# UNIVERSIDAD AUTONOMA DE GUADALAJARA

INCORPORADA A

A LA

UNIVERSIDAD

NACIONAL

AUTONOMA

OF W\*\*\*

ESCUELA DE CIENCIAS QUIMICAS



PROYECTO PARA LA INTRODUCCION DE UN EVAPORADOR ECONOMIZADOR DE VAPOR EN UN MOLINO DE ACEITE VEGETAL

# TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO PRES EN TA OSCAR DAVID PEREZ GARCIA ASESORI I. Q. MA. DOLORES ORTIZ CASTELLANOS GUADALAJARA, JALISCO. 1988





# UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

# DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

| * *** * *** |                   |      |     |        |
|-------------|-------------------|------|-----|--------|
| INDICE      | the second second | 2000 | 100 | . byc. |

| ı.  | INTRODUCCION                                                                            |
|-----|-----------------------------------------------------------------------------------------|
| ıı  | GENERALIDADES4                                                                          |
| III | MODELO MATEMATICO DE LOS BALANCES DE MATERIA Y ENERGIA                                  |
| IV  | BALANCES DE EVAPORACION CALCULADA POR<br>UNA HOJA ELECTRONICA                           |
|     | Balance para semilla soya                                                               |
|     | RESUMEN                                                                                 |
|     | CONCLUSION. 38                                                                          |
|     | BIBLIOGRAPIA                                                                            |
|     | APENDICE A  Relación de Kg agua / kg hexano Y                                           |
|     | Temperatura                                                                             |
|     | APENDICE B                                                                              |
|     | Tabla de entalpias para aceita vegetal 43<br>Tabla de entalpias para agus               |
|     | Tabla de entalpias para hexano 46                                                       |
|     | APENDICE C  Gráfico 7 de aceite vegetal en miacela  VS Temperatura a diferente vacío 47 |
| 4.4 | And remberators a dristation "Audios                                                    |

En el arduo camino del Ingeniero Químico mexicano, una de sus funciones principales os el de mejorar procesos, basados en tecnología extranjera pero con materia, personal, equipo y sobre todo con el ingenio que siempre ha caracterizado a nosostros los mexicanos.

Con esta no se quiere decir que nuestra capacidad no sea adecuada para realizar tecnología, pero debido a las condiciones en que se encuentra actualmente nuestro país, sobre todo en el aspecto económico, se difficil para una empresa seatunor a un grupo de profesionistas que so dediquen a la investigación y desarrollo de nuovos procesos con tecnología completamente nuestra.

Otro de los aspectos dignos de mencionar, es que actualmente en la mayoría de las empresas, el personal obrero cuando mucho cuenca con educación primeria, esta hace que la teren del ingeniero químico sen múltiple; además de proporcionar capacitación, tiene que dirigir, organizar y administrar, ya sea en un departamento de una planta o la planta misma.

En la mejora de procesos, por lo general se tienen dos objetivos, uno os la calidad y otro abatir costos de producción, el presente trebajo se basa en este último objetivo, enfocado principalmente al aborro de energía calorífica en la planta de solventes de un molino de olesginosas.

Ojalá que el presente trabajo, ses motivación para buscar nuevas maneras de ahorro de energéticos, sin olvidar nunca la calidad, para así poder el día de mañana colocar nuestros productos en mercados extranjeros.

Oscar David Pérez García

# INTRODUCCION

En la mayorfa de las plantas extractoras de aceite mexicanas, se tienen sistemas de evaporación como el de la figura número 1. Por otro lado en la actualidad. los precios de los energéticos en nuestro país, se incrementan cada día más, por lo que si nos ponemos a observar, los costos de operación de las plantas aumentan considerablemente, puesto que necesitamos para desolventizar el aceite y éste caldera. conseguimos quemando combustible en una ello se hizo este estudio el cual nos ayudará a abatir costos excesivos de operación, aprovechando el calur que ya no ocupamos del mismo proceso y que actualmente lo estamos desperdiciando -por decirlo de manera', 0000 NOn los RPJOGGV Desolventizador Tostador que se condensan actualmente en un intercambiador de calor, que es enfriado por agua proveniente de una torre de enfriamiento. En otras palabras, se estudiará la monero de transformar el sistemo de evaporación actual que es de un solo evaporador a un sistema de doble evaporador.

En los estudios realizados, se encontró que una planta que trabaja con un sistema con doble evaporador, puede tener mucho más rango para la operación del equipo, lo cual nos gyuda grandemente a abatir costos, pues los ahorros indirectos se incrementan notablemente, como es el caso de ahorro de hexano, que es uno de los parámetros que más repercuten en los costos del producto terminado. Por ejemplo, en la mayoría de los sistemas de evaporación simple, se tienen estándares que varian de 9 a 15 litros de hexano por tonelada de semillo molida, mientras que en un sistema con doble evaporador se tienen estándares entre 3 a 7 litros de hexano por tonelada de semilla molida (Ref. 4). presentando un ahorro con respecto al sistema de un solo evaporador, que puede variar desde 0.5 a 2.0 litros de hexano por tonelada de semilla molida, tan solo por el hecho de tener un mejor control del proceso. Es indiscutible que el equipo de condensación -principalmente-, debe de encontrarse en perfectas condiciones para poder lograr los estándares arriba mencionados.

Para poder hacer nuestro estudio, es necesario hacer un listado de lo que más comunmente se tiene en una planta de solventes de un solo evaporador y lo que se necesitaria para un sistema de evaporación con doble evaporador, por lo que a continuación se enumeran las partes principales de estos dos sistemas, bosándonos para este análisis en la figura número i y en la figura número 2.

|                      | SISTEMA<br>(mistema ev | PROPUESTO<br>aporador II) |
|----------------------|------------------------|---------------------------|
| Cantidad Descripción | Cantidad               | Descripción               |
| D.T.                 | .1                     | D.T.                      |
| 2 Condensador        | . 2                    | Condensador               |
| l Eyector            | 1                      | Eyector                   |
| l Tang. Decan.       | 1                      | Tanq. Decan.              |
| 1 Tanga agua         | 1 .                    | Tanq. agua                |
| uanda                |                        | usada                     |
| 1 Evaporador         | 2                      | Evaporador                |
| i Bomba cent.        | 2                      | Bomba cent. '             |

En el molino en donde se realizó este estudio se cuenta con un intercambiador de placas, que lo llamaremos A.P.V., por lo que en este trabsjo se incluye este equipo, ya que nos permite mayor ahorro de energía. También se cuenta con un eyector de vapor que será instalado en el evaporador de primer evaporador, por lo que no se incrementa el costo de este proyecto por estos conceptos.

Para poder entrar en detalle es conveniente aclarar que el sistema actual de desolventizado de aceite, se dejará exactamente de la misma manera en que se encuentra. Esto es porque en arranques de planta, no se cuenta con vapores del D.T. y es necesario contar con el sistema tal como está diseñado, por otro lado en caso de tener alguna falla el nuevo sistema, se podrá derivar éste, retornando al sistema original ain afectar directamene a la producción.

Resumiendo un poco. Se instalará un evaporador nuevo que funcionará como primer evaporador y el actual, se

considerará como el segundo evaporador. Para tener una idea más clara, se listará enseguida, la serie de equipos que realmente necesitaremos en el nuevo diseño:

Evaporador I
Codos de 90
Válvulas de compuerta
Aislante para tuberfa
Aislante para equipo
Bomba centrífuga con motor
Controlador de nivel
Varios (pintura, accesorios eléctricos, etc.).

Para saber las dimensiones de los equipos, nos basaremos en los balances de materia y energía, los cuales se explican en el capítulo III.

## CAPITULO II

# GENERALIDADES

Uno de los procesos de mayor antiguedad es el de la extracción de aceite, pues según escrituras, desde hace 5000 años, los chinos practicaban basicamente los mismos principios actuales, como reducir las semillas, acundiconar las partículas de las mismas con temperatura y prensar para hacer la extracción de aceite. Hoy en día se vienen utilizando los mismos principios, sin embargo con los grandes avances tecnológicos, se destaca el proceso evolutivo de las plantas de solventes en los últimos años (Ref. 1).

Los tres procesos más comunmente empleados son prensado hidráulico, prensas continuas o "expellers" y extracción por solventes.

Las prensas hidráulicas han sido reemplazadas por prensas continuas siendo las más conocidas los expeller Anderson y los expellers French. Estos expellers, han tenido una introducción en todo el mundo y son utilizados en la extracción en la mayoría de las semillas oleaginosas. En la actualidad estas máquinas conservan el mismo principio de extracción, han sido modificadas ligaramente, para hacer un pre-prensado y extracción por solventes, conociéndose este proceso como "pre-prensado y extracción por solventes".

Los plantas de extracción por solventes, son de dos tipos:

- a).- Pre-prensado y Extracción por Solventes.
- b).- Extracción Directa.

El primer proceso conocido de extracción por solventes, tuvo su origen en Europa en el año de 1870, el cual se hacía por lotes o batch. Estas plantas no tuvieron mucho desarrollo, sobre todo por el exceso de mano de obra en su operación. Pue hasta después de la Segunda Guerra Mundial cuando se desarrolló el primer proceso continuo de extracción por solventes, siendo introducido en México en los años cuarentas.

Las plantas de extracción continua por su bajo costo de operación y alta eficiencia, tanto de extracción como de capacidad, son las principalmente usadas en la industria moderna para la extración de acettes.

En la mayoría de las plantas de extracción por solventes podemos considerar las siguientes operaciones:

- a).- Extracción
- b).- Desolventizado y Tostado de Pasta
- c).- Desolventizado de Aceite
- d).- Sistema de Recuperación de Solvente
- e).- Sistema de Seguridad y Protección contra incendios.

En el presente trabajo, solo se tratarán los incisos b y c, pues éste es el objetivo principal.

## EXTRACCION

- El proceso de extracción se lleva a cabo en el extractor y el funcionamiento de este podemos definirlo de acuerdo a sus tres principales funciones (Ref. 4).
- Retención de un gran volumen de sólidos en un período de tiempo que puede oscilar entre 30 minutos a 2 horas.
- 2.- El más eficiente posible contacto de la gran masa de sólidos con la circulación del líquido.
- La más efectiva separación posible de líquido y sólido.

Las corrientes de entrada a un extractor son: la pasta que proviene de los expellers y el hexano que hará la extracción de aceite que contiene dicha pasta. Las corrientes de salida del extractor de cualquier tipo son dos: pasta con hexano al Desolventizador Tostador y miscela completa al sistema de evaporación.

## DESOLVENTIZADO Y TOSTADO DE PASTA

Este es un sistema de evaporación diseñado para transferir calor indirecto, calor directo o la combinación de los dos. A este equipo se le conoce con el nombre de Desolventizador Tostador, que para simplificar su identificación le llamararemos "D.T." como será ilamado en lo sucesivo.

Anteriormente se dijo que en el extractor se tienen dos corrientes: una la del solvente con el aceite extraído que por nomenclatura será llamado de aquí en lo sucesivo "miscela completa" y será tratado más adelante. Por otra parte sale la pasta con solvente llamada comunmente "marc", por lo que lo llamaremos así. Este marc, contiene por lo general 35 % de hexano, 8 % de humedad. 1 % de aceite y el 56 % sólidos.

El D.T. cuenta por lo general de 7 secciones denominadas vasos, formando una columna, uno arriba de otro y cada vaso consta de un plato enchaquetado llamado fondo ¥ un anillo cilindrico enchaquetado denominado anillo. Las chaquetas tanto en el fondo como en el anillo están sujetas a presión de vanor, para transmitir calor indirecto a el marc que está siendo tratado. La primera de estas unidades fué diseñada por la Compañía French en 1950 para una Compañía procesadora de soya, desarrollándose sobre el mismo principio y en la actualidad hay unidades D.T. trabajando para plantas con capacidad hasta de 4000 toneladas por día.

El proceso de desolventizado ocurre principalmente en los primeros dos vasos del D.T., donde es inyectado vapor indirecto y vapor directo, este último ayuda a incrementar más rapidamente la temperatura y a su vez, arrastra los vapores de hexano, llevándoselos a un sistema de condensación, para posteriormente ser decantado, separando el agua y utilizando el hexano nuevamente. La temperatura de estos vapores varía entre 65 grados C a 75 grados C.

En el tercer, cuarto y quinto vaso, el proceso de Desolventizado se lleva en su parte final, asegurándose con ello que la pasta quede libre de solvente y lo que principalmetne ocurre aquí es el secado y tostado de la pasta, para salir con una humedad de 13 % aproximadamente cuando la pasta es de semilla de soya.

# DESOLVENTIZADO DEL ACEITE

Como se dijo anteriormente, una vez terminado proceso de extracción en el interior del extractor, la miscelo completa; que es una mercla de aproximadamente. 25 % de aceite y el 75 % de hexano, desolventizarse. Debido a que los componentes de la miscela completa conservan sus propiedades fisicas y químicas, la separación del aceite del hexano, se hace por medio de un sistema de 2 fases de evaporación, el primero consiste en un evaporador, donde es invectado vapor indirecto para concentrar la miscela completa, llamándosele a esta nueva mezcla rica en aceite, "miscela". El segundo paso consiste en pasar miscela a un stripper, en donde es inyectado vapor indirecto y vapor vivo recalentado para separar los rastros de hexano contenido en el aceite.

Normalmente en una planta de solventes, puede ser de dos principales diseños de evaporación. El primero consiste en un sistema de evaporación con un simple evaporador o llamdo también evaporador principal. El cual consiste en un evaporador vertical en donde la evaporción es del tipo de película ascendente, puesto que por el interior de los tubos va fluyendo la miscela complete y por exterior se proporciona calor indirecto, proveniente de los vapores de una caldera. El flujo de la miscela completa, cuando ha llegado a la parte superior del evaporador, descarga a un separador ciclónico, sometido a vacío que puede variar entre 12 a " de lig. Donde al ser expandido el flujo de la miscela completa, ocurre un flasheo, de tal forma que los vapores de hexano separados son arrastrados por la y llevados a de arriba un sistema condensación, donde ocurre un intercambio de calor entre los vapores de hexano y el flujo de agua fría proveniente de la torre de enfriamiento que absorbe el calor de hexano, el cual va condensando y cayendo directamente a un tanque decantador, de donde será nuevamente utilizado en el proceso de extracción. La

miscela cae al fondo del séparador ciclónico por gravedad, teniendo un promedio general de un 95 % de aceite y 5 % de hexano. Esta miscela es pasada a un stripper, en donde se le inyecta vapor seco a contra corriente para lograr la separación total del hexano y aceite. Los vapores del stripper, se llevan a otro sistema de condensación para finalmenie ser depositados en el tanque de separación. El aceite pasa pues libre de hexano a los tanques de aceite para su refinación. En la figura número l, se puede apreciar la parte principal de este sistema de un solo evaporador.

segundo sistema de evaporación consiste aprovechur los vapores provenientes del D.T., para una primera fase de evaporación, en donde los vapores de agua y hexano, intercambian su calor en un evaporador vertical denominado evaporador I, para con ello tener una primera evaporación de la miscela completa, pasando del 25 % en peso de aceite al 60 %. En este sistema tenemos dos efectos importantes, el primero es que los vapores saliendo del D.T., ceden parte de su calor, lo que ayuda a condensarse parcialmente, y el segundo es que la miscela queda más concentrada. Para que al ígual que en el primer caso de evaporación, esta miscela pase a otro evaporador vertical denominado evaporador II y es aquí donde se concentra la miscela del 60 % al 95 % y sigue el proceso exactamente igual como el narrado anteriormente, nada más que en este existe uп ahorro de energia considerable. En la figura número 2 puede apreciarse mucho mejor este sistema. Se puede asegurar que los condensados del condensador del primer evaporador, se encuentran libres de agua, por lo que se pueden pasar directamente al lado en donde esta el hexano decantado en el tanque decantador, por lo que este sistema trabaja con mucho más capacidad y eficiencia.

DIMIRAMA DE FILIJO ACTUAL FIG. 1

DIAGRAMA DE FLUJO PROPUESTO FIG. 2

## CAPITULO III

## MODELO MATEMATICO DE LOS BALANCES DE MATERIA Y ENERGIA

Para poder calcular las dimensiones del equipo, es necesario hacer un balance de materia y energía para cada uno de los equipos. Si consideramos estado estacionario, adiabático para cada equipo y a cada equipo como sistema aislado de otro, y hacemos primero un balance de materia para después calcular la energía consumida o la energía que nos puede proporcionar un sistema, tendremos que en los balances de materia:

# ENTRADAS - SALIDAS + ACUMULACION + PERDIDAS

Como anteriormente se consideró estado estacionario tenemos:

## ENTRADAS - SALIDAS

Y para el balance de energía se utilizó la ecuación matemática de la primera ley de la termodinámica para procesos de flujo en estado estacionario uniforme: (Ref. 12).

Como los valores de energia cinética y potenecial son muy pequeños comparados con los de entalpia, se consideran cero; además de que no se ejerce ningún trabajo. La ecuación anterior nos queda:

# All - Q

En donde el AH está referido a los componentes de entrada y salida para un equipo en particular.

A continuación se proporcionan una serie de datos

obtenidos para la semilla de soya, los cuales fueron obtenidos por análisis en el laboratorio. La producción se considera de 400 Ton/h de semilla molida.

# DATOS

| of the same Containing of the Unidad-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Semilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOYA          |
| Molienda Ton/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.667        |
| Rendimientos:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Santa Arabica |
| in the ribra is a factor of the result of th | 75.00         |
| Aceite %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.00         |
| Aceite en pasto X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.00         |
| Agua en pasta de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| expellers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.00          |
| Agus en pasta final %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.00         |
| Conc. miscela completaX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.00         |
| Conc. miscela de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Evaporador I Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.00         |
| Conc. miscela de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Evaporador II %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.00         |
| Relación hexano/pasta -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 • 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.00         |

# BALANCE DE MATERIA EXTRACCION HECANICA

### T MOLINO

| Datos:  |          |         | <b>Z</b>   | conce | p to | cant: | dad | unidad                           |
|---------|----------|---------|------------|-------|------|-------|-----|----------------------------------|
|         | SEHILL   |         | N. William |       |      |       |     |                                  |
|         | a        | -> : 7: |            |       |      |       |     | Ton/h                            |
|         | <b>A</b> |         |            |       |      |       |     | Ton/h<br>Ton/h                   |
|         |          | 10      | 0.00       | TOTA  | L    | 16.   | 67  | Ton/h                            |
| an line | BASURA   |         |            |       |      |       |     | a Taylor (1994)<br>Santan Santan |
| SALIDA  |          | -> 10   | 0.00       | pasur |      | 0.9   | )17 | Ton/h                            |
|         | В        |         |            |       |      |       |     |                                  |
|         | ACEITE   |         | ) . 00     | aceit | e.   | C     |     | Ton/h                            |
|         | C        |         |            |       |      |       |     | ,                                |

```
PASTA
                 14.00
               86.00
                                 12.500
                100.00
                       TOTAL
BALANCE GENERAL DEL MOLINO
Entradas - Salidas
A = B + C + D
                              Balance para aceite
Balance para basura
B = 0.917 Ton/h
                               3.250 - C"+ 0.14 D.
                        C - 16.667 - 0.917 - D
                        C - 15.750 - D
                        3.250 = 0.14 D + 15.750 - D
C = 5.750 + 14.535 D = (3.250 - 15.750) / (0.14 - 1)
C = 1.215 Ton/h D = 14.535 Ton/h
aceite = 0.14 D = 2.035 Ton/h
3.250 = 1.215 + y
y = 2.035 \text{ Ton/h}
                         ---> aceite 1.215 Ton/h
```

```
fibra 12.500 : D
aceite 3.250 --->: MOUINO :-->fibra 12.500
basura 0.917 A : : aceite 14.000

16.667 Ton/h pasta 16.500 Ton/h
```

## TT EVTRACTOR

| Datos: |              | <b>x</b> | en en est | concepto         | cantidad | unidad         |
|--------|--------------|----------|-----------|------------------|----------|----------------|
|        | HEXANO<br>\> | 100      | .00       | hexano           |          | Ton/h          |
|        | A<br>PASTA   |          |           |                  |          |                |
|        | B            | . 14     | .00       | aceite<br>fibra  |          | Ton/h<br>Ton/h |
|        |              | 的鐵路也     | A 1846    | TOTAL            | 14.535   | Ton/h          |
|        | HISCELA<br>C | 313625   | .00       | aceite<br>hexano | 2.035    | Ton/h<br>Ton/h |
|        |              | ::       |           | TOTAL            | <b>C</b> | Ton/h          |
|        | HARC         | 1848 MB  | y         | fibra<br>hexano  | 12.500   | Ton/h<br>Ton/h |
|        |              |          |           |                  |          | Ton/h          |

### BALANCE GENERAL DEL EXTRACTOR

A + B = C + D

Como la relación de hexano/pasta es uno a uno, tenemos:

A - B

- 14.535 Tn/h

Balances parciales

hexano: aceite

 $14.535 = 0.75 \text{ C} + x \cdot D = 0.25 \text{ C}$ 

C = 8.14 Ton/h

hexano en miscela completa

z = 0.75 \* C = 0.75 \* 8.14

z = 6.105

```
hexano en marc:

14.535 - 6.105 - w - 8.43

D = w + 12.500

D = 8.43 + 12.500

D = 20.93 Tn/h

Y como w = x D, tenemos que:

x + y = 100 x

x = 8.43/20.93 * 100

x = 40.28 x

y = 100 - 40.28

y = 59.72 x

Comprobando:

14.535 = 0.75 * 8.14 + 0.4028 * 20.93
```

14.535 = 14.535

hexano 14.535 Ton/h : EX - :---> aceite 2.035

| A : TRAC-: hexano 6.105

fibra 12.500 B : misc.completa 8.140 Ton/h
aceite 2.035 ----> :

pasta ----> fibra 12.500
hexano 8.430

.. 15 -

marc 20.930 Ton/h

## III DESOLVENTIZADOR TOSTADOR

| Datos:  |       |             | <b>7 %</b> 1.15. | conc         | epto | cantidad        | unidad         |
|---------|-------|-------------|------------------|--------------|------|-----------------|----------------|
|         | MARC  |             |                  |              |      |                 |                |
| ENTRAD. | ۸     |             | 59.7<br>40.2     | 2 f1<br>8 he |      | 12.500<br>8.430 | Ton/h<br>Ton/h |
|         | AGUA  |             |                  |              |      | 20.930          | n (più alteri  |
|         | В     | ><br>SCRUBB |                  | 0 ag         |      |                 | Ton/h          |
| SALIDA- |       |             |                  | he<br>ag     |      | 8.430<br>z      | Ton/h<br>Ton/h |
|         | PASTA |             |                  | 0 . то       |      | C<br>12.500     | Ton/h Ton/h    |
|         | D     |             | 13.0             |              |      | 12.300<br>q     | Ton/h          |
|         |       |             | 100.0            | O TO         | TAL  | D               | Ton/h          |

BALANCE GENERAL DEL D.T.

A + B = C + D

En el apéndice A encontramos para una temperatura de vapores hexano-agua a 75 C, la siguiente relación:

en el scrubber tenemos:

Por lo tanto:

$$x = 85.00 \% e y = 15.00 \%$$

Balances parciales:

$$B = 0.15 C + .0.13 D$$

substituyendo en la ecuación de balance general

Resolviendo estas dos Gltimas ecuaciones tendremos

D. = 14:368 - Ton/h

Para el cálculo de pitendremos:

Y como q = 0.13 D ====> q = 1.868 Ton/h 

|               |      | 2.3    |          | 1            |       | >     |       |      | c (SA) | and only on |        | 40.00 |          |     |     |
|---------------|------|--------|----------|--------------|-------|-------|-------|------|--------|-------------|--------|-------|----------|-----|-----|
|               | 温管法  |        | 5.57%    |              | 10    |       |       |      |        | hexa        | 1      | 2     | n ·      |     |     |
| fibra         | 1.5  | E 11 A |          |              |       |       |       |      |        |             |        |       |          | •   | ٠.  |
| TIDES         |      |        | 397      | •            |       |       |       |      |        | agua        | a file |       | •        | 300 |     |
| hexar         | נס ט | ,430   | 2555     | 73.77        | , 7 : | D.    | T     |      |        |             |        |       | <u>-</u> |     | _   |
|               | 2000 |        | 国际的      |              |       |       | (3)   | vap  | o re a | D.T         | 111    | 9.91  | B T      | on/ | h   |
| DAFC          | 20.  | .930   | Ton      | /h 🦠         | ું ક  | 3.353 | 200   | (12) | D 1963 |             |        | 100   |          |     | . • |
| أ علي سراءً أ |      | 8868   | \$ 10 to | <b>ு B</b> ₹ |       | 4.00  |       |      |        | fibr        |        |       |          |     | í.  |
| agua          | 3.3  | 56 T   | on/h     |              | · > : |       | 763.7 | 2.0  |        | agua        |        | 1.86  | 8        |     |     |
|               |      |        | 2019     | 98 ( See     |       |       |       | 化辛烷  |        |             | 1.     |       | _ ``     |     | ٠.  |
|               | 11.7 |        |          |              | 33    | 4 AZ  | 8     |      |        |             |        | 4.36  | А. Т     | nn/ | h   |

| Datos:  | z concepto cantidad unidad |  |
|---------|----------------------------|--|
|         |                            |  |
|         | COMPLETA                   |  |
| ENTRADA |                            |  |
| A       | 75.00 hexano 6.105 Ton/h   |  |
|         |                            |  |
|         | `100.00 TOTAL 8.140 Ton/h  |  |

|            | UPVINA                | 2                          | concepto      | cantidad                                          | bebinu i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-----------------------|----------------------------|---------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SALIDAS    | HEXANO                | 100.00                     | hexano        | В                                                 | Ton/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0          | В                     |                            |               |                                                   | -0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tattak gi. |                       |                            |               | rojeva (1985) – se rij<br>Politika simple sektima | Wing a bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (          | piscela               | 60 00                      | aceite        | 2 035                                             | Ton/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | c                     |                            | hexano        | 2.033<br>X                                        | Ton/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                       |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       | 100.00                     | TOTAL         |                                                   | Ton/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                       |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BALANCE    | GENERAL.              | EVAPORADO                  | R/I           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 透出透镜                  |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       | Α                          | B +C          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Balances   | parcial               |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hexano:    |                       | 6                          | .105 - B      | + 0.4                                             | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                       |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| aceite:    |                       | hara da a d <b>a</b>       | .035 - 0      | .6 C                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       | c -                        | 3.391 T       | on/h                                              | in the second of |
|            |                       | Supplied we the            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| En donde   |                       |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       |                            | 0.4 C         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       |                            |               | nik parinti                                       | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | <b>x</b> ₩            | 0.4 * 3.                   | 391 - 1.      | 356 Ton/                                          | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Y          |                       |                            |               |                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · -        |                       |                            |               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | E                     | 6.10                       | 5 - 0.4 *     | 3.391                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | in the second section | B =                        | 4.749 Ton     | /b                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       |                            |               | ABINA SA SALA                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | . January 1           | 。1986年1987年                |               | e gun inn.<br>A Sye in 1 By it jill               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| aceite 2   | N35 A                 |                            | B             | exano 4.7                                         | 48 Tan/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| hexano 6   | .105                  | >: EVAPOR                  | A TEST TO THE | undito vii                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       | 7 <b>*</b> 57 <u>10 20</u> | : C           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.         | 140 Ton/h             | DOR                        | :>            | ceite 2.0:<br>1.3:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       | i                          |               | 1                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                       |                            |               | 3.3                                               | 91 Ton/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# V EVAPORADOR

| Datos:              | <b>x</b>                     | concepto | centidad unidad            |
|---------------------|------------------------------|----------|----------------------------|
| MISCELA<br>ENTRADAA | COMPLETA<br>> 60.00<br>40.00 |          | 2.035 Ton/h<br>1.356 Ton/h |
|                     | Prince.                      |          | 3.391 Ton/h                |
| HEXANO<br>SALIDASB  |                              |          | cantidad unidad<br>B Ton/h |
| MISCELA<br>C        |                              |          | 2.035 Ton/h<br>x Ton/h     |
|                     | 100.00                       | TOTAL    | C Ton/h                    |

# BALANCE GENERAL EVAPORADOR I

A = B + C

Balances parciales:

hexano: 1.356 = B + 0.05 C

aceite: 2.035 = 0.95 C

C = 2.142 Ton/h

En donde

v = 0 05 C

x = 0.05 \* 2.142 = 0.107 Ton/h

Y

B = 1.356 - 0.05 \* 2.142

B = 1.249 Ton/h

Los balances de los condensadores, no es necesario ejemplificarlo puesto que:

# ENTRADAS - SALIDAS

Como los cálculos se vuelven rutinarios, se utilizó una hoja electrónica para facilitar esta tarea. Así mismo, se aprovechó dicha hoja para efectuar el balance de energía con la ecuación de la primera ley de la termodinámica para procesos de flujo en estado estacionario uniforme, mencionada anteriormente.

# BALANCE DE ENERGIA

Con los balances de materia que se efectuaron, se realizó el balance de energía a partir del Evaporador I, de la manera siguiente:

I CALOR PROPORCIONADO POR LOS VAPORES DEL D.T. EN EL EVAPORADOR I

X concepto cantidad unidad

| . VAP. SCRUB | BER<br>85.00 hex | ANO 8.4 | 30 Ton/h   |
|--------------|------------------|---------|------------|
| [ T = 75 C ] | 15.00 agu        | a 1.4   | 88 Ton/h   |
|              | 100.00 TOT       | AL 9.9  | 18 Ton/h   |
| COND. SCRU   | 85.00 he         | kano B  | 430 Tan/h  |
| [ T = 69 C ] | 15.00 ag         | ua l    | 488 Ton/h  |
|              | 100.00 To        | TAL 9.  | 918. Ton/h |

La temperatura de salída de los condensados que salen del primer evaporador, se tomó como 69 C, ya que en el peor de los casos, será la temperatura de condensación del hexano, que es exactamente los 69 C supuestos.

Con los datos anteriores y con los datos de las tablas del apéndice B, tenemos:

Q 🕶 AH

Q = mhexano (Hvapor - Hliquido)hexano +
Kg/h \* Kcal/Kg

+ magua (Hvapor - Hliquido)agua:

+ Kg/h \* Kcs1/Kg

Q = 8430 (38.93 - 121.3) + 1488 (68.93 - 629.3)

Q = - 1 528 210 Kca1/h

El signo negativo nos indica la cantidad de calor que nos puede proporcionar estos vapores.

II CALOR NECESARIA PARA CONCENTRAR LA MISCELA COMPLETA EN EL EVAPORADOR I

Para saber la cantidad de calor que necesitamos para concentrar la miscela completa en el Evaporador I tenemos:

| NWCOB:                                                                                                        |         | concepto   | Cauricse. | unicac            |
|---------------------------------------------------------------------------------------------------------------|---------|------------|-----------|-------------------|
|                                                                                                               |         |            |           |                   |
|                                                                                                               |         |            |           | 유명하다 보다           |
| MISCELA CO                                                                                                    |         |            |           |                   |
| ENTRADA>                                                                                                      | . 25.00 | , accite   | .,2.035   | Ton/h             |
| [ T = 45 C ]                                                                                                  | 75.00   | hexano     | 6.105     | Ton/h             |
| 어디 이 그의 바이 시간 시간                                                                                              |         |            |           |                   |
| The second of the second                                                                                      | 100.00  | TOTAL      | 8.140     | . Ton/h           |
|                                                                                                               |         | 传入人员 经货运   |           |                   |
| HISCELA                                                                                                       |         | 연락 [경구 45] |           |                   |
| SALIDA>                                                                                                       | 60.00   | aceite     | 2.035     | Ton/h             |
| [ T = 53 C ]                                                                                                  | 40.00   | hexano     | 1.356     | Ton/h             |
| er i de la companya |         |            |           |                   |
|                                                                                                               | 100.00  | TOTAL      | 3.391     | Ton/h             |
| HEXANO                                                                                                        |         |            |           | The second second |
| >                                                                                                             | 100.00  | hexano     | 4.749     | Ton/h             |
| · [ T = 53 C ]                                                                                                |         |            |           |                   |

La temperatura de salida de la miscela completa en el extractor es de 45 C y la temperatura de ebullición a 15 " Hg de vacio, segun el apendica C es 53 C. Como el Evaporador es un sistema continuo y guarda estado estacionario; por lo que está en equilibrio, y lo más probable es que la temperatura del hexano a la salida sea de 53 C. Con los datos anteriores y leyendo las entalpias en el apéndice B tenemos:

# HA = C

- Q = maceite(W2aceite Hlaceite)liq + mhexano(H2hexano-- H1hexano)liq +mhexano vapor \* AHevaporación
- Q = 2305\*(24.51-20.71) + 6105\*(41.94-38.93) + Kg/h \* Kcal/Kg + Kg/h \* Kcal/Kg + 4749\*(118.78-38.93) + Kg/h \* Kcal/Kg +
- 0 = 405 317 Kcal/h

O sea que necesitamos 405 117 Kcal/h para concentrar la miscela completa del 25 % al 60 %. Para saber la relación de que cantidad de calor aprovecharemos de los vapores del D.T., haremos lo siguiente:

Esto quiere decir que solo estaremos aprovechando el 26.52 % del calor total de los vapores del D.T.

Como dijimos anteriormente, tanto el análisis de materia como el balance de energía, se yuelven muy rutinarios, por los que se decidió hacer un modelo mntemático para cada uno de los equipos, para los dos balances en cuestión. A continuación se proporcionan dichos modelos que serán efectuados por una hoja electronica.

MODELO MATEMATICO DEL BALANCE DE MATERIA Y ENERGIA PARA EVAPORACION

- \* Calor proporcionado por los vapores del D.T.
- Q = milhex(lihex liq lihex vap) + magua(liagua liq -
  - Hagua vap)
- \* Calor necesario para concentrar la miscela completa, de un porcentajo X a otro Y en un evaporador.
- Q = maceice(H2ace. Hlace.) + mhex(H2hexliq Hlhexliq) + mhexano evap \* AHvap
- \* Diferencia dtil de temperaturas en un evaporador. (Ref. 9)
- ATGril Toondonsados Tebullición de la solución
- \* Calculo del frea en un evaporador (Ref. 9)
- $\Lambda = Q / (U ATGt11)$

en donde:

- U = 260 Kcal/(h m^2 C) para el evaporador I (Ref. 11)
- U = 113 Kcal/(h/m<sup>2</sup>2 C) para el evaporador II y para el evaporador principal. (Ref. 11)
- \* Calor necesario quitar en un condensador
- Q mhexano \* AHcondensacion
- \* Diferencia media logaritmica de Temperaturas. (Ref. 7)
- ATm = (T1-t2) (T2-t1)/(1n((T1-t2)/(T2-t1)))
- \* Area de intercambio de calor necesaria en condensador. (Ref. 7)
- A = Q / (U ATm)

## en donde

- U = 730 Kcal/(h m^2 C) para el condensador del evaporador I
  (Ref. 11)
- U = 365 Kcal/(h m^2 C) para el condensador del evaporador II/ para el condensador principal:
- \* Cantidad de agua necesaria para enfriar en el condensador. (Ref. 6)
- m = Q / (Cpagua \* (Tagua salida Tagua entrada))
- en donde Cp del agua se considera igual a 1 Kcal/Kg C (Ref 3)
- \* Calor necesario para calentar la miscela en el intercambiador de placas A.P.V.
- Q = mhex(H2hexliq-H1hexliq)+maceire(H2aceire-H1aceire)
- \* Calor proporcionado por el aceite proveniente del stripper en el intercambiador de placas A.P.V.
- Q = maceite (N2aceite N1aceite)

# NOMENCLATURA:

- Q = Calor en Kcal/h
- m = Gasto másico en Kg/h
- Hl = Entalpia a temperatura de entrada en Kcal/Kg
- H2 Entalpia a temperatura de salida en Kcal/Kg
- Ti = Temperatura de entrada en grados C
- T2 = Temperatura de salida en grados C
- A = Area en m^2

Para determinar el costo de vapor se calculó como sigue:

BASE 200 000 Kg vapor / dfa

```
DATOS:
```

Tratamiento Químico \$ 22 600 / día

Consumos:

Combustoleo = 17 mm3 / día

Consideraciones:

1 Kg agua = 1.Kg de vapor No existe retorno de condensados No se hacen purgas Densidad del agua 1 Kg / 1

# Cálculos:

# Agua:

200 000 Kgagua/dfa \* 1 1/Kg \* 1 m^3/1000 1 \*.145 \$/m^3 - \$ 29 000 / dfa

# Combustible:

 $17 m^3/dfa * 42 870 $/m^3 = $ 728 790 / dfa$ 

\$ vapor/dfa = 29 000 + 728 790 + 22 600 =

→ \$ 728 390 / dfa

\$ 728 390/dfa \* 1 dfa/200 000 Kg vapor =

\$ 3.9020 / Kg vapor

Este cálculo del costo de vapor nos servirá para el análisis de costos que se hará más adelante.

## BALANCE DE EVAPORACION CALCULADO POR UNA HOJA ELECTRONICA

# Molino: XXXX

| ENERGIA                    |           |        | H A T E R         | I A     |         |        |
|----------------------------|-----------|--------|-------------------|---------|---------|--------|
| EQUIPO                     | ENTRADA S | SALTDA | SMILLA>           |         | SOYA    |        |
|                            |           |        | Molienda Ton/h    |         | 16.667  |        |
| D.T.                       |           |        | Rendimientos:     |         |         |        |
|                            | •         |        | fibrn             |         | 75.00%  |        |
| Текрегавига выгс С         | 45        | 100    | accite            |         | 19.507  |        |
| Temperatura hexano vapor C | ******    | 75     | accite planta sol | ventes  | 14.00%  |        |
| Entalpios en Keal/kg       |           |        | agua en pasta exp |         | 8.00%   |        |
| hexano liquido             | ***       |        | agus en pasta fir |         | 13.007  |        |
| hexano vapor               | *****     |        | conc. miscela con |         | 25.007  |        |
| Temeratura vapor saturado  | 175       | *****  | conc. miscela EV  | -       | 60.00%  |        |
| Entalplas en Keal/kg       |           |        | conc. miscela EVA |         | 95.00%  |        |
| ngu llquida                |           | ***    | hexano/pasta en e |         | 100.00% |        |
| agua vapor                 | 662.1     | ****   | agun/hexeno del o |         | 17.65%  |        |
|                            |           |        | efici. vapores es | crubber | 100.00% |        |
| EVAFORADOR I               |           |        |                   |         |         |        |
| Temperatura miscela C      | 45        | 53     |                   |         |         |        |
| Entalpias en Kcal/kg       |           |        |                   |         |         |        |
| acelte                     | 20.71     |        | EQUIPO            | AURIUA  | Ton/h   | Z      |
| hexanə 11quido             | 24.38     | 28.96  |                   |         |         |        |
| hexano vapor               | 109.1     | 112.3  |                   |         |         |        |
|                            |           |        | ENTRADA           | fibra   | 12.500  | 86.00  |
| Temperatura hexano vapor ( | 75        | 69     | pasta             | acoite  | 2.035   | 14.00  |
| Entalplas en Keal/kg       |           |        |                   |         |         |        |
| hexano liquido             |           | 33.33  |                   |         | 14.535  | 100.00 |
| herano vapor               |           | 118.78 |                   | _       |         |        |
| agua 1fquida               |           | 68.93  |                   | hexano  | 14.535  | 100.00 |
| vara Aubor.                | 629.3     | 626.88 |                   |         |         |        |
|                            |           |        | SALIDA            |         |         |        |
|                            |           |        | miscela completa  | acoite  | 2.035   | 25.00  |
| COMDENSADOR I              |           |        |                   | perano  | 6.105   | 75.00  |
| Temperatura hexano C       | 53        | 53     |                   |         | 8.140   | 100.00 |
| Entalpias en Keal/kg       |           |        |                   |         |         |        |
| heano Muldo                | ***       |        | marc              | fibra   | 12.500  | 59.72  |
| hexano vapor               |           | ****   |                   | hexano  | 8.430   | 40.28  |
| Temperatura agua           | 30        | 35     |                   |         |         |        |
|                            |           |        |                   |         | 20.930  | 100.00 |
| A.P.V                      |           | ****   | ——D.Υ.            |         |         |        |

| Temperatura miscela       | 53    | 63     | EVTRADA                                   |              |        |          |
|---------------------------|-------|--------|-------------------------------------------|--------------|--------|----------|
| Entalpias en Kcal/kg      |       |        | marc                                      | fibra        | 12.500 | 59.72    |
| accite                    | 24.51 | 29.32  |                                           | hexano       | 8.430  | 40.28    |
| herano Hquido             | 28.96 | 34.78  |                                           |              |        |          |
| hosma vapor               | 112.3 | 116.3  |                                           |              | 20.930 | 100.00   |
| Temperatura aceite stripe |       | 53     | Vapor de la                               |              |        |          |
| Entalpias en Kal/kg       |       |        | caldera                                   | vapor        | 3,356  | 100.00   |
| nosite                    | 47.64 | 24.51  | -                                         |              |        |          |
|                           |       |        |                                           |              |        |          |
| EVAPORADOR II             |       |        | SALIDA                                    |              |        |          |
|                           |       |        | Vapores                                   | hexano       | 8,430  | 85.00    |
| Temperatura miscela C     | 63    | 95     | •                                         | EUZUS        | 1.483  | 15.00    |
| Entalpias en Keal/kg      |       |        |                                           | •            |        |          |
| aceite                    | 29.32 | 45.11  |                                           |              | 9.918  | 100.00   |
| hexano Mquido             | 34.78 | 54.31  | Calor proporcionado                       | )            |        |          |
| hexana vapor              | 116.3 | 129.7  | por vapores en Kcal                       | Λh           | -      | -1533112 |
| -                         |       |        | • •                                       |              |        |          |
| Temperatura vapor de agua | 133   | 133    | pasta final                               | fibra        | 12.500 | 87.00    |
| Entalpias en Keal/kg      | •     |        | -                                         | agua         | 1.868  | 13.00    |
| agus liquido              | ****  | 133.46 |                                           | _            |        |          |
| адна упров                | ****  | 650.2  |                                           |              | 14.368 | 100.00   |
|                           |       |        |                                           |              |        |          |
|                           |       |        | EVAPORADOR I                              |              |        |          |
| CONDENSADOR II            | ***   |        | ENTEADA                                   |              |        |          |
|                           |       |        | misorla completa                          | acelte       | 2.035  | 25.00    |
| Temperatura heumo C       | 95    | 95     |                                           | hexaro       | 6.105  | 75.00    |
| Entalpias en Kcal/kg      |       |        |                                           |              |        |          |
| hexano llquido            | ****  | 129.7  |                                           |              | 8.140  | 100.00   |
| hexano vapor              | 54.31 | ***    |                                           |              |        |          |
| Temperatura agua          | . 30  | 35     | SALIDA                                    |              |        |          |
|                           |       |        | miscela                                   | aceite       | 2,035  | 60.00    |
|                           |       |        |                                           | hexano       | 1.357  | 40.00    |
| •                         |       |        |                                           |              |        |          |
| •                         |       |        |                                           |              | 3.391  | 100.00   |
|                           |       |        |                                           | _            |        |          |
|                           |       |        | Vapor                                     | hecino       | 4.748  | 100.00   |
|                           |       |        |                                           |              |        |          |
|                           |       |        | Calor para conc. de                       |              |        | 431395   |
| •                         |       |        | 20% al 60% en Kenl,                       |              |        | 28.14%   |
|                           |       |        | Relación de calor e<br>Diferencia úgil de |              |        | 16       |
|                           |       |        | Area del equipo en                        |              | mas c  | 104      |
| •                         | •     |        | Area del equipo en                        | m 2          |        | 104      |
|                           |       |        |                                           | t CA         |        |          |
|                           |       |        | EYTRADA                                   | W 4          |        |          |
|                           |       |        | Vapor                                     | hexano       | 4.748  | 100.00   |
| •                         |       |        | valor                                     | (STATE)      | 4./40  | .00.00   |
|                           |       |        |                                           |              |        |          |
|                           |       |        | SALLA                                     |              |        |          |
|                           |       |        | líquido                                   | hexano       | 4.748  | 100.00   |
|                           |       |        | Tilares                                   | A RESPUBLIES | 4.170  | 100.00   |

|  | Calor por resovo<br>Diferencia media    |                      |                | 395703         |
|--|-----------------------------------------|----------------------|----------------|----------------|
|  | de temperaturas<br>Area del condens     | en grados C          |                | 20,398<br>27   |
|  | yana bata tempone                       |                      | r en Kg/h      |                |
|  | -A.P.V.                                 |                      |                |                |
|  | EVIRADA                                 |                      |                |                |
|  | nisoda                                  | ncelte<br>hexano     | 2.035<br>1.357 | 60.00<br>40.00 |
|  |                                         |                      | 3.391          | 100.00         |
|  | ŞALTDA                                  |                      |                | •              |
|  | tisce la                                | aceite               | 2.035          | 60,00          |
|  |                                         | hexano               | 1.357          | 40.00          |
|  | Calor para calent                       |                      | 3.391          | 100.00         |
|  | 15608                                   |                      |                |                |
|  | Calor proporcion:<br>por el aceite en   |                      |                | -47067         |
|  | Relación de calor                       |                      | v.             | 33.167         |
|  | =EVAPORAVOR II<br>EVIRADA               |                      |                |                |
|  | miscela                                 | aceite               | 2,035          | , 60,00        |
|  |                                         | hexano               | 1.357          | 40,00          |
|  |                                         |                      | 3.391          | 100.00         |
|  | SALIDA                                  |                      |                |                |
|  | miscela                                 | aceite               | 2.035          | 95.00          |
|  |                                         | hexano               | 0.107          | 5.00           |
|  |                                         |                      | 2.142          | 100.00         |
|  | vapor                                   | hexano               | 1.249          | 100.00         |
|  | Calor para conc.                        |                      |                |                |
|  | 60% al 95% en Kea                       |                      | _              | 128422         |
|  | Diferencia Gtil d<br>Area del equipo es | e temperatu:<br>nm^2 | ras C          | 38.00<br>30    |
|  |                                         |                      |                |                |

|                      | vapor                                                                                          | hexano                          | 1.249          | 100.00                         |
|----------------------|------------------------------------------------------------------------------------------------|---------------------------------|----------------|--------------------------------|
|                      | SALIDA<br>11quido                                                                              | hereino                         | 1.249          | 100.00                         |
| Dife<br>tent<br>Area | or por remover o<br>erencia media lo<br>ocraturna en gra<br>del coodeniado<br>a para remover o | garitmica<br>dos C<br>er en m²2 | en Kg/h        | 104132<br>62.467<br>5<br>20826 |
| PROC                 | eso de evaporac                                                                                | TON ACTUAL                      | ,              |                                |
| EVAP                 | ORADOR PRESCLAS                                                                                | ,                               |                |                                |
| al                   | EMRADA<br>scela completa                                                                       | acelte .<br>hexmo               | 2.035<br>6.105 | 25.00<br>75.00                 |
|                      |                                                                                                |                                 | 8.140          | 100.00                         |
|                      | SALIDA<br>miscela                                                                              | accite<br>hexano                | 2.035          | 95.00                          |
|                      |                                                                                                |                                 | 2.142          | 100.00                         |
|                      | vapor                                                                                          | hestans                         | 5.998          | 100.00                         |
| 20%' .<br>Dife       | r para conc. de<br>al 95% en Kcal/<br>rencia útil de<br>del equipo en:                         | h<br>temperatur:                | as C.          | 854026<br>38.00<br>201         |
| <u></u> 0000         | ENSATOR PRINCIP<br>ENTRADA<br>Vapor                                                            | AL<br>hexano                    | 5.998          | 100.00                         |
|                      | SALIDA<br>Líquido                                                                              | hexano                          | 5.978          | 100.00                         |
|                      | r por remover es                                                                               |                                 |                | 452155                         |
| de ti<br>Area        | rencia media lo<br>emperaturas en<br>del condensado<br>para remover es                         | grados C<br>r en 13*2           | en Kg∕h        | 62.467<br>20<br>90431          |

# BALANCE DE EVAPORACION CALCULADO POR UNA HOJA ELECTRONICA

# Molino: XXXX

| E N E R G I A                                    |              |           | H A T E R                   | I A     |                   |        |
|--------------------------------------------------|--------------|-----------|-----------------------------|---------|-------------------|--------|
| EQUIPO                                           | entrada      | SALIDA    | SMILLA —><br>Molienda Ton/h | c       | A N O L<br>11.875 | A      |
| D.T.                                             | •            |           | Rendimientas:               |         |                   |        |
| _                                                |              |           | fibra                       |         | 56.50%            |        |
| Temperatura mire C<br>Temperatura hexano vapor C | 45<br>****** | 100<br>75 | accite<br>accite planta sol | u.otod  | 39.81%<br>18.00%  |        |
| Entalplas en Kcal/kg                             |              | ,,,       | agus en pasta exp           |         | 8.00%             |        |
|                                                  | ****         | 41.94     | agus en pasta fin           |         | 11.007            |        |
|                                                  | *****        | 121.3     | conc. miscela con           |         | 25.00%            |        |
| Temperatura vapor saturado                       | 175          | *****     | conc. miscela EVA           | PI      | 60.OX             | •      |
| Entalpias en Kcal/kg                             |              |           | conc. miscela EVA           | PII     | 95,00%            |        |
| amu liquida                                      |              | ****      | hexano/pasta en e           |         | 100.00%           |        |
| agus vapot                                       | 662.1        | ******    | agus/hexano del e           |         | 17.65%            |        |
|                                                  |              |           | efici. vapores es           | crubber | 100.00%           |        |
| EVAPORADOR I                                     |              |           |                             |         |                   | •      |
| Temperatura miscela C                            | 45           | 53        |                             |         |                   |        |
| Entalpias en Kcal/kg                             |              |           |                             |         |                   |        |
| nœite                                            | 20.71        | 24.5l     | EQUIPO                      | MATERIA | Tan/h             | *      |
| hexano Hquido                                    | 24.38        | 28.96     |                             |         |                   |        |
| <u> Бекапо vapor</u>                             | 109.1        | 112.3 -   |                             |         |                   |        |
|                                                  |              |           | EVIRADA                     | fibra   | 6.709             | 82.00  |
| Temperatura hexano vapor C                       | 75           | 69        | pasta                       | accite  | 1.473             | 18.00  |
| Entalpias en Keal/kg<br>hexano liquido           | A1 05        | 38.33     |                             |         | 8.182             | 100.00 |
| hexana vapor                                     |              | 118.78    |                             |         | 0.10.             | 100.00 |
| agu 1fguida                                      |              | 68.93     |                             | hexano  | 8,182             | 100.00 |
| agus vapor                                       |              | 626.88    |                             | •       |                   |        |
| -                                                |              |           | SALIDA                      |         |                   |        |
|                                                  | •            |           | misce la completa           | acelte  | 1.473             | 25.00  |
| CONDENSADOR I                                    |              |           |                             | hextino | 4.418             | 75.00  |
| Temperatura hexano C                             | 53           | 53        |                             |         | 5.691             | 100.00 |
| Entalpias en Keal/kg                             | *****        |           | _                           | fibra   | 6.709             | 64.06  |
| hecino Hquido<br>hecino vapar                    |              | ****      | mife                        | hexano  | 3.764             | 35.94  |
| Temperatura agua                                 | 30           | 35        |                             | لفسمندر | 3,104             |        |
| _                                                |              | 33        |                             |         | 10.473            | 100.00 |
| A.P.V.                                           |              | -         | —D.T.                       |         |                   |        |
| Temperatura miscela                              | 53           | 63        | EVIRADA                     | •       |                   |        |
| Entalpias en Kcal/kg                             |              |           | mare                        | fibra   | 6.709             | 64.06  |

| accite                                  | 24.5l | 29.32 |                     | hereno           | 3.764   | 35.94    |
|-----------------------------------------|-------|-------|---------------------|------------------|---------|----------|
| hixano liquido                          | 28.96 | 34.78 | ·                   |                  | ******* |          |
| histano vapor                           | 112.3 | 116.3 |                     |                  | 10.473  | 100.00   |
| Temperatura accite striper              | 100   | 53    | Vapor de la         |                  |         |          |
| Entalpias en Kal/kg                     |       |       | caldera             | vapor            | 1.493   | 100.00   |
| accite                                  | 47.64 | 24.51 |                     | •                |         |          |
| •                                       |       |       |                     |                  |         |          |
| EVAPORADOR II                           |       |       | SALIDA              |                  |         |          |
|                                         |       |       | vapores             | hexano           | 3.764   | 85.∞     |
| Temperatura miscela C                   | 63    | 95    |                     | ស្សារន           | 0.664   | 15.00    |
| Entalpias en Kcal/kg                    |       |       |                     |                  | ******  |          |
| acelte                                  | 29.32 | 45.11 |                     |                  | 4.428   | 100.00   |
| hexano 1fquido                          | 34.78 | 54.31 | Calor proporcioxado | , '              |         |          |
| hexano vapor                            | 116.3 | 129.7 | por vapores en Kcal | /h               |         | -684479  |
|                                         |       |       |                     |                  |         |          |
| Temperatura vapor de agua               | 133   | 133   | pasta final         | fibra            | 6.709   | 89.00    |
| Entalpias en Kcal/kg                    |       |       | •                   | ugua             | 0.829   | 11.00    |
| agua 11quido                            | ***   |       |                     |                  |         |          |
| agua Vapor                              | ***** | 650.2 |                     |                  | .7.539  | 100.00   |
|                                         |       |       |                     |                  |         |          |
|                                         |       |       | EVAPORADOR I        |                  |         |          |
| CONDENSADOR II                          |       |       | ENTRADA             |                  |         |          |
|                                         |       |       | miscela completa    | aceite           | 1.473   | 25.00    |
| Temperatura hexano C                    | 95    | 95    | •                   | hexano           | 4.418   | 75.00    |
| Entalpias en Keal/kg                    |       |       |                     |                  |         |          |
| hexano Hquido                           | ***** |       |                     |                  | 5.891   | 100.00   |
| tuscano vapor                           | 54.31 | ****  |                     |                  |         |          |
| Temperatura agua                        | 30    | 35    | SALIDA              |                  |         |          |
| •                                       |       |       | misonla             | acelte           | 1.473   | 60.00    |
| •                                       |       |       |                     | hexano           | 0.932   | 40.00    |
|                                         |       |       | •                   |                  |         |          |
|                                         |       |       |                     |                  | 2.455   | 100.00   |
|                                         |       |       | •                   |                  |         |          |
|                                         |       |       | vapor               | hexano           | 3.437   | . 100.00 |
|                                         |       |       | •                   |                  |         |          |
|                                         |       |       | Calor para conc. de | l                |         |          |
|                                         |       |       | 20% al 60% en Kcal/ |                  |         | 312231   |
|                                         |       |       | Relacion de calor e | n el eva         | p. I    | 45.62%   |
|                                         |       |       | Diferencia útil de  | temperati        | rtas C  | 16       |
|                                         |       |       | Area del equipo en  | m <sup>-</sup> 2 |         | 75       |
| •                                       |       |       | - •                 |                  |         |          |
|                                         |       |       | OOKDENSADOR DEL EVA | PΙ               | •       |          |
|                                         |       |       | ETIPADA             |                  |         |          |
|                                         |       |       | vapor               | hexano           | 3.437   | 100.00   |
|                                         |       |       | <del>-</del>        |                  |         |          |
|                                         |       |       |                     |                  |         |          |
| •                                       |       |       | SALIDA              |                  |         |          |
| * * * * * * * * * * * * * * * * * * * * |       |       | 1fquido             | hexano           | 3.437   | 100.00   |
|                                         |       |       | •                   |                  |         |          |

•

|         | 286399                                                                                                         |                                                          |                                           |                                                                        |
|---------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|
|         | de temperaturas es                                                                                             |                                                          |                                           | 20.398                                                                 |
|         | Area del condensad                                                                                             |                                                          |                                           | 19                                                                     |
|         | Agua para remover                                                                                              | este calor                                               | en Kg/h                                   | 57280                                                                  |
| ****    | -a.p.v.<br>Entrada                                                                                             |                                                          |                                           |                                                                        |
|         | niscela                                                                                                        | acelte<br>hexano                                         | 1.473<br>0.932                            | 60.00<br>40.00                                                         |
|         | •                                                                                                              |                                                          | 2.455                                     | 100.00                                                                 |
|         | SALTDA                                                                                                         |                                                          |                                           |                                                                        |
|         | misce la                                                                                                       | aculto                                                   | 1.473                                     | 60.00                                                                  |
|         | •                                                                                                              | סמוטכול                                                  | 0.982                                     | 40.00                                                                  |
|         | Calor para calenta                                                                                             | 1 <b>-</b>                                               | 2.455                                     | 100.00                                                                 |
|         | la miscela en Keal<br>Calor proporcionas                                                                       | l/h                                                      |                                           | 12904                                                                  |
|         | por el aceite en l                                                                                             |                                                          |                                           | 34066                                                                  |
|         | Relación de calor                                                                                              | en el A.P.                                               | v.                                        | 37.887                                                                 |
|         |                                                                                                                |                                                          |                                           |                                                                        |
|         | -EVAPORADOR II<br>ENTRADA                                                                                      |                                                          |                                           |                                                                        |
| -       |                                                                                                                | nosite                                                   | 1.473                                     | ക.ത                                                                    |
|         | ENTRADA                                                                                                        | nosite<br>hexano                                         | 1.473<br>0.982                            | 60.00<br>40.00                                                         |
| Tipe-Di | ENTRADA                                                                                                        |                                                          |                                           |                                                                        |
| -       | ENTRADA                                                                                                        |                                                          | 0.982                                     | 40.00                                                                  |
| -       | ENIRAIM<br>Elso: la                                                                                            |                                                          | 0.982                                     | 40.00                                                                  |
| -       | ENTRADA<br>miscula<br>SALIDA                                                                                   | hexano                                                   | 2.455                                     | 100.00                                                                 |
| 3,31    | ENTRADA<br>miscula<br>SALIDA                                                                                   | hexano<br>accite                                         | 0.982<br>2.455                            | 40.00<br>100.00<br>95.00                                               |
| -       | ENTRADA<br>miscula<br>SALIDA                                                                                   | hexano<br>accite                                         | 0.982<br>2.455<br>1.473<br>0.078          | 40.00<br>100.00<br>95.00<br>5.00                                       |
| -       | ENTRADA<br>miscula<br>SALIDA<br>miscula                                                                        | accite hexano hexano del 1/h e temperatu                 | 2.455<br>1.473<br>0.078<br>1.550<br>0.904 | 40.00<br>100.00<br>95.00<br>5.00                                       |
|         | ENTRADA miscula  SALIDA miscula  Vapor  Calor para cone. 60% al 95% en Kon Diferencia úril d Area del equipo e | hexano  accite hexano  hexano  del 1/h e temperanu n m^2 | 2.455<br>1.473<br>0.078<br>1.550<br>0.904 | 40.00<br>100.00<br>95.00<br>5.00<br>100.00<br>100.00<br>92948<br>38.00 |
|         | ENRADA miscela  SALIDA miscela  vapor  Calor para conc. 60% al 95% en Kon Diferencia úril d Area del equipo e  | hexano  accite hexano  hexano  del 1/h e temperanu n m^2 | 2.455<br>1.473<br>0.078<br>1.550<br>0.904 | 40.00<br>100.00<br>95.00<br>5.00<br>100.00<br>100.00<br>92948<br>38.00 |

| SALIDA<br>Līqui <del>do</del>                                                            | hexano                   | 0.904          | 100.00         |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------|----------------|----------------|--|--|--|--|
| Calor por remover of Diferencia media 1                                                  | 75368                    |                |                |  |  |  |  |
| temperaturas en gra<br>Area del condensado                                               | ados C                   |                | 62.467<br>3    |  |  |  |  |
| Agua para remover e                                                                      |                          | en Kg∕h        |                |  |  |  |  |
| PROCESO DE EVAPORACION ACTUAL                                                            |                          |                |                |  |  |  |  |
| EVAPORADOR PRINCIA                                                                       | 4                        |                |                |  |  |  |  |
| EVIKADA<br>miscela completa                                                              | acrite<br>hexano         | 1,473          | 25.00<br>75.00 |  |  |  |  |
|                                                                                          |                          | 5.871          | 100.00         |  |  |  |  |
| SALIDA<br>misorla                                                                        | ncrite<br>hexmo          | 1.473<br>0.078 | 95,00<br>5.00  |  |  |  |  |
|                                                                                          |                          | 1.550          | 100.00         |  |  |  |  |
| vapor                                                                                    | herano                   | 4.341          | 100,00         |  |  |  |  |
| Calor para conc. de<br>20% al 95% en Kcal/<br>Diferencia útil de<br>Area del equipo en s | 625357<br>39.00<br>. 146 |                |                |  |  |  |  |
| ONDERSADOR PRINCIP                                                                       | 'AL                      |                |                |  |  |  |  |
| ETRADA<br>vapor                                                                          | hescuro                  | 4.341          | 100.00         |  |  |  |  |
| SALIDA<br>11quido                                                                        | hexano                   | 4.341          | 100.00         |  |  |  |  |
| Calor por remover e<br>Diferencia media lo                                               |                          | •              | 327257         |  |  |  |  |
| de temperaturas en<br>Area del condensado<br>Ajua para remuyer e                         | 62,467<br>14<br>65451    |                |                |  |  |  |  |

Con los datos obtenidos podemos entonces predecir el costo de los equipos que necesitaremos. Para tal efecto, se cotizó con varios proveedores, el equipo que se necesitará para este proyecto, dandonos lo siguiente:

## PROYECTO ECONOMIZADOR DE VAPOR PARA HOLINO XXXX MATERIALES NECESARIOS (precios a julio 1 de 1987)

|                                                      |            | \$ 84/ | UNIDAD | CANTIDAD | COSTO         | \$ нн |
|------------------------------------------------------|------------|--------|--------|----------|---------------|-------|
| EVAPORADOR<br>de 104 m^2                             | I          | 8 962  | 500    | 1        | 8 926         | 500   |
| TUBO ACERO<br>INOXIDABLE<br>DIAM 3/4 "<br>CAL. 16 BW |            | 16     |        | 1514     | 22 201        | 200   |
| TUBO ACERO<br>AL CARBON                              |            |        | 400    | 1314     | 23 371        | 300   |
| DIAM 1.5"<br>CED. 40                                 | m          | 10     | 038    | 130      | 1 304         | 940   |
| CODOS DE 9<br>DIAM 1.5"<br>CED. 40                   |            | 12     | 768    | 24       | 306           | 432   |
| VALVULAS D<br>COMPUERTA<br>DE 1.5"                   | •          | 839    | 300    | 8        | 6 714         | 400   |
| AISLANTE P<br>RA TUBERIA<br>DE 1.5" Y                |            |        | •      | •        |               |       |
| ESP. 1.5"                                            | ₽ .        | 6      | 878 .  | 80       | 550           | 240   |
| AISLANTE P<br>RA EQUIPO<br>FIBRA DE V                | de<br>I    |        |        |          | - 15 <i>1</i> |       |
| DRIO                                                 | <b>⊡^2</b> | 233    | 852    | 9        | 2 104         | 668   |
| BOMBA CENT<br>CON MOTOR<br>DE 5 H.P.                 |            | 2 888  | 346    | 1        | 2 888         | 346   |
| CONTROLADO<br>DE NIVEL                               |            | 2 435  | 000    | 2 .      | 4 870         | 000   |

CONCEPTO ' S MM/UNIDAD CANTIDAD COSTO S MM

VARIOS (PIN-TURA, ACCE-

SORLOS ELEC. ETC.)

2 594 885

53 687 711

INSTALACION E IMPREVISTOS 18 Z 63 351 499

#### RESUMEN

De acuerdo con los datos obtenidos podemos hacer un resumen comparativo de energia, con los balances obtenidos de las dos semillas pues como se recordara es el objetivo principal. Cabe aclarar que la semilla de canola es una semilla que está teniendo mucha demanda por su gran contenido de aceite, y en el molino donde se efectuó este trabajo, tenía programado la molienda de esta semilla, es por ello que se incorporó en este estudio. Las cantidades que aparecen entre parentesia, corresponden a valores que son "sin costo", esto quiere decir que es calor aprovechado por los equipos y no vapor vivo de la caldera. La unidad "\$ 000 ps/año" significa miles de pesos por año.

#### BALANCE DE ENERGIA

| •                                      | UNIDAD               | SOYA                | CANOLA           |
|----------------------------------------|----------------------|---------------------|------------------|
| Calidad de vapor<br>Eficiencia caldera | Kcal/Kg              | 540<br>60           | 540<br>60        |
| ACTUAL<br>Evaporador Principal         | Kcal/Kg<br>Tonvap/h  | 864026<br>2.667     | 625357<br>1.930  |
| TOTAL                                  |                      | 2.667               | 2.667            |
| SISTEMA ECONOMIZADOR                   |                      | COSTOC/(S)          | COSTOC/(S)       |
| EVAPORADOR I                           |                      | (431395)<br>(1.331) |                  |
| INT. PLACAS A.P.V.                     | Kcal/h 2007          | (15608)<br>(0.048)  | (12904)          |
| EVAPORADOR II                          | Kcal/h<br>Tonvap/h   | 128422              | 92948            |
| EYECTOR                                |                      | 0.077               | 0.077            |
| TOTAL (SIN COSTO) TOTAL CON COSTO      | Tonvap/h<br>Tonvap/h | (1.379)<br>0.473    | (1.004)<br>0.364 |
| AHORRO DE ENERGIA                      | Tonvap/h             | 2.194               | 1.566            |
| COSTO VAPOR<br>OPERACION POR ANO       | \$ Ps/Ton<br>Horas   | 3902<br>5360        | 3902<br>1416     |

|                                                                                      | UNIDAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOYA                                      |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| AHORRO VAPOR<br>AHORRO ESPERADO EN<br>CONSUMO DE HEXANO<br>0.5 1/Ton<br>COSTO HEXANO | 1/año                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45887 8653<br>44667 8407<br>244.53 244.53 |
| AHORRO ESPERADO POR<br>HEXANO                                                        | \$000 Pa/año                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10922 2056                                |
| RESUMEN AMORROS                                                                      | og former former om determine<br>The state of the state of t |                                           |
| DIRECTO VAPOR<br>INDIRECTO HEXANO                                                    | \$000 Ps/año<br>\$000 Ps/año                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45887 86653<br>10922 2056                 |
| SUB-TOTAL                                                                            | \$000 Ps/año                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56809 10709                               |
| TOTAL AHORROS                                                                        | \$000 Ps/año                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67 518-                                   |
| INVERSION DE CAPITAL                                                                 | \$000 Ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 352                                    |
| TIEMPO DE RECUPERA<br>CION CAPITAL.                                                  | айов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.938                                     |

Nota: Los precios son a Julio i de 1987.

#### CONCLUSION

aprovechamiento de los vapores del Desolventizador Tostador, transformando el sistema un solo evaporador por el sistema propuesto de evaporación con doble efecto, podemos observar que el ahorro de vapor es evidente, ya que con una inversion inicial de 63 millones de pesos, podemos ahorrar 67 millones de pesos anuales por concepto de combustible quemado en la caldera, esto es sí consideramos que los costos de los energéticos se mantionen constantes, lo cual no es cierto, por lo que la recuperación de capital de inversión, se hace en menos tiempo.

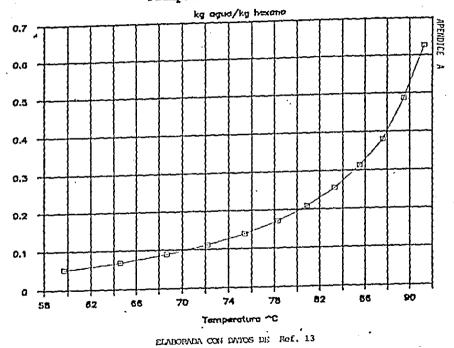
En otros molinos de oleaginosas, este ahorro puede ser diferente así como la inversión, por que será necesario realizar un estudio específico para cada caso en particular. Un dato que se puede proporcionar es el costo total del equipo que se necesita y es de 123 millones de pesos (precios a Julio 1 de 1987), teniendo en cuenta las condiciones de operación que se establecieron. Con estos valores podemos darnos idea de lo que se invertirá en una modificación de este proceso.

Otro punto importante en el aprovechamiento de la energia de los vapores del D.T. es el ahorro indirecto de hexano, pues las condiciones de operación del proceso actual son mucho más fuertes que en el sistema propuesto, ya que en los dos condensadores actuales, se está condensando vapores de agua mas hexano, lo que proporciona que la mayor parte del intercambto calorífico, se desperdicia en condensar agua y no hexano que es lo que realmente nos interesa. El hexano al no enfriarse rapidamente, genera presión en el sistema, aumentando por ende las perdidas por los arrestaflamas, uniones, estoperos, etc. Si se recuerda que en . un principio se dijo que los estandares para por solventes con plantas de extracción evaporador son de entre 3 a 7 litros de hexano por tonelada molida y que los ahorros esperados son de entre 0.5 a 2 litros por tonelada de semilla molida, pues bien, se tomó el limite inferior de ahorro esperado de hexano ya que no depende sólo del sistema propuesto, sino también de cómo se opera el equipo y lo que es más importante, es de que cómo se encuentre el equipo.

# ESTA TESIS NO DEBE SALIR BE LA BIBLIOTECA

#### BIBLIOGRAFIA

| (1)          | Badger y Banchero<br>INTRODUCCION A LA INGENIERIA QUIHICA<br>Mc Graw Hill México 1981                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| (2)          | Brow<br>INGENIERIA QUIMICA<br>Marin España 1965                                                                                         |
| (3)          | Daniel y Alberty Robert A. FISICO QUIMICA C.E.C.S.A México 1979                                                                         |
| (4)          | Erickson D./Pryde E./Brekke O./Mounts T./<br>Falb R.<br>MANUAL DE PROCESAMIENTO Y UTILIZACION DE<br>ACEITE DE SOYA<br>A.A.S México 1983 |
| ( <b>5</b> ) | Felder M. Richard/Rousseau Ronald W. PRINCIPIOS BASICOS DE LOS PROCESOS QUIMICOS El Hanual Moderno S.A Héxico 1981                      |
| (6)          | Himmmelblau M. David PRINCIPIOS Y CALCULOS BASICOS DE LA INGENIERIA QUINICA C.E.C.S.A México 1980                                       |
| (7)          | Holman J. P. TRANSFERENCIA DE CALOR C.E.C.S.A México 1980                                                                               |
| (8)          | Maron y Prutton<br>Fundamentos de Pisicoquimica<br>Limusa México 1980                                                                   |
| (9)          | Ocon/Tojo<br>PROBLEMAS DE INCENIERIA QUIMICA Tomo I<br>Aguilar España 1980                                                              |
| ( 10 )       | Perry y Chilton<br>HANUAL DEL INGENIERO QUIMICO<br>Mc Graw Hill México 1982                                                             |
| (11)         | Peters Max S./Timmerhaus Klaus D. PLANT DESIGN AND ECONOMICS FOR CHEMICAL ENGINEERS                                                     |


- ( 12 ) Smith/ Van Ness
  INTRODUCCION A LA TERMODINAMICA EN INGENIERIA
  QUIMICA
  Mc Graw Hill. México. 1982
  - 13 ) West Away C. R. & Loomis A. W. CAMERON HIDRAULIC DATA
    Ingensol Rand. U.S.A. 1977

# APENDICE A

RELACION DE TEMPERATURA DE SALIDA DE LOS VAPORES DEL D.T. CONTRA CANTIDAD DE AGUA Y HEXANO (Ref. 13)

|                    | ١g | agua/Kg | hexan            |
|--------------------|----|---------|------------------|
| Salida de gases °C |    |         |                  |
| 59.7               |    | 0.052   |                  |
| 64.6               |    | 0.069   | )                |
| 68.7               |    | 0.089   | <b>†</b> .       |
| 72.2               |    | 0.112   |                  |
| 75.4               |    | 0.139   |                  |
| 78.3               |    | 0.171   |                  |
| 80.9               |    | 0.209   | )                |
| 83.3               |    | 0.255   |                  |
| 85.5               |    | 0.313   |                  |
| 87.6               |    | 0.380   |                  |
| 89.5               | •  | 0.487   | <i>t</i> .       |
| 91.3               |    | 0.626   | •                |
|                    |    |         | and the state of |

Tomp. D.T. vc. composición



## APEDICE B

## TABLAS DE ENTALPIA PARA ACEUTE VECETAL

## CALCULADAS:

Cp = 0.448199499 + 5.05035179E-04 \* t + 8.82677947E-07 \* t \*2 (kcal/(kg.C)) p vap es despreciable.

Calor latente de vaporización no se calcula porque no kay evaporación

| Temperatura<br>de  | Presión<br>de              | ENTAL<br>(Kcal/ |                                       | Temperatura<br>de  | Presión<br>de       | ENTA!   |           |
|--------------------|----------------------------|-----------------|---------------------------------------|--------------------|---------------------|---------|-----------|
| Saturación<br>(°C) | Saturación<br>(atm)        | líquido         | vapor                                 | Saturación<br>(°C) | Saturación<br>(atm) | liquido | vapor     |
| 0                  |                            | 0.00            | _                                     | 105                | _                   | 50.19   | _         |
| 5                  | -                          | 2,25            | _                                     | 110                | -                   | 52.76   |           |
| 10                 |                            | 4.51            | -                                     | 115                | _                   | 55.34   | _         |
| 15                 | -                          | 6.78            | -                                     | 120                | , 🕳                 | 57.94   | . •       |
| 20                 | -                          | 9.07            | -                                     | 125                | -                   | 60.55   | -         |
| 25                 | _                          | 11.37           | -                                     | 130                |                     | 63.19   | -         |
| 30                 | -                          | 13.68           |                                       | 135                | -                   | 65 84   | -         |
| 35                 | -                          | 16.01           |                                       | 140                | . <b>-</b>          | 68.51   | <b></b> . |
| 40                 | ••                         | 18.35           | · -                                   | 145                |                     | 71.21   | -         |
| 45                 | ( <del>-</del>             | 20.71           | . <del>-</del>                        | 150                | · -                 | 73 92   | -         |
| 50                 | _                          | 23.08           | -                                     | 155                | ·                   | 76.65   |           |
| 55                 |                            | 25.47           | s. 5 🕳                                | 160                |                     | . 79.39 | _         |
| 60                 | - 1 ( <del>-</del> 1 1 1 1 | 27.87           | :                                     | 165                | _                   | 82.16   | ••        |
| 65                 | -                          | 30,28           | -                                     | 170                | _                   | 84.95   | -         |
| 70                 | <del>-</del> - 1 -         | 32.71           | <del>-</del>                          | 175                | -                   | 87.76   | -         |
| 75                 |                            | 35.16           |                                       | 180                | _                   | 90.59   | _         |
| 73<br>80           |                            | 37.63           | de Islan                              | 185                | _                   | 93.44   | _         |
| 85                 |                            | 40.11           | ##E                                   | 190                |                     | 96.31   |           |
| 90                 | 방의 조생각                     | 42.60           |                                       | 195                | _                   | 99.20   |           |
| 95                 |                            | 45.11           | _                                     | 200                | _                   | 102.11  |           |
| 100                | 어린 골속사                     | 47.64           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 400                | <del>-</del>        | 102011  |           |

#### APENDICE E

# TABLAS DE ENTALPIA PARA EL ACUA TUMADAS DE LAS TABLAS DE VAPOR (Ref. 9)

| Temperatura        | Presión             | ENTA      |       | Temperatura        | Præsión             |         | LPIA  |
|--------------------|---------------------|-----------|-------|--------------------|---------------------|---------|-------|
| de                 | de                  | (kcal/kg) |       | da                 | de                  | (kcal,  | /kg)  |
| Saturación<br>(°C) | Saturación<br>(stm) | liquido   | vapor | Saturación<br>(°C) | Saturación<br>(atm) | Liquido | vapor |
| 0                  | 0,00603             | 0.00      | 597.2 | 105                | 1.1922              | 105.08  | 640.7 |
| 5                  | 0.00860             | 5.03      | 599.4 | 110                | 1.4139              | 110.12  | 642.5 |
| 10                 | 0.01211             | 10.04     | 601.6 | - 115              | 1.6685              | 115.18  | 644.3 |
| 15                 | 0.01692             | 15.04     | 603.8 | 120                | 1.9594              | 120,30  | 646.0 |
| 20                 | 0.02306             | 20.03     | 606.0 | 125                | 2.2905              | 125.30  | 647.7 |
| 25                 | 0.03125             | 25.02     | 608.2 | 130                | 2.6658              | 130,40  | 649.3 |
| 30                 | 0.04186             | 30.00     | 610.4 | 135                | 3.0893              | 135.50  | 650.8 |
| 35                 | 0.05549             | 34.99     | 612.5 | 140                | 3.5665              | 140.60  | 652.5 |
| 40                 | 0.07278             | 39.98     | 614.7 | 145                | 4.1007              | 145.80  | 654.0 |
| 45                 | 0.09457             | 44.96     | 616.8 | 150                | 4.6979              | 150.90  | 655.5 |
| 50                 | 0.1217              | 49.95     | 619.0 | 155                | 5.3618              | 156.10  | 656.9 |
| 55                 | 0.1553              | 54.94     | 621.0 | 160                | 6.0993              | 161.30  | 658.3 |
| 60                 | 0.1966              | 59.94     | 623.2 | 165                | 6.9162              | 166,50  | 659.6 |
| 65                 | 0.2473              | 64.93     | 625.2 | 170                | 7.8163              | 171.70  | 660.9 |
| 70                 | 0.3075              | 69.93     | 627.3 | 175                | 8.8033              | 176,90  | 662.1 |
| 75                 | 0.3853              | 74.94     | 629.3 | 180                | 9.8962              | 182.20  | 663.2 |
| 80                 | 0.4674              | 79-95     | 631.3 | 185                | 11.0876             | 187.50  | 664.3 |
| 85                 | 0.5704              | 84.96     | 633.2 | 190                | 12.3883             | 192.80  | 665.3 |
| 90                 | 0.6919              | 89.98     | 635.1 | 195                | 13.8062             | 198.10  | 666.2 |
| 95                 | 0.8342              | 95.01     | 637 O | 200                | 15.3470             | 203,50  | 667.0 |
| 100                | 1.0000              | 100.04    | 638.9 |                    |                     |         |       |

## APENDICE B

## TABLAS DE ENTALPIA PARA FIBRA SECA

# CALCULADAS:

Cp = 0.35 (se considera escencialmente constante) (kcal/(kg.C)) p vap es despreciable Calor latente de vaporización no se calcula porque no hay evaporación

| Temperatura<br>de | Presión<br>de         | ENTAI<br>(Kenl/                         |                  | Temperatura<br>de | Presión<br>de | ENTA<br>(Kcal |       |
|-------------------|-----------------------|-----------------------------------------|------------------|-------------------|---------------|---------------|-------|
| Saturación        | Saturación            | 66lido                                  | vapor            | Saturación        | Saturación    |               | Vapor |
| ( c)              | (ata)                 |                                         | -                | (°C)              | (atm)         |               | •     |
|                   |                       |                                         |                  |                   |               |               |       |
| 0                 | -                     | 0.00                                    | -                | 105               | _             | 36.75         | _     |
| 5                 | **                    | 1.75                                    | -                | 110               | _             | 38.50         | ••    |
| 10                | -                     | 3.50                                    | -                | 115               | _             | 40.25         | _     |
| 15                | -                     | 5.25                                    |                  | 120               | -             | 42.00         | -     |
| 20                | -                     | 7,00                                    | -                | 125               | _             | 43.75         | -     |
|                   |                       |                                         |                  |                   |               | •             |       |
| 25                |                       | 8,75                                    | · -              | 130               | ••            | 45.50         |       |
| 30                | _                     | 10.50                                   | <b>-</b> '       | 135               | -             | 47.25         | _     |
| 35                | _                     | 12.25                                   | _                | 140               | -             | 49.00         |       |
| -40               | · · • · · · · ·       | 14.00                                   | 1 <b>-</b> 1 1   | 145               | _             | 50.75         | _     |
| 45                | _                     | 15.75                                   | _                | 150               | -             | 52,50         |       |
| 5.00              | 10.00                 |                                         | to see a see     | •                 |               |               |       |
| 50                | and the second second | 17.50                                   | _                | 155               | _             | 54.25         | _     |
| 55                |                       | 19.25                                   | is <u>L</u> ende | 160               | _             | 56.00         |       |
| 60                |                       | 21,00                                   | _                | 165               | _             | 57.75         | _     |
| 65                |                       | 22.75                                   |                  | 170               | _             | 59.50         |       |
| 70                | _                     | 24.50                                   |                  | 175               | _             | 61.25         | _     |
|                   | 100                   | • • • • • • • • • • • • • • • • • • • • |                  |                   |               |               |       |
| 75                | _                     | 26.25                                   | _                | . 180             | _             | 63.00         |       |
| 80                | <b>_</b>              | 28.00                                   | _                | 185               | _             | 64.75         | _     |
| 85                | **                    | 29.75                                   | _                | 190               |               | 66.50         |       |
| 90                | _                     | 31.50                                   | _                | 195               |               | 68.25         | -     |
| 95                | _                     | 33,25                                   | _                | 200               |               | 70.00         | -     |
| 100               |                       | 35.00                                   | · _              |                   |               | . 3100        |       |

# APENDICE B

## TABLAS DE ENTALPIA PARA EL HEXANO

# CALCULADAS:

Cp = 0.518773167 + 9.43372256E-04 \* c + 2.7047231E-06 \* c  $^{\circ}$  2 p vap obtenida por interpolación curvilínea de datos exp. Calor latente de vaporización calculado por ec.de Watson

| Temperatura<br>de  | Presión<br>de       | ENTAL   |       | Temperatura<br>de  | Presión<br>de       | ENTAI   |        |
|--------------------|---------------------|---------|-------|--------------------|---------------------|---------|--------|
| Saturación<br>(°C) | Saturación<br>(atm) | liquido | vapor | Saturación<br>('C) | Saturación<br>(atm) | liquido | vapor  |
| 0                  | 0.05957             | 0.00    | 91.9  | 105                | 2.7079              | 60.72   | 134.0  |
| . 5                | 0.07735             | 2,61    | 93.7  | 110                | 3.0549              | 63.97   | 136.2  |
| 10                 | 0.09950             | 5.24    | 95.6  | 115                | 3.4364              | 67.27   | 138.3  |
| 15                 | 0.12671             | 7.89    | 97.5  | 120                | 3.8556              | 70.60   | 140.5  |
| 20                 | 0.15968             | 10.57   | 99.4  | 125                | 4.3153              | 73.98   | 142.7  |
| 25                 | 0.1992              | 13.28   | 101.3 | 130                | 4.8185              | 77.39   | 144.9  |
| 30                 | 0.2463              | 16.01   | 103.2 | 135                | 5.3679              | 80.85   | 147 -1 |
| 35                 | 0.3021              | 18.77   | 105.1 | 140                | 5.9656              | 84.35   | 149.3  |
| 40                 | 0.3678              | 21.56   | 107.1 | 145                | 6,6134              | 87.89   | 151.5  |
| 45                 | 0.4446              | 24.38   | 109.1 | 150                | 7.3124              | 91.47   | 153.7  |
| 50                 | 0.5340              | 27.23   | 111.1 | 155                | 8.0629              | 95.10   | 155.9  |
| 55                 | 0.6371              | 30.11   | 113.1 | 160                | 8,8646              | 98.77   | 153.1  |
| 60                 | 0.7552              | 33.02   | 115.1 | 165                | 9.7168              | 102,49  | 160.3  |
| 65                 | 0.8395              | 35.96   | 117.1 | 170                | 10.6184             | 106.25  | 162.4  |
| 70                 | 1.0412              | 38.93   | 119.2 | 175                | 11.5689             | 110.06  | 164.5  |
| 75                 | 1.2115              | 41.94   | 121.3 | 180                | 12.5689             | 113.92  | 166.6  |
| 80                 | 1,4017              | 44.98   | 123.3 | 185                | 13.6214             | 117.82  | 168.6  |
| 85                 | 1.6132              | 48.06   | 125.4 | 190                | . 14.7337           | 121.78  | 170.5  |
| 90                 | 1.8476              | 51.17   | 127.6 | 195                | 15.9190             | 125.78  | 172.4  |
| 95                 | 2,1068              | 54.31   | 129.7 | 200                | 17.1996             | 129.83  | 174.1  |
| 100                | 2.3927              | 57,50   | 131.8 |                    |                     |         |        |



PUNIOS DE EBULLICION EN °F - ACEITE VEGETAL EN HEXANO (Ref. 13)