta la definición de coeficiente de rigidez $k_{c_{i}}$ (sección 2.11).

a)

b)

Be puede ver que la matriz de rigidez en el extremo inicial:

$$\begin{bmatrix} k_{\alpha} \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{21} & k_{22} & k_{23} \\ k_{21} & k_{22} & k_{23} \end{bmatrix}$$

es una submatriz de la matriz de rigidez total, esto es:

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} k_{14} & k_{15} & k_{16} \\ k_{a} \end{bmatrix} \begin{pmatrix} k_{14} & k_{25} & k_{26} \\ k_{a} & k_{25} & k_{26} \\ k_{34} & k_{35} & k_{36} \\ k_{45} & k_{42} & k_{44} & k_{45} & k_{46} \\ k_{54} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} \\ k_{54} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} \\ k_{54} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} \\ k_{54} & k_{52} & k_{53} & k_{54} & k_{55} & k_{56} \\ \end{pmatrix}$$

En la fig 2.13 se obtienen los coeficientes de la matriz de rigidez total desconocidos en función de los coeficientes de la matriz de rigidez en A. Sustituyendo los valores de los coeficientes k_{11} a k_{32} en las expresiones de esta figura y simplificando se obtiene:

1 	θ	0	$-\frac{1}{f_{\pm\pm}}$	0	9
0	DET	<u>f</u> DET	0		fssL+fzs DET
0	- <u>f</u> 29 DET	f ₂₂ DET	ø	f ₂₃ DET	-f2BL-f22 DET
	9	0		0	Ð
0		f ₂₉ DET	0	DET	DET
0	DET	DET	ø	-f_L-f_29 DET	f 22+2f L+f L ² DET

(DET=f f - f 2)

fig 2.13 Obtención de la Matriz de Rigidez Total en Función de la Matriz de Rigidez en A de una Barra de Sección Variable. que es la matriz de rigidez total en el plano de una barra de sección variable, en función de los coeficientes de flexibilidad en el extremo inicial dados por las ecs 2.6.

2.13 Obtención de Reacciones de Empotramiento para Barras de Sección Varimble.

Una barra de sección variable doblemente empotrada es una estructura estáticamente indeterminada y su análisis se puede llevar a cabo de la siguiente manera:

- se seleccionan como redundantes cualesquiera de las reacciones desconocidas
- se libera a la estructura permitiendo los desplazamientos correspondientes a las redundantes
- la estructura liberada, que es estáticamente determinada y estable, se carga después tanto con las cargas reales como con las propias redundantes
- los desplazamientos causados por estas dos condiciones de carga se calculan y combinan luego en una ecuación de compatibilidad de desplazamientos. Esta ecuación de compatibilidad expresa una condición perteneciente a la deformación, a saber, que la deformación correspondiente a las redundantes es cero
- después de sustituir las expresiones de los desplazamientos en función de las fuerzas en la ecuación de compatibilidad, podrán despejarse las reacciones redundantes
- finalmente, las reacciones desconocidas que faltan por calcular se hallan por estática.

En el caso de cargas perpendiculares al eje de la barra (fig 2.14) escogemos como redundantes a \overline{M}_{a} y \overline{M}_{b} , que son los momentos de empotramiento en los extremos A y B, de esta manera la estructura liberada será una barra doblemente apoyada. Para la obtención de los giros ρ_{oa} y ρ_{ob} en los extremos A y B de la barra liberada, debidos a las cargas reales, nos apoyaremos en las integrales de Mohr (sección 2.7). Los elementos mecánicos en la barra liberada para una condición de carga general están representados por M_{o} para los momentos flexionantes y V para las fuerzas cortantes. En la fig 2.15a se muestran los elementos mecánicos de bido a un momento unitario en dirección de ρ_{ob} .

fig 2.15 Obtención de los Giros en la Isostática por medio de las Integrales de Mohr. Sustituyendo en la ec 2.2 tenemos:

$$P_{ob} = \frac{1}{L} \left[\int_{0}^{L} \frac{M_{o} \times dx}{E I} + \int_{0}^{L} \frac{V_{o} dx}{G A_{a}} \right] \qquad 2.7$$

de manera similar para p_{oa} (fig 2.15b):

$$P_{oa} = \frac{1}{L} \left[\int_{0}^{L} \frac{M_{o}(x-L) dx}{E I} + \int_{0}^{L} \frac{V_{o} dx}{G A_{o}} \right]$$

esta última expresión puede simplificarse y llegar a:

$$\varphi_{oa} = \varphi_{ob} - \int_{0}^{L} \frac{M_{o} dx}{E I} . 2.8$$

Por otro lado los giros φ_a y φ_b en los extremos A y B de la estructura liberada debidos a las redundantes están dados por:

$$\begin{split} \rho_{a} &= f_{BB} \,\overline{M}_{a} + f_{BG} \,\overline{M}_{b} \\ \rho_{b} &= f_{BG} \,\overline{M}_{a} + f_{GG} \,\overline{M}_{b} \end{split} .$$

Las ecuaciones de compatibilidad establecen que:

$$p_{ob} + p_a = 0$$
$$p_{ob} + p_b = 0$$

sustituyendo en ellas a ρ_{a} y ρ_{b} se tiene:

$$f_{gg} \widetilde{M}_{a} + f_{gd} \widetilde{M}_{b} = -p_{oa}$$
$$f_{gd} \widetilde{M}_{a} + f_{dd} \widetilde{M}_{b} = -p_{ob}$$

despejando a $\widetilde{M_{_{\rm H}}}$ y $\widetilde{M_{_{\rm H}}}$ se obtiene finalmente:

$$\vec{H}_a = -k_{BB} p_{aa} - k_{BB} p_{ob}$$
$$\vec{M}_b = -k_{BB} p_{oa} - k_{BB} p_{ob}$$

donde ho_{ob} y ho_{oa} están dados por las ecs 2.7 y 2.8

respectivamente. Una vez conocidos $\overline{M}_{\rm g}$ y $\overline{M}_{\rm b}$, las fuerzas cortantes $\overline{V}_{\rm g}$ y $\overline{V}_{\rm c}$ se determinan por equilibrio.

En el caso de cargas axiales sobre la barra doblemente empotrada (fig 2.16) escogemos como redundante a \overline{N}_{q} , por lo tanto la estructura liberada es una barra en cantiliver. Las fuerzas normales en la estructura liberada para una condición de carga general están representadas por N. Estas fuerzas originan un desplazamiento axial en el extremo inicial d_{xoa}. En la fig 2.17 se muestran los elementos mecánicos debidos a una fuerza unitaria en dirección de dicho desplazamiento axial d_{xoa}. Sustituyendo en la ec 2.3 se obtiene:

$$d_{xoa} = - \int_{a}^{b} \frac{N_{a} dx}{EA}$$

El desplazamiento d $_{\rm xo}$ en el extremo inicial de la isostática debido a la redundante está dado por:

$$d_{xa} = f_{11} \tilde{N}_{a} .$$

La ecuación de compatibilidad es:

sustituyendo los valores d $_{\rm koa}$ y d $_{\rm ka}$ y despejando a $\vec{N}_{\rm s}$ se obtiene:

$$\overline{N}_{a} = k_{11} \int_{0}^{L} \frac{N_{o} dx}{E A}$$

La reacción $\overline{N}_{\rm c}$ se determina por equilibrio.

AXIALES EN UNA BARRA DE SECCION VARIABLE

fig 2.17 Obtención del Desplazamiento Axial en el Extremo Inicial de la isostática por medio de las Integrales de Mohr.

3.- INTEGRACION NUMERICA

En el capitulo anterior nos encontramos con la necesidad de resolver integrales definidas, dichas integrales son:

$$\int_{0}^{L} \frac{dx}{EA} + \int_{0}^{L} \frac{dx}{GAe} + \int_{0}^{L} \frac{dx}{EI} + \int_{0}^{L} \frac{x dx}{EI} + \int_{0}^{L}$$

que se pueden resumir en:

$$\int_{a}^{b} f(x) \, dx \qquad 3.2$$

La evaluación de este tipo de integrales por métodos exactos es en ocasiones muy laboriosa o imposible y se hacen necesarios, por lo tanto, otros métodos de solución. Una alternativa evidente es el encontrar una función g(x) que sea al mismo tiempo una aproximación adecuada de f(x) y simple de integrar analíticamente. En este caso ia ec 3.2 puede aproximarse por:

Los textos de métodos numéricos abundan en fórmulas de integración numérica (llamada también cuadratura). Los métodos de integración más corrientemente usados pueden clasificarse en dos grupos: las fórmulas de Newton-Cotes, que utilizan valores de la función en puntos base equidistantes; y las fórmulas de cuadratura gaussiana, que utilizan puntos base situados a intervalos desiguales cuya longitud está determinada por ciertas propiedades de los polinomios ortogonales.

Existe otra clasificación adicional de los métodos de integración numérica, a saber: integraciones abiertas y cerradas. Las fórmulas de integración cerradas utilizan información sobre f(x) en ambos limites de integración y en puntos intermedios; mientras que las fórmulas abiertas no requieren información de f(x) en los limites de integración, sino únicamente en puntos intermedics.

Para simplificar en lo posible la evaluación de la ec 3.2 sin restar generalidad al resultado, se transforma el intervalo de integración [a, b] al [-1, i], por medio de un adecuado cambio de variable. Se define la variable z como:

$$z = \frac{2x - (a + b)}{b - a}$$

entonces tenemos:

$$\int_{a}^{b} g(x) dx = \int_{-1}^{1} G(z) dz$$

Las fórmulas de integración numérica normalizadas al intervalo [-1, i] son de la forma:

$$\int_{-t}^{t} G(z) dz = \sum_{i=0}^{n} H_{i} G(z_{i}) \qquad -1 \le z_{i} \le 1 \qquad 3.3$$

donde las abscisas \boldsymbol{z}_i y los pesos \boldsymbol{w}_i dependen del método de integración.

3.1 Newton-Cotes Cerrado.-

En el método de Newton-Cotes, la aproximación polinómica está dada en forma del esquema de diferencias finitas progresivas de Newton:

$$G(z) = G(z_{0} + \alpha h) + \alpha \Delta G(z_{0}) + \frac{\alpha (\alpha - 1)}{2!} \Delta^{2} G(z_{0}) + \frac{\alpha (\alpha - 1) (\alpha - 2)}{3!} \Delta^{3} G(z_{0}) + \dots + \frac{\alpha (\alpha - 1) (\alpha - 2) \dots (\alpha - n + 1)}{n!} \Delta^{n} G(z_{0}) + \dots$$

En esta ecuación z_{c} corresponde con el límite inferior de la integración, o sea -l para el caso de cuadratura cerrada; h es la separación equidistante entre los puntos de evaluación; n es igual al número de evaluaciones menos uno; Δ es el operador de

diferencias progresivas que se define como sigue:

$$\Delta B(z_{o}) = G(z_{o} + h) - G(z_{o})$$

$$\Delta^{2}G(z_{o}) = \Delta (\Delta G(z_{o}))$$

$$= \Delta (G(z_{o} + h) - G(z_{o}))$$

$$= \Delta G(z_{o} + h) - \Delta G(z_{o})$$

$$\Delta^{3}G(z_{o}) = \Delta^{2}G(z_{o} + h) - \Delta^{2}G(z_{o})$$

$$\vdots$$

$$\Delta^{n}G(z_{o}) = \Delta^{n-4}G(z_{o} + h) - \Delta^{n-4}G(z_{o})$$

y el valor de α está dado por:

$$\alpha = \frac{z - z_0}{h}$$

Sustituyendo α , $\Delta^{T}G(z_{o})$ y G(z) en la ec 3.3 se obtienen, para diferentes valores de n, los pesos de las abscisas correspondientes. En la tabla Al del apéndice A se muestran dichos valores para n = 1,...,8.

Como el grado de precisión de las fórmulas de Newton-Cotes aumenta con el número de puntos, podría pensarse que una fórmula de orden muy alto es más exacta que otra de orden menor. Sin embargo, las fórmulas de n + 1 puntos base, para valores altos de n, tienen propiedades que las hacen desaconsejables para su aplicación práctica. Los coeficientes tienden a ser grandes y con signos alternados, lo que puede llevar a importantes errores de redondeo. Fórmulas que utilizan más de ocho puntos no se emplean casi nunca.

3.2 Integración Gaussiana.-

La idea principal en que se basa la integración gaussiana es que en la selección de los puntos de evaluación puede ser ventajoso no especificar que se encuentren igualmente espaciados. Lo anterior es aplicable en integrales donde intervienen funciones analíticas conocidas que pueden calcularse para cualquier argumento y con gran exactitud. En tajes casos es útil preguntar que valores de $z_i y w_i$ sustituidos en la ec 3.3 producirán el máximo de exactitud. Resulta conveniente discutir la fórmula algo más general:

$$\int_{-1}^{1} \Lambda(z) \ G(z) \ dz = \sum_{i=0}^{n} w_{i} \ G(z_{i}) \qquad | \quad -1 \le z_{i} \le 1$$

en la cual $\Lambda(z)$ es una función ponderante que se especificará más adelante. Cuando $\Lambda(z) = 1$ tenemos la ecuación original 3.3, más sencilla.

Una manera de enfocar tales fórmulas gaussianas es pedir exactitud perfecta cuando G(z) es un polinomio de grado 2n + 1 o menor. Esto proporciona 2n + 2 condiciones para determinar las 2n + 2 incógnitas $z_i y w_i$. En efecto se puede demostrar que los valores de w se encuentran a partir de:

$$W_{i} = \int_{-1}^{1} \Lambda(z) \, \mathcal{Z}_{i}(z) \, dz \qquad 3.4$$

donde $\mathcal{Z}_i(z)$ es la función multiplicadora de Lagrange:

$$\mathbf{x}_{l}(\mathbf{z}) = \prod_{\substack{j \neq 0 \\ j \neq i}}^{n} \frac{(\mathbf{z} - \mathbf{z}_{j})}{(\mathbf{z}_{l} - \mathbf{z}_{j})}$$

Las abscisas z_0, \ldots, z_n son las raices del polinomio q_n(z) de grado n perteneciente a una familia Q(z) que cumple con la propiedad de ortogonalidad:

$$\int_{-1}^{1} \Lambda(z) q_{n}(z) q_{m}(z) dz = 0 , n \neq m$$

$$\int_{-1}^{1} \Lambda(z) [q_{n}(z)]^{2} dz = c(n) \neq 0 . -1 \leq z \leq 1$$

Los polinomios q₁(z) dependen de $\hbar(z)$, la función ponderante, la cual influencia por consiguiente tanto a los z₁ como a los w₁, aunque no aparece explicitamente en la fórmula gaussiana.

3.3 Fóraulas de Gauss-Legendre.-

Las fórmulas de Gauss-Legendre tienen lugar cuando A(z) = 1. En este caso los polinomios ortogonales son los polinomios de Legendre:

$$p_{n}(z) = \frac{1}{2^{n} n!} \frac{d^{n}}{dz^{n}} (z^{n} - 1)^{n}$$

con $p_o(z) = 1$. Las raices de estos polinomios se sustituyen en la ec 3.4 para encontrar los pesos correspondientes. Estos valores se presentan en la tabla A2 del apéndice A.

3.4 Formulas de Gauss-Chebyshev.-

La función ponderante es:

$$h(z) = \frac{1}{\sqrt{1-z^2}}$$

Los polinomios ortogonales corresponden con los polinomios de Chebyshev:

Las n + 1 raices del polinomio de Chebyshev de grado n + 1 son:

$$z_1 = \cos \frac{(2i+1)\pi}{(2n+2)}$$
, $i = 0, 1, ..., n$

Los pesos w_e en este caso son constantes para cada n, y su valor est

$$W_{l} = \frac{\pi}{n+1}$$

Estos valores se encuentran listados en la tabla A3 del apéndice A. 3.5 Integración Compuesta.-

Una forma de reducir el error en una fórmula de integración de orden bajo se logra al subdividir el intervalo de integración [a, b] en intervalos más pequeños, y usar la fórmula separadamente para cada uno de estos. Las fórmulas de integración resultantes de subdividir el intervalo y aplicar repetidamente una fórmula de orden bajo se llaman fórmulas de integración compuestas. Esto equivale a usar varios segmentos lineales, parabólicos, etc., conectados. Por ejemplo, si se aplica repetidamente la fórmula de Newton-Cotes para n = 1 se obtiene la regla trapezoidal, para n = 2 la primera regla de Simpson o de 1/3, con n = 3 la segunda regla de Simpson o de los 3/8.

El método más elemental de integración numérica cae dentro de la clasificación de integración compuesta; se conoce como la regla del rectángulo y discretiza el área bajo la curva como una serie de rectángulos con altura igual a la ordenada de la función en el punto medio del subintervalo y ancho constante. Este ancho es igual a la longitud del intervalo de integración entre el número de subintervalos.

Aunque cualquier fórmula de integración puede ser escrita en forma compuesta, las fórmulas cerradas son especialmente atractivas, debido a que los puntos base en los extremos de cada subintervalo son a su vez puntos base para los subintervalos adyacentes; excepto, claro está, los puntos x = a y x = b. De esta forma, aunque parece en principio que p aplicaciones repetidas de una fórmula de quentos requeriría po operaciones de evaluación, solamente son necesarias p (q - 1) + 1, lo que representa un ahorro considerable especialmente si q es pequeño.

Dado que la mayoria de las fórmulas gaussianas no tienen puntos base en los extremos del intervalo de integración, normalmente no se consigue un ahorro en el número de veces que se ha de evaluar la función en cada subintervalo; de ahí que no resulte interesante emplear la integración compuesta para este tipo de fórmulas.

3.6 Anàlisis Comparativo entre Métodos de Integración.-

No es posible encontrar un método de integración numérica que aplicado a las funciones que requerimos integrar, proporcione valores exactos; de ahí la necesidad de realizar un anàlisis comparativo para determinar aquél que nos aproxime mejor al resultado con el menor trabajo posíble. En la tabla Bi del apéndice B se presentan los resultados obtenidos de la evaluación de una integral por los métodos previamente discutidos, a sabert Newton-Cotes, Gauss-Legendre, Gauss-Chebyshev, Newton-Cotes Compuesto y Regla del Rectángulo. La función integrada es x^4 / I donde I es la inercia de la sección transversal a una distancia x del extremo inicial. Esta función resulta de la simplificación de las ecs 3.1. De esta simplificación resultan también otras funciones, pero x^4 / I es la más difícil de integrar; esto es, requiere de un mayor número de puntos de evaluación para obtener una aproximación dada. Por lo tanto, se puede asegurar que si la integración de x^4 / I es exacta para un número cualquiera de dígitos, las integraciones de las demás funciones también lo son.

A partir del análisis comparativo se establece que el método de Bauss-Legendre es el más adecuado para resolver estas integrales, ya que para un mismo número de puntos de evaluación la aproximación que se obtiene es mejor. La convergencia al valor exacto en presición sencilla es de 7 puntos de evaluación y en precisión doble de 14. Ninguno de los demás métodos converge al valor exacto en precisión doble con el número de puntos de evaluación considerados, que fueron hasta de 41. El método de Newton-Cotes Compuesto es el único otro que converge al valor exacto en precisión sencilla, aunque con 17 puntos de evaluación para el caso de una orden de integración igual a 8.

Cabe hacer notar que el método tradicional de simulación de elementos de sección variable por medio de dovelas equivale a la integración con la regla del rectángulo, y que por más que se divida al elemento en dovelas razonablemente pequeñas la aproximación que se obtiene no es adecuada.

4.- METODOLOGIA DE ANALISIS

La obtención de la matriz de rigidez del elemento de sección variable, así como las reacciones de empotramiento para cargas en el claro son etapas necesarias en el análisis de una estructura compuesta por elementos de este tipo.

Las ecuaciones de la matriz de rigidez y las reacciones de empotramiento para elementos de sección variable, obtenidas en el capítulo 2, son implementadas en un programa de análisis de marcos planos por el método de rigideces y son resueltas con ayuda del método de integración numérica de Gauss Legendre que, como se asienta en el capítulo anterior, es el más adecuado.

Se desarrollaron dos versiones diferentes del programa para estructuras compuestas por elementos de sección variable de dos tipos: elementos rectángulares y vigas tipo I. Sin embargo la metodología expuesta es general para otros tipos de secciones transversales e incluso para estructuras mixtas, es decir. formadas por elementos de diversos tipos. En el caso de sección transversal rectangular, los elementos considerados son como se muestran en la fig 4.1, y en el caso de vigas tipo I en la fig 4.2. Las distancias A1, A2 y A3 representan los claros relativos al acartelamiento inicial, sección constante У acartelamiento final respectivamente: cualesquiera dos o una de ellas podrán valer cero, en cuyo caso el elemento tendrás un solo acartelamiento o sección constante, un acartelamiento y sección constante, o dos acartelamientos sin sección constante.

La variación o acartelamiento puede ser nulo, lineal o parabólico como se muestra en la fig 4.3. Es factible combinar los diferentes tipos de acartelamientos tanto en planta como en elevación. La continuidad angular en las uniones de los acartelamientos especialmente del tipo nulo debe de lograrse constructivamente para ser congruentes con las hipótesis de diseño.

4.1 Ejes de los Elementos.~

Entre los ingenieros especialistas en estructuras, no ha podido unificarse el criterio con respecto a una definición de los ejes longitudinales para los elementos de sección transversal variable,

fig 4.2 ELEMENTO DE SECCION TIPO I VARIABLE

fig. 4 . 3 DIFERENTES TIPOS DE ACARTELAMIENTOS

que tome en cuenta las aplicaciones prácticas. La Asociación del Cemento Portland (Portland Cement Association) y otras reconocidas autoridades en la materia recomiendan que se tome como eje longitudinal de un elemento recto de sección transversal variable, a la línea paralela al borde recto del elemento y que pase a través del centro de gravedad de la seccón transversal más pequeña. Esta definición se adopta en los ejemplos resueltos en el presente trabajo. Sin embargo, otros criterios que consideren ejes longitudinales rectos también pueden ser empleados.

4.2 Elementos Constitutivos del Marco.-

El análisis de la estructura se basa en el empleo de las propiedades físicas y elásticas de los elementos individuales. E1 primer paso de análisis, por consiguiente, es la reducción de la estructura a sus elementos constitutivos. Se consideran como lonoitudes de estos elementos las distancias entre lac intersecciones de los ejes. Las formas de los elementos se definen extendíendo el acartelamiento hasta las lineas trazadas normalmente a los ejes de los elementos a través de los puntos de intersección arriba mencionados. La aplicación de esta regla se presenta gráficamente en la fig 4.4, donde se muestra la reducción de un pórtico de dos aguas a sus elementos individuales.

4.3 Sistemas de Referencia.-

Se definen a continuación dos sistemas de referencia: el sistema global de coordenadas de la estructura y el sistema local de coordenadas de cada elemento.

El sistema global de coordenadas X , Y es arbitrario, y lo fija tanto en posición como dirección el analista o usuario del programa al definir las coordenadas de los nudos. A este respecto existe la limitante de que los apoyos guiados se definen con relación a este sistema de referencia. Esto es, podrán existir apoyos guiados según el eje X global o según el eje Y global solamente. Generalmente conviene hacer coincidir uno de los ejes globales con la dirección de la gravedad, quedando el otro orientado según la dirección de fuerzas accidentales, tales como viento o sismo; de esta manera se facilita la simulación de cargas. Los desplazamientos de los nudos obtenidos en el anàlisis,

están dados con respecto al sistema de coordenadas global. De ahí que, para mayor facilidad, se deberá hacer coincidir el sistema de coordenadas global con la dirección de los desplazamientos que se deseen conocer.

El sistema local de coordenadas X', Y' es particular para cada elemento. El eje X' tiene origen en el nudo inicial con dirección y sentido hacia el nudo final; el eje Y' es perpendicular al anterior y con sentido de forma tal que los vectores X x Y y X' x Y' poseen a su vez el mismo sentido.

4.4 Cargas.-

Los tipos de cargas se dividen en dos: cargas en nudos y cargas en elementos. Las caroas en nudos se alimentan según el sistema global de coordenadas como fuerza en X, fuerza en Y y momento (fig 4.5). Las cargas en los elementos pueden ser de tres tipos: fuerza concentrada, fuerza repartida trapecial v momento concentrado; además se pueden definir con respecto al sistema global o al sistema local de coordenadas, tal como se muestra en la fig 4.6. El signo de la carga definirá el sentido đe aplicación: cuando sea positivo coincidirá con el sentido positivo del eje de referencia y viceversa. En el caso de momentos aplicados tanto en los nudos como en los elementos, serán positivos cuando su sentido coincida con el del vector X x Y.

4.5 Elementos Mecánicos.-

Como resultado del anàlisis se obtienen elementos mecánicos en los extremos de cada elemento. Estos elementos mecánicos o fuerzas internas siguen la convención de signos establecida por Timoshenko y que se ilustra en la fig 4.7.

Para el cálculo de los elementos mecánicos a lo largo de un elemento cualquiera, basta solo con sumar punto a punto el diagrama de elementos mecánicos de la isostática (viga simplemente apoyada para momento flexionante y viga en cantiliver para fuerzas cortantes y normales) considerando la misma condición de carga que el elemento tiene en el marco, con los elementos mecánicos hiperestáticos obtenidos del análisis (ver fig 4.8). Es importante hacer notar que los elementos mecánicos finales en los extremos del elemento cargado, son directamente los elementos mecánicos

fig. 4 . 5 CARGAS EN NUDOS

d) FUERZA REPARTIDA TRAPECIAL SEGUN EL EJE LOCAL Y

c) FUERZA REPARTIDA TRAPECIAL SEGUN EL EJE GLOBAL Y

b) FUERZA REPARTIDA TRAPECIAL SEGUN EL EJE LOCAL X¹

d) FUERZA REPARTIDA TRAPECIAL SEGUN EL EJE GLOBAL X

fig. 4 . 6 CARGAS EN ELEMENTOS (HOJA - I)

e) FUERZA CONCENTRADA SEGUN EL EJE LOCAL Y'

g) FUERZA CONCENTRADA SEGUN EL EJE GLOBAL Y

f) FUERZA CONCENTRADA SEGUN EL EJE LOCAL X'

h) FUERZA CONCENTRADA SEGUN EL EJE GLOBAL X

1) MOMENTO CONCENTRADO

fig. 4 . 6 CARGAS EN ELEMENTOS (HOJA - 2)

fig. 4 . 8 ELEMENTOS MECANICOS EN EL INTERIOR DE ELEMENTOS CARGADOS

hiperestáticos reportados en el análisis.

4.6 Diagrama de Flujo.-

Se muestra a continuación el diagrama de flujo descriptivo del programa:

DEFORMACIONES DE LOS ELEMENTOS DEBIDAS A LAS FUERZAS EFECTIVAS

MATRIZ DE RIGIDEZ DE LOS ELEMENTOS DE SECCION VARIABLE

ELEMENTOS MECANICOS DEBIDOS A LAS FUERZAS EFECTIVAS EN LOS ELEMENTOS DE SECCION VARIABLE

ELEMENTOS MECANICOS TOTALES = ELEMENTOS MECANICOS DEBIDOS A FUERZAS EFECTIVAS + REACCIONES DE EMPOTRAMIENTO DEBIDAS A CARGAS EN LOS ELEMENTOS

. 1

El diagrama de flujo anterior es el mismo utilizado para analizar estructuras con elementos de sección constante, excepto: la lectura y escritura de las características de los elementos, el cálculo de la matriz de rigidez de los elementos y la obtención de reacciones de empotramiento para cargas en los elementos. La integración numérica se lleva a cabo en una subrutina que realiza simultáneamente todas las integrales con la cuadratura de Gauss-Legendre.

5. - ESTUDIO COMPARATIVO ENTRE METODOS DE ANALISIS

Se presenta a continuación una comparación entre los métodos comúnmente empleados para el anàlisis de marcos de sección variable y el descrito en el presente trabajo, al cual denominaremos Método de Integración Numérica. Como parte de esta comparación, se analizó un mismo caso por los diferentes métodos, a saberi

- Dovelas
- Parámetros Elásticos
- Factores de Rigidez y Reacciones de Empotramiento
- Integración Numérica

5.1 Descripción del Hodelo.-

El ejemplo considerado se muestra en la fig 5.1. Se trata de un marco rígido, a dos aguas, simétrico, de sección transversal rectangular y con apoyos articulados. Los acartelamientos son lineales, y el módulo de elasticidad considerado es el del concreto: 432 000 KSF (2'109,244 Ton/m²).

5.2 Método de Dovelas.-

El método de dovelas consiste en discretizar las secciones variables mediante pequeños elementos de sección constante y analizarlo con ayuda de un programa de marcos planos de sección constante. En nuestro caso se dividió cada uno de los acartelamientos en cuatro barras de sección constante, resultando 27 nudos y 26 elementos (ver fig 5.2). Para cada nudo existe la necesidad de calcular sus coordenadas con respecto a un sistema global previamente definido; estos valores son:

COORDENADAS DE LOS NUDOS:

NUDO	x	Ŷ
1	0	0
2	0	5
3	0	10
4	0	15
5	0	20
6	2.25	21
7	4.5	22
8	6.75	23
9	9	24
10	27	32

EL METODO DE DOVELAS

. . .

11	29,25	33
12	31.5	34
13	33.75	35
14	36	36
15	38,25	35
16	40.5	34
17	42.75	33
18	45	32
19	63	24
20	65.25	23
21	67.5	22
22	69.75	21
23	72	20
24	72	15
25	72	10
26	72	5
27	72	0

La discretización de elementos se presenta a continuación:

CONECTIVIDADES DE LOS ELEMENTOS:

ELEMENTO	N. INICIAL	N.FINAL	LONG.
1	1	2	5
2	2	3	5
3	3	4	5
4	4	5	5
5	5	6	2,462215
6	6	7	2.462215
7	7	8	2.462215
8	B	9	2.462215
9	9	10	19.69771
10	10	11	2.462215
11	11	12	2.462215
12	12	13	2,462215
13	13	14	2.462215
14	14	15	2.462215
15	15	16	2.462215
16	16	17	2.462215
17	17	18	2,462215
18	18	19	19.69771
17	19	20	2.462215
20	20	21	2.462215
21	21	22	2.462215
22	22	23	2,462215
23	23	24	5
24	24	25	5
25	25	26	5
26	26	27	5

Para cada elemento se calculan las propiedades mecánicas de la sección media, que se consideran constantes a lo largo de todo el

elemento, estos valores son:

ELEMENTO	MOM. INERCIA	AREA	FACTOR DE CORTANTE
1	1.878438	4.5	0
2	3.466146	5.5	0
3	5.721354	6.5	Θ
4	8.789064	7.5	0
5	8.789064	7.5	0
6	5.721354	6.5	0
7	3,466146	5.5	Ø
8	1.878438	4.5	0
9	1.333333	4	0
10	1.878438	4.5	0
11	3.466146	5.5	Ð
12	5.721354	6.5	0
13	8.789064	7.5	0
14	8.789064	7.5	0
15	5.721354	6.5	0
16	3.466146	5.5	0
17	1.898438	4.5	0
18	1.333333	4	0
19	1.878438	4.5	0
20	3.466146	5.5	0
21	5.721354	6.5	0
22	8.789064	7.5	0
23	8.789064	7.5	ø
24	5.721354	6.5	0
25	3.466146	5.5	0
26	1,898438	4.5	0

CARACTERISTICAS DE LOS ELEMENTOS

El factor de cortante se define por medio de la ecuación:

$$c = 6 (1 + \nu) \frac{I}{A_{c} L^{2}}$$

donde ν es la relación de Poisson del material, A_c el área de cortante de la sección, I el momento de inercia y L la longitud del elemento. Este factor sirve para tomar en cuenta las deformaciones por cortante de elementos de sección constante. En nuestro caso se desprecian dichas deformaciones ya que la relación peralte/longitud es pequeña, de ahí que el factor de cortante se tome igual a cero.

Las cargas repartidas en elementos de sección variable deben corresponder con las dovelas, por lo que se dividirán en tantas cargas como dovelas existan. En el caso de cargas concentradas, estas se deberán localizar en el elemento discretizado

correspondiente. Las cargas consideradas son:

CARGAS REPARTIDAS EN ELEMENTOS:

	A	В	С	D	E	F	G ·	н
1	GLOB	UNIF	Y	5	-0.5	-0.5	0	2.5
2	GLOB	UNIF	Ŷ	6	~0.5	-0.5	0	2.5
3	GLOB	UNIF	Y	7	-0.5	-0.5	0	2.5
4	GLOB	UNIF	Y	8	-0.5	~0.5	0	2.5
5	GLOÐ	UNIF	Y	9	~0.5	-0.5	0	20
4	GLOB	UNIF	Ŷ	10	-0.5	-0.5	0	2.5
7	GLOB	UNIF	Y	11	-0.5	-0.5	0	2.5
8	GLOB	UNIF	Y	12	-0.5	-0.5	0	2.5
9	GLOB	UNIF	Y	13	-0.5	-0.5	ø	2.5

CARGAS CONCENTRADAS EN ELEMENTOS:

	Α	Ð	C	D	I	L
10	GLOB	CONC	Y	9	-10	16.41476

CARGAS CONCENTRADAS EN NUDOS:

	A	Ð	к	L	м	N
11	GLOB	JOIN	23	10	0	ø

La convención de las literales utilizadas es la siguiente: A -Sistema de referencia, MEMB si es local o GLOB si es global B -Tipo de carga, CONC si es concentrada, UNIF si es repartida o MOMT si es momento C -Dirección, X o Y (para momentos alimentar Z) D -Elemento Cargado E -Carga unitaria hacia el extremo inicial Wa F -Carga unitaria hacia el extremo final Wb G -Distancia del nudo inicial al comienzo de la carga repartida H -Longitud sobre la que actúa la carga repartida I -Carga concentrada J -Distancia del extremo inicial a la carga concentrada

K -Nudo cargado

L -Fuerza aplicada sobre el nudo en dirección de X global M -Fuerza aplicada sobre el nudo en dirección de Y global N -Momento aplicado sobre el nudo

A continuación se presentan los resultados del análisis:

DESPLAZAMIENTOS DE NUDOS:

NUDO	DX	DY	PHI
1	0	0	-2.415681E-03
2 .	1.217733E-02	-4.794318E-05	-2.475034E-03
3	2.476922E-02	-B.716941E-05	-2.572559E-03
4	3.786179E-02	-1.20360BE-04	-2.671036E-03
5	5.143065E-02	-1.491267E-04	-2.7607B1E-03
6	5.420509E-02	-6.411979E-03	-2.799252E-03
7	5.7010B2E-02	-1.274728E-02	-2.823214E-03
8	5.982197E-02	-1.909764E-02	-2.809325E-03
9	6.257022E-02	0253105	-2.694743E-03
10	6.915931E-02	-4.031744E-02	1.678599E-03
11	6.726512E-02	-3.605807E-02	2.098339E-03
12	6.506535E-02	-3.110943E-02	2.294576E-03
13	6.272101E-02	-2.583431E-02	2.390277E-03
14	.060307	-2.040157E-02	2.435671E-03
15	6.275296E-02	-1.488303E-02	2.465212E-03
16	6.522568E-02	-9.301957E-03	2.489702E-03
17	6.771354E-02	-3.683553E-03	2.495667E-03
18	7.017911E-02	1.889218E-03	2.443731E-03
19	7.821025E-02	2.018656E-02	-1.369402E-03
20	7.652792E-92	1.642658E-02	-1.986985E-03
21	.0743498	1.154646E-02	-2.359667E-03
22	7.186206E-02	5.966535E-03	-2,606298E-03
23	6.916422E-02	-8.846964E-05	-2.780413E-03
24	5.442033E-02	-7.140422E-05	-3.101834E-03
25	3,7970668-02	-5.171337E-05	-3.454524E-03
26	1,972775E-02	-2.844235E-05	-3.803827E-03
27	0	0	-4.016412E-03

Los desplazamientos en dirección de X e Y globales están dados en pies, congruentemente con los datos alimentados. Las rotaciones PHI se expresan en radianes.

ELEMENTOS MECANICOS:

ELEMENTO 1 EXTREMO INICIAL (NUDD # 1) NA= -18.64031 MA= 1.525879E-04 VA= -3.89424 EXTREMO FINAL (NUDO # 2) NB= -18.64031 MB= -19.47105 VB= -3.89424

ELEMENTO 2 EXTREMO INICIAL (NUDO # 2) NA= -18.64031 MA= -19.47084 VA= -3.894111 EXTREMO FINAL (NUDO # 3) NB= -18.64031 MB= -38,94139 VB= -3.894111 ELEMENTO 3 EXTREMO INICIAL (NUDO # 3) NA= -18.64031 MA= -38.94321 VA= -3.894505 EXTREMO FINAL (NUDD # 4) NB= -18.64031 MB= -58,41573 VB= -3.894505 ELEMENTO 4 EXTREMO INICIAL (NUDD # 4) VA= -3.893266 NA= -18.6403 MA= -58.41734 EXTREMO FINAL (NUDO # 5) NB= -18.6403 MB= -77.88367 VB= -3.893266 ELEMENTO 5 EXTREMO INICIAL (NUDO # 5) NA= -11.13044 MA= -77.88648 VA= 15.45268 EXTREMO FINAL (NUDD # 6) NB= -10.63044 MB= -41.22366 VB= 14.32768 ELEMENTO 6 EXTREMO INICIAL (NUDD # 6) MA= -41.22821 VA= 14.32594 NA= -10.63589 EXTREMO FINAL (NUDO # 7) NB= -10,13589 MB= -7.339675 VB= 13.20094 ELEMENTO 7 EXTREMO INICIAL (NUDO # 7) NA= -10.14752 MA= -7.331772 VA= 13.19133 EXTREMO FINAL (NUDO # 8) VB= 12.06633 NB= -9.647519 MB= 23,76312 ELEMENTO B EXTREMO INICIAL (NUDD # 8) NA= -9.645056 MA= 23.76694 VA= 12.07073 EXTREMO FINAL (NUDO # 9) MB= 52.10267 VB= 10.94573 NB= -9.145056 ELEMENTO 9 EXTREMO INICIAL (NUDO # 9) NA= -9.142398 MA= 52.10159 VA= 10.94849 EXTREMU FINAL (NUDO # 10) NB= -1.081013 MB= 149,122 VB= -7.18963 ELEMENTO 10 EXTREMO INICIAL (NUDO # 10) NA= -1.077224 MA= 149.1184 VA= -7.186902 EXTREMO FINAL (NUDD # 11) NB= -.5772238 MB= 130.0377 VB= -8.311901 ELEMENTO 11

EXTREMO INICIAL (NUDO # 11)

NA= -.5825236 MA= 130,0444 VA= -8.319882 EXTREMO FINAL (NUDD # 12) NB= -8.252358E-02 MB= 108.1741 VB= -9.444862 ELEMENTU 12 EXTREMO INICIAL (NUDO # 12) NA= -7.793745E-02 MA= 108.1753 VA= -9.460211 EXTREMO FINAL (NUDO # 13) NB= .4220625 MB= 83,49722 VB= -10.58521 ELEMENTO 13 EXTREMO INICIAL (NUDO # 13) NA= .4007494 MA= 83.52344 VA= -10.6093 EXTREMO FINAL (NUDO # 14) NB= ,9007493 MB= 56,01608 VB= -11.7343 ELEMENTO 14 EXTREMO INICIAL (NUDO # 14) NA= -8,087798 MA= 56,05304 VA= -8.528675 EXTREMO FINAL (NUDO # 15) NB= -8.087798 MB= 35.05361 VB= -8.528675 ELEMENTO 15 EXTREMO INICIAL (NUDO # 15) NA= -8.086674 MA= 35.05854 VA= -8.508318 EXTREMO FINAL (NUDO # 16) NB= ~8,086674 MB= 14.10924 VB= -8.508318 ELEMENTO 16 EXTREMO INICIAL (NUDO # 16) NA= -8.112901 MA= 14.08407 VA= -8.493866 EXTREMO FINAL (NUDO # 17) NB= -8,112901 MB= ~6.829646 VB= -8.493866 ELEMENTO 17 EXTREMO INICIAL (NUDO # 17) NA= -8.100957 MA= -6.832275 VA= -8.50205 EXTREMO FINAL (NUDD # 18) NB= -8,100957 MB= -27,76615 VB⇒ -8.50205 ELEMENTO 18 EXTREMO INICIAL (NUDO # 18) NA= -8.097889 MA= -27.76523 VA= -8.502334 EXTREMO FINAL (NUDO # 19) NB= -8.097889 MB= -195,2418 VB= -8,502334 ELEMENTO 19 EXTREMO INICIAL (NUDO # 19) NA= -8.098704 MA= -195.2381 VA= -8.503809 EXTREMO FINAL (NUDO # 20) NB= -8,098704 MB= -216.1763 VB= -8.503809 ELEMENTO 20 EXTREMO INICIAL (NUDO # 20) NA= -8.100094 MA= -216.175 VA= -8,503B65 EXTREMO FINAL (NUDO # 21) NB= -8, 100094 MB= -237.1133 VB= -8.503865

ELEMENTO 21 EXTREMO INICIAL (NUDO # 21) NA= -8.094906 MA= -237.1193 VA= -8.491247 EXTREMO FINAL (NUDO # 22) NB= -8.094906 MB= -258.0266 VB= -8.491247 ELEMENTO 22 EXTREMO INICIAL (NUDO # 22) NA= -8.092662 MA= -258.0175 VA= -8.510874 EXTREMO FINAL (NUDO # 23) NB= -8,092662 MB≓ -278,9731 VB= -8.510874 ELEMENTO 23 EXTREMO INICIAL (NUDO # 23) NA= -11.05839 MA= -278.9554 VA= 13.95019 EXTREMO FINAL (NUDO # 24) NB= -11.05839 MB= -207.2044 VB= 13.95019 FLEMENTO 24 EXTREMO INICIAL (NUDO # 24) NA= -11.05838 MA= -209.2119 VA= 13.94746 EXTREMO FINAL (NUDO # 25) NB= -11,05838 MB= -139,4746 VB= 13.94746 ELEMENTO 25

EXTREMO INICIAL (NUDO # 25) NA= -11.05839 MA= -139.476 VA= 13.94734 EXTREMO FINAL (NUDO # 26) NB= -11.05839 MB= -69.73924 VB= 13.94734

ELEMENTO 26 EXTREMO INICIAL (NUDD # 26) NA= -11.05839 MA= -69.73856 VA= 13.94768 EXTREMO FINAL (NUDD # 27) NB= -11.05839 MB= -1.525879E-04 VB= 13.94768

Las unidades de las fuerzas axiales N y de las fuerzas cortantes V son kilolibras y los momentos M kilolibras-pies.

Con respecto a este método podemos decir que implica un cálculo muy grande de datos innecesarios y que el tiempo de computación y almacenamiento de información crecen sustancialmente al aumentar el número de dovelas. Lo anterior impone un limite al tamaño de la estructura a analizar, ya sea por tiempo de computación o por capacidad de la máguina.

Resulta poco práctico hacer modificaciones o analizar diferentes alternativas, ya que un cambio en la geometria puede significar recalcular todos los valores de nuevo.

La exactitud de los resultados para el ejemplo analizado es aceptable, ya que las diferencias se deben a la discretización de elementos y al redondeo en la solución de un sistema de ecuaciones tan grande. Obviamente, dicha diferencia sería mayor si la estructura a analizar fuera más grande.

5.3 Método de Parámetros Elásticos.-

Existen soluciones condensadas de análisis estructural basadas en el concepto de parámetros elásticos, formulado por Valerian Leontovich, que dan la oportunidad de desarrollar mecánicamente el análisis de estructuras con elementos de sección transversal variable. Este método contempla la utilización de fórmulas, tablas y gráficas -como las presentadas en el libro: Pórticos y Arcos. Soluciones Condensadas para el Análisis Estructural, Ed. C.E.C.S.A. de Valerian Leontovich- desarrolladas en forma general y que son aplicables a estructuras simétricas con elementos rectos de varias formas y proporciones. Se emplean además, expresiones para obtener los momentos flexionantes y las reacciones en los apoyos producidos por cargas comunes tanto horizontales como verticales.

Las propiedades elásticas de los elementos están definidas por tres parámetros:

$$\alpha_{n} = \frac{12}{L^{B}} \int_{0}^{L} \frac{I_{o}}{I} (L - x)^{2} dx$$

$$\alpha_{m} = \frac{12}{L^{B}} \int_{0}^{L} \frac{I_{o}}{I} x^{2} dx$$

$$\beta_{n} = \frac{12}{L^{B}} \int_{0}^{L} \frac{I_{o}}{I} (L - x) x dx$$

Estos valores se encuentran graficados para diferentes casos de vigas de sección variable. Las gráficas están en función de las constantes geométricas de los elementos, que son:

$$t = \left(\begin{array}{c} \frac{\text{peralte minimo}}{\text{peralte maximo}}\right)^3 \quad \text{; } v = \frac{\text{longitud de la o las cartelas}}{\text{longitud del elemento}}$$

Las propiedades del área de momentos de un elemento cargado

quedan definidas por dos constantes de carga, que son:

$$R_{n} = \frac{12}{WL^{3}} \int_{0}^{L} \frac{I_{o}}{I} M (L - x) dx$$
$$R_{m} = \frac{12}{WL^{3}} \int_{0}^{L} \frac{I_{o}}{I} M x dx$$

De la misma manera se conocen los valores numéricos de estas expresiones, ya sea en tablas o en gráficas, para un cierto número de cargas.

Los valores numéricos de los parámetros elásticos dependen solo de la forma del elemento, en tanto que los valores de las constantes de carga dependen de la forma del elemento y de la carga. Una vez encontrados los valores numéricos de los parámentros elásticos y de las constantes de carga, se pueden calcular fácilmente las magnitudes hiperestáticas de la estructura, empleando las ecuaciones condensadas de análisis.

Las notaciones para la estructura de doble vertiente del ejemplo se muestran en la fig 5.3.

Las constantes geométricas del elemento 1-2 son: v = 1 y t = 0.125; a partir de estos valores se obtiene en la gráfica 6 del libro citado el parámetro elástico α para el extremo grande de elementos con una cartela recta:

a_ = 0.82

En el caso del elemento 2-3 las constantes geométricas son: v = 0.25 y t = 0.125; entrando a la gráfica 1 del libro citado con estos valores se obtiene el parámetro elástico α para cualquier extremo de elementos simótricos con cartelas rectas:

Empleando las constantes geométricas del elemento 2-3 en la grâfica 2 de dicho libro, tenemos el parámetro elástico β para cualquier extremo de elementos simétricos con cartelas rectas:

$\beta_{22} = 1.67$

Con estos valores se sustituye para obtener los parámetros

generales de la estructura:

$$\phi = \frac{1}{I_{z-s} \min} \qquad \frac{q}{h} = 1.97 \quad ; \quad \psi = \frac{f}{h} = 0.8$$

$$\theta_{zs} = \alpha_{zs} + \alpha_{sz} + 2 \quad \beta_{zs} = 8.24$$

$$A = \theta_{zs} + \psi^{z} \quad \alpha_{sz} + 2 \quad \psi \quad (\alpha_{sz} + \beta_{zs}) + \frac{\alpha_{z1}}{\phi} = 16.82$$

$$B = \alpha_{sz} \quad (1 + \psi) + \beta_{zs} = 6.08$$

$$C = \alpha_{zs} + \beta_{zs} \quad (1 + \psi) + \frac{\alpha_{z1}}{\phi} = 5.87$$

Las cargas se tienen que analizar por separado, para posteriormente realizar una superposición de elementos mecánicos y de reacciones (ver fig 5.4).

A).- Carga vertical uniformemente repartida sobre el elemento inclinado de la izquierda. Carga total W.

En la gráfica 11 del libro citado se obtienen las constantes de carga para eleméntos simétricos con cartelas rectas: carga uniformemente distribuida. Utilizando las constantes geométricas del elemento 2-3 se encuentra:

sustituyendo en las ecuaciones condensadas de análisis se tiene:

$$K = R_{29} + R_{92} (1 + \psi) = 1.17$$

$$H_{1} = H_{5} = \frac{WL}{8Ah} (B + 2K) = 4.43$$

$$M_{2} = M_{4} = -H_{5}h = -88.77$$

$$M_{9} = \frac{WL}{8} - H_{5}h (1 + \psi) = 17.48$$

$$V_{1} = \frac{3}{4}W = 14.77 ; V_{5} = \frac{W}{4} = 4.92$$

fig. 5 . 4 ANALISIS SEPARADOS EN EL METODO DE PARAMETROS ELASTICOS

ESTA TESIS NO DEBE Salir de la biblioteca

B).- Carga vertical P concentrada a 2/3 partes de la longitud del elemento inclinado a la izquierda.

De la tabla 1 del libro citado se obtiene la constante de carga para el extremo izquierdo de eleméntos simétricos con cartelas rectas; carga concentrada. Partiendo de las constantes geométricas del elemento 2-3 y de la distancia del extremo izquierdo a la carga concentrada, que es de 4L/6, tenemos:

R_ = 0.521

Este valor no se obtuvo directamente de la tabla; hubo necesidad de interpolar linealmente para t = 0.125 entre los valores tabulados adyacentes R = 0.517 con t = 0.1 y R = 0.533 con t = 0.2.

En la tabla 2 de dicho libro, se encuentra la constante de carga para el extremo derecho de elementos simétricos con cartelas rectas; carga concentrada. De manera similar a R_{ya} se obtiene:

interpolando para t = 0.125 entre R = 0.616 con t = 0.1 y R = 0.644 con t = 0.2.

Sustituyendo en las ecuaciones condensadas de anàlisis se tiener

$$K = R_{29} + R_{22} (1 + \psi) = 1.64$$

$$H_{1} = H_{5} = \frac{1}{4 \text{ A h}} (2 \text{ B m} + \text{KL}) = 3.04$$

$$M_{a} = \frac{Pm}{2} - H_{b}h(1 + \psi) = 10.26$$

$$V_i = P(1 - \frac{m}{L}) = 6.66$$

$$V_{3} = \frac{Pm}{1} = 3.33$$

C).- Carga horizontal concentrada en el nudo 4. Existe resuelto el caso de carga en el nudo 2 que corresponde con la carga antisimétrica, por lo que se tienen que ajustar las ecuaciones condensadas de anàlisis reportadas en la obra citada. Para cargas en nudos no hay necesidad de obtener constantes de carga, directamente sustituimos en las ecuaciones condensadas de anàlisis:

$$H_{1} = \frac{-P}{2A} (B + C) = -3.55$$

$$H_{2} = P + H_{1} = 6.44$$

$$M_{4} = -h (P + H_{1}) = -128.92$$

$$M_{4} = -h \left[\frac{P}{2} + H_{1} (1 + \psi)\right] = 27.93$$

$$M_{2} = -H_{1} h = 71.07 + V_{1} = \frac{-Ph}{L} = -2.77$$

$$V_{2} = -V_{2} = 2.77$$

D).- Superposición de elementos mecánicos.

Realizando la suma término a término se tienen los valores finales tanto de las reacciones como de los momentos en los nudos 2, 3 y 4:

$$H_{1} = 3.9332$$
 $H_{3} = 13.9332$
 $M_{2} = -78.6643$ $M_{3} = 55.6838$ $M_{4} = -278.6643$
 $V_{4} = 18.6622$ $V_{4} = 11.0355$

Este método tiene la desventaja de que no proporciona los desplazamientos de los nudos. Durante su aplicación, es imperativo que el proyectista no se equivoque al seleccionar los valores numéricos de los parámetros elásticos y de las constantes de carga; así como tampoco al realizar los cálculos, que deben efectuarse algebráicamente. Todas las cantidades se deben incluir en las ecuaciones con su signo adecuado, para que los resultados se obténgan mecánicamente, con su propia magnitud y signo correcto. Así por ejemplo, si una carga se aplica en la dirección opuesta a la que se muestra en la tigura, deberá anteponerse el signo negativo al valor de la carga empleado en la ecuación. Los

diagramas de fuerzas normales y cortantes en cada elemento se deben encontrar a mano a partir de las reacciones obtenidas del análisis y de las cargas actuantes.

Un cambio en la geometria -rediseño por ejemplo- implica volver a efectuar todas las operaciones de nuevo. En ocasiones la estructuración se realiza a partir de los casos existentes en los manuales, por ejemplo una estructura simétrica, y no dependiendo de conveniencias reales, tales como: mejor comportamiento estructural, estética o funcionalidad. En otras ocasiones, se analiza una estructura "aproximándola" a los casos existentes en los manuales. Esto sin tomar en cuenta los errores de indoles diversas, muchas veces ajenas al autor, que se encuentran en las ecuaciones.

Para estructuras con varios niveles y/o crujias, asi como para pórticos no simétricos, no existen soluciones en los manuales. Por otro lado, los elementos integrantes de la estructura con doble acartelamiento también deben ser simétricos.

El uso de gráficas y tablas limitan la exactitud al número de decimales que se pueden leer, además de ser una fuente potencial de error. El cálculo de valores intermedios en las tablas por medio de interpolación genera inexactitud, alarga el análisis y es también fuente potencial de error.

No existen fórmulas en los manuales para considerar cargas axiales, ni trapeciales, ni momentos concentrados. Además, no se consideran las deformaciones por cortante, que pueden ser importantes en vigas de gran peralte y claros cortos.

La ventaja que presenta el método es que no requiere del empleo de una computadora. Sin embargo, esta ventaja es relativa ya que el uso de las computadoras es cada dia más generalizado.

5.4 Método de Factores de Rigidez y Reacciones de Empotramiento.-

El método consite en obtener las rigideces de cada uno de 105 elementos de la estructura Y además las reacciones de empotramiento para aquellos elementos con cargas en el claro. Una vez logrado lo anterior, se pueden alimentar a un programa de análisis de marcos que acepte como datos las rigideces de 109 elementos directamente, o bien emplear algún método manual de análisis tal como el Cross. La obtención de las rigideces de los elementos y de las reacciones, se apoya en manuales de constantes de marcos, como el editado por la Asociación del Cemento Portland (P C A). En esta publicación se consignan tablas que proporcionan rigideces angulares y momentos de empotramiento para diversas cargas perpendiculares al elemento. Estos valores son suficientes para realizar un análisis de marcos ortogonales sin deformación axial de sus elementos. Sin embargo, el caso general considerando deformaciones axiales requiere el cálculo aproximado tanto de la rigidez axial, como de las reacciones axiales de empotramiento. La rigidez axial se puede aproximar subdividiendo los acartelamientos en dovelas y aplicando la fórmula:

$$r_{ax} = \frac{1}{\sum \frac{L}{EA}}$$

Para el ejemplo considerado se emplearon cuatro dovelas por acartelamiento en el cálculo de dicha rigidez axial. En el caso de las reacciones axiales de empotramiento estas se obtienen, de manera también aproximada, como si se tratara de un elemento de sección constante.

Adicionalmente al coeficiente de rigidez axial, se utilizan los coeficientes de rigidez angular que definiremos a continuación: se denomina r_{ac} al momento que hay que aplicar en el extremo A de una barra para producir en él un gino unitario, mientras aparece en el extremo empotrado B un momento r_{ab} y viceversa, se denomina r_{bb} al momento que hay que aplicar en el extremo B de una barra para producir en él un gino unitario, mientras aparece en el extremo empotrado A un momento r_{ba} . Lo anterior se puede expresar en forma matricial como siguet

$$\left\{ \begin{array}{c} \mathsf{M}_{a} \\ \mathsf{M}_{b} \end{array} \right\} = \left[\begin{array}{c} \mathsf{r}_{aa} & \mathsf{r}_{ab} \\ \mathsf{r}_{ba} & \mathsf{r}_{bb} \end{array} \right] \left\{ \begin{array}{c} \varphi_{a} \\ \varphi_{b} \end{array} \right\}$$

Los valores r_{aa} , r_{ab} , r_{ba} y r_{bb} son los denominados coeficientes de la matriz de rigideces angulares.

Los valores tabulados en el manual de constantes de marcos de la Asociación del Cemento Portland son:

+Factores de Rigidez (& , &)

+Factores de Transporte (C_, , C_)

+Coeficientes de Momentos de Empotramiento para carga uniformemente repartida a todo lo largo del elemento (M_{ab}, M_{bo})

- +Coeficientes de Momentos de Empotramiento para cargas concentradas a 0.1, 0.3, 0.5, 0.7 y 0.9 veces la longitud del elemento a partir del nudo inicial (M_{ab}, M_{ba})
- +Coeficientes de Momentos de Empotramiento debidos al peso de las cartelas (M_{ob} , M_{bo})

Los coeficientes de rigidez angulares se obtienen a partir de los factores de rigidez y de transporte de la manera siguiente:

 $r_{aa} = \frac{k_{ab} \in I_{c}}{L} ; r_{bb} = \frac{k_{ba} \in I_{c}}{L}$

$$r_{ab} = r_{ba} = C_{ba} r_{bb} = C_{ab} r_{aa}$$

El valor de I $_{c}$ es el momento de inercia de la sección con mínimo peralte.

Los momentos de empotramiento se obtienen multiplicando el coeficiente de momento por:

1. ω L 2 para carga uniformemente repartida, donde ω es la carga por unidad de longitud.

2. P L para carga concentrada. P es el valor de la carga.

3. $\Psi_{a}L^{2}$ of $\Psi_{b}L^{2}$ para el peso de la cartela en el extremo inicial o final respectivamente. Ψ_{a} y Ψ_{b} son los pesos por unidad de longitud de dichas cartelas en la sección con más peralte.

Las reacciones de cortante debidas a la carga perpendicular al elemento se encuentran por equilibrio, una vez determinados los momentos de empotramiento.

Las tablas están en función de las relaciones características de los elementos, que son (ver fig 5.5):

Þ

Longitud del Acartelamiento en el Extremo Final

Longitud Total del Elemento

Peralte Extremo Final (h) - Peralte Sección Cte. (h)

Peralte Seción Constante (h_)

Estas tablas están desarrolladas para vigas de sección rectangular exclusivamente. En el caso de vigas con acartelamiento vertical, el ancho permanece constante.

El modelo considerado en el ejemplo se muestra en la fig 5.6. Para el elemento i las relaciones características son: $\alpha_{\alpha} = v$, $r_{\alpha} = 0$, $\alpha_{b} = 1$, $r_{b} = 1$. Los factores para estas relaciones están dados en el renglón 33 de la tabla 52 del Manual de Constantes anteriormente mencionado:

El elemento 4 tiene las mismas relaciones características, solo que invertidas: $\alpha_a = 1$, $r_a = 1$, $\alpha_b = 0$, $r_b = 0$; por tanto los factores son:

C_{ab} C_{ba} A_{ab} A_{ba} 0.274 0.834 17.46 6.86

Como estos elementos no tienen cargas externas aplicadas directamente sobre ellos, no requerimos obtener los coeficientes de momentos.

Las relaciones características para los elementos 2 y 3 son: $\alpha_a = 0.25$, $r_a = 1$, $\alpha_b = 0.25$, $r_b = 1$; sin embargo, para valores de $\alpha = 0.25$ no existen tablas. Para conocer los factores y coeficientes correspondientes podemos interpolar a partir de las tablas de $\alpha = 0.1$, 0.2, 0.3, 0.4, y 0.5; o bien, como en nuestro caso, emplear el programa de calculadora de bolsillo HP-41C para el cálculo de rigideces angulares, factores de transporte y momentos de empotramiento en vigas de sección varaiable presentado en las Memorias del 4[°] Congreso Nacional de Ingeniería Estructural de la Sociedad Mexicana de Ingeniería Estructural desarrollado en León, Gto. en 1984. Esta segunda alternativa proporciona valores con mayor exactitud y de una manera más rápida. El programa mencionado utiliza integración de Simpson 1/3 y para las

DE RIGIDEZ YREACCIONES DE EMPOTRAMIENTO

relaciones características anteriores proporciona una exactitud de 4 digitos con 40 puntos de evaluación. Los factores de los elementos 2 y 3 así obtenidos son:

$$\begin{array}{ccc} C_{ab} = C_{ba} & A_{ab} = A_{ba} \\ 0.685 & 9.25 \end{array}$$

El elemento 2 tiene una carga uniformemente repartida en toda su longitud, y además una carga concentrada a 0.66 L del nudo inicial. Los coeficientes de momentos para estas cargas obtenidos con la ayuda del programa mencionado son:

Carga Uniforme	Carga Concentra	ada b = 0.66 L
M _{ab} = M _{ba}	Mab	Mba
0.1017	0.0719	0.2059

Las coordenadas de los nudos con respecto al sistema global son:

COORDENADAS DE LOS NUDOS:

NUDO	×	Y
1	ø	ø
2	0	20
3	36	36
4	72	20
5	72	9

Las conectividades y longitudes de los elementos son:

CONECTIVIDADES DE LOS ELEMENTOS:

ELEMENTO	N. INICIAL	N.FINAL	LONG.
1	1	2	20
2	2	3	39.39543
3	3	4	39,39543
4	4	5	20

Los coeficientes de rigidez son:

CARACTERISTICAS DE LOS ELEMENTOS:

ELEMENTO	rax/E	raa/E	rbb/E	rab/E
1	.289344	.457333	1.29733	.381416
2	.120073	.313001	.313001	.214546
3	.120073	.313001	.313001	.214546

4 .289344 1.29733 .457333 .381416 Las cargas en los nudos y las reacciones de empotramiento se muestran a continuación:

CARGAS CONCENTRADAS EN ELEMENTOS:

	A	в	C	D	I	J
1	MEMB	CONC	Ŷ	2	-10.82141	ø
2	MEMB	CONC	Y	2	-16.31670	39.395429
3	MEMB	CONC	x	2	-5.231119	0
4	MEMB	CONC	x	2	-6.830265	39.395429
5	GLOB	MONT	z	2	-97.97427	0
6	GL09	MOMT	z	2	146.219	39.395429

CARGAS CONCENTRADAS EN NUDOS:

	A	8	к	L	Μ	N
7	GLOB	JOIN	4	10	0	ø

La convención de las literales es la misma especificada en la sección 5.2. Los resultados del análisis son:

DESPLAZAMIENTOS DE NUDOS:

NUDO	DX	PY	PH1
1	0	0	-2.417608E-03
2	5.145266E-02	-1.493054E-04	-2.758514E-03
3	6.026995E-02	0202644	2.44495E-03
4	6.906678E-02	-8.828245E-05	-2.794725E-03
5	0	0	-4.002623E-03

ELEMENTOS MECANICOS:

ELEMENTO 1 EXTREMO INICIAL (NUDO # 1) NA= -18.66267 MA= 0 VA= -3.931629 EXTREMO FINAL (NUDO # 2) NB= -18.66267 MB= -78.63258 VB= -3.931629

ELEMENTO 2 EXTREMO INICIAL (NUDO # 2)

$$\begin{split} & \mathsf{NA} = -11, 17234 \quad \mathsf{MA} = -78, 63268 \quad \mathsf{VA} = 15, 45728 \\ & \mathsf{EXTREMO} \ \mathsf{FINAL} \ (\mathsf{NUDO} \ \texttt{W} \ \texttt{3}) \\ & \mathsf{NB} = , 8890452 \quad \mathsf{MB} = 55, 75447 \quad \mathsf{VB} = -11, 68084 \\ & \mathsf{ELEMENTO} \ \texttt{3} \\ & \mathsf{EXTREMO} \ \mathsf{INICIAL} \ (\mathsf{NUDO} \ \texttt{W} \ \texttt{3}) \\ & \mathsf{NA} = -8, 974055 \quad \mathsf{MA} = 55, 75453 \quad \mathsf{VA} = -8, 487428 \\ & \mathsf{EXTREMO} \ \mathsf{FINAL} \ (\mathsf{NUDO} \ \texttt{W} \ \texttt{4}) \\ & \mathsf{NB} = -8, 074055 \quad \mathsf{MB} = -278, 6113 \quad \mathsf{VB} = -8, 487428 \\ & \mathsf{ELEMENTO} \ \texttt{4} \\ & \mathsf{EXTREMO} \ \mathsf{INICIAL} \ (\mathsf{NUDO} \ \texttt{W} \ \texttt{4}) \end{split}$$

NA= -11.03501 MA= -278.6116 VA= 13.93059 EXTREMO FINAL (NUDD # 5) NB= -11.03501 MB= 0.392334E-05 VB= 13.93059

5.5 Método de Integración Humérica.-

Este método es el desarrollado en el presente trabajo y no requiere de cálculos previos, excepto la determinación de coordenadas y la forma de los elementos. El modelo de la estructura es igual al mostrado en la fig 5.6, por lo que las coordenadas, conectividades y longitudes son las mismas que en el método anterior de Factores de Rigidez. Las formas de los elementos se toman directamente de la fig 5.1 y son:

CARACTERISTICAS DE LOS ELEMENTOS:

ELEMENTO NUMERO 1 A1= 0 A2= 0 A3= 20 HA= 2 BA= 2 HL= 4 BL= 2 VARIACIÓN VERTICAL EN EL EXTREMO FINAL LINEAL

ELEMENTO NUMERO 2 A1= 9.848858 A2= 19.69771 A3= 9.846858 H0= 4 B0= 2 HA= 2 BA= 2 HL= 4 BL= 2 VARIACION VERTICAL EN EL EXTREMO INICIAL LINEAL VARIACION VERTICAL EN EL EXTREMO FINAL LINEAL

```
ELEMENTO NUMERO 3
A1= 9.848858 A2= 19.69771 A3= 9.848858
HD= 4 BD= 2
HA= 2 BA= 2
HL= 4 BL= 2
VARIACION VERTICAL EN EL EXTREMO INICIAL LINEAL
VARIACION VERTICAL EN EL EXTREMO FINAL LINEAL
```

```
ELEMENTO NUMERO 4
A1= 20 A2= 0 A3= 0
HO= 4 BD= 2
HA= 2 BA= 2
VARIACION VERTICAL EN EL EXTREMO INICIAL LINEAL
```

Las cargas se simplifican a únicamente 3: carga uniforme vertical en el elemento 2, carga concentrada vertical en el elemento 2 y carga horizontal en el nudo 4. Estas cargas tienen los siguientes valores:

CARGAS REPARTIDAS EN ELEMENTOS:

	Α	B	С	D	E	F	G	н
1	GLOB	UNIF	Y	2	-0.5	-0.5	0	39.39543

CARGAS CONCENTRADAS EN ELEMENTOS:

	Α	B	С	D	I	J
2	GLOB	CONC	Y	2	-10	26.26362

CARGAS CONCENTRADAS EN NUDOS:

	: A	в	к	L	м	N
3	GLOB	JOIN	4	10	ø	0

Los resultados del anàlisis son:

DESPLAZAMIENTOS DE NUDOS:

NUDO	DX	DY	PHI
1	0	0	-2.417557E-03
2	5.145536E-02	-1.497202E-04	-2.758813E-03
3	6.027282E-02	-2.027133E-02	2.44491E-03
4	6.907243E-02	-8.853232E-05	-2.794364E-03
5	0	0	-4.003617E-03

ELEMENTOS MECANICOS:

ELEMENTO I EXTREMO INICIAL (NUDO # 1) NA= -18.66245 MA= -1.525879E-05 VA= -3.93126 EXTREMO FINAL (NUDO # 2) NB= -18.66245 MB= -78.62521 VB= -3.93126

ELEMENTO 2 EXTREMO INICIAL (NUDO # 2) NA= -11.17215 MA= -78.62501 VA= 15.45737 EXTREMO FINAL (NUDO # 3) NB= .6892331 MB= 55.76572 VB= -11.68075

ELEMENTO 3 EXTREMO INICIAL (NUDO # 3) NA= -8.07348 MA= 55.76584 VA= -8.487731 EXTREMO FINAL (NUDO # 4) NB= -8.07348 MB= -278.6119 VB= -8.487731

ELEMENTO 4 EXTREMO INICIAL (NUDO # 4) NA= -11.03545 MA= -278.6118 VA= 13.93059 EXTREMO FINAL (NUDO # 5) NB= -11.03545 MB= -3.051758E-05 VB= 13.93059

5.6 Tabla Comparativa.-

Se muestra a continuación una tabla donde se comparan los 4 métodos:

	Dovelas	Parametros Elasticos	Factores	Integración Numérica	
Número de Nudos	27	5	S	5	
Número de Elementos	26	4	4	4	
Número de Cargas	11	Э	7	Э	
Superposición de Elementos Mecánicos para cada Carga	Na	Si	No	No	
Cálculo de Reacciones de Empotramiento para cada Carga	No	No	Si	No	
Orden de la Matriz de Pi- gidez de la Estructura	77		11	il	
Tiempo de Computadora (con impresión en pantalla)	6 min 57 ≲eg	· · · ·	14 seg	26 seg	
Nacesidad de usar Compu- tadora	Si	No	5i/Na	Si	
Facilidad de hacer camm bios de geometría o cargas	No	No	Na	Si	
Método de Solución de las Ecuaciones Simultáneas empleado en el ejamplo	Gruss- Crait	а. ————————————————————————————————————	Gauss- Crout	Gauss- Crout	
Posibilidad de incluim Defonaciones por Corten~ te	5i	No	No	5i	
Sección Transversal	Cualquiera	Rectangular	Rectangular	Cualquiera	
				•	

	Bovelas	Parámetros Elásticos	Factores	Integración Numérica
Ancho de la Sección Transversal	Variable	Constante en toda la Es- tructura	Constante en Vigas con Peralte Variable; Variable en Vigas con Peralte Constante	Variable
Tipo de Estructura	Cualquiera	Pórticos Simétricos Específicos con Me- didas variables	Cualquiera	Cualquiera
Rigidez Axial de Column	as		0.289344	0.288539 #
Rigidez Angular de Colu nas	⋔ ~		raa= 0.457333 rbb= 1.297333 rab= 0.381416	raa= 0.457508 × rbb= 1.2967 × rab= 0.381683 ×
Rigidez Axial de Vigas	 :		0.120073	0.119936 ×
Rigidez Angular de Viga	s <u>-</u>		raa= 0.313001 rbb= raa rab= 0.214546	raa= 0.313003 × rbb= raa × rab= 0.214545 ×
Anacciones de Empotra- miento para la viga con canga en el claro		1	Ma= 97.97020 Mt=-146.2247 Va= 10.02116 Vb= 16.31695 Na= 5.353795 Nt= 6.707590	Ma= 97.97427 * Mb=-146.2190 * Va= 10.82141 * Vb= 16.31670 * Na= 5.251119 * Nb= 6.830265 *
Reacción Vertical Apoyr Izquierdo	18.64031	18.6622	18.66267	18.66245
Reacción Horizontal Apoyo Izquierdo	3.89424	3.9332	3.931625	3.93126

	Dovelas	Parametros Elásticos	Factores	Integración Numérica	
Reacción Vertical Apoyo Derecho	11.05839	11.0355	11.03501	11.03545	-
Reacción Horizontal Apoyo Derecho	13.94768	13.9332	13.93058	13.93059	
Giro Apoyo Izquierdo	-0.002416		-0.002418	-0.002418	
Giro Rpoyo Berecho	-0.004016	,	-0.004003	-0.004004	
Desplazamientos Nudo Superior Izquierdo	d:≪= 0.037862 dy≕−0.000120 ph1=−0.002671		dv= 0.051453 dy=-0.000149 phi=-0.002759	dx= 0.051455 dy=-0.000150 phi=-0.002759	
Desplaramientos Nudo Central	dx= 0.060307 dy=-0.020402 phi= 0.002436		dx= 0.060270 dy=-0.020264 phi= 0.002445	d⊰≈ 0.060273 dy=-0.020271 phi≈ 0.002445	
Desplazamientos Nudo Superior Derecho	ರೆಜ= 0.069164 ರಚ್ತ≂0.000088 phi≕0.027804		dx= 0.069067 dy=-0.000088 phi≈-0.027947	dx= 0.069072 dy=-0.000089 phi=-0.027944	
Nomento Flexionante del Nudo Superior liquierdo	-77. 88648 367	-78.6643	~78.63254 60	-78.62521 01	
Mumento Flexionante del Nuclo Superior Central	56.01608 5304	55.6838	55.75440 1	55. 76572 84	
Nomento Flexionante del Nudo Superior Berecho	-278.9731 554	-278.6643	-278.6113 5	-278.6119 8	
-					

6.- CONCLUSIONES

El análisis de estructuras formadas por elementos de sección variable, apovado en los métodos tradicionales, **e**5 un procedimiento difícil que requiere de mucho trabajo. El uso cada vez mayor de estructuras de sección variable obliga el desarrollo de métodos de análisis más rápidos y al mismo tiempo exactos que faciliten la labor del ingeniero y le permitan concentrarse en aspectos conceptuales del diseño. El método de integración numérica desarrollado en este trabajo e implementado en una computadora personal, permite analizar estructuras de este tipo grandes y complicadas, debido a la poca cantidad de variables almacenadas y operaciones aritméticas realizadas. Las variables se reducen al considerar como un solo elemento a una barra recta con dos acartelamientos en sus extremos y sección constante al centro; en el caso de las operaciones aritméticas, estas se minimizan ya que para la solución de las integrales que se presentan se utiliza la cuadratura de Gauss-Legendre que resultó ser la más rápida en el estudio comparativo.

Adicionalmente a la metodologia interna, los datos requeridos son medidas físicas y no abstractas como en los métodos tradicionales, por lo que se facilita su utilización y se disminuye la posibilidad de error. De esta manera el empleo del método propuesto permite realizar un estudio exhaustivo de diferentes alternativas o de diferentes estructuras, sin limitaciones en cuanto a su forma y en un breve lapso de tiempo-

El método de integración numérica es dinámico ya que se puede modificar para considerar barras rectas con más y diferentes acartelamientos, otro tipo de secciones transversales o cargas, puede ser implementado en un análisis tridimensional, se pueden considerar apoyos elásticos o nudos semirigidos, apoyos guiados diagonales a los ejes globales,etc.

Para facilitar aun más la labor del ingeniero, se pueden incluir en el programa aspectos tales como: generación automática de carga muerta, diseño de acuerdo a reglamentos vigentes, generación de geometría y combinaciones de carga entre otros.

En el desarrollo teórico expuesto en el capítulo 2 se considera que el eje longitudinal es centroidal, sin embargo, los ejes longitudinales que se consideran en la práctica no lo son, como se indica en la sección 4.1. Sería conveniente realizar un estudio de sensibilidad para ver que tanto influye en el análisis esta diferencia.

Un aspecto que es importante tener en cuenta es el efecto de nudo, esto es la presencia de rigidez infinita en el semiancho de la junta. En el ejemplo considerado los acartelamientos se prolongan hasta el centro de la junta como se expone en la sección 4.2. Este es otro punto de estudio en trabajos futuros.

BIBLIOGRAFIA

S. P. Timoshenko, J. M. Gere, *"Mecànica de Materiales"*, Unión Tipográfica Editorial Hispano-Americana, México D.F., 1^ª Edición, 1974.

Valerian Leontovich, "Pórticos y Arcos, Soluciones Condensadas para el Anàlisis Estructural", Compañía Editorial Continental, S.A. de C.V., México D.F., 15[°] Edición, 1987.

V. I. Feodosiev, *"Resistencia de Materiales"*, Editorial Mir, Moscú, 2ª Edición, 1980.

Apuntes Personales de la Materia: Teoria General de las Estructuras impartida por el Ing. Julio Dammy Rios, División de Estudios de Posgrado de la Facultad de Ingeniería, U.N.A.M., 1985.

J. D. Aristizabal Ochoa, "Tapered Beam and Column Elements in Unbraced Frame Structures", Journal of Computing in Civil Engineering, Vol. 1, No. 1, Paper No. 21150, A.S.C.E., Enero 1987.

B. Carnahan, H.A. Luther, J.O. Wilkes, "Calculo Numérico; Métodos, Aplicaciones", Editorial Rueda, Madrid, 1^a Edición, 1985.

A. Perronet, "Les Méthodes de Résolution des Systèmes Linéaires, Leur Technique de Stockage", Laboratoire Analyse Numerique, Université Pierre et Marie Curie, Paris, 1981.

A. H. Stroud, D. Secrest, *"Gaussian Quadrature Formulas"*, Prentice-Hall, Inc., Englewood Cliffs N.J., 1^ª Edición, 1966.

"Handbook of Frame Constants, Beam Factors and Homent Coefficient for Hembers of Variable Section", Portland Cement Association, Skokie Illinois, 1958.
M. Ordaz, E. Lozano, J. González, "Programa de Calculadora de Bolsillo para el Cálculo de Rigideces Angulares, Factores de Transporte y Momentos de Empotramiento en Vigas de Sección Variable", Memorias del 4º Congreso Nacional de Ingeniería Estructural demarrollado en León, Guanajuato, S.M.I.E., 1984.

D. J. Just, "Plane Frameworks of Tapering Box and I-Section", Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, Vol. 103, No. ST1, Enero 1977.

APENDICE A ABSCISAS Y PESOS DE CUADRATURAS

En este apéndice se muestran las abscisas z_i y los pesos w_i d**e** las diferentes cuadraturas consideradas:

-Cuadratura de Newton-Cotes

-Cuadratura de Gauss-Legendre

-Cuadratura de Gauss-Chebyshev

NUMERO DE EVALUACIONES = 2 ₩= Z= +,-1 1 NUMERO DE EVALUACIONES = 3 .333333333333333333 ₩≂ Z= +,-1 W= 4 2= ø NUMERO DE EVALUACIONES = 4 .25 Z= +,-1 id as . 75 .3333333333333333333 Z= +,fal 10 NUMERO DE EVALUACIONES = 5 .15555555555555555 Z= +,-1 W= .5 ,7111111111111111111 ₩≖ Z= .+,-12 Z = ю NUMERO DE EVALUACIONES * 6 .1319444444444444 Z= +,-1 Lal 22 . 5208333333333333333 ₩= Z= +,-. 6 Z= +,-. 2 = الما .347222222222222222 NUMERO DE EVALUACIONES = 7 Z= +,-1 W= 9,761904761904762D-02 W= .5142857142857143 Z= +,~ . 66666666666666666 Z= +,-.333333333333333333333 W= 6,428571428571429D-02 ω<u>-</u> Z = ø 272 NUMERO DE EVALUACIONES = Θ .0869212962962963 Z= +,-1 ผ≠ .714285714285714 .4140046296296296 Z= +,-W= 2= +,-,428571428571429 ⊯نسا .153125 Z= +,~ .142857142857143 .3457490740740741 = اما NUMERO DE EVALUACIONES = 9 W= 6.977072310405644D-02 Z= +,-1 .75 Z= +,-W= .415379188712522 Z= +,-.5 W= -.0654673721340388 2= + -.25 W= .7404585537918871 7≃ ø W= -4540

TABLA A1.- CUADRATURA DE NEWTON-COTES. ABCISAS NORMALIZADAS AL INTERVALO [-1 , 1] Y PESOS CORRESPONDIENTES.

Z# +,~	.577350269189626		W=	1
	NUMERO DE	EVALUACIONES =	- 3	
Z= +,- Z=	.774596669241483 0		W= W=	.555555555555556 .8888888888888888888888
	NUMERO DE	EVALUACIONES	- 4	
Z= +,- Z= +,-	.861136311594053 .339981043584856		W≃ W≏	.347854845137454 .652145154862546
	NUMERO DE	EVALUACIONES	- 5	
Z= +,- Z= +,- Z=	.906179845938664 .538469310105683 0		₩= ₩= ₩=	.236926885056189 .478628670499366 .568888888888888
	NUMERO DE	EVALUACIONES :	= 6	
Z= +,- Z= +,- Z= +,-	.932469514203152 .661209386466265 .238619186083197		₩= ₩=	.17132449237917 .360761573048139 .467913934572691
	NUMERO DE	EVALUACIONES =	- 7	
Z= +1- Z= +1- Z= +1- Z= +1- Z=	.949107912342759 .741531185599394 .405845151377397 0		31= 32= 33= 34=	.12948496616887 .279705391489277 .381830050505119 .417959183673469
	NUMERO DE	EVALUACIONES :	- 8	
Z= +,- Z= +,- Z= +,- Z= +,-	.960289856497536 .796666477413627 .525532409916329 .18343464249565		¥≈ ₩= ₩=	.101228536290376 .222381034453374 .313706645877887 .362683783378362
	NUMERO DE	EVALUACIONES	= 9	
Z= +,- Z= +,- Z= +,- Z= +,- Z= +,-	.968160239507626 .836031107326636 .61337143270059 .324253423403809 0		₩≈ ₩= ₩=	.081274388361574 .180648160694857 .260610696402935 .312347077040003 .33023935500126

TABLA A2.- CUADRATURA DE GAUSS-LEGENDRE. ABCISAS NORMALIZADAS AL INTERVALO [-1 , 1] Y PESOS CORRESPONDIENTES.

Z == +, Z == +, Z == +, - Z == +, - Z == +, -	.973906528517172 .865063366688985 .679409568299024 .433395394129247 .148874338981631	또한 교육 프립 프립 프립	.066671344308688 .149451349150581 .219086362515982 .269266719309996 .295524224714753
	NUMERO DE	EVALUACIONES = 1	1
$Z = +_{1} - Z = -Z = -Z = -Z = -Z = -Z = -Z = -Z$.978228658146057 .887062599768095 .730152005574049 .519096129206812 .269543155952345 0	80 - 94 - 94 - 94 - 94 - 94 -	.055668567116174 .125580369464905 .186290210927734 .23319376459199 .262804544510247 .272925086777901
	NUMERO DE	EVALUACIONES = 1	2
Z= +,- Z= +,- Z= +,- Z= +,- Z= +,- Z= +,-	.981560634246719 .904117256370475 .769902674194305 .587317954286617 .36785149899818 .125233408511469	나라드 바르 바르 바르 바르	.047175336386512 .106939325995318 .160078328543346 .203167426723066 .233492536538355 .249147045813403
	NUMERO DE	EVALUACIONES = 1	.3
2= +,- 2= +,- 2= +,- 2= +,- 2= +,- 2= +,- 2= +,- 2= +,-	.984183054718588 .917598399222978 .80157809073331 .64234933944034 .448492751036447 .230458315955135 0	나고 나고 나고 나고 나고 나고 나고 나고	.040484004765316 .092121499837728 .138873510219787 .178145980761946 .207816047535089 .226283180262897 .232551553230874
	NUMERO DE	EVALUACIONES = 1	4
Z= +, - Z= +, -	.984283808696812 .928434883643574 .827201315069765 .687292904811485 .515248434358154 .31911236892789 .108054948707344	나무 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.035117460331752 .00015000715976 .121518570687903 .157203167158194 .185538397477938 .205198463721296 .215263853463158

TABLA A2 (CONTINUACION).- CUADRATURA DE GAUSS-LEGENDRE. ABCISAS NORMALIZADAS AL INTERVALO [-1 , 1] Y PESOS CORRESPONDIENTES.

Z= +	.987992518020485	님ㅋ	.030753241996117
Z= +	937273392400706		.070366047488108
Z= +	.848206583410427		.107159220467172
Z= +	.72441773136017	la a	.137570677926154
Z= +,-	.570972172608539	iei ==	.166269205816994
Z= +,-	.394151347077563	W=	.186161000015562
Z= +,-	.201194093997435	H=	.198431485327112
Z= .	0	W=	,202578241925561
	NUMERO DE	EVALUACIONES = 16	•
Z= +,-	.98940093499165	W=	.027152459411754
Z= +,-	,944575023073233	14=	.062253523938648
Z= +,-	.865631202387832	W=	.095158511682493
Z= +,-	.755404408355003	W=	.124628971255534
Z= +,-	.617876244402644	Mar.	.149595988816577
Z= +,-	.458016777657227	W=	.169156519395003
Z= +,-	.281603550779259	Waa	.182603415044924
Z= +,-	.095012509837637	W=	.187450610455068
	NUMERO DE	EVALUATIONES = -29	
Z= +,-	.993128599185095	14=	.017614007139152
Z= +,-	.963971927277914	Wint	.040601429800387
Z= +,-	,912234428251326	W=	.062672048334109
Z= +,-	.839116971822219	W=	.083276741576705
Z= +,-	.746331906460151	W=	.10193011981724
Z= +,-	.636053680726515	- (4) =	.118194531961518
Z= +,-	.510867001950827	ht =	.131688638449177
Z= +,-	.37370608871542	W=	.142096109318382
Z= +,-	.227785851141645	W=	.149172986472604
Z≕ +,-	.076526521133497	₩=	.152753387130726
	NUMERO DE	EVALUACIONES = 24	
7- + -	095107310007031	ш -	01774172070007

Z= +,-	.995187219997021	W=	.012341229799987
Z= + -	.974728555971309	널=	.028531388628934
Z= +,-	.938274552002733	¥=	.04427743881742
Z= +,-	.886415527004401	₩⇒	.059298584915437
Z= +,-	.820001985973903	W=	.07334648141108
Z= +,-	.740124191578554	₩≍	.086190161531953
Z= +,-	.648093651936976	ki≕	.097618652104114
Z= +,-	.54542147138884	₩≖	.107444270115966
Z= +,-	.433793507626045	W=	.115505668053726
Z= +,-	.315042679696163	₩≕	.121670472927803
Z= +,-	.191118867473616	₩.==	.125837456346828
Z= +,-	.064056892862606	ω=	.127930195346752

TABLA A2 (CONTINUACION).- CUADRATURA DE GAUSS-LEGENDRE. ABCISAS NORMALIZADAS AL INTERVALO [-1 , 1] Y PESOS CORRESPONDIENTES.

*	+,-	,997263861849482			=	.00701861000947
2=	+ -	.985611511545268			al==	.016274394730906
2=	+ -	.964762255587506			-	.025392045309262
2=	+ -	.93490607593774		. 1	4=	.034273862913021
1 ==	+,-	.896321155766052		1	A =	.042835898022227
Z ==	+ -	.84936761373257			4=	,050998059262376
<u> </u>	+	.794483795967942		1	4=	.058684093478536
2 ==	+ -	.73218211874029			4=	.06582222776362
=	+,-	.663044266930215			4=	.072345794108849
Z =	+ -	.587715757240762		1	4=	.07819389578707
-	+ -	.506899908932229			d=	.083311924226947
2=	+;-	.421351276130635			4=	.087652093004404
=	+ -	.331868602282128		1	4=	.091173878695764
Z ==	+ -	.239287362252137			4=	.073844377080805
2=	+,-	.144471961582796			4=	.095638720079275
2=	+,-	.048307665687738			4=	.096540088514728
		NUMERO DE	EVALUACIONES	=	40	

Z= +,-	.998237709710559	W=	.004521277098533
Z= +,-	.990726238699457	₩≈	.010498284531153
Z= +	.977259949983744	=نیا	,016421058381908
Z= +,-	.957916819213792	w=	.022245849194167
Z= +,-	.932812808278677	W=	.027937006980023
Z= +	,902098806968874	₩ ==	.033460195282548
Z= +	.86595950321226	W=	.039782167974472
Z= +	.824612230833312	ω=	.043870908185673
Z= +	.778305651426519	Wa	.048695807635072
Z= +	.727318255189927	W ==	.053227846983937
Z= +	.67195668461418	W=	.057439769099392
Z= + -	.61255388966798	w=	.061306242492929
Z= + -	.549467125095128	W=	.064804013456601
Z= +	483075801686179	W≓	.067912045815234
Z= + -	413779204371605	ш =	.070611647391287
Z= +	341994090805758		072886582395804
Z= +	268152185007254	W⇒	.07472316905796B
Z= +	.1926?7580701371	ы=	.076110361900626
Z= +	116-384070675255		.077039818164248
z= +	.038772417596051		.077505947978425

TABLA A2 (CONTINUACION).- CUADRATURA DE GAUSS-LEGENDRE. ABCISAS "ORMALIZADAS AL INTERVALO C-1, 1-1Y PESOS CORRESPONDIENTES.

.

Z= +,-	.7071067811865476		₩≖	1.570796326794897
	NUMERO DE EVALUACIONES	=	3	
Z= +,- Z=	•8660254937844387 Ø		₩= ₩=	1.047197551196598 1.047197551196598
	NUMERO DE EVALUACIONES	-	4	
Z= +,- Z= +,-	.9238795325112868 .3826834323650899		₩≕ ₩≕	.7853981633974483 .7853981633974483
	NUMERO DE EVALUACIONES	=	5	
Z= +,~ Z= +,~ Z=	•9510565162951536 •5877852522924732 0		₩= ₩	.6283185307179586 .6283185307179586 .6283185307179586
	NUMERO DE EVALUACIONES	7	6	
Z= +,- Z= +,- Z= +,-	•9659258262890683 •7071067811865476 •2588190451025209		₩= ₩=	.5235987755982988 .5235987755982988 .5235987755982988
	NUMERO DE EVALUACIONES	#	7	
Z= +,- Z= +,- Z= +,- Z=	.9749279121818236 .7818314824680298 .4338837391175582 0		₩= ₩=	.4487989505128276 .4487989505128276 .4487989505128276 .4487989505128276
	NUMERO DE EVALUACIONES	=	8	
2= +,- Z= +,- Z= +,- Z= +,- Z= +,-	.5607852804032304 .8314696123025453 .5555702330196023 .1950903220161284		₩= ₩= ₩=	.3926990816987241 .3926990816987241 .3926990816987241 .3926990816987241 .3926990816987241
	NUMERO DE EVALUACIONES	-	9	
Z = +, - Z = +, -	.9848077530122081 .8660254037844387 .6427876096865394 .3420201433256688 0		₩= ₩= ₩= ₩=	.3470658503788657 .3470658503788657 .3470658503788657 .3470658503788657 .3470658503788659 .3490658503788459

TABLA A3.- CUADRATURA DE GAUSS-CHEBYSHEV. ABCISAS NORMALIZADAS AL INTERVALO [-1 , 1] Y PESOS CORRESPONDIENTES.

7= +	.9876883405951377	= اینا	.3141592653589793
7= +	8910065241883679	id a	.3141592653589793
7= +	.7071067811865476	- -	.3141592653589793
7= +	4539904997395469	W=	.3141592653589793
7	156434465040731	W=	.3141592653589793
	1130404400040231		101112/2000001///0
	NUMERO DE EVALI	UACIONES = 1	1
7= +	.9898214418809327	= کا	.2855993321445266
7= +	9096319953545184	tal ==	.2855993321445266
7= + -	7557495747547597	Li a	2855993321445266
7	5404408174555974	ω	2855993321445266
7= + -	2817775568414299	14	2855993321445766
7= ',	0		2855993321445266
•-	•	n -	12000//0021//0200
	NUMERO DE EVALI	JACIONES = 1	2
7= +	9914448613738104	W⇒	.2617993877991494
7= + -	9238795325112848	ш <u></u>	.2617993877991494
7= +	.7933533402912352	Li a	2617993877991494
7= +	. 6087614290087207	W=	2617993877991494
7= +	3826834323650899	id as	2617993877991494
7= +	1305261922200517	ш <u>=</u>	2617993877991494
		••-	
	NUMERO DE EVALI	UACIONES = 1	3
Z= +,-	.992708874098054	ω =	.241660973353061
Z= +,-	.9350162426854148	W≈	.241660973353061
Z= +,-	.8229938658936564	W≃	.241660973353061
Z= +,-	.6631226582407952	₩=	.241660973353061
Z= +,-	.4647231720437686	W=	.241660973353061
Z= +,~	2393156642875579	W=	.241660973353061
Ž= '	0	₩≠	.241660973353061
	NUMERO DE EVAL	UACIONES = 1	4
Z= +,~	.9937122098932426	W=	.2243994752564138
Z= +,-	.9436833703083676	₩=	.2243994752564138
Z= +,-	.8467241992282842	ίω) ==	.2243994752564138
Z= + -	.7071067811865476	W≃	.2243994752564138
2= +,-	.5320320765153366	W=	.2243994752564138
Z= +,-	.3302790619551672	W⇔	.2243994752564138
Z= +,-	.111964476103308	W=	.2243994752564138

TABLA A3 (CONTINUACION).- CUADRATURA DE GAUSS-CHEBYSHEV. ABCISAS NORMALIZADAS AL INTERVALO - [-1 , 1 -] Y PESOS CORRESPONDIENTES.

Z= +	·,	.9945218953682733	₩≓	.2094395102393195
Z= +	· -	.9510565162951536	₩=	.2094395102393195
Z= +	·	.8660254037844387	ω <i>=</i>	.2094395102393195
Z≕ +		.7431448254773943	W=	.2094395102393195
Z= +		.5877852522924732	₩≃	.2094395102393195
2= +	-	.4067366430758003	W=	.2094395102393195
Z≕ +	·,-	.2079116908177594	₩≕	.2094395102393195
Z=		0	₩≕	.2094395102393195

NUMERO DE EVALUACIONES = 16

Z =	+,-	.9951847266721969	₩=	.1963495408493621
Z=	+	.9569403357322089	W=	.1963495408493621
Z 7	+,-	.881921264348355	W=	.1963495408493621
Z≖	+ -	.773010453362737	₩ =	.1963495408493621
Z =	+ -	.6343932841636455	wi=	.1963495408493621
Z=	+	4713967368259977	W=	.1963495408493621
Z=	+,-	.2902846772544625	₩=	.1963495408493621
Z=	+,-	9.801714032956071D-02	W=	.1963495408493621

NUMERO DE EVALUACIONES = 17

Z= +,	9957341762950345	W=	.1847995678582231
Z= +,	9618256431728191	W=	.1847995678582231
Z= +,	 .8951632913550623 	W=	.1847995678582231
Z= +,	7980172272802395	₩≠	.1847995678582231
Z= +,	6736956436465572	₩=	.1847995678582231
Z= +,	5264321628773559	W=	.1847995678582231
Z= +,	361241666187153	W=	.1847995678582231
Z= +,	1837495178165704	₩ =	.1847995678582231
Ζ=	6	W=	.1847995478582231

NUMERO DE EVALUACIONES = 18

Z= +		W≓	.1745329251994329
Z= +	9659258262890683	W ==	.1745329251994329
Z= +	90630778703665	w⊨	.1745329251994329
Z⊐ +	8191520442889918	W=	.1745329251994329
Z= +	7071067811865476	W=	.1745329251994329
Z= +	5735764363510462	ω=	.1745329251994329
Z≕ +	- 4226182617406995	W=	.1745329251994329
Z= +	2586190451025209	W=	.1745329251994329
Z= +	- 8.715574274765828D-02	W≂	.1745329251994329

TARLA AJ (CONTINUACION).- CUADRATURA DE GAUSS-CHEBYSHEV. ABCISAS NURMALIZADAS AL INTERVALO [-1 , 1] Y PESOS CORRESPONDIENTES.

Z= +,-	,99658449300666698	₩=	.1653469817678838
Z= +	.9694002659393304	W =	.1653469817678838
Z= +,-	.9157733266550575	W=	.1653469817678838
Z= +,-	.8371664782625286	4 a	.1653469817678838
Z= +,-	.7357239106731316	iej ==	.1653469817678838
Z= +,-	.6142127126896679	₩=	.1653469817678838
Z≈ +,-	.4759473930370736	₩⇒	.1653469817678838
Z= +,-	.3246994692046836	₩≠	.1653469817678838
Z= +,-	.164594590280734	W=	.1653469817678838
Z≠	0	W≖	.1653469817678838

NUMERO DE EVALUACIÓNES = 20

Z= +,-	.996917333733128	ki=	.1570796326794896
Z= +,-	.9723699203976766	W=	.1570796326794896
Z= +,-	.9238795325112868	W=	.1570796326794896
Z= +,-	.8526401643540922	₩≖	.1570796326794896
Z= +,-	.760405965600031	₩=	.1570796326794896
Z= +,-	.6494480483301837	₩ - =	.1570796326794896
Z= +	.5224985647159489	₩=	.1570796326794896
Z= +,~	.3826834323650899	W=	.1570796326794896
Z= +,-	.2334453638559055	W=	.1570796326794896
Z= +,-	7.8459095727845060-02	₩⇒	.1570796326794896

NUMERO DE EVALUACIONES = 21

Z= +,-	.9972037971811801	W=	.1495996501709425
Z= +,-	.9749279121818236	₩=	.1495996501709425
Z= +,~	.9308737486442043	W=	.1495996501709425
2= +,-	.8660254037844387	W=	.1495996501709425
Z= +,-	.7818314824689298	W≕	.1495996501709425
Z= +,-	. 4801727377709194	₩	.1495996501709425
Z= +,-	.5633200580636221	W=	.1495996501709425
Z= +, -	.4338837391175582	W≕	.1495996501709425
Z= +,-	. 2947551744109043	W=	.1495996501709425
Z= +,-	.1490422661761745	₩≕	.1495996501709425
Z=	0	W=	.1495996501709425

-

APENDICE B INTEGRACION DE LA FUNCION X⁴ / I

En este apéndice se muestran los resultados obtenidos de la integración de la función x^4 / I por cada una de las diferentes cuadraturas consideradas y para diferentes números de puntos de evaluación.

.1

# PUNTOS	ÁREA
2 3 4 5 6 7 8 9	28444,4444444444 10675,11111111 10270,50300915389 10923,85145153431 10073,5780710062 10137,31533878972 10135,27728461313 10132,07752419642
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 24 32 40	9666.406733015839 10240.56116192746 10126.96598538204 10131.52461134445 10131.75218662662 10131.75218662662 10131.754397352657 10131.754397437055 10131.75438747305 10131.75438769335 10131.75438769335 10131.75438769335 10131.75438769335 10131.75438769335 10131.75438769335 10131.75438769335
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 19 20 21	$15736, 22458540235\\ 12088, B1118944263\\ 10934, 91317289642\\ 10645, 32771501667\\ 10475, 94323584562\\ 10380, 66564795532\\ 10320, 45433810451\\ 10279, 64496515447\\ 10251, 1306082968\\ 10230, 66245937244\\ 10214, 13796980929\\ 10192, 05428755317\\ 10184, 21211473337\\ 10177, 61944170375\\ 10177, 5136515869\\ 10168, 0380997028\\ 10164, 13876464277\\ 10164, 14570653644277\\ 10164, 16570653644277\\ 101658, 40064039728\\ 10158, 40064039728\\ 10058, 4006403978\\ 10058, 40058\\ 10058, 40058\\ 10058, 40058\\$

TABLA B1.- INTEGRACION DE LA FUNCIÓN X^4/I. VIGA DE SECCION RECTANGULAR ACARTELADA. HO=...6 BO=..25 HF=..3 BF=..25 LONG= 2 ACARTELAMIENTO VERTICAL LINEAL. LIM.INF. = ϑ , LIM.SUP. = 2.

GAUSS-LEGENDRE

GAUSS-CHEBYSHEV

CUADRATURA NEWTON-COTES

CUADRATURA	#	PUNTOS			ÁREA
NEWTON-COTES	COMPUESTO	ORDEN = 1	REGLA	DEL	TRAPECID)
		2			28444,444444444444
		3			15132,444444444444
		4			12289.82983529729
		5			11332.46499617794
		6			10876.52005756707
		7			10661.48847828995
		19			10520.35623861715
		9			10428.9868626421
		10			10366.44812416965
		11			10321.76594093179
		12			10288.73362900496
		13			10263.62541756554
		14			10244.09460689933
		15			10228.60327424586
		16			10216.10937042953
		17			10205.88648947922
		18			10197.4156946322
		17			10190.31825686269
		20			10184.31252891432
		21			10179.18553996341
		22			101/4.//383550/56
		23			101/0.9502/64032/
		24			10167.61476903483
		23			10169.00/64334347
the same same		20			10160 01441600044
		20			10157 27702570495
		20			10155 04001417711
		30			10150 30796734442
		31			10152.82903234008
		32			10151-49102902051
		33			10150, 2765255577
		34			10149, 17077687311
		35			10148, 16117464733
		36			10147.23688623041
		37			10146.38856277855
		38			10145.60810186625
		39			10144.88845325571
e de la composition d		40			10144.22345908372
		41			10143.607721668

TABLA B1 (CONTINUACIÓN).- INTEGRACIÓN DE LA FUNCIÓN X^4/I. VIGA DE SECCIÓN RECTANSULAR ALARTELADA. HO= .6 EO= .25 HF= .3 BF= .25 LONG= 2 ACARTELAMIENTO VERTICAL LINEAL. LIM.INF. = 0, LIM.SUP. = 2.

CUADRATURA		PUNTOS			ÁREA
NEWTON-COTES	COMPUESTO	ORDEN = 2 3 5 7 9 11 13 15 17 19 21 23 27 27 21 23 27 31 33 35 37	! (REGLA DE !	SIMPSON	1/3) 10695.11111111111 10065.80518008911 10118.70802395414 10127.82748479682 10130.18123471955 10131.00439732408 10131.51969842493 10131.65873964061 10131.65873964061 10131.65873964061 10131.72101889015 10131.72101889015 10131.72558633692 10131.73558633692 10131.73558633692 10131.73558633692 10131.73558633692 10131.74350131903 10131.74350131903 10131.74769472824
NEWTON-COTES	COMPLESTO	41 ORDEN = 3 4 7 10 13 14 17 22 25 28 31 34 37 40 0RDEN = 4	(REGLA DE S	SIMPSON	$\begin{array}{c} 10131.74844890297\\ 3/61\\ 10270.5930091539\\ 10102.61896252063\\ 10126.02541027869\\ 10130.02047023899\\ 10131.025803428708\\ 10131.42197918428\\ 10131.57643511887\\ 10131.6592340913811\\ 10131.6595384991\\ 10131.71191878864\\ 10131.7254203562\\ 10131.73955540677\\ \end{array}$
		5 9 13 17 21 29 33 37 41			10023.85145135431 10131.76230511067 10131.8241534154 10131.7658400014 10131.755325976489 10131.755317802 10131.75475086745 10131.75475086745 10131.7544607207 10131.75446272035

TABLA B1 (CONTINUACIÓN).- INTEGRACIÓN DE LA FUNCIÓN X^4/I, VIGA DE SECCIÓN RECTANGULAR ACARTELADA. H0= .6 B0= .25 HF= .3 BF= .25 LONG= 2 ACARTELAMIENTO VERTICAL LINEAL. LIM.INF. = 0, LIM.SUP. = 2.

CUADRATURA	*	PUNTOS	AREA
NENTON-COTES	COMPUESTO	ORDEN =	5
		6	10073.57807100062
		11	10131.88448027456
		16	10131.79344783948
		21	10131.76081511998
		26	10131.75599008549
		31	10131.75491063829
		36	10131.75459197951
		41	10131.75447850247
NEWTON-COTES	COMPLIESTO	ORDEN #	6
	•	7	10137.31533878993
		13	10131.78358226432
		19	10131.75387407503
		25	10131.75433051884
		31	10131.75437884513
		37	10131.75438572489
NEWTON-COTES	COMPLIESTO	ORDEN =	7
		8	10135.27728461313
		15	10131.77168588601
		22	10131.75407270451
		29	10131.75435274347
		36	10131.75438227847
NEWTON-COTES	COMPUESTO	ORDEN =	8
		9	10132.09752419642
		17	10131.75266028697
		25	10131.75438756857
		33	10131.75438800637
		41	10131.7543877245

TABLA B1 (CONTINUACION).- INTEGRACION DE LA FUNCIÓN X^4/I. VIGA DE SECCIÓN RECTANSULAR ACARTELADA. HD= .6 DD= .25 HF= .3 BF= .25 LONG= 2 ACARTELAMIENTO VERTICAL LINEAL. LIM.INF. = 0, LIM.GUP. = 2.

CUADRATURA	# PUNTOS	ÁREA
REGLA DEL RECTANGULO		
	1	1820.444444444444
	2	7532,485547911437
	3	9033.147121282602
	4	9525.508729106262
	5	9747.011822294483
	6	9865.762356841143
	7	9936,850309874579
	8	9982.786116316348
	9	10014.16838955573
	10	10036.60513899502
	11 · · · · · · · · · · · · · · · · · ·	10053.16692380159
	12	10065.74986912542
	13	10075, 53422488556
	14 - Fernina Contractor (* 14	10083.29275810837
	15	10087.54867429062
	16	10074.66656163618
	17	10098.90665466245
	18	10102.45886869441
	19	10105.46437759709
	20	10108.02990337261
	21	10110.23733648104
	22	10112,15036122258
	23	10113.81910643701
	24	10115,2834667185
	25	10116.57551147669
	26	10117.72125735532
	27	10118,74198930246
	28	10119.65525704289
	29	10120, 47563501525
	30	10121.21530783971
	31	10121.8845256415/
	32	10122,49196127696
	33	10123.04499209415
	34	10123,54992914906
	35	10124.01219000154
	36	10124,43645283057
	37	10124,82677126884
	38	10125.18667242671
	39	10125.51923688338
이 가지는 사람에서 잘 들었다. 가지	40	10125,82716484986

TABLA B1 (CONTINUACIÓN).- INTEGRACIÓN DE LA FUNCIÓN X^4/I.VIGA DE SECCIÓNRECIANGULAR ACARTELADA.HU= .6BO= .25HF= .3BF= .25LONG= 2ACARTELAMIENTO VERTICAL LINEAL. LIM.INF. = 0, LIM.SUP. = 2.

.. ...