UNIVERSERSIME NACIONAL AUT ONOMA DE MEXIC

LA..C.P. y P. de 1 C.C.H.

I.I.M.A.S.

"APLIMATIACID DEL ANALISIS DE CORRESPONDENCIAS
BI EN B. ESTUDIO DE LA INTERACCION
MEDIO AMBIBIENTEVE⊆CETACION, EN EL VALLE DE APATZINGAN"

TESINA

WI SUE PARA OBTENER EL BIPLOMA DE

ESPENMICIALIZ.←CION EN ESTADISTICA APLICADA

DELFINO VARGAS CHANES

1986

TELIS CON FALLA TE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DECLINEN

30.

En el presente trabajo se presenta un sistema de ordenación para los datos generados por un levantamiento ecológico de especies en el Valle de Apatzingán Mich. El sistema de ordenación utilizado se llama ANALISIS DE CORRESPONDENCIAS.

Se seleccionaron 24 silios de muestreo, dentro de los cuales se seleccionaron 40 cuadrantes de acuerdo a la metodología establecida por Iuao-Kuno (1971). En cada sitio se determinan parámetros de vegelación y de medio ambiente.

El sistema de ordenación, el análisis correspondencias, se aplica a tres matrices de datoss sitios perespecies, sitios per modalidades de medio ambiente y especies per modalidades de medio ambiente. Para cada una de estas matrices se discute la salida del análisis de correspondencias y se obitiene una representación geométrica (en una o dos dimensiones) para su representación.

CONTENIDO

그렇게 되어 내 주는 이번 보고 하는 이번 이번 이번 때문이다.	Pägin
Indice de Tablas Indice de Figuras	vi vii
CAPITULO I	
Introducción	1
CAPITULO II	
Antecedentes en Ecología 2.1 Antecedentes en Ecología 2.2 Antecentes del Análisis de Correspondencias 2.3 Hipótesis de Trabajo	5 5 6 8
CAPITULO III	
Metodología 3.1 Nétodo de Muestreo 3.2 Parámetros de Nedición 3.3 Matrices de Trabajo	10 15
CAPITULO IV	
Análisis Estadístico 4.1 Gué es el Análisis de Correspondencias 4.2 Matriz de Datos 4.2 Matriz de Datos 4.3 Nubes de Puntos 4.4 La Estrtuetura Métrica del Espacio 4.4 La Estrtuetura Métrica del Espacio 4.5 Aluste de la Nubes de Puntos en un Subespacio para 4.6 Ubicación de Elamentos Suplementarios 4.7 Ayudas para la Interpretación 4.7.1 Contribuciones Absolutas y Relativas 4.7.2 Calidad de la Representación 4.7.3 Inercía Relativa 4.8 Ejemplo Humérico	18 20 21 22 25 27 27 30 31
CAPITULO V	
Resultados y Discugión 5.1 Interpretación de Resultados 5.2 Matriz de SitiosperEspecies 5.3 Matriz de SitiosporModalidades de Medio Ambiente 5.4 Matriz de EspeciesporModalidades de Medio Ambiente	42 45 5 1 60
CAPITULO VI	
Resumen y Conclusiones 6.1 Resumen 6.2 Conclusiones	70 72
BIBLIOGRAFIA	74
APENDICES	79

14

- Tabla 3.1 Variables de medio ambiente
- Teble 4.1 Descomposición de la imercia en el análisis de correspondencias para las temperaturas y abundancias.
- Table 5.1 Descomposición de la inercia en el análisis de correriondencias de la tabla 1.4 (Apándice A) para los dos friteres ejes principales. La inercia total es 2.465 y las tres inercias principales con 0.445 (18%). 0.321 (18%) 0.239 (18%) 0.239 (19%)
- Tabla 5.2 Descomposición de la inercia en el análisis de correspondencias de la tabla 1.5 (Apéndice A) para los dos primeros ejes factoriales. La inercia lotal es 2.4 y las dos inercias principales son 0.329 (142) v 0.304 (132) s
- Tabla 5.3 Descomposición de la inercia en el análisis de correspondencias de la tabla 1.5 (Apéndice A) para los dos primeros ejes principales. La inercia total es 0.307 y las tres inercias principales son 0.101 (33%), 0.047 (15%) y 0.034 (11%).

INDICE DE MAPAS Y FIGURAS

		ragina
pa 1 Localización de 24 sitios muestreados en e Primavera-Verano 1984 INIFAP, CIAPAC-CAEV		14
g 4.1 Representación geométrica del análisis correspondencias.	de	19
ig 4.2 Ordenación de las temperaturas y abundan _ el espacio factorial. λ,=.053 (66%), λ _ε =.0		ના
ig 5.1 Representación bidimensional óptima med análisis de correspondencias de la (Apéndice A) para las especies en el esti HEERION. La representación cont consultarse en la Fig 1.1 del Apéndice A	tabla 1.4 rato unta puede	49
ig 5.2 Representación bidimensional óptime medi- amidileis de correspondencies de la (Apéndice A) para las especies en el e- MEDIO y SUPERIOR. La representación con las Figs. 5.1 y 5.2 puede consultarse en del Apéndice A.	tabla 1.4 strato ujunta de	50
ig 5.3 Puntos de la MASAS para las especies tantes en el estrato INFERIOR para el ani correspondencias de la tabla 1.4 (Api Del Si al SiO pertenacen a Gabriel Zamore a Nueva Italia y del SiZ al SZ4 a La Huac	ilisis de Endice A). a, el S11	52
ig 5.4 Puntos de la MASAS para las especies más en el estrato MEDIO y SUPERIOR en el'anál correspondencias de la tabla 1.4 (Apàndic Del Si al Sió pertenecen a Dabriel Zamor a Nueva Italia, del SI2 al 324 a La Huacc	lisis de ce A). a, el Sil	<i>5</i> 3
ig 5.5 Representación de los sitios y modalidade ambiente, sobre el eje 1 a partir del ar correpondencias aplicado a la tabla 1.5 o Apéndice A.	nálisis de	59
ie 5. Representación bidimensional óptime media análisis de correspondencias de la Apêndice A, pere las modalidades de medi Sobreponea las Figs 5.7 y 5.8 para una interpretación. Consulte la gráfica conj la Fig 1.2 del Apêndice A.	abla 1.6 o ambiente. gjor	65
is 5.7 Representación bidimensional óptima media análisis de correspondencias de la t (Apéndice A) para las especies en el er IMFERIOR. La nube de modalidades de medi se representan en la Fig 5.6. Consulte i conjunta en la Fig 1.2 del Pápfolica A.	labla 1.6 strato lo ambiente	
ig 5.8 Representación bidimiensional óptima medi vii	iante el	

análisis de correspondencias de la tabla 1.6 (Apéndice A) para las especies en el estrato MEDIO y SUPENION. La nube de modalidades de medio ambiente se presenta en la Fig 5.6. Consulte la gráfica conjunta en la Fig 1.2 del Apéndice A.

CAPITULO I

Le creciente demenda en alimentación ha obligado al ser humano a estudiar los fenômenos de la naturaleza con el fin de hacer uso más racional de los escasos recursos. Nuch; a sesa de la ciencia no exacta (Sicología, Sociología, Biología, ...), se han visto emriquecidas con el uso cada ver más profundo de técnicas matemáticas. Por ejemplo en Sicología clínica, la validación de cuestionarios ha permitido medir algunos aspectos de la conducta del ser humano; en Sociología rural y urbana, conocer la movilidad de la pobleción, por medio de métodos de muestreo; en Biología un área que se ha visto enriguecida es la ecología cuentitativa.

La ecología -clencia que estudia las relaciones entre los seres vivos y el medio ambiente-, ha cobrado gran interés en la actualidad; la ecología cuantitativa es un caso típico en el que la malemática y la estadística jurgan un papel preponderante.

Un aspecto muy importante para la ecología cuantitativa, es la descripción de organismos encontrados en la naturaleza, su disposición en el espacio, así como la forma en que estos se relacionan entre eí y con el medio que les rodea.

"En el Valle de Aratzingán, Mich., uno de los principales componentes de la alimentación del ganado bovino son los agostaderos naturales (**) con especies forrajeras nativas. Un estudio ecoló gico de la región permite tener un conocimiento de las especies forrajeras nativas y puede ayudar a definir criterios racionales de menejo para el uso adecuado de esas áreas. Los criterios racionales pueden establecerse mediante el conocimiento del medio ambiente y su interacción con la vegetación.

El presente estudio ha survido como producto del trabajo multidisciplinario entre el Pròprana de Forrajes del CIAPAC (Centro de Investigaciones Agrícolas del Pacífico Centro) y el Programa de Biometría, ambos del INIFAP (instituto Nacional de Investigaciones Forestales y Agropecuarias). Este se realizó en el ciclo de primavera-verano de 1984 en los municípios de Gabriel Zamora, Nueva Italia y La Huacana, en el Valle de Apatringán Michoacán y estuvo a careo del Ine. Javier Espinoza Aburto.

Los objetivos planteados son los siguientes:

- a) Describir el área en zonas por composición florística similar.
- b) Describir el área por condiciones de medio ambiente similar
 - c) Definir las interacciones del medio ambiente con la venetación natural.
- d) Utilizar el análisis de correspondencias como un método de ordenación de matrices grandes de datos.

En el capitulo II se hace una revisión bibliográfica tanto de los studios realizados en el contexto de ecología, como de los antecedentes del análisis de correspondencias. En este capítulo se muestra el desarrollo que ha tenido el análisis, desde los primeros trabajos de Fisher en 1940 hasta los sás recientes avances, consolidados en la escuela francesa por Benzácri en 1950.

Los métodos de muestreo tradicionales requieren que la varia-

ble de interés se distribuya normalmente. (o de manera aproximada a la mormal): Strembargo cuando se trabajá con poblaciones biológicas la función de distribución no suete ser normal, sino Pionon, Binomial negativa, Neyman Tipo A. Doble Pioson, etc. Los métodos de muestreo para poblaciones agregadas nos permiten determinar con cierta precisión el tamaño de muestra adecuado (número de cuadrantes por sitio de muestreo). En el casitulo III se expone de manera resumida el método de muestreo para poblaciones agregadas de tua-o-Kuno (1971), el cual es utilizado en el presente trabajo. En este mismo capítulo se presentan las variables medidas en cada sitio de muestreo (variables de sustrato y de medio ambiente físico) y además se muestra la forma de construcción de las matrices de trabajo para ser analizadas mediante el método propuesto.

En el capítulo IV se presenta el método en su forma matricial, la forma de presentación se ha procurado sea lo más explícito posible; sin embargo, para el lector no especializado esta parte puede ser muy tediosa, no obstante se incluye un ejemplo numérico que es más accesible. En el apéndice B se muestra un programa de cómputo, que esencialmente utiliza la teoría establecida en este capítulo.

La presentación de resultados de matrices grandes de datos, suelerestar saturada de gráficas y tablas. En al capítulo V se presentan los resultados y su discusión; se ha procurado remitir al lector a los apéndices y consulte ahí gráficas y tablas necesarias, con el fin de permitir una lectura más fluida. En este capítulo se presenta la manera de interpretar la salida de un análisis de correspondencias, la representación factorial y el significado en el contexto ecológico. En este trabajo se hace ánfasis en la

aplicación del análisis de correspondencias, debe subrayarse que los aspectos ecológicos pueden verse enriquecidos pero no constituyen la parte medular de éste.

En el capítulo VI se presenta el resumen y las conlousiones.

Debo agradecer a los M. en C. Daniel Munro Olmos' y Heriberto

Diaz Solís por us valiosos comentarios al capítulo VI; hago extensivo mi agradecimiento al Ins. Carlos R. Contreras Castro por
construir el paquete CORRP (el cual se utiliza para el análisis de
los datos del presente trabajo, ver apendice B) y al M. en C. Carlos Mejía Avila por haber puesto al punto el programa TABET (el
cual (ue instalado en la máquina CYBER CDC parteneciente a la
SARH).

CAPITULO II

2.1. Antecedentes en ecología

La necesidad de establecer critérios racionales para el mene-Jo de áreas destinadas al pastoreo, ha planteado el estudio de la composición florística y su interacción con el medio ambiente en el Vallé de Apatzinaón.

Espinoza (1984) ha descrito 'la composición florística de las superfícies de apostaderos en el trópico seco, del Valle de Apat-Zingán, con el fin de identificar áreas con problemas fuertes de deterioro y establecer un diagnóstico preliminar para el estudio de la dihámica poblacional de la venetación.

Harvard-Duclos (1969) y Villegas (1969), definen desde el punito de vista teórico, que para obtener un equilibrio más favorable para estimular la producción forrajera, es necesario conocer a fondo la ecología y la dinámica de la comunidad vegetal; es decir, se debe contar con estudio descriptivo sobre las especies vegetales.

Villegas (1969) y Maiker (1979) consideran que el patrón de arreglo de las especies, persistencia o desaparición y comportamiento en general está regulado por el medio ambiente. Blydestein (1967), Die & Malker (1980) y Mheeler (1980), emcuentran que existe un efecto del medio ambiente sobre la composición de las comunidades de plantas; aunque los autores no lo mancionan, puede considerarse que también las comunidades de plantas modifican el medio ambiente.

Nicholls y Plunknett (1974) encuentran en un estudio en Ha-

vai, que tanto los patrones de cresimiento y de distribución de especies, estuvieron sfectadas por el medio ambiente, en particular por el contenido de nutrientes, profundidad de suelo, Ph y gradiente de humetad.

Por otro lado, Roberts (1980) considera que la presencia de cambios en la composición vegetal de los pastizales tropicales obedece al pastoreo al que son somotivos los apostaderos.

2.2. Antecedentes del análisis de correspondencias

Los principios del análisis de correspondencias fueron desarrollados por Benzècri (1964 y 1973), quien utiliza las propiedades algebraicas y geométricas de la herramienta descriptiva. Trabajos previos a este puede citarse el de Hirschfeld (1933), quien ofrece una expresión algebraica a la "correlación" entre rengiones y columnas de una tabla de contingencias; de manera independiente Richardson y Kuder (1933) y Norst (1933) sugirieron ideas no matemáticas en el campo de la sicometría, este último autor acuñó el Vérsino "métodos de los promedios recéprocos".

Posteriormente Sir. Ronald A. Fisher deviva la misma teoría en forma de un análisis discriminante a partir de una tabla de contingencias aplicada a datos obtenidos sobre un grupo de niños en edad escolar en los que se registraron color de ojos y pelo (Fisher. 1940).

Outtman (1941) y Torgerson (1958, p.388), introducen la misma teoría como un método de escalamiento, en lugar del análisis de tablas de contingencias. Outtman trata el caso más general para más de dos variables cateoóricas. Con los trabajos de Fisher y Outtman, puede afinamers que se inicia la leoria del anfilisis de correspondancias. Durante la Spoca de 1990 a 1990 un grupo de estadísticos Japoneses empodezados por Hayashi (1999) desarrollaron ideas paralelas a las delescalamiento de Guttman.

Mhitlaker (19名7) desăricăliă un mătodo de escalatienio en el terreno de la ecologia, ilamado "anălisis de gradientem". Sin embargo, este anălisis adolece de ciertas fallas porque el escurio debe asignar los gradientes físicos de importancia 夏田夏山, y por tanto, sus resultados pueden ser subjetivos. Hill (1974) afirma "un ecologista experto interpretară casi siempre los gradientes floristicos correctamente, pero un principiante cos mumos acierto... el anălisis de correspondencias puede ser viste como una generalización del anălisis de gradiente..."

El asílisis de correspondencias, en su forma estrafícica, ha sido creado en Francia en un contexto diferente (limifística). El grupo de estadísticos franceses ha sido lidereado parr den-Paul Benziecri, quien ha tenido una experiencia práctica lem tensa y ha encontrado una infinidad de aplicaciones en diferentes praesa de la ciencia. El nétedo ha sido aplicaciones en diferentes praesa de la ciencia. El nétedo ha sido aplicaciones en diferentes praesa de la ciencia. El nétedo ha sido aplicaciones en cología al anirizar tables de especies por sitios. Hatheuay (1971), Ibañez y Say-ula (1972), Hill (1972,1974), Orlóci (1975), Greenacre y Vrba (1981.) In sicología, Nishisato (1980), aplicaciones diversas como es Sociología, medicina, limpiústica, antropología, pueden cossullarse en Escolier-Cordier (1969), Benzéri y cola. (1973), Bez ecri & Benzeri (1900) y Oregenacre (1984).

El método ha recibido diversos nombres: contin-sesoy table analysis por Fisher (1940), cuantificación de datos conditativos

por Hayashi (1950), R-O technique por Hathousy (1971), reciprocal averaging por Orlöci (1975) y en francés, l'analyse des correspondances por Benecri (1972). El término francés lo utilizaremos en español, como análisis de correspondencias y los usaremos para denotra c'um "sistema de proximidades" entre elementos de dos comoltra c'um "sistema de proximidades" entre elementos de dos comoltra c'um este caso de rengiones y columnas de una tabla cruzada.

2.3 Hipótesis de trabajo

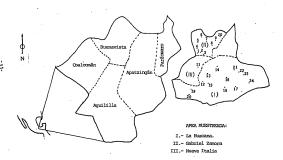
El problema seuf planteddo es en cierto modo (fpico en los levantamientos ecológicos, ya que el investigador, después de haber obtenido una matriz de sitios por especies, desea analizar la perdenación existente entre los individuos balo estudio.

La forma como se pretende encontrar la ordenación entre especies a lo largo de los sitios de muestreo, es mediante el anfilisis de correspondencias. Por medio de este anfilisis estudiamos el "sistema de proximidades" entre reeglones (sitios de muestreo) y columnas (especies) de una tabla de contingencias de doble entrada; en cada celda de esta tabla colocanos la densisdad encontrada para la especie en el sitio de interés. Usando el enfoque geométrico del anfilisis podremos describir el áreas por composición (lorística similar. Sin embargo, para cubrir los objetivos del presente trabajo, debiemos construir una tabla de incidencias de especies por variables de medio ambiente; en cada celda se coloca la densidad observada para la modalidad en la variable de medio ambiente (ver capítulo fII).

Con el análisis de correspondencias podremos describir el àrea por condiciones similares en medio ambiente, así como las in-

- teracciones del medio ambiente y vegetación.

 Las hipótesis de trabajo son:
- a) Las condiciones del medio ambiente determianan el tipo y la estructura de la comunidades vegetales.
- Las condiciones del medio ambiente determinan las relaciones fitosociológicas entre especies.
 - c) Dentro de las superfícies de agostadero existen especies subutilizadas y representan un potencial en rendimiento y calidad para la alimentación bovina.
- d) El análisis de correspondencias es una herramienta adecuada para analizar tablas de contingencia y en particular matrices de sitios por especies.


3.1 Método de muestreo

El frea geográfica de estudio se limita a muestrear los municipios de Gabriel Tamora, Nueva Ilalia y La Nuacana del Valle de Apatzingán (ver mapa 1); Espinoza (1984) elige estos municipios por su mayor potencial para la producción bovina y por su homogemeldad en cuanto a vegeteción.

Se utilize el método de muestreo aleatorio eimple para poblaciones agregadas, propuesto por Malker (1979). En cada sitio se utilizen cuadrantes de 0.5 x 0.5m, en el estrato inferior y de 4 x fm en los estratos medio y superior para medir la densidad de la vegetación en plantas por hectúrea. En el estrato inferior se toman en cuenta sólo 27 especies y en los estratos medio y superior a 29 especies.

El procedimiento de muestreo para poblaciones agregadas puede resumirse en las siguientes fases:

- a) determinar cuáles especies son más importantes en la zona de estudio.
- b) elegir los sitios de exploración así como el tamaño del cuadram tê, para las especies elegidas en el inciso anterior,
- c) realizar un muestreo piloto para, determinar el múmero de cuadrantes por sitio;
- los procedimientos anteriores se realizan para las especies de mavor importancia, y para éstas se siguen los siguientes pasos:
- d) determinar el índice de abigarramiento (m*), mediante la expresión

MAPA 1.- Localización de 24 sitios muestreados ciclo Primavera-Verano 1984 INIA CIAPAC CAEVA

donde m es la media y s^ela varianza estimadas de la muestra de los cuadrantes por sitio, este índice se calcula para cada especie:

e) ajustar una recta de regresion de la media m vs. el índice de li... abigarramiento my para detectar el patrón de agregación,

(a tiende a cero cuando las especies constituyen el componente básico de la distribución, y mayor o menor que cero cuando existe una asociación positiva o negativa entre las especies; b (1, b = 1 o b > 1 cuando la distribución de las especies es uniforme, aleatoria o agrecada, respectivamente);

es necesario obtener las gráficas de las rectas de regresión, arriba ajustadas, para elegir cuál o cuáles especies se consideran las más importantes y sobre éstas calcular el tamaño de muestra (número de cuadrantes por sitio de muestreo). Debe tomarse en cuenta que las especies que muestren una distribución agregada, por lo general reportaran un tamaño de muestra mayor. De esta manera, se procede a

f) determinar el tamaño de muestra, bajo un esquema de muestreo aleatorio simple

$$n = ((a + 1) / m + b - 1) / d^2$$

donde d²es la precisión deseada:

en este último paso se sugiere graficar los valores de n (en el aj vertical) contra los diferentes valores de m (en el aje horizontal), de esta manera se obtiene un gráfico y se sugiere tomar como tamaño de muestra el punto de inflexión de la curva obtenida. Para mayores referencias consulte Iwao-Kuno (1971) y Walker (1979, p.44). Usando este método, el tamaño de muestra para el estudio es de 40 cuadrantes por sitio, con una precisión del 75%.

3.2 Parámetros de medición

Sobre los perámetros de vegetación Austin (1968), considera que la "densisdad" o número de individuos por unidad de superficie es una medida adecuada. Espinoza (1984) plantea que "La densisdad presenta ciertas ventajas cuando se la compara con otros parámetros por su fácil comprensión; en muchos estudios florísticos esta medida es la más comón, permitiendo así una forma de comparación".

En el presente trabajo se utiliza la densidad media por cuadrante para cada especie en cada sitio. Los nombres de las cincuenta especies se presentan en las tablas i.1 y 1.2 del apéndice
A. En el estrato inferior se realiza el conteo para 27 especies y
en los estratos medio y superior para 23 especies; las primeras se
identifican por las etiquetas EI, ..., E27 , y las siguientes por
E28, ..., E20. Debe notarse que no todas las especies han podido
ser clasificadas taxonómicamente; sin embargo, para los fines
prácticos de este trabajo las clasificamos como diferentes.

The los parămetros de medio ambiente se han elegido II variables referentes al sustrato y 4 variables del medio ambiente fisico (ver tabla 3.1), las cuales se han dispuesto en modalidades disjuntas; es decir, cada variable ha sido dispuesta en varias categorfas de acuerdo a un ordenamiento previamente establecido (consultar tabla 1.3 del apēndice A). Puesto que cada categorfa es exhaustiva y excluyente, la hemos llamado modalidad disjunta. Por

Tabla 3.1 - Variables de Medio Ambiente

Variables de sustrato	Modalidades	Ident.
1 pH del suelo	5	A
2 Porcentaje de arena	371	В
3 Porcentaje de limo	3	C
4 Porcentaje de arcilla	3	D .
5 Ca CO ₃ equivalente	3	E
6 Saturación	4 .	F
7 Materia orgánica	4	G -
8 Nitrógeno total	4	н
9 Fósforo	3	1
0 Calcio	3	J
1 pH del extracto de saturación	3	К
Variables del medio ambiente fi	sico	
2 Altura sobre el nivel del mar	3	L
3 Pendiente	5	М
4 Profundidad del suelo	2	N
5 Sombreado de planta	3	ď

Consultar tabla 1.3 del Apend, A para la tabla completa.

ejemplo, la variable pH del suelo se ha identificado con la letra A y admite cinco modalidades, desde ligereamente ácido (AÓI), hasta fuertemente alcalino (AOS).

Como puede observarse las variables de estudio son cuantitativas y al disponentas en modalidades disjuntas se pierde información; sin embargo, en uno de los objetivos se plantea el estudio de la interacción entre medio ambiente y vegetación por lo cual resulta necesaria la construcción de tales modalidades. Los métodos que estudian la estructura de dependencia entre variables cuantitativas contre una variable categórica (llamada Análisis de discrimianate), pueden ser utilizados para analizar estos datos; por ello, se considera que el análisis de correspondencias es una vía de solución al problema asuf planteado.

3.3 Matrices de trabajo

Le matriz de sitios por especies, corresponde a los datos de vegetación. Esta matriz pone en correspondencia dos conjuntos que denotamos I.J. Los elementos que constituyen al conjunto I son los sitios y los denotamos con la letra i, y escribimos i I. De igual forma J J denota al conjunto de elementos formado por las es pecies.

Demotesos con C a la matriz de datos de vegetacion; esta contiene 24 renglones y 50 columnas. Con esta matriz se ponen en correspondencia los sitios (conjunto I) y las especies (conjunto J), con ella es posible describir las comunidades vegetales a lo largo de todos los sitios (ver tabla 1.4 del apéndice A).

Denotemos con M a la matriz de sitios por modalidades de me-

dio ambiente, esta matriz de datos contiene 24 renglones y 51 columnas (var tabla 1.5 del apéndice A).

Addicionalmente debemos construir otra matriz que ponga en correspondencia especies y variables de medio ambiente. Denotamos con J, K a los conjuntos de especies y variables de medio ambiente, respectivamente. Puesto que c da elemento del conjunto K es una modalidad disjunta, para cada variable hay un número determinado de modalidades (por ejemplo la variable PH del suelo tiene cinco modalidades: AOI.....AOS).

Denotemos con D a la matriz de especies por modalidades de medio ambiente. Ilustramos la forma de construcción de esta matriz mediante un ejemplo.

Suponga que temenos los datos, en densidades, para las especies EI y E2, registradas para las variables A,B y C dispuestas en 3,2 y 2 modalidades disjuntas, respectivamente; las cuales se han medido en los sitios S1, S2 y S3. Definimos las matrices siquientes:

	X1 X2		A01	A02	A03	BOI	B02	COI	C02	
S1	20 10	SI	٥	1	0	1	0	1	이	
C = 52	15 25	M = \$2	0	0 .	1	0	1	0	1	
\$3	30 10	. 83	1	0	0	1	0	0	1	

Donde C contiene los elementos c(i,j) para el sitio i-ésimo y la especie j-ésima; por ejemplo, c(2,2)-25 es la densidad de plantas de la especie E2 en el sitio S2. M contiene las modalidades disjuntas, m(i,k)-1 si el sitio i corresponde a la modalidad k, y m(i,k)-0 si no corresponde. Para construir la matriz D haremos la siguiente multiplicación

Donde C'indica la matriz transpuesta (*) de C. El producto de C'por M se obtiene por multiplicación entre matrices. En la metriz D estan definidos de l'elementos d(j,k), que es la densidad observada de la especie j en la modalidad k. Por elemplo, d(i,4)=50 es la densidad observada para la especie El en la modalidad BOI. La matriz de especies por modalidades de medio ambiente se presente a la labla i. del a nofertra de

La matriz C contiene 24 renglones (sitios) y 50 columnas (especies), ásta se encuentra en la tabla 1.4 del apándice A. Por

(*) Para transponer una matriz colocamos los rengiones como colum-

medio de la matriz C ponemos en correspondencia sitios y especies.

La matriz M contiene 24 renglones (sitios) y 51 columnas (modalidades de medio ambiente), ésta se encuentra en la tabla 1.5 del apéndice A. Por medio del análisis de correspondencias aplicado a esta matriz, podremos caracterizar los sitios de muestreo de acuerdo a las variabjes del sustrato y del medio ambiente físico.

La matriz D contiene 50 renglomes (especies) y 51 columnas (modalidades disjuntas de las variables A, B, ..., O), ésta se encuentra en la tabla 1.6 del apéndice A, Al aplicar el análisis de correspondencias a esta matriz establecemos la asociación en re especies y varibles de medio ambiente.

CAPITULO IV

4.1 Qué es el análisis de correspondencias

El anfilisis del correspondencias es una técnica fundamentalmente descriptiva multidimensional, que permite analizar variables discretas, reuistradas mediante tablas de contingencia o de
tablas, cuyos elementos sean números positivos. Al igual que
ctros métodos de análisis de datos multidimensionales, éste es un
métode exploratorio en el sentido de que impone a los datos un
método exploratorio en el sentido de que impone a los datos un
método exploratorio en el sentido de que impone a los datos un
método exploratorio en el sentido de que impone a los datos un
métodos probabilesticos, Permite obtener representaciones geométricas que muestran
las proximidades entre remplones y columnas de una tabla cruzada,
como puntos en un sólo espacio con dimensión menor. Los rengiones
y las columas pueden convivir en este mismo espacio para obtener
una gráfica conjunta. En la figura 4.1 se muestra la matriz de
datos original, la representación de los rengiones y las columnas
en espacios diferentes y la representación conjunta de los renstones y las columnas en un mismo espacio.

4.2 Matriz de datos

'Deseamos estudiar la distribución de 50 especies a lo largo de 24 sitios, para ello se cuenta la densidad de plantas por hectárea de la especie J en el sitio i que denotamos x(i,j).

Suponaamos que $X = \{x(i,j)\}$, $i=1,\ldots,n$ y $j=1,\ldots,m$ es una matriz de frecuencias absolutas (densidad de plantas por hectárea) de sitios por especies, tal que las sumas por renglones y columnas son distintas de cero. Si definimos n como el número de

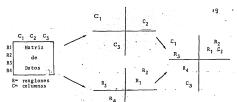


Fig. 4.1 Representación geométrica del Análisis de correspondencias:

rengiones que cumplen esta condición y m al número de columnas, X es de dimensión n x m .

La matriz P se define como los elementos de X divididos entre el gran total de X. Los elementos de P son:

$$p(i,j) = \times (i,j) / \sum_{i} \sum_{j} x(i,j).$$

Los elementos p(i,j) son las frecuencias relativas; las frecuencias relativas por renglón y por columna son: \underline{r} y \underline{c} , cuyos elementos son

$$r(i) = \sum_{j} p(i,j),$$
 $i = 1, ..., n$
 $c(j) = \sum_{j} p(i,j),$ $j = 1, ..., m$

respectivamente. Note que la suma de los elementos de P, es igual a 1.

Definimos D como la matriz diagonal cuyos elementos son ŗ, y

wscribinos D, = diag. (r), explicitos annie será

$$D_{\mathbf{r}} = \begin{bmatrix} \mathbf{r} & (1) & 0 \\ & \ddots & \\ & & \ddots & \\ 0 & \mathbf{r} & \mathbf{r} & (\mathbf{n}) \end{bmatrix}$$

alogamente D, = diag.(c) y se escrucyibe

4.3 Nubes de puntos

Los perfiles renglón son unaco coloco lón de n puntos, los cuales se obtienen dividiendo P. entre e las seumas respectivas por ren-←1 fm. Los perfiles columna se oblesiem d ividiendo P entre las sumas respectives por columna. Demokratans Ti, v Ti, a los perfiles spor rengión y columna respectivamente, están definidos por

 $\Pi_i = [p(i,1)/r(i), ..., p(i,n)/(i/r(i))]$ para i=1, ...,n Ti = [p(1,1)/e(1), ..., p(n,1)/\0/e(1)]

de namera que las matrices de perfiffiles riengión y columna sons

$$\mathbf{R} = \mathbf{D}_{\mathbf{r}}^{\tau^{1}} \quad \mathbf{P} = \begin{bmatrix} \boldsymbol{\Pi}_{\mathbf{t}} \\ \vdots \\ \boldsymbol{\Pi}_{\mathbf{n}} \end{bmatrix} \quad \mathbf{y} \quad \mathbf{C} = \mathbf{D}_{\mathbf{t}}^{t} \quad \mathbf{P}^{T} = \begin{bmatrix} \widehat{\boldsymbol{\Pi}}_{\mathbf{t}} \\ \vdots \\ \widehat{\boldsymbol{\Pi}}_{\mathbf{m}} \end{bmatrix}$$

La matriz R de dimensión a sa , contigne los puntos que conforman la nube N(I) y está éflefinida, en el espacio m-1 dimensional, porque sus coordenadas writrilians la relación

$$\sum_{\mathbf{j}} \frac{p(\mathbf{i},\mathbf{j})}{r(\mathbf{i})} = \frac{1}{r(\mathbf{i})} \sum_{\mathbf{j}} \frac{p(\mathbf{i},\mathbf{j})_{ij}}{p(\mathbf{i})} = \frac{1}{p(\mathbf{i})} \cdot \frac{r(\mathbf{i})}{r(\mathbf{i})} = 1$$

pera cada perfil M, i=1,...,n. la matriz C, es de dimensión

m x n'y con<u>tiene los</u> puntos para la nube N(J), la cual también está definida en el espacio n-l dimensional.

El centro de gravedad: (centroide) es una generalización del concepto de media; es decir que el centro de gravedad de los perfiles Π_1 , es como la media de la nube N(1), pero una media donde

ceda punto juega un papel proporcional a su masa r(i). El centro

$$\sum_{i} r(i) \pi_{i} = \sum_{i} r(i) \underbrace{p(i, j)}_{r(i)} = \sum_{i} p(i, j) = o(j)$$

$$\therefore \quad g = \left[e(1), \dots, e(m) \right]^T$$

En forma metricial $c = R^T$ r, este vector (de m x 1), resúlta ser la suma marginal por columnas de P.

Para la nube N(J), el centro de gravedad es

$$\sum_{\mathbf{j}} c(\mathbf{j}) \cdot \widetilde{\mathbf{n}}_{\mathbf{j}} = \sum_{\mathbf{j}} c(\mathbf{j}) \cdot \underbrace{\rho(\mathbf{i}, \mathbf{j})}_{\mathbf{c}(\mathbf{j})} = \sum_{\mathbf{j}} \rho(\mathbf{i}, \mathbf{j}) = r(\mathbf{i})$$

$$r = [r(1), \dots, r(n)]^T$$

En forma matricial $r^{\alpha}C$ g_{γ} es un vector de n x 1 y es la suma marginal por renglomes de P.

4.4 La estructura métrica del espacio

El hecho de trabajar sobre los perfiles en las nubes de puntos N(I) y N(J), nos conduce a dotarlos de una métrica diferente a la euclidiana. La distancia entre dos categorías por rangión, i e iº, está dada por

$$d(i,i^*) = (\Pi_i - \Pi_V)^T g_i^{-1} (\Pi_i - \Pi_V)$$

$$= \sum_{i=0}^{1} \frac{1}{c(i)} \left[\frac{\rho(i,j)}{r(i)} - \frac{\rho(i^*,j)}{r(i^*)} \right]^2$$

la cual llamaremos distancia di-cuadrada, D es la matriz diagonal de m x m, cuyos elementos soin c(J). La estructura en el espacio de los perfiles por renalón es todavía de naturaleza euclidiana, pero con cierta ponderación sobre los ejes coordenados definida por \mathcal{Q}_{i}^{C} . De manera completamente análoga, la distancia entre los perfiles J, J está dada nor

donde D es la matriz diagonal cuyos elementos son r(i).

4.5 Ajuste de las nubes de puntos a un subespacio

para su representación

Hasta ahora hemos definido dos nubes de puntos, N(I) y N(J), las cuales están provistas de una métrica euclidiana generalizada (distancia Ji-cuadrada). Prosigue entonces identificar un subespacio en cada nube de puntos a través del cual el centroide correspondiente este lo más cercano posible a todos los puntos.

La medida de corcanía que debe ser minimizada, está definida como la suma ponderada del cuadrado de las distancias de los puntos de cada subespacio, de manera que los perfiles más cercanos a la unidad son los que ejercen la mayor importancia en la determinación de la cercanía al subespacio en cuestión (Greenacre y Vrbs. 1994).

Los pasos algebraicos que conllevan a la solución del pro-

blema palanteado pueden consultarse en <u>Benzácri</u> (1973), Lebart, et. al. (1982) o Greenacre (1984). Anuf simplemente establecemos los resultados importantes en la construcción de los ejes factoriales.

Construimos una matriz Q tal que sus elementos sean

$$\vec{q}(i,j) = p(i,j)$$

$$\sqrt{r(i) c(j)}$$

Se resuelve abora la ecuación

(S - λI)u_t = 0

donde S= $\tilde{0}$ $\tilde{0}$ $y_{\underline{u}}$ son los vectores propios normalizados. La solución la constituyen $\{(\lambda_1, \underline{u}_2), \dots, (\lambda_k, \underline{u}_k) | k \neq n\}$. La solución más yrande es la solución trivial. Los valores propios $\lambda_1, \dots, \lambda_k$ son

conocidos también como inercias principales y miden de alguna manera la dispersión (o la varianza) de esta nube de puntos.

Por otro lado, se resuelve la ecuación

donde និ=ល៊ីល៊[†]y ឬ្ត្លcumple con la condicion ឬ្ត្រឹជ្‱=1 y son los vectores

propios normalizados. El conjunto solución $\{(\lambda_s, \hat{g}_s), \dots, (\lambda_g \hat{g}_g)\}$

kun, coincide con el conjunto anterior. Es decir, los valores propios (las inercias principales) en las dos ecuaciones anteriores son idénticos (Labart, et.al., 1982) Greenacre, 1984).

Para construir la matriz de coordenadas para los renglones y culumnas, debemoms construir dos matrices. Q y $\hat{\mathbf{Q}}$ cuyos elementos son

q(i,j)=p(i,j)/ir(i) \(\sigma(i)\) , \(\hat{q}(i,j)=p(i,j)/\left(i)\) \(\sigma(ij)\)

Las coordenadas principales para los perfiles rengión están dadas por

donde U es la matriz for ada por los vectores unitarios $\underline{u}_{\underline{A}}$.

Análogamente para los perfiles columna, las coordenadas principales son

Les dos matrices de coordenadas principales, F y G, estám relacionadas una con otra. Los eles principales se corresponden mediante la proyección en las dos nubes de puntos y de aquí el nombre de análisis de correspondencias. Las (órmulas de transición son: de los rengiones (F) a las columnas (G)

donde Λ es la matriz cuyos elementos son diag $\{\lambda_1,\dots,\lambda_n\}$. La

transición de las columnas (G) a los renglones (F) está dada por

$$F_{-} = D_{T}^{A} P G_{-} \Lambda^{V_{2}} = R G \Lambda^{V_{2}}$$

$$\Leftrightarrow F \Lambda^{V_{2}} = D_{T}^{A} P G = R G_{-}$$

(Las formulas de transición anteriores son las ecuaciones que definen el análisis equivalente llamado "reciprocal averaging". Estas fírmulas implican resolver las ecuaciones características

$$(\hat{s} - \lambda I) G = 0$$

Bajo estas condiciones las coordenadas para los rengiones y columnas del primer eje principal coincide con aquél del análisis de correspondencias).

Expliquemos brevemente el significado práctico de las fórmulas de transición. Para el eje o las coordenadas por renglones F

en términos de aquéllas por columnas G se pueden reescribir como sigue

$$\binom{\alpha}{\alpha}$$
 (i) = $\frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{j=1}^{m} (p(i,j)/r(i)) g_{\alpha}(j)$

En esta expresión puede

reconocerse la participación de los perfiles Π_j , cuya suma esiqual a 1, por esta razón el producto $\sum_j (n(i,j)/r(i)) q_q(j)$ es el promedio ponderado por las coordenadas $q_q(j)$ que esta forna las coordenadas (q(i)) estarán en el eje positivo o negativo del eje según el signo y magnitud de los elementos de $q_q(j)$ que correspondan a los elementos más grandes de los perfiles Π_j . Esta es la razón fundamental por la que la nube de puntos por rengión y por columna pueden sobreponerse en el mismo eje factorial. Con ses enfoque cada punto rengión es atraído a la región de puntos columna en el que su perfil rengión sea grande y viceversa.

Ademãs puede observarse en la fórmula de transición, que expresa a ξ_i en términos de g_{ij} , que para toda a , se tiene que $\lambda_i \xi_i$ 1 (es decir, todos los valores propios son menores o iguales a 1). En efecto si existiera algun $\lambda_i > 1$ entonces $1/\sqrt{\lambda_i} < 1$ y por lo tanto la fórmula que expresa a (en términos de g establecería que las coordenadas de fa están al interior del intervalo cubierto por qui pero al expresar que en términos de fuexpresaría la inclusión estricta inversa i lo cual es imposible! .

4.6 Unicación de elementos suplementarios

Supongamos que una matriz de datos se ve enriquecida por un cierto número de columnas suplementarias. Para ubicar los nuevos perfiles, una vez que va se han ubicado los perfiles originales. procedemos a construir las provecciones de las columnas suplementarias. Llamemos x(i,j)* a la i-ésima coordenada de la j-ésima columna suplementaria, su vector columna de perfiles está dado por

$$\vec{\Pi}_j^{t-1} \{\kappa(i,j)^t / \kappa(j)^t \}$$
 para $\kappa(j)^t = \sum_i \kappa(i,j)^t$ considers a $\hat{\Gamma}$ -come label a matriz formeda por los vectores columna, de dimensión a'x n, donde at denota el número de columnas suplementaria. La provección de las columnas sublementarias esta fado

tarias. La proyección de las columnas suplementarias esta dada por

$$\frac{G^{+}}{m^{+} \times k} = \frac{C^{+}}{m^{+} \times k} \times \frac{\Lambda^{-}}{k \times k}.$$

Es decir que la provección del i-ésimo punto sobre el eje 🗴 está dada por

$$g_{ij}^{+}(j) = \frac{1}{\sqrt{\lambda_{ij}}} \sum_{i=1}^{N} (x(i,j)^{+}/x(j)^{+}) f_{ij}(i)$$
.

Para una matriz de vectores-rengión suplementarios se tiene la relación

$$F^* = R^* G \stackrel{\checkmark}{\wedge} K$$

$$n^* \times K \qquad n^* \times K \qquad k \times K$$

dunde n'indica el número de renglones suplementarios; el i-ésimo

$$f_{\alpha}^{+}(1) = \frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{j=1}^{m} (\kappa(i,j)^{+}/\kappa(i)^{+}) g_{\alpha}(j)$$

4.7 Ayudas para la interpretación

Para interpretar los ejes principales obtenidos mediante un análisis de correspondencias, debemos calcular una serie de coeficientes para cada uno de los elementos de las nubes N(I) y N(J): Contribuciones absolutas, Contribuciones relativas, Calidad e Inercia relativa.

4.7.1 Contribuciones absolutas y relativas

Las contribuciones absolutas (CTR), expresan la parte tomada pur un elemento dedo en la varianza "explicada" por un factor; es decir, expresan la descomposición de la inercia (en este contexto los conceptos de varianza e inercia son equivalentes).

Las contribuciones relativas (COR), o correlaciones elemento-factor, es la parte tomada por un factor en la "explicación" de la dispersión de un elemento, al centro de gravedad; es decir, muestran las correlaciones elevadas al cuadrado, de los elementos con el factor.

Mientres las contribuciones absolutas (CTR) permiten saber cuáles variables son las responsables de la construcción de un factor, las contribuciones relativas (COR) mostrarán aquellas variables que son características exclusivas del factor (Lebart, Morineau y Fenelon, 1977).

Denotemos con CTR.(i) a las contribuciones absolutas del factor ∝ en el i-ésimo elemento para la nube N(I), correspondiente a

los rengiones; CTR_e(j) denota las contribuciones absolutas para la nube N(J), de las columnas. Así tenemos que

$$CTR_{\alpha}(i) = r(i) f_{\alpha}^{2}(i) / \lambda_{\alpha}$$

 $CTR_{\alpha}(i) = c(i) g_{\alpha}^{2}(i) / \lambda_{\alpha}$

donde for y go son elementos del vector columna ≈ de las matrices F y G, respectivamente. Es decir, para la nube N(I), la varianza de las coordenadas de los n-puntos, es $\sum r(i) f_{ij}^2(i)$, además la varianza total está estimada por el valor propio λα, por lo tanto se tendra $\lambda_q = \sum_i r(i) f_q^2(i)$, así la varianza explicada para el i-ésimo elemento constituye la contribución absoluta del factor.

Un razonamiento análogo se puede seguir con la nube N(J). (ver Lebart, Morineau y Fenelon, 1982 p 316). Con esta deducción se puede observar que 🎗 CTR_w(i)=1 para todos los ejes w ; y además que ÇCTR_q(j)=1 para todos los ejes w.

Benotemos con COR_m(i) a las contribuciones relativas del factor en el i-ésimo elemento en N(I); COR_w(j) define las contribucionès relativas del factor e en el j-ésino elemento en la nube NACO . Definings

$$COR_{q}(i) = \int_{q}^{2} (i)/d_{m}^{2}(i,c)$$
,
 $COR_{q}(j) = g_{q}^{2}(j)/d_{n}(j,r)$,

donde la distancia del i-ésimo punto al centro de gravedad c en la nube N(I) es

$$d_{m}^{2}(i,e) = \sum_{j} \left[\frac{p(i,j)}{r(i)\sqrt{e(j)}} - \sqrt{e(j)} \right]^{2}$$

$$= \sum_{j} \frac{1}{e(i)} \left[\Pi_{i} - e(j) \right]^{2}$$

para j-1,...,m. Para un punto j en la nube N(J), tendremos

$$\begin{array}{ll} d & (J,r) = \sum_{i} \left[\frac{p((i,j))}{e(J) \sqrt{r(i)}} - \sqrt{r(i)} \right]^{2} \\ &= \sum_{i} \frac{1}{r(i)} \left[\widetilde{\Pi}_{j} - r(i) \right]^{2} \end{array}$$

para ist,...n. Aquí tambián se cumplen las conditiones $\sum_{\alpha} COR_{\alpha}(i)$ para bades $= 1 \sqrt{105 \cdot v_{10}^2 \cdot v_{10}} \cdot v_{10} \cdot v_{10}$ (ver Benzécri, Denzécri, 1980 p. 70). Geométricamente $COR_{\alpha}(i)$ es el coseno cuadrado del ángulo formado por el i-ésimo elemento y el factor α , respecto al centro de gravadad. Veanos la sisuliente figura:

aquí θ_α(i) es el ángulo formado por el i-ésimo elemento y el factor α y se tendrá la relación

$$COR_{c_{i}}(i) = Cos^{2} \{\theta_{c_{i}}(i)\}.$$

Se observa que si Π_j está sobre el eje α , $\theta_{m}(i)=0$, su coseno vale i y consecuentemente $COR_{m}(i)=1$, si Π_j está muy próximo at eje α , $\theta_{m}(i)$ es muy pequeño, su coseno es ligeramente inferior al, pero cercano a la unidad y $COR_{m}(i)$ está muy cercano a la unidad y $COR_{m}(i)$ está muy cercano a los 90^{n} , su coseno cuadrado está cercano al cero y $COR_{m}(i)$ es

casi nulo. Finalmente si $\Theta_{\alpha}(i)=90^{4}$, $COR_{\alpha}(i)=0$ y sucede cuando el punto Π_{1} es completamente ortogonal al $e \overline{y} \in \alpha$. Consulte este enfoque en Benzecri, y Benzecri (1980, p. 71).

En la interpretación de resultados, COR_q(i) para los ejes m, permite saber cuáles rengiones están mas próximos a que ejes, o equivalentemente cuáles factores explican la posisicón relativa de la la posición al centro de gravedad r (o centroide) de la nube N(I); que es aquella COR_q(I) más grande.

4.7.2 Calidad de la representación

Después de elegir un punto determinado debemos conocer en que medida este punto se encuentra explicado por los factores correspondientes a esos ejes. Para simplificar supongamos se tiene una nube de puntos en dimensión 3 y que esta nube se ajusta a dos ejes principales. Si un punto tiene las dos primeras contribuciones relativas muy bajas la representación de este punto en dos ejes principales carece de interés. Si por el contrario la primera contribución relativa es cercana al 1, la representación de este punto en dos ejes (o quizá con el primero) es satisfactoria. Para el caso de « dimensiones la calidad de la representación se define como

CALD_(i)=COR (i)+COR (i)+...+COR_(i)

(Note que en el párrafo 4.7.3 hemos definido que $\sum COR_n(i)z_i^i$, por lo que CALD $_n(i)z_i^i$). Por ejemplo, la calidad de la representación en dos ejes principales es CALD $_n(i)$.

En el capítulo V veremos que el número de factores previamente solicitados en un análisis, determina la calidad de la representación.

4.7.3 Inercia relativa

La inercia total (o varianza total; son términos equivalentes) de la nube N(I) en relación al centro de gravedad c, está da-

de manera que la inercia relativa del elemento $i-2\sin m$ en la nube N(1), està dada por

INR (i) =
$$r(i)d_m^k(i,g)/\sum r(i)d_m^k(i,g)$$
.

Es de notarse que $\sum_i INR(i)=1$. De manera análoga, la inercia relativa del j-ésimo elemento en la nube N(J), está dada por

$$INR(\vec{J}) = e(J) d_n^t(J,r) / \sum_i e(J) d_n^t(J,r).$$

Greenacre (1984) demuestra que $IN(J) \approx IN(I) \approx \sum_{k=1}^{N} \lambda_k$; es decir, que la inercia total (o varianza total) es igual para las dos nubes.

En el capitulo V se hará uso de las ayudas a la interpretacion, a fin de obtener más información del análisis de correspondencias. El ejemplo siguiente permite illustrar el cálculo de los correspondencias. En este ejemplo, ficticio una especia cerá observade en 100 siltor clasificados de acuerdo a tres categorías de viundancia y tres insercius. I ((fr.6), 2 (templado) y 3 (caliente). La tabla de Contingencia siguiente contiene el número de sittos donde se las encorrado la especia en cada combinación de categorías. Se ha escosido una matriz de 3 x 3 a fin de facilitar los cálculos tedisoso al lector. Se utiliza la misma notación matriciale excuesta en este case fullo.

Tabila de contiongencias entre dos cutegorías (ejemplo ficticio).

	Especie:	Rama o		muy	total
		(o)	abundante (+)	abundante	renglón
	ı	5	4	11	20
temp.	2	5	16	10	31
٠,	3	4	. 20	25	49
total	columna	14	40	46	100

La matriz siguiente contiene los elementos p(i,j) así como los totales marginales r(i), c(j)

calculanos la matriz Q = p(i,j)/√r(i) c(j)

Les matrices de dispersión S y S pueden calcularse a partir de Q

si por el contrario quisieramos basar los cálculos sobre \hat{S}_r deberiamos obtener la matriz \hat{S}_r \hat{Q} \hat{Q}^T entre los renglomes de la tabla de coutingencia.

Los valores propios de 5 son $\lambda_s=1$, $\lambda_s=.053$ (66%) y $\lambda_s=.027$ (34%); el primer valor propio es iguala la unidad debido a que la

matrix & no fue centrade por los tyteles marginales r(i).c(j) y no es interpretable; si la matrix & fuera centrada por los totales marginales, es decir & (r(i)) - (()) (()) / ((TTTCT)), entonces el primer valor propto es: X=0 y tampozo es interpretable.

Los vectores propios q' de '5' que corresponden a λ, y λ, , después de la normalización, son:

$$(0)$$
 $\begin{bmatrix} -.521 & 0.767 \\ 0.748 & 0.199 \\ (++) & -.411 & -.609 \end{bmatrix}$

Para calculara la matriz F , haremos uso de las matrices Q y Ĝ:

La posisción de los renglones de la tabla de contingencias en el espacio factorial está contenida en la matriz transformada de, componentes principales.

Pudemos verificar que la distancia euclidiana entre temperaturas en el espacio factorial (y por tanto entre renglones de la labla) es

 $d(1,2) = \sqrt{(-444 - 191)^2 + ((082 - 204)^2} = \sqrt{418} = .647$ se calculan análogamente las distancias restantes y formamos las .

metriz simétrica de las distancias

que son también la distancia JI-cuadrada, definida en el parágrafo 4.4 , a partir de la tabla de contingencias original; por ejemplo

$$d(1,2) = \sqrt{\frac{1}{14} \left(\frac{.05}{.20} - \frac{.05}{.31}\right)^2 + \frac{1}{.40} \left(\frac{.04}{.20} - \frac{.16}{.31}\right)^2 + \frac{1}{.46} \left(\frac{.11}{.20} - \frac{.10}{.31}\right)^2}$$

$$= \sqrt{.418} = .647$$

Reconocer estas propiedades de la distancia Ji-quadrada en el análisis de correspondencias , hace factible la aplicación de algún método de agrupamiento a las nubes de puntos (renglones o columnas) de una matriz de datos. Mas aún, se pueden aplicar métodos de agrupación a la matriz de factores producida por un análisis de correspondencias utilizando la distancia auclidiana.

La metriz Û de vectores propios normalizados de S≡QQ[†]puede ser calculada a partir de U debido a la relación:

$$(\lambda_1) \quad (\lambda_2)$$

$$(1) \begin{bmatrix} -.866 & 0.222 \\ 0.464 & 0.689 \end{bmatrix}$$

$$(3) \quad 0.165 \quad -.690$$

La matriz transformada G, de componentes principales es

$$(-\lambda_{-}), (-\lambda_{+})$$

 $(-\lambda_{-}), (-\lambda_{+})$
 $(-\lambda_{-}), (-\lambda_{+}), (-\lambda_{+}), (-\lambda_{+}), (-\lambda_{+})$
 $(-\lambda_{-}), (-\lambda_{+}), (-\lambda_{+})$

la cual contiene las coordenadas de las abundancias (las columnas de la (abla de contingencias) en el espacio factorial. Podemos veríficar que las distancias euclidianas entre las abundancias en el espacio factorial F da lugar a la matriz simétrica de distancias siguiente

que nuevamente son también las distancias JI-cuadrada entre las columnas de la tabla de contingencia original. La importancia de construir una matriz de distancias reside en poder realizar análisis de agrupamiento sobre la nube de puntos por renglón (o bien sobre la nube de puntos por columna).

El cálculo de las ayudas para la interpretación se hará más sencillo con la Tabla de Descomposición de la Inercia que se ilustra en sequida

-DESCOMPOSICION DE LA INERCI

EJES

			190. 51.01.2	TUTAL	
	1	(.20)(444)2	(,20)(0.082)2	.041	
TEMPERATURAS	2	(.31)(0.191) ²	(.31)(0.204)2	.024	.10
	3	(.49)(0.060) ²	(.49)(162)	.015	
TOTAL		=.0526	=.0271 INC	I)=IN(J)=.0797	
	(6)	(.14)(319)2	(.14)(0.338)	.030	
ABUNDANCIAS	(+)	(,40)(0,271) ^a	(.40)(0.052)	.030	
	(++)	(.46)(139) ²	(.46)(148) ²	.019	

Las contribuciones absolutas (CTR) las calculamos de la siguivete manera, para las temperaturas:

El eje 1 se ha formado principalmente a partir de la tempera-

() () () ()

ture (1) y el eje 2 a pertir de la temperature (2) y (3), porque son los que tiemen la mayor de las contribuciones absolutas en los ejes principales (1) y (2). Las sumas por columna son iguales a la unidad. Calculamos ahora las contribuciones absolutas para las abundancias :

En este caso las abundancias responsables de la construcción del eje tes (+) y para el segundo es (o). Las sumas por columna también son isuales a la unidad. Las contribuciones relativas, se calculan a partir de la relación

$$COR_{\alpha}(i) = f_{\alpha}^{2}(i)/d_{m}^{2}(i, c)$$

donde d(i,g) denota la distancia del elemento i al centro de gravedad g.

nútese que en este caso la mayor de las distancias entre el centro de gravadad y las temperaturas es la 1 (el lector puede consultar la Fig 4.2 y confirmar este hecho).

Análogamente la distancia del elemento j al centro de gravedad r , es

$$d^{2}(o,r) = (.799 - \sqrt{.20})^{2} + (.641 - \sqrt{.31})^{3} + (.408 - \sqrt{.49})^{3}$$
=.216

d2 (+,r) =.076

en este caso la distancia más grande entre el centro de gravedad r (o baricentro del triángulo formado por los puntos (o), (+), (++) en la Fig 4.2), es d(o,r).

Finalmente las contribuciones relativas son:

 $(\lambda_i)^{(\lambda_i)}$ (λ_2) (λ_1) (λ_2)

en este caso como puede observarse en el eje 1 la mayor de las contribuciones relativas es con la temperatura (1); es decir que para la nube de temperaturas el menor de los ángulos con el primer eje principal es temp(1), consulte la Fig 4.2.

Análogamente se calculan las contribuciones relativas para las abundancias

cion factorial.

en este caso la mayor de las correlaciones con el eje 1 es la abundancia (+). El lector pude observar en la Fig 4.2 que el menor de los ángulos para las abundancias respecto del primer eje es (+). Los rengiones de COR y COR suman I, respectivamente. La suma de los rengiones representa la calidad (CALD) de la representa-

La imercia relativa puede calcularse con avuda de la tabla de

Descomposición de la Inercia. Basta con observar en esta tabla que INR(1)={.20 x (-.444)² +(.20)(07082)²]/.0797 =.041/.0797=.512

INR(2)=.0247.0797=.303

de este martera la inercia relativa para las temperaturas, INR, y

la culumna de INR e INR suma 1, respectivamente. El lector puede observar que la temperatura (I) absorbe más de la mitad de la inercia total porque es uno de los elementos más dispersos del barticentro de la mube de puntos-temperatura.

La información anterior puede resumirse como se muestra en la Labla 4.1. Nótese que en esta tabla mostramos todas las cifras multiplicadas por 1000, para una meior apreciación de la misma.

Tabla 4.1 Descomposición de la inercia en el análisis de correspondencias para las temperaturas y abundancias.

a) ====================================	11 15 11 10 11 15 16 16 16 16 16 16 16 16 16 16 16 16 16	***********	1005200	No to to be the	 ******

52.577	65,987	65.987
27.102	34.013	100.000

79.679 - INERCIA TOTAL

10ENT CALD HASA INR DIST FI COR: CTRI F2 COR2 CTR2 frio (1) 1000 200 512 204 F444 967 751 82 53 475 (mmpl.(2) 1000 310 303 78 191 448 215 204 532 475 (mpl.(2) 1000 490 184 80 60 122 34 -162 876 476

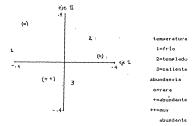


Fig 4.2 Ordenación de las temperaturas y las abundancias en el es pacio factorial. $\lambda_1 = .053 (66\%)$, $\lambda_2 = .027 (34\%)$.

CAPITIEN V

PRESIDENTATION V DISCUSTON

5.1 Interpretación de resultados

El método utilisado para el análisis de los datos es el MA-CRO CORRE[®], está implantado en la máquina IBM 3841 del Centro de Estadística, y Calculo. Charjengo Mex.. Este MACRO se basa en la teoría establecida-por Greance (1984, p.83-98), Legendre y Legendre (1979, p. 130-143), Benzécri y Benzécri (1980) y Lebart Morineau y Fenelon (1982, p. 305-328). En el apéndice B se illistra la manera de invocar al procedimiento, en este mismo apéndice aparece el programas. El análisis se realiza en dos partes. La primera es el tratamiento preliminar de los datos que consiste en inspeccionar el cerácter de las variables: si éstas son activas o suplementarias (ver parágrafo 4.6). La segunda consiste en realizar nuevamente el análisis con los elementos activos y ubicar los elementos suplementarios.

"Las variables activas sirven para calcular un sistema de distancias entre los individuos (o lo que es lo mismo: las columnas activas sirven para calcular las distancias entre los renglomes) que permitirán calcular los ejes factoriales; las variables suplementarias intervendrám una a una después de la determinación de esos ejes" Lebart, Morineau y Fenelon (1977). ,

(a) Un HACRO SAS es un algoritmo que invoca procedimientos incluidos en el paquete SAS (Statistical Analysis System), el cual produce un resultado específico. En nuestro caso utilizamos fundamentalmente el PROC MATRIX. Es recomendable que las variables activas tengan cierta homogeneidad de contenido; es decir, que conserven dentró de toda la tabla sólo seuellas variables que se relacionan con un sólo punto de vista. Las variables suplementarias ayudan a enriqueer la interpretación, va que una posición privilegiada de una variable que no participe en el análisis y que no ha contribuido a la construcción de un ele se puede interpretar con seguridad que tiene gran correlación con ese ele , Alvarez (1980, p. 66, 97-110).

propiamente dicho, con las variables activas se estudia la tabla de valores propios, en la que figuran los porcentajes de varianza extraídos. Los valores propios son útiles en el caso del análisis factorial de correspondencias y en la medida cômo estos se aproximen a 1 indica que la representación obtenida es de buens calidad debe excluirse de cualquier interpretación el valor propio : =1 (ver parágrafo 4.5)e; esto sucede cuando el baricentro de la nube N(1) tiende a coincidir con el de la nube N(2)

Una vez que se realiza el analisis de correspondencias

Mediante el análisis de contribuciones absolutas (CTR) podemos conocer como una variable participa en la construcción de un
eje (ver parágrafo 4.7.1.); algunas contribuciones absolutas son
de importancia para aporar la eventual caracterización de un eje.
Estas contribuciones absolutas si son muy fuertes (del orden del
40 al 50 % por ejemplo) son en general dudosas ya que exprexan un
cierto "de sequilibrio de la síntesis"; es decir, si los ejes se
reducen a una pocas componentes elementales la representación
factorial obtenida muestra únicammete la heterogeneidad de la ta-

bla. Es recomendable cambier el carácter de las variables activas a suplementarias cuando ocurra. La situación arriba descrita, el usuariao puede percatarse de este hecho observando la columna de la inercia relativa (INRI) si alguno de los valores es considerablemente alto muestra evidencia del desequilibrio de síntesis en la representación geométrica.

Las contribuciones relativas (COR) pueden ser fuertes y en ese caso explicar la caracterización exclusiva del eje por una variable que puede no haber contribuido mucho a la construción de ese ele (ver parágrafo 4.7.1.). Un ele significativo desde el punto de vista estadístico, no tiene necesariamente una interpretación; al contrario, se puede encontrar una interpretación en una dirección diagonal o con reagrupamientos simples donde los mismos eles no tengan mucha influencia (Alvarez, 1980, p. 103-104). Pera encontrar la significancia de los dos primeros eies principales podemos consultar la Tablas de Lebart (Lebart. Morineau y Fenelon, 1982) en el apéndice B de este trabalo. La forma de operación es sencilla: si tenemos una tabla de 20 renglones y 10 columnas esperamos que el primer valor propio explique alrededor del 30 % de la inercia total y para el segundo aproximadamente 22 %, si los porcentajes observados no rebasan a los esperados, no se consideran significativos (P < .05).

Aplicamos ahora, el análisis de correspondencias a las matrices siguientes: matriz de sitios por especias (Tabla 1.4 del apândice A), matriz de sitios por modalidades de medio ambiente (Tabla 1.5 del apándice A) y a la de especies por modalidades de medios ambiente (Tabla 1.6 del apândice A). A continuación se discuten estos resultados.

5.2 Matriz de sitios poq peres pecies.

En el análistic de come expondencias preliminar, con la tabla
1.4 del apéndice A, si e escentra que la especit El absorbe una
INR demassiado alta / resupulhermente cause deformaciones en la representación bidimensimanoni (no se muestra la tabla de descomposición de la inercial) po peres te hocho se realiza un segundo análisón en el que El intrinetuc-omo variable suplementaria. Para calcular las coordenasts si de si procedenos sesón el parágrafo 4.6.

En la Fig. 1.100 le $|\eta|$ núcle A aparece el punto El cuyas coordenadas son (- 709, $|\Sigma|$ - $|\Sigma|$ 00 y se ubica en el tercer cuadrante, como elemento suplementaribarila.

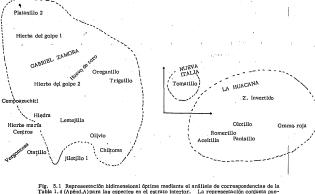
De acuerdo con lis mas lib-las de Lebart del agéndice A, encontranos que para una ministricida 50 x 20 (renglores y columnas, respactivamente), se eurosera sur la primera inércia explique un 15% la segunda un 12% erratmonisdea mente. En nuestro caso la primera y segun da inercia esplicalica sur 18 y 13% respectivamente (ver Tabla 5.1); por lo tante « en signi-ficativos los dos primeros ejes primcipales (PK.05).

En la tabla 5.1 de dutro-amos que las INR so homospineas tanto para las especies (i), A, como para los sitios (ib); es decir, no se distinsuen elementos um que na cadan deformar la representación de los puntos en un plano ididicidima mional. La CALD es li geramente baja, debemos omitir de le graficación las especies ElO, El2, E21, E25 y E37 porque si o suir iburen a formar ninguno de los ejes

Tabla 5.1

Descomposición de la inercia en el análisis de correspondencias de la tabla 1.4 (Apénd. A) para los dos primeros ejes principales. La inercia total es 2.465 y las tres inercias principales son 0.445 (TES), 0.321 (13%) y 0.239 (10 %)

4,												-
	I DENT	CALD	MASA	INR	DIST	F1	CORI	CTRI	F2	COR2	CTR2	
	E2	731	8	17		-1168	264	25	1253	467	62	
	E3	550	18	28	3933	1219	378		-822	172	37	
	E4	642	6)			-1204	586	19	-393	62	3	
	E5	160	13	9	1806	536	159	8	-42	1	.0	
	E6	601	37	24	1605	-508	161	21	840	440	81	
	E7	333	6	- 5	1721	-583	197	5	-483	136	5	
	E8	271	7	17		-1259	259	25	271	12	2	
	E9	620	16	15		-1197	603	51	-201	17	2	
	E10		95	42	1089	15	0	0	-255	60	19	
		352	13	15		-1008	352	30	-18	0	0	
	E12	50	25	15	1500	-274	50	4	7	0	0	
	E13	389	4	5	3379	-729	157	4	886	232	9	
		214	6	5	1844	142	11	0	612	203	8	
	E15	285	15	11	1931	708	259	16	-222	26	2	
		131	4	9	4993	-399	32	2	704	99	7	
		606	17	64		-1222	159	57	2046	447	219	
		456	14	16	2888	-985	336	30	588	120	15	
		190	4	6	3697	-827	185	6	~139	5	0	
		309	45	39	2107	718	245	52	367	64	19	
	E21	3	33	11	841	-36	2	0	21	1	0	
		246	8	10	2995	-465	72	4	-721	174	13	
		664	19	22		-1066	408	50	-844	256	43	
	E24	405	100	50	1223	395	128	35	-582	277	105	
	E25	45	11	7	1498	143	14	0	-216	31	2	
		181	14	12	2089	484	112	. 8	-379	69	6	
	E27	291	39	66	4153	1058	270	99	-294	21	11	
	E28	86	6	4	1551	363	35	2	-36	1	0	
		160	.8	- 6	1869	545	159		46	1	0	
		127	12	28	5904	-755	97	15	-418	30	. 6	
		176	50	17	832	155	29	3	349	147	19	
		468	9	9	2341	-708	214	11	771	254	17	
		266	8	8	2644	-636	153	. 7	-548	113	7	
		375	8	- 6	1817	826	375	12	. 22	. 0	0	
		546	20	56	6996		277		-1372	269	115	
		114	27	28	2585	-311	38	6	444	76	16	
	E37	33	19	35	4675	376	30	6	-110	3	1	
	E38	112	24	12	1203	-362	109	_7	-64	3	0	
	E39	270	17	35	5093	-1173	270	52	-19	.0	0	
		256	26	19	1780	583	191	20	340	65	9	
	E41	261	63	51	1985	254	32	9	675	229	89	


(Tabla 5.1 Continuación...

	IDENT	CALD	MASA	INR	DIST	F1	COR1	CTR1	F2	COR2	CTR2
				1		1,52%					
	E42	89	16	14	2151	167	13	1	-405	76	8
	E43	103	14	18	3177	349	95	. 9	158	8	1
	E44	188	, 22	26	2913	697	167	24	249	21	4
	E45	278	6	7	2703	-556	114	4	-666	164	9
	E46	82	7	13	4552	600	79	6	107	3	0
3.3	E47	128	9	8	2200	474	102	4	-238	26	2
	E48	247	30	43	3525	929	245	58	-87	2	1
		343	11	20	4344	-923	196		-800	147	22
	E50	324	13	13	2442	843	291	21	284	33	3
	E1					-729			-928		
	E1					-/2/			720		
b)==	****									157897	S 50 10 F2 60 4
	SI	222	31	41	3259	-832		48	170	9	3
	S2	768	43	38	2187	-762		56	1048	503	147
	s3	642	31	75	6021	-858		51	1769	520	299
	S4	145	27	38	3502	-410	48	10	687	135	39
	S5	2	31	23	1812	43	1	0	-40	1	0
	86	299	33	43	3209	-962		68	188	11	4
	S7	308	44	49	2799	-513	94	26	-744	214	81
	SS	543	24	29	2971	-864	251	40	-931	292	64
	S9	243	38	35	3258	-733		46	-103	5	1
	S10		28	26	2312	-575		21	-571	141	29 19
	Sii	65	25	32	3215	138	6	1	504	79	
	812	169	64	38	1481	496 315	78	35	61	3	21
	S13	195	46	24	1275			10	386	117	
	S14		63	39	1519	397		22	501 95	166	50
	S15	190	55	51	2269		186	53		. 4	2
	S16	97	47	48	2535	450	80 350	113	-206 -228	17 26	11
		376	71	58	2028						
	S18	20	55	40	1817	191 838	20	4	25 222	.0	0
		247 239	54	66	3042			65		16	
		329	48	48 28	2454 1432		307 163	55 25	-279 -488	32	12 35
			48 31	31		-1146		92	-488	166	- 5
										20	
	822	527	33	60	4446	-1084	~~~		-1081	263	122

principales, ni tienen una correlación alta con ninguno de los ejes (las COR y CTR son bajas).

En la tabla 5.1 (b) se observa que las INR son homogéneas y no hay indicios de que alguno de los sitios cause una deformación en la gráfica. Nuevamente se observa que la calidad, CALD, de la representación es ligeramente baja. Es de subrayarse que el sitio 5, perteneciente al mpio, de Gabriel Zamara, no tiene una CALD aceptable por lo que no debe graficarse. El sitio 17 tiene una CTR muy alta (113) y es el responsable de la construcción del segundo eje y además no tiene una INR alta por lo que la representación factorial es satisfactoria.

En las Figs. 5.1 y 5.2 se observa que los sitios agrupados a la izquierda de la gráfica son los de Gabriel Zamora, en el centro el sitio 11 (en Nueva Italia) y a la derecha los de La Huacana. Como puede observarse en la Fig. 5.1 hay más diversidad de especies en el estrato inferior en el mpio, de Gabriel Zamora, en tanto que en los municipios restantes. Nueva Italia y La Huacana hay más manejo de ganado (sobrepastoreo) y por lo tanto ocasiona una menor diversidad de especies en este estrato. La presión demográfica y la precipitación pluvial posiblemente influyen en la presencia de especies entre estratos: en el mpio, de Gabriel Zamora 'tenemos mayor diversidad de especies en el estrato inferior (Fig. 5.1) y menor diversidad en los estratos medio y superior (Fig. 5.2), sin embargo, en La Huacana tenemos menor diversidad de especies en el estrato inferior (Fig. 5.1) y mayor diversidad en los estratos medio y superiror (Fig. 5.2) en suma se tiene que la vegetación es más alta v. cerrada (hav mayor densidad v.cohertura de área del estrato medio y superior) esto trae como conse-

de consultarse en la Fig. 1.1 del Apéndice A.

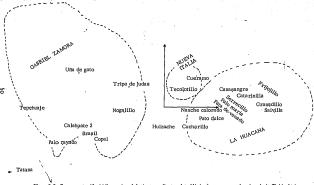


Fig. 5.2 Representación bidimensional óptima mediante el amiliais de correspondencias de la Tabla 1.4 (ApéndA) para las especies en el estrato medio superior. La representación conjunta de las Figs. 5.1 y 5.2 puede consultarse en la Fig. 1.1 (Apéndice A).

cuencia una mayor competencia con especies del estrato inferior, principalmente por la luzy bajo estas condiciones sólo unas cuantas especies pueden Vivir bajo un ambiente de poca iliminación idebe considerarse que esto no es general ya que en las selvas húmedas existe poca iluminación en el estrato inferior y la diversidad es alta). Para el caso de las especies en el estrato inferior podemos localizar en la Fig. 5.1 que la mayoría de estas especies en La Huacana son gramíneas y las de Gabriel Zamora son, en general, herbáceas no gramíneas, La dominancia de herbáceas no gramíneas de la dominacia de herbáceas no gramíneas proporciona una ventaja competitiva a las no gramíneas peude afirmar que el sobrepastorgo se da en mayor medida en Nueva Italia y Gabriel Zamora que en La Huacana. Por otra parte, las masas por sitio (frecuencias relativas relativas.

marginales, ver parágrafo 4.2), son mayores en aquéllos correspondientes a La Huacana, ello se traduce en mayor densidad de espacies para este municipior en tanto que para los sitios de Gabriel Zamora y Nueva Italia la densidad es baja (ver parte derecha de las Figs. 5.3 o 5.4). El ordenamiento obtenido por el andilisis de correspondencias ubica a las especies con menos densidad en los sitios de Gabriel Zamora y a las de regular densidad en los municipios restantes, Nueva Italia y La Nuacana, para los estratos inferior medio y superior. (ver Fig. 5.3, estrato inferior y Fig. 5.4 estrato medio y superior).

Hemos afirmado en el Capitulo II que las condiciones del medio ambiente determina el tipo y la estructura de la vegetación existente en una región; por tanto ahora debemos preocuparnos por

	x10 ³	x10 ³
especies estrato interior	0 25 50 75 100	0 25 50 75 Sitio
Hierba del golpe 1 Hierba del golpe 2 Huevo de toro Oreganillo Triguillo Triguillo Genpossuchitl Hiedra Lentejilla Olivio Chiltoms Hierba María Centros Vergonosa Otatillo Jilotillo 1 Tomatillo Z. Invertido Olotillo Gram roja Rômerillo Panicillo Accitilla		S1
	*	S23 ====================================

Fig. 5.3 Puntos de las MASAS para las especies más importantes en el estrato inferior para el análisis de correspondencias de la tabla 1.4 (Apénd. A). Del Si al Si0 pertenecen a Gabriel Zamora, el Si1 a Nueva Italia y del Si2 al S24 a La Huacana.

especies estrato medio y Sup:	0 25 50 75 10	0	0 25 50 75
		Sitio	
Uña de gato		S1	
Tripa de Judas		S2	
Tepehuaje		S3	<u> </u>
Nogalillo		313 S4	
Calahuate 2	\Box	S5	
Brasil		S6	
Copal		S7	
Palo rayado		S8	
Cuéramo		S9	
Tecolotillo		S10	
Huizache Cuch.		S11	
Nanche colorado		S12	
Palo Dulce	□	S13	
Pata de Venado		S14	
Palo maría	<u> </u>	S15	
Serrecillo	—	S16	
Canasangre		S17	
Catarinilla		S18	
Granadillo		` S19	
Saivilla		S20	
Frijoli110		S21	
		S22	
		S23	
		S24	

Fig. 5.4 Puntos de las MASAS, para las especies más importantes en los estratos medio y superior en el análisis de correspondencias de la Tabla 1.4 (Apênd. A). Del S1 al S10 pertenecen a Gabriel Zamora, el S11 a Nueva Italia y del S12 al S24 a La Huacana.

caracterizar a los sitios de muestreo. Una vez que conozcamos cuáles son las características del medio ambiente, más importantas podremos encontrar la interacción entre vegetación y medio ambiente.

5.3 Matriz de sitios, por modalidades de medio ambiente.

De acuerdo a las Tablas de Lebart del apéndice 8 y a lo reportado en el párrafo anterior, 5.2, para una matriz de 50 x 20, esperamos que la primera inercia principal explique un 15 % Sin embargo el porcentaje de la primera inercia es de 14 % (Tabla 5.2) y la ubica en una región crítica de rechazo (PC.05). Para nuestros fines prácticos consideramos de interés interpretar elprimer ele principal.

En la tabla 5.2 observamos las ordenadas para el primer eje principal, tanto para las (a) características del medio ambiente, como para los (b) sitios. Para nuestra discusión haremos ânfasis en grafícar las modalidades relacionadas con altura, pendiente, sombreado, pH, profundidad de suelo, fósforo, nitrógeno, arcilla y limo. Indicamos el incremento de cada modalidad con (+) para el nivel mas bajo, (++) para el medio y así sucesivamente hasta la categoría mas alla.

Respecto de las variables de medio ambiente hemos de notar que los sitios ubicados en la parte norte del municipio de Gabriel Zamora tienen características similares y nuevamente el sitio 23 se une al grupo previamente formado en la Fig. 5.3 (Observar en la Fig. 1.1 del apéndice A, cómo este mismo sitio tiene características afines con los restantes de este municipio).

Tabla 5.2

Descomposición de la inercia en el análisis de correspondencias de la table 1.5 (Apénd. A) para los dos priemros ejes factoriales. La "Intercia" total es 2.4 y las dos inercias principales son 0.329 (14%) y 0.304 (13%)

	IDENT	MASA	INR	DIST	- F1	COR1	CTR1
	A01	14	22	3800	1149	347	56
	A02	19	20	2429	268	30	4
	A03	25	. 17	1667	-333	66	8
	A04	6	25	11000	-2016	369	69
	A05	3	27	23000	-592	15	3
	B01	6	25	11000	232	5	1
	. B02	33	14	1000	-305	93	9
	B03	28	16	1400	320	73	9
	CO1	6	25	11000	1415	182	34
	C02	58	3	143	-114	91	2
	C03	3	27	23000	-438	8	ž
	B01	8	24	7000	1611	371	66
	D02	44	9	500	-342	234	16
	DO3	14	22	38000	128	4	1
	E01	11	23	5000	398	32	5
	E02	33	14	1000	-422	178	18
	E03	22	19	2000	433	94	13
	F01	17	21	3000	383	49	7
	F02	14	22	3800	-526	73	12
	F03	22	19	2000	25	0	0
	F04 601	14	22	3800	27	0	0
		25	17	1667	395	94	12
	602 603	19	24 20	7000 2429	-125	2 60	9
				3800	-104	3	ő
	604 H01	14	22 27	23000	2278	226	44
	H02	14	22	3800	234	14	**
	H02	22	19	2000	627	197	27
	H04	28	16	1400	-391	109	13
	101	44	19	500	426	362	24
	102	6	25	11000		369	69
	103	17	21	3000	-463	71	11
	J01	6	25	11000	1392	176	33
	J02	ě	25	11000	1508	207	38
Α,	J03	56	. 5	200	-290	420	14
	KO1	11	23	5000	815	133	22
	K02	36	13	- 846	157	29	3
	. коз	19	20	2429	-757	236	34
	L01	31	15	1182	-607	312	34
	L02	31	15	1182	292	72	8

(Tabla 5.2 Continuación...)

	IDENT	MASA	INR	DIST	F1	COR1	CTR1	
	L03	6	25	11000	1736	274	51	
	MO1	14	22	3800	107	3	0	
	M02	11	23	5000	-135	4	1	
	моз	19	20	2429	-131	7	1	
	M04	11	23	5000	-912	166	28	
	MOS	11	23	5000	1142	261	44	
	N02	19	20	2429	834	286	41	
	001	36	13 21	846	-566	378 308	35 47	
	002	17 14	21	3800	960 318	27	4/	
(b)=====	*====	CZ 17 1100			60 ET 21 No 102 I	EN SERVICES		
	Si	42	42	2327	264	29	9	
	S2	42	34	1947	-102	5	1	
	83	42	26		-410	112	21	
	84	42	31	1757	-219	27	6	
	S5	42	43	2487	108	5	1	
	\$6	42	35	2009	-84	4		
	S7	42	51	2953	526	94	35	
	S8	42	81	4637	1466	464	272	
	S9 S10	42 42	49 43	2850 2498	704 894	174	63 101	
			54		157		3	
	S11 S12		26	3100 1473	189	. 24	5	
	S13		47	2703		375	123	
	S14		27	1567	343	3/5	123	
	S15		41	2381	-21	/0	10	
	S16		26	1524	292	56	11	
	\$17		54	3132	-340	37	15	
	S18		33	1895	-92	4	11	
	\$19		74		-1307	398	216	
	\$20		27	1560	62	2,2	-10	
	\$21	42	27	1573	-463	137	27	
	S22		50	2890	251	22	-8	
*.	523		42	2425	604	150	46	
	S24	42	35	2003	333	55	14	

Otro grupo de sitios puede: formarse con los del sur de Gabriel Zamora y todos Los de Nueva Italia y La Huacana, excepto para los sitios 13 y 19 que forma un grupo aparte (ver Fig. 5.3).

El ambilists de correspondencias ha ordenado las nodalidades de PH a lo largo del primer eje principal, aeuf observanos que los sitios del norte de Oabriel Zamora son ligeramente ácidos o neutros (6.2 gH 4.7.2), en tanto que los sitios restantes, sur de Gabriel Zamora, Nueva Italia y La Huacana son alcalinos (7.2 gPH 4.8.8). Es de notares que los sitios 13 y 19 son fuertemente alcalinos (7.8,5 pH 4.8.3).

Los sitios de Gabriel Zamora son especialmente accidentados tiene sitios con pendientes de 21 a 30°(ver el sitio 8), otros con pendientes de 6 a. 15° (sitios 6.2.4 y 3) y con pendientes de 0 a 5° (sitios 5 y 7). In accidentado del terreno en los sitios de Gabriel Zamora provoca que el ganado tenga poco acceso al consumo de especies. Nueva Italia es un municipio pequeño con una alta densidad de poblacióm, un mayor número de cabezas de ganado reduce la diversidad de Las especies del estrato inferior (existe so-.brepastoreo) y a su Vez provoca, que se incremente la diversidad en el estrato medio y superior (la gente utiliza la madera de los árboles para construir cercas y otro tipo de edificaciones rurales). En La Buacana may poca diversidad en el estrato inferior, las especies representativas son gramíneas. Posiblemente la poca diversidad se puede atribuir a la mayor cobertura y densidad de los estratos medio y superior (ocacionado por una mayor precipitación). Debido a que hay dominancia de especies gramíneas no se

puede afirmar que haya sobrepastoreo. Los sitios de Nieva Italia y La Huacana tienden a conservar una pendiente moderada, entre 6 y 15°. Existe un gradiente de altitud sobre el nivel del mar: Dabriel Zamora tiene de 380 a 900 m, Nueva Italia y La Huacana de 100 a 600 m. Podemos observar que en sitios con altitudes moderadas proliferan algunas gramíneas (Olotillo, Ponisil¹), Aceitilla, Orama Roja y Z. Invertido? que son características de La Huacana. En el estrato medio y superior las especies Canasangre. Catarinilla, Serrecilio, Palo Hería, Pata de venado, Oranadillo, Saivillas, son abundantes en altitudes de 100 a 600 m.

El eje principal i ha ordenado los sitios de acuerdo al sombreado: los sitios de Gabriel Zamora son sombreados y poco sombreados, en cambio los de La Huacana son muy sombreados.

Otro aspecto muy importante de los suelos de La Huacana es que el porcentaje de arcilla es del 20 al 40 %, en tanto los de Gabriel Zamora son poco arcillosos, tienen menos del 20 %. Los suelos medianammente limosos son la ceracterística general de los sitios en los tres municipios; sin embargo, dos sitios se destacans el 8, por ser peco limoso (15%) y el 22, por ser muy limoso (30%) que pertenecen a Gabriel Zemora y La Huacana, respectivamenete. Una conclusión es que sitios con poca pendiente y altitudes bajas tienen texturas finas (arcillosas) y viceversa, sitios con mucha pendiente y con mucha altitud presentan texturas con poca arcilla y limo (ver parte superior de la Fig. 5.5).

Una vez conociendo las características fundamentales del medio ambiente podemos estudiar la interacción que existe con la formación de comunidades vegetales. Para reforzar este discusión hemos realizado un tevere nafilisis de correspondencias, ahora con

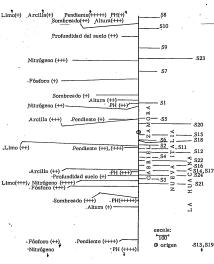


Fig. 5.5 Representación de los sitios y modalidades de medio ambiente, sobre el eje 1, a partir del análisis de correspondencias aplicado a la Tabla 1.5 del Apéndice A.

la matriz de especies por modalidades de medio <u>ambiente</u>, tabla 1.6 del apéndice A.

5.4 Matriz de especies por modalidades de medio ambiente

Para estudiar la interacción entre la vegetación y el medio ambiente se realiza el análisis de correspondencias con la tabla 1.6 del anánciec A. De acuerdo a las tablas de Lebart, apéndice B, para una matriz de 50 x 51 se espera explicar 8 y 7% para las dos primeras inercias principales; en nuestro caso explicamos un 39 y 15% respectivamente. Es decir que se esperan resultados ampliamente satisfactorios. Aquí igualmente se encuentra que la Especie El absorbe una INR demasiado alta, en comparación con las inercias relativas restantes, y posiblemente cause deformaciones en la representación bidimensional (no se muestra la tabla de descomposisción de la inercia). Se realiza un segundo análisis de correspondencias en el que El ingresa como variable suptementaria. Para calcular las coordenadas de El procedemos como se indica en el parágrafo 4.6,

 $g_1 = \frac{1}{\sqrt{1007}} (-.165) = -.521$ $g_2 = \frac{1}{\sqrt{1007}} (-.087) = -.402$

En la Fig. 1.2 del apéndice A el punto El (~521, ~402) aparece en el tercer cuadrante, como elemento suplementario. En la Fig. 5.4 podemos observar que El es el Jilottilo, una especie del estrato inferior, el elemento suplementario.

En la tabla 5.3 se observa que las INR son homogéneas, tanto para las (a) especies, como para (b) las modalidades de medio ambiente. La CALD se puede considerar satisfactoria: sin embargo.

Tabla 5.3

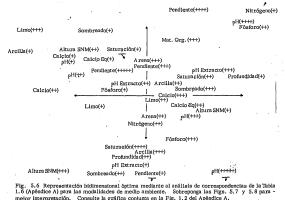
Descemposición de la inercía en el análisis de correspondencias de la tabla 1.5 (Apênd. A) para los dos pri_tmeros ejes principales. La inercía total es 0.307 y, las tres inercías principales son 0.101 (33 %) 0.47 (15 %) y, 0.34 (11 %).

1											
IDENT CALL				ST F			CTR2		0R2 0		
IDENI CAL	D MMSM	TIVE	ы	э г		HCI I	JIK2	. F2 C	UKZ L	IRZ	
E2	193	8	11	401 -		69	2	223	124	9	
E3	636	18	44	768 -		622	83	-104	14	. 4	
E4	804	6	8	432 -		772	19	118	32	. 2	
E5	176	1)	11	261	202	156	5	-72	20	1	
E6	20	37	16	137	-40	12	1	33	-8	1.	
E7	479	6	5	252 -		402	7	139	77	3	
E8	290 830	16	15	400		266 752	12 47	123	24 78	10	
E10	464	95	65	210	-95	43	8	-297	421	177	
E11	614	13	20	475 -		611	38	36	3	0	
E12	87	25	12	146 -		77	3	38	10	1	
E13	178	4	4	341 -		41	1	216	137	4	
E14	207	6	4	175	188	201	2	31	. 6	0	
E15	234	15	9	192	205 -53	518	6	-56 171	16 98	1	
E16 E17	107 75	17	31	557	-30	9	ö	201	73	14	
E18	305	14	12	276 -		210	ě	162	95	8	
E19	291	4	7		-371	286	ő	-48	15	ŏ	
E20	795	45	56	384	461	553	95	304	242	88	
E21	171	33	8	74	-26	9	0	109	162	8	
E22	382	8	8	298 -		371	9	56	11	1	
E23	807	19	35	556	-651	763	82	157	44	10	
E24		100	47	145	0	0	0	-247	422	129	
E25	112	11	9	255	5	0	.0	169	112	. 7	
E27 E28	722 158	39	72	564 177	351 34	219	48	-533 -164	503 152	236	
E29	276	6	8	282	279	276	ě.	-164	152	0	
E30	306	12	18		-376	306	17	ő	ŏ	ŏ	
E31	306	50	17	105	177	298	15	28	ě	ĭ	
F32	277	9	8	244 -	-193	152	3	175	125	6	
E33	428	8	8	324	-344	365	9	143	63	3	
E34	768	8	9	335	463	639	17	208	129	7	
E35	723	20	60	933 -		704	128	133	19	7	
E36	31	27	13	152	-66	29	1	18	2	0	
E37	87 479	19 24	24	396 123	154	60 38	4	103	27 441	27	
E39	565	17	34		-512	423	44	297	142	31	
E40	392	26	20	240	302	380	23	54	12	31	
E41	288	63	45	220	249	283	39	33	15	-î	
E42	36	16	12	234	-69	20	1	-62	16	ī	

Table 5.3 (continuación...

IDENT	CALD	MASA	INR	DIST	F1 (ORI	CTR1	F2	COR2	CTR2
E43	514	14	14	311	229	168	7	-328	346	31
E44		22	42	577	492	419	54	440	335	91
E45	495	- 6	*8		-4-23	458	11	-120	37	ź
E46		7	12	524	217	90	3	-107	22	2
E47		9	-6	193	- 22	. 5	ō	29	-4	ö
E48	553	30	37	374	387	401	45	238	152	36
E49		11	27		-610	494	41	197	52	9
E50	758	13	22	527	588	656	45	232	102	15
E1					-521			-402		
	=====	*****								
A01	702	11	27	746		649		200	53	9
A02		17	29	522	-575	632		118	27	5
AOG		27	20	227	351	541	33	-144	91	12
A04		7	26	1199	753	472		462	178	30
A05		5	31	2028	627	194	18	-718	254	51
B01		4	12	1022	82	. 7	o	~200	39	19
BO2		36	10	87	57	37	1	~158	288	
BOG	370	27	16	180	-88	43	2	243	327	33
C01		3 61	14	1298	-434 58	145	6	-55	2	0
C03		91	17		-1 049	468 443	23	-12 441	20 78	ě
D01	700	- 6	35		-1049	658		266	42	10
D05		47	9	57	160	450	12	70	85	5
D03		14	13	306	-59	11	.5	-367	441	38
E01		10	24	773	-490	311	23	223	64	10
EO2		36	10	85	213	536	16	-58	39	3
E03		21	15	227	-144	91	4	-3	ő	ŏ
F01		17	21	374	- 181	88		230	142	19
F02		16	19	357	347	338	50	118	39	ś
F03	57	22	13	188	50	13	1	-91	44	4
F04		12	14	369	-313	267	12	-325	287	26
G01		26	18	207	-73	25	1	-75	27	3
G02		10	16	486	185	71	3	-98	20	2
603		18	23	378	239	151	10	344	313	46
604		12	18	458	-365	291	16	-279	170	20
H01		4	36		999	328	36	927	282	65
H02		15	17	330	~74	17	1	-187	106	11
HO3	39	21	8	117	22	4	0	-64	35	2

Tabla 5.3 (Continuación...)

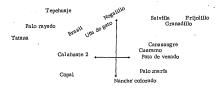

	IDENT	CALD	MASA	INR	DIST	F1	CORI	C/R1	F2	COR2	CTR2	
	101	693	42	12	86	-239	669	24	45	24	2	
	102	650	7		1199	753	472	38	462	178	30	
	103	400	18	23	362	277	201	14	-276	199	29	
	J01	422	4	21	1482	762	392	26	209	30	4	
	J02	402	4		1973	-891	402	29	19	0	0	
	J03	665	59	4	20	113	650	7	-17	15	0	
	K01	510	11	19	539	-290	156	9	-437	354	44	
	K02	279	33	16	153	-201	263	13	49	16	2	
	K03	597	23	25	329	421	538	41	140	59	10	
	L01	856	38	36	290	486	817	90	-109	41	10	
	L02	731	24	46	597	-606	615	87	264	116	35	
	L03	548	4		2031	-944	439	40	-470	109	21	
	MO1	774	13	23	524	15	0	0	~637	774	115	
	M02	95	12	15	366	66	12	1	-174	83	8	
	M03	158	20	14	221	-6	0	0	186	158	15	
	M04	450	11	26	742	265	94	8	513	356	61	
	M05	282	10	19	598	-384	247	15	145	25	4	
	NO1	515	50	6	36	67	125	2	119	390	15	
	N02	515	17	17	314	-198	125	7	-350	390	44	
	001	703	40	16	123	292	694	34	34	9	. 1	
	002	713	14	25	531	-408	314	24	-460	399	64	
	003	633	12	26	630	-474	356	28	418	277	46	
6 H 86	ERWSES	=64264	*****	unce					BREE			****

existen elementos que tienen una CALD extremadamente baja porque ni contribuyen a formar ninguno de los eles principales ni tiene una correlación alta con ningu no de los eles principales ni tiene una correlación alta con ningu no de los eles (las COR y CTR son bajas), estos elementos deban onitirse de la graficación porque carece de importancia su interpretación. Por ello ignoramos las especies E6, E12, E36, E37, E32 y E47 así como las modalidades BOI, EO3, FO3, OO1, OO2, HO3, HO4 y HO2. En la Fig. 1.2 del apendice A se han graficado simultáneamente las nubes para las especies y modalidades de medio ambiente; para una mejor interpretación, en la Fig. 5.6 sólo aparecen las modalidades de medio ambiente, en tanto que en las Figs. 5.7 y 5.8 se han graficado las especies en los estratos inferior y medio superior, respectivamente.

En esta discusión haremos referencia a los resultados obtenidos en los parágrafos 5.2 y 5.3.

El ordenamiento producido por el análisis de correspondencias, para los datos de la tabla 1.6 (apéndice A), refuerza lo afírmado en párrafos anteriores. En las Figs. 5.7 y 5.8 e confirma que las especies, en los estratos inferior, medio y superior, tienden a apruparse de manera similar a las Figs. 5.1 y 5.2 : las conclusiones que allá se obtuvieron audí tienen vigencia. En làs Figs. 5.7 y 5.8 podemos distinguir que las especies en el cuadrante II son características del municipio de Gabriel Zamora, en tanto que aquéllas de los cuadrantes I y IV son las de Nueva Italia y La Huacanai lo mismo se puede afirmar para las caractrísticas de medio ambiente.

A la luz de las Figs. 5.6, 5.7 y 5.8 podemos concluir que algunas gramíneas (Z. Invertido, Olotillo, Grama roja, Romerillo,



Jilotillo 1

Grama, Roja

Fig. 5.7 Representación bidimensional óptima mediante el análisis de correspondencias de la Tabla 1.6 (Apéndice A) para las especies en el estrato inferior. La nube de modelidades de medio ambien te se presentan en la Fig. 5.6. Consulte la gráfica conjunta en la Fig. 1.2 del Apéndice A.

Serrecillo

Catarinilla

Fig. 5.8 Representación bidimensional óptima mediante el análisis de correspondencias de la Tabla 1.6 (Apédidic A) para jas especies en el estrator medio s'superior. La nube de modalida des de medio ambiente se presenta en la Fig. 5.6. Consulte la gráfica conjunta en la Fig. 1.2 del Apédidico.

Acetilla y Panicillo) tienen mayor diversidad en sitios con pit que varfan entre ligeramente alcalinos y fuertemente alcalinos, cuya altura s.n.m. sea baja (de 150 a 375 m). Los terrenos donde proliferan estas gramíneas son peco profundos (de 25 a 50 cm), en pendientes semiplamas (de 6 a 151) y lugares muy sembreados debido a la presencia de especies en el estrato medio y superior. Las caracterfaticas predeminates del sustrato sons sualos secianamente areacacerfaticas predeminates del sustrato sons sualos secianamente lamosos (del 15 al 30%), ricos en (faforo (de 15 a 26 p.p.m.) y con porciento de saturación medianamente alto y altoide 55 a 75%). Estas mismas modalidades del medio ambiente son las relevantes para las especies del estrato medio y superior tiquientes: Saivilla, Firjolillo, Gramadillo, Canasangre, Cuerano, Pata de venado, Palo maría, Nanche colorado, Serrecillo y Catarintila (ver Fig. 5.8).

Podemos distinguir en la Fig. 5.7 un grupo de especies en el estrato inferior que en su mayoría son herbáceas no gramíneas (Muevo de toro, Platanillo 2, Hierba del golpe I, Hierba del golpe 2, Olivio, Riendilla, Cempossúchill, Hiedra y Chillosa), y Otras especies (Hierba maría, Centros, Vergonozca y Otalilosa), y Otras especies (Hierba maría, Centros, Vergonozca y Otalillo). Estas especies tienen poca diversidad (ver Fig. S.3). Las característics de medio ambiente físico, que son comunes para estas especies, son: altura s.n.a, media (de 376 a 600 m), terreno my quebrado (21 a 30°) y poco sombreado. Las características del sustrato más relevantes, para este grupo de especies, son: suelos predominantemente ácidos o neutros (6.25pH<7.2), con proporciones de arena, arcilla y limo de 50 a 100%, 0 a 20% y 30 a 40%, res-

pectivamemnte; bajo contenido de calcio fósforo. Elstas mismaa seo dalidades del medio ambiente son las relevantes p-ara la especies del estrato medio y superior siguientes: Tepehaul e, Palo rayado. Tatana, Brasil, Nogalillo, Uña de gato, Calahuate 2, y Copal (ver Fig. 5.8).

CAPITULO VI

RESUMEN Y CONCLUSIONES

n. 1 Resumen

En el Valle de Apatzingán uno de los componentes principales de la alimentación del ganado bovino son los aspostaderos naturales con especies forraly jas nativas. Un estudio ecológico puede ayudar a establecer criterios racionales para el manejo adecuado de áreas destinadas al pastoreo.

En el presente trabajo se presenta un sistema de ordenación para los datos generados por un levantamiento ecológico de especies. El sistema de ordenación usado es el análisis de correspondencias.

Para el levantamiento ecológico, se muestrearon 24 sitios, 10 corresponden al mpio. de Oabriel Zamora, 1 a Nueva Italia y 13 a La Huscans, en el Valle de Apatzingán. El método de muestreo utilizado es el de Ivao-Kuno (1971), para poblaciones agregadas. Con este método se determina que 40 cuadrantes, de 0.5 x 0.5 m para el estrato inferior y de 4 x 4 m para los estratos medio y superior, por sitio son los indicados con un 75% de precisión.

En cada silio se determinan parámetros de vagetación -la densidad media por cuadrante de 50 especies forrajeras- y parámetros de medio ambiente -li variables de sustrato y 4 variables de medio ambiente (físico.

Se presenta el análisis de correspondencias como una técnica descriptiva multidimensional, de acuerdo al enfoque clásico de Perarson (1901): a) definir una nube de puntos en el espacio multidimensional, b) determinar una estructura métrica del espacio y e) ajustar una nube de puntos en un subespacio para su representación. Se discuten algunos de sus fundamentos y la forma de inter-

pretar un análisis de este tipo. Se proporciona al lector un ejemplo numérico sencillo para reafirmar los conceptos más importantes del análisis.

El programa utilizado cara el análisis de los datos es el CORRP. De acuerdo a la salida de este programa se hace hincapit en varios aspectos: a) evaluar la significancia de las dos primeras inercias principales, mediante las Tablas de Lebart (apéndica B). D) estudiar la inercia relativa, INR, de cada uno de los elementos puestos en correspondencia, c) determinar cuáles elementos deben ser considerados como activos o suplementarios y d) evaluar las contribuciones absolutas y relativas, así como la calidad de la representación geométrica.

El sistema de ordenación, el análisis de correspondencias, se aplica a tres matrices de datos: sítios x especies, sitios x modalidades de medio ambiente y especies x modalidades de medio amhiento. Para cada una do estas matrices se discute la salida del programa CORRP y se obtiene una representación geométrica en una o dos dimensiones, para su representación. En todos los casos se observa que los sitios tienden a agruparse de acuerdo a la cercanía geográfica, así forman tres orupos de sitios: Gabriel Zamora, Nueva Italia y La Huacana. En el municipio de Gabriel Zamora se observa que hay más diversidad de especies en el estrato inferior y menos, en aquéllos del estrato medio superior: sin embargo, la diversidad es mayor en el estrato medio superior que en el inferior. En los mpios, de Nueva Italia y La Huacana se observa el caso contracio, hay más diversidad en el estrato medio superior que en el inferior. Estas relaciones fitosociológicas se originan por la presión demográfica, la influencia del medio ambiente y el maneio de sanado.

En nuestro caso hemos encontrado que el mpio, de Gabriel Zamora contiene sitios, en la muestra, muy accidentados. Lo usebrado del terreno no permite que el mora contene aceso a las especies del estrato inferior e influye en que haya mayor diversidad de especies. En este municipio la altitud sobre el nivel medio del mar tiende a ser mayor que en los de Nueva Italia y La Huacana. En lugares con altitudes moderadas, phi ligera o fuertemente alcalinos, suelos poco profundos y pendientes semiplanas, proliferan las gramfineas (2. invertido, Oletillo, Grama roja, Romerillo, Acettilla y Panisillo). Algunas especies del estrato inferior, que en su mayorfa son herbáceas no gramfineas, tienden a proliferar "aunque con poca diversidad" en lugares con una altitud de 300 a 600 m.s.n.m., terrenos muy quebrados y poco sombreados, suelos predominantementa âcidos o neutros y arenosos, con bajo contenido de calelo y fósforo.

6.2 Conclusiones.

Entre las conclusiones más importantes están:

- A. El análisis de correspondencias es útil en la ordenación de grandes tablas de datos, permite mostrar de manera gráfica los promisidades entre rengiones y columnas de una tabla de contingencias.
- B. Es recomendable estudiar la tabla de descomposición de la inercia, las ayudas para la interpretación que ésta con tiene, para detectar posibles elementos que deformen la representación geométrica.
- C. Es necesario comparar los resultados del análisis de co rrespondencias frente a otros enfoques equivalentes; por

- D. Pueden realizarse análisis de agrupamiento (usando la distancia euclidiana), a partir de las coordenadas princi pales de un análisis de correspondencias, siempre y cuando la representación fectorial sea satisfactoria.
- E. Debe considerárse el manejo del ganado, en el levantamien to ecológico; ya que es un aspecto imoportante en el cong cimiento de las relaciones fitosociológicas de las especias formajeras.
- F. Bebe tomarse en cuenta la historia del manejo del sitio, en su uso pecuario, forestal y agrícola, en el levan tamiento ecológico.
- G. Debe tomarse en cuenta que el mpio, de Nueva Italia está representado por un sitio y para fines de inferencia esto no se considera representativo.
 - H. Es posible realizar inferencias a partir de un análisis de correspondencias, bajo ciertas restricciones.

Alvarez, S.M. (1980). Una encuesta global en la rama agropecuaria como instrumento para la investigación. (Tesis doctoral inédia) Instituto Superior de Ciencias Agropecuarias de 'as Habona, La Habona, Cuba, 130 pp.

74

- Austin, M.P. (1968). An ordenation study of chalk grassland community. Journal of Ecology 56(3): 739-756.
- Benzécri, J.P. (1964). "Cour de Lingüistique ™athématique" (Publ<u>i</u> cación mimeografiada) Facultad de Ciencias de Rennes, --Francia.
- Benzécri, J.P. (1972). "Sur L'analyse des tableaux binaires associés & un correspondance multiple". (Publicación memeogr<u>a</u> fiada) Lab. Stat. Math Université Pierre et Marie Curie, París.
- Benzécri, J.P. et al (1973). "L' Analyse des données", tomo 1: La Taxonomie, tomo 2: L'Analyse des correspondances". Ed Dunod Paris, 613 pp.
- Benzécri, J.P. & Benzécri F. (1980) "L'Analyse des correspondances: expossé elementaire" Dunod, París.
- Blydestein, J. (1967). Tropical savana vegetation of the llanos of Colombia. Ecology 48 (1): 1-150.

- Die, P.J. y Walker, B.H. (1980). Vegetation environment relations on sodic soil of Zimbawe. <u>Rhodesia Journal of Ecology</u> 68: 589-606.
- Escofier-Cordier, B. (1965). L'Amalyse des correspondances. (Tessis publicada en 1969). Cahiers du Bureau Universitaire -Recherche Operationnelle, No. 13.
- Espinoza A.J. (1984). "Estudio florístico de los agostaderos". (Mimeografiado) CIAPAC, Instituto Nacional de Investigaciones Forestales y Agropecuarias SARH 103 pp.
- Fisher, R.A. (1940). The precision of discriminant functions. Ann-Eugen. Lond. 10: 422-429.
 - Goldsmith, F.B. (1978). Interaction (competition) studies as step towards the synthesis of sea-cliff vegetation. <u>Journal of</u> <u>Bcology</u>, 66: 921-931.
- Greenacre, M.J. (1984). "Theory and applications of correspondence analysis". Accademic Press, New York. 363 pp.
- Greenacre, M.J. y Vrba E.S. (1984). Graphical display and interpretation of antelope consus data in african wildlife -areas, using correspondence analysis. <u>Ecology</u> 65: (3): -984-997.

- Guttman, L. (1941). The cuantification of a class of atributes

 a theory and method of scale construction.—Bn.—WThe Prediction of PersonnelAdjustment" (Horst, F., ed). pp 319348. New York.
- Harvard-Duclos, B. (1969). "Las plantas forrajeras tropicales".

 Ed. Blume, Barcelona, España 380 pp.
- Hatheway, W.H. (1971). "Contingency-table analysis of rain forest vegetation" p. 271-313 en: G.P. Putil, E.C. Pielou & W.E. Waters, ed. <u>Statistical Ecology</u> vol 3: Many species populations, ecosystems and system analysis. Pensylvania State University Press, University Park and London. 462 p.
- Hayashi C. (1950). On the quantification of qualitative data -from the mathematical-statistical point of view. <u>Ann.</u> -Inst. Statist. Math. 2: 35-47.
- Hill, H.O. (1973). Reciprocal averaging: and eigenvector method of ordination. Journal of Ecology 61: 237-251.
- Hill, H.O. (1974). Correspondence analysis: a neglected multivariate method. Appl. Statis. 23(3): 340-354.
- Hirschfeld, H.O. (1935). A connection between correlation and contingency. Proc. Camb. Phil. Soc., 31: 520-524.
- Horst, P. (1935). Measuring complex attitudes. <u>J. Social Psycology</u> 6: 369-374.

- Thanez, F. y Séguin G. (1972). Etude du cycle annuel du Zoo plan cton d'Abidjan. Comparison de plusteurs méthodes d'analy se multivariable: composantes principales, correspondances, coordoneës principales, Invest. Peso. 36: 81-108.
- Iwao, S. y Kuno, E. (1971). "An approach to the analysis of aggregation patterns in biological populations". En statistical Ecology vol. I the Pensylvania State Univ. Press.
- Lebart L., Morineau A., Tabard N. (1977). "Techniques de la description statistique: methodes et legiciels pour l'analyse des grands tableaux". Ed Dunod, París.
- Lebart L. Morineau A., Fenélon J.P. (1982). "Traitment des donneés statistiques: méthodes et programmes". Ed Dunod, París.
- Legendre L., Legendre P. (1979). "Ecologie Numerique: Tomo 2 La Structure des données ecologiques" Masson, les presses de
 L'Université du Québec,
- Nicholls, D.F. y Plucknett D.L. (1974). Relationships between some environmental factors and the distribution petterns of subtropical forage species in Hawaii. In: International grassland congress, 12th., Moscow. Proceedings. Moscow, Rusia. PP 221-233.
- Nishisato, S. (1980). "Analysis of categorical data: dual scaling and its applications". University of Toronto, Press, Toronto, Canada.

- Orlőci L. (1975). "Multivariate analysis in vegetation research"...

 Dr.W. Junk B. W., The Hauge ix + 276 pp.
 - Richardson, M. y Kuder, G. F. (1933). Making a rating scale that meausures. Personnel J. 12: 36-40.
 - Roberts, C. R. (1980). Effects of stocking rate on tropical pasture. Tropical grassland 14(3): 225-231.
 - Torgerson, W. S. (1958). Theory and methods of scaling". New York Wiley.
 - Villegas, D. M. (1969). Estudio florístico y ecológico de las plantas arvenses de la parte meridional de la Cuenca. de México. And Esc. Nac. Cienc. Biol. IPN 18: 17-89. N<u>é</u> xico.
 - Walker, M.E. (1979). Análisis de algunas medidas de patrones e<u>s</u>
 paciales. (Tesis de maestría inôd.) Inst. Invest. Mat.
 Aplic. y Sist. UNAM. México.
 - Wheeler, B. D. (1980). Plant communities of Pich-fen systems in England and Wales. <u>Journal of Ecology</u> 68: 365.
 - Whittaker, R. H. (1967). Gradient analysis of vegetation. <u>Biol</u>. Rev. 42: 207-264.

APENDICE A

Tab 1a	1.1	Especies en el estrato inferior	80
Tabla	1.2	Especies en el estrato medio y superior	81
Tab1a	1.3	Descripción de variables del medio ambiente	82
Tab la	1.4	Matriz de sitios x especies	85
Tab la	1.5	Matriz de Sitios x modalidades de medio	
		ambiente.	87
Tab la	1.6	Matriz de especies x modalidades de medio	
		ambiente.	89
Fig.	1.1	Representación bidimensional óptima mediante el	
		análisis de correspondencias de la tabla 1.4.	101
Fig.	1.2	Representación bidimensional óptima mediante el	
		análisis de correspondencias de la tabla 1.6.	102

Tabla 1.1. Especies en el Estrato Inferior.

Etiqueta .	Nombre de la Especie
E1	Jilotillo 1 (Hilaria belangeri)
E2	
	Hierba del golpe 1 (Prunella sp.)
E3	Vergonzosa (Neptunia sp.)
E4	Centros
E5	Panicillo (Setaria sp.)
E6	Oreganillo (Ruellia sp.)
E7	Olivio (Evolvulus sp.)
E8	Cempoasúchitl
E9	Hierba maría
E10	Pegostilla (Desmodium sp.)
E11	Hiedra (Ipomoea pulchella)
E12	Pangüica (Sclerocarpus divaricatus)
E13	Huevo de Toro (Tabernaemontana amigdalifolia)
E14	Tomatillo (Physalis)
E15	Olotillo (Tetramerium hispidum)
E16	Triguillo (Panicum fasciculatum)
E 17	Platanillo 2
E18	Hierba del golpe 2
E 19	Lentejilla (Aeschynomene sp.)
E20	 Invertido (Boutelova aristidoides)
E.21	Riendilla (Elytraria imbricata)
E 2 2	Chiltoma
`E 23	Otatillo (Paspalum acuminatum)
E 24	Aceitilla (Boutelova repens)
E25	Zacate gallo (Aristida sp.)
E.26	Romerillo 2
E.27	Grama roja (Boutelova SP.)

Tabla-1.2. Especies en el Estrato Medio y Superior,

Etiqueta	Nombre de la Especie
E28 -	Nanche colorado
E 29	Pata de venado (Bauhinia latifolia)
E 30	Calah ate, 2.
E 31	Tecolotillo .
E 32	Uña de gato (Mimosa fasciculata)
E 33	Brasil (Haematoxylon brassileto)
E 34	Granadillo
E'35	Tatana
E 36	Tripa de judas
E 37	Maca
E 38	Nogalillo
E.39	Tepehuaje (Lysiloma acapulcencis)
E 40	Canasangre (Apoplanesia paniculata)
E 41	Cueramo (Cordia eleagnoides)
E 42	Huizache cucharillo (Acacia farnesiana)
E 43	Serrecillo
E 44	Catarnilla (Salpiantus sp.)
E 45	Copal (Bursera excelsa)
E 46	Palo maría (Cordia sp)
E 47	Palo dulce
E 48	Saivilla
E 49	Palo rayado .
E 50	Frijolillo

Tabla 1.3. Descripción de Variables del Medio Ambiente.

Variables de Sustrato

Variable / Descripción	Modalidad	Frecuencia
1 pH DEL SUELO.		
De 6.2 a 6.72	A01 ·	5
de 6.73 a 7.24	A02	7
de 7,25 a 7,76	A03	9
de 7.77 a 8.28	A04	2
de 8,29 a 8,80	A05	. 1
2 PCT DE ARENA		
del 0 al 25%	B01	2
del 25.1 al 50%	. B02	12
del 50.1 al 100%	B03	10
3 PCT DE LIMO		
del 0 al 15%	C01	. 2
del 15.1 al 30%	. C02	21
del 30.1 al 401	C03	1
4 PCT DE ARCILLA		
del 0 al 20%	D01	. 3
del 20.1 al 40%	D02	16
del 40.1 al 100%	D03	5
5 Ca CO ₃ EQUIV.		
de -7.06 al -4.81	E03	4
de -4.80 al -2.56	E02	12
de -2.55 al28	E01	8

Tabla 1.3. (Continuación).

Variable / Descripción	Modalidad	Frecuencia
6 PCT DE SATURACION		
de 36 a 45%	F01	6
de 45.1 a 55%	F02	5
de 55.1 a 65%	F03	8
de 65.1 a 75%	F04 .	5
7 PCT DE MATERIA ORGANICA		
de 0.6 a 1.8%	G01	9
de 1.81 a 3.0%	G02	. 3
de 3.01 a 4.2%	G03	7
de 4.21 a 10.0%	G04	5
8 NITROGENO TOTAL		
de .023 a .089	H01	1
de .090 a .155	. H02	5
de .156 a .221	H03	8
de .222 a .600	H04	10
9 FOSFORO (ppm)		
de 0 a 5.00	I01	. 16
, de 5.01 a 15.50 .	102	2
de 15.51 a 26.00	103	6
10 CALCIO (p.p.m.)		
de 200 a 400	J01	2
de 1000 a 1500	J02	2
de 1500 a 15000	J03	20

Tabla 1.3. (Continuación)

Variable / Descripción	Modalidad	Frecuencia
11 pH DEL EXTRACTO DE SATURACION		
de 7.2 a 7.4	K01	4
de 7.41 a 7.8	K02	13
de 7.81 a 8.4	K03	7.30
12 ALTURA SOBRE EL NIVEL DEL MAR		
de 150 a 375 m	L01	11
de 376 a 600 m	L02	11
de 800 a 900 m	L03	2
13 PENDIENTE DEL TERRENO		
de 0 a 5 grados	M01	5
de 6 a 10 grados	N02	4
de 11 a 15 grados	M03	7
de 16 a 20 grados	M04	4
de 21 a 30 grados	M05	4
14 PROFUNDIDAD DEL SUELO		
de 25 a 50 cm	N01	17
de 51 a 50 cm	N02	7
15 SOMBREADO DE PLANTA		
Muy sombreado	001	13
Sombreado	0 0 2	6
Poco sombreado	003	5

Table 1.4 Matriz-de-sitios Y Especies

ESPECIE

		Te	M.P.	100									
SITIO	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13
S1	373	10	02	16	15	62	3	64	20	45	59	16	6
S2	173	55	14	- 8	0	180	8	32	45	31	20	- 14	16
S3	0	61	0	. 0	. 7	106	0	0	0	28		15	7
S4	11	14	0	0	. 0	28	0	0	14	50	32	76	6
S5	372	. 0	. 0	14	25	78	0	0	0	136	22	9	0
S6	0	24	. 0	. 19	17	70	0	0	37	55	25	0	19
S7	2178	. 0	86	7	0	0	10	10	19	494	25	19	0
S8	. 0	0	80	7	0	0	0	0	21	10	41	20	0
59	. 0	17	22	11	0	16	10	13	72	28	45	0	0
S10	89	14	10	5	0	12	14	0	11	93	25	15	10
S11	0	0	0	Ō	.0	26	0	0	0	48	0	.0	0
S12	0	0	0	0	10	101	10	0	0	88	0	70	0
S13 S14	0	0	0	0	12	22 11	11	0	7	167 188	0	30	0 21
S14 S15	26	0	0	0	10	30	11	0	0	271	0	33	0
S16	12	ő	ő	ő	32	47	0	0	ű	41	ŏ	33	Ö
S17	45	ŏ	ő	0	98	18	0	ő	ő	26	ŏ	11	ő
S18	43	ŏ	ŏ	ő	46	,0	9	ŏ	ŏ	95	ŏ	125	ŏ
S19	166	ŏ	ŏ	ő	12	6	6	ő	ñ	32	ŏ	0	ŏ
S20	173	ŏ	ŏ	ŏ	12	ŏ	ŏ	ő	ő	91	ŏ	ŏ	ŏ
S21	61	ŏ	ŏ	ő	ő	ŏ	ŏ	. 0	ŏ	148	ŏ	22	ŏ
S22	125	ŏ	54	25	ő	49	ō	29	59		ō	66	ŏ
S23	560	Ö	41	17	ō	0	18	0	22	35	0	13	Ó
S24	837	ō	24	7	Ö	0	- 29	. 0	43	41	Ó	39	Ö
SITIO	E14	E15	E16	E17	E18	E19	E20	E21	EZZ	E23	E24	E25	
S1	15	20	20	16	. 0	0	0	0	0	0	0	0	
S2	16	0	10	86	69	9	6	30	11	0	0	0	
S3	7	0	5	206	37	0	28	. 8	. 0	0	0	0	
S4	Ö	0	30	34	0	.0	0	21	0	6	. 0	0	
S5 S6	26	33	0	14	71	15 12	0	10	11	12	53 0	0 19	
S7	0	0	Ü	14	71	11	0	43 9	11	52	108	19	
S8	ŏ	ŏ	ő	ŏ	33	.,	ő	6	6	39	138	ŏ	
59	ŏ	ő	6	.0	22	ŏ	ő	11	ő	86	46	30	
S10	ŏ	ŏ	ő	10	12	18	ŏ	23	ŏ	17	179	0	
S11	. 0	ŏ	ő	0	11	10	ŏ	54	ő	·ó	30	14-	
-S12	20	ŏ	ŏ	ŏ	·i	ŏ	84	38	ő	ŏ	306	31	
S13	21	ŏ	10	ŏ	28	12	49	9	ŏ	ŏ	25	ö	
S14	22	ŏ	ō	ō	Š	ō	230	92	9	ō	-0	ō	
S15	12	46	ō	ō	ŏ	ŏ	21	31	ō	ō	64	ō	
S16	0	21	0	0	Ö	0	19	7	Ó	0	235	44	
S17	0	12	0	0	Ó	0	124	11	Ó	Ó	472	33	
S18	0	35	0	0	14	0	243	155	41	59	. 0	39	
S19	13	49	Ö	Ö	0	Ô	252	36	0	0	10	12	
S20	0	80	21	0	0	0	7	29	0	0	177	10	
S21	0	48	0	0	0	0	0	'32	29	0	388	0	
S22	0	0	0	19	15	21	0	12	0	63	0	0	
523	0	0	0	12	11	0	0	50	45	86	44	23	
S24	0	0	0	0	9	. 0	0	54	26	33	83	0	

Tabla	1.4 (.	Con	tinuac	ión)				(VI)	an X	· · ·	0 (5)	111	,
		302		Е	S P E	C I	E						
SITIO	E26	E27	E28	E29	E30	E31	E32	E33	E34	E35	E36	E37	E38
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S16 S17 S18 S20 S21 S22 S23 S24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 12 286 36 36 36 36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 10 22 4 0 0 0 0 14 0 10 13 9 0 0 14 20 0 0	21 0 0 0 0 0 0 0 0 0 0 34 17 19 0 333 46 24 0 0 0	63 0 4 0 30 0 0 0 0 0 0 17 0 0 0 19 0 0 0 0 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	71 110 12 23 30 0 27 0 82 153 186 95 24 36 124 10 19 126 35 0	15 38 29 13 0 0 0 49 0 0 19 9 8 8 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 3 0 10 8 0 12 7 0 0 0 0 0 0 0 0 10 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 19 0 15 13 27 18 34 49 0 0	3 0 0 0 36 64 71 0 35 0 0 0 0 0 0 0 0 0	26 44 16 157 52 0 0 0 0 38 0 61 30 0 0 0 29 0 0 39 29 0 0	6 0 4 13 35 0 0 0 0 64 0 11 1 0 0 0 14 36 0 0	3 26 17 10 0 46 32 0 0 51 0 0 0 45 77 27 0 71 10 0 66 31 44
SITIO	E39	E40	E41	E42	E43	E44	.E45	E46	E47	E48	E49	E50	
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S17 S18 S19 S17 S18 S19 S17 S18 S19 S19 S19 S19 S19 S19 S19 S19 S19 S19	17 7 15 0 0 138 0 0 89 42 18 0 0 0 0 0 0 0	7 7 20 11 0 0 0 0 12 191 133 129 27 55 27 50 29 19	7 94 63 46 0 0 0 122 0 245 23 201 342 38 22 175 0 80	0 6 0 0 3 0 0 15 23 0 55 0 0 21 16 0 14 25 79	0 6 0 42 17 0 0 0 8 40 56 16 0 0 0	0 6 14 35 6 0 0 0 19 0 18 33 0 8 24 14 46 211 71	0 0 4 10 0 4 12 19 0 0 0 0 18 0 10	0 0 6 0 11 0 0 0 0 12 85 0 0 9 40 0 0 7	0 0 0 38 0 0 36 0 0 14 0 0 17 33 0 22 28 20	0 0 0 0 0 0 0 0 0 0 11 0 0 0 19 54 8 15 43 217 242 39	0 0 0 0 0 9 11 13 47 79 0 0 0 0 0 0 15 15 15 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 9 81 16 21 21 21 21 0 80 0	

0 10

0 0 4

20 0 0 23 51 (Consultar tablas 1.1 y 1.2 para los numbres de las especies)

S20 S21 S22

S23 S24 42 Tabla 1.5 Matriz de Sitios x Modalidades de Medio Ambiente. Las Variables del Sustrato, son de la A a la K y las del Medio Ambiente Físico, son de la L a la O. Consulte la Tabla 1.3 de este Anexo para el sig. de las letrás.

Modalidades de Medio Ambiente

Tabla 1.5 (Continuació

	Modalidades de Medio Ambiente																									
SITIO	H D	H 0 2	H 0 3	H 0 4	1 0 1	1 0 2	0 3	J 0 1	J 0 2	J 0 3	K 0 1	K 0 2	0 3	L 0 1	L 0 2	1 0 3	M 0 1	M 0 2	M 0 3	M 0 4	M 0 5	0 N	N 0 2	0	0 2	0 0 3
\$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \$10 \$11 \$12 \$13 \$14 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15	000000000000000000000000000000000000000	100000000000000000000000000000000000000	00000011100001100000	0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0	1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	000000011000000000000000000000000000000	100000000000000000000000000000000000000	111111111111111111111111111111111111111	010000011000000000000000000000000000000	0010110001100011111	100000000011000111000000000000000000000	00000000111111111100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000110000000000000000000000000000000	000010100010000000000000000000000000000	000000000000000000000000000000000000000	1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1	100000011000010000100000000000000000000	111000000000000000000000000000000000000	000010100000000000000000000000000000000	000010010000000000000000000000000000000

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambie E4

E2 E3

E1

	1:1	E2	ES	154	ES	10	- H/	. E8		EIU	E(1	EIZ	E13	E14
\01	1099	86	150-1	38	0	208	70	. 54	192	203	140	88	26	16
102	3608	34	263	98	103	254	45	112	157	860	131	248	25	4.1
103	283	7.5	0	0	71	353	21	0	21	953	36 .	216	34	61
104	166	0	- 0	0	24	35	17	0	0	199	0	30	0	34
\05	45	0	. 0	0	98	18	0	0	0	26	0	11	0	0
301	372	0	0	14	25	99	0	0	0	184	22	9	0	26
302	3618	140	178	66	156	502	69	80	210	1540	. 83	249	63	78
303	1211	5.5	235	56	115	267	84	86	160	517	202	335	22	48
01	0	0	80.	7	0	26	9	0	21	58	4.1	20	0	U
202	5076	195	279	104	296	793	144	137	290	2183	266	507	85	152
203	125	0	54	25	0	49	0	29	59	0	0	66	. 0	0
01	560	17	143	35	0	16	37	13	115	73	86	33	0	0
002	2046	154	184	61	156	665	106	134	199	1409	149	521	66	126
003	2595	24	86	40	140	.187	10	19	56	759	72	39	19	26
1 05	1570	24	65	43	29	70	47	9	102	222	25	52	19	0
02	980	72	90	58	235	483	44	74	176	1023	96	310	16	88
:03	2651	99	258	35	32	315	62	83	92	996	186	231	50	64
701	1582	17	87	35	90	63	66	13	137	331	45	177	0	0
102	738	65	96	24	37	298	33	96	72	567	88	63	43	78
03	145	113	90	31	144	359	44	18	83	517	127	237	42	48
04	2736	0	140	46	2.5	148	10	39	78	826	47	116	b	26
01	2089	4 1	179	56	167	256	89	86	168	488	129	164	. 15	35
02	199	55	14	8	56	219	17	32	45	397	29	172	16	28
303	166	85	80	26	48	248	37	9	65	528	70	65	47	63

H5 R6 E7 H8 E9

E10 611 E12 E13 E14

	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	611	E12	E13	E14
G04	2747	14	140	. 46	25	145	10	39	92	828	79	192	6	26
H01	166	0	0	0	12	6	6	0	0	32	0	0	0	13
H02	1815	10	147	40	123	181	65	64	85	235	59	149	6	35
. H03	300	31	112	23	100	140	42	22	104	677	111	193	10	12
H04	2920	154	154	73	61	541	40	80	181	1297	137	251	69	92
I01	4925	120	413	136	213	517	126	166	356	1416	421	347	72	79
102	166	0	0	0	24	35	17	0	0	199	0	30	0	34
103	110	75	. 0	0.	59	316	10	0	14	626	36	216	13	39
J01	89	31	32	16	0	28	24	22	83	121	70	15	10	0
J02	373	10	162	23	15	62	17	64	41	55	100	36	6	15
2 J03	4739	154	219	97	281	778	112	80	246	2065	137	542	69	137
K01	2377	55	180	22	10	219	27	42	85	806	95	86	16	28
K02	2829	116	151	98	103	500	81	- 60	244	832	121	249	36	53
K03	595	24	82	16	183	149	45	64	41	603	91	258	33	71
L01	483	0	0	0	232	277	47	0	7	1195	0	291	21	88

29 .

U

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente (Continuación)

> L02

> L03

M01 ì O

M02

M03

M04

MOS

NO 1

N02

·· 002	3502 571	. 14 55	209 ' 63				1045 263	135 214	10 25	

E11 E12

E13 E14

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente (Continuación)

E4

E1 E2

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente. (Continuación)

	E15	E16	E17	E18	E19	E20	E21	E22	H23	E24	E25	E 26	E27
A01	0	16	96-'	123	27	6	124	43	180	446	30	48	
A02	88	20	61	117	59	243	279	108	272	205	81	14	0
A03	195	56	240	53	0	389.	312	38	. 6	1200	99	198	505
A04	49	10	0	28	12	301	45	0	0	35	12	59	34
A05	12	0	0	0	0	124	11	0	0	472	33	22	389
B01	33	0	0	11	15	. 0	64	11	0	83	14	0	0
B02	186	46	325	240	65	465	360	86	165	1317	62	278	864
B03	125	56	72	70	18	598	347	92	293	958	179	63	64
C01	0	0	0 -	44	0	0	60	6	39	168	14	0	. 0
C02	344	102	378	262	77	1063	699	183	356	2190	241	541	9,28
C03	0	0	19	15	21	0	12	0	63	0	0	0	0
D01	0	6	12	44	0	0	67	51	211	228	53	14	0
D02	299	96	371	189	60	939	577	116	183	1467	136	3 0 5	539
D03	45	0	14	88	38	124	127	22	64	663	66	22	389
E01	80	21	26	91	12	7	176	71	136	304	52	135	35
E02	244	26	105	137	57	714	398	92	208	1323	172	181	842
E03	20	5.5	266	93	29	342	197	26	114	731	31	25	51
F01	136	27	12	34	0	269	306	112	269	585	146.	171	35
F02	115	30	102	74	9	509	189	20	0	74	12	40	354
F03	12	45	. 264	181	42	285	159	6	74	1120	9.3	94	461
F04	81	0	19	32	47	0	117	51	115	579	14	36	78

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente. (Continuació...).

	E15	E16	E17	E18	E19	E20	E21	E22	E23	E24	E25	E26	E27
G0 1	133	47	38	32	18	234	223	71	227	1542	171	206	475
G02	81	10	86	83	. 9	270	216	52	59	64	39	28	341
G03	49	15	220	185	24	559	248	15	51	203	45	71	34
G04	81	30	53	21	47	0	84	51	121	549	0	36	78
H01	49	0	0	0	. 0	252	36 -	. 0	. 0	10	12	0	13
H02	32	20	28	20	0	208	153	71	124	905	87	71	440
H03	182	27	10	70	18	290	316	47	201	869	137	163	376
H04	81	55	359	231	80	313	266	71	133	574	19	107	99
I01	180	57	157	256	86	610	589	160	452	1330	168	182	424
102	49	10	. 0	28	12	301	45	0	0	35	12	59	: 34
103	115	35	240	37	0	152	137	29	6	993	75	100	470
J01	0	6	10	12	18	0	34	0	103	225	30	13	0
J02	20	20	. 16	33	0	0	6	6	39	138	. 0	0	0
J03	324	76	371	276	80	1063	731	183	316	1995	225	328	928
K01	46	10	86	108	20	27	76	28	91	310	0	28	341
K02	182	32	261	166	66	138	371	111	302	1541	171	220	164
K03	116	60	50	4.7	12	898	324	50	65	507 -	84	93	423
L01	291	31	0	58	12	1029	494	79	59	1707	183	279	928
L02	53	71	397	224	75	34	262	93	308	405	72	62	0
L03	0	0	. 0	39	11	0	15	17	91	246	0	0	0
M01	127	0	0	17	26	21	136	51	52	643	14	64	419
M02	12	16	0	37	12	173	85	26	124	626	63	116	410
M03	135	81	155	98	30	340	285	52	128	483	80	86	86
M04	70	5	220	108	12	299	94	0	12	245	75	36	13
M05	0	0	22	61	18	230	171	60	142	361	23	39	0

Tabla 1.6 Matriz de Esecupecias x Modalidades de Medio Ambiente. (Continuación).

	E15	E16	E17	17	ET 8	E19	E20	E21	E22	E23	E24	E25	E26	E27
NO 1	198	61	371	'n	25-9	69	1035	619	172	350	1662	231	214	552
NO2	146	4.1	26	16	6 2	29	2.8	152	17	108	696	24	127	376
001	230	66	327	17	16-5	42	799	358	49	63	1643	144	251	587
002	79	0	10	10	5 (44	2 1	133	54	146	625	0	76	341
003	35	36	- 60	10	96	12	243	280	86	249	90	111	14	İο

Tabla 1,6 Matriz de Especies x Modalidades de Medio Ambiente

	E2.8	E29	E30	E31	E32	E33	E34	E3S	E36	E37	E38	E39	B4 (
A01	0	0	108	137	87	50	0	106	64	0	121	180	١,
A02	43	45	130	273	53	113	35	357	170	93	178	182	5
A03	90	86	40	567	83	22	89	0	331	332	159	33	47
A04	0	17	0	163	0	0	49	0	61	14	7.1	0	4
A05	0	46	0	- 36	0	0	18	0	0	0	27	0	2
B01	22	0	39	13	0	0	0	0	90	43	0	18	10
B02	61	82	131	802	109	95	61	150	281	86	313	218	25
B03	50	112	108	361	114	90	130	313	255	310	. 243	159	34
C01	. 0	0	9	0	0	0	0	71	58	0	, 0	18	1
C02	133	194	241	1141	203	158	191	342	528	439	490	361	59
C03	0	. 0	28	35	20	27	0	50	40	0	66	16	
DO 1	0	. 0	9	27	49	27	0	275	51	9	82	100	
D02	107	148	230	1070	174	140	173	88	485	352	369	139	56
D03	26	46	39	79	0	18	18	100	90	78	105	156	3
E01	18	0	99	49	0	56	:0 -	240	70	80	131	191	1
E02	74	120	86	753	139 .	108	156	50	307	261	318	130	22
E03	41	74	93	374	84	21	35	173	249	98	107	74	35
F01	33	57	118	194	67	108	61	204	91	249	213	142	12
F02	30	40	63	472	75	3	78	3	120	31	145	24	19
F03	28	97	30	336	61	20	37	142	254	116	100	195	26
F04	4.2	0	67	174	20	54	15	114	152	43	98	34	2
G01	44	134	198	259	83	68	65	242	96	319	243	201	29
G02	23	24	0	329	70	50	47	0	94	0	26	7	8

96

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente. E28 E29 E30 E31 E32 E33 E34 E35 E36 E37 E38 E39 E40 36 64 165 64 179 171 203 G03 14 1.3 391 37 10 107 33 G04 52 67 - 197 57 15 114 271 56 108 16 20

	504	32		0/	. 157	33			. 119	2/1	30	100	10	20	
	H01	0	0	0	10	0	. 0	49	0	0	14	71	0	29	
	H02	21	101	179	189	34	49	38	207	57	79	105	70	225	
	H03	46	57	28	289	. 81	69	74	106	147	240	138	149	163	
	H04	66	36	7 1	688	108	67	30	150	422	106	` 242	176	189	
	I01	67	110	238	651	148	163	68	463	341	140	381	380	251	
	102	0	17	0	163	0	0	49	0	61	14	71	0	42	
	103	66	67	4.0	362	75	22	7.4	0	224	285	104	15	373	
	J01	0	0	0	27	49	19	0	35	0	0	51	131	0	
	J02	7	21	72	71	15	3	1	74	46	6	3	17	7	
2	J03	126	173	206	1078	159	163	190	. 354	580	433	502	247	599	
	K01	13	0	9	205	52	8	13	135	93	0	58	7	34	
	KOZ	83	67	206	368	117	121	61	325	238	395	342	371	300	
	K03	37	127	63	603	54	56	117	3	295	44	156	17	266	
	L01	90	173	36	855	59	69	190	0	240	329	230	18	561	
	L02	43	21	233	321	164	108	- 1	328	366	110	294	377	45	
	L03	0	0	9	0	0	8	0	135	20	0	32	0	! 0	٠
	MO 1	55	0	39	234	14	27	28	64	141	43	32	18	48	
	M02	0	63	99	216	49	43	18	0	61	0	122	131	40	
	M03	55	79	108	464	123	83	54	53	327	119	115	40	285	
	M04	13	33	23	76	29	10	76	36	16	257	211	153	104	
	M05	10	19	9	186	8	22	15	310	81	20	76	53	129	
	NO1 -	99	173	206	991	194	167	177	290	474	397	- 511	318	541	
	NO2	34	21	72	185	29	. 18	14	173	152	42	45	77	65	

	. E28	E29	0.00	223	E 32	233	E34	66.0	E30	E34	220	E39	640	
001	74	170	131,	864	129	49	144	53	316	339	342	73	518	
002	35	. 0	147	108	14	46	13	170	101	43	76	84	27	
007	2.4	2.4		204	0.0	0.0	**	240	200	£ 7	170	270		

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente

ڡ

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente

	E41	E42	E43	E44	E45	E46	E47	E48	E49	E50	_
A01	216	95-	6	29	31	0	36	22	176	0	
A02	18	40	59	52	8.5	11	38	48	75	0	
A03	793	225	185	188	22	159	79	358	0	148	
A04	281	25	56	244	10	0	2.2	236	11,	138-	
A05	175	0	16	14	0	0	33	43	0	21	
B01	245	58	50	6	10	23	38	29	0	9	
B02	938	211	232	168	58	2.2	81	405	74	116	
B03	300	116	40	353	80	125	89	273	188	182	
C01	245	70 ·	8	0	12	12	0	11	13	9	
C02	1227	315	314	527	126	158	208	696	232	298	
C03	11	0	0	0,	10	0	0	0	17	0	
D01	122	61	0	19	42	0	36	11	8:3	0	
D02	941	266	239	488	52	147	101	624	159	277	
D03	420	58	83	20	54	23	71	72	20	30	
E01	14	153	17	75	11	7	28	242	69	0	
E02	988	217	249	385	. 77	72	166	389	90	205	
E03	481	15	56	67	60	91	14	76	103	102	
F01	158	206	0	164	58	47	81	276	122	21	
F02	561	52	143	225	10	9	22	279	11	117	
F03	508	15	129	114	16	91	47	84	101	160	
F04	256	112	50	24	64	23	58	68	28	9	
G01	363	192	56	150	48	132	128	311	186	123	
G02	132	4.1	127	. 60	10	9	0	27	15	16	

8

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente

	E41	E42	E43	E44	E45	E46	E47	E48	E49	· E50
G03	931	,95	97	258	26	18	22	301	33	168
G04	57	57	42	59	64	11	58	68	28	0
H01	80	25	0	211	10	0	22	217	11	80
H02	205	74	56	. 36	11	8.5	47	43	60	102
H03	441	223	129	168	59	68	81	306	154	46
H04	757	63	137	112	68	17	58	141	37	79
101	1010	269	105	166	116	30	135	409	251	51
102	281	25	56	244	10	0	22	236	11	138
103	192	91	161	117	22	140	51	62	0	118
J01	122	23	0	19	19	0	36	11	126	0
J02	7	15	0	0	12	0	0	11	13	0
J03	1354	347	322	508	117	170	172	685	123	307
K01	132	42	127	14	56	9	0	19	24	16
K02	500	304	107	174	72	161	153	336	212	111
K03	851	39	88	339	20	0	55	352	26	180
L01	1140	264	257	443	38	153	134	656	26	307
L02	343	106	6.5	84	54	17	74	40	212	0
L03	0	15	0	0	56	0	0	11	24	0
M01	283	133	17 f·	32 -	54	32	58	76	;11	25
M02	498	74	7.2	70	19	. 0	69	62	84	79
M03	195	99	46	176	20	92	42	261	32	81
M04	165	41	17	249	32	46	39	232	20	101
M05	342	38	16	0	23	0	0	76	115	21
NO 1	1179	215	193	448	92	142	180	435	159	282

Tabla 1.6 Matriz de Especies x Modalidades de Medio Ambiente

	E41	E42	E43	E44	E45	E46	E47	E48	E49	E50
102	304	170	129	79	56	28	28	272	103	25
001	1277	235	142	409	42	150	134	629	28	291
002	38	90	163	18	66	20	38	59	150	16
003	168	60	17	100	40	0	36	19	94	0

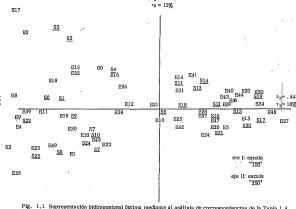


Fig. 1.1 Representación bidimensional óptima mediante al análisis de correspondencias de la Tabla 1.4.

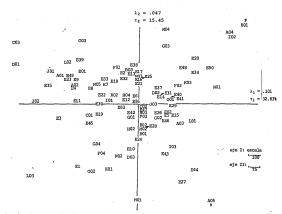


Fig. 1.2 Representación bidimensional óptima mediante el análisis de correspondencias de la Tabla 1.6

APENDICE B

1) Instructivo para uso del MACRO CORRP.

2)	Programa	para	el	análisis	de	correspondencias,	CORRP.	106
3)	Tablas de	Leba	rt.					107

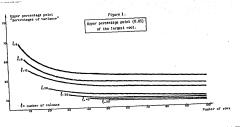
1) Uso del MACRO CORRP.

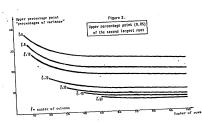
El Macro CORRP, se encuentra catalogado en una biblioteca de programas grabados en el disco INIAS1, en la máquina IBM - 4341 del Centro de Estadística y Cálculo - Colegio de Postgraduados, Chapingo, Méx.

El programa espera una marriz de números positivos, de I renglones y J columnas (f:) < 80000). Cuando el usuario proporciona una ma triz con números decimales, el programa los analiza como tales, aún cuando éstos aparecen impresos redondeados a enteros. Se sugiere que los -,nombres de los renglones vayan en el encabezado de cada renglón. Los nombres de las columnas se declaran en el formato de lectura, INPUT.

Puesto que los rengiones y columnas juegan papeles análogos, el programa reconoce como rengiones I a aquellos que cumplan la condictón I J, de otra manera transpone la matriz original. Ello no altera los resultados

El usuario debe especificar el número de factores que desea se impriman, mediante el parámetro N=x (donde x es un entero positivo menor que 7). La salida de resultados se reporta como en las Tablas (a), (b) y (c) del 34.8 de este trabajo.


A continuación se presenta un ejemplo usando los datos del ejemplo numérico, \$4.8.


```
//Nom.Trab JOB (xxxxxxxx, yyy), usuario, CLASS=F. M=640
     TIME=1, MSGLEVEL=(2.0) PW=ZZZZ D=INIAS1
11
      EXEC SAS
       DD DSN=1, ICP, DISP=SHR, UNIT=3340, VOL=SER=INIAS1
         DD DSN=I, MMM, DISP=SHR, UNIT=3340, VOL=SER=INIAS1
// DD
DATA A: N=2: INPUT H$ C1 - C3:
CARDS:
H1
     5
H2
        16
              10
113
              25
        20
CORRP
/+
donde
xxxxxxxx ...... Número de cuenta.
vvv ...... Número de subcuenta.
ZZZZ ..... Palabra clave asignada
Nota:
        el DATA declarado siempre debe ser A; en el INPUT el formato
         de lectura de nombres por renglón, siempre debe ser H$.
```

PROPICTAL AND INC.

10022CR1=C001 INRI DISTI HOCKNIEGO A CONTROL OF THE PROPERTY OF T OMMESAUNGANEE:

Tablas de Lebart.

