Universidad Nacional Autónoma de México FACULTAD DE CIENCIAS

ANALISIS TEORICO DE LA ESTRUCTURA NUCLEAR DEL " 0^{19} "

T E S I S QUE PARA OBTENER EL TITULO DE

FISICO

PRESENTA

MARIO EFREN FOSADO PEÑALOZA

México D. F.

1965

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. **TESIS CON FALLA DE ORIGEN**

A mis padres Efrén y Lupe

A mis hermanos

Al Dr. Marcos Moshinsky por la firme direoción y apoyo moral para la elaboración de esta tesis. A Pier Achille Mello y Jorge Flores por su valiosa ayuda, A Bernardo Wolf por su brillante trabajo de programación.

INDICE

INTRODUCCION CAPITULO 1. ANALISIS TEORICO DEL PROBLEMA CAPITULO 2. DESCRIPCION DEL CALCULO a) CONSTRUCCION DE LOS ESTADOS b) CALCULO DE LOS NIVELES DE ENERGIA APENDICE . EL MODELO DE INTERACCION REFERENCIAS Second Second

(他是此)以及於各部等或因為自然的会認為

日間時代の第二個語語を見て

INTRODUCCION

En base al modelo de capas del núcleo se calculan los niveles de energía del núcleo 0^{19} , usando co mo interacción residual entre los tres nucleones fuera de capa cerrada, el modelo de interacción , que consiste en una combinación lineal de una interacción de cuadrupolo-cuadrupolo , interacción de apareamiento y de la interacción espín-órbita.

La interacción así expresada en el lengua je de segunda cuantización , se calcula mediante técnicas fundamentadas en la teoría de grupos.

Estrictamente sólo se usa la técnica de la segunda cuantización, para tomar en cuenta la antisimetría de las funciones de onda que descr<u>i</u> ben fermiones , pués se considera constante el n<u>ú</u> mero de nucleones .

Se obtiene la expresión explícita de los estados para tres neutrones, clasificados en la cadena de grupos SU_3 , en términos de los cuales fueron calculadas las matrices de la interacción modelo, cuyos eigenvalores dan los niveles de energía.

Se hizo también el cálculo considerando interacción de intercambio para la parte cuadru polo-cuadrupolo, en mezcla de Rosenfeld.

Los espectros de niveles de energía cal culados teóricamente se comparan con los niveles experimentales y se encuentran los valores de los parámetros para el mejor ajuste.

100997

CAPITULO 1

ANALISIS TEORICO DEL PROBLEMA

La validez de usar una combinación lineal de una interacción de cuadrupolo-cuadrupolo Q^2 y de <u>u</u> na interacción de apareamiento P, que toman en cuenta interacciones de largo y corto alcance re<u>s</u> pectivamente, es discutida¹ por Flores, Chacón, M<u>e</u> llo y De Llano, quienes calcularon los niveles de energía para dos, tres y cuatro partículas en la capa 2s-1d del oscilador armónico, usando dos t<u>i</u> pos de interacciones : una interacción gaussiana

de alcance variable \mathcal{U} ; $\mathcal{V} = -\mathcal{V}_{\mathcal{A}} \stackrel{\mathcal{A}}{\underset{\mathcal{A}}{\longrightarrow}} \stackrel{\mathcal{N}}{\underset{\mathcal{A}}{\longrightarrow}} \stackrel{\mathcal{C}}{\underset{\mathcal{A}}{\longrightarrow}} \stackrel{(\overset{\mathcal{V}}{\underset{\mathcal{A}}{\longrightarrow}})^2}{\overset{\mathcal{A}}{\underset{\mathcal{A}}{\longrightarrow}}}$

y una combinación lineal :

 xQ^2+yP ; z+y=1

los espectros de ambas interacciones se comparan' en la figura 1).

También calcularon el traslape entre las funciones de onda de estados correspondientes en interacción de apareamiento pura e interacción gaussiana de corto alcance y para interacción de cuadrupolo-cuadrupolo pura e interacción gaussi<u>a</u> na de largo alcance ($\alpha = 4 \text{ fm}$), obteniendo bu<u>e</u> nos resultados, que aparecen en la tabla 1. Se le llama traslape al cuadrado de la proyección del eigenvector de una base sobre el eigenvector correspondiente al mismo estado en la otra base.

Los números que aparecen bajo los títulos corto alcance y largo alcance, son el traslape en o/o para los estados de momento angular corre<u>s</u> pondiente que aparece a la izquierda.

Traslape entre las funciones de onda de estados correspondientes para P e interación gaussia na de corto alcance y Q^2 e interación gaussia na de largo alcance. Para [h] de U₆.

T.	[3]		[2	1]
	corto alcance C/o	largo alcance	corto al cance	largo alcance
0 0 0"	95 99 95	100 100 100	100	100
1 1			86 86	100 100
2 2' 2" 2 <i>"</i> "	99 95 90	99 86 86	100 77 77 93	97 90 63 70
3 si 3' si	100	100	99 99	99 99
4 4	89 89	100 100	81 81	100 100
5			100	100
6	100	100		<u> </u>

Los estados con respecto a los cuales se calcula el modelo de interación , son funciones de onda clasificadas en el esquema del supermultiplete de Wigner²y su parte orbital en la cadena SU_3 .

Las técnicas generales para la constru<u>c</u> ción de estas funciones de onda han sido desarro lladas por Moshinsky.

En las referencias 1) y 3) se indican los métodos que se pueden usar para construir los estados de N partículas.Para la capa 2s-1d del oscilador armónico el número total de estados para partículas con espín e isoespín es 24 y se pueden usar distintas cadenas de subgrupos del grupo unitario de 24 dimensiones V_{24} para clasificar los estados de N partículas.

Para N = 3 : se da en la tabla 2a la clasificación de los estados en la cadena de grupos SU₃. En la tabla 2b se da la clasificación de los estados para T = $\frac{3}{2}$ en las cadenas de grupos:

su3

R₆

 $U_{24} \supset U_{6}^{(\mu)} \otimes U_{4}^{(35)} \begin{cases} U_{6} \supset S' U_{3} \supset R_{3} \\ U_{4} \supset S U_{2}^{(5)} \otimes S U_{2}^{(6)} \end{cases}$

 $U_{24} \supset U_{6}^{(\mu)} \otimes U_{4}^{(\sigma \epsilon)} \begin{cases} U_{6} \supset R_{6} \supset R_{3} \\ U_{4}^{(\sigma \epsilon)} \supset S U_{2}^{(0)} \otimes S U_{2}^{(\epsilon)} \end{cases}$

TABLA 2a

Estados para tres nucleones en la capa 2s-1d clasificados en la cadena de grupos SU₃

5

U24	U ₆	U3	SU,	R3	(⁽⁵⁾ SU₂®SU₂
	[4]	(hish23h34)	(k, k1)	L	(57)
		(600)	(60)	0246	
	[3]	(420)	(42)	02 ² 34	$(\frac{1}{2},\frac{1}{2})$
[11]	•	(222)	(00)	0	
		(510)	(51)	12345	$(\frac{3}{2},\frac{1}{2})$
	[21]	(420)	(42)	02 ² 34	$(\frac{1}{2},\frac{3}{2})$
	¢	(321)	(21)	12	$(\frac{3}{2},\frac{3}{2})$
	[(411)	(30)	1 3 ⁻	$(\frac{1}{2},\frac{1}{2})$
	וויו]	(330)	(33)	13	$(\frac{3}{2},\frac{3}{2})$
ReF.		13	13	14	5

TABLA 2b

Clasificación de los estados de tres neutrones en la capa 2s-1d, en las cadenas de grupos : SU₃ y $R_{\overline{6}}^-$

U ₂₄	SU2	U,	SV,	R,	SŰ		U,	R.	R,	SŲ	
	Т	[4]	(k, k;)	Ĩ	S	J	[ĥ]	(2.2.2)	L	S	J
				1		<u>3 1</u> 2 2			1 ²		$(\frac{3^2}{2})(\frac{1}{2})$
				2		53 22			2 ³	·	$(\frac{5}{2})^{\frac{3}{2}}_{(\frac{3}{2})}^{3}$
			(51)	3		$\frac{7}{2}\frac{5}{2}$					
				4		<u>97</u> 22		(- (-))			
		[21]	1	5	1	$\frac{11}{2}\frac{9}{2}$	21	(210)	3 ²	1	$(\frac{7}{2})^{25}_{(\frac{5}{2})}^{2}$
		,		0	2	$\frac{1}{2}$				2	
[111]	3		(42)	2 ²		$(\frac{5}{2})(\frac{3}{2})$			4 ²		$\frac{(9)(7)}{2}$
	2			3		22					
				4		22			5		$\frac{11}{2}\frac{9}{2}$
			(21)			<u>5</u> 53		(100)			<u>5</u> 3
		alitating Alitating Ratio		2		22					22
			(33)	1		<u>źż</u> 93		(111)	1		<u>źż</u> 93
		[111]		د 	3	22	111		د 	3	22
			(30)	1	2	22	1	(11-1)	2	22
				3		<u>93</u> 22			3		<u>93</u> 22
Ref.	5		13	14	5			13	13	5	

6 -

いたが、日本のないないと

140V

Los números cuánticos que aparecen en la segunda línea de las tablas 2a,b), caracterizan las representaciones irreducibles de los grupos corres pondientes que aparecen en la primera línea. Se da el momento angular total J asociado con cada estado y en la parte inferior se dan las referen cias de las cuales se tomaron los datos para la construcción de la tabla.

- 7 -

La parte cuadrupolo-cuadrupolo en el modelo de interacción :

V=-Vo[xQ2+yP+zNso]; 2+y+2=1

es diagonal con respecto a los estados clasificados en la cadena SU $_3$, que son del tipo :

[h] (h, h_2) ωL ; $\{v\}$ β ST; SM_S >

no siéndolo ni P ni W_{so} . Se tiene una fórm<u>u</u> la cerrada para los eigenvalores de Q^2 en esta base. Ver apéndice.

El cálculo de la interacción de aparea - miento P se puede hacer de dos formas : a) Calculando la matriz de P con respecto de los estados clasificados en la cadena R_6 :

[[h]& (hihzh3) WLML>

en donde sí es diagonal y después pasando a la cadena SU₃ mediante los paréntesis de transfo<u>r</u> mación :

8 -

<[h] α (k,k2) ω L[[h] α '($\lambda_1\lambda_2\lambda_3$) ω 'L>

b) Calculando directamente la matriz de la int<u>e</u> racción P en la base clasificada por la cad<u>e</u> na SU₃ y después diagonalizando la matriz resu<u>l</u> tante.

Una manera de checar los cálculos es obtener los eigenvalores de la interacción \mathcal{P} en ambas formas.

El cálculo de la interacción espín-órbi ta \mathcal{W}_{so} se puede hacer de manera análoga al cál culo de la interacción \mathcal{O} , se aplica el ope rador \mathcal{W}_{so} a los kets clasificados en la cadena SU_3 , después se efectuan los productos escalares de los kets resultantes con los kets originales, para obtener la matriz de \mathcal{W}_{so} y finalmen te se diagonaliza esta última.

Se checan los eigenvalores de la interacción Wiso obtenidos en la forma anterior, con los que se obtienen directamente mediante una fórmula cerrada en el acoplamiento j-j.

También se puede aprovechar la natural<u>e</u> za tensorial del operador M₅₀ para calcular sus eigenvalores. Ver apéndice. Cuando se tienen las matrices de las interacciones Q^2 ya diagonal, de P y de M_{so} se combinan en la forma :

 $V = -V_0 [x Q^2 + y P + (1 - x - y)] W_{50}$

y se diagonaliza la matriz total resultante.

Los eigenvalores de esta matriz son los ni veles de energía teóricos.

Los eigenvectores correspondientes a estos eigenvalores fueron obtenidos explícitamente y con ellos se pueden calcular cosas como : valores de espectación de momentos multipolares, probabilidades de transición etc.

CAPITULO 2

DESCRIPCION DEL CALCULO

a) <u>CONSTRUCCION DE LOS ESTADOS</u>

Se calcularon los polinomios base para las representaciones irreducibles de la cadena SU₃, acoplados a momento angular total J :

en términos de la base en acoplamiento L-S usa<u>n</u> do los coeficientes de Clebsch-Gordan ;

$$[h] \alpha (hihz) \omega L; \{V \in BST, S \} = \sum_{M \in M_s} \langle L M L \leq M_s | S \rangle \times$$

$$\times [h] \alpha (k, k_2) \omega L M L; \{v\} S'M S T >$$

El cálculo de los kets del tipo :

se hizo calculando primero los kets de máximo'pe so en U₄ : con T = $\frac{3}{2}$ y S = $\frac{1}{2}$ para [21] , y con T = $\frac{3}{2}$ y S= $\frac{3}{2}$ para [111] de U₆ respectivamente. Este ket se denota como:

[[himho] & (kikz) COLML>

- 10,-

el cual fue obtenido de los kets de máxima proyección del momento angular L ó sea del tipo:

$[[h_1 ... h_b] \propto (k_1 k_2) \otimes LL >$

mediante el operador de descenso \int_{-1} de R₃.

A su vez los kets de máxima proyección del momento angular L fueron obtenidos del ket de máximo peso en SU₃:

 $[h_1...h_6] \propto (h_1k_2) L = h_1 = M_L >$

mediante unos operadores $M_{LL'}^{(2)}$ tales que:

$$\mathcal{M}_{LL'}^{(z)} | [h] \alpha (k_1 k_2) \omega LL \rangle = \sum_{\omega'} \mathcal{B}_{\omega'} | [h] \alpha (k_1 k_2) \omega' L'L' \rangle$$

cuya expresión explicita es :

donde $(X_{\tau}$ son las componentes de un tensor de Racah["]de rango dos :

$$Q_{\overline{b}} = -\sum_{q,q'} (-)^{q'} < 11q - q' | 2z > G_{q}^{q'}$$

dado en términos de los generadores G_q^1 del grupo $U_3 \subset U_6 y$ que por lo tanto no cambia la representación en SU₃ de los estados.

El polinomio de máximo peso en SU₃ es el polinomio solución de las ecuaciones :

a)
$$G_{q}^{1q} P | 0 \rangle = h_{q} P | 0 \rangle$$
; $q = 1, 0, -1$ of $q = 1, 2, 3$
b) $G_{q}^{1q'} P | 0 \rangle = 0$; $q > q'$, $q < q'$

donde los generadores del grupo U_3 , están forma dos a partir de los generadores U_6 , del grupo unitario de seis dimensiones U_6 , relativo al espacio de configuración de la capa 2s-1d del osci lador armónico. Véase ref. 3).

Para calcular los polinomios se construyeron las tablas de eigenvalores de los generado res G¹ para los términos típicos :

$$\Delta_{\mu_1\mu_2\mu_3}^{\prime 23} ; \Delta_{\mu_1} \Delta_{\mu_2\mu_3}^{\prime 2} ; \Delta_{\mu_1} \Delta_{\mu_2} \Delta_{\mu_3}^{\prime}$$

de las particiones [3], [21] y [111] de U₆ respectivamente. De las tablas se obtuvieron las posibilidades que cumplen una de las ecuaciones para el peso y con los términos posibles se hizo una combinación lineal,imponiendo las ecuaciones restantes se eliminaron algunos términos y fi nalmente se determinaron los valores de las con<u>s</u> tantes normalizando el polinomio.

Ejemplo:

Para [11] $deV_{(3)}[411] de U_{3} y L = 1 de R_{3}$

el polinomio es del tipo

P= I Anyuzuz Ah, Shez Ahz

las eduaciones que debe cumplir son :

a) $G_{1}^{\prime 2} P = 4 P$ b) $G_{2}^{\prime 2} P = P$ c) $G_{3}^{\prime 3} P = P$ e) $G_{1}^{\prime 2} P = 0$ f) $G_{2}^{\prime 3} P = 0$ g) $G_{1}^{\prime 3} P = 0$

se construye la tabla de eigenvalores de G_q^* para los términos Δ'_q . Ver tabla siguiente.

Eigenvalores de los operadores G_q^4 de U₃ para los términos típicos Δ'_q .

	Δ',	Δ_2'	Δ'۵	Δ'4	Δ's	Δ'6
5'	2	1	1	0	0	0
G ²	0	1	0	2	1	0
² ر کا	0	0	1	0	1	2

de la tabla anterior se ve que hay seis combinaciones de productos de tres Δ'_{μ} que cum plen la condición a) ó sea que tienen eigen valor 4 de G'_{μ} .

se propone entonces como solución :

 $P = a_1 \Delta \Delta'_1 \Delta'_1 + a_2 \Delta'_1 \Delta'_1 \Delta'_5 + a_3 \Delta'_1 \Delta'_1 \Delta'_6 + a_4 \Delta'_1 \Delta'_2 \Delta'_2 + a_5 \Delta'_1 \Delta'_3 \Delta'_3 + a_6 \Delta'_1 \Delta'_2 \Delta'_3$

de esta combinación lineal, solo dos términos satisfacen la condición b), quedando entonces:

$$P = a_z \Delta'_i \Delta'_i \Delta'_s + a_s \Delta'_i \Delta'_z \Delta'_3 = b_i \Delta_i \Delta'_i \Delta'_s + b_z \Delta'_i \Delta'_z \Delta'_3$$

de la expresión anterior solo un término satisface la condición c), quedando:

$P = a \Delta'_{1} \Delta'_{2} \Delta'_{3}$

- 14 -

en este caso automáticamente se cumplen las con diciones e), f), g). El valor de la constante k se determina con la condición de normalización.

Con este método fueron obtenidos los estados de máximo peso en SU_3 con máximo valor del momento angular L de R_3 cuya clasificación aparece en la tabla siguiente:

TABLA 4

Estados de máximo peso en SU₃ con valor máximo del momento angular L.

U ₆	su3	R ₃
[h]	(k, k,)	L
[3]	(60)	6
[3]	(42)	4
[3]	(00)	0
[21]	(51)	5
[21]	(42)	4
[21]	(21)	2
[111]	(30)	3
[111]	(33)	3

Los polinomios del párrafo anterior fueron checados contra los polinomios obtenidos por E. Chacón para tres partículas en términos de los operadores de creación de bosònes Q⁺

- 15 -

El paso de los polinomios en operadores de Bose a los polinomios en operadores de Fermi se hizo para las tres particiones de U_6 , aplicando las reglas de Moshinsky que sustituyen el término típico normalizado en operadores de Bose por un término normalizado en operadores de Fermi b^+ :

Para [3] de U₆

N∆a∆p∆r → N'∆apr

para [21] de U₆

 $N\Delta'_{\alpha}\Delta'_{\beta r} \longrightarrow N'(\Delta'_{r}\Delta'_{\alpha p} - \Delta'_{p}\Delta'_{\alpha r})$

para [111] de US

N Dasr -> N'D'a D'B D'r

donde

 $\Delta_{\mu_1\cdots\mu_1}^{\mathbf{s}_1\cdots\mathbf{s}_1} \equiv \sum_{i} (-)^{P_{\mathbf{s}}} P_{\mathbf{s}} q_{\mu_1\mathbf{s}_1} \cdots q_{\mu_1\mathbf{s}_1} = \sum_{i} (-)^{P_{\mu}} P_{\mu} q_{\mu_1\mathbf{s}_1} \cdots q_{\mu_1\mathbf{s}_1}$

 $\Delta_{\mu_1 \dots \mu_1}^{s_1 \dots s_j} = \sum_{i=1}^{k_s} (-) P_{s} b_{\mu_1 s_1} \dots b_{\mu_j s_j} = \sum_{i=1}^{k_s} (+) P_{\mu_i} b_{\mu_1 s_1} \dots b_{\mu_j s_j}$

Los polinomios así obtenidos y normalizados quedaron expresados para las tres particiones de U₆ como sigue:

Para [3] de U₆

- 16 -

 $P = \sum_{\mu_1 \mu_2 \mu_3} A_{\mu_1 \mu_2 \mu_3} \Delta_{\mu_1 \mu_2 \mu_3}^{123}$

para [21] de U₆

P = [A My M2 M3 A M1 D M2 M3

para [111] de U6

 $P = \sum_{\mu_1 \mu_2 \mu_3} A^{\mu}_{\mu_1 \mu_2 \mu_3} \Delta^{\mu}_{\mu_1} \Delta^{\mu}_{\mu_3} \Delta^{\mu}_{\mu_3}$

Hasta este momento los únicos estados construidos y checados son los de :

 $|[h]\alpha(k_1k_2) L = k_1 = ML >$

los demás estados :

$|h]\alpha(hk_2)\omega LL>$

fueron obtenidos por dos procedimientos separados. El primero de ellos consistió en traducir los resultados de Chacón en Q⁺ usando las correspon dencias mencionadas anteriormente. El segundo fué un programa elaborado por B. Wolf que aplica las Mui a los kets de máximo peso en SU₃ y median te máquina electrónica obtiene los estados:

[[h1... 46] (k1k2) WLL>

a los cuales se aplicó 4-1 obteniéndose los kets:

[him ho] (kikz) WLML>

que todavia son de máximo peso en espín e isoespín. Las posibilidades para espín e isoespín (ST) con tenidas en una representación $\{v_1, \ldots, v_4\}$ de U₄ ó equivalentemente $[h_1, \ldots, h_6]$ del grupo complementario U₆ están tabuladas. Para tres partículas son:

TABLA 5

U ₆	U4	SU ₂ x SU ₂
[h]	{v}	(ST)
[3]	{111}	$(\frac{1}{2}\frac{1}{2})$
[21]	{ 21 }	$(\frac{1}{2},\frac{1}{2})(\frac{3}{2},\frac{1}{2})(\frac{1}{2},\frac{3}{2})$
[111]	{3}	$(\frac{1}{2},\frac{1}{2})$ $(\frac{3}{2},\frac{3}{2})$

Fueron calculados los estados para todas estas po sibilidades aunque de hecho para el 0^{19} sólo se necesitan aquellos estados de isoespín T= $\frac{3}{2}$ que son los que se dan en este trabajo. El cálculo de estos últimos estados se hizo sustituyendo el término típico del polinomio de máximo peso en espín e isoespín por una combinación lineal de términos que tuvieran espín e isoespín deseados:

$$S_0P = sP$$
; $T_0P = tP$

los coeficientes de la combinación lineal se obtuvieron con ayuda de las ecuaciones³:

$$S_+P=0$$
; $T_+P=0$

los nuevos estados fueron normalizados tomando el producto de cada estado consigo mismo lo que se hizo con máquina electrónica.

Para nuestro caso sólo fué necesario p<u>a</u> sar de los estados :

a los estados :

lo que se hizo sustituyendo el término típico

 $\Delta_{i_1}^{\prime 2} \Delta_{k_1}^{\prime}$ por el término $\Delta_{i_1}^{\prime 3} \Delta_{k_1}^{\prime}$

donde si los polinomios originales están norm<u>a</u> lizados lo estarán también los nuevos polinomios. Con lo cual se obtuvieron los estados de T = $\frac{3}{2}$:

[[2] (kikz) WLML; [21] とそう

a los cuales hay que agregar los estados :

[[111] (kikz) ω LML; {3] 妻=>

obtenidos anteriormente. Nos falta sólo bajar en $SU_2^{(\P)}$ para tener la base completa en acoplamiento L-S, lo cual se hace con ayuda de los operadores de descenso $S_2^{(\P)}$ tales que :

 $\sqrt{\frac{(s+M_{s})!}{(s-M_{s})!(2s)!}} \left(\begin{array}{c} S_{-} \end{array} \right)^{s-M_{s}} \left| \ldots; SS \right\rangle = \left| \ldots; SM_{s} \right\rangle$ $S_{-} = C_{3}^{1} + C_{4}^{2} \quad ; \quad C_{q}^{q'} = U_{q}^{q} Q^{q'}$

Aplicando estos operadores a los dos tipos de estados anteriores, se obtienen los kets que nos interesan , por el procedimiento que se indica a continuación .

Si se tiene para el estado :

|[21](kikz) いし;{213シン

el término típico correspondiente

la ecuación $S_{-}\Delta_{ij}^{\prime}\Delta_{k}^{\prime} = \Delta_{ij}^{\prime}\Delta_{k}^{\prime}$ da el término típico que corresponde al estado del tipo:

 $\Delta_{i}^{\prime}\Delta_{k}^{\prime}$

|[21] (k1k2)ωL; {21} ½ - ½ 3 3 2 >

Análogamente, si se tiene para el estado

「「」(h,kz)ωL; {3] = = = = >>

el término típico $\Delta'_i \Delta'_j \Delta'_k$ entonces al aplicar el operador de descenso S_- al término típico,

$$\frac{1}{\sqrt{3}} S_{-}(\Delta'_{i}\Delta'_{j}\Delta'_{k}) = \frac{1}{\sqrt{3}} \left(\Delta'_{i}\Delta'_{j}\Delta^{3}_{k} + \Delta'_{j}\Delta^{3}_{j}\Delta'_{k} + \Delta^{3}_{j}\Delta'_{j}\Delta'_{k} \right)$$

se encuentra que el término típico correspondiente al estado :

$$[m](k_1k_2) \omega L_{j} \{3\} \frac{3}{2} \frac{1}{2} \frac{3}{2} \frac{3}{2} \Big>$$

$$e^{a}: \frac{1}{\sqrt{3}} \left(\Delta'_{1} \Delta'_{2} \Delta^{3}_{1} + \Delta'_{1} \Delta^{3}_{3} \Delta'_{1} + \Delta^{3}_{3} \Delta'_{2} \Delta'_{3} \right)$$

Aplicando nuevamente el operador 5.

$$\frac{1}{2\sqrt{3}}S_{-}\left(\Delta_{\lambda}^{\prime}\Delta_{\lambda}^{\prime}\Delta_{\lambda}^{3}+\Delta_{\lambda}^{\prime}\Delta_{\lambda}^{3}\Delta_{\mu}^{\prime}+\Delta_{\lambda}^{3}\Delta_{\lambda}^{\prime}\Delta_{\mu}^{\prime}\right)=\frac{1}{\sqrt{3}}\left(\Delta_{\lambda}^{\prime}\Delta_{\lambda}^{3}\Delta_{\mu}^{3}+\Delta_{\lambda}^{3}\Delta_{\lambda}^{\prime}\Delta_{\mu}^{3}+\Delta_{\lambda}^{3}\Delta_{\lambda}^{\prime}\Delta_{\mu}^{\prime}\right)$$

se encuentra que el término típico correspondiente al estado :

$$[m](k,k_2)\omega_{1}\{3\}\frac{3}{2}-\frac{1}{2}\frac{3}{2}\frac{3}{2}$$

ез :

$$\frac{1}{\sqrt{3}} \left(\Delta_{i}^{1} \Delta_{j}^{3} \Delta_{i}^{3} + \Delta_{i}^{3} \Delta_{j}^{3} \Delta_{i}^{3} + \Delta_{i}^{3} \Delta_{j}^{3} \Delta_{j}^{3} \Delta_{j}^{2} \right)$$

Y aplicando finalmente S_ . $\frac{1}{2} S_{-} \left(\Delta_{k}^{1} \Delta_{j}^{3} \Delta_{k}^{3} + \Delta_{k}^{3} \Delta_{j}^{1} \Delta_{k}^{3} + \Delta_{k}^{3} \Delta_{j}^{3} \Delta_{k}^{1} \right) = \Delta_{k}^{3} \Delta_{j}^{3} \Delta_{k}^{3}$

se encuentra que el término típico correspon diente al estado :

[[m] (k,k2)ω L; [3] = -3 = =>

es :

 $\Delta^3_{i} \Delta^3_{i} \Delta^3_{k}$ Se checó que al aplicar una vez más S_{-} al término anterior se obtiene cero.

Una vez obtenida la base completa de estados en acoplamiento L-S :

[[h](kikz)WLML;{V子SMs寻子>

fueron reacoplados a momento angular total J usando los coeficientes de Clebsch-Gordan. Y mediante nuevos programas elaborados por B. Wolf se obtuvo la base completa de estados:

1[h] (k,k) (0 L; {V} 5 3; 5 Ms=5)

- 22 -

con los estados en forma canónica y normalizados, teniéndose los coeficientes de normalización ta<u>n</u> to decimales como racionales. For razones práct<u>i</u> cas los estados quedaron expresados en términos, de **b** y en la tabla 8) se dan los estados acopl<u>a</u> dos a momento angular total J.

En la tabla 9) se dan los paréntesis de transformación que acoplan los estados a J.

En la tabla 10) se da la matriz de trans formación de la cadena R_6 a la SU₃.

En la tabla 11) se da la matriz de trans formación del acoplamiento L-S al acoplamiento j-j. Estos dos últimos resultados fueron obte nidos diagonalizando las matrices de las interaciones \mathcal{P} y \mathcal{W}_{so} respectivamente, como se indica en la siguiente sección.

En la tabla 12) se dan las matrices de la interacción modelo para $V_0 = 1$.

b) CALCULO DE LOS NIVELES DE ENERGIA

Los niveles de energía del 0^{19} , corres ponden a estados que son combinaciones linea les de los estados con isoespín T = $\frac{3}{2}$ de la ta bla 2b).

Para calcular los niveles de energía se usó la interacción siguiente:

 $V = -V_{0}(zQ^{2}+yR+zM_{so}); z+y+z=1$

donde x, y, z son los pesos de los distintos términos de la interacción V.

La matriz de V se calculó con respecto a la base completa de estados clasificados en la cadena SU₃, con respecto a la cual el primer término Q^2 es diagonal. Los eigenvalores de Q^2 se obtuvieron mediante la fórmula cerra da que aparece en el apéndice.

Los elementos de matriz de \mathcal{P} son dia gonales en los eigenvalores del espín e isoespín y de hecho independiente de esos eigenvalo res, por lo cual el elemento de matriz más <u>ge</u> neral que se necesita evaluar para \mathcal{P} es :

$\langle [h](k_1k_2) \omega L | P | [h](k_1k_2) \omega' L \rangle$

La ausencia de espín e isoespín en la expresión anterior indica que se toman estados de máximo peso en ellos. Las matrices obtenidas para las dos representaciones [21] y [111] de U₆ fueron calculadas y di<u>a</u> gonalizadas con ayuda de la Gamma 30 del Centro de Cálculo Electrónico de la UNAM.

Los eigenvalores de \mathcal{P} calculados en la cadena SU₃ coincidieron con los obtenidos a mano usando la fórmula cerrada que se tiene para la cadena R₆:

$$E_{(\lambda_{1}\lambda_{2}\lambda_{3})}^{[h]} = \frac{1}{2} \left\{ \sum_{\mu=1}^{6} \left[h_{\mu} (h_{\mu} - 2\mu + 6) \right] - \lambda_{3}^{2} - \lambda_{2} (\lambda_{2} + 2) - \lambda_{1} (\lambda_{1} + 4) \right\}$$

y están dados en la tabla siguiente:

LADIA O	T	AB	LA	6
---------	---	----	----	---

U,	R.	
[h]	$(\lambda_1\lambda_2\lambda_3)$	$E_{(\lambda_1)\lambda_2\lambda_3)}^{[h]}$
[21]	(100)	5
[21]	(210)	0
[111]	(111)	0
ſ,,, <u>)</u>	(11-1)	0

Este chequeo, que prácticamente es imposible ocu rra accidentalmente, indicó que hasta este momen to todo había sido calculado adecuadamente. Los eigenvectores de la interacción \mathcal{C} nos dan los paréntesis de transformación de la base $V_6 \supset R_6$ a la base $V_6 \supset SV_3$, dados en la tabla 10).

Para la interacción \mathcal{M}_{50} se hizo un cál culo análogo al que se hizo para \mathcal{P} , es decir se aplicó directamente el operador \mathcal{M}_{50} a los kets clasificados en la cadena SU₃ y se efectua ron los productos escalares con los kets originales. Todo esto con máquina electrónica, pués a mano hubiera sido prácticamente imposible hacerlo por el número tan grande de términos que se necesita calcular.

Se diagonalizó la matriz de W50 y los eigenvalores obtenidos checaron con los que se obtuvieron en el acoplamiento j-j.

Los eigenvectores de la interacción Wio nos dan los paréntesis de transformación de la base en acoplamiento L-S a la base en acoplam<u>i</u> ento j-j.

En la tabla 7) se dan los eigenvalores de la interacción espín-órbita obtenidos en el acoplamiento j-j.

Eigenvalores de la interación W_{so} en acoplamiento j-

	$\left(d\frac{z}{z}\right)^{\alpha}\left(\frac{d^{2}}{z}\right)^{\beta}\left(\frac{d^{2}}{z}\right)^{\beta}$	
<u> </u>	(a,b,c)	${f J}$
3	(3,0,0)	$\frac{3}{2}$, $\frac{5}{2}$, $\frac{9}{2}$
2	(2,0,1)	$\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$, $\frac{9}{2}$
1	(1,0,2)	52
1 2	(2,1,0)	$\frac{1}{2}$, $(\frac{3}{2})^2$, $(\frac{5}{2})^2$, $(\frac{7}{2})^2$, $\frac{9}{2}$, $\frac{11}{2}$
$-\frac{1}{2}$	(1,1,1)	$\frac{1}{2}$, $(\frac{3}{2})^2$, $(\frac{5}{2})^2$, $(\frac{7}{2})^2$, $\frac{9}{2}$
$-\frac{3}{2}$	(0,1,2)	<u>3</u> 2
- 2	(1,2,0)	$\frac{1}{2}$, $\frac{3}{2}$, $(\frac{5}{2})^2$, $\frac{7}{2}$, $\frac{9}{2}$
- 3	(0,2,1)	$\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$
$-\frac{9}{2}$	(0,3,0)	<u>3</u> 2

Una vez obtenidas las matrices para Q^2 , P y

 W_{so} con respecto de los estados clasificados por la cadena de grupos SU₃ y acoplados a momento angular total J, se hizo la combinación lineal de estas matrices y se diagonalizó la matriz resultante.

El rango de variación que se consideró <u>pa</u> ra los tres parámetros fue :

x, y, z = .0, .1, .2, ..., 1.0

Los niveles obtenidos se ajustaron al espectro experimental de niveles, colocando el primer nivel excitado con J = $\frac{5}{2}$ en O MeV.

Se determinaron los parámetros de mejor ajuste con los primeros cuatro niveles experimentales, que por el momento son los únicos bién i dentificados de paridad positiva y con J asociada.

Se examinaron los valores para localizar aquellos que por inspección se parecian a la ord<u>e</u> nación experimental, y luego del conjunto de es tos últimos se hizo el mejor ajuste por mínimos cuadrados obteniendo :

x = .2, y = .7, z = .1, como los parámetros que dan el mejor ajuste a mínimos cuadrados, sin considerar intercambio. La desviación media $\sigma = \Sigma (E_{exp} - E_{teor})^2 (Mev)^2$ resultó ser en este caso $\nabla = 0.59 (MeV)^2$ La expresión de la interacción de intercambio en segunda cuantización, para largo alcance la obtu vieron E. Chacón y M. De Llano, quienes encontra ron una fórmula cerrada para los eigenvalores de ella.

$$\begin{aligned} & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + BS(S+1) - HT(T+1) + \frac{M}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + \frac{1}{2} BS(S+1) - HT(T+1) + \frac{M}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + \frac{1}{2} BS(S+1) - HT(T+1) + \frac{M}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + \frac{1}{2} BS(S+1) - HT(T+1) + \frac{M}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + \frac{1}{2} BS(S+1) - HT(T+1) + \frac{M}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + \frac{1}{2} BS(S+1) - \frac{1}{2} HT(T+1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(N-1) + \frac{1}{4} (B-H) N(N-4) + \frac{1}{2} BS(S+1) - \frac{1}{2} HT(T+1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} W_{N}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) + \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ & = \frac{1}{2} \sum_{\mu=1}^{N} h_{\mu}(h_{\mu} - 2\mu + 1) \\ &$$

Se calculó esta interacción en mezcla de Rosen – feld : W = -0.13, M = 0.93, H = 0.26 y B = 0.46y se obtuvieron los niveles de energía con la in teracción modelo modificada en su parte cuadrupo lo-cuadrupolo, por la interacción de intercambio normalizada : $-\sqrt{2} \left[\propto Q^2 + 4 + 2 \right]$

dande x+4+2=1; $Q' = \frac{2}{N(N-1)}$

Los niveles resultantes no ajustaron con el orden ni con la separación experimental de los niveles del 0¹⁹, por lo que no se presentan aquí.

CONCLUSIONES

Se obtuvo un buén ajuste de los niveles teóricos calculados con la interacción modelo y los niveles experimentales del O¹⁹, ajustando apropiadamente los parámetros de la interacción mencionada.

Se encontró mejor ajuste cuando no se t<u>o</u> mó en cuenta la interacción de intercambio. Mello Flores, Chacón y De Llano hicieron el cálculo de los niveles de núcleos con A = 18 y 20 : F^{18} , O^{18} F^{20} , O^{20} , y Ne²⁰. Para F^{18} encontraron mejor aju<u>s</u> te cuando no consideraban intercambio , sin emba<u>r</u> go resultó util considerar intercambio en la parte de largo alcance para el resto de los núcleos que calcularon.

Por lo cual el papel de los términos de in tercambio para interacciones entre nucleones en la capa 2s-1d tendrá que aclararse en estudios posteriores.

No se ha introducido en estos cálculos ni<u>n</u> gún efecto de fuerzas tensoriales ya que un trabajo de B. Wolf y M. Fosado muestra que no son esenciales para el F¹⁸y se espera poder prescindir de en el resto de la capa 2s-1d.

Se dan explícitamente los estados para tres neutrones en la capa 2s-1d del oscilador armónico, con ayuda de los cuales se pueden calcular probabi lidades de transición en fenómenos electromagnéticos o' en procesos de desinteracción beta etc. No se siguió ningún criterio para cortar la base en este trabajo, pués un objetivo futuro propuesto por Moshinsky fué sistematizar el cálculo de los núcleos de la capa 2s-1d empleando la máquina electrónica, lo cual se logró en pri<u>n</u> cipio gracias al trabajo desarrollado por B. Wolf.

REFERENCIAS

 J. Flores, E. Chacón, P. A. Mello y M. De Llano "Studies on Nuclear Structure in The 2s-1d Shell" en prensa en : Nuclear Physics .
 E. P. Wigner Phys. Rev. 106 (1937) .
 M. Moshinsky "Group Theory and the Many Body Problem" en prensa en : "Physics of Many Particle Systems" edi tado por E. Meron (Gordon and Breach New York 1965).
 E. Chacón tablas no publicadas.
 M. Hamermesh Group Theory (Addisson-Wesley Publishing Co. Inc. Reading Mass. 1962) p. 437 市场市场的建立。 如此,如此是一些有些有限的。 如此,这些是一些是一些是一些是一些是一种是一种是一种是一种的。

- 6) E. U. Condon y G. H. Shortley "The Theory of Atomic Spectra (Cambridge University Press 1953) p. 46
- 7) J. A. Moszkowski Handbuch der Physik B. XXXIX Springer Verlag Berlin 1956 p. 469
- 8) Referencia 5) cap. 8
- 9) Referencia 3) cap. 6
- 10) Referencia 3) cap. 7
- 11) G. Racah Phys. Rev. 62 (1942) p. 438
- 12) E. M. Rose "Elementary Theory of Angular Momentum" Wiley 1956 p. 85
- 13) J. P. Elliot Proc. Roy. Soc. A245 (1958) p. 128
- 14) V. Bargman y M. Moshinsky Nuclear Physics 18 (1960) 697
- 15) E. Chacón y M. De Llano Rev. Mex. Fis. Vol. 13 No 2 p.94
- 16) B. Wolf y M. Fosado Tensor Force in the Nucleus F¹⁸ Rev. Mex. Fis. en prensa.

APENDICE

EL MODELO DE INTERACCION

Considerando al núcleo como un sistema de muchos cuerpos, se supone que es descrito por un hamiltoniano de la forma :

$$H = \sum_{i=1}^{N} \frac{P_{i}^{2}}{2m} + U_{i} + \sum_{i=1}^{N} V_{ij} + \sum_{i=1}^{N} L_{i} \cdot S_{i}$$

donde N es el número de partículas.

Cuando las partículas en consideración son fermiones, las funciones de onda del problema deben estar totalmente antisimetrizadas.

Las funciones de onda totalmente antisimétricas para N partículas más generales , son los determinantes de Slater⁽⁾:

$$\Psi_{\text{sloter}} = \sum_{P} (-)^{P} P \Psi_{s_{1}}(i) \Psi_{s_{2}}(i) \dots \Psi_{s_{N}}(N)$$

que cumplen :

 $\langle \Psi_{\text{slater}} | \Psi_{\text{slater}} \rangle = S_{3, \dots, 3N}$

En el modelo de capas del núcleo es usual tomar $V_{i} = \frac{1}{2} w \omega^2 Y_i^2$, donde ω es la frecuencia dada por la relación de Moszkowski.

 $h\omega \approx 41 A^{-\frac{1}{3}}$ Mev. A = NO. Massa del núcleo

En esta descripción los estados de la partícula independiente están caracterizados por cinco nú meros cuánticos v, l, w, 5 45 . tres para el espa cio de configuración y dos para el espacio de espín-isoespín.

Notación :

VINGELS SENS

Usualmente la interacción residual se calcula suponiéndola de distintas formas : de ti po Yukawa, gaussiana etc. y se calcula su elemen to de matriz con respecto de las funciones de on da soluciones de la ecuación :

$$H_{\circ} \varphi = E \varphi$$
 donde $H_{\circ} = \sum_{i=1}^{N} \left(\frac{p_{i}^{2}}{2m} + U_{i} \right)$

En el modelo de interacción se usa la téc nica de la segunda cuantización, es decir los ope radores de creación y aniquilación de partículas tienen un significado simbólico, pués en realidad no las crean ni las aniquilan, sólo las pasan de un estado a otro .

Si se definen los operadores de creación y aniquilación de fermiones b, b' por medio de las relaciones :

 $\{b_{3}, b_{3}'\} = b_{3}b_{3}'+b_{3}'b_{3} = S_{3}^{5}'$; $\{b_{3}, b_{3}'\} = \{b_{3}, b_{3}'\} = 0$

y se construyen los estados :

Se tiene que estos cumplen :

$$\langle S_{1}^{\prime} S_{2}^{\prime} \cdots S_{N}^{\prime} | S_{1} S_{2} \cdots S_{N} \rangle = \begin{cases} S_{1}^{\prime} S_{2}^{\prime} \cdots S_{N} \\ S_{1} S_{2}^{\prime} \cdots S_{N} \end{cases}$$

relación idéntica a la que cumplen los determinantes de Slater.

Si además se definen los operadores :

$$\mathcal{M} \equiv \sum_{ss'} \langle s|W_i|s' > b_s'$$

$$\mathcal{V} = \frac{1}{2} \sum_{s_1 s_2} \sum_{s_1 s_2} |V_{12}| s_1' s_2' > b_{s_2} b_{s_1} b_{s_1}' b_{s_2}' b_{s_2} b_{s_1} b_{s_2}' b_{s_2} b_{s_$$

se encuentra que las matrices de W y V en términos de los kets $|S_1S_2\cdots S_N\rangle$, son equivalentes a las matrices de $\sum_{N_i} y \sum_{i_j} V_{i_j}$ en términos de los determinantes de Slater, donde $W_i = \frac{P_i^2}{2m} + U_i$

Se define el operador de espín-órbita 3) en el lenguaje de segunda cuantización como:

$$W_{so} = \sum_{ss'} < s | \sum_{i=1}^{N} \underline{\lambda}_{i} \cdot \underline{s}_{i} | \underline{s}' > b_{s}' | \underline{s}'$$

que expresado en componentes esféricas de l_i y s, queda :

$$W_{so} = \sum_{ss'} < s \left| \sum_{q''=1}^{-1} (-)^{*'} l_{q''} \leq_{q''} \right| s' > b_{s}^{+} b_{s}^{s'}$$

y separando la parte orbital de la parte en espín se obtiene :

En resumen, se pasa del elemento de matriz: $\sqrt{V'}$, $\int [1] \sqrt{V}$

< Y'shoten | H | Yshoten >

al elemento de matriz :

donde

$$\mathcal{A} \equiv \mathcal{W} + \mathcal{V} + \mathcal{W}_{so}$$

Se demuestra que \mathcal{Y} puede ser aproxima do por una combinación lineal : $\mathcal{X}Q^2 + \mathcal{Y}Q^2$, donde Q^2 es la interacción de cuadrupolo-cuadru polo y Q^2 es la interacción de apareamiento, que toman en cuenta interacciones de largo y cor to alcance respectivamente. Y se definen como³: $(Q^2 = \mathcal{T}(-)^m Q_m Q_m)$ Joude

(ym = (sett) = 2 2 2 4 18 Yem (0, 9) | 4' > 6 4 4

 $P = \frac{1}{2} \left\{ \begin{bmatrix} \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & k'm' \\ k'm' & 5_{km} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} & 5_{k-m} \end{bmatrix} - \sum_{k=1}^{m} \left\{ \sum_{k=1}^{m} \sum_{k=1}^{m} (-)^{m+m'} \right\} \right\}$

Los eigenvalores de Q^2 con respecto a la base clasificada en la cadena $U_6 \supset SU_3 \supset R_3$ son³:

$$E_{L}^{(k_{1}k_{2})} = \frac{2}{3} (k_{1}+k_{2})^{2} - 2k_{1}(k_{2}-1) - \frac{1}{2}L(L+1)$$

Y los eigenvalores de P con respecto a la base clasificada en la cadena $U_6 \supset R_6 \supset R_3$, son¹⁹:

$$E_{(\lambda_{1}\lambda_{2}\lambda_{3})}^{[h]} = \frac{1}{2} \left\{ \sum_{\mu=1}^{\infty} \left[h_{\mu} (h_{\mu} - \epsilon_{\mu} + 6) \right] - \lambda_{3}^{2} - \lambda_{2} (\lambda_{2} + 2) - \lambda_{1} (\lambda_{1} + 4) \right\}$$

para la capa 2s-1d del oscilador armónico

Si se quiere pasar de una base a la otra, se hace el cambio mediante los paréntesis de tran<u>s</u> formación :

< [h] $(\lambda_1)_2\lambda_3)\omega L$ [h] $(\lambda_1)_2\lambda_3)\omega L$ [h] $(\lambda_1)_2\lambda_3)\omega L$

El cálculo de la matriz de la interacción espín-órbita, en términos de los estados clasificados por la cadena de grupos SU₃, puede hacerse de dos formas :

a) Usando el método desarrollado por Moshinsky, que consiste en aprovechar la naturaleza tensorial del operador \mathcal{M}_{50} , el cual se esboza a continuación. Se quiere calcular la matriz siguiente:

$$I = (h) \alpha'(h, h'z) (w'L'; \{v'\} \beta' S'T' S | W_{so} | [h] a(h, hz) (0L) \{v\} \beta S T S >$$

donde

$$NV_{so} = \sum_{\mu'\mu'} \sum_{\sigma\sigma'} \sum_{q''} (-) <_{\mu} |l_{q''}|_{\mu'} > < \sigma |s_{q''}|\sigma' > \sum_{s} b_{\mu\sigma} b_{\mu\sigma'} b_{\mu'\sigma's}$$

definiendo los operadores siguientes :

$$\mathbb{C}_{a,a,a}^{aaa} \equiv \sum_{h,h,h} < < |a_{a}^{a} a_{a}||_{h} > p_{\mu}^{a} a_{\mu} P_{\mu}^{a} a_{\mu}$$

el operador de espin-órbita queda expresado en términos de ellos como :

$$\mathcal{M}_{so} = \sum_{q q'} \sum_{q''} \sum_{-q-q''q'} \left(\left(\left[2 1 \right]_{q'}^{q'} \right) 1 q'' \right)$$

donde $([21]_q^{q'};1q'')$ es un tensor irreducible de orden [21] en U₃ y de orden 1 en SU₂, cuya d<u>e</u> finición es

$$\underbrace{\prod_{j=1}^{d} \left[\left[51 \right]_{a_{j}}^{d} \right]}_{a_{j}} = \sum_{j=1}^{d} \sum_{j=1}^{d} \left[\sum_{j=1}^{d} \left[\left[2 \right]_{a_{j}}^{d} \right] \left[\left[2 \right]_{a_{j}}^{d} \left[\left[2 \right]_{a_{j}}^{d} \right] \left[\left[2 \right]_{a_{j}}^{d} \left[2 \right]_{a_{j}}^{d} \left[\left[2 \right]_{a_{j}}^{d} \left[2 \right]_{a_{j}}^{d} \left[\left[2 \right]_{a_{j}}^{d} \left[2 \right]_{a_{j}}^{d} \left[2 \right]_{a_{j}}^{d} \left[\left[2 \right]_{a_{j}}^{d} \left[2 \right]_{a_{j}}^{d$$

Moshinsky hizo un análisis en base a el álgebra de tensores de Racah, y encontró que :

 $\int \frac{L'+S-3}{[(2L'+1)(2S'+1)]^2} W(LL', SS', 13) < (k_1k_2)\omega L^{21})(k'_1k'_2)\omega'L' > x$

x<[14]&'(16112); {v'}B'S'T |||([[([21],1)) |||[4]&(1612); {v}BST>

esto es obtuvo la matriz del operador Wso expresada en términos de coeficientes de Racah, coeficientes de Wigner del SU₃ y una matriz doblemente reducida la cual se denota con las tres rayas verticales dentro del elemento de matriz.

Evaluando el elemento de matriz] para un caso particular, y aplicando dos veces el teo rema de Wigner-Eckart⁽²⁾se encuentra el elemento de matriz doblemente reducido en general, siendo entonces necesario, evaluar solamente los coeficientes de Racah y los coeficientes de Wigner, para tener calculada completamente la matriz de la in teracción espín-órbita.

Los coeficientes de Racah están tabulados, y se pueden usar los coeficientes de Wigner del SU_3 obtenidos por Brody y Renero en la cadena natural, para calcular los del SU_3 en la cadena física, que son los que se necesitan en el análisis anterior.Finalmente la interacción 1 se diagonali za.

b) Aplicando directamente el operador W_{s_0} a los kets de la cadena SU₃, y efectuando los productos escalares con los kets originales. Diagonalizando la matriz así obtenida se encuentran sus eigenvalores.

Estados del 0¹⁹ clasificados en la cadena de grupos SU₃ y acoplados a momento angular total J. T = $\frac{3}{2}$

Notación :

 $[[h](k_1k_2) \angle SS = \Sigma b_{\mu_1s_1} b_{\mu_2s_2} b_{\mu_3s_3}^{\dagger} \equiv \overline{\Sigma} (\mu_1s_1 \mu_2s_2 \mu_3s_3)$ $4/V (ss) \equiv \frac{1}{\sqrt{ss}}$

[[4](51) 5분 분)	[21](51)5 ¹ / ₂ ⁹ / ₂)	[21] (42)3±72
1 41113213	I/V 55	1/ 2V 2
\[[11](30)2 ³ 5 2 ∕	-5V2 (111323) -1 (111331) -1V2 (111341) -1V2 (112123)	IV2 (111351) (112133) -1 (112331) -1V2 (112143) IV2 (132141)
1 (112131)	[111](عع) عَ بَّرِ جَ	[[21](51)3½ <u>7</u>)
[[III] (33)37 2)	- IV - 3	I/ 6V 2
	1V2 (112143)	740 (111351)
1 (112141)	122 (132141)	5 (112133)
2022년 4월 2017년 - 1919년 - 1919년 - 1919년 1919년 - 1919년 - 1919년 - 1919년 - 1919년 - 1919년	-1 (113141)	-1 (12331) -4 (132131)
1[21](+2)4 1-2->		-1V2 (112143) 2V2 (112341) -1V2 (132141)
1/V 2	[111](30)3 <u>7</u> 2	
/1 (111341) 1 (112123)	1/ 3 1V2 (112133) 1V2 (112331) 1V2 (132131)	[[21](42)4½⅔> 1/ 6v 2
[21](51)4½9 //v 10 2V2 (11133])	-1 (2 5) V2 (3 4)	4V2 (111343) -1V2 (111351) 4V2 (132123) -1 (112133) 1 (112331) -1V2 (112143) 1V2 (132141)
1 (112123)		

[21](42)	2± 5>
1/ 2V	3
	(11 36)
- L	(112351)
1 1 2	(113341)
-1 v 2 -1	(114143)
1 4 2	10107411

	1.1.1.1.1.1		1.4
4	Tail /	1001	5 \
1	11471	いれて	51
ż	an fa Tor		- ~ / .
	승규는 사람이		
	11	6V	/

17	6۷	. 7
	6V2	(111361)
	2V2	(112153)
	-4V2	(112351)
	272	(132151)
	-6V2	(113133)
	2	(113143)
	- 4	(113341)
	2	(133141)
	-3V2	(114143)
	3V2	(212341)

[21](+2)	3	12	-	52		$\overline{)}$	>
17		2V			4	2			
	6		(11	ī	s	5	3	>
29 S.	-2		(Ŀ1	I	3	6	Ľ)
	- 3 V	2	(13	2	ł	3	3)
	- 3 V	2	C	13	2	5	3	I)
	-6		Ċ	ŧI	2	3	4	3	j
	6	j. i	(13	2	3	4	t.	ì
	11 ⁻	2	Ċ	11	2	Ĺ	5	3)
	- İ 🤅		Ċ	H	2	3	5	É	Ì
	- 2		Ċ	Lİ	3	ł	3	3)
	ιV	2	¢.	Ė	3	3	4	i.)
en i ja	21.0	0	ï	1 7	τ	ı.	A	i.	ŝ

- 2	١,	1	, t	3	ł	J	S	,
1.12	(ł	I	3	3	4	1	;
1 1 2	(I	3	3	ŧ	4	I)
2	¢.	I	I,	4	I	4	3)
11/2	Ċ	2	I	2	3	3	ł)
2	Ċ	2	T	2	3	4	ï)

[11](33)3	35	$\frac{1}{2}$	
١ /	6V	35	; ;	
15	(123	43	
1.5	()	321	43)
15	- C (323	541	(\cdot, \cdot)
-10	. : (1	121	531	p. je
-10	()	123	51	10
-10	(1	321	511	et.
6	: C	121	611	02
-5\	2 (1	131	431	12
-51	2 (1	133	41	
-5	2 (1	331	411	
6.	2 (1	131	511	
3	- ù	141	511	μ÷.
31	12 12	121	41.	di i

[2]	1](21))24	2 5	>	
17	3	V	10		
	-4 2		1215	53)	
	4V2 -2V2 -2V2		1314	3)	
	312	(2	1233	15.	

1[21] (42) 2' = 5)				
10.13		.		
$W_{\rm c}$	2V	32		
	5 (11136	1)	
	-3 (11215	3)	
	4 (13215	ιj.	
	5 (11313	53) 13)	
	11/2 (11354	41)	
nan Artic	112 (1331	41)	
	5 (2125	31)	
1.36	5 (2123	41)	

[21](51)4+2->

1	6V	, IU
	16	(111333)
	-4V2	(111343)
	-1V2	(111351)
	4V2	(132123)
	-1	(112133)
j,	-3	(112331)
	4	(132131)
	-112	(112143)
	2V2	(112341)
	-1V2	(132141)

[111] (30) 1 = 5/2 171 15 212 (112161) -2 (113151) -1V2 (114151) (213141) 160

[111] (33)1 3 5~>

177 15

| (112161) |V2 (113151) -2 (114151) -2V2 (213141)

[111] (30)3夏至)

17 6٧ 35 15 (112333) (132133)

15	(132331
-5V2	(112153
-5V2	(112351
-572	(132151
312	(112161
10	(113143
10	(113341
10	(133141
-3	(13151
612	(114151
+6	(213141

[21] (51)3 ½ ½ >>	[111] (30)3 클 구)	2114 妻>
17 28 42	1/ 15V 7	1/ 6V 5
-6 (111353) 2 (111361) 4V2 (112333) 1V2 (132133) -5V2 (132331) 2 (112343)	36 (132333) -5V2 (112353) -5V2 (132153) -5V2 (132153) -5V2 (132351) 2V2 (112163) 2V2 (112163)	-4V2 (112163) 2V2 (112361) 2V2 (132161) 4 (113153) -2 (113351) -2 (133151)
-4 (132143) 2 (132341) -1 (112153) 1 (112351) -2 (113133) 1V2 (113341)	202 (132361) 202 (132161) 10 (13343) 10 (133143) 10 (133341) -2 (113153) -2 (113351)	2V2 (114153) 2V2 (114351) -4V2 (134151) -3V2 (212351) -3V2 (213133) -2 (213143)
-1V2 (133141) 2 (114143) -1V2 (212331) -2 (212341)	-2 ((33151) 4V2 ((14153) 4V2 ((1451) 4V2 ((34151) -3V2 ((14161)	$ [21](51)1\frac{1}{2}\frac{3}{2}\rangle$
[111] (30)1클 클〉	-4. (2 3 43) -4. (2 334) -4. (2 334)	IZ 6V 35
1/ 151 2	3 (213151) - 3V2 (214151)	8 (112163) -4 (112361) -4 (132161)
4V2 (112163) 4V2 (112361) 4V2 (132161)		2V2 (113153) -10V2 (113351) BV2 (133151)
-4 (113351) -4 (133151) -2v2 (14153)	[[11](33)3 <u>주</u> 줄入	-13 (114153) 8 (114351) 2 (134151)
-2V2 (114351) -2V2 (134151) -6V2 (114161)	17 15V 7 30 (132343) -10 (112353)	-12 (213133) 2V2 (213143) 5V2 (213341)
2 (213143) 2 (213341) 2 (233141)	-10 (132153) -10 (132351) -10 (132351) -1 (112163)	$\frac{-7V2}{18} \begin{array}{c} (233141) \\ 18 \\ (214143) \end{array}$
6 (213151) 9V2 (214151)	4 (12361) 4 (132161) -5V2 (113343)	1/ 30
[[m](53)1분를> 1/ 15V 2	-5V2 (133143) -5V2 (133341) 4V2 (113153)	-4V2 (112353) -4V2 (132153) 8V2 (132351)
2 (112163) 2 (112361) 2 (132161)	4V2 (113351) 4V2 (133151) -3VV2 (113161) 2 (114153)	4V2 (112163) -2V2 (112361) -2V2 (132161)
2V2 (113153) 2V2 (113351) 2V2 (133151)	2 (114351) 2 (134151) -3 (114161) 2022 (211415)	8 (113343) 8 (133143) -16 (133341) -4 (113153)
-9V2 (113161) -4 (114153) -4 (114351) -4 (134151) 6 (114161)	2V2 (213143) 2V2 (213341) 2V2 (233141) -3V2 (213151)	2 (113351) 2 (133151) 2V2 (114153) 2V2 (114153) 2V2 (114351)
-4V2 (213143) -4V2 (213341) -4V2 (233141) 6V2 (213151)		$-4\sqrt{2}$ (134151) 12 (212333) $-3\sqrt{2}$ (212351) $3\sqrt{2}$ (213133) -2 (213143)
		4 (213341) •2 (233141)

$ \left \begin{bmatrix} 24 \end{bmatrix} \begin{pmatrix} 42 \end{pmatrix} 2 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$ \begin{bmatrix} 24 \end{bmatrix} (51) 2 \frac{1}{2} \frac{3}{2} \\ 6V & 37 \\ 12V2 & (111363) \\ -4V2 & (12353) \\ 8V2 & (132353) \\ -4V2 & (132351) \\ -2V2 & (132351) \\ -2V2 & (112361) \\ 4V2 & (132161) \\ -12V2 & (133133) \\ -4 & (113343) \\ 8 & (133143) \\ -4 & (133341) \\ 2 & (113153) \\ 2 & (113151) \\ -6V2 & (134143) \\ -1V2 & (114153) \\ 2V2 & (114351) \\ -1V2 & (114351) \\ -1V2 & (123341) \\ 6V2 & (213143) \\ 1 & (213341) \\ 1 & (233141) \\ 6V2 & (214143) \\ \end{bmatrix} $	$\begin{bmatrix} 1111 \\ (33) 1 \frac{2}{2} \frac{1}{2} \\ 37 \\ 37 \\ 37 \\ 30 \\ 1 \\ (112363) \\ 1 \\ (132163) \\ 1 \\ (132163) \\ 1 \\ (132361) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 172 \\ (133351) \\ 173 \\ 2 \\ (133351) \\ 173 \\ 2 \\ (133351) \\ 173 \\ 2 \\ (133351) \\ 173 \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (133351) \\ 2 \\ (233341) \\ 2 \\ 2 \\ (233341) \\ 2 \\ 2 \\ (233341) \\ 2 \\ 2 \\ (233351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ (23351) \\ 2 \\ 2 \\ (23351) \\ 2 \\ (233351) \\ 2 \\ (2335$
$ \begin{bmatrix} 243 & (42) & 2\frac{1}{2} & \frac{3}{2} \\ 2 & 30 \\ 2 & (111363) \\ 2 & (2132153) \\ -2 & (2132153) \\ -2 & (2132153) \\ -1 & (2132161) \\ 2 & (2132161) \\ 2 & (2132161) \\ 2 & (2132161) \\ 2 & (213133) \\ -4 & (113143) \\ -4 & (113143) \\ -2 & (113153) \\ 2 & (113153) \\ 2 & (113153) \\ 2 & (113153) \\ 2 & (13151) \\ -2 & (213143) \\ -1 & (2133141) \\ -1 & (233141) \\ -1 & (233141) \\ -1 & (233141) \\ \end{bmatrix} $	$ \begin{array}{c} [111] (30)_{1} \frac{3}{2} \frac{1}{2} \\ \hline \\ 1/ 3V 30 \\ 2V2 (1263) \\ 2V2 (13263) \\ 2V2 (13253) \\ 2V2 (13253) \\ -2 (13353) \\ -2 (13353) \\ -2 (13351) \\ -1V2 (14453) \\ -1V2 (14453) \\ -1V2 (134451) \\ -2V2 (11463) \\ -2V2 (11463) \\ -2V2 (11463) \\ -2V2 (115161) \\ 1 (23343) \\ 1 (233143) \\ 1 (233143) \\ 1 (233441) \\ 2 (213153) \\ 2 (213153) \\ 2 (213153) \\ 2 (213151) \\ -6 (213161) \\ 3V2 (214153) \\ 3V2 (214153) \\ 3V2 (214151) \\ -3V2 (214161) \\ -3 (314151) \end{array} $	$ \frac{1243}{42} (42) O \frac{1}{2} \frac{4}{2} $ $ \frac{1}{174} \frac{1}{15} $ $ \frac{1}{174} \frac{1}{114163} \frac{1}{114163} \frac{1}{114163} \frac{1}{114163} \frac{1}{112} \frac{1}{114163} \frac{1}{112} \frac{1}{114163} \frac{1}{112} \frac{1}{112} \frac{1}{114153} \frac{1}{112} \frac{1}{112} \frac{1}{114143} \frac{1}{112} \frac{1}{114143} \frac{1}{112} \frac{1}{114143} \frac{1}{112} \frac{1}{114143} \frac{1}{112} \frac{1}{114143} \frac{1}{112} \frac{1}{$

6	and the second second second second second second second second second second second second second second secon		
			· · · · · · · ·
	Tak	1 Lail	1111
	[[4]	1 (2)	トラテノ
	and the second state of th	7. 3. 5.	- 4 /
	· · · · · · · · · · · · · · · · · · ·	71	70
			. 55
		-212	(112363)
		- C V Z	(172000)
۰÷.		-2/2	(132163)
		412	(132361)
		`	1117/571
		2	(113323)
		2	(133153)
		_ 4	(133351)
			(1000077)
		472	(114323)
		-212	(134153)
		-212	(134551)
		545	(114163)
		-4V2	(114361)
		210	1 311413
		6V2	(104101)
		-375	(115153)
		-3V2	(2 2353)
	and the second second second	310	12124611
		245	(212001)
		-375	(233133)
		2	(2 3343)
		<u>,</u>	10771471
			(200140)
		2	(233341)
		1	(213153)
		2	1017151
		- 2	(210001)
		1	(233151)

1[21] (51)1+ 2>

3V 210

4	(112363)
4	(132163)
- 8	(132361)
-872	(113353)
1072	(133153)
-212	(133351)
-6V2	(113163)
12/2	(113361)
-612	(133161)
-012	(100101)
-2	(114353)
-0	(134153)
10	(134351)
2	(114163)
4	(436)
2	(34 6)
6	(115153)
6	(212353)
-6	(212361)
-12	(233133)
712	(213543)
-572	(233143)
-212	(233341)
272	(213153)
-4V2	(213351)
2 2 2	(233151)
18	(234 43)
-3	(214153)
- 6	(214351)
7	10741511
_ - 0	12041211

TABLA 9

Paréntesis de transformación que acoplan los estados a momento angular total J 「「「「「「「「「「「「「「「」」」」」」

[[h](k1k2) L\$3>	$= \sum_{MLMS} \sum [h] (h_1 h_2) \omega L ML, S M_S >$
[21](51) 5 ½ 4 <u>1</u> >	[21] (51) 55,之〉
「[1](51)5-2-3->	・9534 [[21] (51) 55 之〉 +・3015 [21] (54) 54, 之〉
[11] (51)4½ 2)	[[21](51)44, ½>
[[1] (42) 4 늘 을~>	[21] (92)44,之ン
[배](33) 3킃 을>	[[11] (33) 3 3, <u>ま</u>)
[[11] (30) 3 <u>3 关</u>)	[[111](30)33, ³ / ₂ >
1[7](51)4之圣>	.9428 [21] (51) 44, 23333 [21] (51) 43, 2
[1](42)4늘콜>	·9428 [21] (42) 44, ½> - · 3333 [21] (42) 4 3, ½>
[[21](S1)3½ 子>	[21](51)33, <u>1</u>)
[21] (42) 3½ Z	[[21] (42) 33, ½)
[[11] (33) 33 2 7	$8165[[111](33)33,\frac{3}{2} >5774[[111](33)32,\frac{3}{2} >$

																							1 A. 1				in Minus				
								C 2 12			120.201	- 1 in 1 in 1	11. T.	 	a fan far			11 A.						100 C			1 - C - C - C - C - C - C - C - C - C -				
																	1.1										14 I I I I I I I I I I I I I I I I I I I				
				1.5																											
	10 C 10														1.1											a 1	1.1.4				
			27 - 17D																												
						- 1 A - 1 - 1 - 1									20 C A 4 A																
																															-
					· .			· •																2							
					1 2 2																	· · ·					1.				
										1 A A A A A A A A A A A A A A A A A A A																					
						1 - C - C -	A 44.4 (2)											1.1	· · ·	- S. S S		1									
																															· .
																						- 20 C									
							1.4									1.11															
						- 10 A - 1																									
							1.2.2																24 - X								
	-т	A TO 1	т л	~ ~																										A 16.1	
		A H	1.13	· · · · ·																S 8.					1.10.1	- A. A. A.		the state of the second s			
6 N.	 		115						1.411					201 C 1															1 C C		
																					- 15										
		_	_	_																											
																													N . N		
																							× * 0		11 A.M.			1.1.1.1			
																													5 A C		
																													20 D		
																													5 G G G		

<u>TABLA 9</u>	
$[h](k_1k_2)LSJ$	$= \sum_{MLMs} \langle LMLSMs 33 \rangle [h](h,h_2) (WLML,SMs)$
[11](30)3号圣>	・8165 ([11](30)33, き) -・5774 [111](30)32, まう
[21] (51) 3 ½ ½)	·9258[[2](51)33,=>3780[[2](51)32,=>
[1](42)3 ¹ 252)	·9258 [21] (42) 33, 1/2> - ·3780 [21] (42) 32, 1/2>
$ [21](51)2\frac{1}{2}\frac{5}{2}\rangle$	[21](51)22,之〉
[21] (42) 2 ½ 5/2)	[[21] (42) 2 2, 之〉
$ [21](42) 2^{\frac{1}{2}} \frac{5}{2}$	\[21] (42) 2 ¹ 2, ½>
$ 21 2\frac{1}{2} \frac{5}{2} \rangle$	[[2]] (21) 22, 是>
$\left[[m] (33) 3 \frac{3}{2} \frac{5}{2} \right]$.7319 [111] (33) 33,=>5976 [111](33) 32,=> +.3273 [111](33) 31,=>
[[Ⅲ](30)3≟≦>	·7319 [111] (30) 33, 是) - · · 5976 [111] (30) 32, 是) + · 3273 [111] (30) 34, 是)
\[m] (33) 3 52)	[III] (\3) [1, 3/2)
[[11] (30) 3 2 5/	「[11] (30)は, 3
[21](51)2½ 3)	.8944 [21] (51) 22, 1/24472 [21] (51) 21, 1/2
$\left \begin{bmatrix} 2 \\ 2 \end{bmatrix} (42) 2 \frac{1}{2} \frac{3}{2} \right\rangle$	·8944 [21] (42) 22, 12>4472 [21] (42) 21, 12>

[[h](k1k2)LS J)	$= \sum_{MLMs} \langle LMLSMs 33\rangle [h] (k_1k_2) W LML, SMs \rangle$
$\left[21 \right] (42) 2^{\prime} \frac{1}{2} \frac{3}{2} \right)$.8944 [[21] (42) 2'2, 1/24472 [21] (42) 2'1, 1/2
[[21] (21) 2 - 妻〉	·8944 [2](21) 22, => -·4472 21 21, =>
$[21](51)\left(\frac{1}{2},\frac{3}{2}\right)$	1[21](51)11,上>
211==>	2111, ¹ / ₂ >
\[[11](33)3 ³ 2 ³ 2>	.7559 [111](33) 33,글)5345 [111](33) 32/글) +.3380 [111](33) 34, 글 >1690 [111](33) 30, 클 >
$\left \begin{bmatrix} m \end{bmatrix} (30) 3\frac{3}{2} \frac{3}{2} \right\rangle$	・7559 [[11](30)33, 是> 5345 [[11](30)32, 是> +. 3380 [[11](30)31, 是> 1690 [[11](30)30, 星>
[11](33) 1 = 3/2 /2	$.6335 [[11] (33) 11, \frac{3}{2}7746 [[11] (33) 10, \frac{3}{2})$
$\left[\left[111 \right] (30) \frac{13}{2} \frac{3}{2} \right]$	$.6325 [[111] (30) 11, \frac{3}{2} >7746 [[111] (30) 10, \frac{3}{2} >$
[[2](51)1½ ½)	・8165 [21] (51) 11, シー・5774 [21] (51) 10, シン
[21] (21) 1 = 1	·8165 [21] (21) 11, => - · 5774 [21] (21) 10,=>
\[24](42)0\frac{1}{2} frac{1}{2}	\[21](42) 00 ¹ / ₂ >
$\left [11](33) \frac{3}{2} \frac{4}{2} \right\rangle$.4082 [[11] (33) 11, ション5774 [[11] (33) 10, ション +.7071 [[11] (33) 1-1, ション
$\left [m](30) \right \frac{3}{2} \frac{1}{2} \right\rangle$	·4082 [[111] (30) 11, 콜〉 - · 5774 [[111] (30) 10, 콜) +·7071 [[111] (30) 1-1, 콜〉

Paréntesis de transformación entre los estados clasificados en la cadena de grupos SU₃ y los estados clasificados en la cadena R₆, para T = $\frac{3}{2}$.

	[4]	[1]	[21]	[21]	[11]	[11]	[21]	[21]	[13]	[21]	[21]	[21]	[III]	(m]	(111]	[111]
7	Ch3(hiberts)	(れの) 1上	(280) 11/2	(100) 0 ¹ 2	(11) 11	(1'11) 17	(100) 21/2	(210) 2 ½	(210) 21/2	(210) え上	(210) した	(210) に之	(11) 3₹	(1(1) 3를	(III) 1클	(1'11) 1 = 1
	[21](51)1 ¹ / ₂	1	0	0	0	ο										
	(21)(21)11 1	0	1	D	0	0										
12	[11](41)01	0	0	1	0	0										
	[11] (33)13	0	0	0	1	0						•				
	[11](30)12	0	0	0	0	1										
	[1](51)21 7						.8366	. 3873	~.2646	7.2828	0	0	0	0	0	0
	[21](42)21						- 0162	.6229	,7783	•0769	0	0	0	٥	0	٥
	[4] (42)212						•1298	;49 ₀₄	.4669	7242	0	0	0	0	0	0
3	2121						,5319	-4715	.3259	·6241	0	0	0	0	0	0
2	[21](51)12			· · · ·			0	٥	0	0	1	0	0	0	٥	0
	11+						0	0	0	0	0	1	0	0	0	0
	[11](33)3 }						0	0	0	0	٥	0	1	0	0	0
	[11](30)3 <u>3</u>						0	0	0	0	٥	0	0	3	٥	0
	[11] (33)137						0	0	0	0	0	0	0	0	1	0
	[m] (so) 1 ³ / ₂						0	0	0	٥	0	٥	0	0	0	1

TABLA 10

J	[h] (h)2h3 LS (h)(hh2)/A	[21] (210) 34	[21] (210) 3-4	[21] (100)	[21] (210) 2 1	[11] (210) 2½	(210) (210) 2+	(111) (111) 33	[11] (((í)]3	(111) (111)	cm] (ííí) 13	[21] (210) 4-	(21] (210) 4 ¹	[21] (210) コーラ	[21] (210) 34	(111) (111) 3 ³ -	[111] (111) 32
<u></u>	[21](51) 3 ¹ 7	1	0	0	0	0	0	0	0	0	0						
	[21] (42) 5 1/2	σ	1	0	0	0	0	0	0	0	0						
	[1](51)2-2	Ø	0	.8366	.3872	2645	-2828	0	0	0	0						
	[21](42)2 1/2	0	0	T0162	. 6279	.77 83	•0769	0	0	0	0						
5	[11](42)2 ¹ 2	O	0	.1299	-4905	.4669	. 7242	٥	0	0	ο						
2	[4](21)2½	0	0	•5319	747o5	.3259	•6241	0	0	0	ο						
	[11](33)3 5/2	σ	0	0	0	0	0	1	0	0	0						
	[14](30)33	0	0	0	0	0	0	0	1	0	0						
	[m](33)1 ³	0	0	0	0	0	0	0	0	1	0			•	••		
.	[m](10)1 <u>3</u>	0	0	0	0	0	0	0	0	0	1						
•	[21](51)4と											1	0	0	0	D	0
	[71](42)42											0	1	0	0	σ	0
7	[21](51)3½											0	0	1	0	0	٥
2	[4](42)5 \ 2										-	0	0	0	1	0	ο
	[111] (33)3 3 2							yana ka Ng Ng				0	0	0	0	1	0
	[11](30)5至			ara Arata							an a	0	0	0	0	0	1

1	[k] (x, 1/2 x 3) L5 [k](k, 1/2)L5	[24] (210) 5½	[21] (210) 4 ^{^1} 2	[21] (210) 4 <u>1</u> 2	[11] (11) 3 <u>3</u>	[11] (11) 312	[21] (210) S 1 2
	[21](51)5 <u>1</u>	1	0	0	0	0	
·	[1](51)4 ¹ /2	0	1	0	0	0	
92	[2](42)4 1/2	0	0	1	0	0	
	[111] (33) 3 <u>3</u>	0	0	0	1	0	
	[11] (30) 3 <u>3</u> 2	0	0	0	0	1	
11	[1](51)5 <u>1</u>						1

Paréntesis de transformación entre los estados clasificados en la cadena de grupos SU₃ y los estados en acoplamiento j-j, para $T = \frac{3}{2}$.

•	(osh) (osh)	abc	abc	abc	abc	ubc	abc	abc	abc	abc	abc	qbc	abc	abc	apc	abc
2	(1)(1,1)(5)	201	120	m	0 21	210	300	120	021	012	201	210	111	030	úí	210
	[21](51) ¹ 2	.3220	.1721	. 7746	.4868	15112										
	[71](21)12	53220	.6025	0	.2434	. 6885										
12	[21](42)0-	;7200	- 3850	0	5493	51924										
	[11](33)1子	13944	12108	76325	.5963	- 2108										
<u>-</u> -	[11](30)是	-3442	~694	0	12217	• 64-44				14		2			- -	17
	[21](51) 2 1 2						.2309	0	•4381	.2732	.3866	- 610	. 1960	1032	. 1366	.3664
	[11](42)212						0	0	٥	0	- 2434	.4554	.4818	•3464	.2036	.5761
	[21](42)2 ¹¹ 2						·\247	7404	• 1183	-, 2951	71763	7094z	-4732	.6693	. 084	" oz 4 6
З	[1](21)2늘						•6236	7,2886	75916	•4216	0	0	0	0	٥	0
2	[u](51)1½						.1632	75292	.1549	738(A	.5388	.2880	1549	72 190	-,2576	·0910
	211 ¹ /2							-coo79	-,4931	7 3002	.1233	7 2307	73211	- 2278	·2023	.5718
	[11] (33)33						•1147	73718	·1089	72715	-6082	73251	- 2903	7 4105	,\753	-0619
	[11] (30) 33						•1247	•2886	•3549	.4848	1769	• 3299	•4732	•3346	.0843	· 2385
	(IN] (33)1를						.0129	70418	.0122	70305	.2958	1571	• 0326	- 0461	. 8858	-, 3132
	[11](30)13				1999 - S		76039	79094	-1.071	•3034	.0199	-1.068	.2083	.1068	70119	1068

TABLA 11

	(d5/2)"(d2)b	(a K)	(460)	(u bc)	(abc)	(a 6 c)	(44)
7	(Sh)	(120)	(300)	(201)	(210)	(111)	(570)
	[h](b,b2)LS						
	[21](51) S ½	.72664	•25560	.57155	-,2309	-16329	
	[21] (51)4½	729664	.26833	, 60000	, 56568	•4000	
9 2	[21] (42)4 ½	o	40821	.18251	•51631	-,73021	
	[111](33)3 <u>3</u>	.61968	07127	-,38297	.54160	а. • 3829 7	
	[111](30)3 <u>3</u> 2	0	-81649	•36515	-,25819	•36514	
11/2	[21](51)5 <u>1</u>		······				1

TT ALEAT

							s,	te la constru						a gri si			
95F2.	16192	8510:	62101	9082.	E129'-									• •	-	2 2 2 2 2 (0 2) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7
5924.	5105=	1964.	6967:	+ss2-	9225.									•		<u>}</u> {(12)[10]	
1852.	1598.	E#8E.	££85.	15472	988Z'-						•					2 [12](14)[12]	
20001	£000 <u>*</u>	6855°.	6855*	1655°.	0952:											-7 E(IS)[17]	5
49 15'	EOST.	ьеы :	ьғы	5225	2.9.41.	1										-++(2+)[12]	
1598-	2.857:	FFP2.	fff2.	92812	ZBO7"											- <u>1</u> +(15)[12]	
• <u> </u>		*			,	102°-	58121	90 02:	Fros.	tion :	9405-	0	101-	5502 •	5507:	2165)[11]	
	1					\$ 580.	2020'	6264:	869:	8995.	\$ 95E*	66801	E1940+	0511-	0511.	1 [[11]	
						asfa.	5902'	2967.	5515*	1565.	2811-	1404.	Fps1.	02EP.	OZEV	2 c (05) [H]	Ĭ
						1404.	8241'	950-	sbfo:	2012.	- 5068	1662-	b195=	4988.	1958 ⁻	² {{{{{}}}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{	1
						IE16-	09112	tts1.	1555.	££\$'	EF31.	80.9:	258:	5505-	ezoe.	2 2(12)[12]	
		i de la constant April a l'arr Al constant				0	0	0	0	A1231	91 b5°	989.2 -	9579°-	0	0	2,2(2b) [17]	5
						1522 1	1159.	930.	2101	* 98E'	68512	pbzs*	02PJ.	v 1+1°-	MM		
						9981.	8125	5951	P011.	5512	980:	0565.	1160-	1005*-	105	+2(15)[12]	
						5561	EIIP	2649	. 926-	6£91	Fao :	00520	HOFO -	8605.	etos.	={{z}}	
						¥5///.	8920	561-	502-	965:	555-	0	1295	MSH	e195	7 8 (15) [12]	1
233	717	021	572	012	302		150	120	120	300	201	tos	III	111	510	5)(1914)[4] (14-7)	
() 9 H	090	Kigm	(90)	(29 10)	(19)	(1917)	(190)	(29.97)	(27.0)	(19)	(1913)	(790)	(291)	(270)	(191)	(44) (54)	1

Matrices de la interacción modelo calculadas con reg pecto de los estados clasificados en la cadena SU₃, para $T = \frac{3}{2}$, y con $V_0 = 1$.

J	(h) (h,be) L 5 (h)(h,b) 15	[11] (12) レナ	[21] (24) 1 ¹ / ₂	[21] (42) 0 1/2	[11] (13) [³ / ₂	[111] (30) 1 ³ / ₂	[21] (51) 5]	[1] [5]) 4 <u>1</u> 2	[21] (42) 4 <u>1</u>	[111] (33) 3 ³ /2	(11)] (30) 3 3
	[21] (51) 1 ¹ /2	- 23.X +.666 Z	0	-1.2472	0	624 2					
1	21 1 ¹ /2	0	- 5. X 41666 Z	666 2	4.4712	+1.60 Z					- - - - -
2	[21](43)0 <u>1</u> 2	-1.2472		~16. × -5. 4	-1.885 Z	4.6662					
	[11] (33) 1 3	0	t,47(z	-1.8852	-11. X t-833 2	0	• • • •				
	[11] (30) 1 2	-,624 Z	+1.00 Z	+.6662	0	-11.∝ +•833 Z					
	[21] (51) 5 <u>1</u>						-9, X + .602	+16632	+1.4 8 32	0	0
9	[21](51)4 <u>1</u> 2					i	+,662	- 14. X - 1007	-,223 2	0	-1.182
2	[2] (42)4 <u>1</u> 2						+1.4857	2232	-6. × -,5002	-1.41422	500 2
	[41](33)3 <u>3</u>						0	0	-1.4142	-6. X -1.500 Z	0
	[H](30)33						0	-1.118 2	~. S00Z	0	-6. × -1.5 2

-

TABLA 12

	Child)	[21]	[21]	[4]	τuj	[ય]	[21]	Ľmj	t]	(111)	[111]
7	[W](hhr)25	(51) こと	(42) 2½	(42) 211/2	(21) こと	(S1) 1子、	(21) 1 1	(33) 37	(30) 33	(33) 1 }	(10) 1 ³ 2
	[1](SI) 2 t	-210× -3.54 4.2502	- 1.620270 Z	+1.107% -1.1952	t1.1834	354 2	0	0	+.4472	0	-, 418 t
	[21] (42) 2 ½	-1.6203 2702	-13.× 754 +.3752	+,51234 -,2562	t. 54774 730 Z	t1.146Z	0	+1.3662	7 4 83 2	7,548 Z	5194 2
	[4](42)2 ¹ 2	t1.1074 -1.185 Z	+.51254 256 2	-13,X 3504 1.375 2	374 4	-,932 2	+1.1162	-1.2002	5424 Z	+.125 2	5044 2
3	2121	41.1833	t, 54774 7302	53744	-3.X -,9004 +1.002	0	+1.5652	- . 748 Z	-1.5972	7.200 Z	t.q24Z
3/2	[21] (S1) 1 ½	-3542	+1.1462	9322	0	-23.X -,3332	0	ο	0	0	7986 Z
	[21] (21) 1 ½	0	o	+1.116 2	+1.5652	0	-5.x -,3332	0	0	t.745 Z	1 1.581 2
	[11](33)3 <u>3</u> 2	0	41.3662	4.2002	7749 Z	0	0	-6, X +2.002	0	ο	0
	[11] (30) 33 2	t.4472	483 2	-,4242	-1.5872	0	. 0	· 0	-6.× 42.002	ο	0
	[14] (33) 1 <u>3</u>	O	75482	t.125 Z	2002	0	t,745Z	ο	0	-11 <i>. ×</i> †•3332	0
	(111) (30) 1 <u>3</u> 2	7.419Z	-,1942	044Z	t.424Z	986 2	+1.5812	0	0	0	-11, X +,3332

TABLA 12

And in case of the local division of the loc	the second second second second second second second second second second second second second second second s										
2	[1] (14:14:) [14](14:14:)25	$\begin{bmatrix} 21 \end{bmatrix}$ (51) $3\frac{1}{2}$	[71] (42) 3 1/2	[11] (51) 21/2	[21] (41) 2½	[21] (42) 2 ¹ ½	[21] (21) 2 <u>1</u> 2	(111] (35) 3 ³ /2	(111] (30) 3章	(111) (33) 1 ³ / ₂	(111) (30) 1 ³ /2
	[1](51)3 <u>1</u> 2	- 18, X +. 502	t.833 Z	t.577 Z	+1.2472	0	0	0	-, 6452	0	0
Q	[2] (42) 3 ¹ /2	+. 833 2	-10, X +.500 Z	962 2	0	~.365 Z	+_9112	+.6092	-215 2	0	0
	[1](51)2½	t. 577 2	~9623Z	- 21, 20 - 3,5 4 - 166 2	-1.62 % +.180 Z	+1.1074 +.7912	+1-1834	0	+.2982	0	-1.0242
	[21](42)2½	+1.2472	0	-1.624 +.1802	-13.X -1754 -1252	+,51234 +•171 2	+.54714 +.487Z	4.911 2	-, 322 Z	-1.3422	- 4742
2	[4](42)2' <u>+</u>	0	-, 365 Z	+1.1074 +1.1074 +17912	+5.1232 +.1712	-13. x -,3507 -,2507	3748	800 2	-283 2	t.3062	109 E
	[21] (21) 2 ½	0	t.911 Z	+1.1834	t.54774 t=4872	394 y	- 3. X - 4004 - 6662	-, 498 Z	-1.0582	74892	+1.0392
	[11](1)]3 <u>3</u> 2	0	+.6092	0	+.911 Z	- ,800 2	- . 498 Z	-6. × +1.1662	0	0	o
	[11] (30) 3 <u>7</u>	76452	7215Z	t•298 Z	-322 Z	72832	-1.058 Z	0.	-6.× +1.1667	0	0
-	[111](33)(<u>3</u>	0	0	0	-1.3427	t.306 Z	- 489 2	α	0	-11.X 500Z	0
	[11] (30) 13	0	0	-1.0247	-,474 Z	108 Z	+1.0392	0	0	ο	-11. X - . 500 2

Common common								
J	[h] (h, h2) [h](h, h2)LS	[21] (51) 4 ½	[21] (42) 4½	[21] (51) 3½	[21] (42) 3 ½	[111] (33) 3 ³ 2	[111] (30) 3 <u>3</u> 2	[1] (51) 5 <u>1</u> 7
	[21](51)4 ¹ / ₂	-14.22 t.125Z	+.2792	-, 279 2	-, 839 2	0	-• 559 2	
	[21](42) 4 ¹ /2	+.2792	- 6.X +.625Z	+•8752	375 2	-,707 Z	-,250Z	
7	[21](51) 3 1/2	-, 279 2	+-875 Z	-18, X 375Z	625 Z	0	750 2	
2	[21](42)3 ¹ /2	- 8392	-, 375 2	6257	-10.x -,375 Z	+.707 2	250 Z	
	[m] (33) 3 <u>3</u>	0	- .707 Z	0	t,707 Z	- 6. X	0	
	[111] (30) 3 <u>3</u>	-, 5592	-•250 Z	-,7SOZ	-, 250 Z	0	- 6, X	
11/2	[s1](z7)27							-9x 52

