00382 24 Universidad Nacional Autónoma de México Facultad de Ciencias

RESONANCIAS Y ESTADOS DE GAMOW EN POTENCIALES NO LOCALES CON INTERACCION COULOMBIANA

T E S I S Que para obtanor el Grado de: Doctor en Ciencias (Física) P r e s e a t e : Juan Manuel Velázquez Arcos

> Mézico, D. F., Julio de 1987 TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. INDICE

.

Incroduce	100		1
Capîtulo	1.	La dispersión por la suma de un potencial no local y un potencial de Coulomb en el formalismo de Fredholm	
	1.1	La dispersión por un potencial no local 👘	6
	1.2	La ecuación integral	8
	1.3	Condiciones sobre el potencial	13
	1.4	El determinante de Fredholm	17
	1.5	El resolvente	26
Capîtulo	11.	Resonancias y estados resonantes en un potencial no-local y un potencial de Coulomb	
	11.1	Estados resonantes en un potencial no-local	32
	11.2	La función de Gamow y la eigenfunción de Fredholm	38
	11.3	El dual de la función de Gamow .	40
	11.4	Normalización de los estados de Gamow	42
	11.5	Desarrollo de la función de Green en términos de estados ligados, resonantes y estados de la dispersión	50
	11.6	Desarrollo de una función en términos de estados ligados, resonantes y estados de la dispersión	52
Capitulo	111.	Ejemplo de aplicación del formalismo: Resonancias y estados resonantes en la captura radiativa directa de ³ He por ³ H	
	111.1	Uso práctico del desarrollo en estados de Gamow en un ejemplo realista	55
	111.2	? Elementos de matriz del operador dipolar eléctrico entre estados del continuo y estados ligados	58
	111.3	3 Resonancias	
Conclusiones			71
Referencias			73

.

INTRODUCCION

Los potenciales no locales son de gran importancia en la descripción mecánico cuántica de los sistemas formados por muchas partículas en interacción mutua. Algunos ejemplos lo son átomos y moléculas constituídas de electrones que se mueven en el campo electromagnético de los núcleos y que además actúan unos en los otros mediante el campo electromagnético que generan en su movimiento.

Otro ejemplo es el núcleo atómico que está formado de nucleones. es decir protones y neutrones que se mueven a gran velocidad confinados en una región muy pequeña del espacio por las fuerzas nucleares que actúan entre ellos. Los nucleones mismos son sistemas compuestos de partículas, que actualmente se cree que son elementales. -los quarks- que se mueven en el campo de fuerzas nucleares "fuertes" producido por el intercambio de gluones y descrito por la función lagrangiana de la cromodinámica cuántica. En todos estos casos y en muchos otros de igual importancia, las ecuaciones diferenciales correspondientes, ecuación de Schrödinger 6 ecuaciones de la cromodinámica cuántica. plantean un problema cuya solución no se puede obtener en términos de funciones analíticas conocidas en forma cerrada. Se recurre entonces a diversas aproximaciones, entre las que sobresale, por su eficacia y simplicidad el método de Hartree-Fock o algún otro método equivalente a éste y en el que la acción en una partícula, debida al resto de las partículas en el sistema se representa por un potencial o campo promedio, el cual a su vez se calcula con ayuda de las funciones de ondas aproximadas que describen el movimiento de esas La antisimetrización de las funciones de onda de 105 partículas. sistemas de muchos fermiones hace que el potencial resultante no sea

una función de la posición de la partícula solamente, sino que para cada posición de la partícula sobre la que actúa el potencial efectivo, esta función depende también de la presencia de las otras partículas. Resulta así que el potencial efectivo es función de dos variables de posición, una que describe la posición de la partícula sobre la que actúa el potencial y otra que indica la posición de los puntos del espacio alrededor de la partícula en los que se encuentran otras partículas correlacionadas con la primera por la acción del principio de Pauli.

En consecuencia, en la representación de Schrödinger los potenciales no locales son operadores integrales hermitianos de la forma siguiente:

El problema de la descripción de las colisiones entre dos sistemas compuestos de fermiones, en la aproximación del campo promedio, lleva de modo natural a una ecuación integrodiferencial

$$- \frac{M^*}{2m} \nabla^* \Psi + \int V(r,s) \Psi(s) d^3 s = E \Psi$$

con las condiciones a la frontera adecuadas, en donde V es el potencial efectivo que como se explicó antes no es local. La solución de esta ecuación se vuelve particularmente difícil cuando las condiciones a la frontera corresponden a las de ondas salientes, éstas son las llamadas funciones de Gamow.

Las funciones de Gamow son de gran utilidad en la descripción del comportamiento resonante de las colisiones. El antecedente de su aplicación se remonta a 1928, cuando Gamow⁽²³⁾ describió el decaimien-

de los núcleos radiactivos, con la ayuda de soluciones de to 1 a ecuación de Schroödinger que se comportan a grandes distancias de separación como ondas salientes puras correspondientes a valores complejos de la energía con una parte imaginaria negativa. Desde entonces, la posibilidad de usar estos eigenestados resonantes para describir estados no ligados de vida larga y resonancias en física nuclear y en otros campos de la física ha sido explorada por varios autores (24). Las resonancias y los estados resonantes producidos por un potencial no local, no separable, con soporte no compacto fueron estudiadas por Mondracón y Velázquez.⁽³²⁾ Sin embargo, la dificultad que representa la no localidad de los potenciales y la presencia de interacción coulombiana en muchos problemas solo había sido salvada parcialmente utilizando potenciales separables (5). El estudio de las resonancias y los estados resonantes en el caso general de un potencial no local con Soporte no compacto en presencia de una interacción coulombiana no habfa sido hecho.

En este trabajo, transformaremos la ecuación integrodiferencial de Schrödinger para potenciales no locales y en presencia de interacción coulombiana en la correspondiente ecuación de Lippmann-Schwinger por parecernos que es más conveniente incluir las condiciones a la frontera en la función de Green, y demostraremos que es posible resolver esta ecuación con la ayuda de la teoría de Fredholm de las ecuaciones integrales. Demostraremos también que es posible utilizar las soluciones divergentes de la ecuación de Lippmann-Schwinger homogénea para hacer una descripción del comportamiento resonante de las colisiones y demostraremos que las reglas usuales de normalización, cerradura y ortogonalidad de las

eigenfunciones se pueden extender a las funciones de Gamow en este caso.

Finalmente aplicaremos nuestros resultados a un problema concreto, la captura radiativa de ³He por ³H en el primer estado excitado de ⁶Li, en donde se hace una breve discusión y se obtiene la estructura resonante de la sección de captura mediante un desarrollo de la función de ondas en el canal de entrada en estados ligados resonantes y un contínuo de estados de la dispersión. El programa de esta tesis es como sigue:

En el primer capítulo se exponen los fundamentos matemáticos que nos permitirán garantizar que nuestros resultados sean correctos. Se demuestra que a la ecuación de Lippmann-Schwinger del problema con un potencial no local de soporte no compacto y un potencial coulombiano corresponde una ecuación de Fredholm con un núcleo integral cuya traza es finita. De este modo se pueden utilizar los resultados bien conocidos de la teoría de Fredholm aún en un caso, como el presente, en el que el núcleo integral no es autoadjunto.

El formalismo que desarrollamos en este trabajo es una generalización del tratamiento original de Lippmann y Schwinger⁽¹⁾ y del tratamiento más general y más moderno de N. von der Heydt⁽⁴⁾.

En el segundo capítulo planteamos el problema de los potenciales no locales con interacción coulombiana como una ecuación integral de Lippmann-Schwinger y construimos una ecuación integral de Fredholm auxiliar que nos permitirá obtener las propiedades de las funciones de Gamow.

-4

Después, utilizamos los resultados del capítulo 1 para desarrollar a las funciones de ondas y de Green en términos de estados ligados y estados resonantes y de un contínuo de estados de la dispersión. Obtenemos la generalización de las reglas de ortogonalidad, completez y normalización de los estados de Gamow.

En el tercer capitulo aplicamos los resultados anteriores a un problema concreto del cual se hace una discusión muy breve, obteniéndose el comportamiento resonante de la sección de captura radiativa de ³He por ³H en el primer estado excitado de ⁶Li por el procedimiento que ya ha sido descrito.

En el capítulo cuatro hacemos un resumen de los resultados obtenidos en este trabajo y exponemos algunas conclusiones de nuestro trabajo.

I.1 LA DISPERSION POR UN POTENCIAL NO LOCAL

El problema de la dispersión por un potencial no local da lugar a una ecuación radial de Schrödinger de tipo integrodiferencial con condiciones a la frontera apropiadamente definidas.

El hecho mismo de que el potencial no local se deba representar por un operador integral hace que los métodos matemáticos que se usan comúnmente en la teoría de la dispersión por un potencial local, es decir los métodos de las ecuaciones diferenciales ordinarias, no sean apropiados en este caso.

Esto me ha llevado a reformular el problema de la dispersión DOF potencial no local como un problema de ecuaciones integrales un de tipo Lippmann-Schwinger, homogéneas o inhomogéneas, según sea el caso, pues las técnicas del anàlisis funcional que permiten resolver estas ecuaciones son más apropiados para estudiar un problema que tiene comc parte esencial un operador integral. El problema de la dispersión por un potencial local ha sido formulado y estudiado como un problema de ecuaciones integrales por Lippmann y Schwinger, por Jost y Pais p por muchos otros autores, una exposición clara de esta teoría v una bastante completa se encuentran en el conocido libro de bibliografia Newton.3) El problema de la dispersión por un potencial texto de R.G. local formulado como un problema de ecuaciones integrales ha sido no N. von der Hevdt⁽⁴⁾en el caso en que el por potencial estudiado de interacción no tiene término coulombiano. También el problema de la dispersión por un potencial no local de corto alcance en presencia de interacción coulombiana ha sido estudiado por H. van Haeringen⁽⁵⁾y sus colaboradores en el caso especial en el que el potencial de corto

alcance es separable y de rango uno. En este capítulo generalizaré algunos resultados de von der Heydt al caso más interesante en que el potencial tiene además de los términos de corto alcance locales y no locales un término coulombiano.

Aquí se expondrán algunos resultados básicos de la teoría de la dispersión por un potencial no local que servirán de fundamento para la derivación de los resultados nuevos y originales que se exponen en la segunda y tercera partes de esta tesis. En la derivación de los resultados de este capítulo he seguido el mismo método que N. von der Heydt quien a su vez se basa en los métodos de la teoría de las ecuaciones integrales tal como están expuestos en el libro de F Smithies⁽²⁾. Por esta razón no he creído que fuese necesario repetir aquí aquellas demostraciones que se encuentran claramente expuestas en los trabajos de estos autores y solo se expondrán en detalle los resultados que no se encuentran ahí o en un libro de texto.

1.2 LA ECUACION INTEGRAL

El problema de la dispersión no relativista de una partícula sin spin por un potencial que es la suma de un término no local y uno local que a distancias grandes se comporta como un potencial de Coulomb lleva, mediante la representación de la ecuación de Schrödinger en coordenadas esféricas, a la ecuación radial siguiente:

$$\left\{\frac{d^{2}}{dr^{2}}-\frac{\mathcal{L}(\ell+1)}{r^{2}}-\frac{W_{\ell}}{V_{\ell}}-\frac{2\gamma k}{r}+k^{2}\right\}u_{\ell}(r)=0$$
(1)

Se ha supuesto que el operador W es invariante respecto de rotaciones y de la inversión del tiempo, y, en general se escribe como:

$$\mathbb{W}_{\mathcal{L}} \mathbf{u}_{\ell}(\mathbf{r}) = \mathbb{U}_{\ell}(\mathbf{r}) \mathbf{u}_{\ell}(\mathbf{r}) + \int_{\mathcal{L}} ds \mathbb{V}_{\ell}(\mathbf{r}, s) \mathbf{u}_{\ell}(s)$$
(2)

en esta expresión $U_g(r)$ es un potencial local real que decrece a grandes distancias más aprisa que 1/r; V (r,s) es un potencial real no local, simétrico en sus argumentos:

$$v_{g}(r,s) = v_{g}(s,r)$$
(3)
$$\frac{2\gamma k}{r} = \frac{ZZ'e^{2}}{r}$$

es el potencial de Coulomb.

У

Para construir la función de ondas radial $u_g(r)/r$ de la particula, requerimos de soluciones de (1) que sean continuas en r y que satisfagan las condiciones a la frontera siguientes:

a) Soluciones de la dispersión

con

$$u_{\ell}(k,r) = F_{\ell}(k,r) + \Psi_{\ell}(k,r)$$

con y

$$\begin{array}{ccc}
1 & 1 & m & \phi_{\mathcal{L}}(\mathbf{k}, \mathbf{r}) = 0 \\
\mathbf{r} \leftarrow \mathbf{0} \\
\lim_{\mathbf{r} \to \mathbf{m}} \left[\frac{\partial \phi_{\mathcal{L}}}{\partial \mathbf{r}} - \mathbf{i} \left(\mathbf{k} - \frac{\mathbf{Y}}{\mathbf{r}} \right) \phi_{\mathcal{L}} \right] = 0 \quad (4)
\end{array}$$

F_p(k) es la función de Coulomb regular en el origen

b) Estados ligados v_e(k,r) con

$$v_{\underline{\ell}}(k,0)=0$$
 (5)
 $\int_{0}^{\infty} dr |v_{\underline{\ell}}(k,r)|^{2} = 1$

La ecuación (I.1), con cada una de las condiciones a la frontera (I.4) y (1.5), se puede transformar en una ecuación integral con la ayuda de la función de Green del problema Coulombiano:

$$G_{0\ell}(k;r,r') = \frac{F_{\ell}(kr_{<})W_{\ell}^{(+)}(kr_{>})}{k} i\sigma_{\ell}(k)$$
(6)

con

$$\sigma_{e} = \arg r \left(\underline{r} + 1 + i_{Y} \right)$$
 (7)

en esta fórmula $W_0^{(+)}(kr)$ es la onda saliente de Coulomb.

Con la ayuda de $G_{0,\xi}(k;r,r')$ obtenemos a partir de la ecuación (I.1), las ecuaciones integrales:

a)
$$u_{\ell}(k,r) = F_{\ell}(kr) + \int_{0}^{\infty} ds K_{\ell}(k;r,s) u_{\ell}(k,s)$$
 (8)

b)
$$v_{g}(k,r) = \int_{0}^{\infty} ds K_{g}(k;r,s) v_{g}(k,s)$$
 (9)

$$L_{\ell}(k;r,s) = G_{0\ell}^{(*)}(k;r,s)U(s) \\ N_{\ell}(k;r,s) = \int_{0}^{\infty} G_{0\ell}^{(*)}(k;r,t)V_{\ell}(t,s)dt$$

A partir de $u_g(k,r)$ se puede calcular la matriz S. La onda saliente de Coulomb se expresa como:

$$W_{\pm}^{(+)}(kr) = (-1)^{2} e^{\frac{1}{2}\pi \alpha} W_{-i\alpha, 2+\frac{1}{2}} (-2ikr)$$

en donde $W_{\lambda,u}(z)$ es la función de Whittaker⁽⁹⁾irregular y α y γ son

$$a = \frac{M}{2h^2} Y = \frac{Z_1 Z_2 e^2 M h^{-2}}{k}$$

 $W_{\ell}^{(+)}(kr)$ satisface la condición a la frontera $\partial W_{\ell}^{(+)}(kr) = i(k-\frac{\gamma}{r})W_{\ell}^{(+)}(kr) = 0$ $r \to 0$ $r \to 0$

También es posible expresar a F $_g(kr)$ en términos de las funciones. de Whittaker regulares en el origen M $_{\lambda_+\,\nu}(z)$ como

$$F_{g}(kr) = \frac{(-1)^{2+1}}{2^{2+1}} C_{g}(k)M_{iY, 2+\frac{1}{2}} (2ikr)$$

con

$$C_{k}(k) = \frac{2^{k} e^{-\frac{1}{2}\pi\gamma} |\Gamma(\frac{1}{2}+1+\frac{1}{2}\gamma)|}{\Gamma(\frac{1}{2}+2)}$$

 $M_{\lambda_{\gamma},\nu}(z)$ y $W_{\lambda_{\gamma},\nu}(z)$ son funciones multiformes de k con un punto ramal en k=0 y una singularidad esencial en k= ∞ . $M_{\lambda_{\gamma},\nu}(z)$ es, como función de r, regular en el or<u>í</u> gen mientras que $M_{\lambda_{\gamma},\nu}(z)$ es singular como función de r en ese mismo punto. (9,34)

Si hacemos una transformación de inversión en el tiempo y de conjugación de la carga $F_{g}(kr), W_{g}^{(+)}(kr)$ y e^{i $\sigma_{g}(k)$} se convierte en

$$F_{g}^{*}(-k_{r}^{*}r)=(-1)^{g}e^{\pi Y}F_{g}(k,r)$$

$$W_{\underline{i}}^{*(+)}(-k^{*},r)=(-1)^{\underline{i}}e^{-\pi\gamma}W_{\underline{i}}^{(+)}(k,r)$$

[e^{io}₂(-k^{*})]^{*}=e^{io}₂(k)

Como funciones de k, tanto C (k) como $e^{i\sigma_{\mathcal{L}}}$ (k) tienen singularidades para aquéllos valores de k correspondientes a estados ligados del potencial de Coulomb.⁽²⁸⁾

La función de Green de Coulomb $G_{0L}^{(+)}(k;r,s)$ tiene un corte en el plano k debido a la multiformidad de las funciones de Whittaker $M_{\lambda,u}(z)$, $W_{\lambda,u}(z)$. Este corte, por convención, se extiende desde k=0 hasta k=sobre el eje real negativo. Consideradas como funciones de k. $M_{\lambda,u}(kr)$ y $W_{\lambda,u}(kr)$ no tienen ninguna otra singularidad en el plano complejo k. $G_{0L}^{(+)}(k;r,s)$ tiene además polos simples sobre el eje imaginario positivo cuyo origen está en los estados ligados del potencial de Coulomb y aparecen explícitamente en $C_{L}(k)$ y en $e^{i\sigma_{L}(k)}$. El punto k=0 es un punto singular esencial de $G_{0L}^{(+)}(k;r,s)$. En cualquier otra región del plano k, $G_{0L}(k;r,s)$ es una función entera.

 $G_{n,t}^{(+)}(k;r,s)$ tiene las propiedades de simetría siguientes:

$$G_{0\ell}^{(+)}(-k;r,s) = G_{0\ell}(k;r,s) + \frac{2i}{k}F_{\ell}(kr)F_{\ell}(ks)$$
 (10a)

$$G_{0l}^{*}(-k^{*};r,s)=G_{0l}(k;r,s)=G_{0l}(k;s,r)$$
 (10b)

y para Imk>0, la representación espectral de G_{os}(k;r,s) es:

$$G_{O_{\ell}}(k;r,s) = \prod_{n=0}^{\frac{1}{2}} v_{ON_{\ell}}(r) \frac{1}{2k_{n}(k-\frac{1}{4}k_{n})} v_{ON_{\ell}}(s) + \frac{2}{\pi} \lim_{\substack{n \neq s \\ 0 \neq s}} \int_{dq}^{d} \frac{F_{\ell}(qr)F_{\ell}(qs)}{k^{r+1}c-q^{r}}$$
(11)

en donde v $_{ORL}(r)$ son los estados ligados del potencial de Coulomb cuya expresión es:

$$v_{onz}(\mathbf{r}) = \frac{2}{n^{2}} \sqrt{\frac{(n-z-1)!}{[(n+z)!]^{2}}} (\frac{2r}{na})^{2} e^{-\frac{1}{2}(\frac{2r}{na})} L^{2} (\frac{2r+1}{n-z-1}) (\frac{2r}{na})^{2}$$

en esta expresión $L_p^q(x)$ es el polinomio de Laguerre de orden p asociado de orden q. y $a = \frac{\mu^2}{727 \text{ Mer}} = \frac{1}{727} a_0$

La demostración de las propiedades (10a)y (10b) se sigue de inmediato de la representación integral de $G_0^{(+)}$ que se encuentra en R.G. Newton (3).

I.3 CONDICIONES SOBRE EL POTENCIAL

Es necesario hacer algunas suposiciones sobre el potencial que garanticen que las ecuaciones integrales tengan solución.

Queremos llevar las ecuaciones integrales de Lippmann-Schwinger (8) y (9) a otras ecuaciones integrales que se puedan resolver con el método de Hilbert. Esto se logra mediante una función $H_{\alpha}(r)$, tal que $H_{\alpha}(r)K_{2}$ (k;r,s) $H_{\alpha}^{-1}(s)$ sea un núcleo de Hilbert-Schmidt en L² con |Imk|^{Sa} y con α^{2} O. Para el análisis de las resonancias α debe ser positivo.

Solo admitiremos potenciales con las siguientes propiedades⁽⁴⁾: Sea $H_{\alpha}(r) = e^{-\alpha r} r^{-1+\varepsilon_0} (1+r)^{-\varepsilon_0-\varepsilon_{\infty}}$ definido con los tres números reales

 $\alpha \ge 0$, $\varepsilon_{\alpha} > 0$, $\varepsilon_{\omega} > 0$ Entonces, el potencial no local debe cumplir la condición:

$$\int_{0}^{\infty} \int_{0}^{\infty} dr ds H_{\alpha}^{-2}(r) |V_{\ell}(r,s)|^{2} H_{\alpha}^{-2}(s) = c_{2}^{-1} < \infty$$
 (12a)

El potencial local U(r) debe ser L^a integrable en cada intervalo [a,b] con $0^{<}a^{<}b^{<\infty}$, y debe tener la conducta asimptôtica

$$U(r)_{r \to 0} = 0 (r^{-2+n_0})$$

$$U(r)_{r \to \infty} = e^{-2\alpha r} r^{-2-n_0}$$
(12b)

con

Jost y Pais⁽²⁾ han demostrado que la ecuación integral (8) con un potencial local, es soluble con el método de Hilbert para k real bajo la suposición (12b) con $\alpha = 0$. Sin embargo, en el formalismo de Jost, para que 5, (k) se pueda definir para k=0, U(r) debe decrecer más rápidamente que r^{-3} para $r_{\rightarrow \infty}(6)$. En lo que sigue demostraremos que $S_g(k)$ también se puede definir en k=0 cuando la validez de la suposición (12b) se extiende a &=0. Además, en lugar del formalismo de Jost, que para potenciales no locales con £40 no es aplicable, aprovecharemos la teoría del determinante de Fredholm que es mucho más cl<u>a</u>ra.

En consecuencia, las supòsiciones (12) implican que, para k $\ge -\alpha$

$$\hat{\Psi}_{g}(r,s) = H_{\alpha}^{-1}(r)\Psi_{g}(r,s)H_{\alpha}^{-1}(s)$$
 (13)

es un núcleo de Hilbert Schmidt en L^z.

Las mismas condiciones (12) implican que para Imk>- α los núcleos

$$\widehat{L}_{\ell}(k;r,s) \equiv H_{\alpha}(r)G_{0\ell}(k;r,s)U(s)H_{\alpha}^{-1}(s)$$
(14)

$$\hat{G}_{0l}(k;r,s) \equiv H_{\alpha}(r) G_{0l}(k;r,s) H_{\alpha}(s)$$
(15)

y por consiguiente también:

$$\widehat{N}_{\ell}(k;r,s) \equiv [\widehat{G}_{\ell}^{+}(k)\widehat{V}_{\ell}](r,s)$$
(16)

$$\hat{K}_{\ell}(k;r,s) \equiv H_{\alpha}(r) K_{\ell}(k;r,s) H_{\alpha}^{-1}(s)$$
 (17)

 $= \hat{L}_{g}(k;r,s) + \hat{N}_{g}(k;r,s) \qquad (18)$

son núcleos de Hilbert Schmidt en L2.

Los últimos cuatro núcleos son, como funciones de k, holomorfos en el semiplano Imk>- α y contínuos para Imk $\ge -\alpha$ salvo en el semi eje Rek ≤ 0 , Imk=0, en donde tienen un corte que se extiende de k=0 a k=- ∞ .

De aguí en adelante se considerarán solo funciones de ondas radiales

 $u_{\underline{k}}(kr)$ tales que $\hat{u}_{\underline{k}}=H_{\underline{k}}u_{\underline{k}}$ sea cuadràticamente integrable, esto es, solo funciones $u_{\underline{k}}(r)$ tales que la función reducida correspondiente $\hat{u}=H_{\underline{k}}u$ esté en L^e:

En el espacio G_{oc} están contenidas las funciones físicamente importantes.

a) Para |Imk|≤a y r>0, las soluciones ug(k,r) de la ecuación integral (8) que están en Ga son precisamente las soluciones del problema de condiciones a la frontera (1), (2) que están en Ga e, satisface la desigualdad.

$$|\Phi_{g}(k,r)| \leq \text{constante} \sqrt{\frac{r}{1+\alpha r}} e^{-1mkr}$$
(19a)

(Imk|≤α)

b) Para Imk[≥]0, k≠0, las soluciones v_g(k,r) de la ecuación integral homogênea (9) son precisamente las soluciones del problema de autovalores.

Para Imk²- α , las soluciones de (9) contenidas en G_{α} satisfacen una desigualdad $|v_{g}(k,r)| \leq \text{constante} \sqrt{\frac{r}{1+\alpha r}} e^{-ur}$

$$con \quad u = \min(\alpha, Imk) \tag{19b}$$

Encontrar la solución de las ecuaciones integrales (8) y (9) en G_{cc} es equivalente a encontrar la solución de la ecuación integral

c) $\hat{u}_{g}(k,r) = \hat{F}_{g}(k,r) + \int_{0}^{\infty} ds \hat{K}_{g}(k;r,s) \hat{u}_{g}(k,s)$ (20)

con

У

ûg(k,r)≡H_a(r)u_g(k,r) F̂g(k,r)≡H_a(r)F_g(k,r)

d)
$$\hat{v}_{g}(k,r) = \int ds \hat{K}_{g}(k;r,s) \hat{v}_{g}(k,s)$$
 (21)

Como consecuencia de que los núcleos \hat{V}_{g} (r,s), $\hat{L}(k;r,s)$, $\hat{G}_{01}(k;r,s)$, $\hat{N}_{g}(k;r,s)$ y $\hat{R}_{g}(k;r,s)$ con núcleos de Hilbert-Schmidt cuando |Imk| $\leq \alpha$, la ecuación (20) es soluble para Imk $\geq -\alpha$ y (21) es soluble para Imk $\geq -\alpha$ con ayuda de la teoría de Smithies⁽⁷⁾ de las ecuaciones integrales con núcleos L² en el espacio de las funciones L².

1.4 EL DETERMINANTE DE FREDHOLM

Demostraremos ahora que para Imk≧-_α, la traza del núcleo ^Kg(k) existe. Por definición

$$tr\hat{K}_{\ell} = \int_{0}^{\infty} ds \hat{K}_{\ell}(k;s,s) = \int_{0}^{\infty} ds H_{\alpha}(s) G_{0\ell}(k;s,s) U(s) H_{\alpha}^{-1}(s) + (22)$$
$$\int_{0}^{\infty} ds \int_{0}^{\infty} dt H_{\alpha}(s) G_{0\ell}(k;s,t) H_{\alpha}(t) H_{\alpha}^{-1}(t) V_{\ell}(t,s) H_{\alpha}^{-1}(s)$$

Será necesario demostrar únicamente que la traza de $\hat{G}_{0\ell}$ existe, ya que las condiciones impuestas en los potenciales garantizan que la traza de $\hat{U}_{\ell} + \hat{V}_{\ell}$ existe. Que esto es así se ve del siguiente argumento:

I.- Si \hat{G}_{02} y \hat{U}_{2} + \hat{V}_{2} son operadores del espacio de Hilbert G_{α} , es decir que:

$$[\hat{\mathbf{G}}_{0\ell}(\hat{\mathbf{U}}_{\ell}+\hat{\mathbf{V}}_{\ell})]\psi = \hat{\mathbf{G}}_{0\ell}[(\hat{\mathbf{U}}_{\ell}+\hat{\mathbf{V}}_{\ell})\psi] \in \mathcal{G}_{\alpha}$$

para cada vector

ψε G_a

II.- Entonces, la norma de los operadores satisface la relación siguiente:

$$|| \hat{\mathsf{G}}_{\mathsf{O},\mathsf{R}}(\hat{\mathsf{U}}_{\mathsf{R}}^{+} + \hat{\mathsf{V}}_{\mathsf{R}}^{-}) || \leq || \hat{\mathsf{G}}_{\mathsf{O},\mathsf{R}}^{-} ||^{*} || (\hat{\mathsf{U}}_{\mathsf{R}}^{+} - \hat{\mathsf{V}}_{\mathsf{R}}^{-}) ||$$

III.- Si se define la norma como:

entonces basta con que $tr\hat{G}_{OR}$ exista para que $tr\hat{K}_{L}^{(+)}$ exista.

La integral que nos interesa es:

$$\int_{0}^{\infty} \widehat{G}_{0\ell}(k;s,s) ds = \int_{0}^{\infty} H_{\alpha}(s) G_{0\ell}(k;s,s) H_{\alpha}(s) ds$$

$$= - \int_{0}^{\infty} \frac{e^{1}\sigma_{\ell}}{k} F_{\ell}(ks) H_{\ell}^{(+)}(ks) \left[\hat{e}^{2\alpha s} s^{-2+2\varepsilon_{0}} (1+s)^{-2\varepsilon_{0}} - 2^{\varepsilon_{0}} \right] ds$$

$$= - \int_{0}^{\infty} \frac{e^{1}\sigma_{\ell}}{k} F_{\ell}(ks) H_{\ell}^{(+)}(ks) \left[\hat{e}^{2\alpha s} s^{-2+2\varepsilon_{0}} (1+s)^{-2\varepsilon_{0}} - 2^{\varepsilon_{0}} \right] ds$$

$$= \int_{0}^{\infty} \hat{G}_{01}(k;s,s) ds + \int_{0}^{\infty} \hat{G}_{01}(k;s,s) ds \equiv I_{1} + I_{2}$$
 (23')

Como el integrando es una función continua y acotada para todos los valores finitos de sus argumentos, bastará entonces con analizar el comportamiento del integrando para r $\rightarrow 0$ y para r $\rightarrow \infty$.

Para r+0 se tiene que:

$$F_{g}(p) \sim p^{g+1} \sim r^{g+1}$$
$$W_{g}^{(+)} \sim p^{-g} \sim r^{-g}$$
$$H_{a}^{a}(r) \sim r^{-2+2\varepsilon}$$

de manera que para r<<1, el integrando de I_{ij} , se comporta como:

$$\hat{G}_{02}(k; S, S) \sim S^{2\epsilon_0 - 1}$$
 (24)

y como $\epsilon_0 > 0$

$$I_1 \sim \int_{c}^{r} ds \ s^{2\varepsilon_0 - 1} = \frac{r^{2\varepsilon_0}}{2\varepsilon_0} \ con \ \varepsilon_0 > 0$$

que es finito.

En el caso de que r+-

$$F_{\underline{k}^{n}} \operatorname{sen}(p - \gamma \underline{2} n 2 p - \frac{1}{2} \underline{2} \pi + \sigma_{\underline{k}})$$

$$W_{\underline{k}^{n}}^{+} \operatorname{exp}[i(p - \gamma \underline{2} n 2 p - \frac{1}{2} \underline{2} \pi)]$$

$$H_{\underline{k}^{n}}^{+}(r) \sim e^{2\alpha r} r^{-2 - 2\epsilon_{\underline{k}}}$$

$$k = a + ib; \gamma = \frac{r}{k}$$

con lo cual, cuando rem . \hat{G}_{OE} (k,r,r)~ $\frac{e^{-i\sigma_E}}{2I}$ [$e^{2i\left[(a+ib)r - \frac{\Gamma}{|E|^2}(a-ib) \ln r - \frac{\Gamma}{|E|^2}(a-ib) \ln 2(a+ib)\right]_{R}}$ (25) $\times e^{2i\left(-\frac{1}{2}\ln r + \sigma_E\right)} - 1] \times e^{-2\alpha r} r^{-2-2c_m}$

Sólo el primer término amerita atención.

La parte relevante de este término, dependiente de r, resulta ser $2i \left[r - \frac{renr}{|k|^2}\right]a = -2b \left[r + \frac{renr}{|k|^2}\right] = -2^{2i}r - r^{-2-2}c_{w}$

Si tomamos el valor absoluto de la función nos queda:

$$e^{-2r(at|b|)} e^{2tnr(\frac{1}{t}|b|^{-1-c_{o}})} = e^{-cr} e^{ttnr}$$

con

$$c=2(a \pm |b|); X = 2(\frac{|b|}{|k|} - 1 - \epsilon_{-})$$

Es evidente que si c>0, esto es, que si a>| b| entonces:

$$\lim_{r \to \infty} \hat{G}_{0L}(k;r,r)=0 ; \Rightarrow |b| \qquad (25')$$

como el producto de una potencia por una exponencial decreciente. Podemos también encontrar expresiones exactas para la integral⁽⁹⁾

$$\int e^{cs} s^{x} ds = \begin{cases} c^{-(x+1)} r (x+1, cr); 1+x > 0 \\ c^{x-1} (\frac{r}{c})^{-\frac{H}{2}} e^{-\frac{r}{2c}} W - \frac{x}{2} \cdot \frac{(1-x)}{2} (\frac{r}{c}); x<0 \end{cases}$$

En vista de que el integrando de (23) es una función acotada en todo el intervalo de integración, que va a cero en el origen como una potencia del argumento y que va a cero en infinito como una exponencial decreciente, la integral en (23) existe⁽¹⁰⁾

Con esto hemos demostrado que la traza del kernel $\tilde{K}_{g}(k)$ existe cuando Imk $\sim \alpha_{s}$ además, por la propiedad de invariancia de la traza ente transformaciones unitarias se tiene que:

$$trK_{t}(k)=tr \hat{K}_{t}(k)=\int ds K_{t}(k;s,s)$$

cuando $lmk \succ a$ y a partir de aquí, como la condición para que el determinante de Fredholm exista es que la traza de K_{\pm} exista, y ésta existe, así pues, también el determinante de Fredholm existe.

$$\Delta_{g}^{(+)}(g,k)=det [1-g\hat{K}_{g}(k)]$$
 (26)

Para cada valor complejo de g, $\Delta_g^{(+)}(g,k)$, como función de k, es analítico en el semiplano Imk>- a y contínuo para Imk2-a salvo en los puntos donde G_{os} tiene polos y un corte. De donde se sigue que:

$$\lim_{k \to \infty} \Delta_{k}^{(+)}(g,k) = 1, \ k \in \mathbb{R}^{+}$$
(27)

De la simetría respecto de las operaciones de inversión del tiempo y conjugación de carga se tiene que:

$$\Delta_{g}^{(+)^{*}}(g,k) = \Delta_{g}^{(+)}(g,-k^{*}) \text{ para } g \text{ real}(3,4)$$
 (28)

Cuando α es finite, $\Delta_{\pm}^{(+)}(k)$ solo puede tener un número finito de ceros en la franja $0>Imk>-\alpha$. Estos ceros están situados simétricamente respecto del eje imaginario. En el semiplano Imk>0, los ceros de $\Delta_{\pm}^{(+)}(g,k)$ pueden estar en el eje imaginario k.

A continuación, se enunciarán algunos resultados sobre núcleos en L

que se usarán más adelante(7).

a) La traza de un núcleo separable

$$A(r,s) = a(r)b(s)$$
 (29)

con a,b∈ L²(0, ∞) existe y es igual a:

 $\int_{0}^{\infty} a(r)b(r)dr$, su determinante de Fredholm es:

det[1-A] = 1-trA = 1-
$$\int_{0}^{\infty} a(s)b(s)ds$$
 (30)

b) Si A, B y C son núcleos en L^s tales que sus trazas existen y satisfacen la ecuación integral

C = A + B - AB (31)

entonces

$$det [1-C] = det [1-A] det [1-B]$$
(32)

c) Si se define un núcleo en L² mediante "la identidad del resolvente"

$$\hat{R}_{g}(g,k) - \hat{K}_{g}(k) = g\hat{K}_{g}(k)\hat{R}_{g}(g,k) = g\hat{R}_{g}(g,k)\hat{K}_{g}(k) \qquad (33)$$

para Imk≥-α, el núcleo:

$$\hat{D}_{g}(g,k;r,s)=\Delta_{g}(g,k)\hat{R}_{g}(g,k;r,s)$$
(34)

es una función entera de $g^{(4)}$.

El núcleo $\widehat{D}_{L}(g, k)$ es además una función meromorfa de k en el semiplano Imk>- α y continuo para Imk \geq - α salvo en el eje real negativo, en donde tiene un corte. Cuando g es real, se cumple también que

El núcleo $\hat{R}_{L}(g,k; r,s)$ es, como función de R meromorfo en el semiplano Imk>-a salvo en el eje real negativo y tiene polos precisamente en los ceros de $\Delta_{L}(g,k)$. En el semiplano Imk $\succeq 0$, $\hat{R}_{L}(k)$ puede tener polos solamente en los ejes imaginarios positivo o real. Estos polos son simples salvo en k=0, donde el polo puede ser doble⁽³⁾.

Las consecuencias de los resultados anteriores son las siguientes: Los núcleos

$$D_{t}(g,k;r,s) = H_{a}^{-1}(r)\hat{D}_{t}(g,k;r,s)H_{a}(s)$$
 (36)

$$R_{\underline{L}}(g,k;r,s) = \frac{D_{\underline{L}}(g,k;r,s)}{\Delta_{\underline{L}}(g,k)}$$
(37)

tienen, como función de k,las mismas propiedades analíticas que los núcleos $\hat{D}_{g}(g,k)$ y $\hat{R}_{g}(g,k)$, y de (33) se sigue que $R_{g}(g,k)-K_{g}(k)=gK_{g}(g,k)=gR_{g}(g,k)+gR_{g}(g,k)$

En el enunciado siguiente se resumen los bien conocidos teoremas de Fredholm sobre las soluciones de las ecuaciones integrales (20) y (21) respectivamente. (8) y (9), así como las afirmaciones que se siguen de las propiedades de $K_{s}(k)^{(3,7)}$.

Alternativa de Fredholm:

У

I.- Cuando $\Delta_{g}(g,k)\neq0$, la ecuación integral inhomogénea (8) tiene para [Imk] $\leq \alpha$, precisamente una solución u_g(k,r) en G_{α} Esta solución es:

$$a_{\underline{t}}(k,r) = F_{\underline{t}}(k,r) + \frac{g}{\Delta_{\underline{t}}(g,k)} \int_{0}^{\infty} D_{\underline{t}}(g,k;r,s) F_{\underline{t}}(k,s) ds \qquad (38)$$

de donde se sique que (3)

$$u_{g}^{*}(k,r) = (-1)^{g} + 1 \quad u_{g}(-k^{*},r)$$
(39)

II.- Cuando $\Delta_g(g,k)=0$, para Imk $\geq -\alpha$, la ecuación integral homogénea (9) tiene cuando menos una solución en G_{α} .

Para k fija en el semiplano Imk2- α , el orden n del cero g_o de $\Delta_{\underline{k}}(g,k)$ (multiplicidad algebráica) y el número m de soluciones linealmente independientes satisfacen la desigualdad siguiente:

$$1 \le m \le n_{*}m \le g_0^* || \tilde{K}_{\chi}(k) ||^*$$
 (40)

Para Imk ≥ 0 , k#0, las soluciones $v_g(k,r)$ de (9) contenidas en G_{cc} son normalizables, este resultado es válido también cuando $\alpha=0^{\binom{4}{2}}$.

Cuando la ecuación integral homogénea (9) tiene una solución en G_{α} para k=0, ésta no es necesariamente normalizable^(3,4).

La normalizabilidad para L^{2} 1 se mantiene sin embargo bajo las suposiciones (12) aumentadas con las condiciones

Para 2=0, k=0, una solución $v_0(0,r)$ de la ecuación integral homogénea (9) en G_{α} es normalizable cuando además de (41) se cumple que ⁽⁴⁾

$$\int_{0}^{\infty} dr r \{U(r)v_{0}(0,r) + \int_{0}^{\infty} ds V_{0}(r,s)v_{0}(0,s)\} = 0$$
 (42)

III.- En el caso de que $\Delta_g(g,k_0)\neq 0$, con k real o imaginaria, la ecuación integral inhomogénea (20) puede tener a lo más soluciones en $G_{\rm m}$.

Cuando k_o es real o imaginaria y Imk_o>- α , la solución u₂(k,r) de la ecuación inhomogénea (8) se puede continuar analíticamente a k_o. Si todas las eigenfunciones v₂(k_o,r) de gK(k_o,r) están contenidas en G_a, la relación de ortogonalidad

$$\int dru_{\ell}(k_{0},r) \{U(r)v_{\ell}(k_{0},r)+\int dsV(r,s)v_{\ell}(k_{0},s)\} = 0$$
(43)

se cumple, que para k_o real siempre es el caso.

Cada solución $v_{\ell}(k_{O},r)$ de la ecuación integral homogénea (9)en G_{α} , para la cual ésta relación se cumple es normalizable en el caso $k_{O} \neq 0$ y es también eigenfunción del núcleo g $K_{\ell}(-k_{O})$.

Con estos antecedentes, a partir de la igualdad del determinante de Fredholm y de la función de Jost del problema⁽³¹⁾, se deriva una fórmula para S_g(g,k). Bajo las suposiciones (12) y para | Imk | ≤α se cumple la relación

$$S_{2}^{(+)}(g,k) = \frac{\delta_{2}^{(-)}(g,k)}{\Delta_{2}^{(+)}(g,k)}$$
(44)

A partir de aquí y de los resultados anteriores se sigue que, $S^{(+)}(g,k)$ como función de k tiene las siguientes propiedades:

- i) Es meromorfa en el semiplano |Imk|<α con α>0 y bajo las suposiciones (12).
- ii) Es contínua en el eje k real cuando k ≥ 0 y bajo las suposiciones (12); además se cumple que
- iii) Los polos de S_e(g,k) están en el semiplano de Imkz-a; cuando

Imk>0, éstos se encuentran en el eje imaginario positivo; cuando $-\alpha < Imk \le D$, los polos de $S_g(g,k)$ están situados simétricamente respecto del eje imaginario negativo. Los polos de $S_g(g,k)$ están precisamente en donde están los ceros de $\Delta f^{(+)}(g,k)$. En el eje imaginario entre 0 e i = estos polos solo pueden ser simples.

v) $S_{a}^{*}(g,k)=S_{a}(g,-k^{*})$ para g real

vi) lim
$$S_{\pm}(g,k)=1$$

vii)
$$u_{k,r} = (-1)^{k+1} S_{k}(g,k)u_{k}(-k,r)$$

- viii) Si $\Delta_{\underline{k}}(g,k)$ tiene un cero de orden n en k=0 entonces S_(g.0)=(-1)ⁿ
 - ix) En el eje k real se cumple que |S_(g,k)| =1

1.5 EL RESOLVENTE

La función de Green completa o resolvente del operador radial en (1) se define mediante la ecuación:

$$(\Omega_{g}^{+} k^{2})G_{g}^{(+)}(k) = \delta(r-r')$$
 (45)

con

$$\Omega_{\underline{k}} \equiv \frac{d^2}{dr^2} - \frac{\underline{k}(\underline{k} + \underline{1})}{r^2} - \frac{2\gamma \underline{k}}{r} - \underline{g} \underline{k}_{\underline{k}}$$

$$\hat{\Omega}_{\underline{k}} \equiv -\frac{d^2}{dr^2} - \frac{\underline{k}(\underline{k} + \underline{1})}{r^2} - \frac{2\gamma \underline{k}}{r}$$
(46)

y con las condiciones a la frontera apropiadas. Esta función de Green se puede expresar fácilmente con ayuda del resolvente R_{e} de la ecuación integral (B), que se definió anteriormente, de la siguiente manera:

$$G_{\ell}^{(+)}(k;r,s) = G_{\ell}^{(+)}(k;r,s) + g \int_{0}^{\infty} R_{\ell}(g,k;r,t) G_{0\ell}^{(+)}(k;t,s) dt$$
 (47)

A partir de la identidad del resolvente (33) para R_g se sigue que:

$$\int_{0}^{\infty} R_{g}(g,k;r,t)G^{(+)}_{0}(k;t,s)dt = \int_{0}^{\infty} (M_{k}^{(+)}(k;r,t) + g\int_{0}^{\infty} M_{k}^{(+)}(k;r,x)$$

$$R_{g}(g,k;x,t)dx) dtG_{0}(t,s)$$

$$= \int_{0}^{\infty} M_{k}^{(+)}(k;r,t) \{ G_{0}^{(+)}(k;t,s) + g\int_{0}^{\infty} R_{g}(k;t,x)G_{0}^{(+)}(k;x,s)dx \} dt =$$

$$= \int_{\mathbf{K}}^{\mathbf{K}} {(+)} (k; r, t) G^{(+)} (k; t, s) dt$$

Así que G_g satisface la ecuación del resolvente para los operadores α, y α_g

$$e_{2}^{(+)}(k;r,s) = G^{(+)}_{0}[k;r,s) + g \int_{N}^{-(+)} e_{g}(g,k;r,t) G^{(+)}_{0}(k;t,s) dt$$
(48)

$$G_{2}^{(+)}(k;r,s) = G_{0}^{(+)}(k;r,s) + g_{0}^{(+)}(k;r,t) \int_{0}^{\infty} W_{2}(k;x) G_{1}^{(+)}(k;x,s) dx dt$$
con
$$W_{2}(k;x) = \tilde{\Omega}_{2} - \tilde{\Omega}_{2}$$

Ahora solo es necesario aplicar \vec{n}_{02} +k² a $G_{02}^{(+)}$ por la izquierda y aprovechar que $\begin{bmatrix} \vec{n}_{02} + k^2 \end{bmatrix} G_{02}^{(+)}$ (k;r.r') = δ (r-r') para obtener (45). Inversamente, se puede obtener R₂ a partir de G₂

con ayuda de (34)

$$R_{g}^{(r)} = \int G_{L}^{(+)}(k;r,s) W_{g}(k;s) ds$$
 (49)

La dependencia del núcleo integral del número de ondas k y de la constante de acoplamiento g que proviene de (47) se hará notar aquí y en lo que sigue solamente cuando sea importante que se muestre. Las siguientes propiedades de $G_L^{(+)}(k;r,s)$ se pueden demostrar con la ayuda de los resultados ya obtenidos.

$$I_{\star} = \widehat{G}_{\underline{\ell}}^{(+)}(\underline{k}; \mathbf{r}, \mathbf{s}) \equiv H_{\alpha}(\mathbf{r})G_{\underline{\ell}}^{(+)}(\underline{k}; \mathbf{r}, \mathbf{s})H_{\alpha}(\mathbf{s})$$
es un núcleo L^e cuando Imk² - $\alpha y = \Delta_{\underline{\ell}}^{(+)}(\underline{k})\neq 0$

2.- $\hat{G}_{k}^{(+)}(k;r,s)$, como función de k. es meromorfa en el semiplano Imk > a excluyendo al semieje real negativo $R_{0}k\leq 0$ y tiene un número infinito de polos en el semieje imaginario positivo y un número finito de polos en la banda 0°Imk[>] - a. Estos polos coinciden en posición y orden con los de $R_{k}(k)$ y en posición con los ceros de $\Delta_{k}^{(+)}(k)$. En el semiplano Imk[>] - alos polos sôlo pueden estar en el eje imaginario positivo o en el eje real y son simples para k40⁽³⁾.

3.- $G_{\pm}^{(+)}(k)$ tiene las propiedades de simetría.

$$G_{L}^{(+)*}(-k^{*};r,s) = G_{L}^{(+)}(k;s,r)$$

(50)

$$G_{L}^{(+)}(-k;r,s) = G_{g}(k;s,r)$$

y para lmk>-« excluyendo el corte Rek-O.Para lmk≠O se tiene que

$$G_{\underline{k}}^{(+)}(-k;r,s) = G_{\underline{k}}^{(+)}(k;s,r) + (-1)^{\underline{k}+1} \frac{2i}{k} u_{\underline{k}}(kr) u_{\underline{k}}(-ks)$$
(51)

G(+) satisface las condiciones a la frontera

$$G_{L}^{(+)}$$
 (k;r.s) $\overset{\sim}{r+0}$ r^{L}

y

$$\lim_{r \to \infty} \left[\frac{\partial}{\partial r} G_{t}^{(+)}(k;r,s) - i(k - \frac{Y}{r}) G_{t}^{(+)}(k;r,s) \right] = 0$$

La representación (47) de una función de Green completa de la ecuación de Schrödinger radial (1) y sus propiedades enunciadas en los resultados anteriores se puede utilizar para demostrar la clausura o complete $z^{(30)}$ de las soluciones (2) y (3) de (1) y también para obtener. la representación espectral de la función de Green⁽²⁹⁾

$$G_{E}(k;r,s) = \frac{2}{\pi} \lim_{\delta \to 0} \int_{0}^{\infty} \frac{u_{E}(q,r)u_{E}^{*}(q,s)}{K^{2}(e-q^{2})} q dq + \frac{m_{V}}{m_{V}} + \sqrt{\frac{1}{E}} \frac{1}{k^{2}-k_{V}r} (j_{E}^{V} + v_{E\vee j}(r)v_{E\vee j}(s))$$
(52)

con Imk>0

Las soluciones $v_{Evi}(r)$ de (3) se escogen reales.⁽⁴⁾

Bajo las suposiciones (12), con $\alpha \ge 0$ el conjunto de las soluciones de la dispersión u (k,r), ecuación (2) y para todas las k>0 reales, y las eigenfunciones $\overset{g}{=} v x_{v1}(r), \dots, v_{xvm_{v}}(r)$, escogidas reales; que corresponden a los eigenvalores k_{v}^{z} de la ecuación de ondas radiales (1), forman un sistema ortonormal completo en el espacio $L^{2}(0,\infty)^{(30)}$ Esto significa que:

$$\frac{2}{\pi} \int dqu_{g}(q,r) \int u_{g}^{*}(q,s)f(s)ds +$$

$$+ \frac{\pi}{\gamma=0} \int \frac{\pi}{j=1} v_{g,vj}(r) \int dsv_{g,vj}(s)f(s)=f(r)$$
(53)

para todas las $f(r) cL^2(0, -)$, todas las m_{ij} son finitas. Se cumple la relación de ortogonalidad

$$\int_{-\infty}^{\infty} v_{k \vee j}(r) v_{k \vee i}(r) dr = \delta_{\vee \downarrow} \delta_{ji}$$
 (54a)

¥

$$\frac{2}{\pi} \int_{0}^{\infty} u_{k}^{*}(k_{1},r) u_{k}(k_{2}r) dr = \delta(k_{1}-k_{2})$$
(54b)

para todas las k₁ y k₂ reales.

Como resultado de la cerradura de las soluciones físicas del operador de ondas radiales y de la clausura de los armônicos esféricos se sigue la clausura de las soluciones esféricas de la ecuación de Schrödinger en R³, la que bajo suposiciones parecidas ha sido fácilmente derivada⁽³⁾. Los métodos de la teoría de las funciones utilizadas en (4) aparentemente han sido usados hasta ahora sólo en el caso de un potencial local, y de un potencial no local sin interacción de Coulomb. La aplicabilidad en el caso de un potencial no local en presencia de una interacción Coulombiana se vuelve esencial para la construcción de la función de Green completa y para el conocimiento de las propiedades

del núcleo resolvente R (k) en este último caso.

A partir de las propiedades analíticas de la función de Green como función de k y de su representación espectral se aclara completamente la conducta de la misma $G_g(k)$ por lo menos en el semiplano superior de k excluyendo al eje real. Con ayuda de las ecuaciones (5), (6) y (51) se logra entonces hacer también una afirmación sobre la presencia posible de polos de $G_g(k)$ en la franja $O_{2IMk>-\alpha}$.

Además, por razones de simplicidad, nos restringiremos al estudio de los polos en los cuadrantes abiertos tercero y cuarto; esto es a los llamados polos resonantes.

Consideraremos ahora el desarrollo de Laurent de la función de Green alrededor de un polo.

Enunciaremos el resultado sin la demostración que se puede obtener de Smithies⁽⁷⁾, capítulo III y Marsden⁽¹⁰⁾, capítulo III, ver también von der Heydt⁽⁴⁾.

Sea $k_0 \operatorname{con} R_e k_0 \neq 0 y 0 > \operatorname{Im} k_0 > - \alpha \operatorname{un} \operatorname{cero} de orden n de <math>\mathfrak{g}_{\lambda}^{(\times)}$

- i) Entonces $G_{g}^{(+)}(k)$, $|u_{g}(k) > y S_{g}(k)$ como funciones de k tiene un polo de orden n en k_n.
- ii) $[u_{a}(k)$ se puede desarrollar en serie de Laurent en k₀

$$|u_{t}\rangle = \sqrt{\frac{2}{n}} |\phi_{v}\rangle (k-k_{o})^{v}$$
(55)

Entonces, los coeficientes de las potencias negativas en la serie de Laurent

$$G_{L}(k) = \sqrt{\Sigma_{-n}} B_{v}(k-k_{o})^{v}$$
 (56)

se pueden expresar mediante las funciones

$$| \bullet_n^{>} \cdots | \bullet_1^{>}$$
(57)

$$\mathbf{B}_{-\mathbf{n}+\mathbf{m}} = \mathbf{v} \sum_{0}^{\mathbf{B}} \mathbf{m}_{-\mathbf{v}} = \mathbf{u} \sum_{0}^{1} \mathbf{\phi}_{-\mathbf{n}+\mathbf{u}} \sum_{0}^{1} \mathbf{m}_{-\mathbf{v}+\mathbf{m}} \mathbf{m}_{0}^{1}$$
(58)

$$s_{n} = \beta_{0} | \phi_{-n} > \langle \phi_{-n} |$$
(59)

Cuando el polo en k_{o} es simple, $G_{g}(k)$ se reduce a

$$G_{L}(k) = \frac{B_{L}}{k-k_{v}} + \frac{E}{v^{2}0} B_{v}(k-k_{o})^{v} = \frac{R_{LR}}{k-k_{R}} + F_{R}$$
 (60)

con

$$B_{L} = R_{Ln}; F_n = n \sum_{0}^{\Sigma} B_{v} (k - k_0)^{v}; k_0 = k_n$$
 (61)

iii) Las funciones $|\phi_{n+m}\rangle y | \tilde{\phi}_m\rangle$ de (62) (m=0,1,...) están contenidas en G_{α} . Son linealmente independientes las funciones del multiplete finito $|\phi_{-n}\rangle$,..., $|\phi_{-n+m}\rangle$ (m=0,1.2...) y uno puede desarrollar en términos de los primeros m+1, términos de la serie de potencias

$$-(-1)^{L+1} \frac{2i}{k} |\mu_{L}(-k)\rangle = \sum_{\nu=0}^{\Sigma} |\vec{\Phi}_{\nu}\rangle(k-k_{0})^{\nu}$$
(62)

e invertir el desarrollo:

$$|\hat{v}_{-\Pi+M}^{*}\rangle = \int_{0}^{\infty} |\bar{\Phi}_{v}^{*}\gamma_{M-v}^{*}; \gamma_{O}^{*} = \frac{1}{B_{0}}$$
 (63)
m=0,1,2...

$$\left|\bar{\phi}_{m}\right\rangle = \int_{v=0}^{\infty} \left|\phi_{n+v}\right\rangle^{\beta} = \int_{m-v}^{\infty} m = 0, 1, 2 \qquad (64)$$

iv) La función $|\phi_n\rangle = |\phi_0\rangle \gamma_0$ es, hasta un factor multiplicativo. la única eigenfunción G_a del núcleo $K_{\pm}(K_0)$ en g.

II.1 ESTADOS RESONANTES EN UN POTENCIAL NO LOCAL

Como ya hemos mencionado en la primera parte, la dispersión no relativista de una partícula sin spin, por un potencial que es la suma de un potencial Coulombiano, un potencial local no coulombiano y de un potencial no local de soporte no compacto es descrita por la ecuación integral de Lippmann-Schwinger:

$$u_{\ell}(k,r) = F_{\ell}(kr) + \int_{0}^{\infty} ds K_{\ell}(k;r,s) u_{\ell}(k,s) \qquad (1.8)$$

en donde F₂(kr) es la función de Coulomb regular en el origen y el kernel K_a(k;r.s) está definido por:

en donde a su vez $G^{(+)}_{O_{\mathcal{L}}}(k;r,s)$ y $U_{\mathcal{L}}(s,r')$ son la función de Green del potencial de Coulomb definido en 1.2 ecuaciones (6) y (7) y $U_{\mathcal{L}}(s,r')$ contiene al potencial local no coulombiano y al potencial no local como se expresa en la ecuación (2) de 1.2.

Hemos también discutido el comportamiento de los estados de la dispersión que se comportan como la suma de una onda saliente y una incidente en la región asimptótica r+∞ de la ecuación de Schrödinger con un potencial de Coulomb.

En los experimentos se presenta con frecuencia una situación física que corresponde a condiciones a la frontera que aún no ha sido discutida y es descrita por los llamados estados resonantes.

Un estado resonante o función de Gamow describe una situación física en la cual, a grandes distancias, se observa una onda saliente pero no

hay una enda incidente.

Un ejemplo de esta situación física es el decaimierto radiactivo de un núcleo atómico o de cualquier otro sistema cuántico localizado. En este caso, el sistema que inicialmente es un núcleo en un estado inestable, emite una partícula; por ejemplo una α , (núcleo de ⁴He) y queda un núcleo residual. El estado físico del sistema antes de la desintegración se describe con ayuda de una función de ondas localizada en una región finita del espacio. Después de la desintegración, el estado físico del sistema se describe con el producto de tres funciones de ondas: dos de ellas describen el movimiento de los nucleones er el interior de la partícula y el núcleo residual (dinámica interna) y la tercera, que es una onda saliente pura, describe el movimiento relativo de la partícula y el núcleo residual que se alejan uno del otro.

Es esta onda saliente la que hemos llamado estado de Gamow. Por ello, la función de Gamow es una solución de la ecuación integrodiferencial (I.1) que corresponde a la solución de la ecuación integral homogênea de Lippmann-Schwinger.

$$u_{n,\underline{t}}(k_{n},r) = \int_{0}^{\infty} \kappa_{\underline{t}}^{(+)}(k_{r};r,s)u_{n,\underline{t}}(k_{n},s)ds \qquad (11.1)$$

cuyo kernel $\mathbf{K}_{g}^{(+)}(k_{n};r,s)$ está definido análogamente al de la ecuación (1.9) por

$$\mathbf{R}^{(+)}_{\mathfrak{g}_{k}^{k};r,r'} = \int_{0}^{\infty} \mathbf{G}_{0,k}^{(+)}(k;r,s) U_{\underline{s}}(s,r') ds \qquad (II.2)$$

Las condiciones a la frontera que satisfacen las soluciones de la ecuación (II.1) son explícitamente:
$$\frac{1}{1} \prod_{n_{g}} \left[\frac{du_{n_{g}}^{(+)}(k_{n},r)}{dr} - i(k_{n},r) \right] = 0 \qquad (11.3)$$

Solo para determinados valores de k, en general complejos, es posible cumplir las condiciones a la frontera (II.3)

Cuando
$$k_n = A_n - i \gamma_n$$
 (11.4)
con $A_n^{>} \gamma_n^{>0}$

la solución u_n(k_n,r) es un estado de Gamow.

Las soluciones de estado ligado $v_{m_E}(r)$ de (I.1) también satisfacen las condiciones (II.3), pero en este caso la parte real del número de ondes es igual a cero y la parte imaginaria es positiva, lo cual significa que, asimptôticamente, la función de ondas $v_{m_E}(r)$ decae exponencialmente con r y que la energía es real y negativa.

La función de Green $G_{0,L}^{(+)}(k;r,s)$ tiene la expresión

$$G_{0L}^{(+)}(k;r,r') = - \frac{F(kr_{c})W^{(+)}(kr_{c})}{k} e^{i\sigma_{L}(k)}$$
(I.11)

donce $F_g(kr)$ es la función de Coulomb regular en el origen y $W_g^{(+)}(kr)$ se comporta asimptóticamente en r+ ∞ como una onda saliente:

$$\lim_{r \to \infty} \left[\frac{d\kappa^{(+)}(kr)}{dr} - i(k - \frac{\chi}{r}) M^{(+)}(kr) \right] = 0 \qquad (11.5)$$

después de substituir la expresión explicita (I.11) de $G_{OL}^{(+)}$ (k:r.r') en (II.2) la ecuación integral (II.1) puede ser escrita en una forma más explicita

$$u_{n,\ell}(k_n,r) = \frac{e^{\int \sigma_{\ell}}}{k_n} (W_{\ell}^{(+)}(k_n,r) \int dsF_{\ell}(k_n,s) \int dtU_{\ell}(s,t)u_{n,\ell}(k_n,t)$$

$$+ F_{\ell}(k_n,r) \int dsW^{(+)}(k_n,s) \int dtU_{\ell}(s,t)u_{n,\ell}(k_n,t) \}$$
(11.6)

De esta expresión, y de las propiedades de $F_{g}(k,r)$ y de $W_{g}^{(+)}(k,r)$, es obvio que cuando las integrales existen, $u_{ng}(k_{n},r)$ se anula en el orígen y que, asimptóticamente, se porta como una onda saliente.

Cuando la parte imaginaria del número de cridas es negativa, $F_z(k_n,r)$ y $W_z^{(+)}(k_n,r)$ se portan asimptôticamente como cridas salientes de amplitud creciente.

$$F_{2}^{(k_{n},r)} \stackrel{+}{_{r+\sigma} 21} = e^{\gamma_{n} r} e^{\gamma_{n} |\vec{k}|^{2} l_{n} r} e^{1} \bullet (11.7)$$

$$W_{\ell}^{(+)}(k_{n},r) \xrightarrow{q} e^{\gamma_{n}r} e^{\gamma_{n}|\overline{k}|^{2} \ell^{n}r} e^{i\Phi}$$
(II.8)

con $k_n = a - i\gamma_n$; $\phi = a(r - \frac{r}{|k|^2} \ln r) - \gamma \ln 2k_n - \frac{1}{2} \ln r + \sigma_g$

$$\gamma = \frac{\Gamma}{k_n} \qquad \theta = a(r - \frac{\Gamma}{|k|^2} - 2nr) - \gamma a 2k_n - \frac{1}{2}a\pi$$

De estas expresiones y de (II.6), se sigue que la función de Gamow $u_n(k_n,r)$, también se comporta asimptóticamente como una onda saliente que oscila entre envolventes que crecen exponencialmente cuando r crece.

Esta propiedad de $u_{n,\ell}(k_n,r)$ no produce divergencias en el miembro derecho de la ecuación integral (II.6), debido a que las mismas condiciones sobre el potencial, ecuaciones (I.12a) y (I.12b), que garantizan la existencia de soluciones de la dispersión y de estados ligados de la ecuación radial (I.1), hacen que el producto del potencial no local y la función de Gamcw sea a su vez una función de r exponencialmente decreciente.

Precisando, supondremos que el potencial $U_{t}(r,r')$ es invariante respecto de rotaciones espaciales y la inversión del tiempo; y que sus partes local y no local están sujetas a las condiciones (1.12a) discutidas en la sección anterior.

Cuando se satisfacen estas condiciones el integrando en la ecuación (II.6) es convergente, dado que de acuerdo a (I.12a) y (I.12b), cuando:

$$lmk_n = -\gamma_n > -\alpha \qquad (11.9)$$

el potencial no local $U_{\underline{\ell}}(s,t)$ amortigua las oscilaciones de $F_{\underline{\ell}}(k_n,s)$, $W_{\underline{\ell}}^{(+)}(k_n,s)$ y $u_{\underline{\ell}}(k_n,t)$, que son exponencialmente crecientes en magnitud cuando Imk_n<0, haciendo que las integrales sean finitas. Esto se ve claramente el multiplicar (II.1) por $H_{\underline{\ell}}(r)$, de este modo se ottiene

$$H_{a}(r)u_{n\ell}(k_{n},r) = \int \mathcal{L}_{H_{a}}(r)K_{\ell}^{(+)}(k_{n}r,s)H_{a}^{-1}(s) H_{a}(s)u_{n\ell}(k_{n}s)ds$$

que en la notación usada en la primera parte queda como:

$$\hat{\mathbf{u}}_{\mathbf{n}_{\mathbf{f}}}(\mathbf{k}_{\mathbf{n}}\mathbf{r}) = \int_{\mathbf{k}_{\mathbf{f}}}^{\infty} \hat{\mathbf{K}}_{\mathbf{f}}^{(+)}(\mathbf{k}_{\mathbf{n}},\mathbf{r},\mathbf{s}) \hat{\mathbf{u}}_{\mathbf{n}}(\mathbf{k}_{\mathbf{n}}\mathbf{s}) d\mathbf{s}$$

De la forma explicita de la ecuación integral homogénea (II.6), (II.7) y (II.8) se sigue que, cuando $|Imkn|<\alpha$, $\hat{u_{n\,\epsilon}}(k_n,r)$ decrece exponencialmente para valores grandes de r. De esta propiedad y de que $\hat{u}_{n\,\epsilon}(k_n r)$ sea regular en el origen se sigue que $\hat{u}_{n\,\epsilon}(k_n r)$ es cuadráticamente integrable (está en L^{*}). Se demostrará más adelante que las eigenfunciones de la energía E_n y los números de onda correspondientes k_n que son de relevancia para este trabajo, son aquéllos para los cuales la condición (II.9) es satisfecha).

11.2 LA FUNCION DE GAMOW Y LA EIGENFUNCION DE FREDHOLM

N. von der Heydt⁽⁴⁾, ha demostrado que, cuando el potencial satisface las condiciones (I.12) e Imk²-a, la traza del kernel $K_{z}^{(+)}(k;s,t)$, y el determinante de Fredholm

$$\Delta_{t}^{(+)}(n,k) = \det(1 - n\xi^{(+)}(k))$$
 (II.10)

existen.

Las soluciones de la ecuación de Lippmann-Schwinger (11.6), existen cuando n es igual a uno y el determinante de Fredholm se anula.

Esto se puede ver del siguiente argumento: el primer menor del determinante de Fredholm $M_2(k;s,r_0)$ satisace la relación integral llamada Segunda Relación Fundamental de Fredholm⁽¹¹⁾

$$M_{\mathfrak{L}}(k;r,r_{0}) = \pi \Delta_{\mathfrak{L}}^{(+)}(\pi,k) + \pi \int_{K_{\mathfrak{L}}}^{\infty} (+)(k;r,s)M_{\mathfrak{L}}(k;s,r_{0})ds \quad (11.11)$$

Cuando $\Delta_{g}^{(+)}(n,k)$ es cero, esta ecuación se reduce a la ecuación de Fredholm homogénea

$$w_{\rm g}({\bf k},{\bf r}) = n({\bf k}) \int_{0}^{\infty} K_{\rm g}^{(+)}({\bf k};{\bf r},{\bf s}) w_{\rm g}({\bf k},{\bf s}) d{\bf s}$$
 (II.12)

$$\Delta_{g}^{(+)}(n,k) = \prod_{i=1}^{n} (1-n(k)\alpha_{i}(k)) = 0 \qquad (II.13)$$

las $\alpha_i(k)$ que aparecen en esta ecuación son los eigenvalores del kernel $g^{(+)}(k)$

Se considerară primero el caso en que k tiene un valor fijo con Imk²-a, cuando $\Delta_{t}^{(+)}(n,k)$ tiene un cero simple, n(k) es igual al inverso de uno de los eigenvalores, digamos $\alpha_{i}^{-1}(k)$.

Si $\mathbb{N}_{2}^{(+)}(k)$ tiene N diferentes eigenvalores, n(k) tiene n ramas como función de k.

Ahora, haciendo n igual a uno en (11.3), esta condición solo se satisace para algunos valores k_n del número de ondas k, con k_n^{-1} -a.

$$\Delta_{L}^{(+)}(1,k_{n})=0$$
 (II.14)

y en k=k_, uno de los eigenvalores es igual a uno

$$a_i(k_n) = 1$$
 (11.15)

En este caso, la ecuación (II.12) se reduce a la ecuación de Lippmann-Schwinger homogénea (II.6). mostrando que la función de Gamow $u_n(k_n,r)$ es igual al primer menor de Fredholm evaluado en $k=k_n$. Cuando el cero de $\Delta_z^{(+)}$ en $k=k_n$ es simple solo hay un eigenvalor $\alpha_i(k_n)$ que satisface (II.15). La correspondiente función de Fredholm $w_{gi}(k_n,r)$ es entones igual a la función de Gamow.

$$u_{n\ell}(k_n,r) = w_{\ell}(k_n,r) \qquad (II.16)$$

Entonces, a cada cero simple de $\Delta_{g}^{(+)}(n,k)$ le corresponde un estado de Camcw. Por otra parte, en vista de que la ecuación (11.14) puede tener varias raíces diferentes k_n . y el mismo eigenvalor $a_i(k)$ puede tomar el valor uno más de una vez, pueden existir varias funciones de Gamcw que provengan de la misma eigenfunción de Fredholm cuando el eigenvalor k correspondiente es igual a cualquiera de las k_n que hace a $a_i(k)$ igual a uno. Se puede decir que todas estas funciones de Gamow pertenecen a la misma rama de n(k).

11.3 EL DUAL DE LA FUNCION DE GAMON

El dual de la función de Gamow se obtiene de las simetrias del kernel $h_{k}^{(+)}(k;r,s)$. Recordemos primero las propiedades de simetria de la función de Green:

$$G_{01}^{(+)}(k;r,s) = G_{01}^{(+)}(k;s,r)$$
 (11.17)

y

$$G_{0t}^{(+)}(k;r,s) = G_{0t}^{(+)*}(-k^*;s,r)$$
 (II.18)

a partir de estas relaciones y de la hermiticidad del potencial, se sigue que:

$$K_{L}^{(+)}(k;r,s) = K_{L}^{(+)*}(-k^{*};s,r)$$
 (11.19)

lo cual implica que el determinante de Fredholmy la función n(k) satisfacen una relación similar

$$\Delta_{g}^{(+)}(k) = \Delta_{g}^{(+)*}(-k^{*}) \qquad (11.20)$$

 $n(k) = n^{+}(-k^{+})$ (11.21)

Estas relaciones sugieren que se tome el complejo conjugado en ambos lados de la ecuación (11.6), que se cambie k por $-k^*$ y haciendo uso de (11.12), se obtiene:

$$u_{n\ell}^{*}(-k_{n}^{*};r) = \int u_{n\ell}^{*}(-k^{*};s)K_{\ell}^{(+)}(k_{n};s,r)ds$$
 (11.22)

lo que demuestra que, cuando $u_{n,2}(k_n,s)$ es una eigenfunción derecha de $K_{\pm}^{(+)}(k;r,s)$, $u_{n,2}^{*}(-k_n,*;r)$ es una eigenfunción izquierda de $K_{\pm}^{(+)}(k;r,s)$. Entonces, la función adjunta $u_{n,2}(k_n,r)$ de la función de Gamow es proporcional a $u_{n,2}(-k_n,*;r)$ y sin perder generalidad se puede poner:

$$\hat{u}_{n_{\pm}}(k_{n};r) = u_{n_{\pm}}^{*}(-k_{n}^{*};r)$$
 (11.23)

En el caso de partículas sin spin, el potencial es una función real, simétrica de sus argumentos, y $G_{Og}^{(+)}(k;r,s)$ también es simétrica; por lo cual (II.22) se puede reordenar para dar la ecuación:

$$\tilde{J}_{n_{k}}(k_{n};r) = \int k_{k}^{(+)}(k;r,s) \tilde{u}_{n_{k}}(k_{n},s) ds$$
 (11.24)

que es la misma ecuación que (II.1). Por esto, para partículas sin spin, la función de Gamow es proporcional a su adjunta. Nuevamente, sin perder generalidad se puede escribir:

$$\tilde{u}_{n_{\pm}}(k_{n};r) = u_{n,\pm}(k_{n};r) \qquad (11.25)$$

11.4 NORMALIZACION DE LOS ESTADOS DE GAMON

En lo que sigue se demostrară que el residuo de la función de Green de la ecuación radial (I.1) en un polo simple localizado en el cuarto cuadrante del plano k, es el producto de las funciones de Camow $u_{n\,L}(k_n,r)u_{n\,L}(k_n,r')$ por una constante que es igual al inverso de la integral de normalización de la función de Camow.

Antes que nada, con el fin de evitar complicaciones innecesarias en la escritura, se introducirá la siguiente notación simplificada:

$$|\boldsymbol{f}| \ge g | = \boldsymbol{f}(\mathbf{k}, \mathbf{r}) \hat{\boldsymbol{g}}(\mathbf{k}, \mathbf{s})$$

$$< \boldsymbol{f}|g> = \boldsymbol{f} \hat{\boldsymbol{f}}(\mathbf{k}, \mathbf{r}) g(\mathbf{k}, \mathbf{r}) d\mathbf{r}$$

$$\underbrace{\boldsymbol{h}}_{\boldsymbol{\xi}} (+) | \boldsymbol{f} > = \boldsymbol{f} ds \boldsymbol{h}^{(+)}(\mathbf{k}; \mathbf{r}, \mathbf{s}) \boldsymbol{f}(\mathbf{s})$$

$$< \boldsymbol{f} | \boldsymbol{h}_{\boldsymbol{\xi}} (+) \hat{\boldsymbol{\xi}} \rangle = \boldsymbol{f} ds \hat{\boldsymbol{f}}(\mathbf{k}, \mathbf{s}) \boldsymbol{h}^{(+)}(\mathbf{k}; \mathbf{s}, \mathbf{r})$$

Anora bien, la función de Green completa o resolvente de la ecuación integrodiferencial (I.1) satisface las ecuaciones de Lippmann-Schwinger, que en esta notación se escriben como:

$$G_{\pm}^{(+)}(k) = G_{0\pm}^{(+)}(k) + \sum_{\pm}^{K(+)}(k)G_{\pm}^{(+)}(k) \qquad (11.26)$$

У

$$G_{L}^{(+)}(k) = G_{0L}^{(+)}(k) + G_{L}^{(+)}(k) \mathcal{K}_{L}^{(+)}(k)$$
 (11.27)

N. von der Heydt⁽⁴⁾ ha demostrado que en ausencia del potencial de Coulomb, cuando el potencial no local U₁ satisface las condiciones (1.12a) y (1.12b), $B_{2}^{(+)}(k)$, como función de k, es una función meromorfa en el semiplano Imk²-a. Cuando a es finito, $G_{2}^{(+)}(k)$ tiene, a lo mas, un número finito de polos en dicho semiplano, los cuales se localizan precisamente en donde están los ceros de $\Delta_0^{(+)}$.

Para von der Heydt, el caso coulombiano corresponde a $\alpha=0$. La franja tiene ancho nulo. Hay un punto de acumulación de ceros de $\Delta_g^{(+)}$ en k=0.

Para nosotros, además de estas singularidades, la franja tiene ancho finito y contiene singularidades que son polos. El número de éstos es finito. Además, la multiformidad de las funciones de Whittaker es heredada por la función de Green.

Cerca de un polo complejo, localizado en k=k_n, $g_{2}^{(+)}$ puede ser escrita como:

$$G_{L}^{(+)}(k) = \frac{R_{nL}(k_{n})}{k - k_{n}} + F_{n}(k)$$
(11.28)

siendo la función $F_n(k)$, como función de k, regular en k $=k_n$.

Con el fin de obtener una ecuación integral para R_n , se substituye (II.28) para $G_{\underline{k}}^{(+)}(k)$ en (II.26), se multiplica a la ecuación resultante por $(k-k_n)$ y se toma el límite cuando k tiende a k_n , de esta forma se obtiene la siguiente ecuación:

$$R_n(k_n) = G_0^{(+)}(k_n) U_k R_n(k_n)$$
 (11.29)

Esto es precisamente la ecuación integral homogénea (1.9) que satisface el estado de Gamow $|u_{n,2}(k_n)\rangle$. Cuando el cero del determinante de Fredholm en k=k_n es simple, la solución de (11.29) es única, hasta una constante multiplicativa, ⁽³⁵⁾ por consiguiente R_n(k_n) es proporcional al estado de Gamow.

Para encontrar una ecuación integral para $\langle f_n \rangle$. se procede de manera similar. Se substituyen (II.28) y (II.30) en (II.27), entonces se multiplica la ecuación resultante por (k-k_n) y se toma el límite cuando k tiende a k_n para obtener:

$$< f_n| = < f_n(k_n)|K_{L}^{(+)}(k_n)$$
 (11.31)

De acuerdo con esta expresión, $< \frac{2}{3}n(k_n)$ es proporcional al dual del estado de Gamow, y como el dual del estado de Gamow es igual al estado de Gamow, $< \frac{2}{3}n(k_n)$ es proporcional al estado de Gamow. Con estos resultados se obtiene que cerca de sus polos simples, situados en el cuarto cuadrante del plano k, la función de Green puede ser escrita como:

$$G_{g}^{(+)}(k;r,r') = u_{n2}(k_{n},r) - \frac{C_{n}}{K-K_{n}} - u_{n2}(k_{n},r') + F_{n}(k;r,r')$$
 (II.32)

Con el propósito de encontrar una expresión para la constante c_n , es conveniente extender la validez de la expresión (II.32) de tal manera que las funciones en el numerador del término regular, estén definidas para los valores del número de ondas k en un entorno finito de k_n en el semiplano Imk>-a y no solo en el punto k_n . Esto se puede conseguir sustituyendo en (II.32) al estado de Gamow $|u_{n,L}(k_n)>$ por la eigenfunción de Fredholm que es igual a este estado cuando k igual a k_n . Para simplificar la notación se llamará a esta eigenfunción de Fredholm también $|u_{n,L}(k_n)>$ por tenezca a la misma rama de n(k), entonces $|u_{n,L}(k)>$ y $|u_{n,L}(k)>$ son la misma función.

$$\hat{u}_{k}^{(+)}(k) = |u_{n_{k}}(k) > \frac{c_{n}}{k - k_{n}} < u_{n_{k}}(k)| + \hat{F}_{n}(k)$$
 (11.33)

La función $F_n(k)$ que por definición, es la diferencia de la función de Green $G_{k}^{(+)}(k)$ y del término singular en (11.33) se reduce a $F_n(k)$ cuando el número de ondas k en el argumento de la eigenfunción de Fredholm es igual a k_n .

De la ecuación de Lippmann-Schwinger (II.27) se ottiene la siguiente relación:

$$G_{E}^{(+)}(k)U_{2}|u_{n\ell}(k)\rangle = G_{0\ell}^{(+)}(k)U_{\ell}|u_{n\ell}(k)\rangle +$$
(11.34)

$$\mathfrak{G}_{t}^{(+)}(k) \mathfrak{U}_{t} \in \mathfrak{O}_{t}^{(+)}(k) U | u_{nt}(k)^{>}$$

recordando que $|u_{n,t}(k)\rangle$ es una solución de la ecuación de Fredholm homogénea (11.12), esta expresión se reduce a:

$$(n(k)-1)G_{L}^{(+)}(k)U_{L}|u_{nL}(k) > = |u_{nL}(k) >$$
 (11.35)

Ahora substituyendo la expresión (11.33) para $G_{g}^{(+)}$ en esta ecuación, se obtiene:

$$(n(k)-1) \left[|u_{n_{k}}(k) \rangle \frac{C_{n}}{k-k_{n}} |u_{n_{k}}(k)| |u_{k}| |u_{n_{k}}(k) \rangle + \frac{F_{n}(k)}{k} |u_{n_{k}}(k) \rangle \right] = |u_{n_{k}}(k)^{2}$$
(II.36)

tomando el límite cuando k tiende a $k_{\rm p}$, y recordando que $\pi(k_{\rm p})=1$ se obtiene:

$$C_{n} = \frac{1}{\binom{d_{n}}{d_{k}} < u_{n \ell}(k_{n}) | U_{\ell} | u_{n \ell}(k_{n})^{>}}$$
(11.37)

Esta expresión aún no está en la forma deseada, ya que contiene a la derivada del eigenvalor de Fredholm.

$$< u_{n\ell}(k) | U | u_{n\ell}(k) > = \pi(k) < u_{n\ell}(k) | U_{\ell}G_{0\ell}^{(+)}(k) U_{\ell} | u_{n\ell}(k) >$$

a partir de aquí se obtiene la identidad

$$\eta^{-1}(k) = \frac{\langle u_{ng}(k) | u_{gg}(+) \rangle_{0g}(k) | u_{ng}(k) \rangle}{\langle u_{ng}(k) | 0 | u_{ng}(k) \rangle}$$
(11.38)

Derivando respecto de k en ambos lados de esta ecuación se obtiene

$$n^{-1}(k) = \frac{\langle u_{n_{\ell}}(k) | U_{\ell} | u_{n_{\ell}}(k) \rangle (\frac{d \langle u_{n_{\ell}}(k) |}{dk}) | U_{\ell}G_{0\ell}^{(+)}(k) U_{\ell} | u_{n_{\ell}}(k) \rangle}{(\langle u_{n_{\ell}}(k) | U_{\ell} | u_{n_{\ell}}(k) \rangle)^{2}}$$

$$+ \frac{\langle u_{n\ell}(k) | U_{\ell} - \frac{\partial G^{(+)}(k)}{\partial k} | U_{\ell} | u_{n\ell}(k) \rangle + \langle u_{n\ell}(k) | U_{\ell}G^{(+)}(k) | U_{\ell} - \frac{d | u_{n\ell}(k) \rangle}{dk}}{\langle u_{n\ell}(k) | U_{\ell} | u_{n\ell}(k) \rangle^{2}}$$

$$\frac{< u_{n\ell}(k) | U_{\ell} G^{(+)}_{0\ell} U_{\ell} | u_{n\ell}(k) > (\frac{d < u_{n\ell}(k) |}{dk}) U_{\ell} | u_{n\ell} > + < u_{n\ell} | U \frac{d | u_{n\ell}(k)}{dk}}{(< u_{n\ell} | U_{\ell} | u_{n\ell} >)^{2}}$$

si ahora simplificamos el numerador con ayuda de (II.12), notamos que

$$< u_{n\ell}(k)|U|u_{n\ell}(k) > \frac{d < u_{n\ell}|}{dk} U_{\ell}G^{(+)}(k)U_{\ell}|u_{n\ell}(k) > -$$

$$- < u_{n\ell}(k) | U_{\ell}G^{(+)}(k) U_{\ell} | u_{n\ell}(k) > \frac{d < u_{n\ell}}{dk} | U_{\ell} | u_{n\ell} > =$$

$$= \frac{1}{n} < u_{n\ell}(k) U | u_{n\ell}(k) > \frac{d < u_{n\ell}(k)|}{dk} U_{\ell}| u_{n\ell}(k) > -$$

$$-\frac{1}{n} < u_{n\ell}(k) | U_{\ell} | u_{n\ell}(k) > \frac{d < u_{n\ell}(k)|}{dk} | U_{\ell} | u_{n\ell}(k) > = 0$$

y que también los términos con $\frac{d |u_{nk}\rangle}{dk}$ se anulan.

De este modo, se obtiene

$$\frac{dn}{dk} = -n \frac{\langle u_{n\ell}(k) | U_{\ell} \frac{\partial G^{(1)}(k)}{\partial k} U_{\ell} | u_{n\ell}(k) \rangle}{\langle u_{n\ell}(k) | U_{\ell} | u_{n\ell}(k) \rangle}$$

. (+)

$$\frac{d_{\eta}(k)}{dk} = -\eta(k) < \frac{u_{\eta,\ell}(k) | U_{\ell} - \frac{\partial G_{0,\ell}^{(k)}}{\partial k} | U_{\ell} | u_{\eta,\ell}(k) >}{(11.39)}$$

La derivada de la función de Green puede ser obtenida de la representación espectral y la relación de cerradura de las eigenfunciones del problema de Coulomb (1.53), se obtiene:

$$\frac{3G^{(+)}(k)}{3k} = -2k \int_{0}^{\infty} G^{(+)}_{0k}(k;r,s)G^{(+)}_{0k}(k;s,r')ds \qquad (11.40)$$

Cuando esta expresión es substituida para $\frac{\partial G^{(+)}(k)}{\partial k}$ en (11.39) y,

recordando que $|u_{RE}(k)\rangle$ es la eigenfunción de Fredholm con eigenvalor $n^{-1}(k)$, el resultado se simplifica con la ayuda de (II.12), obteniéndose que:

$$\frac{d_{\eta}(k)}{dk} = -\frac{2k}{\eta(k)} < \frac{\langle u_{\eta,\ell}(k) | u_{\eta,\ell}(k) \rangle}{\langle u_{\eta,\ell}(k) | u_{\eta,\ell}(k) \rangle}$$
(II.41)

Ahora, susbstituyendo este resultado en (11.37) y tomando el límite cuando k tiende a k_o, se obtiene finalmente:

$$C_{n} = \frac{1}{2k_{n}} \frac{1}{11m (f)^{\omega}} \frac{1}{u^{2}n_{\ell}(k_{\ell}^{\pm}, r)dr}$$
(11.42)
k+k_{n} *

Caben aquí dos observaciones, primero, en (II.42) se ha hecho uso de la igualdad de la eigenfunción de Fredholm con su dual. Segundo, la integral que ocurre en el denominador de (II.42) se define del modo siguiente: el integrando $u_{n_2}^r(k^+,r)$, como función de k; se define con k^+ en el semiplano superior del plano k, después de que la integral se ha hecho, la función de k resultante se continúa analíticamente hasta el punto k_n en el semiplano inferior del plano k. El límite no puede ser tomado dentro de la integral porque en ese caso la integral no existe.

Cuando la expresión (II.42) es substituída por C_n en (II.33), y se integra en ambos lados de la ecuación a lo largo de un contorno cerrado que contiene un solo polo de G en $k=k_n$, se obtiene:

$$\frac{1}{2\pi I} \int_{C} G_{\lambda}^{(+)}(k;r,r')dk$$

$$= u_{n_{\ell}}(k_{n},r) \frac{1}{IIm \int_{C} \int_{0}^{\infty} u_{n_{\ell}}^{*}(k^{+};r'')dr'']} u_{n_{\ell}}(k_{n},r') \quad (Ii.43)$$

$$k + k_{n}$$

el contorno de integración C encierra un solo polo de G⁽⁺⁾.

Se sigue de aquí que la regla adecuada para la normalización de los estados de Gamow es:

$$\lim_{k \to k_{n}} \int_{-\infty}^{\infty} u_{n,k}^{*}(k^{+};r) dr = 1$$
 (I1.44)

Hernândez y Mondragón⁽²⁷⁾, han demostrado que, cuando el estado de Gamow ⁻estã definido para un potencial cortado de alcance R₀. (II.44) se reduce a la condición de normalización dada por Hokkyo, Romo, y García-Calderón y Peierls⁽²⁾.

11.5 DESARROLLO DE LA FUNCION DE GREEN EN TERMINOS DE ESTADOS LIGADOS. RESONANTES Y ESTADOS DE LA DISPERSION

La función de Green de la ecuación de Schrödinger con un potencial no local puede ser desarrollada en eigenfunciones de la energía correspondientes a eigenvalores de la energía, tanto negativos como complejos, más una integral sobre estados de la dispersión con número de ondas complejo. Un resultado similar al nuestro es bien conocido para el caso de potenciales locales de corto alcance⁽¹³⁾.

La representación espectral de la función de Green de la ecuación radial con un potencial no local (1.52) es:

Cuando el potencial no local satisface las condiciones (1.12a) y (1.12b), $G_{\underline{k}}^{(+)}(k;r,r')$ como función de k, es meromorfa en el semiplano Imk>-a y, cuando a es finita, tiene, a lo más, un número finito de polos en la franja $O_{\underline{k}}^{\leq}$. En el semiplano Imk²O, puede tener polos solo en el eje imaginario positivo o en el eje real. Cuando k/O, los polos son simples. En el caso de existir un polo en k=O, éste puede ser simple o doble⁽⁵⁾. Este comportamiento de $G_{\underline{k}}^{(+)}$ corresponde al caso en que $G_{\underline{k}}^{(+)}$ es la función de Green para la ecuación de Schrödinger de una partícula libre. Si consideramos ahora la presencia de un potencial coulombiano y separamos el problema de manera que $G_{\underline{k}}^{(+)}$, la función de Green completa, tendrá además las

singularidades provenientes de los estados ligados del potencial coulombiano y el corte que se extiende desde cero hasta – = en el plano k debido a la multiformidad de $G_{0}^{(+)}$.

El contorno de integración de la ecuación (II.45) se puede deformar en el semiplano inferior, como se muestra en la figura 1.

Cuando el contorno deformado cruza sobre estados resonantes, el teorema del residuo, y la ecuación (II.43) dan:

$$G_{g}^{(+)}(k;r,r') = \frac{\sum_{n_{k} \in \mathbb{R}} \sum_{n_{k} \in \mathbb{R}} \frac{1}{k^{r} + \frac{2m |E_{n_{k}}|}{k^{r}}} v_{n_{k}}(r')$$
(11.46)

+ $\sum_{n_{\ell} \in \mathbb{R}} u_{n_{\ell}}(k_{n},r) = \frac{1}{2k_{n}(k-k_{n})} u_{n_{\ell}}(k_{n},r) + \int_{C} \phi_{\ell}(z,r) = \frac{1}{k^{2}-2r} \phi_{\ell}(z,r') dz$

en donde $v_{n\pm}$ (r) son las eigenfunciones de estados ligados correspondientes a eigenvalores de la energía negativa, $u_{n\pm}(k_n;r)$ son las funciones de Gamow correspondientes a eigenvalores de la energía complejos y ϕ_{\pm} (z;r) es una función de la dispersión con número de ondas z complejo. Soluciones derechas e izquierdas de la ecuación de dispersión han sido distinguidas por una tilde en la solución izquierda. La distinción se hace debido a que cuando el número de ondas es complejo, la solución izquierda no es igual a la hermitiana conjugada de la solución derecha.

Fig. 1. El contorno de integración C sobre el cual se hace la integral de la ecuación (II-46) consiste de dos tramos de recta: El primero parte del origen con pendiente -l y llega hasta Im k=-a+c a partir de allí continúa en el segundo que va paralelo al eje real y a distancia -a+c de éste hasta +∞-1(a-c).

11.6 DESARROLLO DE UNA FUNCION EN TERMINOS DE ESTADOS LIGADOS. RESONANTES Y ESTADOS DE LA DISPERSION

En esta sección se demostrara que una función de cuadrado integrable arbitraria puede ser desarrollada en términos de un conjunto de funciones que contienen estados ligados y resonantes y un continuo de estados de la dispersión con número de ondas complejo.

Empezamos por recordar que el conjunto ortonormal de estados ligados y de soluciones de la dispersión de la ecuación radial de Schrödinger (1.1) es un conjunto completo.

Esto ha sido demostrado para potenciales no locales en ausencia de un potencial de Coulomb, por N. von der Heydt⁽⁴⁾bajo condiciones generales. En el caso en que haya un potencial de Coulomb, las relaciones de completez y cerradura siguen siendo validas, entonces para cualesquiera dos funciones de cuadrado integrable, +(r) y x(r), la siguiente relación es válida:

$$\int_{0}^{\infty} \Phi^{*}(\mathbf{r}) \times (\mathbf{r}) d\mathbf{r} = n \sum_{0}^{\infty} \sum_{s=1}^{\infty} \langle \Phi | v_{n \pm s} \rangle \langle v_{n \pm s} | x \rangle + \int_{0}^{\infty} \langle \Phi | \phi_{\underline{s}}(\mathbf{k}) \rangle \langle \phi_{\pm}(\mathbf{k}) | x \rangle d\mathbf{k}$$
(11.47)

en donde

$$\langle \phi | v_{nts} \rangle = \sqrt[3]{\phi^*}(r) v_{nts}(r) dr$$
 (11.48)

$$< v_{n_{25}} | x^{2} = \sqrt{v_{n_{1}} (r) x(r) dr}$$
 (11.49)

$$\langle \phi | \phi_{\underline{k}}(k) \rangle = \int \phi(r) \phi_{\underline{k}}(k,r) dr$$
 (11.50)

У

En esta expresión, la función $v_{nr.s}(r)$ es una solución de estado

ligado de la ecuación de Schrödinger (1.1) que corresponde a eigenvalores de la energía. E_n negativos, y es también solución de la ecuación de Lippmann-Schwinger homogénea (11.1). La función $\phi_g(k,r)$ es una onda parcial de la dispersión que es solución de la ecuación radial (1.1), que es también solución de una ecuación de Lippmann-Schwinger inhomogénea.

Ahora bien, de la representación espectral de la función de Greer para partículas incidentes y salientes se sigue que la integral (II.47) es igual a⁽³⁶⁾:

$$\int_{0}^{\infty} \langle \phi | \phi_{\Sigma}^{(k)} \rangle \langle \phi_{\Sigma}(k) | \chi \rangle dk \qquad (11.52)$$

$$= \int \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi^{+}(r) \left[\frac{g_{2}^{(+)}}{2\pi} (k;r,r') - \frac{g_{2}^{(-)}}{2\pi} (k;r,r') \right] \times (r') dr dr' dr$$

La función de Green para partículas incidentes, $G_{L}^{(-)}$, no tiene singularidades en el semiplano inferior k, salvo aquellas correspondientes al potencial coulombiano que aparecen sobre el eje imaginario negativo, mientras que la función de Green para partículas saliente no tiene polos en esa parte del plano, como ya se ha explicado. El contorno de integración de la ecuación (II.52) puede ser deformado en el semiplano inferior como se muestra en la figura 1, y cuando el contorno deformado C cruza sobre polos resonantes, el teorema del residuo y las ecuaciones (II.43) y (II.44), dan:

 $\int_{0}^{\infty} \langle \phi | \phi_{k}(k) \rangle \langle \phi_{k}(k) | x^{2} dk =$

= $\sum_{k_n} \left[\int_{-\infty}^{\infty} \phi(r) u_{n_k}(k^4;r) dr \right]_{k_n} \left[\int_{-\infty}^{\infty} u_{n_k}(k^4;s) \chi(s) ds \right]_{k_n}$ resonantes

+
$$\int_{\mathcal{L}} dz \Box \int_{\mathcal{A}} \tilde{\phi}(\mathbf{r}) \phi_{z}(\mathbf{k};\mathbf{r}) d\mathbf{r} \int_{\hat{\phi}_{z}} \tilde{\phi}_{z}(\mathbf{k};s) \mathbf{x}(s) ds \mathbf{I}_{\mathbf{k}=z}$$
 (11.53)

Come $\phi(r) \neq \chi(r)$ son funciones arbitrarias, la discusión anterior justifica el escribir el desarrollo:

$$x(r) = \sum_{\substack{a \in \mathbb{Z} \\ a \in \mathbb{Z}$$

Los coeficientes del desarrollo están dados por:

$$< v_{mL} | x > = \int_{0}^{\infty} v_{mL}(r) X(r) dr$$
 (11.55)

$$< u_{n\ell} | x > = \left[\int_{0}^{\infty} u_{n\ell}(k^{+};r) x(r) dr \right]_{k=k_{n}}$$
 (11.56)

$$\langle \phi_{\underline{k}}(z) | x \rangle = \left[\int \phi_{\underline{k}}(k;r)^{\chi}(r) dr \right]_{\underline{k}=\underline{z}}$$
 (11.57)

III.1 USO PRACTICO DEL DESARROLLO EN ESTADOS DE GAMON EN UN EJEMPLO REALISTA

En esta parte se demostrará que el formalismo discutido anteriormente es útil en la descripción del comportamiento resonante observado en las colisiones de sistemas compuestos con una estructura interna que da lugar a una interacción efectiva no local. Con este propósito discutiré, muy brevemente, la captura radiativa directa de ³He por ³H en el primer estado excitado de ⁶Li.

La sección diferencial para captura directa del contínuo a estados excitados de la reacción

*He + *H + ⁶Li + Y

estă dada por la expresión(19)

$$\frac{d\sigma}{d\Omega} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_$$

 K_{γ} es el número de ondas de la radiación γ (fotón). En esta expresión P es la polarización circular de la radiación γ , v es la velocidad relativa de 'He y 'H, J_{He} y J_H son los spines de 'He y 'H respectivamente e i y f se refieren a los estados del contínuo y ligados respectivamente.

El hamiltoniano H_{int}^{P} de la interacción para la radiación dipolar eléctrica es⁽³⁾:

$$H_{int}^{P} = -i \sqrt{\frac{4}{3\pi}} em \left(\frac{Z_{He}}{m_{H}} - \frac{Z_{H}}{m_{H}} \right) \times$$

(111-2)

En la fórmula (III.2), e es la carga eléctrica del electrón, $Z_{He} = 2$ es el número de protones en el núcleo de ³He, $Z_{H}=1$ es el número de protones en el núcleo de ³H, es el número cuântico magnético de la radiación, m es la masa reducida de He y H

 $m = \frac{m_{He} m_{H}}{m_{He} + m_{H}}$

 $\hat{D}_{\mu}^{(1)} \stackrel{*}{}^{(\phi_{\gamma},\theta_{\gamma},\theta_{\gamma},0)} \text{ son los elementos de las matrices de rotación en función de los ángulos que describen la dirección de la emisión del rayo gamma con respecto del eje del haz incidente y las coordenadas (r, <math>\theta, \psi$) especifican el vector de posición relativa \tilde{r} del sistema 'He-'H en el marco de referencia del centro de masa. La función $\mathfrak{D}_{E1}(r)$ es la parte radial del operador del dipolo eléctrico que se expresa como:

Para simplificar la escritura introducimos la notación:

$$C_{1} = -\sqrt{\frac{4\pi}{3}} \left(\frac{m_{He}m_{H}}{m_{He}+m_{H}}\right) \left(\frac{Z_{He}}{m_{He}} - \frac{Z_{H}}{m_{H}}\right)$$
(111-4)

C₁ es proporcional al momento dipolar eléctrico del sistema 'He y 'H. Entonces, el Hamiltoniano de la interacción se escribe como⁽¹⁸⁾:

$$H_{int}^{p} = ieC_{1}\sum_{\mu} PD_{\mu}^{(1)*}(\phi_{\gamma}, \theta_{\gamma}, 0) \mathcal{D}_{E1}^{(kr)} Y_{1}^{\mu*}(\hat{r}) \qquad (111-5)$$

en esta expresión, los ângulos (ϕ_γ , ϕ_γ) especificar la dirección de salida del fotón y no dependen de las coordenadas nucleares.

En consecuencia el elemento de matriz nuclear se factoriza

Así pues, para obtener la sección de captura radiativa se deben evaluar los elementos de matriz

$$< \int m_{f} | \Theta_{E1}(k_{Y}, r) Y_{1}^{u*}(\theta, \psi) | im_{i} >$$
 (111-7)

111.2 ELEMENTOS DE MATRIZ DEL OPERADOR DIPOLAR ELECTRICO ENTRE ESTADOS DEL CONTINUO Y ESTADOS LIGADOS

La evaluación de los elementos de matriz que aparecen en la expresión para la sección diferencial se puede reducir a la evaluación de una suma de productos de integrales de funciones de las variables angulares multiplicadas por integrales sobre la variable radial.

Las integrales sobre funciones de los ângulos se hacen fâcilmente aprovechando las propiedades de las eigenfunciones del momento angula $f^{(20)}$ Las integrales radiales contienen la información dinâmica y por lo tanto, al estudiar su comportamiento como funciones de la energía, se puede exhibir la conducta resonante de la sección.

Para evaluar los elementos de matriz III-7, necesitamos las funciones de ondas de los estados inicial y final. Suponemos que el estado final es el primer estado excitado de ⁶Li^{*}. Este estado se puede describir como formado por dos cúmulos ('He-'H) ligados cuyo movimiento relativo se describe con la función de ondas siguiente

$$\Psi_{mg}^{\sharp} = \Theta_1 = \frac{\bigcup_{J \neq L} (k_{J} r)}{r} = \frac{1}{\beta_{g-1}} C(L1J_{J}; m_{J} - \beta, \beta) \Upsilon_L^{mJ} = \frac{\beta}{x_5}$$
(III-B)

Los números cuánticos del primer estado excitado de ⁶Li son

J g = 3 L = 2 $\pi = +$ T = 0S = 1

θ, es el cceficiente de procedencia fraccional de la configuración. ⁹He

ESTA TESIS NO DEDE Salir de la biblioteca

+ *H en la función de ondas completa de ⁶Li^{*}, en esta expresión 0_1 , es el coeficiente de precedencia fraccional de la partición [3,3] en la función de endas de ⁶Li^{*}, s es el spin del estado final, que en el caso que nos interesa es igual a 1, L y J₂ son los momentos angulares orbital y total, respectivamente, del estado final.

En la transición dipolar eléctrica se deben cumplir las siguientes reglas de selección⁽¹⁸⁾

 $\Delta J = \pm 1,0 \qquad no \quad 0 \neq 0$ $\Delta t = \pm 1,0 \qquad no \quad 0 \neq 0$ $\Delta T \neq 0 \qquad debido a que ⁶ Li es un núcleo$

autoconjugado, y

∆s =0

porque no se han tomado en cuenta los términos de spin en H_{int} pues son muy pequeños. Como el estado final tiene s=1, esta última regla sugiere que la función de ordas del estado inicial tenga también s=1 (el singulete s=0 no contribuye).

AsI pues el estado inicial se debe poner como

 $\psi_{i} = k \frac{1}{i^{r}} \sum_{z=0}^{\infty} J_{z|z-1|}^{z+1} \sqrt{4\pi(2^{z}+1)^{r}} i^{z} e^{(0z - 0^{o})} C(z + 1J; 0K_{i}) \times$ (III-9)

$$\times u_{\mathbf{J}_{\mathbf{i}} \mathbf{\ell}} (k_{\mathbf{i}} \mathbf{r}) \mathcal{Y}_{\mathbf{J}_{\mathbf{i}} \mathbf{\ell} \mathbf{1}; \mathbf{0} \mathbf{M}_{\mathbf{i}}}^{\mathbf{M}_{\mathbf{i}}} (\hat{k}_{\mathbf{i}} \mathbf{r})$$

en donde $y_{j_{\underline{i}}z_{1};0,M_{\underline{i}}}^{M_{\underline{i}}}$ ($\hat{k}_{\underline{i}}\cdot\hat{r}$) es el armónico esférico vectorial y $u_{j_{\underline{i}}z}(k_{\underline{i}}r)$ es la función de cndas radial del estado inicial.

Substituyer.dc (III-9) y (III-8) en (III-6) y esta última en (III-1), se

obtiene la siguiente expresión para la sección diferencial

$$\frac{d\sigma}{d\Omega} = \frac{3\pi^{2}H^{2}}{\pi v (ZS+T)Km} \begin{bmatrix} \sum_{k} \sum_{k} \sum_{k} & \left\{ Q_{k} \right\} Q_{k}^{2} Q_{k}^{2} \\ M_{p}^{2} & \overline{g}_{k} & \overline{g}_{k} \\ M_{p}^{2} & \overline{g}_{k} & \overline{g}_{k} \\ X C(z1J;m_{z}M_{1}) C(z'1 J'; m_{z}'H_{1}) (J_{p} 1 J) (J_{p} 1 J) \\ -M_{g} & M_{g}-M M - M_{p}^{2} \\ M_{p}-M M & M_{p}^{2}-M M \\ X Y \frac{m_{k}^{2}}{z} (k) Y \frac{m_{k}^{2}(k)}{z} \Big\} \Big] \Delta_{M_{p}-M}(k_{Y})$$

$$(III-10)$$

Hemos expresado al armónico esférico vectorial como

las integrales angulares se hacen usando las têcnicas conocidas del algetra de momentos angulares⁽²⁰⁾

Las integrales radiales $Q_{g,j}$ se definen por la expresión siguiente:

a su vez
$$\Delta_{M_{g}=M}(\hat{k}_{Y})$$
 se define comc
 $\Delta_{M_{g}=M}(\hat{k}_{Y}) = \beta_{g}^{(1)} \prod_{g=M,P}^{H}(k_{Y}) [*]$
(III-13)

III.3 RESONANCIAS

En el canal de entrada, la interacción nuclear entre el núcleo de helio 3 (*He) y el tritio (*H) puede producir resonancias, las cuales se ponen de manifiesto en la dependencia con la energía de la parte radial de la función de ondas del estado inicial. En la parte II de esta tesis se ha indicado como se puede exhibir esta conducta resonante haciendo un desarrollo de la función de cndas en términos de estados ligados, estados resonantes y una parte residual o fondo. A continuación se explica como se puede usar este método en el ejemplo que nos ocupa.

En el caso en que el potencial efectivo que actúa entre 'He y 'H no sea diagonal en el momento angular total L, por ejemplo en el caso de que haya fuerzas tensoriales entre 'He y 'H, las funciones radiales $u_{\underline{x}}(r)$ de la misma J y la misma paridad satisfacen un sistema de ecuaciones acopladas

$$u^{(J)}_{J-1}(r) = u^{(-)}_{J-1}(kr) e^{-i\sigma_{J-1}} + \int_{s=J-1}^{\infty} \int_{s=J-1}^{\infty} \frac{G_{0s}^{(+)}(r,r')}{s=J-1} \left[V_{J-1,J-1}(r',r'')u^{(J)}_{J-1}(r'') + V_{J-1,J+1}(r',r'')u^{(J)}_{J+1}(r'') \right] dr'' dr'$$

$$+ V_{J-1,J+1}(r',r'')u^{(J)}_{J+1}(r'') dr'' dr''$$

$$+ (111-14)$$

$$\begin{array}{c} u^{(J)}_{J+1}(r) = u^{(-)}J_{+1}(kr) e^{-i\sigma}J^{+1} + \\ + \int_{k=J+1}^{\infty} \int_{k=J+1}^{\infty} G_{0k}^{(+)}(r,r') \left[V_{J+1,J+1}(r',r'')u^{(J)}_{J-1}(r'') \right] \\ + \int_{k=J+1}^{\sqrt{J+1}} \int_{k=J+1}^{\infty} (r',r'')u^{(J)}_{J+1}(r'') \left[dr'' dr'' \right] \\ \end{array}$$

El sistema de ecuaciones (111-14) se puede escribir en forma más

compacta y conveniente en términos de un vector de dos componentes:

$$u_{i}^{(J)}(r) = \begin{pmatrix} u^{(J)}_{J-1} & (r) \\ u^{(J)}_{J+1} & (r) \end{pmatrix}$$
(111-15)

y una matriz de 2 x 2

$$V = \begin{pmatrix} V_{J-1,J-1} & V_{J-1,J+1} \\ V_{J+1,J-1} & V_{J+1,J+1} \end{pmatrix}$$
(111-16)

En el caso que nos interesa

$$G_{0,j}^{(+)}(r,r') = \begin{pmatrix} G_{0,j}^{(+)}(r,r') & 0 \\ z = J - 1 & 0 \\ 0 & G_{0,j}^{(+)}(r,r') \\ z = J + 1 \end{pmatrix}$$
(111-17)

 $G_{02}^{(+)}$ (r,r') es la función de Green del problema de Coulomb (ecuación (1.6)).

$$G^{(+)}_{O_{\underline{x}}}(k;r,r') = \frac{-F_{\underline{x}}(kr_{\underline{x}}) W_{\underline{x}}^{(+)}(kr_{\underline{x}})}{R} e^{i\sigma_{\underline{x}}(k)}$$

El sistema (III-14) se reescribe como:

$$y_{(J)}(r) = y_{(J)}(r) + \int_{0}^{r} g_{(J)}(r,r') V(r,r') y_{(J)}(r'') dr' dr''$$
 (III-18)

la ecuación de Lippmann-Schwinger (III-18) tiene una solución formal en términos de la función de Green $G_{i}^{(+)}$ del problema completo

$$\psi^{(J)}(r) = \psi^{(-)}_{0}(r) + \int \int \frac{1}{g_{L}} \int \frac{g_{L}}{g_{L}} (r,r') \Psi(r'r') \psi^{(-)}_{0}(r'') dr' dr'' \quad (111-19)$$

La función de Green $g_{i}^{(+)}$ satisface una ecuación semejante a (111-18)

en la que $g_0^{(+)}$ aparece en lugar de $y_0^{(-)}$.

El método explicado en la parte II de este trabajo se generaliza de manera inmediata a este caso y permite desarrollar la función de Green $G^{(+)}_{j}(r,r^{+})$ en eigenfunciones de los estados ligados, estados de Gamow y un continuo de funciones de la dispersión.

$$\mathbf{g}^{(+)}(\mathbf{r},\mathbf{r}') = \sum_{\substack{\mathbf{l}: \mathbf{Q} \text{ ados}}} \mathcal{H}_{\mathbf{n},\mathbf{J}}(\mathbf{r}) = \sum_{\substack{\mathbf{l}: \mathbf{l} \\ \mathbf{l}: \mathbf{Q} \text{ ados}}} \mathcal{H}_{\mathbf{n},\mathbf{J}}(\mathbf{r}) = \sum_{\substack{\mathbf{l}: \mathbf{l} \\ \mathbf{l}: \mathbf{l} \\ \mathbf{l}: \mathbf{l} \\ \mathbf{l}: \mathbf{l}: \mathbf{l} \\ \mathbf{l}: \mathbf{l}: \mathbf{l}: \mathbf{l}: \mathbf{l} \\ \mathbf{l}: \mathbf{$$

+ $\int_{C} y_{ij}(r_{ic}) \frac{dc}{E-c} \hat{y}_{ij}(r'_{ic})$

en esta expresión, $\widetilde{\lambda}$ son las mátrices renglón adjuntas de las mátrices columna $\mu_{\rm cl}$.

Los estados ligados y los estados de Gamow satisfacen una ecuación de Lippmann-Schwinger homogérea

$$y_{nJ}(r) = \left[\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (r r') \frac{y}{2} (r, r'') y_{nJ} dr' dr'' \right]_{k_{n}} (111-21)$$

y los estados de la dispersión satisfacen una ecuación de Lippmann-Schwinger inhomogénea

$$y_{J}(rE) = y_{0}^{(-)}(rE) + \int_{G_{0}}^{\infty} \int_{G_{0}}^{(+)} (r,r') \psi(r'r'') \psi_{J}(r,E)_{dr'dr''}$$
(111-22)

El desarrollo en estados de Gamow de u_j, se obtiene substituyendo (111-20) en (111-19)

$$u_{(J)}(r) = u_{0}^{(-)}(r) + \sum_{\substack{n \\ r \in I_n}} u_{nJ}(r) = u_{nJ}(r) + \frac{b_{nJ}}{E - E_n} + \frac{b_{nJ}}{resonancias}$$

$$+ \int_{C} \psi_{j}(\mathbf{r}_{c}) \frac{dc}{\mathbf{E}-c} C(c) \qquad (111-23)$$

en esta expresión, $b_n \in C(\epsilon)$ son

$$b_{nJ} = \Box \int \int \widetilde{\mu}_{nJ}(r, E^{+}) V(rr') \mu_{0}^{(-)}(r') dr' dr]_{E=E} \quad (III-24)$$

У

$$C(\varepsilon) = \left[\int \int \hat{\mathcal{U}}_{J}(r, E^{+}) V(rr^{+}) u_{0}^{(-)}(r^{+}) dr^{+} dr \right]_{E=\varepsilon} (111-25)$$

Si nos fijamos en la componente $u_{n,2}^J$ de $\mu_n^{(J)}$, la ecuación (III-23) queda como:

$$u_{\ell}^{(J)}(r) = u_{0\ell}^{(+)}(kr) e^{i\sigma_{\ell}} + \sum_{n=0}^{\infty} u_{n\ell}^{J}(r) \frac{B_{n\ell}}{E - E_{n}}$$
$$+ \int_{\ell} u_{\ell}^{(J)}(r_{\ell}c) \frac{C(c)}{E - c} dc \qquad (111-26)$$

Para obtener una forma explícita para la función de ondas substituímos este resultado en la ecuación (III-9) lo cual nos da

$$\psi^{(\text{res})}_{n}(r) = 2\pi \int_{\overline{km}}^{\overline{km}} \sum_{\ell \ge 0} \sum_{m_{\mathcal{R}} = \frac{1}{2}\ell} J_{\ell} = \int_{\ell}^{\ell} \frac{1}{\ell^{\ell}} e^{i(\sigma_{\mathcal{L}} - \sigma_{u})} C(\ell 1 J_{l} m_{\ell} M_{1}) \times (111 - 27)$$

$$\times \sum_{n_{\mathcal{L}} = i \neq_{\mathcal{L}}} e^{i \neq_{\mathcal{L}}} (e1) \Gamma_{\mathcal{L}} J_{u}^{(n)} J(r) J_{u}^{(n)} J_{\ell} J_{\ell} 1; m_{\ell} M_{1}^{(\hat{r})} \sum_{\ell}^{m_{\ell}} (\hat{k}) \} +$$

$$+ \Psi \text{Backround}$$

En esta expresión se ha usado la notación

$$e^{i\phi \mathbf{e}^{\dagger}} \Gamma_{g}^{\dagger}$$
 (el) $= \sqrt{\frac{\mu^{2}}{km}} n_{g}$ (111-28)

en donde

$$A_{nej} = \left[\int_{u_{nej}} (k'r') V_{ej}(r') F_{e}(kr') dr' \right]_{k_{n}}$$
(111-29)

La definición de la semianchura elástica $\Gamma_{g,j}^{\frac{1}{2}}(el)$, implicita en la expresión (III-28) coincide con la definición normalmente usada en los libros de texto como ha sido demostrado por Deborah K Watsor.⁽²⁵⁾.

Si substituímos ahora (III-27) en (III-6) obtenemos

$$\int m_{g} |H_{int}^{p}|_{im} > res = 2\pi \sqrt{\frac{M}{Km}} \sum_{k=0}^{\infty} m_{k} \sum_{j=1}^{k-1} \int_{-1}^{1} (i^{2} e^{i(\sigma_{k}-\sigma_{n})} \times \frac{\phi_{k,j}(e^{1})}{\sum_{j=1}^{k-1}} \sum_{j=1}^{n} \sum_{j=$$

$$= E_{Rj} = (E_{rj} + (E_{rj} + E_{rj} + E_{rj$$

El término del fondo no se ha tomado en cuenta, pues en la vecindad de una resonancia su contribución a la sección es comparativamente muy pequeña.

El teorema de Wigner-Eckart permite factorizar la dependencia del elemento de matriz nuclear en los números cuânticos magnéticos⁽¹⁶⁾

A su vez, este elemento de matriz se puede reescribir si se define la semianchura radiativa por

$$\Gamma_{JL} + J_{g}L_{g}^{(\gamma)} = \frac{4}{2J+1} + \frac{1}{3} k\gamma e^{z} C_{1}^{z} | (J_{g}L_{g}III \oplus_{E1}\gamma^{u}III J^{z}I)|^{z}$$
(III-33)
Esta expresión coincide con la definición común de la anchura
radiativa, tal como se encuentra, en el texto de G.R. Satchler⁽²²⁾
Con la definición anterior, la expresión (III.31) da
 $e^{1\chi_{LJ}} < J_{g}L_{g}I \oplus_{E1}\gamma^{u}III + J_{1}M_{1} > = (-1)^{J_{g}} - M_{g}\sqrt{\frac{3(2J+1)}{4}} + \frac{1}{k_{\gamma}^{4}} + eC_{1}^{-} \times$
 $\times (\frac{J_{g}}{I} - \frac{1}{M_{g}} - \frac{1}{M}) \Gamma_{LJ} + \frac{1}{k_{g}}J_{J}^{(\gamma)}$ (III-34)
Si se substituye esta expresión en (III-30) se obtiene
 $< \int_{g} m_{g}|H_{1nt}^{F}|Im_{1} > = \pi/\frac{k^{z}}{Kmk} - \sum_{z=0}^{\infty} m_{z} + \frac{2}{k_{z}} J_{z}^{-} + \frac{2}{k_{z}} J_{z}^{-} + \frac{1}{k_{z}} (e1)\Gamma_{zJ} + \frac{1}{k_{z}} J_{z}^{-} - \frac{1}{k_{z}} + \frac{1}{k_{z}} (-1)\frac{1}{2}M_{g} + \frac{1}{k_{z}} J_{z}^{-} - \frac{1}{k_{z}} + \frac{1}{k_{z}} (11I-35)$

 $\begin{array}{c} \times \quad \sum\limits_{\mathcal{U}} \mathbb{E} \ p S^{j} \begin{pmatrix} 1 \end{pmatrix}_{\mathcal{U}}^{*}(\hat{k}_{Y}) & \begin{pmatrix} J_{\mathcal{U}} & 1 \\ -M_{\mathcal{U}} & \mathcal{U} \end{pmatrix} J Y_{\mathcal{U}}^{m \ell}(\hat{k}) \end{array}$

La regla $\mu=M_{g}-M$, implícita en el símbolo de 9j permite hacer la suma sobre μ

$$< \int m_{g} |H_{int}^{D} |im > = \pi \sqrt{\frac{H^{2}}{K_{Y}m}} \sum_{k=0}^{\infty} \frac{2}{m_{2}^{k-2}} \sum_{j=1}^{2k+1} |\sqrt{3(2j+1)} (-1)^{j} - M_{2} \times \frac{2}{M_{2}} |I|^{2k} |I|^$$

Substituyendo esta expresión en la fórmula para la sección de captura. eq.(III-1), se obtiene $\frac{d\sigma}{dT} = \frac{K\gamma}{hv(2s+1)} \frac{\pi^{*} 3H^{*}}{KK\gamma m} = \frac{\sum_{n_{1}} \sum_{n_{2}} \sum_{n_{2}} \sum_{n_{2}} (\sqrt{(2J+1)} (-1)^{J} \xi^{-M} \xi \times e^{1\times_{2}J}$ $\times i^{2+1} e^{i(\sigma_{2} - \sigma)} C(\epsilon I J_{i}m_{2}M_{i}) e^{i\phi^{2}J} (e1) \frac{r_{n_{2}J}^{*}(\tau_{2})}{E - E_{n_{2}J}} \times \frac{r_{n_{2}J}^{*}(\tau_{2})}{E - E_{n_{2}J}}$

La suma sobre P es inmediata, ya que P sólo aparece en la matriz de rotación, dando un factor

$$\Delta_{\mathbf{M}_{g}=\mathbf{M}}(\hat{\mathbf{k}}_{Y}) = \sum_{\mathbf{p}} \left[\frac{1}{2} \mathcal{O}^{(1)} + \frac{1}{\mathbf{M}_{g}} - \mathbf{H}_{\mathbf{p}} (\mathbf{k}_{Y}) \right]^{\perp}$$

Cuando para cada (£J) hay una resonancia que domina a los otros términos de la sume sobre n, se conserva solo el término dominante en III-37.

Con el objeto de aligerar la notación y hacer la suma sobre

ż,

proyecciones del spin usaré la abreviación

$$Q_{2J}^{(res)} = \sqrt{2J+1} i^{2}+1 e^{i(\sigma_{2}-\sigma_{0})} e^{i\phi_{2J}} r_{2J}^{(res)} r_{2J+L_{1}}^{*} \frac{e^{i\chi_{2J}}}{E_{2J}} e^{i\chi_{2J}}$$
(111-38)

Esta definición de $Q^{(res)}_{\ell,J}$ es consistente con (III-12) por lo que al substituirse en (III-37) se obtiene de nuevo la ecuación (III-10) para la sección diferencial pero con $Q_{\ell,J}$ dada por la ec. (III-38). En III-38 no se ha escrito la contribución que proviene del fondo ($\Psi_{Background}$) pues esta es pequeña en comparación con el término resonante cuando E \cong Re E_{2.1}.

Eligiendo el eje Oz, respecto del cual se cuantiza las proyecciones de los momentos angulares, en la dirección del haz incidente k=0; y recordando que

$$\gamma_{g}^{m_{\ell}}(\hat{o}) = \sqrt{\frac{2\ell+1}{4\pi}} P_{\ell}(1) \delta_{om\ell}$$

(111 - 39)

$$\gamma_{2}^{m_{2}(\hat{0})} = \sqrt{\frac{2^{2}+1}{4\pi}} \delta_{0m2}$$

Las sumas sobre m_{ℓ} y m'_{ℓ} en (III-10) se hacen de inmediato, y se obtiene el resultado

$$\frac{d\sigma}{dR} = \frac{3mH^2}{4\hbar\sqrt{2}} \sum_{k=1}^{\infty} \sum_{\substack{M_1 \\ M_1 \\ M_2 \\ M_3 \\$$

» C(RIJ;OM;) C(R'IJ';OM;) ×
La sección total se obtiene integrando sobre los ângulos \hat{k}_{Y} . Como $\frac{d\sigma}{d\Omega}$ depende de \hat{k}_{Y} solamente en el factor $\Delta_{M_{p}M_{q}}$, basta con hacer la integral sobre la función

$${}^{\Delta}_{M_1-M_2} = \begin{cases} \frac{2}{3} [1-P_2(\cos\theta)] M_1 = M_2 \\ \\ \frac{2}{3} [1+\frac{1}{2} P_2(\cos\theta)] M_1 - M_2 = 1 \end{cases}$$

Efectuando la integral obtenemos que la expresión para la sección total de captura es

$$a_{T} = \frac{2\pi i M}{\pi \sqrt{2s+1} km} = M_{1} = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{(\sqrt{2k+1})(2k+1)}{(2k+1)} \times M_{1} = \sum_{k=1}^{\infty} \frac{2\pi i M}{(2k+1)} = \sum_{k=1}^{\infty} \frac{2\pi i M}$$

× C(£1 J; OM,) C(£'1 J'; OM,) x.

Efectuando la suma sobre spines iniciales y el promedio sobre spines finales la expresión para la sección total es

$$\sigma_{T} = \frac{2\pi W^{2}}{h \sqrt{k} \pi (25+1)} \sum_{\ell} \sum_{j} |Q_{\ell}^{(res)}|^{2} \qquad (111-42)$$

Si ahora se substituye (111-38) en (111-42) se obtiene finalmente

$$\sigma_{T} = \frac{\pi \lambda^{2}}{(2s+1)} \sum_{k}^{k+1} (2J+1) \frac{\Gamma_{kJ}(e1)\Gamma_{kJ+L_{j}}(f)}{(E-c_{kJ})^{k+\frac{1}{4}}\Gamma_{kJ}}$$
(III-43)

De igual manera, la expresión para la sección diferencial que se obtiene de III.40 es

$$\frac{d\sigma}{d\Omega} = \frac{1}{4\pi} \sigma_{\rm T} + a_2({\rm E}) P_2(\cos\theta)$$
 (111-44)

en donde ap está dada por

 $a_{2} = \frac{3\lambda^{*}}{8(2S+1)} \sum_{k,j=k} \left\{ \sum_{k} \left\{ \frac{1}{3} \delta_{kk}, \delta_{jj} - \sqrt{(2k+1)(2k+1)}Z(kk,jj,j) \right\} \right\} \left\{ Q_{k,j} Q_{k,j}^{*} \right\}$ el factor que resulta del âlgebra de los momentos angulares (III-45) abreviado como Z(k,k';j,j') (111-46)

$$Z(zz, j), = \frac{1}{M} (z_0 1 M^{j} | z_1 j) (z_1 0 1 M^{j} | z_1 j, j) \begin{pmatrix} j_4 & j_1 \\ -M^{j} & 0 & M^{j}_1 \end{pmatrix} \begin{pmatrix} j_4 & j_1 \\ -M^{j} & 0 & M^{j}_1 \end{pmatrix}$$

Recordamos que, en esta expresión no se han escrito los términos que provienen del fondo porque en la región de las resonancias. Esta contribución es pequeña comparada con los términos resonantes. En el caso en que la energía E no sea muy vecina de la energía resonante y cuando las resonancias son estrechas y aisladas, la aproximación anterior deja de ser buena.Para describir correctamente el comportamiento de la sección como función de la energía entre resonancias se debe tomar en cuenta la contribución del fondo, ver por ejemplo Lynn⁽²⁶⁾ Sin embargo, como el interés de esta tercera parte del trabajo es sólo el de demostrar como se puede usar el método descrito en la segunda parte y no el de hacer un câlculo realista del problema nuclear, no se escribirán las fórmulas completas, es decir con todo v la contribución del fondo, pues son muy largas y no agregan nada nuevo à la discusión del comportamiento resonante.

70

La comparación de las expresiones obtenidas en esta sección, ecuaciones (III.41), (III.42), (III.43), (III.44) y (III.45) con los datos experimentales ha sido hecha por A. Mondragón y E. Hernández.⁽³³⁾ Los resultados obtenidos del ajuste de estas expresiones a los datos experimentales es excelente.

CONCLUSIONES

En este trabajo hemos demostrado que la teoría de Fredholm de las ecuaciones integrales lineales es una herramienta apropiada para el estudio de las propiedades de las resonancias y de los estados resonantes en potenciales que son la suma de un potencial no local de soporte compacto o no-compacto y un potencial de Coulomb.

A partir de estos resultados, hemos demostrado que se puede hacer un tratamiento sistemático y general de las resonancias y los estados resonantes en potenciales locales o no-locales en presencia de un potencial coulombiano. Hasta donde estamos enterados, antes de este trabajo el único tratamiento sistemático de las resonancias y los estados resonantes en un potencial no local en presencia de un potencial coulombianc se había restringido al caso en que el potencial no local es separable⁽⁵⁾. La generalización lograda nos da la posibilidad de aplicar nuestros resultados a casos de interés físico en forma realista. Tenemos la esperanza, bien fundada, de poder obtener resultados numéricos con ventaja en problemas de interés(21). En la parte final de esta tesis hemos demostrado que nuestros resultados también se cueden aplicar à la discusión formal de un problema particular de la física nuclear, la captura radiativa directa de ³He por ³H en estados excitados de ⁶Li y de este modo cudimos exhibir la estructura resonante de la sección de captura directa en una forma simple y sin necesidad de introducir separaciones del espacio en regiones interna y externa y parámetros arbitrarios, como se hace en varias versiones de la forma tradicional de la teoría de reacciones nucleares(22)

72

Los resultados mencionados se obtuvieron separando el problema coulombiano explicitamente y escribiendo las ecuaciones integrales satisfechas por las soluciones de la ecuación de Schrödinger con ayuda de la función de Green del problema coulombiano G_0^+ . Gracias a esto, la información referente al potencial de Coulomb queda convenientemente expresada en la función de Green G_0^+ y en las ecuaciones integrales que relacionan a la función de Green completa G^+ con la función de Green del problema coulombiano G_0^+ . Luego, desarrollamos a la función de ondas y a la función de Green en términos de estados ligados, estados resonantes y de un contínuo de estados de la dispersión con número de ondas complejo. Estos resultados son una generalización al caso de potenciales no locales, con interacción coulombiana, de desarrollos similares obtenidos por otros autores para potenciales locales de alcance finito^(12,13,14)o para potenciales no locales de rango 1⁽⁵⁾.

También hemos encontrado las reglas de ortogonalización, normalización y la relación de completez satisfechas por los eigenestados de la ecuación de Schrödinger correspondientes a eigenvalores complejos con ImE_n<0.

Aún cuando en este trabajo no hemos puesto énfasis en el rigor matemático, las demostraciones son completas y correctas. Creemos que la demostración de la regla de normalización de los estados de Gamow que se presenta aquí es original y tiene la ventaja de establecer una relación analítica entre las soluciones de la ecuación de Schrödinger y las de las funciones Sturmianas correspondientes.

73

REFERENCIAS

1.- B. Lippmann and J. Schwinger. Phys. Rev. 79, 469 (1950). Jost, R., A. Pais. Phys. Rev. <u>82</u>, 840 (1951). 3.- Newton, R.G. "Scattering Theory of Waves and Particles". 4.- von der Heydt, N. Annalen der Physik 7, (29), 309 (1973). 5.- van Haeringen H. J. Mathematical Physics 24. (5), 1152 (1983). J. Mathematical Physics 24. (5), 1157 (1983). J. Mathematical Physics 24. (5), 1267 (1983). J. Mathematical Physics 24. (10),2467 (1983). J. Mathematical Physics 25. (10),1274 (1983). J. Mathematical Physics 25. (10),1274 (1983). Phys. Rev. A 32, (1), 677 (1985). Bertero, N., G. Talenti y A. Viano. Nucl. Phys. <u>A115</u>, 395 (1968). 7.- Smithles, F. Integral Equations. Cambridge 1965. 8.- Haimos, P.C. "Introduction to Hilbert Space". Chelsen Publishing Co. New York 1951. pagina 35. 9.- Gradshteyn, I.S. y I.M. Ryzhik. "Table of integrals series and products". 3-381.3 pag. 317. Funciones de Whittaker pag. 1059. Secciones 9.22-9.23. 10.- Marsden Jerrold E. "Basic Complex Analysis" W.H. Freeman and Company. San Francisco 1973. 11.- Lovitt, William Vernon "binear Integral Equations" Dover Publications Inc., New York (1950) pag. 34 y 38. 12.- Hokkyo, N. Prog. Theor. Phys. <u>33</u>, 1116 (1965).

13.- Romo, W. Nucl. Phys. <u>A109</u>, 265 (1968). Nucl. Phys. <u>A169</u>, 353 (1971). 14.- García-Calderón, G. and R.E. Peierls. Nucl. Phys. A265, 443 (1976). 15.- Fortes, M. and G. García-Calderón. Lettere al Nuovo Ciment. Vol. 28, No.11 (1980). 16.- M.E. Rose. Elementary Theory of Angular Momentum. New York, John Wiley and Sons Inc. 1957 pag 88. 17.- J.A. Gaunt. Trans. Roy. Soc. London A 228, 195 (1928). 18.- A. de Shalit and H. Feshback. Theoretical Nuclear Physics. Volume 1, Nuclear Structure. New York, John Wiley and Sons Inc. 1974 Capitulo VIII pag.667. 19.- Nuclear Structure and Electromagnetic Interactions. Scottish Universities' Summer School 1964. Edited by N. MacDonald. New York Plenum Press 1965. Photonuclear reactions. y "Microscopic Description of Nucleus-Nucleus Collisions". K. Langanke v H. Friedrich en Advances in Nuclear Physics, Vol.17 Ed. J.W. Negele y E. Vogt. New York Plenum Publishing Co. 1986 pp 223-363. 20.- Nuclear Shell Theory. A. de Shalit and I. Talmi. Academic Press Inc. London 1963 pag. 63 a 158. 21.- Z. Papp. Journal of Physics A20 (1987) 153-162. 22.- G.R. Satchler. Direct Nuclear Reactions. Oxford University Press 1983 pag. 369. 23.- G. Gamow, Z. Phys. 51, 204, (1928). 24.- L. Fonda, G.C. Ghirardi, and S. Riminin; Rep. Progr.Phys. 41, 587 (1978). F.A. Gareev and J. Bang, Fiz. Elem. Chastits At. Yadra <u>11</u>, 813 (1980). Sov. J. Part. Nucl. <u>11</u>, 323 (1980)

25.- D.K. Watson, Phys. Rev. A34 (2) pag. 1016 (1986). 26.- J.E. Lynn. The Theory of Neutron Resonance Reactions Oxford. Clarendon Press 1968 Cap. VII pag. 291-350. 27.- E. Hernândez and A. Mondragón. Phys. Rev. 29, 3 (1984) 722. 28.- Ver referencia 3. Ecuaciones: 14.42, 14.45, 14.48 y 14.49; págs.429 a 430. 29. - Ibid. Ecuación: 7.26; pág. 184. 30.- Ibid. Ecuación: 12.128b; pág. 371. 31.- Ibid. Ecuación: 12.43; pág. 343. 32.- A. Mondragón y J. M. Velázquez. "Resonances and resonant states in non-local potentials" en Quantum Chaos and Statistical Nuclear Physics. p 353-371. Ed. T.H. Seligman and H. Nishioka. Lecture Notes in Physics <u>263</u> (1986) Springer-Verlag Berlin Heidelberg New York. London Paris Tokyo. 33.- A. Mondragón and E. Hernández. \mathbf{R} adjustive capture of ³He by ³H to the first excited state of LI . Proc. of the 6th. International Symposium on Capture Gamma-Ray Spectroscopy. A. Mondragón y E. Hernândez. por publicarse en Journal of Physics G . 34.- J. Humblet. Nucl. Phys. 50 (1964) 1-16. 35.- W. V. Lovitt. "Linear Integral Equations" Dover Publications Inc. New York 1950. DD. 43 & 46. 36.- John R. Tavlor. "Scattering Theory: The Quantum Theory on Non relativistic Colli sions" John Wiley & Sons, Inc. New York 1972. Capitulo 8, p.131.

76

•